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Preface 

This book evolved over many years from the material I have taught in a graduate 
course on charged particle beams at the University of Maryland since the late 1960s. 
It is also influenced by undergraduate courses on principles of particle accelerators, 
physical electronics, and fundamentals of charged particle devices that I taught 
intennittently during this time. 

Most important, though, this book reflects my research interests and experience 
in accelerator design and beam physics: cyclotron and ion source design during 
the 196Os, collective ion acceleration in the 197Os, and since then the physics of 
intense, high-brightness beams. 

Although the connection with particle accelerators is emphasized in the book, I 
have tried to present a broad synoptic description of beams that applies to a wide 
range of other devices such as low-energy focusing and transport systems and 
high-power microwave sources. The material is developed from first principles, 
basic equations, and theorems in a systematic and largely self-sufficient way. 
Assumptions and approximations are clearly indicated; the underlying physics 
and the validity of theoretical relationships, design formulas, and scaling laws 
are discussed. The algebra is often more detailed than in other books. This is a 
feature that I retained from my class notes in order to make the derivations more 
transparent, which the students found especially valuable. 

The “theory” in this book is an experimentalist’s theory. It tries to get away 
with a minimum of mathematical complexity, avoids topics that are only of 
academic interest, and stresses the essential physical features and the relevance 
to laboratory beams. A central theme, which has only recently become the focus of 
research, is the behavior of space-charge dominated beams and the thermodynamic 
description of beams by a Maxwell-Boltzmann distribution. Due to longitudinal 
cooling by acceleration, beams are usually not in 3-D thermal equilibrium and 
are best described by a Maxwell-Boltzmann distribution with different transverse 
and longitudinal temperatures. The analysis of the “equilibrium” properties of such 
distributions, including the transverse and longitudinal density profiles and the 
modeling by equivalent beams with linear space-charge forces, takes a major part 
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of Chapter 5 .  This includes a significant amount of very recent work with my 
collaborators, such as image effects and the Boltzmann line charge density profiles 
in bunched beams, that has not yet been published. Nonlinear forces, instabilities, 
and collisions drive the beam toward thermal equilibrium and thermalize the free 
energy when the beam is not perfectly matched to the focusing system or deviates 
from the equilibrium density profile. These effects and the resulting emittance 
growth are discussed in Chapter 6. which includes a review of cooling methods 
in storage rings. 

This book is not intended to give an extensive review of the entire field, with 
a comprehensive list of references and discussion of all important past and current 
developments, like Lawson's encyclopedic Physics of Charged Particle Beams. It 
is written as a textbook for the student, researcher, or newcomer who wants to have 
a thorough and systematic introduction to the theory and design of charged particle 
beams. However, it also addresses the needs of the more experienced physicists and 
engineers involved in the design or operation of particle accelerators, low-energy 
beam systems, microwave sources, free electron lasers, and other devices. To these 
professionals, the book offers a broad review of focusing systems, a detailed and 
critical evaluation of theoretical models, a comprehensive list of definitions of 
fundamental beam parameters and their relationships, and theoretical guidance for 
the design of the high-quality beams required in modern devices where space 
charge plays an important role. 

Our analysis is limited to the basic physical properties of beams and their 
behavior in various focusing and accelerating systems. Thus the topic of instabilities 
is covered only in an introductory way that includes a few examples of funda- 
mental interest. 

The references at the end of each chapter are limited to historical papers and 
to more recent work that I considered important for the beam theory discussed 
in the book. "here are undoubtedly omissions in each category. In particular, my 
selection in the latter category is admittedly subjective, and I apologize to the 
many researchers whose contributions are not mentioned. The selectivity in the 
references is balanced by an extensive bibliography at the end of the book to 
which I frequently refer for further references or elaboration of a topic. 

With regard to use as a textbook, my experience in teaching and lecturing at the 
University of Maryland, in U.S. Accelerator Schools, and elsewhere indicated to 
me that there is a demand for a more introductory presentation, in addition to the 
advanced beam theory. Consequently, I have organized the material in such a way 
that the first four chapters can be used for a senior-year, undergraduate, special- 
topics course. Such courses are also often attended by beginning graduate students 
interested in the field or searching for a research topic. A broadly based course of 
this type on fundamentals of charged particle beams and focusing methods is more 
useful, in my opinion, than a course devoted entirely to more specialized topics such 
as beam optics or accelerators. Some material could be omitted or supplemented 
by special lecture notes reflecting the research interests of the faculty or student 
demand at a particular institution. Similarly, some topics in Chapters 5 and 6 could 
be included in such an undergraduate course. 
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If the book is used only for a one-semester graduate-level course, the material 
in the first four chapters has to be condensed and presented selectively to leave 
enough time for the more advanced topics in Chapters 5 and 6. For example, the 
review in Chapter 2, while useful for the electrical engineering student who has had 
no advanced course in classical mechanics, could be largely omitted for the physics 
student who has studied classical mechanics or is taking it concurrently. Similarly, 
some topics in Chapters 3 and 4 could be omitted depending, for instance, on 
whether the emphasis is to be on low-energy devices or on high-energy circular 
accelerators. 

As is desirable for a textbook of this type, I have tried to present the material 
in a uniform notation throughout. Nevertheless, it was unavoidable to use some 
letters of the Latin and Greek alphabet for different purposes. However, the “List 
of Frequently Used Symbols” and the explanations in the text, including frequent 
repetitions of definitions, should help to clarify the intended meaning and to avoid 
the confusion that often arises with regard to this issue. 

In this age of the computer, a comment on my philosophy with regard to 
numerical-versus-analytical treatment is called for. First, I am a firm believer 
in basic analytical theory. This analysis is required to guide experiment and 
simulation and to provide the indispensable parameter scaling necessary for physics 
understanding and design. Second, the discussion of computational tools, computer 
codes, and simulation techniques-even on an introductory level-is beyond 
the scope of this book. Third, the interplay between analytical theory, particle 
simulation, and experiment is an absolute necessity for achieving progress in the 
field of multiparticle beam dynamics. The example discussed in Section 6.2 is an 
illustration of this important point: neither theory nor simulation nor experiment 
alone would have been sufficient to obtain the final understanding and quantitative 
interpretation of the behavior of such a space-charge dominated beam. Indeed, the 
conclusion from my long experience is not to rest until “full agreement” is achieved 
between theory, simulation, and experiment. 
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CHAPTER 1 

Introduction 

1.1 EXPOSITION 

Charged particle dynamics deals with the motion of charged particles in electric 
and magnetic fields. More specifically, it implies the behavior of free charged 
particles in applied electric and magnetic fields (single-particle dynamics) or in the 
collective fields generated by the particle distribution if the density is high enough 
that the mutual interaction becomes significant (self-field effects). Many aspects 
of gas discharges and plasmas (microscopic motion) are also included in charged 
particle dynamics. The interaction of free particles with the electron shell of atoms 
or molecules or with the periodic electric potential of crystals (electron diffraction) 
as well as the physics of bound particles (solid-state theory) are excluded. The 
particles’ behavior in these cases is described by quantum mechanics, not classical 
mechanics. 

The electric and magnetic fields may be static or time dependent and the kinetic 
energy of the particles may be relativistic. In general, the particles will be treated 
as classical point charges. Quantum-mechanical effects may be of importance 
in some applications, for example, in determining the resolution of the electron 
microscope, but they are ignored in this book. We shall also neglect electromagnetic 
radiation by accelerated charged particles except for a brief treatment in connection 
with radiation cooling: Synchmtmn radiation limits the achievable kinetic energy 
in circular accelerators, especially for electrons and positrons, but it can also 
be utilized in damping rings to cool these lepton beams, as discussed at the 
end of Chapter 6. On the other hand, we consider collisional effects, such as 
intrabeam scattering, and collisions between beam particles and gas molecules. 
They play a major role in charge neutralization due to collisional ionization of the 
background gas, discussed in Chapter 4; in the formation of the thermal equilibrium 
distribution, treated in Chapter 5; and as a cause of emittance growth, covered in 
Chapter 6. 
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lNTRODUCTION 

When the self fields are taken into account, a charged particle beam behaves 
like a nonneutrul plasma, that is, a special class of plasma having a drift velocity 
much greater than the random thermal velocity and lacking in general the charge 
neutrality of a regular plasma composed of particles with opposite charge. A beam 
is a well-defined flow of a continuous stream or a bunch of particles that move 
along a straight or curved path, usually defined as the longitudinal direction, and 
that are constrained in the transverse direction by either applied focusing systems 
or by self-focusing due to the presence of particles with opposite charge. The trans- 
verse velocity components and the spread in longitudinal velocities are generally 
small compared to the mean longitudinal velocity of the beam. Examples an! the 
straight beams in linear accelerators, cathode ray tubes, or electron microscopes 
and the curved beams in circular accelerators, such as betatrons, cyclotrons, and 
synchrotrons. 

Most particle accelerators employ radio-frequency (rf) fields to accelerate the 
particles. The beam in these cases consists of short bunches with a pulse length 
that is usually small compared with the r€ wavelength. To prevent the bunch from 
spreading due to its intrinsic velocity distribution or due to space-charge repulsion, 
external focusing forces must be provided in both transverse and longitudinal 
directions. In rf accelerators, the axial component of the electric field provides 
focusing in the longitudinal direction, while magnetic fields must be used for 
transverse focusing. Throughout most of this book we deal with continuous, or 
long, beams and linear transverse focusing systems in which the external force on 
a particle is proportional to the displacement from the axis, or central orbit, of the 
beam. A brief introduction to the acceleration and focusing of bunched beams is 
given in Chapter 5. 

Nonlinear beam optics, or more generally, nonlinear beam dynamics, which 
deals with the effects of nonlinear forces due to aberrations in the applied focusing 
systems, is a highly specialized field that cannot be mated comprehensively within 
the scope of a book like this. We therefore limit this topic to brief discussions of 
aberrations in axisymmetric lenses (Section 3.4.6), resonances in circular accelera- 
tors (Section 3.8.6), and nonlinear longitudinal beam dynamics in rf accelerators 
(Section 5.4.8). We do, however, analyze in some detail the generally nonlinear 
nature of space-charge forces in the thermal distribution, which provides a realistic 
description of the behavior of laboratory beams (Sections 5.4.4 to 5.4.7 and 6.2). 
An example of the nonlinear interaction between the aberrations of a solenoid lens 
and the space charge of an electron beam is presented in Section 5.4.12. 

Overall, the material presented in our book is developed in a systematic, largely 
self-contained manner. We start, in Chapter 2, with a review of the basic principles 
and formalisms of classical mechanics as applied to charged particle dynamics; 
our treatment is more comprehensive than the usually brief discussions presented 
in other books. We then proceed to a broad, general review of beam optics and 
focusing systems in Chapter 3. The topic of periodic focusing is treated in some 
detail because of its importance to beam transport and particle accelerators. 

A central theme is the role of space charge and emittance in high-intensity. 
high-brightness beams. In Chapter 4 we use the model of a uniform-density 
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beam with linear self fields. This model allows us to extend the linear beam 
optics of Chapter 3 to include space c h q e  without having to cope with the 
mathematically more complicated nonlinear forces. Special emphasis is given to 
periodic beam transport with space charge (Section 4.4), space-charge effects in 
circular accelerators (Section 4.5). and charge-neutralization effects (Section 4.6). 

The self-consistent theory is developed systematically in Chapter 5 from laminar 
beams (Section 5.2) to the Vlasov model for beams with momentum spread 
(Section 5.3). and then to the Maxwell-Boltzmann distribution, which is treated 
very extensively in Section 5.4. The latter section represents an attempt to develop a 
unifying thermodynamic description of a beam and contains a considerable amount 
of new material that is not found in other books on charged particle beams. 

The thermodynamic description is continued in Chapter 6, which deals with the 
fundamental effects causing emittance growth. The concept of free energy, created 
when a beam is not in equilibrium, and its conversion into thermal energy and emit- 
tance growth is treated in Section 6.2, which includes a comparison between theory, 
simulation, and experiment. Transverse beam modes and instabilities are reviewed 
in Section 6.3.1. Longitudinal space-charge waves are discussed in Section 6.3.2 
since they are fundamental to an understanding of the behavior of perturbations 
in a beam. Two historically important illustrations of the destructive interaction 
between the space-charge perturbations and the beam’s environment are selected. 
One is the resistive wall instability (Section 6.3.2) in straight systems (microwave 
devices, linear accelerators); the other is the longitudinal instability in circular ma- 
chines due to negative-muss behavior and interaction with the wall represented by a 
complex impedance (Section 6.3.3). These cases, which are treated for pedagogical 
reasons on a fundamental level, am intended merely as two examples of the many 
instabilities that may limit the beam intensity and cause emittance growth. A more 
extensive discussion of waves and instabilities in beams, including wakefield effects 
at relativistic energies, is beyond the scope of this book. An excellent introduction 
and survey of these topics with a comprehensive list of references to the scientific 
literatures is provided by Lawson tC.17, Chap. 61. Collective instabilities in high- 
energy accelerators are treated comprehensively and on an advanced level in terms 
of the beams’ wakefields and the wall impedances in the book by Chao ID.111. 

Coulomb collisions as a source of emittance growth and energy spread 
are treated in Section 6.4. Our analysis of the Boersch e$ect (Section 6.4.1) 
shows that intrabeum scattering is relevant not only in high-energy storage rings 
(Section 6.4.2) but may also be significant in low-energy beam focusing, trans- 
port, and acceleration devices. Scattering in a background gas is discussed in Sec- 
tion 6.4.3. As a natural, complementary addition to our review of emittance growth, 
we present in Section 6.5 a brief survey of the methods to reduce emittance (beam 
cooling) in storage rings. Finally, in Section 6.6, we summarize the key topics that 
were discussed, comment on some questions that were left open, and mention a 
few issues that need further research. 

The application of the theory to the design of charged particle beams is stressed 
throughout the book. Many formulas, scaling laws, graphs, and tables are presented 
in the text to aid the experimentalists and the designers of charged particle beam 



devices. Similarly, many of the problems at the end of the chapters were chosen to 
be of practical interest. The main emphasis of this book, though, is on the physics 
and design of beums. Only those features of a particular device that are relevant 
to an understanding of the physics andor necessary for theoretical analysis and 
design are treated. Some supplemental material is presented in the appendixes. 

Charged particle dynamics and the theory of charged particle beams combine 
aspects of classical mechanics, electromagnetic theory, geometrical optics, special 
relativity, statistical mechanics, and plasma physics. A few selected texts covering 
these fields are listed in the bibliography at the end of the book. 

1.2 HISTORICAL DEVELOPMENTS AND APPUCATIONS 

Historically, the first and most prominent area of charged particle dynamics is the 
field of electron optics, where most of the early work and theoretical development 
took place and which is well documented in many books listed in part C of the 
bibliography. The birth of electron optics may be traced to 1926, when H. Busch 
showed that the action of a short axially symmetric magnetic field on electron rays 
was similar to that of a glass lens on light rays. Then in 1931 and 1932, Davidson 
and Calbrick, Brilche, and Johannson recognized that this is also hue for axially 
symmetric electric fields. The first use of magnetic lenses was by Knoll and Ruska 
(1931) and of electric lenses by BrUche and collaborators (1934). 

Up to 1939, electron optics experienced a rapid development stimulated by 
strong industrial needs, especially electron microscopes* cathode ray tubes, and 
television. The classic book, which is an encyclopedia of electron optics in this 
important period and even today is very useful, is that of Zworykin et al., Electron 
Optics and the Electron Microscope [C.l]. 

During World War 11, electron optics received new impulses from war require- 
ments: cathode ray tubes for radar and image-converter tubes for i n f r d  vision, 
but most important, the development of microwave devices (klystron, magnetron, 
etc.) for the generation of high-power electromagnetic waves in the range above 
lo00 MHz. The need for improvement of these latter tubes stimulated interest and 
progress in the study of space-charga effects in high-intensity beams. The classic 
reference here is Pierce’s book [C.3]. 

Another important impetus that significantly expanded the field of electron op- 
tics, or charged particle dynamics in the broader sense, came from the development 
of high-energy particle accelerators. This development started around 1930 with the 
invention of the linear accelerator and the betatron in 1928, the cyclotron in 1931, 
and the electrostatic accelerator in 193 1 - 1932. This was followed by the large high- 
energy accelerators existing today, such as the two-mile electron linac at Stanford 
and the proton synchrotron at Fennilab, near Chicago, now operating at an energy 
of about 1 TeV and called the fevatmn. Beam dynamics in particle accelerators 
is now a major branch of charged particle dynamics. Electron and ion optics was 
extended to include the focusing of beams in circular accelerators. New types of 
focusing systems, such as quadruple lenses, edge focusing in sector-shaped mag- 
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nets, alternating-gradient focusing, and so on, were invented and contributed to the 
successful development of accelerators with steadily increasing energies and im- 
proving performance characteristics. New interest in particle dynamics came also 
from space science, industrial applications of electron-ion beam devices (weld- 
ing, micromachining, ion implantation, charged particle beam lithography). and 
thermonuclear fusion. 

In the decade from 1965 to 1975 two new types of accelerator were developed 
for the generation of electron beams with high peak power and short pulse length; 
these are the relativistic diode and the linear induction accelerator. The former 
produces intense relativistic electron beams (IREB), with peak currents ranging 
from kiloamperes to mega-amperes and energies from hundreds of keV to more 
than 10 MeV. Such high-intensity electron beams are created when short high- 
voltage pulses from so-called Mum generurors or pulse transformers impinge on the 
diode. The associated high electric fields cause field emission from the cathode and 
plasma formation. The plasma expansion leads to gap closun, which, in turn, limits 
the beam pulse length to between 10 and 100 nanoseconds. These pulsed-power 
IREB generators have found applications as strong x-ray sources, for studies of the 
collective acceleration of positive ions by the electric fields associated with intense 
electron beams, and for the generation of high-power microwaves andfree electron 
Inrers. More recently, pulsed diodes have been developed that produce high-power 
ion beams for research on inertial fusion. Miller’s book [C.18] presents a very 
useful introduction to the physics and technology of such pulsed-power, intense 
particle beams. 

Like the betatron, the linear induction accelerator uses inductive electric fields 
produced by the time-varying flux in magnetic cores. These fields are applied in 
a sequence of gaps to accelerate pulsed beams of charged particles. The charged 
particles traverse the gaps only during the time interval in which the magnetic flux is 
changing, and hence a voltage drop appears across the gaps. In contrast to the radio- 
frequency resonance accelerators, induction linacs can accelerate very high peak 
currents, ranging typically from several hundred amperes to several kiloamperes. 
The largest accelerator in this class was the Advanced Test Accelerator (ATA) at 
the Lawrence Livermore National Laboratory. It accelerated a 10-kA 70-11s electron 
beam to an energy of 47 MeV. Originally developed for relatively short electron 
beams (10 to 100 ns), induction linacs are now also being used for longer pulses 
(microseconds) of both electron and ion beams. The best example in the latter 
category is the ion induction linac being developed at the Lawrence Berkeley 
Laboratory. It is designed for acceleration of high-current heavy-ion beams with 
the aim of using them as drivers-like laser beams-to ignite the fuel pellets of 
future inertial fusion reactors. Present experiments are at relatively low energies of 
a few MeV and a current of S 1 A. A full-scale heavy-ion fusion driver system 
would require currents of heavy ions (mass number 2 100) in the range 20 to 
30 kA with an energy of 5 to 10 GeV and a pulse length of about 10 ns. 

The more traditional radio-frequency (rf) linear accelerators are also being 
developed for high-power applications such as heavy-ion fusion, electron -positron 
linear colliders for high-energy physics, and other purposes. The invention of 



the low-energy radio-fntquency-quadrupole (RFQ) accelerator by Kapchinsky and 
Teplyakov in 1970 has revolutionized the field of rf linacs for ion beams. Today, 
practically all rf linacs in major laboratories and industry throughout the world use 
the RFQ as an injector. 

Other recent developments involve the use of intense electron beams as elec- 
tromagnetic radiation sources. Of particular interest in this regard is the gyrotron, 
a new high-power microwave source in the centimeter and millimeter range, and 
the free electron laser (FEL), which covers a very wide spectrum from centime- 
ter to optical wavelengths. All of these applications have triggered new research 
in the physics of intense high-brightness charged particle beams such as trans- 
port through periodic-focusing systems, beam stability in the presence of high 
space-charge forces, interaction with a plasma background, and nonlinear effects 
responsible for beam deterioration (emittance growth) or particle loss. 

This book deals primarily with the theory and design of charged particle beams, 
not with the design principles of accelerators and other devices which are found 
in many of the books listed in the bibliography. Thus it will be appropriate to 
close this historical review by highlighting some of the major early milestones in 
the development of charged particle beam physics with regard to the theoretical 
understanding and modeling of the effects of space charge. 

The recognition that there are fundamental current limits in charged particle 
beams plays an important role in beam theory and design. Historically, the fact 
that the magnetic self field of a relativistic, charge-neutralized beam stops the 
propagation of the beam when the current exceeds a critical value was discovered 
by Alfvdn (in 1939) for electron propagation through space and later applied to 
laboratory beams by Lawson (in 1958). The critical current associated with this 
effect is known in the literature as the Alfikn curwnt or Alfikn-Lawson curwnt. 
Closely related to this effect is the work on self-focused relativistic electron beams 
by Bennett (1934) and Budker (1956). 

The current limit due to space charge (in the absence of charge neutralization) in 
a diode is known as the Child-Langrnuir law and dates to the early work of Child 
(1911) and Langmuu (1913). However, the related limit for a beam propagating 
through a drift tube was studied much later, and the formula for a relativistic 
electron beam derived by Bogdankevich and Rukhadze in 1971 is probably the 
one cited most frequently in the literature. 

The foundation for the mathematical treatment of beams with space charge was 
laid by Vlasov in 1945. Vlasov integrated Liouville’s theorem, Maxwell’s equa- 
tions, and the equations of motion into a self-consistent theoretical model that 
has become an indispensable tool for the theoretical analysis of beams. In 1959, 
Kapchinsky and Vladimirsky proposed a special solution to the Vlasov equation, 
known in the literature as the K-Vdistriburion, which has the property that the 
transverse space-charge forces are linear functions of the particles’ positions in the 
beam. This was a major milestone in beam physics whose practical importance 
for analysis and design cannot be overemphasized. The K-V distribution gained 
additional significance when Lapostolle and Sachem in 1971 introduced the de- 
scription of bcams in terms of the root-mean-square (rms) properties (rms width, 
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divergence, and emittance). They showed that beams having the same rms prop- 
erties an equivalent. This equivalency principle is used extensively in Section 5.4 
for comlating the nonanalytical Maxwell-Boltzmann distribution with the analyti- 
cal K-V distribution in the transverse direction and with the parabolic line-charge 
distribution in the longitudinal direction, and in Section 6.2 for our theoretical 
beatment of emittance growth. 

Another important milestone in the development of beam physics is the detailed 
pioneering work by Laslett in 1963 on the space-charge tune shift of the betatron 
oscillations in circular accelerators. This effect, often referred to as the Laslett tune 
sh8, is of fundamental importance, as it limits the achievable intensity in these 
machines. With regard to understanding the physics of space-charge-dominated 
beams, the simulation work by Chasman in 1968 for linear accelerators, the analysis 
of collective oscillation modes in uniformly focused beams by Gluckstern, and the 
stability analysis by Davidson and Krall in 1970 constitute important achievements 
which influenced future work. 

This list of historical milestones is obviously quite subjective and incomplete and 
could be extended into many directions, such as the rich field of beam instabilities, 
where the theoretical analysis of the negative-mass instability in 1959 comes to 
mind as a major event. But this book is not about instabilities. Furthermore, we 
wanted to limit the list to “historical” milestones, defined somewhat arbitrarily as 
events that occurred more than 20 years ago. 

1.3 SOURCES OF CHAROED PARTICLES 

Although the main topic of this book is beam dynamics, it will be beneficial to 
review briefly the basic principles and performance limitations of typical particle 
sources. This is particularly important for intense beams, where physical and 
technological constraints of the sowce pose fundamental limits for the beam current 
and the emittance or brightness that can be achieved. 

The simplest conceptual model of a source is the planar diode. One of the 
two electrudes emits the charged particles; in the case of electrons it is called a 
cathode. A potential difference of the appropriate polarity accelerates the particles 
to the other electrode, called the anode in the electron case. In practice, the emitter 
has, of course, a finite size, and usually a circular shape with radius r,. The 
mode contains a hole or a mesh to allow the beam to propagate into the vacuum 
tube downstream, where it is focused or accelerated depending on the particular 
application. Furthermore. the electrode in which the emitter is embedded as well 
as the anode may have a special nonplanar design to provide initial focusing for 
the beam. In a Piexe-type geometry, for example, the electrodes form an angle of 
less than 90” with respect to the beam axis to produce a transverse electrostatic 
force that exactly balances the repulsive Coulomb force due to the space charge 
of the beam (see [C.3, Chap. XI). 

A schematic illustration of a typical diode-type electron gun with thermionic 
cathode, Pierce-type focusing electrode, and anode mesh is shown in Figure 1.1. 
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The electron beam radius in this example remains practically constant within the 
gun and then increases due to space-charge repulsion when the beam enters the 
field-free region outside the anode. To prevent divergence due to space-charge 
forces or transverse velocity spread, the beam has to be focused with appropriate 
magnetic or electrostatic lenses, as discussed in this book. Other types of electron 
sources employ field emission or photocathodes; the cathodes may have the shape 
of an annulus (to form a hollow beam) or a sharp tip. Additional intermediate 
electrodes (triode or tetrode configurations) may be used to control the beam 
parameters. 

Conduction electrons in a metal have an energy distribution that obeys the 
Fed-Dirac statistics. The electrons emitted from a thennionic cathode belong to 
the Mmellian rail of the Fed-Dirac distribution, and the current density Jth is 
given by the Richardson - Dushman equation [ 11 

Here T is the cathode temperature, W the work function of the cathode material 
(typically a few eV), and ke is Boltzmann’s constant (8.6175 X lo-’ eV/K). The 
theoretical value for the constant A is 

1.2 x lo6 Am-2K-2, 
A = - =  4nemki  

h3 

C A N O D E  

Figuro 1 .I. Schematic of an elecchpn gun with themionic cathode, Pierce-iypo-dectrode goom*, 
and anode mesh. ISw Appendix 1 for o discussion 01 such o gun without onods msh.) 
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where e = 1.6 X lo-’’ C is the electron charge, m = 9.1 1 X kg the elec- 
tron rest mass, and h = 6.63 X lo-” Js is Planck‘s constant. Experimentally, one 
finds a value for A that is lower than (1.2) by a factor of about 2. Fabrication of 
themionic cathodes is a highly specialized art where the choice and composition 
of materials is guided by requirements of low work function W, long lifetime (at 
high temperahue), smoothness of emitting surface, and other factors. Pure tungsten 
has a work function of W = 4.5 eV, and tungsten cathodes operate at a temperature 
of 2500 K ( ~ B T  - 0.2 eV). with a current density of about 0.5 A/cm*. Consid- 
erably higher current densities of 10 to 20 Ncm2 can be achieved with dispenser 
cathodes, which are used for high-power microwave generation. Dispenser cath- 
odes use barium or strontium oxides impregnated in a matrix of porous tungsten (or 
similar metals). These cathodes operate at a typical temperature of 1400 K (kBT - 
0.12 eV) and have an effective work function of 1.6 eV. 

A typical ion source with a diode configuration is shown schematically in Fig- 
ure 1.2. The ions are extracted from the plasma of a gas discharge, and the 
accelerated beam passes through a hole in the extraction electrode into the vacuum 
drift tube. The emitting plasma surface area is not fixed as in the case of a cathode. 
Rather, it has a concave shape, called meniscus, which depends on the plasma 
density and the strength of the accelerating electric field at the plasma surface. The 
dashed lines in Figure 1.2 indicate the equipotential surfaces of the electric field 
distribution due to the applied voltage VO as well as the space charge of the beam. 
Note that there is a small potential drop between the plasma surface and the wall 
of the chamber that encloses the plasma. The concave shape of the meniscus and 
the aperture in the source electrode produce a transverse electric field component 
that results in a converging beam. 

In general, ion sources are much more complex than electron guns. There are 
many different types of sources for the various particle species, such as light ions, 
heavy ions, or negative ions (e.g., He). Most of the sources employ magnetic fields 
to confine the plasma. Some have several electrodes at different potentials to better 
control the ion beam formation and acceleration process. A special problem with ion 
sources is the gas in which the plasma is formed and which leaks through the source 
aperture into the acceleration gap and the drift tube. Near the source the pressure 
is high enough that a plasma with density exceeding the beam density can be 
formed through ionizing collisions between the beam ions and gas molecules. This 
causes space-charge neutralization, which is advantageous for focusing but may 
also cause detrimental effects such as high-voltage breakdown and beam plasma 
instabilities. Another problem arises because ions with different charge state or 
mass are extracted from the plasma together with the desired species. In the case 
of negative ions such as H-, for instance, electrons are also accelerated with the 
ion beam. Unless the number of contaminating particles is small, it is necessary 
in these cases to use deflecting magnetic fields to remove the undesired particle 
species from the beam. 

For our purpose of illustrating the basic design concept of charged particle 
sources it suffices to consider the simple diode configurations of Figures 1.1 and 
1.2. In such sources the space-charge electric field limits the amount of current 
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that can be accelerated by a given voltage VO. For a planar electrode geometry 
with a gap spacing d between the two plates, the limiting current density J (in the 
nomlativistic limit and in MKS units) is given by the formula 

J = 1.67 X lw3(  [A/m2], mcz d2 (1.3) 

where q and m are the particle charge and mass, respectively, and c is the speed 
of light. The relation, first derived by Child and Langmuir [21, is known in the 
literature as Child's law or as the Child-Langmuir law. Applying this result to 
a uniform round beam emitted from a circular area with radius r, yields for the 
beam current 

2 

I = i.67q x 10-3(+) In vo 3 0  ( '. d )  [A]. mc 

However, in practical ion sources and electron guns with cylindrical geometry 
the beam current may be considerably lower than this limit, which is based on 
an ideal one-dimensional planar-diode geometry. The ratio I / V i n  is known as the 
perveance of the beam. A derivation of Child's law is given in Section 2.5.2. 

An important figure of merit for a high-brightness beam is the emitzance, which 
is basically'defined by the product of the width and transverse velocity spread of 

/DRIFT TUBE 

\ EQUIPOTENTIAL 
SURFACES 

EMITTING SURFACE 
(PLASMA "SHEATH" OR "MENISCUS") 

Figun 1.2. Schematic of a plasma ion mum. The quipoiential ~urlocs, of the electric fidd 
distribution am indicated by doshed lines. Tho ions ore emiftad hwn fhe concave ~~OJIIMY r h d ,  
which forms an aquipotmtiol sub. 
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the beam. The electrons in the tail of the Fenni-Dirac distribution inside a cathode 
and the ions in the plasma source have a Maxwellian velocity distribution given by 

where T is the temperature of the cathode or the plasma. As a result, the particles 
emerge from the source with an intrinsic velocity spread. If x and y denote the two 
Cartesian coordinates perpendicular to the direction of the beam, the nns values 
of the transverse velocity spread for the Maxwellian distribution are readily found 
to be 

(1.6a) 

If the emitting surface is a circle with radius r, and with uniform current density, 
the rms width of the beam is 

As explained in Section 3.2, an efective normalized emittance is defined nonrel- 
ativistically as 

( 1.7a) f i x  
€n = 42 - 

C 

Substitution of (1.6a) and (1.6b) in (1.7a) yields 

I t 2  
en = 2r3( -) kB T [m-rad] 

mcz 
(1.7b) 

The normalized emittance measures the beam quality in two-dimensional phase 
space, which is defined by the space and momentum coordinates of the particle 
distribution (i.e., n, p x ,  or x ,  u,, nonrelativistically). From Liouville's theoRm 
(discussed in Section 3.2) it may be shown that the normalized emittance remains 
constant if there an no nonlinear forces or coupling forces between different 
coordinate directions. Thus Equation (1.7b) constitutes a lower theoretical limit; 
in practice, nonlinear beam dynamics, instabilities, and other effects may cause 
emittance growth, so that the actual value is always larger than (1.7b). 

For many high-power applications the output cumnt of an electron gun is limited 
by the achievable current density J ,  at the cathode rather than by the space-charge 
limit and by the high-voltage breakdown effect to be discussed below. In the widely 
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used thermionic cathodes, current densities, in practice, are normally limited to 10 
to 20 A/cm2, and values as high as I 0 0  A/cm2 have been achieved in experimental 
studies, depending on the desired cathode lifetime, average beam power, and other 
factors. If the current density Jc is fixed, the desired beam current I determines 
the cathode radius rs and hence also the emittance en. Using r, = ( I / J c a ) ' R ,  one 
can write Equation (1.7b) in the form 

which shows that the emittance increases with the square root of the product 
of beam current and cathode temperature and decreases with current density 
as J;In. For Jc = 10 A/cm2 = Id A/m2 and kBT = 0.1 eV, one obtains 
Q = 1.6 X 10-61'n m-rad. 

In a new type of electron gun with photocathode that is being developed at 
various laboratories, a high-power laser beam is focused on the cathode surface 
and electron currents of several hundred A/cm2 have been achieved. The pho- 
tocathode is located inside the first cavity of an rf injector-linac structure, as 
shown in Figure 5.1 of Appendix 5.  The strong axial electric field in this cav- 
ity (20- 100 MV/m) rapidly accelerates the electrons to a high energy (2 1 MeV). 
Timing and length of the laser pulse are chosen to produce a short electron bunch 
during a small phase interval within the accelerating part of the rf cycle. The 
high-brightness beams produced by the laser-driven rf photocathode guns are of 
particular interest for advanced particle accelerator applications such as high-energy 
e +  e- linear colliders and free electron lasers (FELs), which require beams with 
high intensity but very small emittance. The rf photocathode gun was first de- 
veloped at Los Alamos, and the general concept is described in the early papers 
by Fraser et al. [3]. More recent reviews of the developments in this field can be 
found in References [4] and [5 ] .  The problem of emittance growth in such electron 
guns due to rf defocusing and nonlinear space-charge forces is discussed briefly 
in Appendix 5.  

The above scaling does not apply for high-intensity plasma-type ion sources 
with a simple diode geometry. In this case the achievable beam current is often 
limited by Child's law and by high-voltage breakdown. Several different empirical 
formulas for voltage breakdown have been developed over the years based on 
practical experience and theoretical models. According to these formulas the gap 
width d between the electrodes must not be smaller than a critical value that 
depends on the voltage Vo between the electrodes as 

where C is a constant and the exponent a ranges between 1 < a < 2, depending 
on the model for breakdown. In one model, the electric field strength, Vo/d, is the 
parameter controlling breakdown, hence a = 1. Another model assumes that the 
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product of field strength and gap voltage (i.e.. Vi/d) determines the breakdown 
condition, so that a = 2. In a recent survey of experimental results with ion 
sources, Keller concluded that the relation 

(i.e., a = 1.5) provided the best fit to the data [4]. This appears to be a reasonable 
compromise between the two extreme cases of a = 1 and a = 2. It should be 
pointed out, however, that such simple scaling laws have to be used with some 
caution. In practice, electrical breakdown is a very complicated phenomenon that 
depends on many details (other than gap spacing and voltage), such as gas flow 
from the source, geometry of the electrode structures, and surface cleanliness. 

Another important constraint influencing the output characteristics (perveance 
and emittance) of high-current, low-emittance charged particle sources is imposed 
by considerations of beam optics. To minimize nonlinearities in the electrostatic 
field configuration, especially spherical aberrations, which would adversely affect 
the beam quality, the radius r, of the beam at the emitter surface must not be larger 
than the gap width d.  In most high-perveance ion source designs, for instance, the 
ratio r,/d is in the range 

0.2 < '. < 1.0. 
d 

(1.11) 

It should be noted that this beam optics argument does not apply to intense 
relativistic electron beams and high-power ion diodes producing charge-neutralized 
beams with intensities far above the space-charge limit given in Equation (1,4). 

The above set of equations and constraints defines the parameter space for high- 
perveance electron or ion sources. Thus, the intrinsic normalized emittance €,, is 
determined by the beam radius r, at the emitter surface and the source temperature 
kBT according to Equation (1.7). For electrons from thermionic cathodes, one 
typically has kBT, FJ 0.1 eV, while ion temperatures from plasma sources (e.g., 
protons or H- ions) arc usually an order of magnitude higher (i.e., kBTi SJ 1 
to 5 eV). If en, and thus r,, are given (to meet the requirements of a particular 
application), the beam cumnt and voltage are defined by Child's law (1.4) and the 
two constraints imposed by electrical breakdown (1.10) and beam optics (1.11). 

For experiments in which a high-intensity beam is to be focused to a small 
spot size, the unnonnalized emittance at the final beam energy, = en/@ y ,  which 
represents the product of beam radius and divergence angle, is an important pa- 
rameter. It is inversely proportional to the relativistic velocity and energy fac- 
tors f3 = v / c  and y = (1 - f i 2 ) - I n ,  and hence decreases as the particles are 
accelerated to high energy. Emittance by itself is not sufficient to characterize the 
beam quality. A better figure of merit is the brighmess B defined by the ratio 
of beam current I and the product of the two emittances, i.e., I/c2 for axisym- 
metric beams [See Equation (3.8)]. Since the emittance changes with energy, it 
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is preferable to use the normalized brightness defined as Bn = 21/?r2e~ [Qua- 
tion (3.22)]. The normalized brightness, like the normalized emiuance c,,, is an 
invariant in an ideal system. Emittance growth due to nonlinear forces, instabili- 
ties, and other effects (discussed in Chapter 6 )  decreases the normalized brightness. 
By comparing the actual beam brightness with the ideal value one can assess the 
effectiveness of the design and performance characteristics of a particular device. 
As an example, let us consider a high-intensity electron beam from a dispenser- 
type cathode. Using Equation (1.8). one finds that the normalized brightness has 
an upper limit of 

J ,  mez B , , = - -  
  IT kBT' 

(1.12a) 

This brightness limit depends on the ratio of the current density J ,  at the cathode 
and the temperature T of the cathode, and it is independent of the current 1. If 
one operates at a maximum current density of J ,  = 10 A/cm2 and at a cathode 
temperature of &B T = 0.1 eV, the brightness has an upper limit of 

Bn = 8 X 10" A/(m-rad)2. (1.12b) 

In practice, the brightness of the electron beam in the system downstream from the 
electron gun will always be less than this ideal value. 

The preceding discussion was intended to provide an introductory overview 
of basic design principles of charged particle sources and of the fundamental 
performance limits of high-intensity beams due to constraints imposed by the 
physics and technology of source operation. Detailed descriptions can be found in 
the literature, such as the books C. 15, C.16, and C.23 listed in the bibliography, and 
in the proceedings of accelerator conferences or topical meetings on low-energy 
beams and sources. 
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CHAPTER 2 
Review of Charged 
Particle Dynamics 

2.1 THE LORENTZ FORCE AND THE EQUATION OF MOTION 

In this chapter we present a brief review of the methods of relativistic classical 
dynamics for determining the motion of charged particles in electromagnetic fields. 
We begin with the force on a point charge q in an electromagnetic field, known 
as the Lorentz force and given by 

F = q(E + v X 8). (2.1) 

Note that the International System of Units (SI), also referred to as the mks system, 
is used consistently throughout this book. Equation (2.1) is valid for static as well as 
time-dependent fields. The field vectors E and B obey Maxwell's equations, which 
in our case of charged particle motion in vacuum (where D = coE,B = poH) 
may be written in the form 

(2.2a) 

V X B = p o J + - -  ' aE V . B - 0 .  (2.2b) 

Here we used the relation c2 = l/eopo between the speed of light c, the permit- 
tivity €0, and the permeability po of free space. The current density J and the 
space-charge density p satisfy the continuity equation V J + ap/dr = 0. The 
motion of a particle due to the force of Equation (2.1) is determined by Newton's 
equation 

cz at ' 

(2.3) 

1s 

-=i dP F = q(E  + v X B), 
dz 
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where P is the mechanical momentum. In nonrelativistic mechanics, P is simply 
the product of particle mass m and velocity v (i.e.. P = mv). The above force 
equation is also correct relativistically. However, the relationship between P and 
the particle velocity is more complicated and, according to the theory of special 
relativity, given by 

or 

P = ymv, 

where y ,  also known as the Lorentz factor, is defined as 

(2.4) 

and p = u / c  is the ratio of the particle velocity u to speed of light in vacuum c. 
Substituting (2.4) into (2.3), one obtains 

dv + mv - dY = F = q(E  + v X B). 
ym dr dt 

Solving for the acceleration a = dv/dt, one can write this equation in the form 

In the nonrelativistic limit where y = 1 and d y / d r  = 0, the acceleration is 
parallel to the force and given by a = F/m. However, in the relativistic situation 
the acceleration and the force have, in general, different directions. As can be Seen 

from Equation (2.7), only if the force is perpendicular or parallel to the velocity 
is a proportional to F. For F l v ,  one finds that 

and for F 11 v, 

!!!I! I y 3 m % *  all = 3, Y 3 m  or 
dt dt 

(2.8a) 

(2.8b) 

Thus in place of the mass m of nonrelativistic mechanics we have an e$ective m a s  
that depends on the direction between the force and the velocity. The two effective 
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masses of the two special cases (2.8a) and (2.8b) are known in the literature as the 
transverse mass mt and the longitudinal mass ml, respectively, and are defined by 

m 
mI = y m  = 

m l = y m =  

(1 - p ) ’ n  ’ 

(1 - - 
3 m 

(2.9a) 

(2.9b) 

In addition, y m  is also known as the relativistic mass and m as the rest mass, 
often written with a subscript as m ~ .  These various definitions of mass have led to 
considerable confusion, giving the impression that mass is a function of energy that 
also depends on the direction of the force. However, according to special relativity 
there is only one mass m that is independent of the frame of observation (i.e., 
invariant to a Lorentz transformation) [l]. 

The main task of charged particle dynamics is to determine the particle motion 
by solving Newton’s equation for a given configuration of fields E and B. A 
special difficulty arises in high-intensity beams, where the fields depend also on 
the particles’ electric and magnetic self fields, which in turn depend on the particles’ 
motion. Known as the problem of self-consistency, this is addressed in Chapter 5.  

Equation (2.3) is a vector equation that consists of a set of three second-order 
coupled differential equations. In cartesian coordinates we have 

d 
(?‘mi) = y m i  + y m f  = q(E ,  + j B ,  - illy), 

d 
- dt ( r m j )  = + m i  + ymy = q(Ey + i ~ ,  - i&), 

(2.10a) 

(2. lob) 

(2.1oc) 

Many of the cases treated in this book involve beams and field geometries with 
rotational symmetry which are best treated in cylindrical coordinates. By trans- 
formation from cartesian to cylindrical coordinates ( r ,  8 ,  z ) ,  the velocity vector is 
given by v = {it r e ,  i), and the equations of motion take the form 

(2.11a) 

(2.11b) 

d - ( r m i )  - ymr# = q(Er + r i B ,  - i&). 
dt 

I d  - - (ymr2$)  = q(E0 + iBr - i B , ) ,  
r dt 

(2.1 lc) 
d 
- ( y m i )  = q(Ez 3- iB8 - r 6 B r ) .  
dt 

It is immediately apparent that Fiquations (2.10) and (2.11) are rather complex 
second-order differential equations which permit rigorous analytical solutions in 
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only a few simple cases. Furthermore, we see that the form in which our space 
variables enter into the equations depends on the coordinate system we choose. 
This is to say that we cannot write down a generalized form of scalar equa- 
tion which applies to every component equation in any given coordinate system. 
This shortcoming of the Newtonian form of the equation of motion is avoided in 
the Lagrangian-Hamiltonian formalism, where generalized coordinates and gen- 
eralized potentials are introduced. However, it should be recognized that the 
Newtonian equations of motion are a good starting point for many problems and 
that they are particularly useful in obtaining a simple physical picture of the forces 
and the resulting particle motion in complicated systems. 

Of major interest in this book is the use of electric and magnetic fields as lenses 
to focus the beam along the desired path (in analogy to the focusing of the light 
rays in optics). In addition, electric and magnetic fields are also used to deflect the 
beams, as in cathode ray tubes or to bend them into circular orbits, as in cyclotrons 
and synchrotrons. For design purposes, it is interesting to compare the relative 
magnitude of electric and magnetic forces for the same amount of stored energy 
per unit volume and to understand the constraints imposed by technical limitations. 

With WE = (eo/2)E2 for the electrostatic energy and W M  = (1/2p0)B2 for the 
magnetostatic energy per unit volume, we find for W E  = W M :  

B 1 
E C 
- = (poeo)'n = - 

in free space. On the other hand, the ratio of magnetic and electric forces is given by 

and if we substitute the above relation for B / E ,  we get 

Since u S c, this implies that (except for extreme relativistic velocities) to achieve 
the same focusing or deflection force (e.g., in a cathode ray tube), more stored 
energy is needed if a magnetic field is used than with an electric field. However, in 
practice, one is severely limited by electrical breakdown problems to field strengths, 
which for static fields are below about 10 MV/m. Electromagnets with iron can 
produce fields of up to 2 tesla (T) limited by magnetic saturation of the iron. If we 
take a particle with velocity u = 0 . 1 ~  and compare the force in a magnetic field of 
B = 2 T with that in an electric field of E = lo7 V/m, we find that the ratio of the 
forces F M / F E  = uB/E = 6. The magnetic force is thus six times stronger than 
the electric force. On the other hand, for v = O.Olc, the force ratio is 0.6 and hence 
the electric field would be more effective at this lower velocity. For this reason, 
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electric fields are limited to applications at low particle velocities. At relativistic 
energies, magnetic fields must be used for bending and focusing of particle beams. 

In recent years, superconducting magnets producing magnetic fields of 4 T and 
higher have been developed for use in high-energy accelerators. A good example 
is the tevatron at Fermilab, where installation of 4-T superconducting bending 
magnets made it possible to double the proton energy to about 1 TeV. 

2.2 THE ENERGY INTEGRAL AND SOME GENERAL FORMULAS 

When E and B represent static fields that do not depend on time explicitly, the 
system is conservative and we can obtain a first integral of the equation of motion 
which may be identified with the total energy of the particles. To accomplish this, 
multiply each side of Equation (2.3) with v: 

d 
-((rrnv) * v  = qE * v + q(v X B) * v .  
dt 

Since v l ( v  X B), the last term on the right side is zero, and with v = dlldr, 
where dl is the path element, we get 

(2.12) 

The electric field E in a conservative system can be derived from a scalar poten- 
tial 4: 

(2.13) 

In the nonrelativistic case where y = 1, integration of Equation (2.12) between 
two points along the particle’s trajectory yields 

(2.14) 

On the left-hand side, we have the change in kinetic energy of the particles, and 
we can interpret Equation (2.14) as follows: 

The change in the particle’s kinetic energy is given by the electrostatic 
potential difference between the two points considered. 
The magnetic field does not affect the kinetic energy (i.e., it does not do any 
work even though it may change the direction of the particle’s path). 
If T denotes the kinetic energy and U = q4 the potential energy of the 
particles, we can state the physical contents of Equation (2.14) as T + U = 
const (conservation of total energy). 
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To obtain the energy integral in the general relativistic case, we first differentiate 

the left side of Equation (2.12)’ which yields 

dv  dY dl 
y m  dt * v + m - v  - v = q E  - - 

dt dt ‘ 

This may be written in the alternative form 

-- y m  dv2  + mu2- dY qE * - dl 
2 dt dt dt ’ 

or 
ymc2 dS2  

+ mc2p2 - dl -- d y  qE.--. 
2 dt dt dt 

From B2 = 1 - l/y2 we have 

d p 2  2 d y  
dt y3 dt ’ 

- = - -  

and since l/y2 + p2 = 1, the preceding equation becomes 

d dl d 4  
dt dt dt 
- (ymc2)  = q E  * - = -4-. (2.15) 

With U = 4 4 ,  this result may be stated as 

(2.16) 
d 
- ( y m c 2  + U) = 0, 
dt 

which is the law of conservation of energy in relativistic form. Binomial expansion 
in the velocity yields 

me2 = mc’(1 + 5 1 p2 + 8p4 3 + . * a ) .  (2.17) 
(1 - p ) ’ R  

ymc2 = 

For u 4 c, or /3 4 1, we obtain the nonrelativistic approximation 

(2.18) ymc2 - me2 + - v2.  

The first term on the right side of Equations (2.17) and (2.18) is the rest energy 
of the particles, 

m 
2 

EO = mc’, (2.19) 

which is the famous energy -mass equivalence principle of Einstein’s special 
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relativity theory. The remaining terms in Equation (2.17), which depend on the 
velocity v ,  can then be identified as the kinetic energy T. For the nonrelativistic 
approximation, we have 

m 2  T = - v ,  
2 

while in the relativistic case, we get 

T = ymc2 - mc2 = (y  - l)mc2 = ET - E o ,  (2.21) 

or 

ET = ymc2 = Eo + T .  (2.22) 

The total energy ET of the particle is the sum of rest energy EO and kinetic 
energy T. The relationship between mechanical momentum P i. y m v  and energy 
ET of a moving particle is, in view of P2y2 = (y2  - l), obtained as follows: 

9 (2.23) 
P 

c mc 
, or - = (y2  - (E# - E;)In 

P =  

and 

E; = c2p2 + m2c4 = y2m2c4.  (2.24) 

Differentiating Equation (2.24) with respect to time t yields 

In conclusion, we can write the equations of motion in the form 

d P  d 
- =  - ( y m v )  = q(E + v X B), 
dt  dt  

* v = q E  * V ,  
dET dP 
dt dt  

- = -  (2.25) 

where ET = me2 + T = ymc2. In the extreme relativistic limit (ET * Eo), the 
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relation in Equation (2.23) takes the approximate form P = ET/c, with units of 
MeV/c often used in high-energy physics. 

The two most important particles in this book are electrons and protons. Their 
charge, mass, and rest energy are given in Table 2.1. With E, = 0.5 1 1 MeV being 
the rest energy of an electron, the rest energy of an ion can be calculated to good 
approximation as follows: 

Eo = AEa - ZE, 931.481A - 0.5112 [MeV]. (2.26) 

Ea = 931.481 MeV represents the atomic mass unit based on I2C (A = 12 exactly). 
A is the atomic mass number of the element, and Z is the number of electrons 
removed from the atomic shell (i.e., the ionization state). This approximation is 
accurate to the extent that we can neglect the binding energy of the electrons that 
have been removed (Le., for ions with a low charge state). Table 2.2 lists the values 
of A and Eo for several light-ion species. 

Tabk 2.1 Chargo and mass of ohctron and proton 

Electron Proton 

Charge q -1.602 x 10-19 c 1.602 x 10-19 c 
Mass m 9.110 X lo-” kg 1.673 X lo-*’ kg 
Rest energy EO 0.51 1 MeV 938.259 MeV 

Tabk 2.2 Rost onorgios of romo irotop.r and ions 

Rest Energy Rest Energy 
Isotope A ( a m )  (MeV) Ion (MeV) 

~~ 

‘H 1.007825 938.770 

ZH 2.01410 1,876.096 
He 3.01603 2,809.375 

4He 4.0026 3,728.346 

%i 6.01512 5,602.970 

‘2c 12.000 1 1,177.772 

“N 14.00307 13,043.594 

~ ~~ 

938.259 
939.281 

1,875.585 
2,808.864 
2,808.353 
3,727.835 
3,727.324 
5,602.460 
5,601.437 
11,176.239 
11,174.706 
13,043.083 
13,040.017 
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2.3 THE UORANOIAN AND HAMllTONlAN FORMALISMS 

2.3.1 Hamilton‘s Principle and Logrange’s Equations 

The Newtonian equations of motion have the disadvantage that they differ in their 
form markedly when the coordinate system is changed. To circumvent this problem, 
one introduces in classical mechanics generalized coordinates qi and the associated 
velocities of 4i; one then defines a function L(qi, q i ,  t ) ,  the Lagrange function, from 
which the equations of motion can be generated in a form that is independent of 
the coordinate system. 

We present a brief review of the main features of the Lagrangian formalism 
and refer to standard textbooks on classical mechanics, such as Goldstein [A.3), 
for a more detailed treatment. First, we have to recognize that a Lagrangian L 
can be defined only for systems with applied forces derivable from an ordinary or 
generalized potential. The simplest case is a conservative system where I F  - dl = 
0 (work done around a closed path is zero). Moreover, if we take the nonrelutivistic 
case of a conservative system and B = 0 ,  the Lagrange function is defined by the 
difference between kinetic and potential energy, 

L - T - U ,  (2.27) 

where F = -QU. 
We shall see below that we can define a Lagrange function also for the case that 

B # 0 and the particle velocities are relativistic. For our application, we also note 
that the generalized coordinates qi are normally Cartesian, cylindrical, or spherical 
coordinates; however, in general, qi can be any set of coordinates that uniquely 
defines the state of the system. 

Suppose now that we are dealing with a system for which a Lagrangian can 
be defined. Hamilton’s variational principle states that the motion of the system 
(in our case that of a charged particle in an electromagnetic field) from one fixed 
point at time tl to another point at time t~ is such that the time integral of the 
Lagrangian, $ L dt, along the path taken is an extremum (actually, a minimum). 
Thus, if we compare different possible paths between the two points (i.e., consider 
small variations of the path taken), the actual path followed by the particle is 
defined by the condition that the variation of the time integral $L dt is zero, or 

tl 

S Jlt2 L(qj, qi ,  t )  dt = /I, SL(qi, qi, t )  dt = 0. (2.28) 

Since tl and tz remain fixed and we consider only virtual changes of the 41.4‘1 

such that 6qi.Sqi at the two endpoints of the path remain zero, we can take the 
S under the integral. In classical mechanics, Hamilton’s principle is often used 
as the starting point to derive Lagrange’s equations of motion, and we shall now 
present this derivation. 
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The variation of L (i.e., the difference between L for the virtual coordinates 
qi + 6qi,qi  + S q i ) ,  and the unvaried original path qi,qi  is (for a conservative 
system where aL/at = 0) 

(2.29) 

where Sqi = d/dt(dqi) .  

gration of the second term involving qi: 
Now substitute Equation (2.29) into Equation (2.28) and perform partial inte- 

Since the variation at the endpoints is zero, the first term on the right-hand side is 
zero. Therefore, we may write Hamilton's principle in the form 

(2.31) 

In view of the fact that the Sqi are independent of each other, it follows that 

d aL aL 
dt aqi aqi 

= 0 ( i  = I ,  2, 3). - - _ _  (2.32) 

These are the Lagrange equations of motion. We will show that they are identical 
with the equations of motion in the Newtonian form [Equations (2.10) and (2.1 111. 
Consider a conservative system and assume that the motion is nonrelativistic and 
that B = 0. In Cartesian coordinates, the Lagrangian is defined as 

and substitution in Equation (2.32) yields for the x-coordinate 

This is identical with Equation (2.10a) when y = 1, f = 0, and B = 0. In cylin- 
drical cooniinutes, we have 
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and with 

we obtain from Equation (2.32) for the radial motion 

This equation is identical with Equation (2.11a) when y = 1, $ = 0, and B = 0. 
In similar fashion one can derive the equations for the azimuthal and axial motion 
[Equations (2.11b) and (2.11c)l. 

(Note: In Hamilton's principle, the variation is taken between two unvaried 
points in space and time. The varied paths will not obey the equation of motion or 
the conservation laws; only the unvaried, actual path does.) 

2.3.2 0.nomlized Potential and Lagrangian for Charged 
Padck Metion in an Electromagnetic Field 

The Lagrange equations in the form of Equation (2.32) also apply for the more 
general case where forces can be derived from a generalizedpotential, or a velocity- 
dependent potential, U'; Lagrange's function L is then defined (nonrelativistically) 
as L = T - (I' and the generalized forces are obtained by the prescription 

Fi = -- au' + -(-). d a(/' 
aqi dt aqi 

(2.33) 

The most important case of such a generalized potential is that of combined electric 
and magnetic forces on a moving charge. To derive U' for this case, we go back 
to Maxwell's equations [Equations (2.2)] and introduce the vector potential A: 

B - V x A .  (2.34) 

The E vector can then be redefined for time-varying fields by 

(2.35) 

With these two relations, the Lorentz force equation [Equation (2.1)] may be written 
in terms of the scalar potential 4 and the vector potential A in the form 

-V4 - aA + v X V X A).  
at 

(2.36) 



Note that 4 and A are connected by the Lorentz gauge condition, which in free 
space is given by 

= 0. V * A + - -  1 a4 
C* a t  

(2.37) 

The terms involving A on the right side of Equation (2.36) can be written in a 
more convenient form. Consider the x-component, for instance: 

The total time derivative of A, is 

and the x-component of v X V X A can therefore be written as 

dA, aA, + -. A) - - a 
(V X V X A), = -(v ax dt a t  

Furthermore, we recognize that 

d ~ ,  d a - = -[ -(v - A)]. 
d t  d t  au, 

With these substitutions, we obtain for Equation (2.38) 

F, = q( -ax a (4 - v * A) - - d a  [-(A * v)]l. 
dt av, 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

Since the scalar potential 4 is independent of velocity, this expression is equiva- 
lent to 

(2.43) F, E -- 

where 

U' = q$ - qA * v (2.44) 
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is a generalized potential that has the form desired by the prescription of Equa- 
tion (2.33). Consequently, the Lagrangian for a charged particle in an electro- 
magnetic field can be written (nonrelativistically) 

L =  T - q$ + q A -  V. (2.45) 

As an example, in cylindrical coordinates, we have 

m 
2 L = -(i2 + r2 i2  + i') - q$(r ,@,z)  + q(iA, + rhA0 + i A z ) .  (2.46) 

If Equation (2.46) is substituted into the Lagrange equations [Equations (2.32)], one 
obtains the equations of motion in cylindrical coordinates and in the nonrelativistic 
approximation ( y  = 1, f = 0), as is easily verified. 

In order to obtain the equations of motion in the relativistically correct form, 
one has to modify the definition of the Lagrange function from L = T - U' to 
L = T' - U', where 

with /3 = u/c.  Note that T' is not the kinetic energy. Thus, 

(2.47) 

is a suitable Lagrange function for a relativistic particle in an electromagnetic 
field. Let us check this for Cartesian coordinates when A = 0. Since B2 = 

(i2 + j 2  + i2 ) /c2 ,  we find that 

- me2 _ -  i - y m i ,  aL a4 - = -4-* 
aL 
a i  (1 - p ) I n  cZ ax ax 
- -  

Hence from Equation (2.32), 

in agreement with Equation (2.10a). 
It should be noted that the definition of L in Equation (2.47) is not unique. We 

can add or subtract arbitrary constants. Thus, if we subtract mc2, we get the form 

which is more widely used (Goldstein [A.3], Panofsky and Phillips [A.l], Jackson 
IA.41, Septier [C.19], etc.). 
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2.3.3 Hamilton's Equations of Motion 

The Lagrange equations are second-order differential equations, and hence, the 
motion of the particle is completely specified if the initial values for the generalized 
coordinates qi and velocities q i  are given. In this sense, the qi and q i  together form 
a complete set of independent variables necessary for describing the motion. For 
many applications, in particular for numerical techniques of calculating the particle 
motion, it is more convenient to replace the second-order differential equations by 
a set of twice the number of first-order differential equations. This is done in the 
Hamiltonian formulation of classical mechanics. However, rather than using the 
(qj, q i )  pairs as independent variables, generalized momenta, p i ,  also known as 
canonical momenta or conjugate momenta, are introduced in place of the qj .  These 
momenta are defined as follows: 

Thus, in Cartesian coordinates we have from Equation (2.47) 

aL 
ai p z = - -  - y m i  + qAz,  

(2.49) 

(2.50a) 

(2.50b) 

(2.50~) 

or, in vector form, 

p = ymv + qA. (2.51) 

The canonical momentum thus contains the added term of the vector potential A 
when a magnetic field is present. The mechanical momentum, which we denote 
with P (see Section 2.1), is then obtained from Equation (2.51) as 

P = ymv = p - qA. (2.52) 

In cylindrical coordinates, the Lagrangian of Equation (2.48) has the form 
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and the three canonical momentum components are 

- 7 m i  + qA, .  
a L  

P Z ' S -  

(2.54a) 

(2.54b) 

(2.54~) 

It is important to recognize that the canonical angular momentum pe  does not 
have the same dimensions as p r  and p,. The mechanical &momentum is therefore 

(2.55) * Pe - qrAe PO = ymrd = 
r 

The change in variables from the (qi, q i ,  t )  set to the (qi, p i ,  t )  set is accomplished 
by introducing the Hamiltonian H(qi ,  p i ,  t )  via the transformation 

The total differential of H is 

Since pi = aL/dqi,  the first and fourth terms on the right-hand side cancel, and 
we obtain 

(2.58) 

where we made the substitution [from Lagrange's equations of motion (2.32)] 

aL d aL dpi  - = - - = -  
aqi d t  a i r  d t  . 

On the other hand, H = H(qi ,  p i ,  t ) ;  hence, the left-hand side may be written as 

(2.59) 
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Since aL/aqi = dp, /d t  , comparison of Equations (2.58) and (2.59) yields the 
equations 

(2.W 
aL aH 

dt  api’ dt  aqi ’ at at * 

-- = - dpi aH - Ei -- dqi a H  - = -  

These are Hamilton’s canonical equations, which represent an alternative form of 
the equations of motion. They constitute a set of 2n first-order equations replacing 
the n Lagrange equations. In principle, the first step in solving a particular problem 
of charged particle motion in this canonical formulation is to set up the Lagrangian 
L as L(qi, q i ,  t). Using Equation (2.49), one then obtains the canonical momenta pi ,  
and with their aid, the Hamiltonian H is constructed according to the prescription of 
Equation (2.56). The equations of motion, which are now first order, then follow 
by substituting H in Equation (2.60). 

2.3.4 The Hamiltonian for Charged Particles and Some 
Conservation Thooroms 

We shall now consider a conservative system in the nonrelativbtic approximation 
and show that the Hamiltonian H in this case is the total energy of the particle. 
This will also explain the transformation [Equation (2.56)] which defined H. In a 
conservative system, the force is given by F = -VU, and the Lagrangian L is not 
an explicit function of time t. The total time derivative of L is then 

(2.61) 

which in view of the Lagrange equations [Equation (2.32)] can be written as 

It therefore follows that 

(2.63) 

Considering the definition for the Hamiltonian H [Equation (2.56)], the last equa- 
tion can be stated in the form 

0, or H = const. (2.64) 
dH 
dr 
- x  

Thus, for a conservative system, the Hamiltonian H is a constant of the motion. 
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Next, we prove that H = T + U = total energy. For simplicity, let us consider 
Cartesian coordinates, where the Lagrangian is given by 

m 
2 

L = - (i2 + j 2  + i2)  - q 4 ( x , y , z )  + &Ax + j A y  + i A z ) .  

From the definition of H [Equation (2.56)] and using (2.50), we have 

(2.65) 

H = i p ,  + j p y  + ip, - L ;  

hence, 

H = i ( m i  + qA,) + j ( m j  + qA,) + i ( m i  + qA,) - L. (2.66) 

Substituting L in Equation (2.66) yields 

To obtain the Hamiltonian in the form H ( q i , p i , t )  required for the equations 
of motion, we transform from the velocity components (i, 5. i) to the canonical 
momentum components p ,  = P,  + qA,, and so on. Then from Equation (2.67) 
with 

and so on, we find that 

or 

in Cartesian coordinates. In cylindrical coordinates, the nonrelativistic Hamiltonian 
is 

(2.69) 

By using the above Hamiltonian in Equation (2.60) one obtains Hamilton's equa- 
tions of motion, which are first-order equivalents of the original force equations. 
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As an example, consider cartesian coordinates and no magnetic field (A = 0); 
then, from Equations (2.68) and (2.60), 

a4 - -  dPx 
dt ax ax 

- q - .  
aH - -- = 

Now, in this case p ,  = P, = m i ;  hence, 

dPx d 
- x  - ( m i )  = qEx, 
dt dt 

in agreement with Equation (2.10a). 
The Hamiltonian in relativistically correct form is obtained by substituting the 

Lagrangian L of (2.47) in Equation (2.56) and changing to the ( q i , p i , t )  set of 
variables. Take the case A = 0 in artesian coordinates. Then with L from Equa- 
tion (2.47): 

H = m c 2 ( y  - 1) + U = T + U ,  

as in the nonrelativistic case. Now, from Equation (2.24), 

where P = ymv = p since A = 0; hence, 

To include the case where A # 0, we simply replace P by p - q A  to get the 
relativistic Hamiltonian 

H = c[m2c2 + (p - qA)2]1R + q4 - mc2. 
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If we use the Lagrangian according to Equation (2.48), the last term, mc2, on 
the right-hand side drops out, and the Hamiltonian has the simpler form H = 
ymc2 + U, or 

H = c[m2cZ + (p - qA)2]1R + 94 .  (2.70) 

In Cartesian coordinates the relativistic Hamiltonian is given by 

H = c[m2c2 + (px - qAxl2 + ( p y  - qAy)2 + (pz  - qAz)2]'R + 94. 

(2.71) 

For cylindrical coordinates one obtains 

IR 

m2c2 + ( p ,  - qA,)' + ( P e  - r qrAer + ( p ,  - qAz)2] + 94. 

(2.72) 

We have shown that in a conservative system (where L and H do not depend 
explicitly on time), the Hamiltonian represents the total energy, which, in this case, 
is a constant of the motion. Another important conservation theorem is obtained for 
the case where the Hamiltonian does not depend on one of the space coordinates, 
for instance, qj.  The latter is then called a cyclic variable and from Hamilton's 
equations (2.60) follows 

or 

pj = const 

(2.73) 

(2.74) 

(i.e., the canonical momentum variable pi is a constant of the motion in this case). 
The most important application of this theorem is for systems with cylindrical 

symmetry, where 4 , A ,  and hence the Hamiltonian H are independent of the 
azimuth coordinate 8. Therefore, 

= 0, dpe a H  
dt ae 
- = -_ 

or 

pe = ymr2$ + qrAe = rPe + qrAB = const. (2.75) 

Equation (2.75) represents the conservation of canonical angular momentum, which 
is very useful in the analysis of particle dynamics in axisymmetric fields. It is 
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equivalent to Bwch's theorem, which was originally derived from the equations of 
motion [Equation (2.11b)l and which states that 

y m r 2 i  + - 4 9 = const. 
2R 

(2.76) 

Here @ = JB dS is the magnetic flux enclosed by the particle trajectory (i.e.] the 
flux inside a circle with radius r given by the radial distance r of the particle from 
the axis at a given position along the trajectory). The proof that Equation (2.76) is 
equivalent to Equation (2.75) simply follows from 

II) = 1 B * d S  = 1 (V X A) * dS = !A- dl = 27rrA6, (2.77) 

hence, rAe = $/27r. 
As an example, qonsider a partjcle launched at point 1 in an axisymmetric 

magnetic field with 81 = 0. Then 8 at any other point ( r , z )  along the trajectory 
can be calculated from Equation (2.76): 

Q 
2.n 

ymr2i = -- (II) - 

or 

i s -  (9 - # I ) .  (2.78) 
2.rrymr2 

If the trajectory remains close to the axis so that to first-order approximation 
B,(r , z )  - B,(O,z) = B, we find that 

If, moreover, the magnetic field is uniform (B = B I ) ,  we obtain 

where 

(2.81) 

is the cyclorronfrequency. The sign in (2.80) depends on the polarity of the charge 
and the direction of the magnetic field. It is negative when both q and B are either 
positive or negative, and it is positive when q and B have opposite signs. 
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Suppose now that the particle is launched in a region where B = 0 with 6 ,  = 0 
(i.e., no initial velocity component in azimuthal direction). Then, since $1 = 0, it 
follows from Equation (2.76) that 

hence, we get for trajectories near the axis where 9 SJ B r 2 r ,  

(2.82) 

(2.83) 

where W L  = 4 2  is known as the Larmorfrequency. 
Another important theorem that is used widely, especially in plasma physics, 

applies for adiabatic particle motion in magnetic fields. The motion of a particle is 
called adiabatic when the magnetic field varies so slowly along the particle’s helical 
trajectory that the change of the field strength during one revolution or cyclotron 
period 7, = 2 ~ / 0 ,  is negligibly small. In this case, the theorem of adiabatic 
invariance states that the magnetic flux encircled by the particle trajectory remains 
a constant of the motion. 

The concept of adiabatic invariance is introduced by considering the action 
integrals of a system in terms of the generalized canonical coordinates qi and 
momenta p i .  For each coordinate qi, which is periodic, the action integral Ji is 
defined by 

(2.84) 

The integration is over a complete cycle of the periodic coordinate qi. For a given 
system with specified initial conditions and with changes that are adiabatic, the 
action integral is invariant or a constant of the motion: 

J i  = const. (2.85) 

As an example, let us consider an axially symmetric B field with particles moving 
adiabatically on spiraling trajectories that encircle the axis. The periodic coordinate 
is then 8 (cylindrical coordinates) and with p e  = ymr28 + qrAe, the action 
integral takes the form 

2 r  

Je  = ymr26 dt9 + 12T qAer d8  = const. (2.86) 
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Now let 
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where r = R is constant during one cyclotron period, and 

R 
Agr de = 2 9  1 B,(r)r dr = #.  

Then we get for the first term in Equation (2.86), 

- 12= ymR2[ e] de = -2nR2qB,(R),  

and the action integral [Equation (2.86)] may be written as 

29B,(R)R2 - 21r B , ( r ) rdr  = const, LR 
or 

29B,(R)R2 - # = const. (2.87) 

If the particle orbit is confined to the region near the axis so that in first approxi- 
mation B,(r) = B(O), we have B,(R) = B and 

# = B R ~ ~ .  (2.88) 

Hence, 2$ - # = const, or 

+ = B R ~ T  = const. (2.89) 

This is the adiabatic theorem of magnetic flux conservation, which can be 
generalized to arbitrary magnetic field configurations. Under adiabatic conditions, 
the particles spiral along magnetic flux lines such that the flux encircled remains 
constant (i.e., the radius R of the circle is proportional to B-In). Since the 
mechanical momentum is defined by 

Pe = y m v e  = ymRB = -RqB, (2.90) 
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we have the equivalent conservation law: 

- PP = const, or P B R  = const. (2.91) 
B 

The same law is also expressed as the conservation of the magnetic moment. Since 
the magnetic moment M is defined by the product of current I and enclosed area 
S (i.e., M = Z - S = ZR2a),  we have for a circulating charge q, 

and therefore, in view of Equation (2.89), 

= const. 
M=-=- qw,R2 q2BR2 

2 2Ym 
(2.92) 

We should note that this conservation law for the magnetic moment applies only 
when the particle's energy is either nonrelativistic ( y  = 1) or does not change ( y  = 
const), in contrast to the flux conservation law [Equations (2.87) and (2.89)]. As an 
example, for relativistic electron motion in a pulsed magnetic field, y varies due to 
V X E = -(aB/at), and hence the magnetic moment may change although the 
flux conservation law, 4 = const, still holds. 

2.4 THE EULER TRAJECTORY EQUATIONS 

2.4.1 The Principle of b a s t  Action and h e  Euk Equations 

In addition to Hamilton's principle, discussed in previous sections, the principle 
of least action plays an important role in classical mechanics. It holds for a 
conservative system where the Hamiltonian does not depend explicitly on time 
(Le., where the total energy of the system is conserved). Applied to charged particle 
motion in a conservative electric and magnetic field, the principle of least action 
may be stated as follows: The line integral of the canonical momentum p along 
the path of motion between two given points in space is an extremum; that is, 

* dl = 0. (2.93) 

Note that there is a distinct difference between the two variational principles. 
In Hamilton's principle, the variation of the path was taken between two unvaried 
points in both space and time; the varied paths do not obey the equations of motion 
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or the conservation laws. In the principle of least action, on the other hand, the 
endpoints are fixed points in space but not in time; however, the varied paths do 
obey the law of conservation of energy. Thus, we are comparing all possible paths 
for a charged particle to go from one fixed point to another fixed point in space. 
The time of travel may differ, but along each path the sum of kinetic and potential 
energy remains a constant of the motion. The actual path followed by the particle 
in the real world is then uniquely determined by Equation (2.93). 

The principle of least action is used to obtain equations for the trajectories 
directly rather than integrating the equations of motion with respect to time and 
then eliminating the time. With p = ymv + qA, we may write for Equation (2.93), 

2 2 

6 J (ymv + qA) - dl  = S 1 (ymu dl + q A  * d l )  = 0 .  (2.94) 

Since by definition v is in the direction of dl, we have v * dl  = v dl. In Cartesian 
coordinates dl = [dx' + dy2 + dzz] ln  and A - dl  = A, dx + A, dy  + A, d z .  

Now, let us make one of the three coordinates, say x ,  the independent variable. 
Then, with dy /dx  = y' and d z / d x  = z' denoting the slopes of the trajectory, 
Equation (2.94) becomes 

xz 
6 1 [ymu(l + y" + z " ) ' ~  + q(Ax + A,y' + A,z ' ) ]dr  = 0 ,  (2.95) 

XI 

where the expression in brackets following the integral will be denoted by 
F(x,  y ,  z ;  y', z'). [In general coordinates, the function F would be F(qi.  q;), where 
q' = dqildql, for example.] In terms of the function F,  Equation (2.95) can be 
stated in the form 

= 1'" ( S y  + Sz + Sy' + 6z')d.x i= 0 .  (2.96) 
XI aY az aY' az 

Since x is the independent variable and the variation is in the y and z directions, 
the term (aF/ax)Sx is zero and does not appear in the integral. Now 

and partial integration of the terms involving y' and z' yields 
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The bracketed term equals zero, since Sy = 0 at the endpoints. An analogous 
expression is obtained for the z' term. Using these results, we can write Equa- 
tion (2.96) in the form 

(2.97) 

which yields the two Euler equations: 

In generalized coordinates, if q1 is the independent variable, we can write 

= 0 ,  

= 0. 

aF d aF - - - -  
a42 dql a d  

a43 d m  a d  
aF d aF - - - -  

(2.98a) 

(2.98b) 

(2.99a) 

(2.99b) 

Returning now to Equation (2.95), we express u in terms of the kinetic energy 
and the rest energy. This is possible since in the principle of least action, the varied 
paths obey the law of conservation of energy. From Equation (2.23) we have 

Therefore, Equation (2.95) can be written as 

As a special example, let us consider the nonrelativistic case of a particle in an 
electrostatic field. In this situation, A = 0 and 
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where + ( x , y , z )  is defined as the potential corresponding to the particle's kinetic 
energy at that point. Then Equation (2.95) becomes 

(2.101) 

Let us now further assume that the x - y  plane is a plane of symmetry. Then the 
force component in the z-direction is zero, and a particle with = 0 remains in 
this plane. For this case we have 

If we differentiate the last expression with respect to x and substitute into the Euler 
equation (2.98a), we obtain, after some algebra, the following trajectory equation 
for the particle motion in the x-y plane: 

(2.102) 

(see [C.1, p. 4011). 
Equation (2.102) also holds, of course, for particle trajectories in the symmetry 

planes (meridional planes) of an axially symmetric system. In this case one uses 
cylindrical coordinates, and if z denotes the independent variable (i.e., r' = dr/dz, 
etc.), one gets 

(2.103) 

The equations for skew trajectories (ve # 0) in axially symmetric systems that 
include both static electric and magnetic fields and in which the particle motion is 
relativistic are derived in the next section. 
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2.4.2 Relativistic Eukr Equations in Axially SymmoMc Fidds 
In axially symmetric fields, the vector potential A has only a 8-component, Ae(r, z) ,  
and in place of Equation (2.100), we have (using polar coordinates) 

8 1 : [ [ ( y 2  - l)(r" + r2er2 + l ) ] In  + qcAerfl' dz = 0 .  (2.104) 
EO I 

Here z is the independent variable and the path element d f  is given by 

dl = [(dr)2 + ( rde )2  + ( d ~ ) ~ ] ' ~  = [r" + r2er2 + l ] '"dz.  

The Euler equations (2.99a) and (2.99b) take the form 

The electrostatic potential 4 ( r ,  2) is implicitly given in y :  

(2.105a) 

(2.105b) 

(2.106) 

Note that 4 is the voltage equivalent of the kinetic energy T, defined by the actual 
potential distribution set up by the electrodes plus the particles' initial voltage 
when entering the field. 

We begin with Equation (2.105b). Since there is no 8 dependence, we have 
aF/ae = 0. T ~ U S  

This equation can be integrated directly, leading to 

(2.107) 

It can be shown that Equation (2.107) is equivalent to the law of conservation of 
canonical angular momentum, 

ymr29 + qAer = = mcC. (2.108) 

It implies that a particle emitted from a source located in a magnetic field will 
attain mechanical angular momentum when leaving the field. A particle launched 
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from a field-free region (i.e., A0 = 0) and passing through a magnetic field will 
experience a change in mechanical angular momentum, which, however, will be 
restored to its initial value when the particle leaves the field. 

Equation (2.107) can be substituted into the first Euler equation for r(z)  in 
order to eliminate 8'. To simplify the algebra, we will introduce the following 
parameters [A.1, p. 4321: 

- - -A#). 
EO 

A = t(1 - 11'). (2.109) 

Dividing by r (y2  - 1)ln, we can write Equation (2.107) in the form 

1 c qc 
(r'2 + r W  + 1)ln (t)In r Eo 

r8' 
x -( - - -A@) = q .  

From Equation (2.110) one finds that 

and 

The function F is defined as 

F = (t)"(rl2 + r20r2 + l)ln + 4c B'rAO. 
EO 

(2.110) 

(2.111) 

(2.112) 

(2.113) 

For the two derivative terms in the Euler equation (2.105a) one finds, after some 
manipulation, that 

(2.114) 
d aF 1 r 
dz arl (1 + r12)3n "' -k - ar 
--a 

(2.115) 

Substitution of Equations (2.114) and (2.115) into Equation (2.105a) yields the 
differential equation for the radial motion r (z )  of a charged particle in axisymmetric, 
static electric and magnetic fields 

(2.116) 
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where from (2.109) 

This trajectory equation, in which the time t has been eliminated, is exact and 
in relativistic form; no simplifying assumptions have been made to this point. It 
agrees with Panofsky and Phillips iA.1, Equations (23), (24), p. 4321 except for a 
factor (1 + r r2 )  associated with aA/lar in their result, which appears to be an error. 
For the nonrelativistic limit, Equation (2.116) is in agreement with Zworykin et al. 
[C.1, Equation (15.54), p. 5041 if we make the substitutions ( - 4, D - q,  and 
A - +(l - D2). Specifically, if there is only an electric field (hence A6 -- 0), 
and the particle moves within a fixed meridional plane (Lee, C = 0), we have 
6 = 2qt$/Eo,  q = 0, and A = ( = 2q4lEo. Then Equation (2.116) becomes 
identical with Equation (2.103). 

It should be pointed out that the meridional plane in which the particle is located 
at any given time and in which r ( z )  is measured is not the same throughout the 
motion, even if the particle crosses the axis. The meridional plane rotates about 
the z-axis, its azimuth being determined at any given point by integration of Equa- 
tion (2.111): 

(2.117) 

2.5 ANALYTIC EXAMPLES OF CHARGED PARTICLE MOTION 

2.5.1 Planar Diode wilhhout Space Charge 

To illustrate the use of some of the concepts and of the equations of motion 
discussed earlier in this chapter, we now treat a few problems that yield relatively 
simple analytical solutions. As a first example, consider two infinite, parallel, 
conducting plates, one (the cathode) at x = 0 with potential 4 = 0, the other (the 
anode) at x = d with potential 4 = Vo. Such configuration is known as a planar 
diode. Suppose that an electron (charge q = -e) is emitted from the cathode with 
a velocity vo = {k-~.j~0,0}, and determine its trajectory in the x - y  plane in the 
nonrelativistic limit. Ignore space-charge effects due to other electrons. 

The static electric field between the two plates is given by E = -V4 and the 
potential & ( x )  can be calculated from Laplace's equation (since p = 0): 

(2.118) 
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and 
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vo 
d 

4(x) = - x  (2.119) 

(2.120) 

(i.e., the electric field is uniform). 

and (2.10b)l are readily integrated. yielding (with y = 1) 
The nonrelativistic equations of motion in Newton’s form [Equations (2.10a) 

+ i o t  , 
eE t2  

m 2  
x = - -  

my = 0 ,  

j ,  = i o .  
y = j o t .  

(2.121) 

(2.122) 

(2.123) 

(2.124) 

(2.125) 

(2.126) 

Substituting t = y / j o  from (2.126) into Equation (2.123) gives the trajectory 
equation 

1 eE y2 i o  
x = - - -  + T Y ,  

2 m j ;  YO 
(2.127) 

which is a parabola. 
The kinetic energy gain is simply 

and hence AT = eVo when the electron arrives at the anode. 
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2.5.2 Planar Diode wih Space Charge (Child-Langmuir Law) 

Let us now include the effect of the space charge of the electron current in the 
diode on the potential distribution and electron motion. To simplify our analysis, we 
assume that all electrons are launched with initial velocity vo = 0 from the cathode 
(i.e., they are moving on straight lines in the x-direction). This is an example of 
Zuminurjlow where electron trajectories do not cross and the current density is 
uniform. We try to find the steady-state solution (a/& = 0) in a self-consistent 
form. The electrostatic potential is determined from the space-charge density p 
via Poisson's equation, with q5 = 0, at x = 0 and q5 = VO at x = d, as in the 
previous case. The relationship between p ,  the current density J, and the electron 
velocity v follows from the continuity equation (V - J = 0, or J = pv = const). 
The velocity in turn depends on the potential q5 and is found by integrating the 
equation of motion. Thus we have the following three equations: 

V Z ~  = @ = -e (Poisson's equation), 
dx2 €0 

(2.129) 

J,  = p i  = const (continuity equation), (2.130) 
m - i2 = e$(x) (equation of motion). (2.131) 
2 

Substituting i = [2eq5(x)/m]lR from (2.131) into (2,130) and p = J x / i  from 
(2.130) into (2.129) yields 

d2$ J 1 - =  
dx2 ~ ( 2 e / r n ) * ~  ( q 5 ) l R  ' 

(2.132) 

where the current density J = - Jx is defined as a positive quantity. After multipli- 
cation of both sides of Equation (2.132) with dq5/dx, we can integrate and obtain 

(2.133) 

Now 4 = 0 at x = 0, and if we consider the special case where d 4 / d x  = 0 at 
x = 0, we obtain C = 0. A second integration then yields (with q5 = VO at x = d )  

IR - 114 -dyI=2(;) 4 (z) x ,  
3 

or 

(2.134) 
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with the relation 
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(2.1 35) 

This equation is identical to Equation (1.3) and is known as Child’s law or the 
Child-Langmuir law, referred to earlier (Section 1.3). For electrons, one gets 

“mZ1 9 

V3n 
J = 2.33 X % (2.136) 

with VO in volts and d in meters. 
By comparing the result (2.134) for 4 ( x )  with the previous case, we see that 

the negative space charge of the electrons lowers the potential at any given point 
between the two electrodes of the planar diode. Equation (2.135) represents the 
space-charge limit (it., the maximum current density that can be achieved in the 
diode by increasing the electron supply from the cathode). The electric field at 
the cathode is zero in this case (d#/dx = 0 at x = 0). The current can be increased 
by either increasing the voltage or decreasing the cathode-anode spacing. The 
Child-Langmuir law is of fundamental importance for vacuum tubes, electron 
guns, and ion sources. 

2.5.3 Chargod Particle Motion in a Uniform Magnotic Field 

We can solve this problem in either Cartesian or cylindrical coordinates. If the 
magnetic field B is in the z-direction (i.e., B = {O,O, B}) and the velocity vector 
is in the z = 0 plane, the particle motion is a circle. If we choose a cylindrical 
coordinate system such that the center of the circle coincides with the origin, we 
find the solution 

(2.137) 

(2.138) 

as can be readily verified by substitution of these results in Equations (2.11a) and 
(2.11b). 

The particle gyrates on a circle with constant radius ro, known in the literature as 
the cyclotron radius, and with a constant angular velocity, the cyclotron frequency 
o, = IqB/yml. If the center of the circle does not coincide with the origin, it is 
better to use Cartesian coordinates (see Problem 2.2). 
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2.5.4 Charged Particle Motion in a Radial Electric Field 
Let us consider two conducting. coaxial cylinders, the inner one with radius rl 
and at a potential q5(rl) = VI, the outer one with radius r2 and at a potential 
9(r2)  = V2. By integrating Laplace’s equation, we find for the electric field 

(2.139) 

The motion of a particle in this field depends on the charge q of the particle 
and the polarity of the electric field. Let us suppose that for a positive charge E, is 
radially inward and for a negative charge radially outward, and furthermore, that 
the motion is nomlativistic. Using cylindrical coordinates, we obtain the radial 
force equation 

mi: - mre2 = q E , ,  (2.140) 

and the azimuthal equation 

(2.141) 
I d  - - ( m r 2 i )  = 0, or m r 2 i  = const. 
r dt 

It is readily verified that a special solution exists .in which the particle moves 
on a circle of constant radius re, the equilibrium radius. In this case i: = 0, i = 
0, u = vg = vo = re&, and the outward centrifugal force is exactly balanced by 
the inward electric force, hence 

or 
m v i  

re = -, 
qEe 

(2.142) 

(2.143) 

where E, = -E,(r,) is the electric field at the equilibrium radius. The angular 
velocity is given by 

(2.144) 

What happens to a particle with the same velocity u that is displaced from the 
equilibrium radius re? To answer this question, we employ a technique widely 
used in similar problems which assumes that the displacement is small compared 
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to the radius re so that the equations of motion can be linearized. Let the radial 
position of a particle be defined by 

r (e )  = re + x ( e ) ,  where x Q r e .  (2.145) 

Substitute this into the equations of motion, make a Taylor-series expansion about 
re, and keep only the linear terms. The azimuthal equation (2.141) then yields in 
the linear approximation 

i = e o  r,' = i,(l - 2 3 .  
(re + 

(2.146) 

The radial force equation (2.140) becomes 

where 
E: = dE, I = _-, Ee 

dr r. re 

Using the force-equilibrium condition and keeping only the linear terms in x / r e ,  
we obtain the equation 

x + 0,2x = o ,  (2.148) 

where 

(2.149) 

If 0 3  > 0, the particles are performing harmonic oscillations about the equilibrium 
radius, which may be written in the form 

x = x,sin[hio(r - to)]  = x , , , s i n [ ~ ( e  - eojJ. (2.150) 

The nodes of the oscillations are spaced at intervals of 4 6&(t - to) = 4 A8 = 
IT, or 

7r 
A @ = - -  Ji: - 127'17'. (2.151) 

An important application of this theory is the electrostatic analyzer. In this 
device, cylindrically shaped capacitor plates extending over a sector with an angle 
of 7r/* are used to deflect a beam and separate the particles with different velocity 
(velocity analyzer). 
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2.5.5 The Harmonic Oscillator 

In the previous problems, the linearization of the equations of motion for small 
displacements from the equilibrium orbit led to Equation (2.148). which is the 
differential equation for an harmonic oscillator. Such a system is characterized by 
the fact that the forces acting on a particle are proportional to the displacement 
from the equilibrium position. We will now treat the harmonic-oscillator problem 
in the Hamiltonian framework. Consider the nonrelativistic motion of a particle 
with positive charge q in an electrostatic field defined by the potential 

(2.152) 

The canonical variables are x , p  = P = mi = mu,  and the Hamiltonian H is 
given by 

P 2  1 
2m 2 

H ( x , P ) = T + U = - +  - k x 2 = H o ,  (2.153) 

where k = 2qVo/a2. HO is the total energy and is constant for the conservative sys- 
tem being considered here. The two coordinates x and P define a two-dimensional 
space called phase space, and the particle motion in this two-dimensional space is 
an ellipse with semiaxes (2mHo)ln and ( 2 H 0 l k ) ' ~ .  provided that k is a positive 
quantity. 

Hamilton's equations of motion are 

and 

(2.154) 

(2.155) 

Differentiating (2.155) and substituting in (2.154) yields the harmonic oscillator 

(2.156) 
equation 

f + w2x = 0, 

with 

If i = uo, x = 0 at t = 0, the solution is 

(2.157) 

x = -  uo sin w t  
w 

(2.158) 
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and 

i = UOCOSOt, (2.159) 

with 

HO = - m 2  UO . (2.160) 
2 

Using the radian frequency w in place of the constant k, we can write the 
Hamiltonian in the alternative form 

(2.161) 
P2 1 

H(x,P) = - 2m + -mo2x2. 2 

What happens if the potential is not constant but varies with time, that is, VO = 
Vo(t), hence, k = k(t) or w = w(t)? If the variation with time is slow enough 
that the potential change during one particle oscillation is negligibly small, we 
can make use of the adiabatic invariance of the action integral J = P dx. In our 
case, using i in place of P and taking the integral over one-fourth of the oscillation 
cycle, from x = 0 to x = X m  = uo/o, we can express this invariance as 

J - j o x m i t i x  = const. (2.162) 

Now from (2.159) and (2.158) we have 

(2.163) 2 2 In i = uO(1 - sin2wt)In = (a,: - w x ) , 

hence 
2 

-C = const. (2.164) J = L  ( u i - o x )  d x = -  2 2 In xm 

0 4  

In view of (2.160), we can express (2.164) in the equivalent form 

HO - = const. 
0 

(2.165) 

The total energy Ho is thus no longer constant but varies linearly with the fre- 
quency o. 

Recall that in two-dimensional phase space the particle trajectory is an ellipse 
with semiaxes Pm = (2mHo)In in the P-direction and X m  = (2H0/mo~)'~ in the 
x-direction. The area of this ellipse is given by 

Ho (2.166) A = P,x,n = 21r- = 4mJ. 

Consequently, the adiabatic invariance of the action integral implies that the area 
A of the ellipse traced by the particle trajectory in phase space remains constant. 

0 
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Thus, for instance, if the potential increases adiabatically with time, the total energy 
HO increases proportional to the frequency o. Furthermore, the amplitude x, of the 
particle oscillation decreases as while the momentum amplitude increases as 
,In, so that x,P, = const. It should be noted here that the phase-space area A 
remains constant even if the system is nonadiabatic. This more general conservation 
law follows from Liouville's theorem, which will be discussed in Section 3.2. 

Another important relation for the harmonic oscillator system concerns the 
average values of kinetic energy and potential energy during one oscillation cycle. 
Since 

(2.167) 

and 

(2.168) vo' 
02 T *  

2 r  2ff 
" 1 sin20 td (o t )  = - 
0 2  

x 2 d ( o t )  = - 

we find that 

Thus, in the harmonic oscillator the average kinetic energy of the particle during 
one period is equal to the average potential energy or one-half of the total energy. 
This result also follows from the viriul theorem of classical mechanics. For a system 
of pointlike particles with position vectors I i  and with applied forces Fi (including 
any constraints) acting in such a way that the coordinates and velocities of the 
particles remain finite, the virial theorem states that 

(2.170) 
1- T -- z F i * l i .  
* i  

In the above harmonic-oscillator case, we have only one particle and the force can 
be derived from the potential energy U (i.e., F = -VV), hence 

(2.171) 
- 1 av 

2 ax 
T = - -  X .  

1 Since U = rkx2, one finds that (aV/ax)x  = kx2 = 2U, and therefore obtains the 
result T = U of Equation (2.169). 
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discussion of this topic. 

PROBLEMS 

2.1 Derive the equations of motion in cylindrical coordinates [Equation (2.11)] 
from the Cartesian form (2.10) by the appropriate transformations of the 
coordinates and the components of the velocity and field vectors. 

2.2 Solve the equation of motion in Cartesian coordinates for a charged particle 
moving in a uniform magnetic field B = Boa, and launched at t = 0 at the 
point {xo,yo,O} with velocity vo = {&),jy~,O}. Show that the trajectory is a 
circle described by 

( X  - xC)’ + ( y  - yC)’ = R2 

and determine the coordinates xc and yc of the center point and the radius 
R of the circle in terms of the initial conditions and the cyclotron frequency 

23 Solve the nonrelativistic equation of motion in Cartesian coordinates for an 
electron (q = -e) moving in a crossed electric and magnetic field given 
by E = (0, -E,O} and B = {O,O, -B}.  The initial conditions at t = 0 are 
r = {xo,yo,O}, v = {.&-,,jv~,O}. The solution can be greatly simplified by 
transforming to a system x’ = x - (E/B) t  moving in the x-direction with 
constant velocity E/B. The motion of the electron is cycloidal and can 
be traced by a wheel with radius a rolling in the x-direction to which 
a pencil is attached at a radial distance R from the center of the wheel. 
Show from the solution of the equation of motion that a = E / B o  and 
R = l/w[(& - E/B)’ + yo] . Sketch qualitatively the electron trajectory 
for the following four cases: (a) R - a [i.e., uo = 0 (common cycloid)]; 
(b) R > a (curtate cycloid or epicycloid); (c) R < a (prolate cycloid or 
hypocycloid); and (d) R = 0, yo = 0. 

2.4 Consider a charged particle moving in a uniform magnetic field. Let R denote 
the cyclotron radius, oc the cyclotron frequency, and assume that the center 
of gyration is displaced from the origin of a cylindrical coordinate system 
by a radial distance Ro. Show that the equation of motion for the radial 
position of the particle r ( t )  is given by 

o c  = l q B o / y d  

. 2  It2 
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2.5 Verify that the relativistic Hamiltonian H = c[m2c2 + (p - qA)2]1n + 
94 yields the correct equations of motion in cylindricof coordinates [Equa- 
tion (2.11)]. 

2.6 Find the Hamiltonian for charged particle motion in the region between 
the two coaxial conductors of a transmission line subject to the following 
conditions: 

(a) The inner conductor (radius rl) is at an electrostatic potential 4 = VO 
with respect to the outer conductor (radius Q). 

(b) A dc current I flows along the inner conductor in the positive 
z-direction, and a return current of the same magnitude flows in the 
outer conductor in the opposite direction. 

(c) The coaxial transmission line is located inside a solenoid which gen- 
erates a static uniform magnetic field B = Boa,. 

2.7 Solve the relativistic equation of motion for a positively charged particle 
moving in a uniform electric field E = (E, 0,O) with initial conditions t = 

0: x = 0, y 5 0. Py = Po. Show that by elimination of time the trajectory 
is given as 

x = &(cash - 4EY - I), where UO = [(mc2)' + c 2 Po] 2 . 
4E POC 

2.8 llvo solenoids with current flow in opposite direction and an iron plate with 
infinite permeability in between form an ideal cusped magnetic field that 
can be approximated by the function 

where El and B2 are independent of r , z  and only linear functions of the 
currents 11 and 12 in the two solenoids. An electron with kinetic energy 
T = eVo is emitted from an electron gun at z = -z1 with r = ro, ;O = 0, 
and i o  = 0. It can pass into the region z > 0 (solenoid 2) through a suitably 
placed small hole in the iron plate. Determine the electron motion and plot 
qualitatively the trajectory for the following cases: 

(a) B1 = 0, BZ = EO 
0) BI f B2 

(c) B1 = B2 = Bo 
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Show in case (c) that there exists a threshold field Bo = B ,  above which 
the electron cannot enter the region z > 0. Calculate B ,  for an electron with 
kinetic energy of 2.5 MeV launched with ro = 6 cm. 

2.9 

2.10 

2.11 

2.12 

2.13 

2.14 

A relativistic electron of kinetic energy T -- eV1 moves on a circle of radius 
r = R1 in the midplane ( z  = 0) of an axisymmetric magnetic mirror field. 
The field at r = R1 is B,(R1, 0) = B1. At some instant, a switch is turned on 
and the magnetic field increases with time. The change in B(r,  z ,  1) occurs 
slowly enough so that the electron motion is adiabatic and always stays in 
the midplane. Assume that B,(r,O,t) = B(r)f( t ) .  

(a) How do the kinetic energy T, the momentum P, and the radius R 
change as the magnetic field rises? What requirements are imposed on 
the radial dependence B(r)  in order that R2B(R) = const? 

(b) Find the condition for B(r)  where the radius of the electron orbit 
remains constant (i.e., R = R1 = const). 

Consider the space-charge-limited planar diode (Child’s law) treated in 
Section 2.5.2. Assume that the cathode and anode have a cross-sectional 
area A and that the current is I. Calculate the space-charge density p(x),  the 
total charge Q between anode and cathode, and the total surface charge Q, 
on the anode. For comparison, calculate the surface charges on the anode, 
Q,, and cathode, Q,, when the space charge is negligible (planar diode 
without space charge). 
Consider a static magnetic field B = (0.0, -B} and a time-varying electric 
field E = (0, -E ,  (1 - a cos wt),O} in Cartesian coordinates. Solve the 
nonrelativistic equation of motion for an electron launched at time t = to 
from the origin (O,O,O} with zero initial velocity (VO = 0). Evaluate the 
integration constants and write the solutions x ( t )  and y( t )  for the case 
ro = 0 in terms of the parameters w , o ,  = eB/m, a - eEl /m,  and a.  
Provide the missing steps in the derivation of the relativistic Euler trajectory 
equation (2.116) for an axisymmetric system. 
The betatron employs an axially symmetric magnetic field which is varied 
in time. Electrons are accelerated by the action of the induced azimuthal 
electric field associated with this time variation of B (Faraday’s law!). The 
initial magnetic field is zero, and during the acceleration process the electrons 
are kept at a centered orbit of consrani radius R.  Consider motion in the 
midplane (z = 0) only and prove that the constant-radius condition implies 
that B(R) = $, where 3 is the average field inside the orbit. 
In a magnetron, a radial electric field E J r )  is formed by two coaxial 
cylinders, the inner of radius rl (the cathode) and the outer of radius r2 

(the anode). The anode is at potential VO with respect to the cathode. A 
uniform magnetic field B, exists in the axial direction. Consider an electron 
leaving the cathode with zero velocity. Calculate the relativistically correct 
radial dependence of the azimuthal velocity u8 and the critical field value 
B, versus VO for which the electron can just reach the anode (i.e., B, > B,: 



electron misses anode, B, < B,: electron hits anode). Use conservation laws 
and either Lagrange’s equation of motion or the Lorentz-force equations. 

2.15 In a planar diode the voltage between the cathode (at x = 0) and the anode 
(at x = d) varies periodically with time as V ( t )  = VO cos w t .  Solve the non- 
relativistic equations of motion for an electron launched from the cathode at 
t = to with initial conditions y = 0, vo = {io.$,, 0). Find x ( r ) ,  y(r ) ,  and the 
kinetic energy T( t ) .  Determine the transit time Td = td - to for an electron 
leaving the cathode with uo = 0 in the approximation O ( t d  - to) 4 1. 



CHAPTER 3 
Beam Optics and 
Focusing Systems 
without Space - 

Charge 

3.1 BEAM EMIITANCE A N D  BRIGHTNESS 

The basic principles of producing charged particle beams in diode-type sources 
and performance limitations of such sources were discussed in Section 1.3. In the 
case of electron beams, the source is a piece of conducting material that forms 
the cathode; the electrons are accelerated across the potential difference in the 
diode and emerge through a hole in the anode. The cathode may be either heated 
(thermal emission) or cold (field emission) or the electrons may be produced by 
photoemission. Positive or negative ions, on the other hand, are usually formed 
in the plasma of a gas discharge; they are then extracted from this ion source by 
applying a potential difference (with appropriate polarity) between the source and 
an extractor electrode. 

In view of the nature of the source, there is always a spread in kinetic energy 
and velocity in a particle beam. Each point on the surface of the source is emitting 
particles with different initial magnitude and direction of the velocity vector. This 
intrinsic thermal velocity spread remains present in the beam at any distance 
downstream from the source. In practice, the velocity spread of the beam from 
a given source may be considerably greater than the ideal thermal limit since 
many factors, such as temperature fluctuations in a plasma source, nonlinear forces 
(aberrations) due to the external or space-charge fields, and instabilities lead to a 
deterioration of the beam quality. The emirtance provides a quantitative basis, or a 
figure ofmerit, for describing the quality of the beam. As we will see in the next 
section, it is closely related to two-dimensional projections of the volume occupied 

56 
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by the ensemble of particles in six-dimensional phase space as defined by the set 
of canonical coordinates qi , p i .  

Most beams of practical interest have two planes of symmetry or are circularly 
symmetric. For the following discussion, assume that the beam propagates in the 
z-direction and has two planes of symmetry (x-z and y-z). The motion of 
each individual particle is defined by the three space coordinates ( x ,  y, z )  and 
the three mechanical momentum coordinates (Px ,  P,., P,) at any given instant 
of time. An ensemble of particles forms a beam if their momentum component 
in the longitudinal direction is much larger than the momentum component in 
the transverse directions (i.e., in our case of Cartesian coordinates if Px 4 P,, 
Py 4 P,). If the length of the beam is much greater than the diameter, we can 
treat the distribution as a continuous beam. On the other hand, if the length is 
comparable to the diameter, we are dealing with bunched beams. 

Consider now a particle in the x-z plane with total momentum P = (P: + 
P;)lR,  where P, I P, = P. The slope of the trajectory is by definition X I  = 
dx/dz = ;/i = P,/P.  At any given distance z along the direction of beam 
propagation, every particle represents a point in xtxI space, known as truce space. 
The area occupied by the points that represent all particles in the beam 

A, = // dxdx' 

is related to (but, by our definition, not identical to) the emittunce of the beam. 
Unfortunately, there is no single definition of emittance that is consistently used 

in the literature, a fact that often causes confusion when results from different lab- 
oratories or publications are compared. Many authors, especially experimentalists, 
define the trace-space area A, as the emittance. However, this definition does not 
distinguish between a well-behaved beam in a linear focusing system and a beam 
with the same trace-space area but a distorted shape due to nonlinear forces. To 
illustrate this point, let us consider Figure 6.1 in Chapter 6. This figure shows the 
progressive distortion of the trace-space boundary during the propagation of the 
beam through a periodic system of lenses with spherical aberrations. The area en- 
closed by this boundary remains constant in agreement with Liouville's theorem, 
which is discussed in Section 3.2. However, it is clear from this picture that the 
beam quality becomes progressively worse as the beam propagates through the 
focusing channel. 

We prefer, therefore, a definition of emittance that measures the beam quality 
rather,than the trace-space area. A measure of the beam quality is the product 
of the beam's width and divergence, where the divergence relates to the random 
(or thermal) velocity spread. To be mathematically more -- precise, we will use the 
moments of the particle distribution in ~ - X I  trace space, ~ ~ . x ~ ~ , n x l '  to define an 
rms emittunce ix (see Section 5.3.4) by 

(3.2a) 
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or, equivalently, by 

BEAM OPTICS AND FOCUSING SYSTEMS WITHOUT SPACE CHARGE 

(3.2b) 

The term z2 in (3.2a) reflects a correlation between x and x‘ which accurs, for 
instance, when the beam is either converging (e.g., after passing through a lens) 
or diverging (e.g., after passing through a waist); it is zero at the waist of an 
ideal uniform beam. As discussed in Section 5.4.5, XXI’ represents an inward or 
outwardjlow term in the transverse kinetic energy. The difference between the total 
transverse kinetic energy and the flow energy is the random, or thermal, kinetic 
energy whose x-component is defined by Equ&on (3.2b) is there- 
fore equivalent to ( 3 3 ;  .f = @)In is the rms width, x:h = ($)In the rms 
divergence, i3,,th = (u$,,) the rms velocity spread, and IJO the mean axial velocity 
of the particle distribution. A rigorous derivation from the particle distribution 
function and detailed discussion of this relationship can be found in Sections 5.3.4 
and 5.4.5 of Chapter 5. 

The rms emittance provides the desired quantitative information on the quality 
of the beam. Thus in Figure 6.1, Zx increases with distance through the focusing 
channel while the trace-space area A, remains constant. The only problem with the 
rms emittance is that it gives more weight to the particles in the outer region of 
the trace-space area (e.g., the halo observed in some beams) as compared to those 
in the beam core. Removal of such particles can therefore significantly improve 
the rms emittance while the corresponding decrease of beam intensity may be 
comparatively very small. 

In a system where all the forces acting on the particles are linear (i.e., propor- 
tional to the particle’s displacement x from the beam axis), it is useful to assume 
an elliptical shape for the area occupied by the beam in x-x‘ trace space. If this 
ellipse has an upright position with major axes X, and (XI) , ,  the trace-space area 
A,, which is identical to the area of the ellipse, is given by 

In this special case we can define an emittance as the product of the width x, and 
maximum divergence (XI),,, as 

Ax 
Ex = X,(X’), = - , 

lr 
(3.4) 

which is equal to the total trace-space area A, divided by w. The definition 
ex = AJlr also applies when the trace-space ellipse is tilted, and we will use it 
consistently in the chapters that deal with linear beam optics without space charge 
(Chapter 3) and with space charge (Chapter 4). Note that we use the brackets 
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in (x’), to distinguish the maximum value of x’ from the slope of the width 
xk = dx,/dz in a converging or diverging uniform beam. 

As will be shown in Section 5.3.4, for a beam with uniform particle density 
where both space charge and external forces are line% the relationships between 
x,, (x’),, ex and the corresponding rms quantities 3. x:,,, $, are given by 

(3.5a) 

(3.5b) 

(3%) 

For the ideal uniform beams with linear focusing forces discussed in Chapters 3 
and 4 we call xm the width, ( X I ) ,  the divergence, and ex the emittance of the beam. 
For other beams having nonuniform particle distributions the total trace-space area 
comprising all particles is generally larger than e,w = 4ZX7r. However, in most 
cases of theoretical or practical interest one finds that the fraction of the beam 
outside of this area is relatively small. It is therefore meaningful to use ex, the four- 
times nns emirrance as a measure for the overall beam quality, following a proposal 
by Lapostolle. [See Section 5.3.4 and the discussion at the end of Section 5.4.4 in 
connection with Equations (5.295a)-(5.298).] In the context of this more general 
application of the relations (3.5a)-(3.5c), we will call x, the effective width, (x’), 
the effective divergence, and ex the eflective emittance, of the beam. 

As mentioned above, many authors identify the emittance with the trace-space 
area A, of the beam by including the factor 7r implicitly or explicitly. In the first 
case, “emittance” is defined as ex = A,. In the second case, w is factored out and 
“emittance” is given as ex7r = A,, where the factor 7r is often included with the 
units, e.g., ex = 20n mm-mrad. For the reasons stated, we prefer the definitions 
given in the above equations, and they are used consistently in this book. 

For an axially symmetric beam, the above description of the beam properties 
in one trace-space plane (x-x’) is sufficient. However, in many cases one has two 
planes of symmetry, e.g., beams in quadrupole focusing channels. Hence, one also 
needs the effective width ym,  divergence (y’),,,, and emittance ey for the y-y’ 
projection of the four-dimensional transverse trace-space distribution. In the case 
of bunched beams, the longirudinal phase-space properties have to be included to 
obtain a description of the overall beam quality in six-dimensional phase space. 
These properties and the associated definitions of longitudinal emittance, bunch 
width, divergence, and energy spread are presented in Sections 5.4.6-5.4.8 for 
linear accelerators and in 5.4.9 for circular machines. 

The units of measurement for emittance are m-rad. However, since the typical 
widths and divergence angles of beams are in the range of mm (or cm) and m i l k  
radians, respectively, it is customary to use units of mm-mad or cm-mrad. Also, the 
normalized longitudinal emittance is often given in units of “electronvolt-seconds” 
(see Section 5.4.6).. 

The emittance, as defined here, is a somewhat incomplete description of the 
qualify of the beam. For one thing, emittance depends on the kinetic energy of the 
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Figurn 3.1. M.thod of measuring the haa-space distribution of a Imam. 

particles: according to Equation (3.2), the slope x' (and hence the area in x-x' 
trace space) decreases as the longitudinal momentum P, increases. One therefore 
has to normalize the emittance when one compares beams of different energy, as 
discussed in the next section. Another problem is due to the fact that the particle 
density across the beam as well as the density of the representative points in trace 
space is generally nonuniform, in practice, and decreases at the edges. Thus one 
has to specify what fraction of the beam particles lies within a given area. This 
is done by presenting the data in a contour map where different curves contain 
different fractions of the beam. 

A method of measuring the trace-space distribution of laboratory beams is 
schematically illustrated in Figure 3.1. As shown in this figure, the beam is 
intercepted by a plate with a set of narrow slits (or, alternatively, with a single slit 
that can be moved across the beam). The particles passing through each slit form a 
narrow beamlet with a small divergence angle. At distance 1 downstream from the 
plate, the current density profile of each beamlet is scanned by a moving probe (thin 
tungsten rod, for instance) or by a second slit with a current collector behind it. 
Each slit position in the intercepting plate upstream defines an x-coordinate within 
the beam. The angular divergence of the beamlet passing through a slit is obtained 
from the width of the associated current density curve measured by the probe at 
distance 1. For any given current density level, for example 10% of the highest 
peak, two points at distances dl and d2 from the axis are defined, as indicated 
in Figure 3.1.The corresponding divergence angle a, or slope x', is given by the 
simple geometric relation tan a1 = a1 = (dl - q ) / Z  = x i ,  and likewise for a?. 
If one plots the two angles (or slopes) for each slit position in an x-x' coordinate 
system, one can construct a closed curve, as shown on the right side of the figure. 
The area enclosed by this curve is then the trace-space area Ax for the fraction 
of the beam defined by the given intensity level. Such emittance contours can be 
obtained for any fraction of the beam current distribution. Specifically, the contour 
corresponding to the zero current density points at the bottoms of each beamlet 
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curve defines the total, or loo%, trace-space area of the beam. Similarly, one can 
construct trace-space contours for 95% or 90% of the beam current. This contour 
map then provides a good picture of the particle distribution in the x-x' trace space 
and hence in the corresponding x - p ,  projection in phase space. 

A useful description of the beam quality is obtained by measuring the trace- 
space area in both transverse directions. This is accomplished by either rotating 
the slits and probe of Figure 3.1 by 90" or by inserting a separate system for 
measuring the trace-space area A,. 
As stated earlier, emittance alone is not enough to define the quality of a beam. 

One can make the emittance as small as one desires for a particular application by 
use of collimating slits. What counts, however, is the number of particles, or the 
total beam current, with a given emittance. The figure of merit is therefore known 
as the brightness of the beam, commonly defined by [C.14, p. 1601 

which is the current density per unit solid angle. In this definition, brightness, 
like current density J ,  is a quantity that may vary across the beam. For many 
practical applications it is more meaningful to know the total beam current that 
can be confined within 
corresponding definition 

where V4 = $ $ dS dQ 

a given four-dimensional trace-space volume V4 . The 
of average brightness is 

(3.7) 

represents the integral taken over the total trace-space 
volume. As pointed out previously in this section, the emittance is generally not 
directly proportional to the trace-space area. However, for any particle distribution 
whose boundary in four-dimensional trace space is defined by the hyperellipsoid 

x2 ax' 

one finds that $ dS d n  = (.rr2/2)exey, and that the average brightness is accord- 
ingly given by 

The best known examples of this type are the K-V distribution and the wuterbag 
distribution, which are treated in Chapter 5. In the waterbag case, the hyperellip- 
soidal volume is populated with uniform density. In the K-V beam, on the other 
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hand, the particles occupy only the surface of the hyperellipsoid, and the volume in 
four-dimensional phase space is zero in a mathematical sense. However, the pro- 
jections into any two-dimensional subspace (x-x’ ,  y -y ’, etc.) are ellipses whose 
areas, e,m and c,,“, have uniform current densities; Equation (3.8) is therefore 
a valid definition of brightness for a K-V beam as well. Since Equation (3.8) is 
also consistent with our concept of emittance as a measure of beam quality, we 
will use this relation as the definition of brightness for any distribution provided 
that C, and E ,  denote effective (“four-times-rms”) emittances. For the experimen- 
tal determination of brightness it is necessary to specify the percentage of total 
beam current to which the effective emittance values being used in (3.8) apply. It 
should be noted that quite often in the literature the factor 2 / d  is left out, and 
brightness is simply defined as Z/e,cy or I / a 2  if C, = f y  - E .  Sometimes the 
rms emittances are used in place of the effective emittances. Since C: = 161:, the 
brightness values associated with the rms emittances are 16 times higher than those 
calculated from Equation (3.8), and Z/g: is almost 80 times greater than 2Z/7r2e:. 
It is therefore important to clearly state which definition of brightness is used to 
avoid misunderstandings when brightness figures are reported in the literature or 
results from different experiments are compared. 

In view of the energy dependence, one also has to normalize both emittance 
and brightness if one wants to compare the quality of different beams. These 
normalized quantities can be deduced from Liouville’s theorem, which is discussed 
in the next section. According to Liouville’s theorem, the normalized emittance, 
defined as Cn = /3 ye, and the normalized brightness, Bn - B/(/3 Y ) ~ ,  are invariants 
under ideal conditions. A more thorough description of the concepts of beam 
emittance and brightness can be found in the article by C. Lejeune and J. Aubert 
in Supplement 13A, p. 159ff. of Applied Charged Particle Optics [C.19]. 

3.2 UOUVIUE‘S THEOREM 

In Chapter 2 we introduced the canonical space and momentum coordinates 
qi ,  p i .  If we construct a conceptual Euclidean space of six dimensions combining 
configuration space (qi)  and canonical momentum space (pi) ,  a particle is rep- 
resented by a point, and all particles in a beam will occupy a volume in this 
six-dimensional hyperspace which is called phase space. We can define a particle 
density n(x, y, z ,  p , ,  p r ,  p, ,  1 )  in phase space, and the number dN of particles in a 
small volume element dV of phase space is then 

dN = n dV = n dx dy dz dp,  dp,  dp,  . (3.9) 

Let us now consider a system of noninteracting particles. The motion of the ensem- 
ble of particles representing the beam in actual configuration space is associated 
with an equivalent motion of the representative points in phase space, and we can 
define a velocity vector v - {q , ,p i }  in phase space for each particle. As the en- 
semble moves, the volume it occupies in phase space also moves and changes its 
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shape. Since the total number of particles and the associated representative points 
in phase space must remain constant, the motion in phase space must obey the 
continuity equation 

an 
at 

V - (nv)  + - = 0, (3.10) 

or 
an 
at n V - v + v * V n + - - 0 .  (3.1 1) 

NOW, with v = {qi,bi}, we have 

(3.12) 

If a Hamiltonian H(qi, pi, t )  can be defined for this system, Hamilton's equations 
hold; that is, 

As a result, 

and (3.1 1) becomes 

an - + v * V n  = 0 .  
at 

(3.13) 

(3.14) 

Since 

(3.15) 
dn an an an an 
dt at aqi i aPi ' at 
- = - + 2 -qi + x - p .  = - + v . V n ,  

we can write in place of (3.14) 

dn 
- =  0, or n - no = const; 
dt 

(3.16) 

that is, the density of points in phase space is a constant. 
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If n remains constant, the volume occupied by a group of particles in phase 
space also remains constant throughout the motion. If S N  = n SV is the number 
of particles in a small volume element 6V, we have 

(3.17) 
d d dn d(S V) 
dt dr dt dt 
- (SN) = - (n SV) = - Sv + n - = 0 .  

Thus, in view of (3.16), 

(3.18) 

Equations (3.16) and (3.18) are both two versions of Liouville’s theorem, which 
states that the density of particles, n, or the volume occupied by a given number 
of particles in phase space remains invariant. 

Liouville’s theorem in the above form is, strictly speaking, valid only for 
noninteracting particles. However, it is still applicable in the presence of electric and 
magnetic self fields associated with the bulk space charge and current arising from 
the particles of the beam, as long as these fields can be represented by average scalar 
and vector potentials c$(x,y, z ) ,  A(x,  y ,  I ) .  This implies that a particle’s interaction 
with its nearest neighbors can be neglected in comparison to the interaction with the 
average collective field produced by the other particles jn the beam. Quantitatively, 
for this to be the case, the Debye length AD, discussed in Sections 4.1 and 5.4.1, 
must be large compared to the interparticle distance. If the fields of individual 
particles and particle-particle interactions become important, one must generalize 
the phase-space concept to a hyperspace of higher dimension. Thus, instead of 6, 
we have 6N independent space and canonical momentum coordinates in this case. 
Then a velocity vector v = (61, q 2 ,  . . . , q 3 ~ ;  j ~ ,  . . . , p 3 ~ )  may be defined, and 
Liouville’s theorem applies to the particle distribution in 6N-dimensional phase 
space but not in six-dimensional phase space. For a more detailed discussion, see 
Lawson’s book [C.17, Sec. 4.21 and the references given there. 

Returning now again to the six-dimensional phase space, we note the following: 

Liouville’s theorem also applies for the phase space defined by the mechuni- 
cul momentum components Pi and spatial coordinates qi; thus the conserva- 
tion of the phase-space volume can be stated in the form (see Problem 5.7) 

// d3qi d3Pi = const. (3.19) 

While the volume in phase space remains constant, the shape generally does 
not. In fact, nonlinearities (aberrations) in the field configurations through 
which the particles move may cause considerable distortions yilumentution) 
in the shape of the phase-space volume; as a result, beam blowup and particle 
loss to nearby walls may occur. 



3. The trace-space area A, is related to the projection of the phase-space volume 
into the x-P, plane by 

A, = J dxdP, = - J dxdP, .  
P YBmc 

(3.20) 

If there is no coupling between the x-motion and the other directions (y and 
z), the area in x-P, phase space defined by // dx dP, remains constant. 
Moreover, if there is no acceleration or deceleration (By = const), the area 
A, in x-x' trace space is also conserved. However, if there is an energy 
change (i.e., By # const), A, and, by implication, the emittance ex, do not 
remain constant, the change being inversely proportional to By according 
to Liouville's theorem as stated in Equation (3.20). For this reason, one 
introduces the normalized rms emittance 

(3.21a) 

or the equivalent normalized (effective) emittance 

Q = p y c  = 4 p y g .  (3.21b) 

For beams in particle accelerators, the normalized emittance is a more useful 
quantity than the unnormalized emittance since in an ideal system (linear 
forces, no coupling) it remains constant. An increase of the normalized 
emittance is usually an indication that nonlinear effects causing a deterioration 
of beam quality are present in the system. 

In similar fashion one can define a normalized brightness, 

(3.22) 

which in an ideal system is also an invariant. 
As an example of how the unnormalized emittance is changed by acceler- 

ation, consider a proton beam that is injected into a linear accelerator with a 
kinetic energy of 50 keV and an effective emittance of c = 200 mm-mrad. 
It emerges from the accelerator with a kinetic energy of 80 MeV. What is the 
emittance of the accelerated proton beam if no particle loss and no distortions 
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in the phase-space volume occur? We may treat the protons nonrelativistically 
since T 4 EO = 938.25 MeV. Now uAx = const, or TInA, = const. Let €1 

be the emittance at 50 keV, €2 at 80 MeV. Then €2 = r l ( T ~ / T z ) ' ~  = q/40, 
hence, €2 = 5 mm-mrad. Thus, the emittance is reduced by a factor of 40 
while the normalized emittance t, = /3rt remains constant. 

We close this section with an example that illustrates how to calculate the 
rms emittance for a given theoretical distribution. Consider a round beam 
with uniform particle density n(r )  = no = const in space and a thermal ve- 
locity spread defined by a Gaussian of the form exp[-m(ui + v ; ) / 2 k ~ T ~ ] .  
This is a good approximation for a high-current electron beam with transverse 
temperature TI  from a thermionic cathode. If x,,, = a is the beam radius, 
one finds for the rms width 

where (7)ln = i: = a/J?: is the rms radius of the beam. The rms thermal 
velocity is defined by 

where v: = v,' + u;. 
The effective normalized rms emittance is then given by 

which is identical to Equation (1.7b) if one replaces r, with a. A method 
of determining the rms emittance from experimental data in the case of an 
axially symmetric beam can be found in the paper by Rhee and Schneider 
mentioned in Chapter 6 (Reference 14). 

3.3 THE PARAXIAL RAY EQUATION FOR AXlAUY SYMMETRIC 
SYSTEMS 

3.3.1 Series Reprosentation of Axisymmotric Electric and 
Magnetic Fields 

In the following, we consider particle motion in rotationally symmetric static fields 
(13/ahJ = 0, = 0). We assume that the beam currents are low enough so that 
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self fields generated by the particles may be neglected in comparison to the applied 
fields. These assumptions imply that 

V X E 1 0 ,  V * E = O ,  E=-Vcp,  

V X B = 0 ,  V * B = O ,  B=-V$,,,. 
(3.23) 

Thus, both E and B may be derived from a scalar potential f ( r ,  z) which obeys 
a Laplace equation of the form 

(3.24) 

Since the potentials must be finite, continuous along the z-axis, and for symmetry 
reasons an even function of radius r , one can solve Equation (3.24) by means 
of a power series 

where fo(z) = f ( 0 ,  z) is the potential along the z-axis. Note that a linear term f l  r 
(and by implication any odd power of r )  in the potential function f ( r , z )  would 
lead to nonzero radial fields on the axis since a f / a r  = f l  # 0. This is inconsistent 
with the axial symmetry, which requires that Er = 0, Br = 0 at r = 0. 

Differentiation of Equation (3.25) and substitution in (3.24) yields 

m m 

where f l v  = a2fzv/dz2 and [2v + 2v(2v - l ) ]  = ( 2 ~ ) ~ .  From this equation, one 
obtains the recursion formula for the coefficients f z v :  

(2v + 2I2f2”+2 + f ; ;  = 0, (3.27) 

that is, 

for v = 0 ,  
1 
4 

f2 = -- f ;  



- 68 = BEAM OPTICS AND FOCUSING SYSTEMS WITHOUT SPACE CHARGE 

The function of f(r, z) can thus be written in the form 

or 

(3.28) 

This shows that the potential distribution f ( r , z )  in an axisymmetric system for any 
given p in t  r ,  z off the axis may be determined from the potential distribution and 
its derivatives on the z-axis ( r  = 0). In practice, it is relatively easy to obtain fo(z) 
with sufficient accuracy. However, small errors in the measurement (or numerical 
calculation) of fo(z) are strongly amplified in the derivatives so that the higher-order 
terms may become increasingly inaccurate. One therefore has to check carefully 
that the series representation can be applied within acceptable error bars. 

The E and B fields are obtained by substituting q5 or 4 m  for f ( r ,z)  in Equa- 
tion (3.28) and taking the gradients. Since the magnetic potential q5m is not a 
measurable quantity like 4,  one uses, in the case of magnetic fields, the axial field 
component B,(O, z) = B(z) on the axis rather than &(O, 2). The field components 
Br and B, off the axis are then obtained from B(z) and its derivatives as shown 
below. First, one has 

From (3.281, with f(r ,z)  = q5,, one gets 

Using B,(O, z )  = B(z) = -a4,(O, z)/az, this may be written in the form 

r2 a2B r4 a48 B,(r,z) = B - - - + - - - ... , 
4 az2 64 az4 

or 
m (-1)” a2”B 2v 

v-o (Y!)? azzv 
B,(r,z) = 1 - -( t )  . 

Likewise, 
r aB r3 a38 ) = - - -  + -- - ... 
2 az 16 az3  

B (  r f , Z  

or 

(3.29) 

(3.30) 

(3.31) 

(3.32) 
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3.3.2 Derivation of the Paraxial Ray Equation 

With the series representation of the fields given in the preceding section, we are 
now able to calculate particle trajectories in axisymmetric systems to any degree 
of accuracy desired. The general approach is first to derive linear equations for 
the particle motion in which only terms up to first order in r and r' = dr/dz  are 
considered. One can then improve the accuracy by including higher-order terms 
in r and r'. These terms are necessary to study nonlinear effects, or aberrations, 
which are important in many applications, most notably the electron microscope. 
Then are several approaches to tackling this problem. One is to start with the 
equations of motion in the Newtonian form or with Hamilton's equations. Another 
possibility is to use the Euler trajectory equations which were derived from the 
variational principle of least action. 

The basic first-order optical equation which describes the motion of charged 
particles in an axisymmetric system is known as the pararial ray equation. In the 
following we derive the paraxial ray equation from the equations of motion in the 
Newtonian form [Equations (2.1 l)]. 

The assumptions of paraxial motion are that the particle trajectories remain 
close to the axis; that is, r is very small compared to the radii of electrodes, 
coils, or iron pieces that produce the electric and magnetic fields. This also 
implies that the slopes of the particle trajectories remain small (i.e., r' 4 1 or 

4 i). Furthermore, the azimuthal velocity ug must remain very small compared 
to the axial velocity (i.e., r e  4 i). Thus, in this linear approximation we have 
i = (u2 - ;2 - r2iz)'n = u.  with these assumptions, only the first-order terms 
in the expansions of the fields need to be considered and the equations of motion 
can be linearized by expanding all quantities in terms of their values on the axis 
of the system and dropping all terms of order r2,  rr', r', and higher. 

The electric potential may be expressed in terms of the potential on the axis 
( r  = 0). which we denote with V ( z ) .  From (3.28), we obtain with f ( r , z )  = 
qVr.z),f(O,z) = 4(O,z)  = V ( z ) :  

4 ( r , z )  = V - (3.33) 

From this we obtain for the radial and axial electric field components the first- 
order relations 

The first-order magnetic field terms are [from Equations (3.31) and (3.32)] 

(3.34) 

1 
2 

B ,  = -- B'r, B,  = B .  (3.35) 
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Note that Ee = 0, Be = 0, which follows from V X E = 0 and V X B = 0 with 
t3/M = 0. V = V ( z )  and B = B ( z )  are the electrostatic potential (corresponding 
to the kinetic energy of the particles) and magnetic field on the z-axis ( r  = 0), 
respectively. 

If we substitute the above relations for the field components into Equations 
(2.11a) to (2.1 lc), using (2.76) in place of (2.1 Ib), we obtain the following set of 
equations for the radial, azimuthal, and axial motion of the particles: 

(3.36) 

4 2  -5 Br + p e ,  (3.37) ymr2t i  = --* i- pe  = 

4 2 '  I (3.38) 
d 

m -(yi) = -qV' + - r BB . 
dt 2 

4 
27r 

Since in the paraxial approximation i = u = pc (i.e., ug = r e  a~ u),  we 
can neglect the term qr26B'/2 on the right-hand side of Equation (3.38). The 
differentiation with respect to time on the left-hand side of Equation (3.38) can be 
changed into differentiation with respect to the z-coordinate as follows: 

d 
dt dz dz 

(3.39) 

or, with = y ' /y3 ,  

Thus, (3.38) may be written as 

mc2y' = - q V ' .  (3.41) 

Integration of Equation (3.41) yields the energy conservation law T + U = 
( y  - l)mc2 + qV = const. If we define the potential such that V = 0 when 
T = 0, or y = 1, the constant is zero and we get 

(3.42) 

Note that for positive q. the potential V is negative and vice versa; hence, -qV is 
always positive, and (V(z)I is the voltage equivalent of the particle's kinetic energy. 
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From Equation (3.37) one obtains for the angular velocity of the particles 

or 

Integration of (3.43) with the initial condition 8 = 80 and z = zo yields 

By substitution of (3.43) into (3.36) one obtains for the radial motion 

- d ( y i )  = - qrV" + d ( m y e  + qB)  
dt 2m m 

or 

(3.43) 

(3.44) 

(3.45) 

Now we have 

Using these relations and 
be written as 

= y'/ y3 ,  the left-hand side of Equation (3.45) may 

(3.47) 
d - ( y i )  = c2(yS2r" + y'r'). 
dt 

From (3.42), we have 

(3.48) 
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Substitution of (3.47) and (3.48) into (3.45) yields 

or, after dividing by c2 yp2 ,  

This is the relativistically correct paraxial ray equation that defines the radial motion 
of the particles near the z-axis where the nonlinear force terms can be neglected. 
As explained earlier, pe = ymr2e  + qAer is the canonical angular momentum 
of the particles as determined by the initial conditions. The azimuthal position of 
the particles as a function of distance z can be determined from Equation (3.44). 

Let us now discuss the physical contents of Equation (3.49). The first term, r", 
represents the change of slope of the particle trajectory. The second term contains 
the effect of the axial electric field (acceleration or deceleration), the third term that 
of the radial electric field (focusing, defocusing), and the fourth term represents the 
magnetic force. The last term adds a centrifugal potential or an effective repulsive 
core when the canonical angular momentum is different from zero. In this case, 
the particle never crosses the axis (i.e., r # 0). 

In the nonrelativistic limit, we can make the substitutions 

(3.50a) 

(3.50b) 

(3.5oc) 

With these approximations we obtain from (3.49) the nonrelativistic paraxial ray 
equation 

V'r' V"r  q2B2r p i  1 
= 0 .  (3.51) rl' + - + - + - - - - 

2V 4V 8mqV 2mqV r3 

Note that V and qV in the denominators are positive quantities representing the 
voltage equivalent of the particles' kinetic energy. For the angle 0 the nonrelativistic 
approximation is [from Equation (3.44)l 
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With respect to canonical angular momentum, pa = ymr26  + qAer, three 
cases are of interest: 

1. The particle starts in a field-free region (A8 = 0). In this case pe depends on 
the initial radius ro, initial azimuthal velocity 60, and initial kinetic energy 
yo of the particle and is given by 

2. If in addition to Ae = 0 the initial angular velocity is zero (i.e.. t l g  = roe0 = 
O), one has 

and the last term in the paraxial ray equation vanishes. 
3. If a particle starts in a region where Ae # 0 with 80 = 0, or if we choose 

as the reference point a position along the trajectory inside a magnetic field 
where 60 = 0, we can introduce the magnetic flux +O = 21r 1; Br dr .  From 
(2.75) and (2.76) one then has 

(3.55) 

and hence one can express the last term in the paraxial ray equation in the 
form 

(relativistic case) (3.56) 

and 

(nonrelativistic case). (3.57) - - -  Pi 1 (q+o)2 1 - 
2mqV r3 81r2mqV r3 

It is often convenient to study the particle trajectories in a frame that rotates at 
the -or frequency OL and is therefore known as the Larmor frame. The angle 
8, between this rotating frame and the stationary laboratory system is given by 

(3.58) 

The angle B L  of the particle in the Larmor frame is given by the difference between 
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the angle 8 in the laboratory frame and 8,: 

(3.59) 

When pe = 0, or $0 = 0, particle motion in this frame is in a plane through 
the axis which is known as the meridional plane. In this case, the trajectory 
r(z)  in the meridional plane may be found from Equation (3.49) alone by setting 
pe = 0, and the rotation of the meridional plane is found from Equation (3.58). 
For nonmeridional motion when pe # 0, one must solve Equation (3.49) first and 
then use the result to solve (3.44). 

Although cylindrical coordinates are the natural choice for systems with axial 
symmetry, it is sometimes convenient to use Cartesian coordinates (x ,  y )  and obtain 
the projections of the trajectory on the two perpendicular planes. In this case we start 
with Equations (2.10a) and (2.10b). The first-order terms for the field components 
are [from Equations (3.34), (3.35)] 

(3.61) 
1 1 
2 2 

Bx = -- B'x, By = -- B'y . 

Transforming from time t to axial distance z as the independent variable [as in 
(3.46)] and introducing the Larmor frequency relations 

(3.62) 

one obtains the two equations 

Unlike the paraxial ray equation (3.49) that contains the r-3 term when pe # 0, 
these are linear equations in x and y .  However, they are coupled and thus have to be 
solved simultaneously. By introducing the complex variable t = x + iy = reie, 
the two equations can be combined into one which can be transformed to the 
rotating Larmor frame via the transformation 

= [Leier, (3.65) 
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where 

[L == xL + iyL = rLeieL (3.66) 

and 8, is given by Equation (3.58). 

frame has the form 
The resulting differential equation describing the particle motion in the Larmor 

with 

(3.68) 

Thus one obtains for the trajectory coordinates XL = Re [L and y~ = Im [L two 
identical equations [since g l ( z )  and g2(2)  are real functions]. These equations are 
decoupled and linear in XL and y ~ ,  which explains the advantage of working in 
the Larmor frame. Note that gl(z)  and g2(z) are the same functions as in the 
corresponding linear terms of the radial equation (3.49). 

