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Foreword to the English Translation

Parts 1 and 2 of “Lectures in Mathematical Statistics” by Yu. N. Lin’kov were
originally published in Russian as two separate books. For the English translation,
the two parts are combined into one book. Each part has its own preface and list
of references, with chapters, sections, theorems, etc., numbered independently in
each part.
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Preface to Part 1

The author’s idea was that this textbook should be aimed at students of math-
ematics having a background in general university courses in probability theory
and mathematical statistics. The textbook was written based on the courses given
by the author for students of mathematical departments at Volgograd University,
Volgograd, Russia, and Donetsk University, Donetsk, Ukraine.

Among the books which may be used as a first reading in mathematical statis-
tics, we mention the books by Cramér [9] and van der Waerden [34], which have
already become the cornerstones in statistics. These books are still an authority,
and many generations of experts have been brought up with these books. Elements
of mathematical statistics are an essential ingredient of other general courses on
probability theory. Let us mention the textbooks by Gnedenko [12], Gikhman,
Skorokhod, and Yadrenko [11], Rozanov [27], Sevast’yanov [29], Tutubalin [33],
and Shiryaev [30]. The textbooks by Shmetterer [31], Ivchenko and Medvedev
[14], and Kozlov and Prokhorov [19] can be regarded as thoroughly developed
introductions into mathematical statistics. The books on mathematical statistics
by Borovkov [5], [6] take a special rank among textbooks for undergraduate and
postgraduate students.

In writing this book, the author has used Russian and foreign literature on
mathematical statistics, as well as the experience and traditions of teaching prob-
ability at Volgograd University and Donetsk University. Let us mention here the
books by Rao [26], Cox and Hinkley [8], van der Waerden [34], and Bickel and
Doksum [4] that thoroughly work out, each in its own way, problems for teaching
mathematical statistics.

Part 1 of this book begins with a presentation of sampling using one-dimen-
sional samples (Chapter 1) and multidimensional samples (Chapter 2) as an ex-
ample. The basic sample characteristics are introduced and their asymptotic and
nonasymptotic properties are studied. Main distributions related to the multidi-
mensional Gaussian distribution are defined.

Chapter 3 deals with the estimation of parameters of distributions. In this
chapter, measures of quality of statistical estimators are introduced and some op-
timality criteria are given. Optimal estimation of a scale parameter and a location
parameter is studied. For regular families of distributions, approaches leading to
effective estimators based on the Cramér-Rao inequality are given.

Chapter 4 deals with the theory of sufficient statistics and its applications
to the construction of optimal estimators of unknown parameters and parametric
functions.

In Chapter 5, general methods for constructing statistical estimators of param-
eters of distributions are considered and the main properties of the corresponding
estimators are established.



4 PREFACE TO PART 1

The limited size of the book did not allow us to include some important sta-
tistical procedures or to consider other topics in the theory of parametric estima-
tion. Part 2 of the textbook will deal with problems related to testing statistical
hypotheses. The author hopes that this textbook will enable the reader to work in-
dependently, using other sources, on the topics we only touch upon here. We would
recommend the books by Wilks [35] and Lehmann [21] and the three-volume mono-
graph by Kendall and Stuart [16]-[18]. Our textbook can be used in preparation
for general courses on mathematical statistics as well as specialized courses on the
subject.

The list of references at the end of Part 1 includes only references available for
students in Russia and Ukraine and is by no means complete.

In the textbook, we use the common notational conventions: P and Py for
probabilities; E and Eg for mathematical expectations; D and Dy for variances,
etc. We use triple notation for theorems, lemmas, formulas, etc. Therefore, for
example, Theorem 4.1.2 refers to Theorem 2 in Section 1 of Chapter 4. Sections
are enumerated by double numbers: Section 1.4 stands for Section 4 in Chapter 1.
The sign [0 marks the end of a proof.



CHAPTER 1

Samples from One-Dimensional Distributions

1.1. Empirical distribution function and its asymptotic behavior

Empirical distribution function. Order statistics. Let £ be a real-
valued random variable with the distribution function

F(z) = P{¢ < z}, z € R = (—00,00).

Let &1, &o,...,&, be n independent observations of the random variable £&. There-
fore &1,&2,...,&, are independent identically distributed random variables whose
distribution function coincides with that of the random variable £, that is,

P{& <z} = F(z)

for all i = 1,2,...,n. Denote by £™ = (&, &,...,&,) the vector of observations
(also called a sample).
Given z € R, introduce the random variable

vp(z) = Z I(—oo,z) (&)
i=1

where I4(z) is the indicator of a set A. The function
(1.1.1) Fo(z) = vn(z)/n, z €R,

is called the empirical distribution function.
We rearrange the observations £1,&2,. . .,&, in ascending order and denote the
resulting random variables by

(1.1.2) Cr1 S Cn2 < S Gapne

The terms of this sequence are called order statistics.

Note that the empirical distribution function F;, possesses all the properties of
regular distribution functions, namely it

(1) assumes values in the interval [0, 1],

(2) does not decrease, and

(3) is left-continuous.
Note also that F, is a step function whose jumps are at the points {n,1,. .., (nn. If
all the observations of a sample ¢(*) are different (in which case all the inequalities
in (1.1.2) are strict), then F,,(z) has n jumps whose heights are 1/n. In the general
case, equalities may appear in (1.1.2) (in which case the function F,(z) may have
less than n jumps; however the jumps are proportional to 1/n).

5
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Glivenko’s theorem. Definition (1.1.1) of the empirical distribution function
implies that F,,(z) is the frequency of the random event {¢ < z} in n independent
observations. Given z the probability of {£ < z} is constant and equals F(z). By
the Bernoulli theorem (the law of large numbers for Bernoulli trials) the empirical
distribution function F,(z) tends in probability to F'(z) as n — oo, that is,

(1.1.3) nl-l->nolo P{|Fn(z) — F(z)| >€e} =0 foralle>0.

Moreover, by the Borel theorem (the strong law of large numbers for Bernoulli
trials) F,,(z) tends with probability 1 to F(z) as n — oo, that is,

(1.1.4) Pig&E¢n=Fmg=L

The convergence in relations (1.1.3) and (1.1.4) holds for every fixed € R. How-
ever the following (stronger) Glivenko (1933) result claims that the convergence of
F,(z) to F(z) is, in fact, uniform with respect to z.

THEOREM 1.1.1 (Glivenko).
(1.1.5) P{ lim sup |F,(z) — F(z)| = O} =1.
n—o0 zeR

PROOF. Let z,) be the minimal number z for which
(1.1.6) F@) < é < F(z+0)

where r = 1,2,... and k =0,1,2,...,r. If the system of inequalities (1.1.6) does
not have solutions for k = 0, then we put z,o = —oco. Similarly, if (1.1.6) does not
have solutions for k = r, then we put z,, = co. Consider random events

v = { lim |Fa(@nk) = F(@ra)| V [Fa(@re +0) = F(zr, +0)| = 0}

where a V b stands for the maximum of two numbers a and b. We also put
r
E" =) E;.
k=0
It is clear that

E" = { lim max (|Fn(a:,,k) — F(zp k)| V |Fa(zrk +0) — F(zrp + O)|) = O} .

n—o00 0<z<r

We have P(E}) = 1 for all k =0,1,...,r by the Borel theorem. Thus P(E") = 1.
Let E =(,2, E". Since P(E") =1 for all r > 1, we get P(E) = 1.
Now let k be such that =,k < Z,k+1 and z € (Zyk, Zr k+1]. Then
(1'1'7) Fn(zr,k + 0) < Fn(x) < Fn(wr,k+1)a
(1.1.8) F(zk +0) < F(z) < F(zrk41)-

It is clear that

[ | =

(1.1.9) F(zrg4+1) — F(zrk +0) <
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Inequalities (1.1.7) and (1.1.8) together with (1.1.9) yield

Fo(x) — F(z) < Fn(z'r,k+1) - F(a?r,k +0)
= [Fa(zrk41) — F(@rpt1)] + [F(@r k1) — F(zrx +0)]

1
< Orélax (|Fn(2rk) — F(@r k)| V | Fn(@rk + 0) — F(zrk +0)]) + T

(1.1.10)

Using the same argument we derive from (1.1.7)—(1.1.9) that

(1.1.11)
Fu(z) - F(a)
> = max (|Fa(r) = F(@rp)| V | Fa(erk +0) = Flanx +0)]) - -

Combining (1.1.10) and (1.1.11) we obtain for all z € (z,k, Zr k+1)

|Fo(z) — F(z)]
(1.1.12) < Jmax. (IFa(rk) = F(@r)| V |Fa(zrk +0) = F(zrk +0)]) + ;1:

Since the right-hand side of inequality (1.1.12) does not depend on k, it holds for
all z € R. Thus
sup |Fn(z) — F(z)]

z€

(1.1.13)

1
< olgfx (IF (rk) = F(2r k)| V [ Fa(Zrk +0) — F(zrk + O)D + r

for all » > 1.
Since inequality (1.1.13) holds for all 7 > 1, we obtain

EC { lim sup |Fn(z) — F(z)| = 0},

n—00 5

whence (1.1.5) follows in view of P(E) = 1. O

Relations (1.1.3) and (1.1.4) as well as the Glivenko theorem indicate that the
empirical distribution function F,,(z) may serve as an approximation of the original
distribution function F(z).

Asymptotic normality of the empirical distribution function and Kol-
mogorov’s theorem. According to definition (1.1.1) the empirical distribution
function F,(z) for a fixed = is a random variable assuming values k/n for k =
0,1,2,...,n. Moreover

P{Fa(z) = k/n} = ( )F’%w)(l— Fa))*,

whence
EF,(z) = F(z), DF,(z) = F(z)(1 — F(z))/n.
We say that a sequence of random variables n,,, n = 1,2,..., is asymptotically
normal with parameters (A,, B2) if

(1.1.14) lim P {u < m} =®(z) forallzeR
n—o0 B,
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where

1 [ 2
1.1.15 o(z =—/ —%/24
( ) () ol z

is the distribution function of the standard normal law A(0,1), that is, the normal

law with mean 0 and variance 1.
By the central limit theorem for Bernoulli trials we obtain the following asser-
tion on the asymptotic normality of the empirical distribution function.

THEOREM 1.1.2. For every fixed x € R, the sequence of empirical distribution
functions F,,(z), n=1,2,..., is asymptotically normal with parameters
F(z)(1 - F(z))

F(z) and —

Consider the random variable

Dy = sup |Fy(z) — F(z)|
z€R

measuring the deviation between the empirical distribution function Fy,(z) and the
distribution function F(z) in the uniform metric.

The following result by Kolmogorov (1933) allows one to estimate, for large n,
that the probability D,, differs from zero.

THEOREM 1.1.3 (Kolmogorov). If the distribution function F(z) is continu-
ous, then

[o]

Jim P {V/nDp <2} = K(z) = Z (—1) exp {—2j%2%}

j=—o0
for all z > 0.

The function K (z) is called the Kolmogorov distribution function.

1.2. Sample characteristics and their properties

Sample moments. Let £™ = (£,,...,£,) be a sample, that is, &,...,¢,
are independent observations of a random variable £ with the distribution function
F(z). Denote by ay the k-th moment of the random variable £ (in other words,
the k-th moment of the distribution function F(z)), that is, ay = E€*. By ux we
denote the k-th central moment of the random variable £ (in other words, the k-th
central moment of the distribution function F(z)), that is, ux = E(¢ — a;)*. Note
that oy is the expectation (or mean value) of the random variable £, while us is its
variance. We also note that y; = 0 and pp = oz — a?. Moreover, the moments and
central moments are related to each other as follows:

k
k .
(1.2.1 =5 (%) -1y edan-y.
) Pk j=0<'7) Y oqak—j

Similar characteristics can be introduced for the empirical distribution function
F,.(z) constructed from the sample ¢ = (&;,&,,...,¢&,). The k-th moment of the
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empirical distribution function F,(z) is called the k-th sampling moment, that is,

(1.2.2) o = / 2t dF () = %igf.
=1

The k-th central moment of the empirical distribution function F,(x) is called the
k-th sampling central moment, that is,

(1.2.3) g = / (& — a1)FdF(z) = % > (- an

From (1.2.2) and (1.2.3) we obtain a relation between sampling moments and sam-
pling central moments:

k
k .
(1.2.4) my = E ( ) (-1)alak—;.
=0 M
Expectation and variance of sampling moments. It is clear that, for all
k,
1 n
(1.2.5) Eag =~ Z E¢F = oy,
(1.2.6) Day = Z D¢k = _(a2k —a?)

if the corresponding moments exist. The evaluation of the expectation and variance
of higher sampling central moments is a more complicated problem.

THEOREM 1.2.1. If agr < 00, then
1
(1.2.7) Emy = pr + O (ﬁ) ,

1 1
(1.28) Dmy = - (m2k — 2kpk—1pk41 — i + K2p2pi 1) + O (F) :

PrOOF. Consider the random variables Ei =& —ay,1=1,2,...,n, and put
s 1y
i=1
Note that E§; =0,i=1,2,...,n, Ed; =0, and Ed; = p;. Applying (1.2.4) we get
(129) my = 0 — k@1ar—1 + z ( )( 1) '~{&k —j
j=2
Since the random variables &;,&,,...,&, are independent and E€; = 0, we obtain

n

(1.2.10) Bardg-1 = — Z E&E™ = = k.
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By the Cauchy-Bunyakovskil inequality we get that

(1.2.11) ’Ealak_J[ (Ea¥Eal. )1/2

for > 2. On the other hand,

E&z 2 Z EEZ(k_J) + — ~ Z E‘E; -Jé-l -Jj
i#l

1 -1 1
= ~iak—j) +2 — Mg = Mg ~ (b2t—g) = Bo—3) »

whence Eak < Po(k—j) in view of pok—_j) — pi_ _j 2 0. Thus inequality (1.2.11)
can be rewrltten for an arbitrary j > 2 as follows:

1/2
(1.2.12) IEalak_Jl < (,u,z(k__.,)Eal ) .
Further,

(1.2.13) EaY = nZJ Z Z Y B, .. iy

i1=11p=1 igj=1

Consider the terms on the right-hand side of (1.2.13) containing a factor £;, whose
index 1, differs from those of other factors. All such terms vanish because Efi =0
and the random variables &1,£5, ..., &, are independent.

Now consider the terms on the right-hand side of (1.2.13) whose indices i,,
i2,...,12; fall into j pairs of equal numbers. The number of elements of this set is
N; N, where Nj is the number of ways to split the set {1,2,...,25} into j pairs and
N, is the number of ways to choose different § numbers from the set {1,2,...,n}.
Obviously

NlNg—H(2]—2k+1) H(n—l)— (n?), n-— oo

k=0

Note also that the cardinality of the set of all other terms in (1.2.13) can also be
represented as a polynomial of n whose degree is less than j. Thus we obtain from
(1.2.13) that

(1.2.14) Eal’ = 0 (n7)

for all j > 2. Combining (1.2.9), (1.2.10), (1.2.12), and (1.2.14) and taking into
account that Edy = pi, we prove (1.2.7).
Equality (1.2.7) implies that

(1.2.15) Dmy = E(mi — pux)> + 0 (n72).
It follows from (1.2.9) that
k. /k .
E(rme — ) = E@ — ) + 2 ( j)<—1)feaiak_,~(ak - )

=1

-3 () () veio i,

%,5=1

(1.2.16)
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Applying (1.2.6) to &, ... ,&n we obtain
(1.2.17) E(@x — pk)? = Dak = n~" (pak — pl)

since Edr = ux. Using the same arguments as those applied for the evaluation of
the right-hand side of (1.2.13) we prove that

Edxdn—1 (@ — 1¢) = —5 DDPDIP =R (T

(1.2.18) n t1=14ip=143=1
- +0(=
= n#k—lﬂk+1 )’
o 1 n n n n
Ea?aﬁ—l = ﬁ Z Z Z Z 5116126 6
(1219) f1=lix=11i3=114i4=1
1 2

The same method shows that

k
k il 1
(1.220) > <J> (-1)’Eajdx—;(ar — px) = O (F) ,
i=2
k\ (k itipsitis % 1
(1.2.21) Z <z> (j)(_l) HEG g _sig_; = O (F) .
i+j23
Combining (1.2.15)—(1.2.21) we easily obtain relation (1.2.8). O

Convergence in probability of sampling moments. We study the as-
ymptotic behavior (as n — 00) of sampling moments ay, and my, defined by (1.2.2)
and (1.2.3), respectively. To indicate the dependence of moments a; and my on
the size of the sample we write ani and Mk, respectively. Using (1.2.6) and the
Chebyshev inequality we prove that a,; — i in probability as n — co. A similar
assertion holds for sampling central moments and even for arbitrary continuous
functions of a finite number of sampling moments a, (the sampling central mo-
ment My, is a polynomial of moments @n,an2,...,ank in view of (1.2.4)). The
following result contains a precise statement of the latter assertion.

THEOREM 1.2.2. Let random variables C(l), ,(,2),..., C,(Lk) converge in prob-
ability to some constants cy,cs,...,cCk, Tespectively, as n — oo. Let a function
f(z1,22,...,2k) be continuous in a neighborhood of the point (c1,cz,...,cx). Then

the random wvariables n, = f ( ,(,1), ,(,2), ,(lk)) converge to f(ci,c2,...,ck) in
probability as n — oo.

PROOF. Let € > 0 be an arbitrary number. Since f(21, 22, ..., 2) is continuous
in a neighborhood of the point (c;, ¢z, . .., k), there is a number § = d(g) such that

lf(21,22,...,zk) —f(61,02,...,ck)| <eg

for |z, —¢;| < 8,1=1,2,...,k.
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Consider the random events B; = {I(,(f) —c| <6},i=1,2,...,k. ThenBCC
where

B=nBi’ C={Inn—.f(clch’“-,ck)l<E}.

Thus
(1.2.22) P(C)>P(B)=1-P <UB)>1_ZP

Slnce ( 2 converges in probability to c;, for a given 6 > 0 and all v > 0 there is
; = ni(7) such that P(B;) < v/k for n > n;. Then P(B;) < «/k for

n > ng = max(ny,...,ng)

and all i =1,2,...,k. Therefore P(C) > 1 — v by (1.2.22) if n > ny. O

Consider another application of Theorem 1.2.2. For continuous random vari-
ables we define the skewness v; and ezcess 2 by

(1.2.23) mo=psp % o= paps? - 3.

If the density of a distribution is symmetric, then 43 = 0. Moreover, 72 = 0
in the case of the Gaussian distribution. Starting from (1.2.23) we construct the
sampling skewness g; = g1 and sampling excess g2 = g2 from the sample & (n) =

(61,52’ RN ag'n):
(1224) gnl = Mnp3Myo 3/ y In2 = mn4m7_7,22 -3

Applying Theorem 1.2.2 and equality (1.2.4), we prove that the sampling skewness
and excess defined by (1.2.24) converge in probability as n — oo to the correspond-
ing skewness and excess defined by (1.2.23) for a given random variable.

Asymptotic normality of sampling moments. We introduce the following
notation. The law of distribution of a random variable ¢ is denoted by £(£). The
law of distribution of the normal random variable £ with expectation o = E§ = oy
and variance 02 = D¢ = p; is denoted by L(¢) = M (e, 0?).

We say that a sequence of random variables n,, n = 1,2,..., weakly converges
as n — oo to a random variable 7 if £(n,) — L(n) as n — oo (the convergence
of laws L(n,) — L(n) is understood as the convergence of distribution functions
P{n. < z} to a distribution function P{n < z} at all points of continuity of the
function P{n < z}). In particular, the asymptotic normality of a sequence 7, with
parameters (A, B2) defined by (1.1.14) and (1.1.15) means that

C((nn - An)/Bn) - N(O> 1)’ n — .

In the latter case we also say that a sequence 7, is N (A, B2) asymptotically
normal and occasionally write £(n,,) ~ N (A, B2).
The sampling moment a,j is the sum of n independent identically distributed

random variables (see (1.2.2)).
Applying the central limit theorem, we obtain the following result.

THEOREM 1.2.3. If agr < 00, then the sequence any, of order k sampling mo-
ments is N'(ax, (azx — @2)/n) asymptotically normal.
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PROOF. It follows from (1.2.2) that

n
‘/m(ank a) = W(Z& —"ak) = Tn-

Taking into account equalities (1.2.5) and (1.2.6) and applying the central limit
theorem to the sum Y ., £&¥, we obtain £(n,) — N(0,1). Therefore the sequence
ank is N(a, (agr — a?)/n) asymptotically normal. O

Similarly to Theorem 1.2.3 one can prove the asymptotic normality of a con-
tinuous function of a finite number of sampling moments a,,. In particular,

THEOREM 1.2.4. If aop<oo, then the sequence myy, of order k sampling central
moments is

N (ks (pak — 2kp—1p41 — i + K2 popf_1) /n)

asymptotically normal.

1.3. Order statistics and their properties

The distribution of order statistics. Let £ be a random variable with the
distribution function F(z), let £™ = (&,&,,...,&,) be observations of ¢, and
let ¢n1,¢n,2,...1Cn,n be order statistics constructed from the sample " defined
by (1.1.2). We study the distribution F, x(z) = P{¢nx < z} of the k-th order
statistic {n k. It is clear that {(,x < z} = {vn(z) > k} where v, () is the number
of random variables in the sequence &1,&s,...,&, such that {£ < z}. One can
treat vn(z) as the number of occurrences of the event {{ < z} in n independent
Bernoulli trials (see Section 1.1). Since P{¢ < z} = F(z), the binomial distribution
of v, (z) shows that

(1.3.1) Fok(z) = P{um(z) > k} = Z( )F’(z)(l — F(z))™.

The following result on the integral representation of the function F, x is helpful
for studies of its asymptotic properties.

THEOREM 1.3.1. The distribution function Fy, x(z) admits the following rep-
resentation:

_ F(x)
(1.3.2) Fn,k(:z:)=n<: i) / $=1(1 — )7 g,
- 0

In particular, if F has the density f(z) = F'(z), then so does F, (z). Denote the
density of Fp (z) by fak(z) if the density f exists. Then

n

(1.3.3) foi(z) = n(k : i) F"‘l(m)(l - F(x))n—kf(z).
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PROOF. Evaluating the integral in (1.3.2) by parts, we obtain

Fl=) k—1 -k
/0 11— )"k d
(1.3.4) A

- (z)
= TP - F@) ™+ 2 [ k- gria
0

Substituting (1.3.4) into (1.3.2) we get

(1.3.5) n(Z: i) /OF(E) (- r
) - (Z) FY(2)(1 - F(z))" ™ + n(n . 1) /o%) t(1 -8 e,

Evaluating the integral on the right-hand side of (1.3.5) by parts, we conclude that
n

n(: B i) /0 e L1 -t Rdt =Y (?) Fi(z)(1 - F(z))™,

i=k

whence (1.3.2) follows by (1.3.1).
If the density f(z) = F'(x) exists, then (1.3.3) follows from (1.3.2). O

The joint distribution of two order statistics, say (nx and {pm with & < m,
is also easy to evaluate. In particular, if the density f(z) = F'(x) exists, then
the density of the joint distribution of {5 % and {n also exists. Denoting it by
frik,m(z,y) we have for z < y

@) =na- (3 1) ("5 7)o@

m
x (1 - F(y)™ Y (F(y) — F(@)"~ ™ f(z) £ (y).

To prove (1.3.6), we consider two disjoint intervals [z,z + Az) and [y,y + Ay)
for small Az and Ay. Then we evaluate the probability of the event that exactly
k—1 random variables of the sequence &1,&2, . . ., &, belong to the interval (—oo, );
only one random variable belongs to [z,z + Az); m — 1 random variables belong
to [y + Ay, 00); only one random variable belongs to [y,y + Ay); and all other
random variables belong to [z + Az,y). The probability of this event equals the
right-hand side of (1.3.6) multiplied by AzAy with a remainder term of a higher
order with respect to AzAy. It is not hard to show that the probabilities of other
events favorable to {(, x € [z,2+AZ), {nm € [y,y+ Ay)} are of higher orders with
respect to AzAy as compared to the probability of the event discussed above.

(1.3.6)

Limit theorems for extreme order statistics. Consider the k-th order
statistic (»x whose index k = k(n) depends on n in such a way that k(n)/n
approaches either 0 or 1 as n — oo. Those order statistics are called extremes
or extreme order statistics. Below we study the cases of k(n) = k = const and
k(n) = n — m + 1 where m does not depend on n. In other words, we study the
k-th order statistic from the left and m-th order statistic from the right for fixed
constants k£ and m. Consider the limit behavior of extremes ¢, x and (nn—m+1-

Let

(1.3.7) M = NF((n k), kn =1l = F(Can—m+1)]-
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The following characteristics of a distribution function play an important role in
the theorems below:

Zo = sup{z: F(z) = 0}, z, = inf{z: F(z) = 1}.
We agree that sup(&) = —oo and inf(@) = oo.

THEOREM 1.3.2. Assume that there ezists ' > Ty such that F(z) is continuous
in the interval (—oo,z’) and increases in the interval (To,z'). Then

(1.3.8) Jim P{n, <y} =Tx(y)

for all y € R where the random variables n, are defined by (1.3.7), while T'x(y) is
given by

(1.3.9) Tw(y) = { (—yk_11 ! fé’ 2F"le=2dz, y >0,
0, y<0.

PROOF. Equality (1.3.8) is obvious for y < 0. Fix a number y > 0 and let n
be such that y/n < F(z'). Then the inverse function F~1(y) exists in the interval
(Zo,z'). Applying (1.3.2) we get

Pl <y} =P {Gue < F* (1)} = n(Z: i) /Oy/n th=1(1 — )n* dt,

Changing the variable z = nt we obtain

o<t = (37 [ ()02 e

Note that n=*=1(2~1) — 1/(k — 1)! and (1 — 2z/n)"* — ™% as n — oo, and

moreover the convergence in the second relation is uniform with respect to z € (0,y)
for an arbitrary finite y. This implies relation (1.3.8) by the Lebesgue dominated
convergence theorem. (W

THEOREM 1.3.3. Assume that there exists " < z, such that F(z) is continu-
ous in the interval (z”,00) and increases in the interval (z”,z,). Then

Jim P{xn <y} =Tm(y)

for all y € R where the random variables k,, are defined by (1.3.7), while ', (y) is
defined by (1.3.9).

PRrOOF. Note that
Plen <9} =P {un-mn > F7* (1- 2}

-1\ /! :
= n(n ) / gn=m(1 = )™ gt
m—1 1-y/n

n-1 v/m m—1 n—-m
—n(m_l>/0 2" (1-2) dz

if n is sufficiently large. The rest of the proof is the same as that of Theorem 1.3.2.0]
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The function I';(y) defined by (1.3.9) is the so-called Gamma distribution func-
tion with parameter k.

The asymptotic behavior of extremes is a complicated problem in the case of a
general k. A rather complete solution of this problem is given by Gnedenko (1943)
and Smirnov (1949) (see, for example, [32]). Below we briefly discuss some of their
results. _

Consider the random variables (, x = ({n,x — Ar)/Bn Where k = const and A,
and B, > 0 are appropriate constants depending on n. The possible limit distri-
butions for fn,k can only be of the following three types:

0 z<0 Te(|z|~%), <0

(1) — ’ ’ (2) — k 3

¢k’°‘(z) { Tk(z®), z>0, k'a(x) { 1, z >0,
¥P(z) =Ti(e®), —oco<z< o0,

where a > 0. Necessary and sufficient conditions for convergence to any of the three
types of limit laws are known in terms of the distribution function F(z). Similar
results are also obtained for extremes (, n—m+1 With m = const.

To this end, we note that one can obtain the limit distribution for the pair of
random variables 7, and k, defined by (1.3.7). Below is the corresponding result.

THEOREM 1.3.4. Assume that all the assumptions of Theorems 1.3.2 and 1.3.3
hold. Then

Jim P{n, < z,kn <y} =Tk(z)l'm(y)
for all x < y where the function T'x(x) is defined by (1.3.9).

Central order statistics and sampling quantiles. If kK = k(n) depends
on n in such a way that k(n)/n — pasn — oo and 0 < p < 1, then the or-
der statistic (, x(n) is called central. Sampling quantiles of a distribution can be
expressed in terms of central order statistics.

Let p € (0,1). Any number z, such that

(1.3.10) F(z,)<p and F(z,+0)>p

is called a p-quantile of a distribution F(z). It is clear that the system of inequal-
ities (1.3.10) has at least one solution. A p-quantile of the empirical distribution
function Fy,(z) is called a sampling p-quantile and is denoted by Zp.

THEOREM 1.3.5. For all p € (0,1), the sampling p-quantile can be represented
as follows:

5 = { Cn,[np]+15 if mp is not an integer,
any number of the interval [(nnp,Cnnp+1], i np is an integer,

where [a] stands for the integer part of a number a.

PROOF. Assume that np is not an integer. Generally speaking, there are order
statistics ¢,k With k < [np] 4 1 and such that (s = (n,[np}+1, Whence

Fr ($nfnpl41) < [np]/n < p.

On the other hand, there are order statistics {, x with £ > [np] + 1 and such that
C’n,k = Cn,[np]+1a thus Fn(Cn,['n.p]+1 +0) 2 ([’I’Lp] + 1)/77' > p. Therefore E1:0 = Cn,[np]+1'



1.3. ORDER STATISTICS AND THEIR PROPERTIES 17

Now let np be an integer and let Z,, be any number of the interval [(n np, (n,np+1]-
As above F,(Zp) < np/n = p and F,(Zp + 0) > np/n = p, that is, Z, is a sampling
p-quantile. O

Below we use the notation Z , for Z,, to highlight that the sampling p-quantile
depends on n.

Convergence in probability of the sampling p-quantiles. The consider-
ation below excludes the cases of p = 0 and p = 1. These two cases require special
treatment. If p = 0, then Z, o € (—00,(n,1] and therefore either —oo is the unique
p-quantile or there are infinitely many p-quantiles.

Below we consider sampling p-quantiles Z,, , for p € (0,1). The following result
contains conditions for the convergence in probability of sampling quantiles to the
corresponding quantiles xp,.

THEOREM 1.3.6. If a p-quantile x, is unique, then the sampling p-quantile
Zn,p converges in probability to z, as n — oo.

PROOF. It is obvious that F(z, +¢€) > F(x, +0) > p for all € > 0. Since a
p-quantile z, is unique, F(z, +¢€) > p for all € > 0. The definition of the sampling
p-quantile implies that {Fy,(z, +¢€) > p} C {Zn,p < zp + €}. Therefore

(1.3.11) P{Fn(zp+€) >p} < P{Znp < zp +¢}.
By the law of large numbers (1.1.3)

P{Fn(zp+¢) > p} = P{Fu(zp +¢) — F(zp+€) > —(F(zp+€) —p)} — 1
as n — oo. Using inequality (1.3.11) we get for all € > 0 that

(1.3.12) nllbnolo P{Znp <zp+e}=1.

Using again the uniqueness of a p-quantile z,, and the same argument we obtain
foralle >0
(1.3.13) Jim P{Z,p >z, —€} =1L

Relations (1.3.12) and (1.3.13) mean that Z,, converges in probability to z, as
n — 00. O

REMARK 1.3.1. In fact, Z, , converges with probability 1 to z, as n — oo
under the assumptions of Theorem 1.3.6.

REMARK 1.3.2. Let (, k(n) be a central order statistic such that k(n)/n — p
as n — 0o. Assume that a p-quantile z, is unique. Then one can show by using
Theorem 1.3.6 that {, x(n) — Zp in probability as n — co.

Asymptotic normality of sampling quantiles. Below we provide condi-
tions for the asymptotic normality of a sampling p-quantile for 0 < p < 1. First
we give the following central limit theorem for independent identically distributed
random variables in the scheme of series.



18 1. SAMPLES FROM ONE-DIMENSIONAL DISTRIBUTIONS

THEOREM 1.3.7 (LINDEBERG). Let&n1,8n2,---,&nn be independent identically
distributed random variables such that

Efni=0, i=1,...,n, » E&; =1 n>1
i=1

Then the sequence of random variables Y i, &ni i N'(0,1) asymptotically normal
if and only if

(1.3.14) lim 3 EEL (il > 7) = 0
i=1

for all T > 0 where I(A) is the indicator of a random event A.
The proof of Theorem 1.3.7 can be found in 23], p. 292.

THEOREM 1.3.8. Let a distribution function F' be continuous and let the equa-
tion F(z) = p have a unique solution z,. Moreover let the function F(x) be dif-
ferentiable at the point z, and F'(z,) = f(xp) > 0. Then the sampling p-quantile
Zp,p is N(zp,n " 1pgf2(z,)) normal as n — oo where g=1—p.

PrOOF. In view of Theorem 1.3.5, one can restrict consideration to the case
Tnp = Cn,k(n,p) Where k(n,p) = [np] + 1. It is obvious that it is sufficient to prove
the N(0,1) asymptotic normality for random variables

M = f(2p)V/1/(09)(@np — 2p), n=12,....
Note that {Z,p < z} = {vn(z) > k(n,p)} where va(x) = 37 | I(—co,5)(&:)- Then

P{n. <=z =P{§c‘n <zp,+ by _t }
{77 } P p nf(z,,)

g
=Py |z, +4/— )an, }
Consider random variables

pnj =1 (fj <zp+ z\/pq/n/f(xp)) . ji=12,...,n

It follows from (1.3.15) that

(1.3.15)

j=1
(1.3.16)

=P 1 k(n’p) — Nan }

n
_ g, >t
Tnv/n ;(ﬂnu an) > o/t
where

an = Ell'n,j =F (zp + pQ/nz/f(xP)) )

02 =Dpn,; = an(l — as).
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Since F(z,) = p, the Taylor expansion in a neighborhood of the point z, shows
that

(13.17) F (xp + ’;—qf(zp)) =p+ \/I;Zm +o (%)

as n — 0o. Thus a, — p and 02 — pq as n — oo, whence
I (|un,,~ —ap|/v/no2 > 7') =0

for all 7 > 0 and all sufficiently large n. This means that condition (1.3.14) holds
for £&,; = (Bn,j — an)//no2. Therefore the assumptions of Theorem 1.3.7 are

satisfied for the random variables (pn ; — an)/y/n02, j=1,2,...,n.
Applying Theorem 1.3.7 we derive from equality (1.3.16) that
k(n) P) — Nan

D) oty

as n — oo. Since k(n,p) = [np] + 1 = np + 1+ r, where |r,| < 1, we obtain from
equality (1.3.17) that
k(n,p) —nan _ np+1+r, —np—/npgz+o(y/n) _ 1
o VABa(L + (1)) = el
as n — 00.
This together with relation (1.3.18) implies that

P{nn <z} =1—®(—z)+ 0o(1) = () + o(1)

as n — 00, that is, the sequence of random variables 7, is asymptotically N(0,1)
normal. (]

(1.3.18) Plln<z}=1-@ (

In particular, Theorem 1.3.8 implies that the central order statistic (p,(np)+1 is
asymptotically normal.

