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Foreword to the English Translation

Parts 1 and 2 of “Lectures in Mathematical Statistics” by Yu. N. Lin'kov were 
originally published in Russian as two separate books. For the English translation, 
the two parts are combined into one book. Each part has its own preface and list 
of references, with chapters, sections, theorems, etc., numbered independently in 
each part.





Part 1





Preface to Part 1

The author’s idea was that this textbook should be aimed at students of math­
ematics having a background in general university courses in probability theory 
and mathematical statistics. The textbook was written based on the courses given 
by the author for students of mathematical departments at Volgograd University, 
Volgograd, Russia, and Donetsk University, Donetsk, Ukraine.

Among the books which may be used as a first reading in mathematical statis­
tics, we mention the books by Cramer [9] and van der Waerden [34], which have 
already become the cornerstones in statistics. These books are still an authority, 
and many generations of experts have been brought up with these books. Elements 
of mathematical statistics are an essential ingredient of other general courses on 
probability theory. Let us mention the textbooks by Gnedenko [12], Gikhman, 
Skorokhod, and Yadrenko [11], Rozanov [27], Sevast’yanov [29], Tutubalin [33], 
and Shiryaev [30]. The textbooks by Shmetterer [31], Ivchenko and Medvedev 
[14], and Kozlov and Prokhorov [19] can be regarded as thoroughly developed 
introductions into mathematical statistics. The books on mathematical statistics 
by Borovkov [5], [6] take a special rank among textbooks for undergraduate and 
postgraduate students.

In writing this book, the author has used Russian and foreign literature on 
mathematical statistics, as well as the experience and traditions of teaching prob­
ability at Volgograd University and Donetsk University. Let us mention here the 
books by Rao [26], Cox and Hinkley [8], van der Waerden [34], and Bickel and 
Doksum [4] that thoroughly work out, each in its own way, problems for teaching 
mathematical statistics.

Part 1 of this book begins with a presentation of sampling using one-dimen­
sional samples (Chapter 1) and multidimensional samples (Chapter 2) as an ex­
ample. The basic sample characteristics are introduced and their asymptotic and 
nonasymptotic properties are studied. Main distributions related to the multidi­
mensional Gaussian distribution are defined.

Chapter 3 deals with the estimation of parameters of distributions. In this 
chapter, measures of quality of statistical estimators are introduced and some op­
timality criteria are given. Optimal estimation of a scale parameter and a location 
parameter is studied. For regular families of distributions, approaches leading to 
effective estimators based on the Cramer-Rao inequality are given.

Chapter 4 deals with the theory of sufficient statistics and its applications 
to the construction of optimal estimators of unknown parameters and parametric 
functions.

In Chapter 5, general methods for constructing statistical estimators of param­
eters of distributions are considered and the main properties of the corresponding 
estimators are established.



PREFACE TO PART 1

The limited size of the book did not allow us to include some important sta­
tistical procedures or to consider other topics in the theory of parametric estima­
tion. Part 2 of the textbook will deal with problems related to testing statistical 
hypotheses. The author hopes that this textbook will enable the reader to work in­
dependently, using other sources, on the topics we only touch upon here. We would 
recommend the books by Wilks [35] and Lehmann [21] and the three-volume mono­
graph by Kendall and Stuart [16]-[18]. Our textbook can be used in preparation 
for general courses on mathematical statistics as well as specialized courses on the 
subject.

The list of references at the end of Part 1 includes only references available for 
students in Russia and Ukraine and is by no means complete.

In the textbook, we use the common notational conventions: P and P̂  for 
probabilities; E and for mathematical expectations; D and for variances, 
etc. We use triple notation for theorems, lemmas, formulas, etc. Therefore, for 
example. Theorem 4.1.2 refers to Theorem 2 in Section 1 of Chapter 4. Sections 
are enumerated by double numbers: Section 1.4 stands for Section 4 in Chapter 1. 
The sign □  marks the end of a proof.



CHAPTER 1

Samples from One-Dimensional Distributions

1.1. Empirical distribution function and its asym ptotic behavior

Empirical distribution function. O rder statistics. Let  ̂ be a real­
valued random variable with the distribution function

F(x) =  P{^ < x}y X e R  =  (—00, 00).

Let ^1, 2̂, • • • be n independent observations of the random variable There­
fore ^1,^2, • • • ,in are independent identically distributed random variables whose 
distribution function coincides with that of the random variable that is,

< x }  = F(x)

for alH =  1,2, . . . ,  n. Denote by =  (^1, 2̂, • • •,^n) the vector of observations 
(also called a sample).

Given a; G R, introduce the random variable

^n(^) — ^ (̂—oo,x){^i)
i=l

where Ia {x) is the indicator of a set A. The function

(1.1.1) i^n(^) =  i^n{x)lny x e R y

is called the empirical distribution function.
We rearrange the observations ^1,^2, • • • ,in in ascending order and denote the 

resulting random variables by

(1.1.2) Cn,l ^  Cn,2 ^  * * * ^  Cn,n*

The terms of this sequence are called order statistics.
Note that the empirical distribution function Fn possesses all the properties of 

regular distribution functions, namely it
(1) assumes values in the interval [0, 1],
(2) does not decrease, and
(3) is left-continuous.

Note also that Fn is a step function whose jumps are at the points Cn,i) • • •»Cn,n- If 
all the observations of a sample are different (in which case all the inequalities 
in (1.1.2) are strict), then Fn{x) has n jumps whose heights are 1/n. In the general 
case, equalities may appear in (1.1.2) (in which case the function Fn{x) may have 
less than n jumps; however the jumps are proportional to l/n ).
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G livenko’s theorem . Definition (1.1.1) of the empirical distribution function 
implies that Fn{x) is the frequency of the random event < x } in n independent 
observations. Given x the probability of < x } is constant and equals F{x), By 
the Bernoulli theorem (the law of large numbers for Bernoulli trials) the empirical 
distribution function Fn{x) tends in probability to F{x) as n —̂ oo, that is,

(1.1.3) lim P{\Fn{x) — F{x)\ > e} =  0 for all £ > 0.

Moreover, by the Borel theorem (the strong law of large numbers for Bernoulli 
trials) Fn{x) tends with probability 1 to F{x) as n —> oo, that is.

(1.1.4) P { ji i^ F „ (a :)  =  F(a;)} =  1.

The convergence in relations (1.1.3) and (1.1.4) holds for every fixed x € R. How­
ever the following (stronger) Glivenko (1933) result claims that the convergence of 
Fn{x) to F{x) is, in fact, uniform with respect to x.

T heorem 1.1.1 (Glivenko) 

(1.1.5) P I  lim sup \Fn{x) — F{x)\ =  o l  =  1.

Proof. Let Xr,k be the minimal number x for which

(1.1.6) i ’ ( a ; ) < - < F ( x  +  0) r
where r =  1,2, . . .  and fc =  0, 1, 2, . . . ,  r. If the system of inequalities (1.1.6) does 
not have solutions for fc =  0, then we put Xr,o =  “ Oo. Similarly, if (1.1.6) does not 
have solutions for fc =  r, then we put Xr,r =  oo. Consider random events

El = \ lim \Fn{xr,k) -  F{xr,k)\ V \Fn{xr̂ k +  0) -  F{xr,k +  0)1 =  o|Kn—*oo )
where a V 6 stands for the maximum of two numbers a and b. We also put

k=0
It is clear that

E =  \ lim max {\Fn{xr k) ~~ E{xr k)\ V |î n{xryk +  0) — F{xr^k d" 0)1) “  o\ .
\n—̂ ooO<x<r J

We have P{El) =  1 for all fc =  0, 1, . . . ,  r by the Borel theorem. Thus P(£?^) =  1. 
Let E  =  n ^ i  Since P{E' )̂ =  1 for all r > 1, we get P{E) =  1.

Now let fc be such that Xr̂ k < Xr,k-{-i and x € (iCr,A;>a;r,fc-fi]- Then

(1.1.7)
(1.1.8)

It is clear that

Fn{Xy.̂ k "h 0) ^  n(^) — Fn(3̂ r,fc-|-l))
F{xr,k  + 0) < F {x )  <  F(xr.fc+i).

(1.1.9) F{Xr k-\-l) F(Xr k̂ “I" 0) < r
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Inequalities (1.1.7) and (1.1.8) together with (1.1.9) yield

■^n(̂ ) “  — -^n(^r,/c+l) ~ “I" 0)

( 1.1.10)
— [i^n( r̂,fc+l) - (̂^r,fc+l)] F{p̂ r̂ k “1“ 0)]

< max {\Fn{^r,k) ~  F{Xr k)\ V \Fn{^r,k + 0) — F{Xr k "h 0)|) H . 
0<fc<r r

Using the same argument we derive from (1.1.7)-(1.1.9) that 
(1.1.11)

Fn{x) -  F{x)

^ (l.^nC '̂r.i:) F( X̂r k}\ V \Fn{Xr k "I" 0) F{Xr k ■!"0)|) .0</c<r' r

Combining (1.1.10) and (1.1.11) we obtain for all x G {xr,k̂ Xr̂ k-\-i]

\Fn{x)-F{x)\

(1-1-12) ^ ^max (̂|F„(Xr,fc) -  F{Xr,k)\ V \Fn(Xr,k +  0) -  F{Xr,k +  0)1) +

Since the right-hand side of inequality (1.1.12) does not depend on fc, it holds for 
all X G R. Thus

(1.1.13)
sup |F„(x) -  F(x)| 
xER>

~ 0̂ i?< ~ V \Ffi{Xr̂ k +  0) — F{Xr k̂ ®)l) ~

for all r > 1.
Since inequality (1.1.13) holds for all r > 1, we obtain

E C < lim sup \Fn{x) -  F{x)\ =  0 i , 
[ n ^ o o x e n  J

whence (1.1.5) follows in view of P(F) =  1. □

Relations (1.1.3) and (1.1.4) as well as the Glivenko theorem indicate that the 
empirical distribution function Fn(x) may serve as an approximation of the original 
distribution function F(x).

A sym ptotic normality o f  the em pirical distribution function and K ol­
m ogorov ’s theorem . According to definition (1.1.1) the empirical distribution 
function Fn(x) for a fixed a: is a random variable assuming values fc/n for fc =  
0 ,1,2 , . . .  ,n. Moreover

P{i'„(a;) =  k/nj =  ( ” ) i ’" W ( l  -  F (x )r~ \

whence
EFn(x) =  F{x), DFn{x) =  F{x){ l -  F{x))/n.

We say that a sequence of random variables 77̂ , 7г =  1, 2 , . . . ,  is asymptotically 
normal with parameters (An,B^) if

(1.1.14) lim P I  _  $^3,̂  fQj.
n-̂ 00 Bn J all X G R
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where

(1.1.15)

is the distribution function of the standard normal law A/’(0 ,1), that is, the normal 
law with mean 0 and variance 1.

By the central limit theorem for Bernoulli trials we obtain the following asser­
tion on the asymptotic normality of the empirical distribution function.

T heorem 1.1.2. For every fixed x G R, the sequence of empirical distribution 
functions Fn(x), n =  1, 2, . . . ,  is asymptotically normal with parameters

F{x) and F { x ) { l - F { x ) )
n

Consider the random variable

Dn =  sup |F„(a;) -  F{x)\
xen

measuring the deviation between the empirical distribution function Fn{x) and the 
distribution function F{x) in the uniform metric.

The following result by Kolmogorov (1933) allows one to estimate, for large n, 
that the probability differs from zero.

T heorem 1.1.3 (Kolmogorov). If the distribution function F{x) is continu­
ouŝ  then

oo

P [VnDn < z ] ^  K{z) =  ^  (-1)^ exp
j = —oo

for all z > 0.

The function K{z)  is called the Kolmogorov distribution function,

1.2. Sample characteristics and their properties

Sample m oments. Let =  (^i, . . . ,^n) be a sample, that is, Ci,. . . ,^n 
are independent observations of a random variable  ̂with the distribution function 
F{x). Denote by the k-th moment of the random variable  ̂ (in other words, 
the A;-th moment of the distribution function F(x)), that is, ak =  By ¡ik we 
denote the k-th central moment of the random variable  ̂ (in other words, the fc-th 
central moment of the distribution function jF(x)), that is, fXk =  E(  ̂-  ai)^. Note 
that a\ is the expectation (or mean value) of the random variable while ¡12 is its 
variance. We also note that )Ui =  0 and pb2 =  ot2 — oc\. Moreover, the moments and 
central moments are related to each other as follows:

( 1.2.1)
j=o

Similar characteristics can be introduced for the empirical distribution function 
Fn{x) constructed from the sample =  (^i, 2̂, • • •, ^n)- The fc-th moment of the



empirical distribution function Fn(x) is called the k-th sampling moment, that is,

(1.2.2) ak=  fx'^ dFnix) =  -  .

The fc-th central moment of the empirical distribution function Fn{x) is called the 
k-th sampling central moment, that is,

(1.2.3) mfc =  f i x -  a^fdFr^ix) =  -  ¿ (C <  -  ai)''.
J ”  i=i

Prom (1.2.2) and (1.2.3) we obtain a relation between sampling moments and sam­
pling central moments:

(1.2.4) mfc =  ^  ( * )  { - i ya {ak - j .
j= o

Expectation and variance of sampling moments. It is clear that, for all

1.2. SAMPLE CHARACTERISTICS AND THEIR PROPERTIES 9

k ,

(1.2.5)

(1.2.6)
71 ni=l

if the corresponding moments exist. The evaluation of the expectation and variance 
of higher sampling central moments is a more complicated problem.

T heorem 1.2.1. If a2k <oo,  then

(1.2.7) Em*; =  Hk + O n

(1.2.8) Dm*. =  -  (nik -  2knk-\IJ-k+i -  Mfe +  + 0\  ^  ) .
n \n^ J

Proof. Consider the random variables — a\, i =  1,2,... ,n, and put

1 ^

¿=1

Note that =  0, i =  1, 2, . . . ,  n, Eai =  0, and Eâ  =  /ij. Applying (1.2.4) we get

(1.2.9) mk = d k -  kdidk-i +  ^  ] { - iyd{dk-j .
j=2

Since the random variables ^i, 2̂» • • • ? are independent and Ê i =  0, we obtain

(1.2.10) Eaiafe.i =  ^  =  -/ife.
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By the Cauchy-Bunyakovskii inequality we get that

(1.2.11) |Eaiafe_j| <

for j  > 2. On the other hand,

^  E  ^  E  Eif
i= l  i^l

=  -M 2(fc-j) +  —— i4 - j  =  f4 - j  +  -  (M2(fe-j) -  i 4 - j ) .

whence Ea|_̂ . <  M2(fc-i) in view of fJ>2{k-j) — Thus inequality (1.2.11)
can be rewritten for an arbitrary j  > 2 as follows:

(1.2.12)

Further,

(1.2.13)

|Eajafc_j| < ( //2(fc-j)Ea?^)
1/2

E ;̂  ̂ =  i E E - E  4 , .
il = l i2 = l i2j = l

Consider the terms on the right-hand side of (1.2.13) containing a factor whose 
index ii differs from those of other factors. All such terms vanish because Ê i =  0 
and the random variables are independent.

Now consider the terms on the right-hand side of (1.2.13) whose indices h , 
22, . . . ,  i2j fall into j  pairs of equal numbers. The number of elements of this set is 
N1N2 where N1 is the number of ways to split the set { 1, 2, . . . ,  2j }  into j  pairs and 
N2 is the number of ways to choose different j  numbers from the set { 1, 2, . . .  ,n}. 
Obviously

j  i - i
■̂ 1-̂ 2 =  -  2fc -h 1) • ]j[(^ -1 )  =  0  (n^), n ^  00.

k=o 1=0

Note also that the cardinality of the set of all other terms in (1.2.13) can also be 
represented as a polynomial of n whose degree is less than j. Thus we obtain from
(1.2.13) that

(1.2.14) Edl  ̂=  O (n-J)

for all j  > 2. Combining (1.2.9), (1.2.10), (1.2.12), and (1.2.14) and taking into 
account that Ed̂  =  /ifc, we prove (1.2.7).

Equality (1.2.7) implies that

(1.2.15) Dmik =  E(^fc -  Mfc)̂  +  O (n” )̂ .

It follows from (1.2.9) that

E(mfc -  Hkf =  E(afc -  Hkf  +  2 ^  Q) { - l Y  ̂ a{dk-j{dk -  Mfe)

(1.2.16)

+  E  Q j(^ )(-l)*+ ^ E ai+ ^ afe_ia ,_ ,.



Applying (1.2.6) to l i , . . .  we obtain

(1-2.17) E(afc -  fik f =  D&k = n~  ̂ (fî k ~ f4) >

since Edk =  Using the same arguments as those applied for the evaluation of 
the right-hand side of (1.2.13) we prove that

1.2. SAMPLE CHARACTERISTICS AND THEIR PROPERTIES 11

- n n n
Eaiafc_i(a*; -  îk) =  ^  E  E  E  - « )

(1.2.18) i l = l  22 =  1 ¿3 =  1

— —MAj-IM/c+I +  O n

E a fa t i  =  ^  E  E  E  E
(1.2.19) ¿1=1 ¿2 =  1 ¿3 =  1 ¿4 =  1

=  +  On m -

The same method shows that 

k
(1.2.20) ( ‘ )(-i)'E a>a»_,(at -  w ) = o  ( ¿ ) .

(‘ ■2-21) E ^  (■ ) ( * ) ( - l ) ‘ « E a « a t _ A _ ,  = O ( ¿ )  .

Combining (1.2.15)-(1.2.21) we easily obtain relation (1.2.8). □

Convergence in probability o f  sampling moments. We study the as­
ymptotic behavior (as n ^  oo) of sampling moments and rrik defined by (1.2.2) 
and (1.2.3), respectively. To indicate the dependence of moments ak and rrik on 
the size of the sample we write ank and rrinki respectively. Using (1.2.6) and the 
Chebyshev inequality we prove that ank Oik in probability as n oo. A similar 
assertion holds for sampling central moments and even for arbitrary continuous 
functions of a finite number of sampling moments ank (the sampling central mo­
ment rrink is a polynomial of moments ani,an2, • • • in view of (1.2.4)). The 
following result contains a precise statement of the latter assertion.

T heorem 1.2.2. Let random variables (ja\c,n \ • • •, converge in prob­
ability to some constants Ci,C2, . . .  ,Cfc, respectively  ̂ as n —> oo. Let a function 
/ (^ 1) 2̂) • • •) f̂c) be continuous in a neighborhood of the point (ci, C2, . . . ,  Ck)- Then 
the random variables rjn =  f{Cn\Cn\---iCn^) converge to / (c i ,C2, . . .  ,Cfc) in 
probability as oo.

Proof. Let e > 0 be an arbitrary number. Since f{ziyZ2 .̂ . .  Ẑk) is continuous 
in a neighborhood of the point (ci, C2, . . . ,  c^), there is a number S = 5(e) such that

1 /(^ 1 , ^ 2 , . . . ,  ^fc) -  / ( c i , C 2 , . . . , C f c ) |  <  € 

for \zi -  Ci| < ¿, z =  1,2, . . . ,  A;.



Consider the random events Bi =  {|Cn  ̂ - q | <  ¿ } ,  z =  1 , 2 , . . . ,  k. Then B C C 
where

k

B = ^ B u  C =  {| r ;n -/(c i,C 2,...,Cfc)| < e } .
2=1

Thus

Qk \ k
J b A

= 1 ^  2=1

Since Cn  ̂ converges in probability to ĉ , for a given 5 > 0 and all 7 > 0 there is 
m =  7ii{'y) such that P{Bi) < j/k for n > n .̂ Then P{Bi) < j/k for

n > no =  max(ni, . . . ,  n^)

and alH =  1, 2, . . . ,  A;. Therefore P{C) > 1 — 7 by (1.2.22) if n > no- □

Consider another application of Theorem 1.2.2. For continuous random vari­
ables we define the skewness 71 and excess 72 by

-2
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(1.2.23) - 3/2
7i =  M3M2 » 72 =  M4̂ 2 -  3.

If the density of a distribution is symmetric, then 71 =  0. Moreover, 72 =  0 
in the case of the Gaussian distribution. Starting from (1.2.23) we construct the 
sampling skewness gi =  gni and sampling excess p2 =  9n2 from the sample =  
(̂ 1) 2̂ J • • • ) n̂)*

(1.2.24) 9nl — ^ T i3 ^ n 2
3/2

9n2 — ^ n 4 ^ n 2

Applying Theorem 1.2.2 and equality (1.2.4), we prove that the sampling skewness 
and excess defined by (1.2.24) converge in probability as n —> 00 to the correspond­
ing skewness and excess defined by (1.2.23) for a given random variable.

A sym ptotic norm ality o f  sampling moments. We introduce the following 
notation. The law of distribution of a random variable  ̂ is denoted by >C(0- The 
law of distribution of the normal random variable  ̂with expectation a =  Ê  =  ai 
and variance =  9,2 is denoted by £(^) =  fi{a^ cr )̂.

We say that a sequence of random variables r̂ n, ^ =  1, 2, . . . ,  weakly converges 
as n ^  00 to a random variable rj ii C{r]n) —> C{rj) as n —» 00 (the convergence 
of laws C{rjn) C{rj) is understood as the convergence of distribution functions 
P{Vn < a:} to a distribution function P{rj < x}  at all points of continuity of the 
function P{r] < a:}). In particular, the asymptotic normality of a sequence rjn with 
parameters (An^B^) defined by (1.1.14) and (1.1.15) means that

n  ■ 00.C{{vn-An)/Bn)^Ai{0A) ,

In the latter case we also say that a sequence r]n is J\f{AnyB^) asymptotically 
normal and occasionally write C{rjn) ^  Ai{An  ̂B^),

The sampling moment ank is the sum of n independent identically distributed 
random variables (see (1.2.2)).

Applying the central limit theorem, we obtain the following result.

T heorem 1.2.3. I fa 2k <  00, then the sequence ank of order k sampling mo­
ments is Af{ak  ̂{oL2k ~ Oil)/n) asymptotically normal.
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Oi2k
^ ^ ( o n f c  -  ak) =  - = 1 = =  ( ¿ ^ i -  n a k )  =  Vn-

Taking into account equalities (1.2.5) and (1.2.6) and applying the central limit 
theorem to the sum we obtain £ (77̂ ) —> ^(0,1) .  Therefore the sequence
ank is Ai{aky {oi2k — OiD/n) asymptotically normal. □

Similarly to Theorem 1.2.3 one can prove the asymptotic normality of a con­
tinuous function of a finite number of sampling moments ank- In particular,

T heorem 1.2.4. If a2k<oô  then the sequence rank of order k sampling central 
moments is

•A/” (Mfe. (M2fc -  2kiJ,k-iiJ,k+i -  Mfc + k'^IJ'2l^l-i) /«)
asymptotically normal.

1.3. Order statistics and their properties

The distribution o f  order statistics. Let  ̂ be a random variable with the 
distribution function F{x)^ let =  (^1,^2, • • • ,Cn) be observations of and 
let Cn,i)Cn,2) • • • }Cn,n be order statistics constructed from the sample defined 
by (1.1.2). We study the distribution Fn^k{x) =  P{Cn,fc < of the fc-th order 
statistic (̂ n,k- It is clear that {Cn,fc < x } =  {I'nix) > k} where i n̂ix) is the number 
of random variables in the sequence îy 2̂  ̂- - - such that {^k < x}.  One can 
treat I'nix) as the number of occurrences of the event < a;} in n independent 
Bernoulli trials (see Section 1.1). Since P{^ < x } =  F(x), the binomial distribution 
of I'nix) shows that

(1.3.1) F^,k{x) =  P{un{x) > k }  =  f;^ ( ” ) i ^ ^ W ( l  -  F{x)r -^ .
j=k

The following result on the integral representation of the function Fn̂ k is helpful 
for studies of its asymptotic properties.

T heorem 1.3.1. The distribution function Fn,fc(x) admits the following rep­
resentation:

in  — 1\
(1.3.2) Jo '

In particular  ̂ if F has the density f ix )  =  i^'(x), then so does Fn,fe(x). Denote the 
density of Fn^kix) by fn.kix) if the density f  exists. Then

(1.3.3) /„,fc(x) =  "  J ) i ’' ' - ' ( x ) ( l  -  F (x ))’» -V (x ) .
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Proof. Evaluating the integral in (1.3.2) by parts, we obtain
nF{x)

(1.3.4)

{X)

Jo
i ht

=  dt.
K Jo

Substituting (1.3.4) into (1.3.2) we get
nF{x)

n
(1.3.5) C-Oi
Evaluating the integral on the right-hand side of (1.3.5) by parts, we conclude that

n ( ”  ^  -  i ) " - "  d i = w(i -

whence (1.3.2) follows by (1.3.1).
If the density f (x)  = F'(x) exists, then (1.3.3) follows from (1.3.2). □

The joint distribution of two order statistics, say Cn,k and Cn.m with k < m, 
is also easy to evaluate. In particular, if the density f {x )  =  F'{x) exists, then 
the density of the joint distribution of Cn.fc and Cn.m also exists. Denoting it by 
fn-,k,m{x,y)  we have for x < y

(1.3.6) fn-,k,m(x, y )  =  n(n -  1) j j  rr!^- 1

X (1 -  F { y ) r - \ F { y )  -  F (x ) ) " - ( ' '+ - ) / (x ) / (y ) .

To prove (1.3.6), we consider two disjoint intervals [x^x -h Ax) and [y,y +  Ay) 
for small Ax and Ay. Then we evaluate the probability of the event that exactly 
k — \ random variables of the sequence C2, • • • > Cn belong to the interval (—00, x); 
only one random variable belongs to [x,x +  Ax); m — 1 random variables belong 
to [y +  Ay, 00); only one random variable belongs to [y,y +  Ay); and all other 
random variables belong to [x +  Ax,y) . The probability of this event equals the 
right-hand side of (1.3.6) multiplied by AxAy with a remainder term of a higher 
order with respect to AxAy. It is not hard to show that the probabilities of other 
events favorable to {Cn,fc ^ [x,x +  Ax),Cn,m ^ b ) 2/ +  ̂ y )}  are of higher orders with 
respect to AxAy as compared to the probability of the event discussed above.

Limit theorem s for extrem e order statistics. Consider the fc-th order 
statistic Cn.fc whose index k =  k{n) depends on n in such a way that k{n)/n 
approaches either 0 or 1 as n —> 00. Those order statistics are called extremes 
or extreme order statistics. Below we study the cases of fe(n) =  fc =  const and 
k{n) =  n — m +  1 where m does not depend on n. In other words, we study the 
fc-th order statistic from the left and m-th order statistic from the right for fixed 
constants k and m. Consider the limit behavior of extremes Cn.fc and Cn,n-m+i-

Let

(1.3.7) T]n — -̂ (̂Cn,fc)) [̂1 - (̂Cn.n—m-|-l)]*
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The following characteristics of a distribution function play an important role in 
the theorems below:

xq =  sup{x: F{x) =  0}, Xi =  inf{a;: F{x) =  1}.

We agree that sup(0 ) =  —oo and inf(0 ) =  oo.

T heorem 1.3.2. Assume that there exists x' > xq such that F{x) is continuous 
in the interval (—oo,a;') and increases in the interval (xo,x'). Then

(1.3.8) lira 9{qn < y }  =  Tk{y)

for aZi j/ e R  where the random variables r)n are defined by (1.3.7), while Tk{y) is 
given by

(1.3.9) rfc(y) =  /  (*
I 0,

^dz, y > 0 ,
y < 0 .

Proof. Equality (1.3.8) is obvious for y < 0. Fix a number y > 0 and let n 
be such that y/n < F{x'). Then the inverse function F~^{y) exists in the interval 
(xo,x'). Applying (1.3.2) we get

—k dt.p {%  < r f = p {cn,. < j ' - '  ( i ) } = " ( ¡ : ; )  f  -  0 ”

Changing the variable z = nt we obtain

Note that  ̂ V (^  “  1)! 9<nd (1 — zfn)'^~^ —> e~  ̂ as n oo, and
moreover the convergence in the second relation is uniform with respect to z  G (0, y ) 
for an arbitrary finite y. This implies relation (1.3.8) by the Lebesgue dominated 
convergence theorem. □

T heorem 1.3.3. Assume that there exists x" < x̂  such that F{x) is continu­
ous in the interval (a:",oo) and increases in the interval (x",Xi). Then

lim ?{Kn < y }  =  Fmiy)n —>oo

for all y G R  where the random variables Kn are defined by (1.3.7), while Tm{y) is 
defined by (1.3.9).

Proof. Note that

P{aCh ^ y} —  ̂“iCrijn—m+1 ^ F   ̂ 1̂ — —̂

r - ^ ( l - t ) ^ - l r f i
y/n

y/n
z^  (̂1 -  zY’ ‘̂ dz

if n is sufficiently large. The rest of the proof is the same as that of Theorem 1.3.2.D
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The function Tk{y) defined by (1.3.9) is the so-called Gamma distribution func­
tion with parameter k.

The asymptotic behavior of extremes is a complicated problem in the case of a 
general k. A rather complete solution of this problem is given by Gnedenko (1943) 
and Smirnov (1949) (see, for example, [32]). Below we briefly discuss some of their 
results.

Consider the random variables Cn,A; =  (Cn.fc -  An)¡Bn where k =  const and An 
and B n  > 0 are appropriate constants depending on n. The possible limit distri­
butions for (n,k can only be of the following three types:

{rV), III '*‘>>-1;;_  J rfc(|a:| "), a; < 0, 
a; > 0,

V - f  W  =  rfe(e»=), —OO <  X <  00,

where a > 0. Necessary and sufficient conditions for convergence to any of the three 
types of limit laws are known in terms of the distribution function F{x). Similar 
results are also obtained for extremes Cn,n-m-i-i with m =  const.

To this end, we note that one can obtain the limit distribution for the pair of 
random variables rjn and Kn defined by (1.3.7). Below is the corresponding result.

T heorem 1.3.4. Assume that all the assumptions of Theorems 1.3.2 and 1.3.3 
hold. Then

lim P{r}n < x , K n < y }  =  Tk{x)rm{y)n—>oo
for all X < y where the function TA;(a;) is defined by (1.3.9).

Central order statistics and sampling quantiles. If fc =  k{n) depends 
on n in such a way that fc(n)/n —> p as n ^  oo and 0 < p < 1, then the or­
der statistic Cn,fc(n) is called central. Sampling quantiles of a distribution can be 
expressed in terms of central order statistics.

Let p G (0,1). Any number Xp such that

(1.3.10) F{xp) < p and F{xp +  0) > p

is called a p-quantile of a distribution F{x). It is clear that the system of inequal­
ities (1.3.10) has at least one solution. A p-quantile of the empirical distribution 
function Fn{x) is called a sampling p-quantile and is denoted by Xp.

T heorem 1.3.5. For all p G (0,1), the sampling p-quantile can be represented 
as follows:

e. = If an]
[np]-1-1, if np is not an integer,

any number of the interval [Cn,np,Cn,np+i], if np is an integer,

where [a] stands for the integer part of a number a.

Proof. Assume that np is not an integer. Generally speaking, there are order 
statistics Cn,fc with k < [np] +  1 and such that Cn,fc =  Cn,(np)-i-i» whence

Fn (Cn,(np]+l) < [np]/n < p.

On the other hand, there are order statistics Cn,fc with k >  [np] -J-1 and such that 
Cn.fc = Cn,[np]+1. thus F„(C„,[„p|+i +0) > (M  + l)/n > p. Therefore Xp = Cn,[np]+i-
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Now let np be an integer and let Xp be any number of the interval [Cn.np, Cn,np+i]- 
As above Fn{xp) < np/n = p and Fn{xp +  0) > np/n =  p, that is, Xp is a sampling 
p-quantile. □

Below we use the notation Xn,p for Xp to highlight that the sampling p-quantile 
depends on n.

Convergence in probability o f  the sampling p-quantiles. The consider­
ation below excludes the cases of p =  0 and p =  1. These two cases require special 
treatment. If p =  0, then Xn,o ^ (“ OO, Cn,i] and therefore either —oo is the unique 
p-quantile or there are infinitely many p-quantiles.

Below we consider sampling p-quantiles Xn,p for p G (0,1). The following result 
contains conditions for the convergence in probability of sampling quantiles to the 
corresponding quantiles Xp.

T heorem 1.3.6. If a p-quantile Xp is unique  ̂ then the sampling p-quantile 
Xn,p converges in probability to Xp as n ^  oo.

Proof. It is obvious that F{xp +  e) > F{xp +  0) > p for all e: >  0. Since a 
p-quantile Xp is unique, F{xp -he) > p for all e > 0. The definition of the sampling 
p-quantile implies that {Fn{xp +  e) > p} C {xn,p <Xp-\-e}. Therefore

(1.3.11) ?{Fn{xp -he) > p }  < P{xn,p <Xp-h e}.

By the law of large numbers (1.1.3)

P{Fn{xp -I-e) > p} =  P[Fn{xp -I-e) -  F{xp -he) > ~{F{xp +  e) - p) }  ^  1 

as n —> 00. Using inequality (1.3.11) we get for all e: > 0 that

(1.3.12) lim P{xn,p < Xp -h e} =  1.
n—*oo ’

Using again the uniqueness of a p-quantile Xp and the same argument we obtain 
for all e > 0

(1.3.13) lim P{xn,p > Xp — e} =  1.

Relations (1.3.12) and (1.3.13) mean that Xn,p converges in probability to Xp as 
n oo. □

Remark 1.3.1. In fact, Xn,p converges with probability 1 to Xp as n —> oo 
under the assumptions of Theorem 1.3.6.

Remark 1.3.2. Let Cn,fc(n) be a central order statistic such that k{n)/n —̂ p 
as n —> 00. Assume that a p-quantile Xp is unique. Then one can show by using 
Theorem 1.3.6 that Cn,/c(n) p̂ in probability as n oo.

A sym ptotic normality o f  sampling quantiles. Below we provide condi­
tions for the asymptotic normality of a sampling p-quantile for 0 < p < 1. First 
we give the following central limit theorem for independent identically distributed 
random variables in the scheme of series.
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T heorem 1.3.7 (Lindeberg). Let^nuÍn2, ■ ■ • .írm be independent identically 
distributed random variables such that

n
Eini =  0, i =  l , . . . , n ,  ^ £ ^ 2 ^  =  1, n > l .

2=1

Then the sequence of random variables -^(0» 1) asymptotically normal
if and only if

(1.3.14) lim ¿  > t) =  0
n—̂ oo '

2=1

for all T > 0 where I{A) is the indicator of a random event A.

The proof of Theorem 1.3.7 can be found in [23], p. 292.

T heorem 1.3.8. Let a distribution function F be continuous and let the equa­
tion F{x) =  p have a unique solution Xp. Moreover let the function F{x) be dif­
ferentiable at the point Xp and F^{xp) =  f{xp) > 0. Then the sampling p-quantile 
Xn,p is Ai{xpyn~^pqf~'^{xp)) normal as n —> oo where q =  1 —p.

Proof. In view of Theorem 1.3.5, one can restrict consideration to the case 
Xn,p =  Cn,fc(n,p) where fc(n,p) =  [np] +  1. It is obvious that it is sufficient to prove 
the A/*(0, 1) asymptotic normality for random variables

Vn =  f{x p )y / n / {p q ){x n ,p  -  Xp),  n = l ,2, . . . .

Note that {x„,p <  x } =  {i/„(x) > k{n,p)} where i/„(x) =  Ya =\ -f(-oo,®)(6 )- Then

p{>)» < i) = p J

=  p j ^ . ( x , +  yf^) >»:(-*.?)}.
Consider random variables

MnJ =  I  <Xp + xyJpqln/f{Xp)^ , j  =  1, 2, . . . ,  n.

It follows from (1.3.15) that

(1.3.15)

(1.3.16)

where

P{»7n < a:} =  P] >  k{n,p) \
’' j = i

(Jny/ñ J

a„ = Efinj =  F  (xp +  V p ^ x / / ( x p ) )  ,

cr„ =  D/2n,j =  a„ ( l  -  On).
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Since F{xp) =  p, the Taylor expansion in a neighborhood of the point Xp shows 
that

as n oo. Thus an ^  p and —> pg as n ^  oo, whence

I  (iMn.i -  an\ / >  r  j  =  0

for all r  > 0 and all sufficiently large n. This means that condition (1.3.14) holds 
for ^nj =  {Pnj ~ a,n)j\JnG\. Therefore the assumptions of Theorem 1.3.7 are 
satisfied for the random variables (pnj — i i n ) / j  =  1, 2, . . . ,  n.

Applying Theorem 1.3.7 we derive from equality (1.3.16) that

(1.3.18) P{7,„ < x } =  1 -  $  +  0(1)

as n —> oo. Since k{n^p) =  [np] +  1 =  np +  1 +  rn where |rn| < 1, we obtain from 
equality (1.3.17) that

fc(n,p) -  nan _  np +  1 +  Tn -  np — ^npqx +  o{y/n)
G ny/n y ^ ( l  +  o(l))

- x  +  o(l)

as n —> 00.
This together with relation (1.3.18) implies that

P{r]n <  a;} =  1 -  ^ { - x )  +  o(l)  =  $(x)  +  o(l)

as n ^  00, that is, the sequence of random variables rjn is asymptotically /̂*(0, 1) 
normal. □

In particular. Theorem 1.3.8 implies that the central order statistic Cn,[np]+i is 
asymptotically normal.

The study of the asymptotic behavior of the central order statistic Cn,fc(n) is a 
complicated problem for general k{n). This problem is solved by Smirnov (1949) 
(see [32]) who showed in particular that if fc(n) =  np +  o(\/n), then the limit 
distributions for the sequence of random variables Cn,fc(n) =  (Cn,fc(n) “  A n) I  Bn  can 
only be of the following four types:

“  I  0, X <  0,

“   ̂  ̂ \ $(C2X“ ), X > 0,

$W(a;) =  I ^ { —c\x\^), a: <  0,

X > 0,
' 0, X < —1,

1
2’ -1  < x  < 1

1- X > 1,

where An and B n  > 0 are some appropriate constants depending on n and p; 
a, c. Cl, and C2 are some positive constants; and $(x) is the standard Gaussian 
distribution function. Smirnov also obtained necessary and sufficient conditions on 
the distribution function F{x) for the convergence to a given type of the limit laws.

Remark 1.3.3. More details about order statistics and further references can 
be found in the book by David [10].
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1.4. The distributions o f  som e functions o f  Gaussian random  vectors

We consider in this section the distributions of some functions of Gaussian 
random vectors that are widely used in various topics of mathematics.

The normal distribution. Let X  =  ( X i , . . .  be a random column-
vector (here and throughout the symbol ' stands for the transposition of matrices 
and vectors). By a =  (ai, a2, . . . ,  anY we denote the vector of its expectations of X , 
that is, ai =  i =  1,2, . . .  ,n, and by A =  (Aij) we denote the n x n matrix 
of mixed central moments Xij = E{Xi — ai){Xj — a^), j  =  1,2, . . .  ,n. Note that 
the matrix A is symmetric and nonnegative definite. A random vector X  is called 
normal (or Gaussian) if its characteristic function is of the form

(1.4.1) <j>{t) =  EeiX't exp

where t =  (̂ 1,^2» • • • If AT is a normal vector whose characteristic function
is given by (1.4.1), then we write C{X) =  A/’(a,A), which means that X  has a 
normal distribution. The distribution C(X) = Af{0  ̂In) where In is the n x  n unit 
matrix is called the standard normal distribution. The coordinates of the standard 
normal vector X  are independent random variables whose distribution is A/*(0,1). 
If the matrix A is nonsingular, then the normal distribution is called proper (or 
nondegenerate) ̂ in which case the distribution possesses the density

(1.4.2) f {x)  =  (27г)“ ^/^(detA)“ /̂̂  exp ~ a)'A“ ^(x — a)|

where x =  (xi,a;2, . . .  ^XnY and det A is the determinant of the matrix A.
Linear transformations of Gaussian vectors are again Gaussian vectors. The 

precise statement is as follows.

Lemma 1.4.1. Let Y  =  AX where C{X)  =  A/’(a, A) and A is a k x n  matrix. 
Then jC(Y) =  B) for b =  Aa and B =  AkA!.

P roof. Let (¡)y {u) and (¡>x{t) be the characteristic functions of vectors Y  
and X , respectively. Then

<!>y {u) =  Eexp{iY'u} = Eexp{iX'A'u} = (j)x{A’u).

Since C{X) =  N{a,k)^ equality (1.4.1) implies that

0y('u) =  exp — i(i4''u)'A(A'г¿)| =  exp |z(Aa)'u — ^u\AkA')u

Thus C{Y) = J\i{by B) for b = Aa and B = AkA'. □

Equality (1.4.1) implies for a diagonal matrix A that the coordinates of the 
vector X  are independent. If the matrix A is not diagonal, then there is a linear 
transformation Y  =  AX  such that the coordinates of the vector Y  are independent. 
Indeed, by Lemma 1.4.1, as a matrix A one can take an orthogonal matrix (this 
means that AA' =  /^) such that AkA' is diagonal. This implies that if A is 
nonsingular, then there exists a nonsingular matrix A such that the vector Y  =  AX  
has the standard normal distribution A/̂ (0, In) if a =  0.
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Chi-square distribution and its properties. Let X  =  ( X i , X 2, . . . , X n ) '  
and C{X) =  A/*(0,/n)- The distribution of the random variable Xn ”  Yh=\ 
called the chi-square distribution with n degrees of freedom. Put C(Xn) ~ X (^) 
and let US find the density of x^(^)- Applying (1.4.2) as Ar —> 0 we get

P {Xn ^ + Ar*)} =  p l r  < ^ X f  <  r  A rj = A:e“ /̂̂ A (^^(v/f)) + o{A r)
 ̂ i= i  '

where Vs is the volume of the ball S{r) =  {x  G R^: |x| < r}  of radius r. Since 
^5(v/F) =  we have A{Vs(^) )  =  C"r^/^“ ^Ar +  o(Ar). Thus the density of
the distribution x^(^) is given by

(1.4.3) k n {x )  =  Knx'^^^ X >  0,

where Kn =  (2^/^P(n/2))  ̂ and r(«) is the Gamma function.
The characteristic function of the distribution x^(^) is

0 (t;n) =  Eexp{itXn} =  exp { - x ( l  -  2it)/2} dx.
Jo

Differentiating with respect to t we obtain 

(1.4.4) in

Solving equation (1.4.4) subject to the condition 0(0; n) =  1 yields 

(1.4.5) 0(t;n) =  ( l -22t ) -^ /2 .

This equality allows one to find the moments of the distribution

(T4.6) Exn =  T0'(O; n) =  n, Dxn =  4"^"(0; n) -  (EXn)^ =  2n.

We also mention the following important property of the distribution X^{n). Let 
random variables Xni Xu2 independent and let C{x^.) =  x^(^i)>  ̂ =  1, 2. 
In view of equality (1.4.5) the characteristic function of the sum Xni +  Xn2 
0(t;ni +  n2), that is, C{x^  ̂ +  Xn2) =  X^(^i +  ^2)- This means that the sum of 
independent chi-square random variables is again a chi-square random variable and 
its degree of freedom is equal to the sum of degrees of freedom of terms.

Linear and quadratic form s o f  norm al random  variables. Let

x  =  ( X i ,X 2 , . . . , X n O '

be a random vector with the standard normal £ (0 ,/n ) distribution. Consider a 
quadratic form

n

Q = Y ,  OijXiXj =  X 'AX
hj=l

where A = (aij) and A' =  A. We also consider m linear forms

yk =  ^ h i X i ,  k =  l,2, . . . ,m.
i= l

Using matrix notation we rewrite the latter relations in a compact form as T  =  B X  
where R is a rectangle m x  n matrix and Y" =  (Yi, . . . ,  1^ )'. By O we denote the
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matrix with zero entries. The following result contains conditions for the indepen­
dence of functions Q and Y,

L e m m a  1.4.2. If BA  =  O , then the functions Q and Y are independent.

P r o o f . Since the real matrix A is symmetric, there exists an orthogonal ma­
trix U such that U'AU =  D where D is a diagonal matrix with diagonal entries 
Ai > 0, i =  1, 2 , . . . ,  n. The numbers Ai , . . . ,  An are characteristic numbers of the 
matrix A, that is, they are the roots of the characteristic equation det(i4 —A/n) =  0. 
The columns Uk of the matrix U = \\ui.. .'Un|| are eigenvectors of the matrix A, 
that is, Auk =  Afcг¿fc, fe =  1, 2, . . . ,  n.

Let r be the rank of the matrix A and let Ai , . . . ,  Â  be nonzero characteristic 
numbers. The equality A =  UDU' can be viewed as the matrix form of the spectral 
representation of the matrix 4̂, namely

(1.4.7)
fc=i

By the assumptions of the lemma, O =  BA  =  k̂Buku'f̂ . Multiplying this 
equality on the right by the vector u« we get

(1.4.8) B u s  = 0 ,  s =  1 , 2 , . . .  ,r .

since the vectors Uj are orthogonal. Put Z  =  ( l i , . . . ,  y^, u' lX,. . . ,  It is clear
that Z =  CX  for some matrix C and thus Lemma 1.4.1 implies that the distribution 
of the vector Z is normal with EZ =  0. According to representation (1.4.7)

Q = '£^Xk{X'uk){u'kX) =  5^AfeKX)2.
k=l k=l

Thus the equalities EYiu'^X =  0, z =  1, 2 , . . . ,  m, s =  1,2 , . . . ,  r, complete the proof 
of the lemma, since they mean that Yi and u^X are independent in view of the 
normal distribution of the vector Z. To prove the above equalities we denote by 
the rows of the matrix B, z =  1,2, . . . ,  m. Then we have by (1.4.8)

EYiu'.X =  Eb[Xu',X = Eb'iXX'us b'^EXX')us = b'JnUs =  0. □

Consider two quadratic forms Qi = X 'AX  and Q2 =  X'BX.

L e m m a  1.4.3. If AB =  BA =  O , then Qi and Q2 are independent.

P r o o f . Let the matrix A admit the representation (1.4.7), and let the spectral 
representation of the matrix B h e B = Yli=i where s =  rank B is the rank of 
the matrix B. By the assumptions, O =  AB = J2k,i Multiplying
this equality on the left by u[ and on the right by Vjy we get u'̂ Vj =  0, z =  1, . . . ,  r, 
j  =  l , . . . , s .  Since the joint distribution of random variables u[X and VjX is 
normal, we prove as above that these random variables are independent. Now 
it follows from Qi =  Afc(г¿'̂ A')̂  and Q2 =  ^ii^iX)^ that the random
variables Qi and Q2 are independent. □

The distributions o f  quadratic forms o f  normal random  variables. By
tr A we denote the trace of a quadratic matrix A, that is, the sum of its diagonal 
entries.
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Lemma 1.4.4. Let Q =  X'AX where C{X)  =  N{0,ln) cbnd rankA = r < n. 
If the matrix A is idempotent, that is, =  A, then C{Q) =  x^(^) r =  ti A.

Proof. Let the matrix A admit the representation (1.4.7). Since A is sym­
metric and idempotent, Ai =  • • • =  Â . =  1. Thus Q =  vectors
Uk are orthonormal, thus the random variables k =  1, 2, . . .  ,r*, are indepen­
dent and J\f{0y 1) normal. Hence C{Q) =  Since A =  UDU\ we obtain from
ti{BA) =  tr(i4H) that trA =  tr{U'UD) =  trZ) =  Ai H------- h Â  =  r. □

The following result, which is a corollary of the preceding assertions, is of its 
own interest as well.

T heorem 1.4.1. Let an n-dimensional vector Y have a nondegenerate A7(/x, E) 
distribution. Then the distribution of the quadratic form Q =  (Y — /i)'E “ ^(Y' — /x) 
is x^(n).

Proof. Let U be an orthogonal matrix such that U'TiU =  D where D is a 
diagonal matrix. Since E is nondegenerate, all diagonal entries \k of the matrix 
D are positive. Thus is well defined as the diagonal matrix with diagonal
entries Consider the random vector Z =  — /x). By Lemma 1.4.1

£(Z )=A7(0 , /n ) .

On the other hand, T  -  /x =  VD^I^Z. Thus Q =  Z^D^I^U'Yr^VD^I^Z =  Z 'Z , 
whence C{ff) — O

The following important result of the sampling theory is proved by Fisher 
(1925).

T heorem 1.4.2. Letf^^  ̂ =  (^ i , . . . , in )   ̂ sample from the dis­
tribution. Then the sampling moments a\ and m2 are independent. Moreover 
C{\/n{ai -  p)/(j) =  .A7(0,1) and £(nm 2/cr^) =  x^(^ -  !)•

Proof. Consider a sample =  (l î, • • • ,|n) where 

~  (Ci m) / z =  1,2, . . . ,  Ti.

Put

a i =  ^ ¿ 6 , =
i= l  1=1

Then ai =  (ai -  /x)/i7 and m2 =  m2/cr. Thus it is sufficient to prove that d\ and 
m2 are independent, since C{y/nai) =  1) and C(nfh2) =  ')^{n—\). Consider
an n-dimensional vector-column h =  (1 /n , . . . ,  1 /n )' and n x n  matrix B = \\b* • ’ b\\. 
It is clear that di =  and nrh2 =  (|(^) -
where A = In ~  B. Since b̂ A =  6' -  VB =  6' -  6' =  0, the random variables di 
and m2 are independent by Lemma 1.4.2.

It is obvious that the distribution of ai is normal. Note that the matrix A 
is idempotent and tr^4 =  tr/n  — trB  =  n — 1. Then C{nrh2) =  x^(^ — 1) by 
Theorem 1.4.1. □
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Student and Snedekor distributions. Let two random variables  ̂ and 
be independent and let =  Ai{0,1) and C{x^) =  X^(^)- Then the distribution of 
the random variable t =  C /V x V ^  called the Student distribution with n degrees 
of freedom and is denoted by S{n). The density Sn(ic) of the distribution S{n) is

1 r ( ( n + l ) /2 )  1
Sn(a;) = x e R .r (n /2 ) (1 +  ’

Let random variables Xi .̂nd x i be independent and let /2(x|) =  X^(^г), i =  
1,2. Then the distribution of the ratio

F  =  (x?/ni) /  (x iM )

is called the Snedekor distribution with ni and U2 degrees of freedom and is denoted 
by 5 (n i,n 2). This distribution is sometimes called the F-distribution or Fisher 
distribution. The density Sm,n2(^) of the distribution 5 (n i,n 2) is

n i/2

■̂ ni,n2(x)

X ( l  +

— (ni-1-712)/2
X > 0.

The distributions S{n) and S'(ni,n2) play an important role in the sampling 
theory.

Remark 1.4.1. Properties of normal distributions and those related to normal 
distributions are treated in many textbooks on probability theory. A comprehensive 
text on properties and applications of normal distributions in statistical problems 
can be found in [1, 28].



CHAPTER 2

Samples from Multidimensional Distributions

2.1. Empirical distribution function, 
sampling m om ents, and their properties

Empirical distribution function and its properties. Let (^,77) be a two- 
dimensional random vector with real coordinates  ̂ and rj. Denote its distribution 
function by F{x^y) =  P{i < x,77 < y}, a; G R, y G R. Assume that there are n 
independent observations of the vector

(2.1.1) (^1, ??l). (6 , %),•••, (in, i?n)-

The set of observations is called a sample from the two-dimensional distribution 
F(x,y).

For fixed X e H  and y G R  consider the following random variables:

(2.1.2)

Then

(2.1.3)

<^n{x,y) =  <x,rii< y}).
2=1

K{x ,y )  =  -Vn{x,y), x e R ,  y e R ,n
is called the empirical distribution function of the sample (2.1.1). Note that the 
empirical distribution function Fn{x,y) possesses all the properties of regular two- 
dimensional distribution functions.

Equality (2.1.2) implies that v̂ ni^̂ y) is the total number of occurrences of the 
event

{ i  < X,r} < y)
in n independent trials, while (2.1.3) shows that the empirical distribution function 
Fn{^^y) is the relative frequency of the event < a;,?/ < y} in n independent 
trials. Like the one-dimensional case, the Bernoulli law of large numbers implies 
that the empirical distribution function Fn{x^y) approaches F{x^y) in probability 
as n —̂ 00 for all a: G R  and y ^ R, that is,

lim P{|Fn(a;,y) -  F{x,y)\ > e} =  0 for all e > 0.
n —*00

Moreover, the Borel strong law of large numbers implies that Fn{x^y) approaches 
F(a;, y) with probability 1 as n 00 for all x G R  and y G R, that is.

p|  lim Fn(x,y) =  F (x ,y )|  =  1.Kn—̂oo )
Therefore the empirical distribution function Fn(x, y) may serve as an approxima­
tion of the distribution function F{x,y),

25
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According to definition (2.1.3) the empirical distribution function Fn{x^y) is a 
random variable for all fixed x and y. It assumes values A;/n, A; =  0 ,1, 2, . . . ,  n, and 
moreover

pi^F^{x,y) =  =  { ^ ^ F \ x , y ) { l - F { x , y ) r - K

Therefore

^Fn{x, y) =  F{x, y), DFnix, y) =  F{x, y){l -  F{x, y))/n.

Applying the De Moivre-Laplace central limit theorem we obtain the following 
result on the asymptotic normality of the empirical distribution function Fn(x,y).

T heorem 2.1.1. The sequence of empirical distribution functions

Fn{x,y), n =  l , 2, . . . ,

is asymptotically normal with parameters (^F(x,y), F{x,y){l  — F{x,y))/n) for all 
fixed X e H  and y E  R.

M om ents o f  two-dim ensional distributions. Let (^,77) be a real two- 
dimensional random vector. The number aij =  is called the mixed moment of 
order i-\-j (or, {i-\-jyth mixed moment) of the random vector (i,y ). The number 

=  E(  ̂— 010)̂ (77 — ooi)^ is called the mixed central moment of order i +  j  (or 
{i +  j)-th mixed central moment) of the random vector ( ,̂ 77). It is easy to see that

(2.1.4)
fc=o /=0

Note that o;io is the 7-th moment of the random variable while aoj is the 
j-th  moment of the random variable 77. Analogously, ¡lio is the 7-th central moment 
of the random variable while noj is the \7-th central moment of the random 
variable 77. Note further that /120 is the variance of while 7x02 is the variance of 77. 
We often use the notation ctJ =  7x20 and erf =  7x02- It is clear that 7x20 =  CK20 -  <̂10» 
1̂ 02 =  0̂ 02 -  0̂ 01» Mn =  1̂1 “  l̂OOiOl-

If =  0, then the random variables  ̂ and 77 are called uncorrelated. In this 
case a il =  that is, Ê t7 =  E^Et7. If  ̂ and 77 are independent, then 7x11 =  0,
that is, independent random variables are uncorrelated. The converse is, in general, 
false. In a particular case where the vector (^, 77) has a normal distribution, the 
random variables  ̂ and 77 are independent if and only if they are uncorrelated.

Let z =  {t^uY where t and u are real numbers. Consider a quadratic form

(2.1.5) Q{z) =  E[t(i -  aio) +  u{r} -  aol)]^ =  7̂20̂  ̂+  2pLiitu -f 7Xo2Tx̂ .

Since Q{z) is the expectation of a square of a random variable, Q(z) > 0 for all 
vectors whence it follows that the quadratic form Q(z) is nonnegative definite. 
Definition (2.1.5) implies that Q(z) =  z'Mz where M  is the matrix of central 
moments of second order:

' M20 /^11

The matrix M  also is nonnegative definite (this follows from the same property of 
the quadratic form Q(z)). Hence

(2.1.6) 7̂027̂ 20 -  Mil > 0-

M _ i  M20 M il \  
\ M i i  M02 /
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Rewriting (2.1.6) we obtain < /X02M2O) which is known as the Cauchy-Bunyakov- 
skit inequality.

Denote the rank of M  by r. The possible values of r are 0, 1, or 2. If r =  2, 
then (2.1.6) becomes a strict inequality, while (2.1.6) becomes an equality if r =  0 
or r =  1. The following result contains some simple properties of the distribution 
of the vector (^,77) related to the rank r.

T heorem 2.1.2. The following are true:
1) r = 0 if and only if the distribution of the vector (^,77) assigns unit mass 

to a single point]
2) r =  1 if and only if the distribution of the vector (^, 77) is concentrated on 

a straight linê  but not at a single point]
3) r — 2 if and only if the support of the distribution of the vector (^, 77) does 

not coincide with a straight line or with a single point.

Proof. We consider only the first two cases when r =  0 and r =  1. The case 
when r =  2 follows from 1) and 2).

If r =  0, then 7x20 =  fJ>02 =  0, so that the distribution of the random variables  ̂
and 77 is concentrated at the points aio and aoi, respectively. Then the distribution 
of the vector (^,77) is concentrated at the single point (aio,aoi)- Conversely, if the 
distribution of the vector (^, 77) is concentrated at a single point, then //20 =  M02 =  0, 
so that pii =  0 by (2.1.6). Therefore the rank of the matrix M  is equal to zero.

If r =  1, then the quadratic form Q(z) is not positive definite. Thus there is 
a vector zq = (tofUo) ^  0 such that Q(zq) =  0. It means by (2.1.5) that with 
probability 1

(2.1.7) to(^ -  cnio) +  uo(€ -  aoi) =  0,

which implies that the distribution of the vector (^,77) is concentrated at a straight 
line to(x — aio) +  uo(y — aoi) =  0. Conversely, let the distribution of the vector 
(^, 77) be concentrated at a straight line but not be concentrated at a single point. 
Obviously this line passes the point (aio, aoi), whence it follows that equality (2.1.7) 
holds with probability 1 for some constants to and г¿o. By (2.1.5) we have Q(zq) =  0 
for zo =  (toiUo)'f that is, the quadratic form Q(z) is not positive definite. Since the 
distribution is not concentrated at a single point of the line (2.1.7), at least one of 
the numbers 7x20 or /̂ 02 is nonzero. Thus the rank of the matrix M  equals 1. □

Let
If 7x20 7̂  0 and 7x02 ^  0, then the rank of the matrix M  equals either 1 or 2.

(2.1.8) P =
Mil Mil

VM20M02 0-1(72

We have by (2.1.6) that < 1, that is, \p\ < 1. It is clear that |t>| =  1 if and only 
if the rank of the matrix M  is equal to 1, that is, if and only if the support of the 
distribution of the vector (^,77) belongs to a straight line. In particular, if  ̂ and 77 
are independent, then 7x11 =  0, whence p =  0. On the other hand, the equality 
p = 0 means that the random variables  ̂ and 77 are uncorrelated.

The number p defined by (2.1.8) is called the coefficient of correlation (or simply 
correlation) of random variables  ̂ and 77.
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Sampling m om ents. Consider a sample (2.1.1) consisting of n independent 
observations of a vector (^,77) and denote its distribution function by F{x^y). 
Let Fn{x^y) be the empirical distribution function of the sample (2.1.1) defined 
by (2.1.3). The {i +  j)-th  mixed moment of the empirical distribution function 
Fn{x,y) is called the {i -i- j)-th sampling mixed moment  ̂ that is,

(2.1.9) a-ij =  j  J  x Y  dFn{x, =

The {i+j)-th  mixed central moment of the empirical distribution function Fn{x^y) 
is called the {i j)-th sampling mixed central moment  ̂ that is,

(2.1.10)

■ij =  J  j { x -  awYiy -  Ooi)  ̂dFn{x, y)

=  -  “  awfiVk -  aoiy.
k=l

It follows from (2.1.9) and (2.1.10) that an analog of (2.1.4) holds for sampling
mixed moments, namely

(2.1.11) ’rriij — ( ^ )  (f)(~l)*''*'*<llO®01®t-fe,J-i 
k=0l=0 V /  N /

It follows from (2.1.9) that

(2.1.12)
^ k=l

(2.1.13) ^  -  a? ).
”  fc=i ”

As in the proof of Theorem 1.2.1, we derive from (2.1.11) that

(2.1.14) Em ĵ — fj>ij +  0  7̂7̂  *

(2.1.15)
n \n  ̂J

where i? is a constant depending on mixed central moments pki- Relations (2.1.12)- 
(2.1.15) hold if all expectations involved are finite.

The most important mixed moments are of order less than or equal to 2. We 
often use the notation 77120 =  s\ and 77102 =  «2* sampling mixed central 
moments mij of order i +  j  =  2 we easily obtain that

r- 77 - 1  _Emij = ------- pLij, Dmij = -----------  •
n n

which is a refinement of (2.1.14) and (2.1.15).
The number m il 77711

r =
y'm2omo2 Si «2



2.1. EMPIRICAL DISTRIBUTION FUNCTION AND SAMPLING MOMENTS 29

is called the sampling coefficient of correlation (or simply sampling correlation). 
Since r is the coefficient of correlation of the distribution function Fn{x,y)y we 
have |r| < 1. The sampling coefficient of correlation r attains values ±1 if and only 
if all the sampling points (^1,771), (^25̂ 2), • • • j {^mVn) he on a straight line. One 
can show that

(2.1.16)

(2.1.17)

Er =  p +  O

+Qj. —  ^ ( ^  -I- +  ^ ^ 22  , 4 ^ 2 2  4 /Í3 1

4n \ i 4 o  M02 M20M02

+  0 (n -3 /2 ) .
Mil

4mi3
M11M20 M11Â 02,

By the law of large numbers, the moments Oij approach aij in probability as 
n 00. The latter result also follows from (2.1.12) and (2.1.13) by the Chebyshev 
inequality if the moment a2î 2j exists. Now we apply Theorem 1.2.2 to prove that
nfiij fjbij and r ^  pin  probability as n 00.

Provided a2i,2j < 00 we use relations (2.1.12) and (2.1.13) and the central limit 
theorem for sums of independent identically distributed random variables 
k =  1,2, . . . ,n ,  and prove that sampling mixed moments aij are asymptotically 
Ai{oiij,{a2î 2j -  Oiij)/n) normal. Applying (2.1.4) and (2.1.5) one can show that 
the sampling mixed central moments mij are asymptotically M{pij^R/n) normal 
under appropriate assumptions where iZ is a function of central moments involved 
with asymptotic equality (2.1.15). One can also see from (2.1.16) and (2.1.17) that 
the sampling correlation coefficient r is asymptotically A7(p, C^(p)/n) normal where

C\p) = p2 / P40 , M04 , 2p22 , 4p22 4p3i+ +
4 VM20 M02 M20M02

+
Mil

_  4pi3 \
M11M20 M 11M 0 2/

Remark 2.1.1. More details about two-dimensional sampling vectors can be 
found in the classical book by Cramér [9].

Samples from  /c-dimensional distributions for k > 2. Let (^1,^2, • • • ,ifc) 
be a fe-dimensional vector with real coordinates ^1,^2» • • • and the distribution 
function

F{xi,X2, .. . ,Xk) =  P{̂ 1 < Xi ,̂ 2 < X2 , . . . , ik  < Xk}- 
The moments of this distribution are defined by

a.

The number ii +  2̂ +  • • • 4- is called the order of the moment. We use the 
notation i =  1,2, ...,fc , for moments of first order. In particular,
(ai^^ . . . ,  â ^̂ ) =  (E^i,. . . ,  Ê fc). The central moments are defined by

Miii2...ifc =  E ( i i  -  «1^^) ( 6  -  a f  • • • (ifc -  4*'^)

where ¿1 +  ¿2 +  • • • +  ¿̂  is the order of the moment. The general notation is 
inconvenient for use if fc > 2. Thus we sometimes use another notation for moments 
of second order, namely

Aii =  a? =  E (i i  -  a « ) '  , =  E -  a « )  -  a « )  =  p^aiej.
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Here c l  is the variance of the random variable and is the mixed central 
moment of second order of random variables and The coefficient of correlation 
Pij for random variables and is well defined \i ai ^  0 and Gj ^  0. Moreover 

The matrix of central moments of second order A =  {Xij) is 
nonnegative definite. The matrix of coefficients of correlation

p = {Pij)

(well defined if all Gi are positive) also is nonnegative definite. There is a relation­
ship between matrices A and p, namely

A =  EpE

where E is a diagonal matrix with diagonal entries a i , . . . ,  (7̂ .
In particular, if =  0 for all i ^  then the random variables 

are uncorrelated and the matrix A is diagonal, thus det(A) =  A11A22 • • • Â fc- If 
additionally all numbers gi are positive, then the matrix p is well defined and 
moreover p =  h-

Consider n independent observations of a random vector This
means that there is a sample (^i^,. . . ,  k̂i))  ̂ =  1 , . . . , n. Denote by Fn{xi^.. . ,  Xk) 
the empirical distribution function of this sample defined in the same way as in the 
case of two-dimensional vectors. The sampling moments are defined in this case by

n J = 1
The number i \ i k  is called the order of the moment. We use the notation 

 ̂=  1) 2 , . . . ,  fc, for sampling moments of first order. The central 
sampling moments are defined by

j = l

The number H-------\-ik is called the order of the moment. For moments of second
order we use the simpler notation

1  ̂ 2
ki =  =  -  E  -  “ 1*0 ’ i =  l ,2 , . . . ,k ,

i=i

hj  =  “  ^   ̂ ~  ^1^^ (^^jm ~  ^1^^^ == rijSiSj.
m =l

Here sf is the sampling variance of the random variable constructed from obser­
vations of the i-th coordinate of the vector, while rij =  hj/{siSj) is the sampling 
coefficient of correlation between random variables and Let L =  {lif) be 
the matrix of sampling central moments of second order, and let R =  {rij) be the 
matrix of sampling coefficients of correlation. It is clear that L =  SRS for the 
diagonal matrix S whose diagonal entries are si, S2> • • •, s/».

Asymptotic behavior of the empirical distribution function, sampling moments, 
and sampling coefficients of correlation for fc > 2 are analogous to those in the cases 
of fc =  2 and fc =  1. Further results and other properties can be found in a classical
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book by Cramer [9] as well as in other books devoted to the multidimensional case, 
for example in [1, 4, 18, 28].

2.2. Sampling regression and its properties

General regression. Let  ̂ and r] be two random variables with the joint 
distribution function F{x^y). We denote the conditional expectations by

(2.2.1) mi{y) =  E{ /̂rj =  2/}, m2(x) =  =  x}.

The function mi(y) is called the regression of ̂  on rj, while the function m^ix) is 
called the regression of y on Regressions (2.2.1) possess an important property 
of minimality explained in the following result.

T heorem 2.2.1. If < oo, then for any Borel function f

(2.2.2) E (^ -m i( í? ) )2 < E (í - /( í? ) )2 .

Analogously if Erf < oo, then for any Borel function g

(2.2.3) E(t7 -  7712(0)  ̂ < E(»7 -  9 Í 0 f -

Proof. We prove inequality (2.2.3), the proof of inequality (2.2.2) is analo­
gous.

Let g be an arbitrary Borel function. Inequality (2.2.3) is trivial if

E(i? -  =  oo.

Consider the case E{ri — g{^))^ < oo. Then

E(»j -  g { 0 f  =  E((»7 -  »^2(0) +  (” ^2(0 -  5 (0 ))"
(2.2.4) =  E{t] -  7712(0)" +  2E(^ “  7n2(0)(” 72(0 “  5(0 )

-h E (m 2 (0 -5 (0 )" -

On the other hand,

E{r¡ -  m 2 (0 )(^ 2 (0  ”  9Í0) — EE {(^  ~ ^ 2 (0 ) (^ 2 (0  “  9Í0)  /  í }
=  E(m2(0  “  9Í0)^ {v -  ^̂ 2(0  /  ^} =(2.2.5)

since
E {77 -  7712(0 /  e }  =  E {^ /  i }  -  

It follows from (2.2.4) and (2.2.5) that

(2.2.6) E(t, -  g iO f  =  E(t/ -  7712(0)" +  E(7ri2(0 -  5(0)" > E(t7 -  7T12(0)"- □

Remark 2.2.1. Inequality (2.2.6) becomes an equality if and only if

E(t7 1 2 (0 -5 (0 )"  =  0.
that is, if P {5 (0  =  77^2(0} =  1- Thus inequality (2.2.3) becomes an equality if and 
only if P {o(i) =  7712(0} =  1- Similarly inequality (2.2.2) becomes an equality if ^ d  
only if P { / (7j) =  7771 (77) }  =  1. This implies that the regressions 7ni(y) and m2 (x) 
can be defined as functions minimizing the right-hand sides of inequalities (2.2.2) 
and (2.2.3), respectively. More precisely, every Borel function /  , such that

(2.2.7) E(C -  /* (7?))" =  "im E(C -  /(77))^
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where the minimum is taken over all Borel functions / ,  is the regression of  ̂ on 77. 
Similarly, every Borel function p*, such that

(2.2.8) E{t) -  g*(Of =  min E(t/ -

where the minimum is taken over all Borel functions is the regression of rj on

Linear regression. We solved problem (2.2.7) in the class of all Borel func­
tions and found a function f{y)  such that the random variable / ( 77) as a function 
of 77 is the best mean square approximation of the random variable In other 
words, we found a function f*{y) minimizing the mean square error E(  ̂— / ( 77))^. 
Problem (2.2.7) is also of interest in the cases where we consider a narrower class 
of functions f{y)  instead of the class of all Borel functions. Say, one can solve 
problem (2.2.7) in the class of all linear functions or, more generally, in the class of 
polynomials of a fixed degree, etc. A similar remark concerns problem (2.2.8), too.

Let L =  {a  -h I3x\ a, /3 G (—00, 00)}  be the class of all linear functions on R. A 
function g*{x) =  a* 4- P*x such that

(2.2.9) E(»7 -  9* ( O f  =  min E(t7 -  g{^)f

is called the linear regression of rj on
A function /* (y ) =  a* -h P*y such that

(2.2.10) E (í-r (7 7 ))^  =  m inE(C-/(7,))^

is called the linear regression of  ̂ on 77.
Below we find the linear regression of 77 on that is, we find a function

g*{x) = a*-\-p*x

solving problem (2.2.9). We assume that fi20 > 0 and /io2 > 0. Therefore we 
exclude the case of /i2o =  0 a,nd ¡102 =  0 for which the distribution of the vector 
(^,77) is concentrated at the point (0:10, 0:01).

Let G(o:,/3) =  E(t7 -^ (0 )^  where g{x) =  0: + /Jo; is an arbitrary linear function. 
Then

(2.2.11)
G{a,P) =  E((?7 -  aoi) -  /3{̂  -  aio) +  (aoi -  Paw -  a ) f  

=  9'2oP̂  ~ +  fj,02 +  (ccoi ~ Paw ~ •

To solve the regression problem, it is sufBcient to find the minimum of the function 
G{a,P). It follows from (2.2.11) that

(2.2.12) /3* _ /3 _ f l̂l _ ^^2P — P21 — — P ,P'20 (Tl a* — aoi -  P*aw

where p is the coefficient of correlation between random variables  ̂ and rj defined 
by (2.1.8). The number P21 defined by the first equality in (2.2.12) is called the 
coefficient of linear regression of rj on

Substituting coefficients (2.1.12), the regression equation y = g*{x) =  a*+P*x  
becomes of the form

(2.2.13) y =  «01 + /?2i(x -  aio).
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This is the equation determining a straight line passing through the point (aio, Q̂ oi)- 
This equation can also be written in the form

(2.2.14) y - a o i  X -  aio
=  P-CT2 O'!

Equation (2.2.14) is called the canonical equation of the linear regression ofrj on 
The number E{r] — a* — /3*0^ is the minimal mean square error in the prob­

lem (2.2.9) and is called the least variance of the random variable rj. In view 
of (2.2.11) and (2.2.12) we get

(2.2.15) E(t7- a

It follows from (2.2.15) that \p\ =  1 if and only ii 7] =  a* with probabil­
ity 1 where a* and /3* are defined by (2.2.12), that is, y =  aoi +  /32i ( i  — ceio) 
with probability 1. Therefore we obtained the straight line for the assertion 2) of 
Theorem 2.1.2, that is, we found the coefficients to .̂nd uq in equality (2.1.7).

If p =  0, then it follows from (2.2.14) that the linear regression of 77 on  ̂
is of the form y =  aoi. Note that this is the straight line parallel to the x-axis 
and passing through the point (aio,ceoi)- Moreover we obtain from (2.2.15) that 

— a* — /3* )̂  ̂ =  (J2, that is, the variance of the random variable rj does not 
decrease after subtracting the linear regression a* -h /3* .̂

It is not hard to prove that if the general regression y =  m2{x) of rj on  ̂ is 
linear, then it coincides with the linear regression given by (2.2.13).

Solving the analogous problem (2.2.10), we find the linear regression f*{y) =  
Oi* P*y of  ̂OUT] whose coefficients are given by

(2.2.16) r  =/?12 = Mil
M02 CT2

a =  Olio — /3*aoi.

The number P12 is called the coefficient of the linear regression of ̂  on rj. Therefore 
the equation of the linear regression of  ̂ on 77 is of the form

(2.2.17) â =  <̂ io +  /?i2(2/-o^oi)‘

The regression can be rewritten in the canonical form:

X -  aio y -  OiQi
=  P-(2.2.18)

ai G2
The least variance of the random variable  ̂ is equal in this case to

(2.2.19) E(  ̂-  a* -  = o l { \ -  p^)

If p =  0, then it follows from (2.2.16) and (2.2.17) that the linear regression 
of  ̂ on 77 is X =  aio; this is the straight line passing through the point (aio, aoi) 
and parallel to the y-axis. It follows from (2.2.19) that E(  ̂— a* — /3*7y)̂  =  that 
is, the least variance of  ̂ coincides with the variance crj.

If IpI =  1, then we obtain from (2.2.19) that  ̂ =  a* H- /3*77 with probabil­
ity 1 where a* and P* are defined by (2.2.16). Moreover, we obtain from (2.2.14) 
and (2.2.18) that the linear regression of 77 on  ̂ and that of  ̂ on 77 coincide.

If 0 < IpI < 1, then linear regression (2.2.18) can be rewritten in the form

(2.2.20)
y -  gpi _  1 X -  aio

CT2 p G\
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(cf. (2.2.14)). It follows from (2.2.14) and (2.2.20) that the linear regression of rj 
on  ̂ and that of  ̂ on 77 coincide if and only if \p\ =  1. Otherwise they do not 
coincide; in the case p =  0 they are perpendicular and each of them is parallel to 
the corresponding coordinate axis.

Parabolic regression. Let P  be the family of polynomials

g{x) =  Co +  cix H------- h CkX̂

of degree k whose coefficients cq, c i , . . . ,  c  ̂ are real. A polynomial

g*{x) =cl^-c\x-\------- \-clx^

such that

(2.2.21)

is called the parabolic regression oft} on Assuming that all the moments occurring 
in (2.2.21) are finite we obtain the following condition for the minimum in (2.2.21):

1 9 0
(2.2.22) =  E ( ^ ( 5(0  -  V)) =  c o a i,o  +  • • • +  -  a ^ .i =  0,

i =  0 ,1 , . . . ,  fc (here G =  G(cq, c i , . . . ,  Cfc) =  E(?7 -  g(^))  ̂ for g(x) = cq +  cix +
----- h CfcX*). If the moments are known, the coefficients eg, c j , . . . ,  can be
determined from the above fc +  1 equations. The evaluation of the coefficients 
can be simplified if the polynomial g(x) is represented as a linear combination of 
orthogonal polynomials Pi(x) of degree i related to the distribution of  ̂ and such 
that

(2.2.23) Ep, m = I, 
m ^ L

Any polynomial g{x) of degree k can be represented as

g{x) = coPo{x) +  cipi(a:) H------- h CkPk{x)

for some coefficients cq, c i , . . . ,  c/j. According to (2.2.23) the condition for the min­
imum becomes of the form

1 dG
i =  0 , l , . . . , fc .

Using (2.2.24) we determine the coefficients ci =  Egpi{ )̂, whence the parabolic 
regression of i? on  ̂ is

(2.2.25) 9*{x) = cIpo{x) +  cípi(x) +  •. • +  clpkix).

Note that the coefficients c| do not depend on the degree fc of the polynomial g{x). 
Therefore one can apply the recursion to find the regression. Namely if the parabolic 
regression g*{x) of degree fc is known in the form (2.2.25), then the parabolic 
regression of degree fc +  1 can be obtained in the form

CoPo{x) H h Ci P̂k(x) +  Cfc+iPfc+i(x)

by evaluating only one extra number =  ^VPk+i(0- By (2.2.23) we get

(2.2.26) E{r, -  g*{^)^ =  -  (cS)^----------(c*)2
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where g" {̂x) =  CqPq{x) H-------1- clpk{x). It is seen from (2.2.26) that a larger degree
of the parabolic regression results in a smaller error of approximation E(rj —

Note that the above relations hold not only for polynomials Pi{x), In fact, an ar­
bitrary sequence of functions Pi{x) satisfying condition (2.2.23) can be used to con­
struct the function g{x) =  CiPi{x). Note that relations (2.2.24) and (2.2.26) 
remain true in this case, too.

To this end we note that the parabolic regression of  ̂ on 77 can be evaluated 
in the same way as in the case of problem (2.2.21). This regression possesses the 
same properties as that of 77 on

Sampling linear regression. Let Fn{x, y) be the empirical distribution func­
tion constructed from sample (2.1.1) according to (2.1.2) and (2.1.3) where sam­
ple (2.1.1) consists of n independent observations of the random vector (^,77) with 
the distribution function F{x,y).

The sampling linear regression of rj on  ̂ is called a function g*{x) =  a* P*x 
such that

(2.2.27)
i= l T"1=1

where L is the family of all linear functions. The sampling linear regression of  ̂
on Tj is called a function f*{y) =  a* +  ¡3*y such that

(2.2.28) ¿ ( i t  -  f* iv i ) f  =
i=l 2=1

To determine a linear regression g*{x) =  a* /3*x solving problem (2.2.27) it 
is sufficient to find a = a* and (3 =  13* for which the function

(2.2.29)
2=1

attains the minimum. Taking into account (2.1.9) and (2.1.10) and applying the 
same argument as in the case of (2.2.11) we obtain

(2.2.30) G(a, p) = m2oP  ̂ -  2mnP +  ^02 +  (^oi -  /3aio ~ ck) ,̂ 

whence

(2.2.31) r  =  6,. = = A
77120 Si

Oi* =  CLoi -  P*aio

where r is the sampling coefficient of regression (see Section 2.1). The random 
variable 621 defined by (2.2.31) is called the sampling coefficient of linear regression 
of 7] on Using (2.2.31) we rewrite the regression equation y = g*{x) in the form

y  —  a o i  X —  a i o=  r ---------- .(2.2.32)
52 Si

Equation (2.2.32) is called the canonical equation of sampling linear regression of rj 
on

As above we get

(2.2.33) G { a * , 0 * )  =  -  ¿ ( r /i  -  a* -  /3*6)' =  s l { l -  r^)n ,
2=1
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Reasoning in the same way as in the case of the least variance (2.2.15) we obtain the 
same results about G{a*,P*) defined by (2.2.33). The only difference is that these 
results involve sampling characteristics instead of the corresponding characteristics 
of the random vector

The method for obtaining sampling linear regressions as solutions of extremal 
problems (2.2.27) and (2.2.28) is called the least squares method. For example, 
the extremal problem (2.2.27) is to find the minimum of the sum of squares of 
distances evaluated in the y-direction between sampling points and straight
lines y =  a Px. The same is true for the extremal problem (2.2.28) with the 
difference that the distances are evaluated in the rc-direction between sampling 
points ( ¿̂, rji) and straight lines y = a-\- Px.

Solving extremal problem (2.2.28) and using representations, similar to (2.2.29) 
and (2.2.30), we get the sampling linear regression f*{y) =  a* +  P*y where

(2.2.34) , mil Si
P =012 =  -----  =77102 52

a* =  aio -/3*aoi-

The random variable 612 defined by (2.2.34) is called the coefficient of the sampling 
linear regression of ̂  on rj. The canonical equation x = a* P*y of the sampling 
linear regression of  ̂ on ry is

(2.2.35) X — aio y — aoi ---------- =  r -----------
Si S2

in view of (2.2.34). Reasoning in the same way as in the case of equalities (2.2.18) 
and (2.2.20) we prove the same results for sampling regressions (2.2.32) and (2.2.35).

The asymptotic behavior of coefficients 612 and 621 as n —> 00 is as follows. 
If cTi ^  0 and (J2 ^  0, then r ^  p in probability as ?7 00, thus by (2.2.31)
and (2.2.34) we get 621 P21 and 612 P12 in probability as ?7 00. Further
applying (2.1.14) and (2.1.16) we obtain

Ei>i2 =  P12 +  O ^ , E621 = P21 +  0  ^

provided that all necessary moments are finite. Moreover one can show that

D612 -  ^  + O (n-̂ /2) , D621 = ^  + o (n-3/2)

where C12 and C21 are some positive constants.
One can also show that 612 is asymptotically M{Pi2n~^Ci2) normal, and 621 is 

asymptotically A/*(^2i , t7“ Ĉ2i ) normal.

Sampling parabolic regression. Let P  be a family of polynomials 

g{x) =7o+7iiKH-------

of degree k whose coefficients 7o ,7i, • • • ,7fc are real. A polynomial

5*(a:) =  7o +  7 ia ; +  • • • +  7* 2;*'

such that
n n

2̂(2.2.36) '^{Vi -  -  g{ î))
i=l
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is called the sampling parabolic regression of rf on Let g{x) =  7o+7ixH____h7fc^^
and

G(7o,7i , • • •,7fc) = ^ ¿(i?i -  g { ^ i ) f  = ^ ¿  (»7i -  70 -  7iii---------.
2=1 i= l

Then condition (2.2.36) can be rewritten in the form 

X X ^
(2.2.37) 2 ^  n ^  ^  +  • • • +  7feaj+fc,o -  Oj.i

=  0, i  =  0 ,1 , . . . ,  fc.

Condition (2.2.37) becomes simpler if the polynomial g{x) is represented as a linear 
combination of orthogonal polynomials Pm{^) of degree m related to the sampling 
distribution of  ̂ and such that

(2.2.38) m = ly
m ^ l .

Every polynomial g{x) of degree k can be represented as

g{x) =  copo{x) +  • • • +  CkPk(x)

with some real coefficients c q , c i , . . . ,  Ck- Using property (2.2.38) we rewrite condi- 
tion (2.2.37) in the form

1 dG 1  ̂ 1 ^
(2.2.39) 2 ^  ^  n -  Vi) =  Cj -  -  E ^ iP i( i i )  =  0,

j = 0,l,...,fc.
This system of equations is easy to solve; its solution is given by

(2.2.40) 1 "
=  n Y lv iP M i), j  =  0,l , - - - ,k.

2=1

Thus the sampling parabolic regression of t] on  ̂ is

(2.2.41) 9*{^) =  CqPq{x) +  cIp i {x) H------- h clpk{x).

In view of (2.2.40) the coefficients Cj depend only on the polynomial P j{ x ) .  This 
implies that if the sampling parabolic regression g*{x) of degree k is represented in 
the form of (2.2.41) and one needs to obtain the regression of a higher degree, say 
of the degree fc +  1, that is,

g*{x) = CqPo(x) +  c\pi{x) + ----- h clpk{x) + c%+iPk+i{x),

then one can use coefficients c|, j  =  0 ,1 , . . . ,  fc, known from the preceding regres­
sion. The only extra work is to evaluate the coefficient cj ,̂ by using (2.2.40) for 
j  =  fc -I-1. For the regression (2.2.41) we have

(2.2.42) 1
- E ( » ? i - 5 W  =  a 2 o -(cS )2 ----------{ c l f

2=1
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where a2o is the sampling moment of order 2 defined by (2.1.9). It follows from 
equality (2.2.42) that a larger degree of the regression results in a smaller error of 
approximation.

To this end we note that the sampling parabolic regression of  ̂on 77 is defined 
similarly to (2.2.21). This regression possesses all the properties as does that of rj 
on

Remark 2.2.2. In this section we considered the regression analysis only for 
two-dimensional vectors. For the higher-dimensional case see [1, 18, 28].



CHAPTER 3

Estimation of Unknown 
Parameters of Distributions

3.1. Statistical estim ators and their quality measures

Param etric families o f  distributions and statistical estim ators o f  pa­
rameters. Let  ̂be an observation that is a random element assuming values in a 
measurable space (X ,B ). Let the probability distribution of the random element  ̂
be either unknown or partially known. Let {P^,0 € 0 }  be a family of probability 
measures on (X,B) and let 0 =  (0i , 02, • • • ,̂ Jk) be a fc-dimensional parameter be­
longing to a subset 0  C R^, fc > 1. We assume that the distribution of the random 
element  ̂depends on the parameter 0 which is unknown for the statistician. Thus 
the measure is the distribution of  ̂ if the unknown parameter is equal to 0, that 
iS) G i4} =  Pe{A) for all A e B. The problem is to estimate the unknown 
parameter 0 or a function (¡){0) of the parameter 0 with the help of the observation 
 ̂=  x.

The space X  is called the sampling space. Every measurable function T =  T{x) 
mapping (X, B) onto a measurable space (Y, S) is called a statistic. If 0  is a Borel 
set of and B{Q) is the cr-algebra of Borel subsets of 0 , then, in the case of 
(Y ,5) =  (0 ,B (0 )), a statistic T  =  T(x) is called a statistical estimator (or just 
estimator) of an unknown parameter 0 constructed from an observation  ̂ =  x. 
In the case of (Y,iS) =  (R^,B^) and R^ ^  0 , we sometimes refer to a statistic 
T  =  T{x) as an estimator of a parameter 0.

The notion of a statistical estimator of a function of a parameter 0 can be 
introduced in an analogous way. The random variable T  =  T(^) is also called an 
estimator of a parameter (or, an estimator of a function of a parameter).

Statistical estimators of a parameter 0 introduced above are sometimes called 
point estimators. A point estimator T  constructed from an observation  ̂=  x pro­
vides a single value t =  T{x) which we treat as an approximation of the parameter. 
However the true value of the parameter can be (and usually is) different from 
an estimator. Therefore it is very important to know the error of approximation 
appearing due to a specific estimator. For this purpose, statisticians usually also 
indicate a region (an interval, if A; =  1) such that the probability that the true value 
of a parameter 0 belongs to the region is large.

Let fc =  1; thus 0 is a one-dimensional (scalar) parameter. Let T\ =  Ti{x) and 
T2 =  T2{x) be two statistics with values in R^. Assume that T\ < T2 and for a 
given 7 e  (0, 1)

(3.1.1) P e {T i {O < 0 < T 2i O } > l  fo ra ll0 G 0 .

The interval (Ti(^),T2(0) is called a ^-confidence interval or a confidence inter­
val of level 7 for the parameter 0. The number 7 is often called the confidence

39
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probability or confidence level. The numbers T\{ )̂ and T2(^) are called the lower 
and upper confidence boundŝ  respectively.

Now let A; >  1. Then a parameter 0 is a fc-dimensional vector and instead of 
7-confidence intervals we define ^-confidence regions G =  G (0  ^ with the help 
of a condition similar to (3.1.1), namely

(3.1.2) Pe{e e  G (0 }  > 7 for all 0 G 0 .

The 7-confidence intervals and 7-confidence regions defined by (3.1.1) and (3.1.2) 
can be constructed by using point estimators of the unknown parameter 6. For 
example, if T  is a point estimator of a parameter 0, then, as a confidence interval, 
one can take {T -  S,T S) where 5 > 0 is found from condition (3.1.1).

In what follows we often treat a sample =  (^1,^2? •• • >in) as an observed 
random element For this case, the sampling space is (R^, ;B )̂, while the family of 
distributions of the sample is {P^, 0 € 0 } .  The point estimation of parameters 
for this case is considered in the book by Lehmann [21].

Unbiased and consistent estimators. Let  ̂ be an observed random ele­
ment, let 0 =  (01, . . .  ,6k) be an unknown parameter of the distribution, and let 
6 =  {0 1, . . .  ,6k) he 3. statistical estimator of the parameter 6 constructed from the 
observation An estimator 6 is called unbiased if

(3.1.3) Ê 0 =  6 for all 0 G 0

where is the expectation with respect to the distribution P .̂
In the case of estimation of a function 0(0) of a parameter 0, a statistic 0 is 

called an unbiased estimator of the function 0 (0) if

(3.1.4) Ee<l> = (f>{e) for all 6» e 0 .

By 0n =  0(i^^^) we denote statistical estimators of a parameter 0 in the case where 
an observed random element is a sample =  (^i)^2, • • • ,Cn)- In such a case we 
deal with a sequence of estimators 0n, n =  1 ,2 ,... .

If an estimator 0 does not satisfy condition (3.1.3), then we consider the bias 
of the estimator 0 defined by

6(0) =  E ^0-0.
A sequence of estimators 0 ,̂ n =  1, 2, . . . ,  is called an asymptotically unbiased 
estimator of a parameter 0 if

(3.1.5)

or, in other words.

lim Ee6n = 6 for all 0 G 0
n—>00

lim bn{6) =  0 for all 0 G 0

where bn{6) =  Ê 0n — 0 is the bias of the estimator 0 .̂ The notion of asymptotically 
unbiased estimators of a function 0 (0) of a parameter can be introduced in a similar 
way.

When analyzing data, statisticians often restrict themselves to the case of unbi­
ased estimators, since there exists a simple and useful theory of unbiased estimators 
where the quality of an estimator is measured by its variance.
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On the other hand, there are many cases where the requirement that an estima­
tor should be unbiased is too restrictive. For example, it is possible that unbiased 
estimators do not exist at all or are useless in practice for a given parametric model. 
To see this we consider the following examples.

Example 3.1.1. Let  ̂ be a Poisson random variable with parameter 0 >  0, 
that is, = x} =  x =  0 ,1 ,2 ,... . Assume that we want to estimate
the function (¡){6) = 1/6 of the parameter 6 by an observation Let T =  T(^) 
be an unbiased estimator of 0(0), that is, condition (3.1.4) holds. Then it can be 
rewritten as

^  DX 1
J 2 T { x ) - e - ^  =  -  forall0e(O ,cx>)
x=0

or, in other words.

(3.1.6) y ^ r ( x ) —̂   ̂^ (0, oo).
®=0 5=0

It is obvious that there is no function T{x) that satisfies condition (3.1.6) for all 
0 G (0, oo) and does not depend on 0. This means that there is no unbiased 
estimator of 0(0) =  1/0.

Example 3.1.2. Let  ̂ have the geometric distribution with parameter

0G(O ,1),

Assume that we want to estimate 
T(^) is an unbiased estimator is

that is, = x} =  0®(1 -  0), X =  0 ,1 ,2 ,... 
the parameter 0. Then the condition that T 
given by

oo ^ oo

E  =  Tzre =  E   ̂^ !)•
X=0 5=1

Comparing the coefficients for degrees of 0 we see that the only unbiased estimator 
of 0 is the statistic T(x) such that T(0) =  0 and T(x) =  1 for x =  1 ,2 ,... . 
Since this statistic does not belong to the set © =  (0,1) of possible values of the 
parameter, it gives a wrong approximation of the true value of 0 and the estimator 
is useless for practice.

The following example shows that, at least in some cases, an estimator with a 
small bias and small mean square error is better that an unbiased estimator with 
a large variance.

Example 3.1.3. Let be a sample from the normal A/"(0i, 0|) distribution, 
(̂n) _  (^1,^2, • • • ,in)- The unknown parameter is 0 =  (0i,02)- Consider the 

problem on estimating the function 0(0) =  02-
Consider the sampling variance

(3.1.7) «2 =  ^2 =  1  ¿ ( C i  -  a i f
”  • 11=1

as an estimator where a\ is the first order sampling moment defined by (1.2.2). 
Applying (1.2.9) for fc =  2 we get = 0,2 — Sf where Si and S2 are defined in the 
proof of Theorem 1.2.1. Note that E^a2 =  0I- In view of (1.2.10) for A; =  2 we 
have Eqcli =  01/n, whence Ê ŝ  =  02 (n — l) /n , that is, the estimator is biased
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(however it is asymptotically unbiased). This implies that an unbiased estimator 
is given by

(3.1.8)
n — 1 n — 1

2=1

Theorem 1.4.2 implies that Z)((n —l)s^/0|) =  X^(^~ !)• This together with (1.4.6) 
yields

(3.1.9) г̂  ~2 26»!Dos2 =  —n -  1

Consider the class of estimators T\ =  As A e (0, oo). Since

EeTx =  AEes2 =  x o l

there is only one unbiased estimator s ̂  of the function <j)(6) in this class. The mean 
square error of the estimator T\ equals

(3.1.10) E, (Ta -  e l f  = ( ^  + (1 -  a)2^ e l

The right-hand side of (3.1.10) attains its minimum at A* =  (n — l ) / (n + l ) .  Taking 
into account (3.1.9) we obtain

E. (3a. -  9|)" = = E, .

Therefore the estimator T\* has a smaller mean square error than that of the 
unbiased estimator s^. Since EeT\* = (n — 1 )62/{n +  1), the estimator T\* is 
asymptotically unbiased. Note that also is an asymptotically unbiased estimator, 
but = T\! for A' =  (n — l ) /n  ^  A*. This means that the estimator is worse 
than T\* in the sense of the minimum of the mean square error.

Moreover,

(3.1.11) Ee (Ta. -  e l f  < Ee -  e l f  < Ee {s^ -  e l f .2\2 o2\2

Let (¡)ny n =  1 ,2 ,. . . ,  be a sequence of estimators of a function (¡){6) of a parame­
ter 6 constructed from a sample =  (ii> 2̂» • • •»^n)- A sequence of estimators (¡)n̂  
n =  1 ,2 ,. . . ,  is called a consistent sequence of estimators of a function <f){6) if for 
all e: > 0

(3.1.12) lim “  0(^)1 > s} =  0 for all 0 G ©.

For brevity we also say that an estimator satisfying condition (3.1.12) is a 
consistent estimator of the function <l){0).

Note that ŝ  and introduced in Example 3.1.3 by formulas (3.1.7) and (3.1.8) 
respectively, as well as T\* =  A*s^ are consistent estimators of the function

m  = oi.

since they satisfy condition (3.1.12) in view of the Chebyshev inequality and rela­
tions (3.1.9) and (3.1.11).
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We say that a sequence of estimators 0^ , n =  1,2,. is a strongly consistent 
sequence of estimators of a function (¡){6) (alternatively, (¡>n is a strongly consistent 
estimator of a function (¡>{0)) if

(3.1.13) Pe =  (/»(0)| =  1.