The three sets of equations for r and B [Equations (3.49) and (3.44)]. x and y 
[Equations (3.63) and (3.64)], or XL and yL [from Equation (3.67)] are, of course, 
equivalent forms of the paraxial ray equation and have the same physical content. 
To solve them, one must specify the initial conditions for r ,  r', 8.8' (or p e )  in the 
first case, or the corresponding initial values for x ,  x', y ,  y' or XL,  x l ,  y ~ , y i  in the 
latter two cases. Particularly simple is the situation where the particles are launched 
with vg = 0 in a region where the magnetic field is zero (B = 0). In this case, 
pe = 0; that is, the nonlinear term in the radial trajectory equation (3.49) vanishes 
and a particle stays in the meridional plane that is defined by the initial values of r 
and 8 and that rotates with the Larmor frequency O L .  One can choose one of the 
transverse planes in the Larmor frame, say the XL-z plane by setting 8L = 0 to 
coincide with the meridional plane and thus needs only one of the two equations 
defined by (3.67) to describe the particle motion. The radial coordinate r is then 
identical with XL. Thus we can use the equation 

r" + gI(z)r' + g2(z)r = 0 (3.69) 

and treat r like the Cartesian coordinate XL (i.e., it can be positive or negative, 
changing sign when a particle crosses the z-axis in the meridional plane). Note 
that (3.69) follows directly from (3.49) for pe = 0. The transformation to the 
Larmor frame is a very important simplification. It allows us to apply Equa- 
tion (3.69) and its properties, which will be discussed in the following sections, to 
both axisymmetric electric and magnetic fields. 

Through the remainder of this section and in Section 3.4 we will, for the most 
part, restrict ourselves to axisymmetric systems described by Equation (3.69) with 
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the understanding that the variable r behaves like a Cartesian coordinate whether 
magnetic fields are present or not. This implies that we will consider only particle 
motion in a meridional plane. The rotation of this plane in the presence of a 
magnetic field can be calculated from Equation (3.58). Application of the results to 
the more general case of nonmeridional motion requiring the inclusion of angular 
momentum or the use of two equations is straightforward in view of the preceding 
discussion. 

3.3.3 hneral Properties of the Solutions of the Paraxial 
Ray Equations 

Let us now review some general mathematical properties of Equation (3.69) 
describing the linear beam optics in an axisymmetric system. In the case of magnetic 
fields this description is of course done in the rotating Larmor frame, as discussed 
in the preceding section. First, we recognize that equations of the fonn (3.69) 
[and, likewise, (3.67) in the complex variable f ]  are second-order, linear, ordinary 
differential equations. These have two independent solutions, say u(z) and u(z), 
from which the general solution can be constructed by linear Superposition, that is, 

(3.70) 

(3.71) 

The constants A and B, and thus the solution r(z) ,  are uniquely determined by the 
initial conditions; for instance, if r = ro, r’ = rh at z = 0, one has 

ro = Au(0) + Eu(O), 

r; = Au’(0) + Eu’(0). 

Solving for the constants A and B yields 

I rod - rou 
uul - U l Y  ’ 
rou - rod 
U d  - U l Y  * 

A =  

I 

B =  

(3.72) 

(3.73) 

(3.74) 

(3.75) 

The denominator in the solutions for A and E is known as the Wronskian 

w = uu’ - u’u. (3.76) 

W is nonzero by virtue of the fact that u,u are linearly independent solutions. 
Differentiation of (3.76) yields 

determinant, 
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From (3.69) we have u" = -glu' - g2u,u" = -glu' - g2v. When this is sub- 
stituted in (3.77), one finds that the terms involving g2 cancel, and one obtains 
the result 

w' = -g1(uu' - u'u) = -g1w. (3.78) 

Using g l  = y ' /p2y  = yy ' / (y2  - 1) from (3.68), we can integrate Equa- 
tion (3.78) and obtain 

(3.79) 

where WO is the integration constant that depends on the initial conditions. Thus, 
when g1 = y'//32r = 0, the Wronskian is a constant; otherwise, it changes as 

The term glr' in Equation (3.69) [or in Equation (3.67)] can always be elimi- 
(BY) -1 .  

nated by introducing the reduced variable 

which results in the equation 

where 

or 

R" + G(z)R = 0 ,  

In the nonrelativistic case, we have R = (V)1'4r, 

V' V" qB2 V"2V - 2VQ 
4v2 gl  = - 2 v ,  g 2 = - + -  g'l = 1 4 V  8 m V '  

and the function G(z )  takes the form 

(3.81) 

(3.82) 

(3.83) 
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Furthermore, since 

dV 1 
[ g l ( z ) d z  = [ 7 = l n V ,  

one finds for the reduced variable the relation 

R = r exp( InV)  = r~114.  (3.84) 

The form (3.81) of the paraxial ray equation is of great importance insofar as it 
involves only V and its first derivative V' on the z-axis. Thus if V is measured or 
calculated with some error and, hence, the second derivative, V", is not too accurate, 
one can obtain better results by using reduced variables and Equation (3.81). Also, 
the reduced variable R is much smoother than r ,  which varies more strongly when 
the energy changes. The calculation of the focal length of an electrostatic lens is 
therefore more accurate when R is used, as is done in Section 3.4.3. 

Let us now return to the solution of the paraxial ray equation as presented in 
Equations (3.70) to (3.76). By substituting the results for the constants A and B 
into the first two equations, one obtains a linear relationship between r ( z ) ,  # ( z )  
and the initial conditions r d z ) ,  rh(z), which can be written in matrix form as 

(3.85) 

The matrix M is known as the transfer matrix and the matrix elements depend 
on u(z) ,  v ( z )  and the derivatives u'(z), d ( z ) .  It is often convenient to choose 
two independent solutions having initial conditions u(0) = 1, u'(0) = 0, v(0) = 

0, v'(0) = 1 and known as the principal solutions. In this case, the constants A 
and B are simply A = ro, B = rh [from Equations (3.74), (3.75)], and the transfer 
matrix is given by 

(3.86) 

Note that the determinant of this matrix, I@, is defined by the Wronskian W = 
uv' - u'v and hence changes its value as (py ) - '  when g l ( z )  # 0 (i . .when the 
particles are accelerated or decelerated). On the other hand, when gl(zJ -= 0, or by 
operating with reduced variables (R, R'), one has the advantage that the determinant 
of the transfer matrix is always unity (IMl = w = 1). 

We recognize that a 2 X 2 matrix relation like (3.85) exists for any two points in 
a system described by linear equations of the form (3.69). Thus the radial coordinate 
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and slope of a trajectory at three different positions, t l ,  z2, and z3, are linked by 
the relation 

(3.87) 

(3.88) 

(3.89) 

This property of the solutions for individual particle trajectories relates to the 
concept of the emittance discussed in Sections 3.1 and 3.2. Suppose that we have 
a distribution of particles at some initial position 21 such that the trace-space area 
is defined by an ellipse of the general form 

The area occupied by this distribution at some other point z2 is then readily found 
by solving the transfer matrix relation (3.87) for (r l ,  r i )  in terms of (r2, 1-4) and 
substituting in (3.90). In view of the linear relationship between the two sets of 
variables, one obtains an equation of the form 

a2r; + 2b2rzri + c2rf = 1. (3.91) 

This is again the equation of an ellipse where the coefficients az, b2, c2 are 
uniquely determined by the transfer matrix elements and the initial coefficients. 
Consequently, the motion of particles in this linear system is such that the trace- 
space area of the distribution remains an ellipse. Of course, the orientation, size, 
and shape of the ellipse are changing continuously as the beam propagates along 
the z-axis. 

In the linear systems considered here, Equation (3.4) applies, and the emittance 
is defined by the area of the ellipse, which is given by 

for the two positions. Now, according to Liouville's theorem, if rncplyl and 
rncBzy2 denote the momentum of the particles at the two positions, respectively, 
the emittances are related as 

(3.93) 



- 80 = BEAM OPTICS AND FOCUSING SYSTEMS WITHOUT SPACE CHARGE 

Thus, the emittance changes in the same ratio as the Wronskian determinant of the 
transfer matrix. It should be pointed out in this context that the beam description 
in the reduced variables R, R‘ also obeys Liouville’s theorem. 

There are several other forms in which paraxial ray equations and transfer 
matrices for axially symmetric systems may be written; these alternate formulations 
are discussed in Lawson’s book [C.17]. Paraxial equations can be derived also for 
systems without axial symmetry, such as rectangular geometries (strip beams), 
systems with two symmetry planes (quadrupole fields), and beams in circular 
accelerators. Some of these equations are discussed in subsequent sections. 

3.4 AXlAUY SYMMETRIC FIELDS AS LENSES 

3.4.1 Oenoral Parameters and Transfer Matrix of a lens 

Whereas in the preceding section we did not make any assumptions about the axial 
distribution of the fields, we now focus our attention on fields that are of limited 
axial extent. These fields, which are zero outside a small interval ZI < z < z2, 
are generally employed as ion-optical or electron-optical lenses in the same way 
that glass lenses are used to focus light beams. Like glass lenses in optics, charged 
particle lenses can be used to form images of an object (elecpon microscope), to 
transport a beam from one point to another, or to focus a beam onto a small target. 

We first discuss the optical properties of a single lens for charged particle beams 
neglecting space-charge effects. Let the electric or magnetic fields of such a lens 
be confined to the region ZI < z < z2. Outside this region the particle trajectories 
will be straight lines. As will be shown later, all fields of limited axial extent have a 
focusing action on a traversing beam; that is, they form converging lenses provided 
that the trajectories do not cross the axis within the lens region. Thus, if we choose 
a ray u(z) which, prior to entering the lens, forms a straight line parallel to the 
axis [i.e., (u, u’) = (LO) for z < z l ] ,  it will emerge from the lens with an angle of 
inclination toward the axis. Likewise, there will be a ray u(z) converging toward 
the axis when entering the lens which will leave the lens on a straight line parallel 
to the axis with (u ,  u’) = (1, 0) for z > z2 (see Figure 3.2). 

Both rays will cross the axis at some point on the respective side of the lens. 
As in the case of a glass lens in optics, these two points are called focal points. 
The actual paths of the particles inside the lens need to be known, of course, to 
determine the displacement and slope of the trajectory emerging from the other 
side of the lens. If we extend the two straight lines of the trajectory on either side, 
they will intersect (dashed lines in Figure 3.2). The points of intersection define 
the two principal planes I and 11. The four lens parameters (dl, d2, fl ,  f2) are 
defined in Figure 3.2 and are taken as positive numbers if they are as indicated. 
Thus, dt > 0 when plane I is to the right of the center of the lens, as shown. For 
a defocusing lens, f2 would be negative. 

The two principal planes and their respective focal lengths f l  and f2 completely 
determine the optical properties of the two particular solutions we have chosen, and 
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Figun 3.3. Tmjecby crossing the axis at object and itvmQe plane. 

21 

since these are independent solutions, that of any other particle trajectory. Consider, 
for instance, the trajectory in Figure 3.3, which crosses the axis a distance L1 from 
plane I to the left and at L2 from plane I1 to the right. As we will see later, this 
ray defines the object and image planes of the system. 

Any such ray can be described by linear superposition of two independent 
solutions like u ( t )  and u(z) defined above. If we project the slopes of the ray 
on each side through the lens, they intersect the midplane of the lens ( z  = 0) at 
distances rl and r2, respectively, as shown in Figure 3.3. The action of a lens 
is thus seen to result in a change of the projected slope and displacement of 
the trajectory at the center, and it can be described by a lens transfer matrix relation 

22 

(3.94) 
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This relation is valid for any trajectory, including the two principal solutions u(z) 
and u(z). Using u(z) and u(z )  and the geometrical relations illustrated in Fig- 
ure 3.2, we can find the transfer matrix elements in terms of the four lens parameters 
dl. d2, f l ,  f2. Starting with the parallel ray entering the lens from the left [i.e., 
(w. 4) = (1. 0)l. we get 

From Figure 3.2 we have the relation 

Consequently, 

d2 
f 2  

mil = 1 - -, 

1 
m21 = -- 

f 2  a 

(3.95) 

(3.96) 

(3.97) 

Using the other independent ray leaving the lens parallel to the axis [i.e., (u2, u;) = 
(1, O)], we obtain the relation 

From Figure 3.2 we have 

dl , u 1 = 1 - -  
fl fl ’ 
1 = - 

hence 

(3.98) 

or 
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Since mll and m21 are known, we can solve for the other two matrix elements and 
obtain after some algebra the result 

(3.100) 

(3.101) 

In terms of the four lens parameters, the lens transfer matrix thus has the form 

- 
f 2  

") 
- f l  "'i. (3.102) 

When the two principal planes coincide, we may put d1 = dz = 0 , and the 
lens matrix becomes much simpler: 

(3.103) 

The displacement of the trajectory, Ar = r2 - rl, is zero in this case and the 
lens changes only the slope of the trajectory. This is known as the thin-lens 
approximation or weak-lens approximation, which in many cases is sufficient to 
determine the focusing effects of a lens. Physically, a lens may be considered as 
thin or weak in the above sense when the width of the lens is short compared to 
the focal length. In this case the change of slope, Ar' = ri - ri, is small and 
the particle position r (z )  within the lens region may be regarded as constant to 
good approximation. 

3.4.2 Imago Formation and Magnification 

As we know from light optics, one of the important features of a lens is the fact 
that it can form an image of an object. In our case of charged particle beam optics, 
the objecr can be an electron-emitting surface such as the cathode of an electron 
gun, a piece of material from which an electron beam is reflected into an electron 
microscope, or the plasma surface of an ion source. However, in a broader sense, 
any cross-sectional area of a particle beam can be an object. In this case, particles 
with different slope r' from a given point r within the beam are focused into a point 
at the image location. Indeed, from this point of view, there is no difference between 
an emitting surface, like a cathode, and a cross-sectional area of the beam. In either 
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case, particles emerge from every point with different angles of their trajectories. 
An image is formed at the position where the trajectories emerging from a given 
object point are focused again into a point downstream from the lens. 

To examine this image-forming property of a lens, let us return to Figure 3.3. 
The trajectory shown in this figure crosses the axis on the left side (object side) 
at distance L I  from principal plane I and on the right (image side) at distance L2 
from the plane II. We know that this ray can be obtained by linear superposition 
of the two independent solutions u, u defined earlier, that is, 

Now, on the object side of the lens (t < 0) we have U I  = 1, u: = 0, ui = 

l/fl, U I  = vl[z + VI - d1)1 = [ z  + VI - d l ) v f l ,  and hence 

z + v1 - dl) 
f l  

r ( z )  = A + B (3.105) 

With the condition r ( z )  = 0 at distance L1 from plane I [i.e., at z = -(LI - d ~ ) ] ,  
one obtains from (3.105) the relation 

(3.106) 

I On the image side of the lens (z  > O), we have u = u2 = 1, u2 = 0, u: = - 1 / f 2 ,  
~2 = -[z - ( f 2  - dz)l / f i ,  and thus 

f 2  
(3.107) 

With r(z)  = 0 at distance L2 from plane I1 (i.e., at z = L2 - d2), one finds from 
(3.107) that 

f 2  A -= -  
L2 A + B '  

Adding Equations (3.106) and (3.108) leads to 
relating object distance and image distance: 

1.  - + - -  f l  f 2  - 
LI L2 

As we have made no restrictions concerning the 
L I  from plane I, our analysis implies that all rays 

(3.108) 

the well-known lens equation 

(3.109) 

slope r' of the ray at distance 
emerging from the object point 
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Figurn 3.4. Rdation betwsen object point PI and image point ~ 2 %  

on the axis are imaged into a single point at distance L2 from principal plane I1 
on the axis. 

Let us now consider the behavior of rays displaced from the axis at the object 
location L I .  As an example, consider the ray r ( z )  emerging from point P1 which is 
displaced by rl in the object plane, z = -(L1 - dl), as shown in Figure 3.4. We 
will show that all rays emerging from point P1 are focused into point P2 a distance 
r11 off the axis at the image plane, z = L2 - d2. The ray r (z )  can be represented 
by a linear superposition of the previous ray (starting from the axis), which we now 
denote with rc(z), and the parallel ray through point P I ,  given by ra(Z) = r,u(z): 

At the object plane rc = 0 and r = rl = r,, hence, A = 1, and thus 

As r,(z) = 0 at the image plane, all rays emerging from PI will have the same 
distance rII = r, from the axis (i.e., they will be focused into point P2). Q.E.D. 

The mugnijication (i.e., the ratio rIl/rl), can be found by obtaining r, at 
z = L2 - d2. This ray crosses the axis at distance f2 from plane 11. From 
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Figure 3.4 we find that 
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that is, 

Multiplying the right side with (3.109), which is unity, we obtain 

The last term on the right-hand side is zero and, hence, 

- f lL2  

TI f2Ll ' 

(3.112) 

(3.1 13) 

This is the magnification factor. 
Equations (3.109) and (3.113) allow us to determine the image distance L2 and 

the image magnification from the object distance LI and the two focal lengths f l  

and f2. Thus, if the two focal points and the two principal planes of a lens are 
known, one can construct the image for an object at an arbitrary position along 
the axis, provided that both object and image lie in the field-free space outside 
the lens fields. 

Since f l / f 2  is a constant for any given lens, we see that rI1 : TI  - C(L2 : L I ) .  
If we consider f l ,  f2, L I ,  L2 as positive parameters and define the radial coor- 
dinate of an object point by r,, that of an image point by ri, then because of the 
image inversion, we have ro = rI, ri = -rII, and hence, we must write (3.113) 
in the form 

(3.114) 

3.4.3 Elutmstatic lenses 

We return now to the paraxial ray equation and consider first electrostatic lenses 
(B = 0) for particles with zero azimuthal velocity (pe = 0). In this case, the 
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paraxial ray equation [Equation (3.49)J becomes 

Y" 
rl + - r  = 0 ,  Yl rN + - 

P2Y 2P2 Y 

or 

( P y r l ) l +  $ r = 0 .  (3.115) 

We shall now derive a simple relation between the two focal lengths f l  and f2. To 
do this, let us consider the Wronskian determinant of the two independent solutions, 
which from Equations (3.76) and (3.79) is given by 

(3.116) w = U U I  - U'U = wo(y2 - 1)- In = -. wo 
YS 

Now let us assume that to the left of the lens (in object space), 

u = U l = 1 ,  u ; = o ,  y = y 1 = - + 1 ,  4VI 
Eo 

and to the right (in image space), 

u = u 2 = 1 .  u ; = o ,  y = y 2 = - + 1 .  4 v2 
EO 

On the left side of the lens, we therefore get from (3.116) 

u; = WO(Y? - 1 ) Y  

whereas to the right, 

u; = --Wo(YzZ - l)? 

From the preceding section, we know that ui = l/f1, U: = -1/f2; hence, 
taking the ratio of the last two equations, we find that 

(3.117) 
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In the nonrelativistic limit, this relation takes the form 

(3.118) 

Thus the ratio of the object-side and image-side focal lengths of an electrostatic 
lens is equal to the ratio of the mechanical momenta (or, in the nonrelativistic case, 
the velocities) on either side of the lens region. If the momenta in the field-free 
space on each side of the lens, or the voltuge equivalents, are identical, we speak of 
a unipotentiul lens. In this case, the two focal lengths are the same (i.e., f 1 = f2). 

We will prove now that all axisymmetric electrostatic fields (with field-free 
regions on either side) form positive, or converging, lenses provided that the tra- 
jectories do not cross the axis within the lens region. First we see this qualitatively 
from Figure 3.5 for a biporentiul lens (i.e., different potentials, or velocities, on 
each side) in which the electric field accelerates the particles. The radial force 
component on the left is focusing, that on the right is defocusing. The radius of the 
particle trajectory decreases and the velocity increases from left to right. Hence, 
converging action dominates over diverging, and we have a net focusing effect. 
A similar argument can be made if the field is decelerating. Quantitatively, this 
follows from Equation (3.81), which in the nonrelativistic case is 

3 V' 
R" + -( 16 - ) R  V = 0 .  

Integration yields 

r 

v =  v, 

(3.119) 

(3.120) 

I d -  
Figum 3.5. Trajectory through an electric lens (rchnwrtic). 
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As long as the particle does not cross the axis within the lens, R > 0, (V'/V)* > 0, 
and hence R: - RI < 0. From the definition R = rV'", we have 

As the limits of integration are assumed to be outside the lens field, V' is zero 
at these points, hence 

In the special case where r[  = 0, we find from this relation that t-4 < 0 (i.e., 
the parallel ray emerges from the lens with negative slope); hence, the lens is 
focusing. This argument is still valid if a magnetic field is considered (see next 
section) or added to the electric field. The reason is that in a solenoidal magnetic 
lens, the particle energy does not change; hence, V2 = VI, and therefore we have 
ri - ri < 0. A similar argument can be made for a two-dimensional system with 
planar electrodes separated by a gap. Thus we can generalize the conclusion 
and state that all axisymmetric or two-dimensional electrostatic and solenoidal 
magnetostatic lenses are focusing provided that the particle trajectory does not 
cross the axis within the lens field region. 

We had seen in Section 3.4.1 that the action of a lens on the particle trajectory 
may be described by the transfer matrix A? [Equation (3.102)]. When the thin-lens 
approximation can be applied, this matrix is greatly simplified and is given by 
Equation (3.103). In the case of electrostatic lenses, the accuracy of the thin-lens 
approximation can be improved by assuming that the reduced variable R, rather 
than r ,  is constant through the lens. One can show that R is uniformly concave 
toward the axis, irrespective of the character of the lens field; r ,  however, varies 
so that its value is larger in the converging parts of the lens than in the diverging 
part of it. Consequently, putting r = const invariably leads to too low a value 
for l/f. Suppose that the path considered has a displacement rl and zero slope 
(ri = 0) to the left of the field and a slope r; to the right of the field. The focal 
length f2 is defined as 

Now, in the nonrelativistic limit, one has, from Equation (3.84), 

since V{ outside the field is zero. Then 

(3.121) 

(3.122) 
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Using (3.120) with Ri = 0, this becomes 

Assuming that R = R1 = const leads to 

- 1 = -( 3 - ) ' I 4 [ : (  v, y )  v' d z .  
f 2  16 vz 

(3.123) 

Thus f z  can be obtained by integration of (V'IV)' over the region of the lens, and 
f l  is then determined by the relation 

or 

(3.124) 

It should be noted that the actual value of R is always slightly smaller than the 
assumed constant value. Consequently, the focal length calculated by the above 
weak-lens formula is slightly shorter than the true focal lengths. 

There are several types of electrostatic lenses, which may be classified as 
follows: 

1. UNIPOTENTIAL OR EINZEL LENSES. These are characterized by equal 
constant potentials in object and image space. As mentioned before, the 
object-side and image-side focal lengths are then the same (i.e., Vz -- V l ;  

2. BIPOTENTIAL OR IMMERSION LENSES. The potentials in object and 
image space are different (VI # VZ). Immersion lens is derived from the 
analogy to the oil-immersion objectives of the light microscope, for which 
object and image are placed in media of different refraction index (i.e., oil 
and air, respectively). In this case, one has 

f2  = fl). 

1/2 

fi = ( 2) (nonrelativistically). 
f l  

3. SINGLE-APERTURE LENSES. These comprise the lens fields about an 
aperture in an electrode which separates two regions of different constant 
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4. 

electric field gradients (i.e., V{ # Vi). Since the electron paths in the object 
and image fields here are not straight lines but parabolas, the considerations 
leading to the above lens equations do not apply and, hence, these formulas 
cannot be used. One can show, however, that the image magnification 
and image distance can be found from the position of the focal points 
and principal planes if the points and planes are redefined in a suitable 
manner. 
CATHODE LENSES. These are lenses which are terminated on one side 
by an emitting surface at zero potential, normal to the optical axis (e.g., the 
cathode of an electron gun). An example of this type of lens is a planar diode 
in which the anode has a hole through which the beam can pass. The electric 
field in the region of the anode hole has a defocusing radial component, 
and the system constitutes a lens with a diverging effect on the beam. The 
cathode lens can be considered as a single-aperture lens with the aperture in 
the anode and Vi = 0. 

Note that this classification is not unique. There is, for instance, an alternative 
classification that cuts across the above grouping and divides all electron lenses 
into long and short lenses. 

An example of a bipotential lens is shown in Figure 3.6. l b o  coaxial cylinders 
with radii bl, bz, and separated a distance d, are at potentials VI, VZ, respectively. 
The potential distribution for such a lens can be found by solving Laplace's equation 
and has the general form 

4(r ,  z )  = & / a(k)Jo(ikr)eik' dk. 
-m 

(3.125) 

Jo(iRr) is the normal Bessel function of the first kind of zero order and can be 
represented by the power series 

r 

t 

(3.126) 

Figurr 3.6. Bipobntial lens formad by two coaxial conducting tubes at d i h t  pokntialr. (Typical 
linm d iwce are shorn for V, > V].) 
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The coefficients a&) of the integral (3.125) must be determined from the boundary 
conditions for f$(r , z ) .  

For the special case where the two cylinders have the same radius (bl = b2 = b )  
and their separation is infinitesimally small (d .-, 0), the potential functions may 
be written in the form 

(3.127) v 1 + v 2 + v 2 - v 1  OD T J o o d k .  sin kz Jo(ikr) 
?r 

f$b,z)  = 

On the axis (r = 0), this function becomes 

(3.128) 
OD sin kz dk -- v2 + v1 

4(0,z) = V(Z) = - 2 
v2 - v, 

+ - IT 1 k Jo(ikb)‘ 

Figure 3.7 shows V(z )  and the two first derivatives, V’(z) and V”(z).  For conve- 
nience it was assumed that Vl = 0, V2 = 1, and that the distance z is &en in 
units of the cylinder radius b .  

Pigun 3.7. Pohntial distribution and dorivatims on the axis of a hvo-cyiindw h c  with the ram 
dia- and infinikrimdy small sapamtion d .  
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The potential distribution along the axis, V(z), given in Equation (3.128) and 
plotted in Figure 3.7, can be approximated with a good degree of accuracy by the 
expression (see [C.11, Vol. I, p. 391) 

'1 + v2 + v2 - 
2 

Qnh( 4~) 1.318 V(Z) = - 
2 

(3.129) 

With this relatively simple analytical formula the integration of the paraxial ray 
equation and the determination of the focal properties of such a lens is obviously 
easier than using the Bessel function integrals. It is found that both f z  and f l  

decrease (i.e., the refractive power of the lens increases) as the ratio V2/V1 

increases. However, not much is to be gained if Vz/Vl goes beyond about 10. 
Furthermore, both principal planes always lie on the low-voltage side of this 
bipotential lens. The focal strength l/fi for a thin lens can be calculated analytically 
for the general relativistic case, and in the nonrelativistic approximation one finds 
with a =.1.318/b (see Problems 3.4 and 3.5) 

_ -  1 - - a  3 ( 3 ' 4 (  v1 + v2  I n 3  - 2 ) .  
f 2  8 vz - Vl Vl 

(3.130) 

For the case where the two cylinders have the same radius 61 = b2 = b but 
are separated by a distance d, the potential on the axis, V(z), can be approximated 
by the analytical formula (see [C.11, Vol. I, p. 411) 

(3.131) v1 + v2  + v2  - v1 In cosh a z  
cosh a(z - d )  ' 2ad 

V(Z) = 2 

where a = 1.318/b. In the limit d - 0, one recovers Equation (3.129). If the 
diameters of the two cylinders differ, purely analytical methods cease to be effective 
and it is best to solve Laplace's equation, V2# = 0, numerically (e.g., by the 
relaxation method) to obtain the potential distribution. 
As a second example of electrostatic focusing we will now discuss the aperture 

lens illustrated in Figure 3.8. An electrode at potential V, located between two 
coplanar electrodes at potentials Vl and V2, has a small circular aperture of radius 
a through which the particle beam passes from one region to the other. In practice, 
the first electrode could be a cathode at VI = 0, the aperture plate could be an 
anode, and the third electrode could be absent. Alternatively, all three electrodes 
could have an aperture, as would be the case in an einzel lens. However, to analyze 
the effect of a single aperture, let us consider the geometry as shown in the figure. 

First we note that the perturbation introduced by the aperture is confined to a 
region 21 < z < 22 whose width is comparable to the hole diameter, 2a. Outside 
this small region the electric field on either side of the center electrode is practically 
uniform and the particle trajectory is either a straight line (for ;O = 0) or a parabola 
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Figuro 3.8. Field configuration and focusing action of a plane a b c t d  with a cimkr apedurn 
aqxmting two regions of d i h n t  field gmdimh. 

(for ;O # 0). Thus we will assume that E,I = V: = const in the region z 5 z1 and 
E,z = Vi = const in the region z 2 22. For the configuration shown in the figure, 
we have VZ > V > V1 and Vi > V [ .  Hence the radial force, qE,, experienced by 
a particle passing through the aperture region is inward (i.e., the aperture acts like 
a focusing lens). Since electrostatic focusing is usually employed at low particle 
velocities, we can us: the nonrelativistic force equation; hence, we obtain for the 
radial motion (with B = 0), 

Integration through the aperture region yields 

tz 

i2 - il = I], E,dt = 1; $&. (3.132a) m 

Using the paraxial relation (3.34) between E, and aE,/az,  we can write 

(3.132b) 

Let us assume now that in the transition through the aperture region the radius r and 
velocity u of the particle remain approximately constant (thin-lens approximation). 
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The integral is then readily solved and we obtain for the change of the slope 
ri - ri = ( i 2  - i.l)/v the result 

or alternatively, with mu2 = 2qV, E, = V’, 

(3.1 33a) 

(3.1 33 b) 

This result can also be obtained by applying Gauss’s law for the electric flux to a 
cylinder of radius r and length A z  = z2 - Z I .  From /D * d S  = / eoE - dS = 0 
one obtains 

-Ez1r2m + Ez2r2m +- 2mr E, dz = 0, I:’ 
and hence I:: E , d z  = -(r/2)(EZ2 - EZ1), which leads to (3.133a). 

Setting ri = 0, one finds for the focal strength of the aperture lens 

1 ri V; - V ;  
f r 4 v  * 

(3.134) 

From these results we conclude that an aperture lens has a focusing effect if 
Vi > V:, a defocusing effect if Vi < Vl. and no effect if Vi = V:. Of special 
interest is the case where the beam emerges from a diode-type source, for instance 
an electron gun or an ion source, and propagates through an aperture into a field- 
free drift tube. In this configuration, the first electrode is a particle emitter (e.g., a 
thermionic cathode or a plasma surface), and the second electrode serves to extract 
and accelerate the beam. Since V i  = 0, hence f C 0, the aperture in the extractor 
electrode has a defocusing effect. This single-aperture lens is then identical with the 
carhode fens of electron optics, as mentioned in the classification of electrostatic 
lenses given above. 

In some applications the aperture may not be circular, but instead may have a 
rectangular shape having a width Ax = 2a and a height A y  = 2b. For this case 
we can apply Gauss’s law to a flux tube of length A z  = 22 - z1 and height y .  
Using the fact that 

- 
l a E x d x  = E,a = 
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where Ex and E,, are average field values, we find for the change of slopes Ax', by' 
in lieu of (3.133b) the relations 

X v: - v: - = - 
2(1 + a /b )  v ' 

(3.135a) 

(3.135b) 

We must of course recognize that these linear relations are only approximately 
correct, as there are always aberrations (nonlinearities) associated with such rect- 
angular apertures. From a practical point of view, two cases are of special interest. 
First, if a = b (i.e., if the aperture has the shape of a square), the two equations are 
identical with (3.133b) if r is substituted by x or y .  Second, if b - 00, the rectangu- 
lar aperture becomes an infinitely long slit for a one-dimensional sheet beam. There 
is no force in the y-direction, and the change of slope for the x-motion is given by 

x2 I - x ;  = -2  x 7 v: - v; 
(3.136) 

Using the above thin-lens approximations for the effect of an aperture and uni- 
form fields for the regions between electrodes, one can calculate the focusing 
properties of more complicated electrode configurations such as cathode lenses or 
einzel lenses. 

Finally, we note that the above theory also applies to cases where the electrode 
in question does not have a single aperture but consists of a configuration of parallel 
wires (grids) or a wire mesh. Such a configuration essentially subdivides the beam 
into many beamlets, each of which passes through a small aperture lens defined by 
the wire mesh. The formulas developed above must then be applied to each beam- 
let, and the net result is an effective increase of the emittance, as illustrated in Fig- 
ure 3.9 (where a defocusing field geometry was assumed). As an example, consider 
an electron gun with a control grid at a potential V, located a small distance from 
the thermionic cathode. Such a grid may be used to control the current and pulse 
width of the electron beam produced by the gun. Suppose that the grid is a mesh 
of thin wires crossing at right angles and forming square-shaped openings of 
width Ax = Ay = 2a. Each opening acts like an aperture lens; that is, the 
electrons passing through it experience a change of slope given by (3.135) with 
a = b and with x and y measuring the distance from the center of the opening 
(see Figure 3.9). The maximum change of slope for each beamlet is then 

I a V: - V: 
AX,, 5 -- -, 

4 v, 
where V: and Vi are the potential gradients between grid and cathode, and grid and 
anode, respectively. Let R denote the total electron beam radius as defined by the 
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Pigum 3.9. (a) Action of a &using grid on a laminar pamlbl beam in a ho~aspaco diagram. 
Incoming partid.5 (with n( - 0) occupy a stmight line botvmm 14 wims, and he aittance is 
m. 1 b) OutQoing partide, acquin dopes x i  proportional to dirplacment from tho conk point of 
aoch wire d, Might lim mpmmnting particb distribution betmen merh wims becon# tihed, 
and tho effoctk amitkina is eI - R&&. 
cathode size. A parallel beam of electrons with zero initial emittance will acquire 
an effective emittance of = RIAxLxI after passing through the wire mesh. The 
corresponding normalized emittance is 

or 

If the intrinsic thermal emittance, en,th, according to Equation (1.7), is included, 
one obtains for the total normalized emittance of an electron beam produced by a 
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gun with cathode grid the result 

A numerical example illustrating the magnitude of this grid effect is given in 
Problem 3.6. Note that the emittance increase due to a cathode grid is proportional 
to the difference of the field gradients, IVi - Vil .  An obvious conclusion, therefore, 
is to design and operate a gun such that this difference is as small as possible; 
ideally, the gradients on both sides should be the same, but this may not always 
be possible in practice. 

3.4.4 Solenoidal Magnetic knror 

In the case of a purely magnetic field, the paraxial ray equation (3.69) takes the 
form r" + g2(z)r  = 0, or 

rll + k 2 r  = 0 ,  (3.137) 

where 

(3.138) 

and k2 = q2B2/8mqV in the nonrelativistic approximation. By integration, one 
gets for the change in the slope of the trajectory 

ri - ti = - [ : k 2 r d z .  (3.139) 

Since k2 is always positive, and if the particle does not cross the axis inside the lens 
field (i.e., r > 0), we see that ri < ri; hence, the lens is focusing, as stated earlier. 

The major difference between solenoidal magnetic and electric lenses is that in 
the electric case the image is inverted, while in solenoidal magnetic lenses it is 
inverted and rotated by an angle 8, given [from Equation (3.58)] by 

(3.140) 

Since, by Amptre's circuital law, the integral 
turns of the coil, we can also write 

H dz = NI = number of ampere 

(3.141) 
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or 8, = - po(q/8rnV)InNI nonrelativistically. This relation between the angle 
of rotation and the number of ampere turns of the coils exciting the solenoidal 
magnetic lens is accurate if we take the integral from a sufficiently field-free region 
on the left of the lens to the field-free space on the right of it. For electrons, one 
obtains the nonrelativistic relation 

(3.142) 

If the axial width of the magnetic lens is so short that the change in the radial 
coordinate r of a trajectory within the field region is negligibly small, the magnetic 
field in question constitutes a thin or weak magnetic lens, as defined earlier. In this 
case, r on the right side of (3.139) may be treated as a constant. Suppose that r[ 
is zero to the left of the lens (parallel ray); then we obtain for the slope rl = ri 
on the right side, 

(3.143) 

In a magnetic lens f2 = f l  since VZ = VI; that is, one deals with only one focal 
length, f, which in our case here is defined by 

(3.144) 

Note that the focal length from this formula is shorter than the exact thick-lens 
result. The reason is that the trajectory radius r is not actually constant but decreases 
slightly through the lens due to the fact that rtt = -(qB/2rn~Py)~r from Equa- 
tion (3.137) is always negative. 
As an example of a magnetic lens, let us consider the solenoid shown in Fig- 

ure 3.10. The field produced by this arrangement may, in first approximation, be 
assumed to be uniform in the region 0 < z < 1 and zero outside this region if 
the diameter D of the aperture is small compared to the length Z (Lea, D/Z 4 1). 
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,iron 

flux lines 

I 

y-1 * 

I I z 

fbun 3.10. Solonoid lens with iron rhidd. 

Mathematically, the effective length 1 of this equivalent uniform field (or hard- 
edge) approximation can be defined by 

where Bo is the peak magnetic field (see Figure 3.10). 
Since the paraxial ray equation involves only B(z)  on the axis and not the 

derivatives of B(z),  the treatment of solenoidal magnetic lenses is much simpler 
than that of electric lenses. In our particular case, using the hard-edge approximation 
we can integrate (3.137) with the assumption k = const for 0 C z < 1 and k = 0 
elsewhere. Thus, with initial conditions r = ro, r' = 0 at z = 0, we obtain 

r = rocoskz ,  

r' = -roksin k z .  

(3.145a) 

(3.145b) 

When the particle leaves the field, the radius and slope will be (with z = J and 
4 = k l )  

(3.146a) 

(3.146b) 
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where 

- - - 101 

(3.147a) 

or 

IR 1 / 2  

qi = kl = ("> BoZ = PO( &) NI (nonrelativistically). 
8mV 

(3.14%) 

The image rotation is given by 

e, = -4; (3.148) 

that is, the parameter rp measures the amount of rotation of the meridional plane 
by' the solenoidal magnetic field. 

The focal length is obtained from (3.146) as 

1 ri qi sin qi 
f ro I '  
- = - - = -  (3.149) 

The image-side principal plane is located at 22, and from Figure 3.11 one has the 
relations 

ro - rr r:, or 22 = I + 7; ro - rr --= 
1 - 22 rl 

hence, 

1 - c o s q i  
qi sin I$ 

(3.150) 

3.1 1. Tmi#toty enkring &idol fidd with zero sbpe. 



102 BEAM OPTICS AND FOCUSING SYSTEMS WITHOUT SPACE CHARGE 

Expressing the location of the principal plane as a distance d2 to the left of the 
center of the lens, one obtains 

or 

By comparison, the thin-lens approximation yields from Equation (3.144) 

(3.151) 

(3.152) 

which follows also from the thick-lens formula (3.149) if one expands the sin 4 
for 4 4 1. In the thin-lens approximation, the location of the principal plane, is of 
course, in the center of the lens; hence, z2 = 112 and d2 = 0. 

The comparison shows good agreement between thick-lens and thin-lens results 
for Qi s 0.3. The object-side principal plane is obtained by integrating (3.137) for 
a trajectory leaving the lens at z = 1 with r = rl and rl = rl = 0. The solution 
in this case is 

r = Acoskz + Bsinkz, 

r l =  -Aksinkz + Bkcwkz.  

One finds that 

A = rl cos kl, B = r1 sin kl . 

At z = 0, the particle's radial position and slope are 

ro = rlcoskl,  

rh = r1k sin kl . 

The object-side focal length is 

(3.153a) 

(3.153b) 

(3.154) 

(3.15Sa) 

(3.155b) 

sin 4 
= k sin kl = - 

I 1 - = -3  
f rr 1 '  
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which is the same as the image-side focal length, as expected for a magnetic lens. 
The location of the object-side principal plane is at z1 = (TI - TO) /& or, with 
respect to the lens center, at dl = z1 - 1/2, that is, 

(3.156) 

The two principal planes are thus located at an equal distance (dl = d2) upstream 
and downstream from the center of the lens. 

We must now discuss the physical meaning of our results. At first glance, one 
would expect that a particle entering a uniform magnetic field on a straight path 
parallel to the field lines should not be deflected radially. This is certainly true 
if one disregards the transition from zero field to B = const. However, our field 
B, = Bo for 0 < z < 1 and B = 0 outside this region has a B, component in the 
fringe-field region, from V - B = 0, and this condition has been utilized in the 
derivation of the paraxial ray equation. This means that in our equation (3.137), 
the linear force from the B, component associated with the off-axis B, component 
at the edges ( z  = 0, z = I) is implicitly taken into account. In contrast, the simple, 

where o, = qBo/ ym is the cyclotron frequency, are valid only within the uniform 
field region B, = BO and do not give a focusing action of this field unless the 
junction effect is considered separately. 

The book by El-Kareh and El-Kareh [C.14] contains many examples of electric 
and magnetic lens design and tables of lens parameters for almost every type of lens 
used in practical applications. Also very useful are the books by Szilagyi [C.21] 
and Hawkes and Kaspar (C.221, where detailed treatments of charged particle beam 
optics, properties of lenses, and aberrations can be found, and the book by Wollnik 
[C.20], which contains special material on dipole magnets, electrostatic deflectors, 
quadrupole lenses, and the design of particle spectrometers. 

uniform-field equations in Cartesian coordinates, f = oCj, y = -oci, z = 0, 

3.4.5 E f h c h  of a Lon8 on the Troce-Space Ellipse and 
Bwm Envelope 

In earlier sections we studied the motion of individual particles to determine the 
focal properties of a lens and its effects on the particle trajectories. If we want to 
know what happens to an entire distribution of particles comprising a beam it is 
convenient to use the trace-space ellipse discussed in Section 3.3.3. Suppose that 
at some initial position zo upstream from a lens the distribution of particles in r-r’ 
trace space fills an area bounded by an ellipse that is defined by an equation of the 
form (3.90). How does this ellipse change as the distribution of particles moves 
downstream through the lens? 

In the field-free space on either side of the lens the particles’ trajectories are 
straight lines determined by the slope r‘ and initial position r of each particle, and 
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the motion can be described by the matrix 

P = ( ;  ;). (3.157) 

Let the subscript 1 denote the particles’ r-r’ coordinates at the entrance side of 
the lens center, 2 those at the exit side, and 3 at an arbitrary position downstream 
from the lens. Furthermore, let f io l  be the free-space matrix between the initial 
position and the lens, a12 the lens matrix given by Equation (3.102), and M 2 3  

the free-space matrix between the lens and point 3 downstream. Then the relation 
between a particle’s r-rl coordinates at point 3 and the initial conditions (ro, rh) 
is given by 

(3.158) 

The equation of the trace-space ellipse at any of the four points is of the form 

air: + 2birirj + cirf = 1 ( i  = 0,1,2,3). (3.159) 

Of particular interest is the case where the initial ellipse is upright (i.e., bo = 0). 
The motion of such an ellipse from object to image space is depicted schematically 
in Figure 3.12. In the free-space regions the slope of each particle trajectory remains 
constant and the beam is divergent. At the lens the shape and the radial position 
are changed and the beam converges until it reaches a waist. The location of this 
waist zw is defined by the condition b3 = 0 (upright ellipse). The image of the 
initial beam is located at zi, a short distance past the waist position, as illustrated 
in the figure. It is determined by the condition that r3 must be independent of rh, 
hence a12 = 0. Note that the ellipse at the image position is tilted (not upright like 
the initial object ellipse). 

The envelope of the beam, R = r,,, versus distance is also plotted schemat- 
ically in Figure 3.12. For a tilted ellipse, the envelope radius is found by solving 
the ellipse equation for r‘. Since this is a quadratic equation, there are generally 
two values of rl associated with each value of r ,  except for r-, where rl is 
single-valued. From this condition one finds for the beam radius 

A 
rmx = R = - f i=€&,  

+IT 

while the slope of the envelope is defined by 

-6b R’ = - 
J E ’  

(3.160a) 

(3.160b) 

Here A = = ?r/(ac - b2)In is the area of the ellipse according to Equa- 
tion (3.92) and a, b, c denote the three coefficients in the ellipse equation. For 
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motion in free space, c depends on the initial conditions (Ro, R;) and the distance 
z from the initial position. Differentiating (3.160) twice and using relations such 
as (3.92), one obtains the following differential equation for the beam envelope 
in free space: 

€2 R” - - = 0. 
R3 

(3.161) 

This equation can be readily integrated, and one obtains for R(z )  the hyperbolic 
solution 

Ro and R; denote the radius and slope of the envelope at the initial position, and 
c the emittance. 

Figure 3.12(b) depicts the change of the envelope as the beam propagates in the 
axial direction. The passage through the lens has a similar effect on the envelope as 
on an individual particle [i.e., it changes the radius and slope (R, R’)]. In general, 
this change must be calculated from (3.160a) and (3.160b) using the coefficients 
c ~ ,  bz of the beam ellipse after the lens matrix has been applied. Only in the special 

t 
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case of a thin lens can the single-particle lens matrix i& also be used to obtain 
the change in the beam envelope directly via the relation 

(3.163) 

The reason for this is that a thin-lens transformation does not change the particle 
radius. Hence, a particle that is at the edge of the beam remains at the edge after the 
transformation has been applied. However, in a thick lens, a particle that coincides 
with the beam envelope on the upstream side of the lens is no longer at the beam 
edge after the lens transformation is applied, and vice versa. This can be seen in 
Figure 3.12 by following the motion of particle B from position 1 (entrance side 
of the lens) to position 2 (exit side of lens). 

We must also keep in mind that the emittance does not necessarily remain 
constant when the lens transformation is applied. Thus, if the particle energy is 
changed, as is the case in a bipotential lens, the emittance also changes according 
to the relation 

(3.164) 

In the free space downstream from the lens the beam envelope is again described 
by an equation of the form (3.162) with the new initial conditions R2, R:, and 9 
and with z denoting the axial distance from the midplane of the lens. 

3.4.6 Aberrations in Axially Symmetric hnwr 

The paraxial ray equation was derived on the basis of idealizing assumptions (ex- 
panding the equations of motion and keeping only linear terms in r, r’). The 
lenses treated in this paraxial approximation are ideal in the sense that they pro- 
duce sharp, faithful images of an object in a plane perpendicular to the beam 
axis. In practice, such perfect lenses do not exist as nonlinearities in the fo- 
cusing fields, and other effects cause imperfections or aberrations. These aber- 
rations can be classified according to the source by which they are caused, 
as follows: (1) geometrical aberrations (spherical aberration, coma, curvatures 
of field, astigmatism, and distortion of the barrel, pin cushion, or rotational type); 
( 2 )  chromatic aberrations (due to energy spread in the beam); (3) space-charge 
effects; (4) difiaction (limits resolutions of electron microscopes); and (5 )  imper- 
fection [such as mechanical misalignments, fluctuations (ripple) in the voltages and 
currents supplying the electric and magnetic lens elements, etc.]. 

In an ideal lens, all particles leaving a point r,, 8, in the object plane will arrive 
at the same point ri. 8i in the image plane. When aberrations are present, this is no 
longer the case, and particles emerging from an object point r,, 8, with different 
initial angles will arrive at different points ri + Ari, 8i + A8i in the image plane. 
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For a detailed discussion of the various types of aberrations, we must refer to the 
literature (e.g., the books on electron optics by Zworykin et al. [C.1] or Klemperer 
[C.2], or the more recent books by Wollnik [C.20], Szilagyi [21] or Hawkes and 
Kaspar [C.22]). We will, however, briefly discuss two types of aberrations that are 
of particular importance: the spherical aberration and the chromatic aberration. 

The spherical aberration is a geometrical aberration that arises from third-order 
terms (r3, r2rl, etc.) that are neglected in the paraxial ray equation. Note that r2 
terms are excluded by symmetry since the radial forces on a particle must change 
direction when the sign of r is changed. As an example, if one includes all terms 
up to third order in r and rl in the equations for solenoidal magnetic lenses, one 
obtains in place of the paraxial ray equation (3.137) the nonlinear equation 

( $)r1r2  + [ K’ - 7 1 tc(B”)]r3 = 0 .  (3.165) rN + Kr + Kr12r - K 

Here it was assumed that pe  = 0 and K is defined as K = k2 = w2/P2c2; B‘ and 
B“ are the first and second derivatives of B, on the axis with respect to z. 

To illustrate the effect of spherical aberrations, consider the case of a thin lens 
shown in Figure 3.13. W o  particle trajectories emerge from an object point on 
the axis with angles a0 and -a0 and pass through the midplane of the lens at 
radial distance rl and -r l .  Due to the r: term, they will experience a stronger 
force than in the perfect lens and as a result, they will cross the axis at angles 
ai and -ai before reaching the image plane of the perfect lens. For small angles 
ai, the displacement Ar, at the image plane can be defined to good approximation 
be the relation 

Ari = C,a,3, (3.166) 

Object Plane Thin Lens Image Plane 

Y _ _  -- LI L2 r\ 

Figure 3.13. Effect of spherical a w o n .  The lags-angle hajecfwier cmss the axir at a distance 
Ari upstmom from he ideal image pbm. 
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where C, is the spherical aberration coefficient, which depends on the initial 
conditions and the lens geometry. The crossing angle ai depends on the initial angle 
ao, or the object distance L1. The crossover point is at a distance A t ,  upstream from 
the perfect image plane. If one considers the entire ensemble of trajectories within 
a beam, one finds that the minimum radius (waist of the beam envelope), which 
defines what is known in the literature as the disk of least conjkion, is located at 
a distance of Azm C Azr upstream from the perfect image plane, as indicated in 
Figure 3.13. If the object is at a large distance (L1 * L2,Lz = f i ) ,  the incident 
rays are practically parallel to the axis. In this case, defining the spherical aberration 
coefficient as C&), one can show that the radius Arm of least confusion and the 
associated distance Azm are given by 

1 3 3 
4 4 4 Arm = -C,(m)a?, Azm = - Azi = -CJ(w)a; .  (3.167) 

For a unipotential or magnetic lens cfl = f 2  = f )  , the relation between the 
spherical aberration coefficient for infinite and finite object distance is found to be 

(3.168) f 
Cs(m) = - 452 CALI) ,  

where L2 defines the location of the ideal image plane, L1 the object distance, 
and f the focal length of the lens. Spherical aberrations constitute a fundamental 
form of lens defects that, unlike the situation in light optics, cannot be eliminated 
completely. This is due to the constraints imposed on the field shapes by the 
conditionsv X B = 0, V * E = 0 when space charge is neglected. (Unfortunately, 
space-charge effects tend to make things worse rather than better.) The ratio of 
the spherical aberration coefficient to the focal length, CJ/  f ,  is used as a figure 
of merit defining the quality of a lens. Spherical aberration data for various types 
of lenses can be found in Septier [C.13, Vol. I], El-Kareh and El-Kareh [C.14], 
Szilagyi [C.21], and Hawkes and Kaspar [C.22]. 

Chromatic aberrarions are due to the spread in kinetic energy that is inherent to 
some degree in any beam. They are different from geometrical aberrations in that 
they do not imply any nonlinear terms in the trajectory equations. Since the focal 
length f (or f 1 and f2  for bipotential lenses) depends on the momentum, particles 
with different momentum or energy produce images at different distances from the 
lens. These images are perfect in the paraxial approximation, and the spread in 
the image locations, Azi, depends on the momentum spread AP in the beam. The 
variation of the focal length f with particle momentum responsible for this effect 
also produces a circle ofZeust confusion of radius rc. We can calculate this radius by 
considering a parallel beam consisting of trajectories that enter the lens with zero 
initial slope (i.e., r; - 0). Particles of momentum P will cross the axis downstream 
from the lens at the focal distance z f .  Those with a different momentum, say 
P + AP,  will be focused at a point z f  + A z f ,  where Azf = ( a f / a P )  AP.  If the 
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angle of convergence for the particle with momentum P is a,  then the radius of 
the circle of least confusion is (following Lawson, [C.14, p. 411) 

r, = a ( 5 ) A P  = a f (  P z ) ~ .  a f  AP 

One now defines a chromatic aberration coefficient C, for a lens by 

and writes 

r, = 2aC, - AP = 2CCu - AY 
P P2Y * 

In the nonrelativistic limit one gets 

AV 
V 

r, = C,a -, 

(3.169) 

(3.170) 

(3.171) 

(3.172) 

where V is the voltage equivalent of the kinetic energy and AV represents half 
the total energy spread in the beam. For a thin, solenoidal magnetic lens we found 
that the focal length f is proportional to P 2  [Equation (3.144)], and hence we get 
for the chromatic aberration coefficient the value C,/f = 1. In general, however, 
when one considers thick as well as bipotential lenses, the expressions for C, can 
be rather complicated. 

Although space charge is neglected in this chapter, we discuss briefly its effect 
on spherical aberrations. First, we note that the space charge associated with a 
beam acts like a defocusing lens. In an ideal beam with uniform charge density, 
the electric field, and hence the defocusing force, are proportional to the radius r 
and cause an increase in the focal length, which in turn changes the image lo- 
cation and magnification. Linear beam optics with space charge is treated in 
Chapter 4. In practice, the charge density is not uniform, and this nonuniformity 
causes spherical aberration, as we now show. Suppose that the charge density 
across the beam varies as 

(3.173) 

and p ( r )  = 0 for r 2 a ,  where 6 = A p / p o .  From V E = p/eo, one then gets 
for the radial electric field 

(3.174) E,(r) = ( - g) = (1 - 5 s 2 ) .  r2 
€0 
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As an illustration, consider a unipotential, thin lens with paraxial focal length fo. 
Suppose that the linear part of the space-charge force increases the focal length to 
ufo. A parallel ray entering the lens will therefore cross the axis at distance fo 
when no space charge is present and at distance ufo when the linear part of the 
space charge is taken into account (no aberration). The nonlinear (quadratic) term 
in the charge density reduces the defocusing force, and the trajectory will cross 
the axis at a distance fo < z < crfo, which depends on the incident radius of the 
particle. This is illustrated in Figure 3.14. For the outermost particle passing the 
lens at r = a, the angle of convergence is 00 = alufo when 6 = 0. However, 
for 6 # 0, the angle will be increased to 

a=--  U 1 = ao(i + f ) .  
ufo 1 - 812 

(3.175) 

At the focal plane ( z  = ufo), there will be a spot size of radius A r  = aS/2. 
Equating this with C,e3, where C, is the spherical aberration coefficient of the 
combined lens and space-charge effect, we get 

c,a3 = c J 0 (  a3 1 + - '2") = - y ,  
or 

(3.176) 

From our previous discussion of spherical aberration, the circle of least confusion 
has a radius of 

(3.177) 

Thus, as an example, if a = 2 cm, A p l p o  - 0.2, we get Armin = 0.5 mm. 

Lens 
o spoce chorge (po= 0 )  

\ 
c o aberration ( b = O )  

with aberration ( 8  # O )  a 

J > I  

-c1e3 
t 

6 = fo * 

Fbum 3.14. Spkical obermtion dw to rpace charge. 
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3.5 FOCUSING BY QUADRUPOLE LENSES 

The focusing strength of axially symmetric systems is of second order since 
it is proportional to the square of the fields given in the form of the ratios 
(V’/V)2 and B2/V [see Eqs. (3.81) to (3.83) and Lawson, C. 17, pp. 32, 341. 
Thus, the focusing action of the axisymmetric lenses described in Section 3.4 
is relatively weak. There are two alternative ways to provide stronger, first- 
order focusing: (1) utilizing charges and currents within the beam channel (i.e., 
V * E = p/eo # 0, V X B = poJ # 0 ), as explained in Section 4.6; and (2) 
abandoning axial symmetry by introducing quadmpole fields or, as in circular 
accelerators, by using alternating-gradient (“strong”) focusing. 

In the present section we discuss quadrupole fields, which have two planes of 
symmetry. Following this, in the next section, we study the focusing of beams that 
propagate along a circular path in a magnetic guide field. Quadrupole fields are a 
special case of cylindrical multiple fields (“2n poles”) which satisfy the condition 
V - E = 0, V X B = 0, and where the variation of the radial field component is 
proportional to f ( z )r”- ’  cos [2(n - i)e]. In particular, a pure electric quadruple 
field (n  = 2) is given by 

Ee = - sin28 
a 

(3.1 78a) 

in cylindrical coordinates, or 

in Cartesian coordinates. 
Such a two-dimensional field is produced by conducting boundaries shaped in 

hyperbolic form as shown in Figure 3.15 for the electric quadrupole. If potentials 
VO and -VO are applied, as shown in the figure, the potential distribution in the 
space between the electrodes is given by the expression 

(3.179) 

from which Ex and Ey given in (3.178b) are obtained, with EO defined as EO = 
2Vo/a. In practice, the electric quadrupole potential distribution of Equation (3.179) 
can be approximated with good accuracy by using four cylindrical rods having a 
circular cross section of a radius a, rather than electrodes with hyperbolic shapes. 

In similar fashion, a magnetic quadmpole field is described by 

(3.180a) 
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Fbun 3.15. Eledrcd~~ and force liner in an d#hprtatic quadrupde. 

NORTH SOUTH 

X 

SOUTH NORTH 

Cigun 3.16. Fidd lines in a magnetic quodrupb. For a p i t i d y  C h a d  particle moving in the 
r-direction, the for0 components ON focusing in tho x-dimtion and dofocusing in ha y d i d o n .  

or 

Y (3.180b) By = B o ; ,  B, = B o a .  
X 

Such a field is produced by a magnet configuration with hyperbolic pole shapes, 
as shown in Figure 3.16. 

We will assume that in the electrostatic quadrupole the changes in kinetic 
energy remain negligibly small, so that for both magnetic quadrupoles and electric 
quadrupoles we have y = const or = 0. The equations of motion for the electric 
quadrupole system are then 

X .  ymf  = qE, = -- 4Eo 
Q 
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or 
4Eo 2 + - x  = 0 ,  
Yma 

and likewise 

4Eo y - -y = 0. 
Yma 

In the case of a magnetic quadruple one has 

BO 
a 

ym2 = -qv,B, = -qv, - x ,  

or 

4VzBO y - - y  = o .  

These equations all have the same form, 1' 2 w t f  = 0, with solutions 6 = 
Acos oof + Bsin oOt, or f = Acosh oot + B sinh mot, depending on the sign. 
Thus, we get focusing action in one plane of symmetry and defocusing in the other. 

Let us now eliminate the time t and write the above equations as trajectory 
equations. With z = v,r, v, - v = const, d2/dt2 = v2(d2/dz2), we obtain 

Yma 

XI1 + KX = 0 ,  

y" - K y  = 0 ,  

where for magnetic quadruples 

K = -  4Bo . 
ymav 

and for electric quadrupoles 

(3.181a) 

(3.181b) 

(3.182) 

(3.183a) 

In the nonrelativistic case ( y  = 1) the latter relation may be written in terms of 
the quadrupole voltage VO and beam voltage V, as 

(3.183b) 
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since EO = 2Vo/a and mu2 = 2qVb.  With initial conditions x = xo, x' = 

xo, y' = yh at z = 0, one obtains the solutions I 

x' = -fixasin JiTz + XACOS JiTz 

or 
1 

(3.184a) 
cos f i z  - sin f i z  ) (2 

Ji7 

and 

A quadruple field of a short axial width Az = 1, where 1 is normally greater 
than the semiaperture a, but less than l f i ,  constitutes a quadrupole lens. In 
practice, the quadruple field does not end abruptly. There is a fringe field which 
forms a transition from the ideal quadrupole field to the field-free region. However, 
as in the solenoid case of Section 3.4.4, we can replace the actual gradient profile, 
K ( z ) ,  by an equivalent hard-edge approximation. If KO denotes the peak gradient 
in the flat part of the profile, the effective length 1 of the equivalent hard-edge 
function is given by 

Hence, we have K = KO = const for 0 S z S 1 and K = 0 elsewhere. The hard- 
edge assumption is sufficient for a paraxial (first-order) analysis. Nonlinear effects 
due to fringe fields and nonhyperbolic boundaries are discussed by Hawkes [C.lO] 
and Wollnik [C.20]. 

'Wo quadrupole lenses, arranged as a focusing-defocusing pair, have a net 
focusing effect that is much stronger than the focusing action of an axisymmetric 
lens of comparable size and field strength. This is why magnetic quadruple 
doublets are widely used for focusing of high-energy particles in accelerators and 
beam-handling systems. 

Electrostatic quadruples are limited in their application to focusing and trans- 
port of low-energy ion beams. This can be seen by comparing the electrostatic and 
magnetic gradient functions. From (3.183a) and (3.182) we find that 
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High-voltage breakdown limits EO to about lo7 V/m and saturation of ferromag- 
netic materials limits Bo to about 2 T, so that 

KE 1.67 X - =  
KM P 

Thus below B = 1.67 X (i.e., for protons with energies less than 130 keV 
or for electrons with energies less than 70 eV), electrostatic quadrupoles are more 
efficient than magnetic quadrupoles. At higher energies, however, the magnetic 
lenses are superior. Furthermore, by use of superconductors the focusing capability 
of magnetic quadrupoles can be increased substantially beyond the 2-T limit of 
room-temperature magnets. 

The transfer matrix fi and the four lens parameters (or cardinal points, as they 
are often called) for each symmetry plane of a single quadruple lens can be 
calculated in the same way as for the axially symmetric lenses of Section 3.4. In 
the thin-lens approximation, one finds that 

?Kl. (3.185) 
I 
f 
- =  

The negative sign applies for the diverging case (y -z  plane). The properties of a 
doublet consisting of a focusing and defocusing pair of thin lenses separated by a 
short drift space of length Az = s are obtained by multiplication of the appropriate 
transfer matrices. If f l  denotes the focal length of the first lens, f2 that of the second 
lens, one finds in the thin-lens approximation that the combined action of the two 
lenses is equivalent to that of a single lens of focal length F given by 

1 1 1  S - = -  + - - -  
F f l  f 2  f I f 2  

For a quadruple doublet with equal strength (i.e., f l  

1 s  - = - -  - K212S.  
F f2 

(3.186) 

= f ,  f2 = -f), one obtains 

(3.187) 

It is interesting to compare a quadruple doublet with a solenoid having the same 
total length L and a magnetic field strength equal to the quadrupole field BO (at the 
pole tips). Taking the case s = 1 when the two quadrupoles are adjacent to each 
other and hence L = 21, one obtains 

This relation shows 
practice, however, L 

that both lenses have equal strength when L = f i a .  In * a, and hence the quadruple doublet is stronger than a 
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solenoid. As an example, when L = lOu, one finds that the doublet is 50 times 
stronger than the equivalent solenoid. 

Other important quadrupole lens systems are the triplet, which consists of a lens 
of length 1 with a shorter lens of length 1/2 on either side, and the periodic FODO 
channel discussed in Section 3.8.3. 

Further details on quadrupole lenses can be found in Reference C.13 (article 
by Regenstreif, Vol. I) and in Livingood [D.l]. A thorough treatment of magnetic 
quadrupoles, including aberrations, is given by Hawkes [C.lO]. 

3.6 CONSTANT-ORADIENT FOCUSING IN CIRCULAR SYSTEMS 

3.6.1 btatmn Oscillations 

So far, we have considered beams that move along a straight path. Let us now 
discuss the focusing of beams that move on circular orbits as is the case in high- 
energy accelerators with magnetic guide fields. In betatrons, classical cyclotrons, 
and synchrocyclotrons, the magnetic fields employed are axially symmetric and 
the orbits of the particles are circles. On the other hand, modem sector-focusing 
cyclotrons and high-energy synchrotrons have magnetic fields that vary azimuthally, 
and the orbit shape departs from a circle. In all cases, the fields are designed in 
such a way that the particles comprising the beam perform oscillations in the radial 
and axial directions about a closed orbit or equilibrium orbit. These oscillations 
are known as betatron oscillations since they were first investigated theoretically 
by Kerst and Serber [l] in connection with the betatron. 

In Section 3.6 we restrict our analysis to an axially symmetric field. First, we 
define the equilibrium orbit of a particle of momentum P = ymv as the circle with 
radius RO centered on the axis. This orbit is in the median plane (z = 0), which is 
the plane where the radial component of B is zero (see Figure 3.17). The radius Ro 
is found by equating the outward centrifugal force and the inward Lorentz force, 
which yields the well-known result 

(3.188) 

where BO = B,(Ro,O). 
A particle of the same momentum, which is displaced from this equilibrium 

orbit by a small amount x = r - RO , experiences a radial force which will either 
drive it back toward Ro (focusing) or farther away from Ro (defocusing). Likewise, 
a particle that is displaced from the equilibrium orbit in the axial direction ( z  # 0) 
will experience a focusing or defocusing force. To determine whether focusing can 
be obtained simultaneously in both the radial and axial directions, we make a first- 
order analysis, as in the case of the paraxial ray equation (i.e., we assume that the 
displacements and slopes of the nonequilibrium trajectories are small). 
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I 

Lomtz- Force 

(a) Axial Focusing 

Centrifugal Forcr mv% (Outword) 

LomntZ Force EVE, (Inwwd) 
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(b) M i a 1  Focusing 

Flgur, 3.17. (a) Axirymrndric m i c  fidd configurntion and focusing kwcm bcbwn poh 
shoes d a cyclotron-typo magnet; (b) d id Forcer acting on portick mart equilibrium radius R. 

Let B = {&(r.z),O, B,(r,z)}, yy = ans t ,  and consider first the radial motion 
of a particle with velocity v = {i, re ,  0)  moving in the median plane (z = 0). The 
radial force equation in this case is with Br(r,O) = 0, B, = B,(r,O): 

ymi: - ymre2 = qreB, .  (3.189) 

If B, is positive, a particle with positive charge wi!l move in the negative 
@-direction, and in the linear approximation we have re = vg = -u. Thus we 
can write 

Let 

and 

(3.190) 

(3.191) 
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or 

B, = ~ ~ ( 1  - n t ) ,  

where 
RO n = - - -  
B~ ar 

(3.192) 

(3.193) 

is the field index and aB,/ar is evaluated at the equilibrium radius (r  = Ro). We 
then obtain by substitution in (3.191) the first-order equation 

From the equilibrium-orbit condition (x = 0, R = 0), we have ymu2/Ro = quBo, 
and the two corresponding terms in the last equation cancel. Thus one gets 

v' 

RO 
f + - ( 1  - n)x = O .  (3.194a) 

But u/Ro = oc is the cyclotron frequency at the equilibrium radius Ro; hence, 

R + wz(1 - n)x = 0, (3.1 94b) 

or 

x + o;x  = 0 ,  

where 

wp = wz(1 - n).  

(3.194~) 

(3.195) 

Let s = RB = R 9 t  = vt denote the distance along the equilibrium orbit. Then, 
with x'l = d2x/ds2 = ( l /R$oZ)R , we may write Equation (3.194) in the alter- 
native form 

x" + k;x = 0. (3.196) 

w r  = o,(l - .)In is the radial betatron frequency, kr = 2 ~ / A r  = v,/Ro is the 
betatron wave number, Ar the betatron wavelength, and 

(3.197) 

is the number of radial betatron oscillation periods per revolution, also known as 
the betatron tune. 
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As we see from Equation (3.195). the orbits are unstable (exponential growth 
of x )  when 0,' < 0 or n > 1, and they are stable (periodic solution for x )  when 
o,2 > 0 or n < 1 .  In the latter case, we have (for x = 0 at t = 0) 

x = x, sin o,t = xm sin [(I - n ) ' n o , t ] ,  

or 

x = xm sin k,s . (3.198) 

Next, we examine the motion of a particle displaced from the equilibrium orbit 
in axial direction. The equation of motion is 

In this case, v = {O,re,i}, i 4 Ir i l ,  and again r e  
(aB, /az)z+  higher-order terms. But dB, /az  = aB, /ar  from V x B = 0. 
Hence 

-u. Now Br = 

qv aBz qBo v Ro aB, 2 z = - - - -  z = - - o , n z ,  z = - -  
ym ar ym RO BO ar 

that is, 

or 

z + w,'z = 0 ,  

where 
2 w: = n o , .  

This may also be written in the form 

z'' + k:z = 0 ,  

(3.200a) 

(3.200b) 

(3.20 1) 

(3.202) 

with k, = 2w/Az = v,/Ro and 

v , = n .  I t2  (3.203) 

Thus, to get focusing in the axial direction (periodic solution in z), we must have 
n > 0. Orbit stability in both the radial and axial directions imposes the requirement 

O < n < l .  (3.204) 
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In view of the definition (3.193) for the field index n, the stability condition 
implies that B,(r) must be a decreasing function of radius r [i.e., (W, /dr)  < 01; 
however, the gradient may not be greater than is allowed by the n = 1 limit or 
else there is no radial focusing. In the special case n = 0.5, the focusing strength 
is the same in both directions (i.e., Y r  = Y,) .  

Figure 3.18 shows the vr and v, curves versus field index n for the respective 
ranges where the oscillation frequencies are real (focusing). Only in the region 0 < 
n < 1, where the two curves overlap, does one get orbit stability simultaneously 
in both directions. 

The differential equations (3.194) and (3.200) for the radial and axial motion 
of the particles about the equilibrium orbit are also known as the Kerst-Serber 
equations. 

Note that the condition (3.204) also implies that 0 < vr < 1 and 0 < v, < 1. 
This means that it takes more than one revolution to complete a radial or .axial 
betatron oscillation. The amplitude of a betatron oscillation is inversely proportional 
to the betatron tune ( V r  or Y,, respectively). This follows from (3.198), which yields 

x' = xmkr cos k,s  ; (3.205) 

hence, with X' = X; at s = 0, kr = Vr/Ro: 

(3.206) 

Since xh = ;O/V = sin a = a, we can also relate x,,, to the orbit radius Ro and 
the angle a between particle trajectory and equilibrium orbit at x = 0: 

1 stable 1 ? 
I Y unstable 

I _  

axially 
(ncO) I \/ 

-2 -1 0 1 2 3 

figurn 3.16. Betatron tunas wnu~ firld i n d u  n.  

(3.207) 
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One betatron oscillation period is vr A8 = 27r, and the corresponding change in 
azimuth angle is thus 

27r 
vr 

h e = - .  (3.208) 

The number of turns it takes for a particle to complete a betatron oscillation cycle 
[i.e., to return to its oscillation phase (or x ,x ’  values) at a given azimuth angle] 
is then simply 

(3.209) 

As an example, suppose that n = 0.36. In this case, vr = (1 - .)In = 0.8, and 
it takes N = 1/0.8 = 1.25 revolutions to complete an oscillation period. 

3.6.2 Tho TraccSpace Ellipse and b a r n  Envelop. in a 
Botatron-Typo Field 

In x-x’ trace space, a particle moves on an ellipse which from (3.198) and (3.205) 
is given by 

or 

(3.210) 

This is an upright ellipse with major axes x,,, and krxm in the x and x‘ directions, 
respectively, as shown in Figure 3.19. A particle starting on the equilibrium orbit 
( x  = 0) with x’ = xk  = krxn (point 1 in Figure 3.19) moves clockwise as s 
increases. If vr C 1, it will be at point 2 after one revolution (s = 2a),  at point 
3 after two revolutions, and so on. 

X’ 

t 

*m I 

neUr, 3.19. Ellipso mpramh’ng partick motion in x-x’ rpoce (v, < 1). 
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If we consider a group of particles with different initial conditions x0,x; at 
s = 0, they will each move on similar upright ellipses with constant ratio of the 
major axes, X k / X m  = kr ,  as determined by the equations 

I 

x = xocos krs  + x" sin k r s  , 

X' = -x& sin k r s  + X ~ C O S  krs  , 
k r  

It follows that 

and 

x = x m  cos vr(8 - em), 
X I  = -krxrn sin vr(O - 8,). 

(3.211a) 

(3.21 lb) 

(3.212a) 

(3.212b) 

(3.213) 

(3.214) 

Suppose that all particles comprising a beam make a distribution of initial 
conditions XO,X; which fills an elliptic area in x-x' trace-space defined by the 
equation 

alx: + 2 6 , X 1 X 1  + qx;2 = 1 (3.215) 

and pictured in Figure 3.20. As each particle moves on an ellipse defined by its 
initial conditions according to Equation (3.213), the trace-space ellipse will rotate. 

Fig- 3.20. Ellipse mpremting beam ~~CO-SFQCO a m  at e = 0. 
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Let us calculate the shape and orientation of this ellipse and the envelope point 
xmpx as a function of azimuth angle 8. As we know from Section 3.3.3, all particles 
whose initial conditions correspond to points on the circumference of our trace- 
space ellipse (3.215) will remain on the circumference as the ellipse is changing. 
If x1.x; denote the initial conditions of any such particle at B = 0, we obtain the 
coordinates x ,  x’ at any other azimuth angle from the transfer matrix corresponding 
to Equation (3.211): 

h) 

Since det M = 1, we obtain 

Substituting this result in Equation (3.215) yields the equation of an ellipse of 
the form 

ax2 + 2bxx’ + cx” = 1 .  (3.218) 

The coefficients a, b, c depend on the initial coefficients (a], bl, q), the betatron 
tune Vrr and the azimuth angle 6.  The calculation yields the result 

We are particularly interested in the envelope of the beam which is defined by 
x, = E~,/F [Equation (3.16Oa)], where ex is the emittance, which remains constant 
according to Liouville’s theorem. 

Using the relation (3.219c), one obtains for the envelope 

2 112 xm = eJala~2 - 2ha12a11 + cia111 

or 

Ro 
x, = ex [ - sin2 v,8 - 261 - sin u,Bcos v,B + CI cos2 v,B 

J’r 
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Consider the special case where the initial ellipse is upright (i.e., bl = 0). Equa- 
tion (3.220) then may be written in the form 

where xml is the beam envelope at 8 = 0 and 

(3.221) 

(3.222) 

If h 4 1, we can expand the expression on the right-hand side of Equation (3.221) 
and obtain the first-order relation 

(3.223) 

The beam envelope thus varies as a function of 8 as shown qualitatively in 
Figure 3.21 and with a frequency that is twice the betatron frequency. The ripple, 
represented by the parameter h, is seen to depend on the ratio al/cl of the initial 
(upright) ellipse and on v;. Note that 1/fi and 1/& are the major axes of 
the ellipse in the x and x' directions, respectively; that is, I/& = xml is the 
maximum displacement (envelope point), 1/& = x k ,  the maximum slope in the 
particle distribution comprising the beam at the initial position (6 = 0). 

If the initial (upright) ellipse is chosen such that h = 0, hence 

or 

XJ0)  

b c 
t 

L x  h 
2 ml 

I I I ' b vre 
n 21t 3% an 

Fbum 3.91. fkum anvdops as function of e if rippb is mll. 

(3.224) 
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then the beam envelope X m  remains a constant (no variation with angle O), that is, 

x, = x,1 = const. (3.225) 

In this special case the beam is said to be matched. The beam ellipse then is identical 
with the ellipse on which the particle with the maximum amplitude moves in the 
x-n' diagram (see Figure 3.19). Consequently, there is no rotation of the beam 
ellipse and x,,, remains constant. 

Let us now derive the differential equation that determines the beam envelope 
x,,, as a function of angle B or time t. By differentiation of Equation (3.221) with 
respect to s we get 

(3.226) 

Differentiating again, one obtains from (3.226) after some algebra the envelope 
equation 

d2x, ex 2 
+ k,2Xm = 0 ,  - - -  

ds2 x i  

or, in terms of time t, with 8 = uCt, 0,' = o ~ Y ~ :  

(3.227) 

(3.228) 

Using X = x,,,, X' = dX/ds for the envelope, one obtains from Equation (3.227) 
the alternative form 

(3.229) 

An analogous equation may be obtained for the beam envelope in the z-direction. 
Thus, with 2 = z,,,, one gets 

(3.230) 

where k, = 2w/A, = v,/Ro, and e, represents the beam emittance in the 
z-direction. A, is the axial betatron wavelength. 

The above differential equations for the beam envelope were derived from an 
initial upright ellipse, but they are also valid for a tilted initial ellipse. The only 
difference is that with a tilted ellipse, the initial slope (Xi or 2:) enters in the 
solutions of the envelope equations. 
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In the absence of a focusing force the second term in the envelope equation 
vanishes. Thus, for instance, when kz = 0 the axial envelope equation reduces to 
the form 

€2 z" - $ = 0 ,  (3.231) 

which is the equation of the beam envelope in free space derived earlier for an 
axisymmetric beam [Equation (3.161)]. Free-space envelope equations like (3.231) 
apply to sections of a circular beam path with no focusing forces in one or both 
transverse directions. Examples are bending magnets with uniform field where 
v: = 0 and beam propagation along a straight path between magnets where both 
v: = 0 and v: = 0. 

Note that the above envelope equations can be obtained from the Kerst-Serber 
equations simply by substituting X and Z for x and z and adding the emittance 
terms (negative sign!), which are proportional to l/X3 or l/Z3, respectively. While 
a single particle in its motion can have values x = 0, z = 0, the envelope of the 
beam can never approach the beam axis due to the repulsive emittance term. 

3.6.3 Focusing in Axlsymm& ExB Fields 
The linear theory of focusing of circular beams in axisymmetric magnetic fields 
can be generalized to include applied electric fields as well as the effects of the 
beam's magnetic and electric self field [2]. Let us assume a combination of electric 
and magnetic fields with axial symmetry and a median plane as defined by the field 
vectors B = {BJr,  z),O. BJr. z)}, E = {&(r, z) ,  0, EJr,  z)}. The fields may be 
produced by charges and currents in conductors outside the beam as well as by the 
fields arising from the charges and the currents of the particles that constitute the 
beam. Although self-field effects will be treated in subsequent chapters, we will 
include them in this generalized theory for later reference. The only difference in 
the analysis as compared to the previous situation is that we can no longer use the 
condition V - E E= 0, V X B = 0. Rather, we have to consider two contributions 
to the fields acting on an individual particle, namely, the applied fields (E,, B,) 
and the self fields (E,, B,); that is, we write 

E = E, + E,, B = Ba + B,. 

For the steady state (a/& = 0) being considered here, we have from Maxwell's 
equation 
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The radial force equation in this case takes the form 

- ( ( rm;)  d - ymre2 = qE, + qreB, .  (3.234) dt 

. .  
The equilibrium orbit is defined by the condition d/d t  = 0, r = Ro, 8 = eo = 
wo = -vo/Ro, E, = Eo, B, = Bo; that is, 

from which follows for the equilibrium radius 

(3.235) 

(3.236) 

Introducing the cyclotron frequency w, = -qBo/ym and the frequency oc 
associated with the electric field and defined by 

(3.237) 

we can write Equation (3.235) in the form 

00' - w,wo + w: = 0 .  (3.238) 

Solving this equation for the angular frequency of rotation 00, one obtains 

(3.239) 

When the electric field is zero (wz = 0), we recover wg = w, = cyclotron fre- 
quency. In the case of zero magnetic field (0, = 0), we need wz C 0 [i.e., E,  < 0 
(inward radial electric field) for a rotating positively charged particle and get 
00 = we].  In the general case, we see from the above equations that the presence 
of an electric field changes both the equilibrium radius and the orbital frequency 
from the well-known cyclotron values R, and we. 

The analysis for the motion of particles that are displaced from the equilib- 
rium orbit in either the radial or axial direction follows the derivation given in 
Section 3.6.1. However, due to the presence of the electric field, the azimuthal 
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velocity is no longer a constant but may change to first order. 
In the relativistic case, the change in energy experienced by the particle, which 

is a radial distance x = r - Ro off the equilibrium orbit, may be expressed in 
the form 

The radian frequency is then found to be 

8 = “o[  1 - (1 - mc 4 y J 2 ) ; ] .  Y B 

(3.240) 

(3.24 1) 

where y and B are the values at the equilibrium radius ( x  = 0). 
Substituting (3.240) and (3.241) in the radial force equation, (3.234), and 

expanding all terms to first order leads to an equation of the form (3.1%), where 
v: can be expressed in terms of the fields, Eo, Bo, field gradients, aB, /ar ,  aE,/ar,  
and velocity, uo = Bc,  at the equilibrium radius RO as follows: 

If neither EO nor Bo is zero, we can introduce the electric and magnetic field index 

Furthermore, we define 

(3.243) 

(3.244) 

Then the expression for v: may be written in the form 

The following limits are of interest: 

1. MAGNETIC-FIELD CASE: Eo 0, k, 0 

v,’= 1 + k ,  = 1 - n .  (3.246) 

This is identical with solution (3.197) derived previously. 
2. ELECIXIC-FIELD CASE: Bo = 0, k ,  = 0 

v,’ = 3 - 8’ + k , .  (3.247) 

In the nonrelativistic limit, Bz can be neglected, and if the electric field is 
produced between coaxial cylinders by an external voltage source, the field 
index k,  = -1. Hence v; = 2, in agreement with Equation (2.149). 
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In similar fashion, the axial motion of a particle can be analyzed. From the 
force equation in the z-direction, 

- d ( y m i )  = qE, - qr8Br 
dr (3.248) 

one obtains by linearization an equation of the form (3.202), where v,‘ is found to be 

(3.249) 

aB,/az and aE,/az are the axial gradients of the fields at the equilibrium radius. 
For the special case where the self fields of the beam can be neglected (or 

for that part of v,‘ that is due to the applied fields only), we can use V - E = 
0, V X B = 0, from which follows 

Under these conditions, Equation (3.249) takes the form 

With the definitions (3.243) and (3.244), this may also be written as 

(3.250) 

(3.251) 

(3.252) 

Note that for negatively charged particles (q = -e),  we have to change the signs 
of all terms associated with the electric field and gradients. Thus, the equilibrium 
condition (3.235) is ymuZ/Ro = e(uoB0 + Eo). Furthermore, 80 = UO/RO, o, = 
eBo/ym. Equation (3.249), for instance, has to be written as 

(3.253) 
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3.6.4 Energy Spread, Momentum Compaction, 
and Ekt ive Mars 
So far, we have considered only monoenergetic beams, where all particles have the 
same total momentum or kinetic energy. This even includes the E X B field case 
discussed in the preceding section, where particles do gain or lose energy when 
they depart from the equilibrium orbit. However, the assumption was that they all 
have the same kinetic energy at the equilibrium orbit ( r  = R), and in that sense, 
we can still speak of a monoenergetic beam in the E X B case. What happens 
if there is a true momentum spread AP in the beam (i.e., if the particles at the 
radius R as well as at any other position have a difference in kinetic energy)? 
The most important effect is that particles with different momentum have different 
equilibrium radii about which they oscillate. Consider first the case of particles 
in a magnetic field (i.e., E = 0). If R is the equilibrium radius of a particle with 
momentum P ,  defined by 

P 
R - -  

9B ' 
(3.254) 

a particle with momentum P + dP will have a different equilibrium radius R + 
dR.  For small fractional changes, one has to first order 

d R  dP  dB 
R P B '  
e x - - -  

The momentum compaction factor a, defined by 

d R / R  
d P / P  ' 

a=- 

(3.255) 

(3.256) 

is a measure for the change in equilibrium radius due to a change in momentum. 
From (3.255) we obtain 

"( 1 + - R -) dB x f ( 1 -  n )  e - dP 
R B dR P '  

Thus, 
1 1 

1 - n  v,Z 
a=-=- 

(3.257) 

(3.258) 

This expression holds for axisymmetric magnetic fields. When radial electric fields 
are present, B has to be replaced by the total guide field B,, which from Equa- 
tion (3.236) is defined as 

(3.259) 
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In this case the momentum compaction factor a is given by 

1 
1 - n g '  

a=- (3.260) 

where ng is the effective gradient that includes the self fields. 
Due to the change in radius R, there is also a change in the angular frequency 

w and the revolution time 7 = 2sR/@c of the particles. This relative change is 
readily found to be 

d r  d o  dP 
7 w P 

and it may be related to an equivalent velocity difference of 

d v  d r  dP 
-7p' - = - - =  

v 7 

where the factor q is defined by 

1 1 1  
q = a  - 7 = 2 - 7 .  

(3.261a) 

(3.261b) 

(3.262a) 

In conventional weak-focusing machines (e.g., betatron, cyclotron) the radial beta- 
tron tune is less than unity (v, < 1); hence q is always positive (q > 0). How- 
ever, in modem strong-focusing machines, the betatron tune is greater than unity 
(v, > 1). Thus there will be a critical energy yfmc2,  known as the rransirion en- 
ergy, where q = 0. Replacing v, in Equation (3.262a) by y,, we can write the 
relation for q in the alternative form 

1 1 v=z- -7 .  (3.262b) 

For y 7 yf ,  q > 0, as in the weak-focusing case, while for y < y,, q < 0. The 
different operating regimes will be discussed further in connection with Equa- 
tions (3.266) and (3.267). 

Relation (3.261) gives the fractional change in the revolution time or frequency 
of a particle with momentum P + dP as compared to a particle with momentum 
P = ympc,  which is why q is also known as the frequency slip factor. If the path 
is straight rather than circular (i.e., if a = 0 or q = -l/y2), then 

d r  1 dP 
7 Y 2  p 

(3.263) 

measures the difference in travel time of the two particles for a given distance. 
The minus sign indicates that, as expected, the travel time decreases when the 



132 BEAM OPTICS AND FOCUSING SYSTEMS WITHOUT SPACE CHARGE 

momentum increases. By multiplying with the momentum P = ymu, we can 
rewrite Equation (3.261b) in the form 

Here m* is an effective mass, defined by 

(3.264) 

(3.265) 

which determines the relationship between the momentum difference and the veloc- 
ity difference of the two neighboring particles in circular orbits. 

In the case of a straight path (a  = 0), the effective mass is seen to be 

m* = rnr = y 3 m ,  (3.266) 

which is known as the longitudinal mass, ml, and is a positive quantity. This 
relation is identical with (2.9b) that was obtained directly from the equation of 
motion. For the transverse motion the effective mass is mr = ym. If we apply 
the definition (3.265) to the relation (3.261) for particle motion in a circular orbit 
(a # 0), we find that 

From this expression, we conclude the following: When 71 < 0, the effective 
mass is positive, as in the case of straight motion. However, when 7 > 0 (i.e., 
y > yr in strong-focusing machines), m* is negative; and at the transition energy, 
where y = yI or q = 0 , m* goes to infinity. Negative muss means that the 
particle’s revolution time increases when its momentum or kinetic energy is 
increased in contrast to the straight motion. At the transition point, the revolution 
time remains unaffected by a change in momentum. The sector-focusing cyclotron 
discussed in Section 3.8.4 operates in this way and is therefore also known as 
an isochronous cyclotron. The revolution time in this case is constant at all radii 
or energies (i.e., the particle’s effective mass is infinite). In view of (3.258) and 
the condition 0 < n < 1 for focusing in the axial and radial directions, we see 
that a > 1, and hence a y2 > 1 in this case. Thus, all devices with axisymmetric 
magnetic fields (v,  C 1) and all circular accelerators above the transition energy 
( y  > y r )  are in the negative-mass region. This peculiarity of particle motion in 
a magnetic field is responsible for the so-called negative-mass instability, which 
poses a fundamental limit to the particle intensity in circular accelerators and is 
treated in Section 6.3.3. 
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Let us now examine how we can incorporate the changes due to energy spread 
into our first-order theory of betatron oscillations. We already pointed out that 
particles with different momentum oscillate about different equilibrium orbits. In 
general, we may suspect that the oscillation frequencies, o r  and oz, are also 
functions of the momentum since the field index n = - ( R / B ) ( d B / d R )  may vary 
with radius R .  This is in fact the case, and one defines this effect by the chmmuticity 
parameters 

Using (3.258). we may write these definitions in the alternative form 

(3.268) 

(3.269) 

It is easy to show that for a scalingfield where B / B o  = (R/Ro)-" ,  the chromaticity 
parameters are zero. In a field where d B / d R  is constant, n varies with radius and 
one obtains 

In this particular case, with vp = 1 - n, vt = n, one finds that 

(3.270) 

(3.271) 

The variation of the equilibrium radius R with momentum P is a first-order 
effect, while the changes in v; and v," are of second order. We therefore neglect the 
latter in our first-order theory of betatron oscillations. The difference in momentum 
is incorporated in the theory in the following way: Let Ro denote the equilibrium 
radius for particles with the average momentum PO; that is, a particle with this 
momentum will perform betatron oscillations about Ro in accordance with Equa- 
tion (3.211) for the radial motion (and, likewise, for the axial motion). A particle 
with momentum PO + AP will perform similar oscillations about a displaced equi- 
librium radius Ro + A R .  When the momentum spread is included, the equation 
of motion (3.190) must be modified by expanding the velocity as u = uo(1 + 
Au/uo = uo(1 + AP/Po - A y / y o ) A u / v o )  = uo(l + AP/Po - A y / y o ) .  One 
then obtains, in lieu of (3.196), 

(3.272) 

The general solution consists of the linear superposition of the betatron oscillation 
amplitude X b .  which satisfies the homogeneous part of Equation (3.272), and the 



134 __I BEAM OPTICS AND FOCUSING SYSTEMS WlTHOUT SPACE CHARGE 

equilibrium orbit displacement xe due to the momentum difference AP/Po, which 
is a special solution of the inhomogeneous equation; that is, we have 

The betatron oscillation obtained for AP = 0 (homogeneous solution) may be 
written in the form 

where 

The special solution of the inhomogeneous equation (AP # 0) is 

sin k,s . A P  1 
XL(S) = - - 

PO Rokr 

(3.274~) 

(3.275a) 

(3.275b) 

The general solution of Equation (3.272) for an off-momentum particle ( A P  # 0) 
can be conveniently expressed with the aid of a 3 X 3 matrix as 

where the matrix is given by 

. (3.276b) 
cos krs &-'sin k,s (Rok;)-'(l - cos k,s) 

(Rokr)-'sin krs 
0 1 

The last row in the matrix indicates that in the static magnetic field consid- 
ered here, the momentum of the particles does not change. Note that the above 
expression is valid if x 4 Ro and A P  4 PO. The fact that the radial motion of a 
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particle depends on AP/Po is known as dispersion. By contrast, the axial motion 
is nondispersive to first order. With the definition 

kz = - 2 T  I 3 = - Jr; 
Az RO RO ' 

we can write the axial matrix either as a 3 X 3 of the form 

or simply as a 2 X 2 matrix 

cos kzs k;' sin k,s 
(:I)  = ( -kz sin kzs cos kzs )(d)' 

(3.277a) 

(3.277b) 

(3.277~) 

Momentum spread increases the effective radial width of a beam in a circular 
system. In practice, beams without space charge are found to have a Gaussian 
distribution in their betatron and momentum-spread amplitudes. If Zb = (3)'" 
denotes the nns value of the distribution in the betatron amplitudes and Xr = (xZ)ln 

the rms value of the amplitude variation due to the momentum spread, the total 
rms half-width of the beam is given by 

We discuss dispersion further in Section 5.4.10. 

3.7 SECTOR mmm AND EDOE FOCUSING 

Many magnets used in practice for deflecting a beam (bending magnets), as 
momentum analyzers (to separate ions or electrons of different momenta), or muss 
spectrometers (to separate charged particles of different mass) are sector shaped, 
as illustrated in Figure 3.22. Outside the magnetic field the particles move on a 
straight trajectory, inside the field on a circular path. In first approximation, one can 
neglect the fringe-field region and employ the formalism developed in Chapter 2 
for particle motion in axisymmetric fields. Thus, one defines a central ray which 
inside the magnetic field is a circle of radius Ro. Particle motion with regard to 
this central ray is then described by a drift-space matrix in free space: 

(3.278) 
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Inside of the magnet, the matrix (3.276) can be applied for the radial (or horizontal 
motion. For the vertical motion, a 2 X 2 drift-space matrix and the matrix (3.277) 
suffice. The trace-space coordinates of a particle at any point along the central 
trajectory are then obtained by matrix multiplication. 

The above procedure is applicable as long as the particles enter the edge of 
the magnetic sector field at right angles. If the angle differs from W, the particle 
will experience a Lorentz force which will either be focusing or defocusing. This 
effect is known as edgefocusing. To explain it, consider Figure 3.23, which shows 
a magnet with slanted edge so that a particle enters and leaves the field region at 
an angle a with respect to the normal. The magnetic fieId in the fringe region then 
has a component Bh normal to the edge for any point at a distance z outside the 
median plane. In the median plane, Bh will be zero by reason of symmetry. Now 
Bh can be decomposed into a component Bll = Bh cos a in the direction of the 
particle trajectory and a component BL = Bh sin a perpendicular to it. Only the 
latter exerts a force on the particle. Consider first the axial motion perpendicular 
to the plane of the figure when the particle passes through the fringe region as it 
leaves the sector magnet. The axial component of the Lorentz force is q u B I ,  and 
one obtains the equation 

ym2 + quBhsina = 0. (3.279) 

Introducing the path length s along the trajectory, we get 

Figum 3.23. Magnet with slanted edge and components of y n e t i c  fringe field Bh . A particle 
with positive charge enbrr from the right ride and leaves on the le side. The direction of the oxiol 
magnetic fidd lines is into the plane of the figure. 
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d2z  v L d v  
_. 

ds 
dt ' dt2 ds  ' 

v = -  

and thus, 

d v  L E -- ' B h  sin a. 
ds Y m  
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(3.280) 

(3.281) 

Now integrate between point SI, which is sufficiently far from the edge so that the 
magnetic field is zero, and point s2, which is inside the magnet where there is only 
an axial component BO of the magnetic field: 

Assume that in the transition through the fringe region the axial displacement z 
of the particle from the median plane remains approximately constant (thin-lens 
approximation). Apply Stokes's theorem, 

/ V X B * d S =  f B - d l - 0 ,  

for a rectangular closed path from point P I  (~1.0) to P2 (sz, 0) in the median plane, 
up to point P3 (s2, z), then parallel to the median plane to point P4 (sl, z )  and down 
to P I  (~1.0). The nonzero contributions to the line integral are 

Consequently, 

and Equation (3.282) becomes 

This may be written, with v, = dz/dr = v ( d z / d s )  = vz', as 

(3.283) 

(3.284) 

(3.285) 

Introducing the orbit radius RO = ymv/qBo of the particles inside the magnetic 
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Z z; - z; = -- tan a. 
RO 

(3.286) 

By definition, the focal length f z  is obtained (with zi = 0) from l/fi = -z:/z, 
which yields 

RO 
f z =  G-2 (3.287) 

This shows that there is focusing in the axial motion of the particle when a > 0 
and defocusing when a < 0. The magnet edge can thus be considered as a thin 
magnetic lens that may be described by the transfer matrix 

(3.288) 

A similar analysis can be made for the particle motion in the median (radial) plane. 
One finds in this case for the focal length in the radial direction (see [D. 1, Sec. 4.31) 

RO fr = -- 
tan a 

(3.289) 

Hence for the radial motion the edge is defocusing for a > 0 and focusing for 
a < 0, and the radial thin-lens matrix for the edge region may be written in 3 X 3 
form as 

The same results apply for the other side where the beam passes through the edge 
region on entering the magnet. In general, the edge angles at the entrance and exit 
side may differ (i.e., 122 st al). The first-order properties of a sector magnet with 
such thin-lens (or hard) edges and two different angles a1 and a2 can thus be 
obtained by multiplication of three matrices, M2M8M1, where fi, and M2 represent 
the two edge-focusing lenses and f i s  the magnet sector. 
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3.8 PERIODIC FOCUSING 

3.8.1 Periodic Focusing with Thin bnrcsr 

A periodic-focusing system for charged particle beams consists of an array, or lat- 
tice, of periodically spaced lenses and other beam manipulation devices. Important 
applications of periodic focusing are microwave devices such as traveling-wave 
tubes, high-current beam transport over large distances, linear accelerators, sector- 
focusing cyclotrons, synchrotrons and storage rings, racetrack microtrons, and other 
devices for recirculating electron beams. One of the simplest cases of periodic fo- 
cusing is a beam transport system with a periodic configuration of identical short 
solenoids. Circular accelerators constitute more complicated periodic systems in 
which the particles are bent around and traverse the same lattice of focusing lenses 
and deflecting magnets many times. In such systems one has practically two funda- 
mental periods. One is the length S of a unit cell, and the other is the circumference 
C of the ring. If the ring lattice contains an integral number of N unit cells, then 
C = NS. In a perfect system, the forces acting on the particles have a repetition 
period of length S. However, if there are errors and misalignments in the system 
of lenses and bending magnets, the particles experience the resulting perturbation 
forces once in every revolution (i.e., with a repetition period of length C). For this 
reason, a circular focusing lattice is sometimes called a doubly periodic system. 
As an introduction to the theory of periodic focusing, let us now consider the 

simplest case of a periodic system, which is a straight array of thin lenses (e.g., 
short solenoids), depicted in Figure 3.24. The basic building block, or unit cell, 
of such a periodic array consists of a lens and a drift space of length S. All 
lenses have the same focal length f .  The particle trajectories between lenses are 

21s-  

Fbum 3.24. Particle trajectory and matched-beom snvdope in a periodic thin-lens army with 
I#al bgth f = 2.618S, &re S is Ihe cdl bngth. The phase advance per cdl is u = 36' (i.e., the 
particle +s um oscillation in 10 k n s  par'bds). 
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straight lines. Each lens changes the slope of the trajectory according to the relation 
Ar' = - r / f .  The relation between the trajectory parameters at the input (n)  and 
output (n  + 1) of each cell can be written in matrix form as the product of the 
lens and the drift-space matrices, that is, 

In equation form this becomes 

where 

a = 1 ,  

b = S ,  
1 c E -- 
f' 

S ( j = l - -  
f' 

(3.292a) 

(3.292b) 

(3.293a) 

(3.293b) 

(3.293~) 

(3.293d) 

From (3.292a) we get 

and thus 

Using relation (3.292b) for r:+l and substituting for r: from (3.294), we obtain 
the difference equation 

rn+2 - (a + d)r,,+l + (ad - bc)rn = 0 ,  (3.296) 

which determines the change of the particles' radial position through the lens array. 
From the relations given in Equation (3.293) we can show that ad - bc = 1, 
hence we can rewrite (3.296) as 

rn+2 - 2Arn+i + r, = 0 ,  (3.297) 
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where 

A = - (a 1 + d )  = 1 - - 1 s  - (3.298) 
2 2 f  

represents the trace of the matrix in (3.291). 
In Figure 3.24 a particle trajectory was traced through a periodic system of thin 

lenses using a computer program. The ratio of the focal length f of the lenses 
to the cell length S was chosen to be f/S = 2.618. In this case the particle 
makes a full oscillation in approximately 10 lens periods. The result shown in 
this figure suggests that we can approximate the particle trajectory through the 
lens array by a sinusoidal oscillation. Indeed, this conclusion follows also from 
the difference equation (3.297), which is the equivalent of the harmonic-oscillator 
equation rN + k2r = 0. Thus we are led to try a solution of the form 

r,, = roeinv, (3.299) 

which, when substituted in (3.297), leads to 

eaa - U e i U  + 1 = 0 .  (3.300) 

From this equation we obtain 

e2iu = cosu f i s i n u  = A  +- id-, (3.301) 

where, in view of (3.298), 

1 1 s  
C ~ U  = A = - (a + d )  = 1 - - - 

2 2 f' (3.302) 

The general solution of (3.297) can be expressed as a linear superposition of 
exp(inu) and exp(-ha),  or by the equivalent sinusoidal form 

r,, = r,, sin(na + 81, (3.303) 

where r,, and 8 are determined by the initial conditions, ro and r& at the entrance 
of the focusing system. 

For the particle trajectory to be stable, the parameter u must be a real number 
so that I ccs a1 5 1, or IAI s 1. From (3.302). the stability condition implies that 

1 
O S S S ~ ~ ,  or f 5: - s 4 '  

(3.304) 
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In accelerator theory the parameter u is known as the phase advance, or phase 
shift, of the particle oscillation in one cell length of the periodic lattice, and it is 
usually given in degrees. If A is the wavelength of the oscillation, we can write 

(3.305) 
S 

u = 360"- A' 

In the example of Figure 3.24 we have a wavelength of A = lOS, and the advance 
per cell is therefore u = 36". If the stability criterion (3.304) is not satisfied (i.e., 
i f f  5 S/4), we obtain for (3.297) solutions of the form 

where 

e" = A  2 d Z Z ,  (3.307) 

with the constants CI and C2 being determined by the initial conditions. Since the 
magnitude of both e+d and e-d exceeds unity, the trajectory radius will increase 
exponentially. Such a case is illustrated in Figure 3.25, where we chose a value 
of f/S = 0.246 which is slightly below the stability threshold of f/S = 0.25. 
As can be seen, the maximum trajectory radius increases very rapidly. In an 
actual experiment, the beam simply blows up within a few lens periods when 
such "overfocusing" occurs. 

Examination of the stability requirement (3.302) shows that the phase advance 
u has the stability range 0 C u C 180'. For u = 0 (f - a), there is no focusing. 

z I S -  

Figun 3.25. Particle traimty and b m m  mvdop. in a periodic thin-kns army with focal length 
f = O.W, rlighdy klow he stabiliv threshold (f = 0.25s). The particb d o n  is unstable in 
this caw. 
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On the other hand, when u > 180", particles cross the axis within a lens period 
and the trajectory becomes unstable, as illustrated in Figure 3.25. 

So far we have treated the motion of a single particle through the periodic lens 
system. If we now consider a beam with emittance 6,  we know from Section 3.4.5 
that the envelope radius R(z )  in the drift space between lenses has the hyperbolic 
shape (3.162) 

In 
R ( z )  = [Ri  + 2RoR;z + ($ + Rh2)z2] 

where R0.R; are the initial radius and slope at the beginning of the drift section. 
The thin lenses merely change the slope of the envelope, as in the case of single 
trajectories. 

For a matched beurn, the envelope must be periodic with period length S, as 
can be seen in Figure 3.24. The waist R, must occur at the center (S/2) of each 
cell. Furthermore, the slope at the entrance and exit side of each lens must have 
the same magnitude, IRLI, so that the slope Rh at the lens exit is given by 

(3.308) 

Using these symmetry properties of the beam envelope one finds for the maximum 
radius 

I I4 
4 ( f N 2  

= J;s[ S ( f / S )  - 1 1  

and for the waist radius 

(3.309) 

(3.310) 

Figure 3.24 shows the matched-beam envelope for the case f/S = 2.618 or 
uo = 36"; the emittance c was chosen to yield R,  = 0.1s. As can be seen, the 
envelope ripple A R  = R, - R, is relatively small in this example. On the other 
hand, in the example of Figure 3.25, the instability of single-particle motion also 
results in a rapid blowup of the beam envelope. It is not possible to obtain a 
matched, periodic solution for R ( z )  in this instability case. 

Equation (3.309) shows the scaling relationship between the maximum beam 
radius R,, emittance c, cell length S, and focal length f of the periodic thin- 
lens array. We can use this relation to define an important quantity known as the 
acceptance of the focusing system. Suppose that the aperture radius, r,, = a, of 
the lens channel is fixed. What is the maximum emittance, c,,, that a matched 
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beam can have for a given value of f/S to fit into the available aperture? This 
maximum emittance is identical with the acceptance; that is, we can make the 
identification cmx = a where a denotes the acceptance. A mathematical relation 
for the acceptance of a thin-lens array can be obtained by solving (3.309) for c, 
substituting a for Q ,  and setting R, = a. The result is 

(3.3 11) 

As can be seen from this relation, the acceptance of the focusing channel scales 
linearly with the product of aperture radius a and the ratio of the aperture to the 
cell length, a/S. In addition, it is a function of the focal length to the cell length 
f/S. The ratio a/S must be significantly less than unity (Le., a/S Q l), to avoid 
nonlinear forces (lens aberrations) that would adversely affect the beam quality. 
A prudent choice might be a/S = 0.2, for instance. The focusing capability of 
the system is represented by the acceptance function a given in (3.311). This 
function is zero when f = 00 (no focusing) and f S/4 (stability limit); it has a 
maximum at f = 0.5S, corresponding to a phase advance of u = 90", in which 
case it is a = a2/S. The maximum acceptance of a periodic channel of thin lenses 
(with identical focusing length f )  is therefore amsx = a2/S. If a/S is fixed for the 
reasons mentioned, the only way to match a beam of a given emittance into such 
a channel is to make the aperture radius rmax = u , and hence also S , sufficiently 
large. The alternative is to replace the array of weakSfocusing lenses discussed here 
by sfmng-focusing lens configurations such as quadrupoles, as discussed in Section 
3.5. Magnetic quadrupole lenses, for instance, are used in high-energy accelerators 
since they provide stronger focusing than solenoids at high particle kinetic energies. 
The derivation of the various relations for a channel consisting of thin quadruple 
lenses is left as a problem (3.17) at the end of this chapter. 

So far we have not discussed how to match the beam into a given focusing 
channel. The first requirement, of course, is that the emittance fit into the acceptance 
(i.e., c S a). Assuming that this condition is satisfied, we must inject the beam 
into the first lens with initial condition given by Ro = R,,, and RA = -R,/2f. 
These two conditions can be met by using two matching lenses placed before the 
entrance into the focusing channel. If the beam is not properly matched, it will 
perform envelope oscillations that are generally not desirable since they may lead 
to deterioration of beam quality and particle losses. Envelope oscillations, including 
the effects of space charge, am discussed in Section 4.4.3. 

With regard to the optimum choice of parameters, several considerations indicate 
that one should not operate in the region where the phase advance u is greater than 
90' even though the stability requirement permits higher values. First, as discussed 
above, the channel acceptance is a maximum, or, conversely, the beam radius R,,, 
a minimum, when u = 90" in the thin-lens system being considered. Therefore, 
nothing is gained by increasing the focusing strength beyond this point. Second, 
the effects of random lens misalignments increase as sin(u/2), as shown in Sec- 
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tion 4.4.4; hence it is desirable to have as small a value of u as possible. Finally, 
space-charge perturbations cause envelope instabilities when a > 90", as we will 
see in Section 4.4.3. It should be noted that the a0 < 90" rule is not restricted to 
the thin-lens array treated here; it applies also to other periodic focusing systems. 

In the next section we present the general mathematical theory of periodic 
focusing. Following this we discuss three examples: a quadrupole focusing channel, 
the sector-focusing cyclotron, and the strong-focusing synchrotron. In addition, we 
briefly review the topic of resonances in circular accelerators. 

3.8.2 Gmmral Theory of Courant and Snydor 

Let us now consider the general case of a periodic-focusing system with two planes 
of symmetry and without the thin-lens restriction made in the preceding section. 
Mathematically, the linear, or paraxial, motion of charged particles in periodic 
systems is described by two differential equations of the form 

(3.312a) 

(3.3 12b) 

Here x ,  y are the displacements from the beam axis and s is the independent variable 
measuring the distance along the beam axis (or equilibrium orbit in a circular 
accelerator). K= (s),  KJS) are the periodic-focusing functions, which satisfy the 
periodicity relation 

K(S + s) = K ( S ) ,  (3.313) 

where S is the length of one period. In a circular accelerator with circumference 
C and N focusing periods, or unit cells, we have the additional periodicity relation 

K(S + c) = K ( S ) ,  (3.314) 

where C = NS. 
Many systems, such as quadrupole channels, have two planes of symmetry where 

the forces K=(s)  and K ~ ( s )  may differ in phase or in both phase and amplitude. 
However, as long as there is no coupling between these two forces, the theory is 
the same, and in the following, we consider only motion in the x-direction. 

Linear second-order differential equations with periodic coefficients of the form 
(3.312) are known as Mathieu-Hill equations. The properties of these equations 
and their solutions have been treated extensively in the literature [3]. The standard 
reference for periodic focusing of charged particles in the accelerator field is 
the theory by Courant and Snyder 141. Although this theory deals with circular 
accelerators, the method and results apply equally to linear accelerators or beam 
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transport systems. In this general treatment of periodic focusing we follow closely 
the Courant-Snyder theory. 

First we recall from the paraxial theory that the solution of any linear second- 
order differential equation of the form (3.312), whether or not K ( S )  is periodic, is 
determined uniquely by the initial values (XO, xh) or (yo, yh). Thus, for ( x ,  x') at a 
distance s, one gets 

X ( S )  = ax0 + bxh, 

or, in matrix notation, 

(3.315a) 

(3.315b) 

(3.316) 

Let us now examine the motion in a periodic system. In this case the matrix 
# has the property 

f i ( s  + Sls) = f i ( s > ,  (3.317) 

which is to say that the matrices describing particle motion through any one period 
of length S are identical. The matrix for passage through N periods is then obtained 
by multiplication of the matrices for a unit cell, that is, 

M(s + NSls)  = [ M ( S ) ] " .  (3.318) 

The motion of the particle can be stable or unstable depending on whether x(s) 
remains finite or increases indefinitely with distance x .  For the motion to be stable 
it is necessary and sufficient that the elements of the matrix @" remain bounded for 
any number of periods N. To find this condition for stable motion, let us consider 
the eigenvalues for the characteristic matrix equation 

M X  = A X ,  (3.319) 

which changes only the length, but not the direction of the vector X = (x0.x;). 

Writing it out, we have 

(3.320a) 

(3.320b) 
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This system of linear equations have nonvanishing solutions only when 

or 

A' - A(u + d )  + (ad - cb) = 0 .  

(3.321) 

(3.322) 

The last term in Equation (3.322) represents the determinant of the matrix fi, which 
is unity since we do not consider changes in the particle's kinetic energy, that is, 

ad - b c =  1 ,  (3.323) 

and hence Equation (3.322) becomes 

A2 - A(a + d)  + I = 0 .  (3.324) 

Let us now introduce the parameter u, already defined in the thin-lens case 
(3.302). by 

(3.325) 
1 I 
2 2 

cosu = -(a + d) = -TrM. 

The two solutions of the quadratic equation (3.324) are then 

A1.2 = cosu 5 i s i n u .  (3.326) 

The parameter u will be real if la + d(  5 2 and imaginary or complex if la + 
dl > 2. It will be advantageous to write the matrix fi in a form that contains cos u 
and sin u. To do this we introduce the parameters h, 8,p defined by the relations 

a - d = 2&sinu,  

b = Dsinu ,  

c = - 9 s i n u .  

The matrix M may now be written as 

(3.327a) 

(3.327b) 

(3.327~) 

(3.328) 
cos u - h sin u ) ' cos u + &sin u /i sin u '=( -9sincr 
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or 

M =  T c o s u  + J s i n u ,  

where 

(3.325) 

(3.330) 

The condition det = 1 implies that 

69 - &2 = 1 .  (3.331) 

Note that detf  = 1 , T r J  = 0. 

tial eia = cos u + i sin u. Thus one can show that 
The representation (3.329) of fi has properties similar to the complex exponen- 

= ( i c o s a  + = I”cosNu + f s i n N u .  (3.332) 

The particle motion through a periodic array of N lenses (where N can be arbitrarily 
large) is stable when the parameter u is real, or, in view of (3.325), when 

ITrm = la + d J  < 2 ,  (3.333) 

and it is unstable when la + dl > 2 . The parameters &, B, 9 are also known in 
the literature as the Courant-Snyder or lkissparameters, and B as the amplitude 
function or betatron function. We depart from the traditional notation by adding a 
hatch c) to avoid confusion with the relativistic velocity and energy factors, 8 , ~ .  
Furthermore, we use u in place of p to denote the phase advance per cell. (Courant 
and Snyder used the symbol p. However, in more recent work on periodic focusing 
it has become customary to use u instead, and we therefore adopt this notation [SJ.) 

Returning now to Equation (3.316), we note that the two eigenvalues of the 
characteristic matrix equation, A1 = cos u + i sin cr and A2 = cos cr - i sin u, 
obey the relation 

(3.334) 
1 
A1 

A1A2 = 1, or A2 = -. 

Consequently, there will be a unique pair (u, u )  of independent solutions of the 
Mathieu-Hill equation fulfilling the condition 

This statement is called Floquet’s theorem, and a pair of solution (u, u) satisfying 
(3.335) are called Floquetficnctions. The Floquet functions allow one to express any 
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other solution of the Mathieu-Hill equation in the simplest way. In the special case 
where the force parameter K is constant, Equation (3.312) reduces to the harmonic- 
oscillator equation and the Floquet functions are given by u(s) = exp[iJFs]. u = 
exp[-ifis]. In the case of a periodic system, the Floquet function can be written 
in the phase-amplitude form 

(3.336a) 

(3.336b) 

which reduces to the harmonic-oscillator solution when K(S)  = const. Actually, 
(3.336a) and (3.336b) represent two fundamental solutions even if K ( S )  is not peri- 
odic. In the following we will initially make no particular assumptions concerning 
K(s). The constraints imposed on w(s) and #(s) if K ( S )  is periodic will be dis- 
cussed subsequently. First, we note that the use of (3.336) makes it possible to 
express any solution x(s) as a linear combination of u and u in the form 

where the amplitude A and the phase 4 are determined by the initial conditions. 
The Wronskian W = uu‘ - U‘Y, which is a constant, is given by 

w = -2iw2#’ = w,. (3.338) 

Choosing for the constant the value W1 = -2i, one obtains the relation 

(3.339) 

which the two functions w(s)  and #(s) have to satisfy if u, u are to be fundamental 
solutions. 

Differentiation of either u or u and substitution into Equation (3.312) yields 
the differential equation 

(3.340) 
1 

w3 
wll+ K W  - - = 0 

for the amplitude function w(s). This equation has the form of the envelope equation 
for a beam with an emittance of elliptic shape as discussed in Section 3.4.5. Let 
us explore this analogy by deriving the equation of the trace-space ellipse for a 
particle whose trajectory is given by (3.337). Differentiation of (3.337) yields 

x’ = A[w’coe(# + 4) - w#’sin(# + 4)]. (3.341) 
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By eliminating $ + 4, usingcas2($ + 4) + sin2($ + 4) = 1, one obtains from 
(3.337) and (3.341) the equation 

(3.342a) 
X 2  - + (WX’ - w’x)? = A’. 
W 2  

We can write this in the form 

jlx2 + 2hxx’ + fix’’ = A2, (3.342b) 

by using the definitions 

/9 = w2, 

h = -ww’, 

(3.343a) 

(3.343b) 

(3.343c) 

Equation (3.342) is the equation of an ellipse whose shape and orientation at any 
given s are determined by the amplitude factor A and the coefficients h and 6, 
which in turn are defined by w(s)  and w‘(s). We conclude that all particles with the 
same initial value of A but different 4 lie on the ellipse described by (3.342). To 
follow the motion of an ensemble of particles with the same A, we need to know 
how w varies with distance s, that is, we need to solve Equation (3.340) subject to 
the appropriate initial values w(O), w‘(0) at s = 0. As we pointed out above, the 
functions w(s) and #(s) are the same for all particles in the beam. Thus, particles 
with different A lie on different ellipses scaled in size but otherwise similar. The 
largest ellipse is defined by the maximum value of A, which we denote by Ao. 

The area of each ellipse is aA2( Bf - h2)-ln = ITA’ since 69 - d 2  = 1 in 
view of (3.343~) (i.e., it is a constant through the motion of the beam). Specifically, 
the area of the largest ellipse is given by A, = €,IT, where e, is the emittance 
of the beam, and we can write 

A, = A ~ I T ,  or (3.344) 

Thus, with A’ = A% = ex, we obtain from (3.342b) the equation of the beam 
ellipse in x-x’ trace space, that is, 

9x2  + 26xx’ + @ X I 2  = €,. (3.345) 

This ellipse is illustrated in Figure 3.26, which also shows the relations for the 
intercepts with the two axes and for the maximum values of x and X I .  The 
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Pbutr 3.26. Trace-space ellipse described by equation fxz + 2hxx' + f ix'*  = E and relations 
for #vsml important points on the circumference of the ellipse. 

derivation of these relationships is left as a problem (3.19). The beam envelope x,,, 
is characterized by the maximum value of x which occurs when @ + 4 = 0 or 
cos(@ + 4) = 1 and A = Ao. Thus, we have the relation 

Substitution of (3.346) into (3.340) yields the envelope equation 

(3.347) 

We note that the Courant-Snyder form (3.345) for the trace-space ellipse, which 
is widely used in the accelerator literature, differs from our previous notation in 
Sections 3.4.5 and 3.6.2. The relations between the coefficients h,  6 . 9  in Equa- 
tion (3.345) and a , b , c  in Equations (3.159) or (3.218)ff. are given by a = p/c;, 
b = &/ex, c = B/eX. Using these relationships, it is readily verified that the 
previous equations for the beam envelope, such as (3.160a) and (3.160b). are 
identical with the Courant-Snyder expressions in (3.346) and in Figure 3.26. 

Comparison of Equations (3.340), (3.346), and (3.347) shows that the amplitude 
w(s) of the fundamental solutions represents the characteristic envelope for a 
particular system defined by a given force function ~ ( s ) .  We can obtain w(s) by 
integration of (3.340) subject to initial conditions w(0). w'(0). The actual beam 
envelope then depends on the emittance ex and is found by relation (3.346). 
Furthermore, once we know w(s), we can obtain the phase function #(s) by 
integrating Equation (3.339). 

Since u, u are linearly independent solutions, we can write the matrix M that 
determines the change in a particle's position and slope between two points s2 and 
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SI in terms of u, u and hence in terms of the functions w(s),  #(s). The calculations 
for the matrix #(sz(sl) lead to the following results: 

r 1 W I  w2 sin # w2 
W1 
- cos Q - wzw; sin # 

where # -- #r(s2) - #(sI), W I  = w ( d ,  w2 = w(s2). 
The phase-amplitude solution (3.336), and hence the matrix (3.348), is valid 

whether or not K ( S )  periodic, as pointed out earlier. Let us now examine the 
constraints imposed by the condition that w(s)  be a periodic function of s with 
period S. In this case, if s2 - s1 = S ,  we have w2 = W I  = w,w2 = w1 = w', 
and the matrix (3.348) takes the simpler form 

I I 

(3.349) 
cos# - ww'sin @ W2Sin # 

sin# cos# + wwlsin# 
1 + W 2 W l 2  

W 2  
- 

Furthermore, we recognize that the matrix M is now identical with the ma- 
trix (3.328) provided that we use the relations (3.343) and make the additional 
identification 

9 = 9b2) - #(SI) = (I. (3.350) 

We note that the relations between &,& 9, and w ,  w1 given in Equation (3.343) are 
valid even if K ( S )  is not a periodic function. The periodicity condition is contained 
in (3.350), and in view of (3.339), we have for u the relation 

(3.351) 

As already mentioned in Section 3.8.1, u is the phase advance or phase shift 
per period or cell. The particle motion in a periodic focusing channel is basically 
a pseudoharmonic oscillation with frequency o = (i7)'%, or wavelength A = 
27ru/o = 27r/(R)LR, and an amplitude modulation or ripPe that varies with the 
period S of the force function. Here R is the mean value of K in one period and 
u is the velocity of the particles. The phase advance u measures the fraction of 
the wavelength in one oscillation period [see Equation (3.305)J; thus, u = 90" 
implies that the particle completes one oscillation in four periods of the focusing 
channel. Note that the condition for stable motion is I cos (TI < 1 (i.e., (I < MOO), 
in agreement with our result for the thin-lens channel treated in the preceding 
section. 
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In the case of circular accelerators with circumference C = NS, one uses in 
place of u the parameter 

(3.352) 

which is the number of betatron oscillations in one revolution, also known as the 
betatron tune. 

From the form (3.337) of the solution of the equation of motion, we see that the 
largest displacement x,, is obtained where w(s) ,  and hence the betatron function 
&), attains its maximum value. In a given accelerator or focusing channel, the 
particle motion is usually restricted by the vacuum chamber or other structures. If 
x,, denotes the maximum excursion of the particle trajectory permitted by these 
aperture constraints, the acceptance or admittance of the system in the x-direction 
is defined by the quantity 

(3.353) 

A beam is considered matched when the emittance is equal to the acceptance (i.e., 
r, = a,) and when the maximum displacement of the beam envelope x,, = a 
occurs at the points (usually the center of the focusing lenses) where the betatron 
function B(s) has its maximum value Bmu. In this case no particles are lost to the 
walls. Note that the function &s) has the same period S as the focusing function 
~ ( s ) ,  and in the matched case the beam envelope x&) therefore also varies 
with period S according to the relation (3.346). As an example, comparing Equa- 
tion (3.353) with (3.311) of the preceding section, we see that Brrmx for an array 
of axisymmetric thin lenses is given by BmrX = S[4(f/S)2]'n/[4(f/S) - Illn. 
Relations for a periodic axisymmettic channel consisting of thick lenses (e.g., 
solenoids) can be found in Section 4.4.1, Equations (4.163) to (4.170) and Fig- 
ures 4.4 to 4.6. 

3.8.3 The FODO Quadruple Channol 
As a first example of a general periodic-focusing system and to illustrate the use 
of the Courant-Snyder theory, let us consider a quadrupole channel in the FODO 
configuration. One period of such a channel is defined by a quadrupole of length 
I that is focusing in x and defocusing in y, a quadrupole that is defocusing in x 
and focusing in y, and two drift sections of length L each, as illustrated in Fig- 
ure 3.27. The force function &), which we will assume to be piecewise constant, 
and the qualitative variation of the amplitude function w(s) = a and thus 
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L + P 4  
half period I t I 

F b u n  3.27. Gradient and envebpa function5 in a periodic quadrupole channel d the FODO 
type. (From Reference 2.) 

of the matched-beam envelopes x,(s) = X(s),y,(s) = Y(s )  , are indicated in the 
figure. 

The transfer matrix M for one period of such a FODO channel can be calculated 
by multiplication of the appropriate matrices for the four sections of one channel 
period using (3.184a), (3.184b), and the matrices for the two drift spaces. Com- 
paring this with the matrix a in the form (3.328), one finds for a FODO section 
the following results: 

L 
1 

cos u = cos 8 cosh 8 + -8(cos 8 sinh 8 - sin 8 cosh 8 )  

(3.354) 

L 
I 

ti sin u = - sin 8 sinh 8 - - 8 sin 8 cosh 8 

282 sin 8 sinh 8 ,  (3.355) 

B cosh 8 + sin 8 sinh 0) B sin u = ‘[(sin 0 cosh 8 + cos 8 sinh 0 )  + -8(2cos L 
0 I 

2 
+ ( 4 )  8’cos 0 sinh 81 I (3.356) 
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The parameter 8 in these equations represents the focusing strength of the lenses 
and is defined by 

e = ~ ' ~ 1 .  (3.357) 

Note that K is given by the relation (3.182) for magnetic quadrupoles and (3.183) for 
electric quadrupoles. The relations (3.354) to (3.356) are transcendental equations 
that must be solved by computer or presented in graphical form for practical 
use. A plot of the relationship between u and B for different values of L/I of a 
FODO channel, for instance, is shown in Section 4.4 (Figure 4.7), where periodic 
focusing in both FODO and solenoid channels, including space-charge effects, will 
be treated. Fortunately, there are several rather simple approximate formulas that are 
very useful for design and scaling purposes and therefore worthy of being presented 
here. First, one finds for 0 4 s / 2  from (3.354) for cos u the approximate result 

c o s u = 1 - ~ [ i + 4 f + 3 ( f ) 2 ] .  6 (3.358) 

If in addition to B 4 w/2 the drift length L is much larger than the lens width 1 
(i.e., L/1 %- I), we can neglect 1 + 4L/l compared to 3(L/1)2 and obtain 

or 

COSU = 1 - 2' q2 (3.359) 

where q = B2(L/l)  = KIL. This is known as the thin-lens approximation, and for 
bmu and acceptance ax it yields the results 

1R B m u = - ( - ) .  2L 2 + q  

?1 2 - 1 1  
(3.360) 

(3.361) 

Finally, in the smooth approximation, where the phase advance per period is small 
(u 4 7r/2), one gets from (3.358) and (3.359) the simple relations 

(3.362a) 
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and 

The maximum and minimum values of the amplitude function w(s)  in the FODO 
channel can be obtained from the transfer matrix for half a period. By comparing 
this matrix with the form (3.348) and using the fact that w1 = w-, w2 = 
w b ,  W I  = wi = 0, one finds that I 

Solving for @-, @min yields 

(3.365) 

(3.366) 

The above relations define the properties of a FODO channel such as the phase 
advance u and the maximum of the amplitude function. If the maximum aperture 
available for the beam (e.g., the diameter of the beam pipe), is 2a, the acceptance 
of the FODO channel is given by 

(3.367) 

As mentioned before, the acceptance of the channel is identical with the maximum 
emittance that a perfectly matched beam could have without particle loss to the 
wall of the beam pipe (provided that space-charge effects are negligible). Note 
that in the more general case of a FODO channel, the two quadruples and the 
two drift regions could have different lengths 11,12 and L1, L2, andlor different 
strength I K I  I , I K ~ ~ .  The example presented here is a symmetric quadruple system 
with 1x11 = 1 ~ 2 1  = ~ . 1 1  = 12 = I ,  L1 = L2 = L. Further discussions of periodic 
beam transport systems-solenoids as well as quadrupoles- that include space- 
charge effects and several useful graphs can be found in Section 4.4. 
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3.0.4 Sutor-Focudng Cyclotrons 
In this section we discuss the sector-focusing cyclotron as a first example of 
a doubly periodic-focusing system in a circular accelerator. To appreciate the 
advantage of sector focusing in this case, we must first understand the basic 
operating principles and limitations of the classical cyclotron with axisymmetric 
magnetic field. 

The cyclotron concept was invented by Lawrence in 1929; the first model was 
constructed a year later by Lawrence and Edlefsen, and the proof of principle was 
established by Lawrence and Livingston in 1931 [6]. The concept is based on the 
fact that a magnetic field B forces charged particles into circular orbits with angular 
frequency o, - qB/ym and orbit radius R = v / o .  During each revolution the 
particles pass through an even number of acceleration gaps across which an rf 
voltage V = V, co6 met is maintained. When the radio frequency is in reSOnance 
with the circulating ions (i.e., when 0, = oc), continuous acceleration occurs, 
and the ions travel on an expanding spiraling orbit from the center of the magnetic 
field to a maximum energy and radius determined by the size of the pole shoes 
of the magnet. 

The magnetic field in the conventional cyclotron must decrease slightly with 
radius to produce the required force component toward the median plane, which 
serves to focus the beam during the many revolutions from center to maximum 
radius. The theory of gradient, or betatron, focusing was discussed in Section 3.6.1. 

The focusing requirement of dB/dr < 0 implies that the orbital frequency 
o, = qB/ym of the ions is not a constant, but decreases with radius. As a result, 
the resonance condition o, = o, is violated, particles get out of step with the rf 
voltage, and after a certain number of turns the phase slip is large enough so that 
deceleration occurs. This dilemma is enhanced still further by the increase in the 
relativistic mass, y m  , which also decreases the orbital frequency. 

The maximum energy attainable in this type of cyclotron depends on the phase 
slip between the particles and the rf voltage; it is greater if the voltage is higher. 
The largest conventional machine was the 86-inch cyclotron at Oak Ridge National 
Laboratory, which accelerated protons to 24 MeV (with a peak accelerating voltage 
of V, = 500 kV). 

In 1945, McMillan and Veksler independently proposed the synchrotron princi- 
ple [7] which made it possible to go beyond the energy limits of the conventional 
cyclotron and which led to the development of synchrocyclotrons and synchrotrons. 
The two basic ingredients in this new accelerator concept are (1) the modulation 
of the electric frequency (and in the synchrotron also the magnetic field) with time 
to maintain synchronism between radio frequency and circulating particle during 
accelerration; and (2) the existence of phase stability, which assures the continuous 
acceleration of nonsynchronous particles within certain limits. 

The synchrocyclotron employs a cyclotron-type rf system with frequency 0, 
modulated by the use of a rotating capacitor, tuning fork, or other means, such that 
o, is a function of time, decreasing in synchronism with the orbital frequency of 
the ions. After a group of ions is accelerated to full energy, the radio frequency 
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returns to its starting value and begins another cycle of acceleration. The major 
drawback of this scheme is that beam intensities are down by a factor of lC? to 
10" compared to those of the fixed-frequency cyclotrons. Many synchrocyclotrons 
were built throughout the world, the largest machined producing protons of about 
1 GeV. 

In 1938, L. Thomas had shown in a theoretical study that it should be possible 
to build an isochronous cyclotron with constant ion frequency oc by employing a 
magnetic field that varies sinusoidally with azimuth angle [8]. The average magnetic 
field increases with radius to compensate for the increase in the relativistic mass, 
ym, thus keeping o, = qB/ym a constant while at the same time vertical focusing 
is provided by the azimuthal field variation (called flutter). Because of World 
War 11 and the invention of the synchrotron, this idea was not acted upon until 
1950, when a group at the Lawrence Radiation Laboratory began a study and 
built an electron model that proved the feasibility of the new cyclotron concept 
[9]. Similar studies were soon started at other places in the United States and 
Europe, and since then a large number of sector-focusing cyclotrons have been 
built. 

All sector-focusing cyclotrons employ magnets with wedge-shaped pole shoes 
producing a square-wave rather than a sinusoidal variation in azimuth. Recall that 
edge focusing in single-sector magnets was discussed in Section 3.7. A simple 
three-sector magnet configuration with straight radial wedges or hills of 60" in 
azimuthal width is illustrated in Figure 3.28. The equilibrium orbit deviates from 
a circle having a small radius of curvature in the hills and a large radius in the 
valleys. As indicated in the figure, a positive ion moving in a clockwise direction 
will have a radial velocity component pointing outward when the ion enters the hill 
sector and inward when it leaves it. A vertical cut through the magnet system along 
the equilibrium radius illustrates the magnetic field lines and the azimuthal field 
component Be in the edge regions of the pole-shoe sectors. For an ion displaced 
vertically from the midplane, there will be a force component Fz = quJe that 
focuses the particle toward the midplane when it passes through the edge regions. 
This is, of course, the same edge-focusing effect that we discussed in Section 3.7. 
A low energies, this focusing force is sufficient to overcome axial defocusing due 
to the radially increasing average magnetic field. In most high-energy isochronous 
cyclotrons, however, the pole-shoe sectors are spiral-shaped rather than straight, as 
illustrated schematically in Figure 3.29. 

The spiral configuration introduces an alternating-gradient focusing effect, 
marked in the figure by arrows that show the direction of the local magnetic field 
index, denoted here by k = ( r / B z ) ( M z / ~ r ) .  As we know from the discussion 
of quadrupole focusing in Section 3.5, a combination of focusing and defocusing 
lenses provides a net focusing effect [see Equations (3.186) and (3.187)]. Thus the 
alternating-gradient configuration of the spiral-sector system produces an additional 
net focusing force. This effect supplements edge focusing, thereby providing ade- 
quate axial stability for proton energies of several hundred MeV. The median-plane 
magnetic field of a configuration consisting of N sectors can be written in the form 
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(b) 
Pigum 3.28. Thnatecta m o g d  configuration with straight d i a l  wsdger, or hi//5, for an 
isochronous cyclotron. Equilibrium orbit (a), mo@c lidd lines, and axial focusing b) am ilustmted 
SChOmdhlb. 

The phase angle 4,,, where the azimuthal variation of the nth field harmonic reaches 
its maximum value, varies with radius in accordance with the spiral shape of the 
pole sectors. Radial stability requires that the number of sectors be at least three 
or larger (i.e., N 2 3). The average magnetic field B(r)  increases with radius 
according to the relativistic energy change y = (1 - / 3 * ) - IR ,  that is, 

-1R - 
B(r) = yBo = Bo(l - /32)-'n = Bo[ 1 - (?,'I , (3.369) 

where BO is the magnetic field at the center ( r  = 0). The orbital frequency is 
then oc = 00 = qBO/m and is thus constant. Calculation of the radial and axial 
betatron frequencies for such a sector field leads to rather complicated analytical 
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Volley’ 

Figurn 3.29. Secbr-focusing c y c h  with a spiral-ri&n m o p t i c  fidd. Additional axial 
focusing is provided by h e  alternating-gradient lwcrr in such a fidd cdiguration so that hi& 
energies con be achieved than in a stmight mdiol-mctor d i m .  

expressions. For high accuracy, numerical orbit integration by computer is required. 
Neglecting a number of less important terms, first-order theory gives the following 
approximate results: 

v;= 1 + E ,  (3.370) 

(3.371) 

where % = (r/B)(dB/dr) is the index of the average magnetic field. The parameter 
F, given by 

(3.372) 

represents the puffer of the magnetic field variation; S is the (effective) spiral 
angle defined by 

r d 4  t a n s  = - 
dr ’ (3.373) 

where 4 = 4 ( r )  is the azimuth angle of the peak field in the sectors. 
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Equation (3.370) for the radial frequency is identical with Equation (3.197) 
except that in this case v, > 1, as E is positive. With respect to the vertical 
frequency [Equation (3.371)], the spiral angle 6 and the flutter amplitude F must 
be large enough to compensate for the defocusing average field and, in addition, 
provide a net focusing effect such that v, > 0. At small radii, sector focusing 
ceases to be effective since the azimuthal field amplitude, measured by F(r ) ,  goes 
to zero as ( r /g )N ,  where g is the magnet gap width and N the number of sectors. 
To achieve good focusing at small radii, the number of sectors should be small 
(i.e., N = 3 or N = 4). As mentioned, fields with fewer than three sectors are 
unstable for the radial motion. The problem is alleviated in large cyclotrons which 
employ separated sectors in a ring-type configuration with beam injection from a 
small machine. 

