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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to provide
the engineering, mathematical, and scientific communities with significant develop-
ments in harmonic analysis, ranging from abstract harmonic analysis to basic appli-
cations. The title of the series reflects the importance of applications and numerical
implementation, but the richness and relevance of applications and implementation
depend fundamentally on the structure and depth of theoretical underpinnings. Thus,
from our point of view, the interleaving of theory and applications and their creative
symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of cre-
ative cross-fertilization with diverse areas. The intricate and fundamental relation-
ship between harmonic analysis and fields such as signal processing, partial differ-
ential equations (PDEs), and image processing is reflected in our state-of-the-art
ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing, geo-
physics, pattern recognition, biomedical engineering, and turbulence. These areas
implement the latest technology, from sampling methods on surfaces to fast algo-
rithms and computer vision methods. The underlying mathematics of wavelet theory
depends not only on classical Fourier analysis, but also on ideas from abstract har-
monic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.
The unifying influence of wavelet theory in the aforementioned topics illustrates the
justification for providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish the scope and interaction that such a host of issues
demands.

v



vi ANHA Series Preface

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications
Digital signal processing Sampling theory
Fast algorithms Spectral estimation
Gabor theory and applications Speech processing
Image processing Time-frequency and time-scale analysis
Numerical partial differential equations Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries, Fourier analysis has had a major impact on the devel-
opment of mathematics, on the understanding of many engineering and scientific
phenomena, and on the solution of some of the most important problems in mathe-
matics and the sciences. Historically, Fourier series were developed in the analysis
of some of the classical PDEs of mathematical physics; these series were used to
solve such equations. In order to understand Fourier series and the kinds of solu-
tions they could represent, some of the most basic notions of analysis were defined,
e.g., the concept of “function.” Since the coefficients of Fourier series are integrals,
it is no surprise that Riemann integrals were conceived to deal with uniqueness
properties of trigonometric series. Cantor’s set theory was also developed because
of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics
or spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; and
second, to determine which phenomena can be constructed from given classes of
harmonics, as done, e.g., by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers, but also
provides the proper notion of spectrum for phenomena such as white light; this latter
process leads to the Fourier analysis associated with correlation functions in filter-
ing and prediction problems, and these problems, in turn, deal naturally with Hardy
spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal pro-
cessing, whether with the fast Fourier transform (FFT), filter design, or the adaptive
modeling inherent in time-frequency-scale methods such as wavelet theory. The co-
herent states of mathematical physics are translated and modulated Fourier trans-
forms, and these are used, in conjunction with the uncertainty principle, for deal-
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ing with signal reconstruction in communications theory. We are back to the raison
d’être of the ANHA series!

John J. BenedettoUniversity of Maryland
College Park Series Editor



Preface

Frame theory is nowadays a fundamental research area in mathematics, computer
science, and engineering with many exciting applications in a variety of different
fields. Introduced in 1952 by Duffin and Schaeffer, its significance for signal pro-
cessing has been revealed in the pioneering work by Daubechies, Grossman, and
Meyer in 1986. Since then frame theory has quickly become the key approach when-
ever redundant, yet stable, representations of data are required. Frames in finite-
dimensional spaces, i.e., finite frames, are a very important class of frames due to
their significant relevance in applications. This book is the first comprehensive in-
troduction to both the theory and applications of finite frames, with various chapters
outlining diverse directions of this intriguing research area.

Today, frame theory provides an extensive framework for the analysis and de-
composition of signals in a stable and redundant way, accompanied by various re-
construction procedures. Its main methodological ingredients are the representation
systems which form a frame. In fact, a frame can be regarded as the most natural
generalization of the notion of an orthonormal basis. To be more specific, let (ϕi)

M
i=1

be a family of vectors in R
N or CN . Then these vectors form a frame if there exist

constants 0 < A ≤ B <∞ such that A‖x‖2 ≤ ‖(〈x,ϕi〉)Mi=1‖�2 ≤ B‖x‖2 holds for
all x in the underlying space. The constants A and B determine the condition of a
frame, which is optimal for A = B = 1, leading to the class of Parseval frames. It
is evident that the notion of a frame allows the inclusion of redundant systems in
the sense of overcomplete systems. This is key to the resilience of frames to dis-
turbances (such as, e.g., noise, erasures, and quantization) of the frame coefficients
(〈x,ϕi〉)Mi=1 associated with a signal x. These frame coefficients can be utilized, for
instance, for edge detection in an image, for the transmission of a speech signal,
or for recovery of missing data. Although the analysis operator x �→ (〈x,ϕi〉)Mi=1
maps a signal into a higher-dimensional space, frame theory also provides efficient
methods for reconstructing the signal.

New theoretical insights and novel applications are continually arising, because
the underlying principles of frame theory are basic ideas which are fundamental to
a wide canon of areas of research. In this sense, frame theory might be regarded
as partly belonging to applied harmonic analysis, functional analysis, and operator

ix



x Preface

theory, as well as numerical linear algebra and matrix theory. Some of its count-
less applications are in biology, geophysics, imaging sciences, quantum computing,
speech recognition, and wireless communication, to name a few.

In this book we depict the current state of the research in finite frame theory and
cover the progress which has been made in the area over the last twenty years. It is
suitable for both a researcher who is interested in the latest developments in finite
frame theory, and also for a graduate student who seeks an introduction into this
exciting research area.

This book comprises (in addition to the introduction) twelve chapters, which
cover a variety of topics in the theory and applications of finite frames written by
well-known leading experts in the subject. The necessary background for the sub-
sequent chapters is provided in the comprehensive introductory chapter on finite
frame theory. The twelve chapters can be divided into four topical groups: Frame
properties (Chaps. 2–4), special classes of frames (Chaps. 5 and 6), applications of
frames (Chaps. 7–11), and extensions of the concept of a frame (Chaps. 12 and 13).
Every chapter contains the current state of its respective field and can be read in-
dependently of the others. We now provide a brief summary of the content of each
chapter.

Chapter 1 provides a comprehensive introduction to the basics of finite frame the-
ory. After answering the question why frames?, background material from Hilbert
space theory and operator theory is presented. The authors then introduce the basics
of finite frame theory and the operators connected with a frame. After this prepa-
ration the reader is equipped with an overview of well-known results on the re-
construction of signals, the construction of special frames, frame properties, and
applications.

Chapter 2 deals with constructing frames with prescribed lengths of the frame
vectors and a prescribed spectrum of the frame operator. Several years of research
have now led to a complete solution of this problem, which is presented in this
chapter. The authors show in great detail how methods stemming from the Spectral
Tetris algorithm can be utilized to achieve an algorithmic solution to the problem.

Chapter 3 is devoted to the problem of partitioning a frame into a minimal num-
ber of linearly independent or a maximal number of spanning subsets. A direct ap-
plication of the Rado-Horn theorem would solve the first problem, but it is much
too inefficient and does not make use of frame properties. However, the authors
improve the Rado-Horn theorem and derive various results solving the problem in
special cases using frame properties.

Chapter 4 accommodates the fact that (besides analytic and algebraic properties)
frames can also be analyzed from a geometric standpoint. Accompanied by several
examples, it is shown how methods from algebraic geometry can be successfully
exploited to obtain local coordinate systems on the algebraic variety of frames with
prescribed frame operator and frame vector lengths. After that, angles and metrics
on the Grassmannian variety are defined. They are then used to prove that the generic
Parseval frames are dense in the class of Parseval frames. The chapter ends with a
survey of results on signal reconstruction without phase from an algebraic geometry
viewpoint.
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Chapter 5 establishes a connection between finite group theory and finite frame
theory. The frames of investigation are called group frames. These are frames which
are induced by unitary group actions on the underlying Hilbert space; harmonic
frames are a special class of group frames. One of the highlights of the chapter
is the utilization of group frames to construct equiangular frames, which are most
desirable in applications due to their resilience to erasures.

Chapter 6 provides a basic self-contained introduction to Gabor frames on finite
Abelian groups. In the first half of the chapter the main ideas of Gabor analysis
in signal processing are illuminated, and fundamental results for Gabor frames are
proved. The second half deals with geometric properties such as linear indepen-
dence, coherence, and the restricted isometry property for Gabor synthesis matrices,
which then gives rise to the utilization of Gabor frames in compressed sensing.

Chapter 7 studies the suitability of frames for signal recovery from encoded,
noisy, or erased data with controllable accuracy. After providing a survey of results
on the resilience of frames with respect to noisy measurements, the author analyzes
the effects of erasures and error correction. One main result states that equiangular
and random Parseval frames are optimally robust against such disturbances.

Chapter 8 considers frame quantization, which is essential for the process of
digitizing analog signals. The authors introduce the reader to the ideas and prin-
ciples of memoryless scalar quantization as well as to first order and higher order
sigma-delta quantization algorithms, and discuss their performance in terms of the
reconstruction error. In particular, it is shown that an appropriate choice of quanti-
zation scheme and encoding operator leads to an error decaying exponentially with
the oversampling rate.

Chapter 9 surveys recent work on sparse signal processing which has become
a novel paradigm in the last year. The authors address problems such as exact or
lossy recovery, estimation, regression, and support detection of sparse signals in
both the deterministic and probabilistic regimes. The significance of frames for this
methodological approach is, for instance, shown by revealing the special role of
equal norm tight frames for detecting the presence of a sparse signal in noise.

Chapter 10 considers the connection of finite frames and filter banks. After the
introduction of basic related operations, such as convolution, downsampling, the dis-
crete Fourier transform, and the Z-transform, the polyphase representation of filter
banks is proved to hold, and its properties and advantages are discussed. Thereafter,
the authors show how various desiderata for the frame connected with a filter bank
can be realized.

Chapter 11 is split into two parts. The first part presents a variety of conjectures
stemming from diverse areas of research in pure and applied mathematics as well
as engineering. Intriguingly, all these conjectures are equivalent to the famous 1959
Kadison-Singer problem. The second part is devoted to the Paulsen problem, which
is formulated in pure frame theoretical terms and is also still unsolved.

Chapter 12 presents one generalization of frames, called probabilistic frames.
The collection of these frames is a set of probability measures which contains the
usual finite frames as point measures. The authors present the basic properties of
probabilistic frames and survey a range of areas such as directional statistics, in
which this concept implicitly appears.



xii Preface

Chapter 13 introduces fusion frames, which are a generalization of frames de-
signed for and perfectly suited to model distributed processing. They analyze signals
by projecting them onto multidimensional subspaces, in contrast to frames which
consider only one-dimensional projections. Various results are reviewed, including
fusion frame constructions, sparse recovery from fusion frame measurements, and
specific applications of fusion frames.

The first editor thanks Janet Tremain for her unending support and help during
the preparation of this book.

Peter G. Casazza
Gitta Kutyniok

Columbia, MO, USA
Berlin, Germany
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Chapter 1
Introduction to Finite Frame Theory

Peter G. Casazza, Gitta Kutyniok, and Friedrich Philipp

Abstract To date, frames have established themselves as a standard notion in ap-
plied mathematics, computer science, and engineering as a means to derive redun-
dant, yet stable decompositions of a signal for analysis or transmission, while also
promoting sparse expansions. The reconstruction procedure is then based on one of
the associated dual frames, which—in the case of a Parseval frame—can be chosen
to be the frame itself. In this chapter, we provide a comprehensive review of the
basics of finite frame theory upon which the subsequent chapters are based. After
recalling some background information on Hilbert space theory and operator theory,
we introduce the notion of a frame along with some crucial properties and construc-
tion procedures. Then we discuss algorithmic aspects such as basic reconstruction
algorithms and present brief introductions to diverse applications and extensions of
frames. The subsequent chapters of this book will then extend key topics in many
intriguing directions.

Keywords Applications of finite frames · Construction of frames · Dual frames ·
Frames · Frame operator · Grammian operator · Hilbert space theory ·
Operator theory · Reconstruction algorithms · Redundancy · Tight frames

1.1 Why Frames?

The Fourier transform has been a major tool in analysis for over 100 years. How-
ever, it solely provides frequency information, and hides (in its phases) information
concerning the moment of emission and duration of a signal. D. Gabor resolved this

P.G. Casazza
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2 P.G. Casazza et al.

problem in 1946 [92] by introducing a fundamental new approach to signal decom-
position. Gabor’s approach quickly became the paradigm for this area, because it
provided resilience to additive noise, quantization, and transmission losses as well
as an ability to capture important signal characteristics. Unbeknownst to Gabor, he
had discovered the fundamental properties of a frame without any of the formalism.
In 1952, Duffin and Schaeffer [79] were studying some deep problems in nonhar-
monic Fourier series for which they required a formal structure for working with
highly overcomplete families of exponential functions in L2[0,1]. For this, they in-
troduced the notion of a Hilbert space frame, in which Gabor’s approach is now a
special case, falling into the area of time-frequency analysis [97]. Much later—in the
late 1980s—the fundamental concept of frames was revived by Daubechies, Gross-
man and Mayer [76] (see also [75]), who showed its importance for data processing.

Traditionally, frames were used in signal and image processing, nonharmonic
Fourier series, data compression, and sampling theory. But today, frame theory
has ever-increasing applications to problems in both pure and applied mathematics,
physics, engineering, and computer science, to name a few. Several of these appli-
cations will be investigated in this book. Since applications mainly require frames
in finite-dimensional spaces, this will be our focus. In this situation, a frame is a
spanning set of vectors—which are generally redundant (overcomplete), requiring
control of its condition numbers. Thus a typical frame possesses more frame vec-
tors than the dimension of the space, and each vector in the space will have infinitely
many representations with respect to the frame. It is this redundancy of frames which
is key to their significance for applications.

The role of redundancy varies depending on the requirements of the applications
at hand. First, redundancy gives greater design flexibility, which allows frames to be
constructed to fit a particular problem in a manner not possible by a set of linearly
independent vectors. For instance, in areas such as quantum tomography, classes of
orthonormal bases with the property that the modulus of the inner products of vec-
tors from different bases are a constant are required. A second example comes from
speech recognition, when a vector needs to be determined by the absolute value of
the frame coefficients (up to a phase factor). A second major advantage of redun-
dancy is robustness. By spreading the information over a wider range of vectors,
resilience against losses (erasures) can be achieved. Erasures are, for instance, a se-
vere problem in wireless sensor networks when transmission losses occur or when
sensors are intermittently fading out, or in modeling the brain where memory cells
are dying out. A further advantage of spreading information over a wider range of
vectors is to mitigate the effects of noise in the signal.

These examples represent a tiny fraction of the theory and applications of frame
theory that you will encounter in this book. New theoretical insights and novel ap-
plications are continually arising due to the fact that the underlying principles of
frame theory are basic ideas which are fundamental to a wide canon of areas of re-
search. In this sense, frame theory might be regarded as partly belonging to applied
harmonic analysis, functional analysis, operator theory, numerical linear algebra,
and matrix theory.
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1.1.1 The Role of Decompositions and Expansions

Focusing on the finite-dimensional situation, let x be given data which we assume
to belong to some real or complex N -dimensional Hilbert space H N . Further, let
(ϕi)

M
i=1 be a representation system (i.e., a spanning set) in H N , which might be

chosen from an existing catalog, designed depending on the type of data we are
facing, or learned from sample sets of the data.

One common approach to data processing consists in the decomposition of the
data x according to the system (ϕi)

M
i=1 by considering the map

x �→ (〈x,ϕi〉
)M
i=1.

As we will see, the generated sequence (〈x,ϕi〉)Mi=1 belonging to �2({1, . . . ,M})
can then be used, for instance, for transmission of x. Also, a careful choice of the
representation system enables us to solve a variety of analysis tasks. As an exam-
ple, under certain conditions the positions and orientations of edges of an image
x are determined by those indices i ∈ {1, . . . ,M} belonging to the largest coeffi-
cients in magnitude |〈x,ϕi〉|, i.e., by hard thresholding, in the case that (ϕi)

M
i=1 is a

shearlet system (see [115]). Finally, the sequence (〈x,ϕi〉)Mi=1 allows compression
of x, which is in fact the heart of the new JPEG2000 compression standard when
choosing (ϕi)

M
i=1 to be a wavelet system [140].

An accompanying approach is the expansion of the data x by considering se-
quences (ci)

M
i=1 satisfying

x =
M∑

i=1

ciϕi .

It is well known that suitably chosen representation systems allow sparse se-
quences (ci)

M
i=1 in the sense that ‖c‖0 = #{i : ci 
= 0} is small. For example, certain

wavelet systems typically sparsify natural images in this sense (see, for example,
[77, 122, 133] and the references therein). This observation is key to allowing the
application of the abundance of existing sparsity methodologies such as compressed
sensing [86] to x. In contrast to this viewpoint which assumes x as explicitly given,
the approach of expanding the data is also highly beneficial in the case where x

is only implicitly given, which is, for instance, the problem all partial differential
equation (PDE) solvers face. Hence, using (ϕi)

M
i=1 as a generating system for the

trial space, the PDE solver’s task reduces to computing (ci)
M
i=1, which is advan-

tageous for deriving efficient solvers provided that—as before—a sparse sequence
does exist (see, e.g., [73, 106]).
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1.1.2 Beyond Orthonormal Bases

To choosing the representation system (ϕi)
N
i=1 to form an orthonormal basis for

H N is the standard choice. However, the linear independence of such a system
causes a variety of problems for the aforementioned applications.

Starting with the decomposition viewpoint, using (〈x,ϕi〉)Ni=1 for transmission
is far from being robust to erasures, since the erasure of only a single coefficient
causes a true information loss. Also, for analysis tasks orthonormal bases can be
unfavorable, since they do not allow any flexibility in design, which is needed, for
instance, in the design of directional representation systems. In fact, it is conceivable
that no orthonormal basis with paralleling properties such as curvelets or shearlets
does exist.

Also, from an expansion point of view, the utilization of orthonormal bases is
not advisable. A particular problem affecting sparsity methodologies as well as the
utilization for PDE solvers is the uniqueness of the sequence (ci)

M
i=1. This non-

flexibility prohibits the search for a sparse coefficient sequence.
It is evident that these problems can be tackled by allowing the system (ϕi)

M
i=1 to

be redundant. Certainly, numerical stability issues in the typical processing of data

x �→ (〈x,ϕi〉
)M
i=1 �→

M∑

i=1

〈x,ϕi〉ϕ̃i ≈ x

with an adapted system (ϕ̃i)
M
i=1 must be taken into account. This leads naturally to

the notion of a (Hilbert space) frame. The main idea is to have a controlled norm
equivalence between the data x and the sequence of coefficients (〈x,ϕi〉)Mi=1.

The area of frame theory is very closely related to other research fields in both
pure and applied mathematics. General (Hilbert space) frame theory—in particular,
including the infinite-dimensional situation—intersects functional analysis and op-
erator theory. It also bears close relations to the area of applied harmonic analysis,
in which the design of representation systems, typically by a careful partitioning of
the Fourier domain, is one major objective. Some researchers even consider frame
theory as belonging to this area. Restricting to the finite-dimensional situation—in
which customarily the term finite frame theory is used—the classical areas of matrix
theory and numerical linear algebra have close intersections, but also, for instance,
the novel area of compressed sensing, as already pointed out.

Nowadays, frames have established themselves as a standard notion in applied
mathematics, computer science, and engineering. Finite frame theory deserves spe-
cial attention due to its importance for applications, and might be even considered
a research area of its own. This is also the reason why this book specifically fo-
cuses on finite frame theory. The subsequent chapters will show the diversity of this
rich and vivid research area to date, ranging from the development of frameworks
to analyzing specific properties of frames, the design of different classes of frames,
various applications of frames, and extensions of the notion of a frame.
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1.1.3 Outline

In Sect. 1.2 we first provide some background information on Hilbert space theory
and operator theory to make this book self-contained. Frames are then subsequently
introduced in Sect. 1.3, followed by a discussion of the four main operators asso-
ciated with a frame, namely, the analysis, synthesis, frame, and Gramian operators
(see Sect. 1.4). Reconstruction results and algorithms naturally including the notion
of a dual frame are the focus of Sect. 1.5. This is followed by the presentation of
different constructions of tight as well as non-tight frames (Sect. 1.6), and a discus-
sion of some crucial properties of frames, in particular, their spanning properties, the
redundancy of a frame, and equivalence relations among frames in Sect. 1.7. This
chapter is concluded with brief introductions to diverse applications and extensions
of frames (Sects. 1.8 and 1.9).

1.2 Background Material

Let us start by recalling some basic definitions and results from Hilbert space the-
ory and operator theory, which will be required for all subsequent chapters. We do
not include the proofs of the presented results; instead, we refer to the standard
literature such as, for instance, [152] for Hilbert space theory and [70, 104, 129]
for operator theory. We emphasize that all following results are solely stated in the
finite-dimensional setting, which is the focus of this book.

1.2.1 Review of Basics from Hilbert Space Theory

Letting N be a positive integer, we denote by H N a real or complex N -dimensional
Hilbert space. This will be the space considered throughout this book. Sometimes,
if it is convenient, we identify H N with R

N or CN . By 〈· , ·〉 and ‖ · ‖ we denote
the inner product on H N and its corresponding norm, respectively.

Let us now start with the origin of frame theory, which is the notion of an or-
thonormal basis. Alongside, we recall the basic definitions we will also require in
the sequel.

Definition 1.1 A vector x ∈ H N is called normalized if ‖x‖ = 1. Two vectors
x, y ∈H N are called orthogonal if 〈x, y〉 = 0. A system (ei)

k
i=1 of vectors in H N

is called

(a) complete (or a spanning set) if span{ei}ki=1 =H N .
(b) orthogonal if for all i 
= j , the vectors ei and ej are orthogonal.
(c) orthonormal if it is orthogonal and each ei is normalized.
(e) an orthonormal basis for H N if it is complete and orthonormal.
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A fundamental result in Hilbert space theory is Parseval’s identity.

Proposition 1.1 (Parseval’s Identity) If (ei)Ni=1 is an orthonormal basis for H N ,
then, for every x ∈H N , we have

‖x‖2 =
N∑

i=1

∣∣〈x, ei〉
∣∣2.

Interpreting this identity from a signal processing point of view, it implies that
the energy of the signal is preserved under the map x �→ (〈x, ei〉)Ni=1, which we
will later refer to as the analysis map. We also mention at this point that this
identity is not only satisfied by orthonormal bases. In fact, redundant systems
(“non-bases”) such as (e1,

1√
2
e2,

1√
2
e2,

1√
3
e3,

1√
3
e3,

1√
3
e3, . . . ,

1√
N
eN, . . . , 1√

N
eN)

also satisfy this equality, and will later be coined Parseval frames.
Parseval’s identity has the following implication, which shows that a vector x can

be recovered from the coefficients (〈x, ei〉)Ni=1 by a simple procedure. Thus, from
an application point of view, this result can also be interpreted as a reconstruction
formula.

Corollary 1.1 If (ei)Ni=1 is an orthonormal basis for H N , then, for every x ∈H N ,
we have

x =
N∑

i=1

〈x, ei〉ei .

Next, we present a series of basic identities and inequalities, which are exploited
in various proofs.

Proposition 1.2 Let x, x̃ ∈H N .

(i) Cauchy-Schwarz inequality. We have
∣∣〈x, x̃〉∣∣≤ ‖x‖‖x̃‖,

with equality if and only if x = cx̃ for some constant c.
(ii) Triangle inequality. We have

‖x + x̃‖ ≤ ‖x‖ + ‖x̃‖.
(iii) Polarization identity (real form). If H N is real, then

〈x, x̃〉 = 1

4

[‖x + x̃‖2 − ‖x − x̃‖2].

(iv) Polarization identity (complex form). If H N is complex, then

〈x, x̃〉 = 1

4

[‖x + x̃‖2 − ‖x − x̃‖2]+ i

4

[‖x + ix̃‖2 − ‖x − ix̃‖2].
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(v) Pythagorean theorem. Given pairwise orthogonal vectors (xi)
M
i=1 ∈H N , we

have
∥∥∥∥∥

M∑

i=1

xi

∥∥∥∥∥

2

=
M∑

i=1

‖xi‖2.

We next turn to considering subspaces in H N , again starting with the basic
notation and definitions.

Definition 1.2 Let W ,V be subspaces of H N .

(a) A vector x ∈H N is called orthogonal to W (denoted by x ⊥W ), if

〈x, x̃〉 = 0 for all x̃ ∈W .

The orthogonal complement of W is then defined by

W ⊥ = {x ∈H N : x ⊥W
}
.

(b) The subspaces W and V are called orthogonal subspaces (denoted by W ⊥ V ),
if W ⊂ V ⊥ (or, equivalently, V ⊂W ⊥).

The notion of orthogonal direct sums, which will play an essential role in
Chap. 13, can be regarded as a generalization of Parseval’s identity (Proposi-
tion 1.1).

Definition 1.3 Let (Wi )
M
i=1 be a family of subspaces of H N . Then their orthogonal

direct sum is defined as the space

(
M∑

i=1

⊕Wi

)

�2

:=W1 × · · · ×WM

with inner product defined by

〈x, x̃〉 =
M∑

i=1

〈xi, x̃i〉 for all x = (xi)
M
i=1, x̃ = (x̃i)

M
i=1 ∈

(
M∑

i=1

⊕Wi

)

�2

.

The extension of Parseval’s identity can be seen when choosing x̃ = x yielding
‖x‖2 =∑M

i=1 ‖xi‖2.

1.2.2 Review of Basics from Operator Theory

We next introduce the basic results from operator theory used throughout this book.
We first recall that each linear operator has an associated matrix representation.
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Definition 1.4 Let T :H N →H K be a linear operator, let (ei)Ni=1 be an orthonor-
mal basis for H N , and let (gi)Ki=1 be an orthonormal basis for H K . Then the matrix
representation of T (with respect to the orthonormal bases (ei)

N
i=1 and (gi)

K
i=1) is a

matrix of size K ×N and is given by A= (aij )
K,N
i=1,j=1, where

aij = 〈T ej , gi〉.

For all x ∈H N with c= (〈x, ei〉)Ni=1 we have

T x =Ac.

1.2.2.1 Invertibility

We start with the following definition.

Definition 1.5 Let T :H N →H K be a linear operator.

(a) The kernel of T is defined by kerT := {x ∈H N : T x = 0}. Its range is ranT :=
{T x : x ∈H N }, sometimes also called the image and denoted by imT . The
rank of T , rankT , is the dimension of the range of T .

(b) The operator T is called injective (or one-to-one), if kerT = {0}, and surjec-
tive (or onto), if ranT =H K . It is called bijective (or invertible), if T is both
injective and surjective.

(c) The adjoint operator T ∗ :H K →H N is defined by

〈T x, x̃〉 = 〈x,T ∗x̃〉 for all x ∈H N and x̃ ∈H K.

(d) The norm of T is defined by

‖T ‖ := sup
{‖T x‖ : ‖x‖ = 1

}
.

The next result states several relations between these notions.

Proposition 1.3

(i) Let T :H N →H K be a linear operator. Then

dimH N =N = dim kerT + rankT .

Moreover, if T is injective, then T ∗T is also injective.
(ii) Let T :H N →H N be a linear operator. Then T is injective if and only if it is

surjective. Moreover, kerT = (ranT ∗)⊥, and hence

H N = kerT ⊕ ranT ∗.
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If T :H N →H N is an injective operator, then T is obviously invertible. If an
operator T :H N →H K is not injective, we can make T injective by restricting it
to (kerT )⊥. However, T |(kerT )⊥ might still not be invertible, since it does not need
to be surjective. This can be ensured by considering the operator T : (kerT )⊥ →
ranT , which is now invertible.

The Moore-Penrose inverse of an injective operator provides a one-sided inverse
for the operator.

Definition 1.6 Let T :H N →H K be an injective, linear operator. The Moore-
Penrose inverse of T , T †, is defined by

T † = (T ∗T )−1
T ∗.

It is immediate to prove invertibility from the left as stated in the following result.

Proposition 1.4 If T :H N →H K is an injective, linear operator, then T †T = Id.

Thus, T † plays the role of the inverse on ranT —not on all of H K . It projects a
vector from H K onto ranT and then inverts the operator on this subspace.

A more general notion of this inverse is called the pseudoinverse, which can be
applied to a non-injective operator. In fact, it adds one more step to the action of
T † by first restricting to (kerT )⊥ to enforce injectivity of the operator followed by
application of the Moore-Penrose inverse of this new operator. This pseudoinverse
can be derived from the singular value decomposition. Recalling that by fixing or-
thonormal bases of the domain and range of a linear operator we derive an associated
unique matrix representation; we begin by stating this decomposition in terms of a
matrix.

Theorem 1.1 Let A be an M × N matrix. Then there exist an M ×M matrix U

with U∗U = Id, and N × N matrix V with V ∗V = Id, and an M × N diagonal
matrix Σ with nonnegative, decreasing real entries on the diagonal such that

A=UΣV ∗.

Hereby, an M×N diagonal matrix with M 
=N is an M×N matrix (aij )
M,N
i=1,j=1

with aij = 0 for i 
= j .

Definition 1.7 Let A be an M × N matrix, and let U,Σ , and V be chosen as in
Theorem 1.1. Then A = UΣV ∗ is called the singular value decomposition (SVD)
of A. The column vectors of U are called the left singular vectors, and the column
vectors of V are referred to as the right singular vectors of A.

The pseudoinverse A+ of A can be deduced from the SVD in the following way.
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Theorem 1.2 Let A be an M ×N matrix, and let A=UΣV ∗ be its singular value
decomposition. Then

A+ = VΣ+U∗,

where Σ+ is the N ×M diagonal matrix arising from Σ∗ by inverting the nonzero
(diagonal) entries.

1.2.2.2 Riesz bases

In the previous subsection, we recalled the notion of an orthonormal basis. How-
ever, sometimes the requirement of orthonormality is too strong, but uniqueness of
a decomposition as well as stability are to be retained. The notion of a Riesz basis,
which we next introduce, satisfies these desiderata.

Definition 1.8 A family of vectors (ϕi)
N
i=1 in a Hilbert space H N is a Riesz basis

with lower (respectively, upper) Riesz bounds A (resp. B), if, for all scalars (ai)Ni=1,
we have

A

N∑

i=1

|ai |2 ≤
∥∥∥∥∥

N∑

i=1

aiϕi

∥∥∥∥∥

2

≤ B

N∑

i=1

|ai |2.

The following result is immediate from the definition.

Proposition 1.5 Let (ϕi)
N
i=1 be a family of vectors. Then the following conditions

are equivalent.

(i) (ϕi)
N
i=1 is a Riesz basis for H N with Riesz bounds A and B .

(ii) For any orthonormal basis (ei)
N
i=1 for H N , the operator T on H N given by

T ei = ϕi for all i = 1,2, . . . ,N is an invertible operator with ‖T ‖2 ≤ B and
‖T −1‖−2 ≥A.

1.2.2.3 Diagonalization

Next, we continue our list of important properties of linear operators.

Definition 1.9 A linear operator T :H N →H K is called

(a) self-adjoint, if H N =H K and T = T ∗.
(b) normal, if H N =H K and T ∗T = T T ∗.
(c) an isometry, if ‖T x‖ = ‖x‖ for all x ∈H N .
(d) positive, if H N =H K , T is self-adjoint, and 〈T x,x〉 ≥ 0 for all x ∈H N .
(e) unitary, if it is a surjective isometry.
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From the variety of basic relations and results of those notions, the next proposi-
tion presents a selection of those which will be required in the sequel.

Proposition 1.6 Let T :H N →H K be a linear operator.

(i) We have ‖T ∗T ‖ = ‖T ‖2, and T ∗T and T T ∗ are self-adjoint.
(ii) If H N =H K , the following conditions are equivalent.

(1) T is self-adjoint.
(2) 〈T x, x̃〉 = 〈x,T x̃〉 for all x, x̃ ∈H N .
(3) If H N is complex, 〈T x,x〉 ∈R for all x ∈H N .

(iii) The following conditions are equivalent.
(1) T is an isometry.
(2) T ∗T = Id.
(3) 〈T x,T x̃〉 = 〈x, x̃〉 for all x, x̃ ∈H N .

(iv) The following conditions are equivalent.
(1) T is unitary.
(2) T and T ∗ are isometric.
(3) T T ∗ = Id and T ∗T = Id.

(v) If U is a unitary operator, then ‖UT ‖ = ‖T ‖ = ‖T U‖.

Diagonalizations of operators are frequently utilized to derive an understanding
of the action of an operator. The following definitions lay the groundwork for this
theory.

Definition 1.10 Let T :H N →H N be a linear operator. A nonzero vector x ∈
H N is an eigenvector of T with eigenvalue λ, if T x = λx. The operator T is called
orthogonally diagonalizable, if there exists an orthonormal basis (ei)

N
i=1 of H N

consisting of eigenvectors of T .

We start with an easy observation.

Proposition 1.7 For any linear operator T :H N →H K , the nonzero eigenvalues
of T ∗T and T T ∗ are the same.

If the operator is unitary, self-adjoint, or positive, we have more information on
the eigenvalues stated in the next result, which follows immediately from Proposi-
tion 1.6.

Corollary 1.2 Let T :H N →H N be a linear operator.

(i) If T is unitary, then its eigenvalues have modulus one.
(ii) If T is self-adjoint, then its eigenvalues are real.

(iii) If T is positive, then its eigenvalues are nonnegative.

This fact allows us to introduce a condition number associated with each invert-
ible positive operator.
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Definition 1.11 Let T :H N →H N be an invertible positive operator with eigen-
values λ1 ≥ λ2 ≥ · · · ≥ λN . Then its condition number is defined by λ1

λN
.

We next state a fundamental result in operator theory which has its analogue in
the infinite-dimensional setting called the spectral theorem.

Theorem 1.3 Let H N be complex and let T :H N →H N be a linear operator.
Then the following conditions are equivalent.

(i) T is normal.
(ii) T is orthogonally diagonalizable.

(iii) There exists a diagonal matrix representation of T .
(iv) There exist an orthonormal basis (ei)

N
i=1 of H N and values λ1, . . . , λN such

that

T x =
N∑

i=1

λi〈x, ei〉ei for all x ∈H N.

In this case,

‖T ‖ = max
1≤i≤N

|λi |.

Since every self-adjoint operator is normal, we obtain the following corollary
(which is independent of whether H N is real or complex).

Corollary 1.3 A self-adjoint operator is orthogonally diagonalizable.

Another consequence of Theorem 1.3 is the following result, which in particular
allows the definition of the n-th root of a positive operator.

Corollary 1.4 Let T :H N →H N be an invertible positive operator with normal-
ized eigenvectors (ei)

N
i=1 and respective eigenvalues (λi)

N
i=1, let a ∈ R, and define

an operator T a :H N →H N by

T ax =
N∑

i=1

λa
i 〈x, ei〉ei for all x ∈H N.

Then T a is a positive operator and T aT b = T a+b for a, b ∈ R. In particular, T −1

and T −1/2 are positive operators.

Finally, we define the trace of an operator, which, by using Theorem 1.3, can be
expressed in terms of eigenvalues.
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Definition 1.12 Let T :H N →H N be an operator. Then, the trace of T is defined
by

TrT =
N∑

i=1

〈T ei, ei〉, (1.1)

where (ei)
N
i=1 is an arbitrary orthonormal basis for H N .

The trace is well defined since the sum in Eq. (1.1) is independent of the choice
of the orthonormal basis.

Corollary 1.5 Let T :H N →H N be an orthogonally diagonalizable operator,
and let (λi)

N
i=1 be its eigenvalues. Then

TrT =
N∑

i=1

λi.

1.2.2.4 Projection operators

Subspaces are closely intertwined with associated projection operators which map
vectors onto the subspace either orthogonally or not. Although orthogonal projec-
tions are more often used, in Chap. 13 we will require the more general notion.

Definition 1.13 Let P :H N →H N be a linear operator. Then P is called a pro-
jection, if P 2 = P . This projection is called orthogonal, if P is in addition self-
adjoint.

For brevity, orthogonal projections are often simply referred to as projections
provided there is no danger of misinterpretation.

Relating to our previous comment, for any subspace W of H N , there exists
a unique orthogonal projection P of H N having W as its range. This projection
can be constructed as follows: Let m denote the dimension of W , and choose an
orthonormal basis (ei)

m
i=1 of W . Then, for any x ∈H N , we set

Px =
m∑

i=1

〈x, ei〉ei .

It is important to notice that also Id − P is an orthogonal projection of H N , this
time onto the subspace W ⊥.

An orthogonal projection P has the crucial property that each given vector of
H N is mapped to the closest vector in the range of P .
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Lemma 1.1 Let W be a subspace of H N , let P be the orthogonal projection onto
W , and let x ∈H N . Then

‖x − Px‖ ≤ ‖x − x̃‖ for all x̃ ∈W .

Moreover, if ‖x − Px‖ = ‖x − x̃‖ for some x̃ ∈W , then x̃ = Px.

The next result gives the relationship between trace and rank for projections. This
follows from the definition of an orthogonal projection and Corollaries 1.3 and 1.5.

Proposition 1.8 Let P be the orthogonal projection onto a subspace W of H N ,
and let m = dimW . Then P is orthogonally diagonalizable with eigenvalue 1 of
multiplicity m and eigenvalue 0 of multiplicity N −m. In particular, we have that
TrP =m.

1.3 Basics of Finite Frame Theory

We start by presenting the basics of finite frame theory. For illustration purposes,
we then present some exemplary frame classes. At this point, we also refer to the
monographs and books [34, 35, 99, 100, 111] as well as to [65, 66] for infinite-
dimensional frame theory.

1.3.1 Definition of a Frame

The definition of a (Hilbert space) frame originates from early work by Duffin
and Schaeffer [79] on nonharmonic Fourier series. The main idea, as discussed in
Sect. 1.1, is to weaken Parseval’s identity and yet still retain norm equivalence be-
tween a signal and its frame coefficients.

Definition 1.14 A family of vectors (ϕi)
M
i=1 in H N is called a frame for H N , if

there exist constants 0 <A≤ B <∞ such that

A‖x‖2 ≤
M∑

i=1

∣∣〈x,ϕi〉
∣∣2 ≤ B‖x‖2 for all x ∈H N. (1.2)

The following notions are related to a frame (ϕi)
M
i=1.

(a) The constants A and B as in (1.2) are called the lower and upper frame bound
for the frame, respectively. The largest lower frame bound and the smallest
upper frame bound are denoted by Aop,Bop and are called the optimal frame
bounds.
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(b) Any family (ϕi)
M
i=1 satisfying the right-hand side inequality in (1.2) is called a

B-Bessel sequence.
(c) If A= B is possible in (1.2), then (ϕi)

M
i=1 is called an A-tight frame.

(d) If A= B = 1 is possible in (1.2), i.e., Parseval’s identity holds, then (ϕi)
M
i=1 is

called a Parseval frame.
(e) If there exists a constant c such that ‖ϕi‖ = c for all i = 1,2, . . . ,M , then

(ϕi)
M
i=1 is an equal norm frame. If c= 1, (ϕi)

M
i=1 is a unit norm frame.

(f) If there exists a constant c such that |〈ϕi,ϕj 〉| = c for all i 
= j , then (ϕi)
M
i=1 is

called an equiangular frame.
(g) The values (〈x,ϕi〉)Mi=1 are called the frame coefficients of the vector x with

respect to the frame (ϕi)
M
i=1.

(h) The frame (ϕi)
M
i=1 is called exact, if (ϕi)i∈I ceases to be a frame for H N for

every I = {1, . . . ,M} \ {i0}, i0 ∈ {1, . . . ,M}.

We can immediately make the following useful observations.

Lemma 1.2 Let (ϕi)
M
i=1 be a family of vectors in H N .

(i) If (ϕi)
M
i=1 is an orthonormal basis, then (ϕi)

M
i=1 is a Parseval frame. The con-

verse is not true in general.
(ii) (ϕi)

M
i=1 is a frame for H N if and only if it is a spanning set for H N .

(iii) (ϕi)
M
i=1 is a unit norm Parseval frame if and only if it is an orthonormal basis.

(iv) If (ϕi)
M
i=1 is an exact frame for H N , then it is a basis of H N , i.e., a linearly

independent spanning set.

Proof (i) The first part is an immediate consequence of Proposition 1.1. For
the second part, let (ei)

N
i=1 and (gi)

N
i=1 be orthonormal bases for H N . Then

(ei/
√

2)Ni=1∪(gi/
√

2)Ni=1 is a Parseval frame for H N , but not an orthonormal basis.
(ii) If (ϕi)

M
i=1 is not a spanning set for H N , then there exists x 
= 0 such that

〈x,ϕi〉 = 0 for all i = 1, . . . ,M . Hence, (ϕi)
M
i=1 cannot be a frame. Conversely, as-

sume that (ϕi)
M
i=1 is not a frame. Then there exists a sequence (xn)

∞
n=1 of normalized

vectors in H N such that
∑M

i=1 |〈xn,ϕi〉|2 < 1/n for all n ∈ N. Hence, the limit x
of a convergent subsequence of (xn)

∞
n=1 satisfies 〈x,ϕi〉 = 0 for all i = 1, . . . ,M .

Since ‖x‖ = 1, it follows that (ϕi)
M
i=1 is not a spanning set.

(iii) By the Parseval property, for each i0 ∈ {1, . . . ,M}, we have

‖ϕi0‖2
2 =

M∑

i=1

∣∣〈ϕi0, ϕi〉
∣∣2 = ‖ϕi0‖4

2 +
M∑

i=1, i 
=i0

∣∣〈ϕi0, ϕi〉
∣∣2.

Since the frame vectors are normalized, we conclude that

M∑

i=1, i 
=i0

∣∣〈ϕi0, ϕi〉
∣∣2 = 0 for all i0 ∈ {1, . . . ,M}.
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Hence 〈ϕi,ϕj 〉 = 0 for all i 
= j . Thus, (ϕi)
M
i=1 is an orthonormal system which is

complete by (ii), and (iii) is proved.
(iv) If (ϕi)

M
i=1 is a frame, by (ii), it is also a spanning set for H N . Towards

a contradiction, assume that (ϕi)
M
i=1 is linearly dependent. Then there exist some

i0 ∈ {1, . . . ,M} and values λi , i ∈ I := {1, . . . ,M} \ {i0} such that

ϕi0 =
∑

i∈I
λiϕi .

This implies that (ϕi)i∈I is also a frame, thus contradicting exactness of the frame. �

Before presenting some insightful basic results in frame theory, we first discuss
some examples of frames to develop an intuitive understanding.

1.3.2 Examples

By Lemma 1.2 (iii), orthonormal bases are unit norm Parseval frames (and vice
versa). However, applications typically require redundant Parseval frames. One ba-
sic way to approach this construction problem is to build redundant Parseval frames
using orthonormal bases, and we will present several examples in the sequel. Since
the associated proofs are straightforward, we leave them to the interested reader.

Example 1.1 Let (ei)Ni=1 be an orthonormal basis for H N .

(1) The system

(e1,0, e2,0, . . . , eN ,0)

is a Parseval frame for H N . This example indicates that a Parseval frame can
indeed contain zero vectors.

(2) The system
(
e1,

e2√
2
,
e2√

2
,
e3√

3
,
e3√

3
,
e3√

3
, . . . ,

eN√
N

, . . . ,
eN√
N

)

is a Parseval frame for H N . This example indicates two important issues. First,
a Parseval frame can have multiple copies of a single vector. Second, the norms
of vectors of an (infinite) Parseval frame can converge to zero.

We next consider a series of examples of non-Parseval frames.

Example 1.2 Let (ei)Ni=1 be an orthonormal basis for H N .

(1) The system

(e1, e1, . . . , e1, e2, e3, . . . , eN)
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Fig. 1.1 Mercedes-Benz frame

with the vector e1 appearing N+1 times, is a frame for H N with frame bounds
1 and N + 1.

(2) The system

(e1, e1, e2, e2, e3, e3, . . . , eN)

is a 2-tight frame for H N .
(3) The union of L orthonormal bases of H N is a unit norm L-tight frame for

H N , generalizing (2).

A particularly interesting example is the smallest truly redundant Parseval frame
for R

2, which is typically coined the Mercedes-Benz frame. The reason for this
naming becomes evident in Fig. 1.1.

Example 1.3 The Mercedes-Benz frame for R2 is the equal norm tight frame for R2

given by:
(√

2
3

(
0
1

)
,

√
2
3

( √
3

2− 1
2

)

,

√
2
3

(
−
√

3
2− 1
2

))

Note that this frame is also equiangular.
For more information on the theoretical aspects of equiangular frames we refer to

[60, 91, 120, 139]. A selection of their applications is reconstruction without phase
[5, 6], erasure-resilient transmission [15, 102], and coding [136]. We also refer to
the Chaps. 4, 5 in this book for more details on equiangular frames.

Another standard class of examples can be derived from the discrete Fourier
transform (DFT) matrix.

Example 1.4 Given M ∈ N, we let ω = exp( 2πi
M

). Then the DFT matrix in C
M×M

is defined by

DM = 1√
M

(
ωjk
)M−1
j,k=0.
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This matrix is a unitary operator on C
M . Later (see Corollary 1.11) it will be seen

that the selection of any N rows from DM yields a Parseval frame for CN by taking
the associated M column vectors.

There also exist particularly interesting classes of frames such as Gabor frames
utilized primarily for audio processing. Among the results on various aspects of Ga-
bor frames are uncertainty considerations [113], linear independence [119], group-
related properties [89], optimality analysis [127], and applications [67, 74, 75, 87,
88]. Chapter 6 provides a survey on this class of frames. Another example is the class
of group frames, for which various constructions [24, 101, 147], classifications [64],
and intriguing symmetry properties [146, 148] have been studied. A comprehensive
presentation can be found in Chap. 5.

1.4 Frames and Operators

For the rest of this introduction we set �M2 := �2({1, . . . ,M}). Note that this space
in fact coincides with R

M or CM , endowed with the standard inner product and the
associated Euclidean norm.

The analysis, synthesis, and frame operators determine the operation of a frame
when analyzing and reconstructing a signal. The Gramian operator is perhaps not
that well known, yet it crucially illuminates the behavior of a frame (ϕi)

M
i=1 embed-

ded as an N -dimensional subspace in the high-dimensional space �M2 .

1.4.1 Analysis and Synthesis Operators

Two of the main operators associated with a frame are the analysis and synthesis
operators. The analysis operator—as the name suggests—analyzes a signal in terms
of the frame by computing its frame coefficients. We start by formalizing this notion.

Definition 1.15 Let (ϕi)
M
i=1 be a family of vectors in H N . Then the associated

analysis operator T :H N → �M2 is defined by

T x := (〈x,ϕi〉
)M
i=1, x ∈H N.

In the following lemma we derive two basic properties of the analysis operator.

Lemma 1.3 Let (ϕi)
M
i=1 be a sequence of vectors in H N with associated analysis

operator T .

(i) We have

‖T x‖2 =
M∑

i=1

∣∣〈x,ϕi〉
∣∣2 for all x ∈H N.

Hence, (ϕi)
M
i=1 is a frame for H N if and only if T is injective.
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(ii) The adjoint operator T ∗ : �M2 →H N of T is given by

T ∗(ai)Mi=1 =
M∑

i=1

aiϕi .

Proof (i) This is an immediate consequence of the definition of T and the frame
property (1.2).

(ii) For x = (ai)
M
i=1 and y ∈H N , we have

〈
T ∗x, y

〉= 〈x,T y〉 = 〈(ai)Mi=1,
(〈y,ϕi〉

)M
i=1

〉=
M∑

i=1

ai〈y,ϕi〉 =
〈

M∑

i=1

aiϕi, y

〉

.

Thus, T ∗ is as claimed. �

The second main operator associated to a frame, the synthesis operator, is now
defined as the adjoint operator to the analysis operator given in Lemma 1.3(ii).

Definition 1.16 Let (ϕi)
M
i=1 be a sequence of vectors in H N with associated anal-

ysis operator T . Then the associated synthesis operator is defined to be the adjoint
operator T ∗.

The next result summarizes some basic, yet useful, properties of the synthesis
operator.

Lemma 1.4 Let (ϕi)
M
i=1 be a sequence of vectors in H N with associated analysis

operator T .

(i) Let (ei)Mi=1 denote the standard basis of �M2 . Then for all i = 1,2, . . . ,M , we
have T ∗ei = T ∗Pei = ϕi , where P : �M2 → �M2 denotes the orthogonal projec-
tion onto ranT .

(ii) (ϕi)
M
i=1 is a frame if and only if T ∗ is surjective.

Proof The first claim follows immediately from Lemma 1.3 and the fact that
kerT ∗ = (ranT )⊥. The second claim is a consequence of ranT ∗ = (kerT )⊥ and
Lemma 1.3(i). �

Often frames are modified by the application of an invertible operator. The next
result shows not only the impact on the associated analysis operator, but also the
fact that the new sequence again forms a frame.

Proposition 1.9 Let Φ = (ϕi)
M
i=1 be a sequence of vectors in H N with associ-

ated analysis operator TΦ and let F :H N →H N be a linear operator. Then the
analysis operator of the sequence FΦ = (Fϕi)

M
i=1 is given by

TFΦ = TΦF ∗.
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Moreover, if Φ is a frame for H N and F is invertible, then FΦ is also a frame
for H N .

Proof For x ∈H N we have

TFΦx = (〈x,Fϕi〉
)M
i=1 =

(〈
F ∗x,ϕi

〉)M
i=1 = TΦF ∗x.

This proves TFΦ = TΦF ∗. The moreover part follows from Lemma 1.4(ii). �

Next, we analyze the structure of the matrix representation of the synthesis op-
erator. This matrix is of fundamental importance, since this is what most frame
constructions in fact focus on; see also Sect. 1.6.

The first result provides the form of this matrix along with stability properties.

Lemma 1.5 Let (ϕi)
M
i=1 be a frame for H N with analysis operator T . Then a

matrix representation of the synthesis operator T ∗ is the N ×M matrix given by

⎡

⎣
| | · · · |
ϕ1 ϕ2 · · · ϕM

| | · · · |

⎤

⎦ .

Moreover, the Riesz bounds of the row vectors of this matrix equal the frame bounds
of the column vectors.

Proof The form of the matrix representation is obvious. To prove the moreover part,
let (ej )Nj=1 be the corresponding orthonormal basis of H N and for j = 1,2, . . . ,N
let

ψj =
[〈ϕ1, ej 〉, 〈ϕ2, ej 〉, . . . , 〈ϕM, ej 〉

]

be the row vectors of the matrix. Then for x =∑N
j=1 aj ej we obtain

M∑

i=1

∣∣〈x,ϕi〉
∣∣2 =

M∑

i=1

∣∣∣∣
∣

N∑

j=1

aj 〈ej , ϕi〉
∣∣∣∣
∣

2

=
N∑

j,k=1

ajak

M∑

i=1

〈ej , ϕi〉〈ϕi, ek〉

=
N∑

j,k=1

ajak〈ψk,ψj 〉 =
∥
∥∥∥∥

N∑

j=1

ajψj

∥
∥∥∥∥

2

.

The claim follows from here. �

A much stronger result (Proposition 1.12) can be proven for the case in which
the matrix representation is derived using a specifically chosen orthonormal basis.
However, the choice of this orthonormal basis requires the introduction of the frame
operator in the following Sect. 1.4.2.
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1.4.2 The Frame Operator

The frame operator might be considered the most important operator associated
with a frame. Although it is “merely” the concatenation of the analysis and synthe-
sis operators, it encodes crucial properties of the frame, as we will see in the sequel.
Moreover, it is also fundamental for the reconstruction of signals from frame coef-
ficients (see Theorem 1.8).

1.4.2.1 Fundamental properties

The precise definition of the frame operator associated with a frame is as follows.

Definition 1.17 Let (ϕi)
M
i=1 be a sequence of vectors in H N with associated anal-

ysis operator T . Then the associated frame operator S :H N →H N is defined
by

Sx := T ∗T x =
M∑

i=1

〈x,ϕi〉ϕi, x ∈H N.

A first observation concerning the close relation of the frame operator to frame
properties is the following lemma.

Lemma 1.6 Let (ϕi)
M
i=1 be a sequence of vectors in H N with associated frame

operator S. Then, for all x ∈H N ,

〈Sx, x〉 =
M∑

i=1

∣∣〈x,ϕi〉
∣∣2.

Proof The proof follows directly from 〈Sx, x〉 = 〈T ∗T x,x〉 = ‖T x‖2 and
Lemma 1.3(i). �

Clearly, the frame operator S = T ∗T is self-adjoint and positive. The most funda-
mental property of the frame operator—if the underlying sequence of vectors forms
a frame—is its invertibility, which is crucial for the reconstruction formula.

Theorem 1.4 The frame operator S of a frame (ϕi)
M
i=1 for H N with frame bounds

A and B is a positive, self-adjoint invertible operator satisfying

A · Id ≤ S ≤ B · Id.
Proof By Lemma 1.6, we have

〈Ax,x〉 =A‖x‖2 ≤
M∑

i=1

∣∣〈x,ϕi〉
∣∣2 = 〈Sx, x〉 ≤ B‖x‖2 = 〈Bx,x〉 for all x ∈H N.

This implies the claimed inequality. �
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The following proposition follows directly from Proposition 1.9.

Proposition 1.10 Let (ϕi)
M
i=1 be a frame for H N with frame operator S, and let

F be an invertible operator on H N . Then (Fϕi)
M
i=1 is a frame with frame operator

FSF ∗.

1.4.2.2 The special case of tight frames

Tight frames can be characterized as those frames whose frame operator equals
a positive multiple of the identity. The next result provides a variety of similarly
frame-operator-inspired classifications.

Proposition 1.11 Let (ϕi)
M
i=1 be a frame for H N with analysis operator T and

frame operator S. Then the following conditions are equivalent.

(i) (ϕi)
M
i=1 is an A-tight frame for H N .

(ii) S =A · Id.
(iii) For every x ∈H N ,

x =A−1 ·
M∑

i=1

〈x,ϕi〉ϕi.

(iv) For every x ∈H N ,

A‖x‖2 =
M∑

i=1

∣∣〈x,ϕi〉
∣∣2.

(v) T/
√
A is an isometry.

Proof (i)⇔ (ii)⇔ (iii)⇔ (iv) These are immediate from the definition of the frame
operator and from Theorem 1.4.

(ii) ⇔ (v) This follows from the fact that T/
√
A is an isometry if and only if

T ∗T =A · Id. �

A similar result for the special case of a Parseval frame can be easily deduced
from Proposition 1.11 by setting A= 1.

1.4.2.3 Eigenvalues of the frame operator

Tight frames have the property that the eigenvalues of the associated frame opera-
tor all coincide. We next consider the general situation, i.e., frame operators with
arbitrary eigenvalues.
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The first and maybe even most important result shows that the largest and small-
est eigenvalues of the frame operator are the optimal frame bounds of the frame.
Optimality refers to the smallest upper frame bound and the largest lower frame
bound.

Theorem 1.5 Let (ϕi)
M
i=1 be a frame for H N with frame operator S having eigen-

values λ1 ≥ · · · ≥ λN . Then λ1 coincides with the optimal upper frame bound and
λN is the optimal lower frame bound.

Proof Let (ei)Ni=1 denote the normalized eigenvectors of the frame operator S with
respective eigenvalues (λj )

N
j=1 written in decreasing order. Let x ∈H N . Since x =

∑M
j=1〈x, ej 〉ej , we obtain

Sx =
N∑

j=1

λj 〈x, ej 〉ej .

By Lemma 1.6, this implies

M∑

i=1

∣∣〈x,ϕi〉
∣∣2 = 〈Sx, x〉 =

〈
N∑

j=1

λj 〈x, ej 〉ej ,
N∑

j=1

〈x, ej 〉ej
〉

=
N∑

j=1

λj

∣∣〈x, ej 〉
∣∣2 ≤ λ1

N∑

j=1

∣∣〈x, ej 〉
∣∣2 = λ1‖x‖2.

Thus Bop ≤ λ1, where Bop denotes the optimal upper frame bound of the frame
(ϕi)

M
i=1. The claim Bop = λ1 then follows from

M∑

i=1

∣∣〈e1, ϕi〉
∣∣2 = 〈Se1, e1〉 = 〈λ1e1, e1〉 = λ1.

The claim concerning the lower frame bound can be proven similarly. �

From this result, we can now draw the following immediate conclusion about the
Riesz bounds.

Corollary 1.6 Let (ϕi)
N
i=1 be a frame for H N . Then the following statements hold.

(i) The optimal upper Riesz bound and the optimal upper frame bound of (ϕi)
N
i=1

coincide.
(ii) The optimal lower Riesz bound and the optimal lower frame bound of (ϕi)

N
i=1

coincide.



24 P.G. Casazza et al.

Proof Let T denote the analysis operator of (ϕi)
N
i=1 and S the associated frame

operator having eigenvalues (λi)
N
i=1 written in decreasing order. We have

λ1 = ‖S‖ =
∥∥T ∗T

∥∥= ‖T ‖2 = ∥∥T ∗∥∥2

and

λN =
∥
∥S−1

∥
∥−1 = ∥∥(T ∗T )−1∥∥−1 = ∥∥(T ∗)−1∥∥−2

.

Now, both claims follow from Theorem 1.5, Lemma 1.4, and Proposition 1.5. �

The next theorem reveals a relation between the frame vectors and the eigenval-
ues and eigenvectors of the associated frame operator.

Theorem 1.6 Let (ϕi)
M
i=1 be a frame for H N with frame operator S having

normalized eigenvectors (ej )
N
j=1 and respective eigenvalues (λj )

N
j=1. Then for all

j = 1,2, . . . ,N we have

λj =
M∑

i=1

∣∣〈ej , ϕi〉
∣∣2.

In particular,

TrS =
N∑

j=1

λj =
M∑

i=1

‖ϕi‖2.

Proof This follows from λj = 〈Sej , ej 〉 for all j = 1, . . . ,N and Lemma 1.6. �

1.4.2.4 Structure of the synthesis matrix

As already promised in Sect. 1.4.1, we now apply the previously derived results to
obtain a complete characterization of the synthesis matrix of a frame in terms of the
frame operator.

Proposition 1.12 Let T :H N → �M2 be a linear operator, let (ej )Nj=1 be an or-

thonormal basis of H N , and let (λj )
N
j=1 be a sequence of positive numbers. By

A denote the N ×M matrix representation of T ∗ with respect to (ej )
N
j=1 (and the

standard basis (êi)
M
i=1 of �M2 ). Then the following conditions are equivalent.

(i) (T ∗êi )Mi=1 forms a frame for H N whose frame operator has eigenvectors
(ej )

N
j=1 and associated eigenvalues (λj )

N
j=1.

(ii) The rows of A are orthogonal, and the j -th row square sums to λj .
(iii) The columns of A form a frame for �N2 , and AA∗ = diag(λ1, . . . , λN).
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Proof Let (fj )Nj=1 be the standard basis of �N2 and denote by U : �N2 →H N the
unitary operator which maps fj to ej . Then T ∗ =UA.

(i)⇒(ii) For j, k ∈ {1, . . . ,N} we have
〈
A∗fj ,A∗fk

〉= 〈T Ufj ,T Ufk〉 =
〈
T ∗T ej , ek

〉= λj δjk,

which is equivalent to (ii).
(ii)⇒(iii) Since the rows of A are orthogonal, we have rankA = N , which

implies that the columns of A form a frame for �N2 . The rest follows from
〈AA∗fj , fk〉 = 〈A∗fj ,A∗fk〉 = λj δjk for j, k = 1, . . . ,N .

(iii)⇒(i) Since (Aêi)
M
i=1 is a spanning set for �N2 and T ∗ = UA, it follows that

(T ∗êi )Mi=1 forms a frame for H N . Its analysis operator is given by T , since for all
x ∈H N ,

(〈
x,T ∗êi

〉)M
i=1 =

(〈T x, êi〉
)M
i=1 = T x.

Moreover,

T ∗T ej =UAA∗U∗ej =U diag(λ1, . . . , λN)fj = λjUfj = λjej ,

which completes the proof. �

1.4.3 Gramian Operator

Let (ϕi)
M
i=1 be a frame for H N with analysis operator T . The previous subsec-

tion was concerned with properties of the frame operator defined by S = T ∗T :
H N →H N . Of particular interest is also the operator generated by first applying
the synthesis and then the analysis operator. Let us first state the precise definition
before discussing its importance.

Definition 1.18 Let (ϕi)
M
i=1 be a frame for H N with analysis operator T . Then the

operator G : �M2 → �M2 defined by

G(ai)
M
i=1 = T T ∗(ai)Mi=1 =

(
M∑

i=1

ai〈ϕi,ϕk〉
)M

k=1

=
M∑

i=1

ai
(〈ϕi,ϕk〉

)M
k=1

is called the Gramian (operator) of the frame (ϕi)
M
i=1.

Note that the (canonical) matrix representation of the Gramian of a frame (ϕi)
M
i=1

for H N (which will also be called the Gramian matrix) is given by
⎡

⎢⎢⎢
⎣

‖ϕ1‖2 〈ϕ2, ϕ1〉 · · · 〈ϕM,ϕ1〉
〈ϕ1, ϕ2〉 ‖ϕ2‖2 · · · 〈ϕM,ϕ2〉

...
...

. . .
...

〈ϕ1, ϕM 〉 〈ϕ2, ϕM 〉 · · · ‖ϕM‖2

⎤

⎥⎥⎥
⎦
.
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One property of the Gramian is immediate. In fact, if the frame is unit norm, then
the entries of the Gramian matrix are exactly the cosines of the angles between the
frame vectors. Hence, for instance, if a frame is equiangular, then all off-diagonal
entries of the Gramian matrix have the same modulus.

The fundamental properties of the Gramian operator are collected in the follow-
ing result.

Theorem 1.7 Let (ϕi)
M
i=1 be a frame for H N with analysis operator T , frame

operator S, and Gramian operator G. Then the following statements hold.

(i) An operator U on H N is unitary if and only if the Gramian of (Uϕi)
M
i=1 coin-

cides with G.
(ii) The nonzero eigenvalues of G and S coincide.

(iii) (ϕi)
M
i=1 is a Parseval frame if and only if G is an orthogonal projection of rank

N (namely onto the range of T ).
(iv) G is invertible if and only if M =N .

Proof (i) This follows immediately from the fact that the entries of the Gramian
matrix for (Uϕi)

M
i=1 are of the form 〈Uϕi,Uϕj 〉.

(ii) Since T T ∗ and T ∗T have the same nonzero eigenvalues (see Proposition 1.7),
the same is true for G and S.

(iii) It is immediate to prove that G is self-adjoint and has rank N . Since T is
injective, T ∗ is surjective, and

G2 = (T T ∗
)(
T T ∗

)= T
(
T ∗T

)
T ∗,

it follows that G is an orthogonal projection if and only if T ∗T = Id, which is
equivalent to the frame being Parseval.

(iv) This is immediate by (ii). �

1.5 Reconstruction from Frame Coefficients

The analysis of a signal is typically performed by merely considering its frame coef-
ficients. However, if the task is transmission of a signal, the ability to reconstruct the
signal from its frame coefficients and also to do so efficiently becomes crucial. Re-
construction from coefficients with respect to an orthonormal basis was discussed in
Corollary 1.1. However, reconstruction from coefficients with respect to a redundant
system is much more delicate and requires the utilization of another frame, called
the dual frame. If computing such a dual frame is computationally too complex,
a circumvention of this problem is the frame algorithm.

1.5.1 Exact Reconstruction

We start by stating an exact reconstruction formula.
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Theorem 1.8 Let (ϕi)
M
i=1 be a frame for H N with frame operator S. Then, for

every x ∈H N , we have

x =
M∑

i=1

〈x,ϕi〉S−1ϕi =
M∑

i=1

〈
x,S−1ϕi

〉
ϕi.

Proof The proof follows directly from the definition of the frame operator in Defi-
nition 1.17 by writing x = S−1Sx and x = SS−1x. �

Notice that the first formula can be interpreted as a reconstruction strategy,
whereas the second formula has the flavor of a decomposition. We further observe
that the sequence (S−1ϕi)

M
i=1 plays a crucial role in the formulas in Theorem 1.8.

The next result shows that this sequence indeed also constitutes a frame.

Proposition 1.13 Let (ϕi)
M
i=1 be a frame for H N with frame bounds A and B and

with frame operator S. Then the sequence (S−1ϕi)
M
i=1 is a frame for H N with frame

bounds B−1 and A−1 and with frame operator S−1.

Proof By Proposition 1.10, the sequence (S−1ϕi)
M
i=1 forms a frame for H N with

associated frame operator S−1S(S−1)∗ = S−1. This in turn yields the frame bounds
B−1 and A−1. �

This new frame is called the canonical dual frame. In the sequel, we will discuss
that other dual frames may also be utilized for reconstruction.

Definition 1.19 Let (ϕi)
M
i=1 be a frame for H N with frame operator denoted by S.

Then (S−1ϕi)
M
i=1 is called the canonical dual frame for (ϕi)

M
i=1.

The canonical dual frame of a Parseval frame is now easily determined by Propo-
sition 1.13.

Corollary 1.7 Let (ϕi)
M
i=1 be a Parseval frame for H N . Then its canonical dual

frame is the frame (ϕi)
M
i=1 itself, and the reconstruction formula in Theorem 1.8

reads

x =
M∑

i=1

〈x,ϕi〉ϕi, x ∈H N.

As an application of the above reconstruction formula for Parseval frames, we
prove the following proposition which again shows the close relation between Par-
seval frames and orthonormal bases already indicated in Lemma 1.2.
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Proposition 1.14 (Trace Formula for Parseval Frames) Let (ϕi)
M
i=1 be a Parseval

frame for H N , and let F be a linear operator on H N . Then

Tr(F )=
M∑

i=1

〈Fϕi,ϕi〉.

Proof Let (ej )Nj=1 be an orthonormal basis for H N . Then, by definition,

Tr(F )=
N∑

j=1

〈Fej , ej 〉.

This implies

Tr(F ) =
N∑

j=1

〈
M∑

i=1

〈Fej ,ϕi〉ϕi, ej

〉

=
N∑

j=1

M∑

i=1

〈
ej ,F

∗ϕi

〉〈ϕi, ej 〉

=
M∑

i=1

〈
N∑

j=1

〈ϕi, ej 〉ej ,F ∗ϕi

〉

=
M∑

i=1

〈
ϕi,F

∗ϕi

〉=
M∑

i=1

〈Fϕi,ϕi〉.
�

As already announced, many other dual frames for reconstruction exist. We next
provide a precise definition.

Definition 1.20 Let (ϕi)
M
i=1 be a frame for H N . Then a frame (ψi)

M
i=1 is called a

dual frame for (ϕi)
M
i=1, if

x =
M∑

i=1

〈x,ϕi〉ψi for all x ∈H N.

Dual frames, which do not coincide with the canonical dual frame, are often coined
alternate dual frames.

Similar to the different forms of the reconstruction formula in Theorem 1.8, dual
frames can also achieve reconstruction in different ways.

Proposition 1.15 Let (ϕi)
M
i=1 and (ψi)

M
i=1 be frames for H N and let T and T̃

be the analysis operators of (ϕi)
M
i=1 and (ψi)

M
i=1, respectively. Then the following

conditions are equivalent.

(i) We have x =∑M
i=1〈x,ψi〉ϕi for all x ∈H N .

(ii) We have x =∑M
i=1〈x,ϕi〉ψi for all x ∈H N .

(iii) We have 〈x, y〉 =∑M
i=1〈x,ϕi〉〈ψi, y〉 for all x, y ∈H N .

(iv) T ∗T̃ = Id and T̃ ∗T = Id.
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Proof Clearly (i) is equivalent to T ∗T̃ = Id, which holds if and only if T̃ ∗T = Id.
The equivalence of (iii) can be derived in a similar way. �

One might ask what distinguishes the canonical dual frame from the alternate
dual frames besides its explicit formula in terms of the initial frame. Another seem-
ingly different question is which properties of the coefficient sequence in the de-
composition of some signal x in terms of the frame (see Theorem 1.8),

x =
M∑

i=1

〈
x,S−1ϕi

〉
ϕi,

uniquely distinguishes it from other coefficient sequences; redundancy allows in-
finitely many coefficient sequences. Interestingly, the next result answers both ques-
tions simultaneously by stating that this coefficient sequence has minimal �2-norm
among all sequences—in particular those, with respect to alternate dual frames—
representing x.

Proposition 1.16 Let (ϕi)
M
i=1 be a frame for H N with frame operator S, and let

x ∈H N . If (ai)Mi=1 are scalars such that x =∑M
i=1 aiϕi , then

M∑

i=1

|ai |2 =
M∑

i=1

∣∣〈x,S−1ϕi

〉∣∣2 +
M∑

i=1

∣∣ai −
〈
x,S−1ϕi

〉∣∣2.

Proof Letting T denote the analysis operator of (ϕi)
M
i=1, we obtain

(〈
x,S−1ϕi

〉)M
i=1 =

(〈
S−1x,ϕi

〉)M
i=1 ∈ ranT .

Since x =∑M
i=1 aiϕi , it follows that

(
ai −

〈
x,S−1ϕi

〉)M
i=1 ∈ kerT ∗ = (ranT )⊥.

Considering the decomposition

(ai)
M
i=1 =

(〈
x,S−1ϕi

〉)M
i=1 +

(
ai −

〈
x,S−1ϕi

〉)M
i=1,

the claim is immediate. �

Corollary 1.8 Let (ϕi)
M
i=1 be a frame for H N , and let (ψi)

M
i=1 be an associated

alternate dual frame. Then, for all x ∈H N ,

∥∥(〈x,S−1ϕi

〉)M
i=1

∥∥
2 ≤

∥∥(〈x,ψi〉
)M
i=1

∥∥
2.

We wish to mention that sequences which are minimal in the �1-norm also play a
crucial role to date due to the fact that the �1-norm promotes sparsity. The interested
reader is referred to Chap. 9 for further details.
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1.5.2 Properties of Dual Frames

While we focused on properties of the canonical dual frame in the last subsection,
we next discuss properties shared by all dual frames. The first question arising is:
How do you characterize all dual frames? A comprehensive answer is provided by
the following result.

Proposition 1.17 Let (ϕi)
M
i=1 be a frame for H N with analysis operator T and

frame operator S. Then the following conditions are equivalent.

(i) (ψi)
M
i=1 is a dual frame for (ϕi)

M
i=1.

(ii) The analysis operator T1 of the sequence (ψi − S−1ϕi)
M
i=1 satisfies

ranT ⊥ ranT1.

Proof We set ϕ̃i :=ψi − S−1ϕi for i = 1, . . . ,M and note that

M∑

i=1

〈x,ψi〉ϕi =
M∑

i=1

〈
x, ϕ̃i + S−1ϕi

〉
ϕi = x +

M∑

i=1

〈x, ϕ̃i〉ϕi = x + T ∗T1x

holds for all x ∈H N . Hence, (ψi)
M
i=1 is a dual frame for (ϕi)

M
i=1 if and only if

T ∗T1 = 0. But this is equivalent to (ii). �

From this result, we have the following corollary which provides a general for-
mula for all dual frames.

Corollary 1.9 Let (ϕi)
M
i=1 be a frame for H N with analysis operator T and frame

operator S with associated normalized eigenvectors (ej )
N
j=1 and respective eigen-

values (λj )
N
j=1. Then every dual frame {ψi}Mi=1 for (ϕi)

M
i=1 is of the form

ψi =
N∑

j=1

(
1

λj

〈ϕi, ej 〉 + hij

)
ej , i = 1, . . . ,M,

where each (hij )
M
i=1, j = 1, . . . ,N , is an element of (ranT )⊥.

Proof If ψi , i = 1, . . . ,M , is of the given form with sequences (hij )
M
i=1 ∈ �M2 ,

j = 1, . . . ,N , then ψi = S−1ϕi + ϕ̃i , where ϕ̃i :=∑N
j=1 hij ej , i = 1, . . . ,M . The

analysis operator T̃ of (ϕ̃i)
M
i=1 satisfies T̃ ej = (hij )

M
i=1. The claim follows from this

observation. �

As a second corollary, we derive a characterization of all frames which have a
uniquely determined dual frame. It is evident that this unique dual frame coincides
with the canonical dual frame.
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Corollary 1.10 A frame (ϕi)
M
i=1 for H N has a unique dual frame if and only if

M =N .

1.5.3 Frame Algorithms

Let (ϕi)
M
i=1 be a frame for H N with frame operator S, and assume we are given

the image of a signal x ∈ H N under the analysis operator, i.e., the sequence
(〈x,ϕi〉)Mi=1 in �M2 . Theorem 1.8 has already provided us with the reconstruction
formula

x =
M∑

i=1

〈x,ϕi〉S−1ϕi

by using the canonical dual frame. Since inversion is typically not only computa-
tionally expensive, but also numerically instable, this formula might not be utilizable
in practice.

To resolve this problem, we will next discuss three iterative methods to derive
a converging sequence of approximations of x from the knowledge of (〈x,ϕi〉)Mi=1.
The first on our list is called the frame algorithm.

Proposition 1.18 (Frame Algorithm) Let (ϕi)
M
i=1 be a frame for H N with frame

bounds A,B and frame operator S. Given a signal x ∈H N , define a sequence
(yj )

∞
j=0 in H N by

y0 = 0, yj = yj−1 + 2

A+B
S(x − yj−1) for all j ≥ 1.

Then (yj )
∞
j=0 converges to x in H N , and the rate of convergence is

‖x − yj‖ ≤
(
B −A

B +A

)j

‖x‖, j ≥ 0.

Proof First, for all x ∈H N , we have

〈(
Id− 2

A+B
S

)
x, x

〉
= ‖x‖2 − 2

A+B

M∑

i=1

∣∣〈x,ϕi〉
∣∣2 ≤ ‖x‖2 − 2A

A+B
‖x‖2

= B −A

A+B
‖x‖2.

Similarly, we obtain

−B −A

B +A
‖x‖2 ≤

〈(
Id− 2

A+B
S

)
x, x

〉
,
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which yields
∥∥∥∥Id− 2

A+B
S

∥∥∥∥≤
B −A

A+B
. (1.3)

By the definition of yj , for any j ≥ 0,

x − yj = x − yj−1 − 2

A+B
S(x − yj−1)=

(
Id− 2

A+B
S

)
(x − yj−1).

Iterating this calculation, we derive

x − yj =
(

Id− 2

A+B
S

)j

(x − y0), for all j ≥ 0.

Thus, by (1.3),

‖x − yj‖ =
∥∥∥
∥

(
Id− 2

A+B
S

)j

(x − y0)

∥∥∥
∥

≤
∥
∥∥∥Id− 2

A+B
S

∥
∥∥∥

j

‖x − y0‖

≤
(
B −A

A+B

)j

‖x‖.

The result is proved. �

Note that, although the iteration formula in the frame algorithm contains x, the
algorithm does not depend on the knowledge of x but only on the frame coefficients
(〈x,ϕi〉)Mi=1, since yj = yj−1 + 2

A+B
(
∑

i〈x,ϕi〉ϕi − Syj−1).
One drawback of the frame algorithm is the fact that not only does the conver-

gence rate depend on the ratio of the frame bounds, i.e., the condition number of the
frame, but it depends on it in a highly sensitive way. This causes the problem that a
large ratio of the frame bounds leads to very slow convergence.

To tackle this problem, in [96], the Chebyshev method and the conjugate gradient
methods were introduced, which are significantly better adapted to frame theory and
lead to faster convergence than the frame algorithm. These two algorithms will next
be discussed. We start with the Chebyshev algorithm.

Proposition 1.19 (Chebyshev Algorithm, [96]) Let (ϕi)
M
i=1 be a frame for H N

with frame bounds A,B and frame operator S, and set

ρ := B −A

B +A
and σ :=

√
B −√A√
B +√A

.
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Given a signal x ∈ H N , define a sequence (yj )
∞
j=0 in H N and corresponding

scalars (λj )
∞
j=1 by

y0 = 0, y1 = 2

B +A
Sx, and λ1 = 2,

and for j ≥ 2, set

λj = 1

1− ρ2

4 λj−1

and yj = λj

(
yj−1 − yj−2 + 2

B +A
S(x − yj−1)

)
+ yj−2.

Then (yj )
∞
j=0 converges to x in H N , and the rate of convergence is

‖x − yj‖ ≤ 2σ j

1+ σ 2j
‖x‖.

The advantage of the conjugate gradient method, which we will present next, is
the fact that it does not require knowledge of the frame bounds. However, as before,
the rate of convergence certainly does depend on them.

Proposition 1.20 (Conjugate Gradient Method, [96]) Let (ϕi)
M
i=1 be a frame for

H N with frame operator S. Given a signal x ∈ H N , define three sequences
(yj )

∞
j=0, (rj )∞j=0, and (pj )

∞
j=−1 in H N and corresponding scalars (λj )

∞
j=−1 by

y0 = 0, r0 = p0 = Sx, and p−1 = 0,

and for j ≥ 0, set

λj = 〈rj ,pj 〉
〈pj ,Spj 〉 , yj+1 = yj + λjpj , rj+1 = rj − λjSpj ,

and

pj+1 = Spj − 〈Spj ,Spj 〉
〈pj ,Spj 〉 pj − 〈Spj ,Spj−1〉

〈pj−1, Spj−1〉pj−1.

Then (yj )
∞
j=0 converges to x in H N , and the rate of convergence is

|||x − yj ||| ≤ 2σ j

1+ σ 2j
|||x||| with σ =

√
B −√A√
B +√A

,

and ||| · ||| is the norm on H N given by |||x||| = 〈x,Sx〉1/2 = ‖S1/2x‖, x ∈H N .

1.6 Construction of Frames

Applications often require the construction of frames with certain desired properties.
As a result of the large diversity of these desiderata, there exists a large number of
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construction methods [36, 58]. In this section, we will present a prominent selection
of these. For further details and results, for example, the construction of frames
through Spectral Tetris [30, 43, 46] and through eigensteps [29], we refer to Chap. 2.

1.6.1 Tight and Parseval Frames

Tight frames are particularly desirable due to the fact that the reconstruction of a
signal from tight frame coefficients is numerically optimally stable, as discussed in
Sect. 1.5. Most of the constructions we will present modify a given frame so that the
result is a tight frame.

We start with the most basic result for generating a Parseval frame, which is the
application of S−1/2, S being the frame operator.

Lemma 1.7 If (ϕi)
M
i=1 is a frame for H N with frame operator S, then (S−1/2ϕi)

M
i=1

is a Parseval frame.

Proof By Proposition 1.10, the frame operator for (S−1/2ϕi)
M
i=1 is S−1/2SS−1/2 =

Id. �

Although this result is impressive in its simplicity, from a practical point of view
it has various problems, the most significant being that this procedure requires in-
version of the frame operator.

However, Lemma 1.7 can certainly be applied if all eigenvalues and respective
eigenvectors of the frame operator are given. If only information on the eigenspace
corresponding to the largest eigenvalue is missing, then there exists a simple prac-
tical method to generate a tight frame by adding a provably minimal number of
vectors.

Proposition 1.21 Let (ϕi)
M
i=1 be any family of vectors in H N with frame operator

S having eigenvectors (ej )
N
j=1 and respective eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN . Let

1≤ k ≤N be such that λ1 = λ2 = · · · = λk > λk+1. Then

(ϕi)
M
i=1 ∪

(
(λ1 − λj )

1/2ej
)N
j=k+1 (1.4)

forms a λ1-tight frame for H N .
Moreover, N − k is the least number of vectors which can be added to (ϕi)

M
i=1 to

obtain a tight frame.

Proof A straightforward calculation shows that the sequence in (1.4) is indeed a
λ1-tight frame for H N .

For the moreover part, assume that there exist vectors (ψj )j∈J with frame oper-
ator S1 satisfying that (ϕi)

M
i=1 ∪ (ψj )j∈J is an A-tight frame. This implies A≥ λ1.
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Now define S2 to be the operator on H N given by

S2ej =
{

0: 1≤ j ≤ k,

(λ1 − λj )ej : k + 1≤ j ≤N.

It follows that A · Id = S + S1 and

S1 =A · Id− S ≥ λ1Id− S = S2.

Since S2 has N − k nonzero eigenvalues, S1 also has at least N − k nonzero eigen-
values. Hence |J | ≥N − k, showing that indeed N − k added vectors is minimal. �

Before we delve into further explicit constructions, we need to first state some
fundamental results on tight, and, in particular, Parseval frames.

The most basic invariance property a frame could have is invariance under or-
thogonal projections. The next result shows that this operation indeed maintains
and may even improve the frame bounds. In particular, the orthogonal projection of
a Parseval frame remains a Parseval frame.

Proposition 1.22 Let (ϕi)
M
i=1 be a frame for H N with frame bounds A,B , and

let P be an orthogonal projection of H N onto a subspace W . Then (Pϕi)
M
i=1 is a

frame for W with frame bounds A,B .
In particular, if (ϕi)

M
i=1 is a Parseval frame for H N and P is an orthogonal

projection on H N onto W , then (Pϕi)
M
i=1 is a Parseval frame for W .

Proof For any x ∈W ,

A‖x‖2 =A‖Px‖2 ≤
M∑

i=1

∣∣〈Px,ϕi〉
∣∣2 =

M∑

i=1

∣∣〈x,Pϕi〉
∣∣2 ≤ B‖Px‖2 = B‖x‖2.

This proves the claim. The in particular part follows immediately. �

Proposition 1.22 immediately yields the following corollary.

Corollary 1.11 Let (ei)
N
i=1 be an orthonormal basis for H N , and let P be an

orthogonal projection of H N onto a subspace W . Then (P ei)
N
i=1 is a Parseval

frame for W .

Corollary 1.11 can be interpreted in the following way: Given an M ×M unitary
matrix, if we select any N rows from the matrix, then the column vectors from
these rows form a Parseval frame for H N . The next theorem, known as Naimark’s
theorem, shows that indeed every Parseval frame can be obtained as the result of this
kind of operation.
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Theorem 1.9 (Naimark’s Theorem) Let (ϕi)
M
i=1 be a frame for H N with analysis

operator T , let (ei)Mi=1 be the standard basis of �M2 , and let P : �M2 → �M2 be the
orthogonal projection onto ranT . Then the following conditions are equivalent.

(i) (ϕi)
M
i=1 is a Parseval frame for H N .

(ii) For all i = 1, . . . ,M , we have Pei = T ϕi .
(iii) There exist ψ1, . . . ,ψM ∈H M−N such that (ϕi ⊕ ψi)

M
i=1 is an orthonormal

basis of H M .

Moreover, if (iii) holds, then (ψi)
M
i=1 is a Parseval frame for H M−N . If (ψ ′i )Mi=1 is

another Parseval frame as in (iii), then there exists a unique linear operator L on
H M−N such that Lψi =ψ ′i , i = 1, . . . ,M , and L is unitary.

Proof (i)⇔(ii) By Theorem 1.7(iii) (ϕi)
M
i=1 is a Parseval frame if and only if

T T ∗ = P . Therefore, (i) and (ii) are equivalent due to T ∗ei = ϕi for all i =
1, . . . ,M .

(i)⇒(iii) We set ci := ei − T ϕi , i = 1, . . . ,M . Then, by (ii), ci ∈ (ranT )⊥ for
all i. Let Φ : (ranT )⊥ → H M−N be unitary and put ψi := Φci , i = 1, . . . ,M .
Then, since T is isometric,

〈ϕi ⊕ψi,ϕk ⊕ψk〉 = 〈ϕi,ϕk〉 + 〈ψi,ψk〉 = 〈T ϕi, T ϕk〉 + 〈ci, ck〉 = δik,

which proves (iii).
(iii)⇒(i) This follows directly from Corollary 1.11.
Concerning the moreover part, it follows from Corollary 1.11 that (ψi)

M
i=1 is a

Parseval frame for H M−N . Let (ψ ′i )Mi=1 be another Parseval frame as in (iii) and
denote the analysis operators of (ψi)

M
i=1 and (ψ ′i )Mi=1 by F and F ′, respectively. We

make use of the decomposition H M =H N⊕H M−N . Note that both U := (T ,F )

and U ′ := (T ,F ′) are unitary operators from H M onto �M2 . By PM−N denote the
projection of H M onto H M−N and set

L := PM−NU ′∗U |H M−N = PM−NU ′∗F.

Let y ∈ H N . Then, since U |H N = U ′|H N = T , we have PM−NU ′∗Uy =
PM−Ny = 0. Hence,

Lψi = PM−NU ′∗U(ϕi ⊕ψi)= PM−NU ′∗ei = PM−N

(
ϕi ⊕ψ ′i

)=ψ ′i .

The uniqueness of L follows from the fact that both (ψi)
M
i=1 and (ψ ′i )Mi=1 are span-

ning sets for H M−N .
To show that L is unitary, we observe that, by Proposition 1.10, the frame oper-

ator of (Lψi)
M
i=1 is given by LL∗. The claim LL∗ = Id now follows from the fact

that the frame operator of (ψ ′i )Mi=1 is also the identity. �

The simplest way to construct a frame from a given one is just to scale the frame
vectors. Therefore, it seems desirable to have a characterization of the class of
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frames which can be scaled to a Parseval frame or a tight frame (which is equiv-
alent). We term such frames scalable.

Definition 1.21 A frame (ϕi)
M
i=1 for H N is called (strictly) scalable, if there exist

nonnegative (respectively, positive) numbers a1, . . . , aM such that (aiϕi)
M
i=1 is a

Parseval frame.

The next result is closely related to Naimark’s theorem.

Theorem 1.10 [116] Let (ϕi)
M
i=1 be a frame for H N with analysis operator T .

Then the following statements are equivalent.

(i) (ϕi)
M
i=1 is strictly scalable.

(ii) There exists a linear operator L :H M−N → �M2 such that T T ∗ + LL∗ is a
positive definite diagonal matrix.

(iii) There exists a sequence (ψi)
M
i=1 of vectors in H M−N such that (ϕi ⊕ ψi)

M
i=1

forms a complete orthogonal system in H M .

If H N is real, then the following result applies, which can be utilized to derive
a geometric interpretation of scalability. For this we once more refer to [116].

Theorem 1.11 [116] Let H N be real and let (ϕi)
M
i=1 be a frame for H N without

zero vectors. Then the following statements are equivalent.

(i) (ϕi)
M
i=1 is not scalable.

(ii) There exists a self-adjoint operator Y on H N with Tr(Y ) < 0 and 〈Yϕi,ϕi〉 ≥
0 for all i = 1, . . . ,M .

(iii) There exists a self-adjoint operator Y on H N with Tr(Y )= 0 and 〈Yϕi,ϕi〉>
0 for all i = 1, . . . ,M .

We finish this subsection with an existence result of tight frames with prescribed
norms of the frame vectors. Its proof in [44] heavily relies on a deep understand-
ing of the frame potential and is a pure existence proof. However, in special cases
constructive methods are presented in [56].

Theorem 1.12 [44] Let N ≤M , and let a1 ≥ a2 ≥ · · · ≥ aM be positive real num-
bers. Then the following conditions are equivalent.

(i) There exists a tight frame (ϕi)
M
i=1 for H N satisfying ‖ϕi‖ = ai for all i =

1,2, . . . ,M .
(ii) For all 1≤ j < N ,

a2
j ≤

∑M
i=j+1 a

2
i

N − j
.
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(iii) We have

M∑

i=1

a2
i ≥Na2

1 .

Equal norm tight frames are even more desirable, but are difficult to construct.
A powerful method, called Spectral Tetris, for such constructions was recently de-
rived in [46], see Chap. 2. This methodology even generates sparse frames [49],
which reduce the computational complexity and also ensure high compressibility
of the synthesis matrix—which then is a sparse matrix. However, we caution the
reader that Spectral Tetris has the drawback that it often generates multiple copies
of the same frame vector. For practical applications, this is typically avoided, since
the frame coefficients associated with a repeated frame vector do not provide any
new information about the incoming signal.

1.6.2 Frames with Given Frame Operator

It is often desirable not only to construct tight frames, but more generally to con-
struct frames with a prescribed frame operator. Typically in such a case the eigenval-
ues of the frame operator are given assuming that the eigenvectors are the standard
basis. Applications include, for instance, noise reduction if colored noise is present.

The first comprehensive results containing necessary and sufficient conditions for
the existence and the construction of tight frames with frame vectors of a prescribed
norm were derived in [44] and [56]; see also Theorem 1.12. The result in [44] was
then extended in [57] to the following theorem, which now also includes prescribing
the eigenvalues of the frame operator.

Theorem 1.13 [57] Let S be a positive self-adjoint operator on H N , and let λ1 ≥
λ2 ≥ · · · ≥ λN > 0 be the eigenvalues of S. Further, let M ≥ N , and let c1 ≥ c2 ≥
· · · ≥ cM be positive real numbers. Then the following conditions are equivalent.

(i) There exists a frame (ϕi)
M
i=1 for H N with frame operator S satisfying ‖ϕi‖ = ci

for all i = 1,2, . . . ,M .
(ii) For every 1≤ k ≤N , we have

k∑

j=1

c2
j ≤

k∑

j=1

λj and
M∑

i=1

c2
i =

N∑

j=1

λj .

However, it is often preferable to utilize equal norm frames, since then, roughly
speaking, each vector provides the same coverage for the space. In [57], it was
shown that there always exists an equal norm frame with a prescribed frame opera-
tor. This is the content of the next result.
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Theorem 1.14 [57] For every M ≥N and every invertible positive self-adjoint op-
erator S on H N there exists an equal norm frame for H N with M elements and
frame operator S. In particular, there exist equal norm Parseval frames with M

elements in H N for every N ≤M .

Proof We define the norm of the to-be-constructed frame to be c, where

c2 = 1

M

N∑

j=1

λj .

It is sufficient to prove that the conditions in Theorem 1.13(ii) are satisfied for ci = c

for all i = 1,2, . . . ,M . The definition of c immediately implies the second condi-
tion.

For the first condition, we observe that

c2
1 = c2 = 1

M

N∑

j=1

λj ≤ λ1.

Hence this condition holds for j = 1. Now, toward a contradiction, assume that
there exists some k ∈ {2, . . . ,N} for which this condition fails for the first time by
counting from 1 upward, i.e.,

k−1∑

j=1

c2
j = (k − 1)c2 ≤

k−1∑

j=1

λj , but
k∑

j=1

c2
j = kc2 >

k∑

j=1

λj .

This implies

c2 ≥ λk and thus c2 ≥ λj for all k+ 1≤ j ≤N.

Hence,

Mc2 ≥ kc2 + (N − k)c2 >

k∑

j=1

λj +
N∑

j=k+1

c2
j ≥

N∑

j=1

λj +
N∑

j=k+1

λj =
N∑

j=1

λj ,

which is a contradiction. The proof is completed. �

By an extension of the aforementioned algorithm Spectral Tetris [30, 43, 47, 49]
to non-tight frames, Theorem 1.14 can be constructively realized. The interested
reader is referred to Chap. 2. We also mention that an extension of Spectral Tetris
to construct fusion frames (cf. Sect. 1.9) exists. Further details on this topic are
contained in Chap. 13.

1.6.3 Full Spark Frames

Generic frames are those optimally resilient against erasures. The precise definition
is as follows.
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Definition 1.22 A frame (ϕi)
M
i=1 for H N is called a full spark frame, if the erasure

of any M −N vectors leaves a frame; i.e., for any I ⊂ {1, . . . ,M}, |I | =M −N ,
the sequence (ϕi)

M
i=1,i 
∈I is still a frame for H N .

It is evident that such frames are of significant importance for applications. A first
study was undertaken in [126]. Recently, using methods from algebraic geometry,
equivalence classes of full spark frames were extensively studied [26, 80, 135]. It
was shown, for instance, that equivalence classes of full spark frames are dense
in the Grassmannian variety. For the readers to be able to appreciate these results,
Chap. 4 provides an introduction to algebraic geometry followed by a survey about
this and related results.

1.7 Frame Properties

As already discussed, crucial properties of frames such as erasure robustness, re-
silience against noise, or sparse approximation properties originate from spanning
and independence properties of frames [13], which are typically based on the Rado-
Horn theorem [103, 128] and its redundant version [54]. These, in turn, are only
possible because of their redundancy [12]. This section will shed some light on
these issues.

1.7.1 Spanning and Independence

As is intuitively clear, the frame bounds imply certain spanning properties which are
detailed in the following result. This theorem should be compared to Lemma 1.2,
which presented some first statements about spanning sets in frames.

Theorem 1.15 Let (ϕi)
M
i=1 be a frame for H N with frame bounds A and B . Then

the following holds.

(i) ‖ϕi‖2 ≤ Bop for all i = 1,2, . . . ,M .
(ii) If, for some i0 ∈ {1, . . . ,M}, we have ‖ϕi0‖2 = Bop, then ϕi0 ⊥ span{ϕi}Mi=1,i 
=i0

.

(iii) If, for some i0 ∈ {1, . . . ,M}, we have ‖ϕi0‖2 <Aop, then ϕi0 ∈ span{ϕi}Mi=1,i 
=i0
.

In particular, if (ϕi)
M
i=1 is a Parseval frame, then either ϕi0 ⊥ span{ϕi}Mi=1,i 
=i0

(and
in this case ‖ϕi‖ = 1) or ‖ϕi0‖< 1.

Proof For any i0 ∈ {1, . . . ,M} we have

‖ϕi0‖4 ≤ ‖ϕi0‖4 +
∑

i 
=i0

∣∣〈ϕi0 , ϕi〉
∣∣2 =

M∑

i=1

∣∣〈ϕi0, ϕi〉
∣∣2 ≤ Bop‖ϕi0‖2. (1.5)

The claims (i) and (ii) now directly follow from (1.5).
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(iii) Let P denote the orthogonal projection of H N onto (span{ϕi}Mi=1,i 
=i0
)⊥.

Then

Aop‖Pϕi0‖2 ≤ ‖Pϕi0‖4 +
M∑

i=1,i 
=i0

∣∣〈Pϕi0, ϕi〉
∣∣2 = ‖Pϕi0‖4.

Hence, either Pϕi0 = 0 (and thus ϕi0 ∈ span{ϕi}Mi=1,i 
=i0
) or Aop ≤ ‖Pϕi0‖2 ≤

‖ϕi0‖2. This proves (iii). �

Ideally, we are interested in having an exact description of a frame in terms of its
spanning and independence properties. The following questions could be answered
by such a measure: How many disjoint linearly independent spanning sets does the
frame contain? After removing these, how many disjoint linearly independent sets
which span hyperplanes does it contain? And many more.

One of the main results in this direction is the following from [13].

Theorem 1.16 [13] Every unit norm tight frame (ϕi)
M
i=1 for H N with M = kN + j

elements, 0 ≤ j < N , can be partitioned into k linearly independent spanning sets
plus a linearly independent set of j elements.

For its proof and further related results we refer to Chap. 3.

1.7.2 Redundancy

As we have discussed and will be seen throughout this book, redundancy is the key
property of frames. This fact makes it even more surprising that, until recently, not
much attention has been paid to introduce meaningful quantitative measures of re-
dundancy. The classical measure of the redundancy of a frame (ϕi)

M
i=1 for H N is

the quotient of the number of frame vectors and the dimension of the ambient space,
i.e., M

N
. However, this measure has serious problems in distinguishing, for instance,

the two frames in Example 1.2 (1) and (2) by assigning the same redundancy mea-
sure 2N

N
= 2 to both of them. From a frame perspective these two frames are very

different, since, for instance, one contains two spanning sets whereas the other just
contains one.

Recently, in [12] a new notion of redundancy was proposed which seems to better
capture the spirit of what redundancy should represent. To present this notion, let
S= {x ∈H N : ‖x‖ = 1} denote the unit sphere in H N , and let Pspan{x} denote the
orthogonal projection onto the subspace span{x} for some x ∈H N .

Definition 1.23 Let Φ = (ϕi)
M
i=1 be a frame for H N . For each x ∈ S, the redun-

dancy function RΦ : S→R
+ is defined by

RΦ(x)=
M∑

i=1

‖Pspan{ϕi }x‖2.
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Then the upper redundancy of Φ is defined by

R+
Φ =max

x∈S
RΦ(x),

and the lower redundancy of Φ is defined by

R−
Φ =min

x∈S RΦ(x).

Moreover, Φ has uniform redundancy, if

R−
Φ =R+

Φ.

One might hope that this new notion of redundancy provides information about
spanning and independence properties of the frame, since these are closely related
to questions such as, say, whether a frame is resilient with respect to deletion of a
particular number of frame vectors. Indeed, such a link exists and is detailed in the
next result.

Theorem 1.17 [12] Let Φ = (ϕi)
M
i=1 be a frame for H N without zero vectors. Then

the following conditions hold.

(i) Φ contains �R−
Φ� disjoint spanning sets.

(ii) Φ can be partitioned into �R+
Φ� linearly independent sets.

Various other properties of this notion of redundancy are known, such as additiv-
ity or its range, and we refer to [12] and Chap. 3 for more details.

At this point, we point out that this notion of upper and lower redundancy coin-
cides with the optimal frame bounds of the normalized frame (

ϕi‖ϕi‖ )
M
i=1, after dele-

tion of zero vectors. The crucial point is that with this viewpoint Theorem 1.17
combines analytic and algebraic properties of Φ .

1.7.3 Equivalence of Frames

We now consider equivalence classes of frames. As in other research areas, the idea
is that frames in the same equivalence class share certain properties.

1.7.3.1 Isomorphic frames

The following definition states one equivalence relation for frames.

Definition 1.24 Two frames (ϕi)
M
i=1 and (ψi)

M
i=1 for H N are called isomor-

phic, if there exists an operator F : H N → H N satisfying Fϕi = ψi for all
i = 1,2, . . . ,M .
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We remark that—due to the spanning property of frames—an operator F as in
the above definition is both invertible and unique. Moreover, note that in [4] the
isomorphy of frames with an operator F as above was termed F -equivalence.

The next theorem characterizes the isomorphy of two frames in terms of their
analysis and synthesis operators.

Theorem 1.18 Let (ϕi)
M
i=1 and (ψi)

M
i=1 be frames for H N with analysis operators

T1 and T2, respectively. Then the following conditions are equivalent.

(i) (ϕi)
M
i=1 is isomorphic to (ψi)

M
i=1.

(ii) ranT1 = ranT2.
(iii) kerT ∗1 = kerT ∗2 .

If one of (i)–(iii) holds, then the operator F :H N →H N with Fϕi = ψi for all
i = 1, . . . ,N is given by F = T ∗2 (T ∗1 |ranT1)

−1.

Proof The equivalence of (ii) and (iii) follows by orthogonal complementation. In
the following let (ei)Mi=1 denote the standard unit vector basis of �M2 .

(i)⇒(iii) Let F be an invertible operator on H N such that Fϕi = ψi for all
i = 1, . . . ,M . Then Proposition 1.9 implies T2 = T1F

∗ and hence FT ∗1 = T ∗2 . Since
F is invertible, (iii) follows.

(ii)⇒(i) Let P be the orthogonal projection onto W := ranT1 = ranT2. Then
ϕi = T ∗1 ei = T ∗1 Pei and ψi = T ∗2 ei = T ∗2 Pei . The operators T ∗1 and T ∗2 both map
W bijectively onto H N . Therefore, the operator F := T ∗2 (T ∗1 |W )−1 maps H N

bijectively onto itself. Consequently, for each i ∈ {1, . . . ,M} we have

Fϕi = T ∗2
(
T ∗1 |W

)−1
T ∗1 Pei = T ∗2 Pei =ψi,

which proves (i) as well as the additional statement on the operator F . �

An obvious, though interesting, result in the context of frame isomorphy is that
the Parseval frame in Lemma 1.7 is in fact isomorphic to the original frame.

Lemma 1.8 Let (ϕi)
M
i=1 be a frame for H N with frame operator S. Then the Par-

seval frame (S−1/2ϕi)
M
i=1 is isomorphic to (ϕi)

M
i=1.

Similarly, a given frame is also isomorphic to its canonical dual frame.

Lemma 1.9 Let (ϕi)
M
i=1 be a frame for H N with frame operator S. Then the canon-

ical dual frame (S−1ϕi)
M
i=1 is isomorphic to (ϕi)

M
i=1.

Intriguingly, it turns out—and will be proven in the following result—that the
canonical dual frame is the only dual frame which is isomorphic to a given frame.

Proposition 1.23 Let Φ = (ϕi)
M
i=1 be a frame for H N with frame operator S,

and let (ψi)
M
i=1 and (ψ̃i)

M
i=1 be two different dual frames for Φ . Then (ψi)

M
i=1 and

(ψ̃i)
M
i=1 are not isomorphic.
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In particular, (S−1ϕi)
M
i=1 is the only dual frame for Φ which is isomorphic to Φ .

Proof Let (ψi)
M
i=1 and (ψ̃i)

M
i=1 be different dual frames for Φ . Toward a contra-

diction, we assume that (ψi)
M
i=1 and (ψ̃i)

M
i=1 are isomorphic, and let F denote the

invertible operator satisfying ψi = Fψ̃i , i = 1,2, . . . ,M . Then, for each x ∈H N

we have

F ∗x =
M∑

i=1

〈
F ∗x, ψ̃i

〉
ϕi =

M∑

i=1

〈x,F ψ̃i〉ϕi =
M∑

i=1

〈x,ψi〉ϕi = x.

Thus, F ∗ = Id which implies F = Id, a contradiction. �

1.7.3.2 Unitarily isomorphic frames

A stronger version of equivalence is given by the notion of unitarily isomorphic
frames.

Definition 1.25 Two frames (ϕi)
M
i=1 and (ψi)

M
i=1 for H N are unitarily isomorphic,

if there exists a unitary operator U :H N →H N satisfying Uϕi = ψi for all i =
1,2, . . . ,M .

In the situation of Parseval frames, though, the notions of isomorphy and unitary
isomorphy coincide.

Lemma 1.10 Let (ϕi)
M
i=1 and (ψi)

M
i=1 be isomorphic Parseval frames for H N .

Then they are even unitarily isomorphic.

Proof Let F be an invertible operator on H N with Fϕi = ψi for all i =
1,2, . . . ,M . By Proposition 1.10, the frame operator of (Fϕi)

M
i=1 is F IdF ∗ = FF ∗.

On the other hand, the frame operator of (ψi)
M
i=1 is the identity. Hence, FF ∗ = Id. �

We end this section with a necessary and sufficient condition for two frames to
be unitarily isomorphic.

Proposition 1.24 For two frames (ϕi)
M
i=1 and (ψi)

M
i=1 for H N with analysis oper-

ators T1 and T2, respectively, the following conditions are equivalent.

(i) (ϕi)
M
i=1 and (ψi)

M
i=1 are unitarily isomorphic.

(ii) ‖T ∗1 c‖ = ‖T ∗2 c‖ for all c ∈ �M2 .
(iii) T1T

∗
1 = T2T

∗
2 .

Proof (i)⇒(iii) Let U be a unitary operator on H N with Uϕi = ψi for all i =
1, . . . ,M . Then, since by Proposition 1.9 we have T2 = T1U

∗, we obtain T2T
∗
2 =

T1U
∗UT ∗1 = T1T

∗
1 and thus (iii).
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(iii)⇒(ii) This is immediate.
(ii)⇒(i) Since (ii) implies kerT ∗1 = kerT ∗2 , it follows from Theorem 1.18 that

Uϕi = ψi for all i = 1, . . . ,M , where U = T ∗2 (T ∗1 |ranT1)
−1. But this operator is

unitary since (ii) also implies

∥∥T ∗2
(
T ∗1 |ranT1

)−1
x
∥∥= ∥∥T ∗1

(
T ∗1 |ranT1

)−1
x
∥∥= ‖x‖

for all x ∈H N . �

1.8 Applications of Finite Frames

Finite frames are a versatile methodology for any application which requires redun-
dant, yet stable, decompositions, e.g., for analysis or transmission of signals, but
surprisingly also for more theoretically oriented questions. We state some of these
applications in this section, which also coincide with the chapters of this book.

1.8.1 Noise and Erasure Reduction

Noise and erasures are one of the most common problems signal transmissions have
to face [130–132]. The redundancy of frames is particularly suitable to reduce and
compensate for such disturbances. Pioneering studies can be found in [50, 93–95],
followed by the fundamental papers [10, 15, 102, 136, 149]. In addition one is al-
ways faced with the problem of suppressing errors introduced through quantiza-
tion, both pulse code modulation (PCM) [20, 151] and sigma-delta quantization
[7, 8, 16, 17]. Theoretical error considerations range from worst to average case
scenarios. Different strategies for reconstruction exist depending on whether the
receiver is aware or unaware of noise and erasures. Some more recent work also
takes into account special types of erasures [18] or the selection of dual frames
for reconstruction [121, 123]. Chapter 7 provides a comprehensive survey of these
considerations and related results.

1.8.2 Resilience Against Perturbations

Perturbations of a signal are an additional problem faced by signal processing appli-
cations. Various results on the ability of frames to be resilient against perturbations
are known. One class focuses on generally applicable frame perturbation results
[3, 37, 59, 68], some even in the Banach space setting [39, 68]. Yet another topic is
that of perturbations of specific frames such as Gabor frames [40], frames contain-
ing a Riesz basis [38], or frames for shift-invariant spaces [153]. Finally, extensions
such as fusion frames are studied with respect to their behavior under perturbations
[52].
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1.8.3 Quantization Robustness

Each signal processing application contains an analog-to-digital conversion step,
which is called quantization. Quantization is typically applied to the transform co-
efficients, which in our case are (redundant) frame coefficients; see [94, 95]. Inter-
estingly, the redundancy of the frame can be successfully explored in the quantiza-
tion step by using sigma-delta algorithms and a particular noncanonical dual frame
reconstruction. In most regimes, the performance is significantly better than that ob-
tained by rounding each coefficient separately (PCM). This was first observed in
[7, 8]. Within a short amount of time, the error bounds were improved [16, 114], re-
fined quantization schemes were studied [14, 17], specific dual frame constructions
for reconstruction were developed [9, 98, 118], and PCM was revisited [105, 151].
The interested reader is referred to Chap. 8, which provides an introduction to the
quantization of finite frames.

1.8.4 Compressed Sensing

Since high-dimensional signals are typically concentrated on lower dimensional
subspaces, it is a natural assumption that the collected data can be represented by
a sparse linear combination of an appropriately chosen frame. The novel methodol-
ogy of compressed sensing, initially developed in [32, 33, 78], utilizes this obser-
vation to show that such signals can be reconstructed from very few nonadaptive
linear measurements by linear programming techniques. For an introduction, we
refer to the books [84, 86] and the survey [25]. Finite frames thus play an essen-
tial role, both as sparsifying systems and in designing the measurement matrix. For
a selection of studies focusing in particular on the connection to frames, we refer
to [1, 2, 31, 69, 141, 142]; for the connection to structured frames such as fusion
frames, see [22, 85]. Chapter 9 provides an introduction to compressed sensing and
the connection to finite frame theory.

There exists yet another intriguing connection of finite frames to sparsity method-
ologies, namely, aiming for sparse frame vectors to ensure low computational com-
plexity. For this, we refer to the two papers [30, 49] and to Chap. 13.

1.8.5 Filter Banks

Filter banks are the basis for most signal processing applications. We exemplarily
mention the general books [125, 145] and those with a particular focus on wavelets
[75, 134, 150], as well as the beautiful survey articles [109, 110]. Usually, several
filters are applied in parallel to an input signal, followed by downsampling. This pro-
cessing method is closely related to the decomposition with respect to finite frames
provided that the frame consists of equally spaced translates of a fixed set of vectors,
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first observed in [19, 21, 71, 72] and later refined and extended in [62, 63, 90, 112].
This viewpoint has the benefit of providing a deeper understanding of filtering pro-
cedures, while retaining the potential of extensions of classical filter bank theory.
We refer to Chap. 10, which provides an introduction into filter banks and their
connections with finite frame theory.

1.8.6 Stable Partitions

The Feichtinger conjecture in frame theory conjectures the existence of certain parti-
tions of frames into sequences with “good” frame bounds; see [41]. Its relevance be-
comes evident when modeling distributed processing, and stable frames are required
for the local processing units (see also Sect. 1.9 on fusion frames). The fundamental
papers [48, 55, 61] then linked this conjecture to a variety of open conjectures in
what is customarily called pure mathematics such as the Kadison-Singer problem in
C∗-algebras [107]. Chapter 11 provides an introduction into these connections and
their significance. A particular focus of this chapter is also on the Paulsen problem
[11, 27, 45], which provides error estimates on the ability of a frame to be simulta-
neously (almost) equal norm and (almost) tight.

1.9 Extensions

Typically motivated by applications, various extensions of finite frame theory have
been developed over the last years. In this book, Chaps. 12 and 13 are devoted to
the main two generalizations, whose key ideas we will now briefly describe.

• Probabilistic Frames. This theory is based on the observation that finite frames
can be regarded as mass points distributed in H N . As an extension, probabilistic
frames, which were introduced and studied in [81–83], constitute a class of gen-
eral probability measures, again with appropriate stability constraints. Applica-
tions include, for instance, directional statistics in which probabilistic frames can
be utilized to measure inconsistencies of certain statistical tests [108, 143, 144].
For more details on the theory and applications of probabilistic frames, we refer
to Chap. 12.

• Fusion Frames. Signal processing by finite frames can be regarded as projections
onto one-dimensional subspaces. In contrast to this, fusion frames, introduced in
[51, 53], analyze and process a signal by (orthogonal) projections onto multidi-
mensional subspaces, which again have to satisfy some stability conditions. They
also allow for a local processing in the different subspaces. This theory is in fact
a perfect fit to applications requiring distributed processing; we refer to the se-
ries of papers [22, 23, 28, 30, 42, 43, 46, 63, 117, 124]. We also mention that
a closely related generalization called G-frames exists, which however does not
admit any additional (local) structure and which is unrelated to applications (see,
for instance, [137, 138]). A detailed introduction to fusion frame theory can be
found in Chap. 13.
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72. Cvetković, Z., Vetterli, M.: Tight Weyl-Heisenberg frames in �2(Z). IEEE Trans. Signal

Process. 46, 1256–1259 (1998)
73. Dahmen, W., Huang, C., Schwab, C., Welper, G.: Adaptive Petrov-Galerkin methods for first

order transport equation. SIAM J. Numer. Anal. (to appear)
74. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE

Trans. Inf. Theory 36, 961–1005 (1990)
75. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)
76. Daubechies, I., Grossman, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys.

27, 1271–1283 (1985)
77. Dong, B., Shen, Z.: MRA-Based Wavelet Frames and Applications. IAS/Park City Math.

Ser., vol. 19 (2010)
78. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)
79. Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72,

341–366 (1952)
80. Dykema, K., Strawn, N.: Manifold structure of spaces of spherical tight frames. Int. J. Pure

Appl. Math. 28, 217–256 (2006)
81. Ehler, M.: Random tight frames. J. Fourier Anal. Appl. 18, 1–20 (2012)
82. Ehler, M., Galanis, J.: Frame theory in directional statistics. Stat. Probab. Lett. 81, 1046–

1051 (2011)
83. Ehler, M., Okoudjou, K.A.: Minimization of the probabilistic p-frame potential. J. Stat. Plan.

Inference 142, 645–659 (2012)
84. Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and

Image Processing. Springer, Berlin (2010)
85. Eldar, Y.C., Kuppinger, P., Bölcskei, H.: Block-sparse signals: uncertainty relations and effi-

cient recovery. IEEE Trans. Signal Process. 58, 3042–3054 (2010)
86. Eldar, Y., Kutyniok, G. (eds.): Compressed Sensing: Theory and Applications. Cambridge

University Press, Cambridge (2012)
87. Feichtinger, H.G., Gröchenig, K.: Gabor frames and time-frequency analysis of distributions.

J. Funct. Anal. 146, 464–495 (1996)
88. Feichtinger, H.G., Strohmer, T. (eds.): Gabor Analysis and Algorithms: Theory and Applica-

tions. Birkhäuser, Boston (1998)
89. Feichtinger, H.G., Strohmer, T., Christensen, O.: A group-theoretical approach to Gabor

analysis. Opt. Eng. 34, 1697–1704 (1995)
90. Fickus, M., Johnson, B.D., Kornelson, K., Okoudjou, K.: Convolutional frames and the frame

potential. Appl. Comput. Harmon. Anal. 19, 77–91 (2005)
91. Fickus, M., Mixon, D.G., Tremain, J.C.: Steiner equiangular tight frames. Linear Algebra

Appl. 436, 1014–1027 (2012)
92. Gabor, D.: Theory of communication. J. Inst. Electr. Eng. 93, 429–457 (1946)
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Chapter 2
Constructing Finite Frames with a Given
Spectrum

Matthew Fickus, Dustin G. Mixon, and Miriam J. Poteet

Abstract Broadly speaking, frame theory is the study of how to produce well-
conditioned frame operators, often subject to nonlinear application-motivated re-
strictions on the frame vectors themselves. In this chapter, we focus on one partic-
ularly well-studied type of restriction: having frame vectors of prescribed lengths.
We discuss two methods for iteratively constructing such frames. The first method,
called Spectral Tetris, produces special examples of such frames, and only works in
certain cases. The second method combines the idea behind Spectral Tetris with the
classical theory of majorization; this method can build any such frame in terms of a
sequence of interlacing spectra, called eigensteps.

Keywords Tight frames · Schur-Horn ·Majorization · Interlacing

2.1 Introduction

Although we work over the complex field for the sake of generality, the the-
ory presented here carries over verbatim to the real-variable setting. The synthe-
sis operator of a sequence of vectors Φ = {ϕm}Mm=1 in C

N is Φ : CM → C
N ,

Φy :=∑M
m=1 y(m)ϕm. That is, Φ is the N×M matrix whose columns are the ϕm’s.

Note that we make no notational distinction between the vectors themselves and the
synthesis operator they induce. Φ is said to be a frame for CN if there exist frame
bounds 0 <A≤ B <∞ such that A‖x‖2 ≤ ‖Φ∗x‖2 ≤ B‖x‖2 for all x ∈ C

N . The
optimal frame bounds A and B of Φ are the least and greatest eigenvalues of the
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frame operator

ΦΦ∗ =
M∑

m=1

ϕmϕ
∗
m, (2.1)

respectively. Here, ϕ∗m is the linear functional ϕ∗m : CN → C, ϕ∗mx := 〈x,ϕm〉. In
particular, Φ is a frame if and only if the ϕm’s span C

N , which necessitates N ≤M .
Frames provide numerically stable methods for finding overcomplete decompo-

sitions of vectors, and as such are useful tools in various signal processing applica-
tions [26, 27]. Indeed, if Φ is a frame, then any x ∈C

N can be decomposed as

x =ΦΦ̃∗x =
M∑

m=1

〈x, ϕ̃m〉ϕm, (2.2)

where Φ̃ = {ϕ̃m}Mm=1 is a dual frame of Φ , meaning it satisfies ΦΦ̃∗ = Id. The most
often-used dual is the canonical dual, namely the pseudoinverse Φ̃ = (ΦΦ∗)−1Φ .
Computing a canonical dual involves inverting the frame operator. As such, when
designing a frame for a given application, it is important to control over the spectrum
{λn}Nn=1 of ΦΦ∗. Here and throughout, such spectra are arranged in nonincreasing
order, with the optimal frame bounds A and B being λN and λ1, respectively.

Of particular interest are tight frames, namely frames for which A = B . Note
that this occurs precisely when λn = A for all n, meaning ΦΦ∗ = AId. In this
case, the canonical dual is given by ϕ̃m = 1

A
ϕm, and (2.2) becomes an overcomplete

generalization of an orthonormal basis decomposition. Tight frames are not hard to
construct; we simply need the rows of Φ to be orthogonal and have constant squared
norm A. However, this problem becomes significantly more difficult if we further
require the ϕm’s—the columns of Φ—to have prescribed lengths.

In particular, much attention has been paid to the problem of constructing unit
norm tight frames (UNTFs): tight frames for which ‖ϕm‖ = 1 for all m. Here, since
NA= Tr(ΦΦ∗)= Tr(Φ∗Φ)=M , we see that A is necessarily M

N
. For any N ≤M ,

there always exists at least one corresponding UNTF, namely the harmonic frame
obtained by letting Φ be an N × M submatrix of an M × M discrete Fourier
transform [20]. UNTFs are known to be optimally robust with respect to additive
noise [21] and erasures [12, 23], and are a generalization of code division multiple
access (CDMA) encoders [31, 33]. Moreover, all unit norm sequences Φ satisfy

the zeroth-order Welch bound Tr[(ΦΦ∗)2] ≥ M2

N
, which is achieved precisely when

Φ is a UNTF [34, 35]; a physics-inspired interpretation of this fact leading to an
optimization-based proof of the existence of UNTFs is given in [3]. We further
know that many such frames exist: when M > N + 1, the manifold of all N ×M

real UNTFs, modulo rotations, is known to have nontrivial dimension [17]. Lo-
cal parametrizations of this manifold are given in [30]. Much of the recent work on
UNTFs has focused on the Paulsen problem [4, 9], a type of Procrustes problem [22]
concerning how a given frame should be perturbed in order to make it more like a
UNTF.
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In this chapter, we discuss the main results of [5, 10, 19], which show how to
construct every UNTF and moreover solve the following more general problem.

Problem 2.1 Given any nonnegative nonincreasing sequences {λn}Nn=1 and
{μm}Mm=1, construct all Φ = {ϕm}Mm=1 whose frame operator ΦΦ∗ has spectrum
{λn}Nn=1 and for which ‖ϕm‖2 = μm for all m.

To solve this problem, we build on the existing theory of majorization. To be
precise, given two nonnegative nonincreasing sequences {λm}Mm=1 and {μm}Mm=1,
we say that {λm}Mm=1 majorizes {μm}Mm=1, denoted {λm}Mm=1 � {μm}Mm=1, if:

m∑

m′=1

λm′ ≥
m∑

m′=1

μm′, ∀m= 1, . . . ,M − 1, (2.3)

M∑

m′=1

λm′ =
M∑

m′=1

μm′ . (2.4)

A classical result of Schur [29] states that the spectrum of a self-adjoint posi-
tive semidefinite matrix necessarily majorizes its diagonal entries. A few decades
later, Horn gave a nonconstructive proof of a converse result [24], showing that if
{λm}Mm=1 � {μm}Mm=1, then there exists a self-adjoint matrix that has {λm}Mm=1 as its
spectrum and {μm}Mm=1 as its diagonal. These two results are collectively known as
the Schur-Horn theorem.

Schur-Horn Theorem There exists a positive semidefinite matrix with spectrum
{λm}Mm=1 and diagonal entries {μm}Mm=1 if and only if {λm}Mm=1 � {μm}Mm=1.

Over the years, several methods for explicitly constructing Horn’s matrices have
been found; see [15] for a nice overview. Many current methods rely on Givens
rotations [13, 15, 33], while others involve optimization [14]. Regarding frame the-
ory, the significance of the Schur-Horn theorem is that it completely characterizes
whether or not there exists a frame whose frame operator has a given spectrum and
whose vectors have given lengths. This follows from applying it to the Gram ma-
trix Φ∗Φ , whose diagonal entries are the values {‖ϕm‖2}Mm=1 and whose spectrum
{λm}Mm=1 is a zero-padded version of the spectrum {λn}Nn=1 of the frame operator
ΦΦ∗. Indeed, majorization inequalities arose during the search for tight frames with
given lengths [8, 16], and the explicit connection between frames and the Schur-
Horn theorem was noted in [1, 32]. This connection was then exploited to solve
various frame theory problems, such as frame completion [28].

Certainly, any solution to Problem 2.1 must account for the fact that frames exist
precisely when the Schur-Horn majorization condition is satisfied. In this paper, we
solve Problem 2.1 by iteratively selecting frame elements in a way that guarantees
majorization holds in the end. We start in Sect. 2.2 by reviewing the UNTF construc-
tion method of [10] called Spectral Tetris, which selects one or two frame elements
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at a time in a way that preserves the frame operator’s eigenbasis. This permits a
simple analysis of how the frame operator’s spectrum changes with each iteration,
but it lacks the generality needed to solve Problem 2.1. Section 2.3 tackles the gen-
erality: it discusses a two-step process from [5] which constructs every frame of a
given spectrum and set of lengths. The first step, Step A, finds every possible way
in which a frame’s spectrum evolves when defining one frame element at a time.
Step B then finds every possible choice of frame elements that corresponds to each
evolution of spectra. Finally, Sects. 2.4 and 2.5 complete this solution to Problem 2.1
by providing explicit algorithms [5, 19] that accomplish Steps A and B, respectively.

2.2 Spectral Tetris

In this section, we discuss the Spectral Tetris method of constructing UNTFs. This
method first appeared in [10], and has since been further studied and general-
ized [6, 7, 11]; this section presents the original version from [10]. Our goal is to
construct N ×M synthesis matrices Φ = {ϕm}Mm=1 which have:

(i) columns of unit norm,
(ii) orthogonal rows, meaning the frame operator ΦΦ∗ is diagonal,

(iii) rows of equal norm, meaning ΦΦ∗ is a multiple of the identity matrix.

Spectral Tetris builds such Φ’s iteratively; the name stems from the fact that it builds
a flat spectrum out of blocks of fixed area. In short, Spectral Tetris ensures that, with
each iteration, our matrices leading to Φ will exactly satisfy (i) and (ii), and get
closer to satisfying (iii). Here, an illustrative example is helpful.

Example 2.1 Let’s play Spectral Tetris to build a UNTF of 11 elements in C
4: a

4× 11 matrix whose columns have norm one and whose rows are orthogonal and
square sum to 11

4 . We begin with an arbitrary 4 × 11 matrix, and let the first two
frame elements be copies of the first standard basis element δ1:

Φ =

⎡

⎢
⎢
⎣

1 1 ? ? ? ? ? ? ? ? ?
0 0 ? ? ? ? ? ? ? ? ?
0 0 ? ? ? ? ? ? ? ? ?
0 0 ? ? ? ? ? ? ? ? ?

⎤

⎥
⎥
⎦ . (2.5)

If the remaining unknown entries are chosen so that Φ has orthogonal rows, then
ΦΦ∗ will be a diagonal matrix. Currently, the diagonal entries of ΦΦ∗ are mostly
unknown, having the form {2+?, ?, ?, ?}. Also note that if the remainder of the first
row of Φ is set to zero, then the first diagonal entry of ΦΦ∗ would be 2 < 11

4 .
Thus, we need to add more weight to this row. However, making the third column
of Φ another copy of δ1 would add too much weight, as 3 > 11

4 . Therefore, we
need a way to give 11

4 − 2= 3
4 more weight in the first row without compromising

either the orthogonality of the rows of Φ or the normality of its columns. The key
idea is to realize that, for any 0 ≤ x ≤ 2, there exists a 2 × 2 matrix T (x) with



2 Constructing Finite Frames with a Given Spectrum 59

orthogonal rows and unit-length columns such that T (x)T ∗(x) is a diagonal matrix
with diagonal entries {x,2− x}. Specifically, we have:

T (x) := 1√
2

[ √
x

√
x√

2− x −√2− x

]
, T (x)T ∗(x)=

[
x 0
0 2− x

]
.

We define the third and fourth columns of Φ in terms of T (x), where x = 11
4 − 2=

3
4 :

Φ =

⎡

⎢⎢⎢
⎣

1 1
√

3√
8

√
3√
8

0 0 0 0 0 0 0

0 0
√

5√
8
−
√

5√
8

? ? ? ? ? ? ?

0 0 0 0 ? ? ? ? ? ? ?
0 0 0 0 ? ? ? ? ? ? ?

⎤

⎥⎥⎥
⎦
. (2.6)

The diagonal entries of ΦΦ∗ are now { 11
4 , 5

4 + ?, ?, ?}. The first row now has suffi-
cient weight, and so its remaining entries are set to zero. The second entry is cur-
rently falling short by 11

4 − 5
4 = 6

4 = 1+ 2
4 , and as such, we make the fifth column

δ2, while the sixth and seventh arise from T ( 2
4 ):

Φ =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

1 1
√

3√
8

√
3√
8

0 0 0 0 0 0 0

0 0
√

5√
8
−
√

5√
8

1
√

2√
8

√
2√
8

0 0 0 0

0 0 0 0 0
√

6√
8
−
√

6√
8

? ? ? ?

0 0 0 0 0 0 0 ? ? ? ?

⎤

⎥⎥⎥⎥
⎥⎥
⎦

. (2.7)

The diagonal entries of ΦΦ∗ are now { 11
4 , 11

4 , 6
4+?, ?}, where the third diagonal

entry is falling short by 11
4 − 6

4 = 5
4 = 1+ 1

4 . We therefore take the eighth column of
Φ as δ3, let the ninth and tenth columns arise from T ( 1

4 ), and make the final column
be δ4, yielding the desired UNTF:

Φ =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1 1
√

3√
8

√
3√
8

0 0 0 0 0 0 0

0 0
√

5√
8
−
√

5√
8

1
√

2√
8

√
2√
8

0 0 0 0

0 0 0 0 0
√

6√
8
−
√

6√
8

1 1√
8

1√
8

0

0 0 0 0 0 0 0 0
√

7√
8
−
√

7√
8

1

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (2.8)

In this construction, column vectors are either introduced one at a time, such as
{ϕ1}, {ϕ2}, {ϕ5}, {ϕ8}, or {ϕ11}, or in pairs, such as {ϕ3, ϕ4}, {ϕ6, ϕ7}, or {ϕ9, ϕ10}.
Each singleton contributes a value of 1 to a particular diagonal entry of ΦΦ∗, while
each pair spreads two units of weight over two entries. Overall, we have formed
a flat spectrum, { 11

4 , 11
4 , 11

4 , 11
4 }, from blocks of area 1 or 2. This construction is

reminiscent of the game Tetris, as illustrated in Fig. 2.1.
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Fig. 2.1 The Spectral Tetris construction of a UNTF of 11 elements for C4, as detailed in Exam-
ple 2.1. Each of the four columns corresponds to a diagonal entry of the frame operator ΦΦ∗, and
each block represents the contribution made to these entries by the corresponding frame elements.
For example, the single frame element {ϕ2} contributes {1,0,0,0} to the diagonal, while the pair
{ϕ6, ϕ7} contributes {0, 2

4 ,
6
4 ,0}. The area of the blocks is determined by the number of frame ele-

ments that generate them: blocks that arise from a single element have unit area, while blocks that
arise from two elements have an area of 2. In order for {ϕm}11

m=1 to be a UNTF for C4, these blocks
need to stack to a uniform height of 11

4 . By building a rectangle from blocks of given areas, we are
essentially playing Tetris with the spectrum of ΦΦ∗

We conclude this example by pointing out some useful consequences of this
Spectral Tetris construction. First, note that the frame vectors in (2.8) are extremely
sparse. In fact, Spectral Tetris constructs optimally sparse UNTFs [11]. Also note
that many pairs of frame vectors in this example have mutually disjoint support.
In particular, we have that ϕm and ϕm′ are orthogonal whenever m−m′ ≥ 5. This
feature of Spectral Tetris frames is exploited in [10] to construct tight fusion frames.

In order to formalize the Spectral Tetris argument used in the previous example,
we introduce the following notion.

Definition 2.1 We say that a sequence {ϕm}Mm=1 is an (m0, n0)-proto unit norm tight
frame (PUNTF) for CN if:

(i)
∑N

n=1 |ϕm(n)|2 =
{

1, m≤m0,

0, m >m0,

(ii)
∑M

m=1 ϕm(n)[ϕm(n
′)]∗ = 0 for all n,n′ = 1, . . . ,N,n 
= n′,

(iii)
∑M

m=1 |ϕm(n)|2 =
{

M
N
, n < n0,

0, n > n0,

(iv) 1≤∑M
m=1 |ϕm(n0)|2 ≤ M

N
.

Here and throughout, z∗ denotes the complex conjugate of a complex scalar z, as
it corresponds to the conjugate transpose of a 1× 1 matrix. That is, {ϕm}Mm=1 is an
(m0, n0)-PUNTF for CN precisely when its N ×M synthesis matrix Φ vanishes off
its upper left n0×m0 submatrix, its nonzero columns have unit norm, and its frame
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operator ΦΦ∗ is diagonal, with the first n0 − 1 diagonal entries being M
N

, the n0th
entry lying in [1, M

N
], and the remaining entries being zero. In particular, setting

“?” entries to zero in (2.5), (2.6), (2.7), and (2.8) results in (2,1)-, (4,2)-, (7,3)-,
and (11,4)-PUNTFs, respectively. As seen in Example 2.1, the goal of Spectral
Tetris is to iteratively create larger PUNTFs from existing ones, continuing until
(m0, n0)= (M,N), at which point the PUNTF is a UNTF. We now give the precise
rules for enlarging a given PUNTF; here, as in the preceding example, {δn}Nn=1 is
the standard basis of CN .

Theorem 2.1 Let 2N ≤ M , {ϕm}Mm=1 be an (m0, n0)-PUNTF, and λ :=
∑M

m=1 |ϕm(n0)|2.

(i) If λ≤ M
N
− 1, then m0 <M and {gm}Mm=1 is an (m0 + 1, n0)-PUNTF, where

gm :=
⎧
⎨

⎩

ϕm, m≤m0,

δn0, m=m0 + 1,
0, m >m0 + 1.

(ii) If M
N
− 1 < λ< M

N
, then m0 <M − 2, n0 <N , and {gm}Mm=1, with

gm :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕm, m≤m0,√
1
2 (

M
N
− λ)δn0 +

√
1− 1

2 (
M
N
− λ)δn0+1, m=m0 + 1,

√
1
2 (

M
N
− λ)δn0 −

√
1− 1

2 (
M
N
− λ)δn0+1, m=m0 + 2,

0, m >m0 + 2,

is an (m0 + 2, n0 + 1)-PUNTF.
(iii) If λ= M

N
and n0 <N , then m0 <M and {gm}Mm=1, with

gm :=
⎧
⎨

⎩

ϕm, m≤m0,

δn0+1, m=m0 + 1,
0, m >m0 + 1,

is an (m0 + 1, n0 + 1)-PUNTF for CN .
(iv) If λ= M

N
and n0 =N , then {ϕm}Mm=1 is a UNTF.

The proof of Theorem 2.1 can be found in [10]. For this proof, the assumption
2N ≤M is crucial; in the case where λ is slightly smaller than M

N
, the (n0 + 1)th

diagonal entry of ΦΦ∗ must accept nearly two spectral units of weight, which is
only possible when the desired Spectral Tetris height M

N
is at least 2. At the same

time, we note that playing Spectral Tetris can also result in matrices of lesser redun-
dancy, provided larger blocks are used. Indeed, UNTFs of redundancy M

N
≥ 3

2 can
be constructed using 3×3 Spectral Tetris submatrices, as we now have two diagonal
entries over which to spread at most three units of spectral weight; the blocks them-
selves are obtained by scaling the rows of a 3× 3 discrete Fourier transform matrix.
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More generally, UNTFs with redundancy greater than J
J−1 can be constructed using

J × J submatrices. Note that these lower levels of redundancy are only bought at
the expense of a loss in sparsity, and in particular, a loss of orthogonality relations
between the frame elements themselves. These ideas are further explored in [7].

Also note that although this section’s results were proved in complex Euclidean
space for the sake of consistency, the frames obtained by playing Spectral Tetris
with 1 × 1 and 2 × 2 submatrices are, in fact, real-valued. The simplicity of this
construction rivals that of real harmonic frames, which consist of samples of sines
and cosines. In particular, Spectral Tetris provides a very simple proof of the ex-
istence of real UNTFs for any M ≥ N : when 2N ≤M , the construction is direct;
Naimark complements [10] then give real UNTFs with redundancy less than two.
Spectral Tetris can also be used to construct nontight frames [6] provided the spec-
trum is bounded below by 2. Unfortunately, these techniques are insufficient to solve
Problem 2.1. The next section details a process for solving that problem.