For example, it follows from (1.1.4) that the empirical distribution function 
Fn{x) is a strongly consistent estimator of the distribution function F{x).

Consistent estimators with minimal variance. It is natural to compare 
unbiased estimators according to their variances. Let  ̂ be an observed random 
element with values in a measurable space (X , B) and with a distribution belonging 
to a parametric family of probability measures {P^, 0 € 0 } .

Consider the problem of estimating a real function g{0). Consider the following 
classes of estimators:

(1) the class Ug of unbiased estimators T  =  T(^) of the function g{0) at a 
given point 0 and such that < oo,

(2) the class Uq of unbiased estimators T  =  T{^) of zero at a given point 0 
and such that < oo.

Therefore

Ûg =  {T:EeT =  9i9) ,EgT^<oo},

=  {T : BoT =  0, BgT  ̂ < oo} .

We also consider the following classes:

U 9 = f ]  i/o =  n  ^0-
eee 9ee

The following result contains necessary and sufficient conditions for an estima­
tor to be optimal in the sense of minimum of the variance in the classes Ug and 
C/p.

Theorem 3.1.1. The variance of an estimator T G Ug {respectively  ̂ T £Ug) 
is minimal in the class Ug {respectively  ̂ in Ug) if and only if EpT/i =  0 for all 
h eUo and 0 G Q {respectively, EeTh =  0 for a given 0 e Q and for all h g Uq).

Proof. Necessity, Let an estimator T eUg have minimal variance in the class 
Ug for a fixed 0 e  & and h G Uq. It is clear that T Xh G Ug for all constants A. 
Then

Dg{T +  Xh) =  DeT -h 2AEpT/i +  X^Dgh.
If EeTh ^  0, then there exists a number A such that

2XE$Th +  A^Dp/i <C 0.

This implies that Dp(T +  Xh) < DpT, which contradicts the assumption that the 
estimator T  has minimal variance in the class Ug. Therefore EeTh =  0 for all 
h G U l

Sufficiency. Let condition EeTh =  0 hold for all h G Uq and for an estimator 
T GUg where 0 G 0  is fixed. Let T' G Ug be another estimator. Then

T ' - T  =  hGU^
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and
DeT' = DeT +  2EeTh +  Deh > D^T,

since EgTh =  0. This means that the estimator T  has minimal variance in the class

The proof for the class Ug is analogous. □

Theorem 3.1.1 is convenient for applications if a family of distributions contains 
a sufficiently wide class of unbiased estimators of zero.

Optim al estimators. As in the preceding section we consider the problem 
of estimating a function g{6) from an observation  ̂ assuming values in {X^B) and 
whose distribution belongs to a parametric family {P^, 0 G 0 } .

Let T =  T(^) be an estimator of a function g{6) and let r(T, g) be a nonnegative 
loss function (a loss appears because we approximate g =  g{6) by an estimator T). 
A function

(3.1.14) i2(T;0) =  E ,r(T(O ,^(0)), e e Q ,

r{T,
- H I

is called a risk function of an estimator T =  T(^) if the true value of the parameter 
is 6.

Examples of loss functions are presented by the quadratic function

r{T,g) =  { T - g f

used in the preceding section, by the Laplace function r{T^g) =  \T — g\̂  and by the 
function

0, \T-g\<b,
\T-g\>b,

where 6 > 0. The latter function appears in the interval estimation of parameters.
Sometimes we treat a risk function as a measure of quality of estimators. We 

consider the general case where an estimator is not necessarily unbiased and the 
loss function is not necessarily quadratic.

An estimator T ' =  T'(^) belonging to a class /C of estimators of a function g{6) 
is called admissible for the class /C with respect to a loss function r(T, g) if there is 
no estimator T £ 1C such that

(3.1.15) R{T\ e) < R{T'; 6) for all l9 € 0

and inequality (3.1.15) is strict for at least one 6 £ Q. An estimator T ' =  T'(^) 
that is admissible for the class of all estimators is called an absolutely admissible 
estimator of the function g{9).

A statistic T* = T*{^) £ 1C is called an optimal estimator of a function g{6) in 
the class 1C with respect to a loss function r(T, g) if for all T G /C

i?(T*; l9) < iZ(T; 6) for all 0 G 0 .

A statistic T ' =  T'(^) G /C is called an optimal estimator (or, locally optimal 
estimator) of a function g{6) at a point 6q in the class 1C with respect to a loss 
function r{T,g) if for all T  G /C

i? (T ';0o )< i?(T ;0o).
It is clear that the set of risk functions R{T\ 0) is unordered in the class of all 

estimators T. For this reason we consider narrower classes of either estimators or
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distributions. One of the possible approaches here is to exclude estimators that are 
not admissible.

Example 3.1.4. Let • • • »Cn) be a sample where i i ,6 > • • •
are independent identically distributed random variables depending on an unknown 
parameter 6. Assume that 9 =  E^ î. Let T =  =  ^i. It is obvious that T
is an unbiased estimator of the parameter 9. Let < oo for all 9 and let 
r{T,9) = \T -  be the loss function. Then R{T\9) =  E l̂ î — 9\̂  =  D^^i. 
The estimator T ' =  T'(^) =  
parameter 9. In this case

n  ̂ also is an unbiased estimator of the

e) = £e\T' -  6\̂ = -Dg^i < R{T-, 6).
n

Moreover the inequality becomes strict if n > 2. Therefore T is not an admissible 
estimator in the class of unbiased estimators of the parameter 9.

Below we consider the Bayes and minimax approaches allowing one to avoid 
the problem that the set of risk functions is unordered.

The Bayes and minimax approaches. Let 0  be an open set of and
let Q be a cr-finite measure on 0 . Without loss of generality we can extend the 
measure 0  to the whole space by putting Q(R^\0) =  0. Let T =  T{^) be some 
estimator of a function g{9) and let i?(T; 9) be a risk function of the estimator T 
defined by (3.1.14). The number

(3.1.16) R(T) = j  R{T;e)Qide)

is called the risk of the estimator T. The measure Q is called the a priori measure. 
An estimator T* is called a Bayes estimator of a function g{9) with respect to a 
loss function r{T^g) and the a priori measure Q if

R{T*) < R(T)

for all estimators T where the risk R{T) is defined by (3 .1 .16 ). In other words,

R{T*) =

for a Bayes estimator.
Sometimes an estimator is called Bayes only in the case where Q is a probability 

measure. Otherwise an estimator minimizing the risk (3 .1 .16 ) is called a generalized 
Bayes estimator.

Note that we can think of 0 as a random parameter with distribution Q if Q 
is a probability measure. Then all Bayes estimators T* are of the form

T* = E{g {9)/^}

in the case of r(T, g) = (T -  )̂  ̂ where the conditional expectation is evaluated 
with respect to the conditional distribution of the parameter 9 subject to In its 
turn, the latter distribution can be found by the Bayes formula and this explains 
why these estimators are called Bayes. In this case, a Bayes estimator minimizes 
the possibility that the risk is the mean square error

i?(T) = E(T(O-5(0))" = Ei?(T;0).
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Another approach is based on the comparison of maximums of risk functions 
for estimators sup^^e R{T\ 6). A statistic T ' =  T'(^) is called a minimax estimator 
of a function g{6) with respect to a loss function r(T^g) if for all estimators T

sup R{T'\ 9) < sup R{T\ 6). 
e e e  e e e

In other words,
sup 6) =  inf sup R{T] 6)
0eQ ^ Bee

for a minimax estimator T'. There are many relations between minimax and Bayes 
estimators; some of them are given below.

Theorem 3.1.2. Let T* be a Bayes estimator of a function g{6) with respect 
to a loss function r{T^g) and the a priori probability measure Q. If there is an 
estimator T' such that

(3.1.17) R{T'-,e) < j  R{T*;t) Q{dt)

for all 6 eQ^ then the estimator T ' is minimax.

Proof. Let T be an arbitrary estimator of a function g{6). Then for alH G 0

sup i2(T;0) > f R{T;t)Q{dt) > [  R{T*;t)Q{dt) > ii(T ';t). 
Bee J  J

□

Assume that the measure Q possesses the density q{t ) .  Consider the set

= {t- Q{t) > 0}-

Note that inequality (3.1.17) becomes an equality for almost all 0 G iN/g, since 
otherwise j R{T'-,e)q{e)de < J R{T*-,0)q{e)<w,

contradicting the assumption that the estimator T* is Bayes. This remark allows 
one to obtain the following criterion, which is equivalent to Theorem 3.1.2.

Theorem 3.1.3. Assume that an estimator T exists such that
1) T is a Bayes estimator with respect to some probability measure Q possess­

ing density q{t)\
2) R{T; t) =  c =  const f o r  t G N q ]
3) R { T ] t ) < c f o r t ^ N Q .

Then the estimator T is minimax.

If an estimator T' is minimax and is Bayes with respect to a probability mea­
sure Q with density g(t), then

s u p ii(T ';t )=  f R{T'\t)q{t) dt. 
t e e  J

Therefore any minimax estimator is a Bayes estimator that smooths the risk func­
tion. This means that the a priori measure Q ' related to this estimator suggests 
that statisticians pay the same attention to all possible parameters 0, instead of the 
approach suggested by Bayes estimators T* =  T^ that corresponds to other a priori
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measures Q ^  Q', namely to pay special attention to some (the most probable) 
values of d. Therefore

J Rm-,t)Q{dt)  < j R{T';t) Q'idt).

This inequality explains why the distribution Q ' in Theorem 3.1.3 corresponding 
to a minimax estimator T ' is often called the worse or least favorable.

The least favorable distribution Q ' does not always exists, thus one can use the 
following criterion for minimax estimators.

T h e o r e m  3.1.4. Assume that there are an estimator T' and a sequence of 
distributions QrTi, m =  1 ,2 , . . . , possessing the densities ^rn(0

(3.1.18) Etr{T'\g{t)) < lim sup [  g{t))qm{t) dtm—>oo J

for all t E Q where is a Bayes estimator of a function g{6) with respect to a 
loss function r{T\g{t)) and the a priori distribution Q^. Then the estimator T' is 
minimax.

P r o o f . For all estimators T of a function g{6),

supEtr{T;g{t))> J Etr{T-,g{t))qm{t)dt > J Etr{T^;g{t))qm{t)dt. 

According to (3.1.18) this implies that

supEfr(T;5(i)) > lim sup f Etr{T;^; g{t))qm{t)dt> sup Etr{T';g{t)),t m->oo J t

whence it follows that the estimator T ' is minimax. □

Example 3.1.5. Let =  (íi,^2, • • • >ín) be a sample from the normal 
A/*(0,1) distribution. Let the a priori measure also be normal Q̂ n =  A/*(0,m) 
distribution where m is the variance. Then the Bayes estimator of the parameter 
9 with respect to the quadratic loss function and the a priori A/̂ (0, m) distribution 
coincides with the a posteriori mean =  x) =  0J^(x). Simple calculations
show that

i=\ '  ̂ '
The variance of the a posteriori distribution is

d ( 0 / ^ W = x)  =  -
m

+  nm
whence it follows that the mean square error of the estimator is

E (C  -  = E0{e/ = I

where qm{t) is the density of Qm with respect to the Lebesgue measure. This 
implies for the estimator 9n{x) =  n~  ̂ZlILi

Et(^n - t f  = -  =  lim [  Et{d!  ̂-  t)qm{t) dt. n m->oo J
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Thus the estimator On is minimax by Theorem 3.1.4. Note also that the least 
favorable distribution does not exist in this case.

We show in Example 3.2.1 below that On is a Pitman estimator of the parame­
ter 0. By (3.2.9) this estimator is Bayes with respect to the quadratic loss function 
and the Lebesgue measure taken as a priori measure.

The following is an example where the least favorable distribution exists.

E x a m p l e  3.1.6. Let • • • ,^ n )  be a sample from the binomial dis­
tribution with parameter 0 G 0  =  [0,1], that is, the random variables ^i , . . . , are 
independent, identically distributed, and assume values 1 and 0 with probabilities 0 
and 1 — 0, respectively. For the estimator 0n{x) =

E e {0 n -0 f  = 0{l -0)/n.

Hence the assumption of Theorem 3.1.3 does not hold for this estimator. Consider 
another estimator

(3.1.19)

for which

=  ( ^n{x) + 2-v/ñ

- 1

-  0)2 =  1 +
s/n

- 2

2y/n ^/ñj 4 (H --v /«)2 ’

that is, the risk function of the estimator 0* does not depend on 0. 
Let Bai,a2 be the beta distribution with density

(3.1.20) r(A i +  A2) .Ai-i/1
r(Ai)r(A2)  ̂  ̂ ’

0 < i  < 1,

where Ai > 0 and A2 > 0 are two parameters of the distribution. Let the a priori 
distribution Q be a Beta jBiv+i,iv+i distribution. It can be proved in this case 
that the a priori distribution coincides with the Beta distribution (3.1.20) with 
parameters Ai =  iV -h n0n{x) +  1 and A2 =  iV -h n (l -  0n{x)) +  1. Since the mean 
value of the distribution ^Ai ,A2 is Ai/(Ai +  A2), the Bayes estimator with respect 
to the a priori distribution Q =  and the quadratic loss function is

N  -h n0n{x) 4“ 1 0n{x) -h {N l)/n
2N +  TI +  2 1 +  2(iV -h l ) /n  ■

If iV -f 1 =  A/ñ/2, then the latter estimator coincides with the estimator 0^{x) 
defined by (3.1.19). By Theorem 3.1.3 0* is minimax. On the other hand, it is 
known that this is a Bayes estimator with respect to the a priori distribution

Q =
for N =  y/n/2 — 1. This means that a priori distribution is the least favorable. If n 
increases, then the support of this distribution tends to concentrate in a neighbor­
hood of the least favorable value of the parameter 0 =  1/2 for which the variance 
0(1 — 0)/n  =  l/(4n ) of the estimator On is maximal. The estimator On itself is not 
minimax, since

0(1 -  0) 1 1sup ■ 
e n 4n ^ 4(1 -1- y/ñy ’
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It is also clear that for all 6 outside a small enough neighborhood of the point 
0 =  1/2 the estimator On is better than 6^. The small neighborhood of the point 
0 =  1/2 mentioned above is determined by the inequality

9{1 - 6 ) < 4(1 +  1/V^)2-

Remark 3.1.1. In the general case, it is not always possible to give explicit 
expressions for Bayes and minimax estimators.

3.2. Estim ation o f  a location  param eter

In this and the next sections we show how to estimate unknown location and 
scale parameters of a distribution in the cases where optimal estimators exist.

Location parameters. Equivariant estimators. Let an observed element 
=  ( i i , . . . ,  in) be a vector whose coordinates are, generally speaking, dependent 

random variables, let (R^, be a sampling space, and let (P^, 0 G 0 ) be a family 
of distributions to which the distribution of the vector belongs. Assume that 
the parameter 0 is one-dimensional and 0  =  R^. If measures Pq depend on the 
parameter 0 in such a way that

(3.2.1) P^{A) =  P^{A -  0) for all A e  B ,̂

then 0 is called a location parameter. We use the notation

A -  6 = [x  -  6 = {x\ -  6^... ,X n -  0)\x =  ( x i , . . .  ,Xn) G A]

for all AeB'^ m equality (3.2.1). One of the models leading to distributions (3.2.1) 
is the so-called scheme of direct observations where

=  0 +  Sî l , . . . , n .

and , . . . ,  £n are, generally speaking, dependent random variables with the joint 
distribution defined by the measure Pq .

Let e A} =  P^(A) for all A G B .̂ Then condition (3.2.1) can be
rewritten in an equivalent form as

(3.2.2) Ps 0 6 >l} =  Po e  for all A € B ^

where — 0 =  (^i — 0, • • •, in — ^)- Condition (3.2.2) means that if the true value 
of the parameter is 0, then the vector — 0 has the same distribution as the 
vector corresponding to the zero value of the parameter.

There is a natural class of estimators used in the estimation of location param­
eters, namely

(3.2.3) T  =  |0n =  On{x): 6n{x +  c) =  On{x) +  c for all x G R ’  ̂ and all c G R ^ | .

Estimators of the class T  are called equivariant estimators of a location parameter. 
Some authors call su ^  estimators “invariant” .

Let r{6n\ 0) =  r{9n -  0) be a nonnegative loss function depending on the dif­
ference of arguments 0„ — 0, and let R{0n\0) =  E^r(0n — 0) be the risk function of
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the estimator On (here Eq stands for the expectation with respect to the measure 
P^). If On e  T, then

(3.2.4) R{0n] 0) =  Eer(0n -  0) =  Egr {On ^or{0n) =  const

by (3.2.2), that is, the risk function R{0n\0) does not depend on 0. Thus the 
estimator On E T  is either optimal in T  or not admissible in T  for such loss 
functions. ^

An optimal in the class T  estimator On is called the Pitman estimator of a 
location parameter 0 corresponding to a loss function r{0n — 0) if

R{0ny 0) =  min R{0n]0) for all 0 E
Oner

Below we show that the Pitman estimator exists and find it for some loss functiorg.
We mention another useful property of equivariant estimators. Let On and 

be two equivariant estimators. Then by the definition of equivariant estimators

(3.2.5) dn{x) -6'n{x) =  i){y), y = { X 2 - X i , X 3 - X i , . . . , X n - X i ) ,

where %j){y) is some measurable function. Indeed,

On{x) -  0' {̂x) = ^n{x) -  xi] -  -  xi] =  On{x -  xi) -  &Ĵ x -  Xi)

— ^n(b) X2 X\, . . . , Xn 3̂ 1) n̂(̂ > ̂ 2 X\y • • • ) Xn ^l))

whence (3.2.5) follows.

The Pitm an estim ator o f  a location param eter. In what follows we use 
the following notation. If T  =  T(x), x G R^, is a statistic, then Egi^/y) denotes 
the conditional expectation

(3.2.6) Ee{T/y) =  Ee { t  / y  =  y ]

where =  (^1,^2? • • • ,in)> the vector y is defined by (3.2.5), and

(3.2.7) ^ =

The following result establishes the Pitman estimator of a location parameter 
with respect to the quadratic loss function.

T heorem 3.2.1. Assume that < 00 for aZ/ i =  1,2 ,. . .  ,n. Let

/(3 ? ) CiXiy X  {x\  ̂ * * * ) Xn^^
¿=1

he a linear statistic such that J27=i =  1- Then
1) the estimator

(3.2.8) On{x) = l{x) -  Eo{l/y), X G R^,

is the Pitman estimator of a location parameter 0 with respect to the qua­
dratic loss function r{0n,0) = \0n —
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2) if the measure Pq is absolutely continuous with respect to the Lebesgue 
measure and its density is f{x)^ x e  R ”", then the Pitman estimator is of 
the form

/ oo /  /*oo \ —1
v f { x - v ) d v y j  f { x - v ) d v j  , X  e  R ".

P r o o f . It is clear that 0n S T. Let be an arbitrary equivariant estimator 
of T. Then On{x) =  dn{x) + ipiy) by (3.2.5). If =  oo, then

Eeidn-Oy < E g ( 0 n - O f

for all 0 e R^. On the other hand, if < oo, then

(3.2.10)
E e { e n - e f  = Eg(en-0n + On-e)^

= EeiOn -  0)  ̂+  2Ee(0n -  0n){en ~0) +  Ea(0„ -  0n) -̂ 

It follows from (3.2.2) and (3.2.5) that

^ (̂^n “  ^n)(^n ~ ~  Eo(0n ~ ^n)^n — ^oEo{(^n ~ ^n)^n /  v}(3.2.11)
=  Eo(^„ -  0„)Eo{0n /  »?} =  0

in view of (3.2.6) and (3.2.7) where 6n is defined by (3.2.8). Thus

Eo(^n/2/) =  Eo(Z/i/) -  Eo{l/y) =  0.

Relations (3.2.10) and (3.2.11) imply that for all 0 G we have

EeiOn -  Of = Ee(0n -  0 f  + E<,(4 -  0 „ f  > Ee(0n -  0 f.

Therefore we proved that the estimator On defined by (3.2.8) is the Pitman estimator 
of a location parameter with respect to the quadratic loss function.

Now we prove equality (3.2.9). Let l{x) =  Xi. Then estimator (3.2.8) is of the 
form

(3.2.12) 0n(x} =  X i -  Eo(^i/y), a; e R ”

Consider random variables Ci =  ii» C2 =  ^2 -  Cn =  in  -  Ci- Let
p(^i) ^2) • • •) ^n) be the probability density of the vector (Cii C2> • • • > Cn) for 0 =  0. 
It is not hard to show that

p{Zi,Z2,  . . . , Z n )  =  f { Z l ,Z i  + Z 2 , . . . , Z i +  Zn)
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where /(x ) ,  x G R^, is the density of the distribution Pq. It is obvious that

E o (il/? /)  ~  ^0 {C l /  C2 — ^2 ~  ^1 > • • • ) Cn “  “  ^ 1 }
)
zp{z,X2 -  X i, . . . ,Xn -  Xl)dz

D

X i j  p{z,X2-Xi, . . . ,Xn-Xi)dzj

(3.2.13) / 00

zf{z, Z + X2 - X i , . . . , Z  + Xn-X i)dz
-00

X f { z ,  z  +  X2 -  x i , . . . ,  z  +  Xn -  x i )  d : ^

/ 00

v f { x i  -  V,X2 ~  V,.  . . ,Xn -  v ) d v  
■ 00

 ̂ ( /  - v , X 2 - v , . . . , X n - v )  d i ^

Combining equalities (3.2.12) and (3.2.13) we obtain representation (3.2.9). □

Remark 3.2.1. When proving representation (3.2.9) we put l{x) =  x\ in
(3.2.8). Note in the general case that

^o{l/y) = l{x) -  +  Eo(Ci/y), X G R"",

where we used the property that XlILi =  1* Thus estimator (3.2.8) becomes of 
the form On{x) =  x\ — Eo{^i/y) and this result is used in the above proof.

Remark 3.2.2. If the measure Pq is absolutely continuous with respect to the 
Lebesgue measure, then it is seen from equality (3.2.9) that the Pitman estimator 
is the Bayes estimator with respect to the quadratic loss function and the a priori 
measure Q coinciding with the Lebesgue measure. In other words, the Pitman 
estimator is a generalized Bayes estimator.

Remark 3.2.3. In fact, statement 1) of Theorem 3.2.1 is a particular case of 
Theorem 3.1.1. Namely, the optimality of the estimator 6n in the class T  means 
that On is orthogonal to unbiased estimators of zero and the latter are of the form 
h{x2 - X i , . . . , X n ~  xi).

The following result establishes the Pitman estimator of a location parameter 
with respect to the Laplace loss function r{0^6) =  \0 — 0\. We use the notation 
medo(//y) for a median of the conditional distribution l{ )̂ in the case of 0 =  0 
given condition rj =  y for which medo{l/y) is a statistic.

Theorem 3.2.2. Let Eo|̂ i| < 00 for all i =  1 ,2 , . . . ,n. Let l{x) =  îXi, 
X =  (x i,X 2, .. •, Xn)i be some linear statistic such that =  1- Then

(3.2.14) 6n{x) =  l { x ) -  medo(//y), x G R^,

is the Pitman estimator of a location parameter with respect to the Laplace loss 
function.
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Proof. Let  ̂ Then 6n{x) =  l{x) + '(¡ {̂y) by (3.2.5), since I G T. Thus

(3 2 15) E,|0„-0| = Eo|Z + V'(i7)| = EoEo(|Z + V'(i?)|/»7)
> EoEodZ -  medo(Z/i7)|/»7) = Eo|0„| = E e \ 0 n  ~  0 \ ,

since for all y

(3.2.16) Eo(|Z +  i>{y)\/y) > Eo(|Z -  medo(Z/y)|/y).

It follows from (3.2.15) that estimator (3.2.14) is the Pitman estimator of a location 
parameter with respect to the Laplace loss function. □

Remark 3.2.4. In the proof of Theorem 3.2.2 we used inequality (3.2.16) 
which is a well-known property of a median of a distribution (see [9]).

Below are some examples of the evaluation of Pitman estimators.

Example 3.2.1. Let =  (^1,^2, • • • ,^n) where ^11̂ 2, • • • are indepen­
dent identically distributed Af{6  ̂1) random variables. Then the assumption of 
statement 2) of Theorem 3.2.1 holds, and moreover

/(x )  =  (2 7 г )-" /^ e x p | -2 - l¿ x ^ | ,
 ̂ i=l ^

X — (^1) • • • ) ^n)-

Substituting this density into (3.2.9), we show that the Pitman estimator is of the 
form 9n{x) =  This implies that De9n =  ^e{9n ~ )̂  ̂ =

Example 3.2.2. Let = (6, C2, • • •, in) where ii, ̂ 2, • • •, in are independent 
exponential random variables with the density x >0.  Again the assumption
of statement 2) of Theorem 3.2.1 holds, and moreover

/(a;) =  e x p | -^ x i| /[o ,o o )  > X (^1) • • ♦ ) ^n)*

Substituting this density into (3.2.9) we obtain for the Pitman estimator

6n{x) =  mi nx — - ,  X =  (xi, . . . ,Xn).  l<i<n n
Using (1.3.3) for the density of the first order statistic Ci,n we obtain that

=  Ee(0„ -  0)2 =  2n-2.

This example is remarkable, since the mean square error of the Pitman estimator 
is of order rг“  ̂ which is higher than that in the preceding example. This can be 
explained by the discontinuity of the density with respect to the parameter.

The optim al estimator o f  a location  param eter in the class o f  linear 
unbiased estimators. Let =  (^i , . . . ,^n) where are independent
random variables with the distribution functions F i(x — 0) , . . . ,  F^(x — 0), respec­
tively. Assume that

(3.2.17)

(3.2.18)

Jxd F j {x )  =  0, j  =  l , . . . ,n ,

0 < y  x^dFj{x) = (7j < 00, j  =  1,...  ,n.



54 3. ESTIMATION OF UNKNOWN PARAMETERS OF DISTRIBUTIONS

Thus 0 is a location parameter and 6 =  z =  1, . . .  ,n, by (3.2.17). Let L be 
the class of linear unbiased estimators I of the parameter 9 that are of the form 
l[x) =  CiXi where Ci = 1, x =  {x i , . . .  ,Xn). For any estimator I e  L we 
have

( n \ 2 n

2=1 /  2=1
Solving the extremum problem for the function (3.2.19) subject to ~ ^

we find that

(3.2.20) Cj =  Cj = <7~̂  , j  =  l , . . . ,n ,
2̂=1

at the point of extremum.
Thus we have proved the following result.
Theorem 3.2.3. Let conditions (3.2.17) and (3.2.18) hold. Then the optimal 

estimator of a location parameter in the class L of linear unbiased estimators is 
given by l*{x) =  x =  ( x i , . . . ,  Xn), where the coefficients c|, j  =  1, . . . ,  n,
are defined by (3.2.20).

The following result contains necessary and sufficient conditions that an esti­
mator l*{x) is admissible in the class of unbiased estimators.

Theorem 3.2.4. Assume that ^i , . . .  ,in, ^ > 3, are independent observations 
with the distribution functions Fi{x — 0) , . . . ,Fn(x — 0), respectively  ̂ for which 
conditions (3.2.17) and (3.2.18) hold. An optimal estimator of a parameter 6 in 
the class of linear unbiased estimators l*{x) =  admissible for the
quadratic loss function in the class of all unbiased estimators of the parameter 6 if 
and only if all the distribution functions Fj{x) are normal.

The proof of this theorem can be found in [15], Theorem 7.4.1. The book [15] 
contains further results on the estimation of a location parameter.

Remark 3.2.5. If conditions (3.2.17) and (3.2.18) hold and moreover the vari­
ances aj are equal to each other, that is, cr̂  = = <Jn =  ^ y then Cj* — n ^
j  =  1, . . .  ,n, in (3.2.20). Thus the optimal estimator of the location parameter in 
the class L of linear unbiased estimators is of the form Z*(x) =  
this obviously is the sampling mean.

Remark 3.2.6. If condition (3.2.18) holds, while condition (3.2.17) does not 
hold, then one can consider the class of linear unbiased estimators I of the form 
K^) == Z^^=i ^ji^j ~ ^j) where =  IxdFj{x) ,  j  =  1, . . .  ,n. As
before we obtain that the optimal estimator is of the form l*{x) =  ^ji^j ~ ̂ j) 
where the coefficients Cj are defined by (3.2.20).

Remark 3.2.7. If the assumptions of Theorem 3.2.4 hold, then the optimal 
estimator 9 in the class of linear unbiased estimators l*{x) =  is abso­
lutely admissible with respect to the quadratic loss function if and only if all the 
distribution functions Fj{x) are normal (see [15], Theorem 7.4.2). Note that if all 
the functions Fj{x) are equal to each other, then the optimal estimator is of the 
form l*{x) =  S iL i 2̂ and therefore this estimator is absolutely admissible in 
the case of Gaussian distributions.



3.2. ESTIMATION OF A LOCATION PARAMETER 55

The problem  o f  the confidence estim ation o f  a location param e­
ter. Let be an observation where are independent
identically distributed random variables with the distribution function F{x — 0), 
0 G R^. Consider the problem of the confidence estimation of the parameter 6 with 
respect to the loss function

(3.2.21) r{0n,0) =
0 , \en-e\<b,
1, \6n-e\>b,

where b is some positive constant. The corresponding risk function of the estima­
tor On is of the form

R{0n\e) =  Eer{0n\e) = ?e{\en - e \ > b ]  = P e { 6 i  [On -  6,0n +  6]}.

This risk function is the probability of the event that the confidence interval

[On — by On b ]

does not contain the unknown value 0.
Given an arbitrary F{x)y the risk function

R =  1 -  Pe { - 6  < -  0 < 6}  =  7, 7 =  7(6),

for the estimator =  n~  ̂ depend on 9 and therefore

is a confidence interval of level 7 (depending, of course, on F{x)),
_(n\

The following result claims that the sampling mean  ̂ is admissible with 
respect to the loss function (3.2.21) (in other words, it claims that the confidence
interval -  bŷ ^̂  ̂ -h b] is admissible).

T h e o r e m  3.2.5. Let =  (^i , . . . ,  ^n), ^ >  3, where ^i , . . . , o.re indepen­
dent identically distributed random variables with the distribution function F{x — 0) 
whose density f {x  — 0) is bounded. / / ,  for a given sequence of numbers bj 0, the
sampling mean is an admissible estimator of the parameter 0 G with re­
spect to the loss function (3.2.21) forb =  bjy then F{x) is the Gaussian distribution 
function.

The proof of Theorem 3.2.5 can be found in [31] (see Theorem 7.9.3 therein).

R e m a r k  3.2.8. If random variables are independent and iden­
tically distributed according to the normal M{0yG^) law, then one can show that
the sampling mean  ̂ is an admissible estimator of the location parameter 0 with 
respect to the loss function (3.2.21) for all 6 > 0. Thus the converse statement to 
Theorem 3.2.5 is also true.

The minimax property of the Pitman estimator of a location param­
eter. As mentioned above, the Pitman estimator of a location parameter with 
respect to the quadratic loss function is a Bayes estimator of the location parame­
ter with respect to the Lebesgue a priori measure Q if there exists the density of 
the observation. If all the assumptions of Theorem 3.2.1 hold, then the Pitman
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estimator On of the location parameter 6 with respect to the quadratic loss function 
is of the form (3.2.9).

Let the a priori measure coincide with the uniform distribution on [—iV, iV], 
so that the density is qN{t) =  Then the Bayes estimator of the
parameter 0 with respect to the a priori measure Q // and the quadratic loss function 
is given by

=
J  v f ( x  -  v)qjv(v) dv 

J  f i x - v)qN{v)dv /N  / p N  ^

v f{x  — v)dv\ /  f {x  — v) dv 
-N \J-N ^

- 1

X e  R^, whe^ f { x )  is the density mentioned in statement 2) of Theorem 3.2.1. It 
is clear that On{x) =  limjv_,oo for all x  e  R^. One can show that

(3.2.22) Ee {6*q̂  -  0)^ =  E,(0„ -

for all 6 G [-N  4- VN, N — y/N]. Moreover the convergence is uniform in 0 in the 
above interval. Since Ee{0n — 0)  ̂ does not depend on 6 and convergence (3.2.22) is 
uniform in the interval [-N  +  y/N̂  N — y/N]̂  we get

f  7 1
limsup /  Et {e*Q̂  -  t) Q,N{dt) >  limsup —  /  E* [e*Q̂  - t )  dt

iV->oo J N^oo  y_iv+\ /]V

-  Ы ф п  -  -  e)
N ^oo 2Jy \ /

= Ee{0n - e f - e

for all e > 0. This implies for all 0 e that

^e{0n -  Of < limsup /  E* -  t) Qw(di).
N-^oo J

By Theorem 3.1.4 this means that the Pitman estimator On is minimax. Thus we 
proved the following result.

T h e o r e m  3.2.6. If all the assumptions of Theorem 3.2.1 ftoZd, then the Pitman 
estimator On of a location parameter 0 with respect to the quadratic loss function is 
minimax.

3.3. Estim ation o f  a scale param eter

Scale param eters. Equivariant estimators. Let =  (^1,^2, • • • >̂ п) be 
an observed random element assuming values in the space (R^,B^) and having the 
distribution belonging to a parametric set of measures (P^,a G (0,oo)) where cr is 
an unknown parameter. If the measure depends on the parameter a such that

(3.3.1) ? M )  =  A G

then a is called a scale parameter. We put

A jG ^xjG (X i/(7 , . . . , X njG ^.X  — {x\̂  ...   ̂Xnf) G

for all A G B .̂ Condition (3.3.1) can be rewritten as

(3.3.2) e  л }  =  P,, e Л/сг} =  Pi G л /а }  , Л e 0*.



3.3. ESTIMATION OF A SCALE PARAMETER 57

Distributions (3.3.1) arise in the case where observations are of the form =  aSî  
i =  l , . . . ,n ,  for some cr > 0 and if the vector (^ i,. . .  »^n) the distribution 
defined by a measure Pi. Generally speaking, the random variables e i , . . .  ,£n are 
dependent, thus the random variables i i , . . .  are dependent, too.

It is natural to consider the following class of estimators in the case of the 
estimation of a scale parameter a:

(3.3.3) E =  {an{x): (Jn{\x) =  XcTn(x) for all A > 0 and x G R ^ }

where we put Ax =  (A xi,. . . ,  Ax^) for all x =  (x i,...,X n ). Estimators of the 
class E are called equivariant estimators. Consider a loss function r(an]cr) such 
that

(3.3.4) r(?n; cr) =  r{an -  ct) ,  r(Au) =  X^r{u)

for all A > 0 and some m > 0. Using (3.3.2) and the definition (3.3.3) we get that 
the risk of any estimator 5^ G E is such that

= E^r{an-a) a'^Eir{an 1) =  a^R{an]l)-

Therefore an estimator ^ 5] is either optimal in the class E or is not admissible 
in this class provided the loss function satisfies condition (3.3.4).

An optimal estimator ?n ^ 5] of a parameter a in the class E, that is, the one 
such that

R{^n\ <̂ ) =  R(^nl cr) for all a G (0, oo),

is called the Pitman estimator of a scale parameter a with respect to the loss func­
tion (3.3.4).

In what follows we assume that an observed random element assumes 
values in the space

R!f: 0 =  R+ \ { 0} = {x  =  ( x i , . . .  ,Xn):Xi >  0 for all i =  1, . . .  ,n }. 

Alternatively one can think that the sampling space is R^ and assume that

(r ; . o) =  1
for all cr > 0.

Equivariant estimators possess the following useful property. If
n

l{x) =  ^  ̂CjXj, X  G R_  ̂q,
i=l

is a linear statistic with Cj > 0 for all j  =  1, 2, . . . ,  n, then 

(3.3.5) an{x) = l{x)'ilj{y), X =  ( x i , . .. ,Xn) G R+̂ o>

for all G E where is some measurable function of the vector

(3.3.6)
. X2 X3

Xi

Using (3.3.3) we also get

5n(a:) =  l{x)an{x/l{x)) =  /(x)a„((a ;/xi)/i(a ;/a :i)),

since l{x) > 0, X  G R+,o> whence (3.3.5) follows for the function '0(y) specified 
above.
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Pitm an estimators. We use the following notation for an arbitrary statistic 
T{x), X G R ^ :

(3.3.7) E i(T/y) =  El { t  /ri = y ]

where y is the vector defined by (3.3.6), while the vector rj is given by

(3.3.8)

The following result provides the explicit form of Pitman estimators of a scale 
parameter with respect to the quadratic loss function.

T h e o r e m  3.3.1. Let <  ooforallj  =  1 ,2 ,. . .  ,n  and letl{x) =
X G R+,0 ) some linear statistic with cj > 0, j  =  1 ,2 ,. . . ,  n. Then 

1) the estimator

(3.3.9) K i x )  =  l{x)-
'E i(ZVy)’

is the Pitman estimator of a scale parameter a with respect to the qua­
dratic loss function where y is the vector given by (3.3.6), and Ei{l/y) and 

conditional expectations defined by (3.3.7) and (3.3.8);
2) if the measure Pi is absolutely continuous with respect to the Lebesgue 

measure and its density is f{x)y x G R+,o> Pitman estimator is of
the form

poo /  poo \ —1
(3.3.10) 5"n(a;) =  J u^f{ux)du^J u^~^^f{ux)duj , x G R+^o*

P r o o f . Let an be an arbitrary estimator of the class E. Using (3.3.5) we get

E<r(CTn -  o■)̂  =  <r^Ei(lV’(i7) -  1)  ̂ =  CT̂ EiEi {{lip{ri) -  i f/r }) .

lirj = y is fixed, then

min El {{Ic -  i f/y )  =  El {{Ic* -  i f/y)

where

Thus

C* ^1p*{y) = Ei(Vy)
Ei(/Vi/)‘

min -  a f  =  E„.(a„ -  o f

where dn is the estimator defined by (3.3.9). Therefore estimator (3.3.9) is the Pit­
man estimator of the scale parameter a with respect to the quadratic loss function. 

Now we prove equality (3.3.10). Let l{x) =  n“  ̂Yli=i =  x. Then the Pitman
estimator (3.3.9) can be rewritten as follows (here we put ^̂ )-

an{x)  =  X

(3.3.11)

E i(g^"Vy) _  E i (6 (e ^ " V e i ) /y )

=  X^ (x /x i)E i(^ i/y ) _  Ei(^i/j/)
(x/m )2Ei(^2/j,) ^iEi(eiVy)-
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Consider the random variables 31 =  ^1,32 =  6 /ii> • • • .3n =  in /i i  and denote 
by p(zi,Z2 , ...,Zn) the probability density of the vector (31,32, . . .  ,3„ )  for cr =  1. 
It is not hard to show that

p{zi, 2:2, . . .  , Zn) = z'^~^f{zi,ZiZ2 , . . . , ZiZn)

where f {x )  is the probability density of Pi with respect to the Lebesgue measure. 
It is clear that

Ei(Cr/i/)

(3.3.12)

X2
32 — 3»♦ • • J 3n -  ^  1

Xi Xl J

( z  ^ d z (  H p i z  ^
“  ’ X i / [J o  - * ’ X l

( z ,
X2

z — , . . . , z — )  dz
Xi X i J

( 2.
X2
Xi

- 1

poo
=  x ^  , XnU) du

Jo

X U^~^f{xiUy . . . , XnU) du^

Substituting (3.3.12) into (3.3.11) we obtain (3.3.10). □

Let Su be the class of unbiased equivariant estimators of a scale parameter 
<7. It is clear that Su C S. The following result provides the explicit form of an 
optimal estimator in the class with respect to the quadratic loss function.

T h e o r e m  3.3.2. Let all the assumptions of Theorem 3.3.1 hold. An optimal 
in the class E^ estimator of a scale parameter a with respect to the quadratic loss 
function is of the form

(3.3.13)

where the constant Cu is such that Cu^i^n =  1-

P r o o f . Let be an arbitrary estimator of the class E^. If =  oo, then 
— oo for all <j > 0. Thus the estimator Gn is worse than If < oo,

then

E<r(?n -  =  0’̂ Ei(a„ -  1)  ̂ =  <т^El(5„ -  -  1)^
(3.3.14) = i^ ^ {E i(a „ -a „ ,„ )2

4" 2Ei((T7i ^n,u)(Pn,u f) 4" Ei(<TtIjU 1) J.

Since Gn G Tiu and dn,u ^ we have Ei(?^ — 5n,u) =  0. Since dn is optimal 
in the class E, we obtain Eia„/i =  0 for an arbitrary unbiased estimator of zero 
ft € E such that Eift  ̂ < cx> (the proof is the same as that in Theorem 3.1.1). In 
particular, Eian,u(5n -  ^n,u) =  0. Thus (3.3.14) implies

Ea(S^n-o-)^ =  E<r(<T„-5„,„)^ +  E<,(?„,„-o-)^ > □
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Below is an example of the evaluation of a Pitman estimator.

E x a m p l e  3.3.1. Let =  ( ^ i , . . .  ,^n) where ^ i , . . .  ,Cn are independent iden­
tically distributed exponential random variables. Then their common probability 
density is cr“  ̂exp(—x/cr), rc > 0, cr > 0. Assumptions of assertion 2) in Theo­
rem 3.3.1 are satisfied and

f{x) = exp ^ X i j  7(0,oo) > X -  {xi,...,Xn).

Substituting this density into (3.3.10), the Pitman estimator of the parameter a 
becomes of the form

^n(x) =  — r r y ia :* ,  X =  ( x i , . . . ,x „ ) .n +  1 “1=1

Since Ei^n =  n /(n  +  1), Theorem 3.3.2 implies that the optimal estimator of the 
parameter a in the class of the unbiased equivariant estimator is of the form

1 ^  ̂5n,ii(a:) = - Y 'x i ,  x =  ( x i , . . . ,x „ ) .  n r—'2=1

Straightforward calculations yield

E „ {d n - ( r f  =  ̂ r- \2^ ĈT\̂ n,u ~ ^) — )n + 1 n

that is, the estimator dn is better than and this result is natural.

The optim al estim ator o f  a scale param eter in the class o f  linear un­
biased estimators. Let =  (^ i,. . . , Cn) where ^i, •.., Cn are nondegenerate in­
dependent random variables with the distribution functions Fi{x/a) , . . . ,  Fn{x/a)y 
respectively. The distribution functions depend on a scale parameter a € (0, oo) 
and are such that

(3.3.15) F j(0+) =  0, E i^ ?< oo , j  = l , . . . ,n .

Let L be the class of linear unbiased estimators of the parameter a of the form 
X = { x i , . ..  ̂Xn)i where > 0 for alH =  1 , . . . ,  n. Put

0̂1 j =  E iij, 0!2j =  E li?) cr? =  a2j -  afj.

Since i j  are nondegenerate, it follows that a? > 0. If l(x) =
J2j=i ^j^ij =  1- Further Ea{l — a)  ̂=  Z)J=i implies that the optimal
estimator of the parameter a in the class L with respect to the quadratic loss 
function is of the form /*(o:) =  Z)j=i *̂ĵ 3 where the coefficients are such that

- 1

(3.3.16) .* -  ^  I V '  ^

Therefore we have proved the following result.
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T heorem 3.3.3. Let random variables ^ i,. . .  ,^n independent and nonde­
generate with the distribution functions Fi{x/a) , . . . ,  Fn{x/a), respectively. If con­
dition (3.3.15) holds, then the optimal linear unbiased estimator of the parameter a 
with respect to the quadratic loss function is of the form l*{x) =  '^here
the coefficients Cj are defined by (3.3.16).

The following result provides necessary and sufficient conditions for an optimal 
linear unbiased estimator l*{x) =  Y^=i of a scale parameter a to be admissible.

T heorem 3.3.4. Let all the assumptions of Theorem 3.3.3 hold. Then an op­
timal linear unbiased estimator l*{x) =  of the parameter a is admissible
in the class of unbiased estimators with respect to the quadratic loss function for 
some two different values of n, say n =  ni and n =  U2y U2 > ni > 3, if and only if 
the random variables have the Gamma distribution

Fj{x) = r  dt, x > 0 ,
f Vyj) Jo

for some > 0 and aj > 0, j  =  1, . . . ,  n.

The proof of Theorem 3.3.4 can be found in [15] (see Theorem 7.12.2 therein).

Remark 3.3.1. If an estimator l*{x) is admissible in the class of unbiased 
estimators of the scale parameter a, then by Theorem 3.3.2 it is optimal in the 
class Moreover by Theorem 3.3.4 the distribution of the random variables 
is the Gamma distribution in this case (see Example 3.3.1).

Remark 3.3.2. Further results concerning the estimation of a scale parameter 
can be found in [15].

3.4. The C ram er-R ao inequality and efficient estim ators

In the preceding sections we studied the quality of statistical estimators of un­
known parameters and obtained several qualitative results. Moreover we introduced 
two classes of parameters, namely the classes of scale and location parameters, for 
which one can construct optimal estimators in appropriate classes of estimators. 
In this section we use a somewhat different approach to construct optimal estima­
tors. We also obtain the minimal mean square error of the estimation that can be 
achieved in an experiment.

Regularity conditions for families o f  distributions. Let  ̂ be an obser­
vation that is a random element assuming values in a measurable space {X, B) and 
whose distribution belongs to a parametric set {Pe,9 G 0 }  where 0  is a subset 
of R^, fc > 1. Throughout this section we assume that for all 0 G 0  the measure 
is absolutely continuous with respect to some cr-finite measure p on {X,B),  that is, 

fjL, and that f{x; 6) is the density of the measure P̂  with respect to the mea­
sure ¡1 . In particular, if {X, B) =  (R ^ , B'^) for some m > 1, then as the measure p, 
one can take the Lebesgue measure.

We consider the case of a one-dimensional parameter 6 in this section, that is, 
we consider the case k = 1.

Below we use the following set of regularity conditions, called {CR):
(i) 0  is a finite or infinite interval in R^;
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(ii) the derivative df{x'^6)/d9 exists and is finite P^-almost everywhere for all
0 G 0 ;

(hi) \d' f̂{x; 6)/d6'̂ \ < gi{x) for all 0 G 0  and ¿ =  1,2 where gi{x) and g2 {x) are 
nonnegative Borel functions such that / gi{x)ji{dx) «  oo, z =  1, 2;

(iv) 0 < Ee{d\nf{i‘ e)ldeY < oo for all 0 G 0.
The regularity conditions {CR) are also called the Cramer-Rao regularity con­

ditions. If conditions (CR) hold, then the family of distributions {P^, 0 G 0 }  is 
called CR-regular.

Let S{x;6) =  d\nf{x;6)/d6^ x e X,  and put

(3.4.1) m  = EeS\i-,6), 0 e& .

The function I{6) is called the Fisher information. This function is treated as the 
amount of information about the parameter 6 contained in the observation The 
notion of the information I (6) will become clear after the proof of the Cramer-Rao 
inequality. Note that condition (iv) above can be rewritten as follows: 0 < I{6) < oo 
for all 0 G 0.

First we prove an auxiliary result.

Lemma 3.4.1. If regularity conditions (CR) holdy then

(3.4.2) E^5(C; 0) =  0 for all 9 eO .

Proof. First we differentiate the identity

J f{x] 9) jji{dx) =  1 for all 0 G 0  

with respect to 9 and obtain

(3.4.3) ^  J  /(x ; 9) /ji{dx) =  0 for all 0 G 0 .

Conditions (ii) and (iii) allow one to interchange the differentiation and integration 
in (3.4.3). Thus

(3.4.3') J =  0 for all 0 G 0 ,

whence

EgS{ ;̂ 6) =  j  ̂ / ( x ;  9) n{dx) =  0 for all 0 e 0 . □

The following result gives another representation for the Fisher information. 

L e m m a  3.4.2. If regularity conditions {CR) hold, then

(3.4.4)

for all 9 eQ .

m  =  -^ e  { - ^ i n m e ) )



P r o o f . It is obvious that

(3 4 5) m e )  \ m-,e) )  )

= J  IJ’idx) -  I{0).

It follows from (iv) that I (9) < oo for all 0 € 0 . Condition (iii) implies that

(3.4.6) ^  J  f{x]e)fji{dx) = J  ^ f {x ;9 ) f j , {dx )  = 0

for all 6 e Q. Combining (3.4.5) and (3.4.6) we obtain (3.4.4).
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□

Sometimes we also consider the following set of regularity conditions, called 
{R):

(i') 0  is a finite or infinite interval in R^;
(ii') the function (/(x ; 0))^/^ is continuously differentiable with respect to 6 for 

fjL-almost all x;
(iii') 0 < E05 (̂ ;̂ 6) =  I{6) < oo for all 0 G 0  and the function I{9) is continuous 

with respect to 6.
In what follows we need an assertion on the continuity of integrals of functions 

depending on a parameter.
Let y), t G 0 , be a family of measurable functions defined on a measurable 

space (y, By ) equipped with a measure î . We consider some conditions under which

(3.4.7) y  V'(i.y) Hdy) ->■ y  V’(^.y) I'idy), t 0.

Let A{t) = A(tf 0), t G 0 , be a family of sets belonging to By- Put

A{t) =  Y\A{t) ,

The following result is a generalization of a well-known Lebesgue theorem.

L e m m a  3.4.3. Let A{t), t e  Q, be a family such that
1) V̂ (̂ > y)^A{t){y) V̂ (̂ ) y) dst-^ 6 for V-almost all y for which ^(0, y) 7̂  0;
2) sup¿ \%l̂ {t̂ y)lA{t){y)\ < V̂ (y) where 7p{y) is a function integrable with respect 

to the measure that is, f  'ip{y) u(dy) <  00.
Then relation (3.4.7) holds if and only if

(3.4.8) y  ^(dy) -»  0, t ^ e .

P r o o f . By the Lebesgue theorem

y  '>P{t,y)lA(t)iy) Hdy) ^  y  m ^ y )  ¡ {̂dy), t d.

Since

y ip{t,y) u{dy) =  J rp{t,y)lA(t){y)iy{dy) +  J ip{t,y)lA^t){y) Hdy), 

relation (3.4.7) is equivalent to relation (3.4.8). □
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C o r o l l a r y  3.4.1. LetT(x) be a real measurable bounded function  ̂ T :X  
R i, and let f{x;9) be continuous with respect to 6 for ¡i-almost all x e X. Then 
the function E^T(^) is continuous with respect to 6.

P r o o f . We apply Lemma 3.4.3 iorY = X , u  = 'ip{t x̂) = T{x)f{x;t),  and 
A{t) =  {x: f{x;  t) < 2f{x;  0)}. It is obvious that all the assumptions of Lemma 3.4.3 
are satisfied. Since T{x) =  1 and thus BeT{^) =  1 is continuous, Lemma 3.4.3 yields

0

as t —> 0. This together with Lemma 3.4.3 implies that EeT{^) is continuous for 
any bounded function T{x). □

R e m a r k  3.4.1. If one seeks a simple sufficient condition for (3.4.7) in the case 
of y) —> as t 0 and z/-almost surely, then an appropriate candidate
is the uniform convergence of integrals in (3.4.7). The latter condition can be 
reformulated as follows: there exists a finite measure A such that the inequality 
\{A) <S = 5{e) implies sup  ̂ | (̂t, y)\ I'idy) < e for a given e > 0, Moreover if the 
function 'ijj{y) =  sup¿ |'0(t, y)\ is integrable, then one can take A(A) =  'ip{y) u{dy).

Below we consider some corollaries of conditions {R) that we will use in the 
proof of the Cramér-Rao inequality.

L e m m a  3.4.4. Let conditions {R) hold. Let T =  T (0  be an arbitrary real 
statistic such that EqT  ̂ < c < oo for all 9 £ Q. Then the function a{9) = E$T is 
differentiable with respect to 0, and moreover

(3.4.9) a'{6) =  E<,T(e)5(^;0) =  J  T{x )^f ix - ,e )  Kdx)

where S{x;9) = dlnf{x;9)/d9^ x £ X  ̂ and the function a'{9) is continuous.

P r o o f . In the same manner as in the proof of Lemma 3.4.1 we derive from 
condition (ii)' that

(3.4.10) Efl5(i; 6 )^  J 9) fi{dx) =  0, O e S .

Note that (3.4.10) also follows from (3.4.9) for T{x) =  1. Then

(3.4.11) DeSi^;9) =  EeS^^\9) =  I{9) =  ^ J  V T m )  f {̂dx).

The function I (9) is continuous by conditions {R). We apply Lemma 3.4.3 for 
Y = X,  ¡y =  fx, and V’( i ,x) =  {d^f(x;t)/d9)^:

(3.4.12)

A(i) =  i4i((5) =  i a ; : sup ^ /(a :;« )  < 2 ^ f{x;  9),
{  |«-e|<|<5|

sup < 2
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where 5 = t - 9 .  Assumptions of Lemma 3.4.3 hold for V>(a;) =  4V'(0;a:), since the 
functions s/S{x\6) and dy/f{x; 6)/d6 are continuous. Since I{t) converges to I {6) 
as t ^  9, we prove from (3.4.8) that

(3.4.13) e{t) =  j  vTm ) W M(da;) 0

as i 0.
Similarly to the proof of Corollary 3.4.1 we prove that f  T(x)df(x; 6)!d6 fi{dx) 

is a continuous function. In the proof of this result we apply Lemma 3.4.3 for 
Y =  X , v  = iM, i>(t,x) =  T{x)df{x\t)/dt, and A(t) =  Ai(5). Since

df(x,9)/d9 = 2Y7M dy/f {x ,9 )/d9 ,

we get supt|V’(i.a:)|/>i(t)(2:) < i ’ ix) =  4|V'( ;̂a;)|. The Cauchy-Bunyakovskii in- 
equality implies that

f \rp{9,x)\n{dx) < 2 ( EeT^iO L {d^/f{x,9)/d9f ii{dx)
Ja i (5) V JAUi)

1/2

This together with (3.4.13) implies relation (3.4.8), whence it follows that the func­
tion f  T{x)df{x]9)/d9 n{dx) is continuous.

Now we turn to the proof of equality (3.4.9). Note that

i (̂ J Tix)fix■,9 + S)^l{dx) - j T{x)f{x-,9)ti{dx)^

~ 1 1  +
= j  2T(x) V '/(x ; 0 -h U(5) ̂  x //(x ; 0 -I- U(5) du n{dx)

by condition (ii)^ We apply Lemma 3.4.3 again for Y =  R x X,  y =  {u x̂)  ̂
u =  \ x fi, i){5,y) =  T{x)df{x\6 ^  u5)/d0, and A{S) =  Ai(5), where A is the 
Lebesgue measure, ^ i(5) is defined by (3.4.12), and (5 0. Since the functions
^/f{x] 9) and d-\/f{x\6)/d6 are continuous with respect to 0, assumptions 1) and 2) 
of Lemma 3.4.3 hold, whence

T{x )-^f {x ;0)  =  m v l   ̂ -  0,

sup I'lpiS.y)Ia(5){x)\ < 4T(x) 
6

and by the Cauchy-Bunyakovskii inequality

/ T(x) /z(da;) < (EeT2(i) • /(0))'^^ < oo.
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Using the Cauchy-Bunyakovskh inequality again we obtain from relation (3.4.13) 
that

/  f  T{x) y/f{x\6 -^uS)-^y/ f{x; 6 -h uS) du ̂ x{dx)
\Jai(6)Jo

— \(— Í  -\-u6)dufji{dx)
U ai{S) Jo

- L J Á  f{x\0 + u5'^ dtx/x(dx)j
n l / 2

^ J* s{6 + 1¿(5) di¿  ̂ —> 0

as (5 —> 0, whence relation (3.4.8) follows. Thus we proved that the derivative a\d) 
exists and equality (3.4.9) holds. □

L e m m a  3.4.5. If the set Q is compact and the function \/f{x;0) is continu­
ously differentiable with respect to 6 for ¡i-almost all x, then I{0) is continuous if 
and only if

(3.4.14) lim sup Ee52(i;0 )/(| 5 (í;0)| > TV) =  0.
N-*oo Q

P r o o f . Let the function I{6) be continuous but let relation (3.4.14) not hold. 
Then there is a 7 > 0 and a sequence t 9 £ & such that Nt 00 and

(3.4.15) m(i) =  E t5 2 (í ;í ) /(№ í)|  > iVt) > 7

for all t belonging to this sequence.
Applying Lemma 3.4.3 iorY  = X  and n =  i/vfe get

 ̂̂  I •
Since d^/f{x\d)/dd is continuous, assumptions 1) and 2) of Lemma 3.4.3 hold and 
the continuity of I{t) implies that

p{dx) —̂ 0

a s t ^ e .  Note that m{t) < m i ( t )+ m 2 {t) where

B{t) = | * :2 | ^ v '/ (x ; i )  > M V 7 ( ^ | -
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It follows from the definition of the set A{t) that 

m 2 ( i ) < 4 ^ ^  | A ^ /7 ( ^

67

fji{dx).

Since dy/T M /dt dy/f{x-,0)/de and ^/f {x■,t) ^  V / ( x ;6») as 9, we prove 
that B{t) converges to a set whose measure n is zero. This means that /j,{B{t)) —* 0, 

0, and m{t) -»  0 as i -> 0. This contradicts (3.4.15) and thus rela­
tion (3.4.14) holds.

Now we prove the converse statement. Let condition (3.4.14) hold. According 
to Lemma 3.4.3, I{t) is continuous if m i(t) 0 as i 0 on the set A{t) defined 
as above. Further

mi{t )<  f  \S(x]t)\‘̂ f{x-,t)iJ,{dx) + N  ̂ f_ f{x;t)fi{dx)
J\S{x;t)\>N JA(t)

where the first integral is small byj3.4.14) if N  is sufficiently large. To estimate 
the second integral we note that n{A{t)) —> 0 as < ^  0 and

L
/  f {x;  t) fjL{dx) -> 0, t -^  6,
c{t)

for C{t) =  {x: f{x;  t) < 2/ (x ; 0)} (see the proof of Corollary 3.4.1). Thus ast ^  9

[  f{x] t) /jL{dx) < 2 /  f{x] 9) ¡JL{dx)̂ - [_ / (x ; t) /x(dx). □
JAit) JA{t) Jcit)

R e m a r k  3.4.2. If the set 0  is compact and conditions (R) are satisfied, then, 
due to Lemma 3.4.5, the Fisher information I (9) is continuous if and only if condi­
tion (3.4.14) holds. It is natural to call the latter condition the uniform convergence 
condition for the integral I (9) =  E^5^(^;0).

The C ram er-R ao inequality under regularity conditions {CR). The 
following result contains the lower bound for the variance of an unbiased estimator 
under the Cramer-Rao conditions (CR).

T h e o r e m  3.4.1. Let the distributions P ,̂ 9 e  0 , satisfy the regularity con­
ditions (CR). Assume that g{9) is a differentiable real function, g =  g{x) is an 
unbiased estimator of the function g{9) such that the variance ofg exists, and

/ fj.{dx) < oo for all 9 e Q .

Then

(3.4.16) D6»p(0  > for all 9 eQ .

Inequality (3.4.16) becomes an equality if and only if the density f{x\9) is of the 
form

(3.4.17) /(a;; 9) =  exp{tpi{9)g{x) -f i/>2(0) +  h(a:)},

where ij)\ {9) ^  0.
a; € A ,
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P r o o f . According to the Cauchy-Bunyakovskh inequality

(3.4.18) E,5(^; e){giO ~ m )  < 0 e 9 .

Lemma 3.4.1 implies that

(3.4.19) E ,5 (i ;0 )(5 (O -5 (0 ))  =  Ee-5(i;^)ff(O =  J  g{x )^f{x - ,e )  fi{dx).

Since g is an unbiased estimator, we have

9{0 + 6 ) - g { e )  =  J  g{x){f{x-,e + 6 )- f {x - ,9 ) )  n{dx),

whence it follows by the regularity condition (iii) that

(3.4.20) g'{0) = J  g{x)-^f(x\0)iJ.{dx).

Thus (3.4.18)-(3.4.20) imply inequality (3.4.16).
It remains to consider the case of equality in (3.4.16). The inequality in (3.4.16) 

becomes an equality if and only if inequality (3.4.18) becomes an equality. In its 
turn (3.4.18) becomes an equality if and only if

S{x; e) = g{x)ip{e) + ^{9)

for all T G A  where -0(0) ^  0. This implies that

Infix-, 9) =  gix)i;ii9) + ‘tp2{0) + h{x)

for all a; € X  where V*! (^) 0. □

Results of the type (3.4.16) are called the Cramer-Rao inequality. This in­
equality gives a lower bound for the variance of an unbiased estimator of the func­
tion g{9). If 6 is an unbiased estimator of a parameter 6, then the Cramer-Rao 
inequality becomes of the form

(3.4.21) De9 > ^
m '

0 € 0 .

Inequality (3.4.16) also gives a lower bound for the variance of estimators Ö of a 
parameter 6 that are not necessarily unbiased. Indeed let g{6) = 6 + b{6) where 
b{6) is the bias of the estimator 0, that is, b{6) =  Ee{9 -  6). Assuming that the 
function b{9) is differentiable, we obtain from (3.4.16) that

(1 +  6W(3.4.22) Ee{9 -  9 f  > b {̂9) +
m

Let an observation be a sample =  (^1,^2» • • • j^n) and let the random 
variables ^1, 2̂» • • •»ín have the density f{x;  0), x G R^, where 0 is a real unknown 
parameter, 0 G 0  C R^. Assume that the density /(x ; 0) satisfies the Cramer-Rao 
conditions (CR). Denote by /n(a:;0), x G R^, the density of the vector Let 
In{9) be the Fisher information evaluated with respect to the density fn{x] 0), while 
/(0 ) =  / 1(0) is the Fisher information evaluated with respect to the density /(x ; 0), 
that is,

7„(0) =  E e52(e(");0 ) and I{9) =  EeS\^i-,9)



3.4. THE CRAMER-RAO INEQUALITY AND EFFICIENT ESTIMATORS 69

where

dQ ^  ’ ae
Lemma 3.4.6. If the Cramer-Rao regularity conditions (CR) hold, then 

(3.4.23) IniO) =  nl{e).

Proof. Since fn(x-,0) = Hk=i fi^k‘,0), x =  ( x i , . . .  ,a:„), and Eg5(^i;0) =  0 
by Lemma 3.4.1, we have

/»(«) = E,(^ln/„(i<“l;«))

fc=l  ̂ '  k^j
=  ni{e).

d i n / ( ^  a\nm -,d) 
 ̂ ae  ̂ ae

□

Corollary 3.4.2. Assume that all the assumptions of Theorem 3.4.1 hold. If 
gn{x) is an unbiased estimator of a function g{0), then the Cramer-Rao inequality 
holds:

(3.4.24) De5„(i) > (g'ie)? e & e .
ni{d) ’

In particular  ̂ if g{6) =  6 and On is an unbiased estimator of a parameter 0, then

(3.4.25) DeOn> nl{6) ’ O e S ,

The proof of Corollary 3.4.2 follows from Theorem 3.4.1 and equality (3.4.23).□

Not all of the regularity conditions {CR) are used in the proof of the Cramer- 
Rao inequality. In fact, this result holds under a weaker set of regularity conditions 
called in what follows the Cramer-Rao conditions {CR)*:

(i) © is a finite or infinite interval in ;
(ii)* the function /(x ; 6) is differentiable with respect to 6 for /x-almost all x G X  

and

(iii)* the following relations are satisfied:

lim j -  fiA ^ -,o  +  A) - f {x - , e ) )^  
A->o A 2  J

< oo;

(3.4.26)

(3.4.27)

fix-,9)

'af{x-,9)\^ ¡i{dx)

li{dx)

= f f i  , ____
J  \ a9 J fix-,9)'

J  fi^>^)g-idx)-
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In fact, conditions (3.4.26) and (3.4.27) are necessary to justify the interchange 
of integration and diflFerentiation. It is easily seen that the regularity conditions 
{CR)* are less restrictive than conditions {CR). Nevertheless the Cramer-Rao 
inequality can also be proved under conditions {CR)*,

T h e o r e m  3.4.2. If regularity conditions (CR)* hold, then 

(3.4.28) DeO > l//(l9 ), 0 e Q ,

for any unbiased estimator 9 =  6{^) of a parameter 0.

P r o o f . Since 0 is an unbiased estimator, we have

A = J (e{x) -  6) {fix-, e + A ) -  fix-, e)) Kdx),

whence

A ^ =  / ( 0 ( x ) - 0 ) ^ / 7 M fix-,e +  A ) - f i x - , e )

< Ded/ ifjx-,e +  A)- f ix - , e ) )^  
fix-, 0)

y/f{x\6)

!i{dx)

fji{dx)

by the the Cauchy-Bunyakovskh inequality. Thus

- , e ^ A ) - f i x - , 6 ) f
£>09

- 1

fix-,9)
¡i{dx)

for all A. Passing to the limit as A ^  0 we obtain inequality (3.4.28) in view of 
condition (3.4.26). □

Let an observation be a sample =  (^ i,. . . ,  in) with the density
n

fnix;9) =  a; =  (x i,. . . ,x „ )  e R ” , i € 0 .
2=1

If the density f{x\ 6) satisfies conditions (ii)* and (3.4.27), while the density fn{^\9) 
satisfies condition (3.4.26), then the Cramer-Rao inequality (3.4.25) holds for any 
unbiased estimator 9n of the parameter 9. To prove this result we use equal­
ity (3.4.23) that follows from condition (3.4.27).

The C ram er-R ao inequality under the regularity conditions (ii). The
following result contains a lower bound for the variance of a biased, generally speak­
ing, estimator of a parameter 9.

T heorem 3.4.3. Let regularity conditions {R) hold. Let 9 be an estimator of 
a parameter 9 such that Ee9*̂  < c < oo for all 9 g Q. Then

(3.4.29) De9> jl + b'{9))  ̂
I{9) ’ 9 e Q ,

where b{9) =  Eq9 — 9 is the bias of the estimator 9.
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If (3.4.9) becomes an equality on some interval [6 1, 92] C © and D06 > 0 on 
this interval, then

(3.4.30) f{x\ 6) =  exp{i4(0)0(x) +  B{6)}h{x), X e  X,

for 6 G [61, 62] where A{6) and B{6) do not depend on x.
Conversely if either 6{x) =  const or representation (3.4.30) holds, then inequal­

ity (3.4.29) becomes an equality.

P r o o f . Let a{6) =  E06. Putting T{x) =  1 in Lemma 3.4.4 we get from (3.4.9)
that

(3.4.31) E^5(e; 6) =  0, Eea{6)S{^; 6) =  0.

Again using Lemma 3.4.4 for T{x) =  6{x) we obtain from (3.4.9) and (3.4.31) that

(3.4.32) E ,0(O 5(i; 6) =  a\6), E,(0(O -  a(0))5(^; 6) =  a'(0).

Using the Cauchy-Bunyakovskii inequality and the second equality in (3.4.32) we 
get

(3.4.33) {a' {e)f < E e im  ~ a{e)f£eS\i)  6) 

or, equivalently,

-  (a '(0))2
(3.4.34) 0 e 0 .

Since a{9) =  9 + b{9) and EeiS^(^;0) =  I{6), we obtain inequality (3.4.29) from 
(3.4.34).

Now we prove the second statement of Theorem 3.4.3. For the sake of simplicity 
we assume that 0  coincides with an interval [0i,^2] and that the measure n is 
concentrated on a union of supports of measures P ,̂ 0 € 0 . The equality in (3.4.29) 
(or, equivalently, in (3.4.33)) means that

(3.4.35)
j ( 0( x ) - a { e ) ) ^ ^ ^ K d x )

=  ( I  {0{x) -  ai0))^fix; 9) n(dx) J  n(dx)^

for all 9 € Q. Since the first integral on the right-hand side of (3.4.35) is positive 
by condition, an equality in (3.4.35) is only possible if

(3.4.36)
d fix-,9)/89

s f n ^ )
=  ci9){9{x) -  a{9))y/f{x; 9) (/x-a.s.).

Let A be the set oix  e  X  for which (3.4.36) holds and |0(x)| < oo. Then p{A) =  0 
(here A = X  \ A is the complement of the set A). Fix x e  A. Since f { x ; 6) is 
continuous with respect to 6, we have /(x ; t) > 0 on some interval (^1,^2) C 0 , and 
moreover

(3.4.37) S{x;  t) =  c{t){6{x) -  a{t)), t G (¿1,^2),
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on this interval by (3.4.36). If (3.4.29) becomes an equality, then (3.4.32) and 
(3.4.37) imply that

a'{0) = E e i m  -  a{e))S{^;9) =  c(0)D ,0,

Dee
m |cWI \DgeJ

This implies that the variance D̂ O is continuous with respect to 0 as well as a'(0), 
and I{6) is continuous with respect to 9 while the functions \c{9)\ and a{9) are 
uniformly bounded on [0i , 02]- The derivative S{x]9) =  d\nf{x]9)/d9 in equal­
ity (3.4.37) possesses the same property. This means that the function lnf{x;9) 
is finite and f{x;9)  > 0 for all 0 G 0  =  [̂ 1,^2], whence (3.4.37) follows for all 9. 
Integrating equality (3.4.37) with respect to t from 9i to 9, we obtain

^ pO
In /(x ;  9) =  9{x) /  c{t) dt— c{t)a{t) dt +  In /(x ; 9i 

Joi Joi
and this is equivalent to (3.4.30) for //-almost all x. Since the values of /(x ; 9) on 
a set whose measure // is zero do not matter, representation (3.4.30) is proved.

Finally, we prove the latter statement of Theorem 3.4.3. If 9{x) =  const, 
then b̂ {9) =  — 1 and both sides of equality (3.4.29) vanish. Now let representa­
tion (3.4.30) hold. Differentiating the function ln /(x ;0 ) with respect to 9 we get

S{x;9) =  9{x)A\9)-}-B\9).

The first equality in (3.4.31) implies that

a{9)A'{9) +  B'{9) =  0.

Thus
S{x]9) = A'{9){9{x) -  a{9))

and inequality (3.4.29) becomes an equality in view of (3.4.36). □

R e m a r k  3.4.3. If Ee9̂  =  00, then =  00 and inequality (3.4.29) is trivial. 
In view of (3.4.29), the condition De9 > 0 can be substituted by 1 +  b'{9) 0.

C o r o l l a r y  3.4.3. If all the assumptions of Theorem 3.4.3 are satisfied, then

0 e 0 .

For every unbiased estimator 9 of the parameter 9
1

Ee{9 -  e y  > I{9Y 0 G 0 .

Analogs of Theorem 3.4.3 can be proved under other sets of conditions. Below 
is a set of conditions, called (i?)*, which also is sufficient for the the Cramer-Rao 
inequality:

(i) 0  is a finite or infinite interval in R^;
(ii)" the function y/f{x;9) is absolutely continuous with respect to 9 for //- 

almost all X G X ;
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(iii)' 0 < 6) =  I{6) < oo for all 0 G © and the function I{6) is continuous
with respect to 6,

It is obvious that conditions (i?)* are weaker than conditions (R), Nevertheless 
the Cramer-Rao inequality holds under conditions (i?)*, too.

T h e o r e m  3.4.4. Let the regularity conditions {R)* hold. Let 6 be an unbiased 
estimator of a parameter 6. Then

(3.4.38)
1m

for all points 6 e Q of continuity of -  9) .̂ 

P r o o f . Since 6 is unbiased,

A =  I {9{x) -  9) (V / (x ;0  +  A) +  v 7 ^ )  ( V / ( x ;0  +  A) -  V /(x ;0 ) )  p{dx).

Applying the Cauchy-Bunyakovskii inequality and then the elementary inequality 
(Vo +  < 2(o +  6) for o > 0 and 6 > 0, we get

{9{x) -  9 f  (y/f{x\ 0 +  A) +  v 7 ( ^ )  IJ'i.dx)

X j {s/f{x-,9 + A) -  ^/f{x\9))^ fj,{dx)

< 2  J  {9{x) -  9f{f{x\  (9 +  A) +  f{x\ 9)) p{dx)

X j  (V /(a : ;9 + A ) -  y/f{x;9)^ fi(dx).

(3.4.39)

Then

(3.4.40) j {9{x) -  9)  ̂fix-, 9) p{dx) =  Ee (^ -  Of,

(3.4.41) j ( 9 { x )  -  9ff{x-, 9 + A) p{dx) =  Ee+^iO- 0 -  A)^

It follows from (3.4.39)-(3.4.41) that

+  A^.

(3.4.42)

Eg(g -  9 f  +  Eg+A(9- 9 - A f  +  A  ̂
2

> (¿y ( V / ( x ;0 +  A ) -\ / / (® ;^ ) )^  Mda;))
- 1

Condition (ii)" implies that

/» +̂A Q J------------
V 7 m + ^ - V 7 m = /  ^ V f M d u .

J 0



Applying the Cauchy-Bunyakovskh inequality and Fubini theorem we obtain

■if.
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(3.4.43)

'd^/fix\u) 
du

li{dx) 1 du

pO-\-A
I{u) du.

Substituting (3.4.43) into (3.4.42) and passing to the limit as A ^  0, we complete 
the proof of (3.4.38) in view of the continuity of the function /(г¿). □

The above proof of inequality (3.4.42) does not require any condition posed on 
the density f{x\6) or on an unbiased estimator 6. Thus this proof can be used 
to obtain lower bounds of the variance of an estimator 6 even in the case where 
regularity conditions are not satisfied for f{x;  6). Below we provide a result of this 
kind for biased estimators 6.

T h e o r e m  3.4.5. Let 6 e  Q and 0 +  A G © /or some A  ^  0. Then for all 
estimators 6 of a parameter 9 one has

(3.4.44) 

where

In particular,

(3.4.45)

Dgd > (Ao(0))‘ (/ (A /(x ;g))^ fji{dx)r
a{d) =  Ege, Aa{e) =  a{9 +  A) -  a{6), 

A / ( x ;0) =  / ( x ;0 +  A ) - / ( x ;^).

- 1

if the estimator 9 is unbiased.

P r o o f . First let the measure P^+a  be not absolutely continuous with respect 
to the measure P .̂ Denote by No the support of the measure P̂  in X  and let 
No =  {x: f{x] 9) 7̂  0}. Then there is a set A C iV^+A such that

P^+a (A) > 0

and f{x;  9) =  0 for all x e  A. Thus the integral in (3.4.44) is infinite and inequal­
ity (3.4.44) is trivial.
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Now let the measure P^+a be absolutely continuous with respect to the mea­
sure P .̂ Then iV^+A C Nq, Since f { x ; 6) and f { x ;6  +  A) are the densities of 
measures P̂  and P^+a » respectively, with respect to we have

Moreover

This implies that 

(3.4.46)

/
J  A /(x ; 9) fjb{dx) =  0. 

9{x)Af{x; 6) fji{dx) =  Aa{6).

f {9{x) — a{9))Af{x; 9) fjb{dx) =  Aa{9).
JNe

The integrand in (3.4.46) can be represented on the set Ne as

\/f{x]0)
Applying the Cauchy-Bunyakovskh inequality we obtain

(Aa(0))2 < /  (0(x) -  a(e)ff {x\ 6) ¡j.{dx) ■ f  Kdx),
JMg JNe j { x ; 0)

whence inequality (3.4.44) follows. Inequality (3.4.45) follows from (3.4.44). □

and
C o r o l l a r y  3.4.4. Assume that an arbitrary set of regularity conditions holds

lim ^  f 
A —O A2 J

(A /(x ;g ))^
f { x ; 0)

fjb{dx) = I  {9).

Then

(3.4.47) De6 > { a ' ^ { e ) f / m

for all estimators 9 of the parameter 9 where

o!A9) =  lim sup
A-^o ^

P r o o f . T o prove (3.4.47) we pass to the limit in (3.4.44) along a subsequence 
A —> 0 such that Aa{9)/A a^(0). □

Inequality (3.4.44) is called the Chapman-Robbins inequality. Another name 
for it is the difference Cramer-Rao type inequality.

R e m a r k  3.4.4. If an observation  ̂ is a sample =  (^i, . . .  ,^n)> /(^ ;^ ) is 
the density of ^i, and fn{x; 9) is the density of the vector then one can obtain 
analogs of all the above results. If conditions (i?) or (R)* hold for the density 
f{x\9)y then all the above inequalities hold for estimators 9n of the parameter 9. 
The only exception is that the Fisher information nl{9) substitutes the Fisher 
information I {9) where I (9) is evaluated with respect to the density f{x\9). In 
particular, inequality (3.4.29) becomes in this case of the form

- {i + b'n{0) r(3.4.48) D e e n > ni(e)
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where bn{0) =  EeOn — 0 is the bias of the estimator 9n- Further, inequality (3.4.44) 
can be rewritten in this case as

(3.4.49)
- 1

where an{0) =

Efficient and asym ptotically efficient estimators o f  parameters. Let
one of the sets of regularity conditions (CiZ), (Ci?)*, (i?), or {R)* hold. Let  ̂ be 
an observation that is a random element assuming values in a measurable space 
{Xy B). Let the distribution of  ̂ belong to a family of probability measures

{Pe^eeG},  G c R \

Let be the class of estimators g = g{^) of a function g{6) with a bias b{9). 
Let Kb be the class of estimators 9 =  0(^) of a parameter 9 with a bias b{9), that 
is,

Kl = {g: Eeg = g{9) +  6(0)}, Kb = {9: Ee9 = 9 +  6(0)}.
We also consider the class K^ of unbiased estimators ^ of a function ^(0) and the 
class K  of unbiased estimators 0 of a parameter 0, that is,

K^ = K l =  {g: Eeg =  ^(0)}, K  = Ko = {9: E,0 =  0}.

Note that K^ = Ug and K  = Uq where Ug and Uq are the classes of estimators 
introduced in Section 3.1.

We say that g* G K^ is an efficient estimator of a function g{9) in the class 
K l if the Cramer-Rao inequality for it becomes an equality, that is,

(3.4.50) D .,-  = M S g W ,  0 . 6 .

Similarly, g* € K^ is called an efficient estimator of a function g{9) in the 
class K^ (or, an efficient estimator of a function g{9)) if

(3.4.51) Deg* =  , 9 G 0 .

Conditions (3.4.50) and (3.4.51) can be rewritten in the following equivalent
form;

(3.4.52) +  b {̂9), 0 G 0 ,

(3.4.53) E e { 9 * - 9 { 9 ) f = ^ - ^ ^ , 0 G 0 .

Efficient estimators 0* of a parameter 0 in the classes Kb and K  can be intro­
duced similarly to (3.4.50)-(3.4.53) if g{9) =  0. In particular, 0* G Kb is called an 
efficient estimator of a parameter 9 in the class Kb if the corresponding Cram&- 
Rao inequality becomes an equality, that is,

(3.4.54) Ee{0* -  9 f  =   ̂^
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We say that 6* E K  is an efficient estimator of a parameter 6 in the class K  if

(3.4.55) E e { e * - e f  = j ^ y  e e e .

Conditions (3.4.50)-(3.4.55) suggest a general definition: an estimator is called 
efficient in the corresponding class if the Cramer-Rao inequality becomes an equal­
ity.

Efficient estimators exist only in exceptional cases. In other cases one can 
construct the so-called asymptotically efficient estimators if the size of a sample 
increases.

Let an observation be a sample =  (^i, . . . , ^n) with the density

/„(x; 0) = n  a; = (xi ,. .. ,  x„), 0 € 0.
i=l

A sequence of estimators n =  1, 2, . . . ,  is called an asymptotically efficient 
estimator of a function g{6) if

W n - 9 i 0 ) ) 2 i m r
nl{0) 0 G 0 ,

as n 00. For the sake of brevity we say that g* is an asymptotically efficient 
estimator of a function g{0). Similarly, 0* is called an asymptotically efficient 
estimator of a parameter 6 if

0 G 0 ,

as n 00.
Another name for asymptotically efficient estimators is asymptotically efficient 

estimators in the strong sense. If a sequence of estimators p*, n =  1 ,2 , . . . ,  is 
asymptotically M{g{6)̂  {g\6)y/{nl{6))) normal, then we say that is an asymp­
totically efficient estimator of a function g{6) in the weak sense. If a sequence of 
estimators 0*, n =  1, 2, . . . ,  is asymptotically J\i[9yl/{nl{6))) normal, then the 
estimator 0* is called an asymptotically efficient estimator of a parameter 6 in the 
weak sense.

Example 3.4.1. Let =  (^1,^2, • • • ,^n) be a sample from the normal dis­
tribution AГ(0,í7̂ ). In this case

m  =  EeS\^i-,d) =  Ee

Then 9n = n~  ̂Yl7=i unbiased estimator of the parameter 9 and

Ee{0n - e f  =  -  =  ^ .n nl{9)

Thus 9n is an efficient estimator of the parameter 9.
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Example 3.4.2. Let =  (^1,^2, • • • ,^n) be a sample from the M{a,0) dis­
tribution. It is clear that

im  =  =  E. -  1 ) ’

since Ee(^i -  a)^ =  30 .̂ It is clear that =  n~  ̂Zir=i(i» “  unbiased
estimator of the parameter 9 and

E,(«. -  «)" = E» E  [({< -  a)’  -

i=l

+ ^  E  Ee [(Ci -  -  0] U [(̂ ,- -  a f  -  9]

-  -Ee [(6 -  a)" -  0]" =  -  [Eei î -  a)" -  20Ee(^ -  a)  ̂+  9̂ ] 
202 1

n

n nl{6) ’

whence it follows that On is an efficient estimator of the parameter 6.
Consider the estimator 0n =  { n -  1) ”  ̂Z lILite “  ?)^» where ^ =  n~  ̂iCILi 

It is clear that that is, On is an unbiased estimator of the parameter 0
(see Example 3.1.3). According to (3.2.9) we have

r- /;r 202 1 1
E^(0n ^) 7 7 1 \ TiO\ ^  T(iy\ ’n — 1 (n — l ) i  (0) n /(0)

that is, On is not an efficient estimator of the parameter 0. Nevertheless 0„ is an 
asymptotically efficient estimator of the parameter in the strong sense.

Example 3.4.3. Let =  (^1,^2, • • • ,^n) be a sample from the Gamma dis­
tribution with the density

f{x\9) =  p^a;®"^e-*/(o,oo)(a;)

where 0 € © =  (0, oo) and r(0) is the Gamma function. It is obvious that regularity 
conditions hold in this case. By Lemma 3.4.2 we have

(3.4.56) m  =  -E<,
(d'^hYf{^i-,9)\ rf2inr(0)
1, a02 d02

Consider the estimator 0„ =  n  ̂Z)r=i that is, 0„ is
an unbiased estimator of the parameter 0. Moreover,

(3.4.57) Ee{9n-9f  = -  =
n nl{9)

k (0 „ ; 0)
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by (3.4.56) where 

(3.4.58) K{0n‘, 0) =  6
d2lnr(6>)

d6>2 •

By the Stirling formula (see [9], relation (12.5.3)) we have

inr(0) = (e-̂ '̂ \ne-e + ̂ in2n + J°№

6 +  X

dx

where Pi{x) is the periodic function with period 1 such that Pi{x) =  —x +  | for 
X € (0,1). This implies

rf2lnr((9) 1 1 r. r Pijx) 
{0 +  xY

dx.

Thus for all 6 G (0, oo) 

(3.4.59)
1 P ijx )  

{0 +  xY
dx > 1.

The coefficient K{6n] 0) can be made as large as we want by choosing a sufficiently 
large 0. Thus (3.4.57)-(3.4.59) imply that the estimator $n is not asymptotically 
efficient whatever the parameter 0 is.

Example 3.4.4. Let be a sample from the exponential
distribution with the density

Regularity conditions do not hold in this case, since the function f{x\ 0) is discon­
tinuous with respect to 0. Consider the estimator

mm
71

We learned from Example 3.2.2 that 0n is the Pitman estimator of the parameter 0 
and moreover

£e0n = 6 , E e {B n -e f  =  \ .

This implies that the mean square error Ee{0n — 0Y is of order for large n. This 
is a higher rate of decay as compared to the one given by the Cramer-Rao lower 
bound. This phenomenon occurs, since the regularity conditions fail in this case. 
Other examples of higher rates of decay of ^e{0n — 0Y oan be obtained by using 
the lower bound in the Chapman-Robbins inequality in some other cases where the 
regularity conditions fail.

Remark 3.4.5. Further information about the regularity conditions and Cra­
mer-Rao inequalities can be found in [36] and [13].

Remark 3.4.6. The Cramer-Rao inequalities belong to the family of results, 
called information inequalities y which provide lower bounds for the risk functions or 
risks of estimators of parameters. See [22], Chapter 5, about the relation between 
the Cramer-Rao inequalities and for other information about inequalities.
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3.5, The C ram er-R ao inequality for a multidimensional param eter

In this section we consider analogs of the Cram&-Rao inequalities for the case 
of a multidimensional parameter 6.

The Fisher inform ation m atrix. Let  ̂be an observation that is a random 
element assuming values in a measurable space (X, B). Assume that its distribution 
belongs to a family of probability measures {P^, 0 G © }  where 0  is some subset 
of R^, fc > 1. As in the case of a one-dimensional parameter we assume that for 
all 0 G 0  the measure is absolutely continuous with respect to some (j-finite 
measure /i on (X ,S) and that there exists the density f{x\6) of the measure P̂  
with respect to the measure fi.

Let the derivatives Si{x\ 6) =  91n/(rc; 6)ld6î  2 =  1 , . . . ,  fc, exist for //-almost all 
X e X. The matrix I {6) with the entries lij{0) = EeSi{ ;̂ 6)Sj{^]9)y 2, j  =  1 , . . . ,  fc, 
is called the Fisher information matrix. In the case fc =  1, I {6) is the Fisher 
information.

It is easy to see that the matrix I{9) is nonnegative definite. Indeed, for all 
A =  ( A l , . . . ,A fe У e R ^

x 'm x  = ^  iij(e)XiXj = E, ^  Sii -̂,e)Sji ;̂e)XiXj
(3.5.1) iyj = l

/ k \ ^

where S{^;9) is the vector defined by

(3.5.2) 5(^; 9) =  (5i(^; 0), 52(^; 0 ) , . . . ,  9))'.

Inequality (3.5.1) implies that the Fisher information matrix I (9) is nonnegative 
definite and this explains why we write I {9) > 0 in this case. If the matrix I (9) is 
positive definite, then X'I{9)\ > 0 for all vectors A 0. We write /(0 ) > 0 in the 
latter case. We write A > B for matrices A and R if A -  R > 0, that is, if the 
matrix A — B is nonnegative definite.

The C ram er-R ao inequality for unbiased estimators. Let 9 be an esti­
mator of a parameter 9 constructed from an observation  ̂where 9 =  (^i, 02? • • • > 9kY 
and 9 =  (01, 02? • • • j 9kY- Denote by R{9; 0) the matrix with entries

i j  =  i , 2 , . . . ,k .

In other words, i?(0; 0) =  E (̂0 — 0)(0 — 0)' is the matrix of mixed moments of the 
vector 0 — 0. It is easy to show that for all vectors A G R^

(3.5.3) E0((0-0) 'A)2 =  A'R(0;0)A,

that is, the matrix R (0; 0) is nonnegative definite.
If the matrix 7(0) is nondegenerate, then we will show that i?(0;0) > i -Ho)  

under some conditions on /(x ;0 ) , that is, we will show for all vectors A 6 R** that

(3.5.4) X'R(9-,0)X>X'r\e)X.
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The latter is a matrix analog of the Cramer-Rao inequality. Inequality (3.5.4) for an 
unbiased estimator 6 means in view of relations (3.5.1) and (3.5.3) that the variance 
of the projection of the vector 6 on an arbitrary direction A in is greater than or 
equal to the variance of the projection of the vector 5(^; 0) on the same direction.

Let C i (0 )  be the class of real functions (f>{0) defined on 0  C that are 
differentiable in 0 almost everywhere with respect to the Lebesgue measure, and 
such that the function (¡>{0 +  tX) is absolutely continuous in t for all 0 and A for 
which 0 -\-tXeQ and 0 < t < 1. li (f e  C j(0 )  and 0 +  ¿A G 0  for 0 < t < A, then

(3.5.5) 0(0 +  AA)-<^(0 )=
Jo

d(/)(̂ 0 “h uX) 
du

du
‘ I

where
d(j){e) f d<p{e) d<j>{9)

de \ d6i ' ddi ' dOk J  ■
The following result contains sufficient regularity conditions posed on the den­

sity f{x;  0) under which the Cramer-Rao inequality (3.5.4) holds.

T h e o r e m  3.5.1. Let \/f{x; 0) G C5(0) for ^-almost all x e  X. Assume that 
the matrix I{0) is continuous in 0 and nondegenerate. If 0 is an unbiased estimator 
of the parameter then

(3.5.6) R (0 ]0 )> rH 0 )

for all points 0 of continuity of the matrix R{0] 0).

Proof. Let 0 G 0 , A G R^, and |A| =  1. Then 0 -h tA G 0  for all sufficiently 
small A > 0 and for all t G [0, A]. Since 0 is an unbiased estimator,

Ee0 =  0, Ê -i-aa  ̂= 0 AA,

whence we obtain

/ (6{x) -  0)[f{x] 0 +  AA) -  f{x\0)] n{dx) =  AA.

(3.5.7)

Multiplying this equality on the left by u' and applying the Cauchy-Bunyakovskh 
inequality we get

A (̂ii'A)  ̂ < j  ( u ' {d { x ) - 6fj  (\//(a:; 0 +  AA) +  \/f{x;  0)) n{dx)

X J  ( V 7 m + ^ -  Kdx)

< 2 J  (u'{e{x) -  {fix;  0 + AA) + f{x;  6)) fi{dx)

X J f i x ;0 + AX) -  y/f{x;e)^ Ĵ.{dx).

Relations (3.5.3) and (3.5.7) imply that

A2(u'A)2 < 2 [u'iZ(0;e)u + u'R(e;0 +  AA)tt +  A^Cw'A) ]̂

X j  ( V/Cx; 0 + AA) -  ^/f{x;  0)J /n(dx).
(3.5.8)
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Since \/f{x; 6) e  C j(0 ) , we obtain from (3.5.5) that 

/f{x-,e + AX) -  v T m ) "

\'df{x\ 6 +  t\)/dO ^

f { V j

(3.5.9)
0 2 ^ f { x ; 6 -\- tX)

dt 1 fi{dx)

A
< -  y  A7((9 +  tA)Adi.

Let 0 be a point of continuity of the matrix R{6\ 6). Substituting (3.5.9) into (3.5.8) 
and passing to the limit as A —> 0 we get

(3.5.10) {u'R{e-e)u){x'i{e)\) > {u'xf.

Putting A =  I~^{6)u we derive from (3.5.10) that

u'R{6 ; 6)u > u^I~^{6)u

for all vectors u G R^. The latter inequality is equivalent to (3.5.6). □

Let an observation be a sample =  (^i,. . .  ,^n) and let the density of the 
sample be fn{x]0) =  where x =  ( x i , . . .  ,Xn)- Let ln{0) and I{0)
be the information matrices constructed from the densities /n(a:;0) and / (x ;0) ,  
respectively. If the regularity conditions of Theorem 3.5.1 hold, then

in{e) =  ni{0).

If 0n is an unbiased estimator of the parameter 0, then under the conditions of 
Theorem 3.5.1 we get the following matrix analog of the Cramer-Rao inequality:

(3.5.11) R ( 9 n , 0 ) > - r \ 9 ) .
n

The C ram er-R ao inequality for biased estimators. Let i  =  (0i, •.., 0kY 
be an estimator of a parameter 0 =  (0i , . . . ,  0kY constructed from an observation 
Put

a{0) =  Ee0 = 0 -̂  b{0), b{0) =  (6i(0),. . .  ,6^(0))'.
Here b{0) is the bias vector of the estimator 0 of the parameter 0.

Consider the multivariate analog of the regularity conditions (R) introduced in 
Section 3.4:

(/?) the function y/f{x]0) is continuously differentiable in 0 for /x-almost all x;
the matrix I{0) is nondegenerate and continuous in 0.

In what follows we need the following Cauchy-Bunyakovskit inequality for ma­
trices.

L e m m a  3.5.1. Let 77 and C be two random matrices of the same size {they are 
not necessarily square matrices). Assume that the inverse matrix of E7777' exists. 
Then

(3.5.12) ECC' > EC7?'(Ew ')-'E77C'.

This inequality becomes an inequality if and only if(  ̂=  zrj where z = E(rj'{Erjrj')~ .̂



Proof. Since AA! > 0 for an arbitrary matrix A (that is, the matrix AA! is 
nonnegative definite),

0 <  E (C  —  zrj) (C —  zrjY =  ECC^ —  +  zErjrĵ z'

for a nonrandom square matrix z. Putting 2; =  E(̂ rj' w e  obtain inequal­
ity (3.5.12). The statement concerning the case of an equality in (3.5.12) is obvi­
ous. □

The following result contains the Cramer-Rao inequality for a biased estima­
tor 0 under the regularity conditions (ii).

T heorem 3.5.2. Let conditions (R) hold. LetD{0;0) =  E ^ (0 -a (0 ))(0 -a (0 ))' 
be the matrix of mixed central moments of second order of an estimator 6 of a 
parameter 0. Then
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(3.5.13) Die; 0) > ih + Bi0))r\e) (Ik + B{e)Y

where Ik is the unit matrix  ̂ B{6) =  ||6ii(̂ )||) bij{0) =  dbi{6)/d6j.
Let det{D{0; 0)) > 0 {or det{Ik +  B{0)) > 0) for all 0. Then inequality (3.5.13) 

becomes an equality if and only if the density of the distribution is such that

(3.5.14) f{x; 0) =  exp{A{0Y0{x) +  C{0)}h{x),

for some scalar functions C{0) and h{x) where

dAi{0)

x e X ,

(3.5.15)
ddi

=  i ih  + Bi0))-^)'i{e)

is the matrix of derivatives of the vector A{0) =  {Ai{0) ^. . . ,  Ak{0)Y- 
If 0 is an unbiased estimator  ̂ then

(3.5.16) D{0\0)>r^{0) .

Inequality (3.5.16) becomes an equality if and only if relation (3.5.14) holds where
\\Mo)\\ = m .