The study of the asymptotic behavior of the central order statistic (, k(n) is &
complicated problem for general k(n). This problem is solved by Smirnov (1949)
(see [32]) who showed in particular that if k(n) = np + o(y/n), then the limit
distributions for the sequence of random variables fn,k(n) = (Cn,k(n) — An)/Bn can
only be of the following four types:

®(cz®), >0 O(—c|z|*), z<0
W) (g) = ; ) 5@ (z) — { , ,
a (=1, z <0, (@)=, z>0,
0, z<-1
O(—ci|z|*), <0 ' - 7
308 (z) = ’ ' ()= 1 -—1<z<1,
9@ ={ g, =s0 @)= 2 =<
1, z>1,

where A, and B, > 0 are some appropriate constants depending on n and p;
a, ¢, c1, and co are some positive constants; and ®(z) is the standard Gaussian
distribution function. Smirnov also obtained necessary and sufficient conditions on
the distribution function F(z) for the convergence to a given type of the limit laws.

REMARK 1.3.3. More details about order statistics and further references can
be found in the book by David [10].
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1.4. The distributions of some functions of Gaussian random vectors

We consider in this section the distributions of some functions of Gaussian
random vectors that are widely used in various topics of mathematics.

The normal distribution. Let X = (Xi,...,X,) be a random column-
vector (here and throughout the symbol ’ stands for the transposition of matrices
and vectors). By a = (a1, ag, - ..,a,)’ we denote the vector of its expectations of X,
that is, a; = EX;, i = 1,2,...,n, and by A = (\;;) we denote the n X n matrix
of mixed central moments \;; = E(X; — a;)(X; —a;), 4,5 = 1,2,...,n. Note that
the matrix A is symmetric and nonnegative definite. A random vector X is called
normal (or Gaussian) if its characteristic function is of the form

(1.4.1) $(t) = Ee*X"t = exp {ia't - %t’At}

where t = (t1,%2,...,t,). If X is a normal vector whose characteristic function
is given by (1.4.1), then we write £(X) = N(a,A), which means that X has a
normal distribution. The distribution £(X) = N(0, I,) where I, is the n x n unit
matrix is called the standard normal distribution. The coordinates of the standard
normal vector X are independent random variables whose distribution is A/(0, 1).
If the matrix A is nonsingular, then the normal distribution is called proper (or
nondegenerate), in which case the distribution possesses the density

(1.4.2) f(z) = (2m)"™/?(detA) /2 exp {—%(m —a)A Yz - a)}

where z = (z1,22,...,2,) and det A is the determinant of the matrix A.
Linear transformations of Gaussian vectors are again Gaussian vectors. The
precise statement is as follows.

LEMMA 1.4.1. Let Y = AX where L(X) = N(a,A) and A is a k x n matriz.
Then L(Y) = N(b, B) for b= Aa and B = AAA'.

PROOF. Let ¢y (u) and ¢x(t) be the characteristic functions of vectors Y
and X, respectively. Then
Py (u) = Eexp {iY'u} = Eexp {iX'A'u} = ¢x(A'u).
Since £(X) = M(a,A), equality (1.4.1) implies that

by (u) = exp {ia’A’u - %(A'u)'A(A’u)} = exp {i(Aa)’u - %u’(AAA')u} .
Thus L(Y) = N(b, B) for b = Aa and B = AAA'. O

Equality (1.4.1) implies for a diagonal matrix A that the coordinates of the
vector X are independent. If the matrix A is not diagonal, then there is a linear
transformation Y = AX such that the coordinates of the vector Y are independent.
Indeed, by Lemma 1.4.1, as a matrix A one can take an orthogonal matrix (this
means that AA’ = I,,) such that AAA’ is diagonal. This implies that if A is
nonsingular, then there exists a nonsingular matrix A such that the vector Y = AX
has the standard normal distribution N(0, I,) if a = 0.
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Chi-square distribution and its properties. Let X = (X1, X2,---,Xxn)’
and L£(X) = N(0,I,). The distribution of the random variable x;, = > i1 X7 is
called the chi-square distribution with n degrees of freedom. Put L(xi) = x%(n)
and let us find the density of x2(n). Applying (1.4.2) as Ar — 0 we get

P{xie[rr+Aar)}= P{r < ZXf <r+ Ar} = ke /2N (Vs ym) +0(Ar)

i=1
where Vg is the volume of the ball S(r) = {zx € R™:|z| < r} of radius r. Since
Vs(sry = Cr™/?, we have A(Vs(ymy) = C'r™2=1Ar 4 o(Ar). Thus the density of
the distribution x2(n) is given by
(1.4.3) kn(z) = Kpz™?~1e™®/2, 2> 0,

where K, = (2*/?T'(n/2))~! and I'(+) is the Gamma function.
The characteristic function of the distribution x2(n) is

¢(t;n) = Eexp {itx2} = Kn /oo z™/? Y exp {—z(1 — 2it)/2} dz.
0

Differentiating with respect to ¢ we obtain

in

I(tem) — .
(144) #tim) = T2 g5 m).
Solving equation (1.4.4) subject to the condition ¢(0;n) =1 yields
(1.4.5) é(t;n) = (1 — 24t) /2.

This equality allows one to find the moments of the distribution x2(n):
1 1
(1.4.6) Ex2 = ;¢'(0; n) =mn, Dx2 = z.—2¢"(0; n) — (Ex3)* = 2n.

We also mention the following important property of the distribution x2(n). Let
random variables x2 and x2, be independent and let £(x2,) = x*(n), i = 1,2.
In view of equality (1.4.5) the characteristic function of the sum )(,211 + X2, is
d(t;n1 + n2), that is, L2, + x2,) = Xx*(n1 + nz). This means that the sum of
independent chi-square random variables is again a chi-square random variable and
its degree of freedom is equal to the sum of degrees of freedom of terms.

Linear and quadratic forms of normal random variables. Let
X= (X11X2, v 7Xn‘)l

be a random vector with the standard normal £(0,I,) distribution. Consider a
quadratic form

n
Q = Z ainin = XIAX
i,j=1
where A = (a;;) and A’ = A. We also consider m linear forms

n
Y = ZbkiXi, k=1,2,...,m.
i=1

Using matrix notation we rewrite the latter relations in a compact form as Y = BX
where B is a rectangle m X n matrix and Y = (Y3,...,Y,). By O we denote the
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matrix with zero entries. The following result contains conditions for the indepen-
dence of functions @ and Y.

LEMMA 1.4.2. If BA = O, then the functions Q and Y are independent.

PRrOOF. Since the real matrix A is symmetric, there exists an orthogonal ma-
trix U such that U'’AU = D where D is a diagonal matrix with diagonal entries
A >0,7=1,2,...,n. The numbers \Ay,..., )\, are characteristic numbers of the
matrix A, that is, they are the roots of the characteristic equation det(A—AI,) =0
The columns uy of the matrix U = ||luy ... uy,| are eigenvectors of the matrix A,
that is, Aup = Apug, k=1,2,...,n

Let r be the rank of the matrix A and let Aq,..., \, be nonzero characteristic
numbers. The equality A = UDU’ can be viewed as the matrix form of the spectral
representation of the matrix A, namely

r
(1.4.7) A= Meuug.
k=1
By the assumptions of the lemma, O = BA = Y ;_; AcBuyu},. Multiplying this
equality on the right by the vector u; we get

(1.4.8) Bug, =0, s=1,2,...,7

since the vectors u; are orthogonal. Put Z = (Y1,...,Yn, i X,...,u.X). Itis clear
that Z = CX for some matrix C and thus Lemma 1.4.1 implies that the distribution
of the vector Z is normal with EZ = 0. According to representation (1.4.7)

Q= }: A (X ug) (ufp X) = Z)\k(ukX)z
k=1
Thus the equalities EY;u.X =0,i=1,2,...,m, s=1,2,...,r, complete the proof
of the lemma, since they mean that Y; and u.,X are independent in view of the
normal distribution of the vector Z. To prove the above equalities we denote by b
the rows of the matrix B, ¢ =1,2,...,m. Then we have by (1.4.8)

EYiu,X = Eb,Xu,X = Eb,X X'u, = b(EXX")us = bjI,u, = 0. 0

Consider two quadratic forms Q; = X’AX and Q; = X'BX.
LEMMA 1.4.3. If AB = BA = O, then Q; and Q2 are independent.

PROOF. Let the matrix A admit the representation (1.4.7), and let the spectral
representation of the matrix B be B = zs v;v;u; where s = rank B is the rank of
the matrix B. By the assumptlons 0= AB Zk ; )\kvzuk(ukv,) Multiplying
this equality on the left by u/ and on the right by v;, we get ujv; =0,i=1,...,r
j =1,...,s. Since the joint distribution of random variables u;X and v;X is
normal, we prove as above that these random variables are independent. Now
it follows from Q1 = Y 5_; Me(utX)? and Q2 = Y ;_; ¥5(v}X)? that the random
variables ); and Q2 are independent. O

The distributions of quadratic forms of normal random variables. By
tr A we denote the trace of a quadratic matrix A, that is, the sum of its diagonal
entries.
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LEMMA 1.4.4. Let Q = X'AX where L(X) = N(0,1,,) and rank A = r < n.
If the matriz A is idempotent, that is, A2 = A, then L(Q) = x*(r) and r = tr A.

PROOF. Let the matrix A admit the representation (1.4.7). Since A is sym-
metric and idempotent, A\; = --- = A, = 1. Thus @ = Y_;_,(u}X)?. The vectors
uk are orthonormal, thus the random variables u; X, k = 1,2,...,r, are indepen-
dent and N(0,1) normal. Hence £(Q) = x2(r). Since A = UDU’, we obtain from
tr(BA) = tr(AB) that tr A=tr(U'UD) =trD =M\ +---+ A\, =T. O

The following result, which is a corollary of the preceding assertions, is of its
own interest as well.

THEOREM 1.4.1. Let an n-dimensional vector Y have a nondegenerate N'(u, X)
distribution. Then the distribution of the quadratic form Q = (Y — p)’S~1(Y — p)
is x2(n).

PROOF. Let U be an orthogonal matrix such that U'XU = D where D is a

diagonal matrix. Since ¥ is nondegenerate, all diagonal entries A\x of the matrix
D are positive. Thus D~1/2 is well defined as the diagonal matrix with diagonal

entries /\,:1/ 2. Consider the random vector Z = D~Y/2U’(Y — ). By Lemma 1.4.1
L(Z) = N(0,I,).
On the other hand, Y — p = UDY2Z. Thus Q = Z'DY?U'sS~'UDY*Z = 7'Z,
whence £(Q) = x%(n). (]
The following important result of the sampling theory is proved by Fisher
(1925).

THEOREM 1.4.2. Let €™ = (¢y,...,&,) be a sample from the N(u,0?) dis-
tribution. Then the sampling moments a; and my are independent. Moreover

L(y/n(a1 — =N(0,1) and L(nmy/0?) = x*(n —1).
PROOF. Consider a sample £ = (£,,...,£,) where
&= (& —w)/o, i=1,2,...,n.
Put
R g I P
o= Y& = - > (& - a)?
i=1 i=1

Then @; = (a1 — u)/o and 7y = my/o. Thus it is sufficient to prove that @, and
Thy are independent, since £(/nd;) = N(0,1) and L(n72) = x*(n — 1). Consider

an n-dimensional vector-column b = (1/n, ...,1/n)’ and n X n matrix B = flo---b|l.
It is clear that &; = ¥'£€™ and nim, = (§<n) — BEM)Y/(En) — BE(M)) = (£(n)) Ag(™)
where A = I, — B. Since b'A = b’ — = b — b = 0, the random variables a;

and My are independent by Lemma 1. 4 2

It is obvious that the distribution of a; is normal. Note that the matrix A
is idempotent and trA = trI, —trB = n — 1. Then L(n/2) = x?(n — 1) by
Theorem 1.4.1. 0O
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Student and Snedekor distributions. Let two random variables ¢ and x?2
be independent and let £(£) = NV(0,1) and £(x2) = x2(n). Then the distribution of
the random variable ¢ = £/+/x?/n is called the Student distribution with n degrees
of freedom and is denoted by S(n). The density s,(z) of the distribution S(n) is

5a(z) = 1 T'((n+1)/2) 1
m Y T(n/2) (14 22/n)n+1)/2°

Let random variables x? and x3 be independent and let £(x2?) = x%(ni), i =

1,2. Then the distribution of the ratio

F=(x}/n1)/ (6E/n2)

is called the Snedekor distribution with ny and ny degrees of freedom and is denoted
by S(ni,n2). This distribution is sometimes called the F-distribution or Fisher
distribution. The density s, n,(z) of the distribution S(n,n2) is

ot () (32

—(n1+n3)/2
x gm/271 (1 + M) 2
n2

z€R.

, z>0.

The distributions S(n) and S(n1,n2) play an important role in the sampling
theory.

REMARK 1.4.1. Properties of normal distributions and those related to normal
distributions are treated in many textbooks on probability theory. A comprehensive
text on properties and applications of normal distributions in statistical problems
can be found in [1, 28].



CHAPTER 2

Samples from Multidimensional Distributions

2.1. Empirical distribution function,
sampling moments, and their properties

Empirical distribution function and its properties. Let (£,7) be a two-
dimensional random vector with real coordinates £ and 7. Denote its distribution
function by F(z,y) = P{¢{ < z,7 < y}, ¢ € R, y € R. Assume that there are n
independent observations of the vector (§,7):

(2.1.1) (€1,m), (§2,m2)s - - -5 (€ns )
The set of observations is called a sample from the two-dimensional distribution
F(m,F%)r fixed z € R and y € R consider the following random variables:
(2.1.2) va(z,y) = > I({& < z,m: < v}).
i=1
Then
(2.1.3) Fo(z,y) = %un(:v,y), z€eR, yeR,

is called the empirical distribution function of the sample (2.1.1). Note that the
empirical distribution function F),(z,y) possesses all the properties of regular two-
dimensional distribution functions.

Equality (2.1.2) implies that v,(z,y) is the total number of occurrences of the
event

{¢<zn<y}

in n independent trials, while (2.1.3) shows that the empirical distribution function
Fo(z,y) is the relative frequency of the event {{ < z,7 < y} in n independent
trials. Like the one-dimensional case, the Bernoulli law of large numbers implies
that the empirical distribution function F,(z,y) approaches F(z,y) in probability
asn — oo for all z € R and y € R, that is,

nlino1° P{|Fn(z,y) — F(z,y)| >} =0  foralle >0.

Moreover, the Borel strong law of large numbers implies that F;,(z,y) approaches
F(z,y) with probability 1 as n — oo for all z € R and y € R, that is,

P{ lim Fules) = F@)} =1

Therefore the empirical distribution function F;,(z,y) may serve as an approxima-
tion of the distribution function F(z,y).

25
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According to definition (2.1.3) the empirical distribution function F,(z,y) is a
random variable for all fixed  and y. It assumes values k/n, k =0,1,2,...,n, and
moreover

P{r@n =2} = (})PEna- Fer

Therefore
EFn(wa y) = F(:B, y): DFn(x)y) = F("I” y)(l - F(a:,y))/n

Applying the De Moivre-Laplace central limit theorem we obtain the following
result on the asymptotic normality of the empirical distribution function F,(z,y).

THEOREM 2.1.1. The sequence of empirical distribution functions
Fn(may)) n=12,...,

is asymptotically normal with parameters (F(z,y), F(z,y)(1 — F(z,y))/n) for all
firted x € R and y € R.

Moments of two-dimensional distributions. Let (£,7) be a real two-
dimensional random vector. The number a;; = E€*n/ is called the mized moment of
order i + j (or, (i + j)-th mized moment) of the random vector (£,7). The number
pi; = E(€ — a10)t(n — ao1)’ is called the mized central moment of order i+ j (or
(2 + 7)-th mized central moment) of the random vector (£,7). It is easy to see that

INERINgS
(2.1.4) EI (k) (;) (-1)** ok ab ik i

k=0 l=0

Note that ajg is the i-th moment of the random variable ¢, while ag; is the
j-th moment of the random variable 7. Analogously, po is the i-th central moment
of the random variable &, while ug; is the j-th central moment of the random
variable 5. Note further that ugg is the variance of £, while p; is the variance of 7.
We often use the notation 0% = pig0 and 0% = pg2. It is clear that ugo = ago — o2,
Boz = a2 — ad;, and p11 = a11 — 010001.

If p1; = 0, then the random variables £ and 7 are called uncorrelated. In this
case a1 = o001, that is, EEn = EEEn. If € and n are independent, then uy; =0,
that is, independent random variables are uncorrelated. The converse is, in general,
false. In a particular case where the vector (¢,7) has a normal distribution, the
random variables £ and 7 are independent if and only if they are uncorrelated.

Let z = (t,u)’ where t and u are real numbers. Consider a quadratic form

(215) Q(Z) = E[t(€ - 0[10) + u(n - 001)]2 = uzotz + 2u11tu + /,Loguz.

Since Q(z) is the expectation of a square of a random variable, Q(z) > 0 for all
vectors z, whence it follows that the quadratic form Q(2) is nonnegative definite.
Definition (2.1.5) implies that Q(2) = 2’Mz where M is the matrix of central

moments of second order:
M= ( Ha20 f11 > '
Hi1  Ho2

The matrix M also is nonnegative definite (this follows from the same property of
the quadratic form Q(z)). Hence

(2.1.6) fozfi20 — py 2 0.
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Rewriting (2.1.6) we obtain u?; < uoapg0, which is known as the Cauchy-Bunyakov-
skit inequality.

Denote the rank of M by r. The possible values of r are 0, 1, or 2. If r = 2,
then (2.1.6) becomes a strict inequality, while (2.1.6) becomes an equality if r = 0
or r = 1. The following result contains some simple properties of the distribution
of the vector (£,n) related to the rank r.

THEOREM 2.1.2. The following are true:
1) r =0 if and only if the distribution of the vector (£,m) assigns unit mass
to a single point;
2) r =1 if and only if the distribution of the vector (£,n) is concentrated on
a straight line, but not at a single point;
3) =2 if and only if the support of the distribution of the vector (¢,n) does
not coincide with a straight line or with a single point.

PROOF. We consider only the first two cases when 7 = 0 and » = 1. The case
when 7 = 2 follows from 1) and 2).

If r = 0, then pgo = o2 = 0, so that the distribution of the random variables £
and 7 is concentrated at the points a0 and o3, respectively. Then the distribution
of the vector (£,7) is concentrated at the single point (a9, 2o1). Conversely, if the
distribution of the vector (&, 7) is concentrated at a single point, then oo = po2 = 0,
so that p11 = 0 by (2.1.6). Therefore the rank of the matrix M is equal to zero.

If r = 1, then the quadratic form Q(z) is not positive definite. Thus there is
a vector zop = (to,up) # O such that Q(2) = 0. It means by (2.1.5) that with
probability 1

(2.1.7) to(§ — a10) +uo(§ — ao1) =0,

which implies that the distribution of the vector (£,7) is concentrated at a straight
line to(z — a10) + wo(y — cao1) = 0. Conversely, let the distribution of the vector
(&,m) be concentrated at a straight line but not be concentrated at a single point.
Obviously this line passes the point (a10, 1), whence it follows that equality (2.1.7)
holds with probability 1 for some constants ¢y and ug. By (2.1.5) we have Q(29) =0
for zp = (to, up)’, that is, the quadratic form Q(z) is not positive definite. Since the
distribution is not concentrated at a single point of the line (2.1.7), at least one of
the numbers p99 or ug2 is nonzero. Thus the rank of the matrix M equals 1. O

If poo # 0 and poy # 0, then the rank of the matrix M equals either 1 or 2.
Let

M1 H11
2.1.8 = = .
( ) p VH20H02 0102

We have by (2.1.6) that p? < 1, that is, |p| < 1. It is clear that |p| = 1 if and only
if the rank of the matrix M is equal to 1, that is, if and only if the support of the
distribution of the vector (£,7) belongs to a straight line. In particular, if £ and 7
are independent, then u;; = 0, whence p = 0. On the other hand, the equality
p = 0 means that the random variables £ and 7 are uncorrelated.

The number p defined by (2.1.8) is called the coefficient of correlation (or simply
correlation) of random variables ¢ and 7.
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Sampling moments. Consider a sample (2.1.1) consisting of » independent
observations of a vector (£,7) and denote its distribution function by F(z,y).
Let F,(z,y) be the empirical distribution function of the sample (2.1.1) defined
by (2.1.3). The (i + j)-th mixed moment of the empirical distribution function
F,(z,y) is called the (i + j)-th sampling mized moment, that is,

(2.1.9) //:v Y dFy(z,y) Zﬁknk

The (i + j)-th mixed central moment of the empirical distribution function F,(z,y)
is called the (i + j)-th sampling mized central moment, that is,

mij = //(ZU - alO)i(y - CL01)j dFy,(z,y)
(2.1.10)

e > (& — a10)*(mk — a01)’
"=

It follows from (2.1.9) and (2.1.10) that an analog of (2.1.4) holds for sampling
mixed moments, namely

i d N g
i
(2.1.11) m; = Z Z (k) (;) (—1)k+lalfoaf)1az'—k,j—z-

k=0 1=0
It follows from (2.1.9) that

| RN
(2.1.12) Eayy = ~ > Eéin = ayj,
k=1
R |
(2.1.13) Da,-j = F kX—: Dfi:ﬂi = H(azi’zj - afj).

As in the proof of Theorem 1.2.1, we derive from (2.1.11) that
1
(2.1.14) Emi; = pij + O (ﬁ) )
1 1
(2.1.15) Dm,-,- = ;R‘FO F

where R is a constant depending on mixed central moments ux;. Relations (2.1.12)-
(2.1.15) hold if all expectations involved are finite.

The most important mixed moments are of order less than or equal to 2. We
often use the notation mg = s? and mg; = si. For sampling mixed central
moments m;; of order i + j = 2 we easily obtain that

n—1 K225 — 1
Emij'_‘Tlu'ij: Dmy; = %"‘0(”2)

which is a refinement of (2.1.14) and (2.1.15).
The number
r= mi _ M

4/ M20Mo2 S182
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is called the sampling coefficient of correlation (or simply sampling correlation).
Since r is the coefficient of correlation of the distribution function F,(z,y), we
have |r| < 1. The sampling coefficient of correlation r attains values %1 if and only
if all the sampling points (£1,71), (§2,7m2), ..., (éns7n) lie on a straight line. One
can show that

(2.1.16) Er=p+0 (%) ,

- 2 4 4
Dr = n” (N40 +H_(2)4 4 2 15222 _ dps 4pas )
(2.1.17) dn\pdo  wly  meopor  pi pupa  pupor

+0 (n'3/2) .

By the law of large numbers, the moments a;; approach o;; in probability as
n — oo. The latter result also follows from (2.1.12) and (2.1.13) by the Chebyshev
inequality if the moment ag;2; exists. Now we apply Theorem 1.2.2 to prove that
m;; — pi; and r — p in probability as n — oo.

Provided as;,2; < 0o we use relations (2.1.12) and (2.1.13) and the central limit
theorem for sums of independent identically distributed random variables {,’;m’;,
k = 1,2,...,n, and prove that sampling mixed moments a;; are asymptotically
N (j, (azi2j — of;)/n) normal. Applying (2.1.4) and (2.1.5) one can show that
the sampling mixed central moments m;; are asymptotically A(u;5, R/n) normal
under appropriate assumptions where R is a function of central moments involved
with asymptotic equality (2.1.15). One can also see from (2.1.16) and (2.1.17) that
the sampling correlation coefficient r is asymptotically A (p, C?(p)/n) normal where

u4o Moa | 2u22 | 4poa  4ps: dpis
+ =+ +— - - .
#20 Ho2  H20H02 M1 Hi1M20  H11M02

REMARK 2.1.1. More details about two-dimensional sampling vectors can be
found in the classical book by Cramér [9].

C%(p) =

Samples from k-dimensional distributions for k& > 2. Let (£1,&2,...,&k)
be a k-dimensional vector with real coordinates &;,&s,...,&: and the distribution
function

F(z1,z2,...,2x) = P{& < x1,&2 < Za,..., & < Zi}
The moments of this distribution are defined by
ai],iz...'ik = Eé’il ;2 e lik'
The number i; + 43 + --- + ik is called the order of the moment. We use the
notation ag) E¢, 1 = 1,2,...,k, for moments of first order. In particular,

(agl), .. ,agk)) (E&y,...,E&). The central moments are defined by

Pisig.., = E (51 _ agl))il ( - agz))iz N (Ek B agk))’ik

where %; + i3 + - -+ + i is the order of the moment. The general notation is
inconvenient for use if £ > 2. Thus we sometimes use another notation for moments
of second order, namely

\is =0l = ( i agi))z , Xij =E (Ei - a?’) (ﬁj - agj)) = Pij0i0;-
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Here af is the variance of the random variable ¢ and );; is the mixed central
moment of second order of random variables §; and §;. The coefficient of correlation
pij for random variables &; and ¢; is well defined if o; # 0 and o; # 0. Moreover
pij = Xij/(0io5). The matriz of central moments of second order A = (\;) is
nonnegative definite. The matrix of coeflicients of correlation

P= (Pij )

(well defined if all o; are positive) also is nonnegative definite. There is a relation-
ship between matrices A and p, namely

A=3XpX

where ¥ is a diagonal matrix with diagonal entries o1, ...,0,.

In particular, if A;; = 0 for all ¢ # j, then the random variables &;,&2,...,&k
are uncorrelated and the matrix A is diagonal, thus det(A) = Aj1heg... Ag. If
additionally all numbers o; are positive, then the matrix p is well defined and
moreover p = Ij.

Consider n independent observations of a random vector ({1,...,€x). This
means that there is a sample (14,...,&k:), 2 = 1,...,n. Denote by Fy(z1,...,zk)
the empirical distribution function of this sample defined in the same way as in the
case of two-dimensional vectors. The sampling moments are defined in this case by

1< "
Qiy4p...05, — ;7: Zéﬂi;&;; tr €k,;'
Jj=1

The number 4; + - + iy is called the order of the moment. We use the notation
agz) =n"130 &5, i =1,2,...,k, for sampling moments of first order. The central
sampling moments are defined by

1¢ m\* @) (k)
Miyis...ix =;;(€1j—a1 ) (52:'—‘11 ) ~--(§kj—a1 ) :

The number %, + - - - + i, is called the order of the moment. For moments of second
order we use the simpler notation

h=ﬁ=l§(e—éﬂ2 i=1,2,...,k
(13 7 n 4 < (%) 1 ’ YLy eyl
3=

li; = 71—; i ({,m - agi)) (fjm - agj)) = T8;S;j.

m=1

Here s? is the sampling variance of the random variable ¢; constructed from obser-
vations of the i-th coordinate of the vector, while r;; = l;;/(s;s;) is the sampling
coefficient of correlation between random variables §; and &;. Let L = (l;;) be
the matrix of sampling central moments of second order, and let R = (r;;) be the
matrix of sampling coefficients of correlation. It is clear that L = SRS for the
diagonal matrix S whose diagonal entries are s;, s3,. .., Sk.

Asymptotic behavior of the empirical distribution function, sampling moments,
and sampling coefficients of correlation for k > 2 are analogous to those in the cases
of k = 2 and k = 1. Further results and other properties can be found in a classical
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book by Cramér [9] as well as in other books devoted to the multidimensional case,
for example in [1, 4, 18, 28].
2.2. Sampling regression and its properties

General regression. Let £ and 7 be two random variables with the joint
distribution function F'(z,y). We denote the conditional expectations by

(2.2.1) mi(y) =E{¢/n=y},  ma(z) =E{n/{==z}.

The function m; (y) is called the regression of £ on n, while the function ma(z) is
called the regression of n on &. Regressions (2.2.1) possess an important property
of minimality explained in the following result.

THEOREM 2.2.1. If E£? < oo, then for any Borel function f

(2.2.2) E(¢ —ma(n))® < E( - F(m)>.
Analogously if En* < oo, then for any Borel function g
(22.3) E(n — ma(§))® < E(n — ().

PROOF. We prove inequality (2.2.3), the proof of inequality (2.2.2) is analo-
gous.
Let g be an arbitrary Borel function. Inequality (2.2.3) is trivial if

E(n - 9(¢))* = oo
Consider the case E(n — g(£))? < 0o. Then
E(n — 9(€))? = E((n — ma(§)) + (ma(€) — 9(€)))?
(2.2.4) = E(n — ma(£))? + 2E(n — ma2(€))(m2(€) — 9(£))
+ E(ma(€) — 9(€))*.
On the other hand,
E(n — ma(€))(ma(€) — 9(€)) = EE{(n — ma(€))(ma(€) — 9(8)) / ¢}

(2.2.5) = E(ma(€) — g(&))E {n—ma(&) / €} =0,

sinc
) E{ﬂ—mz(ﬁ)/ﬁ}=E{7l/f}—m2(€)=m2(5)—'m2(5)=0-
It follows from (2.2.4) and (2.2.5) that

(2.2.6) E(n — g(€))? = E(n — ma(6))? + E(ma(€) — 9(8))* 2 E( —m2(€))*. O

REMARK 2.2.1. Inequality (2.2.6) becomes an equality if and only if

E(ma(£) — 9(6))* =0,

that is, if P{g(¢) = ma(§)} = 1. Thus inequality (2.2.3) becomes an equali'ty i.f and
only if P{g(¢) = mg(€)} = 1. Similarly inequality (2.2.2) becc?mes an equality if and
only if P{f(n) = ma(n)} = 1. This implies that the regressions ml(y).a.nd ma(z)
can be defined as functions minimizing the right-hand sides of inequalities (2.2.2)
and (2.2.3), respectively. More precisely, every Borel function f*, such that

(2.2.7) E(¢ — f*(n)? = minE( ~ f(n))?
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where the minimum is taken over all Borel functions f, is the regression of £ on 7.
Similarly, every Borel function g*, such that

(2.2.8) E(n — g"(£))* = minE(n — g(¢))*
where the minimum is taken over all Borel functions g, is the regression of 7 on £.

Linear regression. We solved problem (2.2.7) in the class of all Borel func-
tions and found a function f(y) such that the random variable f(7) as a function
of 7 is the best mean square approrimation of the random variable £&. In other
words, we found a function f*(y) minimizing the mean square error E(¢ — f(n))2.
Problem (2.2.7) is also of interest in the cases where we consider a narrower class
of functions f(y) instead of the class of all Borel functions. Say, one can solve
problem (2.2.7) in the class of all linear functions or, more generally, in the class of
polynomials of a fixed degree, etc. A similar remark concerns problem (2.2.8), too.

Let L = {a+ Bz; a, B € (—00,00)} be the class of all linear functions on R. A
function g*(z) = a* + #*z such that

(2.2.9) E(n - ¢"(£))* = minE(n - 9(¢))”

is called the linear regression of n on €.
A function f*(y) = a* + *y such that

(2.2.10) (€~ f*(n))* = min E(§ - f(n))?

is called the linear regression of & on 7.
Below we find the linear regression of 7 on &, that is, we find a function

g (@)=a" +p"z

solving problem (2.2.9). We assume that uso > 0 and pgy > 0. Therefore we
exclude the case of pgo = 0 and poz = 0 for which the distribution of the vector
(&,m) is concentrated at the point (@19, ao1).

Let G(a, 8) = E(n—g(£))? where g(z) = o+ Sz is an arbitrary linear function.
Then

G(e, B) = E((n — co1) — B(§ — a0) + (a01 — Bao — a))?

2.2.11) ; )
= p208° — 21118 + po2 + (a01 — Baro — @)°.

To solve the regression problem, it is sufficient to find the minimum of the function
G(a, 8). It follows from (2.2.11) that

(22.12) B =P =" =p2 o =ay — e
H20 g1
where p is the coefficient of correlation between random variables ¢ and 7 defined
by (2.1.8). The number fBs; defined by the first equality in (2.2.12) is called the
coefficient of linear regression of n on €.’
Substituting coefficients (2.1.12), the regression equation y = ¢g*(z) = o* + f*z
becomes of the form

(2.2.13) y = ag1 + Pa1(z — ayo).
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This is the equation determining a straight line passing through the point (a1, @01).
This equation can also be written in the form

Yy—oan T —Qayo

2.2.14 = .

( ) p P

Equation (2.2.14) is called the canonical equation of the linear regression of n on §.
The number E(n — a* — 8*¢)? is the minimal mean square error in the prob-

lem (2.2.9) and is called the least variance of the random variable n. In view

of (2.2.11) and (2.2.12) we get
(2.2.15) E(n—o* — 8€)? = 03(1 - p?).

It follows from (2.2.15) that |p| = 1 if and only if n = a* + #*¢ with probabil-
ity 1 where a* and §* are defined by (2.2.12), that is, n = ag1 + f21(£ — a10)
with probability 1. Therefore we obtained the straight line for the assertion 2) of
Theorem 2.1.2, that is, we found the coefficients ¢y and up in equality (2.1.7).

If p = 0, then it follows from (2.2.14) that the linear regression of n on £
is of the form y = ap;. Note that this is the straight line parallel to the z-axis
and passing through the point (a0, @01). Moreover we obtain from (2.2.15) that
E(n — a* — B*¢)? = 02, that is, the variance of the random variable 7 does not
decrease after subtracting the linear regression o* + §*¢.

It is not hard to prove that if the general regression y = my(z) of n on £ is
linear, then it coincides with the linear regression given by (2.2.13).

Solving the analogous problem (2.2.10), we find the linear regression f*(y) =
o* + B*y of £ on 1 whose coefficients are given by

(2.2.16) B* =Pz = % = pa—z, o* = ayg — f*ap.

The number 5 is called the coefficient of the linear regression of £ on 1. Therefore
the equation of the linear regression of £ on 7 is of the form

(2.2.17) z = a10 + fr2(y — aor).