2.3 The Necessity and Sufficiency of Eigensteps

In the previous section, we presented the Spectral Tetris algorithm, which system-
atically builds UNTFs one or two vectors at a time. There, the main idea was to
iteratively construct frame elements in a manner that changes the frame operator’s
spectrum in a predictable way while at the same time preserving its eigenbasis.
However, Spectral Tetris itself cannot solve Problem 2.1 in generality: it only works
with unit vectors and with spectra in which each eigenvalue is at least two in value.
Moreover, even in that case, it only seems to produce a narrow class of all possible
such frames.

In this section, we present the method of [5], which generalizes the Spectral Tetris
idea in a way that provides a complete solution to Problem 2.1. Like Spectral Tetris,
this method constructs Φ = {ϕm}Mm=1 in a manner so that at any given m= 1, . . . ,M ,
we know the spectrum of the frame operator

ΦmΦ
∗
m =

m∑

m′=1

ϕm′ϕ
∗
m′ (2.9)

of the partial sequence Φm := {ϕm′ }mm′=1. However, unlike Spectral Tetris, this
method will not require the eigenbasis of (2.9) to be the standard basis for all m.
Indeed, the opposite is true: this method requires this eigenbasis to evolve with m.

The key idea is to realize from (2.9) that Φ∗m+1Φm+1 = Φ∗mΦm + ϕ∗m+1ϕm+1.
From this perspective, Problem 2.1 comes down to understanding how the spectrum
of a given positive semidefinite operator Φ∗mΦm is affected by the addition of a
scaled rank-one projection operator ϕ∗m+1ϕm+1 of trace μm+1. Such problems have
been studied classically, and involve a concept called eigenvalue interlacing.

To be precise, a nonnegative nonincreasing sequence {γn}Nn=1 interlaces on an-
other such sequence {βn}Nn=1, denoted {βn}Nn=1 � {γn}Nn=1, provided that

βN ≤ γN ≤ βN−1 ≤ γN−1 ≤ · · · ≤ β2 ≤ γ2 ≤ β1 ≤ γ1. (2.10)
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The classical theory of eigenvalue interlacing [25] tells us that letting {λm;n}Nn=1
denote the spectrum of (2.9), we necessarily have that {λm;n}Nn=1 � {λm+1;n}Nn=1.
Moreover, if ‖ϕm‖2 = μm for all m= 1, . . . ,M , then for any such m,

N∑

n=1

λm;n = Tr
(
ΦmΦ

∗
m

)= Tr
(
Φ∗mΦm

)=
m∑

m′=1

‖ϕm′‖2 =
m∑

m′=1

μm′ . (2.11)

In [19], interlacing spectra that satisfy (2.11) are called a sequence of outer eigen-
steps.

Definition 2.2 Let {λn}Nn=1 and {μm}Mm=1 be nonnegative nonincreasing sequences.
A corresponding sequence of outer eigensteps is a sequence {{λm;n}Nn=1}Mm=0 which
satisfies the following four properties:

(i) λ0;n = 0 for every n= 1, . . . ,N ,
(ii) λM;n = λn for every n= 1, . . . ,N ,

(iii) {λm−1;n}Nn=1 � {λm;n}Nn=1 for every m= 1, . . . ,M ,

(iv)
∑N

n=1 λm;n =∑m
n=1 μn for every m= 1, . . . ,M .

As we have just discussed, every sequence of vectors whose frame operator has
the spectrum {λn}Nn=1 and whose vectors have squared lengths {μm}Mm=1 generates
a sequence of outer eigensteps. By the following theorem, the converse is also true.
Specifically, Theorem 2.2 characterizes and proves the existence of sequences of
vectors that generate a given sequence of outer eigensteps. We will see that once
the outer eigensteps have been chosen, there is little freedom in picking the frame
vectors themselves. That is, modulo rotations, the outer eigensteps are the free pa-
rameters when designing a frame whose frame operator has a given spectrum and
whose vectors have given lengths.

Theorem 2.2 For any nonnegative nonincreasing sequences {λn}Nn=1 and {μm}Mm=1,
every sequence of vectors Φ = {ϕm}Mm=1 in C

N whose frame operator ΦΦ∗ has
spectrum {λn}Nn=1 and which satisfies ‖ϕm‖2 = μm for all m can be constructed by
the following process:

Step A. Pick outer eigensteps {{λm;n}Nn=1}Mm=0 as in Definition 2.2.
Step B. For each m= 1, . . . ,M , consider the polynomial

pm(x) :=
N∏

n=1

(x − λm;n). (2.12)

Take any ϕ1 ∈C
N such that ‖ϕ1‖2 = μ1. For each m= 1, . . . ,M − 1, choose any

ϕm+1 such that

‖Pm;λϕm+1‖2 =− lim
x→λ

(x − λ)
pm+1(x)

pm(x)
(2.13)
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for all λ ∈ {λm;n}Nn=1, where Pm;λ denotes the orthogonal projection operator onto
the eigenspace N(λId − ΦmΦ

∗
m) of the frame operator ΦmΦ

∗
m of the partial se-

quence Φm = {ϕm′ }mm′=1. The limit in (2.13) exists and is nonpositive.

Conversely, any Φ constructed by this process has {λn}Nn=1 as the spectrum of ΦΦ∗
and ‖ϕm‖2 = μm for all m. Moreover, for any Φ constructed in this manner, the
spectrum of ΦmΦ

∗
m is {λm;n}Nn=1 for all m= 1, . . . ,M .

In order to prove Theorem 2.2, we first obtain some supporting results. In par-
ticular, the next result gives conditions that a vector must satisfy in order for it to
perturb the spectrum of a given frame operator in a desired way, and was inspired
by the proof of the Matrix Determinant Lemma and its application in [2].

Theorem 2.3 Let Φm = {ϕm′ }mm′=1 be an arbitrary sequence of vectors in C
N and

let {λm;n}Nn=1 denote the eigenvalues of the corresponding frame operator ΦmΦ
∗
m.

For any choice of ϕm+1 in C
N , let Φm+1 = {ϕm′ }m+1

m′=1. Then for any λ ∈ {λm;n}Nn=1,
the norm of the projection of ϕm+1 onto the eigenspace N(λId−ΦmΦ

∗
m) is given by

‖Pm;λϕm+1‖2 =− lim
x→λ

(x − λ)
pm+1(x)

pm(x)
,

where pm(x) and pm+1(x) denote the characteristic polynomials of ΦmΦ
∗
m and

Φm+1Φ
∗
m+1, respectively.

Proof For notational simplicity, we let Φ :=Φm, ϕ := ϕm+1 and so Φm+1Φ
∗
m+1 =

ΦΦ∗ + ϕϕ∗. Suppose x is not an eigenvalue of Φm+1Φ
∗
m+1. Then:

pm+1(x)= det
(
xId−ΦΦ∗ − ϕϕ∗

)

= det
(
xId−ΦΦ∗

)
det
(
Id− (xId−ΦΦ∗

)−1
ϕϕ∗

)

= pm(x)det
(
Id− (xId−ΦΦ∗

)−1
ϕϕ∗

)
. (2.14)

We can simplify the determinant of Id − (xId − ΦΦ∗)−1ϕϕ∗ by multiplying by
certain matrices with unit determinant:

det
(
Id− (xId−ΦΦ∗

)−1
ϕϕ∗

)

= det

([
Id 0
ϕ∗ 1

][
Id− (xId−ΦΦ∗)−1ϕϕ∗ −(xId−ΦΦ∗)−1ϕ

0 1

]

×
[

Id 0
−ϕ∗ 1

])

= det

([
Id 0
ϕ∗ 1

][
Id −(xId−ΦΦ∗)−1ϕ

−ϕ∗ 1

])
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= det

([
Id −(xId−ΦΦ∗)−1ϕ

0 1− ϕ∗(xId−ΦΦ∗)−1ϕ

])

= 1− ϕ∗
(
xId−ΦΦ∗

)−1
ϕ. (2.15)

We now use (2.14) and (2.15) with the spectral decomposition ΦΦ∗ =∑N
n=1 λm;nunu

∗
n:

pm+1(x)= pm(x)
(
1− ϕ∗

(
xId−ΦΦ∗

)−1
ϕ
)= pm(x)

(

1−
N∑

n=1

|〈ϕ,un〉|2
x − λm;n

)

.

(2.16)
Rearranging (2.16) and grouping the eigenvalues Λ= {λm;n}Nn=1 according to mul-
tiplicity then gives

pm+1(x)

pm(x)
= 1−

N∑

n=1

|〈ϕ,un〉|2
x − λm;n

= 1−
∑

λ′∈Λ

‖Pm;λ′ϕ‖2

x − λ′
, ∀x /∈Λ.

As such, for any λ ∈Λ,

lim
x→λ

(x − λ)
pm+1(x)

pm(x)
= lim

x→λ
(x − λ)

(
1−

∑

λ′∈Λ

‖Pm;λ′ϕ‖2

x − λ′

)

= lim
x→λ

[
(x − λ)− ‖Pm;λϕ‖2 −

∑

λ′ 
=λ

‖Pm;λ′ϕ‖2 x − λ

x − λ′

]

=−‖Pm;λϕ‖2,

yielding our claim. �

Though technical, the proofs of the next three lemmas are nonetheless elemen-
tary; the interested reader can find them in [5].

Lemma 2.1 Let {λn}Nn=1 and {μm}Mm=1 be nonnegative and nonincreasing, and let
{{λm;n}Nn=1}Mm=0 be any corresponding sequence of outer eigensteps as in Defini-
tion 2.2. If a sequence of vectors Φ = {ϕm}Mm=1 has the property that the spectrum
of the frame operator ΦmΦ

∗
m of Φm = {ϕm′ }mm′=1 is {λm;n}Nn=1 for all m= 1, . . . ,M ,

then the spectrum of ΦΦ∗ is {λn}Nn=1 and ‖ϕm‖2 = μm for all m= 1, . . . ,M .

Lemma 2.2 If {βn}Nn=1 and {γn}Nn=1 are nonincreasing, then {βn}Nn=1 � {γn}Nn=1 if
and only if

lim
x→βn

(x − βn)
q(x)

p(x)
≤ 0, ∀n= 1, . . . ,N,

where p(x)=∏N
n=1(x − βn) and q(x)=∏N

n=1(x − γn).
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Lemma 2.3 If {βn}Nn=1, {γn}Nn=1, and {δn}Nn=1 are nonincreasing and

lim
x→βn

(x − βn)
q(x)

p(x)
= lim

x→βn

(x − βn)
r(x)

p(x)
, ∀n= 1, . . . ,N,

where p(x) =∏N
n=1(x − βn), q(x) =∏N

n=1(x − γn), and r(x) =∏N
n=1(x − δn),

then q(x)= r(x).

The preceding results in hand, we turn to the main result of this section.

Proof of Theorem 2.2 (⇒) Let {λn}Nn=1 and {μm}Mm=1 be arbitrary nonnegative non-
increasing sequences, and let Φ = {ϕm}Mm=1 be any sequence of vectors such that
the spectrum of ΦΦ∗ is {λn}Nn=1 and ‖ϕm‖2 = μm for all m= 1, . . . ,M . We claim
that this particular Φ can be constructed by following Steps A and B.

In particular, consider the sequence {{λm;n}Nn=1}Mm=0 defined by letting {λm;n}Nn=1
be the spectrum of the frame operator ΦmΦ

∗
m of the sequence Φm = {ϕm′ }mm′=1 for

all m = 1, . . . ,M and letting λ0;n = 0 for all n. We claim that {{λm;n}Nn=1}Mm=0
satisfies Definition 2.2 and therefore is a valid sequence of eigensteps. Note that
conditions (i) and (ii) of Definition 2.2 are immediately satisfied. To see that
{{λm;n}Nn=1}Mm=0 satisfies (iii), consider the polynomials pm(x) defined by (2.12)
for all m= 1, . . . ,M . In the special case where m= 1, the desired property (iii) that
{0}Nn=1 � {λ1;n}Nn=1 follows from the fact that the spectrum {λ1;n}Nn=1 of the scaled
rank-one projection Φ1Φ

∗
1 = ϕ1ϕ

∗
1 is the value ‖ϕ1‖2 = μ1 along with N − 1 rep-

etitions of 0, the eigenspaces being the span of ϕ1 and its orthogonal complement,
respectively. Meanwhile, if m= 2, . . . ,M , Theorem 2.3 gives that

lim
x→λm−1;n

(x − λm−1;n)
pm(x)

pm−1(x)
=−‖Pm−1;λm−1;nϕm‖2 ≤ 0, ∀n= 1, . . . ,N,

implying by Lemma 2.2 that {λm−1;n}Nn=1 � {λm;n}Nn=1 as claimed. Finally, (iv)
holds, since for any m= 1, . . . ,M we have

N∑

n=1

λm;n = Tr
(
ΦmΦ

∗
m

)= Tr
(
Φ∗mΦm

)=
m∑

m′=1

‖ϕm′‖2 =
m∑

m′=1

μm′ .

Having shown that these particular values of {{λm;n}Nn=1}Mm=0 can indeed be cho-
sen in Step A, we next show that our particular Φ can be constructed accord-
ing to Step B. As the method of Step B is iterative, we use induction to prove
that it can yield Φ . Indeed, the only restriction that Step B places on ϕ1 is that
‖ϕ1‖2 = μ1, something our particular ϕ1 satisfies by assumption. Now assume that
for any m = 1, . . . ,M − 1 we have already correctly produced {ϕm′ }mm′=1 by fol-
lowing the method of Step B; we show that we can produce the correct ϕm+1 by
continuing to follow Step B. To be clear, each iteration of Step B does not pro-
duce a unique vector, but rather presents a family of ϕm+1’s to choose from, and we
show that our particular choice of ϕm+1 lies in this family. Specifically, our choice of
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ϕm+1 must satisfy (2.13) for any choice of λ ∈ {λm;n}Nn=1; the fact that it indeed does
so follows immediately from Theorem 2.3. To summarize, we have shown that, by
making appropriate choices, we can indeed produce our particular Φ by following
Steps A and B, concluding this direction of the proof.

(⇐) Now assume that a sequence of vectors Φ = {ϕm}Mm=1 has been produced
according to Steps A and B. To be precise, letting {{λm;n}Nn=1}Mm=0 be the sequence
of eigensteps chosen in Step A, we claim that any Φ = {ϕm}Mm=1 constructed ac-
cording to Step B has the property that the spectrum of the frame operator ΦmΦ

∗
m

of Φm = {ϕm′ }mm′=1 is {λm;n}Nn=1 for all m = 1, . . . ,M . Note that by Lemma 2.1,
proving this claim will yield our stated result that the spectrum of ΦΦ∗ is {λn}Nn=1
and that ‖ϕm‖2 = μm for all m = 1, . . . ,M . As the method of Step B is itera-
tive, we prove this claim by induction. Step B begins by taking any ϕ1 such that
‖ϕ1‖2 = μ1. As noted above in the proof of the other direction, the spectrum of
Φ1Φ

∗
1 = ϕ1ϕ

∗
1 is the value μ1 along with N − 1 repetitions of 0. As claimed, these

values match those of {λ1;n}Nn=1; to see this, note that Definition 2.2(i) and (iii) give
{0}Nn=1 = {λ0;n}Nn=1 � {λ1;n}Nn=1 and so λ1;n = 0 for all n= 2, . . . ,N , at which point
Definition 2.2(iv) implies λ1,1 = μ1.

Now assume that for any m= 1, . . . ,M − 1, the Step B process has already pro-
duced Φm = {ϕm′ }mm′=1 such that the spectrum of ΦmΦ

∗
m is {λm;n}Nn=1. We show

that following Step B yields a ϕm+1 such that Φm+1 = {ϕm′ }m+1
m′=1 has the property

that {λm+1;n}Nn=1 is the spectrum of Φm+1Φ
∗
m+1. To do this, consider the polynomi-

als pm(x) and pm+1(x) defined by (2.12) and pick any ϕm+1 that satisfies (2.13),
namely,

lim
x→λm;n

(x − λm;n)
pm+1(x)

pm(x)
=−‖Pm;λm;nϕm+1‖2, ∀n= 1, . . . ,N. (2.17)

Letting {λ̂m+1;n}Nn=1 denote the spectrum of Φm+1Φ
∗
m+1, our goal is to show that

{λ̂m+1;n}Nn=1 = {λm+1;n}Nn=1. Equivalently, our goal is to show that pm+1(x) =
p̂m+1(x), where p̂m+1(x) is the polynomial

p̂m+1(x) :=
N∏

n=1

(x − λ̂m+1;n).

Since pm(x) and p̂m+1(x) are the characteristic polynomials of ΦmΦ
∗
m and

Φm+1Φ
∗
m+1, respectively, Theorem 2.3 gives

lim
x→λm;n

(x − λm;n)
p̂m+1(x)

pm(x)
=−‖Pm;λm;nϕm+1‖2, ∀n= 1, . . . ,N. (2.18)

Comparing (2.17) and (2.18) gives

lim
x→λm;n

(x − λm;n)
pm+1(x)

pm(x)
= lim

x→λm;n
(x − λm;n)

p̂m+1(x)

pm(x)
, ∀n= 1, . . . ,N,

implying by Lemma 2.3 that pm+1(x)= p̂m+1(x), as desired. �
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2.4 Parametrizing Eigensteps

In light of Theorem 2.2, solving Problem 2.1 comes down to finding every valid
sequence of outer eigensteps {{λm;n}Nn=1}Mm=0, see Definition 2.2, for any given non-
negative nonincreasing sequences {λn}Nn=1 and {μm}Mm=1. In this section, we detail
the main results of [19], which give a systematic procedure for finding these eigen-
steps. We begin with an example from [5].

Example 2.2 We wish to parametrize all eigensteps for a particular case: UNTFs
consisting of 5 vectors in C

3. Here, λ1 = λ2 = λ3 = 5
3 and μ1 = μ2 = μ3 = μ4 =

μ5 = 1. In light of Step A of Theorem 2.2, we seek outer eigensteps consistent with
Definition 2.2; that is, we want to find all sequences {{λm;n}3n=1}4m=1 which satisfy
the interlacing conditions

{0}3n=1 � {λ1;n}3n=1 � {λ2;n}3n=1 � {λ3;n}3n=1 � {λ4;n}3n=1 �
{

5

3

}3

n=1
, (2.19)

as well as the trace conditions

3∑

n=1

λ1;n = 1,
3∑

n=1

λ2;n = 2,
3∑

n=1

λ3;n = 3,
3∑

n=1

λ4;n = 4. (2.20)

Let us write these desired spectra in a table:

m 0 1 2 3 4 5

λm;3 0 ? ? ? ? 5
3

λm;2 0 ? ? ? ? 5
3

λm;1 0 ? ? ? ? 5
3

In this table, the trace condition (2.20) means that the sum of the values in the
mth column is

∑m
n=1 μn = m, while the interlacing condition (2.19) means that

any value λm;n is at least the neighbor to the upper right λm+1;n+1 and no more
than its neighbor to the right λm+1;n. In particular, for m = 1, we have 0 =
λ0;2 ≤ λ1;2 ≤ λ0;1 = 0 and 0 = λ0;3 ≤ λ1;3 ≤ λ0;2 = 0, implying λ1;2 = λ1;3 = 0.
Similarly, for m = 4, interlacing requires that 5

3 = λ5;2 ≤ λ4;1 ≤ λ5;1 = 5
3 and

5
3 = λ5;3 ≤ λ4;2 ≤ λ5;2 = 5

3 , implying λ4;1 = λ4;2 = 5
3 . Applying this same idea

again for m = 2 and m = 3 gives λ2;3 = 0 and λ3;1 = 5
3 . That is, we necessarily

have
m 0 1 2 3 4 5

λm;3 0 0 0 ? ? 5
3

λm;2 0 0 ? ? 5
3

5
3

λm;1 0 ? ? 5
3

5
3

5
3

Moreover, the trace condition (2.20) at m = 1 gives 1 = λ1;1 + λ1;2 + λ1;3 =
λ1;1+ 0+ 0, and so λ1;1 = 1. Similarly, at m= 4 we have 4= λ4;1+ λ4;2+ λ4;3 =
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5
3 + 5

3 + λ4;3, and so λ4;3 = 2
3 :

m 0 1 2 3 4 5

λm;3 0 0 0 ? 2
3

5
3

λm;2 0 0 ? ? 5
3

5
3

λm;1 0 1 ? 5
3

5
3

5
3

The remaining entries are not fixed. In particular, we let λ3;3 be some variable x

and note that by the trace condition, 3= λ3;1 + λ3;2 + λ3;3 = x + λ3;2 + 5
3 and so

λ3;2 = 4
3 − x. Similarly, letting λ2;2 = y gives λ2;1 = 2− y:

m 0 1 2 3 4 5

λm;3 0 0 0 x 2
3

5
3

λm;2 0 0 y 4
3 − x 5

3
5
3

λm;1 0 1 2− y 5
3

5
3

5
3

(2.21)

We take care to note that x and y in (2.21) are not arbitrary, but instead must be
chosen so that the requisite interlacing relations are satisfied:

{λ3;n}3n=1 � {λ4;n}3n=1 ⇐⇒ x ≤ 2

3
≤ 4

3
− x ≤ 5

3
,

{λ2;n}3n=1 � {λ3;n}3n=1 ⇐⇒ 0≤ x ≤ y ≤ 4

3
− x ≤ 2− y ≤ 5

3
, (2.22)

{λ1;n}3n=1 � {λ2;n}3n=1 ⇐⇒ 0≤ y ≤ 1≤ 2− y.

By plotting each of the 11 inequalities of (2.22) as a half-plane (Fig. 2.2(a)), we ob-
tain a convex pentagon (Fig. 2.2(b)) of all (x, y) such that (2.21) is a valid sequence
of eigensteps. This example highlights the key obstacle in using Theorem 2.2 to
solve Problem 2.1: finding all valid sequences of eigensteps (2.21) often requires
reducing a large system of linear inequalities (2.22). We now consider a result which
provides a method for finding all solutions to these systems.

Theorem 2.4 Let {λn}Nn=1 and {μm}Mm=1 be nonnegative and nonincreasing where
N ≤M . There exists a sequence of vectors Φ = {ϕm}Mm=1 in C

N whose frame oper-
ator ΦΦ∗ has spectrum {λn}Nn=1 and for which ‖ϕm‖2 = μm for all m if and only
if {λn}Nn=1 ∪ {0}Mn=N+1 � {μm}Mm=1. Moreover, if {λn}Nn=1 ∪ {0}Mn=N+1 � {μm}Mm=1,
then every such Φ can be constructed by the following process:

Step A: Let {λM;n}Nn=1 := {λn}Nn=1.
For m=M, . . . ,2, construct {λm−1;n}Nn=1 in terms of {λm;n}Nn=1 as follows:
For each k =N, . . . ,1, if k >m− 1, take λm−1;k := 0.
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Fig. 2.2 Pairs of parameters (x, y) that generate a valid sequence of eigensteps when substituted
into (2.21). To be precise, in order to satisfy the interlacing requirements of Definition 2.2, x and
y must be chosen so as to satisfy the 11 pairwise inequalities summarized in (2.22). Each of these
inequalities corresponds to a half-plane (a), and the set of pairs (x, y) that satisfy all of them is
given by their intersection (b). By Theorem 2.2, any corresponding sequence of eigensteps (2.21)
generates a 3× 5 UNTF and, conversely, every 3× 5 UNTF is generated in this way. As such, x
and y may be viewed as the two essential parameters in the set of all such frames

Otherwise, pick any λm−1;k ∈ [Am−1;k,Bm−1;k], where:

Am−1;k :=max

{

λm;k+1,

N∑

n=k

λm;n −
N∑

n=k+1

λm−1;n −μm

}

,

Bm−1;k :=min

{

λm;k, min
l=1,...,k

{
m−1∑

n=l

μn −
k∑

n=l+1

λm;n −
N∑

n=k+1

λm−1;n

}}

.

Here, by convention, λm;N+1 := 0 and sums over empty sets of indices are zero.
Step B: Follow Step B of Theorem 2.2.

Conversely, any Φ constructed by this process has {λn}Nn=1 as the spectrum of ΦΦ∗
and ‖ϕm‖2 = μm for all m, and moreover, ΦmΦ

∗
m has spectrum {λm;n}Nn=1.

It turns out that the method of Theorem 2.4 is more easily understood in terms
of an alternative but equivalent notion of eigensteps. To be clear, for any given se-
quence of outer eigensteps {{λm;n}Nn=1}Mm=0, recall from Theorem 2.2 that for any
m = 1, . . . ,M , the sequence {λm;n}Nn=1 is the spectrum of the N × N frame oper-
ator ΦmΦ

∗
m of the mth partial sequence Φm = {ϕm′ }mm′=1. In the following theory,

it is more convenient to instead work with the spectrum {λm;m′ }mm′=1 of the cor-
responding m×m Gram matrix Φ∗mΦm; we use the same notation for both spectra
since {λm;m′ }mm′=1 is a zero-padded version of {λm;n}Nn=1 or vice versa, depending on
whether m>N or m≤N . We refer to the values {{λm;m′ }mm′=1}Mm=1 as a sequence
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of inner eigensteps since they arise from matrices of inner products of the ϕm’s,
whereas the outer eigensteps {{λm;n}Nn=1}Mm=0 arise from sums of outer products of
the ϕm’s; see Theorem 2.5 below. The following definition makes this precise.

Definition 2.3 Let {λm}Mm=1 and {μm}Mm=1 be nonnegative nonincreasing sequences.
A corresponding sequence of inner eigensteps is a sequence {{λm;m′ }mm′=1}Mm=1
which satisfies the following three properties:

(i) λM;m′ = λm′ for every m′ = 1, . . . ,M ,
(ii) {λm−1;m′ }m−1

m′=1 � {λm;m′ }mm′=1 for every m= 2, . . . ,M ,
(iii)

∑m
m′=1 λm;m′ =∑m

m′=1 μm′ for every m= 1, . . . ,M .

To clarify, unlike the outer eigensteps of Definition 2.2, the interlacing relation
(ii) here involves two sequences of different length; we write {αm′ }m−1

m′=1 � {βm′ }mm′=1
if βm′+1 ≤ αm′ ≤ βm′ for all m′ = 1, . . . ,m − 1. As the next example illustrates,
inner and outer eigensteps can be put into correspondence with each other.

Example 2.3 We revisit Example 2.2. Here, we pad {λn}3n=1 with two zeros so
as to match the length of {μm}5m=1. That is, λ1 = λ2 = λ3 = 5

3 , λ4 = λ5 = 0,
and μ1 = μ2 = μ3 = μ4 = μ5 = 1. We find every sequence of inner eigensteps
{{λm;m′ }mm′=1}5m=1, namely every table of the following form:

m 1 2 3 4 5

λm;5 0

λm;4 ? 0

λm;3 ? ? 5
3

λm;2 ? ? ? 5
3

λm;1 ? ? ? ? 5
3

(2.23)

that satisfies the interlacing properties (ii) and trace conditions (iii) of Definition 2.3.
To be precise, (ii) gives us 0 = λ5;5 ≤ λ4;4 ≤ λ5;4 = 0 and so λ4;4 = 0. Similarly,
5
3 ≤ λ5;3 ≤ λ4;2 ≤ λ3;1 ≤ λ4;1 ≤ λ5;1 = 5

3 and so λ4;2 = λ3;1 = λ4;1 = 5
3 , yielding

m 1 2 3 4 5

λm;5 0

λm;4 0 0

λm;3 ? ? 5
3

λm;2 ? ? 5
3

5
3

λm;1 ? ? 5
3

5
3

5
3

(2.24)
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Meanwhile, since μm′ = 1 for all m′, the trace conditions (iii) give that the values
in the mth column of (2.24) sum to m. Thus, λ1;1 = 1 and λ4;3 = 2

3 :

m 1 2 3 4 5

λm;5 0

λm;4 0 0

λm;3 ? 2
3

5
3

λm;2 ? ? 5
3

5
3

λm;1 1 ? 5
3

5
3

5
3

Labeling λ3;3 as x and λ2;2 as y, (iii) uniquely determines λ3;2 and λ2;1:

m 1 2 3 4 5

λm;5 0

λm;4 0 0

λm;3 x 2
3

5
3

λm;2 y 4
3 − x 5

3
5
3

λm;1 1 2− y 5
3

5
3

5
3

(2.25)

For our particular choice of {λm}5m=1 and {μm}5m=1, the preceding argument shows
that every corresponding sequence of inner eigensteps is of the form (2.25). Con-
versely, one may immediately verify that any {{λm;m′ }mm′=1}5m=1 of this form satis-
fies (i) and (iii) of Definition 2.3 and moreover satisfies (ii) when m= 5. However,
in order to satisfy (ii) for m = 2,3,4, x and y must be chosen to satisfy the ten
inequalities:

{λ3;m′ }3m′=1 � {λ4;m′ }4m′=1 ⇐⇒ 0≤ x ≤ 2

3
≤ 4

3
− x ≤ 5

3
,

{λ2;m′ }2m′=1 � {λ3;m′ }3m′=1 ⇐⇒ x ≤ y ≤ 4

3
− x ≤ 2− y ≤ 5

3
, (2.26)

{λ1;m′ }1m′=1 � {λ2;m′ }2m′=1 ⇐⇒ y ≤ 1≤ 2− y.

A quick inspection reveals the system (2.26) to be equivalent to the one derived
in the outer eigenstep formulation (2.22) presented in Example 2.2, which is re-
ducible to 0 ≤ x ≤ 2

3 , max{ 1
3 , x} ≤ y ≤ min{ 2

3 + x, 4
3 − x}. Moreover, we see that

the outer eigensteps (2.21) that arise from {λ1, λ2, λ3} = { 5
3 ,

5
3 ,

5
3 } and the inner

eigensteps (2.25) that arise from {λ1, λ2, λ3, λ4, λ5} = { 5
3 ,

5
3 ,

5
3 ,0,0} are but zero-

padded versions of each other. The next result, proven in [18], gives that such a
result holds in general.

Theorem 2.5 Let {λm}Mm=1 and {μm}Mm=1 be nonnegative and nonincreasing, and
choose any N ≤M such that λm = 0 for every m>N . Then every choice of outer
eigensteps (Definition 2.2) corresponds to a unique choice of inner eigensteps (Def-
inition 2.3) and vice versa, the two being zero-padded versions of each other.
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Specifically, a sequence of outer eigensteps {{λm;n}Nn=1}Mm=0 gives rise to a se-
quence of inner eigensteps {{λm;m′ }mm′=1}Mm=1, where λm;m′ := 0 whenever m′ >N .
Conversely, a sequence of inner eigensteps {{λm;m′ }mm′=1}Mm=1 gives rise to a se-
quence of outer eigensteps {{λm;n}Nn=1}Mm=0, where λm;n := 0 whenever n >m.

Moreover, {λm;n}Nn=1 is the spectrum of the frame operator ΦmΦ
∗
m if and only if

{λm;m′ }mm′=1 is the spectrum of the Gram matrix Φ∗mΦm.

2.4.1 Top Kill and the Existence of Eigensteps

As discussed earlier in this section, Theorem 2.2 reduces Problem 2.1 to a prob-
lem of constructing every possible sequence of outer eigensteps (Definition 2.2).
Moreover, by Theorem 2.5, every sequence of outer eigensteps corresponds to a
unique sequence of inner eigensteps (Definition 2.3). We now note that if a se-
quence of inner eigensteps {{λm;m′ }mm′=1}Mm=1 exists, then {λm}Mm=1 necessarily ma-
jorizes {μm}Mm=1. Indeed, letting m=M in the trace property (iii) of Definition 2.3
immediately gives one of the majorization conditions (2.4); to obtain the remaining
condition (2.3) at a given m= 1, . . . ,M − 1, note that the interlacing property (ii)
gives λm;m′ ≤ λM;m′ = λm′ for all m′ = 1, . . . ,m, at which point (iii) implies that

m∑

m′=1

μm′ =
m∑

m′=1

λm;m′ ≤
m∑

m′=1

λm′ .

In this section, we prove the converse result, namely that if {λm}Mm=1 � {μm}Mm=1,
then a corresponding sequence of inner eigensteps {{λm;m′ }mm′=1}Mm=1 exists. The key
idea is an algorithm, dubbed Top Kill, for transforming any sequence {λm;m′ }mm′=1
that majorizes {μm′ }mm′=1 into a new, shorter sequence {λm;m′ }m−1

m′=1 that majorizes

{μm′ }m−1
m′=1 and also interlaces with {λm;m′ }mm′=1. In the next section, these new proof

techniques lead to a result which shows how to systematically construct every valid
sequence of inner eigensteps for a given {λm}Mm=1 and {μm}Mm=1. We now motivate
Top Kill with an example.

Example 2.4 Let M = 3, {λ1, λ2, λ3} = { 7
4 ,

3
4 ,

1
2 }, and {μ1,μ2,μ3} = {1,1,1}.

Since this spectrum majorizes these lengths, we claim that there exists a correspond-
ing sequence of inner eigensteps {{λm;m′ }mm′=1}3m=1. That is, recalling Definition 2.3,
we claim that it is possible to find values {λ1;1} and {λ2;1, λ2,2} which satisfy the in-
terlacing requirements (ii) that {λ1;1} � {λ2;1, λ2,2} � { 7

4 ,
3
4 ,

1
2 } as well as the trace

requirements (iii) that λ1;1 = 1 and λ2;1+ λ2;2 = 2. Indeed, every such sequence of
eigensteps is given by the following table:

m 1 2 3

λm;3 1
2

λm;2 x 3
4

λm;1 1 2− x 7
4

(2.27)
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where x is required to satisfy

1

2
≤ x ≤ 3

4
≤ 2− x ≤ 7

4
, x ≤ 1≤ 2− x. (2.28)

Clearly, any x ∈ [ 1
2 ,

3
4 ] will do. However, when M is large, the table analogous

to (2.27) will contain many more variables, leading to a system of inequalities which
is much larger and more complicated than (2.28). In such settings, it is not obvious
how to construct even a single valid sequence of eigensteps. As such, we consider
this same simple example from a different perspective, one that leads to an eigenstep
construction algorithm which is easily implementable regardless of the size of M .

The key idea is to view the task of constructing eigensteps as iteratively building
a staircase in which the mth level is λm units long. For this example in particular, our
goal is to build a three-step staircase where the bottom level has length 7

4 , the sec-
ond level has length 3

4 , and the top level has length 1
2 ; the profile of such a staircase

is outlined in black in each of the six subfigures of Fig. 2.3. The benefit of visu-
alizing eigensteps in this way is that the interlacing and trace conditions become
intuitive staircase-building rules. Specifically, up until the mth step, we will have
built a staircase whose levels are of length {λm−1;m′ }m−1

m′=1. To build on top of this
staircase, we use m blocks of height 1 whose areas sum to μm. Each of these m new
blocks is added to its corresponding level of the current staircase, and is required
to rest entirely on top of what has been previously built. This requirement corre-
sponds to the interlacing condition (ii) of Definition 2.3, while the trace condition
(iii) corresponds to the fact that the areas of these blocks sum to μm.

This intuition in mind, we now try to build such a staircase from the ground up.
In the first step (Fig. 2.3(a)), we are required to place a single block of area μ1 = 1
on the first level. The length of this first level is λ1;1 = μ1. In the second step, we
build up and out from this initial block, placing two new blocks—one on the first
level and another on the second—whose total area is μ2 = 1. The lengths λ2;1 and
λ2;2 of the new first and second levels depend on how these two blocks are chosen.
In particular, choosing first and second level blocks of area 3

4 and 1
4 , respectively, re-

sults in {λ2;1, λ2;2} = { 7
4 ,

1
4 } (Fig. 2.3(b)), which corresponds to a greedy pursuit of

the final desired spectrum { 7
4 ,

3
4 ,

1
2 }; we fully complete the first level before turning

our attention to the second. The problem with this greedy approach is that it doesn’t
always work, as this example illustrates. Indeed, in the third and final step, we build
up and out from the staircase of Fig. 2.3(b) by adding three new blocks—one each
for the first, second, and third levels—whose total area is μ3 = 1. However, in order
to maintain interlacing, the new top block must rest entirely on the existing second
level, meaning that its length λ3;3 ≤ λ2;2 = 1

4 cannot equal the desired value of 1
2 .

That is, because of our poor choice in the second step, the “best” we can now do is
{λ3;1, λ3;2, λ3;3} = { 7

4 ,1, 1
4 } (Fig. 2.3(c)):

m 1 2 3

λm;3 1
4

λm;2 1
4 1

λm;1 1 7
4

7
4
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Fig. 2.3 Two attempts at iteratively building a sequence of inner eigensteps for
{λ1, λ2, λ3} = { 7

4 ,
3
4 ,

1
2 } and {μ1,μ2,μ3} = {1,1,1}. As detailed in Example 2.4, the first

row represents a failed attempt in which we greedily complete the first level before focusing
on those above it. The failure arises from a lack of foresight: the second step does not build
a sufficient foundation for the third. The second row represents a second attempt, one that is
successful. There, we begin with the final desired staircase and work backward. That is, we chip
away at the three-level staircase (d) to produce a two-level one (e), and then chip away at it to
produce a one-level one (f). In each step, we remove as much as possible from the top level before
turning our attention to the lower levels, subject to the interlacing constraints. We refer to this
algorithm for iteratively producing {λm−1;m′ }m−1

m′=1 from {λm;m′ }mm′=1 as Top Kill. Theorem 2.6
shows that Top Kill will always produce a valid sequence of eigensteps from any desired spectrum
{λm}Mm=1 that majorizes a given desired sequence of lengths {μm}Mm=1
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This greedy approach fails because it doesn’t plan ahead. Indeed, it treats the bottom
levels of the staircase as the priority when, in fact, the opposite is true: the top
levels are the priority, since they require the most foresight. In particular, for λ3;3 to
achieve its desired value of 1

2 in the third step, one must lay a suitable foundation in
which λ2;2 ≥ 1

2 in the second step.
In light of this realization, we make another attempt at building our staircase.

This time we begin with the final desired spectrum {λ3;1, λ3;2, λ3;3} = { 7
4 ,

3
4 ,

1
2 }

(Fig. 2.3(d)) and work backward. From this perspective, our task is now to remove
three blocks—the entirety of the top level, and portions of the first and second
levels—whose total area is μ3 = 1. Here, the interlacing requirement translates to
only being permitted to remove portions of the staircase that were already exposed
to the surface at the end of the previous step. After lopping off the top level, which
has area λ3;3 = 1

2 , we need to decide how to chip away μ1−λ3;3 = 1− 1
2 = 1

2 units
of area from the first and second levels, subject to this constraint. At this point, we
observe that, in the step that follows, our first task will be to remove the remaining
portion of the second level. As such, it is to our advantage to remove as much of
the second level as possible in the current step, and only then to turn our attention
to the lower levels. That is, we follow Thomas Jefferson’s adage, “Never put off
until tomorrow what you can do today.” We call this approach Top Kill, since it
“kills” off as much as possible from the top portions of the staircase. For this ex-
ample in particular, interlacing implies that we can at most remove a block of area
1
4 from the second level, leaving 1

4 units of area to be removed from the first; the
resulting two-level staircase—the darker shade in Fig. 2.3(e)—has levels of lengths
{λ2;1, λ2;2} = { 3

2 ,
1
2 }. In the second step, we then apply this same philosophy, re-

moving the entire second level and a block of area μ2 − λ2;2 = 1− 1
2 = 1

2 from the
first, resulting in the one-level staircase (Fig. 2.3(f)) in which {λ1;1} = 1. That is, by
working backward we have produced a valid sequence of eigensteps:

m 1 2 3

λm;3 1
4

λm;2 1
2 1

λm;1 1 3
2

7
4

The preceding example illustrated a systematic “Top Kill” approach for building
eigensteps; we now express these ideas more rigorously. As can be seen in the bot-
tom row of Fig. 2.3, Top Kill generally picks λm−1;m′ := λm;m′+1 for the larger m′’s.
Top Kill also picks λm−1;m′ := λm;m′ for the smaller m′’s. The level that separates
the larger m′’s from the smaller m′’s is the lowest level from which a nontrivial area
is removed. For this level, say level k, we have λm;k+1 < μm ≤ λm;k . In the levels
above k, we have already removed a total of λm;k+1 units of area, leaving μm −
λm;k+1 to be chipped away from λm;k , yielding λm−1;k := λm;k − (μm − λm;k+1).
The next result confirms that Top Kill always produces eigensteps whenever it is
possible to do so.
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Theorem 2.6 Suppose {λm;m′ }mm′=1 � {μm′ }mm′=1, and define {λm−1;m′ }m−1
m′=1 ac-

cording to Top Kill; that is, pick any k such that λm;k+1 ≤ μm ≤ λm;k , and for each
m′ = 1, . . . ,m− 1, define:

λm−1;m′ :=
⎧
⎨

⎩

λm;m′, 1≤m′ ≤ k − 1,
λm;k + λm;k+1 −μm, m′ = k,

λm;m′+1, k + 1≤m′ ≤m− 1.
(2.29)

Then {λm−1;m′ }m−1
m′=1 � {λm;m′ }mm′=1 and {λm−1;m′ }m−1

m′=1 � {μm′ }m−1
m′=1.

Furthermore, given nonnegative nonincreasing sequences {λm}Mm=1 and {μm}Mm=1
such that {λm}Mm=1 � {μm}Mm=1, define λM;m′ := λm′ for every m′ = 1, . . . ,M , and

for each m =M, . . . ,2, consecutively define {λm−1;m′ }m−1
m′=1 according to Top Kill.

Then {{λm;m′ }mm′=1}Mm=1 is a valid sequence of inner eigensteps.

Proof For notational simplicity, we denote {αm′ }m−1
m′=1 := {λm−1;m′ }m−1

m′=1 and
{βm′ }mm′=1 := {λm;m′ }mm′=1. Since {βm′ }mm′=1 � {μm′ }mm′=1, we necessarily have that
βm ≤ μm ≤ μ1 ≤ β1, and so there exists k = 1, . . . ,m − 1 such that βk+1 ≤
μm ≤ βk . Though this k may not be unique when subsequent βm′ ’s are equal, a
quick inspection reveals that any appropriate choice of k will yield the same αm′ ’s,
and so Top Kill is well defined. To prove {αm′ }m−1

m′=1 � {βm′ }mm′=1, we need to show
that

βm′+1 ≤ αm′ ≤ βm′ (2.30)

for every m′ = 1, . . . ,m− 1. If 1 ≤m′ ≤ k − 1, then αm′ := βm′ , and so the right-
hand inequality of (2.30) holds with equality, at which point the left-hand inequality
is immediate. Similarly, if k + 1 ≤ m′ ≤ m − 1, then αm′ := βm′+1, and so (2.30)
holds with equality on the left-hand side. Lastly if m′ = k, then αk := βk + βk+1 −
μm, and our assumption that βk+1 ≤ μm ≤ βk gives (2.30) in this case:

βk+1 ≤ βk + βk+1 −μm ≤ βk.

Thus, {αm′ }m−1
m′=1 � {βm′ }mm′=1, as claimed. We next show that {αm′ }m−1

m′=1 �
{μm′ }m−1

m′=1. If j ≤ k − 1, then since {βm′ }mm′=1 � {μm′ }mm′=1, we have

j∑

m′=1

αm′ =
j∑

m′=1

βm′ ≥
j∑

m′=1

μm′,

as needed. On the other hand, if j ≥ k, we have

j∑

m′=1

αm′ =
k−1∑

m′=1

βm′ + (βk +βk+1−μm)+
j∑

m′=k+1

βm′+1 =
j+1∑

m′=1

βm′ −μm, (2.31)
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with the understanding that a sum over an empty set of indices is zero. We continue
(2.31) by using the facts that {βm′ }mm′=1 � {μm′ }mm′=1 and μj+1 ≥ μm:

j∑

m′=1

αm′ =
j+1∑

m′=1

βm′ −μm ≥
j+1∑

m′=1

μm′ −μm ≥
j∑

m′=1

μm′ . (2.32)

Note that when j =m, the inequalities in (2.32) become equalities, giving the final
trace condition.

For the final conclusion, note that one application of Top Kill transforms a se-
quence {λm;m′ }mm′=1 that majorizes {μm′ }mm′=1 into a shorter sequence {λm−1;m′ }m−1

m′=1
that interlaces with {λm;m′ }mm′=1 and majorizes {μm′ }m−1

m′=1. As such, one may indeed
start with λM;m′ := λm′ and apply Top Kill M − 1 times to produce a sequence
{{λm;m′ }mm′=1}Mm=1 that immediately satisfies Definition 2.3. �

2.4.2 Parametrizing Inner Eigensteps

In the previous subsection, we discussed Top Kill, an algorithm designed to con-
struct a sequence of inner eigensteps from given nonnegative nonincreasing se-
quences {λm}Mm=1 and {μm}Mm=1. In this subsection, we use the intuition underly-
ing Top Kill to find a systematic method for producing all such eigensteps. To be
precise, treating the values {{λm;m′ }mm′=1}M−1

m=1 as independent variables, it is not dif-
ficult to show that the set of all inner eigensteps for a given {λm}Mm=1 and {μm}Mm=1
form a convex polytope in R

M(M−1)/2. Our goal is to find a useful, implementable
parametrization of this polytope.

We begin by noting that this polytope is nonempty precisely when {λm}Mm=1 ma-
jorizes {μm}Mm=1. Indeed, as noted at the beginning of the previous section, if such
a sequence of eigensteps exists, then we necessarily have that {λm}Mm=1 � {μm}Mm=1.
Conversely, if {λm}Mm=1 � {μm}Mm=1, then Theorem 2.6 states that Top Kill will pro-
duce a valid sequence of eigensteps from {λm}Mm=1 and {μm}Mm=1. Note that this
implies that, for a given {λm}Mm=1 and {μm}Mm=1, if any given strategy for building
eigensteps is successful, then Top Kill will also succeed. In this sense, Top Kill
is an optimal strategy. However, Top Kill alone will not suffice to parametrize our
polytope, since for a given feasible {λm}Mm=1 and {μm}Mm=1, it only produces a sin-
gle sequence of eigensteps when, in fact, there are in general infinitely many such
sequences. In the work that follows, we view these non-Top-Kill-produced eigen-
steps as the result of applying suboptimal generalizations of Top Kill to {λm}Mm=1
and {μm}Mm=1.

For example, if {λ1, λ2, λ3, λ4, λ5} = { 5
3 ,

5
3 ,

5
3 ,0,0} and μm = 1 for all m =

1, . . . ,5, every sequence of inner eigensteps corresponds to a choice of the unknown
values in (2.23) which satisfies the interlacing and trace conditions (ii) and (iii) of
Definition 2.3. There are 10 unknowns in (2.23), and the set of all such eigensteps is
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a convex polytope in R
10. Although this dimension can be reduced by exploiting the

interlacing and trace conditions—the 10 unknowns in (2.23) can be reduced to the
two unknowns in (2.25)—this approach to constructing all eigensteps nevertheless
requires one to simplify large systems of coupled inequalities, such as (2.26).

We suggest a different method for parametrizing this polytope: to systematically
pick the values {{λm;m′ }mm′=1}4m=1 one at a time. Top Kill is one way to do this: work-
ing from the top levels down, we chip away μ5 = 1 units of area from {λ5;m′ }5m′=1
to successively produce λ4;4 = 0, λ4;3 = 2

3 , λ4;2 = 5
3 , and λ4;1 = 5

3 . We then repeat
this process to transform {λ4;m′ }4m′=1 into {λ3;m′ }3m′=1, and so on; the specific values
can be obtained by letting (x, y)= (0, 1

3 ) in (2.25). We seek to generalize Top Kill
to find all ways of picking the λm;m′ ’s one at a time. As in Top Kill, we work back-
ward: we first find all possibilities for λ4;4, then the possibilities for λ4;3 in terms
of our choice of λ4;4, then the possibilities for λ4;2 in terms of our choices of λ4;4
and λ4;3, and so on. That is, we iteratively parametrize our polytope in the following
order:

λ4;4, λ4;3, λ4;2, λ4;1, λ3;3, λ3;2, λ3;1, λ2;2, λ2;1, λ1;1.

More generally, for any {λm}Mm=1 and {μm}Mm=1 such that {λm}Mm=1 � {μm}Mm=1
we construct every possible sequence of eigensteps {{λm;m′ }mm′=1}Mm=1 by finding all
possibilities for any given λm−1;k in terms of λm′′;m′ , where either m′′ > m− 1 or
m′′ = m − 1 and m′ > k. Certainly, any permissible choice for λm−1;k must sat-
isfy the interlacing criteria (ii) of Definition 2.3, and so we have bounds λm;k+1 ≤
λm−1;k ≤ λm;k . Other necessary bounds arise from the majorization conditions.
Indeed, in order to have both {λm;m′ }mm′=1 � {μm′ }mm′=1 and {λm−1;m′ }m−1

m′=1 �
{μm′ }m−1

m′=1 we need

μm =
m∑

m′=1

μm′ −
m−1∑

m′=1

μm′ =
m∑

m′=1

λm;m′ −
m−1∑

m′=1

λm−1;m′ , (2.33)

and so we may view μm as the total change between the eigenstep spectra. Having
already selected λm−1;n−1, . . . , λm−1;k+1, we’ve already imposed a certain amount
of change between the spectra, and so we are limited in how much we can change
the kth eigenvalue. Continuing (2.33), this fact can be expressed as

μm = λm;m +
m−1∑

m′=1

(λm;m′ − λm−1;m′)≥ λm;m +
m−1∑

m′=k

(λm;m′ − λm−1;m′), (2.34)

where the inequality follows from the fact that the summands λm;m′ − λm−1;m′ are
nonnegative if {λm−1;m′ }m−1

m′=1 is to be chosen so that {λm−1;m′ }m−1
m′=1 � {λm;m′ }mm′=1.

Rearranging (2.34) then gives a second lower bound on λm−1;k to go along with our
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previously mentioned requirement that λm−1;k ≥ λm;k+1:

λm−1;k ≥
m∑

m′=k

λm;m′ −
m−1∑

m′=k+1

λm−1;m′ −μm. (2.35)

We next apply the intuition behind Top Kill to obtain other upper bounds on
λm−1;k to go along with our previously mentioned requirement that λm−1;k ≤ λm;k .
We caution that what follows is not a rigorous argument for the remaining upper
bound on λm−1;k , but rather an informal derivation of this bound’s expression; the
legitimacy of this derivation is formally confirmed in the proof of Theorem 2.7.
Recall that, at this point in the narrative, we have already selected {λm−1;m′ }m−1

m′=k+1
and are attempting to find all possible choices λm−1;k that will allow the remaining
values {λm−1;m′ }k−1

m′=1 to be chosen in such a way that:

{λm−1;m′ }m−1
m′=1 � {λm;m′ }mm′=1, {λm−1;m′ }m−1

m′=1 � {μm′ }m−1
m′=1. (2.36)

To do this, we recall our staircase-building intuition from the previous section: if it
is possible to build a given staircase, then one way to do this is to assign maximal
priority to the highest levels, as these are the most difficult to build. As such, for
a given choice of λm−1;k , if it is possible to choose {λm−1;m′ }k−1

m′=1 in such a way
that (2.36) holds, then it is reasonable to expect that one way of doing this is to pick
λm−1;k−1 by chipping away as much as possible from λm;k−1, then pick λm−1;k−2
by chipping away as much as possible from λm;k−2, and so on. That is, we pick some
arbitrary value λm−1;k , and to test its legitimacy, we apply the Top Kill algorithm to
construct the remaining undetermined values {λm−1;m′ }k−1

m′=1; we then check whether

or not {λm−1;m′ }m−1
m′=1 � {μm′ }m−1

m′=1.
To be precise, note that prior to applying Top Kill, the remaining spectrum is

{λm;m′ }k−1
m′=1, and that the total amount we will chip away from this spectrum is

μm −
(

λm;n +
m−1∑

m′=k

(λm;m′ − λm−1;m′)
)

. (2.37)

To ensure that our choice of λm−1;k−1 satisfies λm−1;k−1 ≥ λm;k , we artificially
reintroduce λm;k to both (2.37) and the remaining spectrum {λm;m′ }k−1

m′=1 before ap-
plying Top Kill. That is, we apply Top Kill to {βm′ }mm′=1 := {λm;m′ }km′=1∪{0}mm′=k+1.
Specifically in light of Theorem 2.6, in order to optimally subtract

μ := μm −
(

λm;n +
m−1∑

m′=k

(λm;m′ − λm−1;m′)
)

+ λm;k

= μm −
m∑

m′=k+1

λm;m′ +
m−1∑

m′=k

λm−1;m′
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units of area from {βm′ }mm′=1, we first pick j such that βj+1 ≤ μ ≤ βj . We
then use (2.29) to produce a zero-padded version of the remaining new spectrum
{λm−1;m′ }k−1

m′=1 ∪ {0}mm′=k
:

λm−1;m′ =

⎧
⎪⎪⎨

⎪⎪⎩

λm;m′, 1≤m′ ≤ j − 1,
λm;j + λm;j+1 −μm +∑m

m′′=k+1 λm;m′′ −∑m−1
m′′=k λm−1;m′′,

m′ = j

λm;m′+1, j + 1≤m′ ≤ k− 1.

Picking l such that j+1≤ l ≤ k, we now sum the above values of λm−1;m′ to obtain:

l−1∑

m′=1

λm−1;m′ =
j−1∑

m′=1

λm−1;m′ + λm−1;j +
l−1∑

m′=j+1

λm−1;m′

=
l∑

m′=1

λm;m′ −μm +
m∑

m′=k+1

λm;m′ −
m−1∑

m′=k

λm−1;m′ . (2.38)

Adding
∑m

m′=1 μm′ −∑m
m′=1 λm;m′ = 0 to the right-hand side of (2.38) then yields:

l−1∑

m′=1

λm−1;m′ =
l∑

m′=1

λm;m′ −μm +
m∑

m′=k+1

λm;m′ −
m−1∑

m′=k

λm−1;m′ +
m∑

m′=1

μm′

−
m∑

m′=1

λm;m′ =
m−1∑

m′=1

μm′ −
k∑

m′=l+1

λm;m′ −
m−1∑

m′=k

λm−1;m′ . (2.39)

Now, in order for {λm−1;m′ }m−1
m′=1 � {μm′ }m−1

m′=1 as desired, (2.39) must satisfy:

l−1∑

m′=1

μm′ ≤
l−1∑

m′=1

λm−1;m′ =
m−1∑

m′=1

μm′ −
k∑

m′=l+1

λm;m′ −
m−1∑

m′=k

λm−1;m′ . (2.40)

Solving for λm−1;k in (2.40) then gives:

λm−1;k ≤
m−1∑

m′=l

μm′ −
k∑

m′=l+1

λm;m′ −
m−1∑

m′=k+1

λm−1;m′ . (2.41)

Note that, according to how we derived it, (2.41) is valid when j + 1 ≤ l ≤ k. As
established in the following theorem, this bound actually holds when l = 1, . . . , k.
Overall, the interlacing conditions, (2.35), and (2.41) are precisely the bounds that
we verify in the following result.

Theorem 2.7 Suppose {λm;m′ }mm′=1 � {μm′ }mm′=1. Then {λm−1;m′ }m−1
m′=1 � {μm′ }m−1

m′=1
and {λm−1;m′ }m−1

m′=1 � {λm;m′ }mm′=1 if and only if λm−1;k ∈ [Am−1;k,Bm−1;k] for ev-
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ery k = 1, . . . ,m− 1, where:

Am−1;k :=max

{

λm;k+1,

m∑

m′=k

λm;m′ −
m−1∑

m′=k+1

λm−1;m′ −μm

}

, (2.42)

Bm−1;k :=min

{

λm;k, min
l=1,...,k

{
m−1∑

m′=l

μm′ −
k∑

m′=l+1

λm;m′ −
m−1∑

m′=k+1

λm−1;m′
}}

.

(2.43)

Here, we use the convention that sums over empty sets of indices are zero. More-
over, suppose that λm−1;m−1, . . . , λm−1;k+1 are consecutively chosen to satisfy these
bounds. Then Am−1;k ≤ Bm−1;k , and so λm−1;k can also be chosen from such an in-
terval.

Proof For notational simplicity, we let {αm′ }m−1
m′=1 := {λm−1;m′ }m−1

m′=1, {βm′ }mm′=1 :={λm;m′ }mm′=1, Ak :=Am−1;k , and Bk := Bm−1;k .

(⇒) Suppose {αm′ }m−1
m′=1 � {μm′ }m−1

m′=1 and {αm′ }m−1
m′=1 � {βm′ }mm′=1. Fix any par-

ticular k = 1, . . . ,m − 1. Note that interlacing gives βk+1 ≤ αk ≤ βk , which ac-
counts for the first entries in (2.42) and (2.43). We first show that αk ≥ Ak . Since
{βm′ }mm′=1 � {μm′ }mm′=1 and {αm′ }m−1

m′=1 � {μm′ }m−1
m′=1, then

μm =
m∑

m′=1

μm′ −
m−1∑

m′=1

μm′ =
m∑

m′=1

βm′ −
m−1∑

m′=1

αm′ = βm+
m−1∑

m′=1

(βm′ − αm′). (2.44)

Since {αm′ }m−1
m′=1 � {βm′ }mm′=1, the summands in (2.44) are nonnegative, and so

μm ≥ βm +
m−1∑

m′=k

(βm′ − αm′)=
m∑

m′=k

βm′ −
m−1∑

m′=k+1

αm′ − αk. (2.45)

Isolating αk in (2.45) and combining with the fact that αk ≥ βk+1 gives αk ≥ Ak .
We next show that αk ≤ Bk . Fix l = 1, . . . , k. Then {αm′ }m−1

m′=1 � {μm′ }m−1
m′=1 implies

∑l−1
m′=1 αm′ ≥∑l−1

m′=1 μm′ and
∑m−1

m′=1 αm′ =∑m−1
m′=1 μm′ , and so subtracting gives

m−1∑

m′=l

μm′ ≥
m−1∑

m′=l

αm′ =
m−1∑

m′=k

αm′ +
k−1∑

m′=l

αm′ ≥
m−1∑

m′=k

αm′ +
k−1∑

m′=l

βm′+1, (2.46)

where the second inequality follows from {αm′ }m−1
m′=1 � {βm′ }mm′=1. Since our choice

for l = 1, . . . , k was arbitrary, isolating αk in (2.46) and combining with the fact that
αk ≤ βk gives αk ≤ Bk .

(⇐) Now suppose Ak ≤ αk ≤ Bk for every k = 1, . . . ,m− 1. Then the first en-
tries in (2.42) and (2.43) give βk+1 ≤ αk ≤ βk for every k = 1, . . . ,m− 1, that is,
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{αm′ }m−1
m′=1 � {βm′ }mm′=1. It remains to be shown that {αm′ }m−1

m′=1 � {μm′ }m−1
m′=1. Since

αk ≤ Bk for every k = 1, . . . ,m− 1, then

αk ≤
m−1∑

m′=l

μm′ −
k∑

m′=l+1

βm′ −
m−1∑

m′=k+1

αm′ , ∀k = 1, . . . ,m− 1, l = 1, . . . , k.

(2.47)
Rearranging (2.47) in the case where l = k gives

m−1∑

m′=k

αm′ ≤
m−1∑

m′=k

μm′, ∀k = 1, . . . ,m− 1. (2.48)

Moreover, α1 ≥ A1 implies α1 ≥∑m
m′=1 βm′ −∑m−1

m′=2 αm′ − μm. Rearranging this
inequality and applying {βm′ }mm′=1 � {μm′ }mm′=1 then gives

m−1∑

m′=1

αm′ ≥
m∑

m′=1

βm′ −μm =
m−1∑

m′=1

μm′ . (2.49)

Combining (2.49) with (2.48) in the case where k = 1 gives

m−1∑

m′=1

αm′ =
m−1∑

m′=1

μm′ . (2.50)

Subtracting (2.48) from (2.50) completes the proof that {αm′ }m−1
m′=1 � {μm′ }m−1

m′=1.
For the final claim, we first show that the claim holds for k =m− 1, namely that

Am−1 ≤ Bm−1. Explicitly, we need to show that

max{βm,βm−1 + βm −μm} ≤min

{

βm−1, min
l=1,...,m−1

{
m−1∑

m′=l

μm′ −
m−1∑

m′=l+1

βm′

}}

.

(2.51)
Note that (2.51) is equivalent to the following inequalities holding simultaneously:

(i) βm ≤ βm−1,
(ii) βm−1 + βm −μm ≤ βm−1,

(iii) βm ≤∑m−1
m′=l μm′ −∑m−1

m′=l+1 βm′ , ∀l = 1, . . . ,m− 1,

(iv) βm−1 + βm −μm ≤∑m−1
m′=l μm′ −∑m−1

m′=l+1 βm′ ,∀l = 1, . . . ,m− 1.

First, (i) follows immediately from the fact that {βm′ }mm′=1 is nonincreasing. Next,
rearranging (ii) gives βm ≤ μm, which follows from {βm′ }mm′=1 � {μm′ }mm′=1. For
(iii), the facts that {βm′ }mm′=1 � {μm′ }mm′=1 and {μm′ }mm′=1 is nonincreasing imply
that

m∑

m′=l+1

βm′ ≤
m∑

m′=l+1

μm′ ≤
m−1∑

m′=l

μm′, ∀l = 1, . . . ,m− 1,
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which in turn implies (iii). Also for (iv), the facts that {βm′ }mm′=1 is nonincreasing
and {βm′ }mm′=1 � {μm′ }mm′=1 imply that

βm−1 +
m∑

m′=l+1

βm′ ≤
m∑

m′=l

βm′ ≤
m∑

m′=l

μm′ , ∀l = 1, . . . ,m− 1,

which in turn implies (iv). We now proceed by induction. Assume αk+1 satisfies
Ak+1 ≤ αk+1 ≤ Bk+1. Given this assumption, we need to show that Ak ≤ Bk . Con-
sidering the definitions (2.42) and (2.43) of Ak and Bk , this is equivalent to the
following inequalities holding simultaneously:

(i) βk+1 ≤ βk ,
(ii)

∑m
m′=k βm′ −∑m−1

m′=k+1 αm′ −μm ≤ βk ,

(iii) βk+1 ≤∑m−1
m′=l μm′ −∑k

m′=l+1 βm′ −∑m−1
m′=k+1 αm′, ∀l = 1, . . . , k,

(iv)
∑m

m′=k βm′ −∑m−1
m′=k+1 αm′ −μm ≤∑m−1

m′=l μm′ −∑k
m′=l+1 βm′ −∑m−1

m′=k+1 αm′,
∀l = 1, . . . , k.

Again, the fact that {βm′ }mm′=1 is nonincreasing implies (i). Next, αk+1 ≥Ak+1 gives

αk+1 ≥
m∑

m′=k+1

βm′ −
m−1∑

m′=k+2

αm′ −μm,

which is a rearrangement of (ii). Similarly, αk+1 ≤ Bk+1 gives

αk+1 ≤
m−1∑

m′=l

μm′ −
k+1∑

m′=l+1

βm′ −
m−1∑

m′=k+2

αm′ , ∀l = 1, . . . , k + 1,

which is a rearrangement of (iii). Note that we don’t use the fact that (iii) holds when
l = k + 1. Finally, (iv) follows from the facts that {βm′ }mm′=1 is nonincreasing and
{βm′ }mm′=1 � {μm′ }mm′=1, since they imply that

βk +
m∑

m′=l+1

βm′ ≤
m∑

m′=l

βm′ ≤
m∑

m′=l

μm′, ∀l = 1, . . . , k,

which is a rearrangement of (iv). �

We now note that, by starting with a sequence {λM;m′ }Mm′=1 = {λm′ }Mm′=1
that majorizes a given {μm}Mm=1, repeatedly applying Theorem 2.7 to construct
{λm−1;m′ }m−1

m′=1 from {λm;m′ }mm′=1 results in a sequence of inner eigensteps (Defi-
nition 2.3). Conversely, if {{λm;m′ }mm′=1}Mm=1 is a valid sequence of inner eigensteps,

then for every m, (ii) gives {λm;m′ }m−1
m′=1 � {λm;m′ }mm′=1, while (ii) and (iii) together

imply that {λm;m′ }mm′=1 � {μm′ }mm′=1 à la the discussion at the beginning of Sect. 2.3.
As such, any sequence of inner eigensteps can be constructed by repeatedly applying
Theorem 2.7. We now summarize these facts.
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Corollary 2.1 Let {λm}Mm=1 and {μm}Mm=1 be nonnegative, nonincreasing sequences
where {λm}Mm=1 � {μm}Mm=1. Then, every corresponding sequence of inner eigen-
steps {{λm;m′ }mm′=1}Mm=1 can be constructed by the following algorithm: let λM;m′ =
λm′ for all m′ = 1, . . . ,M ; for any m = M, . . . ,2 construct {λm−1;m′ }m−1

m′=1 from
{λm;m′ }mm′=1 by picking λm−1;k ∈ [Am−1;k,Bm−1;k] for all k =m− 1, . . . ,1, where
Am−1;k and Bm−1;k are (2.42) and (2.43), respectively. Moreover, any sequence
constructed by this algorithm is indeed a corresponding sequence of inner eigen-
steps.

We now redo Example 2.3 to illustrate that Corollary 2.1 indeed gives a more
systematic way of parametrizing the eigensteps.

Example 2.5 We wish to parametrize the eigensteps corresponding to the UNTFs
of 5 vectors in C

3. In the end, we will get the same parametrization of eigensteps as
in Example 2.3:

m 1 2 3 4 5

λm;5 0

λm;4 0 0

λm;3 x 2
3

5
3

λm;2 y 4
3 − x 5

3
5
3

λm;1 1 2− y 5
3

5
3

5
3

(2.52)

where 0≤ x ≤ 2
3 , max{ 1

3 , x} ≤ y ≤min{ 2
3 + x, 4

3 − x}. In what follows, we rederive
the above table one column at a time, in order from right to left, and fill in each
column from top to bottom. First, the desired spectrum of the final Gram matrix
gives us that λ5;5 = λ5;4 = 0 and λ5;3 = λ5;2 = λ5;1 = 5

3 . Next, we wish to find all
{λ4;m′ }4m′=1 such that {λ4;m′ }4m′=1 � {λ5;m′ }5m′=1 and {λ4;m′ }4m′=1 � {μm′ }4m′=1. To
this end, taking m= 5 and k = 4, Theorem 2.7 gives:

max{λ5;5, λ5;4 + λ5;5 −μ5} ≤ λ4;4

≤min

{

λ5;4, min
l=1,...,4

{
4∑

m′=l

μm′ −
4∑

m′=l+1

λ5;m′
}}

,

0=max{0,−1} ≤ λ4;4 ≤min

{
0,

2

3
,

4

3
,2,1

}
= 0,

and so λ4;4 = 0. For each k = 3,2,1, the same approach gives λ4;3 = 2
3 , λ4;2 = 5

3 ,
and λ4;1 = 5

3 . For the next column, we take m= 4. Starting with k = 3, we have:
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max{λ4;4, λ4;3 + λ4;4 −μ4} ≤ λ3;3

≤min

{

λ4;3, min
l=1,...,3

{
3∑

m′=l

μm′ −
3∑

m′=l+1

λ4;m′
}}

,

0=max

{
0,−1

3

}
≤ λ3;3 ≤min

{
2

3
,

2

3
,

4

3
,1

}
= 2

3
.

Notice that the lower and upper bounds on λ3;3 are not equal. Since λ3;3 is our first
free variable, we parametrize it: λ3;3 = x for some x ∈ [0, 2

3 ]. Next, k = 2 gives

4

3
− x =max

{
2

3
,

4

3
− x

}
≤ λ3;2 ≤min

{
5

3
,

4

3
− x,2− x

}
= 4

3
− x,

and so λ3;2 = 4
3 − x. Similarly, λ3;1 = 5

3 . Next, we take m= 3 and k = 2:

max

{
x,

1

3

}
≤ λ2;2 ≤min

{
4

3
− x,

2

3
+ x,1

}
.

Note that λ2;2 is a free variable; we parametrize it as λ2;2 = y such that:

y ∈
[

1

3
,

2

3
+ x

]
if x ∈

[
0,

1

3

]
, y ∈

[
x,

4

3
− x

]
if x ∈

[
1

3
,

2

3

]
.

Finally, λ2,1 = 2− y and λ1,1 = 1.

We conclude by giving a complete constructive solution to Problem 2.1, that is,
the problem of constructing every frame of a given spectrum and set of lengths.
Recall from the introduction that it suffices to prove Theorem 2.4.

Proof of Theorem 2.4: We first show that such a Φ exists if and only if we have
{λm}Nm=1 ∪ {0}Mm=N+1 � {μm}Mm=1. In particular, if such a Φ exists, then Theo-
rem 2.2 implies that there exists a sequence of outer eigensteps corresponding to
{λn}Nn=1 and {μm}Mm=1; by Theorem 2.5, this implies that there exists a sequence of
inner eigensteps corresponding to {λm}Nm=1 ∪ {0}Mm=N+1 and {μm}Mm=1; by the dis-
cussion at the beginning of Sect. 2.4.1, we necessarily have {λm}Nm=1∪{0}Mm=N+1 �
{μm}Mm=1. Conversely, if {λm}Nm=1 ∪ {0}Mm=N+1 � {μm}Mm=1, then Top Kill (Theo-
rem 2.6) constructs a corresponding sequence of inner eigensteps, and so Theo-
rem 2.5 implies that there exists a sequence of outer eigensteps corresponding to
{λn}Nn=1 and {μm}Mm=1, at which point Theorem 2.2 implies that such a Φ exists.

For the remaining conclusions, note that, in light of Theorem 2.2, it suffices
to show that every valid sequence of outer eigensteps (Definition 2.2) satisfies the
bounds of Step A of Theorem 2.4, and conversely, that every sequence constructed
by Step A is a valid sequence of outer eigensteps. Both of these facts follow from
the same two results. The first is Theorem 2.5, which establishes a correspondence
between every valid sequence of outer eigensteps for {λn}Nn=1 and {μm}Mm=1 with
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a valid sequence of inner eigensteps for {λm}Nm=1 ∪ {0}Mm=N+1 and {μm}Mm=1 and
vice versa, the two being zero-padded versions of each other. The second relevant
result is Corollary 2.1, which characterizes all such inner eigensteps in terms of the
bounds (2.42) and (2.43) of Theorem 2.7. In short, the algorithm of Step A is the
outer eigenstep version of the application of Corollary 2.1 to {λm}Nm=1 ∪ {0}Mm=N+1;
one may easily verify that all discrepancies between the statement of Theorem 2.4
and Corollary 2.1 are the result of the zero padding that occurs in the transition from
inner to outer eigensteps. �

2.5 Constructing Frame Elements from Eigensteps

As discussed in Sect. 2.3, Theorem 2.2 provides a two-step process for constructing
any and all sequences of vectors Φ = {ϕm}Mm=1 in C

N whose frame operator pos-
sesses a given spectrum {λn}Nn=1 and whose vectors have given lengths {μm}Mm=1. In
Step A, we choose a sequence of outer eigensteps {{λm;n}Nn=1}Mm=0; this process is
systematized in Theorem 2.4 of the previous section. In the end, the mth sequence
{λm;n}Nn=1 will become the spectrum of ΦmΦ

∗
m, where Φm = {ϕm′ }mm′=1.

Next, the purpose of Step B is to explicitly construct any and all sequences of
vectors whose partial-frame-operator spectra match the outer eigensteps chosen in
Step A. The problem with Step B of Theorem 2.2 is that it is not very explicit.
Indeed for every m= 1, . . . ,M − 1, in order to construct ϕm+1, we must first com-
pute an orthonormal eigenbasis for ΦmΦ

∗
m. This problem is readily doable, since

the eigenvalues {λm;n}Nn=1 of ΦmΦ
∗
m are already known. It is nevertheless a tedious

and inelegant process to do by hand, requiring us to, for example, compute QR-
factorizations of λm;nId−ΦmΦ

∗
m for each n= 1, . . . ,N . This section is devoted to

the following result, which is a version of Theorem 2.2 equipped with a more ex-
plicit Step B; though technical, this new and improved Step B is still simple enough
to be performed by hand. This material was first presented in [5].

Theorem 2.8 For any nonnegative nonincreasing sequences {λn}Nn=1 and {μm}Mm=1,
every sequence of vectors Φ = {ϕm}Mm=1 in C

N whose frame operator ΦΦ∗ has
spectrum {λn}Nn=1 and which satisfies ‖ϕm‖2 = μm for all m can be constructed by
the following algorithm:

Step A: Pick outer eigensteps as in Theorem 2.4.
Step B: Let U1 be any unitary matrix with columns {u1;n}Nn=1. Let ϕ1 =√μ1u1;1.

For each m= 1, . . . ,M − 1:
B.1 Let Vm be an N ×N block-diagonal unitary matrix whose blocks cor-

respond to the distinct values of {λm;n}Nn=1 with the size of each block
being the multiplicity of the corresponding eigenvalue.

B.2 Identify those terms which are common to both {λm;n}Nn=1 and
{λm+1;n}Nn=1. Specifically:
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• Let Im ⊆ {1, . . . ,N} consist of those indices n such that λm;n <

λm;n′ for all n′ < n and such that the multiplicity of λm;n as a value
in {λm;n′ }Nn′=1 exceeds its multiplicity as a value in {λm+1;n′ }Nn′=1.

• Let Jm ⊆ {1, . . . ,N} consist of those indices n such that λm+1;n <

λm+1;n′ for all n′ < n and also such that the multiplicity of λm;n in
{λm+1;n′ }Nn′=1 exceeds its multiplicity as a value in {λm;n′ }Nn′=1.

The sets Im and Jm have equal cardinality, which we denote Rm.
Next:

• Let πIm
be the unique permutation on {1, . . . ,N} that is increasing

on both Im and I c
m and such that πIm

(n) ∈ {1, . . . ,Rm} for all
n ∈ Im. Let ΠIm

be the associated permutation matrix ΠIm
δn =

δπIm(n).
• Let πJm

be the unique permutation on {1, . . . ,N} that is increasing
on both Jm and J c

m and such that πJm
(n) ∈ {1, . . . ,Rm} for all

n ∈Jm. Let ΠJm
be the associated permutation matrix ΠJm

δn =
δπJm(n).

B.3 Let vm, wm be the Rm × 1 vectors whose entries are:

vm
(
πIm

(n)
)=

[
−
∏

n′′∈Jm
(λm;n − λm+1;n′′)

∏
n′′∈Im

n′′ 
=n

(λm;n − λm;n′′)

] 1
2

, ∀n ∈Im,

wm

(
πJm

(
n′
))=

[ ∏
n′′∈Im

(λm+1;n′ − λm;n′′)
∏

n′′∈Jm

n′′ 
=n′
(λm+1;n′ − λm+1;n′′)

] 1
2

, ∀n′ ∈Jm.

B.4 ϕm+1 =UmVmΠ
T
Im

[ vm
0

]
, where the N×1 vector

[ vm
0

]
is vm with N−

Rm zeros.
B.5 Um+1 = UmVmΠ

T
Im

[
Wm 0

0 Id

]
ΠJm

where Wm is the Rm × Rm matrix
with entries:

Wm

(
πIm

(n),πJm

(
n′
))= 1

λm+1;n′ − λm;n
vm
(
πIm

(n)
)
wm

(
πJm

(
n′
))
.

Conversely, any Φ constructed by this process has {λn}Nn=1 as the spectrum of ΦΦ∗
and ‖ϕm‖2 = μm for all m. Moreover, for any Φ constructed in this manner and any
m= 1, . . . ,M , the spectrum of the frame operator ΦmΦ

∗
m arising from the partial

sequence Φm = {ϕm′ }mm′=1 is {λm;n}Nn=1, and the columns of Um form a correspond-
ing orthonormal eigenbasis for ΦmΦ

∗
m.

Before proving Theorem 2.8, we give an example of its implementation, with the
hope of conveying the simplicity of the underlying idea, and better explaining the
heavy notation used in the statement of the result.
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Example 2.6 Recall from Example 2.2 that the valid outer eigensteps (2.21) corre-
sponding to 3× 5 UNTFs are given by

m 0 1 2 3 4 5

λm;3 0 0 0 x 2
3

5
3

λm;2 0 0 y 4
3 − x 5

3
5
3

λm;1 0 1 2− y 5
3

5
3

5
3

where x ∈ [0, 2
3 ] and y ∈ [max{ 1

3 , x},min{ 2
3 + x, 4

3 − x}]. To complete Step A of
Theorem 2.8, we pick any valid (x, y). For example, for (x, y)= (0, 1

3 ), (2.21) be-
comes

m 0 1 2 3 4 5

λm;3 0 0 0 0 2
3

5
3

λm;2 0 0 1
3

4
3

5
3

5
3

λm;1 0 1 5
3

5
3

5
3

5
3

(2.53)

Note that this particular choice corresponds to Top Kill. We now perform Step B of
Theorem 2.8 for this particular choice of eigensteps. First, we must choose a unitary
matrix U1. Considering the equation for Um+1 along with the fact that the columns
of UM will form an eigenbasis for ΦΦ∗, we see that our choice for U1 merely rotates
this eigenbasis, and hence the entire frame Φ , to our liking. We choose U1 = Id for
simplicity. Thus,

ϕ1 =√μ1u1;1 =
⎡

⎣
1
0
0

⎤

⎦ .

We now iterate, performing Steps B.1 through B.5 for m = 1 to find ϕ2 and U2,
then performing Steps B.1 through B.5 for m = 2 to find ϕ3 and U3, and so on.
Throughout this process, the only remaining choices to be made appear in Step B.1.
In particular, for m = 1 Step B.1 asks us to pick a block-diagonal unitary ma-
trix V1 whose blocks are sized according to the multiplicities of the eigenvalues
{λ1;1, λ1;2, λ1;3} = {1,0,0}. That is, V1 consists of a 1 × 1 unitary block—a uni-
modular scalar—and a 2 × 2 unitary block. There are an infinite number of such
V1’s, each leading to a distinct frame. For simplicity, we choose V1 = Id. Having
completed Step B.1 for m = 1, we turn to Step B.2, which requires us to consider
the columns of (2.53) that correspond to m= 1 and m= 2:

m 1 2

λm;3 0 0

λm;2 0 1
3

λm;1 1 5
3

(2.54)

In particular, we compute a set of indices I1 ⊆ {1,2,3} that contains the indices
n of {λ1;1, λ1;2, λ1;3} = {1,0,0} for which (i) the multiplicity of λ1;n as a value of
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{1,0,0} exceeds its multiplicity as a value of {λ2;1, λ2;2, λ2;3} = { 5
3 ,

1
3 ,0} and (ii) n

corresponds to the first occurrence of λ1;n as a value of {1,0,0}; by these criteria,
we find I1 = {1,2}. Similarly, n ∈J1 if and only if n indicates the first occurrence
of a value λ2;n whose multiplicity as a value of { 5

3 ,
1
3 ,0} exceeds its multiplicity as a

value of {1,0,0}, and so J1 = {1,2}. Equivalently, I1 and J1 can be obtained by
canceling common terms from (2.54), working top to bottom. An explicit algorithm
for doing so is given in Table 2.2.

Continuing with Step B.2 for m= 1, we now find the unique permutation πI1 :{1,2,3}→ {1,2,3} that is increasing on both I1 = {1,2} and its complement I c
1 ={3} and takes I1 to the first R1 = |I1| = 2 elements of {1,2,3}. In this particular

instance, πI1 happens to be the identity permutation, and so ΠI1 = Id. Since J1 =
{1,2} =I1, we similarly have that πJ1 and ΠJ1 are the identity permutation and
matrix, respectively. For the remaining steps, it is useful to isolate the terms in (2.54)
that correspond to I1 and J1:

β2 = λ1;2 = 0, γ2 = λ2;2 = 1

3
,

β1 = λ1;1 = 1, γ1 = λ2;1 = 5

3
.

(2.55)

In particular, in Step B.3, we find the R1 × 1= 2× 1 vector v1 by computing quo-
tients of products of differences of the values in (2.55):

[
v1(1)

]2 =− (β1 − γ1)(β1 − γ2)

(β1 − β2)
=− (1− 5

3 )(1− 1
3 )

(1− 0)
= 4

9
, (2.56)

[
v1(2)

]2 =− (β2 − γ1)(β2 − γ2)

(β2 − β1)
=− (0− 5

3 )(0− 1
3 )

(0− 1)
= 5

9
, (2.57)

yielding v1 =
[ 2

3√
5

3

]
. Similarly, we compute w1 =

[
√

5√
6

1√
6

]
according to the following

formulas:

[
w1(1)

]2 = (γ1 − β1)(γ1 − β2)

(γ1 − γ2)
= ( 5

3 − 1)( 5
3 − 0)

( 5
3 − 1

3 )
= 5

6
, (2.58)

[
w1(2)

]2 = (γ2 − β1)(γ2 − β2)

(γ2 − γ1)
= ( 1

3 − 1)( 1
3 − 0)

( 1
3 − 5

3 )
= 1

6
. (2.59)

Next, in Step B.4, we form our second frame element ϕ2 =U1V1Π
T
I1

[ v1
0

]
:

ϕ2 =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎢⎢
⎣

2
3√
5

3

0

⎤

⎥⎥
⎦=

⎡

⎢⎢
⎣

2
3√
5

3

0

⎤

⎥⎥
⎦ .
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As justified in the proof of Theorem 2.8, the resulting partial sequence of vectors:

Φ2 =
[
ϕ1 ϕ2

]=

⎡

⎢⎢
⎣

1 2
3

0
√

5
3

0 0

⎤

⎥⎥
⎦

has a frame operator Φ2Φ
∗
2 whose spectrum is {λ2;1, λ2;2, λ2;3} = { 5

3 ,
1
3 ,0}. More-

over, a corresponding orthonormal eigenbasis for Φ2Φ
∗
2 is computed in Step B.5;

here the first step is to compute the R1 × R1 = 2 × 2 matrix W1 by computing a
pointwise product of a certain 2× 2 matrix with the outer product of v1 with w1:

W1 =
[ 1

γ1−β1

1
γ2−β1

1
γ1−β2

1
γ2−β2

]

!
[
v1(1)
v1(2)

][
w1(1)
w1(2)

]T

=
[

3
2 − 3

2
3
5 3

]

!
⎡

⎣
2
√

5
3
√

6
2

3
√

6
5

3
√

6

√
5

3
√

6

⎤

⎦

=
⎡

⎣

√
5√
6
− 1√

6
1√
6

√
5√
6

⎤

⎦ .

Note that W1 is a real orthogonal matrix whose diagonal and subdiagonal entries are
strictly positive and whose superdiagonal entries are strictly negative; one can easily
verify that every Wm has this form. More significantly, the proof of Theorem 2.8
guarantees that the columns of:

U2 =U1V1Π
T
I1

[
W1 0
0 Id

]
ΠJ1

=
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎢⎢
⎣

√
5√
6
− 1√

6
0

1√
6

√
5√
6

0

0 0 1

⎤

⎥⎥
⎦

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

=

⎡

⎢⎢
⎣

√
5√
6
− 1√

6
0

1√
6

√
5√
6

0

0 0 1

⎤

⎥⎥
⎦

form an orthonormal eigenbasis of Φ2Φ
∗
2 . This completes the m = 1 iteration of

Step B; we now repeat this process for m = 2,3,4. For m = 2, in Step B.1 we ar-
bitrarily pick some 3 × 3 diagonal unitary matrix V2. Note that if we want a real
frame, there are only 23 = 8 such choices of V2. For simplicity, we choose V2 = Id
in this example. Continuing, Step B.2 involves canceling the common terms in

m 2 3

λm;3 0 0

λm;2 1
3

4
3

λm;1 5
3

5
3
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to find I2 =J2 = {2}, and so

ΠI2 =ΠJ2 =
⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦ .

In Step B.3, we find that v2 = w2 = [1]. Steps B.4 and B.5 then give that Φ3 =[
ϕ1 ϕ2 ϕ3

]
and U3 are:

Φ3 =

⎡

⎢⎢
⎣

1 2
3 − 1√

6

0
√

5
3

√
5√
6

0 0 0

⎤

⎥⎥
⎦ , U3 =

⎡

⎢⎢
⎣

√
5√
6
− 1√

6
0

1√
6

√
5√
6

0

0 0 1

⎤

⎥⎥
⎦ .

The columns of U3 form an orthonormal eigenbasis for the partial frame operator
Φ3Φ

∗
3 with corresponding eigenvalues {λ3;1, λ3;2, λ3;3} = { 5

3 ,
4
3 ,0}. For the m= 3

iteration, we pick V3 = Id and cancel the common terms in

m 3 4

λm;3 0 2
3

λm;2 4
3

5
3

λm;1 5
3

5
3

to obtain I3 = {2,3} and J3 = {1,3}, implying:

ΠI3 =
⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦ , ΠJ3 =
⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦ ,

β2 = λ3;3 = 0, γ2 = λ4;3 = 2

3
,

β1 = λ3;2 = 4

3
, γ1 = λ4;1 = 5

3
.

In Step B.3, we then compute the R3 × 1 = 2× 1 vectors v3 and w3 in a manner
analogous to (2.56), (2.57), (2.58) and (2.59):

v3 =
⎡

⎣
1√
6√
5√
6

⎤

⎦ , w3 =
[ √

5
3
2
3

]

.

Note that in Step B.4, the role of permutation matrix ΠT
I3

is that it maps the entries
of v3 onto the I3 indices, meaning that v4 lies in the span of the corresponding
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eigenvectors {u3;n}n∈I3 :

ϕ4 =

⎡

⎢
⎢
⎣

√
5√
6
− 1√

6
0

1√
6

√
5√
6

0

0 0 1

⎤

⎥
⎥
⎦

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦

⎡

⎢
⎢
⎣

1√
6√
5√
6

0

⎤

⎥
⎥
⎦

=

⎡

⎢⎢
⎣

√
5√
6
− 1√

6
0

1√
6

√
5√
6

0

0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

0
1√
6√
5√
6

⎤

⎥⎥
⎦=

⎡

⎢⎢
⎣

− 1
6√
5

6√
5√
6

⎤

⎥⎥
⎦ .

In a similar fashion, the purpose of the permutation matrices in Step B.5 is to em-
bed the entries of the 2× 2 matrix W3 into the I3 = {2,3} rows and J3 = {1,3}
columns of a 3× 3 matrix:

U4 =

⎡

⎢⎢
⎣

√
5√
6
− 1√

6
0

1√
6

√
5√
6

0

0 0 1

⎤

⎥⎥
⎦

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦

⎡

⎢⎢
⎣

√
5√
6
− 1√

6
0

1√
6

√
5√
6

0

0 0 1

⎤

⎥⎥
⎦

⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦

=

⎡

⎢⎢
⎣

√
5√
6
− 1√

6
0

1√
6

√
5√
6

0

0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

0 1 0
√

5√
6

0 − 1√
6

1√
6

0
√

5√
6

⎤

⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

−
√

5
6

√
5√
6

1
6

5
6

1√
6
−
√

5
6

1√
6

0
√

5√
6

⎤

⎥⎥⎥
⎦
.

For the last iteration m = 4, we again choose V4 = Id in Step B.1. For Step B.2,
note that since

m 4 5

λm;3 2
3

5
3

λm;2 5
3

5
3

λm;1 5
3

5
3

we have I4 = {3} and J4 = {1}, implying:

ΠI4 =
⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦ , ΠJ4 =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .
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Working through Steps B.3, B.4, and B.5 yields the UNTF:

Φ =Φ5 =

⎡

⎢⎢
⎣

1 2
3 − 1√

6
− 1

6
1
6

0
√

5
3

√
5√
6

√
5

6 −
√

5
6

0 0 0
√

5√
6

√
5√
6

⎤

⎥⎥
⎦ , U5 =

⎡

⎢⎢⎢
⎣

1
6 −

√
5

6

√
5√
6

−
√

5
6

5
6

1√
6√

5√
6

1√
6

0

⎤

⎥⎥⎥
⎦
.

(2.60)
We emphasize that the UNTF Φ given in (2.60) was based on the particular choice
of eigensteps given in (2.53), which arose by choosing (x, y) = (0, 1

3 ) in (2.21).
Choosing other pairs (x, y) from the parameter set depicted in Fig. 2.2(b) yields
other UNTFs. Indeed, since the eigensteps of a given Φ are equal to those of UΦ

for any unitary operator U , we have that each distinct (x, y) yields a UNTF which is
not unitarily equivalent to any of the others. For example, by following the algorithm
of Theorem 2.8 and choosing U1 = Id and Vm = Id in each iteration, we obtain the
following four additional UNTFs, each corresponding to a distinct corner point of
the parameter set:

Φ =

⎡

⎢⎢
⎣

1 2
3 0 − 1

3 − 1
3

0
√

5
3 0

√
5

3

√
5

3

0 0 1 1√
3

− 1√
3

⎤

⎥⎥
⎦ for (x, y)=

(
1

3
,

1

3

)
,

Φ =

⎡

⎢⎢
⎣

1 1
3

1
3 − 1

3 − 1√
3

0
√

8
3

1
3
√

2
− 1

3
√

2

√
2√
3

0 0
√

5√
6

√
5√
6

0

⎤

⎥⎥
⎦ for(x, y)=

(
2

3
,

2

3

)
,

Φ =

⎡

⎢⎢
⎣

1 0 0 1√
3

− 1√
3

0 1 2
3 − 1

3 − 1
3

0 0
√

5
3

√
5

3

√
5

3

⎤

⎥⎥
⎦ for (x, y)=

(
1

3
,1

)
,

Φ =

⎡

⎢⎢
⎣

1 1
3 − 1√

3
1
3 − 1

3

0
√

8
3

√
2√
3

1
3
√

2
− 1

3
√

2

0 0 0
√

5√
6

√
5√
6

⎤

⎥⎥
⎦ for (x, y)=

(
0,

2

3

)
.

Notice that, of the four UNTFs above, the second and fourth are actually the same
up to a permutation of the frame elements. This is an artifact of our method of
construction, namely, that our choices for eigensteps, U1, and {Vm}M−1

m=1 determine
the sequence of frame elements. As such, we can recover all permutations of a given
frame by modifying these choices.

We emphasize that these four UNTFs along with that of (2.60) are but five ex-
amples from the continuum of all such frames. Indeed, keeping x and y as variables
in (2.21) and applying the algorithm of Theorem 2.8—again choosing U1 = Id
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and Vm = Id in each iteration for simplicity—yields the frame elements given in
Table 2.1. Here, we restrict (x, y) so as to not lie on the boundary of the parameter
set of Fig. 2.2(b). This restriction simplifies the analysis, as it prevents all unnec-
essary repetitions of values in neighboring columns in (2.21). Table 2.1 gives an
explicit parametrization for a two-dimensional manifold that lies within the set of
all UNTFs consisting of five elements in three-dimensional space. By Theorem 2.8,
this can be generalized so as to yield all such frames, provided we both (i) further
consider (x, y) that lie on each of the five line segments that constitute the boundary
of the parameter set and (ii) throughout generalize Vm to an arbitrary block-diagonal
unitary matrix, where the sizes of the blocks are chosen in accordance with Step B.1.

Having discussed the utility of Theorem 2.8, we turn to its proof.

Proof of Theorem 2.8 (⇐) Let {λn}Nn=1 and {μm}Mm=1 be arbitrary nonnega-
tive nonincreasing sequences and take an arbitrary sequence of outer eigensteps
{{λm;n}Nn=1}Mm=0 in accordance with Definition 2.2. Note that here we do not as-
sume that such a sequence of eigensteps actually exists for this particular choice of
{λn}Nn=1 and {μm}Mm=1; if one does not, then this direction of the result is vacuously
true.

We claim that any Φ = {ϕm}Mm=1 constructed according to Step B has the property
that for all m = 1, . . . ,M , the spectrum of the frame operator ΦmΦ

∗
m of Φm =

{ϕm′ }mm′=1 is {λm;n}Nn=1, and that the columns of Um form an orthonormal eigenbasis
for ΦmΦ

∗
m. Note that, by Lemma 2.1, proving this claim will yield our stated result

that the spectrum of ΦΦ∗ is {λn}Nn=1 and that ‖ϕm‖2 = μm for all m = 1, . . . ,M .
Since Step B is an iterative algorithm, we prove this claim by induction on m. To be
precise, Step B begins by letting U1 = {u1;n}Nn=1 and ϕ1 =√μ1u1;1. The columns
of U1 form an orthonormal eigenbasis for Φ1Φ

∗
1 since U1 is unitary by assumption

and

Φ1Φ
∗
1u1;n = 〈u1;n,ϕ1〉ϕ1 = μ1〈u1;n,u1;1〉u1;1 =

{
μ1u1;1 n= 1,
0 n 
= 1,

for all n = 1, . . . ,N . As such, the spectrum of Φ1Φ
∗
1 consists of μ1 and N − 1

repetitions of 0. To see that this spectrum matches the values of {λ1;n}Nn=1, note that,
by Definition 2.2, we know {λ1;n}Nn=1 interlaces on the trivial sequence {λ0;n}Nn=1 =
{0}Nn=1 in the sense of (2.10), implying λ1;n = 0 for all n ≥ 2; this in hand, this

definition also gives that λ1;1 =∑N
n=1 λ1;n = μ1. Thus, our claim indeed holds for

m= 1.
We now proceed by induction, assuming that for any given m = 1, . . . ,M − 1

the process of Step B has produced Φm = {ϕm′ }mm′=1 such that the spectrum of
ΦmΦ

∗
m is {λm;n}Nn=1 and that the columns of Um form an orthonormal eigenba-

sis for ΦmΦ
∗
m. In particular, we have ΦmΦ

∗
mUm = UmDm where Dm is the diago-

nal matrix whose diagonal entries are {λm;n}Nn=1. Defining Dm+1 analogously from
{λm+1;n}Nn=1, we show that constructing ϕm+1 and Um+1 according to Step B im-
plies Φm+1Φ

∗
m+1Um+1 = Um+1Dm+1 where Um+1 is unitary; doing so proves our

claim.
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Table 2.2 An explicit algorithm for computing the index sets Im and Jm in Step B.2 of Theo-
rem 2.8

01 I
(N)
m := {1, . . . ,N}

02 J
(N)
m := {1, . . . ,N}

03 for n=N, . . . ,1

04 if λm;n ∈ {λm+1;n′ }n′∈J
(n)
m

05 I
(n−1)
m :=I

(n)
m \ {n}

06 J
(n−1)
m :=J

(n)
m \ {n′} where n′ =max {n′′ ∈J

(n)
m : λm+1;n′′ = λm;n}

07 else

08 I
(n−1)
m :=I

(n)
m

09 J
(n−1)
m :=J

(n)
m

10 end if

11 end for

12 Im :=I
(1)
m

13 Jm :=I
(1)
m

To do so, pick any unitary matrix Vm according to Step B.1. To be precise, let Km

denote the number of distinct values in {λm;n}Nn=1, and for any k = 1, . . . ,Km, let
Lm;k denote the multiplicity of the kth value. We write the index n as an increasing

function of k and l; that is, we write {λm;n}Nn=1 as {λm;n(k,l)}Km

k=1
Lm;k
l=1 where n(k, l) <

n(k′, l′) if k < k′ or if k = k′ and l < l′. We let Vm be an N × N block-diagonal
unitary matrix consisting of K diagonal blocks, where for any k = 1, . . . ,K , the kth
block is an Lm;k ×Lm;k unitary matrix. In the extreme case where all the values of
{λm;n}Nn=1 are distinct, we have that Vm is a diagonal unitary matrix, meaning it is
a diagonal matrix whose diagonal entries are unimodular. Even in this case, there is
some freedom in how to choose Vm; this is the only freedom that the Step B process
provides when determining ϕm+1. In any case, the crucial fact about Vm is that its
blocks match those corresponding to distinct multiples of the identity that appear
along the diagonal of Dm, implying DmVm = VmDm.

Having chosen Vm, we proceed to Step B.2. Here, we produce subsets Im

and Jm of {1, . . . ,N} that are the remnants of the indices of {λm;n}Nn=1 and
{λm+1;n}Nn=1, respectively, obtained by canceling the values that are common to
both sequences, working backward from index N to index 1. An explicit algorithm
for doing so is given in Table 2.2. Note that, for each n = N, . . . ,1 (Line 03), we
either remove a single element from both I (n)

m and J (n)
m (Lines 04–06) or remove

nothing from both (Lines 07–09), meaning that Im :=I (1)
m and Jm :=J (1)

m have
the same cardinality, which we denote Rm. Moreover, since {λm+1;n}Nn=1 interlaces
on {λm;n}Nn=1, then for any real scalar λ whose multiplicity as a value of {λm;n}Nn=1
is L, we have that its multiplicity as a value of {λm+1;n}Nn=1 is either L− 1, L or
L+ 1. When these two multiplicities are equal, this algorithm completely removes
the corresponding indices from both Im and Jm. On the other hand, if the new
multiplicity is L− 1 or L+ 1, then the least such index in Im or Jm is left behind,
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respectively, leading to the definitions of Im or Jm given in Step B.2. Having these
sets, it is trivial to find the corresponding permutations πIm

and πJm
on {1, . . . ,N}

and to construct the associated projection matrices ΠIm
and ΠJm

.

We now proceed to Step B.3. For notational simplicity, let {βr}Rm

r=1 and {γr}Rm

r=1
denote the values of {λm;n}n∈Im

and {λm+1;n}n∈Jm
, respectively. That is, let

βπIm(n) = λm;n for all n ∈ Im and γπJm(n) = λm+1;n for all n ∈Jm. Note that
due to the way in which Im and Jm were defined, we have that the values of
{βr}Rm

r=1 and {γr}Rm

r=1 are all distinct, both within each sequence and across the two
sequences. Moreover, since {λm;n}n∈Im

and {λm+1;n}n∈Jm
are nonincreasing while

πIm
and πJm

are increasing on Im and Jm respectively, then the values {βr}Rm

r=1

and {γr}Rm

r=1 are strictly decreasing. We further claim that {γr}Rm

r=1 interlaces on

{βr}Rm

r=1. To see this, consider the four polynomials:

pm(x)=
N∏

n=1

(x − λm;n), pm+1(x)=
N∏

n=1

(x − λm+1;n),

b(x)=
Rm∏

r=1

(x − βr), c(x)=
Rm∏

r=1

(x − γr).

(2.61)

Since {βr}Rm

r=1 and {γr}Rm

r=1 were obtained by canceling the common terms from
{λm;n}Nn=1 and {λm+1;n}Nn=1, we have that pm+1(x)/pm(x)= c(x)/b(x) for all x /∈
{λm;n}Nn=1. Writing any r = 1, . . . ,Rm as r = πIm

(n) for some n ∈ Im, we have
that since {λm;n}Nn=1 � {λm+1;n}Nn=1, applying the “only if” direction of Lemma 2.2
with “p(x)” and “q(x)” being pm(x) and pm+1(x) gives

lim
x→βr

(x − βr)
c(x)

b(x)
= lim

x→λm;n
(x − λm;n)

pm+1(x)

pm(x)
≤ 0. (2.62)

Since (2.62) holds for all r = 1, . . . ,Rm, applying the “if” direction of Lemma 2.2
with “p(x)” and “q(x)” being b(x) and c(x) gives that {γr}Rm

r=1 interlaces on

{βr}Rm

r=1.

Taken together, the facts that {βr}Rm

r=1 and {γr}Rm

r=1 are distinct, strictly decreas-
ing, and interlacing sequences implies that the Rm × 1 vectors vm and wm are well
defined. To be precise, Step B.3 may be rewritten as finding vm(r),wm(r

′)≥ 0 for
all r, r ′ = 1 . . . ,Rm such that:

[
vm(r)

]2 =−
∏Rm

r ′′=1(βr − γr ′′)
∏R

r ′′=1
r ′′ 
=r

(βr − βr ′′)
,

[
wm

(
r ′
)]2 =

∏Rm

r ′′=1(γr ′ − βr ′′)
∏R

r ′′=1
r ′′ 
=r ′

(γr ′ − γr ′′)
. (2.63)

Note that the fact that the βr ’s and γr ’s are distinct implies that the denominators in
(2.63) are nonzero, and moreover that the quotients themselves are nonzero. In fact,
since {βr}Rm

r=1 is strictly decreasing, then for any fixed r , the values {βr − βr ′′ }r ′′ 
=r
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can be decomposed into r − 1 negative values {βr − βr ′′ }r−1
r ′′=1 and Rm − r positive

values {βr − βr ′′ }Rm

r ′′=r+1. Moreover, since {βr}Rm

r=1 � {γr}Rm

r=1, then for any such r ,

the values {βr − γr ′′ }Rm

r ′′=1 can be broken into r negative values {βr − γr ′′ }rr ′′=1 and

Rm − r positive values {βr − γr ′′ }Rm

r ′′=r+1. With the inclusion of an additional neg-

ative sign, we see that the quantity defining [vm(r)]2 in (2.63) is indeed positive.
Meanwhile, the quantity defining [wm(r

′)]2 has exactly r ′ − 1 negative values in
both the numerator and denominator, namely {γr ′ − βr ′′ }r ′−1

r ′′=1 and {γr ′ − γr ′′ }r ′−1
r ′′=1,

respectively.
Having shown that the vm and wm of Step B.3 are well defined, we now take

ϕm+1 and Um+1 as defined in Steps B.4 and B.5. Recall that what remains to
be shown in this direction of the proof is that Um+1 is a unitary matrix and that
Φm+1 = {ϕm′ }m+1

m′=1 satisfies Φm+1Φ
∗
m+1Um+1 = Um+1Dm+1. To do so, consider

the definition of Um+1 and recall that Um is unitary by the inductive hypothesis,
Vm is unitary by construction, and that the permutation matrices ΠIm

and ΠJm

are orthogonal, that is, unitary and real. As such, to show that Um+1 is unitary, it
suffices to show that the Rm × Rm real matrix Wm is orthogonal. To do this, recall
that eigenvectors corresponding to distinct eigenvalues of self-adjoint operators are
necessarily orthogonal. As such, to show that Wm is orthogonal, it suffices to show
that the columns of Wm are eigenvectors of a real symmetric operator. To this end,
we claim:
(
Dm;Im

+ vmv
T
m

)
Wm =WmDm+1;Jm

, WT
mWm(r, r)= 1, ∀r = 1, . . . ,Rm,

(2.64)
where Dm;Im

and Dm+1;Jm
are the Rm×Rm diagonal matrices whose r th diagonal

entries are given by βr = λ
m;π−1

Im
(r)

and γr = λ
m+1;π−1

Jm
(r)

, respectively. To prove

(2.64), note that for any r, r ′ = 1, . . . ,Rm,
[(
Dm;Im

+ vmv
T
m

)
Wm

](
r, r ′
)= (Dm;Im

Wm)
(
r, r ′
)+ (vmvT

mWm

)(
r, r ′
)

= βrWm

(
r, r ′
)+ vm(r)

Rm∑

r ′′=1

vm
(
r ′′
)
Wm

(
r ′′, r ′

)
.

(2.65)

Rewriting the definition of Wm from Step B.5 in terms of {βr}Rm

r=1 and {γr}Rm

r=1 gives

Wm

(
r, r ′
)= vm(r)wm(r

′)
γr ′ − βr

. (2.66)

Substituting (2.66) into (2.65) gives
[(
Dm;Im

+ vmv
T
m

)
Wm

](
r, r ′
)

= βr

vm(r)wm(r
′)

γr ′ − βr

+ vm(r)

Rm∑

r ′′=1

vm
(
r ′′
)vm(r ′′)wm(r

′)
γr ′ − βr ′′
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= vm(r)wm

(
r ′
)
(

βr

γr ′ − βr

+
Rm∑

r ′′=1

[vm(r ′′)]2
γr ′ − βr ′′

)

. (2.67)

Simplifying (2.67) requires a polynomial identity. To be precise, note that the dif-
ference

∏Rm

r ′′=1(x − γr ′′) −∏Rm

r ′′=1(x − βr ′′) of two monic polynomials is itself a
polynomial of degree at most Rm− 1, and as such it can be written as the Lagrange
interpolating polynomial determined by the Rm distinct points {βr}Rm

r=1:

Rm∏

r ′′=1

(x − γr ′′)−
Rm∏

r ′′=1

(x − βr ′′)=
Rm∑

r ′′=1

(
Rm∏

r=1

(βr ′′ − γr)− 0

)
Rm∏

r=1
r 
=r ′′

(x − βr)

(βr ′′ − βr)

=
Rm∑

r ′′=1

∏Rm

r=1(βr ′′ − γr)
∏Rm

r=1
r 
=r ′′

(βr ′′ − βr)

Rm∏

r=1
r 
=r ′′

(x − βr). (2.68)

Recalling the expression for [vm(r)]2 given in (2.63), (2.68) can be rewritten as

Rm∏

r ′′=1

(x − βr ′′)−
Rm∏

r ′′=1

(x − γr ′′)=
Rm∑

r ′′=1

[
vm
(
r ′′
)]2

Rm∏

r=1
r 
=r ′′

(x − βr). (2.69)

Dividing both sides of (2.69) by
∏Rm

r ′′=1(x − βr ′′) gives

1−
Rm∏

r ′′=1

(x − γr ′′)

(x − βr ′′)
=

Rm∑

r ′′=1

[vm(r ′′)]2
(x − βr ′′)

, ∀x /∈ {βr}Rm

r=1. (2.70)

For any r ′ = 1, . . . ,Rm, letting x = γr ′ in (2.70) makes the left-hand product vanish,
yielding the identity

1=
Rm∑

r ′′=1

[vm(r ′′)]2
(γr ′ − βr ′′)

, ∀r ′ = 1, . . . ,Rm. (2.71)

Substituting (2.71) into (2.67) and then recalling (2.66) gives
[(
Dm;Im

+ vmv
T
m

)
Wm

](
r, r ′
)

= vm(r)wm

(
r ′
)( βr

γr ′ − βr

+ 1

)

= γr ′
vm(r)wm(r

′)
γr ′ − βr

= γr ′Wm

(
r, r ′
)= (WmDm+1;Jm

)
(
r, r ′
)
. (2.72)

As (2.72) holds for all r, r ′ = 1, . . . ,Rm we have the first half of our claim (2.64). In
particular, we know that the columns of Wm are eigenvectors of the real symmetric
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operator Dm;Im
+ vmv

T
m which correspond to the distinct eigenvalues {γr}Rm

r=1. As
such, the columns of Wm are orthogonal. To show that Wm is an orthogonal matrix,
we must further show that the columns of Wm have unit norm, namely the second
half of (2.64). To prove this, at any x /∈ {βr}Rm

r=1 we differentiate both sides of (2.70)
with respect to x to obtain

Rm∑

r ′′=1

[
Rm∏

r=1
r 
=r ′′

(x − γr)

(x − βr)

]
γr ′′ − βr ′′

(x − βr ′′)2
=

Rm∑

r ′′=1

[vm(r ′′)]2
(x − βr ′′)2

, ∀x /∈ {βr}Rm

r=1. (2.73)

For any r ′ = 1, . . . ,Rm, letting x = γr ′ in (2.73) makes the left-hand summands
where r ′′ 
= r ′ vanish; by (2.63), the remaining summand where r ′′ = r ′ can be
written as

1

[wm(r ′)]2 =
∏R

r=1
r 
=r ′

(γr ′ − γr)

∏Rm

r=1(γr ′ − βr)
=
[

Rm∏

r=1
r 
=r ′

(γr ′ − γr)

(γr ′ − βr)

]
γr ′ − βr ′

(γr ′ − βr ′)2

=
Rm∑

r ′′=1

[vm(r ′′)]2
(γr ′ − βr ′′)2

. (2.74)

We now use this identity to show that the columns of Wm have unit norm; for any
r ′ = 1, . . . ,Rm, (2.66) and (2.74) give:

(
WT

mWm

)(
r ′, r ′

) =
Rm∑

r ′′=1

[
Wm

(
r ′′, r ′

)]2 =
Rm∑

r ′′=1

(
vm(r

′′)wm(r
′)

γr ′ − βr ′′

)2

= [wm

(
r ′
)]2

Rm∑

r ′′=1

[vm(r ′′)]2
(γr ′ − βr ′′)2

= [wm

(
r ′
)]2 1

[wm(r ′)]2 = 1.

Having shown that Wm is orthogonal, we have that Um+1 is unitary. For this di-
rection of the proof, all that remains to be shown is that Φm+1Φ

∗
m+1Um+1 =

Um+1Dm+1. To do this, write Φm+1Φ
∗
m+1 = ΦmΦ

∗
m + ϕm+1ϕ

∗
m+1 and recall the

definition of Um+1:

Φm+1Φ
∗
m+1Um+1 =

(
ΦmΦ

∗
m + ϕm+1ϕ

∗
m+1

)
UmVmΠ

T
Im

[
Wm 0

0 Id

]
ΠJm

= ΦmΦ
∗
mUmVmΠ

T
Im

[
Wm 0

0 Id

]
ΠJm

+ ϕm+1ϕ
∗
m+1UmVmΠ

T
Im

[
Wm 0

0 Id

]
ΠJm

. (2.75)

To simplify the first term in (2.75), recall that the inductive hypothesis gives us
that ΦmΦ

∗
mUm = UmDm and that Vm was constructed to satisfy DmVm = VmDm,
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implying:

ΦmΦ
∗
mUmVmΠ

T
Im

[
Wm 0

0 Id

]
ΠJm

=UmVmDmΠ
T
Im

[
Wm 0

0 Id

]
ΠJm

=UmVmΠ
T
Im

(
ΠIm

DmΠ
T
Im

)[Wm 0
0 Id

]
ΠJm

. (2.76)

To continue simplifying (2.76), note that ΠIm
DmΠ

T
Im

is itself a diagonal matrix:
for any n,n′ = 1, . . . ,N , the definition of ΠIm

given in Step B.2 gives

(
ΠIm

DmΠ
T
Im

)(
n,n′

)= 〈Dmδπ−1
Im

(n′), δπ−1
Im

(n)
〉 =
{
λ
m;π−1

Im
(n)

, n= n′,
0, n 
= n′.

That is, ΠIm
DmΠ

T
Im

is the diagonal matrix whose first Rm diagonal entries, namely

{βr}Rm

r=1 = {λm;π−1
Im

(r)
}Rm

r=1, match those of the aforementioned Rm × Rm diagonal

matrix Dm;Im
and whose remaining N −Rm diagonal entries

{λ
m;π−1

Im
(n)
}Nn=Rm+1 form the diagonal of an (N − Rm) × (N − Rm) diagonal

matrix Dm;I c
m

:

ΠIm
DmΠ

T
Im
=
[
Dm;Im

0
0 Dm;I c

m

]
. (2.77)

Substituting (2.77) into (2.76) gives:

ΦmΦ
∗
mUmVmΠ

T
Im

[
Wm 0

0 Id

]
ΠJm

=UmVmΠ
T
Im

[
Dm;Im

0
0 Dm;I c

m

][
Wm 0

0 Id

]
ΠJm

=UmVmΠ
T
Im

[
Dm;Im

Wm 0
0 Dm;I c

m

]
ΠJm

. (2.78)

Meanwhile, to simplify the second term in (2.75), we recall the definition of ϕm+1
from Step B.4:

ϕm+1ϕ
∗
m+1UmVmΠ

T
Im

[
Wm 0

0 Id

]
ΠJm

=UmVmΠ
T
Im

[
vm
0

][
vT
m 0

][Wm 0
0 Id

]
ΠJm

=UmVmΠ
T
Im

[
vmv

T
mWm 0
0 0

]
ΠJm

. (2.79)
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Substituting (2.78) and (2.79) into (2.75), simplifying the result, and recalling (2.64)
gives

Φm+1Φ
∗
m+1Um+1 =UmVmΠ

T
Im

[
(Dm;Im

+ vmv
T
m)Wm 0

0 Dm;I c
m

]
ΠJm

=UmVmΠ
T
Im

[
WmDm+1;Jm

0
0 Dm;I c

m

]
ΠJm

.

By introducing an extra permutation matrix and its inverse and recalling the defini-
tion of Um+1, this simplifies to

Φm+1Φ
∗
m+1Um+1

=UmVmΠ
T
Im

[
Wm 0

0 Id

]
ΠJm

ΠT
Jm

[
Dm+1;Jm

0
0 Dm;I c

m

]
ΠJm

=Um+1Π
T
Jm

[
Dm+1;Jm

0
0 Dm;I c

m

]
ΠJm

. (2.80)

We now partition the {λm+1;n}Nn=1 of Dm+1 into Jm and J c
m and mimic the deriva-

tion of (2.77), writing Dm+1 in terms of Dm+1;Jm
and Dm+1;J c

m
. Note here that by

the manner in which Im and Jm were constructed, the values of {λm;n}n∈I c
m

are
equal to those of {λm+1;n}J c

m
, as the two sets represent exactly those values which

are common to both {λm;n}Nn=1 and {λm+1;n}Nn=1. As these two sequences are also
both in nonincreasing order, we have Dm;I c

m
=Dm+1;J c

m
and so

ΠJm
Dm+1Π

T
Jm

=
[
Dm+1;Jm

0
0 Dm+1;J c

m

]
=
[
Dm+1;Jm

0
0 Dm;I c

m

]
. (2.81)

Substituting (2.81) into (2.80) yields Φm+1Φ
∗
m+1Um+1 = Um+1Dm+1, completing

this direction of the proof.
(⇒) Let {λn}Nn=1 and {μm}Mm=1 be any nonnegative nonincreasing sequences,

and let Φ = {ϕm}Mm=1 be any sequence of vectors whose frame operator ΦΦ∗ has
{λn}Nn=1 as its spectrum and has ‖ϕm‖2 = μm for all m = 1, . . . ,M . We will show
that this Φ can be constructed by following Step A and Step B of this result. To see
this, for any m= 1, . . . ,M , let Φm = {ϕm′ }mm′=1 and let {λm;n}Nn=1 be the spectrum
of the corresponding frame operator ΦmΦ

∗
m. Letting λ0;n := 0 for all n, the proof of

Theorem 2.2 demonstrated that the sequence of spectra {{λm;n}Nn=1}Mm=0 necessarily
forms a sequence of outer eigensteps as specified by Definition 2.2. This particular
set of eigensteps is the one we choose in Step A.

All that remains to be shown is that we can produce our specific Φ by using
Step B. Here, we must carefully exploit our freedom to pick U1 and the Vm’s; the
proper choice of these unitary matrices will result in Φ , while other choices will
produce other sequences of vectors that are only related to Φ through a potentially
complicated series of rotations. Indeed, note that since {{λm;n}Nn=1}Mm=0 is a valid
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sequence of eigensteps, then the other direction of this proof, as given earlier, im-
plies that any choice of U1 and Vm’s will result in a sequence of vectors whose
eigensteps match those of Φ . Moreover, quantities that we considered in the other
direction of the proof that only depended on the choice of eigensteps, such as Im,
Jm, {βr}Rm

r=1, {γr}Rm

r=1, etc., are thus also well defined in this direction; in the fol-
lowing arguments, we recall several such quantities and make further use of their
previously derived properties.

To be precise, let U1 be any one of the infinite number of unitary matrices whose
first column u1;1 satisfies ϕ1 =√μ1u1;1. We now proceed by induction, assuming
that for any given m= 1, . . . ,M−1, we have followed Step B and have made appro-
priate choices for {Vm′ }m−1

m′=1 so as to correctly produce Φm = {ϕm′ }mm′=1; we show
how the appropriate choice of Vm will correctly produce ϕm+1. To do so, we again

write the mth spectrum {λm;n}Nn=1 in terms of its multiplicities as {λm;n(k,l)}Km

k=1
Lm;k
l=1 .

For any k = 1, . . . ,Km, Step B of Theorem 2.2 gives that the norm of the projection
of ϕm+1 onto the kth eigenspace of ΦmΦ

∗
m is necessarily given by

‖Pm;λm;n(k,1)ϕm+1‖2 =− lim
x→λm;n(k,1)

(x − λm;n(k,1))
pm+1(x)

pm(x)
, (2.82)

where pm(x) and pm+1(x) are defined by (2.61). Note that by picking l = 1,
λm;n(k,1) represents the first appearance of that particular value in {λm;n}Nn=1. As
such, these indices are the only ones that are eligible to be members of the set Im

found in Step B.2. That is, Im ⊆ {n(k,1) : k = 1, . . . ,Km}. However, these two
sets of indices are not necessarily equal, since Im only contains n’s of the form
n(k,1) that satisfy the additional property that the multiplicity of λm;n as a value in
{λm;n′ }Nn′=1 exceeds its multiplicity as a value in {λm+1;n}Nn=1. To be precise, for any
given k = 1, . . . ,Km, if n(k,1) ∈I c

m, then λm;n(k,1) appears as a root of pm+1(x)

at least as many times as it appears as a root of pm(x), meaning in this case that the
limit in (2.82) is necessarily zero. If, on the other hand, n(k,1) ∈Im, then writing
πIm

(n(k,1)) as some r ∈ {1, . . . ,Rm} and recalling the definitions of b(x) and c(x)

in (2.61) and v(r) in (2.63), we can rewrite (2.82) as

‖Pm;βr
ϕm+1‖2 = − lim

x→βr

(x − βr)
pm+1(x)

pm(x)

= − lim
x→βr

(x − βr)
c(x)

b(x)
=−

∏Rm

r ′′=1(βr − γr ′′)
∏R

r ′′=1
r ′′ 
=r

(βr − βr ′′)
= [vm(r)

]2
.

(2.83)

As such, we can write ϕm+1 as

ϕm+1 =
Km∑

k=1

Pm;λm;n(k,1)ϕm+1 =
Rm∑

r=1

Pm;βr
ϕm+1 =

Rm∑

r=1

vm(r)
1

vm(r)
Pm;βr

ϕm+1

=
∑

n∈Im

vm
(
πIm

(n)
) 1

vm(πIm
(n))

Pm;βπIm
(n)
ϕm+1 (2.84)
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where each 1
vm(πIm(n))

Pm;βπIm
(n)
ϕm+1 has unit norm by (2.83). We now pick a

new orthonormal eigenbasis Ûm := {ûm;n}Nn=1 for ΦmΦ
∗
m that has the property

that for any k = 1, . . . ,Km, both {um;n(k,l)}Lm;k
l=1 and {ûm;n(k,l)}Lm;k

l=1 span the same
eigenspace and, for every n(k,1) ∈Im, has the additional property that

ûm;n(k,1) = 1

vm(πIm
(n(k,1)))

Pm;βπIm
(n(k,1))ϕm+1.

As such, (2.84) becomes

ϕm+1 =
∑

n∈Im

vm
(
πIm

(n)
)
ûm;n = Ûm

∑

n∈Im

vm
(
πIm

(n)
)
δn

= Ûm

Rm∑

r=1

vm(r)δπ−1
Im

(r)
= ÛmΠ

T
Im

Rm∑

r=1

vm(r)δr = ÛmΠ
T
Im

[
vm
0

]
.

(2.85)

Letting Vm be the unitary matrix Vm = U∗mÛm, the eigenspace spanning condition
gives that Vm is block diagonal whose kth diagonal block is of size Lm;k × Lm;k .
Moreover, with this choice of Vm, (2.85) becomes

ϕm+1 =UmU
∗
mÛmΠ

T
Im

[
vm
0

]
=UmVmΠ

T
Im

[
vm
0

]

meaning that ϕm+1 can indeed be constructed by following Step B. �
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Chapter 3
Spanning and Independence Properties of Finite
Frames

Peter G. Casazza and Darrin Speegle

Abstract The fundamental notion of frame theory is redundancy. It is this property
which makes frames invaluable in so many diverse areas of research in mathemat-
ics, computer science, and engineering, because it allows accurate reconstruction
after transmission losses, quantization, the introduction of additive noise, and a host
of other problems. This issue also arises in a number of famous problems in pure
mathematics such as the Bourgain-Tzafriri conjecture and its many equivalent for-
mulations. As such, one of the most important problems in frame theory is to under-
stand the spanning and independence properties of subsets of a frame. In particular,
how many spanning sets does our frame contain? What is the smallest number of
linearly independent subsets into which we can partition the frame? What is the
least number of Riesz basic sequences that the frame contains with universal lower
Riesz bounds? Can we partition a frame into subsets which are nearly tight? This
last question is equivalent to the infamous Kadison–Singer problem. In this section
we will present the state of the art on partitioning frames into linearly independent
and spanning sets. A fundamental tool here is the famous Rado-Horn theorem. We
will give a new recent proof of this result along with some nontrivial generalizations
of the theorem.

Keywords Spanning sets · Independent sets · Redundancy · Riesz sequence ·
Rado-Horn theorem · Spark ·Maximally robust ·Matroid · K-ordering of
dimensions
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3.1 Introduction

The primary focus of this chapter is the independence and spanning properties of
finite frames. More specifically, we will be looking at partitioning frames into sets
{Ak}Kk=1 which are linearly independent, spanning, or both. Since increasing the
number of sets in the partition makes it easier for each set to be independent, and
harder to span, we will be looking for the smallest K needed to be able to choose
independent sets, and the largest K allowed so that we still have each set of vec-
tors spanning. In order to fix notation, let Φ = (ϕi)

M
i=1 be a set of vectors in HN ,

not necessarily a frame. It is clear from dimension counting that if Ai is linearly
independent for each 1≤ i ≤K , then K ≥ �M/N�. It is also clear from dimension
counting that if Ai spans HN for each 1 ≤ i ≤K , then K ≤ �M/N�. So, in terms
of linear independence and spanning properties, Φ is most “spread out” if it can be
partitioned into K = �M/N� linearly independent sets, �M/N� of which are also
spanning sets.

This important topic of spanning and independence properties of frames was not
developed in frame theory until recently. In [9] we see the first results on decomposi-
tions of frames into linearly independent sets. Recently, a detailed study of spanning
and independence properties of frames was made in [4]. Also, in [5] we see a new
notion of redundancy for frames which connects the number of linearly independent
and spanning sets of a frame of nonzero vectors (ϕi)

M
i=1 to the largest and smallest

eigenvalues of the frame operator of the normalized frame (
ϕi‖ϕi‖ )

M
i=1. In this chapter

we will discuss the state of the art on this topic and will also point out the remaining
deep, important, open problems on this subject.

Spanning and independence properties of frames are related to several impor-
tant themes in frame theory. First, a fundamental open problem in frame theory is
the Kadison–Singer problem in the context of frame theory, which was originally
called the Feichtinger conjecture [9, 10, 14, 16]. The Kadison–Singer problem asks
whether for every frame Φ = (ϕi)i∈I , not necessarily finite, that is norm bounded
below, there exists a finite partition {Aj : j = 1, . . . , J } such that for each 1≤ j ≤ J ,
(ϕi)i∈Aj

is a Riesz sequence. Since every Riesz sequence is, in particular, a linearly
independent set, it is natural to study partitions of frames into linearly independent
sets in order to better understand the Kadison–Singer problem in frame theory.

A second notion related to the spanning and independence properties of frames
is that of redundancy. Frames are sometimes described as “redundant” bases, and a
theme throughout frame theory is to make the notion of redundancy precise. Two
properties that have been singled out as desirable properties of redundancy are: re-
dundancy should measure the maximal number of disjoint spanning sets, and redun-
dancy should measure the minimal number of disjoint linearly independent sets [5].
Of course, these two numbers are not usually the same, but nonetheless, describing
in an efficient way the maximal number of spanning sets and the minimal number of
linearly independent sets is a useful goal in quantifying the redundancy of a frame.

A third place where the spanning and independence properties of frames are vital,
concerns erasures. During transmission, it is possible that frame coefficients are lost
(erasures) or corrupted; then we have to try to do accurate reconstruction after losses
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of frame coefficients. This can be done if the remaining frame vectors still span the
space. So, for example, if a frame contains at least two spanning sets, then we can
still do perfect reconstruction after the loss of one frame vector.

A fundamental tool for working with spanning and independence properties of
frames is the celebrated Rado-Horn theorem [19, 22]. This theorem gives a neces-
sary and sufficient condition for a frame to be partitioned into K disjoint linearly
independent sets. The terminology Rado-Horn theorem was introduced in the pa-
per [6]. The Rado-Horn theorem is a problem for frame theory in that it is impracti-
cal in applications. In particular, it requires doing a computation on every subset of
the frame. What we want, is to be able to identify the minimal number of linearly
independent sets into which we can partition a frame by using properties of the
frame such as the eigenvalues of the frame operator, the norms of the frame vectors,
etc. To do this, we will develop a sequence of deep refinements of the Rado-Horn
theorem [5, 13] which are able to determine the number of linearly independent and
spanning sets of a frame in terms of the properties of the frame. There are at least
four proofs of the Rado-Horn theorem today [4, 13, 17, 19, 22]. The original proof
is delicate, and the recent refinements [4, 13] are even more so. So we will develop
these refinements slowly throughout various sections of this chapter to make this
understandable.

Finally, let us recall that any frame Φ = (ϕi)
M
i=1 with frame operator S is iso-

morphic to a Parseval frame S−1/2Φ = (S−1/2ϕi)
M
i=1 and these two frames have

the same linearly independent and spanning sets. So in our work we will mostly be
working with Parseval frames.

3.1.1 Full Spark Frames

There is one class of frames for which the answers to our questions concerning the
partition of the frame into independent and spanning sets are obvious. These are the
full spark frames.

Definition 3.1 The spark of a frame (ϕi)
M
i=1 in HN is the cardinality of the smallest

linearly dependent subset of the frame. We say the frame is full spark if every N -
element subset of the frame is linearly independent.

Full spark frames have appeared in the literature under the name generic frames
[7] and maximally robust to erasures [11], since these frames have the property that
the loss (erasure) of any M − N of the frame elements still leaves a frame. For a
full spark frame (ϕi)

M
i=1, any partition {Aj }Kj=1 of [1,M] into K = �M

N
� sets with

|Aj | =N for j = 1,2, . . . ,K − 1 and AK the remaining elements has the property
that (ϕi)i∈Ak

is a linearly independent spanning set for all 1≤ k ≤K and (ϕi)i∈AK

is linearly independent (and also spanning if M =KN ).
It appears that full spark frames are quite specialized and perhaps do not occur

very often. But, it is known that every frame is arbitrarily close to a full spark frame.
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In [7] it is shown that this result holds even for Parseval frames. That is, the full spark
frames are dense in the class of frames and the full spark Parseval frames are dense
in the class of Parseval frames.

To prove these results, we do some preliminary work. For a frame Φ = (ϕi)
M
i=1

with frame operator S, it is known that (S−1/2ϕi)
M
i=1 is the closest Parseval frame

to Φ [2, 3, 8, 12, 20]. Recall (see the Chap. 11) that a frame Φ for HN is ε-nearly
Parseval if the eigenvalues of the frame operator of the frame λ1 ≥ λ2 ≥ · · · ≥ λN

satisfy 1− ε ≤ λN ≤ λ1 ≤ 1+ ε.

Proposition 3.1 Let (ϕi)
M
i=1 be an ε-nearly Parseval frame for HN , with frame

operator S. Then (S−1/2ϕi)
M
i=1 is the closest Parseval frame to (ϕi)

M
i=1 and

M∑

i=1

∥∥S−1/2ϕi − ϕi

∥∥2 ≤N
(
2− ε − 2

√
1− ε

)≤N
ε2

4
.

Proof See the section on The Kadison–Singer and Paulsen Problems for a proof. �

We also need to check that a frame which is close to a Parseval frame is itself
close to being Parseval.

Proposition 3.2 Let Φ = (ϕi)
M
i=1 be a Parseval frame for HN and let Ψ = (ψi)

M
i=1

be a frame for HN satisfying

M∑

i=1

‖ϕi −ψi‖2 < ε <
1

9
.

Then Ψ is a 3
√
ε nearly Parseval frame.

Proof Given x ∈HN we compute

(
M∑

i=1

∣∣〈x,ψi〉
∣∣2
)1/2

≤
(

M∑

i=1

∣∣〈x,ϕi −ψi〉
∣∣2
)1/2

+
(

M∑

i=1

∣∣〈x,ϕi〉
∣∣2
)1/2

≤ ‖x‖
(

M∑

i=1

‖ϕi −ψi‖2

)1/2

+ ‖x‖

≤ ‖x‖(1+√ε
)
.

The lower frame bound is similar. �

The final result needed is that if a Parseval frame Φ is close to a frame Ψ with
frame operator S, then Φ is close to S−1/2Ψ .
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Proposition 3.3 If Φ = (ϕi)
M
i=1 is a Parseval frame for HN and Ψ = (ψi)

M
i=1 is a

frame with frame operator S satisfying

M∑

i=1

‖ϕi −ψi‖2 < ε <
1

9
,

then
M∑

i=1

∥∥ϕi − S−1/2ψi

∥∥2
< 2ε

[
1+ 9

4
N

]
.

Proof We compute

M∑

i=1

∥
∥ϕi − S−1/2ψi

∥
∥2 ≤ 2

[
M∑

i=1

‖ϕi −ψi‖2 +
M∑

i=1

∥
∥ψi − S−1/2ψi

∥
∥2

]

≤ 2

[
ε +N

(3
√
ε)2

4

]

= 2ε

[
1+ 9

4
N

]
,

where in the second inequality we applied Proposition 3.1 to the frame (ψi)
M
i=1

which is 3
√
ε nearly Parseval by Proposition 3.2. �

Now we are ready for the main theorem. We will give a new elementary proof of
this result.

Theorem 3.1 Let Φ = (ϕi)
M
i=1 be a frame for HN and let ε > 0. Then there is a full

spark frame Ψ = (ψi)
M
i=1 so that

‖ϕi −ψi‖< ε, for all i = 1,2, . . . ,M.

Moreover, if Φ is a Parseval frame, then Ψ may be chosen to be a Parseval frame.

Proof Since Φ must contain a linearly independent spanning set, we may assume
that (ϕi)

N
i=1 is such a set. We let ψi = ϕi for i = 1,2, . . . ,N . The complement of

the union of all hyperplanes spanned by subsets of (ϕi)
N
i=1 is open and dense in

HN , and so there is a vector ψN+1 in this open set with ‖ϕN+1 − ψN+1‖< ε. By
definition, (ψi)

N+1
i=1 is full spark. Now we continue this argument. The complement

of the union of all hyperplanes spanned by subsets of (ψi)
N+1
i=1 is an open dense set

in HN , and so we can choose a vector ψN+2 from this set with ‖ϕN+2−ψN+2‖< ε.
Again, by construction, (ψi)

N+2
i=1 is full spark. Iterating this argument we construct

(ψi)
M
i=1.

For the moreover part, we choose δ > 0 so that δ < 1
9 and

2δ

[
1+ 9

4
N

]
< ε2.
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By the first part of the theorem, we can choose a full spark frame (ψi)
M
i=1 so that

M∑

i=1

‖ϕi −ψi‖2 < δ.

Letting S be the frame operator for (ψi)
M
i=1, we have that (S−1/2ψi)

M
i=1 is a full

spark frame, and by Proposition 3.3 we have that

M∑

i=1

∥∥ϕi − S−1/2ψi

∥∥2
< 2δ

[
1+ 9

4
N

]
< ε2. �

We end this section with an open problem.

