

Use R!

Series Editors:
Robert Gentleman Kurt Hornik Giovanni Parmigiani

For further volumes:
http://www.springer.com/series/6991

http://www.springer.com/series/6991

Use R!

Albert: Bayesian Computation with R
Bivand/Pebesma/Gómez-Rubio: Applied Spatial Data Analysis with R
Cook/Swayne: Interactive and Dynamic Graphics for Data Analysis:

With R and GGobi
Hahne/Huber/Gentleman/Falcon: Bioconductor Case Studies
Paradis: Analysis of Phylogenetics and Evolution with R
Pfaff: Analysis of Integrated and Cointegrated Time Series with R
Sarkar: Lattice: Multivariate Data Visualization with R
Spector: Data Manipulation with R

Yuelin Li • Jonathan Baron

Behavioral Research Data
Analysis with R

123

Yuelin Li
Memorial Sloan-Kettering Cancer Center
Department of Psychiatry and Behavioral
Sciences
641 Lexington Ave. 7th Floor
New York, New York 10022-4503
USA
liy12@mskcc.org

Jonathan Baron
Department of Psychology
University of Pennsylvania
3720 Walnut Street
Philadelphia, Pennsylvania 19104-6241
USA
baron@psych.upenn.edu

Series Editors:
Robert Gentleman
Program in Computational Biology
Division of Public Health Sciences
Fred Hutchinson Cancer Research Center
1100 Fairview Ave. N, M2-B876
Seattle, Washington 98109-1024
USA

Giovanni Parmigiani
The Sidney Kimmel Comprehensive Cancer
Center at Johns Hopkins University
550 North Broadway
Baltimore, MD 21205-2011
USA

Kurt Hornik
Department für Statistik und Mathematik
Wirtschaftsuniversität Wien Augasse 2-6
A-1090 Wien
Austria

ISBN 978-1-4614-1237-3 e-ISBN 978-1-4614-1238-0
DOI 10.1007/978-1-4614-1238-0
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011940221

© Springer Science+Business Media, LLC 2012
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

liy12@mskcc.org
baron@psych.upenn.edu

Preface

This book is written for behavioral scientists who want to consider adding R to their
existing set of statistical tools, or want to switch to R as their main computation tool.
We aim primarily to help practioners of behavioral research make the transition to
R. The focus is to provide practical advice on some of the widely used statistical
methods in behavioral research, using a set of notes and annotated examples. We
also aim to help beginners learn more about statistics and behavioral research. These
are statistical techniques used by psychologists who do research on human subjects,
but of course they are also relevant to researchers in others fields that do similar
kinds of research.

We assume that the reader has read the relevant parts of R manuals on the CRAN
website at http://www.r-project.org, such as “An Introduction to R”, “R
Data Import/Export”, and “R Installation and Administration”. We assume that the
reader has gotten to the point of installing R and trying a couple of examples.
We also assume that the reader has relevant experiences in using other statistical
packages to carry out data analytic tasks covered in this book. The source code and
data for some of the examples in the book can be downloaded from the book’s
website at: http://idecide.mskcc.org/yl home/rbook/. We do not
dwell on the statistical theories unless some details are essential in the appropriate
use of the statistical methods. When they are called for, theoretical details are
accompanied by visual explanations whenever feasible. Mathematical equations are
used throughout the book in the hopes that reader will find them helpful in general,
and specifically in reaching beyond the scope of this book. For example, matrix
notations are used in the chapters covering linear regression and linear mixed-effects
modeling because they are the standard notations found in statistics journals. A basic
appreciation of mathematical notations may help the readers implement these new
techniques before a packaged solution is available. Nevertheless, the main emphasis
of this book is on the practical data analytic skills so that they can be quickly
incorporated into the reader’s own research.

The statistical techniques in this book represent many of statistical techniques in
our own research. The pedagogical plan is to present straightforward solutions and
add more sophisticated techniques if they help improve clarity and/or efficiency.

v

http://idecide.mskcc.org/yl_home/rbook/

vi Preface

As can be seen in the first example in Chap. 1, the same analysis can be carried
out by a straightforward and a more sophisticated method. Chapters 1–4 cover basic
topics such as data import/export, statistical methods for comparing means and pro-
portions, and graphics. These topics may be part of an introductory text for students
in behavioral sciences. Data analysis can often be adequately addressed with no
more than these straightforward methods. Chapter 4 contains plots in published
articles in the journal Judgment and Decision Making (http://journal.sjdm.org/).
Chapters 5–7 cover topics with intermediary difficulty, such as repeated-measures
ANOVA, ordinary least square regression, logistic regression, and statistical power
and sample size considerations. These topics are typically taught at a more advanced
undergraduate level or first year graduate level.

Practitioners of behavioral statistics are often asked to estimate the statistical
power of a study design. R provides a set of flexible functions for sample size
estimation. More complex study designs may involve estimating statistical power
by simulations. We find it easier to do simulations with R than with other statistical
packages we know. Examples are provided in Chaps. 7 and 11.

The remainder of this book cover more advanced topics. Chapter 8 covers Item
Response Theory (IRT), a statistical method used in the development and validation
of psychological and educational assessment tools. We begin Chap. 8 with simple
examples and end with sophisticated applications that require a Bayesian approach.
Such topics can easily take up a full volume. Only practical analytic tasks are cov-
ered so that the reader can quickly adapt our examples for his or her own research.
The latent regression Rasch model in Sect. 8.4.2 highlights the power and flexibility
of R in working with other statistical languages such as WinBUGS/OpenBUGS.
Chapter 9 covers missing data imputation. Chapters 10–11 cover hierarchical linear
models applied in repeated-measured data and clustered data. These topics are
written for researchers already familiar with the theories. Again, these chapters
emphasize the practical data analysis skills and not the theories.

R evolves continuously. New techniques and user-contributed packages are
constantly evolving. We strive to provide the latest techniques. However, readers
should consult other sources for a fuller understanding of relevant topics. The R
journal publishes the latest techniques and new packages. Another good source for
new techniques is The Journal of Statistical Software (http://www.jstatsoft.org/).
The R-help mailing list is another indispensable resource. User contributions
make R a truly collaborative statistical computation framework. Many great texts
and tutorials for beginners and intermediate users are already widely available.
Beginner-level tutorials and how-to guides can be found online at the CRAN
“Contributed Documentation” page.

This book originated from our online tutorial “Notes on the use of R for psychol-
ogy experiments and questionnaires.” Many individuals facilitated the transition.
We would like to thank them for making this book possible. John Kimmel, former
editor for this book at Springer, first encouraged us to write this book and provided
continuous guidance and encouragement. Special thanks go to Kathryn Schell and
Marc Strauss and other editorial staff at Springer on the preparation of the book.
Several annonymous reviewers provided suggestions on how to improve the book.

Preface vii

We are especially indebted to the individuals who helped supply the data used in the
examples, including the authors of the R packages we use, and those who make the
raw data freely accessible online.

New York Yuelin Li
Philadelphia Jonathan Baron

Contents

1 Introduction . 1
1.1 An Example R Session . 1
1.2 A Few Useful Concepts and Commands. 3

1.2.1 Concepts . 3
1.2.2 Commands .. 4

1.3 Data Objects and Data Types . 9
1.3.1 Vectors of Character Strings . 10
1.3.2 Matrices, Lists, and Data Frames . 12

1.4 Functions and Debugging . 15

2 Reading and Transforming Data Format . 19
2.1 Reading and Transforming Data . 19

2.1.1 Data Layout. 19
2.1.2 A Simple Questionnaire Example . 19
2.1.3 Other Ways to Read in Data . 25
2.1.4 Other Ways to Transform Variables . 26
2.1.5 Using R to Compute Course Grades . 30

2.2 Reshape and Merge Data Frames . 31
2.3 Data Management with a SQL Database . 33
2.4 SQL Database Considerations .. 35

3 Statistics for Comparing Means and Proportions . 39
3.1 Comparing Means of Continuous Variables . 39
3.2 More on Manual Checking of Data . 42
3.3 Comparing Sample Proportions .. 43
3.4 Moderating Effect in loglin() . 45
3.5 Assessing Change of Correlated Proportions .. 49

3.5.1 McNemar Test Across Two Samples . 50

4 R Graphics and Trellis Plots . 55
4.1 Default Behavior of Basic Commands .. 55
4.2 Other Graphics . 56

ix

x Contents

4.3 Saving Graphics . 56
4.4 Multiple Figures on One Screen. 57
4.5 Other Graphics Tricks . 57
4.6 Examples of Simple Graphs in Publications . 58

4.6.1 http://journal.sjdm.org/8827/
jdm8827.pdf . 60

4.6.2 http://journal.sjdm.org/8814/
jdm8814.pdf . 63

4.6.3 http://journal.sjdm.org/8801/
jdm8801.pdf . 64

4.6.4 http://journal.sjdm.org/8319/
jdm8319.pdf . 65

4.6.5 http://journal.sjdm.org/8221/
jdm8221.pdf . 66

4.6.6 http://journal.sjdm.org/8210/
jdm8210.pdf . 68

4.7 Shaded Areas Under a Curve . 69
4.7.1 Vectors in polygon() . 71

4.8 Lattice Graphics . 72

5 Analysis of Variance: Repeated-Measures . 79
5.1 Example 1: Two Within-Subject Factors . 79

5.1.1 Unbalanced Designs . 83
5.2 Example 2: Maxwell and Delaney . 85
5.3 Example 3: More Than Two Within-Subject Factors 88
5.4 Example 4: A Simpler Design with Only One

Within-Subject Variable . 89
5.5 Example 5: One Between, Two Within . 89
5.6 Other Useful Functions for ANOVA . 91
5.7 Graphics with Error Bars . 93
5.8 Another Way to do Error Bars Using plotCI() . 95

5.8.1 Use Error() for Repeated-Measure ANOVA 96
5.8.2 Sphericity . 102

5.9 How to Estimate the Greenhouse–Geisser Epsilon? 103
5.9.1 Huynh–Feldt Correction . 105

6 Linear and Logistic Regression . 109
6.1 Linear Regression .. 109
6.2 An Application of Linear Regression on Diamond Pricing 110

6.2.1 Plotting Data Before Model Fitting . 111
6.2.2 Checking Model Distributional Assumptions.. 114
6.2.3 Assessing Model Fit. 115

6.3 Logistic Regression . 118
6.4 Log–Linear Models . 119
6.5 Regression in Vector–Matrix Notation .. 120
6.6 Caution on Model Overfit and Classification Errors 122

Contents xi

7 Statistical Power and Sample Size Considerations . 129
7.1 A Simple Example . 129
7.2 Basic Concepts on Statistical Power Estimation 130
7.3 t-Test with Unequal Sample Sizes. 131
7.4 Binomial Proportions . 132
7.5 Power to Declare a Study Feasible . 133
7.6 Repeated-Measures ANOVA . 133
7.7 Cluster-Randomized Study Design . 135

8 Item Response Theory . 139
8.1 Overview . 139
8.2 Rasch Model for Dichotomous Item Responses . 139

8.2.1 Fitting a rasch() Model . 140
8.2.2 Graphing Item Characteristics and Item Information.. 143
8.2.3 Scoring New Item Response Data . 145
8.2.4 Person Fit and Item Fit Statistics . 145

8.3 Generalized Partial Credit Model for Polytomous Item
Responses . 146
8.3.1 Neuroticism Data . 147
8.3.2 Category Response Curves and Item Information

Curves . 147
8.4 Bayesian Methods for Fitting IRT Models. 149

8.4.1 GPCM .. 149
8.4.2 Explanatory IRT . 152

9 Imputation of Missing Data . 161
9.1 Missing Data in Smoking Cessation Study . 161
9.2 Multiple Imputation with aregImpute() . 163

9.2.1 Imputed Data . 165
9.2.2 Pooling Results Over Imputed Datasets . 166

9.3 Multiple Imputation with the mi Package . 168
9.4 Multiple Imputation with the Amelia and Zelig Packages 171
9.5 Further Reading . 173

10 Linear Mixed-Effects Models in Analyzing Repeated-
Measures Data . 177
10.1 The “Language-as-Fixed-Effect Fallacy” . 177
10.2 Recall Scores Example: One Between

and One Within Factor . 180
10.2.1 Data Preparations.. 180
10.2.2 Data Visualizations . 181
10.2.3 Initial Modeling . 182
10.2.4 Model Interpretation . 182
10.2.5 Alternative Models . 186
10.2.6 Checking Model Fit Visually . 189
10.2.7 Modeling Dependence . 190

xii Contents

10.3 Generalized Least Squares Using gls() . 195
10.4 Example on Random and Nested Effects . 198

10.4.1 Treatment by Therapist Interaction .. 200

11 Linear Mixed-Effects Models in Cluster-Randomized Studies 205
11.1 The Television, School, and Family Smoking

Prevention and Cessation Project . 205
11.2 Data Import and Preparations . 206

11.2.1 Exploratory Analyses . 207
11.3 Testing Intervention Efficacy with Linear Mixed-Effects

Models . 210
11.4 Model Equation . 213
11.5 Multiple-Level Model Equations .. 215
11.6 Model Equation in Matrix Notations. 216
11.7 Intraclass Correlation Coefficients . 220
11.8 ICCs from a Mixed-Effects Model . 221
11.9 Statistical Power Considerations

for a Group-Randomized Design . 223
11.9.1 Calculate Statistical Power by Simulation 223

A Data Management with a Database . 229
A.1 Create Database and Database Tables. 229
A.2 Enter Data . 230
A.3 Using RODBC to Import Data from an ACCESS Database 232

A.3.1 Step 1: Adding an ODBC Data Source Name 233
A.3.2 Step 2: ODBC Data Source Name Points to the

ACCESS File . 233
A.3.3 Step 3: Run RODBC to Import Data . 234

References . 237

Index . 243

Chapter 1
Introduction

1.1 An Example R Session

Here is a simple R session.

> help(sleep)
> x1 <- sleep$extra[sleep$group == 1]
> x2 <- sleep$extra[sleep$group == 2]
> t.test(x1, x2)
> sleep[c(1:3, 11:13),]
> with(sleep, t.test(extra[group == 1],
+ extra[group == 2]))
> q()

The help() command prints documentation for the requested topic. The sleep
dataset is a built-in dataset in R. It comes from William Sealey Gosset’s article
under the pseudonym Student (1908). It contains the effects of two drugs, measured
as the extra hours of sleep as compared to controls. The vectors x1 and x2 are
assigned the values of the extra hours of sleep in drugs 1 and 2, respectively.
(a less than sign followed by a minus sign, <-, represents assignment) Two equal
signs, ==, represent the logical equal operator. The t.test(x1, x2) carries out
an independent sample t-test of the sleep time between the two groups. The same
analysis can be done using with(sleep, t.test(extra[group == 1],
extra[group == 2])). sleep[c(1:3, 11:13),] prints observations
1 through 3 and 11 through 13. To exit the R program, type q(). Typing q without
the parentheses prints out the contents of the function to quit R. Most functions are
visible to the user in this way. The advantage of using built-in datasets is that they
have already been imported. The next example describes how to import data from a
text file.

The sleep data can be entered into a text file, the variable names on the first
row, and the variables are separated by spaces.

Y. Li and J. Baron, Behavioral Research Data Analysis with R, Use R,
DOI 10.1007/978-1-4614-1238-0 1, © Springer Science+Business Media, LLC 2012

1

2 1 Introduction

extra group ID
0.7 1 1

-1.6 1 2
-0.2 1 3
-1.2 1 4
-0.1 1 5
3.4 1 6
3.7 1 7
0.8 1 8
0.0 1 9
2.0 1 10
1.9 2 1
0.8 2 2
1.1 2 3
0.1 2 4

-0.1 2 5
4.4 2 6
5.5 2 7
1.6 2 8
4.6 2 9
3.4 2 10

Suppose the data entries are saved in a file named t1.dat in the directory
C:\\Documents and Settings\\usr1\\My Documents, then this
command imports the data and assigns it a name called sleep.df.

> sleep.df <- data.frame(read.table(file =
+"C:/Documents and Settings/usr1/My Documents/t1.dat",
+header = TRUE))

On a Windows platform, the double back slashes (nn) in a path name can be
replaced with one forward slash (/). On Unix/Linux and Mac OS, one forward
slash works fine. The read.table() function reads the data in file. It uses the
first line of the raw data file (header = TRUE) to assign variable names to the
three columns. Blank spaces in the raw data file are ignored. The data.frame()
function converts the imported data into a data frame. The sleep.df data is now
available for analysis (type objects() to see it). The example above shows some
of the unique features of R. Most data analytic tasks in R are done through functions,
and functions have parameters such as the options of file and header in the
read.table() function. Functions can be nested, the output of one function can
be fed directly into another. Some other basic R features are covered in the next
section. These features make R flexible but more challenging to learn for beginners.

Some things are more difficult with R especially if you are used to using menus.
With R, it helps to have a list of commands in front of you. There are lists in the on-
line help and in the index of An introduction to R by the R Core Development Team,
and in the reference cards listed in http://finzi.psych.upenn.edu/.

1.2 A Few Useful Concepts and Commands 3

Some things turn out to be easier in R. Although there are no menus, the on-line
help files are very easy to use, and quite complete. The elegance of the language
helps too, particularly those tasks involving the manipulation of data. The purpose
of this book is to reduce the difficulty of the things that are more difficult at first.
Next we will go over a few basic concepts in R. The remainder of this chapter covers
a few examples on how to take advantage of R’s strengths.

1.2 A Few Useful Concepts and Commands

1.2.1 Concepts

In R, most commands are functions. The command is written as the name of
the function, followed by parentheses, with the arguments (inputs) of the func-
tion in parentheses, separated by commas when there is more than one, e.g.,
plot(swiss) to plot a pairwise scatterplot of the swiss data. When there is no
argument, the parentheses are still needed, e.g., q() to exit the program. A function
is said to “return” its output when the output is printed or when we can set a variable
equal to the output. For example, sqrt(4) returns (prints) 2 on the screen; and if
we say v1 <- sqrt(4), v1 is set equal to the output of the function, or 2.

Some basic concepts in R are surprising to beginners. For example, the square ofp
7 is not 7.

> 7 == sqrt(7)ˆ2
[1] FALSE

That is because floating point arithmetic is not exact.

> options(digits = 22)
> sqrt(7)ˆ2
[1] 7.000000000000000888178

A solution is to compare all.equal(sqrt(7)ˆ2, 7).
In this book, we generally use names such as x1 or file1, that is, names

containing both letters and a digit, to indicate variable names that the user makes up.
Really, these can be of any form. We use the number simply to clarify the distinction
between a made up name and a key word with a predetermined meaning in R. R is
case sensitive; for example, X and x can stand for different things. We generally use
upper-case data objects like X, Y, and M to represent matrices or arrays; and lower-
case objects to represent vectors. Although most commands are functions with the
arguments in parentheses, some arguments require specification of a key word with
an equal sign and a value for that key word, such as source("myfile1.R",
echo = T), which means read in myfile1.R and echo the commands on the
screen. It helps to add spaces between input parameters, so that the extra spaces
in echo = T make it easier to read than echo=T. But that is not necessary.

4 1 Introduction

Key words can be abbreviated (e.g., e = T). In addition to the idea of a function,
R has objects and modes. Objects are anything that you can give a name. There
are many different classes of objects. The main classes of interest here are vector,
matrix, factor, list, and data frame. The mode of an object tells what kind of
things are in it. The main modes of interest here are logical, numeric, and
character.

We sometimes indicate the class of object (vector, matrix, factor, etc.) by using
v1 for a vector, m1 for a matrix, and so on. Most R functions, however, will either
accept more than one type of object or will “coerce” a type into the form that it
needs.

The most interesting object is a data frame. It is useful to think about data frames
in terms of rows and columns. The rows are subjects or observations. The columns
are variables, but a matrix can be a column too. The variables in a data frame can be
of different classes.

The behavior of any given function, such as plot(), aov() (analysis of
variance), or summary() depends on the object class and mode to which it is
applied. A nice thing about R is that you almost do not need to know this, because
the default behavior of functions is usually what you want. One way to use R is
just to ignore completely the distinction among classes and modes, but check every
step (by typing the name of the object it creates or modifies). If you proceed this
way, you will also get error messages, which you must learn to interpret. Most of
the time, again, you can find the problem by looking at the objects involved, one by
one, typing the name of each object.

Sometimes, however, you must know the distinctions. For example, a factor is
treated differently from an ordinary vector in an analysis of variance or regression.
A factor is what is often called a categorical variable. Even if numbers are used to
represent categories, they are not treated as ordered. If you use a vector and think
you are using a factor, you can be misled.

1.2.2 Commands

As a reminder, here is a list of some of the useful commands that you should be
familiar with, and some more advanced ones that are worth knowing about. Some
of the more basic commands help you organize your work.

1.2.2.1 Working Directory

It helps to get into the habit of separating R sessions into different working
directories specific to different projects or data analytic tasks. Here is why. On
Windows, R starts in the user’s default HOME directory (e.g., getwd() returns
C:/Documents and Settings/usr1/My Documents). On exiting R,
the user is prompted to save the current session in a .RData file under that

1.2 A Few Useful Concepts and Commands 5

directory by default. Eventually, this .RData file collects too many objects
to be managed efficiently. You may organize R sessions into subdirectories,
for example, called project1, project2, and project3 under your home
directory C:/Documents and Settings/usr1/My Documents/. If you
are working on project1, you double click the R icon on your Windows
desktop to launch R, then you immediately type setwd("C:/Documents and
Settings/usr1/My Documents/project1/") to switch your working
directory to project1. Then you can type load(".RData") to retrieve a
previously saved session. This is probably the first thing you do each time you run
R on Windows. These changes can also be set interactively using the menu. Note
that R recognizes the forward slashes in the path name.

The setwd() command is usually not necessary if you are running R from
a Unix/Linux command line. Typically, you are already in the working directory
before R is called from the command line.

On a computer running the Mac OS, it depends on whether or not your R is a
binary version with a graphical user interface or a version compiled from source
code. R compiled from source on a Macintosh computer works like a Unix/Linux R
from a command line terminal and setwd() is not necessary.

Another advantage of separating R sessions in different working directories
is that it allows easier tracking of the command history file. All the commands
typed in an R session are saved upon exit in a file called .Rhistory under the
working directory. You can use a text editor to edit the .Rhistory file into a
command syntax script. Then you can run R in batch mode. For example, suppose
the .Rhistory file under project1 contains these lines:

> help(sleep)
> x1 <- sleep$extra[sleep$group == 1]
> x2 <- sleep$extra[sleep$group == 2]
> t.test(x1, x2)
> sleep[c(1:3, 11:13),]
> t.test(extra ˜ group, data = sleep)
> with(sleep, t.test(extra[group == 1],
+ extra[group == 2]))
> q()

We can take out the first and last lines and save the edited file as sleep.R. Then we
can run R in batch mode by calling R CMD BATCH sleep.R. The ouput is saved
in sleep.Rout under the project1 directory. The output in sleep.Rout file
then can be shared with others.

1.2.2.2 Getting Help

help.start() starts the browser version of the help files. (But you can use
help() without it.) With a fast computer and a good browser, it is often simpler
to open the html documents in a browser while you work and just use the

6 1 Introduction

brower’s capabilities. help(plot) prints the help available about plot, or
help(command1) to print the help for command1. Sometimes you only need
the names of the parameters, which can be printed by args(command1).
help.search("keyword1") searches keywords for help on this topic.

apropos(topic1) or apropos("topic1") finds commands relevant to
topic1, whatever it is. example(command1) prints an example of the use
of the command. This is especially useful for graphics commands. Try, for
example, example(contour), example(dotchart), example(image),
and example(persp).

1.2.2.3 Installing Packages

The R base system is lean. It contains only the essential components. Additional
packages can be installed when needed. For example, install.packages
(c("ltm","psych")) installs the packages called ltm and psych from an
archive of your choice, if your computer is connected to the internet. You do not
need the c() if you just want one package. You should, at some point, make
sure that you are using the CRAN mirror page that is closest to you. If you
live in the U.S., you should have a .Rprofile file with options(CRAN =
"http://cran.us.r-project.org") in it. There are other mirror sites in
the U.S. On Windows, you have the option to interactively select a mirror site from a
list in a menu if one is not already set. Other useful functions for managing packages
include installed.packages() to show details of all installed packages and
update.packages() to update the packages that you have installed to their
latest version.

To install packages from the Bioconductor set (tools and resources for computa-
tional biology), see the online instructions (http://www.bioconductor.org/install/,
last accessed, September, 2011).

When packages are not on CRAN, you can download them and use R CMD
INSTALL package1.tar.gz from a Unix/Linux command line. On Win-
dows, you would need to open a DOS command prompt, change directory to
where package1.tar.gz is saved, then type the command C:n"Program
Files"nRnR-2.13.0nbinnR.exe CMD BATCH package1.tar.gz.

1.2.2.4 Assignment, Logic, and Arithmetic

One of the most frequently typed commands is the assignment command, <-. It
assigns what is on the right of the arrow to what is on the left. (If you use ESS, the _
key (underscore) will produce this arrow with spaces, a great convenience.) Typing
the name of the object prints the object. For example, if you say:

> t1 <- c(1, 2, 3, 4, 5)
> t1

1.2 A Few Useful Concepts and Commands 7

you will see 1 2 3 4 5. The object t1 gets a numeric vector of five numbers, put
together by the c() function. Beginners sometimes do c <- c(1,2,3). R will
let you do it, and will not generate an error if you next do x <- c(4, 5, 6).
R knows what to do with x because your local copy of c is a numeric vector and
the system copy of c is a function. However, it is better not to assign values to c()
or any other system functions to minimize confusions.

Logical objects can be true or false. Some functions and operators return TRUE
or FALSE. For example, 1 == 1, is TRUE because 1 does equal 1. Likewise,
1 == 2 is FALSE, and 1 < 2 is TRUE. But beware, sqrt(2)ˆ2 == 2 is
FALSE because they have different internal floating-point representations in R. A
better test for the equality between two floating-point numbers is provided by the
function all.equal(), all.equal(sqrt(2)ˆ2, 2) is TRUE.

Use all(), any(), |, ||, &, and && to combine logical expressions, and use
! to negate them. The difference between the | and the || form is that the shorter
form, when applied to vectors, etc., returns a vector, while the longer form stops
when the result is determined and returns a single TRUE or FALSE. Set functions
operate on the elements of vectors: union(v1,v2), intersect(v1,v2),
setdiff(v1,v2), setequal(v1,v2), is.element(element1,v1)
(or, element1 %in% v1). Arithmetic works. For example, -t1 yields -1
-2 -3 -4 -5. It works on matrices and data frames too. For example,
suppose m1 gets the matrix m1 <- matrix(c(1,2,3,4,5,6), nrow=2,
byrow=T).

1 2 3
4 5 6

Then m1 * 2 is

2 4 6
8 10 12

Matrix multiplication works too. Suppose m2 is the matrix
m2 <- matrix(c(1,1,1,2,2,2), ncol=2)

1 2
1 2
1 2

then m1 %*% m2 is

6 12
15 30

and m2 %*% m1 is

9 12 15
9 12 15
9 12 15

8 1 Introduction

You can also multiply a matrix by a vector using matrix multiplication, vectors are
aligned vertically when they come after the %*% sign and horizontally when they
come before it. This is a good way to find weighted sums, as we shall explain.

For ordinary multiplication of a matrix times a vector, the vector is vertical and
is repeated as many times as needed. For example m2 * 1:2 yields

1 4
2 2
1 4

Ordinarily, you would multiply a matrix by a vector when the length of the vector is
equal to the number of rows in the matrix.

1.2.2.5 Loading and Saving

Additional functions not activated at startup have to be loaded by library(pkg)
or require(pkg), where pkg is the unquoted name of the package. A list of
packages can be found online at cran.r-project.org. A useful library for
psychology is mva (multivariate analysis). To find the contents of a library such
as mva before you load it, say library(help = mva). The ctest library is
already loaded when you start R. Other useful functions include:

• source("file1") runs the commands in file1.
• sink("file1") diverts output to file1 until you say sink().
• save(x1,file="file1") saves object x1 to file file1.
• To read in the file, use load("file1").
• q() quits the program. q("yes") saves everything.
• write(object, "file1")writes a matrix or some other object to file1.
• write.table(object1, "file1") writes a table and has an option to

make it comma delimited, so that a spreadsheet program can read it. See the
help file, but to make it comma delimited, say write.table(object1,
"file1", sep=",") or simply write.csv(object1, "file1")

• round() produces output rounded off, which is useful when you are cutting and
pasting R output into a manuscript (e.g.,round(t.test(v1)$statistic,
2) rounds off the value of t to two places). Other useful functions are format
and formatC. For example, if we assign t1 <- t.test(v1) then the
following command prints out a nicely formatted result, suitable for dumping
into a paper:

> x1 <- sleep$extra[sleep$group == 1]
> x2 <- sleep$extra[sleep$group == 2]
> t1 <- t.test(x1, x2)
> print(paste("(t_{",t1[[2]],"}=",
+ formatC(t1[[1]],format="f",digits=2),", p=",
+ formatC(t1[[3]],format="f"),")",sep=""),
+ quote=FALSE)

1.3 Data Objects and Data Types 9

This works because the output of the t.test() assigned to t1 is actually a
list, and the numbers in the double brackets refer to the elements of the list.

• read.table("file1") reads in data from a file. The first line of the file can
(but need not) contain the names of the variables in each column.

1.2.2.6 Dealing with Objects

All objects created by the user are stored in an R environment called .GlobalEnv
(can also be accessed by globalenv(). The ls() and objects() functions
lists all the active objects in .GlobalEnv. Other system files, such as the built-
in datasets and statistical functions, are stored in various packages. A list of the
loaded packages can be found by search(). Note that search() numbers the
packages.

> search()
[1] ".GlobalEnv"
[2] "package:stats"
[3] "package:graphics"
[4] "package:grDevices"
[5] "package:utils"
[6] "package:datasets"
[7] "package:methods"
[8] "Autoloads"
[9] "package:base"

Thus,ls(pos = 2) or simply ls(2) shows all objects in the package:stats
(or by objects(2)). To remove one or more data objects, do rm(object1) to
remove only object1 or rm(x1, x2, v1, v2, object2, object3)
to remove multiple objects. Type rm(list=ls()) to remove all objects
in the current environment. Be careful with this because the rm() function
assumes you know what you are doing so it does not prompt you for
a confirmation. attach(df1) makes the variables in the data frame
df1 active and available generally. Sometimes you are working in one
directory but you need to access data saved in another directory, type
attach("/another/directory/.RData") to gain access to data objects
saved in that directory. names(obj1) prints the names, e.g., of a matrix or data
frame. typeof(), mode(), and class() tell you about the properties of an
object.

1.3 Data Objects and Data Types

One of the most basic data objects in R is a vector. A vector can be put together by
the function c(). We can calculate its length, mean, and other properties.

10 1 Introduction

> x <- c(1, 2, 3, 4, 5, 6, 7)
> length(x)
[1] 7
> mean(x)
[1] 4

We can refer to the elements of a vector in various ways.

> x[6]
[1] 6
> x[-6] # all elements except the 6th
[1] 1 2 3 4 5 7
> x[2:4] # : represents a sequence
[1] 2 3 4
> x[c(1, 4, 7)]
[1] 1 4 7

A colon, :, is a way to abbreviate a sequence of numbers, e.g., 1:5 is equivalent
to 1,2,3,4,5. A sequence of evenly spaced numbers can be generated by seq(from
= 1, to = 6, length = 20) (20 evenly spaced numbers from 1 to 6)
or seq(from = -3, to = 3, by = 0.05) (from �3 to C3 in increment
of 0.05). c(number.list1) makes the list of numbers (separated by commas)
into a vector object. For example, c(1,2,3,4,5) (but 1:5 is already a vector, so
you do not need to say c(1:5)). rep(v1,n1) repeats the vector v1 n1 times.
For example, rep(c(1:5),2) is 1,2,3,4,5,1,2,3,4,5. rep(v1,v2)
repeats each element of the vector v1 a number of times indicated by the
corresponding element of the vector v2. The vectors v1 and v2 must have the
same length. For example, rep(c(1,2,3),c(2,2,2)) is 1,1,2,2,3,3.
Notice that this can also be written as rep(c(1,2,3),rep(2,3)). (See also
the function gl() for generating factors according to a pattern.)

1.3.1 Vectors of Character Strings

R is not intended as a language for manipulating text (unlike Perl, for example), but
it is surprisingly powerful. If you know R you might not need to learn Perl. Strings
are character variables that consist of letters, numbers, and symbols. A c("one",
"two", "3") is a vector of character strings. You can use

> paste("one", "two", "3", sep = ":")
[1] "one:two:3"

to paste three character strings together into one long character string. Or to unpaste
them by

> strsplit(paste("one", "two", "3", sep = ":"), ":")
[[1]]
[1] "one" "two" "3"

1.3 Data Objects and Data Types 11

grep(), sub(), gsub(), and regexpr() allow you to search for, and
replace, parts of strings.

The set functions such as union(), intersect(), setdiff(), and
%in% are also useful for dealing with databases that consist of strings such as names
and email addresses.

Calculating date and time differences needs special care because of leap years
and other complications. Raw data in character strings of date and time should
be converted into the POSIX date time classes using the strptime() function.
Suppose, we have the birth dates of two children and today’s date.

> bdate <- strptime(c("2/28/2002", "3/05/2006"),
+ format = "%m/%d/%Y")
> today <- strptime(c("2/28/2008"),
+ format = "%m/%d/%Y")

The option format="%m/%d/%Y" specifies how the date character string is
formatted, by month, day, and the four-digit year (separated by forward slashes). The
first child was born on 2/28/2002, precisely six years old on 2/28/2008. The second
child’s age in years is 1 because the child has not yet reached 2 years of age. You
might be tempted to calculate age by:

> difftime(today, bdate, units="days")/365.25

But you get 5.999 and 1.985, which cannot be easily fixed by rounding. As of
R-2.13.1, difftime() does not yet offer a "years" unit. Decimal age values of
5.999 and 1.985 may be acceptable for practical purposes, for example, in describing
the average age of research study participants. However, they do not match the way
we typically treat age as an non-negative integer.

A solution uses the components of a POSIX date.1

> age <- today$year - bdate$year
> age
[1] 6 2
> t1 <- bdate$mon + bdate$mday/31; t1
[1] 1.56 2.10
> t2 <- today$mon + today$mday/31; t2
[1] 1.56
> ti <- t2 < t1
> age[ti] <- age[ti] - 1
> age
[1] 6 1

The $mon component of a date variable takes on numeric values of 0, 1, 2, ..., 11
for January, February, March, and December, respectively. The $mday component

1Provided by Brian Ripley in R-help mailing list, https://stat.ethz.ch/pipermail/r-help/2007-
September/141440.html, last accessed April 20, 2011.

12 1 Introduction

represents the day of the month. So the children are 1.56 and 2.10 months from
January 1, 2006; and today is 1.56 months from January 1, 2008. The division by
31 yields an approximated fraction of a month. So that the first child is 6 years of
age and the second child is 1 year of age. The difftime() function provides time
units in seconds, minutes, hours, days, and weeks. The resolution of weeks is usually
enough for a time to event analysis. However, we are not limited by the restrictions
of existing functions when we take advantage of the POSIX date components. The
strptime() function is especially useful when date variables are entered into a
spreadsheet program as character strings.

There are many other powerful features of R’s character strings. You can even
use these functions to write new R commands as strings, so that R can program
itself. Just to see an example of how this works, try eval(parse(text =
"t.test(1:5)")). The parse() function turns the text into an R expression,
and eval() evaluates and runs the expression. So this is equivalent to typing
t.test(1:5) directly. But you could replace t.test(1:5) with any string
constructed by R itself.

1.3.2 Matrices, Lists, and Data Frames

The call to matrix(v1, nrow = 2, ncol = 3) makes the vector v1 into a
2x3 matrix. You do not need to specify both nrow and ncol. You can also use key
words instead of using position to indicate which argument is which, and then you
do not need the commas. For example, matrix(1:10, ncol=5) represents the
matrix �

1 3 5 7 9

2 4 6 8 10

�
:

Notice that the matrix is filled column by column. To fill the matrix by rows, do
matrix(1:10, ncol = 5, byrow = TRUE).
cbind(v1,v2,v3) puts vectors v1, v2, and v3 (all of the same length)

together as columns of a matrix. You can of course give this a name, such as mat1
<- cbind(v1,v2,v2).

Many R functions require that you collect variables in a data.frame()
object, for example, datc <- data.frame(v1, v2, v3). Note that v1,
v2, and v3 must be of the same length. A data frame can include vectors of
factors as well as numeric vectors.

> ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,
+ 5.33,5.14)
> trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,
+ 4.32,4.69)
> group <- gl(2,10,20, labels=c("Ctl","Trt"))

1.3 Data Objects and Data Types 13

> datc <- data.frame(weight = c(ctl, trt),
+ group = group)
> datc[1:3,]

weight group
1 4.17 Ctl
2 5.58 Ctl
3 5.18 Ctl

Inside data.frame(), text strings such as group are automatically converted
into a factor() object. So is.factor(datc$group) returns TRUE.
We can extract parts of a data frames with matrix operations such that
datc[1:3,] extracts the first three rows of data. dim(obj1) prints the
dimensions of a matrix, array, or data frame. Alternatively, the data can be entered
into a spreadsheet program, saved as a CSV file, and imported into R by:

> datc <- data.frame(read.csv(file = "data.csv"))

We can refer to variables of a data frame by, for example, datc$weight. We can
calculate the average weight across the two groups by:

> tapply(datc$weight, datc$group, mean)
Ctl Trt
5.032 4.661

which applies the function mean to datc$weight by the factor datc$group.
We can replace mean by sd or length to calculate the standard deviation and the
number of observations in the two groups, respectively. Confidence intervals of the
group means can also be calculated easily:

> tapply(datc$weight, datc$group, function(x) {
+ ans <- t.test(x)$conf.int
+ unlist(ans) })
$Ctl
[1] 4.614882 5.449118
attr(,"conf.level")
[1] 0.95

$Trt
[1] 4.093239 5.228761
attr(,"conf.level")
[1] 0.95

The function(x) inside tapply() takes x and sends it to t.test() to
calculate the 95% confidence intervals of the means by datc$group. Because
t.test() returns a list by default, so we unlist() the answer before sending
it back. The use of tapply() to calculate confidence intervals is useful in plotting
error bars in a graph.

14 1 Introduction

You can refer to parts of objects. m1[,3] is the third column of matrix m1.
m1[,-3] is all the columns except the third. m1[m1[,1]>3,] is all the rows for
which the first column is greater than 3. v1[2] is the second element of vector v1.
If df1 is a data frame with columns a, b, and c, you can refer to the third column
as df1$c.

Many functions return lists. You can see the elements of a list with unlist().
For example, try unlist(t.test(1:5)) to see what the t.test() function
returns. This is also listed in the section of help pages called “Value.”
array() seems very complicated at first, but it is extremely useful when

you have a three-way classification, e.g., subjects, cases, and questions, with each
question asked about each case. We give an example later.
outer(m1,m2,"fun1") applies fun1, a function of two variables, to each

combination of m1 and m2. The default is to multiply them.
mapply("fun1",o1,o2), another very powerful function, applies fun1 to

the elements of o1 and o2. For example, if these are data frames, and fun1 is
"t.test", you will get a list of t tests comparing the first column of o1 with the
first column of o2, the second with the second, and so on. This is because the basic
elements of a data frame are the columns.

1.3.2.1 Summaries and Calculations by Row, Column, or Group

summary(x1) prints statistics for the variables (columns) in x1, which may be a
vector, matrix, or data frame. See also the str() function, which is similar, and
aggregate(), which summarizes by groups.
table(x1) prints a table of the number of times each value occurs in

x1. table(x1,y1) prints a cross-tabulation of the two variables. The table
function can do a lot more. Use prop.table()when you want proportions rather
than counts. ave(v1,v2) yields averages of vector v1 grouped by the factor v2.
cumsum(v1) is the cumulative sum of vector v1.

You can do calculations on rows or columns of a matrix and get the result as
a vector. apply(x, 2, mean) yields just the means of the columns. Similarly,
apply(x, 2, sum) calculates the sums of the columns. Shown in the diagram
below, apply(x, 2, sum) takes the matrix xij (the rectangle on top) and
applies the sum() function on each column from the top row to the bottom row.

j D 1; 2; � � � ; j

i D 1

2 apply(x, 2, sum)
:::

??y
??y : : :

??y
n

nP
iD1

xij

1.4 Functions and Debugging 15

The sums of j columns are reduced into a vector of j numbers (the rectangle at the
bottom). Therefore, apply(x, 2, sum) is equivalent to the mathematical nota-

tion
nP

iD1

xij . We get the sum of xij over index i , keeping j . Abstract mathematical

calculations can be visualized as operations performed on data objects. For sums
and means, it is easier to use rowSums(), colSums(), rowMeans(), and
colMeans instead of apply(). Next time you have to track many summation
symbols, you might consider getting help from apply() and others.

You can use other functions aside from mean, such as sd, max, or
min. To ignore missing data, use apply(x1, 2, mean, na.rm = T),
etc. Note that you can use apply with a function, e.g., apply(x1, 1,
function(x) exp(sum(log(x))) (which is a roundabout way to write
apply(x1,1,prod)). The same thing can be written in two steps, e.g.:

> newprod <- function(x) {exp(sum(log(x)))
> apply(x1, 1, newprod)

You can refer to a subset of an object in many ways. One way is to use a square
bracket at the end, e.g., matrix1[,1:5] refers to columns 1 through 5 of the
matrix. A new object like (matrix1+matrix2)[,1:5] refers to the first five
columns of the sum of the two matrices. Another important method is the use of
by() or aggregate() to compute statistics for subgroups defined by vectors
or factors. You can also use split() to get a list of subgroups. Finally, many
functions allow you to use a subset argument.

1.4 Functions and Debugging

Use function() to write your own functions. For example, we can define a
function to calculate the standard error of a sample mean.

se <- function(x, Warn = T)
{

y <- x[!is.na(x)]
if(Warn) {
D <- length(x) - length(y)
xn <- deparse(substitute(x))
if(D >= 1)
warning(paste(D, "missing values omitted in", xn))
}
browser()
sqrt(var(as.vector(y))/length(y))

}

Several functions are useful for debugging your own functions or scripts:
debug(), traceback(), browser(), and recover(). In the above

16 1 Introduction

example, a browser() is commented out. You can use fix(se) to edit se()
and uncomment that line. Then se() will pause when it reaches browser() and
prompts Browse[1]> for user input. At this point you can test how the rest of the
program works. An upper case Q quits the browser() debugger.

> se(c(1, 2, 3, 4, 5, 6, NA))
Called from: se(c(1, 2, 3, 4, 5, 6, NA))
Browse[1]> sqrt(var(as.vector(y)))
[1] 1.870829
Warning message:
In se(c(1, 2, 3, 4, 5, 6, NA)) :

1 missing values omitted in c(1, 2, 3, 4, 5, 6, NA)
Browse[1]> sqrt(var(as.vector(x)))
[1] NA
Browse[1]> Q

Exercises

1.1. Indexing vectors
Suppose we have three vectors, v1, v2, and v3.

> v1 <- 1:7
> v2 <- 6:12
> v3 <- c("new", "old", "old", "old", "new", "new",
+ "new")

(a) Use the intersect() function to find the elements of v1 that have the same
value as elements of v2.

(b) Use the %in% operator to find the elements of v1 that have the same value as
elements of v2.

(c) List all v3 elements whose v1 and v2 values are the same.
(d) List all v1 elements whose v3 elements are "new".

1.2. Viewing data
R’s default data management method is by command line, not by a spreadsheet-
like user interface. For example, datc[which(datc$group == "Ctl"),]
prints all control group observations.

(a) Write the command to view control group subjects whose weight is greater or
equal to 5.

(b) List all subjects in the sleep data frame whose extra sleep time is more than
1 h.

(c) List all Group 1 subjects in the sleep data frame whose extra sleep time is
reduced by 1 h or more.

Exercises 17

1.3. Use tapply() to Calculate Descriptive Statistics
Let us revisit the sleep data frame to calculate descriptive statistics.

(a) Use the tapply() and mean() functions to calculate the group means.
(b) Use the tapply() and sd() functions to calculate the group standard

deviations.
(c) Use the tapply() and length() functions to calculate the number of

subjects per group.
(d) Calculate the standard errors of the group means.
(e) Calculate the 95% confidence intervals of the group means using the

t.test() function within tapply().

1.4. Array Indexing
Suppose we create an array x by x <- array(c(1:24), c(3, 4, 2)).
So x is a 3�4�2 array with subscripts i D 1; 2; 3; j D 1; 2; 3; 4; and k D 1; 2

representing the three dimensions of x, respectively.

(a) How do you use R to calculate
nP

iD1

xijk?

(b) How about summing over two dimensions, such as
P
k

P
i

xijk?

1.5. Finding which Elements
Suppose x is drawn randomly from a normal distribution, say x <- rnorm(30).

(a) Use the which() function to determine which elements of x are negative.
(b) Do the same with the seq() function with the along=x option.

Suppose x is converted into a matrix by x <- matrix(x, ncol = 5).

(a) Use which() with the arr.ind = TRUE option to retrieve the row and
column indices of elements of x that are negative.

Chapter 2
Reading and Transforming Data Format

2.1 Reading and Transforming Data

2.1.1 Data Layout

R, like Splus and S, represents an entire conceptual system for thinking about data.
You may need to learn some new ways of thinking. One way that is new for users of
Systat, SAS, and (probably) SPSS concerns two different ways of laying out a data
set. In the Systat way, each subject is a row (which may be continued on the next
row if too long, but still conceptually a row) and each variable is a column. You can
do this in R too, and most of the time it is sufficient.

But some the features of R will not work with this kind of representation, in
particular, repeated-measures analysis of variance or hierarchical linear modeling.
So you need a second way of representing data, which is that each row represents
a single datum, e.g., one subject’s answer to one question. The row also contains
an identifier for all the relevant classifications, such as the question number, the
subscale that the question is part of, and the subject. Thus, “subject” becomes a
category with no special status, technically a factor (and remember to make sure it
is a factor, lest you find yourself studying the effect of the subject’s number).

The former is referred to as the wide layout and the latter the long layout to be
consistent with the terms used by the reshapde() function.

2.1.2 A Simple Questionnaire Example

Let us start with an example of the old-fashioned way. In the file ctest3.data,
each subject is a row, and there are 134 columns. The first four are age, sex, student
status, and time to complete the study. The rest are the responses to four questions

Y. Li and J. Baron, Behavioral Research Data Analysis with R, Use R,
DOI 10.1007/978-1-4614-1238-0 2, © Springer Science+Business Media, LLC 2012

19

20 2 Reading and Transforming Data Format

about each of 32 cases. Each group of four is preceded by the trial order, but this is
ignored for now.

> c0 <- read.table(file = "ctest3.data")

The file can be downloaded from the data file has no labels, so we can read it
with read.table. You can also try read.csv or read.delim. The file
parameter can be ignored. If the data file is found online then the file parameter
can be the complete URL address to that file.

> age1 <- c0[,1]
> sex1 <- c0[,2]
> student1 <- c0[,3]
> time1 <- c0[,4]
> nsub1 <- nrow(c0)

We can refer to elements of c0 by c0[row,column]. For example, c0[1,2]
is the sex of the first subject. We can leave one part blank and get all of it, e.g.,
c0[,2] is a vector (column of numbers) representing the sex of all the subjects.
The last line defines nsub1 as the number of subjects.

> c1 <- as.matrix(c0[,4+1:128])

Now c1 is the main part of the data, the matrix of responses. The expression 1:128
is a vector, which expands to 1 2 3 . . . 128. By adding 4, it becomes 5 6 7 . . . 132.

2.1.2.1 Extracting Subsets of Data

> rsp1 <- c1[,4*c(1:32)-2]
> rsp2 <- c1[,4*c(1:32)-1]

The above two lines illustrate the extraction of sub-matrices representing answers
to two of the four questions making up each item. The matrix rsp1 has 32 columns,
corresponding to columns 2 6 10 ... 126 of the original 128-column matrix c1. The
matrix rsp2 corresponds to 3 7 11 ... 127.

Another way to do this is to use an array. We could say a1 <- array(c1,
c(ns, 4, 32)). Then a1[,1,] is the equivalent of rsp1, and a1[20,1,]
is rsp1 for subject 20. To see how arrays print out, try the following:

> m1 <- matrix(1:60,5,)
> a1 <- array(m1,c(5,2,6))
> m1
> a1

You will see that the rows of each table are the first index and the columns are the
second index. Arrays seem difficult at first, but they are very useful for this sort of
analysis.

2.1 Reading and Transforming Data 21

2.1.2.2 Finding Means (or Other Things) of Sets of Variables

> r1mean <- apply(rsp1,1,mean)
> r2mean <- apply(rsp2,1,mean)

The above lines illustrate the use of apply for getting means of subscales. In
particular, abrmean is the mean of the subscale consisting of the answers to the
second question in each group. The apply function works on the data in its first
argument, then applies the function in its third argument, which, in this case, is
mean. (It can be max or min or any defined function.) The second argument is
1 for rows, 2 for columns (and so on, for arrays). We want the function applied
to rows.

> r4mean <- apply(c1[,4*c(1:32)], 1, mean)

The expression here represents the matrix for the last item in each group of
four. The first argument can be any matrix or data frame. (The output for a data
frame will be labeled with row or column names.) For example, suppose you have
a list of variables such as q1, q2, q3, etc. Each is a vector, whose length is
the number of subjects. The average of the first three variables for each subject
is apply(cbind(q1,q2,q3),1,mean). (This is the equivalent of the Systat
expression avg(q1, q2, q3). A little more verbose, to be sure, but much more
flexible.)

You can use apply to tabulate the values of each column of a matrix m1:
apply(m1, 2, table). Or, to find column means, apply(m1, 2, mean).

There are many other ways to make tables. Some of the relevant functions are
table, tapply, sapply, ave, and by. Here is an illustration of the use of by.
Suppose you have a matrix m1 like this:

1 2 3 4
4 4 5 5
5 6 4 5

The columns represent the combination of two variables, y1 is 0 0 1 1, for the
four columns, respectively, and y2 is 0 1 0 1. To get the means of the columns
for the two values of y1, say by(t(m1), y1, mean). You get 3.67 and 4.33
(labeled appropriately by values of y1). You need to use t(m1) because by works
by rows. If you say by(t(m1), data.frame(y1,y2), mean), you get a
cross tabulation of the means by both factors. (This is, of course, the means of the
four columns of the original matrix.)

Of course, you can also use by to classify rows; in the usual examples, this would
be groups of subjects rather than classifications of variables.

2.1.2.3 One Row Per Observation

The next subsection shows how to transform the data from the wide layout (one row
per subject) to the long layout (one row per observation). We will use the matrix

22 2 Reading and Transforming Data Format

rsp1, which has 32 columns and one row per subject. Here are the data from five
subjects:

1 1 2 2 1 2 3 5 2 3 2 4 2 5 7 7 6 6 7 5 7 8 7 9 8 8 9 9 8 9 9 9
1 2 3 2 1 3 2 3 2 3 2 3 2 3 2 4 1 2 4 5 4 5 5 6 5 6 6 7 6 7 7 8
1 1 2 3 1 2 3 4 2 3 3 4 2 4 3 4 4 4 5 5 5 6 6 7 6 7 7 8 7 7 8 8
1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9
1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9

We will create a matrix with one row per observation. The first column will con-
tain the observations, one variable at a time, and the remaining columns will contain
numbers representing the subject and the level of the observation on each variable
of interest. There are two such variables here, r2 and r1. The variable r2 has four
levels, 1 2 3 4, and it cycles through the 32 columns as 1 2 3 4 1 2 3 4
... The variable r1 has the values (for successive columns) 1 1 1 1 2 2 2 2
3 3 3 3 4 4 4 4 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4. These lev-
els are ordered. They are not just arbitrary labels. (For that, we would need the
factor function.)

> r2 <- rep(1:4,8)
> r1 <- rep(rep(1:4,rep(4,4)),2)

The above two lines create vectors representing the levels of each variable for
each subject. The rep command for r2 says to repeat the sequence 1 2 3 4,
eight times. The rep command for r1 says take the sequence 1 2 3 4, then
repeat the first element four times, the second element four times, etc. It does this
by using a vector as its second argument. That vector is rep(4,4), which means
repeat the number 4, four times. So rep(4,4) is equivalent to c(4 4 4 4). The
last argument, 2, in the command for r1 means that the whole sequence is repeated
twice. Notice that r1 and r2 are the codes for one row of the matrix rsp1.

> nsub1 <- nrow(rsp1)
> subj1 <- as.factor(rep(1:nsub1,32))

nsub1 is just the number of subjects (5 in the example), the number of rows in the
matrix rsp1. The vector subj1 is what we will need to assign a subject number
to each observation. It consists of the sequence 1 2 3 4 5, repeated 32 times. It
corresponds to the columns of rsp1.

> abr1 <- data.frame(ab1 = as.vector(rsp1),
+ sub1 = subj1, dcost1 = rep(r1,rep(nsub1,32)),
+ abcost1 = rep(r2,rep(nsub1,32)))

The data.frame function puts together several vectors into a data frame,
which has rows and columns like a matrix.1 Each vector becomes a column. The
as.vector function reads down by columns, that is, the first column, then the

1The cbind function does the same thing but makes a matrix instead of a data frame.

2.1 Reading and Transforming Data 23

second, and so on. So ab is now a vector in which the first nsub1 elements are
the same as the first column of rsp1, that is, 1 1 1 1 1. The first 15 elements
of ab are: 1 1 1 1 1 1 2 1 2 1 2 3 2 2 1. Notice how we can define
names within the arguments to the data.frame function. Of course, sub1 now
represents the subject number of each observation. The first ten elements of sub1
are 1 2 3 4 5 1 2 3 4 5. The variable abcost1 now refers to the value of
r2. Notice that each of the 32 elements of r2 is repeated nsub1 times. Thus, the
first 15 values of abcost1 are 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3. Here
are the first ten rows of abr1:

ab1 sub1 dcost1 abcost1
1 1 1 1 1
2 1 2 1 1
3 1 3 1 1
4 1 4 1 1
5 1 5 1 1
6 1 1 1 2
7 2 2 1 2
8 1 3 1 2
9 2 4 1 2
10 1 5 1 2

The following line makes a table of the means of abr1, according to the values
of dcost1 (rows) and abcost1 (columns).

> ctab1 <- tapply(abr1[,1],list(abr1[,3],abr1[,4]),
mean)

It uses the function tapply, which is like the apply function except that the
output is a table. The first argument is the vector of data to be used. The second
argument is a list supplying the classification in the table. This list has two columns
corresponding to the columns of abr representing the classification. The third
argument is the function to be applied to each grouping, which in this case is the
mean. Here is the resulting table:

1 2 3 4
1 2.6 3.0 3.7 3.8
2 3.5 4.4 4.4 5.4
3 4.5 5.2 5.1 5.9
4 5.1 6.1 6.2 6.8

The following line provides a plot corresponding to the table.

> matplot(ctab1, type = "l")

Type l means lines. Each line plots the four points in a column of the table. If
you want it to go by rows, use t(ctab1) instead of ctab1. The function t()
transposes rows and columns.

24 2 Reading and Transforming Data Format

Finally, the following line does a regression of the response on the two classifiers,
actually an analysis of variance.