Sector-focusing cyclotrons are limited in energy by resonances in the radial mo- 
tion which arise whenever the betatron frequency v, passes through certain critical 
values. Under the condition of isochronism, one finds from Equation (3.369) that 

2 - k = y 2 - 1 = ( l + g )  - 1  
(3.374) 

and hence, 

(3.375) 
T 

1 + -  
T 
EQ mc2 ’ 

yr  = y = 1 + - = 

Thus Yr starts at unity and increases linearly with kinetic energy. According to 
the theory of resonances in circular accelerators discussed in Section 3.8.5, an 
instability stop band occurs in the radial motion whenever v, = N/2, where N 
is the number of sectors [see Equation (3.404)]. A two-sector field is therefore 
intrinsically unstable. Using Equation (3.375). one finds that in a three-sector 
cyclotron (N = 3), the stop band v, = 3/2 occurs at a proton energy of 469 
MeV, while N = 4(v, = 2) leads to a limit of 938 MeV. If terms neglected in 
Equations (3.370) and (3.371) are taken into account, the stop-band energy limits 
m found to be considerably lower than these values. 

The largest sector-focusing cyclotron with a spiral-ridge magnetic field con- 
figuration of the type illustrated in Figure 3.29 is the TRIUMF machine at the 
University of British Columbia [lo]. It has six ridges (N = 6) rather than the three 
shown in the figure, and accelerates H- ions to a maximum energy of 500 MeV. 
Extraction from the cyclotron is achieved by passing the H- beam through a strip- 
per foil, thereby converting the H- ions to protons (H- - H +  + 2e-) which 
escape from the sector field on trajectories with curvature in the outward direction. 
In a new project that has been proposed recently, the TRIUMF machine is to be 
used as an injector for a kaon factory [ 111. 

Even higher proton energies, namely 590 MeV, have been achieved in the S.I.N. 
ring cyclotron in Switzerland [ 121. It consists of a configuration of separated magnet 
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sectors and uses a low-energy sector-focusing cyclotron as an injector for the ring 
machine. A separated sector magnet design has also been employed in the Indiana 
University Cyclotron Facility. This is a variable-energy, multiparticle machine that 
accelerates protons up to about 215 MeV and heavy ions of charge state Z and 
mass number A to energies up to 220 Zz/A MeV. An interesting new development 
at Indiana University is the addition of a storage ring. In this ring, the beams 
injected from the cyclotron are further accelerated and cooled with a superimposed 
electron beam to very high phase-space densities that are particularly useful for 
some nuclear physics experiments [ 131. 

Yet another development in the field of sector-focusing cyclotrons is the use 
of superconducting coils. The much higher magnetic fields that can be achieved 
make the superconducting cyclotron especially attractive for the cost-effective 
acceleration of heavy ions. The highest energies in a machine of this type, namely 
1400 Zz/A MeV, can be achieved with the facility at the National Superconducting 
Cyclotron Laboratory at Michigan State University [ 141. 

3.8.5 Strong-Focusing Synchrotrons 

For acceleration of protons to energies above 1 GeV, both linear accelerators and 
synchrocyclotrons are impractical, as the size of such machines would become 
prohibitively large. The only type of accelerator that has been capable so far of 
generating protons in the gigavolt ( lo9 V) energy range is the synchrotron, which 
is based on the principle of phase-stable synchronous acceleration proposed by 
Veksler and McMillan. Fundamentally, the synchrotron is related to the synchro- 
cyclotron, the main difference being that the orbit radius is kept constant, and 
the guiding magnetic field is provided by a number of individual dipole magnets 
placed along the orbit. The particles are first preaccelerated in a linear accelerator 
and then injected into the synchrotron ring. To keep the orbit radius constant in the 
synchrotron, the magnets are pulsed such that B = B(t )  increases from a minimum 
value at injection to the maximum given by the final energy of the particles. 

In the early synchrotrons orbit stability was provided by constant-gradient fo- 
cusing as in conventional cyclotrons. The focusing forces in constant-gradient syn- 
chrotrons are inherently weak, and consequently, the amplitudes of the betatron 
oscillations are relatively large. This necessitates the use of magnets with large 
gap dimensions to contain the beam and makes an accelerator of this kind prohib- 
itively expensive if the energy exceeds more than a few GeV. The invention of 
the alternating-gradient or strong-focusing principle was, therefore, a major break- 
through in high-energy accelerator design. Alternating-gradient, or strong-focusing 
synchrotrons can be built with smaller magnets and have better beam quality and 
higher beam intensities than those of constant-gradient machines. 

The principle of strong focusing was independently proposed first in 1950 by 
Christofilos [15], who did not publish his idea but applied for a U.S. patent in that 
year, and in 1952 by Courant, Livingston, and Snyder [16]. This new concept is 
most easily understood in terms of its well-known optical analog, the combination 
of focusing and defocusing lenses, that was discussed in Section 3.5. If two lenses 
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of focal lengths f l  and f2 are combined, with a separation s between them, the 
focal length F of this system is, according to Equation (3.186), given by 

1 1 1  S - = - + - - -  
F f l  f2 f l f 2 '  

In the special case of a converging and diverging lens of equal, but opposite, 
strength, one has fz = -fl, and hence [Equation (3.187)] 

1 s  - -  , or - -  F = -  f: 
S F f:' 

The focal length of such a two-lens system is thus always positive (focusing). 
The application of this idea to synchrotrons implies the combination of strongly 
focusing and defocusing magnets. According to the theory of betatron oscillations, 
Equations (3.197) to (3.203), a magnet with negative gradient dB/dr < 0 is 
focusing vertically while defocusing radially if the field index n > 1. A radially 
increasing field (n C 0), on the other hand, focuses the particles only in the radial 
direction and is defocusing with respect to the vertical motion. The first alternating- 
gradient synchrotron ring consisted of a succession of magnets arranged in such a 
way that a magnet with large positive gradient is followed by one with a negative 
gradient of equal strength. The absolute values of n are typically in the range 10 to 
100, compared to 0.5 in the conventional weak-focusing machines. Consequently, 
the frequencies of the corresponding radial and vertical oscillations are an order of 
magnitude larger than in constant-gradient accelerators. 

The strong-focusing forces reduce the beam width and hence the size of the 
magnets and the vacuum tube, which results in substantial reduction of costs. All 
modem synchrotrons use arrays of quadrupole magnets for strong focusing, usually 
in a FODO configuration, and separate dipole magnets for bending of the particle 
orbits. This separate-function system provides better control, and is less expensive, 
than the use of alternating-gradient magnets, in which focusing and bending was 
combined. In addition, sextuple magnets placed at appropriate intervals are used 
to minimize the effects of chromaticity (i.e., the energy dependence of the betatron 
oscillations) (see Sections 3.6.4 and 5.4.10). The array of dipole, quadrupole, and 
sextuple magnets in a synchrotron is called a lattice. Such a lattice consists of a 
periodic configuration of N cells each of which contains identical sets of bending 
and focusing magnets [17]. 

Let us denote the length of one cell by S and the phase advance per cell by 
u, as defined previously [Equation (3.351)]. In a synchrotron lattice with N cells, 
the circumference, or length of the closed equilibrium orbit, will be C - NS. The 
phase change of the betatron oscillations per revolution is then simply Nu, and 
the number of betatron wavelengths in one revolution, also known as the betatron 
frequency or tune, is given by Equation (3.352), (i.e., v = Na/27r). We note that 
in the European literature the betatron tune is denoted by Q. The focusing functions 
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K(S)  in Equation (3.312) for such a synchrotron lattice are thus doubly periodic 
functions with small period S and large period C. 

According to the Courant-Snyder theory, the two fundamental solutions of 
Equation (3.312) may be written in the form 

where 

(3.377) 

is a function that increases by 277 every revolution and whose derivative, #’ = 
d+/ds,  is periodic. The general solution of the differential equations (3.312) for 
such a doubly periodic lattice is, analogous to (3.337), of the form 

x(s )  = A/?%) cos[vt,b(s) + 41, (3.378) 

where the constants A, q5 are determined by the initial conditions. This is a pseudo- 
harmonic oscillation with varying amplitude BIa(s) and varying instantaneous 
wavelength 

A = 277B(s). (3.379) 

The orbital frequency of the particles in the synchrotron is determined by the 
ratio of the particle velocity u and the circumference C of the orbit (i.e., w = 
277u/C = 277pc/C). In terms of the relativistic energy factor y = (1 - p2)- ln,  

we can write 

In 
w = - ( - $ ) .  2 a c  y2 - 

C (3.380) 

At extreme-relativistic energies ( y  s- l), the orbital frequency approaches the 
constant value w = 277c/C. 

= C/% and 
the average bending magnetic field B by 

The particle momentum P can be related to the average radius 

(3.381) 

The particles are accelerated by rfresonators located in the straight sections between 
magnets. From Equation (3.381) the rate of energy increase, dE/dr = mc2 dyldr ,  
is determined by the rate of change of the average magnetic field, that is, 

(3.382) 
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The corresponding energy gain per turn, AE = (27r /o)dE/dt ,  is then obtained 
from Equations (3.380) and (3.381) and is given by 

-2 d B  
A E = ~ I T ~ R  -. 

dt 
(3.383) 

To assure that the energy gain qVm cos o,t of the particles in the rf cavities 
during one revolution remains in step with the rising magnetic field, several 
conditions have to be met: ( 1 )  the electric frequency oc must be a multiple of 
the orbital frequency so that the particles remain in phase with the rf voltage; 
(2) the amplitude Vm of the accelerating voltage and the phase C#3 = wet3 of 
the synchronous particle during rf gap crossing must be correlated to satisfy the 
energy increase AE = qV,,, cos 4# as required in Equation (3.383); and (3) the 
acceleration process must be stable against phase oscillations (phase stability). 
The second condition can be satisfied for only one phase of gap crossing called 
the synchronous phase &. Particles in the bunch whose phase differs from t$s will 
gain less or more energy than the synchronous particle. However, the principle 
of phase stability mentioned earlier assures that the particles whose phase and 
energy differ slightly from the ideal values perform stable oscillations about the 
synchronous phase 4s . To provide phase stability, the synchronous phase C#s must 
be chosen to be within the proper quarter cycle of the rf voltage as defined by the 
relation (3.261) between revolution time and momentum, which depends on the 
jhquency d ip  factor q. In strong-focusing synchrotrons the radial betatron tune, 
denoted by v,, is always greater than 1. Hence, as discussed in connection with 
Equation (3.262), at low energies, where y < y,, an increase in momentum causes 
a decrease in revolution time. This implies that stability exists if the synchronous 
particle crosses the accelerating gaps when the voltage is rising. As y increases, 
a critical transition energy occurs where y = yi. Above that energy ( y  > y,), 
particles behave as in the synchrocyclotron and constant-gradient synchrotron (i.e., 
the synchronous phase must be in a region of falling voltage). This means that 
in strong-focusing synchrotrons provisions must be made to shift the phase of the 
accelerating voltage at the point where the particles pass through the transition 
energy. If the injection energy is, however, higher than the transition energy, this 
phase shift can be avoided. 

A major problem in the design of strong-focusing synchrotrons is the existence 
of unstable resonances in the betatron oscillations due to nonlinearities and imper- 
fections in the magnet lattice. The operating point in v, - v, parameter space must 
be carefully chosen, to be safely away from the nearest resonance; in typical ma- 
chine designs one aims for a separation of A v = 0.25. An introductory treatment of 
resonances will be given in the next section (3.8.6). The electric and magnetic self 
fields of the circulating beam produce a net defocusing force that is equivalent to 
an effective decrease h v  of the betatron tune. The condition that this tune shift due 
to self fields cannot exceed the value Av = 0.25 to avoid dangerous resonances 
imposes a fundamental limit to the current, or number of particles, in the circulating 
beam. This tune depression due to space-charge forces is treated in Section 4.5. 
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3.6.6 Reronancor In Circular A c c k b r r  

As was pointed out in the preceding sections on periodic focusing, circular accelera- 
tors are very sensitive to field errors or misalignments since the particles traverse 
the focusing lattice many times. Resonant-type instabilities occur when the errors 
or misalignments are encountered at the same phase of the betatron oscillations 
during each revolution (Lea, whenever there is an integral relationship between 
betatron frequency and orbital frequency). In this section we present a brief review 
of this important topic. 

To illustrate a resonant-type instability in the particle motion, let us consider as 
a first example the effect of an error AB in one of the dipole magnets that guide 
the particles around the circular path. In the ideal system (i.e., when AB = 0), 
the particles perform radial betatron oscillations about the equilibrium orbit. The 
number of these oscillations per turn is defined by the tune v = N a / 2 7 r ,  where N 
is the number of unit cells in the circumference, C = 2 a R ,  of the circular lattice, 
and R is the mean orbit radius. For the following analysis we will use the smooth 
approximation which ignores the ripple in the oscillation amplitude and assumes 
that the particle oscillation is sinusoidal; that is, it can be described by a differential 
equation of the form x”(s) + k2x = 0, where k2 = v 2 / R 2 .  (A formal treatment 
of the smooth approximation, including the effects of space charge, is presented 
in Section 4.4.) It will be convenient to introduce the azimuth angle 8 = s / R ,  in 
lieu of the distance, as the independent variable. 

A field error AB in a short interval A 8  along the circumference can be analyzed 
as a function of 8 in terms of a Fourier series, that is, 

AB(8) = Z A B ,  cm(n8 + e n ) ,  
n 

(3.384) 

where n is an integer and 8, is the phase angle for the nth harmonic. The equation 
of motion for the perturbed trajectory in the radial direction takes the form 

d2x A B  - + Y’X = R -  
do2 B ’  (3.385) 

where B is the average unperturbed magnetic field. 
Let us now consider the Fourier component with the largest amplitude, denoted 

by the integer n. Using 6 = 6, = R ABJB and assuming that 8, = 0, we can 
write 

(3.386) 

The solution of this differential equation is the sum of the solution X h  for the ho- 
mogeneous equation and the particular solution x p  of the inhomogeneous equation, 
that is, 
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The homogeneous solution is of the harmonic-oscillator form 

X h  = c1 cos vtJ + c2 sin vtJ , 

and for the particular solution one has 

(3.388) 

(3.389) 

A resonance with unlimited amplitude growth occurs for v = n,  where the first 
term on the right-hand side of Equation (3.389) goes to infinity. Before further 
analyzing this resonance condition, however, let us first consider the situation where 
v # n. In this case one obtains a closed-orbit solution, that is, 

by setting the two constants c3 and c4 to zero so that 

(for Y # n ) .  

(3.390) 

(3.391) 

The general solution (3.387) for this case can therefore be interpreted as a regular 
betatron oscillation with unperturbed tune v about a new closed equilibrium orbit 
that takes into account the field error AB. 

Returning now to the resonance where 

v = n = integer, (3.392) 

we infer from (3.389) that there is no longer a stable, closed-orbit solution. 
Physically, what happens is that the “frequency” n of the driving force due to the 
field error is in resonance with the “frequency” v of the radial betatron oscillations. 
This causes unlimited amplitude growth and thus instability of the radial motion. 
The rate of increase of the radial amplitude near the resonance can be calculated 
by considering a particle with initial conditions 

Xp(O) = 0, -(O) dXP = 0 ,  
dt9 

which results in the particular solution 

(3.393) 

(3.394) 
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This result is obviously different from the closed-orbit case (3.391), and using 
trigonometric relations it can be written in the alternative form 

x p  = - 26 s i n ( T 8 ) s i n ( y 8 ) ,  u + n  
u2 - n2 

(3.395a) 

or 

x p  = - sin( 9 8 )  sin ( y 8) / ( y 8 ) .  (3.395b) 
u + n  

In the limit v - n, where sin a /a  + 1, one obtains 

(3.396) 
68 

x p  = - sin v8 
2v 

(for u = n). 

This relation shows that at the resonance (u  = n) the amplitude of the radial 
oscillation grows linearly with azimuth angle 8. Furthermore, the sin vt9 factor 
indicates that the maximum radial displacement occurs at a phase angle of 90" 
with respect to the field perturbation. In practice, of course, the radial amplitude 
of the particle motion does not grow indefinitely since the particles may get out of 
the resonance or hit the wall of the vacuum chamber after a number of revolutions. 
As a second example of a resonant-type instability, let us consider the effect 

of a gradient error A K  in one of the quadrupole magnets of the circular focusing 
lattice. In the equation of motion such an error appears as a linear driving force. 
Again using the azimuth angle 8 as the independent variable, we can write this 
equation in the smooth-approximation form 

d2x 
do2 
- + U ~ X  = R ~ A K X ,  (3.397) 

where u is the betatron tune in the absence of the error. As in the previous 
example, the error A K  can be expressed in terms of a Fourier series of the angle 8.  
Considering again the Fourier component with the largest amplitude and defined 
by the integer n, we can rewrite (3.397) as 

d2x - + (uz - acosn8)x = 0. 
do2 (3.398) 

This is a Mathieu-type equation that can be transformed to the standard Mathieu 
form 

+ (a - 2qcos 24)x = 0 
d2x - 
dd2 

(3.399) 
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by defining 

(3.400) 

The analysis of Mathieu’s equation shows the existence of stable and unstable 
solutions depending on the values of the parameters a and q. A Mathieu stability 
diagram is shown in Figure 3.30. The region in q versus a parameter space where 
the solutions x(4) are periodic, and hence stable, are shaded in the figure. Outside 
these stability regions the solutions x ( 4 )  are quasiperiodic function of 4 with 
increasing amplitude (i.e., they are unstable). 
As noted in Section 3.8.2, particle motion in a periodic-focusing channel is 

governed by a Mathieu equation. The stability condition - 1 < cos u < 1 is 
consistent with the Mathieu diagram. From Figure 3.30 and Equation (3.399) we 
see that Mathieu’s equation degenerates into the equation of a harmonic oscillator 
when q = 0, a = m2 (m = 1, 2, 3 , .  . .). In this case the solution is stable and of 
the form x = cos m 4 .  The period of the oscillation is therefore defined by 

2r A4 = - 
m 

(m = 1, 2, 3, ...). (3.401) 

Piguro 3.30. Mathiw rkbility diagram; particle motion is s t a k  in r w  regions, unstable 
outside. 
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The analysis shows that the solutions in the unstable regions between the stability 
lines passing through the points q = 0, u = m2 maintain the periodicity A4 = 
2a/m, but the amplitudes increase without bounds. From (3.400) the azimuthal 
period A4 and the corresponding betatron tune Y are then also preserved. Thus we 
can draw the important conclusion that a solution of Equation (3.398) is unstable 
if the oscillation period obeys the relation 

The equivalent statement for the betatron tune v is 

2a mn 
AB 2 

y = - x -  

(3.402) 

(3.403) 

where m and n are both integers, with n denoting the harmonic of the gradient 
error responsible for the instability and m the periodicity. Since both m and n are 
integers it follows from (3.403) that the forbidden values of the betatron tune v are 
either integers or half-integers, depending on the values of m and n. If one chooses 
a given value of the amplitude parameter q and increases the frequency parameter 
a, one passes through bands of instability or stop bands between stable regions. 
Each stop band is defined by the corresponding value of m and the associated 
half-integral or integral resonance according to Equation (3.403). 

The above analysis of the effects of a gradient error also has important ap- 
plications for the ideal lattice of a circular machine. The N unit cells of such a 
periodic structure constitute a strong variation of the gradient function with har- 
monic n = N. In view of (3.403) we conclude therefore that 

N ( p  = 1,2,3, ...) (3.404) v = p - 2  
should be forbidden values for the betatron tune, as we discussed in Section 3.8.4 
for the case of sector-focusing cyclotrons. 

In addition to the two examples presented above, there are many other effects 
leading to resonant-type instability of the betatron oscillations, such as perturbations 
resulting in nonlinear forces (e.g., a2x2) or coupling between the two transverse 
directions (e.g., blxy,  etc.). All of these effects appear as driving terms on the 
right-hand side of the equation of motion, which can be put into the form 

(3.405) 

Strictly speaking, the parameters in this equation are not constants but vary with 
the angle 8; thus v,” = KO@), a0 = a,,@), and so on. The first term on the right- 
hand side, uo, represents a dipole field error, the second term, a l x ,  a quadrupole 
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field error, both of which were treated above. The next term, a2x2, represents a 
sextuple force. The general theoretical analysis of Equation (3.405) shows that 
the forbidden resonances in the horizontal and vertical betatron tunes, denoted by 
v, and v,,, respectively, can be expressed in the general form 

mvx + nvy = p .  (3.406) 

Here rn, n, and p are integers and Iml + In1 = 1 defines the order ofthe resonance. 
For 1 > 4, both theory and experiments show that the resonances are harmful only 
if the amplitudes of the associated errors are very large. Note that (3.406) contains 
all the resonances, including the dipole and quadrupole errors treated above. In a 
diagram plotting v,. versus Y,, the resonances appear as forbidden lines. Such 
diagrams are calculated for every circular accelerator, and the operating point 
(vx, v,,) is chosen to be at the center of a stable region bounded by the nearest 
resonance lines that are considered dangerous, say 1 5 4. 

The theory of resonances is of fundamental importance for the design of 
circular accelerators such as sector-focusing cyclotrons, synchrotrons, and storage 
rings. In practice, analytical theory must be complemented by detailed numerical 
computations to obtain information on the nonlinear properties and stability limits 
of a focusing lattice. This is particularly important for storage rings where all 
effects that may limit the lifetime of the beam must be understood. Fast particle 
tracking codes using Lie operurors [ 181 and differential algebra techniques [ 191 
have been developed to investigate the long-term behavior of the beam in such 
circular machines. This is a highly specialized and active field for which we 
have to refer to the appropriate literature such as the review articles in the AZP 
Conference Proceedings 249 (1992) (see D.8) by Symon (p. 278), Yan (p. 378) and 
Ben. (p. 456) and references therein. A very exciting new development in this field 
is the experimental investigation of nonlinear beam-dynamics effects at Fermilab 
[20] and Indiana University [21]. 

3.9 ADIABATIC DAMPING OF THE BETATRON OXlUATlON 
AMPLITUDES 

In the preceding sections on transverse focusing in accelerators such as betatrons 
(3.6. I), cyclotrons (3.8.4). and synchrotrons (3.8.5). we tacitly assumed that the 
particle energy, magnetic field, and focusing strength of the lenses remain constant. 
This assumption is justified if the changes in the pertinent parameters occur 
on a time scale that is very long compared to a betatron oscillation period. 
If, however, we are interested in determining how the oscillation amplitudes of 
individual particles, or the transverse dimensions of the beam, vary during the 
entire acceleration process, we must take that time variation of energy and focusing 
conditions into account. In betatrons and synchrotrons, for instance, the orbit radius 
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remains constant during the acceleration cycle. However, the particle energy and 
the magnetic field increase with time and, as a result, the betatron oscillation 
frequency may also change. 
As an example, let us consider the focusing in a betatron as discussed in Sec- 

tion 3.6.1. The axial motion of the particles was described by the Kerst-Serber 
equation (3.200), where 0: = uZn was considered to be constant. For evaluating 
the long-time behavior we must modify this equation to include the change of 
energy, ymc2, and of the axial oscillation frequency, q. The appropriate equation 
of motion in place of (3.200) is then 

d - ( y m i )  = ymz + y m i  = F, , 
dt 

or, with F J y m  = w:z, 

Y 2 + - i  + w;z = 0, 
Y 

(3.407) 

where both f / y  and 0: vary with time. The coefficient j / y  of the i term is 
positive, indicating that the motion is damped, the decrease in amplitude being 
dependent on the rate of energy change. If the changes in y and wz are adiabatic 
(i.e., if they occur slowly with respect to a betatron oscillation period), one can 
solve (3.407) by the approximate relation 

(3.408) 

Differentiating (3.408) and substituting in (3.407) yields the following differentia1 
equation for the amplitude function f ( t ) :  

j; + 2 f i w ,  + f i i , ,  + -f Y + -fro, Y = 0. (3.409) 
Y Y 

Now we assumed that the time variations of f ( t )  and o,(t) are adiabatic with 
respect to the betatron. period, 2w/oz .  Therefore, we can neglect the first and 
fourth terms (.f and f f / y )  and write Equation (3.409) in the form 

This can be readily integrated to yield 

(3.410) 

(3.41 1) 

where CI is an integration constant. 
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Substituting (3.411) in (3.408), we obtain 

z = -  

A similar result is obtained for the radial motion, where one has 

x = -  xocl exp i or dt . 
(wry)" 

The amplitudes of the axial and radial betatron oscillations are 
with increasing energy as 

z - (w, y)- ln and x - (w,  y)-In, 

(3.412) 

(3.413) 

thus seen to damp 

(3.414) 

respectively. In this general form, the above result is applicable not only to 
betatrons, but to cyclotrons, synchrotrons, and to linear accelerators as well. One 
merely needs to change the notation appropriately. In linear accelerators and 
synchrotrons the two transverse directions are usually taken as x and y; hence 
one has x - (w,y)In and y - (w,y)ln for the horizontal and vertical motion, 
respectively, in these cases. 

For betatrons and synchrotrons with time-varying magnetic fields, one can use 
the relation o = YO, = vqB/ym for the oscillation frequencies and write (3.414) 
in terms of the tune Y and magnetic field strength B as 

z - ( Y , B ) - ' ~ ,  x - (v,.B)-". (3.4 15) 

In the conventional betatron, the tunes are simple functions of the field index n, 
namely v, = (n)ln and ur = (1 - ,)In [see Equations (3.203) and (3.197)], and 
we can present our results in yet another form as 

Thus if the change of the magnetic field B and the gradient aB/ar at the equilibrium 
radius are known as functions of time during the acceleration cycle, one can 
calculate the change in the betatron amplitudes for (3.416). 

Note that the damping laws for the betatron oscillations apply also to the beam 
width in the two transverse directions. In fact, we can derive these results in a much 
more elegant fashion from the conservation of the normalized beam emittance, 
en = pya,  which follows from Liouville's theorem for linear focusing systems. 
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Let x, denote the half-width of the beam, x; the maximum slope. For a matched 
beam, E,  = x,x; = x:k,, using x; = kxxm. Thus 

e, = @ y r x  = @yk,x i  = const. (3.417) 

But k, = u x / u  = w,/Pc, hence 

yu,x; = CE, = const, (3.418) 

(3.4 19) 

in agreement with (3.414). 
The damping of the betatron oscillations and the beam cross section is a very 

important general effect in particle accelerators. It applies also when the space- 
charge forces reduce the net focusing forces. One merely has to use the space- 
charge depressed frequency, or tune, in this case. However, one must bear in mind 
that the above scaling relations apply, strictly speaking, only to a system in which 
all forces are linear in the transverse space coordinates and change adiabatically 
with time. Such systems also preserve the normalized emittance. If nonlinear effects 
increase the normalized emittance, we must use the more general scaling laws 

(3.420) 

for the beam size in the two transverse directions. Thus, if one wants to compare the 
matched-beam size at two different times or locations in the acceleration process, 
one must know not only the two energies and betatron frequencies, but also the 
change in the normalized emittance. Conversely, by measuring the matched-beam 
width at two locations, one can infer from (3.420) the emittance change that may 
have occurred. 
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PROBLEMS 

3.1 Prove that the scalar potential of an axisymmetric field can be represented 
in the form (known as Laplace’s formula) 

3.2 (a) Derive the nonrelativistic paraxial equations (3.51) and (3.52) for B = 0 
and pe = 0 (electrostatic field) from Euler’s equations. 
@) Derive the relativistic paraxial equations (3.44) and (3.49) from the Euler 
equations (2.115) and (2.116). 

33 Find the magnetic field B(z) on the axis of a solenoid of length 1, radius 
a ,  total number of turns N, and current 1. Determine B,(r ,z)  and B,(r , z )  
from B(z) by the power-series expansion up to third order in r . 
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3.4 

3.5 

Show that for nonrelativistic particles and in the thin-lens approximation the 
image-side focal strength of the bipotential lens of Figure 3.7 is given by 

where a = 1.318/b. 
Repeat Problem 3.4 for relativistic particles, and show that in this case the 
image-side focal length is given by 

where a = 1.318/b [see Y. Chen and M. Reiser, J. Appl. Phys. 65, 3324 
(1989)J 

3.6 An electron gun with a 1-cm-diameter thermionic cathode uses a rectangular 
wire mesh as a control grid. The mesh is located at a distance of d, = 
0.11 mm from the cathode. The wires have a diameter of 0.025 mm and are 
spaced at identical intervals of 0.182 mm in both the x and y directions. 
The anode is at a distance of d,, = 15.4 mm from the grid. Suppose that 
the gun operates with a cathode temperature of k8T = 0.08 eV, a grid 
voltage of V, = 40 V, and an anode voltage of V,, = 5 kV. Determine the 
total normalized emittance of the electron beam due to both the cathode 
temperature and the grid effect. 

3.7 A symmetrical electrostatic einzel lens consists of three electrodes each of 
which has a circular aperture of diameter 2a. The center electrode is at a 
potential V2; the two outer ones have the same potential VI and separation 
Az = I from the center plate. 

(a) Neglecting the electrode thickness, show that the focal length of this 
three-aperture lens is given by 

and that the principal plane is located at a distance 

from the center plate. 



(b) Using the reduced variable R = rV'", treat the three-aperture system 
as a thin lens and show that in this thin-lens approximation the focal 
length is given by 

(c) Plot f/f and d / l  from (a) and f/f from (b) versus V2/V - 1 for the 
range 0.5 I V ~ / V I  I 2. How good is the accuracy of the thin-lens 
approximation in this range? 

3.8 The field on the axis of a magnetic lens is given by 

BL(Z) = Bo[l + (z/a)21-1. 

(a) Determine the focal length, f, and the Larmor rotation, a,, in the 
thin-lens approximation. 

(b) A 40-keV electron beam is emitted from an object at a distance of 
20 cm from the lens; one wants to have a focal length off  = 5a, and 
an image with magnification 3:l is to be formed downstream of the 
lens. Find a, Bo, f, image distance 12, and the Larmor rotation angle 
of the image with respect to the object. 

3.9 A beam of charged particles is focused by a thin unipotential lens. At a 
distance S1 upstream of the lens, the particles in the beam occupy an upright 
ellipse in r-r' trace space with semiaxes RmX = u1 and r k  = b ~ .  

(a) Determine the equations for the beam ellipse, the maximum slope rAx, 
and the envelope radius r,, at an arbitrary point downstream from 
the lens in terms of given parameters (Sl,fl,ul,bl, and z). Specify 
the ellipse parameters at the image locations zi and at the position zw 
where the beam waist occurs. 

(b) As an example, suppose that a1 = 0.5 cm, S1 = 9 cm, bl = 2.19 X 
rad, and f = 5.0 cm. Find zi t  z w ,  and the ellipse coefficients at 

zi  and zw. 

3.10 W o  thin unipotential lenses with focal strength f l  and f2 are separated 
by a distance 1. Obtain the transfer matrix relating r2, ri at the exit of 
lens 2 to r1, ri at the entrance of lens 1. What is the focal length F of the 
combined lens system? What is F if both lenses form a quadruple doublet 
(one focusing, the other defocusing, of the same strength)? 
Consider an electric quadrupole field that is focusing in the x-direction and 
defocusing in the y-direction (see the figure below). Assume that the field 
extends a distance 1 (from z = -1/2 to z = +f/2 ) in the z-direction and 
that it is strictly two-dimensional [i.e., V = V ( x , y )  for -1/2 5 z 5 1/2 

3.11 
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and V = 0 outside]. Calculate the lens parameters ( f l , f 2 , 4 , 4 )  of this 
field for a particle of kinetic energy qV1 traveling in the z-direction close to 
the axis both for motion in the x-z plane [case (a)] as well as in the y-z 
plane [case(b)]. Determine the length 1 for which the convergence l/f2 is 
a maximum in the x-z plane. 

3.12 Derive the relationships between object and image of a lens [i.e.,-Eiqua- 
tions (3.109) and (3.114)], from the transfer matrix h& = fi32hf21&0 
between an object point (ro, rh) at a distance zl upstream and a point (r3, r i )  
at a distance z2 downstream from the lens center. Here a10 and a32 are 
the drift-space matrices on either side of the lens and &I is the lens matrix 
as given in (3.102). (Hint: Make use of the fact that the image point is 
independent of the initial slope of the particle trajectory.) 

3.13 Derive the relationship between (Rz ,R i )  and ( R I , R [ )  of the beam envelope 
in a thick-lens transformation. Show that (3.163) is not valid except for the 
thin-lens approximation. 

3.14 Consider a source of ions that emits a beam of total radial (or horizontal) 
width wo = 2x0. Let the starting condition of an ion that leaves the source 
at an arbitrary point be x1.x; and dP/Po,  PO being the momentum of the 
central-ray particle. After traveling a distance SO, the beam passes through 
a sector magnet with focusing edges (angles 61 at entrance, 6 2  at exit), 
as shown in the figure below. The magnet extends over an angle 6.  After 
leaving the magnetic field, the beam travels again on a straight path with 
distance from the magnet edge given by SI. 
(a) Prove that the image formed of the source is at distance Si downstream 

from the magnet given by 
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(b) Determine the image magnification M, = W , / W O  = W i / 2 x o  and prove 
that M, equals -D- l ,  where D is the denominator of the expression 
for Si. 

3.15 

3.16 
3.17 

3.18 

Consider a sector magnet with uniform magnetic field and normal entry and 
exit (edge angles 813 = 0). The source of a beam is at object distance SO 
from the edge of the magnet, the image at distance Si downstream (see the 
figure below). Prove that the object point 0, the center of curvature C of the 
bending radius Ro, and the image point I lie on a straight line, that is, that 

eo + e + oi = n.  

This relation is known as Barber's rule. (Hint: You may make use of the 
expression for the image distance Si given in Problem 3.14.) 

Derive the relations (3.309) to (3.311) for a periodic thin-lens array. 
Following the procedure of Section 3.8.1, determine the unit-cell matrix, 
stability criterion, phase advance c, matched-beam envelope parameters, and 
acceptance a, for a periodic channel consisting of thin quadruple lenses 
in a FODO array. Compare the results with the thin-lens approximations of 
Section 3.8.3. 
Show that the Courant-Snyder amplitude function B(s) satisfies the differ- 
ential equations 

and 
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where K = K ( S )  represents the focusing force function in the equation of 
motion. Show furthermore that in regions where K = const, the solution of 
(2) must be one of the three forms 

&) = A + Bs + Cs2,  

B ( s )  = Acos2fis + Bsin2fis  + C, 

&s) = A c o s h 2 m s  + B s i n h 2 m s  + C.  

(3a) 

(3b) 

(34 

Evaluate the constants A, B, C for each of these three cases in terms of the 
initial Courant-Snyder parameters 

3.19 According to Equation (3.349, the equation of the beam ellipse in x-x' 
trace space may be written in the form 

and /&I at s 5 0. 

9x2  + 2 h X X '  + @ X I 2  = 6 ,  

where, from (3.343c), the Courant-Snyder parameters h, 8, ? are related by 
69 - &* = 1. Using these two equations, prove the validity of the relations 
for the intercepts (xintrA,,,) and maximum values ( x - , x L X )  given in Fig- 
ure 3.26. 

3.20 Derive the relations (3.354) to (3.356) for a FODO channel. 
3.21 Find the phase advance cr and the maximum of the amplitude function, bmX, 

for a periodic-focusing channel consisting of solenoid lenses of length 1 and 
spacing L (between lenses) in terms of the focusing parameter 8 = f i f  
and the ratio L / f .  

3.22 Determine the acceptance area A, (i.e., the area / dx dx' in trace space) of 
a cylindrical pipe with radius a and length L ZD a for a beam of charged 
particles for the following cases: 

(a) No focusing field exists. 
@) A uniform magnetic field is applied along the pipe (in this case, take 

x,x'  to be the radial coordinates in the Larmor frame). 
(c) A thin magnetic lens with focal length f is placed at the entrance of 

the pipe, and it produces a waist in the beam envelope at the center 
of the pipe. 

Neglect self-field effects and sketch the acceptance area in a phase-space 
diagram for each case. What is the ratio of acceptance (b) to acceptance (a), 
and how does it vary with particle energy? 

3.23 A sector-focusing cyclotron has an axial magnetic field B, = B in the 
median plane (z = 0) of the form 

in cylindrical coordinates. 
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3.25 

(a) Determine the radial variation of the average field B(r) and the field 
index E(r) that is required to keep the average cyclotron frequency 
o, constant. Show that the radial betatron tune v, increases linearly 
with the relativistic energy factor y (i.e., vr = y) .  

(b) Suppose that we want to accelerate protons to a final energy of T = 
100 MeV using an rf system with frequency f = 20 MHz. Determine 
the central magnetic field Bo, maximum average field z-, maximum 
orbit radius R-, and the value of the azimuthal field variation factor 
f3 necessary to achieve a vertical betatron tune of vz = 0.1 at R,. 

Consider a simple periodic-focusing lattice of a synchrotron that can be 
treated like a quadrupole array in a FD (or DF) configuration without drift 
space. Assume that the two lenses comprising a unit cell have different 
lengths I 1  and 12 and focusing strengths K I  and ~ 2 .  Using the focusing 
parameters 81 = f i l l  and 82 = & 12 determine cos U ~ D  and cas UDF 

for the two orthogonal directions. Plot the stability boundaries for each 
direction in a 8: versus & diagram and indicate the region in which the 
motion is stable for both directions. This is known as a necktie diagram 
since the stable region resembles the shape of a necktie. 
Let 

M o  = (:; 2) 
define the matrix for one revolution and vo the tune in an ideal circular 
machine. A gradient error A K  of a quadrupole magnet would be expected 
to change the tune from vo to v. Suppose that the single gradient error 
is equivalent to a thin-lens quadrupole with focal length f. The perturbed 
matrix for a single turn, a, may then be represented as the product of I@O 

and the thin-lens matrix for the quadrupole with gradient error. 

(a) Prove that 

1 B  cos2?rv = C O S ~ P V O  - - - sin 2 ~ ~ 0 ,  
2 f  

where 6 is the value of the Courant-Snyder amplitude function at 
the perturbation. 

(b) Assume that the tune change Av = v - vo is small compared to vo 
and show that 

(c) If there is a distribution of gradient errors A K ( s )  around the ring 
circumference, show that the tune change may be expressed by 
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3.26 Let a represent the transport matrix between two points $1 and $2 in a 
periodic-focusing lattice. Prove that the phase advance from s1 to s2 is 
given by 

where a, b, c, d are the matrix elements of fi and hl,  81 denote the values 
of the Courant-Snyder parameters at sl. 



CHAPTER 4 
Linear Beam Optics 
with Space Charge 

4.1 THEORETICAL MODELS OF BEAMS WITH SPACE CHARGE 

In this chapter we include the effects of space charge in the transverse beam 
optics by using a uniform particle distribution in which both the charge and current 
density, p and J,  = J, are independent of the transverse coordinates. This uniform 
beam model assumes that the beam is continuous in the direction of propagation 
and has a sharp boundary with p = const, J = const inside and p = 0, J = 0 
outside the boundary. The uniformity of charge and current density assures that 
the transverse electric and magnetic self fields and the associated forces are linear 
functions of the transverse coordinates. Thus, the uniform beam model allows 
us to extend !he linear beam optics of Chapter 3 to include the space-charge 
effects or, more generally, the forces due to the selffields, in a straightforward 
manner. For nonneutral beams, the terms space-charge fields and self fields are 
interchangeable since the moving space charge of the particle distribution is the 
source for both the electric and the magnetic self fields. However, if the space 
charge of a beam is completely neutralized by a background of particles with 
opposite charge polarity, the electric self field is zero. Yet the beam current and 
hence the associated magnetic self field are still the same as without the charge- 
neutralization effect. For this reason it would be preferable to speak of self-field 
effects rather than of just space-charge effects. But we will use the two terms 
interchangeably. 

Before proceeding with linear beam optics we first present in this section a 
general discussion of the theoretical beam models and the problems of including 
the space-charge forces in the beam dynamics. This discussion will also provide 
some clarification with regard to the limitations and usefulness of the uniform 
beam model. Specifically, it will be pointed out that real beams, in general, have 
nonuniform density profiles and that uniformity is approached only as the beam 
temperature (random transverse velocity spread) goes to zero. Nevertheless, the 

163 



184 F UNEAR BEAM OPnCS WITH SPACE CHARGE 

linear model yields valuable information on the average beam behavior (e.g., the 
rms width or divergence) and has become an indispensable tool in the design 
and operation of accelerators and other devices. A justification for the use of the 
uniform model is presented in Chapter 5, which deals with self-consistent beam 
theory. In particular, the concept of equivalent beams, discussed in Section 5.3.4, 
will establish a correlation between rms quantities of nonuniform beams and the 
equivalent uniform beam. 

When the beam currents are high enough that self fields can no longer be 
neglected in comparison to the applied fields, the mathematical analysis becomes 
substantially more difficult and complex than the single-particle dynamics discussed 
in previous chapters. The self fields are functions of the charge and current 
distribution of the particle beam. At the same time, this distribution is affected 
by the total external and internal forces acting on the particles. Thus one has a 
closed loop in which the particle distribution changes the forces and the forces 
change the particle distribution. 

It is straightforward to calculate with any desired degree of accuracy the motion 
of a single charged particle in an applied field by solving the Lorentz force equation. 
However, it is practically impossible to find exact solutions of the equations of 
motion for the enormous number of interacting particles in an intense beam. Even 
the most advanced computer codes can use only a relatively small number of 
mucroparticles to represent the actual particle distribution in a beam and to thereby 
“simulate” the effects of the mutual interaction between the particles. Such codes, 
tracing thousands of macroparticles, have become indispensable tools for the study 
of beam physics and for the design of charged-particle beam devices in which 
self-field effects are important. 

The mutual interaction of the charged particles in a beam can be represented by 
the sum of a “collisional” force and a “smooth” force. The collisional part of the 
total interaction force arises when a particle “sees” its immediate neighbors and is 
therefore affected by their individual positions. This force will cause small random 
displacements of the particle’s trajectory and statistical fluctuations in the particle 
distribution as a whole. In most practical beams, however, this is a relatively small 
effect, and the mutual interaction between particles can be described largely by a 
smoothed force in which the “graininess” of the distribution of discrete particles 
is washed out. The space-charge potential function in this case obeys Poisson’s 
equation, and the resulting force can be treated in the same way as the applied 
focusing or acceleration forces acting on the beam. 

A measure for the relative importance of collisional versus smoothed interaction, 
of single-particle versus collective effects, is the Debye fengrh, AD, a fundamental 
parameter in plasma physics that can also be applied to charged particle beams. 
If a test charge is placed into a neutral plasma having a temperature T and equal 
positive ion and electron densities n, the excess electric potential set up by this 
charge is effectively screened off in a distance AD by charge redistribution in the 
plasma. This effect is known as Debye shielding. 

The Debye length AD in a nonrelativistic plasma is defined by the ratio of the 
rms random velocity ii, = ($)ln and the plasma frequency up, 
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(4.la) 

where up - (q2n/eom)1R and where the plasma ions and electrons are assumed 
to have the same charge q with opposite polarity. For a nonrelativistic isotropic 
plasma that is in thermal equilibrium at temperature T (thermal distribution), the 
rms thermal velocity is f i x  = (kBT/m)ln and hence 

(4.lb) 

A charged particle beam can be viewed as a nonneutralplasma that exhibits col- 
lective behavior (e.g., instabilities and electromagnetic wave propagation), similar 
to a neutral plasma (see tB.31). Thus a local perturbation in the equilibrium charge 
distribution of a beam with transverse temperature T and density n, confined by 
external focusing fields, will be screened off in a distance corresponding to the 
Debye length AD. 

However, in a charged particle beam moving at relativistic velocity, the non- 
relativistic definitions of plasma frequency and Debye length implied in Equa- 
tion (4.1) must be modified. As shown in Section 4.2, the force on a particle due 
to the self fields of the beam is proportional to to;. If transverse motion is con- 
sidered, we have 2 = o:x = F,/ ym, and since the electric Coulomb repulsion 
is reduced by magnetic attraction [i.e., F, = qE,(1 - f l Z )  = qES/yZ] ,  we obtain, 
with E, - qnx (assuming uniform density), 

or 

The same results also follows from a Lorentz transformation of the nonrelativistic 
plasma frequency in the beam frame to the laboratory frame. 

It should be noted that most authors in the beam literature use either the 
nonrelativistic definition of up, leaving out the factor y3, or (like this author in his 
past work) change only m to ym and leave out yz.  However, it is argued here that 
(4.2) is the more logical relativistic definition with which the equations involving 
the plasma frequency become simpler and less confusing, as will be discussed 
in the appropriate context. The relation (4.2) is also correct for longitudinal 
motion in bunched beams, where there is no relativistic magnetic reduction of 
the electric space-charge force but where the longitudinal mass y3m takes the 
place of nonrelativistic mass. 
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Using (4.2) for the plasma frequency and assuming that the random transverse 
motion in the beam is nonrelativistic (i.e., i j x  4 c), we obtain for the Debye length 
in a relativistic beam the definition 

(4.3a) 

For a thermal distribution in this case we can use the relation ymDP = kBT 
to define the transverse temperature in the laboratory frame. With the substitution 
f i x  = (kBT/yrn)" we can then write the Debye length in the form 

(4.3b) 

It should be noted in this context that the relativistic definition of temperature 
is somewhat controversial. Many authors in the recent literature on relativistic 
gases and plasmas use only the temperature in the rest frame and treat it-like 
mass m-as a relativistic invariant. However, as will be shown in Section 5.4.3, 
one can also justify the use of a laboratory temperature. The relationship between 
temperature Tb in the beam (rest) frame and temperature T in the laboratory frame 
is T Tb/Y. Hence, the above expression for the Debye length can be written in 
terms of the beam-frame temperature Tb as 

(4.3c) 

where all quantities except Tb are defined in the laboratory frame. We shall use both 
definitions and indicate by the appropriate subscript which temperature is implied 
wherever necessary to avoid confusion. 

If the Debye length is large compared with the beam radius (AD * a), the 
screening will be ineffective and single-particle behavior will dominate. On the 
other hand, if the Debye length is small compared to the beam radius (AD 4 a), 
collective effects due to the self fields of the beam will play an important role. 
It follows from (4.2) and (4.3) that the plasma frequency decreases with particle 
energy and that the Debye length increases so that at sufficiently high energy 
the space-charge forces become insignificant in comparison to the external forces 
acting on a beam. 

Smooth functions for the charge and field distributions can be used as long as the 
Debye length remains large compared to the interparticle distance I , ,  that is, as long 
as the number ND of particles within a Debye sphere of radius AD remains very 
large (ND %= 1). On the other end of the spectrum, when AD becomes comparable 
to Z,, a particle will be affected by its nearest neighbors more than by the collective 
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field of the beam distribution as a whole. In this limit, which occurs at extremely 
low temperature or very large density, the mutual interaction of single particles 
leads to configurations in the particle distribution in which crystal-like, “grainy” 
structures may develop. Such structures have been observed in particle simulation 
studies and are an important new topic of current beam research [l]. As mentioned, 
for most beams of practical interest the collisional forces are very small compared 
to the smooth forces and can be neglected. Notable exceptions are the Boersch 
effect at low energies and intrabeam scattering in high-energy storage rings, which 
are treated in Section 6.4. Collisions also play a fundamental role in driving a 
beam toward a Maxwell-Boltzmann distribution, as discussed below and in Section 
5.4. We should also mention in this context that collisions between macroparticles 
used in computer simulation may cause artificial “numerical” emittance growth. 
Such effects can be avoided by judicious choice of mesh size and number of 
particles, by charge-averaging in a mesh, and by better modeling of the system 
being investigated. 

If collisions can be neglected (i.e., if AD * Zp), the single-particle Hamiltonian, 
the particle distribution, and Liouville’s theorem can be defined in six-dimensional 
phase space (r. P). This is possible because the smoothed space-charge forces acting 
on a particle can be treated like the applied forces. Thus, the six-dimensional phase- 
space volume occupied by a charged-particle distribution remains constant during 
propagation or acceleration. If, furthermore, all forces are linear functions of the 
particle displacement from the beam center, the normalized emittance associated 
with each direction remains a constant of the motion. For a matched beam in a 
linear focusing channel we can express this conservation law in terms of the rms 
beam width X ,  rms tranverse momentum p, and rms velocity 3, as 

f& z:yfi* g--=- = const. 
mc C 

(4.4a) 

In the case of a thermal beam this relation can be written in terms of the laboratory 
or beam-frame temperatures as 

or 

Z2kgTb 5 const, (4.44 

respectively. 
Thus, as in a gas, if the beam in such an ideal system is compressed adiabatically 

by the applied focusing forces, its transverse temperature increases. Likewise, in 
an expanding beam the temperature decreases (i.e., the beam cools). On the other 
hand, nonlinear external or space-charge forces existing in the real world tend to 
increase the normalized emittance and the temperature of the beam and may also 
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produce a temperature variation across the beam. The actual behavior is then more 
complicated than implied by relation (4.4). 

As in thermodynamics and plasma physics, one of the fundamental questions 
of particle beam theory concerns the existence of equilibrium states in which 
the particle distribution remains stationary (i.e., it does not change with distance 
along the focusing channel). When collisions are negligible, the possible equilibria 
can be found with the help of the Vlasov theory. As shown in Section 5.3, 
many particle distribution functions can be constructed mathematically that are 
stationary solutions of the Vlasov equation, which combines the equations of 
motion for the particles and Maxwell’s equations for the fields. Such distribution 
functions are useful tools for mathematical analysis or computer simulation, but 
the correlation with actual beams may often not be readily apparent. The notable 
exception is the Maxwell-Boltzmann distribution, also known as the thermal 
distribution, defined by f ( x ,  P) = fo exp(-H/ABT), where H is the single-particle 
Hamiltonian. It not only satisfies the VIasov equation, but also represents the natural 
thermodynamic equilibrium state when collisions are included, as discussed in 
Section 5.4. Laboratory beams are usually not in thermal equilibrium. They have 
different transverse and longitudinal temperatures, Ts and TII,  with TII 4 TL due to 
longitudinal cooling (see Section 5.4.3) and other effects. If temperature relaxation 
(equipartitioning) due to collisions and nonlinear forces is slow compared to the 
lifetime of the beam, we can have a quasistationary state, or metaequilibrium (as 
defined in B.l, section 1.1 for a plasma). Thus, a perfectly matched, continuous 
beam in an axisymmetric uniform or smooth focusing channel or acceleration 
system can be treated as a transverse Maxwell-Boltzmann distribution for which 
the particle density profile obeys the Boltzmann relation (see Section 5.4.4). 

Here, no is the density at r = 0, TL represents the transverse laboratory tempera- 
ture of the beam, LB is the Boltzmann constant, and 4 ( r )  is the sum of the 
effective external potential, 4r ( r ) ,  and the effective potential due to the self fields, 
4J(r)(l - /3’); that is, 

The space-charge potential +J(t) must obey Poisson’s equation. The external 
potential in the linear focusing channel considered here is given by &(r) = 
ym&r2/2, where 00 is the particle oscillation frequency (when self fields are 
neglected). It follows from (4.5) that as ~ B T L  - 0 or, alternatively, as the repul- 
sive self force becomes equal in magnitude to the external focusing force [i.e., 
qc$s(l - B2) + the beam density profile becomes uniform with a sharp 
radius, a, hence 

n ( r )  = no = const for r s u ,  

n ( r )  = 0 for r > a .  (4.7) 
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On the other hand, at high temperature or, alternatively, when the self force becomes 
negligible compared to the external focusing force, we obtain a Gaussian profile, 

In the first case [Equation (4.7)], the Debye length approaches zero (i.e., AD - 0), 
while in the second case [Equation (4.8)], AD - -. 

Strictly speaking, these considerations are valid only for a beam in a long, 
uniform focusing channel. However, as shown in Section 4.4, a periodic-focusing 
system can often be described in terms of an equivalent uniform channel by using 
the smooth apprarimation theory. Hence, the argument that beams tend to approach 
a Boltzmann distribution if collisional and other effects have time to thermalize 
the distribution also applies in an approximate sense to periodic-focusing systems 
that are more commonly used in practice. 

Since the potential function due to the self fields decreases with increasing 
energy [i,e., &(l - p2) = q5Jy2 - 0 for y * I], we conclude that at sufficiently 
high energy, charged particle beams tend to have the Gaussian density distribution 
of Equation (4.8). By contrast, at low energy when the self force is comparable 
in strength to the external force, beams in smooth, linear focusing channels tend 
to have uniform density profiles. 

A stationary distribution represents a state of minimum total energy. As shown 
in Chapter 6, deviations from this stationary state, such as beam mismatch, off- 
centering, and nonstationary particle density profiles, are associated with higher 
total energy. The difference in energy represents free energy that can be converted 
into random, or thermal, particle energy, thereby increasing the temperature and 
emittance of the beam. The mechanisms converting the free energy into emittance 
growth are collisional processes, instabilities, nonlinear space-charge forces, and 
any forces of a stochastic (random) nature acting on the particle distribution. 

For the theoretical modeling of beams we can distinguish three regimes that 
can be characterized by the ratio of the Debye length to the effective beam radius, 
hD/a. When self-field effects dominate the beam physics (i.e., when AD 4 a), it 
is convenient for the mathematical analysis to neglect the thermal velocity spread 
altogether and use a laminar-flow model for the beam (TI = Tn = 0). In laminar 
flow, all particles at a given point are assumed to have the same velocity, so that 
particle trajectories do not cross. ks we know from Equation (4.7), the particle 
density for a stationary laminar beam in a linear focusing channel is uniform. Like 
the external focusing force, the space-charge force is therefore a linear function of 
position within the beam. As a result, the linear beam optics techniques of Chapter 
3 can be extended in a straightforward manner to include the self-field effects. 

When the transverse thermal velocity spread becomes comparable to self- 
field effects, so that AD - a, the density profile of a stationary beam becomes 
nonuniform, according to the Boltzmann relation (4.5). The forces due to the self 
fields of the beam are therefore nonlinear, a nonlaminar treatment of the beam is 
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required, and the analysis becomes more complicated. A nonlaminar beam can be 
represented by the distribution of particles in phase space, f ( x ,  P). The stationary 
state and the evolution of nonstationary distributions can be analyzed with the 
aid of the Vlasov equation, as mentioned above. Analytical techniques are rather 
limited in usefulness-except for the K-V model discussed below-and must be 
complemented or replaced by particle simulation. 

The third regime is characterized by AD + a, which implies that the self fields 
of the beam can be ignored. According to the Boltzmann relation (4.6), the steady- 
state density profile is Gaussian. However, the particle motion is entirely governed 
by the external fields; that is, the beam optics techniques and results of Chap- 
ter 3 are valid in this regime. 

From a mathematical as well as a practical point of view, the most useful 
theoretical model satisfying the Vlasov equation is the distribution of Kapchinsky 
and Vladiminky, known in the literature as the K-V distribution. For the spatially 
uniform focusing channel discussed above, the K-V distribution is defined as 
a delta function of the transverse Hamiltonian [i.e., f(x,y,Px,Py) = foS(HI - 
Ho)]. Alternatively, the K-V distribution can be defined as a delta function of 
the transverse emittances [i.e., f ( x , x ’ , y , y ’ )  = foS(ex,  (FY)]. In the latter case, it is 
also applicable to spatially varying focusing systems, consisting of discrete lenses, 
acceleration gaps, and so on, where the transverse Hamiltonian is not a constant 
of the motion. The K-V beam has the property that the density profile is uniform 
with sharp boundaries and the external forces are linear. Since the self fields of a 
uniform-density beam are linear functions of position, the density remains uniform 
and sharply bounded as the beam propagates through the focusing or accelerating 
system. Thus it is possible to extend the linear beam optics to include the space- 
charge forces in a straightforward way, and this will be done in subsequent sections 
of this chapter. It should be noted that the K-V model covers the entire range 
from space-charge-dominated laminar beams (AD 4 a) to the emittance-dominated 
beams (AD P a), where self-field forces are negligible. The self-consistent theory 
of beams, including the K-V distribution, is treated in Chapter 5. We show 
there that correlations between average beam parameters (rms width, divergence, 
emittance, etc.) of the K-V model, and other, more realistic distributions can be 
established. These correlations justify retroactively the extensive use of the uniform 
beam profile for the analysis of beam optics with self field presented in Chapter 4. 

The major shortcoming of a linear model like the K-V beam is the fact that it 
does not provide any information on emittance growth due to nonlinear external or 
self forces. The determination of emittance growth requires additional tools such 
as nonlinear theory, particle simulation, and experiment, as discussed in Chapter 6. 

In many practical devices, a background gas or plasma may affect the beam 
behavior in a substantial way. Depending on the gas density, ionizing collisions 
between beam particles and gas molecules may lead to partial or full charge 
neutralization of the beam. Secondary particles created in these collisions having 
the same charge polarity as the beam particles are expelled, while those with 
opposite charge polarity remain trapped in the potential well of the beam. The 
resulting charge neutralization, called gas focusing, is of great practical importance. 
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It occurs naturally in regions where the vacuum pressure is not low enough (e.g., 
in the low-energy beam transport lines near ion sources); or it may be deliberately 
utilized to transport high-current beams that could not be handled in conventional 
focusing systems. On the other hand, such charge-neutralization effects may lead 
to instabilities resulting in emittance growth and beam loss. Charge neutralization 
will be represented in our uniform-beam model by a partial neutralization factor 
fc, and some special neutralization effects are discussed in Sections 4.2.4 (Bennett 
pinch) and 4.6 (neutralization in a background gas). 

4.2 AXISYMMETRIC BEAMS IN DRIFT SPACE 

4.2.1 laminar Beam with Uniform Density Profile 

We start our study of self-field effects in beams with a simplified model of a 
cylindrical beam propagating in a drift tube (i.e,, with no applied fields present). 
Assume that a laminar, parallel beam of particles with uniform density is injected 
into a conducting drift tube. For vanishingly small currents, all particles would 
continue on trajectories parallel to the beam axis and the diameter of the beam 
would remain constant. As the current is increased, however, the space charge will 
produce a defocusing outward electric force and the beam will spread radially. 
At high velocities, the beam current produces a magnetic self field which exerts 
an attractive force that reduces the net defocusing effect. If the beam propagates 
through a region with a low-density background gas (rather than ideal vacuum), 
collisional ionization effects may result in partial neutralization of the beam space 
charge. Thus, in the case of an electron beam, the secondary, low-energy electrons 
created by the collisions are ejected and the positive ions remain inside the beam. 
Due to their heavy mass, these ions remain almost stationary compared to the fast 
beam electrons. If fc is the ratio of positive ion charge to electron charge per 
unit volume, the electric field due to the space charge will be reduced by a factor 
(1 - fc). The magnetic field, however, remains unaffected as the stationary ions 
do not contribute to current flow. The ions, of course, do oscillate radially in the 
potential well of the electron beam, but the oscillation periods are long compared to 
the electron oscillation periods. On the other hand, if we are dealing with a positive 
ion beam, the ions from the collisions are ejected and the secondary electrons 
remain in the beam. These electrons are very mobile and oscillate rapidly across 
the beam in the transverse direction. The net effect is a partial charge neutralization 
of the ion beam which, as in the case of an electron beam, does not affect the beam 
current and the associated self magnetic field. As we will see, the combined effect 
of self magnetic field and partial charge neutralization may not only balance the 
repulsive electric force but may result in a net focusing or pinching of the beam. 

Let us now list the assumptions that we will make in our simple uniform beam 
model: 

1. The beam has a circular cross section with radius a and propagates within a 
concentric drift tube of radius b, and the variation of beam radius with axial 
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distance z is slow enough that axial electric field components Ez and radial 
magnetic field components B,  can be neglected. 

2. The potential difference A$ between beam axis and the drift-tube wall due 
to the space charge of the beam is small compared to the voltage equivalent 
of the particles’ kinetic energy. 

3. The beam particle density, as well as the density of charge-neutralizing 
particles of opposite polarity, is uniform inside the beam and zero outside. In 
view of assumption 2, the axial velocity of all beam particles is approximately 
the same, and we can therefore assume that the current density is uniform. 

4. The flow is laminar (i.e., all beam particles move on trajectories that do not 
cross). 

5. We consider a steady-state situation; that is, a/& = 0 and the beam cross 
section at any given position along the direction of travel does not change 
with time. 

6. The particle trajectories obey the paraxial assumption that the angle with the 
axis (slope) is small. This follows implicitly from assumption 1. 

For the mathematical treatment that follows, we write the equations of motion for 
a positive charge q, as in previous chapters. The factor fc represents a stationary 
charge distribution of opposite sign which results in a partial neutralization of 
the space charge of the primary particles. The results can be applied to electrons 
by setting q = -e. The current remains unaffected by the stationary particles. It 
should be pointed out that, strictly speaking, the assumption of uniform charge 
density is valid only when there are no charge-neutralizing particles present in the 
beam (fe = 0). For a beam with gas focusing by secondary particles of opposite 
charge polarity, the density profiles of both species tend to become nonuniform. The 
uniform-density model is still useful, though, in describing the average behavior 
of the beam in this case. 

First we note that in the steady state considered here the volume charge density 
p and the current density J at any point within the beam, or alternatively, the line 
charge density p~ and beam current I, are related by the continuity equation, that is, 

J = p v ,  

1 = P L U ,  

(4.9a) 

(4.9b) 

where v is the velocity of a charge element at that point, and u, - u has been 
assumed in (4.9b). Due to the space charge of the beam, there exists a potential 
difference between the beam axis (t = 0) and the beam surface ( r  = a) and (for 
b > a) between the beam edge and the wall of the drift tube. If the total energy 
of the particles is a constant, the kinetic energy of a particle on the axis will be 
less than that of a particle on the beam edge. Thus, in general, we have a velocity 
distribution u(r) ,  and if p = const, J must be a function of radius, or vice versa. 
In principle, we could specify any one of the three functions, and the other two 
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are then determined self-consistently by Equation (4.9), Maxwell’s equations, and 
the equations of motion. However, in our uniform beam model, we abandon self- 
consistency to avoid mathematical complexity. As long as the paraxial assumption 
holds (i-e., ur 4 u,  vg 4 u, uz - v )  and the difference in potential energy across 
the beam is small compared to the kinetic energy of the particles, the error will be 
small. Our major objective at this point is to gain physical insight into the behavior 
of the beam with a minimum of mathematical effort. Thus, we will assume that 
J , p ,  and vz - v are all constant across the beam (ie., independent of radius 
r) .  Hence, with po = I / a z m  denoting the charge density of the primary beam 
particles, we obtain 

(4.1 Oa) 

(4.10b) 

I 
a+ ’ 

J z = J = -  

for 0 5 r s a ,  - fe) 
a 2 m  P = P O 0  - fc) = 

and J = 0, p = 0 for r > u. In view of assumption 1, the electric field has 
only a radial component, which is readily found by application of Gauss’s law, 
I e0E - dS = I p dV,  to a cylinder of radius r and unit length in the z-direction: 

When charge neutralization is absent (fe = 0), we obtain 

(4.11b) 

(4.1 lc) 

and 

for r > a .  (4.11d) 
I 

2we0vr 
E,  = - 

The magnetic field, which has only an azimuthal component, is obtained by 
applying Ampere’s circuital law, I B * dl = po 1 J - dS,  which yields 

(4.12a) 

for r > a .  (4.12b) 

Ir 
Be =  lo - 2vaZ 

I 
Be = PO- 27rr 

for r S a ,  
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By integrating Equations (4.11) we obtain for the electrostatic potential distri- 
bution (with 4 = 0 at r = b) 

4 ( r )  = V, 1 + 2 In - - - ( a a2 r 2 )  
for r S a ,  (4.13a) 

(4.13b) 
b 

# ( r )  = 2VJ In - 
r 

for a 5; r s b ,  

where 

and 

v, = (4.14b) 

when charge neutralization is absent (fc = 0). 
The peak potential on the beam axis ( r  = 0) is thus [from (4.13a)l 4(0) = 

Vo = vJ[1 -I- 2In(b/a)],  and the maximum electric field at the beam edge is 
E4 = 2VJ/a = 6OI(l  - fe)/(/3a), or E, = 601/(/3a) when fc = 0. 

We now examine the motion of a beam particle in this field using only the 
radial force equation 

where we dropped the force term qreB, on the grounds that r e  is negligibly small 
and y = const since there is no external acceleration. Substituting for E, from 
(4.11a) and for Be from (4.12a), we get with cop0 = c-?, i = u = /3c, 

or 

With 

Equation (4.15) becomes 

(4.15a) 

(4.15b) 

(4.16a) 
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or, with fc = 0, 1 - p2 = 7 - 2 ,  

(4.16b) 

We will now introduce several parameters used in the literature on beams with 
space charge. First, we define a characteristic current 10 by 

4m0mc3 1 mc2 = - -  l o  = 
4 30 4 ' 

(4.17) 

which is approximately 17 kA for electrons and 31(A/Z) MA for ions of mass 
number A and charge number Z .  Next we introduce the Budkerparameter [2]  V B  
defined as the product of the number of primary beam particles per unit length, 
Nt = pL/q, and the classicalparticle radius r,. The latter is obtained by equating 
the rest energy mc2 and potential energy q 2 / 4 m ~ r ,  of a point charge with mass 
m and charge q;  hence, r, = q2/4momc2,  and we find 

I 
v g  = NLr, = - 

IOP * 

(4.18) 

Thus, for ultrarelativistic particles (p 
by the ratio of the beam current I to the characteristic current l o .  

introduced in Equation (4.2) for a relativistic, unneutralized beam (fc = 0). 

definition a~: = FJymr,  using I - fc - p2 = 

1 ) .  the Budker parameter is simply given 

A third important beam physics parameter, the plasma frequency, was already 

For the more general case where charge neutralization is not zero ( fc # 0). our 
- y 2 f c ) ,  yields 

or, in terms of the beam current I, 

and 

(4.19) 

(4.20a) 

(4.20b) 

when fc = 0. Equation (4.15) for the radial motion of a particle may then be 
written in the form 

(4.21) 



1% UNEAR BEAM OPTICS WK'i SPACE CHARGE 

The advantage of our generalized definition for the plasma frequency is now 
apparent: Equation (4.21) has the same mathematical form whether the motion 
is nonrelativistic or relativistic, and whether charge neutralization is present or not. 
From (4.19) we see that 09 > 0; that is, the net space charge is defocusing when 
y2fc < 1. On the other hand, u: < 0 (Le., the self fields produce a net focusing 
force) when 

1 
f c  > - Y2 - (4.22) 

This relation is known as the Budker condition of self focusing [2]. It is of 
particular importance for intense relativistic electron beams where a small fraction 
of stationary positive ions is sufficient to focus the beam. 

From Equations (4.19) and (4.20) we note that the plasma frequency is inversely 
proportional to the beam radius, a. As the radius a changes in a diverging or 
converging beam, up will also change. Thus, we cannot integrate Equation (4.21) 
unless independent information is provided on the variation of up with time or 
distance. Furthermore, it is desirable to eliminate time and introduce the distance 
along the direction of beam propagation as the independent variable, as was done in 
Equation (4.16). Before we proceed with solving this trajectory equation, we intro- 
duce another important parameter, the generalized perveunce K, a dimensionless 
quantity, defined by Lawson [3] as 

As can be seen, the generalized perveance-unlike the plasma frequency -does 
not depend on the beam radius. It is solely defined by the beam current and 
particle energy and, where applicable, by the charge-neutralization factor f e. When 
charge neutralization is absent (i.e., fc = 0), the relationship among generalized 
perveance, Budker parameter, and the plasma frequency is given by 

In terms of the generalized perveance, as defined in Equation (4.23), the equation 
(4.16) for the particle trajectories can be expressed as 

K 
a2 

= - r .  (4.25) 

Note that unlike Equation (4.21), this equation shows the explicit dependence 
on the beam radius. It applies to the trajectory of any particle within the beam 
( r  5 a) and can be solved if the radius u is known as a function of distance. Now, 
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under the conditions of laminar flow, the trajectories of all particles are similar and 
scale with the factor r/u. Specifically, the particle at r = u will always remain 
at the boundary of the beam. Thus, by setting r = a = r,,, in Equation (4.25), 
we obtain the equation for the beam radius rm(z) in drift space, which may be 
written in the form 

(4.26) II rmrm = K. 

We should point out here that our paraxial beam model is valid only for I K I 1, 
as discussed in Section 4.2.3. With regard to the solution of Equation (4.26), several 
special cases are of interest: 

1. fe = 0 (no stationary, neutralizing particles) 

2. fe = 1 (full charge neutralization by the stationary particles) 

3. fc = 0, y = 1 (nonrelativistic approximation) 

(4.27a) 

(4.27b) 

(4.27~) 

Substituting v = (2qV/m)'", where V denotes the beam voltage, Qua- 
tion (4.27~) may be written as 

(4.28) 

For nonrelativistic, unneutralized ( fe = 0) beams, the ratio I /V3n  is known as the 
perveunce. The generalized perveunce K thus differs from the perveunce I/V" 
by the factor in brackets in Equation (4.28). In the case of electron beams (and 
stationary positive ions), the above formulas for the gheralized perveance K 
become numerically 

I K = 1.174 X 
( 7 2  - 1)3n 

for fe = 0 ,  

for fe == 1 ,  
I K = -1.174 X 

(yZ - 1)'n 

(4.29a) 

(4.29b) 
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and for a nonrelativistic electron beam with fc = 0, 

Z 
K = 1.515 X lo4 *. (4.29~) 

Finally, we note that the case fc = l/y2 represents a force-neutral beam where 
K = 0 and the particles move on straight lines. 

Let us now integrate Equation (4.26) for the radius of the beam in the general 
case where K # 0 assuming that the beam has an initial radius rm = ro and slope 
rk = rh (at z = 0). First, we introduce dimensionless variables 

(4.30) 

Here and in the equations that follow, the plus sign applies when K > 0 (defo- 
cusing) and the minus sign when K < 0 (focusing). In terms of the new variables, 
Equation (4.26) can be written in the form 

or, alternatively, 

d R  
R 

2R'dR' = 2-. 

(4.31) 

(4.32) 

integration of Equation (4.32) with R = Ro = 1 and R' = Rh at z = 0 yields 

R~~ - ~h~ = +In R ,  (4.33) 

By integration of Equation (4.33) one obtains 

dR R d R  R'=l ( R h 2 2 1 n R )  tR * 

(4.34) 

(4.35) 

if we use R' as the independent variable, we get from Equations (4.32) and (4.34) 
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Integration of Equation (4.36) then yields the alternative expression 

or 

(4.37) 

(4.38) 

The factor in front of the integral is always positive. As for the integral itself, the 
plus sign applies when R' > 0 (diverging beam) and the minus sign applies when 
R' C 0 (converging beam). If the initial slope is zero (R; = 0), for instance, the 
beam will diverge when K > 0, and we have then 

(4.39) 

On the other hand, a converging beam results when K < 0, and we can write (for 
RA = 0) 

(4.40) 

Even if K > 0, we can still get a converging profile by passing the beam through 
a focusing lens. In this case, the initial slope of the beam profile will be negative 
(RA < 0). The beam radius r,,, will decrease until a minimum is reached where 
R' = 0. Beyond that, the radius will increase again (diverging beam profile) as a 
result of the defocusing self-field forces. The minus sign in the upper limit of the 
integral in Equation (4.38) applies for the region from z = 0, R = 1 to the point 
z,,,, where R is a minimum and In R + RA2 = 0. For z > zm, the plus sign in the 
integral applies. The integral in Equation (4.38) is of the type 

which is tabulated in handbooks of mathematical functions. For different values 
of the "reduced" initial slope RA, one obtains for the case K > O ( f e  = 0) the 
curves shown in Figure 4.1, where R is plotted versus the "reduced distance" 
2 = (2K)*R(z/ro). These curves might, for instance, represent the behavior of 
a charged particle beam after passage through a focusing lens which changes the 
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slope RA as the beam enters the drift region following the lens. As we see, the beam 
diameter goes through a minimum (waist) which varies with the initial slope R& 

In some high-current applications one wants to pass as much current as possible 
through a tube of diameter D and length L with the help of a focusing lens at 
the tube entrance. In this case one has to focus the beam such that the waist is at 
the center of the tube, the beam having equal diameters at the entrance and exit 
of the tube (R = RO = 1). As we can see from Figure 4.1, there is a maximum 
value of Z, and hence for given values of beam voltage V, tube length L, and 
radius ro = D/2, a maximum current that one can get through the tube. This 
maximum 2 value is 2.16, and the corresponding slope is about RA = -0.92 [i.e., 
2 = (2K)In(L/ro) = 2.161. 

Letting ro = D/2 ,  z = L, and 2 = 2.16, we obtain from Equations (4.30) and 
(4.27a) for the maximum current: 

2 2 
= lo P3Y3 (2.16)2( F) = 1 . 1 ~ 1 ~ a ~ (  2) - (4.41) 

For electrons the maximum current (in amperes) is 

2 
1, = 0.496 x 104(~2 - 1 ) ~ (  e) (4.42) 

R 

Figurn 4.1. Beam radius R versus " d u d  distonce Z for different initial slops RA - dR/dZ 
(lominor Row). 
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in the relativistic case, and 

(4.43) 

in the nonrelativistic approximation. 
Returning again to Figure 4.1, let us consider now the upper curve, where the 

initial slope is zero (RA = 0). For this particular case, the beam diameter doubles in 
a reduced distance of about 2 = 2.12, and one can show that the curve Z versus 
R can be approximated by the relation 

[InR]'" 
Z = 2 1 eRg2 dR' = 2(R - 1)''. (4.44) 

which is accurate to better than 3% for 1 I R 5 2. In this approximation, the 
beam radius is a quadratic function of distance given by 

2 
R = & =  ro 1 + 0.25Z2 = 1 + 0 S K (  :) 

For an electron beam with no ions ( fc  = 0), we obtain 

in the relativistic case, and 

(4.45) 

(4.46) 

(4.47) 

in the nonrelativistic approximation. 
From these relations one can calculate the distance in which the beam radius 

doubles due to the space-charge repulsion. Setting r m  = 2r0, one obtains for an 
electron beam from (4.46) for the doubling distance the relativistic relation 

z = z,, = 1.31 x io2(y2 - 1)3/41-1Rro 

and from (4.47) the nonrelativistic formula 

t = td = 1.15 x 10-2~3/41-1nro 

As an example, for an electron beam with a kinetic energy equal to the rest en- 
ergy of 511 keV and a current I = 200 A, one finds Zd = 21.0r0 or Zd = 52.6 cm 
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for ro = 2.5 cm. In this case, the beam expansion is slow enough (zd/ro % 1) that 
the assumptions of our uniform beam model are well satisfied. 

As was pointed out earlier, the defocusing self-field forces in a relativistic 
electron beam can be compensated by a background of stationary positive ions. 
Thus, when fc = l/y2 (i.e., K = 0), we get from Equation (4.26) r i  = 0, or 
r,,, = rAz + t o ;  and if the initial slope is zero (r; = 0), the beam diameter remains 
constant. The positive ions thus provide uniform focusing, like a long solenoidal 
magnetic field. 

When fc > l/yz, K is negative and the beam pinches. The beam diameter 
decreases until it approaches zero at 

(0.51KI)1n( ') = 0.8, 
r0 

as discussed by Lawson [C.17). As rm - 0, our beam model breaks down. The 
motion is no longer paraxial as the slopes of the trajectories become very large; at 
the same time, the flow becomes nonlaminar. In practice, of course, all beams have 
transverse temperature, or nonzero emittance, which prevents such a collapse of 
the beam radius. The effects of finite emittance on the beam envelope are discussed 
in the next section, and then we explore the limits of our model and the concept 
of limiting currents. 

4.2.2 b a r n  Envelope with Sdf Fkldr and Finit. Emiitance 

The derivation leading to the trajectory equation (4.16) or (4.25) is valid for a 
uniform density profile whether the beam is laminar or nonlaminar. It was only 
when we derived the equation for the beam radius [Equation (4.26)] that we 
introduced the assumption of laminar flow. Let us now assume that the particles 
have a distribution in r,r' trace space that corresponds to an area of elliptical 
shape, as discussed in Chapter 3. If the radius r,,, represents the envelope of the 
beam (i.e., if we set a = r,,,), Equation (4.16) or (4.25) describes the motion of any 
particle at radius r within the beam. Specifically, when the current is negligibly 
small (I - 0), we get r" = 0, or r = ro + rhz, which is the motion of a particle 
in free space with zero self fields. For this case we found that the beam envelope 
obeys a differential equation of the form of Equation (3.161), which we rewrite 
with R = r,,, as 

(4.48) 

where e denotes the emittance of the beam. 
Since the trajectory equation (4.16) is linear in r,  we can obtain the general 

envelope equation by linear superposition of the two special solutions: Equa- 
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tion (4.26) for zero emittance and Equation (4.48) for zero space charge; that 
is, we can write 

(4.49) 

A mathematically more rigorous derivation of this equation is presented in Sec- 
tion 5.3.2. 

at z = 0 and assuming that K > 0 yields the result 

Integration of Equation (4.49) with the initial condition rm = ro and r; = ro I 

1R 

r; = [ rh2 + c2( - t) + 2K In z ]  
r m  

(4.50) 

and 
-In 

= lorm [ rh2 + c2( - i )  + 2K In 21 dr,. (4.51) 

When K = 0, the integral can be evaluated and we obtain the result (3.162) 
for the beam envelope without space charge. Likewise, for c = 0, we recover the 
result (4.35) for our uniform, laminar beam model. In the general case of a beam 
with space charge and finite emittance, the integral in (4.51) has to be evaluated 
numerically and one obtains envelope curves that are qualitatively similar to those 
shown in Figure 4.1. 

4.2.3 Limitations of &a Uniform Beom Modal and Limiting 
Currants 

It was noted earlier that our paraxial beam model becomes invalid when the particle 
trajectories either strongly converge or strongly diverge (i-e., when the assumptions 
IKI 4 1, i 4 u are no longer satisfied). To explore this limitation of our model, 
let us assume that we have a fully charge-neutralized relativistic electron beam 
(fc = l), where K = -(f/l0)(2//3y) = - 2 v ~ / y  and the particles are affected 
only by the magnetic self force of the beam. From (4.29, one obtains for a particle 
within the beam the trajectory equation 

(4.52) 

Now let us treat the beam radius as a constant. With r = ro and rl = rh = 0, the 
solution of Eguation (4.52) at z = 0 is then 

r - ro cos(mq 
a 

(4.53) 
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and 

The radial velocity is ur = i = r'u, or 

ur = -2 a u m  s i n ( m 5 ) .  a 

(4.54) 

(4.55) 

It has a maximum value (for ro = a) of u(K1'" = U(2vB/y)'". We had assumed 
that ur 4 u, and therefore we require that Y B / ~  4 1 or IKI 4 1 in order for our 
model to be valid. This implies that the electron current must be substantially less 
than a critical current I,+, which follows from Equation (4.18) by setting Y B / ~  = 1: 

(i.e., IA = 1.7 X lvpy amperes for electrons). This fundamental current limit was 
first derived in 1939 by H. Alfvdn [4], who studied the propagation of electrons 
through a plasma in space. If one does not assume that Iu,l 4 u,  it is still possible 
to solve the equation of motion since y is a constant in the charge-neutral beam, 
where only the magnetic self field is present. The solution was obtained by Alfven 
in terms of elliptical integrals, and it indicates that beam propagation essentially 
stops when the limit (4.56) is reached since most of the electrons are reflected 
back in the strong magnetic self field. 

The factor Y B / Y  is a measure of the effects of the self fields on the beam 
dynamics. In terms of the beam current, we can write 

(4.57) 

Note that, in general, /3 and y are functions of radius and that the beam current 
relates to the mean velocity Bc. In our simple model, p is uniform across the 
beam, and the velocity of individual particles is identical with the mean velocity. 
However, when p = p ( r ) ,  we have to use in the definition [Equation (4.18)] 
of the Budker parameter Y B .  

We conclude from this analysis of a fully charge-neutralized beam that the 
uniform beam model in paraxial approximation is good only as long as Y B / Y  4 1. 
When Y B / Y  - 1, the assumptions of uniform current density across the beam 
and ur 4 u are violated. The particles acquire increasingly larger values of radial 
velocity; as the more accurate trajectory calculations indicate, at v e / ~  - 1 the 
particles pass through the axis with no remaining axial velocity and are reflected 
backward. The beam therefore ceases to propagate in the forward direction, which 
explains why we speak of a Iimiting current, I,+. The stopping of a beam by its 
own magnetic self field was also studied by Lawson [3]. The relation (4.56) is 
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often referred to as the Alfidn current, or as the A@&-Lawson current, or simply 
as the magnetic current limit. 

A similar fundamental current limit also exists for a beam that is not charge- 
neutralized. In this case, without external focusing, the beam would expand radially 
due to the repulsive space-charge forces. For the following derivation, let us assume 
that an infinitely strong applied magnetic field prevents such expansion and keeps 
the beam radius constant. Due to the space-charge field, part of the kinetic energy 
of a particle inside the beam is converted into electrostatic potential energy. The 
potential difference between center ( r  = 0) and the wall ( r  = b) of a uniform- 
density, cylindrical beam of radius u inside a conducting tube of radius b 2 a is 
obtained from Equations (4.13~1) and (4.14b): 

b ) = -(I I i- 21n-),  b (4.58) 
U 4 l X o f i C  U 

where I is the beam current and /3c the average (axial) velocity in the beam. 
Suppose that all particles are injected into the conducting drift tube with the same 
kinetic energy ( y  - 1)rnc’ = qV.  For a particle on the axis ( r  = 0) inside the 
tube, the kinetic energy is then reduced by qV0, so that [with y(0) = yo] 

yomc’ = ymc’ - qvo. (4.59) 

One sees that a particle is stopped when all its kinetic energy is converted into 
potential energy [i.e., when ( y  - l)mc2 = qVo]. From (4.58), this happens when 
the current reaches the limit [5] 

P(r - 1) 
1 + 2 ln(b/a) * 

I = 10 

This value is actually a little too high since the current maximum is reached before 
the potential energy on the axis equals the kinetic energy. Solving (4.58) for the 
current I and expressing VO and f i  in terms of y and yo, one finds from the 
condition df/a yo = 0, the more accurate limit (with fe = 0)  

(Y” - OM 
I’ = lo 1 + 2 ln(b/a) ’ 

(4.61) 

which was first derived by Bogdankevich and Rukhadze and independently by 
Nation and Read [6]. Note that this space-charge limiting current fL is lower than 
the AlfvCn-Lawson current fA. 

So far, we have considered the two extreme cases where the beam was either 
fully charge neutralized ( fc = 1) or had no charge-neutralizing particles ( fc = 0). 
In the first situation, the beam pinches and, as a result, stops propagating when 
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v B / y  - 1 or I = I*. In the latter case, the beam would blow up radially unless 
it is confined by a strong external magnetic field, and propagation stops when 
the potential energy of a particle in the beam becomes comparable to the kinetic 
energy at injection (i.e., when I - IL) .  

Let us now examine what happens when the beam is partially neutralized 
and no external magnetic field is present. As we discussed in connection with 
Equation (4.26), the repulsive electric force exceeds the magnetic attraction when 
fc C l/y2 and the beam spreads radially (r: > 0). On the other hand, for fc > 
l/y2, the beam pinches due to a net inward focusing force (r; < 0). A special 
“force-free” state exists when fc = l/y2. When fc # 0, the analysis leading to 
the space-charge limiting current (4.61) can be extended simply by including the 
factor (1 - fc) in the denominator; that is, one may write 

(4.62) 

This formula suggests that an arbitrarily large current can be achieved by using a 
large amount of charge neutralization; in fact, l~ - when fc - 1. However, we 
have seen that for a charge-neutralized beam (fe = l), magnetic pinching leads 
to the Alfv6n-Lawson limit 1,. Consequently, as fc - 1, Equation (4.62) must 
be modified by the constraint 

I L  5 I ,  = lopy (for fc - 1) .  (4.63) 

From this discussion it appears that 1, constitutes a fundamental upper limit 
for particle beams. But this conclusion is not correct since 1, applies only to a 
beam that is fully charge neutralized by stationary particles of opposite charge. If 
the self-magnetic field of the primary beam becomes neutralized by an opposite 
current of moving secondary particles, pinching no longer occurs, and in principle, 
the beam current can become arbitrarily high. Such a current neutralizurion can 
be achieved by injecting co-moving particles of opposite charge into the primary 
beam, as, for example, in ion propulsion where electrons are used to neutralize 
the positive ion beam. Another mechanism is the generation of a return current 
due to the inductive fields associated with short beams propagating through a gas 
or plasma. The intense relativistic electron beams produced by high-power pulse 
generators have relatively short time durations with typical pulse widths of 10 
to 100 ns. The rise time of these beams produces a time-varying magnetic field 
a&/& and hence an electric field E, (from V X E = -aB/ar) as the beam front 
enters the gas region. As soon as the ionizing collisions of the electrons with the 
gas molecules produce a plasma, this E field generates a current in the opposite 
direction to the incoming electron beam. The magnetic field Be associated with this 
return current is opposite to the Be of the primary beam. Consequently, one gets 
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a partial magnetic neutralization for which we introduce the factor 1 - f m .  Our 
original equation for the magnetic field (4.12a) must then be written in the form 

(4.64) 

Assuming that the beam is completely charge-neutralized ( fc = l), the equation 
of motion (4.15) has to be modified and will now be 

(4.65) 

The force is still inward, but it is weakened by the factor 1 - f m .  The magnetic 
current limit in this case will then be increased by a factor (1 - f,,,)-’, that is, 

(4.66) 

Since, by assumption, the beam is electrically neutral (fc = l), the consideration 
that kinetic energy is transformed into potential energy does not apply. Therefore, 
1; can be considerably greater than the Alfven current 1~ if there is a large degree 
of magnetic neutralization [see Miller, C.18, Sections 4.3.3 and 5.5.1 Thus, we can 
substitute 1; for ZA whenever a current in the direction opposite the primary beam 
current can be produced that results in partial magnetic neutralization. 

The existence of upper limits for the beam current can also be understood from 
an energy-conservation or “power-balance” argument. As a charged particle beam 
propagates, kinetic energy has to be spent to build up the electric and magnetic 
self-field energy along the path of the beam. Suppose that a beam of length L and 
constant radius rm = a propagates inside a conducting drift tube of radius b. Let 
the pulse duration 7 = L/u be short enough that the magnetic self field does not 
penetrate through the conducting wall. The total field energy associated with the 
beam is then given by 

Substitution for E, and Be from Equations (4.11) and (4.12) then yields the 
expression 

Ws- ( - + I n -  5: )[ (’ + (1 - fm)l] .  (4.68) 
4PCoC2 4 

where we have added the parameters fc and f m  to include partial charge or current 
neutralization. This field energy must be supplied from the kinetic energy of the 
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particles at the beam front, (yf - l)mc2. If (ri - l)mc2 represents the kinetic 
energy of the beam front particles at injection into the drift tube, one obtains 
the following energy conservation law in the form of a power-balance equation 
(assuming that the current I remains unchanged): 

(4.69) 

where /3fc is the final beam-front velocity. It is obvious from the last two equations 
that there is an upper limit for the beam current (unless fe = fm = 1) where the 
field energy is comparable to the kinetic energy of the particles and hence the 
beam can no longer propagate. 

4.2.4 Salf-Focuring of a Chargo-Neutrulid barn 
(Bannoit Pinch) 

In our discussion of the laminar beam model (Section 4.2.1), we found that charge 
neutralization leads to self-focusing, or pinching, of the beam when fe > l/y2 and 
hence K C 0. We concluded, however, that the paraxial assumptions of our model 
are no longer valid when the beam radius approaches zero. A real beam is not 
perfectly laminar but always has a finite transverse temperature, or emittance, that 
prevents the collapse to zero radius. Let us now examine the pinch effect and the 
role of finite temperature more closely by returning to the beam envelope equation 
(4.49), which includes both the space charge and the emittance. 

In the following, let us assume that we are dealing with a relativistic electron 
beam with stationary positive ions. If K is negative due to the fact that the 
inward magnetic force exceeds the repulsive space-charge force, there will be an 
equilibrium beam radius rm = a, where this net inward force is just balanced by 
the outward “pressure” due to the thermal velocity spread, or emittance, of the 
beam. Setting r: = 0 in (4.49), we find that 

Solving for the beam radius a yields 

(4.71) 

An alternative form of this equilibrium relation can be obtained by considering 
a thermal distribution and introducing the transverse electron beam laboratory 
temperature Tc in place of the emittance. With i j x  = ( k ~ T c / y m ) ’ n , a  = 22, we 
obtain from (4.4a) an effective emittance ( B  = 41) of 

(4.72) 
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Substitution of (4.72) in (4.70) yields 

keT, = - 1 IKlymu2 = - 1 lKlyS2mc2. 
4 4 (4.73) 

For a fully charge-neutralized beam (f, = 1, fm = 0), K is given by Qua- 
tion (4.2%); hence, 

or, with I0 = 4weomc3/q, 

(4.74) 

If both sides of (4.74) are multiplied by the number of electrons per unit length, 
NL, one obtains, with NLq& = I and l / c ~ c ~  = po on the right-hand side, the 
relation 

(4.75) 

In a real situation, the positive ions are not stationary and the ion distribution also 
has a transverse temperature, Ti ,  which we can assume to be nonrelativistic. If this 
ion temperature is included, one obtains the more general expression 

~ N L ~ B ( T ,  + Ti) = clo 12, (4.76) 
41T 

which is known as the Benneff pinch relation [7]. 
The physical meaning of the pinch relation becomes clear when we recognize 

that NLkB(Te + Ti)  represents the mean transverse kinetic energy per unit length 
of the beam, while the right-hand side relates to the field energy. From (4.68), 
we find that the magnetic field energy stored inside the electron beam (with 
f, = 1, f m  = 0, b = a )  per unit length is given by Wm/L = (1/4)(p0/4a)I2. 
Consequently, the Bennett pinch condition may be stated in the form 

(4.77) 

that is, the mean transverse kinetic energy per unit length is equal to two times 
the magnetic field energy stored per unit length inside the beam region ( r  I a). In 
practice, it is difficult to produce such an ideal equilibrium state for a significant 
length of time. 
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4.3 AXlSYMMETRlC BEAMS WITH APPUED AND SELF FIELDS 

4.3.1 The Paraxial Ray Equation with Sdf Fioldr 

The results obtained for the self-field effects on a beam propagating inside a drift 
tube can be applied to the paraxial ray equation, To the extent that our uniform 
beam model is valid ( v / y  4 1, etc.), Equation (4.25) is linear in radius r ,  and 
since the paraxial ray equation is linear, we can simply add the two force terms 
representing the applied fields and the self fields. Thus, we can amend Equa- 
tion (3.49) by (4.25) and obtain the modified paraxial ray equation 

(4.78) 

where K is the generalized perveance and r,,, is the beam radius. 
It should be pointed out in this context that in axisymmetric beams propagating 

through coaxial boundaries there are no electric or magnetic image fields. From 
Gauss’s and Amptre’s laws the self fields are entirely determined by the charge 
and current inside the radius r .  This is no longer true, however, when the beam is 
displaced from the axis, as discussed in Section 4.4.4. Note also that we assumed the 
mean azimuthal beam rotation in the B field to be small enough that the axial self- 
magnetic field is negligible; otherwise, K would have to include a corresponding 
term. The above paraxial approximation thus implies that & 4 & and 4 PL. 
We will see in Chapter 5 how the beam can be treated self-consistently when these 
paraxial restrictions are relaxed. 

To solve the modified paraxial ray equation, we need to know the beam envelope 
rm in the space-charge term as a function of axial distance z .  From our previous 
studies we know that the envelope equation can be obtained from the trajectory 
equation by making the substitution r = rm and adding the emittance term. When 
electrostatic lenses are present in which a change of particle energy occurs (ie., 
y’ # 0), the normalized emittance E,, = Pyc must be used since E is no longer 
constant. The envelope equation then takes the form 

For laminar flow, the normalized emittance E,, would be zero in our linear-beam 
model. 
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The paraxial approximation demands that the generalized perveance is substan- 
tially less than unity (i.e., IKI 4 1). It is interesting to note that the emittance 
term in (4.79) has the same rZ3 dependence as the angular momentum term. Both 
represent repulsive forces tending to diverge the beam. In fact, if we equate the 
two terms, we see that 

e, = B y € .  PI9 

mc 
- =  

Thus, a nonzero canonical angular momentum, which gives rise to a rotation of 
the particle trajectories and hence a centrifugal force, has the same effect as the 
normalized emittance, @ye. As an example, the magnetic field produced by the 
heating current for a thermionic cathode or the earth magnetic field may generate 
canonical angular momentum that in effect increases the normalized emittance of 
the electron beam. 

The solution of the envelope equation is relatively simple when the applied 
fields acting on the beam can be represented by the thin-lens approximation. In 
this case, one can use the thin-lens matrix neglecting self-field forces when the 
beam passes through a lens, and Equation (4.51) for the beam envelope in the free 
space between lenses. If the self fields are defocusing (K > 0), for instance, the 
position of the image plane (upright ellipse) downstream from the lens is shifted 
farther away. One can balance this effect by increasing the focusing strength of the 
lens, thereby assuring that the image occurs in the same plane as in the absence of 
self-field forces. When the self fields are negligible, the envelope of the beam was 
found to have a hyperbolic shape as given by Equation (3.162), and the individual 
trajectories of the particles are straight lines. For repulsive self forces (K > 0), 
the beam envelope is obtained from Equation (4.39), which near the waist can be 
approximated by the quadratic function (4.45). The individual trajectories can be 
calculated from Equation (4.25) putting a = r m ,  fc = 0, that is, 

(4.81) 

In general, r,,, = r,,,(z) and the solution of (4.81) is complicated. However, when 
r,,, varies rather slowly so that we can assume it to be piecewise constant, the 
solution of (4.81) is of the form 

for K > 0 .  J X Z  + Bsinh - r J Acosh - J X Z  
r m  r m  

(4.82) 

Similarly, one finds that in the case of attractive self fields (K < 0, fe > l/y2) 
the solutions for the individual trajectories are oscillatory (assuming again that r,,, 
may be considered as piecewise constant), that is, 

for K < 0. (4.83) J M Z  + Bsin - t =Acos- J M Z  
rtn r m  

The constants A and B are determined by the initial position and slope of the 
particle. Obviously, if K is very small, the self-field effect represents only a small 
correction to the straight-line trajectory solution (rN = 0, r = ro + rhz). 
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4.3.2 b a r n  Transport in a Uniform Focusing Channd 

Let us now consider the case of a beam propagating through a long, uniform 
focusing channel. We will assume that there is no applied accelerating electric 
field (f = 0) and that the canonical angular momentum pe is zero. The restriction 
pe = 0 implies that the partiqles are launched from a magnetically shielded source 
(i.e., B = 0 at source) with 00 = 0. For our further analysis we define the beam 
envelope by R. Setting r,,, = R, the paraxial ray equation (4.78) may then be 
written as 

(4.84a) 

In the literature on microwave sources, time t (rather than distance z) is pre- 
ferred as the independent variable. The ray equation then takes the altema- 
tive form 

0 2  

2 
r + w,Zr - J r  = o ,  (4.84b) 

as can readily be verified. 
The terms & and &r represent the linear external focusing force. The 

parameters ko = 2ir/& and 00 = h v  (v = beam velocity) define the wavelength 
A0 and oscillation frequency of the transverse particle oscillations due to the applied 
focusing force alone (i.e., when K = 0), or up = 0). The plasma frequency up 
is defined by 

according to Equations (4.2) and (4.24). 
For the corresponding beam envelope equation one obtains from (4.79) 

which in the time domain becomes 

€2V2 
= 0 .  R + @ , Z R  - -R 4 - - 

2 R3 

(4.85a) 

(4.85b) 

The best known example of a uniform focusing channel is a long solenoid, for 
which case the oscillation frequency 00 is identical with the Larmor frequency 
W L ,  that is, 

(4.86a) 
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and the wave number is given by 

(4.86b) 

Both 00 and &O are constants since the magnetic field B is uniform (i.e., independent 
of distance along the channel). Furthermore, we recall that the above equations 
describe the particle and envelope motion in the rotating Larmor frame. 

Another example of a uniform transport channel that is often used for mathemat- 
ical convenience is the case where the focusing force is provided by a transparent 
stationary cylinder of opposite charge with uniform density pc. This is basically 
identical to the charge-neutralization effects discussed previously, for instance in 
connection with the Bennett pinch (Section 4.2.4). However, in our present context 
we treat the effect of the cylindrical channel of opposite charge like an external 
focusing force. We will see in Section 4.4 that in the smooth approximation, where 
only the average forces are considered, a periodic-focusing channel behaves like a 
cylinder of opposite charge. This equivalence is particularly apparent in the case of 
a periodic electrostatic quadrupole channel, where the transverse focusing forces 
are electrical in nature. However, the analogy also applies to magnetic quadruple 
channels, or axisymmetric channels consisting of periodic arrays of short solenoids 
or electrostatic einzel lenses. Mathematically, the treatment of the average behavior 
of the particle motion or beam envelope in such periodic systems is identical with 
that in a uniform cylinder of opposite charge. The radial electric field due to a uni- 
form charge distribution of density pc is [from Equation (4.11c)l E,  = pcr/2e0, 
and one can readily show that the corresponding frequency 00 and wave number 
&O for the particle motion in such a field are given by 

(4.87a) 

and 

(4.8%) 

Let us now return to the envelope equation in the form (4.85a). The solution for 
the beam envelope will depend on the initial conditions, that is, on the beam radius 
R(0) and the slope R’(0) at the entrance ( z  = 0)  of the uniform channel. In view 
of the fact that the force is constant (i.e., is independent of distance z) ,  there 
will be a special solution where R ( z )  = a = const, R’(z) = 0, and R”(z) = 0, 
and hence the beam envelope is a straight line. This special case is known as the 
matched beam, and from (4.85a) it is defined by the algebraic equation 

= 0 .  
K c2 

e a - ; - ; ; T  (4.88a) 
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This can be written in the alternative forms 

€ 2  
k2a - - = 0, 

a3 

or 

ka2 = e 

by introducing the wave number k defined as 

(4.88b) 

(4.88~) 

(4.89a) 

The last relation can be expressed in terms of the plasma wave constant kp = 
oP/v  as 

or in terms of the frequencies as 

(4.89b) 

(4.89~) 

The parameters k and w define the wavelength A = 27r/k and oscillation 
frequency of the particle oscillation due to the action of both the applied focus- 
ing force and the space-charge force. Since the space-charge force of the beam 
is defocusing, we have k C h, A > Ao, o < 00, BS can be seen from Qua- 
tions (4.89). The ratio k /ko ,  or alternatively, o/oo, is known as the rune depression 
due to space charge. 

The algebraic matched-beam envelope equation (4.88a) relates the four quan- 
tities a, ko, K ,  and c and can be solved for any quantity if the other three are 
given. We will first solve it for the beam radius a by assuming that ko. K, and c 
are known. First, we will consider the two extreme cases where either the emit- 
tance c or the space-charge force (represented by the generalized perveance K) 
is zero. In the limit of zero emittance (c = 0), the flow is laminar and the beam 
radius is given by 

K lR 

k0 
aB = -, (4.90) 

This type of flow, first identified by Brillouin [8] in 1945, is known as Brillouin 
pow. 
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When the space charge is negligible (K = 0), on the other hand, the beam 
radius is 

a0 = ( )IR. (4.91) 

By comparison with (3.346) we see that the amplitude function w for the uniform 
transport channel in the case of zero space charge is wg = cIn and is independent 
of z .  If we introduce the dimensionless parameter 

K u = -  
2&0€ ’ (4.92) 

we can write the general solution of Equation (4.88a) for the beam radius in 
the form 

1R 
a = a B ( i + i J I . U - 2 )  , (4.93a) 

or 

(4.93b) 

[See also Equation (5.293), which represents a useful approximation for practical 
design and scaling.] 

From Equation (4.91) we see that without space charge, a beam with emittance 
has a radius ao. As the current, and hence the space-charge parameter u increases, 
the beam radius expands to the value given in (4.93b), and the diameter of the 
beam pipe has to be increased accordingly. Conversely, we can say that a pipe 
with radius a > a0 could accommodate a beam with zero space charge but larger 
emittance. From Equation (4.91), setting = a, a0 = a, we can define a trace- 
space acceptance a of the pipe for zero space charge given by 

0 0  a = a’ko = a2 -, 
u 

(4.94) 

In many cases the beam radius a, or acceptance a, is given. For instance, the 
diameter of the vacuum pipe may be fixed, or the beam size may not exceed the 
linear aperture of the focusing system to avoid nonlinear effects. One can then 
calculate !he maximum perveance or beam current from (4.88a), using (4.94), as 

(4.95) 
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or 

(4.96) 

where l o  is the characteristic current defined in (4.17). We see that the current 
that can be transported through the focusing channel increases rapidly with the 
particle energy; furthermore, the acceptance a has to be larger than the emittance 
E of the beam as indicated by the factor 1 - ( c / ~ r ) ~ .  The transportable current 
reaches a maximum when the emittance c becomes negligibly small compared to 
the acceptance a [i.e., when c / a  - 0 (laminar beam 1imit)J. For such a laminar 
beam (c = 0), one gets the condition 

K = kia2, (4.97a) 

or, in terms of frequencies, 

"02 = - 4 
2 '  

(4.97b) 

The second expression agrees with the well-known nonrelativistic relation W L  = 
up/& for ideal Brillouin pow in a long solenoid. 

Let us now consider the motion of individual particles within the matched beam. 
We can write the particle trajectory equations in the alternative forms (space and 
time domains) 

rN + k2r = 0 ,  (4.98a) 

or 

r + 0 2 r  = 0 ,  (4.98b) 

where the parameters k and w are defined in Equations (4.89a) and (4.89c), 
respectively. Note that ko = 27r/Ao = OO/U and that A and A0 are the wavelengths 
of the particle oscillations with and without self fields. Focusing requires that 
o; L 4/2, so that-o is real. For ideal Brillouin flow, we have o = 0 in the 
Larmor frame and Id1 = wo = W L  in the laboratory frame. The tune depression 
k/ko or W/OO can be related to the emittance E ,  the acceptance a, and the param- 
eter u by 

(4.99) 

For negligible space charge (i.e., u = 0), the particle oscillation frequency is equal 
to 00, and for the long solenoid 00 = o ~ ,  which is in accordance with the paraxial 
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theory in Section 3.4.4. In the laminar-beam limit (c 3 0), on the other hand, we 
have o = up/& as stated earlier. 

Let us return now to the matched-beam envelope equation (4.88a) and compare 
the second and third terms representing the space charge and emittance. Clearly, 
when Ka2 > c2, we can say that the beam is space-charge dominated, while 
Ka2 < c2 implies an emitfunce-dominated regime. The transition between the two 
regimes occurs when 

Ka2 = e2. (4.100) 

Using the three relations in (4.88) and the definition (4.89a), we can express 
Equation (4.100) in terms of the tune depression as 

(4.101) 

Thus, when k/ko < a, the beam is dominated by space charge, and when 
kjko > a, emittance dominates. For now, this distinction between the two 
regimes merely indicates which of the two terms in the envelope equation is more 
significant in determining the beam radius. We will see in the following discussion 
of a mismatched beam that there is also a difference in the internal dynamics of 
the particle motion. 

To obtain the matched-beam solution (R = a = const) treated above, the beam 
must be properly matched into the focusing channel. In the solenoid case, where the 
source is in a region of zero magnetic field, the starting conditions must be chosen 
such that R = a and R‘ = 0 when the beam reaches the uniform-focusing plateau 
inside the channel after passing through the fringe-field region. There are several 
possibilities for satisfying these matching requirements, each of which involves at 
least two parameters to control both the radius and slope of the beam envelope. In 
practice, the beam emerges from the source with an initial radius and slope that 
depend on the source design and operating conditions. By judicious choice of the 
source location with respect to the channel entrance, one can achieve the desired 
matched beam inside the channel provided that the generalized perveance K is 
fixed. A better solution is to place a small matching lens (e.g., a short solenoid) 
between the source and the focusing channel. By varying the focal length of this 
lens and its location between the source and the channel, one can achieve the 
desired matching even if K is not constant. A third possibility is to use two lenses 
at fixed positions and to vary the focusing strength of the two lenses to control the 
beam radius and slope for proper matching. 

When the beam is not matched, the envelope radius becomes a periodically 
varying function of distance z. There are basically three major possibilities of 
beam mismatch: 

1. The initial envelope radius and slope are not matched lie., R(0) # 
a, R’(O) # 01. 
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2. The beam is not axisymmetric (e.g., it has an elliptic cross section), 
3. The density is not uniform. 

The second case requires the use of two transverse coordinates X ( z )  and Y ( z )  
for the envelope; this is treated in Section 4.4.3 and leads to two fundamental 
eigenmodes of the envelope oscillations. The third case lies outside the framework 
of the uniform-beam model and will be treated in Section 6.2. 

In the first case, which we will now analyze, the beam remains axisymmetric. 
For small-amplitude oscillations, we can linearize Equation (4.85a) and find an 
approximate solution. Let 

R = a + x ,  (4.102) 

where 1x1 4 a and a is the matched-beam radius. Then one obtains from (4.85a), 
using (4.88a) to cancel zero-order terms, the equation 

This can be expressed in the equivalent forms 

X'I + kfx = 0, 

f + o,2x = 0. 

(4.103) 

(4.104a) 

(4.104b) 

The parameter k, = 2 ~ / A e  is the wave number, and or is the radian frequency 
of the envelope oscillations. By elimination of c in Equation (4.103) with the aid 
of (4.88a) and by introducing the wave number k and frequency o of the single- 
particle oscillations with space charge, as defined in (4.89a) and (4.89c), one obtains 

(4.105a) 

The relationship between the 
oscillation and the oscillation 

wavelength Ae associated with the beam envelope 
frequency we is given by 

(4.106) 

We note that Equations (4.105a) and (4.105b) represent the solutions of the 
envelope oscillations for the axisymmetric case, which is called the in-phase mode. 
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In Section 4.4.3 we also obtain the solutions for the quadruple (ellipsoidal) 
case known as the out-of-phase mode. The relations (4.10Sa) and (4.10Sb) can 
be expressed in terms of the plasma wave number k, and plasma frequency w p  
[using (4.89)] as 

In 
k, = [4k; - k;]', = 2.[ 1 - ( ",'I , (4.107a) 

4 ko 

where 

(4.108) 

As we see from this analysis, the frequency we associated with the ripple of the 
beam envelope differs from the frequency w of the particle oscillations within 
the beam. In the limit of zero intensity (cop = 0 or K = 0), we have w = 00 

and oc = 200. If the channel is a long solenoid, this implies that individual 
particles oscillate with the Larmor frequency, 00 = O L .  while the envelope of 
the mismatched beam oscillates with the cyclotron frequency, w, = 2 w ~  = wc. 
For ideal BrillouinjIow (c = 0). on the other hand, we have w = 0 and w, = 
a00 = up (i.e., the envelope oscillates with a frequency given by the plasma 
frequency). 

When the above linear approximation (1x1 4 a )  is valid (i-e.. for a small mis- 
match), the envelope oscillations are sinusoidal. For a large mismatch when 1x1 is 
no longer small compared to the matched-beam radius u, numerical solution of 
the envelope equation (4.85a) is required. Such a solution [9] is shown in Fig- 
ure 4.2(a,b), where the beam was injected into the long channel with an initial 
mismatch radius of RO = 0 . 5 ~  and a slope of Rh = 0. The beam parameters in this 
case were chosen such that the single-particle tune depression was k/ko = 0.8. It 
is interesting to note that the wavelength of the envelope oscillation predicted by 
linear theory [A, = 0.55Ao from Equation (4.105a)l is in relatively good agreement 
with the numerical result [A, = 0.53ho from the plot in Figure 4.2(a,b)]. On 
Figure 4.2(b) we plotted the trace-space ellipse at 24 positions during one envelope 
oscillation. The dashed ellipse represents the matched beam. To obtain the equations 
for the ellipse. one must choose values for the perveance K, emittance c. and 
wave constant ko that are consistent with the tune depression of k/ko = 0.8 using 
Equations (4.88) and (4.89a). The Courant-Snyder parameters &, b, 9,  as defined 
in Section 3.8.2, are readily found from the envelope radius R and slope R' using 
Figure 3.26. Thus 

(4.109) 
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Figun 4.2. Beam envelapa (a,c) and motion of the trace-space ellipse during om emlapa 
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( F m  Reference 9; 0 1991 IEEE.) 

(4.1 10) 

As we can see from the plot of Figure 4.2(b), the tips of the trace-space ellipse 
describe an ellipse that is concentric with the matched-beam ellipse, as expected 
from single-particle theory without space charge. This simple picture changes, 
however, when one studies the case of a beam with large tune depression, as 
we will see next. 

In Figure 4.2(c.d) we have shown the envelope and trace-space ellipse for 
a tune depression of k / k o  = 0.3, keeping the beam mismatch the same (i.e., 
Ro/a = 0.5). The value for the envelope oscillation wavelength predicted by linear 
theory (A, = 0.68A) in this case is also relatively close to the numerical result 
[A,  = 0.65A from Figure 4.2(c,d)]. However, the trace-space ellipse reveals an 
oscillatory pattern markedly different from that of Figure 4.2(b). We attribute 
this difference to the fact that the first case (k/ko = 0.8) is in the emittance- 
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dominated regime while the second case (k/ko = 0.3) is in the space-charge- 
dominated regime. In the first case, the single-particle trajectories in the beam 
are simple betatron oscillations crossing the axis every half betatron period. The 
second case shows a beam in which the single-particle motion is dominated by 
the plasma oscillation. We can understand this behavior by looking at the extreme 
case of a laminar beam where emittance is zero (4 = 0) and where single-particle 
trajectories do not cross the axis of the system. The trajectories in such a laminar 
beam are self similar and show the same behavior as the beam envelope [i.e., they 
oscillate between a maximum and minimum (at the waist) without crossing the 
axis]. As mentioned earlier, the transition between these two regimes occurs at 
k / b  = [from Equation (4.101)]. 

It is interesting to note that a typical particle trajectory in the mismatched beam 
is no longer sinusoidal. This is due to the fact that the beam envelope R and 
hence the net force seen by the particle vary periodically with period A,. The 
trajectory is quasi-periodic with a wavelength A = &/2n that is approximately 
the same as in the matched-beam case in our example. Thus the mismatched 
beam represents a special case of periodic focusing in which the external force 
is uniform and the space-charge force varies periodically with distance. The more 
general case where both applied forces as well as the self forces are periodic 
is treated in the next section. Finally, we want to point out that if we apply 
the preceding analysis of beam transport to a long solenoid, we must keep in 
mind that the radial oscillations of the particles are in the Larmor frame (i.e., in 
the meridional plane which rotates with the Larmor frequency WL).  The actual 
three-dimensional trajectories of the particles in the solenoid system have a helical 
shape which is obtained by a superposition of the radial oscillations, the Larmor 
rotations, and the axial velocity. When the space charge is zero, for instance, the 
projections of the trajectories in the x-y  (r-0)  plane are off-centered circles. 
In this case, a particle that was launched with u, = 0, Vg = 0 will describe a 
helix that will touch the z-axis without crossing it, as discussed in connection with 
Busch’s theorem (Section 2.3.4). On the other hand, when the flow is laminar [i.e., 
entirely dominated by the space-charge fields (ideal Brillouin case)], the trajectory 
projections in the x-y plane are centered circles. The particles rotate around the 
axis with the Larmor frequency in this case, whereas the trajectories in the Larmor 
frame are straight lines (since o = 0). In between these two extremes, the trajectory 
pattern is more complicated and depends on the ratio of the plasma frequency to 
the Larmor frequency, or, conversely, on w / o ~ .  

4.4 PERIODIC FOCUSING OF INTENSE B U M S  
(SMOOTH-APPROXIMATION THEORY) 

4.4.1 Beam Tmnrporl in a Periodic Solenoid Channd 

In many practical applications the beams are focused by a periodic array, or 
lattice, of lenses rather than a uniform field. If the space-charge forces are linear, 
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as assumed here, the theory of periodic focusing discussed in Section 3.8 can be 
amended to include the self fields in a straightforward way [lo]. We begin our anal- 
ysis with an axisymmetric channel consisting of periodically spaced short solenoid 
lenses. (A similar analysis can be applied to periodic arrays of electrostatic einzel 
lenses.) If R(z )  denotes the envelope of the beam and K&) = [qS(z)/2mc/3yp 
denotes the periodic-focusing function of the lens system, the paraxial trajectory 
equation (4.84) can be written in the form 

(4.111) 

To solve this equation, one must first find the beam radius R(z )  from the envelope 
equation 

K c2 
R R3 

R" + K&)R - - - - = 0. (4.1 12) 

When R ( z )  is known, one can write (4.111) in the alternative form 

where 

(4.114) 

If S denotes the length of one focusing period, we have the periodicity condition 

For the case where the beam is matched, R(z )  and K ( Z )  are also periodic with 
period S, that is, 

(4.116) 

(4.117) 

According to the theory discussed in Section 3.8.2, the solutions of Equation (4.113) 
can be written in the phase-amplitude form 

where A and 4 are determined by the initial conditions and w(z), +(z)  obey the 
relation 

(4.119) 

Equations (4.118) and (4.119) are valid whether or not K ( Z )  is periodic. 
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For a matched beam in a periodic channel, when both R ( t )  and K ( Z )  are periodic 

functions with period S , the particle trajectories are pseudoharmonic oscillations 
with a period or wavelength 

2ws A = -  
U 

(4.120) 

The parameter a represents the phase advance of the particle oscillation per period 
with space charge and is given by the change of the phase function q9 in one channel 
period; that is, according to Equations (3.350), (3.351), and (4.119), 

When the space-charge term is absent (K = 0) [i.e., K ( Z )  = KO(Z)] ,  we will denote 
the phase and amplitude functions by $&) and wo(z), respectively. The phase 
advance of the particle oscillations without space charge is then defined as 

a 0  = $o(z + 4 - $O(Z) = (4.122) 

and the wavelength of the particle oscillations is 

2TS & = -  
0 0  

(4.123) 

As we will see below, the phase advances with and without space charge, a and 
q, are the key parameters that determine the beam physics. They take the place of 
the frequencies o and 00 = W L  of the uniform solenoidal focusing system studied 
in Section 4.3.2. 

In accordance with Equation (3.346), the beam envelope R(z) is defined by the 
product of the amplitude function w(z)  and the square root of the emittance, that is, 

R ( 2 )  = J? w(z)  = Jzi, (4.124) 

and likewise for zero space charge (K = 0) 

(4.125) 

where B = wz, = w i ,  as defined in (3.343a). Note that wo(z) depends only on 
the focusing function KO(Z)  and is found by solving the envelope equation (3.340), 
that is, 

(4.126) 
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Thus, WO(Z) ,  or alternatively, f io(z), describes the properties of the periodic- 
focusing lattice and is independent of the beam emittance c and the generalized 
perveance K. [Note that this is not true for the amplitude functions w(z) ,  B(z) 
with space charge.] 

In general, the solutions for the beam envelope and particle trajectories in 
a periodic-focusing channel with space charge must be obtained by numerical 
integration of the equations (4.111) and (4.112). Figure 4.3 shows such a nu- 
merical solution for a matched beam in the periodic solenoidal channel used in the 
University of Maryland electron-beam transport experiment. Each solenoid pro- 
duces a field of the form 

(4.127) 

where d = 3.24 cm and b = 4.40 cm. The length of one period is S = 13.6 cm, 
and the actual field used in the computation is obtained by superposition of the 
lens fields. Note that K&) - SZ(z) according to Equation (4.86b). For purposes 
of illustrating the nature of the periodic envelope and trajectory solutions, the peak 
value BO [hence the maximum of KO(Z)] ,  the beam emittance c and the generalized 
perveance K were chosen to yield u == 36" and a 0  = 72'. As Figure 4.3 indicates, 
the matched envelope of the beam is a periodic function R(z )  that has the same 
periodicity S as the focusing system. The particle trajectory shown in the figure 
is a pseudoharmonic function in which the period is determined by CT, or UO, 
and where the ripple in the amplitude reflects the periodicity S of the focusing 
system. When the space-charge term is set to zero (K = 0, u = uo), the particle 
trajectory performs one oscillation in a distance A0 = 27rS/cr0 that corresponds to 
five lens periods (27r/q = 360"/72' = 5). On the other hand, when space charge 
is included (a = 36" ), the particle oscillation wavelength increases to 10 periods 
since 27r/(r = 360"/36' = 10. 

When the variation of the beam radius during one focusing period is small 
compared to the mean radius in the period, one can use the smooth-appmimation 
theory to solve the envelope and trajectory equations for the average values of the 
quantities involved. In effect, this implies replacing the periodic force K&) by 
the constant average force ZO and hence reducing the problem to the uniform 
focusing system treated in the preceding section. As we will see below, the 
smooth-approximation results (with suitable corrections to account for the envelope 
modulation) are fairly accurate for beams of practical interest. 

The general derivation of the smooth-approximation theory for intense beams 
in periodic-focusing channels can be found in Reference 10. In the following 
analysis we consider a special case of a matched beam in an axisymmetric channel. 
(Quadrupole focusing is treated in Section 4.4.2 and envelope oscillations of 
mismatched beams in Section 4.4.3.) 

The envelope R ( z )  of the matched beam in a periodic channel can be written in 
terms of the mean radius x, which is constant, and a modulation function 6(z) as 

R ( z )  = R[l + S(z)]. (4.128) 
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Correspondingly, one can represent the amplitude function w ( 2 )  by 

w(2)  = w[1 + S(z)l. (4.129) 

The ripple function 6(z) has the period S; thus 

S(z + S) = S(z), (4.130) 

and, by definition, the average of 6(z) over one period is zero, that is, 

lz+s S(Z)dZ = 0 .  (4.131) 
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By substituting (4.128) into the envelope equation (4.112), Taylor expanding, 
and keeping only the linear terms in 6 ,  we obtain 

- K(l  - 6 )  €2 

R R 
- - -  + ( l  - 36) = 0.  R6" + ~ o ( 1  + 6)R - (4.132) 

If we average over one period, using the fact that, from (4.131), 3 = 0 and therefore 
also 8" = 0, we find that 

(4.133) 
r + S  K cz 

R 
XOR + - KO(Z)S(Z )dZ  - - q = 0 .  

The equivalent equation for the case where space charge is negligible (Lee, 
K = 0)  is 

- 
Ro and 60(z) denote the average beam radius and ripple function for zero space 
charge, as defined by the relation 

analogous to (4.128). 
Numerical studies indicate that the modulation function S(z), defined in (4.128), 

has only a very weak dependence on the perveance K, as long as JS(z)l 4 1, which 
is the case for a0 S 90". Thus we have to good approximation 

that is, we can replace S(z) in the integral term of Equation (4.133) by a&). 

functions with and without space charge as 
From (4.124) and (4.125), the emittance can be related to the average amplitude 

and 

(4.137a) 

(4.137b) 
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On the other hand, we have, from (4.121), 

and 

(4.138a) 

(4.138b) 

By substituting (4.137b) in (4.134) and using (4.138b), we obtain for the focusing 
force averaged along the envelope radius over one period of the solenoid array 
the result 

(4.139) 

Using (4.136), (4.137a), and (4.138a) in (4.133), we find for the net average force 
with space charge 

or, in view of (4.139), 

(4.140) 

By substituting this result in (4.133) 
our solenoidal channel the algebraic 

we obtain for the average beam radius 
equation 

in 

which, in view of (4.140), may be written in the alternative form 

(4.141a) 

(4.141b) 

This first major result of our smooth-approximation theory is equivalent to Equa- 
tion (4.88) for the uniform focusing channel. Indeed, by comparing the two equa- 
tions and considering relation (4.138b), we can make the important identification 

(4.14%) 
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for the beam without space charge and, likewise, 

(4.142b) 

when space charge-is inclyJed. Thus, we see that the average values of the am- 
plitude functions B and Bo define the wavelengths A and A0 of the particle 
oscillations with and without space charge. 

The algebraic equation (4.141) can readily be solved in the same way as (4.88a). 
First, we obtain for the average radius &I without space charge (K = 0) 

which yields 

ko = E. 

(4.1 43) 

(4.144) 

- 
The same result can be obtained from Equation (4.125) by using Bo = S/uo from 
Equation (4.138b). 

In analogy to Equation (4.92) of the uniform focusing case we define the 
dimensionless parameter 

(4.145) 

and obtain from Equation (4.141) for the average beam radius the result 

k = Eo(u + 4 i X ) ?  (4.146) 

Eo is the average radius for zero space charge (u = 0), as defined in Equa- 
tion (4.144). 

Likewise, we find for the phase advance with space charge 

u = uo(4ixF - u ) .  (4.147) 

When space-charge effects are negligible, u - 0 and i? = &, u = uo. As space 
charge increases (u > 0), the beam radius becomes larger while the phase 
advance u decreases (a - 0 as u 4 00). 
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Alternatively, we can solve for the generalized perveance K if the average radius 
and other parameters are given. Thus, we get from Equation (4,140) 

(4.148) 

We can introduce the acceptance a defined as the maximum beam emittance emX 
for given radius when space charge is zero (cr - 00). Equation (4.141) may 
then be written in the form 

which yields 

j f2  
a = uos* 

(4.149) 

(4.150) 

Also, by comparison of the two expressions (4.141b) and (4.149) we find that 

c u  

a G o  

- = -  (4.151) 

Using the last two reIations we obtain for the generalized perveance (4.148) the 
alternative form 

(4.152) 

The beam current that can be transported through a channel with acceptance a 
is then (lo] 

(4.153) 

For transport of large currents, the emittance must be significantly less than the 
acceptance. The maximum current is obtained when € / a  - 0 (laminar-flow limit), 
in which case one gets 

(4.154) 

As we will see in Section 4.4.3, envelope instabilities limit the phase advance to 
a0 5 90'. In addition, the aspect ratio of beam radius to lens period must not be too 
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large, say i?/S < 0.2, to avoid nonlinear effects, especially spherical aberrations, 
in the lenses. 

The above set of equations for the average beam radius 8, for the phase advance 
u, and for the generalized perveance K, or the beam current I ,  represent the 
essential results of the smooth approximation. The accuracy of these results depends 
on the geometrical configuration of the periodic lattice and on the phase advance 
UO. The latter, also known as the zero-current phase advance, can be calculated for 
a given periodic focusing function KO(Z) by the method described in Section 3.8 
and below. A general criterion for the validity of the smooth approximation is that 
the variation of the beam envelope in one focusing period must be small compared 
to the average radius 8. This is usually satisfied when uo is not too large. 

From a practical point of view, the maximum beam radius, &,-rather than 
the average radius, K-is the quantity of interest since it relates directly to the 
channel aperture available to the beam. If we define R, = a and consider the 
relations (4.128), (4.129), (4.136), (4.124), and (4.125), we can write 

hence, in view of (4.138b), 

IR 
R,,, = a = it( ?) wO,*, . 

From these equations we can define a ripple factor G by 

(4.155) 

(4.156) 

(4.157) 

Let us now introduce for the acceptance a in lieu of (4.150) the exact definition 
(3.353) in terms of the maximum beam radius R, = u, that is, 

a2 ( I 2  a=-- 
2 --. 

w0,mx Bo.,  

By comparison with (4.157) we then find that 

(4.158) 

(4.159) 

Thus the equations (4.152) and (4.153) may be written in the alternative forms 

(4.160) 
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and 

(4.161) 

This relation shows the explicit dependence of the transportable current on the 
semiaperture of the channel (or the allowed maximum beam radius) R,,, = a, 
which is more useful than the average radius E. The ripple factor G depends on 
a0 and on the shape of the focusing function KO(Z) .  Note that all quantities on the 
right-hand side of the last two equations are independent of space-charge forces and 
represent directly “measurable” parameters of the beam and the focusing channel. 

In general, for periodic focusing functions K&) of arbitrary shape, the quantities 
wo,maxr 00, G, and so on, must be calculated by numerical integration of Equa- 
tions (4.126) and (4.122). However, in most cases of practical interest one can use 
for K&) a hard-edge upproximution that yields quite accurate analytical results 
and hence scaling relations not readily obtained from numerical studies. If K O , ~ , ~  

denotes the maximum of the focusing force, we can define the equivalent hard-edge 
function for each lattice period S of the channel by 

where the effective length 1 of the lens is given by 

(4.162) 

(4.163) 

If L denotes the field-free region between the lenses, we have the relation 

l + L = S .  (4.164) 

To find the phase advance without space charge, ao. and other quantities for such 
a hard-edge periodic channel we define the focusing-strength parameter 

e = & i  (4.165) 

and follow the procedure discussed in 3.8.3 (see also Problem 3.21). From the 
transfer matrix M for one channel period one finds that 

1 L  
2 1  

cos a0 = cos 8 - - -6 sin 6 .  (4.166) 



232 UNEAR BEAM OPTICS WlTH SPACE CHARGE 

The maximum value of the amplitude function is obtained from the transfer matrix 
for a half period (from z = 1/2 to z = L/2): 

From these two equations one can calculate the ripple function G = G(O, L / l ) .  
Figure 4.4 shows the phase advance a0 versus 8 for a periodic solenoid channel 
for different values of L/l. In Figures 4.5 and 4.6 we plotted W O . ~ / &  and G 
versus a0 (rather than 0), with L/Z as a parameter [ll]. For thin lenses, where 
O 4 7r/2 , we have the approximation 

cos a0 = 1 - "( 1 + 4 ) .  
2 

If, in addition, a0 4 7r/2, we obtain 

it2 

a o = e ( i + + )  . 

(4.168) 

(4.169) 

t igun 4.4. Relationship between &ow odvonce no ond kuring strength parameter 8 in an 
oxirymmstric p+ridic-focuring channel. (From Reference 1 1 .) 
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In the latter case one finds for the ripple factor the approximation 

The above theory and the various relations for a periodic channel are discussed in 
more detail in References 10 and 11. 

Let us now discuss two examples of periodic transport to illustrate the application 
of the theory and the accuracy of the approximation involved. First, we consider 
the case shown in Figure 4.3. Since KO(Z)  a Bz(z),  the hard-edge approximation 
(4.162) yields an effective length of 

which is found to have a value of 1 - 3.34 cm for the solenoidal field (4.127) of 
each lens. The period length is S = 13.6 cm, hence L = 10.26 cm and L / l  = 3.08. 
To simplify the calculation, let us take L/I - 3 and use the plot for G(u0, L/I )  in 
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Figure 4.6, from which we find (for a0 = 72') that 8 0.6, G = (X/a)' - 0.82, 
hence a = Rmx = 1,lR. This is in good agreement with the numerical result of 
Figure 4.3, from which one infers an envelope modulation of slightly less than 10%. 

As a second example, let us calculate the maximum electron-beam current that 
can be transported in the periodic solenoid channel of Figure 4.3 if the elec- 
tron energy is 5 keV and the aperture radius is a = 1 cm. Assuming that e U a 
and using the values uo = 72" = 0 . 4 ~ .  G = 0.82, a/S = 1/13.6, By - 0.14, 
and l o  = 1.7 X 104 A, we find from Equation (4.161) a beam current of Z - 
0.164 A. Suppose now that the emittance of this beam is 8 X low5 m-rad; what 
is the phase advance with space charge u? First, we find that the generalized 
perveance is K = ( l / l 0 ) ( 2 / p 3 y 3 )  = 7.03 X Then we obtain for the pa- 
rameter u the result u = KS/(2aoc) = 4.76. This yields from Equation (4.147) 
u - 0.104~0,  or u = 7.5'. The phase advance due to the depression of the exter- 
nal focusing force by the space-charge repulsion is thus almost a factor 10 smaller 
in this case than the zero-current value of a0 = 72". 

4.4.2 Beam Transport in a Ouadrupde (FODO) Channel 

The foregoing theory of beam transport in a periodic system with axisymmetric 
lenses can be applied to a quadruple channel in a straightforward way [10,11]. 
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The major difference is that the focusing system, and hence the beam, has two 
planes of symmetry. Consequently, we need a set of two equations to describe 
the &am envelopes and the particle trajectories in the two planes. As we will 
see below, these two equations are coupled through the self-field terms. The case 
where self fields are negligible was treated in Section 3.8.3, where we considered 
a periodic system of hard-edge quadrupole lenses arranged in a FODO sequence. 
Such a system with the beam envelopes in the x and y directions is depicted in 
Figure 3.27. When the quadrupole lens is focusing in x and defocusing in y, the 
envelope function for a matched beam has a maximum in the x direction and a 
minimum in the y-direction. The beam cross section is then an ellipse with major 
axis in the x-direction and minor axis in the y-direction. Half a period later this 
ellipse has rotated by 90". This picture also applies when linear self fields of a 
beam with uniform density are included. 

If X ( z )  denotes the x-envelope, Y ( z )  the y-envelope, the ellipse describing the 
boundary of the beam obeys the equation 

(4.171) 

and the charge density is defined by 

(4.172) 

where 
I 

Po = POk) = T U X ( Z ) Y ( Z )  
(4.173) 

is constant inside the beam at any given position but varies with distance z .  
The electric field for such a charge distribution can be calculated from Poisson's 
equation, and one obtains 

I X 
Ex =; - 

T € O U  X(X + Y) ' 
I Y Ey = - 

T € o U  U(X + Y) - 

(4.174) 

(4.175) 

In the case of a round beam, with X = Y = u, these results agree with Equa- 
tion (4.11~) for the radial electric field E,. 

Similar expressions are obtained for the magnetic self-field component B,, By.  
If K&) and K,.o(z) represent the external focusing functions in the two planes of 
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symmetry, one obtains with the above self fields the following trajectory equations: 

x = o ,  2K 
X ( X  + Y) XI’ + K,oX - 

2K y =o. Y” + KYOY - y(x + y )  

(4.176) 

(4.177) 

These two equations are linear in x and y, but coupled through the self-field terns 
which can be determined from the two corresponding equations for the beam 
envelopes X(z ) ,  Y(z), that is, 

(4.178) 

(4.179) 

The focusing functions K ~ O  and K,O are periodic with period S. For the hard-edge 
approximation of a FODO system one has 

s = 2(1 + L ) ,  (4.180) 

where 1 is the length of a quadrupole lens and L the length of the drift space between 
lenses. We will show in Section 5.3.2 that the above equations-like all other linear 
beam-optics equations in Chapter 4-follow naturally from the self-consistent 
K-V beam model mentioned in Section 4.1. For our analysis we will assume that 
the two focusing functions have the same amplitudes (i.e., I K , o ~  = I K , o ~  = KO) 

and that the emittance is the same in both directions, hence e, = e, = E .  The 
envelopes for a matched beam can then be written in terms of the mean radius z, 
which is constant, and a modulation function S(z) as 

where we used the fact that in a quadrupole channel 6,(z) = -S,(z). These 
relations are analogous to Equation (4.128) for the axisymmetric case and we 
can apply all equations of the preceding section to our quadrupole channel. The 
major difference is that we have two lenses of opposite polarity in each channel 
period. If these two lenses are identical in length and focusing strength, as is the 
case for the ideal symmetrical FODO channel that we consider below, the average 
value of KO(Z) will be zero; that is, 
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However, the second term in Equation (4.139) is not zero since 6( t )  is positive 
(X > E)  when K&) is positive (focusing lens) and negative (X < E)  when K&) 
is negative (defocusing lens). 