The regression can be rewritten in the canonical form:

T — Q) Y — o1
=p .

(2.2.18) — -~

The least variance of the random variable £ is equal in this case to
(2.2.19) E(¢ —a* —B*n)? =02 (1-p%).

If p = 0, then it follows from (2.2.16) and (2.2.17) that the linear regression
of £ on 71 is £ = ap; this is the straight line passing through the point (a9, ao1)
and parallel to the y-axis. It follows from (2.2.19) that E(¢ — o* — 8*n)? = 0%, that
is, the least variance of ¢ coincides with the variance o?.

If |p| = 1, then we obtain from (2.2.19) that £ = o* + §*n with probabil-
ity 1 where o* and * are defined by (2.2.16). Moreover, we obtain from (2.2.14)
and (2.2.18) that the linear regression of 7 on £ and that of £ on 1 coincide.

If 0 < |p| < 1, then linear regression (2.2.18) can be rewritten in the form

y—oor _ 1 z—oo

2.2.20 =
( ) a2 P o1
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(cf. (2.2.14)). It follows from (2.2.14) and (2.2.20) that the linear regression of 7
on ¢ and that of ¢ on 7 coincide if and only if |p| = 1. Otherwise they do not
coincide; in the case p = 0 they are perpendicular and each of them is parallel to
the corresponding coordinate axis.

Parabolic regression. Let P be the family of polynomials
g(x) =cot+cix+ - +cpak
of degree k whose coefficients cg, ¢y, ...,k are real. A polynomial
9*(@) =cg+cjz+ - +ciz”
such that
(2:2.21) E(n - "(€))* = minE(n - 9(¢))’

is called the parabolic regression of n on €. Assuming that all the moments occurring
in (2.2.21) are finite we obtain the following condition for the minimum in (2.2.21):

190G ;
(2.2.22) 306 E(€*(9(8) —m)) = cocxio + -+ + creriyr0 — i1 =0,
i=0,1,...,k (here G = G(co,c1,...,¢) = E(n — g(£))? for g(x) = co + c12 +
+++ + cxz¥). If the moments a;; are known, the coefficients 5, €ty -+, Cf can be

determined from the above k + 1 equations. The evaluation of the coefficients
can be simplified if the polynomial g(z) is represented as a linear combination of
orthogonal polynomials p;(x) of degree i related to the distribution of ¢ and such
that

(2.2.23) Epm(E)pi(6) = {

1, m=l,
0, m#£L

Any polynomial g(x) of degree k can be represented as

9(x) = copo(z) + c1p1(z) + - - - + cxpr ()

for some coefficients co, c1, .. ., cx. According to (2.2.23) the condition for the min-
imum becomes of the form

198G
(2.2.24) 29 = E@:(€)(9(§) =) = c; — Enpi(€), i=0,1,...,k.

Using (2.2.24) we determine the coefficients ¢; = Enp;(¢), whence the parabolic
regression of n on £ is

(2.2.25) 9°(z) = cgpo(z) + cip1(z) + - - + cipr(a).

Note that the coefficients ¢ do not depend on the degree k of the polynomial g(z).
Therefore one can apply the recursion to find the regression. Namely if the parabolic

regression g*(z) of degree k is known in the form (2.2.25), then the parabolic
regression of degree k + 1 can be obtained in the form

coPo(z) + -+ + ckpi(x) + ¢y 1pr41(2)
by evaluating only one extra number c} +1 = Enpr41(€). By (2.2.23) we get
(2.2.26) E(n—9"(€))* =En® — (c5)> — - — (c})?
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where g*(z) = cgpo(x) + - - - + cip(z). It is seen from (2.2.26) that a larger degree
of the parabolic regression results in a smaller error of approximation E(n — g*(£)).

Note that the above relations hold not only for polynomials p;(z). In fact, an ar-
bitrary sequence of functions p;(z) satisfying condition (2.2.23) can be used to con-
struct the function g(z) = Ef=1 cipi(z). Note that relations (2.2.24) and (2.2.26)
remain true in this case, too.

To this end we note that the parabolic regression of £ on 7 can be evaluated
in the same way as in the case of problem (2.2.21). This regression possesses the
same properties as that of 1 on £.

Sampling linear regression. Let F},(z,y) be the empirical distribution func-
tion constructed from sample (2.1.1) according to (2.1.2) and (2.1.3) where sam-
ple (2.1.1) consists of n independent observations of the random vector (£,7) with
the distribution function F(z,y).

The sampling linear regression of n on £ is called a function g*(z) = a* + f*z
such that

(2:2.27) >_(m = g (&))" =min > "(m — 9(&))?
=1 i=1

where L is the family of all linear functions. The sampling linear regression of &
on 1 is called a function f*(y) = o* + B*y such that

(22.28) > (&= f1(m)? = min} (& — f(m))*
i=1 i=1

To determine a linear regression g*(z) = a* + *z solving problem (2.2.27) it
is sufficient to find a = o* and 8 = B* for which the function

n

(2.2.29) G(e,B) = 711 Y (m—a— &)

=1

attains the minimum. Taking into account (2.1.9) and (2.1.10) and applying the
same argument as in the case of (2.2.11) we obtain

(2.2.30) G(a, B) = maof? — 2m118 + mo2 + (ao1 — Baio — @)?,
whence
(2.2.31) Br=by="=r2 o =ay —fa

mao S1

where r is the sampling coefficient of regression (see Section 2.1). The random

variable by; defined by (2.2.31) is called the sampling coefficient of linear regression

of n on £. Using (2.2.31) we rewrite the regression equation y = g*(z) in the form
Yy—an T — a0

(2.2.32) =T

Equation (2.2.32) is called the canonical equation of sampling linear regression of 7
oné.
As above we get
* * 1 = * %
(2.2.33) G(a",f7) =~ (m—a' &) =3 (1-r7).

i=1
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Reasoning in the same way as in the case of the least variance (2.2.15) we obtain the
same results about G(a*, 8*) defined by (2.2.33). The only difference is that these
results involve sampling characteristics instead of the corresponding characteristics
of the random vector (¢,7).

The method for obtaining sampling linear regressions as solutions of extremal
problems (2.2.27) and (2.2.28) is called the least squares method. For example,
the extremal problem (2.2.27) is to find the minimum of the sum of squares of
distances evaluated in the y-direction between sampling points (¢;,7;) and straight
lines y = a + Bz. The same is true for the extremal problem (2.2.28) with the
difference that the distances are evaluated in the z-direction between sampling
points (&;,7;) and straight lines y = o + Sz.

Solving extremal problem (2.2.28) and using representations, similar to (2.2.29)
and (2.2.30), we get the sampling linear regression f*(y) = o* + f*y where
(2.2.34) ,6* = b12 = @ = 7‘8—1, o = aip — ,3*(101.

mo2 S2
The random variable b;5 defined by (2.2.34) is called the coefficient of the sampling
linear regression of & on . The canonical equation z = o* + f*y of the sampling
linear regression of £ on 7 is

T — aio — ao1
= ry

(2.2.35) . -

in view of (2.2.34). Reasoning in the same way as in the case of equalities (2.2.18)
and (2.2.20) we prove the same results for sampling regressions (2.2.32) and (2.2.35).

The asymptotic behavior of coefficients bj3 and bs; as n — oo is as follows.
If 01 # 0 and o3 # 0, then r — p in probability as n — oo, thus by (2.2.31)
and (2.2.34) we get bp; — B21 and b2 — Pia in probability as n — oco. Further
applying (2.1.14) and (2.1.16) we obtain

1 1
Ebiz = P12+ O (-) , Ebyy = Ba1 + O (—)
n n
provided that all necessary moments are finite. Moreover one can show that

Dbz = 22 +0 (n"¥2), Dby =2 +0 (n"2)
n n
where ¢;12 and co; are some positive constants.
One can also show that b5 is asymptotically AV (B12n~1c12) normal, and by; is
asymptotically N(821,n 'c21) normal.

Sampling parabolic regression. Let P be a family of polynomials
9(2) =Y +mz +--- + 1
of degree k whose coefficients vp,71, ...,k are real. A polynomial
g* (@) =% +riz+- -+ "
such that

(2.2.36) ;(m ~9"(6))* = min ;(m - g(&))?
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is called the sampling parabolic regression of n on §. Let g(z) = vo+v,z+.. A y®
and

n

= 1
G¥0:Y1s- - ) = -,1; D= 9() = =3 (=0 —mbi— - — k)’
=1 =1

Then condition (2.2.36) can be rewritten in the form

190G 1<~,;
P ! i) —n:) = aio+ ria; ,-|-~---|- . — 1
=0, 3=0,1,... k.
Condition (2.2.37) becomes simpler if the polynomial g(z) is represented ag 5 linear
combination of orthogonal polynomials p,,(x) of degree m related to the sampling
distribution of £ and such that

= 1, = l,
(2239) > m@me)={; 77
i=1 ’ )

Every polynomial g(z) of degree k can be represented as

9(z) = copo(x) + - - + cxpi()

with some real coefficients co, ci, ..., ck. Using property (2.2.38) we rewrite condi-
tion (2.2.37) in the form
106 1 1
(2.2.39) 256, 2 PE0E) —m) = -1 2 mes(6) =0,
i=0,1,... k.

This system of equations is easy to solve; its solution is given by
1 n
(2.2.40) ¢ = - ;q,.pj(g,.), i=0,1,...,k

Thus the sampling parabolic regression of non € is
(2.2.41) 9" (2) = cgpo(x) + cipr(z) + - - - + cpr(z).

In view of (2.2.40) the coefficients cj depend only on the polynomial p;(z). This
implies that if the sampling parabolic regression g*(x) of degree k is represented in

the form of (2.2.41) and one needs to obtain the regression of a higher degree, say
of the degree k + 1, that is,

9" (z) = cppo(z) + api(z)+---+ cipr(z) + Chy1Pk41(2),

then one can use coefficients ¢, J =0,1,...,k, known from the preceding regres-
sion. The only extra work is to evaluate the coefficient ¢k 41 by using (2.2.40) for
j =k + 1. For the regression (2.2.41) we have

(2.2.42) %Z(m =9 (&))* = as — (§)? -+ — (c})”
i=1
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where agg is the sampling moment of order 2 defined by (2.1.9). It follows from
equality (2.2.42) that a larger degree of the regression results in a smaller error of
approximation.

To this end we note that the sampling parabolic regression of £ on 7 is defined
similarly to (2.2.21). This regression possesses all the properties as does that of 5
on .

REMARK 2.2.2. In this section we considered the regression analysis only for
two-dimensional vectors. For the higher-dimensional case see [1, 18, 28].



CHAPTER 3

Estimation of Unknown
Parameters of Distributions

3.1. Statistical estimators and their quality measures

Parametric families of distributions and statistical estimators of pa-
rameters. Let £ be an observation that is a random element assuming values in a
measurable space (X, B). Let the probability distribution of the random element &
be either unknown or partially known. Let {Py,8 € ©} be a family of probability
measures on (X,B) and let § = (64,02,...,6k) be a k-dimensional parameter be-
longing to a subset © C R, k > 1. We assume that the distribution of the random
element £ depends on the parameter § which is unknown for the statistician. Thus
the measure Py is the distribution of £ if the unknown parameter is equal to 6, that
is, Pg{¢€ € A} = Py(A) for all A € B. The problem is to estimate the unknown
parameter 6 or a function ¢(#) of the parameter § with the help of the observation
E=u1.

The space X is called the sampling space. Every measurable function T' = T'(z)
mapping (X, B) onto a measurable space (Y, S) is called a statistic. If © is a Borel
set of R* and B(©) is the o-algebra of Borel subsets of ©, then, in the case of
(Y,8) = (0,B(0)), a statistic T = T'(z) is called a statistical estimator (or just
estimator) of an unknown parameter @ constructed from an observation { = z.
In the case of (¥;S) = (R*,B) and R* # ©, we sometimes refer to a statistic
T = T(xz) as an estimator of a parameter 6.

The notion of a statistical estimator of a function of a parameter 8 can be
introduced in an analogous way. The random variable T' = T'(£) is also called an
estimator of a parameter (or, an estimator of a function of a parameter).

Statistical estimators of a parameter # introduced above are sometimes called
point estimators. A point estimator T' constructed from an observation £ = x pro-
vides a single value ¢t = T'(z) which we treat as an approximation of the parameter.
However the true value of the parameter can be (and usually is) different from
an estimator. Therefore it is very important to know the error of approximation
appearing due to a specific estimator. For this purpose, statisticians usually also
indicate a region (an interval, if k = 1) such that the probability that the true value
of a parameter 8 belongs to the region is large.

Let k = 1; thus @ is a one-dimensional (scalar) parameter. Let T} = T1(z) and
T, = Ty(z) be two statistics with values in R'. Assume that Ty < T, and for a

given v € (0,1)
(3.1.1) Po{T1(§) <0 < T2(§)} >~ forallfeO.

The interval (Ty(€),T2(€)) is called a vy-confidence interval or a confidence inter-
val of level ~ for the parameter . The number v is often called the confidence

39
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probability or confidence level. The numbers T3 (€) and T3(€) are called the lower

and upper confidence bounds, respectively.
Now let £k > 1. Then a parameter 6 is a k-dimensional vector and instead of

-confidence intervals we define y-confidence regions G = G(§) C R* with the help
of a condition similar to (3.1.1), namely

(3.1.2) Pe{0 € G(§)} >~ forallfe®O.

The ~-confidence intervals and y-confidence regions defined by (3.1.1) and (3.1.2)
can be constructed by using point estimators of the unknown parameter 6. For
example, if T is a point estimator of a parameter 8, then, as a confidence interval,
one can take (T — &, T + &) where ¢ > 0 is found from condition (3.1.1).

In what follows we often treat a sample £ = (£1,&;,...,&,) as an observed
random element £. For this case, the sampling space is (R", B"), while the family of
distributions of the sample £ is {P§, § € ©}. The point estimation of parameters
for this case is considered in the book by Lehmann [21].

Unbiased and consistent estimators. Let £ be an observed random ele-
ment, let § = (61,...,0;) be an unknown parameter of the distribution, and let
9= (51, e, ﬁk) be a statistical estimator of the parameter 6 constructed from the
observation £. An estimator 8 is called unbiased if

(3.1.3) Eef=6 forallfc®

where Ejy is the expectation with respect to the distribution Pg. R
In the case of estimation of a function ¢(6) of a parameter 6, a statistic ¢ is
called an unbiased estimator of the function ¢() if

(3.1.4) Egd = () forall 6 € ©.

By 6, = 8(¢™) we denote statistical estimators of a parameter 0 in the case where
an observed random element is a sample £(™ = (&;,&,, ... ,€n). In such a case we
deal with a sequence of estimators §n, n=12,....

If an estimator & does not satisfy condition (3.1.3), then we consider the bias
of the estimator § defined by

b(6) = E48 — 6.
A sequence of estimators §n, n = 1,2,..., is called an asymptotically unbiased
estimator of a parameter 0 if
(3.1.5) lim Egf, =0 forallfe®©
n—0o0

or, in other words,
lim b,(0) =0 foralldec®
n—oo

where b,(6) = Eggn —4@ is the bias of the estimator §n The notion of asymptotically
unbiased estimators of a function ¢(6) of a parameter can be introduced in a similar
way.

When analyzing data, statisticians often restrict themselves to the case of unbi-
ased estimators, since there exists a simple and useful theory of unbiased estimators
where the quality of an estimator is measured by its variance.
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On the other hand, there are many cases where the requirement that an estima-
tor should be unbiased is too restrictive. For example, it is possible that unbiased
estimators do not exist at all or are useless in practice for a given parametric model.
To see this we consider the following examples.

ExXAMPLE 3.1.1. Let £ be a Poisson random variable with parameter § > 0,
that is, Pe{¢ = z} = 0%e*/z!, £ = 0,1,2,... . Assume that we want to estimate
the function ¢(6) = 1/6 of the parameter 8 by an observation £. Let T = T'(£)
be an unbiased estimator of ¢(6), that is, condition (3.1.4) holds. Then it can be
rewritten as

= = _, 1
ZT(m)He =3 for all 6 € (0, 00)

r=
or, in other words,

> gz+1 0 g

(3.1.6) D T@—=e=) - forallf€(0,0)
=0 s=0

It is obvious that there is no function T'(z) that satisfies condition (3.1.6) for all

6 € (0,00) and does not depend on #. This means that there is no unbiased

estimator of ¢(d) =1/6.

ExXAMPLE 3.1.2. Let £ have the geometric distribution with parameter
6 (0,1),

that is, Pe{{ =z} = 6*(1 - 0), 2 =0,1,2,... . Assume that we want to estimate
the parameter §. Then the condition that T = T'(§) is an unbiased estimator is
given by

oo 0 oo
T(x)f* = — = 0° for all 8 € (0,1).
Srwr ==y eraco
Comparing the coefficients for degrees of § we see that the only unbiased estimator
of 8 is the statistic T'(z) such that 7(0) = 0 and T(z) = 1 for z = 1,2,....
Since this statistic does not belong to the set © = (0,1) of possible values of the
parameter, it gives a wrong approximation of the true value of § and the estimator
is useless for practice.

The following example shows that, at least in some cases, an estimator with a
small bias and small mean square error is better that an unbiased estimator with
a large variance.

EXAMPLE 3.1.3. Let £(™ be a sample from the normal N(6;,62) distribution,
) = (&,&,...,&). The unknown parameter is § = (61,0,). Consider the
problem on estimating the function ¢(8) = 63.

Consider the sampling variance

(3.1.7) F=my= Y (G- @)
=1

as an estimator where a; is the first order sampling moment defined by (1.2.2).
Applying (1.2.9) for k = 2 we get s? = @, — a3 where a; and @ are defined in the
proof of Theorem 1.2.1. Note that Egay = 62. In view of (1.2.10) for £ = 2 we
have Ega? = 62 /n, whence Egs? = 02(n — 1)/n, that is, the estimator s? is biased



42 3. ESTIMATION OF UNKNOWN PARAMETERS OF DISTRIBUTIONS

(however it is asymptotically unbiased). This implies that an unbiased estimator
is given by

w2_ M o 1 ¢ )2
(3.1.8) = —s —n_li;(& a1)?.
Theorem 1.4.2 implies that £((n—1)52/62) = x*(n—1). This together with (1.4.6)
yields
204
n—1

(3.1.9) Dp3?% =

Consider the class of estimators T = A\52%, A € (0, 00). Since
EoT) = AEg32 = \02,

there is only one unbiased estimator 32 of the function ¢(6) in this class. The mean
square error of the estimator T’ equals

2)2
n—1

+(1- ,\)2) 03,

The right-hand side of (3.1.10) attains its minimum at A* = (n—1)/(n+1). Taking
into account (3.1.9) we obtain

(3.1.10) Eo (Th — 63)° = (

2 -

ni 03 < ——= 63 =E (32 - 62)%.

Therefore the estimator T)» has a smaller mean square error than that of the
unbiased estimator 52. Since EgT\+ = (n — 1)62/(n + 1), the estimator Ty. is
asymptotically unbiased. Note that s? also is an asymptotically unbiased estimator,
but s2 = Ty for X' = (n — 1)/n # A*. This means that the estimator s? is worse
than T)» in the sense of the minimum of the mean square error.

Eo (Ta- — 63)° =

Moreover,
(3.1.11) Eo (To- — 02)° < Eq (s* — 62)° < Eq (3% — 63)°.

- Let $n, n=1,2,..., be asequence of estimators of a function ¢() of a parame-
ter @ constructed from a sample £ = (&1,&2,---,&n)- A sequence of estimators ¢,
n=12,...,is called a consistent sequence of estimators of a function ¢(@) if for
alle >0
(3.1.12) lim Pof{|¢n — (6)] >} =0 forall 6 €®.

n—oo

For brevity we also say that an estimator én satisfying condition (3.1.12) is a

consistent estimator of the function ¢(6).
Note that s and 52 introduced in Example 3.1.3 by formulas (3.1.7) and (3.1.8)
respectively, as well as T\~ = A*32 are consistent estimators of the function

d’(e) = 031

since they satisfy condition (3.1.12) in view of the Chebyshev inequality and rela-
tions (3.1.9) and (3.1.11).
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We say that a sequence of estimators $m n=12,..., is a strongly consistent
sequence of estimators of a function ¢(0) (alternatively, ¢n is a strongly consistent
estimator of a function ¢(0)) if

(3.1.13) Pe {nlingo On = ¢(0)} =1

For example, it follows from (1.1.4) that the empirical distribution function
F,(z) is a strongly consistent estimator of the distribution function F(z).

Consistent estimators with minimal variance. It is natural to compare
unbiased estimators according to their variances. Let £ be an observed random
element with values in a measurable space (X, B) and with a distribution belonging
to a parametric family of probability measures {Py, 8 € ©}.

Consider the problem of estimating a real function g(f). Consider the following

classes of estimators:
(1) the class UY of unbiased estimators T = T(£) of the function g(f) at a
given point @ and such that EgT? < oo,
(2) the class U§ of unbiased estimators T' = T'(£) of zero at a given point 6
and such that EgT? < oo.
Therefore

U¢ = {T:E4T = g(6), E¢T? < oo},
U¢ = {T:EeT =0, E¢T? < o0} .
We also consider the following classes:
U= (U Up=[)Us-
6co 1)

The following result contains necessary and sufficient conditions for an estima-
tor to be optimal in the sense of minimum of the variance in the classes Ug and
U,.

THEOREM 3.1.1. The variance of an estimator T € U, (respectively, T € Ug )
is minimal in the class U, (respectively, in Ug ) if and only if EgTh = 0 for all
h € Uy and € © (respectively, EgTh = 0 for a given 8 € © and for all h € Uf).

PROOF. Necessity. Let an estimator T' € Ug have minimal variance in the class
U¢ for a fixed § € © and h € U§. It is clear that T + Ah € Uy for all constants A,
Then
Do(T + Ah) = DoT + 2)E¢Th + A2Dgh.
If EgTh # 0, then there exists a number A such that

2)\EgTh + N\2Dgh < 0.

This implies that Dg(T + Ah) < DgT, which contradicts the assumption that the
estimator T has minimal variance in the class Ug . Therefore EgTh = 0 for all
heU§.

Sufficiency. Let condition EgTh = 0 hold for all A € U§ and for an estimator
Te Ug where 0 € O is fixed. Let TV € Uga be another estimator. Then

T-T=heU]
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and
DyT’ = DyT + 2E¢gTh + Dgh > DgT,
since EgTh = 0. This means that the estimator T" has minimal variance in the class
U?.
The proof for the class U, is analogous. a

Theorem 3.1.1 is convenient for applications if a family of distributions contains
a sufficiently wide class of unbiased estimators of zero.

Optimal estimators. As in the preceding section we consider the problem
of estimating a function g(6) from an observation { assuming values in (X, B) and
whose distribution belongs to a parametric family {Py, 6 € ©}.

Let T = T'(¢) be an estimator of a function g(6) and let (T, g) be a nonnegative
loss function (a loss appears because we approximate g = g(6) by an estimator T').
A function

(3.1.14) R(T;0) = Egr(T'(¢),9(9)), 0o,

is called a risk function of an estimator T = T'(£) if the true value of the parameter
is 6.
Examples of loss functions are presented by the quadratic function

T(T, g) = (T - g)Z
used in the preceding section, by the Laplace function 7(T’, g) = |T' — g|, and by the

function 0, [T—gl<b
) — g0,

T =
r( ’g) { 1) |T_g|>b)

where b > 0. The latter function appears in the interval estimation of parameters.
Sometimes we treat a risk function as a measure of quality of estimators. We
consider the general case where an estimator is not necessarily unbiased and the
loss function is not necessarily quadratic.
An estimator T = T”(&) belonging to a class K of estimators of a function g(6)
is called admissible for the class K with respect to a loss function r(T), g) if there is
no estimator T° € K such that

(3.1.15) R(T;0) < R(T';0) forall0e®©

and inequality (3.1.15) is strict for at least one § € ©. An estimator T = T"(¢)
that is admissible for the class of all estimators is called an absolutely admissible
estimator of the function g(6).

A statistic T* = T*(¢) € K is called an optimal estimator of a function g(0) in
the class K with respect to a loss function (T, g) if for all T € K

R(T*;0) < R(T;6) forall 8 € ©O.

A statistic TV = T"(§) € K is called an optimal estimator (or, locally optimal
estimator) of a function g(6) at a point 6y in the class K with respect to a loss
function (T, g) if for all T € K

R(T";60) < R(T; o).

It is clear that the set of risk functions R(T;6) is unordered in the class of all
estimators T'. For this reason we consider narrower classes of either estimators or
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distributions. One of the possible approaches here is to exclude estimators that are
not admissible.

EXAMPLE 3.1.4. Let £™ = (£,&,,...,&,) be a sample where £1,&2,...,é,
are independent identically distributed random variables depending on an unknown
parameter 0. Assume that § = Egé;. Let T = T(6(™) = £,. It is obvious that T
is an unbiased estimator of the parameter 6. Let EgfZ < oo for all 6 and let
7(T,6) = |T — 6| be the loss function. Then R(T;0) = Eg|é; — 0> = Dgé;.
The estimator T/ = T'(§) = n~1) 1, & also is an unbiased estimator of the
parameter 6. In this case

R(T';6) = Eo|T' — 0% = %Dg{l < R(T;0).

Moreover the inequality becomes strict if n > 2. Therefore T' is not an admissible
estimator in the class of unbiased estimators of the parameter 6.

Below we consider the Bayes and minimax approaches allowing one to avoid
the problem that the set of risk functions is unordered.

The Bayes and minimax approaches. Let © be an open set of R* and
let Q be a o-finite measure on ©. Without loss of generality we can extend the
measure © to the whole space R* by putting Q(R¥\©) = 0. Let T = T'(£) be some
estimator of a function g(f) and let R(T’;6) be a risk function of the estimator T'
defined by (3.1.14). The number

(3.1.16) R(T) = / R(T; 6) Q(d8)

is called the risk of the estimator T. The measure Q is called the a priori measure.
An estimator T* is called a Bayes estimator of a function g(f) with respect to a
loss function (T, g) and the a priori measure Q if

R(T*) < R(T)
for all estimators T' where the risk R(T) is defined by (3.1.16). In other words,
R(T*) = mqin R(T)

for a Bayes estimator.

Sometimes an estimator is called Bayes only in the case where Q is a probability
measure. Otherwise an estimator minimizing the risk (3.1.16) is called a generalized
Bayes estimator.

Note that we can think of 6 as a random parameter with distribution Q if Q
is a probability measure. Then all Bayes estimators T* are of the form

T =E{g9(0) / ¢}

in the case of r(T,g) = (T — g)? where the conditional expectation is evaluated
with respect to the conditional distribution of the parameter 6 subject to £. In its
turn, the latter distribution can be found by the Bayes formula and this explains
why these estimators are called Bayes. In this case, a Bayes estimator minimizes
the possibility that the risk is the mean square error

R(T) = E(T(€) - 9(6))* = ER(T;6)-
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Another approach is based on the comparison of maximums of risk functions
for estimators supgeg R(T'; 6). A statistic T = T"(§) is called a minimaz estimator
of a function g(6) with respect to a loss function (T, g) if for all estimators T

sup R(T";0) < sup R(T};0).
) )

In other words,

sup R(T"';6) = inf sup R(T’;0)

6€0 T geo
for a minimax estimator 7”. There are many relations between minimax and Bayes
estimators; some of them are given below.

THEOREM 3.1.2. Let T* be a Bayes estimator of a function g(6) with respect
to a loss function r(T,g) and the a priori probability measure Q. If there is an
estimator T' such that

(3.1.17) R(T';6) < / R(T*;t) Q(dt)

for all 8 € ©, then the estimator T is minimaz.

PROOF. Let T be an arbitrary estimator of a function g(#). Then for allt € ©

sup R(T;0) > / R(T;1) Q(dt) > / R(T*;t) Q(dt) > R(T';1). O
6€O

Assume that the measure Q possesses the density g(t). Consider the set
Ng = {t:q(t) > 0}.

Note that inequality (3.1.17) becomes an equality for almost all § € Ng, since
otherwise

[ rons)do < / R(T*;0)q(6) db,

contradicting the assumption that the estimator 7" is Bayes. This remark allows
one to obtain the following criterion, which is equivalent to Theorem 3.1.2.

THEOREM 3.1.3. Assume that an estimator T ezists such that
1) T is a Bayes estimator with respect to some probability measure Q possess-
ing density q(t);
2) R(T;t) = c = const fort € Ng;
3) R(T;t) <c fort¢ Ng.
Then the estimator T is minimaz.

If an estimator 7" is minimax and is Bayes with respect to a probability mea-
sure Q with density ¢(t), then

supR(T';t) = / R(T';t)q(t) dt.
teo

Therefore any minimax estimator is a Bayes estimator that smooths the risk func-
tion. This means that the a priori measure Q' related to this estimator suggests
that statisticians pay the same attention to all possible parameters 6, instead of the
approach suggested by Bayes estimators T* = T, that corresponds to other a priori
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measures Q # Q', namely to pay special attention to some (the most probable)
values of 0. Therefore

/ R(TS: ) Q(dt) < / R(T';1) Q'(de).

This inequality explains why the distribution Q' in Theorem 3.1.3 corresponding
to a minimax estimator 7" is often called the worse or least favorable.

The least favorable distribution Q' does not always exists, thus one can use the
following criterion for minimax estimators.

THEOREM 3.1.4. Assume that there are an estimator T' and a sequence of
distributions Qm, m = 1,2, ..., possessing the densities ¢, (t) such that

(3.1.18) Er(T';9(t) < lim sup / Ee(T2; 9(8))gm(t) dt

for all t € © where T}, is a Bayes estimator of a function g(f) with respect to a
loss function 7(T; g(t)) and the a priori distribution Q.,. Then the estimator T' is
minimaz.

PROOF. For all estimators T of a function g(9),
supEir(T;9(6) > [ Er(Tig®)am(®)dt > [ Eur(Thi g®)am(®)dt.
According to (3.1.18) this implies that
supB,r(T'g(t)) 2 lim sup f Eer(Tm; 9(£))am(t) dt 2 sup Eer (" (1)),
whence it follows that the estimator 7" is minimax. O

EXAMPLE 3.1.5. Let £&™ = (£,&,...,£,) be a sample from the normal
N(0,1) distribution. Let the a priori measure also be normal Q,, = N(0,m)
distribution where m is the variance. Then the Bayes estimator of the parameter
6 with respect to the quadratic loss function and the a priori A/(0,m) distribution
coincides with the a posteriori mean E(6/¢™ = z) = 0% (z). Simple calculations

show that
1 n
m@ ==z (1+—).
0. () n;:z:/( + )

The variance of the a posteriori distribution is
m

() = ) =
D (0 / 3 z 14+ nm’
whence it follows that the mean square error of the estimator 6y, is

- / Ee(65, — £)gm(t) dt

where g, (t) is the density of Q,, with respect to the Lebesgue measure. This
implies for the estimator 0,(z) =n=13 -, z; that

07 =600/ ) =

E(fn — t)? = 1 lim / E: (0%, — t)gm (t) dt.
n m—r0o0
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Thus the estimator 5,, is minimax by Theorem 3.1.4. Note also that the least
favorable distribution does not exist in this case.

We show in Example 3.2.1 below that 5,1 is a Pitman estimator of the parame-
ter 9. By (3.2.9) this estimator is Bayes with respect to the quadratic loss function
and the Lebesgue measure taken as a priori measure.

The following is an example where the least favorable distribution exists.

EXAMPLE 3.1.6. Let £™ = (¢1,&,,...,&,) be a sample from the binomial dis-
tribution with parameter § € © = [0, 1], that is, the random variables ¢1,. .., &, are
independent, identically distributed, and assume values 1 and 0 with probabilities 6

and 1 — 0, respectively. For the estimator 0, (z) = n~! Yo T,
Eg(6, — 6)? = 6(1 — 6)/n.

Hence the assumption of Theorem 3.1.3 does not hold for this estimator. Consider
another estimator

(3.1.19) fn(z) = (5"(’”) + %) (1 * %> i

for which

o0 — 07 = (14 1) B (Gamor - £) o1
R RV ) A NG RV ) B eV Ok
that is, the risk function of the estimator 8] does not depend on 6.
Let By, ,», be the beta distribution with density

N (/\1 + /\2)
T'(A)T(A2)
where A; > 0 and Ay > 0 are two parameters of the distribution. Let the a priori

distribution Q be a Beta By4i,n4+1 distribution. It can be proved in this case
that the a priori distribution coincides with the Beta distribution (3.1.20) with
parameters \; = N + nf,(z) + 1 and Ay = N + n(1 — 6,(z)) + 1. Since the mean
value of the distribution By, ,», is A1/(A1 + A2), the Bayes estimator with respect
to the a priori distribution Q = By41,n+1 and the quadratic loss function is

N +nby(z)+1 _ 8u(z) + (N +1)/n
2N+n+2  1+2(N+1)/n ~
If N+ 1 = \/n/2, then the latter estimator coincides with the estimator 6} (z)

defined by (3.1.19). By Theorem 3.1.3 6}, is minimax. On the other hand, it is
known that this is a Bayes estimator with respect to the a priori distribution

(3.1.20) thTl1-t)Ml 0<t<,

03 (z) =

Q = Bn41,N+1

for N = \/n/2—1. This means that a priori distribution is the least favorable. If n
increases, then the support of this distribution tends to concentrate in a neighbor-
hood of the least favorable value of the parameter § = 1/2 for which the variance
6(1 — 8)/n = 1/(4n) of the estimator 8, is maximal. The estimator 0, itself is not
minimax, since
61-0) 1 1
ST T > 41+ /n)?
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It is also clear that for all 6 outside a small enough neighborhood of the point
6 = 1/2 the estimator 6, is better than 3. The small neighborhood of the point
6 = 1/2 mentioned above is determined by the inequality

1

01-0)< —+——F—
=9 < sas1/7mp
REMARK 3.1.1. In the general case, it is not always possible to give explicit
expressions for Bayes and minimax estimators.

3.2. Estimation of a location parameter

In this and the next sections we show how to estimate unknown location and
scale parameters of a distribution in the cases where optimal estimators exist.