> summary(aov(ab1 ˜ dcost1 + abcost1 +
+ Error(sub1/(dcost1 + abcost1)), data = abr))

The function aov, like lm, fits a linear model, because dcost1 and abcost1
are numerical variables, not factors (although sub1 is a factor). The model is
defined by its first argument (to the left of the comma), where ˜ separates the
dependent variable from the predictors. The second element defines the data frame
to be used. The summary function prints a summary of the regression. (The lm
and aov objects themselves contains other things, such as residuals, many of which
are not automatically printed.) We explain the Error term later in Sect. 5.1, but the
point of it is to make sure that we test against random variation due to subjects, that
is, test “across subjects.” Here is some of the output, which shows significant effects
of both predictors:

Error: sub1
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 4 52.975 13.244

Error: sub1:dcost1
Df Sum Sq Mean Sq F value Pr(>F)

dcost1 1 164.711 164.711 233.63 0.0001069 ***
Residuals 4 2.820 0.705

Error: sub1:abcost1
Df Sum Sq Mean Sq F value Pr(>F)

abcost1 1 46.561 46.561 41.9 0.002935 **
Residuals 4 4.445 1.111

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 145 665.93 4.59

Note that, in many examples in this section, we used rep() to generate
repeated values. We can also use the gl() function for this. For example, instead
of subj1 <- as.factor(rep(1:nsub1,32)), we could say subj1 <-
gl(nsub1,1,nsub1*32). The first argument specifies the number of levels,
which in this case is the number of subjects. The second argument specifies the
number of immediate repetitions of each level (within each cycle, when there are
cycles – not the total number of repetitions), and the third argument specifies the
total length, which is here the number of subjects times the number of items. If we
wanted a code for each item, we could say gl(32,nsub1,nsub1*32). But here

2.1 Reading and Transforming Data 25

we do not need the last argument because there is only one cycle. Each item number
is immediately repeated nsub1 times. Thus, we could say gl(32,nsub1). The
gl() function is useful because it avoids having to say as.factor, which is
often forgotten.

2.1.3 Other Ways to Read in Data

First example. Here is another example of creating a matrix with one row per
observation.

> symp1 <- read.table("symp1.data",header=T)
> sy1 <- as.matrix(symp1[,c(1:17)])

The first 17 columns of symp1 are of interest. The file symp1.data contains
the names of the variables in its first line. The header=T (an abbreviation for
header=TRUE) makes sure that the names are used; otherwise the variables will
be names V1, V2, etc.

> gr1 <- factor(symp1$group1)

The variable group1, which is in the original data, is a factor that is unordered.
The next four lines create the new matrix, defining identifiers for subjects and

items in a questionnaire.

> syv1 <- as.vector(sy1)
> subj1 <- factor(rep(1:nrow(sy1),ncol(sy1)))
> item <- factor(rep(1:ncol(sy1),rep(nrow(sy1),
+ ncol(sy1))))
> grp <- rep(gr1,ncol(sy1))
> cgrp <- ((grp==2) | (grp==3))+0

The variable cgrp is a code for being in grp 2 or 3. The reason for adding 0 is
to make the logical vector of T and F into a numeric vector of 1 and 0.

The following three lines create a table from the new matrix, plot the results, and
report the results of an analysis of variance.

> sytab <- tapply(syv,list(item,grp),mean)
> matplot(sytab,type="l")
> svlm <- aov(syv ˜ item + grp + item*grp)

Second example. In the next example, the data file has labels. We want to refer to
the labels as if they were variables we had defined, so we use the attach function.

> t9 <- read.table("tax9.data",header=T)
> attach(t9)

26 2 Reading and Transforming Data Format

Third example. In the next example, the data file has no labels, so we can read it
with scan. The scan function just reads in the numbers and makes them into a
vector, that is, a single column of numbers.

> abh1 <- matrix(scan("abh1.data"),,224,byrow=T))

We then apply the matrix command to make it into a matrix. (There are many
other ways to do this.) We know that the matrix should have 224 columns, the
number of variables, so we should specify the number of columns. If you say
help(matrix) you will see that the matrix command requires several arguments,
separated by commas. The first is the vector that is to be made into a matrix, which
in this case is scan("abh1.data"). We could have given this vector a name,
and then used its name, but there is no point. The second and third arguments are
the number of rows and the number of columns. We can leave the number of rows
blank. (That way, if we add or delete subjects, we do not need to change anything.)
The number of columns is 224. By default, the matrix command fills the matrix by
columns, so we need to say byrow=TRUE or byrow=T to get it to fill by rows,
which is what we want. (Otherwise, we could just leave that field blank.)

We can refer to elements of abh1 by abh1[row,column]. For example,
abh1[1,2] is the sex of the first subject. We can leave one part blank and get
all of it, e.g., abh1[,2] is a vector (column of numbers) representing the sex of
all the subjects.

2.1.4 Other Ways to Transform Variables

2.1.4.1 Contrasts

Suppose you have a matrix t1 with four columns. Each row is a subject. You
want to contrast the mean of columns 1 and 3 with the mean of columns 2 and 4.
A t-test would be fine. (Otherwise, this is the equivalent of the cmatrix command
in Systat.) Here are three ways to do it. The first way calculates the mean of the
columns 1 and 3 and subtracts the mean of columns 2 and 4. The result is a vector.
When we apply t.test() to a vector, it tests whether the mean of the values is
different from 0.

> t1 <- matrix(rnorm(40), ncol = 4)
> t.test(apply(t1[c(1,3),], 2, mean) -
+ apply(t1[c(2, 4),], 2, mean))

The second way multiplies the matrix by a vector representing the contrast
weights, 1, -1, 1, -1. Ordinary multiplication of a matrix by a vector mul-
tiplies the rows, but we want the columns, so we must apply t() to transform the
matrix, and then transform it back.

> t.test(t(t(t1)*c(1,-1,1,-1)))

2.1 Reading and Transforming Data 27

or

> contr1 <- c(1,-1,1,-1)
> t.test(t(t(t1)*contr1))

The third way is the most elegant. It uses matrix multiplication to accomplish the
same thing.

> contr1 <- c(1,-1,1,-1)
> t.test(t1 %*% contr1)

2.1.4.2 Averaging Items in a Within-Subject Design

Suppose we have a matrix t2, with 32 columns. Each row is a subject. The 32
columns represent a 8x4 design. The first eight columns represent eight different
levels of the first variable, at the first level of the second variable. The next eight
columns are the second level of the second variable, etc. Suppose we want a
matrix in which the columns represent the eight different levels of the first variable,
averaged across the second variable.

First method: loop

One way to do it – inelegantly but effectively – is with a loop. First, we set up the
resulting matrix. (We cannot put anything in it this way if it doesn’t exist yet.)

> m2 <- t2[,c(1:8)]*0

The idea here is just to make sure that the matrix has the right number of rows,
and all 0’s. Now here is the loop:

> for (i in 1:8) m2[,i] <- apply(t2[,i+c(8*0:3)],1,
mean)

Here, the index i is stepped through the columns of m2, filling each one with the
mean of four columns of t2. For example, the first column of m2 is the mean of
columns 1, 9, 17, and 25 of t2. This is because the vector c(8*0:3) is 0, 8, 16,
24. The apply function uses 1 as its second argument, which means to apply the
function mean across rows.

Second method: matrix multiplication

Now here is a more elegant way, but one that requires an auxiliary matrix, which
may use memory if that is a problem. This time we want the means according to the
second variable, which has four levels, so we want a matrix with four columns. We
will multiply the matrix t2 by an auxiliary matrix c0.

28 2 Reading and Transforming Data Format

The matrix c0 has 32 rows and four columns. The first column is 1,1,1,1,1,1,1,1
followed by 24 0’s. This is the result of rep(c(1,0,0,0),rep(8,4)), which
repeats each of the elements of 1,0,0,0 eight times (since rep(8,4) means
8,8,8,8). The second column is 8 0’s, 8 1’s, and 16 0’s.

> c0 <- cbind(rep(c(1,0,0,0), rep(8,4)), rep(c(0,1,0,0),
+ rep(8,4)), rep(c(0,0,1,0), rep(8,4)),
+ rep(c(0,0,0,1), rep(8,4)))
> c2 <- t2 %*% c0

The last line above uses matrix multiplication to create the matrix c2, which
has four columns and one row per subject. Note that the order here is important;
switching t2 and c0 will not work.

2.1.4.3 Selecting Cases or Variables

There are several other ways for defining new matrices or data frames as subsets of
other matrices or data frames.

One very useful function is which(), which yields the indices for which its
argument is true. For example, the output of which(3:10 > 4) is the vector 3
4 5 6 7 8, because the vector 3:10 has a length of 8, and the first two places in
it do not meet the criterion that their value is greater than 4. With which(), you can
use a vector to select rows or columns from a matrix (or data frame). For example,
suppose you have nine variables in a matrix m9 and you want to select three sub-
matrices, one consisting of variables 1, 4, 7, another with 2, 5, 8, and another with
3, 6, 9. Define mvec so that it is the vector 1 2 3 1 2 3 1 2 3.

> m9 <- matrix(rnorm(90), ncol = 9)
> mvec9 <- rep(1:3,3)
> m9a <- m9[,which(mvec9 == 1)]
> m9b <- m9[,which(mvec9 == 2)]
> m9c <- m9[,which(mvec9 == 3)]

You can use the same method to select subjects by any criterion, putting the
which() expression before the comma rather than after it, so that it indicates rows.

2.1.4.4 Recoding and Replacing Data

Suppose you have m1 a matrix of data in which 99 represents missing data, and you
want to replace each 99 with NA. Simply say m1[m1==99] <- NA. Note that this
will work only if m1 is a matrix (or vector), not a data frame (which could result
from a read.table() command). You might need to use the as.matrix()
function first.

Sometimes you want to recode a variable, e.g., a column in a matrix. If q1[,3]
is a 7-point scale and you want to reverse it, you can say

> q1[,3] <- 8 - q1[,3]

2.1 Reading and Transforming Data 29

In general, suppose you want to recode the numbers 1,2,3,4,5 so that they come
out as 1,5,3,2,4, respectively. You have a matrix m1, containing just the numbers 1
through 5. You can say

> c1 <- c(1,5,3,2,4)
> apply(m1,1:2,function(x) c1[x])

In this case c1[x] is just the value at the position indicated by x.
Suppose that, instead of 1 through 5, you have A through E, so that you cannot

use numerical positions. You want to convert A,B,C,D,E to 1,5,3,2,4, respectively.
You can use two vectors:

> c1 <- c(1,5,3,2,4)
> n1 <- c("A","B","C","D","E")
> apply(m1,1:2,function(x) c1[which(n1)==x])

Or, alternatively, you can give names to c1 instead of using a second vector:

> c1 <- c(1,5,3,2,4)
> names(c1) <- c("A","B","C","D","E")
> apply(m1,1:2,function(x) c1[x])

The same general idea will work for arrays, vectors, etc., instead of matrices.
Here are some other examples, which may be useful in simple cases, or as

illustrations of various tricks.
In this example, q2[,c(2,4)] are two columns that must be recoded by

switching 1 and 2 but leaving responses of 3 or more intact. To do this, say

> q2[,c(2,4)] <- (q2[,c(2,4)] < 3) * (3 - q2[,c(2,4)]) +
+ (q2[,c(2,4)] >= 3) * q2[,c(2,4)]

Here the expression q2[,c(2,4)] < 3 is a two-column matrix full of TRUE
and FALSE. By putting it in parentheses, you can multiply it by numbers, and TRUE
and FALSE are treated as 1 and 0, respectively. Thus, (q2[,c(2,4)] < 3) *
(3 - q2[,c(2,4)]) switches 1 and 2, for all entries less than 3. The expression
(q2[,c(2,4)] >= 3) * q2[,c(2,4)] replaces all the other values, those
greater than or equal to 3, with themselves.

Here is an example that will switch 1 and 3, 2 and 4, but leave 5 unchanged, for
columns 7 and 9

> q3[,c(7,9)] <- (q3[,c(7,9)]==1)*3 +
+ (q3[,c(7,9)]==2)*4 + (q3[,c(7,9)]==3)*1 +
+ (q3[,c(7,9)]==4)*2 + (q3[,c(7,9)]==5)*5

Notice that this works because everything on the right of <- is computed on the
values in q3 before any of these values are replaced.

30 2 Reading and Transforming Data Format

2.1.4.5 Replacing Characters with Numbers

Sometimes you have questionnaire data in which the responses are represented as
(for example) “y” and “n” (for yes and no). Suppose you want to convert these to
numbers so that you can average them. The following command does this for a
matrix q1, whose entries are y, n, or some other character for “unsure.” It converts
y to 1 and n to �1; leaving 0 for the “unsure” category.

> q1 <- (q1[,]=="y") - (q1[,]=="n")

In essence, this works by creating two new matrices and then subtracting one
from the other, element by element.

A related issue is how to work with date and time variables. A timestamp
value like “2009-02-01 15:22:35” is typically shown as a character string in a
spreadsheet program. Character variables of date and time can be converted into
DateTimeClasses.

> x <- c("2008-02-28 15:22:35", "2008-03-01 15:30:35")
> fmt <- "%Y-%m-%d %H:%M:%S"
> y <- strptime(x, format = fmt)
> y[2] - y[1]
Time difference of 2.0056 days

Note the time difference of approximately 2 days because there are 29 days
in February 2008. The strptime() function filters the character variable x
by a specific timestamp format. A “mm/dd/yyyy” date would need a format of
"%m/%d/%Y", and a “mm/dd/yy” date would need "%m/%d/%y".

Timestamp variables are often imported from the text output of a spreadsheet
program. Text variables imported through read.csv() and read.table() are
automatically converted into factors when the imported data are turned into a data
frame. strptime() does not accept factors. One workaround is to deactivate the
automatic conversion by setting read.csv(..., as.is = TRUE).

2.1.5 Using R to Compute Course Grades

Here is an example that might be useful and instructive. Suppose you have a set
of grades including a midterm with two parts m1 and m2, a final with two parts,
and two assignments. You told the students that you would standardize the midterm
scores, the final scores, and each of the assignment scores, then compute a weighted
sum to determine the grade. Here, with comments, is an R file that does this. The
critical line is the one that standardizes and computes a weighted sum, all in one
command.

> g1 <- read.csv("grades.csv",header=F)
> a1 <- as.vector(g1[,4])

2.2 Reshape and Merge Data Frames 31

> m1 <- as.vector(g1[,5])
> m2 <- as.vector(g1[,6])
> a2 <- as.vector(g1[,7])
> f1 <- as.vector(g1[,8])
> f2 <- as.vector(g1[,9])
> a1[a1=="NA"] <- 0 # missing assignment 1 gets a 0
> m <- 2*m1+m2 # compute midterm score from the parts
> f <- f1+f2
> gdf <- data.frame(a1,a2,m,f)
> gr <- apply(t(scale(gdf))*c(.10,.10,.30,.50),2,sum)
The last line standardizes the scores and computes
their weighted sum.
The weights are .10, .10, .30, and .50 for
a1, a2, m, and f

> gcut <- c(-2,-1.7,-1.4,-1.1,-.80,-.62,-.35,-.08,.16,
+ .40,.72,1.1,2)
The last line defines cutoffs for letter grades.

> glabels <- c("f","d","d+","c-","c","c+","b-","b",
+ "b+","a-","a","a+")
> gletter <- cut(gr,gcut,glabels) # letter grades
> grd <- cbind(g1[,1:2],round(gr,digits=4),gletter)
gl[,1:2] are students’ names

> grd[order(gr),] # sorts & prints matrix in rank order
> round(table(gletter)/.83,1) # prints, with rounding
the .83 is because there are 83 students

> gcum <- as.vector(round(cumsum(table(gletter)/.83),1))
> names(gcum) <- glabels
> gcum # cumulative sum of students w/ different grades

2.2 Reshape and Merge Data Frames

The reshape() function reshapes a data frame between the wide and long
layouts.

> data1 <- c(
+ 49,47,46,47,48,47,41,46,43,47,46,45,
+ 48,46,47,45,49,44,44,45,42,45,45,40,
+ 49,46,47,45,49,45,41,43,44,46,45,40,
+ 45,43,44,45,48,46,40,45,40,45,47,40)
> data1 <- data.frame(subj = paste("s", 1:12, sep=""),
+ matrix(data1, ncol = 4))
> names(data1) <- c("subj","sq.red", "circ.red",
+ "sq.blue", "circ.blue")
> data1

32 2 Reading and Transforming Data Format

subj sq.red circ.red sq.blue circ.blue
1 s1 49 48 49 45
2 s2 47 46 46 43
3 s3 46 47 47 44
4 s4 47 45 45 45
5 s5 48 49 49 48
6 s6 47 44 45 46
7 s7 41 44 41 40
8 s8 46 45 43 45
9 s9 43 42 44 40
10 s10 47 45 46 45
11 s11 46 45 45 47
12 s12 45 40 40 40

The data come from a hypothetical study of reaction time in working with control
panels of different shape (square and circle) and color (red and blue). Each subject
works with all all types of controls and the reaction time is collected. Details of this
example are described in Sect. 5.1.

You can tell reshape to convert columns 2 through 5 into a single long variable
called rt, with 4 records per subj.

> data1.long <- reshape(data1, direction = "long",
+ idvar = "subj", varying= 2:5, v.names = "rt")

The command takes columns 2 through 5 (varying = 2:5) and collapses them
into a single variable called v.names = "rt" in the long format (direction
= "long"). The varying option can be variable names, e.g., varying =
c("sq.red", "circ.red", "sq.blue", "circ.blue"). The subj
ids are repeated in the long format. A new variable (named time by default)
is created to index the collapsed columns. The index values of 1, 2, 3, and 4
represent the second (sq.red) through the 5th columns (circ.blue), respec-
tively. The default variable name time can be changed by specifying timevar
= "groups" if you want the new variable be named as groups. To con-
vert data1.long back into the wide format, type reshape(data1.long,
direction = "wide", ids = "subj"). We will see this data frame again
in Sect. 5.1 when we deal with repeated-measures ANOVA.

Another useful function is merge(), which joins data frames. Suppose you have
in a separate data frame the gender information of subjects 1 through 9. By default
the two data frames are matched by common variable(s), in this case one single
variable subj.

subj.char <- data.frame(subj = paste("s", 1:9,
sep = ""), sex = c("F","F","M","F","F","F","M",
"M","M"))

merge(x = data1.long, y = subj.char, all = TRUE)

2.3 Data Management with a SQL Database 33

subj time rt sex
1 s1 1 49 F
2 s1 2 48 F
3 s1 3 49 F
4 s1 4 45 F
5 s10 2 45 <NA>
6 s10 1 47 <NA>
7 s10 4 45 <NA>
8 s10 3 46 <NA>
...
15 s12 4 40 <NA>
16 s12 3 40 <NA>
...
47 s9 2 42 M
48 s9 1 43 M

Note that all = TRUE retains all subject ids from both data frames. The default
is all = FALSE, which would drop subjects 10 through 12. Set only all.x
= TRUE if you want to keep all subjects in data1.long but you are fine with
subjects in subj.char being dropped. The all.y option works the opposite
way. Note also that R sorts character strings by one character at a time, so that
subject id “s10” comes after id “s1.” We can force the subject ids to contain one “s”
and two digits by paste("s", sprintf("%02d", 1:12), sep = "")
when data1 and subj.char are created. (although subj.char only contains
subjects 1 through 9) You get “s01,” “s02,” ..., “s10,” and so on.

2.3 Data Management with a SQL Database

The last sections of this chapter deals with data management with a SQL database.
These advanced data management topics can be skipped without loss of continuity
or context.

Researchers working with Ecological Momentary Assessment (EMA) data
(Shiffman et al. 2008) may find this section especially useful. In this section we
cover how to work with PostgreSQL, an open-source database program that can be
freely downloaded and installed on computers running Unix/Linux, Mac OS, and
Windows. To fully appreciate how this works, you need to install a PostgreSQL
server program on your computer, run the SQL commands in Appendix A to
build a database, and run the R query commands below to retrieve data from the
PostgreSQL database program. It is a different method of data management. You
have the option to retrieve only a handful of variables you need to run an analysis.
You no longer need to use R to manage many variables in one large data frame,
most of which are anyways not needed in a specific analysis.

34 2 Reading and Transforming Data Format

Subjchar

id sex edu race

s001
s002
s003

s004

s005

F
F
M

M

F 2

4

1
2
3

B

B

W
A
W

Baseassess

bdi basedate

s001

id bsi

s005
s004
s003

s002

2009−07−12
2009−07−12
2009−07−09

2009−06−17

2009−06−2810

12

12
14
11 10

16
10

15

13

s001

...
s001
s001

EMA

s002
s002
...
s002

2009−06−29 09:20:25

2009−06−29 10:35:55

2009−06−29 09:35:35 1
1

1

2009−06−19 09:42:32

2009−06−19 08:05:15
2009−06−19 07:35:35

2009−07−14 11:07:03
2009−07−14 11:32:23

2009−07−14 12:42:19
2009−07−14 13:29:07

1
1

0

1
1

0
1

s005
s005
...

s005
s005

...

id tstamp smoke

Fig. 2.1 An example SQL database with three data tables

Figure 2.1 shows the design of a hypothetical database with three data tables.
Each table can be thought of as a spreadsheet. The subchar table contains
information on subject characteristics. The baseassess table contains baseline
assessments. These two tables are simple. The ema table contains repeated measures
of intensive EMA data. For example, subject 001 was asked whether or not she was
smoking on June 29, 2009 at 9:20 and she responded “yes” (coded 1). Another entry
is timestamped at 9:35, and another at 10:35. EMA is typically collected through
an electronic device such as a hand-held computer or a cellular phone to capture
behaviors as they happen in real time. An obvious advantage of EMA is that it
minimizes recall bias or noncompliance. A data analysis challenge is that the ema
table can be very long. Another complication is that different subjects can produce
different numbers of assessments. It would not make sense to format the data in a
wide layout.

Appendix A describes how to create this hypothetical database called test on a
PostgreSQL server program. The syntax in Appendix A should also work with other
database programs such as MySQL. Once created, the database test can be linked
to R by the library(RPostgreSQL) package.

> library(RPostgreSQL)
Loading required package: DBI
> conn <- dbConnect(PostgreSQL(), user = "usr1",

password = "**********", dbname = "test")

A connection is first established between R and the PostgreSQL server program. In
this example we use a user name and a password to provide data safety protection.

Next, a Standard Query Language (SQL) query is sent to the server through
conn to retrieve a result set.

2.4 SQL Database Considerations 35

> rs <- dbSendQuery(conn, "SELECT subjchar.id, sex,
+ edu, race, bsi, bdi, bdate, tstamp, smoke
+ FROM subjchar, baseassess, ema
+ WHERE subjchar.id = baseassess.id AND
+ subjchar.id = ema.id
+ ORDER BY subjchar.id, tstamp;")
> dat <- fetch(rs, n = -1)
> dbDisconnect(conn)

A result set rs is retrieved and fetch() actually gets all data in the result set into
dat. A great convenience is that any timestamp variable such as tstamp in this
example is automatically and seamlessly converted by the RPostgreSQL package
into DateTimeClasses in R. There is no need to do the often tedious manual
conversion. The tapply() command shows that the five consecutive assessments
for subject 001 are separated by approximately 15–25 minutes apart.

> tapply(dat.del$tstamp, list(dat.del$id),
+ function(x) {
+ x[2:length(x)] - x[1:(length(x)-1)] })
$s001
Time differences in mins
[1] 15.167 15.000 24.500 20.833
attr(,"tzone")
[1] ""
....
$s005
Time differences in mins
[1] 25.333 30.167 39.767 46.800 34.783
attr(,"tzone")
[1] ""

R can also work with an ACCESS database or any other ODBC-compliant
database programs. An example on how to set up and ODBC connection on a
standalone PC running Windows XP is provided in Appendix A.3.

2.4 SQL Database Considerations

Data management by a SQL-based database requires some preparations and basic
knowledge of SQL. Would it not be much easier just to save the data in spreadsheet
files, export each file into a comma-separated file (CSV) and use read.csv() and
merge() to combine them?

The answer to this question depends on a few things. A database management
system has several advantages over a spreadsheet program. A database management
system also deals with different variable types more efficiently, especially variables

36 2 Reading and Transforming Data Format

marked by timestamps. There is limited gain in efficiency if you only have a
small dataset in a fixed format, with mostly numeric, binary, and categorical
variables. Managing complex data with spreadsheet programs can be frustrating.
For example, reading character string variables into R and converting them into
DateTimeClass format is tedious and error prone. Timestamps variables have
to be converted one by one from text strings by strptime(). Sometimes the
user of a spreadsheet program inadvertently changes the format of a date variable
so that some entries are entered as "mm/dd/yyyy" and others as "mm/dd/yy".
A "%d/%m/%Y" string in strptime() requires a "mm/dd/yyyy" format so
that it fails with entries in "mm/dd/yy". Furthermore, sometimes the person who
enters the data accidentally type a space in one of the cells in a blank column. The
resulting CSV file may contain many blank variables. It certainly takes time to set
up a SQL-based database, but the prevention of common problems in managing
data with a spreadsheet program may more than compensate for the upfront cost in
setting up a SQL-based database.

Exercises

2.1. Importing data from a website
In the first exercise of this chapter, we will try importing data directly from a
website. Online data repositories make it easy to share de-identified data. The
read.table() and read.csv() functions in R can directly import data from
a file on the internet. For example, the ctest3.data file in this chapter can be
directly accessed from http://idecide.mskcc.org/yl home/.

(a) Try the command below to read the ctest3.data file.

c0 <- read.table("http://idecide.mskcc.org/yl_home/
rbook/ctest3.data")

2.2. Importing data from an online data repository
Online data repository is common. Many authors now make their data available
online. One example is the online data repository for the book by Fitzmaurice
et al. (2004a). Its URL is http://www.biostat.harvard.edu/�fitzmaur/ala/ (last
accessed April 20, 2011).

(a) Click on the “Datasets” icon, and you will find a link called “Television School
and Family Smoking Prevention and Cessation Project.” That link points to a
raw data file called tvsfp.txt.

(b) Click on the link to the TVSFP dataset to view its contents.
(c) What is the complete URL that goes into the file option in your

read.csv() function?

Exercises 37

(d) The first 44 lines of text in that file are the authors’ notes. They will have to be
skipped by the skip option. How can this be done?

(e) Write the complete read.csv() command with the skip option set.
(f) Would you set the header option to TRUE or FALSE?
(g) Convert the retrieved data into a data.frame in R.
(h) Add variable names to the final data frame if necessary.

2.3. Read and merge two data files
Read two data files from http://idecide.mskcc.org/yl home/rbook/. The first is
subjchar.dat, the second is ema.dat. The first row of each file contains the
variable names.

(a) The ema.dat file should be imported with an as.is=T to keep the timestamp
variable as a character string.

(b) Try the commands below.

url <- paste("http://idecide.mskcc.org/yl_home/",
"rbook/ema.dat", sep="")

ema <- read.table(url, as.is=T, sep="\t",
header=TRUE)

t1 <- strptime(ema$tstamp,
format="%Y-%m-%d %H:%M:%S")

ema <- data.frame(id=ema$id, tstamp=t1,
smoke=ema$smoke)

(c) Explain why we need the strptime() function for ema$tstamp?
(d) Use merge() to combine the two data frames into one.

2.4. Change data layout through reshape()
In this exercise we practice how to use reshape() to convert the ema data in the
previous problem into a wide format.

(a) First, create a new variable called time that contains the chronological order
of each subject’s tstamp variable. Try the command below and explain what
it does.

ema$time <- unlist(tapply(ema$tstamp, list(ema$id),
function(x) { order(x) })).

(b) Next, build the reshape() command that converts ema into the
wide format. (hint: You will need timevar="time", idvar="id",
v.names="smoke", and an optional drop="tstamp").

(c) Note that the reshaped wide layout contains additional variable(s), particularly
the one associated with the reshaped smoke variable. Explain why extra
variable(s) were created automatically as part of reshape()?

(d) Explain what the drop="tstamp" option does?
(e) Explain why you do not need to set the varying option?

Chapter 3
Statistics for Comparing Means and Proportions

3.1 Comparing Means of Continuous Variables

In Chap. 1, we apply t.test() to the sleep dataset to compare the effects of
two drugs on sleep time. We revisit it and give it a more detailed analysis. The first
steps in comparing the means of two continuous variables often involve plotting the
data to check their distributional properties. Histograms stacked one on top of the
other is a good way to visually compare two distributions.

> par(mfcol = c(2, 1))
> brk <- seq(-2, 6.0, by = 0.5)
> hist(x1, br = brk, ylim = c(0, 0.6), prob=T)
> lines(density(x1), lwd = 2)
> hist(x2, br = brk, ylim = c(0, 0.6), prob=T)
> lines(density(x2), lwd = 2)

The par(mfcol = c(2, 1)) command partitions the main plotting area into
two sub-plots; mfcol = c(2, 1) represents the partitioning into two rows and
one column. The brk sets up the x-axis for the histogram from �2 to 6 in
increment of 0.5. Coupled with ylim = c(0, 0.6), the two options ensure
that the histograms are mapped onto the same x and y axes so that they are
comparable. There appears to be a sizeable overlap between the two somewhat
skewed distributions. The lines(density(x1)) command adds a smoothed
density curve.

The two smoothed distributions in Fig. 3.1 are not unimodal. A nonparametric
method such as the Wilcoxon rank sum test using wilcox.test() may also be
used.

> wilcox.test(x1, x2)

Wilcoxon rank sum test with continuity
correction

Y. Li and J. Baron, Behavioral Research Data Analysis with R, Use R,
DOI 10.1007/978-1-4614-1238-0 3, © Springer Science+Business Media, LLC 2012

39

40 3 Statistics for Comparing Means and Proportions

Fig. 3.1 Histograms and
superposed density estimates
showing a sizeable overlap
between the distributions of
the two samples

Histogram of x1

x1

D
en

si
ty

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

Histogram of x2

x2

D
en

si
ty

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

data: x1 and x2
W = 25.5, p-value = 0.06933
alternative hypothesis: true location shift
is not equal to 0

Warning message:
In wilcox.test.default(x1, x2) : cannot
compute exact p-value with ties

The warning message states that an exact p-value cannot be calculated
because of ties in x1 and x2. Normal approximation is used instead (see
help(wilcox.test)). The null hypothesis of zero location shift difference
is not rejected at the 0.05 level.

This finding is consistent with the parametric, Welch’s t-test usingt.test(x1,
x2). Another form of the same t-test can be done using a formula to compare the
extra sleep time by group:

3.1 Comparing Means of Continuous Variables 41

> t.test(extra ˜ group, data = sleep)

Welch Two Sample t-test

data: extra by group
t = -1.8608, df = 17.776, p-value = 0.0794
alternative hypothesis: true difference in means is
not equal to 0
95 percent confidence interval:
-3.3654832 0.2054832

sample estimates:
mean in Group 1 mean in Group 2

0.75 2.33

Group 2 has an average of 2.33 extra hours of sleep whereas Group 1 has an average
of 0.75 extra hours. However, the 95% confidence interval of the difference does not
exclude 0.00. The null hypothesis that the true difference in means is equal to zero
is not rejected. The t.test() results can be checked manually by the following
formula:

t D Nx1 � Nx2q
s2
1

n1
C s2

2

n2

:

> x1 <- sleep$extra[sleep$group %in% "1"]
> x2 <- sleep$extra[sleep$group %in% "2"]
> m1 <- mean(x1)
> m2 <- mean(x2)
> n1 <- length(x1)
> n2 <- length(x2)
> S <- sqrt(sd(x1)ˆ2/n1 + sd(x2)ˆ2/n2)
> (m1 - m2) / S
[1] -1.8608

Note the resemblance between the mathematical formulae and the R commands.
The Nx1 is represented by mean(x1), Nx2 by mean(x2), and so on. The match
between mathematical notations and R syntax is useful in teaching. Beginners are
often intimidated by mathematical symbols. R helps to convert symbols into data
objects that are more tangible and easier to work with than the abstract mathematical
symbols. This manual verification also makes clear that Welch’s t-test does not
assume a common standard deviation between the two samples.

42 3 Statistics for Comparing Means and Proportions

3.2 More on Manual Checking of Data

Some things are easy to do in R. For example, you can quickly check the accuracy
of some results in a manuscript you are reviewing. A simple example shows how
to do it. Dutton and Aron (1974) tested the Schachter-Singer theory of emotion in a
now classic social psychology experiment. A crude description of the theory is that
a person’s physical arousal is labeled a specific emotion depending on the situation.
Part of the experiment involved interviews between male subjects and an attractive
female confederate working with the psychologists. The interviews occurred either
on a fear-arousing suspension bridge or a nonfear-arousing bridge. At the end of
the interview, the interviewer gave the subject her phone number in case he wanted
to discuss the interview further. Dutton and Aaron found that, in the experimental
group, 9 out of 18 (50%) called whereas in the control group only 2 out of 16 (12%)
called. They reported a �2 statistic of 5.7, p < 0:02. The experimenters took the
observed behavior and other results as evidence in support of their hypothesis that
male subjects interpreted fear arousal on the suspension bridge as attraction to the
interviewer. The �2 result reported in the published paper can be verified easily by:

> mcnemar.test(M[, 1], M[, 2], correct = FALSE)

McNemar’s Chi-squared test

data: M[, 1] and M[, 2]
McNemar’s chi-squared = 0.0625, df = 1, p-value = 0.8026

Note that M contains the number of callers and noncallers across the two groups.
By default the chisq.test() carries out a continuity correction. But in this
incidence it is deliberately deactivated in order to match the �2 statistic reported
by Dutton and Aaron. If you were reviewing their paper, the lack of the continuity
correction might be a reason for you to ask for further clarifications and offer the
fisher.test() as a more appropriate alternative due to the small sample size.

> fisher.test(M)

Fisher’s Exact Test for Count Data

data: M
p-value = 0.02959
alternative hypothesis: true odds ratio is not equal

to 1
95 percent confidence interval:

1.0265 76.4815
sample estimates:
odds ratio

6.5954

3.3 Comparing Sample Proportions 43

3.3 Comparing Sample Proportions

Another way to compare sample proportions is by prop.test(). The �2 reported
by Dutton and Aaron can also be calculated as follows:

> prop.test(x = c(9, 2), n = c(18, 16), correct = FALSE)

2-sample test for equality of proportions
without continuity correction

data: c(9, 2) out of c(18, 16)
X-squared = 5.4427, df = 1, p-value = 0.01965
alternative hypothesis: two.sided
95 percent confidence interval:
0.092841 0.657159

sample estimates:
prop 1 prop 2
0.500 0.125

The number of successes (number of subjects who called) is entered as x and the
total number of subjects is entered as n. The x and n parameters can contain more
than two proportions. When they do, prop.test() carries out a comparison of
proportions from several independent samples. The null hypothesis being tested is
that all proportions are equal.

Another useful function is binom.test() for the calculation of an exact
binomial test of a proportion. Suppose we roll a dice 100 times and the number
6 comes up 20 times (the expected is 16.67 times). Is there a reason to suspect that
the dice is loaded? One method to test it is binom.test(x = c(20, 80),
p = 1/6) to test the 20/80 split against the expected one sixth proportion. The
p-value is 0.35, which is against the suspicion.

The binom.test() function can also perform the sign test for two related
proportions, for example, in Moore and McCabe (1993, Example 7.3). A sample of
20 high school French language teachers participated in a 4-week French training
program. After the training, 17 teachers showed a change in a spoken French
comprehension test (16 improved and 1 declined). The two-sided exact binomial
probability of 16 teachers who improved out of 17 teachers is 0.00027.

> binom.test(16, 17, p = 0.5, alt = "two.sided")

Exact binomial test

data: 16 and 17
number of successes = 16, number of trials = 17,
p-value = 0.0002747
alternative hypothesis: true probability of success

is not equal to 0.5

44 3 Statistics for Comparing Means and Proportions

95 percent confidence interval:
0.71311 0.99851

sample estimates:
probability of success

0.94118

The sign test can also be applied to matched pairs (e.g., husband and wife pairs
in decision-making) or to comparisons made by the same individuals over two
consumer products (e.g., each subject evaluates and indicates his/her preference in
products A and B).

The exact binomial test is particularly useful in calculating the 95% confidence
intervals of proportions for graphing. For example, Meltzer et al. (2008) asked
68 pediatric physicians and 85 pediatric nurses on how they would address
patient/family’s psychosocial concerns in hypothetical vignettes of complex medical
problems. Respondents were asked whether or not they would do the following:

(a) Use conversation to ease the patient’s and/or family’s intense emotions and
pain?

(b) Call a family meeting to review/address medical care and/or psychosocial
issues?

(c) Talk with a colleague about how to work with the patient/family’s emotional
response?

(d) Make a referral to a professional who is specially trained to manage the
psychosocial aspects of pediatric specialty care?

Each response was dichotomized into either “likely” or “unlikely.” Percentages of
“likely” responses and their exact binomial 95% confidence intervals can be plotted
(see Fig. 3.2) using these commands:

> rn <- c(68, 69, 72, 66)
> md <- c(50, 53, 49, 65)
> rn.ci <- matrix(NA, nrow = 4, ncol = 2)
> md.ci <- matrix(NA, nrow = 4, ncol = 2)
> for (i in 1:length(rn))
+ rn.ci[i,] <- binom.test(x=rn[i], n=85)$conf.int
> for (i in 1:length(md))
+ md.ci[i,] <- binom.test(x=md[i], n=68)$conf.int
> prp <- rbind(rn/85, md/68)
> bx <- barplot(prp, beside = T, ylim=c(0, 1), axes=F)
> segments(bx[1,], rn.ci[,1], bx[1,], rn.ci[,2])
> segments(bx[2,], md.ci[,1], bx[2,], md.ci[,2])
> axis(1, at = c(2, 5, 8, 11), label = rep("",4))
> mtext(c("Ease\nEmotion", "Family\nMeeting",
+ "Consult\nColleague", "Psych\nReferral"),
+ side = 1, at = c(2, 5, 8, 11), line = 2, cex=1.2)
> axis(2, at = seq(0, 1, by=.2), las = 1)

3.4 Moderating Effect in loglin() 45

Fig. 3.2 Barplot of the
percentages of physicians
(light bars) and nurses (dark
bars) who would take specific
actions to provide
psychosocial support in
pediatric complex care. The
error bars represent exact
binomial 95% confidence
intervals. Physicians and
nurses differ on how likely
they may refer a
patient/family to a
professional who is specially
trained to manage the
psychosocial aspects of
pediatric specialty care

Ease
Emotion

Family
Meeting

Consult
Colleague

Psych
Referral

0.0

0.2

0.4

0.6

0.8

1.0

Physicians represented by light grey bars and nurses (dark grey) agree on the first
two actions. They differ slightly on consulting a colleague about the patient/family’s
emotional response. But the overlapping confidence intervals suggest no discernible
difference. Physicians are more likely than nurses to refer the patient/family to
psychological consultation. The nonoverlapping confidence intervals indicate a
statistically reliable difference between the two proportions.

3.4 Moderating Effect in loglin()

R can help simplify complex data analysis tasks. The elegance of the language helps,
particularly those tasks involving the manipulation of data. Below is an example in
contingency table analysis from Wickens (1989, p.78, Table 3.2).

Department 1 Department 2

Accept Reject Accept Reject

Male 23 16 3 25
Female 7 4 7 47

This 2 by 2 by 2 contingency table summarizes the number of female and male
applicants who are accepted or rejected by two hypothetical academic departments
in their graduate programs. The data can be pooled across the two departments.

46 3 Statistics for Comparing Means and Proportions

Accept Reject

Male 26 41
Female 14 51

This 2 � 2 table suggests that female applicants are more likely to get rejected
(51=65 D78%) than males (41=67 D61%). With the data collapsed over depart-
ments, a Chi-square test raises the concern of sex discrimination in graduate school
admission (�2

dfD1 D 3:88; p D 0:049).
However, Wickens (1989) shows that this association is illusory. The difference

of gender and graduate school admission is moderated by the academic department
under consideration.1 We will go over how to test this effect using R. First, we enter
the raw data.

> tab3.2 <- array(c(23, 7, 16, 4, 3, 7, 25, 47),
+ dim = c(2, 2, 2))
> dimnames(tab3.2) <- list(c("Male", "Female"),
+ c("Accept", "Reject"), c("Dept1", "Dept2"))

Type tab3.2 to print the contents of the data array.

, , Dept1

Accept Reject
Male 23 16
Female 7 4

, , Dept2

Accept Reject
Male 3 25
Female 7 47

The array() function takes Wickens’ 2 � 2 � 2 table and converts it into an
array of the same shape (dim = c(2, 2, 2)). The dimnames() function
assigns names to the array’s three dimensions, also called margins. The three
margins represent gender, acceptance, and academic department, respectively. We
can collapse the data over the two departments.

> apply(tab3.2, MARGIN = c(1, 2), FUN = sum)
Accept Reject

Male 26 41
Female 14 51

1Wickens used the term ‘mediated’ but we believe “moderated” is a better fit because mediation
relationships typically imply temporal causation which is not available in this example. Either way,
it is really about the conditional independence hypothesis in a 3-way contingency table.

3.4 Moderating Effect in loglin() 47

The apply() function keeps margins 1 and 2 of tab3.2 and add data over the
3rd margin by the function sum(). A Chi-square test of the pooled data raises the
concern of sex discrimination.

> chisq.test(apply(tab3.2, MARGIN = c(1, 2), FUN = sum))

Pearson’s Chi-squared test with Yates’
continuity correction

data: apply(tab3.2, MARGIN = c(1, 2), FUN = sum)
X-squared = 3.876, df = 1, p-value = 0.04898

However, this apparent gender difference goes away if you look at the data within
academic departments. In department one, female and male applicants are rejected
at about the same rate (4=11 D 36% vs. 16=39 D 41%). A similar pattern is seen in
department two (47=54 D 87% vs. 25=28 D 89%).

Looking at tab3.2 again shows that department one is popular among male
applicants while department two is popular among females. The overall gender
difference is in part because department two only accepts 12% of its applicants,
while department one accepts 60% of its applicants. Overall, females get rejected
more often than males because department two is harder to get into. Looking at only
data from department one, a Fisher’s exact test2 indicates no gender difference.

> fisher.test(tab3.2[, , "Dept1"])

Fisher’s Exact Test for Count Data

data: tab3.2[, , "Dept1"]
p-value = 1
alternative hypothesis: true odds ratio is not equal

to 1
95 percent confidence interval:
0.1508734 3.9163416

sample estimates:
odds ratio

0.824631

In this example, we say that the gender difference in graduate school admission
is moderated by the acceptance rates across academic departments (see Wickens
(1989, p.61)). A more formal test of the moderation effect can be carried out with
the following loglinear model.

> loglin(tab3.2, margin = list(c(2,3), c(1,3)))
2 iterations: deviation 0
$lrt
[1] 0.1670179

2Fisher’s test is versatile; fisher.test() is not limited to 2 � 2 tables, it can handle tables
more complex than a 2 � 2 table.

48 3 Statistics for Comparing Means and Proportions

$pearson
[1] 0.1647739

$df
[1] 2

$margin
$margin[[1]]
[1] 2 3

$margin[[2]]
[1] 1 3

The Pearson X2
.dfD2/ is 0:16 with a p-value of 0:92.

> 1 - pchisq(0.16477, df = 2)
[1] 0.9209173

The margin = list(c(2, 3), c(1, 3)) parameter specifies the null hy-
pothesis, which states that gender and graduate school acceptance are unrelated at
every department. To set this up in loglin(), we specify that graduate school
acceptance and department are related (c(2, 3)) and that gender and department
are related (c(1, 3)); but gender and acceptance are not related given the
departments. Note that there is no c(1, 2) in the margins. The nonsignificant
Pearson X2 shows that the null hypothesis cannot be rejected. Therefore, graduate
school acceptance and applicants’ gender are unrelated at every department. There
is no sufficient statistical evidence to suggest sex discrimination in graduate school
admission.

Paradoxical findings such as the example above are common. Mittal (1991)
describes the general cases in which paradoxes arise when data are pooled over
multiple tables. This may be a concern in exploratory studies using Chi-squares
to look for potential associations between pairs of variables. It may be worth the
effort to explore further to minimize the false discovery of associations between
two factors (e.g., outcome and treatment) that is unrelated to a third factor (e.g.,
self-efficacy), using a test of conditional independence.

This example shows several features of R. R only prints the most essential output.
The input data format often matches how the statistical problem is posed. In this
case the loglin() function analyzes contingency table data in an array. This can
be useful if you want to check the calculations of published articles (or the article
you are reviewing for a journal). You can plug in the published numbers and verify
the accuracy of the statistics.

This example examines only a very small part of loglinear models and methods
to test moderation effects. Extensions to the basic loglinear modeling routines
are also not covered. For example, the loglm() function in package MASS
extends loglin(). If you have the raw data then you can run something
like loglm(count � sex+accept+dept+sex:dept+sex:accept) to
test the same hypothesis. Additional details on loglinear models can be found

3.5 Assessing Change of Correlated Proportions 49

elsewhere (Wickens 1989; Agresti 2002). There is a large literature in psychology
on how to analyze mediation and moderation effects (Baron and Kenny 1986;
MacKinnon et al. 2002).

3.5 Assessing Change of Correlated Proportions

Another frequently used statistic for proportions is the McNemar’s test of correlated
proportions . Here is an example on students’ algebra test performance (Levin and
Serlin 2000). Each of the 186 students is given five pairs of items, one item of a pair
is presented in a verbal format and the other presented in a symbolic format. The
items are randomly arranged in the ten-item test. Separate total scores are calculated
for the five verbally and five symbolically presented items. The total scores are
dichotomized as “mastery” and “nonmastery.” Table 3.1 contains the number of
students showing mastery of the algebra test.

Out of the total of 186 students, 74 students master both the verbally presented
items and the symbolically presented items, 33 students master the verbally
presented items but not the symbolically presented items, and so on. The two bolded
numbers, 33 and 31, tell you where the differences are: 33 students master only the
verbal items but not the symbolic items and 31 students master only the symbolic
items but not the verbal items.

The following R command tests whether or not the probability of passing the
algebra test depends on the verbal vs. symbolic format of the items presented.

> M <- matrix(c(74, 33, 31, 48), ncol = 2)
> mcnemar.test(M, correct = FALSE)

McNemar’s Chi-squared test

data: M
McNemar’s chi-squared = 0.0625, df = 1,

p-value = 0.8026

There is no statistically discernible difference. The McNemar change test is
appropriate because the two test formats are matched by the students. The test
focuses on the probability of change in mastery of the algebra test when the format

Table 3.1 Number of
students who master the two
subscales of the ten-item
algebra test

Verbal Format

Mastery Nonmastery

Symbolic Mastery 74 31
Format Nonmastery 33 48

50 3 Statistics for Comparing Means and Proportions

Table 3.2 Number of students who master the two subscales, separated by students’
recall on the results of prior SAT aptitude assessments

Higher Verbal Students Higher Quantitative Students

Verbal Format Verbal Format

Mastery Nonmastery Mastery Nonmastery

Symbolic Mastery 34 13 38 17
Format Nonmastery 21 37 5 3

of the items changes. The help(mcnemar.test) page shows that R can work
with either a contingency table or raw data:

> M <- matrix(c(rep(c(1,1), 74), rep(c(1,0), 33),
+ rep(c(0,1), 31), rep(c(0,0), 48)), ncol=2, byrow=T)
> mcnemar.test(M[, 1], M[, 2], correct = FALSE)

McNemar’s Chi-squared test

data: M[, 1] and M[, 2]
McNemar’s chi-squared = 0.0625, df = 1,
p-value = 0.8026

By default, the continuity correction option is set to correct = TRUE. It is
disabled here (by setting correct = FALSE) to show that the output is the same
as in Levin and Serlin (2000).

3.5.1 McNemar Test Across Two Samples

Levin and Serlin (2000) show how the McNemar test in Table 3.1 can be calculated
across two samples. Here is the example in their Sect. 3.1. They asked students
taking the algebra test to recall which of their SAT subtest score was higher. Then
they stratified the students into two samples, the “higher verbal students” and the
“higher quantitative students” based on their recall of the SAT aptitude assessments.
The stratified algebra test results are presented in Table 3.2.

Among the 105 “higher verbal students,” 21 mastered the verbal format but not
the quantitative format whereas 13 mastered the symbolic format but not the verbal
format. The reverse pattern was found in the “higher quantitative students.” The
overall pattern in Table 3.2 suggests that students’ differences in mastery of verbal
vs. symbolic algebra problem formats is related to students’ baseline verbal vs.
quantitative skills. Levin and Serlin (2000) show that this hypothesis can be tested
by a �2 test on the differences.

3.5 Assessing Change of Correlated Proportions 51

> chisq.test(matrix(c(13, 21, 17, 5), ncol = 2),
+ correct = FALSE)

Pearson’s Chi-squared test

data: matrix(c(13, 21, 17, 5), ncol = 2)
X-squared = 8.1838, df = 1, p-value = 0.004227

Exercises

3.1. Comparing two percentages
Hardin et al. (2008) describe a smoking cessation trial for Medicaid-eligible
pregnant women who smoke. A sample of 1,017 pregnant women were recruited
from 9 Medicaid maternity care sites, randomized to receive either standard public
health care pamphlets (C group) or enhanced patient education materials (E group).
The primary outcome was smoking abstinence at 60-day follow-up, biochemical
verified by saliva cotinine. Abstinence rates were 9% (44/493) in the E group and
8% (43/524) in the C group.

(a) Compare the abstinence rates across the two groups, assuming independence
among women recruited from the same site.

(b) Is there evidence that enhanced patient education materials work better than the
standard public health pamphlets in helping pregnant women quit smoking?

(c) What is the 95% confidence interval for the difference in the two abstinence
rates?

3.2. Husband and wife decision-making
Suppose a researcher asks 20 husband and wife pairs about the decisions they make,
such as the decision about family vacations. The data are as follows, where a 1
represents the response that the wife usually makes the decision and a 0 represents
that the husband usually makes the decision. A variable called sign is created
to represent the agreement (coded 1) and disagreement (coded 0) between the
husband–wife pairs. The first data entry for pair p01 shows that the husband reports
that usually the wife makes the decision, which agrees with the wife’s report and
thus gets a sign of 1.

pair husband wife sign
p01 1 1 1
p02 1 1 1
p03 1 1 1
p04 0 0 1
p05 0 0 1
p06 0 0 1
p07 0 1 0

52 3 Statistics for Comparing Means and Proportions

p08 1 1 1
p09 1 1 1
p10 1 0 0
p11 0 0 1
p12 0 1 0
p13 1 0 0
p14 1 0 0
p15 1 1 1
p16 1 1 1
p17 0 0 1
p18 0 0 1
p19 0 1 0
p20 1 1 1

(a) What is the percentage of agreement in the 20 husband–wife pairs?
(b) Is the percentage of agreement significantly greater than 50%?
(c) What is the 95% confidence interval of the percentage of agreement?

3.3. Changes in asthma trigger prevention in children
Suppose a pediatrician wants to minimize common asthma triggers in the homes
of children with asthma. She enrolls 50 children with moderate to severe asthma
and provides them with pillow and mattress covers. A nurse makes home visits to
observe whether or not the pillow and mattress covers are used in the child’s bed.
The nurse observes that, 7 (14%) of children use pillow covers in the first home
visit. In the second home visit, the frequency of pillow cover use increases to 19
(38%). The frequencies and percentages for mattress cover use are lower than those
for pillow cover use, at 6 (12%) and 9 (18%) for the first and second home visits,
respectively.

(a) Based on the frequencies and percentages above, and suppose that seven
children use pillow covers at both the first and the second home visits, construct
a table similar to Table 3.1.

(b) How many children do not use the pillow cover at the first home visit but do use
the pillow cover at the second home visit?

(c) How many children do use the pillow cover at the first home visit but do not use
it at the second home visit?

(d) Enter the table of pillow cover use into a matrix for analysis.
(e) Is there a significant change in the use of pillow covers?
(f) Suppose that five children use mattress covers at both the first and the second

home visits, construct a table similar to Table 3.1.
(g) Enter the table of mattress cover use into a matrix for analysis.
(h) Is there a significant change in the use of mattress covers?

3.4. Changes in asthma trigger prevention across two groups of children
Suppose that the asthma trigger prevention data above are part of a randomized
controlled trial. The study team is particularly interested in the difference in the
changes in asthma trigger prevention between the intervention and the control

3.5 Assessing Change of Correlated Proportions 53

conditions. Suppose, the frequencies of changes in pillow cover use are as follows.
The freq variable represents the number of children in a specific change pattern of
pillow cover use between the first and the second home visits.

Intervention Control
first second freq first second freq
"use" "use" 7 "use" "use" 8
"use" "no" 0 "use" "no" 1
"no" "use" 12 "no" "use" 4
"no" "no" 31 "no" "no" 37

The raw data above can be summarized in a tabular format:

Intervention Control

first visit first visit

Use No use Use No use

second Use 7 12 8 4
visit No use 0 31 1 37

(a) Based on the information above, fill in the blanks in the following summary of
the results.
“The percentage of pillow cover use changes from % at the first home visit
to % at the second home visit for children randomized to the intervention
condition; whereas pillow cover use changes from % to % for
children randomized to the control condition.”
Is there a greater change in pillow cover use among children in the intervention
condition than children in the control condition?

(b) Is there a greater change in pillow cover use among children in the intervention
condition than children in the control condition?

3.5. Weight changes
In a hypothetical diet and weight loss study, 60 participants are randomized
into either the special diet intervention condition or the no special diet control
condition. Columns 1 and 2 are the baseline and postintervention, respectively,
weight in kilograms for the control group. Columns 3 and 4 are the baseline and
postintervention weight in kilograms for the intervention group.

61 78 50 15
66 34 75 38
32 69 67 53
61 80 86 30
31 73 69 45
65 56 54 67
53 54 44 48
86 32 42 49
59 55 70 47
70 75 40 60

54 3 Statistics for Comparing Means and Proportions

74 65 52 42
81 56 61 53
50 88 54 52
43 78 32 49
46 60 32 64
59 70 58 47
49 65 22 56
67 53 61 22
50 73 61 42
54 2 70 22
77 64 65 51
57 57 40 66
69 48 62 53
60 37 47 62
46 24 62 51

101 49 46 39
59 59 55 40
57 55 51 56
55 62 65 46
71 72 76 52

(a) Use apply() to calculate the means and standard deviations of the four
columns.

(b) What is the mean weight change for the control group?
(c) What is the mean weight change for the intervention group?
(d) Is there evidence in support of greater weight reduction in participants random-

ized to the intervention condition than the control condition?

Chapter 4
R Graphics and Trellis Plots

4.1 Default Behavior of Basic Commands

One trick with graphics is to know how each of the various graphics commands
responds (or fails to respond) to each kind of data object: data.frame,
matrix, and vector. Often, you can be surprised. Here is the default behavior
for each object for each of some of the plotting commands, e.g., plot(x1) where
x1 is a vector, matrix, or data frame.

vector matrix data.frame

plot values as function of
position

2nd column as function
of 1st

plots of each column as
function of others

boxplot one box for whole vector one box for all values in
matrix

one box for each column
(variable)

barplot one bar for each position,
height is value

one bar for each column,
summing successive
values in colors

error

matplot one labeled point for
each position, height
is value

X axis is row, Y is value,
label is column

X axis is row, Y is value,
label is column

The barplot() of a matrix is an interesting display worth studying. Each bar
is a stack of smaller bars in different colors. Each smaller bar is a single entry in
the matrix. The colors represent the row. Adjacent negative and positive values are
combined. (It is easier to understand this plot if all values have the same sign.)

Another common use of a barplot is in displaying group averages. Error bars
can be added to the barplot by the plotCI() function in library(gplots).
Sometimes we may need an elaborate design to highlight special features, or to
have better control over the exact appearance of a graph. This, typically, requires
a few lines of code. An example is in Fig. 5.1 on page 94. It is better to cover the
details when we describe how to carry out ANOVA in Chap. 5.

Y. Li and J. Baron, Behavioral Research Data Analysis with R, Use R,
DOI 10.1007/978-1-4614-1238-0 4, © Springer Science+Business Media, LLC 2012

55

56 4 R Graphics and Trellis Plots

4.2 Other Graphics

To get a bar plot of the column means in a data frame df1, you need to say
barplot(height=apply(df1),2,mean). To get a nice parallel coordinate
display like that in Systat, use matplot but transform the matrix and use
lines instead of points, that is: matplot(t(mat1), type = "l"). You can
abbreviate type with t. The matplot(v1, m1, type="l") function also
plots the columns of the matrix m1 on one graph, with v1 as the horizontal axis.
This is a good way to get plots of two functions on one graph.

To get scatterplots of the columns of a matrix against each other, use
pairs(x1), where x1 is a matrix or data frame. (This is like “splom” in Systat,
which is the default graph for correlation matrices.)