The calculations of uo and WO,,,,., versus the quadrupole focusing parameter 
B = f i l  for a FODO channel was carried out in Section 3.8.3. The related plots 
for different ratios of I/L are shown in Figures 4.7 and 4.8, and the ripple factor 
is plotted in Figure 4.9. These plots are from Reference 11, where more detailed 
information is given. Here we note only that the ripple factor is almost independent 
of the ratio of the quadrupole length to the drift space, I/L. In fact, one finds that 
for the region uo < No, G can be approximated with reasonable accuracy by the 
relation [ 111 

(4.183) 

From Equation (4.161) of the smooth approximation theory, one then obtains for the 
maximum transportable beam current in a FODO channel with aperture X,, = a 
and period S the result 

(4.184) 
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The corresponding generalized perveance is 

2 Krmx = ui(1 - ;uo)(%).  1.2 
(4.1 85) 

The ratio a/S should not be too large to avoid nonlinear forces in the fringe fields 
of the lenses. If we assume that u/S = 0.1 and a maximum phase advance of 
00 = 90' to avoid envelope instabilities, we find that KmX = The phase 
advance 00 depends on the focusing parameter 8, which for magnetic quadruples 
is defined by 

(4.186) 

Bo is the field strength at the pole shoe surface, uq the quadruple "radius" (i.e., 
the distance between the tip of the pole shoe and the axis), and 1 the effective 
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width of a quadruple. In the case of electrostatic quadruple lenses, the focusing 
parameter is given by 

(4.187) 

where Vo is the electrode potential and u4 the electrode "radius" as in the magnetic 
case. At nonrelativistic energies ( y  = 1) where electrostatic quadruples are mostly 
used, one can introduce the beam voltage v b  from the kinetic energy relation 

mu2 
4 vb -e 

2 

and obtain the simple formula 

e = ($)'"t 

(4.188) 

(4.189) 
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As mentioned in Section 3.5, magnetic quadrupoles provide stronger focusing than 
solenoid lenses for a given magnetic field strength, and they are used in all modern 
high-energy accelerators. Room-temperature electromagnets with iron pole shoes 
are limited to a field strength of 1 to 2 T due to iron saturation. To overcome 
this limitation, superconducting magnets producing fields in the range of 3 to 
7 T have been developed. At low energies, designers for beam transport systems 
can choose between magnetic quadrupoles, solenoids, or axisymmetric electrostatic 
lenses. The choice depends on the application, particle species, kinetic energy, beam 
current, emittance, and on past experience at a particular laboratory. The stringent 
brightness and intensity requirements of such advanced accelerator applications as 
free electron lasers, heavy-ion inertial fusion, and high-current light-ion beams (p, 
H-, etc.) pose great challenges for beam transport design. In many cases, such as 
low-energy transport of p or H- beams from the source to the linear accelerator, 
charge neutralization via beam particle collisions in the background gas (known as 
gusfmusing) is utilized to confine the beam. This topic is discussed in Section 4.6. 

4.4.3 Envebpo Oscillations and Instabilitks of Mismatched 
Boome 

The amount of beam current that can be transported through a periodic-focusing 
channel with a given aperture is a maximum when the beam is perfectly matched 
(i.e., when the mean beam radius is constant and the envelope is a periodic function 
with the same period as the lens system). Also, for space-charge-dominated beams, 
it is important that the particle density profile be as uniform as possible. In practice, 
perfect matching is often difficult to achieve. For instance, the beam current or 
emittance may differ from the design value. In pulsed beams the current may 
vary between front and tail. Matching lenses may not have the correct focusing 
strength or may not be in the right position. Indeed, beam matching between 
various components of an accelerator/transport system is one of the most important 
problems for the design and operation of any facility. Conversely, one must have an 
understanding of beam behavior when matching conditions are not perfect. As we 
know from our analysis of mismatch in a continuous (uniform) focusing channel, 
the beam envelope performs oscillation about the equilibrium (or matched beam) 
radius. We expect similar behavior for a periodic-focusing channel. However, due to 
the periodic nature of the focusing force acting on the beam, we have the possibility 
of parametrically excited instabilities that do not occur in uniform channels. As we 
will see, such instabilities do occur when a0 > 90" and the beam intensity is 
sufficiently high. 

Following the analysis by Struckmeier and Reiser [ 121, we will first calculate 
the envelope oscillation frequencies for small deviations from the matched-beam 
conditions in the smooth approximation which replaces the periodic channel by the 
equivalent uniform focusing channel. Next, we present a more rigorous analysis 
that takes into account the periodic variation of the focusing force and that leads 
to predictions of instabilities. We will carry out this study for the more general 
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problem of a quadruple channel which includes the axisymmetric system as a 
special case. 

Let us start with the two envelope equations (4.178) and (4.179) and assume 
again that ex = eY = Q. When the beam is not perfectly matched, the mean values 
of the envelope functions x ( z )  and fT(z) will differ from the matched radius 
and will be functions of z .  In the smooth approximation, we can replace the 
periodic-focusing functions K&) and K ~ O ( Z )  by &S2, as shown in Section 4.4.1. 
Introducing the wave number ko defined as 

we then obtain for x ( z )  and p(z) the equations 

- 0. 
-11 2K € 2  y + g y - - - - -  x + p  p3 

(4.190) 

(4.191) 

(4.192) 

This is a set of coupled differential equations which, in contrast to (4.178), (4.179), 
has constant coefficients and can therefore be solved analytically. First, we note 
that in the matched-beam case we have x = p = i? = const, where the mean 
radius obeys the algebraic equation 

(4.193) 

which is identical with Equation (4.141a) for the axisymmetric channel. Introducing 
the space-charge depressed wave number, k or phase advance u, defined by the 
relation 

(4.194) 

and substituting into Equation (4.193) one obtains for the average radius of the 
matched beam in the presence of space charge the result 

(4.195) 

When the beam mismatch is small, the envelopes x ( z )  and B(z) will not deviate 
very much from the mean radius 8. Defining the deviations by &(r) and ~ ( z ) ,  
we can write 

(4.196) 

(4.197) 
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where 6,  q 4 R. 
By substituting (4.196), (4.197) into (4.191), (4.192), Taylor expanding, keep- 

ing only linear terms, and using the matched-beam relations (4.193), (4.194) to 
eliminate K and R, we obtain 

where 

(4.198) 

(4.199) 

(4.200) 

These coupled equations are identical in form with the set of second-order linear 
differential equations describing the behavior of two coupled harmonic oscillators. 
There are two fundamental modes of oscillation, which we define by 

The first mode, defined by [I, corresponds to the case where the two oscillations 
in the x and y directions are 180' out of phase (antiparallel). By subtracting Equa- 
tions (4.198) and (4.199), one obtains 

with 

The second fundamental mode, defined by &, corresponds to the case where both 
oscillations are in phase (parallel) and is given by 

with 

&2 = (2k: + 2k2)In, or 4 2  = k2S = (2u; + 2 ~ ' ) ' ~ .  (4.204) 

Any other case can be expressed as a superposition of these two fundamental 
modes. Suppose, for instance, that the initial conditions are 60 # 0, 6; = 0, q o  = 
0, 77; = 0; then the envelope oscillations in the x and y directions are given by 
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The envelope oscillations in this special case are characterized by a fast frequency 
variation, Z(kl + kz), and a slow variation given by i ( k l  - k2). 

When the space charge, or current, is negligibly small (K --* 0), we have from 
(4.194) k = k-,, or u = uo, and hence the two fundamental modes converge, 
that is, 

1 

kl = k2 = 2k0, or 41 = 412 = 2u0. (4.207) 

Thus, in this limit, the envelopes of a mismatched beam oscillate with a frequency 
that is twice as fast as the single-particle oscillation frequency defined by the 
phase advance per period, UO. 

On the other hand, when the space charge is very high and k - 0, or u - 0, 
the envelope oscillation frequencies approach the lower limits of 

= ko. or 41 = U O ,  (4.208) 

for the antiparallel mode, and 

for the parallel (in-phase) mode. 
Note that the result (4.204) for the in-phase mode is identical with Equa- 

tion (4.105a) for the axisymmetric envelope oscillation of a mismatched beam in 
a uniform focusing channel. This is not surprising since the smooth-approximation 
theory replaces the periodic-focusing force by the smoothed average force. Apart 
from this agreement, however, the above analysis for the periodic channel is more 
general than our previous calculation in that it includes two transverse degrees of 
freedom yielding two fundamental oscillation modes. This is of particular interest 
for quadrupole channels where small mismatch errors are more likely to produce 
the out-of-phase mode or a mixed mode. By analyzing the envelope perturbations, 
we arrive at a system of coupled linear differential equations with periodic rather 
than constant coefficients, which must be solved numerically. The starting point is 
again the nonlinear (coupled) system of the envelope equations (4.178), (4.179), in 
which we substitute the perturbed envelope functions directly: 
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Here, Xo and Yo denote that matched envelope functions [i.e., periodic solutions of 
(4.178), (4.179)] and [ , 9  denote the small perturbations: 

Due to these conditions, we can linearize the differential equations for the pertur- 
bation functions &(z) and q ( z )  and obtain 

with three S-periodic coefficients: 

(4.213a) 

(4.213b) 

(4.213~) 

To solve this system, we need the matched envelope functions XO(Z) and Yo(z). 
The two second-order equations (4.211), (4.212) are equivalent to a system of four 
first-order differential equations. With g = (6. [', q. q!), we may write in matrix 
notation 

5'(z) = A(Z) * t (d *  (4.214) 

with the S-periodic matrix 

If Z ( z )  denotes the 4 X 4 solution matrix of (4.214) with Z(0) = i!? (E = unit 
matrix), we may write Floquet's theorem as follows: 

where n is an arbitrary integer number. The solution of (4.214) at any value z + nS 
can be expressed as a product of the solution matrix &), 0 S z 5 S, and the 
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matrix z(S) at the end of the first focusing period. If we evaluate the eigenvalues 
and eigenvectors of z (S) ,  we obtain a 4 X 4 matrix of eigenvectors C and a 
diagonal matrix of eigenvalues (denoted by A): 

Z(S) - C = A C. 

If we define the matrix ?(z) by 

it follows from (4.216) that 

Since f (z )  is a solution matrix of (4.214), every special solution [ ( z )  of (4.214) 
can be expressed as a linear combination of the column vectors of the matrix &). 
It is now obvious that a solution of (4.214) can be stable only if A" remains finite 
for n - m. One can readily prove that Z(S) is symplectic and real, so the four 
eigenvalues occur both as reciprocal and as complex-conjugate pairs. Therefore, 
A" can remain bounded only if all eigenvalues lie on the unit circle in the complex 
plane. Mathematically, this problem is identical to the two-dimensional linear 
oscillator without space charge treated by Courant and Snyder (Chapt. 3, [4]). 
Thus, if we express the eigenvalues in polar coordinates, that is, 

A = 1 ~ 1  - e'd, (4.218) 

we arrive at only four possibilities for the four eigenvalues [12], assuming them 
to be distinct, as shown in Figure 4.10: 

(a) All four eigenvalues lie on the unit circle, forming two complex conjugate 

(b) One reciprocal pair is complex with 1A1 = 1 (stable); the other pair is real 

(c) Both reciprocal pairs are real with IAI # 1 (unstable). 
(d) Both reciprocal pairs are complex and are not on the unit circle, so that 

A2 = l / A , ,  A3 = A;, A4 = l/A; ("confluent-resonance" instability). 
By using relation (4.218) we can identify the growth rate (damping rate) 1A1 of the 
appropriate eigenvector passing through one focusing period and the phase shift 4 
of the corresponding envelope oscillation. A growth rate that is not equal to unity 
is an indication of instability. As we can see from Figure 4.10, this instability can 
occur only if IAI # 1, and if  

1. One or both eigenvalue pairs lie on the real axis, that is, 41.2 = 180" [Fig- 

2. The phase shift angles obey the relation (41 + 42) = 360', or are equal 

and reciprocal pairs (no instability). 

with IAl + 1 (unstable). 

ure 4.1O(b) or 4.1O(c)]. 

(41 = 42) [Figure 4.1qd)l. 
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Case 1 can be seen as a half-integer resonance between the focusing structure and 
the envelope oscillation mode [i.e., half an oscillation occurs per period (parametric 
resonance)]. Case 2 is a resonance between both envelope oscillation frequencies, 
since they are equal (confiuent resonance). 

To illustrate the effects of envelope oscillations and instabilities computations 
were performed [12] for both a solenoid and a quadrupole (FODO) channel with 
hard-edge focusing functions as shown in Figure 4.11. The results of numerical 
integrations of Equation (4.214) are plotted in Figure 4.12 for the solenoid channel. 
The left side of each figure shows the CpI,#2 values versus u for several values 
of UO; the right side shows the growth rates lAl versus u. Instability is indicated 
by IAI-values differing from unity. The solid #-lines are the perturbation phase 
shifts obtained by numerical integration and eigenvalue analysis; the dashed lines 
show the results obtained from Equations (4.203), (4.204) for a uniform or smooth 
channel. As can be seen from the figures, for u.0 = 90" these results are nearly 
identical. Above a0 = W", instability occurs in some specific regions. Note that u 
is plotted on the abscissa as a decreasing function so that beam intensity increases 
from left to right. The value of u at the origin corresponds to a0 (zero intensity), 
while u - 0 represents the laminar beam limit ( B  = 0). 

For the solenoid channel, only parametric resonances occur, namely when a 
#-curve reaches the 180"-line. In that case, the smooth approximation results 
differ from the exact periodic ones at and near the regions of instability, as one 
would expect. 
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(b) 

Figurn 4.1 1. Hard-edge focusing functions K ~ ( z )  used in the computations: (a) solenoid channd 
with L / /  = 3.0, period length S = 0.136 m; (b) asymmetric q d w p o b  (FODO) drannd with 
Ll/I  * 0.821, L z / f  = 2.858, and period length S = 1.238 m. (From Refcwunw 12.) 

In the case of the quadrupole channel, shown in Figure 4.13, we are dealing with 
confluent resonances where phase locking occurs between the two modes so that 
41 = 42. The instability occupies a certain range of u values. As 00 increases, 
this patch gets wider and wider, extending over the entire region below u = 90" 
when 00 exceeds 120". 

For both types of beam transport channels, the instability growth rate increases 
with increasing 00, and at sufficiently high values of 00 there is an intensity 
threshold beyond which the beam is unstable for all values of u - 0. The results 
obtained here from the perturbation theory of the K-V envelope equations are 
equivalent with those obtained from the Vlasov equation perturbation analysis [ 131 
for the special case of the second-order even mode. 

As a check of the above linearized envelope perturbation theory and to further 
illustrate the beam behavior in the case of mismatch conditions, the envelope 
equations (4.112) and (4.178), (4.179) for the solenoid and quadruple channels 
of Figure 4.1 1 were integrated numerically. By choosing the appropriate initial 
conditions, one can excite either one of the two fundamental modes or a mixed 
mode. Figure 4.14 shows a pure in-phase mode for the solenoid case. The phase 
advance without and with space charge is uo = a", u = 21.2", resulting in a 
theoretical phase shift of 

4 2  = (2ui + 2u2)'n = 90". 

As can be Seen in the figure, the envelope oscillation exhibits a pattern with 
a wavelength of four periods (i.e., 952 = No), in excellent agreement with the 
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theory, A particle trajectory showing the oscillation period of about 17 lenses 
(in agreement with u = 21.2") is also plotted for comparison in the figure. An 
example of unstable behavior is illustrated in Figure 4.15 for the solenoid channel. 
The parameters in this case are 00 = 120' and u = 34.6". As can be seen from 
Figure 4.12, the in-phase oscillation mode is unstable due to a parametric resonance 
(41 = 180') with a growth rate of 1A1 = 1.283, whereas the 180' out-ofphase 
mode is stable (42 = 134". 1A1 = 1). Figure 4.15 shows the increasing oscillation 
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amplitude for the unstable in-phase mode. A typical particle trajectory in the beam 
which starts out with pseudoharmonic motion is seen to lose its periodicity quickly 
as the envelope becomes unstable. 

Similar results are obtained for mismatched beams in the quadrupole channel. 
Figure 4.16 shows the envelope oscillation in the case 00 = 60", u = 21.2", for 
the in-phase mode whose wavelength extends over four cells in agreement with the 
linear theory. The particle trajectory also behaves as expected. A case of unstable 
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2/53 - 
Ngum 4.14. sdrtmid channel, stabk in-phase mob (UO - a', u - 21'). (From Rofer- 
once 12.) 

behavior (i.e., exponential growth of the beam radius) is demonstrated in Fig- 
ure 4.17. The chosen parameter values of uo = 120°, u = 35" are in the region 
of a confluent resonance where, according to Figure 4.13, one has 

41 = 4 2  = 162", 1A1 = 1.395. 

Thus in this case both modes are unstable. 

wrn 4.15. Solawid chand,  unstablm in-phow mod. (a0 - 120*, u - 34.6'). ( F m  Refer- 
m e  12.) 



PERIODIC FOCUSING OF INTENSE BEAMS 

2 1 s  - 
Fbum 4.16. Qwd~poh chonnd, in-phase mods (a0 - 60'. u - 21'). (From Rdmnm 12.) 

The detrimental effects of envelope instabilities in the focusing region above 
vo = 90" is also observed in computer simulation studies as well as in experi- 
ments. As a consequence, periodic transport channels for high beam currents must 
be designed to operate at values of a0 below 90'. In this region, the smooth ap- 
proximation theory can be applied to design the focusing systems, as was pointed 
out previously. 

f b m  4.17. Quadrupob channel, slightly mimatched k m  (UO = IN', u - 35'). (From 
Rafemna 12.) 
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4.4.4 Cohonnt Beam Owillations duo to In idon Errors and 
Miralignmonts 

In our analysis of periodic focusing so far we have assumed that the lenses 
are perfectly aligned and that the center of the beam coincides with the optical 
axis of the focusing channel. Since such an ideal system cannot be realized in 
practice, it is very important to analyze and understand the effects of injecticn 
errors and misalignments on the beam. One type of injection error that results 
in beam mismatch has already been discussed in the preceding section. There, 
the beam remains centered, but the envelope performs oscillations that may lead 
to beam loss when the beam strikes the drift-tube wall or becomes unstable. In 
the present section we will be concerned with errors leading to displacements of 
the beam center from the ideal optical axis of the channel. Such displacements 
are caused by injection errors and misalignments of lenses or other hardware 
components, and they lead to coherent oscillations of the beam centroid about 
the optical axis. These oscillations are called coherent since they are performed by 
the beam as a whole (i.e., the beam behaves very much like an oscillating rigid 
body). By contrast, the single-particle oscillations about the beam axis are called 
incoherent since they are not in phase (i.e., at any given position different particles 
in the distribution have different phase angles). 

Let us first consider the case where the beam is injected into an ideal, perfectly 
aligned focusing channel with a small aiming error; that is, the beam centroid 
is displaced from the optical axis or makes a small angle with the axis at the 
channel entrance. As a result of this injection error, we expect that the beam will 
perform a coherent oscillation about the channel axis. To determine the frequency 
or wavelength of this oscillation, we must bear in mind that the centroid is defined 
as the center of mass of the particle distribution. Thus the self fields are zero at the 
centroid position (at least to the extent that the effects of conducting boundaries 
can be ignored), and the motion of the centroid is therefore governed by the 
external focusing force alone. This implies that the trajectory of the centroid is 
identical with that of a single particle in the absence of space charge. Consequently, 
we expect that the wavelength of the coherent beam oscillation is given by 
Ao = 2nlko = 2nS/uo, where uo is the phase advance without space charge. 
However, this description is correct only as long as the space-charge forces are 
small. When the self fields of the beam are not negligible in comparison with the 
external focusing fields, the effect of the image charges induced in the conducting 
drift-tube wall by the off-centered beam must be taken into account. As we will 
see later in this section, this image effect will increase the oscillation wavelength 
by an amount that depends on the beam current (or generalized perveance) and the 
drift-tube radius. We will proceed with our analysis by first neglecting the image 
force and then adding it later as a correction. 

Returning now to our discussion of injection errors, let us suppose that the beam 
centroid at the channel entrance (t = 0) has a displacement xo and a slope 4 with 
respect to the optical axis of the ideal channel. With these initial conditions and 
ignoring the image force, as stated, the coherent oscillation of the beam in the 
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focusing channel will be given by the “single-particle” equation 

I 

x(z) = xo cos koz + 5 sin b z  . (4.219) 
ko 

The amplitude of this oscillation (i.e., the maximum displacement from the axis) 
is defined by 

(4.220) 

As an example, a beam injected with an error of xo = 1 mm, xh = 20 mrad into a 
periodic channel with S = 15 cm and a0 = 60’ will perform a coherent oscillation 
with a wavelength A0 = 90 cm and an amplitude of xm = 3.0 mm. By increasing 
the phase advance to uo = 90°, one would decrease the oscillation wavelength to 
I\o = 60 cm and the amplitude to x,,, = 2.2 mm. 

Next, let us consider the effects of lens misalignments. Suppose first that only 
one lens, with period S and located at zi 5 z 5 z j  in an otherwise perfect channel, 
is translationally offset a distance A from the channel axis. If the beam centroid 
within this lens has a displacement x(z) from the channel axis, its transverse 
position with regard to the center of the misaligned lens is x ( z )  - A. Since the 
force experienced by the centroid is proportional to its distance from the lens axis, 
the equation of motion for the centroid trajectory is given by 

where KO(Z) represents the focusing force of the lens. Again using the smooth- 
approximation theory, we can replace KO(Z) by the constant average focusing force 
for the lens period [i.e., K&) - = uo?/S2], and write the equation of motion 
in the form 

Note that z, = (z, + y) /2  defines the center of the misaligned lens period and 
zf - zi = S the length of the period. If we assume that the beam is perfectly 
centered when it enters the misaligned lens (i.e., xi = 0 and x: = 0 at z = zi), 
then the solution of (4.221) is readily obtained as 

X ( Z )  = A[ 1 - cos ~ O ( Z  - t i ) ]  (4.222a) 

and 

for z i  5 z 5 z j .  

xl(z) = ko A sin ko(z - zi) (4.222b) 
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The displacement and slope of the centroid trajectory at the end of the misaligned 
lens period are then 

The misaligned lens thus produces a beam offset that is equivalent to an injection 
error with regard to the motion through the remaining part of the focusing channel. 
Thus we can use Equation (4.219), with (4.223) as initial conditions, to describe 
the centroid trajectory in the perfectly aligned channel section beyond the displaced 
lens. The resulting equation is then given by 

This may be written in the simpler forms 

x(z) = A[COS ko(z - z ~ I  - cos ~O(Z - ZI)] , (4.224) 

or 

where we used ko = uo/S and Z j  

The above analysis can readily be extended to more than one misaligned lens. 
Thus if two neighboring lenses are misaligned, one with offset A1 at Z j  = 21, the 
other with offset A2 at zj = z2 = z1 + S, one finds for the centroid trajectory in 
the channel downstream of the two lenses 

(ti + z f ) / 2 .  

X(Z) = 26 ,  sin ao sin -(z uo - 2,) + 2A2 sin sin y(z - z2) 
2 S 

for z > z2 + y. S (4.226) 

Generalizing this linear superposition to N successive misaligned lenses, one gets 

N 
X ( Z )  = 1 2 A j  sin ao sin %(z - zj) for z > ZN + . (4.227) 

j-1 2 S 

Thus if the misalignment offsets A j  of the N lenses are known, one can calculate 
both the displacement and slope of the beam centroid at the end of the Nth lens 
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period (z = ZN + S/2) or at any position z in an ideal channel section following 
the N misaligned lenses. 

In practice, the alignment state of a focusing channel is known only within a 
certain accuracy limit. The remaining alignment errors below this accuracy limit are 
usually statistical (i.e., random) in nature. The deflections experienced by the beam 
in such a system of lenses with random misalignment are analogous to the problem 
of random walk. This problem is exemplified, for instance, by the scattering of a 
particle passing through a gas and suffering deflections from its path in collisions 
with the randomly distributed gas molecules. We can apply the statistical analysis 
of random walk to estimate an expectation value for the deflection amplitude of 
the centroid after the beam passed through a system of N lenses with random 
alignment errors. To carry this out, we will rewrite Equation (4.227) using the 
trigonometric identity sin(a - /3) = sin a cos /3 - cos a sin /3, which yields for 
the displacement and slope of the centroid trajectory at position z 2r ZN + S/2 

N 

(4.228a) S 
uo 1 N 

2Aj  sin 2 sin -zj 

and 

(4.228b) 

The square of the amplitude, A2 = xf, of the coherent beam oscillation after 
passage through the N lenses is then given by 

O0 I' A 2 = X 2  +(,> x' = [ $ 2 A , s i n ~ c o s ~ z ~  

(4.229) 

This may be written as 
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If the alignment errors Aj for the N lenses were known, Equation (4.230), which 
was derived from (4.227), would allow us to calculate the exact value of the 
amplitude A. However, if the errors are not known and are statistically random 
in nature, we can only calculate an expectation value for A. To accomplish this, 
let us assume that (A1, Az, . . . , AN) represents a set of N independent, identically 
distributed random variables. This implies that we consider an infinite number of 
possible alignment states in which the displacement of each lens can assume any 
random value within a continuum of values over a given range. We will assume 
that the averages (first and second moments) of the distribution for each lens 
are identical and given by bl = (for = & = 0 and - 6'2 = A; = 
j = I ,  2,. . . , N). Each possible set of the N variables will 
for A' in Equation (4.230). If we take the average over all 

Hence the average (expectation value) of A' is 

or, taking the square root, 

yield a different value 
sets, we find that 

(4.231) 

(4.232) 

(4.233) 

- 
where A = A,, = (A2)In, d = Am, = (L\2)lR. 

Thus we obtain the very important result that the maximum rms displacement, 
A, of the beam centroid from the axis of a focusing channel with N randomly 
misaligned lenses is proportional to the rms value of the misalignments, d, and 
increases with the square root of the number of lenses. In addition, it also increases 
with the zero-current phase advance 00 of the channel as sin(oo/2). As an example, 
if a0 - 90", N = 50, and d = 0.2 mm, we find that A = 2.0 mm. It should 
be noted that the above analysis of the effects of lens displacements in one 
transverse coordinate, x, can readily be extended to include misalignments in the 
other directions, y and z, or tilt angles. Such generalization still leads to a relation 
of the form (4.233). However, A then represents the total transverse rms amplitude 
A, = (A: + A;)1n and d the rms sum of all random misalignment errors. 

Let us now discuss the effect of image forces on the coherent motion of a 
beam that is displaced from the axis. Figure 4.18 shows a beam of radius a, 
horizontally offset by an amount f ,  in a conducting pipe of radius b. When the 
beam is centered (i.e., f = 0), the image charges induced on the inner surface 
of the wall are distributed uniformly in azimuth, and there will be no net electric 
field at the center. However, when the beam is offset, as shown in the figure, 
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Y 

t 

Figurr 4.1 8. Off-centsrsd bwm with radius a and displacement 6 in conducting drift tube with 
rodius b can be trsated as a line charge, p ~ ,  if a 4 b.  Image - p ~ ,  is bated at b z / f .  

the image charge varies with azimuth along the pipe surface. From the geometry 
of Figure 4.18, we infer that the image charge has a maximum at x = b , y  = 0 
and a minimum at x = - b , y  = 0, and that there should be a defocusing force 
in positive %-direction on the centroid of the beam. The potential distribution and 
electric field produced by this image charge can be calculated in a straightforward 
way by adding the free-space potential +,(x.y)  of the beam (in the absence 
of the tube wall) and the potential + i (X ,y )  due to the image charge. The free- 
space potential can be found from Poisson’s equation or Gauss’s law. It varies as 
+,(RI) = c#,, - (ppu2/4€o)R:/a2 with distance R1 from the beam center inside 
the beam (RI 5 a) and as 4f(R1) = -(pL/2.rr~0) ln(RI/Rlo) outside the beam 
(RI > a). #a and Rlo an constants determined by the boundary conditions, po 
is the uniform charge density, and p~ = poa2q the line charge density of the 
beam. Note that outside the beam the charge distribution can be replaced by a 
line charge p ~ .  The image potential can be found by placing a line charge of 
opposite polarity, -pL, at a distance xi  from the center of the tube. It varies with 
distance R2 from the image location as 4 i ( R z )  = ( p ~ / 2 7 r ~ 0 )  In(R2/Rdl  where 
Rm is a constant. At the wall of the conducting tube the total potential must be 
zero (i.e,, 4 = 4, + #i = 0 at x2 + y2  = b2). From this calculation one finds 
that the image location is given by xi = b2 / ( ,  as indicated in Figure 4.18 (see 
Roblem 4.9). 

The electric field produced by the image charge at the center of the beam is 
then found to good approximation (for f 4 b )  as 

(4.234) 

The corresponding force on the particle of charge q. F, = qE,, is directed away 
from the axis; hence it is defocusing (i.e., it reduces the net restoring force on a 
centroid particle). 
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In addition to the electric image force there is also a magnetic image force. 
The main difference here is that we must distinguish between the ac case and the 
dc case. When the beam consists of a pulse, or a sequence of pulses, whose time 
duration is short compared to the magnetic diffusion time, the situation is similar to 
the electric image case. The ac currents induced in the conducting wall surrounding 
the beam produce a magnetic image field that must be tangential to the boundary 
surface. The associated force reduces the electrostatic image force by the factor 
1 - p2 = and we obtain for the net image force in this ac case the result 

(4.235) 

If we add this force to the external focusing force and use x in place of 6, we 
obtain the following equation of motion for a particle representing the centroid 
of the beam: 

X" + (k,Z - k:)x = 0 ,  (4.236) 

where 

(4.237) 
k f = F .  K 

K = (I/lo)(2/P3y3) denotes the generalized perveance of the beam, as before. 
The image effect thus reduces the focusing force, and the corresponding effective 
phase advance is given by 

(4.238a) 

When the emittance term is negligible so that K = k;a2 = (o;/S2)a2 this relation 
can be written in the form 

la 

Ueff = oo(l - $) 9 (4.238b) 

which shows a simple dependence on the ratio of the beam radius a to tube radius 6.  
The above analysis is valid only for beams with short pulse lengths, or for the 

early part of a long pulse (i.e., for times that are short compared to the magnetic 
diffusion time, T,,,). 

In the dc case (i.e., for continuous beams or, more generally, for beams whose 
pulse duration is large compared to T,,,), the conducting wall is no longer a boundary 
for the magnetic field produced by the beam. The currents induced in the wall 
decay exponentially with a characteristic time constant T,,,, and at time f * Tm the 
magnetic field of the beam has completely penetrated, or diffused, through the tube 
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walls surrounding the beam. Thus there is no magnetic image effect due to the 
conducting walls in this case. However, there still can be another magnetic image 
force if there is magnetic material outside the beam tube, such as the ferromagnetic 
poles of dipole or quadrupole magnets. The dc magnetic field of the beam will 
then be modified to satisfy the boundary condition requiring that the field lines are 
perpendicular to the pole surface. For simplicity, let us assume that this second 
image effect can be neglected. Then the dc case is equivalent to free space as far 
as the magnetic self field is concerned. The factor 1 - 8' y-? introduced for 
the ac case must then be taken out again, and Equation (4.238) becomes 

(4.239) 

From standard electromagnetic theory one finds for the magnetic diffusion time 
the relation 

(4.240) 

where d is the width of the conducting drift-tube wall, a the conductivity (not to be 
confused with the phase advance a), and p the magnetic permeability of the wall 
material. As an example, for a copper wall with d = 2.5 X m thickness, 
using u 4 6 X lo7 (a * m)-I and p = po = 41r X lo-' H/m, one finds that 
rm = 1.9 X s. Thus, in this case one would use Equation (4.238) for beams 
with pulse length T,, 4 200 ps and (4.239) when T~ > 200 ps. In between these 
two limits one must take into account the penetration of the magnetic field into 
the wall as a function of time. 

To evaluate the significance of the image effect let us calculate a,ff for two 
examples. First consider a 100-mA 100-kV proton beam in a focusing channel 
with uo = 60", lens period S = 0.2 m, and a drift-tube radius of b = 0.02 m. For 
these parameters one finds that K = 2 X Since the beam is nonrelativistic 
(y  = l), the magnetic image is negligible (i.e., the pulse length is unimportant), and 
one obtains for the effective phase advance the result u,ff = 54". This corresponds 
to a decrease of 10% from 00 = 60". 

As a second example, consider an electron beam of 20 A and 100 keV with a 
pulse length of T~ = 2 ps propagating through a periodic solenoid channel with 
a 0  = 80", S = 0.2 m, b = 0.02 m. Since rp 4 rm, Equation (4.238) is valid, 
the generalized perveance is K = 8.4 X and one obtains u,ff = 60" (i.e., a 
decrease of the phase advance by 25%). 

These two examples illustrate that the image force can be significant for beams 
with high perveance. The effect can readily be incorporated into the theory of 
coherent beam oscillations by using u,ff in place of a 0  in Equations (4.219) 
through (4.233) of this section. Thus Equation (4.233) may be written as A = 
26sin(ueff /2)f l .  Since u,ff < ao, we see that the image effect in the line- 
charge approximation appears actually to be benign, as it reduces the amplitudes 
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of the coherent beam oscillations. However, one must bear in mind that in practice 
the image effect may give rise to nonlinear forces and hence emittance increase. 
This occurs when either the beam size is not significantly smaller than the drift-tube 
diameter and the particle distribution is not exactly uniform or when the conducting 
boundaries are nonaxisymmetric, as in the case of electrostatic quadrupole lenses. 
Such conditions would warrant further analysis and numerical simulation studies 
that are beyond the scope of this book. 

Coherent beam oscillations are a particular problem in linear accelerators. In 
a frame moving with the particles, the lattice of acceleration gaps and focusing 
elements is seen as a periodic array of lenses with regard to the transverse 
motion. If the phase advance uo is constant in the accelerator, our analysis can 
be applied to this problem. Otherwise, the theory can be modified appropriately. 
Except near injection, the image effects can be neglected since K - Z/B3y3 
rapidly decreases with increasing energy. In place of the image force, however, 
a much more serious effect arises that is especially worrisome in high-current 
electron linacs. An electron beam displaced from the axis excites electromagnetic 
waves with transverse electric field components in the accelerator waveguide or 
drift-tube structures. The transverse electric fields of these waves then interact 
with the particles arriving later in the beam pulse, thereby increasing the centroid 
displacement from the axis. Due to the increasing oscillation amplitude, even more 
energy is fed into these unwanted electromagnetic modes, leading to further beam 
off-centering. This process, which is intrinsically unstable, is known as the beam 
breakup inrtabiliry. It occurs in both electron induction linacs with relatively long 
beam pulses and in rf linacs with short bunches. In the latter case, the instability 
is also known as the transverse wakefield effect. This is because the effect can be 
described in terms of the wakefield generated by a short relativistic electron bunch 
passing through an aperture in a disk-loaded waveguide structure, or through any 
other discontinuity. The transverse component of the wakefield produced by the 
bunch head can displace the tail of the same bunch or affect other bunches trailing 
behind. The effect of coherent beam oscillations and associated instability can be 
minimized by careful design, such as precision alignment, use of dipole magnets 
for beam steering at periodic intervals, programming of rf phase history in an rf 
linac, and other measures. The variation in rf phase introduces an energy spread 
in the bunch. This, in turn, produces a spread in the transverse oscillations (00) 

which destroys the coherence in the interaction with the transverse electromagnetic 
field components, thereby damping the instability. 

4.5 
CIRCUUR ACCELERATORS 

SPACE-CHARGE TUNE SHIFT AND CURRENT UMlTS IN 

4.5.1 Betatron Tun. Shift duo to Self Fioldr 
So far in this chapter on linear beam optics with self fields we have restricted 
our analysis to straight beams such as beam transport through periodic-focusing 



- - SPACE-CHARGE TUNE SHIFT AND CURRENT UMlTS - 261 

channels. However, the uniform beam model with linear forces can also be applied 
to circular accelerators. The main difference is that in circular systems the particles 
pass through the same focusing lattice repeatedly in many revolutions. Therefore, 
any field errors, misalignments, and nonlinearities have a much more serious 
effect than in straight transport lines. In particular, the change in the betatron 
oscillation frequency due to space charge that can be tolerated is considerably 
smaller in circular machines than in linear accelerators or transport lines. As 
discussed in Section 3.8.6, imperfections and nonlinear forces cause resonance- 
like amplitude growth for the transverse betatron oscillations that must be avoided. 
These forbidden resonances are summarized in Equation (3.406) by the relation 
mu, + nv, = p, where v,, vy are the two betatron tunes and m,n, p are integers. 
In the design of synchrotrons and storage rings, one therefore chooses an operating 
point of v, and vy that is not near any dangerous resonances. However, the 
resonance lines in the v, versus vy diagram are so closely spaced that relatively 
small changes of the betatron tune may drive the beam into instability. By far 
the most important effect in this regard is the tune shift caused by the defocusing 
self-field forces. 

Another important difference between circular beams and straight beams is the 
effect of dispersion due to the momentum spread in the particle distribution [see 
Section 3.6.4, Equations (3.272) to (3.276)]. For the calculations of space-charge 
effects in circular accelerators presented in this section, we will, however, neglect 
the momentum spread. The inclusion of dispersion into the tune-shift formulas is 
given in Section 5.4.7. When dispersion is neglected, calculation of the betatron 
tune shift is a straightforward extension of the smooth-approximation theory for 
a FODO channel presented in Section 4.4.3. Let us assume a focusing lattice 
with v, = vy = vo without space charge and a beam with identical emittance 
c, = cy = c in both directions. Furthermore, assume that the beam is matched, 
having a mean cross-sectional radius x = = a and that it extends uniformly 
along the entire circumference C of the synchrotron. The relationship between beam 
radius a, average focusing strength ki, generalized perveance K, and emittance Q 

is then determined by the envelope equation (4.193), which, if a is replaced by 
a, takes the form 

(4.241) 

The wave number k~ is defined by the ratio of the phase advance per period without 
space charge, 00, and the length of one period, S, that is, 

Introducing the betatron tune YO = N00/2lr  [Equation (3.352)], where N is the 
number of focusing cells along the circumference, C, and defining the mean radius 
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R of the equilibrium orbit by C = 2rR, we get the alternative relation 
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(4.242) 

Likewise, we can define the wave number k and depressed tune v due to self 
fields as 

(4.243) 

The envelope equations (4.241) may then be written in the alternative form 

€2 
k2a - - = 0, 

a3 

where 
k 2 5 e - -  K 

a2 

Subtracting (4.244) from (4.241), we obtain 

(4.244) 

(4.245) 

(4.246) 

Since the allowed tune shift Av = v - vo is very small compared to the tune 
YO (i.e., Av 4 YO), we have 

hence 

From (4.244) we obtain k2 = v Z / R 2  = €'/a4, or 

V 
c = -a2. 

R 

The corresponding normalized emittance is then 

(4.247) 

(4.248) 

(4.249) 
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Substitution of (4.249) in (4.247) yields 

(4.250) 
IR AU = - 

10 en B y2 * 

The above analysis for a continuous, or unbunched, beam can readily be ex- 
tended to the case where the beam consists of discrete bunches. The current I in 
Equation (4.250) must then be replaced by the peak current in the bunch, f. It is cus- 
tomary to use the bunching factor Bf, which is defined by the ratio of the average 
current, 7, to the peak current, f, that is, 

- 7 I 

Bf 
B f = f ,  or f -  -, (4.25 1) 

Note that Bf has the range 0 < Bf 5 1, and that Bf = 1 represents the unbunched 
beam treated above. 

Introducing f = I/Bf in place of the current I, we obtain from (4.250) the 
relation 

- 

(4.252) 
iR 

loenB2y2Bf 
AV - 

An alternative form often found in the literature uses in place of the average 
current the total number of particles N, = ZaRT/q#Ic and in place of 10 the 
classical particle radius r,. This yields 

where 

(4.253) 

(4.254) 

For the proton, r, = 1.535 X lo-'* m, and for the electron, r, = 2.818 X 
m. As mentioned earlier, the effect of dispersion on the space-charge tune 

shift will be discussed in Section 5.4.7. Solving (4.252) for the average current, 
one gets 

(4.255) 

where l o  = 3.1 X lo7 A for protons and 1.7 X 104 A for electrons. 
As the above formulas indicate, the tune shift is proportional to the beam 

intensity (i.e., current I or particle number N,) and is inversely proportional to 
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the normalized emittance t,,, Furthermore, it decreases with increasing energy and 
is therefore most pronounced at the injection point of a synchrotron. As a general 
conservative rule one tries to limit the tune shift at injection to a value of 

IAvl 5 0 . 2 5 .  (4.256) 

As an example, consider the booster synchrotron for the Fermilab proton accel- 
erator (see D.lO, Table B.l in Appendix A). It has a circumference of C = 2wR = 
470 m and an injection energy of 200 MeV (By  - 0.7). The normalized emittance 
for the injected proton beam has a design value of E,, = 8 mm-mrad. Assuming a 
bunched beam with a bunching factor of Bf = 0.25, and taking IAvl = 0.25, one 
finds for the allowed average current the value = 98 mA, which corresponds to 
a total number of particles of N, = 1.7 X 10". 

In practice, tune shifts greater than IAvl = 0.25 may be tolerated as long as the 
emittance dilution or particle losses that occur when a resonance is encountered 
remain within acceptable limits. The problem of resonance traversal of the beam 
due to the space-charge tune shift was first studied theoretically by M. Month and 
W. T. Weng, who concluded that IAvl can exceed the theoretical limit of 0.25 
significantly. [See the review article by W. T. Weng in AIP Conference Proceed- 
ings 153, pp. 349-389, (1987) listed in D.7, and references therein.] This finding 
is in agreement with experimental observations and has also been confirmed in 
numerical simulation studies by I. Hofmann [Part. Accef. 39, 169 (1992)l. It should 
also be pointed out in this context that actual beams usually do not have the uniform 
density profile implied by the above theory. Take, for example, a Gaussian profile 
with standard deviation 6 ,  that is, 

(4.257) 

The radial force due to the electric and magnetic self fields of such a Gaussian 
distribution is a nonlinear function of the radius r . Hence, in contrast to the 
uniform-beam case, the betatron oscillation frequency is a function of a particle's 
position in the beam [i.e., Y = v(r)] .  The betatron tune shift Au of particles near 
the center of the beam is larger than in the equivalent uniform beam, while particles 
in the Gaussian tail have a smaller tune shift. As a result, particles in the core of the 
distribution may encounter a resonance while the outer particles remain unaffected. 
This may lead to an increase of the effective emittance, thereby reducing the tune 
shift and moving the particle distribution away from the resonance. 

From Equation (4.252) we see that the cure for emittance dilution and beam 
loss due to the betatron tune shift is higher injection energy and smaller ring size. 
The original booster synchrotron at Fermilab, for instance, has an injection energy 
of 200 MeV and a radius of 75 m. This was found to restrict the beam intensity 
severely, and an upgrade to 400 MeV has been undertaken. 
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4.5.2 Current Urnits in Weak- and Strong-Focusing Systems 

The theory of tune shift due to space charge presented in this section also applies 
to other circular accelerators, such as betatrons and cyclotrons, where the focusing 
is weaker than in the case of strong-focusing synchrotrons. As an example, let us 
consider a hypothetical betatron with a field index of n = 0.5, hence Y ,  = v, = - 0.7. The main effect in this case is that the space charge decreases the 
already weak focusing force. This, in tun, increases the beam size and may lead 
to particle losses to the walls. An upper limit for the beam current exists where the 
depressed tune approaches zero (i.e., Y - 0), and hence the net focusing force is 
zero. We can calculate this space-charge limit for a betatron from Equation (4.246) 
and obtain 

or 

(4.258) 

As an example, suppose that the betatron has a radius of R = 0.5 m, a useful beam 
aperture of a = 1 cm, and operates at a tune of YO = a. If the electron beam 
is injected at an energy of 100 keV (By  = 0.656), one finds that the maximum 
current is 4.8 A. 

In deriving the relation (4.258) we neglected the emittance of the beam. If the 
emittance is included, we obtain from (4.241) the more accurate results 

or 

(4.259) 

The maximum current that can be injected into the betatron is then reduced 
by an amount that depends on the emittance. On the other hand, the above 
relations show that the current can be increased substantially by raising the injection 
energy (1 - P3 y3).  At an injection energy of 1 MeV (By - 2.783), for instance, 
the maximum current increases by a factor (2.783/0.656)3 - 76.5: in the above 
example from 4.8 A to 367 A if the emittance term can be neglected. 

We note in this context that various methods to improve the focusing, and hence 
to increase the space charge limit, in a betatron have been proposed or studied. 
The first idea, tried unsuccessfully in the 195Os, was to use charge neutralization 
(plasma berarron). More recent interests have focused on high-current acceleration 
schemes involving toroidal magnetic fields [14], modified betatrons with additional 
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toroidal[15], or stellarator-type [16] fields, and other configurations. A good review 
of these various schemes, including a detailed list of relevant papers, can be found 
in Reference 16. 

The net effect of all these schemes is to increase the effective betatron frequency 
significantly. In a sense, the betatron is converted into a strong-focusing device 
with vo > 1. 

The difference between a weak-focusing circular accelerator, such as a conven- 
tional betatron or constant-gradient synchrotron, and a strong-focusing machine can 
be illustrated b comparing the beam current that can be handled by each device. 
Let YO,,,, = 3 0.5 be the effective betatron tune in the weak-focusing machine, as 
in our previous example. The corresponding maximum perveance is then obtained 
from (4.246) by setting v:,, = 0.5 and v2 = 0, that is, 

(4.260) 
a2 

K ,  = 0.5- 
R2 * 

For the strong-focusing device, we will assume that the allowed tune shift is 
1Av,l = Iv, - ~ 0 . ~ 1  = 0.25 U ~ 0 , ~ ;  hence, from (4.247), 

(4.261) 

Assuming that both machines have the same energy, major radius R ,  and minor 
radius a, we find from the last two equations that 

Thus the current ratio scales linearly with the effective betatron tune vo that can 
be achieved in the strong-focusing configuration. 

As a further application of the theory of tune depression developed in this 
section, let us compare a circular, strong-focusing lattice with a linear FODO 
transport system having the same focusing strength per unit length, as defined 
by ko = ao/S = vo/R. For the linear channel, there is no constraint on the tune 
depression (i.e., a - 0, or k - 0). Hence, from Equation (4.246) we obtain for 
the maximum perveance 

K1 = k:a2. (4.263) 

in  the circular system, the depressed tune is limited by an allowed shift of 
IAvl 4 VO, so that 

(4.264) 
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The ratio of the beam currents that can be handled by the two systems is then 
given by 

(4.265) 

if we assume a tune shift of IAvl = 0.25. Thus, as an example, for a tune vo 
between 5 and 6, the linear channel can transport a 10- to 12-fold higher current 
than the equivalent circular machine. 

4.5.3 Effects of Image Forces on Coherent and Incoherent 
btaimn Tun. 

In the foregoing analysis of self-field effects on the betatron oscillations and beam 
currents in circular machines we have not considered the image forces due to the 
boundaries surrounding the beam. For a vacuum tube with circular cross section, 
we could apply the results of Section 4.4.4 directly to our problem. However, in 
practice, many vacuum tubes in circular accelerators have a rectangular or elliptical 
shape, with the height,Ay, usually considerably smaller than the radial width,Ax. In 
general, the boundary problem can be very complicated, as both tube cross sections 
and wall materials may vary along the circumference of the accelerator. Also, as 
discussed in Section 4.4.4, the magnetic field case is much more complicated than 
the electric image problem and one must distinguish between short-time (ac) and 
long-time (dc) behavior. 

The problem of electric and magnetic image forces in vacuum tubes with various 
geometries and boundary conditions was treated in detail by Laslett [17]. We limit 
our analysis to the simple model of a line charge pr. between two infinite conducting 
planes, illustrated in Figure 4.19. As shown in the figure, we assume that the beam 
is displaced in the vertical direction from the midplane by a distance q, which 
is considered to be small compared to the separation 2h of the two planes (i.e., 
q 4 2h). This will allow us to evaluate the image effects for both the coherent 
oscillations of the beam as a whole and the incoherent betatron oscillations of 
the individual particles. Following Laslett [17], we will limit the analysis to the 
vertical motion (y-direction) where the image force is defocusing and the beam 
size is limited by the aperture 2h between the conducting planes. 

The two-dimensional electrostatic field problem in Figure 4.19 can be treated 
either by conformal mapping or by the method of images. We choose the latter, 
which is well known from basic electrostatic theory. The two nearest images 
with respect to the upper and lower planes are shown in the figure. The first 
two have a negative line charge of - p ~  and are located at points y1 = 2h - q 
and y2 = -(2h + q). At a distance y from the origin in the x = 0 plane, these 
two image charges produce electric fields = (p~/27re0)(2h - q - y)-l and 
E;z -- -( pL/2nro)(2h + q + y)-'. The two negative images generate positive 
images, which in turn produce negative images, and so on. 
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Figurn 4.19. Beom raprumtad by a line charge p~ bdwan two conducting plomr. h line 
c h o p  is displaced from he midpkm by a distance q. The first imagu a h  and bdcm ha 
conducting planes om indicated. 

By summation of the contributions from this infinite series of images one obtains 

(4.266) 

which can be written in the form 

+ + 
q - Y  

2 ~ ~ 0  4h2 - (11 + r)' 16h2 - ( q  - 36h2 - (q  + y)2 

(4.267) 

By assuming that (q 2 yl 4 2h, one gets the first-order approximation 
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or 

1 1 1  ) ( 4 9 1 6  
r ) +  I - - + - - - + . . .  1 1 1  E; J= A [ ( l  + - + - + - + ... 

415€ohZ 4 9 16 

(4.268) 

The numbers in brackets associated with q represent the series of expansion of 
a2/6, and those associated with y represent lr2/12. Thus we obtain the result 

(4.269) 

Note that in contrast with the beam in a cylindrical pipe of Section 4.4.4, there 
is an electrostatic image field in our case, even if the beam is centered in the 
midplane. For r] = 0 we get, from (2.269), 

(4.270) 

On the other hand, the image field at the center of the displaced beam is found by 
setting y = 7 in (2.269) and is given by 

(for y = q). i -  P L a  
Ey - 16e0h2 ' (4.271) 

As can be seen from the last three equations, the image fields produce defocusing 
forces in the y-direction. On the other hand, since V - E i  = 0, the corresponding 
forces in the x-direction have opposite signs and are thus focusing. 

Let us now evaluate the effect of the image forces on the betatron oscillations of 
the particles in the beam. If the net force in the y-direction is different from the net 
force in the x-direction, the matched beam will have an elliptical cross section even 
in the smooth approximation being used here. Let a and b denote the semiaxes in 
the radial (x) direction and axial (y) direction, respectively. The trajectory equation 
for particles in the x = 0 plane will then be of the smooth-approximation form 

- k;i y = 0 .  
b(a 2 K -  + b)  1 (4.272) 

The first term in brackets represents the external focusing force, the second term 
the space-charge force without images, and the last term, -k;i, the effect of the 
electrostatic image force. Using (4.270), one finds for the electrostatic image term 

(4.273) 

where K = (I/Zo)(2/fl3y3) is the generalized perveance. 
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The equation of motion (4.272) may be written in the alternative form 

y" + k;y = 0 ,  (4.274) 

with 

- kyZ, . 2 2K 
b(a + b)  

kyZ = k,, - (4.275) 

The tune shift of the incoherent betatron oscillations is then, by analogy to 
Equations (4.246) and (4.247), given as 

2KR2 
b(a + b) 

v; - v;, +E - 

or 

K R ~  Av, L)+ - 
v,b(a + b)  

where the electrostatic image coefficient €1 for our case has the value 

T2 

= 48' 

(4.276a) 

(4.276b) 

(4.277) 

Equation (4.276) includes in the perveance parameter K the focusing effect 
(I - p2 = Y - ~ )  due to the magnetic self field of the beam without magnetic 
image forces. It is thus equivalent to the dc case with no ferromagnetic boundaries. 
The bunched-beam result (ac case) is obtained by setting y2 = 1 in the bracketed 
term on the right-hand side of Equation (4.276). The correction factor due to image 
effects depends on the beam size and is most significant in the dc case (unbunched 
beam). Taking the example of the booster synchrotron for the Fermilab accelerator 
with an injection energy of 200 MeV ( y  = 1.21) and assuming that a = b -5 O.lh, 
one obtains 

X 1.212 X 2 X 0.l2 - 6 X 
b(a + b)  w2 

x -  

48 h2 

which is negligibly small. On the other hand, if the beam size increases (e.g., due 
to interaction with a resonance, mismatch, poor emittance, or other causes), these 
image effects may become significant. However, the above first-order results are 
valid only as long as a 4 h, b 4 h, and one must use nonlinear theory or particle 
simulation to compute the beam behavior in this situation. 
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To analyze the effect of image forces on the coherent motion of a displaced 
beam we set 2 = q and K = 0 in Equation (4.272) and use relation (4.271) for 
calculating kyl. One finds that 

and for the change in the coherent betatron tune 

or 

where 

K R ~  
A v c - -  ych2 ‘lcY ’ * 

(4.278) 

(4.279a) 

(4.279b) 

lr2 

16 ‘ 
QIc = - (4.280) 

The result (4.279) corresponds to the dc case when ferromagnetic boundaries are 
neglected. For a bunched beam (ac limit) we obtain in lieu of (4.279) 

(4.281a) 

or 

Taking the parameters for the Fermilab booster, namely R = 75 m, Bf = 0.25, 
vd) = 6.7, B y  = 0.7, and using f = 100 mA, h = 5 cm, we find from (4.281a) 
that 

m2 

16 
x - =  -0.2. 

4 x 0.1 x 752 
Ay; I v,’ - v$ = - 

3.1 X 107 X 0.25 X 0.0!S2 X 0.73 

In this case the image forces are seen to have a noticeable effect on the coherent 
motion of a vertically displaced beam. 

Laslett calculated the tune shift of the incoherent and coherent oscillations due to 
self-field effects for a variety of other boundary conditions such as rectangular and 
elliptical tube cross sections [17]. For the dc case, he introduced the ferromagnetic 
image force coefficient €2 in addition to the electrostatic image coefficient €1. When 
the beam passes through a dipole bending magnet, for instance, the ferromagnetic 
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boundaries can be represented by two parallel planes separated by a distance 28. 
The dc magnetic image coefficient then has the same value as in the analogous 
electrostatic problem, namely €2 = €1 = .rr2/48. 

The tune-shift equations for the dc case must be modified when ferromagnetic 
images are present. Thus Equation (4.276) for the incoherent tune shift becomes 

(4.282a) 

or 

(4.282b) 

Accordingly, for relativistic beams ()g = 1, y ib 1) and pole-shoe separation 2g 
comparable to the vacuum tube aperture 2h, the ferromagnetic image term is seen 
to be of the same magnitude as the electrostatic image term. 

The corresponding tune shift equation for a bunched beam (ac case), or for pulse 
durations short compared to the magnetic diffusion time T,,,, is 

v; - uyo 2 = - 2KR2 [ I  + €1 
b(u + b)  

or 

AuY - 
vyb(u + b) 

(4.283a) 

(4.283b) 

At relativistic energies the difference between the dc and ac image terms can 
be very significant. As an example, consider the case of the high-current betatron 
with 1 MeV injection energy ( y  = 3,Py  = 2.78) discussed in connection with 
Equation (4.259). Let u = b,b/h = 0.2 and b/g 0 . 1 8 , ~  = €2 = a2/48. For 
a time t C Tm after beam injection, the ac formula (4.283) applies and the image 
term is 

b(a + b )  .rr2 
" h2 48 

= -2 x 0.22 = 1.64 x 

At later times when t > Tm, Equation (4.282) applies and the image term is 

Tr2 - (32 X 2 X 0.2' + 2.7tI2 X 2 X 0.18') = 0.25. 
48 
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This is a very significant change that increases the tune shift and reduces the 
total current that can be accelerated in the betatron. The frequency of the coherent 
motion of a displaced beam is also strongly affected by this time-varying behavior 
of the magnetic image forces. 

The various formulas and examples presented in this section show that the 
correction factors for the space-charge tune shift due to the image forces depend 
on the geometry of the beam and vacuum chamber, the particle energy, and the 
time variation of the beam. Generally speaking, the larger the ratio of beam size 
to chamber height, (a + b)/h, and the larger the energy (i.e., y) ,  the greater is 
the image correction factor. It is interesting to note that this general trend is in 
just the opposite direction as the space-charge term without images, where one 
has the scaling KR2/[a(u + b)] I[/33y3a(a f b)]-' .  Finally, we note that the 
betatron tune shift due to self-field effects, including images, is often referred to 
in the literature as the Lasfett tune shifr. 

4.6 CHARGE NEUTRAUZATION EFFECTS 

4.6.1 lonizaliion Cross M o n s  for Electron and Proton b a r n s  
in Various Gases 

Since in practice it is not possible to obtain a perfect vacuum in the beam tubes 
of accelerators and other devices, there is always a finite probability that partial 
charge neutralization occurs due to ionizing collisions of the beam particles in 
the background gas. In fact, in some cases, such as the transport of low-energy 
H+ or H- beams, or of intense relativistic electron beams, the background gas 
is used deliberately to achieve better focusing or even sclf-focusing via charge 
neutralization, as will be discussed below. The degree of neutralization depends 
on the gas density ns, the chemical composition of the gas, the ionization cross 
section ui for the production of electron-ion pairs, the velocity v of the beam 
particles, and the pulse length of the beam. The density increase with time, dn/dt, 
of the electrons or ions created in the collisions between the beam particles, and 
the number of gas molecules or atoms is given by 

(4.284) 

where nb is the beam density. 
The secondary particles created in the collisions that have the same charge 

polarity as the beam particles are expelled to the walls by the beam's space charge 
if no magnetic fields are present. (If there is a magnetic field, the situation becomes 
more complicated as the particles undergo E X B drift.) Those having opposite 
charge polarity are trapped and contribute to partial charge neutralization. In 
general, the transverse velocity and spatial distribution of the beam and the trapped 
particles are different, so that the charge-neutralization factor f e  is a function of 
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radius r and distance z along the beam [i.e., fc = fc(r, z)]. However, in this section 
on charge-neutralization effects, we treat fc as a constant since we are interested 
here in the gross features and linear beam theory rather than in a truly self-consistent 
description. An important parameter is the charge-neutruluation rime, TN, defined 
as the time it takes to obtain full charge neutralization of the beam ( fc = 1). Sup- 
pose that both beam and secondary particles are singly charged and that the gas and 
beam densities are constant. If we neglect recombination of electrons with ions, 
which is a valid assumption at low density and short times, then Equation (4.284) 
can be readily integrated, yielding n(r) = n b r / r N ,  with the relation 

(4.285) 

for the charge-neutralization time (where n = nb, or fc = 1). The corresponding 
mean free path between ionizing collisions is 1, = TNV = ( t ~ # ~ j ) - ' .  

For an ideal gas, the density at standard atmospheric pressure (760 torr) and stan- 
dard temperature (0°C) is given by Loschmidt's number nL = 2.69 X l@ m-3. 
Thus the relationship between n8 and the pressure p is 

= 3.54 X lo2' X p[torr] = 2.65 X lozo X p [ P a ] ,  (4.286) 

where 1 pascal (Pa) = 7.5 X 
The ionization cross section depends on the velocity v of the beam particles and 

the atomic properties of the gas species. Experimental data and empirical scaling 
laws based on Bethe's theory [18] can be found in the literature. Good references for 
electron impact ionization cross sections in various gases are the papers by Kieffer 
and Dunn [19] for electron energies below 10 kV, and by Rieke and Prepejchal 
[20] for electron energies above 10 keV. Following Slinker, Taylor, and Ali [21], 
the general scaling law for electron impact ionization can be written in the form 

torr and 10s Pa = 1 bar. 

(4.287a) 

or, numerically, 

1'872 f(p)[ln(7.515 X 104A2#12y2) - #I2], (4.28%) 
B2 ai[m'] = 

where uo = 0.529 X m is the Bohr radius, 1, = 13.6 eV the ionization 
energy of atomic hydrogen (Rydberg energy), fi  = u / c , y  = (1 - p2)-IR, and 
me is the electron mass. A1 and A2 are dimensionless empirical constants that 
depend on the gas species. f(@) is a correction function for fitting the data at low 
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energy near the threshold where the kinetic energy T of the electrons equals the 
ionization energy l i .  It is given by [21] 

Note that f(j3) = 0 at T = Ii where ui = 0, and f(B) - 1 for T * l i .  

Prepejchal [20] by 
The constants A1 and A2 are related to the parameters M2 and C of Rieke and 

A1 = M 2  and 7.515 X 1@Az = &IM'. 

Specifically, for electron ionization of molecular hydrogen (Hz), where l i  = 
15.4 eV, one finds (with M2 = 0.695, C = 8.1 15 from Table 1V of Reference 20) 

A1 = 0.695 and A2 = 1.567. 

By substitution of these values in Equation (4.287b), one obtains for the electron 
ionization cross section in H2 the relation 

f(/3)[ln(1.177 X l d P 2 y 2 )  - /3'], (4.289a) 
1.301 X lo-" 

B2 ui[m'] 

with 

lo-' (1.659 X 104B2 - 1). 
B2 f(B) = (4.289b) 

This cross section for electrons in H2 is plotted in Figure 4.20 as a function of 
@ (a) and of the electron kinetic energy T (b). Table 4.1 shows the values of the 
constants for H2, He, Ne, and Ar from the data of Reference 20, where information 
on many other gas species can be found. 

Impact ionization of proton beams at low energies between 0.3 keV and 
5 MeV in various gases was studied by Rudd et al. [22]. The authors found 
that the experimental data could be fit with an empirical scaling law of the form 

where 

4.rra; 
= - [A ln(1 + x )  - B ] ,  

X 

Te TP mrc2P2 
IR 18363, 2IR 

x = - =  -3 -, 

(4.290a) 

(4.290b) 

(4.290~) 

(4.290d) 
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Clguro 4.20. ionization cross rrctions for dectron and prolon booms in hyd- QOS (Hz) as a 
function of p - u/c (a) and k i d c  energy r (b). 

and A,B,C, and D are fitting constants that depend on the gas species. Note 
that v = j3c is the velocity of the protons, T p  = mpu2/2 is the (nonrelativistic) 
proton energy, and T, = m,v2/2 is the kinetic energy of the electron with the 
same velocity as the proton (mp/mc = 1836). At the high-energy end of the 
range covered by this study, say T p  > 1 MeV, one has x * 1, ln(1 + x )  = In x ,  
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T a b k  4.1 Valws of fining constants for ionization cross d n  of 
.kchonr in wvoml gases 

Gas Species Mz = A,  C A2 = 1.331 X 1 0 - s ~ ~ ’ ~ ~  

He 0.745 8.005 
Ne 2.02 18.17 
Ar 4.22 37.93 
Hz 0.695 8.115 

0.6174 
0.1073 
0.1066 
1 S668 

Source: Reference 20. 

1.872 X lo-” 
[A ln(1.879 X 104P2) + B]. (4.29Oe) 

P2 
(r i  (Th = 

On the other hand, for protons with kinetic energies Tp > 1 MeV the behavior 
of the ionization cross section is similar to that of electrons; that is, the relativistic 
formula (4.287) can be applied, setting f(@) = 1. Comparison of relations (4.290e) 
and (4.287b) in the nonrelativistic region near Tp of 1 to 5 MeV where they 
overlap and where B2 4 1 shows that 

Al = A and A2 = 0.25eBIA. 

As an example, let us take the ionization cross section for proton beams in molecular 
hydrogen (Hz). From Reference 22 one obtains for the constants in this case 

A = 0.71, B = 1.63, C = 0.51, D = 1.24; 

A1 = 0.71, A2 2.483. 

The corresponding formulas for the cross section ui are then 

1.872 X lo-” 
B2 ah[rnZ] = 

1.329 X lo-” 
P2 ui [ma]  = 

mrlm21 = 3.575 x 10-15~2~48, 

[0.71 ln(1 + 1.879 X lo4@’) + 1.631 

(4.29 la) 

for Tp C SMcV, (4.291b) 

[ln(l.866 X ld/32y2) - @’I 
for Tp > SMeV, (4.291~) 

Figure 4.20 shows the cross section for protons in hydrogen gas (H2) as 
a function of kinetic energy based on Equations (4.291a) to (4.291b), for the 
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TaMo 4.2 Valws of fitting constants for ionir<rliOn cmss d o n  of 
pmtons in various gasos 

Gas Soecies A - A i  B C 0 A2 = 0.25ewA 

H 
He 
Ne 
Ar 
Kr 
Xe 
Hz 
Nz 
0 2  
co 
coz 

0.28 
0.49 
1.63 
3.85 
5.67 
7.33 
0.71 
3.82 
4.77 
3.67 
6.55 

1.15 0.44 0.907 
0.62 0.13 1.52 
0.73 0.31 1.14 
1.98 1.89 0.89 
5.50 2.42 0.65 

11.10 4.12 0.41 
1.63 0.51 1.24 
2.78 1.80 0.70 
0.00 1.76 0.93 
2.79 2.08 1.05 
0.00 3.74 1.16 

15.193 
0.886 
0.391 
0.418 
0.659 
1.136 
2.483 
0.518 
0.250 
0.535 
0.250 

Source: Reference 22. 

energy range below 5 MeV and on Equation (4.291~) for energies above 5 MeV. 
Table 4.2 lists the values of the constants for H2 and various other gases pub- 
lished in Reference 22, where additional information can be found. Equations 
(4.287) to (4.291) for the ionization cross section show that the dominant parameter 
is the particle velocity u = Bc. As can be seen in the plot of ui versus the relative 
velocity #l in Figure 4.20 (a) the two curves of ui for electrons and protons differ 
only at low velocities near the peak, mi,-, and are practically identical in the 
high-energy region. This “asymptotic” behavior of the cross section, independent 
of particle species, is an important feature of the Bethe theory [18]. It can be used 
to extrapolate experimental data to higher energies, as was done in Figure 4.20 
for both electrons and protons or to estimate the cross sections for other species. 
Thus, the cross sections for positrons (e-), on the one hand, and antiprotons 
and H- ions, on the other hand, are basically identical with those of electrons and 
protons, respectively. 

4.6.2 Linoar Beam Mod01 with Charge Neutralization 
The charge-neutralization effects can be incorporated into our linear beam model 
by using the expression (4.23) for the generalized perveance, that is, 

where KO = ( I / Z 0 ) ( 2 / / 3 ~ 7 ~ )  and f r ( 7 )  is the charge-neutralization factor. The 
parameter T measures the “time into the beam pulse” at a given position in the 
beam tube. Thus, T = 0 defines the instant where the beam front passes through 
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the location of interest. In most cases f e ( r )  can be approximated as a function of 
r by (see [D.4, Fig. lo]) 

(4.293) 

However, there are notable exceptions, such as beams of time duration rp < r N ,  

where fe- = t /rp C 1, or overneutralized beams, where fe,, > 1 for r > 7N. 
Also, in practice, the f e ( r )  curve approaches the steady state Lfc(r) = const, 
dfe /dr  = 01 in exponential fashion [i.e., fe(r) - 1 - exp(-r / r~)] ,  rather than 
linearly with time. But these are minor details that can be easily accounted for 
if they become important. Charge neutralization increases the net focusing force 
acting on the particles and hence reduces the average beam radius. For simplicity, 
let us assume that the external focusing is provided by a symmetrical periodic- 
focusing lattice (i.e., x = 7 = a) and that the round-beam smooth approximation 
can be used. The mean radius a then obeys the envelope equation 

€2 = o  KO a" + kiu - - [I  - y2fe ( r ) ]  - - 
U a3 

(4.294) 

The wave number k,, which represents the external focusing strength, is defined by 
k~ = uo/S [Equation (4.190)]. In circular machines, it relates to the betatron tune 
without space charge, VO, and the mean orbit radius, R, by k, = vo/R [Equation 
(4.242)]. The second and third terms of Equation (4.294) can be combined into a 
single term, k2a, with 

(4.295) 

where k = o/S = 2w/A defines the effective particle oscillation wavelength, A, 
or phase advance, u, in the presence of self fields and charge neutralization. 

Theoretically, a quasi-steady state (matched beam) exists where a" = 0 and 
a = const for any given value of the charge-neutralization factor f e .  If the beam 
is matched at a given time and fe(r)  changes adiabatically, the radius will change 
adiabatically and the beam remains matched at all times (see Section 3.9). The 
increase of the charge-neutralization factor fe (r )  is considered adiabatic if it occurs 
on a time scale that is long compared to a betatron oscillation period Tb = A/u, 
so that Afe/fc 4 1 during the time interval Ar = T b .  If, on the other hand, the 
change of f c ( r )  occurs nonadiabatically (i.e., if the rise dfe /dr  = A f e / T b  during 
one betatron period is significant), the beam cannot be matched for the entire pulse 
duration. In the latter case, if the beam is matched for a particular value of fe(T) 
at a given time r,  it will be mismatched at other times during the pulse and hence 
perform envelope oscillations (see Section 4.4.3). Furthermore, as long as fe(r)  
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varies with time, the frequency and amplitude of these oscillations will also change. 
An estimate of the degree of mismatch can be obtained by comparing the maximum 
and minimum values of the equilibrium radii for the range considered. As an 
example, suppose that a space-charge-dominated beam (Koa2 * e2) is matched at 
7 = 71 = 0 when it is unneutralized cfc = 0). Its radius, a = al, is then obtained 
from (4.294) to good approximation as 

It2 

. I = ( % )  * (4.296) 

At a later time, T = 72, when r2fc(~2) = 1, the space-charge term in the envelope 
equation is zero and one obtains a matched radius of 

IR 
l a 2 = ( ; ) .  

The ratio of these two radii is 

(4.297) 

(4.298) 

For space-charge-dominated beams, where cko 4 KO, the two radii can differ 
significantly (i.e., q/al  4 1). This is the casc, for instance, in low-energy, high- 
brightness proton and H- beams (/3 4 1, fc = 1) and in intense relativistic 
electron beams (/3 - 1, fc = 1 - P2 4 1). If such beams are matched into the 
focusing channel for fc = 0 at the beginning of a pulse, there will be strong 
envelope oscillations in the later parts of the pulse, and vice versa. 

If fc > y2, the space-charge term in the envelope equation becomes positive 
(focusing). For sufficiently high partial neutralization, the positive space-charge 
term becomes equal in magnitude to the negative emittance term. In this case, the 
beam can be "self-focused" (Le., external forces are not required to confine the 
beam). Setting a" = 0 and ko = 0 in Equation (4.294), we find the equilibrium 
condition 

KO 2 
- ( y2 fc  - 1) = - 
U a3 ' 

(4.299) 

from which follows that the neutralization factor fc must satisfy the relation 

€2 

Koa2 
y2fc - 1 = - (4.300) 

Alternatively, for a given value of fc we can solve for the equilibrium radius, 
which yields 

(4.301) 
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When fe  - 1, this relation is identical with Equation (4.71) of Section 4.2.4 for 
a fully neutralized Bennett beam. The equilibrium state of a partially neutralized 
relativistic electron ring confined by an axial magnetic field was first discussed by 
Budker and formed the basis for the electron ring accelerator concept studied in 
the 19709 (see Schumacher [D.4 and references therein]). 

It should be pointed out in this context that the above simplified model represents 
the effects of the secondary charge-neutralizing particles on the beam particles 
by a single parameter, fc(r), but it ignores the dynamical details of the mutual 
interaction between the two particle species. A more accurate theory would have 
to consider the distribution and motion of both particle species in a self-consistent 
manner. The main advantage of the linear beam model is its simplicity and the 
fact that it provides an adequate description of the average behavior of the beam 
(mean radius, net average charge density, etc.). Linear beam codes that include an 
empirically determined charge neutralization factor fe are indispensable tools for 
the interpretation of experimental data and for the design of beam transport systems 
with a charge-neutralizing background gas. 

In the following subsections we discuss the effects of charge neutralization 
for four cases of practical interest: low-energy proton and H- beams, intense 
relativistic electron beams, high-energy circular accelerators and storage rings, and 
plasma lenses. 

4.6.3 Oar Focusing in Low-Energy Proton and H- Beams 

Space-charge effects are most severe at low energy. One of the most difficult 
problems, therefore, is to focus the high-brightness beam extracted from a proton 
or H- source. Such beams must be transported over a distance of typically 30 
to 100 cm and matched into the radio-frequency-quadmpole (RFQ) injector that 
constitutes the first stage of a typical RF linear accelerator facility. The conventional 
method is to use a combination of gas focusing and magnetic lenses (solenoids or 
quadruples) for this task [%I. Magnetic lenses alone are not capable of handling 
the beam. Judicious use of charge neutralization in the background gas improves 
the focusing considerably. Even so, some loss of beam current and deterioration 
of beam quality appears to be unavoidable in such a system. 

To understand the effects of charge neutralization in low-energy beam transport, 
let us first consider a proton beam. Suppose that the kinetic energy of the protons is 
100 keV and that the beam passes through a vacuum tube with hydrogen gas (Hz) at 
a pressure of tom (i.e., a gas density of nd = 3.5 X 10” m3). The collisions 
between the protons and the h drogen molecules cause dissociation (H2 - 2H) 
and produce positive ions (Hz , H+) which are expelled from the beam region 
and electrons which remain trapped and gradually neutralize the positive charge 
of the beam. From Figure 4.20 one finds a cross section of cri = 2 X 10-20m2 
for ionizing collisions by 100-keV protons in Hz. With u = 4.38 X 106 m/s for 
the proton velocity one obtains from Equation (4.285) a neutralization time of 
rN = 32.6 ps. Thus, if the proton beam has a pulse duration of rp > TN, the 
charge-neutralization factor fe will rise linearly with time from zero at T = 0 

Y 



282 UNEAR BEAM OPTICS Wrm SPACE CHARGE 

to fc = 1 at 7 = 32.6 ps and then remains constant. The proton beam radius 
will decrease with time from a maximum at 7 = 0 to a small value at the 
fully neutralized state (7 > TN). To get a rough idea of the magnitude of the 
effect, suppose that the proton current is I = 200 mA (KO - 4 X that 
the normalized emittance c,, = 6 X lo-' m-rad (e = 4 X m-rad), and that 
the average focusing due to magnetic lenses is given by ko = 2.rr/Ao = 2 ~ r  m-'. 
With these numbers one finds from Equations (4.296) and (4.297) that a1 = 10 mm 
and a2 - 0.8 mm, hence az/al = 0.08. This is a very significant change in the 
beam radius, and one would expect that a large fraction of the beam current in the 
initial part of the beam pulse (7 < 32.6 ps) could not be focused into the RFQ 
and would therefore get lost. 

A similar situation exists for the transport of low-energy H- beams except that 
the physics is more complicated. Thus, in contrast to the proton case, the electrons 
produced in the ionizing collisions are repelled from the H- beams while the 
positive ions are trapped and provide the charge neutralization. In addition, one or 
both electrons can be stripped from the H- ion, converting it into either a neutral 
particle (Ho) or a proton (H'). For a 100-keV H- beam passing through hydrogen 
gas (Hz), for instance, the ionization cross section is about the same as in the proton 
case (- 2 X mZ). The cross section for stripping [23] one electron from the 
H -  ion is 4 X mz. Particle losses due to electron stripping depend on the gas 
density and the length of the gas region and may become significant if the density is 
too high. A unique feature of low-energy H- beam transport through a background 
gas is the fact that a state of overneutralization (fe > 1) can be achieved in which 
the potential in the beam region is positive with respect to the wall [Z]. The 
positive ions then experience a repulsive force and escape from the beam region 
with a velocity ui that depends on the potential at the radial position where they 
are created. Secondary electrons can also escape from the positive potential well 
since they are born with an energy distribution [26] that is practically Maxwellian 
with temperature kBTe. The temperature depends on the beam voltage, vb, and the 
ionization potential of the background gas, Vi, by the approximate relation [26,27] 

(4.302) 

where mb/me represents the mass ratio of beam ions and electrons with mblm, = 
1836 for protons and mb/m. = 1838 for H- ions. As an example, the ionization 
potential of molecular hydrogen (Hz - H i  + e) is Vi - 15.4 eV. Hence, 100- 
keV proton or H- beams produce electrons with a temperature of kBTe = 19.3 eV 
and a corresponding mean energy of 1SkBTe - 29.0 eV. 

According to the theory [27], a quasi-steady state exists in which the H- 
beam is overneutralized ( fe > 1) (i.e., self-focused) and in which the positive 
potential difference between the center and the edge of the beam is on the order 
of A& - kBTc/e. In this state, the number of electrons and positive ions created 
by collisions of the H- beam in the background gas is exactly balanced by the 
number of electrons and ions escaping from the beam. This overneutralized state 
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can occur only when the gas density exceeds a critical value, ng,o, where the mean 
escape time of the positive ions, ~ i ,  is equal to the neutralization time, TN, and 
the beam is fully neutralized (fe = 1). If one takes ~i = f/q, where is the 
mean ion velocity and f = a/2 is the mean escape distance equal to half the beam 
radius a, one obtains for the critical gas density the relation [25] 

2 iTi 1 
ng,o = - - - 

a V Ui 
(4.303) 

The mean escape velocity Vi depends on the temperature of the positive ions, 
which is assumed [U] to be on the order of keTi = 0.1 eV. As the beam tends 
to become charge neutralized ( fe - I), the initially negative beam potential goes 
toward zero ( A d  - 0). The positive ions are then no longer trapped but can escape 
to the wall with a velocity Vie  For a gas density ng < ng0, the ion escape time 
is faster than the neutralization time (Ti < TN), hence the beam will not become 
fully neutralized. At the critical density, nB = ng0, the two effects (ion escape 
and creation) exactly balance each other; hence fe = 1, At$ = 0. When the gas 
density exceeds the critical value, ng > ng0, the beam becomes overneutralized. 
The self-focused steady state described above is achieved when the net focusing 
force acting on the H- beam due to the positive space charge ( fe > 1) is sufficient 
to balance the beam divergence due to the emittance. The positive beam potential 
Ad in this equilibrium state is determined by the electron temperature, which is 
considerably higher than the ion temperature (A4 = ~ B T ,  * k ~ T i ) .  As a result, 
the ion escape velocity is greater than at the critical density; that is, we have to good 
approximation 'iri = (2A&/mi)ln rather than Vi = (kBTi/mi)'" at ng = ngo. 

To minimize stripping losses and other problems in a low-energy H- beam 
transport system with gas focusing, one prefers to operate at as low a gas pres- 
sure as possible. Since, according to Equation (4.303), the critical gas density 
is proportional to the ion escape velocity (n,o - i T i )  and Vi scales with the ion 
mass as t i i  - mi In, it is advantageous to use a background gas with high atomic 
mass such as xenon (atomic mass number A = 131.3). The ionization cross sec- 
tion for a 100-keV H- beam in Xe gas is comparable to that for protons [22] 
(i.e., ui - 11 X m2). Compared to molecular hydrogen (A - 2), the crit- 
ical density which scales as ngo - mi-'nu;' is lower in xenon by a factor of 
(131/2)ln(1I/2) = 44.5. 

Let us now examine the steady state of a self-focused H- beam in the framework 
of the linear theory developed in Section 4.6.2. With y = 1, we obtain from 
Equation (4.300) for the neutralization factor fe that is required to focus a beam 
with emittance LC, perveance KO, and radius a the result 

- 

(4.304) 
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where I. = 3.1 X lo7 A is the characteristic current. Alternatively, one can solve 
for the beam radius and get 

(4.305) 

At first sight, Equation (4.305) suggests that the beam radius decreases with 
increasing current and increasing charge overneutralization. However, the product 
Z(fc - 1) is related to the positive potential difference in the overneutralized H- 
beam by 

(4.306) 

according to Equation (4.14). At the same time, A 4  is proportional to the electron 
temperature, and one has approximately 

(4.307) 

as was pointed out in the discussion following Equation (4.302). Substituting 
(4.306) and (4.307) into (4.305), one obtains for the beam radius 

Thus, according to this rather crude model, the equilibrium radius of an over- 
neutralized, self-focused H- beam scales as a - cn/Vf4; that is, it is linearly 
proportional to the normalized emittance E n ,  depends only weakly on the beam 
voltage and, most surprisingly, is independent of the beam current, I. For a 100- 
keV H- beam propagating through xenon gas (ionization potential Vi = 12.1 V) 
and having a normalized emittance en = 2 X m-rad, one obtains a radius 
of a = m = 1 mm. This constitutes a very strong focusing effect which 
cannot be achieved by external means (magnetic or electrostatic lenses) unless the 
beam current is very small, say I 5 50 mA at 100 keV. This theoretical result 
explains the appeal of gas focusing. In practice, however, it is very difficult to 
achieve the ideal equilibrium state described here, and gas focusing in both H- 
and proton beam is not well understood theoretically. Geometry effects, plasma-type 
instabilities, local pressure variations, and other factors make theoretical modeling 
extremely difficult. Charge neutralization alone is usually inadequate and must be 
supplemented by magnetic solenoid or quadrupole lenses to achieve better control, 
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especially for matching the beam into the RFQ accelerator. Even so, substantial 
beam losses and emittance growth are typical for such systems. 

Electrostatic quadrupole (ESQ) lenses, which have been used successfully for 
heavy ions [28], or combinations of ESQ and einzel lenses offer an attractive 
alternative for low-energy transport of high-brightness H+ and H- beams [27, 
29, 30). These provide strong focusing and at the same time prevent charge 
neutralization and plasma buildup since the ions and electrons created in collisions 
with the background gas are immediately accelerated to the ESQ electrodes with the 
appropriate voltage polarity. Ongoing research in this area will undoubtedly lead to 
improved designs for low-energy transport of both H- and proton beams [24,30]. 

4.6.4 C h a ~ N o ~ l i z a t i o n  E M S  in lnhnw Relativistic 
Electron b a r n s  

For high-energy particle beams, the space-charge neutralization effects differ from 
the low-energy cases discussed in Section 4.6.3 in two ways. First, the ionization 
cross sections are considerably lower than near the peaks of the ionization curves 
(see Figure 4.20). Second, the magnetic self field of the beam reduces the space- 
charge defocusing force by the factor 1 - p2 = y-2  at relativistic velocities. This 
means that one can have self-focusing when the beam is only partially neutralized, 
as pointed out before. 

Let us now examine the effects of charge neutralization in intense relativistic 
electron beams. Such beams are produced by applying high-voltage pulses in 
the range 0.1 to 10 MV with time durations of typically 10 to 100 ns across a 
diode. Electron currents ranging from lo3 to 106 A are produced mostly by field 
emission; thermionic cathodes are also being used when high-brightness currents 
in the kiloampere range are desired. (For a general review of the physics of intense 
charged particle beams, see Miller [C.18].) 

An important parameter in the theory and application of intense relativistic 
electron beams is the spacecharge limiting current, IL,  discussed in Section 4.2.3. 
We first consider the case where the beam current is less than I t .  As a specific 
example, let us examine the self-focusing effect in a 1-MeV 5-kA electron beam. 
Suppose that this beam has an emittance of 6 = 5 X m-rad, a pulse length 
of T~ = 30 ns, and that it is injected into a drift tube filled with hydrogen gas 
(H2) at a pressure of p = 50 mtorr. Let the initial beam radius be u = 1 cm and 
the drift-tube radius be b = 3 cm. The geometry of this system is illustrated in 
Figure 4.21, which also shows the potential on the beam axis when the beam can 
propagate into the drift tube for I < I t  (solid curve). For the case where I > I L ,  

which will be discussed later, the beam cannot propagate and forms a so-called 
virtual curhode near the injection plane; the potential then has the shape shown 
by the dashed curve. 

From Figure 4.20 the ionization cross section for 1-MeV electrons in H2 gas 
is 2 X m2, and the resulting neutralization time is T N , ~  = 100 ns (i.e., 
considerably longer than the pulse length of the beam). However, the positive 
hydrogen ions produced in the collisions are accelerated in the potential well of 



586 -- LINEAR BEAM OPnCS WITH SPACE CHARGE 

Z 

v (0, z)  

(b) 

Figurr 4.21. (a) E h  beam propaeoting hmqh a vacuum drift tuba and (b) potential on 
beam axis; tho d a s h d  CUM indicates he potential when tlm bwm current d he rpacrchagr 
limit ( I  > I L )  and dechns am n M  k k  (vidual calhodr formation). 

the beam to energies in the range of 100 keV, where they are much better ionizers 
as the 1-MeV electrons. As mentioned earlier, the ionization cross section for 100- 
keV protons in H2 gas is 2 X m2, and the resulting neutralization time at 50 
mtorr is TNJ = 6.5 ns. Olson, who studied this effect, estimated that the effective 
neutralization time due to the combined action of the relativistic electrons and the 
positive ions in H2 gas can be approximated by the relation [D.4, p. 491 

(4.309) 

which for p = 50 mtorr yields ~f = 20 ns. The neutralization factor fc thus 
increases linearly with time as fe(7) = 7/72' for 7 5 ~i = 20 ns and then re- 
mains constant at fe = 1 for the remaining 10 ns of the electron beam pulse. For 
the given values of the beam radius at injection (a0 = 1 cm) and drift-tube radius 
(b = 3 cm), the space-charge limiting current from Equation (4.61) is 1~ = 6 kA, 
which is above the beam current of 5 kA. The beam front will thus propagate 
into the drift tube, but the beam radius will blow up rapidly and hit the drift- 
tube wall due to lack of focusing. As the charge neutralization increases with 
time, the radial divergence will decrease until the equilibrium condition is reached 
at a = a0 = 1 cm. Since KO = 2.6 X lo-' and E 5 5 X lo-' m-rad, we obtain 
from (4.300) a neutralization factor of fc = 0.12 that occurs at a time of 2.4 ns 
after injection of the beam front. If this value of the neutralization factor could 
be kept constant, the beam radius would remain matched, with a - 00 = 1 cm, 
through the remainder of the pulse. In fact, however, fc increases further, hence 
the beam will become overfocused and experience large envelope oscillations. The 
amplitude and wavelength of these oscillations for a given slice of beam within 

e f  
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the pulse (defined by the time T from the beam front) can be obtained by solv- 
ing the envelope equation (4.294), with initial conditions uo = 1 cm, u; = 0 and 
using the value fC(r) for the neutralization parameter. The large envelope oscil- 
lations in this example of a relativistic electron beam are unavoidable since the 
change of fC(7) during the first 20 ns is nonadiabatic. 

A special situation arises when the electron-beam current, I, exceeds the space- 
charge limiting value, ZL, given in Equations (4.61) and (4.62). In this case the 
beam front will not propagate into the drift tube and a virtual cathode forms 
until fC(7) becomes sufficiently large that ZL exceeds the beam current, so that 
I < ZL. The beam behavior depends very strongly on the pressure of the gas in 
the drift tube. An interesting feature is the fact that the positive ions formed in 
the collisions between electron beam and background gas experience collective 
acceleration as the electron beam propagates into the drift tube after it is suf- 
ficiently charge neutralized. The collective acceleration is attributed to the high 
electric field associated with the virtual cathode and its subsequent motion as the 
beam propagates. Figure 4.22 depicts the situation in the early stage where the 
beam enters into the drift region through the anode plane. A fraction of the beam 
corresponding to the limiting current, I,, will propagate into the drift tube. The 
rest, corresponding to the difference I - I L ,  will be reflected back into the anode 
and diode region. A virtual cathode forms at a short distance dm beyond the anode 
plane. The associated potential variation along the z-axis is depicted at the bottom of 
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Figure 4.22. The potential drops almost linearly from zero at z = 0 to a minimum 
of -V, at z = d m ,  whose magnitude can exceed the electron-beam voltage, vb .  

Using a planar geometry the electric field at z = 0 can be calculated in terms of 
the injected current density J and the electron energy factor 76, and one obtains 

With J = I/& this can be expressed as 

(4.310) 

(4.311) 

where a is the beam radius and l o  = 17 kA the characteristic current. As an 
example, for I = 210 = 34 kA and a = 1 cm one gets E = 485 MV/m. Theory 
and computer simulation show that the virtual cathode potential actually oscillates 
axially and in magnitude with roughly the plasma frequency, up, about mean 
values of d, and V,, where the latter corresponds to the beam voltage, v b .  If a 
background gas is present and the beam becomes charge neutralized, the virtual 
cathode moves forward. Collective ion acceleration is observed in an intermediate 
gas pressure regime (typically, 50 to 100 mtorr). If the pressure is too low, the 
beam will not be neutralized during the pulse duration time (i.e., TN > T,,); hence, 
it will not propagate and no collective ion acceleration is observed. If the pressure 
is too high, neutralization occurs so fast that there is no time to establish a virtual 
cathode, and hence no collective acceleration can occur. The positive ions that 
are accelerated in the intermediate pressure regime are found to have a broad 
energy spectrum, with a mean energy that is approximately equal to the electron 
kinetic energy for singly ionized particles (i.e., - qVb) and a peak energy of 
Ti,mx 5 1.SqVb. The peak enetgy can be considerably higher if the gas is confined 
to a small region near the anode and the drift-tube region downstream is vacuum. 
Simulation studies [31,32] show that as a plasma is formed by collisional ionization 
in the localized gas region, the virtual cathode moves from the anode plane to the 
plasma surface on the vacuum side. A group of ions born near the anode gain an 
energy of qvb as they fall down the potential well. When the well begins to move, 
they “surf” along and gain an additional energy of - qE Az, so that 

where Az is the width of the localized gadplasma region. In this configuration 
peak ion energies of three to eight times the electron energy have been observed. 

Collective ion acceleration methods using the space-charge field of intense 
relativistic electron beams were studied extensively in the 1970s. General reviews 
of the work during this period can be found in the books by Olson and Schumacher 
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[D.4], Rostoker and Reiser [DS), and Miller [C.18]. More recent studies have 
been concerned with the external control of the virtual cathode motion through 
localized gas channels to increase the ion energy. By injecting laser-produced Hz 
gas clouds along the electron-beam path in the vacuum drift tube in a properly timed 
sequence, Destler et al. [33] were able to extend the surfing effect and obtained 
peak proton energies of Tisllu - 20qVb. However, so far this scheme has not yet 
been employed to build an inexpensive practical accelerator for isotope production 
or other applications. 

Current interest in the collective accelerator field has shifted toward laser beat- 
wave and wcrkefield acceleration in dense plasmas, where, theoretically, electric 
fields in the range of Z 1 GeV/m are predicted, and other concepts. Most of these 
schemes are aimed at future linear e'e- colliders in the TeV range, which require 
very high gradients to be economic in cost. A major problem facing these novel 
schemes is the high luminosity requirement for such a linear collider. It is difficult 
to see how the high particle intensity and low emittance needed can be achieved. 
However, it is still too early to assess the ultimate feasibility of a collider based 
on one of these new methods. A recent review of the work in this new field can 
be found in [D.8]. 

4.6.5 Chargo-Noutmlization Effects in High-Enorgy 
Synchrotrons and Stomgo Riwr 
In high-energy synchrotrons and storage rings, partial charge neutralization in the 
residual gas background of the evacuated beam tubes may significantly alter the 
betatron tune. However, there is a major difference between continuous beams 
and bunched beams. The situation in the latter case is much more complicated, 
and in this section we consider only the continuous-beam case. Since the residual 
vacuum pressure is usually much lower than in the cases considered in previous 
subsections, charge-neutralization effects in circular machines occur adiabatically 
(i.e., on a time scale that is large compared to a betatron oscillation). The beam is 
thus in a quasiequilibrium state at all times, except when a resonance instability 
is encountered. With a" = 0 and = vo/R, one obtains for the beam envelope 
from (4.294) the smooth-approximation equation 

(4.3 13) 

The parameter I measures the time after injection of the beam into the machine. If 
the emittance remains constant, the beam radius decreases with increasing charge 
neutralization, However, in circular machines the change in the betatron tune, Av, 
is much more important than that of the beam size. To calculate this tune shift due 
to charge neutralization we can use the formulas derived in Section 4.5 by making 
the substitution K = Ko[l - 7Zfc(~)]. In lieu of (4.247), (4.250), we then obtain, 
respectively, 

(4.314) 
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or 

(4.315) 

Thus, if the machine operates in a nonaccelerating cycle where y = const and Z = 
const, the tune depression Av will have a negative maximum at 7 = 0, fd(0) = 0 
and then IAul will decrease linearly with time. If the cycle lasts long enough, Au 
will go through zero at ~ J T )  = y-2 and then become positive at later times. Hence, 
the possibility exists that u may be driven into a resonance above the single-particle 
design value vo (rather than below when charge neutralization is negligible). 

These effects are most significant when the beams are unbunched so that the 
neutralizing particles from the background gas can accumulate without interruption. 
A numerical example that illustrates the effect of charge neutralization on the 
betatron tune is given in Problem 4.14. 

In storage rings where high-energy particles are trapped for many hours, special 
measures must be taken to prevent charge neutralization. Thus, an ultrahigh vacuum 
of p 5 torr is maintained in these machines. However, even at these low 
pressures the typical charge neutralization time is still less than a minute. Therefore, 
clearing electrodes have to be installed along the ring with sufficient electric field 
strength to extract the charge-neutralizing particles from the beam. Even so small 
uncleared pockets of ions (or electrons) remaining trapped in the electrostatic 
potential well of the beam may cause serious beam-quality deterioration and beam 
loss. These detrimental effects are caused by dipole or quadrupole-type instabilities 
which occur when the ion bounce frequency, oi, in the potential well of the beam 
is in resonance with a sideband frequency of the beam's betatron oscillations. 

Dipole-type instabilities are excited when the center of mass of the beam particle 
distribution (beam centroid) and that of the trapped ion distribution are displaced 
from the equilibrium orbit and from each other in one or both transverse directions. 
In the following we present a brief linear analysis of this effect while referring to the 
original literature [34, 351 for further details. Let us consider a relativistic electron 
or antiproton beam with trapped positive ions in a synchrotron or storage ring. (The 
same analysis will, of course, also apply to a proton beam with trapped electrons.) 
To simplify the theory, we will use the smooth approximation and assume that the 
betatron tune and emittance is the same in both transverse directions. The beam 
then has circular cross section with effective radius u = 25, where 2 = is the 
rms width in each transverse direction. The distribution of stationary positive ions 
trapped in the beam is also assumed to have a circular cross section with radius 
u. Suppose that the beam centroid as well as the center of the ion distribution 
are displaced in the x-direction from the equilibrium position by amounts x b  and 
Xi, respectively, where x b  4 u and Xt 4 u. This displacement could be either 
in the horizontal or vertical direction. The coherent motion of the beam and ion 
distribution is then described by the coupled equations 
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where wo = u/w  is the angular revolution frequency, i? the average orbit radius 
of the beam, and vo the betatron tune without space charge. oj is the ion bounce 
frequency in the spacecharge well of the beam and is given by 

(4.317) 

where q and mj are the ion charge and mass, respectively, and lib is the beam 
density. The frequency Obi represents the focusing effect of the positive ion 
distribution on the beam and is given by 

(4.318) 

where fe = ?ti/&, is the charge-neutralization factor and m b  the mass of the beam 
particles. 

Since the ions are stationary while the beam particles are moving with velocity u 
in the direction s = We = (u/wo)8 along the circular orbit, the dot representing 
the total time derivative implies that 

(4.319a) 
* d x b  a f b  aFb a F b  aFb + wo- Fb dr a t  as at ae 
- E - + -v z - 

for the beam, and 

(4.319b) 

for the ions. 
Let us  now try a solution of Equation (4.316) that is of the form 

exp [i(ot - k,s)] = exp [ i (ot  - re)], where Ass = k,(u/oo)8 = 18 and 1 is an 
integer, that is, 

z b  = %otxp[i(ot - re)], 
Xi  = xioexp[i(ot - re)]. 

(4.320a) 

(4.320b) 

Differentiating and substituting in Equation (4.316) then yields 
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from which one obtains the dispersion relation 

[(o - l o o ) 2  - w;](w2 - 0;) = W ; i o ; .  

The frequency o b  in the preceding two equations is defined as 

(4.322) 

(4.323) 

Equation (4.322) is a fourth-order algebraic equation for the unknown frequency w 
of the coherent oscillations of the beam and ion centroids. It has, in general, four 
roots that depend on the values of the frequencies 00, W b ,  o i ,  o b i ,  and the integer 
(space harmonic) 1. The latter determines the number of spatial oscillation periods 
per revolution of the perturbation. The general analysis of the dispersion relation 
reveals large regions of resonant-type instability in parameter space. Graphical 
plots of O b  versus oi for given values of the other parameters show that only 
a small region near the origin is stable while instability exists for all values of 
W b , O i  outside this region [34]. When the right-hand side of Equation (4.322) is 
Small (i.e., WbjWi  4 0') and, by implication, o b i  4 vooo, one can obtain in the 
neighborhood of the resonance the approximate solution [35]. for low-frequency w : 

(4.324) 

with 
1 
2 

6 = - (loo - Yo00 - Oj). (4.325) 

Resonance occurs when S = 0, that is, 

and 

(4.327) 

The negative imaginary part of the frequency defines the growth rate r of the 
instability, which is given by 
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or 

where we used relation (4.318) for W b i .  

We conclude, therefore, that in the unstable parameter regime where the above 
approximation is valid (low-frequency o, small partial charge neutralization, i.e., 
fc 4 1, etc.), the two beam centers oscillate coherently at the ion bounce frequency, 
of. At the same time, the ion bounce frequency corresponds to a side band, 1 - yo, 

of the betatron tune according to (4.326). 
Quadrupole-type instabilities are caused by mutual excitation of oscillations in 

the shape, or envelope, of the beam and the shape of the ion distribution. They 
are qualitatively somewhat similar to the envelope oscillations discussed in Sec- 
tion 4.4.3 except that in the present case we have a resonant interaction between 
two particle species rather than between the beam and a periodic-focusing lattice. 
Linear analysis [34] shows that the quadrupole resonances occur when 

" i  = (; - +, (4.329) 

where 1 is an integer, as before. In the O b  versus oi diagrams, the resonant-type 
instabilities of the quadrupole type have the form of narrow bands, with the first 
one occurring in the stable region of the dipole interaction. The most important 
aspect of both dipole and quadrupole instabilities is that they depend on the beam 
current, or total number of particles stored in the ring, and on the beam size, or 
emittance. Assuming a uniform-density round beam with radius a and a negligible 
degree of partial neutralization (say, f r  S 0.01), the ion bounce frequen 
potential well of the beam is readily calculated as 

" i = ( z q v I )  I t 2  , 

m i  a2 

y in the 

(4.330) 

where q and m i  are the ion charge and mass, respectively, and V, is Lie beam 
potential as defined in Eqtdtion (4.14) (see Problem 4.17). As the total number 
of beam particles stored in the ring is increased, the beam potential V, rises and 
instability occurs when a dangerous resonance of the type predicted by (4.326) or 
(4.329) is encountered. 

Dipole and quadrupole instabilities were found to severely limit the particle 
number in the antiproton @) accumulator rings at CERN and Fermilab [36]. 
At CERN, €or instance, the betatron tune is vo = 2.25 in both the horizontal 
and vertical directions. Signals from pickup electrodes indicated when instability 
occurred. The main culprits are thought to be CO' ions, whose bounce frequency 
in the beam matches the resonant frequencies inferred from the measurement. By 
applying rf signals with appropriate frequencies and phases it was possible to 
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damp the most prominent dipole instability with 1 = 3 at 01 = (3 - v0)oo. This 
technique, which introduces a spread in the particle oscillation frequencies, thereby 
detuning the resonance condition, is known as Landau damping. A second method 
that has been found effective in damping instabilities is called ion shaking. An rf 
field applied to the beam by electrodes induces coherent oscillations of the gr beam 
about the equilibrium orbit with very small amplitudes of less than 0.01 mm. If 
the frequency of these kicker signals is chosen to be close to one of the dipole 
sideband resonances of 1 2 YO, the oscillations of the trapped ions are resonantly 
driven to large amplitudes so that they effectively escape from the beam’s potential 
well. Using this technique it was possible to increase significantly the number of 
antiprotons stored in the accumulator ring [36]. 

4.6.6 Plasma Lanus 

The charge neutralization effects discussed in the preceding sections occur “natu- 
rally” when a charged particle beam passes through a region of gas. If gas pressure 
and ionization cross sections are sufficiently high, the beam creates a plasma along 
its path. Plasma particles with the same charge polarity as the beam particles are 
expelled by the beam’s space-charge force, and the remaining oppositely charged 
particles reduce the repulsive Coulomb force of the beam. 

A major drawback of such “gas focusing” is the fact that the degree of charge 
neutralization varies along the beam according to Equation (4.293). Furthermore, 
for low-energy (nonrelativistic) ions even full charge neutralization is not sufficient 
to balance the outward pressure represented by the emittance term in the beam 
envelope equation. This has led to proposals and exploration of alternative methods 
such as forming the plasma by ionizing the gas prior to the beam arrival, using the 
magnetic force due to the discharge current in a z-pinch, or creating a nonneutral 
electron plasma for focusing of positive ions. Such plasma lenses are of particular 
interest for focusing intense beams to a small spot size. Notable examples are the 
focusing of the intersecting electron and positron beams in a linear e’e- collider, 
the final focusing of heavy ion beams for inertial fusion, and the matching of 
low energy proton, H-, or other ion beams into the small aperture of an RFQ 
linac (discussed in Section 4.6.3). Theoretically, the focusing strength of a plasma 
lens can exceed the capability of conventional and even superconducting magnetic 
lenses by as much as several orders of magnitude depending on the particular 
application. Experimentally, many difficulties have been encountered in developing 
a practical device, and this is still a very active field of research. A detailed 
discussion is beyond the scope of this book; we will merely present a very brief 
review of the three methods mentioned above. 

Historically. the first important event in this field was Gabor’s proposal in 1947 
to use a nonneutral electron plasma, confined in a magnetron-type trap, as an 
effective space-charge lens for focusing of positive ions beams [37]. This Gabor 
fens, as it became known in the literature, was investigated experimentally and 
theoretically in the former Soviet Union, at Livermore, Brookhaven, and more 
recently at Fermilab 1383. The Fermilab experiments were concerned with focusing 
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proton and H- beams into an RFQ linac. None of this past work has led to a 
practical device. A theoretical comparison of the Gabor lens with conventional 
lenses and reference to important past studies can be found in [39]. 

In the z-pinch type of plasma lens, a high axial current is generated in the plasma. 
The Lorentz force, F, = p , B e ,  due to the azimuthal magnetic field produced by 
the current focuses the beam particles. Such a lens was used for the first time 
to focus the proton beam from the 184-inch cyclotron at Berkeley in 1950 [40] 
and for capturing 3-GeV muons and kaons at Brookhaven in 1964 [41]. More 
recently, a z-pinch was employed in a successful demonstration experiment at GSI 
Darmstadt, where a 460 MeV heavy-ion beam (Ar ' I + )  was focused to a small 
spot size of about 1 rnm [42]. This experiment was motivated by the final focusing 
requirements for heavy ion inertial fusion. 

The most active research work in recent years has been concerned with the use 
of plasma lenses for focusing the electron and positron beams to the extremely 
small spot size required at the interaction point of a linear e+e- collider [43]. 
Following the first proposal by Chen [44] in 1987 there have been a number of 
theoretical studies, e.g., by Rosenzweig and Chen [45], Whittum [46], Chen et al. 
[47], Katsouleas and Lai [48]. There have also been proof-of-principle experiments 
[49,50] of a preliminary nature. 

In the most recent theoretical studies it is proposed to use an adiabatic, tapered 
plasma channel with increasing density (focusing strength) to guide the beams into 
the interaction region of the linear collider [47,48]. In the case of the electron 
beam, for instance, the initial ion density ni is considerably less than the beam 
density n, ( f, = ni/n, 4 1). It then increases adiabatically so that full charge 
neutralization ( f, = 1) is reached towards the end of the channel. In practice, the 
problem of forming such a plasma column with the desired properties needs to be 
solved. In the Japanese experiment an argon plasma was produced by a discharge 
and confined by the octupole field of permanent magnets [SO]. Another possibility 
is to use a laser pulse for preionizing the gas, as was successfully demonstrated 
at Livermore [Sl] in ion-focusing experiments with an intense relativistic electron 
beam. (Laser gas preionization is also being considered for the final focusing of 
the heavy ion beams in inertial fusion.) 

Let us now estimate the strength of ion focusing on a relativistic electron beam 
propagating through a plasma channel. We will assume a round beam and use 
the envelope equation (4.294), with ko = 0, to calculate the beam radius in the 
channel. Since for the highly relativistic energies of a linear collider y2fc  9 1, we 
can write (4.294) in the form 

€2 
= 0. KO 2 a" + - y f, - ;;s 

a 

Using I = en,a21rc, 10 = 4momc3/e, f, 
expression 

e2ni(t) a 
a" + 

21x0 ymc2 

(4.331) 

= ni/n,, we obtain the alternative 

= 0 .  
€2 

a3 
- -  (4.332) 
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If we approximate the actual beam with an equivalent cylinder of uniform charge 
density, effective length lb  and total number of particle Nc = nca2rrlb, we can 
write the envelope equation in yet another form as 

= 0 .  
€2 

a3 
- -  (4.333) 

Here, r, is the classical particle radius (r, 
fc(z) = q ( z ) / n c ( z )  changes adiabatically 
matched we can set a!’ = 0 and obtain from (4.333) for the radius 

= 2.82 X m for e- and e’). If 
with distance z and the beam is well 

(4.334) 

where en = ye is the normalized emittance of the relativistic beam (/3 = 1). 
y = lo6 (500 GeV energy), lb  = 4 x 10-~  m, 

en = m-rad, and f c  = 1 (at the end of the column). With these numbers we 
find from (4.334) a final radius of a = 84 X m = 84 nm. Such submicron 
beam radii are needed to meet the luminosity requirements of future TeV linear 
colliders. The focusing strength of plasma columns is orders of magnitude greater 
than that of superconducting magnetic quadrupoles. This explains the strong interest 
in plasma lenses and motivates the current research activity in this field. It will take 
a systematic research effort for several years to determine the practical feasibility 
and ultimate technological limitations of these focusing methods. 

AS an example, let N~ = 

REFERENCES 

1. See, for instance, R. W. Hasse and J. P .  Schiffer, Ann. Phys. 203,419 (1990). 
2. G. I. Budker, CERN Symposium on High Energy Accelerators, CERN, Geneva, 1956, 

3. J. D. Lawson, J. Electron. Control 5, 146 (1958). 
4. H. AlfvCn, Phys. Rev. 55, 425 (1939). 
5. C. L. Olson and J. W. Poukey, Phys. Rev. A9, 2631 (1974). 
6. L. S. Bogdankevich and A. A. Rukhadze, Usp. Fir. Nauk 103,609 (1971) [Sov. Phys.- 

Usp. 14, 163 (1971)J; J. A. Nation and M. Read, Appl. Phys. Lett. 23, 426 (1973). 
7. W. H. Bennett, Phys. Rev. 45, 89 (1934). 
8. L. Brillouin, Phys. Rev. 67, 260 (1945). 
9. M. Reiser, 1991 IEEE Particle Accelerator Conference Record 91CH3038-7, 

Vol. I, p. 68. 

pp. 2497-2499. 
10. M. Reiser, Part. Accel. 8, 167 (1978). 
11. M. Reiscr, J. Appl. Phys. 52, 555 (1981). 
12. J. Struckmeier and M. Reiser, Part. Accel. 14, 227 (1984). 



- - REFERENCES - 297 

13. I. Hofmann, L. J. Laslett, L. Smith, and I. Haber, Part. Accel. 13, 145 (1983). 
14. N. Rostoker, Part. Accel. 5, 93 (1973). 
15. P. Sprangle and C. A. Kapetanakos, J. Appl. Phys. 49, 1 (1978). 
16. C. W. Roberson, A. Mondelli, and D. Chernin, Part. AcceL 17, 79 (1985). 
17. L. J. Laslett, Pmc. 1963 Summer Study on Storage Rings, Accelerators, and Experi- 

mentation at Super-High Energies (ed. J .  W. Bittner), BNL-7534, Brookhaven National 
Laboratory, Upton, NY, 1963, pp. 324-367; reprinted in LBL Document PUB-6161, 
1987, VO~. 111, pp. 4-30 ff. 

18. H. Bethe, Ann. Phys. 5, 325 (1930). 

19. L. J. Kieffer and G. H. Dunn, Rev. Mod. Phys. 38, 1 (1966). 
20. F. F. Rieke and W. Prepejchal, Phys. Rev. A 6, 1507 (1972). 
21. S. P. Slinker, R. D. Taylor, and A. W. Ali, J. Appl. Phys. 63, 1 (1988). 
22. M. E. Rudd, Y.-K. Kim, D. H. Madison, and J. W. Gallagher, Rev. Mod Phys. 57,965 

23. Atomic Data for Controlled Fusion Research, ORNL-5206, Vol. I ,  Oak Ridge National 

24. M. Reiser, Nucl. Inst. Methods Phys. Res. B 56/57, 1050 (1991). 

25. M. D. Gabovich, L. S. Simonenko, and I. A. Soloshenko, Zh. Tekh Fir. 48,1389 (1978) 
[English translation Sov. Phys. Tech. Phys. 23, 783 (1978)l. 

26. M. E. Rudd, Phys. Rev. A 20, 787 (1979). 
27. M. Reiser. C. R. Chang, D. Chernin, and E. Horowitz, “Microwave and Particle Beam 

28. M. G. llefenbach and D. Keefe, IEEE Trans. Nucl. Sci. NS-32, 2483 (1985). 
29. 0. A. Anderson et al., Nucl. Insrrum. Methods, B 40/41, 877 (1989). 
30. S. Guharay, C. K. Allen, and M. Reiser, “High-Brightness Beams for Advanced 

Accelerator Applications,” AIP P m .  253,67-76 (1992), ed. W. W. Destltr. and S. K. 
Guharay. 

(1985). 

Laboratory, Oak Ridge, TN, February 1977. 

Sources and Propagation,” SPIE 873, 172 ff. (1988). 

31. C. R. Chang and M. Reiscr, J. Appl. Phys. 61, 899 (1987). 
32. R. L. Yao and C. D. Striffler, J. Appl. Phys. 67, 1650 (1990). 
33. W. W. Destler, J. Rodgers, and Z. Segalov, J. Appl. Phys. 66, 2894 (1989). 
34. D. G. Koshkarev and P. R. Zenkevich, Part. Accel. 3, 1 (1972). 
35. L. J. Laslett, A. M. Sessler, and D. Mohl, Nucl. Instrum. Methods 121, 517 (1974). 
36. 1. Merriner, D. Mohl, Y. Orlov, A. Poncet, and S. van der Meer, Part. Accel. 30, 13 

37. D. Gabor, Nuture 160, 89 (1947). 
38. J. A. Palkovic, R. E. Mills, C. Schmidt, D. E. Young, 1989 IEEE Particle Accelerator 

Conference Record 89CH2669-0, pp. 304-306; J .  A. Palkovich, 1993 IEEE Particle 
Accelerator Conference Record 93CH3279-7, pp. 21-25. 

39. M. Reiser, I989 IEEE Particle Accelerator Conference Record 89CH2669-0, 

40. W. K. H. Panofsky and W. R. Baker, Rev. Sci. Instrum. 21, 445 (1950). 
41. E. B. Forsyth, L. M. Lederman, and J. Sunderland, IEEE Trans. Nucl. Sci. 12, 872 

(1rn). 

pp. 1744- 1747. 

(1965). 



298 UNEAR BEAM OPTICS Wrm SPACE CHARGE 

42. E. Boggasch et al., Phys. Rev. Lefr. 66, 1705 (1991). 
43. B. Richter, JEEE nuns. Nucl. Sci. NS-32, 3828 (1985). 
44. P. Chen, Parf. Accel. 20, 171 (1987). 
45. J. B. Rosenzweig and P. Chen, Phys. Rev. D 40, 923 (1989). 
46. D. Whitturn, “Theory of the Ion-Channel Laser,” University of California, Berkeley, 

47. P. Chen, K. Oide, A. M. Sessler, and S. S .  Yu, Phys. Rev. L e a  64, 1231 (1990). 
48. T. Katsouleas and C.  H. h i ,  AIP Conj P m .  279,551-564 (1993); ed. J. S. Wurtele. 
49. J. B. Rasenzweig et al., Phys. Fluids B 2,  (6, part 2), 1376-1383 (1990). 
50. H. Nakanaishi et al., Phys. Rev. Lett. 66, 1870 (1991). 
51. See R. J. Briggs, Phys. Rev. Left. 54, 2588 (1985) and references therein. 

Ph.D. Dissertation (1989). 

4.1 A uniform relativistic electron beam with constant radius u = 1 cm is 
propagating inside a conducting drift tube with radius b = 2 cm. The kinetic 
energy of the electrons is 1 MeV and the current is 2 kA. 

(a) Calculate the potential difference between the beam axis and the wall 
of the drift tube. 

(b) Determine the electric and magnetic field energy and the capacitance 
and inductance per unit length. Compare the capacitance with the case 
where the electron beam is replaced by a solid conductor having the 
same charge per unit length on its surface. 

4.2 Derive the relation (4.61) for the space-charge limiting current. Calculate the 
electrostatic field energy per meter in the beam for this case when b = a 
(beam fills drift tube) and compare it with the beam kinetic energy. 

4 3  A toroidal relativistic electron beam is confined in an axisymmetric magnetic 
mirror field with the following assumptions: (1) the beam has a circular cross 
section of radius a; (2) the major radius Ro of the beam is large enough that 
self fields resulting from the curvature of the beam can be neglected (Le., 
the self fields can be calculated as if the beam were moving on a straight 
path); (3) both charge and current density within the beam may be considered 
uniform; and (4) a background of stationary positive ions of uniform density 
is present within the beam; the charge density of the ions is fc times that 
of the electrons ( fc < 1). 

(a) Calculate the betatron tunes vr and vZ. 
(b) State the condition for which the beam retains a circular cross section. 
(c) Derive a relation for fc which assures that the beam remains focused 

in both radial and axial direction. 
(d) Determine the numerical values of vr and vc for the case where the 

beam parameters have the following values: electron energy, 2 MeV, 
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beam current, 2 kA; major radius Ro, 6 cm; minor radius a, 3 mm; 
fraction of ions, 5% of electrons. 

4.4 A magnetic mirror for confinement of a toroidal electron beam with mean 
radius R is formed by a combination of a long solenoid and two coils, as 
shown in the figure below. The solenoidal field and the field due to the 
two mirror coils can be increased separately with time, and the combined 
field along the z-axis (r = 0) and close to the midplane (z = 0) may be 
described by the approximate formula 

where the first term on the right side represents the long solenoid and the 
second term the two mirror coils. Assume that the field increase with time 
is adiabatic (i.e., the change of B, is negligibly small during one period of 
the particle oscillations between the magnetic mirrors). 

r 
4 

LONG SOLENOID 
II) 

-Mirror 
coil 

List all constants of the motion that you can think of. 
Determine the constants B1, kZ, and the field index n in terms of the 
coil radius a, coil separation 2d, the peak field B,,, that each mirror 
coil produces at its center ( t  = 0, L = d )  and (in the case of n )  the 
equilibrium orbit radius R. Assume that F(r) = 1. f ( t )  = 1 for this 
calculation. 
Consider a T = 2 MeV electron beam with major radius R = 6 cm 
and minor radii x,,, = 0.5 cm, z,,, = 0.5 cm in radial and axial di- 
rections at time t = 0. Let a = d = 10 cm. Suppose that F ( t )  = 

f(t) = 1 (i.e., no change with time), and that B,,, = 300 G. Calculate 
Bo, B l , n ,  Y,, and oc. Neglect the self fields of the beam. 
Suppose now that F ( t )  = 1 and f ( t )  = 1 + 9 (1 - e - ' 9 .  Find 
n, u,, uZ, xrn, and z,,, when t - 00. 
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4.5 

4.6 

4.7 

4.0 

(e) Finally, let F ( f )  = f ( f )  = 1 + 9 (1 - e-'") with initial conditions 
at t = 0 as in (c). Calculate T, Bo, B, R ,  N, V r ,  Y,, Xm, Zm when 
t - 00. Suppose that the electron-beam current at t = 0 is I = Id A. 
What is the current when t * m? 

An axisymmetric beam of 100-keV electrons is injected into a drift tube of 
length L = 100 cm and diameter D = 4 cm. At the entrance of the drift 
tube, the beam is focused by a thin, solenoid lens with an effective width 
of 1 = 4 cm and magnetic field B on the axis. Calculate the following 
quantities: 

(a) The maximum electron beam current that can be passed through the 
drift tube for laminar flow, the associated field B of the lens, the radius 
a = rmin at the beam waist, and the value of the plasma frequency 
up of the beam at the waist. 

(b) The electrostatic potential difference between the beam axis and the 
drift-tube wall at the waist in case (a). 

(c) The acceptance a of the drift tube (i.e., the maximum emittance that 
the beam could have) if the self fields are eliminated by charge and 
current neutralization. 

The envelope equation (4.85a) for a beam in a uniform focusing channel 
(ki = const) can be integrated once without any approximations. Obtain 
this first integral for rk if the initial conditions are r, = a, rk = ro at 
z = 0, where r,,, = a is the equilibrium radius of the matched beam. By 
setting r, = a + x ,  assuming that x U a , and using Taylor expansion 
up to second-order terms in x/a, one can obtain a second integral. Find 
this integral for r,, or x ,  as a function of rk and determine the maximum 
amplitude xmox of the envelope ripple as a function of rh when the beam 
is mismatched. 
Design a periodic hard-edge solenoidal focusing channel for a 10-keV, 
0.6-A electron beam having a normalized emittance of e,, = 9 X m- 
tad. The ratio L/ l  of the drift space to the width of a lens is to be 3, 
the desired phase advance without space charge is cro = 72', and the 
mean radius of the beam is a = 1 cm. Using the smooth-approximation 
theory, determine the length of a focusing period S, the phase advance with 
space charge cr, and the maximum radius of the beam, R,. Calculate the 
solenoidal magnetic field Bo, the mean plasma frequency q, the associated 
plasma wavelength I,, and the Debye length AD of this electron beam. 
Consider an axisymmetric beam with current I, voltage V, and radius a 
propagating inside a drift tube with radius b > a. Suppose that the beam 
has a nonuniform density profile given by n(r)  = no[ 1 - (r/a)2] for r 4 a 
and n ( r )  = 0 for a < r < b. Calculate the following quantities: 

(a) Self fields Er, Be and the associated force Fr on a particle 
(b) Potential distribution V ( r )  

I 
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(c) Electrostatic energy per unit length 
(d) Rms beam radius 6 ,  
(e) Radius r,,,, where the force F, is a maximum 

4.9 Consider the thin beam (line charge p ~ )  displaced from the axis of a 
conducting drift tube by a distance X I  = f ,  as shown in Figure 4.18. Prove 
that the electrostatic potential distribution within the drift tube satisfying the 
boundary condition can be obtained by adding the potential due to an image 
line charge - p ~  located at distance x2 = b 2 / f .  

4.10 A round beam with particle energy ymc2 and a Gaussian density pro- 
file n( r )  = nl exp[-r2/2S2] propagates through a uniform, linear focusing 
channel defined by the single-particle oscillation frequency 00. 

(a) Determine the rms radius i: and rms width x‘ of this distribution. 
(b) Calculate the number of particles per unit length NL and the beam 

current I in terms of nl and 6. 
(c) Find the density no and radius a0 of the equivalent uniform den- 

sity beam having the same rms radius P and beam current I as the 
Gaussian beam. 

4.11 Consider the Gaussian beam of Problem 4.10. 

(a) Calculate and plot schematically the radial force F,(r) due to the self 
fields and its derivative dF,/dr versus radius r .  Find the values of 
r /S  where F, and dF,/dr have a maximum. 

(b) Show that for small radii the force F ,  is to first approximation a linear 
function of radius r .  Determine the radius r / S  where the difference 
between the linear approximation and the actual force reaches 10%. 

(c) Using the result of (b), calculate the small-radius particle oscillation 
frequency w that includes the self force as a function of wo. I. S, 
and y.  

4.12 Derive the result (4.251) for the tune shift Av due to space-charge forces 
from the relation 

given in Problem 3.25(c). (Note that the space-charge force can be equated 
to a gradient error AK.)  

4.13 Suppose that the radial force in a continuous-focusing channel has a non- 
linear term due to spherical aberrations so that F,(r )  = -air - a3r3 and 
a$ = atr at radius rl. Assuming a Boltzmann distribution of the form 
(4.3, find the density profile n ( r )  versus radius in the laminar-flow limit 
(keT1 - 0) for a relativistic beam with radius a = 05-1. 
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4.14 Consider the 200 MeV low-energy ring with circumference C = 470 m of 
the Fermilab accelerator discussed in Section 4.5 following Equation (4.256). 
Assume that the beam is unbunched (Bf  = 1). 

(a) Determine the amount of fractional charge neutralization, fc, due to 
ionizing collisions in the background gas that would exactly balance 
the tune shift Av due to the space-charge forces. 

(b) Suppose that the background gas is molecular hydrogen (Hz). Find the 
pressure for which the above value of fc  is reached in a time of 1 ms. 

In an e+e- linear collider electron and positron bunches are accelerated 
to very high energy in two opposing accelerators. The bunches are then 
focused to a very small cross section and forced to pass through each other 
in a head-on collision at the so-called interaction point between the two 
linear accelerators. For the following calculations, consider an electron bunch 
(coming from the left side) passing through a positron bunch (coming from 
the right). Assume that each bunch can be represented by a cylinder of 
radius u and length 1 * a having uniform charge density and the same total 
number of particles. 

(a) Calculate the radial force F, on an electron (positron) at radius r in 
the midplane of the bunch before the collision. 

(b) Calculate the radial force F, at the instant where the two bunches 
completely overlap each other at the intersection point. Compare 
the direction and magnitude of F, at and before the intersection point. 

(c) The effect of one bunch on the other can be represented by an 
equivalent focusing lens. Determine the focal length f and the so- 
called disruption parameter D = l / f  at the intersection point as a 
function of N, y,  a using the thin-lens approximation. 

(d) Find the self-magnetic field &(r) of the two bunches at the moment of 
overlap and the associated radius of curvature R for a particle traveling 
at the outermost radius r = a. 

(e) Calculate the disruption parameter D, the magnetic field &(a), and 
the associated radius of curvature R at the intersection point for the 
following specific parameters: u = 1 km, 1 = I mm, N = 5 x lolo, 
and a particle energy of 100 GeV. 

4.16 One of the most important problems in accelerator and beam transport de- 
sign is to match the beam from one focusing system into another. Consider 
a beam that is to be matched from a focusing channel with uniform (or 
smooth-approximation) wave number k01 = 2?r/Aol without space charge 
into a channel characterized by koz = 2hl .  Let R I ,  Rz and &I, kz denote 
the matched beam radii and wave numbers with space charge in each chan- 
nel, respectively. Note that the problem is similar to quarterwave matching 
between two transmission lines. Thus an appropriate uniform focusing ele- 
ment, characterized by constants &O without space charge and & with space 

4.15 
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charge, and length As = d,  can be inserted between the two channels to 
achieve perfect matching. 

(a) Neglecting space charge, determine ko and d in terms of given 
parameters. 

(b) Repeat for a beam with space charge. 
(c) Calculate k and d for a laminar beam (e = 0). 

4.17 The antiproton @) accumulator ring at CERN operates at an ultrahigh 
vacuum of 0.75 X lo-'' torr and uses clearing electrodes to prevent any 
significant buildup of partial charge neutralization. The circumference of 
the ring is 2-E = 150 m, the jT energy is 3 GeV, the total number of 
antiprotons is typically Nb = 5 X 10", the betatron tune is v, = vv = 
vo = 2.25, and the beam has an average circular cross section with 
radius a = 3.3 mm. Despite the clearing electrodes, dipole and quadruple 
instabilities are encountered due to a small number of H+ ions trapped in 
the p beam ( f e  = Ni/Nb < 0.01). 

(a) Calculate the cross section ui for ionization of H by a 3-GeV B beam. 
(b) Calculate the charge neutralization time TN at a H pressure of 0.75 X 

10-10 tom. 
(c) Find the self potential V, of the p beam assuming that fe can be 

neglected. 
(d) Determine the bounce frequency Oi of the H +  ions trapped in the B 

beam corresponding to the V, value of (c). 
(e) Suppose that the dipole instability is observed at the sideband of 

the betatron frequency where 1 = 3; determine the frequencies fi = 
ari/2.rr, fbi. fb, and the growth rate 7 of the instability assuming that 
the neutralization factor is fe = 0.01. 

4.18 Prove that Equation (4.324) is an approximate solution of the dispersion 
relation (4.322). 



CHAPTER 4 

Self -Consistent 
Theory of Beams 

5.1 INTRODUCTION 

In the uniform-beam model of Chapter 4, we made the assumption that charge den- 
sity p ,  particle velocity v, and current density J are independent of the transverse 
coordinates ( x , y )  and that the external forces acting on the beam are linear. This 
allowed us to obtain the relatively simple paraxial trajectory equations, which are 
linear in x and y .  However, the uniform-beam model does not in general satisfy 
Maxwell’s equations and the equations of motion in a self-consistent manner when 
the paraxial approximations are violated. Furthermore, from a general theoretical 
point of view, the equilibrium state of a beam in a linear focusing channel tends to 
be more like a Boltzmann distribution which has a nonuniform density profile ex- 
cept in the zero-temperature limit, where the density is constant across the beam, 
as discussed in Section 4.1. 

When the density is nonuniform, the forces associated with the self fields of 
the beam are nonlinear. In most laboratory systems nonuniformity of the density 
profile tends to be the rule rather than the exception; and, in addition, the applied 
focusing or accelerating forces also have an unavoidable minimum amount of 
associated nonlinearity. In other words, the general system that we are dealing 
with is intrinsically nonlinear, and we need to develop theoretical models (including 
particle simulation codes) that are self-consistent to a desired degree of accuracy. 
Such models are necessary to evaluate the nonlinear effects that are neglected in 
the uniform beam model and that cause emittance growth, halo formation, and 
particle loss. 

To understand the self-consistency problem, we must recognize that on the one 
hand, the positions and velocity vectors of the particles in the beam determine 
the charge and current density, p and J, at each point. On the other hand, p 
and J are the sources of the electric and magnetic self fields, which, together 
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with the applied fields, determine the motion (i.e., the position and velocity of the 
particles). Thus one deals with a closed loop in which the motion of the distribution 
of particles changes the fields and the forces due to these fields change the particle 
distribution. A truly self-consistent theoretical model of the beam must close this 
self-interaction loop. 

The mathematical difficulties involved in the self-consistency problem are quite 
formidable, and only relatively simple beam geometries can be solved by analytical 
techniques. With only one exception (the K-V distribution in Section 5.3.2), all of 
the self-consistent models presented in this chapter assume beams with cylindrical 
symmetry and applied focusing forces that are either uniform or "smoothed" over 
the lattice periods of a periodic focusing system. First, in Section 5.2, we discuss 
laminar beams in uniform magnetic fields; and we begin this analysis with a simple 
model of a cylindrical beam in an infinitely strong magnetic field to illustrate the 
self-consistency problem. Both nonrelativistic and relativistic descriptions of the 
stationary states (equilibria) of laminar beams will be treated. The nonrelativistic 
analysis closely follows the electron-beam theory developed in connection with 
microwave tube design (klystrons, traveling-wave tubes, etc.) during the period 
1945-1970 after World War 11. The relativistic theory, which is of interest for 
the intense relativistic electron beams, high-power microwave devices and electron 
beams developed more recently is mathematically more complex, and analytical 
results are available only for the simplest beam geometries. 

In Section 5.3 we derive the self-consistent Vlasov equation, which allows us 
to treat nonlaminar beams (i.e., beams having an intrinsic velocity spread). We 
then discuss several important examples of stationary nonlaminar distributions in 
a linear focusing channel. These are distributions that satisfy the stationary (time- 
independent) Vlasov equation and hence represent matched beams. The best known 
examples are the K-V distribution and the Maxwell-Boltzmann distribution, also 
known as the thermal distribution. Section 5.4 is devoted to a detailed analysis 
of the Maxwell-Boltzmann distribution, which will be shown to be the natural 
equilibrium state of a beam when the Coulomb collisions between the particles 
are taken into account. Beams with collisions are treated self-consistently by the 
Fokker-Planck equation, which reduces to the Vlasov equation when collisions are 
neglected. Although the charged particles are usually in thermal equilibrium inside 
the sources (thermionic cathode, plasma, etc.), acceleration results in a cooling of 
the longitudinal temperature. The typical laboratory beams are thus characterized 
by two different temperatures in the transverse and longitudinal directions. The 
relationships between temperature, emittance, and other beam parameters will be 
discussed for both the transverse and longitudinal Maxwell-Boltzmann distribu- 
tions. The analysis will be restricted for the most part to external focusing fields 
with linear forces; the major exception is the longitudinal beam dynamics in rf 
fields (Section 5.4.8). However, the space-charge forces of a Maxwell-Boltzmann 
distribution in harmonic oscillator potentials are in general nonlinear. We will also 
investigate the effects of momentum spread on the transverse focusing and the 
dispersion that occurs in circular accelerators. The coupled envelope equations for 



3 0 6 a  SELF-CONSISTENT THEORY OF BEAMS 

bunched beams with space charge will be analyzed in Section 5.4.11, and in the 
final section (5.4.12) we discuss briefly the problems of matching, focusing, and 
imaging of beams. 

5.2 LAMINAR BEAMS IN UNIFORM MAGNETIC FIELDS 

5.2.1 A Cylindrical Boam in an Infinholy W n g  Magnotic FMd 
We begin our analysis of a self-consistent laminar flow with a simple cylindrical 
beam model where we assume that both the source and the accelerated beam are 
immersed in an infinitely strong uniform magnetic field. The Lorentz force due to 
this applied field is infinitely stronger than the defocusing forces due to the electric 
and magnetic self fields. As a result, there is no transverse velocity component (i.e., 
u, = tlg = 0) and the particle trajectories are straight lines with radius r = const. 

Let us assume that the beam has a constant radius r = u and that it propagates 
inside a conducting drift tube with radius r = b, as indicated in Figure 5.1. The 
drift tube is connected with the anode (or, in the case of ions, with the extraction 
electrode of the ion source). If the potential difference between the cathode (plasma 
surface) and the anode (extraction electrode) is q$,, the particles will enter the drift 
tube with a kinetic energy of T b  = q f p b .  Due to the beam space charge, however, 
there will be a potential distribution inside the drift tube which will reduce the 
kinetic energy of the particles in accordance with the energy conservation law. 
At a sufficient distance from the tube entrance, this potential (as well as all other 

I * z  

Figurn S. 1. (a) Electron b w m  pmpagoting inside a drift tuba a a unifonn m o p t i c  hold. 
The d#tronr am emitted from a h i o n i c  cathode C and enter the 9 rift tub. through a mrrh in 
the on& A. (b) Gmph mowing rhematicolly the variation of the potential fundon along the axis. 
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parameters describing the beam) will be independent of the z-coordinate and vary 
only with radius r in view of the axial symmetry. If &(r)  denotes the electrostatic 
potential due to the space-charge field in this region of the tube, then from energy 
conservation the kinetic energy of the particles at a given radius r will be 

Here we introduced the function +(r) ,  which, as in previous contexts, represents 
the voltage equivalent of the kinetic energy. This definition implies that both the 
potential function $(r )  and the particle charge q are treated as positive quantities. In 
the following we use (b(r) rather than 4c( r )  as the potential function. The variation 
of the potential function 4 (and hence of the kinetic energy of the particles) versus 
distance z along the axis of the beam is shown schematically in Figure 5.1. Note 
that 4 = 0 at the emitter surface of the source and 4 = #b at the anode mesh 
where the beam enters the drift tube. At a distance from the anode comparable 
to the drift-tube diameter the potential 4 (or kinetic energy) drops to a constant 
value &. In this region, (b is only a function of radius t varying from 4 = 40 
on the axis to 4 = (ba at the edge of the beam (r  = a) and 4 = 4 b  at the tube 
wall ( r  = b). It is important to recognize that the maximum kinetic energy of the 
particles at the beam edge, qtp,,, is less than the injection energy, q f p b ,  when b > a, 
as discussed in Section 4.2.3. Since T = ( y  - l)mc2, we can write Equation (5.1) 
in the alternative form 

The variation of the potential function (b(r), and hence y ( r ) ,  with radius is 
determined by Poisson’s equation, V 2 4 c  = - p / ~ ,  which relates the electrostatic 
potential (be to the charge density p in the beam. Replacing (be by T b  - 4 from 
(5.1) and p by qn, where n(r)  is the particle density and where the charge q is 
treated as a positive quantity, and considering the fact that there is no azimuthal 
or axial variation, we can write Poisson’s equation in the form 

Integration yields the radial electric field 

which can also be obtained directly from applying Gauss’s law. 
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From the continuity equation one obtains for the current density J = Jo, the 
relation 

J ( r )  = p(r )v ( r )  = qcn(r )B(r ) ,  (5-5) 

with /3(r) related to 4 ( r )  by the energy conservation law as 

The total beam current is given by 

I = 272 [ J(r)r dr = 

Poisson's equation (5.3), the continuity 

272qc la n(r)@(r)r dr .  (5.7) 

equation (5.5), and energy conservation 
(5.6) represent three relationships between the four functions q5(r), n(r) ,  J(r), 
and /3(r). Thus we can choose one of the four functions, and then the remaining 
three are self-consistently determined by these equations. As an example, let us 
choose the current density to be independent of radius r (i.e., J - const). Then, 
from (5.7), I = Jazlr, and from (5.9, 

I 
qc a%rf3(r) ' 

n ( r )  = 

Substituting (5.8) into (5.3) and using the relationship (5.6) for B(r)  yields the 
differential equation 

which determines the potential function 4 ( r )  in a self-consistent manner. If one 
uses y in place of 4, one can write this equation in the alternative form 

(5.10) 

These equations have to be integrated numerically. In the nonrelativistic case, 
where f3c = (2q4/m)ln,  Equation (5.9) takes the form 

(5.11) 

For simplicity let us assume that the beam fills the drift tube so that b = a; that 
is, we can ignore the factor 1 + 2 ln(b/a), which arises when b > a, as we know 



- - LAMlNAR BEAMS IN UNIFORM MAGNEK FIELDS - 309 
from Section 4.2. This case is discussed by Pierce [C.3]. When 4 = 0 at t = 0 
(i.e., when the kinetic energy of the particles on the axis is zero), this equation 
has the special solution 

(5.12) 

Putting r = a, 4 ( a )  = 4av EOC = && = 1/1207r, one gets from (5.12) the 
perveance k of this beam 

-1n 
= 20.95 x 10-3($) . (5.13) 

For electrons, the perveance has the value 

k = 29.34 X 10-6A/V3n. (5.14) 

On first thought, one would assume that the above current is the upper limit 
that can be obtained for a given potential 40; that is, as the beam current is 
gradually increased, the potential d(0) = 40 at the center will gradually decrease 
until it becomes zero and the current reaches its maximum. This, however, is 
not the case. If one obtains the general numerical solution of Equation (5.1 I )  for 
all possible values of 40 (namely, 0 5 40 5 q15~), one finds that the maximum 
current occurs at a value of 40 = 0.1744,. This is illustrated in Figure 5.2, where 
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I / ( m o c  Jw&n, is plotted versus the potential ratio 40/+=. The maximuni 
of the curve is 1.963, and the corresponding current is 

(5.15) 

This yields a maximum perveance of 

which for electrons has a value of 

k, = 32.4 X 10-6A/V3n. (5.17) 

This is 10% higher than the value for 40 = 0 obtained in Equation (5.14). If one 
would try to inject currents higher than I,,,, the potential at the center would drop 
to 40 = 0, but particles would be reflected back toward the source from the virtual 
curhode that is formed in the beam and the net forward current would drop to the 
value of Equation (5.13). Actually, the situation is more complicated than that; one 
finds that in the region to the left of the current peak oscillations occur (i.e., one 
cannot achieve a stable steady-state operation). 