Location parameters. Equivariant estimators. Let an observed element
£ = (&1, - - -,&n) be a vector whose coordinates are, generally speaking, dependent
random variables, let (R™, B") be a sampling space, and let (P, 0 € ©) be a family
of distributions to which the distribution of the vector £(™ belongs. Assume that
the parameter @ is one-dimensional and © = R!. If measures Pj depend on the
parameter 6 in such a way that

(3.2.1) Pa(A) =Pg(A—0) forall A€ B",
then 0 is called a location parameter. We use the notation
A-b0={z—-0=(z1-0,...,2, — 0):z = (21,...,2,) € A}

for all A € B" in equality (3.2.1). One of the models leading to distributions (3.2.1)
is the so-called scheme of direct observations where

& =0+¢;, 1=1,...,n,

and €1,...,€, are, generally speaking, dependent random variables with the joint
distribution defined by the measure Pg.
Let Po{¢™ € A} = Pg(A) for all A € B*. Then condition (3.2.1) can be

rewritten in an equivalent form as
(3.2.2) Po {gw —fe A} =P, {g<n> € A} for all A € B

where £ —9 = (¢, —9,...,£, —0). Condition (3.2.2) means that if the true value
of the parameter is 8, then the vector £(™ — @ has the same distribution as the
vector £(™ corresponding to the zero value of the parameter.

There is a natural class of estimators used in the estimation of location param-
eters, namely

(323) T= { = 0p(z):0n(z + ) = Op(z) +cforall z € R™ and all c € Rl}

Estimators of the class 7 are called equivariant estimators of a location parameter.
Some authors call such estimators “invariant”.
Let 7(6,;6) = r(0 — 0) be a nonnegative loss function depending on the dif-

ference of arguments 6, — 6, and let R(6,;6) = Egr (8, — 0) be the risk function of
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the estimator 5,1 (here Ey stands for the expectation with respect to the measure
Po). If 6,, € T, then

(3.2.4) R(8,;6) = Egr(6, — 0) = Egr (§n (E(") - 9)) = Eor(f,) = const

by (3.2.2), that is, the risk function R(6~?n;9) does not depend on #. Thus the
estimator 6, € T is either optimal in 7 or not admissible in 7 for such loss

functions. R
An optimal in the class 7 estimator 8, is called the Pitman estimator of a

location parameter 6 corresponding to a loss function r(gn —0)if

R(@,;G) = min R(6,;0) forall 6 € R.
0n.€T

Below we show that the Pitman estimator exists and find it for some loss functions.
We mention another useful property of equivariant estimators. Let 6,, and 6/,
be two equivariant estimators. Then by the definition of equivariant estimators

(3.2.5) O () — 0. (z) = ¥(y), y= (T2 — 71,23 — T1,...,Tn — 1),
where 1(y) is some measurable function. Indeed,
In(2) ~ B1(2) = Bn(2) = 21] — Bi(2) — 1] = Dn(a — 2) = By o — o)
=0n(0,22 — z1,...,2n — 1) — 0,,(0, 22 — Z1,...,Zp — Z1),
whence (3.2.5) follows.

The Pitman estimator of a location parameter. In what follows we use
the following notation. If T = T'(z), z € R", is a statistic, then E¢(T/y) denotes
the conditional expectation

(3.2.6) Eo(T/y) = Eo {T (€™) /n=1y}
where £ = (£1,a,...,£n), the vector y is defined by (3.2.5), and
(327) n=(‘52_51)63_61,"‘1611,—{1)'

The following result establishes the Pitman estimator of a location parameter
with respect to the quadratic loss function.

THEOREM 3.2.1. Assume that Eof2 < 0o for alli=1,2,...,n. Let
n
l(z) = Zciivi, z=(Z1,.-.,Zn),
i=1

be a linear statistic such that Y ;. ; c¢; = 1. Then
1) the estimator

(3.2.8) On(z) = l(z) —Eo(l/y), =z€R",

is the Pitman estimator of a location parameter 6 with respect to the qua-
dratic loss function r(0,,0) = |0, — 6|?;
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2) if the measure Py is absolutely continuous with respect to the Lebesgue
measure and its density is f(z), z € R"™, then the Pitman estimator is of
the form

- oo ) -1
(3.2.9) On(z) = / vf(z —v)dv (/ flxz—v) dv) ) zeR™.
—o0 —00
PRroOF. It is clear that 8, € T. Let 6, be an arbitrary equivariant estimator
of 7. Then 8,(z) = 0.(z) + ¥(y) by (3.2.5). If Egf2 = 0o, then
Eo(6n — 0)? < Eg(6, — 6)°
for all § € R!. On the other hand, if Egf2 < oo, then

E¢(0n — 0)% = Eg(6n — 8, + 0 — 0)?
(3.210) o( ) G(An -6 o
= Eg(By — 0)® + 2E¢ (65 — 6,,) (6, — 0) + Eg(8, — 6,)°.
It follows from (3.2.2) and (3.2.5) that

E¢(0n — ) (Bn — 8) = Eo(0n — 0n)8r = EoEo{(6n — 82)8, / 1}

(3.2.11) N
= EO(on - a'n)EO{on / 77} =0

in view of (3.2.6) and (3.2.7) where 8, is defined by (3.2.8). Thus
Eo(8n/v) = Eo(l/y) ~ Eo(/y) = 0.
Relations (3.2.10) and (3.2.11) imply that for all # € R! we have
Eg(0n — 0)? = Eg(6n, — )2 + Eg(6r, — 8,) > Eg(6r — 6)2.

Therefore we proved that the estimator 8,, defined by (3.2.8) is the Pitman estimator
of a location parameter with respect to the quadratic loss function.

Now we prove equality (3.2.9). Let I(z) = z;. Then estimator (3.2.8) is of the
form

(3.2.12) b.(z) =71 — Eo(&1/y), ze€R™

Consider random variables {; = &1, o = & — €1,..., (o = & — &1, Let
p(21,22,...,2n) be the probability density of the vector (¢1,(a,...,(,) for 8 = 0.
It is not hard to show that

p(21,22,...,20) = f(21,21 + 22,...,21 + 2n)
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where f(z), z € R", is the density of the distribution Py. It is obvious that
Eo(&1/y) =Eo{¢i /=22 —21,...,(n = Tn — 21}

=/ z2p(2,23 — T1,...,Zp — 1) d2
—0O0

- -1
x(/ p(z,z2—:v1,...,a:n—:c1)dz>
)

o0
=/ 2f(z,z2+ 23— 21,...,2+ 2Ty —21)d2
(3.2.13) —oo

-1
o0
X </ f(z,z+z2—z1,...,z+:rn—:cl)dz)
—00

oo
=:c1+/ vf(z1 — v, 22— V,...,Zp — V) dv

—00

-1
x(/ f(zl—'u,mg—v,...,mn—v)dv>

Combining equalities (3.2.12) and (3.2.13) we obtain representation (3.2.9). O

REMARK 3.2.1. When proving representation (3.2.9) we put l(z) = z; in
(3.2.8). Note in the general case that

Eo(l/y) = l(z) — z1 + Eo(&1/Y), z € R™,

where we used the property that > - ; ¢; = 1. Thus estimator (3.2.8) becomes of
the form 6,(z) = =1 — Eo(&1/y) and this result is used in the above proof.

REMARK 3.2.2. If the measure Py is absolutely continuous with respect to the
Lebesgue measure, then it is seen from equality (3.2.9) that the Pitman estimator
is the Bayes estimator with respect to the quadratic loss function and the a priori
measure Q coinciding with the Lebesgue measure. In other words, the Pitman
estimator is a generalized Bayes estimator.

REMARK 3.2.3. In fact, statement 1) of Theorem 3.2.1 is a particular case of
Theorem 3.1.1. Namely, the optimality of the estimator 8, in the class 7 means
that §n is orthogonal to unbiased estimators of zero and the latter are of the form
h(:l,‘z —Tlyeeey Ty — .’121).

The following result establishes the Pitman estimator of a location parameter
with respect to the Laplace loss function 7(6,0) = |# — 8]. We use the notation
medg(l/y) for a median of the conditional distribution [(£¢) in the case of § = 0
given condition 7 = y for which medy(l/y) is a statistic.

THEOREM 3.2.2. Let Eg|¢;| < 00 for alli=1,2,...,n. Let l(z) = Y 1, ci%s,
z = (z1,%2,...,Tn), be some linear statistic such that Y ;. ¢; =1. Then

(3.2.14) 0. (z) = l(z) — medo(I/y), z € R",

is the Pitman estimator of a location parameter with respect to the Laplace loss
function.
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PROOF. Let 8, € T. Then 6,(z) = I(z) + ¥(y) by (3.2.5), since ! € T. Thus

Es|0n — 8] = Eo|l + %(n)| = EoEo(|L + % (n)l/n)

(3.2.15) a _
> EoEo(|l — medo(l/n)|/n) = Eolal = Ee|0r — 6],

since for all y

(3.2.16) Eo(IL +%(y)|/y) = Eo(|l — medo(l/y)|/y)-
It follows from (3.2.15) that estimator (3.2.14) is the Pitman estimator of a location
parameter with respect to the Laplace loss function. g

REMARK 3.2.4. In the proof of Theorem 3.2.2 we used inequality (3.2.16)
which is a well-known property of a median of a distribution (see [9]).

Below are some examples of the evaluation of Pitman estimators.

EXAMPLE 3.2.1. Let £ = (&1,&2,- - ,&n) where &1,&2,...,&, are indepen-
dent identically distributed N(6,1) random variables. Then the assumption of
statement 2) of Theorem 3.2.1 holds, and moreover

$(e) = (am) ™ Pexp{ -7 Zx} 2= (o0, .., 2).
i=1

Substituting this density into (3.2.9), we show that the Pitman estimator is of the
form 6,(z) = n~1 Y, ;. This implies that D8, = Eg(6, — ) =n"1.
EXAMPLE 3.2.2. Let ™) = (&;,6,,...,&,) where &), £, . . ., &, are independent

exponential random variables with the density e=2*%, z > 6. Again the assumption
of statement 2) of Theorem 3.2.1 holds, and moreover

f(.'l?) = eXP{_Zwi}I[O,oo) (lglélnwt) ) = (wla e ,.’En).

i=1 -
Substituting this density into (3.2.9) we obtain for the Pitman estimator

N . 1
n(x)zlrsnilélnzi_ﬁ, $=($1,...,$n).

D

Using (1.3.3) for the density of the first order statistic {1,, we obtain that
Dggn = Eg(gn — 0)2 =2n"2

This example is remarkable, since the mean square error of the Pitman estimator
is of order n=2 which is higher than that in the preceding example. This can be
explained by the discontinuity of the density with respect to the parameter.

The optimal estimator of a location parameter in the class of linear
unbiased estimators. Let £™ = (¢,...,¢,) where &,...,&, are independent
random variables with the distribution functions Fy(z —0),..., Fp(z — @), respec-
tively. Assume that

(3.2.17) /:vdFj(a:) =0, ji=1,...,n,

(3.2.18) 0< /:czdFj(a:) =02<o00, j=1,..,n
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Thus 6 is a location parameter and 6 = Egé;, i = 1,...,n, by (3.2.17). Let L be
the class of linear unbiased estimators ! of the parameter 6 that are of the form
I(z) = 21_ ciz; where Y o 1 ¢; =1, z = (21,...,Z,). For any estimator [ € L we
have

n 2 n
(3.2.19) Eo(l— 6)? = Eq (Z ci(& — 0)) =Y dad?
i=1 =1

Solving the extremum problem for the function (3.2.19) subject to 2;;1 c;=1
we find that

-1
n

(3.2.20) ¢j=c} =0j* (Za{z) ., j=1,...,n,
=1

at the point of extremum.
Thus we have proved the following result.

THEOREM 3.2.3. Let conditions (3.2.17) and (3.2.18) hold. Then the optimal
estimator of a location parameter in the class L of linear unbiased estimators is
given by I*(z) = z 1C52j, T = (Z1,...,Zn), where the coefficientsc;, j =1,...,n,
are defined by (3.2. 20)

The following result contains necessary and sufficient conditions that an esti-
mator [*(z) is admissible in the class of unbiased estimators.

THEOREM 3.2.4. Assume that &1,...,&,, n > 3, are independent observations
with the distribution functions Fi(z — 0),...,F,(z — 6), respectively, for which
conditions (3.2.17) and (3.2.18) hold. An optimal estimator of a parameter 0 in
the class of linear unbiased estimators I*(z) = Y i, cixz; is admissible for the
quadratic loss function in the class of all unbiased estimators of the parameter 0 if
and only if all the distribution functions Fj(z) are normal.

The proof of this theorem can be found in [15], Theorem 7.4.1. The book [15]
contains further results on the estimation of a location parameter.

REMARK 3.2.5. If conditions (3.2.17) and (3.2.18) hold and moreover the vari-
ances o7 are equal to each other, that is, 07 = 03 = --- = 02 = 07, then ¢} = n",
j=1,...,n,in (3.2.20). Thus the optimal estimator of the location parameter in
the class L of linear unbiased estimators is of the form I*(z) = n~1) ;- | z; and

this obviously is the sampling mean.

REMARK 3.2.6. If condition (3.2.18) holds, while condition (3.2.17) does not
hold, then one can consider the class of linear unbiased estimators ! of the form
U(z) = 35 cj(zj — bj) where 37, ¢; =1 and b; = [z dFj(z), j =1,...,n. As
before we obtain that the optimal estimator is of the form I*(z) = E 1€ (.'z;, b;)
where the coefficients ¢} are defined by (3.2.20).

REMARK 3.2.7. If the assumptions of Theorem 3.2.4 hold, then the optimal
estimator 6 in the class of linear unbiased estimators I*(z) = E;;l cjz; is abso-
lutely admissible with respect to the quadratic loss function if and only if all the
distribution functions Fj(z) are normal (see [15], Theorem 7.4.2). Note that if all
the functions Fj(x) are equal to each other, then the optimal estimator is of the
form I*(z) = n~1 ) ., z; and therefore this estimator is absolutely admissible in
the case of Gaussian distributions.
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The problem of the confidence estimation of a location parame-
ter. Let £ = (£,...,&,) be an observation where &i,...,£, are independent
identically distributed random variables with the distribution function F(z — 8),
6 € R!. Consider the problem of the confidence estimation of the parameter § with

respect to the loss function
~ 0, |6,—06|<b,
(3.2.21) 7(0n,0) = IJ‘ |
1, 16, —6|>0b,

where b is some positive constant. The corresponding risk function of the estima-
tor @, is of the form

R(6;0) = Eor(8n;0) = Po{|8, — 8] > b} = Po{8 ¢ (6 — b,8, + 1]}
This risk function is the probability of the event that the confidence interval
[0 — b,6, +b]

does not contain the unknown value 6.
Given an arbitrary F(z), the risk function

R(E™;0) =1-Po{-b<E” -0<b} =7, 7=10),
for the estimator Z(n) =n"1Y" , & does not depend on 6 and therefore
6" - 5,8 +4]

is a confidence interval of level v (depending, of course, on F(z)).

The following result claims that the sampling mean Z(n) is admissible with
respect to the loss function (3.2.21) (in other words, it claims that the confidence

interval [E(n) — b, Z(n) + b] is admissible).

THEOREM 3.2.5. Let £ = (£y,...,&,), n > 3, where &,...,&, are indepen-
dent identically distributed random variables with the distribution function F(z —0)
whose density f(x — 0) is bounded. If, for a given sequence of numbers b; — 0, the

sampling mean Z(n) is an admissible estimator of the parameter € R with re-
spect to the loss function (3.2.21) for b = b;, then F(x) is the Gaussian distribution
function.

The proof of Theorem 3.2.5 can be found in [31] (see Theorem 7.9.3 therein).

REMARK 3.2.8. If random variables £1,&2,...,£, are independent and iden-
tically distributed according to the normal N'(8,02) law, then one can show that

the sampling mean Z(") is an admissible estimator of the location parameter § with
respect to the loss function (3.2.21) for all b > 0. Thus the converse statement to
Theorem 3.2.5 is also true.

The minimax property of the Pitman estimator of a location param-
eter. As mentioned above, the Pitman estimator of a location parameter with
respect to the quadratic loss function is a Bayes estimator of the location parame-
ter with respect to the Lebesgue a priori measure Q if there exists the density of
the observation. If all the assumptions of Theorem 3.2.1 hold, then the Pitman
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estimator (9‘,, of the location parameter  with respect to the quadratic loss function
is of the form (3.2.9).

Let the a priori measure Qu coincide with the uniform distribution on [N, N],
so that the density is qn(t) = (2N)~'I;_n,n)(t). Then the Bayes estimator of the
parameter 6 with respect to the a priori measure Q and the quadratic loss function
is given by

_ N N -1
Ohue) = LEZ A (" 1y ( JCE dv) ,

z € R", where f(z) is the density mentioned in statement 2) of Theorem 3.2.1. It
is clear that 0 (z) = limy_.c0 05, (z) for all z € R™. One can show that

(3.2.22) Jim Ep (05, —60)* = Eo(6, — 0)?

for all 6 € [-N + v/N, N — v/N|. Moreover the convergence is uniform in 6 in the
above interval. Since E¢(6,, — 6)% does not depend on # and convergence (3.2.22) is
uniform in the interval [-N + v/N, N — v/NJ, we get

9 2 1 N-vN 2
limsu E: (65, —¢t dt) > li — E:. (65 —1t)" dt
N—voop/ ¢ (0o = )" Quldt) > lzfrnjgopzN —N+VN ¢ (0w =)
AN =VN) (e~ s
> —_ 7 — -
> h}gl_f»;lop T (Eo(9n o) 6)

=Ep(6n — )% —¢
for all € > 0. This implies for all § € R! that
Eg(6 — 6)? < limsup / E: (65, — t)2 Qn(dt).
N—-oo
By Theorem 3.1.4 this means that the Pitman estimator §n is minimax. Thus we

proved the following result.

THEOEEM 3.2.6. If all the assumptions of Theorem 3.2.1 hold, then the Pitman
estimator 0, of a location parameter 0 with respect to the quadratic loss function is
minimaz.

3.3. Estimation of a scale parameter

Scale parameters. Equivariant estimators. Let ¢(®) = (&1,€2,...,&n) be
an observed random element assuming values in the space (R*, B¥) and having the
distribution belonging to a parametric set of measures (P,,o € (0,00)) where o is
an unknown parameter. If the measure P, depends on the parameter ¢ such that

(3.3.1) P,(A) =Py(A/s), AeBF,
then o is called a scale parameter. We put

Alo ={z/o = (z1/0,...,2a/0):T = (T1,...,2,) € A}
for all A € B*. Condition (3.3.1) can be rewritten as

(3.3.2) P, {gw € A} =P, {gw/a € A/a} =P, {g(n) € A/a} . AebBk.
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Distributions (3.3.1) arise in the case where observations are of the form §; = o¢;,

i =1,...,n, for some o > 0 and if the vector (e1,...,&,) has the distribution
defined by a measure P;. Generally speaking, the random variables €4,...,&, are
dependent, thus the random variables &, .. .,&, are dependent, too.

It is natural to consider the following class of estimators in the case of the
estimation of a scale parameter o:

(3.3.3) 2 = {Gn(2): 0n(Az) = AGn(z) for all A > 0 and z € R"}

where we put Az = (A\zy,...,Az,) for all z = (z1,...,z,). Estimators of the
class X are called equivariant estimators. Consider a loss function r(d,;0) such
that

(3.3.4) r(0pn;0) = r(0n — 0), r(Au) = A\™r(u)

for all A > 0 and some m > 0. Using (3.3.2) and the definition (3.3.3) we get that
the risk of any estimator o, € ¥ is such that

R(op;0) = Eor(0n —0) = 0™E1r(05, — 1) = 6™ R(Gp; 1).
Therefore an estimator o, € X is either optimal in the class ¥ or is not admissible
in this class provided the loss function satisfies condition (3.3.4).
An optimal estimator G,, € X of a parameter o in the class X, that is, the one

such that
R(Gn;0) = jnél%: R(Gp;0) for all o € (0,00),
On

is called the Pitman estimator of a scale parameter o with respect to the loss func-
tion (3.3.4).

In what follows we assume that an observed random element £(™ assumes
values in the space

R} =R} \{0}= {z=(z1,...,2n):zi>0foralli=1,...,n}.
Alternatively one can think that the sampling space is R™ and assume that
Po (R} ) =1

for all o > 0.
Equivariant estimators possess the following useful property. If

n
l(z) = cha:,-, z € RY o,
i=1

is a linear statistic with ¢; > 0 for all j = 1,2,...,n, then
(3.3.5) an(z) = l(z)Y(y), T =(21,...,20) € R}y,

for all 5, € ¥ where 9(y) is some measurable function of the vector

(3.3.6) y= (%%%)
Using (3.3.3) we also get
Gn(2) = U(z)Tn(2/1(2)) = U(2)Tn ((z/21)/Uz/21)),

since I(z) > 0, z € R} 5, whence (3.3.5) follows for the function t(y) specified
above.
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Pitman estimators. We use the following notation for an arbitrary statistic
T(z), z € R™

(3.3.7) Ei(T/y) =E {T (E(")) /n= y}
where y is the vector defined by (3.3.6), while the vector 7 is given by
£ & €n)
3.3.8 = e — .
(3:38) 7 (51 6 g

The following result provides the explicit form of Pitman estimators of a scale
parameter with respect to the quadratic loss function.

THEOREM 3.3.1. Let E1é? < oo forallj=1,2,...,n andletl(z) = 3°7_, c;z;,
z € RY o, be some linear statistic with ¢; >0, j =1, 2 .,n. Then
1) the estimator
E1(t/y)

(3.3.9) 5(2) = U@ . 1y

is the Pitman estimator of a scale parameter o with respect to the qua-
dratic loss function where y is the vector given by (3.3.6), and E;(l/y) and
E1(1?/y) are conditional ezpectations defined by (3.3.7) and (3.3.8);

2) if the measure Py is absolutely continuous with respect to the Lebesgue
measure and its density is f(z), € R} o, then the Pitman estimator is of
the form

00 o) -1
(3.3.10) On(z) = / u”™ f(uz) du (/ u™t! f (uz) du) , zeRY
0 0

€R+0,

PROOF. Let G, be an arbitrary estimator of the class X. Using (3.3.5) we get
Eo(Gn — 0)* = 0”Ex(I(n) — 1)* = 0”E1Ex ((lo(m) — 1)*/m) -
If n = y is fixed, then
min E; ((le = 1)%/y) = Ey ((lc* — 1)%/y)

where
E1(l/y)

E (2/y)’

minE, (W(n) — 0)* = Eq (14" (1) — 0)? = Eo(Gn — o)

where Gy, is the estimator defined by (3.3.9). Therefore estimator (3.3.9) is the Pit-
man estimator of the scale parameter ¢ with respect to the quadratic loss function.
Now we prove equality (3.3.10). Let {(z) =n~! Y7 | ; =Z. Then the Pitman

¢t =9Y*(y) =
Thus

estimator (3.3.9) can be rewritten as follows (here we put E(n) =n"1Y 0 &)
() =(n)
Er (& /y Er (&8 /&)y

(3.3.11) Ey (( &) /y) T E (6% (Z(")/&)Z/y>
_ @B/ _  Ei&/y)
@/z1)%E1 (/) ‘Ei(E3fy)
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Consider the random variables 3; = £1,32 = & J€1, ... ,3n = & /&1 and denote
by p(21,22,...,2,) the probability density of the vector (31,32, ..,3n) for o = 1.
It is not hard to show that
p(21,22, -, 2n) = 27 f (21, 2122, .. ., 2120)

where f(z) is the probability density of P; with respect to the Lebesgue measure.
It is clear that

E1 (&7"/y)

* +n—1 T2 Tp
—_ m+n— L2 Tn
(3.3.12) - /0 2 f (Z,zml’””zm) dz

o0
= :c{"/ u™t =l (2, . o) du
0

00 -1
X (/ u L f(z1u,. .., zou) du) .
0
Substituting (3.3.12) into (3.3.11) we obtain (3.3.10). O

Let ¥, be the class of unbiased equivariant estimators of a scale parameter
o. It is clear that ¥, C X. The following result provides the explicit form of an
optimal estimator in the class ¥, with respect to the quadratic loss function.

THEOREM 3.3.2. Let all the assumptions of Theorem 3.3.1 hold. An optimal
in the class L, estimator of a scale parameter o with respect to the quadratic loss
function is of the form
(3313) an,u = Cyu0n
where the constant C, is such that CLE G, = 1.

PROOF. Let G, be an arbitrary estimator of the class X,,. If E;52 = oo, then

E;02 = oo for all o > 0. Thus the estimator &, is worse than G, ,. If E;52 < oo,

then
Eo(Gn — 0)% = 02E1(Gn — 1)% = 02E1(Gpn — Gy + Gy — 1)2
(3.3.14) = 0'2{E1 (a:n - an,u)z
+2E1(Fn — Fn,u) (Fnu — 1) + E1(Gnu — )%}
Since 7, € X, and Gpy € Xy, we have E; (0, — Onu) = 0. Since 7, is optimal
in the class ¥, we obtain E;5,h = 0 for an arbitrary unbiased estimator of zero

h € ¥ such that E;h% < co (the proof is the same as that in Theorem 3.1.1). In
particular, E105 4 (0n — Gn,u) = 0. Thus (3.3.14) implies

Eo(Gn—0)? = Eo(Gn = Gnu)? + Es (G — )% > E(Gnu— )2 O
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Below is an example of the evaluation of a Pitman estimator.

EXAMPLE 3.3.1. Let £ = (&y,...,&,) where £y, ..., &, are independent iden-
tically distributed exponential random variables. Then their common probability
density is o~ exp(—z/0), z > 0, 0 > 0. Assumptions of assertion 2) in Theo-
rem 3.3.1 are satisfied and

f(a:)=exp( Zzz)z[m)(mm m) &= (T1,...,Tn).

=1

Substituting this density into (3.3.10), the Pitman estimator of the parameter o
becomes of the form

On(z) = +lzxz> z=(Z1,...,Tn)-

i=1

Since E;G, = n/(n + 1), Theorem 3.3.2 implies that the optimal estimator of the
parameter o in the class of the unbiased equivariant estimator X, is of the form

~ 1«
On,u(T) = oy zzi, z=(Z1,...,Zn).
i=1

Straightforward calculations yield

9 0.2 9 0.2
Ea(O'n —'0') = n—‘+1 < Eg(O'n’u —0') = 7,

that is, the estimator &, is better than &, ., and this result is natural.

The optimal estimator of a scale parameter in the class of linear un-
biased estimators. Let £ = (¢y,...,&,) where £y, ...,&, are nondegenerate in-
dependent random variables with the distribution functions Fi(z/0),..., Fy(z/0),
respectively. The distribution functions depend on a scale parameter o € (0, 00)
and are such that

(3.3.15) Fj(0+)=0, Eif<oo, j=1,...,n
Let L be the class of linear unbiased estimators of the parameter ¢ of the form
Uz) =1, ciws, = (21,...,2p), where ¢; >0 for all i = 1,...,n. Put
ayj = B 5, o = E1€3, 0 = ag; —al;.

Since &; are nondegenerate, it follows that o7 > 0 If l(z) = 375, ¢jzj, then
Yj=1 61y = 1. Further E;(1—0)? = 02 37, c}o?. This implies that the optimal
estimator of the parameter o in the class L with respect to the quadratic loss

function is of the form I*(z) = EJ 1 ¢;z; where the coefficients c} are such that

-1
n
(3.3.16) c}:%(z%) . j=1,...n
J i=1

Therefore we have proved the following result.
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THEOREM 3.3.3. Let random variables &;,...,&, be independent and nonde-
generate with the distribution functions Fy(z/o),..., F,(z/0), respectively. If con-
dition (3.3.15) holds, then the optimal linear unbiased estimator of the parameter o
with respect to the quadratic loss function is of the form l*(z) = Z;;l cjz; where

the coefficients c; are defined by (3.3.16).

The following result provides necessary and sufficient conditions for an optimal

linear unbiased estimator I*(z) = E?=1 cjx; of a scale parameter o to be admissible.

THEOREM 3.3.4. Let all the assumptions of Theorem 3.3.3 hold. Then an op-
timal linear unbiased estimator I*(z) = Y i, cix; of the parameter o is admissible
in the class of unbiased estimators with respect to the quadratic loss function for
some two different values of n, say n = ny and n = ny, ny > ny > 3, if and only if
the random variables §; have the Gamma distribution

ol x
J / tiTlemait gt z >0,
L(v3) Jo

for somey; >0anda; >0,j=1,...,n.
The proof of Theorem 3.3.4 can be found in [15] (see Theorem 7.12.2 therein).

Fy(z) =

REMARK 3.3.1. If an estimator [*(z) is admissible in the class of unbiased
estimators of the scale parameter o, then by Theorem 3.3.2 it is optimal in the
class ¥,,. Moreover by Theorem 3.3.4 the distribution of the random variables &;
is the Gamma distribution in this case (see Example 3.3.1).

REMARK 3.3.2. Further results concerning the estimation of a scale parameter
can be found in [15].

3.4. The Cramér—Rao inequality and efficient estimators

In the preceding sections we studied the quality of statistical estimators of un-
known parameters and obtained several qualitative results. Moreover we introduced
two classes of parameters, namely the classes of scale and location parameters, for
which one can construct optimal estimators in appropriate classes of estimators.
In this section we use a somewhat different approach to construct optimal estima-
tors. We also obtain the minimal mean square error of the estimation that can be
achieved in an experiment.

Regularity conditions for families of distributions. Let £ be an obser-
vation that is a random element assuming values in a measurable space (X, B) and
whose distribution belongs to a parametric set {Pg,6 € ©} where © is a subset
of R*, k > 1. Throughout this section we assume that for all § € © the measure Py
is absolutely continuous with respect to some o-finite measure p on (X, B), that is,
Pg < p, and that f(z;0) is the density of the measure Py with respect to the mea-
sure p. In particular, if (X, B) = (R™, B™) for some m > 1, then as the measure u
one can take the Lebesgue measure.

We consider the case of a one-dimensional parameter § in this section, that is,
we consider the case k = 1.

Below we use the following set of regularity conditions, called (CR):

(i) © is a finite or infinite interval in R1;
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(ii) the derivative 8f(z;60)/06 exists and is finite Pg-almost everywhere for all
0 € 6

(iii) |8°f(x;0)/06| < gi(z) for all & € © and i = 1,2 where g;(z) and g2(z) are

nonnegative Borel functions such that [ g;(z)p(dz) << o0, i=1,2;

(iv) 0 < Ep(81n f(&;6)/86)% < oo for all 6 € ©.

The regularity conditions (CR) are also called the Cramér-Rao regularity con-
ditions. If conditions (CR) hold, then the family of distributions {Pg, § € ©} is
called CR-regular.

Let S(z;0) = 01n f(x;6)/06, z € X, and put

(3.4.1) I(6) = E¢S%(¢;6), 6¢€o.

The function I(9) is called the Fisher information. This function is treated as the
amount of information about the parameter 6 contained in the observation €. The
notion of the information I(6) will become clear after the proof of the Cramér-Rao
inequality. Note that condition (iv) above can be rewritten as follows: 0 < I(6) < oo
for all 6 € ©.

First we prove an auxiliary result.

LEMMA 3.4.1. If reqularity conditions (CR) hold, then
(3.4.2) EeS(&;0) =0 for allf € O.

PrOOF. First we differentiate the identity
/f(:c;e) u(dz)=1 forallfe®©
with respect to 8 and obtain
(3.4.3) % /f(a:; O)u(dz) =0 forall 6 € O.

Conditions (ii) and (iii) allow one to interchange the differentiation and integration
in (3.4.3). Thus

(3.4.3") / %f(a:; 0)u(dz) =0 forallfe®,

whence

EaS(E;0)=/%f(IL‘;0)/.L(d.’B)=O for all 6 € ©. O
The following result gives another representation for the Fisher information.
LEMMA 3.4.2. If regularity conditions (CR) hold, then
52

for all 6 € ©.
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Proor. It is obvious that

5 821 (£:0) /06 (8f(€; o)/ae)2
Eo | =1 ; =E -

0 (002 nf(& ‘”) 0 ( (&6) f(&6)
32
- / 5 §(@i6) u(do) ~ 1(6).

It follows from (iv) that I(8) < oo for all § € ©. Condition (iii) implies that

2 82
(3.4.6) o | He0utdn) = [ g f(ai0)uida) =0
for all 6 € ©. Combining (3.4.5) and (3.4.6) we obtain (3.4.4). O

(3.4.5)

Sometimes we also consider the following set of regularity conditions, called
(R):
(i') © is a finite or infinite interval in R!;
(ii") the function (f(z;8))/2 is continuously differentiable with respect to 8 for
p-almost all x;
(iii') 0 < E¢S2(¢;6) = I(6) < oo for all € © and the function I(6) is continuous
with respect to 6.
In what follows we need an assertion on the continuity of integrals of functions
depending on a parameter.
Let ¢(t,v), t € ©, be a family of measurable functions defined on a measurable
space (Y, By) equipped with a measure v. We consider some conditions under which

(347 [venva ~ [vonua), -
Let A(t) = A(t,0), t € ©, be a family of sets belonging to By. Put
A(t) =Y \ A(t).
The following result is a generalization of a well-known Lebesgue theorem.

LEMMA 3.4.3. Let A(t), t € ©, be a family such that
1) ¥t y)law)(y) — ¥(0,y) ast — 0 for v-almost all y for which ¥(0,y) # 0;
2) sup, [¥(t, y)Law) ()| < ¥(y) where Y(y) is a function integrable with respect
to the measure v, that is, [ (y)v(dy) < oo.
Then relation (3.4.7) holds if and only if

(3.48) / Bt @) vdy) -0,  t— 8.

PRrROOF. By the Lebesgue theorem

/¢(t,y)IA(t) (y) v(dy) — /'l,b(e,y) v(dy), t— 0.
Since

/ () v(dy) = / (&, 4) Laco 1) v(dy) + / Wit 1) ey (v) v(d),

relation (3.4.7) is equivalent to relation (3.4.8). a
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COROLLARY 3.4.1. Let T(z) be a real measurable bounded function, T: X —
R, and let f(x;60) be continuous with respect to 0 for p-almost all x € X. Then
the function EgT(€) is continuous with respect to 6.