Problem 3.1 If (ϕi)
M
i=1 is an equal norm Parseval frame for HN and ε > 0, is there

a full spark equal norm Parseval frame Ψ = (ψi)
M
i=1 so that

‖ψi − ϕi‖< ε, for all i = 1,2, . . . ,M?

We refer the reader to [1] for a discussion of this problem and its relationship to
algebraic geometry.

3.2 Spanning and Independence Properties of Finite Frames

The main goal of this section is to show that equal norm Parseval frames of M

vectors in HN can be partitioned into �M/N� bases and one additional set which is
linearly independent. In particular, equal norm Parseval frames will contain �M/N�
spanning sets and �M/N� linearly independent sets.

We begin by relating the algebraic properties of spanning and linear indepen-
dence to the analytical properties of frames and Riesz sequences.

Proposition 3.4 Let Φ = (ϕi)
M
i=1 ⊂HN . Then, Φ is a frame for HN if and only if

span Φ =HN .

Proof If Φ is a frame for HN with frame operator S, then A · Id ≤ S for some
0 <A. So Φ must span HN .

The converse is a standard compactness argument. If Φ is not a frame, then there
are vectors xn ∈HN with ‖xn‖ = 1 and satisfying

M∑

i=1

∣∣〈xn,ϕi〉
∣∣2 ≤ 1

n
, for all n= 1,2, . . . .

Since we are in a finite-dimensional space, by switching to a subsequence of {xn}∞n=1
if necessary we may assume that limn→∞ xn = x ∈HN . Now we have
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M∑

i=1

∣∣〈x,ϕi〉
∣∣2 ≤ 2

[
M∑

i=1

∣∣〈xn,ϕi〉
∣∣2 +

M∑

i=1

∣∣〈x − xn,ϕi〉
∣∣2
]

≤ 2

[
1

n
+

M∑

i=1

‖x − xn‖2‖ϕi‖2

]

= 2

[
1

n
+ ‖x − xn‖2

M∑

i=1

‖ϕi‖2

]

.

As n→∞, the right-hand side of the above inequality goes to zero. Hence,

M∑

i=1

∣∣〈x,ϕi〉
∣∣2 = 0,

and so x ⊥ ϕi for all i = 1,2, . . . ,M . That is, Φ does not span HN . �

Proposition 3.5 Let Φ = (ϕi)
M
i=1 ⊂ HN . Then, Φ is linearly independent if and

only if Φ is a Riesz sequence.

Proof If Φ is a Riesz sequence, then there is a constant 0 <A so that for all scalars
{ai}Mi=1 we have

A

M∑

i=1

|ai |2 ≤
∥∥∥∥∥

M∑

i=1

aiϕi

∥∥∥∥∥

2

.

Hence, if
∑M

i=1 aiϕi = 0, then ai = 0 for all i = 1,2, . . . ,M .
Conversely, if Φ is linearly independent, then (see the Introduction) the lower

Riesz bound of Φ equals the lower frame bound and so Φ is a Riesz sequence. �

Notice that in the two propositions above, we do not say anything about the
frame bounds or the Riesz bounds of the sets Φ . The following examples show that
the lower frame bounds and Riesz bounds can be close to zero.

Example 3.1 Given ε > 0,N ∈ N, there is a linearly independent set containing N

norm one vectors in HN with lower frame bound (and hence lower Riesz bound)
less than ε. To see this, let (ei)Ni=1 be an orthonormal basis for HN and define a unit
norm linearly independent set

Φ = (ϕi)
N
i=1 =

(
e1,

e1 +√εe2√
1+ ε

, e3, . . . , eN

)
.

Now,

N∑

i=1

∣∣〈e2, ϕi〉
∣∣2 = ε

1+ ε
< ε.
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3.2.1 Applications of the Rado-Horn Theorem I

Returning to the main theme of this chapter, we ask: When is it possible to partition
a frame of M vectors for HN into K linearly independent [resp., spanning] sets?
The main combinatorial tool that we have to study this question is the Rado-Horn
theorem.

Theorem 3.2 (Rado-Horn Theorem I) Let Φ = (ϕi)
M
i=1 ⊂HN and K ∈ N. There

exists a partition {A1, . . . ,AK} of [1,M] such that for each 1 ≤ k ≤ K , the set
(ϕi : i ∈Ak) is linearly independent if and only if for every nonempty J ⊂ [1,M],

|J |
dim span{ϕi : i ∈ J } ≤K.

This theorem was proven in more general algebraic settings in [18, 19, 22], as
well as later rediscovered in [17]. We delay the discussion of the proof of this the-
orem to Sect. 3.3. We content ourselves now with noting that the forward direction
of the Rado-Horn Theorem I is essentially obvious. It says that in order to partition
Φ into K linearly independent sets, there can not exist a subspace S which con-
tains more than K dim(S) vectors. The reverse direction indicates that there are no
obstructions to partitioning sets of vectors into linearly independent sets other than
dimension counting obstructions.

We wish to use the Rado-Horn Theorem I to partition frames into linearly inde-
pendent sets. Proposition 3.4 tells us that every spanning set is a frame, so it is clear
that in order to get strong results we are going to need to make some assumptions
about the frame. A natural extra condition is that of an equal norm Parseval frame.
Intuitively, equal norm Parseval frames have no preferred directions, so it seems
likely that one should be able to partition them into a small number of linearly in-
dependent sets. We will be able to do better than that; we will relate the minimum
norm of the vectors in the Parseval frame to the number of linearly independent sets
into which the frame can be partitioned.

Proposition 3.6 Let 0 < C < 1 and let Φ be a Parseval frame with M vectors for
HN such that ‖ϕ‖2 ≥ C for all ϕ ∈Φ . Then, Φ can be partitioned into � 1

C
� linearly

independent sets.

Proof We show that the hypotheses of the Rado-Horn theorem are satisfied. Let
J ⊂ [1,M]. Let S = span{ϕj : j ∈ J }, and let P denote the orthogonal projection of
HN onto S. Since the orthogonal projection of a Parseval frame is again a Parseval
frame and the sum of the norms squared of the vectors of the Parseval frame is the
dimension of the space, we have

dimS =
M∑

j=1

‖PSϕj‖2 ≥
∑

j∈J
‖PSϕj‖2

=
∑

j∈J
‖ϕj‖2 ≥ |J |C.
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Therefore,

|J |
dim span{ϕj : j ∈ J } ≤

1

C
,

and Φ can be partitioned into � 1
C
� linearly independent sets by the Rado-Horn the-

orem. �

We now present a trivial way of constructing an equal norm Parseval frame of
M vectors for HN when N divides M . Let (ei)Ni=1 be an orthonormal basis for HN

and let Φ = (Ce1, . . . ,Ce1,Ce2, . . . ,Ce2, . . . ,CeN, . . . ,CeN) be the orthonormal
basis repeated M/N times, where C =√N/M . Then, it is easy to check that Φ is a
Parseval frame. Another, slightly less trivial example is to union M/N orthonormal
bases with no common elements and to normalize the vectors of the resulting set.
In each of these cases, the Parseval frame can be trivially decomposed into M/N

bases for HN . The following corollary can be seen as a partial converse.

Corollary 3.1 If Φ is an equal norm Parseval frame of M vectors for HN , then Φ

can be partitioned into �M/N� linearly independent sets. In particular, if M = kN ,
then Φ can be partitioned into k Riesz bases.

Proof This follows immediately from Proposition 3.6 and the fact that

M∑

i=1

‖ϕi‖2 =N,

which tells us that ‖ϕi‖2 =M/N for all i = 1, . . . ,M . �

The argument above does not give any information about the lower Riesz bounds
of the k Riesz bases we get in Corollary 3.1. Understanding these bounds is an ex-
ceptionally difficult problem and is equivalent to solving the Kadison–Singer prob-
lem (see the Chap. 11).

3.2.2 Applications of the Rado-Horn Theorem II

The Rado-Horn Theorem I has been generalized in several ways. In this section, we
present the generalization to matroids and two applications of this generalization to
partitioning into spanning and independent sets. We refer the reader to [21] for an
introduction to matroid theory.

A matroid is a finite set X together with a collection I of subsets of X, which
satisfies three properties:

1. ∅ ∈ I
2. if I1 ∈ I and I2 ⊂ I1, then I2 ∈ I , and
3. if I1, I2 ∈ I and |I1|< |I2|, then there exists x ∈ I2 \ I1 such that I1 ∪ {x} ∈ I .
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Traditionally, the sets I ∈ I are called independent sets, which can lead to some
confusion. For this chapter, we will use linearly independent to denote linear inde-
pendence in the vector space sense, and independent to denote independence in the
matroid sense. The rank of a set E ⊂X is defined to be the cardinality of a maximal
independent (in the matroid sense) set contained in E.

There are many examples of matroids, but perhaps the most natural one comes
from considering linear independence. Given a frame (or other finite collection of
vectors) Φ in HN , define

I = {I ⊂Φ : I is linearly independent}.
It is easy to see that (Φ,I) is a matroid.

Another, slightly more involved example is to let X be a finite set which spans
HN , and

I = {I ⊂X : span(X \ I )=HN
}
.

Then, in the definition of matroid, properties (1) and (2) are immediate. To see
property (3), let I1, I2 be as in (3). We have that span(X \ I1)= span(X \ I2)=HN .
Let E1 = X \ I1 and E2 = X \ I2; then, we have |E1| > |E2|. Find a basis G1
for HN by first taking a maximal linearly independent subset F of E1 ∩ E2, and
adding elements from E1 to form a basis. Then find another basis G2 for HN by
taking F and adding elements from E2. Since |E1|> |E2|, there must be an element
x ∈E1 \E2 which was not chosen to be in G1. Note that x ∈ I2 \I1, and I1∪{x} ∈ I ,
since X \ (I1 ∪ {x}) contains G1, which is a basis. Another important source of
examples is graph theory.

There is a natural generalization of the Rado-Horn theorem to the matroid setting.

Theorem 3.3 (Rado-Horn Theorem II) [18] Let (X,I) be a matroid, and let K be
a positive integer. A set J ⊂ X can be partitioned into K independent sets if and
only if for every subset E ⊂ J ,

|E|
rank(E)

≤K. (3.1)

We will be applying the matroid version of the Rado-Horn theorem to frames
in Theorem 3.5 below, but first let us illustrate a more intuitive use. Consider the
case of a collection Φ of M vectors where we wish to partition Φ into K linearly
independent sets after discarding up to L vectors from Φ . It is natural to guess,
based on our experience with the Rado-Horn theorem, that this is possible if and
only if for every nonempty J ⊂ [1,M]

|J | −L

dim span{ϕj : j ∈ J } ≤K.

However, it is not immediately obvious how to prove this from the statement of the
Rado-Horn theorem. In the following theorem, we prove that, in some instances, the
above conjecture is correct. Unfortunately, the general case will have to wait until
we prove a different extension of the Rado-Horn theorem in Theorem 3.6.
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Proposition 3.7 Let Φ be a collection of M vectors in HN and K,L ∈ N. If there
exists a set H with |H | ≤ L such that the set Φ \ H can be partitioned into K

linearly independent sets, then for every nonempty J ⊂ [1,M]
|J | −L

dim span{ϕj : j ∈ J } ≤K.

Proof If J ⊂ [1,M] \H , then the Rado-Horn Theorem I implies

|J |
dim span{ϕj : j ∈ J } ≤K.

For general J with |J | ≥ L+ 1, notice that

|J | −L

dim span{ϕj : j ∈ J } ≤
|J \H |

dim span{ϕj : j ∈ J \H } ≤K,

as desired. �

Proposition 3.8 Let Φ be a collection of M vectors in HN indexed by [1,M] and
let L ∈ N. Let I = {I ⊂ [1,M]: there exists a set H ⊂ I with |H | ≤ L such that
I \H is linearly independent}. Then (Φ,I) is a matroid.

Proof As usual, the first two properties of matroids are immediate. For the third
property, let I1, I2 ∈ I with |I1| < |I2|. There exist H1 and H2 such that Ij \ Hj

is linearly independent and |Hj | ≤ L for j = 1,2. If |H1| can be chosen so that
|H1|<L, then we can add any vector to I1 and still have the new set linearly inde-
pendent. If |H1| must be chosen to have cardinality L, then |I1 \H1|< |I2 \H2| and
both sets are linearly independent, so there is a vector x ∈ (I2 \H2)\(I1 \H1) so that
(I1 \H1) ∪ {x} is linearly independent. By the assumption that H1 must be chosen
to have cardinality L, x 
∈H1. Therefore, x 
∈ I1 and I1 ∪ {x} ∈ I , as desired. �

Theorem 3.4 Let Φ = (ϕi)
M
i=1 be a collection of M vectors in HN . Let K,L ∈ N.

There exists a set H with |H | ≤ LK such that the set Φ \H can be partitioned into
K linearly independent sets if and only if, for every nonempty J ⊂ [1,M],

|J | −LK

dim span{ϕj : j ∈ J } ≤K.

Proof The forward direction is a special case of Proposition 3.7. For the reverse
direction, define the matroid (Φ,I) as in Proposition 3.8. By the matroid version of
the Rado-Horn theorem, we can partition Φ into K independent sets if and only if,
for every nonempty J ⊂ [1,M],

|J |
rank({ϕj : j ∈ J }) ≤K.

We now show that this follows if, for every nonempty J ⊂ [1,M],
|J | −LK

dim span{ϕj : j ∈ J } ≤K.
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Suppose we have for every nonempty J ⊂ [1,M],
|J | −LK

dim span{ϕj : j ∈ J } ≤K.

Let J ⊂ [1,M]. Note that if we can remove fewer than L vectors from (ϕj )j∈J to
form a linearly independent set, then rank({ϕj : j ∈ J })= |J |, so

|J |
rank({ϕj : j ∈ J }) = 1≤K.

On the other hand, if we need to remove at least L vectors from (ϕj )j∈J to form a
linearly independent set, then rank({ϕj : j ∈ J })= dim span{ϕj : j ∈ J } +L, so

|J | ≤K dim span{ϕj : j ∈ J } +LK

=Krank
({ϕj : j ∈ J }),

as desired. Therefore, if for every J ⊂ [1,M],
|J | −LK

dim span{ϕj : j ∈ J } ≤K,

then there is a partition {Ai}Ki=1 of [1,M] such that (ϕj : j ∈ Ai) ∈ I for each 1 ≤
i ≤ K . By the definition of our matroid, for each 1 ≤ i ≤ K , there exists Hi ⊂ Ai

with |Hi | ≤ L such that (ϕj : j ∈Ai \Hi) is linearly independent. Let H =⋃K
i=1 Hi

and note that |H | ≤ LK and J \H can be partitioned into K linearly independent
sets. �

The matroid version of the Rado-Horn Theorem will be applied to finite frames
in the following theorem.

Theorem 3.5 Let δ > 0. Suppose that Φ = (ϕi)
M
i=1 is a Parseval frame of M vectors

for HN with ‖ϕi‖2 ≤ 1− δ for all ϕ ∈ Φ . Let R ∈ N such that R ≥ 1
δ
. Then, it is

possible to partition [1,M] into R sets {A1, . . . ,AR} such that, for each 1≤ r ≤R,
the family (ϕj : j 
∈Ar) spans HN .

Proof Let I = {E ⊂ [1,M] : span{ϕj : j 
∈ E} =HN }. Since any frame is a span-
ning set, we have that ([1,M],I) is a matroid. By the Rado-Horn Theorem II, it suf-
fices to show (3.1) for each subset of [1,M]. Let E ⊂ [1,M]. Define S = span{ϕj :
j 
∈ E}, and let P be the orthogonal projection onto S⊥. Since the orthogonal pro-
jection of a Parseval frame is again a Parseval frame, we have that (Pϕ : ϕ ∈Φ) is
a Parseval frame for S⊥. Moreover, we have

dimS⊥ =
M∑

j=1

‖Pϕj‖2 =
∑

j∈E
‖Pϕj‖2

≤ |E|(1− δ).

Let M be the largest integer smaller than or equal to |E|(1− δ). Since dimS⊥ ≤M ,
we have that there exists a set E1 ⊂E such that |E1| =M and span{Pϕj : j ∈E1} =
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S⊥. Let E2 = E \ E1. We show that E2 is independent. For this, write h ∈HN as
h = h1 + h2, where h1 ∈ S and h2 ∈ S⊥. We have that h2 =∑j∈E1

αjPf ϕj for
some choice of {αj : j ∈ E1}. Write

∑
j∈E1

αjϕj = g1 + h2, where g1 ∈ S. Then,
there exist {αj : j 
∈E} such that

∑
j 
∈E αjϕj = h1 − g1. So,
∑

j 
∈E2

αjϕj = h,

and thus E2 is independent.
Now, since E contains an independent set of cardinality |E| −M , it follows that

rank(E)≥ |E| −M ≥ |E| − |E|(1− δ)= δ|E|. Therefore,

|E|
rank(E)

≤ 1

δ
≤R,

as desired. �

3.2.3 Applications of the Rado-Horn Theorem III

Up to this point, we have mostly focused on linear independence properties of
frames. We now turn to spanning properties. We present a more general form of
the Rado-Horn theorem, which describes what happens when the vectors cannot be
partitioned into linearly independent sets.

The worst possible blockage that can occur preventing us from partitioning a
frame (ϕi)

M
i=1 into K linearly independent sets would be the case where there are

disjoint subsets (not necessarily a partition) {Ak}Kk=1 of [1,M] with the property

span(ϕi)i∈Aj
= span(ϕi)i∈Ak

, for all 1≤ j, k ≤K.

The following improvement of the Rado-Horn theorem shows the surprising fact
that this is really the only blockage that can occur.

Theorem 3.6 (Rado-Horn Theorem III) Let Φ = (ϕi)
M
i=1 be a collection of vectors

in HN and K ∈N. Then the following conditions are equivalent.

(1) There exists a partition {Ak : k = 1, . . . ,K} of [1,M] such that for each 1 ≤
k ≤K the set {ϕj : j ∈Ak} is linearly independent.

(2) For all J ⊂ I ,

|J |
dim span{ϕj : j ∈ J } ≤K. (3.2)

Moreover, in the case that either of the conditions above fails, there exists a partition
{Ak : k = 1, . . . ,K} of [1,M] and a subspace S of HN such that the following three
conditions hold.

(a) For all 1≤ k ≤K , S = span{ϕj : j ∈Ak and ϕj ∈ S}.
(b) For J = {i ∈ I : ϕi ∈ S}, |J |

dim span({ϕi :i∈J }) > K .
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(c) For each 1 ≤ k ≤ K , {PS⊥ϕi : i ∈ Ak,ϕi 
∈ S} is linearly independent, where
PS⊥ is the orthogonal projection onto S⊥.

For the purposes of this chapter, we are restricting to HN , but the result also holds
with a slightly different statement for general vector spaces; see [13] for details.

The statement of Theorem 3.6 is somewhat involved, and the proof even more
so, so we delay the proof until Sect. 3.4. For now, we show how Theorem 3.6 can
be applied in two different cases. For our first application, we will provide a proof
of Theorem 3.4 in the general case.

Theorem 3.7 Let Φ = (ϕi)
M
i=1 be a collection of M vectors in HN . Let K,L ∈ N.

There exists a set H with |H | ≤ L such that the set Φ \H can be partitioned into
K linearly independent sets if and only if, for every nonempty J ⊂ [1,M],

|J | −L

dim span{ϕj : j ∈ J } ≤K.

Proof The forward direction is Proposition 3.7. For the reverse direction, if Φ can
be partitioned into K linearly independent sets, then we are done. Otherwise, we
can apply the alternative in Theorem 3.6 to obtain a partition {Ak : 1≤ k ≤K} and
a subspace S satisfying the properties listed.

For 1 ≤ k ≤ K , let A1
k = {j ∈ Ak : ϕj ∈ S}, and A2

k = Ak \ A1
k = {j ∈ Ak :

ϕj 
∈ S}. For each 1 ≤ k ≤ K , let Bk ⊂ A1
k be defined such that (ϕj : j ∈ Bk) is a

basis for S, which is possible by property (a) in Theorem 3.6. Letting J =⋃K
k=1 A

1
k

and applying

|J | −L

dim span{ϕj : j ∈ J } ≤K

yields that there are at most L vectors in J which are not in one of the Bk’s. Let
H = J \⋃K

k=1 Bk . Since |H | ≤ L, it suffices to show that letting Ck = Bk ∪ A2
k

partitions [1,M] \H into linearly independent sets.
Indeed, fix k and assume that

∑
j∈Ck

akϕk = 0. Then

0=
∑

j∈Ck

akPS⊥ϕj

=
∑

j∈A2
k

akPS⊥ϕj .

So ak = 0 for all k ∈A2
k by property (c) in Theorem 3.6. This implies that

0=
∑

j∈Ck

akϕj

=
∑

j∈Bk

akϕj ,

and so ak = 0 for all k ∈ Bk . Therefore, {Ck} is a partition of [1,M] \H such that
for each 1≤ k ≤K , the set (ϕj : j ∈ Ck) is linearly independent. �
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We now present an application that is more directly related to frame theory. This
theorem will be combined with Theorem 3.10 to prove Lemma 3.2.

Theorem 3.8 Let Φ = (ϕi)
M
i=1 be an equal norm Parseval frame for HN . Let K =

�M/N�. Then there exists a partition {Ak}Kk=1 of [1,M] so that

span {ϕi : i ∈Aj } =HN, for all j = 1,2, . . . ,K.

Our method of proof of Theorem 3.8 involves induction on the dimension N .
In order to apply the induction step, we will project onto a subspace, which, while
it preserves the Parseval frame property, does not preserve equal norm of the vec-
tors. For this reason, we state a more general theorem that is more amenable to an
induction proof.

Theorem 3.9 Let Φ = (ϕi)
M
i=1 be a frame for HN with lower frame bound A≥ 1,

let ‖ϕi‖2 ≤ 1 for all i ∈ [1,M], and set K = �A�. Then there exists a partition
{Ak}Kk=1 of [1,M] so that

span {ϕi : i ∈Ak} =HN, for all k = 1,2, . . . ,K.

In particular, the number of frame vectors in a unit norm frame with lower frame
bound A is greater than or equal to�A�N .

We will need the following lemma, which we state without proof.

Lemma 3.1 Let Φ = (ϕi)
M
i=1 be a collection of vectors in HN and let Ik ⊂

[1,M], k = 1,2, . . . ,K be a partition of Φ into linearly independent sets. Assume
that there is a partition of [1,M] into {Ak}Kk=1 so that

span (ϕi)i∈Ak
=HN, for all k = 1,2, . . . ,K.

Then,

span {ϕi}i∈Ik =HN, for all k = 1,2, . . . ,K.

Proof of Theorem 3.9 We replace (ϕi)
M
i=1 by ( 1√

K
ϕi)

M
i=1 so that our frame has lower

frame bound greater than or equal to 1 and ‖ϕi‖2 ≤ 1
K

, for all i ∈ [1,M]. Assume
the frame operator for (ϕi)

M
i=1 has eigenvectors (ej )

N
j=1 with respective eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 1. We proceed by induction on N .
We first consider N = 1: Since

M∑

i=1

‖ϕi‖2 ≥ 1, and ‖ϕi‖2 ≤ 1

K
, (3.3)

it follows that |{i ∈ I : ϕi 
= 0}| ≥K and so we have a partition of the frame into K

spanning sets.
Next, we assume the induction hypothesis holds for any Hilbert space of dimen-

sion N and let HN+1 be a Hilbert space of dimension N + 1. We check two cases.
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Case I: Suppose there exists a partition {Ak}Kk=1 of [1,M] so that (ϕi)i∈Ak
is

linearly independent for all k = 1,2, . . . ,K . In this case,

N + 1≤ (N + 1)λN ≤
N+1∑

j=1

λj =
M∑

i=1

‖ϕi‖2 ≤M
1

K
,

and hence,

M ≥K(N + 1).

However, by linear independence, we have

M =
K∑

k=1

|Ak| ≤K(N + 1).

Thus, |Ak| = N + 1 for every k = 1,2, . . . ,K and so (ϕi)i∈Ak
is spanning for 1 ≤

k ≤K .
Case II: Suppose (ϕi)

M
i=1 cannot be partitioned into K linearly independent sets.

In this case, let {Ak}Kk=1 and a subspace ∅ 
= S ⊂HN+1 be given by Theorem 3.6.
If S =HN+1, we are done. Otherwise, let P be the orthogonal projection onto the
subspace S. Let

A′k = {i ∈Ak : ϕi /∈ S}, B =
K⋃

k=1

A′k.

By Theorem 3.6(c), ((Id−P)ϕi)i∈A′k is linearly independent for all k = 1,2, . . . ,K .

Now, ((Id − P)ϕi)i∈B has lower frame bound 1 in (Id − P)(HN+1),
dim(Id− P)(HN+1)≤N and

∥∥(Id− P)ϕi

∥∥2 ≤ ‖ϕi‖2 ≤ 1

K

for all i ∈ B . Applying the induction hypothesis, we can find a partition {Bk}Kk=1 of
B with span((Id − P)ϕi)i∈Bk

= (Id − P)(HN+1) for all k = 1,2, . . . ,K . Now, we
can apply Lemma 3.1 together with the partition {Bk}Kk=1 to conclude span ((Id −
P)ϕi)i∈A′k = (Id− P)(HN+1), and hence

span(ϕi)i∈Ak
= span

{
S,
(
(Id− P)ϕi

)
i∈A′k

}=HN+1. �

Up to this point, we have seen that an equal norm Parseval frame with M vectors
in HN can be partitioned into �M/N� spanning sets and �M/N� linearly indepen-
dent sets. We now show that there is a single partition which accomplishes both the
spanning and linear independence properties.

Theorem 3.10 Let Φ = (ϕi)
M
i=1 be an equal norm Parseval frame for HN and let

K = �M/N�. There exists a partition {Ak}Kk=1 of [1,M] such that

1. (ϕi : i ∈Ak) is linearly independent for 1≤ k ≤K , and
2. (ϕi : i ∈Ak) spans HN for 1≤ k ≤K − 1.
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The proof of Theorem 3.10 is immediate from Corollary 3.1, Theorem 3.8, and
Lemma 3.2 below.

Lemma 3.2 Let Φ = (ϕi)
M
i=1 be a finite collection of vectors in HN and let K ∈N.

Assume

1. Φ can be partitioned into K + 1-linearly independent sets, and
2. Φ can be partitioned into a set and K spanning sets.

Then there is a partition {Ak}K+1
k=1 so that (ϕj )j∈Ak

is a linearly independent span-
ning set for all k = 2,3, . . . ,K + 1 and (ϕi)i∈A1 is a linearly independent set.

The proof of Lemma 3.2 requires yet another extension of the Rado-Horn theo-
rem, which we have not yet discussed and will be proven at the end of Sect. 3.4.

3.3 The Rado-Horn Theorem I and Its Proof

In this and the following sections, we discuss the proofs of the Rado-Horn Theorems
I and III. Although the forward direction is essentially obvious, the reverse direction
of the Rado-Horn Theorem I, while elementary, is not simple to prove. Our present
goal is a proof of the case K = 2, which contains many of the essential ideas of the
general proof without some of the bookkeeping difficulties in the general case. The
proof of the general case of the Rado-Horn Theorem III will be presented below, and
it contains a proof of the Rado-Horn Theorem I. The main idea for the reverse direc-
tion is to take as a candidate partition one that maximizes the sum of the dimensions
associated with the partition. Then, if that does not partition the set into linearly
independent subsets, one can construct a set of interconnected linearly dependent
vectors which directly contradicts the hypotheses of the Rado-Horn Theorem I.

As mentioned above, the forward direction of the Rado-Horn Theorem I is es-
sentially obvious, but we provide a formal proof in the following lemma.

Lemma 3.3 Let Φ = (ϕi)
M
i=1 ⊂ HN and K ∈ N. If there exists a partition

{A1, . . . ,AK } of [1,M] such that, for each 1 ≤ k ≤ K , (ϕi : i ∈ Ak) is linearly
independent, then for every nonempty J ⊂ [1,M],

|J |
dim span{ϕi : i ∈ J } ≤K.

Proof Let {A1, . . . ,AK } partition Φ into linearly independent sets. Let J be a
nonempty subset of [1,M]. For each 1≤ k ≤K , let Jk = J ∩Ak . Then,

|J | =
K∑

k=1

|Jk| =
K∑

k=1

dim span
({ϕi : i ∈ Jk}

)≤K dim span
({ϕi : i ∈ J }),

as desired. �
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The Rado-Horn Theorem I tells us that if we want to partition vectors into K

linearly independent subsets, there are no nontrivial obstructions. The only obstruc-
tion is that there cannot be a subspace S which contains more than K dim(S) of the
vectors that we wish to partition.

The first obstacle to proving the Rado-Horn Theorem I is coming up with a can-
didate partition which should be linearly independent. There are several ways to do
this. The most common, used in [17–19, 22], is to build the partition while proving
the theorem. In [13], it was noticed that any partition which maximizes the sums
of dimensions (as explained below) must partition Φ into linearly independent sets,
provided any partition can do so. Given a set Φ ⊂ HN indexed by [1,M] and a
natural number K , we say that a partition {A1, . . . ,AK} of [1,M] maximizes the
K-sum of dimensions of Φ if, for any partition {B1, . . . ,BK } of [1,M],

K∑

k=1

dim span{ϕj : j ∈Ak} ≥
K∑

k=1

dim span{ϕj : j ∈ Bk}.

There are two things to notice about a partition {A1, . . . ,AK } which maximizes
the K-sum of dimensions. First, such a partition will always exist since we are
dealing with finite sets. Second, such a partition will partition Φ into K linearly
independent sets if it is possible for any partition to do so. That is the content of the
next two propositions.

Proposition 3.9 Let Φ = (ϕi)
M
i=1 ⊂ HN,K ∈ N, and {Ak}Kk=1 be a partition of

[1,M]. The following conditions are equivalent.

(1) For every k ∈ {1, . . . ,K}, (ϕj : j ∈Ak) is linearly independent.
(2)

∑K
k=1 dim span{ϕj : j ∈Ak} =M .

Proof (1) ⇒ (2) Clearly,

K∑

k=1

dim span{ϕj : j ∈Ak} =
K∑

k=1

|Ak| =M.

(2) ⇒ (1) Note that

M =
K∑

k=1

dim span{ϕj : j ∈Ak} ≤
K∑

k=1

|Ak| =M.

Therefore, dim span{ϕj : j ∈ Ak} = |Ak| for each 1 ≤ k ≤ K and (ϕj : j ∈ Ak) is
linearly independent. �

Proposition 3.10 Let Φ = (ϕi)
M
i=1 ⊂ HN and K ∈ N. If {Ak}Kk=1 maximizes the

K-sum of dimensions of Φ and there exists a partition {Bk}Kk=1 such that for each
1 ≤ k ≤ K , (ϕj : j ∈ Bk) is linearly independent, then (ϕj : j ∈ Ak) is linearly
independent for each 1≤ k ≤K .
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Proof We have

M =
K∑

k=1

dim span{ϕj : j ∈ Bk}

≤
K∑

k=1

dim span{ϕj : j ∈Ak} ≤M.

Therefore, (ϕj : j ∈ Ak) is linearly independent for each 1 ≤ j ≤M by Proposi-
tion 3.9. �

A third way of partitioning Φ to prove the Rado-Horn Theorem I was given in
[4], though not explicitly. Given Φ as above and K ∈N, we say a partition {Ak}Kk=1
maximizes the K-ordering of dimensions if the following holds. Given any partition
{Bk}Kk=1 of [1,M], if for every 1 ≤ k ≤ K , dim span{ϕj : j ∈ Ak} ≤ dim span{ϕj :
j ∈ Bk}, then

dim span{ϕj : j ∈Ak} = dim span{ϕj : j ∈ Bk}, for every 1≤ k ≤K.

It is easy to see that any partition which maximizes the K-sum of dimensions
also maximizes the K-ordering of dimensions. The next proposition shows that the
converse holds, at least in the case that one can partition into linearly independent
sets. Therefore, when proving the Rado-Horn theorem, it makes sense to begin with
a partition which maximizes the K-ordering of dimensions. We do not present a
proof of this proposition, but mention that it follows from Theorem 3.12.

Proposition 3.11 Let Φ = (ϕi)
M
i=1 ⊂HN and K ∈N. If {Ak}Kk=1 maximizes the K-

ordering of dimensions of Φ and there exists a partition {Bk}Kk=1 such that for each
1 ≤ k ≤K , the set (ϕj : j ∈ Bk) is linearly independent, then for each 1 ≤ k ≤K ,
the set (ϕj : j ∈Ak) is linearly independent.

A second obstacle to proving the Rado-Horn Theorem I is proving that a candi-
date partition into linearly independent sets really does partition into linearly inde-
pendent sets. Our strategy will be to suppose that it does not partition into linearly
independent sets, and directly construct a set J ⊂ [1,M]which violates the hypothe-
ses of the Rado-Horn Theorem I. In order to construct J , we will imagine moving
the linearly dependent vectors from one element of the partition to another element
of the partition. The first observation is that if a partition maximizes the K-ordering
of dimensions, and there is a linearly dependent vector in one of the elements of the
partition, then that vector is in the span of each element of the partition.

Proposition 3.12 Let Φ = (ϕi)
M
i=1 ⊂HN , K ∈ N, and let {Ak}Kk=1 be a partition

of [1,M] which maximizes the K-ordering of dimensions of Φ . Fix 1 ≤ m ≤ K .
Suppose that there exist scalars {aj }j∈Am , not all of which are zero, such that∑

j∈Am
ajϕj = 0. Let j0 ∈Am be such that aj0 
= 0. Then for each 1≤ n≤K ,

ϕj0 ∈ span{ϕj : j ∈An}.
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Proof Since removing ϕj0 from Am will not decrease the dimension of the span,
adding ϕj0 to any of the other An’s will not increase the dimension of their spans. �

A simple, but useful, observation is that if we start with a partition {Ak}Kk=1 which
maximizes the K-ordering of dimensions of Φ , then a new partition obtained by
moving one linearly dependent vector out of some Ak into another Ak′ will also
maximize the K-ordering of dimensions.

Proposition 3.13 Let Φ = (ϕi)
M
i=1 ⊂ HN,K ∈ N, and let {Ak}Kk=1 be a partition

of [1,M] which maximizes the K-ordering of dimensions of Φ . Fix 1 ≤ m ≤ K .
Suppose that there exist scalars {aj }j∈Am , not all of which are zero, such that∑

j∈Am
ajϕj = 0. Let j0 ∈ Am be such that aj0 
= 0. For every 1 ≤ n ≤ K , the

partition {Bk}Kk=1 given by

Bk =
⎧
⎨

⎩

Ak k 
=m,n,

Am \ {j0} k =m,

An ∪ {j0} k = n,

also maximizes the K-ordering of dimensions of Φ .

Proof By Proposition 3.12, the new partition has exactly the same dimension of
spans as the old partition. �

The idea for constructing the set J which will contradict the hypotheses of
the Rado-Horn Theorem I is to suppose that a partition which maximizes the K-
ordering of dimensions does not partition into linearly independent sets. We will
take a vector which is linearly dependent, and then see that it is in the span of each
of the other elements of the partition. We create new partitions, which again max-
imize the K-ordering of dimensions, by moving the linearly dependent vector into
other sets of the partition. The partition element to which we moved the vector will
also be linearly dependent. We then repeat and take the index of all vectors which
can be reached in such a way as our set J . It is easy to imagine that the bookkeeping
aspect of this proof will become involved relatively quickly. For that reason, we will
restrict to the case K = 2 and prove the Rado-Horn Theorem I in that case, using
the same idea that will work in the general case. The bookkeeping in this case is
somewhat easier, yet all of the ideas are already there.

A key concept in our proof of the Rado-Horn Theorem I is that of a chain of
dependencies of length P . Given two collections of vectors (ϕj : j ∈A1) and (ϕj :
j ∈ A2), where A1 ∩A2 = ∅, we define a chain of dependencies of length P to be
a finite sequence of distinct indices {i1, i2, . . . , iP } ⊂ A1 ∪ A2 with the following
properties:

1. ik will be an element of A1 for odd indices k, and an element of A2 for even
indices k,

2. ϕi1 ∈ span{ϕj : j ∈A1 \ {i1}}, and ϕi1 ∈ span{ϕj : j ∈A2},
3. for odd k, 1 < k ≤ P , ϕik ∈ span{ϕj : j ∈ (A1 ∪ {i2, i4, . . . , ik−1}) \ {i1, i3, . . . ,

ik−2}} and ϕik ∈ span{ϕj : j ∈ (A2 ∪ {i1, i3, . . . , ik−2}) \ {i2, i4, . . . , ik−1}},
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4. for even k, 1 < k ≤ P , ϕik ∈ span{ϕj : j ∈ (A2 ∪ {i1, i3, . . . , ik−1}) \ {i2, i4, . . . ,
ik}}, and ϕik ∈ span{ϕj : j ∈ (A1 ∪ {i2, i4, . . . , ik−2}) \ {i1, i3, . . . , ik−1}}.
A chain of dependencies is constructed as follows. Start with a linearly dependent

vector. Moving that vector to another set in the partition cannot increase the sum of
the dimensions of the spans, so that vector is also in the span of the vectors in the
set to which it has been moved. Now, that makes the new set linearly dependent,
so take a second vector, which is linearly dependent in the second set, and move it
to a third set. Again, the second vector is in the span of the vectors in the third set.
Continuing in this fashion gives a chain of dependencies.

With this new definition, it is easier to describe the technique of the proof of the
Rado-Horn Theorem I. Suppose that a partition which maximizes the 2-ordering of
dimensions does not partition into linearly independent sets. Let J be the union of
all of the chains of dependencies. We will show that J satisfies

|J |
dim span{ϕi : i ∈ J } > 2.

Example 3.2 We give an example of chains of dependencies in H3. Let ϕ1 = ϕ5 =
(1,0,0)T , ϕ2 = ϕ6 = (0,1,0)T , ϕ3 = ϕ7 = (0,0,1)T , and ϕ4 = (1,1,1)T . Suppose
also that A1 = {1,2,3,4} and A2 = {5,6,7}. Then, the set {4,5,1,6,2,7,3} is a
chain of dependencies of length 7. Note also that {4,5,1} is a chain of dependencies
of length 3.

Note that if we let J be the union of all of the sets of dependencies based on the
partition {A1,A2}, then

|J |
dim span{ϕi : i ∈ J } =

7

3
> 2.

The following example illustrates what can happen if we do not start with a
partition which maximizes the K-ordering of dimensions.

Example 3.3 Let ϕ1 = (1,0,0)T , ϕ2 = (0,1,0)T , ϕ3 = (1,1,0)T , ϕ4 = (1,0,0)T ,
ϕ5 = (0,0,1)T , and ϕ6 = (0,1,1)T . Imagine starting with our partition consist-
ing of A1 = {1,2,3} and A2 = {4,5,6}. We can make a chain of dependencies
{3,6}, but notice that {ϕ6, ϕ1, ϕ2} is linearly independent. This indicates that we
have removed one linear dependence, and in fact, the new partition B1 = {1,2,6},
B2 = {3,4,5} is linearly independent.

Note that the new partition does maximize the K-ordering of dimensions.

A slight generalization of Proposition 3.13 is given below.

Lemma 3.4 Let Φ = (ϕi)
M
i=1 ⊂HN , and suppose that Φ cannot be partitioned into

two linearly independent sets. Let {A1,A2} be a partition of [1,M] which maximizes
the 2-ordering of dimensions. Let {i1, . . . , iP } be a chain of dependencies of length
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P based on the partition {A1,A2}. For each 1≤ k ≤ P , the partition {B1(k),B2(k)}
given by

B1(k)=
(
A1 ∪

⋃

1≤j≤k/2

{i2j }
)∖ ⋃

1≤j≤(k+1)/2

{i2j−1},

B2(k)=
(
A2 ∪

⋃

1≤j≤(k+1)/2

{i2j−1}
)∖ ⋃

1≤j≤k/2

{i2j }

also maximizes the 2-ordering of dimensions.

We introduce one notational convenience at this point. Given a set A ⊂ [1,M],
a finite sequence of elements {i1, . . . , iP }, and disjoint sets Q,R ⊂ [1,P ], we define

A(Q;R)=
(
A∪

⋃

j∈Q
{ij }
)∖⋃

j∈R
{ij }.

Lemma 3.5 Let Φ =Φ = (ϕi)
M
i=1 ⊂HN , and suppose that Φ cannot be partitioned

into two linearly independent sets. Let {A1,A2} be a partition of [1,M] which max-
imizes the 2-ordering of dimensions. Let J be the union of all chains of dependen-
cies of Φ based on the partition {A1,A2}. Let J1 = J ∩A1 and J2 = J ∩A2, and
S = span{ϕi : i ∈ J }. Then,

S = span{ϕi : i ∈ Jk}
for k = 1,2.

Proof We will prove the lemma in the case k = 1, the other case being similar. It
suffices to show that for every chain of dependencies {i1, . . . , iP }, all of the even
indexed vectors ϕk are in the span of J1, which we will do by induction.

Note that ϕi2 ∈ span{ϕi : i ∈ A1 \ {i1}}. Therefore, there exist scalars {ai : i ∈
A1 \ {i1}} such that

ϕi2 =
∑

i∈A1\{i1}
aiϕi .

Let i ∈ A1 \ {i1} be such that ai 
= 0. We show that {i1, i2, i} is a chain of
dependencies of length 3. First, note that ϕi ∈ span{ϕj : j ∈ A1({2}; {1})}. By
Lemma 3.4, the partition {A1({2}; {1}),A2({1}; {2})} maximizes the 2-ordering of
dimensions. Since ϕi is a dependent vector in (ϕj : j ∈ A1({2}; {1})), the par-
tition {A1({2}; {1, i}),A2({1, i}; {2})} has the same dimensions as the partition
{A1({2}; {1}),A2({1}; {2})}. In particular, ϕi ∈ span{ϕj : j ∈ A2({1}; {2})}. There-
fore {i1, i2, i} is a chain of dependencies of length 3, and ϕi2 ∈ span{ϕj : j ∈ J1}.

Now, suppose that ϕi2, . . . , ϕi2m−2 ∈ span{ϕj : j ∈ J1}. We show that ϕi2m ∈
span{ϕj : j ∈ J1}. Note that ϕi2m ∈ span{ϕj : j ∈ A1({2,4, . . . ,2m− 2}; {1,3, . . . ,
2m− 1})}. Therefore, there exist scalars {ai : i ∈ A1({2,4, . . . ,2m− 2}; {1,3, . . . ,
2m− 1})} such that

ϕi2m =
∑

i∈A1({2,4,...,2m−2};{1,3,...,2m−1})
aiϕi . (3.4)
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By the induction hypothesis, for the even indices j < 2m, ϕj ∈ span{ϕi : i ∈ J1}, so
it suffices to show that for all i ∈A1(∅; {1,3, . . . ,2m− 1}) such that ai 
= 0, the set
{i1, . . . , i2m, i} is a chain of dependencies. (Note that there may not be any i in this
set.) By (3.4), ϕi ∈ span{ϕj : j ∈A1({2,4, . . . ,2m}; {1,3 . . . ,2m−1})}. By Lemma
3.4, the partition {A1({2,4, . . . ,2m}; {1,3, . . . ,2m − 1}),A2({1,3 . . . ,2m − 1};
{2,4, . . . ,2m})} maximizes the 2-ordering of dimensions. Therefore, since ϕi is
a dependent vector in (ϕj : j ∈ A1({2,4, . . . ,2m}; {1,3, . . . ,2m − 1})), moving i

into the second partition by forming the new partition {A1({2,4, . . . ,2m}; {1,3, . . . ,
2m− 1, i}),A2({1,3, . . . ,2m− 1, i}; {2,4, . . . ,2m})} does not change the dimen-
sions. In particular,

ϕi ∈ span
{
ϕj : j ∈A2{1,3, . . . ,2m− 1}; {2,4, . . . ,2m}}.

Therefore {i1, i2, . . . , i2m, i} is a chain of dependencies of length 2m+1, and ϕi2m ∈
span{ϕj : j ∈ J1}. �

Theorem 3.11 Let Φ = (ϕi)
M
i=1 ⊂HN . If for every nonempty J ⊂ [1,M],

|J |
dim span{ϕi : i ∈ J } ≤ 2,

then Φ can be partitioned into two linearly independent sets.

Proof Suppose that Φ cannot be partitioned into two linearly independent sets. We
will construct a set J such that

|J |
dim span{ϕi : i ∈ J } > 2.

Let {A1,A2} be a partition of [1,M] which maximizes the 2-ordering of di-
mensions. By hypothesis, this partition of [1,M] does not partition Φ into linearly
independent sets, so at least one of the collections (ϕj : j ∈ Ak), k = 1,2 must be
linearly dependent. Without loss of generality, we assume that (ϕj : j ∈ A1) is lin-
early dependent.

Let J be the union of all chains of dependencies based on the partition {A1,A2}.
We claim that J satisfies

|J |
dim span{ϕi : i ∈ J } > 2.

Indeed, let J1 = J ∩A1 and J2 = J ∩A2. By Lemma 3.5, (ϕj : j ∈ Jk), k = 1,2 span
the same subspace S = (ϕj : j ∈ J ). Since (ϕj : j ∈ J1) is not linearly independent,
|J1|> dimS. Therefore,

|J | = |J1| + |J2|
> dimS + dimS = 2 dim{ϕj : j ∈ J },

and the theorem is proved.
A careful reading of the proof of Theorem 3.11 yields that we have proven more

than what has been advertised. In fact, we have essentially proven the more general
Theorem 3.12 in the special case of partitioning into two sets. �
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3.4 The Rado-Horn Theorem III and Its Proof

The final section of this chapter is devoted to the proof of the Rado-Horn Theorem
III, which we recall below (see Theorem 3.6). We did not include all elements of
the theorem, as a discussion of partitions maximizing the K-ordering of dimensions
would have taken us too far astray at that time, and we only needed the full version
of the theorem in the proof of Lemma 3.2, whose proof we have delayed until the
end of this section.

Theorem 3.12 (Rado-Horn Theorem III) Let Φ = (ϕi)
M
i=1 be a collection of vectors

in HN and K ∈N. Then the following conditions are equivalent.

(1) There exists a partition {Ak : k = 1, . . . ,K} of [1,M] such that for each 1 ≤
k ≤K the set (ϕj : j ∈Ak) is linearly independent.

(2) For all J ⊂ I ,

|J |
dim span{ϕj : j ∈ J } ≤K. (3.5)

Moreover, in the case that both of the conditions above are true, any partition which
maximizes the K-ordering of dimensions will partition the vectors into linearly in-
dependent sets. In the case that either of the conditions above fails, there exists a
partition {Ak : k = 1, . . . ,K} of [1,M] and a subspace S of HN such that the fol-
lowing three conditions hold.

(a) For all 1≤ k ≤K , S = span{ϕj : j ∈Ak and ϕj ∈ S}.
(b) For J = {i ∈ I : ϕi ∈ S}, |J |

dim span{ϕi :i∈J } >K .
(c) For each 1 ≤ k ≤ K , (PS⊥ϕi : i ∈ Ak,ϕi 
∈ S) is linearly independent, where

PS⊥ is the orthogonal projection onto S⊥.

We saw in the previous section how to prove the more elementary version of the
Rado-Horn theorem in the case of partitioning into two subsets. The details of the
proof in the general setting are similar, and where the proofs follow the same outline
we will omit them. The interested reader can refer to [4, 13] for full details.

As before, our general plan is to start with a partition which maximizes the K-
ordering of dimensions. We will show that if that partition does not partition into
linearly independent sets, then we can construct a set J which directly contradicts
the hypotheses of the Rado-Horn theorem. The set J constructed will span the sub-
space S in the conclusion of the theorem.

Let {A1, . . . ,AK} be a partition of [1,M] and let {i1, . . . , iP } ⊂ [1,M]. We say
that {a1, . . . , aP } are the associated partition indices if for all 1≤ p ≤ P , ip ∈Aap .
We define the chain of partitions {Aj }Pj=1 associated with A = {A1, . . . ,AK} and

{i1, . . . , iP } as follows. Let A1 = A, and given that the partitions Aj = {Aj
k}Kk=1
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have been defined for 1≤ j ≤ p and p ≤ P , we define Ap+1 = {Ap+1
1 , . . . ,A

p+1
K }

by

A
p+1
k =

⎧
⎨

⎩

A
p
k k 
= ap, ap+1,

A
p
ap \ {ip} k = ap,

A
p
ap+1 ∪ {ip} k = ap+1.

A chain of dependencies of length P based on the partition {A1, . . . ,AK} is
a set of distinct indices {i1, . . . , iP } ⊂ [1,M] with associated partition indices
{a1, . . . , aP } and the P + 1 associated partitions {Ap

k }Kk=1,1≤ p ≤ P + 1 such that
the following conditions are met.

1. ap 
= ap+1 for all 1≤ p < P .
2. a1 = 1.
3. ϕi1 ∈ span{ϕj : j ∈A2

1}, and ϕi1 ∈ span{ϕj : j ∈A1
a2
}.

4. ϕip ∈ span{ϕj : j ∈A
p
ap \ {ip}} for all 1 <p ≤ P .

5. ϕip ∈ span{ϕj : j ∈A
p
ap+1} for all 1 <p < P .

Lemma 3.6 With the notation above, for each 1≤ p ≤ P +1, the partition {Ap
k }Kk=1

maximizes the K-ordering of dimensions.

Proof As in Lemma 3.4, when we are constructing the pth partition, we are taking
a vector that is dependent in the (p− 1)st partition, and moving it to a new partition
element. Since removing the dependent vector does not reduce the dimension, all of
the dimensions in the pth partition must remain the same. Hence, it maximizes the
K-ordering of dimensions. �

Lemma 3.7 Let Φ = (ϕi)
M
i=1 ⊂ HN , and suppose that Φ cannot be partitioned

into K linearly independent sets. Let {A1, . . . ,AK} be a partition of [1,M] which
maximizes the K-ordering of dimensions. Let J be the union of all chains of depen-
dencies of Φ based on the partition {A1, . . . ,AK}. For 1≤ k ≤K , let Jk = J ∩Ak ,
and let S = span{ϕi : i ∈ J }. Then,

S = span{ϕi : i ∈ Jk}
for k = 1, . . . ,K .

Proof We sketch the proof for k = 1. The details are similar to Lemma 3.5.
Clearly, it suffices to show that if {i1, . . . , iP } is a chain of dependencies based on
{A1, . . . ,AK }, then each ϕip ∈ span{ϕi : i ∈ J1} for each 1≤ p ≤ P . For p = 1, this
is true since a1 = 1. (For k 
= 1, it is true since moving a dependent vector from A1

to Ak cannot increase the dimension of (ϕi : i ∈Ak).)
Proceeding by induction on p, assume that ϕi1, . . . , ϕip−1 ∈ span{ϕi : i ∈ J1}. Let

{a1, . . . , aP } be the associated partition indices and Ap = {Ap
k }Kk=1 the associated

partitions. If ap = 1, then we are done. Otherwise, we know that ϕip ∈ span{ϕj : j ∈
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A
p+1
ap }. Note that ip ∈ A

p
ap and ip 
∈ A

p+1
ap . Therefore, removing ip from A

p
ap does

not change the span of the vectors indexed by A
p
ap , and by Lemma 3.6,

ϕip ∈ span
{
ϕj : j ∈A

p

1

}
.

Write

ϕip =
∑

j∈Ap
1

αjϕj

for some scalars αj . We claim that for each j such that αj 
= 0, ϕj ∈ span{ϕi :
i ∈ J1}. Since A

p

1 ⊂ A1 ∪ {i1, . . . , ip−1}, by the induction hypothesis it suffices to
show that whenever j0 ∈ A

p

1 \ {i1, . . . , ip}, ϕj0 ∈ span{ϕi : i ∈ J1}. To do so, we
claim that {i1, . . . , ip, j0} is a chain with associated indices {a1, . . . , ap,1}. Indeed,

noting that Ap+1
1 = (A

p

1 ∪ {ip}), property 4 of a chain of dependencies ensures that

ϕj0 ∈ span
{
ϕi : i ∈

(
A

p

1 ∪ {ip}
) \ {j0}

}
. �

Proof of Theorem 3.12 Suppose that Φ cannot be partitioned into K linearly in-
dependent sets. Let A be a partition of [1,M] which maximizes the K-ordering
of subspaces. By hypothesis, this partition does not partition Φ into linearly inde-
pendent sets, so without loss of generality, we assume that (ϕi : i ∈ A1) is linearly
dependent.

Let J be the union of all chains of dependencies based on the partition A and
S = span{ϕi : i ∈ J }. By Lemma 3.7, J satisfies

J = {i ∈ [1,M] : ϕi ∈ S
}
.

We show that J and S satisfy the conclusions of Theorem 3.12.
First, let Jk = Ak ∩ J for 1 ≤ k ≤ K . We have that span{ϕi : i ∈ Jk} = S for

1 ≤ k ≤ K by Lemma 3.7, and |J1| > dimS by the assumption that A does not
partition into linearly independent sets. Therefore,

|J | =
K∑

k=1

|Jk|>K dimS =K dim span{ϕi : i ∈ J }.

In particular, if it were possible to partition into linearly independent sets, A would
do it.

To see (a) in the list of conclusions in Theorem 3.12, note that S ⊃ span{ϕi : i ∈
Ak,ϕi ∈ S} is obvious, and S ⊂ span{ϕi : i ∈Ak,ϕi ∈ S} follows from Lemma 3.7.
Part (b) follows from Lemma 3.7 and the computations above.

It remains to prove (c). Suppose there exist {αj }j∈Ak\J not all zero such that∑
j∈Ak\J αjϕj ∈ S. Since J is the union of the set of all chains of dependencies,∑
j∈Ak\J αjϕj 
= 0. Let {βj }j∈Jk be scalars such that

∑

j∈Ak\J
αjϕj =

∑

j∈Jk
βjϕj . (3.6)

Choose j0 and a chain of dependencies {i1, . . . , iP−1, j0} such that βj0 
= 0 and such
that P is the minimum length of all chains of dependencies whose final element is
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in {βj : j 
= 0}. Let m ∈Ak \ J such that αm 
= 0. We claim that {i1, . . . , iP−1,m} is
a chain of dependencies, which contradicts m 
∈ J and finishes the proof.

The key observation to proving the claim is to observe that the minimality of the
length of the chain {i1, . . . , iP−1, j0} forces

{j : βj 
= 0} ∪ {j : αj 
= 0} ⊂AP
aP

. (3.7)

To verify property 5 of a chain of dependencies, since ϕiP−1 ∈ span{ϕj : j ∈ AP
aP
\

{j0}}, (3.6) and (3.7) imply that ϕiP−1 ∈ span{ϕj : j ∈AP
aP
\ {m}}. To see property 4

of a chain of dependencies, write

ϕj0 =
∑

j∈AP
aP
\{j0}

γjϕj .

If γm 
= 0, then ϕm ∈ span{ϕi : i ∈ AP
aP
\ {m}} directly from the above equation. If

γm = 0, then replacing ϕj0 in (3.6) with
∑

j∈AP
aP
\{j0} γjϕj shows that ϕm ∈ span{ϕi :

i ∈AP
aP
\ {m}}. �

We end with a proof of Lemma 3.2, which we restate now for the reader’s con-
venience.

Theorem 3.13 Let Φ = (ϕi)
M
i=1 be a finite collection of vectors in HN , and let

K ∈N. Assume

1. Φ can be partitioned into K + 1-linearly independent sets, and
2. Φ can be partitioned into a set and K spanning sets.

Then there is a partition {Ak}K+1
k=1 so that (ϕj )j∈Ak

is a linearly independent span-
ning set for all k = 2,3, . . . ,K + 1 and (ϕi)i∈A1 is a linearly independent set.

Proof We choose a partition {Ak}K+1
k=1 of [1,M] that maximizes dim span{ϕj }j∈A1

taken over all partitions so that the last K sets span HN . If {Bk}K+1
k=1 is a partition of

[1,M] such that for all 1≤ k ≤K + 1,

dim span{ϕj }j∈Bi
≥ dim span{ϕj }j∈Ai

,

then

dim span{ϕj }j∈Ai
= dim span{ϕj }j∈Bi

for all i = 2, . . . ,K + 1 since dim span{ϕj }j∈Ai
= N , and dim span{ϕj }j∈A1 ≥

dim span{ϕj }j∈B1 by construction. This means that the partition {Ak}K+1
k=1 maxi-

mizes the (K + 1)-ordering of dimensions. By Theorem 3.12, since there is a parti-
tion of Φ into K + 1 linearly independent sets, {Ak}K+1

k=1 partitions Φ into linearly
independent sets, as desired. �
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3.5 The Maximal Number of Spanning Sets in a Frame

In this section, we determine the maximal number of spanning sets contained in a
frame. Partitioning into spanning sets has not been studied as much as partitioning
into linearly independent sets, and several of the results in this section are, as far as
we know, new.

In one sense, the difficulties associated with choosing spanning sets contained in
a frame is very similar to the difficulties associated with choosing linearly indepen-
dent sets. Namely, choosing spanning sets at random will not necessarily provide the
maximum number of spanning sets. A trivial example is given in R

2 by the frame
(e1, e1, e2, e1+e2) where e1 = (1,0)T , e2 = (0,1)T . If we choose (e2, e1+e2), then
we can only get one spanning set, while if we choose (e1, e2), (e1, e1 + e2) we get
two spanning sets. Recently [15], the problem of determining the maximal number
of spanning sets was resolved. We begin with some preliminary results.

Theorem 3.14 Let P be a projection on HM and let (ei)
M
i=1 be an orthonormal

basis for HM . If I ⊂ {1,2, . . . ,M}, the following are equivalent:

(1) (P ei)i∈I spans P(HM).
(2) ((Id− P)ei)i∈I c is linearly independent.

Proof (1)⇒ (2) Assume that ((Id − P)ei)i∈I c is not linearly independent. Then
there exist scalars {bi}i∈I c , not all zero, so that∑

i∈I c
bi(Id− P)ei = 0.

It follows that
x =

∑

i∈I c
biei =

∑

i∈I c
biP ei ∈ P

(
HM

)
.

Thus,
〈x,P ej 〉 = 〈Px, ej 〉 =

∑

i∈I c
bi〈ei, ej 〉 = 0, if j ∈ I.

So x ⊥ span{Pei}i∈I and hence this family is not spanning for P(HM).
(2)⇒ (1) We assume that span{Pei}i∈I 
= P(HM). That is, there is a 0 
= x ∈

P(HM) so that x ⊥ span{Pei}i∈I . Also, x =∑M
i=1〈x, ei〉Pei . Then

〈x,P ei〉 = 〈Px, ei〉 = 〈x, ei〉 = 0, for all i ∈ I.

Hence, x =∑i∈I c 〈x, ei〉ei . That is,
∑

i∈I c
〈x, ei〉ei = x = Px =

∑

i∈I c
〈x, ei〉Pei.

That is, ∑

i∈I c
〈x, ei〉(I − P)ei = 0,

i.e., ((Id− P)ei)i∈I c is not linearly independent. �

We state an immediate consequence.
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Corollary 3.2 Let P be a projection on HM . The following are equivalent:

(1) There is a partition {Aj }rj=1 of {1,2, . . . ,M} so that (P ei)i∈Aj
spans P(HM)

for all j = 1,2, . . . , r .
(2) There is a partition {Aj }rj=1 of {1,2, . . . ,M} so that ((Id−P)ei)i∈Ac

j
is linearly

independent for every j = 1,2, . . . , r .

Now we can prove the main result, which gives the maximal number of spanning
sets contained in a frame. Recall that this problem is independent of applying an
invertible operator to the frame and hence we only need to prove the result for
Parseval frames.

Theorem 3.15 [15] Let (ϕi)
M
i=1 be a Parseval frame for HN , let P be a projection

on HM with (ϕi)
M
i=1 = (P ei)

M
i=1 where (ei)

M
i=1 is an orthonormal basis for HM , and

let (ψi)
(r−1)M
i=1 be the multiset

{
(Id− P)e1, . . . , (Id− P)e1, (Id− P)e2, . . . , (Id− P)2, . . . ,

(Id− P)eM, . . . , (Id− P)eM
}
. (3.8)

The following are equivalent:

(1) (ϕi)
M
i=1 can be partitioned into r spanning sets.

(2) (ψi)
(r−1)M
i=1 can be partitioned into r linearly independent sets.

(3) For all I ⊂ {1,2, . . . , (r − 1)M},
|I |

dim span{ψi}i∈I ≤ r. (3.9)

Proof (1)⇒ (2) Let {Aj }rj=1 be a partition of {1,2, . . . ,M} so that (P ei)i∈Aj
is

spanning for every j = 1,2, . . . , r . Then ((Id − P)ei)i∈Ac
j

is linearly independent
for every j = 1,2, . . . , r . Since {Aj }rj=1 is a partition, each (Id − P)ei appears in

exactly r − 1 of the collections ((Id − P)ei)i∈Ac
j
. So the multiset (ψi)

(r−1)M
i=1 has a

partition into r linearly independent sets.
(2) ⇒ (1) Let {Aj }rj=1 be a partition of {1,2, . . . , (r − 1)M} so that

((Id − P)ei)i∈Aj
is linearly independent for all j = 1,2, . . . , r . Since the col-

lection ((Id − P)ei)i∈Aj
is linearly independent, it contains at most one of the r

copies of (Id− P)ei for each i = 1,2, . . . ,M . Hence, each (Id− P)ei is in exactly
r − 1 of the collections ((Id − P)ei)i∈Aj

. That is, each i is in all but one of these
sets Aj . For each j = 1,2, . . . , r , let Bj be the complement of Aj in {1,2, . . . ,M}.
Since ((Id− P)ei)i∈Aj

is linearly independent, (P ei)i∈Bj
is spanning. Also, for all

i, j = 1, . . . , r with i 
= j , we have Bi ∩ Bj = ∅, since if k ∈ Bi ∩ Bj then k /∈ Ai ,
and k /∈Aj , which is a contradiction.

(2)⇔ (3) This is the Rado-Horn Theorem I. �
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3.6 Problems

We end with the problems which are still left open in this theory. The Rado-Horn
theorem and its variants tell us the minimal number of linearly independent sets into
which we can partition a frame. But this is unusable in practice, since it requires
doing a calculation for every subset of the frame. What we have done in this chapter
is to try to use the Rado-Horn theorem to identify, in terms of frame properties, the
minimal number of linearly independent sets into which we can partition a frame.
We have shown that there are many cases where we can do this, but the general
problem is still open.

Problem 3.2 Identify, in terms of frame properties, the minimal number of linearly
independent sets into which we can partition a frame.

By frame properties we mean using the eigenvalues of the frame operator of
a frame (ϕi)

M
i=1, the norms of the frame vectors, or the norms of the vectors of the

associated Parseval frame or perhaps the norms of the frame vectors of the canonical
Parseval frame associated to { ϕi‖ϕi‖ }Mi=1.

The main problem concerning spanning and independence properties of frames
is the following.

Problem 3.3 Given a frame Φ for HN , find integers r0, r1, . . . , rN−1 so that Φ

can be partitioned into r0 sets of codimension 0 (i.e., r0 spanning sets), r1 sets of
codimension 1, and in general, ri sets of codimension i for i = 0,1,2, . . . ,N − 1.
Moreover, do this in a maximal way in the sense that r0 is the maximal number
of spanning sets, and whenever we take r0 spanning sets out of the frame, r1 is
the maximal number of hyperplanes we can obtain from the remaining vectors, and
whenever r0, r1 are known, r2 is the maximal number of subsets of codimension 2
which can be obtained from the remaining vectors, etc.

Finally, we need to know how to answer the above problems in practice.

Problem 3.4 Find real-time algorithms for answering the problems above.

Problem 3.4 is particularly difficult, since it requires finding an algorithm for
proving the Rado-Horn theorem just to get started.
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Chapter 4
Algebraic Geometry and Finite Frames

Jameson Cahill and Nate Strawn

Abstract Interesting families of finite frames often admit characterizations in terms
of algebraic constraints, and thus it is not entirely surprising that powerful results
in finite frame theory can be obtained by utilizing tools from algebraic geometry.
In this chapter, our goal is to demonstrate the power of these techniques. First, we
demonstrate that algebro-geometric ideas can be used to explicitly construct local
coordinate systems that reflect intuitive degrees of freedom within spaces of finite
unit norm tight frames (and more general spaces), and that optimal frames can be
characterized by useful algebraic conditions. In particular, we construct locally well-
defined real-analytic coordinate systems on spaces of finite unit norm tight frames,
and we demonstrate that many types of optimal Parseval frames are dense and that
further optimality can be discovered through embeddings that naturally arise in al-
gebraic geometry.

Keywords Algebraic geometry · Elimination theory · Plücker embedding · Finite
frames

4.1 Introduction

Our goal in this chapter is to demonstrate that ideas from algebraic geometry can
be used to obtain striking results in finite frame theory. Traditionally, the frame
theory community has focused on tools from harmonic and functional analysis. By
contrast, algebro-geometric techniques have only been exploited in the past few
years because of the relatively recent interest in the theory of finite frames.

There are two central reasons why the frame theory community has begun to
develop an extensive theory of finite frames. First, there is a hope within the com-
munity that a deeper understanding of finite frames may help resolve longstanding
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problems in infinite-dimensional frame theory (such as the Kadison-Singer problem
[8, 22]). Second, computer implementations of frames are necessarily finite, and we
must have a theory of finite frames to demonstrate that these implementations are
accurate and robust (one manifestation of this is in the Paulsen problem [6]). It turns
out that interesting families of finite frames can be identified with algebraic varieties.
That is, they are solutions to systems of algebraic equations, or they live in equiv-
alence classes of solutions to algebraic systems. For example, real Parseval frames
satisfy the algebraic system of equations arising from the entries of ΦΦT = Id . In
what follows, we shall apply ideas from algebraic geometry to study finite unit norm
tight frames and Parseval frames.

Finite unit norm tight frames obey length constraints and a frame operator con-
straint. Maintaining the frame operator constraint is the most complex obstruction
to parameterizing these spaces. A rather fruitful perspective on this constraint is
obtained by considering the frame operator as a sum of dyadic products:

S =
M∑

i=1

φiφ
T
i .

Supposing that Λ⊂ [M] contains the indices of a basis inside of the frame Φ , we
then have

∑

i∈Λ
φiφ

T
i = S −

∑

i∈[M]\Λ
φiφ

T
i .

By continuity, we should be able to locally articulate the φi ’s with indices in [M]\Λ
while ensuring that the left-hand side of this equation remains a viable frame oper-
ator for the basis. As the free vectors move, the basis reacts elastically to maintain
the overall frame operator. Additionally, the basis contributes extra degrees of free-
dom. It turns out that this intuition can be formalized, and tools from elimination
theory can be used to explicitly compute the resulting coordinate systems on spaces
of finite unit norm tight frames (more generally, frames with fixed vector lengths
and a fixed frame operator). It should be noted that the chapter “Constructing Finite
Frames with a Given Spectrum” also contained in this volume has coordinate sys-
tems where the free parameters directly control a system of eigensteps. In contrast,
the coordinates derived in our chapter have free parameters that directly control the
spatial location of frame vectors. We provide a technical justification for these coor-
dinate systems by characterizing the tangent spaces (Theorem 4.3) on the space of
finite unit norm tight frames (and more general frames), and then applying the real-
analytic inverse function theorem (Theorem 4.4). An extensive example is provided
to convey the central ideas behind these results.

Parseval frames which are equivalent up to an invertible transform can be iden-
tified with the Grassmannian variety, which allows us to define a concrete notion
of distance between these equivalence classes. Using this distance, we can demon-
strate that equivalence classes of generic frames (robust to M−N arbitrary erasures
[20]) are dense in the Grassmannian variety. Moreover, the Plücker embedding al-
lows us to construct algebraic equations which characterize generic frames that are
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also numerically maximally robust to erasures. Finally, we demonstrate that suffi-
cient redundancy implies that the frames that can be used to solve the phaseless
reconstruction problem form a dense subset.

4.1.1 Preliminaries

We shall now discuss the necessary preliminary concepts and notation. The Zariski
topology is a fundamental idea in algebraic geometry. The zero sets of multivariate
polynomials form a basis for the closed sets of the Zariski topology on H n. Thus,
the closed sets are given by

C =
{

C ⊂H n : C =
k⋂

i=1

p−1
i

({0}) for some polynomials {pi}ki=1

}

. (4.1)

It is not difficult to deduce that this induces a topology [13]. An important prop-
erty of this topology is that the nontrivial open sets are dense in the Euclidean topol-
ogy.

We shall often use [a] to denote the a-set {1, . . . , a}, and [a, b] = {a, a +
1, . . . , b]. For sets P ⊂ [M] and Q ⊂ [N ] and any M by N matrix X, we let XQ

denote the matrix obtained by deleting the columns with indices outside of Q, and
we let XP×Q denote the matrix obtained by deleting entries with indices outside of
P ×Q. For any submanifold M embedded in the space of M by N matrices, we
set

TXM =
{
Y : Y = d

dt
γ (t)

∣
∣∣∣
t=0

for a smooth path γ in M with γ (0)=X

}
.

4.2 Elimination Theory for Frame Constraints

Elimination theory consists of techniques for solving multivariate polynomial sys-
tems. Generally, one successively “eliminates” variables by combining equations.
Variables are eliminated until a univariate polynomial is obtained, and then those
solutions are used to “backsolve” and acquire all of the solutions to the multivari-
ate system. Gaussian elimination is perhaps the most well-known application of
elimination-theoretic techniques. Given a consistent system of linear constraints,
Gaussian elimination can be carried out to produce a parameterization of the solu-
tion space. For higher-order polynomial systems, generalizing this kind of elimina-
tion can be quite tricky, but it simplifies in a few notable cases. For example, square
roots allow us to construct locally well-defined coordinate systems for the space of
solutions to a single spherical constraint:

N∑

i=1

x2
i = 1 =⇒ x1 =±

√√√√1−
N∑

i=2

x2
i .
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This example demonstrates that we can parameterize the top or bottom cap of a
hypersphere in terms of the variables xi for i = 2, . . . ,N . Note that these param-
eterizations are both valid as long as

∑N
i=2 x

2
i ≤ 1, and that they are also analytic

inside of this region.
The finite unit norm tight frames of M vectors in R

N are completely character-
ized by the algebraic constraints

φT
i φi =

N∑

j=1

φ2
ji = 1 for i = 1, . . . ,N and ΦΦT = M

N
IdN,

and hence the space of finite unit norm tight frames is an algebraic variety. More-
over, these constraints are all quadratic constraints, so the space of finite unit norm
tight frames is also a quadratic variety. Computing solutions for a general quadratic
variety is NP-hard [10], but we shall soon see that spaces of finite unit norm tight
frames often admit tractable local solutions.

Finite unit norm tight frames for R2 admit simple parameterizations because they
can be identified with closed planar chains (see [3]).

Proposition 4.1 For any frame Φ of M vectors in R
2, identify (φi)

M
i=1 with the

sequence of complex variables {zi}Ni=1 with Re(zi) = φ1i and Im(zi) = φ2i . Then
Φ is a finite unit norm tight frame if and only if |zi |2 = 1 for i = 1, . . . ,N and∑N

i=1 z
2
i = 0.

To induce a parameterization on finite unit norm tight frames with M vectors in
R

2, we may place M − 2 links in a planar chain starting at the origin, and to close
the chain with two links of length one, there are only finitely many viable solutions.
This parameterization betrays the fact that the local parameterizations arise from
locally arbitrary perturbation of M − 2 vectors. This intuition extends to finite unit
norm tight frames of RN , but the reacting basis for N > 2 has nontrivial degrees of
freedom.

More generally, for a list of squared vector lengths μ ∈ R
M+ and a target frame

operator S (a symmetric, positive definite N by N matrix), we may extend this
intuition to the algebraic variety of frames with squared vector lengths indexed by
μ and with frame operator S. We shall call these frames the (μ,S)-frames, and we
let Fμ,S denote the space of all such frames. The following majorization condition
(introduced to the frame community in [7]) characterizes the μ and S such that Fμ,S

is nonempty, and we shall implicitly assume that μ and S satisfy this condition for
the remainder of this section.

Theorem 4.1 Let μ ∈ R
M+ and let S denote an N by N symmetric positive definite

operator. The space Fμ,S is not empty if and only if

max{A⊂[M]:|A|=k}
∑

i∈A
μi ≤

k∑

i=1

λi(S) for all k ∈ [N ],
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and
∑M

i=1 μi =∑N
i=1 λi(S). Here, {λi(S)}Ni=1 are the eigenvalues of S listed in

nonincreasing order.

In this section, we shall rigorously validate the intuition that coordinates on Fμ,S

essentially arise from free articulation of M −N vectors on a sphere, and restricted
articulation of a basis. First, we shall present a simple example that depicts how
formal local coordinates may be constructed on a space of frames with fixed vector
lengths and a fixed frame operator. In order to validate the formal local coordi-
nates, we first characterize the tangent spaces on these frame varieties and proceed
to demonstrate injectivity of the tangent spaces onto candidate parameter spaces.
This allows us to invoke the real-analytic inverse function theorem to ensure that
locally well-defined real-analytic coordinate patches do exist. Finally, we use this
existence result to validate explicit expressions for the formal coordinates. While all
of these results are also true in the complex case, we shall only consider real frames,
because the notation is less cumbersome, and the arguments are very similar.

4.2.1 A Motivating Example

In this example, we demonstrate how coordinates can be obtained for a space of
bases in R

3 with fixed lengths and a fixed frame operator. This is the simplest non-
trivial case, but our approach requires a decent amount of effort. The benefit is that
the approach of this example works in general, with minor modifications.

We consider the case M =N = 3,

μ =
⎡

⎣
1
1
1

⎤

⎦ , and Φ =
⎡

⎣
1
√

2/2 0
0
√

2/2
√

2/2
0 0

√
2/2

⎤

⎦ ,

S = ΦΦT =
⎡

⎣
3/2 1/2 0
1/2 1 1/2
0 1/2 1/2

⎤

⎦ .

Let us count the constraints on Fμ,S to determine its dimension as a manifold. Each
of the three length conditions imposes a constraint. Because of symmetry, the frame
operator condition imposes 3+ 2+ 1= 6 constraints. Since Fμ,S ⊂R

3×3, it would
seem that this algebraic variety is zero dimensional. However, we have counted one
of the constraints twice because trace(S)=∑μi . Thus, Fμ,S is a one-dimensional
algebraic variety. Consequently, we look for parameterizations of the form

Φ(t)=
⎡

⎣
φ11(t) φ12(t) φ13(t)

φ21(t) φ22(t) φ23(t)

t φ32(t) φ33(t)

⎤

⎦ , Φ(0)=Φ.
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The constraints are diag(ΦT (t)Φ(t))= [111]T and

Φ(t)Φ(t)T = S ⇐⇒ Φ(t)T S−1Φ(t)=Φ(t)T

⎡

⎣
1 −1 1
−1 3 −3
1 −3 5

⎤

⎦Φ(t)= Id3.

We proceed inductively through the columns of Φ(t). The constraints that only in-
volve the first column are the normality condition and the condition imposed by
S11 = 1,

φ2
11 + φ2

21 + t2 = 1,

φ2
11 + 3φ2

21 + 5t2 − 2φ11φ21 + 2φ11t − 6φ21t = 1.

Viewing these two multinomials as polynomials in φ21 with coefficients in φ11 and
t , we have

φ2
21 +

(
φ2

11 + t2 − 1
) = 0,

3φ2
21 + (−2φ11 − 6t)φ21 +

(
φ2

11 + 5t2 + 2φ11t − 1
) = 0.

To perform elimination on this system, we need to invoke the following proposition
(which is a simple exercise using Gaussian elimination).

Proposition 4.2 Suppose αi,βi ∈ R for i = 0,1,2 and α2, β2 
= 0. The quadratics
p = α2ξ

2 + α1ξ + α0 and q = β2ξ
2 + β1ξ + β0 have a mutual zero if and only if

the Bézout determinant satisfies

Bz(p, q) := (α2β1 − α1β2)(α1β0 − α0β1)− (α2β0 − α0β2)
2 = 0. (4.2)

Applying this proposition to the last two quadratics, we can eliminate φ21 to
obtain

0 = [(1)(−2φ11 − 6t)− (0)(3)
][
(0)
(
φ2

11 + 5t2 + 2φ11t − 1
)

− (φ2
11 + t2 − 1

)
(−2φ11 − 6t)

]− [(1)(φ2
11 + 5t2 + 2φ11t − 1

)

− (3)
(
φ2

11 + t2 − 1
)]2

= 8φ4
11 + 16tφ3

11 +
(
36t2 − 12

)
φ2

11 +
(
32t3 − 16t

)
φ11 +

(
40t4 − 28t2 + 4

)
.

Solving for φ11 in terms of t , we obtain the four possible solutions:

φ11(t)=±
√

1− 2t2,−t ± 1

2

√
−6t2 + 2.

The condition φ11(0)= 1 leaves us with just one possible solution:

φ11(t)=
√

1− 2t2,
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and we readily verify that this implies φ21(t)= t . Having solved for the first column,
we consider the constraints that have not been satisfied, but which only depend on
the first and second columns:

φ2
12 + φ2

22 + φ2
32 = 1,

φ2
12 + 3φ2

22 + 5φ2
32 − 2φ12φ22 + 2φ12φ32 − 6φ22φ32 = 1,

xT S−1y =
√

1− 2t2φ12 −
√

1− 2t2φ22 +
(√

1− 2t2 + 2t
)
φ32 = 0.

(4.3)

By continuity, we know that φ11(t) 
= 0 near t = 0, so we may solve the third equa-
tion for φ12 to obtain

φ12 = φ22 −
(
1+ 2t/

√
1− 2t2

)
φ32.

This allows us to eliminate φ12 from the first two equations, and we may view these
new equations as quadratics in φ22 with coefficients in φ32 and t :

2φ2
22 +

[(−2− 4t/
√

1− 2t2
)
φ32
]
φ22

+ [(2+ 4t/
√

1− 2t2 + 4t2/
(
1− 2t2))φ2

32 − 1
]= 0,

2φ2
22 + [−4φ32]φ22 +

[(
4+ 4t2/

(
1− 2t2))φ2

32 − 1
]= 0.

We now solve for φ32 in terms of t so that the Bézout determinant of this system
vanishes, and we obtain only three solutions,

φ32(t)= 0,±1

2

√
2− 4t2.

Since φ32(0) = 0, we are left with the solution φ32(t) = 0. Substitution into (4.3)
immediately implies that φ12(t) = φ22(t) for all t , so we must conclude that
φ12(t)= φ22(t)=

√
2/2 for all t .

We now solve for the final column, φ3. Noting that conditions on φ2 are also
imposed upon φ3, we see that

φ33(t)= 0,±1

2

√
2− 4t2.

However, φ33(0) =
√

2/2, so we have that φ33(t) = 1
2

√
2− 4t2. A similar line of

reasoning reveals that

φ23(t)=±
√

2/2,±1

2

√
2− 4t2.

Invoking the orthogonality condition,

φT
2 S−1φ3 =

√
2φ23 −

√
2φ33 = 0,
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we may eliminate the constant solutions, and φ23(0) =
√

2/2 leaves us with
φ23(t) = 1

2

√
2− 4t2. Using the spherical condition φ2

13 + φ2
23 + φ2

33 = 1 and the
orthogonality condition xT S−1z= 0, we obtain φ13(t)=−

√
2t . Thus, the final so-

lution is

Φ(t)=

⎡

⎢⎢
⎣

√
1− 2t2

√
2/2 −√2t

t
√

2/2 1
2

√
2− 4t2

t 0 1
2

√
2− 4t2

⎤

⎥⎥
⎦ .

This parameterization is relatively simple because the first and third columns form
an orthonormal basis of span{φ1(0),φ3(0)} for all t . If we had observed this at the
beginning of the example, the parameterizations would follow very quickly. How-
ever, a generic frame does not contain an orthonormal basis and the approach of this
example is generically effective.

We may immediately exploit the idea behind this example to construct formal
coordinate systems around arbitrary frames in Fμ,S , However, it is not immediately
clear that any of these formal coordinate systems are locally well defined. Our first
challenge is to demonstrate that there are unique, valid coordinate systems. We shall
then endeavor to identify these with the formal solutions that can be constructed in
a manner echoing this example.

4.2.2 Tangent Spaces on Fμ,S

We first turn our attention to the problem of characterizing the tangent spaces
of Fμ,S . The reason for this is twofold. First, if the tangent is not well defined, then
we are not guaranteed that the algebraic variety is locally diffeomorphic to an open
subset of Euclidean space. That is, smooth coordinate charts may not be available.
The second reason is that we have a procedure for constructing formal coordinate
systems (as illustrated by the preceding example), but we would like to know that
these formal coordinate systems are actually valid in some open neighborhood. To
obtain this validation, we want to demonstrate injectivity of a Jacobian in order to
invoke a form of the inverse function theorem. Demonstrating the injectivity ensures
that our coordinate map does not collapse or exhibit a pinched point, and we have
to characterize the tangent spaces of Fμ,S to carry out the demonstration.

For μ ∈R
M+ and N by N symmetric positive definite S, let

Tμ,N =
{
Φ = (φi)

M
i=1 ⊂R

N : ‖φi‖2 = μi for all i = 1, . . . ,M
}

and

StS,M =
{
Φ = (φi)

M
i=1 ⊂R

N :ΦΦT = S
}

denote the generalized torus and generalized Stiefel manifold respectively. For
brevity, we shall simply call these the torus and the Stiefel manifold. Clearly, we



4 Algebraic Geometry and Finite Frames 149

Fig. 4.1 Full transversality of an intersection (left) ensures that the intersection forms a manifold
with a formula for the dimension. The central figure demonstrates that local failure of transversality
results in crossings inside the intersection (the lemniscate). On the right, we see that degeneracy
occurs when transversality fails completely

have that

Fμ,S = Tμ,N ∩ StS,M.

Suppose that Fμ,S is nonempty, set c =∑M
i=1 μi , and define the Frobenius sphere

of square radius c by

SM,N,c =
{

Φ = (φi)
M
i=1 ⊂R

N :
N∑

i=1

‖φi‖2 = c

}

.

Then, we have the following inclusion diagram:

SM,N,c

↗ ↖
StS,M Tμ,N

↖ ↗
Fμ,S

.

In order to demonstrate that formal coordinates are valid using the implicit func-
tion theorem, we shall require an explicit characterization of the tangent space
TΦFμ,S for a given Φ ∈ Fμ,S . Given the inclusion diagram, it is natural to ask
when

TΦFμ,S = TΦTμ,N ∩ TΦStS,M.

That is, when is the tangent space of the intersection equal to the intersection of
the tangent spaces? The notion of transversal intersection is our starting point for
approaching this question (see [12]).

Definition 4.1 Suppose that M and N are smooth submanifolds of the smooth
manifold K , and let x ∈M ∩N . We say that M and N intersect transversally at
x in N if TxK = TxM + TxN . Here, + is the Minkowski sum.
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Theorem 4.2 Suppose that M and N are smooth submanifolds of the smooth
manifold K , and let x ∈M ∩N . If N and M intersect transversally at x in K ,
then Tx(M ∩N ) is well defined and

Tx(M ∩N )= TxM ∩ TxN .

That is, the tangent space of the intersection is the intersection of the tangent spaces.

Figure 4.1 provides a visualization of this theorem. To exploit this theorem, we
must first determine TΦSM,N,c , TΦTμ,N , and TΦStS,M . The tangent space for the
sphere at Φ is simply the set of matrices “orthogonal” to Φ , or

TΦSM,N,c =
{

X = (xi)
M
i=1 ⊂R

N :
N∑

i=1

〈xi,φi〉 = 0

}

.

Since the tangent space of a product of manifolds is the product of the tangent
spaces, we also have that

TΦTμ,N =
{
X = (xi)

M
i=1 ⊂R

N : 〈xi,φi〉 = 0 for all i = 1, . . . ,N
}
.

The most convenient characterization of TΦStS,M is obtained by noting that the
special orthogonal group SO(N) acts on StS,M on the right: (U,Φ) �→ΦU . Since
the Lie algebra of SO(N) is the skew-symmetric matrices, it is not difficult to show
that

TΦStS,M =
{
X = (xi)

M
i=1 ⊂R

N :X =ΦZ, where Z =−ZT
}
.

Having characterized these tangent spaces, we now turn to the problem of char-
acterizing the Φ ∈Fμ,S at which Tμ,N and StS,M intersect transversally in SM,N,c .
It turns out that the “bad” Φ are exactly the orthodecomposable frames (see [9]).

Definition 4.2 A frame Φ is said to be orthodecomposable if it can be split into
two nontrivial subcollections, Φ1 and Φ2 satisfying Φ∗1Φ2 = 0. That is, spanΦ1
and spanΦ2 are nontrivial orthogonal subspaces.

Clearly, orthodecomposability is intimately related to the correlation structure of
the frame’s members. In order to demonstrate this equivalence, we shall require the
notion of a frame’s correlation network.

Definition 4.3 The correlation network of a frame Φ = (φi)
M
i=1 is the undirected

graph γ (Φ) = (V ,E), where V = [M] and (i, j) ∈ E if and only if 〈φi,φj 〉 is
nonzero.

Example 4.1 For the Φ defined in the example,

[〈φi,φj 〉
]
(i,j)∈[3]2 =ΦTΦ =

⎡

⎣
1

√
2/2 0√

2/2 1 1/2
0 1/2 1

⎤

⎦ .



4 Algebraic Geometry and Finite Frames 151

Fig. 4.2 (a) A rooted spanning tree is extracted from γ (Φ). Set zij = 0 if (i, j) is not in the
spanning tree. (b) At nodes whose only children are leaves, fix entries of Z so that (4.4) holds for
all these children. Effectively remove these children from the tree. (c) Inductively apply (b) until
only the root remains. (d) The conditions on Y ensure that the final equation holds. At this point,
all entries of Z have been defined

We conclude that γ (Φ)= ({1,2,3}, {(1,2), (2,3)}), since φ1, φ3 is the only orthog-
onal (uncorrelated) pair.

We can now state the main theorem which relates the transversality of the inter-
section at Φ , the connectivity of the correlation network γ (Φ), and the orthodecom-
posability of Φ . This result is due to Strawn [21].

Theorem 4.3 Suppose Φ ∈Fμ,S . Then the following are equivalent:

(i) TΦSM,N,c = TΦTμ,N + TΦStS,M ;
(ii) For all Y ∈ TΦSM,N,c, there is a skew-symmetric Z = [zij ] which is a solution

to the system

〈yi,φi〉 =
∑

j∈[M]
zji〈φi,φj 〉 for all i ∈ [M]; (4.4)

(iii) Φ is not orthodecomposable;
(iv) γ (Φ) is connected.

The proof of this theorem is fairly straightforward, but its technical details ob-
fuscate the simple intuition. The centerpiece of the argument involves an algorithm
for constructing a solution to (4.4) given that γ (Φ) is connected. Because Z is
skew-symmetric, this procedure can be interpreted as an algorithm for distributing
specified amounts of a resource at the nodes of the correlation network. We illustrate
this algorithm in Fig. 4.2.
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From this theorem, we immediately obtain a characterization of the tangent
spaces of Fμ,S at non-orthodecomposable frames.

Corollary 4.1 Assuming that Φ ∈Fμ,S is not orthodecomposable, we have

TΦFμ,S = TΦTμ,N ∩ TΦStS,M

= {X = (xi)
M
i=1 ⊂R

N :X =ΦZ,Z =−ZT ,diag
(
Φ∗X

)= 0
}
. (4.5)

4.2.3 Existence of Locally Well-Defined Parameterizations
on Fμ,S

Now that we have characterized the tangent spaces on Fμ,S , we proceed to construct
a linear map π and a linear parameter space Ω⊕Δ for each non-orthodecomposable
F ∈Fμ,S so that π : TFFμ,S →Ω ⊕Δ (the Jacobian of π :Fμ,S →Ω ⊕Δ) is
injective and hence the map π :Fμ,S →Ω ⊕Δ has a locally well-defined inverse
by the inverse function theorem [16]. This allows us to conclude that our formal
procedure produces valid coordinate systems.

We begin by noting that, by counting the governing constraints, the dimension of
a generic nonempty Fμ,S is

dim(Fμ,S) = dimTμ,N + dimStS,M − dimSM,N,c

= (N − 1)M +
M∑

i=1

(M − i)− (MN − 1)

= (N − 1)(M −N)+
M−2∑

i=1

i.

Based on our initial example, this calculation, and a little intuition, we expect
that it may be possible to obtain a parameterization of the form Φ(Θ,L) =
[Γ (Θ)B(Θ,L)], where

L ∈ΔN =
{
δ = (δi)

N
i=1 ⊂R

N : δij = 0 if i ≤ j + 1
}
,

Θ ∈ΩM,N =
{
ω= (ωi)

M−N
i=1 ⊂R

N : ω1i = 0 for all i = 1, . . . ,M −N
}
,

Γ (Θ) =

⎡

⎢⎢⎢
⎣

φ11(θ1) φ12(θ2) · · · φ1,M−N(θM−N)

θ21 θ22 · · · θ2,M−N

...
...

. . .
...

θN1 θN2 · · · θN,M−N

⎤

⎥⎥⎥
⎦
,
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and where B(Θ,L) has the form
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

φ1,M−N+1 φ1,M−N+2 · · · φ1,M−3 φ1,M−2 φ1,M−1 φ1M
φ2,M−N+1 φ2,M−N+2 · · · φ2,M−3 φ2,M−2 φ2,M−1 φ2M

l31 φ3,M−N+2 · · · φ3,M−3 φ3,M−2 φ3,M−1 φ3M
l41 l42 · · · φ4,M−3 φ4,M−2 φ4,M−1 φ4M
...

...
. . .

...
...

...
...

lN−1,1 lN−1,2 · · · lN−1,N−3 φN−1,M−2 φN−1,M−1 φN−1,M
lN1 lN2 · · · lN,N−3 lN,N−2 φN,M−1 φNM

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

Here, Γ represents the vectors that may be freely perturbed within their sphere, and
B parameterizes the basis. Note that Γ (Θ) and B(Θ,L) are N by M −N and N

by N arrays respectively.
In order to exploit this parameter space, we must rotate all of the vectors of Φ so

that the resulting tangent space is sufficiently aligned with ΩM,N ⊕ΔN . Otherwise,
we shall fail to acquire a parameterization with the form we have just described. No-
tationally, this system of rotations is represented as an array of orthogonal matrices:

Q= (Qi)
M
i=1 ⊂OM(N).

The alignment of the frame Φ using the system of rotations Q is denoted

Q � Φ = (Qiφi)
M
i=1,

and we set QT = (QT
i )

M
i=1.

This next theorem (also due to Strawn [21]) sets the stage for applying the real-
analytic inverse function theorem [16] by demonstrating injectivity of the Jacobian.
In particular, it allows us to know how and when we may use the parameter space
ΩM,N ⊕ΔN to obtain coordinates on Fμ,S .

Theorem 4.4 Suppose Φ ∈Fμ,S is not orthodecomposable. Then there is a sys-
tem of rotations Q ∈OM(N) and an M by M permutation matrix P such that the
orthogonal projection

π :QT � TΦPT FPμ,S →ΩM,N ⊕ΔN

is injective.

By the real-analytic inverse function theorem, we obtain the following corollary,
which ensures that our procedure for constructing formal coordinates (as in the first
example) might actually produce well-defined coordinate systems.

Corollary 4.2 If the conditions of Theorem 4.4 are satisfied, then there is a unique,
locally well-defined, real-analytic inverse of π , Φ ′ :ΩM,N ⊕ΔN →QT �FPμ,S .

Remark 4.1 If Φ ′ is as in the above corollary, then (Q � Φ ′(Θ,L))P is a parame-
terization around Φ ∈Fμ,S .
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The proof of Theorem 4.4 is rather technical, but a simple example should illus-
trate the nuances. Consider the frame

Φ =

⎡

⎢⎢
⎣

1 1
√

3
3

√
3

3

0 0
√

3
3

√
3

3

0 0 −
√

3
3

√
3

3

⎤

⎥⎥
⎦ ,

so that μ= [1111]T and

S =
⎡

⎢
⎣

8
3

2
3 0

2
3

2
3 0

0 0 2
3

⎤

⎥
⎦ .

Our first goal is to identify a non-orthodecomposable basis inside of Φ . Note that
the existence of such a basis is equivalent to the connectivity of γ (Φ). We set

B = [φ2 φ3 φ4] =

⎡

⎢
⎢
⎣

1
√

3
3

√
3

3

0
√

3
3

√
3

3

0 −
√

3
3

√
3

3

⎤

⎥
⎥
⎦ .

Our next gadget is a rooted tree on γ (B). We simply set 4 to be the root of this
tree, and 2 and 3 are the children. Let T denote this tree. We have chosen T in this
manner so as to illustrate typical behavior.

Now, the permutation matrix P in Theorem 4.4 is then chosen so that PT moves
all of the “free” vectors to the left side of ΦPT , and also so that if i is a child of
j in T , then the ith vector precedes the j th vector. By our choice of Φ and T , we
simply have that P = Id. Next, we fix the alignment matrices.

The alignment matrices of the “free” vectors are simply chosen so that Qie1 =
φi/‖φi‖. Choosing the alignment matrices for the basis is more complicated. In our
case, Q1 = Id since φ1 = e1. We now choose Q2 so that

[φ2 φ4 φ3] = [φ2 φ3 φ4]P(23) =Q2R2

is the QR decomposition of B after we permute the second and third column. Note
that we have permuted so that the φ2 is followed by the vector whose index is the
parent of 2 in T . It is simple to check that

⎡

⎢⎢
⎣

1
√

3
3

√
3

3

0
√

3
3

√
3

3

0
√

3
3 −

√
3

3

⎤

⎥⎥
⎦=

⎡

⎢
⎣

1 0 0

0
√

2
2

√
2

2

0 −
√

2
2

√
2

2

⎤

⎥
⎦

⎡

⎢⎢
⎣

1
√

3
3

√
3

3

0
√

6
3 0

0 0
√

6
3

⎤

⎥⎥
⎦ ,
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and hence

Q2 =
⎡

⎢
⎣

1 0 0

0
√

2
2

√
2

2

0 −
√

2
2

√
2

2

⎤

⎥
⎦ .

The final two alignment matrices are always set to the identity, so Q3 =Q4 = Id.
Now, we set about demonstrating that the projection from this theorem is injec-

tive. Suppose that X ∈QT � TΦFμ,S satisfies π(X)= 0, and hence

X =
⎡

⎣
x11 x12 x13 x14
0 x22 x23 x24
0 0 x33 x34

⎤

⎦ .

Because γ (Φ) is connected, we know that

TΦFμ,S =
{
Y : Y =ΦZ,Z =−Zt ,diag

(
ΦTΦZ

)= 0
}
.

In particular, we have that X =QT � (ΦZ) for some Z =−ZT . We shall show that
Z = 0 by induction though its columns. First, we show that we may choose Z so
that z1 = 0. We first note that x1 =Φz1. Since diag(ΦT ΦZ)= 0, we have

0= φT
1 Φz1 = eT1 Φz1 = eT1 x1 = x11.

Consequently, x1 = 0 and it turns out that we can assume z1 = 0 in this case. The
details of this are described in the full proof, but one may think of this as saying
that any motion that fixes “free” vectors only needs to know how it is acting on the
basis. Now, we show that z2 = 0. We have that

P(23)

⎡

⎣
0
z32
z42

⎤

⎦=R−1
2 x2 =

⎡

⎢⎢
⎣

1 −
√

2
2 −

√
2

2

0
√

6
2 0

0 0
√

6
2

⎤

⎥⎥
⎦

⎡

⎣
x12
x22
0

⎤

⎦=
⎡

⎣
x12 −

√
2

2 x22√
6

2 x22

⎤

⎦ .

This means that

z2 =

⎡

⎢
⎢
⎣

0
0
0
z42

⎤

⎥
⎥
⎦ .

Now, the other condition on TΦFμ,S , diag(ΦT ΦZ)= 0 implies that φT
2 Φz2 =

0. But since we have z2 = z42e4, this condition reduces to

z42φ
T
2 φ4 = 0.

In the spanning tree of the correlation network, 4 is the parent of 2, so we have
that φT

2 φ4 
= 0. Therefore z42 = 0, and hence z2 = 0. Repeating this trick gives us
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z3 = 0 as well; the last three entries of z3 are Φ−1x3, which implies that the only
nonzero entry of z3 is z43, and the diagonal condition ensures that z43 = 0. Finally,
z4 = 0 since Z =−ZT .

We have shown that Z = 0, so it follows that X = 0 and π is injective. After
counting dimensions, we invoke the real-analytic inverse function theorem to ob-
tain unique, analytic, locally well-defined coordinates. This guarantees us that our
formal solutions to this system are locally valid. We now proceed to elucidate the
explicit construction of formal solutions.

4.2.4 Deriving Explicit Coordinates on Fμ,S

Using the same Φ in our last example, we set

φ1 =
⎡

⎢
⎣

√
1− φ2

21 − φ2
31

φ21
φ31

⎤

⎥
⎦ .

Our only condition imposed upon the “free” vector is that it remain in its sphere.
However, as we move φ1, the frame operator of the basis [φ2 φ3 φ4] must change to
maintain the overall frame operator. Explicitly, we want to enforce the constraint

S = φ1φ
T
1 + φ2φ

T
2 + φ3φ

T
3 + φ4φ

T
4 ,

so we must have that

BBT = φ2φ
T
2 + φ3φ

T
3 + φ3φ

T
3 = S − φ1φ

T
1 .

Since B is invertible, we can rearrange to obtain

BT
(
S − φ1φ

T
1

)−1
B = Id.

By rearranging in this manner, all of the conditions on the basis become conditions
on the columns. This is the central trick that supplies us with a strategy for carrying
out the full derivation of the explicit coordinate systems. With this rearrangement,
it is now possible to solve the entire system in a column-by-column fashion.

For this trick to work we must compute (S−φ1φ
T
1 )−1. The entries of this inverse

are analytic functions, but they are already complicated. While we may be able to
fit this expression on a page, we only have one “free” vector to consider. With an
arbitrary number of “free” vectors, one can easily see that this inverse has a very
dense representation. Even if we were simply solving a linear system involving the
basis and this inverse, the full expression would be vast. In our situation, we’re going
to solve two quadratic equations and a linear system. This dramatically inflates the
complexity of the explicit expressions.
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Forgoing the explicit form of (S − φ1φ
T
1 ), we now consider the conditions that

must be imposed upon just φ2:

φT
2 φ2 = 1 and φT

2

(
S − φ1φ

T
1

)−1
φ2 = 1.

The first is a spherical constraint, and the second is an ellipsoidal constraint. In
general, the solution set in R

3 bears a striking resemblance to the boundary of a
Pringles chip. Because of the alignment structure, we set φ2 =Q2ψ and solve

ψT ψ = 1 and ψTQT
2

(
S − φ1φ

T
1

)−1
Q2ψ = 1,

where

ψ =
⎡

⎣
ψ1(t, φ1)

ψ2(t, φ1)

t

⎤

⎦ .

As in our first example, these are two quadratic constraints and we may apply the
Bézout determinant trick to obtain explicit expressions for ψ1 and ψ2. The resulting
expressions are entirely dependent upon φ1 and t . We may then set φ2 =QT

2 ψ . With
φ2 in hand, we can then solve for φ3 and φ4 just like we did in our first example. The
astute reader will recognize that we obtain numerous branches from solving these
equations. However, we may prune these branches by considering the condition
Φ(0,0,0)=Φ .

While we may write explicit expressions for these coordinate systems, these ex-
pressions will necessarily involve solutions to quartic equations, which are unwieldy
when expressed in their full form. For our example, some of the expressions are so
vast that they exceed LATEX’s allowed buffer. Nevertheless, computer algebra pack-
ages can manage the expressions. For a full technical derivation of these coordinates
and a full proof that there is a unique branch with local validity, the reader is referred
to [21].

Since the expressions for our example are too large to fit on a page, we conclude
this section with Fig. 4.3, which depicts the motion that frame vectors experience as
we traverse the local coordinate system. In this figure, we allow φ1 to move along a
great circle and allow t to vary fully. Consequently, we observe the individual basis
vectors articulating along two-dimensional sheets inside the unit sphere. There are
of course three degrees of freedom for this example, but it is much harder to visual-
ize the behavior obtained by submerging a three-dimensional space in a sphere.

4.3 Grassmannians

In this section we will study a family of well-known varieties called Grassmanni-
ans. These results originally appeared in [5]. The Grassmannian is defined as the
set {N -dimensional subspaces of H M} and will be denoted by Gr(M,N). It is not
clear from this definition how this set forms a variety, but this will be explained
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Fig. 4.3 In this figure, we have allowed φ1 (the small blue curve near the sheet on the left side) to
vary along a fixed curve, and the movement of φ2 controls the single degree of freedom inside the
basis. Consequently, φ2, φ3, and φ4 carve out two-dimensional sheets on the unit sphere

shortly. The motivation for the use of Grassmannians in frame theory comes from
the following proposition (see [1, 15]).

Proposition 4.3 Two frames are isomorphic if and only if their corresponding anal-
ysis operators have the same image.

Therefore a point on a Grassmannian corresponds to an entire isomorphism class
of frames, but many properties of frames are invariant under isomorphisms, so
Grassmannians can give a useful way to discuss families of frames with certain
properties.

In this first section we will explain some basic properties of Grassmannians. Most
of this material is well known, so we will provide appropriate references for techni-
cal details that are not included here.

First we will be concerned with the Grassmannian as a metric space. If X ,Y ∈
Gr(M,N) then ‖PX − PY ‖ defines a metric on Gr(M,N), where PX denotes
the orthogonal projection of H M onto X , and ‖ · ‖ denotes the usual operator
norm. This metric has a geometric interpretation in terms of the “angle” between
X and Y . Define the N -tuple (σ1, . . . , σk) as follows:

σ1 =max
{〈x, y〉 : x ∈X , y ∈Y ,‖x‖ = ‖y‖ = 1

}= 〈x1, y1〉,

and

σi = max
{〈x, y〉 : x ∈X , y ∈Y ,‖x‖ = ‖y‖ = 1, 〈x, xj 〉 = 〈y, yj 〉 = 0, j < i

}

= 〈xi, yi〉
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for i > 1. Now define θi(X ,Y ) = cos−1(σi). The N -tuple θ(X ,Y ) =
(θ1, . . . , θN) is called the principal angles between X and Y (some authors call
these the canonical angles). Let X and Y be N ×M matrices whose rows form
orthonormal bases for X and Y respectively. It turns out that the σi ’s are precisely
the singular values of XY ∗. We also have that ‖PX − PY ‖ = sin(θN(X ,Y )). In
fact, there are many metrics that can be defined in terms of the principal angles.
Justifications for these three facts can be found in [15].

We now proceed to explain a particular embedding, known as the Plücker em-

bedding, of Gr(M,N) into P(
M
N)−1 which will be used extensively in this section.

Let X ∈ Gr(M,N) and let X(1) be any N ×M matrix whose rows form a ba-
sis for X . Let X(1)

i1···iN be the N ×N minor consisting of the columns indexed by

i1, . . . , iN of X(1). Then the
(
M
N

)
-tuple Plu(X(1)) = (det(X(1)

i1···iN ))1≤i1<···<iN≤M is

called the Plücker coordinates of X . Note that if X(2) is any other N ×M ma-
trix whose rows span X , then there exists an invertible N ×N matrix A such that
(X(2)) = A(X(1)). It follows that Plu(X(2)) = det(A)Plu(X(1)). Thus the mapping

X �→ Plu(X ) is a well-defined injective mapping of Gr(M,N) into P(
M
N)−1. In

most cases this mapping is not onto, however the image of this mapping is known to
be a projective variety; see [11] for more details. In particular, the vanishing locus
of the polynomials

xi1...iN xj1...jN −
N∑

k=1

xjki2...iN xj1...jk−1i1jk+1...jN

(where xσ(i1)...σ (iN ) = sign(σ )xi1...iN for any permutation σ ) is precisely in the im-
age of the Plücker embedding. We use the symbol Plu(M,N) to denote this set of
polynomials.

By abuse of notation let Plu(X ) denote a unit vector in H (MN). Then we have
that |〈Plu(X ),Plu(Y )〉| is well defined for any X ,Y ∈Gr(M,N). We define the
Plücker angle between X and Y to be

Θ(X ,Y )= cos−1
∣∣〈Plu(X ),Plu(Y )

〉∣∣.

We have the following relationship between Θ(X ,Y ) and θ(X ,Y ), see [14],
[17], and [18]:

Proposition 4.4

cos
(
Θ(X ,Y )

)=
k∏

i=1

cos
(
θi(X ,Y )

)
. (4.6)

Proof Let X and Y be N ×M matrices whose rows form orthonormal bases for X
and Y respectively. Then
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cos
(
Θ(X ,Y )

) = ∣∣〈Plu(X ),Plu(Y )
〉∣∣

=
∣
∣∣∣

∑

1≤i1<···<iN≤M
det(Xi1...iN )det(Yi1...iN )

∣
∣∣∣

=
∣∣∣∣

∑

1≤i1<···<iN≤M
det
(
Xi1...iN Y

∗
i1...iN

)
∣∣∣∣

= ∣∣det
(
XY ∗

)∣∣= ∣∣det(UΣV )
∣∣= det(Σ)

=
N∏

i=1

σi =
N∏

i=1

cos
(
θi(X ,Y )

)
,

where XY ∗ = UΣV is a singular value decomposition, and where we have em-
ployed the Cauchy-Binet formula for the fourth equality. �

In particular, θi(X ,Y )≤Θ(X ,Y ) for every i = 1,2, . . . ,N , Θ(X ,Y )= π
2

if and only if θN(X ,Y ) = π
2 , and Θ(X ,Y ) = 0 if and only if θN(X ,Y ) = 0.

Also, we have the following new metric on Gr(M,N):

d(X ,Y )= ∥∥Plu(X )− Plu(Y )
∥∥= 2 sin

(
Θ(X ,Y )

2

)
,

which we call the Plücker metric.
We now describe a particular way of breaking up the Grassmannian into subsets

known as the matroid stratification of the Grassmannian (see [4]). First we define
matroids (note that there are many equivalent ways of defining matroids, we state
the one that we will use here).

Definition 4.4 A matroid is an ordered pair ([M],B) where B ⊆ 2[M] satisfies:

(B1) B 
= ∅
(B2) A,B ∈B, a ∈A\B⇒∃b ∈ B\A such that (A\{a})∪ {b} ∈B.

[M] is called the ground set of M , and the elements of B are called the bases
of M .

For more background on matroid theory we refer to [19]. The main reason we
care about matroids is summarized in the following proposition, which can be found
in [19].

Proposition 4.5 Let [M] be the set of column labels of an N ×M matrix F over a
field F, and let B be the collection of subsets I ⊆ [M] for which the set of columns
labeled by I is a basis for Fk . Then M (F ) := ([M],B) is a matroid.

Matroids encode linear independence; determinants are a measure for this. In
particular, observe that Plu(X ) associates to each X ∈ Gr(M,N) a matroid
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M (X ) as follows: A set {i1, . . . , iN } ⊆ [M] is a basis of M (X ) if and only
if Plu(X )i1...iN 
= 0. Thus, to each matroid M we can associate the subset of
Gr(M,N):

R(M )= {X ∈Gr(M,N) :M (X )=M
}
.

Thus, Gr(M,N) can be written as a disjoint union of sets of this type. We will use
this stratification later to prove that generic Parseval frames are dense in the set of
Parseval frames.

4.3.1 Frames and Plücker Coordinates

Let Φ = {ϕi}Mi=1 be a frame for H N . We define

Plu(Φ)= (det(Φi1...iN )
)

1≤i1<···<iN≤M,

and note that Plu(Φ) is a point in H (MN). By Proposition 4.3 we have that Plu(Φ)=
λPlu(Ψ ) if and only if there is an invertible operator T so that ϕi = T ψi for every
i = 1,2, . . . ,M , in which case λ = det(T ). An argument similar to the proof of
Proposition (4.4) yields the following.

Proposition 4.6 ‖Plu(Φ)‖2 = det(S), where S is the corresponding frame operator.

One important consequence of Proposition 4.6 is the following corollary, which
will be used extensively later.

Corollary 4.3 If Φ is a Parseval frame, then ‖Plu(Φ)‖ = 1.

However, note that Proposition 4.6 also says that the converse of the above corol-
lary is not true. To see this, let S be a positive, self-adjoint operator such that
det(S) = 1, and let Φ = {ϕi}Mi=1 be a Parseval frame. Now consider the frame
S1/2Φ = {S1/2ϕi}Mi=1 which has S as its frame operator. If S is not the identity op-
erator then S1/2Φ is not a Parseval frame, but we still have that ‖Plu(S1/2Φ)‖ = 1.

For notational convenience we denote by Π(Φ) the image of the analysis oper-
ator corresponding to the frame Φ . Thus, Plu(Π(Φ)) is a point in projective space.
Given a point X ∈Gr(M,N) we use the symbol Π−1(X ) to denote the entire iso-
morphism class of frames whose analysis operator has X as its image. We can now
prove the following result, which says that close subspaces are necessarily images
of analysis operators of close Parseval frames.

Theorem 4.5 Let X ,Y ∈ Gr(M,N), and let ε > 0. Suppose that Θ(X ,Y ) <
ε

2
√
N

and that {ϕi}Mi=1 ∈ Π−1(X ) is a Parseval frame. Then there is a Parseval

frame {ψi}Mi=1 ∈Π−1(Y ) such that ‖ϕi −ψi‖< ε for every i = 1,2, . . . ,M .
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Proof First note that θN(X ,Y ) ≤ Θ(X ,Y ) < ε

2
√
N

. We can find orthonormal

bases {aj }Nj=1 for X and {bj }Nj=1 for Y such that 〈aj , bj 〉 = cos(θj ) for every
j = 1, . . . ,N . Therefore, we have

‖aj − bj‖ = 2 sin

(
θj

2

)
≤ 2 sin

(
θN

2

)
<

ε√
N

for every j = 1, . . . ,N . Now let A and B be the N×M matrices whose j th columns
are aj and bj respectively. Let aij be the ith entry of aj and let fi be the ith row of
A, similarly let bij be the ith entry of bj and let gi be the ith row of B . Then we have

M∑

i=1

(aij − bij )
2 <

ε2

N
for every j = 1, . . . ,N

which means that

(aij − bij )
2 <

ε2

N
for every j = 1, . . . ,N, i = 1, . . . ,M

which further implies that

N∑

j=1

(aij − bij )
2 = ‖fi − gi‖2 < ε2.

Now since the columns of A form an orthonormal basis for X , we know that {fi}Mi=1
is a Parseval frame which is isomorphic to {ϕi}Mi=1. This means there is some uni-
tary T : H N → H N such that Tfi = ϕi for every i = 1, . . . ,M . The Parseval
frame {ψi}Mi=1 = {T gi}Mi=1 can now be seen to have the desired properties. �

The same argument can be used to prove a similar result for different combina-
tions of metrics on the Grassmannian and metrics on frames.

Theorem 4.6 Let X ,Y ∈ Gr(M,N), and let ε > 0. Suppose that∑N
j=1 sin2(θj (X ,Y )) < ε and that {ϕi}Mi=1 ∈Π−1(X ) is a Parseval frame. Then

there is a Parseval frame {ψi}Mi=1 ∈Π−1(Y ) such that
∑M

i=1 ‖ϕi −ψi‖2 < ε.

We can also use a similar argument to generalize Theorem 4.5 in the case that we
care about frames that may not be Parseval frames.

Theorem 4.7 Let X ,Y ∈ Gr(M,N), and let ε > 0. Let {ϕi}Mi=1 ∈Π−1(X ) with
frame operator S and assume that

Θ(X ,Y ) <
ε

‖S 1
2 ‖2√N

.

Then there is a frame {ψi}Mi=1 ∈ Π−1(Y ) such that ‖ϕi − ψi‖ < ε for every i =
1,2, . . . ,M . Furthermore, if {ϕi}Mi=1 is a Parseval frame, then {ψi}Mi=1 can be chosen
to be a Parseval frame as well.
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4.3.2 Generic Frames

A frame is said to be robust to m erasures if the removal of any m vectors leaves
a frame. Clearly a frame consisting of M vectors in H N can be robust to at most
M − N erasures. We call such a frame a generic frame. Generic frames have ap-
peared previously in the literature under the name maximally robust frame (see [20]).
However, we shall see that this is a very weak measure of the robustness of a given
frame to erasures. In particular, we will show that there is an open dense set of
frames that are robust to M −N erasures, so we believe the name “maximally ro-
bust” should be reserved for robustness in a more numerical sense. In this section
we will study the set of generic frames. We begin this section with the following
fairly simple observation.

Proposition 4.7 Let {ϕi}Mi=1 be a frame, and ε > 0. Then there is a generic frame
{ψi}Mi=1 such that

‖ϕi −ψi‖< ε

for every i = 1, . . . ,M .

Proof If {ϕi}Mi=1 is generic then there is nothing to prove, so assume {ϕi}Mi=1 is not
generic. Let {ϕij }mj=1 be a minimal dependent set; note that dim(span{ϕij }mj=1) =
m − 1. Choose some ϕij0

and let B be an open ball of radius ε centered at ϕij0
.

Now let W be the set of hyperplanes (i.e., codimension 1 subspaces) spanned by
any combination of vectors in {ϕi}Mi=1 that do not include ϕij0

. Notice that H N\W
is an open dense set in H N since W consists of a finite number of hyperplanes, so
B ∩ (H N\W ) 
= ∅. Choose any x in this set and replace ϕij0

with x. This ensures
that dim(span{ϕij }j 
=j0 ∪ {x})=m and that we have not created any new dependent
sets of cardinality less than or equal to N . After repeating this process finitely many
times, we can ensure that we arrive at a generic frame with the desired properties. �

Now if {ϕi}Mi=1 is a Parseval frame, can {ψi}Mi=1 be chosen to be a Parseval frame?
The answer is yes, but to prove this we need to use the results of the previous sec-
tion. Before proving this we need to explain some further properties of the matroid
stratification of the Grassmannian.

Choose 1≤ i1 < · · ·< iN ≤M and consider the set Vi1...iN = {X ∈Gr(M,N) :
Plu(X )i1...iN = 0} = ⋃{R(M ) : {i1, . . . , iN } is not a basis of M }. Now observe
that Vi1...iN is a proper closed subvariety of Gr(M,N). This tells us that Vi1...iN

is a closed subset of Gr(M,N) in the Zariski topology, which implies it is also
closed in the Euclidean topology (the topology induced by the Plücker metric), so
in particular Gr(M,N)\Vi1...iN is an open and dense subset of Gr(M,N) (in both
topologies). The uniform matroid of rank N on [M] is the matroid whose bases con-
sist of all subsets of [M] of cardinality N ; we use the symbol UM,N to denote this
matroid. Now observe that

R(UM,N)=
⋂

1≤i1<···<iN≤M
Gr(M,N)\Vi1...iN ,
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which means that R(UM,N) is an open and dense subset of Gr(n, k). Now we can
prove our result.

Theorem 4.8 Let {ϕi}Mi=1 be a Parseval frame, and ε > 0. Then there is a generic
Parseval frame {ψi}Mi=1 such that ‖ϕi −ψi‖< ε for every i = 1, . . . ,M .

Proof First note that Φ is generic if and only if Π(Φ) ∈R(UM,N), so we may as-
sume Π(Φ) 
∈R(UM,N). By the above remarks we can find a point Y ∈R(UM,N)

such that Θ(Π(Φ),Y ) < ε

2
√
k

, so the result follows from Theorem 4.5. �

Now that we have established that almost every frame is generic, we would like
to come up with a numerical measure of the genericity of a frame and construct the
Parseval frames that are somehow the “most generic.” Since we have seen how to
associate points on the Grassmannian to frames, and we know how to compute dis-
tance on the Grassmannian, one reasonable way to measure the genericity of a given
frame is to find the shortest distance on the Grassmannian to an isomorphism class
of frames that is not generic. However, there are many ways to measure distance on
the Grassmannian, so we will choose one reasonable way.

We pose the following optimization problem:

min
X ∈Gr(M,N)

max
{
Θ(X ,Ei1···iN ) : 1≤ i1 < · · ·< iN ≤M

}
, (4.7)

where Ei1···iN = span{ei1,...,eiN } and {ei}Mi=1 is the standard orthonormal basis

of H M . Recall that by Corollary 4.3 the Plücker norm of any Parseval frame is 1,
so we would like to find the unit vectors on the (Plücker embedding of the) Grass-
mannian whose smallest (in absolute value) Plücker coordinate is as big as possible.
Intuitively, a small Plücker coordinate says that the corresponding subset is “barely”
a basis.

Clearly, if the Plücker embedding is onto, then these would be the points whose

Plücker coordinates (in absolute value) were all equal to
(
M
N

)−1/2
. However, these

points are only in the image of the Plücker embedding when N = 1 or N =M − 1,
i.e., every sequence of unit-modulus scalars is optimal for N = 1 and every simplex
is optimal for N =M − 1. For other choices of M and N we want to find the points
on the Grassmannian that are as close (in the regular Euclidean sense) to these points
as possible. An equivalent task is to solve the following optimization problem:

maximize:
∑

1≤i1<···<iN≤M
|xi1···iN |

subject to: Plu(M,N),
∑

1≤i1<···<iN≤M
x2
i1···iN = 1.

We will illustrate this with the first nontrivial example, Gr(4,2). In this case
Plu(4,2) contains only the polynomial x12x34 − x13x24 + x14x23, so the above op-
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timization problem becomes

maximize: |x12| + |x13| + |x14| + |x23| + |x24| + |x34|
subject to: x12x34 − x13x24 + x14x23 = 0,

x2
12 + x2

13 + x2
14 + x2

23 + x2
24 + x2

34 = 1.

For simplicity, we will only look for solutions in the first orthant (i.e., where all
Plücker coordinates are positive), so we can drop the absolute values. Using the
method of Lagrange multipliers we arrive at the following system of equations:

2λ1x12 + λ2x34 = 1,

2λ1x34 + λ2x12 = 1,

2λ1x14 + λ2x23 = 1,

2λ1x23 + λ2x14 = 1,

2λ1x13 − λ2x24 = 1,

2λ1x24 − λ2x13 = 1.

Together, the first two equations imply that

2λ1x12 + λ2x34 = 2λ1x34 + λ2x12

⇒ (2λ1 − λ2)x12 = (2λ1 − λ2)x34

⇒ x12 = x34 as long as λ1 
= λ2

2
.

Similarly, the third and fourth equations imply x14 = x23 as long as λ1 
= λ2
2 , and the

last two equations imply x13 = x24 as long as λ1 
= −λ2
2 . This reduces our system of

six equations to the following system of three equations:

(2λ1 + λ2)x12 = 1,

(2λ1 + λ2)x14 = 1,

(2λ1 − λ2)x13 = 1.

But the first two equations of this system now imply x12 = x14 (under our assump-
tions on λ1 and λ2). The Plücker relation now becomes

2x2
12 − x2

13 = 0.

Now we can use our unit norm constraint to find the solutions:

x12 = x14 = x23 = x34 =±
√

2

4
, x13 = x24 =±1

2
.
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Thus, we wish to find a 4×2 matrix whose Plücker coordinates are (a scalar multiple

of) (
√

2
4 , 1

2 ,
√

2
4 ,

√
2

4 , 1
2 ,
√

2
4 ). The easiest way to do this is to make the first Plücker

coordinate equal to 1:

4√
2

(√
2

4
,

1

2
,

√
2

4
,

√
2

4
,

1

2
,

√
2

4

)
= (1,

√
2,1,1,

√
2,1),

and find a matrix of the following form:
[

1 0 a b

0 1 c d

]
.

For example, since x13 =
√

2 we see that c =√2. Similarly, we can solve for a, b

and d and we arrive at the following matrix:

[
1 0 −1 −√2
0 1

√
2 1

]
.

Finally, we perform the Gram-Schmidt process to the columns of this matrix so that
they become an orthonormal basis for their span in R

4, and that means the columns
should form the Parseval frame that we were looking for:

[
1
2 0 − 1

2 −
√

2
2

1
2

√
2

2
1
2 0

]

.

4.3.3 Signal Reconstruction Without Phase

In this section we will discuss a problem known as phaseless reconstruction. The
results of this section originally appeared in [2]. Suppose we are given a frame
Φ = {ϕi}Mi=1 for H N . We want to know if we can recover x ∈H N up to a scalar
multiple of modulus one if we are just given the vector of absolute values of inner
products with the frame vectors. To be more precise, we define the mappings

f a
Φ :H N →R

M, f a
Φ(x)= (∣∣〈x,ϕ1〉

∣∣, . . . ,
∣∣〈x,ϕM 〉

∣∣)

and

fΦ :H N/∼→R
M, fΦ(x̂)= (∣∣〈x,ϕ1〉

∣∣, . . . ,
∣∣〈x,ϕM 〉

∣∣), x ∈ x̂,

where x, y ∈ x̂ ∈H N/ ∼ if there is a scalar λ with x = λy and |λ| = 1. So we
would like to find conditions on the frame Φ which guarantee that fΦ is injective.
We will analyze the real and complex cases separately.

We start with the real case. In this case the domain of fΦ is R
N/ ∼, where

x, y ∈ x̂ ∈ R
N/∼ if and only if x =±y. Before stating our results, we need to fix
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some notation. Given a subset I ⊆ [M], by abuse of notation use the same symbol
I to denote the characteristic function of this set, i.e., for i ∈ [M], I (i)= 1 if i ∈ I

and I (i)= 0 if i 
∈ I . Define a mapping σI :RM →R
M by

σI (a1, . . . , aM)= ((−1)I (1)a1, . . . , (−1)I (M)aM
)
.

Note that σ 2
I = I , and σIc =−σI . Also, let LI = {(a1, . . . , aM) : ai = 0 for i ∈ I }.

Then we have that σI (u) = u if and only if u ∈ LI and σI (u) = −u if and only if
u ∈ LIc .

We need one more definition before stating our theorem.

Definition 4.5 Let M be a matroid with ground set [M]. We say that M has the
complement property if for every I ⊆ [M] either I contains a basis of M or I c

contains a basis of M .

Theorem 4.9 For a frame Φ = {ϕi}Mi=1 ⊆R
N the following are equivalent:

(1) fΦ is injective.
(2) For every nonempty proper subset I ⊆ [M] and every u ∈Π(Φ)\(LI ∪ LIc),

σI (u) 
∈Π(Φ).
(3) If there is a nonempty proper subset I ⊆ [M] for which Π(Φ) ∩ LI 
= ∅, then

Π(Φ)∩LIc = ∅.
(4) Π(Φ) ∈R(M ) for some matroid M with the complement property.

Proof (1)⇒(2) Suppose there is a nonempty proper subset I ⊆ [M] and a u ∈
Π(Φ)\(LI ∪LIc) for which σI (u) ∈Π(Φ). Since u 
∈ LI ∪LIc we know σI (u) 
=
±u. Now there are x, y ∈ R

N such that 〈x,ϕi〉 = u(i) and 〈y,ϕi〉(−1)I (i)u(i) for
every i = 1, . . . ,M . But then f a

Φ(x)= f a
Φ(y) and since σI (u) 
= ±u we know that

x 
= ±y, so fΦ is not injective.
(2)⇒(3) Suppose there is a nonempty proper subset I ⊆ [M] for which both

Π(Φ)∩LI 
= ∅ and Π(Φ)∩LIc 
= ∅. Choose v ∈Π(Φ)∩LI and w ∈Π(Φ)∩LIc .
Then v+w ∈Π(Φ)\(LI ∪LIc), but σI (v+w)= v−w ∈Π(Φ).

(3)⇒(4) Suppose there is a subset I ⊆ [M] for which neither {ϕi}i∈I nor {ϕi}i∈I c
spans R

N . Choose x ⊥ span{ϕi}i∈I and y ⊥ span{ϕi}i∈I c . Then T (x) ∈ LI and
T (y) ∈ LIc .

(4)⇒(1) Suppose x, y ∈ R
N are such that |〈x,ϕi〉| = |〈y,ϕi〉| for every i =

1, . . . ,M . Let I = {i : 〈x,ϕi〉 = −〈y,ϕi〉} and observe that x+ y ⊥ span{ϕi}i∈I and
x− y ⊥ span{ϕi}i∈I c . But we know that either span{ϕi}i∈I =R

N or span{ϕi}i∈I c =
R

N by assumption, so we have either x + y = 0 or x − y = 0, i.e., x =±y and fΦ
is injective. �

Corollary 4.4

(1) If M ≥ 2N − 1 then fΦ is injective for almost every frame Φ = {ϕi}Mi=1 ⊆R
N .

(2) If M < 2N − 1 then fΦ is not injective.
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Proof To see the first statement, just observe that for M ≥ 2N − 1 the uniform
matroid UM,N has the complement property, so if Φ is generic then fΦ is injective.
For the second statement, let I ⊆ [M] be such that |I | =N − 1 and note that |I c| ≤
N − 1. Therefore it is impossible for any matroid of rank N whose ground set is
[M] to have the complement property. �

We now shift our attention to the complex case. In this case the domain of fΦ is
C

N/ ∼ where x ∼ y if and only if there is a λ ∈ T so that x = λy, where T is the
unit circle on the complex plane. At this time the complex case is not understood
nearly as well as the real case, however we can still prove the existence of a large
family of frames for which fΦ is injective.

Theorem 4.10 Suppose that M ≥ 4N − 2. Then there is an open and dense set of
frames for CN with M elements for which fΦ is injective.

Proof First note that fΦ is injective if and only if there do not exist nonparallel
vectors v,w ∈Π(Φ) such that |v(i)| = |w(i)| for every i = 1, . . . ,M . So we will
show that the set of subspaces that have this property is a Zariski open subset of
Gr(M,N). Denote the complement of this set by A , and choose any X ∈ A .
Without loss of generality we may assume we have a basis {uj }Nj=1 for X so that
uj (i) = 1 if j = i and uj (i) = 0 when j 
= i ≤ N ; for i > N uj (i) is undeter-
mined. Therefore, in a neighborhood of X we see that Gr(M,N) has dimension
2N(M −N) as a real variety.

Now since X ∈ A we can choose nonparallel v,w ∈X with |v(i)| = |w(i)|
for every i. Our choice of basis guarantees that at least one of the first N entries of
v (and therefore w) is nonzero, which we can assume to be the first entry without
loss of generality, so after rescaling we have that v(i) = w(i) = 1. Since v and w

are nonparallel we know that for some 2≤ i ≤N we have that v(i) 
=w(i) 
= 0, and
again without loss of generality we can assume this happens for i = 2.

Now we have that there are λ2, . . . , λM ∈ T with λ2 
= 1 such that w(i) =
λiv(i) for every i = 2, . . . ,M (and v(1) = w(1) = 1). For i > N we have v(i) =∑N

j−1 v(j)uj (i) and w(j)=∑N
j=1 λjv(j)uj (i). Thus we have

∣∣∣∣∣

N∑

j=1

v(j)uj (i)

∣∣∣∣∣
=
∣∣∣∣∣

N∑

j=1

λjv(j)uj (i)

∣∣∣∣∣
. (4.8)

Consider the variety of all tuples (Y , v(1), . . . , v(N),λ2, . . . , λN) with Y ∈
Gr(M,N) and v(i) and λi as above. This variety is locally isomorphic to
C

N(M−N)× (C\{0})×C
N−2× (T\{1})×T

N−2 which has dimension 2N(M−N)

+ 3N − 3 as a real variety. We also have that A is the image under projection onto
the first factor of this variety cut out by the M − N equations (4.8). Now observe
that for a fixed 0 
= v(2), . . . , vN and 1 
= λ2, . . . , λN these equations are nondegen-
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erate. Since u1(i), . . . , uN(i) appear in exactly one equation, it follows that these
equations define a subspace of CN(M−N) of real codimension at least M−N . Since
this is true for all choices of the v(i)’s and the λi ’s, it follows that these equations
are independent.

We can now conclude that A is a real variety of (local) dimension 2N(M−N)+
3N − 3− (M −N). Therefore if 3N − 3− (M −N) < 0, i.e., M ≥ 4N − 2, then
A is a proper subvariety of Gr(M,N) and so its complement is open in the Zariski
topology. �

It is not known whether the value M = 4N − 2 is optimal, i.e., we do not know
if it is possible for fΦ to be injective for a frame consisting of fewer than 4N − 2
vectors.
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Chapter 5
Group Frames

Shayne Waldron

Abstract The prototypical example of a tight frame, the Mercedes-Benz frame can
be obtained as the orbit of a single vector under the action of the group gener-
ated by rotation by 2π

3 , or the dihedral group of symmetries of the triangle. Many
frames used in applications are constructed in this way, often as the orbit of a sin-
gle vector (akin to a mother wavelet). Most notable are the harmonic frames (finite
abelian groups) used in signal analysis, and the equiangular Heisenberg frames,
or SIC–POVMs (discrete Heisenberg group) used in quantum information theory.
Other examples include tight frames of multivariate orthogonal polynomials shar-
ing symmetries of the weight function, and the highly symmetric tight frames which
can be viewed as the vertices of highly regular polytopes. We will describe the basic
theory of such group frames, and some of the constructions that have been found so
far.

Keywords Group frame · G-frame · Harmonic frames · SIC–POVM · Heisenberg
frame · Highly symmetric tight frame · Symmetry group of a frame · Heisenberg
frame · Group matrix · Unitary representation · Equiangular frames · Zauner’s
conjecture
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are those rotations and reflections (unitary maps) which permute its vectors. We now
formalise this idea, with the key features of the symmetry group (see [19] for full
proofs) being:

• It is defined for all finite frames as a group of permutations on the index set.
• It is simple to calculate from the Gramian of the canonical tight frame.
• The symmetry groups of similar frames are equal. In particular, a frame, its dual

frame and canonical tight frame have the same symmetry group.
• The symmetry groups of various combinations of frames, such as tensor products

and direct sums, are related to those of the constituent frames in a natural way.
• The symmetry group of a frame and that of its complementary frame are equal.

Let SM be the (symmetric group of) permutations on {1,2, . . . ,M}, and GL(H )

be the (general linear group of) linear maps H →H .

Definition 5.1 The symmetry group of a finite frame Φ = (ϕj )
M
j=1 for H = F

N is

Sym(Φ) := {σ ∈ SM : ∃Lσ ∈GL(H ) with Lσϕj = ϕσj , j = 1, . . . ,M
}
.

Let Φcan denote the canonical tight frame (ΦΦ∗)−1/2Φ of Φ .

Theorem 5.1 If Φ and Ψ are similar frames, i.e., Φ =QΨ , Q ∈ GL(H ), or are
complementary frames, i.e., GΦcan +GΨ can = Id, then

Sym(Ψ )= Sym(Φ).

In particular, a frame, its dual frame and its canonical tight frame have the same
symmetry group.

Proof It suffices to show one inclusion. Suppose σ ∈ Sym(Φ), i.e., Lσϕj = ϕσj ,
∀j . Since ϕj =Qψj , this gives Q−1LσQψj =ψσj , ∀j , i.e., σ ∈ Sym(Ψ ). �

Example 5.1 Let Φ be the Mercedes-Benz frame. Since its vectors add to zero,
Ψ = ([1], [1], [1]) is the complementary frame for R. Clearly, Sym(Ψ )= S3, and so
Sym(Φ)= S3 (which is isomorphic to the dihedral group of triangular symmetries).