Proof. As in the proof for the one-dimensional case we use the regularity 
conditions {R) to prove that

=  0) — îj bij{0)  ̂ h j ~  1, 2, . . . , fc

(see Lemma 3.4.4), where 5ij is the Kronecker symbol and the functions bij{0) are 
continuous. The latter condition can be written in matrix form as follows:

(3.5.17)
(3.5.18)

EeS{^;0) =  O, 
E00S{^;0Y =  h-\-B {0)

where the matrix B{0) is continuous in 0 and the vector 5(^; 0) is of the form (3.5.2). 
Equalities (3.5.17) and (3.5.18) imply that

(3.5.19) E 0 { 0 - a { 0 ) ) S { ^ ; 0 Y  =  I k -^ B {0 ) .
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Now we apply the Cauchy-Bunyakovskh inequality for matrices. Put = 6 — a{9) 
and ri =  S{^;6) in (3.5.12). Then

EeCC = ^e{0 -  a{e))(e -  a(0))' =  D{6;

It follows from (3.5.19) that

E , C V  =  Ee{9 -  a ( i ) ) 5 ( i ;  0) '  =  4  +  B{6),

This together with (3.5.12) implies inequality (3.5.13).
According to Lemma 3.5.1, inequality (3.5.13) becomes an equality if and only 

if
{B{x) -  a{e)) =  {Ik +  B{0))i-\e)s{x-, e) 

for points {x\ 6) such that f{x\ 9) > 0. The latter condition is equivalent to

(3.5.20) s{x-,e) =  i { e ) {h  +  B{e )) -\e{x )  -  a{e)).

If inequality (3.5.13) becomes an equality, then

det(7fc +  B {9 ) f  =  deiD{9\9) det/(l9).

If det D(0; 9) is far away from zero, then so is det(4  +  jB(0)), whence it follows that 
the inverse matrix ( 4  +  B(0))”  ̂ exists and is bounded. Thus the derivative S{x\ 9) 
in (3.5.20) is bounded, f{x\ 9) > Q everywhere on 0 , and equality (3.5.20) holds 
everywhere on 0 . Let 9q 9̂ and 9q +  s{9 — 9q) ^ Q  for all s € [0,1]. Then

In f{x\ 9) =  In /(x ; 9q) -\- [  { 9 -  0o)'5'(x; +  s{9 -  9q)) ds
Jo

in view of conditions (ii). Thus

(3.5.21) In f{x;  9) =  A{9Y9{x) +  C{9) +  H{x)

according to (3.5.20) where C{9) and H{x) are some scalar functions, and

A(0) =  (Ai(0), . . . ,Afc(0)) '

is a column-vector depending only on 9. This means that representation (3.5.14) 
holds.

If relation (3.5.21) is satisfied, then

(3.5.22) S{x;9) = \\Aij{9)\\'9{x) + dB{9)/d9 
and

(3.5.23) ' dB{9)/d9 =  -\\Aij{9)\\'a{9), 

since E$S{^]9) =  0. It follows from (3.5.22) and (3.5.23) that

S{x;9) =  \ M { 9 { x ) - a { 9 ) ) .

Multiplying this equality on the right by {9{x) — a{9)Y, we obtain from (3.5.19) that 
condition (3.5.20) (which is equivalent to the case of equality in (3.5.13)) follows 
from (3.5.15).

Inequality (3.5.16) follows from (3.5.13), since the matrix B{9) is zero if 9 is an 
unbiased estimator. □
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All the remarks concerning the Cramer-Rao inequality that we made in Sec­
tion 3.4 for the regularity conditions (i?) in the one-dimensional case remain true 
in the multidimensional case, too.

One can prove the Cramer-Rao inequality for estimators ^ of a function g{6) 
of a parameter 6 in the same way as in the one-dimensional case.

Note that if an observation is a sample =  (^i,. . .  ,^n), then as above

In{e) = nl{0)

where ln{0) and I {6) are the Fisher information matrices constructed from the 
distribution of the sample and from the distribution of the component 
respectively. If the regularity conditions (i2) hold, then

(3.5.24) D{dn\e) > -{Ik + Bn{e))r\e){ik +  Bn{9)Y n

for all estimators On constructed from the sample where

(3.5.25) D{0n\0) =  Ee{0n ~ an{0)){0n -  an{0))\
(3.5.26) an{0) = êOn = 0 +  bn{0), bn{0) =  (6^(0),. . . ,  b^{0))\
(3.5.27) Bn{0) =  m m .  bH{0) =  dbi/dOj,

The case of equality in (3.5.24) can be considered by applying Theorem 3.5.2.

Efficient and asym ptotically efficient estimators. The definitions of ef­
ficient and asymptotically efficient estimators in the case of a multidimensional 
parameter are similar to those in the case of a one-dimensional parameter. An 
estimator 0* is called an efficient estimator of a parameter 0 if the Cramer-Rao 
inequality for this estimator becomes an equality. If 0* is an unbiased estimator of 
a parameter 0, then 0* is efficient if (3.5.6) becomes an equality, that is, if

(3.5.28) R(6>*; 0) = r^{0) ,  0 G 0 .

If 0* is a biased estimator of a parameter 0, then it is efficient if inequality (3.5.13) 
becomes an equality, that is, if

(3.5.29) D ( r ; 0) =  ( 4  +  B{0))I~\0){h  +  ^ (0))', OeQ.

If an observation is a sample =  (Ci,. . .  ,^n)> then conditions (3.5.28) and
(3.5.29) become of the form

(3.5.30)

(3.5.31)

R{9l-,9) =  - r \ e ) ,  9 € 9 ,
n

1
D{0:-0) =  - ( 4  +  Bn{0))I-\0){Ik +  Bn(0))', 0 e 0 ,n

where I{0) is the Fisher information matrix constructed from the distribution of 
and Bn{0) is the matrix defined by (3.5.24)-(3.5.27) for 0n =  On-

Equalities (3.5.30)-(3.5.31) hold, that is, 0* is an efficient estimator, only in 
exceptional cases. However there exist the so-called asymptotically efficient esti­
mators and conditions for their existence are quite general. An estimator 0* of a 
parameter 0 constructed from a sample is called asymptotically efficient if

1 +  0(1)(3.5.32) R{0*n.0) = n
' - r \ 9 ) ,  9 € 0 ,
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where R{0!l ]̂6) =  £0(0* -  0)(0* -  9)'. The estimator 0* is, generally speaking, 
biased.

Example 3.5.1. Let =  (^1,^2, • • • ,^n) be a sample from the normal dis­
tribution Ai{6i^02)- Thus 6 =  (^1,02)' and the density f{x;0) is of the form

(3.5.33) № ;9) = + ^  ^  -  i ln » ,} .

Consider the estimator 0n =  (0i,n)^2,n) such that

i = l ¿=1

It is clear that 0n is an unbiased estimator. It follows from (3.5.33) that represen­
tation (3.5.14) does not hold for the density fn{x;0), since

/„(* ;») = (2 .)-“« e x p | - ^ | ;* f +  I g n  -  ^

= (2x)-” /=exp ^  -  2 1„9, J .

This means that the lower bound in the multivariate Cramer-Rao inequality is 
not attained and therefore 0n is not an efficient estimator. Nevertheless 9n is an 
asymptotically efficient estimator. Below we prove this result.

First we evaluate the matrix I{0). We have

Si{x]6) — ^ , S^iXfd) — 2^2 2ff
O2 ’ - 2

where Si(x;0) = dlnf(x;0)/d0i, i = 1,2. Thus

l n ( 0) =  Ea-
01 02'

/u ( « )  =  W « )  =  E . ( < & ^ - S ^ ) = 0 ,

,  {{ 1̂ - 01? - 02) 1 
n 202h2(0) -  Ee ^  

and the lower bound in the Cramer-Rao inequality is given by

(3.5.34) S ' - ‘ W = ( T  2 9 1 /» )-

Now we evaluate the matrix R{9n] 0)- We have

Ee(0 i ,n -0 i ) '  =  E , ( i - 0 i ) 2  =  ^ ,
n

20|
Ee{02,n - 0 2 ) ^  =  Ee{0i,n -  0i){02,n -  02) =  0.
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The first of the latter equalities is obvious. The last of them follows from the 
independence of Oî n and 02,n (see Theorem 1.4.2). To prove the second equality 
we note that

02 p , = x ^ - i )

by Theorem 1.4.2. Since DXn-i =  2(n — 1), we get the desired equality. Thus the 
matrix R{6n\ 0) is given by

R{0n,e) =  (^2/«(3.5.35) 0
20|/(n

Finally we apply (3.5.34) and (3.5.35) and obtain (3.5.32). This shows that On is 
an asymptotically efficient estimator.

Other results related to  the Cram er—R ao inequality. Inequality (3.5.12) 
allows one to obtain some other results corresponding to other matrices C and 77. 
We restrict our consideration to the case of a one-dimensional parameter 0. Assume 
that the density /(x ; 0) satisfies a stronger condition as compared to the regularity 
condition (i?), namely let

(¿1) the density / ( x ; 0) be continuously differentiable m > 1 times in 0;
(¿2) the integrals

K. w = /
J N b

\dif{x-,e)/dei\,'|2

converge for all 0 € 0  and, as functions of 0, be continuous on 0  where
N0 =^{x:f {x ;e) jiO}.

Using the same method as that in the proof of Lemma 3.4.4 we show that 
conditions (zi) - (72) imply that the function a(0) =  EqO has m continuous derivatives 
for an arbitrary estimator 0 if its second moment Ê 0  ̂ is locally bounded.

Let c =  (ci, C2, . . . ,  Cm) be some vector of R ’^. Put C =  0 (0  “  ^(^)

j= i
C i --------- r r r -T T :-------- J jv #  ( ? ) •

m o )

Then it follows from (3.5.12) that
(3.5.36)

____________{ci + E T =M 9^m /de^))'
DffO > sup

c E Z =1 In, Kdx)

where 6(0) =  Ê 0 — 0 is the bias of the estimator 0. Inequality (3.5.36) is called the 
Bhattacharyya inequality. More details about the Bhattacharyya inequality can be 
found in [36].

Assume that the set Nq does not depend on 0 and let Ne =  N  for all 0 G 0 . 
Below we avoid the regularity conditions posed on the density /(x ; 0). Denote by M  
the set of charges m on 0  such that

L
(1 +  f{x-,u)) |m(ciu)| < oo.
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Put C =  ^

n =  j ( ^  ‘m{dv)iN{i) -  «^(0 )

in (3.5.12). Inequality (3.5.12) becomes of the form
(3.5.37)

De6 > sup
(feja iu )-a (^ ))m (du))

m€M f e  /e  m(dui) m(du2) fj^ f(x ; « i ) / ( x ;  U2)/f{x\ $) (j,{dx) -  m^{e)

and is called the Barankin-Kiefer inequality in this case. If the upper bound in 
the Barankin-Kiefer. inequality is evaluated only with respect to ¿-measures on © 
instead of charges m G M , then (3.5.37) becomes of the form

(3.5.38) DqO > sup {a {u )-a {e )r
nee /^ ( / ( x ;  u) -  / (x ; 0))2/ - i ( x ;  6) tx{dx) 

and is called the Chapman-Robbins inequality (cf. inequality (3.4.43)).

3.6. Integral inequalities o f  Cram er—R ao type

We follow the Bayes approach and obtain lower estimates for risks of estimators 
in this section. The corresponding inequalities can be called integral inequalities of 
Cramer-Rao type, since they involve risk functions integrated with respect to the 
a priori measure.

Efficient and superefficient estimators. Throughout this section we as­
sume that an observation is a sample =  (^ i,. . .  ,^n) from a distribution for 
which there exists the density f{x ;6 ) with respect to a measure p where 6 =  
(01, . . . ,  0fc)' is an unknown parameter whose value belongs to a certain set 0  C R^, 
k > l .  First we consider the case A; =  1, that is, the case of a scalar parameter 6. 
Let an arbitrary set of regularity conditions given in Section 3.4 hold. Then the 
Cramer-Rao inequality

(3.6.1) Ee(0„ -  9 f  > n i{ey B e e ,

holds for all unbiased estimators 9n of the parameter 6 where I{6) is the Fisher 
information evaluated with respect to the density /(x ;0 ) , that is,

m  = EeSH^i-,0), Six; 9) =  dlnfix;9)/d9.

The right-hand side of inequality (3.6.1) is sometimes called the Cramer-Rao 
bound. This bound is attained if an estimator is efficient. The question is whether 
one can improve this result for biased estimators. In other words, the question is 
how precise is the Cramer-Rao bound for biased estimators.

It is quite obvious that the expectation E (̂0n — )̂  ̂ at a fixed point 0q can be 
smaller than the Cramer-Rao bound. Indeed, this is true for 0  ̂=  for example. 
However the latter estimator is very bad at any other point.

Below is another example of this kind. Let | P )̂ =  ^7(0,1) where

0 G 0  =  [0, oo).
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It is clear that the estimator is efBcient. Nevertheless the es­
timator =  0 V is even better, since it decreases the mean square deviation 
by substituting 0 for negative values of On that are meaningless in view of the 
restriction that 6 € [0, oo). On the other hand, 0* is a biased estimator, since 

> EeOn =  0. We have I{0) =  1 for all 6 e  &. At the point 0 =  0 we get

=  -  =n n i{oy 2n n / (0)

The improvement of the Cramer-Rao bound is explained in this example by a 
restriction of the domain of the estimator On to the set 0 .

Another example is due to Hodges. The improvement of the Cramer-Rao 
bound in the Hodges example is not due to the restriction of the set 0  and is 
explained by other circumstances.

Again let C{^i \ P )̂ =  N{0^1) where 0 e Q =  ( - 00, 00). Along with an 
efBcient estimator On =  n~  ̂D lLi consider another estimator

f 0n, if \0n\ >
{¡dOn, if |0„| < n-1/4, 

where |/3| < 1. It is easy to see for 0 > 0 that

(\0n\ <  <  ? 0  -  0)^/n <  -  0 % / ^  =  ^  -  0\ /n^ ^  0

as n ^  00 where ^{x) is the standard J\f{0̂  1) distribution function. A similar 
result holds for the case 0 < 0, too. If 0 ^  0, then the estimator 0* coincides with 
On on an event whose probability approaches 1 as n ^  00. Thus

0:

c {{d *^ -e )V ^ \ P o)-^ U {o ,i)

as n OO if 0 7̂  0.
If 0 =  0 and as n 00

Po (l^nl < = Po (|0„̂ /5Í| < n '/") = 1 - 2 #  ( -n '/ " )  1.

If 0 =  0, then the estimator 0* coincides with pOn on an event whose probability 
approaches 1 as n ^  00. Hence

£ ( 0; v ^ | P o ) ^ ^ ( o , / з ^ )

as n ^  00.
Therefore the estimator 0* is asymptotically Ai{0,a‘̂ {0)n~^) normal for all 0 

where
It M O ,

Note that /?̂  < 1. Thus the asymptotic variance of the estimator 0* at the point 
0 =  0 is equal to which is less than the lower Cramer-Rao bound

(n /(0) ) - i = n - ^

Asymptotically normal estimators whose asymptotic variance cr {̂0) is such that 
o^{0)/n < l / ( n / ( 0)) and is less than [nl{0))~^ for some 0 are sometimes called
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superefficient. The points 6 for which cr^(0)n“  ̂ < {nl{6))~^ are called the points 
of superefficiency.

The examples of superefScient estimators do not change our conclusion that 
efficient or asymptotically efficient estimators are the best. Namely Le Cam (1953) 
proved that an improvement of an efficient estimator can be made only at a set of 
points of superefficiency whose Lebesgue measure is small.

We show in this section that infĝ  ̂ ^t{9n -  =  0 for all t and that there is a
lower bound of the integral of Et{9n — t)  ̂ that does not depend on 9n but still is 
closely related to the function {nl{t))~^. More precisely, we obtain a lower bound 
for

(3.6.2) inf /  Ei{9n]t)^q{t) dt 
On Jq

for an arbitrary nonnegative weight function q{t) such that / q q{t) dt =  1. This 
lower bound is close to J/n where

(3.6.3) J = ÍJe m
Note that the integral in (3.6.2) can be treated as the unconditional mathe­

matical expectation E(9n — 0)  ̂ for the Bayes approach where the a priori measure

Q(A) =  J^q{t) dt

is a probability distribution of the parameter 9 and the density q{t) of Q with respect 
to the Lebesgue measure exists. Relation (3.6.3) in this case can be rewritten as 
J = EI-\9).

Integral inequalities. Let f n { x ; t )  be the density of the sample with 
respect to the measure p if 9 =  t. Then fn {x ]t )q {t )  = Pn{x^t)  is the density of 
the joint distribution of the vector {^^'^\9). Denote hy Nh C Q the support of a 
function h defined on 0 . In other words Nh = { t :h { t )  ^  0}. By N  we denote 
the support of the function Pn{x]t) in X  x 0 , that is, N  is the support of the 
distribution of the vector (^^^^0).

T heorem 3.6.1. Let the function fn{^\i) be differentiable with respect to t, 
while \/I[t) is integrable on every finite interval. Then

[ m o ) / q m ?E(0„ -  ey >
(3.6.4) n E { m m / q i e W ) + W 0 ) / q { 0 ) r

_____________ H H t)d ty _____________
n f  I(t)h^(t)/q(t) dt + f(h'(t)y/q(t) dt

for all differentiable functions h{t) with bounded support such that Nh C Nq and 
for all estimators 9n of the parameter 9.

Proof. Since the support of the function h{t) is bounded, we get

J ifn{x]t)h{t)y dt =  j d{fn{x\t)h{t)) =  0,

J  Kfnix-, t)h{t)Y dt =  -  J  fn{x\ t)h{t) dt.
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Thus

(3.6.5)
/  [  {K{x)-t){fn{x;t)h{t)Ydtfi{dx)= [ f fn{x]t)h{t) dt/jL{dx)

Jx Je Jx Je

= j  Kt)
Je

dt

for an arbitrary estimator Since Nh C  Ng, equality (3.6.5) holds for integrals 
over the set N. Multiplying and dividing (3.6.5) by Pn{x; t) we obtain

(dn -  0)
{fn {&'>■, 0) h{e))']

=  /  h{t) dt =
JNafn{e^ho)q{e) J

By the Cauchy-Bunyakovskh inequality

[E(/i(g)/g(g))]-

. m
' m '

(3.6.6) E(0„ -  ey > l2*
E [(/n  0) h{e))' /  ( / „  0) q{e))] ‘

It remains to rewrite the latter result in the form of (3.6.4). Note that

(3.6.7) E t| 5„(e ("> ;i)| < n V T W  

and for almost all t

(3.6.8)

where Sn{x;t) =  din fn{x;t)/dt. Estimate (3.6.7) follows from

Et |5„ < nEi|5(ei;i)| < n (E*52(6;i))'^'= n^/7W,
S i n c e

n
■5n =  X^5'(^i;i) and S{x;t) =  d\nf{x-,t)/dt.

i=l
To prove equality (3.6.8) we consider an arbitrary function g{t) whose support is 
bounded and whose derivative g'{t) is continuous everywhere. Then

j d t  =  -  Jg'{t)fn{x\ t) dt.

Moreover
< oo.j  |5(t)|Et d t < n j  \g{t)\^/I(^ dt

This implies that one can interchange the integrals:

J g m tS n  =  g {t )^ ^ J ^ d tp {d x )

f  f  g'{t)fn{x\t)dtp{dx)
Jx Je

=  -  f g'{t) dt =  -  f dg{t) =  0.
Je Je

Since this equality holds for all p, we prove that (3.6.8) holds for almost all t.
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Now we transform the right-hand side of (3.6.6):
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h{9))'y  
, fn{^^^hd)q{0) J

=  E

"H iw J H w J
Here we used equalities =  nl{i) and

following from (3.6.8). Thus relation (3.6.4) is proved. □

T h e o r e m  3.6.2. Let the function fn(x]t) satisfy the conditions of Theorem 
3.6.1. Assume that the function h{t) =  ho{t) =  q{t)/I{t) has finite support and is 
differentiable. Then for all estimators On one has

(3.6.9)

where

H\~'^ >
~ n тг̂

H =/l(i)'
1 2

dt
q{t)'

P r o o f . Theorem 3.6.2 follows directly from Theorem 3.6.1 since the right- 
hand side of (3.6.4) is equal to J^/(nJ H- H) for h{t) =  q{t)/I{t). □

R e m a r k  3.6.1. Inequalities (3.6.4) and (3.6.9) are integral in the sense that 
they provide the lower bounds for integrals of £¿(0  ̂—1) .̂

We see from inequalities (3.6.4) and (3.6.9) that the lower bound of E(0n — 0)  ̂
differs slightly from

-  =  /  n J nl{t)
for large n. The latter integral is equal to E(0* — 0)  ̂ if 0̂  is an efficient estimator. 
This indicates that one should use efficient estimators, since E{0n — 0)  ̂ attains its 
minimum at efficient estimators whatever function q{t) is.

The following example shows that the lower bounds (3.6.4) and (3.6.9) cannot 
be improved in general.
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Example 3.6.1. Let =  (^ i,...,^ n ) be a sample from the distribution 
1). In this case I {6) =  1. Let the parameter 0 be a random variable with a 

smooth density t g ( —oo, oo). Then the lower bound in (3.6.9) is of the form 
{n +  H)~^ where

H  =  j  ^ d í  =  E[(lng(0)r]^.

Let 6^ be the Bayes estimator of the parameter 9 corresponding to the a priori 
probability measure Q whose density is q{t) and let the loss function be quadratic. 
The estimator 9^ minimizes the risk E(0„ — 9)"̂  and coincides with the a posteriori 
mean 9^{x) - E{0 /  =  x }.  Thus

$Q(x) — /  _  f  tq{t) exp (rixt -  ní^/2) dt
/3 g jqn "  /  Qit)fn{x; t) dt J  q{t) exp {nxt -  nt‘̂ /2) dt

_  f  tq(t) exp (~n(t -  x)^/2) dt 
f  q{t) exp {-n {t  -  x )2/ 2) dt

where x =  ® =  (ici,. . .  ,x „ ). If the function q{t) is sufficiently
smooth, then (3.6.10) implies that

as n —> 00. In particular, let q{t) =  (27t) ^/^exp(-í^/2). Then H = 1 and the 
lower bound in (3.6.9) is (n + 1)“ ^ On the other hand, we learned in Example 3.1.5 
that

E { 9 ^ - 9 ?  =  - i — .
 ̂ n + l

This proves that the lower bounds in (3.6.4) and (3.6.9) cannot be improved, indeed.

The following result follows from Theorem 3.6.1. It allows one to make some 
conclusions concerning the points of superefHciency.

T h e o r e m  3.6.3. Let the density fn{x;t) satisfy the assumptions of Theo­
rem 3.6.1. If the interval (a -  e, a +  e) belongs to 0 , then

(3.6.11) max Et{en - t y  > (n  max I{t) +
te(a—e,a-\-e) \ iG(a—e,a+e)

- 1

for an arbitrary estimator On-

P roof. Let q{t) =  0 for t ^ {a — e,a +  e). Then
pa+£

(3.6.12) max
/»a+e

E (0- i )2>  /  Et{9n-tfqit)dt^E{9n-9f.
J a—e

Put
h{t) =  q{t) =  J cos^ , |i -  a| < £,



in Theorem 3.6.1. Then inequality (3.6.4) implies that 

(3.6.13)
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/  pa-\-e pa-\-£
E{9 - d f > [ n  I{t)q{t) dt +  /  {g'{t)f/q{t) dt

\ Ja—e Ja—e

-1

where

(3.6.14)

pa-\-£

J a —£ Q(t)
dt =  f  ( ^ 2 c o s

'Kt . 7гA^ 
1 n  ̂ ~r— sin “  IV2e2 2e 2e J

1 2 • 2

ecos 9 .Trdt
2e

Now relations (3.6.12)-(3.6.14) yield inequality (3.6.11). □

Remark 3.6.2. It is not hard to show that the minimum of the functional 
dt in the class of all differentiable densities q{t) whose support 

belongs to [—1,1] is attained for the density q{t) =  cos^(7ri/2).

Remark 3.6.3. Theorem 3.6.3 implies that the length of the interval of values 
of 6 for which 6n is superefficient does not exceed O

Integral inequalities for nondifferentiable functions q{t)/I{t). If the 
function h{t) =  q{t)/I{t) does not satisfy the assumptions of Theorem 3.6.1, then 
one can estimate the asymptotic behavior of E(9n—0)  ̂by using the following result.

T heorem 3.6.4. Let the function fn{3^]t) satisfy the assumptions of Theorem
3.6.1. Let the functions heft) depend on a positive parameter e, and satisfy the 
assumptions of Theorem 3.6.1 and

1) he{t) < ho{t) =  q{t)/I{t) for all e > 0,
2) H{e) =  f  (h'^(t))^/q(t) dt < oo for all e > 0.

Then for all s > 0
- ,2 ^ O M WE(0n 0) > ■

Proof. It is necessary to put h{t) =  he{t) in Theorem 3.6.1. 

Theorem 3.6.4 implies the following useful result.

□

T heorem 3.6.5. Let the function fn{x;t) satisfy the assumptions of Theorem
3.6.1. If the function q{t) is Riemann integrable and J  < oo, then

E {6 n -e )^ > - {1  +  0(1)) 
n(3.6.15) 

as n ^  oo.

Proof. Consider the following functions:

ge(i) =  min q(t +  u),
\u\<e

Qe{t) = %{t)I{qe{t) > e),

I ^ { t ) — max.{e, I  (t)),  h,
I.
9e{s)

( s )
ds.

It is clear that the support of the function he{t) is bounded, heft) is differentiable 
for all e > 0, and he{t) < h o (t)  = q{t)/I{t).
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Since the function q{t) is Riemann integrable, we obtain q^{t) y  q(t) almost 
everywhere as e ^  0. This result follows from

(3.6.16) Í  k ( i) -9 e ( i ) ]
J a

dt 10

as £ 0 for all a, 6 G 0 , —oo < a < b < oo. Moreover

/ b ^
q{t)dt and +  1)J)25 t f q{t)dt

№ ” fc Ja

as i  ^  0. Therefore, as e -> 0

J Qe{t) dt > ^2^2€{^ke)2€ = -  g2£(4fcg)4g +  ^g2e((4 fc +  2)e)A^

f q{t)dt.
J a

Thus relation (3.6.16) is proved, whence the convergence qs{t) f  q[t) follows. 
The convergence q {̂t) f  q{t) implies that

Qe{t) t  q{t) . ...
I 7 m  =h { t ) ' m

as £ —> 0. Moreover

J h it)
dt

Q{t)\h'(i\\ -  L  |gg(^+^) _  -  g)
' 2e\l,{t +  e) h { t - e )

Putting e =  in Theorem 3.6.4 we obtain

E(0n - 0)^ >
U h S ) d t f  ^ J  ̂+  o(l)
nJ +  H{e) nJ +  

as n ^  oo, whence the desired estimate (3.6.15) follows. □

Asym ptotically Bayes and asym ptotically minimax estimators. One
of the main results following from the above integral inequalities can be stated as 
follows. If an efficient or, at least, an asymptotically efficient estimator exists, then 
any other estimator is asymptotically “worse” . Below we introduce the notions of 
the asymptotically Bayes and the asymptotically minimax estimators. We consider 
the quadratic loss function and the a priori measure Q and assume without loss of 
generality that Q is a probability measure for which the density q{t) exists.



96 3. ESTIMATION OF UNKNOWN PARAMETERS OF DISTRIBUTIONS

An estimator 0* of a parameter 6 is called asymptotically Bayes (with respect 
to the quadratic loss function and the a priori measure Q) if

(3.6.17) limsup En(0* — 0)  ̂ -  En{6n — 6)"
77.— L

< 0

for an arbitrary estimator An estimator is called asymptotically R-Bayes if

(3.6.18) En{e* - e f  =  J +  o (l)

as n —> oo. In other words, an estimator is asymptotically R-Bayes if the lower 
bound for the mean square deviation given by Theorems 3.6.2 and 3.6.5 is attained 
at this estimator. Another name for this estimator is asymptotically R-efficient in 
the mean square sense.

The following result contains a relationship between asymptotically Bayes and 
asymptotically R-Bayes estimators.

T heorem 3.6.6. Let all the assumptions of Theorem 3.6.1 hold. If the func­
tion q{t) is Riemann integrable  ̂ then every R-Bayes estimator is an asymptotically 
Bayes estimator.

Proof. Let 0* be an asymptotically R-Bayes estimator, that is, (3.6.18) holds. 
According to Theorem 3.6.5

liminf En(9n —n—>oo

for an arbitrary estimator On- This together with (3.6.18) implies (3.6.17) for the 
estimator 0*, that is, 0* is an asymptotically Bayes estimator. □

It is clear that if an asymptotically R-Bayes estimator exists, then every asymp­
totically Bayes estimator is an asymptotically R-Bayes estimator.

The equivalence of all asymptotically R-Bayes estimators is established in the 
following result.

T heorem 3.6.7. Let all the assumptions of Theorem 3.6.1 hold. Assume that 
the function q{t) is Riemann integrable. If and 0** are two asymptotically R- 
Bayes estimators  ̂ then they are asymptotically equivalent in the following sense:

(3.6.19) En(0; -  0, (0 ; -  c ) ^ / ^  ^  0

as n —> oo where the second relation means the convergence in probability with 
respect to the joint distribution of and 6.

Proof. It follows from (3.6.18) that

(3.6.20) lim En(0* — 0)  ̂ =  lim En(0** — 6)  ̂ =  J.
n—̂ oo n—>oo

Let On =  {On +  ^n*)/2- Relation (3.6.20) implies that

(3.6.21) lim En(0n -  Of =  J.n—>oo
It is easy to show that

- 0 f  +  {0*n*-0f



This equality together with (3.6.20) and (3.6.21) yields

lim En(0;  -  =  0
n—>oo

and the first relation in (3.6.19) is proved. The second relation in (3.6.19) obviously 
follows from the first one. □

Further we consider the asymptotically minimax approach. An estimator 0* is 
called asymptotically minimax if

(3.6.22) lim sup sup Etn(0* -  t)  ̂ < lim inf sup Etn{9n -  t)^
n—>oo tG© n—>CXD ¿^0

for all estimators 6n>
The following result contains sufficient conditions that an estimator is asymp­

totically minimax.

T heorem 3.6.8. Let the Fisher information I (6) exist and be continuous. If

(3.6.23) lim sup sup Etn(0* — t)^ < su p /“ ^(t),
n-^oo te o  te o

then is an asymptotically minimax estimator.

P roof. It is sufficient to show that
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(3.6.24) lim inf sup Etn(0n sup I  ̂(t)
n-^oo ^^0 ¿^0

for an arbitrary estimator 9n- Let Q be an arbitrary probability measure on 0  
whose density q{t) is smooth. It is obvious that

(3.6.25) sup Etn{9n -  t)  ̂ > /  Etn{9n — dt.
te© J

The right-hand side of (3.6.25) is greater than or equal to J — E jn  according to 
Theorem 3.6.2. Thus (3.6.25) implies that

(3.6.26) limmisupEtn{9n — t) > [ I~^{t)q{t)dt.
t e e  J

Since q{t) is arbitrary, it can be specified such that

(3.6.27) [  r\ t)q {t)d t  > sup r \ t ) - e
J tee

for a given e > 0. The number e is arbitrary and thus (3.6.26) and (3.6.27) imply 
relation (3.6.24). Taking into account (3.6.22), we obtain from (3.6.24) and (3.6.23) 
that 0* is an asymptotically minimax estimator. □
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Rem arks concerning the multidimensional case. All the results of this 
section can be proved for the case of a multidimensional parameter 0 G ©  C  R ^ , 
k > l .

In particular, Theorem 3.6.5, one of the main results of this section, is of the 
following form in the multidimensional case:

E(0;  -  9){ei -  ey  >

where I{t) is the Fisher information matrix.
The results for asymptotic Bayes and asymptotic minimax estimators are also 

valid in the multidimensional case if the quality of an estimator is measured by

vie:) =  E ie * ^ -ty v {e :-6 )

where F  is a certain nonnegative definite matrix.
Bayes and minimax (or asymptotically Bayes and asymptotically minimax) 

estimators can be defined in the multidimensional case as estimators whose qualities 
satisfy the corresponding inequalities for all nonnegative definite matrices V.

R e m a r k  3.6.4. Other approaches to integral inequalities of Cramer-Rao type 
can be found in Chapter 5 of [22] where the estimates of the Shannon information 
contained in an observation and in an estimator 0n with respect to a random 
parameter 9 are used. The corresponding results are called information inequalities 
in [22].



CHAPTER 4

Sufficient Statistics

In the preceding section we discussed the problem on how to construct differ­
ent kinds of optimal estimators, namely Bayes, minimax, efficient, asymptotically 
Bayes, asymptotically minimax, asymptotically efficient, and others. In this sec­
tion, we introduce the so-called sufficient estimators that allow one to construct 
optimal estimators by using a sufficient statistic instead of an observation. Suffi­
cient statistics play an important role in mathematical statistics in general and in 
the theory of estimation in particular.

4 .1. Sufficient statistics and a theorem  on factorization

Conditional expectations, conditional probabilities, and sufficient 
statistics. Let (Q, T, P) be a probability space, let  ̂ be a nonnegative random 
variable, and let ^ be a cr-algebra, Q <Z T. k  generalized nonnegative random 
variable E(^/^) (the extended form of this notation is E(^/^)(a;), a; G fl) is called 
the conditional expectation of the random variable  ̂ with respect to the a-algebra Q 
if E(^/^) is ^-measurable and for dX\ A £Q

f  a^)P{<kj)=  f  E (^ /g )M  P(du;) 
Ja Ja

(4.1.1) 

or, equivalently,

(4.1.2) PlAi =  ^Ia ^{^/Q) for all A e a

where I  a =  Ia {<̂ ) is the indicator of the set A. The conditional expectation P{^/G) 
of a random variable  ̂with respect to a cr-algebra Q is well defined if

(4.1.3) m in(E (i+/g), E ( r /^ ) )  < oo (P-a.s.).

In this case

(4.1.4) =  E (i+ /0 ) -  E ( r /^ )  (P-a.s.)-
Here =  0 V  ̂ and =  - ( 0  A ^). Note that the conditional expectation E{^/Q) 
exists if i  > 0. Indeed, let Q(A) =  E/^^, A € G- Then Q is a measure on 
(il, G) and it is absolutely continuous with respect to the measure P. According to 
the Radon-Nikodym theorem, there exists a generalized nonnegative ^-measurable 
random variable E{^/G) such that

Q(A) =  j  E(^/a)(w)P(dw) for all A e a.

Thus E(^/^)(cv) =  dQ/dP(o;) (P-a.s.) is the Radon-Nikodym derivative of the 
measure Q with respect to the measure P; both measures Q and P are considered 
on the space (il, ^).

99
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Let B £ T. Then the conditional expectation E{Ib /G) is called the conditional 
probability of an event B with respect to a a-algebra Q C. T. The conditional 
probability is denoted by P (B /^). Therefore the conditional probability of an event 
B with respect to the cr-algebra ^ is a ^-measurable random variable V{B¡Q) 
such that

(4.1.5) ?{Af\B) = ElAP{B/g) =  J  P{B/g)dP for all A e a.

Let  ̂ be a random variable and let Qr¡ be the cr-algebra generated by some 
random element rj. Then the conditional expectation E(^/^^), if it exists, is denoted 
by E(^/r;) or by E(^/ry)(a;) and is called the conditional expectation of ̂  with respect 
to T], The conditional probability P{B/Qrf) is denoted by P{B/r¡) or by P{B/r]){oj) 
and is called the conditional probability of an event B  ̂ T  with respect to r]. Let 
r] =  rj{(jj) be a random element assuming values in a measurable space (y, S). Since 
E{^/t]) is a ^T -̂measurable function, there exists a real Borel function m =  m{y) 
defined on (y,<S), assuming values in R  =  [ -o o ,  oo], and such that for all cj G ÍÍ

m (7 ?(w )) =  E(^/77) ( o;) .

This function m(y) is denoted by E{^/y) =  E{̂ /r} = y) and is called the conditional 
expectation of a random variable  ̂ with respect to an event {q =  y} or conditional 
expectation of ̂  given q = y.

According to definitions (4.1.1)-(4.1.4) we have

(4.1.6) EIa  ̂=  E/AE(e/7?) =  ElAtnir)) for all A e

Changing the variables in the integral we obtain

(4.1.7) E/{^gB}m(j7) =  f m{Tj)dP= f m{y)P,j{dy) for all B € <S

where {uj:q((jo) G 5 }  G for all R G 5  and is the probability distribution 
of the random element q on (y,«S). Thus equalities (4.1.6) and (4.1.7) imply that 
m = m{y) is a Borel function defined on (y,<S) and such that for all B G 5

(4.1.8) E /{^gs}C= /  [  rn{y)Pvi(^y)-
«/{01:77(0;) gb} Jb

Relation (4.1.8) can be used as an alternative definition of the conditional expec- 
tation E(̂ /»7 =  y) =  E(^/y) =  m{y).

The conditional expectation E[lAlq = y) is called the conditional probability 
of an event A e T  given q = y\ this expectation is denoted by

P {A h  = y) =  P{A/y).

It is clear that the conditional probability P{A/q =  y) can be defined as a measur­
able function defined on (y,<S), assuming values in ([0, 1],B([0, 1])), and such that 
for all B G 5

(4.1.9) P(^ n { r i £ B } )  =  P{A/r] =  y) Pr,(dy)

(see (4.1.5)). Note that the conditional expectation E{^/Q) can be defined in a 
similar way for rather general random elements  ̂ if the expectation Ê  exists. A
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detailed treatment of this topic as well as a discussion of properties of conditional 
expectations can be found in [30].

Let  ̂ be a random element assuming values in a measurable space (X, S); let 
the distribution of ̂  be a probability measure belonging to a family V = {Pe^O e Q} 
where 0 =  (^i, 02, • • •, OkY is an unknown parameter, 0 € 0  C R^, k > l .  We call  ̂
an observation. An arbitrary measurable function T = T{x) mapping (X, B) into 
some measurable space (Y, S) is called a statistic.

For a fixed 0 G 0  consider the probability space (X^B.Pe). Let Bt be the 
cr-algebra in (X^B) generated by the statistic T =  T{x). It is clear that

B t  =  T ~ \ S ) c B

where T~^{S) is the minimal a-algebra generated by the family of events

{ x : T { x ) e B } ,  B e S .

According to definition (4.1.5), a By-measurable function

PeiA/Br) =  Pe{A/BT){x)

such that 

(4.1.10) Pe{A nB) = f P0{A/Bt ){x) Pe{dx) for all B eBr
JB

is called the conditional probability measure of the set A  ̂ B with respect to 
the (j-algebra Bt > By definition (4.1.9), the conditional probability measure of 
the set A G S given T  =  y is a measurable function

PeiA/t] =  y) =  Pe{A/y)

defined on (y ,5 ), assuming values in ([0,1],B([0,1])), and such that for all B € <S

(4.1.11) Pe(A n {x: T{x) e B }) =  f  Pe{A/y) PeA^y)
JB

where Pqjt is the distribution of the statistic T defined by

P eA ^ ) =  ^e{x: T{x) G R } ,  B e  S.

Relations (4.1.10) and (4.1.11) imply that

(4.1.12) Pe{A/T{x)) =  Pe{A/BT){x) (P^-a.s.) for all A e B .

A statistic T =  T{x) is called a sufficient statistic for a family P  =  {P^, 0 G 0 }  
(or for a parameter 0) if for any A e B  there exists a measurable function

tpA = i^Aiy)
defined on {Y,S), that depends on A and y and does not depend on 6, and such 
that

(4.1.13) Pe{A/T{x)) = ĵa{T{x)) (P^-a.s.).

This property means that the conditional distribution of the observation  ̂given 
a fixed value of the statistic T does not depend on the parameter 0. This means that 
the fact that a sampling point x e  X  lies on the surface T{x) = y  gives no additional 
information about the parameter 0. In other words, the statistic T exhausts all the 
information about 0 that is contained in the sample. This explains the name fgi^
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a sufficient statistic: knowledge of T{x) is sufficient to construct an estimator of 
the parameter 0, while the other information included into the observed point x is 
useless.

E x a m p l e  4.1.1. Let an observation be a sample from a
Poisson distribution with parameter 9. Consider a statistic Tn =  
statistic obviously has the Poisson distribution with parameter n6. Note that

{^(n) ^  ¡f ^

if Er=i
where a: =  ( x i , . . . ,  Xn) and t/ G {0 ,1 ,.. .  } for alH =  1 , . . . , n. Then

(4.1.14) P, {^(") =  x /T „ =  y }  =  I
if E"=i ^ y-

ff E ”=i =  y>

Pe{&^ =  x } _  f^_ne(ne)y  
Pe{Tn =  y} \ y' J iJl

Thus relation (4.1.14) implies that the conditional probability

Pe =  x/Tn =  y)

does not depend on the parameter 9. This means that the statistic Tn is sufficient 
according to definition (4.1.13).

Relation (4.1.12) suggests the following definition of a sufficient cr-algebra. We 
say Bt is a sufficient a-algebra if the statistic T  is sufficient. The notion of a 
sufficient statistic is important in many problems, however the notion of a cr-algebra 
is more convenient, at least from the point of view of the theory, than that of a 
sufficient statistic. Note that there are examples of sufficient a-algebras that are 
not generated by any sufficient statistics assuming values in a given measurable 
space [3].

Dom inated families o f  distributions. Let P  be a family of probability 
measures defined on a measurable space (X, B) and let ¡i be some a-finite measure 
on (X, B). We say that a family V  is dominated by the measure fi if every measure 
P G P  is absolutely continuous with respect to fi. A family V is called dominated 
if there is a or-finite measure dominating the family V. Note that if a family V  is 
dominated, then there exists a finite dominating measure. Indeed, let a family V 
be dominated by a cr-finite measure fi and let X  = Ai where fJi{Ai) < oo for 
all 2 =  1 ,2 ,... and Ai nAj = 0  for i ^  j. Then the measure u defined by

oo

u{A) =  2“V(>1 n Ai)/n{Ai), A e B ,
i=l

also dominates the family V\ morisover the measure v is finite.
Let two families of measure M  and J\i be given. We say that a family M  is 

dominated by a family N  if every measure of the family M  dominates the fam­
ily M . The families of measures M  and N  are called equivalent if the family M  is 
dominated by the family A/", and the family J\f is dominated by the family M .
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T h e o r e m  4.1.1. A family of probability measures V is dominated a a-finite 
measure if and only if the family V contains a countable equivalent subfamily.

P r o o f . First we assume that the family V  contains a countable equivalent 
subfamily {P i, P2, • • • }• Then the family V is dominated by the measure

p .
n=l

Conversely let the family V be dominated by a cr-finite measure ji. Without 
loss of generality we assume that the measure p is finite. Let /C be the class of 
all probability measures Q of the form J^c^Pi where P̂  E V, all numbers Ci are 
positive, and ^  =  1. The class /C is dominated by the measure p. For Q E /C we
denote by q{x) =  ciQ/d/x(x) the density of the measure Q with respect to fi.

Our current goal is to prove the following assertion (which is equivalent to the 
statement of the theorem): there exists a measure Qo £ 1C such that the equality 
Qo(^) =  0 implies Q(A) =  0 for all Q E /C.

Consider the class S of sets C E 5  for which there exists a measure Q E /C 
such that q{x) > 0 almost surely with respect to the measure /x on a set C with 
Q(C) ^ 0. Let  ̂  ̂  ̂00 Avhere E S and qzî x"̂  ^ 0 almost
surely with respect to the measure /x on a set Ci {q%{x) corresponds to which in 
turn corresponds to Ci). Let Cq =  Ci. Then q^ix) =  J2"^i^iqi{x) coincides 
/x-almost surely with the density dQo/dp{x) where Qo =  It is clear
that ^o(^) > 0 almost surely with respect to the measure /x on the set Co, whence
Co € 5 .

Assume that Qo(A) =  0. Let Q be another measure of the class /C and let C =  
{x: q{x) > 0} and q{x) =  dQ/dp{x). Then Qo(A fl Co) =  0, whence /x(A fl Co) =  0 
and Q{A n Co) =  0. We also have Q(A fl Co H C) =  0 where C =  X  \ C and 
Co =  A‘\Co. Now we prove that Q (A n C on C ) =  0. Assume the converse, namely 
let Q(A n Co n C) > 0. This implies

(4.1.15) /x(Co U (A n Co n C)) — /x(Co) +  fJ>{A D Co n C) >  /x(Co),

since /x(A n Co n C) > 0 in view of the inequality Q(A fl Co H C) > 0 and Q is 
absolutely continuous with respect to p. Inequality (4.1.15) contradicts the equality 
/x(Co) =  fJ'iC). Thus Q(A fl Co fl C) =  0 and

Q(A) =  Q(A n Co) +  Q (A n Co n C) +  Q(A n Co n C) =  0.

Therefore the equality Qo(A) =  0 implies that Q(A) =  0 for all Q e  1C. □

Theorem  on the factorization. Let  ̂be an observation that is a random el­
ement assuming values in a measurable space (X , B) and whose distribution belongs 
to a family of probability measures V =  {P$^6 E 6 } where 6 =  (0i,^2, • • • is 
an unknown parameter 0 E 0 c R ^ , A i > l .

The following result, known as the Neyman-Fisher factorization criterion  ̂
contains a necessary and sufficient condition for a statistic to be sufficient for 
a dominated family V. The short name of this result is the factorization crite­
rion. The first result of this type is obtained by Fisher (1920) and rediscovered 
by Neyman (1935). It is proved for general dominated families by Halmos and 
Savage (1949). Further generalization is due to Bahadur (1954). The result below 
is closer to the theorem of Bahadur.
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T heorem 4.1.2. Let a family V =  {Pe^O G 0 }  he dominated by a measure /i 
and let T =  T{x) be a statistic mapping (X , B) into a measurable space (T, S). The 
statistic T is sufficient for a family V if and only if the density

f{x] 6) =  dPe/dp{x)

admits the factorization

(4.1.16) f{x\ 6) =  g{T{x)\6)r{x) (p-a.s.) for all 0 e Q

where g{y\9) is a nonnegative S-measurable function for all 0 e  Q and r{x) is a 
nonnegative B-measurable function.

Proof. Since the family V  is dominated, Theorem 4.1.1 implies that there 
is a countable subfamily {P^i, • • •} ^ ^  is equivalent to the family V.
Consider the probability measure A =  CiP$̂  where > 0 for all z =  1, 2, . . .  and 
Y îCi =  1. It is obvious that the measure A dominates the family V. Denote by 
p{x\0) =  dPeld\{x) the density of the measure P̂  with respect to the measure A.

Necessity. Let T  be a sufficient statistic for the family V. According to defini­
tion (4.1.13), for every A e B  there exists an 5-measurable function V̂ A(y) defined 
on (T ,5) and such that Pe{A!T{x)) =  'iI)a {T{x)) almost surely with respect to the 
measure P̂  for all 0 G 0 . Then \{A/T{x)) =  'i!)a {T{x)) almost surely with respect 
to the measure A. Indeed, the definition of the conditional probability implies for 
all A G S and B e Bt =  T~^{S) that

\{AnB)  = ' £ a P e M n B )  = '£ c i  f Pe.{A/T{X)) Pe,(dx)

=  ' â {T{x)) Poi {dx) =  iPa {T{x)) X{dx)

which together with (4.1.10)-(4.1.12) implies that \{A/T{x)) =  iPa {T{x)) almost 
surely with respect to the measure A for all A £  B. Farther, for all A 6 B we have

ExIa {Op {^;0) =  =  EePe{A/T{0)
=  E e M n O ) =  Exp{^-,e)iJA{T{0)
=  Expi^-,0)X{A/T{^)) =  E x X {A /T {m x ip {^ > 0 ) /T {O )

= ExExilA{O/T{O)^x{pi -̂,0)/T{O)
=  E x E x { iA {o ^ x {p {m / m )/ m )
=  ExlA{O^xip{^;0)/m )

where Ea and are the expectations with respect to the measures A and P ,̂ 
respectively. This implies that p(x; 0) =  Ea(p (^; ^)/T{x)) almost surely with respect 
to the measure A, that is, the density p{x\ 0) is ¿T-measurable or, in other words, 
p{x\0) =  g{T{x)\0) almost surely with respect to the measure A. Since A <C /x, 
equality (4.1.17) implies that for all A G S

(4.1.17)

(4.1.18)
J f{x\d)p{dx) =  P${A) =  ExlA{09{Ti0>^)

=  j^g{T{x)\e)r{x) p{dx)
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where r{x) =  dX/dn{x). Since the set A e B is arbitrary, equality (4.1.18) implies 
the required relation (4.1.16).

Sufficiency. Let relation (4.1.16) hold. Then

(4.1.19)

where

=  X I = rix)Y^Cig{T{xy,di)
^  i i

= r{x)G{T{x)) (/i-a.s.)

Consider the function 

(4.1.20) p{x\0)

GiT{x)) =  Y^Cig{T{xy,di), x € X .
i

i f G ( r ( x ) ) > 0,
[ 0, if G{T{x)) =  0.

It is clear that the function p{x-, 6) is BT-nieasurable. Moreover

^ ( * )  =  ^ ( x )  ■ ^ ( x )  (^a.s.),

since <  A <  
Therefore

by (4.1.16) and (4.1.19). Equality (4.1.19) implies that A {x:G (T(x)) =  0} =  0. 
Thus p{x;6) = p{x]6) (A-a.s.) by (4.1.20) and (4.1.21), since A is absolutely con­
tinuous with respect to fi. The function p{x\ 9) is fir-measurable, whence for all 
A G B we have

EePe{A/T{^)) =  Pe{A) =  ExIa (Op {^\0)
=  ExEx{Ia {Op {^;0)/t {O) =  EAP(e;0)E A (/A (O m O )
=  E,EA(/A(0 m 0 ) =  E ,A(A /T(0 ).

If A is replaced with 4̂ fl fi  in this equality and if >1 G fi and B e Bt  ̂ then

EelB{OPe{A/T{0) =  E,/b (0A(A/T(0).

Since B G fir is arbitrary, it follows that for all A G fi

Pe{A/T{x)) =  \{A/T{x)) (Pi?-a.s.) for all 0 G 0 .

This means that the statistic T{x) is sufficient. D

Below are two corollaries of Theorem 4.1.2.

C o r o l l a r y  4.1.1. Let a family V be dominated. If a measurable function of 
some statistic is sufficient for the family P, then the statistic itself is sufficient for 
this family, too.
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P r o o f . Let T  and T  be two statistics such that T =  (j>{T) where 0 is a mea­
surable function. Assume that T  is a sufficient statistic for the family V. According 
to Theorem 4.1.2 we have

/(x ;  0) =  g{T{xy, 0)r(x) =  g(f (x) ;  0)r(x) (/x-a.s.)

(see relation (4.1.16)), that is, the statistic T is also sufficient for the family P. □

C o r o l l a r y  4.1.2. Let a family V he dominated. If T is a sufficient statistic 
for the family V and a function (¡) is such that v =  (¡>{y) is a measurable one-to-one 
mapping, then the statistic T =  0(T) is also sufficient for the family V.

P r o o f . Since </> is a one-to-one mapping, we have T =  </>“ ^(T). Now Corollary 
4.1.2 follows from Corollary 4.1.1. □

Applying the factorization criterion one can find sufficient statistics for dom­
inated families. Below are some applications of the factorization criterion for ob­
taining sufficient statistics.

Examples o f  sufficient statistics. According to the factorization criterion 
the statistic T{x) =  x, called the trivial sufficient statistic, is sufficient for ev­
ery dominated family of probability measures V. In the examples below we find 
nontrivial sufficient statistics.

E x a m p l e  4.1.2. Let 0  =  {0i,O2y... ,6s}- Then any family V is finite, that is, 
P  =  , P 2̂, • • •) }• A dominating measure n exists in this case. In particular,
one can put CiPe. for Ci > 0, i =  1,2,... ,s. Consider the statistic

T(o:) =  (Ti(a;),T2(a ;),...,T ,_i(a :)) 

where Tj{x) = \n{f{x; 6j^i)/f{x\ 6i)), j  =  1,2,... ,s -  1. Then 

f{x;  6j) = exp{Tj-i{x))r{x), j  =  2,3,. . . ,s,  

where r{x) =  f{x;6i).  Thus

f{x;  6) =  g{T{x); 6)r{x) for all 0 G 0

where

Therefore T{x) =  (T i(x),T2(x ) , . . .  ,Ts_i(x)) is a sufficient statistic.

E x a m p l e  4.1.3. Let • • • ,^n) be a sample from the normal dis­
tribution Ai{0i,02)- Then the density f{x-,9), 0 =  (0i,02), is represented in the 
form

{“A
1 i  1 ^  2 1̂01]



where x =  (t i , . . .  ,Xn). This means that the statistic T{x) =  (Ti(o;),T2(ic)), where
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Tl(x) = '^Xi ,  T2{x) = ' ^ i
i= l i=l

is sufficient. Note that according to Corollary 4.1.1, the statistic T{x) =  {Ti{x), 
T2(x)), where

Ti(x) =  X =  1  ^  Xi, T2(x) =  -  ^ ( x *  -  x f
¿=1 i=l

is also sufficient because T{x) =  ф{Т{х)),
If is a sample from the distribution /̂*(01, and the variance cr̂  is known, 

then T{x) =  Yh=i  ̂ sufficient statistic, while if is a sample from the 
distribution N {0,̂ 62) and the expectation a is known, then T{x) =  ~
is a sufficient statistic. It is clear that the statistic T{x) =  CC^Li S^Li 
also sufficient in both cases.

E x a m p l e  4.1.4. Let =  (Ci» • • • ,Cn) where ^i , . . .  ,^n are independent ran­
dom variables. Assume that has the normal M {во ̂ 6‘f) distribution, г =  1, . . . ,  n. 
Then the density is of the form

 ̂ V ^ 0ii=l

where 0 =  (0o> • • • > 0n) is an unknown vector parameter. It is clear that the “best” 
sufficient statistic in this case is T{x) =  x. If the random variable has the normal 
Af{0,af) distribution and the variances a? are known, then T{x) =  is
a sufficient statistic.

Example 4.1.5. Let =  (^1,^2, • • • ,in) be a sample from an uniform dis­
tribution on the interval [0,0] where 0 > 0 is an unknown parameter. Then the 
density of the sample is of the form

f { x ] 0) 0 -̂ [0,00) (^n,l)-^(—00,̂ ] (^n,n)

where
Xn,i =  mm Xi,

1<г<п
Xn,n =  max Xi,

K i < n
(xi,, . , ,Xn) =X.

Thus relation (4.1.16) holds with g{t;0) =  0 ^7(_oo,^](0) =  -f[0,oo)(^n,i)>
and T{x) =  Xn,nj whence it follows that T{x) =  Xn,n is a sufficient statistic.

If is a sample from the uniform distribution on the interval [0,0 +  1] and
0 e R  is an unknown parameter, then we can proceed in the same way as above 
to show that T{x) =  {xn̂ i X̂n̂ n) is a sufficient statistic of the parameter 0. The 
same statistic is sufficient for the two-dimensional parameter 0 =  (0i , 02), —00 <
01 < 02 < 00, in the case of a sample from the uniform distribution on the interval
[d iM
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Example 4.1.6. Let =  (^1,^2, • • • ,^n) be a sample from the Pearson type 
III distribution whose density is given by

(x -  x e ( - 00, 00),
m )

where {Oi,02,Os) =  9 is an unknown parameter. Then the distribution density of 
the sample is

gndz ^  I' ^  ^
)

where x =  (x i , ... ,Xn)- If 0s =  1 and an unknown parameter is 0 =  (01, 02)? then 
the density is of the form

/(x ; 0) =  0^ exp I -02 ^ (a ;i  -  0i)| Iie ,̂oo)(xn,i)-

Thus the statistic T(x) =  (X)r=i is sufficient. If 0i =  0 and 0 =  (02, 0s) is
an unknown parameter, then T(x) =  (Xl^Li OlLi ^ )̂  ̂ sufficient statistic. If
03 7̂  1 is either a known or unknown parameter, while 0i is an unknown parameter, 
then the “simplest” sufficient statistic is T(x) =  (xijX2) . . .  ,Xn).

Note that the density of the Pearson type III distribution belongs to the system 
of Pearson curves (its description can be found in [9], §19.4, or in [24], §5.6).

Sufficient statistics in the Bayes approach. Let  ̂ be an observation that 
is a random element assuming values in a measurable space {X,B). Let its distri­
bution depend on an unknown parameter 0 =  (0i, 02, • •., OkY which is random with 
the distribution Q concentrated on a Borel set © C R^, A; > 1. Let Pt, t G ©, be 
probability measures corresponding to the conditional distribution of the observa­
tion  ̂ given 0 =  t, that is, Pt{A) =  P{^ G A/6 = t} for all 4̂ G S and t G 0 . Thus 
we are given a family of probability measures P  =  (P ,̂ t G 0 ) which we assume to 
be dominated by some measure /x. We also assume that the measure Q possesses 
the density q{t) with respect to some measure A.

The following result contains necessary and sufficient conditions that a statistic 
is sufficient for a family V = E Q) expressed in terms of a posteriori density.

T h e o r e m  4.1.3. A statistic T =  T{x) mapping (X ,B ) into some measurable 
space (y, S) is sufficient for a family V =  (Pt, t G 0 ) if and only if for any a priori 
distribution Q of the parameter 0, the a posteriori distribution Qa; depends on x 
through T{x). Here Qa;(^) =  P{0 G A /^  =  a;}, x E X ,  A G

P r o o f . Let T  be a sufficient statistic for a family V and let q(t) be the density 
of the measure Q with respect to the measure A. The density q{t/x) of the a pos­
teriori measure with respect to the measure A exists for all a: G AT. Applying 
relation (4.1.16) we obtain from the Bayes theorem that

q{t/x) =
f{x;t)q{t)

/  f  ix-, u)q{u) Xidu) 

that is, q{t/x) depends on x through T{x).

g{T{x)-,t)q{t)
J giT{xy,u)qiu)X{du)'
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Now we prove the converse. Consider an a priori distribution such that q(t) > 0 
everywhere on 0  and for all t

q{t/x)f{x)
<lit)

f {x )  =  j f{x-,u)q{u) X{du).

Put q{t/x) =  ■tp{t,T{x)). Setting g{y\t) =  %l){t,y)/q{t) and r{x) =  f {x )  we get 
relation (4.1.16), that is, T{x) is a sufficient statistic. □

C o r o l l a r y  4.1.3. I fT  = T{x) is a sufficient statistic for a family

V =  { P u t e e ) ,

then any Bayes estimator  ̂ as well as any minimax estimator  ̂ of the parameter 6 
with respect to the quadratic loss function defined as in Theorem 3.1.3 depend on 
the statistic T.

P r o o f . Note that the Bayes estimator of the parameter 6 with respect to the 
quadratic loss function is the a posteriori expectation

E(0/^ = x) =  J  tq{t/x) \{dt).

Now we apply Theorem 4.1.3 to complete the proof. □

R e m a r k  4.1.1. Using Theorem 4.1.3 one can provide the following equivalent 
definition, called the Bayes definition of a sufficient statistic (see [36]). A statistic 
T =  T{x) is sufficient for a family V  =  (Pt,t E 0 )  if for any a priori distribution 
Q of the parameter 0, the a posteriori distribution depends on x through T{x) 
almost surely with respect to p.

Fisher inform ation and sufficient statistics. Let  ̂be an observation that 
is a random element assuming values in a measurable space Let its distri­
bution belong to a family V = e &} where 0 is a nonrandom scalar unknown
parameter. We assume that the family V is dominated by some a-finite measure p 
whose density f{x\6) =  dPg/dii{x) satisfies an arbitrary regularity condition under 
which the Fisher information I{6) is well defined. For the sake of definiteness we 
assume the regularity conditions {CR) (see Section 3.4). Then I {6) =  E05^(^;0) 
where S{x\6) — d\nf{x\6)/d6. Note that conditions {CR) imply that

E^5(e;0) =  O

(see Lemma 3.4.1), whence it follows that I{6) =  D05(^;0) is the variance of the 
random variable S{^]6).

Let T = T{x) be some statistic mapping (X^B) into some measurable space 
(F,<S). Denote by ¡jF  and , 0 G 0 , the images of measures ¡i and P ,̂ 0 G 0 , 
respectively, under the mapping T: {X,B) —> (F ,5), that is,

Pj(B) =  P e{T -\B )) and (B) =  h{T~\B)) for all B G 5

where T~^{B) =  {x:T{x)  G B}  is the preimage of the set B under the mapping T. 
It is clear that the family of measures =  {Pj ,9  G ©) is dominated by the 
measure Denote by g{y, 6) =  dP^/diJ^{y), y £ Y ,  the density of the measure Pj 
with respect to the measure fi^. If the density g{y; 0) also satisfies conditions {CR), 
then the Fisher information l'^{0) =  E0{d\ng{T{^);9)/dd)‘̂  is well defined.
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The following result provides a relation between the Fisher information {в) 
generated by the distribution of the statistic T(^) and the Fisher information I {в) 
generated by the distribution of the observation

T h e o r e m  4.1.4. Let a family V =  (Pe,^ G 0 ) be dominated by a measure ¡л 
and satisfy the regularity conditions (CR). Let T = T{x) be a statistic mapping 
(X,B) into a measurable space (T ,5 ). Assume that the family of probability mea­
sures =  (P j,^  G 0 ) is generated by T on (F,<S) and satisfies the regularity 
conditions (CR). Then

(4.1.22) for all в е в .

Moreover inequality (4.1.22) becomes an equality if and only if the statistic T is 
sufficient for the family V.

P r o o f . Let C be an arbitrary set of S. According to the definition of the 
conditional expectation and in view of condition (iii) in Section 3.4 we obtain from 
{CR) that for all 0 G 0

(4.1.23) [  Six; e) Peidx) =  f Eg{S{^; e)/T{0  =  y} Pj(dy).
J T - ^ C )  J c

Since conditions {CR) holds for both families V  and we have for any P^-nonzero 
set C G <S that

/  Six; в) Pe(dx) =  f ^ f i x ;  в) ^idx)
Jt - ц с )

(4.1.24) =   ̂  ̂X
=  ¿ 5 ( y ;  ^) fj^idy) =  X ̂

Relations (4.1.23) and (4.1.24) yield

(4.1.25) ^  Ixigiy; 6) =  E ,{5 (i; 0 )/T (O  =  y} (P^-a.s.)

for all 0 e  Q. By definition we have I^{9) = Ee{dhig{T{^); 9)/dO)"̂ . To prove the 
inequality l'^{9) < I {9)  ̂ note that

0 < E , { ■ ^ l n m ; e ) - - ^ l n g i T i O ; 0 ) )

(4-1-26) = E e  { ■ ^ \ n m e ) ) \ E g  {■^IngiTiO;^)^

- 2E < ,^ ln /( i ;0)^ ln ^ (T (O ;0).



It follows from (4.1.25) that

Eo-^\nm e)^\ng{T {0 - , e )
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(4.1.27) = Ee^ln5(T(O;0)E, (¿ ln /(i ;0 ) /T (O

d
= Ee(-^lng{T{0- ,e)

Substituting (4.1.27) into (4.1.26) we prove inequality (4.1.22). It remains to show 
that the inequality (4.1.22) becomes an equality if and only if the statistic T is 
sufficient for the family V.

If T  is a sufficient statistic for P, then by the factorization criterion

(4.1.28) f{x\0) =  g*{T{x);0)h{x) (/li-a.s.)

for all 0 e Q,

B e S .

where h{x) > 0, g*{y\0) > 0, the function h{x) is S-measurable, and ^*(y;^) is 
5-measurable for all 0 e Q. Thus for all 0 G 0

^  lnp*(T (x);6l) (P»-a.s.).

Therefore

(4.1.29) /(0 ) =  E ,(^ ln 5 * (T (O ;0 ) )

On the space (y,«S) consider the measure

\{B )=  f  h{x)n{dx),

According to (4.1.28) we have for all S  e 5

P i { B ) =  f  fix-,e)fi{dx)

=  [  g*{T{x)\9)h{x)n{dx)= [  g*{y; 0) \{dy).
Jt - (̂b) Jb

Thus the measure Pj  is absolutely continuous with respect to the measure A and 
the density is g*{y;6). Therefore (4.1.29) implies that I{6) =  I^{0) for all 0 € 0 .

Now we show that if I{6) =  l ‘̂ {0) for all 9 €& , then T is a sufficient statistic 
for P. Indeed, I{9) is the variance of 5(^; 9), hence

(4.1.30) 1(9) = DeS(4; 9) =  E ,D ,(5 (i; 9)/T(0) +  DoE(S(^; 9)/T(0) 
where E0(S(^;9)/y) =  E0{S(^;9)/T(^) = y) and

De(5(C;0)/y) =  D e {5 (i ;0 ) /r (O  =  2/}
are the conditional expectation and variance, respectively. Equality (4.1.25) implies 

E0(S(^;9)/y) =  -^lng(y;9)  (Pj-a.s.).

The family P^ satisfies conditions (CR), thus

(4.1.31) 1^(9) =  Do lng(T(0; 9) =  Di,E<,(5(C; 9)/T(^)), 9 e 0 .



Since I{6) =  I^{6) for all 0 G 0 , relations (4.1.30) and (4.1.31) yield 

BeDe{S{^] 0)/T{O) =  0 for all 0 G 0 .

This implies that
D ,(5(e;0)/T (a;)) =  O (P^-a.s.).

In other words, the function S{x;6) is T “ ^(«S)-measurable. Therefore there exists 
a measurable function fc(y; 9) on (Y, 5 ) such that S{x] 9) =  k{T{x)\9) for all 0 G 0 , 
whence

In f { x ; 9 ) =  I k{T{x);t)dt-{-a{x) for all 0 G 0  
Jso

and some 0o ^ 0- Finally,
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f(x] 9) =  9*{T{x); 9)h{x) for all 0 G 0 .

Now the factorization criterion implies that T{x) is a sufficient statistic for V. □

It follows from inequality (4.1.22) that a sufficient statistic is the only statis­
tic that compresses the sampling data without loss of information. The precise 
statement concerning the Fisher information is given by Theorem 4.1.4. Similar 
results can be given for other measures of the amount of information about a pa­
rameter contained in an observation, say for the Shannon information or Kullback 
information (see [22] and [20]).

R e m a r k  4.1.2. Theorem 4.1.4 remains true for the Fisher information matrix 
in the case of a multidimensional parameter 9 under the multidimensional analogue 
of the regularity conditions {CR) (see [36], §4.3). Theorem 4.1.4 can be proved 
under other sets of regularity conditions, say (Ci?)*, (i2), or (i2)*, in both one­
dimensional and multidimensional cases.

E x a m p l e  4.1.7. Let =  (Ci,^2, • • • ,Cn) be a sample from the Bernoulli 
distribution with parameter 0 G 0  =  (0,1). The density of the distribution of 
with respect to the counting measure is of the form

f{x-,e) =  e ^ i - 0 ) ^ - -  =  Pe{^i =  x}

where x is either 0 or 1. Thus the Fisher information contained in a single obser­
vation is

while the Fisher information contained in the whole sample is
n

In{9) =  nl{9) = 9 { l - 9 Y
9 e e .

Let i/n be the number of “successes” in the sample that is, i/n =
is a statistic assuming values in the set Y =  {0 ,1 ,2 ,... ,n }. The density of the
distribution of the statistic i/n with respect to the counting measure is given by

g{y ; e) =  ey{i -  e r - y  =  =  y}, y e  r.
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The Fisher information contained in the statistic I'n is
2 n - y

er -(9 )  = E. ( A  ±  1 -  9 ) - .  ( I  -  ^

,=0
Dz/n

(0( l - 0))2 (0( l - 0))2 0(1 - 0) ’

Thus /*^ (̂0) =  /n(0) for all 0 G 0 . By Theorem 4.1.4 the statistic Vn is sufficient for 
the parameter 0. This conclusion can also be made from the factorization criterion.

4.2. Sufficient statistics and optim al estimators

R ao-B lackw ell-K olm ogorov  theorem . Let  ̂ be an observation assuming 
values in a measurable space (X, B) and whose distribution belongs to a family

V = {P e . e e Q )

where 0 =  (0 i,. •., Ok)' is an unknown parameter of a set © C  R^, fc > 1. First we 
consider the case where 0 is a scalar parameter, that is, the case A; =  1. Let K\y be 
the class of estimators 0 of the parameter 0 with a bias 6(0) (see Section 3.4). In 
other words, a(0) =  EqO =  0 +  6(0) for all 0 G 0 .

The following result, known as the Rao-Blackwell-Kolmogorov theorem  ̂ high­
lights the role of sufficient statistics in the theory of estimation.

T heorem 4.2.1. Let T =  T{x) be a sufficient statistic for a family

P =  ( P , , 0 G 0 )

and let 6 £ Kb. Then the function 9t =  Ee{9/T) is an estimator such that
1) 6t  G K b  ]
2) the estimator 6t depends on x through T(x);
3) Ee{$T — 0)  ̂ < E (̂0 — 0)  ̂ for all 0 G 0 , and moreover the inequality be­

comes an equality if and only if 6 =  0t almost surely with respect to the 
measure Pq.

P roof. Let T be a sufficient statistic. The conditional probability P^(i4/T) 
depends on A and T and does not depend on 0. Moreover P^(^/T) is a measurable 
function of T. Thus the conditional expectation 6t =  E^(0/T) depends on T and 
does not depend on 0. Therefore the estimator 0t satisfies condition 2) of the 
theorem.

Properties of the conditional expectation imply that 

Ê 0T =  EeEeiO/T) =  Ê 0,

that is, 6t E Kbi whence condition 1) of the theorem follows.
The inequality in statement 3) of the theorem is obvious if E (̂0 — 0)2 =  oo. 

Thus we consider the case when E (̂0 -  0)2 < oo. We have

(4.2.1) Ê (0 — 0)̂  =  Ê (0 — 0T +  0T — 0)̂
=  E ^ (0  -  0 t ) 2  +  EeiOT -  0)^ +  2 E ^ (0  -  0 t ) ( 0 t  -  0 ) .
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By the properties of the conditional expectation

-  erKOr - 0 )  = EeEe{{6 -  -  0)/T)

=  Ee{eT-e)Ee(e-9T/T) =  0,
(4.2.2)

since E e { e -  6t / T )  = E e { e /T )  - 6t  =  0. 
Equalities (4.2.1) and (4.2.2) imply

Eg(e-  0)2 =  Ee{9 -  9 r f  +  E s (0t  -  9 f ,

whence statement 3) of the theorem follows. □

Theorem 4.2.1 shows that if T  is a sufHcient statistic, then one can improve 
the estimator 6 e  uniformly in 0 G 0  by applying the operator Ee{>/T) to the 
statistic 6,

There is another interpretation of Theorem 4.2.1. Namely let S and T  be two 
sufficient statistics for a family V. li 6 = (f){T) where 0 is a measurable function 
and 5  is a measurable function of T, then

^ 0 { 9 s - 9 f  < Eo(0 - 0)2

where 6s =  Ee{0/S). In other words, one should find the so-called minimal suf­
ficient statistics, that is those statistics for which any other sufficient statistic is 
a function of it. The procedure of the construction of an optimal estimator is as 
follows. One starts with a “bad” estimator 9 and improves it with the help of 
sufficient statistics until the estimator becomes optimal.

Theorem 4.2.1 holds in the multidimensional case as well. In this case 6 and 6 
are vectors of the space R^, fc > 1. As in the one-dimensional case let be the 
class of estimators 6 of the parameter 9 with the bias b{6).

T h e o r e m  4.2.2. Let T  be a sufficient statistic for a family V  =  {P 0y6 E Q) 
and let 6 G Kb. Then the estimator 9t  =  E ^ ( 0 / T )  is such that

1) ^ Kb ;
2) 9t  depends on x through T{x);
3) for any vector a G

(4.2.3) Ee (o'(0T - 9 ) f  < Eg (o'(0 -  9 ) f .

This inequality becomes an equality if and only if 0 
respect to the measure Pq.

■ 9s almost surely with

P r o o f . The first two statements of the theorem are obvious. Inequality (4.2.3) 
follows from Theorem 4.2.1, since the proof is reduced to the one-dimensional es­
timators a'9 of the parameter a'0 and since E^(a'0/5) =  a'9s- If (4.2.3) becomes 
an equality for all a G R^, then a'0 =  â 0s almost surely with respect to the 
measure for all a, whence 9 = 9s almost surely with respect to P .̂ □

R e m a r k  4.2.1. All the vectors a, 9, 0, and 9t in Theorem 4.2.2 are column- 
vectors.
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Sufficient statistics and efficient estim ators. We proved in Theorems
4.2.1 and 4.2.2 that if an estimator is not a function of a sufficient statistic, then it 
can be improved by using this sufficient statistic. However we still have no tool to 
construct an optimal estimator by following this idea.

On the other hand, if a set of regularity conditions holds, say {CR) or (i?), 
and the Cramer-Rao inequality becomes an equality, then the estimator is optimal 
(this kind of optimality is called efficiency in Sections 3.4 and 3.5).

Below we consider the case where conditions (i?) are satisfied. All other cases 
can be studied in a similar way. Let 6 =  (0i , 02, • • •  ̂Ok)' be an estimator of the 
parameter 0 =  (0i,^2) • • • constructed from an observation Let be the 
class of estimators 6 of the parameter 6 with a bias 6(0), that is,

a(0) =  Ê 0 =  0 +  6(0).

The following result contains a relationship between efficient estimators and suffi­
cient statistics.

T h e o r e m  4.2.3. Let conditions (R) hold. Let 0 be an estimator of the class 
such that det D{6; 0) > 0 where D{6\ 0) =  E^(0 — a(0))(0 -  a(0))' is the covariation 
matrix of the estimator 0. Then 0 is an efficient estimator in the class if and 
only if 6 is a sufficient statistic of the parameter 0,

(4.2.4) f{x\ 0) =  g{6{x)\0)r{x) for all 0 G 0 ,

and all r{x) =  h{x) and ^(0;0) =  exp(A(0)'0 +  C(0)) and /i(x), A(0), and C{0) are 
the functions occurring in representation (3.5.14).

P r o o f . By definition, 0 is an efficient estimator of the parameter 0 if and 
only if the Cramer-Rao inequality (3.5.13) becomes an equality. According to 
Theorem 3.5.2, the Cramer-Rao inequality (3.5.13) becomes an equality if and only 
if relation (3.5.14) holds. Note that relation (3.5.14) coincides with (4.2.4). By the 
factorization criterion (Theorem 4.1.2), the estimator 0 is a sufficient statistic for 
the parameter 0. □

Note that if 0 is an efficient estimator of the parameter 0 in the class Kb and 
regularity conditions hold, then 0 is also an optimal estimator of the parameter 0 
in the class Kb in the sense of the definition of Section 3.1. Generally speaking, 
the converse is not true, namely an estimator can be optimal in a class Kb, but the 
lower bound in the Cramer-Rao inequality is not attained for it. Thus an important 
role is played by those sufficient statistics that, by the Rao-Blackwell-Kolmogorov 
theorem, allow one to improve estimators and, in the case where one can construct 
the minimal sufficient statistics, to construct the optimal estimator.

Minimal sufficient statistics. We have seen above that there exist many 
sufficient statistics in the general situation. In particular, there always exists the 
so-called trivial sufficient statistic, namely T{x) = x. Nevertheless we are interested 
in those statistics that provide the best reduction of the data. However it is not 
always possible to find a sufficient statistic for which the reduction of the data is 
essentially better than that for the trivial sufficient statistic. To make the notion 
of the reduction of the data precise we introduce a partial order on the set of all 
sufficient statistics.
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We say that a statistic Ti is subordinated to a statistic T2 if Ti is a measurable 
function of T2, that is, Ti =  </>(T2). If a statistic Ti is subordinated to a statistic T2 
and T2 is subordinated to Ti, then the statistics Ti and T2 are called equivalent. A 
sufficient statistic To is called minimal if it is subordinated to any other sufficient 
statistic.

The reduction of the data is best for a minimal sufficient statistic. If T is a 
minimal sufficient statistic, then a further reduction of the information as compared 
to T gives no result if the statistic remains sufficient.

We have seen above that the definition of sufficient statistics can be given in 
a more general form in terms of (j-algebras. \i B' d B \s b. cr-algebra, then is 
called a sufficient a-algebra for the family V =  {Pe,0 G 0 ) (or, for the parameter 
6) if there is a version of the conditional probability measure Pg{A/B̂ )  ̂A e  B, that 
does not depend on 6. Let T  be a statistic mapping a measurable space (X , B) into 
a measurable space (Y, <S), and let Bt =  T~^{S) be the preimage of the a-algebra S 
under the mapping T. If the a-algebra Bt generated by the statistic T is sufficient, 
then T  is a sufficient statistic. All the results on sufficient statistics can be stated 
in terms of sufficient a-algebras. In particular, the factorization criterion remains 
true if the function g{T{x);6) is substituted for a B'-measurable function g{x\9); 
in this case. S ' is a sufficient a-algebra.

Let Ti and T2 be two statistics. It is clear that Ti is subordinated to T2 if

S ti C  B t2 •

Thus the statistic Ti reduces the data in a better way than the statistic T2. Two 
statistics Ti and T2 are equivalent if and only if Bti =  Bt2 •

A a-algebra S* is called the minimal sufficient a-algebra if it belongs to any 
other sufficient a-algebra, that is, B* C S ' for any sufficient a-algebra S'. In other 
words. To is a minimal sufficient statistic if Stq C Bt for every sufficient statistic T.

A minimal sufficient statistic always exists for dominated families

T  =  ( P^,0G0)

(see Theorem 4.2.4). To prove this result we use Theorem 4.1.1: for a family 
p  = (̂ Pq̂ O G Q) dominated by a a-finite measure there exists a discrete distri­
bution Q on 0  such that the family V is dominated by the probability measure 
Pq = f P t  Q(dt). Then the density p{x\6) of the measure with respect to the 
measure Pq can be expressed as

(4.2.5) dPe
d?Q

{x) =  p{x-, 0) = f{x;0)

where f{x\d) =  dPe/dp{x) and /(a ;;Q ) =  dPQ/dp,{x). If T  is a sufficient statistic, 
then p(x; 6) depends on a: through T{x) by the factorization criterion.

T h e o r e m  4.2.4. Let a family V — (Pe,0 € 0 ) be dominated by some a-finite 
measure p and let B* = a{p{x\9)', 0 € &} be the a-algebra in (X,B) generated by 
the functions p{x]0), 0 e O. Then B* is the minimal sufficient a-algebra.

P r o o f . According to (4.2.5) we have

f{x;  6) = p(x; 9)f(x] Q) (p-a.s.)
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where the function f{x- Q) does not depend on 6 and the function p{x; 6) is 6 *- 
measurable for all 0 G 0 . Prom the factorization criterion for sufficient a-algebras 
we obtain that B* is a sufficient a-algebra.

Now let B' be an arbitrary a-algebra. Then f{x\6) =  g{x\6)r{x) (/x-a.s.) 
where h{x) is a nonnegative B-measurable function and g{x\ 6) is a nonnegative 
B'-measurable function. Consider the a-algebra Bg =  (j{g{x\6)\0 G 0 }  C B'. It 
follows from (4.2.5) that

J g{x-,t)Q{dt)’
whence B' CBg C  B'. □

Remark 4.2.2. Using Theorem 4.1.3 one can construct a minimal sufficient 
cr-algebra from the a posteriori distribution Q ;̂. Let Q be an a priori measure such 
that its density q{t) with respect to some other measure A is positive for all t G 0 . 
Then a posteriori density is given by

q{t/x) = fix;  t)q{t)
fix;  Q)

= pix;t)q{t).

Thus the minimal sufficient cr-algebra B* can be viewed as one generated by a 
posteriori distribution, that is, B* =  cr{q{t/x)\t G 0 } .

E x a m p l e  4.2.1. Let =  ( í i » Í 2) • • • , í n )  be a sample from the Poisson dis­
tribution with parameter 0 G 0  =  (0, oo). We learned in Example 4.1.1 that

Tn =  Tn{x) =
i=l

is a sufficient statistic. Here x =  ( r c i , . . . , X n )  and Xi G { 0 , 1 , 2 , . . . }  for all i =  
1 , 2 , . . ., n. Then Tn is the minimal sufficient statistic by Theorem 4 .2 .4 , since the 
c7-algebra Bj-̂  coincides with the cj-algebra generated by the functions

p{x; e) = f jx;0)  
fix;  Oo) < £ )

Tn{x)
n(0o-e)

where Oq G (0, oo) is some fixed value of the parameter. As the distribution Q on 0  
we consider the distribution concentrated at the point 0o-

Example 4.2.2. Let =  (^1,^2, • • • ,^n) be a sample from the uniform dis­
tribution on the interval [0,0] where 0 >  0 is an unknown parameter. Let the 
sampling space be =  (x  =  (xi ,X2, . . . ,  Xn): > 0 for all i =  1, 2, . . . , n}.  As in
Example 4.1.5 we prove that T^(x) =  x^.n =  maxi<i<nXi is a sufficient statistic. 
Moreover it is the minimal sufficient statistic. Indeed, let Q be some distribution 
on (0, cx)) whose density q{t) is positive for all t G (0 ,00). Then

/(x ;0 )  =  0“ "/(_oo,0](x„,„), x e R ” ,
poo poo

/ (x ; Q) =  /  / (x ; t)q{t) d t=  t~‘̂ q{t) dt > 0 for all x G R+.
Jo Jxnix)

It is also clear that T^(x) =  s u p {0 :/(x ;0 ) //(x ;Q ) =  0}, x G R+. This means 
that the statistic Tn is measurable with respect to the minimal sufficient cj-algebra
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— ^ {/(^ ;^ )//(a :;Q ); 9 e  0 } ,  C  B*. Therefore Tn is the minimal sufBcient 
statistic.

Remark 4.2.3. There is another method to construct minimal sufficient sta­
tistics based on partitions of the sampling space generated by sufficient statistics. 
This method can be found in [36], also see [5] and [19].

C om plete statistics and optim al estimators. In this section we consider 
complete sufficient statistics and use them to construct optimal estimators of a 
parameter. Let T  =  T{x) be a statistic mapping a measurable space {X, B) into 
a measurable space (y, 5 ). Assume that the dimension of the space Y  is Z, that 
is, y  C  A usual assumption is that I > k where k is the dimension of the 
parameter 6.

Let r  =  {Ge]6 e  0 }  be some family of probability measures on (R\B^). A 
family r  is called complete if the relation

(4.2.6) / (p{x) Ge{dx) =  0 for all 0 G 0

implies 0(x) =  0 (G^-a.s.) for all 0 G 0 . Equation (4.2.6) is considered in the class 
of functions (p: R^ for which the integral (4.2.6) exists.

Let = {Pj; 0 G 0} be a family of probability measures on (y, S) generated 
by the mapping T :X  Y  where PJ(jB) =  P^(T""^(R)) and B e S, 6 e &. A 
statistic T is called complete if the family of distributions is complete. Equation 
(4.2.6) for the statistic T  can be written in the following form:

(4.2.7) Ê 0 (T(O) =  O fo ra ll0 G 0 .

T h e o r e m  4.2.5. A statistic T is complete if and only if for some bo{6) a Bt - 
measurable estimator 6 is unique in the class of all BT-'rn̂ O'Surable estimators of the 
class KbQ where bo{6) is the bias of the estimator.

If a Bt -measurable estimator is unique in the class K^q, then any Bt -mea­
surable estimator is unique in any other class of estimators with the bias b{6).

P r o o f . Let 9i =  </>i(T) and $2 =  <f>2{T) be two iBr-measurable estimators 
of Then E o M n O )  =  &o(0),  ̂ =  1,2, and E,(<^i(T(0) -  M n O ) )  =  0 
for all 0 G 0 . Since T  is a complete statistic, (pi{y) =  <!>2 {y) (P j-2i.s.) for all 
6 e Q. Conversely, let E0(/)(T(^)) =  0 for all 0 G 0  and 6i =  <pi{T) G KfjQ. Then 
02 =  -I- (p{T) G KbQ. Since a Br-measurable estimator of Kbo is unique,
(f){T{x)) =  0 (P^-a.s.) for all 0 G 0 , that is, (p{y) =  0 (P^-a.s.) for all 6 e Q.

The second statement of the theorem is obvious. □

T h e o r e m  4.2.6. If a sufficient statistic T is complete and 6 G K b , then

0T =  Ee{e/T)

is a unique optimal estimator in the class Kb-

P r o o f . Since T is complete. Theorem 4.2.5 implies that a ST-measurable 
estimator is unique in i f 6- _  _

Let 6 be any other estimator of the class K b- Then 6t  =  G K b , thus
we get by Theorem 4.2.5 that 9t =  6t (P^-a.s.) for all 9 e& - This together with



the Rao-Blackwell-Kolmogorov theorem implies that

Ee(9T -  e f  =  Ee{eT -  O f < Ee (e -  for all 6 e Q .

Moreover the inequality becomes an equality if and only \i0 = Ot (P^-a.s.) for all
0 G 0 . □

Corollary 4.2.1. If T is a complete sufficient statistic and 6 is an unbiased 
estimator of the parameter 6, then Ot =  Eq{6/T) is a unique optimal unbiased 
estimator of the parameter 9.

Proof. It is necessary to apply Theorem 4.2.6 to the class where bo{6) =  0 
for all 0 G 0 . □

Example 4.2.3. Let an observation =  (^1,^2,• • • ,^n) be a sample from 
the Poisson distribution with parameter 0 G 0  =  (0 ,00). Consider the estimator 

=  ii- It is clear that this estimator is unbiased for all 0 G 0 , that is, 
EeOn =  =  6. At the same time it is not consistent, since it does not depend
on n. Consider the statistic
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Tn{x)  =  ' ^ X i ,  X =  { x i , X 2 , . . . , X n ) ,
2=1

where Xi G {0,1,2, . . .  } for all z =  1,2, . . . ,  n. We learned in Examples 4.1.1 and
4.2.1 that Tn is a minimal sufficient statistic for the parameter 6. Moreover Example
4.1.1 implies that the conditional distribution of 1̂ given Tn is of the form

P .{ 6  =  » /T ( { '“ > ) = . }  =  ( » ) ( i ) ' ( i - i )
y - x

where y G {0,1,2, . . . ,  n} and x G {0,1 ,2 , . . . ,  j/}. Thus

Tn(x)

(4.2.8)

T„{x)-k

=  -Tn{x) =  X. 
n

Now we show that Tn is a complete statistic. Since the distribution of Tn is Poisson 
with parameter nÔ  equation (4.2.7) for Tn becomes of the form

= 0  f o r a l l 0 G 0
fc=0

or, equivalently,
OO

(4.2.9) v{z) =  =  0 for all z G 6 .
k=0

The convergence of series (4.2.9) a.t z = 1 implies that the function v(z) is analytic 
for |;2;| < 1, whence (¡){k) =  0 for all k. Taking into account equality (4.2.8), we 
obtain from Corollary 4.2.1 that ^ is a unique optimal estimator of the parameter 0 
in the class of unbiased estimators.
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Example 4.2.4. Let • • • >in) be a sample from the uniform dis­
tribution on the interval [0, 0] where 0 G 0  =  (0, oo) is an unknown parameter. 
It is natural to consider R!}. as the sample space in this case. We learned in Ex­
amples 4.1.5 and 4.2.2 that Tn{x) =  Xn,n is a sufficient and minimal statistic. Its 
distribution function is

^e{Tn <  2/}  =  ( I )  , 0 < 2/ <  0.

Thus equality (4.2.7) for Tn becomes of the form

/ <t>{y)
ny,n—1

dy = 0 for all 0 G 0 ,
0 0^

whence it follows that =  0 for almost all y > 0 and therefore (f){y) =  0 for
almost all y > 0. This means that Tn is a complete statistic.

Since 0 is a scale parameter, Theorems 3.3.1 and 3.3.2 imply that

0n — Tn(P' +  1) /^

is an optimal estimator in the class of equivariant unbiased estimators of the scale 
parameter. Note that On is a -measurable estimator and Corollary 4.2.1 im­
plies that On is an optimal estimator in the class of all unbiased estimators of the 
parameter 0.

The latter result can also be obtained directly from Corollary 4.2.1 (or from 
Theorem 4.2.6) by considering the estimator 0 =  2x\ which obviously is unbiased. 
According to Corollary 4.2.1 0t„ =  ^e{^/Tn) is a unique optimal unbiased estimator 
of the parameter 0. The conditional density of given Tn is given by

(4.2.10) f{x/y) = < n j  y
1

)n

0 < X < y ,

x = y.

Indeed, since ^i, 2̂? • • • > are independent identically distributed random variables 
and the model is symmetric, we get

Pei^i =  T jT n } =  < Tn/Tn} =  1 -

Moreover given {Tn =  y, < Tn}> l̂ be conditional distribution of is uniform on 
(0,y), since the distribution of is uniform. This leads to equality (4.2.10). Using 
equality (4.2.10) we obtain

This implies that

=  Be{d/Tn) =  ( l  -  T„ +

Another consequence of Theorem 4.2.6 is an assertion on the optimality of a 
function g{9) of the parameter 9 in the class of all unbiased estimators of the 
function g{9).
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C o r o l l a r y  4.2.2. If T is a complete sufficient statistic and'g is an unbiased 
estimator of the function g{6), then gr =  Ee{g/T) is a unique optimal unbiased 
estimator of the function g{6) in the class K^.

P r o o f . It is sufficient to apply Theorem 4.2.6 to estimators of the class 
where bo{0) =  g{0) — 0 for all 0 G ©. □

Corollary 4.2.2 is known as the Lehmann-Scheffee theorem  ̂ see [36], Theorem
3.1.2.

Corollary 4.2.3. If T is a complete sufficient statistic  ̂ then any function 
H{T) of it is a unique unbiased optimal estimator of its own expectation  ̂ that is, 
of the function g{6) =  E^iJ(T).

Proof. To prove this result it is sufficient to consider the class of estima­
tors K^ with g{0) =  E^ii(T) and to apply Corollary 4.2.2 with g =  H{T). Then

H { T ) = g T  = Ee{g/T)

is a unique optimal estimator of the function g{0) = EeH{T). □

In fact we have a series of results allowing one to find optimal estimators of the 
function g{6) if a complete sufficient statistic T exists, namely:

1) if there exists an unbiased estimator of a function g{6), then there exists an 
unbiased estimator that is a function ofT; if there is no unbiased estimators 
of the form H{T), that is, the equation EeII{T) = g{0) has no solution, 
then the class K^ of unbiased estimators of the function g{6) is empty',

2) an optimal unbiased estimator of the function g{0) (if such an estimator 
exists at all) is a function ofT  and it is determined uniquely by the equality 
EeH{T)=g{0)',

3) an optimal unbiased estimator g* of the function g{0) can be found as 
follows:

(4.2.11) 9* = 9T  =  Ee{g/T)

where g is an arbitrary unbiased estimator of the function g{6).
The latter method is rarely used when finding optimal estimators, since it 

requires the evaluation of the conditional expectation (4.2.11) which usually meets 
technical problems. Instead the equation

(4.2.12) EeH{T) =  g{0), OeQ,

is used to determine the function H. There are several methods for solving equation 
(4.2.12). For example, one can expand both sides of (4.2.12) into power series of 0 
and equate corresponding coefficients.

The following result provides a relationship between complete and minimal 
statistics.

Theorem 4.2.7. Any complete sufficient statistic T is a minimal sufficient 
statistic.
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P r o o f . Let B* be the minimal sufficient a-algebra (this cr-algebra exists by 
Theorem 4.2.4).

First we assume that EqT exists and consider the function (¡) = T — Eq{T/B*), 
Since S* C Bt where Bt is the cr-algebra generated by the statistic T, the func­
tion (/) is ST-measurable, whence 0 =  Denote by P j the distribution of the
statistic T. Then Ee(j>{T) =  0 for all 0 € 0  or, equivalently,

/«(¡>{y)P'e {<iy) =  0 ior all 0 6 0 .

This implies that 0(y) =  0 (P^-a.s.) for all 0 6 0 , since T  is a complete statistic. 
This means that T =  Ee{T/B*) (Pj-a.s.). Therefore T is a B*-measurable statistic 
and hence Bt =  B*.

If EqT does not exist, then one should consider the statistic arctanT instead 
of T. If T is either sufficient, or complete, or minimal, then so is arctanT. □

It is easy to construct an example of a minimal sufficient statistic that is not a 
complete statistic (see, for example, [36]).

Exponential families o f  distributions. Let  ̂ be an observation that is a 
random element assuming values in a measurable space (X, B) whose distribution 
belongs to a family V =  (P^, 0 G 0 ) where 0 =  (0i, 02, • • •, Ok)’ is a fc-dimensional 
parameter of the set 0  C R^, fc > 1. Let a family V be dominated by some a-finite 
measure and let f{x;6)  = dPe/dfjb{x)  ̂ x e  he the density of the measure P̂  
with respect to the measure fi.

A family V is called exponential if the density f{x\ 0) is of the form

(4.2.13) /(x ; 0) =  h{x) exp {e)Ui{x) + v{e)\

where all the functions on the right-hand side are finite and measurable.
Various distributions known in the literature are exponential. For example, nor­

mal, Poisson, binomial. Gamma-distributions, and others form exponential families 
of distributions.

If an observation is a sample =  (^1)^2) • • • »^n) from an exponential family 
of the form (4.2.13), then the distribution of the sample also belongs to some 
exponential family Vn- Indeed, if fn{x;0) is the density of the distribution of the 
sample with respect to the measure then

(4.2.14) /n(x; 0) =  hn{x) exp{c(0)'T(x) +  nV{0)}

where

c{0) =  (c i(0 ),. . .  ,c^(0))', T{x) =  (T i(x ),. . .  ,Tfc(x))',
n n

Tj{x) =  'Y^Uj{xi), x = g X".
1=1 i= l

It follows from the factorization criterion that if the family of distributions V 
is exponential, then the statistic U{x) =  ( i / i (x ) , . . .  , Un{x)) is sufficient. Similarly, 
the statistic T{x) is sufficient for a family of distributions Vn whose densities are 
of the form (4.2.14). It turns out that these statistics are minimal and sufficient. 
We prove this result for families Vn with densities (4.2.14).
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Since the functions Cj{6)y Uj{x), and V{0) are finite, the exponent in (4.2.14) 
is positive everywhere. Thus as a measure Q in Theorem 4.2.4 one can take a 
distribution concentrated at any fixed point G 0 . All the measures are 
absolutely continuous with respect to the measure Pq =  /  Pt Q{dt) =  P̂ (o) in this 
case. Theorem 4.2.4 implies that the cr-algebra B* generated by the functions

p(x; 0) = fn(x; 0)/fn{x] 6̂ °̂ )
=  exp((c(0) -  c(0C’)))'T(rE) +  n{V{e) -  v{e^°^))) 

is the minimal sufficient cr-algebra for all 0 G 0 .