Suppose you have a measure y1 that takes several different values, and you
want to plot histograms of y1 for different values of x1, next to each other for
easy comparison. The variable x1 has only two or three values. A good plot is
stripchart(y1 ˜ x1, method=’stack’). When y1 is more continuous,
try stripchart(y1 ˜ x1, method=’jitter’).

Here are some other commands in their basic form. There are several others, and
each of these has several variants. You need to consult the help pages for details.
plot(v1,v2)makes a scatterplot of v2 as a function of v1. If v1 and v2 take

only a small number of values, so that the plot has many points plotted on top of
each other, try plot(jitter(v1),jitter(v2)).
hist(x1) gives a histogram of vector x1.
coplot(y1 ˜ x1 | z1) makes several plots of y1 as a function of x1,

each for a different range of values of z1.
interaction.plot(factor1,factor2,v1) shows how v1 depends

on the interaction of the two factors.
Many wonderful graphics functions are available in the Grid and Lattice pack-

ages. Many of these are illustrated and explained in Venables and Ripley (2002).

4.3 Saving Graphics

To save a graph as a png file, say png("file1.png"). Then run the command
to draw the graph, such as plot(x1,y1). Then say dev.off(). You can change
the width and height with arguments to the function. There are many other formats
aside from png, such as pdf, and postscript. See help(Devices).

There are also some functions for saving graphics already made, which you
can use after the graphic is plotted: dev.copy2eps("file1.eps") and
dev2bitmap().

4.5 Other Graphics Tricks 57

4.4 Multiple Figures on One Screen

The par() function sets graphics parameters. One type of parameter specifies
the number and layout of multiple figures on a page or screen. This has two
versions, mfrow and mfcol. The command par(mfrow=c(3,2)), sets the
display for three rows and two columns, filled one row at a time. The command
par(mfcol=c(3,2)) also specifies three rows and two columns, but they are
filled one column at a time as figures are plotted by other commands.

Here is an example in which three histograms are printed one above the other,
with the same horizontal and vertical axes and the same bar widths. The breaks
are every 10 units. The freq=FALSE command means that densities are specified
rather than frequencies. The ylim commands set the range of the vertical axis.
The dev.print line prints the result to a file. The next three lines print out the
histogram as numbers rather than a plot; this is accomplished with print=FALSE.
These are then saved to hfile1.

> par(mfrow=c(3,1))
> brk <- 10*1:10
> hist(vector1,breaks=brk,freq=FALSE,ylim=c(0,.1))
> hist(vector2,breaks=brk,freq=FALSE,ylim=c(0,.1))
> hist(vector3,breaks=brk,freq=FALSE,ylim=c(0,.1))
> dev.print(png,file="file1.png",width=480,height=640)
> h1 <- hist(vector1,breaks=brk,freq=FALSE,
+ ylim=c(0,.1),plot=FALSE)
> h2 <- hist(vector2,breaks=brk,freq=FALSE,
+ ylim=c(0,.1),plot=FALSE)
> h3 <- hist(vector3,breaks=brk,freq=FALSE,
+ ylim=c(0,.1),plot=FALSE)
> sink("hfile1")
> h1
> h2
> h3
> sink()

For simple over-plotting, use par(new=T). Of course, this will also plot
axis labels, etc. To avoid that, you might say par(new=T,ann=F). (Apparent
undocumented feature: this setting conveniently disappears after it is used once.) To
plot several graphs of the same type, you can also use points(), lines(), or
matplot().

4.5 Other Graphics Tricks

When you use plot()with course data (e.g., integers), it often happens that points
fall on top of each other. There are at least three ways to deal with this. One is to
use stripchart() (see above). Another is to apply jitter() to one or both of

58 4 R Graphics and Trellis Plots

the vectors plotted against each other, e.g., plot(jitter(v1),v2). A third is
to use sunflowerplot(v1,v2), which uses symbols that indicated how many
points fall in the same location.

Use identify() to find the location and index of a point in a scatterplot made
with plot(). Indicate the point you want by clicking the mouse on it. The function
locator() just gives the coordinates of the point. This is useful for figuring out
where you want to add things to a plot, such as a legend.
text() uses a vector of strings instead of points in a plot. If you want a

scatterplot with just these name, first make an empty plot (with type="n") to
get the size of the plot correct and then use the text command, e.g.:

> x <- 1:5
> plot(x,xˆ2,type="n")
> text(x,xˆ2, col = x,
+ labels=c("one","two","three","four","five"))

In this case, the col=x argument plots each word in a different color.
To put a legend on a plot, you can use the legend= argument of the

plotting function, or the legend() function, e.g., legend(3, 4, legend =
c("Self", "Trust"), fill = c("gray25", "gray75")). This ex-
ample illustrates the use of gray colors indicated by number, which is convenient for
making graphics for publication. (For presentation or data exploration, the default
colors are usually excellent.) See help(grey) on how to create greyscales. Sev-
eral functions draw various things on graphs. segments() draws line segments.
polygon() draws polygons, 2-dimensional shapes made up of line segments
connected end to end. The two functions differ in the kind of input they want, and
the first one closes the polygon it draws.

4.6 Examples of Simple Graphs in Publications

This section illustrates some practical techniques for making publication-quality
graphs with very basic graphics commands.

The second author, as the editor of the open-access journal Judgment and
Decision Making (http://journal.sjdm.org), has found it necessary to
redraw some graphs. Usually the originals were made with expensive proprietary
software, most of which is designed for printing on paper but sometimes is difficult
to use for publication graphics, which usually must be re-sized to fit the journal’s
format. For this purpose, the best format is encapsulated PostScript (eps).

However, the eps format itself is not enough because of the two types of graphics
formats. Vector graphics describe images in terms of commands, of the form “draw
a black line from point x1,y1 to point x2,y2.” Of course, these commands are
abbreviated in different ways for different formats. The details of which points
should be black are left to other software (or to a printer), which is usually designed
to do the best possible job of displaying the element in question. On the other hand

4.6 Examples of Simple Graphs in Publications 59

raster (or “bitmap”) images specify all the points. This works fine if the result is
printed on paper or if the computer software plots the image point by point on
the user’s display. If the image must be re-sized, however, the display program
cannot fully recover the original information, and plots are usually somewhat messy.
Common raster formats are tiff, png, gif, and bmp. Common vector formats are
eps, svg (scalable vector graphics), wmf (Windows meta-file), and emf (extended
wmf). But all of these “vector formats” can include raster images within them.
Unfortunately, software that claims to produce eps often does it simply by making
a raster image and including it in an eps file. R is one of the few that makes true
vector images correctly. (Others are Stata and SigmaPlot.)1

To produce good eps with R, we generally use the following format:

> postscript(file="fig1.eps", width=8, height=8,
+ horiz=F, onefile=F, pointsize=16, paper="special")

[plotting commands here]

> dev.off()
> system("bbox fig1.eps")

All of these options are described in the help file for postscript() (in the
graphics package), but some comments are needed. First, pointsize controls
the size of the font. A setting of 14 or 16 is good for a large figure that covers the
width of a page, but usually 18 or 20 is better for a figure that will go in a single
column of a two-column text. Note that the advantage of eps is that you can resize
it, without loss, to fit wherever it goes.2 The dev.off() command is necessary to
save the result to disk.

For all the niceties of R, there is one thing it does not do, which is to make a “tight
bounding box” around a plot. The difference between eps and ordinary Postscript is
the specification of a bounding box, which is a description of the box containing the
plot. You can see these commands by looking at the top of almost any eps file, which
is just text. The problem is that R’s default bounding box includes a blank margin,
which you usually do not want. To remove the margin, we use the following script

1Note that the jpeg (or jpg) format, commonly used for photographs, is a third category. It is
closer to a raster image and is definitely not vector format. But it re-codes the images into a
more compact format by using interesting mathematical transformations (involving singular value
decomposition), which preserve the useful information found in most photographs. It is called
a “lossy” format because it loses some information. It should not be used for “line art,” that is,
graphs, but it is practically necessary for photos. Although most digital cameras now have a tiff
(raster) option, it is rarely used because it requires much more storage space than jpeg.
2In LATEX, the usual way to do that is with the nincludegraphcis[width=
ntextwidth]ffig1.epsg command to scale the width of the graph by the width of the text or
the nincludegraphcis[width= ncolumnwidth]ffig1.epsg. The latter is for inclusion
in a single column of a two-column text.

60 4 R Graphics and Trellis Plots

(which requires Ghostscript and uses Linux shell commands, which can probably
be translated for other operating systems):

#!/bin/bash
cat $1 | sed -r -e
"s/BoundingBox:[\]+[0-9]+[\]+[0-9]
+[\]+[0-9]+ [\]+\[0-9]+/‘gs -sDEVICE=bbox -dBATCH
-dNOPAUSE -q‘/" > temp.eps

gs -sDEVICE=bbox -sNOPAUSE -q $1 $showpage -c quit 2>
bb.out

sed -e"1 r bb.out" temp.eps > $1

/bin/rm bb.out
/bin/rm temp.eps

Note that the first line of this script is folded to make it easier to read here. It should
be unfolded. This script removes the original bounding box and replaces it with the
smallest possible box. The system() command above simply calls the script.

Each of the following examples is listed according to the URL of the paper in
which it appears. The complete R scripts for these and other figures are linked from
http://journal.sjdm.org/RX.html

4.6.1 http://journal.sjdm.org/8827/jdm8827.pdf

> postscript(file="fig1.eps",width=8,height=8,
> horiz=F,onefile=F,pointsize=16,paper="special")
> c1 <- c(683,605)
> c2 <- c(648,594)
> c3 <- c(619,577)
> c4 <- c(520,489)
> c5 <- c(525,507)
> plot(c1,xlab=expression(bold("Distance from target")),
+ ylab=expression(bold("Mean RT (milliseconds)")),
+ ylim=c(475,700),xlim=c(.8,2.2),type="b",xaxt="n")
> axis(1,at=c(1,2),labels=c("Near","Far"))
> lines(c2,type="b")
> lines(c3,type="b")
> lines(c4,type="b")
> lines(c5,type="b")
> text(c(.92,2.08),c1,labels=c1)
> text(c(.92,2.08),c2,labels=c2)
> text(c(.92,2.08),c3,labels=c3)
> text(c(.92,2.08),c4,labels=c4)

4.6 Examples of Simple Graphs in Publications 61

> text(c(.92,2.08),c5,labels=c5)
> text(1.5,mean(c1)+8.6,srt=-23,
> labels="First quintile: Largest distance-effect

slope")
> text(1.5,mean(c2)+7,srt=-16,labels="Second

quintile")
> text(1.5,mean(c3)+7,srt=-12,labels="Third quintile")
> text(1.5,mean(c4)-7.4,srt=-9.2,labels="Fourth

quintile")
> text(1.5,mean(c5)+8.8,srt=-5.4,
> labels="Fifth quintile: Smallest distance-effect

slope")
> dev.off()
> system("bbox fig1.eps")

50
0

55
0

60
0

65
0

70
0

Distance from target

M
ea

n
 R

T
 (

m
ill

is
ec

o
n

d
s)

Near Far

683

605

648

594

619

577

520

489

525

507

First quintile: Largest distance−effect slope

Second quintile
Third quintile

Fourth quintile

Fifth quintile: Smallest distance−effect slope

This figure illustrates the use of the text() function. Here we adjusted the slope
with srt by trial and error, although the initial errors got smaller after the first one.

> postscript(file="fig2.eps",width=8,height=8,
+ horiz=F,onefile=F,pointsize=16,paper="special")
> c1 <- c(0.9,2.0,2.6,3.3,4.0)
> c2 <- c(-1.6,-1.3,-1.1,-1.0,-0.8)
> c1t <- c("0.9","2.0","2.6","3.3","4.0")
> c2t <- c("-1.6","-1.3","-1.1","-1.0","-0.8")
> par(oma=c(3,0,0,0))

62 4 R Graphics and Trellis Plots

> plot(c1,ylab=expression(bold("Predicted
preference")),

+ xlab="", ylim=c(-2,4),xlim=c(.8,5.2),
+ type="b",xaxt="n")
> axis(1,at=c(1:5),padj=1, labels=
+ c("1st quintile\nLargest\ndistance-\neffect

\nslope",
+ "2nd quintile","3rd quintile","4th quintile",
+ "5th quintile\nSmallest\ndistance-\neffect

\nslope"))
> mtext(side=1,line=5, text=
+ expression(bold("Distance-effect slope quintile

split")))
> lines(c2,type="b")
> text(1:5,c1-.25,labels=c1t)
> text(1:5,c2+.25,labels=c2t)
> abline(h=0,lty=2)
> text(3,mean(c1)+.65,labels="$10/$15 choice")
> text(3,mean(c2)-.5,labels="$100/$110 choice")
> dev.off()
> system("bbox fig2.eps")

−
2

−
1

0
1

2
3

4

P
re

d
ic

te
d

 p
re

fe
re

n
ce

1st quintile
Largest

distance−
effect
slope

2nd quintile 3rd quintile 4th quintile 5th quintile
Smallest
distance−

effect
slope

Distance−effect slope quintile split

0.9

2.0

2.6

3.3

4.0

−1.6
−1.3

−1.1 −1.0
−0.8

$10/$15 choice

$100/$110 choice

This figure illustrates the use of padj and multiline labels.

4.6 Examples of Simple Graphs in Publications 63

4.6.2 http://journal.sjdm.org/8814/jdm8814.pdf

> Intent <- array(c(7.32,7.60,7.80,5.28,7.44,8.24,7.96,
+ 7.40,8.08, 7.50,6.76,7.48,7.52,7.28,6.48,6.80,7.72,
+ 7.48),c(3,3,2))
> dimnames(Intent) <- list(Arguments=c(2,4,6),
+ Background=c("Positive","Negative","None"),
+ Frame=c("Positive","Negative"))
> Intention <- c(Intent)
> Arguments <- rep(c(2,4,6),6)
> Background <- rep(rep(c("Positive","Negative","None"),
+ c(3,3,3)),2)
> Frame <- rep(c("Positive","Negative"),c(9,9))

> postscript(file="fig0.eps",width=8,height=8,
+ horiz=F,onefile=F,pointsize=18,paper="special")
> plot(c(2,4,6),Intention[1:3],xlim=c(2,18),
+ ylim=c(5,8.5),pch=19,col="maroon",
+ xlab="Number of arguments",
+ ylab="Behavioral intention",xaxt="n")
> y.lm <- fitted(lm(Intention[1:3] ˜ c(2,4,6)))
> segments(2, y.lm[1], 6, y.lm[3],col="maroon")
> points(c(8,10,12),Intention[4:6],col="maroon",pch=19)
> y.lm <- fitted(lm(Intention[4:6] ˜ c(8,10,12)))
> segments(8, y.lm[1], 12, y.lm[3],col="maroon")
> points(c(14,16,18),Intention[7:9],col="maroon",pch=19)
> y.lm <- fitted(lm(Intention[7:9] ˜ c(14,16,18)))
> segments(14, y.lm[1], 18, y.lm[3],col="maroon")

> points(c(2,4,6),Intention[10:12],col="blue")
> y.lm <- fitted(lm(Intention[10:12] ˜ c(2,4,6)))
> segments(2, y.lm[1], 6, y.lm[3],col="blue",lty=2)
> points(c(8,10,12),Intention[13:15],col="blue")
> y.lm <- fitted(lm(Intention[13:15] ˜ c(8,10,12)))
> segments(8, y.lm[1], 12, y.lm[3],col="blue",lty=2)
> points(c(14,16,18),Intention[16:18],col="blue")
> y.lm <- fitted(lm(Intention[16:18] ˜ c(14,16,18)))
> segments(14, y.lm[1], 18, y.lm[3],col="blue",lty=2)

> mtext(side=1,line=1,at=c(1,2,3,3.5,4,5,6,6.5,7,8,9)*2,
+ text=c(2,4,6,"|",2,4,6,"|",2,4,6))
> abline(v=7)
> abline(v=13)
> text(c(4,10,16),5.15,labels=c("Positive\nbackground",
+ "Negative\nbackground","No\nbackground"))
> legend(14,6.42,legend=c("Gain","Loss"),title="Frame:",

64 4 R Graphics and Trellis Plots

+ col=c("maroon","blue"),pch=c(19,1))
> dev.off()
> system("bbox fig0.eps")

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

Number of arguments

B
eh

av
io

ra
l i

nt
en

tio
n

2 4 6 | 2 4 6 | 2 4 6

Positive
background

Negative
background

No
background

Frame:

Gain
Loss

This is a fairly complicated example, which illustrates several things. One is
the use of lm() to get properties of best-fitting lines to superimpose on a plot. In
simple cases, it is usually sufficient to say something like abline(lm(Y � X)).
But here the origin is different for each part of the plot, so we use fitted values and
segments() instead of abline(). Also shown here is the use of mtext() to
add text around the margins of a plot, just as text() adds test internally. Finally,
we use legend() to specify more carefully where the legend should go.

4.6.3 http://journal.sjdm.org/8801/jdm8801.pdf

> library(gplots)
> c1 <- c(66,69,63,78,40,70,53)
> e1 <- c(3,4,4,4,3,4,8)
> postscript(file="fig4.eps",width=10.8,height=8,
+ horiz=F,onefile=F,pointsize=16,paper="special")
> barplot2(height=c1,plot.ci=T,ci.u=c1+e1,ci.l=c1-e1,
+ xaxt="n",yaxt="n",
+ ylab="Prediction accuracy",ylim=c(0,100),
+ width=c(.5,.5),space=1)

4.6 Examples of Simple Graphs in Publications 65

> axis(1,at=(1:7)-.25,padj=.5,lty=0,
+ labels=c("Total\n","Mouselab\n","Eye\ntracking",
+ "Consistent\ntrials", "Inconsistent\ntrials",
+ "Choice\ntrials","Deferral\ntrials"))
> axis(2, at=c(0,25,50,75,100),
+ labels=c("0%","25%","50%","75%","100%"))
> text((1:7)-.25,10,labels=paste(c1,"%",sep=""))
> text(3.15,72,labels="n.s.")
> text(3.15,65.6,labels="}",cex=1.75,lwd=.1)
> dev.off()
> system("bbox fig4.eps")

P
re

di
ct

io
n

ac
cu

ra
cy

Total Mouselab Eye
tracking

Consistent
trials

Inconsistent
trials

Choice
trials

Deferral
trials

0%
25

%
50

%
75

%
10

0%

66% 69% 63% 78% 40% 70% 53%

n.s.

For adding confidence intervals, the easiest way is to use the gplots package,
as illustrated here. This plot also illustrates the use of axis(), and the use of cex
to make a large character, in this case a bracket. The lwd option is necessary to keep
the bracket from being too thick. Trial and error are needed.

4.6.4 http://journal.sjdm.org/8319/jdm8319.pdf

> postscript(file="fig1.eps",family="NimbusSan",
+ width=8,height=8, horiz=F,onefile=F,
+ pointsize=16,paper="special")
> plot(0:100,0:100,type="n",axes=F,,xlab="",ylab="")

66 4 R Graphics and Trellis Plots

> rect(0,30,20,70,col="#EEEEFF",border=NA)
> rect(20,30,45,70,col="#FFFFDD",border=NA)
> rect(45,30,95,70,col="#EEEEFF",border=NA)
> lines(c(0,0),c(25,75))
> lines(c(0,100),c(30,30),col="red",lty=2)
> lines(c(0,100),c(70,70),col="red",lty=2)
> lines(c(0,100),c(50,50))
> segments(x0=c(0,20,45),y0=c(50,60,45),x1=c(20,45,95),
+ y1=c(60,45,70),lwd=2)
> points(95,70,cex=4)
> mtext("r(t) = value(Left - Right)",side=2)
> text(4,65, pos=4, expression(
+ r(t) == r(t-1) + f(v[target],v[non-target]) + u[t]))
> text(10,25,"barrier right",pos=4,col="red")
> text(10,75,"barrier left",pos=4,col="red")
> text(95,77,"choose left")
> text(c(0,20,45,85),c(33,33,33,47),
+ labels=c("left","right","left","time"),pos=4)
> lines(c(20,20),c(30,70),lty=3)
> lines(c(45,45),c(30,70),lty=3)
> dev.off()
> system("bbox fig1.eps")

r(
t)

 =
 v

al
ue

(L
ef

t −
 R

ig
ht

)

r(t) = r(t−1) + f(vtarget, vnon−target) + ut

barrier right

barrier left choose left

left right left

time

This plot illustrates the inclusion of a mathematical expression as text, as well as
the use of rect to make shaded rectangles.

4.6.5 http://journal.sjdm.org/8221/jdm8221.pdf

> Ch=14
> postscript(file="fig1.eps",family="NimbusSan",
+ width=8, height=8, horiz=F,onefile=F,pointsize=16,
+ paper="special")

4.6 Examples of Simple Graphs in Publications 67

> plot(c(0,110),c(0,100),type="n",axes=F,xlab="",
ylab="")

> rect(0,80,20,100,col="gray80")
> rect(0+Ch,80-Ch,20+Ch,100-Ch,col="gray80")
> rect(0+2*Ch,80-2*Ch,20+2*Ch,100-2*Ch,col="gray80")
> rect(0+3*Ch,80-3*Ch,20+3*Ch,100-3*Ch,col="gray80")
> rect(0+4*Ch,80-4*Ch,20+4*Ch,100-4*Ch,col="gray80")
> text(20,98,pos=4,labels="fixation cue appears")
> text(20+Ch,98-Ch,pos=4,labels="saccad targets

appear")
> text(20+2*Ch,98-2*Ch,pos=4,labels="go cue

presented")
> text(20+3*Ch,98-3*Ch,pos=4,labels="saccade

executed")
> text(20+4*Ch,98-4*Ch,pos=4,labels="reward

delivered")
> points(c(10, 10+Ch,10+Ch-6,10+Ch+6, 10+2*Ch-6,
+ 10+2*Ch+6, 10+3*Ch-6), c(90, 90-Ch,
+ 90-Ch-6,90-Ch+6, 90-2*Ch-6,90-2*Ch+6,
+ 90-3*Ch-6), pch=20)
> arrows(0,70,3.5*Ch,70-3.5*Ch,lwd=2)
> text(25,80-3*Ch,labels="time")
> arrows(10+3*Ch,90-3*Ch,10+3*Ch-5,90-3*Ch-5,

length=0.1)
> par(new=TRUE)
> xspline(87+c(0,2,0,-2),33+c(4,0,-2,0), open=F,
+ shape=c(0,1,1,1))
> dev.off()
> system("bbox fig1.eps")

fixation cue appears

saccad targets appear

go cue presented

saccade executed

reward delivered
time

68 4 R Graphics and Trellis Plots

This shows how rectangles can overlap. The droplet of sweetened water in the
last rectangle was a bit of a problem because no character seemed to have the shape
of a droplet. Thus, we used xspline() to draw it piece by piece (with much trial
and error). Another feature is the setting of the constant Ch, which helped get the
dimensions right.

4.6.6 http://journal.sjdm.org/8210/jdm8210.pdf

> P <- c(0.0000616649,0.0012931876,0.0014858932,
+ 0.0034575074,0.0095432743,0.0112784208,
+ 0.0198140078,0.0260565422,0.0378525090,
+ 0.0476971273,0.0665802025,0.1160787054,
+ 0.1561110462,0.1741858728,0.2592136466,
+ 0.3849843314,0.3970805883,0.4387950690,
+ 0.5686058809,0.5880746208,0.6367807765,
+ 0.7164637107,0.7548314071,0.8594174096,
+ 0.8637551603,0.8852179374,0.8854362373,
+ 0.8904200780,0.9319782385,0.9411071229,
+ 0.9474470330,0.9605232158,0.9621474910,
+ 0.9716238220,0.9750371388,0.9800862502,
+ 0.9856935080,0.9923052342,0.9993104279,
+ 0.9994746329,0.9997647547,0.9999417310,
+ 0.9999506389,0.9999650462,0.9999825779,
+ 0.9999967088,0.9999994243,0.9999999681)
> ordinate <- sort(P)
> n <- length(ordinate)
> plotpos <- seq(0.5/n, (n - 0.5)/n, by = 1/n)
> postscript(file="fig1.eps",family="NimbusSan",
+ width=8,height=8,horiz=F,onefile=F,
+ pointsize=16,paper="special")
> plot(ordinate, plotpos,
+ xlab="Expected probability",
+ ylab="Observed probability")
> abline(0,1,lty=3)
> grid(); dev.off(); system("bbox fig1.eps")

This example is of substantive interest. It shows the p-values for a set of t-tests,
one for each subject. The abscissa is the percentile rank of the p-value. If the data
were random, the plot would be on the diagonal. The 5th percentile would have
p D 0:05, because 5% of the p-values would be significant at the 0.05 level.
As is apparent, the curve departs from the expectation at both ends, showing that
subjects show significant effects in both directions. This example is discussed in
Baron (2010).

4.7 Shaded Areas Under a Curve 69

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Expected probability

O
bs

er
ve

d
pr

ob
ab

ili
ty

4.7 Shaded Areas Under a Curve

The polygon() function is versatile. It can be used to draw highly complex graphs
for teaching statistics. Let’s begin with a simple example.

> plot(c(0, 1), c(0, 2), type = "n")
> polygon(x = c(0, 1, 0), y = c(0, 0, 2), density=-1,
+ border = "blue", col="grey")

These commands draw a triangle in blue filled with grey. The three vertices of the
triangle are .x1; y1/ D .0; 0/, .x2; y2/ D .1; 0/, and .x3; y3/ D .0; 2/. We use
density = -1 and border = "blue" to fill the inside of the blue triangle
with col = "grey". Note that the x and y vectors must be of the same length.
The length of the x and y vectors determines the number of sides of the polygon.

We can use polygon() to plot the shaded areas under probability density
functions, like those in Fig. 4.1. An instructor may use a graph like Fig. 4.1 to
illustrate the concept of tail probability in a density function. In this example, the
density function is a t-distribution with 98 degrees of freedom. The polygon()
function is used to plot histograms to approximate the continuous density functions.

> x0 <- seq(-0.52, 3, length=200)
> y0 <- dt(x0, df = 98)
> plot(x0, y0, type = "n", axes=F, xlab="", ylab="")
> lines(x0, y0, lwd = 3)

70 4 R Graphics and Trellis Plots

6 polygons 30 polygonsa b

Fig. 4.1 Area under the curve plotted by a series of rectangles using polygon(). The two
subplots are plotted with 6 and 30 polygons, respectively. The histogram in (b) is a closer
approximation to the continuous density function than (a)

The six grey rectangles in Fig. 4.1a illustrate a crude approximation of the area under
the curve from a t-statistic of 1.98–3. We set the x-coordinates of the rectangles. The
vertical heights of the rectangles are calculated from their t density.

> x <- seq(1.98, 3, length = 7)
> y <- dt(x, df = 98)

Next, the rectangles are superimposed one by one on the density curve along the
horizontal axis. The vertical heights of the rectangles are calculated from their t
density. The individual rectangles are added one at a time.

> polygon(x=c(x[1],x[1],x[2],x[2]), y=c(0,y[1],y[1],0),
+ density = -1, col="grey")
> polygon(x[c(2,2,3,3)], c(0, y[c(2,2)], 0),
+ density=-1, col="grey")
> polygon(x[c(3,3,4,4)], c(0, y[c(3,3)], 0),
+ density=-1, col="grey")
> polygon(x[c(4,4,5,5)], c(0, y[c(4,4)], 0),
+ density=-1, col="grey")
> polygon(x[c(5,5,6,6)], c(0, y[c(5,5)], 0),
+ density=-1, col="grey")
> polygon(x[c(6,6,7,7)], c(0, y[c(6,6)], 0),
+ density=-1, col="grey")
> lines(x0, y0, lwd = 3)

The density curve gets painted over by the rectangles. The density curve can
be brought back to the foreground by redrawing it with lines(x0, y0,
lwd = 3).

There are obvious problems in Fig. 4.1. The shaded area is far from smooth.
The total area of the six rectangles, calculated by sum(diff(x) * y[1:6]),
is 0.028. This is only a crude approximation of the more precise estimate of the area

4.7 Shaded Areas Under a Curve 71

under the curve by 1 - pt(1.98, df = 98), or a one-sided tail probability
of 2.5%. A smoother effect can be easily achieved when the length of x and y are
increased to something like 100. But it is tedious to run polygon() 100 times.
A more efficient solution is described next.

4.7.1 Vectors in polygon()

The six rectangles in Fig. 4.1a have the following vertices:

Rectangle x-coordinates y-coordinates

1: x[1], x[1], x[2], x[2] 0, y[1], y[1], 0
2: x[2], x[2], x[3], x[3] 0, y[2], y[2], 0
3: x[3], x[3], x[4], x[4] 0, y[3], y[3], 0
:
:
:

:
:
:

:
:
:

6: x[6], x[6], x[7], x[7] 0, y[6], y[6], 0

Note that the x-positions of the six rectangles follow a highly regular pattern. For the
first rectangle, they are x[1], x[1], x[2], x[2]. For the second rectangle,
they are x[2], x[2], x[3], x[3]; for the third, x[3], x[3], x[4],
x[4], and so on until rectangle number 6, x[6], x[6], x[7], x[7]. Note
that x[1] is repeated twice in the beginning, then x[2:6] is repeated four times
each, and x[7] is repeated twice at the end. So we can put the x-positions of
all rectangles into one long vectorx <- x[c(1,1, rep(2:6, each = 4),
7, 7)], or more generally:

> x <- c(x[1], x[1], rep(x[2:(length(x)-1)],
+ each=4), x[length(x)], x[length(x)])

We also see a regular pattern in y. The first rectangle covers 0, y[1], y[1],
0. The second rectangle covers 0, y[2], y[2], 0, the third covers 0,
y[3], y[3], 0, and so on. The last rectangle covers 0, y[6], y[6], 0.
We should repeat each element of y twice and sandwich them with zeros (so that
you get something like (<- 0, y[1], y[1], 0). However, there is one extra
y at the end that should be taken out. The long vector of y-positions can be put
together by:

> y <- t(cbind(y[1:(length(y) - 1)], 0))
> y <- c(0, rep(y, each = 2))
> y <- y[-length(y)]

All of the rectangles can be plotted at once with only one line of polygon().

> polygon(x, y, density=-1, border=T, col="grey")

In this way, a histogram with 30 rectangles in Fig. 4.1b is easy to plot. We can
easily create 100 or more rectangles to achieve a much smoother effect. A for()

72 4 R Graphics and Trellis Plots

loop with 100 polygon() commands can certainly plot the same graph, but it gets
intolerably slow. Besides, the one-line polygon() call is a neat illustration of the
power of R.

4.8 Lattice Graphics

The lattice package offers several other powerful graphics functions to plot
Trellis Graphics (Cleveland 1993). One of the most frequently used functions in the
lattice package is xyplot(). In this section we cover one example on how
to use xyplot() to visualize clustered multivariate data. Detailed use of lattice
graphics are described in the book written by the author of the lattice package
(Sarkar 2008). Additional resources on R graphics can also be found in the R Graph
Gallery at http://addictedtor.free.fr/graphiques/.

4.8.0.1 Mathematics Achievement and Socioeconomic Status

Many behavioral scientists are familiar with the High School & Beyond dataset
in Raudenbush and Bryk (2001). High school students’ mathematics achievement
scores are associated with their socioeconomic status. Students from families with
higher SES tend to score higher in mathematics achievement than students from
lower SES families. Raudenbush and Bryk (2001) showed that the association is
stronger among students attending public schools than among students attending
Catholic schools. Figure 4.2 plots data from 20 randomly sampled schools. Each
circle represents one student.

This command plots all available schools in the dataset.

> xyplot(MathAch ˜ SES | School, data=MathAchieve)

The High School & Beyond example is available in library(nlme).
There are two datasets. The MathAchSchool dataset contains variables
describing the 160 schools, 90 of which are public schools and the remaining
70 are Catholic schools. The MathAchieve dataset contains information on
the 7,185 students. Descriptions of the variables can be found by asking for
help(MathAchSchool). The students are clustered within schools.

School ids beginning with a “P” and a “C” represent public and Catholic schools,
respectively. Public schools are plotted with grey strips. The slope of each regression
line represents the strength of association between mathematics achievement and
SES in that school. Figure 4.2 suggests that the slopes are steeper in public schools
than in catholic schools. Mathematics achievement appears to have a stronger
association with SES in public schools than in Catholic schools.

Raudenbush and Bryk use a two-level hierarchical linear model to compare the
magnitude of the slopes between public and Catholic schools. Their approach is
supported by the visible differences shown in Fig. 4.2. It is often useful to plot pairs

4.8 Lattice Graphics 73

SES

M
at

hA
ch

0
5

10
15
20
25

−2 −1 0 1

C1308 C1477

−2 −1 0 1

C1906 C2629

−2 −1 0 1

C2990

C3498 C4223 C4868 C7342

0
5
10
15
20
25

C8800

0
5

10
15
20
25

P1499 P1946 P2467 P2818 P3377

P4350

−2 −1 0 1

P4410 P7734

−2 −1 0 1

P8854

0
5
10
15
20
25

P9550

Fig. 4.2 An xyplot() of students’ mathematics achievement scores against their socioeco-
nomic status. The school identification numbers are plotted in the strips. A least-square regression
line is fitted to each school

of variables across sample clusters to help guide hypothesis testing. xyplot() is
well-suited for pairwise plots. Next we describe how to plot Fig. 4.2.

> library(nlme)
> set.seed(7) # reproduce school samples

> dat <-
+ merge(MathAchieve[,c("School","SES","MathAch")],
+ MathAchSchool[, c("School", "Sector")],
+ by = "School")

> p.i <- which(MathAchSchool$Sector == "Public")
> pub.s <- sample(MathAchSchool$School[p.i], size=10)
> pub.s <- as.character(pub.s)
> c.i <- which(MathAchSchool$Sector == "Catholic")
> cath.s <- sample(MathAchSchool$School[c.i], size=10)
> cath.s <- as.character(cath.s)

74 4 R Graphics and Trellis Plots

These commands merge school data with student data into a new dataset dat. The
variable MathAchSchool$Sector codes the school type, with it we sample ten
schools from each sector.

The next few lines add P’s or C’s to the id numbers of the sampled schools.

> sch <- c(pub.s, cath.s)
> dat <- dat[(dat$School %in% sch),]
> dat$School <- paste(substring(dat$Sector, first = 1,
+ last = 1), dat$School, sep = "")
> dat$School <- factor(dat$School)

The lattice package is loaded before we can use xyplot(). We specify in
tcol the background shades of grey in the strips and match them to the Catholic
schools (grey100, or white) and public schools (grey75, 75% grey) by the first
character of their school ids. Note that in bg.col the first ten schools will be
plotted with a background of “grey100” and the next ten schools with “grey75.”

> library(lattice)
> sch.lev <- levels(dat$School)
> tcol <- c("grey100", "grey75")
> bg.col <- tcol[match(substring(sch.lev, 1, 1),
+ c("C", "P"))]
> print(bg.col) # show each panel’s background color
[1] "grey100" "grey100" "grey100" "grey100" "grey100"
[6] "grey100" "grey100" "grey100" "grey100" "grey100"

[11] "grey75" "grey75" "grey75" "grey75" "grey75"
[16] "grey75" "grey75" "grey75" "grey75" "grey75"

We can use panel to control what goes into each subplot. The default is panel
= panel.xyplot(), which produces scatterplots only. Other features can be
added. For example, with panel.lmline()we can add a least-square regression
line for each panel. With panel.xyplot() we add the circles. There are many
other panel functions, for example, panel.grid() for adding grid lines and
panel.loess() for adding smoothed curves. The panel is a function with
two internal parameters x and y, which in our example are assigned the SES and
MathAch variables, respectively.

> xyplot(MathAch ˜ SES | School, data = dat,
+ panel = function(x, y)
+ {
+ panel.lmline(x, y, lwd = 2);
+ panel.xyplot(x, y, col = "black")
+ },
+ strip = function(..., which.panel, bg)
+ {
+ strip.default(..., which.panel = which.panel,
+ bg = bg.col[which.panel])
+ })

Exercises 75

We can use strip to control the appearance of the strips, including the background
color of each strip. We need to manipulate the internal variables which.panel
and bg. When xyplot() makes the first strip, which.panel takes on the value
of 1; when xyplot() moves on to the next strip, which.panel increments by
one, and so on. The bg parameter specifies the background color of each strip. Thus,
bg.col[which.panel] assigns bg.col[1] (which points to the character
string "grey100") to bg of the first panel, another "grey100" to the second
panel, and so on.

If you want to plot two lines per panel, add one more dependent variable before
the tilde, like

> xyplot(MathAch + I(MathAch+3) ˜ SES | School,
+ subset=School %in% c("8367","8854","4458","5762"),
+ data = MathAchieve)

The I(MathAch+3) creates a new variable which is the original MathAch
variable plus 3. The I() function tells xyplot() that the variable within should
be treated “as is.”

Global settings in xyplot() can be changed by trellis.par.set(). The
settings can be retrieved by trellis.par.get(). Customization may not be
necessary because the default settings already produce visually appealing graphics.
Customization is usually a matter of personal preference. The example above shows
how it can be done, and how customizations in xyplot() take effect.

Figure 4.2 shows that xyplot() is ideally suited for plotting clustered data.
An example of using R to visualize clustered data can be found in Atkins (2005),
where the author uses xyplot() to display couple dyads data over time. Generally,
xyplot() should be useful in other areas of behavioral research that involves
clustered data, including cluster-randomized clinical trials (e.g., Flay et al. 1995),
family therapy research (Atkins and Gallop 2007), support group psychotherapy,
and Ecological Momentary Assessments (EMA). The library(nlme) package
and the book by Pinheiro and Bates (2004) contain numerous other examples of
using xyplot() to help visualize clustered data.

Exercises

4.1. Pairwise scatterplots
Pairwise scatterplots are often useful in exploratory data analysis. They help explain
how the variables in a data frame are associated with one another. In this exercise we
will try a few basic plots with the swiss dataset. help(swiss) to learn what

(a) Try help(swiss) to learn what the variables represent.
(b) Try pairs(swiss) to plot the swiss data (or simply plot(swiss)).

Which variables appear to be positively (or negatively) associated with fertility?

76 4 R Graphics and Trellis Plots

(c) Trycoplot(Fertility˜Education|Agriculture,data=swiss)
and describe whether or not the association between fertility and education is
independent of the percentage of males whose occupations involve agriculture.

4.2. Association between two variables conditional on the third
The coplot() function (part of the default package:graphics) is useful in
visualizing the association between two variables conditional on the values of a third
variable.

(a) Try the following to plot the Orthodont data for boys and girls

> library(nlme)
> coplot(distance ˜ age | Sex, data = Orthodont,
+ panel = panel.smooth)

(b) Does the graph indicate different growth patterns for boys and girls?
(c) Try xyplot(distance age | Sex, data = Orthodont.
(d) Add a panel function with panel.lmline() to plot separate regression

lines for boys and girls.
(e) Do boys appear to show a more rapid growth rate than girls?
(f) Try the following plotting command. Do boys appear to show a more rapid

growth rate than girls?

> plot(Orthodont, outer = ˜ Sex, layout = c(2, 1),
+ aspect = 1, data = Orthodont)

(g) In the plot above, does there appear to be a greater variability in the growth
patterns in boys than in girls?

4.3. Change default strip color
In plotting the High School & Beyond data in Fig. 4.2 on page 73, we use grey scales
to represent the Catholic and public schools in an xyplot(). Catholic schools are
plotted with grey100 strips and public schools are plotted with grey75 strips. In
this exercise we try something different.

(a) Change the tcol object so that Catholic schools are plotted with light green
strips (hint: try the HTML color code #ccffcc) and public schools are plotted
with salmon pink (#ffe5cc).

4.4. Shaded areas under a t distribution
Use Fig. 4.1 on page 70 as a guide, plot the area under the curve:

(a) First, plot the area under the curve with 30 polygons, the same as in Fig. 4.1.
(b) Calculate the sum of the areas of the 30 polygons.
(c) Plot the area under the curve with 100 polygons instead of the 30 polygons.
(d) Calculate the sum of the areas of the 100 polygons.

4.5. Plotting mathematics
Mathematical equations and symbols can be plotted easily. The following command
plots � D 0 � D 1 at the bottom of a histogram.

Exercises 77

hist(rnorm(100), freq = FALSE, main ="",
xlab= expression(mu == 0 ˜˜ sigma == 1))

Call up help(plotmath) and find answers on how to do the following:

(a) Modify the hist() command above so that it also contains a main title of
“Distribution of � .”

(b) Replace the main title with “N.�; �)” to represent a normal distribution with
mean � and standard deviation � .

(c) Here is a more challenging exercise that may require some trial-and-error to find
a solution. Replace the main title with the equation of the normal distribution:

f .x/ D 1p
2��2

e
� .x��/2

2�2

(d) Add to the histogram a normal density curve with a mean of 0 and a standard
deviation of 1.

Chapter 5
Analysis of Variance: Repeated-Measures

5.1 Example 1: Two Within-Subject Factors

The data are presented in Hays (1988, Table 13.21.2, p. 518). The example is
simplified as follows. Suppose a psychologist is asked to conduct a study to help
in designing the control panel of a machine that delivers medicine by intravenous
infusion. The main purpose of the study is to find the best shape and color of
the buttons on the control panel to improve efficiency and prevent potential errors.
The psychologist wants to know how quickly users (physicians) respond to buttons
of different colors and shapes. Suppose that the psychologist hypothesizes that
bright colors are easier to see than dark colors so the users respond to them faster.
In addition, she thinks that circles are easier to work with than squares. These
hypotheses may seem trivial, but they involve the same statistical techniques that
can be extended to more complicated experiments.

The psychologists knows that she will not be able to recruit many physicians to
run the test apparatus. Thus she wants to collect as many test results as possible
from each participating physician. Each participant works with the test apparatus
four times, one with round red buttons, once with square red buttons, once with
round gray buttons, and once with square gray buttons. Here the users only try each
arrangement once, but the psychologist could ask them to repeat the tests several
times in random order to get a more stable response time. In that case she would
have another effect and she may choose to test (repetition, or the effect of learning).

In psychology, an experimental design like this is often called a “repeated-
measures” or “within-subject” design because the measurements are made repeat-
edly within individual subjects. The variables shape and color are therefore
called within-subject variables. It is possible to do the experiment between subjects.
Each data point comes from a different physician. A completely between-subject
experiment is also called a randomized design. However, the experimenter would
need to recruit four times as many physicians, which is not efficient. This example
has two within-subject variables and no between subject variable.

Y. Li and J. Baron, Behavioral Research Data Analysis with R, Use R,
DOI 10.1007/978-1-4614-1238-0 5, © Springer Science+Business Media, LLC 2012

79

80 5 Analysis of Variance: Repeated-Measures

We first enter the reaction time data into a vector data1. Then we transform
data1 into appropriate format for the repeated analysis of variance using aov().

> data1 <- c(
+ 49,47,46,47,48,47,41,46,43,47,46,45,
+ 48,46,47,45,49,44,44,45,42,45,45,40,
+ 49,46,47,45,49,45,41,43,44,46,45,40,
+ 45,43,44,45,48,46,40,45,40,45,47,40)

We can take a look at the data in a layout that is easier to read. Each subject takes
up a row in the data matrix.

> hays.mat <- matrix(data1, ncol = 4)
> dimnames(hays.mat) <-
+ list(paste("subj", 1:12, sep=""),
+ c("S1.C1", "S2.C1", "S1.C2", "S2.C2"))
> hays.mat

S1.C1 S2.C1 S1.C2 S2.C2
subj1 49 48 49 45
subj2 47 46 46 43
subj3 46 47 47 44
subj4 47 45 45 45
subj5 48 49 49 48
subj6 47 44 45 46
subj7 41 44 41 40
subj8 46 45 43 45
subj9 43 42 44 40
subj10 47 45 46 45
subj11 46 45 45 47
subj12 45 40 40 40

Next we use the data.frame() function to create a data frame Hays.df that
is appropriate for the aov() function.

> Hays.df <- data.frame(rt = data1, subj =
+ factor(rep(paste("subj", 1:12, sep=""), 4)),
+ shape = factor(rep(rep(c("shape1", "shape2"),
+ c(12, 12)), 2)),
+ color = factor(rep(c("color1", "color2"),
+ c(24, 24))))

The experimenter is interested in knowing if the shape (shape) and the color
(color) of the buttons affect the reaction time (rt). The syntax is:

> aov(rt ˜ shape*color + Error(subj/(shape * color)),
+ data=Hays.df)

5.1 Example 1: Two Within-Subject Factors 81

The model formula, rt ˜ shape * color + Error(subj/(shape *
color)), can be divided into two parts. The first part, rt ˜ shape * color,
states that reaction time is affected by the shapes and colors of the buttons. The
asterisk is a shorthand for shape + color + shape:color, representing
the shape and color main effects and the shape by color interaction. The second
part, Error(subj/(shape * color)), separates residual error into parts for
appropriate statistical tests.

The Error(subj/(shape * color)) statement is used to separate the
residual sums of squares into several components called error strata. It is equiva-
lent to Error(subj+subj:shape+subj:color+subj:shape:color),
meaning that we want to separate the following error terms: one error stratum
for subject, another for subject by shape interaction, another for subject by color
interaction, and the last one for subject by shape and by color interaction.

This syntax generates the appropriate tests for the within-subject variables
shape and color. You get

> summary(aov(rt ˜ shape*color +
+ Error(subj/(shape * color)), data=Hays.df))

Error: subj
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 11 226.5 20.6

Error: subj:shape
Df Sum Sq Mean Sq F value Pr(>F)

shape 1 12.00 12.00 7.54 0.019
Residuals 11 17.50 1.59

Error: subj:color
Df Sum Sq Mean Sq F value Pr(>F)

color 1 12.00 12.00 13.9 0.0033
Residuals 11 9.50 0.86

Error: subj:shape:color
Df Sum Sq Mean Sq F value Pr(>F)

shape:color 1 1.2e-27 1.2e-27 4.3e-28 1
Residuals 11 30.50 2.77

Note that the shape effect is tested against the residuals of the subject by shape
interaction, shown in the subj:shape error stratum. Similarly, the color effect is
tested against subject by color stratum. The last error stratum offers a test of the
shape:color interaction.

In essence, the Error() function matches the individual effects of interest with
the appropriate error terms. Hoaglin et al. (1991, Chap. 10) discuss in detail the
derivation and appropriate use of denominator error terms.

82 5 Analysis of Variance: Repeated-Measures

These denominator error terms is typically discussed in the context of “fixed”
and “random” effects. The discussion can be confusing and counterproductive (see
Gelman and Hill, 2007, Sect. 11.3). Here we offer a simple and intuitive explanation
in the hopes that it will help you understand why Error() is needed in repeated-
measures ANOVA. More details on the distinction of “fixed” and “random” effects
can be found elsewhere (e.g., Searle et al. (1992, Sect. 1.4); Gelman and Hill (2007,
Sect. 11.4)). The shape effect is treated as a “fixed” effect because the psychologist
only wants to compare the reaction time differences between round and square
buttons. She is not concerned about the population reaction time distribution for
buttons of different shapes. In this case the number of possible shapes is fixed to two
– round and square. The reaction time differences between the two conditions do not
generalize beyond these two shapes. Similarly, the variable color is also consid-
ered fixed (again the effect not generalizable to colors other than red and gray).

When color and shape are both considered fixed, they are tested against
the subj:color and subj:shape mean squares, respectively. The Error()
function allows you to do these comparisons. In this example the only random effect
is the subj effect. The 12 subjects reported here belong to a random sample of
numerous other potential users of the device. The study would not be very useful
without this generalizability because the results of the experiments would only apply
to these particular 12 test subjects.

Without the Error(subj/(shape * color)) formula, you get the wrong
statistical tests. Note that both color and shape are tested against a common
entry called “Residuals,” which is the sum of all the pieces of residuals in the
previous output of Error(subj/(shape * color)), with 11 degrees of
freedom in each of the four error strata.

> summary(aov(rt ˜ shape*color, data=Hays.df))
Df Sum Sq Mean Sq F value Pr(>F)

shape 1 12.000 12.000 1.8592 0.1797
color 1 12.000 12.000 1.8592 0.1797
shape:color 1 4.399e-29 4.399e-29 6.816e-30 1.0000
Residuals 44 284.000 6.455

Note about Error() What goes inside the Error() statement, and the
order in which they are arranged, are important in ensuring correct statistical tests.
Suppose you replaced the asterisk inside Error(subj/(shape * color))
with a plus sign, you got Error(subj/(shape + color)) instead:

> summary(aov(rt ˜ shape * color +
+ Error(subj/(shape + color)), data=Hays.df))

[same output as before ... skipped]

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

shape:color 1 1.185e-27 1.185e-27 4.272e-28 1
Residuals 11 30.5000 2.7727

5.1 Example 1: Two Within-Subject Factors 83

Note that Error() lumps the shape:color and subj:shape:color
sums of squares into a “Within” error stratum. The “Residuals” in the Within
stratum is actually the last piece of sum of square in the previous output. This
Error(subj/(shape + color)) syntax gives you the wrong statistics when
you have more than two within-subject variables. We will return to this point later.

There is a subtle detail in the Error(subj/(shape * color)) syntax
that is worth noticing. For reasons that will become clearer in the next section,
the forward slash (the / in subj/(shape * color)) tells aov() that the
shape and color of the buttons are actually nested within individual subjects. That
is, the changes in response time due to shape and color should be considered within
the subjects.

5.1.1 Unbalanced Designs

We will conclude the first example by introducing a common complication in
repeated-measures ANOVA that involves uneven cell size. In the example above,
there are four possible combinations of shape and color, each containing exactly 12
observations. We call this design balanced because an equal number of observations
is found in every combination (or a cell) of the design. In a balanced design, the
aov() syntax above produces exactly the same univariate test statistics as those
obtained from other statistical packages. However, complications arise when the cell
sizes are not even. Participants may drop out. A post-hoc grouping factor was not
originally allotted the same number of participants. For example, the experimenter
may have even numbers by gender, but later may decide to try analyzing the reaction
time by years of professional experience.

When a design is unbalanced, its aov() test statistics may look very different
from those obtained from other statistical packages. The reason is because statistical
packages like the GLM procedure in SPSS adjust the default Type III Sums of
Squares by the harmonic mean of the unbalanced cell sizes. The adjustment is
discussed in Maxwell and Delaney (1990, pp. 271–297).

SPSS produces the same output as R if the user tells SPSS to calculate the Type I
SS (SSTYPE(1)) or Type II SS (SSTYPE(2)) instead of the defaultSSTYPE(3).
As shown in Maxwell and Delaney (1990), the calculations of SS1 and SS2 do not
involve the harmonic mean. Maxwell and Delaney discuss the pros and cons of each
type of Sums of Squares. Apparently SPSS and SAS think that the harmonic mean
SS3 is the right analysis. Afterall, the SS3 is in general what a behaivoral scientist
seeks. Readers who are interested in the distinctions between the different types
of SS can find a discussion in Maxwell and Delaney (1990). The example aov()
analysis below can be compared with the results of SPSS using SSTYPE(2).

add one unbalanced between-subject variable
n=8 in grp 1; 4 in grp 2
> Hays.df$grp <-factor(rep(c(1,1,1,1,1,1,1,1,2,2,2,2),
+ 4))

84 5 Analysis of Variance: Repeated-Measures

> summary(aov(rt ˜ grp*color*shape +
+ Error(subj/(shape*color)), data = Hays.df))

Error: subj
Df Sum Sq Mean Sq F value Pr(>F)

grp 1 37.5 37.5 1.9841 0.1893
Residuals 10 189.0 18.9

Error: subj:shape
Df Sum Sq Mean Sq F value Pr(>F)

shape 1 12.0 12.0 7.5000 0.02088
grp:shape 1 1.5 1.5 0.9375 0.35576
Residuals 10 16.0 1.6

Error: subj:color
Df Sum Sq Mean Sq F value Pr(>F)

color 1 12.0000 12.0000 13.151 0.00464
grp:color 1 0.3750 0.3750 0.411 0.53590
Residuals 10 9.1250 0.9125

Error: subj:shape:color
Df Sum Sq Mean Sq F value

color:shape 1 5.368e-29 5.368e-29 1.979e-29
grp:color:shape 1 3.3750 3.3750 1.2442
Residuals 10 27.1250 2.7125

Pr(>F)
color:shape 1.0000
grp:color:shape 0.2907
Residuals

Note that the between-subject grp effect has an F statistic of 1.984 with a
p-value of 0.189. The SPSS code below shows a Type-III F statistic of 2.083 with
a p-value of 0.179. The univariate within-subject tests are also different.

DATA LIST LIST / grp sh1col1 sh2col1 sh1col2 sh2col2.
BEGIN DATA
1 49 48 49 45
1 47 46 46 43
1 46 47 47 44
1 47 45 45 45
1 48 49 49 48
1 47 44 45 46
1 41 44 41 40
1 46 45 43 45
2 43 42 44 39

5.2 Example 2: Maxwell and Delaney 85

2 47 45 46 45
2 46 45 45 47
2 45 40 40 40
END DATA.

GLM sh1col1 sh1col2 sh2col1 sh2col2 BY grp
/WSFACTOR=shape 2 Polynomial color 2 Polynomial
/METHOD=SSTYPE(3)
/CRITERIA=ALPHA(.05)
/WSDESIGN=shape color shape*color
/DESIGN=grp.

5.2 Example 2: Maxwell and Delaney

This example is found in Chap. 12 of Maxwell and Delaney (1990), on a laboratory
experiment in which study subjects were asked to recognize letters presented
visually on a tachistoscope. Each subject was given six trials in a 2 by 3 factorial
design of visual interference by obscuring the letters with noise (noise present
vs. noise absent) and by rotating the letters in 0, 4, and 8 degrees angles. The
investigators wanted to examine the extent to which visual interference slows the
recognition reaction time. The dependent variable was reaction time. The two
independent variables were within-subject factors. We repeat the same R syntax,
then we include the SAS GLM syntax for the same analysis. Here we have:

• one dependent variable: reaction time.
• two independent variables: visual stimuli are tilted at 0, 4, and 8 degrees; with

noise absent or present. Each subject responded to 3 tilt by 2 noise D 6 trials.

The data are entered slightly differently; their format is like what you would
usually do with SAS, SPSS, and Systat.

> MD497.dat <- matrix(c(
+ 420, 420, 480, 480, 600, 780,
+ 420, 480, 480, 360, 480, 600,
+ 480, 480, 540, 660, 780, 780,
+ 420, 540, 540, 480, 780, 900,
+ 540, 660, 540, 480, 660, 720,
+ 360, 420, 360, 360, 480, 540,
+ 480, 480, 600, 540, 720, 840,
+ 480, 600, 660, 540, 720, 900,
+ 540, 600, 540, 480, 720, 780,
+ 480, 420, 540, 540, 660, 780),
+ ncol = 6, byrow = T)

86 5 Analysis of Variance: Repeated-Measures

Next we transform the data matrix into a data frame.

> MD497.df <- data.frame(
+ rt =as.vector(MD497.dat),
+ subj =factor(rep(paste("s", 1:10, sep=""), 6)),
+ deg =factor(rep(rep(c(0,4,8), c(10, 10, 10)), 2)),
+ noise=factor(rep(c("no.noise","noise"),c(30, 30))))

Then we test the main effects and the interaction in one aov() model. The syntax
is the same as in the Hays example:

> taov <- aov(rt ˜ deg * noise +
+ Error(subj / (deg * noise)), data=MD497.df)
> summary(taov)

Error: subj
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 9 292140 32460

Error: subj:deg
Df Sum Sq Mean Sq F value Pr(>F)

deg 2 289920 144960 40.719 2.087e-07
Residuals 18 64080 3560

Error: subj:noise
Df Sum Sq Mean Sq F value Pr(>F)

noise 1 285660 285660 33.766 0.0002560
Residuals 9 76140 8460

Error: subj:deg:noise
Df Sum Sq Mean Sq F value Pr(>F)

deg:noise 2 105120 52560 45.31 9.424e-08
Residuals 18 20880 1160

The F values for deg, noise, and deg:noise are 40.72, 33.77, and 45.31,
respectively. These statistics are identical to those produced by the SAS code below.
These F statistics can be found in the “Univariate Tests of Hypotheses for Within
Subject Effects” section in the SAS output.

data rt1;
input deg0NA deg4NA deg8NA deg0NP deg4NP deg8NP;
cards;
420 420 480 480 600 780
420 480 480 360 480 600
480 480 540 660 780 780
420 540 540 480 780 900
540 660 540 480 660 720

5.2 Example 2: Maxwell and Delaney 87

360 420 360 360 480 540
480 480 600 540 720 840
480 600 660 540 720 900
540 600 540 480 720 780
480 420 540 540 660 780
;

proc glm data=rt1;
model deg0NA deg4NA deg8NA deg0NP deg4NP deg8NP = ;
repeated noise 2 (0 1), degree 3 (0 4 8) / summary ;
run;

Maxwell and Delaney summarized how one weighs multivariate and univariate
results. In SAS, each row contains the data from one subject, across 3 degrees of tilt
and two levels of noise. The GLM syntax has a class option where the between-
subject factors are listed (if any). SAS calculates the Pillai’s Trace statistics. For the
degree by noise interaction, it is 0.918.