Since a finite frame Φ is determined up to similarity by GΦcan , the Gramian of
the canonical tight frame, it is possible to compute Sym(Φ) from GΦcan . This is
most easily done as follows.

Proposition 5.1 Let Φ be a finite frame. Then

σ ∈ Sym(Φ) ⇐⇒ P ∗σ GΦcanPσ =GΦcan ,

where Pσ is the permutation matrix given by Pσ ej = eσj .
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Fig. 5.1 The most symmetric tight frames of five distinct nonzero vectors in R
3. The vertices of

the trigonal bipyramid (12 symmetries), five equally spaced vectors lifted (10 symmetries), and
four equally spaced vectors and one orthogonal (8 symmetries)

Since Sym(Φ) is a subgroup of SM , it follows that there are maximally symmetric
frames of M vectors in F

N , i.e., those with the largest possible symmetry groups.

Example 5.2 The M equally spaced vectors in R
2 have the dihedral group of order

2M as symmetries. This is not always the most symmetric frame of M vectors in
C

2; e.g., if M is even, the (harmonic) tight frame given by the M distinct vectors
{(

1
1

)
,

(
ω

−ω

)
,

(
ω2

ω2

)
,

(
ω3

−ω3

)
,

(
ω4

ω4

)
, . . .

(
ωM−2

ωM−2

)
,

(
ωM−1

−ωM−1

)}
,

ω := e
2πi
M

has a symmetry group of order 1
2M

2 (see [10] for details).

Example 5.3 The most symmetric tight frames of five vectors in R
3 are as shown in

Fig. 5.1.

The symmetry group of a combination of frames behaves as one would expect.

Proposition 5.2 The symmetry groups of a finite frame satisfy

1. Sym(Φ)× Sym(Ψ )⊂ Sym(Φ ∪Ψ ) (union of frames),
2. Sym(Φ)× Sym(Ψ )⊂ Sym(Φ ⊗Ψ ) (tensor product),
3. Sym(Φ)∩ Sym(Ψ )⊂ Sym(Φ ⊕Ψ ) (direct sum).

Here

Φ ∪Ψ :=
((

ϕj

0

)
,

(
0
ψk

))
, Φ ⊗Ψ = (ϕj ⊗ψk),

Φ ⊕Ψ :=
((

ϕj

ψk

))
, where

∑

j

〈f,ϕj 〉ψj = 0, ∀f.
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Since linear maps are determined by their action on a spanning set, it follows that
if σ ∈ Sym(Φ), then there is a unique Lσ ∈GL(H ) with Lσfj = fσj , ∀j . Further,

Sym(Φ)→GL(H ) : σ �→ Lσ (5.1)

is a group homomorphism, i.e., a representation of G= Sym(Φ). If the symmetry
group acts transitively on Φ under this action, i.e., Φ is the orbit of any one vector,
e.g., the Mercedes-Benz frame, then we have what is called a G-frame.

5.2 Representations and G-Frames

The Mercedes-Benz frame is the orbit under its symmetry group of a single vector.
Formally, the symmetry group is a group of permutations (an abstract group) which
acts as unitary transformations. This is a fundamental notion in abstract algebra.

Definition 5.2 A representation of a finite group G is a group homomorphism

ρ :G �→GL(H ),

i.e., a linear action of G on H = F
N , usually abbreviated gv = ρ(g)v, v ∈H .

Representations are a convenient way to study groups which appear as linear
transformations, whilst being able to appeal to abstract group theory (cf. [12]).

Example 5.4 If Φ is a frame, then we have already observed that the action of
Sym(Φ) on H given by (5.1) is a representation. If Φ is tight, then this action is
unitary. We will build this into our definition of a group frame.

Definition 5.3 Let G be a finite group. A group frame or G-frame for H is a frame
Φ = (ϕg)g∈G for which there exists a unitary representation ρ :G→U (H ) with

gϕh := ρ(g)ϕh = ϕgh, ∀g,h ∈G.

This definition implies that a G-frame Φ is the orbit of a single vector v ∈H ,
i.e.,

Φ = (gv)g∈G,

and so is an equal norm frame.

Example 5.5 An early example of group frames is the vertices of the regular M-
gon or the platonic solids (see Fig. 5.2). These were some of the first examples of
frames considered (see [3]). The highly symmetric tight frames (see Sect. 5.7) are a
variation on this theme.
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Fig. 5.2 The vertices of the platonic solids are examples of group frames

In the remaining sections, we outline the basic properties and constructions for
G-frames. In particular, we will see that:

• There is a finite number of G-frames of M vectors in F
N for abelian groups G.

These are known as harmonic frames (see Sect. 5.5)
• There is an infinite number of G-frames of M vectors in F

N for nonabelian G,
most notably, the Heisenberg frames (see Sect. 5.9) of M = N2 vectors in C

N ,
which provide equiangular tight frames with the maximal number of vectors.

5.3 Group Matrices and the Gramian of a G-Frame

Since the representation defining a G-frame is unitary, i.e.,

ρ(g)∗ = ρ(g)−1 = ρ
(
g−1), so that g−1v = g∗v,

the Gramian of a G-frame Φ = (ϕg)g∈G = (gv)g∈G has a special form:

〈ϕg,ϕh〉 = 〈gv,hv〉 =
〈
v,g∗hv

〉= 〈v,g−1hv
〉= η

(
g−1h

)
, where η :G→ F.

Thus the Gramian of a G-frame is a group matrix or G-matrix, i.e., a matrix A, with
entries indexed by elements of a group G, which has the form

A= [η(g−1h
)]

g,h∈G.

One important consequence of the fact that the Gramian of a G-frame is a group ma-
trix is that it has a small number of angles: {η(g) : g ∈G}, which makes them good
candidates for equiangular tight frames (see Sect. 5.9). We have the characterisation
[18]:

Theorem 5.2 Let G be a finite group. Then Φ = (ϕg)g∈G is a G-frame (for its span
H ) if and only if its Gramian GΦ is a G-matrix.

Proof If Φ is a G-frame, then we observed that its Gramian is a G-matrix.
Conversely, suppose that the Gramian of a frame Φ for H is a G-matrix. Let

Φ̃ = (φ̃g)g∈G be the dual frame, so that

f =
∑

g∈G
〈f, φ̃g〉φg, ∀f ∈H . (5.2)
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For each g ∈G, define a linear operator Ug :H →H by

Ug(f ) :=
∑

h1∈G
〈f, φ̃h1〉φgh1, ∀f ∈H .

Since Gram(Φ)= [〈φh,φg〉]g,h∈G is a G-matrix, we have

〈φgh1 , φgh2〉 = ν
(
(gh2)

−1gh1
)= ν

(
h−1

2 h1
)= 〈φh1 , φh2〉. (5.3)

It follows from (5.2) and (5.3) that Ug is unitary by the calculation

〈
Ug(f1),Ug(f2)

〉=
〈∑

h1∈G
〈f1, φ̃h1〉φgh1 ,

∑

h2∈G
〈f2, φ̃h2〉φgh2

〉

=
∑

h1∈G

∑

h2∈G
〈f1, φ̃h1〉〈f2, φ̃h2〉〈φgh1 , φgh2〉

=
∑

h1∈G

∑

h2∈G
〈f1, φ̃h1〉〈f2, φ̃h2〉〈φh1 , φh2〉

=
〈∑

h1∈G
〈f1, φ̃h1〉φh1 ,

∑

h2∈G
〈f2, φ̃h2〉φh2

〉
= 〈f1, f2〉.

Similarly, we have

Ugφh =
∑

h1∈G
〈φh, φ̃h1〉φgh1 =

∑

h1∈G
〈φgh, φ̃gh1〉φgh1 = φgh.

This implies ρ :G→U (H ) : g �→Ug is a group homomorphism, since

Ug1g2φh = φg1g2h =Ug1φg2h =Ug1Ug2φh, H = span{φh}h∈G.

Thus ρ is a representation of G with

ρ(g)φh = φgh, ∀g,h ∈G,

i.e., Φ is a G-frame for H . �

5.4 The Characterisation of All Tight G-Frames

A complete characterisation of which G-frames are tight, i.e., which orbits (gv)g∈G
under a unitary action of G give a tight frame, was given in [17]. Before stating the
general theorem, we give a special case with an instructive proof.
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Theorem 5.3 Let ρ : G → U (H ) be a unitary representation, which is irre-
ducible, i.e.,

span{gv : g ∈G} =H , ∀v ∈H , v 
= 0.

Then every orbit Φ = (gv)g∈G, v 
= 0 is a tight frame.

Proof Let v 
= 0, so that Φ = (gv)g∈G is a frame. Recall that the frame operator SΦ
is positive definite, so there is an eigenvalue λ > 0 with corresponding eigenvec-
tor w. Since the action is unitary, we calculate

SΦ(gw)=
∑

h∈G
〈gw,hv〉hv = g

∑

h∈G

〈
w,g−1hv

〉
g−1hv = gSΦ(w)= λ(gw),

so that SΦ = λ(Id) on span{gw : g ∈G} =H , i.e., Φ is tight. �

Example 5.6 The symmetry groups of the five platonic solids acting on R
3 as uni-

tary transformations give irreducible representations, as do the dihedral groups act-
ing on R

2. Thus the vertices of the platonic solids and the M equally spaced vectors
in R

2 are tight G-frames.

For a given representation, if there exists a G-frame Φ = (gv)g∈G, i.e., span{gv :
g ∈G} =H , then the canonical tight frame is a tight G-frame. To describe all such
tight G-frames, we need a little more terminology.

Definition 5.4 Let G be a finite group. We say that H is an FG-module if there is
a unitary action (g, v) �→ gv of G on H , i.e., a representation G→U (H ).

A linear map σ : Vj → Vk between FG-modules is said to be an FG-
homomorphism if σg = gσ , ∀g ∈G, and an FG-isomorphism if σ is a bijection. An
FG-module is irreducible if the corresponding representation is, and it is absolutely
irreducible if it is irreducible when thought of as a CG-module in the natural way.

We can now generalise Theorem 5.3.

Theorem 5.4 Let G be a finite group which acts on H as unitary transformations,
and let

H = V1 ⊕ V2 ⊕ · · · ⊕ Vm

be an orthogonal direct sum of irreducible FG-modules for which repeated sum-
mands are absolutely irreducible. Then Φ = (gv)g∈G, v = v1 + · · · + vm, vj ∈ Vj

is a tight G-frame if and only if

‖vj‖2

‖vk‖2
= dim(Vj )

dim(Vk)
, ∀j, k,

and 〈σvj , vk〉 = 0 when Vj is FG-isomorphic to Vk via σ : Vj → Vk . By Schur’s
lemma there is at most one σ to check.
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This result is readily applied; indeed if there is a G-frame, then there is a tight
one.

Proposition 5.3 Let G be a finite group which acts on H as unitary transforma-
tions. If there is a v ∈H for which (gv)g∈G is a frame, i.e., that spans H , then the
associated canonical tight frame is a tight G-frame for H .

This can be used as an alternative way to construct tight G-frames, but requires
calculation of the square root of the frame operator.

Example 5.7 One situation where Theorem 5.4 applies is to orthogonal polynomials
of several variables for a weight function with some symmetries G, e.g., the inner
product on bivariate polynomials given by integration over a triangle. By analogy
with the univariate orthogonal polynomials, the orthogonal polynomials of degree
k in N variables are those polynomials of degree k which are orthogonal to all the
polynomials of degree < k. It is natural to seek a G-invariant tight frame for this
space of dimension

(
k+N−1
N−1

)
. Using Theorem 5.4, G-invariant tight frames with one

orbit, i.e., G-frames, can be constructed; e.g., [17] gives an orthonormal basis for
the quadratic orthogonal polynomials on the triangle (with constant weight), which
is invariant under the action of the dihedral group of symmetries of the triangle.

Example 5.8 For G abelian, all irreducible representations are one dimensional, and
it follows that there are only finitely many tight G-frames which can be constructed
from these ‘characters’. We discuss the resulting harmonic frames next.

5.5 Harmonic Frames

The M ×M Fourier matrix

1√
M

⎡

⎢⎢⎢⎢⎢
⎣

1 1 1 · · · 1
1 ω ω2 · · · ωM−1

1 ω2 ω4 · · · ω2(M−1)

...
...

...
...

1 ωM−1 ω2(M−1) · · · ω(M−1)(M−1)

⎤

⎥⎥⎥⎥⎥
⎦
, ω := e

2πi
M (5.4)

is a unitary matrix, and so its columns (or rows) form an orthonormal basis for CM .
Since the projection of an orthonormal basis is a tight frame, an equal norm

tight frame for CM can be obtained as the columns of any submatrix obtained by
taking N rows of the Fourier transform matrix. Tight frames of this type are the
most commonly used in applications, due to their simplicity of construction and
flexibility (various choices for the rows can be made). They date back at least to [9];
early applications include [8, 11], and have been called harmonic or geometrically
uniform tight frames. They provide a nice example of unit norm tight frames.
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Proposition 5.4 Equal norm tight frames of M ≥ N vectors in C
N exist. Indeed,

harmonic ones can be constructed by taking any N rows of the Fourier matrix (5.4).

For G an abelian group, the irreducible representations are one dimensional, and
are usually called (linear) characters ξ : G→ C. If G = ZM , the cyclic group of
order M , then the M characters are

ξj : k �→
(
ωj
)k
, j ∈ ZM,

i.e., the rows (or columns) of the Fourier matrix (5.4). Thus it follows from Theo-
rem 5.4 that all ZM -frames for CN are obtained by taking N rows (or columns) of
the Fourier transform matrix. We now present the general form of this result.

Let G be a finite abelian group of order M , and let Ĝ be the character group, i.e.,
the set of M characters of G which forms a group under pointwise multiplication.
The groups G and Ĝ are isomorphic, which is easily seen for G= ZM , though not
in a canonical way. The character table of G is the table with rows given by the
characters of G. Thus the Fourier matrix is, up to a normalising factor, the character
table of ZM , and taking N rows corresponds to taking n characters, or taking N

columns corresponds to restricting the characters to N elements of ZM .

Definition 5.5 Let G be a finite abelian group of order M . We call the G-frame for
C

N obtained by taking N rows or columns of the character table of G, i.e.,

Φ = ((ξj (g)
)N
j=1

)
g∈G, ξ1, . . . , ξN ∈ Ĝ, or

Φ = ((ξ(gj )
)N
j=1

)
ξ∈Ĝ, g1, . . . , gN ∈G,

a harmonic frame.

It is easy to verify that the frames given in this definition are G and Ĝ frames,
respectively. We now characterise the G-frames for G abelian (see [17] for details).

Theorem 5.5 Let Φ be an equal norm finite tight frame for CN . Then the following
are equivalent:

1. Φ is a G-frame, where G is an abelian group.
2. Φ is harmonic (obtained from the character table of G).

Since there is a finite number of abelian groups of order M , we conclude the
following.

Corollary 5.1 Fix M ≥N . There is a finite number of tight frames of M vectors for
C

N (up to unitary equivalence) which are given by the orbit of an abelian group of
N ×N matrices, namely the harmonic frames.
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Example 5.9 Taking the second and last rows of (5.4) gives the following harmonic
frame for C2:

Φ =
([

1
1

]
,

[
ω

ω̄

]
,

[
ω2

ω̄2

]
, . . . ,

[
ωM−1

ω̄M−1

])
.

This is unitarily equivalent to the M equally spaced unit vectors in R
2, via

U := 1√
2

[
1 1
−i i

]
,

1√
2
U

[
ωj

ωj

]
=
[

cos 2πj
n

sin 2πj
n

]

, ∀j.

By taking rows in complex conjugate pairs, as in the example above, and the row
of 1’s when N is odd, we get the following.

Corollary 5.2 There exists a real harmonic frame of M ≥N vectors for RN .

Example 5.10 The smallest noncyclic abelian group is Z2 × Z2. Its character table
can be calculated as the Kronecker product of that for Z2 with itself, giving

[
1 1
1 −1

]
⊗
[

1 1
1 −1

]
=

⎡

⎢⎢
⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤

⎥⎥
⎦ .

Taking any pair of the last three rows gives the harmonic frame
{[

1
1

]
,

[−1
1

]
,

[−1
−1

]
,

[
1
−1

]}
,

of four equally spaced vectors in R
2, which is also given by Z4 (see Example 5.9).

Taking the first row and any other gives two copies of an orthogonal basis.

Thus, harmonic frames may be given by the character tables of different abelian
groups; frames which arise from cyclic groups are called cyclic harmonic frames.
There exist harmonic frames of M vectors which are not cyclic. These seem to be
common (see Table 5.1 for when noncyclic abelian groups of order M exist).

The calculations in Table 5.1 come from [10]. Even more efficient algorithms
for calculating the numbers of harmonic frames (up to unitary equivalence) can be
based on the following result (see [5] for full details).

Definition 5.6 We say that subsets J and K of a finite group G are multiplicatively
equivalent if there is an automorphism σ :G→G for which K = σ(J ).

Definition 5.7 We say that two G-frames Φ and Ψ are unitarily equivalent via an
automorphism if

ϕg = cUψσg, ∀g ∈G,
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Table 5.1 The numbers of inequivalent noncyclic, cyclic harmonic frames of M ≤ 35 distinct
vectors for CN , N = 2,3,4 when a nonabelian group of order M exists

N = 2

M Non Cyc Total

4 0 3 3

8 1 7 8

9 1 6 7

12 2 13 15

16 4 13 17

18 2 18 20

20 3 19 22

24 6 27 33

25 1 15 16

27 3 18 21

28 4 25 29

32 9 25 34

N = 3

M Non Cyc Total

4 0 3 3

8 5 16 21

9 3 15 18

12 11 57 68

16 28 74 102

18 19 121 140

20 29 137 166

24 89 241 330

25 8 115 123

27 33 159 192

28 57 255 312

32 158 278 436

N = 4

M Non Cyc Total

4 0 1 1

8 8 21 29

9 5 23 28

12 30 141 171

16 139 228 367

18 80 494 574

20 154 622 776

24 604 1349 1953

25 37 636 673

27 202 973 1175

28 443 1697 2140

32 1379 2152 3531

where c > 0, U is unitary, and σ :G→G is an automorphism.

Theorem 5.6 Let G be a finite abelian group, J,K ⊂G. The following are equiv-
alent.

1. The subsets J and K are multiplicatively equivalent.
2. The harmonic frames given by J , K are unitarily equivalent via an automor-

phism.

To make effective use of this result, it is convenient to have the following theo-
rem.

Theorem 5.7 [5] Let G be an abelian group of order M , and let Φ = ΦJ =
(ξ |J )ξ∈Ĝ be the harmonic frame of M vectors for C

N given by J ⊂ G, where
|J | =N . Then

• Φ has distinct vectors if and only if J generates G.
• Φ is a real frame if and only if J is closed under taking inverses.
• Φ is a lifted frame if and only if the identity is an element of J .

Example 5.11 Seven vectors in C
3. For G = Z7, the seven multiplicative equiva-

lence classes of subsets of size three have representatives

{1,2,6}, {1,2,3}, {0,1,2}, {0,1,3}, {1,2,5} (class size 6),

{0,1,6} (class size 3), {1,2,4} (class size 2).
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Fig. 5.3 The angle sets {〈ϕ0, ϕj 〉 : j ∈G,j 
= 0} ⊂ C of the seven inequivalent harmonic frames
of seven vectors in C

3. Note that one is real, and three are equiangular

Each gives an harmonic frame of distinct vectors (nonzero elements generate G).
None of these are unitarily equivalent since their angles are different (see Fig. 5.3).

Example 5.12 For G= Z8 there are 17 multiplicative equivalence classes of subsets
of 3 elements. Only two of these give frames with the same angles, namely

{{1,2,5}, {3,6,7}}, {{1,5,6}, {2,3,7}}.
The common angle multiset is

{−1, i, i,−i,−i,−2i − 1,2i − 1}.
These frames are unitarily equivalent, but not via an automorphism.

Due to examples such as this, there is not a complete description of all harmonic
frames up to unitary equivalence. There is ongoing work to classify the cyclic har-
monic frames. These are the building blocks for all harmonic frames, since abelian
groups are products of cyclic groups, and we have the following (see [19]).

Theorem 5.8 Harmonic frames can be combined as follows:

• The direct sum of disjoint harmonic frames is a harmonic frame.
• The tensor product of harmonic frames is a harmonic frame.
• The complement of a harmonic frame is a harmonic frame.
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5.6 Equiangular Harmonic Frames and Difference Sets

We have seen in Example 5.11 that there exist harmonic frames which are equiangu-
lar. These are characterised by the existence of a difference set for an abelian group,
which leads to some infinite families of equiangular tight frames.

Definition 5.8 An N -element subset J of a finite group G of order M is said to be
an (M,N,λ)-difference set if every nonidentity element of G can be written as a
difference a − b of two elements a, b ∈ J in exactly λ ways.

Equiangular harmonic frames are in 1–1 correspondence with difference sets.

Theorem 5.9 [20] Let G be an abelian group of order M . Then the frame of M
vectors for CN obtained by restricting the characters of G to J ⊂G, |J | =N is an
equiangular tight frame if and only if J is an (M,N,λ)-difference set for G.

The parameters of a difference set satisfy

1≤ λ= N2 −N

M − 1
,

and so an equiangular harmonic frame of M vectors for CN satisfies

M ≤N2 −N + 1.

The cyclic case has been used in applications; see, e.g., [13, 21].

Example 5.13 For G= Z7 three of the seven harmonic frames in Example 5.11 are
equiangular, i.e., the ones given by the (multiplicatively inequivalent) difference sets

{1,2,4}, {1,2,6}, {0,1,3}.

Example 5.14 The La Jolla Difference Set Repository

http://www.ccrwest.org/diffsets/diff_sets/

has numerous examples of difference sets.

5.7 Highly Symmetric Tight Frames (and Finite Reflection
Groups)

For G abelian, we have seen that there are finitely many G-frames. For G non-
abelian, there are infinitely many. This follows from Theorem 5.4, but is most easily
understood by an example. Let G=D3 be the dihedral group of symmetries of the
triangle (|G| = 6), acting on R

2, so as to express the Mercedes-Benz frame as the

http://www.ccrwest.org/diffsets/diff_sets/
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Fig. 5.4 Unitarily inequivalent tight D3-frames for R2 given by the orbit of a vector v

orbit of a vector v which is fixed by a reflection. If v is not fixed by a reflection, then
its orbit is a tight frame (by Theorem 5.3), and it is easily seen that infinitely many
unitarily inequivalent tight D3-frames of six distinct vectors for R2 can be obtained
in this way (see Fig. 5.4).

All is not lost! We now consider two ways in which a finite class of G-frames
can be obtained from a nonabelian (abstract) group G. The first seeks to identify
the distinguishing feature of the Mercedes-Benz frame amongst the possibilities
indicated by Fig. 5.4, and the second (Sect. 5.8) generalises the notion of a harmonic
frame.

Motivated by the Mercedes-Benz example, we have the following definition.

Definition 5.9 A finite frame Φ of distinct vectors is highly symmetric if the action
of its symmetry group Sym(Φ) is irreducible, transitive, and the stabiliser of any
one vector (and hence all) is a nontrivial subgroup which fixes a space of dimension
exactly one.

Example 5.15 The standard orthonormal basis {e1, . . . , eN } is not a highly symmet-
ric tight frame for F

N , since its symmetry group fixes the vector e1 + · · · + eN .
However, the vertices of the regular simplex always are (the Mercedes-Benz frame
is the case N = 2). Since both of these frames are harmonic, we conclude that a har-
monic frame may or may not be highly symmetric. Moreover, for many harmonic
frames of M vectors the symmetry group has order M (cf. [10]), which implies that
they are not highly symmetric.

Example 5.16 The vertices of the platonic solids in R
3, and the M equally spaced

unit vectors in R
2 are highly symmetric tight frames.

Theorem 5.10 Fix M ≥ N . There is a finite number of highly symmetric Parseval
frames of M vectors for FN (up to unitary equivalence).

Proof Suppose that Φ is a highly symmetric Parseval frame of M vectors for FN .
Then it is determined, up to unitary equivalence, by the representation induced by
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Sym(Φ), and a subgroup H which fixes only the one-dimensional subspace spanned
by some vector in Φ . There is a finite number of choices for Sym(Φ) since its order
is ≤ |SM | = M!, and hence (by Maschke’s theorem) a finite number of possible
representations. As there is only a finite number of choices for H , it follows that the
class of such frames is finite. �

The highly symmetric tight frames have only recently been defined in [4], where
those corresponding to the Shephard–Todd classification of the finite reflection
groups and complex polytopes were enumerated. We give a couple of examples [4].

Example 5.17 Let G = G(1,1,8) ∼= S8, a member of one of the three infinite
families of imprimitive irreducible complex reflection groups acting as permuta-
tions of the indices of a vector x ∈ C

8 in the subspace consisting of vectors with
x1 + · · · + x8 = 0. The orbit of the vector

v = 3w2 = (3,3,−1,−1,−1,−1,−1,−1)

gives an equiangular tight frame of 28 vectors for a 7-dimensional space.

Example 5.18 The Hessian is the regular complex polytope with 27 vertices and
Schläfli symbol 3{3}3{3}3. Its symmetry group (Shephard–Todd) ST 25 (of order
648) is generated by the following three reflections of order 3:

R1 =
⎛

⎝
ω

1
1

⎞

⎠ , R2 = 1

3

⎛

⎝
ω+ 2 ω− 1 ω− 1
ω− 1 ω+ 2 ω− 1
ω− 1 ω− 1 ω+ 2

⎞

⎠ ,

R3 =
⎛

⎝
1

1
ω

⎞

⎠ , ω= e
2πi

3 ,

and it has v = (1,−1,0) as a vertex (cf. [6]). These vertices are the H -orbit of
v, with H the Heisenberg group, which is a Heisenberg frame (see Sect. 5.9). In
particular, they are a highly symmetric tight frame. We observe that H is normal in
G= 〈R1,R2,R3〉.

The classification of all highly symmetric tight frames is in its infancy.

5.8 Central G-Frames

To narrow down the class of unitarily inequivalent G-frames for G nonabelian
(which is infinite), we impose an additional symmetry condition.

Definition 5.10 A G-frame Φ = (ϕg)g∈G is said to be central if ν :G→C defined
by

ν(g) := 〈ϕ1, ϕg〉 = 〈ϕ1, gϕ1〉
is a class function, i.e., is constant on the conjugacy classes of G.
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It is easy to see that being central is equivalent to the symmetry condition

〈gϕ,hϕ〉 = 〈gψ,hψ〉, ∀g,h ∈G, ∀ϕ,ψ ∈Φ.

Example 5.19 For G abelian, all G-frames are central, since the conjugacy classes
of an abelian group are singletons.

Thus central G-frames generalise harmonic frames to G nonabelian.

Definition 5.11 Let ρ :G→U (H ) be a representation of a finite group G. The
character of ρ is the map χ = χρ :G→C defined by

χ(g) := trace
(
ρ(g)

)
.

We now characterise all central Parseval G-frames in terms of the Gramian. In
particular, it turns out that the class of central G-frames is finite.

Theorem 5.11 [18] Let G be a finite group with irreducible characters χ1, . . . , χr .
Then Φ = (ϕg)g∈G is a central Parseval G-frame if and only if its Gramian is given
by

Gram(Φ)g,h =
∑

i∈I

χi(1)

|G| χi

(
g−1h

)
, (5.5)

for some I ⊂ {1, . . . , r}.

The central G-frames can be constructed from the irreducible characters of G, in
a similar way to the harmonic frames.

Corollary 5.3 Let G be a finite group with irreducible characters χ1, . . . , χr .
Choose Parseval G-frames Φi for Hi , i = 1, . . . , r , with

Gram(Φi)= χi(1)

|G| M(χi), dim(Hi )= χi(1)
2,

e.g., take the columns of Gram(Φi). Then the unique (up to unitary equivalence)
central Parseval G-frame with Gramian (5.5) is given by the direct sum

⊕

i∈I
Φi ⊂H :=

⊕

i∈I
Hi .

Further, if ρi :G→ U(Cdi ) is a representation with character χi , then Φi can be
given as

Φi :=
√

χi(1)

|G|
(
ρi(g)

)
g∈G ⊂U

(
C

di
)⊂C

di×di ≈C
d2
i , (5.6)

where the inner product on the space of di × di matrices is 〈A,B〉 := trace(B∗A).



5 Group Frames 187

Example 5.20 Let G = D3 ∼= S3 be the dihedral group (symmetric group) of or-
der 6,

G=D3 =
〈
a, b : a3 = 1, b2 = 1, b−1ab= a−1〉,

and write class functions and G-matrices with respect to the order 1, a, a2, b, ab,

a2b. The conjugacy classes are {1}, {a, a2}, {b, ab, a2b}, and the irreducible charac-
ters are

χ1 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1
1
1
1
1
1

⎤

⎥⎥⎥⎥⎥⎥
⎦

, χ2 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1
1
1
−1
−1
−1

⎤

⎥⎥⎥⎥⎥⎥
⎦

, χ3 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

2
−1
−1
0
0
0

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

Corresponding to each of these, there is a central Parseval G-frame Φi for a space
of dimension χi(1)2. Since χ1 and χ2 are one dimensional, (5.6) gives

Φ1 = 1√
6
(1,1,1,1,1,1), Φ2 = 1√

6
(1,1,1,−1,−1,−1).

A representation ρ :D3 →U(C2)⊂C
2×2 ≈C

4 with trace(ρ)= χ3 is given by

ρ(1) =
(

1 0
0 1

)
≈

⎡

⎢⎢
⎣

1
0
0
1

⎤

⎥⎥
⎦ , ρ(a)=

(
ω 0
0 ω2

)
≈

⎡

⎢⎢
⎣

ω

0
0
ω2

⎤

⎥⎥
⎦ ,

ρ
(
a2) =

(
ω2 0
0 ω

)
≈

⎡

⎢⎢
⎣

ω2

0
0
ω

⎤

⎥⎥
⎦ , ρ(b)=

(
0 1
1 0

)
≈

⎡

⎢⎢
⎣

0
1
1
0

⎤

⎥⎥
⎦ ,

ρ(ab) =
(

0 ω

ω2 0

)
≈

⎡

⎢⎢
⎣

0
ω

ω2

0

⎤

⎥⎥
⎦ , ρ

(
a2b
)=

(
0 ω2

ω 0

)
≈

⎡

⎢⎢
⎣

0
ω2

ω

0

⎤

⎥⎥
⎦ ,

and so we obtain from (5.6)

Φ3 = 1√
3

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

1
0
0
1

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

ω

0
0
ω2

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

ω2

0
0
ω

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

0
1
1
0

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

0
ω

ω2

0

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

0
ω2

ω

0

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠ .

Thus there are seven central Parseval D3-frames, namely

Φ1,Φ2 ⊂C, Φ1 ⊕Φ2 ⊂C
2, Φ3 ⊂C

4

Φ1 ⊕Φ3,Φ2 ⊕Φ3 ⊂C
5, Φ1 ⊕Φ2 ⊕Φ3 ⊂C

6.
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5.9 Heisenberg Frames (SIC–POVMs) Zauner’s Conjecture

The Mercedes-Benz frame gives three equiangular lines in R
2. The search for such

sets of equiangular lines in R
N has a long history, and effectively spawned the area

of algebraic graph theory (see [7]).
Recently, sets of M =N2 equiangular lines in C

N , equivalently equiangular tight
frames of M =N2 vectors in C

N , have been constructed numerically, and, in some
cases, analytically. We note that N2 is the maximum number of vectors possible
for an equiangular tight frame for CN [15]. Such frames are known as SIC-POVMs
(symmetric informationally complete positive operator valued measures) in quan-
tum information theory (see [15]), where they are of considerable interest. The claim
that they exist for all N is usually known as Zauner’s conjecture (see [22]).

We now explain how such equiangular tight frames have been, and are expected
to be constructed, as the orbit of a (Heisenberg) group.

Fix N ≥ 1, and let ω be the primitive N -th root of unity

ω := e2πi/N .

Let T ∈C
N×N be the cyclic shift matrix, and Ω ∈C

N×N the diagonal matrix

T :=

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
· · ·
· · ·
0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

, Ω :=

⎡

⎢⎢⎢⎢⎢⎢
⎣

1 0 0 · · 0
0 ω 0 · · 0
0 0 ω2 0
· · ·
· · ·
0 0 0 ωN−1

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

These have order N , i.e., T N =ΩN = Id, and satisfy the commutativity relation

ΩkT j = ωjkT jΩk. (5.7)

In particular, the group generated by T and Ω contains the scalar matrices ωr Id.

Definition 5.12 The group H = 〈T ,Ω〉 generated by the matrices T and Ω is called
the discrete Heisenberg group modulo N , or for short the Heisenberg group.

In view of (5.7), the Heisenberg group has order N3, and is given explicitly by

H = {ωrT jΩk : 0≤ r, j, k ≤N − 1
}
.

Since ω,T ,Ω have order N , it is convenient to allow the indices of ωrT jΩk to be
integers modulo N . Since T and Ω are unitary, H is a group of unitary matrices.

The action of H on C
N is irreducible, and so by Theorem 5.3, every orbit

(gv)g∈H , v 
= 0 is a tight frame for CN . For j, k fixed, the N vectors ωrT jΩkv,
0 ≤ r ≤ N − 1 are scalar multiples of each other, which we identify together. It is
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in this sense that the orbit of H is interpreted as a set of N2 (hopefully equiangular)
vectors:

Φ := {T jΩkv
}
(j,k)∈ZN×ZN

. (5.8)

This Φ is the Gabor system given by the subset Λ= ZN × ZN
∼=G× Ĝ, G= ZN

(see Chap. 6—Gabor frames).

Definition 5.13 We call a tight frame Φ of the form (5.8) a Heisenberg frame if it
is an equiangular tight frame, i.e., a SIC–POVM, and the v a generating vector.

Example 5.21 The vector

v = 1√
6

( √
3+√3

e
π
4 i
√

3−√3

)

generates a Heisenberg frame of 4 equiangular vectors for C2. To date (see [16]),
there are known analytic solutions for N = 2,3, . . . ,15,19,24,35,48.

Starting with [15], there have been numerous attempts to find generating vectors
v for various dimensions N , starting from numerical solutions. The current state of
affairs is summarised in [16]. We now outline some of the salient points.

The key ideas for finding generating vectors are as follows.

• Solve an equivalent simplified set of equations.
• Find a generating vector with special properties.
• Understand the relationship between generating vectors.

For a unit vector v ∈C
N , the condition that it generate a Heisenberg frame is

∣∣〈gv,hv〉∣∣= 1√
N + 1

, j 
= k ⇐⇒ ∣∣〈v,T jΩkv
〉∣∣= 1√

N + 1
, j, k ∈ ZN.

This is not amenable to numerical calculation. In [15], the second frame potential,

f (v)=
N−1∑

j=0

N−1∑

k=0

∣∣〈v,T jΩkv
〉∣∣4,

was minimised over all v satisfying g(v) = ‖v‖2 = 1. A minimiser of this con-
strained optimisation problem with

f (v)= 1+ (N2 − 1
) 1

(
√
N + 1)4

= 2N

N + 1

is a generating vector. Various simplified equations for finding generators have been
proposed, most notably (see [1, 2, 14]) the following.
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Theorem 5.12 A vector v = (zj )j∈ZN
is a generating vector for a Heisenberg frame

if and only if

∑

j∈ZN

zj zj+szt+j zj+s+t =

⎧
⎪⎨

⎪⎩

0, s, t 
= 0;
1

N+1 , s 
= 0, t = 0, s = 0, t 
= 0;
2

N+1 , (s, t)= (0,0).

If v generates a Heisenberg frame, and b is a unitary matrix which normalises
the Heisenberg group, then bv is also a generating vector, since

∣∣〈(bv), g(bv)
〉∣∣= ∣∣〈v, b∗gbv〉∣∣= ∣∣〈v, b−1gbv

〉∣∣= 1√
N + 1

, g ∈H,g 
= Id.

The normaliser of H in the unitary matrices is often called the Clifford group. This
group contains the Fourier matrix, since

F−1(T jΩk
)
F = ω−jkT kΩ−j ∈H,

and the matrix Z given by

(Z)jk := 1√
d
μj(j+d)+2jk, μ := e

2πi
2N = ω

1
2 ,

since

Z−1(T jΩk
)
Z = μj(d+j−2k)T k−jΩ−j .

A scalar multiple of Z has order 3, i.e., Z3 =√i
1−d

,
√
i := e

2πi
8 . The strong form

of Zauner’s conjecture is as follows.

Conjecture 5.1 (Zauner) Every generating vector for a Heisenberg frame (up to
unitary equivalence) is an eigenvector of Z.

All known generating vectors (both numerical and analytic) support this conjec-
ture. Indeed, many were found as eigenvectors of Z. Without doubt, the solution of
Zauner’s conjecture, and the construction of equiangular tight frames in general, is
one of the central problems in the construction of tight frames via groups. This field
in still in its infancy: frames given as the orbit of more than one vector (G-invariant
fusion frames) have scarcely been studied.
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8. Goyal, V.K., Kovačević, J., Kelner, J.A.: Quantized frame expansions with erasures. Appl.

Comput. Harmon. Anal. 10, 203–233 (2001)
9. Goyal, V.K., Vetterli, M., Thao, N.T.: Quantized overcomplete expansions in R

n: analysis,
synthesis, and algorithms. IEEE Trans. Inf. Theory 44, 16–31 (1998)

10. Hay, N., Waldron, S.: On computing all harmonic frames of n vectors in C
d . Appl. Comput.

Harmon. Anal. 21, 168–181 (2006)
11. Hochwald, B., Marzetta, T., Richardson, T., Sweldens, W., Urbanke, R.: Systematic design of

unitary space-time constellations. IEEE Trans. Inf. Theory 46, 1962–1973 (2000)
12. James, G., Liebeck, M.: Representations and Characters of Groups. Cambridge University

Press, Cambridge (1993)
13. Kalra, D.: Complex equiangular cyclic frames and erasures. Linear Algebra Appl. 419, 373–

399 (2006)
14. Khatirinejad, M.: On Weyl-Heisenberg orbits of equiangular lines. J. Algebr. Comb. 28, 333–

349 (2008)
15. Renes, J.M., Blume–Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally com-

plete quantum measurements. J. Math. Phys. 45, 2171–2180 (2004)
16. Scott, A.J., Grassl, M.: SIC-POVMs: A new computer study (2009). arXiv:0910.5784v2

[quant-ph]
17. Vale, R., Waldron, S.: Tight frames and their symmetries. Constr. Approx. 21, 83–112 (2005)
18. Vale, R., Waldron, S.: Tight frames generated by finite nonabelian groups. Numer. Algorithms

48, 11–27 (2008)
19. Vale, R., Waldron, S.: The symmetry group of a finite frame. Linear Algebra Appl. 433, 248–

262 (2010)
20. Waldron, S.: An Introduction to Finite Tight Frames. Springer, New York (2011)
21. Xia, P., Zhou, S., Giannakis, G.B.: Achieving the Welch bound with difference sets. IEEE

Trans. Inf. Theory 51, 1900–1907 (2005)
22. Zauner, G.: Quantendesigns—Grundzüge einer nichtkommutativen Designtheorie. Doctorial

thesis, University of Vienna, Vienna, Austria (1999)

http://arxiv.org/abs/arXiv:0910.5784v2


Chapter 6
Gabor Frames in Finite Dimensions

Götz E. Pfander

Abstract Gabor frames have been extensively studied in time-frequency analysis
over the last 30 years. They are commonly used in science and engineering to syn-
thesize signals from, or to decompose signals into, building blocks which are local-
ized in time and frequency. This chapter contains a basic and self-contained intro-
duction to Gabor frames on finite-dimensional complex vector spaces. In this set-
ting, we give elementary proofs of the central results on Gabor frames in the greatest
possible generality; that is, we consider Gabor frames corresponding to lattices in
arbitrary finite Abelian groups. In the second half of this chapter, we review recent
results on the geometry of Gabor systems in finite dimensions: the linear indepen-
dence of subsets of its members, their mutual coherence, and the restricted isometry
property for such systems. We apply these results to the recovery of sparse signals,
and discuss open questions on the geometry of finite-dimensional Gabor systems.

Keywords Gabor analysis on finite Abelian groups · Linear independence ·
Coherence · Restricted isometry constants of Gabor frames · Applications to
compressed sensing · Erasure channel error correction · Channel identification

6.1 Introduction

In his seminal 1946 paper “Theory of Communication,” Dennis Gabor suggested the
decomposition of the time-frequency information area of a communications channel
into the smallest possible boxes that allow exactly one information-carrying coeffi-
cient to be transmitted per box [41]. He refers to Heisenberg’s uncertainty principle
to argue that the smallest time-frequency boxes are achieved using time-frequency
shifted copies of probability functions, that is, of Gaussians. In summary, he pro-
poses transmitting the information-carrying complex-valued sequence {cnk} in the

G.E. Pfander (�)
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form of the signal

ψ(t)=
∞∑

n=−∞

∞∑

k=−∞
cnk e

−π
(t−nΔt)2

2(Δt)2 e2πi kt
Δt ,

where the parameter Δt > 0 can be chosen depending on physical consideration and
the application at hand. Denoting modulation operators by

Mνg(t)= e2πiνtg(t), ν ∈R,

and translation operators by

Tτg(t)= g(t − τ), τ ∈R,

Gabor proposed to transmit on the carriers {Mk/ΔtTnΔtg0}n,k∈Z, where g0 is the

Gaussian window function g0(t)= e
−π t2

2(Δt)2 .
In the second half of the twentieth century, the suggestion of Gabor, and in

general the interplay of information density in time and in frequency, was stud-
ied extensively; see, for example, [24, 25, 33, 38, 61–63, 88]. This line of work
focuses on functional analytic properties of function systems such as the ones sug-
gested by Gabor. Apart from the following historical remarks, functional analysis
will not play a role in this chapter. Janssen, for instance, analyzed in detail in which
sense {Mk/ΔtTnΔtg0}n,k∈Z can be used to represent functions and distributions. He
showed that while being complete in the Hilbert space of square integrable functions
on the real line, the set suggested by Gabor is not a Riesz basis for this space [53].1

Balian and Low then established independently from one another that any func-
tion ϕ which is well concentrated in time and in frequency does not give rise to a
Riesz basis of the form {Mk/ΔtTnΔtϕ}n,k∈Z [5, 10, 11, 66]. This apparent failure
of systems structured as suggested by Gabor was then rectified by resorting to the
concept of frames that had been introduced by Duffin and Shaeffer [30]. Indeed,
{MkΔνTnΔtg0}n,k∈Z is a frame if Δν < 1/Δt [67, 85, 86]. Since then the theory
of Gabor systems has been intimately related to the theory of frames, and many
problems in frame theory find their origins in Gabor analysis. For example, the Fe-
ichtinger conjecture (see Sect. 11.2.3 and references therein), and what are called
localized frames were first considered in the realm of Gabor frames [3, 4, 19, 48].

In engineering, Gabor’s idea flourished over the last decade due to the increasing
use of orthogonal frequency division multiplexing (OFDM) structured communica-
tion systems. Indeed, the carriers used in OFDM are {MkΔνTnΔtϕ0}n∈Z,k∈K , where
ϕ0 is the characteristic function χ[0,1/Δν] (or a mollified and/or cyclically extended
copy thereof) and K = {−K2,−K2 + 1, . . . ,−K1, K1 + 1, . . . ,K2} is introduced
to respect transmission band limitations.

1Prior to the work of Gabor, von Neumann postulated that the function family which is now re-
ferred to as the Gaussian Gabor system is complete [70] (see the respective discussions in [46, 49]).
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While originally constructed on the real line, Gabor systems can be analogously
defined on any locally compact Abelian group [21, 34, 37, 45]. Functions on finite
Abelian groups form finite-dimensional vector spaces; hence, Gabor systems on fi-
nite groups have been studied first in the realm of numerical linear algebra. In partic-
ular, efficient matrix factorizations for Gabor analysis, Gabor synthesis, and Gabor
frame operators are discussed in the literature; see, for example, [6, 79, 80, 91].

Gabor systems on finite cyclic groups have also been studied numerically in order
to better understand properties of Gabor systems on the real line. The relationships
between Gabor systems on the real line, on the integers, and on cyclic groups are
studied based on sampling and periodization arguments in [55, 56, 71, 89, 90].

Over the last two decades it became apparent that the structure of Gabor frames
on finite Abelian groups allows for the construction of finite frames with remark-
able geometric properties. Most noteworthy may be the fact that many equiangu-
lar frames have been constructed as Gabor frames (for references and details, see
Sect. 5.9). Also, finite Gabor systems have been considered in the study of con-
stant amplitude zero autocorrelation (CAZAC) sequences [8, 9, 43, 87] and to
construct spreading sequences and error-correcting codes in radar and communi-
cations [51].

This chapter serves multiple purposes. In Sects. 6.2 and 6.3 we give an elemen-
tary introduction to Gabor analysis on C

N . Section 6.2 focuses on basic definitions,
and in Sect. 6.3 we describe the fundamental ideas that make Gabor frames useful
to analyze or synthesize signals with varying frequency components.

In Sect. 6.4, we define and discuss Gabor frames on finite Abelian groups. The
case of Gabor frames on general finite Abelian groups is only more technically
involved than the setup chosen in Sect. 6.2. This is due to the fundamental theorem
of finite Abelian groups: it states that every finite Abelian group is isomorphic to
the product of finite cyclic groups.

We prove fundamental results for Gabor frames on finite Abelian groups in
Sect. 6.5. The properties discussed are well known, but the proofs contained in the
literature involve nontrivial concepts from representation theory which we will re-
place with simple arguments from linear algebra.

The results in Sect. 6.5 are phrased for general finite Abelian groups, but we
expect that some readers may want to skip Sect. 6.4 and simply assume in Sects. 6.5–
6.9 that the group G is cyclic, as was done in Sects. 6.2 and 6.3.

We discuss geometric properties of Gabor frames in Sects. 6.6–6.9. In Sect. 6.6,
we address the question of whether Gabor frames that are in general linear position,
meaning any N vectors of a Gabor system are linearly independent in the underly-
ing N -dimensional ambient space, can be constructed. As one of the byproducts of
our discussion, we will establish the existence of a large class of unimodular tight
Gabor frames which are maximally robust to erasures. In Sect. 6.7, we address the
coherence of Gabor systems, and in Sect. 6.8 we state estimates for the probability
that a randomly chosen Gabor window generates a Gabor frame which has useful
restricted isometry constants (RICs). In Sect. 6.9, we state some results on Gabor
frames in the framework of compressed sensing.
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Throughout the chapter, we will not discuss multiwindow Gabor frames. For
details on the structure of multiwindow Gabor frames, see [35, 65] and references
therein.

6.2 Gabor Frames for C
N

For reasons that become apparent in Sect. 6.4, we index the components of a vector
x ∈C

N by {0,1,2, . . . ,N−2,N−1}, namely, by the N -element cyclic group ZN =
Z/NZ. Moreover, to avoid algebraic operations on indices, we write x(k) rather
than xk for the k-th component of the column vector x. That is, we write

x = (x0, x1, x2, . . . , xN−2, xN−1)
T = (x(0), x(1), x(2), . . . , x(N−2), x(N−1)

)T
,

where xT denotes the transpose of the vector x.
The (discrete) Fourier transform F : CN −→ C

N plays a fundamental role in
Gabor analysis. It is given pointwise by

Fx(m)= x̂(m)=
N−1∑

n=0

x(n) e−2πimn/N , m= 0,1, . . . ,N−1. (6.1)

Throughout this chapter, operators are defined by their action on column vectors,
and we will not distinguish between an operator and its matrix representation with
respect to the Euclidean basis {ek}k=0,1,...,N−1, where ek(n)= δ(k−n)= 1 if k = n

and ek(n)= δ(k − n)= 0 else.
In matrix notation, the discrete Fourier transform (6.1) is represented by the

Fourier matrix WN = (ω−rs)N−1
r,s=0 with ω= e2πi/N . For example, we have

W4 =

⎛

⎜⎜
⎝

1 1 1 1
1 −i −1 i

1 −1 1 −1
1 i −1 −i

⎞

⎟⎟
⎠ ,

W6 =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

1 1 1 1 1 1
1 e−2πi1/6 e−2πi1/3 e−2πi1/2 e−2πi2/3 e−2πi5/6

1 e−2πi1/3 e−2πi2/3 1 e−2πi1/3 e−2πi2/3

1 e−2πi1/2 1 e−2πi3/6 1 e−2πi1/2

1 e−2πi2/3 e−2πi1/3 1 e−2πi2/3 e−2πi1/3

1 e−2πi5/6 e−2πi2/3 e−2πi1/2 e−2πi1/3 e−2πi1/6

⎞

⎟⎟⎟
⎟⎟⎟
⎠

.

The fast Fourier transform (FFT) provides an efficient algorithm to compute matrix
vector products of the form WNx [14, 23, 58, 81].

The most important properties of the Fourier transform are the Fourier inversion
formula (6.2), the Parseval–Plancherel formula (6.3), and the Poisson summation
formula (6.5).
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Theorem 6.1 The normalized harmonics 1√
N
e2πim(·)/N , m= 0,1, . . . ,N−1, form

an orthonormal basis of CN and, hence, we have

x = 1

N

N−1∑

m=0

x̂(m)e2πim(·)/N , x ∈C
N, (6.2)

and

〈x, y〉 = 1

N
〈̂x, ŷ〉, x, y ∈C

N. (6.3)

Moreover, for natural numbers a and b with ab=N we have

b−1∑

n=0

e2πiamn/N =
{
b, if m is a multiple of b,
0, otherwise,

(6.4)

and

a

b−1∑

n=0

x(an)=
a−1∑

m=0

x̂(bm), x ∈C
N. (6.5)

Proof We first prove (6.4). If m is a multiple of b, then e2πiamn/N = 1 for all n=
0,1, . . . , b−1, and (6.4) holds. Else, z = e2πiam/N 
= 1, and using the geometric
sum formula, we obtain

b−1∑

n=0

e2πiamn/N =
b−1∑

n=0

zn = (1− zb
)
/(1− z)= (1− 1)/(1− z)= 0.

Setting a = 1 and b = N in (6.4) implies the orthonormality of the normalized
harmonics, in fact,
〈

1√
N

e2πim(·)/N ,
1√
N

e2πim′(·)/N
〉
= 1

N

N−1∑

n=0

e2πi(m−m′)n/N (6.4)=
{

1, if m=m′,
0, otherwise,

and the reconstruction formula (6.2) and Parseval–Plancherel (6.3) follow.
To obtain (6.5) and thereby complete the proof, we compute

b−1∑

n=0

x(an)
(6.2)=

b−1∑

n=0

1

N

N−1∑

m=0

x̂(m)e2πimn/N = 1

N

N−1∑

m=0

x̂(m)

b−1∑

n=0

e2πimn/N

(6.4)= b

N

a−1∑

m=0

x̂(mb).
�

The Fourier inversion formula (6.2) shows that any x can be written as a lin-
ear combination of harmonics. While |x(n)|2 quantifies the energy of the signal
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x at time n, the Fourier coefficient x̂(m) indicates that the harmonic e2πim(·)/N is
contained in x with energy 1

N
|̂x(m)|2. Indeed, setting x = y in (6.3) implies conser-

vation of energy, namely,

N−1∑

n=0

∣∣x(n)
∣∣2 = 1

N

N−1∑

m=0

∣∣̂x(m)
∣∣2, x ∈C

N.

Mathematically speaking, Gabor analysis is centered on the interplay of the
Fourier transform, translation operators, and modulation operators. The cyclic shift
operator T :CN −→C

N is given by

T x = T
(
x(0), x(1), . . . , x(N−1)

)T = (x(N−1), x(0), x(1), . . . , x(N−2)
)T

.

Translation Tk by k ∈ {0,1, . . . ,N−1} is given by

Tkx(n)= T kx(n)= x(n− k), n= 0,1, . . . ,N−1,

that is, Tk simply repositions the entries of x, for instance, x(0) is the k-th entry of
Tkx. Note that the difference n− k is taken modulo N , which agrees with consider-
ing the indices of CN as elements of the cyclic group ZN = Z/NZ. In Sect. 6.4 we
will consider Gabor frames for CG, that is, on the vector space where the compo-
nents are indexed by a finite Abelian group G that is not necessarily cyclic.

Modulation operators M� :CN −→C
N , �= 0,1, . . . ,N−1, are given by

M�x =
(
e2πi�0/Nx(0), e2πi�1/Nx(1), . . . , e2πi�(N−1)/Nx(N−1)

)T
, x ∈C

N,

that is, the modulation operator M� simply performs a pointwise product of the input
vector x = x(·) with the harmonic e2πi�(·)/N .

Translation operators are commonly referred to as time-shift operators. More-
over, modulation operators are frequency-shift operators. Indeed, we have

M̂�x(m) =FM�x(m)=
N−1∑

n=0

(
e2πi�n/Nx(n)

)
e−2πimn/N =

N−1∑

n=0

x(n)e−2πi(m−�)n/N

= x̂(m− �).

Applying the Fourier inversion formula to both sides gives

M� =F−1T�F .

A time-frequency shift operator π(k, �) combines translation by k and modula-
tion by �, that is,

π(k, �) :CN −→C
N, x �→ π(k, �)x =M�Tkx.
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For example, for G = Z4 the operators T1, M2, and π(N − 1,3) are given by the
matrices

⎛

⎜
⎜
⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1 0 0 0
0 e2πi3/4 0 0
0 0 e2πi2/4 0
0 0 0 e2πi1/4

⎞

⎟
⎟
⎠ ,

⎛

⎜⎜
⎝

0 1 0 0
0 0 e2πi3/4 0
0 0 0 e2πi2/4

e2πi1/4 0 0 0

⎞

⎟⎟
⎠ .

The following observation greatly simplifies Gabor analysis on C
N . Recall that

the space of linear operators on C
N forms an N2-dimensional Hilbert space with

Hilbert–Schmidt space inner product given independently of the chosen orthonor-
mal basis {en}n=0,1,...,N−1 by

〈A,B〉HS =
N−1∑

ñ=0

N−1∑

n=0

〈Aen, eñ〉〈Ben, eñ〉.

Proposition 6.1 The set of normalized time-frequency shift operators
{1/√N π(k, �)}k,�=0,1,...,N−1 is an orthonormal basis for the Hilbert–Schmidt
space of linear operators on C

N .

Proof Consider A= (añn) and B = (bñn) as matrices with respect to the Euclidean
basis. We have

〈
(añn), (bñn)

〉
HS =

N−1∑

ñ=0

N−1∑

n=0

añnbñn.

Clearly, 〈π(k, �),π(̃k, �̃)〉HS = 0 if k 
= k̃ as the matrices π(k, �) and π(̃k, �̃) then
have disjoint support. Moreover, Theorem 6.1 implies that

〈
1/
√
N π(k, �),1/

√
N π(k, �̃)

〉
HS =

〈
1/
√
N e2πi�(·)/N , 1/

√
N e2πi�̃(·)/N 〉

= δ(�− �̃). �

We now define Gabor systems on C
N . For ϕ ∈ C

N \ {0} and Λ ⊆ {0,1, . . . ,
N−1} × {0,1, . . . ,N−1} we call

(ϕ,Λ)= {π(k, �)ϕ}
(k,�)∈Λ

the Gabor system generated by the window function ϕ and the set Λ. A Gabor
system which spans CN is a frame and is referred to as a Gabor frame.
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For instance, the Gabor system ((1,2,3,4)T , {0,1,2,3}×{0,1,2,3}) in C
4 con-

sists of the columns in the matrix

⎛

⎜⎜
⎝

1 1 1 1 4 4 4 4 3 3 3 3 2 2 2 2
2 2i −2 −2i 1 i −1 −i 4 4i −4 −4i 3 3i −3 −3i
3 −3 3 −3 2 −2 2 −2 1 −1 1 −1 4 −4 4 −4
4 −4i −4 4i 3 −3i −3 3i 2 −2i −2 2i 1 −i −1 i

⎞

⎟⎟
⎠ ,

while the elements of ((1,2,3,4,5,6)T , {0,2,4} × {0,3}) are listed in

⎛

⎜⎜⎜⎜
⎜⎜
⎝

1 1 5 5 3 3
2 2i 6 6i 4 4i
3 3 1 1 5 5
4 4i 2 2i 6 6i
5 5 3 3 1 1
6 6i 4 4i 2 2i

⎞

⎟⎟⎟⎟
⎟⎟
⎠

.

The short-time Fourier transform Vϕ : CN −→ C
N×N with respect to the win-

dow ϕ ∈C
N\{0} is given by

Vϕx(k, �)=
〈
x,π(k, �)ϕ

〉=F (xTkϕ)(�)=
N−1∑

n=0

x(n)ϕ(n− k)e−2πi�n/N ,

x ∈C
N,

[34, 35, 46, 47]. Observe that Vϕx(k, �)=F (xTkϕ)(�) indicates that the short-time
Fourier transform on C

N can be efficiently computed using an FFT. This represen-
tation also indicates why short-time Fourier transforms are commonly referred to as
windowed Fourier transforms: a window function ϕ centered at 0 is translated by k,
the pointwise product with x selects a portion of x centered at k, and this portion is
analyzed using a (fast) Fourier transform.

The short-time Fourier transform treats time and frequency almost symmetri-
cally. In fact, using Parseval–Plancherel we obtain

Vϕx(k, �) =
〈
x,π(k, �)ϕ

〉= 〈̂x, M̂�Tkϕ〉 = 〈̂x,T�M−kϕ̂〉
= e−2πik�/N 〈̂x,M−kT�ϕ̂〉 = e−2πik�/NVϕ̂x̂(�,−k), x ∈C

N. (6.6)

While the short-time Fourier transform plays a distinct role in Gabor analy-
sis on the real line—it is defined on R × R̂ while Gabor frames are indexed
by discrete subgroups of R × R̂—in the finite-dimensional setting, the short-time
Fourier transform reduces to the analysis map with respect to the full Gabor sys-
tem (ϕ, {0,1, . . . ,N−1} × {0,1, . . . ,N−1}), that is, a Gabor system with Λ =
{0,1, . . . ,N−1}× {0,1, . . . ,N−1}. Hence, the inversion formula for the short-time
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Fourier transform

x(n) = 1

N‖ϕ‖2
2

N−1∑

k=0

N−1∑

�=0

Vϕx(k, �)ϕ(n−k)e−2πi�n/N

= 1

N‖ϕ‖2
2

N−1∑

k=0

N−1∑

�=0

〈
x,π(k, �)ϕ

〉
π(k, �)ϕ(n), x ∈C

N, (6.7)

simply states that for all ϕ 
= 0, the system (ϕ, {0,1, . . . ,N−1} × {0,1, . . . ,N−1})
is an N‖ϕ‖2-tight Gabor frame. Equation (6.7) is a trivial consequence of Corol-
lary 6.2 below. It characterizes tight Gabor frames (ϕ,Λ) for the case that summa-
tion over {0,1, . . . ,N−1}×{0,1, . . . ,N−1} in (6.7) is replaced by summation over
a subgroup Λ of ZN ×ZN = {0,1, . . . ,N−1} × {0,1, . . . ,N−1}.

Not all Gabor frames are tight, meaning that the dual frame of a frame (ϕ,Λ) is
not necessarily (ϕ,Λ). The following outstanding property of Gabor frames ensures
that the canonical dual frame of a Gabor frame is again a Gabor frame. A similar
property does not hold for other similarly structured frames; for example, canonical
dual frames of wavelet frames are in general not wavelet frames.

Proposition 6.2 The canonical dual frame of a Gabor frame (ϕ,Λ) with frame
operator S is the Gabor frame (S−1ϕ,Λ).

Proof We will show that π(k, �) ◦ S = S ◦ π(k, �) for all (k, �) ∈ Λ. Then, S−1 ◦
π(k, �)= π(k, �)◦S−1 and the members of the dual frame of (ϕ,Λ) are of the form
s−1(π(k, �)ϕ)= π(k, �)(S−1ϕ), (k, �) ∈Λ.

The result is stated and proven in greater generality in Proposition 6.5 be-
low. For simplicity we consider here only the case Λ = {0, a,2a, . . . ,N − a} ×
{0, b,2b, . . . ,N − b} where a and b divide N .

The following elementary computation completes the proof.

S ◦ π(k, �)x(n) =
N/a−1∑

k̃=0

N/b−1∑

�̃=0

〈
π(k, �)x,π(̃k, �̃)ϕ

〉
π(̃k, �̃)ϕ

=
N/a−1∑

k̃=0

N/b−1∑

�̃=0

N−1∑

ñ=0

e2πi�bñ/Nx(̃n− ka)e−2πi�̃bñ/Nϕ(̃n− k̃a)

× e−2πi�̃bn/Nϕ(n− k̃a)

=
N/a−1∑

k̃=0

N/b−1∑

�̃=0

N−1∑

ñ=0

x(̃n)e−2πi(�̃−�)b(̃n+ka)/Nϕ
(
ñ− (̃k − k)a

)

× e−2πi�̃bn/Nϕ(n− k̃a)



202 G.E. Pfander

=
N/a−1∑

k̃=0

N/b−1∑

�̃=0

N−1∑

ñ=0

x(̃n)e−2πi�̃bñ/Nϕ(̃n− k̃a) e−2πi(�̃+�)bn/N

ϕ
(
n− (̃k + k)a

)× e2πi�bka/N

=
N/a−1∑

k̃=0

N/b−1∑

�̃=0

〈
x,π(ak̃, b�̃)ϕ

〉
π(ak, b�)π(ak̃, b�̃)ϕ

= π(ak, b�) ◦ Sx(n). �

6.3 Gabor Frames as a Time-Frequency Analysis Tool

As discussed in Sect. 6.1, Gabor systems were introduced to efficiently utilize com-
munication channels. In this section, we will focus on a second fundamental appli-
cation of Gabor systems; it concerns the time-frequency analysis of signals that are
dominated by few components that are concentrated in time and/or frequency.

The Fourier transform’s ability to separate a signal into its frequency components
provides a powerful tool in science and mathematics. Many signals, however—for
example, speech and music—have frequency contributions which appear only dur-
ing short time intervals. The Fourier transform of a piano sonata may provide in-
formation on which notes dominate the score, but it falls short of enabling us to
write down the score of the sonata that is needed to reproduce it on a piano. Gabor
analysis addresses this shortcoming by providing information on which frequencies
appear in a signal at which times.

Recall that (ϕ, {0,1, . . . ,N−1} × {0,1, . . . ,N−1}) is an N‖ϕ‖2-tight Gabor
frame. Assuming ‖ϕ‖2 = 1/N , we obtain

N−1∑

n=0

∣∣x(n)
∣∣2 =

N−1∑

k=0

N−1∑

�=0

∣∣Vϕx(k, �)
∣∣2 =

N−1∑

k=0

N−1∑

�=0

∣∣F (xTkϕ)(�)
∣∣2, x ∈C

N,

that is, the short-time Fourier transform Vϕ distributes the energy of x on the time-
frequency grid {0,1, . . . ,N−1} × {0,1, . . . ,N−1}. Equation (6.6) implies that
∣∣Vϕx(k, �)

∣∣= ∣∣〈x,M�Tkϕ〉
∣∣= ∣∣〈̂x,M−kT�ϕ̂〉

∣∣≤min
{〈|x|, Tk|ϕ|

〉
,
〈|̂x|, T�|ϕ̂|

〉}
.

Hence, any ϕ with ϕ and ϕ̂ being well localized at 0, meaning |ϕ(n)|, |ϕ̂(m)| are
small for n,m and N − n,N − m large, implies that the energy captured in the
spectrogram value SPECϕ(k, �)= |Vϕx(k, �)|2 is only large if frequencies close to
� have a large presence in x around time k. Unfortunately, Heisenberg’s uncertainty
principle implies that ϕ and ϕ̂ cannot be simultaneously arbitrarily well localized
at 0. The simplest realization of this principle is the following result attributed to
Donoho and Stark [29, 69]. In the following, we set ‖x‖0 = |{n : x(n) 
= 0}|.

Proposition 6.3 Let x ∈C
N\{0}; then ‖x‖0 · ‖x̂‖0 ≥N .
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Fig. 6.1 The test signal x given in (6.8) and used in Figs. 6.2–6.6 and Fig. 6.9 as well as its Fourier
transform. Here and in the following, the real part of a signal is given in blue, and its imaginary
part is given in red

Proof For x ∈C
N , x 
= 0, and A=max{|̂x(m)|, m= 0,1, . . . ,N−1} 
= 0, we com-

pute

NA2 ≤N

(
N−1∑

n=0

∣∣x(n)
∣∣
)2

≤ N‖x‖0

N−1∑

n=0

∣∣x(n)
∣∣2 = ‖x‖0

N−1∑

m=0

∣∣̂x(m)
∣∣2 ≤ ‖x‖0‖x̂‖0A

2.
�

Theorem 6.12 below strengthens Proposition 6.3 in the case that N is prime.
To illustrate the use of Gabor frames in time-frequency analysis, we will use

various Gabor windows to analyze the multicomponent signal x ∈C
200 given by

x(n) = χ{0,...,49}(n) sin(2π20n/200)+ χ{150,...,199}(n) sin
(
2π50(n−150)/200

)

+ χ{50,...,149}(n) sin
(
2π
(
30(n−50)2/2002 + 20(n−50)/200

))

+ 1.2χ{80,...,99}(n)(1+ cos
(
2π(10n/200−1/2)

)
cos(2π60n/200)

+ 1.2χ{60,...,79}(n)(1+ cos
(
2π(10n/200−1/2)

)
cos(2π50n/200)

+ .5χ{100,...,199}(n)(1+ cos
(
2π(2n/200−1/2)

)
cos(2π20n/200)

+ χ{20,...,31}(n)(1+ cos
(
2π(12n/200−1/2)

)
cos(2π20n/200)

+ 1.1χ{100,...,109}(n)(1+ cos
(
2π(20n/200−1/2)

)
, n= 0,1, . . . ,199,

(6.8)

where χA(n) = 1 if n ∈ A and 0 otherwise. The signal and its Fourier transform
are displayed in Fig. 6.1. Note that x is real-valued, so its Fourier transform has
even symmetry. As we will also use real-valued window functions below, we obtain
short-time Fourier transforms which are symmetric in frequency and it suffices to
display SPECϕ in Figs. 6.2–6.9 only for frequencies 0 to 100.2

In Figs. 6.2 and 6.3, we use orthogonal Gabor systems generated by character-
istic functions. In Fig. 6.2 we choose as Gabor window the normalized character-
istic function given by ϕ(n) = 1/

√
20 for n = 191,192, . . . ,199,0,1, . . . ,10 and

ϕ(n) = 0 for n = 11,12, . . . ,190. The spectrogram SPECϕx = |Vϕx|2 in Fig. 6.2

2Our treatment is unit-free. The reader may assume that n counts seconds, then m counts hertz, or
that n represents milliseconds, in which case m represents megahertz.
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Fig. 6.2 Gabor frame analysis of the multicomponent signal (6.8) displayed in Fig. 6.1. We use
the Gabor system (ϕ,Λ) with ϕ(n)= 1/

√
20 for n= 191,192, . . . ,199,0,1, . . . ,10 and ϕ(n)= 0

for n = 11,12, . . . ,190. The Gabor system forms an orthonormal basis of C200 and is therefore
self-dual; that is ϕ = ϕ̃. We display ϕ, ϕ̂, ϕ̃, ̂̃ϕ as well as the spectrogram of x and of its approxi-
mation x̃. The circles on SPECϕx depict Λ; they mark frame coefficients of the frame (ϕ,Λ). The
squares denote the 20 biggest frame coefficients, which are then used to construct the approxima-
tion x̃ to x

shows that the signal has as dominating frequency 20 in the beginning and frequency
50 toward the end, with a linear transition in between. In addition, the five additional
frequency clusters of x appear at five different time instances.

The picture shows some vertical ringing artifacts. These are due to the sidelobes
of the Fourier transform ϕ̂ of ϕ. They imply that components well localized in fre-
quency have an effect on |Vϕx(k, �)|2 for a large range of �.

The values of the short-time Fourier transform Vϕx allow us to reconstruct x

using (6.7). Doing so requires the use of N2 coefficients to reconstruct a signal
in C

N . Clearly, it is more efficient to use only the values of Vϕx on a lattice Λ that
allows for (ϕ,Λ) being a frame of cardinality not exceeding the dimension of the
ambient space N .

In Fig. 6.2, we circle the values of |Vϕx(k, �)|2 with (k, �) ∈ Λ = {0,20, . . . ,
180} × {0,10, . . . ,190}. It is easy to see that (ϕ,Λ) is an orthonormal basis; hence,
we can reconstruct the signal x using only values of the short-time Fourier transform
that correspond to the circled values. Note that, in general, whenever (ϕ,Λ) is a
frame with dual frame (ϕ̃,Λ), we can reconstruct x by means of

x =
∑

(k,�)∈Λ

〈
x,π(k, �)ϕ

〉
π(k, �)ϕ̃.
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Fig. 6.3 Gabor frame analysis of the multicomponent signal displayed in Fig. 6.1. We use the
orthonormal Gabor system (ϕ,Λ) with ϕ(n)= 1/

√
40 for n= 181,192, . . . ,199,0,1, . . . ,20 and

ϕ(n) = 0 for n = 21,12, . . . ,180. We display ϕ, ϕ̂, ϕ̃, ̂̃ϕ, SPECϕx, and SPECϕx̃. The circles on
SPECϕx mark frame coefficients of the frame (ϕ,Λ); the squares denote the 20 coefficients used
to construct x̃

However, in many applications, one would like to reduce the amount of informa-
tion that is first stored and then used to reproduce the signal to below the dimension
N of the ambient space. Rather than reproducing x perfectly, we are satisfied to
obtain an approximation

x̃ =
∑

(k,�)∈Λ
R
(〈
x,π(k, �)ϕ

〉)
π(k, �)ϕ̃,

which captures the key features of x.
Here, we illustrate the effect of a rather simplistic compression algorithm.

Namely, we use only the 40 largest coefficients (20 in the depicted half of the
spectrogram) to produce an approximation x̃ to x. That is, R(〈x,π(k, �)ϕ〉) =
〈x,π(k, �)ϕ〉 for the 40 largest coefficients and R(〈x,π(k, �)ϕ〉)= 0 otherwise. The
locations in time and frequency of the chosen coefficients are marked by squares.

Graphic comparisons of x̃ with x and of ̂̃x with x̂ are not very illuminating.
Instead, we compare the spectrogram of x̃ with the spectrogram of the original sig-
nal x. This demonstrates well the effect of our compression procedure; most of the
features of x are in fact preserved.

The setup chosen to generate Fig. 6.3 differs from the one used to obtain Fig. 6.2
only in the choice of window function ϕ. Here, we choose a wider window function;
this leads to a better localized ϕ̂. Specifically, we choose ϕ(n) = 1/

√
40 for n =
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181,192, . . . ,199,0,1, . . . ,20 and ϕ(n) = 0 for n = 21,22, . . . ,180. As a lattice
we choose Λ= {0,40,80, . . . ,160}× {0,5,10, . . . ,195} and observe that (ϕ,Λ) is
again an orthonormal basis.

Comparing the spectrogram of x in Fig. 6.3 with the one of x in Fig. 6.2, we
observe a reduced ringing effect and slightly better localization in frequency at the
price of losing localization in time. Unfortunately, a comparison of SPECϕx with
SPECϕx̃ shows that the canonical choice of lattice does not seem to work well in
conjunction with our compression algorithm. The large gaps between lattice notes
in time cause part of the frequency transition not to be preserved by our simplistic
compression algorithm.

In Figs. 6.4–6.6 we choose as window functions Gaussians. In Fig. 6.4 we choose

ϕ(n)= ce−(n/6)2

where c normalizes ϕ and as lattice Λ= {0,8,16, . . . ,192} × {0,20,40, . . . ,180}.
For Fig. 6.5 we select

ϕ(n)= ce−(n/14)2

where c again normalizes ϕ. We let Λ= {0,20,40, . . . ,180} × {0,8,16, . . . ,192}.
We perform the same naive compression procedure used above to obtain Figs. 6.2
and 6.3. Note that the lattices in Figs. 6.5 and 6.6 contain 250 elements, and in fact,
the Gabor frame (ϕ,Λ) is overcomplete.

Choosing a Gaussian window function has the benefit of removing the sidelobes
and of providing an easily readable spectrogram. But our compression procedure is
harmed by two facts. First of all, we are now picking 40 out of 250 coefficients; these
are clustered in the dominating area, so secondary time-frequency components of x
are also overlooked. Clearly, our algorithm does not benefit from the redundancy of
the Gabor frame in use. Second, the good localization in frequency of ϕ implies that
some of the components fall between lattice values. Therefore, they are overlooked.

A comparison of Figs. 6.4 and 6.5 again shows the tradeoff between good time
and good frequency resolution.

In Fig. 6.6 we choose the same Gaussian window as in Fig. 6.4, but we choose a
lattice which is not the product of two lattices in {0,1, . . . ,199}. In fact, we have

Λ = 7{0,40, . . . ,160}×{0,8, . . . ,192} ∪ {20,60,100,140,180}
×{4,12,20, . . . ,196}.

But deviating from rectangular lattices offers little help. Moreover, even though we
are choosing a lattice of the same redundancy, namely, we choose a frame with
250 elements in a 200-dimensional space, the dual window has poor frequency lo-
calization. This significantly reduces the quality of reconstruction when using the
compressed version x̃ of the signal x, as the dual window used for synthesis smears
out the frequency signature of the signal.

Similar discussions on the use of Gabor frames to analyze discrete one-
dimensional signals and discrete images can be found in [22, 52, 68, 72, 89, 90].
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Fig. 6.4 Gabor frame analysis of the signal in Fig. 6.1. As the Gabor window we choose a nor-
malized version of the Gaussian ϕ(n)= ce−(n/6)2

, n= 0,1, . . . ,199. We display again ϕ, ϕ̂, ϕ̃, ̂̃ϕ,
SPECϕx, and SPECϕx̃, where Λ is marked on SPECϕx by circles. As before, the squares denote
the 20 largest coefficients. Unmarked frame coefficients are not used to construct x̃

Fig. 6.5 Here, we use as the Gabor window a normalized version of ϕ(n) = ce−(n/14)2
,

n = 0,1, . . . ,199. As before, ϕ, ϕ̂, ϕ̃, ̂̃ϕ, SPECϕx, and SPECϕx̃ are shown, and Λ as well as
the 20 largest coefficients used to construct x̃ are marked on SPECϕx
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Fig. 6.6 We use the same window function as in Fig. 6.4, but a different lattice. This changes the
displayed dual window ϕ̃ and its Fourier transform ̂̃ϕ. SPECϕx and SPECϕx̃ and therefore x and
x̃ vary greatly. The lattice Λ and its 20 largest coefficients are marked as in Figs. 6.2–6.5 above

6.4 Gabor Analysis on Finite Abelian Groups

In Sect. 6.2 we defined Gabor systems in C
N . Implicitly we considered vectors in

C
N as vectors defined on the cyclic group ZN = Z/NZ. For example, the translation

operator Tk was defined by Tkx(n)= x(n− k) where n− k was taken modulus N ;
that is, n and k were considered to be elements in the cyclic group ZN .

In this section, we will develop Gabor systems with an arbitrary finite Abelian
group G in place of ZN . We thereby obtain results on Gabor systems on the finite-
dimensional vector space

C
G = {x :G−→C},

that is, CG is a |G|-dimensional vector space with vector entries indexed by ele-
ments in the group G. We will continue to write C

N rather than C
ZN if G= ZN .

The group structure of the index set G allows us to define unitary translation
operators Tk :CG −→C

G, k ∈G, by

Tkx(n)= x(n− k), n ∈G.

Modulation operators on C
G are pointwise products with characters on the finite

Abelian group G. A character ξ ∈ C
G is a group homomorphism mapping G into

the multiplicative group S1 = {z ∈C : |z| = 1} [7, 57, 84, 94]. The set of characters
on G forms a group under pointwise multiplication. This group is called the dual
group of G and is denoted by Ĝ.
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In summary, for ξ ∈ Ĝ, the modulation operator Mξ :CG −→C
G is given by

Mξx(n)= ξ(n)x(n), n ∈G.

For λ= (k, ξ) ∈G× Ĝ, we define the time-frequency shift operator π(λ) by

π(λ) :CG −→C
G, x �→ π(λ)x = π(k, ξ)x =MξTkx = ξ(·)x(· − k).

We are now in position to define Gabor systems on C
G where G is a finite

Abelian group with dual group Ĝ. Let Λ be a subset of the product group G× Ĝ

and let ϕ ∈C
G \ {0}. The respective Gabor system is then given by

(ϕ,Λ)= {π(λ)ϕ}
λ∈Λ.

A Gabor system which spans CG is a frame and is called a Gabor frame. In many
cases, we will consider Gabor systems with Λ being a subgroup of G× Ĝ.

The short-time Fourier transform Vϕ :CG −→C
G×Ĝ with respect to the window

ϕ ∈C
G is given by

Vϕx(k, ξ)=
〈
x,π(k, ξ)ϕ

〉=F (xTkϕ)(ξ)=
∑

n∈G
x(n)ϕ(n− k)〈ξ, x〉, x ∈C

G,

where F is defined below [34, 35, 46, 47]. The inversion formula for the short-time
Fourier transform

x(n)= 1

|G|‖ϕ‖2
2

∑

(k,ξ)∈G×Ĝ

Vϕx(k, ξ)ϕ(n−k)〈ξ, k〉, x ∈C
G,

holds for all ϕ 
= 0, as we will see in Corollary 6.2 below. As in the case G= ZN ,
we conclude that the system (ϕ,G× Ĝ) is a |G|·‖ϕ‖2-tight Gabor frame.

Before continuing our discussion of Gabor systems on finite Abelian groups in
Sect. 6.4.2, we will prove the harmonic analysis results that lie at the basis of Gabor
analysis on finite Abelian groups.

6.4.1 Harmonic Analysis on Finite Abelian Groups

As mentioned above, a character on a finite Abelian group is a group homomor-
phism mapping G into the multiplicative circle group S1 = {z ∈ C, |z| = 1}. The
set of characters is denoted by Ĝ, which is a finite Abelian group under pointwise
multiplication, meaning with composition (ξ1 + ξ2)(n)= ξ1(n)ξ2(n).

In order to explicitly describe characters on finite Abelian groups, we will com-
bine simple results on characters on cyclic groups with the fundamental theorem of
finite Abelian groups. It states that every finite Abelian group is isomorphic to the
product of cyclic groups.
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Theorem 6.2 For every finite Abelian group G there exist N1,N2, . . . ,Nd ∈N with

G∼= ZN1 ×ZN2 × · · · ×ZNd
. (6.9)

The factorization and the number of factors in (6.9) are not unique, but there exist a
unique set of primes {p1, . . . , pd} and a unique set of natural numbers {r1, . . . , rd}
so that (6.9) holds with N1 = p

r1
1 , N2 = p

r2
2 , . . . ,Nd = p

rd
d .

Proof For our purpose it is only relevant that a factorization as given in (6.9) exists.
We will outline an inductive proof of this fact.

Recall that |G| is called the order of the group G, 〈n〉 denotes the group generated
by n ∈G, and the order of n ∈G is |〈n〉|.

If |G| = 1 then G = {0} and the claim holds trivially. Suppose that all groups
of order |G| < N satisfy (6.9). Let now G be given with |G| = N . We need to
distinguish two cases.

If N = ps with p prime, choose n ∈ G with maximal order. If its order is |G|,
then G = 〈n〉 and G ∼= ZN . If its order is less than |G|, then a short sequence of
algebraic arguments shows that there exists a subgroup H with G ∼= 〈n〉 ×H . We
obtain (6.9) for G by applying the induction hypothesis to H .

If N = rps with p prime, r ≥ 2 relatively prime with p, and s ≥ 1. Then

G∼= {n: the order of n is a power of p} × {n: the order of n is not divisible by p}
can be shown to be a factorization of G into two subgroups of smaller order, and we
can again apply the induction hypothesis. �

As mentioned above, representations of finite groups as products of cyclic groups
are not unique; for example, we have ZKL is isomorphic to ZK × ZL if (and only
if) K and L are relatively prime.

Any group isomorphism induces a group isomorphism between the respective
dual groups. Theorem 6.2 therefore implies that for our study of characters on gen-
eral finite Abelian groups it suffices to study characters on products of cyclic groups.
Hence, we may assume

G= ZN1 ×ZN2 × · · · ×ZNd

in the following.
Observe that for the cyclic group G = ZN = {0,1, . . . ,N−1}, a character ξ is

fully determined by ξ(1). Since

1= ξ(0)= ξ(N)= ξ(1+ · · · + 1)= ξ(1)N ,

we have ξ(1) ∈ {e2πim/N , m= 0,1, . . . ,N−1}. We conclude that ẐN contains ex-
actly N characters; they are

ξm =
(
e2πim(·)0/N , e2πim(·)1/N , e2πim(·)2/N , . . . , e2πim(·)(N−1)/N )T ,

m= 0,1, . . . ,N−1.
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The modulation operators for cyclic groups that are defined abstractly here therefore
coincide with the definition of modulation operators on C

N given in Sect. 6.2.
Observe that under pointwise multiplication, the group of characters ẐN is cyclic

and has N elements, that is, ẐN
∼= ZN , a fact that we will use below.

For G = ZN1 × ZN2 × · · · × ZNd
, observe that any character ξ on G induces a

character on the component groups ZN1 ,ZN2, . . . ,ZNd
. Hence, we can associate to

any character ξ on G an m= (m1,m2, . . . ,md) with

ξ(er )= ξ
(
(0, . . . ,0,1,0, . . . ,0)

)= e2πimr/N1, r = 1, . . . , d.

Clearly, as ξ is a group homomorphism, it is fully described by m and we have

ξ(n1, n2, . . . , nd) = ξm1(n2) . . . ξm1(nd)

= e2πim1n1/N1e2πim2n2/N2 · · · e2πimdnd/Nd

= e2πi(m1n1/N1+m2n2/N2+···+mdnd/Nd). (6.10)

For notational simplicity, we will identify ξ with the derived m and write

〈m,n〉 = ξ(n)= e2πi(m1n1/N1+m2n2/N2+···+mdnd/Nd). (6.11)

We observe that

Ĝ= (ZN1 ×ZN2 × · · · ×ZNd
)̂ ∼= ẐN1 × ẐN2 × · · · × ẐNd

.

Clearly, then ̂̂G ∼= Ĝ ∼= G; in addition, G can be canonically identified with ̂̂G by
means of the group homomorphism n : m �→ 〈m,n〉, thereby justifying the duality
notation used in (6.11).

In the finite Abelian group setting, the Fourier transform F : CG −→ C
Ĝ is

given by

Fx(m)= x̂(m)=
∑

n∈G
x(n)〈m,n〉

=
N1−1∑

n1=0

N2−1∑

n2=0

. . .

Nd−1∑

nd=0

x(n1, n2, . . . , nd)

× e−2πi(m1n1/N1+m2n2/N2+···+mdnd/Nd),

m= (m1,m2, . . . ,md) ∈ Ĝ.

Theorem 6.1 above implies that the normalized characters on ZN form an orthonor-
mal basis of C

N . Combining this with (6.10) shows that the normalized charac-
ters on any finite Abelian group G form an orthonormal system of cardinality
|G| = N1 · · ·Nd = dimC

G. We conclude that the normalized characters form an
orthonormal basis of CG. This simple observation generalizes (6.2) and (6.3) to the
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general finite Abelian group setting. For example, the Fourier inversion formula
(6.2) becomes

x(n) = 1

|G|
∑

m∈Ĝ
x̂(m)〈m,n〉

= 1

|G|
N1−1∑

m1=0

N2−1∑

m2=0

. . .

Nd−1∑

md=0

x̂(m1,m2, . . . ,md)

× e2πi(m1n1/N1+m2n2/N2+···+mdnd/Nd),

n= (n1, n2, . . . , nd) ∈G.

To state and prove the Poisson summation formula (6.13) for the Fourier trans-
form on C

G, we define for any subgroup H of G the annihilator subgroup

H⊥ = {m ∈ Ĝ : 〈m,n〉 = 1 for all n ∈H
}
.

Clearly, H⊥ is a subgroup of Ĝ. In Gabor and harmonic analysis, discrete subgroups
of G are commonly referred to as lattices and their annihilators as their dual lattices.

Theorem 6.3 Let H be a subgroup (lattice) of G and let H⊥ be its annihilator
subgroup (dual lattice). Then

∑

n∈H
〈m,n〉 =

{ |H |, if m ∈H⊥,
0, otherwise,

∑

m∈H⊥
〈m,n〉 =

{ |H⊥|, if n ∈H,

0, otherwise,

(6.12)
and

∣∣H⊥∣∣∑

n∈H
x(n)=

∑

m∈H⊥
x̂(m), x ∈C

G. (6.13)

Proof Let m ∈ Ĝ. Then n �→ 〈m,n〉 for n ∈H defines a character on H . This char-
acter is identical or orthogonal to the trivial character on H , namely, 0 : n �→ 1 for
n ∈H , and hence

∑

n∈H
〈m,n〉 =

∑

n∈H
〈m,n〉〈0, n〉 =

{ |H |, if m= 0 on H,

0, otherwise,
=
{ |H |, if m ∈H⊥,

0, otherwise.

The second equality in (6.12) follows from the first equality in (6.12) by observing
that H⊥ is a subgroup of Ĝ and that (H⊥)⊥ ⊆ ̂̂G can be canonically identified with
H ⊆G.

The interchange of summation argument used to obtain (6.5) in Theorem 6.1 can
be used again to prove (6.13). �

The fact that G∼= ZN1 ×ZN2 ×· · ·×ZNd
for any finite Abelian group G implies

that the discrete Fourier matrix WG can be expressed as the Kronecker product of
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the Fourier matrices for the cyclic groups ZN1,ZN2, . . . ,ZNd
, that is, WG =WN1 ⊗

WN2 ⊗ · · · ⊗WNd
. For example, we have

WZ2×Z2 =WZ2 ⊗WZ2 =
(

1 1
1 −1

)
⊗
(

1 1
1 −1

)
=

⎛

⎜⎜
⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞

⎟⎟
⎠ .

6.4.2 Examples of and Further Remarks on Gabor Systems on
Finite Abelian Groups

In Sect. 6.4.1 it was shown that the study of finite Abelian groups coincides with the
study of finite products of cyclic groups. Moreover, we described in detail characters
on products of cyclic groups and thereby modulation operators acting on functions
on such groups.

For example, for G= Z2×Z2, the operators T(1,0), and M(1,1) are in matrix form

(
0 1
1 0

)
⊗
(

1 0
0 1

)
=

⎛

⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟
⎠ ,

(
1 0
0 −1

)
⊗
(

1 0
0 −1

)
=

⎛

⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞

⎟⎟
⎠ ,

and π((1,0), (1,1)) is

(
0 1
−1 0

)
⊗
(

1 0
0 −1

)
=

⎛

⎜⎜
⎝

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎞

⎟⎟
⎠ .

Proposition 6.1 above generalizes to the following result.

Proposition 6.4 The normalized time-frequency shift operators {1/√|G| ×
π(λ)}λ∈G×Ĝ form an orthonormal basis for the space of linear operators on C

G

equipped with the Hilbert–Schmidt inner product.

Proof This follows from direct computation or by simply using the fact that the
tensors of orthonormal bases form an orthonormal basis of the tensor space. �

Consider again G= Z2 ×Z2. Then

G× Ĝ= Z2 ×Z2 × Ẑ2 ×Z2 = Z2 ×Z2 × Ẑ2 × Ẑ2 = Z2 ×Z2 ×Z2 ×Z2
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and the Gabor system ((1,2,3,4)T ,Z2×Z2×Z2×Z2) consists of the columns of

⎛

⎜⎜
⎝

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
2 −2 2 −2 1 −1 1 −1 4 −4 4 −4 3 −3 3 −3
3 3 −3 −3 4 4 −4 −4 1 1 −1 −1 2 2 −2 −2
4 −4 −4 4 3 −3 −3 3 2 −2 −2 2 1 −1 −1 1

⎞

⎟⎟
⎠ .

Note that the Gabor system above is not the tensor product of two Gabor systems
on the finite Abelian group Z2 because (1,2,3,4)T is not a simple tensor; that is, it
does not have the form v ⊗w for v,w ∈C

Z2 . Certainly, Gabor systems on product
groups can be generated by tensoring Gabor systems on the component groups; that
is, for finite Abelian groups G1 and G2 with subsets Λ1 ⊆G1 and Λ2 ⊆G2, and
ϕ1 ∈C

G1 and ϕ2 ∈C
G2 , we obtain the C

G1×G2 Gabor system

(ϕ1,Λ1)⊗ (ϕ2,Λ2)= (ϕ1 ⊗ ϕ2,Λ1 ×Λ2).

See, for example, [22, 32].
Every Gabor system (ϕ,Λ), ϕ 
= 0, with Λ=G× Ĝ is a tight frame for CG, but

certainly other algebraic and geometric properties of (ϕ,Λ) depend on the group G

and the window function ϕ, as we will discuss below.

6.5 Elementary Properties of Gabor Frames and of the Gabor
Frame Operator

In this section we derive central properties of Gabor frames for C
G. Throughout

this chapter, the reader may choose to assume C
G = C

N = C
{0,1,...,N−1}, as con-

sidered in Sect. 6.2. Indeed, Sect. 6.2 reflects the special case G = Ĝ = ZN =
{0,1, . . . ,N−1}.

Gabor frames are derived from group frames as described in Definition 5.3 in
Sect. 5.2, a fact responsible for the Gabor system (ϕ,G× Ĝ) being a tight frame for
all ϕ ∈ C

G \ {0} (see Sect. 5.4 and [34, 35, 45, 46]). Gabor frames (ϕ,Λ) with Λ

being a subgroup of G× Ĝ share a number of remarkable properties that are rooted
in the fact that π :G× Ĝ−→L (CG,CG), λ �→ π(λ), is a projective representa-
tion [35]. (It is, in fact, up to isomorphisms, the only irreducible faithful projective
representation of G× Ĝ on C

G [35].)
The results proven below have been derived in the setting of general finite

Abelian groups in [34] and [35]. There, the authors use nontrivial facts from rep-
resentation theory. Our aim remains to give a self-contained treatment of Gabor
frames in finite dimensions, so we present elementary linear algebra proofs instead.

The following simple observation forms the foundation for most fundamental re-
sults in Gabor analysis. In abstract terms, (6.14) and (6.15) represent the previously
mentioned fact that π is a projective representation.
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Proposition 6.5 For λ,μ ∈G× Ĝ exists cλ,μ, cμ,λ in C, |cλ,μ| = |cμ,λ| = 1, with

π(λ)π(μ)= cλ,μπ(λ+μ)= cλ,μcμ,λπ(μ)π(λ) (6.14)

and

π(λ)−1 = π(λ)∗ = cλ,λπ(−λ). (6.15)

If Λ is a subgroup of G× Ĝ, then the time-frequency shifts π(μ), μ ∈Λ, commute
with the (ϕ,Λ) Gabor frame operator

S :CG −→C
G, x �→

∑

λ∈Λ

〈
x,π(λ)ϕ

〉
π(λ)ϕ

for every ϕ ∈C
G.

Proof For G = ZN , a direct computation shows that c(k,�)(̃k,�̃) = e−2πik�̃/N . This
implies (6.14) and (6.15) in the case of cyclic groups. The general case follows
from the facts that any finite Abelian group is the product of cyclic groups and that
time-frequency shift operators on C

G are tensor products of time-frequency shift
operators on C

ZN .
To show that Sπ(μ)= π(μ)S for μ ∈Λ, we compute

π(μ)∗Sπ(μ)x =
∑

λ∈Λ

〈
π(μ)f,π(λ)ϕ

〉
π(μ)∗π(λ)ϕ

=
∑

λ∈Λ

〈
x, cμ,μπ(−μ)π(λ)ϕ

〉
cμ,μπ(−μ)π(λ)ϕ

= |cμ,μ|2
∑

λ∈Λ

〈
x, cμ(−λ)π(λ−μ)ϕ

〉
cμ(−λ)π(λ−μ)ϕ

=
∑

λ∈Λ

〈
x,π(λ−μ)ϕ

〉|cμ(−λ)|2π(λ−μ)ϕ

=
∑

λ∈Λ

〈
x,π(λ)ϕ

〉
π(λ)ϕ = Sx.

The substitution in the last step utilizes the fact that μ ∈Λ and Λ is a group. �

As the first consequence of Proposition 6.5, we derive Janssen’s representation
(6.17) of the Gabor frame operator [54].

To this end, define the adjoint subgroup of the subgroup Λ⊆G× Ĝ to be

Λ◦ = {μ ∈G× Ĝ : π(λ)π(μ)= π(μ)π(λ) for all λ ∈Λ
}
.

Similarly to (Λ⊥)⊥ =Λ, we have (Λ◦)◦ =Λ. For illustrative purposes, we depict
some lattices, their duals, and their adjoints in Fig. 6.7.
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Fig. 6.7 Examples of lattices, their dual lattices, and their adjoint lattices. The lattice
Λ1 ⊂ Z19 × Z19 is the smallest subgroup of Z19 × Z19 containing (1,4), Λ2 ⊂ Z20 × Z20 is
generated by (1,2), and Λ3 ⊂ Z20 ×Z20 is the subgroup generated by the set {(1,4), (0,10)}

Theorem 6.4 Let Λ be a subgroup of G× Ĝ and let ϕ, ϕ̃ ∈C
G. Then

∑

λ∈Λ

〈
x,π(λ)ϕ

〉
π(λ)ϕ̃ = |Λ|/|G|

∑

μ∈Λ◦

〈
ϕ̃, π(μ)ϕ

〉
π(μ)x, x ∈C

G. (6.16)

In particular, the (ϕ,Λ) Gabor frame operator S has the form

S = |Λ|/|G|
∑

μ∈Λ◦

〈
ϕ,π(μ)ϕ

〉
π(μ). (6.17)
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Setting K = {k : (k, �) ∈Λ for some � ∈ Ĝ}, we note that the matrix represent-
ing the frame operator with respect to the Euclidean orthonormal basis has support
in the union of |K| (off) diagonals. Walnut’s representation (6.21) below will give
additional insight on this canonical matrix representation of Gabor frame operators.

Proof Recall Proposition 6.4, namely the fact that {1/√|G| π(λ)}λ∈G×Ĝ forms an
orthonormal basis for the space of linear operators on C

G which is equipped with
the Hilbert–Schmidt inner product. Hence, for ϕ, ϕ̃ ∈C

G, the operator

S : x �→
∑

λ∈Λ

〈
x,π(λ)ϕ

〉
π(λ)ϕ̃

has a unique representation:

S =
∑

μ∈G×Ĝ

ημπ(μ).

Applying Proposition 6.5 gives for any λ ∈Λ

∑

μ∈G×Ĝ

ημπ(μ) = S = π(λ)∗Sπ(λ)=
∑

μ∈G×Ĝ

ημπ(λ)
∗π(μ)π(λ).

Equations (6.14) and (6.15) in Proposition 6.5 imply that π(λ)∗π(μ)π(λ) is a scalar
multiple of π(μ). As the coefficients ημ, μ ∈G× Ĝ, are unique, we have for each
μ ∈G× Ĝ either ημ = 0 or π(λ)∗π(μ)π(λ)= π(μ) for all λ ∈Λ, that is, μ ∈Λ◦.
We conclude that ημ = 0 if μ /∈Λ◦.

It remains to show that for μ ∈Λ◦, we have ημ = |Λ|/|G| 〈ϕ̃, π(μ)ϕ〉. To this
end, note that the rank one operator x �→ 〈x,ϕ〉ϕ̃ is represented by the matrix
ϕ̃ϕT . Its Hilbert–Schmidt inner product with a matrix M satisfies 〈ϕ̃ϕT ,M〉HS =
〈ϕ̃,Mϕ〉. Consequently, for μ ∈Λ◦, we have

ημ = 1/|G| 〈S,π(μ)
〉
HS = 1/|G|

∑

λ∈Λ

〈
π(λ)ϕ̃π(λ)ϕ

T
,π(μ)

〉
HS

= 1/|G|
∑

λ∈Λ

〈
π(λ)ϕ̃, π(μ)π(λ)ϕ

〉= 1/|G|
∑

λ∈Λ

〈
π(λ)ϕ̃, π(λ)π(μ)ϕ

〉

= 1/|G|
∑

λ∈Λ

〈
ϕ̃, π(μ)ϕ

〉= |Λ|/|G| 〈ϕ̃, π(μ)ϕ
〉
.

�

Taking inner products of the left-hand and right-hand sides of (6.16) with x̃ ∈
C

G shows that Janssen’s representation implies the fundamental identity in Gabor
analysis (FIGA) (6.18) below; see also [36, 46].

Corollary 6.1 Let Λ be a subgroup of G× Ĝ. Then
∑

λ∈Λ
Vϕx(λ) Vϕ̃x̃(λ)= |Λ|/|G|

∑

λ∈Λ◦
Vϕϕ̃(λ) Vxx̃(λ), x, x̃, ϕ, ϕ̃ ∈C

G. (6.18)
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An additional important consequence of Proposition 6.5 is the fact that the canon-
ical duals of Gabor frames are again Gabor frames; that is, the canonical dual frame
of a Gabor frame inherits the time-frequency structure of the original frame.

Theorem 6.5 Let Λ be a subgroup of G × Ĝ, and let the Gabor system (ϕ,Λ)

span C
G. The canonical dual frame of (ϕ,Λ) has the form (ϕ̃,Λ); that is, for ap-

propriate ϕ̃ ∈C
G we have

x =
∑

λ∈Λ

〈
x,π(λ)ϕ̃

〉
π(λ)ϕ =

∑

λ∈Λ

〈
x,π(λ)ϕ

〉
π(λ)ϕ̃, x ∈C

G.

Proof Proposition 6.5 states that the (ϕ,Λ) frame operator

S :CG −→C
G, x �→

∑

λ∈Λ

〈
x,π(λ)ϕ

〉
π(λ)ϕ,

and, consequently, its inverse S−1, commute with π(μ) for μ ∈Λ. Hence, the ele-
ments of the canonical dual frame of (ϕ,Λ) are of the form

γλ = S−1π(λ)ϕ = π(λ)S−1ϕ = π(λ)ϕ̃, λ ∈Λ. �

For overcomplete Gabor frames, that is, Gabor frames that span C
G and have

cardinality larger than N = |G|, the dual window is not unique. In fact, choosing
dual frames different from the canonical dual frame may allow us to reduce the
computational complexity needed to compute the coefficients of a Gabor expansion
[91].

Gabor frames (ϕ̃,Λ) that are dual to (ϕ,Λ) are characterized by the following
Wexler–Raz criterion (see [35, 98] and references therein). It is a direct consequence
of Theorem 6.4.

Theorem 6.6 Let Λ be a subgroup of G× Ĝ. For the Gabor systems (ϕ,Λ) and
(ϕ̃,Λ), we have

x =
∑

λ∈Λ

〈
x,π(λ)ϕ̃

〉
π(λ)ϕ, x ∈C

G, (6.19)

if and only if

〈
ϕ,π(μ)ϕ̃

〉= |G|/|Λ| δμ,0, μ ∈Λ◦. (6.20)

Proof Equation (6.19) implies that the operator S : x �→∑
λ∈Λ〈x,π(λ)ϕ〉π(λ)ϕ is

the identity; that is, by Theorem 6.4 we have

π(0)= Id = S = |Λ|/|G|
∑

μ∈Λ◦

〈
ϕ,π(μ)ϕ̃

〉
π(μ).
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As the operators {π(μ)} are linearly independent by Proposition 6.4, we conclude
that |Λ|/|G| 〈ϕ,π(μ)ϕ̃〉 = δμ,0, which is (6.20).

The reverse implication follows trivially from Janssen’s representation. �

Corollary 6.2 If Λ is a subgroup of G× Ĝ, then (ϕ,Λ) is a tight frame for CG if
and only if (ϕ,Λ◦) is an orthogonal set.

Proof The result follows from choosing ϕ̃ = ϕ in (6.19) and (6.20). �

Moreover, the Wexler–Raz criterion Theorem 6.6 implies the following Ron–
Shen duality result [35, 83].

Theorem 6.7 Let Λ be a subgroup of G× Ĝ. The system (ϕ,Λ) is a frame for CG

if and only if (ϕ,Λ◦) is a linear independent set.

Proof If (ϕ,Λ) is a frame, then Theorem 6.6 implies the existence of a dual window
ϕ̃ with 〈π(λ)ϕ,π(μ)ϕ̃〉 = δλ,μ for λ,μ ∈Λ◦. But then 0=∑λ∈Λ◦ cλπ(λ)ϕ implies
for μ ∈Λ◦ that

0=
〈∑

λ∈Λ◦
cλπ(λ)ϕ,π(μ)ϕ̃

〉
=
∑

λ∈Λ◦
cλ
〈
π(λ)ϕ,π(μ)ϕ̃

〉= cμ
〈
π(μ)ϕ,π(μ)ϕ̃

〉
,

and we conclude that cμ = 0 for all μ ∈Λ◦. Hence, (ϕ,Λ◦) is linearly independent.
On the other hand, if (ϕ,Λ◦) is a linear independent set, then there exists a

unique vector ϕ̃ in span{π(μ)ϕ}μ∈Λ◦ which is orthogonal to span{π(μ)ϕ}μ∈Λ◦\{0}
and 〈ϕ,π(μ)ϕ̃〉 = δμ,0 for all μ ∈Λ◦. Theorem 6.6 implies that (ϕ,Λ) is a frame. �

We close this section with a novel general version of Walnut’s representation of
the Gabor frame operator in the finite-dimensional setting.

Theorem 6.8 For a subgroup Λ of G× Ĝ, set H0 = {� : (0, �) ∈Λ} and K = {k :
(k, �) ∈Λ for some �}. For each k ∈ K choose an �k with (k, �k) ∈Λ. The (ϕ,Λ)

Gabor frame operator matrix (Sñn) satisfies

Sñn = |H0| χH⊥
0
(̃n− n)

∑

k∈K
ϕ(̃n− k)ϕ(n− k) 〈�k, ñ− n〉 (6.21)

where H⊥
0 = {� ∈ G : 〈�, k〉 = 1 for all k ∈ H0} denotes the annihilator subgroup

of H0. If Λ=Λ1 ×Λ2, then (6.21) reduces to

Sñn = |Λ1| χΛ⊥2
(̃n− n)

∑

k∈Λ1

ϕ(̃n− k)ϕ(n− k). (6.22)

Proof For k ∈ K , let Hk denote the k-section of Λ, that is, Hk = {� : (k, �) ∈
Λ for some � ∈ Ĝ}. Clearly, �, �̃ ∈ Hk if and only if �̃ − � ∈ H0. Hence, Hk =
H0 + �k for any �k ∈Hk ⊆ Ĝ.
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We compute

Sñn =
∑

λ∈Λ
π(λ)ϕ(̃n)

(
π(λ)ϕ(n)

)∗

=
∑

k∈K

∑

�∈Hk

ϕ(̃n− k)〈�, ñ〉 ϕ(n− k)〈�,n〉

=
∑

k∈K
ϕ(̃n− k)ϕ(n− k)

∑

�∈H0

〈�+ �k, ñ− n〉

=
∑

k∈K
ϕ(̃n− k)ϕ(n− k) 〈�k, ñ− n〉

∑

�∈H0

〈�, ñ− n〉

(6.12)=
∑

k∈K
ϕ(̃n− k)ϕ(n− k) 〈�k, ñ− n〉 |H0| χH⊥

0
(̃n− n).

Equation (6.22) follows directly from (6.21) by observing that K = Λ1, H0 =
Hk =Λ2, and �k = 0 for k ∈Λ1. �

Equation (6.22) implies that for real-valued ϕ the frame operator S for (ϕ,Λ1 ×
Λ2) restricts to R

G and, in particular, the dual frame generating window γ = S−1ϕ

is then real-valued as well. The band structure of Gabor frame operators that is
displayed in (6.21) and (6.22) is also observed in Janssen’s representation (6.17). It
shows that at most |H⊥

0 ||G| = |G|/|H0| entries of S are nonzero. This observation
is in particular valuable if H0, respectively Λ2, is a large subgroup of Ĝ.

6.6 Linear Independence

A traditional and frequent task in Gabor analysis on the real line is to show that a
given Gabor system is a Riesz basis in, or a frame for, the Hilbert space of complex
valued square integrable functions L2(R). Simple linear independence of Gabor
systems in L2(R) was first considered by Heil, Ramanathan, and Topiwala [50].
Their conjecture that the members of every Gabor system are linearly independent
in L2(R) remains open to this date. In fact, it is unknown whether for all window
functions ϕ in L2(R), the four functions

ϕ(t), ϕ(t − 1), e2πitϕ(t), e2πi
√

2t ϕ
(
t −√2

)

are linearly independent [26, 50].
In finite dimensions, a family of vectors is a Riesz basis for its span if and only

if the vectors are linearly independent. Similarly, a family of vectors is a frame if
and only if they span the finite-dimensional ambient space. Clearly, the dimension
of the ambient space limits the number of linearly independent vectors, and in this
section, we address the question of whether the vectors of a Gabor system in C

G
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are in general linear position. That is, we ask which Gabor frames (ϕ,Λ) have the
property that every selection of less than or equal to |G| = dimC

G vectors from
(ϕ,Λ) is linearly independent.

As before, for a vector x in a finite-dimensional space let

‖x‖0 = | suppx|
count the nonzero entries of x. Also, recall that the spark of a matrix M is given
by min{‖c‖0, c 
= 0, Mc = 0}. Rephrasing the above, we ask the question: For
which ϕ and Λ is the spark of the (ϕ,Λ) synthesis operator equal to |G| + 1? Note
that in complementary work, upper bounds on the spark of certain Gabor synthesis
operators were obtained [99].

Before stating the main results from [59, 64], we will motivate the line of work
presented here by describing its relevance to information transmission in erasure
channels and in operator identification [59]. As a byproduct of our analysis, we ob-
tain a large family of unimodular tight frames that are maximally robust to erasures
[18].

In generic communication systems, information in the form of a vector x ∈ C
G

is not transmitted directly. First, it is coded in a way that allows for the recovery of
x at the receiver, regardless of errors that may be introduced by the communications
channel. To achieve some robustness against errors, we can choose a frame {ϕk}k∈K
for CG and transmit x in the form of coefficients {〈x,ϕk〉}k∈K . At the receiver, a dual
frame {ϕ̃k} of {ϕk} can be used to recover x via the frame reconstruction formula
x =∑k〈x,ϕk〉ϕ̃k .

In the case of an erasure channel, some of the transmitted coefficients may be
lost. If only the coefficients {〈x,ϕk〉}k∈K ′ , K ′ ⊆ K , are received, then the original
vector x can still be recovered3 if and only if the subset {ϕk}k∈K ′ remains a frame
for CG. Of course, this requires |K ′| ≥ |G| = dimC

G.

Definition 6.1 A frame Φ = {ϕk}k∈K in C
G is maximally robust to erasures if the

removal of any L≤ |K| − |G| vectors from F leaves a frame.

By definition, a frame is maximally robust to erasures if and only if the frame
vectors are in general linear position.

Another important application is the problem of identifying linear time-varying
operators.

Definition 6.2 A linear space of operators H ⊆ {H :CG→C
G, H linear} is iden-

tifiable with identifier ϕ if the linear map Eϕ :H →C
G,H �→Hϕ, is injective.

A time-varying communication channel is frequently modeled as a linear com-
bination of time-frequency shift operators. The idea behind this model is that the

3Here we assume that the receiver knows which coefficients have been erased and which coeffi-
cients have been received.
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transmitted signal reaches the receiver through a small number of paths, each path
causing a path-specific delay k, a path-specific frequency shift � (due to Doppler
effects), and a path-specific gain factor ck,�. If we have a priori knowledge of the
time-frequency shifts Λ caused by the paths the signals travel, then we aim to obtain
knowledge of the gain factors, that is, we aim to identify operators from the class

HΛ =
{∑

λ∈Λ
cλπ(λ), cλ ∈C

}
, Λ⊆G× Ĝ.

Clearly, knowing the channel is a crucial prerequisite for a successful transmission
of information; see [20, 59, 74].

Often, the time delays and the modulation parameters are not known, but we may
have an upper bound on the number of paths the signal may travel to the receiver.
Then, we aim to identify the class of operators

Hs =
{∑

λ∈Λ
cλπ(λ), cλ ∈C, Λ⊆G× Ĝ with |Λ| ≤ s

}
. (6.23)

The following result relates the concepts discussed above.

Theorem 6.9 The following are equivalent for ϕ ∈C
G\{0}:

1. The Gabor system (ϕ,G× Ĝ) is in general linear position.
2. The Gabor system (ϕ,G× Ĝ) forms an equal norm tight frame which is maxi-

mally robust to erasures.
3. For all x ∈C

G \ {0}, ‖Vϕx‖0 ≥ |G|2 − |G| + 1.
4. For all x ∈ C

G, Vϕx and, therefore, x is completely determined by its values on
any set Λ with |Λ| = |G|.

5. HΛ is identifiable by ϕ if and only if |Λ| ≤ |G|.
If |G| is even, then statements 1–5 are equivalent to statement 6 below, for |G| odd,
statements 1–5 imply statement 6:

6. Hs is identifiable by ϕ if and only if s ≤ |G|/2.

Proof The equivalence of statements 1–5 follows from standard linear algebra ar-
guments [59, 64]. Note in addition that to deduce statement 2 from any of the other
statements, we can use that a priori (ϕ,G× Ĝ) is an equal norm tight frame as long
as ϕ 
= 0.

For illustrative purposes, we give below a proof of statement 1 implies state-
ment 6. Assume that the vectors in (ϕ,G×Ĝ) are in general position and s ≤ |G|/2.
Then Hϕ = H̃ϕ for H,H̃ implies

0=
∑

λ∈Λ
cλπ(λ)ϕ −

∑

λ̃∈Λ̃
c̃̃λπ(̃λ)ϕ.

Note that the right-hand side is a linear combination of elements from (ϕ,Λ∪ Λ̃)⊆
(ϕ,G× Ĝ) with |(ϕ,Λ∪ Λ̃)| ≤ |Λ∪ Λ̃| ≤ 2|G|/2= |G|. Statement 1 implies linear
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independence of (ϕ,Λ∪ Λ̃); hence, all coefficients are 0 or cancel out. We conclude
that H = H̃ .

A similar argument shows that, in general, Hs is not identifiable if s > |G|/2. �

Theorem 6.9 leads to the question of whether a ϕ satisfying statements 1–6
in Theorem 6.9 exists. For the special case |G| prime, the answer is affirmative
[59, 64].

Theorem 6.10 If G= Zp , p prime, then ϕ exists in C
G such that statements 1–6 in

Theorem 6.9 are satisfied. Moreover, we can choose the vector ϕ to be unimodular.

Proof A complete proof is given in [64]. It is nontrivial, and we will only recall
some of its central ideas.

Consider the Gabor window consisting of p complex variables z0, z1, . . . , zp−1.
Take Λ⊆G× Ĝ with |Λ| = p and form a matrix from the p vectors in the Gabor
system (z,Λ). The determinant of the matrix is a homogeneous polynomial PΛ in
z0, z1, . . . , zp−1 of degree p. We have to show that PΛ 
= 0. This is achieved by ob-
serving that at least one monomial appears in the polynomial PΛ with a coefficient
which is not 0. Indeed, it can be shown that there exists at least one monomial whose
coefficient is the product of minors of the Fourier matrix Wp . We can apply Cheb-
otarev’s theorem on roots of unity (see Theorem 6.12). It states that every minor of
the Fourier matrix Wp , p prime, is nonzero [31, 40, 93], a property that does not
hold for groups with |G| composite. Hence, PΛ 
= 0.

We conclude that for each Λ⊆G×Ĝ with |Λ| = p, the determinant PΛ vanishes
only on the nontrivial algebraic variety EΛ = {z= (z0, z1, . . . , zp−1) : PΛ(z)= 0}.
EΛ has Lebesgue measure 0; hence, any generic ϕ, that is,

ϕ ∈C
G
∖( ⋃

Λ⊆G×Ĝ, |Λ|=p

EΛ

)
,

generates a Gabor system (ϕ,G× Ĝ) in general linear position.
To show that we can choose a unimodular ϕ, it suffices to demonstrate that the

set of unimodular vectors is not contained in
⋃

Λ⊆G×Ĝ, |Λ|=p EΛ [59]. �

Theorem 6.10 is complemented by the following simple observation.

Theorem 6.11 If G= Z
2 × Z

2, then there exists no ϕ in C
G such that the vectors

in (ϕ,G× Ĝ) are in general linear position.

Proof For a generic ϕ = (c0, c1, c2, c3)
T , we compute the determinant of the matrix

with columns ϕ, π((0,0), (1,0))ϕ, π((1,1), (0,0))ϕ, and π((1,1), (0,1))ϕ, that is,
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det

⎛

⎜⎜
⎝

c0 c0 c3 c3
c1 c1 c2 −c2
c2 −c2 c1 c1
c3 −c3 c0 −c0

⎞

⎟⎟
⎠

= det

⎛

⎜⎜
⎝

0 2c0 0 2c3
0 2c1 2c2 0

2c2 0 0 2c1
2c3 0 2c0 0

⎞

⎟⎟
⎠

=−16c0 det

⎛

⎝
0 c2 0
c2 0 c1
c3 c0 0

⎞

⎠− 16c3 det

⎛

⎝
0 c1 c2
c2 0 0
c3 0 c0

⎞

⎠

=−16c0c1c2c3 + 16c0c1c2c3 = 0.

We conclude that for all ϕ, the four vectors ϕ, π((0,0), (1,0))ϕ, π((1,1), (0,0))ϕ,
and π((1,1), (0,1))ϕ are linearly dependent. �

In [59], numerical results show that a vector which satisfies statement 2, and
therefore all statements in Theorem 6.9 for G = Z4,Z6, exists (see Fig. 6.8). This
observation leads to the following open question [59].

Question 6.1 For the cyclic group G = ZN , N ∈ N, does there exist a window ϕ

in C
G with (ϕ,G× Ĝ) in general linear position?

The numerical procedure applied to resolve the cases G= Z4 and Z6 is unfortu-
nately not applicable to larger cyclic groups of composite order. In fact, to answer
Question 6.1 for the group G = Z8 numerically would require the computation of
64 choose 8, which is 4,426,165,368 determinants of 8 by 8 matrices. (Using sym-
metries, the amount of computation can be reduced, but not enough to allow for a
numerical solution of the problem at hand.)

The proof of Theorem 6.10 outlined above is not constructive. In fact, with the
exception of small primes 2, 3, 5, 7, we cannot test numerically whether a given
vector ϕ satisfies the statements in Theorem 6.9. Again, a naive direct approach to
check whether the system (ϕ,Z11 × Ẑ11) is in general linear position requires the
computation of 121 choose 11, that is, 1,276,749,965,026,536 determinants of 11
by 11 matrices.

Question 6.2 For G= Zp , p prime, does there exist an explicit construction of ϕ in
C

G such that the vectors in (ϕ,G× Ĝ) are in general linear position?

The truth is that for G = Zp , p prime, it is known that almost every vector ϕ

generates a system (ϕ,G× Ĝ) in general linear position, but aside from groups of
order less than or equal to 7, not a single vector ϕ with (ϕ,G× Ĝ) in general linear
position is known.
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As illustrated by Theorem 6.9, a positive answer to Questions 6.1 and 6.2 would
have far-reaching applications. For example, to our knowledge, the only previously
known equal norm tight frames that are maximally robust to erasures are harmonic
frames, that is, frames consisting of columns of Fourier matrices where some rows
have been removed. (See, for example, the conclusions section in [18].) Similarly,
Theorem 6.10 together with Theorem 6.9 provide us with equal norm tight frames
with p2 elements in C

N for N ≤ p: we can choose a unimodular ϕ satisfying the
conclusions of Theorem 6.10 and remove uniformly p−N components of the equal
norm tight frame (ϕ,G× Ĝ) in order to obtain an equal norm tight frame for CN

which is maximally robust to erasure. Obviously, the removal of components does
not leave a Gabor frame proper. Alternatively, eliminating some vectors from a Ga-
bor frame satisfying the conclusions of Theorem 6.10 leaves an equal norm Gabor
frame which is maximally robust to erasure but which might not be tight.

We point out that a positive answer to Question 6.1 would imply the general-
ization of sampling of operator results that hold on the space of square integrable
functions on the real line to operators defined on square integrable functions on
Euclidean spaces of higher dimensions [78].

In the remainder of this section, we describe an observation that might be helpful
to establish a positive answer to Question 6.1. Chebotarev’s theorem can be phrased
in the form of an uncertainty principle, that is, as a manifestation of the principle
that x and x̂ cannot both be well localized at the same time [93]. Recall that ‖x‖0 =
| suppx|.
Theorem 6.12 For G= Zp , p prime, we have

‖x‖0 + ‖x̂‖0 ≥ |G| + 1= p+ 1, x ∈C
p\{0}.

The corresponding time-frequency uncertainty result for the short-time Fourier
transform is the following [59, 64].

Theorem 6.13 Let G= Zp , p prime. For appropriately chosen ϕ ∈C
p ,

‖x‖0 + ‖Vϕx‖0 ≥ |G× Ĝ| + 1= p2 + 1, x ∈C
p \ {0}.

Theorems 6.12 and 6.13 are sharp in the sense that all pairs (u, v) satisfying
the respective bound will correspond to the support size pair of a vector and its
Fourier transform, respectively, its short-time Fourier transform. In particular, for
almost every ϕ, we have that for all 1≤ u≤ |G|, 1≤ v ≤ |G|2 with u+ v ≥ |G|2 +
1 there exists x with ‖x‖0 = u and ‖Vϕx‖0 = v. Comparing Theorems 6.12 and
6.13, we observe that for a, b ∈ Zp , the pair of numbers (a,p2 − b) can be realized
as (‖x‖0,‖Vϕx‖0) if and only if (a,p − b) can be realized as (‖x‖0,‖x̂‖0). This
observation leads to the following question [59].

Question 6.3 [64] For G cyclic, that is, G= ZN , N ∈ N, does there exist ϕ in C
N

such that
{
(‖x‖0,‖Vϕx‖0), x ∈C

N
}= {(‖x‖0, |G|2 − |G| + ‖x̂‖0

)
, x ∈C

N
}
?
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Fig. 6.8 The set {(‖x‖0,‖Vϕx‖0), x ∈ C
G\{0}} for appropriately chosen ϕ ∈ C

G\{0} for
G= Z2×Z2, Z4, Z6. For comparison, the right column shows the set {(‖x‖0,‖x̂‖0), x ∈C

G\{0}}.
Dark red/blue implies that it is proven analytically in [59] that the respective pair (u, v) is
achieved/is not achieved, where ϕ is a generic window. Light red/blue implies that it was shown
numerically that the respective pair (u, v) is achieved/is not achieved

Figure 6.8 compares the achievable support size pairs (‖x‖0,‖Vϕx‖0), ϕ chosen
appropriately, and (‖x‖0,‖x̂‖0) for the groups Z2 ×Z2, Z4, and Z6.

Note that any vector ϕ satisfying statements 1–6 in Theorem 6.9 has the property
that ‖ϕ‖0 = ‖ϕ̂‖0 = |G| [64]. For arbitrary ϕ 
= 0, it is easily observed that

‖Vϕx‖0 ≥ |G|, x ∈C
G, (6.24)

and stronger qualitative statements on ‖Vϕx‖0 depending on ‖ϕ‖0,‖ϕ̂‖0,‖x‖0,‖x̂‖0
are provided in [59].

Ghobber and Jaming obtained quantitative versions of (6.24) and Theorem 6.13.
For example, the result below estimates the energy of x that can be captured by a
small number of components of Vϕx [42].

Theorem 6.14 Let G = ZN , N ∈ N. For ϕ with ‖ϕ‖ = 1 and Λ ⊆ G × Ĝ with
|Λ|< |G| =N , we have

∑

λ∈Λ

∣∣Vϕx(λ)
∣∣2 ≤ (1− (1− |Λ|/|G|)2/8

)‖x‖2, x ∈C
G.

6.7 Coherence

The analysis of the coherence of Gabor systems has a twofold motivation. First of
all, many equiangular frames have been constructed as Gabor frames and, second,
a number of algorithms aimed at solving underdetermined system Ax = b for a
sparse vector x succeed if the coherence of columns in A is sufficiently small; see
Sect. 6.8 and [28, 44, 95–97].
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The coherence of a unit norm frame Φ = {ϕk} is given by

μ(Φ)=max
k 
=k̃

∣∣〈ϕk,ϕk̃〉
∣∣.

That is, the coherence of a unit norm frame Φ = {ϕk} is the cosine of the small-
est angle between elements from the frame. A unit norm frame Φ = {ϕk} with
|〈ϕk,ϕk̃〉| = constant for k 
= k̃ is called an equiangular frame. It is easily seen that,
among all unit norm frames with K elements in C

N , the equiangular frames are
those with minimal coherence.

If ‖ϕ‖ = 1, then the Gabor system (ϕ,Λ) is unit norm and, if Λ is a subgroup of
G× Ĝ, then Proposition 6.5 implies that the coherence of (ϕ,Λ) is

μ(ϕ,Λ)= max
λ∈Λ\{0}

∣∣〈ϕ,π(λ)ϕ
〉∣∣= max

λ∈Λ\{0}
∣∣Vϕϕ(λ)

∣∣.

In frame theory, it is a well-known fact that for any unit norm frame Φ of K

vectors in C
N , we have

μ(Φ)≥
√

K −N

N(K − 1)
; (6.25)

see, for example, [92] and references therein. For tight frames, (6.25) follows from
a simple estimate of the magnitude of the off-diagonal entries of the Gram matrix
(〈ϕk,ϕk̃〉):

(K − 1)Kμ(Φ)2 ≥
∑

k 
=k̃

∣∣〈ϕk,ϕk̃〉
∣∣2 =

K∑

k=1

(

−∣∣〈ϕk,ϕk〉
∣∣2 +

K∑

k̃=1

∣∣〈ϕk,ϕk̃〉
∣∣2
)

=
K∑

k=1

(
−1+ K

N
‖ϕk‖2

)
= K2

N
−K. (6.26)

This computation also shows that any tight frame with equality in (6.25) is equian-
gular. Note that equiangularity necessitates K ≤N2, a result which holds for all unit
norm frames [92].

The Gabor frame (ϕ,G× Ĝ) has |G|2 elements; hence, (6.25) simplifies to

μ(ϕ,G× Ĝ)≥
√

|G|2 − |G|
|G|(|G|2 − 1)

=
√
|G| − 1

|G|2 − 1
= 1/

√|G| + 1.

Alltop considered the window ϕA ∈C
p , p ≥ 5 prime, with entries

ϕA(k)= p−1/2e2πik3/p, k = 0,1, . . . , p− 1. (6.27)

For the Alltop window function, we have [1, 92]

μ(ϕA,Zp × Ẑp)= 1/
√
p,
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which is close to the optimal lower bound 1/
√
p+ 1. In fact, ϕA being unimodular

implies that (ϕA,G× Ĝ) is the union of |G| orthonormal bases. A minor adjustment
to the argument in (6.26) shows that whenever Φ is the union of N orthonormal
bases for CN , we have necessarily μ(Φ)≥ 1/

√
N .

The Alltop window for G = ZN , N not prime, does not guarantee good co-
herence. For illustrative purposes, we display |VϕA

ϕA(λ)| = |〈ϕA,π(λ)ϕA〉|, λ ∈
ZN × ẐN , for N = 6,7,8,

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0
u u u u u u u

u u u u u u u

u u u u u u u

u u u u u u u

u u u u u u u

u u u u u u u

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

1 0 0 0 0 0 0 0
0 0.5 0 0.5 0 0.5 0 0.5

1/
√

2 0 0 0 1/
√

2 0 0 0
0 0.5 0 0.5 0 0.5 0 0.5
0 0 0 0 1 0 0 0
0 0.5 0 0.5 0 0.5 0 0.5

1/
√

2 0 0 0 1/
√

2 0 0 0
0 0.5 0 0.5 0 0.5 0 0.5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

,

(6.28)

where u= 1/
√

7≈ 0.3880.
Gabor systems (ϕA,G× Ĝ) employing the Alltop window for G= ZN , N ∈N,

were also analyzed numerically in [2] in terms of chirp sensing codes. In fact, the
frames of chirps considered there are of the form

Φchirps =
{
φλ(x)= φ(k,�)(x)= e2πikx2/Ne2πi�x/N , λ= (k, �) ∈G× Ĝ

}
.

We have

π(k, �)ϕA(x) = e2πi�x/Ne2πi(x−k)3/N = e2πi�x/Ne2πi(x3−3x2k+3xk2−k3)/N

= e−2πik3/Ne2πix3/Ne2πi(�−k2)x/Ne−2πi3kx2/N

= e2πik3/NϕA(x)φ(3k,�−k2)(x),

and if N is not divisible by 3, then Φchirps is, aside from renumbering, the unitary
image of a Gabor frame with an Alltop window. Hence, for N not divisible by 3, the
coherence results on (ϕA,G× Ĝ) are identical to the coherence results on Φchirp.
Also, the restricted isometry constants (see Sect. 6.8) for (ϕA,G× Ĝ) and Φchirp
are identical for the same reason.

As an alternative to the Alltop sequence, J.J. Benedetto, R.L. Benedetto, and
Woodworth used results from number theory such as Andre Weil’s exponential sum
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bounds to estimate the coherence of Gabor frames based on Björck sequences as
Gabor window functions [8, 12, 13]. Note that any Björck sequence ϕB is a constant
amplitude zero autocorrelation (CAZAC) sequence; therefore, we have

〈TkϕB,ϕB〉 = 0= 〈M�ϕB,ϕB〉, (k, �) ∈G× Ĝ.

Accounting again for the zero entries in the CAZAC Gabor frame Gram matrices,
we observe that the smallest achievable coherence is 1/

√|G| − 1.
For p ≥ 5 prime with p = 1 mod 4, the Björck sequence ϕB ∈C

Zp is given by

ϕB(x)= 1√
p

⎧
⎨

⎩

1, for x = 0,
ei arccos(1/(1+√p)), x =m2 mod p for some m= 1, . . . , p− 1,
e−i arccos(1/(1+√p)), otherwise,

and for p ≥ 3 prime with p = 3 mod 4, we set

ϕB(x)= 1√
p

{
ei arccos((1−p)/(1+p))/p, x 
=m2 mod p for all m= 0,1, . . . , p− 1,
1, otherwise.

Then [8]

μ(ϕB,Zp × Ẑp) <
2√
p
+
{

4
p
, p = 1 mod 4;
4

p3/2 , p = 3 mod 4.

In comparison to (6.28) , the rounded values of |VϕB
ϕB(λ)| = |〈ϕB,π(λ)ϕB〉|,

λ ∈ ZN × Z̃N for N = 7 are

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

1 0 0 0 0 0 0
0 0.2955 0.3685 0.5991 0.1640 0.4489 0.4354
0 0.3685 0.1640 0.4354 0.2955 0.5991 0.4489
0 0.5991 0.4354 0.3685 0.4489 0.2955 0.1640
0 0.1640 0.2955 0.4489 0.3685 0.4354 0.5991
0 0.4489 0.5991 0.2955 0.4354 0.1640 0.3685
0 0.4354 0.4489 0.1640 0.5991 0.3685 0.2955

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

.

To study the generic behavior of the coherence of Gabor systems μ(ϕ,ZN × ẐN)

for N ∈ N, we turn to random windows. To this end, we let ε denote a random
variable uniformly distributed on the torus {z ∈ C, |z| = 1}. For N ∈ N, we let ϕR

be the random window function with entries

ϕR(x)= 1√
N

εx, x = 0, . . . ,N−1, (6.29)

where the εx are independent copies of ε. In short, ϕR is a normalized random
Steinhaus sequence.



230 G.E. Pfander

For N = 8, the rounded values of |VϕR
ϕR(λ)|, λ ∈ ZN × Z̃N , for a sample ϕR ,

are
⎛

⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0
0.1915 0.5266 0.3831 0.1418 0.1269 0.4575 0.5410 0.0341
0.0520 0.2736 0.2872 0.7912 0.2384 0.1880 0.0741 0.3411
0.3712 0.5519 0.2569 0.2757 0.5049 0.3123 0.2200 0.1215
0.0968 0.2423 0.6019 0.2632 0.1005 0.2632 0.6019 0.2423
0.3712 0.1215 0.2200 0.3123 0.5049 0.2757 0.2569 0.5519
0.0520 0.3411 0.0741 0.1880 0.2384 0.7912 0.2872 0.2736
0.1915 0.0341 0.5410 0.4575 0.1269 0.1418 0.3831 0.5266

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Here and in the following, E denotes expectation and P the probability of an
event. In this context, a slight adjustment of the proof of Proposition 4.6 in [59]
implies that, for p prime,

P
(
(ϕR,Zp × Ẑp) is a unimodular tight frame maximally robust to erasures

)= 1.

The following result on the expected coherence of Gabor systems is given in
[76]. Aside from the factor α, the coherence in Theorem 6.15 resembles with high
probability the coherence 1/

√
N of the Alltop window and in this sense is close to

the lower coherence bound 1/
√
N + 1.

Theorem 6.15 Let N ∈N and let ϕR be the random vector with entries

ϕR(x)= 1√
N

εx, x = 0, . . . ,N−1, (6.30)

where the εx are independent and uniformly distributed on the torus {z ∈C, |z| = 1}.
Then for α > 0 and N even,

P

(
μ(ϕR,ZN × ẐN) ≥ α√

N

)
≤ 4N(N−1)e−α2/4,

while for N odd,

P

(
μ(ϕR,ZN × ẐN) ≥ α√

N

)
≤ 2N(N−1)

(
e−

N−1
N

α2/4 + e−
N+1
N

α2/4).

For example, a window ϕ ∈ C
10,000 chosen according to (6.30) generates a Ga-

bor frame with coherence less than 8.6/
√

10,000= 0.086 with probability exceed-
ing 10,000 · 9,999 · e−8.62/4 ≈ 0.0671. Note that our result does not guarantee the
existence of a Gabor frame for C10,000 with coherence 0.085. The Alltop window,
though, provides us with a Gabor frame for C9,973 with coherence ≈ 0.0100.

Proof The result is proven in full in [76]; here, we will simply give an outline of the
proof in the case that N is even.



6 Gabor Frames in Finite Dimensions 231

To estimate 〈ϕR,π(λ)ϕR〉 = 〈ϕR,M�TkϕR〉 for λ = (k, �) ∈ G × Ĝ \ {0}, note
first that if k = 0, then 〈ϕR,M�ϕR〉 = 〈|ϕR|2,M�1〉 = 0 for � 
= 0.

For the case k 
= 0, choose first ωq ∈ [0,1) in εq = e2πiωq and observe that

〈
ϕR,π(λ)ϕR

〉= 〈π(λ)ϕR,ϕR

〉 = 1

N

∑

q∈G
e2πi

q�
N εq−pεq = 1

N

∑

q∈G
e2πi(ωq−p−ωq+ q�

N
).