T h e o r e m  4.2.8. Let functions cq{6) =  1, c i(0 ),.. .,Ck{0) be linearly indepen­
dent on 0 . Then T{x) in representation (4.2.14) is a minimal sufficient statistic.

P r o o f . Since the functions 1, c i (0) , . . . ,  Ck{9) are linearly independent on 0 , it 
follows that the functions c\{6)—c{6^̂ )̂ .̂ . . ,  Ck{6)—c{9̂ "̂̂ ) are linearly independent. 
This means that there are k points 0^^\... 9̂̂ ^̂  in 0  such that the numbers

form the matrix C whose determinant is nonzero. This implies that the system of 
equations

-  c(0 (°> ))'t (x ) =  lnp(x;0<̂ ')) -  -  V{e^^ )̂)

for j  =  1 ,2 , . . . ,  A; has a unique solution T{x). Thus

B t  C  a {p {x -, =  1 , 2 , . . . ,  A:} C  e * .  □

Sometimes the assumptions of Theorem 4.2.8 are too restrictive if one proves 
only that T is a complete sufficient statistic. First we note that representation
(4.2.14) yields

(4.2.15) fr,{x\9) =  g{T{x)\6)r{x) (p"-a.s.)

(see Theorem 4.1.2) where

g{y\6) =  exp{c(0)'y +  nV{e)},
n

r {x)  — h-n( )̂ “  h{xi)^ X (ii'ij • • •)^n)*
¿=1

Consider the following measure on (R^,iB^):

u{B) =  [  hn{x) p^{dx), B G 5 ^ ,

where T~^{B) =  {x:T{x) £ B}.  In what follows we need two auxiliary results.

L e m m a  4.2.1. The distribution Pj{B) =  Pe{x:T{x) G B } ,  B e of the 
statistic T is absolutely continuous with respect to the measure u and its density is 
g{y\0).



P r o o f . It is sufficient to note that relation (4.2.15) implies

P e ( ^ ) =  [  g{T{x)\e)r{x) ii' {̂dx) =  f g{y\6)u{dy)
Jt - ^ b) Jb

where the latter equality follows from the change of variables theorem for the 
Lebesgue integral. □

L e m m a  4.2.2. Let G\ and G2 be two a-finite measures on (R^,S^) and for 
some parallelepiped B C two integrals exist and are equal:
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I  e<̂ 'y Giidy) =  I  e<‘ 'yG2{dy)

for all a e  B. Then G\ =  G2.

P r o o f . We give the proof for the one-dimensional case, that is, for fc =  1. Let 
B =  {x: \x\ < a}. Then the functions

i’j («) =  J Gj {dy), j  =  1, 2,

are analytic for \a\ < a. Moreover for all 6 G R  the functions

of a complex variable z = a-\-ib axe well defined. It is clear that 'ipj{z) are analytic 
functions in the strip \a\ < a ,  -00  < b  < 00. By assumption, 'ipi{z) =  '0 2 (^ ) on the 
interval |a| < a of the line 6 =  0; thus iJi{z) =  <02(^) for all z of the above strip. 
Thus for all 6 G (—00, 00)

(4.2.16) I  ê ’’yGi{dy) = J  e '̂^G2{dy).

Since 0j(O) =  /  Gj{dy) < 00, without loss of generality one can assume that Gj 
are probability measures. Since the correspondence between characteristic functions 
and distributions is one-to-one, equality (4.2.16) implies that G\ =  G2.

If the parallelepiped B is of the form {x: \x -  ao\ < a}, then we consider the 
measures Gj{dy) =  Gj{dy) and follow the line of the above proof.

The proof for the multidimensional case fc > 1 is the same. □

T h e o r e m  4.2.9. Let representation (4.2.14) hold for the density fn{x\0) of 
a sample and let the density belong to a family Vn of distributions where the 
function c{6) and the set 0  are such that the image of the set 0  under the mapping

c: 0  R^

contains some k-dimensional parallelepiped. Then the statistic T occurring in rep­
resentation (4.2.14) is complete and sufficient
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P r o o f . It is sufficient to show that if is a measurable function on ( R ^ , B^) 
and that there exists

(4.2.17) j4>{y)Piidy) = o, e e e ,

then (f){y) =  0 (P^-a.s.) for all 0 G © where P j is the distribution of the statistic T. 
Let 0 =  -  0 “  where =  0 V  (/> and <^~ =  — (0 A 0). Then (4.2.17) implies that

J 4>̂ {y) Peidy) =  j 4>~{y) Pe{dy) for all 0 € 0 .

This yields by Lemma 4.2.1 that

j<t>^{y)9 {y\6)u{dy) =  J 4>~{y)g{y;0)u{dy) for all 0 e 0 ,

j 4>+{y)e<^yy u{dy) =  J 4>-{y)e‘=̂ ŷy v{dy) for all 0  G 0 .

Consider (j-finite measures v±{dy) =  (¡> {̂y)i {̂dy). By the assumptions of the 
theorem we get J u+{dy) =  J e‘"'yiy-{dy)

for all c of some parallelepiped in R^. Now it remains to apply Lemma 4.2.2. □

C o r o l l a r y  4.2.4. Let all the assumptions of Theorem 4.2.9 hold. Let 0 be an 
estimator of the parameter 6 of the class Kb constructed from a sample . Then 
6t =  Ee{6/T) is an optimal estimator of the parameter 6 in the class Kb where T 
is the statistic occurring in representation (4.2.14).

C o r o l l a r y  4.2.5. Let all the assumptions of Theorem 4.2.9 hold. Let g be 
some estimator of a function g{6) of a parameter 0 of the class K^ constructed from 
a sample Then gx = Ee{g/T) is an optimal estimator of the function g{6) in 
the class K^.

P r o o f . It is sufficient to apply Corollary 4.2.4 to estimators of the class Kb 
where b{6) = g{0) -  6 for all 0 e  Q. □

Some applications o f  sufficient statistics. In a series of examples above 
we learned how to construct sufficient, or minimal, or complete and sufficient statis­
tics. We consider in this section some applications of sufficient statistics for several 
models and construct optimal estimators of a parameter 0 and a function g{0).

E x a m p l e  4.2.5. Let an observation be a vector =  (ii,^ 2, • • • >in) where

î =  0 + 7]i, ¿ =  l , 2 , . . . , n ,

and random variables 771, . . .  ,77n (being dependent, generally speaking) do not de­
pend on 0 and are such that Erji =  0 and Ery? < 00. Consider the class L 
of linear unbiased estimators of the parameter 0, that is, the class of functions 
I =  i(x) =  Yh=i where X)iLi Ci =  l̂  x =  ( x i , . . .  ,Xn). Our aim is to construct 
an optimal estimator I* =  in the class L with respect to the quadratic
loss function.
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Assume that random variables 771,772,-•• foi'm an autoregression sequence of 
first order, more precisely let

(4.2.18) m = ^ i ,  rjj = X r j j - i + e j y  j  =  2 ,3 , . . . .

where e:i,£:2, -- are independent Gaussian random variables with Eej =  0 and 
0 < (7̂  < 00, for all j ;  here A ^  1 is a known parameter.

Let p{ui, . . .  ,г¿n) be the probability density of the vector (771, . . .  ,77n) and let 
<j)j{x) be the probability density of the normal A/̂ (0, cr|) law. Since

^ 1 = ^ 1 , ^2 = ^ 2  — A7 7 1 , . . . ,  6n =  Vn — Xrjn-i

by (4.2.18), the density p{ui, . . .  ,7Xn) is of the form

p {u i, . . . , U n ) =  <Pl{Ui)(l)2{u2 -  Xui) • • • (l){Un -  XUn-l)^

This implies that the probability density of the vector (^1, . . .  ,^n) is equal to

f  (^1, • • • , ^n, ^) p(^l • • • , )̂
=  M ^ i - ^ ) M ^ 2 - o - x { x i - e ) )  •' ‘ ( i )n{xn-o-x{xn-i-o))

(4.2.19) n

=  C { 9 ) R { x i , X n )  exp < d

(xi-9)^ ^ ( x j - 0 - X ( x j - i - 0 ) y

j=2 2^1

1 j= 2

Xj Xxj—1

In what follows we do not need the explicit expressions for C{0) and R{xi .̂ . . ,  Xn)- 
It follows from (4.2.19) that the linear statistic

(4.2.20)
1 j= 2  ^3

f l  A ( l -A )\  ,, , , ^ / 1  1 \ 1 - A
- U  4  ‘  § W  «’ S

is sufficient for the parameter 9. It is also seen from (4.2.19) that the linear statistic 
given by (4.2.20) is complete and sufficient (according to Theorem 4.2.9). It is clear 
that the optimal linear estimator l*{x) is a function of the statistic l{x). Thus the 
coefficients Cj are proportional to the corresponding coefficients of the statistic l{x). 
Thus

Cj -  c(l A) [ 2 o

/ 1  A ( l - A ) \

. 2 < j  < n -  1,

C„ =  c -
1 -  A

where the constant c is defined from the condition Y^=\ Cj =  1-
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The assumption that the distribution of the random variables ei,£:2j • • • is 
Gaussian is not crucial. The same result can be obtained for a general distribution 
of random variables ei,£2> • • • » [ 1 5 ] .

E x a m p l e  4.2.6. Let =  ( ^ i , . . .  ,^n) be a sample from the Bernoulli dis­
tribution, that is, = 1) =  6 and Pei î =  0) =  1 - 0, i =  1, 2, . . . ,n ,
where 0 G (0,1) is an unknown parameter. The total number of “successes” 
T{x) =  ^ Bernoulli trials is a sufficient statistic (see Example 4.1.7).
We show that T is a complete statistic.

Note that T has the binomial distribution:

Pe{T =  y} =  ( ” )  03'(l -  9r~y,  y =  0,1 ,2 , . . . ,  n.

Let 0(y) be an arbitrary function on {0 ,1, 2, . . . ,  n}. Then condition (4.2.7) can be 
rewritten as

^  ( ” )  =  0 for all 9 e  (0,1)
y=0

or, putting X = 0/{l — 0),

y=0
for all a: >  0.

This implies that all the coefficients of the latter polynomial are zero, that is, 
(j){y) =  0 for all 2/ =  0 ,1 , . . . ,  n. Thus T  is a complete sufficient statistic and 0 =  Tfn 
is an optimal estimator of the parameter 0. Moreover, according to Corollary 4.2.3 
any function of T is an optimal estimator of its own mean.

Since the moment generating function of the random variable T is

Eez^ =  <f>{z-,9) = {l + { z - l ) 9 r ,  

we put {a)k =  a{a -  1) • • • (a -  A: +  1), A; > 1, and obtain

Ee(T), dz^ =  (n)fe0^
Z = l

This implies that for any integer A;, 1 < A; < n, the statistic {T)k/{n)k is an optimal 
estimator of the function 0 .̂ At the same time, other functions 0̂  with i > n 
cannot be estimated from a sample of size n in the class of unbiased estimators. 
Finally, according to Corollary 4.2.3 we get that g =  (^) i / (^)j optimal
estimator for the polynomial ^(0) =  Cj0̂  ii k <n .  Therefore

T _  T (T  -  1) _  T{n -  T) 
n n(n -  1) n{n — 1)

is an optimal estimator of the variance r (0) =  0(1 — 0) in the case of the binomial 
distribution.
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Example 4.2.7. Let a discrete random variable assume values /, Z + 1 , . . .  with 
probabilities

(4.2.21) f{x-,e) = Pe{^ = x} =
a(x)0^

re =  Z,Z +  1, . . . ,

where f{6) =  is  ̂ series whose radius of convergence R is nonzero.
We treat 0 G © =  (0, ii) as an unknown parameter. Discrete distributions (4.2.21) 
are sometimes called power series distributions (see [21]).

Distributions (4.2.21) include many well-known discrete distributions with an 
infinite number of values, say Poisson {f{9) =  e ,̂ ii  =  oo), logarithmic (f{x\6) =  

re =  0, 1, 2, . . . ,  iZ =  1), negative binomial {f{9) =  ( 1 - 0 ) “ ,̂ R =  1), 
and others as well as their truncated versions.

Let =  (^i, . . . ,^n) be a sample from a distribution (4.2.21). Then the 
distribution of the sample is of the form

(4.2.22) /n(x; 6) -  =  x }  =  f [  a{xi)f-^{e),  0 e 0 ,
i = l

where T{x) =  Yl7=i Xi, x =  (x i , . , . ,  Xn), Xi =  Z, Z+1,. . . ,  for all z =  1, 2 , . . . ,  n. This 
together with the factorization criterion implies that T{x) is a sufficient statistic.

Since (4.2.21) is a distribution of the exponential type, Theorem 4.2.9 implies 
that T{x) is a complete and sufficient statistic.

Note also that (4.2.21) yields

= f ^ x a { x ) e y m  = ^  =  Tie).
x = l

Then f  =  n~^T{x) =  2 r= i X =  ( x i , . . .  ,Xn), is an optimal unbiased esti­
mator of the function r{0) =  E^f by Corollary 4.2.3.

Let a function g{6) be represented as a power series g{6) =  conver­
gent on 0 . To estimate the function g{6) we find the distribution of the statistic 
T(x). We have

(4.2.23) 5(i;0) =  P , { T ( ^ W )  =  i } =  fn{x-,e) = e X { t ) r ^ { 0 )
{ x ; T ( x ) = t }

where t =  nl,nl +  1,...  and

K { t ) =  ^  a{xi)---a{xn).
----- \-Xn=t

Thus bn{t) is equal to the coefficient of in the expansion of the function f'^(z). 
It follows from (4.2.23) that the condition (4.2.12) can be rewritten as

H {t)b n m  = r{e)g{d) =
t = n l  i = n l  j = r

oo k — n l= E
fc = n Z + r  j = r
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This is an identity with respect to 6. Equating the coefficients of 6̂  we get

H(t)b (t) =  /  + r,
\o,  i i t < n l  + r.

This implies that the optimal estimator g* of the function g{6) is of the form

^ H(T) = /  if ^ ^
 ̂  ̂  ̂ 1 0, if T  < n/ +  r.

In particular, if g{0) =  for some r > 1, then

6n ( T - r ) / 6n(T), if T > n /  +  r, 
if T  < nZ +  r.

Therefore one can construct optimal estimators for an arbitrary function of 
the parameter represented as a power series of 6 in the case of discrete distribu­
tions (4.2.21).

_ r
■ lo,





CHAPTER 5

General Methods for Constructing Estimators

In the previous two chapters we dealt with the optimal and efficient statistical 
estimators of unknown parameters of distributions or of functions of parameters. 
We considered some methods for constructing optimal and efficient estimators based 
on some properties of families of distributions. In particular, we considered the 
method based on sufficient statistics.

In this chapter, we consider general methods of forming estimators, namely the 
method of moments, the maximum likelihood method, the Bayes method, and the 
integral estimation method.

5.1. Method of moments

The oldest general method proposed to construct estimators of unknown pa­
rameters is the method of moments introduced by K. Pearson (1894). This method 
can be described as follows.

Let =  (^1, ^2) • • •) in) be a sample from a distribution belonging to a family 
of distributions {P^, 0 G 0 }  where 9 =  (0i , . . . ,  0fc) is an unknown parameter of a 
set 0  C R^, fc > 1. Assume that < oo. Then the following k functions
Oij{6) =  OLj{6\̂ ... 9̂k) =  j  =  1, 2, ...,fc, are well defined. Let Oj be the 
sampling moment of order j  constructed from the sample that is.

^ 1 Z=1
Consider the system of equations

(5.1.1) Oij{9i .̂ . . ,  Ok) = C L J =  1,2, . . . ,  Aj,

with unknowns 01, . . . ,  Solutions 0j, j  =  1, 2, . . . ,  fc, of system (5.1.1), if they 
exist, are called method of moments estimators of a parameter.

Note that E^jiip < oo for all j  =  1,2, . . . , f c  if Ê |ii|̂  < oo. Using results 
of Section 1.2 we obtain aj —> a j (0 i , . . .  ,0^) as n —> oo in probability P̂  for all 
j  =  1, 2, . . . ,  fc. Assume that the functions a j ( 0 i , . . . ,  0 )̂, j  =  1, 2, . . . ,  fc, deter­
mine a continuous one-to-one correspondence between vectors (0i , 02) • • • , f̂c) and 
(a i , . . . ,  ttfe), that is, there exist continuous functions j  =  1, 2, . . . ,  fc, such that 

• • •, ttfc), j  =  1 ,2 , . . . ,  fc. Then solutions of system (5.1.1) can be repre­
sented as

(5.1.2) (f)j{aiy. . . ,  cifc), j  — 1, 2, . . . ,  fc.

Thus estimators (5.1.2) are consistent by Theorem 1.2.2.
The sampling moments aj are asymptotically normal if < oo (see

Theorem 1.2.3). Moreover, we noticed in Section 1.2 that the asymptotic normality

131
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can be proved for a continuous function of a finite number of sampling moments 
aj provided suitable conditions on the function are posed (more details are given 
in [5, 9]). Therefore conditions can be posed on moments of random variables 
to guarantee that estimators (5.1.2) are asymptotically normal.

On the other hand, Fisher (1921) pointed out that estimators (5.1.2) are not 
asymptotically efficient. Moreover, the method of moments cannot be applied in the 
cases where the corresponding moments do not exist (say, in the case of the Cauchy 
distribution). Nevertheless the method of moments has an advantage because of 
its practical expediency. Estimators (5.1.2) can be treated sometimes as a first 
approximation used for other methods to construct estimators of a higher efficiency.

R e m a r k  5.1.1. One can also use another form of the method of moments, 
namely one can use the moments rrij{6) =  Eegj{ î)  ̂ j  =  1, 2, ...,fc, instead of 
moments a j(0), j  =  1, 2, . . . ,  fc, where ^j(x), j  =  1, . . . ,  fc, are some measurable 
functions. Then we obtain the system of equations

(5.1.3) 1 A

i= l

instead of (5.1.1). Solutions of system (5.1.3) are also called method of moments 
estimators (more detail is given in [5]). Note that system (5.1.3) reduces to (5.1.1) 
iigj{x) =  x^J =

Example 5.1.1. Let =  (Ci,• • • j^n) be a sample from the Gamma distri­
bution, so that the density is

where 0 E © =  (0, oo) is an unknown parameter. In this case ai{6) =  =  6 and
therefore a solution of the equation

¿=1

is a method of moments estimator and it is given by 0 =  n~  ̂
mator is unbiased and consistent. On the other hand, this estimator is not asymp­
totically efficient whatever the parameter 9 is (see Example 3.4.3).

E x a m p l e  5.1.2. Let =  (^ i, • • • , in )  be a sample from a distribution with 
the density f{x\9) =  Oe~̂ Î ô ôo){x) where 0 E 0  =  (0 ,oo) is an unknown pa­
rameter. We use two functions gi{x) =  x and g2{x) =  x  ̂ to construct estimators 
according to the method of moments (see Remark 5.1.1). Since mj{6) =  E0gj{^i) =  

j  =  1) 2, equations (5.1.3) are of the form

1 ^
mi{e) =  ai

i= l

m2{0) = a2 = l f 2 ^ l
i= l



5.2. THE MAXIMUM LIKELIHOOD METHOD 133

There are two solutions of these equations with respect to 0:

0 = ¿ t i ?
- 1/2

i= l
2n “  _t=i

Every solution is a method of moments estimator of the parameter 0. One can show 
(see [5]) that both estimators 0 and 0 are asymptotically normal with parameters 
Ai{0y 7г“ 0̂ )̂ and A/"(0, (5/4)n“ ^0 )̂, respectively. Thus the estimator 0 is better 
than 0, since < (5/4)n“ 0̂̂ . The Fisher information of 0 is I{0) =  0” ,̂
whence it follows that 0 is asymptotically efficient in the weak sense.

E x a m p l e  5.1.3. Let =  ( ^ i , . . .  , i n )  be a sample from the Gamma distri­
bution with the density

where 0 = {0i,02) E Q =  { (^ i, 2̂): 1̂ > 0,02 > 0}. It is clear that

(0) = Eê i = e{ + 1) • • • (02 + j -  1).

In particular, ai{0) = 0\02 and a2(0) =  0\02{O2 +  !)• Thus solutions of the system 
of equations (5.1.1) are of the form

ei =
U2 -  af

jai 02 = a 2 -  a\'

R e m a r k  5.1.2. When considering maximum likelihood estimators for samples 
from the normal distribution, we will show that estimators obtained by the method 
of moments and by the maximum likelihood method coincide and both are efficient. 
This is an exceptional case where the method of moments estimators are efficient.

5.2. The m axim um  likelihood m ethod

Prom a theoretical point of view, the most important general method of esti­
mation of parameters is the method of moments. In particular cases, this method is 
already used by F. Gauss. As a general method of estimation it was first introduced 
by Fisher (1912) and afterwards it was further developed by the same author. In 
1925 Fisher studied asymptotic properties of maximum likelihood estimators.

M axim um  likelihood estimators. Let  ̂be an observation that is a random 
element assuming values in a measurable space (X, B) and whose distribution is 
determined by a measure of a family of measures V =  {Poy0  ̂Q} where

0 =  (0i , . . . , 0fc)

is an unknown parameter belonging to a set 0  C  R^, fc > 1. Let the family V  be 
dominated by a a-finite measure /1 and let f{x;0)  be the density of the measure 
with respect to the measure /x. The function f{x\ 0) of an argument 0 is called 
the likelihood functiony while L{x\0) =  ln / (x ;0)  is called the logarithmic likelihood 
function.
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A statistic 0 =  6{x) such that

(5.2.1) L(x\6{x)) =  s\i-pL{x\6)  ̂ x e X ,
eeQ

is called the maximum likelihood estimator of the parameter 6 if such a point

0{x) e  e
exists. Otherwise, if there is no 6{x) satisfying (5.2.1), then we take an arbitrary 
point of 0  as 6{x). If the function L{x\9) is continuous with respect to 6 and the 
set 0  is close, then the supremum on the right-hand side of (5.2.1) is attained, thus 
the maximum likelihood estimator is well defined.

The maximum likelihood estimator On can be defined in an equivalent way 
as a statistic maximizing the likelihood function f{x\6). Below we consider the 
case where the likelihood functions are differentiable with respect to 0. One can 
substitute the closure 0  instead of 0  in (5.2.1) in this case, the supremum on the 
right-hand side of (5.2.1) is attained, and the maximum likelihood estimator exists. 
If the supremum on the right-hand side of (5.2.1) is attained at an interior point 
of 0  and the function L{x; 9) is differentiable with respect to i ,  then one can seek 
the maximum likelihood estimator 9 among solutions of the system of equations

(5.2.2) _0
do. L{x;6) =  0,

The equations of system (5.2.2) are called likelihood equations.
The following are two properties of the maximum likelihood estimators:
1) if there exists an efficient unbiased estimator T =  T{x) of a scalar param­

eter 0, then the maximum likelihood estimator 9 exists and coincides with 
the estimator T\

2) if there exists a sufficient statistic T = T{x) and the maximum likelihood 
estimator exists and is uniquê  then 0 is a function of T.

It is sufficient to apply Theorem 3.4.1 (or Theorem 3.4.3) to prove property 1), 
and the factorization criterion to prove property 2).

Consider some examples of maximum likelihood estimators.

E x a m p l e  5.2.1. Let =  ( i i , • • •, in )  be a sample from the normal Af{9i, 02) 
distribution where 9 =  (0i , 02) is an unknown parameter such that 9i G (—00, 00) 
and 02 > 0. Then the logarithmic likelihood function for the distribution of the 
sample is given by

L{x;6) =  -^ln(27T02) ”  ^  “  î)^> * =  (a:i,...,a;n).
i= l

The system of likelihood equalities (5.2.2) is of the form in this case:

ddi

dL{x\9)
002 ~  202 202 "  °
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Solving this system of equations with respect to 6\ and 02 we obtain the following 
maximum likelihood estimators:

(5.2.3)
- n 1 ^

=  e2 =  - y \ { x i - 6 x )
n  n  -f-f2=12=1

It is easy to see that these estimators coincide with the estimators of the pa­
rameters 01 and 02 obtained by the method of moments. Further, it is easy to 
check that the maximum of the function L(x;0) is attained at the point (0i , 02)- 
Thus the maximum likelihood estimator exists, is unique, and is defined by (5.2.3). 
Note that this maximum likelihood estimator is a function of the sufficient statis­
tic T =  (Ti,T2) considered in Example 4.1.3. Moreover the maximum likelihood 
estimator 0 = {0i,02) itself is a sufficient statistic (see Example 4.1.3).

Example 5.2.2. Let =  (ii, • • • ,in) be a sample from the uniform distri­
bution on the interval [0,0] where 0 >  0 is an unknown parameter. The likelihood 
function in this case is of the form

f{x]0) = 0  -f[0 ,oo)(^n,l)-f(—oo,0](^n,n)

(see Example 4.1.5). The function f{x;0)  is discontinuous with respect to 0 and 
moreover f{x;0)  =  0 for 0 < Xn,n and f {x;0)  =  0”  ̂ for 0 > Xn,n if > 0. 
Then the maximum likelihood estimator is 0 =  Xn,n- If < 0, then f{x;0)  =  0 
for all 0 and any number can be taken as the maximum likelihood estimator, in 
particular one can put 0 =  Xn,n- If the sampling space is R!}:, then the maximum 
likelihood estimator 0 =  is unique and is a complete sufficient statistic (see 
Example 4.2.4). We learned from Example 4.2.4 that the estimator 0 =  ^^Xn,n is 
optimal in the class of unbiased estimators of the parameter 0.

Example 5.2.3. Let =  (^i, . . .  ,^n) be a sample from the uniform distri­
bution on the interval [0,0 +  1] where 0 G (—oo, oo) is an unknown parameter. The 
likelihood function in this case is given by

f  (^) ^) “  -f[0 ,oo) (^n,l)-I( —0 0 ,0 + 1 ] (^n,n)) ^  (^ 1 ) • • • ) ^n)*

The maximum likelihood estimator is not unique in this case. In particular, 0 =  Xn,i 
is one of the maximum likelihood estimators, another one is 0 =  Xn,n — 1- Note 
that T{x) =  {xnd̂ Xn̂ ri) is a sufficient statistic in this case.

The invariance principle for maxim um  likelihood estimators. The fol­
lowing result is known as the invariance principle for maximum likelihood estimators 
with respect to the change of a parameter.

T heorem 5.2.1. Let V =  {P 0,0 G 0 }  6e a family of probability measures on 
(X, B) defining the distribution of an observation and let g =  g{0) be a one- 
to-one mapping of 0  into some set G. If 0 is a maximum likelihood estimator of 
the parameter 0 constructed from an observation then g =  ^(0) is a maximum 
likelihood estimator of the function g{0) constructed from the observation



136 5. GENERAL METHODS FOR CONSTRUCTING ESTIMATORS

Proof. Let 0(7 ) be the inverse function to g{6) and let =  P (̂7) for all 
7 G G. Then the logarithmic likelihood function for the family {Q 7,7  G G } is of 
the form

(5.2.4) M{r,x )  =  ln(dQ^/d/i(a;)) =  ¿ ( 0(7 ); x).

Let 6 be the maximum likelihood estimator of the parameter 6 and let g be the 
maximum likelihood estimator of the parameter 7 . Then equality (5.2.4) implies 
that 6 =  9{g) or, equivalently, g =  g{6). □

Example 5.2.4. Let =  ( i i , . . . ,Cn) be a sample from the logarithmic 
distribution, that is, £(ln^i) =  N { 6 1, 62) where —00 <  0i < 00 and 0 < 02 < 00. 
Let 6 =  (01, 02)- It is not hard to show that

71 = Eeii =  exp 1^1 +  ^^2! , 72 =  = e \

Consider the function ^(0i , 02) =  (71 »72) and find the maximum likelihood esti­
mator (71,72) of the function g{6\, 02). We obtain from Example 5.2.1 that the 
maximum likelihood estimator 0 =  (0i , 02) is of the form

¿=1 ¿=1
where rji =  In^ .̂ We obtain from the invariance principle for maximum likelihood 
estimators that

7i =  exp +  ^021 , 72 =  0\ -  l )  ■

A sym ptotic properties o f  maxim um  likelihood estimators. In this sec­
tion we consider asymptotic properties of maximum likelihood estimators, namely 
we prove that a maximum likelihood estimator is consistent, asymptotically normal, 
and asymptotically efficient.

Let an observation =  (^i, • • •, ^n) be a sample from a distribution belonging 
to a family {P^,0 G 0 }  dominated by some cr-finite measure //. Denote by / ( x ;0 )  
the density of the measure P̂  with respect to ¡1 , Then fn{x;6) =  nr=i/(^ i;^ )>  
X =  ( x i , . . . ,  Xn), is the likelihood function, while Ln{x; 0) =  f{^i\ i s  the
logarithmic likelihood function. We denote by 0  ̂=  6n{x) the maximum likelihood 
estimator.

First we consider the case of a one-dimensional parameter 0, that is, we consider 
the case fc =  1. The following result is an assertion on asymptotic properties of the 
maximum likelihood estimator 6n of a one-dimensional parameter 0.

T heorem 5.2.2. Let © be an open interval. Assume that
1) for all 6 e  Q there exist the derivatives dHnf{x\ 6)/86 ,̂ j  =  1,2,3, for 

p-almost all x;
2) for all 6 e  Q there exist nonnegative functions Fi{x), F2{x), and H{x) 

depending on x and such that

d^f{x;6)
860

<Fj{x), i  =  l,2 ; S^\nf{x-,9)
de^ < M{x);
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the functions Fj{x)^ j  =  1, 2, are integrable with respect to the measure fi 
and < M < oo  where the constant M  does not depend on 6\

3) 0 < I{6) =  Ee{d\nf{ii\e)/def < oo for all O e S .
Then the likelihood equation (5.2.2) has a solution On =  0n{̂ ^̂ )̂ that converges 

in probability to the true value Oq of the parameter] moreover the maximum 
likelihood estimator On is an asymptotically normal and asymptotically efficient es­
timator of the parameter 0.

P r o o f . Let Oq ^  Q he the true value of the parameter 0. First we show that 
there exists a solution of the likelihood equation that converges in probability to Oq.

Expanding dLn{^ ‘̂̂ ^\0)/d0 into the Taylor series in a neighborhood of the point 
0 = Oq we get

dd

(5.2.5)

i=l
n

= E
i = l

de

\ de

+  ^ X i { e - e o fH { i i )

where |Ai| < 1 and the symbol (*)0o stands for (</>(0))̂ o =  Substituting
(5.2.5) into the likelihood equation (5.2.2) we get

(5.2.6) Bq B\(0 — Oq) +  —)^B2{0 — Oq)  ̂ =  0

where |A| < 1 and

(5.2.7)

1 ^ / '» < «  In/ ( { , ; « )
n  ^  Vi = l

n

— )  , J =  0, 1,
/00

= »((>)■
i=l

Now we show that Pqq approaches 1 as n —> oo for an arbitrary 5 > 0 where 
is the probability that equation (5.2.6) has a solution on the interval {Oq — Ŝ 0q-\-S). 
To prove this result we study the limit behavior of Bj as oo.

Assumptions 1) and 2) imply that

fd f {x ]0 )  , ,  fd^f{x]0)  ^
J de ~ J dê  ~
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Thus

(5.2.8) i d in m -,0 )  
V de

-Oo

(5.2.9)

f{x-, $o) n{dx)

f{x\ ffo) M(dx)

V d0 Go
m ) .

According to the law of large numbers we have  ̂ 0 and B\ —> - I {0 q) as 
n oo in probability Similarly B2 E0qH{^i ) < M < o o a s n ^ o o i n  
probability P̂ Q.

Let S > 0 and e > 0 be two arbitrary numbers. Then there exists an integer 
number no =  no(i, e:) such that

Pi =  Peo{\Bo\>S^}<^-,

P2 = Poo {^ 1  > - ^ / ( ^ 0) }  <

P3 =  Peo{B\ > 2M } < I

for n > no. Consider events S =  {[Bol < < ^I{0o),B2 < 2M } .  Then

Peoi^\S) < P i + P 2 + P 3  < e ,  

whence P ô(* )̂ > 1 -  6̂ for all n > no-
The left-hand side of equality (5.2.6) is equal to Bq ±  Bi5 +  2“ ^AS2¿  ̂ at the 

point 6 = $0 :t5.  If the event S occurs, then |So +  2“ ^AS25 |̂ < ¿  ̂ +  |A|M5̂  < 
(M  +  l)52 and Bi5 < -2~'^I{eo)5. Thus the sign oi Bo±BiS-\-2-^XB25^ is defined 
by the second term if i  < I{6o)2~^{M +  1)“ \ whence dLn{^ '̂^ ]̂0)/d6 > 0 for 
6 = 00 — 6 and dLn{^^^ ]̂0)/d0 < 0 ior 0 = 0q 6. Assumption 1) implies that 
dLn{x\0)/d0 is a continuous function of 0 G 0  for /x-almost all x. Therefore for 
arbitrary 6 > 0 and e > 0 the likelihood equation (5.2.6) has, with probability 
greater than 1 -  e, a solution belonging to the interval (0o -  i, ô +  5) if n > no(¿, e) . 
This proves the first part of the theorem.

Now we prove that the maximum likelihood estimator 0n is asymptotically 
normal and asymptotically efficient.

Let 0n =  0n(i^^^) be a solution of the likelihood equation. It follows from
(5.2.6) and (5.2.7) that

On-^0  =
Bn

-B , -2~^XB2{0n-0o)
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This implies that

(5.2.10) -  0o) =

/ din
2^i=i [ 60 J

do

B\ 1 \ R  On—00 
~  I  (do) ~  2 ^-^2 7(^o)

Thus the denominator on the right-hand side of (5.2.10) converges in probability 
to 1 as n ^  00. Every term of the sum in the numerator on the right-hand side 
of (5.2.10) has expectation 0 and variance I{9o) according to equalities (5.2.8) and
(5.2.9). Thus the central limit theorem implies that the numerator on the right- 
hand side of (5.2.10) is asymptotically A/^(0,1) normal. Hence (5.2.10) implies that 
the random variable y/nl{6o){0n — 0o) is asymptotically A/*(0,1) normal. Therefore 
the estimator On is asymptotically efficient. □

Asymptotic properties of the maximum likelihood estimator On of a multidi­
mensional parameter 0 =  (0i , . . . ,  0fc) are listed in the following result.

T heorem 5.2.3. Let 0  be an open nondegenerate k-dimensional parallelepiped. 
Assume that

1) for all 0 e Q and for ¡i-almost all x there exist partial derivatives up to 
third order inclusive of the function \nf{x; 0) with respect to 0; 
for all 0 e  Q2)

df{x;0)
dOry

< Fi{x),

\nf{x',0)

d^f{x\0)

dOpdOqdOs

dOpdOq

< H{x),

< F2{x),

the functions Fj{x) are integrable with respect to the measure and there 
is a constant M such that E^i^(^i) < M  < oo for all 0\

3) for all 0 E Q the matrix
a i n / ( 6 ; 0 ) a i n / ( 6 ; 0 )

B{0,0o) = ^̂ 0 dOry dOa

is nonsingular and det B{0, Oq) < oo.
Then the system of likelihood equations (5.2.2) has a solution that is a consistenty 
asymptotically N{OQyn~^B~ {̂OQyO(f)) normal  ̂ and asymptotically efficient estima­
tor of the parameter 0 where Oo is the true value of the parameter.

The proof of Theorem 5.2.3 is similar to that of Theorem 5.2.2, thus we omit 
it.

Example 5.2.5. Let =  ( i i , . . . ,  Cn) be a sample from the normal A/’(0i, ^2) 
distribution where 0 =  (0i,^2) is an unknown parameter, —00 < 0i < oô  O2 > 
0. We learned in Example 5.2.1 that the maximum likelihood estimators of the 
parameter 0 are of the form (5.2.3), and moreover they coincide with the estimators 
obtained by the method of moments. By Theorem 5.2.3 estimators (5.2.3) are 
consistent, asymptotically Af{0oyn~'^I~^{0o)) normal, and asymptotically efficient. 
Here Oo is the true value of the parameter and the Fisher information matrix I{0) 
is of the form
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(see Example 3.5.1). Note that the estimator 6i defined in (5.2.3) is unbiased, while 
the estimator 62 is biased. On the other hand, we learned in Example 3.5.1 that the 
estimator On =  (^i,n>^2,n) is unbiased and asymptotically efficient. Moreover it is 
easy to see that the estimator On is also asymptotically M{Oq̂ ti~^I~ {̂Oq)) normal.

Example 5.2.6. Let =  (^1, . . .  ,^n) be a sample from the Gamma distri­
bution, so that the density is

where 0 G 0  =  (0 ,00) is an unknown parameter. We showed in Examples 3.4.3 
and 5.1.1 that the estimator On =  Zir=i of the parameter 0 obtained by the 
method of moments is unbiased and consistent but it is not asymptotically efficient 
whatever the parameter 0 is. On the other hand, the maximum likelihood method 
leads to the equation

(5.2.11)
2=1

and the maximum likelihood estimator On is a unique positive solution of this 
equation. According to Theorem 5.2.2 the estimator On is asymptotically

rf2lnr((9)\-i

normal and asymptotically efficient. This can easily be obtained explicitly from 
equation (5.2.11), since

Eg In a  =
d ln r (6l) Dgln^i =

rf2lnr ( i )
dj9 ’ ¿02

and the random variable n~^ S r= i asymptotically

de A / U  dê  ) .

normal by the central limit theorem.

Applications o f  regularity conditions for families o f  distributions for 
studying asym ptotic properties o f  maximum likelihood estimators. If the
derivatives up to third order of the logarithmic likelihood function l n / ( x ; 0) exist, 
then Theorems 5.2.2 and 5.2.3 show that the maximum likelihood estimator On is 
consistent, asymptotically normal, and asymptotically efficient under some extra 
assumptions that are, in fact, not necessary for these properties.

First we consider sufficient conditions for the consistency of the maximum like­
lihood estimator On- For all sets A such that A fl © ^  0  put

f*{x]A) =  s\ip{fn{x]0);0 e Q n  A}

where x =  (rci,. . . , Xn). For n =  1 we have /* (x ; A) =  /i '(x ; A),
The following result contains sufficient conditions for the consistency of the 

maximum likelihood estimator On ^  n oo.
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T heorem 5.2.4. Let 0o € © 6e the true value of the parameter. Assume that
1) i f e ^  00, then f  |/(x; 0) -  f{x; 0o)| > 0;
2) for all X the density f  {x; 0) is a semicontinuous function with respect to 0 

on the set 0 ,  that is, for all 0 ' G 0

3) for some r

lim sup { / (x ;  0); \0 -  0'\ < h )  =  / (x ; 0');

> -o o .

If H is a compact subset of 0  containing the point 0o, then there exists 0n & H 
such that

fn{x-,0n) =  f*{x-,H), x =  ( x i , . . . , x „ ) ,
and 6n —> 00 PBo-V ôhability 1 as n —̂ oo. Moreover.,

4) if additionally

Ee, ln ( / .( i ( ’-); 0o ) / / ; (^ ( ’‘); & \ H ) ) >  0,

then vnth Pbq-probability 1 the likelihood function has the global maximum at the 
point 6n ifn  is sufficiently large, that is, fn{x',6n) =  /n(^;©)-

The proof of Theorem 5.2.4 can be found in [25]. Note that Theorem 5.2.4 
claims that the maximum likelihood estimator 9n approaches 6q with -probabi­
lity 1 as n oo. We say in this case that On is a strongly consistent estimator of 
the parameter.

Analyzing the assumptions of Theorem 5.2.4 one can see that the continuity of 
the function f(x\6) with respect to 6 is close to being a necessary condition for the 
consistency of the maximum likelihood estimator On-

Now we discuss sufficient conditions for the asymptotic normality and asymp­
totic efficiency of the maximum likelihood estimator On- We consider the case where 
0 is a one-dimensional parameter.

T h e o r e m  5.2.5. Let Oq e  Q be the true value of the parameter. Assume that
1) f{x\ 0) is a measurable function with respect to the pair of variables (x; 0) 

and f  lf(x; 0) -  / (x ;  0')| p{dx) > 0 for all 0 ^  0';
2) for all X the function / (x ; 0) is absolutely continuous with respect to 0 and 

J\df{x',0)/d0\d0 < oo for jjb-almost all x;
3) êo\9\nf{ î;0)/d0\' '̂^  ̂ for some 5 > 0 and all 0 G 0 ; the Fisher infor­

mation I{0) =  P.e{d\nf{ii\0)/d0f‘ is a continuous function such that 
7(0) < C(1 +  |0|P) for some C > 0 and p > 0;

4) sup  ̂|0 -  0q\̂ J{f{x\0)f{x]0o)y^^ fji{dx) < oo for some 7 > 0.
Then the maximum likelihood estimator On is asymptotically Ai{0o, (n /(0o))“ )̂ nor­
mal and asymptotically efficient as n —> 00.

The proof of Theorem 5.2.5 can be found in [13].
Note that the assumptions of Theorem 5.2.5 can be weakened (see [13]). More­

over Theorem 5.2.5 can be proved for a multidimensional parameter. We also note 
that the asymptotic normality and asymptotic efficiency of the maximum likelihood 
estimator On is proved in [5] under conditions weaker than those in Theorems 5.2.2 
and 5.2.3 but stronger than those in Theorem 5.2.5. In particular, it is assumed
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in [5] that the function \nf{x;6) is twice continuously differentiable with respect 
to 6 for /x-almost all x. It is also proved in [5] that the maximum likelihood es­
timator is asymptotically Bayes and asymptotically minimax. More properties of 
the maximum likelihood estimator can be found in [13].

5.3. Bayes and minimax m ethods

The Bayes approach. Let  ̂ be an observation that is a random element 
assuming values in a measurable space (X, B) and whose distribution belongs to 
a family V = {Pe,6 e  Q) where 6 =  is an unknown parameter and
0  C  is a Borel set. For the sake of simplicity we assume that 0  is an interval 
for A; =  1 and 0  is a fc-dimensional interval (parallelepiped) in for fc > 1. Let 
r(y, 0) be a nonnegative loss function, 0 G R^, y G R^, and let Q be a probability (a 
priori) measure on (R^, B )̂ such that Q(R*^ \ 0 ) =  0. For any estimator T  =  T(^) 
of the parameter 0 we introduce the risk function

(5.3.1) R ( T ; 0 )  =  E , r ( T ( O , 0 ) ,  e e e .

Following ideas from Section 3.1 one can study estimators of a general function 
g{0) of the parameter 0, Since a general function g{0) can be studied similarly to 
the particular function g{0) =  0, we restrict ourselves to the latter case.

Consider the risk of the estimator T = T{^) defined as

(5.3.2) R{T) = I  RiT-,e)Qide).

An estimator 0 =  0(^) is called a Bayes estimator of the parameter 0 (with respect 
to the loss function r(y, 0) and the a priori measure Q) if

(5.3.3) R{0) =  inf R(T)

where the infimum is taken over all estimators T of the parameter 0.
A posteriori Bayes estimators are also considered in the literature. Moreover 

the same name “Bayes estimators” is used for them. Usually this does not cause 
any misunderstanding, since the classes of a priori Bayes estimators and a posteriori 
Bayes estimators coincide in most cases.

When following the Bayes approach it is natural to treat the parameter 0 as 
a random vector with the distribution Q and the measure Py as the conditional 
distribution of the observation  ̂ given 0 = y, that is, Py{A) = P{^ e A/0 = y}, 
A e B. In this case the a posteriori measure Qx{B) = P{0 G B/  ̂ =  x }, R G 
is well defined. We define a posteriori risk R{T/x) of the estimator T =  T(^) by 
putting

(5.3.4) R{T/x) = E{r{T{O,0)/i =  x}  =  J  r(T{x),y) Q,{dy).

An estimator 0 = 0{x) is called an a posteriori Bayes estimator of the parameter 
0 (with respect to the loss function r{y^t) and the a priori measure Q) if the 
a posteriori risk (5.3.4) attains its minimum at this estimator; more precisely, if

(5.3.5) R{0/x) = miR[T/x) ()Lx-a.s.).
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There are sufficient conditions posed on the a priori measure Q and loss function 
r(?/, t) under which the infimum in (5.3.5) is attained and the corresponding a pos­
teriori Bayes estimator is unique (see [36]). Under these conditions, the a posteriori 
Bayes estimator coincides with the Bayes estimator defined by (5.3.3).

Equalities (5.3.3) and (5.3.5) can be used to construct estimators of parameters. 
It is natural to refer to the method of estimation based on (5.3.3) and (5.3.5) as the 
Bayes method. An advantage of this approach is that the corresponding estimators 
are optimal in the sense that they minimize the risk of the estimators. Moreover 
one can freely choose the a priori measure Q and the loss function r{y,t) to reflect 
the features of the case under consideration. A disadvantage of this approach is 
that the corresponding Bayes estimators are not easy to evaluate.

Below we give some examples of the evaluation of Bayes and a posteriori Bayes 
estimators. These examples also show some problems when following the Bayes 
approach (more examples of Bayes estimators can be found in Examples 3.1.5 and 
3.1.6).

E x a m p l e  5.3.1. Let an observation be a sample =  ( ^ i , . . .  ,^n) from the 
normal Ai{9  ̂1) distribution where 6 is an unknown parameter such that

—oo < 0 <  oo.

Then Tn = Yh=i is a complete sufficient statistic for the parameter 6 in this case 
(see Section 4.2). Let the a priori distribution Q of the parameter 0 be normal 
A/’(0,r^). Our aim is to get the a posteriori Bayes estimator 6n of the parameter 6 
with respect to the loss function

'r{y,t)
if \y-t\< 6, 
i i \ y - t \ > 5

where 5 > 0 is a certain fixed number. Since there exists a complete sufficient 
estimator T^, a posteriori distribution depends on x =  ( x i , . . .  ,x^) through Tn(x) 
(see Remark 4.1.1 and Corollary 4.1.3). Then an a posteriori Bayes estimator should 
also be a function of the sufficient statistic T^, that is, On = d{Tn).

Given the statistic T^, an a posteriori distribution of the parameter 6 is normal

Ĵ \ n +  ’ ^ +  :;:2
- 1>

This result can easily be derived from properties of the normal distribution. Thus 
a posteriori risk of the estimator 6n =  d{Tn) is

R{0n/x) =  1 -  P{\d{Tn) - e \ <  5/Tn{x)}
fd{Tn{x)) + S -  Tn{x)/{n +  T-2) \=  l - $  

+  $
d ( T „ ( x ) ) - 5 - T „ ( a : ) / ( n  +  T-2) 

(n  +  r - 2 ) - l / 2

To minimize R{6n/x) one should choose d(T„) to maximize

$ (x)) + (5-T„(x)/(n + r 2)
(n +  r - 2) - l /2 $

d ( r „ ( x ) ) - ^ - r „ ( x ) / ( n  +  r - 2 )  

(n +  T“ 2) - 1/2
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Consider the function f (x )  = + e — rj) — ^{x — e — rj). Differentiating it with
respect to x we obtain a sufficient condition for xq to be a point of maximum 
of / (x ) ,  namely

(5.3.6) (l>{xo -\-€-T)) = (¡){xo -e-ri)

where (¡){x) is the density of the normal 1) distribution. Since 0(e) =  0 (—e), we 
get Xq =  7], It is easy to check that xq =  r/ is a unique solution of equation (5.3.6). 
The second derivative of f {x )  at the point xq = rj is equal to — 2e0(e). Thus Xq is 
the point of maximum of the function f{x).  Putting

d{Tn) .  Tn

we prove that a unique a posteriori Bayes estimator of the parameter 6 is given by

Tn{x)
On =  On{x) = n +  r “ 2 ’ X —  ( X i , . . . , Xn).

Note that
^  1  ̂

lim 6n(x) =  -  Y '  Xi.
T-^OO n i=l

The following example shows that there are a posteriori Bayes estimators for 
which the risk is infinite and thus the evaluation of a Bayes estimator does not 
make any sense from a practical point of view.

Example 5.3.2. Let an observation  ̂be a random variable with the distribu­
tion belonging to the family of uniform distributions on (0, |0|“ )̂ where 0 is a real 
number such that 1 < |0| < oo, that is, f{x',9) =  \0\ for 0 < x <

Let an a priori distribution Q be absolutely continuous with respect to the 
Lebesgue measure with the density

if 1 < \t\ < oo, 
if \t\ < 1.

An a posteriori distribution of the parameter 6 given  ̂=  x possesses the density

r |*|-\
q(t/x) =  < •’

I 0.

if a; < |i|  ̂ < 1,

if

Let the loss function r{y,t) be quadratic, that is, r{y,i) =  \y — t|̂ . Then the 
a posteriori Bayes estimator 6{x) minimizes the a posteriori risk

R{T/x) = (  
Ji

{ T - t f 21n x - i
dt.

The only function T{x) minimizing R{T/x) is the a posteriori mean of the parame­
ter 6 given  ̂=  X, that is, T(x) =  E {^ /i =  x}.  Since the a posteriori density q{t/x) 
is symmetric with respect to x =  0, we get that 0{x) =  0 (/x-a.s.) is an a posteriori 
Bayes estimator. The a posteriori risk of this estimator is given by

R{e/x) = f dt =
y{x<|t|-><i} 21nx 1 2x21nx 1

< oo (//-a.s.).
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However the risk of the a posteriori Bayes estimator 0{x) =  0 is

R{e) =  E{e -  e f  =  2 H d t  ^ oo.
J i  2

Note that the a posteriori Bayes estimator 6{x) =  0 (/¿-a.s.) is of no interest at 
all, since it does not depend on observations. Moreover the estimator 6{x) assumes 
values outside the set of parameters 0  =  (—oo, 1] U (1, oo).

Below are some concluding remarks.

R e m a r k  5.3.1. The problem of how to construct Bayes estimators in the case 
of the loss function r{y^t) = \y — m =  1, 2, . . . ,  is quite well studied in the 
literature. It is known in the case m = 1 that the median of an a posteriori dis­
tribution is the Bayes estimator (and the a posteriori Bayes estimator, as well) of 
a parameter 6 (see Remark 3.2.4 and [9], pp. 178-179). If m =  2, then the expec­
tation of an a posteriori distribution is the Bayes estimator (and the a posteriori 
Bayes estimator, as well) of a parameter 9 (see Theorem 2.2.1 concerning the gen­
eral regression). In the case of a general loss function r(y, t) =  w{\y — i|) De Groot 
and Rao (1963) obtained necessary and sufficient conditions that an estimator is 
a posteriori Bayes (see [36], Theorem 6.2.2).

R e m a r k  5.3.2. If the a priori distribution Q is such that a posteriori risk with 
respect to the loss function r{y, t) =  \{t){y — t)  ̂ is finite (/x-a.s.) for all estimators 
9{x), then an a posteriori Bayes estimator is given by

e{x)
E(A(0)/O

(/i-a.s.)

(see [36]). Here 0 < A(t) < oo for all t G 0 . If R{T/x) < oo (jU-a.s.) only for 
T = Tô  then Tq{x) is an a posteriori Bayes estimator. In general, an a posteriori 
Bayes estimator is unique (see Theorem 6.2.1 in [36]).

R e m a r k  5.3.3. In Section 3.1 we defined a generalized Bayes estimator as an 
estimator minimizing the risk if the a priori measure Q is not a probability measure. 
Generalized Bayes estimators are sometimes defined as limits of Bayes estimators 
constructed with respect to a priori probability measures Qm as m ^  oo (see, for 
example. Theorem 3.2.6). The estimator

 ̂  ̂ ¡ f {x-, t)Q{dt)

is also called a generalized Bayes estimator where Q is some (j-finite measure (see 
[36]). More results on Bayes estimators can be found in [36].

A sym ptotic properties o f  Bayes estim ators. Let an observation be a sam­
ple =  (^1, . . . ,  in) from a distribution belonging to a family {P^, 0 G 0 }  domi­
nated by some a-finite measure fi. Let f{x;  6) be the density of the measure with 
respect to the measure fjL. Let 6n be the Bayes estimator of the parameter 6 with 
respect to the quadratic loss function r{y^t) = {y — t)  ̂ and the a priori measure Q 
possessing the density q{t) with respect to the Lebesgue measure.

The following result describes the asymptotic behavior oi On sis n ^  oo in the 
case of a one-dimensional parameter 0.
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T h e o r e m  5.3.1. Let assumptions l)-4 ) of Theorem 5.2.5 hold. Let addition­
ally

5) the function q{i) is continuous in a neighborhood of the point t =  to, q{to) ^  
0, and sup¿ < oo for some po > 0.

Then the Bayes estimator 0  ̂ given 6 =  to is asymptotically M{to  ̂(n/(¿o))~^) nor­
mal as n -^  oo.

The proof of Theorem 5.3.1 can be found in [13].
The assumptions of Theorem 5.3.1 can be weakened (see [13]). Moreover this 

result can be generalized to the case of a multidimensional parameter 6.

The minimax approach. The minimax method allows one to construct es­
timators, called minimax, that minimize the maximum of the risk function. Some 
necessary and sufficient conditions for estimators to be minimax are given in Sec­
tion 3.1 (see Theorems 3.1.3 and 3.1.4). In many cases the minimax estimator is 
a Bayes estimator with respect to the less favorable a priori distribution. In those 
cases the construction of a minimax estimator is reduced to the construction of an 
appropriate Bayes estimator.

Some examples of minimax estimators are given in Examples 3.1.5 and 3.1.6. 
Below we give another example related to the loss function introduced in Exam­
ple 5.3.1.

E x a m p l e  5.3.3. We learned in Example 5.3.1 that

- 1
9t{x)

where Xn = n~  ̂ xi, x =  {x\,. . . ,  rcn), is a Bayes estimator with respect to the 
a priori normal A/’(0,r^) distribution and the loss function r{y,t) that equals 0 for 
\y-t\ < 5 and 1 for |y -  > 5, 5 > 0. Let us show that Xn is a minimax estimator.
The risk function of the estimator Xn is equal to

R{xn.t) =  Pt{|L - t \ > S }  =  2(1 -  = p*

for all t € (—00, oo) where check that the risk of
the estimator Or is given by

(5.3.T) =  2 -  { .  +  ^  ]  .

Putting T =  ri,T2, . . .  we get a sequence of a priori M{Q,r^) distributions, m =  
1, 2, . . .  . We denote the risk with respect to the a priori A/’(0, r^) distribution by

(5.3.8) Rr{0r) =  ^rR{er\e)

where Ê- is the expectation with respect to the M{Q,r‘̂ ) distribution. For the 
right-hand side of (5.3.8) we apply the estimate R{0r\t) < 2. Then the Lebesgue 
dominated convergence theorem and (5.3.7) imply

lim Rr{0r) =  2(1 -  $((5x/n)) =  p\
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Now we apply Theorem 3.1.4 for the sequence of a priori N{Q^Tm) distributions 
and Bayes estimators 6r  ̂ and obtain that Xn is the minimax estimator of the 
parameter 9.

R e m a r k  5.3.4. Further results on minimax estimators can be found in [36].

5.4. Confidence intervals and regions

The notion o f  a confidence interval. In the preceding sections we consid­
ered the problem of constructing point estimators of an unknown parameter or a 
function of a parameter. Every point estimator is a statistic assuming values in 
the region of values of the parameter (or of the function of the parameter). It is a 
useful method in practice to construct an interval or a region from the observation 
or from the sample. The idea behind this method is that the interval or region 
mentioned above should contain the parameter with a probability close to 1.

Let  ̂ be an observation that is a random element assuming values in a mea­
surable space {X,B). Let its distribution belong to a family {P$y9 e  0 )  where 
9 =  (^1, . . . ,  is an unknown parameter such that 0 G 0 c R ^ , f c > l .  First we 
consider the case of a one-dimensional parameter 9, that is, we consider the case 
k = l.

Let Ti =  Ti(^) and T2 =  T2(0 be two statistics such that Ti < Г2 and let

Р е { Ш ) < ^ < Ш ) } > ^  f o r a l l 0 G 0

for a given 7 £ (0,1). In this case the interval (Т^Тг) is called a ^-confidence 
interval or a confidence interval of level 7 for the parameter 9, The number 7 is 
called a confidence probability or a confidence levels while T\ and T2 are called the 
lower and upper confidence limitŝ  respectively.

Constructing a confidence interval by a given statistic. Let 9 be an
estimator of a parameter 9. It is natural to seek a confidence interval of a level 7 in 
the form of ( 0 - Д(7 , 0 ,  0 ) -  However the random variables Д(7 , 0  depend,
generally speaking, on the unknown parameter 0, since these random variables are 
found from the equation

P e { 0 - Д ( 7 , 0  <  ̂ < ^ + ^ ( 7 . 0 }  > 7 for all 0 e 0 .

Along with the estimator в one can use any other statistic T  when constructing 
a confidence interval. Let Ge{v) =  < У) be the distribution function of the
statistic T. Assume that Ge\y) depends on the parameter в monotonically. More 
precisely let

(5.4.1) Ge, iy) > Ge, iy) for all у and вг < вг-

If additionally the function Ge{y) is continuous with respect to в, then the 
equation

(5.4.2) Ge{y) =  7

has a solution with respect to в for every 7 e (0,1). We denote this solution by
b{y,l)-
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T h e o r e m  5.4 .1. Let 7 =  71 +  72- If the distribution function Ge{y) of the 
statistic T is continuous with respect to 6 and satisfies condition (5.4.1), then the 
statistics

r i  =  6 ( T , l - 7 2 ) ,  T2 =  6(^,7i ) 
are lower and upper limits of a confidence interval of level 1 — 7 .

P r o o f . The random variable Gq{T{^)) has the uniform distribution with re­
spect to on the interval [0,1]. Thus

P0{7 i < G ,(T (O )<  1 - 72} =  1 - 7

or, equivalently.

p ,{6(T(0 , 1- 72) < e <  6(T(0 ,7 i)} =  1- 7 . □

The inversion procedure of the function Ge{T) used in the proof of Theo­
rem 5.4.1 can be done in two steps. First one inverts the function G${y) with 
respect to y, that is, one finds the quantiles of Gq {̂'j) that are solutions of equa­
tion (5.4.2). Then one solves the following equations with respect to 6:

Ge\-li) = T, G ,- '( 1 -7 2 )= T .

Solutions of these equations exist, since the function Gg^{'y) is monotone and con­
tinuous with respect to 6 for all 7 G (0, 1).

If the function Ge{y) is not continuous with respect to 0, then Theorem 5.4.1 
still holds and the above procedure still works. The only difference is that an 
equality in the definition of quantiles is substituted by the inequality

G<,(G,-H7i) ,G ,- '(1 -7 2 ))> 1 -7
where is the measure on (—00, 00) generated by the distribution of G${y), 
Since we assumed continuity in Theorem 5.4.1, the quantiles were evaluated from 
the corresponding equalities in the proof above.

The problem of finding the most precise estimator also exists in the case of the 
interval setting. We will solve this problem when studying hypotheses testing.

Constructing confidence intervals for the Bayes approach. Let a pa­
rameter 6 be random with a priori distribution Q possessing the density q{y) with 
respect to some a-finite measure A. Assume that a family {P$^6 G 0 )  of distribu­
tions of the observation  ̂ is dominated by some cj-finite measure fi. Thus f{x\ 6) 
is the density of the measure P̂  with respect to the measure ¡jl. In this case there 
exists an a posteriori distribution of the parameter 6 given  ̂=  x. Its density with 
respect to A is given by

q{y/x) = f{x;y)q{y)
J f{x;t)q{t) X{dty

As lower and upper limits for a confidence interval of level 1 — 7 one can take 
statistics Ti(x) and T2 {x) such that

pT2{x)
/  '

JTi(x)
q(t/x) \{dt) =  1 - 7
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o r

XT2{X)

Ti{x)
q{t/x) \{dt) > 1 - 7

d e p e n d in g  o n  t h e  c o n t in u it y  o r  d is c o n t i n u i t y  o f  t h e  f u n c t io n  q{u/x) \{du) w i t h  
r e s p e c t  t o  t. I n  o t h e r  w o r d s , a s  s t a t i s t i c s  T i  a n d  T 2 o n e  s h o u ld  t a k e  a  7 1 - q u a n t i le  
a n d  a  (1  —  7 2 ) - q u a n t ile ,  r e s p e c t iv e ly ,  o f  a n  a  p o s t e r io r i  d i s t r ib u t io n  fo r  a ll  71  a n d  
72  s u c h  t h a t  71  +  72 =  7 .

I n  c o n t r a s t  t o  t h e  n o n - B a y e s ia n  a p p r o a c h ,  in  t h e  r e la t io n  T i  <  0 <  T 2 b o t h  T i  
a n d  T 2 , a s  w e ll  a s  t h e  p a r a m e t e r  0 , a r e  n o w  r a n d o m .

A s y m p t o t i c a l l y  c o n f i d e n c e  i n t e r v a l s .  A s s u m e  t h a t  a n  o b s e r v a t io n

is a  s a m p le  fr o m  a  d is t r ib u t io n  b e lo n g i n g  t o  a  f a m i l y  (P ^ , 0 G 0 ) .  L e t  

Tn = T ih ,& ^ )  a n d  T „  =  T 2 (7 ,^ ( " ) )  

b e  tw o  s t a t i s t i c s  s u c h  t h a t

(5.4.3) liminf Pe{X.n <  ̂< ^n} > 7 for all 0 G 0 .
n —»00

T h e n  t h e  in t e r v a l  ( T ^ , T n )  is c a l le d  a  confidence interval of level 7 . I n  f a c t ,  n o w  
o n e  s h o u ld  s p e a k  o f  a  s e q u e n c e  o f  in t e r v a ls  ( T ^ , T n ) ,  n =  1 , 2 , . . .  .

I n  t h e  p r e c e d in g  s e c t io n s  w e  c o n s id e r e d  p o i n t  e s t im a t o r s  t h a t  in  t h e  m a j o r i t y  
o f  c a s e s  a r e  a s y m p t o t i c a l l y  n o r m a l. B e lo w  w e  c o n s t r u c t  a s y m p t o t i c  c o n fid e n c e  
in te r v a ls  fr o m  t h e  p o in t  e s t im a t o r s .

L e t  On b e  a n  a s y m p t o t i c a l l y  J\i{6^a‘̂ (6)/n) n o r m a l  e s t im a t o r  w h e r e  a{6) is  a  
c o n tin u o u s  fu n c tio n .  S in c e  On ^  0 m P ^ - p r o b a b i l i t y  a s  n  00, w e  a ls o  h a v e  
<̂ {6n) cf{0) in  P ^ - p r o b a b i l i t y  a s  n  ^  00. T h i s  im p lie s  t h a t  t h e  s e q u e n c e

{On -0 )\ /n  
cr{0n) ’

n  =  1 , 2 , . . . ,

is  a s y m p t o t i c a l l y  A/^ (0,1 )  n o r m a l. D e n o t e  b y  zs a  s o lu t io n  o f  t h e  e q u a t io n

^ z )  =  1 - 5

w i t h  r e s p e c t  t o  2:, t h a t  is, z$ is  a  (1  —  ¿ ) - q u a n t i l e  o f  t h e  d i s t r i b u t i o n  A /*(0 ,1 ). H e r e  
t h e  s y m b o l  $ ( ^ )  s t a n d s  fo r  t h e  d i s t r i b u t i o n  f u n c t io n  o f  t h e  la w  A /^ (0,1 ) .  I f  77 is  a  
r a n d o m  v a r ia b le  d is t r ib u t e d  a c c o r d in g  t o  t h e  la w  A /’( 0 , 1 ) ,  t h e n  P { |r 7| <  zs} =  1 — 2 5 .  
L e t  =  z^j2 fo r  a  f ix e d  n u m b e r  7  >  0. H e n c e

lim  P^
n —>00

{On -  0)y/n
<y{6n)

< P  \ = 1 - ' )

o r, in  o t h e r  w o r d s ,

l im  PelOn
n —>00 y/n y/n

=  1 -  7 .
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Therefore relation (5.4.3) holds for the random variables

(5.4.4) Tn =  On-
p(r{0n)

T n  — 0n +
pcrjOn)

y/n

Equalities (5.4.4) define lower and upper limits of an asymptotic confidence interval 
of level 1 — 7 .

Example 5.4.1. Let =  (^i,. . .  ,^n) be a sample from the Gamma distri­
bution, so that the density is f{x]6) =  x > 0, where 6 e  Q =  (0, 00) is an
unknown parameter. The random variable Tn =  ̂ complete sufficient
statistic and moreover =  0/{n -  1). Thus 6n =  { n — l)T~^ is an unbiased
optimal estimator of the parameter 6. Further DeOn = 0̂ ¡̂{n  — 2) and therefore 
(7^(0) =  0 .̂ Therefore the limits defined by (5.4.4) become of the form

The asymptotic confidence level of the interval (T^,Tn) is 1 — 7 . One can find 
a precise confidence level of the interval (T^,Tn) for a fixed n by evaluating the 
probability

yjn n -  1 \Jn J
which is possible by taking into account that 6Tn has the Gamma distribution with 
the density e“ ®/(n -  1)!, x > 0.

The m ultidim ensional case. If a parameter 0 G 0  C is multidimen­
sional, that is. A; > 1, then we consider a confidence region instead of a confidence 
interval.

A random subset 0* =  0* (7 ,O  of the region of parameters 0  is called a 
confidence region of level 7 if

?e{6 G 0*} > 7  for all 0 G 0.

In other words, a confidence region 0* of level 7 contains the unknown param­
eter 6 with a probability greater than or equal to 7 .

If an observation is a sample then a random set 0* =  0*(7, ^̂ ^̂ ) C 0  
such that

liminf P0{6 G 0* } > 7n—>00
is called an asymptotic confidence region of level 7 .

The procedure for constructing confidence regions is the same as in the one­
dimensional case.

Confidence intervals for normal distributions. We use the exact distri­
butions of linear and quadratic forms of Gaussian random variables (see Section 1.4) 
to construct exact confidence intervals for parameters of the normal distribution.

Example 5.4.2. Let =  (^i, • • •, in) be a sample from the normal Af{6, cr̂ ) 
distribution where 0 G 0  =  ( - 00, 00) is an unknown parameter, while the vari­
ance cг̂  is known. Thus E^ii =  0 and D^ii =  for all 0 G 0 . Our goal is to



c o n s t r u c t  a  c o n fid e n c e  in t e r v a l  o f  le v e l  7  fo r  t h e  p a r a m e t e r  6. W e  u s e  t h e  e s t im a t o r
n

On =
i=l

o f  t h e  p a r a m e t e r  6 t o  fin d  a  c o n fid e n c e  in t e r v a l  {6n — A n , 7 , On +  A n , 7 ) w h e r e  A n ,7 
is  a  s o lu t io n  o f  t h e  e q u a t io n
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6̂ ^ n ,7  0 On “h A n , 7 ^  — 7 -

S in c e  t h e  d is t r ib u t io n  o f  t h e  e s t im a t o r  On is  ^/*(0, cг^ /n ), t h e  l a t t e r  e q u a t io n  is  
e q u iv a le n t  t o

Pe{\0n-0\<Ann} = P9
{On - 0 ) y / n <

y/nÂ n,7 = 2^ ^ VnAn,An,7 ̂  ^

T h i s  im p lie s  t h a t  A n ,7 =  < ^ i( i-7 )/2/ \ / ^  w h e r e  tp is  a  p - q u a n t i le  o f  t h e  la w  Af{0,1 ) ,  
t h a t  is, ^{tp) = p. T h u s ,  a  c o n fid e n c e  in t e r v a l  is  o f  t h e  fo r m

T h e  p r o c e d u r e  d e s c r ib e d  in  T h e o r e m  5 .4 .1  c a n  a ls o  b e  u s e d  t o  c o n s t r u c t  a  c o n fid e n c e  
in te r v a l.

E x a m p l e  5 . 4 . 3 .  L e t  =  (^ 1 , . . . ,  i n )  b e  a  s a m p le  fr o m  t h e  n o r m a l  Af{a, 0) 
d is t r ib u t io n  w h e r e  a  is  k n o w n  a n d  0 e  ( 0 , 00) is  a n  u n k n o w n  p a r a m e t e r .  N o w  w e  
u s e  t h e  s t a t i s t i c  Tn =  Z ^ ^ L i( i i  — w h ic h ,  a s  w e  k n o w , is  a  s u ff ic ie n t  s t a t i s t i c  fo r  
t h e  p a r a m e t e r  0. I t  is o b v io u s  t h a t  t h e  d i s t r i b u t i o n  o f  t h e  r a n d o m  v a r ia b le  Tn/0 is 
X ^ (n ). T h u s  t h e r e  a r e  tw o  n u m b e r s  a n d  f n ,7 s u c h  t h a t

P e  { r „ , 7  <  Tn/0 < fn a ] =  7 -

N o t e  t h a t  a  s o lu t io n  o f  t h e  l a t t e r  e q u a t io n  is  n o t  u n iq u e . A  c o n fid e n c e  in t e r v a l  o f  
le v e l  7  fo r  t h e  v a r ia n c e  0 c a n  b e  t a k e n  a s  fo llo w s :

(^n/^n,75 'I'nliLn,̂ )'

N o t e  t h a t  n u m b e r s  a n d  f n ,7 p o s s e s s in g  t h is  p r o p e r t y  a r e  n o t  u n iq u e .

E x a m p l e  5 . 4 . 4 .  L e t  =  (6 ) • • • > ^ n) b e  a  s a m p le  fr o m  t h e  n o r m a l A /’( 0 i,  ^2) 
d is t r ib u t io n  w h e r e  0 =  (0i , ^ 2) is  a n  u n k n o w n  p a r a m e t e r  s u c h  t h a t  0i €  ( - 00, 00) 
a n d  O2 G (0 , 00), t h a t  is, w e  a s s u m e  t h a t  b o t h  t h e  e x p e c t a t i o n  0i a n d  v a r ia n c e  O2 

a r e  u n k n o w n . F i r s t  w e  c o n s t r u c t  a  c o n fid e n c e  in t e r v a l  o f  le v e l  7  G ( 0 , 1 )  fo r  t h e  

e x p e c t a t i o n  0\. W e  u s e  t h e  r a n d o m  v a r ia b le  Tn =  ( a i  -  0i)rri2̂ '̂̂  w h e r e
 ̂ n  ̂ n

a i  =  - Y ] ^ i  a n d  m2 = - Y ] { ^ i - a i f
Z=1 2=1

a r e  t h e  s a m p lin g  m e a n  a n d  s a m p lin g  v a r ia n c e ,  r e s p e c t iv e ly .  A c c o r d i n g  t o  T h e o r e m  
1 .4 .2  t h e  r a n d o m  v a r ia b le  Tn h a s  t h e  S t u d e n t  d i s t r i b u t i o n  w i t h  n  -  1 d e g r e e s  o f  
fr e e d o m . L e t  Cn,7 b e  a  c o n s t a n t  s u c h  t h a t

P <  ^21,7 }  “  7 *
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Such a constant Cn,7 exists and is unique. Its approximate value can be found from 
tables of the Student distribution. Therefore a confidence interval of level 7 is of 
the form (ai — Cn,7\ /^ ,a i  +  Cn,7

Now we construct a confidence interval of level 7 G (0,1) for the variance 
02> We use the random variable Sn =  According to Theorem 1.4.2 the
distribution of the random variable 5n is x^(^ — !)• Thus one can find two numbers 
r^_i 7 and Tn-1,7 (see Example 5.4.3) such that

Pff < nm2/e2 < fn-1,-,} =  7 -

This implies that a confidence interval of level 7 for the variance 62 can be taken 
as (nm2/rn -i,7,nm 2/z:n-i,7)* If is obvious that the numbers and f n - 1,7
satisfying the above equality are not unique and thus confidence intervals also are 
not unique.
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Preface to Part 2

Part 1 of this book dealt with the estimation of unknown parameters, while 
Part 2 is devoted to testing statistical hypotheses.

The theory of hypotheses testing appears, in more or less detail, in practically 
any textbook or monograph on mathematical statistics. We mention here the books 
by Lehmann [34], and Hajek and Sidak [22] that are entirely devoted to statistical 
tests, as well as the book by Borovkov and MoguPskh [10] that is devoted to 
asymptotic problems in testing statistical hypotheses.

Part 2 begins with an exposition of a general theory of testing (Chapter 1), that 
is, of problems related to testing statistical hypotheses in the scheme of general 
statistical experiments according to Ibragimov and Khas’minskh [25], Barra [2], 
and Soler [49]. First, in Section 1.1, we deal with testing two hypotheses, we study 
the structure of the set formed by type I and type II error probabilities, and we 
introduce Neyman-Pearson tests, Bayes tests, and minimax tests. In Section 1.2, 
the theory of testing a finite number of simple hypotheses is presented and the 
most powerful tests, Bayes tests, and minimax tests are introduced. Section 1.3 
deals with testing composite hypotheses and discusses different approaches to the 
definition of optimal tests. A relationship between tests and confidence intervals is 
investigated.

Chapter 2 deals with problems for asymptotically distinguishable families of 
simple statistical hypotheses in the scheme of general statistical experiments fol­
lowing the books [47] and [37]. A complete group of types of families of statistical 
hypotheses that can be asymptotically distinguished is introduced and character­
ization theorems are given, which enables one to determine the type to which a 
family of hypotheses belongs (Section 2.2). Complete asymptotic testing under the 
strong law of large numbers (Section 2.3) or under weak convergence (Section 2.4) 
of the logarithm of the likelihood ratio are presented. Section 2.5 deals with testing 
contiguous families of hypotheses.

Chapter 3 is devoted to goodness-of-fit tests for independent observations. The 
Kolmogorov test (Section 3.1), the Pearson test (Section 3.2), and the Smirnov test 
(Section 3.3) are considered in detail. Section 3.4 focuses on some other well-known 
goodness-of-fit tests.

Chapter 4 presents elements of sequential analysis applied to the problem of 
testing statistical hypotheses. Section 4.1 deals with the Bayes theory of sequential 
testing of, generally speaking, composite hypotheses. Sections 4.2 and 4.3 are 
devoted to the Wald sequential test for testing two simple hypotheses. Section 4.2 
presents the basic properties of the Wald test and Section 4.3 establishes that the 
Wald test is optimal.
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158 PREFACE TO PART 2

The list of references at the end of the book contains only those references that 
are directly related to the topics we treat in the book and is by no means a complete 
list of references on testing statistical hypotheses.

In Part 2 we follow the same system of notational conventions as in Part 1. 
We also enumerate theorems, lemmas, formulas, etc., in the same way as we did in 
Part 1.



CHAPTER 1

General Theory of Hypotheses Testing

1.1. Testing two simple hypotheses

Statistical hypotheses and tests. T ype I and type II error probabili­
ties o f  a test. Let  ̂be a random element assuming values in a measurable space 
{X^SS) and let ^  =  (P»P) be a pair of probability measures defined on {X,3§). 
Assume that the distribution of the random element  ̂ is generated by one of the 
measures of the family The random element  ̂ is called an observation. The 
problem is to make a decision about the distribution of the random element  ̂ by 
the observation  ̂=  x.

Any conjecture about the distribution of an observation  ̂ is called a statistical 
hypothesis or, simply, a hypothesis. If a statistical hypothesis uniquely determines 
the distribution of an observation, then it is called a simple hypothesis. Otherwise 
it is called a composite hypothesis.

Let H and H be two statistical hypotheses that the distribution of an obser­
vation  ̂ corresponds to the measure P and P, respectively. It is clear that the 
hypotheses H and H are simple. Therefore the problem is to decide by using the 
observation  ̂=  x which of the hypotheses Ji or i f  is true. In other words, this is a 
problem of distinguishing two simple hypotheses H  and H by an observation  ̂=  x.

Any measurable mapping S: (X , ([0,1], <^([0,1])) where ^ {A ) is the Borel
(7-alg^ra of the set A is called a statistical test for distinguishing hypotheses H 
and H. We treat S{x) as the probability of accepting the hypothesis H given 
 ̂=  X, while 1 — 6{x) is the probability of accepting the hypothesis H given  ̂=  x. 

The mapping 6 is sometimes called a decision rule or a decision function. If the 
function S{x) assumes only two values 0 and 1, then it is called a nonrandomized 
test. Otherwise 5 is called a randomized test.

If a test 5 is nonrandomized, then X  =  X q \J X\ where Xi =  {x:5{x) =  ^}, 
2 =  0,1, and X q n Xi = 0. In this case the hypothesis H is accepted for x G X q, 
while the hypothesis H is accepted iox x £ X\. Thus every nonrandomized test is 
of the form ¿(x) =  /x i(x ), x G A*, where I a {^ )  is the indicator of the set A, that 
is, I a {^ )  =  1 for X G a  and I a {pc)  =  0 for x  G A ^  =  A  \ A.

Throughout this chapter we write 5 = 5{^). To measure the quality of a test S 
we consider the two numbers

(1.1.1) a{S) =  ES and ^(5) =  E(l-<5)

where E and E are expectations with respect to the measures P and P, respectively. 
If /(x )  is a measurable function, then we write P { / ( 0  G A } or P { /  G A } and 
P { / ( 0  ^ or P { /  G A} instead of P {x :/(x )  G A } and P {x :/(x )  G A}, respec­
tively. The number a(5) is called the type I error probability or 5-level of the test S.
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160 1. GENERAL THEORY OF HYPOTHESES TESTING

Similarly, the number ¡3{5) is called the type II error probability of the test S. The 
number 1 -  /3{S) is called the power of the test 5.

It is natural to say that a test 5i is better than a test 62 if 0'((5i) < €¿{62)̂  
< P{S2), and at least one of these two inequalities is strict. However it is not 

always possible to compare tests ¿1 and ¿2 in the specified way. In what follows we 
consider the set Vt of points (a((S),/?(5)) corresponding to all possible tests S. It is 
clear that ^  C [0,1] x [0,1]. The definition of the set ^  implies that (a,/?) € if 
and only if there is a test 5 such that a (5) = a and /3{S) =  ¡3.

Properties of the set 01. First we consider some properties of the set 01 that 
hold for each pair of measures ( P ,  P ) .

Lemma 1.1.1. The set 01 is convex.

P roof. Let ¿1 and 82 be two arbitrary tests. Then (o(ii),/3 (5 i)) G 01 and 
(< (̂¿2) ,/3(^2)) ^ Let 0 < A < 1 and

(1.1.2) a =  Aa(Ji) +  (1 -  A)a((52), ¡3 =  X(3{5i) +  (1 -  A)/?(52).

We prove that (a,/3) G 01 for all A G [0,1]. We get from (1.1.1) and (1.1.2) that

a =  E[A(5i +  (1 -  A)(52], P =  E [1- (A5i +  (1 -  A)J2)].

This implies that a =  a(8) and /? =  j3(8) where 8 =  A<5i +  (1 — A)i2- It is obvious 
that 5 is a test for any A G [0,1]. Thus (a, /?) G 01 for any A G [0,1] and therefore 01 
is a convex set. □

Lemma 1.1.2. The points (0,1) and (1,0) belong to the set 01.

P roof. Let ¿o(^) =  0 for all x e X. Then a(io) =  0 and P{8o) =  1, whence 
(0,1) G 01. Further let ¿i(x) =  1 for all x e X. Thus a(5i) =  1 and P{8i) =  0, 
whence (1,0) G 01. □

Lemma 1.1.3. The set 01 is symmetric about the point (1/2,1/2).

P roof. It is sufficient to prove that if (a,/?) G 01, then (1 — a, 1 — /?) G 01. 
Let (5 be a test such that a((i) =  a and P{8) =  ¡3. It follows from (1.1.1) that

l - a { 8 )  = E{ l -8) ,  l - p { 8 )  = E8.

Putting 5 =  1 — we get

a(5) =  1 — a((J) =  1 — a, P{8) =  1 — /3(8) =  1 - /3 ,  

that is, (1 — a, 1 — /3) G 01. □

R emark 1.1.1. Lemmas 1.1.1 and 1.1.2 imply that the diagonal of the square 
[0,1] X [0,1] joining its corners (0,1) and (1,0) belongs to the set 01. Lemma 1.1.3 
implies that the subset of 01 above this diagonal coincides with the image under the 
central symmetry about the point (1 /2 ,1/2) of the subset of 01 below the diagonal. 
Therefore one can derive all the properties for the set 01 from their counterparts 
for one of the two parts of 01 specified above.

Now we consider other properties of the set 01 that depend on the measures 
P  and P . We need some definitions and results from measure theory that can be 
found, for example, in [19, 23, 31, 32].



A measure P is called absolutely continuous with respect to a measure P if

?{A) =  0

for d\\ A e  SS such that P{A) =  0. We write in this case P <  P. If P <  P 
and P P, then the measures F^and P are called equivalent. The equivalence of 
measures P and P is denoted by P P.
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Lemma 1.1.4. //* P ~  P, then for dll tests 6 we have

(1.1.3)
(1.1.4)

a(¿) =  0 
a(á) =  1

P{S) =  h 
/?(5) =  0.

Proof. Since 0 < S{x) < 1, we get

a ( 5 )  =  0 E J  =  0 P { x :  S{x) ^  0 }  =  0

P { x :  ¿ ( x )  0 }  =  0 E ( 1  — ¿ )  =  1

and ( 1 . 1 . 3 )  is proved. Relation ( 1 . 1 . 4 )  is proved similarly. □

We say that a measure P is not absolutely continuous with respect to a measure P 
(denoted by P 5̂  P) if there is a set C G such that P(C) =  0 and P{C) > 0.

Lemma 1.1.5. / /  P <  P and P ^  P, then for all tests S we have

(1.1.5)
(1.1.6)

a{6) =  0 ^  P{S) =  1,
a{S) =  1 ^  /3(6) =  0.

Moreover there are tests 5' and 5" such that /3(6') =  0, a{S') < 1, 0{S") =  1, and 
a{S") > 0.

Proof. Since 0 < S(x) < 1, we have

o:(0) =  0 => P{a;: S(x) ^  0} =  0 P{a;: S{x) ^  0} =  0 => E(1 — 5) =  1,

whence (1.1.5) follows. Relation (1.1.6) is proved similarly.
Further let C  € be such that P{C) =  0 and P(C) > 0. Putting

S'{x) =  Ix\ci^)

we get

a(¿0  == Ed' =  P{X\C) =  1 -  P(C) < 1,
0{S') =  E(1 -  S') =  P{C) =  0.

If S"{x) =  Ic{x),  then we get in a similar way that a{S") =  P(C) > 0 and

!3{5") =  P{X\C) =  1. □



L e m m a  1 .1 .6 .  / /  P P and P P, then for all tests S we have

m  =  0 ^  a{5) =  1,
/?(J) =  1 => a{5) =  0.

Moreover there are tests 5' and such that Qj(i') =  0, P{S') < 1, a{S") =  1, and 
P{S") > 0.

The proof is similar to that of Lemma 1.1.5 and thus is omitted.

Lemma 1.1.7. If P i t  P and P i t  P, then there are tests ¿1, ¿2, ¿3 , and ¿4 
such that

a{5i) =  0, /?(5i) < 1, a{62) < 1, ^(¿2) =  0,
Oiî s) =  1, > 0, a(i4) > 0, ^(¿4) =  1.

The proof is similar to that of Lemma 1.1.5 and thus is omitted.

R e m a r k  1.1.2. To prove Lemmas 1.1.5 and 1.1.6 one can put =  1 -  5' and 
apply Lemma 1.1.3. Similarly, to prove Lemma 1.1.7 one can put ¿3 =  1 — ¿1 and 
¿4 =  1 — ¿2 and apply Lemma 1.1.3.

Measures P and P are called singular (denoted by P ±  P) if there exists C £ 
such that P(C) =  0 and P(X  \ C) =  0.

L e m m a  1.1.8. / /  P _L P, then (0,0) e VI.

P r o o f . Let C G be such that P(C) =  0 and P{C) =  1. Putting ¿^(x) =  
Ic{x)  we get

a{6^) = E6̂  =  P{C) =  0, p{S )̂ =  E(1 -  Ŝ ) =  P{X \ C) =  0,

that is, (0, 0) G 01. □

C o r o l l a r y  1.1.1. / /  P J_ P, then 01 =  [0,1] x [0,1].

P r o o f . According to Lemmas 1.1.8 and 1.1.3 we get (1,1) G 01. Since (0,1) G 
01 and (1,0) G 01 by Lemma 1.1.2, we apply Lemma 1.1.1 and obtain
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01 =  [0, l ]x [0,l]. □

We write P =  P if P{A) = P{A) for all A e SS. Put

(1.1.7) 01 =  {(a , /? ):/?=  1 -  a for all a G [0,1]}, ÓÍ =  [0,1] x [0,1].

It is clear that 01 is the diagonal of the square [0,1] x [0,1] joining its corners (0,1) 
and (1, 0).

C o r o l l a r y  1 .1 .2 .  The following hold:

(1.1.8)

(1.1.9)

P =  P 

P I P
91 =  21, 
2t =  2i.
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P r o o f . Let P =  P. Then for all tests 6

m  =  E(1 -  5) =  E(1 -  (5) =  1 -  a(5),

that is, Thus the implication => in (1.1.8) is proved.
Let 01 =  Then P{5) =  I — a{5) for all tests S. Consider ¿(x) =  Ia {^) for 

A Then

(1.1.10) P{S) = E{1 -6 )  =  1 -  P{A), a{6) =  ES =  P{A).

Since P{5) =  1 -  a{5) for all tests we obtain from (1.1.10) that P(A) =  P(A) for 
all A e ^ .  Thus P =  P. Therefore the implication ^  in (1.1.8) is also proved.

According to Corollary 1.1.1, relation (1.1.9) follows from the implication <= in
(1.1.9).

Let 01 =  0̂ . Then (0,0) G 01 and therefore there is a test 5̂  such that a(¿®) =  0 
and P{S )̂ =  0. Thus P{x:5®(x) ^  0} =  0 if a'(<5®) =  0. Similarly, the equality 
P{S )̂ =  0 implies that P{x:á°(a;) ^  1} =  0, that is, P{x:S^{x) =  ! }  =  !. Putting 
C =  {x:(5^(x) ^  0}, we obtain from {x:S^{x) =  1 }  C  C that P(C) =  0 and 
P(C) =  1, that is, P _L P. Thus the implication in (1 .1 .9 )  is also proved. □

Likelihood ratio and Lebesgue decom position . Let Q be some a-finite 
measure on (X, dominating the family ^  =  (P, P). This means that P Q and 
P ^  Q. It is obvious that such a measure exists. In particular, as the measure Q 
one can take Q =  (P +  P )/2. Let ^{x) = dP/dQ{x) and l{x) =  dP/dQ{x) be the 
Radon-Nikodym derivatives (densities) of the measures P and P with respect to 
the measure Q, respectively. Note that 0 < ^{x) < oo and 0 < l{x) < oo almost 
everywhere with respect to the measure Q. Moreover, P{x:i{x)  =  0} =  0 and 
P{x:l{x) =  0} =  0. We define the likelihood ratios as follows:

(1.1.11) z(x) =  S(x)/3(x), z{x) =  3(x )/j(x ).

If we agree that 0 =  0/0, then z{x) and z{x) in (1.1.11) are well defined. Note that

P{x;Ka;) =  0, 3(x) =  0} =  0,
P {x :3(x) -  0, 3(x) =  0} =  0.

The following result provides the Lebesgue decomposition of one of the mea­
sures P or P with respect to the other one.

L e m m a  1.1.9. For all sets A e  ^

(1.1.12) P(A) =  z(x) P(dx) +  P{A n {x: 3(x) =  0}),

(1.1.13) P(^) =  J  J(x)P(dx) +  P (> ln {x :3(x) =  0}) 

where z{x) and z(x) are defined in (1.1.11).
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=  Eq~í  ̂I(A  n {3 > 0}) =  E  ̂I{A  n {3 > 0}) 
3 3

P r o o f . Note that for all A £  ^  we have

(1.1.14) P{A) = P{A n {a > 0}) +  P{A n {3 =  0}).

Since P(3 =  0) =  0, we get

P { A n U > 0 } )  = E Q lI {A n U > 0 } )

(1.1.15)

=  E zI{A) =  J  z(x) P{dx)

where Eg is the integral with respect to the measure Q and /(^4) is the indicator of 
the set A (in other words, of the event G -4}). Thus I  {A) =  1 if x G 41 or ^ G A, 
while I{A) =  0 if X ^ 4l or  ̂ 0 A. Decomposition (1.1.12) follows from (1.1.14) 
and (1.1.15). Decomposition (1.1.13) is proved similarly. □

Put

(1.1.16) a =  P(3 > 0 ) , ;g = p (3 > o ) .

The Lebesgue decompositions (1.1.12) and (1.1.13) imply that

(1.1.17) P < p < ^ ; g  =  i,

(1.1.18) p < p . ^ a  =  l.

It follows from (1.1.11) and (1.1.16) that

(1.1.19) a = P{z > 0) =  P{z < 00),
(1.1.20) p = P { z > 0 )  =  P{z < 00).

The Lebesgue decompositions yield the following result.

L e m m a  1.1.10. If rj is an arbitrary nonnegative and measurable function de­
fined on (X ,«^), then

( 1.1.21)

( 1.1.22)

Ery =  Erjz 4- E7;/(3 =  0), 
Et} = Erjz +  Et7/(3 =  0).

The following result contains more properties of the set 01.

Lemma 1.1.11. For all tests S

(1.1.23) P{S) =  0=^a{S )>a .

Moreover there exists a test 5' such that P{S') =  0 and a{5') =  a. Furthery for all 
tests S

(1.1.24) a { 5 ) = 0 ^ P { 5 ) > P

and there exists a test such that a(5") =  0 and /3(5") =  P.
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Proof. If ¡3{5) =  0, then P{S =  1) =  1. Taking into account equalities (1.1.22) 
and P(3 =  0) =  0, we obtain

a(5) = ES =  ESz-\- ESI{1 =  0) =  Ez + E6I{1 =  0)

> Ezl{l > 0) =  Eqz  ̂I{1 > 0) =  EI{1 > 0) =  a.

Thus the implication (1.1.23) is proved. Putting 5' =  /(3 > 0), we get

a ( 5 ')  =  P (3  >  0) =  a ,  ^ ( ¿ ')  =  ?{l =  0) =  0.

The proof of the implication (1.1.24) is similar and follows from (1.1.21). 
Putting =  /(3 =  0), we obtain a{5” ) =  0 and /?((J") =  /?. □

We derive the following useful relations from Lemma 1.1.11 and Corollary 1.1.2:

(1.1.25)

(1.1.26)

P ±  P /? =  0, 
P ± P  ^ a  =  0.

Figure 1.1.1

Remark 1.1.3. The set 01 is shown in Figure 1.1.1. The points (a, 0) and (0, /?) 
depicted in Figure 1.1.1 are defined by equalities (1.1.16), (1.1.19), and (1.1.20). 
Using (1.1.17) and (1.1.25) we get

(1.1.27) 0 < P < l ^ P i t P ,  P / P .

Similarly, it follows from (1.1.18) and (1.1.26) that

(1.1.28) 0 < a < l ^ P  i tP ,  P / P .

The properties of the set 01 proved above together with equivalences (1.1.27) and
(1.1.28) completely describe the set 01. Note that the tests corresponding to the 
points (a, 0) and (/3,0) are defined in Lemma 1.1.11. Thus (a,0) G 01 and (0,/?) €
01. Since 01 is convex, the two segments of the straight lines joining the points 
(a,0) and (1,0) and (0,^) and (0,1), respectively, belong to the set 01. Since 01 
is symmetric about the point (1/ 2, 1/ 2), two segments of the straight lines joining 
the points (0, 1) and (1 -  a, 0) and (1,1 — 3̂) and (1, 0), respectively, also belong to 
the set 01.
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The m ost powerful, Bayes, and minimax tests. Consider the following 
two classes of tests:

(1.1.29) ICa =  {S: a{S) =  a}, /Ĉ  =  {S: a{S) < a}

where a is some number of the interval [0,1]. It is clear that JCa C  /C" for all 
a e  [0,1]. Put

(1.1.30) on, =  {{a{S),P{6)):Se /C«}, Ot“ =  {{a{S),l3{6)):S e  /C^}.

Then 01c C 01“ .
A test is called the most powerful test of level a if

(1.1.31) /3((5*'“ ) =  min{/?((5):(5e/C„}

(in what follows we show that the minimum in (1.1.31) is attained for all a € [0,1], 
indeed). It is clear that the test i* ’“  has the maximal power 1 — P{5) among tests 6 
of the class /Cq. Also, it follows from (1.1.29), (1.1.30), and the definition of the 
set 01 that the test has the maximal power among the tests of the class /C“ . 
This is an explanation of why we say that 5*’“  is the most powerful test in the 
class /C“ .

The intersection of the straight line a = ao and the lower bound of the set 
01 in Figure 1.1.2 determines the point A whose coordinates are (ao,/3(i*’“ ®)) and 
which corresponds to the most powerful test in the class /C“®.

There is a different approach to compare tests. This is the Bayes approach 
based on the assumption that the tests H and H are random events and their 
probabilities tt =  P{H) and tt =  P{H) =  1 — tt are known. The probabilities tt and 
7T are called a priori error probabilities of tests H and H. The quality of a test S is 
defined as the average of the error probabilities:

(1.1.32) €n{S) = 7ra{S) +  (1 -  7t)P{5).

A test ¿TT is called a Bayes test with respect to the a priori distribution (tt, 1 — tt)
if

(1.1.33) e,r(5,r) =mine,r(5) 6
where the minimum is considered with respect to all tests S. In Figure 1.1.3 the 
straight line na + (1 -  tt)/? =  c and set 01 have only one common point B and
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F igure 1 .1 .3

it corresponds to the Bayes test where c is some constant. It is clear that the 
Bayes test is the most powerful one in the class for ao =  O'(JTr)-

The following approach to compare tests is called minimax and is based on the 
maximal probability of errors of a test.