Dalgaard (2007) showed that multivariate statistics such as the Pillai’s Trace can
be calculated by lm() and anova.mlm(). A brief summary of Dalgaard (2007)
is provided here. First, the mlmfit object fits one intercept for each of the six
columns in MD497.dat. Next, mlmfit0 takes the intercepts away and fits a null
model.

> mlmfit <- lm(MD497.dat ˜ 1)
> mlmfit

Call:
lm(formula = MD497.dat ˜ 1)

Coefficients:
[,1] [,2] [,3] [,4] [,5] [,6]

(Intercept) 462 510 528 492 660 762

> mlmfit0 <- update(mlmfit, ˜ 0)

We already know that the columns of MD497.dat represent the six combina-
tions of three tilt angles and two noise levels. These combinations can be represented
in a data frame called idata, which can be passed on to anova.mlm to test the
angle by noise interaction. Note that the Pr(>F) of 9.4e-08 is the same as the
p-value found on page 86.

> idata <- expand.grid(deg=c("0", "4", "8"),
+ noise=c("A", "P"))
idata

deg noise
1 0 A
2 4 A

88 5 Analysis of Variance: Repeated-Measures

3 8 A
4 0 P
5 4 P
6 8 P
> anova(mlmfit, mlmfit0, X = ˜ deg + noise,
+ idata = idata, test = "Spherical")
Analysis of Variance Table

Model 1: MD497.dat ˜ 1
Model 2: MD497.dat ˜ 1 - 1

Contrasts orthogonal to
˜deg + noise

Greenhouse-Geisser epsilon: 0.904
Huynh-Feldt epsilon: 1.118

Res.Df Df Gen.var. F num Df den Df Pr(>F)
1 9 317
2 10 1 996 45.3 2 18 9.4e-08

G-G Pr H-F Pr
1
2 3.5e-07 9.4e-08

Details on anova.mlm and the parameters X and M can be found on the open-
access article by Dalgaard (2007) and are not discussed here.

5.3 Example 3: More Than Two Within-Subject Factors

Earlier we noted that Error(subj/(shape * color)), which uses an as-
terisk to connect shape and color, produces detailed breakdown of the vari-
ance components. The Error(subj/(shape + color)) statement prints out
what you specifically ask for and lumps the remainder into a “Within” stratum. If
you have more than two within-subject fixed effects, the latter will produce some
undesirable side effects.

The next hypothetical example 1 shows this side effect.

> subj <- gl(10, 32, 320) # 10 subjects, each 32 times
> a <- gl(2, 16, 320) # 16 trials w/ a1, next 16 a2
> b <- gl(2, 8, 320) # 8 trials w/ b1, b2, etc.
> c <- gl(2, 4, 320)

1contributed by Christophe Pallier.

5.5 Example 5: One Between, Two Within 89

> x <- rnorm(320)
> d1 <- data.frame(subj, a, b, c, x)
> d2 <- aggregate(x, list(a = a, b = b, c = c,
+ subj = subj), mean)
> summary(a1 <- aov(x ˜ a * b * c +
+ Error(subj/(a*b*c)), d2))
> summary(a2 <- aov(x ˜ a * b * c +
+ Error(subj/(a+b+c)), d2))
> summary(a3 <- aov(x ˜ a * b * c +
+ Error(subj/(a*b*c)), d1))

Note that summary(a2) does not give you the appropriate statistical tests
for the two-way interactions among factors a, b, and c. The problem is because
Error() lumps everything other than Error: subj:a, Error: subj:b,
and Error: subj:c into a common entry of residuals. The S Model book by
Chambers and Hastie contains some technical details that explains this behavior.

5.4 Example 4: A Simpler Design with Only One
Within-Subject Variable

Data in this example are found in Stevens (1992, Sect. 13.2), with only one within-
subject predictor.

> data <- c(
+ 30,14,24,38,26,
+ 28,18,20,34,28,
+ 16,10,18,20,14,
+ 34,22,30,44,30)
> Stv.df <- data.frame(rt=data,
+ subj = factor(rep(paste("subj", 1:5, sep=""), 4)),
+ drug = factor(rep(paste("drug", 1:4, sep=""),
+ c(5,5,5,5))))
> summary(aov(rt ˜ drug + Error(subj/drug),
+ data = Stv.df))

5.5 Example 5: One Between, Two Within

Stevens (1992, Chap. 13) analyzed the effect of drug treatment effect by one
between-subject factor: group (two groups of eight subjects each) and two within-
subject factors: drug (2 drugs) and dose (3 doses).

90 5 Analysis of Variance: Repeated-Measures

> Ela.mat <- matrix(
+ c(19,22,28,16,26,22,
+ 11,19,30,12,18,28,
+ 20,24,24,24,22,29,
+ 21,25,25,15,10,26,
+ 18,24,29,19,26,28,
+ 17,23,28,15,23,22,
+ 20,23,23,26,21,28,
+ 14,20,29,25,29,29,
+ 16,20,24,30,34,36,
+ 26,26,26,24,30,32,
+ 22,27,23,33,36,45,
+ 16,18,29,27,26,34,
+ 19,21,20,22,22,21,
+ 20,25,25,29,29,33,
+ 21,22,23,27,26,35,
+ 17,20,22,23,26,28), nrow = 16, byrow = T)

We first put them in a multivariate format (the wide format), using the
cbind.data.frame() function.

> Ela.mul <- cbind.data.frame(subj=1:16,
+ gp=factor(rep(1:2,rep(8,2))), Ela.mat)
> # d12 = drug 1, dose 2
> dimnames(Ela.mul)[[2]] <-
+ c("subj","gp","d11","d12","d13","d21","d22","d23")

Here is the command for transferring it to the univariate format (long format).

> Ela.uni <- data.frame(effect = as.vector(Ela.mat),
+ subj = factor(paste("s", rep(1:16, 6), sep="")),
+ gp = factor(paste("gp",rep(rep(c(1, 2),c(8,8)),6),
+ sep="")),
+ drug = factor(paste("dr",rep(c(1, 2),c(48, 48)),
+ sep="")),
+ dose=factor(paste("do", rep(rep(c(1,2,3),
+ rep(16, 3)), 2), sep="")),
+ row.names = NULL)

Next, we use Error(subj/(dose*drug)) to test the main effects and their
interactions. It is worth noting that R knows that the gp effect goes with the subject
error stratum.

> summary(aov(effect ˜ gp * drug * dose +
+ Error(subj/(dose*drug)), data=Ela.uni))

5.6 Other Useful Functions for ANOVA 91

5.6 Other Useful Functions for ANOVA

As we discussed earlier, we can use the tapply() function to calculate the means
across various conditions. We can think of it as using one statement to run the
mean() function 12 times. The output matrix is useful for plotting.

> tapply(Ela.uni$effect,
+ IND = list(Ela.uni$gp, Ela.uni$drug, Ela.uni$dose),
+ FUN = mean)

We can also easily custom design a function se() to calculate the standard error
for the means. We can use one line of tapply() to get all standard errors. The
se() makes it easy to find the confidence intervals for those means. Later we will
demonstrate how to use the means and standard errors that we got from tapply()
to plot the data.

> se <- function(x)
+ {
+ y <- x[!is.na(x)] # remove the missing values
+ sqrt(var(as.vector(y))/length(y))
+ }

In R, we not only can use the built-in functions such as aov() to do the analyses,
we can but also take advantage of R’s flexibility and do many analyses by hand. The
following examples demonstrate that some of the ANOVA tests we did earlier with
the aov() function can also be done manually with contrasts.

1. We can use the following contrast to test the group effect. On the left hand side
of the aov() model, we use matrix multiplication (%*%) to apply the contrast
(contr) to each person’s six data points. As a result, each person’s six data
points become one number that is actually the person’s total score summed across
all conditions. The matrix multiplication is the same as doing 1 * d11 +
1 * d12 + 1 * d13 + 1 * d21 + 1 * d22 + 1 * d23 for each
person.

Then we use the aov() function to compare the total scores across the two
groups. We can verify that in this output the F statistic for the gp marginal effect
is exactly the same as the one in the previous aov(... Error()) output,
although the sums of squares are different because the contrast is not scaled to
length 1.

> contr <- matrix(c(
+ 1,
+ 1,
+ 1,

92 5 Analysis of Variance: Repeated-Measures

+ 1,
+ 1,
+ 1), ncol = 1)

> taov <- aov(cbind(d11,d12,d13,d21,d22,d23)
+ %*% contr ˜ gp, data = Ela.mul)
> summary(taov, intercept = T)

2. The following contrast, when combined with the aov() function, will test the
drug main effect and drug:group interaction. The contrast c(1, 1, 1, -1,
-1, -1) applies positive 1’s to columns 1:3 and negative 1’s to columns 4:6.
Columns 1:3 contain the data for drug 1 and 4:6 for drug 2, respectively. So the
contrast and the matrix multiplication generates a difference score between drugs
1 and 2. When we use aov() to compare this difference between two groups,
we actually test the drug:gp interaction.

> contr <- matrix(c(
+ 1,
+ 1,
+ 1,
+ -1,
+ -1,
+ -1), ncol = 1)

> tmp <- aov(cbind(d11,d12,d13,d21,d22,d23)
+ %*% contr ˜ gp, Ela.mul)
> summary(tmp,intercept= T)

3. The next contrast, when combined with the manova() function, tests the dose
main effect and the dose:group interaction. The first contrast c(1, 0, -1,
1, 0, -1) tests if the difference between dose 1 and dose 3 are statistically
significant across groups; and the second contrast c(0, 1, -1, 0, 1,
-1) tests the difference between dose 2 and dose 3 across two groups. When
tested simultaneously with manova(), we get

> contr <- matrix(c(
+ 1, 0,
+ 0, 1,
+ -1,-1,
+ 1, 0,
+ 0, 1,
+ -1,-1), nrow = 6, byrow = T)
> tmp <- manova(cbind(d11,d12,d13,d21,d22,d23)
+ %*% contr ˜ gp, Ela.mul)
> summary(tmp, test="Wilks", intercept = T)

5.7 Graphics with Error Bars 93

4. Another manova() contrast, which tests the drug:dose interaction and the
three-way drug:dose:group interaction.

> contr <- matrix(c(
+ 1,-1,
+ 0, 2,
+ -1,-1,
+ -1, 1,
+ 0,-2,
+ 1, 1), nrow = 6, byrow = T)

> tmp <- manova(cbind(d11,d12,d13,d21,d22,d23)
+ %*% contr ˜ gp, Ela.mul)
> summary(tmp, test="Wilks", intercept = T)

5.7 Graphics with Error Bars

Next we will demonstrate how to use R’s powerful graphics functions to add error
bars to a plot. The example uses the Ela.uni example discussed earlier. In this
example we will briefly show how visual representations compliment the statistical
tests. We use R’s jpg() graphics driver to generate a graph that can be viewed by
a web browser. The command syntax may appear intimidating for beginners, but it
is worth for the increased efficiency in the long run.

Typically the graphs are first generated interactively with drivers like X11(),
then the commands are saved and edited into a script file. A command syntax script
eliminates the need to save bulky graphic files.

First we start the graphics driver jpg() and name the file where the graph(s)
will be saved.

> attach(Ela.uni)
> jpeg(file = "ElasBar.jpg")

Then we find the means, the standard errors, and the 95% confidence bounds of
the means.

> tmean <- tapply(effect,list(gp,drug,dose), mean)
> tse <- tapply(effect,list(gp,drug,dose), se)
> tbarHeight <- matrix(tmean, ncol=3)
> dimnames(tbarHeight) <- list(c("gp1dr1","gp2dr1",
+ "gp1dr2","gp2dr2"), c("dose1","dose2" ,"dose3"))
> tn <- tapply(effect, list(gp, drug, dose), length)
> tu <- tmean + qt(.975, df=tn-1) * tse # upper 95%CI
> tl <- tmean + qt(.025, df=tn-1) * tse # lower
> tcol <- c("blue", "darkblue", "yellow", "orange")

94 5 Analysis of Variance: Repeated-Measures

Dose 1 Dose 2 Dose 3
0

10

20

30

40

D
ru

g
E

ffe
ct

iv
en

es
s

group 1, drug 1

group 2, drug 1

group 1, drug 2

group 2, drug 2

Fig. 5.1 Average drug effectiveness by group, drug, and dose

After all the numbers are computed, we start building the barplot. First we plot
the bars without the confidence intervals, axes, labels, and tick marks. Note that the
barplot() function returns the x-axis values at where the center of the bars are
plotted. Later we will use the values in tbars to add additional pieces. Let us first
take a look at the bar graph (Fig. 5.1).

The tallest bar shows that greatest drug effectiveness is attained by giving Group
2 subjects drug 2 at dose 3. This suggests a group by drug interaction, which is
confirmed by the aov() results outlined earlier. It also indicates an increasing
effectiveness from dose 1 to 3, which is also confirmed by the statistics. Below
is how the rest of the barplot is done.

> tbars <- barplot(height=tbarHeight, beside=T,
+ space=c(0, 0.5), axes=F,
+ axisnames = F,
+ ylim=c(-16, 40), col=tcol)

Then we add the 95% confidence intervals of the means to the bars.

> segments(x0=tbars, x1=tbars, y0=tl, y1=tu)
> segments(x0=tbars-.1, x1=tbars+0.1, y0=tl, y1=tl)
> segments(x0=tbars-.1, x1=tbars+0.1, y0=tu, y1=tu)

5.8 Another Way to do Error Bars Using plotCI() 95

The axes labels are added.

> axis(2, at=seq(0, 40, by=10), labels=rep("", 5),
+ las=1)
> tx <- apply(tbars, 2, mean) # 3 clusters of bars

We plot the horizontal axis manually so that we can ask R to put things at exactly
where we want them.

> segments(x0=0, x1=max(tbars)+1.0,y0=0,y1=0, lty=1,
+ lwd = 2)
> text(c("Dose 1", "Dose 2", "Dose 3"), x = tx,
+ y = -1.5, cex =1)
> mtext(text=seq(0,40,by=10), side = 2,
+ at = seq(0,40,by=10), line = 1.5, cex =1,
+ las=1)
> mtext(text="Drug Effectiveness", side = 2,
+ line = 2.5, at = 20, cex =1.5)

We want to plot the legend of the graph manually. R also has a legend()
function, although less flexible.

> tx1 <- c(0, 1, 1, 0)
> ty1 <- c(-15, -15, -13, -13)
> polygon(x=tx1, y=ty1, col=tcol[1])
> polygon(x=tx1, y=ty1 + 2.5, col=tcol[2])
> polygon(x=tx1, y=ty1 + 5, col=tcol[3])
> polygon(x=tx1, y=ty1 + 7.5, col=tcol[4])

We complete the graph by adding the legend labels.

> text(x = 2.0, y = -14, labels="group 1, drug 1",
+ cex = 1.2, adj = 0)
> text(x = 2.0, y = -11.5, labels="group 2, drug 1",
+ cex = 1.2, adj = 0)
> text(x = 2.0, y = -9, labels="group 1, drug 2",
+ cex = 1.2, adj = 0)
> text(x = 2.0, y = -6.5, labels="group 2, drug 2",
+ cex = 1.2, adj = 0)

5.8 Another Way to do Error Bars Using plotCI()

The gplots library has a function plotCI(), which does confidence intervals
for plots. Here is an example, which is Fig. 1 in http://journal.sjdm.org
/06137/jdm06137.htm. Note the use of a small horizontal offset (�0:01) so

96 5 Analysis of Variance: Repeated-Measures

that the error bars do not overlap. The font “NimbusSan” is supposed to fit well
with Times Roman.

> library("gplots")
> m.pg <- c(-2.64, 3.60, 6.00, 3.68, 5.44)
> se.pg <-c(1.71938, 1.86548, 1.74738, 1.94484, 1.83492)
> m.pl <-c(-4.9600, -3.7600, -2.3200, -.1600, 6.5600)
> se.pl <-c(1.47024, 1.72170, 1.79139, 1.36587, 1.56852)

> postscript(file="fig1.eps",family="NimbusSan",
+ width=8,height=8,horiz=F,pointsize=18,
+ paper="special")
> plotCI(y=c(m.pg,m.pl),x=c(c(1:5)-.01,c(1:5)+.01),
+ uiw=c(se.pg,se.pl),
+ ylim=c(-6,8),ylab="Net IGT score",
+ xlab="Block",lty=rep(c(1,2),c(5,5)))
> lines(y=m.pg,x=c(1:5)-.01,lty=1)
> lines(y=m.pl,x=c(1:5)+.01,lty=2)
> legend(3.6,-3.7,legend=c("Prior gain","Prior loss"),
+ lty=c(1,2))
> dev.off()

5.8.1 Use Error() for Repeated-Measure ANOVA

In this section we give an intuitive explanation to the use of the Error() statement
for repeated-measure analysis of variance. These explanations are different than
what are typically covered in advanced textbooks. The conventional method focuses
on deriving the appropriate error terms for specific statistical tests. We use an
intuitive method, which will show that using Error() inside an aov() function
is actually the same as performing t-tests using contrasts.

The conventional explanation is computationally and theoretically equivalent to
what we are about to summarize. Detailed theoretical explanations can be found in
most advanced textbooks, including the book by Hoaglin et al. (1991). Explanations
of the technical details can be found in the book by Chambers and Hastie (1993).

We first review Analysis of Variance using a method commonly seen in most
of the introductory textbooks. This method uses an ANOVA table to describe
how much of the total variability is accounted for by all the related variables. An
ANOVA table is exactly what aov() does for you. We first apply this method to
the Hays.df data described earlier (but repeated here), then we use the ANOVA
table to explain why we must add the Error() statement in an aov() command in
order to get the appropriate significance tests. Finally we draw a connection between
Error() and specific t-tests tailored for repeated-measure data.

5.8 Another Way to do Error Bars Using plotCI() 97

5.8.1.1 Basic ANOVA Table with aov()

The aov() function generates a basic ANOVA table if Error() is not inserted.
Applying a simple aov() to the Hays.df data, you get an ANOVA table like the
following:

> summary(aov(rt ˜ subj*color*shape, data=Hays.df))
Df Sum Sq Mean Sq

subj 11 226.500 20.591
color 1 12.000 12.000
shape 1 12.000 12.000
subj:color 11 9.500 0.864
subj:shape 11 17.500 1.591
color:shape 1 1.493e-27 1.493e-27
subj:color:shape 11 30.500 2.773

R analyzes how reaction time differs depending on the subjects, color and the
shape of the stimuli. Also, you can have R to explain how they interact with one
another. A simple plot of the data may suggest an interaction between color and
shape. A color:shape interaction occurs if, for example, the color yellow is
easier to recognize than red when it comes in a particular shape. The subjects may
recognize yellow squares much faster than any other color and shape combinations.
Therefore the effect of color on reaction time is not the same for all shapes. We call
this an interaction.

The above aov() statement divides the total sum of squares in the reaction time
into pieces. By looking at the size of the sums of squares (Sum Sq in the table), you
can get a rough idea that there is a lot of variability among subjects and negligible
in the color:shape interaction.

So we are pretty sure that the effect of color does not depend on what shape
it is. The sum of square for color:shape is negligible. Additionally, the subj
variable has very high variability, although this is not very interesting because this
happens all the time. We always know for sure that some subjects respond faster
than others.

Obviously we want to know if different colors or shapes make a difference in
the response time. One might naturally think that we do not need the subj variable
in the aov() statement. Unfortunately doing so in a repeated design can cause
misleading results:

> summary(aov(rt ˜ color * shape, data = Hays.df))
Df Sum Sq Mean Sq F value Pr(>F)

color 1 12.000 12.000 1.8592 0.1797
shape 1 12.000 12.000 1.8592 0.1797
color:shape 1 1.246e-27 1.246e-27 1.931e-28 1.0000
Residuals 44 284.000 6.455

98 5 Analysis of Variance: Repeated-Measures

This output can easily deceive you into thinking that there is nothing statistically
significant. This is where Error() is needed to give you the appropriate test
statistics.

5.8.1.2 Using Error() Within aov()

It is important to remember that summary() generates incorrect results if you give
it the wrong model. Note that in the statement above the summary() function
automatically compares each sum of square with the residual sum of square and
prints out the F statistics accordingly. In addition, because the aov() function does
not contain the subj variable, aov() lumps every sum of squares related to the
subj variable into this big Residuals sum of squares. You can verify this by
adding up those entries in our basic ANOVA table (226:5 C 9:5 C 17:5 C 1:49E �
27 C 30 D 284).

R does not complain about the above syntax, which assumes that you want to
test each effect against the sum of residual errors related to the subjects. This leads
to incorrect F statistics. The residual error related to the subjects is not the correct
error term for all. Next we will explain how to find the correct error terms using the
Error() statement. We will then use a simple t-test to show you why we want to
do that.

5.8.1.3 The Appropriate Error Terms

In a repeated-measure design like that in Hays, the appropriate error term for the
color effect is the subj:color sum of squares. Also the error term for the
other within-subject, shape effect is the subj:shape sum of squares. The error
term for the color:shape interaction is then the subj:color:shape sum of
squares. A general discussion can be found in Hoaglin’s book. In the next section
we will examine in some detail the test of the color effect.

For now we will focus on the appropriate analyses using Error(). We must add
an Error(subj/(shape + color)) statement within aov(). This repeats
an earlier analysis.

> summary(aov(rt ˜ color * shape +
+ Error(subj/(color + shape)), data = Hays.df))

Error: subj
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 11 226.5 20.6

Error: subj:color
Df Sum Sq Mean Sq F value Pr(>F)

color 1 12.00 12.00 13.9 0.0033
Residuals 11 9.50 0.86

5.8 Another Way to do Error Bars Using plotCI() 99

Error: subj:shape
Df Sum Sq Mean Sq F value Pr(>F)

shape 1 12.00 12.00 7.54 0.019
Residuals 11 17.50 1.59

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

color:shape 1 1.1e-27 1.1e-27 4.1e-28 1
Residuals 11 30.50 2.77

As we mentioned before, the Error(subj/(color * shape)) statement
is the short hand for dividing all the residual sums of squares – in this case all
subject-related sums of squares – into three error strata.

The Error() statement says that we want three error terms separated in the
ANOVA table: one for subj, subj:color, and subj:shape, respectively.
The summary() and aov() functions are smart enough to do the rest for you.
The effects are arranged according to where they belong. In the output the color
effect is tested against the correct error term subj:color, etc. If you add up all
the Residuals entries in the table, you will find that it is exactly 284, the sum of
all subject-related sums of squares.

5.8.1.4 Sources of the Appropriate Error Terms

In this section we use simple examples of t-tests to demonstrate the need of the
appropriate error terms. Rigorous explanations can be found in Edwards (1985) and
Hoaglin et al. (1991). We will demonstrate that the appropriate error term for an
effect in a repeated ANOVA is exactly identical to the standard error in a t statistic
for testing the same effect.

We need the reaction time data in Hays (1988) in matrix form (hays.mat on
page 80). In a repeated-measure experiment the four measurements of reaction time
are correlated by design because they are from the same subject. A subject who
responds quickly in one condition is likely to respond quickly in other conditions
as well.

To take into consideration these differences, the comparisons of reaction time
should be tested with differences across conditions. When we take the differences,
we use each subject as his/her own control. So the difference in reaction time has the
subject’s baseline speed subtracted out. In the hays.mat data we test the color
effect by a simple t-test comparing the differences between the columns of “Color1”
and “Color2.”

Using the t.test() function, this is done by

> t.test(x = hays.mat[, 1] + hays.mat[, 2],
+ y = hays.mat[, 3] + hays.mat[, 4], paired = T)
data: hays.mat[, 1] + hays.mat[, 2] and

hays.mat[, 3] + hays.mat[, 4]

100 5 Analysis of Variance: Repeated-Measures

t = 3.7276, df = 11, p-value = 0.003338
alternative hypothesis: true difference in means
is not equal to 0
95 percent confidence interval:
0.81908 3.18092

sample estimates:
mean of the differences

2

An alternative is to test if a contrast is equal to zero, we talked about this in earlier
sections:

> t.test(hays.mat %*% c(1, 1, -1, -1))

One Sample t-test

data: hays.mat %*% c(1, 1, -1, -1)
t = 3.7276, df = 11, p-value = 0.003338
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.819076 3.180924

sample estimates:
mean of x

2

This c(1, 1, -1, -1) contrast is identical to the first t-test. The matrix
multiplication (the %*% operand) takes care of the arithmetic. It multiplies the first
column by a constant 1, add column 2, then subtract from that columns 3 and 4.
This tests the color effect. Note that the p-value of this t test is the same as the
p-values for the first t test and the earlier F test.

It can be proven algebraically that the square of a t-statistic is identical to the F
test for the same effect. So this fact can be used to double check the results. The
square of our t-statistic for color is 3:72762 D 13:895, which is identical to the F
statistic for color.

Now we are ready to draw the connection between a t-statistic for the contrast
and the F-statistic in an ANOVA table for repeated-measure aov(). The t statistic
is a ratio between the effect size to be tested and the standard error of that effect.
The larger the ratio, the stronger the effect size. The formula can be described as
follows:

t D Nx1 � Nx2

s=
p

n
; (5.1)

where the numerator is the observed differences and the denominator can be
interpreted as the expected differences due to chance. If the actual difference is
substantially larger than what you would expect, then you tend to think that the
difference is not due to random chance.

5.8 Another Way to do Error Bars Using plotCI() 101

Similarly, an F test contrasts the observed variability with the expected variabil-
ity. In a repeated design we must find an appropriate denominator by adding the
Error() statement inside an aov() function.

The next two commands show that the error sum of squares of the contrast is
exactly identical to the Residual sum of squares for the subj:color error
stratum.

> tvec <- hays.mat %*% c(1, 1, -1, -1)/2
> sum((tvec - mean(tvec))ˆ2)
[1] 9.5

The sum of squares of the contrast is exactly 9:5, identical to the residual sum of
squares for the correct F test. The scaling factor 1=2 is critical because it provides
correct scaling for the numbers. By definition a statistical contrast should have a
vector length of 1. This is done by dividing each element of the contrast vector by
2, turning it to c(1/2, 1/2, -1/2, -1/2). The scaling does not affect the
t-statistics. But it becomes important when we draw a connection between a t-test
and an F test.

You get the standard error of the t-statistic if you do the following:

> sqrt(sum((tvec - mean(tvec))ˆ2 / 11) / 12)
[1] 0.2682717

The first division of 11 is for calculating the variance; then you divide the
variance by the sample size of 12, take the square root, you have the standard error
for the t-test. You can verify it by running se(hays.mat %*% c(1, 1, -1,
-1)/2).

5.8.1.5 Verify the Calculations Manually

All the above calculations by aov() can be verified manually. This section
summarizes some of the technical details. This also gives you a flavor of how
Analysis Of Variance can be done by matrix algebra. First we re-arrange the raw
data into a three-dimensional array. Each element of the array is one data point, and
the three dimensions are for the subject, the shape, and the color, respectively.

> hays.A <- array(data1, dim=c(12, 2, 2))
> dimnames(hays.A) <- list(paste("subj",1:12,sep=""),
+ c("Shape1", "Shape2"), c("Color1", "Color2"))

Because at this point we want to solve for the effect of color, we use the
apply() function to average the reaction time over the two shapes.

> Ss.color <- apply(hays.A, c(1, 3), mean)

102 5 Analysis of Variance: Repeated-Measures

Next we test a t-test contrast for the color effect.

> Contr <- c(1, -1)
> Ss.color.Contr <- Ss.color %*% Contr
> mean(Ss.color.Contr) / (sqrt(var(Ss.color.Contr) /
+ length(Ss.color.Contr)))

[,1]
[1,] 3.727564

This is the same t-statistic as in t.test(Ss.color %*% c(1, -1)). Also
note that the square of 3.73 equals the 13.9 F-statistic on page 99. The above t-test
compares the mean of the contrast against the standard error of the contrast, which
is sqrt(var(Ss.color.Contr)/length(Ss.color.Contr)).

Now we can verify that the sum of square of the contrast is exactly the same as
the error term when we use aov() with the Error(subj:color) stratum.

> sum((Ss.color.Contr - mean(Ss.color.Contr))ˆ2)
[1] 9.5

5.8.2 Sphericity

Sphericity is an assumption of repeated measure ANOVA. It means that the
variance–covariance structure of the repeated measure ANOVA follows a certain
pattern. In a repeated measure design, several measurements are made to the
same groups of subjects under different conditions (and/or at different time).
Sphericity is, in a nutshell, that the variances of the differences between the repeated
measurements should be about the same. This is best explained with examples. We
use an oversimplified example to explain what sphericity is, how to calculate and
test it, and what alternative statistics can be used if the sphericity assumption is
not met.

5.8.2.1 Why Is Sphericity Important?

Violations of the sphericity assumption lead to a biased p-values. The alpha error of
a test may be set at 5%, but the test may be actually rejecting the null hypothesis 10%
of the time. This raises doubts of the conclusions of the repeated measure ANOVA.
Imagine a study about weight gains of new born babies at the Intensive Care Unit.
The weight of the babies is measured every day for a critical period of three days.
On the average the babies gain 100 grams between Days 1 and 2, and they gain
150 grams between Days 2 and 3. Sphericity says that the variance of the weight
gain between Days 1 and 2 should be about the same as the variance of the weight
gain between Days 2 and 3 (and also between Days 1 and 3). If not, the variance
observed between different time periods are confounded with the correlation of the

5.9 How to Estimate the Greenhouse–Geisser Epsilon? 103

measurements made at different time. Suppose the variance of the first weight gain
is 20 and the variance of the second weight gain is 100, then the measurements made
at times 1 and 2 are likely to be correlated more closely than measurements made at
times 2 and 3. As a result the variance over the whole 3-day period (what is often
called the variance of the time effect in ANOVA jargon) fluctuates over time and is
not reliable in describing the overall growth pattern in babies in the ICU.

In repeated measure experiments the same subjects are tested multiple times
under different conditions. It is a good idea to check if the responses made under
some conditions are correlated more closely than responses made under other
conditions.

There is a statistic, the Greenhouse–Geisser epsilon �, which measures by how
much the sphericity assumption is violated. Epsilon is then used to adjust for the
potential bias in the F statistic. Epsilon can be 1, which means that the sphericity
assumption is met perfectly. An epsilon smaller than 1 means that the sphericity
assumption is violated. The further it deviates from 1, the worse the violation. In
real life epsilon is rarely exactly 1. If it is not much smaller than 1, then we feel
comfortable with the results of repeated measure ANOVA. Thus the question is
how small is too small. We will get to that below. Additionally, we will talk about
two remedies when sphericity is violated: (1) correct for the p-value, and (2) use
procedures that do not depend on sphericity, such as MANOVA.

5.9 How to Estimate the Greenhouse–Geisser Epsilon?

The Greenhouse–Geisser epsilon is derived from the variance–covariance matrix of
the data. The MD497.dat example above involves a study where study subjects
judged stimuli under three different angles of rotation, at 0, 4, and 8 degrees angle
from the horizontal. In this subsection we estimate the Greenhouse–Geisser epsilon
associated with the rotation of the stimuli. The three measurements of reaction time
are stored in x0, x4, and x8, respectively.

> x0 <- apply(MD497.dat[, c(1, 4)], 1, mean)
> x4 <- apply(MD497.dat[, c(2, 5)], 1, mean)
> x8 <- apply(MD497.dat[, c(3, 6)], 1, mean)

We need to first calculate the variance–covariance matrix of the three variables.
The var() function calculates the variance–covariance matrix if the data are
arranged in a matrix, like S <- var(cbind(x0, x4, x8)):

> var(cbind(x0, x4, x8))
x0 x4 x8

x0 4090 3950 4350
x4 3950 6850 6150
x8 4350 6150 8850

104 5 Analysis of Variance: Repeated-Measures

The diagonal entries are the variances and the off diagonal entries are the
covariances. From this variance–covariance matrix the � statistic can be estimated:

O� D k2.Nsi i � Ns/2

.k � 1/.
PP

s2
ij � 2k

P Ns2
i: C k2 Ns2/

;

where Nsi i is the mean of the entries on the main diagonal of S, which can be shown
by mean(diag(S)) to equal 6596.667; Ns is the mean of all entries, Nsi: is the mean
of all entries in row i of S , and sij is the nine individual entries in the variance–
covariance matrix.

> S <- var(cbind(x0, x4, x8))
> k <- 3
> D <- kˆ2 * (mean(diag(S)) - mean(S))ˆ2
> N1 <- sum(Sˆ2)
> N2 <- 2 * k * sum(apply(S, 1, mean)ˆ2)
> N3 <- kˆ2 * mean(S)ˆ2
> D / ((k - 1) * (N1 - N2 + N3))

Which returns [1] 0.9616 for the value of O�. This value rounds to the 0.9616
value calculated by SAS.

There are three important values of �. It can be 1 when the sphericity is met
perfectly. It can be as low as � D 1=.k � 1/, which produces the lower bound of
epsilon (the worst case scenario). The worst case scenario depends on k, the number
of levels in the repeated-measure factor. In this example k D 3. Each subject is
tested under three different levels of stimuli rotation. Epsilon can be as low as 0:50

when k D 3. Note that the sphericity assumption does not apply when k D 2.
Another way to view it is that even the lowest epsilon is 1. Thus a repeated-measure
design with only 2 levels does not involve violations of the sphericity assumption.

Adjustment of the F statistic can be made against either the estimated epsilon,
in this case O� D 0:962; or against the worst case epsilon of 0:50. It depends on how
conservative one wants to be. If the cost of falsely rejecting the null hypothesis is
high, then one may want to adjust against the worst possible (and very conservative)
epsilon. Both SPSS and SAS use the estimated value to make the Greenhouse–
Geisser adjustment. The Greenhouse–Geisser adjustment made by SPSS and SAS
is different from the adjustment originally proposed by Greenhouse and Geisser
(1959). Although the adjustment made by SPSS and SAS is considered more
reasonable (Stevens 1992).

The estimated epsilon is used to adjust the degrees of freedom associated with
the F statistic from the unadjusted .k � 1/ and .k � 1/.n � 1/ to �.k � 1/ and
�.k � 1/.n � 1/. Severe violations of the sphericity assumption (as O� ! 0) may
decrease the degrees of freedom so much that the F statistic is no longer statistically
significant. The p-value associated with the adjusted F can be obtained from the
pf() function.

From the previous aov() output we get an F statistic of 40.719 for the variable
deg. The numerator degree of freedom is .k � 1/ D 2 and the denominator degrees

5.9 How to Estimate the Greenhouse–Geisser Epsilon? 105

of freedom is .k �1/.n�1/ D .3�1/.10�1/ D 18. These can be verified with the
output of the previous analysis. Suppose the value of epsilon is assigned to epsi
<- D / ((k - 1) * (N1 - N2 + N3)). We can then use epsi to weigh
down the degrees of freedom.

> 1 - pf(40.719, df1=2*epsi, df2=18*epsi)
[1] 3.401765e-07

The F statistic is still statistically significant below the 0.0001 level. The
negligible violation of the sphericity assumption does not affect the conclusion we
make.

5.9.1 Huynh–Feldt Correction

The Greenhouse–Geisser epsilon tends to underestimate epsilon when epsilon is
greater than 0.70 (Stevens 1992). Huynh–Feldt correction is less conservative. The
Huynh–Feldt epsilon is calculated from the Greenhouse–Geisser epsilon,

N� D n.k � 1/ O� � 2

.k � 1/Œ .n � 1/ � .k � 1/ O� :

The Huynh–Feldt epsilon can be easily calculated:

> epsiHF <- (10 * (k-1) * epsi - 2) /
+ ((k-1) * ((10-1) - (k-1)*epsi))
[1] 1.217564
> 1 - pf(40.719, df1=2*epsiHF, df2=18*epsiHF)
[1] 1.316553e-08

The Huynh–Feldt epsilon is 1.2176 with an adjusted p-value lower than 0.0001.
Huynh-Feldt epsilon greater than 1.0 are set to 1.0 by some statistical computer
packages because, for example, an estimated epsilon of 1.2176 makes the degrees
of freedom greater than they should be. But we leave it as is here. Readers interested
in this issue may consult Quintana and Maxwell (1994), which compares seven
epsilon-adjustment procedures. Again, the Huynh–Feldt correction does not change
the conclusion. In this example, the univariate results are preferred because an � D
0:96 is very close to 1.0. The sphericity corrections do not change the conclusions.
MANOVA (and multivariate tests) may be better if the Greenhouse–Geisser and
the Huynh–Feldt corrections do not agree, which may happen when epsilon drops
below 0:70. When epsilon drops below 0:40, both the G–G and H–F corrections may
indicate that the violation of sphericity is affecting the adjusted p-values. MANOVA
is not always appropriate, though. MANOVA usually requires a larger sample size.
Maxwell and Delaney (1990, p. 602) suggest a rough rule that the sample size n

should be greater than k C10. In the present example the sample size n is 10, which
is smaller than k C10 D 13. Fortunately we already have a strong univariate results.

106 5 Analysis of Variance: Repeated-Measures

Exercises

5.1. Sphericity
The Ela.uni data frame has one between-subject effect (variable gp) and two
within-subject effect (variables drug and dose). Analyze it with aov() with
appropriate Error() terms and answer the following questions.

(a) Is the sphericity assumption met for the variable dose?
(b) Is there evidence in support of a drug:dose interaction? That is, can we

conclude that the effect of the drug is different depending on the dose?
(c) What about the results based on the G–G and H–F corrections (use the

anova.mlm() method on page 87)
(d) What can you conclude about the effects associated with drug and dose?
(e) Is there an overall difference in effect across the two groups?

5.2. Repeated-measures ANOVA
Shoukri and Pause (1999, pp. 277–8) gave the following example of repeated-
measures data. Twenty immunodeficient mice are divided into three groups. Group 1
is the control group (no inoculation). Group 2 is inoculated with live mycobacterium
paratuberculosis (MPTB) and transplanted with leucocytes (PBL) from humans.
Group 3 is inoculated with MPTB and transplanted with PBL from bovine. The
mice are weighed at baseline (week 0), at week 2 and week 4.

mice group 0 2 4

m1 g1 28 25 45
m2 g1 40 31 70
m3 g1 31 40 44
m4 g1 27 21 26
m5 g1 27 25 40
m6 g2 34 25 38
m7 g2 36 31 49
m8 g2 41 21 25
m9 g2 28 22 10
m10 g2 29 24 22
m11 g2 31 18 36
m12 g2 31 15 5
m13 g3 28 28 61
m14 g3 27 23 63
m15 g3 31 30 42
m16 g3 19 16 28
m17 g3 20 18 39
m18 g3 22 24 52
m19 g3 22 22 25
m20 g3 28 26 53

Exercises 107

(a) What is the mean baseline weight in the control group?
(b) What are the mean baseline weights in Groups 2 and 3, respectively?
(c) Looking at the three mean baseline weights, do they appear different?
(d) How can this observation be tested more formally? (hint: aov(t0 �

group).
(e) Do a reshape() to convert the data from wide format to long format.
(f) Run a repeated-measures ANOVA with a group effect, a time effect, and a group

by time interaction.
(g) Is there a group by time interaction?
(h) Can you reject the null hypothesis that there is no time effect?
(i) Can you reject the null hypothesis that there is no overall group difference?
(j) Going back to the data in wide format, apply a contrast and manova() to test

the hypothesis that the post-inoculation weight changes are difference across
the three groups.

5.3. Repeated-measures ANOVA
Stevens (1992, p.491) gives the following example of a simple repeated-measures
design with three treatments.

subj y1 y2 y3

s1 5 6 1
s2 3 4 2
s3 3 7 1
s4 6 8 3
s5 6 9 3
s6 4 7 2
s7 5 9 2

(a) Do a reshape() to convert the data into a long format. Use varying =
3:5 or varying = c("y1", "y2", "y3").

(b) Is the sphericity assumption rejected?
(c) Do a univariate repeated-measures analysis using aov() with appropriate

Error() terms. Can you reject the null hypothesis that all treatments are
equal?

(d) Use a contrast and manova() to test the difference between y3 and the average
of y1 and y2.

Chapter 6
Linear and Logistic Regression

6.1 Linear Regression

If you want to find whether y1 depends on x1 and x2, the basic thing you need is

> lm(y1 ˜ x1 + x2)

If these variables are part of a data frame called df1, then you can say

> lm(y1 ˜ x1 + x2, data=df1)

or you can say attach(df1) before you run the analysis.
Note that lm() by itself only fits the regression model. If you want a summary

table, one way to get it is to say

> summary(lm(y ˜ x1 + x2))

The coefficients are unstandardized. If you want standardized coeffici-
ents, use summary(lm(scale(y) ˜ scale(x1) + scale(x2))). The
scale() function standardizes vectors by default (and it does many other things,
which you can see from help(scale)).

Another way to get a summary is with anova(). The anova() command is
most useful when you want to compare two models. For example, suppose that you
want to ask whether x3 and x4 together account for additional variance after x1
and x2 are already included in the regression. You cannot tell this from the summary
table that you get from

> summary(lm(y1 ˜ x1 + x2 + x3 + x4))

That is because you get a test for each coefficient, but not the two together. So,
you can do the following sequence:

> model1 <- lm(y1 ˜ x1 + x2)
> model2 <- lm(y1 ˜ x1 + x2 + x3 + x4)
> anova(model1,model2)

Y. Li and J. Baron, Behavioral Research Data Analysis with R, Use R,
DOI 10.1007/978-1-4614-1238-0 6, © Springer Science+Business Media, LLC 2012

109

110 6 Linear and Logistic Regression

As you might imagine, this is an extremely flexible mechanism, which allows
you to compare two nested models, one with many predictors not contained in the
other. Note that anova reports sums of squares sequentially, building up by adding
the models successively. It is thus different from the usual report of a multiple
regression, summary(lm(...)). Note also that you can add and drop variables
from a model without retyping the model, using the functions add() and drop().

6.2 An Application of Linear Regression on Diamond Pricing

In this section we describe a real-world example of pricing diamond stones from
a tutorial paper by Chu (2001), designed to teach business school students how
to analyze retail pricing of goods with multiple regression modeling. Chu (2001)
collected actual trading information on 308 diamond stones sold in Singapore. We
use Chu’s data to examine how the 4 C’s of the diamonds affect pricing. This
example on diamond pricing makes a good illustration of linear regression modeling
because the main attributes of diamond stones are widely covered in the mass media.
(setting aside the economic, social, and human rights controversies) Consumers’
spending on luxury goods is an interesting topic in marketing research. This example
covers key aspects of how to model consumers’ spending by regression modeling.
Although this is not the typical survey dataset we analyze.

The main attributes are the four C’s: carat, cut, clarity, and color. Chu’s data
contain price (in Singapore dollar), carat, color, and clarity. No information on the
cut of the diamonds was available. But we can still compare the importance of the
other three characteristics. As we will see, there is a roughly monotonic relationship
between price and these attributes (although not perfectly linear). The departure
from linearity leads to a few interesting discussion points below. Outliers in this
dataset underscores the importance of checking linear regression assumptions.
There are nevertheless patterns and regularities in this dataset.

R helps in discovering the regularities. First, we visualize the data with graphics.
The graphs then generate several specific questions whose answers require the use
of lm().

The color of a diamond is graded from D (completely colorless), E, F, G, ...,
to X (light yellow). The marketing of diamonds typically emphasizes that colorless
diamonds are rare. Diamonds with a fancy color such as pink are rarer. Clarity refers
to the diamond’s internal and external imperfections. Clarity is graded on a scale
from F (flawless), IF (internally flawless), ..., SI1–SI2 (slightly included), and I1–
I2–I3 (inclusion; blemishes visible to the human eye). The grading of cut and color
follows a set of formulae and color references and thus involves less subjectivity
than the grading of clarity.

The raw data are in plain-text format. Instructions on how to download the raw
data can be found in Chu (2001), Sect. 6. There is a web link to the raw data file
named 4c1.dat. Download the file and save it under your working directory. The
commands below imports the data into a data frame called dimd.df.

6.2 An Application of Linear Regression on Diamond Pricing 111

> dimd.df <- read.table(file="./4c1.dat", header=FALSE,
+ row.names=NULL)
> names(dimd.df) <- c("Carat","D","E","F","G","H","IF",
+ "VVS1","VVS2","VS1", "GIA","IGI","med","lg",
+ "m_c","l_c","csq","Price","ln_price")

The raw data are in plain-text format.

> dimd.df[301:308, c(1:10, 18),]
Carat D E F G H IF VVS1 VVS2 VS1 Price

301 1.01 0 0 0 0 1 0 0 1 0 9433
302 1.01 0 0 0 0 1 0 0 0 1 9153
303 1.01 0 0 0 0 0 0 1 0 0 8873
304 1.01 0 0 0 0 0 0 0 0 1 8175
305 1.02 0 0 1 0 0 0 0 1 0 10796
306 1.06 0 0 0 0 1 0 0 1 0 9890
307 1.02 0 0 0 0 1 0 0 0 0 8959
308 1.09 0 0 0 0 0 0 0 1 0 9107

The first variable contains the carat weight of all 308 diamonds. The color of the
diamonds are coded by 5 separate dummy variables, from the 2nd to the 6th column
in the data frame. The color of a diamond is graded from D (completely colorless),
E, F, G, ..., to X (light yellow). The marketing of diamonds typically emphasizes
that colorless diamonds are rare. Diamonds with a fancy color such as pink are rarer.
Clarity refers to the diamond’s internal and external imperfections. Clarity is graded
on a scale from F (flawless), IF (internally flawless), ..., SI1–SI2 (slightly included),
and I1–I2–I3 (inclusion; blemishes visible to the human eye). The grading of cut
and color follows a set of formulae and color references and thus involves less
subjectivity.

Note that diamond 301 is a 1.01 carat stone with an H color. It is coded 1 (feature
present) on H and 0 (feature absent) on all other color grades. Diamond stones 303,
304, and 308 are coded 0 on colors D through H, meaning that these stones have
color I, the reference color grade (and the least valuable color grade in this data set).
Diamond 307 is coded 0 on clarity IF through VS1. So it has the reference clarity
grade, which is VS2 or worse.

6.2.1 Plotting Data Before Model Fitting

The initial steps in regression modeling often involve plotting the data according to
the model of interest. Patterns and regularities are usually better revealed visually.
Figure 6.1 shows how price increases by carat, separated by color grades. Each
circle represents one diamond. Diamond stones with a D color are in the lower left
panel and E in the lower middle, and so on, and diamonds with an I color are plotted
in the upper right panel.

112 6 Linear and Logistic Regression

50
00

10
00

0
15

00
0

0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

50
00

10
00

0
15

00
0

Carat

P
ric

e

D

E

F

G

H

I

Given : dmCol

Fig. 6.1 A conditional plot of the price of diamond stones against carat weight, separated by color

> dmCol <- apply(dimd.df[, c("D","E","F","G","H")],
+ 1, function(x)
+ {
+ ans <- which(x == 1);
+ if(length(ans) == 0) ans <- 6
+ return(ans)
+ })
> dmCol <- unlist(dmCol, use.names = F)
> dmCol <- factor(dmCol, levels=1:6,
+ labels=c("D", "E", "F", "G", "H", "I"))
> coplot(Price ˜ Carat | dmCol, data=dimd.df)

6.2 An Application of Linear Regression on Diamond Pricing 113

The coplot() function generates a conditional plot to visualize whether or
not the relationship between price and carat weight changes across different colors.
One obvious pattern in the graph is that price corresponds well with carat weight.
Also, the rate of increase in price appears highest for diamonds with a D color
(“colorless”, the lower left panel). In this subplot, the relationship between price
and carat appears curvilinear, thus a quadratic term on Carat may help in boosting
model fit. The graph also shows some other characteristics of the data. For example,
not many diamonds have a D color; the diamond stones are not big, the largest are
slightly larger than 1.0 carat; and diamonds with some color do not seem to exceed
$10,000 Singapore dollars (SGD), while large diamonds with a D or E color can be
worth more than $15,000 SGD.1

We may begin by regressing Price on Carat.c (centered on the mean carat
of all diamonds in the sample), a quadratic term for the centered carat, color
(dummy variables D through H), clarity (dummy variables IF through VS1), and
certifications (GIA and IGI). We first center the Carat and the square of carat by
the average of the sample, which is 0.63. Centering improves the interpretability of
a model.

> dimd.df$Carat.c <- dimd.df$Carat-mean(dimd.df$Carat)
> dimd.df$csq.c <- dimd.df$Carat.cˆ2
> lm1 <- lm(Price ˜ Carat.c+csq.c+D+E+F+G+H+IF+

VVS1+VVS2+VS1+GIA+IGI, data = dimd.df)
> summary(lm1)

Call:
lm(formula = Price ˜ Carat.c + csq.c + D + E + F + G

+ H + IF + VVS1 + VVS2 + VS1 + GIA + IGI,
data = dimd.df)

Residuals:
Min 1Q Median 3Q Max

-1381 -252 -36 172 3218

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2553.11 146.94 17.37 < 2e-16
Carat.c 12207.61 157.31 77.60 < 2e-16
csq.c 7249.21 554.66 13.07 < 2e-16
D 3223.30 169.60 19.01 < 2e-16
E 1955.68 126.38 15.47 < 2e-16
F 1552.71 112.70 13.78 < 2e-16
G 1179.98 116.18 10.16 < 2e-16
H 652.73 116.99 5.58 5.5e-08
IF 915.10 120.38 7.60 3.9e-13

1According to x-rates.com, on Monday July 02, 2001, 1 SGD = 0.55 USD.

114 6 Linear and Logistic Regression

0 4000 8000 12000

−
10

00
10

00
30

00

Fitted values

Residuals vs Fitted

131
116

279

−3 −2 −1 0 1 2 3

−
2

0
2

4
6

Theoretical Quantiles

Normal Q−Q

131
116

279

Fig. 6.2 Plots of model residuals. On the left is a residuals vs. fitted value plot to identify
outliers of the model’s prediction, plotted with the plot.lm(lm1, which = 1) command.
On the right is a plot of observed quantiles of the residuals against the theoretical quantiles
of a standard normal distribution, plotted with plot.lm(lm1, which = 2). A dotted line
is added showing where the observed quantiles should be if they follow a standard normal
distribution. The two plots identifies outliers of model assumptions

VVS1 1349.75 116.62 11.57 < 2e-16
VVS2 802.31 104.92 7.65 3.0e-13
VS1 389.48 102.19 3.81 0.00017
GIA -6.15 85.44 -0.07 0.94266
IGI -407.13 124.30 -3.28 0.00118

Residual standard error: 566 on 294 degrees of freedom
Multiple R-squared: 0.974, Adjusted R-squared: 0.972
F-statistic: 831 on 13 and 294 DF, p-value: <2e-16

6.2.2 Checking Model Distributional Assumptions

A plot of model residuals against fitted values shows a problem in the model.
Figure 6.2 shows that diamonds 116, 131, and 279 are outliers. They are identified
automatically in a residual plot. The observed prices of these diamond stones greatly
exceed the model’s predicted prices.

The model underestimates the observed price of these larger stones with D and
E color and VVS1 clarity (see the fitted column below). Diamonds of these
characteristics are sold at a premium price, much higher than the fitted values of the
model. The values of these residuals clearly depart from what are expected if they
are normally-distributed.

6.2 An Application of Linear Regression on Diamond Pricing 115

> M <- dimd.df[c(116, 131, 279), c(1:10, 18)]
> cbind(M, fitted=fitted(lm1)[c(116, 131,279)])

Carat D E F G H IF VVS1 VVS2 VS1 Price fitted
116 1.00 1 0 0 0 0 0 1 0 0 15582 12613
131 1.01 1 0 0 0 0 0 1 0 0 16008 12790
279 1.00 0 1 0 0 0 0 1 0 0 14051 11352

An important assumption of linear regression is that the residuals are normally dis-
tributed. These particular outliers and other unusual observations (e.g., prices lower
than $2,000) contribute to a violation of this assumption. Chu (2001) fitted several
alternative models including log-transformed price to make the normal residual
assumption work better. However, these attempts would cause new problems, one
being that the log-transformed price makes the model harder to explain than the
straightforward lm1 model.

6.2.3 Assessing Model Fit

The Multiple R-squared of 0.974 summarizes the overall model fit in one
number. For a Gausian model, the theoretical minimum is 0.0 and the maximum is
1.0. The 0.974 value indicates that the model fits the data nearly perfectly. The
overall F statistic shows this model is significantly better than the null model
(intercept only, as in lm(Price ˜ 1). The (Intercept) term represents the
estimated price of $2,553.11 SGD for a diamond that weighs 0.63 carat, has an
I color, VS2 or lower clarity, and has no certification by either the GIA or the
IGI. The coefficients for the linear term Carat.c and the quadratic term csq.c
show that, other characteristics being equal, a diamond that weighs 1.63 carat is
estimated to cost an additional $19,456.82 SGD. Both terms are statistically reliably
different from zero. Although these coefficients being significant hardly surprises
anyone. We also notice a somewhat monotonic decrease in estimated price from
color D to H; whereas the relationship between price and clarity is not monotonic.
What is unusual is the relatively small $915.10 price difference estimate between
an “internally flawless,” IF clarity and a VS2 or lower clarity. In comparison, the
difference between a VVS1 and VS2 diamond is higher at an estimated $1,349.75.
One plausible explanation is that low-clarity diamonds are greater in carat weight
than IF diamonds, see below.

> ti <- apply(dimd.df[, c("IF","VVS1","VVS2","VS1")],
+ MARGIN = 1, FUN = function (x) { all(x == 0) })
> mean(dimd.df$Carat[dimd.df$IF == 0])
[1] 0.67409
> mean(dimd.df$Carat[ti])
[1] 0.7583

116 6 Linear and Logistic Regression

Part of assessing model fit involves reducing or simplifying the model. A simpler
model is usually preferred unless there is significant loss in model fit. We may try
to simplify the lm1 model by dropping the GIA variable.

> lm2 <- lm(Price ˜ Carat.c+csq.c+D+E+F+G+H+IF+VVS1+
+ VVS2+VS1+IGI, data = dimd.df)
> anova(lm1, lm2)

Analysis of Variance Table

Model 1: Price ˜ Carat.c + csq.c + D + E + F + G + H +
IF + VVS1 + VVS2 + VS1 + GIA + IGI

Model 2: Price ˜ Carat.c + csq.c + D + E + F + G + H +
IF + VVS1 + VVS2 + VS1 + IGI

Res.Df RSS Df Sum of Sq F Pr(>F)
1 294 94163607
2 295 94165266 -1 -1660 0.01 0.94

The anova() comparison of the two models shows that dropping GIA has a
negligible effect. However, dropping IGI would cause significant loss in model fit.