The more general relativistic case, which requires a solution of Equation (5.  lo), 
was treated by Bogdankevich and Rukhadze in 1971. They obtained for the 
maximum current the approximate solution 

which was presented in Equation (4.61) (assuming that b = a). It is worth noting 
that in the extreme relativistic case this space-charge current limit has the same 
value as the Alfvkn-Lawson current (4.56) (i.e., ZL = ZA - lora for ya * 1, 
pa = 1). This is true only when the beam fills the drift tube (b = a). If the 
drift-tube radius is greater than the beam radius, IL is always lower than IA by 
the factor 1 + 2 ln(b/u). 
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5.2.2 Nonmlarthrirtk Laminar Beam Equilibria 

In the preceding section we discussed the idealized model of a laminar beam in 
an infinitely strong magnetic field where all particles are forced to move on straight 
trajectories along the magnetic flux lines. Let us now consider the more realistic 
case where the beam is confined by a uniform axial magnetic field of finite strength. 
In this section we present the nonrelativistic theory where y = 1, p2 4 1, 
and hence the magnetic self fields can be neglected. The equilibrium state is char- 
acterized by exact force balance at every radial position within the beam. This 
implies that the particles must have an azimuthal velocity component, vg, so that 
the radially inward Lorentz force, p g B Z ,  can balance the outward electric force, 
q E r ,  due to the space charge and the centrifugal force, m u f l r ,  due to the rotation. 
The desired azimuthal motion is achieved when the magnetic field at the source is 
different from the field in the downstream equilibrium region so that the particles 
cross flux lines and experience a force FB = qv,B,. In addition, the space-charge 
electric field, E, produces an azimuthal force, E X B. The effects of the launching 
conditions on the beam equilibrium are discussed below. The particle trajectories 
in the equilibrium state are thus helices encircling the axis with constant radius r 
and with two components, u, and vg, both of which may, in general, be functions 
of r. It follows that u, = i = 0 and i: = 0 for all particles. The nonrelativistic 
radial force balance equation may then be written in the form 

(5.18) 

where Bo is the applied axial magnetic field and Er is the radial electric field due 
to the space charge of the beam. In some special cases there may also be an applied 
radial electric field, for instance when the beam is hollow and there is a coaxial 
inner conductor at an electrostatic potential with respect to the drift tube. In view 
of the cylindrical symmetry such an applied field is of the form C / r ,  where C is a 
constant. The inclusion of an applied electric field is straightforward. However, to 
simplify matters we will limit our analysis to the cases where no external electric 
field is present. These cases are also the more important ones from a practical point 
of view. It will be convenient to write the radial force-balance equation in terms 
of the angular frequency i = w .  By substituting Vg = rw and introducing the 
cyclotron frequency w, = -qBo/m in (5.18), one obtains 

rw2(r)  + - qEr(r) - rw(r)w,  = 0 .  
m 

(5.19) 

The space-charge electric field, E,(r). is determined by the particle density, n(r ) ,  
via Poisson’s equation or Gauss’s law, as given in Equation (5.4). Using this 
relationship we can write (5.19) in the alternative form 

(5.20) 



312 SELF-CONSISTENT THEORY OF BEAMS 

This equation can be used in two ways. If the particle density, n(r) ,  is known, one 
can solve for the angular frequency and obtains 

1R 

l r n ( r ) r d r ]  , (5.21) 

where the Larmor frequency OL = 4 2  was introduced. 

particle density, which yields the equation 
One the other hand, if w ( r )  is known, one can solve Equation (5.20) for the 

corn 1 d 
q2 r dr  

n(r )  = -- - - { r 2 [ w 2 ( r )  - w c w ( r ) ] } .  

Note from Equation (5.21) that in order for w to be real, the condition 

(5.22) 

(5.23) 

must be satisfied. This implies that the magnetic restoring force exceeds the 
repulsive electrostatic force of the space charge. 

The force-balance equation (5.20) and its alternative forms (5.21) and (5.22) 
contain only the two functions n ( r )  and w(r) .  It appears, therefore, that we can 
make an arbitrary choice of one of these two functions and then determine the 
other self-consistently, For example, if we assume that the density is uniform [i.e., 
n ( r )  = no = const], we find from (5.21) the solution 

(5.24) 

where w p  - (q2no/eom)'n is the plasma frequency. Thus, for a beam with uniform 
density no, where the plasma frequency up is by definition constant (independent 
of radius r), all particles rotate around the axis with constant angular frequency 
w .  This state is known in the literature as a rigid-rotor equilibrium [B.3] or 
an isorotutional beam [C.9]. Note that the frequency w as defined here for the 
laboratory frame is not identical with the frequency o used in Chapters 3 and 4 
to describe particle motion in the Larmor frame (wL.f.). The relationship between 
the two frequencies (with w = q a b )  is wL.f. = WLab - WL. 

Before proceeding with a more detailed discussion of this special result we must 
recognize that the force-balance equation alone does not completely describe the 
equilibrium state of the beam. In addition to force balance, the particles must also 
satisfy the two conservation laws for energy and canonical angular momentum. 
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The energy conservation law relates the total velocity of the particles, v(r),  to the 
potential function c$(t) according to the nonrelativistic formula 

(5.25) 

The potential function &), in turn, is determined from the particle density 
distribution n ( r )  via Poisson's equation (5.3). 

The conservation law for the canonical angular momentum pe ,  also known as 
Busch's theorem, given in Equation (2.76), implies that for each particle 

' 4  mr20 + - + = pe = const. 
2 n  

Here # denotes the magnetic flux enclosed by the particle in the equilibrium 
region. The value of pe  is determined by the magnetic field configuration at the 
emitter surface of the source. (We will assume that in all cases i = o = 0 at the 
source.) l b o  such configurations are illustrated in Figure 5.3, where two solenoids, 
separated by an annular iron plate, are used to control the magnetic field at the 
source, B,, and in the downstream region, Bo, independently. In the configuration 
shown on top of the figure, the source solenoid is turned off. All of the magnetic 
flux generated by the other solenoid passes radially outward through the iron plate, 
and the source is in the field-free region (B,  = 0). Thus, pe = 0 for all particles. 
The other case illustrated in the figure shows a so-called cusp-field configuration 
in which both solenoids produce a magnetic field of the same strength but opposite 
polarity (B, = -Bo). 

The canonical angular momentum is determined by the magnetic flux +, en- 
closed by the particle's initial radius r,, that is, 

4 4 pe = - #, = - B , r i .  
2 n  2 

(5.26) 

In each of the two field geometries the particles cross magnetic flux lines and 
rotate about the axis in the uniform field of the downstream equilibrium region, as 
illustrated in the figure. However, the flux change, and hence the rotation frequency 
o, in the cusp case is twice as large as in the upper configuration of a magnetically 
shielded source. The variation of the axial magnetic field for the two cases is shown 
in Figure 5.3(c). By varying the current in the source solenoid one can achieve other 
configurations, such as the dashed curve in the graph where the field at the source 
has the same polarity but a lower value as in the downstream region. 

From Busch's theorem one obtains for the angular frequency of the particles in 
the equilibrium region the relation 

mr2 
(5.27) 
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SOLENOID (B 1- SOLENOID (B,) 
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Cigum 5.3. Electrun beam with d i k t  magnotic fidd configurations. (a] hbgndic flux is zera at 
the cclthodo ( p e  = 0); (b) calhodr and downstream aquilibrium mgian a n  i m m m d  in a uniform 
m a p t i c  flux with apposite pdariv (cusp gmnetry); (c) magnetic fidd variation along the axis 
for corn (a) and (b) and Iw o < B, < BO (dashad cum). Cum (a) nds to the Brilkwin 
d i d  beam whua the beam cumnt I is a maximum. In case (b), on ZZKr hand, them is na 
laminar-Aow equilibrium, hence I - 0. 

Using Equation (5.26) for pe  and # = Bor2w for the flux enclosed downstream, 
one can write this relation in the form 

or 

(5.28) 
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The force-balance requirement, Equation (5.20), energy conservation, Equation 
(5.25), Poisson’s equation (5.3), and conservation of canonical angular momentum, 
Equation (5.28), form a complete self-consistent set of equations ofstare for the 
laminar-beam equilibrium. Note that these are four equations for the four functions 
u&) = ro ( r ) ,  u&), n(r) ,  and $(r) .  The only free parameter in this set is the 
canonical angular momentum, pe,  or the magnetic flux ratio +,/+. If p&) is given 
(i.e., if a particular field configuration for the source is chosen), the four functions 
are uniquely determined. Thus the free choice of either n ( r )  or w ( r )  implied by 
the force-balance equation does not exist when the conservation of energy and 
canonical angular momentum are included in the analysis. We will see below that 
the rigid-rotor beam (n  = const, o = const) constitutes a special solution of the 
equations of state satisfying these conservation laws. 

We can reduce the number of equations to two by eliminating n(r)  and $(r) .  
First, let us differentiate Equation (5.25) with respect to r using a prime (9 to 
denote d/dr: 

(5.29) 

By substituting for E ,  from Equation (5.19) and using Vg = ro, one obtains the 
differential equation 

(5.30) 

Equations (5.30) and (5.28) uniquely determine the self-consistent solutions for the 
two functions uL(r) and o ( r ) .  The nature of these solutions, and hence the structure 
of the beam equilibrium, depends on pe (i.e., the magnetic field configuration and 
the launching conditions for the particles from the source). 

As a first example, let us examine the rigid-rotor equilibrium obtained from 
the force-balance equation. Inspection shows that the solution o = 00 = const 
is compatible with Equation (5.30) and with Equation (5.28), provided that the 
flux ratio #,/@ is a constant for all particles. The latter condition is obviously 
satisfied for a magnetically shielded source where pe  = 0, hence +,/# = 0. In 
this case, one has from (5.28) w = OL, which is consistent with Equation (5.24) 
provided that 02 = wi/2. This is the condition of ideal Brillouin flow already 
encountered in Section 4.3.2 on beam transport in a uniform solenoidal magnetic 
field. We compare the results of the self-consistent theory with those from the linear 
(paraxial) theory of Section 4.3.2 in more detail below. 

The flux ratio +,/$ is a constant when the source is in a uniform magnetic 
field, B,, and the particles are launched from an emitter surface with a circular 
area to form a solid cylindrical beam. Under conditions of laminar flow, there is 
a correlation between the launching radius r, of a particle and the radius r in the 
equilibrium state downstream. For each particle the ratio rs/r = a is a constant, 
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hence the flux ratio &/I,+ = B,r;/Bor2 is also constant, and the canonical angular 
momentum is a quadratic function of radius r :  

4 qB,r: qBoa2r2 
2 n  2 2 .  

p e ( r )  = -& = - = (5.31) 

The constant rotation frequency o of the rigid-rotor beam must satisfy the two 
equations (5.24) and (5.28). By comparison we find the following relation between 
the flux ratio +J+ and the ratio W , / W L :  

(5.32) 

We see from this relation that w p / w ~  is a maximum, that is, the maximum amount 
of charge (or beam current) can be confined, when 

up 2 = 2 0 2 ,  (5.33) 

which implies that & = 0 (shielded source) and o = OL. On the other hand, one 
finds that o p / w ~  = 0 for either +,/@ = 1, o = 0, or +$/$ = - 1, o = 2 0 ~  = 
w,. Thus, no rigid-rotor equilibrium exists for a finite space charge (op > 0) 
in the two cases where the source is immersed in the same uniform field as 
the downstream beam ( B ,  = Bo) or in the case of an ideal cusp (B, = -Bo) 
illustrated in Figure 5.3(b). For flux ratios 0 < C 1, rigid-rotor confinement 
is possible, but the confined charge is always less than in the ideal Brillouin case 
(+s = 0). 

The variation of o versus w j / 2 w t  according to Equation (5.24) is plotted in 
Figure 5.4. By substituting w = const into Equation (5.30), one finds that the axial 
velocity u, of the particles is a quadratic function of radius r except for o = 0 
where u, = u = const and for w = W L  where v, = vo = const. For the ideal cusp 
field one gets = u2 - o:r2, where the total velocity is the same for all particles 
since there is no space-charge potential. Note that in the Larmor frame used in 
Chapters 3 and 4, the frequency w = W h b  changes to o L . f .  = W h b  - WL. Thus 
when + = 0, oi = 202, the frequency in the Larmor frame is zero ( o L . f .  = 0) 
and the particle trajectories are straight lines. 

We now proceed to study the so-called isovelocity solution v, = uo of the 
equations of state in more detail. When u, is a constant (independent of radius r) ,  
one obtains from Equation (5.30) for the angular frequency o the solution 

(5.34) 

where C is an integration constant whose value depends on the canonical angular 
momentum at the source. 
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Fbum 1.4. Rdotionship bdwen angular fraquency, w ,  and plasma frqwncy quored, w i ,  in 
h rigid-- beam. Tho upper and lmwr bmnck of the c u m  (o+ and o-) mpmsmt the two 
rdulionr d Eqwtion (5.24). h d w  of the m a g d c  flux at the SOUTCO, $,, is i n d i d  on tho 
right rick lor the thm cases o - 0, w - OL. and w = 2 0 ~ .  

The case C = 0 corresponds to the special rigid-rotor solution 

UP 
w = w L = -  Jz (5.35) 

for a shielded source (pe = 0). Thus, in this case, all particles within the equilib- 
rium beam not only have a constant axial velocity but also a constant rotational 
frequency. This isovelocify-isorofafwnional type of laminar flow is also known in the 
literature as a Brillouin solid beam. 

The other solution (C # 0) of Equation (5.34) implies launching conditions such 
that the canonical angular momentum p e ,  or the flux $, enclosed at the source, 
is the same for all particles within the beam. Such a configuration is illustrated in 
Figure 5.5, where a hollow beam is formed and both the source and the downstream 
equilibrium are immersed in the same uniform magnetic field (B,  = Bo). The 
radius, r,, of the emitter surface is equal to the radius, ro, of the inner edge of the 
downstream equilibrium beam. Therefore, pe = 0.5qBor02 and 

(5.36) 

Thus the angular frequency is o = 0 at r = ro and then increases with the radius 
until it reaches the value o = w ~ ( 1  - #-:'/a2) at the outer edge of the beam. This 
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SOLENOID a 

Figun 5.5. Schematic of d& and magnetic field eonfigumh'on to farm a Brilbuin hdkw 
baam (used, for example, in magnrtron injection guns). Boh source and drift-tub -ion are 
immersed in the ranw uniform magnetic field. %e magnetic flux wlord at the soum is the same 
for all particks ( p s  0.SqBOr: and r, - ro). A p d d  example of a mogdmn injection gun 
is ~ ~ S C U J J ~  in Appendix 2. 

type of immersed flow is also known in the literature as a Brillouin hollow beam, 
and the electron source producing such a hollow beam is known as a magnetron 
injection gun. In practice, the cathode is located in the fringe region of the solenoid 
where the magnetic flux lines begin to diverge away from the axis. The cathode 
has a conical surface which coincides with the magnetic flux surface so that the 
total flux enclosed by the particles remains constant ($ = Bor,flr). 

The particle density distribution for the various self-consistent beam configu- 
rations is obtained by substituting w (r) from the canonical angular momentum 
equation (5.27) in (5.22), which yields 

n(r )  3 om( 2 + 9) .  
q2 

(5.37) 

In terms of the particles' plasma frequency w,, = [q2n/e~m]1n, this relation may 
be written as 

u p = - + -  2 0,' 2Pf 
2 m2r4 

(5.38) 

For the Brillouin solid beam, where pa = 0, w = WL, we thus find the solution 

(5.39) 

In the case of the Brillouin hollow beam, where pe = qBor;/2, w = w ~ ( 1  - 
ri/r2),  on the other hand, we obtain 

Let us now examine. the two types of beam separately. 
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fa) l d l b ~ h  solid 6emn Figure 5.3(a) shows in schematic form the config- 
uration for a Brillouin-type solid electron beam with uniform magnetic focusing. 
As discussed above, the magnetic field at the cathode is zero (B, = 0)  and the 
particles acquire an azimuthal velocity ug = roL when entering the uniform field 
region after crossing the flux lines. 

The potential d ( r )  in the beam is obtained from Equation (5.25) with uz = uo 
and vg = T O  = ro,/2; one gets 

2 
mu: d m r 2  980 r 2  do + - d ( r )  = - + C = 
29 89 8m ’ (5.41) 

where $0 is the potential on the axis ( r  = 0)  related to the axial velocity by 

m 

The axial current density is given by 

(5.42) 

(5.43) 

and the total current carried by the beam in longitudinal direction is then simply 

where r = a is the outer beam radius. If the potential 
introduced, one has from (5.41) with r = a, 

at the beam edge is 

which can be solved for the applied magnetic field, yielding 

a 

(5.45a) 

(5.45b) 

With the aid of these relations we can eliminate either BO or 40 in Equation (5.44) 
and obtain for the beam current the alternative expressions 

(5.46a) 
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or 

(5.46b) 

The last equation has the advantage that it relates the beam current only to the 
experimental parameten oc (or B,), and a. Note that we can solve Equation 
(5.46b) for any one of the four quantities I, do, B,, Q if the other three are given. For 
simplicity let us again assume that the beam fills the drift tube (b = a) so that 440 
represents the initial kinetic energy of the particles. As we see from Equation (5.46), 
for a given potential &, the current varies as the magnetic field, and hence uC, is 
changed. To find the maximum current, we write o,2a2/8 = x, I = Cx(A - .)In. 
Differentiating and setting dI/dx = 0 yields 

that is, 

or 

w2a2 q2Bia2 2 q4a A=-=-- 
8 8m2 3 m ' (5.47a) 

(5.47b) 

Substituting (5.47a) in (5.45a) leads to the important relation 

(5.48) 
1 

40 7 4 a  * 

Note that we get the same result by using Equation (5.46a), differentiating with 
respect to 40 and setting aI/ac$o = 0. The maximum current I,,, is thus obtained 
in the beam when the beam voltage on the axis is one-third of the voltage at the 
beam edge, which implies that the ratio of the azimuthal velocity t rg  on the outer 
radius to the constant axial velocity u, = uo is a. By substitution of (5.47) into 
(5.46), one finds that 

This corresponds to a maximum perveance for an electron beam of 

(5.49) 

(5.50) 
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In summary, this type of Brillouin flow represents the ideal case of a rigid-rotor 
beam in which all particles rotate about the axis at a constant angular frequency 
w = OL and have the same constant axial velocity vz = uo = (2q40/m)ln. The 
particle density is uniform and the plasma frequency is 0.707 times the cyclotron 
frequency (wp  = @,/a). The current reaches a theoretical upper limit f = f,,, 
that is defined by Equation (5.49). The applied magnetic field required to focus 
I,,, is given in Equation (5.47b) and is Seen to be inversely proportional to the 
beam radius a. 

In deriving the above relations for a Brillouin solid beam we assumed that the 
beam fills the drift tube (a = b) so that qla represents the beam voltage at injection. 
If the drift-tube radius is greater than the beam radius (b > a), Equations (5.41) 
through (5.46b) are still valid. However, the voltage t$a is no longer constant, and 
one must use the relation 

or 

between the beam voltage 4 b  and the values 40 at the beam edge (r = a) 
and 40 on the axis (r = 0). By eliminating 4a in Equation (5.46a) (i.e., by 
expressing I in terms of 4 b  and 40, differentiating with respect to 40, and setting 
af/a$o = O), one finds that t$o = &,/3 and that 4:" in (5.49) must be replaced by 
#?/[I + 2 ln(b/a)]. We note that the beam current f for given voltage, magnetic 
field, and beam radius in the general case (b > a)  is always less than for the case 
where the beam fills the drift tube (b = a). The maximum current I,,, is reduced 
by the geometry factor 1 + 2 ln(b/u). 

When the conditions for perfect Brillouin flow are not exactly satisfied, the force 
balance implied in Equation (5.18) is violated so that the particles no longer move 
with constant radius. As a result, both the particle trajectories as well as the beam 
radius vary periodically with distance z .  We investigate this case of a rippfed or 
mismatched beam with the aid of the paraxial ray equation in Section 5.2.4. 

The Brillouin beam discussed here is of great importance from both a theoretical 
point of view and in regard to practical applications. Because of the relatively low 
magnetic field that is required, and since it is possible to achieve rather uniform 
current density and velocity profiles, this type of beam is used, for instance, in 
microwave tubes such as klystrons. 

(6) bd//wh Hdbw k u m  As was mentioned above, this type of beam 
corresponds to a source located inside the uniform magnetic field region with 
all particles starting from a surface that coincides with a magnetic flux tube and 
having zero initial angular velocity. The cathode can have a cylindrical shape, as 
illustrated in Figure 5.5 (if it is located in the uniform field region of the solenoid), 
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or a conical shape (if it located in the fringe region), as is usually the case in 
practical designs, such as in magnetron injection guns. For simplicity, we take the 
cylindrical cathode shown in the figure and assume that the inner beam radius, ro, 
downstream is equal to the cathode radius, rs (i.e., ro = r,). 

According to Equation (5.36), the particles at the inner edge of the beam do not 
rotate (w = 0 for r = r,) since they do not cross any flux lines, and from Equa- 
tion (5.40) we see that the plasma frequency at this radius is equal to the cyclotron 
frequency, wc.  As the radius increases, the angular frequency increases, while the 
plasma frequency decreases approaching the asymptotic value w p  = w,/& at the 
outer beam edge when a * ro. 

Following the same procedure as in case (a), one finds for the total beam current 

As before, #a denotes the potential on the outer beam edge and represents the 
voltage equivalent of the initial kinetic energy. For fixed values of ro, or a, 
the current reaches a maximum when 

which leads to the expression for the maximum current 

In the case of electrons, the corresponding perveance is 

[A/V3"]. 
1 + r;/a* 
1 - ri/u2 

k,,, = 25.4 X 

(5.53) 

(5.54) 

(5.55) 

This is larger than the maximum perveance of the solid Brillouin beam by the 
geometry factor in Equation (5.55). If the ratio of inner to outer beam radius is 0.5, 
for instance, the factor is 1.67, and for ro/a = 0.75, the perveance is increased 
by 3.57. 

The potential distribution across the beam is given, in analogy to (5.41), by 

r2w2m qBir2 2 2  

+(r)  = fp* + - = $0 + 
(1 - a> for ro 5 r 5 a .  

29 

(5.56) 
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Substituting (5.56) into (5.52) with r = a, (b(u) = +a, yields 

- - - 323 

(5.57) 

This equation represents the relationship between beam current, I, magnetic field, 
Bo, inner and outer beam radii, ro and a, and the voltage 40 at t = ro that must 
be satisfied to obtain the self-consistent laminar equilibrium of the Brillouin hol- 
low beam. 

Similar relations between the parameters of the beam and the magnetic field can 
be obtained for the other types of laminar equilibria discussed in connection with 
the rigid-rotor solution. A comprehensive review of the various types of laminar 
beams can be found in the book by Kirstein, Kino, and Waters [C.9]. 

5.2.3 Relativistic Laminar Beam Equilibria 

In an exact relativistic treatment of beam equilibria [ 11, the magnetic self field B,@ 
and B,, due to the axial and azimuthal current components must be included in the 
equations of state. As before, let us assume that the cylindrical relativistic beam 
with equilibrium radius a is injected from a diode into a conducting drift tube of 
circular cross section, with radius b. The tube is inside a solenoid which produces 
a uniform static magnetic field in the region downstream from the diode. For the 
general derivation, the emitting surface may be either disk-shaped (solid beam) 
or annular (hollow beam) and may be either in a magnetically shielded region 
or linked by magnetic flux lines. The injection conditions are such that the beam 
assumes a laminar-flow equilibrium state at a distance comparable to a few tube 
diameters downstream from the injection point. 

The most relevant case is that of an intense relativistic electron beam (IREB). 
Normally, such a beam is a pulse of short time duration (10 to 100 ns); however, 
the length of the beam is usually considerably larger than the tube diameter so that 
the postulated equilibrium state can be reached after transient effects due to the 
beamfront have decayed. Considering such laboratory beam pulses, the equilibrium 
state can exist for only a short period of time during which the magnetic self fields 
of the beam do not penetrate through the walls of the conducting tube. However, 
by letting the magnetic boundary increase beyond the tube radius or to infinity, the 
solutions for any intermediate situation or for a long beam can readily be obtained 
from the equations. We assume that the conducting pipe is at anode potential (bb and 
that all particles are injected with the same kinetic energy ( Y b  - l)mc2 = 
As before, the potential (b is defined as a positive quantity representing the voltage 
equivalent of the kinetic energy, and the particle charge is also taken as positive. 

In the region of the equilibrium state, an electrostatic field is set up by the space 
charge such that 4 = at the surface of the beam and 4 = (bo at the center 
( r  = 0) or the inner edge of a hollow beam. The energy conservation law then 
implies that the kinetic energy of the particles is less than 4 4 b  and varies as a 
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function of radius from a minimum of (yo - l)mc2 = 440 at the center to the 
maximum of (ra - l)mc2 = q#4 at the surface of the beam (r  = a). When the 
beam fills the entire pipe (a = b), the kinetic energy of the outermost particles 
is equal to the injection energy (i.e., = q 4 b ) .  The relativistic radial force 
balance equation may be written in the form 

(5.58) 

where E ,  and Be are self fields, while B, = BO -k B,, includes both the uniform 
applied magnetic field, Bo, and the axial self field B j Z a  Note that Bjz is due to 
the azimuthal current density, J e ,  and since it is in the opposite direction to the 
applied field, it is called diamagnetic. In addition to force balance, we have the 
conservation law for the canonical angular momentum for each particle, which in 
this relativistic case takes the form 

It implies that all particles at given radius r (which, under laminar-flow conditions, 
were emitted from the source at the same radius rs) have the same canonical angular 
momentum pe .  Particles at different radii in the equilibrium beam have different 
pe values if they are emitted from a source that is linked by magnetic flux lines 
such that the magnetic vector potential A0 varies across the emitting surface [i.e., 
Ae = A&,) at the source]. 

The relationship between azimuthal velocity V g ,  axial velocity u,, energy factor 
y,  and the potential function 4 in the equilibrium beam is defined by the relativistic 
energy conservation law: 

The potential is determined by the particle density n ( r )  via Poisson's equation, 
V24(r) = qn(r)/eo, which in this relativistic case may be written in the form 

The radial electric field is then given by 

(5.61) 

(5.62) 
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The magnetic self-field components are determined by the cumnt density J = qnv. 
From Maxwell’s equation, V X B = p0J = poqnv, we obtain 

1 - (rBe)’ = poqnur (5.63) r 

(5.64) 

Equations (5.58) through (5.64) constitute a complete set of relations which allow 
one to determine the field components and the beam properties in a self-consis- 
tent way. 

In analogy to the nonrelativistic analysis, these relations can be reduced to two 
equations of state which in addition to u,, vg, and pe  contain the relativistic 
energy factor y and which take the form 

As in the nonrelativistic case, the possible solutions allowed by these two equations 
depend on the launching conditions at the source, which are represented by the 
canonical angular momentum p e .  We will limit ourselves to a brief discussion of the 
results for a shielded source where p e  = 0 and refer for the details of the analysis 
to Reference 1. If pa - 0, one obtains for a solid beam the solutions u, = uo = 
const, o = w ( r )  a ro/(ri + r2) ,  and n = n(r)  a ( r i  + r’)/(r; - r2)3, where 
ro is an integration constant. This is in contrast to the rigid-rotor solution for the 
nonrelativistic case where axial velocity u,, angular frequency o, and particle 
density n are constant (i.e.. independent of radius r ) .  

The relativistic energy factor y which determines the kinetic energy of the 
particles in the equilibrium state is found to vary with radius r as 

(5.67) 

where yo = (1 - U ~ / C ~ ) - ’ ~  defines the kinetic energy on the beam axis ( r  = 0). 
At the outer edge of the beam, defined by the radius r = a,  we get from (5.67) 
the equation 

(5.68) 
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This relates the integration constant ro to the beam radius a and the ratio ya/yo 
and hence to the kinetic energies qc#a = (ya  - l)rnc2 and q 4 0  = (yo - l)rnc2 
defined by the potentials 4a, 40 on the beam edge and on the axis, respectively. 

The potential between the beam edge ( r  = a) and the wall ( r  = 6 )  varies 
logarithmically with radius r ,  and by setting r = b and y ( b )  = Y b  one finds that 

(5.69) 

Note that (yb - l)mc2 = 446 is the kinetic energy of the beam particles at 
injection and corresponds to the diode voltage defined by 4 b .  

For the experimentalist, the most important information is the relationship 
between total beam current, injection energy (or diode voltage), and applied 
magnetic field that has to be met in order to achieve laminar-flow equilibrium 
for a given beam and tube diameter. The axial beam current is readily obtained by 
integrating 2wqnuordr from r = 0 to r = a, which yields, in terms of ya/yo, 
the result 

(5.70) 

where I0 = 4m0mc3/q - 17,000 A for electrons. The current thus depends on 
4 a  and the ratio of the potential on axis to the potential at the beam surface, +O/#a. 

In Figure 5.6 we plotted I l l 0  versus the potential ratio C $ O / ~ ~  for several values 
of the potential tPa. Note that in the case a = b, q5a represents the diode voltage. 
The current is seen to have a maximum at small values of the potential ratio and 
is zero at &/4a = 0 and 40/da = 1. The region to the left of the maximum, 
where the slope of the curve is positive ( d I / a &  > 0), is unstable, as is known 
from the nonrelativistic theory. 

For the applied magnetic field, Bo, one obtains the expression 

(5.71) 

which, in view of (5.68), may also be written in the form 

Figure 5.7 shows how BO varies with the potential ratio +o/#a for the case b = a. 
The three curves correspond to the values of #a used in Figure 5.6 for the current. 
Given the beam current, potential 4,, and beam radius a, one can thus determine 
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&0/4a and the required magnetic field Eo. Of the two values of 40/4a associated 
with a given current I, one must choose the larger one that corresponds to stable 
current flow. 

If the beam does not fill the entire pipe (6 > a), the procedure for determin- 
ing the allowed combination of the parameters I, q5br a, 6, BO is a little more 
complicated. One must then use Equation (5.69), which relates the potential on the 
beam edge, to the diode voltage, 46, in combination with Equations (5.70) 
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and (5.72) for the current and the magnetic field, respectively. Note from these 
formulas that as b/u increases, both the current and the required applied magnetic 
field decrease (assuming a constant diode voltage). 

The maximum value of the beam current, known in the literature as the spuce- 
charge current limit, plays an important role in many relativistic electron beam 
experiments and devices. We will therefore derive an analytical expression for 
this value from Equation (5.70). By differentiation with respect to yo, and setting 
i3lli3yo = 0, one obtains the equation 

y; + y:y; - 27: = 0, (5.73) 

which has the solution 

2 = “[(1 2 
+ ;)ln - 1 1 .  (5.74) 

Substitution of (5.74) into (5.70) then yields for the maximum current the ex- 
pression 

2 - 13.  
10 2 (1 + 8/y,2)lR - 1 

(5.75) 

This is obviously a somewhat complicated functional form, especially if the case 
b > a is considered, where Equation (5.69) has to be used to find the relationship 
between ya and the injection-energy parameter yb. 

For the applied magnetic field required to focus the limiting current, one obtains 
in the case b = a, by substitution of (5.74) into (5.72), the result 

Bo = - 2 - I l ln .  
(1 + 8/y,2)ln - 1 

(5.76) 

In the ultrarelativistic limit (y: * l),  the potential on the beam axis approaches 
a maximum value which is independent of da and given by 

y; = 2 .  (5.77) 

The corresponding relations for the limiting current, magnetic field, and energy 
factors (potentials) are 

(5.78) 

(5.79) 
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and 

(5.80) 

Figure 5.8 shows the limiting current, Z m / I o ,  versus the diode voltage @b = 
q&,/mc2 in the range 0 5 @b 5 7 (0 to 3.5 MV for electrons) for several ratios of 
tube to beam radius. The corresponding curves for the applied magnetic field Bo are 
presented in Figure 5.9. As an example, take an electron beam with b = a, a beam 
radius of a = 1 cm, and a diode voltage of 1 MV (% = 2). With l o  SJ 17 kA. 
one finds that I, = 30 kA, Bo = 0.7. T = 7 kG. If the tube diameter is 25 percent 
larger than the beam diameter, these values drop to 1, = 15 kA and Bo = 6 kG. 
In the latter case, the potential on the beam edge drops from 1 MV to 650 kV 
according to Equations (5.74) and (5.69). 

In practice it is not possible to achieve the equilibrium state that is defined 
by the space-charge current limit of Equation (5.7% so that the current that can 
be propagated for a given beam voltage is usually lower than I m .  The design for 
an actual beam system then requires simultaneous solution of the three equations 
(5.69). (5.70), and (5.72) for the five experimental parameters I, yb, a, b, BO and 
the two theoretical parameters yo, yo. To find a solution, four of the seven pa- 
rameters must be specified, and the other three are then calculated self-consistently 
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Figure 5.8. limiting current /, (in units of 10 = r l r e ~ r n c ~ / q )  versus potential ratio 9, for different 
values of b/a. (From Reference 1.) 
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Fiaulr 5.9. Appliod m o p t i c  fidd (in units of mc/qa) vanus pohntial d o  a,, fw d i h t  values 
of b/a in the limiting-current care ( I  = I,,,). (From Rehnce 1 .) 

from the equations for the equilibrium state. This procedure is best carried out by 
numerical solution. 

The relationship for the nonrelativistic beam can be recovered from the 
above relativistic equations by assuming that q4 4 mc2, and hence y2 = 
(1 + q4/mc2)2 = 1 + 2q4/mcz.  The proof is left as Problem 5.5. 

When the source is immersed in the applied magnetic field and the canonical 
angular momentum pe varies with radius, the mathematical analysis becomes 
considerably more difficult. The axial velocity profile is no longer uniform, and 
in general, it is not possible to eliminate one of the two velocity components 
from Equations (5.65) and (5.66) to obtain a single equation that determines the 
equilibrium state. An inspection of the force balance equation (5.58) shows that as 
in the nonrelativistic case, the particles must acquire an angular velocity component, 
ve, in order to achieve a force equilibrium. As the particles leave the source 
(cathode), vg is initially zero and there is a net repulsive force qE, - qv,Ee 
which increases the radius and results in a rotation of the trajectory due to the 
E X B effect of the E,  and B, field components. At a short distance downstream 
from the source, an equilibrium state is reached in which the inward Lorentz 
force, queB,, balances the net defocusing action of the remaining force terms. 
In general, the azimuthal velocity component ug will be very small compared with 
u,, and a relatively strong applied magnetic field BO is needed to confine the beam. 
Consequently (in contrast to the flow from a magnetically shielded source), the axial 
diamagnetic self field is very small and may be neglected. With the simplifying 
assumptions Eo - 00, v8 = 0, and JL = qnur = const (uniform current density), 
Bogdankevich and Rukhadze obtained the solution for the limiting current given 
in Equation (4.61) and discussed in Section 5.2.1. It is interesting to compare this 
result, which applies to beams immersed in an infinitely strong magnetic field, 
with Equation (5.75) for the limiting current in the case of a magnetically shielded 
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source. For convenience, consider the case b = a and ultrarelativistic energies 
where ya * 1. A comparison then shows only the linear dependence I,, = l0ya of 
the Bogdankevich-Rukhadze current with voltage as compared with the quadratic 
dependence in Equation (5.78). Thus, one is led to conclude that injection from 
a shielded source should yield limiting currents, which, at relativistic energies, 
are substantially larger than the maximum currents achievable in a system where 
the source is located within the applied field. In the first case, the beam exhibits 
considerable rotational motion with the average vg comparable to uz, while in 
the latter case, ug - 0. Furthermore, due to the approximations made, the theory 
of immersed flow yields no practical relationship for the magnetic field strength 
required to focus the beam, other than the statement that Bo should be very large. We 
do know, however, from the nonrelativistic theory of magnetically focused beams, 
that the magnetic field, required to focus a beam of a given current, voltage, and 
radius, is larger when the source is immersed in the field than in the case where 
the source is magnetically shielded. 

5.2.4 P a d a l  Analysis of Mismatched laminar h m s  in 
Uniform M a g d  Fklds 
In previous sections we considered self-consistent laminar beam equilibria where 
the beam radius a and the radius r of each particle trajectory were constant 
(i.e., independent of axial position z in the region downstream from the diode). 
If the beam is not launched with the correct initial conditions, the trajectories 
and the beam radius will perform oscillations about the respective equilibrium 
radii. Knowledge of the behavior of such a mismatched beam is very important 
for practical design and experiments. To study this problem without excessive 
mathematical difficulties, we will use the paraxial theory (i.e., we abandon the 
self-consistent approach). We will carry out the analysis for the general case of 
immersed flow (pe  # 0); the shielded flow is then obtained by setting pe  = 0 in 
the equations. As we shall see, the paraxial analysis leads to useful results, and the 
errors are small when the currents are not too high. 

For laminar flow, the emittance is neglected (e = 0), and since there are no 
axial electric field components (i.e., y' = y" = 0) the envelope equation (4.79) 
for immersed beams can be applied in the form 

Since pe is determined by the magnetic field B, and the initial radius r, at the 
source (i.e., pe = ;qB,r:), we may write 

= 0 ,  
r4 K 

r: + Krm - K,L  - - 3 r m  rm 
(5.82) 
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(5.83) 

Note that Equation (5.82) is formally identical with (4.85a) except that we have 
the pe term in place of the emittance term. Indeed, as was already pointed out 
in Section 4.3.1, a nonzero canonical angular momentum P@ has the same effect 
on the beam envelope as a finite emittance c. Thus, the following mathematical 
analysis for laminar flow with pe # 0 is directly applicable to a nonlaminar beam 
where 6 # 0. A special solution of Equation (5.82) is r,  = a = const, which 
corresponds to a force balance condition where the outer radius of the beam is 
constant. For this case we have r: = 0 and obtain the relation 

1\Ho special cases are of interest: 

1. K = 0 (space-charge forces are negligible), in which case we obtain the 
solution 

114 1R 
a = r, = r,( r )  =: r,( 5 )  . 

BO 
(5.85) 

Note that the downstream equilibrium radius is greater or less than the 
cathode radius r, if the magnetic flux density B, at the source is greater 
or less than the uniform field Bo. 

2. B, = 0, that is, the source is shielded from magnetic flux ( p e  = 0). In this 
case, the value of the equilibrium radius a is defined as rb, where 

(5.86) 

In the nonrelativistic case, K = (I/&n)/4.rr€~(2q/m)1n and K = 
qBi/8m+o, and we obtain from (5.86) the relation 

(5.87) 

which is identical with Equation (5.44). Thus, in the case of a solid non- 
relativistic Brillouin beam, the paraxial analysis yields the same results as 
the self-consistent theory provided that we use the potential on the axis, 40, 
In both cases. 
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With the two radii r, and r b ,  Equation (5.84) may be expressed in the form 

(5.88) 

The general solution for the equilibrium beam radius a may then be written in the 
two equivalent forms 

(5.89) 

(5.90) 

One can show from these relations that even if I f 0, the equilibrium beam radius 
re is larger or smaller than r, when B, is smaller or larger than BO (i.e., the 
beam is magnetically expanded when B, > Bo and magnetically compressed when 
B, C Bo). Also, the equilibrium radius in the case where Bj # 0 will exceed the 
radius in the case B, = 0 (solid Brillouin beam) for the same current I and vol- 

When the equilibrium conditions are not satisfied, the downstream beam radius is 
rippled [i.e., r,,, = r m ( ~ ) ]  and we must solve Equation (5.82) to obtain the solution 
for this case. If we define the beam radius r,,, in terms of the unrippled equilibrium 
radius a by the substitution R = r,,,/a and the slope by d R / d z  = R', we obtain 
the following first integral of Equation (5.82) after multiplying by 2rk: 

tage 40. 

R2 1 
R i  - R2 + - - ) + $(In- + 3 - 1). (5.91) 

Ro R2 Roz 

where RO = R(O), RA = R'(0). 
Putting R' = 0, one can find the maximum and minimum excursions of the 

beam radius (R- and by solving the transcendental relation for R as a 
function of R& K ,  K, and a2. 

The second integral can be obtained from (5.91) in closed form only if the 
space-charge term K vanishes (zero current limit); otherwise, one has to resort to a 
numerical integration method. However, when the ripple amplitudes are relatively 
small compared with the equilibrium radius a, one can derive an approximate 
solution. By substituting r, = a(1 + x) ,  where 1x1 4 1, into Equation (5.82), 
expanding, and keeping only first-order terms in x ,  one obtains the equation 

(5.92) 
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which is analogous to (4.103). This is the differential equation of the linear 
harmonic oscillator, which for x = 0, x' = xh at z = 0 has a solution of the form 

(5.93) 
27r 

A 
x = xh sin k,z = xhsin - z, 

where the wavelength A, of the beam envelope oscillation is given by 

A, = - 27r = 2 n [ 2 J C ( 1  - 
k 

In a solid Brillouin beam (B, = O), where rb 

2 n  
A, = - a' 

",'"I"* 2a2 

= a, the wavelength is 

(5.94) 

(5.95) 

If we introduce the time t = t/vo, we obtain the envelope oscillation frequency 
or the transverse resonant frequency, o,, given by we = 21rvo/A,, or 

When K = 0 (no space charge), we find that 

27r 27rvo 

2 f i  & 
A , = - = -  , 0, = o c .  

(5.96) 

(5.97) 

For the solid Brillouin beam (B, = 0), the envelope oscillation wavelength and 
frequency are given 

Thus, in the absence 

(in agreement with Section 4.3.3). (5.98) 0, 
w e  = Jz 

of space charge, the frequency associated with the envelope 
oscillation of the beam is equal to the cyclotron frequency. In a solid Brillouin 
beam emitted from a magnetically shielded source, on the other hand, the envelope 
frequency is equal to the plasma frequency given by Equation (5.39) (i.e., or = 
up = oc/&). Interestingly, in the latter case, the paraxial analysis yields the same 
results as the self-consistent theory for a nonrelativistic beam. 
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5.3 THE VLASOV MODEL OF BEAMS WITH MOMENTUM SPREAD 

5.3.1 Tho Vlarov Equation 

When the effect of the velocity spread (temperature, emittance) of the beam is 
not negligible compared with the space-charge force, the flow is nonlaminar, and 
the theoretical model has to be modified. In the paraxial theory, the nonlaminar 
situation is represented by the emittance term in the envelope equation. As one 
might expect, a self-consistent theory of nonlaminar flow is not that simple; that is, 
one cannot merely add a temperature term to the self-consistent laminar equations 
discussed in preceding sections. The accepted method of describing self-consistent 
equilibria in this more general case is the Vlasov model [2]. It applies to all systems 
(nonneutral beams as well as neutral plasmas) for which Liouville’s theorem is 
applicable and where collisions between particles can be neglected. A system of 
identical charged particles is defined by the distribution function f ( q i ,  p i ,  t )  in six- 
dimensional phase space, where qi and pi represent the conjugate canonical space 
and momentum coordinates. Liouville’s theorem states that 

dt  at 
(5.99) 

which is equivalent to the statement that the volume occupied by a given number 
of particles in phase space remains constant (see Section 3.2), that is, 

d 3 q d 3 p  = const. (5.100) 

The phase-space coordinates qi, pi obey Hamilton’s equations of motion (2.60), 
that is, 

a H  p i  = -- 
api aqi ’ 

. aH 
qi = - 5  (5.101) 

where H ( q i , p i , t )  = c(m2c2 + (p - qA)Z)’n + qcp is the relativistic Hamilton- 
ian. The scalar potential 4 and the vector potential A represent the sum of the 
applied fields and the self fields generated by the particles. The self-field con- 
tributions are determined by the space charge p and current density J, which 
are obtained by integrating the distribution function f (qi ,  p i ,  t )  in momentum 
space, namely, 

(5.102) 

(5.103) 
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In the case of explicit time dependence, a f / a t  # 0, one has to solve the wave 
equations for 4 and A (subject to the boundary conditions): 

(5.104) 

(5.105) 

By substituting (5.101) into the Liouville equation (5.99), we obtain the rela- 
tivistic VIasov equation [2], also known as the kinetic equation: 

(5.106) 

The set of equations (5.102) to (5.106) determine self-consistently the dynamics of 
an ensemble of charge particles that obey Liouville’s theorem. 

An alternative and often more convenient formalism specifies the distribution 
function in terms of the space coordinates qi and the mechanical momentum 
components Pi = pi  - qAi [i.e., f = f (qi, Pi ,  t ) ] .  By transforming from (qiv p i )  
to other variables (Qi, Pi), Equation (5.100) may be expressed as 

// D d3q d3p  = // d3Q d3P = const, 

where 

(5.107) 

(5.108) 

is the Jacobian of the transformation. Obviously, when D - 1, Liouville’s theorem 
also applies to the phase space defined by the other variables (Qt,Pi).  It is easy 
to show that the Jacobian determinant D = 1 for the transformation (qi,pi) - 
(qi, P i ) .  As a result, Liouville’s theorem may be stated in the alternative form 

// d3qd3P = const, (5.109) 

or 

(5.1 10) 

The Pi are determined by the electric field E and the magnetic field B via the 
Lorentz force equation 

-3 d P  q E + q v X B .  
dt 

(5.1 11) 
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Substitution of (5.1 11) into (5.110) then yields the relativistic Vlasov equation in 
the alternative form 

where the velocity v has to be expressed in terms of the mechanical momentum, 
that is, 

- 1n 
v - p(1+ m &) (5.113) 

The electric and magnetic field are determined self-consistently by Maxwell’s 
equations: 

aB  V X E = - -  
a t  ’ (5.1 14a) 

In the nonrelativistic case (i.e., when y = l), one can express the distribution 
function in terms of the velocity v rather than the momentum P. With f (r, v, t), 
the Vlasov equation may then be written as 

(5.1 15) 
at m 

where r = {qi} = {x ,  y ,  z} and v = {i i}  = {i, j ,  i} in the case of Cartesian coordi- 
nates. If the beam is composed of different types of particles or ions, the distribution 
function for each species obeys a Vlasov equation of the form (5.112). The self 
fields are then obtained by summation of all contributions to total charge density 
p and current density J in Maxwell’s equations (5.114). 

The equilibrium states of a distribution of particles (i.e., in our case of a charged 
particle beam) are defined by time-independent solutions of the Vlasov-Maxwell 
equations. In this case, with a/at = 0, Equations (5.112) and (5.114) take the form 

(5.116) 
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V X E - 0 ,  (5.117a) 

(5.1 17b) 

In principle, this set of Vlasov-Maxwell equations defining the stationary states 
of charged particle distributions obviously has many solutions which depend on 
the form of the distribution functions and the parameters characterizing the system. 
The main problem is to find a particular distribution function which permits a 
mathematical analysis without excessive difficulties and which, at the same time, 
represents a good model of a physically realizable system. The usual approach is 
to choose a distribution function which depends on the constants or integrals of 
the motion and which therefore, by definition, is a solution of the Vlasov equation. 
Suppose, for instance, that the constants or integrals of the motion (e.g., total 
energy, canonical angular momentum, etc.) of a system of particles are known and 
defined by Z1, 12, and so on. Then, any distribution function which is an arbitrary 
function of these integrals, f (11, Ze, . . .), satisfies Liouville’s theorem and therefore 
the Vlasov equation; that is (with a/& = 0), 

(5.118) 

since dl j /d t  = 0, for j = 1, 2,.. . . 
Unfortunately, it is not easy to find constants or integrals of the motion and 

appropriate distribution functions in the general cases of three-dimensional systems, 
especially when space-charge forces are involved. The most important class of 
problems that can be treated without excessive difficulties by the Vlasov method 
are those in which the Hamiltonian (i.e., the total energy of the particles) can 
be separated into a transverse and a longitudinal part. As an illustration, let us 
consider the Hamiltonian for particle motion in a nonrelativistic beam confined by 
an electrostatic potential, that is, 

(5.119) 

where q5 = q5,, + 4, is the sum of the applied (focusing) potential 4,, and the 
space-charge (defocusing) potential 4,. Now let us assume that we are dealing 
with a continuous beam and that the combined potential is of the form 
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where f(z) is either constant (i.e., df/dz = 0) or where its variation with distance 
z is so small that the effect of the axial electric field Ez = -a+/az on the 
longitudinal momentum is negligible. Under these conditions the axial velocity and 
momentum of the particles remain approximately constant, and the Hamiltonian can 
be separated into a transverse part, HI, and a longitudinal part, H I I ,  where 

1 
2m 

HI1 = - P;. 

(5.  I 2 1 a) 

(5.12 1 b) 

We note that in this approximation HII  is a constant of the motion whereas HI is not 
because of the variation f (z )  in the potential function. Strictly speaking, since the 
total Hamiltonian H in the system described by Equation (5.1 19) is a constant of 
the motion, HII would have to vary with distance z if HI = Hl(z). However, the 
approximation Hi1 = const is justified if the changes in the longitudinal momentum 
due to the axial force Fz = qE, are negligibly small (i.e.. AP, 4 P,). A good 
example for this case is an electrostatic quadrupole channel where the applied 
potentials (and hence also the beam’s self potential) vary with distance z. In this 
case, the transverse Hamiltonian HL is not a constant, and hence, we cannot use it to 
construct a distribution function that would satisfy the stationary Vlasov equation. 
On the other hand, if we consider a uniform focusing channel, where the potential 
function does not vary with distance z (i.e., if af/az = 0). then both HI and 
H( are also constants of the motion. In this case, any distribution function of 
(HI, HI) would satisfy the time-independent Vlasov equation and hence represent 
a stationary beam. A good example of such a system is the cylindrical beam in 
a long solenoid with uniform magnetic field. In the rotating Larmor frame, the 
applied radial hrentz force F, = -qveBz is equivalent to a focusing electrostatic 
force qE,  = -4d4Jdr which opposes the repulsive force due to the space-charge 
potential a&/ar. The steady state in this uniform magnetic field is characterized 
by a beam that has a constant radius and hence no z-variation of the self field 
(matched beam). A second, albeit somewhat more academic example is a beam 
that propagates through a “transparent” cylinder of a stationary opposite charge 
with uniform density in which collisions can be neglected and which acts like 
an applied focusing potential. The effects of charge neutralization discussed in 
Section 4.6 can be treated by such a model. Finally, the smooth approximation of 
beams in periodically varying focusing systems offers a third example that is of 
great importance from a practical point of view. The smoothed applied focusing 
force is independent of z and can be treated like a harmonic oscillator potential in 
the transverse direction, as discussed in Section 4.4. The corresponding average 
transverse Hamiltonian is then a constant of the motion and, mathematically, 
average stationary states can be constructed by distribution functions of the form 
f ( H 1 .  Hit). In doing so one of course neglects the axial variation of both the applied 
potential and the space-charge potential 4, (arising from the periodic ripple in 
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the beam envelope). One of the most important examples of such a distribution 
function is 

(5.122) 

The longitudinal part is a delta function, which means that all particles have the 
same axial momentum. The beam is therefore “cold” in the axial direction (i.e., 
it has zero longitudinal temperature). The transverse part corresponds to a two- 
dimensional Maxwell-Eoltzmann distribution with constant transverse temperature 
kBT1 , also known as a transverse thermal distribution. The particle density, which 
is only a function of the transverse coordinates, is obtained by integrating over the 
momentum components, yielding 

(5.123) 

This equation relating the particle density to the potential and the temperature is 
known as the Boltzmann relation. When the applied potential function is given 
and the space-charge potential is negligible, the density variation is readily defined 
by Equation (5.123). However, when is not negligible the situation becomes 
mathematically much more complicated since 48 and n(x,y) are related by Pois- 
son’s equation, V2& = -qn/q, .  We discuss this complication further in Section 
5.3.3, where several examples of stationary distributions are treated, and in Section 
5.4.4, where the transverse Maxwell-Boltzmann distribution is analyzed in much 
more detail. 

In the relativistic case, the Hamiltonian corresponding to Equation (5.119) has 
the form [see Equation (2.7O)J 

(5.124) 

in which the transverse and longitudinal kinetic energy parts are not readily 
separated since they appear inside the square root. Fortunately, for most beams 
of practical interest, the transverse momentum components are small compared to 
the longitudinal momentum, so that (5.124) can be approximated by 

or, alternatively, in terms of the velocities, 

H = rmc2 + - ( u x  r m  2 + u:) + q+(x,y)f(z) .  2 (5.125b) 
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Thus, as in the nonrelativistic case, we can separate the transverse part of the 
Hamiltonian from the longitudinal term (represented by ymc2). As we will see in 
the next sections, it will be convenient to redefine the transverse Hamiltonian in 
terms of the slopes x' and y' by dividing (5.125b) with ymu2 and writing 

(5.126) 

When f(z) is constant, this relativistic Hamiltonian for the transverse motion is 
a constant, and any distribution function f ( H 1 )  will satisfy the stationary Vlasov 
equation. Before we discuss several functions of this type, we will first consider the 
more general case where f ( z )  varies with distance z and where HI is not a proper 
constant of the motion. We recall from Chapters 3 and 4 that the emittances c, and 
ey (or the normalized emittances when acceleration is involved) are constant if all 
forces acting on the particles are linear in x and y. A distribution function f ( c x ,  cy) 
would therefore satisfy the time-independent Vlasov equation. As it happens there 
is only one self-consistent distribution where both the applied and space-charge 
forces are linear and where the emittances are preserved. This distribution is a 
delta function of the emittances. Known as the K-V distribution, it is treated in 
the next section. 

5.3.2 Tho Kapchinsky-Vladimirsky (K-V) Distribution 

In statistical mechanics, the distribution in which the forces are linear and the 
phase-space areas remain constant is known as the microcanonical distribution. 
Kapchinsky and Vladimirsky [3] used this distribution to study the effects of space 
charge on the transverse beam dynamics in a linear accelerator with magnetic 
quadruple focusing elements. Their work, which was published in 1959, has been 
of major importance in accelerator theory and design, and their beam model is 
now generally referred to as the K-Vdlstribution. For the forces to be linear in 
the transverse coordinates x and y, the conditions for paraxial motion must be 
satisfied (i.e., u, 4 u,, uy 4 u,, u, u). Furthermore, the changes in the beam 
size must occur slowly enough that longitudinal forces due to the beam's self- 
field components can be neglected. All particles then have the same axial velocity 
u, = u; that is, the potential difference across the beam must be small compared 
to the kinetic energy. 

Let us now trace the steps that lead to the K-V distribution function. The 
equations of motion for a continuous beam in which both the applied as well as 
the space-charge forces are linear functions of the transverse coordinates x and 
y have already been derived in Section 4.4.2 for a quadruple focusing channel 
[Equations (4.176) and (4.177)]. We will write them in the form 

(5.127a) 

(5.127b) 
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The focusing functions K ~ ( z )  and K,(z) include the space-charge forces and are 
defined by 

(5.128a) 

(5.128b) 

The beam has in this general case an elliptical cross section; X(z) and Y(z) are the 
semiaxes of the ellipse, and they are found by solving the beam envelope equations 
(4.178) and (4.179). The two trajectory equations (5.127) have the same form as 
Equation (3.312), which we studied in Section 3.8.2. Thus we can represent the 
solutions in the phase-amplitude form 

The phase functions $, and $, satisfy the relations 

while w,, wy obey the equation 

(5.130) 

(5.131) 

The parameters A,, A,, 4,. 4, depend on the initial conditions (XO, xh) and 
(yo, yh) and remain constant throughout the motion. Specifically, in analogy to 
Equation (3.342), we have the relations 

X2 

w? 
A: = - + (w,x‘ - w:x)2, 

Y2 

wy” 
A; = - + (wyxl - wiy)’, 

(5.132a) 

(5.132b) 

which represent equations of ellipses. As discussed in Section 3.8.2, the maximum 
value of the amplitude parameter is related to the emittance. Thus, if cz denotes 
the emittance in x-XI trace space, cy in y-y‘ trace space, then 

(5.133) 2 
A:,mx - ex. Ay,mrx = 3 * 
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This is in agreement with Liouville’s theorem, which states that for a system of 
particles where the motion in each Cartesian plane is decoupled from that in the 
other directions, the corresponding emittances remain constant during the motion. 

Each value A, S Ax,-, or A, 5 A,,- defines an ellipse in x-x‘ or y -y’ space 
whose area is conserved (i.e., A: and A; are integrals of the motion). Likewise, 
any linear combination, say A: + CAY”, is a conserved quantity. The constant C is 
given by the ratio of the emittances (i.e., C = ex/ey),  and has the value C = 1 if 
the two emittances are the same. Thus we can define as a new integral of motion 
the quantity F given by 

or, alternatively, the dimensionless quantity G defined as 

(5.134a) 

(5.134b) 

Mathematically, any distribution function f (F), or f (G), would satisfy the time- 
independent Vlasov equation. However, only the special microcanonical distri- 
bution function proposed by Kapchinsky and Vladimirsky, known as the K-V 
distribution, produces linear equations of motion with variables separated. It has 
the form 

or 

f foG(G - 11, (5.135b) 

where S(x) is the Dirac delta function with the property 

S(x) = 0 forx # 0, S(x)dx = 1. (5.136) 
-m 

Kapchinsky and Vladimirsky treated only the case C = 1 where E,  = ex = Fo. 
However, we will not make this restriction and will treat the more general case of 
the K-V distribution, where ex # e, (see the comment in Reference 3). For such 
a choice of the distribution function, the representation points of all particles in the 
beam lie on the surface of the hyperellipsoid 
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in the four-dimensional phase space defined by the coordinates x ,  y ,  x’, y’. The 
projection of this hyperellipsoid in the x-x‘ plane gives the result 

2 - + (w,x’ - w:x)2 = b x ,  
w,2 

(5.138a) 

which, from Equations (3.341) to (3.349, may be written in terms of the 
Courant-Snyder parameters bi, 8, 9 as 

pxx2 + 2&,xx’ -I- S X X ‘ 2  = E x .  (5.138b) 

These are the equations of the emittance ellipse in the x-x’ plane with the area 
e,v. A similar relationship is obtained for the projection in the y-y’  plane, where 
on the right-hand side one obtains by in lieu of 4,. 

The K-V distribution has the interesting property that all two-dimensional 
projections (x-XI, n - y ,  etc.) yield uniform particle densities in both the symmetric 
case (F, = by and in the asymmetric case ex # ey (see Reference 3 and Problem 
5.8). Thus, the density in the ellipse (5.138) is uniform. Likewise, the density across 
the beam in the x - y  plane is uniform, as required to obtain linear space-charge 
forces. From Equation (5.137) we see that the coordinates of all particles obey 
the relation 

1, Y 2  + -  X 2  - 
€,w: byWy” 

and, consequently, with w2 = 8, the ellipse 

- + - =  y 2  1 
S x a  S y E y  

X 2  
(5.139) 

represents the boundary of the beam outside of which there are no particles. The 
semiaxes of this ellipse, which represent the envelopes in the x and y directions, 
are given by 

The distribution function f(G) is a solution to the time-independent Vlasov- 
Manvell equations and allows us to determine the charge density, current density, 
and associated fields in a self-consistent manner. First, the charge density can be 
calculated from the expression 

p = qfo 1- Irn S(C - 1)dx’dy’ .  (5.141) 
--OD --a0 
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The integration yields 

P = f?fo7r& 

which represents a uniform distribution in the beam cross section. 
The total beam current I in the z-direction is given by 

I = u, // p ( x , y , z ) d x  dy = v p X Y w  

(5.142) 

(5.143) 

since p is independent of x and y and the beam cross section is an ellipse with 
area XYm. Thus, we can express p in terms of the current as 

I 
p ( z )  = 7ruX(z)Y(z) ' 

(5.144) 

in agreement with Equation (4.173). With (5.140) and (5.144), the normalization 
constant fo in (5.135) and (5.142) is then found to be 

I 
7r2qu€x€y * fo = (5.145) 

If the beam envelopes change along the path length z, the charge density p is a 
function of z .  However, as was pointed out above, the changes occur along distances 
that are significantly greater than the beam width. The electrostatic potential 4 
may then be calculated from Poisson's equation for any given position z by 
approximating the beam as an infinite elliptical cylinder with semiaxes X(z), Y(z) 
and having uniform charge density; thus 

(5.146) 

where p is given in Equation (4.172). Note that we neglect any image charges 
from boundaries in this approximation. 

The solution of Equation (5.146) for the potential distribution inside the beam 
is found to be 

From this expression one obtains the electric field components inside the beam 
given in Equations (4.174) and (4.175). The magnetic self-field components are 
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defined by B = (v X E)/c2, and the associated Lorentz force reduces the electric 
force by the factor 1 - /3’ = l/y2, as shown in Equations (4.15) and (4.16). 
Substitution of these force components into the equations of motion then leads 
to the trajectory equations (4.176) and (4.177), which can be written in the form 
(5.127). The associated envelope equations (4.178) and (4.179) can be obtained by 
substituting (5.140) into (5.131) using the definition (5.128) for the function K ( z ) .  

The proof that the K-V distribution (5.135) yields the desired linear equations for 
beams with space charge is thus essentially completed. 

To apply the K-V model to a specific beam channel, one must know the 
functions K ~ O ( Z )  and K ~ O ( Z )  representing the external focusing force, the generalized 
perveance K representing the space charge, and the emittances E, and ey. Then 
one must first find the envelopes X(z ) ,  Y ( z ) .  The envelope equations represent 
a system of two nonlinear, second-order coupled differential equations which, in 
general, must be solved numerically for given initial conditions. The results for 
X ( z )  and Y ( z )  can then be substituted into Equations (4.176), (4.177) to find the 
trajectories for individual particles in the beam. 

If the channel consists of periodically spaced quadrupole lenses with period S 
such that K~O(Z + S) = K,O(Z)  and K~O(Z + S) = K ~ o ( z ) ,  proper initial conditions 
will give periodic solutions for the envelopes with period S, as discussed in 
Section 4.4.2. In this case, the beam is said to be matched to the channel. 
For any other initial conditions in the periodic system one obtains the envelope 
oscillations of unmarched beams treated in Section 4.4.3. The K-V distribution 
f = foS(G - 1) - f ( x , y , x ’ , y ’ )  thus represents the phase-space function that 
generates the linear self-fields in coordinate space ( x ,  y or r ,  6) that were used 
in the paraxial theory of Chapter 4. 

The above trajectory and envelope equations are applicable not only to straight 
focusing channels and linear accelerators, but also to beams in circular accelerators. 
In axisymmetric (weak-focusing) - systems, for instance, the independent variable is 
the path length s = R e ,  where w is the average radius of the equilibrium orbit; 
the functions K ~ O  and K ~ O  then represent the radial and axial betatron frequencies 
(see Section 3.6.1), K,O = (1 - n)/$ and K ~ O  = n/?. Since K,O and K ~ O  are 
independent of s in this case, a matched-beam solution exists where X = const, 
Y = const, which can be found by setting XI’ = 0, Y” = 0 in Equations (4.178), 
(4.179). In alternating-gradient (strong-focusing) synchrotrons, on the other hand, 
K,O and K ~ O  are periodic functions of the path length s; the closed equilibrium orbit 
is not a circle in this case, and the periodicity is defined by the number of focusing 
lattice units along the circumference of the accelerator. 

If we apply Equation (4.178) and (4.179) to a round beam (X = Y = R) and 
replace c, = cy by c and K,O = K ~ O  by KO = (qB,/2rn~py)~, we obtain the en- 
velope equation (4.85a) for a paraxial beam in a solenoidal magnetic field, namely, 

K e2 
R R3 

R” + KOR - - - - = 0 ,  

At first glance, this analogy is somewhat surprising since the K-V equations were 
based on a self-consistent distribution function, whereas the paraxial theory did not 
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use a self-consistent approach. However, as we did point out, the K-V distribution 
does in fact imply the paraxial assumption that the transverse velocity components 
u,, uy are small compared with the axial velocity. This assumption was necessary 
to linearize the equations of motion. The K-V theory may thus be called a self- 
consistenrparuxiul theory. It applies to beams with elliptic cross section in focusing 
fields with linear external forces that differ in the two perpendicular transverse 
directions as well as to round beams in axisymmetric focusing systems. A truly 
self-consistent nonparaxial theory comparable to that for relativistic laminar flow 
entails considerable mathematical difficulty and results in a rather complex set of 
nonlinear, complicated relations for the density profile and the associated self fields. 
An example of this type is the intense relativistic electron beam model of Hammer 
and Rostoker IS], in which the focusing force is produced by a background of 
stationary positive ions providing partial charge neutralization. 

The K-V theory is a good and very useful approximation for beams where the 
current remains well below the space-charge limit. This is true for practically all 
accelerators and other devices. The most notable exception is the intense relati- 
vistic electron beam generator (IREB) which usually operates near the limiting 
current. It must be kept in mind, however, that the K-V model does not include 
nonlinear effects that increase the emittance. We deal with emittance growth effects 
in Chapter 6. 

5.3.3 SHonary Distributions in o Uniform Focusing Chonnol 

In the preceding section we have shown that the K-V distribution is a self- 
consistent soiution of the time-independent Vlasov equation when the external 
forces acting on the particles are linear functions of the transverse displacements 
x, y from the beam axis. In general, the amplitudes of these forces may be different 
in the two transverse directions and may vary with the distance along the path of 
the beam. The K-V distribution has the property that the electric and magnetic 
self forces due to space charge and beam current are also linear functions of x , y .  
This property is independent of the strength of the internal fields (and hence the 
generalized perveance K), and the particle density within the beam is always 
uniform. 

In this section we consider the simplest case of a focusing system, namely, a 
uniform channel in which the external forces are linear, axisymmetric, and inde- 
pendent of the longitudinal distance z .  A stationary particle distribution in such 
a channel has the property that the internal forces are also axisymmetric and in- 
dependent of the distance z along the beam; however, with the exception of the 
K-V beam, the space-charge forces may be nonlinear functions of x , y .  Mathe: 
matically speaking, a stationary distribution in a uniform channel is characterized 
by the fact that for all forces acting on the particles a/az = 0 and a/ar = 0. 
We will assume that all particles have the same axial velocity i and that the 
transverse velocity components i , j  are very small compared to i (paraxial ap- 
proximation). The relativistic energy factor y can then be treated as a constant, 
with y - (1 - j3*)-ln = (1 - i2/c2)-ln. The total force acting on a particle in 
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the transverse direction consists of the linear external focusing force; the out- 
ward force, qE,, due to the space-charge electric field; and the inward force, 
-qiBo = -qE,P2, due to the magnetic self field of the beam. Note that there 
is also a force q i B e  in the r-direction due to the magnetic self field, but in our 
beam model the associated change in the axial velocity is so small that we can 
neglect it. It is easy to show that the equation of motion for a particle experiencing 
these forces can be derived from a Hamiltonian HI, which is a function of r and 
u1 = (2 + j z ) l n .  If we use the trajectory slopes x' = i / u ,  y' = j / u  in place 
of i ,  i ,  the Hamiltonian can be defined in dimensionless form as 

where r2 = x2  + y 2  and ri2 = xI2 + y I 2 .  Note that ti2 stands for v:/u2 = 
x12 + y12 and is not to be confused with the square of the slope r" = ( d r / d ~ , ) ~  
of r (z ) ,  where r is the radial coordinate. The first term on the right-hand side 
represents the transverse kinetic energy, the second term is the potential energy 
due to the external focusing field, and #$(r) in the third term is the electrostatic 
potential due to the space charge of the beam. Note that (5.148) is identical with 
(5.126) except that the potential function is split into the applied part, &,, assumed 
to be of the harmonic oscillator form (a r2)  and the space-charge part, &, in which 
the factor 1 - P2 represents the attractive magnetic self force arising from i B e .  

Physically, such a uniform focusing system corresponds to particle motion 
through a long solenoid as seen in the Larmor frame or to a particle beam passing 
through a channel of stationary charges of opposite polarity and uniform density 
pc, or to a smoothed periodic channel, as was pointed out earlier. In the first case 
the constant ki is given by = K = &v2, where OL is the Larmor frequency, 
while in the second case it is proportional to the charge density pr of the focusing 
background particle distribution, and in the third case it relates to the phase advance 
uo and period length S by ki = u;/S2. The Hamiltonian HI for particle motion 
in such a system is constant, and thus a stationary, self-consistent solution of the 
steady-state Vlasov equation can be represented by a properly chosen distribution 
function f ( H 1 ) .  Although the Hamiltonian depends only on r and r i ,  we should 
bear in mind that both HI and f ( H L )  are functions in four-dimensional phase space 
( x , y , x ' , y ' )  or (r .8 .r; .  +), where 8 and + denote the angles of the cylindrical 
coordinate system in x , y  and x',y' space, respectively. 

If a distribution function f ( H J  is given, the self-consistent determination of the 
particle density n ( r )  and the space-charge potential # J r )  follows the procedure 
outlined in Section 5.3.1. First, one obtains for the density 

(5.149) 
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where a'(r) denotes the maximum value of r: in the particle distribution at a 
given radius r .  

The space-charge potential 4, is then found by solving Poisson's equation, 

(5.1 50) 

which, by substituting (5.149) for n(r) ,  takes the form 

It will be convenient to introduce an effective potential W ( r )  which represents 
the sum of the external focusing potential and the self-field potential, that is, 

(5.152) 

where 1 - p2 = l/y2 has been used. The Hamiltonian may then be written as 

(5.153) 
1 

H I @ ,  r:)  = ri2 + ~ ( r ) .  

A particle reaching the outer edge of the beam, defined by rmex = a, will have 
zero slope at this point, and its Hamiltonian, or transverse total energy, will have 
the maximum value given by 

Ho = W(a) ,  with r:(a) = 0 .  (5.154) 

At any radius r < a inside the beam. this particle has the maximum value a'(r) 
and its Hamiltonian is 

1 
2 

HO = - a"(r) + W ( r )  = ~ ( a ) .  

It follows from these last two equations that 

We may thus write Equation (5.149) in the alternative form 

(5.155) 

(5.156) 
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or 
r W ( 4  

(5.157) 

Likewise, the Poisson equation (5.151) may be written in the form 

The boundary of the particle distribution in four-dimensional space outside of 
which the density is zero is defined by the maximum value of the Hamiltonian [i.e., 
by setting H l ( r ,  r i )  = HO = W(a)]. If u‘ - a’(0) defines the maximum value of 
u’(r) occurring at r = 0, we obtain from Equations (5.153) to (5.156) the equation 
for the boundary 

= 1 .  
ri2 W ( r )  - W(O) 
u’2 W(u) - W(0)  
- +  (5.159) 

In the following we discuss three distributions that have been treated in the 
literature and are known to be stationary self-consistent solutions of the steady-state 
Vlasov equation for a uniform focusing channel: the K-V distribution (introduced 
in the preceding section), the waterbag distribution, and the Gaussian distribution. 

For a uniform focusing system, the K-V distribution can be represented as a 
delta function of the transverse Hamiltonian, that is, 

where $1 is a normalization constant. This distribution has the property that all 
particles in the beam have the same total transverse energy defined by Ho; hence, 
the particles populate the surface of a hypersphere in four-dimensional phase space 
uniformly. We note that for an asymmetric matched beam, where the focusing forces 
and/or the emittances differ, (5.160) is not valid and F(HJ has a rectangular shape. 
(See the report by Saraph and Reiser mentioned in Reference 3.) 

The particle density is found from Equation (5.157) by substitution of (5.160), 
yielding 

for H I  s HO = W(u). The density is thus uniform, as expected for a K-V 
distribution, and the normalization constant is related to the density by 

no 
2s f l E  -. (5.162) 
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With this result for the particle density, Poisson’s equation becomes 

which yields for the space-charge potential the solution 

(5.163) 

if dJ = 0 at r = a is assumed and the relation (4.10b) between charge density 
po and beam current I is used. The associated electric field is a linear function 
of radius r and is given by 

(5.164) 

By substituting (5.163) for #, and introducing the generalized perveance K defined 
in (4.23), we obtain for the Hamiltonian (5.148) in the case of a K-V distribution 
the result 

1 1 1 
2 2 2 2 

H l ( r , r i )  = - r:’ + W ( r )  = - rL2 + - kir2 + K( 1 - $ ). (5.165) 

We note that the distribution functions (5.135) and (5.160) are equivalent descrip- 
tions of a K-V beam. The latter was chosen for an axisymmetric beam in a 
uniform focusing system, while the former also includes the more general case 
of quadruple fields that may vary with distance (although still linear in the two 
transverse directions). When the external forces vary with distance, a stationary 
distribution is characterized by the fact that the beam radius is no longer con- 
stant [i.e., a = a(z)]. Special cases of this type are the periodic-focusing systems 
discussed in Sections 4.4.1 to 4.4.3. 

The phase-space boundary of the K-V distribution is obtained from Equa- 
tion (5.159) and given by 

(5.166) 

where the relations W(0)  = 2K and W(a) = ik;a2 have been used. 
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Our second example of a stationary beam in a uniform focusing channel is the 
waterbug distribution, which is defined by the Heaviside step function 

f (HI) = fiO(H0 - HI), (5.167) 

that is, f(HJ = const for 0 5 HI s HO and f(HL) = 0 for HI > Ha. This 
distribution has the property that all transverse total energies between HI = 0 and 
HI = Ho occur with equal probability and that the particles populate the interior 
of the hypersphere defined by Ho uniformly. 

Substitution (5.167) in (5.157) and integration yields for the particle density 
the result 

n ( r )  = 2wfz[W(a) - ~ ( r ) ] .  (5.168) 

In view of the definition (5.152) for W ( r ) ,  the density thus depends linearly on the 
space-charge potential &(r), which must be determined from Poisson’s equation 

This equation can be simplified by introducing the potential function 

2ko2 
k: 

V ( r )  = W ( r )  - w(a) + -, 

where the constant k: is defined by 

In place of Equation (5.169) one then obtains 

This equation has the solution 

(5.170) 

(5.171) 

(5.172) 

(5.173) 
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where C is an integration constant and Io(k1r) the modified Bessel function of 
order zero. If we let the space-charge potential take the value tPs = 0 at the edge 
of the beam ( r  = a), where W(a) = Zk$z2, the integration constant becomes 

The effective potential is then given by 

W ( r )  = &'(a) - 

For the particle density one finds that 

where 

and where the densiiy at r = 0 is given by 

(5.174) 

(5.175) 

(5.176) 

(5.177) 

(5.178) 

In the extreme space-charge limit (kl - m), the density is seen to be essentially 
uniform inside the beam and given by n f .  Thus nf is the limiting density where 
the internal force due to the self fields is exactly equal and opposite to the external 
focusing force. 

The beam current is defined by the integral 

which yields 
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By substituting relation (5.177) for nf and introducing the characteristic current 
l o ,  defined in Equation (4.13), we can write Equation (5.179) in the form 

From this we obtain the equivalent equation for the generalized perveance 

(5.180) 

(5.181) 

For given values of the generalized perveance K, the external focusing parameter 
ko, and the beam radius a, the parameter k1 can be calculated by solving Equa- 
tion (5.181) numerically. 

The space-charge potential &(r) is found from (5.152) by substituting (5.175) 
for W ( r ) ,  and one obtains 

By introducing the beam current I from (5.180), we can write this equation in 
the form 

which can be compared with the result (5.163) for the K-V distribution. 
The Hamiltonian is given by 

1 
2 

H L ( t , r i )  = - t12 + 

For its 
r = a, 

maximum value HO = W(a) one has ti = a' at t = 0 and ti = 0 at 
which yields the relation 

By substituting no/nf from (5.178), we obtain the following relation for the 
parameter kl : 

(5.186) 
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or, in view of (5.177), 

- - - 355 

(5.187) 

Finally, by substituting (5.175) into (5.159), we obtain for the phase-space boundary 
of the waterbag distribution the equation 

(5.188) 

The shape of this boundary in the x-x' plane is shown in Figure 5.10 for several 
values of the parameter Ala, and the corresponding density profiles n(r)/no are 
displayed in Figure 5.11. Of interest are two limiting cases. First, when the space- 
charge effects are negligible (kl - 0), the phase-space area takes the well-known 
shape of an ellipse and is thus similar to the boundary of a K-V distribution. The 
density profile in this limit becomes 

(5.189) 

Second, in the extreme space-charge limit (kl  - m), we see that the phase-space 
contour becomes rectangular and the density profile uniform. In fact, as discussed 
later, all nonuniform distributions in linear focusing channels become uniform in 
the laminar-flow limit, where the emittance is zero. The net potential in the interior 
of the beam is approaching the value zero in this limit due to the fact that the space- 
charge potential 4,(r) is quadratic in r and exactly cancels the external focusing 
potential. The beam in this case resembles a rigid box in which the particles move 

1 

? a  
X 

-1 

k,a= 20 ----- 
.. , .. , ... .... k,a= 8 
-.- - k,a= 4 
- k,a= 0 

%/a 

Figurn 5.10. Pham-rpaa boundary of stdonary waterbag distributions for d i h t  wlm of 
the pammdsr t l o .  (Coulkry of J. Struckor.)  
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Figurn 1.11. Density pcohL of stationary rmhrbog distributions for different valuw of dm 
pornmeter f l o .  (Courtmy of J. Struhior . )  

freely on straight trajectories until they reach the “wall” at the edge ( r  = a), 
where they are reflected. Since the phase-space boundary becomes rectangular 
when kl - 00, we can represent the trace-space area by the approximate relation 

€7r = 4aa’. (5.190) 

while the total beam current can be approximated by I = qnoa27ru. Using these 
relations, we obtain for k:a2 the result 

(5.191) 

where K is the generalized perveance of the beam. By comparing this result with 
the envelope equation (4.86), we see that k:a2 is proportional to the ratio of the 
space-charge and emittance terms. If wo denotes the particle oscillation frequency 
in the uniform focusing channel without space charge and o the frequency with 
space charge, one can also show that k:a2 a oo/o. This relation, as well as 
Equation (5.191), is of course valid only in the limit R:a2 * 0 (i.e.s Ka2 + e2 
or 00 3~ 0). 

Finally, we note that the normalization constant f2 for the waterbag distribution 
can be calculated from Equation (5.177) if k: is known. On the other hand, by 
substituting k: from (5.187) in (5.177), one obtains the simple relation 

(5.192) 

indicating that f 2  is proportional to the density no and inversely proportional to 
the square of the maximum slope a’ at the center of the beam ( r  = 0). 
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The third example of a stationary beam in a uniform focusing channel is the 
Garrssian distribution defined by 

(5.193) 

where f3  and a represent normalization constants. Its form is identical to the 
Maxwell-Boltzmann distribution discussed in Section 5.3.1 [Equation (5.122)] 
except that in the present case the Hamiltonian is defined in terms of r‘ rather than 
PI. Furthermore, the value of HI cannot be arbitrarily large since the particle 
beam has a finite radius ( r  = a). Thus the range of HI is given by 0 I HI 5 

Ho = W(a), as in the case of the waterbag distribution; that is, the exponential 
function is truncated at some specified value HI, = HO with f(Hl) = 0 for 
HI 3 Ho. If HO is chosen to be in the “tail” of the distribution, one can take 
the upper limit of integrals involving the exponential function (5.193) at HI = 00 
without significant loss of accuracy. The mean value of HI, for instance, is given 
in this approximation by 

(5.194) 

and can be expressed in terms of the transverse beam temperature TI in the 
laboratory frame as 

(5.195) 

From Equations (5.193) and (5.157) we obtain for the particle density 

n ( r )  = 2af3a[ exp (-7) W ( r )  - exp (-a>]. Wa) (5.196) 

Using W(a) = Ho, this result can be substituted into Poisson’s equation, yielding 

= 2.rrf3a [ exp ( -- kozr2 - 4’s(r) ) - exp(-?)]. (5.197) 
2u aSzy3mc2 

which must be solved numerically to obtain either the space-charge potential 
or the particle density n as a function of radius. If the Gaussian function f ( H 1 )  is 
not truncated so that a = kBTl/ymv2 and exp(-W(r)/a) = exp(-Ho/a) - 0, 
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it becomes identical to the transverse Maxwell-Boltzmann distribution. The den- 
sity profile (5.197) then takes the form of the ideal Boltzmann relation n(r) = 
n(0) exp(-q#(r)/keTL), where +(r) includes both the applied focusing poten- 
tial #a and the space-charge potential dJ. We will study the Maxwell-Boltzmann 
distribution, including the behavior of the density profile with temperature TI 
in Section 5.4.4. Here we note only that at high temperature, when t$J is neg- 
ligible, the profile becomes truly Gaussian in radius, as can be seen from 
Equation (5.197). On the other hand, as Tl - 0 and the space-charge potential 
#J balances the applied potential &, the density profile becomes uniform, as was 
the case with the waterbag distribution (see Figure 5.11). This will be discussed 
in more detail in Section 5.4.4. 

5.3.4 RMS Emhnce and the Concept of Equivalent Booms 

In the preceding section we discussed three examples of self-consistent, stationary 
particle distributions in a uniform focusing channel. Laboratory beams as well as 
distributions used in computer simulation studies may differ significantly from such 
stationary theoretical solutions of the Vlasov equation. Furthermore, most focusing 
systems consist of discrete lenses, and often these lenses are quadrupoles which do 
not exhibit the axial symmetry assumed in our theoretical models. 

To analyze and compare the behavior of different stationary or nonstationary 
distributions, Lapostolle and Sacherer in 1971 introduced rms quantities (for beam 
radius, emittance, etc.) and the concept of equivalent beams [5,6]. According to this 
concept, two beams composed of the same particle species and having the same 
current and kinetic energy are equivulenr in an approximate sense if the second 
moments of the distribution are the same. This implies that the rms beam widths and 
rms emittances in the two orthogonal transverse directions are identical, assuming 
that the two beams are compared at identical positions in the same focusing systems. 

Consider a normalized stationary or nonstationary distribution f(x,y,x', y') 
in four-dimensional transverse trace space. The second moment in the particle 
coordinates x is defined by 

f = //I/ x 2 f ( x , y , x 1 , y 1 ) d x d x ' d y d y ' ,  (5.198) 

and the rms beam width in the x-direction is then given by 

xms = x' = (2)'". (5.199) 

- - -  
In similar fashion the other second moments, such as x l 2 .  ~ X I ,  y2, and so on, and 
associated rms quantities (2, 7, etc.) are defined. As an example, let us take a 
K-V distribution whose boundary in the x-XI plane is described by a tilted ellipse 
of the form (5.138b). that is, 
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Consider a position where the ellipse is upright (i.e., & = 0) and let xmax = 
a, xkax = a‘ denote the maximum x-position (radius or envelope) and maximum 
slope in the particle distribution. Then it is straightforward to show that 

and 

(5.200) 

(5.201) 

The total or 100% emiftunce encompassing all particles in the K-V distribution 
is given by 

(5.202) 
aa’ 

e, = - 

since fi= 1 in this case. The nns emittance can be defined from the relation - €,z = x2 X I 2  as 

@)In = 2; = [.2 -- *12]1n = - aa’ = - ex 

4 4 ’  
(5.203) 

For the more general situation of a tilted ellipse (a # 0). the total emittance of a 
K-V beam in the x-XI plane is given by 

(5.204) 

since (BY - &’)In = 1 from (3.343~). The analogous definition of the rms emit- 
tance for this case is 

(5.205) 

Similar relations apply for the y-direction. Equation (5.205) represents the 
general definition of the rms emittance for an arbitrary distribution and is very 
useful in describing laboratory beams as well as theoretical or particle simulation 
results. The normalized nns emittance is obtained by multiplication with the factor 
f ly  (i.e., in, = flyg,) and it is in general not a constant. Nonlinear space-charge 
forces, instabilities, collisions, and other effects may lead to emittance growth. 
This topic is of great current interest for the generation and acceleration of high- 
intensity, high-brightness beams. Considerable progress has been made during the 
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past years in obtaining a better understanding of the sources of emittance growth, 
discussed in Chapter 6. 

Of particular interest is the behavior of distributions that are not of the stationary 
type treated in Section 5.3.3 and hence would be expected to change with distance 
along the linear uniform focusing channel. Examples of such cases are the nonsta- 
tionary waterbag (WB), parabolic (PA), conical (CO), and nonstationary Gaussian 
(GA) distribution functions that are often used to represent the initial state of a 
beam in particle simulation studies, such as the investigation of beam transport in 
a magnetic quadruple FODO system [7]. These distributions, which are listed in 
Table 5.1 (together with the stationary K-V beam), are defined as functions of 
the “radius” r4 = (x2 + y2 + x12 + in four-dimensional trace space and 
not as functions of the Hamiltonian HI. Consequently, they do not represent sta- 
tionary solutions of the Vlasov equations, and as discussed in the next section, 
the simulation studies show that they do not retain their initial mathematical form. 
The normalization factors for each distribution in Table 5.1 have been chosen such 
that the integral of the distribution over the four-dimensional trace-space volume 
is unity. The ratio of total emittance to rms emittance, eJ1, is a measure of the 
tail in the distribution (Le., how far the particles are spread out in trace space com- 
pared to the rms area). For a K-V beam with its uniform density this ratio is 4, 
as discussed earlier. The ratio eI/ l  then increases in the order in which the distri- 
butions are listed, reaching a maximum value for a Gaussian distribution that has 
the form exp(-ri/28). The constant d represents the rms width of the Gaussian 
distribution (i.e., 8 = 2 = 9 when 0 5 x < 00 is assumed). For numerical simu- 
lation studies, however, the Gaussian tail is truncated at a finite radius r4 = nb, 
where n is an integer. In the case n = 4 (i.e., r4 5 48), for instance, one finds that 
er/8 = 16. However, the number of particles outside the K-V ellipse (i.e., outside 
the trace-space area defined by 48) represent only a small percentage of the total 
beam in the distributions of Table 5.1. For this reason, Lapostolle proposed to use 
an emittance defined by 41, rather than the rms emittance 6, as a measure for the 
trace-space area of the beam (see our comment in Reference 5). We will simply 
call this quantity the effective emittance and use the symbols ex and ey. Thus, in 
agreement with the relations given in Section 3.1, we define 

-- 
ex = 41, = 4[x2 x’2 - zy (5.206) 

and likewise, ey = 4gY. In similar fashion we define an effective beam radius 

- la x = 22 = 2(x9 . (5.207) 

For a K-V beam, these quantities are identical with the total ernittance r, and the 
beam radius r = a, respectively. 

Lapostolle [5] and Sacherer [6] have shown that K-V envelope equations can be 
derived for either the rms or effective beam radii of more general distributions such 
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as the ones listed in Table 5.1. (Sacherer preferred to use rms quantities and did 
not adopt Lapostolle's notation.) This then led to the concept of equivalent beams, 
which says that two different phase-space distributions of a given particle species 
with the same kinetic energy and beam current are equivalent when they have the 
same first and second moments [i.e., when the rms (or effective) emittances and 
radii are identical]. Nonstationary distributions used in computer simulation work to 
study beam transport in a focusing channel do not retain their initial mathematical 
form, just like experimental nonstationary (e.g., mismatched) beams would not be 
expected to maintain their initial profile. The concept of equivalent beams allows 
one, however, to describe their average or rms behavior by solving the rms envelope 
equation or by studying the equivalent K-V beam. There is the implicit assumption 
in this concept that the rms emittance of two beams being compared remains the 
same or that the emittance change with time (or distance) is known a priori. This 
assumption is in general not correct, as we discuss in Section 6.2. 

Let us now derive the rms envelope equations following the original work by 
Lapostolle and Sacherer. Consider a focusing channel with linear external forces 
and (generally nonlinear) space-charge forces acting on the particles. In Cartesian 
coordinates the equations for the transverse motion of a particle in such a channel 
can be written in the form 

X" + ki0x - Fx = 0 ,  (5.208a) 

y" + k f y  - F, = 0. (5.208b) 

The functions Fx and Fy represent the forces due to the electric and magnetic self 
fields of the beam and are defined by 

(5.209) 

where the factor 1 - P2 = y-2  takes into account the relativistic reduction of the 
electrostatic Coulomb repulsion by the force qu, Ba due to the self-magnetic field. 

Note that the constant ki, which represents the external focusing force, can 
have different magnitudes and signs in the two directions (i.e., the beam would 
have an elliptical shape in this general situation). For k;o = k$ = a, we recover 
the axisymmetric case (round beam) discussed so far. 

If we multiply Equation (5.208a) by x and average over the distribution, we 
obttiin 

(5.210) 
- 
xxll + k ; 0 7  - Fxx = 0 .  

Now we have the following relations: 

- - 2  - 
2 2  = x2, X I  = y 2 ,  

(q = 2 2  = (22)' = Ex", (5.21 1) 

(5.212) 
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Furthermore, - - -  (z)' x12 + XXI I  = xf2 - k t o 2  + E, (5.213) 

where we substituted for 3 from Equation (5.210). The last equation may be 
written in the alternative form 

(5.214) 

- 
or, with if = 2 1 2  and 2' = x2, 

By introducing the rms emittance, as defined in Equation (5.205) and dividing by 
2, we 

It has 
of the 

obtain the equation for the rms beam envelope: 

(5.215) 

been shown by Sacherer [6] that the term % is independent of the form 
distribution and has the same value as for the equivalent K-V distribution, 

that is, 

- K R  xF, = - - 
2 a + g '  (5.216) 

and furthermore, 

(5.217) 
K 
2 '  

xF,+yF,=-  

With (5.216) the rms envelope equation becomes 

-2 
- -  ex = o *  K 

2" + k:02 - 
2(2 + 9 )  x'3 

(5.2 18) 

A similar equation can be derived for the y-envelope. By introducing the effective 
beam width X = 2, Y - 29, and the effective emittance ex = 41,. iy = 4#y, 
we obtain the two equivalent equations for the effective beam envelopes: 

2 
5 = o .  2K YN + k:oY - - - - 

X + Y  Y3 

(5.219a) 

(5.219b) 
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These equations are identical in form to the K-V envelope equations (4.178) and 
(4.179), but they apply to any other transverse phase-space distributions as well. If 
a given distribution is stationary, the effective emittance exb) does not change and 
the above equations can be solved for the effective envelopes ( X ,  Y) of the beam. 
All stationary beams with the same perveance K and effective (or rms) emittance 
exb) have the same effective (or rms) radii. On the other hand, for nonstationary 
distributions one expects that the emittance will change, and one would have to 
know the evolution of this change to solve Equations (5.219a) and (5.219b) for 
X and Y as functions of distance along the focusing channel. As we will see in 
Section 6.2.1, one can in fact derive a differential equation relating the emittance 
growth to the rate of change of the free energy in a nonstationary beam. But 
its usefulness in determining the evolution of B with distance is rather limited. 
However, by comparing the final equilibrium state with the initial nonstationary 
state, using the concept of equivalent beams, it is possible to obtain upper limits 
for the emittance growth. The analytical expressions for these limits also exhibit 
the scaling of emittance growth with the experimental parameters. On the other 
hand, to unravel the dynamical details of the emittance growth processes, one must 
rely on computer simulation and experiments, as we discuss in Section 6.2.2. 

The Vlasov equation provides an extremely useful framework for the study of 
beam equilibria and for a stability analysis which shows whether a particular equi- 
librium is stable or unstable against various types of perturbations. With regard to 
the equilibrium state, we have seen that any distribution that depends only on the 
constants or integrals of the motion satisfies the time-independent Vlasov equation 
and hence represents an equilibrium beam. From a practical point of view, one 
would like to know which of the many possible theoretical distributions represents 
the best model for a real beam in the laboratory. Obviously, the Vlasov theory 
in itself does not give an answer to this question. However, as we mentioned in 
Section 4.1, based on thermodynamic arguments, the Maxwell-Boltinarm distri- 
bution provides the most physical description of a laboratory beam. To prove this 
assertion we need to go beyond the Vlasov equations and include the Coulomb 
collisions between the particles in our model. As we will see in the next sec- 
tion, Coulomb collisions play the key role in achieving the thermal equilibrium 
represented by the Maxwell-Boltzmann distribution. 

5.4 THE MAXWEU-BOLTZMANN DISTRIBUTION 

5.4.1 Coulomb Cdlirionr between Partkles and Debye 
Shiolding 
In our self-consistent theoretical models of both laminar and nonlaminar beams 
discussed so far we have made the assumption that the space-charge forces acting 
on the particles can be derived from smoothed potential functions. This means that a 
particle does not “see” its immediate neighbors but only the smooth collective field 
of the particle distribution as a whole. To the extent that this is correct, Liouville’s 
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theorem can be applied in six-dimensional phase space, which plays a central role 
in the theory and design of charged particle beams. In this section we examine the 
validity of this assumption. We do this in a coordinate system in which the centroid 
of the beam is at rest and we call this the beamframe. Furthermore, we assume that 
the particle motion in this beam frame is nonrelativistic, which is the case for most 
beams of practical interest, and that there is an effective three-dimensional applied 
potential &(r, t )  which keeps the particles confined. In the laboratory frame this 
situation corresponds to a bunch of charged particles that are being acted upon 
by applied focusing forces in both the transverse and longitudinal directions. The 
continuous beams that we have treated so far would be obtained by letting the axial 
force go to zero and the bunch length go to infinity. 

Let us now turn our attention to the Coulomb interactions between the particles 
in this bunch. Since the particle motion is nonrelativistic and the mean velocity 
of the distribution as a whole is zero in the beam frame, the magnetic force can 
be ignored completely. Suppose that we have N identical particles with charge q 
and mass m in the bunch whose location at a particular instant of time is given 
by the position vector r. The force exerted by particle j on particle i is given by 
Coulomb’s law as 

(5.220) 

where tij = ri - rj. 

other particles, that is, 
The total force on particle i is given by the sum of the forces exerted by all 

In addition, we have the applied external force Fa = -qVq5a(r, ?), which, however, 
we omit from consideration temporarily since we are concerned with the space- 
charge interaction between the particles. 

The long-range nature of the Coulomb forces implies that many particles will 
contribute to the total force Fi on our test particle. The many small contributions of 
the “distant” particles will add up to a smooth function whose effect on the particle 
trajectory can be described in terms of a space-charge potential +,(r, t )  that acts 
in a continuous fashion just like the external potential. On the other hand, the few 
particles in the immediate neighborhood of our test particle are seen as discrete 
point charges which will effectively change the curvature of the test particle’s 
trajectories in very short distances. The encounters with these neighbors can be 
described as “collisions” that cause rapid fluctuations in the particle’s motion. 
Thus, we can divide the total Coulomb interaction force on the test particle into 
two components. One represents the gradient of the smooth space-charge potential 
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&(r,t)  of the large number of “distant” particles, the other the collisional force 
due to the few neighbors: 

a q2 r i j 
ar 4mo rii 

Fj = -- #,(r,t) + - T .  (5.222) 

The smooth space-charge potential can be represented by the volume integral over 
the charge density function p by 

In turn this can be related to the distribution function f (r ,  v, t )  as 

(5.224) 

where r’,v‘ denote the position and velocity vectors of the “field” particles over 
which the integration is taken. As a result of the collisional or fluctuating part of 
the interaction between the particles, the time variation of the distribution function 
will now include a collisional term [ d f / a t ] , .  Thus, in place of the nonrelativistic 
Vlasov equation (5.113, with B = 0, we have 

(5.225) 
av 

a f  4 - = -  a f  + v * - + -(Ea + E,) * - = d f  
dt a t  ar m 

This is known as the Boltzmann equation. The two electric field vectors E, 
and E, represent the applied field and the smoothed part of the space charge 
field, respectively, while [ a f / a t I c  on the right-hand side stands for the effects 
of Coulomb collisions or Coulomb scattering, as it is often called. Clearly, when 
[ a f / d t ] ,  # 0, the total derivative of the distribution function, df /dt ,  is not zero; 
hence Liouville’s theorem in (r, v )  phase space does not hold. In this case, the rate 
of change of the distribution function along a given trajectory in phase space is 
due entirely to the Coulomb collisions represented by [ a  f / a t ] , .  On the other hand, 
if [ a f / a t ] ,  = 0, we recover the Vlasov equation, as expected. 

Before proceeding further with our analysis of the Boltzmann equation, we need 
to define a characteristic distance from a given point charge which separates the 
region near the charge where the collisional forces dominate from the “distant” 
region where the particles produce a smooth space-charge force on the point 
charge considered. This distance is known as the Debye length, A D ,  which we 
introduced in Section 4.1 and used in Section 5.3.3. Historically, the problem was 
first investigated by Debye and HUckel [8], who showed that the electric field of 
an ion in an electrolyte was effectively screened by the cloud of particles with 
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opposite charge surrounding it. This concept applies to both a neutral plasma and 
to a nonneutral charged particle distribution. 

Consider a plasma consisting of singly charged positive ions and electrons in 
thermal equilibrium at a temperature T .  if we place a test charge q into this plasma 
(say at r = 0 of a spherical coordinate system), it will disturb charge neutrality and 
produce an electrostatic potential #(r) .  Both electrons and ions have a Maxwellian 
velocity distribution, and their density functions will obey the Boltzmann relation 

(5.226) 

which one obtains from the Vlasov equation analogous to the derivation of (5.123). 
The potential function #(r )  must relate to the difference in charge density between 
electrons and ions (produced by the presence of the test charge) via Poisson's 
equation: 

The positive sign in the argument of the second exponential function on the 
right-hand side results from the fact that the electrons have a negative charge. 
Assuming that q#(r)  4 ~ B T ,  we can expand the exponential functions and obtain 
to first order 

where 

(5.228) 

(5.229) 

is the Debye length. The latter can also be expressed in terms a the rms thermal 
velocity i j x  = (kBT/m)In and the plasma frequency up = (q2n/€om)'n as 

The solution of Equation (5.228) is 

(5.230) 

(5.231) 

as is readily verified by differentiating and substituting into the Poisson equation. 



Ma - SELF-CONSISTENT THEORY OF BEAMS 

Now one can see that for r 4 AD the exponential term is close to unity and the 
potential + ( r )  is essentially that of the unscreened test charge, that is, 

for r 4 A D .  (5.232) 4 
4 7 r ~ r  + ( r )  = - 

On the other hand, when r * AD, the exponential term dominates and the potential 
+ ( r )  goes toward zero much faster than without the shielding effect. 

The condition q4 /kBT 4 1 that we used in deriving the Poisson equation 
(5.228) implies that the average potential energy per particle should be small 
compared to the average kinetic energy per particle. If we substitute r = AD in the 
point-charge potential (5.232), divide by ~ B T ,  and use Equation (5.229), we obtain 

where ND is the number of particles inside the Debye sphere of volume ( 4 ~ / 3 ) & .  
The condition 

implies that (5.234) 

which means that the number of particles inside the Debye sphere is very large. 
When this is the case, the smooth part of the Coulomb interaction force in Equa- 
tion (5.222) exceeds that of the collisional part. Thus, collisional effects under these 
conditions, which apply to most particle beams, are small, and our assumption that 
Liouville’s theorem holds has now been validated. There are, however, exceptions, 
such as the Boersch effect and intrabeam scattering in high-energy synchrotrons and 
storage rings, that we discuss in Section 6.4.1 and 6.4.2. Furthermore, scattering 
in a background gas, time-varying nonlinear space-charge or applied forces of a 
stochastic nature, and instabilities have the same effect as Coulomb collisions, 
violating Liouville’s theorem and causing emittance growth (see Section 6.2). It 
is therefore important that we pursue the thermodynamic treatment of collisions 
in further detail. 

5.4.2 Tho Fokker-Planck Equation 

Let us  now return to the Boltzmann equation (5.225). To continue the analysis we 
need to evaluate the collisional term [af/arIc on the right-hand side of the equation. 
Modeling the physics of a particular problem, finding mathematical expressions for 
the collision term, and solving the Boltzmann equation is rather complicated even in 
relatively simple cases. The application to Coulomb interactions in charged particle 
beams was discussed by Jansen, whose recent book presents a very detailed review 
of this topic, with a comprehensive list of references [9]. 
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Briefly, the effects of Coulomb interactions on the particle distribution in a beam 
or a plasma can be described as a diffusion process that is opposed by a dynamical 
friction ("drag") force. The thermal outward flow of particles from a given region 
due to diffusion is slowed down by collisions that reduce the forward momentum 
components. The rate of change of the distribution function at any given point 
[af/atIc due to these processes can be modeled as [Reference 9, Equation (4.3.1O)J 

(5.235) 

where /3, is the coefficient of dynamical friction and D the coefficient of diffusion 
(which for simplicity is assumed to be isotropic in this case). Substitution of (5.235) 
into Equation (5.225) yields 

This form of the Boltzmann equation is known as the Fokker-Plunck equation. 
If the two coefficients fir. D and the applied potential +a are given, Equation 
(5.236), together with Equation (5.224) for the self potential +$, represents a self- 
consistent description of the evolution of the particle distribution function f(r, v, r )  
in space and time. 

Without a focusing force and without friction (i.e., when 4, = 0 and /3f = 0), 
no stationary solution 'exists. The particle distribution then simply expands in space 
and time, and the density n ( r , t )  of the core decreases monotonically, as can be 
shown mathematically. When a confining potential is present, an equilibrium exists 
even if /3f = 0. However, particles in the high-energy tail may leak out of the 
system if their kinetic energy exceeds the potential energy 44, due to the applied 
force. The distribution then becomes a truncated Maxwellian. A good example is 
the atmosphere in the earth's gravitational field. Due to collisions there is a slow 
leakage near the top of the atmosphere of particles whose velocity u exceeds the' 
escape velocity u,(u > u,), Another example are the beams in storage rings, where 
there is a continuous loss of particles whose energy exceeds the potential energy 
of the confining fields. In the case of the atmosphere, the escape of particles into 
space does not matter since there are always enough new particles entering from 
the surface of the earth to balance these losses. However, in the storage rings, the 
diffusion of particles is an important factor that contributes to the finite lifetime 
of the beam. 

When there is no confining potential but friction exists (i.e., when 4, = 0 and 
/3f # 0), it is easy to see that a stationary solution of the Fokker-Planck equation 
exists, This solution is found by setting the time derivatives equal to zero, that is, 

- df 3 0, - = o ,  a f  [$I = o ,  
dt a t  C 

(5.237) 
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and hence 
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(5.238) 

By integrating the corresponding equation for each velocity component, one 
finds that 

== Cexp - , (5.239) 

where the constant C is found from the normalization ///f(v) du, du, du, = 1, 
which yields C = (&/2aD)”. 

As we see, the equilibrium distribution satisfying the Fokker-Planck equation is 
a Gaussian in the three velocity components, and it can be shown that it is identical 
to a Maxwellian distribution of statistical mechanics: 

(5.240) 
m(u,z + uyz + uf) 

f ( V )  = ( & y e l p [  - 2 k ~ T  

By comparing the last two equations one finds that the ratio of the diffusion and 
friction coefficients relate to the temperature and particle mass as 

(5.241) 

Assuming a Maxwellian distribution one can calculate the two coefficients by 
averaging over the statistical fluctuations of the particle velocities due to the 
Coulomb collisions. The results of the rather lengthy calculations are 

16fi nr?Z4c In A 
” = 3 ( 2 k ~ T l r n c ~ ) ~ ~  ’ 

(5.242) 

(5.243) 

where n is the particle density, 2 the charge state of the particles (in the case of 
multiply charged ions), and r, the classical particle radius defined as 

(5.244) 
4* 2.8180 X m for electrons, 

for protrons. 4w,5,mc2 [ 1.5347 x 10-18 m 
r, = 

The parameter In A is known as the Coulomb parameter, and it is usually defined 
in terms of the Debye length AD, and the impact parameter b corresponding to a 
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90" deflection of a test particle's trajectory due to the Coulomb interaction with 
a single field particle: 

(5.245) AD In A = In - 
b '  

The impact parameter b represents the distance between the test particle and the 
field particle at the point of closest approach (r = b), where the potential energy is 
equal to the initial kinetic energy. If u, represents the relative velocity between two 
interacting particles and Uth the thermal velocity, one can show that = 24h. 
The impact parameter can then be defined as 

where 

(5.246a) 

(5.246b) 

(5.246~) 

is the average temperature of the beam. If the beam is in thermal equilibrium, 
T = T, = Ty = Tz = Tes. If the beam is not in three-dimensional equilibrium 
(i.e., initially T, # Ty # Tz), two possibilities exist: (1) the conditions are such that 
given enough time, equilibrium can be achieved, in which case T = Teq remains 
constant; or (2) equilibrium cannot be achieved in principle, as is the case in many 
storage rings (see Section 6.4.2), in which case T will be increasing with time. 

Using AD from Equation (5.229), and Equations (5.246) for b and uth, we 
obtain for the Coulomb logarithm 

1 2 1 
3 3 

and 
T = - (T, + Ty + T,) = - Ti + 7 TII 

(5.247) 

This expression is valid as long as the Debye length AD is less than the average 
beam radius a. If Ad > a, one uses the radius a in place of AD in the Coulomb 
logarithm: 

(5.248) 
12moak~T 3a kBT 2 47rl?OoarnUth 

q2 
= In 

q2 
In A = In 

Some authors use the effective radius a = f i P ,  some use the rms radius P, and 
others the rms width 6, = P/& for a. However, because of the logarithmic 
dependence, the Coulomb parameter varies only slowly over a wide range of the 
parameters involved. Thus, for electrons, one finds that 6 < In A < 30 for densities 
between 103 and l p  m-3 and temperatures between ldr and lo8 K. Finally, we 
note that Equations (5.242) and (5.243) do indeed satisfy the relation (5.241) that 



372 a SELF-CONSISTENT THEORY OF BEAMS 

we obtained by comparing the Gaussian solution of the stationary Fokker-Planck 
equation with the Maxwellian distribution. 

In our analysis so far of the steady-state solution (5.238) of the Fokker-Planck 
equation we have focused entirely on the effects of random Coulomb collisions. 
However, it should be pointed out that the Gaussian distribution is of much more 
general importance. Thus, according to the central limit theorem of statistical 
mechanics, any processes of a random, statistically independent nature acting on 
a particle distribution in a harmonic oscillator potential will lead to displacements 
in the particles’ positions that obey a Gaussian distribution. Examples of this kind 
are the random misalignments treated in Section 4.4.4 (related to the problem 
of “random walk”); random fluctuations of the fields or field gradients in the 
focusing magnets or rf cavities of an accelerator or storage ring due to vibrations; rf 
noise from the acceleration cavities, or other sources of noise; collisions between 
beam particles and the molecules of a background gas; and nonlinear forces of 
a stochastical nature. Another, very important example that will be discussed in 
Section 6.2 are nonlinear space-charge forces. Since the particle distribution of a 
beam is confined by focusing potentials and the individual particles are performing 
oscillations, there is a continuous exchange between position (potential energy) and 
velocity (kinetic energy) so that displacements in position due to random processes 
translate into velocity changes, and vice versa. With a harmonic oscillator potential, 
given by $(x, y, z )  = const(xz + yz + x2) ,  the Gaussian distribution of the central 
limit theorem is of the form 

f(r,v) = Coexp[-Ci(xZ + y z  + zz) - C~(U; + u; + 4 3 .  (5.249) 

where CO,CI, CZ are constants. 
This observation concerning the central limit theorem is very important for 

our following discussion of the Maxwell-Boltzmann distribution as the “natural” 
equilibrium state of a charged particle beam, which, as we will see, is identical 
to Equation (5.249). We elaborate more on this topic in connection with our 
discussions of the causes of emittance growth in Section 6.2. 

5.4.3 the Moxw.ll-Bolhmann Distribution for a 
Reldvistic Boam 

We 5ue now ready to integrate the results of the steady-state Vlasov equation 
(Section 5.3.3) with those of the Fokker-Planck equation (Section 5.4.2) to obtain 
a modified model for the “natural” thermodynamic equilibrium state of a charged 
particle beam. First, we note that the left-hand side of the Fokker-Planck equation 
is identical to the Vlasov equation and contains the potential function 4 due to 
both the applied and self fields. The right-hand side, which contains the effects of 
Coulomb scattering, yielded a Maxwellian velocity disuibution [Equation (5.240)] 
as the only steady-state solution. While the steady-state Vlasov equation is satisfied 
by any distribution that is an arbitrary function of the invariants of the motion, only 
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one solution satisfies both sides of the time-independent: Fokker-Planck equation: 
the Maxwell- Boltunann distribution, also known as the thermal distribution, which 
in the beam frame considered here has the form 

It can be written in terms of the nonrelativistic single-particle Hamiltonian 

as 

(5.252) 

where the constant C = = ( m / k k ~ T ) ~ ~  of Equation (5.240) has 
been absorbed in the normalization factor, fo. In the case of a harmonic-oscillator 
potential, Equation (5.250) becomes identical in form to Equation (5.249). 

By integrating the Maxwell-Boltzmann distribution over the spatial coordinates 
(x, y ,  z )  we recover the Maxwellian velocity distribution (5.240). On the other hand, 
by integrating over the velocities (vx ,  vy ,  v z )  we recover the Boltzmann relation 
for the particle density (5.226). 

The only remaining step is to transform the Maxwell-Boltzmann distribution 
from the beam frame to the laboratory frame in which the beam physics is usually 
described. Let us assume that the laboratory beam propagates in the s-direction, that 
the centroid position of the distribution is so(t), and that a particle’s position s ( t )  is 
described relative to SO by z1 = s - SO. If the beam considered is nonrelativistic in 
the laboratory frame, the transformation is an easy task. Using the subscript b for 
quantities measured in the beam frame and 1 for the counterparts in the laboratory, 
all we need to do is substitute in Equation (5.250) 

for the longitudinal coordinate and 

for the longitudinal velocity, where uo is the centroid velocity of the distribution 
in the laboratory and SO = vot. We then obtain for the distribution in the labora- 
tory frame 
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since the transverse velocity components (ux, uy), the transverse coordinates (x, y), 
and the temperature are unaffected by the nonrelativistic (Galilean) transfomtion. 

Unfortunately, the Lorentz transformation for a relativistic Maxwell-Boltzmann 
distribution is not so straightforward; in fact, it is rather tricky, as we will see. We 
already noted in Section 5.3.1 that the transverse and longitudinal particle motion 
cannot be separated if the beam is relativistic in both the beam frame and the 
laboratory frame. Fortunately, for most beams of practical interest the motion in 
the beam frame is nonrelativistic. Thus, we will limit our discussion to relativistic 
laboratory beams that have a nonrelativistic Maxwell-Boltzmann distribution in 
the beam frame. 

First, we note that the distribution function (5.250) is not in a covariant form 
suitable for the Lorentz transformation. In special relativity, space and time, 
momentum and energy, electric scalar potential and magnetic vector potential, 
are intricately linked and must be represented by appropriate four-vectors. Thus 

P i  = (P. ,  P,, P, ,  E 1 
c 

(5.255) 

is the momentum-energy four-vector, with the energy defined as E = ymc2. The 
four-vector potential is defined by 

(5.256) 

where 9 represents the electric scalar potential. 
The transformation of such four-vectors from one frame to another is presented 

for convenient reference in Appendix 3. If PI,  is the t-component of a particle's 
momentum in the laboratory frame, and El the energy, then the z-component of 
the momentum in the beam frame is given by 

(5.257) 

where uo is the beam velocity in the laboratory frame. Considering now the entire 
particle distribution, we note that by definition the average momentum in the beam 
frame is zero (i.e., 6 = 0, hence specifically F b z  = 0). Using this result and 
taking the average of both sides of Equation (5.257), we obtain 

and for the corresponding energy factor 

(5.258) 
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These two equations uniquely define the center-of-momentum frame, that is, the 
velocity uo and energy yomc2 of the “beam centroid” particle (in the laboratory 
frame), whose velocity and energy in the beam frame are Vb = 0 and Eb = mc2, 
respectively. Here mc2 represents, of course, the particle’s rest energy. 

A key question with regard to our Maxwell-Boltzmann distribution is, how 
does the temperature transform from one Lorentz frame to another? The literature 
contains conflicting answers to this question [lo]. On the one hand, one might think 
that temperature, representing the average thermal energy of the particles, could be 
treated like energy, which would suggest a transformation of the form Ti = yoTb. 
Upon further thought one of course realizes that temperature is a measure of the 
random motion of the particles contained in the velocity or momentum distribution. 
So an appropriate four-momentum vector for temperature would appear to be the 
answer. However, the accepted convention is to treat temperature as a scalar. 
Much of the literature in the early part of the century [ll] uses the transformation 
T = TO/’yo, which satisfies all relevant thermodynamic relations for a Lorentz 
transfornation from the rest-frame temperature TO to a moving-frame temperature 
T). Applied to our problem, the corresponding transformation from the beam frame 
(TO = T b )  to the laboratory frame (T = 7‘1) is thus 

Tb T I = - - .  
Yo 

(5.260) 

More recently, some authors [12] have preferred to use a temperature that is Lorentz 
invariant; that is, there is only one temperature, the temperature as measured by 
an observer in the rest frame of the system. 

We take the position that both viewpoints are correct and that the temperature 
definition one should use depends on the situation being considered. Some prob- 
lems, such as Coulomb scattering, are best described in the beam (rest) frame of 
the system and in terms of the beam-frame temperature T b ,  as we did above in our 
discussions of this topic. On the other hand, we will see below that there is also 
justification for using a laboratory temperature as defined in Equation (5.260). In 
this regard, our position on temperature differs from that on mass, where we prefer 
to use the definition of mass as a Lorentz-invariant scalar to avoid the problems 
of different transverse and longitudinal masses (see Section 2.1). Fortunately, un- 
like mass, the temperature does not exhibit asymmetry with regard to longitudinal 
and transverse motion of the particles. The transformation (5.260) holds for both 
directions (i.e., for Ti1 as well as TL), and the confusion regarding the various 
definitions of mass does not exist here. 

Returning now to our problem of transforming from the beam frame to the 
laboratory frame, we will use the covariant form of the Maxwell-Boltzmann 
distribution given in Reference 12 (p. 46): 

(5.261) 
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The four-vectors P i  and A' are defined in (5.255), (5.256), respectively. Ui is the 
covariant partner of the center-of-momentum four-velocity vector (see Appendix 3 
for details), which is in the beam frame 

Ubi = (o,o,o, c )  9 
(5.262) 

and in the laboratory frame 

The temperature Tb is treated here as a Lorentz-invariant scalar. The transformation 
of the momentum and potential four-vectors Pi  and A' from the beam frame to 
the laboratory frame is given by 

where 
r - 1 0  o 0 1  

(a:.)-' 

(5.264a) 

(5.264b) 

(5.265) 

Let us assume now that in the beam frame the particles have nonrelativistic 
velocities. The distribution (5.261) has the form 

l or since E - ymc2 - mc2 + (?)mu2, 

(5.266a) 

(5.266b) 

where the factor exp(-mc2/kBTb) has been included in the normalization constant 
Abl . Clearly, Equation (5.266b) is identical to the Maxwell-Boltzmann distribution 
of Equation (5.250), as expected. 

The transformation from the beam frame to the laboratory frame is somewhat 
lengthy and is left to be carried out in Problem 5.11(a). With z1 = s - SO, Aul, = 
u1 - uo, as in (5.253), the final result can be written in the form 
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where again the factor eXp[-mC'/k~Tb] was absorbed in the constant A1 and 
where kBTb denotes the beam-frame temperature. Also, the potential function 
includes the magnetic vector potential Al, that is generated by the transformation. It 
represents the sum of the effective potential due to the applied focusing forces, 
and the potential due to the self fields of the beam, 4lS; that is, 41 = 41,, + 4lS/ y i ,  
where the factor 7: in the second term represents the focusing effect of the beam's 
magnetic self field ( 1  - & = l / y i ) .  

Equation (5.267) is the desired Maxwell-Boltzmann distribution in the labora- 
tory frame for a relativistic beam with nonrelativistic transverse and longitudinal 
velocities in the beam frame. We have written the equation in a form suggest- 
ing that we introduce a laboratory temperature TI = Tb/yo. Otherwise, the fac- 
tor yo combined with kBTb in the denominator would appear in the kinetic 
and potential energy terms in the numerator, causing considerable confusion. 
Thus, the Maxwell-Boltzmann equation (5.267) can be used to justify the trans- 
formation (5.260) for the temperature, rather than keeping the beam temperature 
as a Lorentz invariant. in terms of the laboratory temperature TI, we can write 
Equation (5.267) as 

which, if we introduce the transverse mass m, = yom and the longitudinal mass 
ml = r i m ,  can be put into the suggestive form 

which resembles the nonrelativistic distribution (5.266b). We note that one can 
obtain the relativistic Maxwell-Boltzmann distribution from (5.266b) more directly 
by applying the Lorentz transformations for the velocities and the scalar potential 
[see Problem 5.11(b)]. 
As we will see, beams are usually not in the three-dimensional thermal equi- 

librium implied by the single-temperature expression given above. Acceleration 
tends to cool the beam longitudinally while keeping the transverse temperature 
unaffected. Thus it is useful to write the Maxwell-Boltzmann distribution in terms 
of a transverse temperature Tl  and a longitudinal temperature, TI[, as 

(5.269) 

where we assumed that the potential function can be split into transverse and 
longitudinal parts. 
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The two temperatures for each frame are then defined by the second velocity 
moments of the distribution as 

We recognize that the distribution function (5.269) can be expressed in terms of 
the transverse and longitudinal Hamiltonians and temperatures in the laboratory 
frame as 

where we dropped the subscript 1 .  This two-temperature Maxwell-Boltzmann 
distribution provides the most realistic theoretical description for laboratory beams. 
It should be pointed out, however, that in a strict mathematical sense the separation 
of the Hamiltonian into a transverse and longitudinal part is possible only when 
the coupling due to the space-charge forces is negligible. This is the case for long 
or continuous beams and for bunched beams in either the high-temperature limit 
where emittance dominates or in the low-temperature limit ( T l  - O,T, - 0) 
where the space-charge forces tend to be linear. Otherwise, there is coupling 
between the transverse and longitudinal motion via the space-charge potential, and 
the two-temperature distribution is only a crude approximation that does not satisfy 
the stationary Vlasov equation. The coupling may lead to a relatively rapid change 
of the distribution towards thermal equilibrium (TI  - Ti), with relaxation time 
depending on the strength of the space-charge coupling forces and the difference 
in the two temperatures. This equipurririoning process is particularly strong in 
high-current r f  linacs and will be discussed in Appendix 4. 

If we are dealing with a continuous beam rather than a bunch, the longitudinal 
potential term is zero (411 - 0) since there is no applied longitudinal focusing 
force. In this case, Equation (5.269) represents a Maxwell-Boltzmann distribution 
for a continuous beam with longitudinal temperature, that is, 

(5.272) 

- 
Finally, if we let the longitudinal temperature go to zero (i.e., Av? = 0) and 
assume a nonrelativistic energy, we recover the transverse two-dimensional 
Maxwell-Boltzmann distribution of Equation (5.122). 

In practice, beam focusing and acceleration systems are designed to be “linear” 
in the applied forces as much as possible to avoid emittance growth from non- 
linearities. The corresponding applied potential functions are then quadratic in the 
displacements of the particles from the beam centroid. 
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S.4.4 Tho Stationary Transverse Distribution in a Uniform or 
Smooth Focudng Channd 
The stationary Vlasov distributions discussed in Section 5.3.3 represent examples 
of continuous beams in which the transverse Hamiltonian HJ. is a constant of 
the motion and the longitudinal temperature is zero. In view of what we know 
now, the transverse Maxwell-Boltzmann or thermal distribution is the one that 
best describes the equilibrium state of a real beam in transverse phase space. Let 
us from now on again define all quantities in the laboratory frame unless stated 
otherwise, and drop the subscript 1. As in Section 5.3.3, we assume a uniform 
focusing channel in which the applied potential function has the form 

(5.273) 

so that the focusing force acting on the particles is linear and independent of the 
axial coordinate z. This description also applies, of course, to the average behavior 
of the matched beam in a periodic channel in the smooth approximation. Using 
ux = UOX', uy = uoy', r2 = (xZ + y2) ,  ri2 = ( x ' ~  + y12), and Equation (5.273), 
one can express the transverse Maxwell-Boltzmann distribution for a matched 
beam in such a system as 

(5.274a) 

or 

which is identical to Equation (5.193) if one sets a =i kt3Tl/yomu;. By integrating 
Equation (5.274b) with respect to the transverse velocity, or r i  = u ~ / u o ,  one 
obtains the well-known Boltzmann relation for the particle density profile, which 
in our case has the form 

(5.275) 

The space-charge potential 4 J r )  is related to the density n ( r )  via Poisson's 
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equation. Thus, the Boltzmann density profile n(r) is in general nonanalytic and 
must be determined by a numerical method. Only in the low- and high-temperature 
limits does one get analytic solutions for n(r ) .  

In the first case (Tl - 0), the beam is laminar and the space-charge potential 
cps exactly balances the applied focusing potential, so that 

(5.276) 

where we used Poisson’s equation. The density profile in this case is thus uniform 
inside the beam, that is, 

(5.277) 

where a0 is the beam radius at zero temperature. The relation (5.276) shows that 
we can replace the external focusing force by a background of stationary ions or 
electrons of opposite charge to that of the beam particles. 

In the second analytic case, at high temperature (Tl - a) the space charge is 
negligible, and by setting 4s(r) = 0, we obtain from (5.275) the Gaussian density 
profile: 

(5.278) 

These results for the low- and high-temperature cases are in agreement with 
experimental observations: space-charge-dominated beams in high-intensity, low- 
energy devices tend to have a uniform density profile, whereas emittance-dominated 
beams in high-energy synchrotrons, for instance, tend to have a Gaussian shape. 

To obtain the solutions for the general case where both space charge and emit- 
tance are important, we must integrate Equation (5.275) numerically. We will adopt 
the procedure used by Lawson [C.17, p. 2031, who considered a nonrelativistic 
beam. The relativistic case can be treated in the same way except that we include 
the additional factor yo2 in our equations, 

Following Lawson, it will be convenient to use the self-electric field, EJr)  = 
-&(r)/dr, which from Poisson’s equation or Gauss’s law is related to the charge 
distribution by 

(5.279) 

Substitution for n( r )  from (5.275) using &(r) = - &EJ(r)dr  and relation 
(5.276) for the external force term yields 

(5.280) 



Let us now introduce the Debye length AD, corresponding to the density on the 
axis, which by our definition (4.3) is 

(5.281) 

Then, by normalizing the radius as x = r / A D  and the electric field as F = 

eooE,/n(O)qA~, we can write (5.280) as 

F(x)  = 1 l x x  exp[ l x F ( x ) d x  - - ] dx . (5.282) 
X 4n (0) 

The Boltzmann relation (5.275) for the particle density may then be written in 
the form 

(5.283) 

We note that the two equations (5.282) and (5.283) that determine our relativistic 
Boltzmann distribution are identical with Lawson's nonrelativistic relations. The 
distributions for different temperatures are normalized by requiring that the number 
of particles per unit length NL be the same, that is, 

By solving Equations (5.282) and (5.283) numerically, using the relations (5.281) 
and (5.284), we obtain [13] the density profiles shown in Figure 5.12. The eight 
curves labeled 1 to 8 in (a) are identical to Lawson's results [C.17, p. 2031. 
Curve 7a represents an additional profile close to the zero-temperature limit. In 
Figure 5.12(b) we normalized these curves so that the rms radius is the same. The 
normalization (5.284) defines the ratio n(O)/no for any given value of AD(O)/UO. 
Note that the radius r in the figure is given in units of the zero-temperature radius 
(10 [i.e., the variable x is taken in the form x = (r/ao)(ao/A~)]. The density curves 
plotted in the figure for different values of the parameter A D / u ~  show the general 
behavior discussed above and in Section 4.1. The shape varies from the uniform 
distribution (5.277) in the laminar limit, where temperature and emittance are 
zero, to the Gaussian profile (5.278) as AD/UO increases toward infinity. Table 5.2 
shows a list of relevant parameters for each curve in Figure 5.12. The first column 
gives the density ratios n(O)/no, which, except for case 7a, were chosen to agree 
with Lawson's eight profiles. The second column shows the ratio of the Debye 
length on the axis AD(O) to the zero-temperature radius ao; these values differ 
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from Lawson’s results, which appear to be incorrect, probably because of an error 
in the normalization procedure. Our values for AD(O)/UO in Table 5.2 converge 
toward the analytical result AdO)/ao = no/2n(0) for TL - 00, whereas Lawson’s 
numbers do not converge toward this limiting value. The third column lists the 
rms radius P in units of the zero-temperature radius PO = ao/d ,  as calculated for 
each curve. Note that P/Fo = a/ao, where a = is the effective radius of the 
equivalent uniform beam. The next three columns show the values for the relevant 
parameters of the equivalent uniform beam calculated from Equations (5.286) and 
(5.287) below. The average Debye length % was calculated using the relation 
AD/U = (A~(O)/ao) (n(O) /no)’~ .  The last column shows the ratio of the density 
on axis to the zero-temperature density, n(O)/no, for each of the rms normalized 
curves in @). For TL - 00, one gets n(O)/no = 2. 

Near the limit of laminar flow, the Maxwell-Boltzmann distribution, like the 
waterbag distribution treated in Section 5.3.3, has a uniform density profile, with 
a transition from n ( r )  = no in the interior to n ( r )  = 0 for r > a that depends on 
the ratio %/a. This transition at high space-charge density, where r\D 4 a, was 
studied by Hofmann and Struckmeier [ 141, who found that both distributions can 
be approximated in this case by the function 

- 

(5.285) 

The ratio of the average Debye length to the beam radius, z / a ,  can be related 
to c2/Ka2 or to the ratio of the particle oscillation frequencies with and without self 
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Fig- 1.12. Radial profilm OF the tmnsvem Maxwrll-bhzmann distribution in a uniform 
focusing systam for d i h t  bmp.mtures. All beams hcm tha sanu number af particles p u  unit 
length. (a) The focusing fom is kept constant so kt fho beam width ina#ra wifh incmasing 
tempomiurn. (b) The focusing h e  is incmasd to keep the nns mdius constant. Tab& 5.2 lists tho 
rdmnt parameter Val- kx each cum. (From Refmwce 13.) 
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Tabk 5.2 R h n t  paramatars for ch. radial bdhmann density 
p d l o s  0t Figun 5.12 

Curve n(O)/no AD(O)/ao i/io A D / a  Ka2/e2 k / h  for i - ro 
1 0.1 4.82 4.43 1.52 0.054 0.974 1.96 
2 0.25 1.81 2.75 0.905 0.153 0.931 1.89 
3 0.5 0.795 1.88 0.562 0.396 0.846 1.77 
4 0.75 0.432 1.46 0.374 0.893 0.727 1.60 
5 0.95 0.229 1.18 0.223 2.51 0.534 1.32 
6 0.995 0.145 1.08 0.144 6.00 0.378 1.16 
7 0.9995 0.107 1.04 0.107 10.9 0.290 1.08 
7a 0.999995 0.0710 1.02 0.0710 24.8 0.197 1.04 
8 1  0 1 0 OD 0 1 

- n(o)/no 

Source: Reference 13. 

fields, O/OO. From Equations (4.88) and (4.89) one obtains, with oo/w = ko /k ,  

1 .  (5.286) I = - -  G 
k2 

Using the relationship between normalized emittance en = Bye and temperature 
Tl and Equation (5.286), one can show that 

1n In 1n - ”=($) a ($)y&) ($) . (5.287) 

Thus, when 4 a or k 4 k ~ ,  z / a  is directly proportional to the rune depression 
k/ko = W / O O  of the particle oscillations of the beam. 

The preceding two equations are very important from a practical point of 
view since they relate the experimental parameters K, a, and c to the beam 
physics parameters AD and k / h .  To obtain this correlation and to describe the 
behavior of the Maxwell-Boltzmann distribution in more detail, we will use 
the concept of equivalent beams introduced in Section 5.3.4. According to this 
concept, any distribution can be modeled to good approximation by an equivalent 
analytical beam having the same rms radius, rms transverse velocity, and rms 
emittance. For an axisymmetric stationary (i.e., matched) beam in a uniform 
focusing channel characterized by the focusing constant ko, we obtain from (5.218) 
with 9’ = jN = 0 the rms envelope equation 

(5.288a) 
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where 2 = 9 = F/& is the rms width in each of the two orthogonal directions 
and 7 is the rms radius of the beam. This equation may be expressed in terms 
of the effective radius a = &7 = 2.Z and the effective emittance c - 44 of the 
equivalent uniform (K-V) beam as 

(5.288b) 

which is identical to Equation (4.88a). The unnormalized emittance in this case 
corresponds to an upright ellipse in x-XI trace space of area da and is defined by 

g = X' -, 0, or c = 4 3  = a(x'), . (5.289a) 
VO 

Introducing the laboratory temperature from (5.270) [i.e., using ijx = (?)In = 
( k g T ~ / y o m ) ' ~ ] ,  we can express the emittance by 

The corresponding normalized emittance is 

and in terms of the beam-frame temperature, 

(5.289b) 

(5.290a) 

(5.290b) 

Note the absence of the relativistic energy factor yo when the normalized emittance 
is expressed in terms of the beam-frame temperature, kB T b l .  

From Equations (5.288a) and (5.288b), we see that Ka2/c2 used in Table 5.2 
defines the ratio of space charge to emittance in the envelope equations and that it 
can be written in terms of the rms quantities as 

Ka2 KZ2 - = -  
€2 4 P '  

(5.291) 

To exhibit the scaling with regard to the experimental parameters more clearly, we 
will use the definition (4.27a) for the generalized perveance K. Furthermore, we will 
introduce the normalized emittance, which is more useful than the unnormalized 
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emittance, since it remains constant in the ideal case. We then obtain for (5.291) 
the alternative relation 

(5.292) 

where I is the beam current and 10 the characteristic current defined in Equa- 
tion (4.17). 