A test 6* is called minimax if

(1.1.34) a{S*) V /3{S*) =  mm{a{5) V P{5)) s
where aV/? is the maximum of two numbers a and /?, while the minimum in (1.1.34) 
is considered with respect to all tests S.

We will discuss Bayes and minimax tests in more detail when considering the 
problem of testing a finite number of simple tests.

The maximum likelihood test and the N eym an-Pearson fundamental 
lemma. Consider the test

(1.1.35) =  I{z > c) +  el{z = c)

where 2; is the likelihood ratio defined by (1.1.11), and c G [0 ,00] and e G [0 ,1] are 
the parameters of the test. The test defined by (1.1.35) is called the maximum 
likelihood test.

The following result is known as the Neyman-Pearson fundamental lemma. It 
shows that every maximum likelihood test is the most powerful one and, more­
over, every most powerful test coincides (in a certain sense) with some maximum 
likelihood test.

T h e o r e m  1 .1 .1 .
1) For every a G ( 0 ,a )  there exists a maximum likelihood test of level a.
2) The maximum likelihood test is the most powerful test of level a.
3) If is the most powerful test of level a G ( 0 ,a ) ,  then there exists a 

constant c such that

P{Sc) =  P{Sc) =  0

where

(1.1.36) Sc = {x\ 5*^ {̂x) ^  ¿ ’̂^(x)} n {x\ z{x) 7̂  c}

and € is an arbitrary constant of the interval [0, 1].
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P r o o f . 1) Consider the function F{c) =  P(z <  c). Obviously F(c) =  0 for 
c < 0 and jP(0+) =  1 — P{z > 0) =  1 — P{1 > 0) = 1 — a. Moreover,

F(oo) =  1 — P{z =  oo) =  1 — P(3 =  0) =  1.

Let c(a) be the minimal solution of the system of inequalities

(1.1.37) F{c) < 1 -  a < F (c +  0) =  F(c) +  P{z =  c).

Further let e{a) G [0,1] be such that

(1.1.38) 1 -  a =  F (c(a)) +  (1 -  e{a))P{z = c{a)).

If P{z =  c(a)) =  0, then an arbitrary number of the interval [0,1] can be taken as 
e{a). Otherwise, if P{z = c{a)) ^  0, then we get from (1.1.38) that

(1.1.39) e(a) =
F{c{a) +  0) -  (1 -  a)

P{z = c{a))

Equality (1.1.38) implies that the level of the maximum likelihood test
IS a.

2) Let 0 <  a < a and let be the maximum likelihood test of level a. It is 
sufficient to show that 0{S) > for every test S of level a. We have

(1.1.40) P(6) -  =  E{5'='̂  -  S).

Since the levels of the tests and 5 are equal to a, it follows that

(1.1.41) -  a((5) =  E(5=-̂  -  ¿) =  0

holds. When proving the first statement of the theorem we showed that

F (0+ ) =  1 -  a, F(oo) =  1.

This implies that the minimal solution c =  c(a) of the system of inequalities (1.1.37) 
for a € (0,a) is such that 0 < c < oo. Multiplying (1.1.41) by c and subtracting 
the result from (1.1.40) we get

(1.1.42) I3{6) -  )0(<5°-̂ ) =  E((i‘=-® -  (5) -  cE((5"’  ̂ -  6).

Applying equality (1.1.21) we derive from (1.1.42) that

(1.1.43) l3iS) -  =  E(i'=’  ̂ -  5){z -  c) +  E((5"'" -  5)I{i =  0).

Since (3 =  0) C (z =  0) U (2; =  00), we have (z =  c,3 =  0) =  0  and

P(z < c ,3 =  0) =  P(3 =  0,3 =  0) =  0.

Thus

(1.1.44)

E(<5^-^-J)/(3 =  0)
=  E ( l - 5 ) / ( z > c ,3  =  0)

+  E(£ -  5)I{z =  c ,3 =  0) -  E /(z < c ,3 =  0) 
=  E ( l -< S ) / ( z > c ,3 =  0) > 0.
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Taking into account (1.1.44) we obtain from (1.1.43) that 

/?(J) -  /?(5"’ )̂ > -  6){z -  c)
(1.1.45)

=  E(1 -  S){z -  c)I{z > c) +  E (-(i)(z — c)I{z < c) > 0.

Therefore P{5) > /?(5̂ >̂ ).
3) Let be the most powerful test of level a G (0,a) and let be the 

likelihood ratio test of level a. Since ^(¿*’“ ) — < 0 and is the most
powerful test, we obtain that

(1.1.46) E((5̂ >" -  ¿*’^)(2 -  c)I{Sc) +  E(5 ’̂" -  5*’“ )/(5 c  n (3 =  0)) =  0

in view of relations (1.1.43) and (1.1.44) for 5 = 5*̂  ̂ where Sc is the set defined 
by (1.1.36). Note that (¿^’  ̂ -  S*^ )̂{z -  c) > 0 on the set Sc and > 0 on
the set 5c n (3 =  0). Thus relation (1.1.46) implies that P(5c) =  0 and

P(5cn(3 =  0)) =  0.

Lebesgue decomposition yields

P (5c)=  [  zdP +  P(5cn(3 =  0)) =  0, 
Jsc

whence the third statement of Theorem 1.1.1 follows. □

Combining Lemmas 1.1.3 and 1.1.11 with Remark 1.1.3 and Theorem 1.1.1 we 
obtain the following result.

Lemma 1.1.12. The set 01 is closed.

R emark 1.1.4. It is easy to see that the level of the likelihood ratio test 
is a  =  0 for all e G [0,1]. Indeed, according to relations (1.1.1) and (1.1.35) we 
have for all e G [0,1]

^(¿cx),e) _  =  00) =  6:P(3 =  0) =  0.

Thus statement 1) of Theorem 1.1.1 holds for a  =  0, too. Further, as can be seen 
from the proof of Lemma 1.1.11, 5*’  ̂ =  /(3 =  0) is the most powerful test of level 
a  =  0 and that /?(5*’°) =  ¡3. Taking into account (1.1.20) we obtain from (1.1.1) 
and (1.1.35) that

/J((JoO’ )̂ =  P(z < 00) +  (1 -  e)P{z =  00) =  /? +  (1 -  e )(l -  P ) >  P.

This implies that the test 5°°’  ̂ is the most powerful only for e =  1. This means 
that statement 2) of Theorem 1.1.1 does not hold in general. As we proved above 
it only holds for € = 1. Note that =  I{z =  00). Finally, the set Sc defined 
by (1.1.36) is of the form

5oo =  ^  n (z #  00) =  (3 =  0) n (z ^  00) =  (3 -  0,3 =  0)

for all e G [0,1]. Moreover P(5qo) =  P(5oo) =  0. Therefore statement 3) of 
Theorem 1.1.1 holds for a =  0, too.
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R emark 1.1.5. According to equality (1.1.19) the level of the likelihood ratio 
test is

=  P{z > 0) +  eP{z =  0) =  a  +  e (l -  a)
for e G [0,1]. This implies that if a  < 1, then =  a for a  G [a, 1] and
e =  (a — a ) / ( l  — a). On the other hand, if a =  1, then =  1 for all e G [0,1].
This shows that statement 1) of Theorem 1.1.1 holds for a G [a, 1], too. Further, 
we have

=  P{z <  0) +  ( 1  -  e)P{z =  0) =  ( 1  -  e)P{j =  0,3  > 0) =  0

for all e G [0,1], that is, the likelihood ratio test of an arbitrary level a G [a, 1] 
is the most powerful. Thus statement 2) of Theorem 1.1.1 holds for a G [a, 1], too. 
The set Sc defined by (1.1.36) is of the form

So =  (5*’“  ^ n { z > 0 )  =  (¿*’  ̂ ^  1) n (;2 > 0)

for c =  0 and arbitrary e G [0,1] where is the most powerful test of level 
a G [a, 1]. It can be seen from the proof of Lemma 1.1.11 that the most powerful 
test of level a  =  a is given by 5*’  ̂ =  /(3 > 0). Moreover =  1 (see the proof of 
Lemma 1.1.2). Thus the most powerful test of level a is

1 — a
•J*'“  =  >  0) +  =  /(3 > 0) +  ^ / ( 3  =  0).

Note that (5*’  ̂ 7!̂ 1) =  0  for a  =  1 and (5*’“  7*̂ 1) =  (3 =  0) Qj < 1. Since 
(z > 0) =  (3 > 0), it holds that So =  0 , whence P(5o) =  P{So) =  0- Therefore 
statement 3) of Theorem 1.1.1 holds for a G [a, 1], too, that is, all the statements 
of Theorem 1.1.1 hold for a G [a, 1].

Neym an—Pearson test. The fundamental Neyman-Pearson lemma (Theo­
rem 1.1.1) and Remarks 1.1.4 and 1.1.5 imply that for any a G [0,1] there exists a 
likelihood ratio test of level a where (c (a ),6:(a)) is some solution of the
equation a{Ŝ ' )̂ =  a with respect to (c,e:). Moreover is the most pow­
erful test in the class ICa if e(0) =  1 and a =  0. The test for e:(0) =  1
is called the Neyman-Pearson test of level a for distinguishing the hypotheses H 
and H. In what follows we denote this test by One can see from the proof of 
Theorem 1.1.1 and Remarks 1.1.4 and 1.1.5 that the functions c{a) and e{a) can 
be taken of the form

OL — a .

( 00, a =  0, ' 1, a  =  0,
(1.1.47) c(a) =  c(a), 0 < a  < a. e{a) =  << e (a ) , 0 < a  < a.u. a < a < 1, . e (a ) , a < a < 1,

where c{a) is the minimal number c such that

(1.1.48)

(1.1.49) e(a) =

P{z > c) < a < P{z > c), 
a — P{z > c(a)) a - a

P{z =  c(a)) e{a) =  -— zr-  ̂  ̂ 1 -  a

If P(z =  c(a)) =  0, then P{z > c(a)) =  a which leads to an expression ¿"(a) =  0/0. 
In this case an arbitrary number of the interval [0,1] can be taken as e(a). If a  =  1, 
then [a, 1] =  {1} and this also results in an expression e{l) =  0/0. In this case an
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arbitrary number of the interval [0,1] can be taken as 6:(1). The definition of the 
test and equalities (1.1.47) imply

(1.1.50) i0(i+’^) =  ^
/?, Q: =  0,
P{z < c(a)) 4- (1 -  e{a))P{z =  c(a)), 0 < a < a,
0, a < a <1.

It is clear that the function /3(iS‘ ’̂^) determines the lower boundary of the set 01.

E x a m p l e  1.1.1. Let an observation  ̂ be a Gaussian random variable with 
the normal (a, 1) distribution under the hypothesis H and let its distribution be 
A/* (a, 1) under the hypothesis H. Then the measures P and P corresponding to the 
distribution of the observation  ̂ under the hypotheses H and i f ,  respectively, are 
absolutely continuous and

z{x)
dP

(x)
, o2 - o 2\=  exp I (a — a)x H------ -—  1 .

It is obvious in this case that a =  1 and / 3 = 1 .  Moreover, the random vari­
able =  z{^) has a continuous distribution for both hypotheses H and H. Thus 
equalities (1.1.37) and (1.1.48) defining the constant c{a) for 0 < a  < 1 become 
P{z < c) =  1 — a. For the sake of definiteness let a > a. Then

r̂ / s i^ liic a + a\  ̂ /  Inc a — a\

where <>(x) is the distribution function of the normal A/* (0,1) law. This implies 
that

In c{a) ^ a — a
tl—ca — a 2

where tp is the p-quantile of the law A/*(0,1), that is, ^{tp) =  p. Thus we have for 
all a e  (0, 1) that

c{a) =  exp ( (a — a)ti-c
(a — a)^

The number e{a) can be chosen arbitrarily from the interval [0,1]. Taking into 
account (1.1.50) we get

/3(J+>") = P[z <  c(a)) = P(̂  < t i - a  + a) = -  a + a).

Note also that the Neyman-Pearson test of level a can be represented in the form 
_  J( ẑ{x) > c{a)) =  I{x > ti-a  +  a).

E x a m p l e  1.1.2. Let an observation ^ have the normal A/^(0,1) distribution 
under the hypothesis H and the exponential distribution with the density

l{x) = e-^I^o,oo){x)

with respect to the Lebesgue measure under the hypothesis H. Then P P, 
P itP^ and moreover z{x) =  dP/dP{x) where z{x) =  0 for a: < 0, while
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for X > 0. In this case / 3 = 1  and a =  P{l{x) > 0) =  P(x > 0) =  1/ 2. The random 
variable z =  z{^) is continuous under the hypothesis H. Thus the constant c(a) 
for a G (0,a) =  (0,1/2) can be determined from the equation P{z <  c) =  1 — a or, 
equivalently, from

According to Remark 1.1.5 the Neyman-Pearson test of level a can be represented 
as

=  I{z{x) > c(a)) =  I  ^(x -  1)̂  > In

for a G [0, a) and as

5+’  ̂ =  /(x  > 0) +  (2a -  l)/(x  < 0)

for a G [a, 1], since a =  1/2. Thus e{a) determined by equalities (1.1.47) and 
(1.1.49) for a G [a, 1] is equal to e{a) =  2a -  1. The type II error probability of 
the test is given by relation (1.1.50). Moreover

/J(5+«^) =  p{|  ̂-  l| < C(a)} =

for a G (0,a) where

C(a) =
ec^(a)

27T

If one interchanges the hypotheses H and H  in Example 1.1.2, then P <C P and 
P ^  P. In this case a  =  1 and /3 < 1. Details are left to the reader.

Example 1.1.3. Let an observation  ̂ assume two values 1 and 0 with proba­
bilities p and q =  l —p under the hypothesis H and with probabilities p and q = 1 —p 
under the hypothesis H. Then P P and the likelihood ratio z{x) =  dP/dP(x) is 
given by

a l—x
X =  0, 1.

Thus the random variable z =  z{^) assumes two values p/p and q/q with proba­
bilities p and q under the hypothesis H and with probabilities p and q under the 
hypothesis H. For the sake of definiteness let p > p. Then q/q < 1 < p/p. Since 
P ^  P, we get a = /3 =  1, Solving equation (1.1.48) and evaluating c(a) and e{a) 
we obtain

^0, a =  1, 
c(a) ^  I q/q, p < a < l ,

, p/p, 0 < a < p ,
and

' 1, a  =  l,
e{a) =   ̂ (a -  p)/q, p < a < l ,  

a/p, 0 < a < p .
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0 {6+ n  =
q + - { p -  a), 0 < a < p ,  

P

? a - a ) . p < a < 1.

The function determines the lower boundary of the set 01 for 0 < a < 1.
The set 01 is shown in Figure 1.1.4.

1.2. Distinguishing a finite num ber o f  simple hypotheses

Setting o f  the problem . The m ost powerful tests. Let (ii, P) be the 
main probability space, let  ̂be an observation that is a measurable mapping of the 
space into some measurable space (X ,«^), and let ^  =  {Pi, P2) • • • ? Piv},
1 < iV < 00, be a family of probability measures defined on the space (X ,,^ ). We 
assume that the distribution of the observation  ̂ is generated by some measure of 
the family

Let Hj = {6 = j }  he the hypothesis that the distribution of the observation ^
We write in this caseis generated by the measure Pj.

P.-(^) =  ^ A }  =  P (i G A/Hj}, A G

and say that Pj{A) is the probability of the event G A}  under the hypothesis 
— j} '  "^he parameter 0 assumes values in the set 0  =  { 1, 2, . . .  ,iV} 

and is the index of the measure of the family ^  generating the distribution of the 
observation Thus we deal with N  simple hypotheses i ii ,  JT2, • • • » Given an 
observation the problem is to decide which hypothesis of the set of hypotheses 
f f i , /^2, • • •, Hn is true.

Any measurable mapping 5: (X,«^) ^  0  is called a statistical test for distin­
guishing N hypotheses i i i ,  i?2, • • •, by an observation The equality ¿(x) =  j  
means that the hypothesis Hj is accepted if  ̂=  x (that is, 6 =  j  in the parametric 
setting). A mapping S is sometimes called a decision rule or a decision function. 
Every test 5 uniquely determines a partition of the space (and vice versa) X  into N 
disjoint measurable sets Xj G j  =  1,2, . . . ,  X , such that Xj =  {x: ¿(x) =  j } .
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j  =  1, 2, . . .  ,7V, U ^ i  ^ 3  —  ̂ corresponding to a partition is closely
related to the problem of estimation of an unknown parameter 0, namely ¿(x) is 
an estimator of an unknown parameter 6 if  ̂=  x. A test <5 defined in this way is a 
nonrandomized test (see also Section 1.1). Any random variable J =  ¿(^) is called 
a test.

We consider below randomized tests defined as follows. Every measurable map­
ping 5: {X  x ii, -^ © is called a statistical test for distinguishing N hypotheses
iJi, 7̂ 2, . .  •, Hn by an observation Given  ̂=  x, the hypothesis Hj is accepted if 
the random variable is equal to j. If the function S{XyCv) does not depend
on the variable a;, then the test <5 is nonrandomized. Otherwise a test S is called 
randomized. In general, every random variable 5 =  ¿(^(a;),a;), a; G ii, is called a 
statistical test.

Consider a family of functions q^{x) =  {qi{x)yq2 {x)y.. • x £ Xy such
that qj{x) =  P{5 = j/^ = x}  is the conditional probability that the hypothesis Hj 
is accepted under the test S given  ̂=  x (that is, qj is the conditional probability 
of the event {S = j }  given  ̂ =  x). It is clear that a test S is uniquely determined 
by the family of conditional probabilities

q\x) =  (qi{x),q^{x),... ,qjf{x)), x e  X.

Sometimes this family is called a statistical test (see Section 1.1). Note that

qi{x)-]------- 1- qifi^) — 1

for all X e X. If the functions qj (a:) assume only two values 0 and 1, then the test S 
is nonrandomized. Otherwise a test S is called randomized. The decision domain 
of the hypotheses Hjy j  =  1, 2, . . . ,  iV, is given by Xj =  {x: qj(x) =  1} in the case
of nonrandomized tests. Note that Xj D Xi = 0y i ^  j ,  and Uj=i

The definition of a statistical test given in the preceding section differs to some 
extent from that given in this section, since the latter definition is inconvenient in 
the case N = 2. In what follows we use the simpler definition of the preceding 
section if we deal with the case of only two hypotheses.

To measure the quality of a test S we introduce, as in the preceding section, 
the error probabilities:

(1.2.1) aj{S) =  P{Sj i : j/Hj}=  [  (1
Jx

Qji^)) Pjidx),

The number aj{6) is the probability to reject the hypothesis Hj by using the test S 
if the hypothesis Hj is true. The number Oij{S) is called the type j  error probability 
of the test 5.

It is natural to say that a test Si is better than a test ¿2 if Oij{Si) < Oij{S2) for 
all J =  1, 2, . . . ,  iV and at least one of these inequalities is strict. However not all 
tests ¿1 and 62 can be compared in this way. In what follows we restrict the set of 
tests in order to have the possibility to compare them. Let

(1.2.2) ^ai,a2,...,aN-i ~  ~ ~  2, . . . , TV — 1}

where aj G [0,1], j  =  1,2, . . . ,  TV — 1, are some fixed numbers.
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A test 5* e K
the class K. -1 if

is called the most powerful test (MP test, for short) in

OiN{S*) < OiN{S)
for all tests i  € /C,ai,...,aAr-i •

Prior to constructing the most powerful tests in the class IĈ we con­
sider two other approaches for comparing the tests, namely the Bayes and the 
minimax approaches.

The Bayes approach. Assume that the hypotheses Hi,. . ,   ̂Hn are random 
events whose probabilities are known. Put

P{Hj) =  TTj, j  =  l ,2 , . . . ,N .

The family of probabilities tt =  (tti, 7T2, . . . ,  ttn) is called the a priori distribution of 
the hypotheses. This family determines a distribution on the set 0  =  { 1 ,2 , . . . ,  N}. 
The numbers Pj{A) =  P{^ g A/Hj} are conditional probabilities of the event 

G A}  given the event Hj occurs. Moreover, we assume that the loss is A where 
A = Aij if the hypothesis Hj is accepted, while the hypothesis Hi is true. Therefore, 
the loss A is a random variable whose values are uniquely determined by the test S 
and the index of the true hypothesis. To compare tests in the Bayes approach we 
use the risk of a test 5 defined as the expectation of the loss:

(1.2.3)

where =  P{5 =  j/Hi}. Since

N N  

i=l j=l

(1.2.4) [  9j ( 2:)Pj(tia;),
«/ X

the risk (1.2.3) can be rewritten as

N N  -

(1.2.5) R{6) =
2=1 j = l

A test that minimizes the risk R{5) is called the Bayes test corresponding to 
a priori distribution tt and loss A.

Let ¡JL be some cr-finite measure on {X, SS) dominating the family of probability 
measures ^  =  {Pi,  P2, • • •, Pyv}, 1 < < 00, and let pi{x) be the density of the
measure Pi with respect to the measure fi. Note that such a measure p always 
exists. In particular, the measure ¡i =  îPi where Ci > 0 for all i possesses 
this property. The risk (1.2.5) can be expressed in terms of the measure fi and 
densities P i { x ) :

N N

(1.2.6) R{S)= [  ¿¿>lijii(a;)pi(a;)7rip((ix).
*=ii=i

Consider the measure P =  which defines the unconditional distribu-
tion of the observation Note that P is absolutely continuous with respect to p
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and f {x)  =  XDili is the density of the measure P with respect to the mea­
sure fi. Let C = {x: f {x)  > 0}. Then P{X \C) = 0 and Pi{X \C) = 0 for all i. 
For all X G C consider the functions

(1.2.7) 7Ti{x) =
Pi{x)7Ti

Equality (1.2.7) is the well-known Bayes formula for evaluating the conditional 
probability 7Ti{x) of a hypothesis Hi given  ̂ =  x .  The numbers 7Ti{x) are called a 
priori probabilities of hypotheses Hi.

T h e o r e m  1.2.1. For all tests S it holds that
N

(1.2.8) R {S)>E ^ ^n^Y! .A i jn {0 -
i= l

A test S = A is a Bayes test with respect to a priori distribution tt and loss A if 
and only if

N N

(1.2.9) ql(x) =  l i /  Y A ifc 7Tj(a;) =  min Y
^ '  l < j < N

almost surely with respect to P. If S = ihen inequality (1.2.8) becomes an 
equality.

P r o o f . We obtain from equalities (1.2.6) and (1.2.7) that

( 1.2.10)

.  N N

R ( S ) =  / '^ q j{x)Y ^A ijT r i{x)f{x)f i{d x )
j = i  i = i

.  N  N

where C = {x: f {x)  >  0}, P =  X )ili ^¿Pi, and f {x)  is the density of the measure P 
with respect to the measure p. Thus inequality (1.2.8) is proved.

The sufficiency of condition (1.2.9) follows from (1.2.10). The case of an equality 
in (1.2.8) also follows from (1.2.10).

Now we prove the necessity of condition (1.2.9) by contradiction. Let S =  Ŝ â 
be a Bayes test such that ql{x) =  1 and

N N N

^AikTTiix) > ^Aii7Ti{x) =  min V A i j 7Ti(a:)K7<viv ' ^2=1 2=1 2=1
for X e  A, where A is some event of positive probability, P(A) >  0. Let Si be a test 
that differs from S only on the event A and such that qf̂  (x) =  I ioT x £ A. Then

- TV .  TV TV

■^(^i)= /  'y\Aii-Ki{x)?{dx)A  /  'y^q^^{x)'y\-Ai}M^)Pidx)

.  N  .  N  N

<  /  X )^ife7ri(x)P(dx)+ /  Y^q^j{x)'^AijTri{x)P{dx)
JA j_ i JX\A

=  R{5).
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This is a contradiction, since J is a Bayes test. The necessity of condition (1.2.9) is 
proved. □

If Aij =  1 -  Sij where Sij is the Kronecker symbol (that is, Sij =  0 for i =  j  and 
Sij =  1 for i 7̂  j ) ,  then the Bayes test for the loss A is called the maximum 
a posteriori probability test. In this case

N

Y^Aij1Ti{x) =  ^7Ti(x) =  1 -  nj{x)
2=1 i:̂ j

and condition (1.2.9) defining the Bayes test can be rewritten as

(1.2.11) qf.{x) =  1 if TTkix) =  ^max^Trj(x).

The risk of an arbitrary test S with loss Aij =  1 — Sij is of the form
N

(1.2.12) i?(5) = =  7̂  ^} =  en{S)
i=l j^ i

where 6 is the index of a hypothesis and {0 =  j }  =  Hj. We see that R{5) in this 
case is the unconditional probability of a wrong decision ê îS) for the test 5. Thus 
the maximum a posteriori probability test minimizes the error probability eT̂ {5) of 
the test 5. Taking into account (1.2.1) and (1.2.4) we obtain from (1.2.12) that

N N

(1.2.13) e^{6) =
2=1 2=1

If iV =  2 and Aij =  1 — Sijy then according to (1.2.11) the maximum a posteriori 
probability test is ojF the form

(1.2.14) = { J; 7T2(x ) < •7Ti(x),
qf{x) = l -q^ {x ) .

Moreover, if 7T2(x ) =  i^i{x), then one can put either g|(^) =  1 or gf(x) =  1. 
Applying equality (1.2.7) one can rewrite equality (1.2.14) as

(1.2.15) 4 {x ) \ o ,
_  J ’ 2̂P2(a;) >  •7TiPi(x), _  1 _

T̂ 2P2{x) < 7TiPi(x),
i/f(x) =  1 -  q^{x).

Note that condition (1.2.9) does not uniquely determine the test ¿7r,A- In 
particular, it does not uniquely determine which hypothesis should be accepted
if two or more numbers among Yli^i Aij7Ti{x) are maximal. This is a matter of 
definition of the probabilities q^{x) =  (^ i(x ), 2̂( )̂1 • • • on the boundaries

Tfe =  \ x:"^Aik7Ti{x) =  mm.^AijTTi{x) \

of the sets

{ JV IV V

a;: YAi*7Ti(x) < min V  Aij7Ti(x) 
i=l i=l J

Using condition (1.2.9) the hypothesis Hk is accepted on Fk according to the test 
Sqr,A- Therefore the problem is to decide about the points of the boundary Fk to be
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included into the set Xk where the hypothesis Hk is accej^ed. One of the possible 
approaches is to include points of Tk to any of the regions Xj adjacent to Ffc; in this 
case condition (1.2.9) holds and the risk i?(57r,A) does not change. More precisely, 
ii A C  FfcjL n  • • • n  Ffc^, then, according to the Bayes test, it makes no difference 
for X e  A which hypothesis among Hk ,̂ . . . ,  Hki is accepted. Moreover, one can 
accept the hypotheses Hk ,̂ . . . ,  Hki randomly with probabilities ql̂  ( x) , . . . ,  ql (̂x),
X)i=i Qkii )̂ ~  R{Stt,a ) does not change in this case.

The general definition of a Bayes test 5-ĵ â is based on the sets

(1.2.16) Ffci,...,fci — P i Ffc. P  Fj
i= i

where Fj = X  \ Fj. As q^{x) for x G Fki .̂.. k̂i one can take an arbitrary vector 
of the set of vectors (gi,g^2, • • • , 9iv) with q± > 0, q2 > 0,. . .  q̂N > 0 and
S i l l  =  1 and whose coordinates with indices different from fci,. . . ,  fc; are zero. 
It is clear that the set Rk includes only one vector whose fc-th coordinate is 1, 
while all others are zero. Thus one should put q^{x) =  for x G Xk. This implies 
the following improvement of Theorem 1.2.1.

T h e o r e m  1.2.2. A test S is Bayes if and only if

q^{x) =  /
L Rkij... k̂ii

for X £  X k ,  

forxG

for P-almost all x where Fk̂ .̂..,ki are the sets defined by (1.2.16).

Theorems 1.2.1 and 1.2.2 show that randomized tests do not decrease the risk 
R{S), however they enlarge the set of different Bayes tests Sn,A- Moreover Theorems 
1.2.1 and 1.2.2 imply that among Bayes tests Ŝ .̂a there is at least one nonrandom- 
ized test.

Let N = 2. Then

X i  =  < x : Y ^ A i i T : i { x )  <  ^ A i 2 ' K i { x )  > ,
I 2=1  2=1 J

X 2 — \ X ’. ^  ^   ̂- 2̂1*^2 (^ )  r )
I 2=1 2=1 J

Fi =  F2 =  |x:^Aii7Ti(a;) = ^ A i 2 7 T i { x ) ^  .
2 = 1 2=1

Hence we deal with a single set F i 2̂ =  Fi =  F2 instead of sets (1.2.16); moreover 
Ri ,2 =  {(^1, 2̂): qi > 0 ,q2>  0, ^i+g2 =  1} in this case. According to Theorem 1.2.2 
we obtain for the Bayes test ¿tt.a that qfix) =  1 for a; G X i and q îx) =  1 for 
X G X 2. As q^{x) =  {qi{x),q2 {x)) for x G Fi,2 one can take an arbitrary function 
with values in iii,2-

In the case of iV =  2, the Bayes test S =  5̂ â equals the maximum a posteriori 
probability for Aij =  1 — Sij. Applying (1.2.14) and (1.2.15) we represent the test
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i  =  ¿7t,a in the form

{1, Z2, l(x)>C,
q{x), Z2,i(x) =  c, ql(x) =  1 -  q^{x)

0, Z2,i{x) < c,

where c =  7ri/7T2, 2̂,1(3̂ ) =  P2(^)/pi(^) is the likelihood ratio (we assume that 
0/0 =  0), and q(x) is an arbitrary measurable function with values in [0,1]. A 
test of the form (1.2.17) for an arbitrary function q(x) is called the likelihood ratio 
test. Note that we considered in the preceding section a likelihood ratio test of the 
form (1.2.17) for a specific function q{x) being constant on the set {^2,i(x) =  c} 
(see (1.1.35)). Like the preceding section, we denote by the likelihood ratio 
test 5 defined by relation (1.2.17).

The minimax approach. The quality of a test 5 in the minimax approach 
is measured by(1.2.18) e(S) =  max ajiS) =  maxeq îS)

where eT̂ {5) is the unconditional error probability of the test S defined in (1.2.13). 
Recall that eqr{S) is the risk of the test 5 if a priori distribution is determined by 
the vector tt =  (tti,7T2, . . . ,  tvn) and loss is Aij =  1 — Sij.

A test S* such that

(1.2.19) e{5*) =  mine(¿) s
is called minimax  ̂ where e{5) is the maximal error probability of the test 5 (see 
relation (1.2.18)).

The following result contains a sufficient condition that a test is minimax.

T heorem 1.2.3. Let there exist a Bayes test 5 {with respect to some a priori 
distribution ^ =  (^1, . . . ,  ^iv) o,nd loss Aij =  1 — 5ij) such that

(1.2.20) ai(J) =  --- =  Q'N(5).

Then the test 6 is minimax.

Proof. For all tests 5 it holds that
N N

e{S) > Y^TTjai{S) > ^7rjO:¿(¿) = = e{5),
j=i j=i

whence it follows that the test ó is minimax. □

Let ^ be a test satisfying (1.2.20). The a priori distribution ñ corresponding 
to the test ñ is called the worst or the least favorable. This notion is explained by 
saying that the maximum

( 1.2.21) maxe7r(¿7r) =  maxmine7r(¿)
7T ir S

is attained at tt =  where 5̂  ̂ is the Bayes test with respect to a priori distribution n 
and loss Aij = 1 — Sij. Therefore the minimax test satisfying (1.2.20) is the Bayes 
test with the maximal error probability. The proof of equality (1.2.21) and of the
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existence of the worse a priori distribution and the minimax test can be found in 
[8, 10]. More detail on the minimax approach can be found in [4, 52].

In the case iV =  2, the minimax test S* can be found by applying the fun­
damental Neyman-Pearson lemma and the set described in Section 1.1. By 
Theorem 1.2.3 the minimax test S* is a Bayes test 5 with respect to some a priori 
distribution 7T =  (^1,^2) and loss Aij =  1 — Sij such that ai ( i )  =  0:2 (¿) provided 
such a test exists. Such a Bayes test S exists, indeed, and it corresponds to the 
point A =  {ai{S)^a2 {S)) € 01 of the intersection of the lower boundary of the set 
01 and the diagonal of the square [0,1] x [0,1] joining its corners (0, 0) and (1,1) 
(see Figure 1.2.1).

F ig u r e  1.2.1

Moreover the following result gives an explicit form of the test 6.
T h e o r e m  1.2.4. There is a likelihood test that is a minimax test. The 

parameters c and q{x) = q =  const of the likelihood test are determined by the 
equation ai{S '̂ )̂ =  a2(i^’^).

P r o o f . According to Theorem 1.2.3 it is sufficient to find a Bayes test S corre­
sponding to some a priori distribution ^ =  (^1, ^2) and loss Aij =  1 — 6ij such that 
ai(5) =  Oi2{5) and 5 coincides with a likelihood ratio test 5̂ '̂  for some parameters 
c and q{x) =  q =  const. We have seen above that such a Bayes test exists and it 
corresponds to the point A =  (a i (5), 0:2(5)) G 01 of the intersection of the lower 
boundary of the set 01 and the straight line joining the points (0,0) and (1,1) (see 
Figure 1.2.1). According to Theorems 1.2.1 and 1.2.2 this Bayes test S coincides 
with the likelihood ratio test for some parameters c and q where c =  '̂ 1/^2 and 
^ =  (^i , 7T2) is the a priori distribution corresponding to the Bayes test S. □

R e m a r k  1.2.1. Since an arbitrary Bayes test coincides with a likelihood ratio 
test 5̂ '̂  for some constants c and g, the proof of Theorem 1.2.4 follows from the 
existence of a solution of the equation o:i(5^’ )̂ =  a2(5^’ )̂ with respect to (c, g). 
Note that this equation is of the form

Pl(^2,l > C) +  ? 2{Z2,l > C) +  q[?\{Z2,l =  C) +  P2(^2,l =  c)j =  1.

The proof that this equation has a solution with respect to (c, q) is the same as 
that of the existence of a solution of the equation o:i(5^’ )̂ =  a G [0,1] used in 
Theorem 1.1.1 and in Remarks 1.1.4 and 1.1.5.
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The most powerful tests. We turn to the construction of the most powerful 
defined by relation (1.2.2). Like the case of the minimaxtest in the class /C,

test, one can apply Bayes tests for this purpose, too.

T heorem 1.2.5. Let there exist an a priori distribution tt =  (7ri,7T2, . . .  ,7Tiv) 
such that

(1.2.22) ojji(^7r) Gij, j  1,2, . . . ,  N  1,

where is the Bayes test corresponding to a priori distribution tt and loss Aij 
1 — 6ij. Then 5̂  is the most powerful test in the class

Proof. The definition of a Bayes test implies that

7̂r(̂ 7r) ^ T̂r(̂ )

for all tests 5, whence
N N - l

(1.2.23) V ^ V '^j^j
j = i  j = i

for all tests 5 G /Cai,...,aAr-i* Condition (1.2.22) implies that CijiS-ĵ ) = Oij for 
j  < N — 1, Then it follows from (1.2.23) that aN{SN) < Q îv(i), that is, is the 
most powerful test in the class /Cai,...,ajv_i- □

Remark 1.2.2. One can treat equalities (1.2.22) (and equalities (1.2.20), too) 
as the system of — 1 equations and use it to evaluate the a priori distribution 
TT and the corresponding Bayes test ¿tt- Generally speaking, this Bayes test is 
randomized. See Section 1.1 for another method of finding the most powerful test 
for N = 2 that does not use the Bayes tests.

Example 1.2.1 (Change point problem). Let an observation be a sample 
=  (ii, • • •,in) where 6 , . . . , in are independent random variables. The first 

6 — 1 oi them have a distribution Gi, while all other random variables have a 
distribution G2 and G2 ^  Gi. The number 6 is called the change point (of the 
distribution). Possible values of 6 are 1, 2 ,. . . ,  n. Let Hj = {0 =  j} , j  =  1, 2 ,. . . ,  n, 
be the statistical hypotheses about the parameter 0, Without loss of generality we 
assume that the measures Gi and G2 have densities gi{x) and g2{x)  ̂ respectively, 
with respect to some cr-finite measure pb. Then the measure generating the 
distribution of under the hypothesis Hj is absolutely continuous with respect 
to the measure and its density is given by

j — l n

i=l l= J

where we put 11?= 1 =  1-
Let S* be the maximum a posteriori probability test and let the a priori 

distribution be uniform, that is, S* is the Bayes test corresponding to the loss 
Aij =  1 — Sij where Sij is the Kronecker symbol and the a priori distribution is 
7T =  TT * =  (1/n, 1 /n , . . . ,  1/n). According to (1.2.11) the test 5* is such that

(1.2.24) Ps(x)*(x) =  max p j ( x ) ,  x G R ^ ,
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that is, the test 5* maximizes the density pj{x), A test S* satisfying equality (1.2.24) 
is called the maximum likelihood test (see [9]). Condition (1.2.24) means that for 
all j  =  l , 2 , . . . , n

<5*(x)-l n j - 1  n

(1.2.25) JJ  gi{xi) JJ  52(2:») > Jj52(a;i)-
¿=1 i=5*(x) i= l  i=j

Dividing inequality (1.2.25) by pi{x) one can prove that the test S*{x) is such that

TT 9i{xj) gi{xj)
g2{xi) -  g2{Xi)

for all j  =  1,2, . . . ,  n. Properties of the test ¿*(x) are studied in detail in [9], §72.
To complete a brief discussion of the change point problem we mention [9], 

a survey paper [30], and a monograph [46] where more detail is given about the 
change point analysis (however there is an extensive literature devoted to this topic).

1.3. Distinguishing com posite hypotheses

The setting o f  the problem  and main definitions. Let  ̂be an observation 
that is a random element assuming values in a measurable space (X, and let 
^  =  {Po]0 e  &} he 8i parametric family of probability measures defined on (X, 
where © is some set containing more than two points. Let the distribution of the 
random element  ̂ be generated by a measure of the family

Let =  {Pe;0 e  ©¿}, i =  1,2, where ©i fl ©2 =  0  and ©1 U ©2 =  ©, so 
that U ^ 2  =  Consider the hypotheses Hi and H2 that the distribution of 
the element  ̂belongs to the sets <̂ 1 and <^2, respectively. For the sake of brevity 
we write € ©i, i =  1,2. It is clear that at least one of the hypotheses Hi 
and H2 is composite, since at least one of the sets ©1 and ©2 contains at least two 
points. Consider the problem of distinguishing two hypotheses Hi and H2 by the 
observation  ̂=  x, x e  X .

As in Section 1.1 we consider a statistical test S for distinguishing hypotheses Hi 
and H2 by the observation  ̂=  x. The test is a measurable mapping

¿ :(X ,^ ) - - ( [0 ,1 ] ,^ ( [0 ,1 ] ) ) .

We treat 5(x) as the probability that the hypothesis H2 is accepted if  ̂=  x, while 
1 — S{x) is the probability that the hypothesis Hi is accepted if  ̂=  x. We also put
5 - 5 ( 0 .

To measure the quality of a test 6 we consider the function

(1.3.1) P{S;e) =  Ee5, 0 € ©,

where is the expectation with respect to the distribution P .̂ The function P{6\6) 
is called the power function of the test 5. It is clear that /?(J; 6) for 0 G ©1 is the 
probability of a wrong decision, while for 0 G ©2 it is the probability of a correct 
decision.
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D e f in it io n  1.3.1. We say that a test Si is uniformly more powerful than a 
test ¿2 if

(1.3.2)
(1.3.3)

l3{Si;0)<l3{S2,e) for all 01 , 
> P{S2yO) for all 9 e  02 ,

and at least one of the inequalities for at least one 0 is strict.

D e f in it io n  1.3.2. A test that is uniformly more powerful than any other test 
is called the uniformly most powerful test (UMP test).

There is a different approach for measuring the quality of tests, namely the 
Bayes approach. When following this approach we consider a random variable A 
treated as a loss: it assumes the value Ai(0) if the hypothesis Hi is accepted and 
the true parameter is 0. The mean loss of the test S is

(1.3.4) E¡A =  Ai{e)Ee(l -  ¿) +  A2{e)Ee5 =  (^ 2(0) -  A i ( e ) ) m $) +  Ay{e)

if the parameter is 6. Here is the expectation with respect to the distribution 
generated by the test 5 if the true parameter is 0 and P{S\9) is the power function 
of the test S defined by (1.3.1).

Let a <j-algebra S§{&) of measurable subsets of 0  be given and let a probability 
measure Q be defined on the measurable space (0 ,<^(0)), that is, 0 is a random 
parameter and Q(B) =  P{0 e  S } ,  B e  <^(0). Applying (1.3.4) one can evaluate 
the mean loss:

(1.3.5) E^A= f E¡AQ{dt)= f Ai{t)Q{dt)+ f {A^it) -  A i { t ) ) m ; t )  Q(dt)
Jq Je Jq

where is the expectation with respect to the distribution generated by the test S. 
The measure Q is sometimes called a priori measure or a priori distribution.

D e f in it io n  1.3.3. A test 5a ,q is called Bayes with respect to the loss A and 
a priori distribution Q if

(1.3.6) < E^A

for any test 5 where E^A is the mean loss defined by (1.3.5).

The following result allows one to compare the quality of tests in the Bayes 
approach and in an approach based on the power function.

T h e o r e m  1.3.1. Let Q be an arbitrary a priori measure. Assume that the loss 
function Ai{t) is such that

(1.3.7)
(1.3.8)

Ai(t) < A2{t) for all t G 01 , 
Ai(t) > A2{t) for all t G 02 -

If a test 5i is uniformly more powerful than a test S2, then their mean losses are 
such that

(1.3.9) E^M < E^M.
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P roof. Let a test 5i be uniformly more powerful than a test ¿2. Then inequal­
ities (1.3.2) and (1.3.3) hold. Taking into account inequalities (1.3.2) and (1.3.3) 
and conditions (1.3.7) and (1.3.8) we obtain from (1.3.5) that

E^M-E"'M= f  {A2{t) -  Ai{t))il3i5i-,t) -  l3{S2-,t))Q{dt)
jQi

-h f  (^2(i)-Ai(t))(/3(Ji;t)-/?(J2;i))Q(dt)<0,

that is, inequality (1.3.9) is proved. □

Corollary 1.3.1. If S* is a UMP test̂  then it also is a Bayes test with 
respect to an arbitrary a priori distribution Q and any loss function Ai{t) satisfying 
conditions (1.3.7) and (1.3.8).

Remark 1.3.1. Conditions (1.3.7) and (1.3.8) posed on the loss functions Ai{t) 
and A2{t) are natural in the sense that if t G ©i, then Ai{t) is the loss due to the 
acceptance of the hypothesis Hi if it is true, while A2{t) is the loss due to the 
acceptance of the alternative hypothesis H2 if the hypothesis Hi is true. Thus it 
is reasonable to assume that Ai{t) < A2(t) for t G ©i. The same remark can be 
made regarding inequality (1.3.8).

Remark 1.3.2. The method of comparing the quality of tests based on Def­
inition 1.3.3 is sometimes called the complete Bayes approach (see [7]). Following 
this approach, one treats the numbers tt̂ =  Q(©i) =  P{^ € ©¿}>  ̂=  1, 2, as a pri­
ori probabilities of the hypotheses Hi and 1 / 2 , respectively. Considered in [7] the 
so-called partial Bayes approach does not require that the probabilities tti and 7T2 
are known. Instead, the distributions of the parameter 6 are known on both sets 
©1 and ©2.

Along with the Bayes approach we consider the minimax approach under which 
one seeks a test minimizing the maximum of the conditional mean loss E^A.

Definition 1.3.4. A test S is called minimax for the loss A if

(1.3.10) sup A < sup E^A
tee tee

for all tests S where Ef A is the conditional mean loss defined by (1.3.4).
Generally speaking, the UMP tests do not exist in the class of all possible tests. 

Thus we consider proper subsets of tests and look for the UMP tests there. The 
following example exhibits this idea. The method below is suitable for finding both 
Bayes and minimax tests.

Example 1.3.1. Let an observation  ̂ be a vector  ̂ =  (^1,^2,• • • ,^n) whose 
components are independent and have normal A7(0, a f), i =  1, 2, . . . ,n ,  distribu­
tions. Put ©1 =  (—00, 0) and ©2 =  [0,oo). To distinguish the hypotheses H i:6  G 
©1 and H2: 0 G ©2 we consider the class of linear nonrandomized tests S{r) of the 
form S{x\r) =  / ( (x ,r )  > 0) where x =  (a^i,X2, . . .  ,Xn), r =  (r i,r2, . . .  ,rn), and 
(x, r) =  ¿ ¡L i  the vector r is such that =  1- G{r\6) =  P{S{r)\6).
It is clear that

G{r-,e) = Pe{(i,r) > 0} = $ ^
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where $(a;) is the distribution function of the law A/^(0,1). Taking into account 
inequalities (1.3.2) and (1.3.3) we prove that 5{r) is a UMP test if

^ e ( t - K )

!• « )

- l / 2>

- l / 2>

for all 0 < 0,

for all 0 > 0

for all vectors r* =  (r i,r2, . . . ,  Vn) where r =  (ri, r2, . . . ,  ?n)- The latter inequalities 
are equivalent to

n n

<̂ fri < ^  a fr f for all r =  ( n , T2, . . . ,  r „ ) .
i=l i=l

Thus in order to find a UMP test it is necessary to find a vector r for which the 
function assumes its minimal value on the set of vectors r such that
Zir=i =  1- It is clear that the components of the vector r with this property are 
such that

S = i ^

The following result provides necessary and sufficient conditions for the exis­
tence of a UMP test.

T h e o r e m  1 .3 .2 . In order that a test is UMP for distinguishing the hypotheses 
H i\6  £ and H2:0 e  &2 it is necessary and sufficient that it is an MP test for 
distinguishing two arbitrary simple hypotheses H[ :6  =  9i and =  62 where 
6\ G ©1 and 62 G ©2*

Proof. Necessity. Let 5* be a UMP test and let S be an arbitrary test. Then 
P{5*]9) < /3{S]9) for all (9 G ©i and P{S*;9) > P{5;9) for all 9 G © 2. Let 9i G ©1 
and 02 ^  © 2- Consider two simple hypotheses H[:9 =  9i and =  ^2- Then 
type I and type II error probabilities of the test are such that

(1.3.11)
a(5*) =  9i) < p{6; 0i) =  a{6),

0{5*) = Ee, (1 -  5*) =  1 -  l3{S*;e2) < 1 -  P{S; 62) =  m

(see Section 1.1), that is, 5* is an MP test.
Sufficiency. Let S* be an MP test for distinguishing the hypotheses H{:9 =  9i 

and H2: 0 =  02 for all 9i G ©i,  ̂=  1,2. The Neyman-Pearson fundamental lemma 
(see Theorem 1.1.1) implies that P{S*) < P{5) for all tests 5 of level =
)9((J*;0i). It follows from (1.3.11) that P{5\9>^ <  /? (J * ;02 ) for all 02 G ©2 and all 
tests 5 such that /3(5;0i) =  /3(5*; 0i). Interchanging the hypotheses H[ and H2 
and applying the Neyman-Pearson fundamental lemma once more we prove that 
/3(5*; 0i) < y3(5; 0i) for all tests 5 such that /3(5; 02) =  /0(5*; 02) and all 0i G © 1. □

The following example is a continuation of Example 1.3.1. It exhibits an appli­
cation of Theorem 1.3.2 for finding a UMP test for another restriction of the class 
of tests as compared to that studied in Example 1.3.1.



186 1. GENERAL THEORY OF HYPOTHESES TESTING

Example 1.3.2. Let  ̂=  (^1,^2» • • • >in) and random variables be indepen­
dent and distributed according to the Ai{6, cr?), z =  1, 2, . . . ,  n, laws. Consider the 
hypotheses Hi :6  < 0 and H2:0  > 0. In order to construct an UMP test we use 
Theorem 1.3.2 and find an MP test for distinguishing the hypotheses H{: 6 =  9i and 
H2.6  =  62 for all 61 < 0 and 62 > 0. The Neyman-Pearson fundamental lemma 
implies that this can be done by constructing a likelihood ratio test for distinguish­
ing the hypotheses H[ and P(^5 î) be the density of the distribution of the
vector  ̂ in the case of 0 = 6i. Then

(1.3.12) A p(^; 2̂)
« i ) E

, 2̂ -  1̂• +
¿=1

where x =  (iCi,a;2, • • ■ ,aJn)- This means that S{x) =  I{A{x) > c) is the desired 
likelihood ratio test where c is some constant. Since 02 > Oi) we obtain from (1.3.12) 
that this test is of the form

(1.3.13)

where k is some constant. If the constant k is such that Eo<5(̂ ) =  a where a G (0,1) 
is a certain number, then the test S given by (1.3.13) for some constant k does not 
depend on 0i and 02. Now Theorem 1.3.2 implies that the test defined by (1.3.13) is 
UMP in the class of all tests such that p{S]0) =  a where the constant k is specified 
above.

The latter example suggests a general idea on how to restrict the class of tests 
under consideration.

D e f in it io n  1.3.5. The number

ai(5) =  sup /3(5;$)
0€0 i

is called a level or type I error probability of the test i.

The number ai {S) is sometimes called the size of the test S. This is the maximal 
probability of rejecting the hypothesis Hi if it is true.

Consider the class of tests

Ka = {S:ai{S)<a}

where a is some number of the interval [0, 1].

Definition 1.3.6. A test 5* is called a uniformly most powerful {UMP) test 
in the class Ka if

^ (¿* ;0 )> /?(5 ;0 ), 0 G © 2,
for an arbitrary test 5 G ATq.

Similar definitions in the class can be introduced for Bayes and minimax 
tests [7].
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U M P test for distributions with a m onotone likelihood ratio. Let

0  =  ( - 00, oo), 01 =  ( - 00,0o]) and 02 =  {Oo, oo)

where 6q is a fixed point of 0 . The hypotheses H i\6  G 0 i  and H2‘.9  G 02 are 
called one-sided hypotheses in contrast to the case of H2-0  ^  6q and Hi: 6 =  Oq 
where they are called two-sided hypotheses, since the sign of 9 — 6o can be arbitrary 
in the latter case.

In what follows we assume that the measure for all 0 G 0  is absolutely 
continuous with respect to some a-finite measure fi and the density is

p{x\ 9) =  dPe/dpL{x)  ̂ x e  X.

Moreover we assume that for all 9\ < 92 the likelihood ratio

p (x ;92)(1.3.14) z{x]92,9i ) =
p{x;9i)'

x e  X,

is a monotone (either nondecreasing or nonincreasing) function of some statis­
tic T{x). We say in this case that the family ^  =  {Pe\9 G 0} has a mono­
tone likelihood ratio. For the sake of definiteness we assume that the likelihood 
ratio (1.3.14) is a nondecreasing function of T{x). The case where z{x;92y9i) is a 
nonincreasing function of T{x) can be considered analogously.

Theorem 1.3.3. Let 0 g 0  = (—00, 00) be a one-dimensional parameter. 
Assume that a family ^  = {Pe]9 E Q} has a monotone likelihood ratio z{x\ 02» ^i)- 
Then

1. In the class of tests Ka, ol G (0,1), there exists a UMP test for distinguish­
ing the hypotheses Hi:9 e  &i =  (—00, 0o] o,nd N2 '-9 G 02 =  (0O)Oo). The 
test is given by

(1.3.15) 5*{x) =  I{T{x) > c) +  qI{T{x) =  c)

where c G (—00; 00) and q G [0,1] are the parameters defined by

(1.3.16) =  P ,(T (0  > c) -h qPooinO  =  c) =  a.

2. The power function P{S*;9) of the test S* defined by equalities (1.3.15) 
and (1.3.16) is a nondecreasing function o f 9 e & .

3. For all G 0 the test (1.3.15) is a UMP test in the class for
distinguishing the hypotheses H[:9 <9^ and H2\9  > 9’ .

4. For every 9 < 9q the test 5* defined by equalities (1.3.15) and (1.3.16) 
minimizes the function P{S\9) in the class Ka-

Proof. Consider the two simple hypotheses Hi:9 = 9q and H2:9  =  92 where 
92 > 9q. According to the Neyman-Pearson fundamental lemma (Theorem 1.1.1), a 
most powerful test for distinguishing the hypotheses Hi and H2 in the class of tests 
S such that =  a is of the form (1.3.15), since the inequality z{x;92y9o) > c is 
equivalent to the inequality T{x) > c in view of the monotonicity of the likelihood 
ratio where the constants c and q are defined by (1.3.16). Since the parameters c 
and q do not depend on 02, the test is the most powerful for distinguishing the 
hypotheses Hi:9 = 9q and H2:9  =  92 for all 02 ^ ©2- Thus Theorem 1.3.2 implies 
that the test 6* maximizes P{S]9) for all 0 G 02 in the class of tests S such that 
/3{5-,9o) =  a.
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Now let O' and 0” be two arbitrary points such that O' < 0", Again by the 
Neyman-Pearson fundamental lemma the test S* is the most powerful for distin­
guishing the simple hypotheses Hi: 0 =  O'l and H'2.0  =  0" in the class of tests of 
level a' =  O'). By the definition of the set 91 (see Section 1.1) a(5*) < 1—/?((J*)
for the most powerful test 5*. Thus

a' =  O') =  a{5*) < 1 - (3{5*) = p{5*\0").

Therefore ¡3{5*\0') < (3{5*\0") for all O' < 0" and statement 2 of the theorem is 
proved.

Since the function ^{5*\0) is nondecreasing, the test is such that P{S*;0) < a 
for all 0 < Ooy that is, the test S* belongs to the class Ka- In its turn belongs 
to a wider class {¿: =  a}. Since S* is a UMP test in the class EqqS =  a }, it
also is a UMP test in the class K^-

Statement 3 of the theorem can be proved in the same manner.
Statement 4 follows from statements 1-3 applied to the problem of distin­

guishing the hypotheses Hi'.O > Oq and Hi'.O < Oq- A UMP test in the class
{¿:sup^>^Q EeS < 1 — a } is =  1 — ¿(x) for this problem and the power func­
tion 1 — P{5*]0) =  EqŜ  is maximal for 0 < Oq. Therefore the test S* minimizes
P{S]0) for 0 < Oo and for tests S of the class Ka> □

R e m a r k  1.3.3. Equality (1.3.12) shows that the likelihood ratio in Exam­
ple 1.3.2 is a monotone function of the statistic

T{x) =  '^a i^X i, x =  {xi,X2,. .. ,Xn).
i= l

Thus Theorem 1.3.3 is applicable in this case and a UMP test exists for distinguish­
ing the one-sided hypotheses.

E x a m p l e  1.3.3. Let ^ =  (^ 1 ,^ 2 , • • • ,^ n ) where ^ » ^ 2 ,  • • • are independent 
identically distributed random variables whose distribution depends on a parameter 
0 e (0 ,1) such that Pe{ î = 1} = 0 and =  0} =  1 -  0. The space X  of 
possible values of the random vector  ̂ consists of the vectors x =  (xi, X2, . . . ,  Xn) 
whose coordinates Xi are either 0 or 1. The distribution of the vector  ̂ is given by

Pe(x) =  X =  (x i , . . . ,  Xn),

whence we obtain the likelihood ratio:

We see that the likelihood ratio ^(x;02,^i) for 0i < O2 is an increasing function of 
the statistic T(x) =  Yh=i According to Theorem 1.3.3 there exists a UMP test 
for distinguishing one-sided hypotheses in the class K^-

An important class of distributions for which the likelihood ratio is monotone 
is presented by the one parameter exponential family. The density p(x; 0) in this 
case is given by

(1.3.17) p(x; 0) =  h{x) exp{a{0)T{x) +  V{0)}, x G X,
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where all the functions on the right-hand side are finite and measurable (see [38], 
Section 1.2). In view of the factorization criterion (Theorem 4.1.2 in [38]), the 
statistic T{x) is sufficient. The likelihood ratio in this case is given by

z{x; 02, 01) = exp{{a{02) -  a{0i))T{x) +  {V{02) -  V{0i))}.

This implies that if a{02) -  a{0i) does not change its sign for all 0i < 02, then the 
likelihood ratio z{x;02, 0i) is a monotone function of the statistic T{x).

Theorem 1.3.3 implies the following assertion.

C o r o l l a r y  1.3.2. Let the density p{x,0) be of the form (1.3.17) where a{0) 
is a monotone function. Then there exists a UMP test S* in the class for 
distinguishing the hypotheses H ii0 < 0q and H2:0  > 0q. If the function a{0) 
increases, then the test is defined by (1.3.15) and (1.3.16). If the function a{0) 
decreases, then the test S* is defined by (1.3.15) and (1.3.16) where T{x) < c and 
T{^) < c substitute T{x) > c and T(^) > c, respectively.

R e m a r k  1.3.4. If we distinguish the hypothesis Hi:0 =  0q and its two-sided 
alternative H2:0  Ô) then a UMP test does not exist in the case of exponential
distributions (1.3.17). Indeed, for simplicity let the function a{0) increase and let 
the P^-distribution of T(^) for all 0 possess the density. Then by the Neyman- 
Pearson fundamental lemma a most powerful test for distinguishing the hypotheses

Hi: 0 = 00 and 0 =  02

with 02 > 00 is nonrandomized and moreover S*{x) = I{T{x) > c). On the other 
hand, if 02 < 00, then the most powerful test is Ŝ {x) =  I{T{x) < c). Thus there 
is no unique UMP test for all 02 > 0o and 02 < 0o- Ir a similar manner we get 
that there is no UMP test for distinguishing the hypotheses Hi:0 e (0i , 02) and 
H2:0  ^ {01, 02) where 0i < 02- However li Hi\0 {0\,02) is the null hypothesis 
and H2:0  £ {01, 02) is its alternative, then a UMP test exists. This case is studied 
in the next section.

Tw o-sided null hypotheses. Exponential families o f  distributions. Let
a distribution P̂  be absolutely continuous with respect to some a-finite measure p 
and let the density p{x\0) =  dPe!dp{x) be of the form (1.3.17).

T h e o r e m  1.3.4. Letp{x\0) be of the form (1.3.17) where the function a{0) is 
monotone. Let Hi:0 ^ {0i , 02) be the null hypothesis and let H2\0  G {0i , 02) be its 
alternative where 0\ < 02 are two fixed numbers. Then

1) in the class

Koc = {5 : sup E0(5(i) < a  >
[ J

there exists a UMP test 5* such that

(1.3.18) 5*{x) = I{ci < T{x) < C2) +  qiI{T{x) = d )  -h q2l{T{x) =  cs) 

where ci, C2 , qi, and q2 are the constants defined by

(1.3.19) E ,,5*(0 =  E ,,5*(0 =  a;

2) the test S* defined by equalities (1.3.18) and (1.3.19) maximizes the power 
function l3{S;0) inside the interval {0i , 02) and minimizes it outside this 
interval,
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3) for 0 < a < 1 the power function /3(5*; 6) attains its maximum at some 
point 00 G (^ 1 ,0 2 ); moreover it strictly decreases in both cases if the argu­
ment goes to the left of$o or if it goes to the right o f0o- Note that the case 
where the distribution ofT{^) is concentrated at two points is not excluded  ̂
that is, the case where there are t\ and t2 such that for all 6

Pe{T{ 0  = h }  + Pe{T{ 0  = t2} = l.

We omit the proof of Theorem 1.3.4 that can be found in [7, 9], or [34].

The generalized N eym an-Pearson fundamental lemma. The construc­
tion of MP and UMP tests requires, in fact, the solution of a variational problem and 
finding a maximum of a certain functional of the test satisfying some restrictions. 
In particular, we deal with the test 5* in Theorem 1.3.4 for which we maximize the 
functional

L 8{x)p{x\6) p{dx)

in the class of tests S such that

S(x)p(x; 0i) /a(dx) =  a,L ¿ = 1, 2.

The following result is sometimes called the generalized Neyman-Pearson fun­
damental lemma.

T heorem 1.3.5. Let / i , / 2, • • ♦, /m+i be real Borel functions defined on {X, 3S) 
that are integrable with respect to a measure fi. Consider the tests S such that

(1.3.20) [  6{x)fi{x) pi{dx) =  ai, ¿ =  1,2, . . . ,m ,
Jx

where a i ,a 2, . . .  ,am ore some numbers. Then the test 6*{x) that maximizes the 
functional S{x)fm-\-i{x) fj>{dx) is of the form

S*{x)
\ o ,

1 . if fm+l{x) > E ”= l  kifi{x),
if fm+l{x) < $^” ,1 kifiix),

where the constants k\,... ,km ore defined by conditions (1.3.20). 

P roof. Put

Fi{6)= [  S{x)fi{x) fji{dx), 
Jx

¿ =  1, 2, . . .  ,m-h 1.

A test 5 such that
Oil,  ̂ • • • ) '00,

maximizes Fm-\-i{5) if and only if it maximizes Fm-\-i{S) -  hFi{5) for some 
constants ki,k2, . . . ,km  (Z)H i l îFi{5) is fixed in this expression). This is the case 
if the test 6{x) maximizes the functional

( /m + iW  - '^ k i f i {x )^ S {x )  n{dx).
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The latter expression is maximal for the test S such that ¿(x) =  1 if
m

- Y ^ h f i i x )  >  0
i=l

and ¿(x) =  0 otherwise. The constants fci, f e , . . . ,  fcm occurring in the definition of 
the test 5, as well as the values of S{x) on the set

 ̂ i=l '

should be chosen to satisfy conditions (1.3.20). □
Unbiased tests. Another restricted class we use to construct UMP tests con­

sists of the so-called unbiased tests.
Consider the general problem of distinguishing the hypotheses Hi :6  e &i and 

H2 : 0 e  &2 where ©i fl ©2 =  0  and ©1 U ©2 =  ©. Let <5 be a test of the class

K,Q =  I ai(5) =  sup E$6 < a \ . 
I eeQi )

If ©1 contains only a single point 61 and Eĝ S =  a, then a is the probability of 
rejecting the hypothesis Hi if it is true. It is natural to require that a test S is 
such that the probability of rejecting the hypothesis i i i ,  if it is wrong, is bigger 
than a, that is, ¡3{5\6) > a for all 0 G ©2. If this is not the case, then there are 
alternative hypotheses 0 G ©2 such that the probability of accepting the hypothesis 
Hi is bigger than 1 -  a =  1 -  5 and the latter is the probability of accepting
the hypothesis Hi if it is true. It is reasonable to exclude such cases from our 
consideration.

Definition 1.3.7. A test S is called unbiased if

(1.3.21) inf j3(S;0)> sup 
0eO2 0eBi

Condition (1.3.21) implies that a test S G Ka of level ai(5) =  a is unbiased if
6) > a for all 0 G ©2. The class of unbiased tests of level a is denoted by Ka- 

By d&i we denote the boundary of the set ©i, that is, all the limit points of the 
set ©¿.

Lemma 1.3.1. Let T =  d&i f l 9©2 ^  0 . Assume that the density p{x\0) is 
continuous in 0 for fji-almost all x £ X. Then

(1.3.22) ^(5; 0) =  a for all0 £ r

for any test S £ Ka- 
Proof. Since

P(S]0)= [  S{x)p{x;0) fjL{dx), 0 < J(x) < 1,
Jx

and the function p{x;0) is continuous in 0 by Corollary 3.4.1 in [38], the power 
function P{S;0) is also continuous for any test S. This implies equality (1.3.22) for 
any test S £ ^

We denote by the class of tests J satisfying condition (1.3.22).
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L e m m a  1 .3 .2 .  Let Г =  d&i П 9 0 2  ф 0  and K a  C  ATa- Then any UMP test 
in the class К  a П К  a is UMP in the class Ka, too.

P roof. Let S' be a UMP test in the class К  a П Ka- It is sufficient to prove 
that 5' e  К  a and К  a C  К  a П Ka- The inclusion К  a C  К  a П К  a follows from 
К  a C к  a and к  a C Ka- Since 5' is a UMP test in the class К  a П К  a and the test 
5 =  a belongs to К  a П Ka, we have в) > P{5; 9) = a for all 0 G 02 , whence

inf > inf =  a.

Therefore S' G Ka- □

Lemma 1.3.2 implies that the problem of finding an unbiased UMP test can be 
reduced to the problem of finding a usual UMP test satisfying condition (1.3.22). 
If the number of points of the boundary P is finite, then the conditions of Theo­
rem 1.3.5 hold and one needs to prove that an optimal test S* does not depend on 
the point 0 G 02 at which the test maximizes the functional P{S\9) =  This 
means that S* is a UMP test.

Consider condition (1.3.22) for the following case. Let

0  =  ( - 00, 00), ©1 =  [01,^2], and ©2 =  [01, 02]*'= ( - 00, 00) \ [01, 02l-
If 61 < 62, then the common boundary P of the sets 0 i  and 02 contains only two 
points 61 and 02- Therefore condition (1.3.22) becomes of the form P{S\6i) =  a, 
z =  1, 2. If 01 =  {0 i}, then condition (1.3.22) is equivalent to P{S\6\) =  a.

The following result gives a necessary condition for a test of level a to be 
unbiased.

Lemma 1.3.3. Let S be a test of level a for distinguishing the hypotheses 

H i:6  =  6i and H2-6 ^ 0i-

Assume that the regularity conditions {R) hold for the density p(x; 0) of the mea­
sure Pe with respect to a a-finite measure fi. If the test S is unbiased, then

(1.3.23) Ee,i(e)5(^;0i) =  O

where S{x]0) =  ^ ln p (a ;;0).
P roof. Since the test S is unbiased, the power function P{S\0) attains its 

minimum at the point 0i. Since the function p{x;0) satisfies the regularity con­
ditions {R), the power function P{S;0) is differentiable by Lemma 3.4.4 of [38]. 
Therefore the equality P'{S;0i) =  0 is satisfied. Applying again Lemma 3.4.4 
of [38], we obtain

P'{S;0i)= [  S{x)p'0{x]9i)pL{dx) = [  S{x)S{x\9i)p{x;0i) fji{dx).
Jx Jx

This together with the equality P'{S‘,0i) =  0 implies (1.3.23). □

R emark 1.3.5. The regularity conditions (R) can be found in [38] (also see [7] 
or [9]). Lemma 1.3.3 implies that an unbiased test of level a for distinguishing the 
hypotheses Hi:9 =  9i and H2'-0 ^  0\ is a solution of the following two equations:

(1.3.24) E ,,5 (0  =  a, E ,,5(O5(^;0i) =  O.
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E x a m p l e  1.3.4. Let the distribution of ^ be exponential with a density of the 
form (1.3.17) where the functions a(0) and V{6) are differentiable. Then

S {x -,9 )^a '{e)T {x) +  V'ie).

Since EeS{i,e) =  0, we get V '(6») =  -a'{$)EeT{0- Thus

= a'{e)Ee5{mO ~ a'{e)Ee6{OEoT{0.

This implies that equations (1.3.24) become of the form

( i (0  -  a) =  0, E,, (¿ (0  -  =  0.

The following result describes the form of an unbiased UMP test for distin­
guishing a null hypothesis and its two-sided alternative hypothesis for exponential 
families.

T h e o r e m  1.3.6. Letp{x\6) he of the form (1.3.17) where the function a{6) is 
monotone. Assume that the problem is to distinguish the hypotheses H i\6  £ ^2]
and H2'-0 ^ [̂ 1, 2̂] where 61 < 62. Then

1. In the class of tests Ka there exists a UMP test S such that

(1.3.25) S(x) =  l(T(x) ^ [ci,C2]) +  qil(T(x) =  ci) +  q2l(T(x) =  C2)

where the constants Ci and qi, i =  1, 2, are defined by

(1.3.26)

if 61 < $2, and

(1.3.27) E ,,5 (0  =  a. E e M O - c ^ ) m  =  0

if 61 =  62 .
2. The test S defined by (1.3.25 )-(l.3.27) minimizes the power function P{5; 6) 

inside the interval [0i , 02] 'If (1.3.26) holds and maximizes it outside the 
interval [^1,02] if (1.3.26) holds and 9i < 62 or (1.3.27) holds and 61 =  62.

3. / /  0 < a  < 1 and 9\ < 02> ^hen the function P{S;6) attains its minimum at 
some point 60 G (0i, 2̂); moreover it strictly decreases in both cases: either 
the argument goes to the left of 60 or it goes to the right of 60. Note that 
the case where the distribution ofT{^) is concentrated at two points is not 
excludedy that is, we do not exclude the case where there are t\ and t2 such 
that for all 0

Pe{T{0 =  ti} + Pe{T{0 =  t2} =  h

Theorem 1.3.6 is similar to Theorem 1.3.4; however the words “minimizes” 
and “maximizes” are interchanged and the case of 61 =  62 is not excluded in 
Theorem 1.3.6. The proof of Theorem 1.3.6 is omitted (it can be found in [7, 9], 
or [34]).
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Example 1.3.5. Let  ̂ =  (Сь^г. • • • .Cn) where ^1,^2.• • • .in are independent 
identically distributed random variables with the Ai(0, a^) distribution. Consider 
the hypotheses Hi.a =  ao and Я 2: o' сто where сто € (0, oo) is a fixed number. 
The density of the distribution belongs to the family of densities

(2 7 г ст )~ " /^ е х р ^ -^ ^ ж ? ^ , стб(0 ,оо ), x =  (x i , . . .  ,x „).

The statistic T (x) =  X)”=i is essential for this family and the density of T{^) is 
<̂ “ ^/n(J//ст^) where

fn{y) = 2"/2Г (п /2)‘
i n / 2) - l - - v /2 У  > 0 ,

is the x^(n) density with n degrees of freedom.
An unbiased UMP test 5*{x) of level a is of the form (1.3.25) where the con­

stants Cl and C2 satisfy condition (1.3.27), while the constants q\ and Q2 are arbi­
trary, since the distribution of the statistic T(^) is continuous. Putting 91 =  92 =  1 
one can represent the test S*(x) as

S*(x) =  l ( ^ f ^ x f ^ ( C i , C 2) ]

where C* =  Cija\,i =  1,2. Then condition (1.3.27) becomes of the form

(1.3.28) U i y ) d y  =  l - a ,  r \ f n ( y ) d y  =  n i l - a ) .

J Cl C\

To determine the constants c\ and C2 one can use, for example, the tables of the 
X^{n) distribution. Using the equality yfn{y) — ^ /71+2(2/) the second equation in
(1.3.28) can be rewritten as

pC2

Jci
fn+2 (y) dy = l - a .

Another way to determine Ci and C2 is to integrate by parts the second equation 
in (1.3.28) and obtain

C 'f/2e-^*/2 =

A  relationship between tests and confidence sets. Let  ̂be an observa­
tion whose distribution belongs to a family {P^; 9 € 0 } .

Definition 1.3.8. A random set ©*(^,7) is called a confidence set of level 7 
if ©*(^,7 ) C © and

(1.3.29)

for all 0 € ©. 

Put

(1.3.30)

P a { ^ e © * ( ^ , 7 ) } > 7

а д  7 ) = {x e X : 9 e  © * ( a : ,7 ) } .
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Then the inclusions

(1.3.31) 6 e Q * {x , j )  and x e X { 9 y j )

are equivalent.
In the definition of a confidence set we assume that the set X{ 6^j) in (1.3.30) 

is measurable, thus the probability in (1.3.29) is well defined. In view of the equiv­
alence of inclusions (1.3.31), the latter probability is equal to

(1.3.32) P e {0 € 0 * ( i ,7 ) }  =  P 4 C e X (0 ,7 ) } .

The following result describes a relationship between confidence sets and sta­
tistical tests for distinguishing the hypotheses H{6o):9 =  Oq and

K { 9 o ) : 9 e e \ { 9 o }  =  e{9o).

T h e o r e m  1.3.7. 1) For every 9q let a nonrandomized test S{9o) of level 1 -  7 
be given for distinguishing the hypotheses H{9q) and K{9q), Let X{9o,'y) be the 
acceptance set for the hypothesis H{9q) defined by (1.3.30). Then

0*(^;7) =  {0 € © :^ G X (0 o,7 )}

is a confidence set of level 7 .
Conversely  ̂ ifO*{^]j) is a confidence set of level 7 and 9q G 0*(C;7), then the 

acceptance set X{9o^j) defined by (1.3.30) for the hypothesis H{9q) determines a 
test for distinguishing the hypotheses H{9q) and K{9o)>

2) Let X{9q̂ j ) be the set defined by (1.3.30) for ike hypothesis H{9q). If 5{9q) 
is a UMP test of level 1 — 7 for all 0o> then the corresponding set 0*(^, 7 ) minimizes 
the probability

(1.3.33) Pd{9' G 0 * (i ,7 ) }  for all 9 and & such that 9 G 0(0 ')

in the class of all confidence sets of level 7 .
Conversely  ̂ the minimal probability in (1.3.33) corresponds to a set X (0,7 ) 

that generates a UMP test.

P r o o f . Equality (1.3.32) yields

?e{e € 0 * (^ ,7 )} =  e X {en)]  > 7 ,

whence the first statement of the theorem follows. To prove the second statement 
of the theorem we consider another confidence set 0 *(^,7) and the corresponding 
subset X (0,7) in X. Then

P e{i € X (0 ,7 )}  =  Pe{e e  0 * (0 ,7 )} > 7- 

Since X{9oyj) is the acceptance set for a UMP test,

P < ,{^ e X (0 o ,7 ) }> P 4 ^ e ^ (^ o ,7 ) }

for all 6 e Q{0o)- Thus

P<»{0o e 0 * ( i ,7 ) }  > Pe{0o e 0 * ( i ,7 ) }

for all e € 0 (0o)- □
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D e f in it io n  1 . 3 . 9 .  C o n f id e n c e  s e t s  fo r  w h ic h  t h e  p r o b a b i l i t y  in  ( 1 .3 .3 3 )  is m in ­
im a l  g iv e n  ( 1 .3 .2 9 )  a r e  c a l le d  uniformly most precise confidence sets o f  le v e l  7  w i t h  
r e s p e c t  t o  a l t e r n a t i v e s  0 ' s u c h  t h a t  9 e Q{6').

C o n s id e r  in  m o r e  d e t a i l  t h e  n o t io n  in t r o d u c e d  a b o v e  fo r  a  p a r t ic u la r  c a s e  o f  a  
o n e -d im e n s io n a l  p a r a m e t e r .  T h e  f o llo w in g  r e s u lt  h o ld s  in  t h is  c a s e .

T h e o r e m  1 . 3 . 8 .  Let the setX {6,7 ) for a UMP test described in Theorem 1 .3 .7  
be of the form

ci{e ,j) < T{x) < C2{d,i)
where Ci{9 ŷ) are monotone and continuous in 6. If the functions Ci{9yy) increase 
in 0 , then a uniformly most precise confidence set of level 7  with respect to alter­
natives 6' such that 6 e  0 (0')  is the interval

C2 ^(T(a:),7 ) < e <  C i \ T { x ) , ' r )

where c “ ^ (i,?/) is a solution in 6 of the equation Ci{6 ŷ) = t.

T h e  p r o o f  o f  T h e o r e m  1 .3 .8  is  o b v io u s  a n d  o m it t e d .
C o n s id e r  in  m o r e  d e t a i l  one-sided confidence intervals for a one-dimensional 

parameters  ̂ n a m e ly  w e  c o n s id e r  t h e  in t e r v a ls  ( ^ ( ^ ,7 ) , 00) a n d  ( — 00, 0 ( ^ ,7 ) ) .  W e  
r e s t r ic t  o u r  c o n s id e r a t io n  t o  t h e  c a s e  o f  a  lower confidence bound 0 (^, 7 ) fo r  w h ic h

( 1 .3 .3 4 )  P ^ № 7 ) < ^ } > 7 ,

s in c e  a n  upper confidence bound 0(^, 7 ) is c o n s id e r e d  s im ila r ly .

D e f in it io n  1 . 3 . 1 0 .  A  b o u n d  6 =  ¿ ( ^ , 7 ) fo r  w h ic h  t h e  p r o b a b i l i t y  Pe{9 < 6'} 
is  m in im a l  fo r  a ll  0' <  0 is  c a l le d  a  uniformly most precise lower confidence bound 
of level 7 .

B e lo w  w e  c o n s id e r  a n o t h e r  d e fin it io n  o f  a n  o p t i m a l  c o n fid e n c e  in te r v a l.  L e t  
L ( 0 , 0) b e  a  lo s s  a r is in g  i f  6 is  u n d e r e s t im a t e d ,  s o  t h a t  fo r  a l l  f ix e d  9 t h e  f u n c t io n  
L{9,9) is  d e fin e d  a s  fo llo w s : L{9,9) = 0 ioi 9 > 9 a n d  L{9^9) > 0 fox 9 < 9. W e  
a ls o  a s s u m e  t h a t  L{9^9) is  c o n t in u o u s ly  in c r e a s in g  i f  9 g o e s  a w a y  fr o m  9 a n d  t h a t  
EeL{9^9) < 00 fo r  a ll  9, G i v e n  ( 1 .3 .3 4 )  o u r  g o a l  is  t o  m in im iz e  E ^ L ( 0 ,0 ) .

T h e  f o l lo w in g  a u x i l i a r y  r e s u lt  e s t a b lis h e s  a  r e la t io n s h ip  b e t w e e n  t w o  n o t io n s  o f  
o p t im a li t y .

L e m m a  1 . 3 . 4 .  Given ( 1 .3 .3 4 )  a uniformly most precise lower bound 9 mini­
mizes E0L{9^9) for any loss function L{9^9) satisfying the above conditions.

P r o o f . L e t  9f b e  a n  a r b i t r a r y  lo w e r  b o u n d .  S in c e  t h e  in c r e m e n t s  o f  t h e  lo s s  
f u n c t io n  L{9^u) in  u in  t h e  d o m a in  u < 9  a r e  n e g a t iv e ,  w e  g e t

/ 0 p9
L{e, u) duPeii < u ) = -  P eii < u) duL{d, u)

-00 J — 00

<  -  /  Pe{^ < u) duL{e,u) = EeL{0,0')
J — 00

w h e r e  du is  t h e  d iff e r e n tia l  w i t h  r e s p e c t  t o  t h e  v a r ia b le  u. □

I t  is  n a t u r a l  t o  c a l l  t h e  n u m b e r  EeL{9,Q a  risk of the underestimation of the 
parameter 9. T h e r e f o r e  L e m m a  1 .3 .4  im p lie s  t h a t  a  u n if o r m ly  m o s t  p r e c is e  lo w e r
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bound 6_ minimizes the risk of the underestimation of the parameter 6. This together 
with Theorems 1.3.7 and 1.3.8 allows one to construct a uniformly most precise one­
sided interval in an explicit form for families with monotone likelihood ratio.

T heorem 1.3.9. Let a family {P^,^ e 0 }  have the monotone likelihood ratio 
with respect to a statistic T{x) whose distribution function G e { t )  =  P^{T(^) < t} is 
continuous in 0 and t. Then the distribution of the statistic T{x) monotonically and 
continuously depends on the parameter 0̂  that is, G e { t )  continuously decreases if 0 
increases {see relation (5.4.1) in [38]). / / 6(^,7 ) is a solution in 0 of the equation 
G e { t )  =  7 , then a uniformly most precise lower bound ^(^,7) of level 7 is

m n ) = b { T { ^ ) , j ) ,

Proof. We put Q{0) =  { t : t  > 0} in Theorems 1.3.7 and 1.3.8. According 
to Theorem 1.3.3 there exists a nonrandomized UMP test for distinguishing the 
hypotheses Hi:0 =  0q and H2'-0 > 0q. Moreover the acceptance set for the hypoth­
esis H\ is X(0O)7) =  {x\T{x) < c} where the constant c =  c(0o>7) =  ^¿ 0̂ (7) is 
such that

P ^ o m O < c (0 o ,7 )}  =  7.
By the assumptions of the theorem we have

p ^ { T ( o > c } > i - 7 = P ( ? o m o > 4
for all 0 > 0Q, The latter relation means that c(0q,7) < ^(^,7 ) for 0q < 0, that is, 
the function c(0, 7) increases in 0, The continuity of 0(^,7 ) =  G^" (̂7) in 0 follows 
from that of G e { t ) .

Thus the conditions of Theorems 1.3.7 and 1.3.8 hold for 02(0,7) =  ^(0,7) and 
therefore a uniformly most precise confidence interval is (c” ^(T(^);7),oo) where 
obviously c“ ^(t,7) =  6(t,7). n

A uniformly most precise upper bound 0(^,7) can be constructed by the same 
method if the assumptions of Theorem 1.3.9 hold.

Now let 0 (i,7 i) < 0( i ,72) where 0(^,7i) and 0(^,72) are lower and upper 
bounds of levels 71 _and 72, respectively. Let 71 and 72 be such that the events 
{0 (ii7 i) > 0} and {0(^,72) < 0} are disjoint. Then

P0{0(i,7i) <  0 <  0(^,72)} > 7 1 + 7 2 - 1 ,

that is, (0(C,7i), 0(^,72)) is a confidence interval of level 71 +  72 -  1-
Let Li(0,0) and ¿2(0,0) be the loss functions due to the underestimation of 

the parameter 0 for bounds 0 and 0, respectively. Assume that L i(0 ,0) and ¿ 2(0,0) 
satisfy the conditions indicated above.

Lemma 1.3.5. Let ¿(0 ,0 ,0 ) =  ¿ (0 ,0  - l -¿ (0 ,0 . Then the confidence interval 
(0, 0) whose end points are uniformly most precise lower and upper bounds mini­
mizes £^¿(0, 0 ,0  under the conditions

?e{0 > 0} < 1 -  71, ^e{0 < 0} < 1 -  72.

This result is an obvious corollary of Lemma 1.3.4. Using Theorem 1.3.9 and 
Lemma 1.3.5 one can construct optimal intervals in an explicit form for families 
with the monotone likelihood ratio.
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To conclude this section we show how to construct confidence sets and intervals 
with the help of unbiased tests.

As before let a set 0(ff) correspond to every 9 such that 6  ̂@{6).

Definition 1.3.11. A confidence set 0*(^,7) of level 7 for a parameter 6 is 
called unbiased with respect to the alternative hypothesis 0' such that 0 e  0 (0') if

(1.3.35) G 0 * ( i ,7 ) }  < 7 for all 6 and 9̂  such that 9 G 0(9').

The set 0*(C>7) is called unbiased if (1.3.35) holds for all 9' ^  9.
If a confidence set is unbiased, then the probability that it contains a wrong 

value 9' of the parameter is less than or equal to the probability that it contains the 
true value of the parameter.

D e f in it io n  1.3.12. If conditions (1.3.29) and (1.3.35) hold, then a confidence 
set for which the probability (1.3.33) is minimal is called a uniformly most precise 
unbiased confidence set of level 7 against the alternatives 9' such that 9 G 0(0 ').

T h e o r e m  1.3.10. 1) Since inclusions (1.3.31) are equivalent  ̂ unbiased non- 
randomized tests generate unbiased confidence setŝ  and vice versa.

2) If X(9oi'y) for any 9q e  Q is the acceptance set of the null hypothesis

H i:0  =  9o

for a nonrandomized UMP test against the alternative H2'-9 G 0(0o)> then the 
corresponding set 0 *(^,7) is a uniformly most precise unbiased confidence set, and 
vice versa.

P r o o f . The method of proof is the same as that of Theorem 1.3.7. An addi­
tional reasoning is that if a test is unbiased, then so is the corresponding confidence 
set, and vice versa. Indeed relations (1.3.29) and (1.3.35) are equivalent to inequal­
ities

sup Pe{C € X (0o ,7 )} <  7 < € X (0o,7)}-
0€e(eo)

If 5 is a nonrandomized test (that is, 6{x) =  0 for x G X{do,'y)), then

Ee5(O =  l - P 0 { i e X ( 0 o ,7 ) } , , inf , > 1 -  7 >

These conditions obviously mean that the test is unbiased and this property is 
equivalent to (1.3.35). □

Applying Theorem 1.3.10 one can construct a uniformly most precise unbiased 
confidence interval for a parameter of the exponential family. The method of this 
construction is the same as above.

E x a m p l e  1.3.6. Let  ̂ =  (^i,6 >• • • )Cn) where are independent
identically distributed random variables with the density

9~^I(x > 0) exp(-a ;/0), 0 < 0 < oo.

The statistic Tn(x) =  =  (â i, • • • ? a;n), is a minimal essential statistic and
moreover the distribution of Tn(O/(20) is x^(2n). Denote by %7(2n) the 7-quantile 
of the x^(2^) law. Then

P e {0 > T „ (O /(2 x ^ (2 n )) }= 7 ,
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that is, 6_ =  ^71(0 / ( 2X7(271)) is a lower confidence bound of level 7 for the param­
eter 0. Further let =  mini<i<nO be the minimal order statistic. Then the 
distribution of nCn,1/ ( 20) is x^(2)- This implies that 6 =  71̂ 71,1/ ( 2X7(2)) also is a 
lower bound of level 7 for the parameter 6.

Which of these two bounds is better? To answer this question note that the 
distribution of  ̂ has the monotone likelihood ratio with respect to the statistic 
Tn{x), Thus the UMP test of level a for distinguishing the hypotheses Hi \6  =  9q 
and i i2:0 > 0̂ is determined by the acceptance set of the hypothesis Hi which is of 
the form X(0o, 1 — a) =  {x:Tn{x) < 20oXi - q:(27i)}. Thus a uniformly most precise 
lower bound of level 7 for the parameter 0 is 0 =  (0 / ( 2X7(271)). Therefore

{O' > 0} < Pe[0' > 0} for all 0 and 0' such that 0 > 0'.

This implies that the bound 0 is better, since it is a uniformly most precise lower 
bound.

More details on confidence sets and intervals and on an application of statistical 
tests to construct confidence sets as well as various examples can be found in [54].

Bayes tests for distinguishing a finite num ber o f  com posite hypothe­
ses. The last topic of this section is the problem of distinguishing N  composite 
hypotheses for TV > 2. As before let the distribution of an observation  ̂ belong 
to a family ^  =  {P^,0 G 0 }  and let ^  where =  {P^:0 G 0 i} ,
z =  1, 2, . . . ,  AT; 0 i n 0 j =  0, 7 7̂  j; &i =  0 . Assume that at least one of the 
sets 01 , 02 ) • • •, 0N contains at least two points. Let the hypothesis Hi be that the 
distribution of ̂  belongs to the set ^i .  We write in this case Hi : 6 e  &i. Consider a 
randomized test S whose values are 1, 2, . . . ,  TV and the corresponding probabilities 
are qf{x) =  P{(5 =  i/  ̂ =  x}. The event { i  =  i} means that the hypothesis Hi is 
accepted, and qf{x) is the conditional probability of accepting the hypothesis Hi 
according to the test S given  ̂=  x.

Let Ai{t)  ̂ i =  1, 2, ...,A r, be nonnegative functions defined on 0  that are 
measurable with respect to some cr-algebra of subsets of 0 . Let A be a random 
variable treated as the loss; it is equal to Ai{t) if the hypothesis Hi is accepted and 
the parameter 0 is t. Further we assume that a probability measure Q (a priori 
measure) is given on 0 , so that the parameter can be treated to be random with 
the distribution Q. Then we define the mean loss or risk of the test 5 (see (1.3.4) 
and (1.3.5)):

(1.3.36) 

where

(1.3.37)

It is obvious that

(1.3.38)

R(5 )^E^A= [  EfAQidt)
Je

N

2=1

P ,{5 (^ )= i }=  /  qf{x)Pt{dx). 
Jx
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Combining (1.3.36)-(1.3.38) we obtain

(1.3.39) R{0 )=  f J 2 M t )  f  qf{x)Pt{dx)Q{dt).
Jo 7̂ 1 Jx

According to Definition 1.3.3, a test Sa ,q is Bayes with respect to a loss A and 
a priori measure Q if it minimizes the risk (1.3.39). Let us find the test Sa ,q in an 
explicit form.

Let the family ^  be dominated by some a-finite measure fjb and let

p{x\t) =  dPt/dfjL{x)

be the density of the measure with respect to /i. Then the risk R{S) can be 
written as

(1.3.40) R{S)= [  X^gf(a:) /  Ai(t)p{x-,t)Q{dt) fj,{dx).
J x ^  Je

Put

(1.3.41) Ri{x )=  f  Ai{t)p{x-,t)Q{dt), 
Je

2 =  1 ,2 ,.. . ,  AT, X e X. 

It follows from (1.3.40) that the test 6 minimizes the risk if

(5/ \ =m ini<j<jvi?j(a:).(1.3.42) qK x)
^ r i ,  if

I 0, ototherwise.

where Ri{x) are defined by (1.3.41). If m\ni<j<jsf Rj{x) is attained for several 
indices ¿1, . . .  ,Zfe, then one can proceed in the same way as in the case of simple 
hypotheses (see Section 1.2). Thus equality (1.3.42) defines a Bayes test Sa ,q - 

More details about Bayes tests for distinguishing composite hypotheses can be 
found in [9, 54].

Example 1.3.7. Let the distribution of  ̂ be Ai{0, 1) and 6 G & =  (—00,00). 
Let 0  =  01 U ©2 U 03 where

01 =  (-00 , -1 ) ,  02 =  [ - 1, 1], 03 =  (1, 00).

Consider the loss functions

Ai{t) =  I{t > - 1), A2{t) =  I{\t\ > 1), Asit) =  I{t < 1).

Let the a priori distribution Q of the parameter 0 be A/*(0, r^). Then the distribution 
of  ̂ is A/̂ (0 ,1 +  r^), whence

/  2̂ \
p{x] t) Q{dt) =  n (x; 0,1 +  т^) n \t;

where n(x; a, 6̂ ) is the density of the JJ{a, 6̂ ) law. Thus in view of (1.3.41) we get
f°o /  ^2 \

Ri{x) =  n {x ;0 , l  +  r^) j   ̂ n  ̂ j  dt

=  n (x; 0,1 +  r^) $
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where

1 + ^2 = 1 +  T‘2 '
Similarly we get

R2{x) =n{x\Q,\-\-T^) J  n dt

=  n  (x ; 0 , 1 +  r ’ ) [2  -  *  ( 1 : ^ )  -  *  ,

^ 3(x) =  n (x; 0,1 +  T^} ^  '

Let
Rj{x) =  Rj{x)/n (a:;0,1 +  r ^ ) .

The function R^ix) is symmetric with respect to x*; its minimum is 0 and it is 
attained at the point x =  0. Further

(1.3.43) _ l i , ( x )  =  - - [ v ( — j j

where (p{x) is the density of the Ai{0  ̂1) law.
For all X* < Oit holdsthat |l+x*| < 1—x*. Hence (^((l+x*)/cr) > y?((l—x*)/cr) 

for all X* < 0. Equality (1.3.43) implies that R^ix) is decreasing in (—oo,0) and 
lima;__oo R^i^) =  1* The function Ri(x) is increasing and

lim i?i(x) =  0, lim Rl(x) =  1.
x—*—oo x—*oo

Thus there exists a unique point x' in the interval (—oo,0) such that

i?i(x ') =
Since the problem is symmetric, there exists a unique point x" =  —x' in the in­
terval (0 ,00) such that R îx '̂) =  i?3(x"). Thus the partition X  = XiU  X 2 U Xs 
where Xi =  (—oo,x '), X 2 =  [x ',x"], and Xs =  (x",oo) determines a Bayes test. 
According to this test the hypothesis z =  1,2,3, is accepted if x G

R e m a r k  1.3.6. More details about distinguishing composite hypotheses can 
be found in [9, 34, 54]. Distinguishing composite hypotheses can be viewed as 
a problem of the general theory of statistical decisions; see [4, 9, 15, 52, 54]. 
Asymptotic problems of distinguishing composite hypotheses for independent ob­
servations are considered in [10]. Tests of significance are studied in Chapter 3 
below.





CHAPTER 2

Asymptotic Distinguishability 
of Simple Hypotheses

2.1. Statistical hypotheses and tests

Let t G R+, be a family of observations assuming values in a measurable 
space and let =  {P^, P^} be a family of two probability measures de­
fined on Let and be two statistical hypotheses that the distribution
of the observation is generated by the measures P̂  and P̂ , respectively. Denote 
by 5t a measurable mapping of the space into the space ([0, 1],,^([0, 1])).
The mapping 5t (as well as the random variable 5{^̂ ) denoted by the same symbol 
5t) is called a test for distinguishing the hypotheses and by the observation

here we treat ¿t(x) as the conditional probability of rejecting the hypothesis 
(or, equivalently, of accepting the hypothesis H^) given =  x. Denote by E* the 
set of all tests St for distinguishing the hypotheses and for all St G E* we
introduce the type I and type II error probabilities

(2.1.1) a(5t) =  E‘ it and /?(5t) =  E‘ (l  -  i*),

respectively, where E* and E* are expectations with respect to the distributions P* 
and P*, respectively. For all a € [0,1] we denote by the set of all tests St of 
such that a{St) < a.

Let Q* =  (P* +  P*)/2 be another probability measure on the measurable space 
{X*,3§*) and let it =  dPVciQ* and It =  dP‘ /d Q ‘ be two finite versions of the 
Radon-Nikodym derivatives of the measures P* and P*, respectively, with respect 
to the measure Q ‘ . Consider the likelihood ratios

(2.1.2) zt -  h/it, zt =  It/lt-

Here we agree that 0/0 == 0 and the likelihood ratios are well defined for all t. Note 
that it +  lt =  2.

Put

(2.1.3) 

Then

(2.1.4)
(2.1.5)

at =  P ‘ (3t > 0), Pt =  P‘ (3i > 0).

at =  P‘ (zt > 0) =  P*(^t < oo), 

=  P\zt > 0) =  P\zt < oo).

Equalities (2.1.3)-(2.1.5) and Lemma 1.1.9 imply the following Lebesgue de­
composition of any of the measures P* or P* with respect to the other one.
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Lemma 2 .1.1. For all it holds that

(2.1.6) P\A) =  [  zt dP‘ +  P\A n {zt =  oo}),
Ja

(2.1.7) P‘ (^ ) = f Zt dP‘ +  P*(yl n {zt =  oo})
Ja

where zt and zt are the likelihood ratios defined by equalities (2.1.2).