> lm3 <- lm(Price ˜ Carat.c+csq.c+D+E+F+G+H+IF+VVS1+
+ VVS2+VS1, data = dimd.df)

> anova(lm1, lm3)
Analysis of Variance Table

Model 1: Price ˜ Carat.c + csq.c + D + E + F + G +
H + IF + VVS1 + VVS2 + VS1 + GIA + IGI

Model 2: Price ˜ Carat.c + csq.c + D + E + F + G +
H + IF + VVS1 + VVS2 + VS1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 294 94163607
2 296 98638008 -2 -4474401 6.99 0.0011

> anova(lm2, lm3)
Analysis of Variance Table

Model 1: Price ˜ Carat.c + csq.c + D + E + F + G +
H + IF + VVS1 + VVS2 + VS1 + IGI

Model 2: Price ˜ Carat.c + csq.c + D + E + F + G +
H + IF + VVS1 + VVS2 + VS1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 295 94165266
2 296 98638008 -1 -4472742 14 0.00022

The final lm2 model retains these covariates of price: carat weight, the square of
carat weight, color, clarity, and the IGI certificate.

6.2 An Application of Linear Regression on Diamond Pricing 117

> summary(lm2)

Call:
lm(formula = Price ˜ Carat.c + csq.c + D + E + F +

G + H + IF + VVS1 + VVS2 + VS1 + IGI,
data = dimd.df)

Residuals:
Min 1Q Median 3Q Max

-1378 -253 -36 173 3215

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2548 127 20.04 < 2e-16
Carat.c 12210 152 80.22 < 2e-16
csq.c 7250 554 13.09 < 2e-16
D 3223 169 19.04 < 2e-16
E 1956 126 15.53 < 2e-16
F 1553 112 13.84 < 2e-16
G 1181 116 10.22 < 2e-16
H 654 116 5.62 4.3e-08
IF 915 120 7.62 3.4e-13
VVS1 1352 114 11.85 < 2e-16
VVS2 803 104 7.71 1.9e-13
VS1 389 102 3.82 0.00016
IGI -403 108 -3.74 0.00022

Residual standard error: 565 on 295 degrees of
freedom
Multiple R-squared: 0.974,
Adjusted R-squared: 0.972
F-statistic: 904 on 12 and 295 DF,
p-value: <2e-16

Another approach to model simplification is to use a convenient function called
drop1(). It drops one predictor at a time and summarizes the resulting changes
in several goodness of fit indices. The test = "F" option prints out an F

statistic based changes in residual sums of squares. The top row (marked <none>)
represents the original lm1 model.

> drop1(lm1, test = "F")

Single term deletions

Model:
Price ˜ Carat.c + csq.c + D + E + F + G + H + IF

+ VVS1 + VVS2 + VS1 + GIA + IGI

118 6 Linear and Logistic Regression

Df Sum of Sq RSS AIC F value Pr(F)
<none> 9.42e+07 3918
Carat.c 1 1.93e+09 2.02e+09 4861 6022.42 < 2e-16
csq.c 1 5.47e+07 1.49e+08 4057 170.81 < 2e-16
D 1 1.16e+08 2.10e+08 4163 361.20 < 2e-16
E 1 7.67e+07 1.71e+08 4100 239.46 < 2e-16
F 1 6.08e+07 1.55e+08 4070 189.81 < 2e-16
G 1 3.30e+07 1.27e+08 4009 103.15 < 2e-16
H 1 9.97e+06 1.04e+08 3947 31.13 5.5e-08
IF 1 1.85e+07 1.13e+08 3971 57.79 3.9e-13
VVS1 1 4.29e+07 1.37e+08 4032 133.95 < 2e-16
VVS2 1 1.87e+07 1.13e+08 3972 58.47 3.0e-13
VS1 1 4.65e+06 9.88e+07 3931 14.53 0.00017
GIA 1 1.66e+03 9.42e+07 3916 0.01 0.94266
IGI 1 3.44e+06 9.76e+07 3927 10.73 0.00118

The AIC (Akaike 1974) column shows Akaike’s information criterion, a goodness
of fit index. It is used in model comparison. Among two alternative models, the one
with a smaller AIC is preferred. For example, it is not advisable to drop Carat.c
or csq.c because dropping them causes considerable increase in the AIC.

This concludes our introduction on linear regression. We have covered a few
basics, including how to use coplot() in Fig. 6.1 and to inspect the data pattern
before fitting the model. Figure 6.1 also suggests possible outliers if a linear model
is fitted. These outliers are identified in the residual plot in Fig. 6.2. The final model
has limitations. But the overall fit of the model is very good. There are many other
aspects of linear regression that are not covered here. For interested readers, the
book by Chambers and Hastie (1993) provides details on the lm() function. Model
selection using anova() is also discussed in greater detail. There are numerous
other texts on regression, for example, Fox (2002), Harrell (2001a), Venables and
Ripley (2002), and Wonnacott and Wonnacott (1987).

6.3 Logistic Regression

Multiple regression is not appropriate when we regress a dichotomous (yes–no)
variable on continuous predictors. The assumptions of normally distributed error
are violated. So we use logistic regression instead. That is, we assume that the
probability of a “yes” is certain function of a weighted sum of the predictors, the
inverse logit. In other words, if Y is the probability of a “yes” for a given set of
predictor values X1, X2, . . . , the model says that

log
Y

1 � Y
D b0 C b1X1 C b2X2 C � � � C error:

6.4 Log–Linear Models 119

The function log Y
1�Y

is the logit function. This is the “link function” in logistic
regression. Other link functions are possible in R. If we represent the right side of

this equation as X , then the inverse function is

Y D eX

1 C eX
:

In R, when using such transformations as this one, we use glm (the generalized
linear model) instead of lm. We specify the “family” of the model to get the right
distribution. Here the family is called binomial. Suppose the variable y has a
value of 0 or 1 for each subject, and the predictors are x1, x2, and x3. We can
thus say

> summary(glm(y ˜ x1 + x2 + x3, family=binomial))

to get the basic analysis, including p values for each predictor. Psychologists
often like to ask whether the overall regression is significant before looking at the
individual predictors. Unfortunately, R does not report the overall significance as
part of the summary command. To get a test of overall significance, you must
compare two models. One way to do this is:

> glm1 <- glm(y ˜ x1 + x2 + x3, family=binomial)
> glm0 <- glm(y ˜ 1, family=binomial)
> anova(glm0,glm1,test="Chisq")

6.4 Log–Linear Models

Another use of glm() is log–linear analysis, where the family is poisson rather
than binomial. Suppose we have a table called t1.data like the following
(which you could generate with the help of expand.grid()). Each row rep-
resents the levels of the variables of interest. The last column represents the number
of subjects with that combination of levels. The dependent measure is actually
expens vs. notexpens. The classification of subjects into these categories depends
on whether the subject chose the expensive treatment or not. The variable “cancer”
has three values (cervic, colon, breast) corresponding to the three scenarios, so
R makes two dummy variables, “cancercervic” and “cancercolon”. The variable
“cost” has the levels “expens” and “notexp.” The variable “real” is “real” vs. “hyp”
(hypothetical).

cancer cost real count
colon notexp real 37
colon expens real 20
colon notexp hyp 31
colon expens hyp 15
cervic notexp real 27

120 6 Linear and Logistic Regression

cervic expens real 28
cervic notexp hyp 52
cervic expens hyp 6
breast notexp real 22
breast expens real 32
breast notexp hyp 25
breast expens hyp 27

The following sequence of commands does one analysis:

> t1 <- read.table("t1.data",header=T)
> summary(glm(count ˜ cancer + cost + real + cost*real,
+ family=poisson(), data=t1)

This analysis asks whether “cost” and “real” interact in determining “count,” that is,
whether the response is affected by “real.” See the chapter on Generalized Linear
Models in Venables and Ripley (2002) for more discussion on how this works.

6.5 Regression in Vector–Matrix Notation

Advanced statistics often require the use of matrix algebra. For example, in linear
multiple regression, a model is typically written like this:

yi D ˇ0 C ˇ1xi1 C ˇ2xi2 C � � � C ˇkxik C ei ; (6.1)

where the subscript i refers to the i th observation and 1; 2; � � � ; k refers to the kth
independent variable. Here we use the plant weight data in help(lm).

> ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,
+ 5.33,5.14)
> trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,
+ 4.32,4.69)
> group <- gl(2,10,20, labels=c("Ctl","Trt"))
> weight <- c(ctl, trt)
> weight
[1] 4.17 5.58 5.18 6.11 4.50 4.61 [.. snipped ..]

[16] 3.83 6.03 4.89 4.32 4.69
> group
[1] Ctl Ctl Ctl Ctl Ctl [.. snipped ..] Trt Trt Trt

[20] Trt
Levels: Ctl Trt

Here weight is yi and group is xi1. To compare the average weight difference
between the two groups, we can run a simple lm() model.

6.5 Regression in Vector–Matrix Notation 121

> lm(weight ˜ group)

Call:
lm(formula = weight ˜ group)

Coefficients:
(Intercept) groupTrt

5.032 -0.371

The average weight of the Ctrl group is 5.032 and the Trt group weighs less than
the Ctl group by �0:371. Most of us learn how to carry out multiple regression
analysis this way.

We do not usually learn how the calculations are done behind the scene. However,
the internal calculations are not prohibitively difficult to understand. R can help by
turning the complicated mathematical notations into the more trackable R objects.
A rudimentary understanding of the internal calculations can be useful, especially
when you encounter error messages such as “matrix is singular.” This can help a
beginner to move on to more advanced texts. Here is an example.

In books on advanced statistics, Equation (6.1) is sometimes represented in
vector notations:

2
6664

y1

y2

:::

yi

3
7775 D

2
6664

1 x11 x12 � � � x1k

1 x21 x22 � � � x2k

:::
:::

: : :
:::

1 xi1 xi2 � � � xik

3
7775

2
6664

ˇ0

ˇ1

:::

ˇk

3
7775C

2
6664

e1

e2

:::

ek

3
7775 ;

or by stacking all i observations into a column vector called y (note the bold face)
and you get

y D Xiˇ C e:

This notation can be intimidating to beginners. R makes it less intimidating. The
R object of weight is y and group is xi1 in X. R objects thus help to track the
different pieces of this equation.

The vector notation can be further extended into matrix natation, transforming

yi � N.Xi ;̌ �2/; for i D 1; : : : ; n; into matrix notation

y � N.X ;̌ �2I /;

These different equations represent the same model. It can be shown (e.g.,
Wonnacott and Wonnacott 1987, Chap. 12) that the least-square estimate of the
regression coefficients, Ǒ, is

Ǒ D .X0X/�1X0y;

122 6 Linear and Logistic Regression

where X0 is the transpose of the data matrix X and .X0X/�1 refers to the matrix
inverse of the product of .X0X/. This somewhat complicated matrix algebra can be
made more accessible to students by working with R objects instead of the more
abstract mathematical notations.

> X <- cbind(1, matrix(as.numeric(group == "Trt"),
ncol = 1))

> solve(t(X) %*% X) %*% t(X) %*% weight
[,1]

[1,] 5.032
[2,] -0.371

Here X is the model matrix with 20 rows and two columns consisting of one
column for the intercept (a vector of 1’s) and the other column of the treatment
effect (dummy coded 1 if in Trt and 0 otherwise). The t(X) function finds the
transpose of the matrix X, the solve() function calculates the inverse of .X0X/.
All objects are put together by the matrix multiplication function %*% and you
get ˇ D Œ5.032, -0.371�, the same as what you get with lm(). Although
lm() actually uses the orthogonal decomposition method, which is numerically
more stable than solve().

6.6 Caution on Model Overfit and Classification Errors

Model overfit threatens the validity of research findings. Here is a somewhat extreme
hypothetical example of model overfit.

> y <- c(10, 10.2, 9.7, 15, 14.8, 15.2)
> x <- c(0, 0.1, 0.2, 1, 1.2, 0.9))
> plot(x, y)
> lmOvfit <- lm(y ˜ x)
> abline(lmOvfit)

The regression model in Fig. 6.3 is fitted to only six data points. The linear
association is obviously not real because the empty area contains no data.

We get a misleading summary() p-value of 0.0023 for x.

> summary(lm(y ˜ x))

Call:
lm(formula = y ˜ x)

Residuals:
1 2 3 4 5 6

0.3871 0.0806 -0.9260 0.3216 -0.8915 1.0282

Coefficients:

6.6 Caution on Model Overfit and Classification Errors 123

Fig. 6.3 A hypothetical
example of model overfit by
fitting a regression line to six
data points

0.0 0.2 0.4 0.6 0.8 1.0 1.2
10

11
12

13
14

15

x

y

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.613 0.545 17.63 6.1e-05
x 5.066 0.735 6.89 0.0023

Residual standard error: 0.862 on 4 degrees of
freedom
Multiple R-squared: 0.922, Adjusted R-squared: 0.903
F-statistic: 47.5 on 1 and 4 DF, p-value: 0.00233

Model overfit happens when a relationship exists only in vacuum, with no actual
observations to support the existence of a relationship. It happens easily, especially
if p-values are sought indiscriminately and the number of predictors exceeds what
can be supported by the sample size. Another scenario involves running a stepwise
analysis and let the computer software program to decide what model is preferred.

For the first scenario, Peduzzi and colleagues recommend a 10-event per variable
(EPV) rule (Peduzzi et al. 1996) in fitting logistic regression. For example, a
logistic regression with up to three predictors has a low risk of overfitting if
there are 35 events out of a sample of 97. This recommendation was challenged
recently (Vittinghoff and McCulloch 2007). A relaxed rule of 5–9 events per
variable was offered. Although the six observations in Fig. 6.3 are clearly not
enough to support the model.

It is a good idea to visually inspect the data and the model (as we have done)
before the model is fitted.

For the second scenario, it is a bad idea to let the computer determine the
preferred model. In a stepwise analysis, the statistical computer program considers
one predictor at a time (controlling for other predictors). The predictor is appended
to the existing model if some test statistic exceeds a threshold. In the next iteration,
the new model enters another test cycle, with or without the previous predictor.

124 6 Linear and Logistic Regression

The procedure iterates until all variables are considered. The main problem with a
stepwise approach is that estimates of sampling variance in the stepwise selection
process are conditional on the existing model as if there were no uncertainty about
the variables already in the model. Breiman (1992) called this a “quiet scandal.”
There is uncertainty in the variables in the existing model that a new variable can
cross that threshold purely by chance. Without explicitly modeling this chance and
other related variabilities, the resulting model can be highly unreliable. Completely
different sets of predictors will be selected under slightly different circumstances.
Breiman (1992) offered a procedure called little bootstrap, although its routine
application seems only available to researchers who have extensive statistical
expertise.

Exercises

6.1. Modeling between-group difference by lm().
The sleep data in Sect. 1.1 was analyzed in an independent-sample t-test by calling
t.test(extra ˜ group, data = sleep). It can also be analyzed in a
linear model by fitting each person’s extra hours of sleep as a function of an intercept
plus an estimated difference between the two groups:

yi D ˛0 C ˇ1xi C �i ;

where yi represents each person’s extra hours of sleep and xi represents each
person’s group assignment.

(a) Write the R command for this linear model.
(b) What is the estimated value of the intercept ˛0?
(c) What does ˛0 represent?
(d) Does ˛0 represent the overall mean of extra hours of sleep averaged across

the two groups?
(e) If not, then does it represent the average extra hours of sleep for Group 1?
(f) Verify your answers to (c), (d), and (e) above with the results of with(sleep,

tapply(extra, group, mean)).
(g) What is the estimated value of ˇ1?
(h) What does ˇ1 represent? Does the value of ˇ1 map onto any number or

difference between numbers in the result of tapply() above?
(i) Does the result by lm() on the between-group difference agree with the result

by t.test()?

6.2. Hypothetical example on distress and depression.
Below is a hypothetical example on how changes in self-reported distress
(d_distr) are associated with changes in depression (d_depr). The commands
below are used to simulate the hypothetical data. Two groups of 20 participants
each are assessed for changes in depression and distress. In group 1, the two

Exercises 125

change scores have a correlation of 0.35. In group 2, the two changes scores have
a correlation of 0.45. The rmvnorm() function is used to generate correlated
variables.

> library(mvtnorm)
> set.seed(7)
> mean <- c(0, 0)
> sigma <- matrix(c(1, 0.35, 0.35, 1), ncol=2)
> y1 <- rmvnorm(n = 20, mean=mean, sigma=sigma)
> sigma <- matrix(c(1, 0.45, 0.45, 1), ncol=2)
> y2 <- rmvnorm(n = 20, mean=mean, sigma=sigma)

Next, the two sets of data for Groups 1 and 2 are stacked together. A grp variable
is created to represent the group each participant is randomly assigned to.

> Y <- data.frame(rbind(y1, y2))
> names(Y) <- c("d_depr", "d_distr")
> Y$grp <- rep(c("grp1", "grp2"), each = 20)

(a) Apply the coplot() command below to plot the relationship between changes
in distress and changes in depression for the two groups.

> coplot(d_depr ˜ d_distr | grp, data = Y)

(b) Are there visible differences between the two scatterplots that would indicate
different relationships of changes in depression and distress across the two
groups?

(c) Often it is useful to use scatterplot smoothers to visualize the general patterns:

> coplot(d_depr ˜ d_distr | grp,
+ panel = panel.smooth, data = Y)

Has this improved the ease with which you can interpret the two scatterplots?
(d) Fit a linear regression of changes in depression as a function of changes in

distress, call the model m1.
(e) Use plot(m1) to check model distributional assumptions. Are there outliers?

What are the values of changes in depression and distress?
(f) What is the Multiple R-squared statistic of model m1?
(g) Fit another regression model to changes in depression scores as a function of

changes in distress as well as an interaction between changes in distress and
group. Call this model m2.

(h) What is the value of the coefficient for the changes in distress and group
interaction term?

(i) What does the value of this coefficient represent?
(j) Is there support for a statistically significant interaction between changes in

distress and group?
(k) Make a model comparison between m1 and m2. Can the interaction term be

dropped from model m2?

126 6 Linear and Logistic Regression

6.3. Simulate greater effects in a larger sample.
Rerun the simulation with a much larger sample size of 200 in each group instead
of 20. Keep the all other parameters same the simulation.

(a) Does the 10-fold increase in sample size change the results of the simulation?
(b) Change the correlation in the variable y2 from 0.45 to 0.55 (keep the all other

parameters same), again get a simulated sample of 200 in each group.
(c) Does the increase in correlation and sample size change the patterns of the plots?

Is it easier to visualize a pattern without the aide of the scatterplot smoother?
(d) What is the Multiple R-squared statistic in the new model m1?
(e) Repeat the check for model distributional assumptions. Any improvement in the

number of outliers?
(f) Does the increase of correlation from 0.45 to 0.55 change the statistical

interaction term in the new regression model m2?

6.4. Sesame Street dataset.
Stevens (1992) describes the Sesame Street study in which young children were
assessed before and after they had viewed a selected series of the television program
Sesame Street. Here are the first few observations in that dataset. The two variables
prebody and postbody represent respectively assessment scores of children’s
knowledge of body parts before and after having viewed a selected series of the
television program Sesame Street. The third variable contains information on the
children’s gender (male D 1, female D 2).

> prebody <- c(16,30,22,23,32,29,23,32,28,30,25,21,
+ 28,26,23,25,25,16,25,19,29,25,20,11,15)
> postbody <- c(18,30,21,21,32,27,22,31,32,32,26,17,
+ 20,26,28,28,25,25,32,28,29,32,22,22,14)
> sex <- c(1,2,1,1,1,2,2,1,1,2,2,2,2,1,2,1,1,1,1,1,2,
+ 1,2,1,2)

15 20 25 30

15
20

25
30

prebody

po
st

bo
dy

Exercises 127

(a) Plot postbody against prebody scores. Make the plot look like the graph
below. Data for boys are plotted with filled circles (e.g., pch=19) and data for
girls with open circles. Add two regression lines to the plot for boys and girls,
respectively. Use a different line type (e.g., lty=2) to plot the regression line
for girls.

(b) Is there a significant change in knowledge after viewing Sesame Street?
(c) Do girls show more knowledge than boys before viewing Sesame Street?
(d) Do girls show more knowledge than boys after viewing Sesame Street?
(e) Is the association between pre- and post-viewing knowledge scores stronger in

girls than in boys?

Chapter 7
Statistical Power and Sample Size
Considerations

7.1 A Simple Example

Suppose a researcher wants to calculate the statistical power of an experiment
comparing two parallel arms of behavioral interventions. Participants are random-
ized with equal probability into two intervention conditions. The experimenter
wants to know the statistical power for a total sample size of 100 (50 in each
intervention condition), assuming that the difference between the two sample means
is half of the pooled standard deviation.

> power.t.test(n = 50, delta = 0.5, sd = 1,
type="two.sample")

Two-sample t test power calculation

n = 50
delta = 0.5

sd = 1
sig.level = 0.05

power = 0.6968888
alternative = two.sided

NOTE: n is number in *each* group

The estimated statistical power is 70%, at a two-sided Type-I error rate of
0.05. The default of power.t.test() is a two-sided (alternative =
"two.sided") Type-I error rate of 5% (sig.level = 0.05).

If the experimenter wants to know the sample size required to reach a desired
level of statistical power (e.g., 80%), do power.t.test(delta = 0.5,
power = 0.80, type = "two.sample"). A sample size of 64 in each
group is needed to reach 80% power.

Y. Li and J. Baron, Behavioral Research Data Analysis with R, Use R,
DOI 10.1007/978-1-4614-1238-0 7, © Springer Science+Business Media, LLC 2012

129

130 7 Statistical Power and Sample Size Considerations

7.2 Basic Concepts on Statistical Power Estimation

Figure 7.1 helps to explain the 70% power in the hypothetical t-test above with
n D 50 in each of the two parallel intervention arms.1

Let �i and �c represent the population means of the primary post-intervention
outcome for the intervention and control groups, respectively. The null and alterna-
tive hypotheses are:

H0 W �i D �c versus Ha W �i 6D �c:

The null hypothesis states that the two population means are equal. The alternative
hypothesis states that the two population means are not equal.

The pooled two-sample t-statistic for this comparison is

t D Nxi � Nxc

sp

q
1
ni

C 1
nc

;

where Nxi ; Nxc represent the sample means; sp represents the pooled estimator of
population standard deviation, and sp equals 1.0 because the two samples are
assumed to have the same standard deviation of 1.0, thus

tutl

δ0 = 0 δa = 0.5

power = 0.697

Fig. 7.1 The statistical power of this hypothetical two-sample t -test can be verified with
power.t.test(n = 50, delta = 0.5, sd = 1, type="two.sample")

1The code to plot Fig. 7.1 is available upon request. R makes it easy to plot the shaded areas under
a curve. Basically, filled histograms such as the ones in Fig. 4.1 are used to produce the shaded
areas under the curves. The Greek letters are added, for example, for the null distribution at m0
= 0 by mtext(bquote(delta[0] == .(m0)), side = 1, at = m0, line=2,
cex=2.0).

7.3 t-Test with Unequal Sample Sizes 131

s2
p D .ni � 1/s2

i C .nc � 1/s2
c

ni C nc � 2
D .50 � 1/12 C .50 � 1/12

50 C 50 � 2
D 1:

The two curves in Fig. 7.1 represent the population distributions of the two
sample means. It helps to think of the two distributions on a scale of the t-statistics.
The t-statistic for the null is 0.0. The upper critical t-statistic to reject the null
hypothesis at a two-sided Type-I error rate of 5%, with the pooled 98 degrees
of freedom, is qt(p = .975, df = 98) or 1.984467. It is marked as tu.
(tl D �1:984467 marks the lower critical value)

The t-statistic for the mean of the alternative distribution is:

ta D ı

sp

q
1
ni

C 1
nc

D 0:5

1

q
1
50

C 1
50

D 2:5:

The numerator represents what the investigators’ expected difference between the

two group means: ı D Nx1 � Nx2 D 0:5. The denominator, 1 �
q

1
50

C 1
50

, represents
the standard error of the expected group difference (Moore and McCabe 1993, their
equation (7.3)). This ta is also referred to as the non-centrality parameter (ncp). The
ncp parameter of a t-distribution basically describes that (in this specific example)
the distribution is shifted 2.5 standard error units greater than the null. It also affects
the symmetry of the distribution. Unlike the Student’s t-distribution, a noncentral
t is not necessarily symmetrical (Cumming 2006, for a visual explanation). The
standard Student’s t-distribution is a special case of noncentral t with ncp = 0.0.

The statistical power is the probability of rejecting the null hypothesis when the
alternative hypothesis is true. Taken altogether, the statistical power is the sum of
the areas greater than tu and less than tl under the alternative ıa distribution. The
area greater than tu gives

> 1 - pt(1.984467, df = 98, ncp = 2.5)
[1] 0.696889

and the combined two-sided statistical power is

> 1 - pt(1.984467, df = 98, ncp = 2.5) +
pt(-1.984467, df = 98, ncp = 2.5)

[1] 0.6968936

which agrees with the result of power.t.test() to within five decimal points.

7.3 t-Test with Unequal Sample Sizes

If for each participant randomized to the control condition, two participants
are randomized to the intervention condition, then the statistical power for this
1:2 allocation ratio can be calculated by calling the pwr package by Stephane
Champely.

132 7 Statistical Power and Sample Size Considerations

> library(pwr)
> pwr.t2n.test(n1=85, n2=43, d = 0.50)

t test power calculation

n1 = 85
n2 = 43
d = 0.5

sig.level = 0.05
power = 0.75536

alternative = two.sided

We show earlier that two groups of 64 each would yield 80% power. However, if the
total sample of 128 is assigned to the intervention conditions in a 2:1 allocation ratio,
then the power is down to 76%. The cost in power may be compensated by making
the study more desirable to eligible participants because of the higher probability of
getting into the intervention condition than the control condition.

7.4 Binomial Proportions

A smoking cessation intervention study may be expected to observe a 10% quit rate
in the control group and a 20% quit rate in the intervention group. Such a study
needs approximately 200 participants per treatment arm to reach a statistical power
of 80%.

> power.prop.test(p1 = .10, p2 = .20, power = .80)

Two-sample comparison of proportions power
calculation

n = 198.96
p1 = 0.1
p2 = 0.2

sig.level = 0.05
power = 0.8

alternative = two.sided

NOTE: n is number in *each* group

7.6 Repeated-Measures ANOVA 133

7.5 Power to Declare a Study Feasible

A researcher decides, based on published data from prior studies of similar designs,
that a newly proposed study would be considered feasible if 65% of enrolled
participants in the population complete the planned intervention(s) and provide
post-intervention assessments. The study would be considered not feasible if the
completion rate is 45% or lower in the population. How would one calculate the
needed sample size to test the feasibility of this study?

We can approach it by setting up two alternative population proportions. The null
and alternative hypotheses can be modeled as binomial distributions with means
at 45% and 65%, respectively. These are hypothetical population proportions. The
observed sample proportion may be lower than 45%, higher than 65%, or in-between
45% and 65%. If the researcher enrolls a sample of 50 participants and 30 or
more of them complete the study, then the cumulative binomial probability of this
observation is 0.023536 if the null hypothesis is true.

> sum(dbinom(30:50, size = 50, p = 0.45))
[1] 0.023536

So we would have a 2 � 0:024 D 0:048 tail probability (two-sided Type-I error) to
reject the null hypothesis and a 0.81395 probability of rejecting the null hypothesis
when the alternative hypothesis is true.

> sum(dbinom(30:50, size = 50, p = 0.65))
[1] 0.81395

Under this setting, if we observe a sample of 29 completers or less, then we would
consider the study design not feasible. Thus the current study design may no longer
be considered in future research. This manual calculation is inconvenient because it
needs trial-and-error to find a workable combination of the parameters. However, it
provides a more formal framework for a researcher to define precisely what he or
she means by feasibility.

7.6 Repeated-Measures ANOVA

The calculation of statistical power by simulation is a relatively straightforward
alternative to formulaic solutions, such as those used in the G*Power computer
program (Faul et al. 2007). The example below can be used to calculate the
statistical power of a repeated-measures ANOVA analysis with two within-subject
factors (e.g., the Hays.df example in Sect. 5.1). Basically, we simulate the data
from a repeated-measures ANOVA design with two within-subject factors and
calculate as usual the p-value for the color effect. Repeat it a few hundred times
and the resulting percentage of p-values rejecting the null is the statistical power for
the within-subject color effect.

134 7 Statistical Power and Sample Size Considerations

Lines 1–9 set up the simulation parameters based on the effects below:

color1 color2 color effect

shape1 0.6 0.0 0.3
shape2 0.0 0.0 0.0
shape effect 0.3 0.0

There is an assumed marginal color effect of 0.3 standard deviation units. The S
matrix in line 7 assumes an average pairwise correlation of 0.35. From this design
we draw a simulated sample of n = 50, calculate the color effect against the
subj:color error using repeated-measuresaov(), and check whether or not the
p-value rejects the null hypothesis at the pre-specifiedsig.level. These steps are
repeated nsim times in a for() loop between lines 14 and 28. Statistical power is
the percentage of nsim simulations that the null hypothesis is rejected.

1 require(MASS) # multivariate normal by mvrnorm()
set.seed(7) # so that simulation is reproducible
nsim <- 400 # run simulation 400 times
n <- 50

5 sig.level <- 0.05
x <- c(0.6, 0, 0, 0)
S <- matrix(NA, ncol = 4, nrow = 4)
S[row(S) == col(S)] <- 1
S[row(S) != col(S)] <- 0.35

10 pval <- rep(NA, nsim)
col.MS <- rep(NA, nsim)
res.MS <- rep(NA, nsim)

for (i in 1:nsim)
15 {

tdat <- mvrnorm(n = n, mu = x, Sigma = S)
df <- data.frame(rt = as.vector(tdat),
subj = rep(paste("subj", 1:n, sep=""), 4),
shape = rep(rep(c("shape1", "shape2"), c(n, n)), 2),

20 color = rep(c("color1", "color2"), c(n*2, n*2)))

av1 <- aov(rt ˜ shape*color + Error(subj/
(shape*color)), data = df)

tlst <- unlist(summary(av1)["Error: subj:color"])
25 pval[i] <- tlst[9]

col.MS[i] <- tlst[5]
res.MS[i] <- tlst[6]
}

29 print(mean(pval < sig.level))

7.7 Cluster-Randomized Study Design 135

The output from line 29 is 71% power. The parameters x, S, and n can be modified.
The user may need to run the simulation a few times with different values of n to
find the required sample size to reach the 80% power. Lines 11, 12, 26, and 27 are
commented out. They can be restored to extract the numerator and the denominator
sums of squares for the color effect.

7.7 Cluster-Randomized Study Design

Cluster-randomized designs involve randomizing groups of individuals into in-
tervention conditions (Murray 1998b). Donner and Klar (2000) showed how to
estimate the statistical power for a two-arm design with m groups of n individual
participants. They provided SAS code to carry out the calculation, which can be
easily converted into a function in R. There is an 84% statistical power to detect
a 0:20 treatment effect if 40 groups are randomized (20 groups in each of the two
treatment conditions), and each group contains an average of 30 group members.

> dk.pow <- function(d, m, rho, n, alpha = 0.05)
{
returns two-sided power at alpha error 0.05
d <- 0.20 # effect size
m <- 8 # number of clusters per Tx condition
rho <- .01 # intraclass correlation
n <- 30 # number of people in each cluster
df <- 2 * (m - 1)
sigq <- qt(1 - alpha/2, df) # two-sided p = 0.05
inf <- 2 * (1 + ((n-1)*rho)) / (m * n)
nc <- d / sqrt(inf)
pow <- 1 - pt(sigq, df, nc) + pt(-sigq, df, nc)
return(pow)
}
dk.pow(d = .20, m = 20, rho = 0.01, n = 30)
[1] 0.8442535

Try running dk.pow() a few times with different values of m and n. If the value
of m is too small, increasing the value of n does little to boost power. The statistical
power in a cluster-randomized study is strongly influenced by the number of groups.
If there is not enough number of groups, adding more participants per group would
offer limited help in boosting power.

The dk.pow() function can also be used in a repeated-measures design.
For example, 20 college students are randomized into each of two intervention
conditions. Each student is asked to keep a diary on sleep quality for 30 days. The
daily assessments are correlated, say at rho = 0.10. A call to dk.pow(d =
0.20, m = 20, n = 30, rho = 0.1) shows a 40% statistical power in

136 7 Statistical Power and Sample Size Considerations

this study. Doubling the number of longitudinal assessments per student provides
only a small boost in power, as can be seen in the 44% power when n = 60.

The calculation involves a noncentral t-distribution with 2.m � 1/ degrees of
freedom and noncentrality parameter given by:

NC D d

Œ2.1 C ..n � l/p//=.mn/�1=2
;

where d is the expected effect size in standardized units, m is the number of clusters
per intervention condition, n is the expected average number of members within
each cluster, and p is the expected intraless correlation. Note that m is the number
of clusters per treatment condition. So the total number of clusters is m�2 in a two-
arm randomized design. This method is one of several alternatives, including the
power.grouped() function in the package grouped by Tsonaka, Rizopoulos
and Lesaffre. In more complex designs, such as designs with uneven cluster sizes,
the simulation method (Horton et al. 2004) is a better choice. We will cover that
method in Sect. 11.9.1 on page 223, after we have gone over how to analyze cluster-
randomized clinical trials.

Exercises

7.1. Power by simulation.
In Sect. 7.6 we see a repeated-measures ANOVA design with an average within-
subject correlation of 0.35.

(a) Change the 0.35 correlation to 0.50, holding other parameters constant. Does a
higher correlation of 0.50 increase or decrease the statistical power?

(b) Restore lines 11, 12, 26, and 27 in the R code to extract the numerator and the
denominator sums of squares of the color effect when the correlation is set
at 0.35.

(c) Change the correlation to 0.50, extract another set of sums of squares.
(d) Use the changes in sums of squares to explain the change in power when within

subject correlation is increased.

7.2. Manual power calculation.
Figure 7.1 shows an estimated effect size of 0.50. The alternative distribution has
a mean of 2.5 on the t-scale. Answer the questions below by assuming that the
estimated effect size is changed to 0.75 (other assumptions remain the same).

(a) What is the mean of the alternative distribution?
(b) What are the lower and upper critical t-values?
(c) What is the statistical power for a sample of n D 50 per intervention condition?
(d) Can the researcher reduce the sample size to n D 30 per intervention condition

and still maintain the 80% power?

Exercises 137

7.3. A cluster-randomized design.
A physician colleague of yours is working with 20 community centers in a
metropolitan area to help adolescents with asthma. The community centers provide
after school programs for adolescents. Your colleague wants to randomize ten
community centers to the intervention condition (asthma self-management courses)
and the remaining ten to usual care (usual after school activities). Adolescents with
asthma are recruited into the study. The primary outcome is a summary score on
asthma symptoms.

(a) Assuming a 0.30 standardized difference in the asthma symptom scores between
the two intervention groups, an average of 15 adolescents per community center,
and a 0.01 intra-class correlation, what is the estimated statistical power to
detect this level of difference at a two-sided Type-I error rate of 0.05?

(b) Would you recommend increasing the number of adolescent participants per
community center to reach the 80% statistical power?

(c) Would you reach the 80% power target if you recruit 25 participants per
community center?

(d) What would be the estimated statistical power if only 16 community centers can
participate (eight community centers per intervention condition, 25 adolescents
per center)?

(e) Can 35 adolescents per community center help restore the power to the 80%
level?

Chapter 8
Item Response Theory

8.1 Overview

Several user-contributed packages can fit IRT models. The packages we use the
most is the ltm package by Dimitris Rizopoulos and the MCMCpack packages
by Andrew Martin, Kevin Quinn, and Jong Hee Park. The eRm package by
Patrick Mair, Reinhold Hatzinger, and Marco Maier also has powerful features. But
our experience with eRm is limited at this time. We also rely extensively on the
Gibbs sampler approach to fit IRT models, using open-source computer programs
such as JAGS and OpenBUGS on the Linux operational system, JAGS on Mac OS,
and WinBUGS on the Windows platform. The Gibbs sampler is one of the popular
Markov Chain Monte Carlo iterative simulation methods. R works seamlessly
with these Gibbs sampler computer programs. The MCMCpack package on the 1-
dimensional IRT model also uses the Gibbs sampler (see help(MCMCirt1d)).
The ltm package uses a maximum-likelihood solution. The power of the Bayesian
approach becomes apparent when we go over the latent regression Rasch model
in Sect. 8.4.2. These methods are covered in this chapter. Additional resources can
be found on the CRAN Task View on psychometric models and methods (CRAN
2011).

8.2 Rasch Model for Dichotomous Item Responses

One of the simplest IRT models is the Rasch Model (RM) (Rasch 1980) for
dichotomized response data, developed by the Danish mathematician Georg Rasch.
RM handles data coded as “correct”/“incorrect” or “yes”/“no” with a value of 1
coding a correct answer or a “yes” response. The log odds of answering an item
correctly is a function of two parameters:

ln

�
Pr.xij D 1j�i ; ˇj /

1 � Pr.xij D 1j�i ; ˇj /

�
D �i � ˇj ; (8.1)

Y. Li and J. Baron, Behavioral Research Data Analysis with R, Use R,
DOI 10.1007/978-1-4614-1238-0 8, © Springer Science+Business Media, LLC 2012

139

140 8 Item Response Theory

where Pr.xij D 1j �i ; ˇj / represents the probability of person i scoring a 1 versus
0 on item j . The interpretation of this model is made clearer if we let �i represent
person i ’s innate “ability” and ˇj represent item j ’s “difficulty.” If a person’s ability
matches the difficulty of an item, then he/she has a 50–50 chance in answering the
item correctly (assuming no guessing). This interpretation makes intuitive sense in
an educational test setting. The equation can be unpacked by applying the inverse
logit:

Pr.xij D 1j�i ; ˇj / D logit�1.�i � ˇj / (8.2)

D exp.�i � ˇj /

1 C exp.�i � ˇj /
(8.3)

D 1

1 C exp.�.�i � ˇj //
: (8.4)

Equation (8.3) is more commonly used in the literature for the classical RM. A more
general form of the model includes an item discrimination parameter, ˛j for each
item.

Pr.xij D 1j�i ; ˇj / D exp.˛j .�i � ˇj //

1 C exp.˛j .�i � ˇj //
: (8.5)

So the classical RM in (8.3) is a special case of the more general (8.5) with all ˛j

set to 1.0.

8.2.1 Fitting a rasch() Model

The rasch() function in library(ltm) can be used to fit this model. The
commands below fit an RM to one of the most well-known datasets in the IRT
literature, the LSAT data in Bock and Lieberman (1970). A description of the
dataset can be found by typing help(LSAT) (must load library(ltm) first).

> library(ltm)
> lsat.ltm <- rasch(LSAT,
+ constraint=cbind(ncol(LSAT)+1, 1))

The constraint = cbind(ncol(LSAT)+1, 1) tells rasch() to set the
item discrimination parameters to 1.0 for all 5 items. The constraint param-
eter takes a matrix with two columns. The first column specifies which model
parameter(s) should be constrained, with a number 1 for item 1, number 2 for item
2, . . . , and number 5 for item 5. Because the LSAT dataset contains 5 items, a
number 6 refers to the item discrimination parameter. The second column of the
constraint parameter specifies what the value of the constraint is. A value
of 1 tells rasch() to fix the item discrimination parameters to 1.0 for all
items.

8.2 Rasch Model for Dichotomous Item Responses 141

> cbind(ncol(LSAT)+1, 1)
[,1] [,2]

[1,] 6 1

The output shows the fitted item parameters:

> lsat.ltm

Call:
rasch(data = LSAT, constraint = cbind(ncol(LSAT) + 1,

1))

Coefficients:
Dffclt.Item 1 Dffclt.Item 2 Dffclt.Item 3

-2.872 -1.063 -0.258

Dffclt.Item 4 Dffclt.Item 5
-1.388 -2.219

Dscrmn
1.000

Log.Lik: -2473.054

The parameters are scaled onto a latent norm, which is a standard normal z-scale of
latent abilities (details see Bock and Aitkin (1981)). Thus, a �2:872 item difficulty
for item 1 represents that item 1 is so easy that it can be answered correctly with
a 50–50 chance by a person with an ability nearly 3 standard deviation below the
norm; next is item 5 at a difficulty level of �2.219, item 4 at �1:388, item 2 at
�1:063, and item 3 at �0:258. Note that the item discrimination parameter is set to
1.000 for all items.

For a two-parameter logistic model (2PL, Embretson and Reise (2000)), you can
fit it with either the ltm or the MCMCirt1d packages. The two sets of parameter
estimates do not necessarily agree because of the different scaling methods used in
the functions.

> lsat.ltm <- ltm(LSAT ˜ z1)
> lsat.ltm

Call:
ltm(formula = LSAT ˜ z1)

Coefficients:
Dffclt Dscrmn

Item 1 -3.360 0.825
Item 2 -1.370 0.723
Item 3 -0.280 0.890

142 8 Item Response Theory

Item 4 -1.866 0.689
Item 5 -3.124 0.657

Log.Lik: -2466.7

The MCMCirt1d() function in library(MCMCpack) can be used to fit the
same model. Note that the alpha parameters represent the item difficulty estimates
and the beta parameters represent the item discrimination estimates. Also that
store.ability is set to FALSE. This conserves space on storing the bulky
MCMC chains for the theta estimates.

> lsat.mcmc <- MCMCirt1d(datamatrix = LSAT,
+ store.item = TRUE, store.ability = FALSE)
> summary(lsat.mcmc)

Iterations = 1001:21000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 20000

1. Empirical mean and standard deviation for each
variable, plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha.Item 1 -1.549 0.1001 0.000708 0.00674
beta.Item 1 0.394 0.1482 0.001048 0.01232
alpha.Item 2 -0.594 0.0528 0.000373 0.00229
beta.Item 2 0.389 0.1421 0.001005 0.01257
alpha.Item 3 -0.305 0.3457 0.002445 0.04333
beta.Item 3 1.882 2.9364 0.020764 0.36375
alpha.Item 4 -0.767 0.0575 0.000406 0.00264
beta.Item 4 0.364 0.1332 0.000942 0.01048
alpha.Item 5 -1.190 0.0717 0.000507 0.00402
beta.Item 5 0.319 0.1417 0.001002 0.01208

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
alpha.Item 1 -1.7660 -1.608 -1.538 -1.479 -1.3837
beta.Item 1 0.1464 0.284 0.381 0.492 0.6979
alpha.Item 2 -0.7022 -0.628 -0.592 -0.558 -0.4963
beta.Item 2 0.1399 0.284 0.392 0.482 0.6646
alpha.Item 3 -1.3438 -0.229 -0.167 -0.129 -0.0676
beta.Item 3 0.3101 0.464 0.577 0.821 11.1881
alpha.Item 4 -0.8890 -0.802 -0.763 -0.728 -0.6627
beta.Item 4 0.1338 0.267 0.358 0.452 0.6438

8.2 Rasch Model for Dichotomous Item Responses 143

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Item Characteristic Curves

Ability

P
ro

ba
bi

lit
y

1
2

3

4
5

Fig. 8.1 Item characteristic curves for the Rasch model of the LSAT data

alpha.Item 5 -1.3424 -1.235 -1.185 -1.139 -1.0637
beta.Item 5 0.0641 0.210 0.320 0.418 0.5954

Warning message:
glm.fit: algorithm did not converge

8.2.2 Graphing Item Characteristics and Item Information

The plot(lsat.ltm, type = "ICC") command plots the item characteris-
tics curves (ICC), shown in Fig. 8.1.

> plot(lsat.ltm, type = "ICC", col = "black")

The ICC curves are the probability of answering an item correctly across a range
of hypothetical latent ability values. From left to right, the curves represent items 1,
5, 4, 2, and 3, respectively. The ICCs are plotted in color by default. They are easy
to identify on the default graph window. The colors are suppressed in Fig. 8.1.

144 8 Item Response Theory

−4 −2 0 2 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Item Information Curves

Ability

In
fo

rm
at

io
n

1
2

3

4

5

Fig. 8.2 Item information curves for the Rasch model of the LSAT data

A few dotted lines may be added in Fig. 8.1 (not shown) with these commands:

> abline(h = 0.50, lty = 2)
> xx <- coef(lsat.ltm)[1:5]
> segments(xx, 0, xx, 0.5, lty = 2)

The vertical dotted lines represent the item difficulty levels for all items – ability
levels for a 50–50 chance of answering the items correctly. The graph shows that
item 3 is the most difficult item and item 1 is the easiest. For the same latent ability
level, the probability of answering an item correctly is lowest for item 3.

Another useful graph to plot contains the item information curves, typing

> plot(lsat.ltm, type = "IIC", col = "black")

to produce Fig. 8.2.
Figure 8.2 plots the Fisher information of an item over a range of latent � values.

Fisher information tells us how certain we are about a person’s estimated level on
the latent � continuum. A higher Fisher information means lower uncertainty for
the � estimate (de Ayala 2009; Lord 1980) and vice versa.

Item 1 is the most informative item for examinees with very low latent ability
levels. We already know that item 1 is easy. Thus, if a person fails to answer item 1
correctly, then his/her latent ability level is likely to be low. In other words, failing
an item also provides information about a person’s latent ability (Baker and Kim
2004). But item 1 is so easy that it provides limited information for latent ability

8.2 Rasch Model for Dichotomous Item Responses 145

levels above 0.0. Item 3 is most informative for latent ability levels near the norm.
It is also the most informative item among the 5 items for the above-norm latent
ability levels.

8.2.3 Scoring New Item Response Data

The lsat.ltm object contains the Rasch Model calibrated by the sample of 1,000
examinees. The factor.scores() function in library(ltm) can use the
already calibrated RM to score an independent sample of examinees. Suppose the
same 5 items are given to two people. Their responses are entered as prsn1 and
prsn2 below. A call to factor.scores returns the z1 scores, which are the
estimated latent ability levels on a standard normal distribution.

> prsn1 <- c(1, 0, 1, 1, 1)
> prsn2 <- c(1, 1, 1, 0, 0)
> dat <- rbind(prsn1, prsn2)
> factor.scores(lsat.ltm, resp.pattern = dat)

Call:
rasch(data = LSAT, constraint = cbind(ncol(LSAT)+1,1))

Scoring Method: Empirical Bayes

Factor-Scores for specified response patterns:
Item 1 Item 2 Item 3 Item 4 Item 5 Obs Exp

prsn1 1 0 1 1 1 80 75.788
prsn2 1 1 1 0 0 11 7.340

z1 se.z1
prsn1 0.025 0.761
prsn2 -0.526 0.726

8.2.4 Person Fit and Item Fit Statistics

The person fit and item fit statistics can also be calculated, using the
person.fit() and item.fit() functions. Although by default these
functions print out the test statistics and p-values, not the numeric values of the
estimated fit statistics, such as the “infit” and “outfit” statistics (Masters and Wright
1996). These statistics can be calculated manually (Li 2006). There are limitations
in these infit and outfit statistics. They are thoroughly examined in Karabatsos
(2003). Alternative fit statistics and their advantages and disadvantages are also
reviewed (Karabatsos 2003).

146 8 Item Response Theory

8.3 Generalized Partial Credit Model for Polytomous
Item Responses

Masters (1982) proposed a Partial Credit Model (PCM) to handle polytomous
items responses. The PCM extends the dichotomous RM to more than 2 response
categories. Master’s PCM assumes that the probability of selecting the kth response
category over the Œk � 1�th category is governed by the dichotomous RM. It is
as though the person “passes through” each of the preceding response categories
before finally stopping at a response (de Ayala 2009, p.165) that, presumably,
most accurately reflects that person’s standing on the latent variable continuum.
The adjacent ˇjk parameters represent the incremental item “difficulties” that the
person has to step through in order to reach the next response category. Muraki
(1992) further extended the PCM to include an item discrimination parameter in the
Generalized Partial Credit Model (GPCM). In assessing health-related quality-of-
life, the PCM and GPCM can be used to model responses on symptom severity such
as responses of symptoms being “present” or “absent,” or on a gradation such as
“persistent/intermittent/none.”

The PCM model in Masters (1982, p.158) has this form:

Pr.xj j�i ; ˇjh/ D
exp

xjP
hD0

.�i � ˇjh/

mjP
kD0

exp
kP

hD0

.�i � ˇjh/

; (8.6)

where the numerator is the individual response outcomes and the denominator is the
sum of all the possible outcomes. These characteristics led Thissen and Steinberg
(1986) to classify the PCM as one of the “divide-by-total” models.

Muraki’s GPCM (Muraki 1992) has a discrimination parameter ˛j for each
item:

Pr.xj j�i ; ˛j ; ˇjh/ D
exp

xjP
hD0

˛j .�i � ˇjh/

mjP
kD0

exp
kP

hD0

˛j .�i � ˇjh/

: (8.7)

These equations may appear intimidating for beginners. But they in fact follow
a highly regular pattern. Later in Sect. 8.4, we will examines this highly regular
pattern. There we will tackle Bayesian methods in fitting IRT models using iterative
simulation. It will become clear that these complicated equations can be easily
explained using the BUGS language (Lunn et al. 2000).

8.3 Generalized Partial Credit Model for Polytomous Item Responses 147

8.3.1 Neuroticism Data

The gpcm() function in library(ltm) can estimate the GPCM parameters.
The dataset is the bfi dataset in the R package psych (Revelle 2010), which
contains the responses of 2,800 subjects to 25 personality self-report items. We are
analyzing a randomly selected subset of the 2,800 observations to save time. The 25
items map onto the “Big-Five” personality traits: Agreeableness, Conscientiousness,
Extraversion, Neuroticism, and Openness. We analyze the 5 items assessing Neu-
roticism, which is a self-reported tendency to easily experience negative emotions,
including anger (‘item 1. Get angry easily’), unpleasant affect (‘2. Get irritated
easily’ and ‘3. Have frequent mood swings’), depression (‘4. Often feel blue’), and
anxiety (‘5. Panic easily’).

Each item is rated on six response categories “1: Very Inaccurate,” “2: Moder-
ately Inaccurate,” “3: Slightly Inaccurate,” “4: Slightly Accurate,” “5: Moderately
Accurate,” and “6: Very Accurate.”

> library(psych)
> set.seed(7) # for reproducibility
> data(bfi)
> neuroticism <- as.data.frame(bfi[,16:20])
> ti <- sample(1:nrow(bfi), size = 500)
> r <- matrix(unlist(neuroticism[ti,]), nrow = 500)
> neurot.gpcm <- gpcm(r)
> neurot.gpcm

Call:
gpcm(data = r)

Coefficients:
Catgr.1 Catgr.2 Catgr.3 Catgr.4 Catgr.5 Dscrmn

V1 -0.889 0.045 0.189 0.949 1.699 2.106
V2 -1.478 -0.315 -0.479 0.799 1.328 1.819
V3 -1.171 0.247 -0.342 1.030 1.435 0.837
V4 -1.931 0.718 -1.006 1.754 2.203 0.437
V5 -0.518 1.769 0.081 1.077 1.873 0.367

Log.Lik: -3879.993

8.3.2 Category Response Curves and Item Information Curves

The category response curves for neurot.gpcm are plotted in Fig. 8.3. There is a
visible overlap between response categories 2, 3, and 4 for all items. For example, in
the second item (marked as 2. Irritated), the response category 3 is covered

148 8 Item Response Theory

1

2

3

4 5

6

0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3

θ

1. Angry
1

2

3

4

5

6

0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3

θ

2. Irritated

1

2

3

4 5

6

0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3

θ

3. Swings

1

2

3

4 5

6

0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3

θ

4. Blue

1

2

3
4

5

6

0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3

θ

5. Panic

Fig. 8.3 Category response curves for the GPCM model of the bfi Neuroticism data

In
fo

rm
at

io
n

0

0.5

1

1.5

2

2.5

3

3.5

−4 −3 −2 −1 0 1 2 3 4

θ

1

2

3

4

5

1. Angry
2. Irritated
3. Swings
4. Blue
5. Panic

Fig. 8.4 Item information curves for the GPCM model of the bfi Neuroticism data

8.4 Bayesian Methods for Fitting IRT Models 149

by the curves of categories 2 and 4. A similar pattern is also seen in items 1, 3, 4,
and 5. If Fig. 8.3 is part of a scale validation study, then the overlapping response
categories may be merged into one category. The probability of endorsing item 4
“feeling blue,” an indication of depressive symptoms, is lower than in other items,
due to low prevalence of depressive symptoms.

Figure 8.4 shows the item information curves for all items. Item 2 (‘irritated’) has
the highest information profile. The next most informative items capture “anger” and
“mood swings”; and “anger” tends to provide the most information at fairly intense
levels of Neuroticism (i.e., � > 1:5). These three items do not appear to provide
much information for � values outside the Œ�1:5; 2:5� range. Items 4 and 5 share a
similar low information profile. They do not seem to provide as much information
on Neuroticism as items 1, 2, and 3. They may be revised or replaced in a future
version of the assessment if alternate items are available.

8.4 Bayesian Methods for Fitting IRT Models

Bayesian computation for IRT modeling is not new (see Baldwin et al. (2009);
Gelman and Hill (2007); Albert (1992); Patz and Junker (1999); Torre et al.
(2006)). More recently, Curtis (2010) published a collection of BUGS syntax
codes for several IRT models, including the GPCM. Fox (2010) devotes a full
volume to thoroughly cover the theory and applications of a Bayesian IRT modeling
approach. The Bayesian approach provides flexible solutions to more sophisticated
IRT models, such as, the latent regression Rasch model in Sect. 8.4.2 below. We
hope that this section is most useful to researchers who are quite familiar with IRT
and/or psychometrics but are new to a Bayesian analytic approach to IRT modeling.
We only cover how to fit the polytomous GPCM model using the example in Curtis
(2010) method. Bayesian solution to the dichotomous Rasch model is not covered
here because it is well documented. It is part of the default WinBUGS version 1.4.3,
under the menu “Help,” “Examples Vol I,” and “LSAT: latent variable models for
item-response data.” There is no need to repeat it.

8.4.1 GPCM

A random sample of 500 observations is taken from the bfi dataset. The
R2WinBUGS package is loaded. The general workflow is as follows:

1. Prepare data in R: The first few lines of R code set up the raw item response
matrix Y and its characteristics (number of persons n, the number of items p, and
the number of response categories in the items K). A few assumptions are also
made. The ˛p item discrimination parameters are assumed to follow a fairly flat
prior normal distribution with mean 1.0 and standard deviation of 2.5. The ˇp

item thresholds are assumed to follow a prior normal distribution with mean 0.0

150 8 Item Response Theory

and standard deviation 2.5. The lines commented out have already been done for
gpcm() on p. 147.

> library(R2WinBUGS)
Already did these in gpcm(), no need to redo
library(psych)
set.seed(7) # for reproducibility
data(bfi)
neuroticism <- as.data.frame(bfi[,16:20])
ti <- sample(1:nrow(bfi), size = 500)
############
> Y <- matrix(unlist(neuroticism[ti,]), nrow = 500)
> n <- nrow(Y) # persons
> p <- ncol(Y) # items
> K <- apply(Y, 2, max, na.rm = TRUE) # resp categ
> m.alpha <- 1.0
> s.alpha <- 2.5
> m.beta <- 0
> s.beta <- 2.5

2. Prepare input for bugs(): R uses the bugs() function to communicate
with the WinBUGS computer program. We need to tell bugs() a few things,
including a list of all data objects in step 1, the names of the parameters we are
estimating, and how many simulations should be carried out.

> data <- list("Y", "n", "p", "K", "m.alpha",
+ "s.alpha", "m.beta", "s.beta")
> param <- c("alpha", "beta", "theta")
> n.burnin <- 100
> n.thin <- 10
> n.sim <- 5000 * n.thin + n.burnin

We want to discard the first 100 iterations (n.burnin) and save only 1 iteration
per every 10 (n.thin). This is because of the high autocorrelation typically
found in Markov Chain simulations. This “thinning” may help reduce the
autocorrelation between iterations. It certainly helps to save disk storage space by
keeping only 1 in 10 iterations. If we want to save 5,000 iterations, then we need
to run a total of 500 * n.thin + n.burnin iterative simulations. These
numbers are not arbitrary. We can calculate the Raftery and Lewis (1992) run-
length estimates to determine the minimum numbers of burn-ins and simulations
to achieve a prespecified precision of specific quantiles of a simulation. Details
on Markov Chain diagnostics can be found elsewhere (Jackman 2009; Ntzoufras
2009).