ProOF. We apply Lemma 3.4.3 for Y = X, v = pu, ¥(t,z) = T(z) f(z;t), and
A(t) = {=z: f(z;t) < 2f(z;0)}. It is obvious that all the assumptions of Lemma 3.4.3
are satisfied. Since T'(z) = 1 and thus EgT'(¢) = 1 is continuous, Lemma 3.4.3 yields

/ £(238) gy (dz) — 0

as t — 0. This together with Lemma 3.4.3 implies that E¢T'(£) is continuous for
any bounded function T'(z). O

REMARK 3.4.1. If one seeks a simple sufficient condition for (3.4.7) in the case
of ¥(t,y) — ¥(6;y) as t — 0 and v-almost surely, then an appropriate candidate
is the uniform convergence of integrals in (3.4.7). The latter condition can be
reformulated as follows: there exists a finite measure A such that the inequality
A(A) < & = é(e) implies sup; [, |1(t,y)| v(dy) < € for a given € > 0. Moreover if the
function v (y) = sup; [¢(t, y)| is integrable, then one can take A(4) = [, ¥(y) v(dy).

Below we consider some corollaries of conditions (R) that we will use in the
proof of the Cramér-Rao inequality.

LEMMA 3.4.4. Let conditions (R) hold. Let T = T(§) be an arbitrary real
statistic such that EgT? < ¢ < oo for all € ©. Then the function a(f) = E¢T is
differentiable with respect to 8, and moreover

(3.4.9) #(0) = ET(©)S(&0) = [ T(e)55(2i6) uldo)

where S(z;0) = 81n f(x;0)/00, = € X, and the function a'(6) is continuous.

PROOF. In the same manner as in the proof of Lemma 3.4.1 we derive from
condition (ii)’ that

(3.4.10) EoS(§:0) = / ;%f(z; 6) p(dz) =0, 6 eo.
Note that (3.4.10) also follows from (3.4.9) for T'(z) = 1. Then

P 2
B41)  DuS(E0) =B (E0) = 10) =4 [ (GTE0) uids)

The function I(f) is continuous by conditions (R). We apply Lemma 3.4.3 for
Y = X, v = p, and ¥(t, z) = (8+/f(x;1)/96)*:

A(t) = A4,(6) = {w § S VF(m;v) < 2¢/f(x;9),
%\/f(w;v) 521%\/1‘(2;0)}}

(3.4.12)

sup
[v-6]<]8]
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where § = t — 6. Assumptions of Lemma 3.4.3 hold for ¥(z) = 4¢(6; z), since the

functions /f(z;0) and 8+/f(z;0)/80 are continuous. Since I(t) converges to I(6)
as t — 0, we prove from (3.4.8) that

2
(3.4.13) 0= [ (V@) Tno@nida) =0

ast— 0.

Similarly to the proof of Corollary 3.4.1 we prove that [ T(x)df(x;6)/86 u(dz)
is a continuous function. In the proof of this result we apply Lemma 3.4.3 for
Y =X, v=np, ¥t z) = T(z)0f(z;t)/0t, and A(t) = A1(J). Since

0f(x,0)/06 = 2\/f(z,0)0+/ f(z,6)/96,

we get sup, [¥(t, z)|Taw)(z) < P(z) = 4p(6; z)|. The Cauchy-Bunyakovskil in-
equality implies that

1/2
/_ (6, z)| p(dz) < 2 (E9T2(£) /_ 0V f(z, 6’)/C'J’G)Zu(dﬂ:))
A1(5) A1(9)

This together with (3.4.13) implies relation (3.4.8), whence it follows that the func-

tion [ T'(z)df(z;0)/06 u(dz) is continuous.
Now we turn to the proof of equality (3.4.9). Note that

([ 1@+ 0w - [1@)5(w:0) )
- / / 1 T(w)% F(w;0 + u6) du p(dz)
/ / 20(a) V(@0 + ) o \F (@ 0+ ud) du u(dz)

by condition (ii)’. We apply Lemma 3.4.3 again for Y = R x X, y = (u,2),
v =Xxpu, (0,y) = T(x)df(z;0 + ud)/86, and A(8) = A1(d), where X is the
Lebesgue measure, A;(d) is defined by (3.4.12), and § — 0. Since the functions

\/f(z;0) and 8+/f(x;0)/06 are continuous with respect to 6, assumptions 1) and 2)
of Lemma 3.4.3 hold, whence

VW) a (@) > T(@) g/ @:0) = $(0i9), 60,

0
@f(a?; 9)‘

sup [%(8, y)La(s)(z)| < 4T ()

and by the Cauchy-Bunyakovskil inequality

/T(a:

551(@0)| ulde) < (B0 10) " < oo
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Using the Cauchy-Bunyakovskii inequality again we obtain from relation (3.4.13)
that

1
0
/7{1(6)/0 T(x)\/f(a:;G+u6)@\/f(m;0+u5)duu(dx)
1
2 ) w
< [/21(5)/0 T*(z) f(z; 0 + ud) du p(dz)
1/8 2 1/2
x /Z » /0 (%\/f(z;0+u6)> duu(dz)}

1 1/2
< <c/ (0 + ud) du) -0
0

as § — 0, whence relation (3.4.8) follows. Thus we proved that the derivative a'(6)
exists and equality (3.4.9) holds. O

LEMMA 3.4.5. If the set © is compact and the function \/f(z;0) is continu-
ously differentiable with respect to 0 for p-almost all x, then I1(6) is continuous if
and only if

(3.4.14) Jim_sup EsS2(£;0)I(|S(¢;6)| > N) = 0.
oo g

PROOF. Let the function I(6) be continuous but let relation (3.4.14) not hold.
Then there is a v > 0 and a sequence t — 6 € © such that N; — oo and

(3.4.15) m(t) = ES*(&)I(1S (&) > Ne) >y

for all ¢ belonging to this sequence.
Applying Lemma 3.4.3 for Y = X and pu = v we get

F) 2
w.2) = (SVIED) =4S @0s 0,
V0| <2| g V70| }.

Since 81/f(x;0)/80 is continuous, assumptions 1) and 2) of Lemma 3.4.3 hold and
the continuity of I(t) implies that

ma(t) = /Z ©

as t — 6. Note that m(t) < mi(t) +ma(t) where

=\
mz(t) = /j;(t)nA(t) (a f(.’l.', t)) p,(d:l:),
VTG0 > M/}

Alt) = {:z::

2
p(dz) — 0

ien

B(t) = {x:Z
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It follows from the definition of the set A(t) that

0
- ;0
| ma(t) < 4 /B . ‘ 55V T@0)
Since 8+/f(z;t)/8t — 0+/f(x;0)/06 and /f(z;t) — / f(z;6) as t — 0, we prove

that B(t) converges to a set whose measure 4 is zero. This means that u(B(t)) — 0,
ma(t) — 0, and m(t) — 0 as t — 6. This contradicts (3.4.15) and thus rela-

tion (3.4.14) holds.
Now we prove the converse statement. Let condition (3.4.14) hold. According

to Lemma 3.4.3, I(t) is continuous if m;(t) — 0 as ¢t — 6 on the set A(t) defined
as above. Further

.42 . 2 .
ma(t) < /.S(w;mm 1S(e; )2 (3 ) pldr) + N /z LI

2
p(dz).

where the first integral is small by (3.4.14) if NV is sufficiently large. To estimate
the second integral we note that u(A(t)) — 0 ast — 6 and

] f@;t) pldz) =0,  t— 0,
C(t)
for C(t) = {z: f(z;t) < 2f(x;0)} (see the proof of Corollary 3.4.1). Thus as t — 6

/_ £(2;8) p(da) < 2 /_ £(z:6) p(de)+ /_ £ (23 t) p(da). 0
At) At) C(t)

REMARK 3.4.2. If the set © is compact and conditions (R) are satisfied, then,
due to Lemma 3.4.5, the Fisher information I() is continuous if and only if condi-
tion (3.4.14) holds. It is natural to call the latter condition the uniform convergence
condition for the integral I(8) = ES?(¢;0).

The Cramér-Rao inequality under regularity conditions (CR). The
following result contains the lower bound for the variance of an unbiased estimator
under the Cramér-Rao conditions (CR).

THEOREM 3.4.1. Let g‘,iig distributions Py, 0 € ©, satisfy the regularity con-
ditions (CR). Assume that g(6) is a differentiable real function, § = g(z) is an
unbiased estimator of the function g(f) such that the variance of § ezists, and

/

(3.4.16) Do’g;if) > (g;(((;)))z forallg coO.

Inequality (3.4.16) becomes an equality if and only if the density f(z;0) is of the
form

(3.4.17) f(z;0) = exp{1(0)4(x) + 2(6) + h(z)}, ze€X,
where 91(6) # 0.

3(0) 5 (@30)| de) <o for a9 c 0

Then
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PROOF. According to the Cauchy-Bunyakovskil inequality
(3.4.18) EsS(&;0)(3(6) — 9(9)) < (1(6)Deg(€))'/?, 6 €®.
Lemma 3.4.1 implies that

(3419)  EoS(EO)EE) —o(0) = EaS(E O = [ Ta) 55w 6) (o).
Since § is an unbiased estimator, we have

96+8)~ 9(0) = [ 9(@)(F(z:0 +5) - F(z:0)) u(da),
whence it follows by the regularity condition (iii) that
(3.4.20) §0) = [ 9(0) 55(a:6) o).

Thus (3.4.18)—(3.4.20) imply inequality (3.4.16).

It remains to consider the case of equality in (3.4.16). The inequality in (3.4.16)
becomes an equality if and only if inequality (3.4.18) becomes an equality. In its
turn (3.4.18) becomes an equality if and only if

S(z;6) = 9(=)%(6) +9(6)
for all z € X where ¢(6) # 0. This implies that
In f(z;0) = g()¥1(0) + ¥2(0) + h(z)
for all z € X where 7 (6) # 0. O

Results of the type (3.4.16) are called the Cramér-Rao inequality. This in-
equality gives a lower bound for the variance of an unbiased estimator of the func-
tion g(@). If 9 is an unbiased estimator of a parameter 6, then the Cramér-Rao
inequality becomes of the form

4. 9> — :
(3.4.21) DGG_I(G)’ 6o
Inequality (3.4.16) also gives a lower bound for the variance of estimators 8 of a
parameter # that are not necessarily unbiased. Indeed let g(6) = 6 + b(6) where
b(6) is the bias of the estimator 6, that is, b(d) = E¢(f# — 6). Assuming that the
function b(0) is differentiable, we obtain from (3.4.16) that

N 7Ny
(3.4.22) Eo(6 — 0)2 > b2() + (A+56)"
1(6)
Let an observation be a sample £¢™ = (£,&;,...,&,) and let the random
variables &1,&,, . ..,&, have the density f(z;6), z € R!, where 6 is a real unknown

parameter, § € © C R!. Assume that the density f(z;6) satisfies the Cramér-Rao
conditions (CR). Denote by f,(z;8), z € R™, the density of the vector £(™). Let
I,(0) be the Fisher information evaluated with respect to the density f,(z;6), while
I(6) = I1(0) is the Fisher information evaluated with respect to the density f(z;6),
that is,

I(8) = EoS2 (g<n>;a) and 1(8) = EeS2(£1;6)
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e 81n f,(a;0) o1n f(z;0)
n fr(z; o Oln f(z;
Sp(z;0) = % and S(z;6) = TR
LEMMA 3.4.6. If the Cramér-Rao regularity conditions (CR) hold, then
(3.4.23) I.(6) = nI(6).

PROOF. Since fn(z;0) = [[;_, f(zk;0), = (z1,...,2n), and EgS(£1;0) =0
by Lemma 3.4.1, we have

n@=a(3mhgwwﬁz

& (O f(E6) 0l f(0) . 9ln (Esi6)
=2 B (—ae_> +,§ 20 5

= nl(6). a

COROLLARY 3.4.2. Assume that all the assumptions of Theorem 3.4.1 hold. If
n(z) is an unbiased estimator of a function g(0), then the Cramér-Rao inequality
holds:

CAC) A

4.24 Dq3; >
In particular, if g(0) = 6 and 8, is an unbiased estimator of a parameter 6, then
~ 1
4.2 D > .
(3.4.25) een_nlw), fe®

The proof of Corollary 3.4.2 follows from Theorem 3.4.1 and equality (3.4.23).00

Not all of the regularity conditions (CR) are used in the proof of the Cramér—
Rao inequality. In fact, this result holds under a weaker set of regularity conditions
called in what follows the Cramér-Rao conditions (CR)*:

(i) © is a finite or infinite interval in R*;

(ii)* the function f(z;#) is differentiable with respect to § for y-almost all z € X
and

0<10)= [ (G s@s0)) (10" uide) < o
(iii)* the following relations are satisfied:

lim _/ (f(:c,0 + A) - f(:t,a))z ,u(da:)

Am, Rz F(@;9)
3.4,
(8420 =/(wuw»ZMM>

a0 f(z;6)’
(3.4.27) of (”” %) (de) = - / £(2;6) p(da).
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In fact, conditions (3.4.26) and (3.4.27) are necessary to justify the interchange
of integration and differentiation. It is easily seen that the regularity conditions
(CR)* are less restrictive than conditions (CR). Nevertheless the Cramér—Rao
inequality can also be proved under conditions (CR)*.

THEOREM 3.4.2. If regularity conditions (CR)* hold, then
(3.4.28) Def > 1/I(6), 6€O,
for any unbiased estimator 6= 5(5 ) of a parameter 6.

PROOF. Since 8'is an unbiased estimator, we have
8= [(@a) - 0)(1(a:0+8) - (2i6) o),

whence

V f(z;6)

< D9§ / (f(z;6 +f?£;;)f(z; o))" p(dz)

by the the Cauchy-Bunyakovskii inequality. Thus

- . _ . 0))2 -1

2
A? = (/ (0(a) - 0)V/Fla) L0 2 1:0) (d”"))

for all A. Passing to the limit as A — 0 we obtain inequality (3.4.28) in view of
condition (3.4.26). a

Let an observation be a sample ¢ = (¢,,...,&,) with the density
n
fn(w;0)=Hf(:z:,-;0), z = (z1,...,2,) € R", t€O.
i=1

If the density f(z;6) satisfies conditions (ii)* and (3.4.27), while the density f,(z;6)
satisfies condition (3.4.26), then the Cramér-Rao inequality (3.4.25) holds for any

unbiased estimator 6, of the parameter . To prove this result we use equal-
ity (3.4.23) that follows from condition (3.4.27).

The Cramér—Rao inequality under the regularity conditions (R). The
following result contains a lower bound for the variance of a biased, generally speak-
ing, estimator of a parameter 6.

THEOREM 3.4.3. Let regularity conditions (R) hold. Let 8 be an estimator of
a parameter 6 such that E¢f2 < c < 00 for all € ©. Then

(1+v(6)?

(3.4.29) Do > “—r=

0 €0,

where b(0) = Egf — 0 is the bias of the estimator 9.
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If (3.4.9) becomes an equality on some interval [61,62] C © and Ded > 0 on
this interval, then

(3.4.30) £(z;6) = exp{A(0)8(z) + B(6)}h(z), =€ X,

for 0 € [61, 0] where A(8) and B(0) do not depend on x.
Conversely if either (z) = const or representation (3.4.30) holds, then inequal-
ity (3.4.29) becomes an equality.

PROOF. Let a(f) = Egf. Putting T(z) = 1 in Lemma 3.4.4 we get from (3.4.9)
that

(3.4.31) EeS(&;6) =0, Eea(0)S(&;6) = 0.
Again using Lemma 3.4.4 for T'(z) = 5(1:) we obtain from (3.4.9) and (3.4.31) that
(3.4.32) EsB(€)S(6:6)=a'6),  Eo(B(¢) - a(6))S(&;6) = a'(6).

Using the Cauchy-Bunyakovskil inequality and the second equality in (3.4.32) we
get

(3.4.33) (a'(8))? < Es(8(€) — a(8))2EoS2(¢; 6)

or, equivalently,

5o _(d'(6)?
4. 2 .
(3.4.34) D90_E932(E;0), 6ec®©
Since a(f) = 6 + b(d) and E»S?(¢;6) = I(6), we obtain inequality (3.4.29) from
(3.4.34).

Now we prove the second statement of Theorem 3.4.3. For the sake of simplicity
we assume that © coincides with an interval [0;,6;] and that the measure y is
concentrated on a union of supports of measures Py, 8 € ©. The equality in (3.4.29)
(or, equivalently, in (3.4.33)) means that

[ @) - ato)2L5 ua

(3.4.35) _ _ 1/2
- ( [@@) - a0 1(a:6) uta) “"f(f(% u(dz'))

for all 6 € ©. Since the first integral on the right-hand side of (3.4.35) is positive
by condition, an equality in (3.4.35) is only possible if

(3.4.36) gfé—j’(i_)—/;;—o = ¢(0)(0(z) — a(6))v/ f(z;0) (u-a.s.).

Let A be the set of z € X for which (3.4.36) holds and |§(z)| < co. Then p(4) =0
(here A = X \ A is the complement of the set A). Fix x € A. Since f(z;0) is
continuous with respect to 6, we have f(z;t) > 0 on some interval (¢1,t2) C ©, and
moreover

(3.4.37) S(z;t) = ct)@(z) — a(t)), te€ (t,ta),
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on this interval by (3.4.36). If (3.4.29) becomes an equality, then (3.4.32) and
(3.4.37) imply that

a'(6) = Eo(8(€) — a(6))S(£;6) = c(8)Deb,

~  (a(6))? _(ION\Y?
0,0 = £ |c(e>|—(D9§)

This implies that the variance D8 is continuous with respect to 6 as well as a’(6),
and I(0) is continuous with respect to 6 while the functions |c(f)| and a(f) are
uniformly bounded on [61,602]). The derivative S(z;0) = 9ln f(x;60)/06 in equal-
ity (3.4.37) possesses the same property. This means that the function In f(z;6)
is finite and f(z;0) > 0 for all § € © = [¢4, 02], whence (3.4.37) follows for all 6.
Integrating equality (3.4.37) with respect to ¢ from 6, to 6, we obtain

0 ]
In f(z;0) = 8(x) /a oft) dt — /0 o(t)a(t) dt + In f(z;61)

and this is equivalent to (3.4.30) for u-almost all z. Since the values of f(z;8) on
a set whose measure u is zero do not matter, representation (3.4.30) is proved.

Finally, we prove the latter statement of Theorem 3.4.3. If 8(z) = const,
then b/(#) = —1 and both sides of equality (3.4.29) vanish. Now let representa-
tion (3.4.30) hold. Differentiating the function In f(z;#) with respect to 6 we get

S(z; 0) = 6(z)A'(6) + B'(6).
The first equality in (3.4.31) implies that
a(6)A’(6) + B'(6) =0.
Thus R
S(z;6) = A'(6)(6(z) — a(9))
and inequality (3.4.29) becomes an equality in view of (3.4.36). O

REMARK 3.4.3. If Egf? = 0o, then Dg8 = 0o and inequality (3.4.29) is trivial.
In view of (3.4.29), the condition Dgf > 0 can be substituted by 1+ b'(6) # 0.

COROLLARY 3.4.3. If all the assumptions of Theorem 3.4.3 are satisfied, then

(1+¥(6)

0 +b%6), 6¢eeo.

Ee(6 — 6)? >

For every unbiased estimator ) of the parameter 0

~ 1
Eq(6 — 0)% > )

feo.

Analogs of Theorem 3.4.3 can be proved under other sets of conditions. Below
is a set of conditions, called (R)*, which also is sufficient for the the Cramér-Rao
inequality:

(i) © is a finite or infinite interval in R?;

(ii)” the function /f(z;6) is absolutely continuous with respect to 6 for -
almost all z € X;
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(iii)’ 0 < EpS2(£;0) = I(8) < oo for all § € © and the function I(6) is continuous
with respect to 6.
It is obvious that conditions (R)* are weaker than conditions (R). Nevertheless
the Cramér-Rao inequality holds under conditions (R)*, too.

THEOREM 3.4.4. Let the regularity conditions (R)* hold. Let 8 be an unbiased
estimator of a parameter 0. Then

~ 1
(3.4.38) Eg(6 — )2 > I0)

Jor all points 0 € © of continuity of Ea(a— 6)2.

PRroOF. Since 6 is unbiased,

8= [@a)-0) (VI@o+8)+ VIw) (VAo +8) - VIG0) uds).

Applying the Cauchy-Bunyakovskil inequality and then the elementary inequality
(va+ vb)? < 2(a+b) for a > 0 and b > 0, we get

/o(x 7 (Vi@o+8) + (xe) u(dz)
x /(\/fT@G +A) — v/ f(2;0))” p(dz)

(3439 <2 / B(z) — 0)*(f(z;0 + A) + f(2;0)) p(dz)

« [ (VF@T+8) - VIGD) ).
Then
(3.4.40) / (@) — 0)*F(=; 0) u(dz) = Eo (8 — 0)%,

(3.4.41) / (Bz) - 0)2f(2;0 + A) p(dz) = Egyn (6 — 0 — )7 + A%,
It follows from (3.4.39)—(3.4.41) that
Eo(6— 6)? + Eora(§— 0 — A)* + A

> (345 / (Vi@o+a) - \/f(w;f)))z u(dw))_l

Condition (ii)” implies that

(3.4.42)

N
V(0 +A) — V/f(z;6) =/:+ %\/f(x;u)du.
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Applying the Cauchy-Bunyakovskil inequality and Fubini theorem we obtain

%/(\/m—\/f‘(ie_))z u(d
Az/(/e"ﬂa\/ z3u) ) p(dz)

4 0+4a (5. /f(z;u)
(3.4.43) < Z/L (T) du p(dzx)
pere (o (0T
= K,/g (4/( ™ ) u(da:)) du

1 [o+a
= —A—/ I(u) du
6

Substituting (3.4.43) into (3.4.42) and passing to the limit as A — 0, we complete
the proof of (3.4.38) in view of the continuity of the function I'(u). O

The above proof of inequality (3.4.42) does not require any condition posed on
the density f(z;6) or on an unbiased estimator 9. Thus this proof can be used
to obtain lower bounds of the variance of an estimator § even in the case where
regularity conditions are not satisfied for f(z;6). Below we provide a result of this

kind for biased estimators 8.

THEOREM 3.4.5. Let§ € © and 6+ A € © for some A # 0. Then for all
estimators 6 of a parameter 6 one has

. -1
IO )

(3.4.44) Dof > (Aa(8))* ( f(z;0)

where

a(0) =E¢f,  Aa(f) =a(d+ A) —a(6),
Af(x;0) = f(z;0 + A) — f(z;6).

In particular,

s (1 [ (Bf(2:6)) -
(3.4.45) Dg6 > ( A7 | ~fm0) u(dzx)
if the estimator 8 is unbiased.

PROOF. First let the measure Pg+a be not absolutely continuous with respect
to the measure Py. Denote by Ny the support of the measure Py in X and let
Ny = {z: f(z; ) # 0}. Then there is a set A C Npya such that

Po+a(4) >0

and f(z;0) = 0 for all z € A. Thus the integral in (3.4.44) is infinite and inequal-
ity (3.4.44) is trivial.
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Now let the measure Py A be absolutely continuous with respect to the mea-
sure Pg. Then Ngya C Np. Since f(z;6) and f(z;0 + A) are the densities of
measures Pg and Pgya, respectively, with respect to u, we have

/ Af(z;0) (dz) = 0.
Moreover
/ 8(z)Af (z; 0) u(dz) = Aa(6).
This implies that

(3.4.46) / (0(=) — a(6))Af(;0) u(dz) = Aa(8).
Np
The integrand in (3.4.46) can be represented on the set Ny as

(@z) - a(0))V/F(z:6)- j%

Applying the Cauchy-Bunyakovskil inequality we obtain

(@o@) < [, 0e) - a0 (i O u(ao)- | %p(d@,

whence inequality (3.4.44) follows. Inequality (3.4.45) follows from (3.4.44). O

COROLLARY 3.4.4. Assume that an arbitrary set of regularity conditions holds
and

L1 Af(z;0))?
lim % w(dz) = I(9).

Then
(3.4.47) Def) > (', (6))/1(6)
for all estimators ) of the parameter 0 where
. Aa(6)
' —
a,(9) = lllZl _sgp A

PRrROOF. To prove (3.4.47) we pass to the limit in (3.4.44) along a subsequence
A — 0 such that Aa(6)/A — a/, (6). 0O

Inequality (3.4.44) is called the Chapman—Robbins inequality. Another name
for it is the difference Cramér-Rao type inequality.

REMARK 3.4.4. If an observation ¢ is a sample £™ = (&,...,&,), f(z;0) is
the density of &1, and f,,(z;8) is the density of the vector £ ()| then one can obtain
analogs of all the above results. If conditions (R) or (R)* hold for the density
f(z; ), then all the above inequalities hold for estimators 8, of the parameter 6.
The only exception is that the Fisher information nl(#) substitutes the Fisher
information I(6) where I(6) is evaluated with respect to the density f(z;8). In
particular, inequality (3.4.29) becomes in this case of the form

(1+8,(6))2

4. 0, >
(3.4.48) Dof > =17k
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where b, (0) = Egf,, — 0 is the bias of the estimator B, Further, inequality (3.4.44)
can be rewritten in this case as

) -1
(3.4.49) Doby > (Ban(6)? ( %&l u(d$)>

where a,,(8) = Egby,.

Efficient and asymptotically efficient estimators of parameters. Let
one of the sets of regularity conditions (CR), (CR)*, (R), or (R)* hold. Let £ be
an observation that is a random element assuming values in a measurable space
(X, B). Let the distribution of £ belong to a family of probability measures

{Pe,6€®}, ©CR.

Let K7 be the class of estimators § = g(£) of a function g(f) with a bias b(f).
Let K} be the class of estimators § = 6(§) of a parameter 6 with a bias b(6), that
is,

K = {g:Egg = 9(0) + b(0)}, Ky, ={0:Eq0 =0 +b(0)}.
We also consider the class K9 of unbiased estimators § of a function g(8) and the
class K of unbiased estimators 6 of a parameter 6, that is,

K9 =K§ ={g:Esg=9(6)}, K =Ko={0:Eef =06}.

Note that K9 = U, and K = Uy where Uy and Up are the classes of estimators

introduced in Section 3.1.
We say that g* € K} is an efficient estimator of a function g(f) in the class
K} if the Cramér-Rao inequality for it becomes an equality, that is,

_ (g0) +¥(6))
= —W—, 0eo.

Similarly, g* € K9 is called an efficient estimator of a function g(6) in the
class K9 (or, an efficient estimator of a function g()) if

(3.4.51) Deg* = (g;((g)))z, gceo.

Conditions (3.4.50) and (3.4.51) can be rewritten in the following equivalent
form:

(3.4.50) Deg*

(3.4.52) Eo(g* — 9(8))% = %’;’—(% +b%(0), 6¢€o,

/ 2
(3.4.53) Eo(g* — g(0))% = (gI((Z))) , 6feeo.

Efficient estimators 6* of a parameter 6 in the classes K; and K can be intro-
duced similarly to (3.4.50)—(3.4.53) if g(f) = 6. In particular, 8* € K is called an
efficient estimator of a parameter 8 in the class K if the corresponding Cramér-
Rao inequality becomes an equality, that is,

1+5(6))?

(3.4.54) Eo(6* — 0)? = ( 0) +b%0), 6e€o.
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We say that 6* € K is an efficient estimator of a parameter 6 in the class K if

1
4. Eo(0* —0)2=—:, feo.

Conditions (3.4.50)—(3.4.55) suggest a general definition: an estimator is called
efficient in the corresponding class if the Cramér-Rao inequality becomes an equal-
ity.

Efficient estimators exist only in exceptional cases. In other cases one can
construct the so-called asymptotically efficient estimators if the size of a sample
increases.

Let an observation be a sample £(™ = (¢1,...,¢&,) with the density

fn(z;0)=ﬁf(:c,~;9), z = (z1,...,%), 6 €0O.

=1

A sequence of estimators g, n = 1,2,..., is called an asymptotically efficient
estimator of a function g(6) if

! 2
o -9 = L0 +0(2), sce,

as n — oo. For the sake of brevity we say that g is an asymptotically efficient
estimator of a function g(f). Similarly, 6}, is called an asymptotically efficient
estimator of a parameter 0 if

1 1
Eo(8) — 6)% = m+o< ) 0 €0,
as n — 00.

Another name for asymptotically efficient estimators is asymptotically efficient
estimators in the strong sense. If a sequence of estimators g, n = 1,2,..., is
asymptotically NV'(g(6), (¢'(6))%/(nI(8))) normal, then we say that gy, is an asymp-
totically efficient estimator of a function g(0) in the weak sense. If a sequence of
estimators 0%, n = 1,2,..., is asymptotically NV'(8,1/(nI(f))) normal, then the
estimator 6}, is called an asymptotically efficient estimator of a parameter 6 in the
weak sense.

EXAMPLE 3.4.1. Let £™ = (¢1,£s,...,£,) be a sample from the normal dis-
tribution AV'(6,0?). In this case

2
10) = Eos¥i0) =& (257) = .

Then 8, = n~! Y1 & is an unbiased estimator of the parameter 6 and

2
G—02=" =1
Eo(6, —6)" = n  nl(8)

Thus é‘n is an efficient estimator of the parameter 6.
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EXAMPLE 3.4.2. Let £™ = (£1,&,,...,£,) be a sample from the V(a, 8) dis-
tribution. It is clear that

G-a)? 1\
16)= Eosz(gl;m -, (( G %)
11
404 —7Eo(é1 — @) - 293 ~Ee(61— @) + 107 = 502

since Eg(£1 — @)* = 36%. It is clear that B, = n! > 1(& — @)? is an unbiased
estimator of the parameter § and

n 2
Eo(6, — 0)% = Eg (717 Z (6 —a)* - 9])

=%Z (6 — )% — 6]

+—ZE9 & — ) — 0] Eg (& —a)? - 0]
J#i
1 1
=B [(61—)? - 9]2 = [Ea (&1 — )t — 20Eq (61 — a)? + 67
_w_ 1
T n o nl(6)’
whence it follows that 5,, is an efficient estimator of the parametez 0.
Consider the estimator 6, = (n — D7IYE (& —8)?% where E=n"1Y0 &

It is clear that E¢f, = 6, that is, 6, is an unbiased estimator of the parameter 6
(see Example 3.1.3). According to (3.2.9) we have

20> 1 1
n_1_ n-DI@)  nl@)

Eo(gn - 9)2 =

that is, 5,, is not an efficient estimator of the parameter §. Nevertheless 5,1 is an
asymptotically efficient estimator of the parameter in the strong sense.

EXAMPLE 3.4.3. Let £(™ = (£, 6,...,&,) be a sample from the Gamma dis-
tribution with the density

1@i6) = 57" Lo @)

where § € © = (0, 00) and I'(6) is the Gamma function. It is obvious that regularity
conditions hold in this case. By Lemma 3.4.2 we have

; (32 lnf(£1;0)> _ &Inr@)

(3.4.56) 1(6) = —E 202 7

Consider the estimator 8, = n~! Yoiq&. Tt is clear that Egby, = 0, that is, O, is
an unbiased estimator of the parameter . Moreover,

o 1

(3.4.57) Eg(6, — 0)% = = SR CRL))
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by (3.4.56) where

~ . d’InT(0)
(3.4.58) Ii(on, 9) =0 T
By the Stirling formula (see [9], relation (12.5.3)) we have

InT'(0) = <0— %) Inf -6+ %1n27r+/0 1031_532 dz

where Pj(z) is the periodic function with period 1 such that Pi(z) = —z + } for
z € (0,1). This implies

#mre) 1 1 © P, (z)
T2 ‘6*@”/0 T e

Thus for all § € (0, c0)

Pi(z)
0+z)3

~ 1 o0
(3.4.59) k(0n;0) =14 — + 20/ dz > 1.
20 0
The coefficient n(@n; 0) can be made as large as we want by choosing a sufficiently
large 6. Thus (3.4.57)—(3.4.59) imply that the estimator 6, is not asymptotically
efficient whatever the parameter 4 is.

EXAMPLE 3.4.4. Let £ = (£1,...,£,) be a sample from the exponential
distribution with the density

F(2;0) = e7®+I1g o) (2).

Regularity conditions do not hold in this case, since the function f(z;#) is discon-
tinuous with respect to §. Consider the estimator

We learned from Example 3.2.2 that §n is the Pitman estimator of the parameter

and moreover 9

Eq0,, =6, Eo(6n — 0)% = ok
This implies that the mean square error Eg(8,, —8)? is of order n=2 for large n. This
is a higher rate of decay as compared to the one given by the Cramér-Rao lower
bound. This phenomenon occurs, since the regularity conditions fail in this case.
Other examples of higher rates of decay of Ey (§n — 6)? can be obtained by using
the lower bound in the Chapman-Robbins inequality in some other cases where the

regularity conditions fail.

REMARK 3.4.5. Further information about the regularity conditions and Cra-
mér-Rao inequalities can be found in [36] and [13)].

REMARK 3.4.6. The Cramér-Rao inequalities belong to the family of results,
called information inequalities, which provide lower bounds for the risk functions or
risks of estimators of parameters. See [22], Chapter 5, about the relation between
the Cramér-Rao inequalities and for other information about inequalities.
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3.5. The Cramér—Rao inequality for a multidimensional parameter

In this section we consider analogs of the Cramér-Rao inequalities for the case
of a multidimensional parameter 6.

The Fisher information matrix. Let £ be an observation that is a random
element assuming values in a measurable space (X, B). Assume that its distribution
belongs to a family of probability measures {Pg, 6 € ©} where © is some subset
of R¥, k > 1. As in the case of a one-dimensional parameter we assume that for
all # € © the measure Py is absolutely continuous with respect to some o-finite
measure p on (X, B) and that there exists the density f(z;6) of the measure Py
with respect to the measure pu.

Let the derivatives S;(z;0) = d1n f(z;0)/06;,i = 1,...,k, exist for y-almost all
z € X. The matrix I(0) with the entries I;;(0) = EqS;(&;0)S;(£;6), 4,5 =1,...,k,
is called the Fisher information matriz. In the case k = 1, I(6) is the Fisher
information.

It is easy to see that the matrix I(#) is nonnegative definite. Indeed, for all
A= (/\1,...,)\k)/ € Rk,

k k
NIOX =" Lij(®)Ad; =Es Y Si(€:60)S;(&0)A:;
4,j=1 i,5=1

(3.5.1) ) .
=Eg (Z Si(&; 9)>\i> = Eg (X5(£6))* 20
i=1

where S(; ) is the vector defined by
(3.5.2) 5(4;6) = (51(£:0), 52(6;0), - .., Sk(&: 6))".