Equations (5.289a) to (5.292) constitute the desired scaling relationships that 
allow us to analyze the behavior of the stationary beam when parameters such as 
transverse temperature, kinetic energy, current, emittance, or radius are changed 
adiabatically so that the beam remains matched. The beam radius a = 2.f depends, 
of course, on the focusing strength of the channel as defined by the wave constant 
ko. If k ~ ,  perveance K, and emittance c are given, we can calculate it from Qua-  
tion (5.288). The solution is found in Equations (4.91) to (4.93b), and the scaling of 
the radius with ko, K, and c is in general not very transparent from these equations. 
However, we can use the approximation 

(5.293) 

which shows the scaling more clearly. This relation is exact at both ends of the 
parameter range (i.e., when either K - 0 or yoc = 0), and in between it slightly 
overestimates the radius, with a maximum error of about +12% at K/koyoc = 1.5. 
For a space-charge-dominated beam, when emittance can be neglected (c = 0), 
we obtain the exact 

On the other hand, 
(K = 0), we obtain 

relation 

(5.294a) 

when emittance dominates and space charge is negligible 
[see Equation (4.91)] 

or, in terms of rms quantities, 

(5.294b) 

(5.294~) 

We can of course adjust the focusing strength to obtain a desired beam size and 
then simply use the radius a as a measured or given quantity in the above scaling 
relations. 
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Let us now return to the Boltzmann density profiles of a thermal beam in Fig- 
ure 5.12. From Table 5.2 we can determine which of the profiles is closest to the 
desired or experimentally known beam parameters. If we have a computer code 
we can of course calculate the profile by solving Equation (5.275) numerically. To 
illustrate the scaling and parametric dependence explicitly, let us assume that we 
have a space-charge-dominated beam near the zero-temperature limit so that the 
profile is practically uniform. From the relationships given above we have several 
possibilities of changing the profile toward the more Gaussian “high-temperature” 
shape: 

1. Increase in Transverse Beam Temperature Tl, and Hence Emittance 6,. A 
number of effects, such as beam mismatch, nonstationary density profile, 
instabilities, and collisions, cause emittance growth and hence temperature 
rise; these effects are discussed in Chapter 6. 

2. Increase of Particle Kinetic Energy. The acceleration of the beam decreases 
Kaz/cz in general; for instance, Kaz/a2 a (&tyo)-* according to Equa- 
tion (5.292) if current I ,  beam radius a, and normalized emittance remain 
constant. We discuss this change in an example below. 

3. Increase of Focusing Strength. This reduces the beam radius and hence 
decreases Ka2/cz; it leaves the normalized emittance unchanged, but in view 
of (5.290) it increases the temperature as kBTl = const/a2. 

4. Longitudinal Debunching or Expansion. This reduces the beam current in the 
bunch and also the beam radius if the transverse focusing strength remains 
constant; the result is a decrease in Ka2/c2 and an increase in temperature, 
which moves the profile in the direction of a more Gaussian shape. 

It is interesting to note that not all four effects cause an increase in the 
temperature. Particle acceleration in case 2 may, in fact, decrease the transverse 
laboratory temperature as TL a yo1 according to (5.292) if the radius remains 
constant. However, the net effect is still a decrease in Kaz/c2 a (Boy&’ and 
hence a change of the density n(r)  toward a more Gaussian shape. The transverse 
beam-frame temperature Tbl remains, of course, unaffected by acceleration. 

To illustrate the effect of acceleration on the beam profile, let us consider the 
hypothetical case of a high-current linear accelerator of the type being considered 
for radioactive waste transmutation [ 151, spallation neutron sources [16], and other 
applications requiring high energy and beam power. We will assume a proton beam 
of 100 mA average current injected by an RFQ accelerator into a drift-tube linac 
(DTL) at an energy of 2 MeV (Boy0 = 0.065) accelerated to some intermediate 
energy in the DTL and then further accelerated to a full energy of, say, lo00 MeV 
(Boy0 ,=, 1.81) in a coupled-cavity linac (CCL). Suppose that the bunching factor 
at 2 MeV is Bf - ? / I  = 0.1, so that the current in the bunch is I = 1 A and 
that the beam has an rms width of 3 = 2.0 mm at this energy. The acceleration 
in the DTL shortens the phase width of the bunch with respect to the rf period 
BOA and thereby increases the bunch current, and the CCL is usually designed for 
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a higher frequency, say twice the DTL frequency. However, we are not interested 
in the details of the accelerator design and the coupling between longitudinal and 
transverse bunch sizes. For the purpose of our calculation we will simply assume 
that the transverse focusing strength is varied along the linac system in such a 
way that the product of Z.t2 is the same at lo00 MeV as at 2 MeV. Furthermore, 
we assume that the normalized rms emittance remains constant in the acceleration 
process and is given by Z, = 2 X m-rad. Using the above numbers we obtain 
from Equation (5.292) with Zo = 3 . 1  X lo7 A, 

= 24.8. 
Ka2 

€2 

I x (2 x 10-312 
3 .1  x 107 x 2 x 0.065 x (2 x 10-712 

- x  

This value corresponds to curve 7a in Figure 5.12, which is a space-charge- 
dominated beam with a tune depression of k / k  = 0.2 and a relatively uniform 
density profile. 

At the final energy of loo0 MeV, we obtain 

= 0.89 
Ka2 24.8 X 0.065 
€2 1 . 8 1  

- =  

and k / h  = 0.73, which corresponds to curve 4 in Figure 5.12 and is in the re- 
gion where emittance begins to dominate over space charge (i.e., Ka2/c2 < 1 
or R/h > a = 0.707). Thus, during the acceleration process in this hypo- 
thetical linac system the stationary beam profile n ( r )  changes from a nearly 
uniform, sharp-edged shape at 2 MeV to a more Gaussian-like shape with a 
significant tail at lo00 MeV. In view of the high average power of about 
100 MW of such a linac, particle losses must be kept extremely low to avoid 
activation of the machine. Prevention of halo formation is therefore of utmost im- 
portance (see Section 6.2.2). But as we see from our calculation, the stationary beam 
profile develops during the acceleration process a natural tail that is comparable 
to a halo. This feature of the thermal distribution must be taken into consideration 
in the design of such a linac. The parameter Ka2/c2 should be kept as large as 
possible, and emittance growth, which would move the density profile even more 
toward a Gaussian shape, must be avoided. 

What is particularly interesting in the example above is that the transverse beam 
temperature TL actually does not change very much. If the bunch current I in- 
creases by a factor of 2, for instance, the rms width x' decreases by d? (since we 
assume that Z.t2 = const). With g, a . f ( k ~ T ~ y o )  = const, one then finds that the 
laboratory temperature TL rises by only about 10% while the beam-frame tempera- 
ture Tbl would increase by a factor of 2 according to Equation (5.290). This shows 
that the high-temperature or lowtemperature limits of the thermal distribution are 
better defined as the emittance-dominated or space-charge-dominated limits. The 
temperature, which is an appropriate parameter for a plasma, is obviously inade- 
quate to describe the behavior of the density profile in a charged particle beam. The 
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above example was chosen deliberately to be somewhat simplistic, to illustrate the 
energy scaling. A more realistic example of a high-current, high-brightness linac 
design, which includes the coupling between longitudinal and transverse bunch 
size, is presented in Appendix 4. 

A similar argument can be made with regard to emittance. Even though it in- 
volves the product of two quantities, beam width and m, emittance alone, like 
temperature, is not sufficient to characterize the beam profile. On the one hand, in 
the space-charge-dominated regime where the beam is nearly uniform, the effec- 
tive emittance (F = 46 is a very useful quantity and includes nearly 100% of the 
beam particles. However, as the effect of space charge decreases and the density 
profile becomes more Gaussian in shape, neither the rms emittance nor the effec- 
tive emittance provide a sufficient description of the particle distribution. Indeed, 
a significant fraction of the beam intensity may be outside the effective emittance 
area. To get a more quantitative estimate of the tail effect, let us consider the 
emittance-dominated limit of the Maxwell-Boltzmann distribution. Using carte- 
sian coordinates and neglecting the space-charge potential $,, we can write Equa- 
tion (5.274b) in the form 

or in terms of the betatron function Bo = l/k0 as 

where 

is the nns width of the Gaussian distribution. 

x-x‘ trace space 
By integrating (5.295b) over y, y’, we obtain the density in the two-dimensional 

(5.297) 

This relation allows us to calculate the emittance for any part of the beam inside 
of a given boundary defined by x2 + &” = const. Thus, iff denotes a fraction 
of the beam (0 5 f 5 1). ~f the emittance occupied by this fraction in x-x’ trace 
space, and im the rms emittance of the beam, one can show that 

€1 = -26 ln(1 - f ) .  (5.298) 



- ME MAXWELL-BOLTZMA" DISTRIBUTION - - 389 

From this relation we see that the fraction of the beam within the rms emittance 
(i.e., cf = 4), is f = 0.3935. For the effective emittance, defined by c = cf = 44, 
one finds that f = 0.8647, while c = 62 yields f = 0.9502. Of course, for the 
entire beam the total emittance would be infinite (ef -+ = for f = 1) in view of 
the exponential tail of the distribution. In practice, however, the tail will always 
be cut off and the total emittance will always be finite, since the tail particles are 
lost to the wall of the beam pipe. 

These results explain why different laboratories or researchers are using different 
definitions of emittance. At low energies where space-charge forces dominate and 
the density profile is nearly uniform in a linear focusing channel, the effective 
emiftance, defined as four-times rms emittance, includes practically 100% of the 
beam. This definition was adopted by CERN, where it was first proposed by 
Lapostolle [5].  It was also used in our previous chapters on linear beam optics, 
which assumed a K-V distribution for the beam where c = 42 exactly. In high- 
energy accelerators, synchrotrons, and storage rings, space-charge forces are usually 
small compared to the applied forces, and beams tend to have Gaussian profiles, 
as expected for a Maxwell-Boltzmann distribution. Some laboratories, including 
Fermilab, have introduced a six-rimes emiftance, ef = 62, to define the phase- 
space area of the beam since it contains 95% of the particles. Needless to say, 
these varying definitions of effective emittance are a source of much confusion. 
The problem is compounded by the fact that many publications use the term 
rms emittance for the effective four-times rm emittance, a definition that dates 
back to Lapostolle's original proposal (see our comment in Reference 5). Different 
notations concerning the factor P were discussed in Section 3.1. At some places P 

is factored out in the transverse emittance but included in the longitudinal emittance. 
If a nominal emittance of 61  is adopted, it may be adequate for the experimentalists 
at the high-energy end of an accelerator chain. However, at low energies, near 
the ion source or linac of a proton or H- machine, most of the beam is space- 
charge-dominated and contained within the effective emittance of c = 44, and 
64 includes a large piece of empty phase space. No wonder that communication 
between workers within the same organization is often just as difficult as it is 
between personnel working in different laboratories. 

The only emittance that plays a uniquely defined role in the physics, theory, and 
simulation of beams is the true rms emittance, which correlates with the mean ki- 
netic energy per particle, measured by the temperature in the Maxwell-Boltzmann 
distribution, and the rms beam width. Other definitions, such as our effective emit- 
tance, c = 42, or the six-times rms emittance, 64, are undoubtedly useful. But the 
range of applications should be clearly defined, and to avoid misunderstandings 
one should always be aware of the shape of the Maxwell-Boltzmann distribution 
in the various parameter regimes as shown in Figure 5.12 and Table 5.2. For proper 
comparison of beams at different energies or in different facilities the normalized 
emittance, en, should be used, or else the beam energy should be listed so that c,, 
can be readily calculated. Furthermore, the beam current should be mentioned since 
the figure of merit is usually not the emittance by itself but the two-dimensional 
phase-space density, Z/cnr or the normalized brightness 3, = 2Z/r;lr2 [see 
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Equation (3.22)]. Finally, it should be noted in this context that the above rela- 
tionships concerning a matched beam in a uniform focusing channel are valid not 
only for the transverse Maxwell-Boltzmann distribution, where the local tempera- 
ture TI is the same everywhere in the beam. They also apply for other theoretical 
or experimental beam distributions, where the local temperature may vary within 
the beam (i.e,, where the beam is not in transverse thermal equilibrium). The pri- 
mary information is contained in the velocity distribution versus position, which 
may not necessarily be a Maxwellian. However, we can always define an “effec- 
tive” temperature for any distribution by using the relation (5.270) and describe 
the distribution in terms of an analytical equivalent beam having the same rms 
parameters (or second moments). 

5.4.5 Transverse Tomporatun and Boom-Sir. Variations in 
N o n u n h  Focusing Channds 

In the preceding section we treated a matched transverse Maxwell-Boltzmann 
distribution in a uniform focusing channel where the rms trace-space ellipse, the rms 
beam width, and the temperature TL remain constant. If the beam passes through a 
sequence of lenses and drift spaces, such as in a matching section or in a periodic- 
focusing channel, the stationary state is no longer defined by the equations given 
previously, such as (5.274b) or (5.295a). After passing through a focusing lens, for 
instance, the beam experiences first a compression in its transverse size and then 
expands again until it reaches the next lens, as illustrated in Figure 3.12. If the lens 
system is periodic, the stationary state is characterized by a periodic variation of 
the beam radius. The associated trace-space ellipse is tilted in general and oscillates 
in shape between the upright positions at the crests and waists of the transverse 
amplitude function &z). By analogy with the compression and expansion of a gas, 
the transverse beam temperature, TL, heats up during compression and cools during 
expansion. This temperature variation can be correlated with the corresponding 
orientation of the rms trace-space ellipse. 

To analyze this correlation, let us consider the general Courant -Snyder equation 
(3.345) as it applies to the rms emittance, that is, 

9x2 + 2hxx’ + B X ’ 2  = 0 .  (5.299a) 

Using the relation 9 = (1 + &*)/b [Equation (3.343c)l between the three 
Courant-Snyder parameters, we can eliminate 9 and write this equation in the 
aljernative form 

x2 + (ax + Bx’)2 = 0 6 .  (5.299b) 

The second term on the left-hand side of Equation (5.299a), which was zero in our 
previous discussion, shows that there is a correlation between x and x’ ,  or x and 
v,, that depends on the parameter &. 
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The rms emittance of a general particle distribution f ( x , x ’ )  is defined in terms 
of the moments of the distribution by [see Equation (5.205)] 

The corresponding equation in terms of the particle velocities is 

(5.300b) 

For an equivalent K-V beam the particle density inside the emittance ellipse 
is constant and the moments are readily evaluated from Equation (5.299). One 
finds that 

If we divide the rms emittance equations (5.300) by ;;? = f2, we obtain 

(5.301) 

(5.302) 

(5.303) 

(5.304) 

This relation can be written in terms of rms transverse velocities and kinetic ener- 
gies as 

(5.305a) 

or 

.yom0,2 = ~omfi : , ,~  + yom~:fl . (5.305 b) 

The physical interpretation of this relation is that the rms transverse velocity, or 
rms kinetic energy, of the particle distribution consists of a thermal (i.e., random) 
component, indicated by the subscript “th,” and a flow component, indicated by the 
subscript “fl.” The latter is due to the correlation (xu,) between the velocity and 
the position of the particle in regions where the beam size contracts or expands. 

Using the relations (5.301) to (5.305). we find that 

(5.306a) 
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or, in view of I = a2/B, 

Furthermore, 

or 
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h g1 = -p (5.306b) 

(5.307) 

We note that - -  the ratio of the flow divergence z1 to the thermal divergence, 2h, is 
given by X ; ] / X : ~  =, -h .  When we compare these results with Figure 3.26 
we recognize that x { ~  - corresEonds to the point of intersection of the tilted ellipse 
with the x’-axis ( i .5  xi,,, = xi,, = m), while 2, relates to the dashed line with 
slope -h /b  [i.e.. xil = -(&/@)3]. These relationships are thus readily identified 
from plots of the r m s  trace-space ellipse. 

From (5.307) we see that the rms emittance can-always be expLessed by the 
product of the rms width, 3, and the rms thermal velocity, Dx,th = &Uo, as 

(5.308a) 

which is identical with the relation given in Equation (3.2b). The corresponding 
normalized rms emittance is 

En = y o p o R z h  = +). (5.308b) 

In view of these results, the definition (5.270b) for the transverse laboratory 
temperature can now be generalized as 

For completeness, we include the general relation for the longitudinal laboratory 
temperature, where we obtain 

The flow terms in these equations are defined by the correlation terms (i.e., Dx,fl = 

-K/f in the transverse direction), and with z = s - so, Au, = uz - UO, by 
Au,,fl = -zAu,/Z in the longitudinal direction. 
- - 
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The stationary state of a beam in a nonuniform focusing system is thus charac- 
terized by a variation in the rms beam width which correlates with the generation of 
an rms flow velocity and a variation of the thermal velocity and beam temperature. 

If Coulomb collisions can be neglected or affect the beam temperature on a 
time scale that is long compared to the particle travel time between the focusing 
lenses, the normalized emittance is invariant. We then obtain from (5.308b) and 
(5.309) the relation 

f’yokeT1 = mc2Z;f = const, (5.31 1) 

which corresponds to Equation (4.4). It implies that the transverse beam tempera- 
ture, which measures the average kinetic energy per particle due to the random 
part in the velocity distribution, is inversely proportional to the square of the rms 
beam width. For the stationary (matched) beam in a uniform focusing system that 
was treated in the preceding section, the rms radius, and hence the temperature, 
are constant (i.e., independent of distance z). In a nonuniform focusing system 
(e.g., a periodic channel or a matching section), the stationary state is characterized 
by a variation of the rms beam width with distance [i.e., 3 = Z(z)J. The velocity 
distribution then consists of a flow part characterized by the rms flow velocity 
Ox,fl and a thermal part defined by fix,th. When the beam is diverging (i.e., when 
the radius expands), the flow velocity has an outward direction [& < 0, Ox,fl > 0, 
from Equation (5.306)] and the thermal velocity decreases. When the beam is 
converging, the flow is inward (& > 0, i jXx . f1  < 0) and the transverse temperature 
increases. During such expansion and compression of the beam radius the shape of 
the density profile changes. Although the curves in Figure 5.12 represent station- 
ary states, they can still be used as a guide for the behavior in nonuniform sys- 
tems. At the maxima and minima (waists) of the beam envelope, the rms emittance 
ellipse is upright (d = 0), so that the density profiles correspond to stationary 
Boltzmann profiles having the same upright ellipses. Thus, by calculating the pa- 
rameter Kuz/c2, one can use Table 5.2 and Figure 5.12 to identify the shapes of 
the profile at these positions. One can thereby visualize how the “operating point” 
wanders from profile to profile during an expansion and/or compression cycle. 
Further aspects of beam behavior in matching, focusing, and im ng systems are 
discussed in Section 5.4.11. 

5.4.6 The Longitudinal Distribution and Boam Cooling due 
to Acceleration 

In this section we want to turn our attention to the longitudinal part of the 
Maxwell-Boltzmann distribution and discuss the general parameters that are used 
to characterize its properties in a straight channel or linear accelerator. The sta- 
tionary states and the longitudinal envelope equations in such straight channels are 
analyzed in Sections 5.4.7 and 5.4.8. The behavior in circular machines is discussed 
in Section 5.4.9. We will assume that coupling due to the transverse motion can 
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be neglected and that the longitudinal part of the distribution has the form [see 
Equation (5.271) and subsequent comment] 

or 

(5.312) 

where we dropped the subscript 1 in Auz and 411 for simplicity and where 411 is 
the longitudinal potential function that represents the focusing action of the applied 
longitudinal forces as well as the defocusing space-charge forces. 

In rf linear accelerators each bunch of particles passes through the sequence of rf 
gaps in a phase interval during which the sinusoidally varying accelerating electric 
force is rising in time. The so-called “synchronous particle” at the center of the 
bunch always passes the gaps at the same rf phase (Lee, it is in synchronism with the 
rf field). Particles arriving earlier experience a smaller, those arriving later a greater 
accelerating force than that of the synchronous particle. In the beam frame (i.e., to 
an observer traveling at the velocity of the synchronous particle), the particles at the 
head of the bunch experience a force in the negative z-direction; those in the rear 
(behind the synchronous phase) experience a force in the positive z-direction. In 
the linear regime these forces are proportional to the difference in distance between 
the particle position and the bunch center defined by the synchronous particle. In 
a traveling-wave accelerator, often employed for electrons, the bunch is placed 
slightly ahead of the crest of the wave so that the forces act continuously. The net 
result is the same as in the case of periodically spaced rf cavities with acceleration 
gaps, namely a focusing effect that keeps the bunch from spreading longitudinally. 
The induction linear accelerators employed for high-current beams also can provide 
time-dependent longitudinal focusing. The gap voltage is increased with time along 
the pulse so that the early particles at the front of the pulse gain less energy than 
those in the rear. This force differential can either prevent the bunch from spreading 
or result in longitudinal compression farther down the beam line which is required 
for some applications. The particle oscillations due to these linear longitudinal 
forces are known as the synchrotron oscillations since, historically, the phase 
stability resulting from this focusing effect was crucial to the successful operation 
of the high-energy synchrotrons. We should note that the synchrotron oscillation 
frequency is usually much lower than the betatron oscillation frequency governing 
the transverse motion. The longitudinal dynamics, including the nonlinear motion 
in rf fields, is discussed in Section 5.4.8. 

Let us now proceed with the general parameter characterization of the longitudi- 
nal distribution. Of particular interest is the longitudinal temperature and its changes 
due to acceleration and the relations between longitudinal temperature, emittance, 
and energy spread. The basic definition of normalized longitudinal emittance ent 
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as the product of the longitudinal width and momentum spread of the particle dis- 
tribution is the same as in the transverse case. However, the longitudinal phase 
space of a moving relativistic bunch can be characterized in several different ways, 
and accordingly, there are different definitions of the normalized and unnormalized 
longitudinal emittance, as we discuss below. 

If we denote by s ( t )  the distance of travel along the direction of beam propa- 
gation, then z ( t )  = s ( t )  - so(t) is the difference in position, AP, = P,  - Po is 
the difference in longitudinal momentum, and A v z  = vz - vo is the difference 
in longitudinal velocity between a particle in the distribution and the center-of- 
momentum particle (“beam centroid”), indicated by the subscript “0.” In terms of 
the associated r m s  quantities, the normalized rms emittance for a longitudinally 
matched beam is defined by 

(5.313) 

The unnormalized longitudinal rms emittance is commonly defined in terms of the 
relative rms momentum spread as 

(5.314) 

so that Znz = /3oyog,, as in the transverse case. 
If we introduce z l  = dz/ds  in place of the momentum or the velocity, we obtain 

(5.315) 

for a beam in a straight channel. With these relations we can define an unnormalized 
nns emittance SZzl in longitudinal trace space as 

(5.316) 

for straight beams. This relation differs from the conventional unnormalized emit- 
tance (5.314) by the factor yo2. Only in a nonrelativistic straight beam (yo = 1) 
are the two emittances the same (Zzzt = i,). 

Using Equations (5.313). (5.314), (5.316), and (5.27W). we can relate Snz to 
Z,, i u 1 ,  and to the temperature k~T11 in the laboratory frame as 
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(5.31%) 

The above definitions have to be modified in circular machines, as discussed in 
Section 5.4.9. Note that in the beam frame, where Zb = yozl, the normalized 
emittance has the same value as in the laboratory frame, d n t  = 8nz. This is also 
true for the transverse rms emittances. Thus the normalized emittance is a Lorentz- 
invariant quantity [lo]. In accelerator physics it has become customary to introduce 
energy E and time z as the conjugate canonical variables in place of P,  and z. 
Using z - vg At = /30c At, AP, = AP = Aymc//3g = AE/@gc and denoting 
this emittance by *, we have 

- -  
S;n2r = AE At[eV * s], (5.318a) 

which is measured in electronvolt-seconds. In rf accelerators this emittance is often 
expressed in terms of the rf phase (p and radian frequency o d  as 

(5.3 18b) 

where A> defines the rms phase width of the particle distribution with respect to 
the accelerating rf field. 

The relationship between 8;, and Znz is given by 

(5.3 1 9) 

where me2 is the particle rest energy in electronvolts and c is the speed of light in 
m/s. For protons one has (mc2)/c = 3.13 eV-s/m, and the conversion factor for 
electrons is (mec2)/c = 1.70 X eV-s/m. 

All of the above relations for the longitudinal emittance imply a finite beam 
length. The obvious application is a bunched beam with a longitudinal bunch size 
characterized by an rms width Z. However, the definitions can also be applied to 
a continuous beam, where an emittance can be assigned to a slice of the beam 
containing a given number of particles. Take as an example the continuous beam 
which is extracted from a dc ion source and which, after being chopped and/or 
bunched, is injected into an rf linear accelerator. The bunch in each rf cycle, 
containing Nb particles, can be traced back to a slice of the continuous beam. 
This slice would contain Nb particles and would have the same emittance as the 
bunch in the linac if nonlinear forces during the choppingbunching process have 
a negligible effect and if there are no particle losses. The bunch, of course, has a 
smaller rms size than the slice in the continuous beam from which it was formed. 
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But the rms momentum spread in the bunch is correspondingly larger than that in 
the slice, so that the normalized emittance is the same [see Equation (5.313)]. 

The relationships between the rms energy spread, rms momentum spread, and 
the longitudinal temperature in either continuous or bunched beams are given by 

(5.321) 

(5.322) 

(5.323) 

(5.324) 

where E, = yomc2 is the center-of-momentum energy, PO = Po yomc, and TI/ is 
the longitudinal temperature measured in the laboratory frame. All of the above 
relationships can of course be expressed in terms of the beam temperature Tbll by 
making the substitution = Tbll/ yo. In the extreme-relativistic case ( /30 = 1) we 
obtain rE/Ec = A-P/Po = (kBTbll/mc2)'n. 

In the nonrelativistic case, using the mean kinetic energy qV0 instead of the 
total energy E,, we have 

or 

(5.325b) 

Let us now discuss the effect of acceleration on the longitudinal beam tem- 
perature in a continuous beam that corresponds to the distribution (5.312) with 
911 = 0. We will find that acceleration decreases the random velocity spread and 
hence cools the beam longitudinally. To see how this comes about, let us first 
consider the nonrelativistic situation as it may exist in or near an electron gun or 
ion source. Suppose that two particles, one (A) with initial velocity ul,  and the 
other (B) with velocity u1 + Aul, are passing through an acceleration gap where 
they gain an energy of qV0. After acceleration the two particles will have kinetic 
energies of (A) 

(5.326) 
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Expanding both sides of Equation (5.327) and assuming that Av 4 v so that the 
quadratic terms involving ( A V I ) ~  and ( A V ~ ) ~  can be neglected, we find that 

m m m 
-v i  + mvzAv2 = -v: + mAvl + qV0 = -v i  + mvlAvl, 
2 2 2 

and hence 

or 

Thus the velocity difference between the two particles, which initially was AVI,  is 
reduced by the ratio v1/v2 of the velocities before and after acceleration. 

There is an inverse effect of the acceleration with regard to the separation Az 
of the two particles. Let particle A with velocity v1 be a distance Azl behind 
when particle B with velocity V I  + Avl passes the gap. When A arrives at the 
gap after a time interval Ar = Azllvl, particle B will have traveled a distance 
Az2 = (v2 + Av2)Ar = v2 At. The relation between the two distances after and 
before acceleration is 

(i.e., the particles’ separation increases by the velocity ratio v2/vl). Combining 
both equations, we see that 

We recognize that this result correlates with the invariance of the normalized 
longitudinal emittance in the nonrelativistic version. Indeed, if we average both 
sides of (5.330a) over the entire particle distribution prior to and after transversal 
of the acceleration gap, we obtain 
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since, nonrelativistically, AP/mc = Au/c, this is identical to 

as claimed. Of course, since we are dealing here with a continuous beam, & and 
2,, are defined as the rms length and nns  emittance of a given slice of the beam 
containing a fixed number of particles, as discussed earlier. 

The decrease in the velocity spread according to (5.328) occurs when there 
are no longitudinal focusing forces acting on the particle distribution (i.e., in a 
continuous beam or in a drifting bunched beam). In the first case, both the applied 
and the space-charge force are zero in the longitudinal direction [i.e., 411 = 0 in 
Equation (5.312)]. For the second case, only the applied longitudinal forces are 
zero, and the space-charge forces increase the bunch length. 

After this general discussion, we now determine the temperature change, or 
longitudinal cooling, of the beam due to the decrease in the velocity spread by 
acceleration in a mathematically more rigorous form. For this purpose we assume 
a continuous beam (i.e., 41 = 0) in the nonrelativistic regime where 'yo = 1 and 
where the temperatures in the beam frame and in the laboratory frame are identical. 
Suppose that the initial state, which we will denote by i ,  corresponds to the 
distribution emerging from the particle source (e.g., thermionic cathode or ion 
source) and is given in the standard Maxwellian form as 

(5.331) 

where u stands for uz = U I I .  

f, is characterized by a new velocity uf and temperature R~Tllf as 
The state of the distribution after acceleration, which we denote by the subscript 

where 
2 2 2  Uf = ui + 210 

and 
m 2 uo' = qvo. 

(5.332) 

(5.333) 

(5.334) 

We note that the longitudinal velocity distribution is significantly contracted while 
the transverse distribution and temperature remain unaffected by acceleration. The 
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new longitudinal temperature ~ B T ~ v  is defined in terms of the second moments of 
the velocity distribution as [from (5.310), with 70 = 11 

(5.335) 

Using (5.334) and (5.339, we find that 

- - 
up = (u: + uo’) = u: + u; ,  

Thus, substituting (5.336) and (5.337) in (5.333, we find that 

(5.337) 

(5.338) 

To evaluate the fourth moments of the initial distribution we must first multiply 
Equation (5.332) by ui = qi to get the particle current leaving the source. The 
integration then is from ui = q i  = 0 to ui = ulii = 00 since only particles with 
velocities in the positive z-direction can escape. Carrying out the calculations, one 
finds that 

(5.339) 

The cooling effect predicted by relation (5.339) is very dramatic. Take, for instance, 
an electron beam with an initial temperature given by the cathode temperature 
of kBTlli = keTC = 0.1 eV. After acceleration to qVo = 10 keV, the longitudinal 
temperature drops to k~Tllf  =L 6 X eV; that is, for all practical purposes the 
beam is essentially “cold” in the longitudinal direction while the transverse tempera- 
ture remains unaffected by the acceleration (kBTLf  = kBTli = ~ B T ,  = 0.1 ev). 
Also, in view of our discussion in connection with Equation (5.330), the longitu- 
dinal emittance as well as the transverse emittance remain the same. Likewise, the 
energy spread A% should remain unaffected by the acceleration process. It is given 
by the initial temperature, and by solving (5.339) for k~Tiii one obtains 

in agreement with Equation (5.325a). 
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As we have now seen, the particle distribution comprising the beam is no longer 
in a three-dimensional thermal equilibrium state after it has been accelerated. Also, 
the energy spread is no longer identical to the temperature when acceleration has 
taken place. However, Coulomb scattering, instabilities, or other random processes 
coupling the longitudinal and transverse motion of the particles will have a tendency 
to restore equilibrium. The associated thermal energy transfer from the transverse 
to the longitudinal direction will increase the longitudinal emitlance and energy 
spread. This is known as the Boerscfi effect, which is discussed in Section 6.4.1. 

Although the longitudinal cooling effect due to acceleration is most pronounced 
at low energies near the particle source, it also occurs at relativistic particle energies. 
The evaluation of the temperature change in this case is essentially analogous to 
the nonrelativistic derivation. Instead of Equations (5.333) and (5.334). one uses 

yfmc2 = yimc’ + qvo, (5.343) 

where yo2 = (1 - pi)-’ defines the center-of-momentum energy and veloc- 
ity and where we used Ayf = b y i .  Evaluating the moments using Ayi  = 

y i i (& - &), one obtains 

(5.344) 

Using the definition (5.310) and the result for the fourth moments analogous to the 
nonrelativistic calculation, one finds for the laboratory-frame temperature 

(5.345) 

which in the nonrelativistic limit (yo = 1,&mc2 = m v i  = 2qVo) agrees with 
the result (5.339). As an example, assume that an electron beam with initial 
energy of 10 keV (yo, = 1)  and initial laboratory temperature kBTlli = 0.5 eV 
is accelerated to 1 MeV yo/ = 2.783). The temperature is then reduced to 
kBTilf = 2.10 X lo-* eV, which represents a drop by seven orders of magnitude. 

The above cooling effect always occurs in electrostatic acceleration systems 
where no longitudinal focusing or bunching forces are present (i.e.. in most electron 
guns, ion sources, dc acceleration columns, van de Graaff accelerators, etc.). In the 
bunched beams of rf accelerators and some induction linacs, the longitudinal forces 
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generated by the time-varying fields tend to prevent the longitudinal expansion and 
hence to reduce the cooling effect. To illustrate the effect of bunching, consider 
a proton beam having an initial temperature of kgTlll = 0.5 eV at the ion source. 
Now assume that this beam is accelerated to 40 keV and then injected into an RFQ 
accelerator, where it is bunched by a factor of 10. From Equation (5.339), the accel- 
eration cools the longitudinal temperature to k g  TIV = 3 X eV. However, the 
bunching process increases this value again, by a factor of 100, to 3 X eV. 
This follows from Equation (5.317), which implies that Z2kBTll = const if yo = 1 
and if the normalized emittance does not change. Of course, nonlinear beam dy- 
namics effects in the RFQ accelerator may increase the normalized longitudinal 
emittance, which would then further increase the temperature. 

5.4.7 Stationary Line-Chaw Density Profiles in Bunchod Beams 

Let us now proceed with a more detailed analysis of the properties of bunched 
beams. The stationary longitudinal Maxwell-Boltzmann distribution in this case is 
of the general form (5.312). The function 411 consists of the applied potential #lla 
that provides the longitudinal focusing force and the self-field potential & ~ , / y i  
that produces a defocusing force. With 411 = + 4lls/yi, Equation (5.312) can 
be written in the alternative form 

(5.346) 

The factor yo2 that occurs with the electrostatic space-charge potential is due 
to the Lorentz transformation, as explained below (p. 411). The two potentials are 
commonly taken to be functions of the distance z of a particle from the center of 
the bunch [i.e., t$io = 4lla(z), 411, = t$us(~)]. The applied potential is assumed 
to be a known function of z .  Thus, if the focusing and acceleration is provided 
by rf cavities, ~ $ 1 1 ~  is a periodically varying function of time, or of phase 0 s  At  
with respect to the passage of the bunch center through the cavities. Since At 
correlates with z = s - SO by z = uo A t ,  where uo is the centroid velocity, one 
can define t$lla as a function of z .  If the bunch length is small compared to the 
acceptance of the rf field (see the next section), one can approximate 4ja(z) by a 
harmonic oscillator potential (a z2), which for convenience will be written in the 
form 4110(z) = 41lo[(z/zo)~ - 11, where &lia = 0 at z = zo and &(O) = -410. 

The bunch usually travels through many rf cavities, as in a linear accelerator, or 
many times through the same cavities, as in a circular machine. In this general case, 
the applied potential amplitude would actually be a periodic function of the bunch 
travel distance s [i.e., &llo = #llo(s)]. On the other hand, if the longitudinal force 
acts continuously on the beam, as in a traveling-wave electron linac, where the 
bunch rides on the rf wave like a surfer on a wave in the ocean, 4110 is constant. 
For the general case of periodically spaced acceleration gaps it is customary to 
use the smooth-approximation theory whenever possible. This is analogous to the 
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treatment of transverse focusing, and in this approximation the periodic gap system 
is identical to the longitudinal focusing in a traveling-wave accelerator. 

With a constant or "smooth" applied harmonic-oscillator potential as discussed 
above, the stationary longitudinal distribution function, representing a perfectly 
matched bunch, takes the form 

If the beam energy and the applied potential are constant, the temperature TI[ will 
be constant. Moreover, if changes in energy, focusing potential, or temperature 
accur adiabatically, the distribution will remain in equilibrium although its density 
profile may change. If we multiply Equation (5.347) by the charge q and integrate 
over the velocities Auz, we obtain the longitudinal Boltzmann relation for the line 
charge density p ~ ( z ) ,  that is, 

yielding 

where C is constant. 
Let us now analyze the space-charge potential ~ $ 1 1 ~  in the nonrelativistic limit 

(which is equivalent to treating the problem in the beam frame). As we will see, 
+Ill can be defined as a function of the line-charge density p ~ .  We will assume that 
the bunch has a cylindrically symmetric shape, and that it is inside of a cylindrical 
conducting tube of radius b. The total electrostatic potential due to the space charge 
of the bunch, tPs, which is a function of radius r and axial position z, must obey 
the Poisson equation 

(5.349) 

where p(r ,  z )  is the volume charge density in the bunch. In general, this equation 
must be solved numerically. However, we can obtain useful analytical results for 
the special model where the bunch is represented by a well-defined ellipsoid with 
radial semiaxis a and longitudinal semiaxis zm and with uniform charge density 
po, as illustrated in Figure 5.13. The potential inside the ellipsoidal boundary of 
the bunch in this case can be written as 
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t 
z 

5.1 3. Goomdry of dliproidol bunch in a cylindrical conducting dc rih lubr. 

where tp,, is the free-space potential that can be found analytically [17,18] and 
is given by 

(5.350b) 

tpi(r, z) is the potential due to the image charges on the wall of the conducting tube, 
and the constant 40 is chosen to satisfy t$,(b,z) = 0 at the wall. The parameter 
M E  is defined as [17] 

(5.351) 

where 6 = 4-. When zm = a, one finds that M E  = 3, 1 and over 
the range 0.8 < Zm/a < 4, ME can be approximated fairly well by [18] ME = 

For the line-charge density p ~ ( z )  in the uniformly populated ellipsoid, one 
aA3znl). 

obtains 

or 

Here 

(5.352) 

(5.353) 
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is the line-charge density at the center ( z  = 0) of the bunch, Q = qN the total 
charge, and N the total number of particles in the bunch. 

The axial gradient of the free-space part of the potential (5.350b) inside the 
bunch, 

(5.354a) 

is a linear function of z and can be related to the derivative of the line-charge 
density by 

or 

(5.354b) 

(5.354c) 

For the radial gradient of the free-space potential we obtain 

Equation (5.354b) defines the geometryfactor g, which plays an important role in 
the longitudinal beam dynamics. In this case we are dealing with the free-space 
potential gradient of a uniformly populated ellipsoid, where we define g = go. 
Below [see Equation (5.366)] we make use of an identical relationship in the more 
general case where image effects from the conducting boundary are included and 
where the line-charge density p L ( z )  may not be parabolic. The geometry factor 
g is then different from go and defined by appropriate averaging over the charge 
distribution. 

The free-space geometry factor go depends on the aspect ratio zm/a of the 
ellipsoid and can be related to the parameters ME or 6 by 

(5.355) 

For small aspect ratios (0.8 < zm/a 5 4). one can use go = 2zm/3a, which yields 
for the free-space gradients the approximate relations 

(5.356a) 2 z  '"* az 3€0 Zm 4.lr~0az, 
Po Q -z = - - -- 
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and 

where we introduced the total charge Q = qN of the bunch from Equation (5.353). 
In the free-space environment considered so far, the electric field lines ong- 

inating from the charges in the bunch look at large distances like those from 
a point charge. This picture changes significantly when the conducting tube is 
present. The field lines will terminate at the image charges on the wall surface 
and will be pointing predominantly in the radial direction, as illustrated schemat- 
ically in Figure 5.13. The electric field and hence also the total potential of 
Equation (5.350) will therefore essentially be concentrated in the region that is 
defined by the length 2zm of the bunch. The image fields will reduce the axial 
defocusing space-charge force and increase the radial defocusing space-charge 
force on the particles. Mathematically, the image charge problem must be solved 
by numerical methods. Such numerical calculations were done recently [19] for 
ellipsoidal bunches with uniform charge density in a conducting cylindrical tube 
of radius b where the potential distribution is of the form (5.350). In these calcu- 
lations the bunch aspect ratio zm/a and the ratio of tube radius to beam radius, 
b/a ,  were varied, covering a large number of cases in the range 1 S t m / a  I 20 
and 1.5 S b/a S 5. Figure 5.14 shows the potential distribution &(O,z) and 
the electric field Esr(O, z )  along the axis for three bunches with (a) zm/a  = 1. 
(b) zm/a = 5 ,  and (c) zm/a = 10, for b/a  = 2. In addition, the electric field gra- 
dient E:,(z) is shown for the case zm/a  = 5 in (d). These curves illustrate the 
general pattern in the electric field distribution. A careful analysis of the com- 
puter results and field plots obtained for all the cases leads to the following 
conclusions: 

The axial electric field is practically linear with distance along the entire 
bunch as long as the bunch length does not exceed the tube diameter (i.e., if 
zm s b). This is due to the fact that the nonlinear image field is relatively 
small compared to the linear free-space field. 
With increasing bunch length the electric field becomes more and more 
nonlinear from the image effects. The data computed for E,,(z) can be fitted 
quite accurately with an analytical expression of the form 

where E:,(O) is the electric field gradient at the center ( z  = 0), and the 
coefficients A ,B  define the strength of the third- and fifth-order correction 
terms, respectively. For a self-consistent treatment of the equilibrium bunch 
distribution with images see remark and references at the end of Appendix 4. 
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3. The linear electric field near the center or in short bunches where the 
nonlinear terms are negligible (A 0, B = 0 ) can be related to the derivative 
of the line-charge density, in analogy to the free-space relation (5.354b), by 

where by comparison with (5.357) we have 

(5.358) 

(5.359) 

Using the computed value for Ei,(O) and the relation (5.353), we can calculate 
the geometry factor g(0) as 

(5.360) 

4. In the general nonlinear case, we can define a geometry factor g that describes 
the average behavior of the longitudinal distribution. The proper way of doing 
this is to take the average zE,, of the computed electric field and compare it 
with the average zE,, for the equivalent linear field. Now, by definition, 

- 
- 

(5.361a) 

where in our case the volume charge density in the ellipsoid is constant [i.e., 
p ( r . z )  = pol. The computer results show that the axial electric field E,, is 
essentially independent of the radius r ,  so that (5.361a) can be integrated in 
r and the average zE,, can be related to the integral over the longitudinal 
line charge density p ~ ( z )  by 

- 

(5.361b) 

The equivalent linear electric field can be written in terms of a general 
geometry factor g as 

(5.362) 
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By evaluating the integral (5.361b) using (5.357) for E,,(z) and comparing 
the result with (5.362), one obtains for the geometry factor g the relation 

3 
(5.363) 

The longitudinal potential function ~II,(z) can be obtained by integrating 
E,,(z) in Equation (5.357). However, it will be more useful to relate 4llS to 
the line-charge density by integrating Equation (5.362), which yields 

g = g(O)(l + T A  + $4 - 

For short bunches when g = g(0) this expression is exact, whereas for long 
bunches it is an approximation based on the equivalent linear field. 
The geometry factors go for free space [Equation (5.355)], g(0) [Equa- 
tion (5.360)], and g [Equation (5.363)] for the various cases that were 
calculated are listed in Table 5.3 and plotted versus the aspect ratio zm/u 
of the bunch in Figure 5.15. As can be seen, g(0) and g rise from values 
that are close to go at z,/u = 1 and then level off as tm/u  increases. The 
asymptotic values in the flat region of the curves are found to relate to the 
ratio b/u as [19] 

(5.365a) 

(5.365b) 

b 
a gmax(0) = 2 In - . 

b 
g,,, = 0.67 + 2 In - . 

U 

Tablo 5.3 Ooomotry parameters g(O), and g for different values of 
&/a and b/a  

b/a = 1.5 b/a = 2 b/a = 3 b/a = 5 Free Space 

Eccentricity d o )  g g(0) g g(0) g g(0) g 8 0  

1 0.58 0.59 0.63 0.63 0.66 0.66 0.66 0.66 0.67 
1.5 0.80 0.85 0.93 0.94 1.01 1.01 1.04 1.04 1.05 
2 0.91 1.02 1.14 1.18 1.31 1.31 1.37 1.37 1.39 
3 0.94 1.21 1.35 1.48 1.73 1.76 1.90 1.90 1.96 
4 0.89 1.30 1.41 1.65 1.98 2.05 2.29 2.30 2.41 
5 0.85 1.38 1.40 1.74 2.12 2.24 2.57 2.60 2.79 
7.5 0.81 1.38 1.39 1.86 2.19 2.52 2.96 3.08 3.52 

10 0.81 1.40 1.39 1.93 2.19 2.63 3.11 3.34 4.06 
15 0.81 1.40 1.39 1.97 2.20 2.72 3.19 3.58 4.84 
20 0.81 1.41 1.39 1.97 2.20 2.77 3.21 3.68 5.40 

Source: Reference 19. 
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The asymptotic result gm,,(0) = 2 In (b/a) can be derived analytically [19], 
and these analytical values were used in the flat regions of the curves for g(0). 

In summary, we can qualitatively distinguish between three regions with regard 
to the ratio of the bunch length 2zm and the diameter 26 of the conducting tube: 

Region 1 (zm S b). The axial electric field is linear and hence satisfies the 
relation (5.358) for a parabolic line-charge density; the two geometry factors are 
essentially identical [i.e., g = g(O)], slightly lower than the free-space parameter 
go, and increase with zm/a. 

Region 2 (b 5 zm 5 36). The axial electric field becomes increasingly non- 
linear, the parabolic bunch relation (5.358) is no longer satisfied, the average 
geometry factor, g, becomes greater than g(O), but the rate of increase with z,/a 
shill begins to level off. 

Region 3 (z,,, > 36). The nonlinearity of the axial electric field increases further 
as the fifth-order term ( -Bz5)  becomes more and more significant, and the parabolic 
bunch relation (5.358) is even less satisfied than in region 2; the geometry factors 
g(0) and g are essentially independent of the bunch length, or zm/a, and can be 
approximated by the values given in (5.365a) and (5.365b). 

We note that this behavior of the parabolic bunch with image fields differs 
significantly from the description found in the literature (see, e.g., [C.17, p. 181, 
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or D.ll, p. 24]), where the parabolic line-charge profile is assumed to be valid for 
any bunch length that is much larger than the tube diameter (z, S b) and where the 
g-factor is assumed to have the constant value g = 1 + 2 ln(b/a). By contrast, we 
find that the parabolic profile, and hence the linearity of the electric field gradient, 
is valid only for short bunches (z, < b); that the g-factor is a function of zm/a and 
b/a ,  which increases at first with the bunch length and then levels off to an average 
value of g = 0.67 + 2 ln(b/a); and that the space-charge electric field becomes 
increasingly nonlinear toward the edges as the bunch becomes longer. The problem 
concerning the correct value of the g-factor will surface again in Chapter 6 when 
we deal with longitudinal space-charge waves and instabilities [see the discussion 
in connection with Equations (6.68). (6.69a). (6.69b), and Figure 6.181. As we will 
see there, the g-factors for bunched beams and the g-factors for perturbations in 
continuous beams are different. 

The preceding investigation of the behavior of an ideal ellipsoidal bunch in a 
cylindrical tube was intended to given us some physical insight into the effects 
of image charges. After this detour we return to the problem of finding the self- 
consistent longitudinal line-charge profiles for the stationary thermal distribution, 
as stated in Equation (5.348b). To make further analytic progress with our model, 
we assume that the relations E,, - a p L / a z  in Equation (5.362) and 411,(z) - 
pL(z) in Equation (5.364) are also satisfied in an approximate sense (and with 
the caveats presented in the preceding discussion) when ~ L ( L )  is not exactly 
parabolic. This assumption is necessary to reduce the three-dimensional problem 
to a one-dimensional problem whereby the axial space-charge field E,, is related 
to the derivative of the line-charge density and thus is only a function of z. The 
approximation involved is usually quite satisfactory, and the relation Esz - a p L / a z  
is widely used in the literature (see also Sections 6.3.2 and 6.3.3). We note that 
the one-dimensional approximation for the longitudinal motion is also an implicit 
assumption in our two-temperature model (5.274a) for the Maxwell-Boltzmann 
distribution. 

The above analysis so far has been nonrelativistic. To extend it to relativistic 
beams, we must transform the electrostatic potential and field from the beam frame 
to the laboratory frame by multiplying with the factor yo2, as in the transverse 
case. This result can be obtained by applying a Lorentz transformation to d p ~ / d z  
in the beam frame yielding ( d p ~ / d z ) b  = (dp~ /dz ) l ,b /y i  due to the relativistic 
contraction of longitudinal dimensions. Thus one obtains in lieu of (5.362) and 
(5.364) the relativistic relations 

(5.366) 

(5.367) 

An alternative way is to express the laboratory electric field of the bunch in the 
form of Equation (2.35) that includes the inductive field due to the time-varying 
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magnetic vector potential A, (Faraday's law), that is, 

(5.368a) 

As will be discussed in the next chapter [see Equation (6.68)], this relation may 
be written as 

(5.368b) 

and with N / a t  = - v i d p ~ / a z ,  one obtains Equation (5.366) (i.e., the same result 
as with the Lorentz transformation). 

By substituting the self-field potential (5.367) into the Boltzmann equation 
(5.348b) we obtain an integral equation from which the line-charge density profile 
p ~ ( z )  can be self-consistently calculated, namely 

This equation can be solved numerically in a straightforward manner [13]. The 
results for eight different temperatures are given in Figure 5.16. For zero tempera- 
ture (TI[ - 0) we find that 

(5.370) 

with 

1 (5.371) 
4T€OYi4 410 

PLO = PL@) = 
48 

which represents a parabolic line-charge density. Since #ils a p ~ ( O ) [ l  - z2//to], 
the space-charge force Ex, is linear in z,  and it exactly balances the applied 
longitudinal force in this laminar-flow limit. The behavior of a parabolic line- 
charge profile in a low-temperature beam with linear external focusing has recently 
been studied experimentally [20]. 

In the high-temperature case (keT11 * q+110), where the space-charge forces can 
be neglected, the longitudinal density profile approaches the Gaussian form 

(5.372) 

where 6, = 2 - (?)la is the rms width of the distribution. The Gaussian profile is 
a good approximation when space-charge forces are negligible, while the parabolic 
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profile represents a bunched beam near the space-charge limit. We should note, 
however, from our preceding discussion that the self-consistent inclusion of image 
forces could yield a nonparabolic profile in the latter case. 

Table 5.4 lists the parameter values associated with each of the eight density 
profiles. The column for Z/& shows the ratio of the rms width Z of each curve 
to the rms width 20 of the parabolic zero-temperature profile in case (a) of Fig- 
ure 5.16. Each density profile can be correlated with the equivalent parabolic beam 
of half-length zm having the same perveance KL, longitudinal rms width Z, and rms 
emittance <,,I = Z2k,, where z,,, = f i Z .  As will be shown in the next section, KL 

Tabk 5.4 Paramotor valuor for tho oight longitudinal chargo donrity 
p d o r  in Fburo 5.16 

curve hiTdqAo PL(O)/PLO i/zO M k Z o  P L ( ~ ) / P L O  (I a) 
1 10 0.237 5.03 0.994 1.19 
2 5 0.332 3.59 0.985 1.19 
3 2.5 0.455 2.59 0.965 1.18 
4 1 0.645 1.76 0.898 1.14 
5 0.5 0.777 1.41 0.793 1.10 
6 0.25 0.873 1.21 0.653 1.06 
7 0.1 0.947 1.09 0.459 1.03 
8 0 1 1 0 1 
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is defined by 
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(5.373) 

where k, and k , ~  are the focusing wave constants with and without space charge, N 
is the total number of particles in the bunch, and r, = q2/4m0omc2 is the classical 
particle radius. One finds that 

since Z& = Q / z m .  
The results for the tune depression k,/k,o for the longitudinal particle oscillations 

shown in Table 5.4 have been calculated from Equation (5.374). They can be 
correlated with the longitudinal perveance parameter KL by Equation (5.373). 

5.4.8 Longitudinal Motion in rf Fields and 
the Parabolic Bunch Model 
In the preceding section we analyzed the properties of the stationary state of the 
longitudinal distribution in a smooth, linear focusing system where the applied po- 
tential q5110(z) is a quadratic function of the position z from the bunch center. We 
now proceed to derive the longitudinal equation of motion, which governs the gen- 
eral behavior of the bunch and which yields the stationary state, or matched beam, 
as a special solution. Since most machines employ rf fields for the acceleration 
and longitudinal bunching of the beam, we will analyze the particle motion in such 
fields. The forces acting on the particles in an electromagnetic field are, in general, 
nonlinear. We start with this general situation and then consider the special case 
where the bunch length is small compared to the rf wavelength, so that the linear 
approximation for the applied focusing force is valid. After that we will revisit 
the ellipsoidal bunch with parabolic line-charge density of the preceding section. 
We show that there exists a longitudinal phase-space distribution that satisfies the 
steady-state Vlasov equation, has a parabolic line-charge profile, and has linear 
forces over the entire range of possible emittance and space-charge parameters. 
This model can serve as an equivalent linear beam for the generally nonlinear 
longitudinal Maxwell-Boltzmann distribution. It thus plays the same role for the 
longitudinal beam physics as the K-V distribution does for the transverse phase 
space. Unfortunately, the K-V distribution cannot be extended self-consistently to 
six-dimensional phase space, as such an extension leads to a nonlinear space-charge 
force in the longitudinal direction (see Problem 5.12). 

Let us now start with the derivation of the longitudinal equation of motion 
in rf fields. We will accomplish this task by considering the acceleration and 
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longitudinal focusing process for a bunch of charged particles moving in a traveling 
electromagnetic wave. We ignore the details of mode structure, geometry, and radial 
variation as represented by the Bessel functions for cylindrical waveguides, and 
assume a TM wave having a longitudinal electric field component, which we write 
in the simple form 

Em is the peak electric field and Q represents the phase of the particle with respect 
to the peak field and is defined by the relation 

or 

(5.376a) 

(5.376b) 

when u(s) - uo is approximately constant. Here wd is the angular frequency of the 
wave and u(s) is the particle velocity, which is an increasing function of distance 
s when the particle is accelerated. We will assume that the phase velocity of the 
wave, up, increases with distance so that the particle at the center of the bunch 
moves in synchronism with the wave. Hence the velocity uo of this “synchronous” 
particle is the same as the phase velocity [i.e., u&) = u,(s)], and its phase QO 

remains constant. 
This simple picture of a traveling wave, which is illustrated in Figure 5.17, 

provides a good general description of the “smooth” longitudinal motion in rf linacs 
and synchrotrons with rf cavities. Factors such as the gap transit time in drift-tube 
linacs or the harmonic number h = orf/oo between the rf and the orbital frequency 
00 in synchrotrons can easily be taken into account by appropriate changes of the 
field amplitude Em. For details we must refer to the various books on particle 
accelerators listed in the bibliography. In this section we consider the longitudinal 
motion in a linear accelerator. The extension to circular machines is treated in 
Section 5.4.9. 

Figure 5.17(a) shows the accelerating field versus phase. The synchronous 
particle has phase (PO and momentum Po, and its momentum change is defined 
by the equation of motion 

d(B0Yo) = mc- = qEm cos ( p 0 ,  
dP0 
dt dt 
- (5.377) 

where QO remains constant and the space-charge force is zero at the center of the 
bunch. A nonsynchronous particle with phase Q and momentum P = #I ymc will 
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Figura 5.17. (a) Accebmting fidd as a function of phase; (PO Ckn0t.r he synchronous phase 
(bunch centroid), (p a nonrynchronous partide; (b) partick, hujectorier in the A E - q  phase pkine, 
including fhs "sepamtrix" which separates the stable from th. unstable regions. 

experience both the applied force qEm cos Q and the space-charge force qEaz, and 
its equation of motion is given by 

(5.378) 

In Figure 5.17 the phases QO and Q of the two particles considered are located to the 
left of the crest of the wave where the electric field is rising with time t .  As we will 
see below, this is the region where the motion is stable. To a stationary observer, 
the nonsynchronous particle passes earlier in time than the synchronous particle. 
If we plot the wave as a function of distance, as is done in Figure 5.19, the two 
particles are both located to the right of the peak, and the nonsynchronous particle 
is ahead of the synchronous particle. These two different pictures regarding the 
phase Q of a particle as defined in Equation (5.376) must be kept in mind since we 
will now change from time t to distance s as the independent variable. It should be 
noted in this context that our definitions of phase (5.376) and electric field (5.375) 
are not unique. Quite often the phase is defined as Q* = ofis/uo - ocft or the 
electric field as E:z = E m  sin Q*, where we use the asterisk (*) to distinguish 
the two cases. The relevant equations can be readily converted to our notation by 
making the transformation Q* = - Q  in the first case, or Q* = Q + (m/2)  in the 
second case. 

To proceed now with our analysis, it will be convenient to use energy E 
instead of momentum P .  With vo = ds/dt ,  dP/d t  = (dE/dt)/uo = dE/ds from 
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Equation (229, we can write Equation (5.377) in the form 

(5.379) 

which determines the increase in energy E, of the synchronous particle. The energy 
of a nonsynchronous particle differs from that of the synchronous particle by 
AE = E - E,, and the rate of change is obtained by subtracting (5.378) from 
(5.377), which yields 

(5.380) d AE d qEm 4Esz - ( y  - yo) = 7 (cos Q - cos (00) + -. 
ds mc2 ds mc mc2 
- -= 

The phase difference AQ = Q - QO changes with the velocities u = /3c and 
uo = /3oc according to the relation 

d d 
ds - ( A Q )  =: ds 

(5.381) 

Let us now assume that the energy difference AE is always very small compared 
to the energy of the synchronous particle (beam centroid) (i.e., AE = A ymcZ 4 
yomc2). Then, using the relation p = (y2  - 1)ln/y, we obtain by Taylor expan- 
sion the result 

(5.382) 

to first order in the energy difference A ymc2. Thus Equation (5.381) can be written 
in the alternative form 

where we introduced the wavelength A = 21rc/w,r of the wave. By solving (5.383) 
for AE and substituting in (5.380), we obtain a single equation for the phase 
difference between a given particle and the bunch centroid: 

21r 4E"(COsQ - CosQ0) + - 21r - qEaz . (5.384) 
ds A mc2 

If the motion is stable, the particles will oscillate in phase and energy about the 
synchronous particle (bunch centroid). To examine the stability conditions we 
assume that the energy yomc2 changes adiabatically. The factor can then 



418 SELF-CONSISTENT THEORY OF BEAMS 

be treated as approximately constant during one phase oscillation period, so that 
Equation (5.384) becomes 

Let us now temporarily neglect the space-charge force by setting qESL = 0. By 
multiplying both sides of Equation (5.385) with d(Alp)/ds, we can integrate once 
and obtain 

-(sin Q - Q cos (PO + C), (5.386) 
A mc2 

where C is an integration constant. 
By substituting for d(A(p)/ds from Equation (5.383), we get 

+ qE,(sinp - QCOSQO + C) = 0. (5.387) ~ ~ T ( A E ) ~  
28; yiAmc2 

The constant C depends on the initial conditions (AE, ,  9,) and is readily evaluated 
for any given set of the parameters /30 yo, A, Em, 90, and q/m.  For each value of 
C, Equation (5.387) gives a possible trajectory in the BE - Q phase plane. Several 
such trajectories are shown in Figure 5.17. With the choice of the synchronous phase 
(PO < 0 in the figure we see that the particle motion is stable provided that the 
initial conditions are within the so-called separatrix. Inside the separatrix, particles 
move on closed curves in a counterclockwise direction, as illustrated in the figure. 
Particles whose initial phase and/or energy values are outside the separatrix will 
not be trapped and accelerated by the wave. They move on unstable trajectories 
similar to the one shown in Figure 5.17. Thus the separatrix, also known in the 
literature as the rf bucket, separates the stable from the unstable trajectories. As 
shown in Figure 5.17, the separatrix intersects the positive side of the pax i s  at 
the point 9- = -90, where QO < 0 represents the synchronous phase. Setting 
Q = -PO, AE = 0 in Equation (5.383) yields the value 

C = sin QO - (PO cos QO (5.388) 

that defines the trajectory for the separatrix. The value prnh where the separatrix 
intersects the pax i s  on the negative side is found by numerical integration. For 
small values of the synchronous phase (i.e., I Q O ~  4 .rr/2), one finds that Qmin = 
-21~01, so that the phase difference A Q  = Q - QO is to good approximation 
given by 

(5.389) 
97 

-2lcpol AQ 5 IQOI for (PO 4 - 
2 '  
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As an example, for po = -30", one finds -60" 5 A p  5 30", where p- = 30" 
is exact and lpminl = 60" is about 3% greater than the exact value. 

When 90 = -90", there is no net acceleration of the bunch, the constant C 
has the value C = -1, and the separatrix extends over the entire period of the 
rf wave, that is, 

-IT I AQ d IT. (5.390) 

The limiting values in the energy AE of the separatrix occur at the synchronous 
phase. By substituting p = po and the relation (5.388) in (5.387), one obtains 

3'" A 
AE- = -AE,,,h = 2 [ / 3 i y i ~  mc2qEm(p0cos po - sin 90) . (5.391) 

When po = 0, the area of the separatrix in the AE-p plane shrinks to a point (i.e., 
there is no stable motion for a nonsynchronous particle). On the other hand, when 
po = -9O", the bucket size reaches a maximum with A p  defined by (5.390) and 
AE- having the value 

(5.392) 

Figure 5.18 shows the shape of the separatrix and particle trajectories in the 
AE-Ap phase plane for two values of the synchronous phase. The case po = 
-30" [Figure 5.18(a)] is typical for the acceleration regime. The separatrix in this 
case has a total width of AQ- - 90", as discussed above, but the particle bunch 
usually occupies a much smaller phase-space area, like the little circle at the center 

AE 
4 

AE 
4 

'PO'-3O0 cpo'-QO" 

(4 (b) 
Pigum 5.18. Sspamtrix and partick tmjecbrier in AE-Ap phase one for two values of h 
synchronous phase: (a) -30'; (b) -90'. Particle trajectories inside Ithe cepamtrix are c l o d  
rtabk dih; those outside the cepamhix are unstabk. 
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of the separatrix. When (PO = -90' [Figure 5.18(b)], the separatrix spans the entire 
phase range -a S A p  I 7r,  as shown in the picture on the right side. This regime 
is used to capture the beam from an injector, and the particles fill the entire 27r 
phase interval of the separatrix. Usually, the energy spread of the injected beam 
is considerably smaller than the height AE- of the rf bucket. However, as is 
evident from the figure, there will always be some particles near the endpoints 
of the bucket (-7r.w) that will not be trapped if their energy AE is outside the 
separatrix boundary. A typical rf accelerator starts with (PO = -90' to capture 
the injected beam, and then the synchronous phase is shifted adiabatically toward 
the acceleration point (e.g., 90 = -30'). 

The shapes of the stable orbits inside the separatrix reflect the fact that the 
applied force is in general nonlinear with regard to the phase difference A p .  
However, if AQ 4 1, we can use the approximation cos(p0 + Ap) - cos (PO = 
-Ap sin 90 and linearize the equation of motion. Thus, with E,, = 0, Equa- 
tion (5.385) becomes 

This may be written in the harmonic-oscillator form 

where 

or 

(5.393) 

(5.394) 

(5.395a) 

(5.395b) 

Here kl represents the wave number for the longitudinal phase oscillation, with 
wavelength AI = 27r/k1; the corresponding oscillation frequency 01  = kluo is 
known as the synchrotron frequency. As can be seen from Equation (5.395), stable 
oscillations occur only for sin po < 0, or 90 < 0, in agreement with our earlier 
discussion. 

Equation (5.394) has the solution 

A Q  = Acos(k1s + a), (5.396) 
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where A and a are defined by the initial conditions. The corresponding oscilla- 
tions in the energy are obtained by differentiation of (5.396), which in view of 
(5.383) yields 

-- 2lr A E  - -Ak, sin(k1s + a) = - - d ( A Q )  
ds A &y$mc2’ 

or 

AE = B sin(k1s + a), 
where 

(5.397) 

(5.398) 

A particle with given phase amplitude A or given initial conditions ( A E i r A p i )  
traces out an ellipse in AE-AQ phase space given by the equation 

(5.399) 

and the ratio of the semiaxes (Aqmr AE,) of this ellipse is 

We conclude from the above analysis of particle acceleration with rf fields that the 
linearity of the applied force is assured only if the bunch size is small compared 
to the phase width of the rf bucket. This linearity condition is usually satisfied in 
most rf machines during the acceleration regime. The notable exceptions are the 
injection from the source into an rf linac or from the rf linac into a synchrotron 
and the debunching (and rebunching) cycles in storage rings where the buckets 
can be completely filled. In these cases the longitudinal beam dynamics is highly 
nonlinear and becomes even more complicated when space-charge forces play a 
major role. Particles in the high-energy tail of the Maxwell-Boltzmann distribution 
with such a nonlinear potential function are then no longer confined and leak out of 
the rear of the separatrix. Furthermore, in the low-temperature limit the line-charge 
density profile is no longer parabolic with displacement from the beam centroid. 
This follows from the laminar-flow equilibrium condition, where the space-charge 
field completely cancels the applied field (i.e., E,, = EaZ) and the net potential is 
zero. We note that the applied potential in an rf bucket is reduced by the space- 
charge potential. As a result, the net bucket height shrinks and goes toward zero in 
the laminar-flow limit, and the net bucket area in AE-AQ phase space becomes a 
straight line in this limit. Further discussion of this topic is beyond the scope of this 
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book. However, before we return to the initially stated goal of developing a linear 
model with space charge in this section, it will be useful to transform the above 
results from the A Q ,  AE variables to the z ,  z' variables in which we described 
the longitudinal distribution earlier. 

From the definition of phase in Equation (5.376b) and assuming adiabatic 
motion, we obtain the relation 

For the energy difference one finds that 

A B  1 dz 
A E  = me2 Ay = m c 2 m  = me2- - 

Po Yo B o d  ds '  

(5.401) 

(5.402) 

The difference in the applied force between a particle at position z in the bunch 
and the bunch centroid is given by 

(5.403) 

This equation may be integrated to get the potential function A U  = - $AFaz dz 
for the applied force, which yields, with A U  = 0 at z = 0, the expression 

- sin (PO + -zccos4p0 . (5.404) 
UO 1 

The function is plotted schematically in Figure 5.19(b) versus the displacement 
W ~ Z / V O  from the synchronous phase. The accelerating field is shown on top (a) 
with -(P pointing in the positive z-direction (i.e., the synchronous phase QO is 
ahead of the crest of the wave). Figure 5.19(c) shows the separatrix and typical 
particle trajectories in a z-z' trace-space diagram. This diagram is basically a 
mirror image of the AE-(p plot in Figure 5.17, with distance z ,  rather than time 
t, being the independent variable on the abscissa. Figure 5.19(b) and (c) illustrate 
the longitudinal focusing potential and particle motion, respectively, as seen by an 
observer moving in a coordinate frame in which the synchronous particle is at the 
origin. Clearly, only particles whose total energy is less than a maximum value 
AU- are trapped and accelerated by the wave. Note from Equation (5.404) that 
the slope z' = PO yo3 AE/mc2 of a nonsynchronous particle in the moving frame 
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is proportional to the particle's difference in kinetic energy A E with respect to the 
synchronous particle as measured in the laboratory frame. 

The general shape of the potential function A U(z )  is highly nonlinear. However, 
near the origin (i.e., for particles whose oscillation amplitude is significantly smaller 
than the half width of the separatrix), the potential is harmonic (-2') and the 
focusing force is linear in z .  By linear expansion of (5.403) we obtain for the 
applied force 

(5.405) 

where 

2lr 
ELz = -Em1 sin (POI (5.406) 

4 3 0  

is the field gradient defined as a positive quantity and 2a/A = wd/c .  
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With the aid of the relations (5.401) to (5.406) we can transform our equations 
of motion in an rf accelerator to the coordinates z ,  z' in the moving frame. Thus 
Equation (5.393) becomes 

(5.407) 

which is linear in the coordinate z. 
Let us now assume that the space-charge force is also linear with a constant 

gradient Eiz. By adding this linear space-charge force, Equation (5.407) can be 
written as 

(5.408) 

As we discussed in connection with the zero-temperature limit of the thermal 
distribution [Equation (5.369)], a parabolic line-charge density profile produces a 
linear space-charge force. We therefore assume for the desired linear-beam model 
that p ~ ( z )  is given by 

so that in view of (5.366) we obtain 

(5.409) 

(5.410) 

The line-charge density pto = p ~ ( 0 )  at the bunch center can be related to the total 
number N of particles, or charge Q = q N ,  in the bunch and the half length Z, by 
Equation (5.353), and the rms width is given by 

Using these relations one obtains for the equation of motion (5.408) 

(5.411) 

(5.412) 
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where rc is the classical particle radius. This equation has the desired linearity with 
the displacement z of the particle from the bunch center. We can write it in a form 
that is similar to the transverse force equations (4.1 1 l), namely 

where 

and 

(5.413) 

(5.414) 

(5.415) 

Note that the longitudinal focusing function K,O has units of m-2, as in the 
transverse case, while the longitudinal perveance parameter KL has the unit of 
length [m], in contrast to the dimensionless perveance K for the transverse motion. 

The equation for the longitudinal beam envelope z,,, can be obtained by a 
procedure that is analogous to the transverse case [see Equation (4.178)]. Basically, 
this amounts to replacing z by z,,, and adding an emittance term in the trajectory 
equation (5.413); one gets 

(5.416) 

where ezct represents the unnormalized total longitudinal emittance of the bunch 
(in the moving frame) enclosing the entire distribution of the particles given in 
(5.409). The applied longitudinal force K ~ O  as well as the beam envelope Zm are 
in general functions of the distance s, usually of a periodic form that reflects the 
periodic traversal of acceleration and/or bunching gaps by the beam, as in the 
transverse case. For a continuously acting force, as when the bunch is propagating 
in a traveling wave or in the smooth approximation of a periodic system, we 
can replace K~~ by the constant k$ = (27r/A,0)~, where kzo = kl. We then obtain 
from (5.416) for the matched-beam solution with zc = 0 the fourth-order algebraic 
equation for the envelope 

or 

(5.417a) 

(5.417b) 
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When the space-charge force can be neglected (KL = 0), the solution is 

On the other hand, when the emittance is negligible (eLLf = 0) one gets 

The general solution of (5.417b) can be approximated by the relation [21] 

(5.418) 

(5.419) 

(5.420) 

which yields the correct results Zml for KL = 0 and Z ~ Z  for e,,t = 0, and for 
the case where both terms are nonzero, it deviates by no more than +3.4% from 
the exact solution. Most important, this relation exhibits the scaling of the beam 
envelope with the beam parameters ( c rL~ ,  KL) and the longitudinal focusing strength 

The effects of space charge on the longitudinal focusing of the bunch can be 
(kLO). 

described by introducing the wave constant k,, defined as 

It2 

k, = (k:6 - %) , 
2, 

so that (5.417a) becomes 

(5.421) 

(5.422) 

In analogy to the transverse motion, we can define a longitudinal tune depres- 
sion by 

It2 

kzo 

or 
-1R 

" = ( I + % )  kr0 . 

(5.423a) 

(5.423b) 

For a system with a constant or smooth force, where the last nine equations 
hold, the longitudinal Hamiltonian HII is a constant of the motion, and hence, any 
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distribution that is a function of Hi1 satisfies the stationary longitudinal Vlasov 
equation. Defining the Hamiltonian as 

(5.424) 

Neuffer [22] showed that 

for 0 < H I  C HmX and zero elsewhere produces the line-charge density profile 
(5.409) and hence the desired linear equation of motion (5.413). 

The corresponding distribution for the nonuniform (e.g., periodic) case, where 
the focusing function is K&) and varies with distance s so that HII is no longer 
a constant of the motion, is given by [22] 

2 
(5.426) 

22 z i  
f ( z , z ' , s )  = - 3 N J  1 - - 2 - T(2 '  - 2.) . 

2wco z m  czzi 

The quadratic function under the square root is just a special form of the equation 
of the emittance ellipse in 2-2' trace space. Thus, in analogy with the transverse 
K-V beam, this longitudinal distribution is a function of the emittance cLLi, and 
since cUi is an invariant when there is no acceleration and the forces are linear, the 
distribution satisfies the time-independent Vlasov equation. From the customary 
Courant-Snyder relation 

922 + 2&22' + B Z "  = (ZZ' (5.427) 

one obtains by multiplication with and with the substitutions B9 = 1 + Si2, 
2 

bczz '  z m ,  
2 - ZZ + q2/ + +) = 1, 

2 
z m  z m  

and finally, with zk = -(&/@)z,,, (see Figure 3.26), 

(5.428) 

The longitudinal beam envelope z,,, and its slope zk can be determined by solving 
the envelope equation (5.416) for given initial conditions and parameter values. 
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We see that the Neuffer distribution plays the same role for the longitudinal 
motion as the K-V distribution for the transverse motion. Like the K-V distribu- 
tion, it yields linear forces over the entire parameter regime from a laminar beam 
(€,,I = 0) to an emittance-dominated beam (KL = 0). It therefore can be used as 
an equivalent analytical beam to model the longitudinal behavior of laboratory 
beams or of the nonanalytical Maxwell-Boltzmann distribution. 

For comparison of different distributions it is desirable to use rms quantities 
such as rms beam envelope and r m s  emittance, as in the transverse case. With 
zm = f i Z ,  eZZl = ~ Z , , I  the envelope equation (5.416) takes the rms form 

(5.429) 

(i.e., one has a factor of 5 4  = 11.18 in the denominator of the space-charge term). 
By comparison, the space-charge term in the transverse envelope equation is K/4.f, 
from Equation (5.218), for a round beam (i = 9) .  Furthermore, in the longitudinal 
case, the space-charge term varies with the inverse square of the rms width (-Z-?), 
whereas it is inversely proportional to the width (-2-I) in the transverse case. 

5.4.9 longitudinal Beom Dynamics in Circular Machinor 

The preceding analysis of the properties of the longitudinal distribution and the 
longitudinal beam dynamics (Sections 5.4.6 to 5.4.8) was based on the propagation 
of the beam in a straight channel such as a linear accelerator. In this section we 
extend our model to a circular accelerator such as a synchrotron or a storage ring. 
As we know from the discussion of the negative-mass effect in Section 3.6.4, there 
is a fundamental difference in the longitudinal dynamics between circular beams 
and straight beams. We will show, however, that this difference can be accounted 
for readily by introducing the effective mass m* = -Yom/q and the associated 
slip factor q into the equations and relationships that we have derived so far for 
straight beams. As will be seen, the mathematical form remains the same, the 
relations are simply generalized to include circular motion, and the straight-beam 
results are recovered as a special case of the more general theory. 

According to Equation (3.261) in Section 3.6.4, two particles with different 
momentum orbiting in a circular machine have different angular frequencies and 
revolution times. Consequently, their relative position will change with time in a 
way that depends on the slip factor q .  This is illustrated schematically in Fig- 
ure 5.20 for a machine that operates in the negative-mass regime. Let 80 = 00 

be the angular frequency, PO the momentum of the synchronous reference parti- 
cle (A) and 60 + AB, and PO + AP the angular frequency and momentum of a 
nonsynchronous particle (B). Equation (3.261) may then be written in the form 

AP 
- q - .  

A6 
80 PO 
- =  (5.430) 
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Pigun 5.20. Relativa motion of the synchronous particle (A) and a nonsynchronous particle (B) 
in a circular machine opsroting in the negative mass regime: (a) ohitul motion; (b) rdatiw position 
in the moving frame. 

The slip factor is defined as q = a - l/yi or q = l/y: - l/y2 according to 
(3.262a) and (3.262b), where y,mc2 is the transition energy and a the momentum 
compaction factor related to the horizontal betatron tune by a IJ l/v:. This 
equation may be integrated with time to yield the change A 0  in the relative angular 
position of the two particles, namely 

* A P  A P  

PO PO 
= -eotq-- = -eoq-, (5.431) 

where we introduced the angular position of the synchronous particle eo(t) = eot. 
When the slip factor q is positive, we are dealing with negative-mass behavior; 
that is, A 0  is negative, and the angular separation between the two particles 
decreases. Figure 5.20 shows the change in the relative angular position. of the two 
particles after one half revolution for this case. Suppose that so(t) 7 80t -.Roe0 
is the distance traveled by the synchronous particle (A) and s ( t )  = (00 + A e ) t  = 
Ro(& + AO) is the corresponding distance traveled by the nonsynchronous particle 
(B) in time t. In a coordinate system moving with the velocity i o  = Rot%, of the 
synchronous particle and centered at A, particle B has the longitudinal position 
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i ( t )  = i ( t )  - io(r) = RO At? = A v ,  . (5.433) 

Note that this moving coordinate system is not identical to the beam frame used in 
Section 5.4.3 for relativistic particles. The coordinate z ( t )  and all other quantities 
(i, AP,,  etc.) are measured in laboratory units, whereas the position Zb in the true 
beam frame, for instance, is related to z by the Lorentz transformation, Zb = yoz, 
with yo = [ 1 - ( v ~ / c ) ~ ] * ~  and vo = io.  Nonrelativistically, of course, there is no 
difference between Zb and z since yo = 1 in this case. 

In view of (5.432), the relationship between the relative velocity difference 
A v J v o  and the relative momentum difference AP,/Po between a nonsynchronous 
particle B and the reference particle A is given by 

(5.434) 

where z' = dz/ds is the slope of the trajectory. Since PO = yomuo, this may be 
written as 

(5.435) 

Introducing the effective mass m* = -y-,m/q from Equation (3.265), we obtain 
the relationship 

AP,  = m * A v , ,  (5.436) 

between AP,  and Av,, the momentum and velocity, respectively, of the nonsyn- 
chronous particle in the moving frame; this is identical to Equation (3.264). In 
the negative-mass regime (q > 0, m* C 0)  the distance between a particle with 
greater momentum and the reference particle decreases. This is shown in Fig- 
ure 5.20, where after one half revolution the longitudinal position of particle B 
has changed by the amount A t  = 22 - z1 - -Ro At?, where At? = At?(t2 - 21). 
Clearly, particle B has a negative velocity i = A v ,  C 0 in the moving frame 
[which can be calculated from Equation (5.435)], even though its momentum is 
greater than that of the synchronous particle A. 

The above relations governing the longitudinal motion in a citcular machine 
are readily applied to a straight beam. By setting a - 0, or y, - do, we recover 
the relations m* - y im,  AP,  = y3m Av, ,  APJPo = ( l / y $ ) A v , / v o ,  and so on, 
that we used in the preceding sections. The only question for which the answer is 
not so obvious is how to define the longitudinal temperature in a circular machine. 
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However, if we go back to the basic definition of temperature as a measure of the 
random (thermal) part of the velocity distribution, we are led to the relation 

In a stationary beam the thermal rms velocity spread, rvz,th = [ AV:,th 1’’’ is 
identical to the total rms velocity spread, &. Otherwise, it is defined by the 
difference between the total r m s  velocity spread and the rms flow velocity rvZ,fl 
in the moving frame; that is, 

in accordance with Equation (5.310). 
Our generalized definition (5.437) implies that the effective longitudinal tem- 

perature is a negative quantity when the effective mass is negative (m* C 0), which 
occurs for q > 0. This has the consequence that there is no three-dimensional 
thermal equilibrium in the negative-mass regime, as we discuss in connection with 
intrabeam scattering in Section 6.4.2. Under negative-mass conditions, the space- 
charge force is actually focusing, thereby increasing the longitudinal bunching 
and the negative longitudinal temperature of the beam. This is the source of the 
negative-mass instability discussed in Section 6.3.3. 

Another peculiarity of particle motion in a circular machine occurs at the 
transition energy where 7 0  = y, or yo = 1/G. In this case all particle orbits are 
isochronous; that is, they have the same revolution time regardless of the relative 
momentum. The longitudinal particle motion thus “freezes,” the flow is laminar, 
and the longitudinal temperature is zero, which follows from Equations (5.437) 
and (5.438) with m* a. The beam is extremely sensitive to small perturbations 
in this regime, which is why special design features are implemented to pass very 
quickly through the transition point in a circular machine. In the positive mass 
regime below transition, the behavior of the particle distribution is, of course, 
similar to that in a straight channel. 

Let us now turn our attention to the longitudinal equation of motion in a circular 
machine, with rf cavities providing the acceleration and longitudinal focusing. Since 
the motion is usually adiabatic (i.e., changes occur very slowly compared with the 
revolution time), we can treat the electric field as a smooth, continuously acting 
function. If V, is the peak voltage gain per turn and w the average orbit radius. 
we can express the peak longitudinal electric field as 

(5.439) 
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In place of 5.414 or 5.399, we obtain for the synchrotron oscillation constant 
k20 = (G) I$ ( in a circular machine the relation 

while the space-charge parameter is given by 

(5.441) 

With the last two relations the linearized trajectory equation (5.412) may be writ- 
ten as 

or 
KL 
Zm 

z" + k;oz - T Z  = 0 ,  

(5.442a) 

(5.442b) 

while the longitudinal envelope equation for a parabolic bunch in a circular machine 
becomes 

or 

(5.443b) 

Here eZ2~  is the unnormalized total emittance of the bunch in the moving frame, as 
in the case of a straight channel. It is related to 6, and en2 by the relation 

(5.444) 

When q = 0 (transition energy), eL2t is zero, as expected for the laminar flow in 
this case. 

We note that our previous straight-beam results can be recovered from the above 
relations by setting 7 = - l/$; the synchronous phase must be negative (cpo C 0) 
in this case to get focusing (k20 > 0), as expected. Below transition (yo C y,)  the 
slip factor is negative (q < 0); hence k& > 0 provided that cpo < 0 and KL > 0, 
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so that mathematically the situation is perfectly analogous to that in a linear 
accelerator. However, in the negative mass regime above transition (yo > y,) the 
slip factor is positive (q > 0), so that longitudinal focusing (k:o > 0) requires 
a shift of the synchronous phase from a negative to a positive value ((po > 0). 
Furthermore, we get the interesting result mentioned earlier that the space-charge 
force is focusing since the perveance term is negative (KL < 0) in this case. The 
accelerating force experienced by a particle at the front end of the bunch due to 
the space-charge electric field increases the particle kinetic energy. This in turn 
increases the particle’s orbit radius, which slows down its angular motion and 
hence decreases its distance t from the bunch center. This longitudinal focusing 
effect of the space-charge force in the negative-mass regime is opposite to the usual 
defocusing action by the space charge below transition in linear accelerators and 
in the transverse direction. 

The relation for the synchrotron oscillation wave constant with space charge is 
formally the same as Equation (5.421). However, we can call the ratio kz/krO “tune 
depression” only below transition. In the negative-mass regime, k,/k,o = vZ/vzo 
is in fact greater than unity. The synchrotron tune in the presence of space charge 
is given by 

For a small difference (v: - ~ $ 1  we obtain the tune-shift relation 

(5.445) 

(5.446) 

Note that the longitudinal tune shift due to space charge has the same sign as q; 
that is, it is negative below transition and in linear accelerators, and positive in 
the negative-mass regime above transition. All of the equations and relationships 
presented so far in this section are valid only for the parabolic beam model, 
where both the space-charge force and the focusing force are linear functions 
of the particle position z .  When the space-charge force is nonlinear we must 
use the rms envelope equation (5.429) and rms values for all relevant quantities. 
The stationary longitudinal Maxwell-Boltzmann (thermal) distribution (5.312) for 
circular machines can be written in terms of the effective mass m* as 

or in view of (5.434) as 

(5.447a) 

(5.44%) 
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where cfq(z) includes both the applied focusing as well as the space-charge 
potential. 

The unnormalized longitudinal rms emittance for the stationary distribution in 
z-z' space is given by 

- 
Z,,' = ZZ' , (5.448) 

and 2 can be related to the longitudinal temperature Ti1 with the aid of (5.437) by 

so that 

The relation between ZZz;z', Z,, and Z,,, is analogous to (5.444). that is, 

gnz 1 

1111 
Zzzl = l q l z  = - 

P O Y O  

(5.450) 

(5.451) 

and the normalized longitudinal rms emittance 2,,, can be expressed in terms of 
the temperature 7'11 as 

(5.452) 

Note that when q = -l /yi  we recover the earlier relations (5.316) and (5.317) 
for a linear accelerator. 

For a stationary (matched) beam we have 2 = k,Z and get with (5.422) for the 
emittance the alternative expressions 

and 

(5.454) 

When space charge is negligible so that KL = 0 and k ,  = k,o, the normalized 
emittance becomes 

(5.455) 
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or with (5A40), 

(5.456) 

Since g,, = const under ideal conditions we find for a circular accelerator where 
Em, A, and sin 90 are constant that the rms width of the bunch in this case scales as 

I 14 
i: = const[ yo] Idso . (5.45 7) 

In an rf linac operating under the same conditions, we have lql = l/y& so that 
i scales as 

&I4 i = const 3. 
Yo 

(5.458) 

For an induction linac oqg must use the average field gradient Eiz and k,o = 
as defined in Equation (5.414). If EL, = const, the 

rms bunch length in this case then scales as 
= ( q E & / m c 2 / 3 ~ y ~ )  

(5.459) -514 i: = const yo , 

The relative rms momentum spread A?/Po scales as 

in the circular machine, and as 

(5.460) 

(5.461) 

in the rf linac. 

for the assumed parameter regime scales as 
From Equations (5.452) and (5.457) we find that the longitudinal temperature 

kBTII = --const 7 rl (5.462) 
Yo 
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for a circular machine, and as 
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k B q  = const ~n 1 

Yo 
(5.463) 

for a linear accelerator. 
One must keep in mind that these scaling laws [Equations (5.455) to (5.463)J 

apply only for the case where the space charge is negligible (KL = 0). Note that 
in the circular machine the longitudinal temperature decreases with energy from 
positive values below transition, passes through zero at the transition point, and 
then becomes negative, in agreement with our earlier discussion. 

The above scaling relations for a circular machine are, strictly speaking, valid 
only when the energy is not close to the transition point (i.e., when 171 # 0). At 
the transition energy we would get Z - 0 and A?/Po = - 03, which is unphysical 
since the normalized emittance C,, must remain constant (unlike gzZl, which does 
go to zero, as discussed earlier). Proper treatment of the problem for the case 
where the beam passes through the transition point or remains at transition, as in 
the isochronous cyclotron, reveals that Z and r P / P o  remain finite. 

In the space-charge-dominated regime of the longitudinal motion, where C,I 

is negligible, we have from (5.443) for a matched parabolic beam (zg 2= 0) the 
relation 

(5.464) 

which yields the scaling 

For qEmI sin polyiIAPo = const, we find from this relation that the beam 
envelope zm scales with the number of particles in the bunch, N, as 

zm = const N'" (5.466a) 

or, alternatively, since the average beam current 7 is proportional to N, 

zrn = const P3, (5.466b) 

a result that was recently confirmed experimentally [23]. 
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5.4.10 Ethcts of Momentum Spmad on the Transverse 
Disiribution 

In our analysis of the behavior of the transverse and longitudinal distributions in 
the preceding section we tacitly assumed that these distributions are independent 
of each other. In fact, however, there is mutual coupling between the two distri- 
butions via momentum spread, the collective space-charge forces, and Coulomb 
collisions. In this section we study only the effects of longitudinal momentum 
spread on the transverse motion for both continuous or bunched beams. The cou- 
pling through space charge, which occurs in the case of bunched beams, is treated 
in Section 5.4.11, and Coulomb collisions are reviewed in Section 6.4. 

The first effect caused by momentum spread is known as chromatic aberration. 
It is due to the fact that the strength of transverse focusing, that is, the focal 
length f of the discrete lenses or the focusing functions &) of arrays of lenses 
and periodic lattices, depend on the momentum of the particles. The chromatic 
aberration in a single lens was discussed in Section 3.4.6 and the change in the 
betatron oscillation frequency due to momentum spread in a circular machine with 
gradient n in Section 3.6.4. We can generalize the results obtained there to any 
focusing channel, whether straight or circular, by defining the relative chromaticity 
parameter 6 in terms of the general focusing function KO(Z) as 

(5.467a) 

For a uniform channel with focusing strength defined by the wave number ko this 
relation becomes 

(5.467b) 

which for circular machines may be written in terms of the tune vo in the form 
of Equation (3.268), that is, 

(5.467c) 

It should be noted that this definition of chromaticity is not unique. Many authors 
prefer to define the chromaticity in terms of the absolute, rather than the relative, 
change of focusing parameter. Thus, in lieu of Equation (5.467c), one has 

(5.468) 
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where we used the asterisk (*) to indicate the difference in the definition. Equa- 
tion (3.271) gives the relations for the chromaticity parameters in a constant- 
gradient field. For n = 0.5, one obtains the values f ,  = -1.5 for the radial and 
f L  = 1.5 for the vertical chromaticity parameters. In the case of a solenoid channel, 
where according to (4.86b) 

one gets 

(5.469) 

For magnetic quadruples, which make by far the largest contributions to chro- 
maticity in a ring lattice, one obtains the relations 

for the horizontal motion and 

(5.47Oa) 

(5.470b) 

for the vertical motion. The betatron function Bo(s) is always positive, while the 
focusing function KO varies periodically between positive (focusing) and negative 
(defocusing) values. In the focusing plane where BO reaches a maximum, the 
function KO is positive and also at its maximum, so that the chromaticity is 
negative. On the other hand, in the defocusing plane, B o  has its minimum while 
KO is negative, so that &* is positive at these positions. Since the large negative 
chromaticity values at the focusing planes outweigh the small positive values at the 
defocusing planes, the integrals in (5.470) representing the average chromaticity 
over one revolution are always negative. 

Although the change of the betatron oscillation frequency due to momentum 
spread is relatively small, it can cause emittance growth. More important, however, 
in high-energy storage rings, the effect is responsible for the head-fail instability. 
The variation in betatron frequencies and the accumulated phase difference between 
head and tail particles drive this instability, whose growth rate is proportional to 
6 and the number N of particles in the bunch (for a discussion of the effect, see 
[D.10, Sect. 6.4.31). Thus there is a strong reason to reduce the chromaticity effect 
and ideally, to avoid it altogether. The method for compensating the chromaticity 
effect is to use sextuple magnets, which are usually placed at the locations of the 
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quadrupoles in the FODO system of the typical accelerator lattice. In cylindrical 
coordinates the field components of a magnetic sextuple vary as 

Bx = B"r2sin36, By = B"r'cos38, (5.471a) 

and in Cartesian coordinates as 

Here B" = (d2By/dx2) is the second derivative, which in an ideal sextupole field 
can be equated with the ratio of the pole tip field BO and the pole tip "radius" 
squared, af, by analogy with the quadruple case in Section 3.5. 

Another longitudinal-transverse effect that occurs only in circular systems, 
where it is even more important than chromatic aberration, is dispersion. As 
discussed in Section 3.6.4, particles with a momentum differing from that of the 
synchronous particle, PO, by an amount A P ,  have a different closed (equilibrium) 
orbit. The horizontal (radial) displacement of this equilibrium orbit from that of 
the synchronous particle can be written as 

(5.472) 

where D,(s )  is referred to as the dispersion function. The total displacement of a 
particle from the central orbit can be expressed as the sum of x, and the betatron 
oscillation amplitude X b  [See (Equation (3.273)], that is, 

(5.473a) 

(5.473b) 

where x: = D:AP/Po is proportional to the derivative D:(s) of the dispersion 
function with respect to distance s. 

Since the two effects are statistically uncorrelated, they add quadratically (i.e., 
i2 = 2; + Z:), so that the total rrns width of the beam is 

(5.474) 

As mentioned in Section 3.6.4, the dispersion in the vertical direction is zero to 
first order. 

In modern, strong-focusing synchrotrons and storage rings the rrns average 
dispersion function b, around the closed orbit is typically in the range of 1 to 
several meters. Thus if ATpIPo = the rms width 2, = &,A-P/Po is in the 
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range of a few millimeters. Unlike the chromaticity effect, dispersion is reversible 
(i.e., it does not by itself generate emittance growth). However, it does play 
an important role in intrabeam scattering, as we discuss in Section 6.4.2. The 
dispersion function varies along the equilibrium orbit. Its amplitude as well as its 
rms average value, be, around the orbit can be chosen by the lattice designer within 
certain limits to satisfy the requirements for a particular machine. Thus, the lattice 
design for a circular collider must provide a dispersion function D h )  whose local 
value is zero at the interaction points of the two beams, so that the “spot” size of 
the beam is determined only by the emittance. 
As shown in Equation (3.276a), the combined action of betatron oscillations and 

dispersion can be represented by a 3 X 3 matrix for the total displacement x ,  the 
total divergence x‘, and the momentum spread. We can generalize the description 
given in Equation (3.276) if we replace k; by the gradient function KO so that k, = 
k, = JK7j. The most common elements in a ring are dipole magnets for bending 
the beam and quadrupole magnets for focusing. In the first case, KO = (1 - n)/R2, 
where n is the magnetic field index and R the radius of the beam centroid trajectory 
in the bending magnet. In the second case, KO = ?qQB’/yomvo = +-@’/Po, or 
alternatively, with B’ = Bo/a, and Po/qBo = R, KO = +l/a,R, where B’ is the 
field gradient, BO the pole tip field, and a, the distance of the pole tip from the 
axis; the plus sign indicates a focusing plane, the minus sign a defocusing plane. 
For elements of length 1 with piecewise constant-gradient function KO, the matrix 
elements  at^ in (3.276a) then depend on whether KO is positive, zero, or negative, 
as shown in Table 5.5. The column with KO = 0 represents the bending magnets 
between quadruples, which are assumed to act like a drift space on the betatron 
motion but bend the off-momentum particles with respect to the central orbit. In 
this case, R represents the local cyclotron radius in the bending magnets. 

The first four rows in the table are the matrix elements for betatron motion, so 
that in the case KO > 0 one has 
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The last two rows are the matrix elements for dispersion, and in the case KO 3 0, 
one gets the general solution for an off-momentum particle, 

By multiplying the matrices for the different sections of a lattice, one can find the 
matrix for one period or for one turn consisting of an integral number of periods. 
The condition that the displaced equilibrium orbits be closed implies that the vector 
x(s).  x'(s) must be the same at s = C = 27rR as at s = 0, that is, 

where C = 27rR is the circumference of the equilibrium orbit. Note that by 
factoring out AP/Po we can apply the last two equations to the dispersion function 
De(s) itself, so that (5.477a) may be written as 

The matrix f i t u m  for one revolution and the initial condition must satisfy this 
relation to obtain a closed-orbit solution. Both the betatron function @o(s) and the 
dispersion function D, (s) represent the characteristics of the focusing ring lattice 
while emittance and momentum spread AP/Po define the properties of the beam. 
As discussed in Section 3.6.4, the dispersion effect is also represented by 

the momentum compaction factor a. For axisymmetric, constant-gradient fields, 
we found that a = 1/v; > 1 since Y, < 1 in that case. This relation is still 
approximately true in modem strong-focusing (alternating-gradient) synchrotrons, 
where v, = Y, > 1 and a = l/v; and where a is usually related to the transition 
energy y, by a = l/y: < 1, which is less than unity since yI > 1. 

The smaller betatron oscillation amplitudes and smaller momentum compaction 
factors of alternating-gradient lattices have made it possible to build modem 
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synchrotrons and storage rings with much smaller magnet gaps and hence lower 
costs than would have been required with the old constant-gradient machines. 

The small gap size and low dispersion of modern circular machines, combined 
with the increasingly smaller emittances of the beams produced by advanced 
particle sources and injector linacs, have led to a significant increase in the possible 
current density in the rings. Higher current density increases the space-charge 
forces and hence aggravates the tune-shift problem discussed in Section 4.5.1. 
This problem is further compounded by the non-Liouvilleun injection schemes into 
the rings employed in high-energy accelerators [24] and proposed for heavy-ion 
fusion [25]. In the first case, a beam from an H- ion source is accelerated by the 
linac and injected into the ring through a foil. The two electrons of the H- ions are 
stripped in the foil, and the resulting H+ ions (protons) are then defiected into the 
circular orbit of the ring machine. This process does not obey Liouville’s theorem, 
which states that the phase-space density of a particle distribution remains constant. 
Thus new proton bunches can be injected and overlapped in phase space with 
the circulating bunches that have been injected earlier. With the non-Liouvillean 
charge-stripping process in the foil, the phase-space density, and hence charge 
density in the circulating beam, can be increased by multiturn injection to a much 
higher level than that of a single bunch, while preserving the small emittance of 
a single bunch. Without such a technique, the bunches injected during subsequent 
turns would have to be placed adjacent to each other in phase space, which, of 
course, results in a correspondingly larger emittance. 

As mentioned, a major obstacle standing in the way of achieving the substantial 
increases in phase-space density that are possible is the incoherent space-charge 
tune-shift limit. From Equations (4.252) and (4.253), the tune-shift relation may 
be written in terms of the normalized rms emittance Zn, rather than the effective 
emittance en = 42n, as 

(5.478) 

where is the average current, the average ring radius, N, the total number 
of particles in the ring, Bf the bunching factor, and rc the classical particle 
radius, as defined in Equation (5.244). The unperturbed tune YO of a machine 
is usually designed to fall between a half-integral and an integral resonance (e.g., 
YO = 6.7 in the Fermilab booster synchrotron). If the space-charge tune shift gets 
large enough, it will push particles into the nearest resonance, say Y = 6.5 in the 
Fermilab example. Traversal through the resonance will increase the amplitudes 
of the particle distribution. This amplitude growth is an incoherent process that 
will increase the emittance as well. The process will saturate when the emittance 
growth and the loss of particles that may occur are large enough that IAvl decreases 
and the resonance is no longer encountered. From Equation (5.478) we can see 
that for given energy, machine radius, and bunching factor, the requirement that 
IAvl 5 IAvl, implies that the phase-space density has an upper limit that is 
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defined by the relations 

or 
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(5.479a) 

(5.479b) 

where IAvImx is typically in the range 0.3 to 0.5, depending on the machine 
design. The net result of the tune-shift limit is that one cannot take full advantage 
of the high-brightness beams being produced by modem ion sources or of the full 
potential offered by non-Liouvillean injection. From the scaling given in Equa- 
tion (5.479), it is obvious that one way out of this dilemma is to increase the 
injection energy and hence the length of the linear accelerator delivering the beam 
to the ring machine. Thus, the Fermilab upgrade project included an increase in 
the linac energy from 200 MeV ( y  = 1.21, p = 0.57) to 400 MeV ( y  = 1.43, 

= 0.71), which results in a theoretical increase of NI/G by a factor of 1.74. 
The horizontal spread of the beam due to dispersion, which was neglected in 

the above relations, can also have a significant effect on the tune shift and increase 
the spacecharge limit [26]. To include dispersion we will return to our original 
derivation for Av given in Equation (4.247). Due to dispersion the beam will 
have a larger width in the horizontal than in the vertical direction. With x,, = a, 
ymu = b, and R = R we obtain in place of (4.247) the relation 

- 

KR2 
vxu(u + b)  

Av, = - 

and 

K R Z  
v,b(a + b)  ’ 

AvY = - 

(5.480a) 

(5.480b) 

from which we recover the formula (4.247) when u = b, v, = vy = VO.  This 
result follows from the fact that in an elliptical beam with uniform density the 
space-charge electric fields are 

K K 
a a(a + b)x’ Ey a b(a + 6)” 

as discussed in Section 4.4.2 [see Equations (4.174) and (4.175)]. 
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The above relations for the space-charge tune shift assume a beam with uniform 
density (K-V beam). To present them in a form that is independent of the - distri- 
bution we introduce the rms widths 6, = 2 = (s)ln = a/2, 6, = f = (y2 ) IR  = 
b/2. Then we can write 

(5.48 1 a) 

(5.48 1 b) 

where we added the bunching factor Bf and replaced K by the average perveance 
K, which is proportional to the average beam current in the ring. When dispersion is 
present the horizontal rms width will consist of the contribution due the emittance 
of the beam, defined by 6xb = 5, and the contribution due to the momentum 
spread, defined by ax, = t. In view of (5.474), the total rms width of the beam 
is then given by 

- 

= (6:b + &xe) 2 ‘ L a  xb(1 + A D )  2 In 9 (5.482) 

where 

(5.483) 

For the vertical direction we will assume that dispersion is zero, so that 6, = 

&yb. Note that 6 y b  will not be the same as Bxb unless ey = ex and v, = vx. We 
will introduce the parameter 

(5.484) 

to define the ratio between the two quantities. The geometric terms in the denom- 
inator of Equation (5.481) then become 

where 

(5.485a) 

(5.485b) 

(5.486a) 

(5.486b) 
1 
2 g, E - [As(l + + 11 
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For a matched beam, the normalized emittances in both directions will be given 
by the relations 

(5.487a) 

(5.48%) 

Substituting Equations (5.485) and (5.487) in Equation (5.481) and introducing 
the average current or the total number of particles in the ring N,, we obtain 

These equations have the same form as Equations (4.252) and (4.253) except 
that the normalized rms emittance 8, is used in place of the effective emittance 

= 4Zn. Furthermore, they have in the denominator the geometry factors gx,  g, 
which define ‘the decrease in tune shift due to dispersion and unequal tunes 
(vx # v,) or unequal emittances (8, # my). Table 5.6 shows the values of 
the geometry parameters g ,  and g, for different ratios of AD =i &e/&b and 
AS = &,/6,b. The examination of the results in the table and of the equations for 
gx and gy for the case where 8, = Z,,, shows the following: 

1. For symmetric focusing (vx = v,, A8 = l), dispersion decreases both tune 
shifts; however, g, < g,, hence lAvyl > IAvxI, so that the space-charge 
limit is determined by A v ,  [Equation (5.488b)I and hence is increased by 

Tabk 5.6 gx and gy for dWnnt wluos of AD-&/& and A,==8,/8+ 

A8 = 1 A 8  - 1.5 A8 = 2 

A D  B x  BY 

0 1 .Ooo 1 .Ooo 
0.50 1.184 1.059 
1.00 1.707 1.207 
1 so  2.526 1.401 
2.00 3.618 1.618 
2.50 4.971 1.846 
3.00 6.581 2.081 

Rx Rv Rx Bv 
~ ~~~~ 

0.833 1.250 
0.998 1.339 
1.471 1.561 
2.226 1.852 
3.245 2.177 
4.522 2.519 
6.054 2.872 

0.500 
0.905 
1.354 
2.076 
3.059 
4.298 
5.791 

1 .500 
1.618 
1.914 
2.303 
2.736 
3.193 
3.662 

Source: Reference 26. 
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the factor 8,. As an example, for AD = 2, ha = 1, one finds from Table 5.5 
that due to dispersion the phase-space density N/Z, can be increased by a 
factor of g, = 1.618 compared with the case where dispersion is negligible. 

2. Asymmetric focusing (v, < vy, A6 > 1) further enhances the g, factor 
provided that A D  > (A$ - l)ln. For the above example (AD = 2), if A8 = 
1.5 (i.e., v, = 2.25~~) one obtains g, = 2.177, which is significantly higher 
than in the symmetric case. In the region below the limit AD = (A: - l)In, 
where g, C g,, the tune shift is controlled by g,, which is less interesting 
from a practical point of view. 

These examples show that the effect may be quite significant and much stronger 
than the Laslett tune-shift correction, due to image forces [see the example fol- 
lowing Equation (4.277)] that we are neglecting in the present analysis. The im- 
age factors shown in brackets in Equations (4.276), (4.282), and (4.283) must, of 
course, be added to our results here to obtain the most general expressions for the 
tune shifts. 

Since the beam profile in high-energy circular machines tends to have a Gaussian 
shape, there is a spread of the betatron oscillation frequencies (i.e,, a particle’s 
betatron tune depends on its radial amplitude, and hence its transverse kinetic 
energy). The above tune-shift relations [e.g., (5.488b)I represent rms averages over 
the particle distribution. They are appropriately called rms tune shifis. Particles with 
large betatron amplitudes scanning the thin tail of the Gaussian distribution have 
a smaller tune shift. Those with small amplitudes stay near the center in the beam 
core and experience a larger tune shift. The linear part of the space-charge force in 
the center of a Gaussian distribution is two times stronger than the rms force used 
in the above equation. Accordingly, the tune shift in the core of the Gaussian is a 
factor of 2 greater than the rms tune shift [e.g., (Av,)- = 2Avy]. 

Let us now take a closer look at the dispersion effect represented by the 
parameter AD = Sxc/Sxb. For the lattice configuration of modem synchrotrons the 
dispersion function De varies periodically with path length s, as discussed above. 
In an ideal FODO lattice, which is uniformly occupied by bending magnets and 
quadrupole lenses and has no long straight sections, De(s) is always positive and 
the rms value B# = ($)ln, obtained from the integral over the closed orbit with 
average radius i?, is given by 

(5.489) 

as in the classical axisymmetric field. However, it should be noted that lattice 
designers can significantly enhance or decrease the average dispersion compared 
with this simple relation. 

The rms width S,, of the beam due to dispersion is obtained from Equa- 
tion (5.472) by averaging over the distributions in x, and AP/Po around the equi- 
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librium orbit. Using (5.489) for the rms average dispersion, one can write 

(5.490) 

Although these relations for the dispersion effect are good approximations only for 
the ideal FODO lattice, they do show the general trend toward smaller dispersion 
when the tune is increased. From Equations (5.487a) and (5.490) one obtains for 
the parameter AD the result 

(5.491) 

The scaling displayed by this relation implies that one should operate at a low tune 
to maximize the dispersion effect and hence the geometry factor g, in the tune- 
shift formula. Low-tune operation increases the horizontal beam size and therefore 
requires a large beam pipe aperture. This conflicts with the historical trend toward 
stronger focusing (higher tune) and smaller apertures to minimize costs. However, 
in some specific cases a low-tune, large-dispersion design may provide a more 
attractive option to achieve the desired phase-space density or luminosity than other 
alternatives. Equation (5.491) shows, for instance, that the dispersion effect is the 
more pronounced the smaller the emittance and would therefore be particularly 
useful for the non-Liouvillean injection schemes discussed earlier. As already 
mentioned, a lattice with unequal tunes (i.e., u, B ux) also helps in increasing 
the space-charge limit, as is evident from the parameter A8 in Equation (5.486b). 
A practical upper limit to the achievable aspect ratio &/a, of the beam is given by 
the size of the beam-pipe aperture, which cannot be too large, for various reasons. 
Also, one must allow enough space between the rms width 6, of the beam and the 
wall of the beam pipe to accommodate the Gaussian particle distribution. 

So far, the large-dispersion effect to increase the space-charge limit described 
here has not been used in existing circular machines. It remains to be seen whether 
it can provide a cost-effective option for future designs or upgrades of existing 
machines. 

5.4.1 1 Coupled Envelope Equations for a Bunched Beam 

In this section we attempt to integrate the models for the transverse and longitudinal 
distributions into a coherent theoretical description of a bunched beam that in- 
cludes the transverse-longitudinal coupling through the space-charge forces. To 
simplify the analysis we make use of the smooth approximation, that is, we 
will neglect the usually very small envelope ripple due to the periodic-focusing 
structures. Furthermore, we assume that the average focusing forces and the 
emittances in the two orthogonal transverse directions are the same and that the 
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bunch propagates in a cylindrical tube of radius b. In short, the system will have 
axial symmetry so that the particle density in the bunch will only be a function 
of radius r and axial displacement z from the bunch center [i.e., n = n(r,z)J. We 
will be concerned primarily with the properties of the quasi-stationary state of the 
bunch in a straight channel or linear accelerator, where both the transverse and 
the longitudinal distributions are perfectly matched and where the applied focusing 
forces are linear. Our analysis can also be applied to a circular machine with a 
symmetric lattice and negligible dispersion by incorporating the slip factor q into 
the longitudinal equations. 

As we know from previous discussions, our two-temperature Maxwell- 
Boltzmann distribution (5.271) and the associated Boltzmann density profiles for 
the radial and axial directions, given by Equations (5.275) and (5.369), respectively, 
generate in general nonlinear space-charge forces, except for the zero-temperature 
case. However, we can model the bunch by an ellipsoid with uniform charge 
density, radius a, and axial half width z,,,, in which the self forces are linear. This 
model is consistent with a zero-temperature Maxwell-Boltzmann distribution but 
not with a hot beam having finite emittances in the three phase-space projections. 
As we discussed at the beginning of Section 5.4.8, the extension of the K-V 
distribution to six-dimensional phase space leads to a nonlinear space-charge force 
in the longitudinal direction (see Problem 5.12). Unfortunately, no distribution 
exists that yields linear space-charge forces in both the transverse and longitudinal 
directions for a beam with nonzero average temperatures. Basically, the ellipsoidal 
model is consistent with a K-V distribution of the form (5.160) in transverse 
phase space and a Neuffer distribution of the form (5.425) in longitudinal phase 
space which cannot be derived from a single phase-space distribution. These two 
distributions are, however, adequate approximations for modeling of the bunch, 
and they can be correlated with the thermal distribution or any other particle 
distribution having the same rms width and emittance by using the concept of 
equivalent beams described in Section 5.3.4. 

Since we are dealing with a bunched beam, it will be necessary to redefine 
the generalized perveance K for the transverse space-charge force. First, we must 
include the radial geometry factor due to the image force in the relativistic form 
1 - (ga2)/(2y&:) [see Equation (5.354d), which represents the free-space situa- 
tion where g = go], where YOZm must be used in place of Zm to account for the 
longitudinal Lorentz contraction of the bunch in relativistic beams. Second, we will 
use the total number of particles in the bunch N in lieu of the peak current I. For 
our ellipsoidal bunch we find from Equation (5.353) that 

(5.492) 
3 WPoc 

I = PLOUO = - -, 
4 Zm 

and hence we obtain for the perveance 

(5.493) 
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Here, r, is the classical particle radius [see Equation (5.244)], and the term in 
brackets represents the geometry factor due to the radial image force. For the 
longitudinal perveance parameter KL we use the definition (5.415). 

With these modifications we can write the transverse and longitudinal envelope 
equations for the bunched beam in the form 

and 

Note that ex and ~~~t can be related to the respective normalized emittances by 
E ,  = /3oyoeX and Cnz = / ~ o ~ o E ~ ~ ~ .  In the nonrelativistic limit (yo = l), and for 
free space (g = go) our last two equations agree with the equations used by 
Chasman for linear accelerator design studies in the late 1960s [27]. 

It is readily apparent that these two equations are coupled to each other via 
the space-charge term. As discussed in Section 5.4.7, the geometry factor g is 
in general a function of the semiaxes a and z,,, of the ellipsoidal bunch and 
of the tube radius b (see Figure 5.15 and Table 5.3) [i.e., g = &,/a; bla)]. 
Thus, for a given number of particles N, emittances ex and etL', external focusing 
forces, as represented by the wave numbers k,o and k,o, tube radius b, and energy 
yomc2 = mc2(1 - &)-la, these coupled nonlinear equations must be solved 
numerically to find the radius a and half-length zm of the bunch. The geometry 
factor g has a nonanalytic form except for free space (g = go) and for the long- 
bunch limit [g = 0.67 + 2 In(b/a)]. Hence, one must use approximate values for 
g = g(z,/a; b/a) from Figure 5.15 or interpolate numerically between the given 
curves. Note that Z, must be replaced by yoz, for relativistic beams. 

If the bunch is perfectly matched in both directions, then a" = 0 and zg = 0, 
and the semiaxes a and Z, can be calculated for a given set of parameters, including 
the beam energy. Moreover, in an accelerator, if the rate of energy change occurs 
adiabatically, as is usually the case, the change in the bunch radius a and half-length 
z,,, can also be calculated from the matched envelope equations. However, it is then 
better to use the normalized emittances to exhibit the scaling with the velocity and 
energy parameters PO, yo. Thus, the matched coupled envelope equations take the 
form 

3 

and 
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For the beam physics, the wave numbers k, and k, that include the space-charge 
defocusing effect on the betatron and synchrotron wavelengths A, = 2?r/kx and 
A, = 27r/k, are very important. They are defined by 

(5.499) 

In terms of these quantities the matched envelope equations may be written as 

(5.500) 

(5.501) 

The above set of equations (5.496) to (5.501) allow us to calculate the properties 
of the bunch, in particular the semi-axes a and zm and the physics parameters k, 
and k,  for any given set of input parameters ( N ,  kXo, k,o, en*, So, yo, and 
b) .  Furthermore, by introducing the rms quantities .f = a / a ,  z' = Z m / a ,  Zn* = 
c,/5, Zn, = &/5,  we can determine the properties of any other equivalent 
bunched beam having the same rms widths and emittances as the ellipsoidal bunch 
considered here. Note that the relationships for the transverse rms width and rms 
emittance of the ellipsoidal bunch differ from those in a continuous beam where 
5 = 4 2 ,  Z = e/4. (See Problem 5.21.) 

The matched envelope equations (5.496) and (5.497) represent a quasi-stationary 
state of the bunch in which the applied focusing force (first term), the space- 
charge force (second term), and the emittance (third term) are balanced, but 
not necessarily in three-dimensional thermal equilibrium. [See the comments at 
the beginning of this section and following Equation (5.271).] When TI # Ti 
and space-charge forces are strong, there will be rapid change and emittance 
growth towards an equipartitioned state as discussed in Appendix 4. With regard 
to practical application and mathematical solution of these coupled equations, we 
can distinguish the following regimes: 

The bunch is space-charge dominated in both directions, so that the emittance 
terms can be neglected (enx = e,, = 0 ) for the calculation of a and zm. This 
occurs in high-intensity linacs, and we discuss this case further below and 
in Appendix 4. 
Space charge dominates in one direction but not in the other. In a circu- 
lar machine, for instance, the transverse space-charge effect is usually small 
compared to the emittance, but the bunch could well be space-charge dom- 
inated longitudinally. Of course, we would have to use the slip factor q in 
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the longitudinal envelope equation, as discussed in Section 5.4.9. The radius 
a is then readily determined analytically from Equations (5.496), namely 
a = (~nr/poyokxo)'". This result can be substituted into the longitudinal 
equation to find zm. 

3. Space charge is negligible compared to emittance. This case is trivial, 
and the semiaxes are found analytically as a = (r,,/po yok,o)'" and Zm = 

4. The bunch length is large compared to the radius (i.e., y0zm/a * 1). In this 
case the geometry factor is g = 0.67 + 2 ln(b/a) [from Equation (5.365b)], 
the image-force term ga2/y&% in the radial envelope equation can be 
neglected, and the solution is then simplified. 

5.  The aspect ratio of the bunch is small, say yozm/a I 4, and the tube radius 
is significantly larger than the beam radius, say b /a  2 5. From the graph 
in Figure 5.15 we can see that the g-factor in this case does not differ 
significantly fiom the free-space value go. Thus we can use the approximation 
g = go. Furthermore, in this regime the free-space geometry factor can be 
approximated by go LJ 2yozm/3a [see Equations (5.356a) and (5.356b)l. 
Thus, in this case the envelope equations can be written in the simpler form 

W P O Y ;  k 2 o Y .  

which can be solved more easily than the general equations, where the 
g-factor must be found by interpolation from Table 5.3. 

It is apparent from this discussion of the various regimes that analytic solutions 
for a and zm can be obtained only in case 3, which is trivial, and in case 5,  which 
is more involved since we are dealing with a set of fourth-order, coupled algebraic 
equations (see Problem 5.20). In case 5 ,  if the bunch is space-charge dominated, we 
can neglect the emittance terms (enx = en, = 0) and hence obtain from (5.502), 
(5.503) the simpler equations 

which can be solved without difficulty; one finds that 

(5.504) 

(5.505) 
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(5.507) 

These relations reveal very clearly the scaling of the bunch size with the number 
of particles N, the wave numbers kXo and k,o, representing the applied focusing 
forces, and the kinetic energy through the factors and yo. Of particular interest, 
and somewhat unexpected, is the fact that the ratio of the semiaxes of the ellipsoidal 
bunch in this space-charge-dominated parameter regime is independent of the 
particle number N and hence the beam current. This ratio is given by the simple 
relation 

(5.508) 

In a high-current rf linac, for instance, the ratio k,o/k,o usually increases with 
increasing energy, so that, at least in the nonrelativistic regime (yo l), the aspect 
ratio z,,,/a of the bunch also increases with energy. Of course, we must keep in mind 
that our results (5.506) to (5.508) are valid only as long as yozm 5 4 ,  b /a  Z 5, 
and the space-charge terms in the envelope equations dominate over the emittance 
terms. Note that a bunch of half length z,,, in the laboratory frame will be elongated 
by the factor yo in the beam frame, i.e., an almost spherical bunch in the lab frame 
can still have large image forces and long-bunch behavior if yo is high enough. 

In Appendix 4 we apply the above results to a specific example of a high- 
intensity rf drift-tube linac. We also investigate the relationship between longitu- 
dinal and transverse temperature and the question of equipartitioning, which is of 
great importance for such devices. 

From a mathematic point of view, the easiest way of solving the general coupled 
envelope equations (5.496) and (5.497) is to specify desired values for the bunch 
radius a and half-length z,,, and the emittances as well. This approach is very useful 
in the design phase of a linear accelerator. One can then readily solve the envelope 
equations for the number of particles N in the bunch, or the equivalent average 
beam current f. For an rf linac with frequency f and wavelength A = c / f ,  one 
has the relation 

(5.509) 

where Q = qN is the total charge in the bunch. 
By specifying a, zm and kd, k,o. one defines the acceptance of the linac 

in the transverse and longitudinal directions. If en, or E,, is given or car1 be 
neglected since the beam is space-charge dominated, and if the tube radius b is 
given so that the g-factor can be determined from Figure 5.15, one can solve the 
envelope equations for the particle number N or the equivalent average current 7. 
The results obtained from the two equations will, in general, be different; that is, 
one will get a transverse current limit 7, and a longitudinal current limit 7, [28]. 
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However, two different values for f, and 7, imply that the beam is not matched 
in both directions. Even if it were initially matched transversely, for instance, 
with the choice 7 = f, < f,, it would not be matched longitudinally, and space- 
charge coupling would immediately mismatch it transversely as well. Thus, in this 
approach, one would have to change the bunch-size parameters a and zm andlor 
the emittances until a single solution for N, and hence f, is found. (See also 
Appendix 4.) 

5.4.12 Matching, Focusing, and Imaging 

The self-consistent theory of beams developed in this chapter-laminar flow, 
Vlasov equation, and thermal distribution- has been applied mainly to determining 
the properties of the transverse or longitudinal meta-equilibrium states. In Chapter 6 
we deal with the emittance growth that occurs when the beam is not in a stationary 
state (thermal equilibrium) or when instabilities and other effects, such as collisions, 
perturb the particle distribution. However, before proceeding to this next stage we 
review briefly in this section the topics of matching, focusing, and imaging within 
the context of a self-consistent description. These topics were, of course, discussed 
to some extent in Chapters 3 and 4. But with the exception of the short overview of 
aberrations in Section 3.4.6, we always assumed a uniform beam model in which 
both the applied focusing force and the space-charge force are linear. 

The main objective of our discussion in this section is to obtain some physical 
insight and a qualitative picture of the role of particle distribution and nonlinear 
forces (aberrations) when a beam is focused by discrete lenses. To simplify the 
analysis, we consider only axisymmetric, thin lenses, such as electrostatic einzel 
lenses or short solenoids, as shown schematically in Figure 5.21. Figure 5.21(a) 
illustrates the matching by a single lens of a beam into a periodic-focusing channel. 
Ordinarily, one needs two lenses to match a beam into an axisymmetric channel 
since both the radius R and the slope R' = d R / d z  need to be changed. However, 
this task can, in principle, also be accomplished with a single lens that can be moved 
in position until the desired matching conditions are met. As another simplification 
for the purpose of our discussion we consider the matching transformation from 
a waist Rl(Ri = 0) to a waist Rz(R6 = 0), where we assumed in the figure that 
R2 < R I .  Note that R2 also corresponds to the waists between the lenses of the 
periodic array. Finally, for describing the effects and changes of the distribution 
through the lens system we assume a thermal beam having a transverse Boltzmann 
density profile, as illustrated in Figure 5.12. 
We begin our analysis by considering an ideal, aberration-free lens that matches 

the beam into a periodic array of ideal lenses. There are two aspects to this problem. 
One is the behavior of the rms radius of the thermal beam, and the other one is 
the change in bunch profile and temperature in the focusing process. To evaluate 
the rms average behavior of the particle distribution, we will use the equivalent 
uniform beam having the same second moments as the thermal beam, following the 
description given in Section 5.3.4. For changes in the shape of the charge density 
and in the temperature of the distribution we refer to Figure 5.12 and Section 5.4.5, 
where some essential features of matching have already been discussed. 



454 = SELF-CONSISTENT THEORY OF BEAMS 

(a) Matching into a periodic channel 

(b) Focusing to a small spot size 

Figurn 5.21. Schematic illustration of matching an oxisyrnmetric bwm into a periodic-kuring 
channel (a), and of focusing such a beam l~ a small spot size (b). 

Consider now the beam at the waist upstream from the matching lens. Let 
51 = j i l  denote the rms width in the two transverse directions, 71 = a& the rms 
radius, and R1 = 4 PI = 221 the full radius of the equivalent uniform beam. If K 
is the generalized perveance, C the rms emittance in x or y, and c = 41 the total 
emittance of the equivalent uniform beam, the parameter KR:/c: = Ki:/4i: will 
determine the ratio %/RI and hence the temperature and shape of the Boltzmann 
profile according to Figure 5.12 and Table 5.1. Since the rms ellipse of the 
distribution at the waist is upright, we have 1 = 4 1  = x'fix,/uo, where X I  is 
the rms divergence, 0, the rms velocity, and uo the mean axial velocity. Thus 
if R1 = 2ij  and Q = 41 are given, we find for the rms velocity at the waist 

- - 

and for the transverse temperature from (5.289b), 

(5.510) 

(5.5 1 1)  

The variation in rms radius as the beam propagates from the initial waist 
through the matching lens and the periodic-focusing channel is described by the 
r m s  envelope equation (5.218) with k$ = 0 and f = 9, namely 

(5.5 12a) 
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or in terms of the effective radius R = 22 and effective emittance c = 4 g  of the 
equivalent uniform beam by 

(5.512b) 

At each lens the slope of the envelope is changed by A 9  = - 2 / f  or AR' = 
- R / f ,  where f is the focal length of the lens. We assume that the emittance 
remains constant, so that for given initial conditions ( R  R I ,  RI = 0 in our case), 
the envelope can be calculated at any position along the system by integrating 
(5.512). If R = R2. R: = 0 at the first waist downstream from the lens, we obtain 
for the transverse rms velocity and temperature at this position the relations 

and 

By comparing the temperatures at the two waists we get 

(5.5 1 3) 

(5.514) 

(5.515) 

in agreement with Equation (5.311) for yo = const. 
At a waist, the temperature kBTL is identical to the average transverse kinetic 

energy per particle. Since R2 < R1 our relation (5.515) states that the transverse 
kinetic energy of the beam has increased by a factor of (R1/Rd2 after passing 
through the lens. This additional transverse energy comes from the longitudinal 
energy of the particles. A lens transforms longitudinal momentum into transverse 
momentum, and vice versa. Consider a particle with velocity u = uzI entering the 
lens at radius rl with zero slope (rl = 0) (i.e., on a trajectory parallel to the axis). 
After passing through the lens it has a slope of r{ = -rl/f, hence a transverse 
velocity of u,2 = riu,2 = -rluz2/f.  Its axial velocity has been reduced to 

(5.516) 

This decrease in the axial velocity is zero for a particle on the axis (rl = 0) and 
is a maximum for a particle passing through the lens at the outermost radius, 
R I , , , , ~ ~ .  The focusing action of a lens thus introduces a spread in the longitudinal 
energy distribution. This spread is reversible in the case of ideal lenses, but it 
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may become irreversible if nonlinear forces from lens aberrations or space-charge 
nonuniformities are present. 

The momentum transfer between longitudinal and transverse motion due to 
focusing changes the center-of-momentum velocity uo of the distribution. Thus, 
we should have used u01 and uO2 in the above equations for the transverse 
velocities and temperatures in the two waists. Note that uo1 = urn, i i X 1  = &2, 

and k ~ T ~ l  = k ~ T l 2  when 32 = 31 (i.e., when the rms widths or corresponding 
radii at the two waists are the same). 
Our analysis of the transverse energy variation due to focusing is incomplete so 

far, as we considered only the kinetic part. We also need to include the average 
potential energy per particle associated with the electric and magnetic forces due 
to the beam’s space charge and current. This can be done by calculating the field 
energy per unit length of the beam and dividing by the number of particles per unit 
length, NL. Since the transverse Boltzmann profiles in Figure 5.12 are nonanalytic, 
this calculation would have to be done numerically. However, for our purpose it 
will be adequate to use the equivalent uniform-beam model to obtain an analytic 
approximation that exhibits scaling with the pertinent parameters. This approach 
gives the correct result in the low-temperature limit where space charge dominates; 
and at higher temperatures, where the profiles become more Gaussian, the error is 
found to be relatively small. 

The field energy per unit length for a uniform beam is given in Equation (4.68). 
However, since the self force is the difference between the repulsive Coulomb 
force and the attractive magnetic force [i.e., Fr = qEr - qu,& = qE,( l  - &I, 
we must subtract the magnetic field energy from the electrostatic field energy. 
This yields [from Equation (4.68), with fc = 0, fm = 01 for the field energy per 
unit length 

(5.517) 

where R = 2.i is the radius of the equivalent uniform beam. The field energy per 
particle W / N L  is identical to the potential energy qV, due to the self forces. Since 
NL = I/quo, we obtain 

(5.518) 

where we introduced the generalized perveance K defined in (4.127a). 
The total average transverse energy per particle is then the sum of the kinetic 

energy Ek = yom(0; + 0,2)/2 and the potential energy E, = qV,, or with 0; + 
6; = 2ii: = 2u;r2/4R2 from (5.513), 

8 R 
€2 

4R2 
E = Ek + E8 = yomu: - + yomu; 
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Using this relation and assuming that u01 EJ u02 EJ UO. we obtain for the total 
energy difference between the two waists, 

2 [  "( - -!-) + f In "1. E2 - El = yomuo (5.520) 
4 R; R: R2 

If R2 C R I ,  as is the case in the example shown in Figure 5.21, we can conclude 
that the focusing action of the matching lens increases both the kinetic energy and 
the space-charge-related potential energy by an amount that can be calculated from 
Equation (5.520). The longitudinal energy of the beam, the velocity UO. and the 
energy factor yo are then reduced correspondingly. Since the corrections in uo and 
yo are usually very small, we neglected them in Equation (5.519) [see also the 
discussion following Equation (5.516)]. 

In the periodic channel following the matching lens the total transverse beam 
energy remains constant and equal to E2. This is also true for the emittance Q ,  

which remains conserved for an ideally matched beam. By contrast, the transverse 
Hamiltonian for the motion of a single particle in the beam is not a constant, due 
to the periodic variation in the focusing potential. 

If the beam is not perfectly matched, the energy will be greater than for the 
matched (stationary) case. The excess amount will constitute free energy that can 
thermalize and hence lead to emittance growth, as discussed in Section 6.2. 

Let us now consider case (b) of Figure 5.21, which illustrates the focusing of 
a beam to a small spot size. With an ideal aberration-free lens there would be 
no fundamental difference to the matching case (a), except that the radius at the 
focused beam is usually much smaller. However, with a real lens the aberrations 
have a much stronger effect in the focusing system than in the matching system. For 
beams where space-charge forces are not very significant, these nonlinear effects 
are well understood and well documented in the literature (see our brief review in 
Section 3.4.6). When space charge is dominant, on the other hand, as in the focusing 
of very intense, high-brightness beams, the situation is much more complicated. 
We will therefore limit our discussion to the latter case and use as an illustrative 
example the experimental investigation of the effects of space charge and lens 
aberrations in the magnetic focusing of an electron beam by Loschialpo et al. [291. 
In this experiment, a 5-keV 190-mA electron beam is focused by a short solenoid 
whose axial magnetic field can be approximated analytically by an expression of 
the form (4.127). The lens and beam geometry were deliberately designed to exhibit 
the effects of the inherent nonlinearity of the lens. Since the spherical aberration 
was the dominant effect, we will for the purpose of this discussion approximate 
the solenoid by a thin lens whose action can be described by the equation 

1 3 ri - =i -- 
f - 

(5.521) 

where r = rl in the thin-lens approximation. The third-order term is defined by the 
positive parameter a, and has a focusing effect. Figure 5.22 shows the results of the 
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trajectory calculation, which illustrate the focusing of an initially parallel uniform 
beam by the lens for the two extreme cases where space charge is zero (top) and 
where the temperature is zero (bottom). On the left side are the trajectories without 
aberration (a, = 0) and on the right side are the trajectories when the aberrations 
are present (a, # 0). The case without space charge shows the well-known axis 
crossing of the trajectories at the focal point (z - 7 cm) when a, = 0 (a) and 
the spreading of the crossing points when aberration is present (b), as discussed in 
Section 3.4.6. The behavior of the zero-temperature laminar beam is fundamentally 
different. Without aberration (c) the trajectories do not cross the axis but form a 
waist that occurs at a distance that is significantly greater than the focal length 
(2, - 10 cm). When aberration is present (d), the beam breaks up into an inner 
core whose trajectories behave as in (c) and an outer part whose trajectories cross 
the axis. This effect can be explained by comparing the applied focusing force 
from the lens with the defocusing force due to the space charge. In the ideal 
linear case (a, = 0) these forces are acting in such a way that all trajectories are 
similar. Furthermore, the transverse kinetic energy acquired by the particles in the 
passage through the lens is fully converted into potential energy at the waist where 
the slope of each trajectory is zero (r’ = V,/VO = 0). When a nonlinear force is 
present (a, # 0), on the other hand, the particles gain additional transverse energy, 
which increases rapidly with the radius r . Thus, there will be a critical radius r, 
beyond which this additional transverse kinetic energy is greater than the potential 

2 

ri - 
0 

3” 
-2 

2 

ri - 
UJ 

I 0  
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Figurn 5.22. Focusing of a parallel beam without rpaca chaw by an ideal Iww (a) and a lens 
with spherical aberrations (b); facuring of a laminar beam by an ideal k n s  (c) and a h s  with 
spherical absrrotions Id). (From Rekrance 29.) 
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energy at the waist. Therefore, the particles with r > r, at the lens will cross 
the axis. As a result, the beam profile, which was uniform initially, will become 
hollow downstream from the lens. The degree of nonuniformity will depend on 
the focusing strength f, the spherical aberration parameter a, and the width of the 
beam in the lens. The measurements by Loschialpo shown in Figure 5.23 illustrate 
this effect very graphically. Note that the dip in the profile is most pronounced at 
the waist, and farther downstream it shows a tendency to flatten out. At higher fields 
(Bo = 147 G )  a single peak develops at z 2 20 cm. As the focusing strength is 
increased further, the waist becomes smaller and a triple-peak profile develops when 
the beam expands again beyond the waist. Computer simulations yielded excellent 
agreement with these experimental observations [29]. Although the beam is not in 
thermal equilibrium during the focusing process, it is still useful to compare it with 
the stationary Boltzmann profiles. When the aberrations are absent (a, = 0). the 
curves in Figure 5.12 will give us a good idea of how the profiles change with 
temperature increases as the beam is focused down to the waist. The sharp edge of 
the low-temperature space-charge-dominated initial beam will become more fuzzy 
when the temperature effects, and hence the emittance term in the envelope equation 
(5.512), become important or even exceed the space-charge force. 

The development of a hollow profile when aberrations are present is also con- 
sistent with the stationary Boltzmann density distribution. Consider, for instance, 
a periodic channel consisting of short solenoids with spherical aberrations, as de- 
scribed by Equation (5.521). The applied focusing potential in the Hamiltonian 
will then have the form cbl(r,z)  = A(z)r2 + B(z)r4, which includes the fourth- 
order aberration term. In the smooth approximation, where the potential function 
is averaged over z ,  the zero-temperature density profile will have the parabolic 
form n ( r )  = n(0)[1 + C(r /R)2] ,  where the constant C depends on the aberration 
coefficient and R is the beam radius. At higher temperatures, the dip in the profile 
will be washed out (see Problem 5.17). 

Spherical aberrations in the electrostatic potential distribution also explain why 
the electron beams from high-perveance guns, such as the gun pictured in Fig- 
ure 1.1, tend to have a hollow profile when the anode hole is not covered by 
a mesh. This is true even with the standard Pierce-type electrode geometry [C.3, 
Chap. 10.11. The assumption of a uniform density profile made in Pierce's theory is 
not correct. But this does not affect the electrode design, in which the radial focusing 
force component balances the space-charge force at the beam edge; from Gauss's 
law, the latter depends only on the total current and not on the density profile. 