Lemma 1.1.10 can also be rewritten in the following form.

Lemma 2.1.2. For all nonnegative measurable functions rj defined on 
it holds that
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(2.1.8)

(2.1.9)
Ê rj =  Ê qzt +  E r̂il{zt =  oo), 
Ê rj =  Ê rjzt +  E*rjl{zt =  oo).

Consider the set

(2.1.10) 0Ti' = {(a((i,),i9(5i)):5iGE^}

where a(5t) and ¡3{St) are type I and type II error probabilities of the test 6t G 
defined by (2.1.1).

The properties of the set 01* are studied in Section 1.1. In particular, the set 91* 
is convex, closed, and symmetric about the point (1/ 2, 1/ 2), 91* contains the points 
(0,1) and (1,0), and 91* C [0,1] x [0,1]. An example of the set 91* is shown in 
Figure 2.1.1.

F ig u r e  2 .1 .1

Now we introduce the likelihood ratio test by

(2.1.11) =  I{zt > c) +  el{zt = c)

where c  G [0, oo] and e  G [0,1] are parameters of the test. Let {ct{a)y6t{oi))  be 
some solution of the equation a(5^’ )̂ =  a with respect to (c,£).

A likelihood ratio test with £¿(0) =  1 is called the Neyman-Pearson
test of level a  for distinguishing the hypotheses i/* and JT*. In what follows we 
denote this test by The functions ct{a) and St{oi) as well as the type II error 
probability )S(5/‘ ’" )  can be obtained by applying results of Section 1.1.
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According to the Neyman-Pearson fundamental lemma, the point (a,/3((5̂ *’ ’^)) 
belongs to the boundary of the set 91* for all a G [0,1]. In various cases where the 
level a depends on t, one can study the behavior of the set 91* as t > oo instead of 
that of as t oo.

Below we consider the Neyman-Pearson test of level at that depends, 
generally speaking, on t. We will use the notation ct = Ct{at) and €t =  St{at). 
Moreover we put At = In zt and dt = In Ct assuming that InO =  -o o . Then the test 

can be rewritten as

(2.1.12)

Consider the Bayes test with respect to the a priori distribution (tt, 1 — tt) 
for distinguishing the hypotheses if* and iJ* that minimizes the error probability 

7̂r{St) (see (1.1.32)) in the class S* of all tests St.
Denote by 5̂  the minimax test for distinguishing the hypotheses ii* and i/* 

that minimizes a{St) V /3{St) in the class E* of all tests St. It follows from Theo­
rem 1.2.4 that the likelihood ratio test Ŝ '̂  is minimax if a{S '̂ )̂ =  P{Ŝ ' )̂. Accord­
ing to (2.1.11) and (2.1.12) the Neyman-Pearson test is minimax if = at.
Moreover we learned in Section 1.2 that the Neyman-Pearson test coincides 
with some Bayes test Sp , and the probability nt depends, generally speaking, on t.

Below we study the asymptotic behavior (as t oo) of the Neyman-Pearson 
test Sp^\ the minimax Ŝ  test, and the Bayes Sp test. The asymptotic behavior 
of these tests depends on the behavior of the set 91* which in turn is determined 
by the behavior of the measures and P* as t —> oo (see Section 1.1). In the next 
section we consider all the possible types of the asymptotic behavior of the set 91*
as t oo.

2.2. Types o f  the asym ptotic distinguishability o f  
families o f  hypotheses. The characterization o f  types

Consider two families of statistical hypotheses (if*) and (if*) and the two cor­
responding families of probability measures ( P * )  and ( P * ) .  Here and throughout 
this section the symbols (if*) and (if*) stand for {H^)ten+ and (if*)tgR^, respec­
tively. For other families of measures, random variables, etc. we follow the same 
notation to make them shorter.

Below we define the types of the asymptotic distinguishability of families of 
hypotheses (if*) and (if*) as t > oo. Our approach is based on the asymptotic 
behavior of sets 91* as t ^  oo.

The distance in variance between measures. The K akutani-H ellinger 
distance and Hellinger integrals. To state the main results on the characteri­
zation of types we need the following notions.

D e f in it io n  2 . 2 . 1 .  Let P^ and P * be two measures. The full variation of the 
charge P * — P^ is called the distance in variance between measures P * and P * and is 
denoted by ||P* -  P^||, namely

( 2 .2 .1 )  | | P * - P * | |  =  E ^ | 3 , - 3 t |

where Eg stands for the expectation with respect to the measure Q*.



D e f in it io n  2.2.2. Let 

(2.2.2)
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^2(pt (̂ -1/2 _  ^1/ 2)2

The nonnegative number /9(P*, P̂ ) is called the Kakutani-Hellinger distance between 
the measures P̂  and P̂ .

lUl " =

D e f in it io n  2.2.3. Let

(2.2.3) i/(e ; P^P*) =  E*gзTз^^
Here we put

' 0, e < 0, =  0, and =  0,
oo, e < 0,l t  =  0, and h > 0,
i d  {It >0), e = 0,
ltJ^{h>^)y  ̂=  lj
0, e > 1, 3t =  0, and it =  0,

, oo, e > 1, 3i =  0, and It > 0.

Then H{e; P^ P̂ ) is well defined for all e and t. The number H{e; P̂ , P̂ ) is called 
the Hellinger integral of order e G R  =  (—00, 00) for the measures P̂  and P^ The 
number H{l/2\ P̂ , P̂ ) is called the Hellinger integral for the measures P̂  and P* 
and is denoted by ii(P ^  P )̂.

Properties of 1|P̂ -  P*||, p(PSP^), and ii(e ; PSP*) defined by (2.2.1), (2.2.2), 
and (2.2.3), respectively, can be found in [28, 33, 35, 47]. In particular, neither 
IIP* -  P*|| nor p(P*, PS nor H{e\ P*, P*) depend on the dominating measure Q*. 

Below we give an auxiliary result on some relationships between these notions.

L e m m a  2.2.1. We have

(2.2.4) 2 ( l - / i  < ||P‘ -P*|| < (P*,P‘ ) ) ,

(2.2.5)

In particular

(2.2.6)

||P‘ -P*|| < 2  (P ‘ ,P ‘ ) .

2/92(P*,P*) < IIP* -  p*|| <  ^/8p(P^P‘ ).

P r o o f . By the definitions of the Kakutani-Hellinger distance and Hellinger 
integral

(2.2.7) p2(P*,P*) =  l - i i (P * ,P * ) .

Thus inequalities (2.2.6) follow from (2.2.4). Let us prove inequalities (2.2.4) 
and (2.2.5).

Since 3i +  3t =  2, it follows from the Jensen inequality that 

i||P‘ -  P*|| =  ^E^lat -  3tl =  E^|l -  it\ <

=  — EQ3t(2 -3 t )  =  — Eg3t3f



It follows from the Cauchy-Bunyakovskil inequality that
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and thus

|̂|P‘  -  P‘ || <  =  ^ l - i i 2 ( P ‘ ,P*),

that is, (2.2.5) is proved.
Since i/(P ^  P̂ ) < 1, we have

1 -  P ‘ ) =  ( l  -  H{P\ P ‘ ) )  ( l  +  H {?\  p‘)) < 2 ( l  -  H{P\ P * ) )  .

This estimate together with (2.2.5) implies the second inequality in (2.2.4). 
Since (a -  hY < \â  -  b̂ \ for a > 0 and 6 > 0, we get

(2.2.8) ^ ( y / z - V 2 - z ) ^  < |2: - 1|, 0 < 2: < 2.

Using (2.2.7), equality }t +  it =  2, and inequality (2.2.8) we obtain 

1 -  H{P\ P ‘ ) =  pHP*, P‘ ) =  1 e^(V37 -

< E g l3 * -l|  =  ^E^|3t-3t| =  i||P*-P ‘ | 

that is, the first inequality in (2.2.4) is also proved. □

Let

(2.2.9) |P‘ A P*|| =  inf {« (¿t ) +/3((5():(Jt G S ‘ } .

It is clear that ||P* A  P*|| is the doubled error of the Bayes test with respect to the 
a priori distribution (1/ 2, 1/ 2).

Lemma 2.2.2. We have

(2.2.10) P‘ AP*|| =  l - i | | P * - P ‘ ||.

Proof. Since the Bayes test with respect to the a priori distribution (1/ 2, 1/ 2) 
can be represented as = I{zt > 1), relation (2.2.9) implies

IIP* A P‘ || =  E^I{zt > 1) +  E‘ (l -  I ( z t  >  1))
(2.2.11) =  1 +  > 1) -  E^3tJ(zt > 1)

= 1 -  -  i t ) I { z t  >  1).

Since Eqdt -  }t) =  0, we obtain from (2.2.1) that

IIP* -  P*|| = E^(3-* -  u ) I { z t  > 1) + E*g(3t -  } t ) I { z t  <  1)
=  2E^(3t -  3t)/(zt > 1).

Now (2.2.11) and (2.2.12) imply equality (2.2.10). □

(2.2.12)



R e m a r k  2.2.1. Similarly to (2 .2 .1 1 ) we prove that

II P‘  A P*|| =  E*I{zt > 1) +  <  1) =  E%itl{zt > 1) +  <  1)

=  Eq (34 / ît)

where a A 6 stands for the minimum of two numbers a and 6. The latter equality 
makes the notation ||P* A P̂|| clear.

The com plete asym ptotic distinguishability* First we give some neces­
sary definitions.

Definition 2.2.4. Families of hypotheses {H^) and {H^) are called completely 
asymptotically distinguishable (denoted by {H^) A {H^)) if there exist a sequence 
tn T oo, n ^  oo, and tests 5t̂  € such that
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(2.2.13) and as n —> oo.

Definition 2.2.5. Families of measures (P*) and (P̂ ) are called completely 
asymptotically separable (denoted by (P*) A (P*)) if there exist a sequence tn t oo, 
n -> oo, and sets An G such that

(2.2.14) P^""(^n) ^ 0  siiid P*’" (A n )-^ l as n o o .

The following result contains a characterization of the complete asymptotic 
distinguishability (H^) A (H^)-

T heorem 2.2.1. The following statements are equivalent:
a )  .(ii^ )A (ff^ );
b) (P‘ )A(P*);_
c) limsup^_,oo > N) — 1 for all N < oo;
d) limsup^_,oo P^{zt< N)  =  1 for all N > 0\
e) liminft_oo II/\P^II =  5̂
f) liminft_oo H{s; PS P̂ ) =  0 for all e G (0,1);
g) limsupi^oo II
h) limsupi^oo P(P^ PS =  1-

Proof, a) => b). Let tn T oo as n —> oo and let tests 8tn ^ be such that 
a{5t^) -> 0 and 0* > 7) for 0 < 7 < 1. By the Chebyshev
inequality we have

p*"(^n) =  >  7 ) <  7 “ ^Q:№„) 0.

Similarly we obtain

P * " ( 5 t „  <  7 ) <  P ‘ " ( l  -  ¿in  >  1 -  7 ) <  ( 1  -  7 ) " ' / ? ( i t J  0,

that is, P^ {̂An) —̂ 1- Thus the implication a) b) is proved.
I 00 as n —> 00 and let sets An G be such that

(2.2.15) P *"(A „)-> 0 , P * " (A „ )^ 1 .
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By the Lebesgue decomposition (2.1.7) we have for all A e  that 

P\A) =  P\A n {zt < N }) +  P\A n {zt > N })
(2.2.16)

- LAr\{zt<N}
Zt dP‘ +  P‘ (^  n {zt > N }) < NP\A) +  P‘ (zt >  N)

for 0 < iV < oo. Relations (2.2.15) and estimate (2.2.16) for A = A“̂  =  X^\An and 
t =  tn imply that P*” (zt„ > iV) —» 1 for all iV e (0, oo), whence we obtain d), since

(2.2.17) P*(zt >  AT) =  P*(zt < JV-^).

d) ^  f). For all e, A € (0,1) and 7 >  0 we have

H { e - ,  P‘ , P‘ ) = E y U l ~ ^ I ( ï t  < 7 ) + E^3l3Î“ V(ât > 7,3t < A)
+  >'Y,it>  A)

< 7"E‘q3Î-" + A'-̂ E^3l + E^3tzf/(3t > 7,3t > A)
< 7 "  +  A '-"  +  E‘ z f / (3 t> 7 )
< 7" + A '- ' + (E‘ zt)^(E‘ / ( 3t > 7 ) ) '" '
< 7 "  +  A‘ -^ +  [P‘ (з 't> 7 ) ] '-^

since < 1 and Eg3f < 1 by the Holder inequality, and Ê zt < 1 by (2.1.8)
for rj = 1 .

Equality (2.2.17) and relation d) imply that limsup^_Qo P {̂zt > N) =  1 . Since 
+  3i =  2, we have Zt = 2/lt -  1, whence

(2.2.18)

liminf P (3t > 7) =  0t—>00(2.2.19)

for all 7 > 0. It follows from (2.2.18) and (2.2.19) that

liminf ̂ (e ; P‘ , P‘ ) < 7  ̂+t—>00

Since 7 and A are arbitrary, the latter inequality proves f).
f) =4> h). Follows from (2.2.7).
h) => g). This implication follows from the first inequality in (2.2.6) and

||P -̂P*|| < 2

(the latter estimate holds in view of (2.2.1)).
g) => e). Follows from inequality (2.2.10).
e) => a). Relation (2.2.9) and Theorem 1.2.2 for iV =  2, Aij =  1 -  Sij, and 

7Ti =  7T2 =  1/2 yield

(2.2.20) |P^A P*||=a(J^ ')+ /?(i^ ')

where =  I{zt > 1). Condition e) and equality (2.2.20) imply that there exists 
a sequence tn T oo, n —> oo, such that ^(¿t^^) 0 and P{Sl^) —> 0 as n —> oo, that
is, condition a) holds.

Therefore conditions a), b), d), e), f), g), and h) are equivalent. It remains to 
prove that conditions b) and c) are equivalent.
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b) => c). Let tn oo as n oo and let sets An  ̂ be such that relations
(2.2.14) hold. The Lebesgue decomposition (2.1.6) for all and 0 < iV < oo
imply similarly to (2.2.16) that

P*(A)<iVP*(A) +  P (̂;?i > iV ).

This together with (2.2.14) yields c).
c) => b). Condition c) implies that there exists a sequence tn T oo, n oo, 

such that
> n )  > 1 -  n "^

Thus P‘ " (zt„ > n) 1 as n oo. On the other hand, the Chebyshev inequality 
implies that

P*"(Z(„ > n) <  < n -\
since E*zt <  1 in view of (2.1.8). This implies that P*” (2:t„ > n ) —» O a s n —»00 
and condition b) is proved. □

R e m a r k  2.2.2. If (H^) A ( ii^ ) ,  then there exist a sequence tn T oo, n ^  oo, 
and tests G E*"» such that conditions (2.2.13) hold. Then, obviously,

Ot*- [0 ,1 ] X [0 ,1 ]

as t oo where the set 91* is defined by (2.1.10). On the other hand, if

(P*)A(P*),

then there exist a sequence T co, n —> oo, and sets An G such that re­
lations (2.2.14) hold. These relations mean that the sequences of measures P*’  ̂
and P*” , n =  1 ,2 ,. . . ,  are asymptotically singular (cf. (1.1.9)).

Now we define the counterparts of the notions of the complete asymptotic 
distinguishability (i/*) A (if*) and complete asymptotic separability (P*) A (P*).

Definition 2.2.6. We say that families of hypotheses (i/*) and (H^) are not 
completely asymptotically distinguishable (denoted by (i/*) A {H^)) if there is no 
sequence tn T oo, n oo, and tests G such that relations (2.2.13) hold.

D e f in it io n  2.2.7. We say that families of measures (P*) and (P*) are not 
completely asymptotically separable (denoted by (P*) A (P*)) if there is no sequence 
tn T oo, n —> oo, and sets An G such that relations (2.2.14) hold.

R e m a r k  2.2.3. If {H^) A (ii*), then according to Definition 2.2.6

liminf/?(5t„) > 0
n—>oo

for all sequences T oo, n oo, and all tests St̂  G E*” such that oc{6t )̂ —> 0 as 
n 00. A similar remark regarding the notion (P*) A(P*) also holds. Therefore 
we have the following dichotomy: either (if*) A (ii*) or (ii*) A (if*) (respectively, 
either (P*) A (P*) or (P*) A(P*)). Since Theorem 2.2.1 provides the necessary and 
sufficient conditions for (H^) A (H*), it can be used to characterize the notion 
(H*) A (^*). For example, (if* )A (^ * ) liminft^oo ||P̂ A P*|| > 0.

The com plete asym ptotic indistinguishability. Now we consider an as­
ymptotic analog of the indistinguishability of hypotheses (cf. (1.1.8)).
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Definition 2.2.8. We say that families of hypotheses (H^) and (H^) are com­
pletely asymptotically indistinguishable (denoted by {H^) =  (H^)) if

(2.2.21) lim a{St) =  a => lim P{St) =  1 — a
t—*oo i—>oo

for all a G [0,1] and all families {5t) of tests St G E* such that the limit limi_,oo Oi{6t) 
exists.

Definition 2.2.9. We say that families of measures (P )̂ and (P*) are com­
pletely asymptotically inseparable (denoted by (P )̂ =  (P*)) if

( 2 .2 .22) lim P^(^i) =  a => lim P\At) = a
t—>oo t—>oo

for all a G [0,1] and families (At) of sets At G such that the limit limt_oo P\At) 
exists.

The following result contains a characterization of the complete asymptotic 
indistinguishability of families of hypotheses.

T heorem 2.2.2. The following statements are equivalent:
a)
b) (P‘ ) S ( P ‘ );
c) limt_oo P*(|At| > 7 ) =  0 for all 7  > 0;
d) limt_oo P‘ (|At| > 7) =  0 for all 7  > 0;
e) limt_oo H{e\ P*, P‘ ) =  1 for all e € (0 ,1);
f) limf_oo/3(P‘ ,P ‘ ) =  0;
g) limt^oo||P‘ - P ‘ || =  0;
h) limt^oo||P‘ AP‘ || =  l.

Proof, a) ^  b). Let a be an arbitrary number of the interval [0,1] and 
let {At) be an arbitrary family of sets At G such that P^{At) a  as t oo. 
The test St =  I{At) is such that a{St) =  P^{At) —> a. Then condition a) implies 
that P {̂At) =  1 — l3{St) —> a as t > oo, that is, the implication (2.2.22) is proved.

b) c). We prove this implication by contradiction. Assume that condition b) 
holds and condition c) does not hold. Then there exist a number 70 > 0 and a
sequence {tn) such that tn 00 and P̂ ” (|At̂ | > 70) —> a > 0 as n —> 00 . Thus
there are sequences (m) C (n) and {k) C (n) such that either P̂ ”" (A*^ > 10 ) -^b  
as m 00 for some constant 6 > 0, or P^ îAt  ̂ < - 70) ^  c as fc —> 00 for some 
constant 0  0.

Let P^" (̂Ai  ̂ > 7o) —> 6 > 0 as m 00. Then condition b) implies that 
> 7o) ^   ̂ as m —> 00. Prom the Lebesgue decomposition (2.1.6) we

obtain

P\At > 70) =  /  
Jo(At >7 0 )

exp(At) dP‘ +  P‘ (At =  00) > e^0P‘ (At > 70).

Passing to the limit in this inequality along the sequence {tm) we get b > ê b̂. 
Since 6 > 0 and 70 > 0, we obtain the contradiction b >  b. Now we let

P*''(At;, <  -7o) C > 0
as A; —> 00 and arrive at a similar contradiction. These contradictions prove the 
implication b) =4- c).



c) d). Using the Lebesgue decomposition (2.1.6) we obtain

P‘ (|At| < 7 ) > P‘ (|At| < ! ' ) = [  exp(At)dP‘ > e-T''P‘ (|Ai| < 7 ')

for all 7 >  0 and 7 ' G (0,7 ), whence liminft_oo < 7) > e~^' by condition c).
Passing to the limit as 7 ' —> 0 we prove that P*(|At| < 7) —» 1 as t —> 00 for all 
7 > 0, that is, condition d) holds.

d) e). Let e e (0,1) and 7 > 0. Since {\At\ < 7) C {It > 0, > 0), it holds
that

P‘ ,P ‘ )> E ^ 3 l3 t""/(| A t| < 7 )

=  E%ltzr^ /(|At| < 7 ) > e(^-i)^P‘ (|A*| < 7 ).

In view of d) this implies that

(2.2.23) liminf ii(e ; P‘ , P‘ ) >
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i—>00
for all e G (0,1) and 7 > 0. Passing to the limit in (2.2.23) as 7 ^  0 and taking 
into account the inequality H{e\ P̂ , P*) < 1 we obtain condition e).

e) => f). Follows from equality (2.2.7).
f) => g). Follows from inequalities (2.2.6).
g) => h). Follows from equality (2.2.10).
h) => a). Let a be an arbitrary number of the interval [0, 1] and let (St) be an 

arbitrary family of tests St G such that a(St) a as t 00, By Lemma 1.1.3 
the set 01̂  is symmetric about the point (1/ 2, 1/ 2), so that it contains both points 
(a, j3) and (1 -  ce, 1 -  /?). Thus

(2.2.24) inf {a((5t) +  /?(Jt): e E‘ } =  2 -  sup {a(5t) +  j3(St): St e S*} .

Now we obtain from h) that

(2.2.25) lim sup{o:(5t) -h j8(St):St G S*} =  1.i-+oo
Applying the inequality

inf{a(5i) -hjd(St):St G E^} < a(St) + /?(it)
<  sup{a(it) +  /3(St): St G E^},

(2.2.26)

condition h), and relation (2.2.25) we prove that P{St) —>1 — a a s t —>oo, that is, 
the implication (2.2.21) is proved. □

Definitions 2.2.8 and 2.2.9 are nonsymmetric with respect to «(¿t) and P{St). 
Nevertheless using (2.2.24)-(2.2.26) one can prove the following result showing that
(2.2.21) and (2.2.22) are, in fact, equivalent.

Lemma 2.2.3. If{H*) ^  (H^), then

lim P{St) =  ¡3 => l̂im a(5t) = l — P
t —KX) t—»oo

for all numbers P G [0,1] and all families (St) of tests St G Ê  such that the limit 
\\mt^ooP{St) exists.
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If (P‘ ) S  (P‘ ), then

lim P*{At) =  a ^  lim P\At) =  a
t—>oo t—*oo

for all numbers a G [0,1] and for all families (At) of sets At G such that the 
Zimzt P*(Ai) exists.

R e m a r k  2.2.4. Definition 2.2.8 in the case of {H^) =  {H^) implies that

in* 22 as i oo,

that is, the set iTl* “approaches” , as t —> oo, the diagonal of the square

[0, l ] x [ 0,l]

joining its corners (1,0) and (0,1). The measures P* and P* corresponding to the hy­
potheses and if*, respectively, asymptotically coincide in this case (cf. (1.1.8)).

Contiguous families o f  hypotheses. Now we consider families of hypotheses 
(ii*) and (if*) whose asymptotic behavior differs from the complete asymptotic 
indistinguishability (if*) =  (if*) and complete asymptotic distinguishability (if*) A 
(#*).

D e f in it io n  2.2.10. We say that a. family of hypotheses (if*) is contiguous to 
a family of hypotheses (if*) (denoted by (if*) <  (if*)) if /3{St) 1 as t oo for
all tests St G E* such that a(it) —> 0 as f —> oo. Otherwise, that is, if there exists 
a family (¿¿) of tests St G E* such that

lim a((5t) =  0, liminf^(5t) < 1,
t—>oo t—>oo

we say that a family of hypotheses (if*) is noncontiguous to a family of hypotheses 
(Ht) (denoted by {H^)<{Ht)).

D e f in it io n  2.2.11. We say that a, family of measures (P*) is contiguous to a 
family (P*) (denoted by (P*) <l (P*)) if P*(At) 0 as i > oo for all sets At G 
such that P*(Ai) ^  0 as f > oo. Otherwise, that is, if there exists a family {At) of 
sets At e  such that

lim P*(At) =  0, limsupP*(i4t) > 0,
t —MX) t—*oo

we say that a. family of measures (P*) is noncontiguous to a family of measures (Pt) 
(denoted by (P*) <  (Pt))-

Let (X*,<^*), t G R+, be a family of measurable spaces, let S* be a probability 
measure on (X*,,^*), and let Ct» f ^ R +, be a measurable function defined on 
( X * ,^ * )  and assuming values in R  =  [ - 00 , 00].

D e f in it io n  2.2.12. We say that a, family (Ct) is dense with respect to a family 
of measures (S*) (denoted by (Ct|S*)) if

lim limsupS*(|Ct| > N) = 0 .N^oo t^oo
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D e f in it io n  2.2.13. We say that a family (Ct) is uniformly integrable with 
respect to a family of measures (S^) if

lim sup //(IC tl >iV)|Ct|dS' =  0.

The characterization of (ff*) < (H^) is given in the following result.

T h e o r e m  2.2.3. The following statements are equivalent:
a)
b) (P‘ ) < ( P ‘ );
c) linii_,oo =  oo) =  0 and the family {zt) is uniformly integrable with 

respect to the family of measures (P^);
d) {z t\ n
e) (l/3t|P‘);
f) lim£|iliminft_oo-ff(^; P*,P^) =  1-

P r o o f , a) => b). Let At G and P^{At) 0 as t oo. Then a{5t)-^ 0 as 
t ^  oo for the test 5t = I  {At). Condition a) implies that P {̂At) =  1 — 0{St) —̂ 0 
as t > oo.

b) =» a). Let (¿t) be an arbitrary family of tests such that a(St) —> 0 as t —> oo, 
and let € be an arbitrary positive number. Put Af =  I  (St > e). Then

P \ A ¡ ) < 6-^ [  StdP̂  <e~^a{St),

whence it follows that P^(Af) — 0 as t > oo for all e > 0. This together with 
condition b) implies that P^(Af) 0 as t oo for all e > 0. Since

l _p(^St)= f 5tdP^+ f  StdP̂  <P\At)  +  e 
JAi J{AiY

and e is arbitrary, we deduce that /3(it) —> 1 as t > oo.
b) => c). Since P̂ {zt =  oo) =  0, condition b) implies that P̂ {zt =  oo) 0 as 

t ^  oo. A family (zt) is uniformly integrable with respect to (P )̂ if ^^d only if

sup /  Zt dP̂  < oo,
Í6 R +  J

(2.2.27)
t6 R +  J

(2.2.28) if P {̂At) 0 for At G then [  zt dP̂  —> 0
JAt

(see Lemma 2.6.2 in [47]). It follows from the Lebesgue decomposition that

ztdP  ̂ < P \ A t ) < l .L
This implies (2.2.27), while condition b) implies (2.2.28).

c) d). According to the Lebesgue decomposition

p\zt > N ) =  f  Zt dP* +  P\zt =  oo).f(zt>N)
This together with condition c) implies d).
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d) => b). Let At e  be sets such that P^{At) —> 0 as t oo. According to
the Lebesgue decomposition

p\At) =  P\At n {zt <  N)) =  P\At n {zt >  N))

<-L Zt dP‘ +  P\zt > N ) <  NP\At) +  P*(zt > N).
Atn(zt<N)

Using the latter result and condition d) we prove that P {̂At) —> 0 as t —> oo.
d) «<=> e). Follows from equality zt =  2f t̂ —
e) => f). Let 7 > 0. Then for e € (0,1)

H(e-, P‘ , P‘ ) >  it (l) ^Hit >  7 ,It >  0) =  E‘ (3t/3t)i-^7(3t > 7)

> (7/2)^“ ®P‘ (3t > 7).

since 3i +  =  2. Thus for all 7 > 0

lim liminf H(e; PM > liminf liminf P (̂3t > 7) > liminf P̂ { t̂ > 7)-

Condition e) implies that lim^jo bmt_»oo P^{h ^ 7) =  1> therefore the latter result 
and inequality H{e; P^ P̂ ) < 1 prove condition f).

f) => e). For all e, A G (0 ,1) and 7 > 0 we obtain similarly to (2.2.18) that

H{e; P‘ , P‘ ) < 7^-^ +  +  E‘ (3t/3t)'-"/(3t >  7,3t > A)

< 7^"  ̂+  A" +  (2/A )^-"P ‘ (3t > 7 ).

Then for all e, A G (0,1) we get

Passing to the limit in this inequality as s | 1 and using condition f), then passing 
to the limit as A | 0 we prove that

liminf liminf P*(3t > 7) > 1,7i0 t-^00

whence condition e) follows. □

R e m a r k  2.2.5. If (if*) <1 (if*) and 71* 71®® as t ^  00, then according to
Definition 2.2.10 the limit set 71®® does not contain any point of the interval of the 
straight line joining the points (0,0) and (0, 1), except for the point (0, 1).

D e f in it io n  2.2.14. If (if*) <3 (Ht) and (if*) <1 (ift)> then the families of 
hypotheses ( i i * )  and ( i f * )  are called mutually contiguous (denoted by (if*) < >  
(ift)). If (ii*) < {Ht) and (if*) < (ift), then they are called mutually noncontiguous 
(denoted by (if*) < >  {Ht)). If either (if*) < {Ht) or (if*) < (ift), then we say that 
the families of hypotheses (if*) and (if*) are not mutually contiguous (denoted by
m ^ ( H t ) ) .



216 2. ASYMPTOTIC DISTINGUISHABILITY OF SIMPLE HYPOTHESES

Definition 2.2.15. If ( P * )  <3 ( P t )  and (P^) <  ( P t ) ,  then the families of mea­
sures (P^ ) and ( P * )  are called mutually contiguous (denoted by ( P * )  < >  ( P t ) ) .  If 
( P ^ ) < ( P t )  and ( P * ) < ( P t ) ,  then they are called mutually noncontiguous (denoted 
by (P^ ) ( P t ) ) -  If either (P^ ) <  ( P t )  or ( P * )  <  ( P t ) ,  then we say that the families
of measures ( P * )  and (P ^ ) are not mutually contiguous (denoted by (P^) ( P t ) ) -

Remark 2.2.6. Theorem 2.2.3 implies the characterization of all types

( # ')  < (F*), {H^) < >  {H^), (H^) < >  (^*), and {H^) ^  {H^).

For example,
(5 ^ )< ( /i* )  limliminfiJ(e; P^P*) <  1.e|l t—>cx> '

Further results on the contiguous families can be found in [21, 22, 37, 45].

The whole range o f  types o f  the asym ptotic distinguishability. Using 
the notions of the asymptotic distinguishability of families of hypotheses we ob­
tain the whole range of types of the asymptotic distinguishability of families of 
hypotheses (H^) and (H^). We will use the following conditions:

ao) (if*) =  (^ ') ;
a)
b)
c)
d)
e)

D efinition 2.2.16. We say that the the asymptotic distinguishability of fam­
ilies of hypotheses (H^) and {H^) is of type ao (respectively, of type a, b, c, d, 
or e), if condition ao) (respectively a), b), c), d), or e)) holds.

Note that the types a, b, c, d, and e are disjoint and form the whole range 
of types of the asymptotic distinguishability of families of hypotheses. Since ao) => 
a-)) ao is a subtype of type a. If the type ai is defined as a subtype of the 
type a for which condition ao) does not hold, then the types ao, ai, b, c, d, and e 
still form the whole range of disjoint types of the asymptotic distinguishability of 
families of hypotheses (H^) and {H^).

A characterization of types e and ao is given in Theorems 2.2.1 and 2.2.2, 
respectively. A characterization of other types can easily be obtained by combining 
Theorems 2.2.1-2.2.3 and taking into account Remarks 2.2.3 and 2.2.6. We do not 
give this characterization and leave it to the reader.

Example 2.2.1. Let an observation be the vector =  (^ni)in2} • • • j^nn) 
where ^ni»in2j • • • > inn are independent random variables such that the distribution 
of is f f  (unt, 1) under the hypothesis or J\f (uni, 1) under the hypothesis 
Then the likelihood ratio Zn{x)y x G R^, is the density of the measure corre­
sponding to the hypothesis with respect to the measure corresponding to 
the hypothesis The likelihood ratio is given by

( n  ̂ n \
-  ani)xi -  2 S  (^ i  -  «ni) )



where x =  {xi,X2,- ■ ■ ,Xn)- Put A„ =  for A „(x) =  lnz„(x). It is clear
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that

(2.2.29)

(2.2.30) C {0 An\Hn=Ai(^\vi,vl^

where

(2.2.31)
n

^ (̂O'ni ~ ^ni)
2=1

and C (0  An\H )̂ is the distribution of under the hypothesis H^. Prom equality 
(2.2.29) we derive that

(2.2.32) P” (A„ < AT) =  $  ,

whence it follows by Theorem 2.2.1 that

(2.2.33) ^

Using equality (2.2.30) we obtain

limsupun =  oo.
n —MX)

(2.2.34) P"(A„ > IV) =  #  ,

whence

(2.2.35) lim supi;n<oo = >
n —>oo

in view of Theorem 2.2.3. By contradiction, we derive from (2.2.33) that

(2.2.36) (i/^ ) < (if^) = >  limsupi^n < OO-
n^oo

Analogously, using (2.2.32) and Theorem 2.2.3 with the hypotheses and 
interchanged we obtain

(2.2.37) (ii^) < (i/^ ) limsupt;n < oo.
n—MX)

Combining (2.2.35)-(2.2.37) we prove that

(2.2.38) (ii^) < >  (ii7^) limsup-yn < oo.
n —MX)

It follows from (2.2.33) and (2.2.38) that either {H' )̂ A (i7^) or (ii^ ) <l> In
other words, either the distinguishability is of type a or of type e. Moreover using
Theorem 2.2.2 and relations (2.2.29) and (2.2.30) one can show that

{H^) ^  {H^) limsupt^n =  0.
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Therefore either the distinguishability is of type ao or of type ai or of type e. 
Namely

type ao lim sup Vn =  0,
n^oo

type ai 0 < limsupt^n < oo,
n — KX>

type e limsupi;n =  oo.
n —>oo

Further results on types of the asymptotic distinguishability of families of hy­
potheses and various examples can be found in [37].

2.3. C om plete asym ptotic distinguishability 
under the strong law o f  large numbers

Consider the Neyman-Pearson test of level at G [0,1] defined by (2.1.12) 
and assume that the complete asymptotic distinguishability (H^) A (if*) holds. By 
Theorem 2.2.1, we have

(2.3.1) (H )̂ A {H^) 4=^ lim inf |̂Q'((5̂ ’ )̂ -1- yS(it’^)j =  0 for all c G (0,oo)

where =  I{zt > c) is the likelihood ratio test defined by (2.1.11).
This implies that if (H^) A ( i i^ , for any c G (0, oo) there exists a sequence (in) 

for the test with at =  cn(Ji’ )̂ such that tn —̂ oo, at  ̂ 0, and > 0
as n —> oo. By equivalence (2.3.1), obtaining more refined properties of the function 

requires that we consider a more stringent constraint than (H^) A

Relative entropy and the law o f  large numbers. Consider the following 
condition:

AI. limt-^oo +  1| > 7) =  0 for any 7 > 0 where xt is a nonrandom
positive function such that Xt 00 as i ^  00.

It is easy to see that, in view of Theorem 2.2.1,

AI A (^*),

that is, the complete asymptotic distinguishability holds under condition AI. 

Definition 2.3.1. The number

(2.3.2) /(P ‘ |P‘ ) =  E‘g3tln(3t /3t)

is called the relative entropy of a measure P* with respect to a measure P*. We agree 
that 3t ln{^t/lt) equals 0 if 3t =  0 and equals 00 if 3̂  =  0. Then the relative entropy 
is well defined for all t.

The relative entropy /(P^|P*) is often called the Kullback-Leibler divergence  ̂
or distance or deviation [7, 9, 11, 33], or the Kullback-Leibler information defined 
for the measures P* and P̂  [1, 33].

Lemma 2.3.1. We have

(2.3.3) /(P^|P*) =  EMn2t =  -E*ln;^t
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where Zt and zt are the likelihood ratios defined by (2.1.2). Moreover

(2.3.4) /(P ‘ |P‘ ) =  E‘ ztln2t

i /P ‘  <  P* and 7(P‘ |P‘ ) = o o if  P* i t  P‘ .

Proof. The first equality in (2.3.3) follows immediately from definitions (2.3.2) 
and (2.1.2). The second equality in (2.3.3) holds, since zt =  zf^ (P^-a.s.).

If P* <  P^ then Zt =  dP̂ /dP̂  (P^-a.s.). Thus equality (2.3.4) follows from the 
first equality in (2.3.3). If P̂  5̂  P^ then P̂ {̂ t =  0) > 0. Therefore

p‘ (3t > 0 ,3 t  =  0) > 0

implying that Q^(3t > 0,3* =  0) > 0. Then definition (2.3.2) gives

7(P^|P*) =  oo □

Lemma 2.3.2. The relative entropy /(P^|P^) of a measure P̂  with respect to a 
measure P̂  is nonnegative. Moreover /(P^|P^) =  0 ¿/ and only if P̂  =  P*.

P roof. By Lemma 2.3.1, it is sufficient to consider the case P̂  P* in view 
of equality (2.3.4). Put (p{t) =  tint. Equality (2.3.4) and the Jensen inequality 
imply that

j(pt|pt) =  E V (2t) > <p{E%) =  ifil) =  0
where the inequality becomes an equality if and only if 2* =  const =  a (P^-a.s.). 
Note that a = Ê zt =  1 in this case. This means that if the equality holds, we have 
for any A e

P \A )=  [  ztdP^= [  dP̂  = P\A),
Ja Ja

that is, P̂  =  P^ □

R emark 2.3.1. Condition A1 is known as relative stability of A* as t 00 
and is the most natural and general form of the law of large numbers [20]. If the 
relative entropy 7(P^|P )̂ is finite for any t e  R+ and 7(P*|P )̂ —> 00 as t > 00, 
then, by putting xt =  7(P^|P )̂, condition A1 can be transformed into the following 
form resembling the law of large numbers:

lim P*
t—*oo

: 0 for all e > 0

where, by (2.3.3), we have E*A* =  —7(P^|P*).

The following result describes the behavior of the points (a*,0) and (0,)8*) of 
the set under the law of large numbers.

Lemma 2.3.3. The following relations hold:

(2.3.5)

(2.3.6)

A1

A1

lim at =  1,
t—*oo 

.-1lim inf Xt ln/?t >  - 1.t—>00



P roof. Implication (2.3.5) follows from (2.1.4) and the estimate

P\At < -a x t) > P\At =  -o o )  =  P\zt =  0)

where 1 < a < oo. By the Lebesgue decomposition (2.1.7) and in view of equality
(2.1.5), we obtain for any a e  (l,oo ) that

P^(At >  -axt) <  > -axt) < < oo) =
which together with condition A1 yields
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liminfxt > -a .
t—>oo

Approaching the limit as a —» 1, we obtain implication (2.3.6).

R emark 2.3.2. By equality (1.1.50), implication (2.3.6) is equivalent to 

A1 => liminfxr^ln|0(5t+'°) >  -1 .
t—̂OO

□

Behavior o f  the N eym an-Pearson test under the law o f  large num­
bers. Introduce the following conditions:

a l)  liminf at >  0;
t—>oo

dl) limsupXi”^̂ t ^
t—*oo

a2) limsupot < 1;
t—*oo

d2) liminfxt’ ^̂ t ^t—>oo

/31) lim supxr' ln/3 <  - 1; p2 ) limmf Xt"'ln/0 >  -1 ,
t—*oo

where xt is the normalizing term appearing in the law of large numbers Al.
The following result establishes relationships between the behavior of at, dt, 

and under condition Al.

T heorem 2.3.1. The following implications hold:

(2.3.7) A l ,a l  ^  dl ^  /?!,
(2.3.8) A l ,a 2 ^  (32 => d2 .

P roof. The implication A l ,a l  => dl is proved by contradiction. Representa­
tion (2.1.12) implies

(2.3.9) at = P\Yt>yt) +  etP\Yt =  yt)

where Yt =  Xt and yt =  Xt
Let {tn) be a sequence such that in oo and Vtn ^  V =  supt_»oo 2/i ^  

n —> oo. Assume that a =  liminft-^oo > 0 and condition Al holds, but y > —1 . 
Then, by condition Al, we obtain that P (̂l t̂„ > ytn) —> 0 as n —> oo. On the other 
hand, the inequality a > 0 and equality (2.3.9) imply that

lim P^ îYt >ytr^ > liminf a* > liminf at =  a > 0.
n—>oo n—»oo i —»oo

The contradiction we have obtained proves the implication A l ,a l  dl.



(2.3.10)

Using equality (2.1.8) we obtain that

=  E‘ (l  -  =  E‘ (l  -  +  E‘ (l  -  I{zt =  oo)
=  E‘ (l  -
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proving the implications dl => /31 and ¡32 => d2 .
Now we prove the implication Al, a 2 => P2 . Let a > 1 and 7 >  0 be arbitrary 

numbers and let St =  view of condition Al, there exists a
number to =  depending on a and 7 such that P (̂S )̂ < 7 for all t > to-
Therefore we obtain from (2.1.8) for t > to that

(2.3.11)
;0(<5+-“ ‘ ) =  E‘ Zt(l -  >  E‘ I{St) Ztil -

>  e - “>̂‘ E‘ I{St){l -  -  at -  7).

In view of condition a2 and since a > 1 and 7 > 0 are arbitrary, relation (2.3.11) 
proves the implication Al, ce2 => 8̂2. □

Implications (2.3.7) and (2.3.8) give the following result.

Corollary 2.3.1. If the law of large numbers A l holds and the level at sat­
isfies conditions al and a 2, then

(2.3.12) lim Xt In /?^
t—*oo ) =  -!•

Corollary 2.3.1 implies that if the law of large numbers A l holds for the 
Neyman-Pearson test ¿t'*"'“ ' whose level at tends to a limit a  G (0,1) as i - »  oo, 
then the rate of decay of the type II error probability does not depend
on a. More specifically, (2.3.12) means that

(2.3.13) /3(5+-“ ‘ ) -  e x p (-6x t(l +  o (l))), t ^  oo,

where 6 =  1 for all a G (0, 1).

Independent observations. Stein ’s lemma. Assume that an observation 
is the vector ^(” 1 =  (^ „ i ,^ „ 2 ,  • • • ,C n n ), n =  1 , 2 , . . . ,  where ^ni,^n2, ■ ■ ■ ,^nn  are 
independent random variables. The hypothesis f f ”  is that n̂i has a distribution 
P„i with ^he density p„j(x) with respect to the Lebesgue measure, while the hy­
pothesis is that the distribution of is P„i with the density p„i(x). Then the 
distribution of the vector under the hypothesis F "  is P”  =  P„i x P„2 x • • • x P„„, 
and the density of this distribution with respect to the Lebesgue measure is

n
Pn(x) =  J J p „ i ( X i ) ,  x =  (x i,...,x „).

¿=1

Similarly, the distribution of the vector under the hypothesis is

P"" = Pnl X Pn2 X • • • X Pnn

and the density with respect to the Lebesgue measure equals
n

P n (x )  =  J J p „ j ( X i ) ,  x = (x i,...,x „).
i= l
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The likelihood ratio Zn{x) for the measures and is

(2.3.14) Z n ( x )  =  Y [ z n i { X i ) ,  Zni (Xi)  =  x =  ( X i , . . . , X n ) ,
i=l

where we agree that 0/0 =  0. It is clear that the relative entropies /(P ” |P̂ ) and 
- (̂Pm|Pm)>  ̂=  1, 2, . . .  ,n, are related as follows:

(2.3.15)

Let

/(P "| P ” )  = E ^ (P m | P n i) .
i=l

(2.3.16) A„(x) =  lnz„(a;), A„i(xj) =  ln2„i(x j), i =  l , 2, . . . ,n ,  

where we agree that InO =  —oo. If

An — An{^  ̂ and Xni =  Xni{^ni)i  ̂~  1, 2, . . .  , ti, 

then An =  ^m- It follows from (2.3.3) that

(2.3.17) 7(P"|P-) =  -E"A n, /(PnilPni) =  -EniAni

where and Eni are mathematical expectations with respect to the distribu­
tions P  ̂ and Pni) respectively.

Corollary 2.3.1 can be stated in the following form.

Corollary 2.3.2. Let /(P^|P^) < oo for aZZ n =  1, 2 , . . ., and let

j(pn|pn) QQ as n -^  OO.

If the law of large numbers Al holds for An, n =  1, 2, . . . ,  with Xn =  7(P^|P^) and 
the level an satisfies conditions al and a 2, then

(2.3.18) lim x„^ ln /?(i;i ’“ ’*) =  - 1.

Now let =  ( i i ,6 . • • •.in) where i i , 6 . • • • >in are independent identically 
distributed random variables such that the distribution of under the hypothe­
sis is P with the density p{x) with respect to the Lebesgue measure, while the 
distribution of under the hypothesis is P with the density p{x). We assume 
that the distribution of is independent of n both under and under Then 
(2.3.14) and (2.3.16) can be rewritten as

p { X i )
Z n { x )  -- n  z { X i ) ,  z {Xi )  =

A „(x) =  In Z n ( x ) ,  A(xj) =  In z { x i )

(2.3.19)

(2.3.20)

where x =  (x i , . . . , x „). Put A„ = A„(^(")) and A» =  A(^i), i =  1 ,2 , . . . ,n. Then 
A„ =  Ai and (2.3.15) and (2.3.17) imply

(2.3.21) 7(P"|P” ) =  n/(P|P), 7(P|P) =  -EAi.

Therefore the following classical result follows from Corollary 2.3.2.
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Corollary 2.3.3. Let 'where ^ly... are independent
identically distributed random variables both under the hypothesis and under 
the hypothesis Assume that the distributions of are independent of n and 
the relative entropy /(P|P) is positive and finite. If an ^  Oi e  (0, 1) as n oo, 
then

(2.3.22) lim -ln;5((i+-“ " )  =  -/(P|P).
n—*oo n

Proof. It follows from (2.3.19) and (2.3.20) that where the
random variables Ai,A2,...,A n  are independent and identically distributed un­
der with mean EÂ  =  —/(P|P). By the Khintchine law of large numbers for 
sums of independent identically distributed random variables [20], we obtain that 
condition A1 holds with Xn =  n/(P|P). Since an ^  a  E (0, 1) as n  —> oo, the 
assumptions of Corollary 2.3.2 hold. Therefore (2.3.22) follows from (2.3.18). □

Corollary 2.3.3 is proved by Rao [43]. Corollary 2.3.3 with an =  Oi e  (0,1) for 
all n is called the Stein lemma (see [1, 33]).

Example 2.3.1. Let an observation be =  (^ni)in2)• • • j^nn) where ^ni, 
in2, • • • ,Cnn are independent random variables such that the distribution of n̂i is 
A/"(ani»l) under the hypothesis and Af{dni,l) under the hypothesis (see 
Example 2.2.1). Using the notation of Example 2.2.1 we obtain from (2.2.29)-
(2.2.31) that

(2.3.23)

(2.3.24) 

where

A„ =  Vn-q -  2^n.

*  ~  1 2A„ =  Vnq +

(2.3.25) £  =  at (0,1), £  =  M  (0,1).

Assume that the complete asymptotic distinguishability {H' )̂ A (ii^ ) holds. 
Considering (2.2.33) we assume without loss of generality that Un oo as n —> oo. 
It follows from (2.3.23)-(2.3.25) that

(2.3.26) J(P” |P” ) =  J(P"|P") =  -v l .

Since Un ^  oo as n ^  oo, relation (2.3.23) implies that the law of large numbers 
holds with Xn =  ^n/2- Therefore Corollary 2.3.2 holds if conditions a l  and a 2 are 
satisfied. Note that (2.2.32) yields

(2.3.27) a(i+-“ " ) =  P” (A„ >  d„) =  1 -  $  ,

whence

(2.3.28) dn — ~ 2^n "h an
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where tp is the p-quantile of the distribution This implies that condi­
tions al and a2 hold if the parameter dn of the test is such that

(2.3.29) liminf ( —  -h >  -o o , limsup ( —  -h < oo.
\Vn 2 J n^oo \Vn 2 J

Therefore Corollary 2.3.2 implies that

(2.3.30) =  exp +  o (l))|

as n OO if conditions (2.3.29) hold.
Moreover an a G (0,1) as n oo if conditions (2.3.27) and (2.3.28) hold 

and if

-^Vn +  Vnti-a +  0{Vn)-(2.3.31) dn 

It follows from (2.2.34) and (2.3.28) that

(2.3.32) j8(5+’“ ’*) =  P” (A„ <dn) =  l -  <&(v„ -  

By the well-known asymptotic expansion
1 /*oo 1

(2.3.33) 1 -  # (x ) =  ^  I  e-^V2 ^  +  ^(1))

as T ^  OO (see [34]) we obtain (2.3.30) from equality (2.3.32) if condition (2.3.31) 
holds. If we put an =  a G (0,1) for all n (as in the Stein lemma), then (2.3.32) 
and (2.3.33) imply a stronger result:

(2.3.34)
V^Vn

exp - v „ + i i _ a U n - 2<i-a +

or, in other words,

(2.3.35) lll^((5+’“ ) =  ~^vi-\-ti-aVn-\riVn -  - l n v ^  +  o(l).

It is clear from asymptotic expansion (2.3.35) that the dependence on a in the 
behavior of /3((5̂ ’̂“ ) shows up in the second term of the asymptotic expansion of 

only, while the first term is independent of a (cf. (2.3.13)).

Large deviations. Implications (2.3.7) and (2.3.8) show that under condi­
tion A l, relations pi and ^ 2  require conditions a l  and a 2 to be satisfied; the latter 
conditions prohibit the level a* to approach 0 and 1, respectively. However, if we 
impose a more restrictive condition on the likelihood ratio Zt, relations /31 and (32 
can also be obtained for levels at that tend to 0 or 1 as t ^  oo, but rather slowly. 
To be more specific, let us introduce the following conditions:

a l ')  lim =  0;
t—>oo

a2') lim Xf“  ̂ln(l -  at) =  0;
t—>oo

A2) lim sup lim sup e' ~̂ Xt ^lniii(e) < - 1;
ej.0 t—>oo

A3) liminf liminf ^ “ 1 ̂ eto t^oo «'V / -
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where Xt is the normalization occurring in condition A1 and Ht{e) =  H{€] P*, P̂ ) 
is the Hellinger integral of order e for the measures P̂  and P*.

Observe that the definition of Ht{e) gives

(2.3.36) Ht{e) =  H{e;P\P*) =  {
P ‘ ( 3 t > 0 ) ,  e =  0,

p*(3t > 0 ), £ =  1,
. ^Q3t3t e ^  0, e ^  1.

Introduce the following notation:

(2.3.37) e[_ =  inf{£::i/i(£:) > - o o } ,  =sup{e: Ht{e) < oo}.

It is clear that £:?_ < 0 and > 1, since Ht{€) < 1 for e: G [0,1]. The following 
result gives a useful representation for the Hellinger integral Ht{e) in terms of the 
likelihood ratios Zt and 2*.

L e m m a  2.3.4. For any € G { e L , e \ )  different from 0 and 1,

(2.3.38) Htie) =  E*zl =  E^zl-^.

Proof. If 0 < e < 1, then

Ht{e) =  > 0) =  E^zUiit > 0) =  E^zt,

Ht[e) =  E^lUl-^Iilt > 0) =  E‘ 2?-^/(3t > 0) =

proving equalities (2.3.38) for 0 < e < 1.
\ Now let sL < 0 and e G (e^,0). Since Ht{e) < oo by (2.3.37), we have 

=  0,3i > 0) < 00. This implies that Q (3t =  0,3t > 0) =  0 and 
therefore P (̂3t =  0). Thus

Ht{e) =  > 0) =  E\itlh)-^ =

Ht{e) =  E^3t3T'3i""/(3t > 0) =  E‘ 2-^^/(3t > 0) =  E*2'^^

Therefore equalities (2.3.38) are proved for e G (6̂ i_,0) and ê _ < 0.
Finally let 4 > i  and e G (1,£^+). Since Ht{e) < oo, we also have

EQ3t3t“ -̂i(3i >  0,3t == 0) <  oo.

Then Q(3t > 0,3t =  0) =  0 and hence P (̂3* =  0). Therefore

H t{e) =  EQ3T'3t“"/(3t > 0) =  E‘ (3i/3t)^-i =  E*2■^^
Ht{e) =  E^3t3l3r/(3t > 0) =  E^zlliu >  0) =  E‘ ^ .

This proves equalities (2.3.38) for e G (l,e+ ) and e\. > 1. □
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R e m a r k  2.3.3. If < oo, then the same argument as that used to prove
Lemma 2.3.4 shows that equality (2.3.38) holds for e =  too. If Ht{e\) < oo, 
then equality (2.3.38) holds for e =  too. Put =  P*(3t > 0) in the case 
s =  0 and =  0) > 0 and put > 0) in the case e =  0 and
P*(3t =  0) > 0. Then equality (2.3.38) holds for any e G (—00,00). Moreover we 
get for any e G (—00,00)

(2.3.39) Ht{e) -

that is, Ht{e) is the moment generating function of the random variable At which 
is, generally speaking, an extended random variable since P*(At =  —00) can be 
positive.

R e m a r k  2.3.4. If e t  < 0, then the proof of Lemma 2.3.4 shows that

p‘ (3t =  0) =  0.

By (1.1.18), this means that P* <€. P‘ . Moreover i/t(0) =  1 by (2.3.36) in this 
case. If > 1, then it has also been shown in the proof of Lemma 2.3.4 that
P*(3̂  =  0) =  0. By (1.1.17), this means that <  P^ Relation (2.3.36) implies in
this case that ift (l)  =  1.

R e m a r k  2.3.5. Condition A3 implies that there exist numbers sq < 0 and 
to < oo such that Ht{e) < oo for all e G (£:o,0) and t >  to- Then we have by 
Remark 2.3.4 that

A3 P* <C P* for all t > to.
In view of (1.1.18), this implies

A3 a* =  1 for all t > to-

The following result establishes a relationship between conditions A2, a l, a2 
and conditions A2, A3, a l ',  a2'.

L e m m a  2.3.5. We have

(2.3.40)
(2.3.41)

al => a l '; a2 => a2l\ 
A2,A3=^ Al.

P r o o f . Implications (2.3.40) are obvious. To prove implication (2.3.41) let 
7 > 0 be an arbitrary number. Then, by condition A2, there exists a positive 
number ô =  £0(7) such that

(2.3.42) limsupx^  ̂lni7i(£:) < - e  +
t—̂ oo

for all e € (0,£o)- Fix some e € (0, Cq)- Then, in view of (2.3.42), there exists a 
number io =  such that for all i > to

In iit(e) < -e  + ^£7 + tSI.



(2.3.43)

2.3. COMPLETE ASYMPTOTIC DISTINGUISHABILITY UNDER THE SLLN 227 

whence we obtain for t > to that

P‘ (xr^Ai > - 1  + 7) =  P‘

=  Ht{s) < exp ^ -^ £ 7X i)

by the Chebyshev inequality and equality (2.3.38) for e G (0 ,1). Following a similar 
argument, we obtain from condition A3 that for any 7 > 0 there exists ei < 0 such 
that

(2.3.44) P‘  (xr^At < - 1  -  7) < exp Q e 7 X t)

for all € G (£1, 0) and all t > Bounds (2.3.43) and (2.3.44) imply that
condition A1 holds. Thus implication (2.3.41) is proved. □

Conditions A2 and A3 are related to a theorem on large deviations for At as 
t > 00. To state it we introduce the following condition.

A*. For any € G (—00, 00), the limit

(2.3.45) lim  ̂In Ht{e) =  x(e)i—>00
exists where ^  00 as t ^  00 and >c{e) is a proper convex function 
differentiable in the interval (e_,e_|.) where

(2.3.46) €- =  inf{£:: x{e) < 00} ,  =  sup{e:: >c{e) < 00} .

It is clear that £:_ < 0 and > 1. Let

7o =  >i'(0), 7 i = x ' ( l ) ,
(2.3.47) 7_ = lim x'(e), 7+ = lim xr'(e).

eie- eU+

Note that 70 is defined for < 0 only and 71 is defined for >  1. If condition A* 
holds with 6-  < 0, then it is clear that conditions A2 and A3 hold with Xt =  “ 7oV̂ i- 
It follows from the properties of the function Ht{e) that 70 < 0. In what follows, 
we will reveal a tighter relationship between conditions A2, A3 and condition A* 
providing a theorem on large deviations for At.

The following result gives upper and lower bounds for for all a G (0,1)
enabling us to obtain /31 and /32 if conditions aV  and a2' hold.

T heorem 2.3.2. For all a G (0,1) and all t G R+

(2.3.48) ^((5+'“ ) > (1 -  a)^ /(® -i)(^t(l -  e))^/(^"^\ e > 1,
(2.3.49) /3(5+’°) < (1 -  £ )(£ /a)"/(i-">(H t(l -  0 < e <  1.

Proof. If iit ( l  -^ )  =  oo for e > 1, then estimate (2.3.48) is trivial. Therefore 
we assume that H t{l—e) < oo for e: > 1. By the definition of a Bayes test, we have 
for any c G (0, oo)

(2.3.50)
ca +  /?(5t+'“ ) > inf{ca((5t) +  p{St): 5 € S ‘ } =  ca +  p

=  1 -  E g (St -  C3t)+
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where a+ =  a V 0. By the fundamental Neyman-Pearson lemma and by the defini­
tion of a Bayes test, there exists a constant c G (0, oo) such that inequality (2.3.50) 
becomes an equality. Therefore

(2.3.51) =  1 -  inf {ca  +  c > 0} .

The condition i it ( l  — s) < oo for e >  1 implies that Q dt =  0) =  0. Hence

(2 .3 .52 ) Egdi -  cat)"  ̂ =  E*(l V czt) -  c.

Since 1 V z < az  ̂ +  1 for e: > 1, 2; > 0, and a = e ^{e — l y  relations (2.3.51) 
and (2.3.52) imply that

(2.3.53) >  sup{(l -  a)c -  ac^Ht{l - e ) ] C >  O} 

by (2.3.38) for e: > 1. The upper bound (2.3.53) is attained at

(2.3.54) c =  c* =  (1 -

Therefore (2.3.53) and (2.3.54) imply estimate (2.3.48).
Now we prove estimate (2.3.49). As in the proof of equality (2.3.52) we get

(2.3.55) (it -  C3t)+ =  1 -  E‘ (l  A czt).

Since

(2.3.56) z A l < 2; > 0, 0 < e: < 1,

we obtain from (2.3.51), (2.3.55), and (2.3.38) for 0 < e: < 1 that

(2.3.57) /3(<5 “̂ ) <  sup {c^Ht(l -  e) -  ca; c > 0}.

The upper bound in (2.3.57) is attained at

(2.3.58) c =  c* =  a^/(^-^)(eirt(l -  £))^/(^-^\

Therefore (2.3.57) and (2.3.58) imply estimate (2.3.49). □

C o r o l l a r y  2.3.4. For all e ,a e  (0 ,1) and i e R+

Ht(£) > ;0"(5t+-“ )a^-*e'‘ (̂ )

where h{e) =  -e ln e  — (1 — e) ln(l — e) is the Shannon entropy of the distribution 
of the random variable taking two values with probabilities e and 1 — e.

R e m a r k  2 .3 .6 .  If at < 1, then Ht{e) =  oo for all e < 0. Therefore, in the case 
of at < 1, estimate (2 .3 .48 ) acquires the trivial form > 0 for all a € (0 ,1 ) .

We also note that (1 .1 .50 ) implies =  0 for a  € [a t ,l j .  Estimate (2 .3 .49 ) is
rather rough for a  G [at, 1], however a t ^  1 as t —> oo by (2 .3 .5 ) and if condition A l  
holds. Moreover if condition A 3 holds, then Remark 2.3 .5  yields that there exists 
to < oo such that at =  1 for all t > to (see Theorem 2 .7 .2  in [37] for improved 
estimates (2 .3 .48 ) and (2 .3 .4 9 )) .

T h e o r e m  2 .3 .3 .  The following implications hold:

(2.3.59)
(2.3.60)

A2, a l ' 
A3, a 2'

dl
P2

/31,
d2 .
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P roof. According to Theorem 2.3.1, it is sufficient to prove the first impli­
cations in (2.3.59) and (2.3.60). The first equality in (2.3.50) implies that for all 
c >  0

ca +13 0 < £ < 1,

in view of (2.3.55) and (2.3.56). Thus

e<^at +  ¡3 ((5+'“‘ ) < -  e)

for 0 < e < 1 by the first equality in (2.3.50) and by equality (2.3.38). Therefore 
we have for 0 < £: < 1

d t < { l -  e)~^ \nHt{l e)~^ In at,

whence the implication A2, a l ' => /?1 follows.
The implication A3, a 2' => (32 follows from estimate (2.3.48). □

R emark 2.3.7. The implication A2, a l ' => pi can be obtained directly from 
estimate (2.3.49).

Theorem 2.3.3 implies the following well-known result of Krafft and Plachky 
(see [37]).

Corollary 2.3.5. Let the assumptions of Corollary 2.3.3 hold. If conditions 
a l ' and a2' are satisfied with Xn =  then (2.3.22) holds.

Example 2.3.2. This is a continuation of Example 2.3.1. Relations (2.3.23)-
(2.3.25) imply for all t e R+ and e e ( - 00, 00) that

(2.3.61)

whence

Hn{e) =  exp j ,

lim lim (exn) ^lniin(e) =  -1e—»0 n—>oo

for Xn =  2 that is, conditions A2 and A3 hold. Theorem 2.3.3 implies (2.3.30) 
for the test of level a „ satisfying conditions a l ' and a 2'.

The following result of independent interest holds under the assumptions of the 
latter example.

T heorem 2.3.4. Ifvn -^ oo  as n oo, then 
1) if Oin ^  0 as n ^  oo, then

(2.3.62) a l ' dl pi <=> zi-an — o{vn)i

2) if an 1 as n -^  oo, then

(2.3.63) a2' d2 p2 î-ocn — o{vn)

where Zp is a p-quantile of the distribution M  {Q., 1) and Xn =  2“ ^v^.
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P r o o f . Let an  0 as n —> oo. Then it follows from (2.3.33) that

(2.3.64) In OLn — (1 +  o (l)), n -^  (X).

Therefore

(2.3.65) a l  —> zi-a^ =  o{vn)>

Since Vn —̂ oo as n —̂ oo, conditions Al, A2, and A3 hold for Xn =  
Therefore, in view of Theorems 2.3.1 and 2.3.3, relation (2.3.62) follows from the 
chain of implications

(2.3.66) /3l=^dl=> a l '.

Since zi-ocn oo as n ^  oo, it follows from (2.3.28) that dl => zi-an ~  <̂ (̂ n)» 
whence the implication dl => a l ' follows in view of (2.3.65).

If /31 holds, we have by (2.3.32) that Vn — zi-a„ —> oo as n —> oo. Applying 
(2.3.33) we get

lim (v„ -  2 i_«J -2 ln ^ (5+ -“ ») =  - 2 - ^
n—*oo

Thus zi-a^ =  o(yn) by /31. Hence the implication /31 => dl follows from (2.3.65) 
and the equivalence dl a l ' proved above. Therefore implication (2.3.66) is
proved.

The proof of (2.3.63) is similar to that of (2.3.62) and thus is omitted. □

R e m a r k  2.3.8. Since condition A2 holds, we see from statement 1 ) in The­
orem 2.3.4 that conditions a l ' and dl cannot be weakened to prove the chain of 
implications A2, a l ' => dl => /31 in Theorem 2.3.3. Since condition A3 also holds, 
we obtain from statement 2) in Theorem 2.3.4 that conditions a2' and P2 cannot 
be weakened in the chain of implications A3, a2' => /32 d2 in Theorem 2.3.3. 
Moreover, it follows from Theorem 2.3.4 that

(a l ',a 2 ')  ^  (dl,d2) ()91,^2) ^l-c 0(Vn)y

that is, relation (2.3.30) is equivalent to conditions a l ' and a2'.

Rates o f  decay o f  probabilities o f  error o f  the N eym an-Pearson, 
Bayes, and m inim ax tests under condition  A*. Throughout this section we 
assume that condition A* holds. In this case, the Neyman-Pearson test can be 
used even if the level at tends to zero as t ^  oo faster than is allowed by condition 
a l '. In particular, if (p^^lnat —a for some positive number a, then one can 
prove that ln/3(i^*"’^) —> —b{a) where b{a) is a positive function of a. In order 
to provide an exact statement, we need the following result on large deviations of 
At. Below we use the following notation (see also (2.3.45)-(2.3.47)):

(2.3.67) To =  jo I {e -  <  0) +  =  0),
(2.3.68) Pi =  7i/(^+ > 1) +  =  1).

T h e o r e m  2.3.5. Let condition A* be satisfied. If

Pq < 7+> .
then for all 7  G (P q, 7 + )

(2.3.69) lim (pt  ̂In P* > 7) =  ,lim <pT̂  In P‘  (ipt^At > 7) =* ) 00 t  ̂00 - / ( 7 ).



Further if 'i -  < F i ,  then for all 7  € (7 _ , F i )

(2.3.70) lim InP* (iff ̂ At < 7) =  lim lnP‘ < 7) =  -^ (7 ) +  7
t—>00  ̂ ^00

where / ( 7 ) =  76:(7 ) -  >c{e{^)) and e{'y) is an arbitrary solution of the equation 
x'{e) =  7 .

Theorem 2.3.5 can be deduced from Theorem 2.6.3 of [17] in view of equality
(2.3.39). This proof can be found in [39].

R e m a r k  2.3.9. Applying the methods of convex analysis [44], we can readily 
obtain that the function / ( 7) is strictly convex in the interval (7- , 7+) and has the 
unique minimum at 7 =  70 if £- < 0. Moreover / ( 70) =  0 in this case, while the 
minimum is attained at 7 =  7-  if S- =  0.

First we consider the Bayes test Sf with respect to the a priori distribution 
(tt,??), 7t +  7t =  1, and the loss Aij =  1 -  Sij (see Section 2.1). It follows from 
Section 1.2 that we can put Sf =  where c =  tt/ tt and e G [0,1] is an arbitrary 
number.

T h e o r e m  2.3.6. Let condition A* hold with To < 0 < Fi. Then

(2.3.71) lim (p^^lna{S^) =  lim =  - / ( 0),i—»00 t-̂ 00
. - i i
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lim ipt lne^{6f )  =  -7 (0 )t—>00(2.3.72)

where ê  ̂ is the probability of error of the test Sf {see (1.1.32)).

P r o o f . It is clear that for any Bayes test Sf

(2.3.73) P (̂At > ln(7r/7f)) < a{S^) < P {̂At > ln(7r /7r)),
(2.3.74) P^(Ai < ln(7r /7r)) < P{S^) < P\At < ln(7r/7r)).

Then (2.3.69), (2.3.70), (2.3.73), and (2.3.74) imply (2.3.71). Now the equality

e.{S^) =  7ra{5f) +  m S ^ )

and (2.3.71) imply (2.3.72). □

R e m a r k  2.3.10. By (2.3.67) and (2.3.68), the condition To < 0 < Pi implies
that

To < 7+ and 7_ < P i ,
which enables us to apply relation (2.3.69) for 7 G (r o ,7+) and relation (2.3.70) 
for 7 G (7_ ,r i ) .  On the other hand,

ln(7r /7r) 7 =  0 G (Po, Pi) as i ^  00.

Now let be the minimax test for distinguishing the hypotheses and 
(see Section 2.1). According to the results of Section 1.2, e(JJ') is the probability 
of error for the test (see (1.2.19)).
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T heorem 2.3.7. Let condition A* hold with To < 0 < Fi. Then

(2.3.75) '

(2.3.76)

lim ipt Mna(5t*) =  lim ipt Mny0(J*) =  - / ( 0),
t —>CX3 t-*oo

lim Mne (̂(5t*) =  - / ( 0).
t—*oo

P r o o f . Let (tt, tt) be the a priori distribution of the hypotheses, tt +  tt =  1. 
Then the definitions of Bayes tests and minimax tests imply that

that is,

(2.3.77)

e„(S )̂ =  m ine„(it) <  min(a(5t) V 0{5t)) =  e{St),
dt dt

e-^{S^) >  (tt A 7r)(a((5 f) V /3{S^)) >  (tt A n )e {6 ^ ) ,

(7rA n)eiS ;)<e^{S ;)<e{S ;).

Combining (2.3.72) and (2.3.77), we obtain (2.3.76). Relation (2.3.75) follows from 
(2.3.76), since a(5^) =  P{5^) =  e(i *̂) (see Theorem 1.2.4). □

The following result describes a relationship between the rates of decay of the 
level at and the type II error probability for the Neyman-Pearson test
under condition A*.

T h e o r e m  2.3.8. Let condition A* hold with P q <  P i .  Then

lim (p^^lnat =  —a = —b{^)(2.3.78) ̂ ' i-^oo ‘

for any a G (/(P q) , / (P i)) where

h{a) =  a -  7 (a) e (/(P i) -  P i,/(P o) -  Po)

and 7 (a) is a unique solution of the equation / ( 7) =  a.

P r o o f . We prove the implication => in (2.3.78). Assume that Ina* —a 
as t -> 00 for a G (/(P o ),/(P i)). We have

at =  P \Y t>yt)+eP\Y t =  yt)

where Yt =  At and yt = ^t^dt- Our current goal is to show that yt 7 (a) as 
t > 00. Put

y =  liminf 2/t,— t—̂00
y =  limsupj/t.

t—>oo

Then it is sufficient to prove that y =  7 (a) and y =  7 (a).
First we show that y =  7 (a). Assume for contradiction that y ^  7 (a). Below 

we use the obvious estimates

(2.3.79) P‘ (yt > yt) < a t <  P*(Vt > yt)-

By the definition of y, there exists a sequence (i„) such that » oo and yt„ —̂ yss 
n ^  00. Then, if y is finite, for any y' < y and y" > y there exists no =  no(y', y") 
such that y' < y«„ < y" for all n > no- If y =  +oo, then for any y' < y =  oo there 
exists no =  no(y') such that yt„ >  y' for all n > no, while if y =  -o o , then for any 
y" >  y =  -00  there exists no =  no(y") such that yt„ < y" for all n > no-



2.3. COMPLETE ASYMPTOTIC DISTINGUISHABILITY UNDER THE SLLN 233

First let y <  Vo and y" e  (ro ,7 (a)). Since yt  ̂ < y”  for all n > no, we have by 
Theorem 2.3.5

1™ In (5̂ tn > J/t„) > In P‘” (̂ tn > y” ) = -I{y")-

Therefore (2.3.79) implies

In a*" >  - / ( / )  >  - / ( 7 (a)) =  -a ,

since To < y” < 7 (a). By Remark 2.3.9, the function / ( 7) is strictly increasing on 
the interval (Fo,7+), giving a contradiction.

Now assume that y e  (r o ,7 (a)) U (7 (0) ,7+) and that y' and y" are such that 
{y'>y") C (ro ,7 (a)) U (7 (a ),7+). Then by Theorem 2.3.5 we have

liniinf In P*’*(yt„ > j/t J  > In P*"(V't„ > y") =  - / ( / ) ,

l i m s u p y J t - M n P * " ( y t ^  >  y t j  <  l im  In  P * "  ( y „  >  y') = -I{y').
n—̂ oo n—>00

Since y' and y" are arbitrary and since the function / ( 7) is continuous on the 
interval (7_ ,7+), we obtain in view of inequalities (2.3.79) that

Since 'g ^  7 (a) by assumption and since / ( 7) is strictly increasing on (ro ,7+), this 
again gives a contradiction.

Finally, let y > 7+ and y' G (7 (a ),7+). Since yt  ̂ > y' for all n > no, we apply 
Theorem 2.3.5 once more to obtain

limsupv?t-MnP‘ ” ( y „  > y t j <  lim In P‘ " (yt„ >  y') =  -I {y ').
n-^oo n -̂ 00

Since 7 (a) < y' < 7+, we have /(y ')  >  / ( 7 (a)) =  a, giving a contradiction by
(2.3.79).

The above contradictions show that y =  7 (a). By a similar argument, we can 
prove that y =  7 (a). Therefore y< 7 (a) as t 00.

Let £: > 0 be arbitrary and let t =  to{€) be such that \yt - 7 (a)! < s for all t > to- 
Assume that e: > 0 is small enough in order that (7 (a) -  e, 7 (a) +  e) C (Fo, Fi). It 
is clear that the following inequalities hold for all t >  to*

P * (v^r'At <  7 (a) - e ) <  /?(5+>“ ‘ ) <  P ‘  < 7 (0) +  e) ,

whence

limmf Mn^ > - I i l ia )  -  e) +  7 (a) -  e,

limsup < -F (7 (a) +  e) +  7 (a) +  et—*oo
by Theorem 2.3.5. Approaching the limit in these inequalities as e ^  0 we obtain 
that the upper and lower bounds in these inequalities coincide and

l̂un ln /3 =  - a  +  7 (0) =  -b{a),

since the function / ( 7) is continuous in the interval (7_ ,7_|_) and / ( 7 (a)) =  a.
Therefore the implication in (2.3.78) is proved. The inverse implication <= 

in (2.3.78) can be proved along similar lines. □



R e m a r k  2.3.11. The behavior of in the case where ip ^ ^ ln a t  —O'
for a ^ (7( r o ) , / ( r i ) )  is studied in [39]. In particular, the results in [39] show that 
for any a e [0,/(r o )]  we have

(2.3.80) lim \n =  at =  - a  limsupy?^^ In^ < ^ o ~  H^o)-
t-^oo t-^oo

Let €- < 0. Then To =  7o and /(F q) =  0. Therefore (2.3.80) becomes of the form

(2.3.81) lim cp7̂  In =  a =  0 => limsup</?i"  ̂In^ ^ 7o-
t—oo t _ o o

As we have already observed, in this case conditions A2 and A3 hold with

Xt =

Therefore implication (2.3.81) is equivalent to the implication aV => /31. If condi­
tion a2 ' holds, then we obtain from the implication a2' => /32 that

a l ',  a2' => l̂un In/? =  “ 70

if condition A* holds with £:_ < 0 and Fq < Fi.
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R e m a r k  2.3.12. The function 6(a) is shown in Figure 2.3.1. According to 
Remark 2.3.11 we have /(F q) =  0 and I {To) — Fq =  -70  if S- <  0. If =  0, 
then Fq =  7-  =  x '(0+ ) and /(F q) — Fq =  —x (0+ ) — x '(0+). If > 1, then 
Fi =  7i, / ( 71) =  7i, and /(F i)  -  Fi =  0. If =  1, then Fi =  7+ =  x ' ( l - )  and 
/ ( F i ) - F i  =  - x ( l - ) .

E x a m p l e  2.3.3. This is a continuation of Example 2.3.2. Relation (2.3.61) 
implies condition A* with (pn =  x{e) =  - 2 “ 6̂:(1 -  s), =  - 00, and =  00.
Hence 7_ =  —00, 7+ =  00, 70 =  —2“ ,̂ and 71 =  2“ .̂ It is easy to show that 
/ ( 7) =  2“ ^(7 +  2“ )̂ .̂ It is clear that Fq < 0 < Fi. Therefore Theorems 2.3.6-2.3.8 
hold. In particular. Theorems 2.3.6 and 2.3.7 imply that

=  exp +  o ( l ) )| , =  exp +  o ( l ) )| .



Since 7 (a) =  y/^ — 2“  ̂ is a solution of the equation / ( 7) =  a, we obtain

b{a) =  2“  ̂(\ /^  — l)^

for all
a G ( 0, 2- i )  =  ( / ( r o ) , / ( r i ) ) .

Therefore, in view of Theorem 2.3.8 we have that

lim v~’̂ lnan =  -a  lim v~^\n/3 (5^’^” ) ”  - 2“  ̂ (^ V ^ -

for all a e (0, 2” )̂

E x a m p l e  2.3.4. Let an observation be

^^2) • • •»inn)

where in i,in 2) • • • ,inn are independent both under H'̂  and H' .̂ Assume that the 
random variable n̂i has the exponential distribution with the density

Ani ^ ^ni)

under the hypothesis and the exponential distribution with the density 

\niexp[-Xni{x -b n i))l{x  > bni)

under the hypothesis i f^ .  Here Xni G (0,oo), Xni €  (0,oo), bni G ( - 00 , 00) , and 
bni G ( —00, 00). It is easy to show that
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(2.3.82)

(2.3.83)

e l  =  — mm
l < 2<n

-1

^ V l j - l l  I ( b n i < b n i )

e l  =  mm
l< i< n

and that for all e G {e^^e" )̂

1 -  ( ^ A l j / ( 6„ i > 6„i)
T -1

(2.3.84)

where

(2.3.85)

(2.3.86)

In ii„(£ ) =  ^  < e In -  In
i=l
+  e ln iin (l) +  (1 - e )  Iniin(O)

InJTn(l) — ^ ^Ani(bni bni)I{bni >  bni)i
i=l 
n

\uHn{0) =  — ^   ̂Xni{bni ~  bni)I{bni ^  bni)>
2=1

Relations (2.3.82)-(2.3.86) allow us to completely study the problem of the 
asymptotic distinguishability of the hypotheses and although we consider 
some particular cases only.
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E x a m p l e  2.3.5. This is a continuation of Example 2.3.4. Let bni =  &m for all
i =  1 ,2 ,. . . ,  n and all n =  1 ,2 ,___ Then it is clear that the measures and
are equivalent and therefore =  /3̂  =  1 for all n. Assume that Xni =  Xni =  Pn 
for alH =  1,2 , . . . ,  n and all n =  1, 2, . . . ,  and let P as n oo. Relations
(2.3.82)-(2.3.86) imply that

ln if„(e ) = n { e l n p n  -  ln[e(/9„ -  1) + 1]), e  G (£",£+),
£- = - { { P n  V 1) -  l)"^ e+ = (1 -  ipn A 1))“ ^

Now we find p for which condition A* holds and evaluate the function 6(a) defined 
in Theorem 2.3.8.

If p G (0,oo) \ { ! } ,  then condition A* holds and

Pn = n, e -  =  - { {p  V 1) -  1)“ \ e+ = { l - { p A  1 ))"S  
>c{e) = elnp -  ln(6:(p -  1) +  1), e e  (e_,e+).

In this case, 7 _ =  Inp and 7 + =  oo if p G (0 ,1), while 7 _ =  -0 0  and 7 + =  Inp if 
p G (1, 00). Moreover, we have for any p

70 = - ( / J - 1 - I n p ) ,  7 i

It is easy to show that for all 7  G (7 - , 7 +) we have

/( 7 ) = z{'y) -  1 -  In 2(7 )

where
2(7 ) =  ( l n p - 7 ) / ( /9 - l ) .

Observe that the condition Fq < 0 < Ti (and therefore the condition Fq < Fi) 
holds, since Fq =  70 < 0 and Fi =  71 > 0. Therefore Theorems 2.3.6-2.3.8 hold 
and in Theorems 2.3.6 and 2.3.7 we have that

P - 1  P - 1
If p G (0,1), then 7  > 7o for z{'y) > 1. Let be a solution of the equation

z — 1 — Inz =  a for z > 1 and a G (0,7i). Then 7 (a) =  lnpH-(l — p)^a and therefore

6(a) =  a -  Inp -  (1 -  p)za-

If p G (1 ,00), then 7  > 7o for z{'y) G (0,1). Let Za be a solution of the equation
z — 1 — Inz =  a ioT z e  (0,1) and a G (0,71). Then 7 (a) =  Inp — (p — l)za and
therefore

6(a) =  a -  Inp +  (p -  l ) 2a-
Now let p =  1. Assume that n(pn — 1)̂  —> 00 as n ^  00. Then condition A* 

holds with

¥>n =  n(pn -  l)^, x(e) =  - e ( l  -  e)/2 , 

This implies that

1

6-  =  —00, =  00.

7- = -oo> 70 =-2-
1

71 =  2 - 7+ = 00, / ( 7) =  1 ( 7 + 1

Therefore we have 7(0) =  1/8 in Theorems 2.3.6 and 2.3.7 and 6(a) =  (1 — \/2a)̂ ¡2 
in Theorem 2.3.8 (cf. Example 2.3.3).
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If /9 =  0, then condition A* holds with S- — —oo, 6+ =  1, and
>c{e) =  —£. Since x'(e:) =  — 1 for all e, we have 7_ = 7+ =  —1. Therefore the 
conditions To < Fi and Fq < 0 < Fi fail to hold and Theorems 2.3.6-2.3.8 do not 
apply. Since €- < 0, conditions Al, A2, and A3 hold and therefore Theorems 2.3.1 
and 2.3.3 apply.

If p =  00, then condition A* holds with (pn =  n lnp“ ,̂ S- =  0, =  00, and
= £—1 . In this case, x'{£) =  1 for all £. Therefore 7_ =  7+ =  1 and Theorems 

2.3.6-2.3.8 do not apply. Observe that conditions Al, A2, and A3 fail to hold in 
this case.

Example 2.3.6. This is a continuation of Example 2.3.4. Let Xni =  A, Xni =  A, 
bni =  6, and bni =  6 for all i =  1,2 , . . . ,  n and all n =  1, 2, . . .  . Then condition A* 
holds with (pn =  n,

-1e_ =  -{{p V 1) -  l ) - i / ( 6  < b), =  -  [1 -  (p A l ) /(6  >6)] \

and
h {£) =  £\np- ln[e:(p - ! )  +  ! ] +  £h {1 ) +  (1 -  e)x(O) 

for all £ £ (e_,e:+) where

x ( l)  =  —X{b — b)I{b > 6), x (0) =  —X{b — b)I{b > 6), p =
A

If p =  1 and 6 6, then 7_ =  7+ and therefore Theorems 2.3.6-2.3.8 do not apply.
In this case conditions Al, A2, and A3 hold and therefore Theorems 2.3.1 and 2.3.3 
apply if 6 < 6.

Let p 1 and b>  b. Then

£ - = 0, e+ =  ( l - ( p A l ) ) -1 x(e) =  e In p -  ln[e(p - 1 )  +1) -  (1 -  e) (6 -  6) A

in condition A*. In this case, 7_ =  —(p — 1 — li^ ) + {b — b)X for all p € (0 , oo) \ { ! } ,  
while 7+ =  oo if p G ( 0 , 1), and 7+ =  Inp -1̂ (6 -  b)X if p G (l,oo ). Observe that 
To =  7-  and Ti =  7i =  (p“  ̂- 1  -  In p“ )̂ +  (6 -  b)X. The condition To < Ti clearly 
holds and therefore Theorem 2.3.8 applies. The condition To < 0 < Fi holds if 
(6 -  i>)A < p -  1 -  Inp and therefore Theorems 2.3.6 and 2.3.7 apply only in this 
case. It is easy to show that for all 7 G (7- , 7+)

/ ( 7 ) =  2 (7 ) -  1  -  l n z ( 7 ) +  (6  -  b)X

w h e r e  2 (7 ) =  (p  —  l ) “ ^ ( ln p  +  (6 —  b)X —  7 ).
I f  p  G ( 0 , 1 ) ,  t h e n  7  >  7 -  fo r  z ( 7 ) >  1 .  L e t  Za b e  a  s o lu t io n  o f  t h e  e q u a t i o n  

z  —  1 —  l n z  +  (6 —  i»)A =  a w i t h  r e s p e c t  t o  z  G ( 1 , 00) w h e r e

oG  (7 (r o ) ,/(r i) )  =  ( (6 -6 )A ,7 i ).

T h e n  7 (a )  =  I n p  +  ( 1  -  p)za +  (6 -  b)X a n d  t h e r e fo r e

b{a) = a - l n p - { i - p ) z a - ( b - b ) X .

I f  p  G  ( 1 , 00) , t h e n  7  >  7 -  fo r  z ( 7 ) G ( 0 , 1 ) .  L e t  z «  b e  a  s o lu t io n  o f  t h e  e q u a t io n  
z  —  1 —  l n z  +  {b — b)X = a w i t h  r e s p e c t  t o  z  G ( 0 , 1 )  w h e r e  a  G {{b — & ) A ,7 i ) .  T h e n



7 (a) =  In p -  (/9 — l)za +  (6 — b)X and therefore

b{a) = a -  ln p +  (p -  l)za -  (b-b)X.

If p ^  1 and 6 < 6, then €- =  —((p A 1) — 1)“ ,̂ =  1, and

x{e) = elnp — ln[£:(p — 1) +  1] — e{b — b)X.

This case can be considered similarly to the case b>  b.
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2.4. C om plete asym ptotic distinguishability 
under the weak convergence

Consider completely asymptotically distinguishable families of hypotheses (H )̂ 
and (H )̂ in two cases:

1) the law of large numbers (LLN) for At does not hold;
2) the law of large numbers for At holds and, moreover, (At—(pt)/^t converges 

weakly with some (ft and ipf

The case where the LLN does not hold. Let C {rjt\P̂ ) be the distribution 
of rjt with respect to the measure P* and let the symbol stand for the weak 
convergence of probability distributions. Introduce the following condition:

A4. C ('0 "̂^At|P*) L as t —> oo where V̂t is a positive function such that 
V̂t ^  oo as t —> oo and L is a probability distribution on R  whose distri­
bution function is L{x).

Lemma 2.4.1. If condition A4 holdŝ  then at 1 as t —> oo and L{x) =  1 for 
any X > 0. Moreover^

(2.4.1) {H^) A {H^) L(0) =  1.

Proof. For any a G (—oo,0), we have

P* < o ) '>  =  -oo) =  l - a t .

If a is a point of continuity of the function L(x)  ̂ then L(a) > limsup^_,oo(l — at) 
by condition A4. Passing to the limit over the points of continuity a —> -o o , we 
obtain at 1 as t 00.

Choose a > 0 and apply the Chebyshev inequality to obtain

P̂  {i)t^At > a) =  P̂  [zt > < e-^^^E^Zt <

Passing to the limit as t oo in this inequality, we have 1 -  L{a) =  0 and therefore 
L{a) =  1 for any a > 0.

Further, in view of condition A4, we have as t —> oo

*  ̂ \<l)t <l>t) | l - L ( 0 + ) ,  N>0.

Since ¿ (0 + ) =  1, Theorem 2.2.1 gives the required equivalence (2.4.1). □
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Remark 2.4.1. Equivalence (2.4.1) means the following: If condition A4 holds, 
then the complete asymptotic distinguishability (ff*) A (H^) holds if and only if 
the distribution function L{x) is continuous at the point x =  0.

The next result, which is an analog of Theorem 2.3.1 (see also Corollary 2.3.1), 
describes the behavior of the Neyman-Pearson test as i —> oo under condi­
tion A4.

T heorem 2.4.1. If condition A4 holdŝ  then for any a e  (0,1)

(2.4.2) , dt - ln /?(5+ ’“ ‘ ) -
lim at =  a limsup — < h-a  => limsup------ \------ - < /i-a»

t-^OO Wt t^oo Wt

(2.4.3)

where

(2.4.4)

lim at =  at-̂ oo lim inf
t —KX)

----- h------- > h - a  liminf — >Ipt “ t-.oo  'tPt "

Ip =  sup{u: L{u) < p}Ip =  inf{u: L{u) > p },

forpG  (0,1).

Proof. We have

(2.4.5) at =  P‘ (yt > yt) +  £tP\Yt = yt)

where Yt =  and yt =  ipt^dt-
First we prove the first implication in (2.4.2). Suppose that at —> a, but

limsup2/t = y > u
t—HX)

where г¿ is a point of continuity of L{x) such that L{u) > 1—a. Let tn be a sequence 
such that yt  ̂ ^  y as n ^  oo. Then

a =  lim at < limsup P̂ ” (lt„  ^Htn) ^ limsup P̂ ” (yt„ > г¿) =  1 — L{u) < a.
t—>oo n—>oo n—>CX)

This contradiction shows that limsup^_ooyt < u for any point u of continuity 
of L{x). This proves the first implication in (2.4.2).

The second implications in (2.4.2) and (2.4.3) follow from estimate (2.3.10). 
Assume again that at —> a as t  ̂ oo and let u < 0 be a point of continuity of 

the function L{x) such that L{u) < 1 — a. By equality (2.1.8), we obtain

/3 > E Î{Yt > « ) ( ! -  > E‘7(yt > u) (1 -  <5+'“ ‘ ) zt

> e“’ ‘̂ E*7(yt > ix) (1 -  ¿4+’“') > {P\Yt > u) -  a t ) .

This yields in view of condition A4 that

Îhn V>r̂  In^ (¿t"'’ ’“ ')  ^ ii,

whence the first implication in (2.4.3) follows, since u is arbitrary. □

If the distribution function L(x) in condition A4 is continuous, then Theo­
rem 2.4.1 can be made more precise. First we give a necessary definition.
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D efinition 2.4.1. Let p g [0,1]. Let 5  be a probability distribution and let 
S{x) be its distribution function. Any number Xp G such that

S{xp) < p <  S{xp +  0)

is called a quantile of order p G [0,1] or, simply, a p-quantile of a probability 
distribution S. Such a number Xp is also called a p-quantile of the distribution 
function S{x). If for some p G [0,1] we have S{x) > p for all a: G R^, then we put 
Xp =  —oo. If S{x) < p  for all a: G R^, then we put Xp =  +oo.

R emark 2.4.2. If L is the probability distribution appearing in condition A4, 
then it is clear that for p G (0,1), the p-quantile Ip of the distribution L and the 
quantities Zp and Ip defined by relations (2.4.4) are related in the following way:

Lp — l̂p —

T heorem 2.4.2. Assume that condition A4 holds and the function L{x) is 
continuous and strictly increasing in the interval (Z, Z) where

(2.4.6) Z =  sup{a:: L{x) =  0}, Z =  inf{a;: L{x) =  1}.

( We agree that sup(0 ) =  -o o  and inf(0 ) =  oo.) Then for any a G (0,1)

(2.4.7) lim a* = a
t—̂oo

lim ^  =  h -a
t->oo i->oo pt

where p G (0,1), Zp =  Zp =  lp is a p-quantile of the distribution L, and where the 
quantities Ip andlp are defined by (2.4.4).

P roof. Since the function L{x) is continuous and strictly increasing in the 
interval {lpjp)i we have Ip =  lp =  ~lp for p G (0,1). Put Lt{x) =  P^{Yt <  where 
Yt =  Then for any e > 0 and yt G R^

P\Yt = yt )<Lt{y t  + e ) -L t { y t )
(2.4.8) =[Lt{yt + e ) - L { y t + e ) ]

-  [Ltiyt) -  L{yt)] +  [L(yt +  e) -  L{yt)].

By the P61ya theorem (see, for example, [16]) we have

(2.4.9) lim sup \Lt{y) -  L{y)\ =  0.
t—>oo

Since the continuity of the function L{x) implies its uniform continuity, we obtain 
from (2.4.8) and (2.4.9)

(2.4.10) lim P\Yt =  yt) =  0.t—♦oo
Therefore it follows from (2.4.5) and (2.4.10) that

(2.4.11)

whence

(2.4.12)

since L{x) is continuous and strictly increasing in the interval (Z,Z).

lim at =  Oi
t—̂oo

lim at =  a
t—*oo

lim Lt{yt) =  1 — 0!,
t-+oo

lim yt =  h -a ,t—♦oo
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(2.4.13)

By (2.1.9), we have for any e > 0

P > E‘ 2t (1 -  > E*/(yt -  £ < Yt)zt (1 -
> P‘ (j/t - e < Y t < y t )  exp((j/t -  e)ipt).

Using (2.4.13) we get

(2.4.14) lim Dt = h -a  => lim =  h-ai —>oo i-^oo '  '

in view of the second implication in (2.4.2) and since e is arbitrary. The relation 

lim yt = h -a  ^  lim ln /0 =  ^I-Q

follows from

(2.4.15) lim ln;0 =  h -a  => lim sup yt < li-at-̂ oo t _ o o

in view of the second implication in (2.4.3).
We prove (2.4.15) by contradiction. Let

(2.4.16) lim -0t  ̂ =  h-a^ limsupyt > /i_a,
i —KX) t- ôo

and let {tn) be a sequence such that tn ^  oo and yt  ̂ limsup^^oo yt as n —> oo. 
Then estimate (2.4.13) implies that

limsup^f^ In/? (¿t*"’“ ')  >  limsupV’i"̂  ln;0 f e ’“ *") >

contradicting the equality in (2.4.16). This proves implication (2.4.15). By com­
bining (2.4.12), (2.4.14), (2.4.15), and (2.4.3), we obtain (2.4.7). □

R emark 2.4.3. If the limit distribution L in condition A4 is singular and 
concentrated at a point xq G ( — o o , 0), then the law of large numbers A l holds, and 
the statements of the previous section apply. If the function L{x) in condition A4 
is discontinuous at a point xq G (—cxd, 0) such that 0 < L { xq) < L(a:o +  0) < 1, then 
Theorem 2.4.1 implies the following result: If at a as t oo, then we have for 
any a G (1 -  L{xo -h 0), 1 -  L(xq))

(2.4.17) dt , ln/?(<?+-“‘ ) ,lim — = h - a ,  lim ------ ^ =  h - o
t—*oo t—*oo 'ip̂

where li-a =  xq- Moreover, if condition A4 holds and L~^{a) =  inf{г¿: L{u) > a }, 
a G [0,1], is the inverse function of L{x), then Theorems 2.4.1 and 2.4.2 imply the 
following result: If at a as t oo, then for any a G (0,1) that is a point of 
continuity of L~^{a), relations (2.4.17) hold with l\-a = L~^{a).

R emark 2.4.4. If the assumptions of Theorem 2.4.2 hold and is the 
Neyman-Pearson test whose level at has a limit value a G (0,1), then Theorem 2.4.2 
implies that

dt =  h - a i ’t +  oiiJt), lny3 = h-a'4>t + o(V'i).
Here, l\-a is strictly decreasing from 0 to - o o  as a increases from 0 to 1. Therefore 
the rate of decay of /5(5̂ ’̂^*) depends on a for each particular value of a. This differs
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crucially from the case where the law of large numbers A1 holds; in the latter case, 
the rate of decay of is independent of a (see the preceding section).