Inequality (3.5.1) implies that the Fisher information matrix I() is nonnegative
definite and this explains why we write I(§) > 0 in this case. If the matrix I(8) is
positive definite, then X'I(9)X > 0 for all vectors A # 0. We write I() > 0 in the
latter case. We write A > B for matrices A and B if A — B > 0, that is, if the
matrix A — B is nonnegative definite.

The Cramér—Rao inequality for unbiased estimators. Let 8 be an esti-
mator of a parameter 6 constructed from an observation { where 6 = (61,605, ...,60x)
and 6 = (61,62,...,6k)". Denote by R(6;6) the matrix with entries

Eo(6; — 6:)(8; — 0;),  4,5=1,2,...,k

In other words, R(6;6) = E¢(6 — 6)( — )’ is the matrix of mixed moments of the
vector § — 6. 1t is easy to show that for all vectors A € R*

(3.5.3) Eo((8 — 6)')\)2 = NR(G; 0)),

that is, the matrix R(8;6) is nonnegative definite.
If the matrix I(6) is nondegenerate, then we will show that R(8;6) > I ~1(9)
under some conditions on f(z;6), that is, we will show for all vectors A € R¥ that

(3.5.4) NR(G;6)A > NI™(H)A.
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The latter is a matriz analog of the Cramér-Rao inequality. Inequality (3.5.4) for an
unbiased estimator § means in view of relations (3.5.1) and (3.5.3) that the variance
of the projection of the vector fon an arbitrary direction X in R¥ is greater than or
equal to the variance of the projection of the vector S(£;6) on the same direction.

Let C9(©) be the class of real functions ¢(f) defined on © C R* that are
differentiable in @ almost everywhere with respect to the Lebesgue measure, and
such that the function ¢(@ + t)) is absolutely continuous in ¢ for all # and A for
which§ +tA€©and 0<t<1. If¢p € C}(O©) and § +tA € O for 0 <t < A, then

A A
6(8+AN) — ¢(6) = /0 _d‘ﬁ("d: W) o [5000+w)

(3.5.5) i 5

where

99(9) _ (aqs(e) 0¢(6) a¢(e))’
00 ~—\ 06, 06, ' 86y )’

The following result contains sufficient regularity conditions posed on the den-
sity f(z;0) under which the Cramér-Rao inequality (3.5.4) holds.

THEOREM 3.5.1. Let 1/f(x;0) € C(O) for u-almost all z € X. Assume that
the matriz 1(0) is continuous in 0 and nondegenerate. If 6 is an unbiased estimator
of the parameter 6, then

(3.5.6) R(6;0) > I71(6)
for all points 0 of continuity of the matriz R(@: 0).

PROOF. Let § € ©, A € R¥, and || = 1. Then 6 + t) € © for all sufficiently
small A > 0 and for all ¢ € [0, A]. Since 6 is an unbiased estimator,

Eg§= 0, E9+A)\§= 0+ A,
whence we obtain

/ (@) - 0)[f(z:0 + AN — f(z:0)] p(da) =

Multiplying this equality on the left by u’ and applying the Cauchy—Bunyakovskil
inequality we get

A2(u')? g/( '(B(z) - ) (\/f 7,0+ AN + /f(z; o) u(dz)
x [ (VIGE+EN - VF@h) udo)
<2 [ (@)~ ) (Fe0+ AN + f(a0) u(ee)
x [ (VIGE+EN - VF@h) udo)

Relations (3.5.3) and (3.5.7) imply that

(3.5.7)

A2(W/N)? < 2 [u'R((?; 0)u+u'R(B:0 + AN)u + A2(u’)\)2]

< [ (VI@T+EN) - Vi) uide).

(3.5.8)
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Since 1/f(z;8) € C3(©), we obtain from (3.5.5) that
2
[ (Vi@o+E) - Vi@8) udo)

~ A NOf(z;6+t0)/80 .\
(3.5.9) —/(/0 NACTED) dt) u(dz)

A A
<7 / NI(0+tA)A\dt.
0

Let 6 be a point of continuity of the matrix R(g, 6). Substituting (3.5.9) into (3.5.8)
and passing to the limit as A — 0 we get

(3.5.10) (u' R(8;0)u) (N'I(0)) > (w')).
Putting A = I~1(6)u we derive from (3.5.10) that
W R(6;0)u > v'I"1(0)u
for all vectors u € R¥. The latter inequality is equivalent to (3.5.6). O

Let an observation be a sample £ = (¢;,...,£,) and let the density of the
sample be fn(z;0) = [, f(zi;0) where z = (z1,...,2,). Let I,(6) and I(6)
be the information matrices constructed from the densities f,(z;6) and f(z;0),
respectively. If the regularity conditions of Theorem 3.5.1 hold, then

I.(8) = nI(6).

If 8, is an unbiased estimator of the parameter 6, then under the conditions of
Theorem 3.5.1 we get the following matrix analog of the Cramér-Rao inequality:

(3.5.11) R(B.;0) > %I-l(a).

The Cramér—Rao inequality for biased estimators. Let 6= (51, .. ,gk)’
be an estimator of a parameter 8 = (6, ..., 0x)’ constructed from an observation £.
Put

a(f) =Eef=0+b(6),  b(O) = (b1(6),...,b(8))"

Here b(0) is the bias vector of the estimator 8 of the parameter 6.

Consider the multivariate analog of the regularity conditions (R) introduced in
Section 3.4:

(R) the function +/f(z;6) is continuously differentiable in 8 for p-almost all z;

the matrix () is nondegenerate and continuous in 6.

In what follows we need the following Cauchy-Bunyakovskii inequality for ma-

trices.

LEMMA 3.5.1. Letn and ¢ be two random matrices of the same size (they are
not necessarily square matrices). Assume that the inverse matriz of Enn' exists.
Then

(3.5.12) E¢¢’ > E¢n (Enn') T Eng’.
This inequality becomes an inequality if and only if { = zn where z = E¢n/(Enn’) 1.
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PROOF. Since AA’ > 0 for an arbitrary matrix A (that is, the matrix AA’ is
nonnegative definite),

0 <E(¢—2n) (¢ —2n)' = ECC" — 2En¢’ — E¢n'2 + zEnn'2’

for a nonrandom square matrix z. Putting z = ECy/(Enn’)~! we obtain inequal-
ity (3.5.12). The statement concerning the case of an equality in (3.5.12) is obvi-
ous. a

The following result contains the Cramér-Rao inequality for a biased estima-
tor 6 under the regularity conditions (R).

THEOREM 3.5.2. Let conditions (R) hold. Let D(8;6) = E¢(6—a(6))(8—a(6))’
be the matriz of mized central moments of second order of an estimator 0 of a
parameter 6. Then

(3.5.13) D(8;6) > (I + B(6))I(6) (I + B(9))’

where Iy is the unit matriz, B(0) = ||bi;(0)]l, and b;;(9) = 8b;(6)/06;.

Let det(D(6;06)) > 0 (or det(I + B(6)) > 0) for all 0. Then inequality (3.5.13)
becomes an equality if and only if the density of the distribution is such that
(3.5.14) f(z;0) = exp{A(8)'8(z) + C(0)}h(z), =€ X,
for some scalar functions C(0) and h(z) where

_ ||84:(6)

(35.15) 45001 = | 2552

is the matriz of derivatives of the vector A(0) = (A;1(6), ..., Ax(6))'.
If 0 is an unbiased estimator, then

= ((Zx + B(9))™1)'1(6)

(3.5.16) D(8;6) > I71(6).

Inequality (3.5.16) becomes an equality if and only if relation (3.5.14) holds where
A5 (0) I = I(6).

PROOF. As in the proof for the one-dimensional case we use the regularity
conditions (R) to prove that

EoSi(£;0) =0,  EgB;8;(&;0) = 8 +bi5(0), 4,5 =1,2,....,k

(see Lemma. 3.4.4), where §;; is the Kronecker symbol and the functions b;;(#) are
continuous. The latter condition can be written in matrix form as follows:

(3.5.17) EsS(&;6) =0,
(3.5.18) E¢0S(¢;0) = I, + B(6)

where the matrix B(f) is continuous in 6 and the vector S(¢; 0) is of the form (3.5.2).
Equalities (3.5.17) and (3.5.18) imply that

(3.5.19) Ee(6 — a())S(£;6) = I, + B(H).



84 3. ESTIMATION OF UNKNOWN PARAMETERS OF DISTRIBUTIONS

Now we apply the Cauchy—Bunyakovskil inequality for matrices. Put { = 6 - a(f)
and 7 = S(¢;6) in (3.5.12). Then

Eo¢¢' = Eo(6 — a(9))(6 - a(9))’ = D(5;0),

Eonm’ = EoS(¢;6)S(¢;0)" = 1(6).

It follows from (3.5.19) that

EoCr = Eo(0 — a(9))S(€:6)' = I + B(6).
This together with (3.5.12) implies inequality (3.5.13).

According to Lemma 3.5.1, inequality (3.5.13) becomes an equality if and only

if

(6(z) — a(8)) = (Ix + B(6))I~*(6)S(=; 6)
for points (z;6) such that f(z;0) > 0. The latter condition is equivalent to
(3.5.20) S(z;0) = I(6)(Ir + B(6)) ' (6(z) — a(9)).
If inequality (3.5.13) becomes an equality, then

det(I; + B(8))? = det D(8; 6) det I(6).

If det D(@, 0) is far away from zero, then so is det(I; + B(f)), whence it follows that
the inverse matrix (I + B(#)) ! exists and is bounded. Thus the derivative S(z; 6)
in (3.5.20) is bounded, f(z;0) > 0 everywhere on ©, and equality (3.5.20) holds
everywhere on ©. Let 6,0 € © and 6 + s(0 — 6y) € © for all s € [0,1]. Then

1
In f(z;0) = In f(z;60) + / (6 — 6o)'S(z; 60 + s(6 — 6o)) ds
0
in view of conditions (R). Thus
(3.5.21) In f(z;0) = A(6)'8(z) + C(0) + H(z)
according to (3.5.20) where C() and H(x) are some scalar functions, and
A(0) = (A1(0), ..., Ax(6))

is a column-vector depending only on . This means that representation (3.5.14)
holds.
If relation (3.5.21) is satisfied, then

(3.5.22) S(z;8) = | Ai;(6)1'6(z) + 0B(8) /08
and
(3.5.23) " 8B(8)/96 = || Ai;(9)]'a(6),

since E¢S(&;60) = 0. It follows from (3.5.22) and (3.5.23) that
S(x;6) = | Ay ' (B(=) — a(6)).

Multiplying this equality on the right by (5(:1:) —a(8))’, we obtain from (3.5.19) that
condition (3.5.20) (which is equivalent to the case of equality in (3.5.13)) follows
from (3.5.15).

Inequality (3.5.16) follows from (3.5.13), since the matrix B(9) is zero if fisan
unbiased estimator. O
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All the remarks concerning the Cramér-Rao inequality that we made in Sec-
tion 3.4 for the regularity conditions (R) in the one-dimensional case remain true
in the multidimensional case, too.

One can prove the Cramér-Rao inequality for estimators g of a function g()
of a parameter ¢ in the same way as in the one-dimensional case.

Note that if an observation is a sample £(®) = (&y,...,£,), then as above

I.(8) = nI(9)

where I,(6) and I(0) are the Fisher information matrices constructed from the
distribution of the sample £(™ and from the distribution of the component &,
respectively. If the regularity conditions (R) hold, then

(35.24) D(B:;6) > (T + Bal®) I (O)(Ik + Ba(0))

for all estimators 5,, constructed from the sample £(™) where

(3.5.25) D(81;6) = Eg(Bn — an(6))(Bn — an(6))',

(35.26)  an(6) =Egfn =0+ba(6),  ba(8) = (B1(6),...,05(6))’,
(3.5.27) B(6) = b7 (0)l,  b¥(6) = Bb,/86;.

The case of equality in (3.5.24) can be considered by applying Theorem 3.5.2.

Efficient and asymptotically efficient estimators. The definitions of ef-
ficient and asymptotically efficient estimators in the case of a multidimensional
parameter are similar to those in the case of a one-dimensional parameter. An
estimator * is called an efficient estimator of a parameter 6 if the Cramér-Rao
inequality for this estimator becomes an equality. If 8* is an unbiased estimator of
a parameter 6, then 6* is efficient if (3.5.6) becomes an equality, that is, if

(3.5.28) R(6*;0)=171(0), 6¢co.

If 6* is a biased estimator of a parameter 6, then it is efficient if inequality (3.5.13)
becomes an equality, that is, if

(3.5.29) D(6*;0) = (I, + B(®))I"(0)(I + B())', 6¢€®o.

If an observation is a sample ¢(®) = (¢;,...,£,), then conditions (3.5.28) and
(3.5.29) become of the form

(3.5.30) R(O%:6) = %1‘1(0), 6co,

(35.31)  D(6:;0) = %(Ik + BaO)IN(O) (I + Ba(0)), 6€O,

where I(6) is the Fisher information matrix constructed from the distribution of &1
and B, (6) is the matrix defined by (3.5.24)(3.5.27) for 8, = r.

Equalities (3.5.30)—(3.5.31) hold, that is, 8 is an efficient estimator, only in
exceptional cases. However there exist the so-called asymptotically efficient esti-
mators and conditions for their existence are quite general. An estimator 6, of a
parameter 6 constructed from a sample £(™ is called asymptotically efficient if

(3.5.32) R(0%;6) = 1+—7;’(1—)1-1(e), 6co,
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where R(0};0) = Eo(6}, — 6)(0;, — 6)’. The estimator 6y, is, generally speaking,
biased.

EXAMPLE 3.5.1. Let £™ = (&,&,...,£&,) be a sample from the normal dis-
tribution N (6;,6,). Thus 6 = (61,602)" and the density f(z;8) is of the form

1‘2 12291 0% 1
(3.5.33) f(z;0) = ﬁexp{ 20, +E_E__2_ln02}'

Consider the estimator 5,, = (51,,1, 52.11) such that

s~z 1 - 1 & =
bin=8=23 & o= m;(& -

.
l
-

It is clear that 8, is an unbiased estimator. It follows from (3.5.33) that represen-
tation (3.5.14) does not hold for the density f,(z;8), since

fn(2;0) = (2m)” “/zexp{ 2; Z it 9_12 '''' 92}
=1
~1

~ 2
lez - n—ol— glnﬁg}.

— (om) /2 e S P15 =15
(2m) exp{ % O1n — 292 02,11 2, 1~ 20,

This means that the lower bound in the multivariate Cramér-Rao inequality is
not attained and therefore 6,, is not an efficient estimator. Nevertheless 6,, is an
asymptotically efficient estimator. Below we prove this result.

First we evaluate the matrix I(6). We have

z—0; .0\ (Il: - 01)2 1
S]_(QI 0) 2 ) 52(1:’0) = 20% - 2_02
where S;(z;0) = 81n f(z;0)/00;, i = 1,2. Thus
(6—61)* 1
11(6) = EGG—g = g,

— 3 -
1) = In0) = & (S - 820)

N (R 6;)° 1
I22(0) - EG 40‘21 = @

and the lower bound in the Cramér-Rao inequality is given by
1 -1 _ 02 / n 0
(3.5.34) ;L-I 0 = ( 0 20%/71) .
Now we evaluate the matrix R(b\n; 0). We have

Eo(B1n — 61)% = Eo(E— 61)2 =

26'2 ~ ~
Eo(B2,n — 02)% = —7 Eo(01n —61)(62n — 02) =
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The first of the latter equalities is obvious. The last of them follows from the
independence of 6,5, and 05, (see Theorem 1.4.2). To prove the second equality

we note that
(Z“’ 3k IP) (n—1)

by Theorem 1.4.2. Since Dx2_, = 2(n — 1), we get the desired equality. Thus the
matrix R(0,;0) is given by

(3.5.35) R(Bn;0) = (‘920/" o83 /(%_1)).

Finally we apply (3.5.34) and (3.5.35) and obtain (3.5.32). This shows that 8, is
an asymptotically efficient estimator.

Other results related to the Cramér—-Rao inequality. Inequality (3.5.12)
allows one to obtain some other results corresponding to other matrices ¢ and 7.
We restrict our consideration to the case of a one-dimensional parameter §. Assume
that the density f(z;8) satisfies a stronger condition as compared to the regularity
condition (R), namely let

(¢1) the density f(z;8) be continuously differentiable m > 1 times in 6;

(i2) the integrals

g £ (e j|2
Kj(9)=/N |(S)L;(’;;)o/)—aﬂu(da:), i=12,...,m,

converge for all § € © and, as functions of #, be continuous on © where
No = {=: f(2;6) # 0}.

Using the same method as that in the proof of Lemma 3.4.4 we show that
conditions (4 )—(é2) imply that the function a(f) = Eg§ has m continuous derivatives
for an arbitrary estimator 9 if its second moment E902 is locally bounded.

Let ¢ = (¢1,¢2,...,¢m) be some vector of R™. Put { = 0({) —a(f) and

0 f(60)/967
n= Z Cj f(g’o) 9(6)'

Then it follows from (3.5.12) that
(3.5.36)

(c1 + 3T ¢ (670(6) /3.9:'))2
DgO > sup - - - -
¢ Y1 CiCi [y, (00f(;6)/06%) (87 f(x;6)/067) f~1(x;6) p(dz)

where b(6) = E¢f — 0 is the bias of the estimator 8. Inequality (3.5.36) is called the
Bhattacharyya inequality. More details about the Bhattacharyya inequality can be
found in [36).

Assume that the set Ny does not depend on 6 and let Ny = N for all 8 € ©.
Below we avoid the regularity conditions posed on the density f(z;8). Denote by M
the set of charges m on © such that

/e (1+ £(z;)) Im(du)| < oo.
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Put ¢ =0 — a(8) and
)
= —0 su) m(du)l, - m(©
1= 13 . €0 m@)InE -m©)
in (3.5.12). Inequality (3.5.12) becomes of the form

(3.5.37) \
Doi'> sup (Jo(a(u) — a(6)) m(du))
~ meM Jo Jo m(dur) m(duz) [y f(z;w1) f(z;u2)/ f(;6) p(dz) — m?(O)
and is called the Barankin—Kiefer inequality in this case. If the upper bound in

the Barankin-Kiefer inequality is evaluated only with respect to J-measures on ©
instead of charges m € M, then (3.5.37) becomes of the form

~ (a(u) — a(9))*
(3.5.38) Dob > 18116116) fN(f(z’ u) — f(z;0))2f~1(x; 0) u(dz)

and is called the Chapman—Robbins inequality (cf. inequality (3.4.43)).

3.6. Integral inequalities of Cramér—Rao type

We follow the Bayes approach and obtain lower estimates for risks of estimators
in this section. The corresponding inequalities can be called integral inequalities of
Cramér-Rao type, since they involve risk functions integrated with respect to the
a priori measure.

Efficient and superefficient estimators. Throughout this section we as-
sume that an observation is a sample ¢ = (¢y,...,£,) from a distribution for
which there exists the density f(z;0) with respect to a measure yu where § =
(61,...,0;)" is an unknown parameter whose value belongs to a certain set © C R,
k > 1. First we consider the case k = 1, that is, the case of a scalar parameter 6.
Let an arbitrary set of regularity conditions given in Section 3.4 hold. Then the
Cramér-Rao inequality

1

nT(GS’ feo,

(3.6.1) Eo(6n — 6)? >

holds for all unbiased estimators 8, of the parameter § where () is the Fisher
information evaluated with respect to the density f(z;#), that is,

1(6) = EgS(£1;6),  S(z;6) = Oln f(x;6)/06.

The right-hand side of inequality (3.6.1) is sometimes called the Cramér-Rao
bound. This bound is attained if an estimator is efficient. The question is whether
one can improve this result for biased estimators. In other words, the question is
how precise is the Cramér-Rao bound for biased estimators.

It is quite obvious that the expectation Eg(f, — 6)? at a fixed point fy can be
smaller than the Cramér-Rao bound. Indeed, this is true for §n = @y, for example.
However the latter estimator is very bad at any other point.

Below is another example of this kind. Let £(§; | Pg) = N(6,1) where

0 €©=10,00).
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It is clear that the estimator 5,1 =n! Z?=1 &; is efficient. Nevertheless the es-
timator ), = 0V 0, is even better, since it decreases the mean square deviation

by substituting 0 for negative values of 8, that are meaningless in view of the
restriction that @ € [0,00). On the other hand, 6}, is a biased estimator, since

Eo0;, > Egb,, = 6. We have I(0) =1 for all § € ©. At the point § = 0 we get
~ 1 1 1 1
2 _ — - _ - *\2 - -
Bobn = = a2t B = 5 < aro)

The improvement of the Cramér—Rao bOEnd is explained in this example by a
restriction of the domain of the estimator 8,, to the set ©.

Another example is due to Hodges. The improvement of the Cramér-Rao
bound in the Hodges example is not due to the restriction of the set © and is
explained by other circumstances.

Again let £(& | Pg) = N(6,1) where § € © = (—00,00). Along with an
efficient estimator 6, =n~' ), & we consider another estimator
o — ana if |§n| > n_1/4,
"\ BB, if 6] <04,

where |G| < 1. It is easy to see for § > 0 that
Po (16nl < n-1/4) < Py ((§n —8)vn < nl/t - Wﬁ) ) (n1/4 - 9\/5) 0

as n — oo where ®(z) is the standard N(0,1) distribution function. A similar
result holds for the case § < 0, too. If § # 0, then the estimator 8, coincides with
0, on an event whose probability approaches 1 as n — oo0. Thus

£((8 - O)VR | Ps) —» N(0,1)

asn — oo if 8 # 0.
If=0and asn — oo

Po (|§n| < n—1/4) =Py (Ié\n\/ﬂ < n1/4) —1-9% (_n1/4) 51,

If @ = 0, then the estimator 8}, coincides with ﬂ@, on an event whose probability
approaches 1 as n — oco. Hence

L (65v/n| Po) — N (0,5?)

as n — 00.
Therefore the estimator 8 is asymptotically N'(8,02(6)n"!) normal for all 6
where £0£0
1 i
2 ) )
9) =
(0 {ﬂz, if § = 0.

Note that A2 < 1. Thus the asymptotic variance of the estimator 6}, at the point
0 = 0 is equal to n~13? which is less than the lower Cramér—Rao bound

(nI(0))" =n"1,

Asymptotically normal estimators whose asymptotic variance o2(6) is such that
0%(8)/n < 1/(nI(0)) and is less than (nI(6))~! for some @ are sometimes called
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superefficient. The points 0 for which o2(0)n~! < (nI(f))~! are called the points
of superefficiency.

The examples of superefficient estimators do not change our conclusion that
efficient or asymptotically efficient estimators are the best. Namely Le Cam (1953)
proved that an improvement of an efficient estimator can be made only at a set of
points of superefficiency whose Lebesgue measure is small.

We show in this section that infg_ Et(0 —t)2 = 0 for all ¢ and that there is a

lower bound of the integral of Et(0 — t)? that does not depend on 8, but still is
closely related to the function (nI(t))~1. More precisely, we obtain a lower bound
for

(3.6.2) ipf/ Et(gn;t)zq(t) dt
6, JO

for an arbitrary nonnegative weight function g(¢) such that [y q(t)dt = 1. This
lower bound is close to J/n where

_ [
(3.6.3) J= / g
Note that the integral in (3.6.2) can be treated as the unconditional mathe-
matical expectation E(, — 6)? for the Bayes approach where the a priori measure

Q(4) = /A o(t) dt

is a probability distribution of the parameter 8 and the density ¢(t) of Q with respect
to the Lebesgue measure exists. Relation (3.6.3) in this case can be rewritten as
J =EI71(9).

Integral inequalities. Let f,(z;t) be the density of the sample £ with
respect to the measure p if § = t. Then f,(z;t)q(t) = pn(z,t) is the density of
the joint distribution of the vector (¢(™,0). Denote by Nj C © the support of a
function h defined on ©. In other words N, = {t:h(t) # 0}. By N we denote
the support of the function p,(z;t) in X x ©, that is, N is the support of the
distribution of the vector (£(™; ).

THEOREM 3.6.1. Let the function fp(z;t) be differentiable with respect to t,
while \/I(t) is integrable on every finite interval. Then

[E(R(6)/4(8))]?
nE(1(8)[h(8)/9(6))?) + E(h'(8)/4(6))?
([ h(t) dt)?
~ a JIOR®)/q(t) dt + [ (W' ()2/q(t) dt
for all diﬁerentiabie functions h(t) with bounded support such that N, C Ny and
for all estimators 6, of the parameter 6.

E@, —0) >
(3.6.4)

PRrROOF. Since the support of the function h(t) is bounded, we get
[ tntaionwy ae = [ dtgataione <o,
[ Hnt@iiny ar = - [ fulaonwa
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Thus
/X /e (Ba(@) — 1) (fa (s OR(D))' dt p(d) = / / £ h(E) dt u(d)

- /@ h(t) dt

for an arbitrary estimator 8,. Since Nj, C N, equality (3.6.5) holds for integrals
over the set N. Multiplying and dividing (3.6.5) by pn(z;t) we obtain

= (fa (f(”) 6) h(e) 0)

By the Cauchy-Bunyakovskil inequahty

(3.6.5)

[E(n(0)/4(6))]” .
E [ (€™:0) h(©)'/ (f2 (6:0) @)

It remains to rewrite the latter result in the form of (3.6.4). Note that

(3.6.6) E@, — 0)? >

(3.6.7) Es [Sn (5(");t)| < n/I(0)
and for almost all ¢
(3.6.8) E;Sn (§<“>;t) =0

where S, (z;t) = 8ln f,(z;t)/0t. Estimate (3.6.7) follows from
Ee [Sn (63¢) | < nEdlS(&;8)] < m (E:S%(E1)/* = n/TC),

since .
Sn (6™;t) =D 5(€ist) and  S(zit) = ln f(z;t)/ot.
=1

To prove equality (3.6.8) we consider an arbitrary function g(t) whose support is
bounded and whose derivative g’(t) is continuous everywhere. Then

[ o2 as = [ g0) sty

[ 190 (0) | @t < [19@IVID &t < o0

This implies that one can interchange the integrals:

/ o(DES, (6031) di = / / (t)af"(“ dt u(dz)
/ / (8)fo (23 £) dt p(d)
= / /dg(t)—

Since this equality holds for all g, we prove that (3.6.8) holds for almost all .

Moreover
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Now we transform the right-hand side of (3.6.6):

e (U (6™50)nO)'\’
fn (g(n);g) 4(9)

n). o\ M)  K'(8
=E( (em50) 29 qw)))
! ! 2
=E [(Z—g%) EeS2 (ﬁ(n);e)} +2E [%Eosn (€(n);0)J +E (I;(_(:))_)
0 2 / 2
- (5) 10+€(Ga)
Here we used equalities Etsﬁ(ﬁ("); £) = nI(t) and

(K0, () - [, HOOe, )

following from (3.6.8). Thus relation (3.6.4) is proved. 0O

THEOREM 3.6.2. Let the function f,(z;t) satisfy the conditions of Theorem
3.6.1. Assume that the function h(t) = ho(t) = q(t)/I(t) has finite support and is
differentiable. Then for all estimators 6, one has

i _o2> _}i >
(3.6.9) E@n 0722 (14

12

i [](9)] .

I(t)) | a(®)
PROOF. Theorem 3.6.2 follows directly from Theorem 3.6.1 since the right-
hand side of (3.6.4) is equal to J2/(nJ + H) for h(t) = q(t)/I(t). a

J
n

|

where

REMARK 3.6.1. Inequalities (3.6.4) and (3.6.9) are integral in the sense that
they provide the lower bounds for integrals of E: (6, — t)2.

We see from inequalities (3.6.4) and (3.6.9) that the lower bound of E(gn —9)?
differs slightly from
J 1
n_ / nl(t) a(t) d¢

for large n. The latter integral is equal to E(67; — §)? if 67, is an efficient estimator.
This indicates that one should use efficient estimators, since E(an — 0)? attains its
minimum at efficient estimators whatever function g(t) is.

The following example shows that the lower bounds (3.6.4) and (3.6.9) cannot
be improved in general.
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EXAMPLE 3.6.1. Let ¢™ = (£,,...,¢,) be a sample from the distribution
N(6,1). In this case T (6) = 1. Let the parameter § be a random variable with a
smooth density g(t), ¢ € (—00,00). Then the lower bound in (3.6.9) is of the form
(n+ H)~! where

'(t) 2
H=/idt=E Inq(8))]>.
L it =E[ng(0))]
Let 63 be the Bayes estimator of the parameter 0 corresponding to the a priori
probability measure Q whose density is g(t) and let the loss function be quadratic.

The estimator 69 minimizes the risk E(f» — 0)? and coincides with the a posteriori
mean 63(z) = E{6 / ¢(™ = z}. Thus

09 (z) = [ ta(t) fu(z;t) dt _ [ ta(t) exp (nTt — nt?/2) dt
" Ja@®) fa(z;t)dt [ q(t) exp (nZt — nt?/2) dt
_ Jtq(t) exp (—n(t — T)%/2) dt
~ [a(t)exp(—n(t —T)2/2) dt

where Z = n"'Y 0 z; and £ = (z1,...,2,). If the function q(t) is sufficiently
smooth, then (3.6.10) implies that

(3.6.10)

ng(z) n?
2 1 H 1
E (69 - 06) =E_E+O($>

as n — oo. In particular, let ¢(t) = (27)~1/2 exp(—t2/2). Then H = 1 and the
lower bound in (3.6.9) is (n+1)~!. On the other hand, we learned in Example 3.1.5

that
1

n+1
This proves that the lower bounds in (3.6.4) and (3.6.9) cannot be improved, indeed.

E(69 -6)° =

The following result follows from Theorem 3.6.1. It allows one to make some
conclusions concerning the points of superefficiency.

THEOREM 3.6.3. Let the density fn(z;t) satisfy the assumptions of Theo-
rem 3.6.1. If the interval (a —€,a +¢€) belongs to ©, then

-1
3.6.11 max E,(0 _t2><n ms I(t ”2;—2
( e ) te(;—e,a+e) t( ) t€(a—e,a+€) ( )

for an arbitrary estimator 0.

PROOF. Let g(t) =0fort ¢ (a —e,a+¢€). Then

E@ - t)? >/
(3.6.12) 2 0-t)°= )

Put

a+te
E:(6, — t)%q(t) dt = E(6, — 6)°.

—E€

7(t — a)
2

1
h(t) = q(t) = E cos? lt — al <e,
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in Theorem 3.6.1. Then inequality (3.6.4) implies that

(3.6.13) E(6-6)? > (n / " I(t)q(t)dt + / a+€(q'(t))2/Q(t) dt)

-1

a—¢ a—¢e
where
a+e (_/ 2 € 2 ¢
/ (®) dt = / T 9cos m sin ) o cos~2 I gt
a—c q(t) —e \ 2e2 2% 2 2%
(3.6.14) ) g
—i wzsinzﬂ—tdt—ﬂ—
- 82 -1 2 - 62 '
Now relations (3.6.12)—(3.6.14) yield inequality (3.6.11). a

REMARK 3.6.2. It is not hard to show that the minimum of the functional
f_ll(q’ (t))2¢~1(t) dt in the class of all differentiable densities g(t) whose support

belongs to [—1,1] is attained for the density g(t) = cos?(nt/2).

REMARK 3.6.3. Theorem 3.6.3 implies that the length of the interval of values
of 6 for which 8,, is superefficient does not exceed O (n~%/2).

Integral inequalities for nondifferentiable functions g¢(t)/I(t). If the
function h(t) = ¢(t)/I(t) does not satisfy the assumptions of Theorem 3.6.1, then

one can estimate the asymptotic behavior of E(@, —0)? by using the following result.

THEOREM 3.6.4. Let the function fn(z;t) satisfy the assumptions of Theorem
3.6.1. Let the functions h.(t) depend on a positive parameter e, and satisfy the
assumptions of Theorem 3.6.1 and

1) he(t) < ho(t) = g(t)/I(2) for alle > 0,
2) H(e) = [(h.(t))?*/q(t)dt < oo for all € > 0.
Then for alle >0

~ he(t) dt)?
E —0)2 > UE—
(6n = 0)" 2 nd + H(e)
PROOF. It is necessary to put h(t) = h.(t) in Theorem 3.6.1. a

Theorem 3.6.4 implies the following useful result.

THEOREM 3.6.5. Let the function f,(z;t) satisfy the assumptions of Theorem
3.6.1. If the function g(t) is Riemann integrable and J < oo, then

(36.15) E@n — 6> 21+ o(1)
as n — o0.

PrOOF. Consider the following functions:

@) = minglt+u),  gelt) = EOIEE 2 ),

t+e
L(@t) = max(e, I(t)),  he(t) = %/t— 36\8(13_

It is clear that the support of the function h.(t) is bounded, h,(t) is differentiable
for all € > 0, and he(t) < ho(t) = q(t)/I(t).
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Since the function q(t) is Riemann integrable, we obtain
ge(t t) almost
everywhere as € — 0. This result follows from () 7 a(®)

b
(3.6.16) /ww—%wwuo

ase — 0 for all a,b € ©, —00 < a < b < co. Moreover

b
" as(2k6)26 1 / g(t)dt and ) gs((2k+1)8)26 1 / bq(t)dt
k a k a

as § — 0. Therefore, as e — 0
b
1
/a g:(t)dt > ; 02e(2ke)2e = 3 (Xk: a2 (4ke)de + ; G2 ((4k + 2)5)43)

— /ab q(t) dt.