3. Run the iterative simulations with bugs(): proc.time() shows how long
it takes to run the simulations. Then we call the bugs() function. The bugs()
function tells WinBUGS to generate random initial values for the parameters
because we set inits = NULL. The inits can be set manually. By setting

8.4 Bayesian Methods for Fitting IRT Models 151

debug = FALSE, we ask bugs() to return everything back to R when the
simulation ends (debug = TRUE may be needed when WinBUGS fails).

> pr.time <- proc.time()[1:3]
> Neuro.Curtis.bugs <- bugs(data=data, inits=NULL,
+ parameters=param,
+ model.file="CurtisGPCM.bugs",
+ n.burnin=n.burnin, n.thin=n.thin, n.iter=n.sim,
+ n.chains=3, debug = FALSE)
> pr.time <- proc.time()[1:3] - pr.time
> print(pr.time)
> show(Neuro.Curtis.bugs)

The output of show(Neuro.Curtis.bugs) summarizes the parameter
estimates. They agree well with those obtained from gpcm() in package ltm.

The model.file="CurtisGPCM.bugs" input tells WinBUGS to fit the
model below. Line numbers are added to make them easier to track.

1 model {
2 for (i in 1:n) {
3 for (j in 1:p) {
4 Y[i, j] ˜ dcat(prob[i, j, 1:K[j]])
5 }
6 theta[i] ˜ dnorm(0.0, 1.0)
7 }
8 for (i in 1:n) {
9 for (j in 1:p) {

10 for (k in 1:K[j]) {
11 eta[i,j,k] <- alpha[j] * (theta[i]-beta[j,k])
12 psum[i, j, k] <- sum(eta[i, j, 1:k])
13 exp.psum[i, j, k] <- exp(psum[i, j, k])
14 prob[i, j, k] <- exp.psum[i, j, k] /
15 sum(exp.psum[i,j,1:K[j]])
16 } } }
17 for (j in 1:p) {
18 alpha[j] ˜ dnorm(m.alpha, pr.alpha) I(0,)
19 beta[j, 1] <- 0.0
20 for (k in 2:K[j]) {
21 beta[j, k] ˜ dnorm(m.beta, pr.beta)
22 }
23 }
24 pr.alpha <- pow(s.alpha, -2)
25 pr.beta <- pow(s.beta, -2)
26 }

152 8 Item Response Theory

Line 4 shows that the item responses can be one of K[j] possible values,
with the probability of each response separately specified in Pr.xj j�i ; ˛j ; ˇjh/

(see (8.7)). Line 6 samples each person’s latent characteristic from a standard
normal distribution. Lines 11–13 calculate the numerators in the GPCM model
in (8.7). Line 13 yields exp.˛j .�i � ˇj1// when the response category is k = 1,
exp.˛j .�i � ˇj1/ C ˛j .�i � ˇj 2/ when k = 2, and so on for exp.˛j .�i � ˇj1/ C
˛j .�i � ˇj 2/ C � � � C ˛j .�i � ˇj 6/ when k = nK[j] (actually nK[i] is 6 for all
items in the Neuroticism data). Lines 14–15 show the WinBUGS representation
of (8.7). Line 15, sum(exp.psum[i, j, 1:K[j]]), is simply the sum of
all numerators. Like Thissen and Steinberg (1986) said, the GPCM is one of the
“divide-by-total” models. Lines 17–23 specify the prior distributions of the ˇ and ˛

parameters.
The GPCM model in (8.7) may appear complex, but the WinBUGS code

shows that the complex summations can be reduced into three nested loops.
This resemblance between mathematics and computer syntax is an important
advantage of WinBUGS. The resemblance helps a beginner to develop a deeper
understanding of the IRT theory as well as the statistical computation. WinBUGS,
OpenBUGS, and JAGS force the learner to acquire a clear understanding of the
statistical model, which hopefully discourages indiscriminately applying existing
data analysis recipes.

8.4.2 Explanatory IRT

One might wonder why spend the time and effort to program the BUGS code in
Sect. 8.4.1, while packages like ltm are much easier to use. The answer is that
BUGS/WinBUGS/OpenBUGS can do much more – sophisticated models beyond
the scope of any IRT package we know. De Boeck and Wilson (2004), in their
book on Explantory IRT, describe a “latent regression Rasch model” (De Boeck
and Wilson, 2004; Table 2.2). They provide SAS PROC NLMIXED syntax to carry
out the analysis (Sect. 2.8, pp. 68–70). But it can also be done using JAGS. This
subsection shows you how to fit such a model using De Boeck and Wilson’s Verbal
Aggression Assessment example (2004, p.9).

The Verbal Aggression Assessment is a 24-item survey on people’s aggressive
intentions and behaviors. The items are divided into different types. Some items
describe a frustrating situation in which other people may be blamed for it. For
example, a set of other-to-blame items say:

“A bus fails to stop for me. I would want to curse.”
“A bus fails to stop for me. I would want to scold.”
“A bus fails to stop for me. I would want to shout.”

A second other-to-blame scenario involves missing a train because a clerk gave me
the wrong information. So there are 6 other-to-blame items.

8.4 Bayesian Methods for Fitting IRT Models 153

A second type of items describe a frustrating situation due to the subject’s own
fault:

“The grocery store closes just as I am about to enter. I would want to [curse j
scold j shout].”

These are called “self-to-blame” items. A second self-to-blame scenario involves
using up coins at a pay phone so the operator disconnects the phone call. There are
also 6 self-to-blame items.

The 12 item stems are repeated to make up a total of 24 items. In the 12 repeated
items the behavioral intention item stem “I would want to [curse j scold j shout]” is
changed to the behavior “I will [curse j scold j shout].” Each person’s Gender and
Trait Anger are also known. The data file can be downloaded from the De Boeck
and Wilson book website, which contains 7,584 entries and 28 variables.

De Boeck and Wilson fitted a latent regression Rasch model to the data:

	pi D logit�1.�p � ˇi /

D logit�1
��

#1 Angerp C #2 Genderp C "p

� � ˇi

�
(8.8)

D logit�1

0
@
2
4 JX

j D1

#j Zpj C "p

3
5 � ˇi

1
A ; "p � N.0; �2

" /; (8.9)

where the first equation is the Rasch model, in which the item responses 	pi from
person p on item i depend on the person’s latent verbal aggression minus an
outcome threshold for the i th item. In (8.8), the person’s latent unobserved verbal
aggression �i is regressed on the person’s Trait Anger and Gender. The parameters
#1 is an estimate of the impact of Trait Anger on latent verbal aggression
controlling for Gender. Equation (8.9) is a general form of the model using matrix
notation, Zpj can include J explanatory variables.

The package rjags allows R to work with JAGS to fit the model. All the R com-
mands are preceded by an > prompt to separate them from the output. We use R to
set up the item response data, the explanatory covariates anger and gender, and
the jags.model() function is called to specify the model. The jags.model()
function is given the name of the JAGS syntax file (‘lregRaschJAGS.bugs’),
the data, and several Gibbs sampler parameters. The update() function carries
out the burn-ins. The jags.samples() function takes the model and carries
out a user-specified number of iterations to estimate the coefficients ang for Trait
Anger (#1 above) and sex for gender (#2). A table(gender) shows that the
sample consists of mostly female respondents. The ˇi item thresholds are also
calculated.

154 8 Item Response Theory

> library(rjags)
> agr.df <- data.frame(read.table(file =
+ "./data verbal aggression vector dichot.txt",
+ sep = "\t", header = TRUE))
> Y <- matrix(agr.df$Y, ncol = 24, byrow = T)
> anger <- matrix(agr.df$Anger, ncol=24, byrow=T)
> anger <- anger[, 1]
> gender <- matrix(agr.df$Gender, ncol=24, byrow=T)
> gender <- gender[, 1]
> table(gender)
gender

0 1
243 73
> N <- nrow(Y) # number of people
> I <- ncol(Y) # number of items
> data <- list("Y"=Y, "N"=N, "I"=I, "anger"=anger,

"gender"=gender)
> param <- c("b", "ang", "sex", "sigma")
> pr.time <- proc.time()[1:3]
> expirt.jags <- jags.model(’lregRaschJAGS.bugs’,

data=data, n.chains=3, n.adapt=100)

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 25342

|++| 100%

> update(expirt.jags, 1000)
> jags.samples(expirt.jags, c(’ang’, ’sex’, ’b’), 10000)

$ang
mcarray:
[1] 0.059

Marginalizing over: iteration(10000),chain(3)

$b
mcarray:
[1] -1.394 -0.733 -0.246 -1.924 -0.877 -0.177
[7] -0.698 0.523 1.369 -1.253 0.185 0.883

[13] -1.394 -0.556 0.709 -1.042 -0.109 1.322
[19] 0.046 1.346 2.831 -0.878 0.219 1.847

Marginalizing over: iteration(10000),chain(3)

8.4 Bayesian Methods for Fitting IRT Models 155

$sex
mcarray:
[1] 0.3175268

Marginalizing over: iteration(10000),chain(3)

> pr.time <- proc.time()[1:3] - pr.time
> print(pr.time)
user.self sys.self elapsed
3195.771 4.450 3202.037

The jags.samples() function prints out the parameter estimates averaged
over iterations and chains. (Marginalizing over: iteration(10000),
chain(3)) The ang and sex coefficient estimates agree well with the estimates
of 0.056 and 0.292 obtained from SAS. The simulation took approximately 3,202
seconds (about 50 min) to run on a MacBook Pro laptop computer running MacOS
X version 10.6.5 with a 2.66GHz Intel Core i7 CPU and 8GB of memory.

The JAGS model syntax is as follows. The JGAS syntax is stored separately
in the file called lregRaschJAGS.bugs. The dichotomous response data Y
are modeled after a Bernoulli distribution with response probabilities pr[p, i].
The logit of pr[p, i] follows the Rasch Model. Each person’s latent verbal
aggression theta[p] is regressed on his/her Trait Anger assessment and gender
data, exactly as defined in (8.8). The prior distributions for the parameters are fairly
flat and noninformative.

model
{
for (p in 1:N) {

for (i in 1:I) {
Y[p, i] ˜ dbern(pr[p, i])
logit(pr[p, i]) <- theta[p] - beta[i]
}
theta[p] <- ang * anger[p] + sex * gender[p]
+ eps[p]
eps[p] ˜ dnorm(0.0, tau)
}

Priors
for (i in 1:I) {

beta[i] ˜ dnorm(0.0, 0.001)
b[i] <- beta[i] - mean(beta[])
}

sigma ˜ dunif(0, 10)
tau <- 1 / (sigma * sigma)
ang ˜ dnorm(0.0, 0.01)
sex ˜ dnorm(0.0, 0.01)
}

156 8 Item Response Theory

Our ˇi estimates differ from those from SAS because we center them by the
mean. Here we take the estimates from SAS and center them by the mean. The
results agree well with the Bayesian estimates by JAGS.

> b <- c(-0.04423, 0.6114, 1.0957, -0.5715, 0.4686,
+ 1.1640, 0.6466, 1.8620, 2.7034, 0.09466, 1.5250,
+ 2.2199,-0.04423,0.7864,2.0469,0.3038,1.2323,
+ 2.6583,1.3867,2.6807,4.1548,0.4686,1.5598,3.1768)

> round(b - mean(b), 3)
[1] -1.385 -0.730 -0.245 -1.913 -0.872 -0.177 -0.694
[8] 0.521 1.362 -1.246 0.184 0.879 -1.385 -0.555

[15] 0.706 -1.037 -0.109 1.317 0.046 1.340 2.814
[22] -0.872 0.219 1.836

The coda.samples() function in package rjags is one way to get the 95%
posterior interval estimates for the sex and ang coefficients. We carry out another
10,000 iterations with a thinning interval of 25. A sample of 10000=25 D 400 is
saved for each chain.

> expirt.coda <- coda.samples(expirt.jags,
+ variable.names=c(’ang’, ’sex’, ’b’),
+ n.iter=10000, thin = 25)
> summary(expirt.coda)

Iterations = 11125:21100
Thinning interval = 25
Number of chains = 3
Sample size per chain = 400

1. Empirical mean and standard deviation for each
variable, plus standard error of the mean:

Mean SD Naive SE Time-series SE
ang 0.05901 0.01837 0.0005303 0.001441

[... snipped ...]

sex 0.33086 0.19272 0.0055633 0.007239

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
ang 0.02324 0.04648 0.05986 0.07130 0.09514

[... snipped ...]

sex -0.03735 0.19887 0.32963 0.46636 0.70768

Exercises 157

The sex coefficient estimate is 0.318 without thinning. It gets a different value
of 0.331 after thinning by every 25 iterations. Thinning changes the coefficient
estimate for sex but not for ang. It is not always easy to find why only one
coefficient estimate is affected by thinning. But it suggests that the coefficient sex
is not stable. The 2.5% and 97.5% quantiles mark the 95% posterior intervals for
the parameters. The posterior intervals for ang and sex are .0:023; 0:095/ and
.�0:037; 0:708/, respectively.

Exercises

8.1. Rasch Model for the Knox Cube Test.
Wright and Stone (1979, Chap. 2) describe the Knox Cube Test for children’s
development in visual attention and memory. A child is asked to tap 4 cubes in
specific orders, from the easiest sequence of ‘1–4’ in item 1 to the most challenging
sequence of ‘4–1–3–4–2–1–4’ in the last and 18th item. Each item gets a score of
1 if the child taps the cubes in the correct order and 0 otherwise. The data from 35
children are presented below.

Richard M 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
Tracie F 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
Walter M 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0
Blaise M 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
Ron M 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
William M 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
Susan F 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0
Linda F 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
Kim F 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
Carol F 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
Pete M 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
Brenda F 1 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0
Mike M 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0
Zula F 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
Frank M 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
Dorothy F 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0
Rod M 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0
Britton F 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0
Janet F 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
David M 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0
Thomas M 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0
Betty F 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
Bert M 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0
Rick M 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0
Don M 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Barbara F 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

158 8 Item Response Theory

Adam M 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
Audrey F 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0
Anne F 1 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0
Lisa F 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
James M 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
Joe M 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
Martha F 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
Elsie F 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0
Helen F 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a) Enter the raw data into a text file and use read.csv() to read the data into R.
(b) Fit a Rasch Model to the 18 items using the rasch() function in the ltm

package.
(c) Item 18 is designed to be the most challenging item. Is this supported by its item

difficulty parameter estimate?
(d) Plot the item information curves of the 18 items.
(e) Which item provides the highest level of information for a child who has a latent

ability of zero?
(f) Which item provides the highest level of information for a child who has a latent

ability of 2 above the norm?
(g) Which item provides the highest level of information for a child who has a latent

ability of 2 below the norm?

8.2. Bond’s Logical Operations Test.
The blot dataset in library(psych) contains 35 items for 150 subjects
from the Bond’s Logical Operations Test. The BLOT is designed to measure the
development of logical thinking. Details of the BLOT test are described in Bond
and Fox (2001).

(a) Fit a rasch() model with all item discrimination parameters set to 1.
(b) Fit a 2PL model by ltm(), allowing a separate item discrimination parameter

per item.
(c) Which item in the Rasch model is the most difficult item? (item V6, V12, or

V21?)
(d) Which item in the 2PL model is the most difficult item? Does the 2PL agree

with the Rasch model on this?
(e) Plot the “Item Characteristics Curves” for both models and put them side by

side on a single plot. (hint, use par(mfcol = c(1, 2)))
(f) Does item 12, plotted as V12, have the same item characteristic curve across

the two models?
(g) If not, what is the estimated item discrimination for item 12 in the 2PL model?

Is it considerably different from the 1.0 value in the Rasch model?

8.3. Assessment of Openness.
The bfi dataset in library(psych) also contains 5 items assessing Openness.
The help(bfi) documentation shows that they are O1: “Am full of ideas,”
O2: “Avoid difficult reading material,” O3: “Carry the conversation to a higher

Exercises 159

level,” O4: “Spend time reflecting on things,” and O5: “Will not probe deeply into
a subject.” The 6-point response scale is described in Sect. 8.3.1. Note that items
2 and 5 are usually reverse-coded before being analyzed. Let us not apply reverse
coding for now and see what the model does to the raw data.

(a) Run a Graded Response Model using the grm() function in library(ltm).
(b) Plot the item response category characteristic curves.
(c) Take item O1 as an example, what is the most likely response for a person with

a latent score of �2? Is it “2: Moderately Inaccurate,” “3: Slightly Inaccurate,”
or “4: Slightly Accurate”?

(d) There may be overlaps between the response category characteristics curves.
An example is presented in Fig. 8.3 on page 148. Are there indications of
overlapping curves among the 5 items of openness assessment to justify the
reduction of the 6 response categories?

(e) Note how the order of the curves is reversed for items 2 and 5. Does this imply
that reverse coding would not have affected the model’s predictions?

(f) Is there a way to check your answer above? (e.g., a call to factor.scores()
with two sets of data, one original and the other reverse-coded)

8.4. Continue with the Openness assessment.
Plot the item information curves of the grm() model above. Use the plot to guide
your answers to the following questions.

(a) Which item provides the greatest amount of overall item information for latent
scores between the Œ�3; 3� range?

(b) Which item provides the least amount of overall item information for latent
scores between the Œ�3; 3� range.

(c) Which item provides the greatest information for a latent score of C3? Is the
item you identify a strong winner over the other items?

8.5. Is latent Neuroticism associated with age and gender?
Fit an explanatory Rasch model to the 5 Neuroticism items in data(bfi). First, a
copy of the Neuroticism data can be obtained from the psych package, along with
the age and gender variables. Next, dichtomize the Neuroticism item responses
into 0 D 1 through 3 and 1 D 4 through 6. Recode the gender variable into
0 D Male and 1 D Female. Follow the example in Sect. 8.4.2 and fit an explanatory
Rasch model predicting the latent Neurotism scores by age and gender. Run
10,000 iterations. Use a thinning interval of 10 in coda.samples().

(a) Is there a gender difference in the latent Neurotism scores?
(b) What is the coefficient associated with gender?
(c) What is the 95% posterior interval for the gender coefficient?
(d) Is latent Neurotism associated with age (controlling for gender)?
(e) What is the estimated coefficient for age?
(f) What is the 95% posterior interval of the age coefficient?

Chapter 9
Imputation of Missing Data

9.1 Missing Data in Smoking Cessation Study

Below is a subset of data from a smoking cessation study for smokers newly
diagnosed with cancer.1 Patients were assessed for anxiety and depression at
baseline using the Hospital Anxiety and Depression Scale (Zigmond and Snaith
1983), at least 7 days before they were hospitalized for surgery. The baseline
assessments of anxiety and depression were scored and saved into variables
ANX.ba and DPR.ba, respectively. The scores were centered (average ANX.ba
of 8.9 and average DPR.ba of 4.2). A team of clinicians provided smoking
cessation counseling and pharmacotherapy for enrolled patients. On the day of
hospital admission, each patient’s 24-hour point abstinence status was determined
by biochemical verification (variable abst, coded 1 if abstinence from smoking
was verified and 0 otherwise).

> hads.df
abst ANX.ba DPR.ba

1 1 -3.913333 -4.24
2 0 -0.746667 -4.24
3 0 2.086667 -4.24
4 NA -8.913333 -3.24
5 0 -7.913333 -3.24
6 0 2.086667 -3.24
7 0 0.086667 -1.24
8 0 0.086667 -1.24
9 1 2.753333 -1.24
10 1 7.086667 -1.24
11 0 9.086667 -1.24
12 1 -5.913333 -0.24

1NCI grant R01CA90514 to Jamie Ostroff, PhD.

Y. Li and J. Baron, Behavioral Research Data Analysis with R, Use R,
DOI 10.1007/978-1-4614-1238-0 9, © Springer Science+Business Media, LLC 2012

161

162 9 Imputation of Missing Data

13 0 -5.913333 -0.24
14 0 -0.913333 -0.24
15 1 0.086667 -0.24
16 1 1.086667 -0.24
17 1 -4.913333 0.76
18 0 -2.913333 0.76
19 1 -1.913333 0.76
20 0 -5.913333 2.76
21 1 3.086667 2.76
22 0 0.086667 3.76
23 0 9.086667 3.76
24 1 9.086667 5.76
25 1 4.086667 8.76
26 1 NA NA
27 0 NA NA
28 0 NA NA
29 0 NA NA
30 0 NA NA

The data frame above is a small subset of the total sample of approximately 200
participants enrolled in the study. Missing data were observed in only 6 of the
200 participants. This simple illustrative example is based on data from these 6
participants and another 24 participants randomly selected from the rest of the
full dataset. Five participants did not provide baseline assessments of anxiety and
depression. One participant’s smoking abstinence status at hospital admission could
not be verified because the person was ill.

This example lends itself to a logistic regression analysis predicting smoking
abstinence at hospital admission by baseline assessments of anxiety and depression.
The standard complete-data methods would carry out a casewise deletion by default.

> glm1 <- glm(abst == 1 ˜ ANX.ba + DPR.ba,
family = "binomial", data = hads.df)

> summary(glm1)

Call:
glm(formula = abst == 1 ˜ ANX.ba + DPR.ba,

family = "binomial", data = hads.df)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.43 -1.05 -0.82 1.25 1.61

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.1968 0.4257 -0.46 0.64
ANX.ba 0.0149 0.0919 0.16 0.87

9.2 Multiple Imputation with aregImpute() 163

DPR.ba 0.1723 0.1514 1.14 0.26

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 33.104 on 23 degrees of freedom
Residual deviance: 31.374 on 21 degrees of freedom

(6 observations deleted due to missingness)
AIC: 37.37

Number of Fisher Scoring iterations: 4

A message in the output shows that (six observations deleted due to
missingness). The parameter estimates for baseline anxiety and depression
assessments suggest that, other covariate being equal, higher anxiety and depression
scores are associated with a higher probability of smoking abstinence. However,
none of the parameter estimates is statistically significantly different from zero.

Across all 29 available outcomes on smoking abstinence, the average abstinence
rate is 0.414. The casewise deletion of the six observations causes the abstinence
rate to go up slightly to 0.458.

> mean(hads.df$abst, na.rm=T)
[1] 0.41379
> mean(hads.df$abst[1:25], na.rm=T)
[1] 0.45833

From the output of the glm1 model above we can calculate the fitted probability
of abstinence for a patient whose anxiety and depression scores are at the sample
averages. It is exp(-0.1968) / (1 + exp(-0.1968)) or 0.451, a value
closer to the 0.458 average from casewise deletion of six cases than to 0.414 (only
one case deleted). We would expect a predicted probability nearer to 0.414 if we
had complete anxiety and depression scores on the six deleted cases. This makes
intuitive sense. As will become clearer later in this chapter, the predicted probability
from imputed data is indeed closer to 0.410 than to 0.458. An imputed logistic
regression model is build in Sect. 9.3. The prediction made by the imputed model is
0.421. The remainder of this chapter focuses on how to impute missing data in this
example so that the imputed datasets can be used to carry out data analysis as usual,
using standard complete-data methods.

9.2 Multiple Imputation with aregImpute()

The aregImpute() function below carries out 5 imputed datasets using pre-
dictive mean matching (type = "pmm") by the closest match in the nonmissing
values. Details can be found in the help files, other documentations of the Hmisc
package and in Harrell (2001b, Sect. 8.10).

164 9 Imputation of Missing Data

library(Hmisc)
Loading required package: survival
Loading required package: splines
> set.seed(7)
> imp <- aregImpute(˜ abst + ANX.ba + DPR.ba,

data = hads.df, n.impute = 5, type = "pmm",
match = "closest")

Iteration 8

In aregImpute(), missing values for any variable are estimated from other
variables. For example, the formula � abst + ANX.ba + DPR.ba specifies
that missing abst values are estimated from variables ANX.ba and DPR.ba;
missing ANX.ba values are estimated from variables abst and DPR.ba, etc.
Missing values are then substituted by these estimates, or “imputed values” to
yield a complete dataset, or an “imputed dataset.” The imputation process is carried
out several times (e.g., n.impute = 5) to produce multiple imputed datasets.
Each newly imputed value of the same variable would not necessarily be the same
as the previous because the imputation processes needs to account for variability
between imputed datasets. The multiply imputed datasets are stored in imp. Next,
the fit.mult.impute() function is called to apply the standard complete-
data logistic regression (fitter = glm with family = "binomial") to all
the imputed datasets. Each logistic regression would be different because of the
variability across multiply imputed datasets. Finally, the fit.mult.impute()
function combines the results from the multiple complete-data analyses to produce
an overall analysis.

A crude example may help give an intuitive explanation on multiple imputation
by predictive mean matching. The actual implementation in aregImpute() is
much more sophisticated than the crude explanation below. Details on predictive
mean matching can be found in Little (1988).

Let us begin with participant number 4 whose abstinence outcome is missing. To
impute this missing value, we may use a logistic regression model like glm1 above
to calculate a predictive value of abst for this participant. It is �0:197 C 0:015 �
.�8:913/ C 0:172 � .�3:24/ D �0:888. By taking the inverse logit of �0:888, we
get a predicted probability of abstinence of 0:292 for this participant. Then we look
into other participants with complete data. We find that participant 3 has a predicted
value of 0:290, participant 5 a 0:294, and participant 2 a 0:281, and so on. The top
five closest matches are:

> ty <- fitted(glm1)
> YY <- sort(abs(ty - TT))[1:5]
> ty[names(YY)[1:5]]

3 5 2 1 6
0.28985 0.29465 0.28124 0.27179 0.32655

9.2 Multiple Imputation with aregImpute() 165

We call participants 3, 5, 2, 1, and 6 the donors of potential imputed abst value for
participant number 4 whose abst outcome is missing. We know that participants
3, 5, 2, and 6 continue to smoke and participant 1 abstains.

> hads.df[names(YY), "abst"]
[1] 0 0 0 1 0

Let us assume that, for the sake of simplicity, we fill in participant number 4’s
missing outcome by the outcome of one randomly selected donor, e.g., donor
number 3 who smokes. Little (1988, Equation (2)) describes the details of predictive
mean matching. A similar regression-like model may be used to impute the missing
values for the DPR.ba and ANX.ba predictors. The whole process is repeated
n.impute times to generate the specified number of imputed datasets.

9.2.1 Imputed Data

The imputed datasets are stored in the imp object. In the first imputed dataset, the
missing abstinence outcome is filled in with a 1, the missing baseline anxiety scores
for participants 26 through 30 are filled in with 2.75, 9.09, ..., 9.09, and so on. The
imputation is repeated five times, each time with a set of imputed values.

> imp$imputed
$abst

[,1] [,2] [,3] [,4] [,5]
4 1 0 0 0 0

$ANX.ba
[,1] [,2] [,3] [,4] [,5]

26 2.7533 7.086667 7.086667 2.753333 2.7533
27 9.0867 0.086667 0.086667 0.086667 9.0867
28 -7.9133 -8.913333 -7.913333 -8.913333 -8.9133
29 9.0867 0.086667 0.086667 0.086667 9.0867
30 9.0867 0.086667 0.086667 0.086667 9.0867

$DPR.ba
[,1] [,2] [,3] [,4] [,5]

26 -1.24 -1.24 -1.24 -1.24 -1.24
27 -1.24 -1.24 -1.24 3.76 -1.24
28 -3.24 -3.24 -3.24 -3.24 -3.24
29 -1.24 -1.24 -1.24 3.76 -1.24
30 -1.24 -1.24 -1.24 3.76 -1.24

This output shows an obvious problem. Respondent 26 has the same imputed
depression score across multiple imputations. Several other imputed values also lack
variability. This occurs more easily when the sample size is small. Default options in

166 9 Imputation of Missing Data

aregImpute() can be modified to introduce variability in the imputation process.
However, Lazzeroni et al. (1990) found that, generally, predictive mean matching
works better when the sample size is large. It makes sense intuitively because a
larger sample offers more potential donors for the imputed values.

9.2.2 Pooling Results Over Imputed Datasets

The fit.mult.impute() function carries out the complete-data logistic re-
gression analysis over the imputed datasets and combine the results into an overall
summary. The user specifies the model formula, the fitter = glm function used
to carry out the logistic regression with family = "binomial", the imputed
data object imp, and the raw data.

> abst.mi <- fit.mult.impute(abst ˜ ANX.ba + DPR.ba,
glm, imp, family = "binomial", data = hads.df)

Variance Inflation Factors Due to Imputation:

(Intercept) ANX.ba DPR.ba
1.07 1.66 1.25

Rate of Missing Information:

(Intercept) ANX.ba DPR.ba
0.06 0.40 0.20

d.f. for t-distribution for Tests of Single Coefficients:

(Intercept) ANX.ba DPR.ba
1068.58 25.38 98.98

The following fit components were averaged over the 5
model fits:

fitted.values linear.predictors

Warning message:
In fit.mult.impute(abst ˜ DPR.ba + ANX.ba, glm, imp,

family = "binomial", : Not using a Design fitting
function; summary(fit) will use standard errors,
t, P from last imputation only. Use vcov(fit)
to get the correct covariance matrix,
sqrt(diag(vcov(fit))) to get s.e.

9.2 Multiple Imputation with aregImpute() 167

The warning message seems alarming. It suggests that a summary(abst.mi)
output only uses the results from the last imputation, rather than the combined
results pooled over the multiply imputed data. A detailed investigation was recently
made available online by Paul Johnson at http://pj.freefaculty.org/
guides/Rcourse/multipleImputation/multipleImputation-1-
lecture.pdf. Johonson’s recommendation was to check with another
imputation tool when you get this error.

> summary(abst.mi)

Call:
fitter(formula = formula, family = "binomial",

data = completed.data)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.431 -0.951 -0.756 1.315 1.706

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3445 0.3970 -0.87 0.39
ANX.ba 0.0307 0.0718 0.43 0.67
DPR.ba 0.1753 0.1494 1.17 0.24

(Dispersion parameter for binomial family taken to
be 1)

Null deviance: 40.381 on 29 degrees of freedom
Residual deviance: 37.442 on 27 degrees of freedom
AIC: 43.44

Number of Fisher Scoring iterations: 4

The summary(abst.mi) command shows that higher baseline scores of anxiety
and depression are associated with a higher probability to abstain from smoking
at hospital admission. However, the coefficients associated with the anxiety and
depression scores are not statistically reliably different from zero.

The example shows several advantages of predictive mean matching. It works
with binary, categorical, and continuous variables. Imputation from observed values
in the donors’ data ensures that, for example, the binary outcome of smoking
abstinence is either 0 or 1.

http://pj.freefaculty.org/guides/Rcourse/multipleImputation/multipleImputation-1-
http://pj.freefaculty.org/guides/Rcourse/multipleImputation/multipleImputation-1-
lecture.pdf

168 9 Imputation of Missing Data

9.3 Multiple Imputation with the mi Package

The mi package by Su et al. (in press) uses an algorithm different from that of
predictive mean matching. It uses what is known as a chained equation approach.
Su et al. (in press) describes the algorithm in more detail. The mi package
contains several useful features in data transformation, data imputation, and model
diagnostics. Here we only cover some of the basic options to illustrate how to impute
missing data in the smoking cessation study above.

> library(mi)
Loading required package: MASS
Loading required package: nnet
Loading required package: car
Loading required package: lme4
mi (Version 0.09-13, built: 2011-2-15)
> set.seed(7)
> info <- mi.info(hads.df)
> info

names include order number.mis all.mis type
1 abst Yes 1 1 No binary
2 ANX.ba Yes 2 5 No continuous
3 DPR.ba Yes 3 5 No continuous

collinear
1 No
2 No
3 No

The mi.info() function extracts information from the dataset, including the
names of the variables, the number of missed observations in each variable, and the
type of each variable. Usually, the variable types are ascertained correctly. If not,
then the variable types can be set manually by, e.g., update(info, "type",
list("abst" = "binary")).

Next the information is entered into mi.preprocess() to prepare the
variables for multiple imputation. Skewed variables may be log-transformed and
returned into the processed dataset called dat.proc.

> dat.proc <- mi.preprocess(hads.df, info = info)

Next, imputation is done through the mi() function. The default options are
three imputed datasets by the chained equation algorithm (n.imp = 3) and 20
iterations per chain. Here we increase n.iter to 50 to help the chains to converge.

> imp.mi <- mi(dat.proc, n.imp = 5, n.iter = 50,
+ check.coef.convergence = TRUE,
+ add.noise = noise.control(post.run.iter = 50))

9.3 Multiple Imputation with the mi Package 169

Beginning Multiple Imputation
(Thu Apr 7 11:10:10 2011):
Iteration 1
Chain 1 : abst* ANX.ba* DPR.ba*
Chain 2 : abst* ANX.ba* DPR.ba*
Chain 3 : abst* ANX.ba* DPR.ba*
Chain 4 : abst* ANX.ba* DPR.ba*
Chain 5 : abst* ANX.ba* DPR.ba*

....
Iteration 50
Chain 1 : abst ANX.ba DPR.ba
Chain 2 : abst ANX.ba DPR.ba
Chain 3 : abst ANX.ba DPR.ba
Chain 4 : abst ANX.ba DPR.ba*
Chain 5 : abst ANX.ba DPR.ba

mi converged (Thu Apr 7 11:10:32 2011)
Run 50 more iterations to mitigate the influence of
the noise...
Beginning Multiple Imputation
(Thu Apr 7 11:10:32 2011):
Iteration 1
....
Iteration 50
mi converged (Thu Apr 7 11:11:02 2011)

The check.coef.convergence option checks the convergence of the chained
equation approach using the Gelman and Rubin (1992) convergence diagnostic. The
add.noise = noise.control(post.run.iter = 50) option runs
another 50 iterations after the first 50 iterations are done.

To show the imputed data, type:

> mi.completed(imp.mi)
[[1]]

abst ANX.ba DPR.ba
....
4 0 -8.913333 -3.24000
....
26 1 1.086856 1.45733
27 0 2.280348 -0.37503
28 0 6.353274 0.82913
29 0 -4.852233 -4.40118
30 0 4.972868 -4.65457

[[2]]
abst ANX.ba DPR.ba

4 1 -8.913333 -3.24000

170 9 Imputation of Missing Data

....

26 1 -1.779520 -3.91537
27 0 3.928673 2.63901
28 0 -0.648088 -3.75788
29 0 1.584324 4.05128
30 0 -2.517066 0.18439

[[3]]
abst ANX.ba DPR.ba

4 0 -8.913333 -3.24000
....
26 1 6.373419 -0.01220
27 0 0.781545 -3.78449
28 0 13.099146 0.01708
29 0 2.485995 -2.27167
30 0 -0.665939 -2.47556

The pooled estimates can be calculated by glm.mi().

> glm.fit <- glm.mi(abst ˜ ANX.ba + DPR.ba,
mi.object = imp.mi, family = binomial)

> display(glm.fit, digits = 4)

....

=======================================
Pooled Estimates
=======================================
glm.mi(formula = abst ˜ ANX.ba + DPR.ba,

mi.object = imp.mi, family = binomial)
coef.est coef.se

(Intercept) -0.3294 0.4029
ANX.ba 0.0052 0.0885
DPR.ba 0.1946 0.1635

Another method for pooled logistic regression is the bayesglm.mi() function.

> bayesglm.fit <- bayesglm.mi(abst ˜ ANX.ba + DPR.ba,
mi.object = imp.mi, family = binomial)

> display(bayesglm.fit, digits = 4)
....
=======================================
Pooled Estimates
=======================================
bayesglm.mi(formula = abst ˜ ANX.ba + DPR.ba,

9.4 Multiple Imputation with the Amelia and Zelig Packages 171

mi.object = imp.mi, family = binomial)
coef.est coef.se

(Intercept) -0.3177 0.3880
ANX.ba 0.0088 0.0788
DPR.ba 0.1632 0.1426

According to the pooled logistic regression model by bayesglm.mi(), a patient
with average anxiety and depression scores has a predicted probability of abstinence
of exp(-0.3177) / (1 + exp(-0.3177)) or 0.421, a value closer to the
average 0.414 from all 29 nonmissing outcomes than the average 0.458 from
casewise deletion (see Sect. 9.1). This is only a crude way to check the imputed
model. Horton and Kleinman (2007) describe a more formal way to compare the
performance of multiple imputation methods.

Additional details on visual diagnostics of imputed results can be found in Su
et al. (in press). The paper also uses a large dataset to demonstrate the many other
features in the mi package.

Introduction of variability into the multiple imputation process appears to be
useful when the sample size is small. Our experiences show that multiple imputation
works best when the dataset is large, such as in publicly available databases with
several hundred observations or more. After all, multiple imputation was originally
designed to handle such datasets (Rubin 1996).

9.4 Multiple Imputation with the Amelia and Zelig
Packages

The Amelia II package uses a powerful and fast algorithm to carry out multiple
imputation for cross-sectional and longitudinal data. The bootstrapping-based EM
algorithm is described in King et al. (2001) and Honaker and King (2010). Both
articles can be found at the Amelia II website.2 For Windows users who are not
familiar with R, a self-install package can be used to install Amelia without directly
working with R.

A call to the AmeliaView() function brings up a graphical user interface
shown in Fig. 9.1. There the user specifies the names of the input raw data file
and output imputed datasets, with options to transform the variables and add priors
to missing values. The saved imputed datasets can later be used by Zelig or other
statistical packages for analysis.

2http://gking.harvard.edu/amelia/, last accessed April, 2011.

172 9 Imputation of Missing Data

Fig. 9.1 The graphical user interface of AmeliaView(). In Step 1, the user specifies the input
data. In Step 2, the user can transform raw data and to add priors to the missing values. In
Step 3, the user saves the imputed datasets as outdata1, outdata2, : : : , outdata5 for further
analyses

The zelig() function by Kosuke Imai, Gary King, and Olivia Lau can be used
to fit an overall logistic regression model based on the imputed datasets.

> dat1 <- read.csv("outdata1.csv")
> dat2 <- read.csv("outdata2.csv")
> dat3 <- read.csv("outdata3.csv")
> dat4 <- read.csv("outdata4.csv")
> dat5 <- read.csv("outdata5.csv")
> glmAm.fit <- zelig(abst == 1 ˜ ANX.ba + DPR.ba,
+ data = mi(dat1, dat2, dat3, dat4, dat5),
+ model = "logit")
> summary(glmAm.fit)

9.5 Further Reading 173

Model: logit
Number of multiply imputed data sets: 5

Combined results:

Call:
zelig(formula = abst == 1 ˜ ANX.ba + DPR.ba,

model = "logit",
data = mi(dat1, dat2, dat3, dat4, dat5))

Coefficients:
Value Std. Error t-stat p-value

(Intercept) -0.4293496 0.394132 -1.089354 0.27602
ANX.ba 0.0085301 0.086268 0.098879 0.92126
DPR.ba 0.1751224 0.153711 1.139295 0.25620

For combined results from datasets i to j, use
summary(x, subset = i:j).
For separate results, use
print(summary(x), subset = i:j).

The overall parameter estimates are similar to those obtained using glm.mi() and
bayesglm.mi() functions in the mi package.

9.5 Further Reading

This chapter only covers some of the basic steps in carrying out multiple imputation
in a logistic regression model using cross-sectional data. Not covered here are
theoretical concepts such as the nature of missing data (e.g., missing completely
at random, missing at random, and missing not at random). Theoretical foundations
on multiple imputation are described in Rubin (1987). Chapter 1 of Rubin (1987)
contains an example on how to manually pool data over the imputed datasets. It is
worth spending the time carefully tracking the manual calculations to understand the
basics in multiple imputation. Gelman and Hill (2007, Chap. 25) also summarizes
the theory of multiple imputation. Gelman and Hill (2007) discuss why it is
generally impossible to determine if data missingness is missing at random. The
same point is discussed in Schafer and Graham (2002, p. 152).

Imputation techniques are constantly evolving. Open access journals are good
sources for new analytic techniques and hands-on tutorials (e.g., Su et al. (in press)).
Horton and colleagues (Horton and Kleinman 2007; Horton and Lipsitz 2001)
have written tutorials on many new techniques on multiple imputation. They can
be immediately applied. We have also learned from Allison (2002) and from the
extensive works by Schafer, Graham and colleagues (Graham 2009; Schafer 1997;

174 9 Imputation of Missing Data

Schafer and Olsen 1998; Graham et al. 1997). Their papers are widely cited by
behavioral scientists. We have consulted other sources not covered above (e.g., Little
and Rubin (2002)).

We have not covered analytic strategies for missing longitudinal data. Interested
readers may begin with Hedeker and Gibbons (1997) who describe the pattern
mixture model framework by Little (1993).

Exercises

9.1. Logistic regression on children who had corrective spinal surgery.
There is a kyphosis dataset in the rpart package. A summary of the dataset is
found by calling help(kyphosis). A logistic regression can be fitted to model
Kyphosis caseness as a function of the patients’ characteristics:

> data(kyphosis, package = "rpart")
> glm1 <- glm(Kyphosis=="present" ˜ Age+Number+Start,
+ data = kyphosis, family = binomial)

(a) What are the regression coefficients for Age, Number, and Start?
(b) What is the estimated probability of Kyphosis caseness for a 6-year-old child

who has four vertebrae involved in the surgical procedure and the topmost
vertebrae operated on is the 9th?

9.2. Logistic regression with missing data.
The commands below introduce random missing data into the kyphosis dataset.

> dat <- data(kyphosis, package = "rpart")
> kp <- lapply(kyphosis, function(x)
+ { is.na(x) <- sample(1:length(x), size=10); x })
> kp <- data.frame(kp)
> kp$kyp <- kp$Kyphosis == "present"

Fit a logistic regression with the kp dataset predicting kyp by Age, Number,
and Start.

(a) What are the regression coefficient estimates for the covariates? Do they agree
well with the coefficient estimates using the complete kyphosis data?

(b) What is the estimated probability of Kyphosis caseness for a 6-year-old child
who has 4 vertebrae involved in the surgical procedure and the topmost
vertebrae operated on is the 9th?

Next, following the commands below to carry out multiple imputation with the
aregImpute() function. Then fit a logistic regression with the imputed data,
by Age, Number, and Start.

> set.seed(7)
> imp <- aregImpute(˜ kyp + Age + Start + Number,

Exercises 175

+ dat = kp, n.impute = 10, type = "pmm",
+ match = "closest")
> f <- fit.mult.impute(kyp ˜ Age + Start + Number,
+ fitter=glm, xtrans=imp,
+ family = "binomial", data = kp)

(c) What are the imputed regression coefficient estimates for the covariates Age,
Number, and Start?

(d) What is the estimated probability of Kyphosis caseness for a 6-year-old child
who has 4 vertebrae involved in the surgical procedure and the topmost
vertebrae operated on is the 9th?

(e) Does the estimated probability based on the imputed logistic regression agree
well with that of the complete kyphosis logistic regression?

9.3. Multiple Imputation with the Amelia and Zelig Packages.
Follow the instructions in Sect. 9.4 to use the packages Amelia and Zelig to
impute the missing data in kyp. Fit a logistic regression with the imputed data.

(a) What are the imputed logistic regression coefficient estimates for Age,
Number, and Start?

(b) What is the estimated probability of Kyphosis caseness for a 6-year-old child
whose Number and Start are 4 and 9, respectively?

(c) Does the estimated probability based on the imputed logistic regression agree
well with that of the complete kyphosis logistic regression?

9.4. Multiple imputation with the mi packages.
Follow the instructions in Sect. 9.3 to use the mi package to impute the missing data
in kyp and fit a logistic regression with the imputed data.

(a) What are the imputed logistic regression coefficient estimates for Age,
Number, and Start?

(b) What is the estimated probability of Kyphosis caseness for a 6-year-old child
whose Number and Start are 4 and 9, respectively?

(c) Does the estimated probability based on the imputed logistic regression agree
well with that of the complete kyphosis logistic regression?

Chapter 10
Linear Mixed-Effects Models in Analyzing
Repeated-Measures Data

10.1 The “Language-as-Fixed-Effect Fallacy”

Clark (1973) wrote a highly influential paper on the problems of treating
experimental stimuli as a fixed effect (e.g., words in a psycholinguistics experiment,
visual stimuli in a memory study, hypothetical scenarios in a judgment and decision-
making experiment). The gist of the problem is that the dependent variable could
depend systematically on the particular choice of stimuli. With a small number of
stimuli, the average of the dependent variable could be higher in one condition than
in another just by chance. So we must consider the variation due to stimuli, just
as we consider the variance due to subjects. This is illustrated in the hypothetical
data in Raaijmakers et al. (1999, Table 2). A sample of eight study participants are
presented with eight items each. Items 1–4 are presented under a short stimulus-
onset asynchrony (SOA) and items 5–8 are presented under a long SOA. The
hypothetical data are simulated from a model with no SOA effect. Thus an SOA
effect is not expected.

> rt <- c(546,566,567,556,595,569,527,551,
+ 567,556,598,565,609,578,554,575,
+ 547,538,568,536,585,560,535,558,
+ 566,566,584,550,588,583,527,556,
+ 554,512,536,516,578,501,480,588,
+ 545,523,539,522,540,535,467,563,
+ 594,569,589,560,615,568,540,631,
+ 522,524,521,486,546,514,473,558)
> subj <- rep(paste("s", 1:8, sep=""), 8)
> item <- rep(paste("i", 1:8, sep=""), each=8)
> SOA <- rep(c("short", "long"), each = 32)
> rsg.df <- data.frame(rt, subj, item, SOA)

Incorrect F statistics are obtained if, for example, data points in an analysis are
collapsed over items. Raaijmakers et al. (1999) show that the F.1; 7/ D 7:41 for the
SOA effect below would lead to a false inference.

Y. Li and J. Baron, Behavioral Research Data Analysis with R, Use R,
DOI 10.1007/978-1-4614-1238-0 10, © Springer Science+Business Media, LLC 2012

177

178 10 Linear Mixed-Effects Models in Analyzing Repeated-Measures Data

> summary(aov(rt ˜ SOA + item + Error(subj/SOA),
+ data = rsg.df))

Error: subj
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 7 26252 3750

Error: subj:SOA
Df Sum Sq Mean Sq F value Pr(>F)

SOA 1 8033 8033 7.41 0.03
Residuals 7 7587 1084

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

item 6 22174 3696 36.9 3.3e-15
Residuals 42 4209 100

The F value of 7.41 is incorrect, so is the p value of 0.03. Additional details on how
to avoid the problems can be found in Raaijmakers et al. (1999). An appropriate
statistic can be calculated. A better study design helps, too.

Baayen et al. (2008) provide complete solutions to the problems identified by
Clark (1973). Their step-by-step guide may be the most cited recent article in
psycholinguistics in the last few years. The linear mixed model below treats item
as a random effect. The statistic for the SOAshort effect is considerably reduced.

> library(lme4)
> rsg.lmer1 <- lmer(rt ˜ SOA + (1 | item) +
+ (1 | subj), data = rsg.df)
> summary(rsg.lmer1)
Linear mixed model fit by REML
Formula: rt ˜ SOA + (1 | item) + (1 | subj)

Data: rsg.df
AIC BIC logLik deviance REMLdev
568 579 -279 572 558

Random effects:
Groups Name Variance Std.Dev.
item (Intercept) 432 20.8
subj (Intercept) 439 20.9
Residual 241 15.5

Number of obs: 64, groups: item, 8; subj, 8

Fixed effects:
Estimate Std. Error t value

(Intercept) 540.9 13.1 41.4
SOAshort 22.4 15.2 1.5

10.1 The “Language-as-Fixed-Effect Fallacy” 179

Correlation of Fixed Effects:
(Intr)

SOAshort -0.582

We can use the HPDinterval() function to show that there is no SOA effect.
We can also use thepvals.fun() in the languageR package or the MCMCglmm
package, or by building the model directly using WinBUGS or OpenBUGS.

> set.seed(101)
> rsg.mcmc <- mcmcsamp(rsg.lmer1, n = 10000)
> HPDinterval(rsg.mcmc)
$fixef

lower upper
(Intercept) 522.984 559.7
SOAshort -0.803 42.9
attr(,"Probability")
[1] 0.95

$ST
lower upper

[1,] 0.407 1.12
[2,] 0.417 1.11
attr(,"Probability")
[1] 0.95

$sigma
lower upper

[1,] 15 22.9
attr(,"Probability")
[1] 0.95

> # languageR
> library(languageR)
> rsg.mcmc <- pvals.fnc(rsg.lmer1, nsim=10000)
> rsg.mcmc$fixed

Estimate MCMCmean HPD95lower HPD95upper
(Intercept) 540.91 540.89 522.8301 559.37
SOAshort 22.41 22.47 0.8401 44.42

pMCMC Pr(>|t|)
(Intercept) 0.0001 0.0000
SOAshort 0.0456 0.1455

180 10 Linear Mixed-Effects Models in Analyzing Repeated-Measures Data

10.2 Recall Scores Example: One Between
and One Within Factor

We now take up the discussion of modeling correlation pattern and heteroscedasticity
in repeated outcome assessments. We use the recall scores example in Stevens
(1992, Sect. 13.10). Sixteen subjects are randomized into one of two groups of
learning methods. The investigator collects recall scores on verbal materials after
1, 2, 3, 4, and 5 days post intervention. Thus, this example has one between-
subject factor (the randomized treatment interventions) and one within-subject
factor (number of days post intervention). The raw data are found in Table 13.7
of Stevens (1992). In the context of repeated-measures ANOVA, Stevens (1992)
treats the days variable as a categorical variable. But it can be treated as a continuous
variable in a linear mixed-effects model. In this section we will go over both, using
lme() and gls().

10.2.1 Data Preparations

The raw data are organized into a data frame. The data frame is then converted into
a groupedData() object.

> library(nlme)
> stevens.mat <- c(26, 34, 41, 29, 35, 28, 38, 43,
+ 42, 31,45,29,39,33,34,37,20,35,37,28,34,22,34,
+ 37,38,27,40,25,32,30,30,31,18,29,25,22,27,17,
+ 28,30,26,21,33,17,28,24,25,25,11,22,18,15,21,
+ 14,25,27,20,18,25,13,22,18,24,22,10,23,15,13,
+ 17,10,22,25,15,13,18,8,18,7,23,20)
> stevens.mat <- matrix(stevens.mat, ncol = 5)
> tx <- c(1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2)
> stevens.df <- data.frame(subj=paste("s",1:16,

sep=""),
+ stevens.mat, tx = tx)
> names(stevens.df) <- c("subj","y1","y2","y3","y4",
+ "y5","tx")
> stevens.df <- reshape(stevens.df,
+ varying = paste("y",1:5, sep=""), idvar = "subj",
+ timevar = "days", sep = "", direction = "long")
> rownames(stevens.df) <- NULL
> stevens.df <- groupedData(y ˜ days | subj,
+ data = stevens.df)

The groupedData() function specifies how the data entries are structured in
a mixed model analysis. The y ˜ days | subj formula specifies that recall

10.2 Recall Scores Example: One Between and One Within Factor 181

days

y

10

20

30

40

1 2 3 4 5

tx : { 1 }

1 2 3 4 5

tx : { 2 }

Fig. 10.1 Original data on the verbal learning experiment in Stevens (1992). Each line represents
data from one study participant

scores y is the dependent variable measured across days. The vertical bar specifies
that the data entries are grouped by subject ids. For reasons that will be discussed
later, the variable days is kept as continuous variables, not as a categorical factor.

10.2.2 Data Visualizations

The first steps of lme() modeling often involve plotting the original data to help
understand the scope of modeling if the size of the dataset is not large. Figure 10.1
is an example; the recall scores data are stratified by tx and grouped by subj
so that it is easier to compare each subject’s data profile across treatment groups.
The strip.levels = TRUE plots the values of tx on top of each panel. The
panel.superpose option tells xyplot() to overlay all the individual lines.

> library(lattice)
> xyplot(y ˜ days | tx, groups = subj, type = "o",
+ stevens.df,
+ strip = strip.custom(strip.levels = TRUE),
+ panel = panel.superpose)

182 10 Linear Mixed-Effects Models in Analyzing Repeated-Measures Data

Figure 10.1 shows that recall scores decline steadily over the course of 5 days. The
decline appears to be linear. Figure 10.1 shows no sign of an interaction between
days and tx on y. Another way to visually inspect a potential interaction is through
an interaction plot (not shown).

> with(stevens.df, interaction.plot(response = y,
+ x.factor = days, trace.factor = tx, fun = mean,
+ xlab = "Days",
+ ylab = "Recall Scores", lwd = 2, type = "b"))

The plot indicates no interaction either. The two treatment groups show a similar
pattern of decline in recall scores over time.

10.2.3 Initial Modeling

The model below includes the fix effects of the treatment, the days, and the
interaction of the two. Also included is a random effect term allowing each subject
to have his/her unique intercept. The fixed effects are entered into lme() like an
ordinary regression formula. The model contains only one random effect, specified
in the formula as random = ˜ 1 | subj to represent one random intercept for
each subject. The number 1 represents an intercept term in the formula.

> lme1 <- lme(y ˜ factor(tx)*factor(days),
+ random = ˜ 1 | subj, data = stevens.df)
> anova(lme1)

numDF denDF F-value p-value
(Intercept) 1 56 409.07 <.0001
factor(tx) 1 14 0.04 0.8374
factor(days) 4 56 166.38 <.0001
factor(tx):factor(days) 4 56 1.20 0.3229

The anova() output shows statistically reliable fixed effect in days but no
treatment effect. The F-value statistics are identical to those obtained by Stevens
(1992, Table 13.9) using repeated-measures ANOVA.

10.2.4 Model Interpretation

10.2.4.1 Fixed Effects

A summary(lme1) command prints the parameter estimates. By default the
(Intercept) term represents the estimated recall score for treatment Group 1
on Day 1 because both tx and days are treated as a categorical factor. The value
of 34.250 can be easily verified with a simple with(stevens.df, tapply

10.2 Recall Scores Example: One Between and One Within Factor 183

(y, list(tx, days), mean)). The coefficient of 2.0 for factor(tx)2
represents the recall score difference between 36.25 (treatment Group 2 on
Day 1) and 34.25 (treatment Group 1 on Day 1). The coefficient of �17:375 for
factor(days)5 represents the recall score difference between 16.875 (treatment
Group 1 on Day 5) and 34.25, and so on.

> summary(lme1)
Linear mixed-effects model fit by REML
Data: stevens.df

AIC BIC logLik
411.95 438.93 -193.97

Random effects:
Formula: ˜1 | subj

(Intercept) Residual
StdDev: 4.899 2.4593

Fixed effects: y ˜ factor(tx) * factor(days)
Value Std.Error DF

(Intercept) 34.250 1.9381 56
factor(tx)2 2.000 2.7408 14
factor(days)2 -3.375 1.2297 56
factor(days)3 -9.750 1.2297 56
factor(days)4 -15.125 1.2297 56
factor(days)5 -17.375 1.2297 56
factor(tx)2:factor(days)2 -1.250 1.7390 56
factor(tx)2:factor(days)3 -1.625 1.7390 56
factor(tx)2:factor(days)4 -0.875 1.7390 56
factor(tx)2:factor(days)5 -3.625 1.7390 56

t-value p-value
(Intercept) 17.6724 0.0000
factor(tx)2 0.7297 0.4776
factor(days)2 -2.7447 0.0081
factor(days)3 -7.9290 0.0000
factor(days)4 -12.3002 0.0000
factor(days)5 -14.1300 0.0000
factor(tx)2:factor(days)2 -0.7188 0.4752
factor(tx)2:factor(days)3 -0.9344 0.3541
factor(tx)2:factor(days)4 -0.5032 0.6168
factor(tx)2:factor(days)5 -2.0845 0.0417
...

The values of parameter estimates are affected by how the model is internally
coded. R uses the treatment coding by default. The model.matrix()
function can be used to extract the internal coding of a model (some manual editing
is made to align the entries).

184 10 Linear Mixed-Effects Models in Analyzing Repeated-Measures Data

> model.matrix(lme1, data = stevens.df[
+ which(stevens.df$subj %in% c("s1", "s16")),])
> model.matrix(lme1, data = tmp.df)

(Int) tx2 d2 d3 d4 d5 tx2:d2 tx2:d3 tx2:d4 tx2:d5
1 1 0 0 0 0 0 0 0 0 0
16 1 1 0 0 0 0 0 0 0 0
17 1 0 1 0 0 0 0 0 0 0
32 1 1 1 0 0 0 1 0 0 0
33 1 0 0 1 0 0 0 0 0 0
48 1 1 0 1 0 0 0 1 0 0
49 1 0 0 0 1 0 0 0 0 0
64 1 1 0 0 1 0 0 0 1 0
65 1 0 0 0 0 1 0 0 0 0
80 1 1 0 0 0 1 0 0 0 1
attr(,"assign")
[1] 0 1 2 2 2 2 3 3 3 3

attr(,"contrasts")
attr(,"contrasts")$‘factor(tx)‘
[1] "contr.treatment"

attr(,"contrasts")$‘factor(days)‘
[1] "contr.treatment"

The first two columns of the matrix above show how the coefficient for tx2 is
coded. The coding of 1 for the (Int) term alone represents treatment Group 1
on Day 1. The 1’s for both (Int) and tx2 represent Group 2 on Day 1. Thus,
tx2 represents the mean difference in reaction time between the two conditions on
Day 1.