The random variables

δλq = e2πi(kq−p−ωq+ q�
n
)

are uniformly distributed on the torus T, but they are not jointly independent. As
demonstrated in [76], these random variables can be split into two subsets of jointly
independent random variables Λ1, Λ2 ⊆G with |Λ1| = |Λ2| =N/2.

The complex Bernstein inequality [97, Proposition 15], [73], implies that for an
independent sequence εq, q = 0, . . . ,N−1, of random variables that are uniformly
distributed on the torus, we have

P

(∣∣
∣∣∣

N−1∑

q=0

εq

∣∣
∣∣∣
≥Nu

)

≤ 2e−Nu2/2. (6.31)

Using the pigeonhole principle and the inequality (6.31) leads to

P
(∣∣〈π(λ)ϕR,ϕR

〉∣∣≥ t
) ≤ P

(∣∣∣∣
∑

q∈Λ1

δ
(p,�)
q

∣∣∣∣≥Nt/2

)
+ P

(∣∣∣∣
∑

q∈Λ2

δ
(p,�)
q

∣∣∣∣≥Nt/2

)

≤ 4 exp
(−Nt2/4

)
.

Applying the union bound over all possible λ ∈G× Ĝ \ {(0,0)} and choosing t =
α/
√
N concludes the proof. �

Remark 6.1 A Gabor system (ϕ,Λ) which is in general linear position, which has
small coherence, or which satisfies the restricted isometry property, is generally not
useful for time-frequency analysis as described in Sect. 6.3. Recall that in order
to obtain meaningful spectrograms of time-frequency localized signals, we chose
windows which were well localized in time and in frequency; that is, we chose
windows so that Vϕϕ(k, �) = 〈ϕ,π(k, �)ϕ〉 was small for k, � far from 0 (in the
cyclic group ZN ). To achieve a good coherence, though, we attempt to seek ϕ such
that Vϕϕ(k, �) is close to being a constant function on all of the time-frequency
plane.

To illustrate how inappropriate it is to use windows as discussed in Sects. 6.6–
6.9, we perform in Fig. 6.9 the analysis carried out in Figs. 6.2–6.6 with a window
chosen according to (6.30).
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Fig. 6.9 We carry out the same analysis of the signal in Fig. 6.1 as in Figs. 6.2–6.6. The Gabor
system uses as the window ϕ = ϕR given in (6.30). The functions ϕ, ϕ̃ are both not localized to an
area in time or in frequency; in fact, this serves as an advantage in compressed sensing. We display
again only the lower half of the spectrogram of x and of its approximation x̃. Both are of little
use. The lattice used is given by Λ = {0,8,16, . . . ,192} × {0,20,40, . . . ,180} and is marked by
circles. Those of the 40 biggest frame coefficients in the part of the spectrogram shown are marked
by squares

6.8 Restricted Isometry Constants

The coherence of a unit norm frame measures the smallest angle between two dis-
tinct elements of the frame. In the theory of compressed sensing, it is crucial to
understand the geometry of subsets of frames that contain a small number of ele-
ments, but more than just two elements. The coherence of unit norm frames can be
used to control the behavior of small subsets, but the compressed sensing results
achieved in this manner are rather weak. To capture the geometry of small families
of vectors, the concept of restricted isometry constants (RICs) has been developed.
This leads to useful results in the area of compressed sensing [15, 16, 39, 82].

The restricted isometry constant δs(Φ) = δs , 2 ≤ s ≤ N , of a frame Φ of M

elements in C
N , is the smallest 0 < δs < 1 that satisfies

(1− δs)

M∑

i=1

|ci |2 ≤
∥∥∥∥∥

M∑

i=1

ciϕi

∥∥∥∥∥

2

2

≤ (1+ δs)

M∑

i=1

|ck|2 for all c with ‖c‖0 ≤ s.

(6.32)
A simple computation shows that the coherence of a unit norm frame Φ satisfies
μ(Φ)= δ2(Φ).
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Statement (6.32) implies that every subfamily of s vectors forms a Riesz system
with Riesz bounds (1 − δs), (1 + δs). In particular, the existence of a restricted
isometry constant implies that any s vectors in Φ are linearly independent.

Frames with small restricted isometry constants for s sufficiently large are diffi-
cult to construct. A trick to bypass the problem of having to do an intricate study of
all possible selections of s vectors from a frame Φ with M elements, M - s, is to
introduce randomness in the definition of the frame. For example, if each component
of each vector in a frame is generated independently by a fixed random process, then
every family of s vectors is structured identically and the probability that a target δs
fails can be estimated using a union bound argument.

To obtain results on restricted isometry constants of generic Gabor systems, we
will choose again as window function ϕR , namely, the normalized random Steinhaus
sequence defined in (6.29). The following is the main result in [77].

Theorem 6.16 Let G= ZN and let ϕR be a normalized Steinhaus sequence.

1. The expectation of the restricted isometry constant δs of (ϕR,G × Ĝ), s ≤ N ,
satisfies

Eδs ≤max

{
C1

√
s3/2

N
log s

√
logN, C2

s3/2 log3/2 N

N

}
,

where C1,C2 > 0 are universal constants.
2. For 0≤ λ≤ 1, we have

P
(
δs ≥ E[δs] + λ

)≤ e−λ2/σ 2
, where σ 2 = C3s

3
2 logN log2 s

N

with C3 > 0 being a universal constant.

The result remains true when generating the entries of ϕ by any Gaussian or
sub-Gaussian random variable. In particular, the result holds true if the entries of
ϕ are generated with a Bernoulli process; in this case, the Shannon entropy of the
generated N ×N2 matrix is remarkably small, namely, N bits. The bounds in The-
orem 6.16 have been improved in [60].

6.9 Gabor Synthesis Matrices for Compressed Sensing

The problem of determining a signal in a high-dimensional space by combining a
priori nonlinear information on a vector or on its Fourier transform with a small
number of linear measurements appears frequently in the natural sciences and engi-
neering. Here, we will address the problem of determining a vector F ∈ C

M by N

linear measurements under the assumption that

‖F‖0 =
∣∣{n : F(n) 
= 0

}∣∣≤ s, s.N .M.
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This topic is treated in general terms in Chap. 9; we will focus entirely on the case
where the linear measurements are achieved through the application of a Gabor
frame synthesis matrix.

In detail, with T ∗ϕ denoting the (ϕ,G× Ĝ) synthesis operator and

Σs =
{
F ∈C

G×Ĝ : ‖F‖0 ≤ s
}
,

we ask the question: For which s, can every vector F ∈Σs ⊆ C
G×Ĝ be recovered

efficiently from

T ∗ϕ F =
∑

λ∈G×Ĝ

Fλπ(λ)ϕ ∈C
G?

The problem of finding the sparse vector F ∈ Σs from T ∗ϕ F is identical to the
problem of identifying Hs as defined in (6.23) from the observation of Hϕ =∑

λ∈G×Ĝ ηλπ(λ)ϕ. This holds since {π(λ)}λ∈G×Ĝ is a linear independent set in the
space of linear operators on C

G, and, hence, the coefficient vector η is in one-to-one
correspondence with the respective channel operator [76].

In addition, the problem at hand can be rephrased as follows. Suppose we know
that a vector x ∈ C

G has the form x =∑λ∈Λ cλπ(λ)ϕ with |Λ| ≤ s; that is, x is
the linear combination of at most s frame elements from (ϕ,Λ). Can we compute
the coefficients cλ? Obviously, x can be expanded in (ϕ,G× Ĝ) in many ways, for
example, by using

x =
∑

λ∈Λ

〈
x,π(λ)ϕ̃

〉
π(λ)ϕ, (6.33)

where (ϕ̃,Λ) is a dual frame of (ϕ,Λ). The coefficients in (6.33) are optimal in the
sense that they have the lowest possible �2-norm. In this section, though, the goal is
to find the expansion involving the fewest nonzero coefficients.

Theorem 6.10 implies that for G= Zp , p prime, there exists ϕ with the elements
of (ϕ,G× Ĝ) being in general linear position. Consequently, if s ≤ p/2, then T ∗ϕ is
injective on Σs and recovering F from T ∗ϕ F is always possible, but this may not be
computationally feasible, as every one of the |G× Ĝ| chosen s possible subsets of
G× Ĝ sets of F would have to be considered as support sets of F .

To obtain a numerically feasible problem, we have to reduce s, and indeed, for
small s, the literature contains a number of criteria on the measurement matrix M

to allow the computation of F from MF by algorithms such as basis pursuit (BP)
(see Sect. 9.2.2.1) and orthogonal matching pursuit (OMP) (see Sect. 9.2.2.2).

It is known that the success of BP and OMP for small s can be guaranteed if
the coherence of the columns of a measurement matrix is small, in our setting, if
μ(ϕ,G×Ĝ) < 1/(2s−1) [27, 95]. In fact, combining this result with our coherence
results in Sect. 6.7—in particular, the coherence of the Alltop frame (ϕA,G× Ĝ)

for G= Zp , p prime—leads to the following results [76].
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Theorem 6.17 Let G = Zp , p prime, and let ϕA be the Alltop window given in

(6.27). If s <
√
p+1
2 then BP recovers F from T ∗ϕA

F for every F ∈Σs ⊆G× Ĝ.

In the case of Steinhaus sequences, Theorem 6.15 implies the following theorem
[76].

Theorem 6.18 Let G= ZN , N even. Let ϕR be the random unimodular window in
(6.29). Let t > 0 and

s ≤ 1

4

√
N

2 logN + log 4+ t
+ 1

2
.

Then with probability 1− e−t , BP recovers F from T ∗ϕR
F for every F ∈Σs .

Note that in Theorems 6.17 and 6.18, the number of measurements N required to
guarantee the recovery of every s-sparse vector scales as s2. This can be improved
if we are satisfied to recover an s-sparse vector with high probability [75].

Theorem 6.19 Let G = ZN , N ∈ N. There exists C > 0 so that whenever s ≤
CN/ log(N/ε), the following holds: for F ∈ Σs choose ϕR according to (6.30),
then with probability at least 1− ε BP recovers F from T ∗ϕR

F .

Clearly, in Theorem 6.19 s scales as N/ log(N), but we recover the vector F

only with high probability.
The estimates on the restricted isometry constants in Theorem 6.16 imply in fact

that with high probability the Gabor synthesis matrix T ∗ϕR
guarantees that BP recov-

ers every F ∈ Σs from T ∗ϕR
F if s is of the order N2/3/ log2 N [77]. This follows

from the fact that BP recovers F ∈Σs if δ2s(ϕR,G× Ĝ)≤ 3/(4+√6) [15, 17].
Numerical simulations show that the recoverability guarantees given above are

rather pessimistic. In fact, the performance of Gabor synthesis matrices with Alltop
window ϕA and with random window ϕR as measurement matrices seem to perform
similarly well as, for example, random Gaussian matrices [76].

For related Gabor frame results aimed at recovering signals that are only well
approximated by s-sparse vectors, see [75–77].
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Chapter 7
Frames as Codes

Bernhard G. Bodmann

Abstract This chapter reviews the development of finite frames as codes for era-
sures and additive noise. These types of errors typically occur when analog signals
are transmitted in an unreliable environment. The use of frames allows one to re-
cover the signal with controllable accuracy from part of the encoded, noisy data.
While linear binary codes have a long history in information theory, frames as codes
over the real or complex numbers have only been examined since the 1980s. In the
encoding process, a vector in a finite-dimensional real or complex Hilbert space is
mapped to the sequence of its inner products with frame vectors. An erasure occurs
when part of these frame coefficients is no longer accessible after the transmission.
Additive noise can arise from the encoding process, such as when coefficients are
rounded, or from the transmission. This chapter covers two of the most popular re-
covery algorithms: blind reconstruction, where missing coefficients are set to zero,
and active error correction, which aims to recover the signal perfectly based on the
known coefficients. The erasures can be modeled as either having a deterministic
or a random occurrence pattern. In the deterministic regime it has been custom-
ary to optimize the frame performance in the worst-case scenario. Optimality for
a small number of erasures then leads to geometric conditions such as the class of
equiangular tight frames. Random erasure models are often used in conjunction with
performance measures based on averaged reconstruction errors, such as the mean-
squared error. Frames as codes for erasures are also closely related to recent results
on sparse recovery. Finally, fusion frames and packet erasures introduce an addi-
tional structure which imposes constraints on the construction of optimal frames.
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7.1 Introduction

Digital signal communications are omnipresent, ranging from cell phone transmis-
sions to streaming media such as Voice over Internet Protocol telephony, satellite
radio, or Internet TV. In principle, digital error correction protocols can guarantee
nearly faultless transmissions in the presence of noise and data loss. Much of the
development of these protocols is inspired by Shannon’s seminal work of more than
60 years ago [42–44], in which he founded the theory of transmitting data through
unreliable analog channels. However, today we typically face a problem outside
of Shannon’s immediate concern: transmitting analog data such as audio or video
through a somewhat unreliable digital channel, the Internet. After the error of con-
verting from analog to digital, network outages and buffer overflows are the main
problem in digital transmissions. This means that the typical reconstruction error
is composed of additive noise created in the digitization and partial data loss from
the transmission. Another difference between Shannon’s communication theory and
today’s practice is that latency issues are not part of computing Shannon’s channel
capacity, whereas for cell phones or Voice over Internet Protocol telephony, they
become essential concerns. The simplest way to control latency is to work with
block codes of a given size. The question is then to what extent imperfections in the
transmission can be suppressed. This topic, called rate-distortion theory, was devel-
oped by Shannon for digital transmissions. His work pioneered the tandem strategy
of digitization and subsequent channel coding, which allowed for distortion mea-
sures in the digital as well as in the analog domain. In the latter case, it is natural
to consider an alternative to the tandem strategy by adding redundancy at the ana-
log level [38, 39]. If the encoding is linear at the analog level, then this amounts
to using frames as codes. Simply put, frames act as block codes, which replace the
coefficients of a vector with respect to an orthonormal basis by a larger number of
linear coefficients in the expansion with a stable spanning set, thereby incorporating
redundancy in the representation and providing error suppression capabilities.

This strategy has been applied to suppress quantization errors, meaning the
rounding of frame coefficients, see, e.g., [2–4, 8, 9, 12], and erasures and data loss
in the course of transmission [7, 17, 28–30, 32, 34, 45, 47]. The generalization of
these results to the suppression of errors due to lost packets in frame-based encoding
was studied in [5, 19, 35, 40]. This model assumes that frame coefficients are par-
titioned into subsets, often taken to be of equal size, and if an erasure occurs, then
it makes the contents of an entire subset of coefficients inaccessible. For a related
problem of robust nonorthogonal subspace decompositions, the concept of frames
for subspaces was introduced by Casazza and Kutyniok [18], later referred to as
fusion frames in an application to distributed processing [20].

Finally, correcting erasures has also been discussed in the context of sparse rep-
resentations and compressed sensing [14, 15], building on groundbreaking works
by Donoho, Stark, and Huo [22, 23]. Although there are probabilistic proofs for
the existence of good frames for recovery, even if a (sufficiently small) fraction of
frame coefficients is lost and a certain level of noise is added to the remaining ones,
there is currently no deterministic construction with matching error correction capa-
bilities [13, 16]. In the fusion frame literature, there are even more open problems,
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in particular the construction of optimal fusion frames in large dimensions. We can
only cover a few aspects of this exciting topic, which have been chosen to present
a consistent theme throughout this chapter. Unfortunately, recent results on optimal
dual frames [37] and on structured erasures [11] could not be covered here.

Section 7.2 compiles the material on frames for suppressing erasures and ad-
ditive noise. This includes a discussion of different performance measures, hierar-
chical and generic error models, and a discussion of random matrices for coding.
Section 7.3 repeats some of the discussion in the context of fusion frames and gen-
eralizes the characterization of optimality with a more differentiated error measure.

7.2 Frames for the Encoding of Analog Data

A finite frame Φ = {ϕj }Mj=1 is a spanning family of vectors in an N -dimensional
real or complex Hilbert space H. If the Parseval-type identity

‖x‖2 = 1

A

M∑

j=1

∣∣〈x,ϕj 〉
∣∣2

is true for all x ∈H with some constant A > 0, then Φ is called A-tight. If A=1,
then we say that Φ is a Parseval frame. In this case, we also call it an (M,N)-frame,
in analogy with the literature on block codes. The analysis operator of a frame Φ

is the map T :H→ �2({1,2, . . . ,M}), (T x)j = 〈x,ϕj 〉. If Φ is a Parseval frame,
then T is an isometry. Frames are often classified by geometric properties: If all the
frame vectors have the same norm, then the frame is called equal norm. If the frame
is tight and there is c ≥ 0 such that for all j 
= l, |〈ϕj ,ϕl〉| = c, then the frame is
called equiangular and tight. The significance of the geometric characteristics of
frames is that they are related to optimality of frame designs in certain situations.
This will be reviewed in the following material.

The general model for frame-coded transmissions contains three parts: (1) the
linear encoding of a vector in terms of its frame coefficients, (2) the transmission
which may alter the frame coefficients, and (3) the reconstruction algorithm. The
input vectors to be transmitted can either be assumed to have some distribution, or
one can attempt to minimize the reconstruction error among all possible inputs of
a given norm. The same can be applied to the errors occurring in the transmission.
Our discussion restricts the treatment of input vectors to the worst-case scenario, or
to the average over the uniform probability distribution among all unit-norm input
vectors. The channel models are taken to be either the worst case or a uniform
erasure distribution, possibly together with the addition of independently distributed
random components to the frame coefficients which model the digitization noise for
the input. We refer the reader to a more detailed treatment of the digitization errors
in [2–4, 8, 9, 12] or in the chapter on quantization of this book. Among all possible
reconstruction algorithms, we concentrate on linear ones, which may or may not
depend on the type of error that occurred in the course of the transmission.



244 B.G. Bodmann

7.2.1 Frames for Erasure Channels

A standard assumption in network models is that a sequence of vectors is transmit-
ted in the form of their frame coefficients. These coefficients are sent in parallel
streams to the receiver; see [29, Example 1.1] and [34]. If one of the nodes in the
network experiences a buffer overflow or a wireless outage, then the streams passing
through this node are corrupted. The integrity of each coefficient in a transmission
is typically protected by some error correction scheme, so for practical purposes
one may assume that coefficients passing through the affected node are not used in
the reconstruction process. The linear reconstruction of a vector from a subset of
its frame coefficients amounts to setting the lost coefficients to zero; this is called
an erasure error. This type of error has been the subject of many works [7, 28–
30, 32, 34]. In our formulation, the encoded vector is given by its frame coefficients
T x, and the erasure acts by applying a diagonal projection matrix E to T x, before
linear reconstruction is attempted.

We can either reconstruct by an erasure-dependent linear transform, performing
active error correction, or use blind reconstruction, which ignores the fact that some
coefficients have been set to zero. For now, we focus on the second alternative and
add some comments about active error correction later.

Definition 7.1 Let Φ be an (M,N)-frame for a real or complex Hilbert space H,
with analysis operator T . The blind reconstruction error for an input vector x ∈
H and an erasure of frame coefficients with indices K = {j1, j2, . . . , jm} ⊂ J =
{1,2, . . . ,M}, m≤M , is given by

∥∥T ∗EKT x − x
∥∥= ∥∥(T ∗EKT − I

)
x
∥∥= ∥∥T ∗(I −EK)T x

∥∥

where E is the diagonal M × M matrix with Ej,j = 0 if j ∈ K and Ej,j = 1
otherwise. The residual error after performing active error correction is defined
as ‖WEKT x − x‖, where W is the Moore-Penrose pseudoinverse of EKT . If
WEKT = I , then we say that the erasure of coefficients indexed by K is correctable.

Depending on the type of input and transmission model, the performance of a
frame can be measured in deterministic or probabilistic ways. One measure is the
worst case for the reconstruction, which is the maximal error norm among all re-
constructed vectors. Since the error is proportional to the norm of the input vector,
the operator norm ‖T ∗(I − EK)T ‖ can be chosen as a measure for the worst-case
error among all normalized inputs [7, 17, 32, 33]. Another possibility is a statistical
performance measure such as the mean-squared error, where the average is either
over unit-norm input vectors for specific erasures or over the combination of such
input vectors and random erasures. We combine these performance measures in a
unified notation; see, e.g., [11].

Definition 7.2 Let S be the unit sphere in a real or complex N -dimensional Hilbert
space H, and let Ω = {0,1}Mj=1 be the space of binary sequences of length M . Given
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a binary sequence ω= {ω1,ω2, . . . ,ωM}, we let the associated operator E(ω) be the
diagonal M ×M matrix with E(ω)j,j = ωj for all j ∈ J= {1,2, . . . ,M}. Let μ be
a probability measure on the space S × Ω , which is the product of the uniform
probability measure on S and a probability measure on Ω . The p-th power error
norm is given by

ep(Φ,μ)=
(∫

S×Ω

∥∥T ∗E(ω)T x − x
∥∥p dμ(x,ω)

)1/p

with the understanding that when p = ∞ it is the usual sup-norm. The quantity
e∞(Φ,μ) has also been called the worst-case error norm and e2(Φ,μ)2 is com-
monly referred to as the mean-squared error.

We conclude this section with remarks concerning the relationship between pas-
sive and active error correction for erasures when p =∞. In principle, active error
correction either results in perfect reconstruction or in an error that can only be con-
trolled by the norm of the input, because WEKT is an orthogonal projection if W

is the Moore-Penrose pseudoinverse of EKT . This may make it seem as if the only
relevant question for active error correction is whether EKT has a left inverse.

However, even in cases where an erasure is correctable, numerical stability
against roundoff errors and other additive noise is desirable. This will be examined
in more detail in Sect. 7.2.3. We prepare the discussion there by a comparison of an
error measure based on the Moore-Penrose pseudoinverse with the p-th power error
norm. It turns out that if all erasures in Ω are correctable, then achieving optimality
with respect to e∞ is equivalent to minimizing the maximal operator norm among
all Moore-Penrose pseudoinverses of E(ω)T ,ω ∈Ω .

Definition 7.3 Let J, S, and Ω be as above, and let ν be the uniform probability
measure on S×Ω . Let W(ω) be the Moore-Penrose pseudoinverse of E(ω)T ; then
we define

ap(Φ,ν)=
(∫

S×Ω

∥∥W(ω)y
∥∥p dν(y,ω)

)1/p

with the understanding that when p =∞ it is the usual sup-norm.

Proposition 7.1 Let H be an N -dimensional real or complex Hilbert space. For
any set of erasures Γ ⊂ Ω , let μΓ be the probability measure which is invariant
with respect to the product of unitaries and permutations on S× Γ . Similarly, let
ν be the probability measure on the unit sphere of �2({1,2, . . . ,M})× Γ , which is
invariant with respect to the product of unitaries and permutations. If all erasures in
Γ are correctable for a closed subset S of (M,N)-frames, then a frame Φ achieves
the minimal worst-case error norm e∞(Φ,μ)=minΨ∈S e∞(Ψ,μ) if and only if it
achieves the minimum a∞(Φ, ν)=minΨ∈S a∞(Ψ, ν).

Proof Let us fix an erasure E corresponding to a choice of ω ∈ Γ . Given an isom-
etry T (analysis operator of a Parseval frame), the left inverse to T with smallest
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operator norm is the (Hilbert) adjoint T ∗. Given a Parseval frame and a diagonal
projection E, then the operator norm of T ∗ET − I is the largest eigenvalue of
I − T ∗ET , because T ∗ET − I = T ∗(E − I )T is negative definite. Factoring ET

by polar decomposition into VA= ET , where A is nonnegative and V is an isom-
etry, so the operator norm of A−1T ∗ is ‖A−1V ∗VA−1‖1/2 = ‖A−2‖1/2 = ‖A−1‖,
by positivity of A the inverse of the smallest eigenvalue of A, amin.

This means that minimizing a∞ with a fixed set of erasures amounts to maximiz-
ing the smallest eigenvalue appearing among the set of operators {A(ω) : ω ∈ Γ }.
Comparing this with the error for blind reconstruction gives

∥∥(T ∗ET − I
)∥∥= ∥∥I −A∗V ∗VA

∥∥= 1− a2
min.

Minimizing this error over Γ also amounts to maximizing the smallest eigenvalue.
Thus, the minimization of e∞ or a∞ for a fixed set of erasures Γ is equivalent. �

7.2.1.1 Hierarchical error models

Often it is assumed that losing one coefficient in the transmission process is rare, and
that the occurrence of two lost coefficients is much less likely. A similar hierarchy of
probabilities usually holds for a higher number of losses. This motivates the design
of frames following an inductive scheme: We require perfect reconstruction when no
data is lost. Among the protocols giving perfect reconstruction, we want to minimize
the maximal error in the case of one lost coefficient. Generally, we continue by
choosing among the frames which are optimal for m erasures those performing best
for m+ 1 erasures. For an alternative approach, which does not assume a hierarchy
of errors, see maximally robust encoding [41] and the section on random Parseval
frames later in this chapter.

Definition 7.4 Let H be an N -dimensional real or complex Hilbert space. We de-
note by F(M,N) the set of all (M,N)-frames, equipped with the natural topol-
ogy from HM . Using as Γm the set of all m-erasures, Γm = {ω ∈Ω :∑M

j=1 ωj =
m}, we let μm denote the product of uniform probability measures on S × Γm.
We let e

(1)
p (M,N) = min{ep(Φ,μ1) : Φ ∈ F(M,N)} and E (1)

p (M,N) = {Φ ∈
F(M,N) : ep(Φ,μm) = e

(1)
p (M,N)}. Proceeding inductively, we set for 1 ≤ m ≤

M , e
(m)
p (M,N) = min{epm(Φ,μm) : Φ ∈ E (m−1)

p (M,N)} and define the optimal

m-erasure frames for ep to be the nonempty compact subset E (m)
p (M,N) of

E (m−1)
p (M,N) where the minimum of e(m)

p is attained.

In this manner, we obtain a decreasing family of frames which can be charac-
terized in a geometric fashion. Results by Casazza and Kovačević [17] as reviewed
in [32, Proposition 2.1] and slightly extended in [7] can be interpreted as the state-
ment that, among all Parseval frames, the equal-norm ones minimize the worst-case
reconstruction error for one erasure.
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Proposition 7.2 For 1 < p ≤∞, the set E (1)
p (M,N) coincides with the family of

equal-norm (M,N)-frames. Consequently, for 1 <p ≤∞, e
(1)
p (M,N)=N/M .

Proof Given an (M,N)-frame Φ = {ϕ1, . . . , ϕM} with analysis operator T , and
a diagonal projection matrix D with one nonzero entry Dj,j , then ‖T ∗DT ‖ =
‖DT T ∗D‖ = ‖ϕj‖2. If Φ is a Parseval frame, then

∑M
j=1 ‖f ‖2 = trT T ∗ =

trT ∗T = trIN = N , so minimizing the maximum norm among all frame vectors
is achieved if and only if they all have the same norm. In this case, ‖ϕj‖2 =N/M ,

and thus e
(1)
p (M,N)=N/M for any p > 1. �

Strohmer and Heath as well as Holmes and Paulsen [32, 45] showed that when
they exist, equiangular Parseval frames are optimal for up to two erasures with re-
spect to e

(2)∞ . As stated by Holmes and Paulsen, if Φ is an equiangular (M,N)-
frame, then T T ∗ is a self-adjoint rank-N projection that can be written in the form
T T ∗ = aI+cM,NQ where a =N/M , cM,N = (

N(M−N)

M2(M−1)
)1/2, and the signature ma-

trix Q= (Qi,j ) is a self-adjoint M ×M matrix satisfying Qi,i = 0 for all i and for
i 
= j, |Qi,j | = 1. The proof of optimality uses that if D is a diagonal projection ma-
trix with a 1 in the i-th and j -th diagonal entries and T is the analysis operator for
an equal norm (M,N)-frame Φ = {ϕ1, . . . , ϕM}, then ‖T ∗DT ‖ = ‖DT T ∗D‖ =
N/M + |〈ϕi,ϕj 〉|. Since

∑
j 
=l |〈ϕj ,ϕl〉|2 = tr[(T T ∗)2] −∑M

j=1(T T ∗)2
j,j = N −

N2/M , the maximum magnitude among all the inner products cannot be below the
average value, which gives a lower bound for the worst-case 2-erasure. This bound
is saturated if and only if all inner products have the same magnitude. Welch had
established this inequality for unit-norm vector sequences [48].

The characterization of equiangular Parseval frames as optimal 2-erasure frames
was extended to all sufficiently large values of p in [7].

Theorem 7.1 [7] If equiangular frames exist among the equal norm (M,N)-frames
and if p > 2+ (

5N(M−1)
M−N

)1/2, then E (2)
p (M,N) consists precisely of these equiangu-

lar frames.

The existence of such equiangular Parseval frames for real Hilbert spaces de-
pends on the existence of a matrix of ±1’s which satisfies certain algebraic equa-
tions. Thanks to the discovery in [45] of the connection between equiangular frames
and the earlier work of Seidel and his collaborators in graph theory, much of the
work on existence and construction of real equiangular tight frames benefits from
known techniques. The construction of equiangular Parseval frames in the complex
case was investigated with number-theoretic tools, see [49] and [33], as well as with
a numerical scheme [46]. Recently, Seidel’s combinatorial approach was extended
to the complex case by considering signature matrices whose entries are roots of
unity [6, 10, 31].

An averaging argument similar to the inequality by Welch was derived for the
case of 3 erasures [5], in the context of fusion frames. We present the consequences
for the special case of equiangular Parseval frames.
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Theorem 7.2 Let M ≥ 3, M >N and let Φ be an equiangular (M,N)-frame; then

e(3)∞ (M,N)≥ N

M
+ 2cM,N cos(θ/3)

where θ ∈ [−π,π] observes cos θ = M−2N
M(M−2)cM,N

. Equality holds if and only if
Re[Qi,jQj,lQl,i] = cos(θ) for all i 
= j 
= l 
= i, where Q is the signature matrix
of Φ .

Proof The operator norm of the submatrix of Q with rows and columns indexed
by {i, j, l} is 2 cos(θ/3), with Re[Qi,jQj,lQl,i] = cos(θ). However, the sum of all
triple products is the constant

M∑

i,j,l=1

Qi,jQj,lQl,i = (M − 1)(M − 2N)

cM,N

so the largest real part among all the triple products cannot be smaller than the
average, which yields the desired inequality. �

Corollary 7.1 Let M,N be such that M >N and an equiangular (M,N)-frame ex-
ists with constant triple products Re[Qi,jQj,lQl,i] = cos(θ) for some θ ∈ [−π,π];
then the set E (3)∞ (M,N) contains precisely these frames.

Remark 7.1 In [5], only (M,M−1)-frames were mentioned as examples for such 3-
erasure optimal frames. However, recently Hoffman and Solazzo [31] found a family
of examples which are not of this trivial type. We present one of their examples. It
is the complex equiangular (8,4)-frame with signature matrix

Q=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 1 1 1 1 1
1 0 −i −i −i i i i

1 i 0 −i i −i −i i

1 i i 0 −i −i i −i

1 i −i i 0 i −i −i

1 −i i i −i 0 −i i

1 −i i −i i i 0 −i

1 −i −i i i −i i 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

In the real case Bodmann and Paulsen showed that, in fact, this 3-optimality
condition is satisfied if and only if the frame is an equiangular (M,M−1) or (M,1)-
frame. Thus, in order to differentiate between frames, they had to examine the case
of equiangular tight frames in more detail. Bodmann and Paulsen [7] related the
performance of these frames in the presence of higher numbers of erasures to graph-
theoretic quantities.

To this end, they established an upper bound for the error and characterized cases
of equality in graph-theoretic terms: Let Φ be a real equiangular (M,N)-frame.
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Then e∞m (F)≤N/M+(m−1)cM,N with equality if and only if the signature matrix
Q associated with Φ is the Seidel adjacency matrix of a graph that contains an
induced complete bipartite subgraph on m vertices. The Seidel adjacency matrix
of a graph G of M vertices is defined to be the M ×M matrix A = (ai,j ), where
ai,j is −1 when i and j are adjacent, it is +1 when i and j are not adjacent, and
0 when i = j . In certain cases Bodmann and Paulsen showed that as the size of a
graph grows beyond some number, then among all the induced subgraphs of size
up to 5 there is at least one complete bipartite graph. For such graphs, the worst-
case m-erasure error is known up to m= 5. To differentiate between such types of
equiangular Parseval frames, one needs to look beyond the 5-erasure error. Graph-
theoretic criteria allowed the characterization of optimality by considering induced
subgraphs of larger sizes [7].

7.2.1.2 Robustness of equiangular tight frames against erasures

We recall that when a frame with analysis operator T is used for the encoding, then
an erasure is called correctable if ET has a left inverse, where E is the diagonal
projection which sets the erased frame coefficients to zero. In this case, the left
inverse effectively recovers any encoded vector x from the remaining set of nonzero
frame coefficients.

The matrix ET has a left inverse if and only if all of its singular values are
nonzero, or equivalently, whenever T ∗ET is invertible. For Parseval frames this
amounts to ‖I − T ∗ET ‖ = ‖T ∗(I −E)T ‖< 1. This condition applies verbatim to
sets of erasures, for example, the set of diagonal projection matrices with m zeros
on the diagonal representing erasures of m frame coefficients.

Definition 7.5 A Parseval frame Φ with analysis operator T is robust against m

erasures if
∥∥T ∗ET − I

∥∥< 1

for each diagonal projection E with trE =M −m.

A sufficient criterion for robustness of real and complex equiangular Parseval
frames uses the following error estimate, which is a special case of a result for
fusion frames [5].

Theorem 7.3 Let Φ be an equiangular (M,N)-frame with signature matrix Q;
then

e(m)∞ (M,N)≤N/M + (m− 1)cM,N

with equality if and only if there exists a diagonal M ×M unitary matrix Y such
that Y ∗QY contains an m×m principal submatrix with off-diagonal entries that
are all 1’s.
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Proof The largest eigenvalue of any m×m compression of Q determines the largest
eigenvalue of the corresponding compression of T T ∗. For each choice of m indices
K = {j1, j2, . . . , jm}, a normalized eigenvector x of (Qj,l)j,l∈K belonging to the
largest eigenvalue maximizes q(x) = 〈Qx,x〉 among all unit vectors with support
contained in K. Using the Cauchy-Schwarz inequality gives q(x)≤∑j 
=l |xjxl | ≤
(m− 1), and equality occurs if and only if Qj,lxlxj = 1/m for all j 
= l in K. Now
we can pick Y such that Yj,j = xj if j ∈ K, and then Y ∗QY is seen to have the
claimed form. �

Corollary 7.2 If N
M
+ (m − 1)cM,N < 1, then any equiangular (M,N)-frame is

robust against m erasures.

Although this theorem permits the design of frames which correct a large number
of erased coefficients, the fraction of erasures is only allowed to grow proportional
to the square root of the number of frame vectors in order to guarantee correctability.
A random choice of a frame corrects this deficiency with high probability, which we
see in the next section.

7.2.2 Random Frames and Robustness Against Erasures

The results in the last section are qualitatively different from the usual results on
binary coding, which guarantee the existence of codes that provide perfect recovery
for memoryless channels [43] if the coding rate (here N/M) is below a certain value,
the channel capacity. This can be traced back to the hierarchy among errors, which
imposes the rigidity in the construction of optimizers.

In this section, we follow a complementary approach in which we wish to ensure
correctability of m erasures, when m is chosen to be a fixed fraction of M , called
the error rate. With the help of random frames, error correction for a fixed error rate
is possible with arbitrarily large frames. To generate these frames, we choose an
orthonormal sequence on N vectors in an M-dimensional real or complex Hilbert
space, and transform this sequence by applying a random unitary (or orthogonal
matrix, in the real case). The probability measure on the unitaries is the usual, nor-
malized Haar measure.

Lemma 7.1 (Dasgupta and Gupta [21]) Let 0 < ε < 1. Let x be a unit vector in
a real Hilbert space H of dimension M . If V is a subspace of dimension N < M ,
drawn uniformly at random, and PV is the orthogonal projection onto V , then

√
M

N
‖PV x‖ ≤ 1

1− ε
(7.1)

holds on a set of measure

P
({
V : (7.1) holds

})≥ 1− e−Nε2
.
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Proof Dasgupta and Gupta prove that for β > 1,

P

(
M

N
‖PV x‖2 ≥ β

)
≤ e

N
2 (1−β+lnβ).

Choosing β = (1 − ε)−2 and comparing the terms in the Taylor expansions for
(1− ε)−2 and 2 log(1− ε) about ε = 0 gives the desired bound. �

We pair this lemma with an argument similar to the exposition in Baraniuk
et al. [1].

Lemma 7.2 Let PV be a random orthogonal projection onto a subspace of dimen-
sion N in R

M , M >N , and let W = span{ej1, ej2, . . . , ejs } be spanned by s vectors
from an orthonormal basis, with s < N , and let 0 < δ < 2; then

√
M

N
‖PV x‖ ≤ 1

1− δ + δ2/4
‖x‖ for all x ∈W (7.2)

for a set of subspaces with probability

P
({
V : (7.2) holds

})≥ 1− 2

(
1+ 8

δ

)s

e−Nδ2/4.

Proof By scaling, we only have to show that (7.2) holds for ‖x‖ = 1, x ∈W . Using
the Minkowski inequality and Lipschitz continuity of the norm we can bootstrap
from a net S with miny∈S ‖x − y‖ ≤ δ

4 for all x ∈ W,‖x‖ = 1. By a volume in-
equality for sphere packings, we know there is such an S with cardinality

|S| ≤
(

1+ 8

δ

)s

.

Applying the upper bound from the Johnson-Lindenstrauss lemma in the version by
Dasgupta and Gupta [21] we get a set of V ’s with measure as described for ε = δ/2,
such that

√
M

N
‖PV x‖ ≤ 1

1− δ
2

‖x‖

for all x ∈ S. Now let a be the smallest number such that
√

M
N
‖PV x‖ ≤ 1

1−a
‖x‖

holds for all x ∈W .
We show a ≤ δ − δ2/4. To see this, let x ∈ W,‖x‖ = 1 and pick y ∈ S,

‖y − x‖ ≤ δ
4 .

Then, using Minkowski’s inequality yields

√
M

N
‖PV x‖ ≤

√
M

N
‖PV y‖ +

√
M

N

∥∥PV (x − y)
∥∥≤ 1

1− δ
2

+ 1

1− a

δ

4
.
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Since the right-hand side of the inequality chain is independent of x, according to
the definition of a we obtain

1

1− a
≤ 1

1− δ
2

+ 1

1− a

δ

4
.

Solving for (1− a)−1 and further estimating gives

1

1− a
≤ 1

1− δ
2

1

1− δ
4

≤ 1

(1− δ
2 )

2
.

Inverting both sides results in

1− a ≥ 1− δ + δ2

4
.

Hence, a ≤ δ − δ2/4. �

Since any M-dimensional complex Hilbert space can be interpreted as a 2M-
dimensional real Hilbert space, we conclude the following theorem.

Theorem 7.4 Let H be an M-dimensional real or complex Hilbert space. Let PV

be a random orthogonal projection onto a subspace of dimension N in H, N <M ,
let 0 < δ < 2, and let W be the union of all sets of subspaces spanned by s vectors
from an orthonormal basis of H; then

√
M

N
‖PV x‖ ≤ 1

1− δ+ δ2/4
‖x‖ for all x ∈W (7.3)

with probability

P
({
V : (7.3) holds

})≥ 1−
(

1+ 8

δ

)s̃(
eM

s

)s

e−δ2N/4,

where s̃ = s in the real case and s̃ = 2s in the complex case.

Proof There are
(
M
s

)
choices for the subspaces spanned by s orthonormal basis

vectors. Stirling’s approximation gives
(
M
s

)≤ (eM/s)s . In the real case, the result
follows directly from the preceding lemma by a further union bound. In the complex
case, we identify each s-dimensional subspace with a 2s-dimensional real subspace
in a 2M-dimensional real Hilbert space. The sphere packing argument then yields a
net S of size |S| ≤ (1+ 8/δ)s̃ . Using the same union bound as in the real case then
yields the desired result. �

The exponential term in the failure probability ensures that for a fixed, suffi-
ciently small coding ratio N/M there is an erasure ratio s/M which can be cor-
rected with overwhelming probability. This result was established in a discussion
with Gitta Kutyniok, and we are grateful for the opportunity to present it here.
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Theorem 7.5 Let 0 < c < 1 and M ≥ 3. Let Φ be a random Parseval frame consist-
ing of M vectors for a real or complex Hilbert space with dimension N , and some δ

such that

0 < δ < 2

(
1− 4

√
N

M

)

and

s

N

(
1+ 2 ln

(
1+ 8

δ

)
+ ln

M

s

)
< c

δ2

4
.

Then the probability that any s erasures are not correctable decays exponentially
fast in the number of frame coefficients.

Proof This is a result of the preceding theorem, together with the requirement for
correctability.

All sets of s erased coefficients can be corrected if the union W of the subspaces
spanned by s basis vectors satisfies

‖PV x‖ ≤
√

N

M

1

1− δ + δ2/4
< 1 for all x ∈W,‖x‖ = 1.

If we assume δ < 2(1− 4
√

N
M
), then 1

1−δ+δ2/4
<

√
M
N

and the set of V ’s such that
this fails has measure bounded above by

P
[‖PV x‖ = ‖x‖ for some x ∈W

]≤ e2s ln(1+8/δ)+s(1+ln(M/s))−δ2N/4.

Finally, if there is 0 < c < 1 and if the exponent is bounded by 2s ln(1+8/δ)+s(1+
ln(M/s))− δ2N/4≤ (c− 1)δ2N/4, then we achieve overwhelming probability for
correcting any such s erasures as N→∞. �

7.2.3 Erasures and Additive Noise

If erasures are present and the encoded vector is subject to additional noise in its
coefficients, then the error estimates must be modified to account for this. However,
deriving upper bounds is relatively simple if the noise is assumed to be independent
of the input vector in the case of either the worst-case or the mean-squared error.
We first examine the performance of blind reconstruction.

7.2.3.1 Passive error correction

A natural measure for performance when the reconstruction is performed with T ∗ is
an Lp-norm for the reconstruction error, where the underlying measure models the
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distribution of input vectors, erasures, and the additive noise. The function whose
Lp-norm is computed is the reconstruction error (x,ω, y) �→ ‖T ∗E(ω)(T x + y)

− x‖ where x ∈H is the vector to be encoded, an erasure given by ω ∈Ω occurs,
and the noise y ∈ �2({1,2, . . . ,M}) is added to the frame coefficients.

Definition 7.6 If the input vectors and erasures are governed by the uniform prob-
ability measure μ on S×Γ , with S the unit sphere in H and Γ ⊂Ω , and the frame
coefficients are subject to additive noise distributed according to a probability mea-
sure ν, then the error for blind reconstruction is

ep(Φ,μ, ν)=
(∫

�2(J)

∫

S×Ω

∥∥T ∗E(ω)(T x + y)− x
∥∥p dμ(x,ω)dν(y)

)1/p

We prepare estimates for ep by examining the noiseless case.

Lemma 7.3 Let Φ be an (M,N)-frame. The input-averaged mean-squared error
e2(Φ,μ) has the form

e2(Φ,μ)=
M∑

j,l=1

wj,l

∣∣(T T ∗
)
j,l

∣∣2

with some wj,l = wl,j ≥ 0, so it is the square of a weighted Frobenius norm of the
Gram matrix.

Proof We have that for fixed E,
∫ ‖T ∗(E−I )T x‖2dμ(x)= tr[T ∗(E−I )T T ∗(E−

I )T ]/N = tr[((E− I )T T ∗(E− I ))2]/N . This is the square of the Frobenius norm
of the submatrix of T T ∗ corresponding to the erased coefficients. Next, taking con-
vex combinations of this expression when averaging over the erasures preserves this
form. �

Proposition 7.3 Let ν be the uniform probability measure on the sphere of radius
σ > 0 in �2({1,2, . . . ,M}), and let Φ be an (M,N)-frame and μ be as above; then
we have the inequality

e∞(Φ,μ, ν)≤ e∞(Φ,μ)+ σ

and the Pythagoras-like identity

e2(Φ,μ, ν)2 = e2(Φ,μ)2 + σ 2e2(Φ,μ)2.

Here, μ denotes the measure on Ω which is induced by μ under the map ω �→ ω,
ωj = 1−ωj .

Proof When performing the average over y, the mixed term in the expansion
∥∥T ∗(E − I )T x + T ∗Ey

∥∥2

= ∥∥T ∗(E − I )T x
∥∥2 + 2Re

[〈
T ∗(E − I )T x,T ∗Ey

〉]+ ∥∥T ∗Ey
∥∥2
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does not contribute because 〈T ∗(E − I )T x,T ∗Ey〉 = 〈ET T ∗(E − I )T x, y〉 and y

averages to zero. Therefore, the erasures and noise are additive for the mean-squared
error. Averaging the noise term gives

∫

σS

∥∥T ∗Ey
∥∥2

dν(y)= σ 2

M
tr
[
ET T ∗E

]
.

This is the error expression that applies when the complement of the erasure given
by E occurs. �

7.2.3.2 Active error correction

If active error correction is used to compensate erasures in the presence of addi-
tive noise, then the operator norm of the Moore-Penrose pseudoinverse determines
how much the error affecting the frame coefficients contributes to the reconstruction
error. The worst-case reconstruction error among all unit-norm input vectors, a set
of erasures, and the additive noise to be considered is the essential supremum of
the function (x,ω, y) �→ ‖W(ω)E(ω)(T x + y) − x‖, where W(ω) is the Moore-
Penrose pseudoinverse of E(ω)T . As before, we assume that the additive error is
distributed uniformly on a sphere of radius σ > 0 in �2({1,2, . . . ,M}). In this case,
it turns out that the previously introduced quantity a∞(Φ,μ) determines the perfor-
mance.

Proposition 7.4 Let Φ be an (M,N)-frame and μ be as above. If every erasure in
Ω is correctable in the absence of noise, and additive noise is distributed uniformly
on a sphere of radius σ > 0 in �2({1,2, . . . ,M}) then the worst-case reconstruction
error for active error correction is given by

max
‖y‖=σ,‖x‖=1,ω∈Ω

∥∥W(ω)E(ω)(T x + y)− x
∥∥= σa∞(Φ, ν ×μ),

where a∞ is the measure for active error correction from Definition 7.3 and ν is the
uniform measure on the unit sphere S in �2({1,2, . . . ,M}).
Proof If for every ω ∈Ω , the erasure can be corrected, then W(ω)E(ω)T = I . This
means that the expression for the worst-case error simplifies to

max‖y‖=σ,ω∈Ω
∥∥W(ω)E(ω)y

∥∥= σa∞(Φ, ν ×μ).

In the last step, the homogeneity of the norm is used, and the operator norm is
replaced by the L∞-norm appearing in the definition of a∞. �

7.3 Fusion Frames for Packet Encoding

As discussed in the preceding section, a finite frame can be interpreted as a block
code for analog signals. Instead of blocks of bits (or strings of some length), the
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analysis operator transforms a vector x, which can be characterized by its expansion
in a given orthonormal basis of size N , into a sequence of M frame coefficients
{〈x,ϕj 〉}Mj=1. Similarly, the analysis operator of a fusion frame is given by a family

of linear maps {Tj }Mj=1 which transform a vector x ∈H into its image
⊕

j Tj x ∈⊕
j Kj in the direct sum of spaces Kj containing the range of each Tj . We will

refer to each vector Tjx ∈Kj as a component of x.
Frames can be understood as a special case of fusion frames when the rank of

each Tj is one. Thus, many insights for frames have an analogue for fusion frames.
In finite dimensions, the condition for having a frame or a fusion frame is simply the
spanning property of {ϕj }Mj=1 or of the ranges {ranT ∗j }Mj=1, respectively. This im-

plies for the number of frame vectors, M ≥N , and for the ranks
∑M

j=1 rankTj ≥N .
In both cases, the redundancy which is incorporated by the analysis operator can be
exploited to compensate errors which may corrupt the frame coefficients or com-
ponents in the course of a transmission or when they are stored. This is the goal
of designing frames or fusion frames as codes. The purpose of optimal design is
generally to use the redundancy to suppress the effect of errors maximally.

We know sharp estimates for the Euclidean reconstruction error and correspond-
ing optimal designs for deterministic and random signals. The deterministic, worst-
case scenario was examined for one lost component [19] and for a higher number of
losses [5]. The averaged performance has been discussed as well, in the probabilistic
treatment for the mean-squared error occurring for random input vectors [35].

Definition 7.7 Let H be a real or complex Hilbert space, and let {Tj }Mj=1 be a finite

family of linear maps Tj :H→K into a Hilbert space K. We say that {Tj }Mj=1 is a
set of coordinate operators on H if they form a resolution of the identity

M∑

j=1

T ∗j Tj = I.

We will also say that the family {Tj }Mj=1 forms a Parseval fusion frame, although
this is, according to the usual definition [18], only the case if each Tj is a multiple
of a partial isometry.

We observe that the analysis operator T formed by combining the blocks
{Tj }Mj=1 as rows in an isometry

T :H−→
⊕

j∈J
K, (T x)j = Tjx

has its adjoint T ∗ as a left inverse. We will often abbreviate
⊕M

j=1 K=KM .

Definition 7.8 We call a family {Tj }j∈J of coordinate operators of a Parseval fu-
sion frame equal norm provided there is a constant c > 0 so that the operator norm
‖Tj‖ = c for all j ∈ J.
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Definition 7.9 We shall let V(M,L,N) denote the collection of all families {Tj }Mj=1
consisting of M ∈ N coordinate operators Tj : H→ K of maximal rank L ∈ N

that provide a resolution of the identity for the N -dimensional real or complex
Hilbert space H, N ∈ N. We call the analysis operator T of such a family {Tj } ∈
V(M,L,N) an (M,L,N)-protocol.

The ratio ML/N we shall refer to as the redundancy ratio of the encoding.

As in the frames case, among all possible left inverses of T , the analysis operator
of a Parseval fusion frame, we have that T ∗ is the unique left inverse that minimizes
both the operator norm and the Hilbert-Schmidt norm.

7.3.1 Packet Erasures and Performance Measures

The problem we consider is that in the process of transmission some of the packets
(Tj x) are lost, or their content has become inaccessible because of some transmis-
sion error.

Definition 7.10 Let K ⊂ J = {1,2, . . . ,M} be a subset of size |K| = m ∈ N. The
packet erasure matrix EK on

⊕
j∈JK is given by

EK :
M⊕

j=1

K−→
M⊕

j=1

K, (EKy)j =
{
yj , j 
∈K,

0, j ∈K.

The operator EK can be thought of as erasing the coordinates (Tj x)j∈K in the
terminology of [29]. The main goal of this section is to characterize when the norms
of these error operators are in some sense minimized for a given number of lost
packets, independent of which packets are lost. Of course, there are many ways that
one could define optimality in this setting. Here, we only pursue two possibilities:
optimality for the worst-case error and for the input-averaged mean-squared error.
Optimizing with respect to the second performance measure is equivalent to finding
frames which give the best statistical recovery with Wiener filtering [35].

Definition 7.11 Let T :H→⊕
j∈JK be an (M,L,N)-protocol, and let μ= σ ×ρ

be a product of probability measures governing the inputs as well as the packet
erasures. We chose σ to be the uniform probability measure on the sphere of H and
ρ a probability measure supported on a subset Γ of Ω . We define the reconstruction
error by

ep,∞(T ,μ)=
(

max
ω∈Γ

∫

S

∥∥T ∗
(
I −E(ω)

)
T x
∥∥p dσ(x)

)1/p

and focus mostly on the worst-case error e∞,∞(T ,μ) as well as the worst-case
input-averaged mean-squared error e2,∞(Φ,μ)2.
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The expressions for these two types of error measures can be simplified by re-
placing the average over the input vectors with matrix norms. Because of the nature
of the sup-norm, the dependence of ep,∞(T ,σ×ρ) on the measure ρ is only through
its support, Γ ⊂Ω .

Proposition 7.5 Let T : H→⊕
j∈JK be an (M,L,N)-protocol. If μ = σ × ρ,

where σ is the uniform probability measure on the sphere in the Hilbert space H,
and ρ is a probability measure supported on Γ ⊂Ω , then

e∞,∞(T ,μ)=max
{∥∥(I −E(ω)

)
T T ∗

(
I −E(ω)

)∥∥ : ω ∈ Γ
}
,

and

e2,∞(T ,μ)=max
ω∈Γ tr

[(
I −E(ω)

)
T T ∗

(
I −E(ω)

)2]
/N.

Proof For a fixed erasure and the corresponding matrix E, by the positivity of
T ∗(I −E)T , the eigenvector x ∈ S belonging to the maximal eigenvalue gives the
operator norm. This, in turn, equals ‖T ∗(I −E)T ‖ = ‖(I −E)T T ∗(I −E)‖.

Averaging the square of the reconstruction error over all normalized input vectors
gives

∫

S

∥∥T ∗(I −E)T x
∥∥2

dσ(x)= tr
[(
T ∗(I −E)T

)2]
/N

= tr
[(
(I −E)T T ∗(I −E)

)2]
/N,

where we have used that I −E is an orthogonal projection. �

The input-averaged mean-squared error for a fixed erasure is therefore propor-
tional to the square of the Frobenius norm of [T T ∗]K = (TiT

∗
j )i,j∈K, the submatrix

of the Gram matrix consisting of the rows and columns indexed by the erased pack-
ets.

7.3.2 Optimality for Hierarchical Error Models

We denote, similarly as in the frames case, by μm the product of the uniform prob-
ability measure on S × Γm, where S is the unit sphere in H and Γm is the subset
{ω ∈ {0,1}M :∑M

j=1 ωj =m}. Since the set V(M,L,N) of all (M,L,N)-protocols
is a compact set, the value

e(1)p,∞(M,L,N)= inf
{
ep,∞(T ,μ1) : T ∈ V(M,L,N)

}

is attained, and we define the set of 1-erasure optimal protocols to be the nonempty
compact set V(1)

p (M,L,N) where this infimum is attained, i.e.,

V(1)
p (M,L,N)= {T ∈ V(M,L,N) : ep,∞(T ,μ1)= e(1)p,∞(M,L,N)

}
.
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Proceeding inductively, we now set for 2≤m≤M ,

e(m)
p,∞(M,L,N)=min

{
ep,∞(T ,μm) : T ∈ V(m−1)

p (M,L,N)
}

and define the optimal m-erasure protocols to be the nonempty compact subset
V(m)
p (M,L,N) of V(m−1)

p (M,L,N) where this minimum is attained.

7.3.2.1 Worst-case analysis

Next, we discuss optimality for the worst case occurring with one lost packet, as
presented in [5]. The proofs are relatively straightforward extensions of the frames
case.

Proposition 7.6 [5] If the coordinate operators {Tj : H → K} belong to an
(M,L,N)-protocol on a Hilbert space H, then

max
j

∥∥T ∗j Tj
∥∥≥ N

ML

and equality holds if and only if for all j ∈ {1,2, . . . ,m} we have T ∗j Tj = N
ML

Pj ,
where Pj is a self-adjoint rank-L projection operator.

Proof Comparing the operator norm of T ∗j Tj with its trace gives

max
j

∥∥T ∗j Tj
∥∥≥ 1

ML

m∑

j=1

tr
[
T ∗j Tj

]= N

ML
.

If equality holds, then for each j , L‖T ∗j Tj‖ = tr[T ∗j Tj ], so each T ∗j Tj is rank L and

has only one nonzero eigenvalue. Dividing by this eigenvalue gives the self-adjoint
projection Pj =MLT ∗j Tj /N . �

Corollary 7.3 [5] Let M,L,N ∈ N, and let T :H→⊕M
j=1 K be an (M,L,N)-

protocol. Then

e(1)∞,∞(T ,μ1)≥ N

ML

and equality holds if and only if the coordinate operators {Tj :H→K}Mj=1 satisfy
that for all j ∈ {1,2, . . . ,M},

T ∗j Tj =
N

ML
Pj

with self-adjoint rank-L projections {Pj }Mj=1 on H.
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Proof If the largest operator norm achieves the lower bound maxj ‖T ∗j Tj‖ =
N/ML, then the preceding proposition shows that {Tj }Mj=1 provides an equal norm
(M,L,N)-protocol. �

The consequence of this characterization of optimality is that if there exist m uni-
formly weighted rank-L projections resolving the identity on a Hilbert space H of
dimension N , then the equal-norm (M,L,N)-protocols are precisely the 1-erasure
optimal ones. These protocols are also known as Parseval frames for subspaces [18]
or Parseval fusion frames [20].

We now turn to the case of two lost packets. We abbreviate

cM,L,N =
√

N(ML−N)

M2L2(M − 1)
.

A form of the bound by Welch [48] gives a characterization of optimality.

Lemma 7.4 [5] If {Tj }Mj=1,M ≥ 2, is a family of uniformly weighted rank-L coor-
dinate operators of a projective resolution of the identity on a Hilbert space H of
dimension N , then

max
i 
=j

∥∥TiT ∗j
∥∥≥ cM,L,N

and equality holds if and only if for all i 
= j , TiT ∗j = cM,L,NQi,j with a unitary
Qi,j on K.

A block-matrix version of the estimate for the spectrum of (I −E)T T ∗(I −E)

gives an expression for the worst-case two-packet erasure error.

Theorem 7.6 [5] Let M,L,N ∈ N. If T :H→⊕M
j=1 K is a uniform (M,L,N)-

protocol, then if M ≥ 2,

e2(T )≥ N

ML
+ cM,L,N

and equality holds if and only if for each pair i, j ∈ {1,2, . . . ,M}, i 
= j , we have
TiT

∗
j = cM,L,NQi,j with a unitary {Qi,j }i 
=j on K.

The case when this bound is saturated describes a set of protocols which can be
characterized in geometric terms.

Definition 7.12 We call a linear map T :H→⊕m
j=1 K an equi-isoclinic (M, L, N)-

protocol provided that the coordinate operators of T are uniform and in addition
there is a constant c > 0 such that ‖T ∗(I − E)T ‖ = c for all two-packet erasure
operators E.

The fact that for i 
= j , TiT ∗j = cM,L,NQi,j with a unitary Qi,j on K means that
for every x ∈K, ‖TiT ∗j x‖ = cM,L,N‖x‖. However, T ∗i and T ∗j are isometries, so for
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any y ∈H in the range of T ∗j , we have ‖T ∗i Tiy‖ = cM,L,N‖y‖. This means, for all
i 
= j , projecting any vector in the range of Pi onto the range of Pj changes its length
by the scalar multiple cM,L,N . Such a family of subspaces is called equi-isoclinic
[27, 36], and we have named the corresponding protocols accordingly.

Definition 7.13 Given an equi-isoclinic (M,L,N)-protocol T : H →⊕m
j=1 K,

then T T ∗ = aI + cM,L,NQ is a projection on
⊕

j K where a = N/ML, cM,L,N

is the lower bound in Lemma 7.4, and Q= (Qi,j )
m
i,j=1 is a self-adjoint matrix con-

taining the zero operator Qi,i = 0 on K for all i ∈ {1,2, . . . ,m} and unitaries Qi,j

on K for off-diagonal entries indexed by i 
= j . We call this self-adjoint matrix of
operators Q the signature matrix of T .

Since T T ∗ has two eigenvalues, so does the signature matrix. This fact reduces
the construction of equi-isoclinic (M,L,N)-protocols to producing matrices Q sat-
isfying a quadratic equation.

Lemmens and Seidel [36] describe constructions to obtain examples of real equi-
isoclinic subspaces and thus of real signature matrices. Godsil and Hensel [27] show
how to obtain such subspaces from distance-regular antipodal covers of the com-
plete graph. It is an open problem to find a graph-theoretic characterization of equiv-
alence classes of equi-isoclinic protocols for real Hilbert spaces. Even less seems to
be known about generic constructions and an analogue of the graph-theoretic char-
acterization of two-uniform protocols in the complex case [24–26].

Next, for given dimensions M,L and N ∈ N, we want to minimize the worst-
case Euclidean reconstruction error for three lost packets among two-uniform
(M,L,N)-protocols.

For any three-element subset of indices K = {h, i, j} ⊂ J = {1,2, . . . ,m}, we
denote the compression of an M ×M (block) matrix A to the corresponding rows
and columns as

[A]K =
⎛

⎝
Ah,h Ah,i Ah,j

Ai,h Ai,i Ai,j

Aj,h Aj,i Aj,j

⎞

⎠ .

The following theorem gives a lower bound for e3 among all two-uniform
(M,L,N)-protocols. If H is a real Hilbert space and K=R, then it can be reduced
to a known statement [7, Sect. 5.2].

Theorem 7.7 [5] Let M,L,N ∈N, M ≥ 3 and N ≤ML. Let T :H→⊕M
j=1 K be

a two-uniform (M,L,N)-protocol. Then

e3(T )≥ N

ML
+ 2cM,L,N cos(θ/3)

where θ ∈ [−π,π] observes

cos θ = ML− 2N

ML(M − 2)cM,L,N

.
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When N < ML, the protocol T saturates the lower bound for e3 if and only if the
signature matrix Q of T satisfies that for all {h, i, j} ⊂ {1,2, . . . ,m}, the largest
eigenvalue of Qh,iQi,jQj,h +Qh,jQj,iQi,h is 2 cos(θ).

7.3.2.2 Correctability of equi-isoclinic protocols for a higher number of lost
packets

If the largest eigenvalue among all {Qh,iQi,jQj,h + Qh,jQj,iQi,h, h 
= i 
=
j 
= h} is 2 for the signature matrix of an equi-isoclinic (M,L,N)-protocol, then
this protocol maximizes the worst-case norm of the reconstruction error for m= 3
lost packets. We characterize the analogue of this situation for higher values of m.

If H is a real Hilbert space and K = R, then the “unitaries” Qi,j are scalars
±1, and the presence of a covariant vector amounts to partitioning K into two sub-
sets, such that Qi,j = −1 whenever i and j belong to different subsets. This can
be restated in graph-theoretic terminology, which is the basis for the derivation of
error bounds [7] in this special case. Here, we state an analogous result for packet
encoding.

Theorem 7.8 [5] Let M,L,N,m ∈ N. If T is a two-uniform (M,L,N)-protocol
with signature matrix Q, then

e(m)(M,L,N)≤ N

ML
+ (m− 1)cM,L,N .

We use this theorem to derive a sufficient condition for correctability of packet
losses. If the upper bound is strictly less than one, then the content of any m lost
packets can be recovered.

Corollary 7.4 If T is a two-uniform (M,L,N)-protocol, N ≤ ML, then any

m-packet loss operator is correctable if 1≤m< 1+
√

(M−1)(ML−N)
N

.

7.3.2.3 Optimality for the input-averaged mean-squared error

The characterization of optimality is changed slightly when we change the perfor-
mance measure to the input-averaged mean-squared error. This measure is not the
same as the mean-squared error for linear reconstruction with Wiener filtering as
discussed by Kutyniok et al. [35], but the optimizers are identical.

Proposition 7.7 If the coordinate operators {Tj :H→K} belong to an (M,L,N)-
protocol on a Hilbert space H, then

max
j

tr
[(
T ∗j Tj

)2]≥ N2

M2L
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and equality holds if and only if for all j ∈ {1,2, . . . ,m} we have T ∗j Tj = N
ML

Pj ,
where Pj is a self-adjoint rank-L projection operator.

Proof The maximum square of the Frobenius norm is larger than the average,

max
j

tr
[(
T ∗j Tj

)2]≥ 1

M

M∑

j=1

tr
[(
T ∗j Tj

)2]
.

In terms of the eigenvalues, this is simply the square of an �2-norm. How-
ever, the �1-norm is fixed,

∑
j tr[T ∗j Tj ] = N , so the minimum is achieved when

all eigenvalues are equal to N/ML. This gives tr[(T ∗j Tj )2] = L(N/ML)2 and

maxj tr[(T ∗j Tj )2] ≥N2/M2L. If equality holds, then each T ∗j Tj is rank L and has
only one nonzero eigenvalue. Dividing by this eigenvalue gives the self-adjoint pro-
jection Pj =MLT ∗j Tj /N . �

Corollary 7.5 Let M,L,N ∈ N, and let T : H →⊕M
j=1 K be an (M,L,N)-

protocol. Then

e
(1)
2,∞(T ,μ1)≥ N

M2L

and equality holds if and only if the coordinate operators {Tj :H→K}Mj=1 satisfy
that for all j ∈ {1,2, . . . ,M},

T ∗j Tj =
N

ML
Pj

with self-adjoint rank-L projections {Pj }Mj=1 on H.

Proof The proof is immediate from the expression of e(1)2,∞ in terms of the square of

the Frobenius norms among all diagonal elements of the block matrix (TiT
∗
j )

M
i,j=1.

If the Frobenius norm achieves the lower bound, then as before we have
maxj ‖T ∗j Tj‖ =N/ML, and the preceding proposition shows that {Tj }Mj=1 provides
an equal-norm (M,L,N)-protocol. �

To summarize, if equal norm fusion frames exist, then their analysis operators
are optimal protocols for the worst-case and for the input-averaged error.

The 2-erasure optimality for the mean-squared error is qualitatively different
from the worst-case analysis.

Proposition 7.8 Let T be the analysis operator of an equal-norm (M,L,N)-
protocol; then

e
(2)
2,∞(T ,μ2)≥ 2

N

M2L
+ 2

ML−N

M2(M − 1)L
.
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Proof The sum of all the traces is

M∑

i,j=1

tr
[
TiT

∗
j TjT

∗
i

]=N,

and subtracting the diagonal gives

∑

i 
=j

tr
[
TiT

∗
j TjT

∗
i

]=N − N2

ML
= NML−N2

ML
.

The maximum among the M(M − 1) terms cannot be smaller than the average, so

max
i 
=j

tr
[(
TiT

∗
j

)2]≥ NML−N2

M2(M − 1)L
.

Now adding the contribution of two diagonal blocks and two off-diagonal blocks in
the expression for e(2)2,∞ gives the desired estimate. �

Corollary 7.6 An equal-norm (M,L,N)-protocol achieves the lower bound in the
preceding proposition if and only if there is a constant c ≥ 0 such that for any pair
i 
= j , we have

tr
[
T ∗i TiT ∗j Tj

]= c.

One could interpret this as the Hilbert-Schmidt inner product between T ∗i Ti and
T ∗j Tj and define a distance between these two operators, or equivalently, between
their ranges. The identity then means that all pairs of subspaces have an equal dis-
tance. For this reason, the associated fusion frames have been called equidistance
fusion frames [35].
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Chapter 8
Quantization and Finite Frames

Alexander M. Powell, Rayan Saab, and Özgür Yılmaz

Abstract Frames are a tool for providing stable and robust signal representations
in a wide variety of pure and applied settings. Frame theory uses a set of frame
vectors to discretely represent a signal in terms of its associated collection of frame
coefficients. Dual frames and frame expansions allow one to reconstruct a signal
from its frame coefficients—the use of redundant or overcomplete frames ensures
that this process is robust against noise and other forms of data loss. Although frame
expansions provide discrete signal decompositions, the frame coefficients generally
take on a continuous range of values and must also undergo a lossy step to discretize
their amplitudes so that they may be amenable to digital processing and storage. This
analog-to-digital conversion step is known as quantization. We shall give a survey of
quantization for the important practical case of finite frames and shall give particular
emphasis to the class of Sigma-Delta algorithms and the role of noncanonical dual
frame reconstruction.

Keywords Digital signal representations · Noncanonical dual frame ·
Quantization · Sigma-Delta quantization · Sobolev duals

8.1 Introduction

Data representation is crucial in modern signal processing applications. Among
other things, one seeks signal representations that are numerically stable, robust
against noise and data loss, computationally tractable, and well adapted to specific
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applied problems. Frame theory has emerged as an important tool for meeting these
requirements. Frames use redundancy or overcompleteness to provide robustness
and design flexibility, and the linearity of frame expansions makes them simple to
use in practice.

The linear representations given by frame expansions are a cornerstone of frame
theory. If (ϕi)

M
i=1 ⊂ R

N is a frame for RN and if (ψi)
M
i=1 ⊂ R

N is any associated
dual frame, then the following frame expansion holds:

∀x ∈R
N, x =

M∑

i=1

〈x,ϕi〉ψi. (8.1)

Equivalently, if Φ∗ is the analysis operator associated to (ϕi)
M
i=1 and Ψ is the syn-

thesis operator associated to (ψi)
M
i=1, then

∀x ∈R
N, x = ΨΦ∗x. (8.2)

The frame expansion (8.1) discretely encodes x ∈ R
N by the frame coefficients

(〈x,ϕi〉)Mi=1. Consequently, frame expansions can be interpreted as generalized sam-
pling formulas, where frame coefficients play the role of samples of the underlying
object. Our technology nowadays is overwhelmingly digital, and therefore for a
sampling theory to be practicable, it needs to be accompanied by a quantization the-
ory. In general, quantization refers to the process by which one converts an object
in the continuum into a finite bitstream, i.e., into a finite sequence of elements in
{0,1}. Typically, this is done by replacing the underlying object by an element from
a finite set called the quantization alphabet (since the alphabet is finite, its elements
can ultimately be given a binary encoding).

Our survey of quantization for finite frames will cover several different quantiza-
tion methods for finite frames. Our main emphasis will be on the following methods,
which will be covered in detail.

• Memoryless scalar quantization (MSQ): This is a simple classical method but is
not particularly adept at exploiting the redundancy present in frames.

• First order Sigma-Delta (ΣΔ) quantization: This is a more sophisticated low
complexity approach which effectively exploits redundancy but still leaves much
room for theoretical improvements.

• Higher order Sigma-Delta (ΣΔ) quantization: This method yields strong error
bounds at the cost of increased complexity by exploiting a class of noncanonical
dual frames known as Sobolev duals.

Before discussing the above methods we begin with a hands-on formulation of two
quantization problems of interest.
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8.1.1 Quantization Problem: Synthesis Formulation

Fix a frame Ψ = (ψi)
M
i=1 for RN . From here on, N denotes the dimension of the

ambient space and M ≥ N is the number of frame vectors. Furthermore, we abuse
the notation and use Ψ to denote both the frame (ψi)

M
i=1 and the associated N ×M

synthesis matrix. Let A be a finite set which is called the quantization alphabet.
The goal is to represent a given x ∈ R

N via an expansion of the form (8.1) where
the coefficients 〈x,ϕi〉 are replaced by elements of A . More precisely, we quantize
x ∈R

N by replacing it with an element of the constellation Γ (F,A ) := {Ψq : q ∈
A M}. In this setting, the objective is as follows.

QP-Synthesis. Given a bounded set B ∈ R
N and a frame Ψ for RN , find

a map Q : RN �→ A M—the quantizer—such that the distortion E (x) :=
‖x − ΨQ(x)‖ is “small” on B in some norm (deterministic setting) or in
expectation (probabilistic setting).

Consequently, the optimal quantizer (for a given norm ‖ · ‖) is defined by

Qopt(x;Ψ,A )= arg min
q∈A M

{‖x −Ψq‖}.

This formulation (QP-Synthesis) of the frame quantization problem arises in ef-
forts to reduce “computational noise” in the calculation of fast Fourier transforms
(FFTs) by using algebraic integers in the computation [13, 28]. In particular, the
proposed approach is based on solving QP-Synthesis with N = 2 and the underly-
ing frames ΨM that are given by the M th roots of unity, i.e., ΨM = (ψj )

M
j=1 with

ψj = [cos 2π
M

j, sin 2π
M

j ]T . In Fig. 8.1 we show the set Γ (ΨM,A ) and A = {±1}
for various values of M . In this specific instance of QP-Synthesis, there are partial
results. For example, when M is an integer power of 2, [13] shows that the distortion
E decays exponentially as M increases, at least for certain alphabets. Furthermore,
[13] also proposes an algorithm that (nearly) implements Qopt. However, for gen-
eral M , both these problems—computationally tractable implementation of Qopt
and decay rate of optimal accuracy E as M grows—are, to our knowledge, open
even in the case of the roots-of-unity frames ΨM . Our focus in the remainder of the
chapter will be on the analysis formulation of the quantization problem, which we
describe next.

8.1.2 Quantization Problem: Analysis Formulation

Let Φ be a frame for RN , again with M frame vectors. Suppose that we have ac-
cess to frame coefficients yi where y = [y1, . . . , yM ]T =Φ∗x. In practice, yi could
be sensor readings [25], samples of a continuous function on a finite interval [22],
or “compressive samples” of a sparse object—see [34]. Here yi are in general real
numbers that are assumed to be known with infinite accuracy. To be amenable to
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Fig. 8.1 The set Γ (ΨM,A ) ∩ [−1,1]2 where ΨM is the frame for R2 given by the M th roots of
unity—M = 9, . . . ,14 in (a), . . . ,(f)

digital processing and storage, the frame coefficients yi must further be quantized
to lie in a given alphabet A . Since the ultimate goal is to obtain a digital approx-
imation of x, one straightforward approach is to reconstruct x before quantization
via x = Ψy. Ψ is a dual of Φ so the reconstruction is exact. Once we have x, we can
compute an orthonormal-basis expansion of x and round off each coefficient to an
accuracy level that depends on the overall bit budget. This approach would bypass
the difficulties that arise from the fact that the original frame is possibly oblique and
redundant, and it generally yields a more accurate digital approximation of x than
any known method where the original frame coefficients are replaced with quantized
ones in (8.1).

Unfortunately, the above-described approach is not viable in typical practical
settings for several reasons. First of all, it requires sophisticated high-accuracy ana-
log computations, which is generally not practicable. Furthermore, in applications
where the frame coefficients are obtained in a sequential manner, e.g., when sam-
pling a continuous function or when collecting measurements from a large number
of sensors, this approach requires that a large number (M) of analog quantities, i.e.,
real numbers, be stored in memory on analog hardware, which is often not feasible
in practice. Finally, in many applications redundant frames are preferred over or-
thonormal bases because the built-in redundancy makes the associated expansions
more robust to various sources of errors, such as additive noise, partial loss of data
(in the case of transmission over erasure channels) [8, 15, 29], and quantization
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with imperfect circuit elements, for example, in the case of oversampled bandlim-
ited functions [21, 22, 45]. Taking into account all these factors, it is important to
consider the following formulation of the frame quantization problem.

QP-Analysis. Given a bounded set B ∈R
N and a frame Φ for RN with M

vectors, find a map Q :RM �→A M—the quantizer—such that

1. Q acts on the frame coefficients of x ∈R
N , given by y =Φ∗x.

2. Q is “causal”; i.e., the quantized value qj = Q(y)j depends only on
y1, . . . , yj and q1, . . . , qj−1. To avoid the need to use a large number
of analog memory elements, one may further enforce that Q depends
only on yj and on r . M previously computed elements, i.e., on an
r-dimensional “state vector."

3. The distortion D̃(x) := ‖x−G Q(Φ∗x)‖ is “small” on B in some norm
(deterministic setting) or in expectation (probabilistic setting). Here G :
A M �→ R

N is some decoder possibly tailored to the quantizer Q and
the frame Φ . A natural choice for such a decoder is motivated by frame
theory and is given by Ψ , some dual of Φ (also possibly tailored to the
quantizer Q). Such a decoder corresponds to linear reconstruction of x
from its quantized coefficients.

8.1.3 Stylized Example: Memoryless Scalar Quantization

To illustrate the challenges posed by QP-Analysis, consider the following example.
Let ΦM be the frame for R2 given by the M th roots of unity, let B ⊂R

2 be the unit
disk, and consider the 1-bit quantization alphabet A1 = {±1}. First, we quantize the
frame coefficients y = Φ∗12x for any x ∈B using a memoryless scalar quantizer
(MSQ); i.e., each yj is quantized to the element of A that is closest to it, which in
this particular case corresponds to qj = sign(yj ). Note that qj only depends on the
j th frame coefficient; hence the quantizer is memoryless. In Fig. 8.2(a), we show
the quantizer cells that correspond to the quantizer described above, i.e., a 1-bit
MSQ. Every cell, identified with a distinct color, consists of vectors with identi-
cal quantized coefficients. In other words, after quantization we cannot distinguish
between the vectors in the same cell, and therefore the diameters of these cells re-
flect the ultimate distortion bounds for the given quantizer, in this case QA1

MSQ with

A1 = {±1} as described above. Note that out of 212 possible 1-bit quantized se-
quences, QA1

MSQ uses only 12 distinct ones. Furthermore, since the cells are convex,
ideally all points in a given cell should be quantized to a “representative point” that
falls inside the respective cell and is at a location that minimizes the distortion (in
a norm of choice). In Fig. 8.2(a), we also show the reconstructed vector for each
cell obtained via xrec = ΨQA1

MSQ(Φ
∗
12x), where Ψ = 1

12Φ12 is the canonical dual of
Φ12. Such a reconstruction method is referred to as linear reconstruction using the
canonical dual.

In Fig. 8.2(b), we repeat the experiment described above with a 2-bit MSQ; i.e.,
the alphabet in this case is A2 := {±1,± 1

3 }. We observe that the number of cells
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Fig. 8.2 12 cells for 1-bit MSQ, 204 cells for 1-bit ΣΔ, 84 cells for 2-bit MSQ, 1844 cells for
2-bit ΣΔ (empirical counts)

increases substantially, from 12 to 84 distinct cells. However, still a very small frac-
tion of 412 possible quantized sequences are utilized. Another important point is
that with 2-bit MSQ some cells are not consistent under linear reconstruction using
the canonical dual. That is, points in these cells are quantized to a point that is out-
side the cell, and consequently, for x in such a cell and x̂ = ΨQ(Φ∗x), we have
Q(Φ∗(x̂)) 
=Q(Φ∗x). In Fig. 8.2(b) we marked two cells that exemplify consistent
and inconsistent cells. Of course, alternative nonlinear reconstruction techniques
could be used to enforce consistent reconstruction, which we discuss in detail in
Sect. 8.2.3.

8.1.4 Stylized Example: ΣΔ Quantization

The strikingly small number of cells in Fig. 8.2(a) and Fig. 8.2(b) hint that MSQ may
not be well suited to quantize frame expansions (in the QP-Analysis sense)—see
Sect. 8.2 for a survey of MSQ in frame quantization and its performance limitations.

An alternative approach to frame quantization is to use the Sigma-Delta (ΣΔ)
quantizers. ΣΔ quantizers are widely used in analog-to-digital (A/D) conversion
for oversampled bandlimited functions, and recently have been adopted for quan-
tizing arbitrary frame expansions; see, e.g., [2]. Most of our chapter is dedicated to
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the analysis of the performance of these quantizers in addressing QP-Analysis for
various families of frames—see Sects. 8.3–8.5. It turns out that these quantizers out-
perform MSQ (even with optimal consistent reconstruction) if the underlying frame
is sufficiently redundant; see, e.g., [3, 5, 42]. Here we repeat the above-described
experiments with ΣΔ quantizers in place of MSQ. Figures 8.2(c) and 8.2(d) show
the quantization cells corresponding to 1-bit (with alphabet A1) and 2-bit (with al-
phabet A2) first order ΣΔ quantizers, respectively. Even though the schemes use
the same alphabets as the 1-bit and 2-bit MSQ, the number of distinct cells is sig-
nificantly larger in the case of ΣΔ schemes: 204 cells for 1-bit ΣΔ (cf. 12 cells for
1-bit MSQ) and 1844 cells for 2-bit ΣΔ (cf. 84 cells for 2-bit MSQ). In Fig. 8.2(c),
we again show a consistent cell and an inconsistent cell, together with the linear
reconstructions using the canonical dual of Φ12. In addition, we show alternative
linear reconstructions obtained using the Sobolev dual of Φ12. Sobolev duals are al-
ternate duals that are designed to reduce the quantization error in the specific case of
ΣΔ quantizers—see Sect. 8.4. Note that for the “inconsistent cell” in Fig. 8.2, while
the canonical dual reconstruction is not consistent, the reconstruction obtained using
the Sobolev dual is consistent (although this is by no means guaranteed in general).

QP-Analysis is relevant in various practical applications. The quintessential ex-
ample is high resolution A/D conversion of bandlimited signals. To overcome phys-
ical constraints that limit the accuracy of the “binary decision elements,” one com-
mon strategy is to use noise shaping analog-to-digital converters (ADCs). These
ADCs—mostly based on ΣΔ quantization—first oversample the bandlimited func-
tion, effectively collecting frame coefficients with respect to a redundant frame.
Then this redundancy is exploited to design quantization strategies that are robust
with respect to implementation errors. Specifically, the family of ΣΔ quantizers
achieve this goal successfully: they can be implemented with low accuracy circuit
elements and still yield a high bit depth.

Another example of QP-Analysis arises in compressed sensing, where the classi-
cally separate steps of measurement (encoding) and data compression are combined
into a single step to provide efficient digital representations of sparse signals in high
dimensions. We shall briefly describe some connections between ΣΔ quantization,
noncanonical dual frames, and compressed sensing in Sect. 8.4.3.

In this chapter we shall provide a survey of quantization for finite frames, where
our main focus is on QP-Analysis. Consequently, we contain our discussion to a
framework with three main steps: encoding, quantization, and reconstruction. These
three steps discussed above may be summarized as follows.

Encoding: x ∈R
N �−→ (〈x,ϕi〉)Mi=1 ∈R

M

Quantization: (〈x,ϕi〉)Mi=1 ∈R
M �−→ (qi)

M
i=1 ∈A M

Reconstruction: (qi)
M
i=1 ∈A M �−→ x̃ ∈R

N

Throughout this chapter the encoding step will be done using a finite frame to com-
pute frame coefficients. The redundancy introduced by encoding x ∈R

N with frame
coefficients (〈x,ϕi〉)Mi=1, generally with M >N , will play an important role in mit-
igating the losses incurred by quantization. Our survey of the quantization step will
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primarily focus on two different methods that we considered in the stylized ex-
amples above: (i) memoryless scalar quantization and (ii) ΣΔ quantization. The
reconstruction step is intimately linked to both the encoding and quantization steps.
Motivated by frame theoretic considerations, our discussion of the reconstruction
step will mainly focus on linear methods and shall describe the important role that
various choices of dual frames play in quantization problems.

In particular, we will see that while MSQ may be attractive for its simplicity, it
does not exploit the redundancy implicit in frame representations and thus does not
provide error guarantees that decay well with oversampling. On the other hand,
ΣΔ quantization is only slightly more complex computationally, but it exploits
redundancy. Thus it provides error guarantees that decay well with oversampling,
particularly when higher order schemes are used in conjunction with appropriate
reconstruction methods.

8.2 Memoryless Scalar Quantization

The scalar quantizer is a basic component of quantization algorithms. Given a finite
set A ⊂ R, called a quantization alphabet, the associated scalar quantizer is the
function Q :R→A defined by

Q(u)= arg min
a∈A

|u− a|. (8.3)

In other words, Q quantizes real numbers by rounding them to the nearest element
of the quantization alphabet. There will be finitely many values of u ∈ R, i.e., mid-
points of quantization bins, for which the minimizer defining Q(u) is not unique. In
this case, there will be two possible choices of the minimizer, and one may arbitrar-
ily pick one for the definition of Q(u).

For concreteness of our discussion it will be convenient to work with a specific
uniform quantization alphabet throughout this chapter. Fix a positive integer L and
δ > 0 and define the (2L+ 1) level midtread quantization alphabet with stepsize δ

as the finite set of numbers

A =A δ
L = {−Lδ, . . . ,−δ,0, δ, . . . ,Lδ}. (8.4)

Unless otherwise stated, throughout this chapter we will work with the midtread
alphabet (8.4), but in most cases other alphabets work equally well. For example,
the closely related 2L level midrise alphabet with stepsize δ defined by

{−(2L+ 1)δ/2, . . . ,−δ/2, δ/2, . . . , (2L+ 1)δ/2
}

(8.5)

is also commonly used, especially in coarse quantization with a 1-bit alphabet such
as {−1,+1}.
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8.2.1 Memoryless Scalar Quantization of Frame Coefficients

Let (ϕi)
M
i=1 ⊂R

N be a frame for RN . The most basic approach to quantizing frame
coefficients (〈x,ϕi〉)Mi=1 is to individually quantize each coefficient yi = 〈x,ϕi〉 by

qi =Q(yi)=Q
(〈x,ϕi〉

)
. (8.6)

This step is referred to as memoryless scalar quantization (MSQ). A simple method
for signal reconstruction from the MSQ quantized coefficients (qi)

M
i=1 is to fix a

dual frame (ψi)
M
i=1 ⊂R

N associated to (ϕi)
M
i=1 and use linear reconstruction by

x̃ =
M∑

i=1

qiψi. (8.7)

With the alphabet A δ
L we may quantify the reconstruction error ‖x − x̃‖ as-

sociated to MSQ with linear reconstruction in (8.6) and (8.7) as follows. Let
C =max1≤i≤M ‖ϕi‖. If x ∈R

N satisfies ‖x‖< (L+1/2)/C then |yi | = |〈x,ϕi〉| ≤
(L+ 1/2) and the quantizer remains unsaturated, i.e., the following holds:

∀1≤ i ≤M, |yi − qi | =
∣∣yi −Q(yi)

∣∣≤ δ/2. (8.8)

Consequently, the linear reconstruction x̃ ∈R
N by (8.7) satisfies the simple bound

‖x − x̃‖ =
∥∥∥∥∥

M∑

i=1

(〈x,ϕi〉 − qi
)
ψi

∥∥∥∥∥
≤ δ

2

M∑

i=1

‖ψi‖. (8.9)

In the special case where (ϕi)
M
i=1 ⊂R

N is a unit norm tight frame and ψi = N
M
ϕi is

taken as the canonical dual frame, then the error bound (8.9) reduces to

‖x − x̃‖ ≤ δN

2
. (8.10)

As one would expect, this error bound shows that a finer quantization alphabet, i.e.,
taking δ > 0 smaller, results in more accurate quantization. However, the role of the
frame size M is conspicuously absent in this bound.

It will become apparent in later sections that, in general, neither MSQ nor linear
reconstruction is optimal for quantization in any sense. However, for the special
case when (bi)

N
i=1 ⊂ R

N is an orthonormal basis and ψi = bi is the (in this case
unique) dual frame, then it follows from Parseval’s equality that MSQ is optimal if
one insists on linear reconstruction. In particular, if (qi)

N
i=1 ⊂ A is arbitrary and

x̃ =∑N
i=1 qibi , then

‖x − x̃‖2 =
∥∥∥∥∥

N∑

i=1

(〈x, bi〉 − qi
)
bi

∥∥∥∥∥

2

=
N∑

i=1

∣∣〈x, bi〉 − qi
∣∣2. (8.11)
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This error is minimized by taking qi =Q(〈x, bi〉), which shows that MSQ is optimal
for orthonormal bases when linear reconstruction is used. On the other hand, the
simple upper bound in (8.10) is not sharp even for orthonormal bases since in this
case (8.11) yields

‖x − x̃‖ ≤ δ
√
N

2
. (8.12)

From the point of view of frame theory, an important shortcoming of the bound
(8.9) is that it does not utilize a frame’s redundancy. The redundancy of a frame
can very directly translate into increased robustness against noise, but the upper
bound (8.9) does not improve if the frame is taken to be more redundant; i.e., (8.9)
does not improve when the dimension N is fixed and the frame size M increases.
This indicates that MSQ is not particularly well suited for quantizing redundant
collections of frame coefficients. For an intuitive understanding of this, note that
MSQ nonadaptively quantizes each frame coefficient 〈x, ei〉 without any regard for
how other frame coefficients are quantized, and thus MSQ is not able to make very
effective use of the correlations present among frame coefficients.

It is easy to produce concrete examples where frame redundancy does not im-
prove the performance of MSQ. Let (ϕi)

M
i=1 ⊂ R

N be any unit norm frame and
assume that one uses the scalar quantizer with the midtread alphabet A δ

L given by
(8.4). For any x ∈R

N with ‖x‖< δ/2 it then holds that qi =Q(〈x,ϕi〉)= 0. In par-
ticular, for any dual frame (ψi)

M
i=1 the linear reconstruction (8.7) gives x̃ = 0. Thus,

regardless of how redundant the frame (ϕi)
M
i=1 is, the associated quantization error

satisfies ‖x − x̃‖ = ‖x‖. This example is overly simple but nonetheless illustrates
some basic shortcomings of MSQ. The recent work in [53] provides a thorough and
detailed technical investigation into the difficulties that MSQ faces in utilizing frame
redundancy. See also [14, 26] for work on quantization in Banach spaces.

8.2.2 Noise Models and Dual Frames

Error bounds such as (8.9) and (8.10) provide worst case upper bounds on quanti-
zation error and only suggest that quantization error can be decreased by choosing
a quantizer with finer stepsize δ > 0. Worst case error bounds play an important
role in quantizer analysis, but in practice one often also observes an average error
that is much smaller than the worst case predictions. The uniform noise model is an
important tool for understanding average quantization error.

8.2.2.1 The uniform noise model

Let (ϕi)
M
i=1 ⊂ R

N be a frame for R
N and let x ∈ R

N have frame coefficients
yi = 〈x,ϕi〉, for 1 ≤ i ≤M . When the midtread scalar quantizer (8.4) operates in
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its unsaturated regime, Eq. (8.8) shows that the individual coefficient quantization
errors ηi = yi −Q(yi) satisfy

ηi = yi −Q(yi) ∈ [−δ/2, δ/2].

Uniform noise models go one step further than this and posit that (ηi)Mi=1 should
on average be quite uniformly spread out in [−δ/2, δ/2]. This leads one to ran-
domly model the individual coefficient quantization errors (ηi)

M
i=1 as independent

identically distributed (i.i.d.) uniform random variables on [−δ/2, δ/2].
Uniform noise model: Treat the quantization errors ηi = yi −Q(yi), 1 ≤
i ≤M , as i.i.d. uniform random variables on [−δ/2, δ/2].

The uniform noise model has a long history that dates back to Bennett’s 1940s
work in [4] and has been widely used as a tool in the engineering literature. The
uniform noise model has been observed to be empirically reasonable, but it also
suffers from known theoretical shortcomings; see, e.g., [39]. Since quantization is
a deterministic process, some additional assumptions will be needed to justify the
introduction of randomness in the uniform noise model. We shall briefly discuss two
general approaches commonly used to justify the uniform noise model: (i) dithering
and (ii) high resolution asymptotics.

Dithering is the process of deliberately injecting noise into a quantization sys-
tem to beneficially reshape the properties of the individual errors (ηi)

M
i=1. For an

overview of the large theoretical and applied literature on dithering, see [7, 31]
and the references therein. We shall briefly discuss one particular dithering method
known as subtractive dither, which is used to justify the uniform noise model. For
the quantization step we assume that we have available a sequence (εi)

M
i=1 of i.i.d.

uniform random variables on [−δ/2, δ/2]. This sequence (εi)
M
i=1 is known as the

dither sequence. To quantize a sequence of frame coefficients (yi)Mi=1 one uses MSQ
to quantize the dithered coefficients yi + εi as qi =Q(yi + εi). This quantized se-
quence (qi)

M
i=1 provides the desired digital representation of the coefficients (yi)Mi=1.

To reconstruct a signal from (qi)
M
i=1 in a manner that respects the uniform noise

model one must first subtractively remove the dither sequence to obtain ỹi = qi−εi .
The individual coefficient quantization errors yi − ỹi then satisfy

yi − ỹi = yi − (qi − εi)= (yi + εi)−Q(yi + εi).

In particular, if (yi)
M
i=1 is any deterministic sequence, it follows that (yi − ỹi )

M
i=1

are i.i.d. uniform random variables on [−δ/2, δ/2]. An obvious practical issue with
this method is that it requires (infinite precision) knowledge of the dither sequence
at both the quantizer and reconstruction stages.

High resolution asymptotics provide a different approach to justifying the uni-
form noise model. Here one introduces randomness by assuming that the signal
x ∈R

N that will be quantized is an absolutely continuous random vector supported
on the unit ball of R

N . We let Qδ denote the midtread quantizer with stepsize δ
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and with L = 1/�δ�. Let (ϕi)
M
i=1 ⊂ R

N be a frame for R
N and consider the M-

dimensional random vector of normalized quantization errors

Vδ = δ−1[〈x, e1〉 −Qδ

(〈x, e1〉
)
, . . . , 〈x,ϕM 〉 −Qδ

(〈x,ϕM 〉
)]
. (8.13)

It is proven in [39] that under suitable conditions on the frame (ϕi)
M
i=1 the nor-

malized error vector Vδ converges in distribution to the uniform distribution on
[−1/2,1/2]M as δ→ 0. This provides a rigorous justification of the uniform noise
model in the high resolution limit as δ→ 0. For related work in the setting of lattice
quantizers, see [11]. On the other hand, this approach generally only holds asymp-
totically, since it is shown in [39] that for fixed δ > 0 and M >N the entries of Vδ

are never independent. Moreover, while high resolution asymptotics provide elegant
and mathematically rigorous results, they may not always be easy to apply to spe-
cific practical settings, since the frame (ϕi)

M
i=1 is required to be held fixed. For exam-

ple, if one wishes to understand how the performance of a quantizer changes when
increasingly redundant frames are used, then high resolution asymptotics might not
be appropriate.

8.2.2.2 Dual frames and MSQ

We now consider frame theoretic issues which arise when analyzing MSQ under the
uniform noise model. We shall freely use the uniform noise model in this section,
but the reader should keep in mind the noise model’s mathematical limitations and
the issues involved in rigorously justifying it. The results obtained under the uniform
noise model are a valuable source of intuition on quantization.

Let (ϕi)
M
i=1 ⊂ R

N be a frame for R
N and suppose that the frame coefficients

yi = 〈x,ϕi〉 are quantized to qi =Q(yi) using MSQ. We assume that the sequence
ηi = yi − qi , with 1 ≤ i ≤M , satisfies the uniform noise model. Suppose that one
reconstructs x̃ ∈ R

N from the quantized coefficients (qi)
M
i=1 using a dual frame

(ψi)
M
i=1 of (ϕi)

M
i=1 as follows:

x̃ =
M∑

i=1

qiψi. (8.14)

A simple computation shows that the mean squared error (MSE) satisfies

MSE= E‖x − x̃‖2 =
M∑

i=1

M∑

j=1

E[ηiηj ]〈ψi,ψj 〉 = δ2

12

M∑

i=1

‖ψi‖2. (8.15)

In particular, if (ϕi)
M
i=1 is a unit norm tight frame and ψi = ẽi = N

M
ϕi is its canonical

dual frame, then

E‖x − x̃‖2 = N2δ2

12M
. (8.16)
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In contrast to the worst case bound (8.10), the mean squared error (8.16) decreases
when a more redundant unit norm tight frame is used, i.e., when M increases. This
shows that frame theory and redundancy play an important role in error reduction
in quantization problems, and it hints at the more rigorous and more precise er-
ror bounds possible with sophisticated algorithms such as ΣΔ quantization—see
Sects. 8.3–8.5.

The mean squared error bound (8.15) depends strongly on the choice of dual
frame (ψi)

M
i=1. It is natural to ask which choice of dual frame is best for the linear

reconstruction in (8.14). The following classical proposition shows that the canon-
ical dual frame is optimal for memoryless scalar quantization under the uniform
noise model; e.g., see [5, 29].

Proposition 8.1 Let (ϕi)
M
i=1 be a frame for RN . Consider the minimization problem

min

{
M∑

i=1

‖ψi‖2 : (ψi)
M
i=1 a dual frame associated to (ϕi)

M
i=1

}

. (8.17)

The dual frame (ψi)
M
i=1 is a minimizer of (8.17) if and only if (ψi)

M
i=1 is the canon-

ical dual frame of (ϕi)
M
i=1.

The frame problem (8.17) may equivalently be stated in matrix form using the
M × N analysis operator Φ∗ and the N ×M synthesis operator Ψ associated to
the respective frame (ϕi)

M
i=1 ⊂ R

N and dual frame (ψi)
M
i=1. In matrix form, (8.17)

becomes

min
{‖Ψ ‖2

Frob : ΨΦ∗ = I
}
. (8.18)

In this form, Proposition 8.1 now states that: the matrix Ψ is a minimizer of (8.18)
if and only if Ψ = (Φ∗)† = (ΦΦ∗)−1Φ is the canonical left inverse of Φ∗.

When the canonical dual frame ψi = ϕ̃i is used in (8.14) the mean squared error
bound (8.15) becomes

E‖x − x̃‖2 = δ2

12

M∑

i=1

‖ϕ̃i‖2. (8.19)

At this point, having established that the canonical dual frame is optimal for the
reconstruction step, the error bound (8.19) still depends strongly on the original
frame (ϕi)

M
i=1 through its canonical dual frame. A natural follow-up question to

Proposition 8.1 is to ask which frames (ϕi)
M
i=1 are optimal for the encoding step.

For this question to be meaningful one must impose some restrictions on the norms
of the frame involved. Otherwise, rescaling a fixed frame (ϕi)

M
i=1 trivially allows

∑M
i=1 ‖ϕ̃i‖2 in (8.19) to become arbitrarily close to zero. More precisely, if (ϕi)

M
i=1

has canonical dual frame (ϕ̃i)
M
i=1, then the rescaled frame (cϕi)

M
i=1 has canonical

dual frame (c−1ϕ̃i )
M
i=1.

The following theorem shows that if one restricts the encoding frame to be unit
norm and uses the (optimal) canonical dual for reconstruction, then for MSQ under
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the uniform noise model an optimal choice for the encoding frame is to take any
unit norm tight frame, see [29].

Theorem 8.1 Let M and N be fixed, and consider the minimization problem

min

{
M∑

i=1

‖ϕ̃i‖2 : (ϕi)
M
i=1 ⊂R

N is a unit norm frame

}

. (8.20)

A unit norm frame (ϕi)
M
i=1 is a minimizer of (8.20) if and only if (ϕi)

M
i=1 is a unit

norm tight frame for RN .

The frame problem (8.20) may equivalently be stated in matrix form using the
M ×N analysis operator Φ∗ associated to (ϕi)

N
i=1 ⊂R

N and the N ×M canonical
left inverse (Φ∗)† = (ΦΦ∗)−1Φ as follows:

min
{∥∥(Φ∗

)†∥∥2
Frob : rank(Φ)=N and diag

(
Φ∗Φ

)= I
}
. (8.21)

Here ‖ · ‖Frob denotes the Frobenius norm. In this form, Theorem 8.1 now states:
the full rank matrix Φ with diag(Φ∗Φ)= I is a minimizer of (8.21) if and only if
ΦΦ∗ = ( N

M
)I and diag(Φ∗Φ)= I .

Consequently, combining Proposition 8.1 and Theorem 8.1 shows that for a fixed
frame size M in dimension N , MSQ under the uniform noise model performs opti-
mally when a unit norm tight frame is used for the encoding step and the canonical
dual frame is used for linear reconstruction. Moreover, in this case the associated
optimal error bound is E‖x − x̃‖2 = N2δ2

12M ; see (8.16).

8.2.3 Consistent Reconstruction

The error bounds for MSQ presented in the previous sections all make use of linear
reconstruction methods. If an optimal encoding frame and optimal dual frame are
used, then MSQ (under the uniform noise model) achieves the mean squared error

E‖x − x̃‖2 = N2δ2

12M
. (8.22)

In this section we briefly discuss the role of more general nonlinear reconstruction
methods for MSQ with a focus on theoretical limitations and on concrete algorith-
mic approaches. Our main interest will be on how well reconstruction methods for
MSQ are able to utilize frame redundancy as reflected by their dependence on M

in bounds such as (8.22). In other words, how much information can be squeezed
out of a set of MSQ quantized frame coefficients? This is of great interest for frame
theory since it quantifies the extent to which MSQ is suitable for redundant frames,
and it will motivate the need for alternatives such as ΣΔ quantization.
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We begin by stating a main theoretical obstruction against significantly improv-
ing the reconstruction bound (8.22). There are various lower bounds in the literature
which show that even with nonlinear reconstruction methods it is not possible for
MSQ to achieve a mean squared error rate that is better than 1/M2. For example,
the work in [30] assumes that the signal x ∈R

N is a suitable nondegenerate random
vector and that the frame (ϕi)

M
i=1 ⊂R

N is selected from a suitable family of frames
for RN . It is shown in [30] that if

R : (qi)Mi=1 =
(
Q
(〈x,ϕi〉

))M
i=1 �−→ x̃ ∈R

N

is any (potentially nonlinear) reconstruction map for recovering x from the MSQ
quantized coefficients qi =Q(〈x,ϕi〉), then there exists a constant C > 0 such that

E‖x − x̃‖2 = E
∥∥x −R

((
Q
(〈x,ϕi〉

))M
i=1

)∥∥2
>

C

M2
. (8.23)

This result does not use the uniform noise model and the expectation is taken over
the random vector x. The constant C does not depend on the frame size M but may
depend on the dimension N and the family of frames being considered.

One might expect that less restrictive lower bounds than (8.23) are possible if one
uses the uniform noise model since the noise model is often more optimistic than
deterministic reality. However, this is not the case, and there is work in [49] which
proves a similar 1/M2 lower bound even under the uniform noise model.

There is a gap between the theoretical lower bounds of order 1/M2 for general
reconstruction methods and the upper bounds of order 1/M obtainable with linear
reconstruction. Consistent reconstruction is a technique that closes this gap. The
basic idea behind consistent reconstruction is that if one observes a quantized frame
coefficient qi =Q(〈x,ϕi〉), then the true signal x must lie in the set

Hi =
{
u ∈R

N : ∣∣〈u,ϕi〉 − qi
∣∣≤ δ/2

}
.

Consistent reconstruction simply selects any x̃ in the intersection of the sets Hi,1≤
i ≤M , by taking x̃ ∈R

N as a solution to the system of linear inequality constraints:

∀1≤ i ≤M,
∣∣〈̃x,ϕi〉 − qi

∣∣≤ δ/2. (8.24)

Consistent reconstruction can be efficiently implemented using linear programming
methods. It has been shown that in appropriate settings consistent reconstruction
achieves the mean squared error bound

E‖x − x̃‖2 ≤ C

M2
. (8.25)

As with the matching theoretical lower bounds, upper bounds of order 1/M2 in
(8.25) have been proven in various settings under different sets of assumptions.
Early results of this type appear in [51] in the context of sampling for bandlim-
ited signals. The work in [30] proves deterministic upper bounds of order 1/M2 for
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certain harmonic frames without using the uniform noise model, and the work in
[19], cf. [20], obtains upper bounds of order 1/M2 with high probability for random
frames but without the uniform noise model. The work in [48] proves (8.25) under
the uniform noise model for certain classes of random frames, and quantifies the
dimension dependence of the constant C using methods from stochastic geometry.
The main point of these various error bounds is to highlight the ability of consistent
reconstruction to outperform linear reconstruction. Moreover, since the 1/M2 bound
for consistent reconstruction matches the order of the theoretical lower bound, con-
sistent reconstruction is essentially considered to be an optimal recovery method for
MSQ.

Consistent reconstruction globally enforces the full set of constraints in (8.24).
Motivated by considerations of computational efficiency, there also exist iterative al-
gorithms which proceed by locally enforcing consistency constraints. For example,
given quantized frame coefficients qi =Q(〈x,ϕi〉), 1 ≤ i ≤M , the Rangan-Goyal
algorithm iteratively produces estimates xi ∈R

N of x by using

xi = xi−1 + ϕi

‖ϕi‖2
Sδ/2

(
qi − 〈xi−1, ϕi〉

)
, (8.26)

where the iteration is run for i = 1, . . . ,M , and x0 ∈ R
N is an arbitrarily chosen

initial estimate. Here, for fixed t > 0, St (·) denotes the soft thresholding function
defined by

St (u)=
⎧
⎨

⎩

u− t, if u > t,

0, if |u| ≤ t,

u+ t, if u <−t.

(8.27)

Similar to consistent reconstruction, the Rangan-Goyal algorithm has been proven
to achieve a mean squared error of order 1/M2, see [46, 49], for certain random or
appropriately ordered deterministic frames. A key point is that the convergence of
the Rangan-Goyal algorithm will depend strongly on the order in which it processes
quantized frame coefficients.

We may summarize the results of this section for MSQ as follows. Reconstruction
methods for MSQ that are based on consistent reconstruction are able to achieve a
mean squared error of the optimal order 1/M2. In particular, consistent reconstruc-
tion and its variants outperform dual frame linear reconstruction which are only able
to achieve a mean squared error of the order 1/M .

8.3 First Order ΣΔ Quantization

ΣΔ quantization is an alternative approach to MSQ that is specifically designed to
efficiently utilize redundancy in the quantization process. ΣΔ algorithms were first
developed in the 1960s in the context of quantizing oversampled bandlimited signals
[38], but the algorithms are quite generally applicable and have been shown to be
particularly well adapted to the class of finite frames; see, e.g., [2]. ΣΔ quantization
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uses the fact that if (ϕi)
M
i=1 ⊂R

N is a frame with M >N , then there are correlations
among the frame vectors (ϕi)

M
i=1 that can be used to compensate for errors during

the quantization process. This section will focus on a specific first order ΣΔ quan-
tizer. This will allow us to quickly highlight the mechanics and key features of ΣΔ

algorithms without being slowed down by the technical issues that will later arise in
higher order methods.

Given frame coefficients yi = 〈x,ϕi〉, 1 ≤ i ≤M , the first order ΣΔ quantizer
produces quantized coefficients (qi)

M
i=1 by running the following iteration for i =

1, . . . ,M :

qi =Q(ui−1 + yi),

ui = ui−1 + yi − qi.
(8.28)

Here (ui)
M
i=0 ⊂R is an internal sequence of state variables which, for convenience,

we shall always initialize with u0 = 0. The ΣΔ quantizer (8.28) has the follow-
ing important stability property, e.g., [2, 21], that relates boundedness of the input
sequence y = (yi)

M
i=1 to boundedness of the state variables u= (ui)

M
i=1:

‖y‖∞ <Lδ =⇒ ‖u‖∞ ≤ δ/2. (8.29)

Here, ‖ · ‖∞ denotes the usual �∞ norm of a finite or infinite sequence. Stability
plays an important role in the error analysis of ΣΔ quantizers, but it also ensures
that ΣΔ quantizers can be implemented in circuitry with operating parameters that
remain in a practical range.

Linear reconstruction is the simplest method for recovering a signal x̃ ∈R
N from

a set of ΣΔ quantized frame coefficients. Suppose that (ϕi)
M
i=1 ⊂ R

N is a frame
and that (ψi)

M
i=1 ⊂ R

N is any associated dual frame. Suppose that x ∈R
N and that

the frame coefficients yi = 〈x,ϕi〉 are used as input to the ΣΔ quantizer and that
(qi)

M
i=1 is the resulting quantized output. We may then reconstruct x̃ as

x̃ =
M∑

i=1

qiψi. (8.30)

We then have the following ΣΔ error formula [2].

Proposition 8.2 Suppose that first order ΣΔ quantization is used to quantize frame
coefficients of the frame (ϕi)

M
i=1 ⊂R

N and that the dual frame (ψi)
M
i=1 ⊂R

N is used
for linear reconstruction in (8.30). The ΣΔ quantization error satisfies

x − x̃ =
M−1∑

i=1

ui(ψi −ψi+1)+ uMψM. (8.31)
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Proof The proof follows from an application of summation by parts:

x − x̃ =
M∑

i=1

〈x,ϕi〉ψi −
M∑

i=1

qiψi

=
M∑

i=1

(yi − qi)ψi

=
M∑

i=1

(ui − ui−1)ψi

=
M−1∑

i=1

ui(ψi −ψi+1)+ uMψM − u0ψ1.
�

The ΣΔ quantization error ‖x − x̃‖ depends strongly on the order in which the
frame coefficients (〈x,ϕi〉)Mi=1 are entered into the ΣΔ algorithm. In (8.31) this
dependence appears in the state variable sequence (ui)

M
i=1 (this sequence changes if

the order of the input sequence changes) and also appears in the ordering of the dual
frame (ψi)

M
i=1 associated to (ϕi)

M
i=1 via the terms (ψi −ψi+1). To help quantify the

dependence on the ordering of the dual frame sequence we will make use of the
frame variation σ((ψi)

M
i=1) defined by

σ
(
(ψi)

M
i=1

)=
M−1∑

i=1

‖ψi −ψi+1‖. (8.32)

The frame variation can be used to give the following ΣΔ error bound [2].

Theorem 8.2 Suppose that the frame (ϕi)
M
i=1 ⊂ R

N satisfies sup1≤i≤M ‖ϕi‖ ≤ C

and that x ∈R
N satisfies ‖x‖< δLC−1. Then the ΣΔ error satisfies

‖x − x̃‖ ≤ δ

2

(
σ
(
(ψi)

M
i=1

)+ ‖ψM‖
)
.

Proof The result will follow from Proposition 8.2. Since ‖x‖< δL/M we have that
|yi | ≤ |〈x,ϕi〉| ≤ ‖x‖‖ϕi‖ < δLC−1C = Lδ. Using the stability bound (8.29) and
that u0 = 0, it follows from (8.31) that

‖x − x̃‖ ≤ δ

2

(
M−1∑

i=1

‖ψi −ψi+1‖ + ‖ψM‖
)

= δ

2

(
σ
(
(ψi)

M
i=1

)+ ‖ψM‖
)
.

�

The following corollary addresses the important special case when (ϕi)
M
i=1 ⊂R

N

is a unit norm tight frame and ψi = N
M
ϕi is the canonical dual frame.
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Corollary 8.1 If (ϕi)
M
i=1 ⊂ R

N is a unit norm tight frame and (ψi)
M
i=1 is the asso-

ciated canonical dual frame, then for every x ∈R
N with ‖x‖< δL the ΣΔ quanti-

zation error satisfies

‖x − x̃‖ ≤ δN(σ((ϕi)
M
i=1)+ 1)

2M
.

A practical consequence of Corollary 8.1 is that for a wide variety of finite frames
the ΣΔ quantization error ‖x − x̃‖ is of order 1/M . The following example illus-
trates this phenomenon for a particular family of unit norm tight frames in R

2.

Example 8.1 Let (ϕM
i )Mi=1 ⊂ R

2 be the unit norm tight frame for R2 given by the
M th roots of unity in the natural ordering

1≤ j ≤M, ϕM
j =

(
cos(2πj/M), sin(2πj/M)

)
. (8.33)

It can be shown that the frame variation satisfies the following upper bound that is
independent of the frame size M :

σ
(
(ϕj )

M
j=1

)≤ 2π. (8.34)

Thus, Corollary 8.1 yields the following ΣΔ error bound:

‖x − x̃‖ ≤ δ(2π + 1)

M
. (8.35)

The error bound (8.35) of order 1/M is in no way specific to the roots-of-unity
frame; it simply requires a class of finite frames for which the frame variation can be
bounded independently of the frame size M . See [2, 9] for similar results with more
general classes of frames in R

N , such as harmonic frames and frames generated by
frame paths. We shall consider this issue more deeply in the next section on higher
order ΣΔ quantization.

The constant (2π + 1) in (8.35) arose from having used the frame variation to
derive a ΣΔ error bound. Upper bounds obtained using the frame variation are
convenient but are generally not optimal. The work in [9] improves the constants in
first order ΣΔ error bounds by working with a suitably generalized variant of the
frame variation. There are also refined error bounds in [2] which show that the 1/M
error rate can sometimes be improved. For example, for the roots-of-unity frame
and certain frames generated by a frame path, there are circumstances when the ΣΔ

error satisfies a refined bound of order M−5/4 logM ; see [2]. The refined ΣΔ error
bounds for finite frames in [2] are motivated by the refined bounds for sampling
expansions in [33], but there are technical differences in the order of estimates that
are obtained in these two settings. The work in [1] carefully compares the pointwise
performance of ΣΔ quantization with MSQ, and the work in [52] makes interesting
connections between ΣΔ error analysis and the traveling salesman problem.
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8.4 Higher Order Sigma-Delta Quantization

The first order ΣΔ quantizer (8.28) sits at the heart of a rich class of algo-
rithms. We have already seen that first order ΣΔ quantization can achieve accuracy
‖x − x̃‖ ≤ C/M using just the simple single loop feedback mechanism of (8.28).
Moreover, first order ΣΔ error bounds such as (8.35) are deterministic (requiring no
noise models) and thus outperform MSQ even if optimal MSQ reconstruction meth-
ods are used. The first order ΣΔ quantizer (8.28) is the tip of the algorithmic ice-
berg. The algorithm (8.28) can be broadly generalized to provide quantization that
is dramatically superior to both first order ΣΔ quantization and MSQ, and in some
cases it performs near optimally; e.g., see the high precision methods in Sect. 8.5.

There are several directions along which one can generalize first order ΣΔ quan-
tization. For example, it is common among engineering practitioners to study gen-
eral ΣΔ quantizers in the context of spectral noise shaping or in the framework of
error diffusion algorithms; see, e.g., [12]. In this section, we follow a purely struc-
tural approach to generalization which builds on the fact that (8.28) expresses the
coefficient quantization errors yi − qi as a first order difference (Δu)i = ui − ui−1
of state variables ui with a uniform stability bound given by (8.29). Specifically, r th
order ΣΔ quantization will generalize the relation

(Δu)i = yi − qi

by using higher order difference operators Δr .
With this in mind, let us define the class of higher order difference operators

which will be needed. Let (ui)
M
i=1 ⊂ R be a given sequence which we extend to

nonpositive indices using the convention ui = 0 for i ≤ 0. The standard first order
backward difference operator Δ = Δ1 acts on the sequence (ui)

M
i=1 by (Δu)i =

ui − ui−1 for all 1≤ i ≤M . For each positive integer r we may recursively define
the r th order backward difference operator Δr by (Δru)i = (Δ ◦Δr−1u)i or by the
following equivalent closed-form expression for i = 1, . . . ,M :

(
Δru

)
i
=

r∑

j=0

(−1)j
(
r

j

)
ui−j . (8.36)

8.4.1 Higher Order ΣΔ Quantization for Finite Frames

An r th order ΣΔ quantizer takes a sequence (yi)
M
i=1 ⊂R as its input and produces

the quantized output sequence (qi)
M
i=1 by iteratively satisfying the following equa-

tions for i = 1, . . . ,M :

qi =Q
(
R(ui−1, . . . , ui−T , yi, . . . , yi−S)

)
,

(
Δru

)
i
= yi − qi.

(8.37)
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Here S,T are fixed positive integers and R :RT+S+1 →R is a fixed function known
as the quantization rule. As with the first order ΣΔ quantizer, (ui)

M
i=1−T ⊂ R is a

sequence of state variables. For simplicity, we always assume that the state variable
sequence is initialized by u0 = u−1 = · · · = u1−T = 0 and, if needed, define yi = 0
for i ≤ 0. As in previous sections, Q denotes the scalar quantizer associated to the
(2L+ 1) level midtread quantization alphabet A δ

L with stepsize δ > 0.
There is a great deal of flexibility in the choice of the quantization rule R; see

[54] for some typical choices. The most important (and difficult) factor in selecting
R is that the associated ΣΔ algorithm should be stable in the sense that there exist
constants C1,C2 > 0, independent of M , such that the input sequence y = (yi)

M
i=1

and state variable sequence u= (ui)
M
i=1 satisfy

‖y‖∞ ≤ C1 =⇒ ‖u‖∞ ≤ C2.

In contrast to the bound (8.29) for the first order algorithm (8.28), stability can be
a technically challenging issue for higher order ΣΔ quantizers, especially in the
case of 1-bit quantizers. In fact, it was only recently proven in [21] that stable 1-
bit r th order ΣΔ quantizers actually exist for each positive integer r . Proving that a
particular higher order ΣΔ quantizer is stable often leads to delicate issues from the
theory of dynamical systems. For example, ΣΔ quantization has close connections
to the ergodic dynamics of piecewise affine dynamical systems [37, 54], and to
geometric tiling properties of invariant sets [37].

For concreteness and to avoid technical issues involving ΣΔ-stability, we shall
restrict our discussion to the following particular r th order ΣΔ quantizer, known as
the greedy ΣΔ quantizer:

qi =Q

(
r∑

j=1

(−1)j−1
(
r

j

)
ui−j + yi

)

,

ui =
r∑

j=1

(−1)j−1
(
r

j

)
ui−j + yi − qi.

(8.38)

It is easy to check that with this rule, e.g., [34], if the input sequence y = (yi)
M
i=1

satisfies ‖y‖∞ < δ(L− 2r−1 − 3/2), then one has the stability bounds

|ui | ≤ 2−1δ and |yi − qi | ≤ 2r−1δ. (8.39)

Note that each iteration of the r th order ΣΔ quantizer (8.38) requires more com-
putation and more memory (access to several state variables ui−j ) than the standard
first order ΣΔ quantizer in (8.28). As a trade-off for this increased computational
burden we shall later see that higher order ΣΔ quantization produces increasingly
accurate signal representations.

Let (ϕi)
M
i=1 ⊂ R

N be a frame for R
N and let (ψi)

M
i=1 be any associated dual

frame with synthesis operator Ψ . Suppose that x ∈ R
N , that the frame coefficients

yi = 〈x,ϕi〉 are used as input to the r th order ΣΔ quantizer (8.38), and that (qi)Mi=1
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are the resulting ΣΔ quantized frame coefficients. Let q denote the M × 1 col-
umn vector with (qi)

M
i=1 as its entries. The simplest approach to recovering a signal

x̃ ∈R
N from the ΣΔ quantized coefficients q = (qi)

M
i=1 is to linearly reconstruct

with the dual frame (ψi)
M
i=1 by using

x̃ = Ψq =
M∑

i=1

qiψi. (8.40)

Our discussion of higher order ΣΔ quantization will only address reconstruction
using the linear approach (8.40), but it is important to point out that nonlinear alter-
natives such as consistent reconstruction can also be very effective, e.g., [50], at the
cost of increased complexity.

For the remainder of this section x̃ will denote the linear reconstruction (8.40).
The ΣΔ error (x− x̃) can be compactly represented in matrix form using the M×M

matrix D defined by

Dij :=
⎧
⎨

⎩

1, if i = j,

−1, if i = j + 1,
0, otherwise.

(8.41)

Letting u denote the M × 1 column vector of state variables u= (ui)
M
i=1, we have

the following ΣΔ error formula; see [5, 34, 42].

Lemma 8.1 The r th order ΣΔ quantization error (x − x̃) satisfies

x − x̃ =
M∑

i=1

(yi − qi)ψi = ΨDru. (8.42)

If x ∈ R
N and the frame coefficients yi = 〈x,ϕi〉 satisfy |yi | < δ(L − 2r−1 −

3/2), then the stability bound (8.39) for the ΣΔ quantizer (8.38) gives that

‖u‖ ≤√M‖u‖∞ ≤ 2−1δ
√
M. (8.43)

A typical way to ensure |yi | = |〈x,ϕi〉| < δ(L − 2r−1 − 3/2) is to assume that
x ∈ R

N satisfies ‖x‖ < δ(L − 2r−1 − 3/2)C−1, where C = sup1≤i≤M ‖ϕi‖. The
stability bound (8.43) together with Lemma 8.1 gives the following upper bound on
the ΣΔ error.

For the remainder of the chapter, if T : Rd1 → R
d2 is a linear operator, then

‖T ‖op = ‖T ‖�2→�2 denotes the operator norm of T when R
d1 and R

d2 are both
endowed with the standard Euclidean �2 norm.

Corollary 8.2 If x ∈R
N and the frame coefficients yi = 〈x,ϕi〉 satisfy

‖y‖∞ < δ
(
L− 2r−1 − 3/2

)
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then the r th order ΣΔ quantization error satisfies

‖x − x̃‖ = ∥∥ΨDru
∥∥≤ ‖u‖∥∥ΨDr

∥∥
op ≤ 2−1δ

√
M
∥∥ΨDr

∥∥
op. (8.44)

8.4.2 Sobolev Dual Frames

Our goal in this section is to obtain quantitative estimates on how small the r th order
ΣΔ error ‖x− x̃‖ is for certain specific families of finite frames. To do this we will
need a clearer understanding of the error bound (8.44) in Corollary 8.2. Similar to
bounds such as (8.16) and (8.35), we are especially interested in quantifying how
small the ΣΔ error is as a function of the frame size M .

It will be helpful to give some perspective on the type of error bounds that one
might hope for. The groundbreaking work in [21] studied r th order ΣΔ quantization
in the setting of bandlimited sampling expansions and showed error bounds of the
form

‖h− h̃‖L∞(R) �
1

λr
, (8.45)

where h̃ is obtained from the bandlimited function h by ΣΔ quantization, and λ

denotes the oversampling rate. The full details on bandlimited sampling are not
essential here, but (8.45) illustrates the point that higher order ΣΔ algorithms can
make increasingly effective use of redundancy (oversampling) as the order r of the
algorithm increases. We wish to show that similar results hold in the setting of finite
frames. For first order ΣΔ quantization of certain finite frames we have already
seen such a result in (8.35).

Toward obtaining quantitative ΣΔ error bounds, Corollary 8.2 shows that one
can decouple the roles of the state variable sequence u and the dual frame Ψ . Since
stability bounds give direct control over the state variable sequence, the main issue
for bounding ‖x − x̃‖ will be to clarify the role of the dual frame Ψ and to under-
stand the size of the operator norm ‖ΨDr‖op; see (8.44). For a redundant frame Φ ,
the choice of dual frame Ψ is highly nonunique, so a closely related issue is to ad-
dress which particular dual frames are most suitable for reconstructing signals from
ΣΔ quantized coefficients.

Given a frame (ϕi)
M
i=1 ⊂ R

N with analysis operator Φ∗, we wish to determine
which dual frames (ψi)

M
i=1 work well when the linear reconstruction (8.40) is used

to reconstruct signals from their ΣΔ quantized frame coefficients. We seek a choice
of dual frame that does not depend on the specific signal x ∈ R

N being quantized.
The widespread use of canonical dual frames makes it reasonable to give some ini-
tial consideration to canonical dual frame reconstruction in higher order ΣΔ quan-
tization. We have already seen in Sect. 8.2 that the canonical dual frame is optimally
suited for MSQ and works well for first order ΣΔ problems such as Example 8.1;
see also [2, 3]. Unfortunately, the canonical dual frame can perform quite poorly for
higher order ΣΔ problems. An example of this phenomenon is shown in [42]: For
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r th order ΣΔ quantization of the roots-of-unity frame (8.33), if r ≥ 3 then canoni-
cal dual frame reconstruction cannot robustly achieve quantization error ‖x − x̃‖ of
order better than 1/M2. This means that proper choices of dual frames are very im-
portant for higher order ΣΔ quantization of finite frames. For comparison, this issue
does not arise in the infinite dimensional setting of ΣΔ quantization of bandlimited
sampling expansions in [21].

The following result addresses how to choose dual frames which minimize the
quantity ‖ΨDr‖op. In view of Corollary 8.2, these dual frames will be natural can-
didates for ΣΔ signal reconstruction.

Proposition 8.3 Let Φ be a given N ×M matrix with full rank and let D be the
M×M matrix defined by (8.41). Consider the following minimization problem taken
over all N ×M matrices Ψ :

min
{∥∥ΨDr

∥∥
op : ΨΦ∗ = I

}
. (8.46)

The minimizer Ψ = Ψr,Sob of (8.46) is given by

Ψr,Sob =
(
D−rΦ∗

)†
D−r = (Φ(D∗)−r

D−rΦ∗
)−1

Φ
(
D∗
)−r

D−r . (8.47)

We refer to Ψr,Sob in (8.47) as the r th order Sobolev dual associated to Φ . Using
the notation of frames, if (ϕi)

M
i=1 ⊂ R

N is a frame with analysis operator Φ∗, then
the dual frame (ψi)

M
i=1 with synthesis operator Ψr,Sob is referred to as the r th order

Sobolev dual frame.

It is worth mentioning that D and D∗ do not commute. Readers of [5] should
consult the errata [6] to avoid an unfortunate notational error in the definition of
Sobolev dual in [5] caused by this noncommutativity.

Up to this point, we have shown that Sobolev duals minimize the ΣΔ error term
‖ΨDr‖op, but it remains to give precise quantitative bounds on this expression. For
this, it will be convenient to consider the class of frames that are generated by frame
paths.

Definition 8.1 A vector-valued function Φ : [0,1]→R
N given by

Φ(t)= (ϕ1(t), ϕ2(t), . . . , ϕN(t)
)

is a piecewise-C1 uniformly sampled frame path if the following three conditions
hold:

(a) ∀1≤ i ≤M , the map ϕi : [0,1]→R is piecewise-C1.
(b) The functions (ϕi)

N
i=1 are linearly independent.

(c) ∃M0 such that ∀M ≥M0 the collection (Φ(i/M))Mi=1 is a frame for RN .

Many standard finite frames arise from frame path constructions; for example,
see [5]. The simplest example of a frame path is given by the function

Φ(t)= (cos(2πt), sin(2πt)
)
.
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This frame path recovers the family of unit norm tight frames in (8.33) by

ϕM
k =Φ(k/M)= (cos(2πk/M), sin(2πk/M)

)
,

so that for each M ≥ 3 the set (E(k/M))Mk=1 is a unit norm tight frame for R2.
We require the following slightly lengthy setup for the next theorem. Let

Φ : [0,1] → R
N be a piecewise-C1 uniformly sampled frame path, and for each

M ≥M0, let (ψM
i )Mi=1 be the r th order Sobolev dual frame associated to the frame

(Φ(i/M))Mi=1 ⊂ R
N . If x ∈ R

N then, for each M ≥M0, the signal x has the frame
coefficients yM

i = 〈x,Φ(i/M)〉, 1 ≤ i ≤M . Assume that the frame coefficients all
satisfy |yM

i | ≤ δ(K − 2r−1 − 3/2). For each M ≥M0, r th order ΣΔ quantization
is applied to the frame coefficients (yM

i )Mi=1 to obtain the quantized coefficients
(qM

i )Mi=1. Finally, the Sobolev dual frame (ψM
i )Mi=1 is used to linearly reconstruct a

signal x̃M from (qM
i )Mi=1.

Theorem 8.3 Consider r th order ΣΔ quantization of a C1 uniformly sampled
frame path and assume the setup of the preceding paragraph. Then there exists a
constant Cr,Φ , depending only on r and the frame path Φ , such that the ΣΔ quan-
tization error using r th order Sobolev dual frame reconstruction satisfies

∀M ≥M0, ‖x − x̃M‖ ≤ Cr,Φ

Mr
. (8.48)

Theorem 8.3, for example, applies to the root-of-unity frame for R2 in (8.33),
harmonic frames in R

N , and tight frames obtained by repeating an orthonormal ba-
sis, see [5], and in each case ensures that r th order ΣΔ quantization using Sobolev
duals achieves accuracy ‖x − x̃‖ ≤ c/Mr . It is important to emphasize again that
this error performance is generally not possible if the canonical dual frame is used
instead of a Sobolev dual; see [42].

Example 8.2 Let (ϕi)
M
i=1 ⊂ R

2 be the roots-of-unity unit norm tight frame for R2

with M = 256 given by (8.33). Figure 8.4(a) shows the frame vectors (ϕi)
M
i=1, and

Fig. 8.4(b) shows the associated canonical dual frame vectors given by ϕ̃i = ( 2
256 )ϕi

with 1 ≤ n ≤ 256. Figure 8.4(c) shows the associated Sobolev dual frame of or-
der r = 2. Note that each of these figures has been scaled differently to optimize
visibility.

Example 8.3 30 points in R
2 are randomly chosen according to the uniform distri-

bution on the unit square. For each of the 30 points, the corresponding frame coeffi-
cients with respect to the roots-of-unity frame (8.33) are quantized using a particu-
lar third order ΣΔ scheme from [21]. Linear reconstruction is then performed with
each of the 30 sets of quantized coefficients using both the canonical dual frame and
the third order Sobolev dual. Candual(M) and Altdual(M) will denote the largest
of the 30 errors obtained using the canonical dual frame and Sobolev dual, respec-
tively. Figure 8.3 shows a log-log plot of Altdual(M) and Candual(M) against the
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Fig. 8.3 Log-log plot of third order ΣΔ quantization errors against frame size M , for the M th
roots-of-unity family of frames for R2. The figure compares the use of the canonical dual frame
and the third order Sobolev dual frame for reconstruction, and illustrates the superior accuracy
provided by Sobolev duals

frame size M . For comparison, log-log plots of 1/M3 and 1/M are also given. Note
that Sobolev duals yield a smaller reconstruction error than canonical dual frames.
Further details on this example can be found in [5].

The Sobolev dual frames illustrate the importance of noncanonical representa-
tions in quantization problems. More generally, the use of alternative dual frames is
a valuable technique in several other problems on mathematical signal processing.
For example, [23, 41] use noncanonical Gabor frames to provide improved time-
frequency localization. The work in [16–18] uses noncanonical representations to
provide desirable support, smoothness, and structural properties in the settings of
Gabor and shift invariant systems. See [27, 43, 44] for work on noise reduction and
other properties of noncanonical representations.

In practice, one may not always have full control over the encoding frame (ϕi)
M
i=1

that is used to compute frame coefficients yi = 〈x,ϕi〉. For example, this might
be the case if the frame Φ corresponds to a physical measurement device and the
coefficients (yi)

M
i=1 are observed measurements. A valuable feature of the Sobolev

dual frame method is that it places relatively few constraints on the encoding frame
Φ , and it is entirely self-contained to the signal reconstruction step after encoding
and quantization have already taken place. This modularity makes Sobolev duals a
flexible tool. A different approach which has also proven fruitful is to custom build
special frames for ΣΔ quantization which are specifically designed to work well
with canonical linear reconstruction; see [10, 40]. By necessity, this approach places
very strong restrictions on the encoding frame (for example, it excludes any unit
norm frames), but one gains a simplified reconstruction step involving tight frame
expansions. Nonetheless, similar to Sobolev duals, a key issue in these constructions
is to design frames that terminate smoothly at the origin.
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8.4.3 Sobolev Duals of Random Frames

We have seen in the previous section that higher order ΣΔ algorithms are able to
make judicious use of the correlations among frame vectors to provide accurate
quantization. The frame path structure used in Theorem 8.3 guarantees sufficient
correlations among frame vectors since they lie along a piecewise smooth path and
hence vary slowly, ensuring that nearby frame vectors are highly correlated. In view
of this, it is perhaps surprising that ΣΔ quantization also performs well even if
highly unstructured random frames are used.

Let Φ be an N ×M random matrix with i.i.d. standard normal N (0,1) entries,
and let (ϕi)

M
i=1 ⊂ R

N be the collection of random vectors with synthesis operator
Φ . Since Φ has full rank with probability one, we shall refer to (ϕi)

M
i=1 as a Gaus-

sian random frame for RN . The following theorem addresses the performance of
ΣΔ quantization with Sobolev dual frames when a Gaussian random frame is used
[34–36].

Theorem 8.4 Let (ϕi)
M
i=1 ⊂R

N be a Gaussian random frame and let (ψi)
M
i=1 be the

associated Sobolev dual frame with synthesis operator Ψ = Ψr,Sob. Let λ=M/N .
For any α ∈ (0,1), if λ≥ c(logM)1/(1−α), then with probability at least

1− exp
(−c′Mλ−α

)
,

the following holds:
∥
∥ΨDr

∥
∥
op

�r λ
−α(r− 1

2 )M−1/2. (8.49)

Consequently, the following error bound holds for r th order ΣΔ quantization of
Gaussian random frames:

‖x − x̃M‖2 �r λ
−α(r− 1

2 )δ. (8.50)

Example 8.4 Let (ϕi)
M
i=1 ⊂ R

2 be a Gaussian random frame of size M = 256. Fig-
ure 8.4(d) shows the frame vectors (ϕi)

M
i=1 and Fig. 8.4(e) shows the associated

canonical dual frame vectors. Note that the Gaussian random frame is approximately
tight; e.g., see [30]. Figure 8.4(f) shows the associated Sobolev dual frame of order
r = 4. Note that each of these figures has been scaled differently to optimize visi-
bility.