Thus relation (3.6.16) is proved, whence the convergence g (t) 1 q(t) follows.
The convergence ¢,(t) T ¢(t) implies that

qe(t) T 38) hO t),

[rewa=[ 2 / ?(ﬁi? 2| o [ g
- [t [fge=7

’ 1 ge(t +¢) QE(t"E)
el = 2 | Lt7e) " Lt=o)| =

/ 2
H(e) = / (e Eg) dt < / 90) 4 — 514'

Putting € = n~'/% in Theorem 3.6.4 we obtain

- he(t)dt)® _ J2 +o(1)
E  — 2 (f >
(0 - 6)" > nJ + H(e) = nJ+ n4/s

as € — 0. Moreover

(t)

as n — 0o, whence the desired estimate (3.6.15) follows. O

Asymptotically Bayes and asymptotically minimax estimators. One
of the main results following from the above integral inequalities can be stated as
follows. If an efficient or, at least, an asymptotically efficient estimator exists, then
any other estimator is asymptotically “worse”. Below we introduce the notions of
the asymptotically Bayes and the asymptotically minimax estimators. We consider
the quadratic loss function and the a priori measure Q and assume without loss of
generality that Q is a probability measure for which the density g(t) exists.
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An estimator 8}, of a parameter 8 is called asymptotically Bayes (with respect
to the quadratic loss function and the a priori measure Q) if

(3.6.17) lim sup [En(e:; —8)2 —En(, - 9)2] <0

n—00
for an arbitrary estimator §n. An estimator 6}, is called asymptotically R-Bayes if
(3.6.18) En(0; — 6)% = J +o(1)

as n — oo. In other words, an estimator is asymptotically R-Bayes if the lower
bound for the mean square deviation given by Theorems 3.6.2 and 3.6.5 is attained
at this estimator. Another name for this estimator is asymptotically R-efficient in
the mean square sense.

The following result contains a relationship between asymptotically Bayes and
asymptotically R-Bayes estimators.

THEOREM 3.6.6. Let all the assumptions of Theorem 3.6.1 hold. If the func-
tion q(t) is Riemann integrable, then every R-Bayes estimator is an asymptotically
Bayes estimator.

PROOF. Let 6} be an asymptotically R-Bayes estimator, that is, (3.6.18) holds.
According to Theorem 3.6.5

lim inf En(b, —0)2>J

for an arbitrary estimator 8,. This together with (3.6.18) implies (3.6.17) for the
estimator 6}, that is, 6}, is an asymptotically Bayes estimator. 0

It is clear that if an asymptotically R-Bayes estimator exists, then every asymp-
totically Bayes estimator is an asymptotically R-Bayes estimator.

The equivalence of all asymptotically R-Bayes estimators is established in the
following result.

THEOREM 3.6.7. Let all the assumptions of Theorem 3.6.1 hold. Assume that
the function q(t) is Riemann integrable. If 0} and 63* are two asymptotically R-
Bayes estimators, then they are asymptotically equivalent in the following sense:

(3.6.19) En(d;, —6;*)> =0, (65— 06 )vn—0

as n — oo where the second relation means the convergence in probability with
respect to the joint distribution of €™ and 6.

PRrROOF. It follows from (3.6.18) that
: * _ 0V2 — ) ** _ N\2
(3.6.20) nan(;lo En(6;, — 6) Jim_ En(6;" —0)* = J.
Let 8, = (6% + 6%*)/2. Relation (3.6.20) implies that
(3.6.21) lim En(8, — 6)? = J.
n—00

It is easy to show that

- * __ [wk 2 * _ N\2 *x __ N\2
(on—e)2+(0" 2«%) _(6.-9) J;(t% 0)?
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This equality together with (3.6.20) and (3.6.21) yields
: * _ Rk\2 —
nll.rrolo En(0;, — 6;%)°=0

and the first relation in (3.6.19) is proved. The second relation in (3.6.19) obviously
follows from the first one. (]

Further we consider the asymptotically minimax approach. An estimator 8, is
called asymptotically minimaz if

3.6.22 limsup sup E;n (6% — t)? < lim inf sup E;n 5,, —1)?
n

n—oo teO n—00 e

for all estimators §n.
The following result contains sufficient conditions that an estimator is asymp-

totically minimax.

THEOREM 3.6.8. Let the Fisher information I(0) exist and be continuous. If

(3.6.23) limsup sup E;n (0% — t)? < sup I7(t),
n—oo teo teo

then 0, is an asymptotically minimaz estimator.

Proor. It is sufficient to show that

(3.6.24) lim inf sup E;n (6, — t)? > sup I71(t)
n—=00 teo t€e

for an arbitrary estimator 0. Let Q be an arbitrary probability measure on ©
whose density ¢(t) is smooth. It is obvious that

(3.6.25) sup En(B, — )2 > / Eun(B, — £)%q(t) dt.
teo

The right-hand side of (3.6.25) is greater than or equal to J — H/n according to
Theorem 3.6.2. Thus (3.6.25) implies that

(3.6.26) lim inf sup E;n (6, — t) > /I“l(t)q(t) dt.

N0 teo

Since ¢(t) is arbitrary, it can be specified such that

(3.6.27) / I(t)q(t) dt > sup I~ (t) — ¢

€0
for a given € > 0. The number ¢ is arbitrary and thus (3.6.26) and (3.6.27) imply
relation (3.6.24). Taking into account (3.6.22), we obtain from (3.6.24) and (3.6.23)
that 6}, is an asymptotically minimax estimator. g
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Remarks concerning the multidimensional case. All the results of this
section can be proved for the case of a multidimensional parameter § € © C Rk,
k>1.

In particular, Theorem 3.6.5, one of the main results of this section, is of the
following form in the multidimensional case:

£ - 0)6; - 0y > - e p)

where I(t) is the Fisher information matrix.
The results for asymptotic Bayes and asymptotic minimax estimators are also
valid in the multidimensional case if the quality of an estimator is measured by

v(6;) = E(6;, —£)'V(6;, - 6)

where V is a certain nonnegative definite matrix.

Bayes and minimax (or asymptotically Bayes and asymptotically minimax)
estimators can be defined in the multidimensional case as estimators whose qualities
satisfy the corresponding inequalities for all nonnegative definite matrices V.

REMARK 3.6.4. Other approaches to integral inequalities of Cramér—-Rao type
can be found in Chapter 5 of [22] where the estimates of the Shannon information
contained in an observation £(™) and in an estimator ﬁn with respect to a random
parameter 6 are used. The corresponding results are called information inequalities
in [22].



CHAPTER 4

Sufficient Statistics

In the preceding section we discussed the problem on how to construct differ-
ent kinds of optimal estimators, namely Bayes, minimax, efficient, asymptotically
Bayes, asymptotically minimax, asymptotically efficient, and others. In this sec-
tion, we introduce the so-called sufficient estimators that allow one to construct
optimal estimators by using a sufficient statistic instead of an observation. Suffi-
cient statistics play an important role in mathematical statistics in general and in
the theory of estimation in particular.

4.1. Sufficient statistics and a theorem on factorization

Conditional expectations, conditional probabilities, and sufficient
statistics. Let (Q2,F,P) be a probability space, let £ be a nonnegative random
variable, and let G be a o-algebra, G C F. A generalized nonnegative random
variable E(£/G) (the extended form of this notation is E(£/G)(w), w € Q) is called
the conditional expectation of the random variable & with respect to the o-algebra G
if E(¢/G) is G-measurable and for all A € G

(4.1.1) /A £(w) P(dw) = /A E(¢/0)(w) P(dw)
or, equivalently,
(4.1.2) Elaf = EILE(E/G) forall A€ G

where I4 = I4(w) is the indicator of the set A. The conditional expectation E(£/G)
of a random variable £ with respect to a g-algebra G is well defined if

(4.1.3) min(E(¢*/G), E(€7/G)) <oo  (P-as.).

In this case

(4.1.4) E(¢/G) =E(€*/9) —E(™/G)  (P-as).

Here £+ =0V ¢ and €~ = —(0 A £). Note that the conditional expectation E(£/G)

exists if £ > 0. Indeed, let Q(A) = EI4{, A € G. Then Q is a measure on
(R2,G) and it is absolutely continuous with respect to the measure P. According to
the Radon-Nikodym theorem, there exists a generalized nonnegative G-measurable

random variable E(£/G) such that
Q(A) = / E(£/0)(w) P(dw) forall A €.
A

Thus E(¢/G)(w) = dQ/dP(w) (P-a.s.) is the Radon-Nikodym derivative of the
measure Q with respect to the measure P; both measures Q and P are considered

on the space (©2,G).
99
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Let B € F. Then the conditional expectation E(Ig/G) is called the conditional
probability of an event B with respect to a o-algebra G, G C F. The conditional
probability is denoted by P(B/G). Therefore the conditional probability of an event
B € F with respect to the o-algebra G is a G-measurable random variable P(B/G)
such that

(4.1.5) P(AN B) = EIP(B/G) = / P(B/G)dP forall A€ G.
A

Let £ be a random variable and let G, be the o-algebra generated by some
random element 7. Then the conditional expectation E(§/Gy), if it exists, is denoted
by E(&/n) or by E(§/n)(w) and is called the conditional ezpectation of £ with respect
to 1. The conditional probability P(B/G,) is denoted by P(B/n) or by P(B/n)(w)
and is called the conditional probability of an event B € F with respect to 1. Let
n = n(w) be a random element assuming values in a measurable space (Y,S). Since
E(¢/n) is a Gy-measurable function, there exists a real Borel function m = m(y)
defined on (Y,S), assuming values in R = [—00, 00}, and such that for all w € Q

m(n(w)) = E(¢/n)(w)-

This function m(y) is denoted by E(¢/y) = E(¢/n = y) and is called the conditional
expectation of a random variable & with respect to an event {n = y} or conditional
expectation of & given n =y.

According to definitions (4.1.1)—(4.1.4) we have

(4.1.6) EIq& = EI4E(¢/n) = EIam(n) for all A € G,.

Changing the variables in the integral we obtain

417)  Elgemm(n) = /

mi(n) dP = / m(y) Py(dy) forall BeS
{wn(w)€B} B

where {w:n(w) € B} € G, for all B € S and P, is the probability distribution
of the random element 7 on (Y, S). Thus equalities (4.1.6) and (4.1.7) imply that
m = m(y) is a Borel function defined on (Y, S) and such that for all B € S

419 Elgent= [ £(0)Pd) = [ m(s)Po(e)

Relation (4.1.8) can be used as an alternative definition of the conditional expec-

tation E(¢/n = y) = E({/y) = m(y).
The conditional expectation E(I4/n = y) is called the conditional probability
of an event A € F given n = y; this expectation is denoted by

P(A/n=y)=P(A/y).

It is clear that the conditional probability P(A/n = y) can be defined as a measur-
able function defined on (Y,S), assuming values in ([0, 1], B([0,1])), and such that
forall Be S

(4.1.9) P(4N{n€BY}) = /B P(A/n = y) Py(dy)

win(w)€eB}

(see (4.1.5)). Note that the conditional expectation E({/G) can be defined in a
similar way for rather general random elements ¢ if the expectation E{ exists. A



4.1. SUFFICIENT STATISTICS AND A THEOREM ON FACTORIZATION 101

detailed treatment of this topic as well as a discussion of properties of conditional
expectations can be found in [30].

Let £ be a random element assuming values in a measurable space (X, B); let
the distribution of £ be a probability measure belonging to a family P = {Py,0 € 0}
where 8 = (0;,03,...,0;)" is an unknown parameter, § € © C R, k > 1. We call ¢
an observation. An arbitrary measurable function T' = T'(z) mapping (X, B) into
some measurable space (Y, S) is called a statistic.

For a fixed § € © consider the probability space (X,B,Pg). Let By be the
o-algebra in (X, B) generated by the statistic T' = T'(z). It is clear that

Br=T"YS)cB
where T~1(S) is the minimal o-algebra generated by the family of events
{z:T(z) € B}, BeS.
According to definition (4.1.5), a Br-measurable function
Ps(A/Br) = Po(A/Br)(z)
such that
(4.1.10) Po(AN B) = fB Po(A/Br)(x) Po(dz) for all B € By

is called the conditional probability measure Py of the set A € B with respect to
the o-algebra Br. By definition (4.1.9), the conditional probability measure Pg of
the set A € B given T = y is a measurable function

Po(A/n=1y) = Pe(A/y)
defined on (Y, S), assuming values in ([0, 1], B([0, 1])), and such that for all B € S

(4.1.11) Po(AN{z:T(z) € B}) = /B Po(A/y) Pe,r(dy)

where Pg 7 is the distribution of the statistic T' defined by
Po.7(B) = Pe{z: T(z) € B}, BeS.
Relations (4.1.10) and (4.1.11) imply that
(4.1.12) Po(A/T(z)) = Pe(A/Br)(x) (Pg-a.s.) for all A € B.

A statistic T = T'(x) is called a sufficient statistic for a family P = {Py,0 € ©}
(or for a parameter 6) if for any A € B there exists a measurable function

Ya =pa(y)

defined on (Y,S), that depends on A and y and does not depend on 6, and such
that

(4.1.13) Po(A/T(z)) = Ya(T(z))  (Pe-as.).

This property means that the conditional distribution of the observation £ given
a fixed value of the statistic 7' does not depend on the parameter §. This means that
the fact that a sampling point 2 € X lies on the surface T'(x) = y gives no additional
information about the parameter 4. In other words, the statistic T' exhausts all the
information about @ that is contained in the sample. This explains the name fgr'.’*'
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a sufficient statistic: knowledge of T'(z) is sufficient to construct an estimator of
the parameter 6, while the other information included into the observed point z is
useless.

EXAMPLE 4.1.1. Let an observation be a sample £ = (&,...,&,) from a
Poisson distribution with parameter §. Consider a statistic T, = Y ;. ; &. This
statistic obviously has the Poisson distribution with parameter n. Note that

€M =g, 3 6=y = { e =z}, if Yo o=y,
i=1 g, if Z?:l Z; :'é Y
where z = (z1,...,%,) and z;,y € {0,1,...} foralli=1,...,n. Then
P0!§(")=z! ‘f n e
(4-1-14) Po {é’(n) = :l,‘/Tn = y} = { ] Tn=y} ’ 1 Z:;=1 Zi y’
O, if Ei:l Z; 76 Y.
If Yo, z; =y, then
Pole® =} _ (g (m)*) ™ 0™ _ WPy L
Po{Tn =9} y! z! v '
Thus relation (4.1.14) implies that the conditional probability
Po (¢ =2/To = y)

does not depend on the parameter 6. This means that the statistic T}, is sufficient
according to definition (4.1.13).

i=1

Relation (4.1.12) suggests the following definition of a sufficient o-algebra. We
say Br is a sufficient o-algebra if the statistic T is sufficient. The notion of a
sufficient statistic is important in many problems, however the notion of a o-algebra
is more convenient, at least from the point of view of the theory, than that of a
sufficient statistic. Note that there are examples of sufficient o-algebras that are
not generated by any sufficient statistics assuming values in a given measurable
space [3].

Dominated families of distributions. Let P be a family of probability
measures defined on a measurable space (X, B) and let u be some o-finite measure
on (X, B). We say that a family P is dominated by the measure p if every measure
P € P is absolutely continuous with respect to p. A family P is called dominated
if there is a o-finite measure dominating the family . Note that if a family P is
dominated, then there exists a finite dominating measure. Indeed, let a family P
be dominated by a o-finite measure y and let X = i, A; where pu(4;) < oo for
alli=1,2,... and A;NA; = & for i # j. Then the measure v defined by

oo
v(A) =) 27u(AN A)/u(A:),  AEB,
i=1
also dominates the family P; moreover the measure v is finite.

Let two families of measure M and N be given. We say that a family M is
dominated by a family N if every measure of the family N dominates the fam-
ily M. The families of measures M and N are called equivalent if the family M is
dominated by the family A/, and the family N is dominated by the family M.
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THEOREM 4.1.1. A family of probability measures P is dominated a o-finite
measure if and only if the family P contains a countable equivalent subfamily.

PRrROOF. First we assume that the family P contains a countable equivalent
subfamily {P,Ps,...}. Then the family P is dominated by the measure

[o o]
uw= Z 27"P,.
n=1

Conversely let the family P be dominated by a o-finite measure u. Without
loss of generality we assume that the measure p is finite. Let IC be the class of
all probability measures Q of the form ) ¢;P; where P; € P, all numbers c; are
positive, and Y ¢; = 1. The class K is dominated by the measure . For Q € K we
denote by ¢(z) = dQ/du(z) the density of the measure Q with respect to p.

Our current goal is to prove the following assertion (which is equivalent to the
statement of the theorem): there exists a measure Qo € K such that the equality
Qo(A) = 0 implies Q(A) =0 for all Q € K.

Consider the class S of sets C € B for which there exists a measure Q € K
such that g(z) > 0 almost surely with respect to the measure y on a set C with
Q(C) > 0. Let u(C;) — supgeg u(C) as i — oo where C; € S and ¢;(z) > 0 almost
surely with respect to the measure x on a set C; (g;(z) corresponds to Q; which in
turn corresponds to C;). Let Co = ;2; C;. Then g§(z) = Y oo, cigi(z) coincides
p-almost surely with the density dQo/du(z) where Qo = > o2, ¢;Q;. It is clear
that g§(x) > 0 almost surely with respect to the measure p on the set Cp, whence
Co€S.

Assume that Qp(A) = 0. Let Q be another measure of the class K and let C =
{z:q(z) > 0} and ¢(z) = dQ/du(z). Then Qo(AN Cp) =0, whence u(ANCy) =0
and Q(AN Cy) = 0. We also have QL ANCoNC) = 0 where C = X \ C and
Co = X\ Co. Now we prove that Q(ANCyNC) = 0. Assume the converse, namely
let Q(ANCoNC) > 0. This implies

(4.1.15) #(CoU(ANCyNC)) = u(Co) + (AN CoNC) > u(Co),

since u(ANCoNC) > 0 in view of the inequality QAN CoNC) > 0 and Q is
absolutely continuous with respect to D L. Inequality (4.1.15) contradicts the equality
1(Co) = supges #(C). Thus Q(ANCoNC) =0 and

Q(A)=Q(ANCy) +Q(ANCyNC)+Q(ANCyNC) =0.
Therefore the equality Qo(A) = 0 implies that Q(A) = 0 for all Q € K. O

Theorem on the factorization. Let £ be an observation that is a random el-
ement assuming values in a measurable space (X, B) and whose distribution belongs
to a family of probability measures P = {Pg,8 € ©} where § = (61,02,...,6;) is
an unknown parameter § € © C R, k > 1.

The following result, known as the Neyman-Fisher factorization criterion,
contains a necessary and sufficient condition for a statistic to be sufficient for
a dominated family P. The short name of this result is the factorization crite-
rion. The first result of this type is obtained by Fisher (1920) and rediscovered
by Neyman (1935). It is proved for general dominated families by Halmos and
Savage (1949). Further generalization is due to Bahadur (1954). The result below
is closer to the theorem of Bahadur.
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THEOREM 4.1.2. Let a family P = {Pg,0 € ©} be dominated by a measure p
and let T = T(z) be a statistic mapping (X, B) into a measurable space (Y,S). The
statistic T' is sufficient for a family P if and only if the density

f(z;6) = dPg/dp(x)
admits the factorization
(4.1.16) f(z;0) = g(T(z); 0)r(z) (u-a.s.) forall@€©

where g(y;0) is a nonnegative S-measurable function for all & € © and r(z) is a
nonnegative B-measurable function.

PROOF. Since the family P is dominated, Theorem 4.1.1 implies that there
is a countable subfamily {Pg,,Pg,,...} C P that is equivalent to the family P.
Consider the probability measure A = ), ¢;Ps, where c; > 0 for alli=1,2,... and
Y ;¢ = 1. It is obvious that the measure A\ dominates the family 7. Denote by
p(z;0) = dPg/d\(x) the density of the measure Pg with respect to the measure A.

Necessity. Let T be a sufficient statistic for the family P. According to defini-
tion (4.1.13), for every A € B there exists an S-measurable function 94 (y) defined
on (Y,S) and such that Pg(A/T(z)) = ¢a(T(x)) almost surely with respect to the
measure Py for all § € ©. Then A\(A/T(z)) = ¥a(T(x)) almost surely with respect
to the measure ). Indeed, the definition of the conditional probability implies for
all A € B and B € By = T~}(S) that

AANB) =) ciPs,(ANB) = Zc, /,9 Po,(A/T(z)) Py, (dz)
= Zi:cz- fB Ya(T(z)) P, (dz) = /B Ya(T(z)) Mdz)

which together with (4.1.10)—(4.1.12) implies that A(A/T(z)) = ¥a(T(x)) almost
surely with respect to the measure ) for all A € B. Further, for all A € B we have

ExIa(€)p(€;0) = Po(A) = EgPo(A/T())

= Egppa(T(£)) = Exp(&;0)%4(T'(£))

(4.117) = Exp(&; 0)M(A/T(€)) = EAMA/T(§))Ex(p(¢;6)/T(£))
o = ExEA(Ia(8)/T(€))Ex(p(&;0)/T(£))

= ExEx(Ta(§)Ex(p(& 0)/T()/T(£))

= ExJa(§)Ex(p(§;0)/T(E))
where Ey and Ey are the expectations with respect to the measures A and Py,
respectively. This implies that p(z;0) = Ex(p(&;8)/T(x)) almost surely with respect
to the measure ), that is, the density p(z;6) is Br-measurable or, in other words,
p(z;0) = g(T(x);0) almost surely with respect to the measure A. Since A < u,
equality (4.1.17) implies that for all A € B

/ £(:6) p(dz) = Po(A) = ExIA(£)g(T(£);6)
(4.1.18) 4
- /A o(T(2); 0)r () p(da)
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where r(z) = d)\/du(z). Since the set A € B is arbitrary, equality (4.1.18) implies

the required relation (4.1.16).
Sufficiency. Let relation (4.1.16) hold. Then

Do) = Y esf @56) = (o) Y cig(T(@)i6

=r(@)G(T(z)) (was.)

(4.1.19)

where
G(T(z)) = Zczg(T z);0;), z e X.

Consider the function

G(T(=)) °

(4.1.20) B(z;8) = TR if G(T(x)) > 0
B ’ 0, if G(T(z)) = 0.

It is clear that the function p(z; ) is Br-measurable. Moreover

)= R @ (was)
since Pg € A < p.
Therefore
(4.1.21) dp" dP"( ) / _ éfﬁl))) (w-a.5.)

by (4.1.16) and (4.1.19). Equality (4.1.19) implies that A{z: G(T(z)) = 0} = 0.
Thus p(z;6) = p(x;0) (Ma.s.) by (4.1.20) and (4.1.21), since A is absolutely con-
tinuous with respect to u. The function 7(z;0) is Br-measurable, whence for all
A € B we have

EoPo(A/T(€)) = Po(A) = ExIa(§)p(&;0)
= EAEA(T4(&)p(&8)/T(€)) = Exp(& 0)Ex(Ta(£)/T(£))
= E9Ex(1a(8)/T(€)) = EeA(A/T(E)).

If A is replaced with AN B in this equality and if A € B and B € Br, then
EoIp(£)Po(A/T(§)) = EoIB(§)MA/T(E))-
Since B € Br is arbitrary, it follows that for all A € B
Po(A/T(z)) = M(A/T(x)) (Pe-a.s.) for all 6 € ©.

This means that the statistic T'(z) is sufficient. a

Below are two corollaries of Theorem 4.1.2.

COROLLARY 4.1.1. Let a family P be dominated. If a measurable function of
some statistic is sufficient for the family P, then the statistic itself is sufficient for
this family, too.
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PROOF. Let T and T be two statistics such that T = qb(f) where ¢ is a mea-
surable function. Assume that T is a sufficient statistic for the family P. According
to Theorem 4.1.2 we have

f(z;0) = g(T(z); )r(z) = §(T(z);6)r(z)  (p-as.)

(see relation (4.1.16)), that is, the statistic T is also sufficient for the family P. O

COROLLARY 4.1.2. Let a family P be dominated. If T is a sufficient statistic
for the family P and a function ¢ is such that v = &(y) is a measurable one-to-one
mapping, then the statistic T = ¢(T') is also sufficient for the family P.

PROOF. Since ¢ is a one-to-one mapping, we have T' = ¢! (f) Now Corollary
4.1.2 follows from Corollary 4.1.1. O

Applying the factorization criterion one can find sufficient statistics for dom-
inated families. Below are some applications of the factorization criterion for ob-
taining sufficient statistics.

Examples of sufficient statistics. According to the factorization criterion
the statistic T'(z) = z, called the trivial sufficient statistic, is sufficient for ev-
ery dominated family of probability measures P. In the examples below we find
nontrivial sufficient statistics.

EXAMPLE 4.1.2. Let © = {601,0,,...,05}. Then any family P is finite, that is,
P = {Pe,,Ps,,...,Pg,}. A dominating measure p exists in this case. In particular,
one can put y = Z;.’:l ¢iPg, for ¢; > 0,i=1,2,...,s. Consider the statistic

T(z) = (Ti(z), T2(z), . . . , Ts—1(x))
where Tj(z) = In(f(z;0;41)/f(2;61)), 5 =1,2,...,s — 1. Then
f(z;6;) = exp(Tj-a(2))r(z),  §=2,3,...,5,
where 7(z) = f(z;61). Thus
f(z;60) = g(T(z); 0)r(z) forallfde®

where
exp(Tj-1(x)), if0=46;, j=2,3,...,s,

or@i0)={ oo
Therefore T'(z) = (T1(z), T2(), . .., Ts—1(z)) is a sufficient statistic.

EXAMPLE 4.1.3. Let £ = (£1,6,,... ,&n) be a sample from the normal dis-
tribution N (61,62). Then the density f(z;6), § = (61,6), is represented in the
form

f(m; 9) (\/—0 o €Xp { 02 Z 01)2}

_ 1 2 01 = ) ne%
‘Mmm“%2%;“+%;“ 203
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where & = (z1,...,Z,). This means that the statistic T'(z) = (T1(z), T>(z)), where

Ti(z) = in; Tz(z) = En:zzz
=1

i=1

is sufficient. Note that according to Corollary 4.1.1, the statistic T(z) = (Ti(z),
T(z)), where

n

Ti(z) =% = % zn:x To(z) = 7-1 Y (zi -7

i=1 =1

is also sufficient because T'(z) = ¢(T(z)).

If ¢™ is a sample from the distribution AV'(6;,2) and the variance o2 is known,
then T(z) = Y i, z; is a sufficient statistic, while if ¢((™) is a sample from the
distribution N(@,63) and the expectation & is known, then T(z) = 37, (z; — a)?
is a sufficient statistic. It is clear that the statistic T(z) = (i, %s, )1y Z2) is
also sufficient in both cases.

EXAMPLE 4.1.4. Let £™ = (€,...,&,) where £y, .. .,&, are independent ran-
dom variables. Assume that £; has the normal N (6p,6?) distribution, i =1,...,n.
Then the density £(™ is of the form

i

f@0)=]] o)

i=1

2 2
. ; 8,
noexp{-1 00, (%) +0Xi B - )

where § = (fp, ...,0,) is an unknown vector parameter. It is clear that the “best”
sufficient statistic in this case is T'(z) = z. If the random variable £; has the normal
N(0,02) distribution and the variances o2 are known, then T'(z) = Y ., z;/0? is
a sufficient statistic.

EXAMPLE 4.1.5. Let £™ = (¢,&,...,&,) be a sample from an uniform dis-
tribution on the interval [0, 6] where § > 0 is an unknown parameter. Then the
density of the sample £ is of the form

F(2;0) = 07" I10,00) (Tn,1)L(—00,6) (Tn,n)

where

Tp1 = min x; Tpp = MAX T; Ti1,...,%Tp) = .
n,1 1<i<n (X} n,n 1<i<n (%) ( 1 ) n)

Thus relation (4.1.16) holds with g(t;60) = 607"I(_co,6)(t), 7(z) = Ijp,c0)(Tn,1),
and T'(z) = Zn,n, whence it follows that T'(z) = z,,, is a sufficient statistic.

If £(") is a sample from the uniform distribution on the interval [6,6 + 1] and
0 € R is an unknown parameter, then we can proceed in the same way as above
to show that T'(z) = (2,1, %n,n) is a sufficient statistic of the parameter §. The
same statistic is sufficient for the two-dimensional parameter 6 = (6;,63), —00 <
0; < 03 < 00, in the case of a sample from the uniform distribution on the interval
[61,02].
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EXAMPLE 4.1.6. Let £ = (£1,£,...,&,) be a sample from the Pearson type
IIT distribution whose density is given by
05°
I'(6)

where (0y,62,05) = 6 is an unknown parameter. Then the distribution density of
the sample £ is

nbs n n
$0050) = gy L1 =00 exp{ =00 Y ~3) o orn)

i=1

(97 - 01)93_13_92(’:_91)[[91,00)(:17), S (—OO, OO),

where £ = (z1,...,%,). If 63 = 1 and an unknown parameter is 6 = (6y, 62), then
the density is of the form

£(z;0) = 67 exp {—92 > (xi—61) } Tigy 00) (%n,1)-
=1

Thus the statistic T'(z) = (}_1=; %i, Tn,1) is sufficient. If 6; = 0 and 0 = (62, 65) is
an unknown parameter, then T'(z) = (3.1, @i, [}, z:) is a sufficient statistic. If
03 # 1 is either a known or unknown parameter, while 6; is an unknown parameter,
then the “simplest” sufficient statistic is T'(z) = (z1,z2,...,%n)-

Note that the density of the Pearson type III distribution belongs to the system
of Pearson curves (its description can be found in [9], §19.4, or in [24], §5.6).

Sufficient statistics in the Bayes approach. Let £ be an observation that
is a random element assuming values in a measurable space (X, B). Let its distri-
bution depend on an unknown parameter § = (6;,0z,...,0;)" which is random with
the distribution Q concentrated on a Borel set © C R¥, k > 1. Let P;, t € ©, be
probability measures corresponding to the conditional distribution of the observa-
tion £ given 6 = ¢, that is, P;(A) =P{§ € A/0 =t} for all A€ Bandt € ©. Thus
we are given a family of probability measures P = (P;,t € ©) which we assume to
be dominated by some measure p. We also assume that the measure Q possesses
the density ¢(t) with respect to some measure A.

The following result contains necessary and sufficient conditions that a statistic
is sufficient for a family P = (P, t € ©) expressed in terms of a posteriori density.

THEOREM 4.1.3. A statistic T = T(z) mapping (X, B) into some measurable
space (Y, S) is sufficient for a family P = (P, t € ©) if and only if for any a priori
distribution Q of the parameter 0, the a posteriori distribution Q. depends on z
through T(z). Here Q,(A) =P{0 € A/¢ =z}, z € X, A€ B*.

PROOF. Let T be a sufficient statistic for a family P and let g(¢) be the density
of the measure Q with respect to the measure A. The density ¢(¢/z) of the a pos-
teriori measure Q. with respect to the measure ) exists for all £ € X. Applying
relation (4.1.16) we obtain from the Bayes theorem that

C f@mtet)  o(T()italt)
/%) = T F i wya(u) Ndw) T 90T (2); u)a(a) M)

that is, ¢(¢t/z) depends on z through T'(x).
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Now we prove the converse. Consider an a priori distribution such that ¢(t) > 0
everywhere on © and for all ¢

flai =L 1) = [ f(aija M),
Put g¢(t/x) = (¢, T(x)). Setting g(y;t) = ¥(t,y)/q(t) and r(z) = f(z) we get
relation (4.1.16), that is, T'(z) is a sufficient statistic. O

COROLLARY 4.1.3. If T = T'(z) is a sufficient statistic for a family
P = (Pt,t € 9),

then any Bayes estimator, as well as any minimaz estimator, of the parameter ¢
with respect to the quadratic loss function defined as in Theorem 3.1.3 depend on
the statistic T

PRrOOF. Note that the Bayes estimator of the parameter 6 with respect to the
quadratic loss function is the a posteriori expectation

E(0/¢ = =) = [ talt/x) M)
Now we apply Theorem 4.1.3 to complete the proof. a

REMARK 4.1.1. Using Theorem 4.1.3 one can provide the following equivalent
definition, called the Bayes definition of a sufficient statistic (see [36]). A statistic
T = T(z) is sufficient for a family P = (P, t € ©) if for any a priori distribution
Q of the parameter 6, the a posteriori distribution Q, depends on z through T'(z)
almost surely with respect to p.

Fisher information and sufficient statistics. Let £ be an observation that
is a random element assuming values in a measurable space (X, B). Let its distri-
bution belong to a family P = {Pg, 6 € ©} where 0 is a nonrandom scalar unknown
parameter. We assume that the family P is dominated by some o-finite measure p
whose density f(z;0) = dPg/du(z) satisfies an arbitrary regularity condition under
which the Fisher information () is well defined. For the sake of definiteness we
assume the regularity conditions (CR) (see Section 3.4). Then I(f) = E4S2(¢;6)
where S(z;0) = 0ln f(x;60)/00. Note that conditions (CR) imply that

EpS(&0) =0

(see Lemma, 3.4.1), whence it follows that I(6) = DgS(&;6) is the variance of the
random variable S(¢;6).

Let T = T(z) be some statistic mapping (X, B) into some measurable space
(Y,S). Denote by uT and PT 0 € O, the images of measures p and Py, 0 € O,
respectively, under the mapping T": (X, B) — (Y, S), that is,

P§(B) =Po(T'(B)) and u"(B)=pu(T"*(B)) forallBeS

where T~1(B) = {z: T(z) € B} is the preimage of the set B under the mapping 7.
It is clear that the family of measures PT = (P 9 € ©) is dominated by the
measure u”. Denote by g(y; §) = dPaT/ duT(y),y e Y, the density of the measure Pg
with respect to the measure u7. If the density g(y; 6) also satisfies conditions (CR),
then the Fisher information I7(8) = Eo(01n g(T'(€);0)/6)? is well defined.
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The following result provides a relation between the Fisher information I7(6)
generated by the distribution of the statistic T'(¢) and the Fisher information I(8)
generated by the distribution of the observation &.

THEOREM 4.1.4. Let a family P = (Py,0 € ©) be dominated by a measure p
and satisfy the regularity conditions (CR). Let T = T(z) be a statistic mapping
(X, B) into a measurable space (Y,S). Assume that the family of probability mea-
sures PT = (PL,0 € ©) is generated by T on (Y,S) and satisfies the regularity
conditions (CR). Then

(4.1.22) IT(0) < I(0) forallbe®.

Moreover inequality (4.1.22) becomes an equality if and only if the statistic T is
sufficient for the family P.