The deviation of the density profile in space-charge-dominated beams from a 
uniform distribution may cause emittance growth, as discussed in Section 6.2. With 
regard to focusing a high-intensity, high-brightness beam to a small spot size, it is 
important that lens aberrations be minimized. 

As a final topic in this section, let us now briefly discuss the problem of imaging 
in electron microscopy, ion-beam projection lithography, and other applications. To 
form an undistorted image of an object it is essential that all types of aberrations 
be minimized. This includes the effect of space charge, which tends to act like 
a spherical aberration, as discussed in Section 3.4.6 (Figure 3.14). For imaging 
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purposes the particle source (cathode, plasma) must by necessity have a very small 
diameter, and the beam current must be relatively low. The beam is therefore 
temperature dominated, so that the Boltzmann density profile has the Gaussian 
shape of curve 1 in Figure 5.12. The finite temperature, or emittance, causes 
chromatic aberrations but also spherical aberrations by radial spreading of the 
particle distribution into the nonlinear regions of the lenses. These detrimental 
effects can be minimized by the use of apertures, just as in a camera. The beam 
current involved in the image formation process is therefore always smaller than 
the total current emitted from the source. Indeed, the higher the required image 
resolution, the lower the usable current and current density. If J,, Jj and r,, ri 

denote the current densities and radii at the object (source) and image, respectively, 
and Mi = ri/rs is the magnification, ideally one would expect that Ji = M:J,. 
However, this ideal value can never be reached in practice since current must 
be sacrificed with the aid of apertures to reduce the aberrations and achieve the 
desired resolution. This problem is discussed in Pierce’s book [C.3, Chap. VIII] 
and reviewed by Lawson rC.17, Sec. 4.81. 
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PROBLEMS 

5.1 Consider a planar diode formed by two infinite parallel planes separated a 
distance d with potentials V = 0 at x = 0 and V = VO at x = d .  The plane 
at x = 0 forms a cathode from which a steady stream of electrons is emitted, 
and as a result, a negative space charge of density p ( x )  is building up in the 
gap between anode and cathode. If the thermal velocities of the electrons are 
neglected, a steady-state situation develops in which d V / d x  = 0 at x = 0 
and the electron current density reaches an upper limit, Jmax. The general 
approach to finding the steady-state solution for V ( x )  and Jmx for relativistic 
electron velocities leads to an equation for V which is not integrable in 
terms of elementary functions. 

(a) Carry out the analysis relativistically correct and find the (noninte- 
grable) equation l f ( V )  dV = Cx. Determine the constant C. Explain 
why the self-magnetic field of the electron stream can be neglected. 

(b) Solve / f ( V ) d V  = Cx for the nonrelativistic limit; obtain V ( x )  and 
Jmax in terms of VO and d .  



(c) Current flow across the diode can be impeded by applying a uniform 
magnetic field B = Ba, perpendicular to the electric field. Above a 
critical value B,, no electron leaving the cathode with zero initial 
velocity will reach the anode. Derive an expression for B, (in terms 
of VO, d ,  and other parameters) that is relativistically correct. 

5.2 Determine n(r), u(r) ,  and E,(r) and plot as functions of radius (0 5 r I a )  
for the laminar beam treated in Section 5.2.1. 

5.3 The rigid-rotor equilibrium beam is characterized by the solution w = const 
of the equations of state for all particles in the nonrelativistic energy regime. 

(a) Show that w = W L  2 W L [  1 - w i / 2 w t ]  by solving the equations 
of state. 

(b) Show how o relates to the magnetic field configuration (B, = field 
at the source, B = field in the equilibrium region). 

(c) Find the axial velocity uz(r) for the entire range of w values. 
(d) Evaluate and discuss the results (a) to (c) for the cases w = 0, w = 

0 . 5 w ~ ,  w = OL, and w = 2 0 ~ .  

in 

5.4 Consider a cold relativistic electron beam with a total current of 10 kA that 
is emitted from a magnetically shielded diode with a cathode-anode voltage 
of 1 MV. The initial beam profile is defined by a radius of a = 1 cm and 
zero slope. 

Determine the distance at which the beam radius doubles when the 
beam propagates in a field-free drift tube. 
Suppose that the beam is injected into a tube of radius b = a. Calcu- 
late the magnetic field BO necessary to achieve uniform focusing using 
paraxial theory, with y = yo determined by the diode voltage. 
Determine the variation with radius of the energy parameter y = y ( r )  
assuming that /3 - 1 and density n = no = const. Using the value 
yo = y(0)  on the axis rather than yo = y(a), recalculate the magnetic 
field Bo necessary to achieve uniform focusing. 
Compare the paraxial result with the exact self-consistent theory of 
relativistic Brillouin flow equilibrium of Section 5.2.3 by calculating 
the equilibrium current that corresponds to the magnetic field BO 
obtained in the two cases (b) and (c). Explain why the results differ. 

5.5 Show that the relations (5.45b), (5.46a), and (5.51a) for a nonrelativistic 
solid Brillouin beam can be obtained from the corresponding relativistic 
equations (5.72), (5.70), and (5.69). 

5.6 Derive equations (5.105) and (5.106). 
5.7 With qi denoting the three space variables and pi the three conjugate 

canonical momenta, Liouville's theorem may be stated in the alterna- 
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tive forms 

Prove that the theorem also holds in q, P space, where P is the mechanical 
momentum, that is, 

// d3q d 3 p  = // d3q d 3 P .  

5.8 Prove that the generalized K-V distribution f = foS(G - 1) represents in 
the x-y plane a beam with elliptic cross section (semiaxes X and Y) and 
uniform charge density p = I/.rruXY, where I is the total beam current, u 
the particle velocity in the z-direction, X = 6, and Y = G. [Hint: 
It will be helpful to introduce new variables a, @ by the transformations 

w,x' - w i x  = a cos # 

wyyl  - w:y = a sin @ 

and to make use of the properties of the Dirac delta function, which in this 
case takes the form S(a2 - a:), where a: represents a function that is 
constant with regard to the integration.] 

5.9 Consider a K-V beam whose projection in x-x' trace space corresponds 
to a tilted ellipse in the Courant-Snyder form of Equation (3.22) (i.e., 
px2 + 2dxx' + f ix '2  = ex with d # 0). 

(a) Evaluate the rms emittance Z, as defined in Equation (5.205) and 
show that ex = 4Zx. 

(b) Calculate the first moments X and 2 of this distribution. 

5.10 Prove that the brightness of a K-V beam is given by 

where = ex = eY is the 100% emittance of the beam in each transverse 
direction. 

5.11 (a) Carry out the relativistic transformation of the Maxwell-Boltzmann 
distribution (5.266) from the beam frame to the laboratory frame using the 
covariant relations (5.261 to 5 265 . Hint: Define the laboratory velocity 
components by /3?l = PI, + @ly, PI,  = PO + A&; assume that / ~ I L  4 
Po, A&, 4 Po, and expand y1( /3 ,~ ,  A&,) about the center-of-momentum 
value yo = (1 - 

1 ( i  

up to second order in Pll, A&. 
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5.12 

5.13 

5.14 

5.15 

5.16 

5.17 

5.18 

(b) Show that the laboratory distribution (5.268a) in a relativistic beam can 
be obtained directly from the beam-frame distribution (5.266) by applying 
the Lorentz transformations for the velocities and the scalar potential and 
then using the temperature relation (5.260). 
Consider a K-V type distribution where the particles occupy uniformly the 
surface of a hyperellipsoid in six-dimensional phase space. Calculate the 
longitudinal charge density profile p ~ ( z )  and show that it does not yield a 
linear force in the variable z .  
Show that the rms kinetic energy per particle in the nonrelativistic Boltzmann 
distribution 

is 2keT. Determine 
temperature k~ T. 
Prove that the 
f1lo,/2(Hmax - H I I )  of Equation (5.425) yields the longitudinal line- 
charge density variation p ~ ( z )  given in Equation (5.409). 

1 m(uZ + u; + Ut) 
fo exp[ - 2k.T 

Gxr G1 = (u: + u;)ln. and 6 as functions of the 

longitudinal distribution function ~ ( H I I )  = 

Solve the longitudinal envelope equation (5.416) for a cold (eLZ) = 0) 
drifting beam with initial conditions at s = 0 of zm(0) = 20, zL(0) = zh. 
Find the distance s, where the beam envelope goes through a minimum 
(waist) defined by zw and determine the compression ratio ZO/Z ,  as a 
function of the beam parameters. 
Perform the integration (5.348a) of the longitudinal Maxwell-Boltzmann 
distribution that yields the density profile (5.348b). and determine the con- 
stant C. What is the value of C in the case where the space-charge potential 
c$lls is negligible? 
Consider the stationary transverse Boltzmann distribution in a smooth- 
focusin channel with an applied potential function of the form c$la(r) = 
yomovfG(r2 + Ar4), where ko is the wave number for the linear part of 
the force and A represents the spherical aberration. Determine and sketch 
the density profiles for the zero-temperature case = 0) and for the 
high-temperature case, where the space-charge potential can be neglected 
(c$Ls = 0). Choose the constant A so that n(0) = O.6n1. where nl = n(R) 
and R is the radius of the beam in the case ~ B T ,  = 0. 
Consider an axisymmetric beam with an arbitrary density profile n(r ) ,  a 
radial electric field &(rh and a number of particles per unit length NL. 
(a) Prove that the average rE, has a value that is independent of the shape 

of the radial density profile. 
(b) Prove that = ZrE,, where Ex is the x-component of the electric 

field. 
(c) Show that =/.? = K/4x’, as stated in (5.216). 

1- 
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5.19 Find the solutions (5.506), (5.507) for the coupled envelope equations 
(5.504), (5.505). 

5.20 By analogy with Equations (5.293) and (5.420), the general solutions of 
the coupled envelope equations (5.502) and (5.503) can be approximated by 

BOYOkrO 

Evaluate the accuracy of these expressions. 
Consider the ellipsoidal bunch with uniform volume charge density po and 
semi-axes u and z,,, discussed in Sections 5.4.7 and 5.4.11. 

(a) Show that the rms widths and emittances are given by 3 = a f i ,  Z = 

(b) Prove that in the long-bunch limit where Zm - m, Equation (5.494) 
becomes identical to the transverse K-V envelope equation (4.85a), 
as one would expect. 

5.21 

z m / J J ,  i x  = eJ.5. C, = i z / 5 .  



CHAPTER 
U 

Emittance Growth 

6.1 CAUSES OF EMITTANCE CHANGE 

In the self-consistent theory of Chapter 5 we limited our analysis for the most 
part to stationary or quasistationary beams where the applied focusing forces are 
linear and the emittances associated with each direction are constant. These beams 
are best described by a Maxwell-Boltzmann distribution with different transverse 
and longitudinal temperatures. The forces arising from the space charge of such 
stationary beams are in general nonlinear except at very low temperatures, where 
the perveance dominates over the emittance and where the transverse density profile 
tends to be uniform. However, in the equilibrium state the nonlinear spacecharge 
forces do not, by definition, cause any changes in temperature and emittance. 

Real laboratory beams are usually not in perfect equilibrium, and there are a 
large number of effects that can cause the temperature and emittance to increase. 
The most important causes of emittance growth are the following: 

Nonlinearities in the applied forces 
Chromatic aberrations 
Nonlinear forces arising from nonstationary beam density profiles 
Beam mismatch causing oscillations of the rms radius 
Beam off-centering causing coherent oscillations around the optical axis or 

Misalignments of the focusing and accelerating elements 
Collisions between the beam particles (Coulomb scattering) and between the 
beam and a background gas or a foil 
Instabilities, including unstable interactions with applied or beam-generated 
electromagnetic fields 
Nonlinear single-particle resonances and nonlinear coupling between longitu- 
dinal and transverse motion (especially important in circular accelerators) 
Beam-beam effects in the interaction regions of high-energy colliders 

central orbit 
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Random kicks due to rf noise, mechanical vibrations of the magnets, and other 
sources of statistical fluctuations (limiting the lifetime of beams in storage 
rings) 

There are also effects that cause the emittance to decrease. An example of 
this type is equipartitioning, where Coulomb collisions or collective forces tend to 
drive a beam with an anisotropic temperature distribution toward three-dimensional 
thermal equilibrium. Thus, if the temperature is high in the transverse direction, it 
will fall, while the low temperature in the longitudinal direction will rise until both 
temperatures are equal. As a result, the transverse emittance in this case will become 
smaller while the longitudinal emittance will increase. Such equipartitioning will 
be discussed in connection with the Eoersch effect, intrabeam scattering, and 
instabilities being treated in this chapter. A brief section is devoted to beam cooling 
schemes in storage rings where the six-dimensional phase-space volume of a beam 
(i.e., transverse and longitudinal emittance) is reduced. The three schemes that have 
been employed most successfully are electron beam cooling of ions, stochastic 
cooling, and radiation cooling of electrons. 

However, the major topic of this chapter is emittance growth, which is one of the 
most fundamental issues in beam physics. Many advanced accelerator applications, 
such as high-energy colliders, heavy-ion inertial fusion, and free electron lasers, 
require beams with very small emittance and high beam intensity. As discussed in 
Section 1.3, some modem particle sources produce beams with high intrinsic phase- 
space density Z/8, (or brightness 21/7r2b$), which is often more than adequate 
for a particular application. Near the source and in the low-energy part of the 
accelerator system, such beams are dominated by the space-charge forces, which 
depend strongly on the shape of the particle distribution. As we will see in the next 
section, any deviation from the nearly uniform density profile of a space-charge- 
dominated Maxwell-Boltzmann distribution will cause emittance growth. This is 
true even if the rms radius is matched to the acceptance of the focusing channel 
(where the emittance remains constant when the space charge is negligible). 

As an example, consider the gas focusing of high-brightness proton or H- beams 
discussed in Section 4.6.2. The collisions with the gas molecules and the resulting 
charge neutralization of the beam will produce a Boltzmann distribution with a 
Gaussian density profile of the form (5.316b), where n(0) = no if the charge is 
fully neutralized. When the beam enters the radio-frequency-quadrupole (RFQ) 
accelerator, where the focusing is entirely by electromagnetic forces, it experiences 
a rapid change toward the uniform density profile of the ideal Maxwell-Boltzmann 
distribution. The Gaussian beam has more electrostatic field energy than the ideal 
uniform beam. During the charge homogenization process this energy difference 
will be converted into thermal energy, which will cause emittance growth. The 
energy conversion is driven by the nonlinear space-charge forces associated with 
the nonuniform initial density profile. 

On the other end of the spectrum is the emittance growth caused by nonlinear 
external focusing forces in beams where space charge is negligible. To illustrate 
this effect let us consider the propagation of a beam through a periodic channel 
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consisting of axisymmetric lenses with spherical aberration. For simplicity we 
assume that the lenses are thin, so that the change of the slope of a particle's 
trajectory at each lens crossing is given by 

where a1 = l/f is defined by the focal length f and a3 by the spherical aberration 
coefficient C3 (see Section 3.4.6). Without aberration (a3 = 0) the beam can be 
perfectly matched, as discussed in Section 3.8.1, and the trace-space ellipse will 
rotate, keeping the area constant and maintaining an elliptic shape. On the other 
hand, when the spherical aberration is present (a3 # 0), the trace-space ellipse 
will be distorted, as shown in Figure 6.1. The area enclosed by the trace-space 
boundary remains constant, in agreement with Liouville's theorem. However, the 
filamentation due to the aberration becomes progressively worse. After a sufficient 
number of periods the particle distribution fills a diluted trace-space area that is 
bounded by an ellipse of larger size than the initial ellipse. The increase in the 
effective trace-space area can be measured by evaluating the rms emittance of the 
distorted distribution and comparing it with the rms emittance at the beginning of 
the channel. 
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A problem with the rms emittance is that it tends to give more weight to particles 
with large amplitudes ( x , x ’ )  since it is based on an evaluation of the second 
moments of the distribution [see Equations (5.240) through (5.246)]. Thus the 
protrusion from the ellipse developing in the first few lens crossings of Figure 6.1 
causes an rms emittance growth that is considerably larger than the percentage of 
particles involved in this effect. By placing collimators with appropriately small 
apertures into the focusing channel, one can intercept these particles and prevent 
the rms emittance increase that would otherwise occur. 

In the more general case, where nonlinear forces from both the applied fields 
as well as from the space-charge fields are present, the theoretical analysis is 
exceedingly difficult, and computer simulations become indispensable. Analytical 
modeling of beams with space charge is by and large restricted to relatively simple 
systems such as the uniform or linear periodic channels discussed in Chapter 5. To 
evaluate emittance growth in nonlinear periodic channels, beam matching systems, 
transfer lines, and so on, one must rely almost exclusively on computer simulation 
and experiment. 

We begin our formal discussion in the next section with an investigation of the 
transverse emittance growth in linear focusing channels when the beam is not in 
the equilibrium state corresponding to a Boltzmann density profile. 

6.2 FREE ENERGY AND EMllTANCE GROWTH IN 
NONSTATIONARY BEAMS 

6.2.1 Analyiical Theory 

In Sections 5.3.3 and 5.4.4 we discussed the stationary state of a continuous beam in 
a linear, uniform focusing channel. According to the smooth-approximation theory, 
the uniform channel is also a good model for a linear periodic focusing system. 
From a thermodynamic point of view, the equilibrium state of such a beam is 
best described by a transverse Maxwell-Boltzmann distribution. The temperature- 
dependent Boltzmann profiles are shown in Figure 5.12, and in the space-charge- 
dominated regime these profiles tend to be uniform. 

Let us now examine what happens when the beam does not satisfy the stationary- 
state requirements at injection into the focusing channel. The three most important 
examples of such a “nonstationary” initial beam are mismatch in the density profile 
(e.g., the beam is not uniform in the low-temperature, space-charge-dominated 
case), mismatch in the rms radius, and off-centering, or a combination of these 
three effects. As we know from thermodynamics, a nonstationary initial beam has 
a higher total energy per particle than that of the corresponding stationary beam. The 
energy difference A E between the nonstationary and the stationary beam represents 
free energy that can be thermalized by nonlinear space-charge forces, instabilities, 
or collisions. This produces emittance growth as the beam relaxes toward a final 
stationary state at the higher energy per particle [l]. 



- - FREE ENERGY AND EMrrrANCE GROWTH - 471 

Since the Boltzmann profile is nonanalytic in general, it will not be possible to 
model the system in a mathematically exact form. Instead, we use the concept of 
equivalent beams introduced in Section 5.3.4 to obtain an approximate description 
following the theory developed in Reference 1. This concept implies that the 
behavior of a general nonuniform particle distribution can be modeled with good 
approximation by using the equivalent uniform K-V beam having the same second 
moments (rms width, rms divergence, rms emittance), current, and kinetic energy. 
The theory compares the initial nonstationary beam with the equivalent stationary 
distribution to determine the free energy AE. It then assumes that the beam relaxes 
into a stationary distribution at the higher energy E + AE. Using force-balance 
and energy-conservation relations, the change in beam radius and emittance is then 
calculated as a function of the free energy and the tune depression ki/k,-, defining 
the ratio of the betatron wave constant ki for the initial stationary beam with space 
charge and the betatron wave constant k~ without space charge. 

Consider a continuous round beam with current I, particle kinetic energy 
( y  - l)mc2, rms Width L = J ,  transverse rms velocity f ix  = O,, and (unnormal- 
ized) rms emittance Z, = 8, = Z in a linear focusing channel and surrounded by 
a conducting tube of radius b. Assume that u = uz 9 0,. For a periodic focusing 
channel the smooth-approximation theory (see Sections 4.4.1 and 4.4.2) relates the 
wave number without space charge, k ~ ,  to the phase advance per period, uo, and 
the period length, S, by ko = ao/S. The presence of the beam's self field will re- 
duce the net focusing force acting on the particle, and the wave number, oscillation 
wavelength, and phase advance with space charge will be defined by k, A, and u, 
respectively, so that k = 2w/A = u / S .  

It will be convenient to use the effective quantities a = 22, u, = 20,, Q = 42, 
and the generalized perveance K = (I/l0)(2//3~y~), where l o  - 4~eornc~/q is 
the characteristic current. According to the theory developed in Section 4.3.2, the 
stationary state of a beam in a linear focusing channel is characterized by a constant 
effective radius and perfect balance between external focusing force, kia, self force, 
K / a ,  and the emittance term, 02/a3. The relevant equations (4.88) and (4.89) will 
be repeated here for convenient reference: 

= 0 ,  
K Q' kO'"-;-2 

which may be written in terms of the wave number with self fields, k ,  as 

with 

For such a stationary particle distribution, the total energy is a minimum, and 
the density profile is practically uniform when the beam is space-charge domin- 
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ated (i.e., when Ka2 S e2). The average transverse kinetic energy per parti- 
cle is Ek = f rm(3 :  + 6;) = y r n ~ ~ ? ~ ,  where x' = dx/dz and nonrelativistic 
transverse velocities are assumed. Since 2 = k2, we have & = ymu2k2f2. 
The average otential energy per particle due to the external focusing force is 
E,  = ymu2koi2. The average energy per particle associated with the self forces 
of the beam E, was calculated in Equation (5.518). Using K = (G - k2)4i2 from 
(6.4), one gets E, = ymu2(ki - k2)Z2[1 + 4 ln(b/23)1/2. With a = 23, one thus 
obtains for the total energy per particle in a stationary beam, 

s 

ymu2 [ k2a2 + kiu2 + -[ki 1 - k2]a2( 1 + 41n ">1. 
2 a 

E = E k  + E p  + E , = -  
4 

Let us now suppose that the beam injected into the focusing channel is not 
perfectly matched and that the total energy per particle is En, while Ei represents 
the energy in the equivalent matched (stationary) beam. The free energy per particle 
is then A E  = En - Ei. The possible emittance growth can be calculated if we 
assume that the nonstationary initial beam with energy En will relax into a stationary 
state with final energy Ef = En = Ei + A E  due to the action of nonlinear space 
charge forces or other effects. Since both the initial stationary state (denoted by the 
subscript i )  and the final stationary state (subscript f) must obey Equation (6.5), 
we obtain the following total energy relation: 

= --[kfa? ymu2 + kia? + -(G 1 - tf)a:(1 
4 2 

It will be convenient to write A E  in the form 

1 
2 

A E  = - y m u 2 k ~ a ~ h ,  

+ 4 In L)] + A E .  (6.6) 
ai 

(6.7) 

where h is a dimensionless parameter that can be calculated for each effect, 
producing free energy and emittance growth. Furthermore, from (6.4) we have kj = 

k02 - K / a j  and k? = ki - K / a ? ,  hence kj = ki - (u , /a f )2 (k i  - k?). Using 
this result for kj and substituting (6.7) into (6.6), we find the following relation: 

(2)' - 1 - ,y In - af  = h ,  
ai 

where 
x = l - '  k2 

k 0 2 '  
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Since ai, x ,  and h are known from the initial beam, we can calculate the final 
effective beam radius of from Equation (6.8). Figure 6.2 shows af/ai versus h 
for various ratios k i / k .  For af - ai 4 at, one obtains from (6.8) the first-order 
relation 

h 
- 1 +  

as h - = I + - -  
Qi 2 - X  1 + (ki/ko)2 ’ 

(6.10) 

which is sufficient for most cases of practical interest. 

final and initial stationary beam 
Next, using Equation (6.3), we obtain for the emittance difference between the 

Ac2 = €3 - ci 2 = kfaf 2 4  - ki 2 4  ai . (6.11) 

With &; = ki - ( a i / a f ) 2 ( g  - k:) and c; = k?af, we find for the final emittance 

or 

(6.12a) 

(6.12b) 

t .- 
0 . 1.4 
ah 

4 1.2 

4 
8 

E p o  0.2 0.4 0.6 0.8 1.0 
Free Energy Parameter h - 

Fbum 6.2. Ratio a /at d final and initial stationary beam radius vsnus the frw-uregy pamm- 
ator h for d i h t  vafm of k i / b ,  w h w  4 - 2r/h - uO/s = external focusing wavemumbar, 
ki = Zm/A - u / S  - initial focusing mn#rumber with sdf fiddr. ( F m  Rekn~nco 1 .) 
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The laminar beam case is obtained from (6.12a) by setting ci = 0. The emittance 
increase, calculated by substituting a,/ai from (6.8) into (6.12), is plotted in 
Figure 6.3 versus h for different initial tune depressions ki/ko. 

If af - ai 4 ai , we can use (6.10) and get the first-order approximation 

10 

2 = ( 1 + 2 $ h )  ci . (6.13) 

Note that the above formulas can be applied to a periodic-focusing channel by 
substituting a o / a i  for ko/ki. 

It is very important to recognize that the above relations define the theoretically 
possible increase in beam radius and emittance due to free energy. The predicted 
change will occur only if nonlinear external or space-charge forces or stochastic 
effects (e.g., rf noise, Coulomb collisions, etc.) act on the beam to thermalize the 
free energy. Take as an example the case where space-charge forces are negligibly 
small, so that ki/ko - 1, and where the applied focusing force is perfectly linear. 
If the beam is mismatched (case 2 below) or off-centered (case 3 below) it will 
have a higher total energy compared to the ideally matched and centered beam, due 
to the additional kinetic energy associated wtih the coherent envelope and centroid 
oscillations. This excess amount of energy constitutes free energy that could in 
principle be thermalized. The above formulas correctly calculate this free energy 
and the possible emittance growth. However, since no nonlinear forces are present, 
this energy would not be thermalized, and the beam would continue to perform 
mismatch or off-centering oscillations. In storage rings, of course, where the beam 
lifetime is very long, stochastic effects such as rf noise or Coulomb collisions 
would eventually thermalize the free energy. 

B la OL ' ' '012' ' '014' ' '0:s' ' 'o'.e' ' '2.0 

Free Energy Parameter h --c 

Fbun 6.3. Emittoma grawrh q / r i  versus free-energy parameter h for different values of the 
initial spoce-chorga turn depression k i / k .  ( F m  Reference 1.) 
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Let us now evaluate the free-energy parameter h for nonuniform, mismatched, 
and off-centered beams. 

Case 1 (Nonuniform Charge Distribution) If U = wn - wu denotes the field 
energy difference per unit length between the nonuniform and the uniform (sta- 
tionary) initial beam, one can show that 

h = h, - 1(1- -g)-. k; U 
4 WO 

(6.14) 

where wo = r * / ( l 6 . r r ~ ~ p ~ ~ ~ )  and U / W O  is a dimensionless parameter. If the linear 
approximations (6.10) and (6.13) are valid, we find that 

ei 
(6.15) 

As an example, for a Gaussian distribution one has U/WO = 0.154. If k j / b  = 0.2, 
one finds h, = 0.037 and €,lei = 1.688. 

Historically, the emittance growth in space-charge-dominated beams having 
nonuniform (nonstationary) density profiles was first identified in connection with 
computer simulation studies by Struckmeier, Klabunde, and Reiser, and an equa- 
tion of the form (6.15) was derived which showed good agreement with the simu- 
lation results [2]. Wangler then derived the differential equation for the emittance 
change [3] 

(6.16) 

and showed that it yields the solution (6.15) if the radius remains constant or does 
not change significantly. (This differential equation had been derived earlier by 
Lapostolle [4], who, however, at that time thought that the effect was not very 
significant.) Detailed computer simulations of nonuniform beams injected into a 
uniform focusing channel confirmed the theoretical predictions and revealed that 
the emittance grows very rapidly in a distance z,,, that corresponds to a quarter of 
a beam plasma period given by [3] 

A, 122) Ira 

Zm - 4 = 20, - m (6.17) 

Anderson obtained the same result by analytically modeling the dynamic evolution 
of a nonuniform laminar sheet beam [S]. Hofmann and Struckmeier extended the 
theory to three-dimensional bunched beams [6]. 
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Case 2 (Mismatched Beam) In x - X I  trace space a mismatched beam is repre- 
sented by a tilted ellipse that rotates clockwise as the beam propagates along the 
focusing channel, and the effective radius oscillates between the minimum and max- 
imum values, which are denoted by a0 and a1 in Figure 6.4. We choose the upright 
(waist) position of the ellipse with semiaxes a0 and ah, as indicated in Figure 6.4, to 
evaluate the free energy associated with the mismatch. For an initially tilted ellipse 
in the Courant-Snyder form [Equation (5.160b)l. fox2 + 2hoxx' + B o d 2  = eir 
the two radii a0 and a1 are given by 

where al = a+, a. = a- ,  and Po, h0, SO are the usual Courant-Snyder 
parameters. 

The customary assumption is that nonlinear external forces will eventually cause 
the beam to fill the enclosing ellipse with width a1 and slope ab so that the effective 
emittance increase due to mismatch is then simply calculated as 

x 
t 

(6.19) 

Figun 6.4. Tme-space ellipses for the initial mimatched beam (radius 00, maximum s b p s  4) 
and the corresponding "effactive' mittonce (ala;), the initial stationary beom (ai,a;), and the final 
rtutionary beom ( a p ; ) .  (From Reference 1.) 
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We note in this context that P. Lapostolle in a 1970 CERN report [7] proposed 
another empirical relation, which applies to both the symmetrical (in-phase) and the 
antisymmetrical (180" out-of-phase) mismatch and which was found very useful 
and accurate in computer simulation studies. 

In our model we compare the mismatched beam with the stationary (matched) 
beam having the same emittance but semiaxes ai, a!, as indicated in Figure 6.4. 
For convenience we assume that the mismatch oscillations in the x and y directions 
are in phase, so that according to Equation (4.204) the envelope oscillation wave 
number k, = 2a/A, is given by k, = (2ki + 2k?)ln. 

The energy difference per particle between the initial mismatched beam (sub- 
script 0) and the initial matched beam (subscript i )  is calculated to be 

uA2 - a;' + ki(a; - a?) + 2(ki - 
4 

Since the initial emittance of the two beams is assumed to be the same, we have 
QUO = aiai; furthermore, a: = kiai and U; = aial/ao = kia?/ao. Using these 
relations, we obtain for the free-energy parameter h = h, due to mismatch 

I I 

2 2 

(6.21) 
h,,, = --(--$ 1 k; a2 - 1) - -$(1 - 3) + ( I  - $)ln". 

2 ki uo a0 

The mismatch leads to a possible final emittance of ~f = ufu; (indicated in 
Figure 6.4) that can be calculated for any given value of h, from Equations 
(6.8) and (6.12) or, if h, 4 1, from (6.13). As an example, we find for a mis- 
matched beam with ao/ai = 0.8 and k i / b  = 0.2 from (6.21) h, = 0.0455, hence 
a radius increase of af/ai = 1.0413 and an emittance growth of cf/ei = 1.836. 
By comparison, the effective emittance growth factor from (6.19), with a1 = 
uo + 2 ( ~ i  - UO), is found to be ceff/€i = Il(ai/ao) - 1 = 1.5. 

Let us assume that the beam is properly matched 
but off-centered in the x-direction, as shown in Figure 6.5. The centroid of the beam 
will perform coherent oscillations about the axis of the ideal focusing channel 
and move on the small ellipse having semiaxes xc and xf. The wave number 
k, = 2a/Ac of the coherent oscillations is given by k, = ko, or if image forces 
are present, by [see Equations (4.238) to (4.240)] 

Case 3 (Off-Centered Beam) 

(6.22) 

where 

(6.23) 
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Figurn 6.5. Tracsrpaa dlipse of o f f - a n d  bwm. The centroid moves dockwiro along tho 
small ollipm whib the whnnort  point in he bwm trams tho large outw Jlipm. (From R h n c s  1 .) 

7, is the magnetic diffusion time defined by T,,, = 4d2ap /w2 ,  where d is the 
wall thickness of the conducting tube, u the conductivity, and p the magnetic 
permeability of the wall material. Evaluating the total energy of the off-centered 
beam where the centroid coincides with the beam axis (Figure 6.5), we obtain 

Since x: = Rcxc, we get for the free-energy parameter 

h = h c =  

(6.24) 

As an example, if k, = ko, x, = 0 . 2 ~ i ,  we have h, = 0.04, and for ki = 0.2k0, 
we find from (6.13) that €f/€j = 1.732. 

The examples given indicate that each of these three effects can cause con- 
siderable emittance increase. In practice, all three effects can be present, and the 
associated free-energy terms add linearly: 

h = h, + h, + h , .  (6.26) 

While the uniform equivalent K -  V beam was used to model the behavior of an 
initially nonstationary distribution in a linear focusing channel it is important to 
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recognize that an ideal nonstationary K-V beam would not exhibit any emittance 
growth. Since all forces are linear in this case, the beam envelope would oscillate 
indefinitely and the excess free energy would not thermalize, leaving the emittance 
constant. Real beams, however, differ from the K-V distribution, and any pertur- 
bation in the equilibrium density profile gives rise to nonlinear space-charge forces, 
which may lead to thermalization of the free energy and hence emittance growth. 
The nonlinear collective forces have the same effect as collisions in thermalizing a 
particle distribution [8]. The available free energy is, however, not entirely thermal- 
ized. Some of the energy will be converted to potential energy, due to the change 
in beam radius and density profile. Relation (6.12) of the theory will therefore tend 
to slightly overestimate the emittance growth since it does not take into account 
the nonuniform part of the field energy in the final stationary state. Furthermore, a 
small fraction of the particles with large transverse energy may form a “halo” sur- 
rounding the thermal core of the beam and contributing a disproportionate amount 
to the rms emittance growth, as discussed in the next section. 

Another important observation mentioned earlier, but worth repeating, is that the 
theory calculates the possible emittance growth. Whether for a given situation all of 
the theoretically possible emittance growth will actually occur depends on the time 
scale and the dynamical details of the nonlinear effects. In the case of a nonuniform 
beam (case l), most of the possible emittance growth occurs in a quarter of a plasma 
wavelength, A,/4 = 27ru/oP, as mentioned. On the other hand, analytical studies 
for a mismatched laminar beam in a uniform focusing channel [9] and computer 
simulation of off-centered beams in a periodic focusing channel [ 10,111 show that 
the associated emittance growth is a slow process that can take place over a large 
number of focusing periods. Specifically, the time scale for the mismatched beam 
is defined by the betatron oscillation period, since it takes one or more betatron 
oscillations to get the phase mixing leading to the randomization of the velocity 
distribution. By contrast, the coherent oscillations due to beam off-centering may 
persist for a very large number of betatron oscillations [ll], since the beam centroid 
is affected mainly by the linear external force, which preserves the coherence 
in the beam. In high-energy synchrotrons and storage rings the acceleration and 
storage times are always long enough that even relatively small nonlinearities in 
the transverse focusing forces lead to phase mixing and thereby convert all of the 
coherent energy due to offcentering at injection into emittance growth. This effect 
is discussed in the book by Edwards and Syphers (Sect. 7.1, pp. 222 to 238). These 
authors define our off-centering as “injection steering error”; and with regard to 
mismatch, they distinguish between “betatron function mismatch” and “dispersion 
function mismatch,” as is appropriate for circular machines. 

6.2.2 Comparison of Theory, Simulation, and Eymimont 

The theoretical model described in the preceding section assumes a round, continu- 
ous beam in an axisymmetric channel with uniform focusing. However, as already 
pointed out, the basic results should also apply to periodic-focusing channels in 
the regime where the smooth approximation is valid (i.e., for a phase advance of 
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a0 < 90'). According to the results of Section 4.4, the smooth-approximation re- 
lations for transportable beam current, beam radius, space-charge-depressed phase 
advance a, and so on, are accurate to within a few percent for the range a0 C 90'. 
Furthermore, the envelope instabilities treated in Section 4.4.3 prohibit the transport 
of space-charge-dominated beams in the region above 00 = 90" where the smooth 
approximation fails. Thus we would expect that the theory of emittance growth 
in nonstationary, uniformly focused beams can also be used to predict the behav- 
ior of periodically focused beams in axisymmetric (e.g., solenoid) or quadruple 
(FODO) channels. 

In this section we compare the theory with numerical simulation results for 
beams in a uniform focusing channel, a magnetic quadruple channel of the FODO 
type, and a periodic solenoid channel. Furthermore, for the solenoid case, both 
theory and numerical simulation are compared with experimental results. It will be 
shown that the interplay of theory, simulation, and experiment reveals important 
details of beam behavior that would be missed if either simulation studies or 
experiment were done alone. 

Let us begin with the computer simulation studies by Struckmeier, Klabunde, and 
Reiser [2] that were mentioned in the preceding section following Equation (6.15). 
These studies were aimed at obtaining an understanding of the behavior of different 
types of distributions in a magnetic quadruple channel. Specifically, the goal was 
to investigate theoretically predicted instabilities and to find out if the growth rate 
for these instabilities depended on the form of the charge distribution. The part 
of this work that relates to the instabilities is described in Section 6.3.1. Here 
we limit the discussion to the discovery in these simulation studies of the very 
rapid and unexpected initial emittance growth due to charge nonuniformity, which 
appeared to be unrelated to the instability problem. This emittance growth was 
found to depend on the form of the distribution. It was strongest in the case of 
a Gaussian distribution, weakest in the Waterbag case, and practically absent in 
the K-V beam. In all cases it was found that the emittance rises rapidly to a 
peak within approximately one FODO period, and then oscillates with relatively 
small amplitudes about a constant mean value over the 50 FODO periods for 
which the simulation runs were made. The FODO lattice was the same as that in 
Figure 4.11@) in Section 4.4.3. Since the emittance growth was most pronounced 
in the Gaussian distribution and was not observed in the K-V distribution, it 
was concluded that the effect was caused by the nonuniformity of the particle 
distribution. 
As we now know from our discussion of the Boltzmann distribution in Sec- 

tion 6.5, the stationary state for a space-charge-dominated beam is characterized by 
a uniform charge-density profile. A nonuniform distribution has a greater amount 
of field energy than that of the equivalent uniform beam. The energy difference rep- 
resents free energy that thermalizes as the beam evolves toward a new steady state 
having a higher temperature and a more uniform density profile. This effect causes 
the emittance growth observed in the computer simulation. Another way of de- 
scribing the process is that the nonlinear space-charge forces associated with the 
nonuniform initial density profile produce a rapid redistribution of the particles 
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toward a more uniform density. The charge homogenization effect converts the 
potential energy of the particles into thermal kinetic energy, which results in the 
observed emittance growth. In the computer simulation, both charge homogeniza- 
tion and emittance growth occur simultaneously on a very fast time scale: within 
one FODO period. As was found in later studies, this corresponds approximately 
to a quarter of a plasma wavelength. 

To determine the effects of beam intensity on emittance growth, Gaussian and 
K-V distributions were studied systematically for the case 00 = 60', with de- 
creasing phase advance u (i.e., increasing values of the space-charge parameter 
Ku2/r2). The results are shown in Figure 6.6, where the ratio of final to initial 
emittance after 50 FODO periods is plotted. 
As can be seen, the K-V distribution has practically no emittance growth except 

at very low values of u below about 10". The small increase in this high-intensity 
region is probably due to an instability caused by a fourth-order resonance of 
the type described in Section 6.3.1. The behavior of the Gaussian distribution, 
on the other hand, is markedly different. It, too, shows essentially no emittance 
growth in the region of u > 40". But then, as the intensity increases (i.e., as u 
becomes smaller), the emittance rises rapidly to large values. This computer result 
is consistent with the predictions of the theory. Using Equations (6.8), (6.12b), and 
(6.14), with U/WO = 0.154 for the Gaussian beam from Table 5.2, one obtains 
the dashed curve that is shown in Figure 6.6. The agreement between theory and 
simulation is remarkably good with regard to general behavior. However, the theory 
overestimates the emittance growth by about 15 to 20%. But this is not surprising 
since the analytical model assumes that all of the free energy is thermalized, when in 
fact some of it remains as potential energy in the final equilibrium state of the beam. 
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A Gaussian Distribution 
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Rgur, 6.6. Canputor sirnubtion d of miitanca grwtth in a FOOO chonnd with 00 = 60' 
vanus D lor a Gaussian distribution and comparison with Equation (6.1%) of thr0r)r (dashed curve). 
(From Rafemnw 2.) 
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Indeed, if one keeps track of the actual variation of the field energy factor U/wo in 
the simulation and uses it in the theoretical formula, the agreement between theory 
and simulation becomes almost perfect. This was done in the study by Wangler et 
al. that was mentioned earlier [3], where the behavior of a Gaussian distribution in a 
uniform focusing channel was investigated. The tail of the Gaussian was truncated 
at two standard deviations and it was assumed that the initial tune depression of 
this space-charge-dominated beam was k i / b  = oi/wo = 0.02. The variation with 
distance z (in units of plasma periods, A,) of the parameter p = 1 - a/&, the 
field energy factor U/wo, and the emittance ratio e / q  are shown in Figure 6.7. 
The parameter p is positive for a peaked charge distribution, zero for a uniform 
beam, and negative for a hollow beam. It compares the behavior of the average 
radius 8 of the Gaussian distribution with the average radius 8, of the equivalent 
uniform beam. As one can see, 'iT oscillates about 8, with a period length that is 
approximately equal to the plasma period, A,. On the other hand, the field energy 
factor U/WO and the emittance oscillate with a frequency that is twice as fast as 
the plasma frequency. The square symbols in the emittance curve correspond to 
emittance calculations from the second moments of the distribution according to 
Equation (5.246) at each step. The triangles correspond to emittance calculations 
using the nonlinear field energy factor U/WO and Equation (6.15) at each step. Note 
the excellent agreement between analytical theory and simulation if the evolution 
of the remaining field energy is taken into account as the beam propagates along 
the channel. On the other hand, if one just uses Equation (6.15) with k i / b  = 0.02 
and the initial value of U/wo 0.043 for a Gaussian truncated at two standard 
deviations, one obtains r j / q  = 7.4. This value is about 9% higher than the 
numerical result of €,/el = 6.8 from Figure 6.7. Thus, as expected, the theory 
overestimates the emittance growth effect by a small amount even in the case of 
a uniform focusing channel. 

Following these early simulation studies, the concept of free-energy conversion 
into thermal motion and emittance growth was investigated experimentally at the 
University of Maryland [12,13]. In the experiments, a 5-keV electron beam from 
a gun with thermionic cathode was passed through an aperture plate outside the 
anode and matched with the aid of two short solenoids into a 5-m-long periodic 
channel consisting of an array of 36 solenoid lenses. The injector part of the system, 
consisting of the electron gun, aperture plate, and the two matching lenses, is shown 
in Figure 6.8. With the aid of small holes in the aperture plate a nonuniform beam 
consisting of a configuration of five beamlets was created, as illustrated in the 
figure. The evolution of this multiple-beam distribution through the injector and 
down the periodic-focusing channel was observed on a movable fluorescent screen. 
The images on the screen were photographed with a CCD camera and stored in an 
Apple Macintosh I1 computer for further analysis. Emittance measurements with 
a slit-pinhole type of meter [14] suitable for axisymmetric beams were made at 
the end of the long channel. The initial emittance of the five-beamlet configuration 
was inferred from measurements of the full round beam produced by the gun. This 
beam is converging initially and has a waist at the position of the aperture plate. 
Thus the initial effective emittance is defined by Equation (5.318b), which can be 
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written in the form 

(6.27) 

VO is the beam voltage, which is 5 kV in this experiment, and kaT the temperature 
at the waist. Ri is the effective initial radius, which is defined by the geometry of 
the beamlet distribution. Assuming a uniform density in each beamlet, one finds 
from Figure 6.8 that 

Ri = (aZ + 1.66*)ln = 3.924a = 4.67 m m ,  (6.28) 
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ibun 6.8. Schematic of multiple-beam experiment rhowing d#tron gun, beam mask (aperture 
plate), two matching lenses, first of the 36 lenses of periodic rolenoid chnnnel, and diagnostics. 

where a = 1.19 mm is the beamlet radius and S = 3a = 3.57 mm defines the 
beamlet separation as indicated in the figure. The beam radius at the waist was 
approximately one-half of the cathode radius, and the cathode temperature was 
typically 0.12 eV. In view of Equation (5.343), one then obtains a waist tempera- 
ture of 

(6.29) 

Substituting (6.28) and (6.29) in (6.27), one finds for the initial effective emittance 
of the five-beamlet configuration 

ei = 6.48 X lO-’m-rad = 64.8 mm-mrad. (6.30) 

The total current in the five beamlets was I = 44 mA or 8.8 mA per beamlet, 
yielding a generalized perveance of [see Equation (4.27a)I 

(6.31) 
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The calculation of the nonuniform field energy factor U/WO that determines the 
free-energy parameter h according to Equation (6.14) is straightforward but tedious 
and yields [12] 

= 0.16[5 - I n [ ( + ) l ( G ) ( (  t2  + s2 1 . 6 ~ ~  )'2'5]} = 0.2656, (6.32) 
WO 

where s = S/b, t = a/b ,  and 6 = 14 mm is the radius of the conducting beam 
tube. The axial magnetic field produced by the solenoidal lenses used for matching 
and periodic focusing of the beam in the experiments can be approximated by the 
analytical relation given in Equation (4.127). The period length is S = 13.6 cm. 
In the latest series of experiments performed by Kehne [15], the peak field BO of 
the 36 lenses in the periodic channel was set to give a zero-current phase advance 
of a 0  = 77". Using this number one finds from the smooth-approximation theory 
discussed in Section 4.4.1 [Equations (4.144) to (4.147)] for the effective average 
radius of the initial matched beam 

ai = 4.61 mm (6.33) 

and 
~i ki 
g o  ko 

= 0.31. - = -  (6.34) 

The free-energy parameter for the initial five-beamlet distribution is given by 
Equation (6.14), and using the results (6.32) and (6.34), one obtains 

(6.35) 

To check the predictions of the theory, numerical simulation studies and experi- 
ments were performed for two cases. In the first case, the five-beamlet configuration 
was rms-matched to the periodic channel; that is, with the aid of the two matching 
lenses the beam was injected so as to produce a matched periodic envelope with 
initial average radius ai = 4.61 mm. In the second case, the beam was deliberately 
mismatched into the channel so that the initial radius was only half of the matched 
radius (i.e., @/ai = 0.5). The results of the two experiments and the numerical 
simulation studies are summarized below. 

Case I (rms Matched Beam) The free-energy parameter for the initial five- 
beamlet configuration in this case is due entirely to the nonuniformity of the 
distribution and given by Equation (6.35). For the small increase in beam radius, 
one can use Equation (6.10) and finds that 

(6.36) 
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The emittance increase due to thermalization of the nonuniform field energy is 
calculated from (6.12), which yields 

- =  '' 1.56, 
ci 

or 

cf  = 101 mm-mrad. 

(6.37a) 

(6.37b) 

From Equation (6.17) one would expect that the emittance growth and the 
correlated charge homogenization takes place in a distance of 

= 1 2 c m .  
IrR 

Zm = * (6.38) 

The simulation results for the variation of the effective beam radius and of the 
effective emittance with distance z are shown in Figure 6.9. They are in remarkably 
good agreement with the theoretical expectations. Thus, the radius oscillates about 
an average value corresponding to the prediction of Equation (6.36), and the 
emittance grows in a distance of about one lens period (13 to 14 cm) to a value 
close to the predicted result of Equation (6.37). 

21 s - 
2*oF 1 .o 

0 6 10 
0.0 

21 s - 
Figuro 6.9. Numerical simulation rewh far the variation af rms bwm mdiur and mittan- with 
dirtonce I a laq  rhe h i d a l  transport &and in the rms matched cam af I)# initial fiw-beamlet 
configuration. S is tt# solanoid periodicity (1 3.6 un in the experiment), z - o is ths periodic & a n d  
entrance, and the curves start at the location of the mark upstmam from the two matching lenses 
(ree Figurn 6.8). 
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The fluorescent screen pictures taken in the experiment at many locations along 
the channel revealed that the beam retains a rather intricate dynamical structure 
over a distance of more than 1 m. However, at the end of the channel the profile 
is perfectly round, with a slight peak at the center as would be expected for a 
Maxwell-Boltzmann distribution. It took some effort to obtain graphic displays of 
the beam profile that conform with the fluorescent-screen images. The experimental 
and numerical beam images at six different locations are shown in Figure 6.10. 
They agree in many details to a remarkable degree, except for a slight variation 
in the rotation angle which was due to a small difference between the measured 
magnetic field and that used in the simulation. Of particular interest is the formation 
of an image of the initial beam configuration at a distance of about 1 m. It can be 
attributed to the fact that a large group of particles in each beamlet core is not yet 

f bur, 6.1 0. Simulation plots and fluomcmt-rcmn picturer of th. beam prdika at aix dihmnt 
bCOtiOn8 a h  k huncport channd for k ma -had beam. (Courkry of D. Kehna.) 
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affected by the developing turbulence caused by the nonlinear space charge forces 
in the initial part of the transport channel. These particles perform quasiperiodic 
betatron oscillations with a wavelength 

(6.39) 

corresponding to the initial depressed phase advance of ~i = 0.3100 = 24". In 
turn, these oscillations lead to image formation at a distance of Zimge = Ab/2 
1 m, in good agreement with the observations in Figure 6.9. Further downstream, 
however, this coherence in the beam structure disappears, and no images are 
observed at subsequent half periods of the betatron oscillations. The beam entropy 
increases and the final beam profile at 524 cm has the expected axisymmetric 
structure of a Boltzmann distribution at a higher temperature than the initial state. 
The emittance measurements [15] with a slit-pinhole system at the end of the 
channel yielded a value of about 110 mm-mrad, in relatively good agreement with 
theory and simulation. The fact that this value is slightly higher (by about 9%) 
than the theoretical prediction can be attributed to scattering in the residual gas of 
the vacuum system. [See the example following Equation (6.187) in Section 6.4.3.1 

Case 2 (rms Miimatched Beam) In this case the beam was overfocused by the 
two matching lenses to produce a mismatch ratio of @/ad - 0.5 at the entrance 
of the periodic channel. The free-energy parameter due to this mismatch can be 
calculated from Equation (6.21) using (6.34), and one obtains 

The total free energy is defined by the sum of the nonuniform field energy (6.35) 
and the mismatch energy (6.40), that is, 

h = h, + h m  = 0.456. (6.41) 

Using (6.34) and (6.41), one obtains for the ratio of the final beam radius a j  to 
the initial radius ai from (6.8) the result 

a/ - 1.3. 
ai 

(6.42) 

The emittance growth predicted by the theory is then found from Equation (6.12b) 
as 

- =  '* 3.72. 
(i 

(6.43) 

The simulation results for the variation of beam radius and emittance growth with 
axial distance are shown in Figure 6.11. As can be seen, after an initial increase 
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the radius oscillates about a mean value that is close to the theoretical prediction of 
Equation (6.42). The emittance, on the other hand, shows the small increase due to 
the charge nonuniformity in the first two lens periods. It then grows further, over 
a distance of about 12 lens periods, where it settles down and oscillates about a 
mean value of EfflCi 2 4.2. This emittance increase, most of which is attributable 
to the beam mismatch, is approximately 16% higher than the theoretical estimate 
of Equation (6.43). To obtain some insight into possible causes of this unexpected 
discrepancy, we need to examine the simulation and fluorescent-screen images 
shown in Figure 6.12. This series of pictures begins at a distance of 17 cm from 
the beam aperture and shows an image at about 44 cm, less than half the distance 
of the image location in case 1. An important new feature is the formation of a 
ring at 126 cm corresponding to 7 lens periods. At 194 cm (i.e., after a total of 12 
lens periods), the ring develops into a large halo surrounding the beam core. This 
location corresponds to the position where the emittance reaches its maximum value 
(see Figure 6.11). The halo persists through the remaining length of the focusing 
channel, although it is not visible in the reproduction of the images at t = 524 cm. 
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Figun 6.1 2. Simulation plats and luomcent-rcm pictures of the beam prdib ot rh d i h t  
locations along the transport &and for the rmr miunatchad beom. ( C o u h y  of D. Ibhne.) 

The final state of the beam at the end of the channel is characterized by a well- 
behaved axisymmetric beam core resembling a Boltzmann distribution and a halo. A 
detailed analysis shows that the halo comprises about 20% of the beam current and 
is responsible for almost all of the emittance growth due to the mismatch, while the 
well-behaved beam core has an emittance growth of about 1.5, which corresponds 
to the nonuniform field energy. Only the core approaches a thermal equilibrium 
state, while the free energy due to the very large mismatch studied here produces 
a cloud of particles having considerably higher energy and oscillation amplitudes 
than those in the core. Further studies show that the large discrepancy between the 
theoretical prediction of emittance growth and the numerical result becomes smaller 
when the mismatch ratio ao/ai is reduced (151. Numerical simulation studies of 
round mismatched beams launched into a uniform focusing channel reveal that in 
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these cases the theory predicts an emittance growth that is actually higher than the 
numerical value [16]. This is true even for a large mismatch where halo formation 
occurs. One is therefore led to the conclusion that the low estimate of the theory 
in the five-beamlet case is attributable to the fact that there is more free energy 
available in this case due to the asymmetry than in a comparable axisymmetric 
beam configuration. In any case, these findings point out that there is need for 
further studies of emittance growth and halo formation in nonstationary beams. 

Although some details, such as halo formation, are not yet fully understood, 
the above studies have provided valuable information on the emittance growth 
and on the time scales for the various effects [17]. Considering the assumptions 
made in the model, the theoretical predictions with regard to emittance growth are 
remarkably good and very useful for practical applications. Also, the information 
obtained from simulation studies and experiments on the time scales of the various 
effects are extremely important. Thus the fastest process is the emittance growth 
associated with the thermalization of free energy in an rms-matched beam with 
a nonstationary density profile. It occurs in a quarter of a plasma period. The 
conversion of free energy into emittance growth due to rms mismatch, on the 
other hand, occurs in a distance corresponding to a betatron oscillation, Ah, and is 
almost exclusively associated with the formation of a halo at this distance. These 
observations are in general agreement with studies by Anderson on the dynamic 
evolution of laminar sheet beams, which are initially nonuniform in the density 
profile or mismatched [9]. Thermodynamically, the conversion of free energy into 
thermal energy and emittance growth corresponds to an increase in the entropy 
of the particle distribution. The mathematical correlation between emittance and 
entropy was discussed in a paper by Lawson, Lapostolle, and Gluckstern [18] 
in 1973. 

6.3 INSTAblUnES 

6.3.1 Tmnsverse b a r n  Modes and Instubilitier in Periodic 
Focusing Channels 

The theoretically possible stationary states of a beam in a linear focusing channel 
were described in Section 5.3 by distribution functions that satisfy the time- 
independent Vlasov equation. Specifically, for a uniform (continuous) focusing 
channel, all distributions that are functions of the transverse Hamiltonian HI (which 
is a constant of the motion in this case) are stationary. However, in the case of 
periodic-focusing channels, HI is no longer constant, and the only stationary state 
for which an analytic representation could be found is the K-V distribution. 

A key question in the theory of particle beams is whether a particular distribution 
is stable or unstable against various types of perturbations. From the thermodynamic 
arguments presented in Section 5.4, we would expect that in the presence of 
collisions or, in general, due to the actions of nonlinear forces of a stochastic 
nature, all distributions will eventually relax into thermodynamic equilibrium (i.e., 
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into a Maxwell-Boltzmann distribution). One thermalization mechanism that we 
discussed in the preceding section is the conversion of the free energy associated 
with nonstationary distributions into random motion and hence emittance growth. 
Another mechanism that can lead to emittance growth is instability, which is the 
subject of this section. Instabilities can affect both stationary and nonstationary 
initial distributions. The most powerful analytic technique for investigating the 
instability problem involves the use of the Vlasov equation and hence the neglect of 
collisional effects. In this technique the Vlasov equation is linearized by expanding 
the perturbation about the known stationary solution and determining the perturbed 
electromagnetic fields with the aid of Maxwell’s equations. If the perturbations 
consist of simple electrostatic charge-density oscillations, which is the case with 
the problem that we are discussing in this section, the fields can be found by solving 
Poisson’s equation for the associated space-charge potentials. For a beam transport 
channel consisting of a periodic array of discrete solenoid or quadrupole lenses, the 
linearized Vlasov theory is limited to the stability analysis of the K-V distribution. 
For a more general investigation one must rely on computer simulations. 

Historically, this stability problem was first examined in 1970 for stationary 
distributions in a continuous focusing channel (such as a long solenoid) by Gluck- 
stern [19], who analyzed the K-V distribution, and by Davidson and Krall [20], 
who showed that a large class of stationary solutions of the Vlasov equation is 
stable against arbitrary charge-density fluctuations. As in a plasma, local density 
perturbations in beams can produce collective modes of oscillations. Gluckstern 
described these modes for the K-V distribution in terms of the oscillations of the 
space-charge potential associated with the density fluctuations. The solutions for 
the perturbed potentials that satisfy the Vlasov equations and the beam’s boundary 
condition can be expressed in the form V,, a eiurG(r ,  $), where the time t can be 
related to the propagation distance s and the particle velocity u by t = s/u and 
where G(r ,  4) describes the geometric dependence of the potentials on the cylin- 
drical coordinates r and 4. Basically, G(r ,  4) consists of terms such as r” cos m 4  
and r” sin m 4 ,  where the integer n denotes the “order” of the mode and the inte- 
ger rn 5 n the azimuthal variation. Gluckstern found that the stability of the K-V 
distribution in a continuous focusing channel depends on the numbers m and n 
and on the tune depression k/ko = Y / Y O  of the particle oscillations due to space 
charge. For Y / Y O  2 0.4 all modes are stable, while in the region below this value 
unstable behavior occurs if Y / Y O  falls below a certain value, which depends on the 
structure of the mode. In simulation studies performed later [21] it was found that 
these “instabilities” of the K-V distribution in uniform transport channels manifest 
themselves only as redistributions of the charge density with no a2tual emittance 
growth-in agreement with much earlier simulation studies by Lapostolle [7]. 
Thus, in essence, the K-V distribution in a uniform channel is stable. 

In 1983, Hofmann et al. extended Gluckstern’s stability analysis of the K-V 
distribution to periodic solenoid and quadrupole channels [21]. They found that 
many of the Gluckstern-type modes become unstable when the associated fre- 
quencies interact resonantly with the periodicity of the focusing system (“structure 
resonances”) or when the frequencies of two modes converge (“confluence of eigen- 
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values"). The regions of instability depend predominantly on the zero-current phase 
advance uo and the tune depression uluo due to space charge and to a lesser ex- 
tent on the "filling factor," or the ratio IIL of lens width I to drift space L in the 
focusing lattice. The stability analysis and computer simulation studies showed that 
the modes of lowest order, the quadrupole (n = 2) and sextupole (n = 3) modes, 
are the most dangerous and generate large emittance growth. Those of high order 
(n > 3) are generally less pronounced and their effects on the beam emittance 
appear to decrease rapidly with increasing mode order. 

By far the most destructive modes are those of the quadrupole type, which 
are identical to the envelope instabilities studied by Struckmeier and Reiser [22] 
that were discussed in Section 4.4.3. What happens in this case is illustrated in 
Figures 4.12 (for a solenoid channel) and 4.13 (for a quadrupole channel) in that 
section. Shown on the left side of these figures are the phase advance @ per 
lattice period of the two fundamental quadrupole oscillations, the "in-phase" mode, 
where V2 a r2, and the "out-of-phase" mode, where V2 a r2sin2t$. For a zero- 
current phase advance of UO, both modes start at @ = 2u0 and then decrease 
on separate curves as the intensity is increased and, correspondingly, the phase 
advance with space charge, u, is decreased. When the phase advance @ of either 
mode passes through 180", a resonant interaction occurs with the periodic structure 
that is analogous to the a0 = 180" threshold for stable single-particle motion [see 
Equation (3.302)]. As can be seen in Figure 4.12, for the solenoid case the modes 
become phase-locked to the structure period, so that rather than single resonance 
points, one has extended regions in u-uo space where the beam is unstable. The 
growth rates of the instabilities 1A1 are plotted on the right side of Figures 4.12 and 
4.13. In the quadrupole channel, the dominant effect is confluence of the two modes 
near and slightly below the 180" threshold line (Figure 4.13). Computer simulation 
with an initial K-V distribution at a0 = 120", u = 35" in the quadrupole channel 
of Figure 4.11 are plotted in Figure 6.13 and show the destructive effect of the 
envelope instability. The conclusion, stated in Section 4.4.3, is that periodic- 
focusing channels for transport of high-intensity beams should be designed to 
operate at a zero-current phase advance of uo 5 90" to avoid these quadrupole- 
type instabilities. 

The analysis of third-order (sextupole) modes shows that instabilities due to 
structure resonances at 180" and confluence of modes occur when uo 2 60". In 
this case the phase advance of the mode starts at @ = 3uo when the current is zero, 
and if vo > 60", the curves of the eigenmodes pass through the 180' line, at which 
point structure instability occurs analogous to the envelope modes. Figure 6.14 
shows the growth rate of the confluent and 180" instabilities as a function of u for 
a quadrupole channel with 00 = 90" and filling factor q = I/ (L + I) = 0.1 (see 
Figure 3.27). For a solenoid channel, the studies in Reference 21 show that the 
third-order instabilities are much less pronounced than in the quadrupole channel 
and depend more strongly on the filling factor, as illustrated in Figure 6.15. Indeed, 
one can see the trend whereby the instabilities become negligibly small when 
the filling factor goes toward unity and one obtains a continuous long solenoid. 
Computer simulations presented in Reference 2 for an initial K-V distribution in 
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Fbum 6.15. Behavior of third-or& mode for intarruptsd-solenoid sys- for which T )  = 1/2 or 
r )  = 1/6 and c q  = 90'. (From Refwwnco 21.) 

Fbum 6.16. Computw simulation of an initial K-V distribution in the quodrupole chonnd of 
Figure 4.1 1 at vo - W', u = 41 ', h i n g  he evolution d the third-& instability in the upright 
phose-yxrcs ellipse position. (Courtesy of J. Shuckmeier.) 
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envelope-type instabilities, computer simulations by Struckmeier and Reiser [22] 
and experiments [23] show that they are quite universal. "'lie third-order modes 
are also observed in computer simulation studies of various distributions. How- 
ever, the effects of these instabilities decrease substantially when the distribution 
approximates a realistic beam. This is illustrated in Figure 6.17, which is identical 
to Figure 2 in Reference 2 except that the semi-Gaussian distribution (uniform 
in space, thermal in the velocities) is included. The conditions are the same as 
in Figure 6.16 (i.e., 00 = 90" and u = 41"), and the emittance growth is plotted 
versus the number of quadrupole periods (cells). Substantial emittance growth that 
is attributable to the third-order instability occurs for the K-V, waterbag, and para- 
bolic distributions and to a lesser extent for the conical distribution. (Note that the 
various distributions are defined in Table 5.2.) The Gaussian distribution shows 
a rapid initial emittance growth within the first cell and then a rather slow, al- 
most linear increase over the entire length of the channel (100 cells). The conical, 
parabolic, and waterbag distributions also show a rapid initial emittance increase 
before third-order instability sets in. All of these initial emittance changes are due 
to the fact that these distributions have nonstationary density profiles, and they 
are explained by the conversion of the free energy into thermal energy discussed 
in Section 6.2. The semi-Gaussian is a notable exception in that the initial emit- 
tance actually decreases at first before it rises and eventually converges with the 
Gaussian curve after about 75 cells. The reason for the initial decrease is that 

Emittance Qrowth vs. Cell Number do = 90° 6 = 41° - 
I ' I . l ' , ' I . I . , . 1 . , . ,  

2 2  - 
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I . , . , . I , , . , . #  , . , , I  
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Cell Number 

rig- 6.17. Emittonee growth of various distributions in the third-order inatability regime 
(uo = 90.. u - 41 '1 of th quadruple channel of Figure 4.1 1. (From Rd.mca 2.) 
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the semi-Gaussian must convert some of its thermal energy into field energy as 
it assumes a more stationary density profile. Of particular interest is the fact that 
all distributions do not reach a plateau of constant emittance. Instead, there is a 
small but fairly linear increase of the emittance with distance that was observed 
already by Lapostolle et al. [24] but is not fully understood. This small increase 
may, of course, be due to computational error. However, it is only observed in 
the simulation of quadruple channels and not in periodic solenoid channels [25]. 
Hence, there exists the possibility that a genuine physical mechanism occurring 
only in the quadrupole case may be responsible for it. 

As we have seen, the emittance growth due to third-order modes is very small 
in the more realistic Gaussian and semi-Gaussian distributions, and the effects 
have so far not been detected in quadrupole transport experiments [26,27]. One 
therefore concludes that it should be possible to operate in the parameter range 
above cro = 60" (where the third-order modes occur) but below a0 = 90" to avoid 
the envelope instabilities. Within this regime of operation the experiments show 
that there appears to be no lower limit in cr for stable beam transport in long 
periodic channels [ 12,26,27]. 

From the computer simulation results, especially the plots in Figure 6.13 showing 
a K-V distribution in the envelope instability regime of a quadrupole channel, 
one infers that the beam eventually becomes stable. The final stationary state is 
characterized by a larger radius, an increased emittance, and a density profile with 
a more Gaussian-like shape than that for the uniform-density initial K-V beam. 
Apparently, the beam reaches a Boltzmann-type equilibrium, having greater random 
velocity distribution, and hence higher temperature, than the original distribution. 
Where does the energy that causes this increase of emittance and temperature 
come from? As we discussed in Section 5.4.12, the total transverse energy of a 
perfectly matched beam in an ideal periodic channel remains constant (i.e., there 
is no coupling between the longitudinal and transverse energies in the channel). 
We conclude, therefore, that the increase in emittance and temperature caused 
by the instability is due to a conversion of potential energy into random kinetic 
energy. The envelope instability, for instance, is caused by the resonant interaction 
between the collective force due to charge perturbations defined by the plasma 
frequency up and the external periodic-focusing force characterized by the particle 
oscillation frequency without space charge, 00 = (ao/S)uo, and the frequency 
Of = (Zs/S)uo due to the periodicity S of the lattice. As the instability effect 
increases the rms widths 3, 9,  and thus the mean radius of the beam, the particle 
density n decreases. Hence, the plasma frequency up a f i  decreases until the 
resonance condition is no longer satisfied. Another way of looking at the problem 
is that the velocity spread in the beam is increased until Landau damping occurs 
(see the discussion at the beginning of Section 6.3.3). In principle, one could 
calculate the radius and emittance increase due to the envelope instability in a 
fashion similar to that done in Section 6.2. However, in the region a0 > 90', the 
smooth approximation is no longer valid, and therefore such analytical estimates 
of the emittance growth become very difficult. 
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It should also be noted in this context that the unstable modes discussed in 
this section (i.e., essentially the envelope instabilities) occur only in straight, linear 
transport systems for intense beams, which includes rf and induction linacs at high 
beam current. In circular machines the space-charge tune shift severely limits the 
beam intensity, so that the tune depression Y/YO is always close to unity and the 
unstable space-charge modes cannot develop. 

The instabilities due to the interaction between the space charge and the periodic- 
focusing force discussed in this section assumed a beam with transverse symmetry 
(i.e., identical emittances and energies, or temperatures, in the two orthogonal 
phase-space areas). I. Hofmann showed that additional instabilities occur in beams 
with anisotropic distributions having different energies, or temperatures, in the 
two directions of motion [28]. While these collective instabilities are of general 
importance and may, for instance, occur in the transport of sheet beams, they 
are particularly relevant to high-current linear accelerators. The bunched beams 
in rf linacs usually have anisotropic energy distributions in the longitudinal and 
transverse directions. This leads to equipartitioning and emittance growth of the 
beams via the collective space-charge forces, as was shown by R. Jameson in 
computer simulation studies and analytical considerations [29]. We treat the topic 
of equipartitioning in a high-current rf linac in Appendix 4. 

6.3.2 Longitudinal Spaco-Charge Wawr and Rerirtivewali 
Inrtabihy 

Perturbations in the longitudinal charge distribution can create an instability that 
poses a serious problem for both high-current linear accelerators and transport 
systems, as well as for circular machines. This longitudinal instability adversely 
affects the longitudinal particle distribution, limits the beam intensity, and may 
also increase the transverse emittance by generating changes in the transverse 
distribution. To understand the physical mechanisms driving this instability, it 
will be useful first to discuss how perturbations of the longitudinal charge density 
propagate along the beam as space-charge waves. We start with a simple, one- 
dimensional, nonrelativistic beam model where boundary effects are ignored. Next, 
we present an analysis of a cylindrical beam inside a perfectly conducting boundary, 
which includes relativistic effects. This analysis is then extended to the case where 
the beam tube has a finite resistivity, which causes the resistive wall instability. 
Temperature effects are neglected, i.e., we treat the beam as a cold (laminar) fluid. 

As we know from basic theory (see, for instance, B.l.,  Chapter l), local charge 
perturbations in a plasma generate plasma oscillations with frequency up. This is 
also the case in a beam that can be described as a nonneutal plasma (see discussion 
in Section 4.1). Thus, if a charged particle is displaced longitudinally from its 
equilibrium position due to a perturbation, it will perform longitudinal oscillations 
with frequency up. If s( t )  denotes the displacement from the equilibrium position 
in the moving beam frame as a function of time r, the equation of motion of the 
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particle is of the simple harmonic-oscillator form 

J + 0 ; s  = 0 .  (6.44) 

The solution of this equation can be expressed as 

where C1 and Cz are complex constants determined by the initial conditions. 
Let us a now consider the case where the perturbation is caused by an external 

force acting on the beam. To be specific, we assume that the beam passes through a 
small gap in an rf cavity where a periodic electric field with frequency 0 produces a 
velocity modulation (as in a klystron). Suppose that the gap width is infinitesimally 
small so that a particle passing through it will receive an instantaneous "kick" that 
changes its velocity but not its position in the beam at that point. If t = to denotes 
the time of gap crossing, we can express the total initial velocity after the kick as 

u(r0) = uo + UI cos uro, (6.47) 

where uo is the unperturbed velocity and ul the amplitude of the velocity modu- 
lation. The velocity change leads to a displacement of the particle from its equi- 
librium position downstream from the gap, in turn produces the plasma oscillation 
described by Equations (6.45) and (6.46). The constants C1 and C2 can be evalu- 
ated by using the initial conditions 

which yields 

(6.48a) 

(6.48b) 

(6.49a) 

By substituting these results into Equation (6.45) we obtain 
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This equation describes the displacements of the particles from their equilibrium 
positions in the moving beam in terms of the times to when they cross the gap. 
Since the distance z of travel from the gap is given by z = uo(t - to), and hence 

to = t - -, 
110 

(6.51) 

we can eliminate to and express the displacement as a function of t and z,  rather 
than t and to. By using relation (6.51) we can write Equation (6.50) in the form 

The two wave numbers in this equation are given by 

0 -+ w p  
k,=-. 

VO 

(6.52) 

(6.53) 

(6.54) 

They satisfy the dispersion relation between w and k, which applies for such 
perturbations in a cold beam and which is given by 

(6.55a) 

(6.55b) 

Equation (6.52) represents the sum of two traveling waves called space-charge 
waves, one with wave number kf and wavelength A/ = 27r /kf ,  the other with wave 
number k, and wavelength As = 27r/k,. The corresponding phase velocities are 

(6.56) 

(6.57) 

where we assume that w P / o  4 1. In the first case, the phase velocity is seen to 
be greater than the beam velocity (uf > UO), and we call this wave the fast wave. 
In the second case, the phase velocity is less than the beam velocity (u, < UO). 
and we call this wave the slow wave. 

The displacements of the particles from their equilibrium positions can be 
correlated with perturbations of the velocity u(r, z ) ,  the space-charge density p ( t , z )  
and the current density J(r , z )  which are connected by the continuity equation 
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J = pu.  The superposition of the fast and slow space-charge waves leads to distinct 
patterns of bunching and debunching of J or p along the beam. Thus J reaches 
its first peak at a distance of Ap/4 = r r u ~ / w ,  from the “input” cavity (where the 
initial velocity modulation occurs). In a klysrmn, microwaves are generated in a 
second cavity (the “output” cavity), which is located at this first current maximum. 
If we examine the two space-charge waves in the beam frame, we obtain for the 
phase velocities the results 

(6.58a) U P  u+ = Uf - uo = vo- 
0 - u p ’  

(6.58b) 

Thus an observer moving with the beam velocity uo would see the two waves 
moving in opposite directions with frequency up and unequal phase velocities 
Iu+l # Iu-I. Although the phase velocities of the two waves differ, the group 
velocity ug in the laboratory frame is the same, namely 

(6.59) 

as can be verified from Equation (6.55b). 
Accordingly, energy and information will travel with the velocity of the beam, 

as one expects from the well-known arguments of classical physics. We also note 
that Equation (6.55) represents the classical Doppler shift for the frequency op 
measured by an observer in the beam frame to the frequency o measured in the 
laboratory frame. 

Our analysis in this section as well as in Section 6.3.3 treats the disturbances that 
are producing the space-charge waves as periodically acting harmonic forces with 
frequency o. But it should be pointed out in this context that such perturbations 
and the associated space-charge waves can occur also in the form of localized 
single pulses, Usually the space-charge waves are created as a pair of slow and 
fast waves. However, recent experiments with localized, single perturbations on 
an electron beam and theoretical analysis have demonstrated that one can create 
only one or the other as a single wave by controlling the conditions at the gridded 
cathode of an electron gun [30]. We note in this context that the interaction of 
these two waves with external electromagnetic fields plays the key role in either 
acceleration or microwave generation or in causing longitudinal beam instabilities. 
Take as an example a beam propagating in a waveguide together with an externally 
launched electromagnetic (EM) wave traveling in the same direction as the beam. 
If the phase velocity of the fast space-charge wave is in synchronism with the phase 
velocity of the traveling EM wave, the beam will gain energy from the EM wave 
(i.e., it will be accelerated). The fast space-charge wave is called a positive-energy 
wave since it gains energy from the EM wave as its amplitude is increasing. On 
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the other hand, when the slow wave is in synchronism with the phase velocity 
of the EM wave, as is the case in a slow-wuve srrucrure, the beam will give up 
energy to the EM wave. We are dealing in this case with a traveling-wave rf 
generator in which the beam kinetic energy is transformed into microwave energy. 
The amplitude of the slow space-charge wave will grow as it gives up energy to 
the EM wave, which is why it is called a negative-energy wave. As we will see 
later in this section and in the next section, it is the interaction of the slow wave 
with an external circuit impedance that produces longitudinal instability when the 
slow-wave amplitude is growing. 

The above analysis of the space-charge waves was somewhat academic in that 
we assumed a strictly one-dimensional geometry in which the beam was assumed 
to be infinitely large in the transverse direction. We can obtain a more realistic 
description of the problem by taking the beam to be an infinitely long cylinder of 
line-charge density p~ and radius a inside a conducting drift tube of radius b. To 
simplify the use of subscripts, we use the symbol A for the line-charge density 
p~ (i.e., we set p~ = A). Let us assume that the unperturbed beam has a constant 
line-charge density ho, which implies that the longitudinal dc electric field is zero. 
If a local perturbation develops, it will emit two space-charge waves according 
to our discussion above. In the steady state, all quantities associated with this 
perturbation will consist of a dc value and a wavelike ac perturbation. Specifically, 
the line-charge density A, velocity u,  and beam current I will be of the form 

where 

I = A u .  (6.61) 

Note that we use the symbol 7 for the dc (average) current to avoid confusion with 
the characteristic current lo .  

To analyze the propagation properties of the perturbed waves, we will use a lin- 
earized, cold, one-dimensional fluid model that consists of the continuity equation 
and the momentum transfer equation (which is identical with the longitudinal equa- 
tion of motion). Linearization requires that the perturbations be small compared to 
the dc quantities (i.e., A1 4 Ao, etc.). The cold-beam approximation implies that 
we neglect the longitudinal momentum spread of the beam. (We generalize the 
analysis in Section 6.3.3 by including momentum spread and using the Vlasov 
equation instead of the cold-fluid model.) 

The continuity equation yields 

(6.62a) 
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aI  a A  - + - - 0 ,  
az at 

Keeping only the first-order terms, one obtains from (6.60) and (6.61) 

(6.62b) 

(6.63a) 

(6.63b) 

and from (6.62), 

-ikfl = - i u A l ,  (6.64a) 

or 

(6.64b) 

The space-charge waves will produce a longitudinal electric field Ez(z,  1 )  which 
will exert a force on the particles in the beam. This force changes the velocity in 
accordance with the longitudinal equation of motion, which has the relativistic form 

or 

(6.65a) 

(6.65b) 

if the perturbed velocity amplitude u1 is small compared to the dc velocity uo so that 
the relativistic energy factor yo = (1 - u;/c2)-ln remains essentially constant. 
With E, = E, exp[i(ut - kz)] and using (6.60b), one obtains from (6.65b) 

or 

(6.66a) 

(6.66b) 

Substitution of (6.64b) and (6.66b) in Equation (6.63b) yields the following rela- 
tionship between the perturbed electric field and current amplitudes: 

(6.67) 

The longitudinal electric field EL must also obey Maxwell's equations. We will 
use for our analysis the low-frequency approximation where the displacement 
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current term aD/ar = eoaE/ar in Maxwell’s equations can be neglected. The 
longitudinal electric field can then be calculated by applying Faraday’s law, #E * 
dl = -a/& J B - dS and Ampbre’s circuital law, # B dl = po J J * dS,  to the 
closed rectangular loop shown in Figure 6.18. For later use we have assumed 
in the figure that the wall of the beam tube has a finite resistivity, so that 
the induced current I, generates an axial electric field EWz in the wall. ESz 
denotes the axial field associated with the space-charge perturbation in the beam it- 
self. The evaluation of the integrals involved can be simplified by using in place of 
the generally nonuniform radial density profile the equivalent uniform-beam model 
defined in Section 5.3.4 (see also Figure 5.12 and Table 5.2 and related discussion 
in the text). Carrying out the calculation, which is left as a problem (6.4), yields 
the following result: 

or, since al /at  - -u$aA/az and 1 - u$/cZ = l/y& 

(6.68a) 

(6.68b) 

The parameter g in Equation (6.68) is a geometry factor that defines the proportion- 
ality between the longitudinal electric field E,, and the derivatives aA/az, a I / a / t  
of the charge and cumnt perturbations, respectively. The situation is analogous 
to the relation (5.366) between the electric field and the line-charge density gra- 
dient in a bunched beam. However, in the present situation, we are dealing with 
line-charge density perturbations in a continuous round beam, and hence the ge- 
ometry factor g should not be the same as for the bunched beam. Mathematically, 
the solution for perturbations in a cylindrical beam with radius a inside a con- 
ducting pipe with radius b involves Bessel functions, and the geometry factor 
depends on the wave constant k or wavelength A = 27r/k of the perturbation. 
Only in the long-wavelength limit being considered here, where A % a does one 
get an asymptotic value for g that is independent of A. This asymptotic expres- 
sion depends on the relationship between the perturbed line-charge density A, the 
volume charge density p ,  and the beam radius a which for a uniform beam is 
given by A(z) = p(z)a2(z)m. The radius, in turn, depends on the wave constant 
ko (or betatron function @O = l /ko)  of the focusing channel, the beam perveance 
K, and the emittance E ,  as defined by the approximate relation (5.293). which is 
more useful for our purpose than the exact result in Equation (4.93). Since K is 
proportional to the beam current I and l ( z )  A(z)u,  we find from (5.293) that 
a2(d = A(z)/C + s/ko. where C = 2 ~ ~ 0 o ( m c ~ / q ) B ~ y ~ k ~ .  If the emittance term 
dominates, i.e., if elk0 % A(z)/C, the radius is essentially constant (a = const), 
i.e., A(z) = p(z)a2?r, and the line-charge perturbation manifests itself as a longitu- 
dinal variation (bunching and debunching) of the volume charge density p(z). This 
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is the situation in circular accelerators and storage rings. On the other hand, if space 
charge dominates, i.e., if A(z)/C * e/ko, one has aZ(z) 5~ A(z)/C; hence, the vol- 
ume charge density remains constant (p  = const), and the line-charge perturbation 
produces a variation of the beam radius. This is the case in high-current linear 
accelerators and beam transport systems. The calculation yields for the g-factor in 
these two limiting cases the following result (see Problem 6.4): 

- 
r2 b 1  b 

g -  1 - - + 2 h -  = - + 2 I n -  
0 2  a 2  Q 

(6.69a) 

for the emittancedominated (high temperature) beam where e / b  * A/C; 

(6.69b) 
b 

g = 2 I n z  
a 

for the space-charge dominated (low temperature) beam where A/C B c/ko. 
In the first case, the axial electric field Ez varies with radius r while a 

is constant, and we calculated the g-factor by averaging over 3, with 7 = 
a2/2. In the second case, EU is constant across the beam, while a varies with 
distance z, and we took the average radius ?i to define the g-factor. Note that 
both results differ from the asymptotic average value of the g-factor for a bunched 
beam given in Equation (5.365b), as expected [see also our discussion following 
Equation (5.365b)I. For the general case where both space charge and emittance 
affect the beam radius, the values of the g-factor are of course in the range between 
the above two limits, i.e., 2 In (b/a) I g I 0.5 + 2 In @/a). 

We should point out in this context that there is some confusion in the literature 
regarding the proper expression for the g-factor. Many authors (see, for instance, 
D.lO, Section 6.2.1), use the relation g = 1 + 21n (bla), which corresponds to 
the axial electric field on the axis (r = 0) of an emittance-dominated beam, rather 
than the average value (6.69a), which is more appropriate. Similarly, there has been 
disagreement in the past on the formula for g in a space-charge dominated beam. A 
recent experiment has confirmed for the first time the validity of Equation (6.69b) 
in this case [31]. Finally, we should point out that all our calculations here assume a 
cylindrical beam in a cylindrical conducting tube. In other geometries, the g-factor 
will be different. For a round beam of radius a between two parallel conducting 
plates of separation 2b, the term 2 h @/a) in the formula for g must be replaced by 
2 In (4b/7ra) [see Reference 37, Equation (9)]. This is also a good approximation 
for a rectangular pipe with height 2b and width 2w when w * b. On the other 
hand, when the width is comparable to the height (w = b), one can use 2 In (b/a) 
as a good approximation. 

After this brief detour on the g-factor, let us return to Equation (6.68a) and 
consider first the case of a perfectly conducting tube where E,, = 0. The amplitude 
of the total axial electric field perturbation is then 

(6.70a) 



$06 - 
which, in view of (6.64b) 

We now have derived 
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may be written in the form 

(6.70b) 

two relationships between the axial electric field and 
current perturbations, E, and 11. The first one, Equation (6.67), was obtained from 
the continuity and force equations; the second one, Equation (6.70b), was derived 
from Maxwell's equations. Clearly, E,  and 11 must satisfy both equations, and 
hence the two terms associated with 11 on the right-hand side of the equations 
must be equal. This yields the desired dispersion relation between the frequency 
o and the propagation constant k,  namely 

or 

(o - uok)' - y;c:k2( 1 - &) = 0 .  

Here we introduced the parameter c J ,  defined as 

(6.71) 

(6.72) 

which corresponds to the speed of sound in the mathematically equivalent problem 
of the propagation of a perturbation in a nonrelativistic cold fluid. 

In many cases the difference between the phase velocities of the two space- 
charge waves and the beam velocity uo is very small. Hence we can make the 
approximation o kuo in the second term of Equation (6.71) and obtain the 
simpler dispersion relation usually found in the literature: 

or 

(O - kvo)2 - Cik2 = 0 .  

The solution of Equation (6.71) is 

(6.73) 

(6.74a) 
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while (6.73) yields 

0 = k(u0 ? c,). (6.74b) 

As we see, when the condition y ~ c ~ / c 2  4 1 is satisfied, Equation (6.74a) becomes 
identical with Equation (6.74b). This condition can be stated in terms of the average 
current as i 4 lo&yo/g. 

Thus we obtain, as in the previous case, two space-charge waves whose phase 
velocities for the simpler version of the dispersion relation are obtained from 
(6.74b) as 

w 
u ’ f = - =  k+ uo + cs = uo(l + ;), 

w 
210 - cs = uo(l - :). u s = - =  k- 

(6.75a) 

(6.75b) 

By introducing the plasma frequency 

the velocity ratio c,/uo can be expressed in terms of w p  and A0 as 

(6.77) 

where the g-factor is as defined in Equation (6.69). 
It is interesting to compare the last four equations for the phase velocities of the 

waves in the pencil beam with Equations (6.55) and (6.56) for the infinite beam. 
We see that in place of w p / w  in the infinite-beam case we have c,/vO, and in 
view of (6.77) we have the correlation 

where 

(6.78) 

is the “reduced” plasma frequency due to screening by the wall of the vacuum 
tube in the pencil-beam case. Note that c, corresponds to the phase velocity in the 
beam frame since u2 = kc, for c, 4 UO. 
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As can be seen from the above result? .le;.s:ty perturbations in a pencil beam 
surrounded by a perfectly conducting drift-tube wall travel along the beam as fast 
and slow space-charge waves. The frequencies for the two waves are real, hence 
there is no change (growth or decay) of the wave amplitudes. The beam neither 
loses nor gains energy and there is no instability. 

This situation changes if we consider the case where the drift-tube wall has 
a finite resistance per unit length defined by R i [ f l / m ] .  The electric field E,, 
along the wall surface is then no longer zero, as with the perfect conductor. The 
ohmic losses due to the image currents in the wall lead to growth of the slow- 
wave amplitude, and the associated resistive-wall instability was first investigated 
by Birdsall and Whinnery in 1953 for the possibility of microwave generation [32]. 
More recently, Smith and others [33-361 studied the effects of this instability on 
high-current beams in induction linacs, where it poses a threat to the beam quality. 
To analyze the problem we note that the electric field along the wall surface has 
a dc value that is defined by the product of the dc image current = AOUO and 
R: (i.e., Ew0 = -IR: = -AouoR:) and an ac component Ew determined by the 
product of the perturbed current I ,  = Aoul + AIUO and R:: 

- 

For the behavior of the space-charge waves only the ac component E, is relevant. 
From Figure 6.18 and Equation (6.68), E,  must be added to the space-charge field 
E, of Equation (6.70b) to give a total longitudinal electric field of 

(6.80) 

This total field must also satisfy Equation (6.67), and by equating (E,  + Ew)/I1 
from the two equations we obtain the dispersion relation 

or 

(6.81) 
(w - uok)2 - y,$:k2( 1 - &) - iw+ qR* Ao = 0 .  

YOm 

For RG = 0, we recover our previous result of Equation (6.71). To simplify the 
analysis we will use the approximation w - kuo in the second term, as before, 
and introduce the frequency parameter w1 defined as 

w1 = - Y b  (6.82) 
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and representing the resistive-wall effect. This yields the dispersion relation 

(w - kuo12 - c,Zk2 - iwwl = 0 .  (6.83) 

This equation can be solved for the wave number k, and one obtains 

1R 

k = 2 [ 5 + i%(I - g ) ]  }.  (6.84) 
vo fa VO 

2 vo - c: 

Using the fact that cf 4 ui (i.e., ui - c,’ - v i )  and introducing the parameter 
ko = w/uo, we can rewrite (6.84) in the approximate form 

A = k , + i k j - h  (6.85) 

When 01 = 0, the imaginary part is zero (Ai = 0) and we recover our previous 
result in Equation (6.74b). On the other hand, when 01 # 0, we can solve (6.85) 
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for the real and imaginary parts of k and obtain 

(6.86b) 

For typical experimental parameters one finds that olvo 4 c:ko, so that one gets 
the approximate expressions 

(6.87a) 

(6.87b) 

The result (6.87a) for the real part k, of the propagation constant k is identical with 
Equation (6.74b) for the case where RG = 0. The imaginary part ki in (6.87b) is 
due to the wall resistivity RC. It indicates that the amplitude of the slow wave will 
grow exponentially with distance as exp[(ol/2c,)z]; that is, the beam will lose 
energy via dissipation in the resistive wall. This effect is known in the literature 
as the resistive-wall instability. It limits the beam current and causes the beam 
quality to deteriorate. 

It will be useful for the general analysis and interpretation of the various 
dispersion relations for the space-charge waves to introduce the space-charge 
impedance Zf[AWm], which is defined as the ratio of the voltage per meter 
V' = -E,  and the current amplitude 11. From Equation (6.70b) we get 

(6.88) 

We see that Z,' is complex if o and k are complex. However, for our analysis we 
will treat o and k in the space-charge impedance as real quantities; in this case Z; 
has only an imaginary, or reactive, part which we will define by -X;. Furthermore, 
there is a capacitive component, ( ioCt)-l ,  and an inductive component, iwL'. 
The capacitance Ct is associated with the perturbed longitudinal charge density 
and electric field, and it has units of F-m, which is why we use the superscriptt 
rather than*. This is in contrast to the capacitance C' per unit length associated 
with the transverse electric field due to the space charge of the beam, which is 
in units of F/m (see Problem 6.1). L' is the inductance per unit length [H/m] 
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associated with the perturbed current. In terms of the two parameters C t  and L' 
we can write the space-charge impedance as 

(6.89a) 

or 
i 

0 C t  
2,' = - - ( 1  - oZL'C+), (6.89b) 

By comparing the last three equations, we obtain 

In the approximation yic:/c2 4 1 ,  where o = k(u0 2 c,) [see Equation (6.74b)], 
and c8 4 uo, we can use w = kuo and obtain the relation 

(6.94a) 

or 

where ZO = (EOC)-' = ( p o / ~ o ) ' ~  1 377 
We conclude from these relations that the space-charge impedance is always neg- 

ative imaginary (i.e., the capacitive part is always greater than the inductive art). 
The ratio of the two impedances varies as wL*/(oCt) - '  - w2L'Ct = u0/c2; 
that is, the inductive part is negligible at nonrelativistic velocities and becomes 
more and more comparable to the capacitive part at highly relativistic energies. 
The net effect is that the space-charge impedance 2; is essentially capacitive and 
decreases with increasing kinetic energy as (j3oyi)-'. Furthermore, 2; is propor- 
tional to the geometry factor g = a + 2In(b/a) and inversely proportional to 
the wavelength A = 27r/k of the perturbation where 0 5 a 15 1 [see (6.69) and 
related discussion]. 

is the free-space impedance. 

s 
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If we introduce the space-charge impedance X: from Equation (6.90) and the 
generalized perveance K = (7/10)(2//303703) , the dispersion relation (6.81) may be 
written in the alternative form 

(6.95) 

By defining 

Aw = w - kvo = Am, + i A w l ,  (6.96) 

we can write the general wave solution in terms of the amplitude and phase fac- 
tors as 

where Aw,t = w,t - k,vot and trot = z was used. The amplitude factor e-Amcr 
measures the exponential growth of the slow wave or the decay of the fast wave, 
depending on whether the sign of Awl is negative or positive. This notation for 
the wave amplitude as a whole is preferable over the solutions for either wi or ki 
alone, as we did in our analysis so far and which we still can get separately from 
(6.83) if we wish [see Equations (6.84) to (6.87)]. In terms of Aw,  the dispersion 
relation (6.95) may be written as 

and the solutions for the real and imaginary parts of Aw are 

where the upper signs indicate the fast wave ( A w ,  > 0,Awl < 0) and the lower 
signs the slow wave ( A w ,  < 0 , A o i  > 0), and where ko = w/vo was used. 

If RC U X;,  one obtains for the growth rate of the slow wave the approxi- 
mate result 

(6.100a) 
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or by substituting for K and X,‘ [Equation (6.94b)J, 

1R 

A o i  = 27$f10c( f -) 1 . zo I0 sflor0 
(6.100b) 

This may be written in terms of the imaginary wave number ki = Awi/uo as a 
spatial growth rate, 

For electrons (I0 = 1.70 X lo‘ A) the last relation becomes 

ki - 1.28 X 10-4R; - 
(gA0)’”. 

(6.1OOc) 

(6.101a) 

For ions (I0 = 3.13 X 107A/Z amperes) with mass number A, charge state Z ,  and 
average particle current 7, = I / Z ,  one gets 

- 

(6.101b) 

which in the nonrelativistic regime (yo 1: 1, /30 = ,/-) may be written in 
the form 

(6.101~) 

where R: is in Q/m, I, in amperes, and T / A  in MeV/nucleon. 
The growth of the slow space-charge wave predicted by the above theory implies 

that energy is lost by the beam to the external resistance and that the beam quality 
deteriorates. As we will see in the next sectio_n, the growth of the resistive-wall 
instability is damnd by momentum spread, A P / P ,  in the beam. If we start with 
a cold beam (AP/P  = 0), as in the above analysis, the instability will cause 
a momentum spread to develop which eventually will become large enough to 
saturate the growth. In turn, this momentum spread may cause excessive chromatic 
aberrations which make it impossible to focus the beam to a desired spot size (i.e., 
the instability produces in effect an increase of the emittance). 

The resistive wall instability is of concern for high-current electron and heavy- 
ion linear accelerators and transport systems and for circular machines. The latter 
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have generally lower currents but many revolutions and hence a longer interaction 
time than that of the linear machines. We treat the instability in circular machines 
in the next section. 

To illustrate the application of the above theory to laboratory beams, let us 
consider as a first example a relativistic 10-kA electron beam in an induction linac 
with R: - 10 n /m,  g =L 2, and &yo 5 .  From (6.101a) we find ki = 0.04 m-' 
or z = k;' = 25 m. Clearly, in this case one would expect problems with the 
instability since the length of such an induction linac would be greater than the 
e-folding growth distance k;'. 

As a second example, let us take the case of a 10-GeV 137Ba2+ beam for 
possible use in heavy-ion inertial fusion, with A = 137, Z = 2, fp  = 104 A, 
g = 2, R: = 100 n/m,  and /30yo = 0.4. From (6.101b) we get kr = 5.75 X 
m-' or t = k;' = 174 m. Since the final transport line of the beam would be 
considerably longer than this distance, the resistive-wall instability may pose a 
severe problem for heavy-ion inertial fusion drivers. 

The above analysis can be readily extended from a purely resistive wall to the 
general case of a complex impedance 2: = R: + iX:. By including the space- 
charge impedance Z,l = -iX,L we then can define a total longitudinal impedance 
zi as 

z i  = z; + 2; = zf + iz;, (6.102a) 

where the real part is given by 

Zf = R; (6.102b) 

and the imaginary part by 

2; = x; - x,'. (6.102~) 

Note that all impedances are in general functions of the frequency o and wave 
number k. This is also true for the space-charge impedance X;, as can be seen 
from Equations (6.88) or (6.94b). In terms of the total longitudinal impedance Zi,  
the dispersion relation (6.95) may be written as 

(6.103a) 

or 
In 

A m  = -Ckovo( -[(X: - X i )  + iR:]] . (6.103b) 
kOZ0 
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If 2; represents a lossy transmission-line model, where a resistance R' is in 
series with a distributive inductance L' and both are connected to ground by a 
distributive capacitance C', one has 

(6.104) 

The linear growth rate for the slow-wave amplitude is then found to be 

or alternatively, for the imaginary wave constant 

The analysis of these relations shows that an inductive wall impedance enhances 
the growth rate, while a capacitive impedance decreases the growth rate. In the first 
case, instability can arise even if R,  = 0 (see Problem 6.9). 

6.3.3 Longitudinal Inrtabili in Circular Machinor and 
Landau Damping 

In Sections 3.6.4 and 5.4.9 we pointed out that the negative-mass behavior of 
charged particle beams in circular accelerators above the transition energy y,rnc2 
can cause longitudinal bunching and instability. This negative-mass instability was 
first identified and analyzed theoretically by Nielsen, Sessler, and Symon [37] and 
independently by Kolomenskij and Lebedev [38] in 1959. Later studies [39] showed 
that instability also occurs below transition energy and hence is not restricted to the 
negative-mass regime when the finite wall resistivity is taken into account. In fact, 
the underlying physical mechanism in circular machines is basically the same as in 
the resistive-wall instability discussed in the preceding section. Perturbations of the 
beam's line-charge density produce electromagnetic fields via the image charges 
flowing through the surrounding walls and these fields act back on the beam. 
If the wall impedance has a resistive component as in our previous case, there 
will be unstable growth of the slow space-charge wave, which in turn may result 
in beam deterioration and particle loss. Since the effect is frequency dependent 
and shows a resonant-like behavior at high frequencies, it is also known in the 
literature as the longitudinal microwave insrabilify. As mentioned in the preceding 
section, momentum spread in the beam can decrease the growth rate or prevent 
the instability from developing in the first place. What happens in this case is that 
the phase spread in the particle oscillations due to the different momenta offsets 
the bunching that is otherwise produced by the instability. This effect is known as 



Landau damping since it is mathematically analogous to the damping of unstable 
electromagnetic perturbations in an infinite plasma that was first investigated by 
Landau [40]. 

To analyze the longitudinal instability with damping due to momentum spread 
we have to use the Vlasov equation and a proper longitudinal distribution function 
for the beam. In our description of the problem we follow the review given by 
Hofmann [41], except that we use somewhat different notation consistent with the 
preceding section. Let us assume that the distribution of the particles in longitudinal 
phase space depends on the energy E,  the distance s along the circumference 
C = 27ra of the circular accelerator, and time t as 

f ( E ,  s ,  t )  = fo (E)  + f l(E)ei(a'-kJ). (6.106) 

Here fo (E)  is the unperturbed beam, assumed to be continuous (unbunched) along 
the circumference, and f l ( E )  is the amplitude of the perturbation, a the average 
orbit radius, k the wave number, and o the frequency of the perturbation, which 
can be complex in general. It is customary to introduce the angle t9 = s / E  and 
the number of wavelengths n of the perturbation within the circumference of the 
ring. With 27ra = nA, we get ks = no,  so that the distribution function can be 
written in the alternative form 

f (E ,  8 ,  t )  = f o ( E )  + f l(E)e'(a'-"e). (6.107) 

If A0 is the unperturbed line charge density, the total number of particles is 
N = 27rRho/q, which leads to the normalization relation 

for the unperturbed distribution function. 
The distribution (6.107) must satisfy the Vlasov equation 

or 

( i w  - i n i ) f l  + -E afo - 0 ,  aE 

(6.108) 

(6.109) 

(6.1 10) 

where we assumed that a f / a E  = afo/aE. E is the rate of change of the particle 
energy in the distribution due to the electric field produced by the perturbation, 
Ell = Ej + E,. Here Ej is the space-charge field, and Ew is the field generated 
by the perturbed current I1 due to the impedance of the wall. It is customary in the 
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theory of circular machines to introduce the voltage drop through one revolution, 
V1 = - 2 7 r R 4 ,  and express it as the product of the total impedance 211 and the 
perturbed current 11, that is, 

- 
If 00 = R / v o  denotes the angular revolution frequency, the rate of change (de- 
crease) of the particle energy due to the perturbation can then be written as 

(6.112) 

The longitudinal impedance 211 consists of the space-charge impedance, Z,, and the 
wall impedance, Z,, with all contributions of individual elements (such as drift-tube 
sections, rf gaps, diagnostic ports, etc.) summed up along the entire circumference 
of the machine. With (6.94b), the total space-charge impedance is given by 

and since k = n @ / s  = n m ,  we can write this relation in the form 

The total wall impedance 
reactive part, X ,  (i.e., 2, 

(6.113) 

(6.114) 

Z,,, will, in general, have a resistive part, R,, and a 
= R,  + iX,), so that we have 

211 = 2, + 2, = R,  + i (X ,  - X,) .  (6.115) 

By substituting (6.112) into (6.110), we obtain 

( iw - i n e ) f l ( E )  = - dfo (E)  ~ z l l , l .  

Since the perturbed current I1 is related to the perturbed distribution function by 

(6.116) 
a E  2 r  

11 = W O J f l ( E ) d E .  

we can write the dispersion relation (6.117) as 

(6.117) 

(6.118) 
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To proceed further it will be helpful to change variables from E to i so that 

From (3.261) and (5.351b) we have 

(6.119) 

(6.120) 

where EO = yomc2 and q = (l/y: - l/yi), as defined in (3.262b). 

alternative form 
Using (6.119) and (6.120), we can write the dispersion relation (6.118) in the 

(6.121) 

Let us first consider the cold-beam limit (zero energy spread) by assuming a delta 
function for the distribution, that is, 

using the normalization (6.108). Then 

-- 
and with &lo  = R I / u o  = i /wo,  Equation (6.123) becomes 

(6.122) 

(6.123) 

(6.124) 

It is left as a problem (6.11) to show that (6.124) converts to (6.85) if one 
makes the correct transition from circular to straight beam. By introducing Aw = 
Ao, + i A o i  = w - nwo, we can write the last relation in the form 

(6.125) 
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which is convenient for a stability analysis. Obviously, when Aw is imaginary 
(i.e., Aw = iAwi),  the exponential wave factor of the perturbation will have the 
form e-Acur', which indicates unlimited exponential growth of the perturbation 
amplitude for A o i  < 0. We see immediately that such an instability will occur 
when q > 0, or yo > yl (above transition), and when Zll is negative imaginary. 
The simplest case for which this can happen is for zero wall impedance (i.e., 
Z, = R, + iX, = 0), so that Zll = -iX, is entirely determined by the reactive 
space-charge impedance, X,, and with (6.1 14), relation (6.125) becomes 

(6.126) 

For Awl C 0, this may be written in terms of the generalized perveance K = 

@/lo)  (2/Bo3Yo3) as 

or, with 00 = /30c/x, in the alternative form 

(6.127) 

(6.128) 

The unstable situation defined by these relations is known as the negutive-muss 
instability [29]. It occurs only in circular machines above transition energy (yo > 
71) and is attributable entirely to the negative mass behavior (m' = -yom/q)  
discussed in Section 3.6.4. In this negative-mass regime, a local density increase 
in the particle distribution will grow with time, leading to bunching of the beam. 
If the space-charge forces associated with these bunches become large enough, 
emittance growth and particle loss will occur when the tune shift A v  exceeds 
the threshold for a resonance. One should note that the negative-mass instability 
occurs with perfectly conducting walls (i.e., under conditions where a straight beam 
is stable). The straight-beam case can be obtained from (6.125) by letting yI - 00 
and hence q + -l/y;, so that A u  becomes real and the perturbation remains 
stable, in agreement with our discussions in the preceding section. Of course, in 
the circular machine the negative-mass instability does not occur below transition 
when q < 0, as is evident from the last four equations. 

Let us now discuss the case when the wall has a finite resistivity so that 
the impedance 211 is complex. To be as general as possible, we will define the 
impedance as 

211 = Z, + iZi,  (6.129) 
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where Z, is the real part (e.g., 2, = I?,), and Zi is the imaginary part (e.g., 
Zi = X, - X8), as in Equation (6.115). The dispersion relation (6.125) then 
becomes 

(6.130) 
2728: yomc2 

With the impedance given in Equation (6.115) we can write 

(6.131) 

It can be seen that Aw always has a nonzero imaginary part no matter what the 
sign of q is or whether or not X, = 0. This case is known as the resisrive-wall 
instability in circular machines. The only difference with respect to the straight- 
beam case discussed in the preceding section is that the growth rate depends on 
q and the sign of q. To further analyze the dispersion relation (6.131), let us 
introduce the parameter A defined as 

(6.132) 

The growth rate Awi then depends on the sign of q. When q is positive [i.e., in 
the negative-mass regime (above transition)], one obtains 

and when q is negative (below transition) one finds that 

Note that the result for the last case (q < 0) has the same form as in Equation 
(6.105a) for a straight beam. These cold-beam results can be summarized by 
stating that there is always instability when R, # 0 (resistive-wall instability) and, 
furthermore, for R, = 0, the beam is unstable above transition (q > 0, negative- 
mass instability). Also, it is interesting to evaluate how the capacitive space-charge 
impedance and inductive (X, > 0) or capacitive (X, < 0) wall impedances affect 
the instability growth rate in the general case. Above transition (q  > 0) in the 
negative-mass regime, both the space charge and a capacitive wall increase the 
growth rate, while an inductive wall decreases Awi. The fact that an inductive 
wall impedance tends to stabilize the negative-mass behavior was first pointed out 
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by Briggs and Neil [42]. Below transition (q C 0) the opposite is true: space charge 
and capacitive wall lower the growth rate, while an inductive wall increases it. [See 
the discussion following Equation (6.105b).] 

To determine the effect of Landau damping on the longitudinal instability, one 
must use an appropriate distribution function in energy E or rotation frequency 
i and evaluate the integral in the dispersion relation (6.121). If the frequency o 
of the perturbation lies within the frequency distribution n e  of the particles, the 
denominator of the integral will become zero at o = noo. In this case the integral 
can be split into two parts, the principal value (P.V.) and the residue term, and 
one obtains 

, (6.134) 

so that (6.121) can be written as 

To solve this dispersion relation for different distributions it will be convenient 
to introduce [41] the half-width S - Ai/2 of the angular frequency distribution 
fo(i) measured at half-height and relate the frequencies in the dispersion integral 
to S by means of two dimensionless variables x and XI. The first is defined by 
e - o0 - XS, or 

n 6  - n o 0  = x n S ,  (6.136) 

and describes the angular frequencies of the particles in the beam. The second is 
defined by 

Ao = o - no0 = x l n S ,  (6.137) 

and gives the frequency o with which the instability is driven. As mentioned 
earlier, 00 is the revolution ,frequency of the central-orbit particle. Furthermore, 
the distribution function fo(S) is expressed in terms of x as 

(6.138) 

where N is the total number of particles in the ring and 

f(x)dx = 1 .  (6.139) 



EMlllANCE GROWTH 522 

Finally, the half-width S is related to the full momentum spread A P  at half-height 
of the distribution via 

A P  
2s = -quo-- 

P '  
(6.140) 

With these definitions one can express the dispersion relation (6.121) in the form 

where Ib is the normalized dispersion integral given by 

dE i /  df/dx dx. I:, = +IT- ( X I )  - 
dx P.V. x - x1 

(6.142) 

The sign(di/dE) is +1 below transition energy and -1 above transition energy. 
The factor in front of 16 in (6.141) is originally defined as a complex quantity 

[37] V' + iU' that can be related to the complex impedance 211 = Z, + iZi by 

so that (6.141) may be written as 

(6.144) 

This equation defines a relation between x1 and V', U'. The quantity x1 is related 
to the real and imaginary frequency shifts as 

Am, = n S  Re(xl), (6.145) 

(6.146) IAuil = - = n S  Im(xl), 

where 7 = IAuT'I is the growth rate of the instability. The stability limit is defined 
by A o i  = 0, or by the curve 

1 
7 

Im(x1) = 0 (6.147) 

in a U' versus V' stability diagram. The region inside the curve Im(x1) = 0 is 
stable and the region outside it is unstable. Figure 6.19 shows these curves for 



several distributions f ( x )  investigated by Ruggiero and Vaccaro [43]. For high- 
energy accelerators, where 'yo * 1 and where the space-charge impedance is small 
compared to the reactive part of the wall impedance (i.e., X, 4 lX,l, or lZ,l 4 
lZil I), one can establish a very conservative stability criterion by approximating the 
stability limit Im(x1) = 0 with a circle that fits inside all these curves. Using this 
circle, shown in Figure 6.19 with dashed interior, one obtains from (6.141) the 
Keil-Schnell stability criterion [44] 

The form factor F is determined by the radius of the circle. In Figure 6.19 this 
radius is 0.6 and gives a form factor of F = 1. Relation (6.148) can be used in 
many ways. Thus it shows the absolute value of the longitudinal impedance lZllI 
divided by the harmonic number n of the perturbation that is necessary to obtain 
stability for a given beam distribution with average current f, energy 'y0mc2, and 
momentum spread (APIPo). Conversely, one can calculate the current threshold 7 
for given IZllI, (AP/Po)  and 'yo, and so on. 

Note that the effect of Landau damping is given by the momentum spread 
AP/Po. The smaller AP/Po, the smaller is the beam current that can be circulated 
in the ring. If AP/Po = 0, there is no stability, and we recover the previous cold- 
beam results where fo(E) was a delta function. 

The Keil-Schnell criterion is very conservative and deliberately underestimates 
the stability threshold to provide a margin of flexibility. As we discussed in 
Section 5.4, laboratory beams tend to have a Maxwell-Boltzmann distribution 
as represented by the curve e-x'121r' in Figure 6.19. Thus, in practice, the region 
of stability is much larger than the Keil-Schnell limit implies, especially with 
regard to the imaginary part of the impedance (U' a Z,), which can be many times 
greater than the Keil-Schnell value. In the stability diagram of Figure 6.19, which 
applies for a high-energy machine above transition, one could therefore tolerate a 
high net inductive impedance (2, = X, - X,  > 0) that exceeds the Keil-Schnell 
limit (i.e., U' > U ~ . S . )  if this were practical. Below transition, the stability curves 
in Figure 6.19 should be flipped over since the stable region in this case extends 
toward the negative U' direction where the net impedance is capacitive (Zi < 0). If 
the particle energies are not highly relativistic, as in some heavy-ion synchrotrons or 
in low-energy proton machines, the space-charge impedance may be considerably 
greater than the wall impedance (i.e., X, > IX,I) and the operating point could 
be well outside the Keil-Schnell circle in the long neck of the stable region. An 
example of this type is the beam behavior in a heavy-ion storage ring discussed by 
Hofmann (451. In high-current induction linacs, proposed as drivers for heavy-ion 
inertial fusion, one would always operate in such a space-charge-dominated regime. 
The boundaries of the stable region then depend not only on the momentum spread 
but also on the beam current or generalized perveance K. This is illustrated in 
Figures 6.20 and 6.21, which show the stability diagrams for a Gaussian momentum 
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distribution fo(p) = (,/Fapo)-' exp{-[(p - po)/apo]*} with different values of 
a and K, and with /30 = U O / C  = 0.3 and g = 2 (see Reference 36). The two axes 
correspond to the normalized resistive and reactive parts of the longitudinal wall 
impedance defined as RL = R:(Ao/&) and XL = X;(Ao/&), where A0 = 27rlh-0 
is the wavelength of the perturbation and 20 = 377 the free-space impedance. 

Finally, we note that there are many other instabilities, such as the transverse 
resistive-wall instability, and instabilities of bunched beams. However, in many 
circular accelerators the most important limits for the beam current are the space- 
charge tune shift treated in Sections 4.5.3 and 5.4.7 and the longitudinal instability. 

6.4 COLLISIONS 

6.4.1 TlmhonchEffect 

In Section 5.4.6 we showed that acce1eraL.m produces a rather dramatic cooling 
of the longitudinal beam temperature, while it leaves the transverse temperature 
in the beam frame unchanged. The beam is therefore not in three-dimensional 
thermal equilibrium. However, Coulomb collisions or other effects of a random 
nature, such as instabilities, will tend to drive the beam toward thermodynamic 
equilibrium so that the longitudinal temperature increases while the transverse 
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temperature decreases. In the final stationary state-if it could be reached-the 
temperatures in all three degrees of freedom would be the same (i.e., the beam 
would be equipartitioned). Unfortunately, the time constant for Coulomb collision 
is much too long to achieve this equilibrium state in typical linear transport channels 
or electrostatic accelerators. However, instabilities, beam mismatch, longitudinal- 
transverse coupling of the space-charge forces in bunched beams (see Appendix 4), 
and other nonlinear effects may shorten the relaxation time considerably and play 
a major role in equipartitioning. 

In this section we consider only the effects of Coulomb collisions between the 
particles in a continuous beam that propagates through a smooth focusing channel. 
We adopt the theory of Ichimaru and Rosenbluth [46] for a nonrelativistic plasma 
with initially unequal longitudinal and transverse temperatures, Ti1 and TI, confined 
by an axial magnetic field. Specifically, we consider the case where the magnetic 
field has no effect on the relaxation toward equilibrium. This relaxation is defined 
by the equation [Equation (71) in Reference 461 

(6.149) 

where the factor f is due to the fact that TII changes twice as fast as TI. The 
relaxation time r is given by the relation [Equation (76) in Reference 461 

(6.150) 

where n is the particle density, In A is the Coulomb logarithm defined in 
Equations (5.247) and (5.248), and where the effective temperature Tcff is obtained 
from the integral [Equation (77) in Reference 461 

When equilibrium is reached (T - Te4), the three temperatures are the same 
(i.e., Teff = TII = Ti = Teq). By introducing the classical 
q 2 / ( 4 m ~ m c 2 )  we can write (6.150) in the alternative form 

particle radius r, = 

(6.152) 

If we apply these relations to our case of the accelerated beam and assume 
initial temperatures of = 0 and TL0 # 0, we obtain for the effective initial 
temperature from (6.151) the relation 

1 1% -= -  
3R 

Teff.0 



or 

The initial relaxation time is then defined by 

(6.153) 

(6.154) 

If we assume that the total thermal energy in the beam is constant and given by T1o, 
then with Teq/2 for each degree of freedom, the final equilibrium temperature Teq is 

(6.155) 

With these initial 'and final conditions, the integration of Equation (6.149) and 
(6.151) using Equation (6.150) yields the temperature changes as a function of 
time shown in Figure 6.22. The parallel and perpendicular temperatures are plotted 
in units of the equilibrium temperature and the time is in units of the relaxation 
time req at equilibrium. It can be shown that T is increasing with time, reaching 
Teq = 3.2070 at the equilibrium temperature. The two curves in Figure 6.22 can 
be approximated by exponential functions as 

2 
T~~ = ~ ~ ~ ( 1  - e-3"rm ) I  (6.156b) 

Time tlr, - 
%urn 6.22. Rdaxation of t m m  and longitudinal beam tanpemh~m~ in a u n i h  locuring 
chand whm initial bihrdiml hmpaotun Tilo = 0. Tanp~mh~rw am in unih of k equilibrium 
M~OIUIUN r,, and k tim is in units of k equilibrium wlw of he rdaxotion constont T ~ .  
(Courtesy of N. &own.) 
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where the best fit is obtained with rcff = 1.3470 = 0.42rq, which correlates with 
an effective temperature of Teff = 0.373T~o = 0.56Te,. The theoretical model 
of Ichimaru and Rosenbluth has been confirmed in recent experiments with a 
nonneutral electron plasma [47]. 

Relations (6.149) to (6.156b) for a nonrelativistic plasma apply directly to a 
nonrelativistic beam propagating in a focusing channel since in this case there 
is no difference between particle densities and temperature in the beam frame 
and the laboratory frame. However, they also apply to a relativistic beam with 
nonrelativistic transverse and longitudinal velocities in the beam frame. To express 
the above relations in terms of laboratory parameters, one must use the Lorentz 
transformations n1 = yon, TI = T/yol and T I  = 707 for the density, temperature, 
and relaxation time, respectively. 

Although the same physics applies to charged particle beams as seen by an 
observer in the beam frame, the propagation time in a focusing channel of typical 
length is much shorter than the relaxation time, so that the beam will not reach 
thermal equilibrium. To illustrate this point, let us consider a 5-keV electron 
beam with a current of 200 mA launched from a thermionic cathode with radius 
rc = 6 mm and temperature ~ B T ,  = 0.1 eV and then focused by a long solenoid 
in which the beam radius is a = 0.6 mm. Since the beam is compressed by a factor 
of 10, the transverse temperature in the solenoid will be [from (5.343)] kBTLo = 
k~T,(r,/a)* = 0.1 X 102 = 10 eV. From (6.152) one obtains for electrons in the 
beam frame (or nonrelativistically in both beam and lab frame) 

For the Coulomb logarithm one obtains from Equation (5.247) 

(k~T/mc’)” 
n1n 

Since I = ena’rv, one has 

(6.157) 

(6.158) 

(6.159) 

With the given parameters and /3 = v / c  =L 0.139 one gets n = 2.65 X 10l6 m-3. 

the Coulomb logarithm, giving In A = 14.3. For the effective temperature, on the 
other hand, we choose the exponential-fit value kBTeff = 0.373k~T~o = 3.73 eV. 

Since the thermal energy remains constant in our case, we use ~ B T  = 2 J ~ B T L O  in 



With these numbers we find Teff = 2.31 X lo-’ s. The corresponding distance 
is L = uTeff = 925 m. Thus our solenoid would require a length of 925 m to 
achieve thermal equilibrium via Coulomb collisions for the 5-keV electron beam. 
One would therefore tend to conclude that Coulomb collisions play no role at 
all in conventional laboratory experiments with straight beams, short transport 
lines, or even linear accelerators. However, this conclusion is not correct. It turns 
out that even in short distances on the order of 1 m, the collisions produce a 
significant increase in the beam’s energy spread, AE. This phenomenon was first 
observed experimentally in 1954 by Boersch [48] and is since known as the Boersch 
effect. To understand this effect, let us first calculate the initial longitudinal beam 
temperature after acceleration of the above 5-keV electron beam. With an 
initial temperature of 0.1 eV at the cathode, one obtains from Equation (5.339) a 
longitudinal temperature of kBT@ = (0.1)2/2 X 5 X I d  = 1 X eV in the 
accelerated beam. Next, let us determine what the longitudinal temperature TII 
will be after the beam propagates a distance of L = 1 m in the solenoid. Using 
Teff = 2.31 X lo-’ s, t = L/u = 2.4 X lo-* s, and kBTlo = 10 eV, one finds 
from Equation (6.156b) a value of kBTII = 2.1 X eV. This implies that in the 
short distance of 1 m the longitudinal temperature has increased from 1 X eV 
by four orders of magnitude. While it is still far from equilibrium, this temperature 
is large enough to cause a significant increase in the longitudinal energy spread, 
BE. Initially, this energy spread is defined by the cathode temperature and hence 
has the value of AE, = kBT, - 0.1 eV. Acceleration does not change this energy 
spread-it changes only the temperature, the part of the kinetic energy that is 
related to the thermal motion of the particles. However, after the temperature 
increases due to the Coulomb collisions, we have from Equation (5.340) an rms 
energy spread of 

AiE = (2qVok~Tll)l~ = (2 X 5 X I d  X 2.1 X 10-2)1n = 14.5 eV.  

This represents a significant increase in the initial energy spread by a factor of 145. 
Since T a n-l, A3increases with beam density or current. As an example, doubling 
the beam current to 400 mA and leaving all other parameters the same yields a value 
of Teff = 1.1 1 X lo-’ s and a longitudinal temperature of keTL = 4.3 X eV 
at a distance of 1 m. The energy spread then increases to AE = 20.8 eV. This 
sensitivity of the energy spread with beam current was observed by Boersch in his 
original experiments, which, however, were quite different from our example here. 
Boersch measured the energy distribution as a function of beam current for a 27- 
keV focused electron beam from a thermionic cathode. The energy spread measured 
downstream from the crossover point (waist) of the beam showed anomalous 
broadening that increased with the current density at the waist. Boersch did not 
attribute this energy broadening to Coulomb collisions, which are now generally 
considered to be the cause of this effect. 

An interesting consequence of the Ebersch effect is that the longitudinal emit- 
tance increases while the transverse emittance decreases (albeit at a much smaller 
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rate). As an example, take a beam of finite longitudinal rms width, &, or a 
even number of particles occupying a slice of a continuous beam with width 
Az. The normalized longitudinal rms emittance is proportional to ( k ~  T ~ I ) ' ~  ac- 
cording to Equation (5.317). Hence, for our 5-keV electron beam it will in- 
crease by a factor of (2.1 X 10P2/1 X 1OP6)In = 145 in the 100-mA case and 
(4.3 X 10-2/1 X 10-6)'n = 207 in the 400-mA case. This is a rather significant 
effect, while the associated decrease in the transverse temperature Tl and emittance 
is relatively small. If one could reach thermodynamic equilibrium, these effects 
would be even more pronounced, and the transverse emittance would decrease to 
(3)'" = 0.816 of its initial value (i.e., by about 18.4%). However, the long relax- 
ation times make it impractical to achieve equilibrium in a straight beam. Only in 
storage rings where particles are confined for long times can Coulomb collisions 
produce full equipartitioning of a beam, as discussed in the next section. 

Before proceeding to this topic, one should note that the treatment of the Boersch 
effect given in this section is somewhat simplistic. A very thorough review that 
deals with the rather complicated physical and theoretical details can be found 
in Jansen's book (Reference 10 in Chapter 5). Thus, for example, the observed 
energy distributions may differ significantly from the Maxwellian shape assumed 
here. Furthermore, one must differentiate between the smooth uniform beam in 
the long solenoid treated here and the beam that is focused to a small waist or, 
more generally, a beam whose radius varies strongly, as in a matching section. 
In the first case (smooth beam) the total thermal energy remains constant (i.e., 
2 k ~ T l  + k~T11 = const). In the second case, however, the temperature increases 
as coherent longitudinal kinetic energy becomes thermalized in large-angle collision 
SO that 2kBTl + kgT11 # const. We pursue this point further in the next section. 

6.4.2 Intrabeam Scamring in Circular Machines 

The effects of Coulomb collisions between the particles in circular machines are 
commonly referred to in the literature as intrabeam scattering. The lifetimes of the 
beams in circular machines are much longer than in linear devices; this is especially 
true for storage rings and circular colliders, where the beams can be trapped for 
many hours. Consequently, intrabeam scattering plays an important role in these 
machines and may, in fact, impose an upper limit for the luminosity, brightness 
and beam lifetime that can be achieved. 

As we know from Section 5.4.9, the particle dynamics in a circular focusing 
lattice differs significantly from that in a linear focusing channel, and hence, the 
effects of intrabeam scattering also differ substantially. The two most important 
differences with regard to Coulomb collisions are negative-mass behavior of the 
particles in a circular machine above transition energy and dispersion. 

Let us first consider the ideal machine with a smooth-focusing lattice below 
transition and negligible dispersion. Such a machine behaves essentially like a 
linear focusing channel except that the beam goes around in a circle and that the 
current is limited by the space-charge tune shift. But even in this ideal case there 
is a subtle difference, as will be shown now. As we discussed in the preceding 
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section, the total thermal energy per particle in a smooth linear beam channel is 
conserved; that is, one has (in the beam frame as well as in the lab frame) for a 
beam with constant energy (70 - const) 

2 k ~ T l  + kBTll = const, (6.16Qa) 

or if x and y denote the two transverse directions, 

Coulomb collisions drive the beam toward an isotropic thermal equilibrium, in 
which case the three temperatures would be the same, that is, 

In view of the relations (5.270) between temperature and rms velocity spread, we 
can put the conservation law (6.160b) into the laboratory form 

- 
.yomu: + y o m q  + y&t(Au,)2 = const, (6.162) 

or in terms of the slopes x' = ux/uo, y' = uy/vo, and relative momentum spread 
APJPo = ~ ~ A u , / u o  from (5.315): 

(6.163) 

This relation holds for a straight beam. However, in a circular machine we 
must replace l / y i  in the third term on the left side of Equation (6.163) by 
- q  = l / y i  - l/y: [see Equation (5.434)], which yields 

- -  AP 
x12 + y'2 - q ( p , )  = const (6.164) 

This relationship is essentially identical to the invariant for intrabeam scattering 
derived in 1974 by Piwinski [49]. We recognize that it is just another form 
of the conservation law (6.160) for the beam temperature. However, we see 
immediately that there is a significant difference between a linear and a circular 
beam that is represented by the factor q .  For a linear beam (y i  - 00. q = -I /& 
Equation (6.164) is identical with (6.163), as expected. For a circular beam the 
behavior of the system depends on the sign of q [i.e., whether we are below 
transition (yo < 7,) or above (YO > ri)]. Below transition, q is negative, and 
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from Equation (5.437) and the discussion following Equation (5.438), we find 
that the longitudinal temperature k ~ T i i  is a positive quantity. This means that for 
the smooth, dispersion-free lattice below transition, thermal equilibrium can be 
reached. However, in the negative-mass regime above transition, q is positive and 
kBTll becomes negative. This implies that thermal equilibrium is not possible. An 
increase in momentum spread AP/Po  or negative temperature must be offset by a 
corresponding increase in the transverse temperatures to maintain the “conservation 
law” (6.160b). Physically, negative temperature means that there is a source of 
energy that continuously drives up the transverse temperature. This source is 
basically the coherent longitudinal kinetic energy of the beam, which is thermalized 
via the negative-mass effect. 

What are the consequences of the above analysis for the transverse and longitu- 
dinal emittance of the beam? First, in the linear beam case and below transition in 
the ideal circular machine, there will only be emittance change if the beam initially 
is not in three-dimensional thermal equilibrium. If, for instance, k~Tli  < keT1, as 
is usually the case, there will be longitudinal emittance growth and the transverse 
emittance may actually decrease slightly until equilibrium is reached, as discussed 
in the preceding section. Second, above transition, there will be continuous emit- 
tance growth in transverse and longitudinal directions, and equilibrium will never 
be established. 

The ideal circular machine with smooth focusing that we just described almost 
never exists in the real world, where the effects of dispersion must be taken into 
account and where the lattice is not smooth but often has a rather strong variation 
around the circumference. This variation is described by the betatron function, 
Bx(s), and the dispersion function, D,(s), and their derivatives, &(s) and D:(s). 
Without scattering, the emittance of the beam remains preserved in a dispersive 
lattice, as discussed in Section 5.4.7. However, Coulomb collisions will change a 
particle’s momentum or slope x‘, whether it is dispersed or not; that is, a particle 
having position XI = xbl + D,(AP/Po) and slope xi prior to a collision will have 
a changed slope x i  after the collision. These changes of the slopes of the particles in 
the beam distribution cause an irreversible increase in the corresponding emittance. 
The theory of intrabeam scattering by Bjorken and Mtingwa [SO] shows that the 
emittance will always grow in a lattice when the combination of lattice functions 
defined by the parameter 41 = DL - Dc&/2/3, does not vanish. This condition 
(41 # 0) is always satisfied along large fractions of the lattices of modem strong- 
focusing rings. 

In summary, the behavior of a circular machine with regard to intrabeam 
scattering (as compared with an equivalent linear transport channel of sufficient 
length) is defined by the two parameters 

1 1 q = z - - m  Yo2 (2) - ; (6.16Sa) 
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(6.165b) 

where the relation yr = $,/be used in Equation (6.165a) follows from (5.489), 
with Yt v, and bx = R/v,. Three-dimensional thermal equilibrium can be 
achieved only if q < 0 (yo < yr or &yo > &), as first shown by Piwinski 
[49], and if, in addition, 41 = 0, as pointed out by Bjorken and Mtingwa [50]. 
In principle, these two conditions can be satisfied simultaneously only in an 
ideal smooth-focusing machine below transition energy. In modern strong-focusing 
machines the condition 91 = 0 is never fully satisfied, so that in practice three- 
dimensional equilibrium is never achieved, and the six-dimensional phase-space 
volume defined by the product of the three emittances, eXeyq,  always increases. 
As mentioned in the discussion following Equation (6.164), this increase in beam 
temperature occurs at the expense of the total kinetic energy of the beam, which 
is orders of magnitude larger than the energy of the betatron and synchrotron 
oscillations. While this observation concerning the parameter 41 is correct, the 
computations for existing machines show that the contributions from 41 # 0 to 
the growth rates are almost negligibly small in many cases [51,52], so that the 
results from the simpler smooth-lattice calculations are adequate. The error made by 
neglecting 41 should be tolerable if one keeps in mind that the Coulomb logarithm 
In A is often taken to have a constant value when in fact it may vary appreciably 
and is only an approximate statistical parameter anyway. 

The theory of intrabeam scattering in circular machines is rather complicated 
mathematically. The calculation of the growth rates in each degree of freedom 
involves integration and averaging procedures that must be done by computer and 
are rather lengthy if the lattice parameter 41 is included. Besides, it appears that 
there are still significant differences between the various models that have not 
been explained in a satisfactory manner. Thus the parameter H in the theory 
of Bjorken and Mtingwa [50] is not exactly identical to Piwinski’s invariant 
[Equation (6.164)l; the slip factor q does not appear explicitly, and hence the 
fact that equilibrium cannot be achieved for yo > yr even if 41 = 0 does not 
follow from their theory. Conte and Martini [53] found that the Bjorken and 
Mtingwa model applies mainly to high-energy rings (yo 2 lo), and they revised 
this model to give more satisfactory results for low energies (yo < 10) as well. 
An excellent general review of intrabeam scattering was given by Smensen [54]. 
By using appropriate reduced variables, Stirensen showed that the computer results 
for different values of the transverse emittances and momentum spread in a given 
machine lattice can all be represented by a single universal curve. Moreover, the 
regime where the horizontal growth rate dominates is distinctly separated from the 
regime where the longitudinal growth rate dominates. 
As an example of this interesting result, Sfirensen’s universal curve for a coasting 

proton beam in the former ICE storage ring at CERN is shown in Figure 6.23. Note 
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Figun 6.33. U n i w w I  CUM for intmbwm rcotkring in the carting proton beam of the k 
ICE rbmg. at CERN. (Courtesy of A. Serenm; sea Rehnco 54.) 

that the data points shown on this plot cover a large range of rms momentum spreads 
( A P / P  in our notation) from a r -*)  on the abscissa represents the 
sum of the growth rates in the three degrees of freedom, C is the circumference of 
the ring, (Log) = In A is the average Coulomb logarithm, N is the total number 
of particles in the ring, and the €-parameters represent normalized rms values for 
the emittances (i.e., 8, in our notation). On the right side in Figure 6.23 the growth 
rate r;' for the momentum spread dominates. Here the universal curve represents 
essentially the longitudinal temperature increase of a collapsed thermal distribution, 
as in the Boersch effect. On the left side, where the horizontal growth rate 7i1 

dominates, the curve is more sensitive to the specific lattice design (see Reference 
54 for details). 

The growth rate for intrabeam scattering in high-energy circular machines can 
be written in the simple relativistic form [50] 

to 

(6.166) 

where N is the total number of particles, r the six-dimensional phase-space 
volume occupied by N, and where the function HJ depends on 'yo, the emittances 



&, gY, Z,, and the lattice parameters bx, De, &, DL, and By. The function H j  
is averaged over a lattice period and the subscript j denotes the three orthogonal 
directions [i.e., j = horizontal (x ) ,  vertical (y), and longitudinal (s)]. 

For bunched beams, N represents the number of particles in a single bunch and 
the six-dimensional volume r of the bunch is given by 

- 
P3 - APx - A?y - APZ 

r b  ( 2 ~ ) ~  AX- Ay- AZ- , 
c3 Po Po Po 

or 

(6.167a) 

(6.16%) 

For unbunched beams, N denotes the number of particles in the circumference 
2sx of the ring and I‘ is given by 

(6.168) 

The factor yo in the denominator of Equation (6.166) is due to the Lorentz 
transformation from the beam frame to the laboratory frame, which yields T = 

In the periodic-focusing systems of modern circular machines the temperature 
is not a constant, and it is customary to use the rms emittance Q - S m  and 
the six-dimensional phase-space volume r, which is invariant when scattering is 
neglected. The relaxation times are then defined by the increase of the emittances 
rather than the temperatures as in the preceding section. Thus in Equation (6.166) 
is defined as 

(time dilation) for the relaxation time in the laboratory frame. 

(6.169) 

For a smooth lattice where the nns beam width S = const, one can use the 
temperature relaxation time given by 

Since e - Bm, one has the relation 

(6.170) 

(6.171) 

that is, the emittance relaxation time T I ( € )  is a factor of 2 longer than the 
temperature relaxation time T j ( T ) .  
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It is interesting to compare the result (6.166) with Equation (6.152) for the 
case of a nonrelativistic ('yo = 1) unbunched beam in a linear smooth-focusing 
channel. For the density n one has 

N 
4sSx 6,2.rrk ' 

n =  (6.172) 

where S, = & S, = x y  denote the rms widths of the beam. Using (6.168) and 
(6.172), one obtains for the factor 1/70 in Equation (6.166), 

In comparison with (6.152), this equation exhibits the same scaling except that 
the constants are different and that in place of T:: one has the product of the 
square roots of the three temperatures. The definition (6.173) requires that the three 
temperatures not differ drastically. If one of them, say Tz, goes toward zero, as was 
the case in the Boersch effect with TII,  the growth rate 1/70 becomes infinitely large, 
which is unphysical. The problem is with the definition of the growth rate (6.170), 
which does not allow for an equilibrium to exist. If an equilibrium temperature Tcs 
can be reached, as in the ideal smooth system below transition, the relaxation time 
should be defined by 77' = (TJ - Tes)-I dT,/dt, as in Equation (6.149). 