Theorem 8.4 has important implications for compressed sensing in [34–36]. In
contrast to frame theory, compressed sensing involves a nonlinear signal space (the
collection of s-sparse signals in R

N ) and the high dimensional nature of compressed
sensing often places a premium cost on oversampling. Nonetheless, frame theory
implicitly plays an important role in many compressed sensing problems. When
combined with appropriate support recovery methods, Theorem 8.4 directly implies
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Fig. 8.4 Figure (a) shows the roots-of-unity frame with M = 256, Fig. (b) shows the associated
canonical dual frame, and Fig. (c) shows the associated Sobolev dual frame of order r = 2. Fig-
ure (d) shows a Gaussian random frame of size M = 256, Fig. (e) shows the associated canonical
dual frame, and Fig. (f) shows the associated Sobolev dual frame of order r = 4. Note that the axes
are scaled differently in the various figures for visibility

that ΣΔ quantization is an effective strategy for quantizing compressed sensing
measurements, and that Sobolev duals are a useful tool for extracting information
from quantized data in high dimensions; see [34–36]. See [47] for the use of ΣΔ

algorithms with other random sampling geometries in the context of randomly in-
terleaved sampling of bandlimited signals.
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8.5 Root-Exponential Accuracy

The preceding discussion on frame quantization has assumed a particular paradigm:
Given an appropriate frame Φ with oversampling rate λ := M/N , one fixes an
r th order ΣΔ quantization scheme Qr to quantize the frame expansion, i.e., q :=
Qr (Φ

∗x). Subsequently, one approximates x with x̃ = Ψrq , where Ψr is the r th or-
der Sobolev dual of Φ . Under this paradigm, where the order r is fixed, we have seen
that, for example, if Φ is a Gaussian random frame, the approximation error behaves
like an inverse polynomial (in λ); specifically, we have ‖x − x̃‖2 � C(r)λ−r .

Next, we shall diverge from the above paradigm and treat the order r of the
ΣΔ quantization scheme as a parameter. Using this approach, we shall show that
“root-exponential” error rates can be obtained (when decoding is done via linear
reconstruction with Sobolev duals). Specifically, if we optimize the order r as a
function of λ, we show that the reconstruction error satisfies ‖x − x̃‖2 ≤ Ce−c

√
λ,

provided that the ΣΔ schemes and the encoding frame Φ are chosen appropriately
[40].

8.5.1 Superpolynomial Accuracy and ΣΔ Quantization:
Bandlimited Setting

The ΣΔ schemes we use to achieve root-exponential accuracy in the finite frame
setting were originally devised for quantization of oversampled bandlimited func-
tions. In fact, the superpolynomial error decay (as a function of the oversampling
rate1 λ) of the approximation error in ΣΔ quantization was first shown in the con-
text of bandlimited functions (in L∞) [21]. To achieve superpolynomial decay, [21]
constructs a family of stable ΣΔ schemes of arbitrary order, with a nonlinear quan-
tization rule involving concatenations of “sign” functions. Next, the order r of the
actual quantization scheme is determined as a function of the oversampling rate λ.
This way, [21] shows that the approximation error is O(λ−c logλ). In the same ban-
dlimited setting, it was later shown in [32] that exponential error decay rates can be
obtained. In particular, the r th order stable ΣΔ quantizer proposed in [32], which
we shall briefly describe later in this section, uses a linear quantization rule and an
auxiliary state sequence v that is updated based on r of its (non-immediate) previous
values. Exponential accuracy is achieved by, again, optimally choosing r as a func-
tion of λ. Recently, [24] obtained improved exponential rates using ΣΔ schemes
that are constructed within the framework of [32] with better stability properties.

1In this setting, the oversampling rate is defined as the ratio of the sampling rate to the Nyquist
rate.
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8.5.2 Superpolynomial Accuracy and ΣΔ Quantization: Finite
Frame Setting

The above-described approach can be adapted to the finite frame setting. In partic-
ular, when appropriate finite frame families are considered and when appropriate
(Sobolev) duals are used in the reconstruction, one can show that the approximation
error decays like a “root exponential” in the oversampling rate λ [40]. The remainder
of this section is dedicated to describing how this can be done.

As noted in Sect. 8.4, one can control the reconstruction error involved
in r th order ΣΔ quantization via the product bound ‖x − x̃‖ = ‖ΨDru‖ ≤
‖ΨDr‖op‖u‖

√
M , where Ψ is the specific dual of Φ that is used to reconstruct

x̃ from the quantized coefficients. The use of stable ΣΔ schemes guarantees that
‖u‖ is bounded, and Sobolev duals minimize ‖ΨDr‖op over all duals of Φ . In
Sect. 8.4, we saw that when the frame Φ is chosen appropriately, this technique
leads to polynomial error decay in λ. Motivated by the above discussion on the
bandlimited setting, we now wish to optimize r as a function of λ in the hope of
obtaining faster than polynomial decay rates.

If one were to treat r as a design parameter in the quantization problem, then the
precise dependence on r of constants in any upper bound on ‖FDr‖op, e.g., (8.48)
and (8.50) , becomes critical and must be computed.

To resolve this issue, one may use specialized frames such as Sobolev self-dual
frames [40]. For such frames Φ , the bound on ‖ΨDr‖op, where Ψ is the Sobolev
dual (and in fact Ψ =Φ) is explicit—see Theorem 8.6. Alternatively, one may work
with a given frame Φ but explicitly control the r-dependent constants in the bounds
on ‖ΨDr‖op where, again, Ψ is the Sobolev dual. This approach is also pursued in
[40] for the case of harmonic frames.

It is also important to note that the greedy ΣΔ schemes in (8.38) that we have
thus far used to guarantee stability, i.e., to guarantee that ‖u‖ is bounded, require
more levels as the order r increases; see, e.g., [34]. Instead of dealing in the op-
timization process with the interplay between λ, r , and the number of quantizer
levels, one may use alternative ΣΔ schemes where one can choose the number of
levels independent of the order r . In particular, we shall use the schemes of [32] and
[24] to control ‖u‖.

It will be convenient to use the following convolution notation. Given infinite se-
quences x = (xi)

∞
i=−∞ and y = (yi)

∞
i=−∞, the convolution sequence x ∗y is defined

componentwise by

∀i ∈ Z, (x ∗ y)i =
∞∑

k=−∞
xkyi−k.

In the case when (xj )
J2
j=J1

and (yk)
K2
k=K1

are finite sequences, we extend them to
infinite sequences by xj = 0, yk = 0 if j /∈ {J1, . . . , J2}, k /∈ {K1, . . . ,K2}, and then
define the convolution x ∗ y as above.

In the schemes in [24, 32], one substitutes u = g ∗ v for some fixed g =
[g0, . . . , gm], where m ≥ r , g0 = 1, and gi ∈ R. Moreover, one sets the quantiza-
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tion rule

ρ(vi, vi−1, . . . , yi, yi−1, . . .)= (h ∗ v)i + yi,

where h = δ(0) −Δrg (and δ(0) is the Kronecker delta). Thus, the quantization is
performed according to

qi =Q
(
(h ∗ v)i + yi

)
, (8.51)

vi = (h ∗ v)i + yi − qi . (8.52)

Since (Δrg)0 = g0 = 1, we have h0 = 0; thus this formula prescribes how vi is
computed from vj , j < i. Here and for the remainder of this section we shall use
the midrise quantization alphabet (8.5).

It can be shown (see, e.g., [24, 32]) that the above scheme is stable. The following
theorem summarizes its important stability properties.

Theorem 8.5 There exists a universal constant C1 > 0 such that for any midrise
quantization alphabet (8.5) with 2L levels and stepsize δ > 0, for any order r ∈ N,
and for all μ < δ(K − 1

2 ), there exists g ∈ R
m for some m > r such that the ΣΔ

scheme given in (8.51) is stable for all input signals y with ‖y‖∞ ≤ μ, and

‖u‖∞ ≤ C1C
r
2r

r δ

2
, (8.53)

where u= g ∗ v as above and C2 = (� π2

(cosh−1 γ )2 � e
π
) with γ := 2K − 2μ

δ
.

8.5.3 Sobolev Self-dual Frames

We are now ready to define and discuss the properties of the Sobolev self-dual
frames proposed in [40]. To that end, recall that for any matrix X in R

m×n of rank
k, there exists a singular value decomposition (SVD) of the form X = UXSXV

∗
X ,

where UX ∈ R
m×k is a matrix with orthonormal columns, SX ∈ R

k×k is a diagonal
matrix with strictly nonnegative entries, and VX ∈ R

n×k is a matrix with orthonor-
mal columns. The Sobolev self-dual frames are constructed from the left singular
vectors of the matrix Dr corresponding to its smallest N singular values. Moreover,
for any N,M , and r , these frames admit themselves as both canonical duals and
Sobolev duals of order r . Figure 8.5 shows the first three coordinates of the first
order Sobolev self-dual frame vectors (ϕi)

1000
i=1 for R13.

Theorem 8.6 Let UDr = [u1|u2| · · · |uM ] be the matrix containing the left singular
vectors of Dr , corresponding to the decreasing arrangement of the singular values
of Dr . Let Φ = [uM−N+1| · · · |uM−1|uM ]∗ and denote by Ψ and (Φ∗)† the r-th
order Sobolev dual and canonical dual of Φ , respectively. Then

1. Φ is a tight frame with frame bound 1,
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Fig. 8.5 The first three coordinates of 1000 vectors constituting a first order Sobolev self-dual
frame for R13

2. Ψ = (Φ∗)† =Φ ,
3. ‖ΨDr‖op ≤ (2 cos( (M−N−2r+1)π

2M+1 ))r .

Combining Theorem 8.6 with Theorem 8.5 and optimizing over r , [40] proves
the following result.

Theorem 8.7 For 0 < L ∈ Z and 0 < δ ∈ R, let x ∈ R
N be such that ‖x‖2 ≤ μ <

δ(L− 1
2 ). Suppose that we wish to quantize a redundant representation of x with

oversampling rate λ =M/N using the 2L level midrise alphabet (8.5) with step-
size δ > 0. If λ ≥ c(logN)2, then there exists a Sobolev self-dual frame Φ and an
associated ΣΔ quantization scheme QΣΔ, both of order r# = r(λ)≈√λ, such that

∥∥x −ΦQΣΔ
(
Φ∗x

)∥∥
2 ≤ C1e

−C2
√
λ.

Here, c, C1, and C2 are constants independent of N and x.

Due to the fact that the frames Φ above admit themselves as both canonical and
Sobolev duals, one additionally obtains robustness to noise.

8.5.4 Harmonic Frames

In analogy with Theorem 8.6, [40] presents the following result on harmonic frames.
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Fig. 8.6 The maximum (a) and mean (b) error from linear reconstruction of ΣΔ quantized re-
dundant representations with N = 20. The error is plotted (in log scale) as a function of the over-
sampling rate λ

Lemma 8.2 Let Ψ be the r-th order Sobolev dual of the harmonic frame Φ; then
there exist (possibly N -dependent) constants C1 and C2 , such that

∥∥ΨDr
∥∥

op ≤ C1e
−r/2M−(r+1/2)rr+C2

(
1+O

(
M−1)).

As before, combining Lemma 8.2 with Theorem 8.5 and optimizing over r , [40]
obtains the following theorem, showing root-exponential error decay.

Theorem 8.8 Let 0 < L ∈ Z and x ∈ R
N with ‖x‖2 ≤ μ < δ(L − 1/2). Suppose

that we wish to quantize the harmonic frame expansion Φ∗x with oversampling
rate λ=M/N using the 2L level midrise alphabet (8.5) with stepsize δ > 0. There
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exists a ΣΔ quantization scheme QΣΔ of order r := r(λ)≈√λ, such that

∥∥x −ΨrQ
ΣΔ
(
Φ∗x

)∥∥
2 ≤ C1e

−C2
√
λ.

Here Ψr is the r th order Sobolev dual of Φ and the constants are independent of x,
but depend on N .

Example 8.5 We run the following experiment to illustrate the results of this sec-
tion. For N = 20 we generate 1500 random vectors x ∈ R

N (from the Gaussian
ensemble) and normalize their magnitude so that ‖x‖ = 2− cosh(π/

√
6)≈ 0.0584.

For each x, we obtain the redundant representation y = Φ∗x where Φ ∈ R
N×M is

the harmonic frame or the Sobolev self-dual frame of order r . For r ∈ {1, . . . ,10}
and several values of M , we perform 3-bit ΣΔ quantization on y according to the
schemes in Theorem 8.5. Subsequently, we obtain an approximation of x by linear
reconstruction using the r th order Sobolev dual of Φ , and the approximation error is
computed. For each M , the smallest (over r) of the maximum and mean error (over
the 1500 runs) is computed. The resulting error curves are illustrated in Fig. 8.6.
Note that both the average and worst case behavior decay as a root exponential, in-
dicating that with the methods and frames of this section, exponential error decay is
not possible.
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Chapter 9
Finite Frames for Sparse Signal Processing

Waheed U. Bajwa and Ali Pezeshki

Abstract Over the last decade, considerable progress has been made toward de-
veloping new signal processing methods to manage the deluge of data caused by
advances in sensing, imaging, storage, and computing technologies. Most of these
methods are based on a simple but fundamental observation: high-dimensional data
sets are typically highly redundant and live on low-dimensional manifolds or sub-
spaces. This means that the collected data can often be represented in a sparse or
parsimonious way in a suitably selected finite frame. This observation has also led
to the development of a new sensing paradigm, called compressed sensing, which
shows that high-dimensional data sets can often be reconstructed, with high fidelity,
from only a small number of measurements. Finite frames play a central role in the
design and analysis of both sparse representations and compressed sensing methods.
In this chapter, we highlight this role primarily in the context of compressed sens-
ing for estimation, recovery, support detection, regression, and detection of sparse
signals. The recurring theme is that frames with small spectral norm and/or small
worst-case coherence, average coherence, or sum coherence are well suited for mak-
ing measurements of sparse signals.
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9.1 Introduction

It was not too long ago that scientists, engineers, and technologists were complain-
ing about data starvation. In many applications, there never was sufficient data
available to reliably carry out various inference and decision-making tasks in real
time. Technological advances during the last two decades, however, have changed
all of that—so much in fact that data deluge, instead of data starvation, is now be-
coming a concern. If left unchecked, the rate at which data is being generated in
numerous applications will soon overwhelm the associated systems’ computational
and storage resources.

During the last decade or so, there has been a surge of research activity in the
signal processing and statistics communities to deal with the problem of data deluge.
The proposed solutions to this problem rely on a simple but fundamental principle
of redundancy. Massive data sets in the real world may live in high-dimensional
spaces, but the information embedded within these data sets almost always lives
near low-dimensional (often linear) manifolds. There are two ways in which the
principle of redundancy can help us better manage the sheer abundance of data.
First, we can represent the collected data in a parsimonious (or sparse) manner
in carefully designed bases and frames. Sparse representations of data help reduce
their (computational and storage) footprint and constitute an active area of research
in signal processing [12]. Second, we can redesign the sensing systems to acquire
only a small number of measurements by exploiting the low-dimensional nature
of the signals of interest. The term compressed sensing has been coined for the
area of research that deals with rethinking the design of sensing systems under the
assumption that the signal of interest has a sparse representation in a known basis or
frame [1, 16, 27].

There is a fundamental difference between the two aforementioned approaches
to dealing with the data deluge; the former deals with the collected data while the
latter deals with the collection of data. Despite this difference, however, there exists
a great deal of mathematical similarity between the areas of sparse signal repre-
sentation and compressed sensing. Our primary focus in this chapter will be on the
compressed sensing setup and the role of finite frames in its development. However,
many of the results discussed in this context can be easily restated for sparse signal
representation. We will therefore use the generic term sparse signal processing in
this chapter to refer to the collection of these results.

Mathematically, sparse signal processing deals with the case when a highly re-
dundant frame Φ = (ϕi)

M
i=1 in H N is used to make (possibly noisy) measure-

ments of sparse signals.1 Consider an arbitrary signal x ∈H M that is K-sparse:
‖x‖0 :=∑M

i=1 1{xi 
=0}(x) ≤ K < N .M . Instead of measuring x directly, sparse
signal processing uses a small number of linear measurements of x, given by
y =Φx + n, where n ∈H N corresponds to deterministic perturbation or stochas-
tic noise. Given measurements y of x, the fundamental problems in sparse signal

1The sparse signal processing literature often uses the terms sensing matrix, measurement matrix,
and dictionary for the frame Φ in this setting.
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processing include: (i) recovering/estimating the sparse signal x, (ii) estimating x

for linear regression, (iii) detecting the locations of the nonzero entries of x, and
(iv) testing for the presence of x in noise. In all of these problems, certain geometri-
cal properties of the frame Φ play crucial roles in determining the optimality of the
end solutions. In this chapter, our goal is to make explicit these connections between
the geometry of frames and sparse signal processing.

The four geometric measures of frames that we focus on in this chapter include
the spectral norm, worst-case coherence, average coherence, and sum coherence.
Recall that the spectral norm ‖Φ‖ of a frame Φ is simply a measure of its tight-
ness and is given by the maximum singular value: ‖Φ‖ = σmax(Φ). The worst-case
coherence μΦ , defined as

μΦ := max
i,j∈{1,...,M}

i 
=j

|〈ϕi,ϕj 〉|
‖ϕi‖‖ϕj‖ , (9.1)

is a measure of the similarity between different frame elements. On the other hand,
the average coherence is a new notion of frame coherence, introduced recently in
[2, 3] and analyzed further in [4]. In words, the average coherence νΦ , defined as

νΦ := 1

M − 1
max

i∈{1,...,M}

∣∣∣∣∣

M∑

j=1
j 
=i

〈ϕi,ϕj 〉
‖ϕi‖‖ϕj‖

∣∣∣∣∣
, (9.2)

is a measure of the spread of normalized frame elements (ϕi/‖ϕi‖)Mi=1 in the unit
ball. The sum coherence, defined as

M∑

j=2

j−1∑

i=1

|〈ϕi,ϕj 〉|
‖ϕi‖‖ϕj‖ , (9.3)

is a notion of coherence that arises in the context of detecting the presence of a
sparse signal in noise [76, 77].

In the following sections, we show that different combinations of these geometric
measures characterize the performance of a multitude of sparse signal processing al-
gorithms. In particular, a theme that emerges time and again throughout this chapter
is that frames with small spectral norm and/or small worst-case coherence, average
coherence, or sum coherence are particularly well suited for the purposes of making
measurements of sparse signals.

Before proceeding further, we note that the signal x in some applications is sparse
in the identity basis, in which case Φ represents the measurement process itself. In
other applications, however, x can be sparse in some other orthonormal basis or an
overcomplete dictionary Ψ . In this case, Φ corresponds to a composition of Θ , the
frame resulting from the measurement process, and Ψ , the sparsifying dictionary,
i.e., Φ = ΘΨ . We do not make a distinction between the two formulations in this
chapter. In particular, while the reported results are most readily interpretable in a
physical setting for the former case, they are easily extendable to the latter case.
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We note that this chapter provides an overview of only a small subset of current
results in sparse signal processing literature. Our aim is simply to highlight the cen-
tral role that finite frame theory plays in the development of sparse signal processing
theory. We refer the interested reader to [34] and the references therein for a more
comprehensive review of the sparse signal processing literature.

9.2 Sparse Signal Processing: Uniform Guarantees and
Grassmannian Frames

Recall the fundamental system of equations in sparse signal processing: y =Φx+n.
Given the measurements y, our goal in this section is to specify conditions on the
frame Φ and accompanying computational methods that enable reliable inference
of the high-dimensional sparse signal x from the low-dimensional measurements y.
There has been a lot of work in this direction in the sparse signal processing lit-
erature. Our focus in this section is on providing an overview of some of the key
results in the context of performance guarantees for every K-sparse signal in H M

using a fixed frame Φ . It is shown in the following that uniform performance guar-
antees for sparse signal processing are directly tied to the worst-case coherence of
frames. In particular, the closer a frame is to being a Grassmannian frame—defined
as one that has the smallest worst-case coherence for given N and M—the better its
performance is in the uniform sense.

9.2.1 Recovery of Sparse Signals via �0 Minimization

We consider the simplest of setups in sparse signal processing, corresponding to the
recovery of a sparse signal x from noiseless measurements y =Φx. Mathematically
speaking, this problem is akin to solving an underdetermined system of linear equa-
tions. Although an underdetermined system of linear equations has infinitely many
solutions in general, one of the surprises of sparse signal processing is that recovery
of x from y remains a well-posed problem for large classes of random and determin-
istic frames because of the underlying sparsity assumption. Since we are looking to
solve y for a K-sparse x, an intuitive way of obtaining a candidate solution from
y is to search for the sparsest solution x̂0 that satisfies y = Φx̂0. Mathematically,
this solution criterion can be expressed in terms of the following �0 minimization
program:

x̂0 = arg min
z∈H M

‖z‖0 subject to y =Φz. (P0)

Despite the apparent simplicity of (P0), the conditions under which it can be
claimed that x̂0 = x for any x ∈ H M are not immediately obvious. Given that
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(P0) is a highly nonconvex optimization, there is in fact little reason to expect that
x̂0 should be unique to begin with. It is because of these roadblocks that a rigor-
ous mathematical understanding of (P0) alluded researchers for a long time. These
mathematical challenges were eventually overcome through surprisingly elemen-
tary mathematical tools in [28, 41]. In particular, it is argued in [41] that a property
termed the unique representation property (URP) of Φ is the key to understanding
the behavior of the solution obtained from (P0).

Definition 9.1 (Unique Representation Property) A frame Φ = (ϕi)
M
i=1 in H N is

said to have the unique representation property of order K if any K frame elements
of Φ are linearly independent.

It has been shown in [28, 41] that the URP of order 2K is both a necessary and a
sufficient condition for the equivalence of x̂0 and x.2

Theorem 9.1 [28, 41] An arbitrary K-sparse signal x can be uniquely recovered
from y =Φx as a solution to (P0) if and only if Φ satisfies the URP of order 2K .

The proof of Theorem 9.1 is simply an exercise in elementary linear algebra.
It follows from the simple observation that K-sparse signals in H M are mapped
injectively into H N if and only if the nullspace of Φ does not contain nontrivial
2K-sparse signals. In order to understand the significance of Theorem 9.1, note that
random frames with elements distributed uniformly at random on the unit sphere in
H N will almost surely have the URP of order 2K as long as N ≥ 2K . This is rather
powerful, since this signifies that sparse signals can be recovered from a number of
random measurements that are only linear in the sparsity K of the signal, rather
than the ambient dimension M . Despite this powerful result, however, Theorem 9.1
is rather opaque in the case of arbitrary (not necessarily random) frames. The reason
is that the URP is a local geometric property of Φ , and explicitly verifying the URP
of order 2K requires a combinatorial search over all

(
M
2K

)
possible collections of

frame elements. Nevertheless, it is possible to replace the URP in Theorem 9.1 with
the worst-case coherence of Φ , which is a global geometric property of Φ that can
be easily computed in polynomial time. The key to this is the classical Geršgorin
circle theorem [40], which can be used to relate the URP of a frame Φ to its worst-
case coherence.

Lemma 9.1 (Geršgorin) Let ti,j , i, j = 1, . . . ,M , denote the entries of an M ×M

matrix T . Then every eigenvalue of T lies in at least one of the M circles defined

2Theorem 9.1 has been stated in [28] using the terminology of spark, instead of the URP. The spark
of a frame Φ is defined in [28] as the smallest number of frame elements of Φ that are linearly
dependent. In other words, Φ satisfies the URP of order K if and only if spark(Φ)≥K + 1.
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below:

Di (T )=
{

z ∈C : |z− ti,i | ≤
M∑

j=1
j 
=i

|ti,j |
}

, i = 1, . . . ,M. (9.4)

The Geršgorin circle theorem seems to have first appeared in 1931 in [40], and
its proof can be found in any standard text on matrix analysis such as [50]. This
theorem allows one to relate the worst-case coherence of Φ to the URP as follows.

Theorem 9.2 [28] Let Φ be a unit norm frame and K ∈ N. Then Φ satisfies the
URP of order K as long as K < 1+μ−1

Φ .

The proof of this theorem follows by bounding the minimum eigenvalue of any
K ×K principal submatrix of the Gramian matrix GΦ using Lemma 9.1. We can
now combine Theorem 9.1 with Theorem 9.2 to obtain the following theorem that
relates the worst-case coherence of Φ to the sparse signal recovery performance
of (P0).

Theorem 9.3 An arbitrary K-sparse signal x can be uniquely recovered from y =
Φx as a solution to (P0), provided

K <
1

2

(
1+μ−1

Φ

)
. (9.5)

Theorem 9.3 states that �0 minimization enables unique recovery of every K-
sparse signal measured using a frame Φ as long as K =O(μ−1

Φ ).3 This dictates that
frames that have small worst-case coherence are particularly well suited for measur-
ing sparse signals. It is also instructive to understand the fundamental limitations of
Theorem 9.3. In order to do so, we recall the following fundamental lower bound
on the worst-case coherence of unit norm frames.

Lemma 9.2 (The Welch Bound [75]) The worst-case coherence of any unit norm

frame Φ = (ϕi)
M
i=1 in H N satisfies the inequality μΦ ≥

√
M−N

N(M−1) .

It can be seen from the Welch bound that μΦ =Ω(N−1/2) as long as M > N .
Therefore, we have from Theorem 9.3 that even in the best of cases �0 minimiza-
tion yields unique recovery of every sparse signal as long as K = O(

√
N). This

implication is weaker than the K =O(N) scaling that we observed earlier for ran-
dom frames. A natural question to ask therefore is whether Theorem 9.3 is weak

3Recall, with big-O notation, that f (n) = O(g(n)) if there exist positive C and n0 such that for
all n > n0, f (n) ≤ Cg(n). Also, f (n) = Ω(g(n)) if g(n) = O(f (n)), and f (n) = Θ(g(n)) if
f (n)=O(g(n)) and g(n)=O(f (n)).
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in terms of the relationship between K and μΦ . The answer to this question how-
ever is in the negative, since there exist frames such as union of identity and Fourier
bases [30] and Steiner equiangular tight frames [36] that have certain collections of
frame elements with cardinality O(

√
N) that are linearly dependent. We therefore

conclude from the preceding discussion that Theorem 9.3 is tight from the frame-
theoretic perspective and, in general, frames with small worst-case coherence are
better suited for recovery of sparse signals using (P0). In particular, this highlights
the importance of Grassmannian frames in the context of sparse signal recovery in
the uniform sense.

9.2.2 Recovery and Estimation of Sparse Signals via Convex
Optimization and Greedy Algorithms

The implications of Sect. 9.2.1 are quite remarkable. We have seen that it is pos-
sible to recover a K-sparse signal x using a small number of measurements that is
proportional to μ−1

Φ ; in particular, for large classes of frames such as Gabor frames
[3], we see that O(K2) number of measurements suffice to recover a sparse signal
using �0 minimization. This can be significantly smaller than the N =M measure-
ments dictated by classical signal processing when K .M . Despite this, however,
sparse signal recovery using (P0) is something that one cannot be expected to use
for practical purposes. The reason for this is the computational complexity associ-
ated with �0 minimization; in order to solve (P0), one needs to exhaustively search
through all possible sparsity levels. The complexity of such exhaustive search is
clearly exponential in M , and it has been shown in [54] that (P0) is in general an
NP-hard problem. Alternate methods of solving y = Φx for a K-sparse x that are
also computationally feasible therefore have been of great interest to the practition-
ers. The recent interest in the literature on sparse signal processing partly stems
from the fact that significant progress has been made by numerous researchers in
obtaining various practical alternatives to (P0). Such alternatives range from con-
vex optimization-based methods [18, 22, 66] to greedy algorithms [25, 51, 55]. In
this subsection, we review the performance guarantees of two such seminal alter-
native methods that are widely used in practice and once again highlight the role
Grassmannian frames play in sparse signal processing.

9.2.2.1 Basis pursuit

A common heuristic approach taken in solving nonconvex optimization problems
is to approximate them with a convex problem and solve the resulting optimization
program. A similar approach can be taken to convexify (P0) by replacing the �0

“norm” in (P0) with its closest convex approximation, the �1 norm: ‖z‖1 =∑i |zi |.
The resulting optimization program, which seems to have been first proposed as a
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heuristic in [59], can be formally expressed as follows:

x̂1 = arg min
z∈H M

‖z‖1 subject to y =Φz. (P1)

The �1 minimization program (P1) is termed basis pursuit (BP) [22] and is in fact a
linear optimization program [11]. A number of numerical methods have been pro-
posed for solving BP in an efficient manner; we refer the reader to [72] for a survey
of some of these methods.

Even though BP has existed in the literature since at least the mid-1980s [59], it
is only in the last decade that results concerning its performance have been reported.
Below, we present one such result that is expressed in terms of the worst-case co-
herence of the frame Φ [28, 42].

Theorem 9.4 [28, 42] An arbitrary K-sparse signal x can be uniquely recovered
from y =Φx as a solution to (P1) provided

K <
1

2

(
1+μ−1

Φ

)
. (9.6)

The reader will notice that the sparsity requirements in both Theorem 9.3 and
Theorem 9.4 are the same. However, this does not mean that (P0) and (P1) always
yield the same solution, because the sparsity requirements in the two theorems are
only sufficient conditions. Regardless, it is rather remarkable that one can solve an
underdetermined system of equations y =Φx for a K-sparse x in polynomial time
as long as K = O(μ−1

Φ ). In particular, we can once again conclude from Theo-
rem 9.4 that frames with small worst-case coherence in general and Grassmannian
frames in particular are highly desirable in the context of recovery of sparse signals
using BP.

9.2.2.2 Orthogonal matching pursuit

BP is arguably a highly practical scheme for recovering a K-sparse signal x from
the set of measurements y = Φx. In particular, depending upon the particular im-
plementation, the computational complexity of convex optimization methods like
BP for general frames is typically O(M3 + NM2), which is much better than the
complexity of (P0), assuming P 
=NP. Nevertheless, BP can be computationally de-
manding for large-scale sparse recovery problems. Fortunately, there do exist greedy
alternatives to optimization-based approaches for sparse signal recovery. The old-
est and perhaps the most well-known among these greedy algorithms goes by the
name of orthogonal matching pursuit (OMP) in the literature [51]. Note that just
like BP, OMP has been in practical use for a long time, but it is only recently that
its performance has been characterized by the researchers.

The OMP algorithm obtains an estimate K̂ of the indices of the frame elements
{ϕi : xi 
= 0} that contribute to the measurements y =∑i:xi 
=0 ϕixi . The final OMP
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Algorithm 1 Orthogonal Matching Pursuit
Input: Unit norm frame Φ and measurement vector y
Output: Sparse OMP estimate x̂OMP
Initialize: i = 0, x̂0 = 0, K̂ = ∅, and r0 = y

while ‖ri‖ ≥ ε do
i← i + 1 {Increment counter}
z←Φ∗ri−1 {Form signal proxy}
�← arg maxj |zj | {Select frame element}
K̂ ← K̂ ∪ {�} {Update the index set}
x̂i

K̂
←Φ

†
K̂

y and x̂i

K̂ c
← 0 {Update the estimate}

ri ← y −Φx̂i {Update the residue}
end while
return x̂OMP = x̂i

estimate x̂OMP then corresponds to a least-squares estimate of x using the frame
elements {ϕi}i∈K̂ : x̂OMP = Φ

†
K̂

y, where (·)† denotes the Moore–Penrose pseu-
doinverse. In order to estimate the indices, the OMP starts with an empty set and
greedily expands that set by one additional frame element in each iteration. A for-
mal description of the OMP algorithm is presented in Algorithm 1, in which ε > 0 is
a stopping threshold. The power of OMP stems from the fact that if the estimate de-
livered by the algorithm has exactly K nonzeros then its computational complexity
is only O(NMK), which is typically much better than the computational complex-
ity of O(M3+NM2) for convex optimization-based approaches. We are now ready
to state a theorem characterizing the performance of the OMP algorithm in terms of
the worst-case coherence of frames.

Theorem 9.5 [29, 68] An arbitrary K-sparse signal x can be uniquely recovered
from y =Φx as a solution to the OMP algorithm with ε = 0, provided

K <
1

2

(
1+μ−1

Φ

)
. (9.7)

Theorem 9.5 shows that the guarantees for the OMP algorithm in terms of the
worst-case coherence match those for both (P0) and BP; OMP too requires that
K = O(μ−1

Φ ) in order for it to successfully recover a K-sparse x from y = Φx.
However, it cannot be emphasized enough that once K =Ω(μ−1

Φ ), we start to see
a difference in the empirical performance of (P0), BP, and OMP. Nevertheless, the
basic insight of Theorems 9.3–9.5 that frames with smaller worst-case coherence
improve the recovery performance remains valid in all three cases.

9.2.2.3 Estimation of sparse signals

Our focus in this section has so far been on recovery of sparse signals from the
measurements y =Φx. In practice, however, it is seldom the case that one obtains
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measurements of a signal without any additive noise. A more realistic model for
measurement of sparse signals in this case can be expressed as y =Φx + n, where
n represents either deterministic or random noise. In the presence of noise, one’s
objective changes from sparse signal recovery to sparse signal estimation; the goal
being an estimate x̂ that is to close to the original sparse signal x in an �2 sense.

It is clear from looking at (P1) that BP in its current form should not be used
for estimation of sparse signals in the presence of noise, since y 
=Φx in this case.
However, a simple modification of the constraint in (P1) allows us to gracefully han-
dle noise in sparse signal estimation problems. The modified optimization program
can be formally described as

x̂1 = arg min
z∈H M

‖z‖1 subject to ‖y −Φz‖ ≤ ε (P ε
1 )

where ε is typically chosen to be equal to the noise magnitude: ε = ‖n‖. The opti-
mization (P ε

1 ) is often called basis pursuit with inequality constraint (BPIC). It is
easy to check that BPIC is also a convex optimization program, although it is no
longer a linear program. Performance guarantees based upon the worst-case coher-
ence for BPIC in the presence of deterministic noise alluded researchers for quite
some time. The problem was settled recently in [29], and the solution is summarized
in the following theorem.

Theorem 9.6 [29] Suppose that an arbitrary K-sparse signal x satisfies the spar-

sity constraint K <
1+μ−1

Φ

4 . Given y =Φx + n, BPIC with ε = ‖n‖ can be used to
obtain an estimate x̂1 of x such that

‖x − x̂1‖ ≤ 2ε√
1−μΦ(4K − 1)

. (9.8)

Theorem 9.6 states that BPIC with an appropriate ε results in a stable solution,
despite the fact that we are dealing with an underdetermined system of equations.
In particular, BPIC also handles sparsity levels that are O(μ−1

Φ ) and results in a
solution that differs from the true signal x by O(‖n‖).

In contrast with BP, OMP in its original form can be run for both noiseless sparse
signal recovery and noisy sparse signal estimation. The only thing that changes in
OMP in the latter case is the value of ε, which typically should also be set equal to
the noise magnitude. The following theorem characterizes the performance of OMP
in the presence of noise [29, 67, 69].

Theorem 9.7 [29, 67, 69] Suppose that y = Φx + n for an arbitrary K-sparse
signal x and OMP is used to obtain an estimate x̂OMP of x with ε = ‖n‖. Then the
OMP solution satisfies

‖x − x̂OMP‖ ≤ ε√
1−μΦ(K − 1)

(9.9)
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provided x satisfies the sparsity constraint

K <
1+μ−1

Φ

2
− ε ·μ−1

Φ

xmin
. (9.10)

Here, xmin denotes the smallest (in magnitude) nonzero entry of x: xmin =
mini:xi 
=0 |xi |.

It is interesting to note that, unlike the case of sparse signal recovery, OMP in the
noisy case does not have guarantees similar to that of BPIC. In particular, while the
estimation error in OMP is still O(‖n‖), the sparsity constraint in the case of OMP
becomes restrictive as the smallest (in magnitude) nonzero entry of x decreases.

The estimation error guarantees provided in Theorem 9.6 and Theorem 9.7 are
near-optimal for the case when the noise n follows an adversarial (or deterministic)
model. This happens because the noise n under the adversarial model can always
be aligned with the signal x, making it impossible to guarantee an estimation error
smaller than the size of n. However, if one is dealing with stochastic noise, then it is
possible to improve upon the estimation error guarantees for sparse signals. In order
to do that, we first define a Lagrangian relaxation of (P ε

1 ), which can be formally
expressed as

x̂1,2 = arg min
z∈H M

1

2
‖y −Φx‖ + τ‖z‖1. (P1,2)

The mixed-norm optimization program (P1,2) goes by the name of basis pursuit
denoising (BPDN) [22] as well as least absolute shrinkage and selection opera-
tor (LASSO) [66]. In the following, we state estimation error guarantees for both
the LASSO and OMP under the assumption of an additive white Gaussian noise
(AWGN): n∼N (0, σ 2Id).

Theorem 9.8 [6] Suppose that y = Φx + n for an arbitrary K-sparse signal x,
the noise n is distributed as N (0, σ 2Id), and the LASSO is used to obtain an esti-
mate x̂1,2 of x with τ = 4

√
σ 2 log(M −K). Then under the assumption that x sat-

isfies the sparsity constraint K <
μ−1
Φ

3 , the LASSO solution satisfies support(̂x1,2)⊂
support(x) and

‖x − x̂1,2‖ ≤
(√

3+ 3
√

4 log(M −K)
)2
Kσ 2 (9.11)

with probability exceeding (1− 1
(M−K)2 )(1− e−K/7).

A few remarks are in order now concerning Theorem 9.8. First, note that the
results of the theorem hold with high probability since there exists a small proba-
bility that the Gaussian noise aligns with the sparse signal. Second, (9.11) shows
that the estimation error associated with the LASSO solution is O(

√
σ 2K logM).

This estimation error is within a logarithmic factor of the best unbiased estimation
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error O(
√
σ 2K) that one can obtain in the presence of stochastic noise.4 Ignoring

the probabilistic aspect of Theorem 9.8, it is also worth comparing the estimation
error of Theorem 9.6 with that of the LASSO. It is a tedious but simple exercise in
probability to show that ‖n‖ =Ω(

√
σ 2M) with high probability. Therefore, if one

applies Theorem 9.6 directly to the case of stochastic noise, then one obtains that
the square of the estimation error scales linearly with the ambient dimension M of
the sparse signal. On the other hand, Theorem 9.8 yields that the square of the es-
timation error scales linearly with the sparsity (modulo a logarithmic factor) of the
sparse signal. This highlights the differences that exist between guarantees obtained
under a deterministic noise model versus a stochastic (random) noise model.

We conclude this subsection by noting that it is also possible to obtain better
OMP estimation error guarantees for the case of stochastic noise provided one in-
puts the sparsity of x to the OMP algorithm and modifies the halting criterion in
Algorithm 1 from ‖ri‖ ≥ ε to i ≤ K (i.e., the OMP is restricted to K iterations
only). Under this modified setting, the guarantees for the OMP algorithm can be
stated in terms of the following theorem.

Theorem 9.9 [6] Suppose that y =Φx+ n for an arbitrary K-sparse signal x, the
noise n is distributed as N (0, σ 2Id), and the OMP algorithm is input the sparsity
K of x. Then under the assumptions that x satisfies the sparsity constraint

K <
1+μ−1

Φ

2
− 2

√
σ 2 logM ·μ−1

Φ

xmin
, (9.12)

the OMP solution obtained by terminating the algorithm after K iterations satisfies
support(̂xOMP)= support(x) and

‖x − x̂OMP‖ ≤ 4
√
σ 2K logM (9.13)

with probability exceeding 1 − 1
M
√

2π logM
. Here, xmin again denotes the smallest

(in magnitude) nonzero entry of x.

9.2.3 Remarks

Recovery and estimation of sparse signals from a small number of linear measure-
ments y =Φx + n is an area of immense interest to a number of communities such
as signal processing, statistics, and harmonic analysis. In this context, numerous re-
construction algorithms based upon either optimization techniques or greedy meth-
ods have been proposed in the literature. Our focus in this section has primarily been

4We point out here that if one is willing to tolerate some bias in the estimate, then the estimation

error can be made smaller than O(
√
σ 2K); see, e.g., [18, 31].
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on two of the most well-known methods in this regard, namely, BP (and BPIC and
LASSO) and OMP. Nevertheless, it is important for the reader to realize that there
exist other methods in the literature, such as the Dantzig selector [18], CoSaMP
[55], subspace pursuit [25], and iterative hard thresholding (IHT) [7], that can also
be used for recovery and estimation of sparse signals. These methods primarily dif-
fer from each other in terms of computational complexity and explicit constants, but
offer error guarantees that appear very similar to the ones in Theorems 9.4–9.9.

We conclude this section by noting that our focus here has been on providing
uniform guarantees for sparse signals and relating those guarantees to the worst-
case coherence of frames. The most important lesson of the preceding results in
this regard is that there exist many computationally feasible algorithms that enable
recovery/estimation of arbitrary K-sparse signals as long as K =O(μ−1

Φ ). There are
two important aspects of this lesson. First, frames with small worst-case coherence
are particularly well suited for making observations of sparse signals. Second, even
Grassmannian frames cannot be guaranteed to work well if K = O(N1/2+δ) for
δ > 0, which follows trivially from the Welch bound. This second observation seems
overly restrictive, and there exists literature based upon other properties of frames
that attempts to break this “square-root” bottleneck. One such property, which has
found widespread use in the compressed sensing literature, is termed the restricted
isometry property (RIP) [14].

Definition 9.2 (Restricted Isometry Property) A unit norm frame Φ = (ϕi)
M
i=1 in

H N is said to have the RIP of order K with parameter δK ∈ (0,1) if for every
K-sparse x, the following inequalities hold:

(1− δK)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1+ δK)‖x‖2
2. (9.14)

The RIP of order K is essentially a statement concerning the minimum and max-
imum singular values of all N × K submatrices of Φ . However, even though the
RIP has been used to provide guarantees for numerous sparse recovery/estimation
algorithms such as BP, BPDN, CoSaMP, and IHT, explicit verification of this prop-
erty for arbitrary frames appears to be computationally intractable. In particular, the
only frames that are known to break the square-root bottleneck (using the RIP) for
uniform guarantees are random (Gaussian, random binary, randomly subsampled
partial Fourier, etc.) frames.5 Still, it is possible to verify the RIP indirectly through
the use of the Geršgorin circle theorem [5, 44, 71]. Doing so, however, yields results
that match the ones reported above in terms of the sparsity constraint: K =O(μ−1

Φ ).

5Recently Bourgain et al. in [10] have reported a deterministic construction of frames that satisfies
the RIP of K = O(N1/2+δ). However, the constant δ in there is so small that the scaling can be
considered K =O(N1/2) for all practical purposes.
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9.3 Beyond Uniform Guarantees: Typical Behavior

The square-root bottleneck in sparse recovery/estimation problems is hard to over-
come in part because of our insistence that the results hold uniformly for all K-
sparse signals. In this section, we take a departure from uniform guarantees and
instead focus on the typical behavior of various methods. In particular, we demon-
strate in the following that the square-root bottleneck can be shattered by (i) im-
posing a statistical prior on the support and/or the nonzero entries of sparse signals
and (ii) considering additional geometric measures of frames in conjunction with
the worst-case coherence. In the following, we will focus on recovery, estimation,
regression, and support detection of sparse signals using a multitude of methods. In
all of these cases, we will assume that the support K ⊂ {1, . . . ,M} of x is drawn
uniformly at random from all

(
M
K

)
size-K subsets of {1, . . . ,M}. In some sense,

this is the simplest statistical prior one can put on the support of x; in words, this
assumption simply states that all supports of size K are equally likely.

9.3.1 Typical Recovery of Sparse Signals

In this section, we focus on typical recovery of sparse signals and provide guarantees
for both �0 and �1 minimization (cf. (P0) and (P1)). The statistical prior we impose
on the nonzero entries of sparse signals for this purpose however will differ for the
two optimization schemes. We begin by providing a result for typical recovery of
sparse signals using (P0). The following theorem is due to Tropp and follows from
combining results of [70] and [71].

Theorem 9.10 [70, 71] Suppose that y =Φx for a K-sparse signal x whose sup-
port is drawn uniformly at random and whose nonzero entries have a jointly con-
tinuous distribution. Further, let the frame Φ be such that μΦ ≤ (c1 logM)−1 for
numerical constant c1 = 240. Then under the assumption that x satisfies the sparsity
constraint

K < min

{
μ−2
Φ√
2
,

M

c2
2‖Φ‖2 logM

}
, (9.15)

the solution of (P0) satisfies x̂0 = x with probability exceeding 1−M−2 log 2. Here,
c2 = 148 is another numerical constant.

In order to understand the significance of Theorem 9.10, let us focus on the case
of an approximately tight frame Φ: ‖Φ‖2 ≈Θ(M

N
). In this case, ignoring the log-

arithmic factor, we have from (9.15) that �0 minimization can recover a K-sparse
signal with high probability as long as K = O(μ−2

Φ ). This is in stark contrast to
Theorem 9.3, which only allows K =O(μ−1

Φ ); in particular, Theorem 9.10 implies
recovery of “most” K-sparse signals with K =O(N/ logM) using frames such as
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Gabor frames. In essence, shifting our focus from uniform guarantees to typical
guarantees allows us to break the square-root bottleneck for arbitrary frames.

Even though Theorem 9.10 allows us to obtain near-optimal sparse recovery re-
sults, it is still a statement about the computationally infeasible �0 optimization. We
now shift our focus to the computationally tractable BP optimization and present
guarantees concerning its typical behavior. Before proceeding further, we point out
that typicality in the case of �0 minimization is defined by a uniformly random sup-
port and a continuous distribution of the nonzero entries. In contrast, typicality in
the case of BP will be defined in the following by a uniformly random support but
nonzero entries whose phases are independent and uniformly distributed on the unit
circle C = {w ∈ C : |w| = 1}.6 The following theorem is once again due to Tropp
and follows from combining results of [70] and [71].

Theorem 9.11 [70, 71] Suppose that y = Φx for a K-sparse signal x whose
support is drawn uniformly at random and whose nonzero entries have indepen-
dent phases distributed uniformly on C . Further, let the frame Φ be such that
μΦ ≤ (c1 logM)−1. Then under the assumption that x satisfies the sparsity con-
straint

K < min

{
μ−2
Φ

16 logM
,

M

c2
2‖Φ‖2 logM

}
, (9.16)

the solution of BP satisfies x̂1 = x with probability exceeding 1−M−2 log 2 −M−1.
Here, c1 and c2 are the same numerical constants specified in Theorem 9.10.

It is worth pointing out that there exists another variant of Theorem 9.11 that
involves sparse signals whose nonzero entries are independently distributed with
zero median. Theorem 9.11 once again provides us with a powerful typical behavior
result. Given approximately tight frames, it is possible to recover with high proba-
bility K-sparse signals using BP as long as K =O(μ−2

Φ / logM). It is interesting to
note here that, unlike Sect. 9.2, which dictates the use of Grassmannian frames for
best uniform guarantees, both Theorem 9.10 and Theorem 9.11 dictate the use of
Grassmannian frames that are also approximately tight for best typical guarantees.
Heuristically speaking, insisting on tightness of frames is what allows us to break
the square-root bottleneck in the typical case.

9.3.2 Typical Regression of Sparse Signals

Instead of shifting the discussion to typical sparse estimation, we now focus on an-
other important problem in the statistics literature, namely, sparse linear regression

6Recall the definition of the phase of a number r ∈C: sgn(r)= r
|r| .
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[32, 38, 66]. We will return to the problem of sparse estimation in Sect. 9.3.4. Given
y =Φx+n for a K-sparse vector x ∈R

M , the goal in sparse regression is to obtain
an estimate x̂ of x such that the regression error ‖Φx − Φx̂‖2 is small. It is im-
portant to note that the only nontrivial result that can be provided for sparse linear
regression is in the presence of noise, since the regression error in the absence of
noise is always zero. Our focus in this section will be once again on the AWGN n

with variance σ 2, and we will restrict ourselves to the LASSO solution (cf. (P1,2)).
The following theorem provides guarantees for the typical behavior of the LASSO
as reported in a recent work of Candès and Plan [15].

Theorem 9.12 [15] Suppose that y =Φx+n for a K-sparse signal x ∈R
M whose

support is drawn uniformly at random and whose nonzero entries are jointly inde-
pendent with zero median. Further, let the noise n be distributed as N (0, σ 2Id),
let the frame Φ be such that μΦ ≤ (c3 logM)−1, and let x satisfy the sparsity con-
straint K ≤ M

c4‖Φ‖2 logM
for some positive numerical constants c3 and c4. Then the

solution x̂1,2 of the LASSO computed with τ = 2
√

2σ 2 logM satisfies

‖Φx −Φx̂‖2 ≤ c5

√
2σ 2K logM (9.17)

with probability at least 1− 6M−2 log 2 −M−1(2π logM)−1/2. Here, the constant
c5 may be taken as 8(1+√2)2.

There are two important things to note about Theorem 9.12. First, it states that
the regression error of the LASSO is O(

√
σ 2K logM) with very high probabil-

ity. This regression error is in fact very close to the near-ideal regression error of
O(
√
σ 2K). Second, the performance guarantees of Theorem 9.12 are a strong func-

tion of ‖Φ‖ but only a weak function of the worst-case coherence μΦ . In particular,
Theorem 9.12 dictates that the sparsity level accommodated by the LASSO is pri-
marily a function of ‖Φ‖, provided μΦ is not too large. If, for example, Φ was
an approximately tight frame, then the LASSO can handle K ≈ O(N/ logM) re-
gardless of the value of μΦ , provided μΦ = O(1/ logM). In essence, the above
theorem signifies the use of approximately tight frames with small-enough coher-
ence in regression problems. We conclude this subsection by noting that some of the
techniques used in [15] to prove this theorem can in fact be used to also relax the de-
pendence of BP on μΦ and obtain BP guarantees that primarily require small ‖Φ‖.

9.3.3 Typical Support Detection of Sparse Signals

It is often the case in many signal processing and statistics applications that one is
interested in obtaining locations of the nonzero entries of a sparse signal x from
a small number of measurements. This problem of support detection or model se-
lection is of course trivial in the noiseless setting; exact recovery of sparse signals
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in this case implies exact recovery of the signal support: support(̂x)= support(x).
Given y = Φx + n with nonzero noise n, however, the support detection problem
becomes nontrivial. This happens because a small estimation error in this case does
not necessarily imply a small support detection error. Both exact support detection
(support(̂x)= support(x)) and partial support detection (support(̂x)⊂ support(x))
in the case of deterministic noise are very challenging (perhaps impossible) tasks.
In the case of stochastic noise, however, both these problems become feasible, and
we alluded to them in Theorem 9.8 and Theorem 9.9 in the context of uniform guar-
antees. In this subsection, we now focus on typical support detection in order to
overcome the square-root bottleneck.

9.3.3.1 Support detection using the LASSO

The LASSO is arguably one of the standard tools used for support detection by the
statistics and signal processing communities. Over the years, a number of theoretical
guarantees have been provided for the LASSO support detection in [53, 73, 79]. The
results reported in [53, 79] established that the LASSO asymptotically identifies the
correct support under certain conditions on the frame Φ and the sparse signal x.
Later, Wainwright in [73] strengthened the results of [53, 79] and made explicit
the dependence of exact support detection using the LASSO on the smallest (in
magnitude) nonzero entry of x. However, apart from the fact that the results reported
in [53, 73, 79] are only asymptotic in nature, the main limitation of these works is
that explicit verification of the conditions (such as the irrepresentable condition of
[79] and the incoherence condition of [73]) that an arbitrary frame Φ needs to satisfy
is computationally intractable for K =Ω(μ−1−δ

Φ ), δ > 0.
The support detection results reported in [53, 73, 79] suffer from the square-root

bottleneck because of their focus on uniform guarantees. Recently, Candès and Plan
reported typical support detection results for the LASSO that overcome the square-
root bottleneck of the prior work in the case of exact support detection [15].

Theorem 9.13 [15] Suppose that y =Φx+n for a K-sparse signal x ∈R
M whose

support is drawn uniformly at random and whose nonzero entries are jointly inde-
pendent with zero median. Further, let the noise n be distributed as N (0, σ 2Id),
let the frame Φ be such that μΦ ≤ (c6 logM)−1, and let x satisfy the sparsity con-
straint K ≤ M

c7‖Φ‖2 logM
for some positive numerical constants c6 and c7. Finally,

let K be the support of x and suppose that

min
i∈K

|xi |> 8
√

2σ 2 logM. (9.18)

Then the solution x̂1,2 of LASSO computed with τ = 2
√

2σ 2 logM satisfies

support(̂x1,2)= support(x) and sgn(̂xK )= sgn(xK ) (9.19)

with probability at least 1− 2M−1((2π logM)−1/2 +KM−1)−O(M−2 log 2).



320 W.U. Bajwa and A. Pezeshki

Algorithm 2 The One-Step Thresholding (OST) Algorithm for Support Detection
Input: Unit norm frame Φ , measurement vector y, and a threshold λ > 0
Output: Estimate of signal support K̂ ⊂ {1, . . . ,M}

z←Φ∗y {Form signal proxy}
K̂ ←{i ∈ {1, . . . ,M} : |zi |> λ} {Select indices via OST}

This theorem states that if the nonzero entries of the sparse signal x are signif-
icant in the sense that they roughly lie (modulo the logarithmic factor) above the
noise floor σ , then the LASSO successfully carries out exact support detection for
sufficiently sparse signals. Of course if any nonzero entry of the signal lies below
the noise floor, then it is impossible to tell that entry apart from the noise itself. The-
orem 9.13 is nearly optimal for exact model selection in this regard. In terms of the
sparsity constraints, the statement of this theorem matches that of Theorem 9.12.
Therefore, we once again see that frames that are approximately tight and have
worst-case coherence that is not too large are particularly well suited for sparse sig-
nal processing when used in conjunction with the LASSO.

9.3.3.2 Support detection using one-step thresholding

Although the support detection results reported in Theorem 9.13 are near-optimal,
it is desirable to investigate alternative solutions to the problem of typical support
detection, because:

1. The LASSO requires the minimum singular value of the subframe of Φ corre-
sponding to the support K to be bounded away from zero [15, 53, 73, 79]. While
this is a plausible condition for the case when one is interested in estimating x, it
is arguable whether this condition is necessary for the case of support detection.

2. Theorem 9.13 still lacks guarantees for K = Ω(μ−1−δ
Φ ), δ > 0 in the case of

deterministic nonzero entries of x.
3. The computational complexity of the LASSO for arbitrary frames tends to be

O(M3 +NM2). This makes the LASSO computationally demanding for large-
scale model-selection problems.

In light of these concerns, a few researchers recently revisited the much older
(and oft-forgotten) method of thresholding for support detection [2, 3, 37, 39, 57,
61]. The one-step thresholding (OST) algorithm, described in Algorithm 2, has a
computational complexity of only O(NM) and it has been known to be nearly op-
timal for M ×M orthonormal bases [31]. In this subsection, we focus on a recent
result of Bajwa et al. [2, 3] concerning typical support detection using OST. The
forthcoming theorem in this regard relies on a notion of the coherence property,
defined below.
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Definition 9.3 (The Coherence Property [2, 3]) We say that a unit norm frame Φ

satisfies the coherence property if

(CP-1) μΦ ≤ 0.1√
2 logM

and (CP-2) νΦ ≤ μΦ√
N

.

In words, (CP-1) roughly states that the frame elements of Φ are not too sim-
ilar, while (CP-2) roughly states that the frame elements of a unit norm Φ are
somewhat distributed within the N -dimensional unit ball. Note that the coherence
property (i) does not require the singular values of the submatrices of Φ to be
bounded away from zero, and (ii) can be verified in polynomial time since it sim-
ply requires checking ‖GΦ − Id‖max ≤ (200 logM)−1/2 and ‖(GΦ − Id)1‖∞ ≤
‖GΦ − Id‖max(M − 1)N−1/2.

The implications of the coherence property are described in the following the-
orem. Before proceeding further, however, we first define some notation. We use
SNR

.= ‖x‖2/E[‖n‖2] to denote the signal-to-noise ratio associated with the sup-
port detection problem. Also, we use x(�) to denote the �-th largest (in magnitude)
nonzero entry of x. We are now ready to state the typical support detection perfor-
mance of the OST algorithm.

Theorem 9.14 [3] Suppose that y = Φx + n for a K-sparse signal x ∈ C
M

whose support K is drawn uniformly at random. Further, let M ≥ 128, let the
noise n be distributed as complex Gaussian with mean 0 and covariance σ 2Id,
n ∼ C N (0, σ 2Id), and let the frame Φ satisfy the coherence property. Finally,
fix a parameter t ∈ (0,1) and choose the threshold

λ=max

{
1

t
10μΦ

√
N · SNR,

1

1− t

√
2

}√
2σ 2 logM.

Then, under the assumption that K ≤ N/(2 logM), the OST algorithm (Algo-
rithm 2) guarantees with probability exceeding 1 − 6M−1 that K̂ ⊂ K and
|K \ K̂ | ≤ (K − L), where L is the largest integer for which the following in-
equality holds:

x(L) > max
{
c8σ, c9μΦ‖x‖

}√
logM. (9.20)

Here, c8
.= 4(1− t)−1, c9

.= 20
√

2 t−1, and the probability of failure is with respect
to the true model K and the Gaussian noise n.

In order to put the significance of Theorem 9.14 into perspective, we recall the
thresholding results obtained by Donoho and Johnstone [31]—which form the basis
of ideas such as wavelet denoising—for the case of M ×M orthonormal bases. It
was established in [31] that if Φ is an orthonormal basis, then hard thresholding the
entries of Φ∗y at λ=Θ(

√
σ 2 logM) results in oracle-like performance in the sense

that one recovers (with high probability) the locations of all the nonzero entries of
x that are above the noise floor (modulo logM).
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Now the first thing to note regarding Theorem 9.14 is the intuitively pleasing
nature of the proposed threshold. Specifically, assume that Φ is an orthonormal
basis and notice that, since μΦ = 0, the threshold λ = Θ(max{μΦ

√
N · SNR,1}×√

σ 2 logM) proposed in the theorem reduces to the threshold proposed in [31] and
Theorem 9.14 guarantees that thresholding recovers (with high probability) the lo-
cations of all the nonzero entries of x that are above the noise floor. The reader
can become convinced of this assertion by noting that x(�) = Ω(

√
σ 2 logM)⇒

� ∈ K̂ in the case of orthonormal bases. Now consider instead frames that are not
necessarily orthonormal but which satisfy μΦ = O(N−1/2) and νΦ = O(N−1).
Then we have from the theorem that OST identifies (with high probability) the
locations of the nonzero entries of x whose energies are greater than both the
noise variance (modulo logM) and the average energy per nonzero entry: x2

(�) =
Ω(max{σ 2 logM,‖x‖2/K})⇒ � ∈ K̂ . It is then easy to see in this case that if ei-
ther the noise floor is high enough or the nonzero entries of x are roughly of the
same magnitude then the simple OST algorithm leads to recovery of the locations
of all the nonzero entries that are above the noise floor. Stated differently, the OST
in certain cases has the oracle property in the sense of Donoho and Johnstone [31]
without requiring the frame Φ to be an orthonormal basis.

9.3.4 Typical Estimation of Sparse Signals

Our goal in this section is to provide typical guarantees for the reconstruction of
sparse signals from noisy measurements y =Φx+ n, where the entries of the noise
vector n ∈ C

N are independent, identical complex Gaussian random variables with
mean zero and variance σ 2. The reconstruction algorithm we analyze here is an
extension of the OST algorithm described earlier for support detection. This OST
algorithm for reconstruction is described in Algorithm 3, and has been recently an-
alyzed in [4]. The following theorem is due to Bajwa et al. [4] and shows that the
OST algorithm leads to a near-optimal reconstruction error for certain important
classes of sparse signals.

Before a formal statement of the theorem, however, we need to define some more
notation. We use Tσ (t) := {i : |xi |> 2

√
2

1−t

√
2σ 2 logM} for any t ∈ (0,1) to denote

the locations of all the entries of x that, roughly speaking, lie above the noise floor σ .

Algorithm 3 One-Step Thresholding (OST) for Sparse Signal Reconstruction
Input: Unit norm frame Φ , measurement vector y, and a threshold λ > 0
Output: Sparse OST estimate x̂OST

x̂OST ← 0 {Initialize}
z←Φ∗y {Form signal proxy}
K̂ ←{i : |zi |> λ} {Select indices via OST}
x̂OST
K̂

← (ΦK̂ )†y {Reconstruct signal via least-squares}
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Also, we use Tμ(t) := {i : |xi |> 20
t
μΦ‖x‖√2 logM} to denote the locations of en-

tries of x that, roughly speaking, lie above the self-interference floor μΦ‖x‖. Fi-
nally, we also need a stronger version of the coherence property for reconstruction
guarantees.

Definition 9.4 (The Strong Coherence Property [3]) We say a unit norm frame Φ

satisfies the strong coherence property if

(SCP-1) μΦ ≤ 1

164 logM
and (SCP-2) νΦ ≤ μΦ√

N
.

Theorem 9.15 [4] Take a unit norm frame Φ which satisfies the strong coherence
property, pick t ∈ (0,1), and choose λ=√2σ 2 logM max{ 10

t
μΦ

√
N SNR,

√
2

1−t
}.

Further, suppose x ∈C
M has support K drawn uniformly at random from all pos-

sible K-subsets of {1, . . . ,M}. Then provided

K ≤ M

c2
10‖Φ‖2 logM

, (9.21)

Algorithm 3 produces K̂ such that Tσ (t)∩Tμ(t)⊆ K̂ ⊆K and x̂OST such that

∥∥x − x̂OST
∥∥≤ c11

√
σ 2|K̂ | logM + c12‖xK \K̂ ‖ (9.22)

with probability exceeding 1− 10M−1. Finally, defining T := |Tσ (t) ∩Tμ(t)|, we
further have

‖x − x̂‖ ≤ c11

√
σ 2K logM + c12‖x − xT ‖ (9.23)

in the same probability event. Here, c10 = 37e, c11 = 2
1−e−1/2 , and c12 = 1+ e−1/2

1−e−1/2

are numerical constants.

A few remarks are in order now for Theorem 9.15. First, if Φ satisfies the strong
coherence property and Φ is nearly tight, then OST handles sparsity that is almost
linear in N : K = O(N/ logM) from (9.21). Second, the �2 error associated with
the OST algorithm is the near-optimal (modulo the log factor) error of

√
σ 2K logM

plus the best T -term approximation error caused by the inability of the OST algo-
rithm to recover signal entries that are smaller than O(μΦ‖x‖√2 logM). In par-
ticular, if the K-sparse signal x, the worst-case coherence μΦ , and the noise n

together satisfy ‖x − xT ‖ = O(
√
σ 2K logM), then the OST algorithm succeeds

with a near-optimal �2 error of ‖x − x̂‖ =O(
√
σ 2K logM). To see why this er-

ror is near-optimal, note that a K-dimensional vector of random entries with mean
zero and variance σ 2 has expected squared norm σ 2K ; in here, the OST pays an
additional log factor to find the locations of the K nonzero entries among the en-
tire M-dimensional signal. It is important to recognize that the optimality condition
‖x − xT ‖ =O(

√
σ 2K logM) depends on the signal class, the noise variance, and
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the worst-case coherence of the frame; in particular, the condition is satisfied when-
ever ‖xK \Tμ(t)‖ =O(

√
σ 2K logM), since

‖x − xT ‖ ≤ ‖xK \Tσ (t)‖ + ‖xK \Tμ(t)‖ =O
(√

σ 2K logM
)
+ ‖xK \Tμ(t)‖.

(9.24)
We conclude this subsection by stating a lemma from [4] that provides classes
of sparse signals which satisfy ‖xK \Tμ(t)‖ = O(

√
σ 2K logM) given sufficiently

small noise variance and worst-case coherence.

Lemma 9.3 Take a unit norm frame Φ with worst-case coherence μΦ ≤ c13√
N

for
some c13 > 0, and suppose that K ≤ M

c2
14‖Φ‖2 logM

for some c14 > 0. Fix a constant

β ∈ (0,1], and suppose the magnitudes of βK nonzero entries of x are some α =
Ω(
√
σ 2 logM), while the magnitudes of the remaining (1 − β)K nonzero entries

are not necessarily the same, but are smaller than α and scale as O(
√
σ 2 logM).

Then ‖xK \Tμ(t)‖ =O(
√
σ 2K logM), provided c13 ≤ tc14

20
√

2
.

In words, Lemma 9.3 states that OST is near-optimal for those K-sparse signals
whose entries above the noise floor have roughly the same magnitude. This sub-
sumes a very important class of signals that appears in applications such as multi-
label prediction [47], in which all the nonzero entries take values ±α.

9.4 Finite Frames for Detecting the Presence of Sparse Signals

In the previous sections, we discussed the role of frame theory in recovering and
estimating sparse signals in different settings. We now consider a different problem:
detecting the presence of a sparse signal in noise. In the simplest form, the problem
is to decide whether an observed data vector is a realization from a hypothesized
noise-only model or from a hypothesized signal-plus-noise model, where in the lat-
ter model the signal is sparse but the indices and the values of its nonzero elements
are unknown. The problem is a binary hypothesis test of the form

{
H0 : y =Φn,

H1 : y =Φ(x + n),
(9.25)

where x ∈ R
M is a deterministic but unknown K-sparse signal, the measurement

matrix Φ = {ϕi}Mi=1 is a frame for RN , N ≤M , which we get to design, and n ∈R
M

is a white Gaussian noise vector with covariance matrix E[nnT ] = (σ 2
n /M)Id.

We assume here that the number of measurements N allowed for detection is
fixed and prespecified. We wish to decide whether the measurement vector y ∈R

N

belongs to model H0 or H1. This problem is fundamentally different from that of
estimating a sparse signal, as the objective in detection typically is to maximize the
probability of detection, while maintaining a low false alarm rate, or to minimize the
total error probability or a Bayes risk, rather than to find the sparsest signal that fits
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a linear observation model. Unlike the signal estimation problem, the detection of
sparse signals has received very little attention so far, with notable exceptions being
[45, 56, 74]. But in particular, the design of optimal or near-optimal compressive
measurement matrices for detection of sparse signals has scarcely been addressed
[76, 77]. In this section, we provide an overview of selected results by Zahedi et
al. [76, 77], concerning the necessary and sufficient conditions for a frame Φ to
optimize a measure of detection performance.

We look at the general problem of designing the measurement frame Φ to maxi-
mize the measurement SNR, under H1, which is given by

SNR= ‖Φx‖2

σ 2
n /M

. (9.26)

This is motivated by the fact that for the class of linear log-likelihood ratio detectors,
where the log-likelihood ratio is a linear function of the data, the detection perfor-
mance is improved by increasing the SNR. In particular, for a Neyman–Pearson
detector (see, e.g., [60]) with false alarm rate PF ≤ γ , the probability of detection

Pd =Q
(
Q−1(γ )−√SNR

)
(9.27)

is monotonically increasing in SNR, where Q(·) is the Q-function, given by

Q(z)=
∫ ∞

z

e−w2/2 dw. (9.28)

In addition, maximizing SNR leads to maximum detection probability at a prespeci-
fied false alarm rate in an energy detector, which simply tests the energy of the mea-
sured vector y against a threshold. Without loss of generality, we assume that σ 2

n = 1
and ‖x‖2 = 1, and we design Φ to maximize the measured signal energy ‖Φx‖2.
To avoid coloring the noise vector n, that is, to keep the noise vector white, we
constrain the measurement frame Φ to be Parseval, or tight with frame bound equal
to one. That is, we only consider frames for which the frame operator SΦ = ΦΦT

is identity. From here on we simply refer to these frames as tight frames, but it is
understood that all tight frames we consider in this section are in fact Parseval.

In solving the problem, one approach is to assume a value for the sparsity level
K and design the measurement frame Φ based on this assumption. This approach,
however, runs the risk that the true sparsity level might be different. An alternative
approach is not to assume any specific sparsity level. Instead, when designing Φ ,
we prioritize the level of importance of different values of sparsity. In other words,
we first find a set of solutions that are optimal for a K1-sparse signal. Then, within
this set, we find a subset of solutions that are also optimal for K2-sparse signals. We
follow this procedure until we find a subset that contains a family of optimal solu-
tions for sparsity levels K1,K2,K3, . . . . This approach is known as a lexicographic
optimization method (see, e.g., [33, 43, 48]). The measurement frame design natu-
rally depends on one’s assumptions about the unknown vector x. In the following
sections, we review two different design problems, namely a worst-case SNR design
and an average SNR design, following the developments of [76, 77].
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We note that lexicographic optimizations have been employed earlier in [46] in
the design of frames that have maximal robustness to erasures of frame coefficients.
The analysis used in deriving the main results for the worst-case SNR design is
similar in nature to that used in [46].

9.4.1 Worst-Case SNR Design

In the worst-case design for a sparsity level K , we consider the vector x that min-
imizes the SNR among all K-sparse signals and design the frame Φ to maximize
this minimum SNR. Of course, when minimizing the SNR with respect to x, we
have to find the minimum SNR with respect to both the locations and the values
of the nonzero entries in x. To combine this with the lexicographic approach, we
design the matrix Φ to maximize the worst-case detection SNR, where the worst
case is taken over all subsets of size Ki of elements of x, where Ki is the sparsity
level considered at the ith level of lexicographic optimization. This is a design for
robustness with respect to the worst sparse signal that can be produced.

Consider the K th step of the lexicographic approach. In this step, the vector x is
assumed to have up to K nonzero entries, and we assume ‖x‖2 = 1. But otherwise,
we do not impose any constraints on the locations and the values of the nonzero
entries of x. We wish to maximize the minimum (worst-case) SNR, produced by
assigning the worst possible locations and values to the nonzero entries of the K-
sparse vector x. Since we assume σ 2

n = 1, this corresponds to a worst-case design
for maximizing the signal energy ‖Φx‖2.

Let B0 be the set containing all (N ×M) tight frames. We recursively define the
set BK , K = 1,2, . . . , as the set of solutions to the following worst-case optimiza-
tion problem [77]:

max
Φ

min
x
‖Φx‖2,

s.t. Φ ∈BK−1,

‖x‖ = 1,
x is K-sparse.

(9.29)

The optimization problem for the K th stage (9.29) involves a worst-case objective
restricted to the set of solutions BK−1 from the (K − 1)th problem. So, BK ⊂
BK−1 ⊂ · · · ⊂B0.

Now let Ω = {1,2, . . . ,M}, and define ΩK to be ΩK = {ω ⊂ Ω : |ω| = K}.
For any T ∈ ΩK , let xT be the subvector of size (K × 1) that contains all the
components of x corresponding to indices in T . Similarly, given a frame Φ , let
ΦT be the (N ×K) submatrix consisting of all columns of Φ whose indices are
in T . Note that the vector xT may have zero entries and hence is not necessarily
the same as the support of x. Given T ∈ΩK , the product Φx can be replaced by
ΦT xT instead. To consider the worst-case design, for any T we need to consider
the xT that minimizes ‖ΦT xT ‖2 and then also find the worst T ∈ΩK . Using this



9 Finite Frames for Sparse Signal Processing 327

notation and after some simple algebra, the worst-case problem (9.29) can be posed
as the following max-min problem [77]:

(PK)

⎧
⎨

⎩

maxΦminT λmin(Φ
T
T ΦT ),

s.t. Φ ∈BK−1,

T ∈ΩK,

(9.30)

where λmin(Φ
T
T ΦT ) denotes the smallest eigenvalue of the frame sub-Gramian

GΦT =ΦT
T ΦT .

To solve the worst-case design problem, we first find the solution set B1 for prob-
lem (P1). Then, we find a subset B2 ⊂B1 as the solution for (P2). We continue
this procedure for general sparsity level K .

Sparsity level K = 1 If K = 1, then any T such that |T | = 1 can be written as
T = {i} with i ∈Ω , and ΦT = ϕi consists of only the ith column of Φ . Therefore,
ΦT

T ΦT = ‖ϕi‖2, and P1 simplifies to

max
Φ

min
i
‖ϕi‖2,

s.t. Φ ∈B0,

i ∈Ω.

(9.31)

We have the following result.

Theorem 9.16 [77] The optimal value of the objective function of the max-min
problem (9.31) is N/M , and a necessary and sufficient condition for Φ̂ ∈B0 to
lie in the solution set B1 is for Φ̂ = {ϕ̂i}Mi=1 to be an equal norm tight frame with
‖ϕ̂i‖ =√N/M , for i = 1,2, . . . ,M .

Sparsity level K = 2 The next step is to solve (P2). Given T ∈Ω2, the matrix
ΦT consists of two columns, say, ϕi and ϕj . So, the matrix ΦT

T ΦT in the max-min
problem (P2) is a (2× 2) matrix:

ΦT
T ΦT =

[ 〈ϕi,ϕi〉 〈ϕi,ϕj 〉
〈ϕi,ϕj 〉 〈ϕj ,ϕj 〉

]
.

The solution for this case must lie among the family of optimal solutions for K = 1.
In other words, the optimal solution Φ̂ must be an equal norm tight frame with
‖ϕ̂i‖ =√N/M , for i = 1,2, . . . ,M . Therefore, we have

ΦT
T ΦT = (N/M)

[
1 cosαij

cosαij 1

]
,

where αij is the angle between vectors ϕi and ϕj . The minimum possible eigenvalue
of this matrix is

λmin
(
ΦT

T ΦT
)= (N/M)(1−μΦ), (9.32)
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where μΦ is the worst-case coherence of the frame Φ = {ϕi}Mi=1 ∈B1, as defined
in (9.1).

Now, let μmin be the minimum worst-case coherence

μmin = min
Φ∈B1

μΦ (9.33)

for all frames in B1. We refer to the element of B1 that has the worst-case coherence
μmin as a Grassmannian equal norm tight frame.

We have the following theorem.

Theorem 9.17 [77] The optimal value of the objective function of the max-min prob-
lem (P2) is (N/M)(1−μmin). A frame Φ̂ is in B2 if and only if the columns of Φ̂
form an equal norm tight frame with norm values

√
N/M and μ

Φ̂
= μmin. In other

words, the solution to (P2) is an N ×M Grassmannian equal norm tight frame.

Sparsity level K > 2 We now consider the case where K > 2. In this case,
T ∈ ΩK can be written as T = {i1, i2, . . . , iK } ⊂ Ω . From the previous results,
we know that an optimal frame Φ̂ ∈BK must be a Grassmannian equal norm tight
frame, with norms

√
N/M and worst-case coherence μmin. Taking this into ac-

count, the (K ×K) matrix Φ̂T
T Φ̂T in (PK), K > 2, can be written as Φ̂T

T Φ̂T =
(N/M)[Id+AT ] where AT is given by

AT =

⎡

⎢⎢⎢
⎣

0 cos α̂i1i2 . . . cos α̂i1ik

cos α̂i1i2 0 . . . cos α̂i2ik
...

...
. . .

...

cos α̂i1ik cos α̂i2ik . . . 0

⎤

⎥⎥⎥
⎦
, (9.34)

and cos α̂ihif is the cosine of the angle between frame elements ϕ̂ih and ϕ̂if , ih 
=
if ∈T . It is easy to see that

λmin
(
Φ̂T

T Φ̂T
)= (N/M)

(
1+ λmin(AT )

)
. (9.35)

So, the problem (PK), K > 2, simplifies to

(PK)

⎧
⎨

⎩

maxΦminT λmin(AT ),

s.t. Φ ∈BK−1,

T ∈ΩK.

(9.36)

Solving the above problem however is not trivial. But we can at least bound the
optimum value. Given T ∈ΩK , let δ̂ihif and Δmin be

δ̂ihif = μmin − | cosαihif |, ih 
= if ∈T , (9.37)

Δmin = min
T ∈ΩK

∑

ih 
=if ∈T
δ̂ihif . (9.38)
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Also, define Δ̂ in the following way:

Δ̂= min
T ∈ΩK

∑

ih 
=if ∈T
δ̂ihif .

We have the following theorem.

Theorem 9.18 [77] The optimal value of the objective function of the max-min
problem (PK) for K > 2 lies between (N/M)(1− (K2

)
μmin+Δmin) and (N/M)×

(1−μmin).

Before we conclude the worst-case SNR design, a few remarks are in order.

1. Examples of uniform tight frames and their methods of construction can be found
in [8, 13, 19, 20] and the references therein.

2. In the case where K = 2, Φ̂T
T Φ̂T associated with the frame Φ̂ identified in The-

orem 9.17 has the largest minimum eigenvalue (N/M)(1−μmin) and the small-
est maximum eigenvalue (N/M)(1 + μmin) among all Φ ∈ B1 and T ∈Ω2.
This means that the solution Φ̂ to (P2) is an RIP matrix of order 2 with optimal
RIC δ2 = μmin.

3. In general, the minimum worst-case coherence μmin of the solution Φ̂ to (PK),
K ≥ 2, is bounded below by the Welch bound (see Lemma 9.2). However, when
1≤N ≤M − 1 and

M ≤min
{
N(N + 1)/2, (M −N)(M −N + 1)/2

}
, (9.39)

the Welch bound can be met [64]. For such a case, all frame angles are equal and
the solution to (PK) for K ≥ 2 is an equiangular equal norm tight frame. Such
frames are Grassmannian line packings (see, e.g., [8, 21, 24, 49, 52, 58, 63–65]).

9.4.2 Average-Case Design

Let us now assume that in (9.25) the locations of nonzero entries of x are random,
but their values are deterministic and unknown. We wish to find the frame Φ that
maximizes the expected value of the minimum SNR. The expectation is taken with
respect to a random index set with uniform distribution over the set of all possible
subsets of size Ki of the index set {1,2, . . . ,M} of elements of x. The minimum
SNR, whose expected value we wish to maximize, is calculated with respect to the
values of the entries of the vector x for each realization of the random index set.

Let TK be a random variable that is uniformly distributed over ΩK . Then
pTK

(t) = 1/
(
M
K

)
is the probability that TK = t for t ∈ ΩK . Our goal is to find a

measurement frame Φ that maximizes the expected value of the minimum SNR,
where the expectation is taken with respect to the random TK , and the minimum
is taken with respect to the entries of the vector x on TK . Taking into account
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the simplifying steps used earlier for the worst-case problem and also adopting the
lexicographic approach, the problem of maximizing the average SNR can then be
formulated in the following way.

Let N0 be the set containing all (N ×M) tight frames. Then for K = 1,2, . . . ,
recursively define the set NK as the solution set to the following optimization prob-
lem:

⎧
⎨

⎩

maxΦETK
minxK‖ΦTK

xK‖2,

s.t. Φ ∈NK−1,

‖xK‖ = 1,
(9.40)

where ETK
is the expectation with respect to TK . As before, the (N ×K) matrix

ΦTK
is a submatrix of Φ whose column indices are in TK . This problem can be

simplified to the following [77]:

(FK)

{
maxΦETK

λmin(Φ
T
TK

ΦTK
),

s.t. Φ ∈NK−1.
(9.41)

To solve the lexicographic problems (FK), we follow the same method we used
earlier for the worst-case problem; i.e., we begin by solving problem (F1). Then,
from the solution set N1, we find optimal solutions for the problem (F2), and so on.

Sparsity level K = 1 Assume that the signal x is 1-sparse. So, there are
(
M
1

)=M

different possibilities to build the matrix ΦT1 from the matrix Φ . The expectation
in problem (F1) can be written as:

ET1λmin
(
ΦT

T1
ΦT1

)=
∑

t∈Ω1

pT1(t)λmin
(
ΦT

t Φt

)=
M∑

i=1

pT1

({i})‖ϕi‖2 = N

M
.

(9.42)
The following result holds.

Theorem 9.19 [77] The optimal value of the objective function of problem (F1) is
N/M . This value is obtained by using any Φ ∈N0, i.e., any tight frame.

Theorem 9.19 shows that, unlike the worst-case problem, any tight frame is an
optimal solution for the problem (F1). Next, we study the case where the signal x
is 2-sparse.

Sparsity level K = 2 For problem (F2), the expected value term
ET2λmin(Φ

T
T2

ΦT2) is equal to

∑

t∈Ω2

pT2(t)λmin
(
ΦT

t Φt

)= 2

M(M − 1)

M∑

j=2

j−1∑

i=1

λmin
(
ΦT{i,j}Φ{i,j}

)
. (9.43)

In general, solving the family of problems (FK), K = 2,3, . . . , is not trivial.
However, if we constrain ourselves to the class of equal norm tight frames, which
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also arise in solving the worst-case problem, we can establish necessary and suf-
ficient conditions for optimality. These conditions are different from those for the
worst-case problem and, as we will show next, the optimal solution here is an equal
norm tight frame for which a cumulative measure of coherence is minimal.

Let M1 be defined as M1 = {Φ : Φ ∈N1,‖ϕi‖ = √N/M,∀i ∈ Ω}. Also, for
K = 2,3, . . . , recursively define the set MK as the solution set to the following
optimization problem:

(
F

′
K

) {
maxΦETK

λmin(Φ
T
TK

ΦTK
),

s.t. Φ ∈MK−1.
(9.44)

We will concentrate on solving the above family of problems instead of (FK), K =
2,3, . . . . We have the following results.

Theorem 9.20 [77] The frame Φ is in M2 if and only if the sum coherence of Φ ,
i.e.,

∑M
j=2
∑j−1

i=1 |〈ϕi,ϕj 〉|/(‖ϕi‖‖ϕj‖), is minimized.

Theorem 9.20 shows that for problem (F
′
2), angles between elements of the

equal norm tight frame Φ should be designed in a different way than for the worst-
case problem. For example, an equiangular tight frame of M = 2N in N dimen-
sions, with vectors of equal norm

√
1/2, has worst-case coherence 1/(2

√
2N − 1)

and sum coherence N
√

2N − 1/2, while two copies of an orthonormal basis form a
frame with worst-case coherence 1/2 and sum coherence N/2. While it is not clear
whether copies of orthonormal bases form tight frames with minimal sum coher-
ence, this example certainly illustrates that Grassmannian frames do not, in general,
result in minimal sum coherence. To the best of our knowledge, no general method
for constructing tight frames with minimal sum coherence has been proposed so far.

The following lemma provides bounds on the sum coherence of an equal norm
tight frame.

Lemma 9.4 [77] For an equal norm tight frame Φ with norm values
√
N/M , the

following inequalities hold:

c
∣∣(M/N − 1)− 2(M − 1)μ2

Φ

∣∣≤
M∑

j=2

j−1∑

i=1

∣∣〈ϕi,ϕj 〉
∣∣≤ c(M − 1)μ2

Φ,

where

c=
(

(N/M)2

1− 2(N/M)

)(
M(M − 2)

2

)
.

Sparsity level K > 2 Similar to the worst-case problem, solving problems (F
′
K)

for K > 2 is not trivial—the solution sets for these problems all lie in M2, and
(F

′
2) is still an open problem. The following lemma provides a lower bound for the

optimal objective function of (F
′
K), K > 2.
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Lemma 9.5 [77] The optimal value of the objective function for problem (F
′
K),

K > 2, is bounded below by (N/M)(1− (K(K − 1)/2)μΦ).

We conclude this section by giving a summary. In the worst-case SNR prob-
lem, the optimal measurement matrix is a Grassmannian equal norm tight frame for
most—and an equal norm tight frame for all—sparse signals. In the average SNR
problem, we limited ourselves to the class of equal norm tight frames and showed
that the optimal measurement frame is an equal norm tight frame that has minimum
sum coherence.

9.5 Other Topics

As mentioned earlier, this chapter covers only a small subset of the results in the
sparse signal processing literature. Our aim has been to simply highlight the central
role that finite frames and their geometric measures, such as spectral norm, worst-
case coherence, average coherence, and sum coherence, play in the development
of sparse signal processing methods. But many developments, which also involve
finite frames, have not been covered. For example, there is a large body of work
on signal processing of compressible signals. These are signals that are not sparse,
but whose entries decay in magnitude according to a particular power law. Many
of the results covered in this chapter on estimating sparse signals have counterparts
for compressible signals. The reader is referred to [17, 23, 26, 27] for examples
of such results. Another example is the estimation and recovery of block-sparse
signals, where the nonzero entries of the signal to be estimated are either clustered
or the signal has a sparse representation in a fusion frame. Again, the majority of the
results on the estimation and recovery of sparse signals can be extended to block-
sparse signals. The reader is referred to [9, 35, 62, 78] and the references therein.
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Chapter 10
Finite Frames and Filter Banks

Matthew Fickus, Melody L. Massar, and Dustin G. Mixon

Abstract Filter banks are fundamental tools of signal and image processing. A fil-
ter is a linear operator which computes the inner products of an input signal with
all translates of a fixed function. In a filter bank, several filters are applied to the
input, and each of the resulting signals is then downsampled. Such operators are
closely related to frames, which consist of equally spaced translates of a fixed set
of functions. In this chapter, we highlight the rich connections between frame the-
ory and filter banks. We begin with the algebraic properties of related operations,
such as translation, convolution, downsampling, the discrete Fourier transform, and
the discrete Z-transform. We then discuss how basic frame concepts, such as frame
analysis and synthesis operators, carry over to the filter bank setting. The basic the-
ory culminates with the representation of a filter bank’s synthesis operator in terms
of its polyphase matrix. This polyphase representation greatly simplifies the pro-
cess of constructing a filter bank frame with a given set of properties. Indeed, we
use this representation to better understand the special case in which the filters are
modulations of each other, namely Gabor frames.

Keywords Filter · Convolution · Translation · Polyphase · Gabor

10.1 Introduction

Frame theory is intrinsically linked to the study of filter banks, with the two fields
sharing a great deal of common history. Indeed, much of the modern terminology
of frames, such as analysis and synthesis operators, was borrowed from the filter
bank literature. And though frames were originally developed for the study of non-
harmonic Fourier series, much of their recent popularity stems from their use in
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Gabor (time-frequency) and wavelet (time-scale) analysis; both Gabor and wavelet
transforms are examples of filter banks.

In this chapter, we highlight the connections between frames and filter banks.
Specifically, we discuss how analysis and synthesis filter banks correspond to the
analysis and synthesis operators of a certain class of frames. We then discuss the
polyphase representation of a filter bank—a key tool in filter bank design—which
reduces the problem of constructing a high-dimensional filter bank frame to that
of constructing a low-dimensional frame for a space of polynomials. For the signal
processing researcher, these results show how to build filter banks that possess the
hallmarks of any good frame: robustness against noise and flexibility with respect to
redundancy. Meanwhile, for the frame theorist, these results show how to construct
many explicit examples of frames, and also pose many new, interesting problems
regarding the generalization of frame theory to spaces of polynomials.

Like frames, filter banks are essentially sequences of vectors in a Hilbert space.
But, whereas the vectors in a frame are somewhat arbitrary, the vectors in a filter
bank are, by definition, obtained by taking all evenly spaced translates of the vectors
from some given collection. As such, we only consider filter banks in Hilbert spaces
on which a translation operator can be defined. In the signal processing literature,
the Hilbert space of choice is usually

�2(Z) :=
{
x : Z→C

∣∣∣∣
∑

k∈Z
|x[k]|2 <∞

}
,

namely the space of all finite-energy complex-valued sequences over the integers.
Here, the translation by k operator is Tk : �2(Z)→ �2(Z), (Tkx)[k′] := x[k′ − k].
Electrical engineers like to use this space despite its infinite dimension since it nat-
urally corresponds to the discrete samples of an analog signal defined over a real-
variable time axis. Such signals naturally arise in a variety of real-world applica-
tions.

For instance, in classical radar, one transmits an electromagnetic pulse which we
model as a function of time ϕ. This pulse travels through the atmosphere until it
encounters a target, such as an aircraft. The pulse then bounces off the target and
returns to a receiver which is located alongside the transmitter. Here, the measured
return signal x can be modeled as x[k′] = αϕ[k′ − k] + ν[k′], where α relates to
the fraction of the transmitted energy that was received, k corresponds to the time
lag incurred by ϕ as it traveled to the target and back again, and ν[k′] is noise,
such as background radiation. The radar operator then processes the received signal
x = αTkϕ + ν with the goal of estimating k: multiplying this time lag by one-half
the speed of light gives the distance to the target. The standard method for such
processing is known as matched filtering, which computes the inner products of x

with all possible translates of ϕ:
〈
x,Tk′ϕ

〉= 〈αTkϕ + ν,Tk′ϕ
〉= α

〈
ϕ,Tk−k′ϕ

〉+ 〈ν,Tk′ϕ
〉
.

Here, the Cauchy-Schwarz inequality gives
∣∣〈ϕ,Tk−k′ϕ

〉∣∣≤ ‖ϕ‖∥∥Tk−k′ϕ
∥∥= ‖ϕ‖2 = 〈ϕ,Tk−kϕ

〉
,
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and so it’s reasonable to believe that the desired parameter k can be approximated by
the k′ that maximizes |〈x,Tk′ϕ〉|, provided the magnitude of the noise ν is relatively
small. Here, the term “matched” in “matched filtering” means that one analyzes the
returned signal x in terms of the transmitted one ϕ.

More generally, regardless of the relationship between x and ϕ, the act of com-
puting the inner products of x with all translates of ϕ is known as filtering x. To be
precise, in the language of frames, this operation corresponds to applying the frame
analysis operator of {Tkϕ}k∈Z, and so we refer to it as the analysis filter corre-
sponding to the filter ϕ. Filter banks arise from a collection {ϕn}N−1

n=0 of such filters.
In particular, an analysis filter bank is the frame analysis operator of {Tkϕn}N−1

n=0,k∈Z,
namely a transform which, given x, computes 〈x,Tkϕn〉 for all k and n. Such filter
banks arise naturally in applications. For instance, in radar one often uses Gabor
filter banks in which the ϕn’s correspond to distinct modulations of the transmitted
waveform ϕ; by computing the indices k and n for which |〈x,Tkϕn〉| is maximal,
one estimates not only the distance to the target via k, but also the speed at which
the target is approaching the radar via n, as a consequence of the Doppler effect.

Similar rationales have led to the use of filter banks in many real-world applica-
tions. In short, they are natural tools for detecting the times or locations at which
a given fixed set of features appear in a given signal. As filter banks have risen in
popularity, more attention has been paid to their subtle details. In particular, with
the rise of wavelets, attention shifted to the case where one does not compute in-
ner products of x with every translate of ϕn, but rather only with a subcollection
{TMpϕn}N−1

n=0,p∈Z of equally spaced translates; this helps one compensate for the
greater amount of computation required as N grows large. Attention has further
shifted toward the sensitivity of filter banks to noise, as well their use for signal re-
construction; both topics led to the advent of frames, namely a desire to find frame
bounds A and B such that

A‖x‖2 ≤
N−1∑

n=0

∑

p∈Z

∣∣〈x,TMpϕn

〉∣∣2 ≤ B‖x‖2, ∀x ∈ �2(Z).

As discussed in previous chapters, such frame expansions are more robust to noise
and conducive to stable reconstruction provided A is close to B . The fundamental
frame-theoretic properties of filter banks over �2(Z) are given in [4, 8].

This book is specifically about finite frames. As such, in this chapter we cannot
make direct use of the infinite-dimensional results of [4, 8]. Rather, we follow the
approach of [7, 11], in which the results of [4, 8] are generalized to the context of
the finite-dimensional Hilbert space:

�(ZP ) :=
{
x : Z→C

∣∣ x[p+ P ] = x[p] ∀p ∈ Z
}
, (10.1)

namely the space of all P -periodic complex-valued sequences over the integers,
where P is any fixed positive integer. This space is a Hilbert space under the stan-
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dard inner product

〈x1, x2〉 :=
∑

p∈ZP

x1[p]
(
x2[p]

)∗
,

where ζ ∗ denotes the complex conjugate of a number ζ ∈ C while the indexing
“p ∈ Zp” means choosing one representative from each of the P cosets of the sub-
group PZ of the integers; one may for example take p = 0, . . . ,P − 1. For each
p ∈ Z, consider the δ-Dirac function δp ∈ �(ZP ):

δp
[
p′
]=

{
1, p = p′ mod P,

0, p 
= p′ mod P.

One can quickly show that {δp}p∈ZP
is an orthonormal basis in �(ZP )—called the

standard basis—and as such �(ZP ) is a P -dimensional Hilbert space. It is therefore
isometric to C

P ; in fact the only “difference” between vectors in C
P and those in

�(ZP ) is that the indices of vectors in C
P are typically taken to be p = 1, . . . ,P

whereas the indices of vectors in �(ZP ) can be regarded as elements of the cyclic
group ZP := Z/PZ= {0, . . . ,P − 1}.

The translation operator over �(ZP ) is defined similarly to its infinite-dimensional
cousin, namely T : �(ZP ) → �(ZP ), (Tx)[p] := x[p − 1]. However, these two
translation operators behave differently due to the periodic nature of signals in
�(ZP ). Indeed, viewing x as a P × 1 column vector indexed from 0 to P − 1,
Tx is obtained by shifting the entries of the vector down by one entry and cycling
the (P − 1)th entry of x up into the zero index: (Tx)[0] = x[0 − 1] = x[P − 1].
More generally, p′ repeated applications of T correspond to cyclic translation by p′:
(Tp′x)[p] = x[p − p′], where the P -periodicity of x implies that the subtraction
p − p′ may be performed modulo P . In particular, this cyclic translation opera-
tor satisfies (TP x)[p] = x[p − P ] = x[p] for all x and so TP = I. This stands in
contrast to the translation operator on �2(Z) which satisfies Tm 
= I for all nonzero
integers m.

Working over �(ZP ) instead of �2(Z) has both advantages and disadvantages.
One can easily argue that �2(Z) is often the more realistic signal model, since many
real-world signals, such as electromagnetic waves and images, are usually not pe-
riodic. At the same time, �(ZP ) is a more realistic setting from the point of view
of computation: a computer can only perform a finite number of algebraic opera-
tions in any fixed period of time. Also, from the point of view of the mathematics
itself, working over �(ZP ) makes filter banks a purely algebraic topic, while work-
ing over �2(Z) requires functional analysis. In any case, with regard to this chapter,
this point is moot: our focus is the special topic of how filter banks are examples of
finite frames, and as such, we must work with finite-dimensional filter banks. That
said, for one to become a true filter bank expert, both in theory and application, one
must understand them in both settings; comprehensive, mathematician-accessible
introductions to filter banks over �2(Z) from the engineering perspective are given
in [23, 26]. Much of the finite-dimensional presentation of this chapter is taken
from [7] and [11].
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In the next section, we discuss basic concepts of frames and filters, with a par-
ticular emphasis on the signal processing tools, such as convolutions, upsampling,
discrete Z-transforms and discrete Fourier transforms, that we will need later on.
In Sect. 10.3, we discuss the fundamental relationships between frames and filter
banks. In particular, we see how the frame analysis and synthesis operators of cer-
tain collections of vectors are analysis and synthesis filter banks, respectively. In
Sect. 10.4, we discuss the polyphase representation of a filter bank, and use it to
provide an efficient method for computing the optimal frame bounds of a filter bank.
In the fifth and final section, we then exploit this polyphase representation to delve
briefly into the theory of discrete Gabor frames.

10.2 Frames and Filters

Before discussing filter banks, let’s review the basics of finite frame theory in the
context of the P -dimensional Hilbert space �(ZP ) defined in (10.1). Let N be an
index set of N elements, and let �(N ) = {y :N →C} denote the set of complex-
valued functions over N . The synthesis operator of a sequence of vectors Φ =
{ϕn}Nn=1 in �(ZP ) is Φ : �(N )→ �(ZP ), Φy :=∑n∈N y[n]ϕn. Essentially, Φ is the
P ×N matrix whose columns are the ϕn’s. Note that here and throughout, we make
no notational distinction between the vectors themselves and the synthesis operator
they induce. The analysis operator of Φ is its adjoint Φ∗ : �(ZP )→ �(N ) defined
by (Φ∗x)[n] := 〈x,ϕn〉 for all n ∈N . The vectors Φ are said to be a frame for �(ZP )

if there exist frame bounds 0 < A ≤ B <∞ such that A‖x‖2 ≤ ‖Φ∗x‖2 ≤ B‖x‖2

for all x ∈ �(ZP ). The optimal frame bounds A and B of an arbitrary Φ are the least
and greatest eigenvalues of the frame operator ΦΦ∗ : �(ZP )→ �(ZP ) given by

ΦΦ∗ =
∑

n∈N
ϕnϕ

∗
n,

respectively, where the “row vector” ϕ∗n is the linear functional ϕ∗n : �(ZP )→ C,
ϕ∗nx := 〈x,ϕn〉. In particular, Φ is a frame if and only if the ϕn’s span �(ZP ), which
necessitates P ≤N . Frames provide overcomplete decompositions of vectors; if Φ
is a frame for �(ZP ), then any x ∈ �(ZP ) can be decomposed as

x =ΦΨ ∗x =
∑

n∈N
〈x,ψn〉ϕn,

where Ψ = {ψn}n∈N is a dual frame of Φ , meaning it satisfies ΦΨ ∗ = I. Any
frame has at least one dual, namely the canonical dual given by the pseudoinverse
Ψ = (ΦΦ∗)−1Φ . Note that computing a canonical dual involves the inversion of
the frame operator. As such, when designing a frame for a given application, it is
important to retain control over the spectrum of ΦΦ∗.
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10.2.1 Filters

The remainder of the material in this section is classical, being a finite-dimensional
version of the well-known theory of filters [20, 24]. A filter bank is a special type of
frame in which the frame elements are required to be translates of each other. Before
studying filter banks in general, it helps to first consider the special case in which
the frame consists of every cyclic translate of a single vector ϕ in �(ZP ). To be pre-
cise, recall from the introduction that the pth cyclic translate of ϕ is (Tpϕ)[p′] :=
ϕ[p′ − p]. Due to the fact that TP = I, we do not consider {Tpϕ}p∈Z but rather
{Tpϕ}p∈ZP

. Here, the indexing set N is ZP , and so the analysis and synthesis oper-
ators of {Tpϕ}p∈ZP

map from �(ZP ) into itself. In particular, the synthesis operator
Φ : �(ZP )→ �(ZP ), which is also known as the synthesis filter in this context, is

(Φy)[p] =
∑

p′∈ZP

y
[
p′
](

Tp′ϕ
)[p] =

∑

p′∈ZP

y
[
p′
]
ϕ
[
p− p′

]
. (10.2)

Harmonic analysts will recognize the right-hand side of (10.2). Indeed, in general
the convolution of y1, y2 ∈ �(ZP ) is y1 ∗ y2 ∈ �(ZP ) defined by

(y1 ∗ y2)[p] :=
∑

p′∈ZP

y1
[
p′
]
y2
[
p− p′

]
,

and so the synthesis filter (10.2) is the operator that convolves a given input y with
ϕ. The following easily verified result gives several useful properties of convolution.

Proposition 10.1 For any y1, y2, y3 ∈ �(ZP ),

(a) Convolution is associative: (y1 ∗ y2) ∗ y3 = y1 ∗ (y2 ∗ y3).
(b) Convolution is commutative: y1 ∗ y2 = y2 ∗ y1.
(c) Convolution’s multiplicative identity is δ0: y1 ∗ δ0 = y1.
(d) Convolution distributes over addition: (y1 + y2) ∗ y3 = (y1 ∗ y3)+ (y2 ∗ y3).
(e) Convolution distributes over scalar multiplication: (αy1) ∗ y2 = α(y1 ∗ y2).

In general, a linear operator Φ : �(ZP )→ �(ZP ) is referred to as a time-invariant
filter precisely when there exists ϕ in �(ZP ) such that Φy = y ∗ϕ for all y ∈ �(ZP ).
Though succinct, this definition of a filter is not very intuitive. The next result gives
a better understanding of what a time-invariant filter truly is: a linear operator that
commutes with translation, that is, ΦT= TΦ . In other words, filters are linear op-
erators on �(ZP ) for which delaying one’s input into Φ by a given time results in an
equal delay in output. We further see that this is equivalent to having Φ be a linear
combination of powers of the translation operator itself.

Proposition 10.2 The following are equivalent:

(a) Φ is a time-invariant filter.
(b) Φ is linear and commutes with translation.
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(c) Φ is a linear combination of the operators {Tp}p∈ZP
.

Moreover, for such Φ we have Φy = y ∗ϕ and Φ =∑p∈Zp
ϕ[p]Tp where ϕ =Φδ0.

Proof (a⇒ c) Let Φ be a filter. By definition, there exists ϕ ∈ �(ZP ) such that

(Φy)
[
p′
] = (y ∗ ϕ)[p′]= (ϕ ∗ y)[p′]=

∑

p∈ZP

ϕ[p]y[p′ − p
]

=
∑

p∈ZP

ϕ[p](Tpy
)[
p′
]
,

for any y ∈ �(ZP ) and p′ ∈ ZP , and so Φ =∑p∈ZP
ϕ[p]Tp as claimed.

(c ⇒ b) Letting Φ =∑p∈ZP
ϕ[p]Tp , we immediately have that Φ is linear.

Moreover,

ΦT=
∑

p∈ZP

ϕ[p]TpT=
∑

p∈ZP

ϕ[p]Tp+1 =
∑

p∈ZP

ϕ[p]TTp = T
∑

p∈ZP

ϕ[p]Tp = TΦ.

(b⇒ a) Let Φ be linear and satisfy ΦT = TΦ . Letting ϕ = Φδ0, we therefore
have that Φδp = ΦTpδ0 = TpΦδ0 = Tpϕ for all p ∈ ZP . As such, for any y ∈
�(ZP ),

(Φy)
[
p′
]=

(
Φ
∑

p∈ZP

y[p]δp
)[

p′
]

=
∑

p∈ZP

y[p](Φδp)
[
p′
]

=
∑

p∈ZP

y[p](Tpϕ
)[
p′
]

=
∑

p∈ZP

y[p]ϕ[p′ − p
]

= (y ∗ ϕ)[p′],

and so Φy = y ∗ ϕ as claimed. �

Here, an illustrative example is helpful.

Example 10.1 Let P = 8. We can represent any x ∈ �(Z8) as a column vector in
C

8, provided we take the indexing of this vector to begin at 0. The entries of this
column are the inner products of x with the elements of the standard basis {δp}7p=0.
This representation induces an 8 × 8 matrix representation of any linear operator
Φ from �(Z8) into itself: let the pth column of the matrix be the column vector
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representation of Φδp . In particular, the translation operator is represented as

T=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

. (10.3)

Let’s use Proposition 10.2 to compute the matrix representation of a filter Φ defined
by Φy = y ∗ϕ where ϕ is taken to be of the form aδ0+bδ1+ cδ2+dδ3 for the sake
of simplicity, where a, b, c, and d are some arbitrarily chosen complex numbers.
By Proposition 10.2, Φ is of the form Φ = aT0 + bT1 + cT2 + dT3. That is, Φ is
a linear combination of the translation by zero, one, two, and three operators whose
matrix representations are:

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1
1

1
1

1
1

1
1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

,

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1
1

1
1

1
1

1
1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

,

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1
1

1
1

1
1

1
1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

,

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1
1

1
1

1
1

1
1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

,

where for the sake of readability we have suppressed all zero entries. Combining
these four matrices with coefficients a, b, c, and d yields the matrix representation
of the filter Φ:

Φ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

a d c b

b a d c

c b a d

d c b a

d c b a

d c b a

d c b a

d c b a

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

. (10.4)

Note that Φ is constant along diagonals, and moreover that these diagonals wrap
around from left to right and top to bottom. That is, the matrix representation of Φ
satisfies Φ[p,p′] = Φ[p + 1,p′ + 1] for all p and p′, where the index arithmetic
is performed modulo P . Such matrices are termed circulant. Every circulant matrix
corresponds to a filter Φ where ϕ is given by the first column of the matrix. In
particular, for a fully general filter on �(Z8) we have ϕ = aδ0 + bδ1 + cδ2 + dδ3 +
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eδ4 + f δ5 + gδ6 + hδ7 which corresponds to placing the values h, g, f , and e on
the first, second, third, and fourth circulant superdiagonals of (10.4), respectively.

Applying (10.4) to an input column vector y yields the following output vec-
tor Φy:

(y ∗ ϕ)[0] = ay[0] + by[7] + cy[6] + dy[5],
(y ∗ ϕ)[1] = ay[1] + by[0] + cy[7] + dy[6],
(y ∗ ϕ)[2] = ay[2] + by[1] + cy[0] + dy[7],
(y ∗ ϕ)[3] = ay[3] + by[2] + cy[1] + dy[0],
(y ∗ ϕ)[4] = ay[4] + by[3] + cy[2] + dy[1],
(y ∗ ϕ)[5] = ay[5] + by[4] + cy[3] + dy[2],
(y ∗ ϕ)[6] = ay[6] + by[5] + cy[4] + dy[3],
(y ∗ ϕ)[7] = ay[7] + by[6] + cy[5] + dy[4].

(10.5)

Here, we see what filtering really does: it computes “rolling” inner products of the
input signal with coefficients from the filter. In particular, if the entries of ϕ are
nonnegative and sum to one, then filtering y with ϕ produces a sequence of rolling
averages of the values of y. For other choices of ϕ, such as ϕ = δ0 − δ1, filtering
becomes akin to taking a discrete derivative. In the next subsection, we use the
discrete Fourier transform to get an even better intuitive understanding of filtering.

We now use the previous example to give a few notes on terminology. Though
the vector ϕ is occasionally referred to as a “filter,” technically speaking, this term
should be reserved for the operation of convolving with ϕ; in the signal processing
literature, ϕ is known as the impulse response of the filter since it is the output one
receives after passing the impulse δ0 through Φ , that is, ϕ = δ0 ∗ ϕ =Φδ0.

The number K of nonzero values of ϕ is known as its number of taps; one often
seeks to design filters in which K is small, since a direct computation of (10.2) at any
fixed p requires K multiplications. For example, when a, b, c, and d are nonzero,
the filter (10.4) is called a 4-tap filter. In general, since we are working in �(ZP ) this
number of taps is at most P . In particular, K is finite. However, in the standard signal
processing literature, ϕ is taken to be a member of the infinite-dimensional space
�2(Z), and there one must draw a distinction between those ϕ’s with a finite number
of taps and those with an infinite number, namely finite impulse response (FIR)
filters and infinite impulse response (IIR) filters, respectively. Though the concept
of FIR versus IIR does not carry over to �(ZP ), one nevertheless tries to keep the
number of taps K as small as possible, subject to the other constraints that one needs
ϕ to satisfy for a given application.

Causal filters are another important concept in the signal processing literature.
To be precise, a filter ϕ in �2(Z) is causal if ϕ[k] = 0 for all k < 0. Causality is only
a significant issue for signals whose input axis corresponds to time, such as audio
signals, as opposed to images which have two spatial input axes. Indeed, for signals
of time, causal filtering means that the filter requires no precognition: at any time,
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the value of the filtered signal only depends on the values of the input signal at that
and previous times. Such ideas do not immediately generalize to the �(ZP ) setting,
as the requirement that k < 0 has no meaning in ZP . Nevertheless, we can mimic
casuality by requiring that ϕ is supported on those integers which are equivalent to
{0, . . . ,K − 1} modulo P ; under this hypothesis (10.2) becomes

(Φy)[p] = (y ∗ϕ)[p] = (ϕ ∗y)[p] =
∑

p′∈ZP

ϕ
[
p′
]
y
[
p−p′

]=
K−1∑

p′=0

ϕ
[
p′
]
y
[
p−p′

]
,

and so (Φy)[p] = ϕ[0]y[p] + ϕ[1]y[p − 1] + · · · + ϕ[K − 1]y[p − K + 1], as
desired. For example, as the impulse response ϕ of the filter Φ given in (10.2) is
supported over the indices {0,1,2,3}, then the value of Φy = y ∗ ϕ at any given
time p depends only on the values of y at times p, p − 1, p − 2, and p − 3, as
validated in (10.5).

Having discussed filters at length, we now examine their frame-theoretic prop-
erties. We have already seen that the synthesis operator Φ : �(ZP )→ �(ZP ) of
{Tpϕ}p∈ZP

is given by Φy = y ∗ ϕ. Meanwhile, the corresponding analysis opera-
tor Φ∗ : �(ZP )→ �(ZP ) is given by

(
Φ∗x

)[p] = 〈x,Tpϕ
〉=

∑

p′∈ZP

x
[
p′
](
ϕ
[
p′ − p

])∗ =
∑

p′∈ZP

x
[
p′
]
ϕ̃
[
p− p′

]= x ∗ ϕ̃,

where ϕ̃ is the involution (conjugate reversal) of ϕ defined as (ϕ̃)[p] := (ϕ[−p])∗.
In particular, we see that the adjoint of filtering with ϕ is filtering with ϕ̃. We refer
to Φ∗ as the analysis filter of ϕ. For example, for the synthesis filter Φ over �(Z8)

of (10.4) whose impulse response is ϕ = aδ0+bδ1+cδ2+dδ3, taking the conjugate
transpose of (10.4) yields

Φ∗ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

a∗ b∗ c∗ d∗
a∗ b∗ c∗ d∗

a∗ b∗ c∗ d∗
a∗ b∗ c∗ d∗

a∗ b∗ c∗ d∗
d∗ a∗ b∗ c∗
c∗ d∗ a∗ b∗
b∗ c∗ d∗ a∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

namely the analysis filter Φ∗ whose impulse response is

ϕ̃ = a∗δ0 + b∗δ−1 + c∗δ−2 + d∗δ−3 = a∗δ0 + d∗δ5 + c∗δ6 + b∗δ7.

Moreover, since both the analysis and synthesis operators of Φ = {TP ϕ}p∈ZP
are

filters, then so is the frame operator due to the associativity of convolution:

ΦΦ∗x =Φ∗(x ∗ ϕ)= (x ∗ ϕ) ∗ ϕ̃ = x ∗ (ϕ ∗ ϕ̃). (10.6)



10 Finite Frames and Filter Banks 347

That is, the analysis, synthesis, and frame operators of Φ = {TP ϕ}p∈ZP
correspond

to filtering with ϕ, ϕ̃, and ϕ ∗ ϕ̃, respectively. The function ϕ ∗ ϕ̃ is known as the
autocorrelation of ϕ, as its value gives the correlation between ϕ and the translates
of itself: (ϕ ∗ ϕ̃)[p] = 〈ϕ,Tpϕ〉.

Now that we have expressions for the canonical frame operators of Φ =
{TP ϕ}p∈ZP

, our next goals are to determine the conditions on ϕ that are needed
to ensure that Φ is a frame for �(ZP ), and in this case, to determine dual frames
Ψ . Now, the optimal frame bounds for Φ = {TP ϕ}p∈ZP

are given by the extreme
eigenvalues of the frame operator ΦΦ∗. Since ΦΦ∗ is a filter, we first find the eigen-
values of any filter Φy = y ∗ ϕ and then apply this result where ϕ is replaced with
ϕ ∗ ϕ̃; the next subsection contains the tools needed to accomplish this task.

10.2.2 The Z-Transform and the Discrete Fourier Transform

The Z-transform is a standard tool in signal processing, and relates convolution to
polynomial multiplication. To be precise, when working in the infinite-dimensional
space �2(Z), the Z-transform of ϕ ∈ �1(Z) is the Laurent series

(Zϕ)(z) :=
∞∑

k=−∞
ϕ[k]z−k.

Note that the assumption that ϕ ∈ �1(Z) guarantees that this series converges abso-
lutely on the unit circle. Further note that the Z-transform of an FIR filter is but a
rational function, while the transform of a causal filter is a power series.

As our goal is to understand frames of translates in the finite-dimensional space
�(ZP ), we must generalize this notion of a Z-transform. Mathematically speaking,
this frees us from needing analysis, while, at the same time, it forces us to consider
more exotic algebra. To be precise, the Z-transform of y ∈ �(ZP ) is

(Zy)(z) :=
∑

p∈ZP

y[p]z−p, (10.7)

which lies within the ring of polynomials PP [z] := C[z]/〈zP − 1〉. Here, C[z] de-
notes the ring of all polynomials with complex coefficients where addition and mul-
tiplication are defined in the standard way, and 〈zP − 1〉 denotes the ideal generated
by zP − 1 which consists of all polynomial multiples of zP − 1. Defining two poly-
nomials in C[z] to be equivalent if their difference is divisible by zP −1, the quotient
ring PP [z] is the set of all corresponding equivalence classes. Essentially, PP [z] is
the set of all polynomials whose exponents of z are regarded modulo P ; apart from
this strangeness, polynomial addition and multiplication are defined in the usual
manner. For example, recalling Example 10.1 in which ϕ = aδ0 + bδ1 + cδ2 + dδ3
is considered in �(Z8), we have

(Zϕ)(z)= a + bz−1 + cz−2 + dz−3.
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Here, the exponents of z are only defined modulo 8, and as such we could have also
written (Zϕ)(z)= az8 + bz7 + cz14 + dz−11, for example.

Note that the Z-transform is a bijection from �(ZP ) onto PP [z], with each sig-
nal y leading to a unique polynomial (Zy)(z) and vice versa. As with its infinite-
dimensional cousin, the usefulness of this finite-dimensional Z-transform is the nat-
ural way in which it represents convolution as polynomial multiplication.

Proposition 10.3 For any y,ϕ ∈ �(ZP ), [Z(y ∗ ϕ)](z)= (Zy)(z)(Zϕ)(z).

Proof By definition,

(Zy)(z)(Zϕ)(z)=
∑

p∈ZP

y[p]z−p
∑

p′∈ZP

ϕ
[
p′
]
z−p′

=
∑

p∈ZP

∑

p′∈ZP

y[p]ϕ[p′]z−(p+p′).

For any fixed p, replacing the variable p′ with p′′ = p+ p′ gives the result:

(Zy)(z)(Zϕ)(z)=
∑

p∈ZP

∑

p′′∈ZP

y[p]ϕ[p′′ − p
]
z−p′′

=
∑

p′′∈ZP

( ∑

m∈ZP

y[p]ϕ[p′′ − p
]
)
z−p′′

=
∑

p′′∈ZP

(y ∗ ϕ)[p′′]z−p′′

= [Z(y ∗ ϕ)](z). �

For example, when P = 8, multiplying the Z-transform of a given signal y with
that of ϕ = aδ0 + bδ1 + cδ2 + dδ3 and collecting common terms—identifying the
exponents of z modulo 8—yields:

(Zy)(z)(Zϕ)(z)

= (y[0] + y[1]z−1 + y[2]z−2 + y[3]z−3 + y[4]z−4 + y[5]z−5 + y[6]z−6

+ y[7]z−7)× (a + bz−1 + cz−2 + dz−3)

= (ay[0] + by[7] + cy[6] + dy[5])

+ (ay[1] + by[0] + cy[7] + dy[6])z−1

+ (ay[2] + by[1] + cy[0] + dy[7])z−2

+ (ay[3] + by[2] + cy[1] + dy[0])z−3
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+ (ay[4] + by[3] + cy[2] + dy[1])z−4

+ (ay[5] + by[4] + cy[3] + dy[2])z−5

+ (ay[6] + by[5] + cy[4] + dy[3])z−6

+ (ay[7] + by[6] + cy[5] + dy[4])z−7

which is precisely the Z-transform of y ∗ ϕ, directly computed in (10.5).
Now, since the exponents of z of a polynomial (Zy)(z) in PP [z] are only well

defined modulo P , one cannot hope to evaluate this polynomial over the entire com-
plex plane. Indeed, the polynomial z3 is equivalent to z0 in P3[z], but inserting
ζ =−1 into each yields distinct values of (−1)3 =−1 and (−1)0 = 1, respectively.
In fact, the evaluation of a polynomial in the quotient ring PP [z] = C[z]/〈zP − 1〉
is only well defined at points ζ ∈ C which are roots of the generator of the ideal.
That is, for y ∈ �(ZP ), (Zy)(ζ ) is only well defined at ζ which satisfy ζP − 1= 0,
namely, the P th roots of unity {e2π ip/P }p∈ZP

. The evaluation of Zy at these points
is a type of Fourier transform. To be precise, the discrete Fourier transform of
y ∈ �(ZP ) is the operator F∗ : �(ZP )→ �(ZP ) defined by

(
F∗y
)[p] := 1√

P
(Zy)

(
e2π ip/P )= 1√

P

∑

p′∈ZP

y
[
p′
]
e−2π ipp′/P . (10.8)

The 1√
P

term in (10.8) is a normalization factor which makes the Fourier transform
a unitary operator. To see this, consider the discrete Fourier basis {fp}p∈ZP

in �(ZP )

whose pth vector is fp[p′] = 1√
P

e2π ipp′/P . We immediately observe that the Fourier
transform is the analysis operator of this basis:

(
F∗y
)[p] = 1√

P

∑

p′∈ZP

y
[
p′
]
e−2π ipp′/P =

∑

p′∈ZP

y
[
p′
](

fp
[
p′
])∗ = 〈y, fp〉.

Moreover, the geometric sum formula gives that this basis is orthonormal:

〈fp, fp′ 〉 = 1

P

∑

p′′∈ZP

[
e2π i(p−p′)/P ]p′′ =

{
1, p = p′ mod P,

0, p 
= p′′ mod P.

Being the analysis operator of an orthonormal basis, the Fourier transform is nec-
essarily unitary, meaning that the inverse Fourier transform is given by the corre-
sponding synthesis operator:

(Fx)
[
p′
]=

∑

p∈Zp

x[p]fp
[
p′
]= 1√

P

∑

p∈ZP

x[p]e2π ipp′/P .

The relationship between the Z-transform, the Fourier transform, and the Fourier
basis is the key to understanding the eigenvalues and eigenvectors of a filter, and
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moreover, the significance of the term “filter” itself. To be precise, evaluating the
result of Proposition 10.3 at any pth root of unity gives

[
F∗(y ∗ ϕ)][p′]= 1√

P

[
Z(y ∗ ϕ)](e2π ip′/P )

= 1√
P
(Zy)

(
e2π ip′/P )(Zϕ)

(
e2π ip′/P )

= (F∗y)[p′](Zϕ)(e2π ip′/P ).

For any fixed p, letting y be the pth element of the Fourier basis then gives

[
F∗(fp ∗ ϕ)

][
p′
]= (F∗fp

)[
p′
]
(Zϕ)

(
e2π ip′/P )= 〈fp, f′p

〉
(Zϕ)

(
e2π ip′/P ).

Since the Fourier basis is orthonormal, taking inverse Fourier transforms of this
relation then yields

fp ∗ ϕ = FF∗(fp ∗ ϕ)
=
∑

p′∈ZP

[
F∗(fp ∗ ϕ)

][
p′
]
fp′

=
∑

p′∈ZP

〈
fp, f′p

〉
(Zϕ)

(
e2π ip′/P )fp′

= (Zϕ)
(
e2π ip/P )fp.

Thus, the operator Φy := y ∗ ϕ satisfies Φfp = (Zϕ)(e2π ip/P )fp and so fp is an
eigenvector for Φ with eigenvalue (Zϕ)(e2π ip/P ). We summarize this result as fol-
lows.

Proposition 10.4 If Φ is a filter on �(ZP ) with impulse response ϕ, then each mem-
ber fp of the Fourier basis is an eigenvector for Φ with eigenvalue (Zϕ)(e2π ip/P ).

Note that the above result gives ΦF = FD, where D is a diagonal (pointwise
multiplication) operator whose pth diagonal entry is (Zϕ)(e2π ip/P ). Since F is uni-
tary, this is equivalent to having Φ = FDF∗; this is the famous result that every filter
(circulant matrix) can be unitarily diagonalized using the Fourier transform. More-
over, as we now explain, this result justifies the use of the term “filter.” Indeed, since
F is unitary, every y ∈ �(ZP ) can be decomposed in terms of the Fourier basis:

y = FF∗y =
∑

p∈Zp

〈y, fp〉fp. (10.9)

For any p, note that
√
P fp[p′] = e2π ipp′/P consists of the discrete samples of a

complex wave e2π ipt of frequency p over [0,1]. As such, the decomposition (10.9)
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indicates how to break up the input signal y into an ensemble of waves, each wave
with its own constant distinct frequency. The magnitude and argument of the com-
plex scalar 〈y, fp〉 are the amplitude and phase shift of the pth wave, respectively.
By Proposition 10.4, applying a filter Φ to (10.9) produces

Φy =
∑

p∈Zp

〈y, fp〉Φfp =
∑

p∈Zp

〈y, fp〉(Zϕ)
(
e2π ip/P )fp. (10.10)

By comparing (10.9) and (10.10) we see the effect of the filter Φ: each com-
ponent wave fp has had its magnitudes/phase-shift factor 〈y, fp〉 multiplied by
(Zϕ)(e2π ip/P ). In particular, for values p for which (Zϕ)(e2π ip/P ) is large, the pth
frequency component of Φy is much larger than that of y. Similarly, for values p

for which (Zϕ)(e2π ip/P ) is small, the corresponding frequencies will be less appar-
ent in Φy than they are in y. Essentially, Φ acts like an equalizer on one’s home
stereo system: the input sound y is modified according to frequency to produce a
more desirable output sound Φy. In particular, by carefully designing ϕ, one can
create a filter Φ that amplifies the bass or another that amplifies the treble; such fil-
ters are referred to as low-pass or high-pass, respectively, as they allow low or high
frequencies to pass through while filtering out undesired frequencies. Pairs of low-
and high-pass filters are essential to the theory of wavelets, as discussed in greater
detail in the following sections.

Having found the eigenvalues of an arbitrary filter, we then apply this result to
determine the frame properties of a sequence of translates Φ = {Tpϕ}p∈ZP

. Recall
that the corresponding synthesis, analysis, and frame operators correspond to filter-
ing with ϕ, ϕ̃, and ϕ ∗ ϕ̃, respectively, where ϕ̃[p] := (ϕ[−p])∗. We already know
that the eigenvalues of the synthesis filter are given by evaluating (Zϕ)(z) at the
pth roots of unity. As such, the eigenvalues of the analysis filter of ϕ—which is the
synthesis filter of ϕ̃—are given by evaluating

(Zϕ̃)(z)=
∑

p∈Zp

ϕ̃[p]z−p =
∑

p∈Zp

(
ϕ[−p])∗z−p =

∑

p∈Zp

(
ϕ[p])∗zp = (Zϕ∗)(z−1)

at these same points. This can be further simplified by noting that ζ ∗ = ζ−1 when-
ever |ζ | = 1; as such for any pth root of unity ζ we have

(Zϕ̃)(ζ )=
∑

p∈Zp

(
ϕ[p])∗ζp =

( ∑

p∈Zp

ϕ[p]ζ−p

)∗
= [Zϕ(ζ )]∗.

Thus, the eigenvalues of the analysis filter Φ∗ are the conjugates of those of Φ . This
fact along with Proposition 10.3 gives that the pth eigenvalue of ΦΦ∗ is

[
Z(ϕ ∗ ϕ̃)](e2π ip/P )= (Zϕ)

(
e2π ip/P )(Zϕ̃)

(
e2π ip/P )

= (Zϕ)
(
e2π ip/P )[(Zϕ)

(
e2π ip/P )]∗

= ∣∣(Zϕ)(e2π ip/P )∣∣2.
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Thus, the optimal frame bounds for Φ = {Tpϕ}p∈ZP
are the extreme values of the

squared modulus of the Z-transform of ϕ over all P th roots of unity:

A= min
p∈ZP

∣∣(Zϕ)
(
e2π ip/P )∣∣2, B = max

p∈ZP

∣∣(Zϕ)
(
e2π ip/P )∣∣2,

meaning that such a Φ is a frame if and only if (Zϕ)(e2π ip/P ) 
= 0 for all p. More-
over, Φ is a tight frame if and only if the Fourier transform of ϕ is flat, namely,

A

P
= 1

P

∣∣(Zϕ)
(
e2π ip/P )∣∣2 = ∣∣(F∗ϕ)[p]∣∣2

for all p. As such, since Φ = {Tpϕ}p∈ZP
consists of P vectors in a P -dimensional

space, we see that the set of all translates of ϕ is an orthonormal basis for �(ZP ),
namely Φ is unitary, if and only if |(F∗ϕ)[p]|2 = 1

P
for all p.

Now recall that Φ = {Tpϕ}p∈ZP
can be written as Φ = FDF∗, where the pth

diagonal entry of D is (Zϕ)(e2π ip/P ). Whenever Φ is a frame, these diagonal entries
are nonzero, and we see that the canonical dual frame Ψ is itself a filter:

Ψ = (ΦΦ∗
)−1

Φ = (FDF∗FD∗F∗
)−1FDF∗ = F

(
DD∗

)−1
DF∗ = F

(
D∗
)−1F∗.

Writing Ψ = {Tpψ}p∈ZP
where ψ := Ψ δ0 is the impulse response of Ψ , note that

this canonical dual satisfies ΦΨ ∗ = I. This means that filtering by ψ̃ may be undone
by filtering by ϕ and vice versa; every x ∈ �(ZP ) can be decomposed as

x =
∑

p∈ZP

〈
x,Tpψ

〉
Tpϕ.

Note that in this setting Φ is square and so Ψ ∗ = Φ−1; this also follows immedi-
ately from having Ψ = F(D∗)−1F∗. Further note that the canonical dual filter ψ is
obtained by deconvolving ϕ by its autocorrelation ϕ ∗ ϕ̃:

ψ = Ψ δ0 =
(
ΦΦ∗

)−1
Φδ0 =

(
ΦΦ∗

)−1
ϕ.

In the Z-transform domain, such deconvolution corresponds to polynomial division:

(Zψ)(z)= (Zϕ)(z)

[Z(ϕ ∗ ϕ̃)](z) =
(Zϕ)(z)

(Zϕ)(z)(Zϕ∗)(z−1)
= 1

(Zϕ∗)(z−1)
.

This division implies that ψ will often not be a “nice” filter even when ϕ is “nice.”
In particular, when working in the infinite-dimensional setting �2(Z), the reciprocal
of a finite-term rational function is often an infinite-term Laurent series. A similar
principle holds in the finite-dimensional setting of �(ZP ): when Φ = {Tpϕ}p∈ZP

is
a frame and ϕ has a small number of taps, its canonical dual filter ψ will often have
a large number of taps, the exception to this rule being when ϕ has one tap, meaning
(Zϕ)(z) is a monomial. Though algebraically nice, such one-tap filters leave much
to be desired from the point of view of applications: their Fourier transforms are
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flat, meaning they do not truly “filter” a signal in the sense of emphasizing certain
frequencies over others. Rather, they simply delay the signal. That is, any single
filter is unable to give us what we truly want: frequency selectivity and a small
number of taps for both the filter and its dual. To obtain these capabilities, we thus
generalize the preceding theory to operators that consist of multiple filters.

10.3 Filter Banks

A filter bank is an operator consisting of multiple filters. Such operators afford
greater design possibilities than any single filter. Though long a subject of inter-
est, filter banks became particularly popular during the heyday of wavelets [10].
Recall that the synthesis filter corresponding to ϕ is the synthesis operator of the set
Φ = {Tpϕ}p∈ZP

of all translates of ϕ, namely, Φy = y ∗ ϕ. Filter banks arise as a
natural generalization of this idea: consider the synthesis operator of the set of all
translates of multiple ϕ’s.

To be precise, given a sequence of N desired impulse responses {ϕn}N−1
n=0 in

�(ZP ), we can generalize the theory of the previous section to systems of the form
{Tpϕn}N−1

n=0,p∈ZP
. Note that this system consists of NP vectors in P -dimensional

space, and therefore necessarily has integer redundancy NP
P
= N . In order to be

more flexible with respect to redundancy, we further generalize these notions to sys-
tems of translates by a subgroup of all possible translates. Specifically, given any
positive integer M and any {ϕn}N−1

n=0 in �(ZMP ), consider the set of all M-translates

of the ϕn’s, namely Φ = {TMpϕn}N−1
n=0,p∈ZP

. Note here that we have changed the un-
derlying space from �(ZP ) to �(ZMP ); in the theory that follows, the spacing of the
translates M must divide the length of the signal, and not making this change would
burden us with writing P

M
instead of simply P .

The synthesis operator of {TMpϕn}N−1
n=0,p∈ZP

is an operator over the NP -

dimensional space [�(ZP )]N , namely, the direct sum of N copies of �(ZP ). We
write any Y in [�(ZP )]N as Y = {yn}N−1

n=0 where yn lies in �(ZP ) for all n. Under
this notation, the synthesis operator Φ : [�(ZP )]N → �(ZMP ) of {TMpϕn}N−1

n=0,p∈ZP

is given by

(
Φ{yn}N−1

n=0

)[k] =
(

N−1∑

n=0

∑

p∈ZP

yn[p]TMpϕn

)

[k] =
N−1∑

n=0

∑

p∈ZP

yn[p]ϕn[k −Mp].
(10.11)

We want to write this expression for Φ in terms of convolutions in order to take
advantage of the rich theory of filters. Here, the issue is that the argument “p” of yn
in (10.11) does not match the “Mp” term in the argument of ϕn. The solution to this
problem is to upsample y by a factor of M , namely, to stretch the P -periodic signal
y to an MP -periodic signal by inserting M − 1 values of 0 between any two values
of y. To be precise, the upsampling by M operator on �(ZP ) is ↑: �(ZP )→ �(ZMP )
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defined by

(↑ y)[k] :=
{
y[k/M], M | k,
0, M � k.

This concept in hand, we return to the simplification of (10.11). Making the change
of variables k′ =Mp gives

(
Φ{yn}N−1

n=0

)[k] =
N−1∑

n=0

∑

k′∈ZMP

M|k′

yn
[
k′/M

]
ϕn

[
k− k′

]

=
N−1∑

n=0

∑

k′∈ZMP

(↑ yn)
[
k′
]
ϕn

[
k− k′

]

=
N−1∑

n=0

(
(↑ yn) ∗ ϕn

)[k]. (10.12)

With (10.12), we turn to writing the analysis operator of {TMpϕn}N−1
n=0,p∈ZP

in terms
of convolutions. Specifically, Φ∗ : �(ZMP )→[�(ZP )]N is given by

(
Φ∗x

)
n
[p] = 〈x,TMpϕn

〉
�(ZMP )

=
∑

k∈ZMP

x[k][(TMpϕn

)[k]]∗

=
∑

k∈ZMP

x[k]ϕ̃n[Mp− k]

= (x ∗ ϕ̃n)[Mp]
= [↓ (x ∗ ϕ̃n)

][p], (10.13)

where ↓: �(ZMP )→ �(ZP ) is the downsampling operator ↓: �(ZMP )→ �(ZP )

defined by (↓ x)[p] = x[Mp]. Downsampling by M transforms an MP -periodic
signal into a P -periodic signal by only retaining those indices which are divisible
by M . Collecting (10.12) and (10.13), we make the following definitions.

Definition 10.1 Given filters {ϕn}N−1
n=0 ⊆ �(ZMP ), the corresponding synthesis filter

bank is the operator Φ : [�(ZP )]N → �(ZMP ) defined by

Φ{yn}N−1
n=0 =

N−1∑

n=0

(↑ yn) ∗ ϕn.