Second-order behavior o f  the N eym an-Pearson test. Now we consider 
the case where the law of large numbers holds for A<. In this case, the rate of decay 
of the type II error probability of the Neyman-Pearson test is independent 
of a =  limi_oo Ot if a  G (0,1). Below is a condition enabling us to evaluate the 
second term in the asymptotic expansion of as t oo.

A5. C ((^¿" (̂At H- L as i oo where (pt and are positive functions
such that (ft ^  oo and 'ipt —> oo as t ooy (pt =  o(^t), and L is a 
probability distribution on whose distribution function is L{x).

It is easy to see that A5 => A1 for xt

T h e o r e m  2.4.3. If condition A5 holdsy then for any a G (0 ,1)

(2.4.18)

(2.4.19)

lim at =  at^oo

lim at = Oi
t—̂oo

limsup---------- <
t—*oo

lim sup
t—>oo ‘Pt

lim inf
t-^oo

^ 1̂ —Of)

^ Ll-a

lim inf
t-^oo (pt - - A  «

where Ip and Ip are defined by (2.4.4).

P r o o f . It is sufficient to follow the proof of Theorem 2.4.1 with appropriate 
modifications. First of all we note that equality (2.4.5) holds with

(2 .4 .20 ) Yt =  (Pt^{At +  V^i), yt =  <PT {̂dt +  V't).

The proof of the first implication in (2.4.18) is the same as that of the first impli­
cation in (2.4.2). The second implications in (2.4.18) and (2.4.19) follow from the 
estimate (2.3.10).

Now let at ^  a as t > oo and let u G be a point of continuity of the 
function L{x) such that L{u) < 1 — a. We have

P >  E*I{Yt >  n) (1 -  zt >  expiuift -  i>t) [P‘m  > u ) -  at]

by equality (2.1.8), whence the first implication in (2.4.19) follows. □

The following result improves Theorem 2.4.3 for the case where the func­
tion L{x) in condition A5 is continuous.

T h e o r e m  2.4.4. Assume that condition A5 holds and the function L{x) is 
continuous and strictly increasing on the interval (Z, 1) where I and I are defined by
(2.4.6). Then for any a G (0,1)

(2.4.21) lim at =  OL
t—*oo

dt+tpt , lim ---------- =  ¿i_Qt->oo (pi t->oo (p̂

where Ip is a p-quantile of the distribution L.
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P r o o f . It suffices to repeat the proof of Theorem 2.4.2 with appropriate modi­
fications. First, we should use equality (2.4.5) where Yt and yt are given by (2.4.20). 
By literally repeating the proof of equivalence (2.4.12), the first equivalence in
(2.4.21) is proved.

Next, we have for any e > 0

(2.4.22)
¡3 -  £ < Yt)zt (1 -

> P‘ (yt - e < Y t < V t )  exp((i/t -  £)ipt -  V»«)-

Then the second implication in (2.4.18) implies

(2.4.23) lim yt =  h -a  => lim <pt̂  (in/? (¿¿'■’“ ‘ ) +  tpt) =  h -a ,

since € is arbitrary in (2.4.22) and Ip = Ip for p G (0,1) in view of the continuity and 
strict monotonicity of the function L{x) in the interval (Z,I). Further, the relation

lim yt =  h -a  lim tpt  ̂ (In/? (¿¿'■’“ ‘ ) +  ipt) =  h -a

follows from the second implication in (2.4.19) if

(2.4.24) lim <pt̂  (In/? (¿t'*'’“ *) +  ipt) =  h -a  limsup j/t <  h-a-t—>oo t—>oo

Relation (2.4.24) is readily proved by contradiction. Indeed, assume that

(2.4.25) l̂im (In/? (¿i*"’“ *) +  ipt) =  h -a , limsupyt > h -a
t—̂OO

and let (in) be a sequence such that in oo and yt  ̂ —> limsup^^o^ yt as n —> oo. 
In view of estimate (2.4.22)

limsupyjt“  ̂(In/? ((?(■'■’“') + Ipt) >  lim (pij- (in/? (¿tt’“*") + V’t„) > h - a ,

contradicting the equality in (2.4.25). This proves implication (2.4.24), completing 
the proof of the second equivalence in (2.4.21). □

R e m a r k  2.4.5. If the assumptions of Theorem 2.4.4 hold and ii at a E 
(0,1) as i oo, then Theorem 2.4.4 gives the following asymptotic expansions for 
the Neyman-Pearson test

(2.4.26)
(2.4.27)

dt =  —'ipt +  h-oc^Pt +  o{(pt)y 

In/? (¿¡'■■“‘ ) = -Ipt + h-aVt + ohpt)-

Expansions (2.4.26) and (2.4.27) show that, under these assumptions, the asymp­
totic behavior of the test depends, in the second term of the asymptotic ex­
pansion, on the limit value a of the level at (cf. Remark 2.4.4 and relation (2.3.12) 
in the case where the law of large numbers A1 holds).
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E x a m p l e  2.4.1. Let an observation ^ be the vector

r  =  n =  l , 2, . . . ,

where the random variables ^1,^2? • • • »Cn form a first order autoregressive process

(2.4.28) + Wi, t =  1 ,2, . . . ,  0̂ =  0,

where 0 G R  is an unknown parameter and - are independent Gauss­
ian random variables with the M {0, 1) distribution (which are independent of 6). 
Denote by Pq the probability measure generating the distribution of the observa­
tion Let the measures and correspond to the hypotheses and 
respectively, where 0 and 0 are some points in R  such that \0\ > 1 and 0 ^ 9 .  We 
assume that 9 is independent of n, while 9 depends, generally speaking, on n. We 
write 9 =  0n if 9 depends on n. It is clear that the measures Pq and P  ̂ generate 
Gaussian distributions. Moreover, P  ̂^  Pg and, in view of (2.4.28), the logarithm 
of the density of the measure P  ̂with respect to the measure P  ̂can be represented 
as follows (P^-a.s.):

(2.4.29) A„ =  (e -  -  k o  -
i=l ¿=1

By (2.4.28), we have

Using Proposition II.4.2 in [42] we obtain that 9~'̂ n̂ is a Cauchy sequence with 
probability 1 and therefore the limit limn-^oo exists almost surely with re­
spect to the probability P^. On the other hand (2.4.28) implies that the random 
variable is normally distributed with mean 0 and variance

(2.4.30) 

Thus

(2.4.31)

(1 +  0 - 2 + 0 -4 +  .. .  +  0- 2î

v/02 _  ^  n, n 00,

almost surely with respect to the probability P  ̂ where the random variable 77 is 
normally 7\/*(0,1) distributed. Further, we obtain by (2.4.31)

0-2n _  1)2 = (02 _ 1)2 ̂  (0i~n̂ _̂.)2 Q-2i

(2.4.32) ¿=1 i=l
00

(02 - 1)" Y .  -  T)
i=l

as n —> 00 with probability 1. Here, we have used the dominated convergence, since 
for any u where convergence (2.4.31) holds, there exists a constant C{uj) such that 
\9~^̂ j{̂ )\ ^ C'(cj) for all j  =  1,2, . . .  . It is easy to show, in view of (2.4.28) and 
(2.4.30), that

( n \ 2 Ti 2n 2̂

t=l ' i=l i=l ^

0 2n
(02- 1)2 -
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Now assume that 9 =  On depends, generally speaking, on n and ^  oo
as n ^  00 where An = On — 0. Then (2.4.29) implies the following representation 
(P^a.s.):

(2.4.34) V-n'A„ =  2 (02 -  1)^ -  (0  ̂ -
i= l i= l

where . But, in view of estimate (2.4.33), we have

(2.4.35) E ^(0 -2"A ;1  < A -20-2« (02 -  1 ) - '  ^  0,
^ i= l ^

n  OO,

Relations (2.4.32), (2.4.34), and (2.4.35) imply that condition A4 holds where 
V̂n =  2“ (̂0  ̂-  1)“ ^0^^A^, L is the distribution of the random variable —rf- whose 
distribution function is

L{x) =  P ( - 7?2 < x) =  2 (1 -  $ (^ /=x )) , X < 0,

L(x) =  1 for X > 1, and $ (x ) is the distribution function of the normal .A/" (0,1) 
distribution.

Since the function L{x) is continuous. Lemma 2.4.1 implies that the complete 
asymptotic distinguishability ( f f^ )  A {H'^) holds and, moreover. Theorem 2.4.2 
applies. Observe that I =  -o o , 7 =  0, and for any p  G (0 ,1 )  a p-quantile of the 
distribution L can be represented in the form Ip =  where Zp is a p-quantile
of the distribution M  ( 0 ,1). Therefore relations (2.4.7) become of the following form 
for any OL G ( 0 ,1):

T T 2 T lny0(5+»“ ^) 2hm a n =  OL hm —  =  —zi±a hm ------^ ------ =  —z i+a.
n —>00 71—^00 y j^  2 n —>00 2

E x a m p l e  2.4.2. Let an observation be a sample =  (^1,^2?• • • ,^n ) where 
• • • )in are independent identically distributed random variables. Assume 

that the distribution of under the hypothesis is generated by a measure P 
whose density with respect to some cr-finite measure p is p(x), while under the 
hypothesis the distribution is given by a measure P having density p{x) with 
respect to p. Consider the likelihood ratios

p{Xi)

Put

Then

I I  ^ipi)  , X — (3̂1, X2, . . . ,  iCn)*
¿1  Pi^i)

A„(x) =  ln.2:„(x), A(Xi) =  ln2(Xi), X =  ( X i ,X 2, . . . , X „ ) ,

An = An(0. Ai =  ln2:(^i), f =  l ,2 , . . . ,n .

An — Aj, n — 1, 2, . . . ,
i=l

/ (P " | P " )  =  n /(P | P ), 7(P|P) =  - E A i ,
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where and are the measures generating the distribution of under the 
hypothesis and respectively (see Section 2.3).

Assume that

0 < /(P|P) <  oo, 0 < cr (̂P|P) =  DAi < oo

where the symbol D stands for the variance under the hypothesis Then the 
central limit theorem [47] implies

£(^AÍa(P|P)(A„ +  n/(P|P))|P” )  ^  AT (0, 1) ,  n ^ o o .

Therefore condition A5 holds with

<Pn =  /̂5í(7(P|P), V-n =  n/(P|P), L = U{0 ,1) .

Thus the assumptions of Theorem 2.4.4 hold with / =  —oo, I =  oo, and L{x) — $ (x). 
Hence relation (2.4.21) holds for any a € (0,1) where Ip =  Zp is a p-quantile of the 
distribution A/^(0,1). Therefore the following asymptotic expansion holds for the 
Neyman-Pearson test if ^ (0,1), n —> oo:

= -n/(P|P) -  VnO-(P|P) l̂-a + 0 { y / n )

(cf. relation (2.3.22)).

Example 2.4.3. Let an observation be a column-vector =  (^1,^2) • • • >in)  ̂
having Gaussian distributions P  ̂ and P’  ̂ under the hypotheses and re­
spectively, namely

£  IJi") =  AT (At, |F") =  AT (m, a^Rn)

where M  (a, B) is the Gaussian distribution with the vector of means a and matrix 
of the second order mixed moments p =  (pi, p2, • • •, Mn)  ̂M =  (pi, M2> • • • > Mn)  ̂
and Rn = (Rij) is an n X n-matrix. This model can be written as

^̂  = e + v C

where =  (Ci> C2> • • • > Cn)̂  is a Gaussian vector with distribution 

£(C|ii” ) = £ ( c | # " )  = ^ í ( 0,Rn)

and where 0 =  (^ i,02> • • • > ^n)' and v G (0, oo) are unknown parameters such that 
6 =  fjb and V =  a under the hypothesis while 6 =  Ji and v =  a under the 
hypothesis

Assume that the matrix Rn is nondegenerate for all n =  1,2,___ Then the
measures P  ̂ and P  ̂ are mutually absolutely continuous. Therefore the likelihood 
ratio Zn has the form Zn{x) =  dP'^/dP' {̂x), x =  (xi, X2, . . . ,  Xn)y where

A„(a;) =  ]nzn{x) =  nln |  -  JiyR~^ix -  ju) +  ^ { x  -  n)'R~^{x -  n)

-O '  1 ^ 1  l \ .  »->—1 1 / 7-k 1 1 / 7-k—1=  +  y - — mR^ m
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and m = — and y = x — [jl. This implies that

An =  K i C )
(2.4.36)

where rj =  — y.. Note that Theorem 1.4.1 in [38] implies =  ncr ,̂
whence we obtain

(2.4.37) 7(P"|P") =  -E -A „  =  I  ( | !  -  1 -  In

by equality (2.4.36).
Put Cn =  m'R~^m and let 7(P” |P’‘ ) ^  oo as n —> 00. Considering (2.4.37) we 

distinguish the following three cases.
a) Let a =  (j and  ̂oo as n ^  oo. Then (2.4.36) and (2.4.37) imply for any 

n =  1, 2, . . .  that

£(c-V2aF[A„ +  ^ ]  |P")=A7(0,1)
and thus condition A5 holds with

1/2
=  V-n =  ^ ,  L = J  ̂(0,1), L{x) =  ^ x ) .

Therefore the assumptions of Theorem 2.4.4 are satisfied and thus

(2.4.38)
1/2

ln/3 (i;!'-“ ” ) =  -  ^ ^ 1- “  +   ̂ ^)

if a „  ^  a e (0, 1) as n oo.
b) Let CT CT and n /c „  -> oo as n —> oo. Equalities (2.4.36) and (2.4.37) imply

that

(2.4.39) 

where

(2.4.40)

^ [ A „  + / (P“ r ) ] = i ( i - l ) G „ - i / .  

i f „  =  C?„ =  ^  ( ¿ № ‘-1 -  n)

It is clear that Hn —> 0 in probability as n —> oo under the hypothesis By the 
central limit theorem and in view of Theorem 1.4.1 in [38], we have

£(Gn|P^) -^ A 7 (0 , l )  a s n - ^ o o .

Therefore condition A5 holds with

£ - 1 ^ „ =  7(P"|P"), L =  A7(0,1).

Then Theorem 2.4.4 implies that

ln/3(<J+’“ ") =  -7(P” r ) - y | i - 1 Zi-a +  o(Vii)
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if an —> Qi € (0,1) as n ^  oo. Observe that this expansion takes the following form 
in the case of Cn =  o{y/n)\

£ - 1 Zi-a +  o(v/n).

^  1/2 
<Pn =  ,

c) Let a ^ a and n/cn —> 0 as n oo. Then relations (2.4.39) and (2.4.40) 
imply that

as n —> oo. Therefore condition A5 holds with

V>„ =  / ( P ” |P "), L =  M {0 ,1 ) .

Hence Theorem 2.4.4 implies that

ln;0 =  -/(P "| P ” ) -  ^ c y 2 z i_ „  +  o(cy2) if a „  a  € (0,1).

The latter expansion becomes of the following form if n =  o(cy^):

In^ +  o(cy2)

(cf. (2.4.38)).

Examples where conditions A4 and A5 hold and the observation is a stochas­
tic process on the interval [0, t] can be found in the monograph [37].

2.5. Contiguous families o f  hypotheses

Relative com pactness and tightness o f  a family o f  probability mea­
sures. The concepts of relative compactness and tightness of families of probabil­
ity measures play a fundamental role in studying contiguous families of statistical 
hypotheses. Assume that all underlying measures are defined on a metric space 
(£■, p) equipped with a distance p where the cr-algebra <?is generated by the met­
ric p. In what follows, we often consider the case {E^S) =  (R"^,<^^) with the 
Euclidean metric p.

Definition 2.5.1. A family of probability measures =  (Q-̂ ; n G 21) is called 
relatively compact if any sequence of measures belonging to cS contains a subse­
quence that converges weakly to a probability measure.

Note that this definition does not assume that the limit probability measure 
belongs to the family cS.

Definition 2.5.2. A family of probability measures =  (Q̂ ;̂ G 21) is called 
tight if for any s > 0 there exists a compact set Ke C E such that

su p {Q „ (£ \ X e ) ;u e S l}  < £ .

The following result is fundamental for the theory of weak convergence of prob­
ability measures.
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Theorem 2.5.1 (Prokhorov’s theorem). Assume that =  {QuyU G 21) ¿5 a 
family of probability measures defined on a complete separable metric space {Ê  p).
The family «S is relatively compact if and only if «S is tight.

The proof of this theorem can be found in various textbooks on probability 
theory (see, for example, [3, 47]).

Consider a family of probability measures »2 =  {Qt\t e R+) on the space 
(R ,^ )  where Qt is the probability measure defining the likelihood ratio zt with 
respect to the measure P^ If a family of hypotheses (H^) is contiguous to a fam­
ily (ii^), then Theorem 2.2.3 implies that the family (zt) is tight with respect 
to (P^). Therefore the family of measures cS is tight and thus, by the Prokhorov 
theorem, relatively compact. In a similar way, if a family is contiguous to the 
family {H )̂i then the family of distributions of Zt with respect to the measure P̂  
is relatively compact. It is clear that the family (zt) is tight with respect to (P^). 
Therefore the family of distributions of At =  In zt is relatively compact with re­
spect to P^ since {H )̂ < {H )̂- Therefore if {H )̂ < then every sequence of 
distributions of At with respect to P* has a weakly convergent subsequence. For 
the sake of brevity we assume throughout this section that the distribution of At 
with respect to is weakly convergent.

W eak convergence o f  the logarithm  o f  the likelihood ratio. We intro­
duce the following condition:

A6. C (At|P )̂ ^  L where L is a probability distribution on R  whose distribu­
tion function is denoted by L{x).

Theorem 2.5.2. If condition A  ̂ holds, then

(2.5.1) (At|P‘)

where L is a probability distribution on the extended real line R  =  [—cxd, cxd] whose 
distribution function is

(2.5.2)

In this case, L{oo) < 1 and

(2.5.3)

L {x )=  r  eydL{y).
J —OO

lim lim P*(At > N )  =  1 -  L(oo).
N—*oo t—*oo

Proof. By the Lebesgue decomposition we have for any x G R
_  pe^p{x)

(2.5.4) P {̂At < x) = E^I{lnzt <  x)zt =  /  zdGt{z)
Jo

where Gt{z) =  P̂ {zt < z), z e R+. By the Kelly theorem [47], condition A6 
implies that

(2.5.5) lim [ zdGt{z) = f zdG{z) 
Jo Jo

for any X G (0, oo) such that In x is a point of continuity of L{x), where

G{z) =  L{lnz), z G (0,oo).
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(2.5.6)
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J^exp(ic) ny
f zdG(z )=  /  e^dL(x).
0 J —oo

It follows from (2.5.4)-(2.5.6) that for any y e R  which is a point of continuity 
of L(x),

(2.5.7) lim P‘ (A( < y ) =  [  dL(x),
7 - 0 0

whence relations (2.5.1) and (2.5.2) follow. The inequality L(oo) < 1 and relation
(2.5.3) also follow from (2.5.7). □

Corollary 2.5.1. We have

(2.5.8) A6 => lim at =  1, lim inf Bt > L(oo).
t—>oo t-^OO

Proof. It is clear that for any x e H

l - a t  =  P^{At =  -o o )  < P^(At < x), Pi- =  P^(At < oo) > P*(At < x).

Since the number x G R  is arbitrary, we obtain (2.5.8) from condition A6 and 
relation (2.5.3). □

Corollary 2.5.2. If condition A6 holds for L=Ai (a , where aG  (—oo, oo)
and a G (0, oo), then a < —cr^/2 and (2.5.1) holds with the distribution function

H x)  =  M(2.5.9)

where h =  exp(a +  cr^/2).

Proof. It is clear that

y *  eVdL{y) =  ey d^ =  ~ •

By relation (2.5.7) and by equality (2.5.2), this implies (2.5.1) and equality (2.5.9). 
Since A(oo) < 1 by Theorem 2.5.1, equality (2.5.9) implies that a < —cr^/2 in view 
of $(oo) =  1. □

Remark 2.5.1. If condition A6 holds, then it follows from Theorem 2.5.2 that 
the limit distribution L is, in general, a mixture of two probability distributions L'  ̂
and weighted by L(oo) and 1 -  L(oo), respectively, that is,

L =  L{oo)L^ -f- ( l  — iy(oo))£{oo}

where £{oo} is the Dirac measure concentrated at oo and L~̂  is a distribution on R  
determined by its distribution function L~ {̂x) = L{x)/L{oo)^ x G R. In particular, 
by Corollary 2.5.2

L(oo) = h =  exp (a +  (7^/2) ,  L"’" =  A/*(a +

for L =  A/* (a,cr^).
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R e m a r k  2.5.2. Assume that condition A6 holds where the distribution L is a 
mixture of the normal distributions N  (—cr^/2, cr̂ ) with respect to the parameter a 
with a probability distribution K  on (0, oo). Then the distribution function L{x) 
is continuous and increasing in (—00, 00). It is clear that the distribution L is a 
mixture of the normal distributions AT ((j^/2,cr )̂ with respect to the parameter a 
distributed according to the same distribution K,  Therefore L(oo) =  1.

T h e o r e m  2.5.3. We have

(2.5.10)

In particular, if condition A6 holds, then

(2.5.11)
(2.5.12)

( / / ' )  < {H^) L{oo) =  1, 
L(oo) < 1.

P r o o f . Condition A6 implies that

(2.5.13) lim lim PVAt < N ) = 0 .
N—>—00 t—*oo

By Theorem 2.2.3, with the hypotheses if* and if* interchanged, we obtain (2.5.10) 
in view of the equality

p\zt  <  iV )  =  P * {zt > N~^)

and relation (2.5.13).
Now we assume that condition A6 is satisfied. Then L(oo) < 1 by Theo­

rem 2.2.3 and thus (2.5.3) holds. Hence Theorem 2.2.3 implies (2.5.11). Relation
(2.5.12) follows from the inequality L(oo) < 1, equivalence (2.5.11), and the follow­
ing property: either (H*) < (if*) or (ff*) <  (Jf*). □

R e m a r k  2.5.3. The implication <= in (2.5.12) is known as the first Le Cam 
theorem (see [22]).

R e m a r k  2.5.4^ The following property follows from Theorem 2.5.3 under con­
dition A6: either (if*) <ll> (if*) (type a) or ( if* )< (if* )  (type b). Moreover

(ff*) 0  (if*) ^  Z(oo) =  1, 
( # * ) < ( f i * ) < ^ Z ( o o ) < l .

If L =  A/* (a, cr̂ ) in condition A6, then a < —(j^/2 by Corollary 2.5.2. Moreover,

L(oo) =  1 a =  —c7̂ /2,
L(oo) < 1 a < —c7̂ /2.

Behavior o f  the N eym an-Pearson tests. The following result establishes 
a relationship between the behavior of the level at and that of the type II error 
probability for the Neyman-Pearson test under condition A6.



T heorem 2.5.4. If condition A6 holds, then for any a G (0,1):

(2.5.14) lim at =  a=> limsup/3 < L{li-oc +  0),
t—̂ oo t—>oo

(2.5.15) lim at = Oi lim inf (3 > -^(ii-a)
t—̂ oo i —>oo  ̂ '

where Ip and Ip are defined by equalities (2.4.4).

P r o o f . Assume that at —> a G (0, 1) as t —> oo. First suppose that is a 
point of continuity of the function L{x) satisfying L{u) > 1 — a. As in the proof of 
Theorem 2.4.1, we obtain that limsup^_oo dt < u. Therefore

(2.5.16) limsup^ < limsup P (̂At < dt) < l̂im P (̂At < it) =  L{u),
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t—̂ oo t —»CO

since, by (2.5.2), the point u is also a point of continuity of L(x).
Inequality (2.5.16) yields

limsup/? (¿¿ ’̂“ ‘ ) < inf { L { u ): L{u) > 1 — a }  =  L{li-oc + 0 )
i—»oo

where the infimum is taken over all points u of continuity of L{x) such that

L{u) > 1 — a.

Therefore implication (2.5.14) is proved.
Now we suppose that it is a point of continuity of L{x) such that L{u) < 1 — a. 

Then liminft_,oo dt > u, whence

liminf /? (¿¿ ’̂“ *) > liminf P*(At < dt) > l̂im P*(A  ̂ < u )  = L{u).
t—»oo t—»oo

Therefore

liminf/3 (¿¿ ’̂“ ‘ ) > s u p { L ( i t )  : L{u) <  1 — a }  =  L(/]_^)

where the supremum is taken over all points u of continuity of L{x) such that 
L{u) < 1  — a. Implication (2.5.15) is also proved. □

If condition A6 holds and the function L{x) is continuous, then Theorem 2.5.4 
can be sharpened. First we prove an auxiliary result which is also of interest on its 
own.

L e m m a  2.5.1. Let (Z^Sl^S^), t e R+, be a family of probability measures and 
let Yt be a measurable mapping of the space (Z^,2t*) into the space (R, < )̂ such that

(2.5.17) C{Yt\S^)^S, t ^ o o ,

where S is a probability distribution on R  whose distribution function S{x) is con­
tinuous for X G (—oo, oo) and such that S{—oo) =  0 and S{oo) < 1. Then

(2.5.18) lim S‘ (yt = y t ) = 0
t —»OO

for any family ( y t )  of numbers such that yt e  K  and lim supf._^ ^ y t < o o  if 
5(oo) < 1. Further assume that the function S{x) is strictly increasing in the 
interval {x,x) where

X =  sup{x: S{x) =  O}, X =  inf{x: S{x) =  5 (oo)}.
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Let (yt) and {et) be arbitrary families of numbers such that yt € R , € [0,1], and 
the limit

(2.5.19) > yt)+etS\Yt =  yt)] = P

exists. Then the limit limt_>oo Vt exists for any P e  {1 — 5(oo), 1) and

(2.5.20) lim yt =  S1-/3
t—>oo

where Sp is ap-quantile of the distribution S. Moreover  ̂ if P =1^ then

(2.5.21)

while if p = 1 — 5(oo), then

(2.5.22)

limsupy* < Xy
t—>oo

liminf 2/t > X.
t—MX)

P r o o f . First assume that 5(oo) =  1 and prove relations (2.5.18) and (2.5.20). 
Put St{y) =  S\Yt < y). Then

S\Yt = yt)<St{yt  + e) -S t {y t )
=  [^t{yt +  ^) ~  S{yt +  e)] — [AS't(yi) — 5 (y t )]  +  [5(?/i +  e ) — S{yt)]

for any e > 0. By the Polya theorem (see [16]) and since the function S{x) is 
uniformly continuous, the latter inequality and condition (2.5.17) imply (2.5.18).

It is clear that relation (2.5.18) implies that

lim St{yt) =  1 -  /?.t—)00(2.5.19) «

Therefore, again by the Polya theorem, we obtain

(2.5.23) (2.5.19) ^  lim S{yt) =  1 - 0 .
t—MX)

The properties of the function S{x) and relation (2.5.23) imply that the limit 
limt_*oo yt exists and (2.5.20) holds.

Now we assume that 5(oo) < 1. It follows from condition (2.5.17) and the 
equality 5 (—oo) =  0 that

(2.5.24) lim St{x) =  S{x)t—*oo
uniformly m x < N  for any N <oo.  Now the proof of the required relation (2.5.18) 
follows the lines of the proof of the same relation in the case where S{oo) =  1. 
The only difference is that the reference to the Polya theorem is replaced with the 
uniform convergence (2.5.24) in the interval (—oo, limsup^_oo yt +  e) where 6: > 0.

It is clear that /? G [1 — 5(oo), 1]. First assume that /? G (1 -  5(oo), 1). In 
order to prove that the limit limt_oo Vt exists and relation (2.5.20) holds in this 
case, note that

lim lim St{N) =  0

by (2.5.17) and in view of 5 (—oo) =  0. Therefore conditions (2.5.17) and (2.5.19) 
yield limsupi_oo2/t < oo. Let us prove this fact by contradiction. Assume that 
lim sup _̂,oQ 2/t =  00. Then there exists a sequence (tn) such that —> oo and

oo as n - >  00. Let e >  0  be arbitrary and let iV^ G R  be such that 
S{Ne) > S{oo) -  e. By (2.5.24), there exists an integer no =  no(e) such that
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\ S M ) - S ( N , ) \  < € for all n > no. Now suppose that ni =  ni{e) is an integer 
and yt  ̂ > Ne for all n > n i. Therefore

StAvtJ > S M )  > S{Ne) -  e > 5(oo) -  2e

for all n > no V n i . Hence

liminf S‘ (yi > yt) < liminf > y t j  < 1 -  S{oo),t—>oo n—>oo
since € is arbitrary. On the other hand,

liminf S‘ (yi > yt) > lim [S*(yt > yt) +  £tS\Yt =  y t ) ] = / 3 > l -  5(oo)c—>oo i—+00 '■

by condition (2.5.19). This contradiction proves that limsup^_,QQ < oo. By
(2.5.18), we obtain S^(lt =  yt) 0 as t oo. Now the proof of equality (2.5.20) 
follows the lines of the same proof in the case 5(oo) =  1.

Now we prove (2.5.21) and (2.5.22) assuming that 5(oo) < 1. Both proofs are 
carried out by contradiction.

Suppose that P = 1 but limsupt_,ooyt > x. Then for any N  € (x,y), where 
y =  limsup^_oo yt, there exists to =  ^o(^) ^ R+ such that yt > N  for all t >  to- 
Therefore the inequality

S‘ (rt < yt) +  (1 -  £t)S\Yt =  yt) > S‘ (yt < yt) > S\Yt < N)

holds for t > to. By inequalities (2.5.17) and (2.5.19) and by the equality S{x) =  0 
we obtain

[S‘ (yt < yt) +  (1 -  £t)S‘ (y( =  yt)] > 0,

since S{x) is strictly monotone in the interval (x,x). The latter inequality contra­
dicts (2.5.19) for ^ =  1. Therefore inequality (2.5.21) is true.

Now assume that p =  1 — 5(oo), but y =  liminft_,oo Vt < x. Then there exists 
a sequence (tn) such that tn oo and yt  ̂ ^  y as n ^  oo. By conditions (2.5.17) 
and (2.5.19) and by relation (2.5.18) we obtain

[S‘ "(yt„ > ytJ + et„S‘ "(yt„ = ytJ] =  1 -  S(y) > 1 - S { x )  = l -  5(oo),

since S{x) is strictly monotone in the interval (x,x). This contradicts (2.5.19) for 
P = 1 -  5(oo). Therefore (2.5.22) is true. □

R e m a r k  2.5.5. If x =  —oo under the assumptions of Theorem 2.5.1, then the 
limit limt_,oo yt exists for /3 =  1 and equality (2.5.20) holds with sq =  x =  —oo. 
In a similar way, if x =  oo, then the limit limt_oo Vt exists for /3 =  1 — 5(oo) and 
equality (2.5.20) holds with si-fs =  55(00) = x  =  oo. In the case 5  =  A7 (a, a^), see 
[45] for additional information if a =  —o^¡2̂  and [36] if a < ¡2.

T h e o r e m  2.5.5. Assume that condition A6 holds and the function L{x) is 
continuous and strictly increasing in the interval (Z, 1) where

I =  sup{x: L(x) =  0}, I =  inf{x: L{x) — 1}.

Then for any a e  [0,1]

(2.5.25) lim oct =  a lim /3 =  L{li_a)t—>oo i—KX>  ̂ '
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where Ip is a p-quantile of the distribution L and L{x) is the distribution function 
of the distribution L defined by equality (2.5.2).

P r o o f . Condition A6 and Theorem 2.5.1 imply weak convergence (2.5.1), 
where L is the probability distribution on R  whose distribution function L{x) is 
given by (2.5.2) and L(oo) < 1. Equality (2.5.2) shows that

sup{a;: L{x) =  0} =  Z, inf{x: L{x) =  L (oo)} =  Z, 

and that the function L{x) is continuous on R  and strictly increasing on the interval
iU).

Assume that at ^  a as t oo. I f 0 < a < l ,  then the limit limt^oodt =  
li-oc exists by Theorem 2.5.1. Therefore lim sup^^^  ̂cZt < oo. Then, again by 
Theorem 2.5.1, we have P*(At =  dt) ^  0 as t —> oo. By (2.5.1) and (2.5.2), by the 
inequality lim sup^_,oo dt < oo, and since P*(At < y) converges to L{y) uniformly 
iny < N  for any N < oo,we obtain

(2.5.26)

If a  =  0, then Lemma 2.5.1 implies that liminft_,oo dt > Z. Therefore, for any 
N e  (—00,1), there exists =  f {N )  such that dt> N  for all t > t'. Hence

0  >  P‘ (At < dt) > P‘ (At < N)

for all t > Since li-oc > Z for a = 0 and N  is arbitrary, convergence (2.5.1) 
implies convergence (2.5.26) for a =  0.

If a =  1, Lemma 2.5.1 implies lim sup^_,oo d̂  < Z. Then for any N e  (Z, oo) 
there exists =  t” {N) such that dt < N  for any t >  t” . Therefore

(2.5.27) P < P‘ (At < N )  + P\At =  dt)

for all t >  t” .
It is clear that limsup^_,oo dt < oo and P^(At =  dt) 0 as t  ̂ oo by 

Lemma 2.5.1. Therefore we obtain (2.5.26) for a =  1 from estimate (2.5.27) and 
convergence (2.5.1). This completes the proof of the implication => in (2.5.25).

Now assume that 0̂(5̂ *"’^*) i'(Z i-a) as t oo. Then 1 -  (3{5t'^ )̂ —> (3 
where /? =  1 -  L(Zi_a) G [1 -  Z(oo), 1]. For a G (0,1), we have /3 G (1 -  L(oo), 1) 
and, by Lemma 2.5.1, dt —> I1-/3 =  lz{i _̂ )̂ ~  h -a  where Ip is a p-quantile of the
distribution L. By condition A6 and by Lemma 2.5.1, we obtain at 1—L(Zi_a) =  
Qj as t —> 00.

If a =  0, then / 3 = 1  — L(oo). By Lemma 2.5.1, we have liminft_^oo dt > Z. 
Then for any N  G (—oo,Z) there exists to =  ô(-ZV̂ ) such that dt > N  for all t > to- 
Hence

a t < P \ A t >  N) +  etP\At = dt)
for all t > to- By condition A6 and Lemma 2.5.1, we obtain at —> 0 as t ^  00, 
since N  is arbitrary.

The proof of the relation at —> a as t ^  00 for a =  1 is similar. Therefore the 
implication <= in (2.5.25) is also proved. □
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R e m a r k  2.5.6. Under the assumptions of Theorem 2.5.5, the function L(Zi_a) 
determines the equation for the lower bound of the limit of the set as t ^  oo. 
It is clear that this limit exists in our case. An example of the set is shown in 
Figure 2.5.1.

Behavior o f  Bayes tests and minimax tests. Theorem 2.5.2 combined 
with Lemma 2.5.1 enables us to obtain results on the asymptotic behavior of the 
probabilities of error for Bayes tests and minimax tests.

Let ¿7 be the Bayes test with respect to the a priori distribution (tt, tt), tt +  tt =  
1, and the loss function Aij =  1 — 5ij.

T h e o r e m  2.5.6. Assume that condition A6 holds and x =  ln(7r/7r) is a point 
of continuity of the function L{x). Then

lim a((5f) =  1 -  L (in i )  ,t—>00 \ TT/

H m =  i ( l n | )  .t̂ OO

(2.5.28)

(2.5.29)

(2.5.30) l̂im e^(S^) =  n — L În ^ )

where L(x) is defined by (2.5.2).

P r o o f . Since the Bayes test can be represented as =  /(A* > ln(7r/7r)), 
condition A6 implies (2.5.28), while relation (2.5.29) follows from Theorem 2.5.2 and 
definition (2.5.2) of the function L(x), Relation (2.5.30) follows from the equality

in view of (2.5.28) and (2.5.29). □

Now assume that is the minimax test for testing the hypotheses and

T h e o r e m  2 .5 .7 .  Let condition A6 hold where the function L{x) is continuous 
and strictly increasing in the interval (/, 1). Then

(2.5.31) lim a(5 ;) =  lim P{Sl) =  lim e{Sl) = a*
t-^OO t—*00 t—KX3



where a* is a unique solution of the equation L(Zi_a) =  o;, L{x) is defined by
(2.5.2), and Ip is ap-quantile of the distribution L in condition A6.

P r o o f . Observe that Theorem 1.2.4 yields

(2.5.32) a { s ; ) = p { s ; )  =  e{s;).

Now, by Remark 2.5.6 and by Theorem 1.2.4 we obtain (2.5.31) from (2.5.32). 
The existence and uniqueness of a solution of the equation L(Zi_a) =  Oi follows, 
since L{x) is continuous and strictly monotone in the interval (/,1). □

R e m a r k  2.5.7. It is clear that it is sufficient to find solution d* of the equation 
1 — L{d) = L{d) in order to find solution a* of the equation L{li-a) = a. Then 
a* = 1 -  L{d*) = L{d*)  ̂ that is, d* = h-a* = la*- Further, by Theorem 1.2.4, 
there exists a Bayes test with respect to the a prior distribution (tt̂  , 1 — tt̂  ) 
and a loss function Aij such that a((5f*) =  ). This implies that ) ^  a*.
Therefore, by Lemma 2.5.1, ttJ' —> tt* as t oo where tt* G (0,1) is such that 
ln(7rV(l-7T*)) =  d*.

Independent observations. Let an observation be the vector

where Ci»i2j • • • are independent identically distributed random variables with 
the distribution having density p{x\ 6) with respect to some a-finite measure p. 
Here, 6 is an unknown parameter taking values in an open set © C  R .  Then the 
distribution Pq of the vector has density with respect to the measure and 
this density is of the form Pn{x\ 0) =  HlLi 0)̂  x =  {xi^X2 , - -., Xn)- For a fixed 
point t G 0 , introduce the following regularity conditions (Rt) on the family of 
probability distributions {P^,0 G 0 } :

1) th e  fu n ction  p{x]0) is a b so lu te ly  con tin u ou s w ith  resp ect to  6 in  som e  
n eigh b orh ood  o f  th e  p o in t 6 = t fov all a; G R ;

2) th e  derivative p ^ (x ; 0) =  dp{x; 6)/86 exists  for an y 6 b elon g in g  to  a  n eigh­

b o rh o o d  o f  th e  p oin t 6 = t for / /-a lm o s t  all a: G R ;
3) the function I{0) = E${8Inp{^i; 6)/86)"  ̂ is continuous and positive for

e =  t.
The function I{6) is the Fisher information (see [25, 38]) and is expectation 

with respect to the measure P .̂
Suppose that the hypothesis is that the distribution of is determined 

by the measure P ,̂ while the hypothesis is that the distribution of is
determined by the measure P̂ û/ sfn where u is a, fixed number such that

t-f-u/yfn G 0.

Then the logarithm of the likelihood ratio is given by
n

(2.5.33) A„ =  ^  In {p{ î; t +  u/y/n)/p{^i; t)) ■
i= l

Consider the random variables

(2.5.34) 7]in = (p(^i;t +  u/\/n)/p(^i;t)y^^- 1 ,  i =  l ,2 , . . . ,n ,
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and events An =  {maxi<i<n \rjin\ < e} where e > 0 is a fixed (small) number. If 
the event An occurs, then we use (2.5.33) and (2.5.34) to expand the logarithm into 
the Taylor series and obtain

(2.5.35) A„ =  2 ^  ln(l +  i?in) =  2 ^ ^ ^  ain\Vv
i=l i=l i=l i=l

where are some numbers such that \ain\ < 1.
Before studying the asymptotic behavior of An as n oo, consider three 

auxiliary results.

Lemma 2.5.2. Let a nonnegative function g(y) be absolutely continuous in the 
interval [a, 6] and̂  moreover^

J a \n
JpM dy < oo.

Then the function \/g{y) is also absolutely continuous in the interval [a, 6].

Proof. Assume that g{y) > 0 in an interval (a,/?) c  [a,6]. Then it is clear 
that the function y/g{y) is absolutely continuous in the interval [a, /3] and

/5 nff

Given c e [a, b], consider the open set {y € (a, c):g{y) >  0}. As is well known [41], 
this set can be represented as the union of an at most countable number of disjoint 
intervals (oi,/?i) such that g{ai) = g{^i) =  0 if a* ^  a and /3̂  ^  c. Therefore

that is, the function ^g{y)  is also absolutely continuous.

Consider the random variables

where u is a number such that i +  u G 0 .

Lemma 2.5.3. If regularity conditions (Rt) hold, then

□

(2.5.36) •0

as u —» 0.
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P r o o f . Since the function I{0) is continuous in a neighborhood of the point 
0 =  we have by the Pubini theorem

<  OO

where the internal integral on the left-hand side is /x-finite, whence it follows that 
the integral

Jt-e v p (x ;0 )

also is /x-finite. Then we obtain in view of Lemma 2.5.2 that the function y/p{x]6) 
is absolutely continuous in a neighborhood of the point 6 = t for /x-almost all x. 
Then we apply the Cauchy-Bunyakovskh inequality to obtain

(2.5.37)
' ( ^ )  - ¿ /  +  dn

h lilt-\-U /P9ix;0) de
1

d t i < —  1(0) dO. 
^uJt2 y/p(x-,e) j

Since the function 1(0) is continuous at 0 = t, we deduce from (2.5.37) that

(2.5.38)

It is clear that

(2.5.39)

(2.5.40)

l im s u p E t (^ )  < 
«-►0 \ u J

m
4 ■

C («)

EtV’ ^(6) =  ^ /(i) ,

¥>( î), u -> 0 , (P(-a.s.).

Therefore the required relation (2.5.36) follows from Theorem 1.A.4 in [25]. 

L e m m a  2.5.4. If regularity conditions (Rt) hold, then

□

(2.5.41)

(2.5.42)

(2.5.43)

EtC (̂w) — -I(t)u^ =  o(v?),

W ) - ( ^ ) ^ ^ ) = V ) ,

^t{|C(u)| >  e }  =  o(u^),

EtC(u) +  i /(t )u 2  =  o(u2)(2.5.44)

asu-^f).

P r o o f . By Lemma 2.5.3, relation (2.5.36) holds and moreover it can be rewrit-
ten as 

(2.5.45) E t(C (ii)-v(ei)u )2  =  o (y 2 ),
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whence (2.5.42) follows. Further, equality (2.5.41) follows from (2.5.39) and (2.5.40) 
in view of Theorem 5.3 in [2] and inequality (2.5.38). Using (2.5.41), we obtain from
(2.5.37)

(2.5.46) lim i  J (^y/p{x-,t +  u) -  Vp(a::i)) ̂  dp =  i / ( i ) .

We split the domain of integration in (2.5.46) into the sets {x: p{x; t) =  0} and 
{x: p(x; t) ^  0} obtaining

(2.5.47) f  p{x\ t-\-u)dp =  o (t/2), u -> 0,
./{x:p(x;t)=0}

in view of (2.5.41). Further we use (2.5.47) and obtain 

EtC (̂w) =  /  ( - /p (x ;i  +  u) -  ^p{x\t)\^ dp

=  2 +  0 [u^) -  2Et(p(^i; i =  -2EtC{'^) +  o •

This implies (2.5.44) in view of (2.5.41).
Now we prove (2.5.43). It is clear that

P t {| C M I> £ }< P t { C(n)- 1 ainp(^i;i)

< i E . ( c ( u ) -  =

dt U

u a in p (^ i;f) ''
2 dt >
ainp(x; t)

>dt

The first term on the right-hand side is o{u^) by (2.5.45) and the second term is 
also o{u^), since I{t) is finite. □

R e m a r k  2.5.8. It is clear that (2.5.45) implies

Et C( « ) - 2 ^ ‘ — at— w- » 0.

By (2.5.44), we obtain then

(2.5.48) E t| ln p (^ i ;i )=  f
J{x:p{x\

The following result gives an asymptotic expansion of as n ^  oo under 
regularity conditions (i?t).

T h e o r e m  2.5.8. If regularity conditions {Rt) hold̂  then

Mx;t)  , ,  , „
— 5-—  p(dx) -  0. 

;t) 0̂} dt ’

(2.5.49)

where

(2.5.50)

 ̂ i=l

Pr{lV’n(u,t)| > e }  ^ 0 ,  n - » o o .
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for any £ >  0 and all u e R .  We also have

dlnp{^i-,t)

261

( 2 .5 .5 1 )
\ / n  dt

 ̂ 2=1
M{0,I{t)),  n  — > o o .

P r o o f . T h e  T a y lo r  e x p a n s io n  ( 2 .5 .3 5 )  is  v a l i d  i f  t h e  e v e n t  An o c c u r s .  I n  t h is  
c a s e  ( 2 .5 .3 5 )  im p lie s  r e p r e s e n t a t io n  ( 2 .5 . 4 9 ) - ( 2 . 5 .5 1 )  i f  fo r  a l l  s  >  0

( 2 .5 .5 2 )

( 2 .5 .5 3 )

( 2 .5 .5 4 )

( 2 .5 .5 5 )

{ n n
Pt

u ^ 5 1 n p ( ^ i ; i )
dt +

> e  ̂ 0,

I 2=1
> £  ̂ -> 0,

P r ] E l ’7 i n | " > 4 ^ 0
< 2=1

a s  n  — > 00.
F i r s t  w e  p r o v e  ( 2 .5 .5 2 ) .  S in c e  t h e  r a n d o m  v a r ia b le s  771̂ , . . .  ,?7nn a r e  id e n t i c a l ly  

d is t r ib u t e d  a n d  r]in =  r e la t io n  ( 2 .5 .4 3 )  im p lie s  t h a t

Pr(^n) < E  Pt{l»?in| > £} =  nPt | [ c ( ;^ )  I > e } =  0(1)

a s  n  — > 00 . F u r th e r ,

P:
2 (dy/p{^i;t)

Vin- —n \ dt
i^ ))

e

^ 0

\^/nJ n \  dt J

b y  ( 2 .5 .4 2 )  w h e r e  is  m a t h e m a t i c a l  e x p e c t a t i o n  w i t h  r e s p e c t  t o  t h e  m e a s u r e  P .̂ 
M o r e o v e r , s in c e  t h e  s u m

E  {dy/p{^i\t)/dt^
2=1

c o n v e r g e s  in  p r o b a b i l i t y  t o  / ( t ) / 4  b y  t h e  la w  o f  la r g e  n u m b e r s , r e la t io n  ( 2 .5 .5 4 )  
is  a ls o  p r o v e d .

R e la t i o n  ( 2 .5 .5 5 )  fo llo w s  fr o m  ( 2 .5 .5 2 )  a n d  ( 2 .5 .5 4 ) ,  s in c e

’-¿=1
+  Pt



It remains to prove (2.5.53). Applying (2.5.44), we get
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as n —» oo. Therefore (2.5.53) is equivalent to

u dIn
=  P r|2 t̂Vin 2̂ /n dt

Since ^1, . . .  ,^n are independent, we obtain from (2.5.48) that

> £ 0.

- F r ,  n dlnp{Ci]t)\
-  £2 [Vin t̂Vzn 20^ dt )

_  u \  u dlnp{^i;t )\
=  — )

z Z j^ x  _  u d\np{^i-,t)y  _  (
2 ^  dt j

4n
f*2

Since the right-hand side of the latter inequality tends to zero as n —» oo by
(2.5.36) and (2.5.44), relation (2.5.53) as well as representation (2.5.49)-(2.5.50) is 
proved.

Relation (2.5.51) follows from equality (2.5.48), since the Fisher information 
I{t) is finite in view of the central limit theorem for sums of independent identically 
distributed random variables. □

C o r o l l a r y  2.5.3. If regularity conditions (Rt) hold̂  then

(2.5.56) £ (A „ | P " )A / '^ -^ / ( i )u ^ , / ( i )u ^ ^  , n - » oo,

that is, condition A6 is satisfied with L =  M  (—|/(t)гг^,/(t)г6^).

R e m a r k  2.5.9. Asymptotic representations like (2.5.49)-(2.5.51) are known as 
the local asymptotic normality (LAN) property of a family of probability measures 
{P^,0 € 0 }  at the point 6 =  t as n oo. Representation (2.5.49)-(2.5.51) for 
the observation =  (^1,^2) • • • ,^n) can be found in the monographs [25, 37] for 
the case of independent but not necessarily identically distributed random variables
1̂) ̂ 2) • • • ) n̂*

R e m a r k  2.5.10. Relation (2.5.56) and Corollary 2.5.2 imply that convergence
(2.5.1) holds where L{x) is the distribution function of the law fii (^/(t)tt^, /(t)г¿^). 
According to Remark 2.5.4, the mutual contiguity {H' )̂ <11> {H' )̂ holds in this case.



CHAPTER 3

Goodness-of-Fit Tests

3.1. The setting o f  the problem . K olm ogorov  test

M ain definitions. Throughout this chapter we assume that the observation 
is a sample =  (^1,^2) • • • »in) where ^1,^2, • • • ,^n are independent identically 
distributed random variables. Thus the random variables ^1,^2»• • • are inde­
pendent observations of a random variable Consider a hypothesis H about the 
distribution of the random variable We call H  the main or null hypothesis. Our 
aim is to test the hypothesis i f , that is, either accept H  or reject it. The decision is 
to be made on the basis of the information contained in the sample The alter­
native hypothesis is that the null hypothesis H  is false. The alternative hypothesis 
is denoted by K. The null hypothesis H  can be either simple or composite. There­
fore our aim is to decide whether results of the observation are in agreement 
with the hypothesis H. The tests described above are called goodness-of-fit tests.

We follow the general procedure to construct a goodness-of-fit test. Namely we 
introduce a statistic T =  treated as the measure of disagreement between
the data and the hypothesis H. We require that, if H is true, the distribution 
of this statistic is known exactly or at least approximately. In particular, if the 
hypothesis H is composite, then the distribution of the statistic should
be the same for all simple hypotheses forming H. If we treat T{x) as a mapping 
of into a measurable space (y,c5^), then the probability of the event
{T(^(^)) G B }, B e y/ is well defined if H  is true. We write in this case G
B/H}.

Consider a set Ya E y  of large deviations of the hypothesis H from the data 
such that P{T(^(^)) G Ya/B }̂ < ck where a > 0 is a sufficiently small number. Then 
the goodness-of-fit test can be described as follows. If G Ta, then, under
the assumption that the hypothesis i f  is true, an event occurs whose probability 
is small and thus the hypothesis f f  should be rejected, since it contradicts the 
observation Otherwise, that is, if ^ Ŷ  ̂ then there is no reason to
reject the hypothesis if ,  since the observation does not contradict the hypothesis.

The goodness-of-fit test ¿(re), x G R^, for the hypothesis i f  is then such that 
S(x) =  1 for all X G {x:T(x)  G Y^} and S{x) =  0 for all x G {x:T{x) e Y\ Ya}, 
that is, 5{x) is a nonrandomized test for distinguishing two composite, generally 
speaking, hypotheses (see Section 1.3). The statistic T is called the statistic of the 
test J, while the set Ŷ  (or the set {x:T{x)  G Fa}) is called the critical set for the 
hypothesis H. As usual, the number a is called the significance level or type I error 
probability for the test S. Below we consider some examples of goodness-of-fit tests.

K olm ogorov goodness-of-fit test. Let the simple hypothesis i f  be that 
the distribution function of a random variable  ̂ equals F(x). As the measure of
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disagreement between the data and hypothesis H we consider the staitistic

(3.1.1) Dn =  =  sup \Fn{x) -  F{x)\
—oo<x<oo

where Fn{x) is the empirical distribution function constructed from the sample 
that is,

(3.1.2)

(3.1.3)

Ffi{x'  ̂ — jTî  X G R/j
n

^n(^) ~  I{-oo,x)iAi)
2=1

where Ia {x) is the indicator of the set A C R. It follows from the Glivenko theorem 
that

(3.1.4) =  0 / i i }  =  1

(see [38], Theorem 1.1.1).
The latter relation allows one to use the statistic Dn to construct a goodness- 

of-fit test for the hypothesis H by treating small values of the statistic Dn in 
favor of the hypothesis H. Large values of Dn suggest to a statistician that the 
hypothesis H is false and it should be rejected. The following result, known as the 
Kolmogorov theorem, allows one to construct the test for the hypothesis H if F{x) 
is a continuous function.

T h e o r e m  3.1.1 (Kolmogorov). If the function F{x) is continuous  ̂ then for 
all z > 0

(3.1.5) P {^^D n < z/H} = K(z) =  (-l)^ e -2 j'^ '.
j=—oo

Note that K{z)  is called the Kolmogorov distribution function (obviously, we 
have K{z)  =  0 for z <  0).

The proof of Theorem 3.1.1 is quite complicated and we omit it. We only 
mention that the method of proof of the Kolmogorov theorem and many other 
limit results for functionals of empirical distribution functions is to show first that

(3.1.6) lim P {y/nDn < 2̂ /H} =  P I  sup |i/̂ °(t)| < z\
lo<i<i J

for all  ̂ e  R  where t/;^(t), 0 < t < 1, is the Brownian bridge (see [48], §8). 
Using then the exact distribution of supo<t<i (se® [^8]) we obtain (3.1.5)
from (3.1.6). Also see [16, 24] for the proof of Theorem 3.1.1.

Now we construct the goodness-of-fit test for the hypothesis H based on the 
statistic Dn defined by (3.1.1). Let a  > 0 be the significance level of the test and 
let z{a) be a solution of the equation K{z) =  l — a with respect to z. Then (3.1.5) 
implies for large n that

(3.1.7) P{VnDn > z{a)/H} ^  1 -  K{z{a)) =  a.

Put Sn =  I{y/nDn > z{a)). It follows from (3.1.7) that the level of the test 5n 
for large n is approximately equal to a. The test 5n is called the Kolmogorov 
goodness-of-fit test This test rejects the hypothesis H if y/riDn > z{a)  ̂ that is.
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if Dn > z{a)/y/n. Otherwise \/nDn < z{a) and there is no reason to reject the 
hypothesis H and it is accepted.

Let K g be the simple hypothesis that the distribution function of a random 
variable  ̂ is G. If sup̂ , |G(a;) — F{x)\ ^  0, that is, if the distribution function G 
differs from F, then the hypothesis H is false given the alternative hypothesis K q 
is true. The behavior of the statistic Dn if the hypothesis K q is true is described 
in the following result.

T h e o r e m  3.1.2. Let the distribution function F{x) be continuous  ̂ and let 
G{x) be another distribution function such that sup ,̂ \G{x) — F(x)| ^  0. Then for 
all z > 0

(3.1.8) lim P {\/nD„ < z fK a }  =  0.

(3.1.9)

P r o o f . According to the Glivenko theorem, for all e >  0 and J >  0 there 
exists no =  no(£, ¿) such that for all n >  no

P |sup |F„(x) -  G(x)| >  e/A Tcj <  S.

Let e  <  supj, |G(x) — i^(x)|. Then

P {\/nDn < z / K q }  =  P |>/nZ)„ < 2:,sup|F„(x) -  G(x)| < e/Ka^

+  P |v^£>„ < 2, sup |P„(x) -  G(x)( >  e / A c j

< P |v/n(sup|G(x) -  F(x)| -  e) < z/Kg ^

+  P jsup |P’„(x ) -  G(x)| > e/AToj .

Since { /̂^^(supj. |G(x) -  P(x)l — e) <  2} is a null event for n > ni =  ni(e, 2) where 

ni(e, z) =  2  ̂ ^sup |G(x) -  P’(x)| -  ,

the first term on the right-hand side of inequality (3.1.9) is zero for n >  ni. Taking 
into account (3.1.9) we obtain for n > no V ni that P {y ^ D „ < zIK q ) < S. Thus 
relation (3.1.8) is proved. □

If we put 2 =  2(a) in relation (3.1.8), then

(3.1.10) lim P {^/nDn < z{a)/Kq } =  0

which means that the probability to accept the hypothesis H  for the Kolmogorov 
test of level a given the hypothesis K q is true and if sup̂ , |G(x) -  F{x)\ ^  0 tends 
to zero as n —> 00. The tests satisfying condition (3.1.10) are called consistent. 
Thus the Kolmogorov test of level a is consistent. The behavior of the probability 
P {y/nDn < z{o) / K g} is studied in [7], §3.12, for distribution functions G{x) that 
are close to F{x) in a certain sense.
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3.2. The Pearson test

The hypothesis. M easure o f  disagreement between a sample and the 
hypothesis. Let  ̂ be a random variable assuming values in a measurable space 
(X, 3§). Consider a partition of the set X  into r, r > 2, domains:

(3.2.1) X = | j 5 i
i=l

where SiC^Sj =  0 , z ^  and Si e  ^  for all i. Consider the following hypothesis H 
about the distribution of ^:

G Si/H } =  pî  z =  l ,2 ,

where Pi,P2) • • • ,Pr are given positive numbers such that pi +P 2 H-------hPr =  1* Let
(̂n) _  . . .  ,in) be a sample from the distribution of  ̂ and denote by i/i the

total number of members of the sample belonging to the domain Si, that is,

(3.2.2) i/i =  i =  l ,2 , . . . , r .
j = l

It is clear that i/i +  1/2 +  • • * +  We consider the following measure of
disagreement between the sample and hypothesis H:

(3.2.3) Cn =  ¿ C i ( ^ - p i )
¿=1

where Ci, i =  l , 2 , . . . , r ,  are some positive constants. By the Borel strong law of 
large numbers

P | lim — = p i / i / |  =  1 , i =  l , 2 , . . . , r .
In—^00 n  )

Thus P {limn->oo Cn =  0 / i f }  =  1. Moreover if Kp is a hypothesis of the form 

P {i ^ Si/Kp} =pi,  z =  1,2,

where p =  (pi,P2> • • • >Pr) ^  (Pi»P2, • • • ,Pr), then again by the Borel strong law of 
large numbers

I lira Cn =  ¿
I i=l

CiiTi-Pi)"^ > ( i lK p)  =  1.

Thus the random variable Cn defined by (3.2.3) can be used as a measure of dis­
agreement between the data and hypothesis H.

Pearson studied the behavior of Cn in the case of Ci =  n/pi,  z =  1,2, . . . ,  r. The 
random variable Cn can be rewritten in this case as

,3.2.4, =  =
^  npi ^  npi

Consider the distribution of the random variable Cn defined by (3.2.4) under 
the condition that the hypothesis H is true. Then

(3.2.5) E { U H } = T - \ ,

Indeed E{ui/H} =  npi and D{vi/H} = npiQi where qi =  1 —pi. This implies that 

E{uf/H} - npiQi + {npif =  npi{\ +  (n -  l)pi).
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Thus r
E {C „/if} =  ^ ( 1  +  (n -  l)pi) -  n =  r -  1

2=1

and equality (3.2.5) is proved. Similarly we obtain that

(3.2.6) D{Cn/H} =  2(r -  1) +  i  f ¿  ^  -  7-2 -  2r +  2) .

Relations (3.2.5) and (3.2.6) imply that the first two moments of the random vari­
able (n under the condition that the hypothesis is true converge to the corre­
sponding moments of the x^(^ “  1) distribution as n 00. Here x^(^ — 1) stands 
for the chi-square distribution with r — 1 degrees of freedom.

Pearson theorem . The following result, known as the Pearson theorem  ̂ pro­
vides the limit distribution of random variables as n 00 under the condition 
that the hypothesis H is true.

T h e o r e m  3.2.1. For a l l x > 0

(3.2.7) lim  P{Cn < x/H} = Kr-i{x)n—>00
where Kr-i{x) is the chi-square distribution function with r - 1  degrees of freedom. 

P r o o f . C on sider th e ra n d om  variables

=  i = l ,2 , . . . , r ,  k =  l ,2 , . . . ,n .

Then
Ui =  + ----- |-Mn\ i =  l , 2 , . . . , r .

The random variables /1*2 \ . . . ,  Mn ̂  are independent, identically distributed, 
and such that

P { / i f  =  I/h ]  =  P { a  e Si/H) i =  1, 2, . . . ,  r.

Put 1/ =  Then u =  YTj=iH where pj =
j  =  1,2, . . .  ,n, are independent identically distributed random variables such that

P {fij = Ck/H) =  P { / i f  > =  1 /J i}  =pk,  fc =  1,2, . . . ,  r.

Here Ck =  (0 , . . . ,  0 ,1 ,0 , . . . ,  0)' is the r-dimensional vector whose k-th coordinate 
equals 1 and all other coordinates are zero. If (Pfj,j{t) denotes the characteristic 
function of the vector /i ,̂ then

fc=l k=l

where t =  (t i , . . . ,  trY- This determines the characteristic function of the vector i/:

(3.2.8)
7 = 1 ^ k = l '

(3.2.9)

Now we introduce the random variables
Vi -  npi

r]i =
y /W i

i =  l , 2 , . . . , r .



It is clear that
r

(3.2.10) =
¿=1

It follows from (3.2.4) and (3.2.9) that
r

(3.2.11) Cn =  Y .r ) l
i= l

According to (3.2.8), the characteristic function of the vector rj =  (771, ^2, • • • > VrY 
can be rewritten as
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=  E|exp^^ i1̂1 —:-----+  • • • +

(3.2.12)

y/W i y / ^ .

- i [ i i v^npT+-----VUy/r^^/H^

' “ p ( - ‘ g ‘> ^ ) ' ^ ‘' ( ; ; l r ......

Taking the logarithm of both sides of equality (3.2.12) and then expanding the 
exponent exp(ztfc/\/n^) and logarithm ln(l +  x) into the Taylor series we obtain

(3.2.13)

ln(p,(i) =
fe=i j= i

= » E  ‘‘V« - 1; t  +o (""'”)'
r

i=i

= - 5 E  4 + 5 (g  ife v̂ ) ' + o (n-V2) .

Passing to the limit in (3.2.13) as n ^  00 we prove that

(3.2.14) ipnit) = exp g l g ( i ) ^  

uniformly with respect to t in any bounded domain where

(3.2.15) Q{t) =  ¿ 4  -  t = ih,t2, .. . ,uy .
k=l \ = 1  '

It is clear that the quadratic form Q{t) defined by (3.2.15) can be represented as 
Q(t) =  t'At where A is a matrix such that A = I-pp ' .  The symbol I  stands for the 
r x r  unit matrix, while p =  ( ^ , . . . .  v ^ ) '.  Thus the right-hand side of (3.2.14)
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is (frjo{t) =  exp{—̂ t'At} which is the characteristic function of the A/"(0, A) normal 
vector rĵ  =  (r/1,772, •. • iVrY- Therefore convergence (3.2.14) implies that

=  (Pr,o{t) =  exp

uniformly with respect to t in any bounded domain. The continuity theorem for 
characteristic functions implies then that as n —> oo

Civ\H)^C{v°\H)=J^{0 ,A),

whence

(3.2.16) L (Cn|H) ^  C (C°\H) , n ^ o o ,

in view of (3.2.11) where

(3.2.17) C° =
i=l

Equality (3.2.10) for the limit vector implies that
r

(3.2.18) ^ ^ 0 ^  =  0.
¿=1

Let A be an orthogonal r x r matrix whose bottom row is . . . .  y/^).
Then by (3.2.18)

(3.2.19)
¿=1

where h =  ( x i , . . . ,  Hr)' =  Arf. On the other hand, it is known that orthogonal 
transformations do not change the canonical representation of quadratic forms. 
Thus the quadratic form (3.2.17) is given by

r—1
(3.2.20) c° =  =  Y ^ i = Y ^ i

i= l i= l  i= l

in view of (3.2.19).
The quadratic form Q{t) can be rewritten for new coordinates u =  At as

Q(t) = Y * l -  (YtkVpi^y = Yui-ui = Y<=Q{A-^u).
k=i ^ k=i k=i

Therefore the characteristic function of the vector h can be represented for new 
coordinates as

<p̂ (u) =  E = E =  E

=  exp

that is, the coordinates x i , . . . ,  Hr-i of the vector h =  ( x i , . . . ,  Hr) are independent 
Ai{0,1) identically distributed random variables and Hr =  0. Now it follows from
(3.2.20) that C (Ĉ \H) =  x {̂t — 1). Therefore (3.2.7) follows from (3.2.16). □
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The Pearson goodness-of-fit test. Applying Theorem 3.2.1 one can con­
struct a goodness-of-fit test for the hypothesis i i  in a way similar to that used 
to construct the Kolmogorov goodness-of-fit test based on the Kolmogorov limit 
theorem.

Let a > 0 be a significance level and let Zr~i{ci) be a solution of the equation 
K r - i { z )  = 1 — Oi with respect to z where K r - i { z )  is the chi-square distribution 
function with r — 1 degrees of freedom. Then relation (3.2.7) implies for large n 
that

(3.2.21) P{Cn > Z r - i { a ) / H }  «  1 -  Kr-i{zr-i {a)) = a.

Now the test for the hypothesis H \s 5n = I{Cn ^ Zr-i{oL)). Relation (3.2.21) 
implies that the level of this test is approximately equal to a. The test is called the 
Pearson goodness-of-fit test Sometimes it is called the chi-square test The Pearson 
test rejects the hypothesis iif if Cn > ^r-i(o^), and it accepts the hypothesis H if
Cn

Let Kp be the simple hypothesis of the form P {{ G Si/Kp} =  z =  1,2, . . . ,  r, 
where p =  (pi,P2, • • • P̂r) P = {Pi^P2, • • • ,Pr)- It turns out that the Pearson test 
of level a G (0,1) is consistent.

T heorem 3.2.2. For all vectors p ^ p

lim P {Cn < Zr-i{a)/Kp} =  0.

The proof of Theorem 3.2.2 can be found in [37], Theorem 3.2.
Examples of the Pearson goodness-of-fit tests for special models of observations 

can be found in [7, 9, 14, 26, 34].

R e m a r k  3 .2 .1 . The hypothesis H tested with the help of the Pearson test is, 
generally speaking, composite. This hypothesis is simple only in the case where 
the vector p =  assumes values e ,̂ k =  1,2, . . . , r ,  and the
hypothesis H is that P{p =  Ck/H} =  pk̂  fc =  1,2, . . . ,  r. One can show in this case 
that the Pearson test coincides with the likelihood ratio test (see [7, 9].

R e m a r k  3 .2 .2 . Let H q be the hypothesis that the distribution function of 
C is F{x), X e K  =  ( - 00 , 00), and R  =  U [ = i ^ i  where Xi f] Xj = 0, i ^ j .  
Moreover let P{C € Xi/Ho} =  p̂ , z =  1,2, . . .  ,r, and Pi +  P2 +  * * • +  Pr =  L 
As above let H  be the hypothesis that P(C G Xi/H} = Pi, i =  1,2, . . .  ,r. The 
Pearson test constructed above for the hypothesis H  is sometimes used to test the 
hypothesis Hq. However there are distributions G{x) such that the hypothesis H 
is true but sup^ \G{x) — F{x)\ > 0, that is, the null hypothesis Hq is false. The 
Pearson test does not detect the difference between such functions G{x) and F{x) 
and therefore is not consistent for testing the hypothesis Hq.

Quantile test. Sign test. Let a random variable C be real-valued, that is, 
X  = 11= (—00, 00). Assume that the hypothesis H is that

P{Vi)=Pu  i =  l , 2 , . . . , r - l ,  

where F[x)  is the distribution function of the random variable

0 < Pi < • • • < Pr-l < 1
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are given numbers,
-o o  < 2/1 < • • • < 2/r-i < oo

are quantiles of levels Pi,P2) • • • »Pr-i, respectively, and r > 2 .  Thus the hypoth­
esis H is composite and deals with all distributions with fixed quantiles and their 
levels.

Put Si =  [yi-i, yi),  ̂=  1» • • • 5 T', yo =  -o o , and ŷ  =  oo. Let

^(n) _  . . .  ,^n)

be a sample of size n and let be the number of its members belonging to the 
interval Si. One can apply the Pearson test for the hypothesis H based on the 
statistic Cn defined by (3.2.4). The test in this case is called the quantile test. If 
r =  2 and Pi =  0,5, then the corresponding test is called the sign test. The null 
hypothesis H in the latter case is that the median of the distribution of a random 
variable  ̂is yi. The statistic (3.2.4) in this case is (4/n)(z/i -n /2 )^  where i/i is the 
total number of members of the sample belonging to the interval (—oo,yi). In 
other words, ui is the number of negative signs in the sequence yi, i =  1 ,2 , . . . ,  n.

The sign test is used under the following assumptions. Let (^i, pi ) , . . . ,  (in>^n) 
be a sample of size n whose members are independent observations of the vector 

One needs to test the hypothesis Hq that the coordinates  ̂ and rj are 
independent and identically distributed, that is, F{x^y) =  F{x)F{y)  where F{x^y) 
is the distribution function of the vector (^, p) and F{x) is the distribution function 
of the random variable  ̂ (and, of course, of rj if the hypothesis Hq is true). Let 
Ci =  it -  i =  1 ,2 , . . . ,  n. Then P{Ci <  0 /H q} =  P{Ct >  0 /H q} =  1 /2  and the 
null hypothesis Hq is that the data (Ci>C2) • • • >Cn) is sampled from a distribution 
whose median is 0. The statistic i/i in this case is the total number of negative 
members in the sequence Ci> C2, • • •, Cn- According to Theorem 3.2.1

C (4(z/i -  n/2f/n\Ho) n oo.

This relation allows one to construct the sign test for the null hypothesis Hq that 
random variables  ̂ and rj are independent and identically distributed for a given 
level a. The procedure is the same as in the case of the Pearson test. More details 
on the sign tests are given in [5].

The Pearson goodness-of-fit test for distributions with unknown pa­
rameters. Let a random variable  ̂ assume values in a measurable space {X, 
and let its distribution depend on an unknown s-dimensional parameter

0=(01,02 , . . . ,0s) '

where ^ i,^2, • • • , are real numbers. As above we introduce a partition (3.2.1) of 
the set X  consisting of r domains.

Let the hypothesis H about the distribution of  ̂ be that

(3.2.22) P {U S i/ H }= p i {0 ) ,  i =  l , 2 , . . . , r .

where Pi(0),P2(0),. . .  ,Pr(0) are known functions of the parameter 6 such that 
Pi(^) +  P2(0) +  • • • +  Pr(0) =  1. The parameter 6 is unknown and our aim is 
to estimate it by the observation Let =  (Ci) 2̂, • • •, in) be a sample of size n 
and let i/i, 1^2,..., be the numbers of members of the sample i i , ̂ 2 > • • • j in belong­
ing to the domains *Si, ^2, . . . ,  5r, respectively (see relation (3.2.2)). The measure
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of disagreement (3.2.4) between the sample and hypothesis (3.2.22) is in this case 
given by

(3.2.23) Cn =  C n W  =  E  —
{vi -  npi{e)f

i=l npi{9)

Note that Cn depends on the unknown parameter 0 and this does not allow one to 
use Cn to construct a test for the hypothesis H. Thus the first step is to exclude the 
unknown parameter from (3.2.23). To do so we substitute into (3.2.23) an estimator 
0̂  =  0n(C ’̂^̂ ) for  ̂ obtain the statistic

(3.2.24) Cn =  u o n )  =  j 2 —
npi{6n)f

i=l npi(0n)

The statistic Cn defined by (3.2.24) depends on the sample and does not depend 
on 0 and thus it can be used to test the hypothesis II. When constructing a test 
for the hypothesis H based on the statistic one needs to know its distribution 
or, at least, its limit distribution (the latter depends on the estimator 0^)- Below 
we consider the most famous method of estimation of the parameter 0 which leads 
to a simple limit distribution of the statistic Cn- This method was successfully used 
by R. Fisher, J. Neyman, and K. Pearson in the early twentieth century.

As an estimator of 0 it is natural to take a value of the parameter for which 
Cn( )̂ defined by (3.2.23) attains its minimum. This is the so-called minimum 
method. If the derivatives exist, then the problem of finding such a value is reduced 
to solving the following system of equations with respect to 0:

dUO)
(3.2.25) i ¿ i V  PiiO)

-  npije) {i'i-npi{e))^\dpi{d)
2np?(0)

l , 2 , . . . , s .

= 0,

Note however that this system is not easy to solve even in the simplest cases. On 
the other hand, one can show that the influence of the second term in parentheses 
is negligible for large n. Omitting this term, system (3.2.25) becomes of the form

(3.2.26)
^  n,

npijo) dpi{6)

i=l Pi{9) ddi
=  0, j  =  1 ,2 , . . . ,  s.

The method of estimation based on solving the system (3.2.26) is called the modified 
minimum method. Under rather general assumptions both methods have the 
same limit distribution Cn(^n) as n oo. Below we consider a simpler method 
based on solving the system (3.2.26).

Since Pi{0) -\-p2{6) H------- \-Pr{9) =  1 for all 9, system (3.2.26) becomes of the
form

(3.2.27) E
dpi{9)

^  Pi{9) d9j 

The system (3.2.27) can be rewritten as

=  0, j  =  l ,2 , . . . , s .

(3.2.28) d\xiLn{9)
d9j =  0, j  =  l , 2 , . . . , s .
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where Ln(0) =  The method of estimation based on solving the
system (3.2.28) is nothing else but the maximum likelihood method for the polyno­
mial distribution. Thus the estimator 0n obtained as a solution of system (3.2.27) 
(as well as that of (3.2.26)) is called the maximum likelihood polynomial estimator.

The limit distribution of the random variable Cn =  Cn(^n) as n ^  oo is described 
in the following result where On is the maximum likelihood polynomial estimator.

T heorem 3.2.3. Let the functions Pj{0) ,  j  =  1 ,2 , . .. ,r, 0 =  (0i,02—  )^s)^ 
s < r, be such that:

1) P iW  + P 2( )̂ H------- hPr(^) =  1 for all 0]
2) Pi{0) > c >  0 for alii =  1 ,2 , . . . ,  r and the derivatives and

j, A; =  1,2, . . . ,  s, z =  1,2, . . . ,  r, are continuous^
3) the rank of ther x s matrix ||^^^|| equal to s for all 0.

Then

(3.2.29) lim P ICn < z/h \ =  Kr-s-\{z) for all z> Q
n—*oo L J

where Cn =  Cn(^n) ond 0n is the maximum likelihood polynomial estimator.

The proof of Theorem 3.2.3 can be found in [14].
Based on Theorem 3.2.3 the goodness-of-fit test for the hypothesis (3.2.22) is 

constructed in the same way as in the case of the Pearson test for distributions 
whose parameters are known. The constructed test is also called the Pearson test.

Remark 3.2.3. An estimator of 0 can be evaluated without ranking the data. 
This can be done, for example, by maximizing the likelihood function

f{Xi-,e)f{X2\9) . . . f{Xn\9)

with respect to 0 where f{x\0) is the density of the distribution of  ̂ with respect 
to some measure. The estimator of the parameter 0 is not based in this case 
on frequencies 1̂2, • • •, for domains 5i, ^2, . . . ,  5r but uses the observations 
^1)^2) • • • ,in instead. Chernoff and Lehmann (see [12]) showed however that the 
limit relation (3.2.29) does not hold for this method of estimation.

Example 3.2.1. Let a random variable  ̂ assume values 0,1,2, . . .  . Set 

'S!7 =  0 ' - 1 } .  j  =  l , 2 , . . . , r - 1,

and =  {r  — l , r , . . . } .  Let the hypothesis H  be defined by (3.2.22) where

0 i- i
Pj{9) = j  =  l , 2 , . . . , r -  1,

°°
P r { 9 ) =  ^ e - ® , 61 > 0.

i=r—1

In this case s =  1 and thus the system (3.2.27) is reduced to the equation

J=l/  ̂  ̂ z=1--1 ' ' \=r—l '
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w h e n c e

e = -
n j= u  i= i---1 \ = r —l '

- 1

w h e r e  , 1̂ 2 j • • • » a r e  t h e  n u m b e r s  o f  m e m b e r s  o f  t h e  s a m p le  =  (^1 , ^2 , • • • ,  i n )  
b e lo n g in g  t o  5 i ,  ^ 2 , . . . ,  5 r ,  r e s p e c t iv e ly .  T h e  fir s t  t e r m  in  t h e  s q u a r e  b r a c k e t s  is  
e q u a l  t o  t h e  s u m  o f  a ll  m e m b e r s  o f  t h e  s a m p le  i i , ^2» • • • >i n  s u c h  t h a t  < r — 2, 
w h ile  t h e  s e c o n d  t e r m  is  a p p r o x i m a t e l y  e q u a l  t o  t h e  s u m  o f  a ll  m e m b e r s  o f  t h e  
s a m p le  i i , i 2 , • • • , i n  t h a t  a r e  g r e a t e r  t h a n  o r  e q u a l  t o  r  — 1 . T h u s  a s  a n  e s t im a ­
t o r  6n o f  t h e  p a r a m e t e r  6 o n e  c a n  t a k e  t h e  s a m p lin g  m e a n  6n =  i -  N o t e  t h a t  t h e  
m a x im u m  lik e lih o o d  e s t im a t o r  o f  t h e  p a r a m e t e r  9 is  e q u a l  t o  i  in  t h e  c a s e  o f  t h e  
P o is s o n  d is t r ib u t io n .  N o t e  a ls o  t h a t  t h e  l im it  d is t r ib u t io n  a s  n  — > 00 o f  t h e  s t a t i s t i c  
Cn =  C n (^ n ) is t h e  c h i-s q u a r e  d is t r ib u t io n  w i t h  r  — 2 d e g r e e s  o f  fr e e d o m  ( th is  r e s u lt  
fo llo w s  fr o m  T h e o r e m  3 .2 .3 ) .

E x a m p l e  3 . 2 . 2 .  L e t

b e  a  s a m p le  o f  s iz e  n . L e t  z>'2) • • • ? b e  t h e  n u m b e r  o f  m e m b e r s  o f  t h e  s a m ­
p le  b e lo n g in g  t o  5 i ,  5 2 , . . . ,  5 r ,  r e s p e c t i v e ly  (se e  r e la t io n  ( 3 .2 .2 ) ) ,  w h e r e  Si = 
( - 00, xi  -h ^ /i). Si =  {xi -  | / i ,  Xi-\- ^h) fo r  z =  2 , 3 , . . . ,  r  -  1 , Sr =  {xr -  00),
Xi = xi {i — l)h  f or  z =  2 , 3 , . . . ,  r ,  a n d  xi  is  s o m e  n u m b e r  o f  ( — 00, 00). L e t  t h e  
h y p o t h e s is  H  b e  d e fin e d  b y  ( 3 .2 .2 2 )  w h e r e

P i { 0 ) =  /  (p{x]9)dx, 
JSi

z =  1 , 2 , . . . , T ,

(p{x\6) is  t h e  d e n s it y  o f  t h e  n o r m a l Ai  la w , a n d  0 =  (7n ,c r ) .  T h e n  t h e
s y s t e m  o f  e q u a t io n s  ( 3 .2 .2 7 )  b e c o m e s  o f  t h e  fo r m

m :. =  -  I'i f  x(f{x] 9)dx (  [  (p{x] 6) d x  ) ,
 ̂ Jsi \Js, )

(j^ =  -  Vi \ ( x  — 77г)^(^(x; 6)dx\ [  (p{x; 0 ) d x  )
 ̂^  Jsi \Jsi )

F i r s t  w e  a s s u m e  t h a t  x\ a n d  v a r e  s u c h  t h a t  vi = Vr =  0. I f  h is  s m a ll,  t h e n  
a n  a p p r o x im a t e  s o lu t io n  c a n  b e  o b t a i n e d  b y  s u b s t i t u t i n g  t h e  v a lu e s  o f  in t e g r a n d s  
a t  t h e  m id d le  p o in t s  Xi o f  t h e  c o r r e s p o n d in g  in t e r v a ls  Si in s t e a d  o f  t h e  in te g r a n d s .  
T h e n  w e  g e t  t h e  e s t im a t o r s  fiin a n d  an d e fin e d  b y

m „  =  -  UiXi, 52  =  -  V  -  fhnf.
% %

T o  im p r o v e  a n  a p p r o x im a t io n  o f  t h e  s o lu t io n  o n e  c a n  e x p a n d  t h e  in t e g r a n d s  in to  
t h e  T a y l o r  s e r ie s  in  t h e  n e ig h b o r h o o d s  o f  p o in t s  x^. T h e n  t h e  e x p r e s s io n s  fo r  rhn 
a n d  On fo r  s m a ll  h b e c o m e  o f  t h e  fo r m

m „  =  -  V  ViXi +  O {h^ ) , ? 2  =  -  V  Vi{xi -  fh n f ~ ^  + 0  {h^ ) .Th , 71/ , LJi

T h u s  o m i t t i n g  t h e  te r m s  o f  o r d e r  w e  o b t a i n  e s t im a t o r s  fo r  m a n d  a .̂ T h e s e  
e s t im a t o r s  a r e  t h e  m e a n  v a lu e  a n d  v a r ia n c e  o f  t h e  r a n k e d  s a m p le  x  c o r r e c t e d  w i t h



3.3. SMIRNOV TEST 275

t h e  h e lp  o f  t h e  Sheppard correction ^  [1 4 ] . T h e  ranked sample is  o b t a i n e d  fr o m  
t h e  o r ig in a l  s a m p le  i f  o n e  s u b s t i t u t e s  t h e  m id d le  p o in t  o f  a n  u n d e r ly in g  in t e r v a l  
in s t e a d  o f  a n y  m e m b e r  o f  t h e  s a m p le  b e lo n g i n g  t o  t h is  in te r v a l.

T h i s  p r o c e d u r e  g iv e s  a  b e t t e r  a p p r o x im a t io n  e v e n  i f  h is  n o t  s m a ll  b u t  t h e  e n d  
in te r v a ls  a r e  n o t  e m p t y  a n d  c o n t a in  a  s m a ll  p r o p o r t io n  o f  s a m p lin g  v a lu e s .  O f t e n  
i t  is c o n v e n ie n t  t o  m e r g e  t h e  e n d  in t e r v a ls  s u c h  t h a t  t h e  u n io n  c o n t a in s  a t  le a s t  10 

s a m p lin g  v a lu e s . A s  e s t im a t o r s  fo r  m a n d  o n e  c a n  t a k e  x a n d  e v a l u a t e d  b y  
t h e  o r ig in a l  r a n k e d  s a m p le  w i t h  t h e  S h e p p a r d  c o r r e c t io n  a p p l ie d  t o  s^. I f  r '  is t h e  
n u m b e r  o f  g r o u p s  in  t h e  m e r g e d  s a m p le  u s e d  fo r  t h e  e v a lu a t io n  o f  t h e n  t h e  l im it  
d is t r ib u t io n  o f  Cn h a s  r '  -  3 d e g r e e s  o f  f r e e d o m , s in c e  t w o  p a r a m e t e r s  a r e  a lr e a d y  
e s t im a t e d  fr o m  t h e  s a m p le .

M o r e  d e t a i ls  o n  t h e  S h e p p a r d  c o r r e c t io n  a r e  g iv e n  in  [14 ] (o u r  E x a m p l e s  3 .2 .1  
a n d  3 .2 .2  a r e  c o n s id e r e d  t h e r e  fo r  p a r t ic u la r  n u m e r ic a l  v a lu e s ) .

3 . 3 .  S m i r n o v  t e s t

T h e  h y p o t h e s i s  o n  t h e  h o m o g e n e i t y .  M e a s u r e  o f  d i s a g r e e m e n t  b e ­
t w e e n  a  s a m p l e  a n d  t h e  h y p o t h e s i s .  I t  is  a n  im p o r t a n t  a p p l ie d  p r o b le m  t o  
c h e c k  w h e t h e r  t h e  d a t a  is  h o m o g e n e o u s .  M o r e  p r e c is e ly  le t  =  (^1 ,^ 2 , • • • ,^ n )  
b e  a  s a m p le  o f  s iz e  n  c o n s is t in g  o f  n  in d e p e n d e n t  o b s e r v a t io n s  o f  a  r a n d o m  v a r i­
a b le  ^ a n d  le t  77̂ ^) =  (771, 772, . . .  ,77m) b e  a  s a m p le  o f  s iz e  t r , in d e p e n d e n t  o f  
a n d  c o n s is t in g  o f  m in d e p e n d e n t  o b s e r v a t io n s  o f  a  r a n d o m  v a r ia b le  77. T h e  hypoth­
esis H on the homogeneity is  t h a t  t h e  d is t r ib u t io n s  o f  t h e  r a n d o m  v a r ia b le s  ^ a n d  
77 c o in c id e , t h a t  is, P { ^  <  x/H}  =  P { t7 <  x/H}  fo r  a l l  x  G ( — 00 , 00). I n  o t h e r  
w o r d s , t h e  h y p o t h e s is  H  m e a n s  t h a t  t h e  s a m p le s  a n d  77̂ ^^ a r e , in  f a c t ,  t h e  
o b s e r v a t io n s  o f  t h e  s a m e  r a n d o m  v a r ia b le .

L e t  Sn{x) b e  t h e  e m p ir ic a l  d i s t r i b u t i o n  f u n c t io n  c o n s t r u c t e d  f r o m  t h e  s a m p le
a n d  le t  Tm{x) b e  t h e  e m p ir ic a l  d i s t r i b u t i o n  f u n c t io n  c o n s t r u c t e d  f r o m  t h e  

s a m p le  77̂ ^^. C o n s id e r  t h e  f o l lo w in g  m e a s u r e s  o f  d is a g r e e m e n t  b e t w e e n  t h e  s a m p le  
a n d  h y p o t h e s is  H:

(3.3.1)

(3 .3 .2 )

^n,m =  sup[5„(x) -  Tm{x)],
X

Dn,m — sup |57i(^) ~ Tjn{x)\.

S in c e

Sn{x) -  Tm{x) =  {Sn{x) -  F{x)) -  {Tm{x) -  F(x)),

w h e r e  F{x) =  P { ^  <  x/H}  =  P { t7 <  x/H]  is  t h e  c o m m o n  d i s t r i b u t i o n  f u n c t i o n  o f  
^ a n d  77 i f  t h e  h y p o t h e s is  H  is  t r u e ,  t h e  G l i v e n k o  t h e o r e m  im p lie s

p (  l im  D I ^  = {)/h \ = p [  l im  =  0/ i i |  =  1 .
♦ 00 ’ J I n,m —>oo J

O n  t h e  o t h e r  h a n d , i f  is  t h e  h y p o t h e s i s  t h a t  P { ^  < x }  = F{x)  a n d  P { t7 < x ]  =  
G{x) w h e r e  F{x) a n d  G{x) a r e  d i s t r i b u t i o n  f u n c t io n s  s u c h  t h a t  sup^, \F{x)—G{x)\ ^
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0, then again by the Glivenko theorem

P I  lim £»+ =  sup[F(a;) -  G{x)]/Hf,g \ =  1,

P I  lim £»n,m =  sup |F(a;) -  G{x)\/Hf,g \ =  1->oo a; J

The above argument shows that the statistics defined by (3.3.1) and (3.3.2) can 
be used as measures of disagreement between the data the and hypothesis on the 
homogeneity.

Similarly to the Kolmogorov and Pearson goodness-of-fit tests we apply limit 
results on the behavior of measures of disagreement between the sample and the 
hypothesis. In the case of the hypothesis H we deal with and Dn,m as
n, m oo. The method described below is due to Gnedenko. It allows one to find 
the distributions of statistics and Dn.m- We restrict the discussion to the
case m = n. Other methods for studying the limit behavior of and i^n.m can 
be found in [24].

The distributions o f  statistics and The following result con­
tains the explicit expressions for the distribution functions of and Z>n,m if the 
hypothesis H  is true.

T heorem 3.3.1. If the distribution function P{^ < x/H} =  P{v < x/H} is 
continuous y then

(3.3.3)

(3.3.4)

0. 2 < 0,
l - ( n - c ) / ( n ) >

11,  >  v W 2 ,

0,
P < Z/H^ =  \ E|fe|<[„/cl(-l)"C-feo)/( n). 1 /v ^  < ^

I 1, Z > y/nj2,

where c =  ] 2:\ /^ [ is the minimal integer number which is greater than or equal to 
zy/^.

Proof. We assume below that the hypothesis H is true. Then the random 
variables ^i , . . . , and t/i , . . . , r/n are independent and identically distributed and 
their common distribution function is P{^ < x/H }  =  P{t] < x/H}.  We rearrange 
the random variables . . . ,  • • • » in ascending order:

Cl <  C2  <  • • • <  C2n*

The equalities in this sequence may occur with probability 0, since the distribu­
tion function is continuous. Define the random variables Xi» X2» • • • > X2n as follows: 
X a; =  1 if Ck is a member of the sample Ci j C2 , • • • ,Cn, while Xfc =  - I  if Cfc is a 
member of the sample /71, r/2, . •., ^n- 

Put
k

5o = 0, Sk = Y^Xi, k =  l,2,...,2n.
i= l
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It is clear that 

(3.3.5) nD+ =  sup Sk, nDn,m =  sup |5fe|.
0<k<2n 0<k<2n

Consider the points (fc, Sk) on the plane (t, x) for fc =  0 ,1 , . . . ,  2n and join them 
by segments of straight lines. As a result we get a polygonal line for which there 
are n subintervals [fc — l,fc] of [0, 2n] where the line goes up and n subintervals 
[Z -  1,Z] of [0,2n] where it goes down. This line starts at the point (0,0) and ends 
at the point (2n, 0). Polygonal lines with these properties are called trajectories. 
Since the number of intervals of any trajectory where it rises is equal to n and 
the number of intervals where it descends is equal to n, the total number of tra­
jectories is (^^). All these trajectories are équiprobable. Indeed, any trajectory 
corresponds to the event < ¿̂2 < * • * < Îi2n} where • • • ,^2n is a permu­
tation of the numbers 1, 2, . . . ,  2n and ¿̂1 < 62 < ' “  < Ît2n random variables 
Cl)Î2, •. . ,Cn,Cn+i,. -.,671 arranged in ascending order, = rjk, k =  1,2,...  ,n. 
Since the random variables Ci)C2> • • • )C2n are identically distributed, we have

P{^n < ^ U H }  =  < 6 -, <• • • < ^hJH }

for all permutations ¿1,22, . . . ,  t2n and j i , j 2  ̂• • •, J2n of the numbers 1, 2, . . . ,  2n. 
Thus the probability of any of the trajectories is l/(^^)•

According to (3.3.5) the random variables nD^,^ and nDn,n assume integer 
values and thus

=  P {n I?+ „ < c/H] ,

P {y| £»n ,n  <  z/H^ =  P {nDn,n < c/H}

where c = ]z\ /^ [. It remains to evaluate the probabilities

P I  sup Sk < c/h \ and P I  sup \Sk\ < c/h \
Lo<fc<2n J Lo<fc<2n J

to complete the proof of (3.3.3) and (3.3.4). Since all the trajectories are équiprob­
able, we need to determine the total numbers of trajectories favorable to the events

< sup S'a; < c > and < sup \Sk\ < c> .
Lo<fc<2n J Lo<fc<2n J

First we prove equality (3.3.3). We determine the total number of trajectories 
favorable to the event

\ sup < c l  =  {nD+ < c} , 
l0<k<2n J

that is, the total number of trajectories below the straight line x =  c (line a). We 
obtain this number by evaluating the total number of trajectories favorable to the 
converse event

(  sup > c I  =  {nD+ > c} , 
U<fc<2n J

that is, the total number of trajectories that have common points with the line a 
(we say in this case that a trajectory meets a). Every trajectory meeting the line a
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(and called an old trajectory in this case) corresponds to another (new) trajectory 
defined as follows: the new trajectory coincides with the old one from the point 
(0, 0) until it meets the line a for the first time; after this point the new trajectory 
is the mirror refiection of the old one. Thus the new trajectory starts at the point 
(0,0) and ends at the point (2n, 2c). The total number of different new trajectories 
(hence the trajectories meeting the line a) is equal to number of
intervals where a new trajectory rises is equal to n+c ,  while the number of intervals 
where it descents is equal to n — c. Thus the total number of trajectories that do 
not meet the line a is equal to (^ )  — and equality (3.3.3) is proved.

Now we turn to equality (3.3.4). We split the set DJI of all trajectories into 
disjoint subsets 21̂ , z > 0, and z > 1: the set 2to consists of trajectories that 
do not meet both lines x =  c (line a) and x = —c (line P)\ the set 2li consists of 
trajectories meeting the line a but not the line /3; the set ® i consists of trajectories 
meeting (3 but not a; the set 212 consists of trajectories meeting first a, then /3, 
and then not meeting a anymore; the set ®2 consists of trajectories meeting first 

then a, and then not meeting P anymore; the set 2I3 consists of trajectories 
meeting first a, then then again a, and then not meeting P anymore, and so on. 
Obviously these sets are eventually empty. Moreover

(3.3.6)
U>1

and the sets 2t i ,2I2, . . .  and ® i , ® 2, • • • are disjoint.
Along with the sets defined above we introduce the following sequence: the 

set Ai consists of trajectories meeting a at least one time; the set Bi consists of 
trajectories meeting /3 at least one time; the set A2 consists of trajectories meeting 
a at least one time and then meeting /3; the set B2 consists of trajectories meeting 
/3 at least one time and then meeting a; the set A3 consists of trajectories meeting 
a at least two times and /3 at least one time each in the following order: first a, 
then /3, then a, and so on. It is clear that

A i = 5 t i U  M J ( 5 l i U ® i )  , Bi =  » i U  M J ( 2 l iU ® i )  ,
U>2 ii>2

>l2 = 2l2U , B2 = ®2U MJ(5liU»i) ,
U>3 li>3

and so on. This implies for all z > 1 that

{A2i-l \ A2i) U {B2i-1 \ B2i) =  2l2i-l U 2l2i U ® 2i - l  U ® 2z- 

The latter equality together with (3.3.6) implies

(3.3.7) 2lo =  \ I 1^ [{A2i -i  \ A2i) U {B2i-i \ B2i)]
i i>l

To complete the proof we determine the total number of trajectories in the 
sets A2i - i ,  A2z, B2i-i^ and B2i ioi i =  1,2, . . .  . We demonstrate the method 
for the case of sets Ai and A2. Every trajectory starting from the point (0,0)
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and meeting the line a corresponds to a new trajectory starting from the point 
(0,0) and coinciding with the original trajectory until the point where it meets the 
line a; then the new trajectory is the mirror reflection of the old trajectory about 
the line a. The new trajectory ends at the point (2n, 2c). The number of such 
trajectories is already determined above and it is equal to Note that the
cardinality of the set A\ also is If original trajectory meets the line a
first and then meets the line /?, then the new trajectory meets the line x = 3c (this 
is the mirror reflection of the line P).