In the theory of intrabeam scattering in circular machines the Coulomb logarithm 
In A is defined as 

r,X 

rmin 
In A = In -, (6.174) 

where rmx is taken to be the smaller of the Debye length AD or the rms beam 
width 8, and r,in is the classical impact parameter b [Equation (5.287)]. We note 
that this definition of In A differs somewhat from that given in Equations (5.286) 
to (5.289) in that the effective beam radius a in Equation (5.289) is replaced by 
the rms width 6,. However, in practice, In A is a large number between 10 and 
30 and the various definitions differ at most by a factor of 2. Usually, a constant 
value of In A 3 20 is used in the computer codes on intrabeam scattering. Despite 
the discrepancies that exist between the various models, as discussed above, the 
computational results appear to be generally within a factor of 2 or so of the 
experimental observations [50,55]. 

Finally, we want to mention a special phenomenon caused by intrabeam scat- 
tering in bunched beams which was first analyzed correctly by Touschek [56] 
and is since known as the Touschek effect. In a relativistic storage ring, Coulomb 
collisions lead to a momentum transfer from the transverse into the longitudinal 
direction that is amplified by the Lorentz factor 'yo. This is illustrated in the dia- 
gram of Figure 6.24, which is shown in SBrensen's review article [54] and can be 
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attributed to Derbenev [57]. The figures portray an elastic collision between two 
particles, as seen in the beam frame (a) and in the laboratory frame (b). While the 
total momentum in the collision is preserved, the two particles emerge from this 
collision with opposite longitudinal momentum components that are larger by the 
factor ’yo than the original transverse momentum component before the collision. If 
the longitudinal momentum acquired in such a collision is greater than the momen- 
tum acceptance of the rf bucket that keeps the beam longitudinally bunched, the two 
particles involved in such a collisions will be lost. For, after the collision process, 
the forward-scattered particle will have too much, and the backward-scattered par- 
ticle too little energy to be contained within the stable region (bucket) of the rf 
voltage acting on the beam. The net result is that the lifetime of the stored beam 
is reduced [56]. 

6.4.3 Multiple Scatbring in a Background Gar 
The collisions of the beam particles with the atoms or molecules of the residual gas 
in a vacuum tube can cause a large variety of effects, all of which depend on the 
particles’ kinetic energy. We have already treated the ionization of the gas due to 
such collisions in Section 4.6.1. Other effects are the excitation of the gas atoms or 
molecules, charge exchange between gas and beam particles, and at higher energies 
the many types of nuclear reactions whose cross sections are considerably smaller 
than the atomic effects. All of the above interactions involve energy loss of the 
beam particles and are therefore characterized as inelastic collisions. 

The most frequent events in the encounters between beam particles and gas 
molecules are, however, the elastic collisions, which change a particle’s momentum 
without energy loss. The deflections or angular scattering of the beam particles by 
such elastic multiple collisions in the gas cause an irreversible increase of the 
emittance, which is the subject of this section. 

The theoretical treatment of elastic scattering of fast particles by atoms is 
analogous to that of Coulomb scattering within a beam discussed in the two 
previous sections. It differs only in the fact that we are dealing with two particle 



538 EMlllANCE GROWTH 

species having a large relative velocity with respect to each other. For a detailed 
discussion of the subject we will refer to Jackson [A.4, Secs. 13.7 and 13.81 or 
Lawson [C.17, Secs .  5.2 and 5.31. According to the theory, a fast particle with 
momentum P = ymv and charge Ze passing an atom with nuclear charge Z8e at 
a distance defined by the impact parameter b, will experience an angular deflection 
given by the polar angle 8 in spherical coordinates. The probability that a particle 
will be deflected into a solid angle d f l  = sin 8 d8  dc$ is determined by the cross 
section for nuclear scattering, which for small angles 8 obeys the famous Rutherjord 
formula 

(6.175) 

Thus, in view of the 8-4 dependence, the probability for a small-angle deflection 
is much greater than for a large-angle deflection. As discussed by Jackson, the cross 
section will actually flatten off at small angles, and one has the more general form 

(6.176) 

where Bmjn is a cutoff angle. The mean-square angle for single scattering is 
defined by 

(6.177) 

where 8,, represents an upper bound for the scattering angle and where, according 
to Jackson, 

(6.178) 

If the beam traverses a gas region with n, atoms/m3 and length s, the particles 
will undergo multiple collisions. Since these collisions are statistically independent 
events, the central limit theorem states that the distribution in angles will be 
approximately Gaussian with a mean-square angle 82 = N,g2. N, is the number 
of collisions given by Ns = ~,u:s ,  where u: = / ( d u , / d f l )  dfl is the total cross 
section. Following Jackson, one obtains for the mean-square angle due to multiple 
scattering the result 
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which may be written in the alternative form 

(6.179b) 

Here Z, ymc2, v = P c ,  and r, denote the charge state, relativistic energy, veloc- 
ity, and classical radius of the beam particles, respectively, and Z, is the nuclear 
charge number of the gas atoms. 

The above derivation implicitly assumes that the beam enters the gas region 
with the particles having initially straight trajectories, corresponding to zem initial 
emittance. In practice, the beam has, of course, a finite initial rms emittance, and 
€!I2 defines the change of the mean-square slope according to the relation 
- 

(6.180) 

where the factor f results from the projection of the deflection angles into the 
x-s plane. The associated increase of the rms emittance P is readily calculated if 
we assume that the beam propagates through a smooth channel characterized by 
a wave number k = 1/4 = 27r/A and that the change is adiabatic. In this case 
an initially matched beam remains matched and since Z = f; = Z 2 / k  (using - 

= kf), the emittance change is given by 

(6.181) 

This result can be expressed as a differential change per unit length d$/ds along 
the distance s of propagation through the background gas as 

(6.182a) 
dZ 1 d(@)  89r z,'rc' - -  - -- = -n,- 1n(2042;1/3), 
ds 2k ds k B4Y2 

or, in terms of the normalized rms emittance Zn = PyZ, as 

(6.182b) 

For electron beams, the classical radius is r, = 2.8 X lo-'' m; for ion beams we 
can show the explicit dependence on the charge state Z and mass number A by 
expressing rc as 

Z 
rc = ATP, (6.183) 
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where r,, - 1.5 X m is the classical proton radius. In storage rings it is more 
convenient to express the emittance increase due to gas scattering as a change per 
unit time rather than unit length; that is, one has with ds/dt = u = Pc,  

(6.184) 

Since n, = a n g ,  a = atoms/molecule, we can use Equation (4.286) so that (6.184) 
may be written in the form 

(6.185) 

where B = l /k is the average betatron function. 
As an example, consider a proton beam (Z = 1, A = 1) with air as the residual 

gas in the vacuum chamber. Taking 2, = 7, a = 2 for nitrogen (Nd, we obtain 

(6.186) 

In a hypothetical proton storage ring with a radius of = 50 m, a tune of v, = 
vy = 4 (i.e., B = R/v, = 12.5). a kinetic energy of 300 MeV ( y  = 1.32, /3 = 
0.65), and a pressure of tom, the normalized rms emittance would increase at a 
rate of about 6.5 X m-rad per hour. Since emittances 
are typically in the range of a few mm-mrad, this increase would be a significant 
factor in limiting the storage time. The emittance growth would, of course, be a 
factor of 10 lower if one could operate at a background pressure of lo-'' tom. 

As can be seen from the above formulas, the emittance increase due to scattering 
is most severe at low energies. Thus, for a 50-keV proton beam ( y  = 1, /3 = 
0.01) propagating through a transport channel having a betatron function of, say, 
B = A/27r = 0.5 m and a pressure of lo-' tom, the rms emittance growth is 
1.4 X m-rad per 
meter of travel. For a short channel this is not very significant, although the rate of 
change is more than six orders of magnitude higher than in the above storage-ring 
example. 

The above formulas also show that electrons are much more strongly scattered 
than ions of the same velocity since 62 a r," a (Z/~I )~.  For the rate of emittance 
change per meter of an electron beam, one obtains with re = 2.8 X 

- 

m-rad/s, or 23 X 

m-rad/s or 1.4 X 10-2/(0.01 X 3 X lo*) = 4.7 X 

m: 

As an example, let us consider the 5-keV electron beam ( p  = 0.14, y g 1) 
discussed in Section 6.2.2, case 1 (rms matched beam). It propagated through 
a periodic solenoid channel over a distance of about s = 5.2 m. In the smooth 
approximation, the &function relates to the particles' betatron wavelength A by 
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= A/27r = S / u ,  with A = 27rS/u [Equation (6.39)J. where S = 0.136 m is 
the period length and u the phase advance with space charge. At the beginning, 
one has ui = 0.31~0 = 24" since uo = 77". and after the rapid emittance growth 
one finds from (4.147) that of = 0 . 4 3 ~ 0  = 33". Using the latter value, the aver- 
age betatron function can be approximated by B L-. 0.24 m. The average residual 
gas pressure in the beam tube was around p = 2.5 X lo-' torr (D. Kehne, pri- 
vate communication). With the above numbers and taking air (Zs = 7, a = 2) as 
the background gas, one obtains from Equation (6.187) an rms emittance increase 
of A$,, 3 3.7 X lo-' m-rad. This corresponds to an effective emittance change 
of Ac = 4Agn/j?y = 10.5 X m-rad. Adding this value to the theoretically 
predicted emittance of 101 mm-mrad [Equation (6.37b)J, one obtains E = 11 1.5 
mm-mrad, in remarkably good agreement with the measurement. Thus, gas scatter- 
ing appears to explain why the measured value of the emittance was consistently 
about 10% higher than expected in the experiment of case 1, Section 6.2.2. Gas 
scattering would, of course, also have affected the case 2 (rms mismatched beam) 
experiment described in Section 6.2.2. However, the halo formation prevented an 
accurate emittance measurement in that experiment, so that a quantitative evalu- 
ation is not possible. 

Returning now to the general discussion of gas scattering, it will be useful for 
us to make a comparison with the intrabeam Coulomb collisions treated in the 
preceding two sections. First, it should be pointed out that both mechanisms are 
elastic collision processes (i.e., the particles involved suffer no energy loss). In the 
Coulomb collisions between the beam particles we are dealing, on the one hand, 
with relaxation of initially different longitudinal and transverse temperatures toward 
thermal equilibrium. On the other hand, we have a continuous transformation of 
coherent longitudinal kinetic energy into thermal energy when an equilibrium does 
not exist. Scattering in a background gas is related to the latter case; that is, it 
is a nonequilibrium process in which the coherent, center-of-momentum energy is 
gradually convected into random, incoherent transverse motion and hence thermal 
energy. This pracess continues in principle until all coherent kinetic beam energy 
is thermalized. This extreme case occurs when the beam is stopped completely, as 
happens at high gas pressure or in a solid material. Of course, in these extreme 
cases there are also many collisions involving inelastic processes where true energy 
loss or dissipation occurs so that the kinetic energy of the beams is completely 
transformed into heat and radiation or other forms of energy. 

6.5 BEAM COOUNG METHODS IN STORAGE RINGS 

6.5.1 The Need fw Emilianee Reduction 

For many applications of charged particle accelerators, such as high-energy collid- 
em, special nuclear physics studies, short-wavelength free electron lasers, and so 
on, the inherent emittances and momentum spreads of the beams are too large to 
satisfy the experimental requirements. The best examples are the antiproton beams 
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used in high-energy proton-antiproton (pp) colliders and the positrons used in 
electron-positron (e-e') colliders. These beams of antiparticles are produced by 
bombarding special targets with primary beams of sufficiently high energy, and 
they have therefore inherently large emittances and momentum spreads. It was the 
need to reduce the phase-space volumes of the antiproton beams for successful 
high-energy collision experiments that led to the invention of electron cooling by 
Budker [58] at Novosibirsk and stochastic cooling by van der Meer and his co- 
workers 1591 at CERN. Stochastic cooling of antiprotons was instrumental in the 
discovery of the W and 2 particles (vector bosons) at CERN by Rubbia and his 
team. Electron beam cooling, on the other hand, plays an important role in a num- 
ber of lower-energy facilities, such as the storage ring at Bloomington mentioned 
in Section 6.3 (see Reference 13 at the end of Chapter 3). 

For high-energy lepton machines such as the e-e+ linear collider at SLAC, 
radiation cooling is the method of choice. In view of the very stringent emittance 
requirements for achieving high luminosity in the interaction point, both positrons 
and electrons require cooling in special damping rings before they are accelerated to 
full energy. This technique utilizes synchrotron radiation to dampen the amplitudes 
of the particles' betatron oscillations and also to reduce the longitudinal momen- 
tum spread. 

All of the three cooling methods (electron, stochastic, and radiation) require 
long interaction times that can only be achieved in storage rings over thousands 
of revolutions. A technique for rapid cooling of a beam in a straight transport line 
(rather than an expensive storage ring) has yet to be found. In the subsections below 
we discuss briefly each of the three successful methods employed in ring machines. 

6.5.2 Ekctron Cooling 

If a low-temperature electron beam is combined with a high-temperature ion beam 
traveling in the same direction and at the same speed, Coulomb collisions between 
the two particle species will lead to temperature relaxation. The electron beam will 
heat up while the ion beam cools down as the two-beam system is driven toward 
thermal equilibrium. As a result of this thermal energy exchange the emittance of 
the electron beam increases while that of the ion beam is reduced. 

In practice, the electron beam interacts with the ion beam only along a short 
straight section of length L, built into the ion storage ring, whose circumference C 
is usually much larger than L, . During each traversal of the cooling section, the ion 
beam imparts a small amount of its thermal energy to the electron beam. The latter 
is produced by an electron gun with thermionic cathode. It thus has a transverse 
temperature on the order of 0.1 eV and a longitudinal temperature that is several 
orders of magnitude lower due to acceleration, as discussed in Sections 5.4.6 and 
6.4.1. The electron beam is extracted from the cooling section after the interaction 
with the circulating ion beam and hence carries the transferred thermal energy 
from the ions out of the system. In each pass through the cooling section the ions 
encounter a fresh group of cold electrons from the gun so that, in principle, they 
could be cooled to the intrinsic electron temperature. However, intrabeam scattering 
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in the ion beam may prevent such high cooling rates to be achieved. For instance, 
if the storage ring operates in the negative-mass regime there will be a continuous 
thermalization of coherent ion-beam energy, as discussed in Section 6.4.2, which 
will tend to reduce the cooling effect of the electron beam. Likewise, if the lattice 
function 4, defined in Equation (6.165b) is not zero, there will also be a lower limit 
to the ion-beam temperature that can be reached. In either case, this limit will be 
defined by the equilibrium state in which the rate of ion temperature increase due to 
intrabeam scattering is just balanced by the cooling rate due to the interaction with 
the cold electron beam. It is found that the cooling effect can be greatly enhanced 
by providing a longitudinal magnetic field B, that confines the electrons to helical 
orbits of small radius while leaving the heavier ions essentially unaffected. 

The theory of electron cooling is, like that of intrabeam scattering, rather 
involved as there are many different regimes of operation and parameters to be taken 
into account. However, if one assumes a simple electron-ion plasma model where 
three-dimensional equilibrium can be achieved, one can derive an approximate 
relation for the relaxation time, which is analogous to Equations (6.152) and (6.173) 
and given by [60] 

(6.188) 

Here ne is the electron density, assumed to be the same as the ion density ni ,  re and 
ri are the classical electron and ion radii, FI is a constant that for a smooth focusing 
system has the value F1 = 3 / 4 6  = 0.3, and yo is the relativistic energy factor 
(identical for both beams); the electron and ion temperatures are measured in the 
beam frame. L,/C is the fraction of the storage ring occupied by the cooling 
section, and In A is the Coulomb logarithm as defined in Equations (5.247) and 
(5.248). With kBT/mc2 - kaTb,/m,C2 since kBTbi/miC2 4 kBTbc/mrC2. When 
equilibrium is reached, the two beam temperatures are the same (is., Tbi = The). 
Assuming that both beams have identical transverse cross sections, one obtains an 
emittance ratio of q / e ,  = (m,/mi)ln; that is, the ion-beam emittance would be 
considerably smaller than that of the electron beam in view of the inverse square- 
mot mass ratio. As an example, consider the electron cooling of a 200-MeV proton 
beam so that yo = 1.21 and the electron energy is about 109 keV. Assuming 
a density of tie = 1015 m-3, C / L ,  = 50, F1 = 0.3, and kBT, = 0.1 eV, one 
finds from (6.158) In A = 16.5 and from (6.188) an approximate relaxation time 
of 7, = 0.1 s. The equilibrium temperature of the protons would be kBTi 
kBT, = 0.1 eV, and the transverse emittance of the proton beam would be Qi 

0 . 0 2 ~ ~  if identical beam size is assumed. In practice, the lattice design and other 
parameters come into play, as mentioned above, which change the factor F I .  
Furthermore, Coulomb scattering between the protons in the ring works against 
the electron cooling. The final equilibrium is reached when the cooling rate due to 
the electron beam and the heating rate due to intrabeam scattering are equal, and 
the proton temperature is always higher than the 0. I-eV electron temperature. At 
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higher energies (i.e., above yo 1.25) the relaxation times become too long and 
the electron cooling systems too bulky to be practical, and the stochastic cooling 
method described in the next section is superior. 

6.5.3 Stochastic Codin# 
To obtain a conceptual understanding of stochastic cooling, let us first consider the 
radial betatron oscillation of a single particle about the ideal equilibrium orbit in the 
midplane of a storage ring. Assume that a pickup probe consisting of two electrodes 
is located at some position along the ring. One electrode is inside and the other 
outside the central orbit. If the particle trajectory coincides with the equilibrium 
orbit, there will be no betatron oscillation and no signal will be induced in the 
pickup plates. On the other hand, if the particle deviates from the equilibrium orbit 
it will perform betatron oscillations and induce an electric signal in the pickup 
probe. This signal is proportional to the displacement from the central orbit. It 
can be amplified and fed to a “kicker” consisting of two electrodes and located an 
odd number of quarter-wavelengths of the betatron oscillation downstream of the 
pickup. The kicker then provides a deflection to the particle that is proportional 
to the displacement sensed at the pickup probe and has a polarity that tends to 
reduce the betatron amplitude. The signal path between pickup and kicker must, of 
course, be sufficiently shorter than the orbital path length between the two locations 
so that the signal reaches the kicker at the same time as the particle. As this process 
is repeated during several successive revolutions, the particle gradually loses all 
its transverse energy and will move along the ideal equilibrium orbit without 
deflections. In a sense, the particle has been “cooled” and its initial transverse 
energy has been dissipated in the kicker system. 

In a real beam, there will be many particles performing betatron oscillations 
with a random distribution in phase. The signals induced in the pickup probe by the 
group of particles being sampled will, however, not cancel each other completely. 
Due to the finite number of particles and the stochastic nature of the oscillations 
there will in general be fluctuations of the sampled group’s centroid position with 
respect to the equilibrium orbit. Suppose that the number of particles in the sample 
is Nj and that the mean displacement of this group of particles from the equilibrium 
orbit at the pickup probe is f. The corresponding signal in the pickup probe will 
be amplified and fed to the kicker. There, each particle in the sample will receive a 
deflection Ax of its trajectory that is proportional to the mean displacement X at the 
pickup, say Ax = aK. Hence, after the kick, each individual particle’s displacement 
from the equilibrium orbit will be x = Xk - af, where Xk is the position before 
the kick. - The net result is that the mean square 2, and hence the rms width 
i = (x2)’2of the particle distribution after’ the kick, is reduced compared with 
the value xz before the kick. Thus, the emittance is also reduced. It can be shown 
that the change of 2 per revolution (i.e., per passage through the pickup-kicker 
system) is to good approximation given by (see, e.g., ID.10, Sec. 7.3.11) 

d? 2a - a 2 7  
dn NJ Xk - - -  (6.189) 
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The corresponding rate of emittance change is then 

(6.190) 

If rmV = C/u is the revolution time in the ring, the characteristic time constant T 

for the cooling process can be defined by 

1 dc 1 dc 1 2a - a' 
(6.191) 

Let us assume that the entire beam comprises a total number of particles N that 
are uniformly distributed around the circumference of the storage ring. If At, is 
the pulse length of the slice consisting of the N ,  particles being sampled by the 
pickup probe, then 

1 
T c dt c dn Trcv NSTrcV 
- E --- I ---- E 

A tr Ns = N -  
T E V  

and the cooling rate (6.191) may be written as 

1 1 - = - (2a - a'). 
T N A t s  

(6.192) 

(6.193) 

Thus, the time constant T for the cooling process is seen to be proportional to the 
total number of particles N and the sampling time At, and inversely proportional to 
the function 2a - a' of the signal amplification factor a. The emittance decreases 
with time t as 

where ci is the initial value prior to the onset of stochastic cooling. 
By using pickup and kicker probes with vertical as well as horizontal electrode 

configurations, one can cool the emittances of the beam in both transverse directions 
simultaneously. The above analysis applies, of course, for either direction. 

The stochastic cooling technique can also be employed to reduce the longitudinal 
momentum spread of the beam. Momentum differences are detected by the related 
difference in the revolution times or orbital frequencies. A synchronous particle 
having the ideal momentum and orbital frequency will remain unaffected. Non- 
synchronous particles will receive a longitudinal kick from an appropriately de- 
signed sensing and feedback system so that the momentum difference is reduced. 
The mathematical analysis for this longitudinal cooling technique is beyond the 
scope of our brief review of the subject. An excellent general review can be found 
in the book by Edwards and Syphers [D.10] mentioned earlier. A more compre- 
hensive treatment of the theory was given by Mohl [61], and a good introduction 
to both electron and stochastic cooling was given by Cole and Mills [62]. 
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6.5.4 Radiation Cooling 

As is well known from classical electrodynamics, a charged particle will emit 
electromagnetic radiation when it is accelerated or decelerated. If the particle 
moves on a straight path and the acceleration is in the direction of the particle’s 
velocity, as is the case in linear accelerators, the radiation effect is generally 
insignificant. By contrast, if the acceleration is perpendicular to the velocity, as 
in the bending magnets of synchrotrons and other circular accelerators, the effect 
is very pronounced. The radiated power rises strongly with the particle’s energy 
E = ymc2 as E4, and it is inversely proportional to the square of the mass. Thus, 
the radiation plays a significant role only in the case of highly relativistic electrons 
and other light particles (leptons). Indeed, in circular electron machines, synchrotron 
radiation, as the effect is known in the literature, poses an upper limit to the 
achievable energy that is in the range of about 100 GeV. On the other hand, it 
is negligible in existing high-energy hdmn colliders (protons and antiprotons) 
where the energy is below 1 TeV, although it would be significant at energies 
above 1OTeV. 

A beneficial effect of synchrotron radiation in high-energy rings is the damping 
of the amplitude of the incoherent particle oscillations about the beam centroid. This 
can be understood intuitively by considering the transverse betatron oscillations. A 
particle performing an oscillation about the equilibrium orbit has a higher energy 
and hence emits a larger amount of radiation power than the equilibrium particle. 
Synchrotron radiation is a dissipative non-Liouvillean process and thus it can be 
employed to reduce the transverse emittance and the longitudinal momentum spread 
of electron or positron beams. Radiation cooling in special damping rings, for 
instance, is a necessity in a linear e’e- collider. To achieve the desired luminosity 
at the interaction point, the transverse dimensions, and hence the emittances, of the 
two colliding beams have to be extremely small. 

Let us now take a brief look at the existing theory of synchrotron radiation and 
radiation cooling. We will not give any detailed derivations, but merely present 
and discuss the major relations that describe these effects. Following Jackson 
[A.4, Chap. 141, the power radiated by an accelerated particle of charge q can 
be expressed in the form 

!P= (6.195a) 

or, with E = ymc2 = (dP/d t )  - v [Equation (2.25)], 

P =  42y2 [ (z,’ - L( dP * v,’]. (6.195b) 
6rre0mzc3 c2 dt 

For a given applied force dP/dt  = F, this formula shows the inverse dependence 
on the square of the mass mentioned above. Furthermore, the radiated power 
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depends very strongly on the direction of the applied force relative to the particle 
velocity v. Consider first the case of a linear accelerator where the accelerating 
force FII = (dP/dt)ll is parallel to the direction of the particle velocity v. Since in 
this case (dP /d f )  - v = udP/d f ,  one obtains 

P =  (6.196a) 

(6.196b) 

where we used y2(1 - p2) = 1, dP/dt = dE/dz, and introduced the classical 
particle radius r,. 

We can compare the radiated power with the energy gain per second in the linac, 
dE/dr = (dE/dz)u, by writing the last equation in the alternative form 

P 2 r, 1 dE 
dE/dt 3 mc2 dz ’ 
-=----  (6.197) 

From this relation we can see that the radiation loss of an electron will be 
unimportant unless the rate of energy gain is on the order of mc2 = 0.511 MeV in 
a distance corresponding to the classical radius of r, = 2.82 X m (i.e., about 
1.8 X 10’‘ MeV/m). In linear accelerators, the electric field gradients, and hence 
the rates of energy gain, are severely limited by electrical breakdown and other 
effects. vpical field gradients are in the range 10 to 100 MV/m. Thus, radiation 
losses are completely negligible in linear machines. 

The situation is quite different in circular accelerators, where the Lorentz force 
FI = quB is perpendicular to the direction of motion. With d P / d f I v  the second 
term in brackets in Equation (6.195b) is zero, and the radiated power becomes 

2 
P =  q2y2 (”) = 6TeQm2c3 42y2 (FJ2. 

6ne,3m2c3 dt 

Now IdP/drl = lFll = ymu2/R = o lP l  = wpymc;  hence, 

(6.198) 

(6.199) 

where R is the radius of curvature of the particle orbit. Clearly, the radiated power 
in this case can be very high, as it increases with the fourth power of the energy, 
E. In practice, the radiation losses must be compensated by increasing the energy 
provided by the rf cavities that are located along the circumference of a circular 
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machine. Since high rf power is difficult to achieve and expensive, an energy limit 
is reached where electron synchrotrons are no longer feasible or cost-effective. 
This is the motivation for the development of linear colliders [63], where these 
radiation losses are insignificant. 

The energy loss due to synchrotron radiation per revolution of a circulating 
particle can be expressed as 

(6.200) 

where C = 27rR is the circumference, i? - C/27r the average radius of the 
equilibrium orbit, and (1/R2) represents the square of the local curvature radius 
averaged over the circumference. Most high-energy rings consist of straight sections 
and bending magnets. If the bending magnets all have the same magnetic field: so 
that the local orbit radii are the same and q b  is the fraction of the circumference 
occupied by bending magnets, then (1/R2) = ?)b(1/R2). 

In a betatron, of course, where the orbit is perfectly circular, we have 7)b = 1 and 
R = k. For highly relativistic electrons (/3 = 1) the energy loss per turn will be 

or, numerically, 

(6.201a) 

(6.201b) 

It has been shown by Richter [64] that the cost of a circular machine rises as 
the square of the energy, E2, whereas that of a linear collider is proportional to 
E. The crossover point for the two curves is near 100 GeV, and a linear collider 
becomes less expensive than a ring above this point. 

As an example, consider a 10-GeV electron synchrotron with C = 700 m and 
R = 0.8 C/27r = 90 m. According to the preceding equations, at 10 GeV, each 
electron will lose an energy of 9.83 MeV/turn. Thus the rf system must provide 
an acceleration rate of 9.83 MeV/tum to make up for the radiated power. At 
an average electron beam current f, the total rf power required to maintain the 
electron energy would be 

that is, for '-i = 10 mA one would need an rf power of 98.3 kW to maintain 
the electron energy. At higher energies and higher beam currents the rf power 
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requirements quickly become excessive, and 100 GeV is considered an upper limit 
for electron synchrotrons, as mentioned above. 

Proceeding now to the topic of radiation cooling, we first note that from 
Equation (6.200) the average power radiated by an electron can be expressed as 

where fo = u/C is the revolution frequency. It will be convenient to define the 
damping rates of the particle oscillations in terms of the characteristic time 70 in 
which a particle radiates all its energy, that is, 

E 
P 

7 0 =  =. (6.204) 

Due to the effect of momentum dispersion, D,, the horizontal particle oscillations 
in a synchrotron differ from the vertical oscillations, as discussed in Section 5.4.10. 
Likewise, the longitudinal dynamics is not the same as that in the two transverse 
directions. As a result, the radiation damping rates for the particle oscillations in 
each direction are different. A formal derivation of radiation damping was given 
by Robinson (653, who also referenced earlier work in this field. Later, Sands [66] 
presented a detailed physical discussion of the effects. More recent reviews of the 
topic can be found in the books by Lawson [C.17, Sec. 5.101 and by Edwards and 
Syphers [D.10, Secs. 8.1 to 8.31. The latter includes derivations of the key relations, 
and in the following we quote the results in the form presented by these authors. 

According to the theory, the effects of dispersion on the radiation damping rates 
of the particle oscillations amplitudes can be described by the function 

= 1' L(- D 1  + 2 $ ) d s / l C  $, 
R2 R (6.205) 

where B' is the magnetic field gradient and B = ymv/qR.  
Since the vertical motion is usually dispersion-free for all practical purposes, 

the time constant for damping of the vertical oscillation amplitudes is independent 
of the function 2) and given by 

Ty = 270. (6.206) 

The vertical betatron amplitude thus decreases exponentially as 

(6.207) 
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For the horizontal oscillations, which consist of the betatron and dispersion part 
according to Equation (5.416a), one finds a radiation damping time of 

2 
7.x = -To’ 

while the damping time for the synchrotron oscillations is given by 

2 
7, = - 

2 + PT0.  

The three time constants obey Robinson’s theorem [65], which states that 

(6.208) 

(6.209) 

(6.210) 

Thus when two of the three damping constant are known, the third can be calculated 
directly from Robinson’s relation. 

The above relations for the time constants indicate that the horizontal or longi- 
tudinal oscillation amplitudes may actually grow, rather than damp, depending on 
the value of P . Thus, one can see from Equation (6.208) that rX becomes negative, 
that is, the horizontal oscillation amplitudes will grow exponentially, when ID > 1. 
On the other hand, it follows from (6.209) that there is amplitude growth of the 
synchrotron oscillations when P < -2. The vertical motion is always damped 
since the time constant does not depend on P .  For damping to occur in all three 
degrees of freedom, P must satisfy the relation 

- 2 < D < l .  (6.211) 

For a weak-focusing machine with axial symmetry (no straight sections) like a 
betatron, one finds that 

1 - 2n 
l - n  

= -* (6.212) 

The field index n = -RB’/B must satisfy the condition 0 < n < 1 
[Equation (3.204)] to assure focusing in both transverse directions. Thus the 
vertical and horizontal. oscillation amplitudes are always damped. However, the 
synchrotron oscillations are damped only if n < 0.75, which, in practice, is 
readily achieved. 

Modem strong-focusing synchrotrons and storage rings are built with “separated- 
function” lattices, where the bending occurs in uniform-field magnets and the 
focusing in straight sections with magnetic quadruples. In these machines it is 
found that P is positive and small compared with unity, so that there is always 
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damping in all three degrees of freedom. If 2) can be neglected, one simply gets 
rx - rr = 270 and rs = TO. 

The above classical theory of radiation cooling predicts that the transverse and 
longitudinal beam temperatures and emittances would exponentially go toward zero 
with time. However, this is not the case, as the classical model must be corrected 
by taking into account the quantum mechanical description of the radiation effect. 
According to modern theory, radiation occurs in the form of discrete photon 
emission, which is essentially a stochastic process. The emission of a photon 
changes the momentum of the particle and hence the phase and amplitude of its 
oscillation about the beam centroid. According to the quantum-statistical description 
of the process there is a large spread in the photon energies emitted by the electrons 
in a beam. The photon energy w = hw is usually expressed in terms of the critical 
energy wc,  defined as 

(6.213) 
2 

wC = 5 y 3 h ~ 0 ,  

where A = h / 2 ~  = 1.0545 X lovM J-s = 6.5906 X eV-s, and wo is the 
instantaneous angular frequency of the particle motion in the circular machine. 
Figure 6.25 shows the energy distribution S(w/wc)  of the synchrotron radiation. 
The mean and mean-square values of the energy spectrum are found to be 

(6.2 14) 

(6.215) 

The random fluctuations of the emitted photon energies produce a spread of 
the particle oscillation amplitudes that leads to emittance growth for the horizontal 

d% 

Figurn 6.25. Energy spectrum of synchrotron diotion, S v y w s  o/o, = w/wc.  
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and longitudinal motion which opposes the radiation damping effect. Growth in 
the vertical direction is negligible since there is no vertical dispersion. If N ,  is the 
number of photons emitted per revolution defined by 

(6.216) 

one obtains the following differential equations for the horizontal and vertical rms 
beam widths, S,, S, and the rms energy spread Sg: 

The function 3f represents the effect of dispersion and is defined as 

3f = + 2biD,D: + BDi2. 

(6.2 1 ' I )  

(6.218) 

(6.219) 

(6.220) 

- 
3f is the average value of 3f over the closed orbit, 3, B,  9 are the 
Courant-Snyder parameters for the horizontal motion, and 3 - 0 for the ver- 
tical motion. 

The three equations (6.217) to (6.219) can readily be integrated, yielding 

Assuming that all three damping time constants are positive, we see that equilibrium 
can be reached within a few damping times (strictly speaking, as t - a). Since 
the transverse rms emittances are defined by Z, = 6:/fix [see Equation (5.334)] 
and #, = S: / f iy ,  one obtains for the normalized rms emittance 8, = y l  (in the 
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relativistic limit where /3 = 1) and the relative rms energy spread &/E the 
following equilibrium values: 

(6.224) 

r"y = 0, (6.225) 

1 
E 2 + 2) ymc2 

The constant C1 is given by 

(6.226) 

(6.227) 

Note that the vertical equilibrium emittance is approximately zero in this model. 
In reality one has to take into account other effects, such as intrabeam scattering, 
which transfers thermal energy from the transverse and longitudinal directions to 
the vertical phase space. However, even though the vertical emittance will not be 
zero, it will still remain significantly smaller than the horizontal emittance. Thus, the 
beams in electron synchrotrons always have a rectangular ribbon-like cross section 
with 8, W 8,. However, the energy distribution is Maxwellian. To illustrate the 
radiation cooling effect, let us consider the 10-GeV electron machine discussed 
earlier [following Equation (6.2Olb)J. For convenience we assume a smooth lattice 
where D: = 0 and 23 = 0. The critical energy can be written in the form 

(6.228) 

Using AE,, = 9.83 MeV and R / a  = 0.8, one obtains wc = 19.7 keV. The 
function 2 is given by 

(6.229) 

- - 
since b9 = 1, and 6 = R/v,. Taking D, - 2 m, v; = 4.8, one gets H = 0.21. 
With these values one obtains Z, = 5.36 X m-rad for the normalized rms 
emittance, 8, = & / y  = 2.7 X m-rad for the unnormalized rms emittance, 
and 6 = / E  = 8.1 X for the relative rms energy spread. In an actual machine, 
these values would, of course, differ somewhat since D: and D are not exactly 
zero. But, more important, intrabeam scattering provides coupling between the three 
degrees of freedom and may introduce additional thermal energy, as discussed in 
Section 6.4.2. 
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6.6 CONCLUDlNO REMARKS 

The topics of emittance growth, emittance preservation, and emittance reduction 
by cooling techniques discussed in this chapter are of fundamental importance for 
the design and application of advanced particle accelerators and other devices. We 
reviewed three major causes of emittance growth-beam mismatch, instabilities, 
and collisions-but our list of effects in each category is by no means complete. 

In Section 6.2 we discussed the thermodynamic concept of free energy in 
nonstationary, or mismatched, beams and its possible conversion into thermal 
energy and associated emittance increase. This topic is relatively new, as most of 
the research results obtained during the last few years have not yet been reviewed 
in other books. The emphasis in this section was on the role of space charge 
and the shape of the particle distribution. Even if a beam is rms-matched into a 
focusing channel or accelerator, emittance growth can occur if the initial density 
profile differs from that of the stationary Maxwell-Boltzmann distribution. Still, 
our analysis was limited to a symmetrical beam in transverse phase space. In some 
applications the beam cross section may be asymmetric with different rms widths 
and rms emittances in the two orthogonal directions (e.g., in a “sheet beam”) and the 
theory-both the Maxwell-Boltmann distribution as well as the emittance growth 
formalism-needs to be extended accordingly. The work by Wangler, Lapostolle, 
and Lombardi is a first step in this direction [67]. 

More research is needed to correlate the time scales for emittance growth with 
the nonlinearities due to the applied focusing forces and due to the space-charge 
density perturbations from the stationary profile. Most likely, one needs to go back 
to the Fokker-Planck equation and try to obtain a better model for the diffusion 
coefficient and relaxation rate, as attempted by Bohn [68]. 

The formation of a halo in the mismatched beam is largely unexplained. We 
know that the halo is caused by the existence of free energy and the nonlinear 
interaction of the particles with the density oscillations and fluctuations in the 
beam. Recent studies by Jameson provide some insight into the mechanisms that 
cause individual particles to gain transverse energy and to become part of the 
halo [69]: The interaction of single particles with the time-varying collective fields 
due to the plasma oscillations in the beam core may lead to a net increase of 
the transverse energy and amplitude of particle excursion. In related work, the 
origin of the halo particles in computer simulation was traced [70]. It was found 
that a large fraction of the halo consisted of particles from the outer regions of 
the beam’s phase space (i.e., their initial energy is considerably greater than the 
average energy). However, there are also many particles from the interior of the 
phase space that are kicked out, gaining sufficient energy to become part of the halo. 
Because of the stochastical nature of the interaction, such tracking of individual 
particles may not provide the definitive explanation of the halo effect. Why does 
some fraction of the available free energy increase the temperature of the beam 
core while the rest goes into the nonthermal high-energy tail? Can we develop a 
model that can predict this behavior quantitatively and allow us to determine which 
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fraction of the initial mismatched particle distribution and/or free energy ends up in 
the halo? Does one reach a final steady state with a thermal beam core surrounded 
by a halo? Can the halo be removed by appropriately placed aperture plates without 
disturbing the stationary core? There is also the problem discussed in Section 5.4.4 
that the Boltzmann density profile develops a natural Gaussian-like tail as the beam 
is accelerated to high energy even if the distribution is rms-matched adiabatically 
during the acceleration process so that no free energy is created. 

All of these questions need more research. Furthermore, our analysis in Section 
6.2 needs to be extended to the longitudinal direction of bunched beams where 
nonstationary line-charge density profiles, mismatch, and off-centering lead to 
longitudinal emittance growth and halo formation, just as in the transverse phase 
planes. The situation may even be worse than in the transverse case because 
of the highly nonlinear nature of the longitudinal forces in the buckets of rf 
accelerators. Ultimately, the goal must be to understand fully the behavior of 
the three-dimensional particle distribution with space charge when free energy 
is created that increases the beam’s temperature and its three-dimensional phase- 
space volume. This relates also to the problem of equipartitioning discussed in 
Appendix 4. 

In Section 6.3 we limited our discussion essentially to three topics. The first 
was the transverse instabilities caused by the resonant interaction between density 
perturbations oscillating with the plasma frequency and focusing forces in a periodic 
channel. These instabilities in space-charge-dominated beams are closely related to 
the emittance growth effects discussed in Section 6.2. 
Our second topic was concerned with the nature and behavior of longitudinal 

space-charge waves, which are created by perturbations of a beam’s line charge- 
density profile. Space-charge waves play the key role in the physics of longitudinal 
instabilities, which are the cause of beam degradation and emittance growth. As our 
third topic we chose the longitudinal instability that is created by the interaction of 
the slow space-charge wave with an external circuit (e.g.. resistive wall) in a linear 
channel. In view of the general importance of circular accelerators and for historical 
reasons, we extended this discussion in Section 6.3.3 to circular machines. There 
the negutive-mass instability is of particular interest since it occurs as a result of the 
particle dynamics in the negative-mass regime above transition energy discussed 
in Section 5.4.9. 

These two examples of longitudinal beam instability were intended to serve as an 
illustration and introduction into the topic. An excellent, comprehensive treatment 
of collective instabilities in high-energy accelerators is given in the book by Chao 
[D.1 11. At high, relativistic particle energies the long-wavelength electrostatic 
model that we used in our analysis of space-charge waves and instabilities is 
no longer sufficient. A fully electromagnetic treatment is required in which the 
wakefields created by bunched beams or by perturbations in unbunched beams are 
taken into account. These wakefields act back on the beam and cause transverse 
and longitudinal instabilities which depend on the transverse and longitudinal 
impedances ZL(w) and Zll(w) of the beam’s enviroment which are functions of 
the frequency w .  The mathematical treatment of these wakefield effects is quite 
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complicated and requires a mixture of analysis and simulation. We will not attempt 
to go any further into this highly specialized topic, which is treated in great depth 
and detail by Chao. The book by Edwards and Syphers provides a good elementary 
introduction into the topic of wakefields, impedances, and instabilities in high- 
energy accelerators [D.10, Chap. 61. A more general and excellent review of waves 
and instabilities in charged-particle beams can be found in Lawson’s book [C.17, 
Chap. 61. 

The third category of effects causing emittance growth, Coulomb collisions 
between particles in the beam or between beam particles and a background gas, 
was reviewed in Section 6.4. Our treatment of collisions in Section 6.4.1 (Boersch 
effect) is new. We applied the theory of Ichimara and Rosenbluth for a stationary, 
nonrelativistic, magnetically confined plasma to a charged particle beam in a 
uniform focusing channel. The beam’s longitudinal temperature TII was assumed to 
be much lower than the transverse temperature TL, due to cooling by acceleration. 
Historically, the Boersch effect was observed in a focused electron beam where 
the transverse temperature TL increases with distance, reaching a maximum at 
the crossover point (waist). The theoretical treatments of the collisions in such 
a focused beam, reviewed in Jansen’s book (see Reference 9 in Chapter 5), are 
rather involved, and scaling with physical parameters is not readily apparent. Our 
treatment, on the other hand, yields a relatively simple analytical relation for growth 
rate and parameter scaling. The numerical examples show that the temperature 
relaxation can increase the longitudinal energy spread by two orders of magnitude 
in short distances of 1 m even though the beam is far from thermal equilibrium. 
This result is in good agreement with Boersch’s observations for a focused beam. 
A comparison of the results from our uniform-beam model with those from the 
models for a focused beam would be very interesting. Our results indicate that 
significant broadening of the energy spread should occur not only in the crossover 
point of a strongly focused beam, but also in the more smoothly focused beams 
of electrostatic accelerators, low-energy beam transport systems, induction linacs, 
and even in rf linacs, where, however, it may be masked by the energy spread 
due to bunching. 

Our review of intrabeam scattering in circular machines (Section 6.4.2) provided 
some new insight by emphasizing the thermodynamic aspects (i.e., the relationships 
between momentum spreads and temperatures in the three degrees of freedom). 
Theoretically, thermal equilibrium is possible in a smooth channel with zero 
dispersion below transition energy, but no equilibrium exsits in the negative- 
mass regime above transition. In practice, nonzero dispersion and the variations of 
the betatron function along the circumference contribute additional energy, which 
prevents the attainment of equilibrium below transition as well. As in the negative- 
mass regime, this additional energy is due to thermalization of longitudinal kinetic 
energy of the beam (see our discussion in Section 5.4.12). However, the effect 
appears to be rather small in most cases studied, so that the simple smooth-focusing 
models should be adequate to calculate the growth rates. We found it somewhat 
puzzling that the more sophisticated computer models do not distinguish explicitly 



between the two fundamentally different regimes above and below transition. 
Clarification of this puzzle would be highly desirable. 

Our review of gas scattering in Section 6.4.3 and beam cooling methods in 
Section 6.5 follows the standard treatment found in the literature, except for some 
changes in notation to maintain consistency with that in other sections of the book. 

With regard to our discussion of emittance growth in this chapter, we have 
selected those effects that are fundamental to most beams, but we emphasized the 
role of space charge and the thermodynamic concept of free energy. We did not 
discuss many effects that are unique to a particular device, such as the instabilities 
in high-energy accelerators (except for the longitudinal instability. Other examples 
of this type are the special emittance preservation requirements in future linear 
colliders [71], synchrotron light sources, free-electron lasers [72], and inverse free 
electron laser applications [73]. 

For linear colliders, free electron lasers and other applications, the development 
of new electron guns with higher current density and brightness that can be achieved 
with thermionic cathodes is of great importance. The rf photocathode gun, also 
known as the laser-driven rfelectron gun, mentioned in Section 3.1 is the leading 
candidate, with research and developmental work in progress at several laboratories 
(see References 3-5 in Chapter 1). Emittance growth in the high-density electron 
bunches produced by these rf guns is a major concern and we will present a brief 
general discussion of this problem in Appendix 5. 

Finally, we want to mention that the emittance growth of beams in drift space, 
a special topic that was not treated in this book, was studied by Lee el al. [74], 
Wangler [75], and Noble [76]. An expanding or converging beam is of course not 
in thermal equilibrium as the temperature decreases or increases, respectively. If 
the particle density deviates from the ideal Boltrmann profile, emittance growth 
occurs, and this can be significantly stronger than in the uniformly focused beams 
discussed in Section 6.2. This applies not only to the continuous or long beams that 
have been studied so far, but also to bunched beams which, to our knowledge, have 
not yet been the subject of systematic theoretical and experimental investigations. 
This topic, which is of great importance for the behavior of beams in the various 
matching sections of accelerator systems and in final focusing of the beams, 
deserves further research in the future. 
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PROBLEMS 

6.1 Consider a uniformly focused beam with constant particle density no, current 
I, velocity u,  and radius a inside a cylindrical drift tube of radius b. It can 
be compared with a coaxial cylindrical transmission line, where the beam 
takes the place of the solid inner conductor. 

(a) Calculate the electric and magnetic fields and the electric and magnetic 
field energies per unit length for both the beam and the equivalent 
transmission line (with the same current and “voltage”). 

(b) Calculate the capacitance Cl and inductance L; per unit length of the 
beam configuration and compare the results with C/ and inductance 
Lf for the equivalent transmission line. (Hint: Use relations between 
capacitance and inductance and the appropriate field energy.) 

6.2 The beams emerging from electron guns with thermionic cathodes (as in 
Appendix 1) often have a hollow density profile n ( r )  due to nonlinear field 
configurations in the diode or nonuniform cathode emission. Suppose that 



the density profile has the form 

where a0 is the beam radius, b the conducting tube radius, and 6 is a number 
in the range 0 < 6 < 1. Assume that the beam is injected into a linear, 
uniform focusing channel and that the equivalent uniform beam (with the 
same current Z and kinetic energy) has initial radius aj and density n = ni = 
const for r 5 ui, n = 0 for at < r < b. Calculate the following: 

(a) ai as a function of a0 and 6 
(b) ni as a function of no and 6 
(c) Electric self field E,(r) for the nonuniform beam 
(d) Electrostatic field energy per unit length, W E ,  for the nonuniform beam 
(e) Nonuniform field energy factor U/WO 
(9 Radius increase U f / U i ,  emittance growth € f / € i ,  and distance z p  = 

Ap/4 if the electron beam current is 3 kA, the kinetic energy 1.5 MeV, 
the cathode radius r, = 6 cm, the cathode temperature ~ B T  = 0.1 eV, 
the geometry factor 6 = 0.5, and the effective initial beam radius in 
the focusing channel ai = 5 cm. 

6.3 The nonstationary waterbag (WB) distribution listed in Table 5.1 has a 
nonuniform density profile of the form 

The beam radius (11 and the drift-tube radius b are constant (i.e,, independent 
of the axial coordinate 2). 

Find the electric field, E(r) and the electrostatic energy per unit length, 
WE * 
For comparison, calculate E(r) and WE for a beam with uniform 
density 

no for 0 5 r zs ao, I 0 for a0 5 r 5 b. n(r )  = 

Find the relation between nl and no, and a1 and a0 if both beams have 
the same number of particles E r  unit length (i.e., the same current) 
and the same rms radius T = (r2)ln. Show that the difference in field 
energy between the two beams is 

AWE = U = 0.0224~0, 

where wo is defined in connection with Equation (6.14). 



562 EMllTANCE GROWTH 

6.4 

6.5 
6.6 

6.7 

6.8 

6.9 

6.10 

6.11 

6.12 

Derive the relations (6.68) for the longitudinal space charge field Er, and 
(6.69a) for the g-factor in an emittance-dominated beam by applying Fara- 
day's law and Ampere's circuital law to the beam configuration shown in 
Figure 6.18. Read the discussion preceding and following these equations. 
Derive the solutions (6.86a) and (6.86b) from the relation (6.85). 
Derive the expressions for the real part RZ and the imaginary part X; of 
the transmission-line impedance 2; given in Equation (6.104). Discuss the 
dependence on o and k, draw a diagram o versus k, and show qualitatively 
the lines o ( k )  for the slow and fast space-charge waves. 
Find the solutions (6.105a) and (6.105b) from the dispersion relation 
(6.103a). 
Consider the relation (6.105a) or (6.105b) and show that an inductive 
transmission-line impedance enhances the growth rate while a capacitive 
impedance decreases the growth rate of the longitudinal instability. Under 
what conditions can the beam still be unstable (i.e., ki > 0 )  even if R i  = O? 
Consider the dispersion relations (6.124) and (6.126) for the situation where 
R, = 0. Discuss all possible combinations of q > 0, q < 0, X, > 0 (in- 
ductive wall impedance), X, < 0 (capacitive wall impedance), IX,l < 
Xr,  IX,l > X r ,  and compare the growth rates with each other and with the 
case X, = 0. 
In a beam vacuum tube with a smooth wall, the impedance Z: is determined 
by the skin effect. As long as the wall thickness is larger than the skin 
depth 6, we have a resistive (real) component and an inductive (imaginary) 
component of equal magnitude. The complex wall impedance is given by 

Here b is the radius of the vacuum tube, cr the conductivity of the wall 
material in n-'/m, and 6, the skin depth defined by 

where p is the permeability of the material in H/m. (In nonmagnetic ma- 
terials, p = p~ = 41r X lo-' H/m.) 
Evaluate the longitudinal stability of a cold 50-MeV 1-kA electron 
beam with radius a = 0.5 cm in an aluminum tube (a = 3.26 X 
lo-',/-' n-l /m) with radius b = 2.5 cm. 
Show that the dispersion relation (6.124) is identical to (6.85) when the 
transition from circular to straight beam is made. 
Using the proper definitions for the temperature in a circular machine, show 
that Equation (6.164) is identical to (6.160b). 
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6.13 Carry out the details of the derivations leading to Equation (6.52). 
6.14 Derive the equations corresponding to Equation (6.52) for the perturbations 

(ac components) of the velocity, space-charge density, and current density 
using the first-order relations 

as as 
u*c = uo- + - 

az a t ’  
as 

PlC = POG. 

Plot the real part of Jlc as a function of distance z for one instant of time 
(@r = 1) in the interval 0 5 z 5 A, = 27r/oP, and show that the first 
peak occurs at z = Ap/4. 



APPENDIX 1 
I 

Example of a 
Pierce-Type 
Electron Gun with 
Shielded Cathode 

Electron guns with magnetically shielded cathodes producing high-perveance solid 
beams are used for high-power microwave devices such as klystrons and traveling- 
wave tubes, electron linacs, and many other applications. Since the effect of 
temperature or emittance on the beam radius is negligibly small compared to the 
space-charge force, such beams can be modeled with good accuracy by the Brillouin 
laminar-flow theory discussed in Section 5.2.2 [case (a), Brillouin solid beam]. In 
most of those guns it is desirable to compress the beam radially so that it fits into 
the aperture of the rf cavity structure being employed for microwave generation or 
for acceleration of the beam. The compression is achieved by shaping the electrodes 
in the gun to introduce a focusing transverse electric field near the cathode and by 
utilizing the focusing action of the magnetic fringe field. By choosing appropriate 
electrode angles, one can obtain a transverse focusing force at the beam edge 
that either exactly balances the space-charge force to keep the radius constant or 
exceeds the space charge to obtain a converging beam (for radial compression) 
in the gun region. This concept was first proposed and examined theoretically 
by Pierce (see [C.3, Chap. XI). It is used in all modem high-perveance, solid- 
beam electron guns as well as in the design of ion sources. In the literature these 
devices are known as electron guns or ion sources with Pierce-type geometry, or 
in the electron case, simply as Pierce guns. A schematic of an electron gun with 
Pierce-type geometry producing a parallel beam is given in Figure 1.1. In this 
particular case, a mesh covers the anode hole to suppress the transverse electric 
field components, which would defocus the beam in this aperture region if the 
mesh were absent. 
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FigUr, A.l.1. (a) Elsctrod. boundaries, quipokntial cankun, and partick imjactories in a 
compmssian-iype pierr* gun; (b) quipotmtials with and without rpau chow; (c) cumnt density 
versus mdius at the waist (z - 6 cm) d Ih. beam. (cW*sy of D. Ibhne.) 



566 - EXAMPLE OF A PIERCE-TYPE ELECTRON GUN 

The electron gun employed in the beam transport experiments described in 
Section 6.2.2 and shown in Figure 6.8 represents an example of a compression- 
type Pierce gun. It is a reduced version (scale factor 1 5 )  of a SLAC-type klystron 
gun, designed with the help of W. Herrmannsfeldt and built by the Hughes Electron 
Dynamics Division in 1980. The dispenser-type cathode disk is concave and has a 
diameter of 1 inch. Beam current and voltage can be changed over a wide range, 
with 200 to 250 mA and 5 kV being typical for most experiments. The contours 
of the electrode geometry and equipotential surfaces as well as typical electron 
trajectories are shown in Figure Al.l. The potential and trajectory computations 
were performed for a 5-kV, 244-mA beam with Herrmannsfeldt’s code, which 
is widely used in electron gun and ion source design [l]. Figure Al.l(a) shows 
the equipotentials and trajectories for the full beam (244 mA). In Figure Al.l@) 
are the equipotential contours without the beam (I = 0) and with the beam 
(I = 244 mA). From the curvature of these contours one can envision the electric 
field lines, which have a focusing radial component E,  from the cathode, where E, 
is a maximum, to a distance of t - 2 cm, where E, becomes zero. In the region 
z > 2 cm of the anode aperture the radial electric field has a defocusing polarity, 
but the overall effect of the electric field in this gun is focusing, producing a 
converging beam that reaches a waist radius of about 0.6 cm at a distance of 
6 cm from the cathode. On closer inspection one finds that the focusing electric 
field is nonlinear and has a strong third-order (spherical aberration) component, 
which is typical for these electrostatic lenses. A laminar beam adjusts its density 
profile such that the transverse space-charge force exactly balances the external 
focusing force. Consequently, the beam assumes the hollow shape shown in Fig- 
ure Al.l(c), where the computed current density is plotted versus radius at the 
waist position. 

Measurements confirm these theoretical expectations and computer results [2]. 
Indeed, most electron guns with such a Pierce-type geometry produce hollow beam 
profiles. When such beams are injected into a linear focusing channel where the 
equilibrium state has a uniform density profile (in the laminar limit), emittance 
growth occurs due to conversion of free energy (see Section 6.2.2). Note that 
Problems 5.17 and 6.2 relate to this hollow-beam phenomenon. 

1. W. B. Herrmannsfeldt, “Electron Trajectory Program,” SLAC Report 226, 
November 1979. 

2. D. Kehne, “Experimental Studies of Multiple Electron Beam Merging, Mis- 
match and Emittance Growth in a Periodic Solenoid Channel,” Ph.D. Disser- 
tation, Electrical Engineering Department, University of Maryland, College 
Park, MD, April 1992. 



APPEND’X 2 
Example of 
a Magnetron 
Injection Gun 

Magnetron injection guns (MIGs) have been used successfully in a number of 
different applications, including switch tubes [ 1) and microwave sources (gyrotrons) 
[2]. For the former application, the equilibrium is essentially as described in 
this book (see Figure 5.5). For the latter application, MlGs are used to generate 
beams that give up energy in a microwave circuit via the cyclotron resonance 
instability [3]. To achieve efficient operation, the required equilibrium differs from 
the one described in this book in several ways. First, the beam is usually tenuous 
and is dominated by magnetic field effects. Second, although individual electrons 
essentially perform helical orbits, each center of gyration is sufficiently large that 
the electrons never encircle the axis. Furthermore, although some designs produce 
beams that are laminar near the cathode, all gyrotron MIG beams eventually evolve 
to a phase-mixed [4] state where the orbits cross. Finally, the emitter strips do not 
necessarily follow the magnetic flux lines. 

The electrode configuration for a high-power coaxial gyrotron MIG is shown 
in Figure A2.1. The applied axial magnetic field profile and sample ray trajec- 
tories for the beam are also indicated in the figure. The design beam voltage 
and current are 500 kV and 480 A, respectively. The average cathode radius is 
7.5 cm and its slant angle with respect to the axis is approximately 37’. The evolu- 
tion of the average ratio of the beam electron’s perpendicular to parallel velocity is 
depicted in Figure A2.2(a). When the flow has nearly reached the anode plane 
(z = 16 cm), the beam is laminar, most of the energy is in the axial motion, 
and the spread in axial velocity is nearly zero [see Figure A2.2(b)]. However, as 
the beam progresses through the increasing magnetic field, energy is adiabatically 
pumped into the perpendicular motion until the velocity ratio reaches about 
VJU, = 1.5. The average beam radius also decreases toward its final value of 
2.6 cm. Toward the end of the MIG (z Z 40 cm), the electron orbits begin to cross 
and space-charge effects fuel a spread in axial velocity. The final rms spread of 
nearly 6.5% is well in the suitable range for efficient microwave production. 
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APPEND’X 3 
FourWectors and 
Cova rian t Loren tz 
Transformations 

The four-vector covariant form of Lorentz transformations is discussed in standard 
textbooks such as Panofsky and Phillips [A. 1, Chaps. 17 and 181 or Jackson [A.4, 
Chap. 111. For convenience, we will present here a few definitions and relations 
that are relevant to our work. 

The four-momentum vector is defined as 

(A3.1) 
E 

P i  = (P,. P y .  P, ,  --) , 

where E = ymc2. The Lorentz transformation from the laboratory frame (sub- 
script I) to the beam (rest) frame (subscript b)  for a beam moving in the positive 
z-direction is given by 

where 

/ I  0 0 0 1  

(A3.2) 

(A3.3) 
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Thus 

571 

The center-of-momentum velocity of the beam measured in the laboratory frame 
is UO. and PO = U O / C ,  70 = (1 - &)-In. 

The inverse transformation from beam frame to laboratory frame is 

Plj ( Q j ) - ' P b j  ( A 3 3  

with 
/1 0 0 o \  

(A3.6) 

Hence 

Transformations of the type! (A3.2) and (A3.5) are called Lorenrz covuriunt. A 
four-vector quantity A, that transforms as Equation (A3.5) is called a cowuriunf 
four-vector. On the other hand, a quantity B' that transforms as Equation (A3.2) is 
called a contravariantfour-wect~r. By means of the relation 

B .  1 = g . .BJ  IJ 9 (A3.8) 

where 

(A3.9) 

one can define for any contravariant four-vector BJ its covariant partner Bi ,  and 
vice versa. As we can see from the form of the matrix gi,. the transformation 
(A3.8) merely changes the sign of the first three components of the four-vector. 
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The product of a contravariant four-vector and a covariant four-vector is Lorentz 
invariant. As an example, for the four-momentum one has 

p i p i  = const, 

or 

-P& - Pi, - Piz + - Eb2 = -Pi - P$ - P i  + - E: = m2c2, (A3.10) 
C2 C2 

since E2/c2 = P2 + m2c2. 
The four-vector potential AJ is composed of the three spatial components of 

the ordinary vector potential (A) and the scalar potential divided by the speed of 
light <I$ /C) :  

(A3.11) 

The four-velocity is defined as 

Its covariant partner is 

ui = ( - ~ v x ,  - ~ v y ,  -yvz, yc) ,  (A3.13) 

where y is defined in terms of the total velocity u = (u: + IJ; + .:)In as 
y = (1 - u2/c2)-IR. 

The Lorentz-invariant product uiui is 

(A3.14) 2 2 -  2 UiUi  = - y V  + y2c2 = ( -y2@ + y ) c - c  

since y2 - y 2 p 2  = 1. 
The center-of-momentum four-velocity in the beam frame is 

u; = (0, o,o, c) . (A3.15) 

The corresponding velocity in the laboratory frame is 

U/ = (Qj1-l UL = (0.0, Boyoc, yoc) , (A3.16) 

where yo = (1 - j3:)-'", PO = U O / C ,  and uo is the center-of-momentum velocity 
along the z-direction in the laboratory frame. For completeness we also present the 
four-coordinate vector, which is defined as 

x i  = ( x , y ,  z. ct )  , (A3.17) 

and which also transforms like any other four-vector, such as Pi in (A3.2) 
or (A3.5). 



APPEND'X 4 
Equipartitioning 
in High-Current rf 
Linacs 

As discussed in Section 6.3.1, collective instabilities due to coupling between the 
longitudinal and transverse direction via space-charge forces can cause emittance 
growth if the bunches in an rf linac have different longitudinal and transverse 
temperatures. This effect was first demonstrated in a theoretical study by Jameson 
[l]. Using a realistic model of a high-current deuteron rf linac and PARMILA- 
code simulation of the particle dynamics, Jameson found that significant emittance 
growth occurred when the temperatures differed and that this growth became 
negligibly small when the beam was equipartitioned. 

In related work, Hofmann analyzed the eigenmodes of an anisotropic K-V 
distribution due to coupling between two orthogonal directions [2]. He found that 
unstable collective modes occur if the tune depressions in both directions fall 
below a threshold curve that differs for each mode and depends on the ratio 
of the two particle oscillation frequencies. This analysis is consistent with the 
results obtained by Jameson, who showed that the emittance growth observed in 
his computer simulation for anisotropic beams can be correlated with Hofmann's 
coupled instabilities. 

These findings are also consistent with the thermodynamic description presented 
in this book. Most beams have different longitudinal and transverse tempera- 
tures. Various effects, such as mismatch, instabdities, and collisions, tend to drive 
the particle distribution toward three-dimensional thermal equilibrium. In space- 
chargedominated beams, the relaxation times can be very short, as discussed in 
Section 6.2. The equipartitioning effect is therefore particularly strong in high- 
current rf linacs with anisotropic temperatures. 

Theoretically, for a matched (stationary) bunch in a smooth-focusing system, the 
temperatures can be related to the rms beam widths and normalized rms emittances. 
From Equations (5.2%) and (5.317) one obtains for the ratio of the transverse 
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and longitudinal temperatures the relation 

(A4.1) 

We can express this relation also in terms of the effective normalized emittances 
cnr = 58=, = 5gnZ and the effective widths a = 62, t m  = f i Z  of the 
equivalent uniform-density ellipsoidal bunch (see Problem 5.21) as 

(A4.2) 

Alternatively, we can introduce the focusing wave numbers with space charge, k, 
and k,. Using a' = k,u and zk = kztm, we get 

G x  = Bo'YoYoG = Bo'Yokxa2, (A4.3) 

cnz = ~0~03ezzl = BOY&Z% 9 
(A4.4) 

so that Equation (A4.2) may be written in the form 

The beam is equipartitioned (Tl = TII )  when 

or, alternatively, when 

(A4.5) 

(A4.6) 

(A4.7) 

The wave numbers A, and k, depend on the beam widths a and Zm, as given in 
Equations (5.498) and (5.499), so that relation (A4.6) is more explicit than (A4.7). 
In any case, one must calculate a and Zm from the coupled envelope equations 
(5.496) and (5.497) for a given set of beam parameters. 

If the beam is space-charge dominated and the conditions mentioned in Sec- 
tion 5.4.11 are satisfied, one obtains the analytical approximations (5.506) to (5.508) 
for a, zm, and z,,,/a, which are repeated here for easy reference: 

(A4.8) 

(A4.9) 

(A4.10) 
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Using (A4.10), one can express the equipartitioning condition (A4.6) in the form 

(A4.11) 

The wave numbers k,o and k,o represent the external focusing forces in the 
transverse and longitudinal directions. They can be controlled to a certain extent 
while the emittances depend on the history of the beam. Solving (A4.11) for kd/kZ0,  
we obtain the relation 

(A4.12) 

for a space-charge-dominated beam. 
As an example, consider a high-current rf linac accelerating protons from a 

nonrelativistic initial energy of 2 MeV (yo = 1, PO = 0.065) to a relativistic 
final energy of 938 MeV (yo = 2, PO = 0.866). Assume that the normalized 
longitudinal emittance is twice as large as the normalized transverse emittance, 
so that ent/cn, = 2. To satisfy the equipartitioning conditions, the transverse and 
longitudinal focusing strengths must be designed so that k,o/k,o = a = 1.58 
at injection (2 MeV). If this beam is to remain equipartitioned and the emittance 
ratio does not change, the focusing-strength ratio must remain constant through 
the linac system to satisfy Equation (A4.12) as the energy yomc2 increases. The 
bunch size ratio has the values Zm/a = 2 at injection, Zm/a - 1.33 at yo = 1.5, 
and zm/a = 1 at full energy, in agreement with the condition (A4.6). Note that 
the bunch eccentricity zm/a becomes smaller with increasing energy and that in 
our particular example the bunch shape becomes spherical (Zm = a) at full energy 
in the lab frame. 

So far, these calculations have been rather general, and we need to examine 
whether the equipartitioning conditions for the focusing-strength ratio can in fact 
be satisfied in practice [4]. Since rf linacs employ magnetic quadruples for trans- 
verse focusing, there is, in principle, no difficulty in varying the value of k,O. On 
the other hand, one does not have much flexibility with the longitudinal focusing 
strength, which, according to Equation (5.395a), is defined by 

(A4.13) 

The synchronous phase angle 90 and the maximum electric field strength Em are 
usually fixed so that Em sin QO is constant. Consequently, k,o varies with increas- 
ing energy as 

(A4.14) 
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The preferred design method in such rf linacs is to keep the transverse phase ad- 
vance without space charge, u,~, constant. Since kxo = o,o/PoA, we then have 
the scaling 

1 
kxo a - . 

P O  
(A4.15) 

Consequently, we find for this linac design scenario that the focusing-strength ratio 
varies as 

kxo IR 3~ - a Po Yo 
kZ0 

(A4.16) 

Clearly, this variation with energy does not satisfy Equation (A4.12). The beam 
does not remain equipartitioned, the transverse temperature TL becomes higher 
than the longitudinal temperature TI[, and longitudinal emittance growth occurs, as 
observed in the computer simulation studies of Jameson [l] and more recently by 
Wangler et al. [3]. Since we have no control over the longitudinal focusing strength, 
it is clear from the above analysis that we must change the transverse focusing con- 
ditions so that the ratio k,o/k,o meets the requirements for equipartitioning. For the 
space-charge-dominated equipartitioned beam being discussed here, one finds from 
(A4.12) and (A4.14) that the transverse wave number kxo should obey the scaling 

(A4.17) 

This implies that the transverse phase advance U,O must decrease with energy as 

(A4.18) 

and not remain constant, as is usually the case in many rf linac designs. 
The required decrease with energy of the transverse focusing strength to keep 

the beam equipartitioned has the consequence that like zm, the bunch radius u 
increases along the linac. By substituting (A4.11) into (A4.8), (A4.9) , one obtains 
the relations 

(A4.19) 

(A4.20) 



for a space-charge-dominated equipartitioned linac. For a given emittance ratio and 
particle number, one then gets the scaling 

aa-- 1 1 (A4.21) m u 3  

t m  a -- 1 1 (A4.22) ?n 5 0  

k 2  Bo Yo 

k 2  Po Yo 

or, in view of (A4.14), 

In 1 0  
a a Bo Yo (A4.23) 

(A4.24) 

Thus, in the linac example above, the bunch size increases from 2 MeV to 
938 MeV by the factors 

= 2.98 
a(938 MeV) 
a(2 MeV) 

in radius and by 

in the axial length. 
The increase in beam radius is particularly troublesome. The bore radius b of the 

drift tubes is usually fixed, and one wants to maintain a safe ratio of say b/a 2 5 
to avoid particles from striking and (if the energy is high enough) activating the 
tube walls. This problem can be alleviated somewhat by making a transition at 
an appropriate energy to a linac operating at twice the frequency (i.e., half the 
wavelength) as the injector linac. 

Since the electrical breakdown threshold in rf systems increases with frequency, 
one can increase the accelerating field accordingly, and the scaling is approximately 
given by Em a (1/A)ln. Combined with the factor A in the denominator of (A4.13), 
one thus finds that kzo scales with the rf wavelength as 

1 
kzo a - ~ 3 1 4  ' (A4.25) 

so that the radius varies as 

a a Aln.  (A4.26) 
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Thus by decreasing the wavelength by a factor of 2, the increase in the bunch 
radius can be reduced to 

a(938 MeV, A/2) - 2.98 2.1 1. - - 5  

a(2 MeV,A) Jz 

The bunch length is, of course, also reduced by the factor 1/&. In such a 
scenario a bunch radius of, say, a = f i E  = 2 mtn at 2 MeV would then grow to 
a = 4.22 mm at full energy. In view of (A4.23), most of the bunch-size increase 
occurs in the low-energy part of the linac system. Thus it would be important to 
make the transition to the high-frequency linac at low enough energy that the radius 
does not exceed the above limit. In our case this transition point occurs at an energy 
of about 162 MeV. Nevertheless, it is not clear whether such a significant increase 
in bunch radius is tolerable in practice. As already mentioned, the customary 
design philosophy is to increase the transverse focusing and hence to reduce the 
radius with rising energy. Consequently, the temperature anisotropy TJTII and 
the bunch aspect ratio zm/a become larger. The price one pays is an increase 
in longitudinal emittance. For the future high-power linacs being considered, this 
conventional approach may not be acceptable, and a design of a system that is 
either equipartitioned, if this is feasible, or at least closer to thermal equilibrium 
may be required. 

In closing, we note again that the above analysis is based on three assumptions: 
(1) the bunch is perfectly matched in the transverse and longitudinal directions 
and the acceleration process is adiabatic; (2) the beam is space-charge dominated 
through the entire linac; (3) the values for the bunch aspect ratio zm/a and 
for the ratio b/a of drift-tube radius b to bunch radius a are in the range 
where the approximation g = go = 2yozm/3a for the geometry factor is valid. If 
assumption (1) is not satisfied, the free energy associated with mismatch will lead 
to emittance growth in both directions due to the space-chqe coupling forces. If 
assumptions (2) and (3) are not satisfied, the envelope equations for a and Zm must 
be solved numerically, as discussed in Section 5.4.1 1. On the other hand, if the 
effect of emittance on beam size is not negligible, so that assumption (2) is not 
met. but (1) and (3) hold, we find the approximate solutions 

(A.4.28) 

By dividing these two equations and using the equipartitioning condition (A4.6). 
one obtains a single equation that defines the parameter space for which the beam 
is in thermal equilibrium (i.e., TI = T I I )  161. Alternatively, we can solve either of 
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the two equations to get the relation for the particle number N or average current 
f = qNf  = qNc/A. Thus, we obtain from (A4.27) for the average beam current 

where lo = 4wq,mc3/q, as defined in Equation (4.17). The bunch radius a and half 
length zm are of course coupled by the two envelope equations and cannot be chosen 
independently. In the space-charge dominated case, where the emittance term in 
the bracket is negligibly small compared to unity and the current has its maximum, 
we can replace Q by zm from Equation (4.10), and use zm = poA(Apm/2a) 
[Equation (5.401)] to introduce Apm and (A4.13) for &$. This yields the relation 

(A4.30) 

If, furthermore, the beam is equipartitioned we can use (A4.12) and write this 
relation for the maximum current in the form 

(A4.31) 

Since Em a la, we get for fixed values of AQ,,, and QO, the scaling I,, oc 
A'nf l iy i (Cm/4nr ) .  If cpo and radius a are fixed, we have 7 oc A-5n X 
(poro) - ' (€nr /C , )2 ,  Apm a (A~o~o) - ' (enr /a , , ) .  Thus, the allowable maximum 
values for AQ,,, and a determine the maximum current for an equipartitioned beam. 

In the parameter regime where image forces become important, the equilibrium 
bunch shape must be determined self-consistently by numerical methods [5,6]. 
One finds, for instance, that in the zero-temperature limit the bunch assumes a 
non-ellipsoidal equilibrium boundary. This restores the linearity of the total space- 
charge forces (including images) and the balance with the applied linear forces 
that is required for the T = 0 equilibrium state while keeping the charge density 
PO constant [5].  The equivalent linear ellipsoid bunch in Section 5.4.11, and the 
parabolic line-charge model and g-factor calculations (Fig. 5.15) in Section 5.4.7 
are good approximations that can be used to determine the average (rms) bunch be- 
havior and dimensions for the general case with images and different temperatures. 
Figure A4.1 shows the self-consistent, numerically calculated Boltzmann density 
profile for a spherically symmetric, spacecharge dominated (low-temperature) 
bunch (for 'yo = 1) in thermal equilibrium (see figure for details). It illustrates 
that the uniform-density ellipsoid is a good model for such bunches. 

If thermal equilibrium is not possible within the constraints of a particular design, 
one should try to minimize the deviation and the associated emittance growth, as 
was done in the computer studies mentioned above [1,3]. In any case, our analysis 
and the relations derived in this section should serve as a useful guide for designers 
of rf linacs. 
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Figun M.l. Self-consistent three-dimensional Boltzmann density profile of a spherically symmetric 
bunch in thermal equilibrium in the space-charge dominated (low-temperature) regime with tune 
depression of k,/k,o = k , / k , o  = 0.3. The density n(r,z) and coordinator r .  z are in units of he 
density no and the radius a0 of the zero-temperature case (ideal uniform ellipsoid), respectively. 
Boundnry is at 6 = 2a0, but has no significant effect in this case. (Courtesy N. Brown.] 
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APPENDIX 

Radial Defocusing 
and Emittance 
Growth in 
Hig h-Gradient 
rf Structures 
(Example: The 
rf Photocathode 
Electron Gun) 

In Sections 1.3 and 6.6 we mentioned the laser-driven photocathode electron gun 
as a new high-brightness electron beam source for linear colliders, free electron 
lasers (FELs) and other advanced accelerator applications [l -31. 

The photocathode is located inside of a high-gradient (20-100 MV/m) rf 
resonant cavity structure operating in a TMol mode and consisting of (n -t 1/2)A/2 
cells, where n is an integer. Most rf guns are designed with n = 1 and n = 2; 
at Los Alamos the rf gun is an integral part of a high-gradient rf linac for FEL 
experiments with n = 10. Figure A5.1 shows the schematic of a two-and-a-half cell 
design, with the electron bunch and lines of force during the accelerating half-cycle 
in the first cell. The laser beam is focused on the photocathode at an angle with 

58 1 



582 -.--- RADIAL DEFOCUSING AND EMrrrANCE GROWTH 

4- -.....* .... .:.-.-.-.- . - . - -> s ,........... 
Laser 
Beam 

I I 

t c h / 4 + k - - - A / 2 d h / 2 - - - - 4  

Pigun AS.1. Schmatic of a kwrdrim if photocalhod. electron gun in a SA/4 if structure. 

respect to the cavity axis through the apertures in the rf structure from downstream 
or through a special port in the cavity wall. The timing and pulse length of the 
laser is designed to produce short electron bunches during the rising part of the 
accelerating field. Resonator frequencies are typically in the range of 0.4 to 3 GHz. 

A major problem in these rf guns is emittance growth due to rf defocusing and 
space charge. This problem was first analyzed theoretically by Kim [4] and Kim and 
Chen [5],  by McDonald [6], Sarafini [7], and others; there has also been extensive 
computer simulation work. (See Reference [3] for a review of recent studies.) 
There is, in general, reasonably good agreement between simulation and emittance 
measurements while the analytical theory tends to overestimate the emittance 
growth significantly [3]. A major reduction of emittance growth can be achieved 
by using solenoidal bcusing, first suggested by Carlston [8] and experimentally 
verified at Los Alamos (9,101. 

A more detailed description of rf guns and related ongoing research is beyond 
the scope of this book. We will instead present a brief and more general discussion 
that extends the theoretical concepts developed in Sections 5.4 (especially 5.4.7, 
5.4.8, and 5.4.11), 6.2 and Appendix 4 to the behavior of intense bunched electron 
beams in high-gradient, high-frequency rf linac structures like the one depicted in 
Figure A5.1. The situation here differs from the self-consistent treatments given in 
these preceding sections in several ways: 

1 The strong electric fields accelerate the electrons very rapidly to relativistic 
energies; the motion can in general no longer be treated as adiabatic, and 
the equations governing the beam physics must be solved numerically or by 
simulation. 

2 The radially defocusing rf forces due to the high electric fields, which we 
tacitly ignored in our preceding discussions, may cause significant emittance 
growth unless strong external magnetic focusing is applied. 
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3 Thermodynamically, the electron bunches are far from three-dimensional 
equilibrium; the drive towards an equipartitioned state via the coupled space- 
charge forces is offset by the rapid acceleration. 

4 At increasingly relativistic energies wakefield effects come into play. These 
are treated in Chao’s book (D. 1 1) and are included in the simulation codes. We 
are limiting ourselves here to electron acceleration in the rf injector systems 
(i.e., energies in the range of a few MeV). This is where space-charge effects 
are most pronounced and wakefields can be neglected. 

Let us now begin our theoretical analysis with a review of radial defocusing in 
rf fields. We will consider an axisymmetric TMol -type standing wave in a structure 
such as the one depicted in Figure A5.1. Space-charge effects will be ignored first, 
but included subsequently. Let the axial electric field be of the form 

Here s denotes the distance of travel along the system and z = s - SO will be 
used to define the relative position of a particle with respect to the bunch center, 
so, as in Section 5.4.8. Furthermore, k - 27r/A = wd/c is the wavenumber, A 
the wavelength, and w,f the radian frequency. The peak field Em(s) is essentially 
constant except near the apertures and at the exit of the cavity structure (where 
it falls to zero). From Maxwell’s equations one obtains for the radial electric and 
azimuthal magnetic field the first-order relations 

The radial force is given by 

(A5.3) 

and, using the first two equations, we obtain (with p = u / c )  

- dPr -- 9r 
dr 2 

1 W r f  cos ks cos wrft - Emk sin ks cos wrft - --BEm sin ks cos wrf t  . 
(A5.4) 

C 

By introducing the phase of the particle with regard to the rf wave, 
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we an write Equation (A5.4) in the alternative form 

I 1 
~ ( 1  + 8)  sin Q . 1 

cos ks cos(ks + Q) + 2'1 - 8)  sin(2ks + Q) - 

(A5.6) 

This equation shows that the radial momentum change depends on the phase Q with 
respect to the wave, i.e., on the relative position of a particle within the bunch. It can 
be integrated if the variation of the velocity p c  and the phase Q of the particle are 
obtained by solving independently the longitudinal momentum and phase equations, 
(5.378) and (5.376a). The form of Equation (A5.6) is sufficiently general that it can 
be applied to different types of rf systems. A detailed analysis shows that the radial 
rf forces are generally defocusing in the phase interval - 9r/2 C cp C 0 required for 
longitudinal focusing (see the discussion in Section 5.4.8). Furthermore, this effect 
is significant only in low-energy ion linacs and in the high-gradient structures of 
electron injector linacs, rf guns and bunching systems. We will limit our discussion 
to electron-beam defocusing in high-gradient structures where the electrons are 
rapidly accelerated to relativistic velocities so that /3 - 1 can be assumed. The 
term involving aE,,,/as is usually not very important in this case, and we will 
neglect it. With these assumptions we obtain from (A5.6) to good approximation 
the result 

r dPr 
dt 2 

--keE, sin Q , - =  (A5.7) 

where we introduced the electron charge (q = e). 
If 90 denotes the phase of the bunch centroid, 9 = QO + AQ the phase of any 

other particle, and if the bunch width is short compared to the rf period, we can 
express Equation (A5.7) as 

r r dP,  
dt 2 2 

-- keE, sin(cg0 + AQ) = --keE,,,[sin (PO + A Q  cos (PO]. -I 

(A5.8) 

This relation shows very clearly that the rf force is defocusing radially (sin QO C 
0) in the phase interval -9r/2 C Q C 0 where the accelerating force is rising 
with time, and furthermore, that the defocusing force depends on the particles 
relative position Acp within the bunch. Using dt = ds/u = ds/c, and assuming 
r = const, P, = 0 at s = 0, we can integrate Equation (A5.7) over the length of a 
cavity structure, say from s = 0 to s = 5A/4 in the case of Figure A5.1, and obtain 

erE, 
2c P, = - c a  9 1 9  (A5.9) 
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where p1 denotes the phase of the particle at the cavity entrance. In a more accurate 
calculation taking into account that /3 < 1 near the entrance (cathode of rf gun), 
one finds that it is better to take p1 as the phase at the cavity exit [5]. We can 
express 91 as p~ - QO + A p  and A p  = -k (s  - so) = -kz and write (A5.9) in 
terns of P x , x  in place of Pr, r. One then obtains from (A5.9) for the momentum 
difference APx = P x ( x , s )  - Px(x ,s0)  between a particle at position ( x , s )  in the 
bunch and the bunch centroid (x ,so)  the result 

eEmk 
2c 

APx = -- (sin cpo)xz. 

or 
eEmk 

2c 
AP, = -Isin polxz for 

IT 
o<ppg<- 2 '  

(A5 10a) 

(A5.10b) 

This relation for the rf defocusing effect shows the transverse-longitudinal 
coupling (xz )  that causes an undesirable increase in the effective emittance. By 
averaging over the entire particle phase-space distribution in the bunch, we obtain 
for the increase of the normalized rms emittance the expression [5] 

- N 

where Z = (z2)In denotes the longitudinal rms width of the beam and 2. A P ,  are 
the rms width and nns momentum spread in the x-direction. 

denotes the intrinsic (thermal) normalized rms emittance, we obtain for 
the total emittance in an rf gun (not including space-charge effects) 

If 

(A5.12) 

In view of the high peak fields in rf guns the effective emittance in- 
crease due to rf defocusing can be very significant. As an example, sup- 
pose that 8% = 2(kT/mc2)In = 3 X m-rad, Em = 50 MV/m, x' = 2 mm, 
Z = A/50 = 2?~/50k, po = -30". With these numbers one gets from (A5.12) an 
effective emittance increase due to rf defocusing of gnx/gk: = 4.1, which is quite 
dramatic. In practice, this effect could be much worse in view of radial beam 
expansion due to rf defocusing and space charge forces. The obvious answer is 
that the beam must be confined radially by strong magnetic focusing forces (from 
solenoid or quadruple lenses) which significantly exceed the rf defocusing forces. 
In a solenoid, for instance, the radial focusing force is given by 

eB2 - -r- dPr -- 
d t  2ym ' 

(A5.13) 
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and the ratio of the rf defocusing force and solenoidal focusing force is from 
(A5.7) with 9 = 90 and (A5.13) found to be 

For a system with Em = 50 MV/m, A = 0.015 m, I sin 90) - 0.5 and an electron 
energy of 1 MeV ( y  = 3) a magnetic field strength of B = 0.4 T makes this ratio 
less than 0.1. 

How can we now incorporate the rf defocusing and rapid acceleration in high- 
gradient structures into our self-consistent theory of bunched beams with space 
charge? In view of what has been said in points 1-4 above, the adiabatic coupled 
envelope equations of Section 5.4.11 and Appendix 4 cannot be used without 
qualification even if rf defocusing is added. We must instead turn to the more 
general envelope equations that include the effect of acceleration and rf defocusing. 
Thus, one obtains for the radial motion with ds/dt = /3oc 

mc2(yhr' + yor") , 
dP, ds dP, 
dt dr ds 

- = - - z  (A5.15) 

and hence [see Equation (4.78)] 

where the third term represents the rf defocusing effect. Using relation (5.493) for 
the perveance K, we then obtain in place of (5.494) the radial envelope equation 

For the longitudinal motion we must retain the general form (5.384) without 
the adiabatic assumption. The corresponding envelope equation replacing (5.495) 
is then 

(A5.18) 
d 2 3 2  3 gNr,  e2 
- - [Piy;%] + ~ O y O k r O z m  - - - - = 0. 
ds 2 rizf d z i  

The corresponding adiabatic equations are obtained by setting yh = 0 in (A5.17) 
and (/30yozm) 2 3 1 1 ,  f i ~ y ~ z , , ,  2 3 1 1  in (A5.18). Note that the semi-axes of the elliptical 
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bunch are related to the rms width by u = f i x ,  Zm = 6 2 ,  and the emittances 

To integrate the general coupled envelope equations we must solve simultanc- 
ously the two equations for the change of the energy yornc2 (5.379) and phase 
(po(5.376) for the beam centroid. The set of the four equations [(A5.17), (A5.18), 
(5.376). and (5.379)] determines self-consistently the bunch widths u and Zm for a 
given number of particles, N, radial and longitudinal focusing forces, emittances, rf 
structure parameters Em, A, g-factor curves (Figure 5.15 and Table 5.3). and initial 
conditions. These equations must be solved numerically. They can serve as a guide 
for computer simulation studies. More importantly, they have an advantage in that 
scaling with the various parameters is much more transparent than with simulation, 
where many runs are required to obtain such information in an empirical way. 

For the space-charge dominated beams desired in rf guns and injector linacs 
the emittance terms in (A5.17) and (A5.18) can be neglected. Furthermore, since 
the electron bunches are usually very short, so that the aspect ratio zm/a is close 
to unity or even less than unity, the free-space expression for the geometry factor 
(g = go) and the relation go = 2 yozm/3a can be used to good approximation. The 
two coupled envelope equations then take the simpler form 

by en = 5gn. 

and 

(A5.20) 

Finally, we need to discuss the problem of emittance growth if free energy is created 
due to deviations of the density profiles from the ideal Boltzmann distribution, 
beam mismatch and off-centering, or if the beam is not in three-dimensional 
thermal equilibrium. From our analysis of the Maxwell-Boltzmann distribution in 
Section 5.4 it is clear that for a space-charge dominated (i.e., low-temperature) 
bunch in a linear focusing system the uniform-density ellipsoidal bunch with 
parabolic line-charge profile is a good approximation for the stationary state. Thus, 
if the beam is launched with this shape there should be little or no emittance growth 
provided that the transverse and longitudinal temperatures do not differ too much. 
(See the discussion in Appendix 4 on equipartitioning in rf linacs when there is a 
significant difference between T,, and TL.)  

Emittance growth occurs if the three-dimensional density profile of the bunch 
deviates from the uniform ellipsoid. To obtain an upper limit for this growth one 
must determine the free energy, which is defined as the difference of the total energy 
per particle between the nonstationary (e.g.. Gaussian) and the stationary ellipsoidal 
distribution. The procedure is similar to the continuous-beam case discussed in 
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Section 6.2; but the actual calculations are more involved because of the three- 
dimensional bunch geometry. We note that the space-charge model used widely 
to explain emittance growth in rf guns relates the growth to the total rms space- 
charge forces in both directions [4,5] and not to the energy difference between the 
nonstationary and the stationary case. This explains why the theoretical predictions 
from this model always overestimate by a significant factor the emittance growth 
observed in simulation studies and experiments [3]. 

A more accurate theoretical description based on the thermalization of the field- 
energy difference U = W, - W,, between a nonlinear distribution and the linear 
uniform ellipsoidal distribution yields for a spherically symmetric bunch (z, = a) 
the approximate emittance-growth relation [ 11,121 

(A5.21) 

Here Z,,i and Znf are the initial and final normalized rrns emittances, WI = 
Q2(40moao), a0 = 8 3  is the radius of the uniform-density ellipsoid, Q = eN 
is the charge, N is the number of particles in the bunch, r, is the classical 
particle radius. For the dimensionless quantity V/Wl one finds [ll] U/W1 = 
0.308 for a Gaussian distribution and U/W1 5 0.0368 for a parabolic distribution 
n(r)  = ~ $ 1  - ( r / a ~ ) ~ ] .  When the bunches are not spherically symmetric one 
must use a more general formula (111 that also includes the emittance growth 
due to equipartitioning when the bunch is not in thermal equilibrium. As an 
example, take an electron bunch (r ,  = 2.82 X lo-” m) with N = 3 X lolo, 
3 = 3 X m-rad. From (A5.21) one 
then obtains an emittance growth of Z,,,/Qi = 9.3 for a Gaussian distribution and 
t?nf/ini = 3.4 for a parabolic distribution. 

It is obvious from the general discussion in this appendix that much more work 
is needed to obtain a better understanding of the beam physics in rf guns or high- 
current electron injector linacs and to explain the empirical scaling of emittance 
growth with beam current deduced from experimental observations [lo]. Only 
when this is accomplished and the parametric dependences are apparent can one 
determine the ultimate fundamental limits to the particle number per bunch and to 
the achievable brightness in such devices. 

m, yo = 3 (1 MeV), gni = 3 X 
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l is t  of Frequently 
Used Symbols 

The list presented here contains those symbols that are frequently used in this book. 
Symbols that are used only within a particular context of one section are defined 
locally and not listed here. Where appropriate, the units of measurements are given 
and reference is made to the section@) and/or equation(s) where the symbol is 
discussed. 

A 
A 
A 
A 
A 

a 

a 

a 

B, B 
B 

B* 
b 
b 

C 

C C  

c, 
C 

C* 

590 

Ampere 
Atomic mass number 
Vector potential 
Trace-space area [m-rad] 
Amplitude in phase-amplitude variables [Equation (3.337); Sec- 
tion 4.4.11 
Radius of cylindrical beam 
Radius of ellipsoidal bunch (semiaxis in transverse direction) 
Semiaxis in x-direction of continuous beam with elliptical cross 
section (Section 4.5.3), also denoted by X (e.g., Section 4.5.3; 
Section 5.3.2) 
Magnetic flux density [TI 
Brightness [A/(m-rad)’] 
Normalized brightness 
Radius of conducting tube surrounding beam 
Semiaxis in y-direction of continuous beam with elliptical cross 
section (Section 4.5.3), also denoted by Y (e.g., Section 4.5.3; 
Section 5.3.2) 
Circumference of orbit in a circular accelerator 
Chromatic aberration coefficient (Section 3.4.6) 
Spherical aberration coefficient (Section 3.4.6) 
Coulomb 
Capacitance per unit length [C/m] (Problem 6.1) 
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Capacitance associated with longitudinal space-charge impedance 
[C * m] (Section 6.3.2) 
Speed of light 
Phase velocity of spacecharge wave in beam frame, also called 
“speed of sound” (Section 6.3.2) 
Electric flux density [C/m2] 
Diffusion coefficient (Section 5.4.2) 
Dispersion function [m] in circular accelerator lattice 
(Section 5.4.10) 
Distance of object (image) side principal planes from center of lens 
(Section 3.4.2, Figure 3.4) 
Electric field intensity [V/m] 
Energy 
Electron charge 
Force 
Focal length of a lens 
Particle distribution function, with variables defined locally in text 
Electric (charge) neutralization fraction of a partially charge- 
neutralized beam (Section 4.2.1; Section 4.6.2; Section 4.6.6) 
Magnetic (current) neutralization fraction of beam, e.g., electron 
beam with comoving ions (Section 4.2.3) 
Ripple factor of matched beam in a periodic focusing channel 

Geometry factor associated with the longitudinal field of bunched 
beams [Section 5.4.7, Equations (5.354) to (5.365), Figure 5.15, 
Table 5.31 or line-charge perturbations on continuous beams (Sec- 
tion 6.3.2; Section 6.3.3; Equation (6.68) and subsequent discus- 
sion]. 
Magnetic field intensity [A/m] 
Hamiltonian (Section 2.3.4) 
Planck’s constant 
Free-energy parameter (Section 6.2.1) 
Current 
AlfvCn current (Section 4.2.3) 
Space-charge current limit (Section 4.2.3) 
Characteristic current, 4.rrc0mc3/q [Equation (4.17)] 

Current density [A/m2] 
Action integral (Section 2.3.4) 
Generalized dimensionless perveance [Equation (4.24)] 

[Q. (4.15711 

J--T 
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KL 

kB 

k0 

k 

k 
k 

kl 

- 
k 

L 
L 

1 

M 

m 

m* 

N 
NL 
N 
n 

n 
P 

PO 

P 

P 
Pe 

Longitudinal perveance parameter [m], (Section 5.4.8) 
Boltzmann’s constant 
Wave number, 2slA0, associated with particle oscillations in a 
smooth focusing channel without space charge: transverse (“beta- 
tron”) oscillations (Section 4.3.2), and longitudinal (“synchrotron”) 
oscillations (Section 5.4.8; Section 5.4.9) 
Wave number, 2m/A, of particle oscillations with space charge (Sec- 
tion 4.3.2; Section 5.4.8; Section 5.4.9) 
Wave number of space charge waves (Section 6.3.2) 
Wave number of rf wave, 2 s l A  = odic. 
Intensity parameter associated with waterbag distribution [Equa- 
tion (5.171)] 
Electric and magnetic field indices in E X B fields (Section 3.6.3), 
k,,, = -n  

Average field index in sector-focusing cyclotrons (Section 3.8.4), 
k = k, = -n 

Lagrangian (Section 2.3.1) 
Length of drift space between lenses of periodic focusing channel 
(Section 3.8.3; Section 4.4) 
Inductance per unit length [H/m] (Section 6.3.2, Problem 6.1) 
Distance between object (image) side focal point and the respective 
principal planes (Section 3.4.2, Figure 3.4) 
Length of lens in “hard-edge” approximation of periodic focusing 
channel (Section 3.8.3; Section 4.4) 
Transfer matrix in a linear focusing system (Equation (3.85); 
Section 3.4.1) 

Mass of particle (Section 2.1) 

Effective mass of particle [Equations (3.625) to (3.267) in 
Section 3.6.41 
Number of particles in a bunch 
Number of particle per unit length of beam [m-’1 
Number of focusing periods in a circular accelerator iattice 
Particle density [m-3] 
Field index [Equation (3.193)] 
Momentum 
Momentum of centroid particle (Section 5.4.3; Section 5.4.6; 
Sections 5.4.8-5.4.10) 
Radiated power [Equation (6.195)] 
Canonical momentum 
Canonical angular momentum 

- - -  
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P 
Q 
4 
4 
R 

R 
R 
R 
R 

Ro 
R: 

r 

r C  

r m  
S 

- 

S 

S 

T 
T 

TL 
TI1 

t 
U 
U 
U’ 

u,  IJ 

11 

V 
V 

V’ 

Pressure [Torr] or [Pa], defined in Equation (4.286) 
Total charge of a bunch 
Charge of a particle 
Generalized coordinates (Section 2.3.1) 
Radius or envelope of uniform cyclindrical beam, also “effective 
radius” (R = &i: = 25) of beam with nonuniform density profile 
Dimensionless beam radius, rm/ro [Equation (4.30)] 
Reduced variable for radial coordinate, (/3y)lnr (Section 3.3.3) 
Orbit radius in circular accelerator 
Average orbit radius (C/2.n) in circular accelerator, C/2v 
Orbit radius of “centroid” particle in circular accelerator 
Beam tube wall resistance per unit length [n/m] [Equation (6.79)] 
Radial variable 
Classical particle radius, q2/4.n~~mc2, [Equation (5.244)] 
Envelope radius of uniform beam [Equations (4.48), (4.49)] 
Length of one period in a periodic focusing channel (Section 3.81; 
Section 4.4.1; Section 4.4.2) 
Coordinate along direction of beam propagation in curved systems 
(e.g., circular machines) for bunched beams and in some cases for 
straight focusing systems in place of z 
Longitudinal displacement of particle from equilibrium position 
due to perturbation (plasma oscillations, space-charge waves, 
Section 6.3.2) 
Kinetic energy 
Temperature, usually in the combination kBT where kB is Boltz- 
mann’s constant 
Transverse temperature of a beam 
Longitudinal temperature of a beam (in direction of propagation) 
Time 
Potential energy (Section 2.2) 
Nonuniform field energy per unit length of beam [Equation (6.14)] 
Dimensionless parameter related to imaginary part of longitudinal 
impedance in circular machines [Equation (6.143)] 
Independent principle solutions of paraxial ray equation 
(Section 3.3.3) 
Space-charge parameter [Equation (4.92)] 
Volt 
Potential on the axis of electrostatic focusing system (Section 3.3.2; 
Section 3.4.3) 
Dimensionless parameter related to real part of longitudinal 
impedance in circular machines [Equation (6.143)] 
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v ,  v 
W 
W 
W 

WO 

WO 

x, Y 

XS 

9 

Z 

Zll 

zli 

Z 

z 

Zm 

z 

Particle velocity 
Wronskian determinant of paraxial ray equation (Section 3.3.3) 

Total field energy per unit length of beam [Equations (4.67). (4.6811 

Amplitude function in a linear focusing channel; in Chapter 3 where 
beams without space charge are treated (Section 3.8.3); when space 
charge is included in beam dynamics, as in Chapter 4 and elsewhere, 
w denotes amplitude function with space charge (Section 4.4). 
Amplitude function in linear focusing channel without space charge 
in Chapter 4 and elsewhere where beam theory includes space 
charge (Section 4.4). 

Field energy parameter, wo = I2/l6neopZc2 [Equation (6.14)] 

Transverse beam envelopes in a quadrupole focusing channel 
(Section 4.4.2) 

Space-charge impedance [a] in circular accelerator 
[Equation (6.1 14)] 
Imaginary part of wall impedance [a] in circular accelerators 
[Equation (6.1 15)] 
rms width of beam density profile in transverse x-direction, i.e. 
x' = @ ) I n ;  for uniform-density beam x' = X / 2  

rms divergence defined as =  XI^)^^, where x' is the slope of a 
particle trajectory 

r m s  width of beam density profile in transverse y-direction, i.e. 
9 = 

Charge state of ion 

Longitudinal impedance [a] in circular machines [Equation (6.1 IS)] 
Longitudinal impedance per unit length [n/m] in linear accelerators 
or beam transport systems [Equation (6.102)] 

Space-charge impedance per unit length of beam [n/m] 
[Equations (6.88) to (6.94)] 
Coordinate in the direction of beam propagation for axisymmetric 
and quadrupole focusing systems (occasionally s is also used in 
place of z) 
Relative coordinate of particle in a bunch with respect to cen- 
troid position so, i.e. z = s - so (Section 5.4.6 to Section 5.4.9; 
Section 5.4.1 1) 

Longitudinal half length (semiaxis) of ellipsoidal bunch [Equa- 
tion (5.416)] 

rms width of bunch in longitudinal direction, i.e. 2 = @)In; for a 
uniform-density ellipsoidal bunch, Z = zm/a [Equation (5.41 113 

N -  

for uniform-density beam 9 = Y / 2  
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Longitudinal rms divergence defined as 7 = (?)‘I2; where z’ = 
dz/ds is the slope of the longitudinal trajectory in the frame moving 
with the bunch centroid 
Momentum compaction factor [Equation (3.256)] 
Acceptance (or admittance) of a focusing system [Equations (3.31 1). 
(3.353). (4.94)] 
Courant-Snyder (or lbiss) parameters describing trace-space el- 
lipse in linear focusing systems in Chapter 3 where beams without 
space charge are treated (Section 3.8.3); when space charge is in- 
cluded in the beam dynamics, as in Chapter 4 and elsewhere, these 
symbols denote the ellipse parameters with space charge. 
Courant-Snyder parameters without space charge in linear focusing 
systems in Chapter 4 and elsewhere where beam theory includes 
space charge. 
Amplitude (betatron) function with space charge, B = l /w2 (see w) 
Amplitude (betratron) function without space charge, 60 = l/wi 
(see wo) 
Particle velocity divided by speed of light, p = u / c  

Total energy of particle, E = Eo + T, divided by rest energy, EO = 
mc2, i.e. y = 1 + T/mc2 = (1 - /3’)-ln; also known as Lownrz 
factor 
Value of y on beam axis (Section 5.2.3), or for “center of momen- 
turn” particle [Equation (5.259)j in a beam with momentum distri- 
bution 
Value of y at beam edge (Section 5.2.3) 
Value of y at injection into beam tube (Section 5.2.3) 
Permittivity (dielectric constant) of free space: 8.854 X 
lo-** F/m L-- (1/36v) X 

Emittance in x or y direction; defined as total emittance of a K-V 
beam (uniform charge density) [Equations (3.4). (3.5c), (5.138)], 
or as the “effective emittance,” E = 42, of a nonuniform beam 
[Equation (5.206)l 
rms emittance in x or y direction [Equations (3.2a). (3.2b); 
Section 5.3.41 
Normalized emittance, defined as IF,, = Bye [Equation (3.21b)l 
Normalized rms emittance, defined as Z,, = B y e  [Equation (3.21a)l 
Longitudinal emittance of an ellipsoidal bunch with parabolic line 
charge profile (uniform volume charge density) or “effective longitu- 
dinal emittance,” ezZ‘ = 5 F z Z t ,  of a bunch with nonuniform volume 
charge density [Equations (5.416). (5.4271, (5.429)] 
Longitudinal rms emittance. 27 [Equation (5.316)] 

F/m 
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A 
A 

A 
A 
A0 

AD 

PO 
V 

VO 

VB 

P 
PL 

U 

U 

g i  

r 

Longitudinal wemittance defined in terms of the momentum 
spread: iz = ZAPJPo = yg&~ [Equations (5.3141, (5.316)l 
Normalized longitudinal rms emittance; in, = Poy& = /30yiizz~ 
in linear accelerators [Equation (5.317a)I. and i n z  = /3oyo#, = 
Poyoi,,~/lq I in circular accelerators [Equation (5.444)] 
Normalized longitudinal emittance defined as fnz = 5Cnz 

Slip factor in a circular accelerator [Equation (3.262)l 
Angular coordinate 
Focusing-strength parameter, t9 = 6 I [Equation (3.357)] 
Angle rotation in a solenoidal lens [Equations (3.140) to (3.142)] 
Focusing function [Equation (3.312)]; when space charge is included 
in beam dynamics, K and KO denote the focusing functions with and 
without space charge, respectively [Equations (4.1 1 1) to (4.1 16)] 
In A = Coulomb logarithm [Equations (5.242) to (5.248)l 
Line-charge density (Section 6.3.2), defined as p~ in Chapters 4 and 
5 
Wavelength of electromagnetic wave (Section 5.4.8) 
Wavelength of betatron oscillation with space charge (see k) 
Wavelength of betatron oscillation without space charge (see b) 
Debye length [Equation (4.111 
Permeability of free space: 47r X 

Betatron tune, betatron oscillation frequency normalized to orbital 
frequency in a circular accelerator in Chapter 3; in the context of 
beam theory that includes space charge (Chapter 4 and elsewhere), 
Y also denotes the betratron tune with space charge. 
Betatron tune without space charge in Chapter 4 and elsewhere 
where beam theory includes space charge (Section 4.5). 
Budker parameter [Equation (4.18)] 
Volume-charge density [C/m3] 
Line-charge density [C/m], defined as A in Chapter 6 
Phase advance of betatron oscillations in one period of a periodic 
focusing channel in Chapter 3 where beams without space charge 
are discussed (Section 3.8.2); when space charge is included in beam 
dynamics, as in Chapter 4 and elsewhere, u denotes phase advance 
with space charge (Section 4.4) 
Phase advance of betatron oscillations in one period of a periodic 
focusing channel withour space charge in Chapter 4 and elsewhere 
where beam theory includes space charge (Section 4.4) 
Conductivity [Equation (4.240)] 
Ionization cross section (Section 4.6.1) 
Relaxation time in Coulomb collision (Section 6.4) 

H/m 
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cp 
9 
9 

Neutralization time (Section 4.6) 
Potential [Equation (2.13)] 
Phase, in phase-amplitude variables [Equation (3.337); 
Section 4.4.11 
Phase of particle in rf field [Section 5.4.8, Equations (5.375, (5.376)] 
Magnetic flux [T/m*], [Equation (2.77)] 
Phase function in a linear focusing channel [Equation (3.337); 
Section 4.4.11 
Angular frequency (often simply referred to as “frequency”) 
Cyclotron frequency [Equation (2.81)] 
Larmor frequency [Equation (2.83)] 
Synchrotron frequency [Equation (5.395b)I; also O,O [Equa- 
tion (5.440)1 
Plasma frequency [Equation (4.2)) 
Angular frequency of rf field (Section 5.4.8) 
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Aberrations: 
chromaric. 106, 108, 437 
geometrical. 106 
spherical. 106- 107 

Acceleration: 
adiabatic, 172, 417-418 
collective, 287 
wakefield, 289 

of FODO channel, 156 
Action integrals, 35 
Admittance, see Acceptance 
Alfvtn current (or Alfitn-Lawson current), 

Alternating-gradient principle, 144, 162- 
163 

Amplitude function. 148-149, 153, 179. 
223-228, see also Betatron function; 
Courant-Snyder parameters 

maximum in FODO channel, 156 
maximum in periodic solenoid channel, 

Acceptance, 143-144, 153, 215 

6. 204-205, 310 

232 

Barber’s rule, 179 
Beam@): 

bunched. see Bunched beams 
charge-neutralized relativistic electron, 

emimcedominated, 21 7 
equivalent, see Equivalent beams 
intense relativistic elccmn (IREB). 5. 

laminar, mismatched, 331-334 
laminar. in uniform magnetic field, 306 
matched, in a FODO channel, 235-239 

203 

285, 323-331 

matched. in a periodic solenoid channel, 

matched, in a uniform channel, 213-217 
mismatched, emittance growth, 476-477, 

mismatched, in periodic channel, 240- 

mismatched, in uniform channel, 217- 

off-centered, 252-260, 477 

Beam breakup instability, 260 
Beam centroid, 252, 375 
Beam cooling: 

143, 153. 223-233 

488-491 

25 1 

218 

SpWe-chNge dominated. 217 

electron beam. 468, 542-543 
longitudinal, due to acceleration, 399-402 
radiation, 468, 542. 546-553 
stochastic. 468, 542, 544-545 

average, 436, 452 
in rf linac, 452, 579 

maximum, in rf linac, 579 
maximum, in transport channel, 215 
pcak. in ellipsoidal bunch, 448 

Beam frame. 365, 375 
Beam matching, 217, 302,453-454 
Beam radius (continuous beams): 

approximate relation in uniform (or 
smooth) channel, 385 

in drift space, 197-203 
effective. 360 
matched, average, in periodic channel, 

228 
matched, in uniform channel, 215 
rms, 359 

Beam current: 

601 
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Bennett pinch, 209 
Betatron, 54 (Problem 2.13). 116 

modified, 265 
plasma, 265 

Betatron function, 148, 153, 388, 438, 532, 
540-541, see also Amplitude function, 

Betatron oscillations, 116-121 
coherent, 252 
incoherent, 270 

Betatron tune, 11 8 
coherent, 267, 271 
forbidden values of, 170 
incoherent, 267 

Betatron wavelength, 118 
Betatron wave number, 118 
Boersch effect, 401, 468, 525-530 
Boltzmm density profile: 

longitudinal (or line-charge), 412-413 
transverse (or radial), 189. 380,383, 386 

Boltzmann equation, 366 
Boltzmann relation, 188, 340, 379 

longitudinal, for line-charge density, 403 
Brighmess. 13, 61 

average, 61 
normalized. 14. 62, 65, 389 

Brillouin beams: 
hollow, 318, 321 
solid, 317, 319 

Brillouin flow, 214, 216, 315 
Budker condition of self-focusing, 196 
Budker parameter, 195 
Bunched beams: 

approximate solutions for semi-axes, 
449-452.466 (Problem 5.20), 578 

coupled envelope equations, 449-45 1 
ellipsoidal model, 403-404.448, see also 

Ellipsoidal bunch; Parabolic bunch 
model 

half-length of ellipsoid. 403, 449-452, 
466 (Problem 5-20), 578 

image effects, see Geometry factor 
radius of ellipsoid, 403. 449-452, 466 

(Problem 5.20), 578 
Busch’s theorem, 34, 313 

Canonical angular momentum, 29 
conservation of, 33 
relation to normalized emittance, 21 1 

Canonical momentum, 28 
Center-of-momentum energy, 397 
Center-of-momentum frame, 375 

Center-of-momentum particle, 395, see also 

Central limit theorem, 372, 538 
Charge-neutralization effects: 

Beam centroid 

in intensive relativistic electron beams, 

linear beam model. 278-280 
in low-energyp and H- beams, 281-284 
in storage rings, 289 

Charge-neutralization factor, 192- 197, 206 
Charge-neutralization time, 274 
Charged-particle beam lithography, 5,  459, 

Characteristic current, 195 
Child’s law (or Child-Langmuir Law), 6, 

Chromaticity parameters, 133. 437 
Classical particle radius, 195, 370 
Collisions: 

285-289. 295-296 

46 1 

10, 45-46 

Coulomb, 364-368, 526 
elastic, 537 
inelastic. 537 

Cooling, see Beam cooling 
Conjugate momentum, see Canonical mo- 

mentum 
Conservation: 

of canonical angular momentum, 33 
of energy, 20 
of magnetic moment, 37 

Conservative systems, 19, 24, 30 
Coulomb collisions, see Collisions 
Coulomb parameter (or Coulomb logarithm), 

Courant-Snyder parameters, 148, 219 
Current neutralization, 206-207 
Cusped magnetic field, 53 
Cyclotron: 

370-371 

classical, 116- 117 
isochronous. 132. 158 
sector-focusing, 157 
superconducting, 162 

Debye length, 64, 185, 366-367 
definition of, 185 
in a relativistic beam. 186 

Debye shielding. 184, 364-368 
Debye sphere, 368 
Diamagnetic field. 324 
Differential algebra, 171 
Diode. see Planar diode 
Dispenser cathodes, 9 



Dispersion, 439 

herent 
effect on tune shift, see Tune shift, inco- 

Dispersion function, 439 
Dispersion relation: 

for longitudinal space-charge waves, 500 
for negative mass instability, 519 
for relativistic beam with trapped particles 

of opposite charge. 291-292 
for resistive wall instability, 509, 520 

conical (nonstationary), 360-361 
Gaussian, 357. 388 

Kapchinsky-Vladimirsky (K-V). 6, 61, 

Distribution: 

nonstationary, 360-361 

190, 341-347, 350-351, 448 
stability in periodic solenoid and 

stability in a uniform focusing channel, 

Maxwell-Boltunann. 188,340, 373, 379 
longitudinal, 402-403 
longitudinal for circular machines, 433 
for a relativistic beam, 372-377 
two-temperature. 378 

quadruple channels, 492-497 

492 

Maxwellian velocity, 11, 370 
microcanonical. 341 
Neuffer, 427, 448 
parabolic (nonstationary), 360 
thermal, 185- 186. 188,340, see also Dis- 

two-temperature, 378 
waterbag. 61. 352 

tribution, Maxwell-Boltzmann 

nonstationary. 360-361 
Divergence: 

effective, 59 
flow, 392 
rms. 58 
thermal, 392 

Effective divergence. 59 
Effective emittance. 59, 360, 389 
Effective width, 59 
Electrical breakdown in rf systems, 577 
Electron gun: 

Pierce-type, 7. 564-566 
rf'photocathode, 12, 581-582 
thermionic cathode. 7 

Electron microscope, 4 
Electron ring accelerator, 281 
Electrostatic analyzer, 48 

Ellipsoidal bunch: see also Bunched beams; 

longitudinal half-width, 449-45 1, 478 
Iongitudinal rms width, 412-413 
rms emittance, 450, 466 

Parabolic bunch model 

geometry factor, 405-41 1 
potential due to image charges, 404 

transverse half-width (radius), 49-45 1, 
478 

transverse rms width, 450. 466 

effective, 59, 360, 389 
and entropy, 491 
four-times rms, see Emittance, effective 
longitudinal, 395-3% 

unnormalized, 425 
normalized. 11, 62, 65 

relation to canonical angular momen- 

rms. 57, 65, 358-359, 389, see also rms 

six-times rms, 389 
unnormalized, 13 

in drift space, 557 
and equipartitioning. 498 
and free energy, 470 
in a mismatched beam. 476-477, 488- 

due to nonuniform charge distribution, 

in off-centered beams, 477 
due to rf defocusing 581, 585 
in spherical bunch, 588 
time scales of, 491 

conservation of, 20 
difference between mismatched and 

matched beam, 477 
difference between nonuniform and uni- 

form beam, 475 
free, 189, 470, 477 
of off-centered beam, 478 
rest (definition), 20 
total (kinetic and potential) average per 

total field (electric and magnetic) of bcam, 

transition. 131. 165. 431 
voltage-equivalent of kinetic, 70 

Emittance. 57-59 

tum, 211 

emittance 

Emittance growth. 

49 1 

475 

Energy: 

particle, 456 

207 
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Envelope equations: 
in a circular machine, 432 
coupledforabunchedbeam, 449-451.587 
in drift space, 105, 197, 203 
longitudinal, 425 
longitudinal nns, 428 
nonadiabatic for a bunched beam, 586 
in a periodic focusing system, 149, 222, 

236 
rms, 363 
in a uniform focusing system, 125,212 

fundamental modes, 242 
in-phase mode, 218, 242 
instabilities in aperiodic channel, 243 -25 1 
out-of-phase mode, 219, 242 

Equipartitioning 378, 468. 526 
and emittance growth in rf linacs, 498,573 

Equivalent beams, 184, 359, 362 
and rms emittance, 358 

Equivalent linear beam for longitudinal dis- 
tribution, 414 

Equivalent ellipsoidal model for bunched 
beams, 448 

Euler equations, 39 

Envelope oscillations due to mismatch: 

Field index, 118 
Floquet functions, 148 
Floquet’s theorem, 148 
Focal points of a lens, 80 
Focusing: 

edge, 135-136 
gas, 190, 281, 294. 468 
periodic, 139 

of intense beams, 221 
with thin lenses, 139 

strong. 144. 346 
weak, 144. 346 

Fokker-Planck equation, 368-369 
Four-coordinate vector, 572 
Four-momentum vector, 374,570 
Four-times rms emittance. 59, 389 
Four-vector potential, 374, 572 
Free electron lasers, 5-6, 557. 581 
Free energy, 189, 470 

and emittance growth, 470 
Frequency slip factor, 131, 165 

Gabor lens, see Lenses 
Gas focusing. see Focusing 
Gaussian density profile, 380 

Geometry factor or g-factor: 
definition for bunched beams, 405,408 
definition for line-charge perturbations, 

for ellipsoidal bunch in free-space, 405 
for emittance dominated beams, 505 
for space-charge dominated beams, 505 

Generalized coordinates and velocities, 23 
Generalized momenta, 28 
Generalized potential, 25 

Gyrotron 6. 567 

505 

Grids, %-98 

H- beams, 281 

Hamiltonian for relativistic particle, 33 
Hamilton’s equations, 30 
Hamilton’s variational principle, 23 
Hard-edge approximation, 231 
Harmonic oscillator, 49, 370 
Heavy-ion inertial fusion, 5. 442. 514 
Hernnannsfeldt’s code, 566 
High-voltage breakdown in ion sources, 12 

Halo, 479, 489-491, 554 

Image forces: 
in bunched beams, see Geometry factor 
effects on betatron tune. 267, see also 

in off-cented beams, 250-259 
Image formation, 83-86. 459, 461 
Immersed flow, 318 
Impact parameter, 370 
Instability: 

Tune shift 

in beams with trapped particles of oppo- 

head-tail, 438 
longitudinal microwave. 515 
negative-mass, 7. 132, 519 
in periodic focusing systems, 243-251, 

resistive-wall, 508, 510, 513-514 

site charge, 290-293 

491-498 

in circular machines, 520 
Instability stop band, 161 
Intense relativistic electron beam (IREB), 5, 

charge neutralization effects in. 285-289 
323 

Interparticle distance, 186 
lntrabeam scattering. 530-537 

emittance change by, 532 
invariant for, 53 1 
theory of, 532 
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Longitudinal equation of motion in a circular 

Lorentz factor, 16 
Lorentz force, 15 

machine, 431-432 

LorentZ CranSfOrmatiOnS, 570-572 

Ion implantation, 5 
Ionization cross sections, 273-278 

for electron and proton bcam in hydrogen 
gas, 276 

Ion propulsion, 206 
Ion shaking, 294 
Ion soutces, 9- 10 

Kapchinsky-Vladimirsky distribution, see 
Distribution, Kapchinsky-Vladimirsky 

Keil-Schnell stability criterion, 523 
Kent-Serber equations, 120 
Kinetic equation. see Vlasov equation 
Klystron. 501 

Lagrange equations of motion, 24 
Lagrange function (or Lagrangian). 23 

generalized, 25 
for nlativistic particle, 27 

Laminar flow, 45 
beams in uniform magnetic field. 306 
model, 189 

Landau damping. 294, 497, 516, 521 
Larmor frame, 73, 75 
Laser beat-wave acceleration, 289 
Laslett tune shift, see " h e  shift, Laslett 
Lattice in synchrotrons, 163 
Lenses: 

bipotential (or immersion), 88, 90-91, 

cathode, 91, 95 
einzel (or unipotential), 88, 90, 176 
electrostatic. 86 
Gabor (or space-charge). 294 
plasma, 294 

sextuple, 439 
single-aperture, 90 
solenoidal magnetic, 98- 103 

176  problem^ 3.4-3.5) 

quadrupok. 11 1 - 116 

Lie operators, 171 
Linear aperture, 215 
Linear colti&rs, 12, 294. 302 W l e m  

4.15). 546, 557. 581 
Linear induction accelerator, 5 
Linecharge density, 403, 412-413.502 

parabolic profile, 424 
of uniformly populated ellipsoid, 404 

Liouville's theorem, 62-64 
Longitudinal envelope equation in a circular 

machine, 432 

Magnetic diffusion time, 258-259 
Magnetic neutralization, 207 
Magnetron, 54 ( h b l e m  2.14) 
Magnetron injection gun, 318. 567-568 
Magnification (image), 83-86 
Mass: 

effective, 16, 130-132 
longitudinal. 17, 132 
negative, 132 
relativistic, 17 
rest, 17 
transverse, 17 

Matching, see Beam matching 
Mathieu-Hill equation. 145, 148 
Mathieu stability diagram, 169 
Maxwell's equations, 15 
Mean free path, 274 
Mechanical momentum, 16, 28-29 
Meridional plane, 74 
Meta-equilibrium state, 453 
Method of images, 267-268 
Micromachining, 5 
Mismatch, see Beams, mismatched, Enve- 

Momentum compaction factor, 130 
Momentum-energy four-vector, see Four- 

momentum vector 
Multiple scattering, 537 

lope oscillations 

edttance growth. 539-541 

Necktie diagram, 181 (Problem 3.24) 
Negative-mass instability. see Instability 
Negative mass regime, 433 
Newton's equation, 15 
Nonlinear beam optics, 2 

Non-Liouvillean injection, 442 
Nonneutral plasma, 2, 185 
Nonuniform charge distribution, see Emit- 

experimental investigation, 17 1 

tance growth 

Oscillations: 
beam mismatch, 217, 219 
betatron, see Betatron oscillations 
coherent due to injection errors and mis- 
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Oscillations (Conrinued) 
alignments, 252-260 

envelope, see Envelope oscillations 
incoherent, 252 
synchrotron, see Synchrotron oscillations 

Parabolic bunch model, 412 414, 424. see 

Parabolic line-charge density, see Parabolic 

Paraxial ray equation, 69-75 
Periodic solenoid channel, 221 -234 
Perveance, 197, 309 

generalized, 196- 197 
longitudinal, 425 
maximum, in uniform focusing channel, 

215 

also Ellipsoidal bunch 

bunch model 

hollow electron beam, 322 
solid electron beam, 320 

with/without space charge, 223 
zero current, 230 

Phase advance. 142, 152 

Phase-amplitude form of solution to Math- 

Phase shift, see Phase advance 
Phase space, 11, 49, 62 
Phase-space density, 389 
Phase stability, 165 
Photocathode rf electron gun, see Electron 

Pierce-type electron gun, see Electron gun 
Pierce-type geometry, 564 
Piwinski invariant, see Intrabeam scattering, 

invariant 
Planar diode, 7, 43-46, 54 (Problem 2.10). 

55, 462 (Problem 5.1) 
Plasma channel, 295 
Piasma frequency, 184-185, 195 
Plasma lenses, see Lenses 
Plasma wave number, 219 
Power-balance equation, 208 
Principal planes of a lens, 80-81 
Principle of least action, 37 

ieu-Hill equation. 149, 232 

gun 

Quadrupole doublets, 114 
Quadrupole lenses, see Lenses 
Quadruple triplets, 116 

Radioactive waste transmutation. 386 
Radio-frequency (rf) bucket, 418-420, see 

also Separatrix 

Radio-frequency (rf) linear accelerators (or 

Radio-frequency quadruple (RFQ) acceler- 

Random walk, 255, 372 
Relaxation time: 

rf linacs), 5, 415, 573 

ators, 6, 281 

for Coulomb collisions, 526-527 
for electron beam cooling, 543 
for intrabeam scattering, 534-535 

in circular accelerators, 166-171 
confluent and parametric in K-V beam 

Rest energies of some isotopes and ions, 22 
Richardson-Dushman equation, 8 
Rigid-rotor equilibrium, 312, 315 
Ripple factor: 

Resonances: 

instabilities, 246 

in an axisymmetric periodic focusing 
channel, 230, 233-234 

in a FODO channel, 239 
rms average dispersion, 447 
rms beam width, 358 
rms emittance. 57. 65, 358-359. 389 

normalized, 359 
normalized longitudinal, 395, 434 
total or 100%, 359 
unnormalized longitudinal, 395,434 

n n s  energy spread, 397 
rms momentum spread, 397 
Robinson’s theorem. 550 
Ruggiero-Vaccaro stability diagram, 524 
Rutherford formula, 538 

Sector magnets, 135 - 136 
Separatrix. 418-420. see also Radio- 

frequency (rf) bucket 
Sextuple lenses, see Lenses 
Shielded sowe, 315, 325 

Six-times rms emittance, 389 
Slip factor, see Frequency slip factor 
Slow-wave structure, 502 
Smooth approximation, 155, 221, 224, 339 
Space-charge current limit, 310. 328 
Space-charge impedance (longitudinal), 

Space-charge waves: 
fast and slow, 500 
growth rate of, 513. 515 
negative-energy, 502 
positive-energy. 501 

magnetically, 3 15 

510-511 



Spallation neutron sources, 386 
Stochastic cooling, see Beam cooling 
Stochastic effects. 372, 474. 554 
Stop bands, 170 
Storage rings, 369. 428 
Strong-focusing principle. see Altemating- 

Synchrocyclotrons, 157 
Synchronous particle, 394, 4 15 
Synchrotron(s), 157, 428 

Fennilab booster, 264, 442, 443 
strong-focusing. 162 

gradient principle 

Synchrotron frequency. 420 
Synchrotron oscillations, 394 
Synchrotron principle, 157 
Synchrotron radiation, 546 

energy loss, 548 
energy spectrum, 551 

Synchrotron tune with space charge, 433 

Temperature: 
beam-frame. 186, 375, 378 
laboratory, 186, 375, 378 

longitudinal, 378, 392 
transverse, 378, 392 

in a circular machine, 430-431 
cooling, due to acceleration, 399-401 
effective, 431 
negative, 431, 532 
and rms energy spread. 397 

longitudinal, 397 

relativistic definition of, 186, 375, 378 
Tevatron, 4, 19 
Theorem of adiabatic invariance, 35 
Theorem of magnetic flux conservation, 36 
Themionic cathode, 8 
Thermonuclear fusion. 5 
Thin-lens approximation, 83, 155 
Total field energy, 207 
Touschek effect, 536-537 
Trace space, 57 
area, 58, 65. 79 
ellipse 103-105, 151 

longitudinal emittance. 395 
in a betatron-type field, 121 -123 

Tracking codes, 171 
Transfer matrix, 78-83 
Transition energy, 131, 165, 431 
Transverse wakefield effect. 260 
Triplet, see Quadrupole triplets 
Tune, 153, 163 
Tune depression, due to space charge: 

longitudinal, 426, 433 
transverse, 214, 216, 383 

Tune shift, coherent, due to images, 271 
Tune shift, incoherent: 

above and below transition. 433 
due to charge neutralization, 289-290 
hslett, 7. 273 
longitudinal. due to space charge, 433, see 

also Synchrotron tune 
resonance traversal due to space charge, 
264 

rms 446 
due to space charge, 260-264. 442-443 
due to space charge and dispersion, 444- 

due to space charge and images, 270.272 
Wiss parameters, see Courant-Snyder pa- 

445 

rameters 

Velocity analyzer. 48 
Velocity of space-charge waves: 

group, 501 
phase (fast and slow wave), 500-501.507 

Virial theorem, 51 
Virtual cathode. 285-288. 310 
Vlasov equation, 335-336, see also 

Vlasov-Maxwell equations 

Vlasov-Maxwell equations, 337, 344 
Voltage-equivalent of kinetic energy, 70,322 

relativistic, 336 

Wakefields, 3. 555 
Weak-lens approximation, see Thin-lens a p  

Welding with particle beams. 5 
proximation 

2-pinch, 294 
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Page Corrections 

22 Eq. (2.26) and line below: change 931.481A to 931.494A. 

‘lable 2.1: change proton rest energy from 938.259 to 934.272 NeV 

Table 2.2: change table to read: 

‘lable 2.2 Rest energies of some isotopes and ions 

Rest Energy Rest Energy 

Isotope A (aniu) (kleV) Ion (MeV) 

‘H 1.0078 938.783 ‘H+ 

‘H- 

2H 2.0141 1,876.030 2H+ 

3He 3.0160 2,809.415 3He+ 

3He2+ 

‘He 4.0026 3,728.399 ‘He’ 

He2+ 

6 Li 6.0151 5,603.051 6Li+ 

6 ~ i 3 +  

”C 12.0000 11,177.932 12C3+ 
12c6+ 

14N 14.0031 13,043.784 “Nf  
1 4 ~ 7 +  

938.272 

939.294 

1,875.519 

2,808.904 

2,808.393 

3,727.888 

3,727.377 

5,602.540 

5,60 1.5 18 

11,176.399 

11,174.856 

13,043.269 

13,040.203 

1 



Page Correctioiis 

- - 
58 Eq. (3%): delete .iih and change & to d t h  [i.e., “widetilde(x-prime) sub th” 

rather than “widetilde(x-prime sub th)”] to read: 

- -  
58 

59 Eqs. (3.5a), (3.5b): change 

8th line after Eq. (3.2b): change xi,, to X’th [i.e., “widetilde(x-prime) sub th”] . 
-- - 

to X’th [ i.e., “widetilde(x-prime) sub th”], as in  p. 

58. 

8th line after Eq. (3.159); change 7‘3 to 7’4. 

Lines 2 and 3 above Eq. (3.272): in-line equation is duplicated; delete second half 

so that equation reads: 

104 

133 

‘U = u o ( l  + AU/VO) = ~ o ( l  + AP/Po - Ay/yo). 
dR 1 
dZ mrtnl 198 Eq. (4.30), 2nd equation: delete 7’0 to read: R’ = - = ~ 

236 

260 

282 

282 

296 

329 

342 

358 

Eq. (4.179): 2nd terni: change X to Y so that fiyoX reads fiyoY. 

Line above Eq. (4.271): change (2.269) to (4.269). 

First paragraph, 5th line: change lop6 to 

First paragraph, 8th line: change a2 M 0.8nini to a2 M 2.5niri1, 

a2/al = 0.08 to a2/al M 0.25. 

Ref. 7: change page number from 89 to 890. 

6th line after Eq. (5.80): delete coniiiia between 0.7 and T :  un-italicize “‘1’” to 

read: BO = 0.7 ‘1‘ = 7 kG. 

Eq. (5.13%): in  the bracket 011 the right-hand side change c’ to ,y’. 

Change Eq. (5.198) to read: 

- JJJ J 2 ( r ,  y,  Y1 y’)dxdyd.E’dy’ 
JJJ J f(c,  y, .c’, y’)dcdydz’dy’ . 

6 2  
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Page C:orrections 

360 Change the sentence beginning in the 7th line from the top of the 2nd paragraph 

to read: 

“‘lhese distributions, three of which are listed i n  ‘lable 5.1 (together with the 

stationary K-V beam), are defined as functions of 1.4‘ = [ r2 /u2  + 7.’2/at2], where 

7’4 is the “radiiis” in four-dimensional trace space, and not as functions of the 

Hamiltonian H 1. ” 

Change the sentence beginning in the 13th line froni the top of the 2nd paragraph 

to read: 

“The nornialization factors for each distribution in ‘l’able 5.1 have been chosen 

such that t lie integral over tlie four-dimensional trace-space volume yields Z/(qv) ,  

360 

360 

36 1 

363 

372 

373 

373 

376 

380 

392 

392 

393 

where I is the total beam current. ” 

In  the 11th line above Eq. (5.206), change exp(-r;/26) to exp(-r.;/2d2). 

To correct a few errors, the definition of 1.4 and the normalization of the distribu- 

tion functions so that tlie 4-D volunie integral yields Z / ( q v ) ,  ‘lable 5.1 should be 

replaced by the revised version provided below. 

I n  Eq. (5.219b), change the term k2,Y to k$Y.  

In  Eq. (5.249), the second term in exp [ 

In  Eq. (5.250), the numerator i n  the first term of exp [ ] should read 711( u ~ + v ~ + u ~ ) .  

Eq. (5.254), 1st fraction: change (Az$,) to ( A u ~ ~ ) ~  . 

Eq. (5.267), 1st fraction: change 

Eq. (5.280): insert E,(r)dr in  the last term so that the integral will read E , ( r ) d ~  

Eqs. (5.308~) and (5.308b): ‘lhe S’th should be level with the 2 that preceeds it: 

2.?th. (x’s should be on the same line.) 

Eq. (5.310): change locations of superscript-2 to read: 

] should read -C2(21,2 + 11; + u: )  . 

to (Avlz)’ . 

- - 
k s 7 i  = ~ B T ,  = $m(Av,,th)2 = $ W L [ ( X L ~ , ) ~  - ( A L ~ , J [ ) ~ ]  . 
Line above Sec. 5.4.6: letters missing i n  our copy - “in1 

“imaging systenis” . 

ng systems” should read 
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Page Corrections 

417 Last term in Eq. (5.381) should have a minus (-) sign: 

- - 

429 

434 

434 

448 

454 

4 7 2  

476 

485 

496 

504 

5th and 6th lines after Eq. (5.431): insert l& to read so( t )  = Rotlot = ROO0 

and s ( t )  = Ro(& + Ab)t = Ro(Qo + AQ). 

Eq. (5.448): the 2' should be level with the Z preceeding it: i? . 

Line below equation: level 2' 
Eq. (5.493): delete 7: froni first set of parentheses, to read 

- - - 
'l'hird line above Eq. (5.510): level ~ ' s o  F = 2.d = 2GZ/vo, where .r/ is .... 

Second line froin top: level .? so it reads ynia'.?'. 

2 lines above Eq. (6.18): change Eq. reference from (5.160b) to (3.345). 

Last term i n  Eq. (6.32) should be = -0.2659. 

12th line from top: change Table 5.2 to 'l'able 5.1. 

I n  Eqs. (6.68a) and (6.6Xb), change order of subscripts 

504 

527 

2 lines after Eq. (6.68b): change aI / i3/ t  to a I / a t .  

In Eq. (6.153) the equal sign (=) is niissing; it should read 

T,R,O = (&) ' I 3  TLO = 0.307 TLO. 

534 On the right side of Eq. (6.166), change .I.: to r:, where r, is the classical particle 

radius. 
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Page Corrections 

- -  z 

539 First and second line above Eq. (6.181): change L' to 1' and level so gZ = 2.c' = 

Fj2//i (using Sl = ICS).  

4th line after Eq. (6.186): cliarige 23 x lop6 to 2.3 x 

Eqs. (A.4.27), (A.4.28): change (A.4.27) to (A4.27); change (A.4.28) to (A4.28). 

2nd line above Eq. (A4.30): change (4.10) to (A4.10). 

Ref. 5: correct to read Part. Accel. 48, 193 (1995). 

Ref. 6: correct to read Phys. Plasmas 2, 965 (1995). 

Eq. (A5.4), second line should read: 

540 

578 

579 

580 

580 

583 

1 cos k s  cos d r f t  - Emk sin ks cos wrft - -PET,, "'rf cos(ks) sin(drjt) 
c 

584 

584 

First sentence, change "an" to "can". 

Eq. (A5.6), second line should read: 

584 Eq. (A5.7) should read: 

584 Eq. (A5.8) should read: 

5 



Page Corrections 

586 Eq. (A16): correct Eq. number to read (A5.16); correct denominator in 3rd frac- 

tion to read: pi$. 
Eq. (A5.17): change denoniinator in 2nd fraction to read Xnic2&01,2y,”. 

Eq. (A5.19): change denominator in 2nd fraction to read Xmc2&,”. 

Ref. 12, change C. Yoshi to Chan Joshi. 

586 

587 

589 
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