Meanwhile, the analysis filter bank Φ∗: �(ZMP )→[�(ZP )]N is defined by

Φ∗x = {↓ (x ∗ ϕ̃n)
}N−1
n=0 .
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Fig. 10.1 An N -channel filter bank with a downsampling rate of M . The analysis filter bank Φ∗
computes inner products of a given input signal x in �(ZMP ) with the M-translates of each ϕn,
resulting in the output signals Φ∗x = {↓ (x ∗ ϕ̃n)}N−1

n=0 where each signal ↓ (x ∗ ϕ̃n) lies in �(ZP ).
Meanwhile, the synthesis filter bank Φ forms a linear combination of the M-translates of the ϕn’s
using the values of some {yn}N−1

n=0 in [�(ZMP )]N as coefficients: Φ{yn}N−1
n=0 =

∑N−1
n=0 (↑ yn) ∗ ϕn.

Regarding frame theory, these analysis and synthesis filter banks are the analysis and synthesis
operators of {TMpϕn}N−1

n=0,p∈ZP
, and so the composition of these operators is the corresponding

frame operator. In the next section, we use the polyphase representation of this filter bank to give
an efficient method for computing the frame bounds of such a system

A diagram depicting these operations is given in Fig. 10.1.

Example 10.2 We conclude this section with some examples of filter banks. Indeed,
let’s first consider M =N = 2 and build from Example 10.1, considering two 4-tap
filters in �(Z8):

ϕ0 = aδ0 + bδ1 + cδ2 + dδ4, ϕ1 = eδ0 + f δ1 + gδ2 + hδ4.

Here, the synthesis filter bank is Φ : [�(Z4)]2 → �(Z8):

Φ{y0, y1} = (↑ y0) ∗ ϕ0 + (↑ y1) ∗ ϕ1.

Writing the operation of filtering by ϕ0 as the circulant matrix (10.4) gives

(↑ y0) ∗ ϕ0 =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

a d c b

b a d c

c b a d

d c b a

d c b a

d c b a

d c b a

d c b a

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

y0[0]
0

y0[1]
0

y0[2]
0

y0[3]
0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦
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=

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

a c

b d

c a

d b

c a

d b

c a

d b

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

⎡

⎢
⎢
⎣

y0[0]
y0[1]
y0[2]
y0[3]

⎤

⎥
⎥
⎦ . (10.14)

Writing (↑2 y1) ∗ ϕ1 similarly and summing the results gives

Φ{y0, y1} = (↑ y0)∗ϕ0+ (↑ y1)∗ϕ1 =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

a c e g

b d f h

c a g e

d b h f

c a g e

d b h f

c a g e

d b h f

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

y0[0]
y0[1]
y0[2]
y0[3]
y1[0]
y1[1]
y1[2]
y1[3]

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

.

This makes sense, since the columns of Φ are supposed to be the frame vectors
{TMpϕn}N−1

n=0,p∈ZP
, namely the 4 even translates of ϕ0 and ϕ1. If we add a third filter

ϕ3 = iδ0+ jδ1+ kδ2+ lδ4 to this filter bank, meaning we now have M = 2, N = 3,
and P = 4, our synthesis operator becomes 8× 12:

Φ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

a c e g i k

b d f h j l

c a g e k i

d b h f l j

c a g e k i

d b h f l j

c a g e k i

d b h f l j

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

For a general system of form {TMpϕn}N−1
n=0,p∈ZP

, the matrix representing the syn-
thesis filter bank is of size MP × NP , namely the concatenation of N blocks of
size MP × P , each block containing all M-translates of a given ϕn in �(ZMP ). In
order to determine the optimal frame bounds for such systems, we must necessarily
compute the eigenvalues of ΦΦ∗, namely, the singular values of Φ . At first glance,
this does not seem like an easy problem. At the same time, the fact that these ma-
trices have a quasi-circulant structure gives reason to believe that they can be better
understood via Z-transforms and Fourier transforms; this is the subject of the next
section.
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10.4 The Polyphase Representation

The previous sections discussed the relationship between filter banks and frame
theory. Frame theorists often want frames with certain desirable properties, such
as tightness or incoherence. As one might guess, there are also desirable filter bank
properties. For example, one might wish to design analysis and synthesis filter banks
with the property that the synthesis filter bank reconstructs a signal that was in-
put into the analysis filter bank—see the discussion on perfect reconstruction filter
banks after Theorem 10.2 below. In addition, we might want the filters in these filter
banks to have few taps; that is, we’d like to convolve with vectors of small support,
as this would enable faster implementation.

In this section, we introduce a representation of filter banks, called the polyphase
representation, which is quite useful in designing filter banks with certain proper-
ties. Though this representation was first introduced to study nonredundant filter
banks [22, 24, 25], it wasn’t long before it was adapted to the case of filter bank
frames [4, 8]. The main results of this section are all straightforward generalizations
of results from [4, 8, 24] to the finite-dimensional setting [7].

Definition 10.2 For any ϕ ∈ �(ZMP ), the polyphase vector of ϕ with respect to M

is the M × 1 vector of polynomials:

ϕ(z)=

⎡

⎢⎢⎢
⎣

ϕ(0)(z)

ϕ(1)(z)
...

ϕ(M−1)(z)

⎤

⎥⎥⎥
⎦
,

where each entry of ϕ(z) is defined to be a Z-transform of the restriction of ϕ to a
coset of ZMP with respect to the subgroup MZP :

ϕ(m)(z) :=
∑

p∈ZP

ϕ[m+Mp]z−p = [Z(↓ T−mϕ
)]
(z). (10.15)

For example, when M = 2 and P = 4, the polyphase vector of some 4-tap filter
ϕ in �(Z8) of the form ϕ = aδ0 + bδ1 + cδ2 + dδ3 is the 2× 1 vector consisting of
the Z-transforms of the even and odd parts of ϕ:

ϕ(z)=
[
ϕ(0)(z)

ϕ(1)(z)

]
=
[
a + cz−1

b+ dz−1

]
.

This section is dedicated to explaining why this polyphase representation is the key
to understanding the frame properties of filter banks.

Formally speaking, since ϕ ∈ �(ZMP ) then for any m we have ↓ T−mϕ ∈ �(ZP ),
and so its Z-transform lies in the quotient polynomial ring PP [z] :=C[z]/〈zP − 1〉
discussed in the previous section. As such, the polyphase vector ϕ(z) lies in the
Cartesian product of M copies of PP [z], denoted P

M
P [z]. Letting TP denote the

discrete torus that consists of the P th roots of unity, one can show that PM
P [z] is a
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Hilbert space under the inner product:

〈
ϕ(z),ψ(z)

〉
P

M
P [z] :=

1

P

∑

ζ∈TP

〈
ϕ(ζ ),ψ(ζ )

〉
CM

= 1

P

∑

p∈ZP

〈
ϕ
(
e2π ip/P ),ψ

(
e2π ip/P )〉

CM

= 1

P

∑

p∈ZP

∑

m∈ZM

ϕ(m)
(
e2π ip/P )[ψ(m)

(
e2π ip/P )]∗. (10.16)

In fact, as the next result shows, the space P
M
P [z] is isometric to �(ZMP ) under the

mapping ϕ �→ ϕ(z), which is known as a Zak transform.

Proposition 10.5 The Zak transform ϕ �→ ϕ(z) is an isometry from �(ZMP ) onto
P

M
P [z].

Proof For any ϕ(z),ψ(z) ∈ P
M
P [z], the definition (10.16) of the polyphase inner

product gives

〈
ϕ(z),ψ(z)

〉
P

M
P [z] =

1

P

∑

p∈ZP

∑

m∈ZM

ϕ(m)
(
e2π ip/P )[ψ(m)

(
e2π ip/P )]∗. (10.17)

Considering the Z-transform representation of the polyphase entries (10.15), we use
(10.8) to rewrite ϕ(m)(e2π ip/P ) in terms of Fourier transforms:

ϕ(m)
(
e2π ip/P )= [Z(↓ T−mϕ

)](
e2π ip/P )=√P

[
F∗
(↓ T−mϕ

)]
(p). (10.18)

Obtaining a similar expression for ψ(m)(e2π ip/P ), we substitute this and (10.18)
into (10.17) to get
〈
ϕ(z),ψ(z)

〉
P

M
P [z] =

∑

p∈ZP

∑

m∈ZM

[
F∗
(↓ T−mϕ

)]
(p)
[[

F∗
(↓ T−mψ

)]
(p)
]∗
. (10.19)

Switching the order of summation in (10.19) gives a sum of inner products in �(ZP ):
〈
ϕ(z),ψ(z)

〉
P

M
P [z] =

∑

m∈ZM

〈
F∗
(↓ T−mϕ

)
,F∗
(↓ T−mψ

)〉
�(ZP )

.

Here, we use the fact that the Fourier transform is unitary to get
〈
ϕ(z),ψ(z)

〉
P

M
P [z] =

∑

m∈ZM

〈↓ T−mϕ,↓ T−mψ
〉
�(ZP )

=
∑

m∈ZM

∑

p∈ZP

(↓ T−mϕ
)[p][(↓ T−mψ

)[p]]∗

=
∑

m∈ZM

∑

p∈ZP

ϕ[m+Mp](ψ[m+Mp])∗.
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Finally, we perform a change of variables k =m+Mp to obtain our claim:

〈
ϕ(z),ψ(z)

〉
P

M
P [z] =

∑

k∈ZMP

ϕ[k](ψ[k])∗ = 〈ϕ,ψ〉ZMP
.

�

Filter banks, like those depicted in Fig. 10.1, consist of N filters in �(ZMP ),
denoted {ϕn}N−1

n=0 . Taking the polyphase transform of each results in N polynomial
vectors {ϕn(z)}N−1

n=0 lying in P
M
P [z]. As we shall see, many of the frame properties

of the system Φ = {TMpϕn}N−1
n=0,p∈ZP

can be understood in terms of the synthesis
operator of Φ(z)= {ϕn(z)}N−1

n=0 , namely, the polyphase matrix.

Definition 10.3 Given a sequence of filters {ϕn}N−1
n=0 ⊆ �(ZMP ), the associated

polyphase matrix is the M × N matrix whose columns are the polyphase vectors
{ϕn(z)}N−1

n=0 :

Φ(z) :=

⎡

⎢⎢⎢⎢⎢
⎣

ϕ
(0)
0 (z) ϕ

(0)
1 (z) · · · ϕ

(0)
N−1(z)

ϕ
(1)
0 (z) ϕ

(1)
1 (z) · · · ϕ

(1)
N−1(z)

...
...

. . .
...

ϕ
(M−1)
0 (z) ϕ

(M−1)
1 (z) · · · ϕ

(M−1)
N−1 (z)

⎤

⎥⎥⎥⎥⎥
⎦
.

The next result, which gives a polynomial-domain interpretation of the operation
of a synthesis filter bank, provides the first hints at the usefulness of the polyphase
representation.

Theorem 10.1 Let Φ be the synthesis operator (filter bank) of {Tpϕn}N−1
n=0,p∈ZP

and
let Φ(z) be the polyphase matrix of {ϕn(z)}N−1

n=0 . Then

x =ΦY ⇐⇒ x(z)=Φ(z)Y (z)

where x(z) in P
M
P [z] is the M×1 polyphase vector of x ∈ �(ZMP ) and Y(z) denotes

the N × 1 vector in P
N
P [z] whose nth component is the Z-transform of yn, where

Y = {yn}N−1
n=0 ∈ [�(ZP )]N .

To prove this fact, we first prove the following results involving Z-transforms.

Proposition 10.6

(a) [Z(↑ y)](z)= (Zy)(zM) for any y ∈ �(ZP ).
(b) (Zx)(z)=∑m∈ZM

z−mx(m)(zM) for any x ∈ �(ZMP ).

Proof For (a), note that the definition of upsampling gives

[
Z(↑ y)

]
(z)=

∑

k∈Z
(↑ y)[k]z−k =

∑

k∈ZMP
M|k

y[k/M]z−k.
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Performing the change of variables k =Mp gives the result

[
Z(↑ y)

]
(z)=

∑

p∈ZP

y[p]z−Mp =
∑

p∈ZP

y[p](zM)−p = (Zy)
(
zM
)
.

For (b), making the change of variables k =m+Mp gives

(Zx)(z)=
∑

k∈ZMP

x[k]z−k

=
∑

m∈ZM

∑

p∈ZP

x[m+Mp]z−(m+Mp)

=
∑

m∈ZM

z−m
∑

p∈Zp

x[m+Mp](zM)−p

=
∑

m∈ZM

z−mx(m)
(
zM
)
.

Alternatively, one may prove (b) first, of which (a) is a special case. �

Proof of Theorem 10.1 Note that x =ΦY if and only if (Zx)(z)= (ΦY)(z). Here,
(Zx)(z) is given by Proposition 10.6(b). Meanwhile, Definition 10.1, the linearity
of the Z-transform, and Propositions 10.3 and 10.6 give

(ZΦY)(z)=
(

Z
N−1∑

n=0

(↑ yn) ∗ ϕn

)

(z)

=
N−1∑

n=0

[
Z(↑ yn)

]
(z)(Zϕn)(z)

=
N−1∑

n=0

(Zyn)
(
zM
)
(Zϕn)(z).

We continue to rewrite (ZΦY)(z) by applying Proposition 10.6(b) to (Zϕn)(z):

(ZΦy)(z)=
N−1∑

n=0

(Zyn)
(
zM
) ∑

m∈ZM

z−mϕ(m)
n

(
zM
)

=
∑

m∈ZM

z−m
N−1∑

n=0

ϕ(m)
n

(
zM
)
(Zyn)

(
zM
)

=
∑

m∈ZM

z−m
[
Φ
(
zM
)
Y
(
zM
)]

m
.
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As such, x =ΦY if and only if
∑

m∈ZM

z−mx(m)
(
zM
)= (Zx)(z)= (ZΦy)(z)=

∑

m∈ZM

z−m
[
Φ
(
zM
)
Y
(
zM
)]

m
.

Considering only those exponents which are equal modulo m, we thus have x =
ΦY if and only if x(m)(zM) = [Φ(zM)Y (zM)]m for all m, meaning x(zM) =
Φ(zM)Y (zM). To conclude, note that the Z-transforms of x and ϕ invoked here
lie in the ring PMP [z] = C[z]/〈zMP − 1〉; having x(zM) = Φ(zM)Y (zM) in this
ring is equivalent to having x(z)=Φ(z)Y (z) in the ring PP [z] =C[z]/〈zP − 1〉. �

We can also prove a result which is analogous to Theorem 10.1 for analysis filter
banks. Here, the para-adjoint Φ∗(z) is the matrix of polynomials obtained by taking
the conjugate transpose of Φ(z), where the variable z is regarded as an element of
the unit circle T := {ζ ∈C : |ζ | = 1} and so z∗ := z−1. Formally speaking, Φ∗(z) is
an N ×M matrix of polynomials, each entry lying in PP [z], whose (n,m)th entry
is

[
Φ∗(z)

]
n,m
:= (ϕ∗n

)(m)(
z−1)=

∑

p∈ZP

ϕ∗n[m+Mp]zp.

Theorem 10.2 Let Φ∗ be the analysis operator (filter bank) of {Tpϕn}N−1
n=0,p∈ZP

and
let Φ(z) be the polyphase matrix of {ϕn(z)}N−1

n=0 . Then

Y =Φ∗x ⇐⇒ Y(z)=Φ∗(z)x(z).

Proof The nth entry of Φ∗(z)x(z) is

[
Φ∗(z)x(z)

]
n
=
∑

m∈ZM

[
Φ∗(z)

]
n,m

x(m)(z)

=
∑

m∈ZM

∑

p′∈ZP

ϕ∗n
[
m+Mp′

]
zp

′ ∑

p′′∈ZP

x
[
m+Mp′′

]
z−p′′

=
∑

m∈ZM

∑

p′∈ZP

∑

p′′∈ZP

ϕ∗n
[
m+Mp′

]
x
[
m+Mp′′

]
z−(p′′−p′).

Making two changes of variables, p = p′′ − p′ and then k =m+Mp′′, gives

[
Φ∗(z)x(z)

]
n
=
∑

p∈ZP

( ∑

m∈ZM

∑

p′′∈ZP

ϕ∗n
[
m+Mp′′ −Mp

]
x
[
m+Mp′′

])
z−p

=
∑

p∈ZP

( ∑

k∈ZMP

ϕ̃n[Mp− k]x[k]
)
z−p

=
∑

p∈ZP

(x ∗ ϕ̃n)[Mp]z−p
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=
∑

p∈ZP

[↓ (x ∗ ϕ̃n)
][p]z−p

= {Z[↓ (x ∗ ϕ̃n)
]}
(z).

In particular, Y(z)=Φ∗(z)x(z) if and only if (Zyn)(z)= {Z[↓ (x ∗ ϕ̃n)]}(z) for all
n; this occurs precisely when yn =↓ (x ∗ ϕ̃n) for all n, namely, when Y =Φ∗x. �

Theorems 10.1 and 10.2 tell us something very interesting about the polyphase
representation: the polyphase matrix of an analysis filter bank behaves as an analysis
operator of sorts in polyphase space, and similarly for synthesis. As the remainder
of this section will show, there are several properties of Φ that the polyphase repre-
sentation preserves in a similar way.

For example, with Theorems 10.1 and 10.2, we can characterize an important
class of filter banks. We say the pair (Ψ ∗,Φ) is a perfect reconstruction filter bank
(PRFB) if ΦΨ ∗ = I. This is equivalent to having the corresponding frames be duals
of each other. PRFBs are useful because the synthesis filter bank can be used to
reconstruct whatever signal was input into the analysis filter bank. Note that com-
bining Theorems 10.1 and 10.2 gives that

ΦΨ ∗x = x if and only if Φ(z)Ψ ∗(z)x(z)= x(z),

and so we have a polyphase characterization of PRFBs: Φ(z)Ψ ∗(z) = I. The
polyphase representation can also be used to characterize other useful properties
of filter banks. Before we state them, we prove the following lemma.

Lemma 10.1 For any x,ϕ ∈ �(ZMP ),

〈
x
(
e2π ip/P ), ϕ

(
e2π ip/P )〉

CM =
√
P
(
F∗
〈
x,TM•ϕ

〉
�(ZMP )

)[p]. (10.20)

Proof We first show that the polyphase representation of TMpϕ is z−pϕ(z). For any
p ∈ ZP and m ∈ ZM ,

(
TMpϕ

)(m)
(z)=

∑

p′∈ZP

(
TMpϕ

)[
m+Mp′

]
z−p′ =

∑

p′∈ZP

ϕ
[
m+M

(
p′ − p

)]
z−p′ .

(10.21)
Letting p′′ = p′ − p in (10.21) then gives

(
TMpϕ

)(m)
(z)=

∑

p′′∈ZP

ϕ
[
m+Mp′′

]
z−(p′′+p) = z−pϕ(m)(z). (10.22)

Since (10.22) holds for all m ∈ ZM , we have that (TMpϕ)(z) = z−pϕ(z) for all
p ∈ ZP . This fact, along with Proposition 10.5, gives

〈
x,TMpϕ

〉
�(ZMP )

= 〈x(z), (TMpϕ
)
(z)
〉
P

M
P [z] =

〈
x(z), z−pϕ(z)

〉
P

M
P [z].
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By the definitions of the inner product on P
M
P [z] and the inverse Fourier transform,

〈
x,TMpϕ

〉
�(ZMP )

= 1

P

∑

p′∈ZP

〈
x
(
e2π ip′/P ), e−2π ipp′/P ϕ

(
e2π ip′/P )〉

CM

= 1

P

∑

p′∈ZP

〈
x
(
e2π ip′/P ), ϕ

(
e2π ip′/P )〉

CM e2π ipp′/P

= 1√
P

(
F
〈
x
(
e2π i•/P ), ϕ

(
e2π i•/P )〉

CM

)[p], (10.23)

where “•” denotes the variable argument of a given function. Taking Fourier trans-
forms of (10.23) and multiplying by

√
P gives the result (10.20). �

Perhaps the most straightforward PRFB arises from a unitary filter bank, in which
M = N and the synthesis filter bank operator is the inverse of the analysis filter
bank operator, Φ = (Ψ ∗)−1 = Ψ . In this case, showing that ΦΨ ∗ = ΦΦ∗ = I is
equivalent to showing that Φ∗Φ = I, i.e., showing that the columns of the matrix
Φ are orthonormal. The following result—a finite-dimensional version of a well-
known result [24]—characterizes unitary filter banks; it says that the columns of Φ
are orthonormal precisely when the columns of the corresponding polyphase matrix
Φ(ζ) are orthonormal for every ζ in the P th roots of unity TP := {ζ ∈C : ζP = 1}.

Theorem 10.3 For every ϕ,ψ ∈ �(ZMP ),

(a) {TMpϕ}p∈ZP
is orthonormal if and only if ‖ϕ(ζ )‖2

CM = 1 for every ζ ∈ TP ,

(b) {TMpϕ}p∈ZP
is orthogonal to {TMpψ}p∈ZP

if and only if 〈ϕ(ζ ),ψ(ζ )〉CM = 0
for every ζ ∈ TP .

Proof For (a), note that {TMpϕ}p∈ZP
being orthonormal is equivalent to having

〈ϕ,TMpϕ〉�(ZMP ) = δ0[p] for every p ∈ ZP . Taking Fourier transforms of this rela-
tion, Lemma 10.1 equivalently gives ‖ϕ(e2π ip/P )‖2

CM = 1 for every p ∈ ZP . Sim-

ilarly for (b), {TMpϕ}p∈ZP
being orthogonal to {TMpψ}p∈ZP

is equivalent to hav-
ing 〈ϕ,TMpψ〉�(ZMP ) = 0 for every p ∈ ZP . Taking Fourier transforms of this re-
lation, Lemma 10.1 equivalently gives 〈ϕ(e2π ip/P ),ψ(e2π ip/P )〉CM = 0 for every
p ∈ ZP . �

Example 10.3 Let’s design a pair of real 4-tap filters ψ0,ψ1 ∈ �(Z2P ) in such a
way that {T2pψn}1n=0,p∈ZP

forms an orthonormal basis. Our design for these taps

will be independent of P ≥ 4; the fact that we can design such filters while keeping
P arbitrary speaks to the strength of this design process. In this example, we want
the filters to have common support:

ψ0 := aδ0 + bδ1 + cδ2 + dδ3,

ψ1 := eδ0 + f δ1 + gδ2 + hδ3.
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Since M = 2, the polyphase components of these filters are given by Z-transforms
over the even and odd indices:

Ψ (z)=
⎡

⎣
ψ

(0)
0 (z) ψ

(0)
1 (z)

ψ
(1)
0 (z) ψ

(1)
1 (z)

⎤

⎦=
[
a + cz−1 e+ gz−1

b+ dz−1 f + hz−1

]
.

To determine which choices for ψ0 and ψ1 make {T2pψn}1n=0,p∈ZP
an orthonormal

basis, we appeal to Theorem 10.3, which requires Ψ (ζ ) to be a unitary matrix for
every ζ ∈ TP . A square polyphase matrix Ψ (z) with this property is known as a
paraunitary matrix. Since Ψ (ζ ) is a 2 × 2 matrix, this isn’t a difficult task; the
second column can be taken to be a modulated involution of the first. However, we
want this property to hold for every ζ ∈ TP , and so we’ll be more careful in applying
Theorem 10.3. Specifically, Theorem 10.3(b) requires the first and second columns
of Ψ (ζ ) to be orthogonal for every ζ ∈ TP , and so

0= (a + cζ−1)(e+ gζ−1)∗ + (b+ dζ−1)(f + hζ−1)∗

= (a + cζ−1)(e+ gζ )+ (b+ dζ−1)(f + hζ )

= (ae+ bf + cg + dh)+ (ce+ df )ζ−1 + (ag + bh)ζ. (10.24)

The coefficient of ζ−1 being zero gives

e= αd, f =−αc (10.25)

for some α ∈R, while the coefficient of ζ gives

g = βb, h=−βa (10.26)

for some β ∈ R. Substituting (10.25) and (10.26) into the constant term of (10.24)
then gives

0= ae+ bf + cg + dh

= a(αd)+ b(−αc)+ c(βb)+ d(−βa)

= (α − β)(ad − bc).

Thus, the columns of Ψ (ζ ) are always orthogonal if and only if either ad − bc= 0
or α = β . Forcing ad − bc = 0 would remove a lot of freedom in our filter design,
and so instead we take α = β . We may now rewrite Ψ (z):

Ψ (z)=
[
a + cz−1 e+ gz−1

b+ dz−1 f + hz−1

]
=
[
a + cz−1 α(d + bz−1)

b+ dz−1 −α(c+ az−1)

]
.

Next, Theorem 10.3(a) requires the columns of Ψ (ζ ) to be unit norm for every
ζ ∈ TP . Notice that for each ζ ∈ TP , the norm squared of the second column is
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∣∣α
(
d + bζ−1)∣∣2 + ∣∣−α

(
c+ aζ−1)∣∣2 = ∣∣αζ−1(dζ + b)

∣∣2 + ∣∣−αζ−1(cζ + a)
∣∣2

= α2(∣∣b+ d
(
ζ ′
)−1∣∣2 + ∣∣a + c

(
ζ ′
)−1∣∣2),

where ζ ′ := ζ−1. That is, the norm squared of the second column at z = ζ is α2

times the norm squared of the first column at z = ζ−1. Thus, to satisfy Theo-
rem 10.3(a), we must have α =±1. Picking α = 1, we rewrite Ψ (z):

Ψ (z)=
[
a + cz−1 d + bz−1

b+ dz−1 −c− az−1

]
. (10.27)

To summarize, the columns of (10.27) are the polyphase representations of ψ0 and
ψ1, respectively, and {T2pψn}1n=0,p∈ZP

forms an orthonormal basis, provided

∣∣a + cζ−1
∣∣2 + ∣∣b+ dζ−1

∣∣2 = 1, ∀ζ ∈ TP , (10.28)

which by Theorem 10.3(a), is equivalent to having {T2pψ0}p∈ZP
be orthonormal.

The remaining degrees of freedom in choosing a, b, c, and d can be used to optimize
for additional desirable filter properties, such as frequency selectivity, as discussed
in greater detail in the next section.

Generalizing unitary filter banks, another nice class of PRFBs arises from Parse-
val filter banks. In contrast to the unitary case, the condition ΦΦ∗ = I is not equiv-
alent to Φ∗Φ = I since Φ is not a square matrix. The following result—a finite-
dimensional version of the main results of [4, 8]—expresses the frame bounds of Φ
in terms of the frame bounds of the corresponding polyphase representation Φ(ζ)

at each ζ ∈ TP . In particular, Φ is Parseval if and only if Φ(ζ) is Parseval for every
ζ ∈ TP .

Theorem 10.4 Given any filters {ϕn}N−1
n=0 in �(ZMP ), the optimal frame bounds A

and B for {TMpϕn}N−1
n=0, p∈ZP

in �(ZMP ) are

A= min
p∈ZP

Ap, B = max
p∈ZP

Bp,

where Ap and Bp denote the optimal frame bounds for {ϕn(e2π ip/P )}N−1
n=0 in C

M .

Proof We first show that this A and this B are indeed frame bounds, namely,

A‖x‖2
�(ZMP ) ≤

N−1∑

n=0

∑

p∈ZP

∣∣〈x,TMpϕn

〉2
�(ZMP )

∣∣2 ≤ B‖x‖2
�(ZMP ), ∀x ∈ �(ZMP ).

(10.29)



366 M. Fickus et al.

To this end, we express the middle expression of (10.29) in terms of a norm in
�(ZP ), and then we use the fact that the Fourier transform is unitary:

N−1∑

n=0

∑

p∈ZP

∣∣〈x,TMpϕn

〉
�(ZMP )

∣∣2 =
N−1∑

n=0

∥∥〈x,TM•ϕn

〉
�(ZMP )

∥∥2
�(ZP )

=
N−1∑

n=0

∥∥F∗
〈
x,TM•ϕn

〉
�(ZMP )

∥∥2
�(ZP )

=
N−1∑

n=0

∑

p∈ZP

∣∣(F∗
〈
x,TM•ϕn

〉
�(ZMP )

)[p]∣∣2.

Next, we apply Lemma 10.1 and then change the order of summation:

N−1∑

n=0

∑

p∈ZP

∣∣〈x,TMpϕn

〉
�(ZMP )

∣∣2 =
N−1∑

n=0

∑

p∈ZP

∣∣∣∣
1√
P

〈
x
(
e2π ip/P ), ϕn

(
e2π ip/P )〉

CM

∣∣∣∣

2

= 1

P

∑

p∈ZP

(
N−1∑

n=0

∣∣〈x
(
e2π ip/P ), ϕn

(
e2π ip/P )〉

CM

∣∣2
)

.

(10.30)

Since Ap is a lower frame bound for {ϕn(e2π ip/P )}N−1
n=0 ⊆C

M for each p ∈ ZP , we
continue (10.30):

N−1∑

n=0

∑

p∈ZP

∣∣〈x,TMpϕn

〉
�(ZMP )

∣∣2 ≥ 1

P

∑

p∈ZP

Ap

∥∥x
(
e2π ip/P )∥∥2

CM

≥
(

min
p∈ZP

Ap

)( 1

P

∑

p∈ZP

∥∥x
(
e2π ip/P )∥∥2

CM

)

=A
∥∥x(z)

∥∥2
P

M
P [z]

=A‖x‖2
�(ZMP ), (10.31)

where (10.31) uses Proposition 10.5. Similarly, we can continue (10.30) to get

N−1∑

n=0

∑

p∈ZP

∣∣〈x,TMpϕn

〉
�(ZMP )

∣∣2 ≤ B‖x‖2
�(ZMP ),

and so A and B are indeed frame bounds for {TMpϕn}N−1
n=0, p∈ZP

⊆ �(ZMP ).
To show that A and B are optimal frame bounds, we need to find nontrivial x’s for

which the left- and right-hand inequalities of (10.29) are achieved. For the left-hand
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inequality, let p′ be an index such that Ap′ is minimal, and let xp′;min ∈C
M be the

vector that achieves this optimal lower frame bound of {ϕn(e2π ip′/P )}N−1
n=0 ⊆C

M .
We define xmin ∈ �(ZMP ) in terms of its polyphase components:

x
(m)
min(z) := xp′;min[m]

∏

p∈ZP \{p′}

(
z− e2π ip/P

e2π ip′/P − e2π ip/P

)
.

Notice that xmin(e2π ip/P ) = δp′ [p]xp′;min, and so the inequalities in (10.31) are
achieved. Similar definitions produce an xmax that achieves the right-hand inequality
of (10.29), and so we are done. �

From the point of view of applications, the significance of Theorem 10.4 is that
it facilitates the design of filter banks that have good frame bounds. To be precise,
though PRFBs satisfy ΦΨ ∗ = I and therefore provide overcomplete decomposi-
tions, such filter banks can be poor frames. This is significant, since only good
frames are guaranteed to be robust against noise. To be precise, in many signal
processing applications, the goal is to reconstruct x from y = Ψ ∗x + ε, where ε is
“noise” due to transmission errors, quantization, etc. Applying the dual frame Φ to
y yields the reconstruction Φy = x +Φε. Clearly, the validity of this estimate of x
depends on the size of Φε relative to that of x. In general, if this filter bank is a poor
frame, it is possible for Φε to be large even when ε is small; the only way to prevent
this is to ensure that the condition number B

A
of the frame is as close as possible

to 1. Though computing condition numbers can be computationally expensive for
large matrices, Theorem 10.4 provides a shortcut for computing this number when
the frame in question corresponds to a filter bank. Note that from this perspective,
the best possible PRFBs are tight frames, an example of which we now consider.

Example 10.4 We now apply Theorem 10.4 to build a PRFB which arises from a
Parseval synthesis filter bank Φ : [�(ZP )]3 → �(Z2P ) defined by

Φ{yn}2n=0 =
2∑

n=0

(↑ yn) ∗ ϕn.

As before, our choice for P will remain arbitrary. Note that, by Theorem 10.4, Φ
is Parseval if and only if Φ(ζ) is Parseval for every ζ ∈ TP . Also, Φ(ζ) is a 2× 3
matrix, and the only 2× 3 equal norm Parseval frame—up to rotation—is given by
scaled cubed roots of unity:

1√
6

[
2 −1 −1
0
√

3 −√3

]
. (10.32)

As we will see in the following section, having equal norm columns in the polyphase
matrix is desirable because it implies that the corresponding filter bank is somewhat
balanced in its frequency selectivity.
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Let’s define our polyphase matrix Φ(z) to be the matrix in (10.32). Since the
columns of (10.32) are the polyphase representations of each of our filters, we read
off the coefficients of the polynomials to get

ϕ0 := 2√
6
δ0,

ϕ1 := − 1√
6
δ0 +

√
3√
6
δ1,

ϕ2 := − 1√
6
δ0 −

√
3√
6
δ1.

Here, the fact that Φ(z) has no dependence on z implies that the filters are only sup-
ported in the first M = 2 entries. Further, the matrix representation of the synthesis
operator is

Φ = 1√
6

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

2 −1 −1
0

√
3 −√3

2 −1 −1
0

√
3 −√3

. . .
. . .

. . .

2 −1 −1
0

√
3 −√3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

Notice that the translates of a common filter have disjoint support. Also, the columns
of Φ can be shuffled to form a version of Φ(z) tensored with IP . As such, this
example is rather uninteresting as a filter bank; the corresponding analysis operator
only analyzes interactions between certain pairs of entries.

For various applications, there are additional desirable filter properties which we
would like our PRFBs to satisfy. In order to have the freedom necessary to satisfy
these properties, our filters will need more taps. This means that the polyphase ma-
trix Φ(z) of our filter bank will no longer be constant. But (10.32) gives the only
2 × 3 equal norm Parseval frame up to rotation. Therefore, we will define Φ(z)

by multiplying (10.32) on the left with a unitary matrix of polynomials. To this

end, consider Ψ (z) in (10.27) with a, c = 2− 5
2 (1±√3) and b, d = 2− 5

2 (3±√3);
we choose these numbers because they correspond to a Daubechies wavelet, as de-
scribed in greater detail in the following section. Then

Φ(z) :=
[
a + cz−1 d + bz−1

b+ dz−1 −c− az−1

](
1√
6

[
2 −1 −1
0
√

3 −√3

])

= 2√
6

[
a + cz−1 −2− 3

2 (1−√3z−1) d − bz−1

b+ dz−1 −2− 3
2 (
√

3+ z−1) −c+ az−1

]

. (10.33)
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The filters are then found by reading off coefficients from these polynomials:

ϕ0 := 2a√
6
δ0 + 2b√

6
δ1 + 2c√

6
δ3 + 2d√

6
δ3,

ϕ1 := − 1√
12

δ0 −
√

3√
12

δ1 +
√

3√
12

δ2 − 1√
12

δ3,

ϕ2 := 2d√
6
δ0 − 2c√

6
δ1 − 2b√

6
δ3 + 2a√

6
δ3.

When P = 4, the synthesis operator then becomes

Φ = 2√
6

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

a c − 1
2
√

2

√
3

2
√

2
d −b

b d −
√

3
2
√

2
− 1

2
√

2
−c a

c a
√

3
2
√

2
− 1

2
√

2
−b d

d b − 1
2
√

2
−
√

3
2
√

2
a −c

c a
√

3
2
√

2
− 1

2
√

2
−b d

d b − 1
2
√

2
−
√

3
2
√

2
a −c

c a
√

3
2
√

2
− 1

2
√

2
−b d

d b − 1
2
√

2
−
√

3
2
√

2
a −c

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

.

By construction, Φ is a Parseval frame. Certainly, this would be cumbersome to
check by hand, but it is guaranteed by the fact that Ψ (z) is a unitary matrix of
polynomials. In fact, Φ would be Parseval regardless of our choice for P . This
illustrates the utility of designing Parseval frames of polynomials like Φ(z).

10.5 Designing Filter Bank Frames

When designing a filter bank for a given real-world application, we usually seek
three things: for the filter bank to be a “good” frame, for the filters to have small
support, and for the filters to have good frequency selectivity, as detailed below.
While these three goals are not mutually exclusive, they do compete. For example,
filters with a very small number of taps give very little freedom in designing a desir-
able frequency response; this is a type of uncertainty principle. Because of this, even
when restated in the polyphase domain, the task of designing such nice filter banks
remains a difficult problem, as well as an active area of research [6, 12, 18, 19].
Currently, a popular choice of filter bank frame is the cosine modulated filter bank
introduced in [3]. For other examples, see [14, 15] and the references therein.
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Here, a “good” frame is one whose frame bounds A and B are as close to each
other as they can be with respect to the design constraints of the other desired prop-
erties. This is desirable since the speed and numerical stability with which we may
solve for x from y = Φ∗x + ε improves the closer our condition number B/A of
ΦΦ∗ is to 1. In particular, when M = N , we would like {TMpϕn}N−1

n=0,p∈ZP
to be

an orthonormal basis for �(ZMP ), meaning its synthesis operator is unitary. Mean-
while for M <N , we would hope for Φ to be a tight frame, meaning the canonical
dual is but a scalar multiple of the frame vectors themselves: ψn = 1

A
ϕn. Sometimes

other design considerations trump this one. For example, while orthogonal wavelets
exists, none but the Haar wavelet exhibit even symmetry—an important property in
image processing—and thus the theory of biorthogonal wavelets, i.e., nontight filter
bank frames with M =N = 2, was developed.

We also usually want the filters in our filter bank to have small support, that is, to
have a small number of taps. This is crucial because in most real-world signal pro-
cessing applications, the filtering itself is implemented directly in the time domain.
To be clear, as discussed in Sect. 10.2, filtering can be viewed as multiplication in
the frequency domain: x ∗ ϕ can be computed by taking the inverse Fourier trans-
form of the pointwise multiplication of the Fourier transforms of x and ϕ. Using this
method, the cost of computing x ∗ ϕ is essentially that of three Fourier transforms,
namely O(MP log(MP)) operations for x,ϕ ∈ �(ZMP ). However, in order to com-
pute x ∗ ϕ at even a single time, this frequency-domain method requires all of the
values of the input signal x to be known. Time-domain filtering, on the other hand,
can be done in real time. In particular, if the support of one’s filter is an interval
of K points, then one can directly compute x ∗ ϕ using only O(KMP) operations;
moreover, each value of x ∗ ϕ can be computed from K neighboring values of x.

Indeed, in most real-world applications, the true benefit of the frequency-domain
representation of a filter is not any computational advantage, but rather an intuitive
understanding of what that filter truly does. Frequency content is an important com-
ponent of many signals of interest, such as audio signals, electromagnetic signals,
and images. Proper filtering can help isolate the part of a signal that a user truly
cares about. For example, a low-pass filter can help remove a high-pitched whine
from the background of an audio sample. To be clear, no frame expansion can com-
pletely eliminate any part of a signal, since otherwise that part would not be able
to be reconstructed. However, a properly designed filter bank frame can separate a
signal into multiple channels, each emphasizing a particular region of the frequency
spectrum. That is, though a low-pass filter itself is a poor frame, it can become a
good one if taken together with the appropriate high-pass filter.

Formally speaking, the nth channel of the analysis and synthesis filter banks
of {TMpϕn}N−1

n=0,p∈ZP
refers to the operations x �→↓ (x ∗ ϕ̃n) and yn �→ (↑ yn) ∗

ϕn, respectively. In terms of frequency content, it is not difficult to show that the
downsampling operation periodizes—sums the M-translates of—the MP -periodic
Fourier transform of x ∗ ϕ̃n, while the upsampling operation periodically extends
the P -periodic Fourier transform of yn. That is, the downsampling and upsampling
operations have fixed, known effects on the frequency content of a signal. As such,
the only true design freedom in this channel lies with our choice of ϕn. Here, we
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recall material from Sect. 10.2 to find that the frequency content of the filtered signal
x ∗ ϕn is

[
F ∗(x ∗ ϕn)

][k] = 1√
MP

[
Z(x ∗ ϕn)

](
e2π ik/MP

)

= 1√
MP

(Zx)
(
e2π ik/MP

)
(Zϕ̃n)

(
e2π ik/MP

)

= (F ∗x)[k] [(Zϕn)
(
e2π ik/MP

)]∗
.

In particular, |[F ∗(x ∗ ϕn)][k]|2 = |(F ∗x)[k]|2 |(Zϕn)(e2π ik/MP )|2. Here, the multi-
plier |(Zϕn)(e2π ik/MP )|2 is known as the frequency response of ϕn. This frequency
response indicates the degree to which filtering x with ϕn will change the strength
of any given frequency component of x. We note that in the classical signal process-
ing literature in which filters typically lie in the infinite-dimensional space �1(Z),
frequency responses are usually expressed in terms of classical Fourier series:

ϕ̂n(ω) :=
∞∑

k=−∞
ϕn[k]e−ikω.

We adapt this notion to periodic signals in �(ZMP ) by only summing over the small-
est coset representatives of ZMP , and treating the remaining coefficients as zero:

ϕ̂n(ω) :=
�(MP−1)/2�∑

k=−�MP/2�
ϕn[k]e−ikω.

Under this definition, ϕ̂n is well defined at any ω in R/2πZ= [−π,π). Moreover,
the frequency response of ϕn is

∣∣∣∣ϕ̂n

(
2πk

MP

)∣∣∣∣

2

=
∣∣∣∣
∑

k′∈ZMP

ϕn

[
k′
]
e−2π ikk′/MP

∣∣∣∣

2

= ∣∣(Zϕn)
(
e2π ik/MP

)∣∣2.

For an example of frequency responses, recall the two 4-tap Daubechies filters
{ψ0,ψ1} used in the previous section:

ψ0 := aδ0 + bδ1 + cδ2 + dδ3,

ψ1 := dδ0 − cδ1 + bδ2 − aδ3,

where a, c = 2− 5
2 (1±√3) and b, d = 2− 5

2 (3±√3). Though this choice of coef-
ficients seems quite arbitrary, a glimpse at the frequency responses of ψ0 and ψ1
reveals them to be quite special. Indeed, by looking at the plots of |ψ̂0(ω)

2| and
|ψ̂1(ω)

2| in Fig. 10.2 over all ω ∈ [−π,π), we see that ψ0 is a low-pass filter,
meaning that it is concentrated on the frequencies near zero, while ψ1 is a high-pass
filter concentrated on frequencies near ±π . The even symmetry of these graphs is
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Fig. 10.2 The frequency responses |ψ̂0(ω)
2| and |ψ̂1(ω)

2| of the 4-tap low-pass Daubechies filter
ψ0 (left) and its high-pass cousin ψ1 (right). As discussed in Sect. 10.3, the corresponding 2× 2
polyphase matrix Ψ (z) is unitary, meaning that the set {T2pψ0,T2pψ1}p∈ZP

of all even translates
of ψ0 and ψ1 forms an orthonormal basis for �(ZP ). The corresponding 2-channel filter bank con-
sisting of the analysis and synthesis filter banks Ψ and Ψ ∗ exhibits all three of the most important
properties of a good filter bank: it is a good frame (an orthonormal basis), the filters have a low
number of taps (4), and the filters themselves exhibit good frequency selectivity, meaning that
each of the 2 channels is concentrated on a particular range of frequencies. Taken together, these
facts imply that Ψ ∗x can be quickly computed from x, that x can quickly be reconstructed from
Ψ ∗x in a numerically stable fashion, and that each of the 2 output channels y0 :=↓ (x ∗ ψ0) and
y1 :=↓ (x ∗ ψ1) contains a distinct frequency component of x. That is, Ψ ∗ nicely decomposes a
signal x into its low and high frequency components

due to the fact that the coefficients of ψ0 and ψ1 are real. The particular values of
a, b, c, and d are chosen so as to make ψ0 as tall and flat as possible at ω = 0,
subject to the conditions (10.28) necessary for the resulting polyphase matrix Ψ (z)

of (10.27) be unitary.
A careful inspection of the two frequency responses depicted in Fig. 10.2 reveals

that |ψ̂1(ω)
2| is a shift of |ψ̂0(ω)

2| by a factor of π and moreover that these two
graphs sum to 2. The fact that |ψ̂1(ω)

2| is a shift of |ψ̂0(ω)
2| is an artifact of the

way in which ψ1 was constructed from ψ0, and does not hold in general. However,
as the next result shows, the constancy of the sum of |ψ̂0(ω)

2| and its shift is a
consequence of the fact that the even translates of ψ0 are orthonormal.

Theorem 10.5 The vectors {TMpϕ}p∈ZP
are orthonormal in �(ZMP ) if and only if

∑

m∈ZM

∣∣∣∣ϕ̂
(

2π(k − Pm)

MP

)∣∣∣∣

2

=M, ∀k ∈ ZMP .

Proof From Theorem 10.3, we know that {TMpϕ}p∈ZP
is orthonormal if and only

if

1=
∑

m∈ZM

∣∣ϕ(m)(ζ )
∣∣2, ∀ζ ∈ TP ,

which is equivalent to having

1=
∑

m∈ZM

∣∣ϕ(m)
(
ζM
)∣∣2, ∀ζ ∈ TMP . (10.34)
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Recalling from Proposition 10.6 that (Zϕ)(z)=∑m∈ZM
z−mϕ(m)(zM), we have

∑

m∈ZM

∣∣(Zϕ)
(
e−2π im/Mζ

)∣∣2 =
∑

m∈ZM

∣∣∣∣
∑

m′∈ZM

e2π imm′/Mζ−m′ϕ(m′)(ζM
)
∣∣∣∣

2

=
∑

m∈ZM

∣∣
√
M
[
F
(
ζ−•ϕ(•))(ζM

)][m]∣∣2,

for any ζ ∈ TMP . Since the inverse Fourier transform is unitary, it follows that
∑

m∈ZM

∣∣(Zϕ)
(
e−2π im/Mζ

)∣∣2 =M
∑

m∈ZM

∣∣ζ−mϕ(m)
(
ζM
)∣∣2 =M

∑

m∈ZM

∣∣ϕ(m)
(
ζM
)∣∣2.

In light of (10.34), we therefore have that {TMpϕ}p∈ZP
is orthonormal if and only if

M =
∑

m∈ZM

∣∣(Zϕ)
(
e−2π im/Mζ

)∣∣2, ∀ζ ∈ TMP .

Writing ζ as e2π ik/MP then gives that {TMpϕ}p∈ZP
is orthonormal if and only if

M =
∑

m∈ZM

∣∣(Zϕ)
(
e−2π im/Me2π ik/MP

)∣∣2 =
∑

m∈ZM

∣∣∣∣ϕ̂
(

2π(k − Pm)

MP

)∣∣∣∣

2

,

∀k ∈ ZMP ,

as claimed. �

We note that for a general filter bank frame {TMPϕn}N−1
n=0,p∈ZP

, we do not require
{TMpϕn}p∈ZP

to be orthonormal for each n. As such, Theorem 10.5 does not neces-
sarily apply, meaning that for any n, the M-term periodization of {|ϕ̂n(ω)|2}N−1

n=0 is
not necessarily flat. At the same time, it can be advantageous to make such a restric-
tion: having each of the M-translates of ϕn be orthonormal is equivalent to having
the nth channel of the filter bank frame operator, namely the operation

x→ (↑↓ (x ∗ ϕ̃n)
) ∗ ϕn =

∑

p∈Zp

〈
x,TMpϕn

〉
TMpϕn,

be an orthogonal projection from �(ZMP ) onto the subspace spanned by the M-
translates of ϕn. In this case, the frame operator ΦΦ∗ of the filter bank becomes the
sum of N projections—one for each channel—meaning that {TMpϕn}N−1

n=0,p∈ZP
can

be viewed as a fusion frame. Introduced in [5], such frames are optimal linear packet
encoders [2], and are the focus of another chapter of this book. Intuitively, such a
restriction ensures that each channel is of equal significance to all others. Such filter
bank fusion frames are the focus of [7].

An example of such a filter bank was given in the previous section, namely the 3-
channel, 2-downsampled Parseval filter bank frame whose 2× 3 polyphase matrix
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Fig. 10.3 The frequency response curves |ϕ̂0(ω)
2| (left), |ϕ̂1(ω)

2| (center), and |ϕ̂2(ω)
2| (right)

of the 3-channel, 2-downsampled filter bank given in (10.33). This filter bank only exhibits two
of the three commonly desired properties of a filter bank: it is a good frame, being tight, and each
of the filters only has 4 taps. However, as the above graphs indicate, these filters do not exhibit
good frequency selectivity. In particular, while ϕ0—a copy of the 4-tap Daubechies low-pass filter
ψ0—does a good job of isolating the low frequencies of a signal, the other filters ϕ1 and ϕ2 allow
all frequencies to pass through to a significant degree. As such, this filter bank would not be useful
in the many signal processing applications in which frequency isolation is a primary goal

(10.33) is obtained by taking the product of the 4-tap Daubechies 2 × 2 parauni-
tary matrix Ψ (z) with the fixed 2 × 3 Parseval Mercedes-Benz synthesis matrix.
This approach to generating filter bank frames—multiplying a fixed synthesis ma-
trix by a paraunitary matrix—was used to construct strongly uniform tight frames
in [16]. A generalization of such frames, namely totally finite impulse response filter
banks, is considered in [1]. Explicit constructions of strongly uniform tight frames
are presented in [17], where the authors design these frames in a manner analogous
to non-downsampled filter banks, such as the ones presented in [21] and various
other works. The key attraction of this idea is that it permits us to exploit a known
complete characterization of all paraunitary matrices [24].

Returning to our example, note that rescaling the columns by a factor of
√

3/2,
the resulting matrix Φ(z) is a 2× 3 unit norm tight frame of polynomials, meaning
that at any ζ ∈ TP , the three columns of Φ(ζ) each have unit norm while its two
rows are orthogonal with constant norm

√
3/2. The analysis filter bank decomposes

any signal x in �(Z2P ) into three component signals y0, y1, and y2, each in �(ZP ).
The frequency responses of the corresponding three filters are given in Fig. 10.3.
They show that while this filter bank has good frame properties, it leaves much to
be desired from the point of view of frequency selectivity. To construct filter bank
frames with better frequency selectivity, we turn to the theory of Gabor filter banks.

10.5.1 Gabor Filter Banks

As finite Gabor frames are discussed in detail in another chapter, we only consider
them briefly here, focusing on the special case of integer redundancy, meaning that
the downsampling rate M divides the number of filters N . A Gabor filter bank is
one in which the filters {ϕn}N−1

n=0 are all modulates of a single filter ϕ. Such filter
banks are attractive from a design perspective: here, the frequency response curves
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of the various filters are all translates of each other, and so only a single “mother”
filter need be designed [9]. Meanwhile, from a purely mathematical perspective,
such filter banks are nice, since their polyphase representation is intimately related
to the classical theory of Zak transforms [13].

To be precise, for any p ∈ Z, the modulation by p operator on �(ZP ) is

Ep : �(ZP )→ �(ZP ),
(
Epy

)[
p′
] := e2π ipp′/P y

[
p′
]
.

Let R :=N/M be the desired redundancy of the frame over �(ZMP ), and let Q :=
P/R, meaning N =MR and P =QR. Given any ϕ in �(ZMQR), we consider the
Gabor system {TMpEQnϕ}p∈ZQR,n∈ZMR

of all M-translates and Q-modulates of ϕ,
namely, the N -channel filter bank whose nth filter is ϕn = EQnϕ.

As before, we want a filter bank that is a good frame and has filters with a small
number of taps and good frequency selectivity; using a Gabor filter bank helps us
achieve these goals on all three fronts. To be precise, note that since the number of
taps of ϕn = EQnϕ equals that of ϕ, we only need to design a single filter ϕ of small
support. Moreover, the frequency response of ϕn is but a shift of that of ϕ; we have

(Zϕn)(z)=
(
ZEQnϕ

)
(z)

=
∑

k∈ZMQR

(
EQnϕ

)[k]z−k

=
∑

k∈ZMQR

e2π iQnk/MQRϕ[k]z−k

=
∑

k∈ZMQR

ϕ[k](e−2π in/MRz
)−k

= (Zϕ)
(
e−2π in/MRz

)
,

and so the frequency response of ϕn has values

∣∣∣∣ϕ̂n

(
2πk

MQR

)∣∣∣∣

2

= ∣∣(Zϕn)
(
e2π ik/MQR

)∣∣2

= ∣∣(Zϕ)(e2π i−n/MRe2π ik/MQR
)∣∣2

= ∣∣(Zϕ)(ee2π i(k−Qn)/MQR
)∣∣2

=
∣∣∣∣ϕ̂
(

2π(k−Qn)

MQR

)∣∣∣∣

2

. (10.35)

In particular, if we design ϕ well enough so that |ϕ̂(ω)|2 is concentrated on a given
band of frequencies, then the frequency response of any one of its modulates ϕn will
be concentrated on one of N evenly spaced shifts of this band in [−π,π).

What remains to be discussed is how using a Gabor filter bank simplifies our
problem of constructing a good frame. By Theorem 10.4, the optimal frame bounds



376 M. Fickus et al.

of {TMpEQnϕ}p∈ZQR,n∈ZMR
are obtained by computing the extreme eigenvalues of

Φ(ζ)[Φ(ζ)]∗ over all ζ ∈ TQR = {ζ ∈C : ζQR = 1}, where Φ(z) is the polyphase
matrix of {ϕn}N−1

n=0 . For our Gabor system, the mth component of the nth polyphase
vector is

ϕ(m)
n (z)=

∑

p∈ZP

(
EQnϕ

)[m+Mp]z−p

=
∑

p∈ZP

e2π iQn(m+Mp)/MQRϕ[m+Mp]z−p

= e2π imn/MR
∑

p∈ZP

ϕ[m+Mp](e−2π in/Rz
)−p

= e2π imn/MRϕ(m)
(
e−2π in/Rz

)
.

Remarkably, this fact implies that when the redundancy R is an integer, the rows
of the polyphase matrix Φ(z) are necessarily orthogonal; for any ζ ∈ TQR and any
row indices m and m′, letting n= r +Rm′′ gives

(
Φ(ζ)

[
Φ(ζ)

]∗)
m,m′

=
∑

n∈ZMR

ϕ(m)
n (ζ )

[
ϕ(m′)
n (ζ )

]∗

=
∑

n∈ZMR

e2π i(m−m′)n/MRϕ(m)
(
e−2π in/Rζ

)[
ϕ(m′)(e−2π in/Rζ

)]∗

=
∑

r∈ZR

∑

m′′∈ZM

e2π i(m−m′)(r+Rm′′)/MRϕ(m)
(
e−2π ir/Rζ

)[
ϕ(m′)(e−2π ir/Rζ

)]∗

=
∑

r∈ZR

ϕ(m)
(
e−2π ir/Rζ

)[
ϕ(m′)(e−2π ir/Rζ

)]∗e2π i(m−m′)r/MR

×
∑

m′′∈ZM

e2π i(m−m′)m′′/M

=
{
M
∑

r∈ZR
|ϕ(m)(e−2π ir/Rζ )|2, m=m′ mod M,

0, m 
=m′ mod M.

In particular, since Φ(ζ)[Φ(ζ)]∗ is diagonal, its eigenvalues are its diagonal entries.
We summarize the above discussion as follows.

Theorem 10.6 For any positive integers M , Q, and R and any ϕ in �(ZMQR), the
optimal frame bounds of the Gabor system {TMpEQnϕ}p∈ZQR,n∈ZMR

are
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Fig. 10.4 A 20-tap max flat filter ϕ whose four modulates and even translates form a 4-channel,
2-downsampled tight Gabor filter bank frame. The frequency responses of ϕ and its three mod-
ulates are depicted in (a), while (b) depicts the filter itself as a function of time. As indicated
by (10.35), these four frequency responses consist of evenly spaced translates of the frequency re-
sponse of ϕ in [−π,π). The filter coefficients were obtained by making the frequency response of
ϕ be as small and flat as possible at ω =±π , subject to the 20-tap constraint and the requirement
(10.36) that the resulting frame be tight. Here, M =R = 2 and the even and odd parts of ϕ are both
orthogonal to their own 2-translates. In particular, ϕ is orthogonal to its own 4-translates

A=M min
ζ∈TQR

min
m∈ZM

∑

r∈ZR

∣∣ϕ(m)
(
e−2π ir/Rζ

)∣∣2,

B =M max
ζ∈TQR

max
m∈ZM

∑

r∈ZR

∣∣ϕ(m)
(
e−2π ir/Rζ

)∣∣2.

In particular, when ‖ϕ‖ = 1, such Gabor systems are tight frames if and only if

R

M
=
∑

r∈ZR

∣∣ϕ(m)
(
e−2π ir/Rζ

)∣∣2, (10.36)

for all m= 0, . . . ,M − 1 and all ζ ∈ TQR . Thus, one way to construct a nice Gabor
filter bank is to fix a desired number of taps K , and find a K-tap filter ϕ whose
frequency response is concentrated about the origin subject to the constraint (10.36).
An example of such a construction is given in Fig. 10.4.

An interesting consequence of (10.36) is that any ϕ which generates a finite tight
Gabor frame with integer redundancy is necessarily orthogonal to some of its trans-
lates. This follows from the fact that (10.36) is a special case of Theorem 10.5.
In particular, we have that (10.36) holds if and only if for every fixed m, the R-
translates of the scaled mth coset

√
Mϕ[m+M•] are orthonormal in �(ZQR). To

formally see this, note that Theorem 10.5 states that {TRq
√
M ↓ T−mϕ}q∈ZQ

is or-
thonormal if and only if

R =
∑

r∈ZR

∣∣(Z
√
M ↓ T−mϕ

)(
e2π i(p−Qr)/QR

)∣∣2, ∀p ∈ ZQR.
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Writing ϕ(m)(z)=∑p∈ZP
ϕ[m+Mp]z−p = (Z ↓M T−mϕ)(z) then gives this to be

equivalent to having

R

M
=
∑

r∈ZR

∣∣ϕ(m)
(
e2π i(p−Qr)/QR

)∣∣2 =
∑

r∈ZR

∣∣ϕ(m)
(
e−2π ir/Re2π ip/QR

)∣∣2,

∀p ∈ ZQR,

namely, (10.36) where ζ = e2π ip/QR .
This fact in particular implies that if ϕ generates a finite, integer-redundant, tight

Gabor frame {TMpEQnϕ}p∈ZQR,n∈ZMR
in �(ZMQR), then the MR-translates of ϕ

are necessarily orthogonal. As such, all such frames are necessarily filter bank fusion
frames to some degree.
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Chapter 11
The Kadison–Singer and Paulsen Problems
in Finite Frame Theory

Peter G. Casazza

Abstract We now know that some of the basic open problems in frame theory are
equivalent to fundamental open problems in a dozen areas of research in both pure
and applied mathematics, engineering, and others. These problems include the 1959
Kadison–Singer problem in C∗-algebras, the paving conjecture in operator theory,
the Bourgain–Tzafriri conjecture in Banach space theory, the Feichtinger conjec-
ture and the Rε-conjecture in frame theory, and many more. In this chapter we will
show these equivalences among others. We will also consider a slight weakening of
the Kadison–Singer problem called the Sundberg problem. Then we will look at the
recent advances on another deep problem in frame theory called the Paulsen prob-
lem. In particular, we will see that this problem is also equivalent to a fundamental
open problem in operator theory. Namely, if a projection on a finite dimensional
Hilbert space has a nearly constant diagonal, how close is it to a constant diagonal
projection?

Keywords Kadison–Singer problem · Paving conjecture · State · Rieszable ·
Discrete Fourier transform · Rε-Conjecture · Feichtinger conjecture ·
Bourgain–Tzafriri conjecture · Restricted invertibility principle · Sundberg
problem · Paulsen problem · Principal angles · Chordal distance

11.1 Introduction

Finite frame theory is beginning to have an important impact on some of the deepest
problems in both pure and applied mathematics. In this chapter we will look at
two cases where finite frame theory is having a serious impact: the Kadison–Singer
problem and the Paulsen problem. We warn the reader that because we are restricting
ourselves to finite dimensional Hilbert spaces, a significant body of literature on the
infinite dimensional versions of these problems does not appear here.
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11.2 The Kadison–Singer Problem

For over 50 years the Kadison–Singer problem [32] has defied the best efforts of
some of the most talented mathematicians of our time.

Kadison–Singer Problem 11.1 (KS) Does every pure state on the (abelian) von
Neumann algebra D of bounded diagonal operators on �2, the Hilbert space of
square summable sequences on the integers, have a unique extension to a (pure)
state on B(�2), i.e., the von Neumann algebra of all bounded linear operators on
the Hilbert space �2?

A state of a von Neumann algebra R is a linear functional f on R for which
f (I)= 1 and f (T ) ≥ 0 whenever T ≥ 0 (whenever T is a positive operator). The
set of states of R is a convex subset of the dual space of R which is compact in the
ω∗-topology. By the Krein-Milman theorem, this convex set is the closed convex
hull of its extreme points. The extremal elements in the space of states are called the
pure states (of R).

This problem arose from the very productive collaboration of Kadison and Singer
in the 1950s when they were studying Dirac’s Quantum Mechanics book [26] which
culminated in their seminal work on triangular operator algebras.

It is now known that the 1959 Kadison–Singer problem is equivalent to funda-
mental unsolved problems in a dozen areas of research in pure mathematics, applied
mathematics, and engineering (see [1–4, 16, 22, 23, 33] and their references). We
will not develop this topic in detail here, since it is fundamentally an infinite dimen-
sional problem and we are concentrating on finite dimensional frame theory. In this
chapter we will look at a number of these finite dimensional problems which are
equivalent to KS and which are impacted by finite frame theory. Most people today
seem to agree with the original statement of Kadison and Singer [32] that KS will
have a negative answer and so all the equivalent forms will have negative answers
also.

11.2.1 The Paving Conjecture

A significant advance on KS was made by Anderson [2] in 1979 when he refor-
mulated KS into what is now known as the paving conjecture (see also [3, 4]).
Lemma 5 of [32] shows a connection between KS and paving. For notation, if
J ⊂ {1,2, . . . , n}, the diagonal projection QJ is the matrix whose entries are all zero
except for the (i, i) entries for i ∈ J which are all one. For a matrix A= (aij )

N
i,j=1

let δ(A)=max1≤i≤N |aii |.

Definition 11.1 An operator T ∈ B(�N2 ) is said to have an (r, ε)-paving if there is a
partition {Aj }rj=1 of {1,2, . . . ,N} so that

‖QAj
TQAj

‖ ≤ ε‖T ‖.
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Paving Conjecture 11.1 (PC) For every 0 < ε < 1, there is a natural number r so
that for every natural number N and every linear operator T on lN2 whose matrix
has zero diagonal, T has an (r, ε)-paving.

It is important that r not depend on N in PC. We will say that an arbitrary operator
T satisfies PC if T −D(T ) satisfies PC where D(T ) is the diagonal of T .

The only large classes of operators which have been shown to be pavable are
“diagonally dominant” matrices [6, 7, 9, 27], �1-localized operators [21], matrices
with all entries real and positive [28], matrices with small coefficients in comparison
with the dimension [12] (see [36] for a paving into blocks of constant size), and
Toeplitz operators over Riemann integrable functions (see also [29]). Also, in [8]
there is an analysis of the paving problem for certain Schatten Cp-norms.

Theorem 11.1 The paving conjecture has a positive solution if any one of the fol-
lowing classes satisfies the paving conjecture:

1. Unitary operators [23]
2. Orthogonal projections [23]
3. Orthogonal projections with constant diagonal 1/2 [17]
4. Positive operators [23]
5. Self-adjoint operators [23]
6. Gram matrices (〈ϕi,ϕj 〉)i,j∈I where T : �2(I )→ �2(I ) is a bounded linear op-

erator, and T ei = ϕi , ‖T ei‖ = 1 for all i ∈ I [23]
7. Invertible operators (or invertible operators with zero diagonal) [23]
8. Triangular operators [34].

Recently, Weaver [38] provided important insight into KS by giving an equivalent
problem to PC in terms of projections.

Conjecture 11.1 (Weaver) There exist universal constants 0 < δ, ε < 1 and r ∈ N

so that for all N and all orthogonal projections P on �N2 with δ(P ) ≤ δ, there
is a paving {Aj }rj=1 of {1,2, . . . ,N} so that ‖QAj

PQAj
‖ ≤ 1 − ε, for all j =

1,2, . . . , r .

This needs some explanation, since there is nothing in [38] that looks anything
like Conjecture 11.1. Weaver observes that the fact that Conjecture 11.1 implies PC
follows by a minor modification of Propositions 7.6 and 7.7 of [1]. Then he intro-
duces what he calls “Conjecture KSr” (see Conjecture 11.8). A careful examination
of the proof of Theorem 1 of [38] reveals that Weaver shows that Conjecture KSr im-
plies Conjecture 11.1, which in turn implies KS, which (after the theorem is proved)
is equivalent to KSr.

In [17] it was shown that PC fails for r = 2, even for projections with constant
diagonal 1/2. Recently [19] there appeared a frame theoretic concrete construction
of non-2-pavable projections. If this construction can be generalized, we would have
a counterexample to PC and KS. We now look at the construction from [19].
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Definition 11.2 A family of vectors {ϕi}Mi=1 for an N -dimensional Hilbert space
HN is (δ, r)-Rieszable if there is a partition {Aj }rj=1 of {1,2, . . . ,M} so that for all
j = 1,2, . . . , r and all scalars {ai}i∈Aj

we have
∥∥∥∥
∑

i∈Aj

aiϕi

∥∥∥∥

2

≥ δ
∑

i∈Aj

|ai |2.

A projection P on HN is (δ, r)-Rieszable if {Pei}Ni=1 is (δ, r)-Rieszable.

We now have the following.

Proposition 11.1 Let P be an orthogonal projection on HN . The following are
equivalent:

(1) The vectors {Pei}Ni=1 are (δ, r)-Rieszable.
(2) There is a partition {Aj }rj=1 of {1,2, . . . ,N} so that for all j = 1,2, . . . , r and

all scalars {ai}i∈Aj
we have
∥∥∥∥
∑

i∈Aj

ai(I − P)ei

∥∥∥∥

2

≤ (1− δ)
∑

i∈Aj

|ai |2.

(3) The matrix of I − P is (δ, r)-pavable.

Proof (1)⇔ (2): For any scalars {ai}i∈AJ
we have

∑

i∈Aj

|ai |2 =
∥∥∥∥
∑

i∈Aj

aiP ei

∥∥∥∥

2

+
∥∥∥∥
∑

i∈Aj

ai(I − P)ei

∥∥∥∥

2

.

Hence,
∥∥∥∥
∑

i∈Aj

ai(I − P)ei

∥∥∥∥

2

≤ (1− δ)
∑

i∈Aj

|ai |2 if and only if

∥∥∥∥
∑

i∈Aj

aiP ei

∥∥∥∥

2

≥ δ
∑

i∈Aj

|ai |2.

(2)⇔ (3): Given any partition {Aj }rj=1, any 1≤ j ≤ r , and any x =∑i∈Aj
aiei ,

we have

〈
(I − P)x, x

〉 = ∥∥(I − P)x
∥
∥2 =

∥∥
∥∥
∑

i∈Aj

ai(I − P)ei

∥∥
∥∥

2

≤ (1− δ)
∑

i∈Aj

|ai |2 =
〈
(1− δ)x, x

〉
,

if and only if I − P ≤ (1− δ)I . �
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Given N ∈ N, let ω = exp( 2πi
N

); we define the discrete Fourier transform (DFT)
matrix in C

N by

DN =
√

1

N

(
ωjk
)N−1
j,k=0.

The main point of these DN matrices is that they are unitary matrices for which

the moduli of all the entries are equal to
√

1
N

. The following is a simple observation.

Proposition 11.2 Let A= (aij )
N
i,j=1 be a matrix with orthogonal rows and satisfy-

ing |aij |2 = a for all i, j . If we multiply the j th row of A by a constant Cj to get a
new matrix B , then:

(1) The rows of B are orthogonal.
(2) The square sums of the entries of any column of B all equal

a

N∑

j=1

C2
j .

(3) The square sum of the entries of the j th row of B equals aC2
j .

To construct our example, we start with a 2N × 2N DFT and multiply the first

N − 1 rows by
√

2 and the remaining rows by
√

2
N+1 to get a new matrix B1. Next,

we take a second 2N × 2N DFT matrix and multiply the first N − 1 rows by 0 and

the remaining rows by
√

2N
2N+1 to get a matrix B2. We then put the matrices B1,B2

side by side to get an N × 2N matrix B of the form

B = (N − 1) Rows
√

2 0

(N + 1) Rows
√

2
N+1

√
2N
N+1

This matrix has 2N rows and 4N columns. Now we show that this matrix gives the
required example.

Proposition 11.3 The matrix B satisfies the following.

(1) The columns are orthogonal and the square sum of the coefficients of every
column equals 2.

(2) The square sum of the coefficients of every row equals 1.

The row vectors of the matrix B are not (δ,2)-Rieszable, for any δ independent
of N .

Proof A direct calculation yields (1) and (2).
We will now show that the column vectors of B are not uniformly 2-Rieszable

independent of N . So let {A1,A2} be a partition of {1,2, . . . ,4N}. Without loss of
generality, we may assume that |A1∩{1,2, . . . ,2N}| ≥N . Let the column vectors of
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the matrix B be {ϕi}4Ni=1 as elements of C2N . Let PN−1 be the orthogonal projection
of C2N onto the first N − 1 coordinates. Since |A1| ≥N , there are scalars {ai}i∈A1

so that
∑

i∈A1
|ai |2 = 1 and

PN−1

(∑

i∈A1

aiϕi

)
= 0.

Also, let {ψj }2Nj=1 be the orthonormal basis consisting of the original columns of the
DFT2N . We now have

∥∥∥∥
∑

i∈A1

aiϕi

∥∥∥∥

2

=
∥∥∥∥(I − PN−1)

(∑

i∈A1

aiϕi

)∥∥∥∥

2

= 2

N + 1

∥∥
∥∥(I − PN−1)

(∑

i∈A1

aiψi

)∥∥
∥∥

2

≤ 2

N + 1

∥∥∥∥
∑

i∈A1

aiψi

∥∥∥∥

2

= 2

N + 1

∑

i∈A1

|ai |2

= 2

N + 1
.

Letting N→∞, this class of matrices is not (δ,2)-Rieszable, and hence not (δ,2)-
pavable for any δ > 0. �

If this argument could be generalized to yield non-(δ,3)-Rieszable (pavable) ma-
trices, then such an argument should lead to a complete counterexample to PC.

11.2.2 The Rε-Conjecture

In this section we will define the Rε -conjecture and show that it is equivalent to the
paving conjecture.

Definition 11.3 A family of vectors {ϕi}Mi=1 is an ε-Riesz basic sequence for 0 <

ε < 1 if for all scalars {ai}Mi=1 we have

(1− ε)

M∑

i=1

|ai |2 ≤
∥∥∥∥∥

M∑

i=1

aiϕi

∥∥∥∥∥

2

≤ (1+ ε)

M∑

i=1

|ai |2.
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A natural question is whether we can improve the Riesz basis bounds for a unit
norm Riesz basic sequence by partitioning the sequence into subsets.

Conjecture 11.2 (Rε -Conjecture) For every ε > 0, every unit norm Riesz basic
sequence is a finite union of ε-Riesz basic sequences.

This conjecture was first stated by Casazza and Vershynin and was first studied
in [15], where it was shown that PC implies the conjecture. One advantage of the
Rε -conjecture is that it can be shown to students at the beginning of a course in
Hilbert spaces.

The Rε -conjecture has a natural finite dimensional form.

Conjecture 11.3 For every ε > 0 and every T ∈ B(�N2 ) with ‖T ei‖ = 1 for i =
1,2, . . . ,N there is an r = r(ε,‖T ‖) and a partition {Aj }rj=1 of {1,2, . . . ,N} so
that for all j = 1,2, . . . , r and all scalars {ai}i∈Aj

we have

(1− ε)
∑

i∈Aj

|ai |2 ≤
∥∥∥∥
∑

i∈Aj

aiT ei

∥∥∥∥

2

≤ (1+ ε)
∑

i∈Aj

|ai |2.

Now we show that the Rε -conjecture is equivalent to PC.

Theorem 11.2 The following are equivalent:

(1) The paving conjecture.
(2) For 0 < ε < 1, there is an r = r(ε,B) so that for every N ∈N, if T : �N2 → �N2 is

a bounded linear operator with ‖T ‖ ≤ B and ‖T ei‖ = 1 for all i = 1,2, . . . ,N ,
then there is a partition {Aj }rj=1 of {1,2, . . . ,N} so that for each 1 ≤ j ≤ r ,
{T ei}i∈Aj

is an ε-Riesz basic sequence.
(3) The Rε -conjecture.

Proof (1)⇒ (2): Fix 0 < ε < 1. Given T as in (2), let S = T ∗T . Since S has ones
on its diagonal, by the paving conjecture there is an r = r(ε,‖T ‖) and a partition
{Aj }rj=1 of {1,2, . . . ,N} so that for every j = 1,2, . . . , r we have

∥∥QAj
(I − S)QAj

∥∥≤ δ‖I − S‖

where δ = ε
‖S‖+1 . Now, for all x =∑N

i=1 aiei and all j = 1,2, . . . , r we have

∥∥∥∥
∑

i∈Aj

aiT ei

∥∥∥∥

2

= ‖TQAj
x‖2 = 〈TQAj

x,TQAj
x〉 = 〈T ∗TQAj

x,QAj
x
〉

= 〈QAj
x,QAj

x〉 − 〈QAj
(I − S)QAj

x,QAj
x
〉
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≥ ‖QAj
x‖2 − δ‖I − S‖‖QAj

x‖2

≥ (1− ε)‖QAj
x‖2 = (1− ε)

∑

i∈Aj

|ai |2.

Similarly, ‖∑i∈Aj
aiT ei‖2 ≤ (1+ ε)

∑
i∈Aj

|ai |2.
(2)⇒ (3): This is obvious.
(3)⇒ (1): Let T ∈ B(�N2 ) with T ei = ϕi and ‖ϕi‖ = 1 for all 1 ≤ i ≤ N . By

Theorem 11.1 part 6, it suffices to show that the Gram operator G of {ϕi}Ni=1 is

pavable. Fix 0 < δ < 1 and let ε > 0. Let ψi =
√

1− δ2ϕi ⊕ δei ∈ �N2 ⊕ �N2 . Then
‖ψi‖ = 1 for all 1≤ i ≤N and for all scalars {ai}Ni=1,

δ

N∑

i=1

|ai |2 ≤
∥∥∥∥∥

N∑

i=1

aiψi

∥∥∥∥∥

2

= (1− δ2)
∥∥∥∥∥

N∑

i=1

aiT ei

∥∥∥∥∥

2

+ δ2
N∑

i=1

|ai |2

≤ [(1− δ2)‖T ‖2 + δ2]
N∑

i=1

|ai |2.

So {ψi}Ni=1 is a unit norm Riesz basic sequence and 〈ψi,ψk〉 = (1 − δ2)〈ϕi,ϕk〉
for all 1 ≤ i 
= k ≤ N . By the Rε -conjecture, there is a partition {Aj }rj=1 of
{1,2, . . . ,N} so that for all j = 1,2, . . . , r and all x =∑i∈Aj

aiei ,

(1− ε)
∑

i∈Aj

|ai |2 ≤
∥
∥∥∥
∑

i∈Aj

aiψi

∥
∥∥∥

2

=
〈∑

i∈Aj

aiψi,
∑

k∈Aj

akψk

〉

=
∑

i∈Aj

|ai |2‖ψi‖2 +
∑

i 
=k∈Aj

aiak〈ψi,ψk〉

=
∑

i∈Aj

|ai |2 +
(
1− δ2) ∑

i 
=k∈Aj

aiak〈ϕi,ϕk〉

=
∑

i∈Aj

|ai |2 +
(
1− δ2)〈QAj

(
G−D(G)

)
QAj

x, x
〉

≤ (1+ ε)
∑

i∈Aj

|ai |2.

Subtracting
∑

i∈Aj
|ai |2 through the inequality yields

−ε
∑

i∈Aj

|ai |2 ≤
(
1− δ2)〈QAj

(
G−D(G)

)
QAj

x, x
〉≤ ε

∑

i∈Aj

|ai |2.

That is,
(
1− δ2)∣∣〈QAj

(
G−D(G)

)
QAj

x, x
〉∣∣≤ ε‖x‖2.
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Since QAj
(G−D(G))QAj

is a self-adjoint operator, we have (1− δ2)‖QAj
(G−

D(G))QAj
‖ ≤ ε, i.e., (1− δ2)G (and hence G) is pavable. �

Remark 11.1 The proof of (3)⇒ (1) of Theorem 11.2 illustrates a standard method
for turning conjectures about unit norm Riesz basic sequences {ψi}i∈I into con-
jectures about unit norm families {ϕi}i∈I with T ∈ B(�2(I )) and T ei = ϕi . Namely,
given {ϕi}i∈I and 0 < δ < 1 let ψi =

√
1− δ2fi⊕δei ∈ �2(I )⊕�2(I ). Then {ψi}i∈I

is a unit norm Riesz basic sequence and, for δ small enough, ψi is close enough to
ϕi to pass inequalities from {ψi}i∈I to {ϕi}i∈I .

The Rε -conjecture is different from all other conjectures in this chapter in that it
does not hold for equivalent norms on the Hilbert space in general. For example, if
we renorm �2 by |{ai}| = ‖{ai}‖�2 + supi |ai |, then the Rε -conjecture fails for this
equivalent norm. To see this, we proceed by way of contradiction and assume there
is an 0 < ε < 1 and an r = r(ε,2) satisfying the Rε -conjecture. Let {ei}2Ni=1 be the
unit vectors for �2N

2 and let xi = e2i+e2i+1√
2+1

for 1 ≤ i ≤ N . This is now a unit norm
Riesz basic sequence with upper Riesz bound 2. Assume we partition {1,2, . . . ,2N}
into sets {Aj }rj=1. Then for some 1 ≤ k ≤ r we have |Ak| ≥ N

r
. Let A ⊂ Ak with

|A| = N
r

and ai = 1√
N

for i ∈A. Then

∣∣∣
∣
∑

i∈A
aixi

∣∣∣
∣=

1√
2+ 1

(√
2+ r√

N

)
.

Since the norm above is bounded away from one for large N , we cannot satisfy the
requirements of the Rε -conjecture. It follows that a positive solution to KS would
imply a fundamental new result concerning “inner products,” not just norms.

Another important equivalent form of PC comes from [22]. It is, at face value, a
significant weakening of the Rε -conjecture while it still remains equivalent to PC.

Conjecture 11.4 There exist a constant A> 0 and a natural number r so that for all
natural numbers N and all T : �N2 → �N2 with ‖T ei‖ = 1 for all i = 1,2, . . . ,N and
‖T ‖ ≤ 2, there is a partition {Aj }rj=1 of {1,2, . . . ,N} so that for all j = 1,2, . . . , r
and all scalars {ai}i∈Aj

we have

∥∥∥∥
∑

i∈Aj

aiT ei

∥∥∥∥

2

≥A
∑

i∈Aj

|ai |2.

Theorem 11.3 Conjecture 11.4 is equivalent to PC.

Proof Since PC is equivalent to the Rε -conjecture, which in turn implies Con-
jecture 11.4, we just need to show that Conjecture 11.4 implies Conjecture 11.1.
So choose r,A satisfying Conjecture 11.4. Fix 0 < δ ≤ 3

4 and let P be an or-
thogonal projection on �N2 with δ(P ) ≤ δ Now, 〈Pei, ei〉 = ‖Pei‖2 ≤ δ implies
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‖(I −P)ei‖2 ≥ 1− δ ≥ 1
4 . Define T : �N2 → �N2 by T ei = (I−P)ei‖(I−P)ei‖ . For any scalars

{ai}Ni=1 we have

∥∥∥∥
∥

N∑

i=1

aiT ei

∥∥∥∥
∥

2

=
∥∥∥∥
∥

N∑

i=1

ai

‖(I − P)ei‖ (I − P)ei

∥∥∥∥
∥

2

≤
N∑

i=1

∣∣∣∣
ai

‖(I − P)ei‖
∣∣∣∣

2

≤ 4
N∑

i=1

|ai |2.

So ‖T ei‖ = 1 and ‖T ‖ ≤ 2. By Conjecture 11.4, there is a partition {Aj }rj=1 of
{1,2, . . . ,N} so that for all j = 1,2, . . . , r and all scalars {ai}i∈Aj

we have

∥∥∥∥
∑

i∈AJ

aiT ei

∥∥∥∥

2

≥A
∑

i∈Aj

|ai |2.

Hence,

∥∥∥∥
∑

i∈Aj

ai(I − P)ei

∥∥∥∥

2

=
∥∥∥∥
∑

i∈Aj

ai
∥∥(I − P)ei

∥∥T ei

∥∥∥∥

2

≥ A
∑

i∈Aj

|ai |2
∥∥(I − P)ei

∥∥2

≥ A

4

∑

i∈Aj

|ai |2.

It follows that for all scalars {ai}i∈Aj
,

∑

i∈Aj

|ai |2 =
∥∥∥∥
∑

i∈Aj

aiP ei

∥∥∥∥

2

+
∥∥∥∥
∑

i∈Aj

ai(I − P)ei

∥∥∥∥

2

≥
∥∥∥∥
∑

i∈Aj

aiP ei

∥∥∥∥

2

+ A

4

∑

i∈Aj

|ai |2.

Now, for all x =∑N
i=1 aiei we have

‖PQAj
x‖2 =

∥∥∥∥
∑

i∈Aj

aiP ei

∥∥∥∥

2

≤
(

1− A

4

)∑

i∈Aj

|ai |2.
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Thus,

‖QAj
PQAj

‖ = ‖PQAj
‖2 ≤ 1− A

4
.

So Conjecture 11.1 holds. �

Weaver [38] established an important relationship between frames and PC by
showing that the following conjecture is equivalent to PC.

Conjecture 11.5 There are universal constants B ≥ 4 and α >
√
B and an r ∈ N

so that the following holds. Whenever {ϕi}Mi=1 is a unit norm B-tight frame for �N2 ,
there exists a partition {Aj }rj=1 of {1,2, . . . ,M} so that for all j = 1,2, . . . , r and

all x ∈ �N2 we have
∑

i∈Aj

∣∣〈x,ϕi〉
∣∣2 ≤ (B − α)‖x‖2. (11.1)

Using Conjecture 11.5 we can show that the following conjecture is equivalent
to PC.

Conjecture 11.6 There is a universal constant 1≤D so that for all T ∈ B(�N2 ) with
‖T ei‖ = 1 for all i = 1,2, . . . ,N , there is an r = r(‖T ‖) and a partition {Aj }rj=1
of {1,2, . . . ,N} so that for all j = 1,2, . . . , r and all scalars {ai}i∈Aj

∥∥∥∥
∑

i∈Aj

aiT ei

∥∥∥∥

2

≤D
∑

i∈Aj

|ai |2.

Theorem 11.4 Conjecture 11.6 is equivalent to PC.

Proof Since Conjecture 11.3 clearly implies Conjecture 11.6, we just need to show
that Conjecture 11.6 implies Conjecture 11.5. So, choose D as in Conjecture 11.6
and choose B ≥ 4 and α >

√
B so that D ≤ B − α. Let {ϕi}Mi=1 be a unit norm

B-tight frame for �N2 . If T ei = ϕi is the synthesis operator for this frame, then
‖T ‖2 = ‖T ∗‖2 = B . So by Conjecture 11.6, there is an r = r(‖B‖) and a partition
{Aj }rj=1 of {1,2, . . . ,M} so that for all j = 1,2, . . . , r and all scalars {ai}i∈Aj

,

∥∥∥∥
∑

i∈Aj

aiT ei

∥∥∥∥

2

=
∥∥∥∥
∑

i∈Aj

aiϕi

∥∥∥∥

2

≤D
∑

i∈Aj

|ai |2 ≤ (B − α)
∑

i∈Aj

|ai |2.

So ‖TQAj
‖2 ≤ B − α and for all x ∈ �N2 ,
∑

i∈Aj

∣∣〈x,ϕi〉
∣∣2 = ∥∥(QAj

T )∗x
∥∥2 ≤ ‖TQAj

‖2‖x‖2 ≤ (B − α)‖x‖2.

This verifies that Conjecture 11.5 holds and so KS holds. �



392 P.G. Casazza

Remark 11.1 and Conjecture 11.6 show that we only need any universal upper
bound in the Rε -conjecture to hold for KS.

11.2.3 The Feichtinger Conjecture

While working in time-frequency analysis, Feichtinger [15] observed that all of the
Gabor frames he was using had the property that they could be divided into a finite
number of subsets which were Riesz basic sequences. This led to the following
conjecture.

Feichtinger Conjecture 11.1 (FC) Every bounded frame (or equivalently, every
unit norm frame) is a finite union of Riesz basic sequences.

The finite dimensional form of FC is as follows.

Conjecture 11.7 (Finite Dimensional Feichtinger Conjecture) For every B,C > 0,
there is a natural number r = r(B,C) and a constant A = A(B,C) > 0 so that
whenever {ϕi}Ni=1 is a frame for HN with upper frame bound B and ‖ϕi‖ ≥ C for
all i = 1,2, . . . ,N , then {1,2, . . . ,N} can be partitioned into subsets {Aj }rj=1 so
that for each 1 ≤ j ≤ r , {ϕi}i∈Aj

is a Riesz basic sequence with lower Riesz basis
bound A and upper Riesz basis bound B .

There is a significant body of work on this conjecture [6, 7, 15, 27], yet it remains
open even for Gabor frames.

We now check that the Feichtinger conjecture is equivalent to PC.

Theorem 11.5 The following are equivalent:

(1) The paving conjecture.
(2) The Feichtinger conjecture.

Proof (1)⇒ (2): Part (2) of Theorem 11.2 is equivalent to PC and clearly implies
FC.

(2)⇒ (1): We will observe that FC implies Conjecture 11.4 which is equivalent
to PC by Theorem 11.3. In Conjecture 11.4, {T ei}Ni=1 is a frame for its span with
upper frame bound 2. It is now immediate that the Finite Dimensional Feichtinger
Conjecture above implies Conjecture 11.4. �

Another equivalent formulation of KS due to Weaver [38] is the following.

Conjecture 11.8 (KSr) There are universal constants B and ε > 0 so that the fol-
lowing holds. Let {ϕi}Mi=1 be elements of �N2 with ‖ϕi‖ ≤ 1 for i = 1,2, . . . ,M and
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suppose for every x ∈ �N2 ,

M∑

i=1

∣∣〈x,ϕi〉
∣∣2 ≤ B‖x‖2. (11.2)

Then, there is a partition {Aj }rj=1 of {1,2, . . . ,M} so that for all x ∈ �N2 and all
j = 1,2, . . . , r ,

∑

i∈Aj

∣∣〈x,ϕi〉
∣∣2 ≤ (B − ε)‖x‖2.

Theorem 11.6 The following are equivalent:

(1) The paving conjecture.
(2) Conjecture KSr holds for some r ≥ 2.

Proof Assume Conjecture KSr is true for some fixed r,B, ε. We will show that
Conjecture 11.1 is true. Let P be an orthogonal projection on HM with δ(P )≤ 1

B
.

If P has rank N , then its range is an N -dimensional subspace W of HM . Define
ϕi =

√
B · Pei ∈W for all 1≤ i ≤M . We check that

‖ϕi‖2 = B · ‖Pei‖2 = B〈Pei, ei〉 ≤ Bδ(P )≤ 1, for all i = 1,2, . . . ,M.

Now, if x ∈W is any unit vector, then

M∑

i=1

∣∣〈x,ϕi〉
∣∣2 =

M∑

i=1

∣∣〈x,√BPei〉
∣∣2 = B ·

M∑

i=1

∣∣〈x, ei〉
∣∣2 = B.

By Conjecture KSr , there is a partition {Aj }rj=1 of {1,2, . . . ,M} satisfying for all
1≤ j ≤ r and all unit vectors x ∈W ,

∑

i∈Aj

∣∣〈x,ϕi〉
∣∣2 ≤ B − ε.

Then
∑r

j=1 QAj
= Id, and for any unit vector x ∈W we have

‖QAj
Px‖2 =

M∑

i=1

∣∣〈QAj
Px, ei〉

∣∣2 =
M∑

i=1

∣∣〈x,PQjei〉
∣∣2

= 1

B

∑

i∈Aj

∣
∣〈x,ϕi〉

∣
∣2 ≤ ε

B
.

Thus Conjecture 11.1 holds and so PC holds.
Conversely, assume KSr fails for all r. Fix B = r ≥ 2 and let {ϕi}Mi=1 in HN be a

counterexample with ε = 1. Let ψi = ϕi√
B

and note that ‖ψiψi
T ‖ = ‖ψi‖2 ≤ 1

B
, for
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all i = 1,2, . . . ,M and
∑M

i=1 ψiψi
T ≤ Id. Then Id−∑M

i=1 ψiψ
T
i is a positive finite

rank operator, so we can find positive rank one operators ψiψ
T
i for M + 1≤ i ≤K

such that ‖ψiψ
T
i ‖ ≤ 1

B
for all 1≤ i ≤K and

∑K
i=1 ψiψ

T
i = Id.

Let T be the analysis operator for {ψi}Ki=1, which is an isometry, and if P is
the orthogonal projection of HK with range T (HN), then Pei = T ψi for all i =
1,2, . . . ,K . Let D be the diagonal matrix with the same diagonal as P . Then

‖D‖ = max
1≤i≤K

‖ψi‖2 ≤ 1

B
.

Let {Qj }rj=1 be any K ×K diagonal projections which sum to the identity. De-
fine a partition {Aj }rj=1 of {1,2, . . . ,K} by letting Aj be the diagonal of Qj . By

our choice of {ϕi}Mi=1, there exist 1≤ j ≤ r and x ∈HN with ‖x‖ = 1 and

∑

i∈Aj∩{1,2,...,M}

∣∣〈x,ϕi〉
∣∣2 >B − 1.

Hence,
∑

i∈Aj

∣∣〈x,ψi〉
∣∣2 > 1− 1

B
.

It follows that for all j ,

∥∥QjP (T x)
∥∥2 ≥

K∑

i=1

∣∣〈QjP (T x), ei
〉∣∣2 =

∑

i∈Aj

∣∣〈T x, ei〉
∣∣2

=
∑

i∈Aj

∣∣〈x,ψi〉
∣∣2 > 1− 1

B
.

Thus, ‖QjPQj‖ = ‖QjP ‖2 > 1− 1
B

. Now, the matrix A= P −D has zero diag-
onal and satisfies ‖A‖ ≤ 1+ 1

B
, and the above shows that for any K ×K diagonal

projections {Qj }rj=1 with
∑r

j=1 Qj = Id we have

‖QjAQj‖ ≥ ‖QjPQj‖ − ‖QjDQj‖ ≥ 1− 2

B
, for some j .

Finally, as B = r→∞, we obtain a sequence of examples which negate the paving
conjecture. �

Weaver [38] also shows that Conjecture KSr is equivalent to PC if we assume
equality in Eq. (11.2) for all x ∈ �M2 . Weaver further shows that Conjecture KSr
is equivalent to PC even if we strengthen its assumptions so as to require that the
vectors {ϕi}Mi=1 are of equal norm and that equality holds in (11.2), but at great cost
to our ε > 0.
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Conjecture 11.9 (KS′r) There exist universal constants B ≥ 4 and ε >
√
B so that

the following holds. Let {ϕi}Mi=1 be elements of �N2 with ‖ϕi‖ = 1 for i = 1,2, . . . ,M
and suppose for every x ∈ �N2 ,

M∑

i=1

∣∣〈x,ϕi〉
∣∣2 = B‖x‖2. (11.3)

Then, there is a partition {Aj }rj=1 of {1,2, . . . ,M} so that for all x ∈ �M2 and all
j = 1,2, . . . , r ,

∑

i∈Aj

∣∣〈x,ϕi〉
∣∣2 ≤ (B − ε)‖x‖2.

We introduce one more conjecture.

Conjecture 11.10 There exist universal constants 0 < δ,
√
δ ≤ ε < 1 and r ∈ N so

that for all N and all orthogonal projections P on �N2 with δ(P )≤ δ and ‖Pei‖ =
‖Pej‖ for all i, j = 1,2, . . . ,N , there is a paving {Aj }rj=1 of {1,2, . . . ,N} so that
‖QAj

PQAj
‖ ≤ 1− ε, for all j = 1,2, . . . , r .

Using Conjecture 11.9 we can see that PC is equivalent to Conjecture 11.10.

Theorem 11.7 PC is equivalent to Conjecture 11.10.

Proof It is clear that Conjecture 11.1 (which is equivalent to (PC)) implies Conjec-
ture 11.10. So we assume that Conjecture 11.10 holds and we will show that Con-
jecture 11.9 holds. Let {ϕi}Mi=1 be elements of HN with ‖ϕi‖ = 1 for i = 1,2, . . . ,M
and suppose for every x ∈HN ,

M∑

i=1

∣∣〈x,ϕi〉
∣∣2 = B‖x‖2, (11.4)

where 1
B
≤ δ. It follows from Eq. (11.4) that { 1√

B
ϕi}Mi=1 is an equal norm Parseval

frame and so by Naimark’s theorem, we may assume there is a larger Hilbert space
�M2 and a projection P : �M2 →HN so that Pei = ϕi for all i = 1,2, . . . ,M . Now
‖Pei‖2 = 〈Pei, ei〉 = 1

B
≤ δ for all i = 1,2, . . . ,N . So by Conjecture 11.10, there

is a paving {Aj }rj=1 of {1,2, . . . ,M} so that ‖QAj
PQAj

‖ ≤ 1 − ε, for all j =
1,2, . . . , r . Now for all 1≤ j ≤ r and all x ∈ �N2 we have

‖QAj
Px‖2 =

M∑

i=1

∣∣〈QAj
Px, ei〉

∣∣2

=
M∑

i=1

∣∣〈x,PQAj
ei〉
∣∣2
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= 1

B

∑

i∈Aj

∣∣〈x,ϕi〉
∣∣2

≤ ‖QAj
P ‖2‖x‖2

= ‖QAj
PQAj

‖‖x‖2

≤ (1− ε)‖x‖2.

It follows that for all x ∈ �N2 we have

∑

i∈Aj

∣∣〈xϕi〉
∣∣2 ≤ (B − εB)‖x‖2.

Since εB >
√
B , we have verified Conjecture 11.9. �

11.2.4 The Bourgain–Tzafriri Conjecture

We start with a fundamental theorem of Bourgain and Tzafriri called the restricted
invertibility principle. This theorem led to the (strong and weak) Bourgain–Tzafriri
conjectures. We will see that these conjectures are equivalent to PC.

In 1987, Bourgain and Tzafriri [11] proved a fundamental result in Banach space
theory known as the restricted invertibility principle.

Theorem 11.8 (Bourgain–Tzafriri) There is a universal constant 0 < c < 1 so that
whenever T : �N2 → �N2 is a linear operator for which ‖T ei‖ = 1, for 1 ≤ i ≤ N ,
then there exists a subset σ ⊂ {1,2, . . . ,N} of cardinality |σ | ≥ cN/‖T ‖2 so that
for all choices of scalars {aj }j∈σ ,

∥∥∥∥
∑

j∈σ
ajT ej

∥∥∥∥

2

≥ c
∑

j∈σ
|aj |2.

A close examination of the proof of the theorem [11] yields that c is on the order
of 10−72. The proof of the theorem uses probabilistic and function analytic tech-
niques, and it is nontrivial and nonconstructive. A significant breakthrough occurred
recently when Spielman and Srivastava [35] presented an algorithm for proving the
restricted invertibility theorem. Moreover, their proof gives the best possible con-
stants in the theorem.

Theorem 11.9 (Restricted Invertibility Theorem: Spielman–Srivastava Form) As-
sume {vi}Mi=1 are vectors in �N2 with A = ∑M

i=1 viv
T
i = I and 0 < ε < 1. If

L : �N2 → �N2 is a linear operator, then there is a subset J ⊂ {1,2, . . . ,M} of size
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|J | ≥ ε2 ‖L‖2
F

‖L‖2 for which {Lvi}i∈J is linearly independent and

λmin

(∑

i∈J
Lvi(Lvi)

T

)
>

(1− ε)2‖L‖F
M

,

where ‖L‖F is the Frobenius norm of L and λmin is the smallest eigenvalue of the
operator computed on span {vi}i∈J .

This generalized form of the restricted invertibility theorem was introduced by
Vershynin [37], where he studied the contact points of convex bodies using John’s
decompositions of the identity. The corresponding theorem for infinite dimensional
Hilbert spaces is still open. But this case requires the set J to be large with respect
to the Beurling density [6, 7]. Special cases of this problem were solved in [21, 37].

The inequality in the restricted invertibility theorem is referred to as a lower �2-
bound. It is known [24, 37] that there is a corresponding close to one upper �2-bound
which can be achieved in the theorem.

The corresponding theorem for infinite dimensional Hilbert spaces is still open.
Special cases of this problem were solved in [21, 37].

Theorem 11.8 gave rise to a problem in the area which has received a great deal
of attention [12, 22, 23].

Bourgain–Tzafriri Conjecture 11.1 (BT) There is a universal constant A > 0 so
that for every B > 1 there is a natural number r = r(B) satisfying: For any natural
number N , if T : �N2 → �N2 is a linear operator with ‖T ‖ ≤ B and ‖T ei‖ = 1 for
all i = 1,2, . . . ,N , then there is a partition {Aj }rj=1 of {1,2, . . . ,N} so that for all
j = 1,2, . . . , r and all choices of scalars {ai}i∈Aj

we have

∥∥∥∥
∑

i∈Aj

aiT ei

∥∥∥∥

2

≥A
∑

i∈Aj

|ai |2.

Sometimes BT is called strong BT, since there is a weakening called weak BT.
In weak BT we allow A to depend upon the norm of the operator T . A significant
amount of effort over the years was invested in trying to show that strong and weak
BT are equivalent. Casazza and Tremain finally proved this equivalence [22]. We
will not have to do any work here, since we developed all of the needed results in
earlier sections.

Theorem 11.10 The following are equivalent:

(1) The paving conjecture.
(2) The Bourgain–Tzafriri conjecture.
(3) The (weak) Bourgain–Tzafriri conjecture.

Proof (1)⇒ (2)⇒ (3): The paving conjecture is equivalent to the Rε -conjecture,
which clearly implies the Bourgain–Tzafriri conjecture, and this immediately im-
plies the (weak) Bourgain–Tzafriri conjecture.
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(3)⇒ (1): The weak Bourgain–Tzafriri conjecture immediately implies Conjec-
ture 11.4, which is equivalent to the paving conjecture. �

11.2.5 Partitioning Frames into Frame Subsets

A natural and frequently occurring problem in frame theory is to partition a frame
into subsets, each of which has good frame bounds. This seemingly innocent ques-
tion turns out to be much deeper than it looks, and as we will now see, it is equivalent
to PC.

Conjecture 11.11 There exists an ε > 0 so that for large K , for all N , and all equal
norm Parseval frames {ϕi}KN

i=1 for �N2 , there is a nonempty set J ⊂ {1,2, . . . ,KN}
so that both {ϕi}i∈J and {ϕi}i∈J c have lower frame bounds which are greater than ε.

The ideal situation would be for Conjecture 11.11 to hold for all K ≥ 2. In order
for {ϕi}i∈J and {ϕi}i∈J c to both be frames for �N2 , they at least have to span �N2 .
So the first question is whether we can partition our frame into spanning sets. This
follows from a generalization of the Rado-Horn theorem. See the chapter in this
book entitled: Spanning and Independence Properties of Finite Frames.

Proposition 11.4 Every equal norm Parseval frame {ϕi}KN+L
i=1 , 0≤ L < N for �N2

can be partitioned into K linearly independent spanning sets plus a linearly inde-
pendent set of L elements.

The natural question is whether we can make such a partition so that each of the
subsets has good frame bounds, i.e., a universal lower frame bound for all subsets.
Before addressing this question, we state another conjecture.

Conjecture 11.12 There exist ε > 0 and a natural number r so that for all N ,
all large K , and all equal norm Parseval frames {ϕi}KN

i=1 in �N2 , there is a parti-
tion {Aj }rj=1 of {1,2, . . . ,KN} so that for all j = 1,2, . . . , r the Bessel bound of

{ϕi}i∈Aj
is ≤ 1− ε.

We will now establish a relationship between our conjectures and PC.

Theorem 11.11

(1) Conjecture 11.11 implies Conjecture 11.12.
(2) Conjecture 11.12 is equivalent to PC.

Proof (1): Fix ε > 0, r,K as in Conjecture 11.11. Let {ϕi}KN
i=1 be an equal norm

Parseval frame for an N -dimensional Hilbert space HN . By Naimark’s theorem
we may assume there is an orthogonal projection P on �KN

2 with Pei = ϕi for
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all i = 1,2, . . . ,KN . By Conjecture 11.11, there is a J ⊂ {1,2, . . . ,KN} so that
{Pei}i∈J and {Pei}i∈J c both have a lower frame bound of ε > 0. Hence, for x ∈
HM = P(�KN

2 ),

‖x‖2 =
KN∑

i=1

∣∣〈x,P ei〉
∣∣2 =

∑

i∈J

∣∣〈x,P ei〉
∣∣2 +

∑

i∈J c

∣∣〈x,P ei〉
∣∣2

≥
∑

i∈J

∣∣〈x,P ei〉
∣∣2 + ε‖x‖2.

That is,
∑

i∈J |〈x,P ei〉|2 ≤ (1 − ε)‖x‖2. So the upper frame bound of {Pei}i∈J
(which is the norm of the analysis operator (PQJ )

∗ for this frame) is ≤ 1− ε. Since
PQJ is the synthesis operator for this frame, we have that ‖QJPQJ ‖ = ‖PQJ ‖2 =
‖(PQJ )

∗‖2 ≤ 1−ε. Similarly, ‖QJcPQJc‖ ≤ 1−ε. So Conjecture 11.12 holds for
r = 2.

(2): We will show that Conjecture 11.12 implies Conjecture 11.5. Choose ε and
r satisfying Conjecture 11.12 for all large K . In particular, choose any K with

1√
K

< α. Let {ϕi}Mi=1 be a unit norm K-tight frame for an N -dimensional Hilbert

space HN . Then M =∑M
i=1 ‖ϕi‖2 =KN . Since { 1√

K
ϕi}Mi=1 is an equal norm Par-

seval frame, by Naimark’s theorem we may assume there is an orthogonal projec-
tion P on �M2 with Pei = 1√

K
ϕi , for i = 1,2, . . . ,M . By Conjecture 11.12 there is

a partition {Aj }rj=1 of {1,2, . . . ,M} so that the Bessel bound ‖(PQAj
)∗‖2 for each

family {ϕi}i∈Aj
is ≤ 1− ε. So for j = 1,2, . . . , r and any x ∈ �N2 we have

∑

i∈Aj

∣∣∣∣

〈
x,

1√
K

ϕi

〉∣∣∣∣

2

=
∑

i∈Aj

∣∣〈x,PQAj
ei〉
∣∣2 =

∑

i∈Aj

∣∣〈QAj
Px, ei〉

∣∣2 ≤ ‖QAj
Px‖2

≤ ‖QAj
P ‖2‖x‖2 = ∥∥(PQAj

)∗
∥
∥2‖x‖2 ≤ (1− ε)‖x‖2.

Hence,
∑

i∈Aj

∣∣〈x,ϕi〉
∣∣2 ≤K(1− ε)‖x‖2 = (K −Kε)‖x‖2.

Since Kε >
√
K , we have verified Conjecture 11.5.

For the converse, choose r, δ, ε satisfying Conjecture 11.1. If {ϕi}KN
i=1 is an

equal norm Parseval frame for an N -dimensional Hilbert space HN with 1
K
≤ δ,

by Naimark’s theorem we may assume we have an orthogonal projection P on
�KN

2 with Pei = ϕi for i = 1,2, . . . ,KN . Since δ(P ) = ‖ϕi‖2 ≤ 1
K
≤ δ, by Con-

jecture 11.1 there is a partition {Aj }rj=1 of {1,2, . . . ,KN} so that for all j =
1,2, . . . , r ,

‖QAj
PQAj

‖ = ‖PQAj
‖2 = ∥∥(PQAj

)∗
∥∥2 ≤ 1− ε.
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Since ‖(PQAj
)∗‖2 is the Bessel bound for {Pei}i∈Aj

= {ϕi}i∈Aj
, we have that Con-

jecture 11.12 holds. �

11.3 The Sundberg Problem

Recently, an apparent weakening of the Kadison–Singer problem has arisen. In his
work on interpolation in complex function theory, Sundberg noticed the following
problem. Although this is an infinite dimensional problem, we state it here because
of its connections to the Kadison–Singer problem.

Problem 11.1 (Sundberg Problem) If {ϕ}∞i=1 is a unit norm Bessel sequence, can
we partition {ϕi}∞i=1 into a finite number of non-spanning sets?

This problem appears to be quite innocent, but it is surprisingly difficult. It is
immediate that the Feichtinger conjecture implies the Sundberg problem.

Theorem 11.12 A positive solution to the Feichtinger conjecture implies a positive
solution to the Sundberg problem.

Proof If {ϕi}∞i=1 is a unit norm Bessel sequence, then by FC, we can partition the
natural numbers into a finite number of sets {Aj }rj=1 so that {ϕi}i∈Aj

is a Riesz se-
quence for all j = 1,2, . . . , r . For each j = 1,2, . . . , r choose ij ∈Aj . Then neither
ϕij nor {ϕi}i∈Aj \{ij } can span the space. �

11.4 The Paulsen Problem

The Paulsen problem has been intractable for over a dozen years despite receiving
quite a bit of attention. In this section we look at the current state of the art on this
problem. First we need two definitions.

Definition 11.4 A frame {ϕi}Mi=1 for HN with frame operator S is said to be ε-
nearly equal norm if

(1− ε)
N

M
≤ ‖ϕi‖2 ≤ (1+ ε)

N

M
, for all i = 1,2, . . . ,M,

and it is ε-nearly Parseval if

(1− ε)Id ≤ S ≤ (1+ ε)Id.
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Definition 11.5 Given frames Φ = {ϕi}Mi=1 and Ψ = {ψi}Mi=1 for HN , we define the
distance between them by

d(Φ,Ψ )=
M∑

i=1

‖ϕi −ψi‖2.

This function is not exactly a distance function, since we have not taken the
square root of the right-hand side of the equality. But since this formulation is stan-
dard, we will use it. We can now state the Paulsen problem.

Problem 11.2 (Paulsen Problem) How close is an ε-nearly equal norm and ε-nearly
Parseval frame to an equal norm Parseval frame?

The importance of the Paulsen problem is that we have algorithms for construct-
ing frames which are equal norm and nearly Parseval. The question is, if we work
with these frames, are we sure that we are working with a frame which is close to
some equal norm Parseval frame? We are looking for the function f (ε,N,M) so
that every ε-nearly equal norm and ε-nearly Parseval frame Φ = {ϕi}Mi=1 satisfies

d(Φ,Ψ )≤ f (ε,N,M),

for some equal norm Parseval frame Ψ . A simple compactness argument due to
Hadwin (see [10]) shows that such a function must exist.

Lemma 11.1 The function f (ε,N,M) exists.

Proof We will proceed by way of contradiction. If this fails, then there is an 0 < ε

so that for every δ = 1
n

, there is a frame {ϕn
i }Mi=1 with frame bounds 1− 1

n
,1+ 1

n
and satisfying

(
1− 1

n

)
N

M
≤ ∥∥ϕn

i

∥∥≤
(

1+ 1

n

)
N

M
,

while Φn = {ϕn
i }Mi=1 is a distance greater than ε from any equal norm Parseval frame.

By compactness and switching to a subsequence, we may assume that

lim
n→∞ϕn

i = ϕi, exists for all i = 1,2, . . . ,M.

But now Φ = {ϕi}Mi=1 is an equal norm Parseval frame, contradicting the fact that

d(Φn,Φ)≥ ε > 0, for all n= 1,2, . . . ,

for any equal norm Parseval frame. �

The problem with this argument is that it does not give any quantitative estimate
on the parameters. We do not have a good idea of what form the function f (ε,N,M)
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must have. We do not even know if M must be in the function or if it is indepen-
dent of the number of frame vectors. The following example shows that the Paulsen
function is certainly a function of the dimension of the space.

Lemma 11.2 The Paulsen function satisfies

f (ε,N,M)≥ ε2N.

Proof Fix an ε > 0 and an orthonormal basis {ej }Nj=1 for HN . We define a frame

{ϕi}2Ni=1 by

ϕi =
⎧
⎨

⎩

1−ε√
2
ei if 1≤ i ≤N,

1+ε√
2
ei−N if N + 1≤ i ≤ 2N.

By the definition, {ϕi}Mi=1 is ε-nearly equal norm. Also, for any x ∈HN we have

2N∑

i=1

∣∣〈x,ϕi〉
∣∣2 = (1− ε)2

2

N∑

i=1

∣∣〈x, ei〉
∣∣2 + (1+ ε)2

2

N∑

i=1

∣∣〈x, ei〉
∣∣2 = (1+ ε2)‖x‖2.

So {ϕi}2Ni=1 is a (1 + ε2) tight frame and hence an ε-nearly Parseval frame. The
closest equal norm frame to {ϕi}2Ni=1 is { ei√

2
}Ni=1 ∪ { ei√

2
}Ni=1. Also,

N∑

i=1

∥∥∥∥
ei√

2
− ϕi

∥∥∥∥

2

+
2N∑

i=N+1

∥∥∥∥
ei−N√

2
− ϕi

∥∥∥∥

2

=
N∑

i=1

∥∥∥∥
ε√
2
ei

∥∥∥∥

2

+
N∑

i=1

∥∥∥∥
ε√
2
ei

∥∥∥∥

2

= ε2N.
�

The main difficulty in solving the Paulsen problem is that finding a close equal
norm frame to a given frame involves finding a close frame which satisfies a ge-
ometric condition, while finding a close Parseval frame to a given frame involves
satisfying (an algebraic) spectral condition. At this time, we lack techniques for
combining these two conditions. However, each of them individually has a known
solution. That is, we do know the closest equal norm frame to a given frame [14],
and we do know the closest Parseval frame to a given frame [5, 10, 14, 20, 31].

Lemma 11.3 If {ϕi}Mi=1 is an ε-nearly equal norm frame in HN , then the closest
equal norm frame to {ϕi}Mi=1 is

ψi = a
ϕi

‖ϕi‖ , for i = 1,2, . . . ,M,

where

a =
∑M

i=1 ‖ϕi‖
M

.
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It is well known that for a frame {ϕi}Mi=1 for HN with frame operator S, the
closest Parseval frame to {ϕi}Mi=1 is {S−1/2ϕi}Mi=1 [5, 10, 14, 20, 31]. We will give
the version from [10] here.

Proposition 11.5 Let {ϕi}Mi=1 be a frame for an N -dimensional Hilbert space HN ,
with frame operator S = T ∗T . Then {S−1/2ϕi}Mi=1 is the closest Parseval frame to
{ϕi}Mi=1. Moreover, if {ϕi}Mi=1 is an ε-nearly Parseval frame, then

M∑

i=1

∥∥S−1/2ϕi − ϕi

∥∥2 ≤N(2− ε − 2
√

1− ε)≤Nε2/4.

Proof We first check that {S−1/2ϕi}Mi=1 is the closest Parseval frame to {ϕi}Mi=1.
The squared �2-distance between {ϕi}Mi=1 and any Parseval frame {ψj }nj=1 can be

expressed in terms of their analysis operators T and T1 as

‖F − G‖2 = Tr
[
(T − T1)(T − T1)

∗]

= Tr
[
T T ∗

]+ Tr
[
T1T

∗
1

]− 22Tr
[
T T ∗1

]
.

Choosing a Parseval frame {ψi}Mi=1 is equivalent to choosing the isometry T1. To
minimize the distance over all choices of T1, consider the polar decomposition T =
UP , where P is positive and U is an isometry. In fact, S = T ∗T implies P = S1/2,
which means its eigenvalues are bounded away from zero.

Since P is positive and bounded away from zero, the term Tr[T T ∗1 ] = Tr[UPT ∗1 ]= Tr[T ∗1 UP ] is an inner product between T1 and U . Its magnitude is bounded by
the Cauchy-Schwarz inequality, and thus it has a maximal real part if T1 =U , which
implies T ∗1 U = I . In this case, T = T1P = T1S

1/2 or, equivalently, T ∗1 = S−1/2T ∗,
and we conclude that ψi = S−1/2ϕi for all i = 1,2, . . .M .

After choosing T1 = T S−1/2, the �2-distance is expressed in terms of the eigen-
values {λj }Nj=1 of S = T ∗T by

‖F − G‖2 = Tr[S] + Tr[I ] − 2 Tr
[
S1/2]

=
N∑

j=1

λj +N − 2
N∑

j=1

√
λj .

If 1− ε ≤ λj ≤ 1+ ε for all j = 1,2, . . .N , calculus shows that the maximum of
λj − 2

√
λj is achieved when λj = 1− ε.

Consequently,

‖F − G‖2 ≤ 2N −Nε − 2N
√

1− ε.

Estimating
√

1− ε by the first three terms in its decreasing power series gives the
inequality ‖F − G‖2 ≤Nε2/4. �
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It can be shown that the estimate above is exact, and so we have separate verifi-
cation that the closeness function is a function of N .

There is a simple algorithm for turning any frame into an equal norm frame with
the same frame operator due to Holmes and Paulsen [30].

Proposition 11.6 There is an algorithm for turning any frame into an equal norm
frame with the same frame operator.

Proof Let {ϕi}Mi=1 be a frame for HN with frame operator S and analysis operator T .
Then

M∑

i=1

‖ϕi‖2 = TrS.

Let λ = TrS
M

. If ‖ϕi‖2 = λ, for all m = 1,2, . . . ,M , then we are done. Otherwise,
there exists 1≤ i 
= j ≤M with ‖ϕi‖2 > λ > ‖ϕj‖2. For any θ , replace the vectors
ϕi,ϕj by the vectors

ψi = (cos θ)ϕi−(sin θ)ϕj , ψj = (sin θ)ϕi+(cos θ)ϕj , ψk = ϕk, for k 
= i, j.

Now, the analysis operator for {ψi}Mi=1 is T1 = UT for a unitary operator U on �N2
given by the Givens rotation. Hence, T ∗1 T1 = T ∗U∗UT = T ∗T = S; so the frame
operator is unchanged for any value of θ . Now choose the θ yielding ‖ψi‖2 = λ.
Repeating this process at most M − 1 times yields an equal norm frame with the
same frame operator as {ϕi}Mi=1. �

Using a Parseval frame in Proposition 11.6, we do obtain an equal norm Parseval
frame. The problem, again, is that we do not have any quantitative measure of how
close these two Parseval frames are.

There is an obvious approach toward solving the Paulsen problem. Given an
ε-nearly equal norm ε-nearly Parseval frame {ϕi}Mi=1 for HN with frame operator S,
we can switch to the closest Parseval frame {S−1/2ϕi}Mi=1. Then switch to the clos-
est equal norm frame to {S−1/2ϕi}Mi=1, and call it {ψi}Mi=1 with frame operator S1.

Now switch to {S−1/2
1 ψi}Mi=1 and again switch to the closest equal norm frame and

continue. Unfortunately, even if we could show that this process converges and we
could check the distance traveled through this process, we would still not have an
answer to the Paulsen problem, because this process does not have to converge to an
equal norm Parseval frame. In particular, there is a fixed point of this process which
is not an equal norm Parseval frame.

Example 11.1 Let {ei}Ni=1 be an orthonormal basis for �N2 and let {ϕi}N+1
i=1 be an

equiangular unit norm tight frame for �N2 . Then {ei⊕0}Ni=1∪{0⊕ϕi}N+1
i=1 in �N2 ⊕�N2

is an ε = 1
N

-nearly equal norm and 1
N

-nearly Parseval frame with frame operator,
say S. A direct calculation shows that taking S−1/2 of the frame vectors and switch-
ing to the closest equal norm frame leaves the frame unchanged.
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The Paulsen problem has proven to be intractable for over 12 years. Recently,
two partial solutions to the problem were given in [10, 18], each with its advantages.
Since each of these papers is technical, we will only outline the ideas here.

In [10], a new technique is introduced. This is a system of vector-valued ordinary
differential equations (ODEs) which starts with a given Parseval frame and has the
property that all frames in the flow are still Parseval while approaching an equal
norm Parseval frame. The authors then bound the arc length of the system of ODEs
by the frame energy. Finally, giving an exponential bound on the frame energy, they
have a quantitative estimate for the distance between the initial, ε-nearly equal norm
and ε-nearly Parseval frame F and the equal norm Parseval frame G. For the method
to work, they must assume that the dimension N of the Hilbert space and the number
M of frame vectors are relatively prime. The authors show that in practice, this is
not a serious restriction. The main result of [10] is the following.

Theorem 11.13 Let N,M ∈N be relatively prime, let 0 < ε < 1
2 , and assume Φ =

{ϕi}Mi=1 is an ε-nearly equal norm and ε-nearly Parseval frame for a real or complex
Hilbert space of dimension N . Then there is an equal norm Parseval frame Ψ =
{ψi}Mi=1 such that

‖Φ −Ψ ‖ ≤ 29

8
N2M(M − 1)8ε.

In [18], the authors present a new iterative algorithm—gradient descent of the
frame potential—for increasing the degree of tightness of any finite unit norm frame.
The algorithm itself is trivial to implement, and it preserves certain group structures
present in the initial frame. In the special case where the number of frame elements
is relatively prime to the dimension of the underlying space, they show that this
algorithm converges to a unit norm tight frame at a linear rate, provided the initial
unit norm frame is already sufficiently close to being tight. The main difference
between this approach and the approach in [10] is that in [10], the authors start
with a nearly equal norm Parseval frame and improve its closeness to an equal norm
frame while maintaining Parseval, and in [18] the authors start with an equal norm
nearly Parseval frame and give an algorithm for improving its algebraic properties
while changing its transform as little as possible. The main result from [18] is the
following theorem.

Theorem 11.14 Suppose M and N are relatively prime. Pick t ∈ (0, 1
2M ), and

let Φ0 = {ϕi}Mi=1 be a unit norm frame with analysis operator T0 satisfying
‖T ∗0 T0 − M

N
I‖2

HS ≤ 2
N3 . Now, iterate the gradient descent of the frame potential

method to obtain Φk . Then Φ∞ := limk Φk exists and is a unit norm tight frame
satisfying

‖Φ∞ −Φ0‖HS ≤ 4N20M8.5

1− 2Mt

∥∥∥∥T
∗
0 T0 − M

N
I

∥∥∥∥
HS

.
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In [10], the authors showed that there is a connection between the Paulsen prob-
lem and a fundamental open problem in operator theory.

Problem 11.3 (Projection Problem) Let HN be an N -dimensional Hilbert space
with orthonormal basis {ei}Ni=1. Find the function g(ε,N,M) satisfying the follow-
ing. If P is a projection of rank M on HN satisfying

(1− ε)
M

N
≤ ‖Pei‖2 ≤ (1+ ε)

M

N
, for all i = 1,2, . . . ,N,

then there is a projection Q with ‖Qei‖2 = M
N

for all i = 1,2, . . . ,N satisfying

N∑

i=1

‖Pei −Qei‖2 ≤ g(ε,N,M).

In [13], it was shown that the Paulsen problem is equivalent to the projection
problem and that their closeness functions are within a factor of 2 of one another.
The proof of this result gives several exact connections between the distance be-
tween frames and the distance between the ranges of their analysis operators.

Theorem 11.15 Let Φ = {ϕi}i∈I ,Ψ = {ψi}i∈I be Parseval frames for a Hilbert
space H with analysis operators T1, T2 respectively. If

d(Φ,Ψ )=
∑

i∈I
‖ϕi −ψi‖2 < ε,

then

d
(
T1(Φ),T2(Ψ )

)=
∑

i∈I
‖T1ϕi − T2ψi‖2 < 4ε.

Proof Note that for all j ∈ I ,

T1ϕj =
∑

i∈I
〈ϕj ,ϕi〉ei, and T2ψj =

∑

i∈I
〈ψj ,ψi〉ei .

Hence,

‖T1ϕj − T2ψj‖2 =
∑

i∈I

∣∣〈ϕj ,ϕi〉 − 〈ψj ,ψi〉
∣∣2

=
∑

i∈I

∣∣〈ϕj ,ϕi −ψi〉 + 〈ϕj −ψj ,ψi〉
∣∣2

≤ 2
∑

i∈I

∣∣〈ϕj ,ϕi −ψi〉
∣∣2 + 2

∑

i∈I

∣∣〈ϕj −ψj ,ψi〉
∣∣2.
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Summing over j and using the fact that our frames Φ and Ψ are Parseval gives

∑

j∈I
‖T1ϕj − T2ψj‖2 ≤ 2

∑

j∈I

∑

i∈I

∣∣〈ϕj ,ϕi −ψi〉
∣∣2 + 2

∑

j∈I

∑

i∈I

∣∣〈ϕj −ψj ,ψi〉
∣∣2

= 2
∑

i∈I

∑

j∈I

∣∣〈ϕj ,ϕi −ψi〉
∣∣2 + 2

∑

j∈I
‖ϕj −ψj‖2

= 2
∑

i∈I
‖ϕi −ψi‖2 + 2

∑

j∈I
‖ϕj −ψj‖2

= 4
∑

j∈I
‖ϕj −ψj‖2.

�

Next, we want to relate the chordal distance between two subspaces to the dis-
tance between their orthogonal projections. First we need to define the distance
between projections.

Definition 11.6 If P,Q are projections on HN , we define the distance between
them by

d(P,Q)=
M∑

i=1

‖Pei −Qei‖2,

where {ei}Ni=1 is an orthonormal basis for HN .

The chordal distance between subspaces of a Hilbert space was defined in [25]
and has been shown to have many uses over the years.

Definition 11.7 Given M-dimensional subspaces W1,W2 of a Hilbert space, define
the M-tuple (σ1, σ2, . . . , σM) as follows:

σ1 =max
{〈x, y〉 : x ∈ SpW1

, y ∈ SpW2

}= 〈x1, y1〉,
where SpW is the unit sphere of the subspace W . For 2≤ i ≤M ,

σi =max
{〈x, y〉 : ‖x‖ = ‖y‖ = 1, 〈xj , x〉 = 0= 〈yj , y〉, for 1≤ j ≤ i − 1

}
,

where

σi = 〈xi, yi〉.

The M-tuple (θ1, θ2, . . . , θM) with θi = cos−1(σi) is called the principal angles
between W1,W2. The chordal distance between W1,W2 is given by

d2
c (W1,W2)=

M∑

i=1

sin2 θi .
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So by the definition, there exist orthonormal bases {aj }Mj=1, {bj }Mj=1 for W1,W2
respectively satisfying

‖aj − bj‖ = 2 sin

(
θ

2

)
, for all j = 1,2, . . . ,M.

It follows that for 0≤ θ ≤ π
2 ,

sin2 θ ≤ 4 sin2
(
θ

2

)
= ‖aj − bj‖2 ≤ 4 sin2 θ, for all j = 1,2, . . . ,M.

Hence,

d2
c (W1,W2)≤

M∑

j=1

‖aj − bj‖2 ≤ 4d2
c (W1,W2). (11.5)

We also need the following result [25].

Lemma 11.4 If HN is an N -dimensional Hilbert space and P,Q are rank M or-
thogonal projections onto subspaces W1,W2 respectively, then the chordal distance
dc(W1,W2) between the subspaces satisfies

d2
c (W1,W2)=M − TrPQ.

Next we give a precise connection between chordal distance for subspaces and
the distance between the projections onto these subspaces. This result can be found
in [25] in the language of Hilbert-Schmidt norms.

Proposition 11.7 Let HM be an M-dimensional Hilbert space with orthonormal
basis {ei}Mi=1. Let P,Q be the orthogonal projections of HM onto N -dimensional
subspaces W1,W2 respectively. Then the chordal distance between W1,W2 satisfies

d2
c (W1,W2)= 1

2

M∑

i=1

‖Pei −Qei‖2.

In particular, there are orthonormal bases {ei}Ni=1 for W1 and {ẽi}Ni=1 for W2 satis-
fying

1

2

M∑

i=1

‖Pei −Qei‖2 ≤
N∑

i=1

‖ei − ẽi‖2 ≤ 2
N∑

i=1

‖Pei −Qei‖2.

Proof We compute
M∑

i=1

‖Pei −Qei‖2 =
M∑

i=1

〈Pei −Qei,P ei −Qei〉

=
M∑

i=1

‖Pei‖2 +
M∑

i=1

‖Qei‖2 − 2
M∑

i=1

〈Pei,Qei〉
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= 2N − 2
M∑

i=1

〈PQei, ei〉

= 2N − 2 TrPQ

= 2N − 2
[
N − d2

c (W1,W2)
]

= 2d2
c (W1,W2).

This combined with Eq. (11.5) completes the proof. �
The next problem to be addressed is to connect the distance between projections

and the distance between the corresponding ranges of analysis operators for Parseval
frames.

Theorem 11.16 Let P,Q be projections of rank N on HM and let {ei}Mi=1 be the
coordinate basis of HM . Further, assume that there is a Parseval frame {ϕi}Mi=1 for
HN with analysis operator T satisfying T ϕi = Pei for all i = 1,2, . . . ,M . If

M∑

i=1

‖Pei −Qei‖2 < ε,

then there is a Parseval frame {ψi}Mi=1 for HM with analysis operator T1 satisfying

T1ψi =Qei, for all i = 1,2, . . . ,M,

and
M∑

i=1

‖ϕi −ψi‖2 < 2ε.

Moreover, if {Qei}Mi=1 is equal norm, then {ψi}Mi=1 may be chosen to be equal norm.

Proof By Proposition 11.7, there are orthonormal bases {aj }Mj=1 and {bj }Mj=1 for

W1 = T (HN), W2 = T1(HN) respectively satisfying

M∑

j=1

‖aj − bj‖2 < 2ε.

Let A,B be the N ×M matrices whose j th columns are aj , bj respectively. Let
aij , bij be the (i, j) entries of A,B respectively. Finally, let {ϕ′i}Mi=1, {ψ ′i}Mi=1 be the
ith rows of A,B respectively. Then we have

M∑

i=1

∥∥ϕ′i −ψ ′i
∥∥2 =

M∑

i=1

N∑

j=1

|aij − bij |2

=
N∑

j=1

M∑

i=1

|aij − bij |2
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=
N∑

i=1

‖aj − bj‖2

≤ 2ε.

Since the columns of A form an orthonormal basis for W1, we know that {ϕ′i}Mi=1
is a Parseval frame which is isomorphic to {ϕi}Mi=1. Thus there is a unitary operator
U :HM →HM with Uϕ′i = ϕi . Now let {ψi}Mi=1 = {Uψ ′i}Mi=1. Then

M∑

i=1

∥∥ϕi −Uψ ′i
∥∥2 =

M∑

i=1

∥∥U
(
ϕ′i
)−U

(
ψ ′i
)∥∥2 =

M∑

i=1

∥∥ϕ′i −ψ ′i
∥∥2 ≤ 2ε.

Finally, if T1 is the analysis operator for the Parseval frame {ψi}Mi=1, then T1 is a
isometry and since T1ψi =Qei , for all i = 1,2, . . . ,N , if Qei is equal norm, so is
{T1ψi}Mi=1 and hence so is {ψi}Ni=1. �

Theorem 11.17 If g(ε,N,M) is the function for the Paulsen problem and
f (ε,N,M) is the function for the Projection problem, then

f (ε,N,M)≤ 4g(ε,N,M)≤ 8f (ε,N,M).

Proof First, assume that the projection problem holds with function f (ε,N,M).
Let {ϕi}Mi=1 be a Parseval frame for HN satisfying

(1− ε)
N

M
≤ ‖ϕi‖2 ≤ (1+ ε)

N

M
.

Let T be the analysis operator of {ϕi}Mi=1 and let P be the projection of HM onto
range T . So, T ϕi = Pei for all i = 1,2, . . . ,M . By our assumption that the pro-
jection problem holds, there is a projection Q on HM with constant diagonal so
that

M∑

i=1

‖Pei −Qei‖2 ≤ f (ε,N,M).

By Theorem 11.16, there is a Parseval frame {ψi}Mi=1 for HN with analysis operator
T1 so that T1ψi =Qei and

M∑

i=1

‖ϕi −ψi‖2 ≤ 2f (ε,N,M).

Since T1 is an isometry and {T1ψi}Mi=1 is equal norm, it follows that {ψi}Mi=1 is an
equal norm Parseval frame satisfying the Paulsen problem.
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Conversely, assume the Parseval Paulsen problem has a positive solution with
function g(ε,N,M). Let P be an orthogonal projection on HM satisfying

(1− ε)
N

M
≤ ‖Pei‖2 ≤ (1+ ε)

N

M
.

Then {Pei}Mi=1 is an ε-nearly equal norm Parseval frame for HN and, by the Paulsen
problem, there is an equal norm Parseval frame {ψi}Mi=1 so that

M∑

i=1

‖ϕi −ψi‖2 < g(ε,N,M).

Let T1 be the analysis operator of {ψi}Mi=1. Letting Q be the projection onto the
range of T1, we have that Qei = T1ψi , for all i = 1,2, . . . ,M . By Theorem 11.15,
we have that

M∑

i=1

‖Pei − T1ψi‖2 =
N∑

i=1

‖Pei −Qei‖2 ≤ 4g(ε,N,M).

Since T1 is an isometry and {ψi}Mi=1 is equal norm, it follows that Q is a constant
diagonal projection. �

In [13] there are several generalizations of the Paulsen and projection problems.

11.5 Final Comments

We have concentrated here on some problems in pure mathematics which have fi-
nite dimensional formulations. There are many other infinite dimensional versions
of these problems [22, 23] in sampling theory, harmonic analysis, and other areas
which we have not covered.

Because of the long history of these problems and their connections to so many
areas of mathematics, we are naturally led to consider the decidability of KS. Since
we have finite dimensional versions of the problem, it can be reformulated in the
language of pure number theory, and hence it has a property logicians call absolute-
ness. As a practical matter, the general feeling is that this means it is very unlikely
to be undecidable.
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Chapter 12
Probabilistic Frames: An Overview

Martin Ehler and Kasso A. Okoudjou

Abstract Finite frames can be viewed as mass points distributed in N -dimensional
Euclidean space. As such they form a subclass of a larger and rich class of proba-
bility measures that we call probabilistic frames. We derive the basic properties of
probabilistic frames, and we characterize one of their subclasses in terms of min-
imizers of some appropriate potential function. In addition, we survey a range of
areas where probabilistic frames, albeit under different names, appear. These ar-
eas include directional statistics, the geometry of convex bodies, and the theory of
t-designs.

Keywords Probabilistic frame · POVM · Frame potential · Isotropic measure

12.1 Introduction

Finite frames in R
N are spanning sets that allow the analysis and synthesis of vectors

in a way similar to basis decompositions. However, frames are redundant systems,
and as such the reconstruction formula they provide is not unique. This redundancy
plays a key role in many applications of frames which appear now in a range of areas
that include, but are not limited to, signal processing, quantum computing, coding
theory, and sparse representations; cf. [11, 22, 23] for an overview.