The internal coding can be changed. For example, the default treatment
coding can be changed to the helmert coding by saying options(contrasts
= c("contr.helmert", "contr.poly")). The helmert coding causes
the resulting (Intercept) term to represent the grand mean of 25.387. The
coefficient of 0.262 for factor(tx)2 represents half of the marginal difference
between treatment groups 2 and 1 (collapsing over days). More details on the coding
of factors can be found in Chambers and Hastie (1993) and in Pinheiro and Bates
(2000). The point of showing this is that R and other statistical packages may yield
different parameter estimates because they do not necessarily use the same internal
coding schemes.

The confidence intervals of the parameter estimates can be obtained through
intervals(lme1).

> intervals(lme1)
Approximate 95% confidence intervals

Fixed effects:
lower est. upper

(Intercept) 30.3676 34.250 38.13237

10.2 Recall Scores Example: One Between and One Within Factor 185

factor(tx)2 -3.8785 2.000 7.87846
factor(days)2 -5.8383 -3.375 -0.91170
factor(days)3 -12.2133 -9.750 -7.28670
factor(days)4 -17.5883 -15.125 -12.66170
factor(days)5 -19.8383 -17.375 -14.91170
factor(tx)2:factor(days)2 -4.7336 -1.250 2.23363
factor(tx)2:factor(days)3 -5.1086 -1.625 1.85863
factor(tx)2:factor(days)4 -4.3586 -0.875 2.60863
factor(tx)2:factor(days)5 -7.1086 -3.625 -0.14137
attr(,"label")
[1] "Fixed effects:"

Random Effects:
Level: subj

lower est. upper
sd((Intercept)) 3.3196 4.899 7.2298

Within-group standard error:
lower est. upper

2.0435 2.4593 2.9597

10.2.4.2 Random Effects

The summary(lme1) command also prints out estimates of random effects. The
random effect of 4.899 for (Intercept) represents the estimated population
standard deviation of the subjects’ recall scores on the reference factor(day),
which is Day 1. We are not usually interested in the individual subject-specific ran-
dom effects estimates. They can nevertheless be obtained through ranef(lme1).

> ranef(lme1)
(Intercept)

s1 -7.7351
s6 -6.5927
s12 -6.9021
s4 -3.5463
...

The VarCorr() function prints the estimated random effect(s) and within-subject
standard deviation which are already part of summary() and intervals().

> VarCorr(lme1)
subj = pdLogChol(1)

Variance StdDev
(Intercept) 24.0000 4.8990
Residual 6.0482 2.4593

186 10 Linear Mixed-Effects Models in Analyzing Repeated-Measures Data

The Residual variance of 6.0482 represents the within-subject error variance.
The within-subject errors follow a normal distribution with a variance–covariance
matrix

0
BBBB@

day1 day2 day3 day4 day5

day1 6:05 0 0 0 0

day2 0 6:05 0 0 0

day3 0 0 6:05 0 0

day4 0 0 0 6:05 0

day5 0 0 0 0 6:05

1
CCCCA;

which is estimated based on the assumption of independence between the within-
subject errors in recall scores over time. This independence assumption fixes the
off-diagonal entries at zero. We can build alternative models that allow dependence
– nonzero correlations in within-subject errors. Some of these alternative models are
explored next.

10.2.5 Alternative Models

Our first model lme1 treats the days variable as a discrete time variable so that the
results can be more easily compared with those obtained through repeated-measures
ANOVA. However, Fig. 10.1 clearly shows a linear pattern of declining recall scores
over 5 days. Therefore, it is sensible to model the days variable as a continuous
variable to better model this linear pattern. Two alternative models to lme1 are
sought:

1. lmeN1: continuous days and one intercept per person.
2. lmeN2: continuous days, one intercept and one slope per person.

We first center the days by Day 3 so that the Intercept term represents
the estimated recall score at Day 3. The lmeN1 model below models days as a
continuous variable. Like the first model lme1, lmeN1 contains a subject-specific
intercept as its random effect. This random intercept is expanded in the alternative
lmeN2 model to include both a random intercept and a slope per subject.

> stevens.df$days <- stevens.df$days - 3
> lmeN1 <- lme(y ˜ factor(tx)*days,
+ random = ˜ 1 | subj, data = stevens.df)
> lmeN2 <- lme(y ˜ factor(tx)*days,
+ random = ˜ 1 + days | subj, data = stevens.df)

The lmeN2 model is preferred over lmeN1 because of its smaller AIC and BIC
values.

> anova(lmeN1, lmeN2)
Model df AIC BIC logLik Test L.Ratio

10.2 Recall Scores Example: One Between and One Within Factor 187

lmeN1 1 6 424.57 438.56 -206.29
lmeN2 2 8 409.39 428.03 -196.69 1 vs 2 19.187

p-value
lmeN1
lmeN2 1e-04

The lmeN2 model equation is:

rijk D ˇ0 C ˇ1txj C ˇ2daysk C ˇ3txj Wdaysk C b0i C b1i daysk C �ijk;

i D 1; : : : ; n; j D 1; 2; k D 1; 2; : : : ; 5I

bi D
�

b0i

b1i

�
� N .0; ‰/; �ijk � N .0; �2/:

(10.1)

where rijk represents person i ’s recall scores on the kth day after treatment j .
The first few terms represent the fixed effects of the model. Specifically, the terms

rijk D ˇ0 Cˇ1txj Cˇ2daysk Cˇ3txj Wdaysk are entered into lme() like an ordinary
regression formula. The random effects, b0i C b1i daysk , can be viewed as fitting
one intercept (b0i) and one linear slope (b1i) for each person. The random effects
are entered as random = ˜ 1 + days | subj. The random intercepts and
slopes in the vector bi follow a multivariate normal distribution with a variance–
covariance matrix ‰ . These assumptions can be checked visually, for example,
as in Fig. 10.3. This equation is a simplified version of the generic linear mixed-
effects model described in Laird and Ware (1982) and in Pinheiro and Bates (2000,
Sect. 2.1.1). Next we link the results of lme() to model parameters.

A summary(lmeN2) shows an estimated average recall score of 25.125 on
Day 3 (ˇ0 D 25:125), a non-significant treatment effect of ˇ1 D 0:525, an overall
daily decline in recall by ˇ2 D �4:650, and a small difference in the daily decline
between the two treatment conditions (ˇ3 D �0:6875). Additionally, the variance–
covariance matrix ‰ yields a correlation between the random slopes and intercepts.
The estimated correlation of �0:174 shows that subjects with high intercepts on Day
3 have a slightly more rapid decline of recall scores over 5 days.

> summary(lmeN2)
Linear mixed-effects model fit by REML
Data: stevens.df

AIC BIC logLik
409.39 428.03 -196.69

Random effects:
Formula: ˜1 + days | subj
Structure: General positive-definite, Log-Cholesky

parameterization

StdDev Corr
(Intercept) 4.9582 (Intr)

188 10 Linear Mixed-Effects Models in Analyzing Repeated-Measures Data

days 1.1642 -0.174
Residual 1.7695

Fixed effects: y ˜ factor(tx) * days
Value Std.Error DF t-value

(Intercept) 25.1250 1.77516 62 14.1536
factor(tx)2 0.5250 2.51046 14 0.2091
days -4.6500 0.45668 62 -10.1821
factor(tx)2:days -0.6875 0.64585 62 -1.0645

p-value
(Intercept) 0.0000
factor(tx)2 0.8374
days 0.0000
factor(tx)2:days 0.2912
Correlation:

(Intr) fct()2 days
factor(tx)2 -0.707
days -0.155 0.109
factor(tx)2:days 0.109 -0.155 -0.707

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.784284 -0.570531 0.084398 0.488157 1.791706

Number of Observations: 80
Number of Groups: 16

In an attempt to simplify lmeN2, we constrain this fitted correlation of �0:174 to
zero. The resulting lmeNdiag model shows nearly no difference in the AIC and
BIC goodness of fit.

> lmeNdiag <- lme(y ˜ factor(tx)*days,
+ random = list(subj = pdDiag(˜ days)),
+ data = stevens.df)
> anova(lmeN2, lmeNdiag)

Model df AIC BIC logLik Test
lmeN2 1 8 409.39 428.03 -196.69
lmeNdiag 2 7 407.73 424.04 -196.86 1 vs 2

L.Ratio p-value
lmeN2
lmeNdiag 0.33955 0.5601

10.2 Recall Scores Example: One Between and One Within Factor 189

days

y

10

20

30

40

−2 −1 0 1 2

s1 s6

−2 −1 0 1 2

s12 s4

s10 s14 s15

10

20

30

40

s2

10

20

30

40

s5 s16 s7 s13

s3

−2 −1 0 1 2

s9 s8

−2 −1 0 1 2

10

20

30

40

s11

Fig. 10.2 A plot of observed and fitted values of model lmeN2 by the augPred() function

10.2.6 Checking Model Fit Visually

Figure 10.2 shows that lmeN2 closely fits the observed recall scores.

> plot(augPred(lmeN2), aspect = "4", grid = T)

Figure 10.3 checks the multivariate normal assumption in the random effects (see
(10.1)) against the quantiles of a standard normal.

> qqnorm(lmeN2, ˜ ranef(.), id = 0.10, cex = 0.7)

The id option is used to identify outliers in the normal quantile plot. The value
of id sets the significance level of a two-sided test. An id = 0.10 sets the
significance level at a two-sided 95% (the tail probability being 1 minus the value

190 10 Linear Mixed-Effects Models in Analyzing Repeated-Measures Data

Random effects

Q
ua

nt
ile

s
of

 s
ta

nd
ar

d
no

rm
al

−2

−1

0

1

2

−5 0 5

(Intercept)

−2 −1 0 1 2

s15

s3

days

Fig. 10.3 Visual examination of the random effects assumptions in the lmeN2 model

of id divided by 2). The slopes of subjects 3 and 15 are identified as outliers. Other
than these, both random effects appear to be within the normality assumption. Mild
asymmetry exists, but they do not visibly deviate from normality.

There is a useful function comparePred() that visually compares the fit of
two models. It works like superimposing two augPred() curves on the same plot.
Figure 10.4 shows the difference between the fit of the lmeN1 and the lmeN2
models. The difference is that lmeN2 allows each subject to have his/her own
growth slope over days, while lmeN1 fits one common slope for all subjects.

> plot(comparePred(lmeN1, lmeN2))

The dotted lines for lmeN2 appear to fit the observed values slightly better than the
solid lines for lmeN1.

Visual evaluations of model assumptions and model fit are not usually reported
in journal articles. They may be useful in methodology papers or in teaching,
especially in helping visual learners to appreciate the main difference between fixed
and random growth curves. There is a frequently asked question on when to use
fixed and when to use random effects. Gelman and Hill (2007, Sect. 11.4) contains
an informative overview of relevant issues.

10.2.7 Modeling Dependence

Figure 10.2 shows that lmeN2 fits the recall scores very well. Perhaps the
model can be further improved by incorporating correlated within-subject errors.
The first model we try has a symmetric but unstructured correlation pattern and
heteroscedasticity.

10.2 Recall Scores Example: One Between and One Within Factor 191

days

y

10
20
30
40

−2 −1 0 1 2

s1 s6

−2 −1 0 1 2

s12 s4

s10 s14 s15

10
20
30
40

s2
10
20
30
40

s5 s16 s7 s13

s3

−2 −1 0 1 2

s9 s8

−2 −1 0 1 2

10
20
30
40

s11

lmeN1 lmeN2

Fig. 10.4 A visual comparison of model fit between lmeN1 and lmeN2 using the
comparePred() function

1. lmeN.UN: unstructured correlation. Two other simpler models are also tried.
2. lmeN.ARh: auto-correlation.
3. lmeN.CS: compound symmetry.

An unstructured variance/correlation matrix follows the pattern:

0
BBBB@

day1 day2 day3 day4 day5

day1 �2
11

day2
21 �2
22

day3
31
32 �2
33

day4
41
42
43 �2
44

day5
51
52
53
54 �2
55

1
CCCCA;

where the entries along the main diagonal (�2
11; : : : ; �2

55) represent heteroscedastic
variances and the below-diagonal entries (
11;
21; : : : ;
54) represent the pairwise
correlations among the five assessments. The above-diagonal entries are left blank
because they are symmetric to the below-diagonal entries.

192 10 Linear Mixed-Effects Models in Analyzing Repeated-Measures Data

We use the weight option in lme() to control the variances �2
11; : : : ; �2

55. The
option weight = varIdent(form = ˜ 1 | days) says that we want one
variance estimate per day. We also want all the pairwise correlations, which can be
calcualted by saying corr = corSymm(form = ˜ 1 | subj).

> lmeN.UN <- lme(y ˜ factor(tx)*days,
+ random = ˜ 1 + days | subj, data = stevens.df,
+ corr = corSymm(form = ˜ 1 | subj),
+ weight = varIdent(form = ˜ 1 | days))
> lmeN.UN
Linear mixed-effects model fit by REML

Data: stevens.df
Log-restricted-likelihood: -189.89
Fixed: y ˜ factor(tx) * days

(Intercept) factor(tx)2 days
22.67127 1.80523 -4.48012

factor(tx)2:days
-0.58455

Random effects:
Formula: ˜1 + days | subj
Structure: General positive-definite, Log-Cholesky
parameterization

StdDev Corr
(Intercept) 4.5790 (Intr)
days 1.0291 -0.152
Residual 3.2591

Correlation Structure: General
Formula: ˜1 | subj
Parameter estimate(s):
Correlation:
1 2 3 4

2 0.918
3 0.725 0.872
4 0.768 0.638 0.503
5 0.724 0.582 0.621 0.826
Variance function:
Structure: Different standard deviations per stratum
Formula: ˜1 | days
Parameter estimates:

-2 -1 0 1 2
1.00000 1.36528 0.61444 0.54311 1.19586
Number of Observations: 80
Number of Groups: 16

10.2 Recall Scores Example: One Between and One Within Factor 193

The variances are printed in the output labeled as Variance function. The
pairwise within-subject correlations are in the Correlation Structure. The
first variance is constrained to 1.0 and the other variance entries are scaled
relatively (Pinheiro and Bates 2000, explained in Sect. 5.1.3). The Variance
function and the Correlation Structure can be put together in one place
to make them easier to track:

0
BBBB@

day1 day2 day3 day4 day5

day1 1:000

day2 :918 1:365

day3 :725 :872 0:614

day4 :768 :638 :503 :543

day5 :724 :582 :621 :826 1:196

1
CCCCA:

Note that the entries below the main diagonal are estimated correlation coefficients,
not covariance estimates.

The first column (labeled day1) shows higher correlations for assessments
made closer in time than assessments made further apart in time. This prompts the
consideration of a first-order auto-regressive correlation pattern:

0
BBBB@

day1 day2 day3 day4 day5

day1 �2
11

day2
 �2
22

day3
2
 �2
33

day4
3
2
 �2
44

day5
4
3
2
 �2
55

1
CCCCA:

The result below shows the estimated value of
 D 0:887.

> lmeN.ARh <- lme(y ˜ factor(tx)*days,
random = ˜ 1 + days | subj, data = stevens.df,
corr = corAR1(form=˜1|subj),
weight = varIdent(form = ˜ 1 | days))

> lmeN.ARh
Linear mixed-effects model fit by REML
...
Correlation Structure: AR(1)
Formula: ˜1 | subj
Parameter estimate(s):

Phi
0.8871
Variance function:
Structure: Different standard deviations per stratum
Formula: ˜1 | days

194 10 Linear Mixed-Effects Models in Analyzing Repeated-Measures Data

Parameter estimates:
-2 -1 0 1 2

1.00000 1.19351 0.86062 0.84469 1.24869

A model comparison shows that the more complex unstructured correlation
pattern has worse AIC and BIC values than the independence correlation in lmeN2.

> anova(lmeN2, lmeN.UN)
Model df AIC BIC logLik Test L.Ratio

lmeN2 1 8 409.39 428.03 -196.69
lmeN.UN 2 22 423.77 475.05 -189.88 1 vs 2 13.616

p-value
lmeN2
lmeN.UN 0.4787

The AR1 model shows a marginal improvement over lmeN2. However, this more
complex model has comparable AIC and BIC statistics. There is no strong reason
to consider this more complex model.

> anova(lmeN2, lmeN.ARh)
Model df AIC BIC logLik Test

lmeN2 1 8 409.39 428.03 -196.69
lmeN.ARh 2 13 408.34 438.64 -191.17 1 vs 2

L.Ratio p-value
lmeN2
lmeN.ARh 11.050 0.0504

The last correlation pattern we try is a compound symmetry pattern (all off-diagonal
entries are the same). It yields no improvement.

> lmeN.CS <- lme(y ˜ factor(tx)*days,
+ random = ˜ 1 + days | subj, data = stevens.df,
+ corr = corCompSymm(form = ˜ 1 | subj))
> anova(lmeN2, lmeN.CS)

Model df AIC BIC logLik Test L.Ratio
lmeN2 1 8 409.39 428.03 -196.69
lmeN.CS 2 9 411.39 432.36 -196.69 1 vs 2 0

p-value
lmeN2
lmeN.CS 1

The lmeN2model with independent within-subject errors remains the most promis-
ing model. Additional correlations in the within-subject errors provide no im-
provement. Perhaps by allowing subject-specific slopes and intercepts, lmeN2 has
already captured aspects of dependence in the within-subject recall score changes
over time.

Details on the varIdent() function and a list of available correlation functions
can be found in Pinheiro and Bates (2000, Sects. 5.2.1, 5.3.3), respectively.

10.3 Generalized Least Squares Using gls() 195

10.3 Generalized Least Squares Using gls()

Now we approach repeated-measures data using Generalized Least Squares (GLS),
implemented in the gls() function. The gls() function can be viewed as the
lme() function without the option random (Pinheiro and Bates 2000, Sect. 5.4).
We cannot use gls() to estimate the correlation between the random slopes and
intercepts. Dependence and heteroscedasticity in within-subject errors can still be
estimated, using the correlation option to address the correlated errors and the
weights option to address the heteroscedastic variance.

The first model is similar to the lmeN.UN model earlier. No specific structure
is assumed in the within-subject errors. All entries in the matrix are allowed to be
different.

> st.glsUN <- gls(y ˜ factor(tx)*days,
+ data = stevens.df,
+ corr = corSymm(form = ˜ 1 | subj),
+ weight = varIdent(form = ˜ 1 | days))
> anova(st.glsUN)
Denom. DF: 76

numDF F-value p-value
(Intercept) 1 340.06 <.0001
factor(tx) 1 0.43 0.5128
days 1 298.19 <.0001
factor(tx):days 1 1.12 0.2936
> st.glsUN
Generalized least squares fit by REML

Model: y ˜ factor(tx) * days
Data: stevens.df
Log-restricted-likelihood: -189.89

Coefficients:
(Intercept) factor(tx)2 days

22.67130 1.80522 -4.48011
factor(tx)2:days

-0.58455

Correlation Structure: General
Formula: ˜1 | subj
Parameter estimate(s):
Correlation:
1 2 3 4

2 0.942
3 0.873 0.896
4 0.792 0.778 0.905
5 0.680 0.700 0.796 0.893

196 10 Linear Mixed-Effects Models in Analyzing Repeated-Measures Data

Variance function:
Structure: Different standard deviations per stratum
Formula: ˜1 | days
Parameter estimates:

-2 -1 0 1 2
1.00000 1.05742 0.80353 0.78321 0.98501
Degrees of freedom: 80 total; 76 residual
Residual standard error: 6.2197

Note that the fixed effects estimates and the anova() results are identical to those
in lmeN.UN. Similar but not identical are the estimates in Variance function
and Correlation:

0
BBBB@

day1 day2 day3 day4 day5

day1 1:000

day2 :942 1:057

day3 :873 :896 :803

day4 :792 :778 :905 :783

day5 :680 :700 :796 :893 :985

1
CCCCA:

Next we try AR1 and Compound Symmetry correlation patterns. The AR1
correlation estimate is 0.92435.

> st.glsAR1 <- gls(y ˜ factor(tx)*days,
+ data = stevens.df,
+ corr = corAR1(form = ˜ 1 | subj),
+ weight = varIdent(form = ˜ 1 | days))
> st.glsAR1
Generalized least squares fit by REML

Model: y ˜ factor(tx) * days
Data: stevens.df
Log-restricted-likelihood: -191.72

...

Correlation Structure: AR(1)
Formula: ˜1 | subj
Parameter estimate(s):

Phi
0.92435
Variance function:
Structure: Different standard deviations per stratum
Formula: ˜1 | days
Parameter estimates:

-2 -1 0 1 2
1.00000 1.09373 0.85613 0.84247 1.09187

10.3 Generalized Least Squares Using gls() 197

Degrees of freedom: 80 total; 76 residual
Residual standard error: 6.2869

The estimated Compound Symmetry variance/correlation pattern is:

0
BBBB@

day1 day2 day3 day4 day5

day1 1:000

day2 :825 1:058

day3 :825 :825 :802

day4 :825 :825 :825 :800

day5 :825 :825 :825 :825 1:075

1
CCCCA:

> st.glsCS <- gls(y ˜ factor(tx)*days,
+ data = stevens.df,
+ corr = corCompSymm(form = ˜ 1 | subj),
+ weight = varIdent(form = ˜ 1 | days))
> st.glsCS
Generalized least squares fit by REML

Model: y ˜ factor(tx) * days
Data: stevens.df
Log-restricted-likelihood: -202.99

Coefficients:
(Intercept) factor(tx)2 days

23.02523 1.72293 -4.69308
factor(tx)2:days

-0.62704

Correlation Structure: Compound symmetry
Formula: ˜1 | subj
Parameter estimate(s):

Rho
0.82521
Variance function:
Structure: Different standard deviations per stratum
Formula: ˜1 | days
Parameter estimates:

-2 -1 0 1 2
1.00000 1.05777 0.80196 0.80018 1.07542
Degrees of freedom: 80 total; 76 residual
Residual standard error: 5.9462

The next task is model selection. The more complex unstructured model
(st.glsUN) may be simplified to either an AR1 (st.glsAR1) or a compound
symmetry (st.glsCS) pattern. However, the comparisons below show potentially
confusing results. The compound symmetry pattern has a lower BIC but a higher

198 10 Linear Mixed-Effects Models in Analyzing Repeated-Measures Data

AIC than those in the unstructured model. The AR1 pattern has a lower AIC and
BIC than those in the unstructured correlation model but the likelihood test shows
no reliable difference. There are no clear indications that any of the simplified
models is preferred over the unstructured model.

> anova(st.glsUN, st.glsCS)
Model df AIC BIC logLik Test

st.glsUN 1 19 417.77 462.05 -189.88
st.glsCS 2 10 425.98 449.29 -202.99 1 vs 2

L.Ratio p-value
st.glsUN
st.glsCS 26.209 0.0019
> anova(st.glsUN, st.glsAR1)

Model df AIC BIC logLik Test
st.glsUN 1 19 417.77 462.05 -189.88
st.glsAR1 2 10 403.43 426.74 -191.72 1 vs 2

L.Ratio p-value
st.glsUN
st.glsAR1 3.6604 0.9323

The AR1 model has a lower AIC and BIC than those in the compound symmetry
model. A formal log likelihood test is not available because the two models are not
nested.

> anova(st.glsCS, st.glsAR1)
Model df AIC BIC logLik

st.glsCS 1 10 425.98 449.29 -202.99
st.glsAR1 2 10 403.43 426.74 -191.72

The choice between AIC and BIC involves technical details beyond the scope
of this book. So far as this example is concerned, there are no clear indications by
either fit statistic that a simplified within-subject error pattern is preferred over the
unstructured pattern. Interested readers are referred to a few recent developments
(Vaida and Blanchard 2005; Liang et al. 2008; Acquah 2010).

10.4 Example on Random and Nested Effects

Maxwell and Delaney (1990, Chap. 10) describe a hypothetical study involving
a random effect nested within a fixed effect. A sample of 24 clients undergo
a psychological evaluation by six psychologist trainees (each trainee sees four
clients). Each client receives a rating from a psychologist. The rating represents the
psychologist’s overall impression on the client’s psychological well-being. Higher
scores represent better well-being. Among the six psychologist trainees, three are
female and three are male. We enter the ratings from Maxwell and Delaney (1990,
p. 439) into a data frame.

10.4 Example on Random and Nested Effects 199

> y <- c(49,40,31,40,42,48,52,58,42,46,50,54,54,60,
+ 64,70,44,54,54,64,57,62,66,71)
> y <- array(y, dim = c(4, 3, 2))
> dimnames(y) <- list(paste("i", 1:4, sep=""),
+ paste("k", 1:3, sep=""), paste("j", 1:2, sep=""))
> nested.df <- data.frame(y = as.vector(y),
+ sex = factor(rep(c("male", "female"), c(12,12))),
+ trainee = factor(paste("tr", rep(1:6, each = 4),
+ sep="")))
> nested.df <- groupedData(y ˜ sex | trainee,
+ nested.df)

The training director of the institution wants to know two things: (1) whether
or not ratings given by psychologist trainees differ by gender and (2) whether or
not there is considerable heterogeneity attributable to psychologist trainees. The
heterogeneity associated with psychologists is nested within the gender effect.

Next we estimate the sex effect and the variability attributable to the trainees.

> lmeNested <- lme(y ˜ sex, random = ˜ 1 | trainee,
+ nested.df)

The model equation is

yijk D ˇ0 C ˇ1sexj C bk C �ijk ; i D 1; : : : ; 4; j D 1; 2; k D 1; : : : ; 6;

where the i ’s represent the clients, j ’s represent the gender of the kth psychologist
trainee. Male trainees assign a significantly lower average rating by 14 points. The
estimated standard deviation of the trainee variability is 4.0757.

> summary(lmeNested)
Linear mixed-effects model fit by REML
Data: nested.df

AIC BIC logLik
163.02 167.38 -77.509

Random effects:
Formula: ˜1 | trainee

(Intercept) Residual
StdDev: 4.0757 6.7495

Fixed effects: y ˜ sex
Value Std.Error DF t-value p-value

(Intercept) 60 3.0550 18 19.6396 0.0000
sexmale -14 4.3205 4 -3.2404 0.0317
Correlation:

(Intr)
sexmale -0.707

200 10 Linear Mixed-Effects Models in Analyzing Repeated-Measures Data

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.84317 -0.46329 -0.11553 0.64599 1.42633

Number of Observations: 24
Number of Groups: 6
> anova(lmeNested)

numDF denDF F-value p-value
(Intercept) 1 18 601.93 <.0001
sex 1 4 10.50 0.0317

The RLRsim package by Scheipl (2010) provides a way to test whether or not
the trainee variability is statistically reliable.

> library(RLRsim)
> exactRLRT(lmeNested, seed = 13)

simulated finite sample distribution of RLRT.
(p-value based on 10000 simulated values)

data:
RLRT = 1.5766, p-value = 0.0841

The exactRLRT() function carries out an exact restricted likelihood ratio test
of a random effect based on simulations (default is 10,000 simulations). Setting
the seed ensures the same sequence of simulation and thus identical p-value =
0.0841. This exact test indicates no significant effect associated with therapist
trainees. Maxwell and Delaney (1990, p.441) reach the same conclusion with a
different statistical approach.

10.4.1 Treatment by Therapist Interaction

Maxwell and Delaney (1990, p.450) describe a more advanced analysis in testing
a treatment by therapist interaction. A hypothetical sample of 45 individuals are
randomly assigned to three treatment methods. Three therapists are involved in
the delivery of all three treatment methods. Each therapist treats 5 persons with
a treatment method called RET, another 5 persons with the CCT treatment, and the
last 5 persons with the BMOD treatment.

> y<-c(40,42,36,35,37, 42,39,38,44,42, 48,44,43,48,47,
+ 40,44,46,41,39, 41,45,40,48,46, 41,40,48,47,44,
+ 36,40,41,38,45, 41,39,37,44,44, 39,44,40,44,43)
> method <- rep(rep(c("RET","CCT","BMOD"), each=5), 3)
> therapist <- rep(c("ther1","ther2","ther3"),each=15)
> MD450.df <- data.frame(y = y, method = method,
+ therapist = therapist)

10.4 Example on Random and Nested Effects 201

In this hypothetical example, the researcher wants to know whether or not the
psychotherapists have an equal affinity to all therapy methods. To get
exactRLRT() to test the methods by therapists variability, we need to set
up an alternative model and a null model. The alternative model contains two
variance components: (1) the within-therapist variance and (2) the variance for
psychotherapy methods nested within therapists. The null model contains only the
therapist variance component.

under alternative: therapist and ‘‘method:therapist’’
> th.mA <- lmer(y ˜ method + (1 | therapist) +
+ (1 | method:therapist), data = MD450.df)
> ranef(th.mA)
$‘method:therapist‘

(Intercept)
BMOD:ther1 0.98305
BMOD:ther2 -0.14554
BMOD:ther3 -0.83751
CCT:ther1 -0.43695
CCT:ther2 0.80113
CCT:ther3 -0.36418
RET:ther1 -0.91028
RET:ther2 0.80113
RET:ther3 0.10916

$therapist
(Intercept)

ther1 -0.076905
ther2 0.307619
ther3 -0.230714
under null: only therapist effect
> th.m0 <- update(th.mA, . ˜ . - (1 | method:therapist))

The effect of interest is a model between the null and the alternative, a model
with only the method:therapist variance component:

test single random effect of ‘‘method:therapist’’
> th.m <- update(th.mA, . ˜ . - (1 | therapist))
> th.m
Linear mixed model fit by REML
Formula: y ˜ method + (1 | method:therapist)

Data: MD450.df
AIC BIC logLik deviance REMLdev
233 242 -111 229 223

Random effects:
Groups Name Variance Std.Dev.
method:therapist (Intercept) 1.91 1.38
Residual 8.78 2.96

Number of obs: 45, groups: method:therapist, 9

202 10 Linear Mixed-Effects Models in Analyzing Repeated-Measures Data

Fixed effects:
Estimate Std. Error t value

(Intercept) 44.00 1.11 39.8
methodCCT -2.00 1.56 -1.3
methodRET -4.00 1.56 -2.6

Correlation of Fixed Effects:
(Intr) mthCCT

methodCCT -0.707
methodRET -0.707 0.500

We enter all three models into exactRLRT() to test the method:therapist
effect. No reliable effect is found.

> exactRLRT(th.m, m0 = th.m0, mA = th.mA)

simulated finite sample distribution of RLRT.
(p-value based on 10000 simulated values)

data:
RLRT = 0.8777, p-value = 0.1363

The comparisons between psychotherapy methods can be done by simulations.

> set.seed(101)
> th.mcmc <- mcmcsamp(th.mA, n = 1000)
> HPDinterval(th.mcmc)$fixef

lower upper
(Intercept) 40.9754 46.85780
methodCCT -4.5005 0.79591
methodRET -6.7266 -1.29033
attr(,"Probability")
[1] 0.95

The highest posterior density intervals indicate no reliable difference between the
CCT therapy method and the BMOD (the reference condition), and the RET method
has a significantly lower score than BMOD.

Exercises

10.1. Orthdontic measurement data.
The library(nlme) includes a dataset called Orthodont which contains the
longitudinal orthodontic measurements for several children.

Exercises 203

(a) Type help(Orthodont) to learn more about the dataset.
(b) Use the xyplot() command to visualize the pattern of orthodontic measure-

ments over time. Are girls and boys grow at a different pattern?
(c) Fit a lme model of the distance measurements with fixed effects of age

and Sex, and one random intercept per child.
(d) Is there a significant overall difference between girls and boys?
(e) Add to the model a random age effect per child.
(f) Is there support for adding a random age effect per child? Use compare

Pred() to compare the two models visually, and use anova() to compare
them statistically. Which of the two models above is preferred?

(g) Take the model with a random age effect and fit an unstructured correlation
pattern with heteroscedastic variances. Does it improve the model?

(h) Fit an AR1 correlation pattern with heteroscedastic variances. Does the AR1
correlation pattern improve the model?

(i) Overall, which model is the preferred model? Why?

10.2. Ergonomic experiment.
The ergoStool dataset in library(nlme) contains repeated-measured data.
Each of the nine study participants is assessed four times. At each assessment, the
study participant is asked to arise from one type of ergonomic stool. The amount
of effort to arise from the ergonomic stool is recorded in the variable effort. The
four types of ergonomic stools are labeled in the variable Type.

(a) Analyze the ergoStool data with repeated-measures ANOVA using aov()
and Error(Subject/Type) to handle the within-subject error terms.
Is there a significant effect associated with ergonomic stool Type?

(b) Analyze the data with lme(). How would you use lme() to handle the within-
subject errors?

(c) Does lme() show a significant effect associated with stool Type? Is it
consistent with the result from repeated-measures aov()?

(d) Treating the first stool type as the reference (type T1), which other stool type
requires the most effort?

10.3. Hypothetical psychotherapy study: no clustering.
In Sect. 10.4.1, we analyze the hypothetical psychotherapy example, taking into con-
sideration the clustering of patients within therapists and psychotherapy methods.
It makes sense to consider patient clusters because, for example, patients seeing
the same psychotherapists under the same treatment method tend to have correlated
outcomes.

Problems arise if these clusters are ignored. Here is an example. Suppose
the researcher fitted an aov(y ˜ method, data=MD450.df). This model
ignores the patients clusters. An aov() model assumes that the outcomes of
individual patients are independent of one another.

204 10 Linear Mixed-Effects Models in Analyzing Repeated-Measures Data

(a) Does the assumption of independent outcomes make sense to you?
(b) Run the aov() above. Feed the result into summary() to get the test statistic

for the effect for psychotherapy method. Is there a significant method effect?
(c) If there is a significant method effect, would it still hold if the independent

outcomes assumption is known to be violated?

10.4. Hypothetical psychotherapy study: therapist as a fixed factor.
Another problematic analytic approach is to treat therapist as a fixed factor, in
aov(y ˜ method*therapist, data=MD450.df). Here the model takes
into consideration the clustering effect. However, if themethod effect is significant,
it is limited to these specific therapists; the significant finding cannot be generalized
beyond these three therapists.

(a) Run the fixed effects model and obtain the test statistics.
(b) Is there a significant fixed effect interaction between method and therapist?
(c) Is there a significant effect of method?
(d) Is it problematic to only limit a treatment effect, if significant, to within these

three specific psychotherapists?

10.5. Hypothetical psychotherapy study: therapist variance components.
The th.mA model in Sect. 10.4.1 is better than the two previous models because it
takes into account the psychotherapy methods nested within therapists. Effects asso-
ciated with the three therapists are assumed to be a part of a population distribution.
So any significant findings for psychotherapy methods can be generalized to other
therapists.

An anova(th.mA) prints an F-statistic of 3.6, which is lower than the 6.84
F-statistic above. A two-sided p-value can be calculated from the F-statistic, by
using a numerator 2 degrees of freedom and a denominator 42 degrees of freedom.
It yields a p-value of 2*(1-pf(3.6, df1=2, df2=24)) = 0.435.

(a) How would you interpret an F-statistic of 3.6 with a two-sided p-value of 0.435?
Is there an overall difference between the three psychotherapy methods?

(b) How would you compare the effects of specific treatment methods? For exam-
ple, how would you interpret the results from the highest posterior intervals in
Sect. 10.4.1?

(c) What would be the overall conclusions based on these results?

Chapter 11
Linear Mixed-Effects Models
in Cluster-Randomized Studies

11.1 The Television, School, and Family Smoking Prevention
and Cessation Project

This example is based on the smoking cessation and prevention study reported
in Flay et al. (1995) and discussed in Fitzmaurice et al. (2004b, pp. 453–455).
The data file can be downloaded from the website for the Fitzmaurice et al.
(2004b) book. The data file contains 1,600 observations of 7th-grade students in
135 classes nested within 28 schools in Los Angeles. Each school was randomized
into one of four intervention conditions. The four intervention conditions were in
a factorial design between intervention delivery method (by television or not by
television in variable TV: coded 1 D Yes, 0 D No) and setting (with or without
a school-based social resistance program, variable CC: coded 1 D Yes, 0 D No).
Therefore, the four intervention conditions were TV+CC, TV-Only, CC-Only, and
Neither. Individual students were in classes nested within schools and nested within
intervention conditions.

The primary outcome variable was the tobacco and health knowledge survey
summary scores assessed before and after the intervention. The total number
of correct answers was recorded in a variable we call THKS. The researchers
were interested in comparing postintervention THKS scores across the intervention
conditions, adjusting for a covariate of preintervention THKS scores.

Studies like this are known as “group-randomized trials” or “cluster-randomized
trials” (Murray 1998a; 1998b; Murray et al. 2004; Donner and Klar 2000; Janega et
al. 2004) because randomization into intervention conditions is done by groups, in
this example by schools. Children in the same classrooms receive the intervention
together. Interactions between children and between children and teachers are likely
to influence the effect of the intervention. Children in the same classes are likely
to attain similar levels of knowledge on tobacco and health. Children in the same
classrooms are likely to show cluster-correlated outcomes. Children from different
classrooms within the same schools are also likely to show correlated outcomes,
perhaps to a lesser extent. Correlation between members of the same group or cluster

Y. Li and J. Baron, Behavioral Research Data Analysis with R, Use R,
DOI 10.1007/978-1-4614-1238-0 11, © Springer Science+Business Media, LLC 2012

205

206 11 Linear Mixed-Effects Models in Cluster-Randomized Studies

is called the intraclass correlation (ICC) which will be defined later. In this example,
the ICC can be at the class level (correlation between classmates in the same school)
and at the school level (correlation among children from different classrooms within
the same school). We need an analytic strategy that accounts for the ICCs.

11.2 Data Import and Preparations

The data can be directly imported into R from the URL of the data file.

> url <- paste("http://www.biostat.harvard.edu/",
+ "˜fitzmaur/ala/tvsfp.txt", sep = "")
> tvsfp.df <- read.table(url, header = FALSE,
+ skip = 44, col.names = c("school", "class",
+ "schtx", "tvtx", "prethks", "postthks"))

The skip = 44 option skips the first 44 lines because they are notes describing
the data. The notes tell us that the first column is the school id, the second the
class id, the third an indicator variable for the school-based intervention, and so
on. The variable names are specified by col.names. The variables prethks and
postthks contain the pre- and postintervention THKS scores. It is often useful
to add documentations into the raw data files. There is no need to save the data
documentation in a separate file.

Categorical variables have to be converted into factors. The pre-THKS scores are
centered by the average pre-THKS score of each school.

> tvsfp.df$school <- factor(tvsfp.df$school)
> tvsfp.df$class <- factor(tvsfp.df$class)
> tvsfp.df$schtx <- factor(tvsfp.df$schtx,
+ levels=c(0,1),labels=c("sr.n", "sr.y"))
> tvsfp.df$tvtx <- factor(tvsfp.df$tvtx,
+ levels=c(0,1),labels=c("tv.n", "tv.y"))
> pre.avg <- tapply(tvsfp.df$prethks, tvsfp.df$school,
+ mean)
> pre.len <- tapply(tvsfp.df$prethks, tvsfp.df$school,
+ length)
> pre.avg <- rep(pre.avg, times = pre.len)
centering by school average
> tvsfp.df$prethksC <- tvsfp.df$prethks - pre.avg

The tvsfp.df data frame is now ready for analysis by the lme4 and/or the
nlme package. It can also be converted into a groupedData() object for the
nlme package. The main advantage of a groupedData() object is that functions
in the nlme package can use the hierarchical data structure to aid data visualization
and analysis.

11.2 Data Import and Preparations 207

> library(nlme)
> tvsfp.df <-
+ groupedData(postthks ˜ prethksC | school/class,
+ data = tvsfp.df, outer= list(˜ schtx, ˜ tvtx),
+ labels = list(x = "Pre-intervention THNKS scores",
+ y = "Post-intervention THNKS scores"),
+ units = list(x = "(-4 to +5)", y = "(0 to 6)"))

The postthks ˜ prethksC part of a grouped data specifies the dependent and
the primary independent variables. The | school/class part specifies how the
data are grouped into clusters. Classes are nested within schools (school/class
is a shorthand for school + class %in% school). The outer option states
that the intervention conditions for ˜ schtx and ˜ tvtx are assigned to the
schools. The parameters outer, labels, and units are optional. They are used,
for example, when plot(tvsfp.df) is called to graph the data. These options
help determine the appearance of the graph.

11.2.1 Exploratory Analyses

Figure 11.1 summarizes the tvsfp.df data frame. Post intervention THKS scores
are plotted on the y-axis, against on the x-axis the centered preintervention THKS
scores. Each panel represents data from one school; nested within the schools are
the classes plotted with different symbols. Each symbol represents one student. The
school id numbers are plotted on top of each panel in a “strip.” The schools plotted
in light grey strips were randomized to the school-based intervention, while schools
in dark grey were not. Least-squares regression lines are plotted for each school.

Figure 11.1 shows that classes nested within schools are not very different from
one another. For example, there are no obvious pattern of clusters of squares or
triangles that deviate from the overall pattern. Figure 11.1 is produced with the
commands below.

> library(lattice)
> # grey90 means 90% lighter than black
> tcol <- c("grey50", "grey90")
> bg.col <- rep(tcol[1],
+ length(levels(tvsfp.df$school)))
> tt <- tapply(as.character(tvsfp.df$schtx),
+ tvsfp.df$school, function(x) {x[1]})
> # light grey if schtx, dark grey if no schtx
> bg.col[tt == "sr.y"] <- tcol[2]
> xyplot(jitter(postthks) ˜ prethksC | school,
+ data = tvsfp.df,
+ groups = class, outer= TRUE,
+ panel = function(x, y, ...)

208 11 Linear Mixed-Effects Models in Cluster-Randomized Studies

prethksC

jit
te

r(
po

st
th

ks
)

0

2

4

6

−2 0 4

193 194

−2 0 2 4

196 197

−2 0 2 4

198

199 401 402 403

0

2

4

6

404
0

2

4

6

405 407 408 409 410

411 412 414 415

0

2

4

6

505
0

2

4

6

506 507 508 509 510

513

−2 0 2 4

514

0

2

4

6

515

2

Fig. 11.1 Postintervention THKS scores plotted against preintervention THKS scores (centered
by school averages). Each panel represents data from one school. Least square regression lines
are plotted for each school. Different plotting symbols represent individual students nested within
classes. The schools plotted in light grey strips were randomized to the school-based intervention,
while schools in dark grey strips were not

11.2 Data Import and Preparations 209

+ {
+ panel.superpose(x, y, ...)
+ panel.lmline(x, y, ...)
+ },
+ strip = function(..., which.panel, bg)
+ {
+ strip.default(..., which.panel = which.panel,
+ bg=rep(bg.col, length = which.panel)[which.panel])
+ })

The strip = function(...) controls the appearance of the strip for each
school. By looking at the plot, there appears to be no visible difference between
schools that were randomized to the school-based intervention condition (with light
grey strips) and schools that were not (with dark grey strips). The color of each strip
is indexed by which.panel.

The individual panel.lmline(x, y, ...) plots the linear relationships
between pre- and post-THKS scores in each school. The association is strong in
some schools (e.g., school ids 405, 408, and 510) but less so in other schools (e.g.,
193, 410, and 505). Later in this chapter we will model one unique slope between
the pre- and post-THKS scores in each school.

The tapply() commands below calculate the average postintervention
changes in THKS scores. The “Neither” group (the tv.n and sr.n combination)
had an average change of 0:21. School-based intervention alone showed a 0:92

change. TV-alone showed a 0:45 change. The combined school and TV-based
intervention produced a 0:88 change. School-based intervention alone yielded the
greatest change of nearly one point in the THKS score.

> attach(tvsfp.df)
> tapply(postthks - prethks, list(schtx, tvtx), mean)

tv.n tv.y
sr.n 0.2090261 0.4519231
sr.y 0.9184211 0.8433420’
> tapply(postthks - prethks, schtx, mean)

sr.n sr.y
0.3297491 0.8807339
> tapply(postthks - prethks, tvtx, mean)

tv.n tv.y
0.5455680 0.6395494

Next we examine the group differences quantitatively, taking into consideration
the intraclass correlations among members of the same class and members of the
same school.

210 11 Linear Mixed-Effects Models in Cluster-Randomized Studies

11.3 Testing Intervention Efficacy with Linear Mixed-Effects
Models

The first model to try is guided by Fig. 11.1. It contains the fixed treatment effects
schtx*tvtx and the random slopes and intercepts between pre- and post-THKS
scores for each school. Also because the classes are nested within schools, we try
a random slope per class in (1 + prethksC | school/class). But we see
a problem right away. The Random effects: portion of the output shows a
correlation of 1.0 between the random slopes and intercepts. A correlation of 1.0
implies complete overlap between the estimates of the slopes and intercepts, a sign
of model overparameterization (Baayen et al. 2008). The problem remains after
the clustering by class is simplified to (1 + prethksC | school). Thus, the
random slopes model hinted by Fig. 11.1 is not feasible.1

> library(lme4)
> tv.lmer1 <- lmer(postthks ˜ prethksC + schtx*tvtx +
+ (1 + prethksC | school/class),
+ data = tvsfp.df)
>
> summary(tv.lmer1, corr=F)
Linear mixed model fit by REML
Formula: postthks ˜ prethksC + schtx * tvtx +

(1 + prethksC | school/class)
Data: tvsfp.df

AIC BIC logLik deviance REMLdev
5394 5459 -2685 5355 5370

Random effects:
Groups Name Variance Std.Dev. Corr
class:school (Intercept) 0.06853 0.2618

prethksC 0.00143 0.0379 1.000
school (Intercept) 0.07951 0.2820

prethksC 0.01244 0.1115 1.000
Residual 1.58148 1.2576

Number of obs: 1600, groups: class:school, 135;
school, 28

Fixed effects:
Estimate Std. Error t value

(Intercept) 2.2899 0.1201 19.07
prethksC 0.2888 0.0341 8.47
schtxsr.y 0.5841 0.1633 3.58

1The same model, if instead fitted by lme() in the nlme package, causes a convergence error
because of model overparameterization.

11.3 Testing Intervention Efficacy with Linear Mixed-Effects Models 211

tvtxtv.y 0.2438 0.1584 1.54
schtxsr.y:tvtxtv.y -0.1771 0.2267 -0.78

Correlation of Fixed Effects:
(Intr) prthkC schtx. tvtxt.

prethksC 0.315
schtxsr.y -0.664 -0.006
tvtxtv.y -0.680 0.010 0.502
schtxsr.y:. 0.478 0.003 -0.721 -0.699

To simplify tv.lmer1, we drop the random slopes.

> tv.lmer2 <- lmer(postthks ˜ prethksC + schtx*tvtx +
+ (1 | school/class), data = tvsfp.df)

Next, we fit a third model tv.lmer3 which has no random class effects.
A model comparison shows that dropping the class clustering would produce
considerable difference in the likelihood ratio statistic, a rationale to keep the
class effect.

> tv.lmer3 <- lmer(postthks ˜ prethksC + schtx*tvtx +
+ (1 | school), data = tvsfp.df)
> anova(tv.lmer2, tv.lmer3)
Data: tvsfp.df
Models:
tv.lmer3: postthks ˜ prethksC + schtx * tvtx +

(1 | school)
tv.lmer2: postthks ˜ prethksC + schtx * tvtx +

(1 | school/class)
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

tv.lmer3 7 5392 5430 -2689
tv.lmer2 8 5385 5428 -2684 9.55 1 0.002

The tv.lmer2 model is preferred over tv.lmer3 because it has a smaller AIC
and BIC statistic (Pinheiro and Bates 2000, Sect. 2.4.1). The Chisq statistic
for the likelihood ratio test also shows a significant difference between the two
models. Generally, model comparisons based on the REML likelihood statistic
and the likelihood ratio test by anova(tv.lmer2, tv.lmer3) only makes
sense between models with the same fixed-effects structure and the same contrast
coding for factors within the fixed-effects structure (Pinheiro and Bates 2000,
Sects. 1.2.1, 5.4).

Model assumptions should be checked before we settled with tv.lmer2. The
main assumption is that the residuals are normally distributed, which can be checked
with qqnorm(resid(tv.lmer2)).

The qqnorm.lme() function in the nlme package provides convenient
features. To demonstrate how to use some of these features, the same model is fitted
with lme().

212 11 Linear Mixed-Effects Models in Cluster-Randomized Studies

Fig. 11.2 Normal plot of
residuals for the tv.lmer2
model

Residuals (0 − 6)

Q
ua

nt
ile

s
of

 s
ta

nd
ar

d
no

rm
al

−2

0

2

−2 0 2 4

sr.n

−2 0 2 4

sr.y

> detach(package:lme4) # avoid conflicts
> library(nlme)
> tv.lme <- lme(postthks ˜ prethksC + schtx*tvtx,
+ random = ˜ 1 | school/class,
+ data = tvsfp.df)
> qqnorm(tv.lme, ˜ resid(.) | schtx)

The residuals in Fig. 11.2 seem to follow a normal distribution. No visible differ-
ences between students who had and had not received the school-based treatment.

The effects in the tv.lmer2 model can be tested by the HPDinterval()
function. There is a statistically significant schtx treatment effect but no tvtx
treatment effect.

> set.seed(13)
> samp1 <- mcmcsamp(tv.lmer2, n=1000)
> HPDinterval(samp1)
$fixef

lower upper
(Intercept) 2.082 2.612
prethksC 0.242 0.343
schtxsr.y 0.230 0.983
tvtxtv.y -0.125 0.571
schtxsr.y:tvtxtv.y -0.887 0.115
attr(,"Probability")
[1] 0.95

11.4 Model Equation 213

$ST
lower upper

[1,] 0.0545 0.270
[2,] 0.1283 0.322
attr(,"Probability")
[1] 0.95

$sigma
lower upper

[1,] 1.22 1.32
attr(,"Probability")
[1] 0.95

The Wald F test and p-values for the fixed effects can be obtained from the
nlme package (p-values not available from the lme4 package). The conclusions
are comparable to those drawn from the HPDinterval() simulations above.

> anova(tv.lme)
numDF denDF F-value p-value

(Intercept) 1 1464 1517.47 <.0001
prethksC 1 1464 127.53 <.0001
schtx 1 24 9.56 0.0050
tvtx 1 24 0.06 0.8123
schtx:tvtx 1 24 1.79 0.1941

11.4 Model Equation

Let Yijk denote the postintervention THKS score of the i th student nested within
the j th classroom within the kth school. The final tv.lmer2 model follows this
symbolic form:

Yijk D ˇ0 C ˇ1PreTHKSC C ˇ2CC C ˇ3TV

C ˇ4CC � TV C bk C bjk C �ijk;

bk � N.0; �2
2 /I bjk � N.0; �2

3 /I �ijk � N.0; �2
1 /: (11.1)

Each student’s postintervention THKS score is a function of the following:

• ˇ0: an intercept representing the estimated postthks score for a student in the
“Neither” group and whose prethks score is at his or her school’s average.

• ˇ1: the estimated postthks score for a student who scored at baseline 1 point
higher than the school average.

214 11 Linear Mixed-Effects Models in Cluster-Randomized Studies

• ˇ2: estimated postthks score difference between the “school” and “no school”
conditions (effect of school-based social resistance curriculum).

• ˇ3: estimated postthks effect due to TV, and
• ˇ4: effect of delivering school-based curriculum by TV versus not by TV.

So far the model formula is straightforward and should be familiar to someone
who has taken a course on multiple regression. These are the fixed effects – specific
contrasts between the treatment conditions of a 2x2 factorial design.

There are three additional terms in the model, bk , bjk , and �ijk . The bk coefficient
can be thought of as fitting individual postthks intercepts for each of the kth
school, in a way similar to the intercepts of the individual regression lines in
Fig. 11.1. The notation bk � N.0; �2

2 / means that bk is assumed to follow a normal
distribution with a mean of zero and a variance of �2

2 . In other words, we do not try
to solve for the individual intercepts, which would take up many degrees of freedom.
Rather, we assume that the bk parameters are a random sample of population
parameters which belong to a normal distribution with mean zero and variance �2

2 .
We only need to spend one degree of freedom on finding an estimate for �2

2 .
Similarly, the variance associated with the clusters of classes, bjk , are assumed to

follow a normal distribution with a mean of zero and a variance of �2
3 . The residual

error �ijk � N.0; �2
1 / has a mean of zero and a variance of �2

1 . We are interested in
the variance components associated with the classes and schools.

> summary(tv.lmer2)
Linear mixed model fit by REML
Formula: postthks ˜ prethksC + schtx * tvtx +

(1 | school/class)
Data: tvsfp.df

AIC BIC logLik deviance REMLdev
5399 5442 -2691 5369 5383

Random effects:
Groups Name Variance Std.Dev.
class:school (Intercept) 0.0692 0.263
school (Intercept) 0.0779 0.279
Residual 1.6008 1.265

Number of obs: 1600, groups: class:school, 135;
school, 28

Fixed effects:
Estimate Std. Error t value

(Intercept) 2.346 0.137 17.08
prethksC 0.293 0.026 11.27
schtxsr.y 0.610 0.196 3.12
tvtxtv.y 0.213 0.192 1.11
schtxsr.y:tvtxtv.y -0.365 0.274 -1.34

11.5 Multiple-Level Model Equations 215

Correlation of Fixed Effects:
(Intr) prthkC schtx. tvtxt.

prethksC -0.007
schtxsr.y -0.702 -0.005
tvtxtv.y -0.715 0.015 0.502
schtxsr.y:. 0.502 0.002 -0.716 -0.702

The random effects (1 | school/class) are unpacked behind the scene
into ˜ 1|school for bk and ˜ 1|class %in% school for bjk .

The estimated postthks score is 2.35 (ˇ0) for a child who is in the reference
condition (no TV, no social resistance curriculum) and whose pre-THKS scores are
at the school average. For each unit increase in the baseline prethks score from
the school average, the postthks scores are estimated to increase by ˇ1 D 0:29.
Intervention delivered along with a social resistance curriculum is expected to
boost postthks scores by ˇ2 D 0:61 (in comparison with no social resistence
curriculum). Intervention delivered by television is expected to boost postthks
scores by ˇ3 D 0:21 (in comparison with no television). Television-delivered social
resistance curriculum shows a slightly lower score of ˇ4 D �0:37 than curriculum
not delivered by TV. The t-statistics indicate that the social resistance curriculum
but not the TV-delivered intervention show a statistically significant effect.

The “Random effects” section of the output shows that �2 D 0:279, �3 D 0:263,
and �1 D 1:265.

There are 27 degrees of freedom for the 28 schools, 24 of them are for the schtx
treatment effect. That is because one degree of freedom each is used for �2

1 , �2
2 , and

�2
3 . By contrast, 1464 degrees of freedom are associated with the prethksC scores

from the students. The point of checking the degrees of freedom is to show that, in
a group-randomized trial, the statistics for the intervention effects is associated with
the number of randomized groups.

Controlling for the preintervention THKS scores, school-based intervention is
associated with a significantly higher postintervention THKS scores.

11.5 Multiple-Level Model Equations

Equation (11.1) can also be represented in a multiple-level model by Bryk and
Raudenbush (2002). We begin by modeling each student’s post-THKS score as a
function of a classroom mean, baseline THKS score, and a random error.

Level 1 Model (individual student i):

Yijk D ˛0jk C ˛1PreTHKSCijk C �ijk ; (11.2)

where ˛0jk is the mean postintervention THKS scores of classroom j in school k.
There is only one overall slope ˛1 for the baseline THKS scores.