To determine the cardinality of the set A2 we introduce new trajectories as 
follows: the new trajectory coincides with the original one from the point (0,0) 
until it meets a, then it coincides with the first mirror reflection about the line a 
until meeting the line x =  3c, and. Anally, the last part of the new trajectory is the 
second reflection about the line x =  3c of the trajectory reflected first. Such new 
trajectories end at the point (2n,4c). The total number of such trajectories (thus, 
the cardinality of the set A2) is equal to

A similar reasoning (using an appropriate number of reflections) proves that 
the cardinality of the set Ai is J  • In the same way we And that the number of 
trajectories in the set Bi also is Since the sets A2i -i  \ A2i and B2i - i \ B2%
are disjoint and the terms in (3.3.7) also are disjoint, we obtain from (3.3.7) that 
the total number of trajectories in the set 21q is

Thus equality (3.3.4) is proved. □

Remark 3.3.1. The process 5^, k =  0 ,1 , . . . ,  2n, used in the proof of Theo­
rem 3.3.1 is called a random walk on the axis. The method of evaluation of the 
number of trajectories in the sets Ai and Bi applied in the proof of Theorem 3.3.1 
is well known in the theory of random walks as the reflection method [24, 47].

The Smirnov limit theorem . The following result describes the asymptotic 
behavior of the statistics and Dn,n as n ^  00.

T heorem 3.3.2 (Smirnov). If the distribution function

P{e < x/H} =  P{tj < x/H}

is continuous  ̂ then

(3.3.8)

(3.3.9) <  z / i f j  =  K{z)

z <0^ 
z >  Oy

where K{z) is the Kolmogorov distribution function defined by (3.1.5). 

Proof. Let > 0 be a fixed number. Consider the ratio

\ n —kcJh  = _____  (n!)^
(̂ n ) ~
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where k is a. fixed constant independent of n. Using the Stirling formula 

ml =  y/27rmm^e~'^{l +  o (l)), m —̂ oo,

we obtain
—n+fcc /  i_,\ —n—kc

(3.3.10) Ik 0(1)).

Since c =  ] z V ^ [  =  ^ V ^ ( l  +  o (l)) as n oo, we have kc/n =  a z^ 2/n{l-\-o{l)). 
Then taking the logarithm of both sides of (3.3.10) and expanding the result into 
the Taylor series we get that

Thus

(3.3.11)

ju2̂ 2
In Ik = ------------ h o(l) =  —2k^z  ̂ +  o(l), n  —> 00.

n

7fc =  e-^"^^^(l +  o(l)).

This equality for fc =  1 proves relation (3.3.8).
Now we turn to relation (3.3.9). For given z > 0 and e > 0 there is a number 

N{e,z) > 0 such that

(3.3.12) ^-2N̂ z2̂ 2 £
E ( - ' )

|fc|>iV

k^-2k̂ ẑ e
< 4

for N > N{e,z).  Since

\n — kcj  \ n -( fc  +  l ) c /

we have

2  (-1)*=4 < 2In .
N<\k\<[n/c]

Taking into account (3.3.11) and the first inequality in (3.3.12) we obtain for suffi­
ciently large n that

(3.3.13)
N<\k\<[n/c]

< 4e  ̂ < - .

Now we apply the second inequality in (3.3.12) and inequality (3.3.13) to prove 
that for large n

E  ( - i ) ' ' 4 - E  ( - !) " "■
N<\k\<[n/c] \k\>N

2k̂ ẑ s e e
^ 4 ' ^ 4 ~ 2 '(3.3.14)

Further we deduce from (3.3.11) that for a fixed N  and sufiiciently large n

(3.3.15) E ( - i ) " 4 -  E i - i ) ' «
\k\<N |fe|<iV

- 2k̂ ẑ <
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Thus (3.3.14) and (3.3.15) imply for fixed z > 0 and e > 0 and sufficiently large n 
that

Thus relation (3.3.9) is proved.

< e.

□

The Smirnov hom ogeneity test. The hypothesis H on the homogeneity, 
that is, P{^ < x} = P{rj < x }, can be tested in the case of continuous distribution 
functions by using either the statistic or the statistic Dn̂ m- As above we
consider the case m = n. To construct a test one can use either Theorem 3.3.1 
or Theorem 3.3.2. For the sake of simplicity we construct a test by using Theo­
rem 3.3.2.

We consider a goodness-of-fit test for the hypothesis H on the homogeneity 
based on the statistic Dn,n- Let a > 0 be a significance level and let z{a) be a 
solution of the equation K{z)  =  1 -  a with respect to Then relation (3.3.9) 
implies that for sufficiently large n

(3.3.16)

The test is defined by

{y|l?n ,n  > Z{a)/H^ 1 — K{z{a))  =  a.

{ y f ^ n ,n  > ^(Oi)}

It follows from relation (3.3.16) that the level of the test 5n is approximately equal 
to a for large n. The test Sn is called the Smirnov test or Smirnov homogeneity 
test or Smirnov goodness-of-fit test. The Smirnov test rejects the hypothesis H if 
y^n/2 Dn,n ^ '2̂(q:), that is, if Dn̂ n ^ z{ot)y/2]n. Otherwise there is no reason to 
reject the hypothesis H and it is accepted.

It is not hard to show that the test 5n is consistent. Indeed, let Kp^G be 
the hypothesis that P{^ <  x lK p ^ o }  =  and P{q <  x / K f ,g }  =  G{x) where 
supaj \F{x) — G{x)\ ^  0. Similarly to the proof of Theorem 3.1.2 we obtain from 
the Glivenko theorem that

< z{a)/KF,G^ =  0,

that is, the test Sn is consistent.
In the same way one can construct a goodness-of-fit test for the hypothesis If 

based on the statistic Dn,n- Namely, we introduce a solution z~ (̂a) of the equation
=  a with respect to z where a > 0 is a given significance level. It follows 

from relation (3.3.8) that

for sufficiently large n. Thus the level of the test

a

is approximately equal to a for sufficiently large n. The test 5  ̂ can also be used 
for the hypothesis H on the homogeneity and it is called the Smirnov testy too.
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3.4. Other goodness-of-fit tests

We studied Kolmogorov, Smirnov, and Pearson tests in the preceding sections. 
Many other goodness-of-fit tests are well known in mathematical statistics. Some 
of them are considered in this section.

Sym m etric tests. Let a random variable  ̂ be real valued and let

be a sample of size n. We split the real axis R  =  ( -o o , oo) into r intervals

(3.4.1) Si = [yi-i,yi), z =  l,2 , . . . , r ,  yo = -o o ,  yr = oo.

Let the hypothesis H be such that P{^ € Si/H} =  =  1/r for all z =  1 ,2 ,. . . ,  r.
Let u =  (ẑ 'i, 1̂2) • • • j be the vector whose coordinates equal the number of 

members of the sample belonging to intervals (3.4.1), that is, z =  1 ,2 ,.. . ,  r, 
are evaluated by (3.2.2). Consider the class of statistics

(3.4.2) Cn,r(i?) =
2=1

where g{x) is some real function defined for all nonnegative integer arguments 
a; =  0 , l ,2 , . . .  . Since the random variables '̂i,ẑ 2j • • • > form a symmetric expres­
sion in (3.4.2), the statistic Cn,r(^) is called symmetric and tests based on statistic
(3.4.2) are called symmetric.

If g{x) = I{k}{x) in (3.4.2) for some k G {0 ,1 ,2 ,... ,n }, then the statistic 
Cn,r{g) is equal to the number of intervals among 5i, 5 2 ,. . . ,  Sr that contain exactly 
k members of the sample ^i, 2̂» • • • j W e  denote this statistic by

(3.4.3)
2=1

Thus we have a collection of symmetric statistics /zo» Mij • • • >Mn defined by (3.4.3). 
It is obvious that these statistics are such that

n n
(3.4.4) '^Hk(n,r) =  r, ^  kfik (n, r) =  n.

k=0 k=0

Relation (3.4.2) can be rewritten in terms of the statistics /iO)Mi> • • •

(3.4.5) Cn,r(^) — y^^(fc)/Zfc?
fc=0

whence it follows that an arbitrary symmetric statistic is a linear combination 
of /xo,/xi,. . .  ,/Xn- The converse is also true, namely any linear combination of 
PO) Ml) • • •) Mn is a symmetric statistic, since

Y^CkUk =  Y^g{i'i)
k=0 2=1

where g{k) =  c^. A; =  0 ,1 ,.. .  ,n. Thus the class of symmetric statistics coincides 
with the class of all linear combinations o / po) Mi) • • •) Mn-
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Note that the statistic Cn defined by (3.2.4) and used in Section 3.2 to construct 
the Pearson test coincides with the symmetric statistic (3.4.2) for g{x) =  rx^ jn  — x 
and if intervals (3.4.1) are équiprobable.

Empty boxes test. The symmetric test based on the statistic /xq is called the 
empty boxes test. Note that /xq is the number of intervals 5i, 5 2 ,. . . ,  5r that do not 
contain any member of the sample ^ i,^2, • • •, in-

Below we evaluate the first two moments of the statistic pLo if the hypothe­
sis Hp is true where Hp is such that P {i £ Si/Hp} =  pi, x =  1 ,2 ,... ,r. Here the 
numbers pi are arbitrary and p =  (pi,P2, • • • ,Pr)- Consider the random variables 

- • • tVr such that rji =  1 if the interval Si does not contain any member of the 
sample i i ,  - . . ,  in> and rji =  0 otherwise. It is clear that /xo =  H-------H whence

E{fio/Hp} =  ^  E{r?i/Fp} =  =  V-ffp},
i=l i=l

r

D{Mo/iîp} =  ^ D { „ i /F p }  +  2 Y^ E {{rh -  E{r,i/Hp})ivj -  E{^j/H^})/Hj,}
i=l i<j

r

=  Y ,  P {^ i =  -  P{»7i =  VH^}\
i=l
+  2 Y [ P { V i  =  l.»7j =  U H p }  -  P{Vi =  l /H j , } P { r y  =  1 / f f p } ] .

i<j

Since the random variables i i ,  2̂» • • •»in are independent and identically distributed 
and

i=i
we have

p{vi = i/Hp} = { i - p i r

Thus

{Vi — 1 {ife ^ "Si ) Cfe ^ “Sj'} )
k=l

P{Vi =  =  1/^p} =  (1 -  Pi -P j)”-

(3.4.6) E{po/Hp} =  Y i i - P i T ^
i=l

(3.4.7) D{fM>/Hp} =  2 ^ ( 1  -  Pi -  p ,)"  +  E{po/Hp} -  (E {p o /iip })'.
i<j

It is easy to show that E{pLo/Hp} as a function of p =  (pi,P2, • • • ,Pr) attains its 
minimum at p =  p  ̂ =  (pi,P2, - • • ,Pr) where p? =  p§ =  • • * =  Pr =  f A - Equalities
(3.4.6) and (3.4.7) for p =  po become of the form

E{po/ii} = r ( l - l / r ) - ,
D { p i o / H }  =  r{r -  1)(1 -  2/r)^ -h r(l -  1/r)^ -  r\l -  \/rf^

(note that H  =  flpo in this case).
This shows that if the hypothesis H is not true, that is, if not all probabilities 

for intervals 5 i, 5 2 ,.. . ,  5r are equal to 1/r, the statistic po tends to increase, since 
E {po/ifp} > E{fjio/Hpo} for p ^  Po- Thus large values of /xq lead to the rejection
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of the hypothesis H. The empty boxes test for testing the hypothesis H is then as 
follows: the hypothesis H is rejected if /xq > ta{n^r)  ̂while it is accepted otherwise. 
The number tot{n^r) can be evaluated by using the distribution of the statistic /xq 
given the hypothesis H  is true. However this distribution is complicated and the 
limit results for ¡iq are often used instead (see [26, 27]).

The empty boxes test has the same disadvantage as the Pearson test (see Re­
mark 3.2.2). To avoid this disadvantage one should assume that r is large enough, 
that is, r oo as n oo. This assumption allows one to apply the empty 
boxes test for testing the simple null hypothesis ffo thsit =  F{x)
and P{^ € Si/Ho) =  Pi =  1/2, i =  1 ,2 ,... ,r, where F{x) is a given distribution 
function. More details are given in [26, 27].

General symmetric tests. The empty boxes test is based on the statistic /xq that 
does not contain all the information available from the sample It is clear that 
the statistic

n

'^CkUk
fe=0

contains more statistical information than /xq where ci > 0 , . . . ,  Cn > 0 are some 
weights. It is natural to choose the weights ci,C2, . •. ,Cn such that the test is the 
most powerful in the class of all symmetric tests. The theory of symmetric tests 
is considered in [27]. Note also that the Pearson test has the maximal asymptotic 
power among all symmetric tests under appropriate conditions (see [26, 27]).

Tests o f  the hom ogeneity. We considered the Smirnov test in Section 3.3, 
however there exist many other tests of the homogeneity. We briefly discuss some 
of them below.

Chi-square test of the homogeneity. Consider s independent samples of inde­
pendent observations. Assume that samples 1 ,2 ,. . . ,  s contain ni, ri2, . . . , mem­
bers, respectively. We assume that an attribute is checked in the sample i and 
denote by fhe observations of the attribute, so that we deal with
independent random variables j  =  1 ,2 ,. . . ,  n ,̂ x =  1 ,2 ,. . . ,  s. Further let the re­
sults of every observation fall into r groups according to their values. Namely the do­
main X  of the attribute fall into parts 5i, 1S2, . . . ,  such that Ufc=i Sk =  X  and 
Skf\Si =  0 y k ^ 1. Let î ij be the number of members of the sample ¿̂1, ¿̂2, • • •, ̂ im 
belonging to j  =  1 ,2 ,. . . ,  r. Put Pij =  P{^i G Sj}, x =  1 ,2 ,. . . ,  s, j  =  1 ,2 ,. . . ,  r. 
Consider the hypothesis H: (p^i, • • • yPir) =  (Pii) • • • >Pir) for all x =  1 ,2 ,.. . ,  s. We 
form the vector p =  (pi,P2, • • • ,Pr) and note that pi H------- \-pr =  1 .

The vector p is, generally speaking, unknown. However if the vector p is known, 
then E{i/ij/H} =  niPj and

(3.4.8) Cn(p) =  X !E
j=i i=i

{Vij -  niPjf' 
niPj

can be viewed as the measure of disagreement between the data and the null hypoth­
esis (cf. relation (3.2.4)). Since Pi,P2,--*,Pr are unknown in general, we modify 
the method and substitute the estimators

(3.4.9) Pj = n
j  — 1) 2 , . . . ,  r.
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for p i , . . .  where 

(3.4.10)
2=1 j = l2=1 2=1

Substituting (3.4.9) into (3.4.8) and taking into account (3.4.10) we get the statistic

{I'ij -  n j V . j l n f(3.4.11) Cn — Cn - E E
j=l i—1

■ n
riiU.A E E

j = l ¿=1 UiV.i -  1

where p =  (p i ,. . .  ,Pr)- Note that

(3.4.12) r ( f „ | i i ) ^ ^ 2 ( ( ^ _ l ) ( s - i ) ) , n oo

(see [14], §30.6).
Based on the statistic (̂ n and using the limit relation (3.4.12) we construct the 

goodness-of-fit test for the hypothesis H. Some examples of applications of this 
test can be found in [14, 26].

Empty blocks test Let =  (^ i,...,^ n ) and =  (p i,...,P m ) be two 
independent samples of independent observations of random variables  ̂ and p, 
respectively. Assume that both  ̂ and rj have continuous distribution functions. 
The hypothesis H is that P{^ < x/H} =  P{rj < x/H} for all x G (—00, 00). 
Consider the order statistics Cn,i < Cn,2 <  ••• < Cn.n related to the sample 
These statistics split the set (—00, 00) into the intervals

'S't =  [Cn,2—1) Cn,i) J 1,2, . ..,71+1,

where we put Cn,o =  “ OO and Cn,n+i =  00. These intervals are called sampling 
blocks. Consider those sampling blocks that contain exactly r random variables of 
1̂ j 2̂ j • • •) and let Sr = Sr{n, m) be the number of such blocks, r =  0 ,1 ,2 ,. . . ,  tti.

Every linear combination

i
Si{n^m) — ^^CrSr{n^m)^ / =  0 ,1 ,2 ,... ,m, 

r = 0

can be viewed as a test for the goodness-of-fit test of the hypothesis H where 
Co,Cl,. . .  ,c/ are some positive numbers. The test corresponding to the case I =  0 
is called the empty blocks test. The number of blocks that do not contain any 
observation of the second sample is the test statistic (denoted by sq) in this case. 
The following result on the asymptotic distribution of the statistic sq is crucial for 
constructing this test: if n, m —> 00 such that m/n —> p G (0 ,00), then

K np2
- )  '  ( s o ( n , m )  -  j ^ )  ^ A ^ ( 0 , 1 )

(see [53]). It is proved in [53] that the empty blocks test against the alternative 
P{^ < x } =  Fi{x) ^  F2{x) = P{rj < x}  is consistent if the derivative g{u) of 
the function F2(F f^ (i6)), u G [0,1], differs from 1 on a nonzero Lebesgue set. If 
the hypothesis H is true, then g{u) =  1, G [0,1]. The class of such alternative 
hypotheses is denoted by H*.
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Test of series. A s  in  t h e  c a s e  o f  e m p t y  b lo c k s  t e s t  w e  d e a l  w i t h  tw o  in d e p e n d e n t  
s a m p le s  =  ( ^ i , . . . ,  ^n)  a n d  =  ( ry i , . . . ,  r]m) t h a t  a r e  in d e p e n d e n t  o b s e r v a ­
t io n s  o f  r a n d o m  v a r ia b le s  ^ a n d  ry, r e s p e c t iv e ly .  W e  a ls o  a s s u m e  t h a t  ^ a n d  rj h a v e  
c o n tin u o u s  d is t r ib u t io n  f u n c t io n s .  C o n s id e r  t h e  h y p o t h e s is  H  t h a t

p u  < x} = P{r] < x} for all X G (—00, 00).

I t  is  a  q u it e  in t e r e s t in g  c a s e  w h e n  t h e  a l t e r n a t i v e  h y p o t h e s is  Hpi^F2 is  s u c h  t h a t  
P { ^  <  x/Hf i,F2} = Fi,- P {»7 <  x/Hpi.Fi} = F2 , a n d  Fi{x) > ^ 2(1 ) fo r  a l l  x. T h e  
r a n d o m  v a r ia b le  7] in  t h is  c a s e  is  s t o c h a s t i c a l l y  b ig g e r  t h a n  t h e  r a n d o m  v a r ia b le  
s in c e  fo r  a ll  x t h e  r a n d o m  v a r ia b le  r/ e x c e e d s  x w i t h  a  la r g e r  p r o b a b i l i t y  t h a n  ^ 
d o e s . T h e  t e s t  d e t e c t i n g  a  d is a g r e e m e n t  b e t w e e n  t h e  d a t a  a n d  t h e  h y p o t h e s is  H 
c a n  b e  c o n s t r u c t e d  a s  fo llo w s .

F i r s t  w e  m e r g e  t h e  s a m p le s  a n d  a n d  o b t a i n  t h e  s a m p le

Cn+m (̂ 1> • • • ) T̂M 1̂} • • • ) Vm)

o f  s iz e  n  +  m . T h e n  w e  c o n s t r u c t  t h e  o r d e r  s t a t i s t i c s  fo r  t h e  s a m p le  F in a l ly ,
in  t h e  s e q u e n c e  o f  o r d e r  s t a t i s t i c s ,  w e  s u b s t i t u t e  t h e  s y m b o l  C  fo r  a ll  m e m b e r s  
o f  t h e  s a m p le  a n d  t h e  s y m b o l  C  fo r  a ll  m e m b e r s  o f  t h e  s a m p le  A s  a
r e s u lt  w e  g e t  a  s e q u e n c e  o f  n s y m b o ls  C  a n d  m s y m b o ls  C. T h e  t o t a l  n u m b e r  
o f  s u c h  s e q u e n c e s  is  I t  is  c le a r  t h a t  i f  H  is  t r u e ,  t h e n  a ll  s u c h  s e q u e n c e s
a r e  é q u ip r o b a b le  ( t h e  p r o o f  is t h e  s a m e  a s  t h a t  in  t h e  c a s e  o f  T h e o r e m  3 .3 .1 ;  a ls o  
s e e  t h e  p r o o f  o f  T h e o r e m  1 4 .3 .1  in  [5 3 ]). I f  t h e  a l t e r n a t i v e  h y p o t h e s is  is  Hf ,̂F2 

w h e r e  F i  >  F 2 , t h e n  i t  is m o r e  l ik e ly  t h a t  s y m b o ls  C  a p p e a r  fa r  a w a y  f r o m  t h e  
o r ig in  o f  t h e  s e q u e n c e . T h e  m e a s u r e  o f  t h e  d is p la c e m e n t  o f  t h e  s y m b o ls  C  t o  t h e  
r ig h t  c a n  b e  c h a r a c t e r iz e d  b y  t h e  s t a t i s t i c  V F ( n ,m )  w h ic h  is  t h e  n u m b e r  o f  s e r ie s  
o f  s y m b o ls  C  a n d  C. A n y  s e q u e n c e  o f  s y m b o ls  C  o r  C  is c a l le d  a  series. T h e  
n u m b e r  o f  s e r ie s  is  s m a ll  i f  t h e  s y m b o ls  C  (o r  C) a r e  g r o u p e d  in  a  s p e c if ie d  p la c e  
o f  t h e  s e q u e n c e . T h u s  t h e  c r i t i c a l  s e t  fo r  t e s t i n g  t h e  h y p o t h e s is  H  c a n  b e  t a k e n  in  
t h e  fo r m  {W{n^m) < ta(n.,m)} w h e r e  ¿ ^ ( n , m )  is  a  c e r t a in  n u m b e r  d e fin e d  b y  t h e  
le v e l  a. T h e  t e s t  r e la t e d  t o  s u c h  a  c r i t i c a l  s e t  w a s  p r o p o s e d  b y  W a ld  a n d  W o lf o w it z  
in  19 4 0  a n d  is  c a l le d  t h e  test of series.

T h e  f o l lo w in g  r e s u lt  o n  t h e  l im it  b e h a v io r  o f  t h e  s t a t i s t i c  W ( n , m )  is  u s e fu l  fo r  
t h e  e v a lu a t io n  o f  ta{n.,m): i f  n , m  — > 00 s u c h  t h a t  m/n — > p  G (0 , o o ) ,  t h e n

1«)
(s e e  [5 3 ]).

W a ld  a n d  W o lf o w it z  p r o v e d  t h a t  t h e  t e s t  o f  se r ie s  is  c o n s is t e n t  i f  t h e  a l t e r n a t iv e  
h y p o t h e s is  b e lo n g s  t o  t h e  c la s s  H *. T h e  t e s t  o f  se r ie s  is d is c u s s e d  in  d e t a i l  in  [5 3 ].

Rank tests. M o s t  n o n p a r a m e t r ic  m e t h o d s  u s e  o b s e r v a t io n s  r a n k e d  in  o r d e r  o f  
th e ir  m a g n it u d e .  S t a t i s t i c s  c o n s t r u c t e d  fr o m  r a n k s  o f  o b s e r v a t io n s  a r e  c a l le d  rank 
statistics. T e s t s  b a s e d  o n  r a n k  s t a t i s t i c s  a r e  c a l le d  rank tests.

L e t  =  ( i i , . . .  , ^ n)  a n d  77̂ ^^ =  (771, . . .  ,r]rn) b e  tw o  in d e p e n d e n t  s a m p le s  o f  
in d e p e n d e n t  o b s e r v a t io n s  o f  r a n d o m  v a r ia b le s  ^ a n d  rj w h o s e  d is t r ib u t io n  f u n c t io n s  
a r e  c o n tin u o u s . U s i n g  t h e  s a m p le s  a n d  w e  w a n t  t o  t e s t  t h e  h y p o t h e s is  
H  t h a t  P { ^  < x} = P{rj < x} fo r  a ll  x G ( — 00, 00). W e  m e r g e  t h e  s a m p le s

a n d  7y(^ ) a n d  o b t a i n  t h e  s a m p le  =  ( ^ i , . . .  • • • ,77m)- T h e n  w e
c o n s t r u c t  t h e  s e q u e n c e  o f  o r d e r  s t a t i s t i c s  < Ctv,2 <  * * • <  Cn .tv, N  = n-\-
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from the sample Let Ri be the index in this sequence corresponding to the
member of the sample that is, = CN,Rî   ̂ =  1,2, Thus we deal
with ranks i?i, i?2, • • •, -Rn of the observations ^i, ^2, • • •, Cn- Consider the statistic
T  =  i?i + -----h Rny that is, T  is the sum of indices of members of the first sample
Cl, • • • ,^n ill the sequence of order statistics constructed from the merged sample. 
The test based on the rank statistic T  was proposed by Wilcoxon in 1945 for the 
case of identical sizes of samples (n =  m) and is called the Wilcoxon rank sum test 

Consider the random variable Zij that equals 1 if < r]j and 0 otherwise. Put

(3.4.13)
i=l j = l

It is clear that U is the total number of the cases in the merged sample where 
members of the sample precede members of the sample The test for
testing the hypothesis H on the homogeneity based on the statistic U was studied 
by Mann and Whitney in 1947 and is called the Mann-Whitney U-test.

One can show that T +  ¡7 =  nm +  n(n +  l ) / 2. Thus the Wilcoxon rank sum 
test and Mann-Whitney ?7-test are equivalent.

Let Hfi,F2 be the hypothesis that P{C < x}  = Fi{x) and P{t] < x}  =  F2 {x) 
where Fi{x) and ^2(0:) are continuous distribution functions. It follows from
(3.4.13) that

E{U/Hfi,F2} =  '¡ '̂ni, {̂Zii/HFi,F2} =
where

/ 00

Fi{x)dF2{x).
-00

If the hypothesis H is true, that is, if Fi{x) =  F2 {x)  ̂ then a =  1/ 2. Similarly 

D{U/Hfi,F2} — 'n,m[a +  (n — 1)6 +  (m — l)c  — (n +  m — l)a^]

where /00 poo
F^(x)dF2{x), c =  /  { i - F 2 ix)fdFi{x) .

■ 00 J — 00
If the hypothesis H  is true, then b = c =  1/3 and thus D{U/H} =  n m (n + m + l)/12. 
It is known that

(3.4.14) £  -  f )  | if)

as n,m  00
Relation (3.4.14) is useful for the Wilcoxon test of homogeneity (and for the 

Mann-Whitney test, too). The critical set for this test depends on the alternative 
hypothesis Hfi F̂2 especially on the value of a: either a < 1/2 or a > 1/2 
or a =  1/ 2. More details on the Wilcoxon and Mann-Whitney tests are given 
in [53]. The general theory of rank tests as well as examples of various rank tests 
is presented in [22].

Tests of independence. Below we consider a couple of tests for testing the 
hypothesis that two random variables  ̂ and 77 are independent. The statistical 
inference is based on independent observations (^1, 7/1), (^2,^2), • • •, (^nyVn) of the 
vector (^,77). If F(^^ )̂(x ,7/) is the distribution function of the vector (^,77), then 
the hypothesis H is that F(^^ )̂(x , t/) =  F^{x)Frf{y) where F^{x) and Frj{y) are
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distribution functions of the random variables  ̂ and 77, respectively. Note that the 
distribution functions 7/), and Frj{y) are unknown.

Chi-square test of independence. Let X  and Y  be the sets of values of random 
variables  ̂ and 77, respectively. Consider the following partitions of the sets X  
and y :

X  =  and F  =  l j 5 f ^
2=1 2=1

where
) n =  0 , i  ^  j,  and n  ̂ = 0 , k ^ l  

These partitions generate the partition of the set X  x T :

¿=ij=i
) X S f •)

where
( 5 f ) X S f )  n  X =  0 , ii,j)  ^  (fc, 1).

Here x = {{x,y ) :x  £ y £ are rectangles in the set X  x Y .
The hypothesis of the independence H means in this case that pij =  piQj for 

all z =  1 ,2 ,. . . ,  r and j  =  1 ,2 ,. . . ,  s where

Pij =  P { i  € \ 77 e  S f / H ]  , Pi =  P G V-ff} .

and
qj =  ? [ p e S f / H ] .

Denote by uij the total number of observations 77̂ ;), fc =  1 , . . . ,  tz, belonging
to the set x so that X^i=i J2 j=i îj =  If the probabilities pi and Qj
are known, then one can use the statistic

(3.4.15)
2=1 j  =  l

to test the hypothesis H. However these probabilities are usually unknown and 
thus we use their estimators

(3.4.16)

where

^ î 2. . 1 J -- • 1Pi =  — , 7 =  l , . . . ,n ,  and Qj ^ J =
n n

O I

j = l  2=1

By substituting (3.4.16) into (3.4.15) instead of the probabilities pi and qj we obtain 
the statistic

(3 .4 .1T , c .  =  c „ ( p ,5 )  =  „  1 1  =  " ( E  ^  -  O '

The Pearson theorem implies that

(3.4.18) £  [ U h )  a  x^{{r -  l)(s  -  1)), n ^  00.
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Now we use statistic (3.4.17) and construct the goodness-of-fit test for testing the 
hypothesis H of the independence of two random variables. This is a standard 
procedure using the limit relation (3.4.18) and leading to the so-called test of 
independence. More details on the x^ test of independence are given in [14, 26].

Spearman test. Let Ri be the rank of the member in the sequence of order 
statistics ^ni < in2 < * • * < inn constructed from the sample (ii, 2̂» • • • j in)- Note 
that the sample ( i i , . . . , in )  consists of the first components of the members of 
the sample (ii,r/i), (i2,?72),-• -, (in, ^n)- Similarly, let Si be the rank of the mem­
ber T]i in the sequence of order statistics rjni < rjn2 < * • * < Vnn constructed from 
the sample (r/i,. . .  ,7/n)- The sample (ii,77i),. . . ,  (in,^n) thus generates the set of 
pairs of ranks (iii, 5 i ) , . . . ,  (i?n, S'n). We rearrange these pairs in ascending order 
with respect to their first component and denote the rearranged set of pairs by 
( l , T i ) , ( 2 , T 2 ) , . . . , ( n , T n ) .

Consider the rank statistic

(3.4.19) p =  f^ iR i -  R)(Si -  S) ( j2 (R i  -  R)^ ¿ ( 5 ^  -  5 )2)
i= l  ^ i= l  i= l  ^

- 1/2

which is the coefficient of correlation between two sets of ranks (i? i, ... ,Rn) and 
{Si, . . . ,5n) where

- n 1 ^
R = - T R i ,  S = - T S i .  n “  n ^%=l %=l

The statistic p defined by (3.4.19) is called the Spearman rank correlation coefficient. 
The test based on the statistic p is called the Spearman test.

Since ( i i i , . . . ,  Rn) and (5 i , . . . ,  Sn) are certain permutations of the numbers 
(1 ,2 ,... ,n), we have

(3.4.20) R = S = ^ j ^ i = ^ l ,  
2i= l

(3.4.21) =  =
i=l  ¿=1 2=1 ^ '

Combining (3.4.19)-(3.4.21) we get

(3.4.22)

There is another useful formula for the Spearman coefficient, namely

‘  -  S ( s i r T )  E  ( « .  -  s , ) ” = 1  -
 ̂ ' 1=1 ' ' 2=1

It is straightforward to check that (3.4.22) and (3.4.23) are equivalent.
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Let two distribution functions P{^ < x / i / }  and P{q < x/H} be continuous. 
Since all n\ permutations (Ti, T2, . . . ,  Tn) of the numbers (1 ,2 ,.. . ,  n) are équiprob­
able, we have

F f r /771

i = l
whence we obtain by (3.4.23) that

E{p/H} =  \ -
n{n  ̂— 1) [ i= l i=l

=  0.

Similarly

D{p/H} =
n ■

If the ranks coincide, that is, if iii =  Si, i =  1 ,2 ,... ,n, then p =  1, while if 
the ranks are opposite, that is, if =  n — 2 +  1, i =  1 ,2 ,... ,n, then p =  —1. In 
general, — 1 < p < 1. If p is close to either —1 or 1, then the hypothesis H  is false. 
Thus the critical set of the Spearman test is {|p| > toi{n)} where ta{n) is defined 
for the level a by using the distribution of the statistic p. One approach to evaluate 
ta{n) is to use for n =  2 ,3 , . . . ,  30 the tables of the distribution of the statistic p 
(see references in [22]). Another approach is based on the limit relation

C (\/np|ii) A/* (0,1), n ^  oo,

whence one can also find ta{n) (see [29], §37.28).
Kendall test Another rank test of independence, called the Kendall test, is 

based on the statistic
r = ^ 5 ^ sig n (T j-T i)

»» i<)

where sign(a) =  1 for a > 0 and sign(o) =  —1 for o < 0; Cn is a certain constant. 
The statistic r  is called the Kendall statistic. It is known that

(3.4.24)
E {r /J i }= 0 , D { t / H }  =  

^ ^ (0 ,1 ) ,

2(2n +  5) 
9n(n — 1) ’

n ^  oo

(see [29]). The critical set for the Kendall test is {|r| > tc3,{n)} where the constant 
ta{n) can be found for the level a from relation (3.4.24). It is shown in [29] that 
the Spearman and Kendall tests are asymptotically equivalent as n —> oo, since the 
coefficient of the correlation between the statistics p and r  approaches 1 as n —> oo.

Other rank tests of independence can be found in [22].

The von M ises-Sm irnov test. Let =  (ii, • • • ,^n) be a sample of size 
n. We treat ^ i,. . .  ,^n as independent observations of a random variable Let the 
hypothesis H be such that P{^ < x/H} =  F{x) for all x e  ( - 00, 00). One possible 
approach to test the hypothesis H is to use the Kolmogorov test. Consider another 
goodness-of-fit test for testing the hypothesis H based on the statistic

(3.4.25) /»

-c
{F n {x ) -F {x ) fd F {x )
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where Fn{x) is the empirical distribution function constructed from the sample 
It is proved in [9] that if F{x) is a continuous function, then

(3.4.26) lim P {n u ^  <  x / H }  =  il{x) ~   ̂ ^

where 0 < t < 1, is the Brownian bridge. We follow standard procedure
to construct the goodness-of-fit test for testing the hypothesis H based on statis­
tic (3.4.25) and on the limit relation (3.4.26). This procedure leads to the so-called 
von Mises-Smirnov test Sometimes it also is called the test

The distribution function of ii(x) is complicated. However one can use the 
tables of values of the function ii(x) (see [6]). Note that the distribution of the 
statistic does not depend on the function F{x)  and moreover

(3.4.27) D K / / f }  =  | g i

(see [14]). More details about the test can be found in [40].

M oran test. As in the preceding section let be a sample and let the hy­
pothesis H be such that P{^ < x/H} =  F{x)  for all x where F{x)  is a continuous 
distribution function. Consider the statistic

(3.4.28) Mn =  ^[F(Cn.fe+i) -  F(Cn.fc)]^
fc=0

where Cn.fej A; =  1 ,2 ,.. . ,  n, are order statistics constructed from the sample

Cn,l ^  Cn,2 ^  ^  Cn,n>
and F(Cn,o) =  0 and F(Cn,n+i) =  1- The test based on the statistic (3.4.28) is 
called the Moran test It rejects the hypothesis H if Mn > Cn{oi) where Cn{oc) is a 
constant determined by a level a and the distribution of the statistic Mn-

Since the random variable F{( n̂,k) is uniformly distributed on the interval [0,1], 
the distribution of the statistic Mn does not depend on the function F{x). Thus 
one can consider the test based on the statistic

(3.4.29) ^  ^(Cn,fc+1 Cn,/c)
k=0

The aim of the Moran test is to test whether the distribution of the random vari­
able  ̂ is uniform on the interval [0,1]. The number Cn(oi) for the Moran test can 
be evaluated by applying the following assertion: if the distribution function F{x) 
is continuous  ̂ then

Iff) A;\7(0,1)

as n —> oo (see [9]).
It is also proved in [9] that the Moran test is consistent. On the other hand, 

the Moran test does not distinguish close hypotheses (see [9]).
To conclude this section we note that many other goodness-of-fit tests are 

known and an extensive literature is devoted to them. Some references are given 
above. We also mention the book [50] on the nonparametric statistics where special 
attention is given to the goodness-of-fit tests.





CHAPTER 4

Sequential Tests

4.1. Bayes sequential tests o f  hypotheses

Setting o f  the problem . Let (0 ,^ )  be a measurable space and let  ̂ =  
(^1)^2) • • •) be a sequence of independent identically distributed random variables 
whose distribution depends on a parameter 6 e  Q. Let {0 i ,  ©2, • • • > ©m} be a 
partition of the space 0 , that is, © =  UHi and 0^ fl 0 j  =  0 , i ^  j. Assume 
that m loss functions Ai{6)̂  i =  1 ,2 ,... ,m, are defined on 0 . The parameter 0 
determining the distribution is chosen in 0  according to the a priori distribution 
Q on (0 ,^ ) .

Consider the problem of testing m hypotheses HiiO G ©i, i =  1 ,2 ,. . . ,  m, by 
the sequence of random variables ^i, 2̂) —  The difference between sequential tests 
and tests with a fixed size of the sample is as follows. In the case of a sequential 
test, a statistician is free to decide at any time whether it is necessary to terminate 
the sampling. More precisely, a statistician may terminate the sampling at any 
time n and decide to accept a certain hypothesis Hi on the basis of the sample 

When deciding to terminate the sampling, the statistician takes into 
account the cost per observation on the one hand and the amount of information 
about the parameter 6 available in the next observation on the other hand. Let 

be the expenses caused by the observation =  (^1)^2, • • • j^n)- Assume 
that the expenses are such that

1) > Kni&'>) a.s. for all n >  0;
2) lim„_oo ■ oo a.s.

Every sequential test is determined by two components: a stopping rule and a 
decision rule. Denote by «(Q ,^) a stopping rule and let u{s) be a random variable 
denoting the size of the sample if the stopping rule s (Q ,0  is applied. A decision 
rule is denoted by ¿ (Q ,0 - Our assumption is that the decision depends only on

=  n. Consider the following set of sequential tests.
1. After a statistician terminates the sampling he applies a decision rule ¿(Q , 0  

that is assumed to be Bayes under the a priori distribution Q. This means that if
are given and iy{s) =  n, then

¿(Q .O  =

where the functions gf are defined by (1.3.42) with instead of x. We also 
assume that the measure is absolutely continuous with respect to some cr-finite 
measure fi and that its density is p{x\ 6). Then the distribution of the sample is 
absolutely continuous with respect to the measure = /ix/ix - • - xp  {n times) and 
its density is =  (a;i,X2, . . .  Thus
should be used in (1.3.40) and (1.3.41) instead of p{x\t).

293
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2. The class of stopping rules «(Q ,^) is the collection of all randomized rules 
that can be described as follows. For any n > 1, denote by the ir-algebra 
generated by the vector ( 0 , ^ 2, • • •,Cn) and let c^o =  It is clear that

*̂ 0 C  <^1 C  c^2 C  • • • .

Let denote the class of all sequences s =  (si, «2, • • •) such that s\ =  s i(Q ) and 
=  Sn+i(Q,Ci)i2, • • • )in) is an .^n-nieasurable random variable,

0 ^  Sn-^-i(Q, ^1, 2̂» • • • ) Cn) ^  1) 71 >  1.

We treat Sn+i as the probability that the random variable ^n+i occurs in the 
sampling. Set

with probability Sn+i(Q,^^^^), 
with probability 1 — Sn+i(Q,^^^^).Jn+l =  Jn+liQ ,& ^) ■ l i

Following the stopping rule generated by the sequence s E a statistician de­
cides to terminate the sampling at the minimal n > 0 such that Jn+i =  0. The 
corresponding size of the sample is a random variable given by

i/(s) =  min |t2 >  0: =  o | .

It is clear that {i^(s) =  n} E ^ > 0, that is, u{s) is a stopping rule with respect 
to the family of cr-algebras *^1) *^2) • • • •

Given denote by ^he a posteriori distribution of the param­
eter 9, Let Pq be the joint unconditional (weighted) distribution of the vector 
given Q. Denote by fhe Bayes risk corresponding to the Bayes decision
for given and u{s) =  n, that is,

P o ( Q ,& ^ ) = m i n  /
l< t<m  Jq

Then a priori risk corresponding to the stopping rule s and the Bayes decision rule 
is defined by

R{Q,s)  =  f ;  /  +/!>o(Q,a:("))]
n = l

X n  sfc+i (Q. (1 -  «n+i (Q, xW))
fc=0

+  (1 -  si(Q))po(Q)
where si(Q , =  Si(Q) and poiQ) is the Bayes risk to make a decision without 
sampling, that is,

P o(Q )=  min /  Ai{e)Ci{dB).
l < t < m  J q

A stopping rule s* is called Bayes (or optimal) for the a priori distribution Q if

i? (Q ,s* )=  mf^i?(Q,s).

In what follows we assume that i?(Q, s*) < oo.
The problem of evaluating a Bayes stopping rule s* for a given a priori distri­

bution is not easy. Below we consider some general properties of the rule s*.
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Properties o f  a Bayes stopping rule. Let a subclass of stopping
rules s £ truncated at the moment v =  that is,
and all s £ Below we obtain a Bayes truncated rule such that

ii(Q ,s (^ ))=  inf i?(Q ,s).

According to the dynamic programming method (see [15]), we define the rule 
g(^) by constructing the iV +  1 functions

=  min E { +  pf_\(Q , , ) ) / ^ „ _ , } }  ,

J =  1 , 2 , where is the conditional expectation with respect to
the distribution

P (-/^ jv -j)  =  [  Pei-) j  =  0 ,1 , . . . ,  AT,
Je

and

Let
=  min {n : 0 < n < AT, (Q, (Q ,^(«)) | .

The number is the size of the sample corresponding to the Bayes truncated 
stopping rule Since =  n } G for all n >  0, is a stopping rule. 
The sequence =  i^i^\s^\ ■•■) is a Bayes stopping rule, and moreover

» r = » r ’ (Q .{ “ - ' )  =  {J;1, i f j < u i N ) ,
if j  > u{N).

For any AT > 1, ^(Q) is the a priori risk corresponding to Q and
Denote by \ N > 1 , the subclass of stopping rules of for which at least 
one observation is taken. Then

(4.1.1) Piv^ (̂Q) =  min  ̂po(Q), inf R{Q, s) I .'1
Since C  for all AT > 1, we have

('̂ •1-2) inf R ( Q , s ) <  inf R ( Q , s ) .

It follows from (4.1.1) and (4.1.2) that pjf^(Q ) >  p^+Y^(Q) for all N > 1 . Since 
pI^\Q) >  0 for all at > 1, the limit

exists.
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By p(Q) we denote the a priori Bayes risk related to the class ^ o f  all stopping 
rules, that is, p{Q) =  i?(Q.s*)- The risk ;o(Q) satisfies the equation

(4.1.3) p{Q) =  min{/Oo(Q), ^q { K i {v) +  P(Q»/)}}
where Q (•) =  Q{'/v) is the a posteriori distribution of the parameter 6 given
(Q, 7?).

Indeed, if is the class of all stopping rules for which at least one observation 
is taken, then

(4.1.4) p(Q) =  min |po(Q), i?(Q.s)| •

For all 5 e ^ 1, s =  (s i(Q ),S2(Q ,6 ) .« 3(Q ,6 .6 ), . •.), we define the reducedstop­
ping rule s+ =  (s2(Q ,6 ). S3(Q .^ i ,6 ), • • • )• Thus we have for all s € that

(4.1.5) R(Q> s) =  Eq {Kiiv) +  R(Qv> ■
Equality (4.1.5) and the Fatou lemma imply that

inf i?(Q ,s) > E<5 (iiCiir?) -I- inf i2(Q „,s+)|
(4.1.6) 1

=  Eq |A:i(77)-|-^hrf^ii(Q,„s)| =  Eg {Ki{r]) +  p{Q,j)}.

We obtain from (4.1.4) and (4.1.6) that

p(Q) > min{po(Q). ^q { K i (v) +  P(Q»))}} > «) =  (̂Q)>

that is, p(Q) satisfies equation (4.1.3).
Similarly we show that for all IV > 1

(4.1.7) P^i|-'''/̂ (Q ) =  min|po(Q),E(3{-P!^i(»?) +  Pn^^(Qv) } }  •

If Egpf>(Q^ ) < oo, then the Lebesgue dominated convergence theorem implies 
that

p(°°) = Ji^p^+i^^(Q) = min|po(Q), Ji^{iVi(7/) +pj^^(Q,,)}}

=  min {p o (Q ),E g {/i :i(» 7 )+ /~ H Q u )}} .

since the risk p^^\ N >  1 , is monotone. Thus the limit S’̂ so satisfies
equation (4.1.3). Therefore we have proved the following result.

T heorem 4.1.1. If EqK i {t]) < oo and EgPi^^(77,,) < oo for a given a priori 
distribution Q, then

p(Q) =  lim pj^^(Q).
N —*oo

Theorem 4.1.1 implies for all e > 0 that there exists an integer number N{e) 
such that the Bayes truncated stopping rule for all N > N{e) is an e-Bayes 
stopping rule for the nontruncated problem, that is,

0 < p i ,^ ^ (Q )-p (Q )< e .

Below are two results about the existence of a Bayes (optimal) stopping rule.
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T h e o r e m  4.1.2. If p{Q) =  limiv_>oo P̂n \Q) and for all n >  Nq

almost surely  ̂ then =  />(Q) truncated Bayes sequential rule ŝ °̂̂  is
optimal for the nontruncated problem.

T h e o r e m  4.1.3. If for a l l n > l  the a posteriori risk p o (Q ,0  does not depend 
on that is, =  Po(Q>^) almost surely for all n > 1, then the Bayes
sequential stopping rule is the one with a fixed size no of the sample where no is the 
minimal positive integer number n that minimizes /Oo(Q,n) +  EQKni^ “̂̂ )̂-

The proofs of Theorems 4.1.2 and 4.1.3 can be found in [54].
More details on the general theory of Bayes sequential rules are given in [4, 

15, 54].
The evaluation of Bayes stopping rules is a complicated problem, especially in 

the case of composite hypotheses. The following example shows that this problem 
is complicated even in the case of two simple hypotheses.

E x a m p l e  4.1.1. Let ^1,^2» • • • he a, sequence of independent identically dis­
tributed random variables assuming two values 1 and 0 with probabilities 6 and 
1 - 6 ,  respectively, where 0 is an unknown parameter. Let 6 assume only two val­
ues 1/3 and 2/3, that is, 0  =  {1 /3 ,2 /3 }. Let the a priori measure Q be determined 
by the number q =  P{0 =  1/3} =  1 -  P{0 =  2/3}. Thus we deal with two simple 
hypotheses Hi: 6 = 1/3  and N 2:6 =  2/3. Let the loss functions Ai{6) be defined 
by the numbers A i{l /3 )  =  ^ 2(2/ 3) =  0 and Ai{2 /3)  =  A 2{ l / 3) =  20, while the 
cost per observation is determined by the equality =  n. This means that
a single observation costs 1 dollar. Put Pn {q) =  ^  =  0 ,1 ,2 ,... . Now
we evaluate po{q), Piiq), and P2{q)- The definition of po{q) implies that without 
sampling one accepts the hypothesis H 2 if 0 <  ̂ < 1/2, and the hypothesis H\ if 
1/2 < 9 < 1. Moreover

(4.1.8)
f X _  { 20 ,̂  ̂ ^

"̂"^^ “̂ 1 2 0 (1 -^ ) ,  i f l / 2 < g < l .
i i 0 < q <  1/2,

This implies that po{q) = po{  ̂~ q) for 0 < g < 1, Since the problem is symmetric, 
pj{q) = pj(l -  q) for 0 < q < 1 and for all j  =  1 ,2 ,... . Thus we need to 
evaluate pi{q) and p2{q) only for q G [0,1/2].

Let q{x) stand for the a priori probability of the event {6 =  1 /3} given the 
observation rj is equal to x where either a: =  0 or x =  1. Applying the Bayes 
formula we obtain

(4.1.9) 9 +  2 1̂ - 9) ’ 2g +  ( l - g ) '

It follows from (4.1.8) and (4.1.9) that 

po(g(i)) =  209(1)
(4.1.10)

for 0 <  9 <  1/ 2,
/ i f 0 < 9 < l / 3 ,

/^0(9(0)) -  I  20(1 _  g(o)), if 1/3 <  9 <  1/2.
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The unconditional distribution of the observation rj is given by

(4.1.11) p {t} =  1} =  +  ^(1 -  9) =  1 -  P{v =  0}.

It is clear that
Epo(g(i?)) =  Po(9(l))P{»7 =  1} +  Po{q{0))P{v =  0}

(4.1.12) _  f 20q, i f 0 < q <  1/3,
“  I 20/3, if 1/3 <  9 <  1/2.

Since =  1, we derive from (4.1.7), (4.1.8), and (4.1.12) that

r 20o, if 0 < о <  23/60,
(4.1.13) Ш  .  m in te d ). E « ( ,W  +  ! ) }  =  (  ^

First we consider the case N < 1. Relations (4.1.8) and (4.1.13) imply that 
if 0 < g < 23/60 or 37/60 < g < 1, then one should make the final decision 
without sampling, while if 23/60 < g < 37/60, then it is necessary to take the first 
observation and one should make the final decision based on a sample consisting of 
a single observation.

Now let N < 2. To evaluate рг(д) we note that (4.1.9) implies that there are 
three pairs of equivalent inequalities, namely

g(l) < 23/60 and g < 46/83 <==> 
g(0) < 23/60 and g < 23/97 
g(0) > 37/60 and g > 37/83.

Using (4.1.11) and (4.1.13) and taking into account the symmetry of the function 
pi(g) we get

20g,

(4.1.14) E/0i(g(»?)) =   ̂

Thus (4.1.7) yields

(4.1.15)

8 3 g + 2 3  

9 ’

20 
3 »

i f 0 < g < f .

20g,
P2{q) =  m in {p o (g ), Epi((?(r?) +  !) }  =  <{ ^^3^,

i f 0 < g < § ,
i f  32  <  <  3 7

9 7  ^  g 83 ’

23  
3 ’

Relations (4 .1 .8 ), (4 .1 .13 ), and (4 .1 .15) show in the case N < 2  that if 

0 < g <  3 2 /9 7  or 6 5 /9 7  <  g <  1,

then a final decision should be made without sampling, while if 3 7 /8 3  < g < 4 6 /8 3 , 
then it is necessary to take the first observation and a final decision should be made 
based on a sample consisting of a single observation. Finally if

3 2 /9 7  < g < 3 7 /8 3  or 4 6 /8 3  < g < 6 5 /9 7 ,

then it is necessary to take the second observation and a final decision should be 
made based on a sample consisting of two observations.

The graphs of the functions po{q), P i(g ) , and p2{q) are shown in Figure 4.1.1. 
The evaluation of the functions pN{q) becomes a time consuming procedure for
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large iV, since the number of intervals where they change their slopes increases 
with N. If the size of the sample is not bounded in advance, then the optimal 
procedure is described in Theorems 4.1.1-4.1.3 (see also Chapter 4 in [15]).

F ig u r e  4.1.1. Risk functions po( )̂> Pi (q)̂  P2{q)

E x a m p l e  4 .1 .2 . This is a continuation of Example 4.1.1. Let the loss func­
tions Ai{6) be determined by the numbers i 4 i ( l / 3 )  =  >12(2/3) =  0 and

A i ( 2 /3 )  =  >l2( l / 3) =  10.

As in Example 4.1.1 we have pj{q) =  pj{l — q) iorO < q < l  and j  =  0 ,1 ,2 ,... . 
Thus po{q) =  lOq for 0 < g < 1/2 and po{q) =  10(1 -  q) for 1/2 < g < 1. Similarly 
to Example 4.1.1 we get

Epo(g(i?)) =  I

Hence (4.1.7) implies that

(4.1.16)

lOg, if 0 <  g <  1/3, 
10/3, i f l / 3 < g < l / 2 .

r lOg, if 0 < g < 13/30,
 ̂ 1 13/3, if 13/30 < g < 1/2.

Relations (4.1.9) imply that g (l) <  13/30 <=> q < 26/43, g(0) < 13/30 
g < 13/47 and g(0) > 17/30 <s=4> g >  17/43. Thus

i f 0 < g <  jf .lOg,
Epi(g(g))=<{ i f i  < g < i ,

3̂ , y i % < q < \ -

Using (4.1.7) we obtain for iV =  2 that

(4.1.17)
~  1 13/3, if 13/30 < g < 1/2.
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Relations (4.1.16) and (4.1.17) imply that pi(g) =  P2 [<l) for all q G [0,1]. Moreover 
we derive from (4.1.7) that

ps(g) =  mm{po{q), Ep2{q{rj)) +  1} =  m\n{po{q), Epi{q{ri)) +  1} =  p2 {q)

if 0 <  ̂ < 1. We conclude by induction that p n {q) = P i {q) for iV =  2 ,3 , . . . ,  that 
is, the conditions of Theorem 4.1.3 hold.

The above discussion shows that if 13/30 < q < 17/30, then it is necessary 
to take the first observation and a decision should be made based on a sample 
consisting of a single observation, while otherwise a decision can be made without 
any observation.

In the next section we consider the Wald sequential test for distinguishing two 
simple hypotheses in the case of general distributions of observations ^1,^2) • • • •

4.2. W ald sequential tests

M ain definitions and notation. Let  ̂ =  (^1,^2» • • •)  ̂ sequence of in­
dependent identically distributed random variables with a distribution where 6 
is an unknown parameter assuming only two values 0\ and 62- Thus we deal with 
the case © =  { 01, 62} and each of the sets ©i =  {^ i} and ©2 =  {^2} contains 
only a single point. Therefore there are two simple hypotheses about the dis­
tribution of an observation, namely Hi: 6 =  61 and H2’-0  =  62- Let the distri­
bution be absolutely continuous with respect to some cr-finite measure p and 
denote the density by p{x\9). Then the measure P̂ ^̂  determining the distribu­
tion of the sample =  (^1,^2, • • • >in) is absolutely continuous with respect to 
the measure p^ = p x p x ^ - - x p  and its density is Pn{x^^ ]̂0) =  Ylk=iPi^k\0), 
xin) _  ( x̂i,X2 i . . .  ,Xn). Let Zn{x ‘̂̂ )̂ be the likelihood ratio

(4.2.1) / (n)x ^  Pn{x '̂^ ]̂02) _  A  p{Xk\02)
Pn{x '̂^̂ ;0i) l } [P{^k]0i)

where x̂ '̂  ̂ =  (a^i,X2, • • •,Xn) (we agree that 0/0 =  0). Put

(4.2.2) An(xW ) =  lnzn(x(-)). An =  An{&^), Zn =  Zn{&^).

Therefore

P{^k]02)(4.2.3) An — ^  ̂A/c, Afc — A( f̂c) — In
k=i p{^k]0i)'

k =  1 ,2 ,... ,n.

Throughout this section we consider sequential tests whose stopping times be­
long to the class (in other words, the tests for which it is necessary to take at 
least one observation) and which depend on two constants a and b such that 0 < a 
and b < 00. Such a test is called a Wald sequential test for distinguishing two 
simple hypotheses Hi and H2 if its stopping rule says that a statistician continues 
the sampling until — 6 < < a, that is, the Wald stopping time u is

(4.2.4) u =  inf{n > 0: An ^ {-b, a)}.

If 1/ = n, then the decision is as follows: the hypothesis H2 is accepted if An > a, 
while the alternative Hi is accepted if An < —b. The test described above is also 
called the Wald sequential test with limit points (—6, a).
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The above test is often called a Wald sequential likelihood ratio test or sequential 
likelihood ratio test or Wald test For a Wald test we denote by a and /? the type I 
and type II error probabilities, respectively, that is,

(4.2.5) a =  > a}, ß =  < - 6 }

where Pe<{'} are the probabilities of events if the distribution of ^1,^2. • • • is de­
termined by the measure Pqi • The pair of numbers (a, ¡3) is called the power of a 
test. We say that a Wald sequential test is terminated with probability one during 
a finite time if Pei{v < 00} =  1 for all 2 =  1,2.

Inequalities for error probabilities o f  a W ald test. The following two 
results establish relationships between the power (a, (3) of a Wald test and its limit 
points (—6, a).

Lemma 4.2.1. If a Wald sequential test of power (a,/3) and with limit points 
(-6 , a) is terminated with probability one during a finite time, then

(4.2.6) A < 1 - / 3 B > ß
a 1 — a

where O < A < I < B < 0 0  and InB = —b, \nA = a. 

P r o o f . C on sider th e  sets

(4.2.7)

(4.2.8)

W ,n =  ß  < Zk{x̂ '"̂ ) <  A for all A: =  1,2, . . .  ,n — 1,

^n(x(")) > a ] ,

Vn =  < A for all Ä =  1,2, . . .  ,n -  1,

< b }

where n =  1,2, . . . ,  =  (x i,X 2, . . .  ,x „ ) , and is the likelihood rar
tio (4.2.1). Using (4.2.2)-(4.2.4) and (4.2.7)-(4.2.8) we get

oo oo

(4.2.9) { A , > a } =  (J  W n }, {A . <  6} =  U  e .
n=l n—1

Relations (4.2.5) and (4.2.9) imply that

“ = £ /  ps?’ w = i ; /  p g ’ w » -^lJWn^n(X) ^ A ’

that is, the first inequality in (4.2.6) is proved. Here we used for i =  1 and i =  2 
that

(4.2.10)

OO p  OO p

p‘H\dx) +  - £  p '7>(it)

oo

=  =  n} =  PeAi' <  oo} =  1
n—1
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oo
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« = E X  = E  X  fX) ^ ^  X "

that is, the second inequality in (4.2.6) is also proved.

I
B'

□

Lemma 4.2.2. Let A =  (1 — /3)/a, B - /? /( !  — a) and —b =  lnJ5, a =  InA. If 
a Wald sequential test with limit points (—6, a) is terminated with probability one 
during a finite time and its power is {a',0 '), then

(4.2.11)

(4.2.12)

a' < a
P '<1 - 0 ' ^ -  1 - a ’

a' +  0 ' < a + 0 .

Proof. According to Lemma 4.2.1, 

(4.2.13) A =  B

This implies

0 ^ 0 '
a oc 1 — a 1 — a '

that is, inequalities (4.2.11) hold. Moreover (4.2.13) yields

a'(l -  /?) < a{l -  n  /?'(! -c ^ )<  /?(1 -  ce').

Combining these inequalities we obtain

a' — a'P +  P' — aP' < a — aP' +  P — ol P̂  

whence inequality (4.2.12) follows. □

Remark 4.2.1. Lemma 4.2.2 for small a and P implies that the power of a 
Wald test with limit points (ln(/?/(l -  a )),ln ((l -  P)/ot)) is {ot\P') where a ' is 
close to a, /?' is close to P̂  and always a ' +  yS' < a +  /3, that is, P' < p \i a' > a 
and a ' < a  if /3' > p.

Properties o f  the stopping tim e o f  a W ald sequential test. The follow­
ing result contains sufficient conditions for the finiteness of the Wald stopping time 
1/ and its moment generating function.

Lemma 4.2.3. Let u be the stopping time of a Wald sequential test with limit 
points (-6 , a). Let P {̂|Ai| > 0} > 0 where either 9 =  6\ orO =  02, o>nd X\ =  Ai(^i). 
Then

a) Pe{u < oo} =  1;
b) Eoe -̂ < oo for all t < to where to is a positive number and Eq is the 

expectation with respect to the distribution Pq.



4.2. WALD SEQUENTIAL TESTS 303

P r o o f . Let m and k be fixed integer numbers such that m >  k and r =  [m/k] 
where [c] is the integer part of a number c. Consider the random variables

T\ — ^ik  - (̂i—l)fc)  ̂ 2, 3, . . . , r.

If 1/ > m, then Ai E (—6, a) for all z =  1,2, In particular, this inclusion
holds for z =  fc, 2/c,. . . ,  rk. Thus

|Ti| < 6 V a =  c, z =  1,2, . . . ,  r.

Since the random variables Ti, T2, . . . ,  are independent and identically distribu­
ted, we have

(4.2.14) Pe{iy > m }  < Pe{\Ti\ < c for all z =  1,2, . . .  , r }  =  (P^ilTil < c})^.

Note that P0{|Ai| > 0} > 0, whence it follows that there exists a positive number h 
such that either P^{Ai > h} > 0 or P^{Ai < -h }  > 0 .  If fc is greater than c/h, 
then

P0{|Ti|>c} =  P4 |Ai +  . . .  +  Afe|>c}

> P̂  |Ai > ^ for all z =  1, 2, . . . ,  fc|

+  P̂  |Ai < for all z =  1, 2, . . . ,fc|

> {Pe{Xi > h})^ +  (P^Ai < -h})^ > 0.

This yields P^^Til < c} < 1. In view of (4.2.14) we therefore get

lim Peiu > m} =  P^{z/ =  oo} =  0,
m—*oo

that is, Pe{^ < oo} =  1 and statement a) is proved.
Relation (4.2.14) for t > 0 implies that

oo oo kr

= n} = J2 E
r=l  n = (r —l)fc+ ln = l

oo
(4.2.15)

r = l
< 5 3 e*''’'Pe{(r - l ) k < u <  kr} < 5 3 e‘ ''’'Pe{i^ > {r -  l)k}

r=l
OO

s E 'etfcry-i
r = l

where 7 =  P^dTil < c} and k is such that 7 < 1. It follows from (4.2.15) that 
< 00 for 76^̂  < 1, thus for t G [0,io) where to = k~  ̂ln7 “ ^

If t < 0, then the equality P^jz/ > 0} =  1 implies that =  1 and
statement b) is also proved. □

R e m a r k  4.2.2. Lemma 4.2.3 holds in the case where 6 is different from both 61 
and 02 but if the random variables ^1)^2, • • • are independent and identically dis­
tributed with respect to the measure P .̂ If the conditions of Lemma 4.2.3 are 
satisfied for both 6 = 0i and 6 = $2 ̂ then statement a) implies that the Wald 
sequential test with limit points (—by a) is terminated during a finite time with 
probability one.
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Remark 4 .2 .3 . The assumption that a Wald sequential test is terminated 
during a finite time with probability one ^  0} > 0, 2 =  1, 2) is not too
restrictive. Moreover this assumption is quite natural, since otherwise P0̂ {Ai ^  
0} =  0 or P^^{Ai =  0} =  1 for i =  1,2 and the measures P̂  ̂ and Pê  coincide. The 
hypotheses Hi and H2 are indistinguishable in this case (see Section 1.1), that is, 
the problem of distinguishing the hypotheses Hi and H2 makes no sense.

In what follows we need the following auxiliary result.

Lemma 4 .2 .4 . Let v be the stopping time of a Wald sequential test with limit 
points (—6, a). If Eeu < 00 and Ê IAil < 00 for 6 =  0i or 0 =  02y then

(4.2.16) EeAt, =  EeiyEeXi.

Proof. Consider random variables rji =  I{i/ > i — 1} where ¿ =  1,2, . . .  . Here 
I  (A) is the indicator of an event A, that is, =  1 if a decision is not made by 
observations Ci, ̂ 2» • • •»6-i* The random variable rji is a function of ^1, • • • >ii-i
and does not depend on thus it does not depend on Af =  A( î)- It is clear that

Ai/ =  \i7]i +  A2772 +  . . . ,

whence

^  XiTji =  ̂  EeXiTji =  ^  E^AiE^r^i
i= l  i= l  i= l

00 00
=  EeXi EeVi =  E^Ai Y  >  * } =  E<,AiE<,i/.

¿=1 i=l

We interchanged the summation and expectation in the preceding relation, since
00 00

Y  ê\XiVi\ =  EelAil 5 ;  Pe{u >i }  =  Ee\Xi\Eeu < oo.
¿=1 i=l

We also used the obvious equality

Eeî  =  ^  > *}•

Thus equality (4.2.16) is proved.
2=1

□

Equality (4.2.16) is called the Wald identity. It also holds in the case where 
the assumptions of Lemma 4.2.4 are satisfied for some 0 different from both 0i and 
02 (see Remark 4.2.2).

The expectation  o f  the stopping tim e o f  a W ald sequential test. The
following result contains a lower bound of expectations Eq.u for t =  1,2.

Lemma 4.2.5. Let v be the stopping time of a Wald sequential test of power 
{pL,p) and with limit points {—bya). If P^^{Ai ^  0} > 0 and E^JAil < 00 for 
z =  1, 2, then

(4.2.17)
(4.2.18)

E0,i^>-H{a\l-/3)/Ee,Xu
Ee,u>H{p\l-a)/E0,Xi
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where

(4.2.19) H{x\y) — +  (1 “ 3;) In^— 0 < a;, y < 1 ,

is a relative entropy of the distribution (x, 1 — x) with respect to the distribution
i v A - y ) -

P r o o f . By the assumptions of the lemma Pê CAi ^  0) > 0 for i =  1,2. Thus 
< 00 for i =  1,2 according to statement b) of Lemma 4.2.3, whence

(4.2.20) =  Ee,i/Ee,Ai, i =  l,2 .

in view of Lemma 4.2.4, Now we conclude that the Wald test is terminated during 
a finite time with probability one by Lemma 4.2.3 and Remark 4.2.2, since

^  0} >  0> i =  l,2 .

This together with (4.2.9) eind (4.2.10) implies

(4.2.21) PeJA ./>  o } +  Pffi{A,, < - 6 }  =  Pe<{i/< oo} =  1, ¿ =  1,2.

Taking into account (4.2.21) for 4 =  1 we derive from (4.2.5) that

E e,K  =  P e . { A ^  <  -b } E e ,{ K / K  < -b}
(4.2.22) +  P i, {A ,, >  a }E i ,  {A , . /A , ,  >  a }

=  (1 -  a)Eij{A ,,/A ,, < - 6 }  +  Q;Eii{A„/A,, > o}.

The Jensen inequality and definition (4.2.8) of the set Vn imply that

< -b} < I n E i ,  {e^ ''/K  < ~b}

(4.2.23)

Similarly we get

1 °° r

n=l

n = l^ ^ rt 1 — a

(4.2.24)
E i, {A . /A u  >  a }  <  In E i, {e^-'/Au  >  « }  =  In ^  ^ (dx)

=  l n - V  f  Pe" (̂daj) In 1 - / 3
a

It follows from equality (4.2.22) and inequalities (4.2.23) and (4.2.24) that

(4.2.25) E e ,z /< - i i (a | l - /0 )

where H{x\y) is the function defined by (4.2.19).
Since Pii(Ai ^  0) > 0, we have Ei,Ai <  0. Indeed, applying the elementary 

inequality Inx <  i  — 1, x > 0, we get

(4.2.26)
=  jp {x - ,62) iJ , {dx ) -Jp{x;6i)ß{dx) =  0
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in view of

P.,(A. = 0 ) = P.. = O} = P . = l } < 1.

The lower bound (4.2.17) for Ee û follows from (4.2.20) for z =  1 and inequality
(4.2.25) by considering the sign of E ĵAi.

Similarly to inequality (4.2.26) we obtain from P^aiAi ^  0} > 0 that Ee^Xi >  0. 
Further we use the Jensen inequality and definition (4.2.8) of the set Vn and obtain

<  - 6}  =  -E e, { - A , /A „  < -b }  >  -InE o, {e-'^ -'/A , <  - 6}

(4.2.27)

~ y 2  i  =  “ 111  ̂ -v— =  In —^— .

Following the same reasoning we get

(4.2.28) Ee {̂Ajy/Aj, > a} > In l - i 0
a

Now (4.2.22), (4.2.27), and (4.2.28) imply

(4.2.29) Ee^A^>H{P\l-a).

Since E^jAi is positive, equality (4.2.20) for t =  2 and inequality (4.2.29) imply the 
lower bound (4.2.18). □

R e m a r k  4.2.4. The relative entropy of a measure P with respect to a mea­
sure P is defined in Section 2.3 and is denoted there by /(P|P) for arbitrary prob­
ability measures P and P. If P is a measure concentrated at two points with 
probabilities x and 1 — a;, while P is a measure concentrated at the same points 
with probabilities y and 1 — y, then Definition 2.3.1 and equality (4.2.19) imply 
that /(P|P) =  -ff(a;|y).

R e m a r k  4.2.5. If the assumptions of Lemma 4.2.5 are satisfied, then consid­
ering the sign of E .̂Ai, i =  1, 2, one can rewrite inequalities (4.2.17) and (4.2.18) 
in the form

(4.2.30)
(4.2.31)

E«,i /> Ji(a|l-/?)|E<,.Ai|-\

that is, inequality (4.2.31) follows from (4.2.30) if we interchange the hypotheses 
Hi:0 = 01 and H2 '- 0 =  02- The latter means that 02 substitutes 0i, /? substitutes a, 
and a substitutes /?. In a similar manner, inequality (4.2.31) follows from (4.2.30).

R e m a r k  4.2.6. One can evaluate approximate values of the expectations Ê .i/, 
i =  1,2, as follows. Let E^JAi| < oo and P0̂ {Ai 7̂  0} > 0 for t =  1,2. Then 
EeM < 0 0  for i =  1,2 by Lemma 4.2.3 and

(4.2.32) E^^A|/ Eq̂ u Eq̂ \\^ % 1 )2 ,



by Lemma 4.2.4. On the other hand

Ee,A^ =  > a}Pe,{A^ > a }  +  Ee,{A^/A^ <  -b}Pe,{A^ <  - 6}
aa — 6(1 — a)

where the approximation appears, since we neglect the exits of Aj, from the interval 
{—by a). This approximation and equality (4.2.32) yield

4.2. WALD SEQUENTIAL TESTS 307

(4.2.33)

Similarly we obtain

(4.2.34)

If

«  {aa -  6(1 -  a))/Ee^\i.

E e ,u^ {a { l -p ) -bP )/Ee ,X i .

1 - p  1 - aa =  In-------  and 6 =  In •
a  P ’

then approximations (4.2.33) and (4.2.34) for Ê ẑ/ and Eê jy coincide with the lower 
bounds in (4.2.17) and (4.2.18), respectively, in the case of a Wald sequential test 
with limit points (—6, a).

E x a m p l e  4.2.1. Let ^1,^2, • • • be independent identically distributed random 
variables whose distribution under the hypothesis Hi is Af {Oiy cr̂ ) normal, i =  1,2, 
where 61 < 62 and the variance is known. Then

 ̂ 62 — 61
2a2 ( 2 ^ ; 6 - n ( 0 2  +  0i ) ) -

^ i= l  ^

It is clear that P^ (̂Ai =  0) =  0 for i =  1,2. Let z/ be the stopping time of a Wald 
sequential test of power (a ,^ ) with limit points (—6, a). Since

=  and E,,Ai =

approximations (4.2.33) and (4.2.34) become of the form

2(6(1 — a) — aa)cг^
{0 2 - e i Y  ’

2 (g (l -  P) -  bP)a‘̂
{62 — 0\Y

Consider a test with a fixed nonrandom size n of the sample and whose power 
is (a,/?). For example, the Neyman-Pearson test of level a satisfies these 
conditions. Then

a = PeJAn > Ca} = Pei | ¿ ( í i  -  *̂1) > zi-a<^Vnj

(4 .2 .3 5 )

(4 .2 .3 6 ) Esji^
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where Zp is a jT-quantile of the ^ (0 ,1 )  law, that is, ^{zp) =  p. The test has 
the type II error probability ¡3 if

/3 =  Pff2 ~ 2:i_a<^\/n|

= P«2 I ¿te - ̂2) < Zi-a(rVn -  n(02 - 0l) >
.i=l

or, equivalently, if 

Since zi-a  = —Zay we have

(4.2.37)

Zi-a(T -  >/ñ(02 -  0l) =

n =
{6 2 - 01?  *

Relations (4.2.35)-(4.2.37) provide the following approximations:

Eê u ^  2(6(1 -  a) -  aa) Eĝ v ^  2(g(l -  /?) -  6^)

(4.2.38)

n {Za +  Z(S?

If a =  /? =  0.05, then z  ̂ =  zp

n

' n {Za3- Zp?

 ̂ 1.6449 and a =  2.9444, whence

0.4897, i =  l,2.

It is seen from equalities (4.2.38) that the above Wald sequential test of power 
(0.05; 0.05) requires two times less observations than the Neyman-Pearson test of 
the same power (0.05; 0.05) and with a nonrandom size of the sample.

The fundamental identity o f  sequential analysis. First we prove two 
auxiliary results.

L e m m a  4.2.6. Let ^ be a random variable defined on the main probability space 
( i i ,^ ,  P) and such that:

a) P{C > 0} > 0 and P{C < 0} > 0;
b ) (p{t) =  exists for all t G ( — 00, 00);
c) EC^O.

Then there is a unique number r  ^  0 such that (p{r) =  1, and moreover r < 0 if 
EC > 0 and r  >  0 z/ EC < 0.

P r o o f . The condition P{C >  0} >  0 implies that there is a constant c >  0 
such that P{C > c} > 0. Thus for all t > 0

<p{t) =  Ee*« >  E/(C > c)e*  ̂ >  e‘^P{C > c},

whence (p{t) —» cxd as i —> oo. Similarly, the condition P{C <  0} >  0 implies that 
(p{t) oo as t —oo. Moreover, <p{0) =  1 and >p'{0) =  ^  0. If E  ̂ > 0, then
¥>'(0) > 0 and thus there is r  <  0 such that y?(r) =  1. Similarly, if EC < 0, then 
y?'(0) < 0 and thus there is r  >  1 such that y?(r) =  1. It is easy to show that 
y?"(t) =  EĈ e*̂  > 0, hence the function (p{t) is strictly convex. The latter property 
means, in particular, that (p has a unique minimum. Therefore the solution r  is 
unique. □
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L e m m a  4 . 2 . 7 .  Let v be the stopping time of a Wald sequential test with limit 
points {—by a). Assume that P^{i/ < oo} =  1 where either 6 =  6i or 6 =  62. Then

(4.2.39) (¥>(<)) '' =  P{v <oo/Ht}

for t such that (p{i) =  <  00 where P{>/Ht} is the conditional probability
given Ht where the hypothesis Ht is that the random variables ^1,^2» • • • inde­
pendent, identically distributed, and whose density is

(4.2.40)
g t A ( x )

p{xlHt) = - ^ p e { x ) .

P r o o f . Taking into account Peii' < 00} =  1 we conclude that

00 p n

JVnUWr. >■  ̂ t=i
00 p Tt

=  E  /  =  ?{u  < <x,/Ht}
JVnUWn ¿=1

where Vn and Wn are the sets defined by (4.2.7) and (4.2.8), respectively, while 
p{x/Ht) is the density of the distribution given by (4.2.40). Thus equality (4.2.39) 
is proved. □

L e m m a  4 . 2 . 8 .  Let u be the stopping time of a Wald sequential test with limit 
points (—6, a). Assume that P^{Ai ^  0} > 0 where either 0 =  61 or 9 =  02* Then

(4.2.41) Eee^ '̂'{ip{t))-  ̂=  I

for t such that ip{t) =  < 00.

P r o o f . The condition P^{Ai 7̂  0} > 0 implies that Pe{i  ̂ < 00} =  1 by 
Lemma 4.2.3 and that P^{A(^i) 7̂  0/Ht} > 0, since

Pe{A(6 ) ^  0/Ht} =  4 r  /  Pe{dx) ^  0.

Applying Lemma 4.2.3 once more we get

P^{i/ < oo/Ht} =  1.

Now equality (4.2.41) follows from (4.2.39). □

Equality (4.2.41) is called the fundamental identity of sequential analysis.

R e m a r k  4.2.7. Equalities (4.2.39) and (4.2.41) hold for t such that ip{t) < oo. 
If P^lAi 7̂  0} > 0, then it follows from Lemma 4.2.3 that there is to > 0 such that 
(p{t) < oo for all t < to.
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R e m a r k  4.2.8. Lemmas 4.2.7 and 4.2.8 hold for measures if 0 is different 
from both 6\ and 02-

The fundamental identity of sequential analysis can be applied to the problem 
of distinguishing composite hypotheses.

Let • • • be independent identically distributed random variables with a
distribution depending on an unknown parameter 0 G 0 . Assume that P̂  is 
absolutely continuous with respect to some a-finite measure /i and the density is 
p{x\ 6). Let 0  =  0 1 U ©2 and ©i fl 02 =  0 . Consider the problem of distinguishing 
the hypotheses Hi\9 and f f 2  ̂  ̂^ ©2 by observations i i , 2̂, • • • with the help 
of a Wald sequential test that distinguishes two simple hypotheses H[\0 =  6\ and 

=  02 where 0\ G ©i and 02 € ©2 are some fixed points. Let the random 
variable C =  1̂ satisfy the assumptions of Lemma 4.2.6 concerning the measure P̂  
and let 0 G 0  be an arbitrary fixed point. According to Lemma 4.2.6, there is a 
number r{0) 0 such that ^pe{r{0)) =  1 where (pe{t) =  Further

(4.2.42)

by Lemma 4.2.8 and Remark 4.2.8.
The function p(0) =  Pe{Ku < —6} is the probability to accept the hypothesis 

H\ if the parameter is 0, that is, p{0) is the power function of the Wald test for 
distinguishing the hypotheses Hi and H2- The function P{0) is also called the 
operating characteristic of the test in sequential analysis.

Put

(4.2.43) e;  =  < -b } ,  EJ* =  E(,{e^W^VA^ > a}.

It follows from equalities (4.2.42), (4.2.43) and (4.2.21) for 0i =  0 that

(4.2.44) 1 =  =  p{e)E*g +  (1 -  P{d))E;*.

Using the approximations
o-br(9) par(6)EJ « e ' ', ng

we derive from (4.2.44) an approximation for the operating characteristic:

1
ß(0)

par(0)
0 G 0 .e-6r(0) _  gar( )̂ ’

Similarly one can obtain approximations for E î/, 0 G 0 .
More details on sequential Wald tests and their properties as well as on the 

other sequential tests can be found in [15, 51, 54]. The sequential analysis is 
described in [13, 46].

4.3. The optim ality o f  a sequential W ald test

The main theorem . As in the preceding section we consider the problem of 
distinguishing two simple hypotheses H i:0  =  0i and H2i0 =  02 observations 
Cl j ̂ 2) • • • where Ci> C2> • • • are independent identically distributed random variables 
whose distribution P̂  depends on an unknown parameter 0. Moreover we assume 
that their distribution possesses the density p{x; 0) with respect to a cr-finite mea­
sure p. Throughout this section we also assume that P^^iAi ^  0} > 0 for i =  1,2.

Generally speaking, we consider a sequential test for distinguishing the hy­
potheses Hi and i?2 by observations =  (Ci)C2> • • • >Ci/) where z/ is a stopping
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time. A stopping time can be either random or deterministic. Sequential tests 
are also called sequential decision procedures. Decision functions d̂  =  
are defined as follows: if i/ =  n, then assumes only two values d\ and
¿2- If dnix̂ "̂ )̂ =  di, then the hypothesis Hi is accepted, while H2 is accepted if 

=  d2 . We define the type I and type II error probabilities for a sequential 
test with a decision function by

(4.3.1) 

Note that

Oii{dif) — P {dy — d2}, 0̂ 2 (di/) — P 02 — di}.

(4.3.2)
(4.3.3)

Qi =  ai(d*) =  P0i{d* =  d2} =  Pöi{A^ > a},
a2 =  a2(d^) =  P0,{d: =  d i} =  P0,{A^ < -6 }

for a Wald test of power (ai, a 2) with limit points (—6, a) and decision function d*.
The following result asserts that a sequential Wald test is optimal in the sense 

that and are minimal for it.

T heorem 4.3.1. The sequential Wald test of power (ai ,a2) minimizes both 
expectations Eq̂ i  ̂ and Eq̂ i/ in the set of all tests {including nonsequential tests) 
such that Eê  v and Eq̂ ly are finite and

(4.3.4) Poi{di, = d2} < aiy P$2{diy =  d i} <  a2.

To prove Theorem 4.3.1 we consider an auxiliary Bayes problem and use it to 
show that the Wald test is optimal.

A n auxiliary problem . Consider the following sequential Bayes problem for 
distinguishing the hypotheses Hi: 6 =  61 and H2:0  =  02- Let Wi > 0 he the loss 
caused by a wrong decision given the hypothesis Hi is true and let the loss caused 
by a correct decision be zero. Assume that the cost of every observation is c > 0. 
The risk of the sequential test S when making a decision given the hypothesis Hi 
is true equals

aiWi +  cEe-u, z =  1,2,
where u is the stopping time of the sequential test S and ai and «2 are the type I 
and type II error probabilities, respectively. The risk of a test includes the mean loss 
caused by making a decision and the mean cost per observation. Let q =  P{6 =  Oi} 
and l — q = P{9 =  ^2} be a priori probabilities of the hypotheses Hi and H2 . Then 
the (unconditional) risk of the test S is

(4.3.5) r(qyS) =  q(o:iWi + cE^.i/) + (1 -  q){oi2W2 + cÊ î/).

Definition 4.3.1. A sequential test <5* is called q-Bayes if r{qyS*) < r{q,5) 
for all tests S where q G [0,1] is given and r{q, S) is the risk of a test 5 defined 
by (4.3.5).

Definition 4.3.2. A sequential test S* is called Bayes if r{q^S*) < r{q,S) for 
all tests 5 and all q G [0,1].

The g-Bayes test for the above auxiliary problem is described in the following 
result.
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Lemma 4.3.1. Let q' < q" be solutions of the equations

(4.3.6) r{q\5,)=p{q% r{q'\52) =  p{q").

respectively {provided the solutions exist) ̂ where

(4.3.7) p{q )=\nir {q ,5 ) ,
I

is the class of tests for which it is necessary to take at least one observation  ̂
and Si is the test rejecting the hypothesis Hi without sampling. Put

(4.3.8) q = q  = W2
Wi +  W2

for the case where equations (4.3.6) have no solutions. J/ 0 < g' < g" < 1, then 
for all q G {q\q' )̂ the Wald sequential test with limit points

is q-Bayes.

P r o o f . Step I. First we find q for which the better decision is the one made 
without sampling. We get from (4.3.5) that

r{q, ¿i) =  qwi, r{q, S2) =  (1 -  q)w2-

Further, (4.3.5) and (4.3.7) for all A € (0,1) and all ^1,92 G [0,1] imply that

p{Xqi +  (1 -  X)q2) =  inf [Ar(gi, (5) +  (1 -  X)r{q2 ,5)] > Xp{q{) +  (1 -  X)p{q2),

that is, p{q) is a convex function. Since p{q) > 0, the function p{q) is continuous 
in the interval (0,1).

Figure 4.3.1. Graphs of the functions p(g), r(g,(5i), and r(g, ¿2)
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If
The graphs of the functions p(g), r(g, ¿i), and r{q, S2) are shown in Figure 4.3.1.

(4.3.10) < W1W2 
Wi +W2

= r W2
Wi +  W2 a ) = . (

W2
Wi +  W2 ,5:

then solutions q' and q” of equations (4.3.6) exist. Otherwise we accept conven­
tion (4.3.8). Assume that relation (4.3.10) holds. Then 0 < g' < g" < 1 and the 
test ¿1 minimizes r{q^5) if and only if q < q\ while ¿2 minimizes r(g, ¿) if and 
only if > g". This implies that the unique optimal decision on the first step is 
as follows: if g < g', then the hypothesis Hi is rejected and the hypothesis H2 is 
accepted without sampling; if g > g " , then the hypothesis H2 is rejected and the 
hypothesis H\ is accepted without sampling; if q' < q <  q", then it is necessary to 
take the first observation ^1.

Step II. We use induction to complete the proof. Let q' < q < q" and n 
observations 1̂ =  2̂ =  2:2, . • • , be given. Then the procedure is the
same as that described in Step I above. The loss nc caused by making n observations 
does not change the problem, since further observations cannot reimburse this loss. 
If the probability that the hypothesis Hi is true does not exceed g ' or is not less 
than g " , then we terminate the sampling; otherwise it is necessary to take one 
more observation ^n+i- According to the Bayes formula the probability that the 
hypothesis Hi is true given î =  x i ,̂ 2  =  X2y . . .  , equals

qp„{x^”’'>-,0i)
gp„(xW 0i) +  (1 -

where =  (xi,X2 ,- ■ ■ ,Xn) and is the density of the vector

with respect to the measure p” . Thus we keep sampling if 9' < < q", that
is, if

_  O2)e - '’ < = < e“
p „(x (");0 i)

where b and o are the constants defined by (4.3.9). If < e“ **, then the
hypothesis Hi is accepted, while if > e“ , then the hypothesis H2 is ac-
cepted. Thus we proved for q' < q <  q" that the g-Bayes test coincides with the 
Wald sequential test with limit points (4.3.9). □

R e m a r k  4.3.1. In Step I of the proof of Lemma 4.3.1 we determined the g- 
Bayes procedure (now we denote it by ¿*) as follows: 5* =  ¿i if g <  g', ¿* =  ¿2 if 
g > g", and 6* requires the first observation if g' <  g < g". The test Si minimizes 
risk (4.3.5) if g =  g'. However 5i is not a unique optimal test, since there exists S e  
5̂ 1 such that r(g', S) =  p(q'). If g =  g' and it is necessary to take an observation ^1, 
then we showed in Step II of the proof of Lemma 4.3.1 that there is a test in Ĵ i 
that minimizes the risk. This means that it makes no difference how one constructs 
the test in the case of g =  g'. The same is true for the case of g =  g". Moreover this 
also is true for the next steps. This therefore proves that if q ' < q <  g", then the 
test coinciding with the Wald sequential test with limit points (4.3.9) is g-Bayes.
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A relationship between the auxiliary and main problems is established in the 
following result.

Lemma 4.3.2. For all 0 < Qq < Qq < l  there are numbers w € (0,1) and c >  0 
such that the Bayes solution of the auxiliary problem with wi =  1 — ŵ  W2 =  and 
with a priori probability q G {Qo^Qq) is  the Wald sequential test with limit points 
{—boyao) such that

-bo =  In , ao =  In .
\^-Q Qo J \^-Q Qo J

P r o o f . Step I. Let q'{wy c) and q''(wy c) be solutions of equations (4.3.6) where 
r(g, S) is defined by (4.3.5) for u;i =  1 — u; and W2 =  w. Thus we need to find w 
and c such that q\w,c) =  q'o and qo(Wy c) =  q̂ . Given a fixed w let

q'{c) =  Q'i'u’ y c), g"(c) =  q"{w, c).

Let Co =  co(u;) be the minimal number c such that q'{c) =  ^''(c). Then g'(c) and 
g"(c) for 0 < c < Co are defined from the equations

(1 -  w)q' =  p(q', c ) , ry(l -  q") =  p{q", c)

where p{qyc) stands for p{q) defined in (4.3.7).
Given a fixed q the function p{q, c) of the argument c is such that
1) p(g, c) is continuous with respect to c;
2) p(g, c) increases with respect to c, since for any S e the risk increases 

with respect to c and the minimal risk p(g, c) is attained for the test S £
3) p{q, c) —> 0 as c 0.

The latter property holds, since the type I and type II error probabilities for samples 
with fixed size n can be arbitrarily small if n is sufficiently large.

The above properties of the function p imply that for 0 < c < co the func­
tion q'{c) (respectively, q '̂{c)) is continuous, increasing (respectively, decreasing), 
and q'{c) —> 0 (respectively, g"(c) 1) as c —> 0. On the other hand,

q” {c) — q\c) -^ 0  as c ^  Co,

so that both functions q\c) and ^"(c) approach the solution g'(c) =  q'\c) = w oi 
the equation q {̂l — w) =  {l — q')w. The above properties also imply that for fixed w 
the function

_  g'(g) 1 -  g"(c)
1 - q ' i c ) '  q"{c)

is continuous, increasing, and varying from 0 to 1 as c is varying from 0 to

Co =  co(u;).

Step II. Put

q'{w,c) l - q " { w , c )
1 — q '{w , c ) q " {w , c) 

We prove that there are w  and c such that 

Qo l - 9 o

7(tu,c) = gp(w,c)
i~Qoiw,cy

\ {w , c ) =
9o 9o

=  -̂ 0.
a

7K c )  = 7-̂ -77 = 70- 
HO
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We proved in Step I that for all fixed w there exists a unique c =  c{w) such 
that \{w^c) =  Aq. In Step III below we prove that the function ^{w) = ^{w^c{w)) 
is a one-to-one correspondence between w e (0 ,1 )  and 7 G ( 0 ,00). Therefore there 
exists a unique number w G (0 ,1 )  such that 7 (г¿;) =  70. This will complete the 
proof of the lemma.

Step III. According to Lemma 4.3.1 for the auxiliary problem with wi =  1 — w 
and W2 =  the cost per observation c =  c{w), and the a priori probability 
q =  q̂ {Wy c{w)), there exists a sequential g-Bayes test S' which is a Wald sequential 
test with limit points (—6', 0) where

\ l -q ' {w ,
{w)) 1 — q"{w^c{w))
c{w)) q"(w^c(w))

= \nX{WyC{w)) =  InAo-

Further let S" be the Wald sequential test for the auxiliary problem with constants 
Wi =  1 — W2 = Wy c = c(w)y and q =  q"{Wy c{w)) that is a Wald sequential test 
with limit points (0, a") where

// ^ /  q''{w,c{w)) ^ , 1
\1 -  q'{w,c{w)) )  Aq ’

Then the error probabilities and a '2 and the expectations and of the 
test 5' as well as error probabilities a'/ and a '2 and expectations and of 
the test 5" depend on w and c through Aq but not through 7 . Thus they are fixed 
numbers for a fixed Aq. The Bayes risks for q' =  q'{wyc{w)) and q" =  q"{wyc{w)) 
are equal to

p{< ^ )=r {q ' ,n  p={<^')r{q\5"),
respectively. Relations (4.3.6) imply that

Tiq!, ¿i) = r{q', 5'), r(g", ¿2) = r{q", 5").

The latter equalities can be rewritten as

g'(l -w )  =  q'[a[{l - w )  +  c E g y \  + (1 -  q')[a'2W +  cEg^u'],
(1 -  (^')w = q " [o i l { \ -  w) + cEgji/"] + (1 -  q")[Q.2W + cEg^v"].

Using

=  Ao7, 7,='^\ — q'  ̂ — q
in the latter equalities and excluding c we obtain

{Ao7(1 -  a'l) -  ii'[Ao7(l -  « i )  +  oi2 ]] { ' )^gy  +
= { - 7Q!i + w[(l -  a'i) + 7a"]}(AO7E01I/' + E g y ) .

This equation is linear with respect to Wy thus it has a solution w G (0,1) for all 
7 > 0. Collecting all the terms on one side of this equality we obtain a polynomial 
of the second degree with respect to 7 such that the coefficient of 7  ̂ and constant 
term have different signs if ti; G (0,1). Thus there exists a unique positive solution 7 
which is the desired one-to-one correspondence between 7 and w. □
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R emark 4.3.2. Property 3) of the function p(g, c) mentioned in Step I of the 
proof of Lemma 4.3.2 follows from the following reasoning. By assumption

P ^ . { A i ^ 0 } > 0

for i =  1 and i =  2. Then Ê ^Ai < 0 and Eq̂ Xi > 0 (see (4.2.26)). If Ê ^Ai > —oo, 
then the Khinchine law of large numbers implies that n~^An Ê ^Ai as n —̂ oo 
in probability Pqi • Further if Ê  ̂Ai =  —oo, then one can prove that n~^Kn —> —oo 
as n —̂ oo in probability . Thus —oo as n oo in probability P^ .̂ Then
the type I error probabilities Oi\{5̂ ) approach zero as n ^  oo for the Bayes test 5̂  
constructed from a sample of size n by inequalities (2.3.73). Similarly we obtain 
that a2(i^) —> 0 as n ^  oo. Thus p(g, c) 0 as c 0.

P roo f o f  the main theorem . Now we use Lemmas 4.3.1 and 4.3.2 to prove 
the main result that the Wald test is optimal.

P roof of T heorem 4.3.1. Consider the Wald sequential test of power (oi,  
02) with limit points (—6, a) where a > 0 and 6 > 0. Let v be the stopping time of 
this test. Consider an arbitrary number q of the interval (0,1) and put

4  = e“ ( l - g )  +  g ’ 9" = -e->>{l-q) +  q'

The numbers g' and g" satisfy (4.3.9) and moreover 0 < '̂ < g < g" < 1. According 
to Lemma 4.3.2 there are numbers w € (0,1) and c > 0 such that this test is 
a Bayes solution of the auxiliary problem for which a priori probabilities of the 
hypotheses Hi and H2 are q and 1 — g, the loss due to a wrong decision is tyi =  1 — u; 
and W2 = Wy respectively, and the cost per observation is c. Consider an arbitrary 
test S* (not necessarily sequential) with error probabilities a j and and the 
stopping time u* where a* < ai and < 00 for i =  1,2. Again by Lemma 4.3.2

(4.3.11)
g[(l -  w)ai +  cEe v̂] +  (1 -  g)[гt;a2 +  cEe v̂]

< g[(l -  w)al +  cEê iy*] +  (1 -  q)[wa2 +  cEê iy*]
< g[(l -  w)ai +  cEe û*] +  (1 -  q)[wa2 +  cE ĵZ/*]

where the latter inequality holds, since < ai and qj2 ^  ^2 by condition. Then 
inequalities (4.3.11) imply

(4.3.12) gE0,z/ + (1 -  g)E02Z/ < qEê iy* + (1 -  q)Eê i'*-
Since (4.3.12) holds for all g G (0,1), we pass to the limit as g —> 0 and obtain from
(4.3.12) that Ee û < E$̂ u*. Similarly we pass to the limit as g —> 1 and obtain 
from (4.3.12) that Eq̂ u < Eê iy*. □

R emark 4.3.3. In the proof above we constructed a g-Bayes sequential test 
for distinguishing the hypotheses Hi and H2 with a priori distribution (g, 1 — g) of 
the hypotheses and for the loss matrix

^  /  0 w A
\W2 0 ;  ’ Wi > Oy W2 > 0.

The general case of the problem of constructing the Wald sequential tests is reduced 
to the solution of the Bellman equation (also known as the optimality equation in 
dynamic programming) (see Section 4.1 and [13, 15, 46]).
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