By viewing the frame vectors as discrete mass distributions on R
N , one can ex-

tend frame concepts to probability measures. This point of view was developed in
[16] under the name of probabilistic frames and was further expanded in [18]. The
goal of this chapter is to summarize the main properties of probabilistic frames and
to bring forth their relationship to other areas of mathematics.
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The richness of the set of probability measures together with the availability of
analytic and algebraic tools make it straightforward to construct many examples
of probabilistic frames. For instance, by convolving probability measures, we have
been able to generate new probabilistic frames from existing ones. In addition, the
probabilistic framework considered in this chapter allows us to introduce a new dis-
tance on frames, namely the Wasserstein distance [35], also known as the Earth
Mover’s distance [25]. Unlike standard frame distances in the literature such as the
�2-distance, the Wasserstein metric enables us to define a meaningful distance be-
tween two frames of different cardinalities.

As we shall see later in Sect. 12.4, probabilistic frames are also tightly related to
various notions that appeared in areas such as the theory of t-designs [15], positive
operator valued measures (POVM) encountered in quantum computing [1, 13, 14],
and isometric measures used in the study of convex bodies [19, 20, 28]. In particular,
in 1948, F. John [20] gave a characterization of what is known today as unit norm
tight frames in terms of an ellipsoid of maximal volume, called John’s ellipsoid.
The latter and other ellipsoids in some extremal positions are supports of probability
measures that turn out to be probabilistic frames. The connections between frames
and convex bodies could offer new insight into the construction of frames, on which
we plan to elaborate elsewhere.

Finally, it is worth mentioning the connections between probabilistic frames and
statistics. For instance, in directional statistics probabilistic tight frames can be used
to measure inconsistencies of certain statistical tests. Moreover, in the setting of M-
estimators as discussed in [21, 33, 34], finite tight frames can be derived from max-
imum likelihood estimators that are used for parameter estimation of probabilistic
frames.

This chapter is organized as follows. In Sect. 12.2 we define probabilistic frames,
prove some of their main properties, and give a few examples. In Sect. 12.3 we in-
troduce the notion of the probabilistic frame potential and characterize its minima
in terms of tight probabilistic frames. In Sect. 12.4 we discuss the relationship be-
tween probabilistic frames and other areas such as the geometry of convex bodies,
quantum computing, the theory of t-designs, directional statistics, and compressed
sensing.

12.2 Probabilistic Frames

12.2.1 Definition and Basic Properties

Let P :=P(B,RN) denote the collection of probability measures on R
N with

respect to the Borel σ -algebra B. Recall that the support of μ ∈P denoted by
supp(μ) is the set of all x ∈R

N such that for all open neighborhoods Ux ⊂R
N of x,

we have μ(Ux) > 0. We write P(K) :=P(B,K) for those probability measures
in P whose support is contained in K ⊂ R

N . The linear span of supp(μ) in R
N is

denoted by Eμ.
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Definition 12.1 A Borel probability measure μ ∈P is a probabilistic frame if there
exist 0 <A≤ B <∞ such that

A‖x‖2 ≤
∫

RN

∣∣〈x, y〉∣∣2 dμ(y)≤ B‖x‖2, for all x ∈R
N. (12.1)

The constants A and B are called lower and upper probabilistic frame bounds,
respectively. When A= B , μ is called a tight probabilistic frame. If only the upper
inequality holds, then we call μ a Bessel probability measure.

As mentioned in the Introduction, this notion was introduced in [16] and was
further developed in [18]. We shall see later in Sect. 12.2.2 that probabilistic frames
provide reconstruction formulas similar to those known from finite frames. We begin
by giving a complete characterization of probabilistic frames, for which we first
need some preliminary definitions.

Let

P2 :=P2
(
R

N
)=

{
μ ∈P :M2

2 (μ) :=
∫

RN

‖x‖2 dμ(x) <∞
}

(12.2)

be the (convex) set of all probability measures with finite second moments. There
exists a natural metric on P2 called the 2-Wasserstein metric, which is given by

W 2
2 (μ, ν) :=min

{∫

RN×RN

‖x − y‖2 dγ (x, y), γ ∈ Γ (μ,ν)

}
, (12.3)

where Γ (μ,ν) is the set of all Borel probability measures γ on R
N × R

N whose
marginals are μ and ν, respectively, i.e., γ (A × R

N) = μ(A) and γ (RN × B) =
ν(B) for all Borel subsets A,B in R

N . The Wasserstein distance represents the
“work” that is needed to transfer the mass from μ into ν, and each γ ∈ Γ (μ,ν) is
called a transport plan. We refer to [2, Chap. 7], [35, Chap. 6] for more details on
the Wasserstein spaces.

Theorem 12.1 A Borel probability measure μ ∈P is a probabilistic frame if and
only if μ ∈P2 and Eμ =R

N . Moreover, if μ is a tight probabilistic frame, then the
frame bound A is given by A= 1

N
M2

2 (μ)= 1
N

∫
RN ‖y‖2 dμ(y).

Proof Assume first that μ is a probabilistic frame, and let {ei}Ni=1 be an orthonormal
basis for RN . By letting x = ei in (12.1), we have A ≤ ∫

RN |〈ei, y〉|2 dμ(y) ≤ B .
Summing these inequalities over i leads to A≤ 1

N

∫
RN ‖y‖2 dμ(y)≤ B <∞, which

proves that μ ∈P2. Note that the latter inequalities also prove the second part of
the theorem.

To prove Eμ = R
N , we assume that E⊥μ 
= {0} and choose 0 
= x ∈ E⊥μ . The

left-hand side of (12.1) then yields a contradiction.
For the reverse implication, let M2(μ) <∞ and Eμ = R

N . The upper bound
in (12.1) is obtained by a simple application of the Cauchy-Schwarz inequality with
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B = ∫
RN ‖y‖2 dμ(y). To obtain the lower frame bound, let

A := inf
x∈RN

(∫
RN |〈x, y〉|2 dμ(y)

‖x‖2

)
= inf

x∈SN−1

(∫

RN

∣∣〈x, y〉∣∣2 dμ(y)

)
.

Due to the dominated convergence theorem, the mapping x �→ ∫
RN |〈x, y〉|2 dμ(y)

is continuous and the infimum is in fact a minimum since the unit sphere SN−1 is
compact. Let x0 be in SN−1 such that

A=
∫

RN

∣∣〈x0, y〉
∣∣2 dμ(y).

We need to verify that A > 0: Since Eμ = R
N , there is y0 ∈ supp(μ) such that

|〈x0, y0〉|2 > 0. Therefore, there is ε > 0 and an open subset Uy0 ⊂ R
N satis-

fying y0 ∈ Uy0 and |〈x, y〉|2 > ε, for all y ∈ Uy0 . Since μ(Uy0) > 0, we obtain
A≥ εμ(Uy0) > 0, which concludes the proof of the first part of the theorem. �

Remark 12.1 A tight probabilistic frame μ with M2(μ)= 1 will be referred to as a
unit norm tight probabilistic frame. In this case the frame bound is A = 1

N
, which

only depends on the dimension of the ambient space. In fact, any tight probabilistic
frame μ whose support is contained in the unit sphere SN−1 is a unit norm tight
probabilistic frame.

In the sequel, the Dirac measure supported at ϕ ∈R
N is denoted by δϕ .

Proposition 12.1 Let Φ = (ϕi)
M
i=1 be a sequence of nonzero vectors in R

N , and let
{ai}Mi=1 be a sequence of positive numbers.

(a) Φ is a frame with frame bounds 0 < A ≤ B < ∞ if and only if μΦ :=
1
M

∑M
i=1 δϕi

is a probabilistic frame with bounds A/M and B/M .
(b) Moreover, the following statements are equivalent:

(i) Φ is a (tight) frame.
(ii) μΦ := 1∑M

i=1 ‖ϕi‖2

∑M
i=1 ‖ϕi‖2δ ϕi‖ϕi‖

is a (tight) unit norm probabilistic

frame.
(iii) 1∑M

i=1 a
2
i

∑M
i=1 a

2
i δ ϕi

ai

is a (tight) probabilistic frame.

Proof Clearly, μΦ is a probability measure, and its support is the set {ϕk}Mk=1, which
spans RN . Moreover,

∫

RN

〈x, y〉2 dμΦ(y)= 1

M

M∑

i=1

〈x,ϕi〉2.

Part (a) can be easily derived from the above equality, and direct calculations imply
the remaining equivalences. �
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Remark 12.2 Though the frame bounds of μΦ are smaller than those of Φ , we
observe that the ratios of the respective frame bounds remain the same.

Example 12.1 Let dx denote the Lebesgue measure on R
N and assume that

f is a positive Lebesgue integrable function such that
∫
RN f (x) dx = 1. If∫

RN ‖x‖2f (x)dx < ∞, then the measure μ defined by dμ(x) = f (x)dx is
a (Borel) probability measure that is a probabilistic frame. Moreover, if f (x1, . . . ,

xN) = f (±x1, . . . ,±xN), for all combinations of ±, then μ is a tight probabilis-
tic frame; cf. Proposition 3.13 in [16]. The latter is satisfied, for instance, if f is
radially symmetric; i.e., there is a function g such that f (x)= g(‖x‖).

Viewing frames in the probabilistic setting that we have been developing has
several advantages. For instance, we can use measure theoretical tools to gener-
ate new probabilistic frames from old ones and, in fact, under some mild condi-
tions, the convolution of probability measures leads to probabilistic frames. Recall
that the convolution of μ,ν ∈P is the probability measure given by μ ∗ ν(A) =∫
RN μ(A− x)dν(x) for A ∈B. Before we state the result on convolution of proba-

bilistic frames, we need a technical lemma that is related to the support of a proba-
bility measure that we consider later. The result is an analog of the fact that adding
finitely many vectors to a frame does not change the frame nature, but affects only
its bounds. In the case of probabilistic frames, the adjunction of a single point (or
finitely many points) to its support does not destroy the frame property, but just
changes the frame bounds:

Lemma 12.1 Let μ be a Bessel probability measure with bound B > 0. Given ε ∈
(0,1), set με = (1 − ε)μ + εδ0. Then με is a Bessel measure with bound Bε =
(1 − ε)B . If in addition μ is a probabilistic frame with bounds 0 < A ≤ B <∞,
then με is also a probabilistic frame with bounds (1− ε)A and (1− ε)B .

In particular, if μ is a tight probabilistic frame with bound A, then so is με with
bound (1− ε)A.

Proof με is clearly a probability measure since it is a convex combination of prob-
ability measures. The proof of the lemma follows from the following equations:

∫

RN

∣∣〈x, y〉∣∣2 dμε(y)= (1− ε)

∫

RN

∣∣〈x, y〉∣∣2 dμ(y)+ ε

∫

RN

∣∣〈x, y〉∣∣2 dδ0(y)

= (1− ε)

∫

RN

∣∣〈x, y〉∣∣2 dμ(y). �

We are now ready to understand the action of convolution on probabilistic frames.

Theorem 12.2 Let μ ∈P2 be a probabilistic frame and let ν ∈P2. If supp(μ)

contains at least N + 1 distinct vectors, then μ ∗ ν is a probabilistic frame.
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Proof

M2
2 (μ ∗ ν)=

∫

RN

‖y‖2 dμ ∗ ν(y)

=
∫∫

RN×RN

‖x + y‖2 dμ(x)dν(y)

≤M2
2 (μ)+M2

2 (ν)+ 2M2(μ)M2(ν)

= (M2(μ)+M2(ν)
)2

<∞.

Thus, μ ∗ ν ∈P2, and it only remains to verify that the support of μ ∗ ν spans RN ;
cf. Theorem 12.1. Since supp(μ) must span R

N , there are {ϕi}N+1
i=1 ⊂ supp(μ) that

form a frame for RN . Due to their linear dependency, for each x ∈R
N , we can find

{ci}N+1
i=1 ⊂R such that x =∑N+1

i=1 ciϕi with
∑N+1

i=1 ci = 0. For y ∈ supp(ν), we then
obtain

x = x + 0y =
N+1∑

i=1

ciϕi +
N+1∑

i=1

ciy =
N+1∑

i=1

ci(ϕi + y) ∈ span
(
supp(μ)+ supp(ν)

)
.

Thus, supp(μ)⊂ span(supp(μ)+supp(ν)). Since supp(μ)+supp(ν)⊂ supp(μ∗ν),
we can conclude the proof. �

Remark 12.3 By Lemma 12.1 we can assume without loss of generality that 0 ∈
supp(ν). In this case, if μ is a probabilistic frame such that supp(μ) does not contain
N + 1 distinct vectors, then μ ∗ ν is still a probabilistic frame. Indeed, 0 ∈ supp(ν)
and Eμ = R

N together with the fact that supp(μ)+ supp(ν) ⊂ supp(μ ∗ ν) imply
that supp(μ ∗ ν) also spans RN .

Finally, if μ is a probabilistic frame such that supp(μ) does not contain N + 1
distinct vectors, then supp(μ) = {ϕj }Nj=1 forms a basis for RN . In this case, μ ∗ ν
is not a probabilistic frame if ν = δ−x , where x is an affine linear combination of
{ϕj }Nj=1. Indeed, x =∑N

j=1 cjϕj with
∑N

j=1 cj = 1 implies
∑N

j=1 cj (ϕj − x)= 0,

although not all cj can be zero. Therefore, supp(μ ∗ ν) = {ϕj − x}Nj=1 is linearly

dependent and, hence, cannot span R
N .

Proposition 12.2 Let μ and ν be tight probabilistic frames. If ν has zero mean, i.e.,∫
RN y dν(y)= 0, then μ ∗ ν is also a tight probabilistic frame.

Proof Let Aμ and Aν denote the frame bounds of μ and ν, respectively.

∫

RN

∣∣〈x, y〉∣∣2 dμ ∗ ν(y)=
∫

RN

∫

RN

∣∣〈x, y + z〉∣∣2 dμ(y)dν(z)

=
∫

RN

∫

RN

∣∣〈x, y〉∣∣2 dμ(y)dν(z)
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Fig. 12.1 Heatmaps for the associated probabilistic tight frame, where {ϕi}Mi=1 ⊂R
2 is convolved

with a Gaussian of increased variance (from left to right). The origin is at the center, and the axes
run from −2 to 2. Each colormap separately scales from zero to the respective density’s maximum

+
∫

RN

∫

RN

∣∣〈x, z〉∣∣2 dμ(y)dν(z)

+ 2
∫

RN

∫

RN

〈x, y〉〈x, z〉dμ(y)dν(z)

=Aμ‖x‖2 +Aν‖x‖2 + 2

〈∫

RN

〈x, y〉x dμ(y),

∫

RN

z dν(z)

〉

= (Aμ +Aν)‖x‖2,

where the latter equality is due to
∫
RN z dν(z)= 0. �

Example 12.2 Let {ϕi}Mi=1 ⊂ R
N be a tight frame, and let ν be a probability mea-

sure with dν(x) = g(‖x‖) dx for some function g. We have already mentioned in
Example 12.1 that ν is a tight probabilistic frame, and Proposition 12.2 then implies
that ( 1

M

∑M
i=1 δ−ϕi

) ∗ ν = 1
M

∑M
i=1 f (x − ϕi) dx is a tight probabilistic frame. See

Fig. 12.1 for a visualization.

Proposition 12.3 Let μ and ν be two probabilistic frames on R
N1 and R

N2 with
lower and upper frame bounds Aμ,Aν and Bμ,Bν , respectively, such that at least
one of them has zero mean. Then the product measure γ = μ⊗ ν is a probabilis-
tic frame for R

N1 × R
N2 with lower and upper frame bounds min(Aμ,Aν) and

max(Bμ,Bν), respectively.
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If, in addition, μ and ν are tight and M2
2 (μ)/N1 =M2

2 (ν)/N2, then γ = μ⊗ ν

is a tight probabilistic frame.

Proof Let (z1, z2) ∈R
N1 ×R

N2 ; then
∫∫

R
N1×RN2

〈
(z1, z2), (x, y)

〉2
dγ (x, y)=

∫∫

R
N1×RN2

(〈z1, x〉 + 〈z2, y〉
)2

dγ (x, y)

=
∫∫

R
N1×RN2

〈z1, x〉2 dγ (x, y)

+
∫∫

R
N1×RN2

〈z2, y〉2 dγ (x, y)

+ 2
∫∫

R
N1×RN2

〈z1, x〉〈z2, y〉dγ (x, y)

=
∫

R
N1
〈z1, x〉2 dμ(x)+

∫

R
N2
〈z2, y〉2 dν(y)

+ 2
∫

R
N1

∫

R
N2
〈z1, x〉〈z2, y〉dμ(x)dν(y)

=
∫

R
N1
〈z1, x〉2 dμ(x)+

∫

R
N2
〈z2, y〉2 dν(y)

where the last equation follows from the fact that one of the two probability mea-
sures has zero mean. Consequently,

Aμ‖z1‖2 +Aν‖z2‖2 ≤
∫∫

R
N1×RN2

〈
(z1, z2), (x, y)

〉2
dγ (x, y)

≤ Bμ‖z1‖2 +Bν‖z2‖2,

and the first part of the proposition follows from ‖(z1, z2)‖2 = ‖z1‖2 + ‖z2‖2. The
above estimate and Theorem 12.1 imply the second part. �

When N1 = N2 = N in Proposition 12.3 and μ and ν are tight probabilistic
frames for R

N such that at least one of them has zero mean, then γ = μ ⊗ ν is
a tight probabilistic frame for R

N × R
N . It is obvious that the product measure

γ = μ⊗ ν has marginals μ and ν, respectively, and hence is an element in Γ (μ,ν),
where this last set was defined in (12.3). One could ask whether there are any other
tight probabilistic frames in Γ (μ,ν), and if so, how to find them.

The following question is known in frame theory as the Paulsen problem,
cf. [7, 9, 10]: Given a frame {ϕi}Mi=1 ⊂R

N , how far is the closest tight frame whose
elements have equal norm? The distance between two frames Φ = {ϕi}Mi=1 and Ψ =
{ψi}Mi=1 is usually measured by means of the standard �2-distance

∑M
i=1 ‖ϕi−ψi‖2.

The Paulsen problem can be recast in the probabilistic setting we have been con-
sidering, and this reformulation seems flexible enough to yield new insights into the
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problem. Given any nonzero vectors Φ = {ϕi}Mi=1, there are two natural embeddings
into the space of probability measures, namely

μΦ = 1

M

M∑

i=1

δϕi
and μΦ := 1

∑M
i=1 ‖ϕi‖2

M∑

i=1

‖ϕi‖2δϕi/‖ϕi‖.

The 2-Wasserstein distance between μΦ and μΨ satisfies

M‖μΦ −μΨ ‖2
W2
= inf

π∈ΠM

M∑

i=1

‖ϕi −ψπ(i)‖2 ≤
M∑

i=1

‖ϕi −ψi‖2, (12.4)

where ΠM denotes the set of all permutations of {1, . . . ,M}; cf. [25]. The right-
hand side of (12.4) represents the standard distance between frames and is sensitive
to the ordering of the frame elements. However, the Wasserstein distance allows
us to rearrange elements. More importantly, the �2-distance requires both frames
to have the same cardinalities. On the other hand, the Wasserstein metric enables
us to determine how far two frames of different cardinalities are from each other.
Therefore, in trying to solve the Paulsen problem, one can seek the closest tight unit
norm frame without requiring it to have the same cardinality.

The second embedding μΦ can be used to illustrate this point.

Example 12.3 If, for ε ≥ 0,

Φε =
{
(1,0)3,

√
1

2

(
sin(ε), cos(ε)

)3
,

√
1

2

(
sin(−ε), cos(−ε)

)3
}
,

then μΦε → 1
2 (δe1 + δe2) in the 2-Wasserstein metric as ε→ 0, where {ei}2i=1 is the

canonical orthonormal basis for R2. Thus, {ei}2i=1 is close to Φε in the probabilistic
setting. Since {ei}2i=1 has only 2 vectors, it is not even under consideration when
one looks for any tight frame that is close to Φε in the standard �2-distance.

We finish this subsection with a list of open problems whose solution can shed
new light on frame theory. The first three questions are related to the Paulsen prob-
lem, cf. [7, 9, 10], that we have already mentioned above.

Problem 12.1

(a) Given a probabilistic frame μ ∈P(SN−1), how far is the closest probabilistic
tight unit norm frame ν ∈P(SN−1) with respect to the 2-Wasserstein metric
and how can we find it? Notice that in this case, P2(S

N−1) =P(SN−1) is a
compact set; see, e.g., [29, Theorem 6.4].

(b) Given a unit norm probabilistic frame μ ∈P2, how far is the closest probabilis-
tic tight unit norm frame ν ∈P2 with respect to the 2-Wasserstein metric and
how can we find it?
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(c) Replace the 2-Wasserstein metric in the preceding two problems with differ-
ent Wasserstein p-metrics W

p
p (μ,ν)= infγ∈Γ (μ,ν)

∫
RN×RN ‖x− y‖p dγ (x, y),

where 2 
= p ∈ (1,∞).
(d) Let μ and ν be two probabilistic tight frames on R

N , such that at least one of
them has zero mean. Recall that Γ (μ,ν) is the set of all probability measures
on R

N ×R
N whose marginals are μ and ν, respectively. Is the minimizer γ0 ∈

Γ (μ,ν) for W 2
2 (μ, ν) a probabilistic tight frame? Alternatively, are there any

other probabilistic tight frames in Γ (μ,ν) besides the product measure?

12.2.2 The Probabilistic Frame and the Gram Operators

To better understand the notion of probabilistic frames, we consider some related
operators that encode all the properties of the measure μ. Let μ ∈P be a proba-
bilistic frame. The probabilistic analysis operator is given by

Tμ :RN → L2(
R

N,μ
)
, x �→ 〈x, ·〉.

Its adjoint operator is defined by

T ∗μ : L2(
R

N,μ
)→R

N, f �→
∫

RN

f (x)x dμ(x)

and is called the probabilistic synthesis operator, where the above integral is vector-
valued. The probabilistic Gram operator, also called the probabilistic Gramian of
μ, is Gμ = TμT

∗
μ . The probabilistic frame operator of μ is Sμ = T ∗μTμ, and one

easily verifies that

Sμ :RN →R
N, Sμ(x)=

∫

RN

〈x, y〉y dμ(y).

If {ej }Nj=1 is the canonical orthonormal basis for RN , then the vector-valued integral
yields

∫

RN

y(i)y dμ(y)=
N∑

j=1

∫

RN

y(i)y(j) dμ(y)ej ,

where y = (y(1), . . . , y(N))3 ∈ R
N . If we denote the second moments of μ by

mi,j (μ), i.e.,

mi,j (μ)=
∫

RN

x(i)x(j) dμ(x), for i, j = 1, . . . ,N ,

then we obtain

Sμei =
∫

RN

y(i)y dμ(y)=
N∑

j=1

∫

RN

y(i)y(j) dμ(y)ej =
N∑

j=1

mi,j (μ)ej .

Thus, the probabilistic frame operator is the matrix of second moments.
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The Gramian of μ is the integral operator defined on L2(RN,μ) by

Gμf (x)= TμT
∗
μf (x)=

∫

RN

K(x, y)f (y) dμ(y)=
∫

RN

〈x, y〉f (y)dμ(y).

It is trivially seen that Gμ is a compact operator on L2(RN,μ) and in fact it is
trace class and Hilbert-Schmidt. Indeed, its kernel is symmetric, continuous, and in
L2(RN ×R

N,μ⊗μ)⊂ L1(RN ×R
N,μ⊗μ). Note that the last inclusion follows

from the fact that μ⊗ μ is a (finite) probability measure on R
N × R

N . Moreover,
for any f ∈ L2(RN,μ), Gμf is a uniformly continuous function on R

N .
Let us collect some properties of Sμ and Gμ.

Proposition 12.4 If μ ∈P , then the following statements hold:

(a) Sμ is well defined (and hence bounded) if and only if

M2(μ) <∞.

(b) μ is a probabilistic frame if and only if Sμ is well defined and positive definite.
(c) The nullspace of Gμ consists of all functions in L2(RN,μ) such that

∫

RN

yf (y) dμ(y)= 0.

Moreover, the eigenvalue 0 of Gμ has infinite multiplicity; that is, its eigenspace
is infinite dimensional.

For completeness, we give a detailed proof of Proposition 12.4.

Proof Part (a): If Sμ is well defined, then it is bounded as a linear operator on a
finite dimensional Hilbert space. If ‖Sμ‖ denotes its operator norm and {ei}Ni=1 is an
orthonormal basis for RN , then

∫

RN

‖y‖2 dμ(y) =
N∑

i=1

∫

RN

〈ei, y〉〈y, ei〉dμ(y)

=
N∑

i=1

〈
Sμ(ei), ei

〉≤
N∑

i=1

∥
∥Sμ(ei)

∥
∥≤N‖Sμ‖.

On the other hand, if M2(μ) <∞, then
∫

RN

∣∣〈x, y〉∣∣2 dμ(y)≤
∫

RN

‖x‖2‖y‖2 dμ(y)= ‖x‖2M2
2 (μ),

and, therefore, Tμ is well defined and bounded. So is T ∗μ , and hence Sμ is well
defined and bounded.
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Part (b): If μ is a probabilistic frame, then M2(μ) <∞, cf. Theorem 12.1, and
hence Sμ is well defined. If A> 0 is the lower frame bound of μ, then we obtain

〈
x,Sμ(x)

〉=
∫

RN

〈x, y〉〈x, y〉dμ(y)=
∫

RN

∣∣〈x, y〉∣∣2 dμ(y)≥A‖x‖2,

for all x ∈R
N ,

so that Sμ is positive definite.
Now, let Sμ be well defined and positive definite. According to part (a), M2

2 (μ) <

∞ so that the upper frame bound exists. Since Sμ is positive definite, its eigenvectors
{vi}Ni=1 are a basis for RN and the eigenvalues {λi}Ni=1, respectively, are all positive.

Each x ∈R
N can be expanded as x =∑N

i=1 aivi such that
∑N

i=1 a
2
i = ‖x‖2. If λ > 0

denotes the smallest eigenvalue, then we obtain

∫

RN

∣∣〈x, y〉∣∣2 dμ(y)= 〈x,Sμ(x)
〉=
∑

i,j

ai〈vi, λj aj vj 〉 =
N∑

i=1

a2
i λi ≥ λ‖x‖2,

so that λ is the lower frame bound.
For part (c) notice that f is in the nullspace of Gμ if and only if

0=
∫

RN

〈x, y〉f (y)dμ(y)=
〈
x,

∫

RN

yf (y) dμ(y)

〉
, for each x ∈R

N .

This condition is equivalent to
∫
RN yf (y) dμ(y) = 0. The fact that the eigenspace

corresponding to the eigenvalue 0 has infinite dimension follows from general prin-
ciples about compact operators. �

A key property of probabilistic frames is that they give rise to a reconstruction
formula similar to the one used in frame theory. Indeed, if μ ∈P2 is a probabilistic
frame, define μ̃= μ ◦ Sμ by

μ̃(B)= μ
((
S−1
μ

)−1
B
)= μ(SμB)

for each Borel set B ⊂R
N . This is equivalent to

∫

RN

f
(
S−1
μ (y)

)
dμ(y)=

∫

RN

f (y) dμ̃(y).

We point out that μ̃ is the pushforward of μ through S−1
μ . We refer to [2, Sect. 5.2]

for more details on the pushforward of probability measures. Consequently, using
the fact that S−1

μ Sμ = SμS
−1
μ = Id we have

∫

RN

〈x, y〉Sμy dμ̃(y)=
∫

RN

〈
x,S−1

μ y
〉
SμS

−1
μ (y)dμ(y)
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=
∫

RN

〈
S−1
μ x, y

〉
y dμ(y)

= SμS
−1
μ (x)

= x

for each x ∈R
N . Therefore, we have just derived the reconstruction formula:

x =
∫

RN

〈x, y〉Sμy dμ̃(y)=
∫

RN

y〈Sμy, x〉dμ̃(y), for all x ∈R
N . (12.5)

In fact, if μ is a probabilistic frame for R
N , then μ̃ is a probabilistic frame for

R
N . Note that if μ is the counting measure corresponding to a finite unit norm

tight frame {ϕi}Mi=1, then μ̃ is the counting measure associated to the canonical dual
frame of {ϕi}Mi=1, and Eq. (12.5) reduces to the known reconstruction formula for
finite frames. These observations motivate the following definition:

Definition 12.2 If μ is a probabilistic frame, then μ̃= μ ◦ Sμ is called the proba-
bilistic canonical dual frame of μ.

Many properties of finite frames can be carried over. For instance, we can follow
the methods in [12] to derive a generalization of the canonical tight frame.

Proposition 12.5 If μ is a probabilistic frame for R
N , then μ ◦ S

1/2
μ is a tight

probabilistic frame for RN .

Remark 12.4 The notion of probabilistic frames that we developed thus far in finite
dimensional Euclidean spaces can be defined on any infinite dimensional separable
real Hilbert space X with norm ‖·‖X and inner product 〈·, ·〉X . We call a Borel prob-
ability measure μ on X a probabilistic frame for X if there exist 0 <A≤ B <∞
such that

A‖x‖2 ≤
∫

X

∣∣〈x, y〉∣∣2 dμ(y)≤ B‖x‖2, for all x ∈X.

If A= B , then we call μ a probabilistic tight frame.

12.3 Probabilistic Frame Potential

The frame potential was defined in [6, 16, 31, 36]. In particular, the frame potential
of Φ = {ϕi}Mi=1 ⊂R

N is the function FP(·) defined on R
N ×R

N × · · · ×R
N by

FP(Φ) :=
M∑

i=1

M∑

j=1

∣∣〈ϕi,ϕj 〉
∣∣2.

Its probabilistic analog is given by the following definition.
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Definition 12.3 For μ ∈P2, the probabilistic frame potential is

PFP(μ)=
∫∫

RN×RN

∣∣〈x, y〉∣∣2 dμ(x)dμ(y). (12.6)

Note that PFP(μ) is well defined for each μ ∈P2 and PFP(μ)≤M4
2 (μ).

In fact, the probabilistic frame potential is just the Hilbert-Schmidt norm of the
operator Gμ, that is,

‖Gμ‖2
HS =

∫∫

RN×RN

〈x, y〉2 dμ(x)dμ(y)=
∞∑

�=0

λ2
�,

where λk := λk(μ) is the k-th eigenvalue of Gμ.
If Φ = {ϕi}Mi=1 M ≥N is a finite unit norm tight frame, and μ= 1

M

∑M
i=1 δϕi

is
the corresponding probabilistic tight frame, then

PFP(μ)= 1

M2

M∑

i,j=1

〈ϕi,ϕj 〉2 = 1

M2

M2

N
= 1

N
.

According to Theorem 4.2 in [16], we have

PFP(μ)≥ 1

N
M4

2 (μ),

and, except for the measure δ0, equality holds if and only if μ is a probabilistic tight
frame.

Theorem 12.3 If μ ∈P2 such that M2(μ)= 1, then

PFP(μ)≥ 1/n, (12.7)

where n is the number of nonzero eigenvalues of Sμ. Moreover, equality holds if and
only if μ is a probabilistic tight frame for Eμ.

Note that we must identify Eμ with the real dim(Eμ)-dimensional Euclidean
space in Theorem 12.3 to speak about probabilistic frames for Eμ. Moreover, The-
orem 12.3 yields that if μ ∈P2 such that M2(μ) = 1, then PFP(μ) ≥ 1/N , and
equality holds if and only if μ is a probabilistic tight frame for RN .

Proof Recall that σ(Gμ) = σ(Sμ) ∪ {0}, where σ(T ) denotes the spectrum of the
operator T . Moreover, because Gμ is compact, its spectrum consists only of eigen-
values. Moreover, the condition on the support of μ implies that the eigenvalues
{λk}Nk=1 of Sμ are all positive. Since

σ(Gμ)= σ(Sμ)∪ {0} = {λk}Nk=1 ∪ {0},
the proposition reduces to minimizing

∑N
k=1 λ

2
k under the constraint

∑N
k=1 λk = 1,

which concludes the proof. �
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12.4 Relations to Other Fields

Probabilistic frames, isotropic measures, and the geometry of convex bodies
A finite nonnegative Borel measure μ on SN−1 is called isotropic in [19, 26] if

∫

SN−1

∣∣〈x, y〉∣∣2 dμ(y)= μ(SN−1)

N
∀x ∈ SN−1.

Thus, every tight probabilistic frame μ ∈P(SN−1) is an isotropic measure. The
term isotropic is also used for special subsets in R

N . Recall that a subset K ⊂R
N is

called a convex body if K is compact, convex, and has nonempty interior. Denote by
volN(B) the N -dimensional volume of B ⊂ R

N . According to [28, Sect. 1.6] and
[19], a convex body K with centroid at the origin and unit volume, i.e.,

∫
K
x dx = 0

and volN(K)= ∫
K
dx = 1, is said to be in isotropic position if there exists a constant

LK such that
∫

K

∣∣〈x, y〉∣∣2 dσK(y)= LK ∀x ∈ SN−1, (12.8)

where σK denotes the uniform measure on K .
Thus, K is in isotropic position if and only if the uniform probability measure

on K (σK ) is a tight probabilistic frame. The constant LK must then satisfy LK =
1
N

∫
K
‖x‖2 dσK(x).

In fact, the two concepts, isotropic measures and being in isotropic position, can
be combined within probabilistic frames as follows: Given any tight probabilistic
frame μ ∈P on R

N , let Kμ denote the convex hull of supp(μ). Then for each
x ∈R

N we have
∫

RN

∣∣〈x, y〉∣∣2 dμ(y)=
∫

supp(μ)

∣∣〈x, y〉∣∣2 dμ(y)=
∫

Kμ

∣∣〈x, y〉∣∣2 dμ(y).

Although Kμ might not be a convex body, we see that the convex hull of the support
of every tight probabilistic frame is in “isotropic position” with respect to μ.

In the following, let μ ∈P(SN−1) be a probabilistic unit norm tight frame with
zero mean. Kμ is a convex body and

volN(Kμ)≥ (N + 1)(N+1)/2

N ! N−N/2,

where equality holds if and only if Kμ is a regular simplex; cf. [3, 26]. Note that
the extremal points of the regular simplex form an equiangular tight frame {ϕi}N+1

i=1 ,
i.e., a tight frame whose pairwise inner products |〈ϕi,ϕj 〉| do not depend on i 
= j .
Moreover, the polar body Pμ := {x ∈R

N : 〈x, y〉 ≤ 1, for all y ∈ supp(μ)} satisfies

volN(Pμ)≤ (N + 1)(N+1)/2

N ! NN/2,

and, again, equality holds if and only if Kμ is a regular simplex; cf. [3, 26].
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Probabilistic tight frames are also related to inscribed ellipsoids of convex bodies.
Note that each convex body contains a unique ellipsoid of maximal volume, called
John’s ellipsoid; cf. [20]. Therefore, there is an affine transformation Z such that
the ellipsoid of maximal volume of Z(K) is the unit ball. A characterization of such
transformed convex bodies was derived in [20]; see also [3].

Theorem 12.4 The unit ball B ⊂ R
N is the ellipsoid of maximal volume in the

convex body K if and only if B ⊂ K and, for some M ≥ N , there are {ϕi}Mi=1 ⊂
SN−1 ∩ ∂K and positive numbers {ci}Mi=1 such that

(a)
∑M

i=1 ciϕi = 0 and
(b)

∑M
i=1 ciϕiϕ

3
i = IN .

Note that the conditions (a) and (b) in Theorem 12.4 are equivalent to saying that
1
N

∑M
i=1 ciδϕi

∈P(SN−1) is a probabilistic unit norm tight frame with zero mean.
Last but not least, we comment on a deep open problem in convex analysis. Bour-

gain raised in [8] the following question: Is there a universal constant c > 0 such
that for any dimension N and any convex body K in R

N with volN(K) = 1, there
exists a hyperplane H ⊂ R

N for which volN−1(K ∩H) > c? The positive answer
to this question has become known as the hyperplane conjecture. By applying re-
sults in [28], we can rephrase this conjecture by means of probabilistic tight frames:
There is a universal constant C such that for any convex body K , on which the
uniform probability measure σK forms a probabilistic tight frame, the probabilistic
tight frame bound is less than C. Due to Theorem 12.1, the boundedness condition
is equivalent to M2

2 (σK) ≤ CN . The hyperplane conjecture is still open, but there
are large classes of convex bodies, for instance, Gaussian random polytopes [24],
for which an affirmative answer has been established.

Probabilistic frames and positive operator valued measures Let Ω be a locally
compact Hausdorff space, B(Ω) be the Borel-sigma algebra on Ω , and H be a real
separable Hilbert space with norm ‖ ·‖ and inner product 〈·, ·〉. We denote by L (H)

the space of bounded linear operators on H .

Definition 12.4 A positive operator valued measure (POVM) on Ω with values in
L (H) is a map F :B(Ω)→L (H) such that:

(i) F(A) is positive semidefinite for each A ∈B(Ω);
(ii) F(Ω) is the identity map on H ;

(iii) If {Ai}∞i∈I is a countable family of pairwise disjoint Borel sets in B(Ω), then

F

(⋃

i∈I
Ai

)
=
∑

i∈I
F (Ai),

where the series on the right-hand side converges in the weak topology of
L (H), i.e., for all vectors x, y ∈H , the series

∑
i∈I 〈F(Ai)x, y〉converges.
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We refer to [1, 13, 14] for more details on POVMs.
In fact, every probabilistic tight frame on R

N gives rise to a POVM on R
N with

values in the set of real N ×N matrices:

Proposition 12.6 Assume that μ ∈P2(R
N) is a probabilistic tight frame. Define

the operator F from B to the set of real N ×N matrices by

F(A) := N

M2
2 (μ)

(∫

A

yiyj dμ(y)

)

i,j

. (12.9)

Then F is a POVM.

Proof Note that for each Borel measurable set A, the matrix F(A) is positive
semidefinite, and we also have F(RN) = IdN . Finally, for a countable family of
pairwise disjoint Borel measurable sets {Ai}i∈I , we clearly have, for each x ∈R

N ,

F

(⋃

i∈I
Ai

)
x =

∑

k∈I
F (Ak)x.

Thus, any probabilistic tight frame in R
N gives rise to a POVM. �

We have not been able to prove or disprove whether the converse of this propo-
sition holds.

Problem 12.2 Given a POVM F :B(RN)→L (RN), is there a tight probabilistic
frame μ such that F and μ are related through (12.9)?

Probabilistic frames and t-designs Let σ denote the uniform probability mea-
sure on SN−1. A cubature formula of strength t is a finite collection of points
{ϕi}Mi=1 ⊂ SN−1 with weights {ωi}Mi=1 such that

M∑

i=1

ωih(ϕi)=
∫

SN−1
h(x)dσ (x),

for all homogeneous polynomials h of total degree less than or equal to t in N

variables [30]. Cubature formulas are used in numerical integration, and the weights
are usually required to be positive. A spherical t-design is a cubature formula of
strength t whose weights are all equal to 1/M . The parameter t quantifies how well
the spherical design samples the sphere. Spherical designs were introduced in [15]
as analogs on the sphere of the classical combinatorial designs. One commonly aims
to find the strongest spherical design for fixed M , or seeks to minimize M for a fixed
strength t . Exact answers are essentially known only for small M and t . Instead,
lower and upper bounds, respectively, and some asymptotic statements have been
derived; cf. [4, 5, 15, 32]. In general, it is extremely difficult to explicitly construct
spherical t-designs for large t .
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This notion of t-design can be extended to the probabilistic setting considered in
this chapter. In particular, a probability measure μ ∈P(SN−1) is called a proba-
bilistic spherical t-design in [16] if

∫

SN−1
h(x)dμ(x)=

∫

SN−1
h(x)dσ (x), (12.10)

for all homogeneous polynomials h with total degree less than or equal to t . Since
the weights are hidden in the measure, it would also make sense to call μ a proba-
bilistic cubature formula. The following result has been established in [16].

Theorem 12.5 If μ ∈P(SN−1), then the following are equivalent:

(i) μ is a probabilistic spherical 2-design.
(ii) μ minimizes

∫
SN−1

∫
SN−1 |〈x, y〉|2 dμ(x)dμ(y)

∫
SN−1

∫
SN−1 ‖x − y‖2 dμ(x)dμ(y)

(12.11)

among all probability measures P(SN−1).
(iii) μ is a tight probabilistic unit norm frame with zero mean.

In particular, if μ is a tight probabilistic unit norm frame, then ν(A) := 1
2 (μ(A)+

μ(−A)), for A ∈B, defines a probabilistic spherical 2-design.

Note that conditions (a) and (b) of Theorem 12.4 can be rephrased as saying that
1
N

∑M
i=1 ciδϕi

∈P(SN−1) is a probabilistic spherical 2-design.

Remark 12.5 By using results in [18], the equivalence between (i) and (ii) in The-
orem 12.5 can be generalized to spherical t-designs if t is an even integer. In this
case, μ is a probabilistic spherical t-design if and only if μ minimizes

∫
SN−1

∫
SN−1 |〈x, y〉|t dμ(x)dμ(y)

∫
SN−1

∫
SN−1 ‖x − y‖2 dμ(x)dμ(y)

.

Probabilistic frames and directional statistics Common tests in directional
statistics focus on whether or not a sample on the unit sphere SN−1 is uniformly
distributed. The Bingham test rejects the hypothesis of directional uniformity of a
sample {ϕi}Mi=1 ⊂ SN−1 if the scatter matrix

1

M

M∑

i=1

ϕiϕ
3
i

is far from 1
N
IN ; cf. [27]. Note that this scatter matrix is the scaled frame opera-

tor of {ϕi}Mi=1 and, hence, one measures the sample’s deviation from being a tight
frame. Probability measures μ that satisfy Sμ = 1

N
IN are called Bingham alterna-

tives in [17], and the probabilistic unit norm tight frames on the sphere SN−1 are the
Bingham alternatives.
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Tight frames also occur in relation to M-estimators as discussed in [21, 33, 34]:
The family of angular central Gaussian distributions are given by densities fΓ with
respect to the uniform surface measure on the sphere SN−1, where

fΓ (x)= det(Γ )−1/2

aN

(
x3Γ −1x

)−N/2
, for x ∈ SN−1.

Note that Γ is only determined up to a scaling factor. According to [34], the max-
imum likelihood estimate of Γ based on a random sample {ϕi}Mi=1 ⊂ SN−1 is the
solution Γ̂ to

Γ̂ = M

N

M∑

i=1

ϕiϕ
3
i

ϕ3i Γ̂ −1ϕi

,

which can be found, under mild assumptions, through the iterative scheme

Γk+1 = N
∑M

i=1
1

ϕ3i Γ −1
k ϕi

M∑

i=1

ϕiϕ
3
i

ϕ3i Γ −1
k ϕi

,

where Γ0 = IN , and then Γk → Γ̂ as k→∞. It is not hard to see that {ψi}Mi=1 :=
{ Γ̂ −1/2ϕi

‖Γ̂ −1/2ϕi‖ }
M
i=1 ⊂ SN−1 forms a tight frame. If Γ̂ is close to the identity matrix, then

{ψi}Mi=1 is close to {ϕi}Mi=1 and it is likely that fΓ represents a probability measure
that is close to being tight, in fact, close to the uniform surface measure.

Probabilistic frames and random matrices Random matrices are used in multi-
variate statistics, physics, compressed sensing, and many other fields. Here, we shall
point out some results on random matrices as related to probabilistic tight frames.

For a point cloud {ϕi}Mi=1, the frame operator is a scaled version of the sam-
ple covariance matrix up to subtracting the mean and can be related to the popula-
tion covariance when chosen at random. To properly formulate a result in [16], let
us recall some notation. For μ ∈P2, we define E(Z) := ∫

RN Z(x)dμ(x), where
Z : RN → R

p×q is a random matrix/vector that is distributed according to μ. The
following was proven in [16] where ‖ · ‖F denotes the Frobenius norm on matrices.

Theorem 12.6 Let {Xk}Mk=1 be a collection of random vectors, independently dis-
tributed according to probabilistic tight frames {μk}Mk=1 ⊂P2, respectively, whose
4-th moments are finite, i.e., M4

4 (μk) :=
∫
RN ‖y‖4 dμk(y) <∞. If F denotes the

random matrix associated to the analysis operator of {Xk}Mk=1, then we have

E

(∥∥
∥∥

1

M
F ∗F − L1

N
IN

∥∥
∥∥

2

F

)
= 1

M

(
L4 − L2

N

)
, (12.12)

where L1 := 1
M

∑M
k=1 M2(μk), L2 := 1

M

∑M
k=1 M

2
2 (μk), and L4 =

1
M

∑M
k=1 M

4
4 (μk).
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Under the notation of Theorem 12.6, the special case of probabilistic unit norm
tight frames was also addressed in [16].

Corollary 12.1 Let {Xk}Mk=1 be a collection of random vectors, independently dis-
tributed according to probabilistic unit norm tight frames {μk}Mk=1, respectively,
such that M4(μk) <∞. If F denotes the random matrix associated to the analy-
sis operator of {Xk}Mk=1, then

E

(∥∥
∥∥

1

M
F ∗F − 1

N
IN

∥∥
∥∥

2

F

)
= 1

M

(
L4 − 1

N

)
, (12.13)

where L4 = 1
M

∑M
k=1 M

4
4 (μk).

In compressed sensing, random matrices are used to design measurements and
are commonly based on Bernoulli, Gaussian, and sub-Gaussian distributions. Since
each row of such a random matrix can be considered as a random vector, it follows
that these compressed sensing matrices are induced by probabilistic tight frames, so
that we can also apply Theorem 12.1.

Example 12.4 Let {Xk}Mk=1 be a collection of N -dimensional random vectors such
that each vector’s entries are independently identically distributed (i.i.d) according
to a probability measure with zero mean and finite 4-th moments. This implies that
each Xk is distributed with respect to a probabilistic tight frame whose 4-th mo-
ments exist. Thus, the assumptions in Theorem 12.6 are satisfied, and we can com-
pute (12.12) for some specific distributions that are related to compressed sensing:

• If the entries of Xk , k = 1, . . . ,M , are i.i.d. according to a Bernoulli distribution
that takes the values ± 1√

N
with probability 1

2 , then Xk is distributed according to
a normalized counting measure supported on the vertices of the N -dimensional
hypercube. Thus, Xk is distributed according to a probabilistic unit norm tight
frame for RN .

• If the entries of Xk , k = 1, . . . ,M , are i.i.d. according to a Gaussian distribution
with zero mean and variance 1√

N
, then Xk is distributed according to a multi-

variate Gaussian probability measure μ whose covariance matrix is 1
N
IN , and μ

forms a probabilistic tight frame for R
N . Since the moments of a multivariate

Gaussian random vector are well known, we can explicitly compute L4 = 1+ 2
N

,
L1 = 1, and L2 = 1 in Theorem 12.6. Thus, the right-hand side of (12.12) equals
1
M
(1+ 1

N
).
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Chapter 13
Fusion Frames

Peter G. Casazza and Gitta Kutyniok

Abstract Novel technological advances have significantly increased the demand
to model applications requiring distributed processing. Frames are, however, too
restrictive for such applications, wherefore it was necessary to go beyond classical
frame theory. Fusion frames, which can be regarded as frames of subspaces, satisfy
exactly those needs. They analyze signals by projecting them onto multidimensional
subspaces, in contrast to frames which consider only one-dimensional projections.
This chapter serves as an introduction to and a survey about this exciting area of
research as well as a reference for the state of the art of this research field.

Keywords Compressed sensing · Distributed processing · Fusion coherence ·
Fusion frame · Fusion frame potential · Isoclinic subspaces ·Mutually unbiased
bases · Sparse fusion frames · Spectral Tetris · Nonorthogonal fusion frames

13.1 Introduction

In the twenty-first century, scientists face massive amounts of data, which can typi-
cally no longer be handled with a single processing system. A seemingly unrelated
problem arises in sensor networks when communication between any pair of sen-
sors is not possible due to, for instance, low communication bandwidth. Yet another
question is the design of erasure-resilient packet-based encoding when data is bro-
ken into packets for separate transmission.

All these problems can be regarded as belonging to the field of distributed pro-
cessing. However, they have an even more special structure in common, since each
can be regarded as a special case of the following mathematical framework: Given
data and a collection of subspaces, project the data onto the subspaces, then pro-
cess the data within each subspace, and finally “fuse” the locally computed objects.
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The decomposition of the given data into the subspaces coincides with—relating to
the initial three problems—the splitting into different processing systems, the local
measurements of groups of close sensors, and the generation of packets. The dis-
tributed fusion models the reconstruction procedure, also enabling, for instance, an
error analysis of resilience against erasures. This is however only possible if the data
is decomposed in a redundant way, which forces the subspaces to be redundant.

Fusion frames provide a suitable mathematical framework to design and analyze
such applications under distributed processing requirements. Interestingly, fusion
frames are also a versatile tool for more theoretically oriented problems in mathe-
matics, and we will see various examples of this throughout the chapter.

13.1.1 The Fusion Frame Framework

Let us now give a half-formal introduction to fusion frames, utilizing another moti-
vation as a guideline. One goal in frame theory is to construct large frames by fusing
“smaller” frames, and, in fact, this was the original reasoning for introducing fusion
frames by the two authors in [21]. We will come back to the three signal processing
applications in Sect. 13.1.3 and show in more detail how they fit into this framework.

Locality of frames can be modeled as frame sequences, i.e., frames for their
closed linear span. Now assume we have a collection of frame sequences (ϕij )

Ji
j=1

in HN with i = 1, . . . ,M , and set Wi := span{ϕij : j = 1, . . . , Ji} for each i. The

two key questions are: Does the collection (ϕij )
M,Ji
i=1,j=1 form a frame for HN ? If yes,

which frame properties does it have? The first question is easy to answer, since what
is required is the spanning property of the family (Wi )

M
i=1. The second question

requires more thought. But it is intuitively clear that—besides the knowledge of
the frame bounds of the frame sequences—it will depend solely on the structural
properties of the family of subspaces (Wi )

M
i=1. In fact, it can be proven that the

crucial property is the constants associated with the �2-stability of the mapping

HN 4 x �→ (
Pi(x)

)M
i=1 ∈R

NM, (13.1)

where Pi denotes the orthogonal projection onto the subspace Wi . A family of sub-
spaces (Wi )

M
i=1 satisfying such a stability condition is then called a fusion frame.

We would like to emphasize that (13.1) leads to the basic fusion frame definition.
It can, for instance, be modified by considering weighted projections to allow flex-
ibility in the significance of each subspace, and hence of each locally constructed
frame (ϕij )

Ji
j=1.

We also stress that in [21] the introduced notion was coined “frames of sub-
spaces” for reasons which become clear in the sequel. Later, to avoid confusion with
the term “frames for subspaces” and to emphasize the local fusing of information,
it was baptized “fusion frames” in [22].
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13.1.2 Fusion Frames versus Frames

The main distinction between frames and fusion frames lies in the fact that a frame
(ϕi)

M
i=1 for HN provides the following measurements of a signal x ∈HN :

x �→ (〈x,ϕi〉
)M
i=1 ∈R

M.

A fusion frame (Wi )
M
i=1 for HN on the other hand analyzes the signal x by

x �→ (
Pi(x)

)M
i=1 ∈R

MN.

Thus the scalar measurements of a frame are substituted by vector measurements,
and consequently, the representation space of a frame is R

M , whereas that of a
fusion frame is RMN . This latter space can sometimes be reduced, and we refer to
the next section for details.

A further natural question is whether the theory of fusion frames includes the
theory of frames, which is indeed the case. In fact—and the next section will pro-
vide more detailed information—a frame can be regarded as a collection of the one-
dimensional subspaces its frame vectors generate. Taking the norms of the frame
vectors as the aforementioned weights, it can be shown that this is a fusion frame
with similar properties. Conversely, taking a fusion frame, one can fix an orthonor-
mal basis in each subspace and then consider the union of these bases. This will form
a frame, which can be regarded as being endowed with a particular substructure.

Even at this point these two viewpoints indicate that fusion frame theory is much
more difficult than frame theory. In fact, most results in this chapter will be solely
stated for the case of the weights being equal to 1, and even in this situation many
questions which are answered for frames remain open in the general situation of
fusion frames.

13.1.3 Applications of Fusion Frames

The generality of the framework of fusion frames allows their application to vari-
ous problems both practical as well as theoretical in nature—which then certainly
require additional adaptations in the specific setting considered. We first highlight
the three signal processing applications mentioned at the beginning of the chapter.

• Distributed Sensing. Given a collection of small and inexpensive sensors scattered
over a large area, the measurement each sensor produces of an incoming signal
x ∈HN can be modeled as 〈x,ϕi〉, ϕi ∈HN being the specific characteristics of
the sensor. Since due to, for instance, limited bandwidth and transmission power,
sensors can only communicate locally, the recovery of the signal x can first only
be performed among groups of sensors. Let (ϕij )

Ji
j=1 in HN with i = 1, . . . ,M be

such a grouping. Then, setting Wi := span{ϕij : j = 1, . . . , Ji} for each i, local
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frame reconstruction leads to the collection of vectors (Pi(x))
M
i=1. This data is

then passed on by special transmitters to a central processing station for joint
processing. At this point, fusion frame theory kicks in and provides a means for
performing and analyzing the reconstruction of the signal x. The modeling of
sensor networks through fusion frames was considered in the series of papers [23,
38]. A similar local-global signal processing principle is applicable to modeling
of the human visual cortex as discussed in [43].

• Parallel Processing. If a frame is too large for efficient processing—from a com-
putational complexity or a numerical stability standpoint—one approach is to
divide it into multiple small subsystems for simple and ideally parallel process-
ing. Fusion frames allow a stable splitting into smaller frames and afterwards a
stable recombining of the local outputs. Splitting of a large system into smaller
subsystems for parallel processing was first considered in [3, 42].

• Packet Encoding. Transmission of data over a communication network, for in-
stance the Internet, is often achieved by first encoding it into a number of packets.
By introducing redundancy into the encoding scheme, the communication scheme
becomes resilient against corruption or even complete loss of transmitted pack-
ets. Fusion frames provide a means to achieve and analyze redundant subspace
representations, where each packet carries one of the fusion frame projections.
The use of fusion frames for packet encoding is considered in [4].

Fusion frames also arise in more theoretical problems, as the next two examples
show.

• Kadison-Singer Problem. The 1959 Kadison-Singer problem [25] is one of the
most famous unsolved problems in analysis today. One of the many equivalent
formulations is the following question: Can a bounded frame be partitioned such
that the spans of the partitions as a fusion frame lead to a “good” lower fusion
frame bound? Therefore, advances in the design of fusion frames will have di-
rect impact in providing new angles for a renewed attack on the Kadison-Singer
problem.

• Optimal Packings. Fusion frame theory also has close connections with Grass-
mannian packings. It was shown in [38] that the special class of Parseval fusion
frames consisting of equidistance and equidimensional subspaces are in fact op-
timal Grassmannian packings. Thus, novel methods for constructing such fusion
frames simultaneously provide ways to construct optimal packings.

13.1.4 Related Approaches

Several approaches related to fusion frames have appeared in the literature. The con-
cept of a frame-like collection of subspaces was first exploited in relation to domain
decomposition techniques in papers by Bjørstad and Mandel [3] and Oswald [42].
In 2003, Fornasier introduced in [33] what he called quasi-orthogonal decomposi-
tions. The framework of fusion frames was in fact developed at the same time by
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the two authors in [21] and contains those decompositions as a special case. Also
note that Sun introduced G-frames in the series of papers [44, 45], which extend the
definition of fusion frames by generalizing the utilized orthogonal projections to ar-
bitrary operators. However, the generality of this notion is not suitable for modeling
distributed processing.

13.1.5 Outline

In Sect. 13.2, we introduce the basic notions and definitions of fusion frame theory,
discuss the relation to frame theory, and present a reconstruction formula. Sect. 13.3
is concerned with the introduction and application of the fusion frame potential
as a highly useful method for analyzing fusion frames. The construction of fusion
frames is then the focus of Sect. 13.4. In this section, we present the Spectral Tetris
algorithm as a versatile means to construct general fusion frames followed by a dis-
cussion on the construction of equi-isoclinic fusion frames and the construction of
fusion frames for filter banks. Section 13.5 discusses the resilience of fusion frames
against the impacts of additive noise, erasures, and perturbations. The relation of fu-
sion frames to the novel paradigm of sparsity—optimally sparse fusion frames and
sparse recovery from fusion frame measurements—is the topic of Sect. 13.6. We
finish this chapter with the new direction of nonorthogonal fusion frames presented
in Sect. 13.7.

13.2 Basics of Fusion Frames

We start by making the intuitive view of fusion frames presented in the introduction
mathematically precise. We then state a reconstruction formula for reconstructing
signals from fusion frame measurements, which will also require the introduction
of the fusion frame operator.

We should mention that fusion frames were initially introduced in the general
setting of a Hilbert space. We are restricting ourselves here to the finite dimensional
setting, which is of more interest for applications; note that the level of difficulty is
not diminished by this restriction.

13.2.1 What Is a Fusion Frame?

Let us start by stating the mathematically precise definition of a fusion frame, which
we have already motivated in the introduction.
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Definition 13.1 Let (Wi )
M
i=1 be a family of subspaces in HN , and let (wi)

M
i=1 ⊆R

+
be a family of weights. Then ((Wi ,wi))

M
i=1 is a fusion frame for HN , if there exist

constants 0 <A≤ B <∞ such that

A‖x‖2
2 ≤

M∑

i=1

w2
i

∥∥Pi(x)
∥∥2

2 ≤ B‖x‖2
2 for all x ∈HN,

where Pi denotes the orthogonal projection onto Wi for each i. The constants A

and B are called the lower and upper fusion frame bound, respectively. The family
((Wi ,wi))

M
i=1 is referred to as tight fusion frame, if A= B is possible. In this case

we also refer to the fusion frame as an A-tight fusion frame. Moreover, it is called
a Parseval fusion frame, if A and B can be chosen as A= B = 1. Finally, if wi = 1
for all i, often the notation (Wi )

M
i=1 is simply utilized.

To illustrate the notion of a fusion frame, we first present some illuminating ex-
amples, which also show the delicateness of constructing fusion frames.

Example 13.1

(a) Let (ei)
3
i=1 be an orthonormal basis of R

3, define subspaces W1 and W2 by
W1 = span{e1, e2} and W2 = span{e2, e3}, and let w1 and w2 be two weights.
Then ((Wi ,wi))

2
i=1 is a fusion frame for R3 with optimal fusion frame bounds

min{w2
1,w

2
2} and w2

1 + w2
2. We omit the obvious proof, but mention that this

example shows that even changing the weights does not always allow us to turn
a fusion frame into a tight fusion frame.

(b) Let now (ϕj )
J
j=1 be a frame for HN with bounds A and B . A natural ques-

tion is whether the set {1, . . . , J } can be partitioned into subsets J1, . . . , JM
such that the family of subspaces Wi = span{ϕj : j ∈ Ji}, i = 1, . . . ,M , forms
a fusion frame with “good” fusion frame bounds — in the sense of their ratio
being close to 1—since this ensures a low computational complexity of recon-
struction. Remembering the sensor network application, we also seek to choose
the partitioning such that (ϕj )j∈Ji possesses “good” frame bounds. However, it
was shown in [25] that the problem of dividing a frame into a finite number of
subsets, each of which has good lower frame bounds, is equivalent to the still-
unsolved Kadison-Singer problem; see Sect. 13.1.3. The next subsection will,
however, present some computationally possible scenarios for deriving a fusion
frame by partitioning a frame into subsets.

13.2.2 Fusion Frames versus Frames

One question when introducing a new notion is its relation to the previously consid-
ered classical notion, in this case to frames. Our first result shows that fusion frames
can be regarded as a generalization of frames in the following sense.
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Lemma 13.1 Let (ϕi)
M
i=1 be a frame for HN with frame bounds A and B . Then

(span{ϕi},‖ϕi‖2)
M
i=1 constitutes a fusion frame for HN with fusion frame bounds A

and B .

Proof Let Pi be the orthogonal projection onto span{ϕi}. Then, for all x ∈HN , we
have

M∑

i=1

‖ϕi‖2
2

∥∥Pi(x)
∥∥2

2 =
M∑

i=1

‖ϕi‖2
2

∥
∥∥∥

〈
x,

ϕi

‖ϕi‖2

〉
ϕi

‖ϕi‖2

∥
∥∥∥

2

2
=

M∑

i=1

∣∣〈x,ϕi〉
∣∣2.

Applying the definitions of frames and fusion frames finishes the proof. �

On the other hand, if we choose any spanning set inside each subspace of a given
fusion frame, the collection of these families of vectors forms a frame for HN . In this
sense, a fusion frame might also be considered as a structured frame. Note though,
that this viewpoint depends heavily on the selection of the subspace spanning sets.
The next theorem states this local-global interaction in detail.

Theorem 13.1 [21] Let (Wi )
M
i=1 be a family of subspaces in HN , and let (wi)

M
i=1 ⊆

R
+ be a family of weights. Further, let (ϕij )

Ji
j=1 be a frame for Wi with frame

bounds Ai and Bi for each i, and set A := mini Ai and B := maxi Bi . Then the
following conditions are equivalent.

1. ((Wi ,wi))
M
i=1 is a fusion frame for HN .

2. (wiϕij )
M,Ji
i=1,j=1 is a frame for HN .

In particular, if ((Wi ,wi))
M
i=1 is a fusion frame with fusion frame bounds C and

D, then (wiϕij )
M,Ji
i=1,j=1 is a frame with bounds AC and BD. On the other hand,

if (wiϕij )
M,Ji
i=1,j=1 is a frame with bounds C and D, then ((Wi ,wi))

M
i=1 is a fusion

frame with fusion frame bounds C
B

and D
A

.

Proof To prove the theorem, it is sufficient to prove the in particular part. For this,
first assume that ((Wi ,wi))

M
i=1 is a fusion frame with fusion frame bounds C and D.

Then

M∑

i=1

w2
i

Ji∑

j=1

∣∣〈x,ϕij 〉
∣∣2 =

M∑

i=1

w2
i

[
Ji∑

j=1

∣∣〈Pi(x),ϕij

〉∣∣2
]

≤
M∑

i=1

w2
i Bi

∥∥Pi(x)
∥∥2

2 ≤ BD‖x‖2
2.

The lower frame bound AC can be proved similarly.
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Secondly, we assume that (wiϕij )
M,Ji
i=1,j=1 is a frame with bounds C and D. In

this case, we obtain

M∑

i=1

w2
i

∥∥Pi(x)
∥∥2

2 ≤
1

A

M∑

i=1

w2
i

[
Ji∑

j=1

∣∣〈Pi(x),ϕij

〉∣∣2
]

≤ D

A
‖x‖2

2.

As before, the lower fusion frame bound C
B

can be shown using similar arguments.
This finishes the proof. �

The following is an immediate consequence.

Corollary 13.1 Let (Wi )
M
i=1 be a family of subspaces in HN , and let (wi)

M
i=1 ⊆R

+
be a family of weights. Then ((Wi ,wi))

M
i=1 is a fusion frame for HN if and only if

the subspaces Wi span HN .

Since tight fusion frames play a particularly important role due to their advan-
tageous reconstruction properties (see Theorem 13.2), we state the special case of
the previous result for tight fusion frames explicitly. It follows immediately from
Theorem 13.1.

Corollary 13.2 Let (Wi )
M
i=1 be a family of subspaces in HN , and let (wi)

M
i=1 ⊆R

+

be a family of weights. Further, let (ϕij )
Ji
j=1 be an A-tight frame for Wi for each i.

Then the following conditions are equivalent.

1. ((Wi ,wi))
M
i=1 is a C-tight fusion frame for HN .

2. (wiϕij )
M,Ji
i=1,j=1 is an AC-tight frame for HN .

This result has an interesting consequence. Since redundancy is the crucial prop-
erty of a fusion frame and also of a frame, one might be interested in a quantitative
way to measure it. In the situation of frames, the rather crude measure of the number
of frame vectors divided by the dimension—which is the frame bound in the case
of a tight frame with normalized vectors—has recently been replaced by a more
appropriate measure, see [5]. In the situation of fusion frames, this is still under
investigation. However, as a first notion of redundancy in the situation of a tight
fusion frame, we can choose its fusion frame bound as a measure. The following
result computes its value.

Proposition 13.1 Let ((Wi ,wi))
M
i=1 be an A-tight fusion frame for HN . Then we

have

A=
∑M

i=1 w
2
i dimWi

N
.
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Proof Let (eij )
dimWi

j=1 be an orthonormal basis for Wi for each 1≤ i ≤M . By Corol-

lary 13.2, the sequence (wieij )
M,dimWi

i=1,j=1 is an A-tight frame. Thus, we obtain

A=
∑M

i=1
∑dimWi

j=1 ‖wieij‖2

N
=
∑M

i=1 w
2
i dimWi

N
. �

13.2.3 The Fusion Frame Operator

As discussed before, the fusion frame measurements of a signal x ∈ HN are
its (weighted) orthogonal projections onto the given family of subspaces. Conse-
quently, given a fusion frame W = ((Wi ,wi))

M
i=1 for HN , we define the associated

analysis operator TW by

TW :HN →R
MN, x �→ (

wiPi(x)
)M
i=1.

To reduce the dimension of the representation space R
MN , we can select an or-

thonormal basis in each subspace Wi , which we combine to an N × dimWi -
matrix Ui . Then the analysis operator can be modified to TW (x)= (wiU

T
i (x))Mi=1.

This approach was undertaken, for instance, in [38].
As is customary in frame theory, the synthesis operator is defined to be the adjoint

of the analysis operator. Hence in this situation, the synthesis operator T ∗W , has the
form

T ∗W :RMN →R
N, (yi)

M
i=1 �→

M∑

i=1

wiPi(yi).

This leads to the following definition of an associated fusion frame operator SW :

SW = T ∗WTW :HN →HN, x �→
M∑

i=1

w2
i Pi(x).

13.2.4 Reconstruction Formula

Having introduced a fusion frame operator associated with each fusion frame, we
expect it to lead to a reconstruction formula as in the frame theory case. Indeed, a
similar result is true, as the following theorem shows.

Theorem 13.2 [21] Let W = ((Wi ,wi))
M
i=1 be a fusion frame for HN with fusion

frame bounds A and B and associated fusion frame operator SW . Then SW is a
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positive, self-adjoint, invertible operator on HN with A Id ≤ SW ≤ B Id. Moreover,
we have the reconstruction formula

x =
M∑

i=1

w2
i S
−1
W
(
Pi(x)

)
for all x ∈HN.

Note however, that this reconstruction formula—in contrast to the analogous one
for frames—does not automatically lead to a “dual fusion frame.” In fact, the appro-
priate definition of a dual fusion frame is still a topic of research.

Theorem 13.2 immediately implies that a fusion frame is tight if and only if
SW =A Id, and in this situation the reconstruction formula takes the advantageous
form

x =A−1
M∑

i=1

w2
i

(
Pi(x)

)
for all x ∈HN.

This fact makes tight fusion frames particularly attractive for applications.
If practical constraints prevent the utilization or construction of an appropriate

tight fusion frame, inverting the fusion frame operator can be still circumvented
for reconstruction. Recalling the frame algorithm introduced in Chap. 1, we can
generalize it to an iterative algorithm for reconstruction of signals from fusion frame
measurements. The proof of the following result follows the arguments of the frame
analog very closely; therefore, we omit it.

Proposition 13.2 [22] Let ((Wi ,wi))
M
i=1 be a fusion frame in HN with fusion frame

operator SW and fusion frame bounds A and B . Further, let x ∈HN , and define the
sequence (xn)n∈N0 by

xn =
{

0, n= 0,
xn−1 + 2

A+B
SW (x − xn−1), n≥ 1.

Then we have x = limn→∞ xn with the error estimate

‖x − xn‖ ≤
(
B −A

B +A

)n

‖x‖.

This algorithm enables reconstruction of a signal x from its fusion frame mea-
surements (wiPi(x))

M
i=1, since SW (x)—necessary for the algorithm—only requires

the knowledge of those measurements and of the sequence of weights (wi)
M
i=1.

13.3 Fusion Frame Potential

The frame potential, which was introduced in [2] (see also Chap. 1), gives a quan-
titative estimate of the orthogonality of a system of vectors by measuring the total
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potential energy stored in the system under a certain force which encourages orthog-
onality. It was proven in [16] that, given a complete set of vectors, the minimizers
of the associated frame potential are precisely the tight frames. This fact made the
frame potential attractive for both theoretical results as well as for deriving large
classes of tight frames. However, a slight drawback is the lack of an associated al-
gorithm to actually construct such frames, wherefore these results are mostly used
as existence results.

The question of whether a similar quantitative measure exists for fusion frames
was answered in [14] by the introduction of a fusion frame potential. These results
were significantly generalized and extended in [41]. In this section, we will present
a selection of the most fundamental results of this theory.

Let us start by stating the definition of the fusion frame potential. Recalling that
in the case of a frame Φ = (ϕi)

M
i=1 its frame potential is defined by

FP(Φ)=
M∑

i,j=1

∣∣〈ϕi,ϕj 〉
∣∣2,

it is not initially clear how this can be extended. The following definition from [14]
presents a suitable candidate. Note that this includes the classical frame potential by
Lemma 13.1.

Definition 13.2 Let W = ((Wi ,wi))
M
i=1 be a fusion frame for HN with associated

fusion frame operator SW . Then the associated fusion frame potential of W is de-
fined by

FFP(W)=
M∑

i,j=1

w2
i w

2
j Tr[PiPj ] = Tr

[
S2
W
]
.

The following result is immediate.

Lemma 13.2 Let W = ((Wi ,wi))
M
i=1 be a fusion frame for HN with associated

fusion frame operator SW , and let (λi)
N
i=1 be the eigenvalues of SW . Then

FFP(W)=
N∑

i=1

λ2
i .

We next define the class of fusion frames over which we seek to minimize the
fusion frame potential.

Definition 13.3 Letting d = (di)
M
i=1 be a sequence of positive integers and w =

(wi)
M
i=1 be a sequence of positive weights, we define the set

BM,N(d) = {((Wi , vi)
)M
i=1 :

(
(Wi , vi)

)M
i=1 is a fusion frame with

dimWi = di for all i = 1,2, . . . ,M
}
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and the two subsets

BM,N(d,w) = {((Wi , vi)
)M
i=1 ∈ BM,N(d) : vi =wi for all i = 1,2, . . . ,M

}
,

B1
M,N(d) =

{

W = ((Wi , vi)
)M
i=1 ∈ BM,N(d) : Tr[SW ] =

M∑

i=1

v2
i di = 1

}

.

We first focus on the set B1
M,N(d), and start with a crucial property of the fusion

frame potential of elements therein. In the following result, by ‖ · ‖F we denote the
Frobenius norm.

Proposition 13.3 [41] Let W = ((Wi ,wi))
M
i=1 ∈ B1

M,N(d); then

∥∥∥∥
1

N
Id− SW

∥∥∥∥

2

F

= FFP(W)− 1

N
.

Proof Since Tr[SW ] = 1 by the definition of B1
M,N(d), a direct computation shows

that
∥∥∥∥

1

N
Id− SW

∥∥∥∥

2

F

= Tr

[
1

N2
Id− 2

N
SW + S2

W

]
= Tr

[
S2
W
]− 1

N
.

The definition of FFP(W) finishes the proof. �

This result implies that minimizing the fusion frame potential over the family
of fusion frames of B1

M,N(d) is equivalent to minimizing the Frobenius distance
between SW and a multiple of the identity.

In this spirit the following result does not seem surprising, but it requires a tech-
nical proof which we omit here.

Theorem 13.3 [41] Local minimizers of FFP over B1
M,N(d) are global minimizers,

and they are tight fusion frames.

We caution the reader that this theorem does not necessarily imply the existence
of local minimizers, only that they are tight fusion frames if they exist. Lower
bounds of FFP provide a means to show the existence of local minimizers. The
following result is a direct consequence of Proposition 13.3.

Corollary 13.3 Let W ∈ B1
M,N(d). Then we have FFP(W) ≥ 1

N
. Moreover,

FFP(W)= 1
N

if and only if W is a tight fusion frame for HN .

We now turn to analyzing the fusion frame potential defined on BM,N(d, v). As
a first step, we state a lower bound for FFP, which will also lead to a fundamental
equality for tight fusion frames.
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Proposition 13.4 [41] Let d = (di)
M
i=1 be a sequence of positive integers and

w = (wi)
M
i=1 be a decreasing sequence of positive weights such that

∑M
i=1 w

2
i di = 1

and
∑M

i=1 di ≥ N , and let W = ((Wi ,wi))
M
i=1 ∈ BM,N(d,w). Further, let j0 ∈

{1, . . . ,M} be defined by

j0 = j0(N,d, v)= max
1≤j≤M

{

j :
(

N −
j∑

i=1

di

)

w2
j >

M∑

i=j+1

w2
i di

}

,

and let j0 = 0 if the set is empty. If

c :=
∑M

i=j0+1 w
2
i di

N −∑j0
i=1 di

< w2
j0
,

then

FFP(W)≥
j0∑

i=1

w4
i di +

(

N −
M∑

i=j0+1

di

)

c2. (13.2)

Moreover, we have equality in (13.2) if and only if the following two conditions are
satisfied:

(1) PiPj = 0 for all 1≤ i 
= j ≤ j0,
(2) ((Wi ,wi))

M
i=j0+1 is a tight fusion frame for span{Wi : 1≤ i ≤ j0}⊥.

The main result from [41] is highly technical. Its statement utilizes the notion of
admissible (M + 1)-tuples (J0, J1, . . . , JM) with

Jr = {1≤ j1 < j2 < · · ·< jr ≤N},
and an associated partition

λ(J )= (jr − r, . . . , j1 − 1),

where r ≤ N . Due to lack of space we are not able to go into more detail. We
merely mention that an admissible (M + 1)-tuple is defined as one for which the
Littlewood-Richardson coefficient of the associated partitions λ(J0), . . . , λ(JM) is
positive [34]. This allows us to phrase the following result.

Theorem 13.4 [41] Let d = (di)
M
i=1 be a sequence of positive integers satisfy-

ing
∑

i di ≥ N , let w = (wi)
M
i=1 be a sequence of positive weights, and set c =

∑M
i=1 w

2
i di . Then the following conditions are equivalent.

(i) There exists a c
N

-tight fusion frame in BM,N(d,w).
(ii) For every 1≤ r ≤N − 1 and every admissible (M + 1)-tuple (J0, . . . , JM),

r · c
N
≤

M∑

i=1

w2
i · #

(
Ji ∩ {1,2, . . . , di}

)
.
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Finally, we mention that [41] also provides necessary and sufficient conditions
for the existence of uniform tight fusion frames by exploiting the Horn-Klyachko
inequalities. We refer to [41] for the statement and proof of this deep result.

13.4 Construction of Fusion Frames

Different applications might have different desiderata which a fusion frame is re-
quired to satisfy. In this chapter we present three approaches for constructing fusion
frames: first, a construction procedure based on a given sequence of eigenvalues of
the fusion frame operator; second, a construction which focuses on the angles be-
tween subspaces; and third a construction which yields fusion frames with particular
filter-bank-like properties.

13.4.1 Spectral Tetris Fusion Frame Constructions

Both from a theoretical standpoint and for applications, we often seek to construct
fusion frames with a prescribed sequence of eigenvalues of the fusion frame oper-
ator. Examples are the analysis of streaming signals for which a fusion frame must
be designed with respect to eigenbases of inverse noise covariance matrices with
given associated eigenvalues, similar to water-filling principles for precoder design
in wireless communication or face recognition in which significance-weighted bases
of eigenfaces might be given.

Let us go back to frame theory for a moment to see how the development of this
theory has impacted fusion frame theory. Although unit norm tight frames are the
most useful frames in practice, until recently very few techniques for constructing
such frames existed. In fact, the main methodology employed was to truncate har-
monic frames, and a constructive method for obtaining all equal norm tight frames
was available only for R2 [36]. For years, the field was relying on existence proofs
given by frame potentials and majorization techniques [24]. A recent significant
advance in frame construction occurred with the introduction of Spectral Tetris
methods [17] (see Chap. 2). In this paper, Spectral Tetris was used to both classify
and construct all tight fusion frames which exist for equal dimensional subspaces
and weights equal to one. Quickly afterwards, this was generalized to constructing
fusion frames with prescribed fusion frame operators restricted to the case where
the eigenvalues are ≥ 2 [11]. It was further generalized in [15] to construct fusion
frames (Wi )

M
i=1 for HN with prescribed eigenvalues for the fusion frame operator

and with prescribed dimensions for the subspaces. The results in [15], which include
the case of eigenvalues smaller than 2, are achieved by first extending the Spectral
Tetris algorithm and changing the basic building blocks from adjusted 2× 2 unitary
matrices to adjusted k× k discrete Fourier transform matrices.
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13.4.2 Constructing Tight Fusion Frames

We start with a result on the existence and construction of tight fusion frames
((Wi ,wi))

M
i=1 for HN with M ≥ 2N for equal dimensional subspaces.

The first result from [17] we present is a slightly technical result which will allow
us to immediately construct new tight fusion frames from given ones. The associated
procedures are given by the following definitions from [11], which for later use we
state for more general non-equal dimensional subspaces.

Definition 13.4 Let W = ((Wi ,wi))
M
i=1 be an A-tight fusion frame for HN .

(a) If dimWi < N for all i = 1, . . . ,M and
⋂M

i=1 Wi = {0}, then the spatial com-
plement of W is defined as the fusion frame

((
W⊥

i ,wi

))M
i=1.

(b) For i = 1,2, . . . ,M , let (eij )
mi

j=1 be an orthonormal basis for Wi , hence

(
wi√
A
eij )

M,mi

i=1,j=1 is a Parseval frame for HN . Set m=∑M
i=1 mi , and let P denote

the orthogonal projection which maps an orthonormal basis (e′ij )
M,mi

i=1,j=1 for a

containing Hilbert space Hm onto the Parseval frame (
wi√
A
eij )

M,mi

i=1,j=1 given by
Naimark’s theorem (see Chap. 1). Then the fusion frame

(
span

{
(Id− P)eij

}mi

j=1,

√
A−w2

i

)M

i=1

is called the Naimark complement of W with respect to (eij )
M , mi

i=1,j=1.

We should mention that the Naimark complement of a fusion frame depends on
the particular choice of initial orthonormal bases for the subspaces. If we do not
need to make this dependence explicit, we also speak of a Naimark complement
of W .

We next quickly check whether in the case of tight fusion frames—our situation
in this subsection—this indeed yields tight fusion frames.

Lemma 13.3 Let W = ((Wi ,wi))
M
i=1 be a tight fusion frame for HN , not all of

whose subspaces equal HN . Then both the spatial complement and each Naimark
complement of W are tight fusion frames.

Proof To show the claim for the spatial complement, let x ∈HN denote the tight
frame bound of W by A, and observe that

M∑

i=1

w2
i

∥∥(Id− Pi)(x)
∥∥2

2 =
M∑

i=1

w2
i

(‖x‖2
2 −

∥∥Pi(x)
∥∥2

2

)=
(

M∑

i=1

w2
i −A

)

‖x‖2
2.
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Since
∑M

i=1 ω
2
i −A= 0 if and only if dim Wi =N for all 1≤ i ≤M , we have that

((W⊥
i ,wi))

M
i=1 is a tight fusion frame.

Turning to Naimark complements, since

〈Peij ,P ei�〉 = −
〈
(Id− P)eij , (Id− P)ei�

〉
,

for j 
= �, it follows that ((Id − P)eij )
mi

j=1 is an orthogonal set. This implies that

(span{(Id− P)eij }mi

j=1,

√
1−w2

i )
M
i=1 is a tight fusion frame. �

Armed with these definitions, we can now state and prove our first result from
[17].

Proposition 13.5 [17] Let N,M , and m be positive integers such that 1 <m<N .

(i) There exist tight fusion frames ((Wi ,wi))
M
i=1 for HN with dimWi = m for

all i = 1, . . . ,M if and only if tight fusion frames ((Vi , vi))
M
i=1 for HN with

dimVi =N −m for all i = 1, . . . ,M exist.
(ii) There exist tight fusion frames ((Wi ,wi))

M
i=1 for HN with dimWi =m for all

i = 1, . . . ,M if and only if tight fusion frames ((Vi , vi))
M
i=1 for R

Mm−N with
dimVi = (M − 1)m−N for all i = 1, . . . ,M exist.

Proof Part (i) follows directly by taking the spatial complement and then us-
ing Lemma 13.3. Part (ii) follows from repeated spatial complement construc-
tions followed by applications of Naimark complements and again application of
Lemma 13.3. �

We now turn to the main theorem of this subsection, which can be used to an-
swer the question: For a given triple (M,m,N) of positive integers, does a tight
fusion frame (with weights equal to one) of M subspaces of equal dimension m ex-
ist for HN ? The result is not merely an existence result but answers the question by
explicitly constructing a fusion frame of the given parameters in most cases where
one exists. Therefore, besides our previous construction of fusion frames from given
ones through complement methods, we need a construction for fusion frames to be-
gin with. Using Theorem 13.1, one way to construct a tight fusion frame with the
parameters (M,m,N) is to construct a tight unit norm frame (ϕi,j )

M,m
i=1,j=1 of Mm

elements for HN , such that (ϕi,j )
m
j=1 is an orthogonal sequence for all i = 1, . . . ,M .

We can then define the desired tight fusion frame (Wi )
M
i=1 by letting Wi be the span

of (ϕi,j )
m
j=1 for i = 1, . . . ,M .

The tool of choice to construct unit norm tight frames whose elements can be
partitioned into sets of orthogonal vectors is the Spectral Tetris construction (see
Chap. 2). In general, fusion frame constructions involving Spectral Tetris work due
to the fact that frames constructed via Spectral Tetris are sparse (cf. also Sect. 13.6).
The sparsity property ensures that the constructed frames can be partitioned into
sets of orthonormal vectors, the spans of which are the desired fusion frames.
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Theorem 13.5 [17] Let N,M , and m be positive integers such that m≤N .

(i) Suppose that m|N . Then there exist tight fusion frames (Wi )
M
i=1 for HN with

dimWi =m for all i = 1, . . . ,M if and only if M ≥ N
m

.
(ii) Suppose that m 
 | N . Then the following is true.

(a) If there exists a tight fusion frame (Wi )
M
i=1 for HN with dimWi =m for all

i = 1, . . . ,M , then M ≥ �N
m
� + 1.

(b) If M ≥ �N
m
�+2, then tight fusion frames (Wi )

M
i=1 for CN with dimWi =m

for all i = 1, . . . ,M do exist.

Proof (Sketch of proof) (i) Suppose that there exists a tight fusion frame (Wi )
M
i=1

for HN with dimWi =m for all i = 1, . . . ,M . Then any collection of spanning sets
for its subspaces consists of at least Mm vectors which span HN ; thus M ≥ N

m
.

Conversely, assume that M ≥ N
m

with K := N
m

being an integer by assump-
tion. Let (ej )Kj=1 be an orthonormal basis for HK . There exists a unit norm tight

frame (ϕi)
M
i=1 for HK (see Chap. 1). Now consider the m sets of orthonormal bases

given by (ei+(k−1)m)
K
k=1 for i = 1, . . . ,m, and project the tight frame elements onto

each of the generated spaces, leading to m unit norm tight frames (ϕij )
M
i=1 for

j = 0, . . . ,m−1. Setting Wi = span{ϕij : j = 0, . . . ,m−1}, we obtain the required
fusion frame.

(ii)(a) If there exists a tight fusion frame (Wi )
M
i=1 for HN with dimWi =m for

all i = 1, . . . ,M , then M ≥ N
m

. Since m does not divide N , it follows that M > N
m

.
Hence, by Lemma 13.3, there exists a tight fusion frame (Vi )

M
i=1 for HMm−N

with dimVi = m for all i = 1, . . . ,M . Thus, there exist m orthonormal vectors in
HMm−N implying that m≤Mm−N . Hence, M ≥ N

m
+ 1. The claim follows now

from the fact that M is an integer.
(ii)(b) This part of the proof uses the sparsity of frames generated by Spectral

Tetris. For the arguments we refer to [17], and just remark that, first since Spectral
Tetris can in general only be used to construct frames consisting of at least twice as
many vectors as the dimension of the space, spatial complements have to be used.
Second, the orthogonality relations of the frames constructed by Spectral Tetris then
allow us to stack modulated copies of such frames, resulting in complex Gabor
fusion frames. �

Theorem 13.5 leaves one case unanswered. Does a tight fusion frame of M sub-
spaces of equal dimension m exist in C

N in the case that m does not divide N and
M = �N

m
�+1? As it happens, the answer is sometimes yes and sometimes no. Which

it is can be decided by repeatedly using Theorem 13.5 in conjunction with Proposi-
tion 13.5 for at most m− 1 times; we again refer to [17] for the details. Also note
that this result answers a nontrivial problem in operator theory; i.e., it classifies the
triples (N,M,m) so that an N -dimensional Hilbert space has M rank m projections
which sum to a multiple of the identity.
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13.4.3 Spectral Tetris Constructions of General Fusion Frames

We next discuss a general construction introduced in [15], encompassing different
eigenvalues of the fusion frame operator as well as different dimensions of the sub-
spaces, therefore including [11] as a special case.

We start by introducing a reference fusion frame for a given sequence of eigenval-
ues. This carefully constructed fusion frame—while having prescribed eigenvalues
for its fusion frame operator—will have the striking property that the dimensions
of its subspaces are in a certain sense “maximal,” allowing for a given sequence of
dimensions to decide whether an associated fusion frame can be constructed using
the generalized Spectral Tetris algorithm STC presented in Fig. 13.1 (cf. [11]). This
algorithm is a straightforward generalization of the original Spectral Tetris algo-
rithm from the case of tight frames to the case of frames with prescribed spectrum
for the frame operator; i.e., now the rows of the synthesis matrix that is being con-
structed square sum to the respective prescribed eigenvalues. We will say a tight
fusion frame is constructible via STC, if there is a frame constructed by STC whose
vectors can be partitioned in such a way that the vectors in each set of the partition
are orthogonal and span the respective subspaces of the fusion frame.

The construction of the reference fusion frame for a prescribed sequence of
eigenvalues is achieved by the following algorithm called RFF (Fig. 13.2). We will
denote the reference fusion frame constructed for the sequence (λj )

N
j=1 via RFF

by RFF((λj )
N
j=1). In RFF and the following results of this section we restrict our-

selves to the case of eigenvalues ≥ 2 and just want to mention that this restriction
is dropped in [15], where the general case is handled by first extending the Spectral
Tetris construction.

The main goal will now be to derive necessary and sufficient conditions for the
constructibility of a fusion frame with prescribed eigenvalues of the fusion frame
operator and prescribed dimensions of its subspaces via STC. This will require us
to compare the dimensions of the subspaces of a reference fusion frame constructed
by RFF with the prescribed sequence of dimensions.

We first need to recall the notion of majorization. Given a sequence a =
(an)

N
n=1 ∈HN , we will denote the sequence obtained by rearranging the coordinates

of a in decreasing order by a↓ ∈ HN . For (an)
N
n=1, (bn)

N
n=1 ∈ HN , the sequence

(an)
N
n=1 majorizes (bn)

N
n=1, denoted by (an) � (bn), provided that

∑m
n=1 a

↓
n ≥∑m

n=1 b
↓
n for all m= 1, . . . ,N − 1 and

∑N
n=1 an =

∑N
n=1 bn.

This notion will be the key ingredient for deriving a characterization of the con-
structibility via Spectral Tetris of a fusion frame with prescribed eigenvalues and
dimensions. We note that we will also use the notion of majorization between se-
quences of different lengths by agreeing to add zero entries to the shorter sequence
in order to have sequences of the same length.

The proof of the following condition is constructive, and we refer to [15] for how
to iteratively construct the desired fusion frame starting from the reference fusion
frame.



13 Fusion Frames 455

STC: SPECTRAL TETRIS CONSTRUCTION FOR PRESCRIBED EIGENVALUES

Parameters:

• Dimension: N .
• Number of frame vectors: M .
• Eigenvalues: (λj )

N
j=1 ⊆ [2,∞) satisfying

∑N
j=1 λj =M .

Algorithm:

1) Set k := 1.
2) For j = 1, . . . ,N do
3) Repeat
4) If λj < 2 and λj 
= 1 then

5) ϕk :=
√

λj
2 · ej +

√
1− λj

2 · ej+1.

6) ϕk+1 :=
√

λj
2 · ej −

√
1− λj

2 · ej+1.
7) k := k + 2.
8) λj := 0.
9) λj+1 := λj+1 − (2− λj ).
10) else
11) ϕk := ej .
12) k := k+ 1.
13) λj := λj − 1.
14) end;
15) until λj = 0.
16) end;

Output:

• Unit norm (ϕi)
M
i=1 ⊂HN with eigenvalues (λj )

N
j=1 for its frame operator.

Fig. 13.1 The STC for constructing a frame with prescribed spectrum of its frame operator

Theorem 13.6 [15] Let M,N be positive integers with M ≥ 2N , let (λj )
N
j=1 ⊆

[2,∞), and let (di)
D
i=1 be a sequence of positive integers such that

∑N
j=1 λj =

∑D
i=1 di =M . Further, let (Vi )

K
i=1 = RFF((λj )

N
j=1). If (dimVi ) � (di), then a fu-

sion frame (Wi )
D
i=1 for HN such that dimWi = di for i = 1, . . . ,D and whose

fusion frame operator has the eigenvalues (λj )
N
j=1 can be constructed via STC.

In the special case of tight fusion frames the majorization condition is also nec-
essary for constructibility via a partitioning into orthonormal sets of a frame con-
structed via STC.

Theorem 13.7 [15] Let M,N be positive integers with M ≥ 2N , and let (di)
D
i=1

be a sequence of positive integers such that
∑D

i=1 di =M . Further, let (Vi )
K
i=1 =

RFF((λj )
N
j=1) with (λj )

N
j=1 = (M

N
, . . . , M

N
). Then the following conditions are

equivalent.
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RFF (REFERENCE FUSION FRAME)

Parameters:

• Dimension: N .
• Eigenvalues: (λj )

N
j=1 ⊆ [2,∞).

Algorithm:

1) Run STC for (λj )
N
j=1 and M :=∑N

j=1 λj to obtain the frame (ϕi)
M
i=1.

2) K :=maximal support size of the rows of the synthesis matrix of (ϕi)
M
i=1.

3) Si := ∅ for i = 1, . . . ,K .
4) k := 0.
5) Repeat
6) k := k+ 1.
7) j :=min{1≤ r ≤K : suppϕk ∩ suppϕs = ∅ for all ϕs ∈ Sr }.
8) Sj := Sj ∪ {ϕk}.
9) until k =M .

Output:

• Fusion frame (Vi )
K
i=1, where Vi = span Si for i = 1, . . . ,K .

Fig. 13.2 The RFF algorithm for constructing the reference fusion frame

(i) A tight fusion frame (Wi )
M
i=1 for HN with dimWi = di for i = 1, . . . ,M , is

constructible via STC.
(ii) (dimVi )� (di).

13.4.4 Equi-Isoclinic Fusion Frames

Equal norm equiangular Parseval frames are highly useful for applications, in par-
ticular due to their optimal erasure resilience alongside an optimal condition num-
ber of the synthesis matrix. Examples include reconstruction without phase [1] and
quantum state tomography [46].

The fusion frame analog of this class of Parseval frames is that of fusion frames
whose subspaces have equal chordal distances or—as the stricter requirement—
whose subspaces are equi-isoclinic [39]. The notion of chordal distance was intro-
duced by Conway, Hardin, and Sloane in [27], whereas the notion of equi-isoclinic
subspaces was introduced by Lemmens and Seidel in [39], the latter being further
studied by Hoggar [37] and others [30–32, 35]. Similarly as in frame theory, this
analog class of fusion frames—with equal chordal distances as well as with equi-
isoclinic subspaces—is also optimally resilient against noise and erasures. For more
details, we refer to the discussion in Sect. 13.5.2. At this point, to provide a first in-
tuitive understanding, let us just mention that this class of fusion frames distributes
the incoming energy most evenly to the fusion frame measurements.
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As a prerequisite we first require the notion of principal angles.

Definition 13.5 Let W1 and W2 be subspaces of HN with m := dimW1 ≤ dimW2.
Then the principal angles θ1, θ2, . . . , θm between W1 and W2 are defined as follows.

Let

θ1 =min

{
arccos

( 〈x1, x2〉
‖x1‖2‖x2‖2

)
: xi ∈Wi , i = 1,2

}

be the first principal angle, and let x(1)
i ∈Wi , i = 1,2 be chosen such that

cos θ1 = 〈x(1)
1 , x

(1)
2 〉

‖x(1)
1 ‖2‖x(1)

2 ‖2

.

Then, for any 1≤ j ≤m, the principal angle θj is defined recursively by

θj =min

{
arccos

( 〈x1, x2〉
‖x1‖2‖x2‖2

)
: xi ∈Wi , xi ⊥ x

(�)
i ∀1≤ �≤ j − 1, i = 1,2

}
,

and letting x
(j)
i ∈Wi with xi ⊥ x

(�)
i for all 1 ≤ � ≤ j − 1, i = 1,2 be chosen such

that

cos θj = 〈x(j)

1 , x
(j)

2 〉
‖x(j)

1 ‖2‖x(j)

2 ‖2

.

Armed with this notion, we can now introduce the notion of chordal distance and
isoclinicness.

Definition 13.6 Let W1 and W2 be subspaces of HN with m := dimW1 = dimW2
and denote by Pi the orthogonal projection onto Wi , i = 1,2. Further, let (θj )mj=1
denote the principal angles for this pair.

(a) The chordal distance dc(W1,W2) between W1 and W2 is given by

d2
c (W1,W2)=m− Tr[P1P2] =m−

m∑

j=1

cos2 θj .

(b) The subspaces W1 and W2 are called isoclinic, if

θj1 = θj2 for all 1≤ j1, j2 ≤m.

Multiple subspaces are called equi-isoclinic, if they are pairwise isoclinic.

Part (b) of Definition 13.6 is an equivalent formulation of the standard defini-
tion. The main result of this subsection will be a construction of an equi-isoclinic
fusion frame, meaning a fusion frame with equi-isoclinic subspaces. One main in-
gredient is the method of a Naimark complement (cf. Definition 13.4). As a first
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step—and also as an interesting result on its own—we analyze the change of the
principal angles under computing a Naimark complement. The proof is a straight-
forward computation, and we refer to [18] for the details.

Theorem 13.8 [18] Let ((Wi ,wi))
M
i=1 be a Parseval fusion frame for HN with

dimWi = m for all 1 ≤ i ≤M , and let ((W ′
i ,

√
1−w2

i ))
M
i=1 be a Naimark com-

plement of it. For 1 ≤ i1 
= i2 ≤M , we denote the principal angles for the pair of
subspaces Wi1,Wi2 by (θ

(i1i2)
j )mj=1. Then the principal angles for the pair W ′

i1
,W ′

i2
are

(
arccos

(
wi1√

1−w2
i1

· wi2√
1−w2

i2

· cos
(
θ
(i1i2)
j

)))M

j=1
.

Next, we utilize this result to provide a method to construct equi-isoclinic fusion
frames, which was developed in [7].

Theorem 13.9 [7] Let (eij )
M,N
i=1,j=1 be a union of M orthonormal bases for HN .

Then (span{eij : j = 1, . . . ,N},√1/M)Mi=1 is a Parseval fusion frame for HN , and
we let (W ′

i ,
√
(M − 1)/M)Mi=1 denote the Parseval fusion frame for R

(M−1)N de-

rived as its Naimark complement with respect to (eij )
M,N
i=1,j=1. Then the following

hold.

(i) For all i ∈ {1,2, . . . ,M}, we have

span
{
W ′

i′
}
i′ 
=i

=R
(M−1)N .

(ii) The principal angles for the pair W ′
i1
,W ′

i2
are given by

θ
(i1i2)
j = arccos

(
1

M − 1

)
.

Thus, (W ′
i ,
√
(M − 1)/M)Mi=1 forms an equi-isoclinic Parseval fusion frame.

Proof The fact that (span{eij : j = 1, . . . ,N},√1/M)Mi=1 is a Parseval fusion frame
for HN is immediate. Let now P : RMN →HN denote the orthogonal projection
given by Naimark’s theorem, so that eij =√1/M ·Pe′ij for some orthonormal basis

(e′ij )
M,N
i=1,j=1 in R

MN .

(i) Since, for a fixed i, the set (eij )Nj=1 is linearly independent, [6, Corollary 2.6]
implies that

W ′
i = span

{
(Id− P)ei′j ′ : i′ 
= i

}
for all i = 1, . . . ,M.

This proves (i).
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(ii) For this, let i1 
= i2 ∈ {1, . . . ,M}. Note that the principal angles for the pair
Wi1,Wi2 are all equal to 0. Hence, by Theorem 13.8, principal angles for the pair
W ′

i1
,W ′

i2
are given by

arccos

( 1√
M√

1− ( 1√
M
)2

1√
M√

1− ( 1√
M
)2

cos 0

)
= arccos

(
1

M − 1

)
.

Thus, (ii) is also proved. �

We now present a particularly interesting special case of this result, namely, when
the family (eij )

M,N
i=1,j=1 is chosen to be a family of mutually unbiased bases. We first

define this notion.

Definition 13.7 A family of orthonormal sequences {eij }Mi=1, j = 1, . . . ,L, in HN

is called mutually unbiased if there exists a constant c > 0 such that

∣
∣〈ei1j1, ei2j2〉

∣
∣= c for all j1 
= j2.

If N =M , then necessarily c =√1/N , and we refer to {eij }M,L
i=1,j=1 as a family of

mutually unbiased bases.

Now choosing (eij )
M,N
i=1,j=1 to be a family of mutually unbiased bases leads to the

following special case of Theorem 13.9.

Corollary 13.4 Let (eij )
M,N
i=1,j=1 be a family of mutually unbiased bases for HN .

Then (span{eij : j = 1, . . . ,N},√1/M) is a Parseval fusion frame for HN , and
we let (W ′

i ,
√
(M − 1)/M)Mj=1 denote the Parseval fusion frame for R

(M−1)N

derived as its Naimark complement with respect to (eij )
M,N
i=1,j=1. Then (W ′

i ,√
(M − 1)/M)Mj=1 is an equi-isoclinic fusion frame, and, moreover, the subspaces

W ′
i are spanned by mutually unbiased sequences.

Since mutually unbiased bases are known to exist in all prime power dimensions
pr [47], this result implies the existence of Parseval fusion frames with M ≤ pr + 1
equi-isoclinic subspaces of dimension pr , spanned by mutually unbiased basic
sequences in R

(M−1)pr
. If neither equidistance nor equi-isoclinic Parseval fusion

frames are realizable, a weaker version are families of subspaces with at most two
different values; see [12].

Finally, we mention that a different class of equi-isoclinic fusion frames was
recently introduced in [7] by using multiple copies of orthonormal bases.
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13.4.5 Fusion Frame Filter Banks

In [26], the first efficiently implementable construction of fusion frames was de-
rived. The main idea is to use specifically designed oversampled filter banks. A fil-
ter is a linear operator which computes the inner products of an input signal with all
translates of a fixed function. In a filter bank, several filters are applied to the input,
and each of the resulting signals is then downsampled.

The problem in designing filter bank frames is to ensure that they satisfy the large
number of conditions needed on the frame for the typical application. An important
tool here is the polyphase matrix. The fundamental works on filter bank frames
[8, 28] characterize translation-invariant frames in �2(Z) in terms of polyphase ma-
trices. In particular, filter bank frames are characterized in [28], and [8] derives the
optimal frame bounds of a filter bank frame in terms of the singular values of its
polyphase matrix. In the paper [26], these characterizations are then subsequently
utilized to construct filter bank fusion frame versions of discrete wavelet and Gabor
transforms.

13.5 Robustness of Fusion Frames

Applications naturally call for robustness, which could mean resilience against noise
and erasures or stability under perturbation. In this section we will give an introduc-
tion to several types of robustness properties of fusion frames.

13.5.1 Noise

One main advantage of redundancy is its property to provide resilience against noise
and erasures. Theoretical guarantees for a given fusion frame are determined only
in the situation of random signals; see [38]. Note that we focus on non-weighted
fusion frames in this subsection.

13.5.1.1 Stochastic signal model

Let (Wi )
M
i=1 be a fusion frame for RN with bounds A and B , and for i = 1, . . . ,M ,

let mi be the dimension of Wi and let Ui be an N ×mi -matrix whose columns form
an orthonormal basis of Wi for i = 1, . . . ,M . Further, let x ∈ R

N be a zero-mean
random vector with covariance matrix E[xxT ] = Rxx = σ 2

x Id. The noisy fusion
frame measurements can then be modeled as

zi =UT
i x + ni, i = 1, . . . ,M,
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where ni ∈ R
mi is an additive white noise vector with zero mean and covariance

matrix E[nin
T
i ] = σ 2

n Id, i = 1, . . . ,M . It is assumed that the noise vectors for dif-
ferent subspaces are mutually uncorrelated and that the signal vector x and the noise
vectors ni , i = 1, . . . ,N , are uncorrelated.

Setting

z= (zT1 zT2 · · · zTM
)T and U = (U1 U2 · · · UM),

the composite covariance matrix between x and z can be written as

E

[(
x

z

)(
xT zT

)]=
(
Rxx Rxz

Rzx Rzz

)
,

where

Rxz =E
[
xzT

]=RxxU

is the M ×L (L=∑M
i=1 mi ) cross-covariance matrix between x and z, Rzx =RT

xz,
and

Rzz =E
[
zzT
]=UT RxxU + σ 2

n IdL

is the L× L composite measurement covariance matrix. The linear mean squared
error (MSE) minimizer for estimating x from z is the Wiener filter or the linear
minimum mean squared error (LMMSE) filter F = RxzR

−1
zz , which estimates x by

x̂ = Fz. Then the associated error covariance matrix Ree is given by

Ree =E
[
(x − x̂)(x − x̂)T

]=
(

R−1
xx +

1

σ 2
n

M∑

i=1

Pi

)−1

,

which is derived using the Sherman-Morrison-Woodbury formula. The MSE is ob-
tained by taking the trace of Ree .

A result from [38] shows that, as in the frame case, a fusion frame is optimally
resilient against noise if it is tight.

Theorem 13.10 [38] Assuming the model previously introduced, the following con-
ditions are equivalent.

(i) The MSE is minimized.
(ii) The fusion frame is tight.

In this case, the MSE is given by

MSE= Nσ 2
n σ

2
x

σ 2
n + σ 2

x L

N

.
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Proof Since Rxx = σ 2
x Id and denoting the frame bounds by A and B , we obtain

N

1
σ 2
x
+ B

σ 2
n

≤ (MSE= Tr[Ree]
)≤ N

1
σ 2
x
+ A

σ 2
n

.

This implies that the lower bound will be achieved, provided that the fusion frame
is tight. The explicit value of the MSE follows from here. �

13.5.2 Erasures

Similar to resilience against noise, redundancy is also beneficial for resilience
against erasures. Again, we can distinguish between a deterministic and a stochastic
signal model. The first case was analyzed in [4], whereas the second case was stud-
ied in [38]. As before, in this subsection we focus on non-weighted fusion frames.

13.5.2.1 Deterministic signal model

Let W = (Wi )
M
i=1 be a fusion frame for HN with dimWi =m for all i = 1, . . . ,M .

Further, let TW and SW be the associated analysis and fusion frame operator, re-
spectively.

The loss of a set of subspaces will be modeled deterministically in the following
way. Given K ⊆ {1, . . . ,M}, the associated operator modeling erasures is defined
by

EK :RMN →R
MN, EK

(
(xi)

M
i=1

)
j
=
{
xj : j 
∈K,

0: j ∈K.

The next ingredient of the model is the measure for the imposed error. In [4], the
worst case measure was chosen, which in the case of k lost subspaces is defined by

ek(W)=max
{∥∥Id− S−1

W T ∗WEKTW
∥∥ :K ⊂ {1, . . . ,M}, |K| = k

}
.

We first state the result from [4] for one subspace erasure.

Theorem 13.11 [4] Assuming the model previously introduced, the following con-
ditions are equivalent.

(i) The worst case error e1(W) is minimized.
(ii) The fusion frame W is a Parseval fusion frame.

Proof Setting DK := Id−EK for some K ⊂ {1, . . . ,M} with K = {i0}, we obtain

∥∥Id− S−1
W T ∗WEKTW

∥∥= ∥∥S−1
W T ∗WDKTW

∥∥= ∥∥S−1
W Pi0

∥∥.
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Hence, the quantity

e1(W)=max
{∥∥S−1

W Pi0

∥∥ : i0 ∈ {1, . . . ,M}
}

needs to be minimized. This is achieved if and only if SW = Id, which is equivalent
to W being a Parseval fusion frame. �

To analyze the situation of two subspace erasures, we now restrict ourselves to
the class of fusion frames, already shown to behave optimally under one erasure,
and reduce the measure e2(W) accordingly. Then the following result is true; we
refer to [4] for its lengthy proof.

Theorem 13.12 [4] Assuming the model previously introduced, the following con-
ditions are equivalent.

(i) The worst case error e2(W) is minimized.
(ii) The fusion frame W is an equi-isoclinic fusion frame.

This shows the need to develop construction methodologies for equi-isoclinic
fusion frames, and we refer the reader to Sect. 13.4.4 for details.

13.5.2.2 Stochastic signal model

We assume the model already detailed in Sect. 13.5.1. By Theorem 13.10, tight
fusion frames are maximally robust against noise. Hence, from now on we restrict
ourselves to tight fusion frames and study within this class which fusion frames are
optimally resilient with respect to one, two, and more erasures. Also, we mention
that all erasures are considered equally important.

Again, the MSE shall be determined when the LMMSE filter F , as defined be-
fore, is applied to a measurement vector now with erasures. To model the erasures,
let K ⊂ {1,2, . . . ,M} be the set of indices corresponding to the erased subspaces.
Then, the measurements take the form

z̃= (Id−E)z,

where E is an L×L block diagonal erasure matrix whose ith diagonal block is an
mi ×mi zero matrix, if i /∈K , or an mi ×mi identity matrix, if i ∈K .

The estimate of x is now given by

x̃ = F z̃,

with associated error covariance matrix

R̃ee =E
[
(x − x̃)(x − x̃)T

]=E
[(
x − F(Id−E)z

)(
x − F(Id−E)z

)T ]
.
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The MSE for this estimate can be written as

MSE= Tr[R̃ee] =MSE0 +MSE,

where MSE0 = Tr[Ree] and MSE is the extra MSE due to erasures given by

MSE= α2 Tr

[
σ 2
x

(∑

i∈S
Pi

)2

+ σ 2
n

(∑

i∈S
Pi

)]
,

where α = σ 2
x /(Aσ 2

x + σ 2
n ).

This leads to the following result from [38] for one subspace. We also refer to
this paper for its proof.

Theorem 13.13 [38] Assuming the model previously introduced and letting
(Wi )

M
i=1 be a tight fusion frame, the following conditions are equivalent.

(i) The MSE due to the erasure of one subspace is minimized.
(ii) All subspaces Wi have the same dimension; i.e., (Wi )

M
i=1 is an equidimensional

fusion frame.

Recalling the definition of chordal distance dc(i, j) from Sect. 13.4.4, we can
state the result for two and more erasures. As before, we now restrict to the class of
fusion frames, already shown to behave optimally under noise and one erasure.

Theorem 13.14 [38] Assuming the model previously introduced and letting
(Wi )

M
i=1 be a tight equidimensional fusion frame, the following conditions are equiv-

alent.

(i) The MSE due to the erasure of two subspaces is minimized.
(ii) The chordal distance between each pair of subspaces is the same and maximal;

i.e., (Wi )
M
i=1 is a maximal equidistance fusion frame.

Finally, let (Wi )
M
i=1 be an equidimensional, maximal equidistance tight fusion

frame. Then the MSE due to k subspace erasures, 3≤ k < N , is constant.

As we mentioned in the introduction, we will end this subsection with a brief
remark on the relation of the previously discovered optimal family of fusion frames
with Grassmannian packings. For this, we first state the following problem, which
is typically referred to as the classical packing problem (see also [27]).

Classical Packing Problem: For given m,M,N , find a set of m-dimensional sub-
spaces (Wi )

M
i=1 in HN such that mini 
=j dc(i, j) is as large as possible. In this case

we call (Wi )
M
i=1 an optimal packing.

A lower bound is given by the simplex bound

m(N −m)M

N(M − 1)
.
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Theorem 13.15 [27] Each packing of m-dimensional subspaces (Wi )
M
i=1 in HN

satisfies

d2
c (i, j)≤

m(N −m)

N

M

M − 1
, i, j = 1, . . . ,M.

Interestingly, there is a close connection between tight fusion frames and optimal
packings given by the following theorem.

Theorem 13.16 [38] Let (Wi )
M
i=1 be a fusion frame of equidimensional subspaces

with pairwise equal chordal distances dc. Then, the fusion frame is tight if and only
if d2

c equals the simplex bound.

This shows that equidistance tight fusion frames are optimal Grassmannian pack-
ings.

13.5.3 Perturbations

Perturbations are another common disturbance with respect to which one might seek
resilience of a fusion frame. Several scenarios of perturbations of the subspaces can
be envisioned. In [22], the following canonical Paley-Wiener-type definition was
employed.

Definition 13.8 Let (Wi )
M
i=1 and (Vi )

M
i=1 be subspaces of HN with associated

orthogonal projections denoted by (Pi)
M
i=1 and (Qi)

M
i=1, respectively. Further, let

(wi)
M
i=1 be positive weights, 0 ≤ λ1, λ2 < 1, and ε > 0. If, for all x ∈ HN and

1≤ i ≤M , we have

∥∥(Pi −Qi)(x)
∥∥≤ λ1

∥∥Pi(x)
∥∥+ λ2

∥∥Qi(x)
∥∥+ ε‖x‖,

then ((Vi ,wi))
M
i=1 is called a (λ1, λ2, ε)-perturbation of ((Wi ,wi))

M
i=1.

Employing this definition, we obtain the following result on robustness of fusion
frames under small perturbations of the associated subspaces. We wish to mention
that a perturbation result using a different definition of perturbation can be derived
by restricting [45, Theorem 3.1] to fusion frames, however without weights.

Proposition 13.6 [22] Let ((Wi ,wi))
M
i=1 be a fusion frame for HN with fusion

frame bounds A and B . Further, let λ1 ∈ [0,1) and ε > 0 be such that

(1− λ1)
√
A− ε

(
M∑

i=1

w2
i

)1/2

> 0.
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Moreover, let ((Vi ,wi))
M
i=1 be a (λ1, λ2, ε)-perturbation of ((Wi ,wi))

M
i=1 for some

λ2 ∈ [0,1). Then ((Vi ,wi))
M
i=1 is a fusion frame with fusion frame bounds

(
(1− λ1)

√
A− ε(

∑M
i=1 w

2
i )

1/2

1+ λ2

)2

and

(√
B(1+ λ1)+ ε(

∑M
i=1 w

2
i )

1/2

1− λ2

)2

.

For the proof, we refer to [22].
An even more delicate problem is the perturbation of local frame vectors if we

consider the full sensor network problem. The difficulty in this case is the possibility
of frame vectors leaving the subspace and hence even changing the dimension of
those subspaces. A collection of results in this direction can also be found in [22].

13.6 Fusion Frames and Sparsity

In this section we present two different types of results concerning sparsity prop-
erties of fusion frames. The first result concerns the construction of tight fusion
frames consisting of optimally sparse vectors for efficient processing [19, 20], and
the second analyzes the sparse recovery from underdetermined fusion frame mea-
surements [9]. At this point we also refer to Chap. 9 for the theory of sparse recovery
and compressed sensing.

13.6.1 Optimally Sparse Fusion Frames

Typically, data processing applications face low on-board computing power and/or
a small bandwidth budget. When the signal dimension is large, the decomposition
of the signal into its fusion frame measurements requires a large number of addi-
tions and multiplications, which may be infeasible for on-board data processing.
Thus it would be a significant improvement if the vectors of each orthonormal basis
for the subspaces would contain very few nonzero entries, i.e., if they were sparse
in the standard unit vector basis, thereby ensuring low-complexity processing. In
[19, 20], an algorithmic construction of optimally sparse tight fusion frames with
prescribed fusion frame operators was derived, which we will present and discuss
in this subsection.

13.6.1.1 Sparseness measure

As already elaborated, we aim for sparsity of orthonormal bases for the subspaces
with respect to the standard unit vector basis, which ensures low-complexity pro-
cessing. Since we are interested in the performance of the whole fusion frame, the
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total number of nonzero entries seems to be a suitable sparsity measure. This view-
point can also be slightly generalized by assuming that there exists a unitary trans-
formation mapping the fusion frame into one having this “sparsity” property. Taking
these considerations into account, we state the following definition for a sparse fu-
sion frame, which then reduces to the notion of a sparse frame.

Definition 13.9 Let (Wi )
M
i=1 be a fusion frame for HN with dimWi =mi for all i =

1, . . . ,M and let (ej )Nj=1 be an orthonormal basis for HN . If for each i ∈ {1, . . . ,M}
there exists an orthonormal basis (ϕi,�)

mi

�=1 for Wi with the property that for each
�= 1, . . . ,mi there is a subset Ji,� ⊂ {1, . . . ,N} such that

ϕi,� ∈ span{ej : j ∈ Ji,�} and
M∑

i=1

mi∑

�=1

|Ji,�| = k,

we refer to (ϕi,�)
M,mi

i=1,�=1 as an associated k-sparse frame. The fusion frame (Wi )
M
i=1

is called k-sparse with respect to (ej )
N
j=1, if it has an associated k-sparse frame and

if, for any associated j -sparse frame, we have k ≤ j .

13.6.1.2 Optimality and maximally achievable sparsity

We now have the necessary machinery at hand to introduce a notion of an optimally
sparse fusion frame. Optimality will typically be considered within a particular class
of fusion frames, e.g., in the class of tight ones.

Definition 13.10 Let FF be a class of fusion frames for HN , let (Wi )
M
i=1 ∈ FF ,

and let (ej )
N
j=1 be an orthonormal basis for HN . Then (Wi )

M
i=1 is called opti-

mally sparse in FF with respect to (ej )
N
j=1, if (Wi )

M
i=1 is k1-sparse with respect

to (ej )
N
j=1 and there does not exist a fusion frame (Vi )

K
i=1 ∈FF which is k2-sparse

with respect to (ej )
N
j=1 with k2 < k1.

Let N,M,m be positive integers. Then the class of tight fusion frames (Wi )
M
i=1

in HN with dimWi =m for all i = 1, . . . ,M will be denoted by FF(M,m,N).
In the case Mm

N
≥ 2 and �Mm

N
� ≤ M − 3 we know that FF(M,m,N) is not

empty; moreover, we can construct a tight fusion frame in this class using the algo-
rithm STFF introduced in Fig. 13.3 (see [11]). STFF can be used to construct fusion
frames of equal dimensional subspaces with certain prescribed eigenvalues for the
fusion frame operator. We want to use STFF to construct tight fusion frames; i.e., we
apply STFF for the constant sequence of eigenvalues λj = Mm

N
for all j = 1, . . . ,N ,

and will refer to the constructed fusion frame as STFF(M,m,N). The following re-
sult shows that STFF(M,m,N) is optimally sparse in the class FF(M,m,N). It is
a consequence of [19, Theorem 4.4], the analogous result for frames.
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STFF (SPECTRAL TETRIS FOR FUSION FRAMES)

Parameters:

• Dimension: N .
• Number of subspaces: M .
• Dimension of subspaces: m.
• Eigenvalues: (λj )

N
j=1 ⊆ [2,∞) satisfying

∑N
j=1 λj =Mm and �λj � ≤M − 3 for all j =

1, . . . ,N .

Algorithm:

1) Set k := 1.
2) For j = 1, . . . ,N do
3) Repeat
4) If λj < 2 and λj 
= 1 then

5) ϕk :=
√

λj
2 · ej +

√
1− λj

2 · ej+1.

6) ϕk+1 :=
√

λj
2 · ej −

√
1− λj

2 · ej+1.
7) k := k + 2.
8) λj := 0.
9) λj+1 := λj+1 − (2− λj ).
10) else
11) ϕk := ej .
12) k := k+ 1.
13) λj := λj − 1.
14) end;
15) until λj = 0.
16) end;

Output:

• Fusion frame (Wi )
M
i=1 with Wi := span{ϕi+kM : k = 0, . . . ,m− 1}.

Fig. 13.3 The STFF algorithm for constructing a fusion frame

Theorem 13.17 [20] Let N,M , and m be positive integers such that Mm
N
≥ 2 and

�Mm
N
� ≤M − 3. Then the tight fusion frame STFF(M,m,N) is optimally sparse in

the class FF(M,m,N) with respect to the standard unit vector basis.
In particular, this tight fusion frame is mM + 2(N − gcd(Mm,N))-sparse with

respect to the standard unit vector basis.

13.6.2 Compressed Sensing and Fusion Frames

One possible application of fusion frames is music segmentation, in which each
note is not characterized by a single frequency but by the subspace spanned by the
fundamental frequency of the instrument and its harmonics. Depending on the type
of instrument, certain harmonics might or might not be present in the subspace. The
overlapping subspaces from distinct instruments can be appropriately modeled by
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fusion frames. A canonical question is whether by receiving linear combinations
of a collection of signals, each being in one of the subspaces, these signals can
be extracted; preferably from as few linear combinations—the measurements—as
possible.

This leads to the fundamental question of sparse recovery from fusion frame
measurements, which can also be interpreted as structured sparse measurements. In
this subsection, we will discuss the answer to this question given in [9], in which
sparse recovery results in terms of coherence and restricted isometry property (RIP)-
type conditions as well as an average case analysis are provided. In this subsection,
due to lack of space, we only focus on the first two.

13.6.2.1 Sparse recovery from underdetermined fusion frame measurements

The just-described scenario can be modeled in the following way. Let (Wi )
M
i=1 be a

fusion frame for HN , and let

x0 = (x0
i

)M
i=1 ∈H := {(xi)Mi=1 : xi ∈Wi for all i = 1, . . . ,M

}⊆R
MN.

Now assume that we only observe n linear combinations of those vectors; i.e., there
exist some scalars aji satisfying ‖(aji)nj=1‖2 = 1 for all i = 1, . . . ,M such that we
observe

y = (yj )
n
j=1 =

(
M∑

i=1

ajix
0
i

)n

j=1

.

We first notice that this equation can be rewritten as

y =AIx
0, where AI = (ajiIdN)1≤j≤n,1≤i≤M,

i.e., AI is the matrix consisting of the block aij IdN .
We now aim to recover x0 from those measurements. Since typically only a few

subspaces will contain a signal, it is instructive to impose sparsity conditions as
follows; we encourage the reader to compare this with the classical definition of
sparsity in Chap. 9.

Definition 13.11 Let x ∈H. Then x is called k-sparse, if

‖x‖0 :=
M∑

i=1

‖xi‖0 ≤ k.

The initial minimization problem to consider would hence be

x̂ = argminx∈H ‖x‖0 subject to AIx = y.
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From the theory of compressed sensing, we know that this minimization is NP-hard.
A means to circumvent this problem is to consider the associated �1 minimization
problem. In this case, the suitable �1 norm on H is a mixed �2,1 norm defined by

∥∥(xi)Mi=1

∥∥
2,1 :=

M∑

i=1

‖xi‖2 for any (xi)
M
i=1 ∈H.

This leads to the investigation of the following minimization problem:

x̂ = argminx∈H ‖x‖2,1 subject to AIx = y.

Taking the special structure of x ∈H into account, we can rewrite this minimization
problem as

x̂ = argminx∈H ‖x‖2,1 subject to APx = y,

where

AP = (ajiPi)1≤i≤M,1≤j≤n. (13.3)

This problem is still difficult to implement, since minimization runs over H. To
come to the final utilizable form, let mi = dimWi and Ui be an N × mi -matrix
whose columns form an orthonormal basis of Wi . This leads to the following two
problems—one being equivalent to the previous �0 minimization problem, the other
being equivalent to the just stated �1 minimization problem—which now merely use
matrix-only notation:

(P0) ĉ= argminc ‖c‖0 subject to Y =AU(c)

and

(P1) ĉ= argminc ‖c‖2,1 subject to Y =AU(c),

in which A= (aij ) ∈R
n×M,j ∈R

mj , and yi ∈R
N , and

U(c)=

⎛

⎜
⎜
⎝

cT1 UT
1

...

cTMUT
M

⎞

⎟
⎟
⎠ ∈R

M×N, Y =

⎛

⎜
⎜
⎝

yT
1

...

yT
n

⎞

⎟
⎟
⎠ ∈R

n×N.

13.6.2.2 Coherence results

A typically exploited measure for the coherence of the measurement matrix is its
mutual coherence. In [9], the following notion adapted to fusion frame measure-
ments was introduced.



13 Fusion Frames 471

Definition 13.12 The fusion coherence of a matrix A ∈ R
n×M with normalized

columns (ai = a·,i )Mi=1 and a fusion frame (Wi )
M
i=1 for RN is given by

μf

(
A, (Wi )

M
i=1

)=max
j 
=k

[∣∣〈aj , ak〉
∣∣ · ‖PjPk‖2

]
.

The reader should note that ‖PjPk‖2 = |λmax(PjPk)|1/2 equals the largest abso-
lute value of the cosines of the principal angles between Wj and Wk .

This new notion now enables us to phrase the first main result about sparse recov-
ery. Its proof follows some of the arguments of the proof of the analogous “frame
result” in [29] with increased technical difficulty; therefore, we refer the reader to
the original paper [9].

Theorem 13.18 [9] Let A ∈ R
n×M have normalized columns (ai)

M
i=1, let (Wi )

M
i=1

be a fusion frame in R
N , and let Y ∈R

n×N . If there exists a solution c0 of the system
Y =AU(c) satisfying

∥∥c0
∥∥

0 <
1

2

(
1+μf

(
A, (Wi )

M
i=1

)−1)
,

then this solution is the unique solution of (P0) as well as of (P1).

This result generalizes the classical sparse recovery result from [29] by letting
N = 1, since in this case Pi = 1 for all i = 1, . . . ,M .

13.6.2.3 RIP results

The RIP property, which complements the mutual coherence conditions, was also
adapted to the fusion frame setting in [9] in the following way.

Definition 13.13 Let A ∈ R
n×M and (Wi )

M
i=1 be a fusion frame for HN . Then the

fusion restricted isometry constant δk is the smallest constant such that

(1− δk)‖z‖2
2 ≤ ‖AP z‖2

2 ≤ (1+ δk)‖z‖2
2

for all z ∈R
NM of sparsity ‖z‖0 ≤ k, where AP is defined as in (13.3).

The definition of the restricted isometry constant in [13] is a special case of
Definition 13.13 with N = 1 and dimWi = 1 for i = 1, . . . ,M . Again, we refer to
[9] for the proof of the following theorem.

Theorem 13.19 [9] Let (A, (Wi )
M
i=1) have the fusion frame restricted isometry con-

stant δ2k < 1/3. Then (P1) recovers all k-sparse c from Y =AU(c).
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13.7 Nonorthogonal Fusion Frames

Until recently, fusion frame theory has mainly focused on the construction of fu-
sion frames with specified properties. However, in practice, we might not have the
freedom to choose the “best fusion frame,” since it is often given by the application.
One example is the application to modeling of sensor networks (cf. Sect. 13.1.3), in
which each sensor spans a fixed subspace W of HN generated by the spatial reversal
and the translates of the sensor’s impulse response function [40].

Although in such applications selection or manipulation of the subspaces is not
possible, sometimes there is the freedom to choose the measuring procedure, i.e., the
operators mapping the signal onto each element from the family of subspaces. Let us
consider again the example of distributed sensing. At the first stage, each sensor in a
particular area measures the scalar 〈x,ϕi〉 of an incoming signal x ∈HN , where ϕi ∈
HN depend on the characteristics of the respective sensor for all i ∈ I , say. Now,
assume that W = span{ϕi : i ∈ I }. Instead of combining the scalars 〈x,ϕi〉 to obtain
the orthogonal projection of x onto W , also P(x), where P is a nonorthogonal
projection onto W , could be computed. In such cases, one objective is sparsity of
the fusion frame operator, which ensures, despite the fact that tightness might not be
achievable, an efficient reconstruction algorithm. It would be particularly desirable
if the fusion frame operator were a multiple of the identity or at least a diagonal
operator.

Another problem is the limited availability of tight fusion frames. The effective-
ness of fusion frame applications in distributed systems is heavily dependent on the
end fusion process. This in turn depends upon the efficiency of the inversion of the
fusion frame operator. Tight fusion frames take care of this problem because the
frame operator is a multiple of the identity and hence its inverse operator is also
a multiple of the identity. But tight fusion frames do not exist in most situations.
The idea here is to use nonorthogonal projections which will result in much larger
classes of fusion frames with the (nonorthogonal) fusion frame operator equal to a
multiple of the identity.

To tackle these problems, the theory of nonorthogonal fusion frames was recently
introduced in [10]. The main idea is to replace the orthogonal projections in the
definition of a fusion frame with general projections, i.e., with linear operators Q

from HN onto a subspace W of HN which satisfy Q=Q2. Recall that in this case,
the adjoint Q∗ is also a non-orthogonal projection onto N (Q)⊥ with N (Q)⊕W =
HN , where N (Q)= {x ∈HN :Qx = 0}. This yields the following definition, which
generalizes the classical notion of a fusion frame.

Definition 13.14 Let (Wi )
M
i=1 be a family of subspaces in HN , and let (wi)

M
i=1 ⊆

R
+ be a family of weights. For each i = 1,2, . . . ,M let Qi be a (orthogonal or

nonorthogonal) projection onto Wi . Then ((Qi,wi))
M
i=1 is a nonorthogonal fusion

frame for HN , if there exist constants 0 <A≤ B <∞ such that

A‖x‖2
2 ≤

M∑

i=1

w2
i

∥∥Qi(x)
∥∥2

2 ≤ B‖x‖2
2 for all x ∈HN.
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The constants A and B are called the lower and upper fusion frame bound, respec-
tively.

Letting W = ((Qi,wi))
M
i=1 be a nonorthogonal fusion frame for HN , the associ-

ated analysis operator TW is defined by

TW :HN →R
MN, x �→ (

wiQi(x)
)M
i=1,

and the synthesis operator T ∗W has the form

T ∗W :RMN →R
N, (yi)

M
i=1 �→

M∑

i=1

wiQ
∗
i (yi).

The nonorthogonal fusion frame operator SW is then given by

SW = T ∗WTW :HN →HN, x �→
M∑

i=1

w2
i Q

∗
i Qi(x).

Similar to Theorem 13.2, we have the following result.

Theorem 13.20 [10] Let W = ((Qi,wi))
M
i=1 be a nonorthogonal fusion frame for

HN with fusion frame bounds A and B and associated nonorthogonal fusion frame
operator SW . Then SW is a positive, self-adjoint, invertible operator on HN with
A Id ≤ SW ≤ B Id. Moreover, we have the reconstruction formula

x =
M∑

i=1

w2
i S
−1
W
(
Q∗i Qi(x)

)
for all x ∈HN.

We now focus on the second problem, when we have the freedom to choose the
subspaces as well as the projections. Surprisingly, this additional freedom enables
the construction of tight (nonorthogonal) fusion frames in almost all situations as
the next result shows.

Theorem 13.21 [10] Let mi ≤ N
2 for all i = 1,2, . . . ,M satisfy

∑M
i=1 mi ≥ N .

Then there exists a tight nonorthogonal fusion frame ((Qi,wi))
M
i=1 for R

N such
that rank(Qi)=mi for all i = 1, . . . ,M .

This result shows that if the dimensions of the subspaces are less than or equal to
half the dimension of the ambient space, there always exists a tight nonorthogonal
fusion frame. The proof in fact shows that the weights can even be chosen to be equal
to 1. Thus, nonorthogonality allows a much larger class of tight fusion frames.

To prove this result, we first require a particular classification of positive, self-
adjoint operators by projections. In order to build up some intuition, let T : RN →
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R
N be a positive, self-adjoint operator. The goal is to classify the set

Ω(T )= {Q :Q2 =Q, Q∗Q= T
}
.

We first observe that, by the spectral theorem, T can be written as

T =
M∑

i=1

λiPi,

where the λi is the ith eigenvalue of T and Pi is the orthogonal projection onto
the space generated by the ith eigenvector of T . Hence Q ∈ Ω(T ) if and only if
the eigenvalues and eigenvectors of Q∗Q coincide with those of T . Noting that
Q ∈ Ω(T ) implies ker(Q) = im(T )⊥ and recalling that a projection is uniquely
determined by its kernel and its image, it suffices to consider the set

Ω̃(T )= {im(Q) :Q ∈Ω(T )
}
.

Moreover, observe that since the only projection of rank N is the identity, we may
assume rank(T ) < N .

The next result states the classification of Ω̃(T ) (and hence Ω(T )) which we
require for the proof of Theorem 13.21. Although the proof is fairly elementary, we
refer the reader to the complete argument in [10].

Theorem 13.22 Let T : Rn → R
n be a positive, self-adjoint operator of rank

k ≤ N
2 . Let (λj )

k
j=1 be the nonzero eigenvalues of T and suppose that λj ≥ 1 for

j = 1, . . . , k and (ej )
k
j=1 is an orthonormal basis of im(T ) consisting of eigenvec-

tors of T associated to the eigenvalues (λj )
k
j=1. Then

Ω̃(T )=
{

span

{
1
√
λj

ej +
√

λj − 1

λj

ej+k

}k

j=1
: (ej )2k

j=1 is orthonormal

}
.

Let T : RN → R
N be a positive, self-adjoint operator. Applying Theorem 13.22

to 1
λk
T , where λk is the smallest nonzero eigenvalue of T and setting v = √λk ,

yields the following corollary.

Corollary 13.5 Let T :RN →R
N be a positive, self-adjoint operator of rank ≤ N

2 .
Then there exists a projection Q and a weight v so that T = v2Q∗Q.

Having these prerequisites, we can now prove Theorem 13.21.

Proof of Theorem 13.21 Let (ej )
N
j=1 be an orthonormal basis of R

N , and let

(Wi )
M
i=1 be a family of subspaces of HN such that

• Wi = span{ej }j∈Ji with |Ji | =mi for each i = 1, . . . ,M ,
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• W1 + · · · +WM =HN .

Also, let Pi denote the orthogonal projection onto Wi , and set S =∑M
i=1 Pi .

Notice that

Id = S−1S =
M∑

i=1

S−1Pi.

Since each projection Pi is diagonal with respect to (ej )
N
j=1, the operator S−1 com-

mutes with Pi for each i = 1, . . . ,M . Hence, for all i = 1, . . . ,M , S−1Pi is pos-
itive and self-adjoint. Now, letting γ denote the smallest nonzero eigenvalue of
all S−1Pi , i = 1, . . . ,M , the operator 1

γ
S−1Pi satisfies the hypotheses of Theo-

rem 13.22. Thus, there exists a projection Qi so that

Q∗i Qi = 1

γ
S−1Pi,

leading to

M∑

i=1

Q∗i Qi = 1

γ
Id.

The theorem is proved. �

If we are willing to extend the framework even further and allow two projections
onto each subspace, it can be shown that Parseval nonorthogonal fusion frames can
be constructed for any sequence of dimensions of the subspaces [10].
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