216 11 Linear Mixed-Effects Models in Cluster-Randomized Studies

Level 2 Model (class j): Each classroom average score ˛0jk is further modeled in
the second-level model as a function of a school mean plus random variability for
classes:

˛0jk D ˇ00k C r0jk; (11.3)

where ˇ00k is the average postintervention THKS scores in school k.

Level 3 Model (school k): The school means ˇ00k are modeled as a function of
treatment interventions and a random error per school. The treatment effects are
specified at the school level because the unit of random assignment is the school.

ˇ00k D �000 C �100CCk C �200TVk C �300CCk � TVk C u00k; (11.4)

where �000 represents the grand mean, �100 the school-based intervention effect,
�200 the TV-based intervention effect, �300 the extent to which the two interventions
combined produces a synergistic effect, and u00k represents the random variability
for schools.

Substituting the school-level (11.4) into the class-level (11.3) and then into the
individual-level (11.2), we get

Yijk D �000 C ˛1PreTHKSCijk C �100CCk C �200TVk

C �300CCk � TVk C u00k C r0jk C �ijk;

u00k � N.0; �2
2 /I r0jk � N.0; �2

3 /I �ijk � N.0; �2
1 /: (11.5)

The combined equation (11.5) bears a close resemblance to (11.1). In fact, they
are equivalent. The differences are only notational. The lme4 and nlme packages
can handle multiple-level modeling. Beginners may find the multilevel approach
particularly useful because it helps to unpack the model into more manageable
components. But the underlying model is the same.

11.6 Model Equation in Matrix Notations

We can rewrite (11.1) in matrix notation. Matrix notation is the standard in the
literature (e.g., Cnaan et al. (1997); Pinheiro and Bates (2000); Diggle et al. (2002);
Fitzmaurice et al. (2004b)). Laird and Ware’s (1982) seminal paper on mixed models
use matrix notation. It helps to have a basic appreciation of matrix notation because
it is used by many tutorials and manuals of statistical computer software programs.
This section covers how to convert (11.1) and its equivalent multilevel (11.5) into
matrix notation. Baayen et al. (2008) also provides an exposition using example data
from linguistics research. More details can be found in Pinheiro and Bates (2000).

We can condense the fixed effects, Yijk D ˇ0Cˇ1 PreTHKSCCˇ2 CCCˇ3 TVC
ˇ4 CC � TV, into Yijk D Xijkˇ, where

11.6 Model Equation in Matrix Notations 217

Xijk D

0
BBBBBBBBB@

intercept preTHKSC CC TV CC � TV

i D 1 1 2 1 0 0

i D 2 1 4 1 0 0

:::
:::

i D 1;599 1 3 0 0 0

i D 1;600 1 3 0 0 0

1
CCCCCCCCCA

; (11.6)

and ˇ D

0
BBBBB@

ˇ0

ˇ1

ˇ2

ˇ3

ˇ4

1
CCCCCA

:

The Xijk matrix is the “model matrix” or “design matrix,” derived from adding
columns to the data matrix to accommodate the model specifications. In this case,
two columns are added – a column of 1’s to represent the overall intercept ˇ0 and
a column of the CC � TV interaction to represent the schools that received both
interventions. The four separate parameters ˇ0 to ˇ4 are collected in one column
vector ˇ.

To see how matrix multiplication simplifies the calculation, we begin by ex-
tracting a fraction of the model matrix in (11.6). This simple model matrix will
be used to estimate the group means of the four intervention groups – neither
intervention, school intervention only, TV intervention only, and both school and
TV interventions combined. We begin by this simple model matrix:

X D
� intercept CC

no CC 1 0

yes CC 1 1

	
; and ˇ D

�
ˇ0

ˇ2

	
D
�

2:3459

0:6097

	
;

where X consists of a column of 1’s to represent ˇ0, the overall average of
postthks scores; and a column of 0 and 1 to represent the contrast between
school-based intervention (coded 1) and the reference, no school-based intervention
(coded 0). Therefore, when X and ˇ are multiplied together, the result is an
overall average of postthks score (the column of 1 times 2:3459 which yields
Œ2:3459; 2:3459�), plus adjustments due to the contrast (the column of Œ0; 1� times
0:6097, which yields Œ0; 0:6097�). By matrix multiplication X � ˇ equals:

�
1 0

1 1

� �
2:3459

0:6097

�
D
�

1 � 2:3459 C 0 � 0:6097

1 � 2:3459 C 1 � 0:6097

�
D
�

2:3459

2:9556

�
:

218 11 Linear Mixed-Effects Models in Cluster-Randomized Studies

The matrix multiplication can be done in the following R command.

matrix(c(1, 1, 0, 1), ncol = 2) %*%
matrix(c(2.3459068, 0.6097407), ncol = 1)

[,1]
[1,] 2.345907
[2,] 2.955647

The result of this multiplication, Œ2:3459; 2:9556�, represents the model’s best
estimates of group means given that there is no TV intervention. Additional
adjustment will have to be made to account for the TV-intervention contrast, which
is explained next.

From the output of summary(tvlme1) we know that the TV-intervention
contrast is 0:2130955. Thus, we adjust the no-TV group means Œ2:3459; 2:9556�,
by the same amount of 0:2131 to get Œ2:5590; 3:1687�. Also, the CC:TV interaction
entails a contrast of �0:3654. We add this adjustment to the mean of the group
with both school and TV interventions to get 3:1687 � 0:3654 D 2:8033. Thus, the
model’s estimates of the four group means are

� no TV yes TV

no CC 2:35 2:56

yes CC 2:96 2:80

	
:

The estimates are close to the observed group means below.

tapply(tvsfp.df$postthks,
list(tvsfp.df$schtx, tvsfp.df$tvtx), mean)

tv.n tv.y
sr.n 2.361045 2.538462
sr.y 2.968421 2.822454

Our matrix calculations do not produce an exact fit, in part because we have not
taken into consideration the prethksC covariate and the bk and bjk random
effects. But this is just a simple illustrative example to show how (11.1) can be
streamlined, and to set things up for a general formulation of a mixed-effects model
as described originally in Laird and Ware (1982).

Equation (11.7) below adds two random effects and their model design matrices.
The two random effects are Zik bk for the school clusters and Zijk bjk for the class
clusters, respectively. The Zik model matrix fits one constant per school and the Zijk

model matrix fits one constant per class.

11.6 Model Equation in Matrix Notations 219

Yijk D Xi ˇ C Zik bk C Zijk bjk C �ijk ; (11.7)

bk � N.0; �2
2 /; bjk � N.0; �2

3 /; �ijk � N.0; �2
e I/:

Yi D

2
666666664

3

4

3
:::

3

3

3
777777775

; Xi D

2
666666664

1 2 1 0 0

1 4 1 0 0

1 4 1 0 0
:::

1 3 0 0 0

1 3 0 0 0

3
777777775

; Zik D

Sch01
Sch02
Sch03

:::

Sch27
Sch28

2
66666664

1

1

1

1

1

1

3
77777775

; and Zijk D

Sch01:cls01
Sch01:cls02
Sch01:cls03

:::

Sch28:cls05
Sch28:cls06

2
66666664

1

1

1

1

1

1

3
77777775

:

The school matrix Zik and the class matrix Zijk can be combined into one single
matrix Z. Likewise, the school and class random effects bk and bjk can be combined
into a single vector b. The result is a general mixed-model equation:

Y D X ˇ C Z b C �: (11.8)

bk � N.0; �2
2 /; bjk � N.0; �2

3 /; �ijk � N.0; �2
e I/:

Statistical computer packages on linear mixed-effects models support this
general equation. In R, the lme() function uses the fixed parameter to
represent X; ˇ, and the random parameter to represent Z; b. Similar syntax
rules apply in SAS and SPSS. Although in this particular example two separate
RANDOM statements are needed in SAS and SPSS to account for the class
clusters and the school clusters, respectively. For example, the SAS code
for the same lme() analysis can be found on Donald Hedeker’s website at
http://tigger.uic.edu/�hedeker/tvsfpmix.sas.txt (last accessed June, 2011).

In R, the school and class random effects bk and bjk can be printed. They
represent the estimated adjustments to postthks scores for each school and class.

ranef(tvlme1)
Level: school

(Intercept)
193 0.05632247
194 0.10514216
196 0.06918219
[... skipped ...]
514 0.09993460
515 -0.06579224

Level: class %in% school
(Intercept)

193/193101 0.0500300619
194/194101 -0.0595581908

220 11 Linear Mixed-Effects Models in Cluster-Randomized Studies

194/194102 0.0044636599
[... skipped ...]
515/515112 0.0927875423
515/515113 -0.2986458234

11.7 Intraclass Correlation Coefficients

The Intraclass Correlation Coefficients (ICCs) can be calculated for both the class
clusters and for school clusters, using the formula in Smeeth and Ng (2002):

O
 D MSb � MSw

MSb C .m � 1/ MSw
; (11.9)

where m is the average cluster size (e.g., average number of students nested
within a class). MSb and MSw are the between- and within-cluster mean squares,
respectively, obtained from the output of a one-way ANOVA table. For example, for
school clusters, we do aov(postthks ˜ school, data = tvsfp.df).
The Sum of Squares for school divided by its degrees of freedom is the MSb ,
the mean square error attributable to different schools. The Sum of Squares for the
Residuals, divided by its degrees of freedom, is MSw. Because the clusters varied
in size, an average cluster size m0 is estimated:

m0 D 1

k � 1

n �

kX
iD1

m2
i =n

!
;

where k is the number of clusters and mi is the size of each of the k clusters.
The R code below shows how to calculate the ICCs associated with schools and

classes, respectively. Note that these are the ICCs without adjustments of covariates
such as the treatment assignments and preintervention THKS scores. Considerations
of covariates are likely to affect the variance components associated with school and
class clusters and thus the ICCs. In the next section we will explain how to calculate
ICCs from the output of mixed models.

Estimated ICC of students nested within schools
> aov(postthks ˜ school, data = tvsfp.df)
Call:

aov(formula = postthks ˜ school, data = tvsfp.df)

Terms:
school Residuals

Sum of Squares 248.6751 2809.3993
Deg. of Freedom 27 1572

11.8 ICCs from a Mixed-Effects Model 221

Residual standard error: 1.336843
Estimated effects may be unbalanced
> MSb <- 248.6751 / 27
> MSw <- 2809.3993 / 1572
> k <- tapply(tvsfp.df$postthks,
+ list(tvsfp.df$school), length)
> m0 <- (1 / (length(k) - 1)) *
+ (1600 - sum(kˆ2) / 1600)
> (MSb - MSw) / (MSb + (m0 - 1) * MSw)
[1] 0.06842898
> # Estimated ICC of students nested within classes
> aov(postthks ˜ class, data = tvsfp.df)
Call:

aov(formula = postthks ˜ class, data = tvsfp.df)

Terms:
class Residuals

Sum of Squares 549.5563 2508.5180
Deg. of Freedom 134 1465

Residual standard error: 1.308548
Estimated effects may be unbalanced
> MSb <- 549.5563 / 134
> MSw <- 2508.5180 / 1465
> k <- tapply(tvsfp.df$postthks,
+ list(tvsfp.df$class), length)
> m0 <- (1 / (length(k) - 1)) *
+ (1600 - sum(kˆ2) / 1600)
> (MSb - MSw) / (MSb + (m0 - 1) * MSw)
[1] 0.1054988

As expected, the 0:11 ICC for classes is slightly greater than the 0:07 ICC for
schools. Smeeth and Ng (2002) discuss the pros and cons in making a statistical
test of two ICCs (p. 413). Equation (11.9) is similar to the “Case 2” equation in
Shrout and Fleiss (1979, p.423).

11.8 ICCs from a Mixed-Effects Model

ICCs can also be calculated by lme() or lmer(). The ICC for schools is the
between-school variance, �2

2 , divided by the total variance (sum of �2
1 ; �2

2 , and �2
3).

The ICC for classes uses the same denominator. The numerator is the sum of two
variances, the between-class variance and between-school variance. We calculate

222 11 Linear Mixed-Effects Models in Cluster-Randomized Studies

the �2
1 ; �2

2 ; �2
3 variance components without adjusting for treatment and baseline

THKS scores:

> tvlme0 <- lme(postthks ˜ 1,
+ random = ˜ 1 | school/class,
+ data = tvsfp.df)
> summary(tvlme0)
Linear mixed-effects model fit by REML
Data: tvsfp.df

AIC BIC logLik
5513.224 5534.733 -2752.612

Random effects:
Formula: ˜1 | school

(Intercept)
StdDev: 0.3414634

Formula: ˜1 | class %in% school
(Intercept) Residual

StdDev: 0.2915119 1.312856

[... Fixed effects skipped...]

Number of Groups:
school class %in% school

28 135
> 0.341ˆ2 / (0.341ˆ2 + 1.313ˆ2) # school ICC
[1] 0.06318761
> (0.341ˆ2+0.292ˆ2)/(0.341ˆ2+0.292ˆ2+1.313ˆ2) # class
[1] 0.1046708

The ICCs are:

ICCi jk D �2
2

�2
1 C �2

2 C �2
3

D :3412

1:3132 C :3412 C :2922
D 0:063

ICCi jjk D �2
2 C �2

3

�2
1 C �2

2 C �2
3

D :3412 C :2922

1:3132 C :3412 C :2922
D 0:105

To interpret, the ICC for school clusters is the percentage of the total variance
accounted for by the school clusters. The ICC for class clusters is percentage of the
total variance accounted for by the classes nested within schools.

ICCs are often reduced if covariates are entered into the mixed-effects models.
We will leave it as an exercise for the reader to show that the ICCs are smaller when
baseline THKS scores are included:

lmer(postthks ˜ prethksC + (1 | school/class),
data = tvsfp.df)

11.9 Statistical Power Considerations for a Group-Randomized Design 223

If covariates are available and are likely to reduce the ICC, they may boost
the statistical power of a hypothesis test involving a fixed effect. This feature
is available in the power.grouped() function in the grouped package by
Dimitris Rizopoulos and Spyridoula Tsonaka.

11.9 Statistical Power Considerations
for a Group-Randomized Design

Donner and Klar (1996) provides a formula to estimate the statistical power of a
group-randomized study with two parallel intervention arms. The R function can be
found in Sect. 7.7 on page 135. Here we briefly repeat how to use it. The function
needs the standardized difference between the two treatments (effect size), the
number of groups per treatment condition, the estimated ICC among members of
the same group, and the number of individual members per group. In their Table
1, they found a 72% statistical power for a study with 6 groups in each of the
two intervention conditions, an ICC of 0.005, and 100 individual participants per
group, if the estimated effect size is 0.20. A call to dk.pow(d=0.20, m=6,
rho=0.005, n=100) yields an estimated statistical power of 0.72.

11.9.1 Calculate Statistical Power by Simulation

Estimating statistical power by simulation is useful when the assumptions in the
power formulae are untenable. Let us begin with a hypothetical example. Suppose
we want to estimate the statistical power in training health care providers in
detecting depression among patients diagnosed with cancer. Because of practical
considerations we will be able to offer training to 40 health care providers. For each
trainee, we will be able to recruit four patients, two before and two after the trainee
has completed the depression training class. Patients of the health care provider
trainees will fill out a questionnaire assessing depression symptoms before they
see the provider. We will only recruit patients who score above a cutoff and thus
are candidates for referral to a psychiatrist or a clinical psychologist. The trainee
will not be told the score. The primary outcomes are whether or not a patient
receives a referral from the provider, and whether or not the patient actually sees
a psychiatrist/psychologist within a specific time. It is anticipated that, before the
training, 30% of possibly depressed patients receive a referral. After the training,
50% of patients receive a referral. We assume a Pearson correlation of 0.45 among
the four patients nested within the same health care provider.

We need the bindata package to generate correlated multivariate binary
random variables. Then we use lmer() to test the training effect on the probability

224 11 Linear Mixed-Effects Models in Cluster-Randomized Studies

of a referral. The simulated test is repeated 1,000 times. Statistical power is the
percentage of finding a significant training effect.

require(bindata)
require(lme4)
pre <- 0.30 # pre depression detection training
post <- 0.50 # post training
corr <- 0.45 # Pearson correlation coefficient
nsim <- 1000 # number of simulations
ndoc <- 40 # number of health care providers
npatn<- 4 # number of patients per provider
sig <- 0.05 # two-sided, Type-I error rate
vmat <- matrix(c(1, corr, corr, corr,

corr, 1, corr, corr,
corr, corr, 1, corr,
corr, corr, corr, 1), nrow=npatn)

docs <- rep(paste("doc", 1:ndoc, sep=""), each=npatn)
1 = post-training
ptrain <- rep(rep(c(0, 1), each = 2), ndoc)

set.seed(733)
quiet <- TRUE
power <- rep(NA, nsim)
for (i in 1:nsim) {

if (!quiet) cat(i, " ")
y <- rmvbin(nnur, margprob=c(pre, pre, post, post),

sigma = vmat)
datc <- data.frame(y=as.vector(t(y)),ptrain,docs)
lmeR <- lmer(y ˜ ptrain + (1 | docs),

data = datc, family = binomial)
sink("tmp", append=FALSE)
show(lmeR) # print results into file tmp
sink()
lmerOut <- readChar("tmp", 20000)
p.str <- strsplit(lmerOut, "\n")[[1]][14]
p.str <- strsplit(p.str, split="[[:space:]]+")[[1]]
pval <- as.numeric(p.str[length(p.str)])
if (is.na(pval))
{ cat("\nNA found in pval:", p.str, "\n")}

power[i] <- pval <= sig
}

print(sum(power, na.rm = TRUE)/nsim)
[1] 0.868

The estimated statistical power is 87%. In the simulation, we need to sink() the
output to an external file tmp, then we need to read it back in and find the p-value

Exercises 225

using strsplit(). This step is needed because lmer does not return a list object
(as of version 0.999375-39, dated 2011-03-07). Thus, we cannot use the method of
extracting the p-value in Horton et al. (2004).

Exercises

11.1. Changes in ICC when a covariate is added.
Run the model below and get the between-class variance, the between-school
variance, and the residual variance. This mixed model differs from the one in
Sect. 11.8 because it includes a covariate prethksC.

lmer(postthks ˜ prethksC + (1 | school/class),
data = tvsfp.df)

(a) What is the ICC for school clusters?
(b) Compare your results with tvlme0 in Sect. 11.8. Does the incorporation of

the covariate prethksC increase or decrease the estimated ICC for school
clusters?

(c) What is the ICC for class clusters nested within schools?
(d) Does the prethksC covariate increase or decrease the ICC for class clusters?
(e) Does the inclusion of the prethksC covariate change the ICC for classes more

or the ICC for schools more? Or about the same?

11.2. The ICC is comparable to the Pearson correlation coefficient.
Run the following code to generate a simulated dataset of 1,000 couple dyads.
Suppose the y variable represents the score of a relationship satisfaction assessment.
The two columns of the simulated data, m[, 1] and m[, 2], represent the
relationship satisfaction scores of the first and second person in the couple dyads,
respectively. For example, person 1 in the first couple dyad has a score of �0:556

and person 2 has a score of 0.285. Person 1 in the second couple has a score of
0.056 and person 2 has a score of 0.366, and so on. The mvrnorm() function
purposefully sets both variables to follow a standard normal distribution with a
covariance of 0.30. The Pearson correlation between the two standard normal
variables is thus 0.30, as can be checked in the output of cor(m). In this exercise,
we use the simulated data to illustrate that the ICC calculated from a linear mixed-
effects model is also 0.30, comparable to the Pearson correlation coefficient. We
set options(digits = 9) to print out many decimal points in the variance
estimates.

> library(MASS) # mvrnorm() below
> options(digits=9)
> set.seed(11)
> S <- matrix(c(1,.30,.30,1), ncol = 2)
> m <- mvrnorm(n = 1000, mu = c(0,0), Sigma = S,

empirical = T)

226 11 Linear Mixed-Effects Models in Cluster-Randomized Studies

> round(m[1:7,], 3)
[,1] [,2]

[1,] -0.556 0.285
[2,] 0.056 0.366
[3,] -1.475 0.142
[4,] -1.413 -0.684
[5,] 1.236 0.871
[6,] -0.983 -0.583
[7,] 1.456 1.611
> cor(m)

[,1] [,2]
[1,] 1.0 0.3
[2,] 0.3 1.0

(a) Fit a linear mixed-effects model with a couples random effect. Write down the
model equation for the R code below.

> t.df <- data.frame(subj=paste("s",1:2000,sep=""),
+ y = as.vector(m),
+ couple=rep(paste("c",1:1000,sep=""),2))
> library(lme4)
> lmer.t1 <- lmer(y ˜ 1 + (1 | couple), data=t.df)

(b) Calculate the ICC for couples.
(c) Is the ICC 0.30, the same as the Pearson correlation coefficient?
(d) Fit the same model using the lme() function in package nlme.
(e) Find the numerator and denominator for the ICC for couples in the output. Are

the numerator and denominator the same as in lmer.t1?
(f) Calculate the ICC. Is it also 0.30?
(g) Change the covariance matrix in the simulated data so that the covariance

between the two columns is 0.65. Verify that the ICC calculated from a revised
lmer() model is also 0.65.

11.3. Simulate statistical power in training health care providers in depression
screening.
In Sect. 11.9.1 we run a simulation to estimate the statistical power of a study to
help health care providers recognize signs of depression. We assume a Pearson cor-
relation coefficient of 0.45 among patients seeing the same health care provider.

(a) What is the estimated statistical power if the correlation is higher, at 0.60? All
other things being equal, does a higher correlation make the statistical power go
higher, lower, or about the same?

(b) If the higher correlation decreases statistical power, then we need more data to
compensate for the loss in power. Would it help to increase the number of health
care providers to 45 (keeping the same the four patients per provider)?

Exercises 227

(c) If we cannot increase the number of health care providers in the study, then
would it help to increase the number of patients per health care provider from
the original 4 to 8?

(d) Which helps more, increasing the number of health care provider to 45 or
increasing the number of patients to 8?

11.4. Statistical power estimation by formula and by simulation.
The simulation code in Sect. 11.9.1 can be modified to estimate the statistical power
for a cluster-randomized study. We can then compare the estimated power figures
by simulation and by formula (Donner and Klar 2000). The rmvnorm() function
in the mvtnorm package may be used to generate simulated multivariate normal
data.

(a) Make the necessary modifications to the code to simulate a cluster-randomized
study with an estimated effect size of 0.20, six groups in each of the two
intervention conditions, an ICC of 0.005, and 100 individual participants per
group. Set the statistical power for a two-sided Type-I error rate of 0.01.

(b) Using the dk.pow() function above, calculate the statistical power at a two-
sided Type-I error rate of 0.01.

(c) What is the estimated statistical power by simulation? Does it agree with the
statistical power calculated from the formula?

Appendix A
Data Management with a Database

This appendix contains the source code for creating the database in Fig. 2.1 on
page 34. Here we use an open source database software program called PostgreSQL
(http://www.postgresql.org/). The source code should also work with
other open source database software programs (e.g., MySQL) and proprietary
database software programs (e.g., ACCESS and SQL server by Microsoft).

A.1 Create Database and Database Tables

The first step is to create a database. This can be done by clicking “New” on a
database software program with a graphical user interface. From that new database
you can add database tables. New database tables can be added by point and click,
or by syntax:

CREATE TABLE subjchar (
id char(4) NOT NULL PRIMARY KEY,
sex char(1) NOT NULL,
edu integer,
race char(1));

CREATE TABLE baseassess (
id char(4) NOT NULL,
bsi integer,
bdi integer,
bdate date);

CREATE TABLE ema (
id char(4) NOT NULL,
tstamp timestamp DEFAULT current_timestamp,
smoke integer CONSTRAINT conl

CHECK (smoke >= 0 AND smoke <= 1));

Y. Li and J. Baron, Behavioral Research Data Analysis with R, Use R,
DOI 10.1007/978-1-4614-1238-0, © Springer Science+Business Media, LLC 2012

229

http://www.postgresql.org/

230 A Data Management with a Database

These three statements are written in the Structured Query Language (SQL), the
standard language for relational databases. These commands should work across
most software programs. Note that the variable smoke in the last table ema has a
debug feature. The value of smoke must be an integer of either 0 or 1. Any other
value would produce an error during data entry.

Creating a new database is slightly more complicated in postgreSQL. You first
create a new user and assign the new user a database management role. This is
important for security. Users with different roles are allowed to do different things.
The role of “superuser” is typically reserved for the system administrator only.
For those who like a graphical user interface, there is a database management tool
called pgAdmin for PostgreSQL. Free tutorials of pgAdmin can be found online
(http://www.pgadmin.org/).

A.2 Enter Data

The following SQL script inserts the data into the tables. A script is probably
the most transparent way to share data. In most cases, it works seamlessly across
different database programs on different hardware platforms. Usually, we use a
graphical tool like pgAdmin to enter data. When we need to share data, we use
pg dump to dump the data into a script. The script is also useful for data backup.

INSERT INTO subjchar VALUES (’s001’, ’F’, 3, ’W’);
INSERT INTO subjchar VALUES (’s002’, ’F’, 2, ’A’);
INSERT INTO subjchar VALUES (’s003’, ’M’, 1, ’W’);
INSERT INTO subjchar VALUES (’s004’, ’M’, 4, ’B’);
INSERT INTO subjchar VALUES (’s005’, ’F’, 2, ’B’);

INSERT INTO baseassess VALUES (’s001’, 10, 13,
’2009-06-28’);

INSERT INTO baseassess VALUES (’s002’, 12, 15,
’2009-06-17’);

INSERT INTO baseassess VALUES (’s003’, 12, 10,
’2009-07-09’);

INSERT INTO baseassess VALUES (’s004’, 14, 16,
’2009-07-12’);

INSERT INTO baseassess VALUES (’s005’, 11, 10,
’2009-07-12’);

INSERT INTO ema VALUES (’s001’,
’2009-06-29 09:20:25’, 1);

INSERT INTO ema VALUES (’s001’,
’2009-06-29 09:35:35’, 1);

http://www.pgadmin.org/

A.2 Enter Data 231

INSERT INTO ema VALUES (’s001’,
’2009-06-29 09:50:35’, 0);

INSERT INTO ema VALUES (’s001’,
’2009-06-29 10:15:05’, 1);

INSERT INTO ema VALUES (’s001’,
’2009-06-29 10:35:55’, 1);

INSERT INTO ema VALUES (’s002’,
’2009-06-19 07:35:35’, 1);

INSERT INTO ema VALUES (’s002’,
’2009-06-19 08:05:15’, 1);

INSERT INTO ema VALUES (’s002’,
’2009-06-19 08:35:35’, 0);

INSERT INTO ema VALUES (’s002’,
’2009-06-19 09:05:55’, 0);

INSERT INTO ema VALUES (’s002’,
’2009-06-19 09:42:32’, 0);

INSERT INTO ema VALUES (’s003’,
’2009-07-10 11:42:30’, 0);

INSERT INTO ema VALUES (’s003’,
’2009-07-10 12:02:30’, 1);

INSERT INTO ema VALUES (’s003’,
’2009-07-10 12:25:17’, 0);

INSERT INTO ema VALUES (’s003’,
’2009-07-10 13:02:19’, 0);

INSERT INTO ema VALUES (’s003’,
’2009-07-10 13:34:49’, 1);

INSERT INTO ema VALUES (’s004’,
’2009-07-13 06:34:30’, 1);

INSERT INTO ema VALUES (’s004’,
’2009-07-13 07:11:33’, 1);

INSERT INTO ema VALUES (’s004’,
’2009-07-13 07:43:27’, 1);

INSERT INTO ema VALUES (’s004’,
’2009-07-13 08:11:46’, 1);

INSERT INTO ema VALUES (’s004’,
’2009-07-13 08:47:03’, 1);

INSERT INTO ema VALUES (’s005’,
’2009-07-14 11:07:03’, 1);

INSERT INTO ema VALUES (’s005’,
’2009-07-14 11:32:23’, 1);

INSERT INTO ema VALUES (’s005’,
’2009-07-14 12:02:33’, 0);

INSERT INTO ema VALUES (’s005’,
’2009-07-14 12:42:19’, 0);

232 A Data Management with a Database

INSERT INTO ema VALUES (’s005’,
’2009-07-14 13:29:07’, 1);

INSERT INTO ema (id, tstamp) VALUES (’s005’,
’2009-07-14 14:03:54’);

In the last data entry, the variable smoke is missing. Missing values are stored
internally as NULL. NULL values are automatically converted by R into NA. Some
data analysts use different values to capture types of missing data (e.g., �99 for
survey nonresponse, and �66 for refusal). Sometimes, a blank entry is used to
represent missing data, causing the software program to convert a numeric variable
into a character string. These steps should be avoided because they are typically
counterproductive.

The SQL query below retrieves all EMA assessments of smoking and matches
them to each subject’s characteristics and baseline assessments.

SELECT subjchar.id, sex, edu, race, bsi, bdi, tstamp,
smoke FROM subjchar, baseassess, ema

WHERE subjchar.id = baseassess.id
AND subjchar.id = ema.id

ORDER BY subjchar.id, tstamp;

Below is the output of the SELECT statement. It is in long format. There is no need
to run merge().

id | sex | edu | race | bsi | bdi | tstamp | smoke
------+-----+-----+------+-----+-----+---------------------+-------
s001 | F | 3 | W | 10 | 13 | 2009-06-29 09:20:25 | 1
s001 | F | 3 | W | 10 | 13 | 2009-06-29 09:35:35 | 1
s001 | F | 3 | W | 10 | 13 | 2009-06-29 09:50:35 | 0
s001 | F | 3 | W | 10 | 13 | 2009-06-29 10:15:05 | 1
s001 | F | 3 | W | 10 | 13 | 2009-06-29 10:35:55 | 1
s002 | F | 2 | A | 12 | 15 | 2009-06-19 07:35:35 | 1

...
s005 | F | 2 | B | 11 | 10 | 2009-07-14 12:42:19 | 0
s005 | F | 2 | B | 11 | 10 | 2009-07-14 13:29:07 | 1
s005 | F | 2 | B | 11 | 10 | 2009-07-14 14:03:54 |

A.3 Using RODBC to Import Data from an ACCESS Database

R can use library(RODBC) to import data tables from a Microsoft ACCESS file,
or from any other ODBC-compliant database management systems. This section
covers how to do it on a standalone PC running Windows XP. We assume that you
have already created a database using ACCESS. It is saved in the file systbl.mdb.

The process involves three steps. The first step is to give the ACCESS file a Data
Sources definition.

A.3 Using RODBC to Import Data from an ACCESS Database 233

A.3.1 Step 1: Adding an ODBC Data Source Name

The first step is to create an “ODBC Data Source Name” (DSN) using the Control
Panel of the Windows XP machine. Go to Start ! Control Panel ! Administrative
Tools. Under Administrative Tools (see a screenshot below), you double click the
“Data Sources (ODBC)” icon to set up a new “ODBC data source name.”

A.3.2 Step 2: ODBC Data Source Name Points to the ACCESS
File

Clicking on the “Data Sources (ODBC)” icon opens the “ODBC Data Source
Administrator” window. In the example below the system already has a couple of
DSNs, including one for dBASE files, one for Excel files, and one for generic MS

234 A Data Management with a Database

Access Databases. We need to create a new DSN that points to where the ACCESS
file is saved on the hard drive. This is done by clicking the “User DSN” tab and then
“Add.”

In the “Data Source Name” field, a name can be given to the new data source.
Here we call it “Resolve SRS.” Next you need to specify where the DSN points
to by clicking “Create.” A simple file browser pops up (not shown here). You
use the file browser to locate where the ACCESS file is saved, in this example
it is H:\Resolve Database\SystemTbl\systbl.mdb. The “H:” drive is
a shared hard drive. Close the file browser. The “Database” box should show an
abbreviated path that points to where the .mdb file is. The “Description” field can
be left blank, or filled in with a short description of the DSN. Here for simplicity we
enter the directory path to the ACCESS database file.

The “Resolve SRS” data source name (and the systbl.mdb file it points to)
is now available to RODBC. RODBC can connect to “Resolve SRS,” which points
to where the systbl.mdb file is saved. It helps to think of “Resolve SRS” as a
translator. Any computer program that understands ODBC and the SQL language
can connect to it.

A.3.3 Step 3: Run RODBC to Import Data

Finally, you load RODBC (line 1), make a connection to “Resolve SRS” (line 2),
display simple information about the connection (line 3), and fetch a database table
called tblSRS_Data (line 4).

library(RODBC)
ch <- odbcConnect("Resolve_SRS")
odbcGetInfo(ch)

A.3 Using RODBC to Import Data from an ACCESS Database 235

DBMS_Name DBMS_Ver Driver_ODBC_Ver
"ACCESS" "04.00.0000" "03.51"

Data_Source_Name Driver_Name Driver_Ver
"Resolve_SRS" "odbcjt32.dll" "04.00.6304"

ODBC_Ver Server_Name
"03.52.0000" "ACCESS"

df1 <- sqlFetch(ch, "tblSRS_Data")
odbcClose(ch) # close connection
save(df1, file = "C:/data/SRS.RData")

The sqlFetch() function fetches the whole table. A standard SQL query can be
used, like df1 <- sqlQuery(ch, "select * from tblSRS Data")
or df1 <-sqlQuery(ch, "select * from tblSRS Data limit
10"). (if you only want the first ten entries). Other more sophisticated SQL
queries can be used, such as selecting several variables from one table and merge
them with other variables from another table, matched by id numbers. The save()
command saves df1 into an external R data file. Later this file can be restored by
load().

References

Agresti, A. (2002). Categorical data analysis. Hoboken, NJ: Wiley.
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on

Automatic Control, 19(6), 716–723.
Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using gibbs

sampling. Journal of Educational Statistics, 17, 251–269.
Allison, P. D. (2002). Missing data. Thousand Oaks, CA: Sage Publications, Inc.
Atkins, D. C. (2005). Using multilevel models to analyze couple and family treatment data: Basic

and advanced issues. Journal of Family Psychology, 19, 98–110.
Atkins, D. C., & Gallop, R. J. (2007). Rethinking how family researchers model infrequent out-

comes: A tutorial on count regression and zero-inflated models. Journal of Family Psychology,
21(4), 726–735.

Baayen, R., Davidson, D., & Bates, D. (2008). Mixed-effects modeling with crossed random
effects for subjects and items. Journal of Memory and Language, special issue on Emerging
Data Analysis Techniques, 59, 390–412.

Baker, F. B., & Kim, S.-H. (2004). Item response theory: Parameter estimation techniques.
New York: Marcel Dekker, Inc.

Baldwin, P., Bernstein, J., & Wainer, H. (2009). Hip psychometrics. Statistics in Medicine, 28,
2277–2292.

Baron, J. (2010). Looking at individual subjects in research on judgment and decision making (or
anything). Acta Psychologica Sinica, 42(1), 88–98. Available from http://journal.
psych.ac.cn/xuebao/qikan/epaper/zhaiyao.asp?bsid=3056, last accessed
April, 2011.

Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social
psychological research: Conceptual, strategic, and statistical considerations. Journal of
Personality and Social Psychology, 51, 1173–1182.

Bock, R., & Lieberman, M. (1970). Fitting a response model for n dichotomously scored items.
Psychometrika, 35, 179–197.

Bock, R. D., & Aitkin, M. (1981). Margnal maximum likelihood estimation of item parameters:
Application of an em algorithm. Psychometrika, 46(4), 443–459.

Bond, T. G., & Fox, C. M. (2001). Applying the rasch model: Fundamental measurement in the
human sciences. Mahwah, NJ: Lawrence Erlbaum Associates.

Breiman, L. (1992). The little bootstrap and other methods for dimensionality selection in
regression: X-fixed prediction error. Journal of the American Statistical Association, 87,
738–754.

Bryk, A. S., & Raudenbush, S. W. (2002). Hierarchical linear models (2 ed., Vol. 1). Newbury
Park, CA: Sage Publications, Inc.

Chambers, J. M., & Hastie, T. J. (1993). Statistical models in s. New York: Chapman & Hall.

Y. Li and J. Baron, Behavioral Research Data Analysis with R, Use R,
DOI 10.1007/978-1-4614-1238-0, © Springer Science+Business Media, LLC 2012

237

http://journal.psych.ac.cn/xuebao/qikan/epaper/zhaiyao.asp?bsid=3056
http://journal.psych.ac.cn/xuebao/qikan/epaper/zhaiyao.asp?bsid=3056

238 References

Chu, S. (2001). Pricing the C’s of diamond stones (Vol. 9) (No. 2). http://www.amstat.
org/publications/jse/v9n2/datasets.chu.html; last assessed: January, 2011.

Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in
psychological research. J. of Verbal Learning and Verbal Behavior, 12, 335–359.

Cnaan, A., Laird, N. M., & Slasor, P. (1997). Using the general linear mixed model to analyze
unbalanced repeated measures and longitudinal data. Statistics in Medicine, 16, 2349–2380.

Cumming, G. (2006). How the noncentral t distribution got its hump. http://www.stat.auckland.
ac.nz/ iase/publications/17/C106.pdf, last accessed April, 2011.

Curtis, S. M. (2010). Bugs code for item response theory. Journal of Statistical Software, 36,
1–34.

Dalgaard, P. (2007, October). New functions for multivariate analysis. R News, 7(2), 2–7.
de Ayala, R. J. (2009). The theory and practice of item response theory. New York, NY: The

Guilford Press.
Diggle, P., Heagerty, P., Liang, K. Y., & Zeger, S. L. (2002). Analysis of longitudinal data. Oxford,

Great Britain: Oxford University Press.
Donner, A., & Klar, N. (1996). Statistical considerations in the design and analysis of community

intervention trials. J Clin Epidemiol, 49(4), 435–9.
Donner, A., & Klar, N. (2000). Design and analysis of cluster randomization trials in health

research. London: Arnold.
Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ:

LEA.
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*power 3: A flexible statistical power

analysis program for the social, behavioral, and biomedical sciences. Behavioral Research
Methods, 39, 175–191.

Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2004a). Applied longitudinal analysis. Hoboken,
NJ: John Wiley & Sons.

Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2004b). Applied longitudinal analysis. Hoboken,
NJ: John Wiley & Sons.

Flay, B. R., Miller, T. Q., Hedeker, D., Siddiqui, O., Britton, C. F., Brannon, B. R., et al. (1995). The
television, school, and family smoking prevention and cessation project. viii. student outcomes
and mediating variables. Prev Med, 24(1), 29–40.

Fox, J. (2002). An R and S-Plus companion to applied regression. Thousand Oaks, CA, USA:
Sage Publications. Available from http://socserv.socsci.mcmaster.ca/jfox/
Books/Companion/index.html (ISBN 0-761-92279-2)

Fox, J.-P. (2010). Bayesian item response modeling: Theory and applications. New York:
Springer.

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models.
New York: Cambridge University Press.

Gelman, A., & Rubin, D. B. (1992). Inferene from iterative simulation using multiple sequences.
Statistical Science, 7(4), 457–511.

Graham, J. W. (2009). Missing data analysis: making it work in the real world. Annual Review of
Psychology, 60, 549–76.

Graham, J. W., Hofer, S., Donaldson, S., MacKinnon, D., & Schafer, J. (1997). Analysis with
missing data in prevention research. In K. Bryant, M. Windle, & S. West (Eds.), The science
of prevention: methodological advances from alcohol and substance abuse research (p. pp.
325–366). Washington, D.C.: American Psychological Association.

Hardin, J. M., Anderson, B. S., Woodby, L. L., Crawford, M. A., & Russell, T. V. (2008). Using
an empirical binomial hierarchical bayesian model as an alternative to analyzing data from
multisite studies. Eval Rev, 32(2), 143–56.

Harrell, J., F. E. (2001a). Regression modeling strategies: with applications to linear models,
logistic regression, and survival analysis. New York: Springer-Verlag.

Harrell, J., F. E. (2001b). Regression modeling strategies: with applications to linear models,
logistic regression, and survival analysis. New York: Springer-Verlag.

Hays, W. L. (1988). Statistics (4th ed. ed.). New York: Holt, Rinehart and Winston.

http://www.amstat.org/publications/jse/v9n2/datasets.chu.html
http://www.amstat.org/publications/jse/v9n2/datasets.chu.html
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/index.html
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/index.html

References 239

Hedeker, D., & Gibbons, R. D. (1997). Application of random-effects pattern-mixture models for
missing data in longitudinal studies. Psychological Methods, 2, 64–78.

Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (1991). Fundamentals of exploratory analysis of
variance. New York: John Wiley & Sons.

Hoenig, J. M., & Heisey, D. M. (2001). The abuse of power: The pervasive fallacy of power
calculations for data analysis. The American Statistician, 55, 19–24.

Honaker, J., & King, G. (2010). What to do about missing valu3s in time series cross-section data.
American Journal of Political Science, 54(2), 561–581.

Horton, J., N, Brown, E. R., & Quian, L. (2004). Use of r as a toolbox for mathematical statistics
exploration. The American Statistician, 58, 343–357.

Horton, N. J., & Kleinman, K. P. (2007). Much ado about nothing: A comparison of missing data
methods and software to fit incomplete data regression models. Am Stat, 61(1), 79–90.

Horton, N. J., & Lipsitz, S. R. (2001). Multiple imputation in practice: comparison of software
packages for regression models with missing variables. The American Statistician, 55(3),
244–254.

Jackman, S. (2009). Bayesian analysis for the social sciences. Chichester, United Kingdom: John
Wiley & Sons, Ltd.

Janega, J. B., Murray, D. M., Varnell, S. P., Blitstein, J. L., Birnbaum, A. S., & Lytle, L. A.
(2004). Assessing intervention effects in a school-based nutrition intervention trial: which
analytic model is most powerful? Health Educ Behav, 31(6), 756–74.

Karabatsos, G. (2003). Comparing the aberrant response detection performance of thirty-six person
fit statistics. Applied Measurement in Education, 16(4), 277–298.

King, G., Honaker, J., Joseph, A., & Scheve, K. (2001). Analyzing incomplete political science
data: An alternative algorithm for multiple imputation. American Political Science Review,
95(1), 49–69.

Kraemer, H. C., Mintz, J., Noda, A., Tinklenberg, J., & Yesavage, J. A. (2006). Caution regarding
the use of pilot studies to guide power calculations for study proposals. Arch Gen Psychiatry,
63, 484–489.

Laird, N. M., & Ware, J. H. (1982). Random effects models for longitudinal data. Biometrics, 38,
963–974.

Lazzeroni, L. G., Schenker, N., & Taylor, J. M. G. (1990). Robustness of multiple-imputation
techniques to model misspecification. American Statistical Association Proceedings of the
Survey Research Methods Section, 260–265.

Levin, J. R., & Serlin, R. C. (2000). Changing students’ perspectives of mcnemar’s test of change.
Journal of Statistics Education, 8(2). (http://www.amstat.org/publications/
jse/secure/v8n2/levin.cfm)

Li, Y. (2006). Using the open-source statistical language r to analyze the dichotomous rasch model.
Behavioral Research Methods, 38, 532–541.

Little, R. (1993). Pattern-mixture models for multivariate incomplete data process,. Biometrics,
44, 175–188.

Little, R. J. A. (1988). Missing-data adjustment in large surveys. Journal of Business & Economic
Statistics, 6, 287–301.

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2 ed.). New York:
John Wiley & Sons, Inc.

Lord, F. M. (1980). Application of item response theory to practical testing problems. Hillsdale,
NJ: Erlbaum.

Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). Winbugs – a bayesian modelling
framework: concepts, structure, and extensibility. Statistics and Computing, 10, 325–337.

MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A
comparison of methods to test mediation and other intervening variable effects. Psychol
Methods, 7(1), 83–104.

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149–174.
Masters, G. N., & Wright, B. D. (1996). The partial credit model. In W. Linden (Ed.),

(pp. 101–121). New York: Springer-Verlag.

http://www.amstat.org/publications/jse/secure/v8n2/levin.cfm
http://www.amstat.org/publications/jse/secure/v8n2/levin.cfm

240 References

Maxwell, S., & Delaney, H. (1990). Designing experiments and analyzing data. Belmont, CA:
Wadsworth Inc.

Mittal, Y. (1991). Homogeneity of subpopulations and simpson’s paradox. Journal of the American
Statistical Association, 86, 167–172.

Moore, D., & McCabe, G. P. (1993). Introduction to the practice of statistics. New York, NY:
W. H. Freeman and Co.

Muraki, E. (1992). A generalized partial credit model: Application of an em algorithm. Applied
Psychological Measurement, 16, 159–176.

Murray, D. M. (1998a). Design and analysis of group-randomized trials. New York: Oxford
University Press.

Murray, D. M. (1998b). Group-randomized trials. New York: Oxford University Press.
Murray, D. M., Varnell, S. P., & Blitstein, J. L. (2004). Design and analysis of group-randomized

trials: a review of recent methodological developments. Am J Public Health, 94(3), 423–32.
Ntzoufras, I. (2009). Bayesian modeling using winbugs. Hoboken, NJ: John Wiley & Sons, Inc.
Patz, R. J., & Junker, B. W. (1999). Applications and extensions of mcmc in irt: Multiple item

types, missing data, and rated responses. Journal of Educational and Behavioral Statistics,
24(4), 342–366.

Peduzzi, P., Concato, J., Kemper, E., TR, T. H., & Feinstein, A. (1996). A simulation study of the
number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology,
49(12), 1373–9.

Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-Plus. New York, NY:
Springer. (ISBN 0-387-98957-0)

Pinheiro, J. C., & Bates, D. M. (2004). Mixed-effects models in s and S-Plus. New York: Springer-
Verlag.

CRAN. (2011). Cran task view on psychometric models and methods. http://cran.r-
project.org/web/views/Psychometrics.html. last accessed: January, 2011.

Quintana, S. M., & Maxwell, S. E. (1994). A Monte Carlo comparison of seven �-adjustment
procedures in repeated-measures designs with small sample sizes. Journal of Educational
Statistics, 19(1), 57–71.

Raaijmakers, J. G. W., Schrijnemakers, J. M. C., & Gremmen, F. (1999). How to deal with “the
language-as-fixed-effect” fallacy: common misconceptions and alternative solutions. Journal
of Memory and Language, 41, 416–426.

Raftery, A., & Lewis, S. (1992). How many iterations in the gibbs sampler? In J. Bernardo,
J. Berger, A. Dawid, & A. Smith (Eds.), Bayesian statistics (Vol. 4, pp. 763–774). Oxford, UK:
Claredon Press.

Rasch, G. (1980). Probabilistic models for some intelligency and attainment tests. Chicago: The
University of Chicago Press.

Revelle, W. (2010). psych: Procedures for psychological, psychometric, and personality
research [Manuel de logiciel]. Evanston, Illinois. Available from http://personality-
project.org/r/psych.manual.pdf (R package version 1.0-90)

Rubin, D. (1987). Multiple imputation for nonresponse in surveys. Hoboken, NJ: John Wiley &
Sons.

Rubin, D. (1996). Multiple imputation after 18+ years. Journal of the American Statistical
Association, 91, 473–489.

Schafer, J. L. (1997). Analysis of incomplete multivariate data. New York: Chapman & Hall.
Schafer, J. L., & Graham, J. W. (2002). Missing data: our view of the state of the art. Psychological

Methods, 7, 147–177.
Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing-data problems:

a data analyst’s perspective. Multivariate Behavioral Research, 33, 545–571.
Scheipl, F. (2010). Exact (restricted) likelihood ratio tests for mixed and additive mod-

els. http://cran.r-project.org/web/packages/RLRsim/index.html, last
accessed June, 2010.

Searle, S., Casella, G., & McCulloch, C. E. (1992). Variance components. New York: John Wiley
& Sons.

http://cran.r-project.org/web/views/Psychometrics.html
http://cran.r-project.org/web/views/Psychometrics.html
http://personality-project.org/r/psych.manual.pdf
http://personality-project.org/r/psych.manual.pdf
http://cran.r-project.org/web/packages/RLRsim/index.html

References 241

Shoukri, M. M., & Pause, C. A. (1999). Statistical methods for health sciences (2nd ed.). Boca
Raton, FL: CRC Press LLC.

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: uses in assessing rater reliability.
Psychological Bulletin, 86(2), 420–428.

Smeeth, L., & Ng, E. S.-W. (2002). Intraclass correlation coefficients for cluster randomized trials
in primary care: data from the mrc trial of the assessment and management of older people in
the community. Controllled Clinical Trials, 23, 409–421.

Stevens, J. (1992). Applied multivariate statistics for the social sciences. Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc.

Student. (1908). The probable error of a mean. Biometrika, 6, 1–25.
Su, Y.-S., Gelman, A., Hill, J., & Yajima, M. (in press). Multiple imputation with diagnostics

(mi) in R: Opening windows into the black box. Journal of Statistical Software. Retrieved
Sept. 30, 2011, from http://www.stat.columbia.edu/˜gelman/research/
published/mipaper.rev04.pdf.

Thissen, D., & Steinberg, L. (1986). A taxonomy of item response models. Psychometrika, 51(4),
567–577.

Torre, J. de la, Stark, S., & Chernyshenko, O. S. (2006). Markov chain monte carlo estimation
of item parameters for the generalized graded unfolding model. Applied Psychological
Measurement, 30(3), 216–232.

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s (4th ed.). New York:
Springer.

Vittinghoff, E., & McCulloch, C. E. (2007). Relaxing the rule of ten events per variable in logistic
and cox regression. American Journal of Epidemiology, 165(6), 710–718.

Wickens, T. D. (1989). Multiway contingency tables analysis for the social sciences. In (p. 78).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Wonnacott, T. H., & Wonnacott, R. J. (1987). Regression, a second course in statistics. Malabar,
FL: R.E. Krieger Pub. Co.

Wright, B. D., & Stone, M. H. (1979). Best test design. Chicago: MESA Press.
Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta

Psychiatrica Scandinavica, 67, 361–370.

http://www.stat.columbia.edu/~gelman/ research/published/mipaper.rev04.pdf
http://www.stat.columbia.edu/~gelman/ research/published/mipaper.rev04.pdf

Index

A
AIC, 118, 186, 211
Akaike information criterion, see AIC
Amelia package, 171
AmeliaView(), see also Amelia package,

171
aov(), 81
apply(), 14, 15, 21
aregImpute(), see also Hmisc package,

163
augPred, 189

B
barplot(), 55
Bayesian Information Criterion, see BIC
BIC, 186, 211
binom.test(), 43
bioconductor package, see Packages
by function, 21

C
casewise deletion, 162
character strings, 10

search and replace, 11
cluster randomized trials, 205
coda.samples(), 156
comparePred, 190
conditional independence in contingency

tables, 46
contrasts, 27
coplot(), 56, 113
corSymm, 192

D
data layout

long format, 19, 21, 31
wide format, 19, 21, 31, 37

data.frame(), 2, 22
datasets

bfi dataset, 147
sleep dataset, 1
tvsfp dataset, 206

date data type, see POSIX date
density, 39
dev.copy2eps(), 56
dev.off(), 59
dev2bitmap(), 56
difftime(), 11

E
Error(), 24, 81, 83
eval(), 12
event per variable (EPV), 123
exactRLRT, 200
example(), 6

F
Fisher information, 144
Fisher’s exact test, 47
fisher.test(), 47
fixed effects

degrees of freedom, 215
highest posterior density intervals, 202, see

also HPDinterval(), 212
Wald test, 213

floating point arithmetic, 3, 7

Y. Li and J. Baron, Behavioral Research Data Analysis with R, Use R,
DOI 10.1007/978-1-4614-1238-0, © Springer Science+Business Media, LLC 2012

243

244 Index

G
Generalized Partial Credit Model, 146
Gibbs sampler, 153
gplots package, 55
Greenhouse-Geisser epsilon, see also

sphericity, 104
group randomized trials, 205
groupedData(), 206

H
help(), 1, 6
help.search(), 6
heteroscedasticity, 190
Hmisc package, 163
HPDinterval(), 202, 212
Huynh–Feldt epsilon, 105

I
ICC, 206, 220, 221
identify(), 58
install.packages(), see Packages
Intraclass Correlation, see ICC

J
JAGS, 153
jags.samples(), 153

L
Language-as-Fixed-Effect Fallacy, 177
latent regression Rasch model, 152, 153
lattice package, 72
legend(), 58, 64
likelihood ratio test, 211
linear model distributional assumptions, 114
lm(), see also multiple regression, 109

model comparison, 109
lme4 package, see Packages
load(), 5
logistic regression, 119

link function, 119
LSAT, see also Rasch Model, 140
ltm package, see Packages

M
mapply(), 14
matplot(), 56
matrix notations in model equation, 121, 216
McNemar’s test, 49
mediation and moderation effects, 49

merge(), 32
missing data

indeterminacy of missing at random, 173
nature of, 173

model overfit, 122
moderation effect, 47
multiple imputation, 163

Amelia package, 171
AmeliaView(), see Amelia package
aregImpute(), 163
bayesglm.mi(), see also mi package,

171
chained equation, 168
fit.mult.impute(), 164, 166
glm.mi(), see also mi package, 170
imputed data, 165
mi package, 168
pooling results, 166, 170, 173
predictive mean matching, 163–165
zelig() package, 172

multiple R-squared, 115
multiple regression

diamond pricing example, 110
lm(), 109
standardized coefficients, 109

O
objects(), 2
operators

<- assignment operator, 1
== equal, 1
%*% , 8
! not, 7
j element wise OR, 7
jj first element OR, 7
: sequence operator, 1

overparameterization, 210

P
Packages

Amelia package, 171
bioconductor package, 6
CMD INSTALL command, 6
gplots package, 55
Hmisc package, 163
install.packages(), 6
languageR package, 179
lattice package, 72
lme4 package, 206
ltm package, 6, 139, 140, 145
mi package, 168
psych package, 6, 147

Index 245

rjags package, 153
RLRsim package, 200
RODBC package, 35, 232
RPostgreSQL package, 34
update.packages(), 6
zelig package, 172

panel.xyplot(), 74
parse(), 12
Partial Credit Model, 146
plotCI(), 55
POSIX date, 11
postscript(), 59
psych package, see Packages

Q
qqnorm, 190
qqnorm.lme(), 211
q quit function, 1

R
random effect test, 200
ranef(), 219
Rasch Model, 139
read.table(), 2
recoding data, 28
reshape(), 32
residual plot, 114
RLRsim package, 200
RODBC package, see Packages
RPostgreSQL package, see Packages

S
sapply function, 21
saving graphics, 56
setwd, see Windows R
sign test, 43
solve(), 122
sort

character string, see sprintf
source(), 3
sphericity, 102

Greenhouse-Geisser epsilon, 103
sprintf, 33
statistical power, 129

basic concepts, 130
by simulation, 133, 224
cluster-randomized design, 135, 223
G*Power computer program, 133
non-centrality parameter (ncp), 131

power.prop.test(), 132
power.t.test(), 129
power.t2n.test(), 131
repeated-measures ANOVA, 133

stripchart(), 56, 57
strptime(), 11, 30
sunflowerplot(), 58

T
t.test, 1
tapply(), 13
tapply function, 23
text(), 58, 61
timestamp variables, 30

U
update.packages(), see Packages

V
varIdent, 192
vector

character strings, see also character strings,
10

how to index a sequence, 10
how to index elements, 10

W
Windows R

nn path names, 2
setwd(), 4, 5
working directory, 4

X
xspline(), 68
xyplot()

panel.lmline(), 74
panel.loess(), 74
panel option, 74
strip option, 75, 207
basics, 72
change strip appearance, 75, 207
settings by trellis.par.set(), 75

Z
zelig() package, see also multiple

imputation, 172

	Behavioral Research Data Analysis with R
	Preface
	Contents
	Chapter 1 Introduction

	Chapter 2 Reading and Transforming Data Format

	Chapter 3 Statistics for Comparing Means and Proportions

	Chapter 4 R Graphics and Trellis Plots

	Chapter 5 Analysis of Variance: Repeated-Measures

	Chapter 6 Linear and Logistic Regression

	Chapter 7 Statistical Power and Sample Size Considerations

	Chapter 8 Item Response Theory

	Chapter 9 Imputation of Missing Data

	Chapter 10 Linear Mixed-Effects Models in Analyzing Repeated-Measures Data

	Chapter 11 Linear Mixed-Effects Models in Cluster-Randomized Studies

	Appendix A Data Management with a Database
	References
	Index