PROOF. Let C be an arbitrary set of S. According to the definition of the
conditional expectation and in view of condition (iii) in Section 3.4 we obtain from
(CR) that for all 6 € ©

wi) [ S0P = [ EslS(E0)/TE = 4} PF)

Since conditions (CR) holds for both families P and PT, we have for any P; -nonzero
set C' € S that

Sy SO Pata) = [ s(a50)
(4120 ot AR CUT GRSy ECDIECY
- [ a0 7 @) = [ 5 imatwi0)PE (e
Relations (4.1.23) and (4.1.24) yield
(@125) g6 =E{SE0)/TE) =y}  (PF-as)

for all § € ©. By definition we have I7(8) = Eo(01n g(T'(£);8)/80)%. To prove the
inequality I7(8) < I(6), note that

2
0< & (550 /(6:0) - 5 1ngT(©):0))
2 2
(4.126) — 5o (5 11(60)) +Eo (G nameo)

0 0
- 2E9@ In f(¢; 9)% Ing(T(£);0).
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It follows from (4.1.25) that
Eo-2 In £(£:6) 2 ln g(T(€); 6)
50 1) 5g IS

(4127 = £o gy ng(T(E0)E0 ( 2510 /(6 0)/TO))

=0 (ghnoCr (e);e>)2.

Substituting (4.1.27) into (4.1.26) we prove inequality (4.1.22). It remains to show
that the inequality (4.1.22) becomes an equality if and only if the statistic T is
sufficient for the family P.

If T is a sufficient statistic for P, then by the factorization criterion

(4.1.28) f(@;6) = g*(T(z);O)h(z)  (w-as.)

where h(z) > 0, g*(y;0) > 0, the function h(z) is B-measurable, and g*(y;0) is
S-measurable for all § € ©. Thus for all € ©

%M@m ;mun@m (Pe-a.5.).
Therefore
P 2
(4.1.29) I(6) = Eg (30 In g*(T'(¢); )) for all § € ©.
On the space (Y, S) consider the measure
A(B) = h(z) p(dz), BeS.
T-1(B)

According to (4.1.28) we have for all B€ S
PEB) = [ f(i6) ulda)
T-1(B)
= [ ¢ T@:Oho) uldo) = [ g"(w:0) M)
T-1(B) B

Thus the measure P} is absolutely continuous with respect to the measure A and
the density is g*(y; ). Therefore (4.1.29) implies that I(6) = I7(6) for all 6 € ©.

Now we show that if I(6) = IT(6) for all 6 € ©, then T is a sufficient statistic
for P. Indeed, I(0) is the variance of S(¢;6), hence

(4.1.30) 1(6) = DsS(&;8) = EgDo(S(¢; 6)/T(€)) + DeE(S(€;6)/T(£))
where Eg(S(¢;0)/y) = Eo{S(£;60)/T(€) = y} and
Ds(S(&:6)/y) = De{S(&;0)/T(£) = v}

are the conditional expectation and variance, respectively. Equality (4.1.25) implies

( ( )/y) 80 lng(y$ ) (Pg‘-a“s‘)‘
The family P7T satisfies conditions (CR), thus
(4.1.31) IT(0) = Do ln g(T(£); 6) = DgEa(S(&;6)/T(£)), 6 €O.



112 4. SUFFICIENT STATISTICS

Since I(0) = IT(8) for all § € O, relations (4.1.30) and (4.1.31) yield
EoDo(S(£;6)/T(€)) =0 for all § € ©.

This implies that
Do(S(£;0)/T(z))=0  (Pg-as.).
In other words, the function S(z;6) is T~!(S)-measurable. Therefore there exists
a measurable function k(y; ) on (Y, S) such that S(z; 0) = k(T'(x);6) for all 0 € O,
whence )
In f(z;6) = / k(T (z);t)dt +a(z) forallfec©

6o

and some g € ©. Finally,

f(z;0) = g*(T'(z);0)h(z) for all @ € O.

Now the factorization criterion implies that T'(z) is a sufficient statistic for P. O

It follows from inequality (4.1.22) that a sufficient statistic is the only statis-
tic that compresses the sampling data without loss of information. The precise
statement concerning the Fisher information is given by Theorem 4.1.4. Similar
results can be given for other measures of the amount of information about a pa-
rameter contained in an observation, say for the Shannon information or Kullback
information (see [22] and [20]).

REMARK 4.1.2. Theorem 4.1.4 remains true for the Fisher information matrix
in the case of a multidimensional parameter § under the multidimensional analogue
of the regularity conditions (CR) (see [36], §4.3). Theorem 4.1.4 can be proved
under other sets of regularity conditions, say (CR)*, (R), or (R)*, in both one-
dimensional and multidimensional cases.

EXAMPLE 4.1.7. Let £™ = (¢1,£s,...,&,) be a sample from the Bernoulli
distribution with parameter 6 € © = (0,1). The density of the distribution of §;
with respect to the counting measure is of the form

f(z;8) = 6°(1~6)'"" = Po{¢; = =}

where z is either 0 or 1. Thus the Fisher information contained in a single obser-

vation §; is
1

81— 0)’

while the Fisher information contained in the whole sample £(®) is

1(6) = 9ee,

In(8) = nI(9) = ﬁ feo.

Let v, be the number of “successes” in the sample 5("), that is, v, = E?=1 &

is a statistic assuming values in the set Y = {0,1,2,...,n}. The density of the
distribution of the statistic v, with respect to the counting measure is given by

9(;0) = (Z) 0*(1—-0)""Y=Po{rn =y}, yeY.
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The Fisher information contained in the statistic v, is

I"(6) = E (a?o lng(vm@))z -y (Z)f’”(l -0 (% B 7:3)2

y=0
= v —y (y—nf)2 Dy n
Z( )9 = a0y ~ G -0 81-0)

Thus I~ () = I,,(6) for all § € ©. By Theorem 4.1.4 the statistic v, is sufficient for
the parameter 6. This conclusion can also be made from the factorization criterion.

4.2, Sufficient statistics and optimal estimators

Rao—Blackwell-Kolmogorov theorem. Let £ be an observation assuming
values in a measurable space (X, B) and whose distribution belongs to a family

P = (Ps,0 € ©)

where 8 = (61,...,0) is an unknown parameter of a set © C Rk k > 1. First we
consider the case whereAH is a scalar parameter, that is, the case k = 1. Let K} be
the class of estimators 8 of the parameter 6 with a bias b(6) (see Section 3.4). In
other words, a(f) = Egf = 6 + b(6) for all 6 € ©.

The following result, known as the Rao-Blackwell-Kolmogorov theorem, high-
lights the role of sufficient statistics in the theory of estimation.

THEOREM 4.2.1. Let T =T(z) be a sufficient statistic for a family
P = (Py,0 € ©)

and let § € K,. Then the function 7 =Eg (5/T) is an estimator such that
1) 6r € Ky;
2) the estimator Or depends on z through T (z);
3) Eo(fr — 6)2 < E¢(8 — 6)2 for all 6 € ©, and moreover the inequality be-
comes an equality if and only if 8 = 07 almost surely with respect to the
measure Pyg.

PROOF. Let T be a sufficient statistic. The conditional probability Pg(A/T)
depends on A and T and does not depend on 6. Moreover Pg(A/T) is a measurable

function of T. Thus the conditional expectation 8 = Eg(g/T) depends on T and
does not depend on 6. Therefore the estimator O satisfies condition 2) of the

theorem.
Properties of the conditional expectation imply that

Eobr = EoEs(8/T) = E4b),

that is, §T € K3, whence condition 1) of the theorem follows.
The inequality in statement 3) of the theorem is obvious if Eg(6 — 6)% = oo.
Thus we consider the case when Eg(f — 6)? < co. We have

Eg(g— 9)2 = Eg(g— §T + JT - 9)2

(4.2.1) ~ A, ~ 9 ~N o~
=Ep(6 —61)° + Eo(gT -6+ 2E9(9 — GT)(oT — 0)
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By the properties of the conditional expectation

Es(8 — 7)(8r — 6) = EoEs((6 — 61)(6r — 6)/T)

(4.2.2) i T
= E¢(67 — 0)Eo(0 — 07/T) =0,

since Eq( — aT/T) = Eo(6/T) — br =0.
Equalities (4.2.1) and (4.2.2) imply

Eg(g— 0)2 = Ea(a— 5'1")2 + Ea(é\T — 9)2,

whence statement 3) of the theorem follows. O

Theorem 4.2.1 shows that if T is a sufficient statistic, then one can improve
the estimator 8 € K, uniformly in 8 € © by applying the operator E¢(+/T") to the
statistic 8.

There is another interpretation of Theorem 4.2.1. Namely let S and T be two
sufficient statistics for a family P. If § = &(T) where ¢ is a measurable function
and S is a measurable function of T, then

Eo(Bs — 6)? < E¢(8 — 6)°

where fs = E4(/S). In other words, one should find the so-called minimal suf-
ficient statistics, that is those statistics for which any other sufficient statistic is
a function of it. The procedure of the construction of an optimal estimator is as
follows. One starts with a “bad” estimator # and improves it with the help of
sufficient statistics until the estimator becomes optimal. R

Theorem 4.2.1 holds in the multidimensional case as well. In this case § and 6
are vectors of the space RF, k > 1. As in the one-dimensional case let K} be the
class of estimnators 0 of the parameter 6 with the bias b(6).

THEOREM 4.2.2. Let T' be a sufficient statistic for a family P = (Py,0 € ©)
and let § € K. Then the estimator 0T = Eg(O/T) is such that
1) 0'1‘ € Kp;
2) 87 depends on z through T(z);
3) for any vector a € RF

(4.2.3) Es(a'(Br — 0))° < Eo(a'(B - 0))°.

This inequality becomes an equality if and only if 9= 55 almost surely with
respect to the measure Pyg.

PROOF. The first two statements of the theorem are obvious. Inequality (4.2.3)
follows from Theorem 4.2.1, since the proof is reduced to the one-dimensional es-
timators a’ of the parameter a’6 and since Eg(a’8/S) = a'fs. If (4.2.3) becomes
an equality for all a € R¥, then o 9 =a 55 almost surely with respect to the
measure Py for all a, whence 6 = b5 almost surely with respect to Pyg. O

REMARK 4.2.1. All the vectors a, 0, 5, and §T in Theorem 4.2.2 are column-
vectors.



4.2. SUFFICIENT STATISTICS AND OPTIMAL ESTIMATORS 115

Sufficient statistics and efficient estimators. We proved in Theorems
4.2.1 and 4.2.2 that if an estimator is not a function of a sufficient statistic, then it
can be improved by using this sufficient statistic. However we still have no tool to
construct an optimal estimator by following this idea.

On the other hand, if a set of regularity conditions holds, say (CR) or (R),
and the Cramér-Rao inequality becomes an equality, then the estimator is optimal
(this kind of optimality is called efficiency in Sections 3.4 and 3.5).

Below we consider the case where conditions (R) are satisfied. All other cases
can be studied in a similar way. Let 6 = (51,[9}, e ,ﬁk)’ be an estimator of the
parameter 8 = (61,605,...,0)" constructed from an observation £. Let K, be the

class of estimators 8 of the parameter § with a bias b(@), that is,
a(6) = Eqf = 6 + b(6).

The following result contains a relationship between efficient estimators and suffi-
cient statistics.

THEOREM 4.2.3. Let conditions (R) hold. Let 8 be an estimator of the class Kj
such that det D(0 0) > 0 where D(0 0) = Eg(5 a(0))(§ a(6))’ is the covariation
matriz of the estimator 8. Then 8 is an efficient estimator in the class K if and
only if 8 is a sufficient statistic of the parameter 6,

(4.2.4) f(z;6) = g(?(z);@)r(a:) forall €O,

and all r(z) = h(z) and g(6;0) = exp(A(0)'6 + C(6)) and h(z), A(6), and C () are
the functions occurring in representation (3.5.14).

PROOF. By definition, 8 is an efficient estimator of the parameter 0 if and
only if the Cramér-Rao inequality (3.5.13) becomes an equality. According to
Theorem 3.5.2, the Cramér-Rao inequality (3.5.13) becomes an equality if and only
if relation (3.5.14) holds. Note that relation (3.5.14) coincides with (4.2.4). By the
factorization criterion (Theorem 4.1.2), the estimator 8 is a sufficient statistic for
the parameter 6. o

Note that if 8 is an efficient estimator of the parameter 6 in the class K; and
regularity conditions hold, then 8 is also an optimal estimator of the parameter
in the class K} in the sense of the definition of Section 3.1. Generally speaking,
the converse is not true, namely an estimator can be optimal in a class K}, but the
lower bound in the Cramér—-Rao inequality is not attained for it. Thus an important
role is played by those sufficient statistics that, by the Rao-Blackwell-Kolmogorov
theorem, allow one to improve estimators and, in the case where one can construct
the minimal sufficient statistics, to construct the optimal estimator.

Minimal sufficient statistics. We have seen above that there exist many
sufficient statistics in the general situation. In particular, there always exists the
so-called trivial sufficient statistic, namely T'(z) = z. Nevertheless we are interested
in those statistics that provide the best reduction of the data. However it is not
always possible to find a sufficient statistic for which the reduction of the data is
essentially better than that for the trivial sufficient statistic. To make the notion
of the reduction of the data precise we introduce a partial order on the set of all
sufficient statistics.
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We say that a statistic 7} is subordinated to a statistic T if 77 is a measurable
function of Ty, that is, T} = ¢(T%). If a statistic T} is subordinated to a statistic T
and T3 is subordinated to T%, then the statistics T; and T are called equivalent. A
sufficient statistic Ty is called minimal if it is subordinated to any other sufficient
statistic.

The reduction of the data is best for a minimal sufficient statistic. If T is a
minimal sufficient statistic, then a further reduction of the information as compared
to T gives no result if the statistic remains sufficient.

We have seen above that the definition of sufficient statistics can be given in
a more general form in terms of o-algebras. If B’ C B is a o-algebra, then B’ is
called a sufficient o-algebra for the family P = (Py,8 € ©) (or, for the parameter
0) if there is a version of the conditional probability measure Pg(A/B’), A € B, that
does not depend on 6. Let T be a statistic mapping a measurable space (X, B) into
a measurable space (Y, S), and let Br = T—1(S) be the preimage of the o-algebra S
under the mapping T'. If the o-algebra Br generated by the statistic T' is sufficient,
then T is a sufficient statistic. All the results on sufficient statistics can be stated
in terms of sufficient o-algebras. In particular, the factorization criterion remains
true if the function g(T'(z);#) is substituted for a B’-measurable function g(z;6);
in this case, B’ is a sufficient o-algebra.

Let 77 and T be two statistics. It is clear that T} is subordinated to T if

BT1 C BT2 .

Thus the statistic T reduces the data in a better way than the statistic T5. Two
statistics 77 and T5 are equivalent if and only if By, = Br,.

A o-algebra B* is called the minimal sufficient o-algebra if it belongs to any
other sufficient o-algebra, that is, B* C B’ for any sufficient o-algebra B'. In other
words, Ty is a minimal sufficient statistic if By, C Br for every sufficient statistic T'.

A minimal sufficient statistic always exists for dominated families

P = (Pg,0 € ©)

(see Theorem 4.2.4). To prove this result we use Theorem 4.1.1: for a family
P = (Pg, 0 € O©) dominated by a o-finite measure p, there exists a discrete distri-
bution Q on © such that the family P is dominated by the probability measure
Po = [ P:Q(dt). Then the density p(z;0) of the measure Py with respect to the
measure Pg can be expressed as

(4.2.5) %(z) =p(z;0) = % (u-a.s.)

where f(z;0) = dPg/du(z) and f(z; Q) = dPq/du(z). If T is a sufficient statistic,
then p(z;6) depends on 'z through T'(z) by the factorization criterion.

THEOREM 4.2.4. Let a family P = (Pg,0 € ©) be dominated by some o-finite
measure p and let B* = o{p(z;0); 6 € O} be the o-algebra in (X, B) generated by
the functions p(z;0), 0 € ©. Then B* is the minimal sufficient o-algebra.

PROOF. According to (4.2.5) we have

f(z;0) =p(z;0)f(2;Q)  (p-as.)
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where the function f(z;Q) does not depend on # and the function p(z;8) is B*-
measurable for all @ € ©. From the factorization criterion for sufficient o-algebras
we obtain that B* is a sufficient o-algebra.

Now let B’ be an arbitrary o-algebra. Then f(z;0) = g(z;0)r(z) (u-a.s.)
where h(z) is a nonnegative B-measurable function and g(z;6) is a nonnegative
B'-measurable function. Consider the o-algebra B, = o{g(z;0);6 € ©} C B'. It
follows from (4.2.5) that

oy 9(z;6)
P8 = e
whence B* C B, C B'. a

REMARK 4.2.2. Using Theorem 4.1.3 one can construct a minimal sufficient
o-algebra from the a posteriori distribution Q.. Let Q be an a priori measure such
that its density g(t) with respect to some other measure ) is positive for all ¢t € ©.
Then a posteriori density is given by

f(z;t)q(t)
f(z;Q)

Thus the minimal sufficient o-algebra B* can be viewed as one generated by a
posteriori distribution, that is, B* = o{q(t/z);t € ©}.

q(t/z) = = p(z; t)q(t).

EXAMPLE 4.2.1. Let £™ = (¢1,&,,...,£,) be a sample from the Poisson dis-
tribution with parameter § € © = (0,00). We learned in Example 4.1.1 that

n
Tn = Tn(:l,‘) = Z.’l)i
i=1

is a sufficient statistic. Here z = (zi,...,2,) and z; € {0,1,2,...} for all ¢ =
1,2,...,n. Then T, is the minimal sufficient statistic by Theorem 4.2.4, since the
o-algebra Br, coincides with the o-algebra generated by the functions

f(z;0) ( 6 )T"(x) (n(60—0)
f(z;60) — \ 6o

where 6y € (0, c0) is some fixed value of the parameter. As the distribution Q on ©
we consider the distribution concentrated at the point 6y.

p(z;0) =

EXAMPLE 4.2.2. Let £ = (£,,&,,...,&,) be a sample from the uniform dis-
tribution on the interval [0,6] where § > 0 is an unknown parameter. Let the
sampling space be R? = {x = (z1,Z2,...,2Z,):2; >0foralli=1,2,...,n}. Asin
Example 4.1.5 we prove that T;,(z) = z,» = maxi<i<n ; is a sufficient statistic.
Moreover it is the minimal sufficient statistic. Indeed, let Q be some distribution
on (0, 00) whose density g(t) is positive for all ¢ € (0,00). Then

f(.'l), 0) = o_nI(—oo,G] (wn,’n)’ TE Rna
f(z;Q) = / f(z;t)q(t) dt = / t7"q(t)dt >0 for all z € R}.
0 Trn(z)

It is also clear that T(z) = sup{0: f(z;0)/f(z; Q) = 0}, z € R}. This means
that the statistic T;, is measurable with respect to the minimal sufficient o-algebra



118 4. SUFFICIENT STATISTICS

B* = o{f(z;0)/f(z;Q); 6 € ©}, By, C B*. Therefore T}, is the minimal sufficient
statistic.

REMARK 4.2.3. There is another method to construct minimal sufficient sta-
tistics based on’ partitions of the sampling space generated by sufficient statistics.
This method can be found in [36], also see [5] and [19)].

Complete statistics and optimal estimators. In this section we consider
complete sufficient statistics and use them to construct optimal estimators of a
parameter. Let T' = T'(z) be a statistic mapping a measurable space (X, B) into
a measurable space (Y,S). Assume that the dimension of the space Y is [, that
is, Y ¢ R. A usual assumption is that | > k where k is the dimension of the
parameter 6.

Let I' = {Gyg;0 € ©} be some family of probability measures on (R!,B'). A
family T is called complete if the relation

(4.2.6) / #(z) Go(dz) =0 forall f € ©

implies ¢(z) = 0 (Gg-a.s.) for all § € ©. Equation (4.2.6) is considered in the class
of functions ¢: R! — R* for which the integral (4.2.6) exists.

Let PT = {PT;0 € ©} be a family of probability measures on (Y, S) generated
by the mapping T: X — Y where P7(B) = P¢(T~'(B)) and B€ S,0 € ©. A
statistic T" is called complete if the family of distributions PT is complete. Equation
(4.2.6) for the statistic 7" can be written in the following form:

(4.2.7) Eed(T(£)) =0 forall§ € O©.

THEOREM 4.2.5. A statistic T is complete if and only if for some by(0) a Br-
measurable estimator 8 is unique in the class of all Br-measurable estimators of the
class Ky, where by(0) is the bias of the estimator.

If a Br-measurable estimator is unique in the class Kp,, then any Br-mea-
surable estimator is unique in any other class K, of estimators with the bias b(9).

PROOF. Let 8, = ¢1(T) and 8 = #2(T) be two Br-measurable estimators
of Ky,. Then Eg¢;(T'(¢)) = bo(6), i = 1,2, and Eg(¢1(T(€)) — ¢2(T(§))) = 0
for all # € ©. Since T is a complete statistic, ¢;(y) = ¢2(y) (P3-as.) for all
6 € ©. Conversely, let Eg¢p(T'(€)) = 0 for all § € © and 8, = $1(T) € Kp,. Then
8> = ¢:1(T) + ¢(T) € Kp,. Since a Br-measurable estimator of Kj, is unique,
#(T(z)) = 0 (Pp-a.s.) for all § € ©, that is, ¢(y) = 0 (P3-a.s.) for all § € ©.

The second statement of the theorem is obvious. O

THEOREM 4.2.6. If a sufficient statistic T is complete and be Ky, then
br = E¢(8/T)
1s a unique optimal estimator in the class K.

PROOF. Since T is complete, Theorem 4.2.5 implies that a Br-measurable

estlmator is unique in K.
Let 6 be any other estimator of the class K. Then b = E9(0/T) € Kp, thus

we get by Theorem 4.2.5 that fr = b7 (Pg-a.s.) for all 6 € ©. This together with
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the Rao-Blackwell-Kolmogorov theorem implies that

E¢(67 — 0)% = Eg(f7 — 6)2 <Eg(6 —6)® foralld € ©.
Moreover the inequality becomes an equality if and only if § = br (Pg-a.s.) for all
0e€o. O

COROLLARY 4.2.1. If T is a complete sufficient statistic and 8 is an unbiased
estimator of the parameter 6, then 0r = Eg(0/T) is a unique optimal unbiased
estimator of the parameter 6.

PROOF. It is necessary to apply Theorem 4.2.6 to the class K, where bp(f) =0
for all @ € ©. O

EXAMPLE 4.2.3. Let an observation £(%) = (&1,&2,...,&n) be a sample from
the Poisson distribution with parameter § € © = (0,00). Consider the estimator
@;,(E(")) = £;. It is clear that this estimator is unbiased for all § € ©, that is,
Egﬁn = Eg&1 = 0. At the same time it is not consistent, since it does not depend
on n. Consider the statistic

n
)=y z, z=(21,%,...,Tn),
=1

where z; € {0,1,2,...} for all i = 1,2,...,n. We learned in Examples 4.1.1 and
4.2.1 that T, is a minimal sufficient statistic for the parameter 8. Moreover Example
4.1.1 implies that the conditional distribution of &; given T, is of the form

= =) (3 (-

where y € {0,1,2,...,n} and z € {0,1,2,...,y}. Thus
Tn(z)

b, (z) = Ep (€2/Tn(2)) = Z k(T (a:)) (n) (1_%>Tn(w)—k

(4.2.8)

Now we show that T, is a complete statistic. Since the distribution of T;, is Poisson
with parameter nf, equation (4.2.7) for T, becomes of the form

oo k
Z ¢(k)e'"o(—r%6:)— =0 forall@e®
k=0 )

or, equivalently,

(4.2.9) v(z) = Zqﬁ —=0 forallze©.

The convergence of series (4.2.9) at z = 1 implies that the function v(z) is analytic
for |z| < 1, whence ¢(k) = O for all k. Taking into account equality (4.2.8), we
obtain from Corollary 4.2.1 that T is a unique optimal estimator of the parameter 6
in the class of unbiased estimators.
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EXAMPLE 4.2.4. Let £™ = (£1,&,,. .. ,&rn) be a sample from the uniform dis-
tribution on the interval [0,6] where § € © = (0,00) is an unknown parameter.
It is natural to consider R7} as the sample space in this case. We learned in Ex-
amples 4.1.5 and 4.2.2 that T,(z) = z,, is a sufficient and minimal statistic. Its
distribution function is

PoiTn <y} =(%)", o0s<ys<e.

Thus equality (4.2.7) for T,, becomes of the form

6 nyn—l
/ d(y) on dy=0 forall €O,
0
whence it follows that ¢(y)y™ ! = 0 for almost all y > 0 and therefore ¢(y) = 0 for
almost all y > 0. This means that T, is a complete statistic.
Since 6 is a scale parameter, Theorems 3.3.1 and 3.3.2 imply that

b =To(n+1)/n

is an optimal estimator in the class of equivariant unbiased estimators of the scale
parameter. Note that 6,, is a Br, -measurable estimator and Corollary 4.2.1 im-
plies that 6, is an optimal estimator in the class of all unbiased estimators of the

parameter 6.
The latter result can also be obtained directly from Corollary 4.2.1 (or from

Theorem 4.2.6) by considering the estimator g = 2x; which obviously is unbiased.
According to Corollary 4.2.1 r,, = E9(8/T5,) is a unique optimal unbiased estimator
of the parameter . The conditional density of &; given T}, is given by

1
(1——) l, O<z<y,
(4.2.10) fa =1 ™Y
;, =Y.
Indeed, since &1, &2, . .., &, are independent identically distributed random variables
and the model is symmetric, we get

Pols =Tn/Ta} =, Pols <Tu/Ta} =1-=.

Moreover given {T,, = y,£1 < Tn}, the conditional distribution of &; is uniform on
(0,), since the distribution of £; is uniform. This leads to equality (4.2.10). Using
equality (4.2.10) we obtain

Eo{é1/Tn =y} = (1 - %) g+ %

This implies that
n+1

~ ~ 1 2
Or, = Ee(e/Tn) = (1 - ﬁ) T, + ETn = T,.

Another consequence of Theorem 4.2.6 is an assertion on the optimality of a
function g(8) of the parameter 6 in the class K9 of all unbiased estimators of the

function g(6).
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COROLLARY 4.2.2. If T is a complete sufficient statistic and g is an unbiased
estimator of the function g(8), then gr = E¢(g/T) is a unique optimal unbiased
estimator of the function g(8) in the class K9.

PRrOOF. It is sufficient to apply Theorem 4.2.6 to estimators of the class Kj,
where bo(0) = g(6) — 0 for all 6 € ©. O

Corollary 4.2.2 is known as the Lehmann-Scheffeé theorem; see [36], Theorem
3.1.2.

COROLLARY 4.2.3. If T is a complete sufficient statistic, then any function
H(T) of it is a unique unbiased optimal estimator of its own expectation, that is,
of the function g(6) = EgH(T).

Proor. To prove this result it is sufficient to consider the class of estima-
tors K9 with g(6) = EgH(T') and to apply Corollary 4.2.2 with g = H(T). Then

H(T) =gr = Eo(9/T)

is a unique optimal estimator of the function g(8) = EgH(T). a

In fact we have a series of results allowing one to find optimal estimators of the
function g(6) if a complete sufficient statistic T exists, namely:

1) if there ezists an unbiased estimator of a function g(8), then there exists an
unbiased estimator that is a function of T'; if there is no unbiased estimators
of the form H(T), that is, the equation EgH(T) = g(6) has no solution,
then the class K9 of unbiased estimators of the function g(0) is empty;

2) an optimal unbiased estimator of the function g(0) (if such an estimator
exists at all) is a function of T and it is determined uniquely by the equality
EoH(T) = g(0);

3) an optimal unbiased estimator g* of the function g(0) can be found as
follows:

(4.2.11) 9" =gr = Eo(g/T)

where § is an arbitrary unbiased estimator of the function g(6).
The latter method is rarely used when finding optimal estimators, since it
requires the evaluation of the conditional expectation (4.2.11) which usually meets
technical problems. Instead the equation

(4.2.12) EsH(T) = g(6), 06¢€0,

is used to determine the function H. There are several methods for solving equation
(4.2.12). For example, one can expand both sides of (4.2.12) into power series of 6
and equate corresponding coefficients.

The following result provides a relationship between complete and minimal
statistics.

THEOREM 4.2.7. Any complete sufficient statistic T is a minimal sufficient
statistic.
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PROOF. Let B* be the minimal sufficient o-algebra (this o-algebra exists by
Theorem 4.2.4).

First we assume that E¢T exists and consider the function ¢ = T — Eo(T/B*).
Since B* C Br where Br is the o-algebra generated by the statistic 7', the func-
tion ¢ is Br-measurable, whence ¢ = ¢(T"). Denote by Pg the distribution of the
statistic T. Then E¢¢(T") = 0 for all § € © or, equivalently,

/¢(y)Pg(dy) =0 for all 4 € ©.

This implies that ¢(y) = 0 (P}-a.s.) for all § € ©, since T is a complete statistic.
This means that T = Eo(T/B*) (P¥-a.s.). Therefore T is a B*-measurable statistic
and hence Br = B*.

If E¢T does not exist, then one should consider the statistic arctanT" instead
of T. If T is either sufficient, or complete, or minimal, then so is arctanT'. O

It is easy to construct an example of a minimal sufficient statistic that is not a
complete statistic (see, for example, [36]).

Exponential families of distributions. Let £ be an observation that is a
random element assuming values in a measurable space (X, B) whose distribution
belongs to a family P = (Py,0 € ©) where 6 = (01,02,...,60;) is a k-dimensional
parameter of the set © C R¥,k > 1. Let a family P be dominated by some o-finite
measure y and let f(z;0) = dPg/du(z), z € X, be the density of the measure Py
with respect to the measure u.

A family P is called ezponential if the density f(z;0) is of the form

k
(4.2.13) £(@;8) = h(z) exp{z ¢i(6)Uj(z) + V(e)}
Jj=1
where all the functions on the right-hand side are finite and measurable.

Various distributions known in the literature are exponential. For example, nor-
mal, Poisson, binomial, Gamma-distributions, and others form exponential families
of distributions.

If an observation is a sample (™ = (£;,&,, ...,&,) from an exponential family
of the form (4.2.13), then the distribution of the sample £(™ also belongs to some
exponential family P,. Indeed, if f,(z;8) is the density of the distribution of the
sample with respect to the measure u™, then

(4.2.14) fn(z;0) = hn(z) exp{c(8)'T(z) + nV(6)}

where
0(0) = (cl (0), R ck(o))l’ T((E) = (Tl (.’L‘), cee 1Tk(m)),a
ho(z) =[] 1lz:), Ti(@) =) Uj(@), z=(21,...,2a) € X™
i=1 i=1

It follows from the factorization criterion that if the family of distributions P
is exponential, then the statistic U(z) = (Ui(z),... ,Un(z)) is sufficient. Similarly,
the statistic T'(z) is sufficient for a family of distributions P, whose densities are
of the form (4.2.14). It turns out that these statistics are minimal and sufficient.
We prove this result for families P,, with densities (4.2.14).
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Since the functions ¢;j(8), U;(z), and V/(0) are finite, the exponent in (4.2.14)
is positive everywhere. Thus as a measure Q in Theorem 4.2.4 one can take a
distribution concentrated at any fixed point 8(®) € ©. All the measures Py are
absolutely continuous with respect to the measure Pq = [ P, Q(dt) = Py in this
case. Theorem 4.2.4 implies that the o-algebra B* generated by the functions

p(2;0) = fu(%;0)/ fu(z;6)
= exp((c(8) — ¢(6))'T(z) + n(V(9) - V(6)))
is the minimal sufficient o-algebra for all 6 € ©.

THEOREM 4.2.8. Let functions co(0) =1, ¢1(0),...,cx(0) be linearly indepen-
dent on ©. Then T(z) in representation (4.2.14) is a minimal sufficient statistic.

PROOF. Since the functions 1, c;(9), . . ., cx(6) are linearly independent on ©, it
follows that the functions ¢; (8) —c(6®), . . ., cx(8) —c(6(?) are linearly independent.
This means that there are k points 81, ...,8®) in © such that the numbers

cij = ci(09)) — ¢;(6)

form the matrix C whose determinant is nonzero. This implies that the system of
equations

(c(69) — ¢(6)) T(z) = Inp(z;69) — n(V(89)) — V(6?))
for j =1,2,...,k has a unique solution T'(z). Thus

Br c o{p(z;69),5=1,2,...,k} C B*. O

Sometimes the assumptions of Theorem 4.2.8 are too restrictive if one proves
only that T is a complete sufficient statistic. First we note that representation

(4.2.14) yields
(4.2.15) fo(2;0) = g(T(2); O)r(z)  (u"-as.)
(see Theorem 4.1.2) where

9(y;0) = exp{c(6)'y + nV ()},

r(z) = ha(z) = [[ Alxs), 2= (21,...,20)-

i=1

Consider the following measure on (R*, B):
vB)= [ @), Beb,
T-1(B)

where T-1(B) = {z: T(z) € B}. In what follows we need two auxiliary results.

LEMMA 4.2.1. The distribution P3 (B) = Po{z:T(z) € B}, B € B*, of the
statistic T' is absolutely continuous with respect to the measure v and its density is

9(y;0).
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PRrOOF. It is sufficient to note that relation (4.2.15) implies
PIB) = [ | oT@sor@ud) = [ owi6)vidy)
T-1(B) B

where the latter equality follows from the change of variables theorem for the
Lebesgue integral. O

LEMMA 4.2.2. Let G; and G; be two o-finite measures on (R¥,B*) and for
some parallelepiped B C R* two integrals exist and are equal:

/ eV Gy(dy) = / %Y Go(dy)

for all a € B. Then G; = Ga.

PROOF. We give the proof for the one-dimensional case, that is, for k = 1. Let
B = {z:|z| < @}. Then the functions

¥3(a) = / eV Gi(dy),  j=12,

are analytic for |a| < G. Moreover for all b € R the functions

() = / €TV G (), j=1,2,

of a complex variable z = a + ib are well defined. It is clear that ¥;(z) are analytic
functions in the strip |a| < @, —00 < b < co. By assumption, 91 (2) = ¥2(z) on the
interval |a| < @ of the line b = 0; thus %;(2) = 1)2(2) for all z of the above strip.
Thus for all b € (—o0, 00)

(4.2.16) / ¢t G, (dy) = / ¢ Gy (dy).

Since 9;(0) = [ G;(dy) < oo, without loss of generality one can assume that G;
are probability measures. Since the correspondence between characteristic functions
and distributions is one-to-one, equality (4.2.16) implies that G; = G.

If the parallelepiped B is of the form {z:|z — ag| < &}, then we consider the
measures G (dy) = eV G;(dy) and follow the line of the above proof.

The proof for the multidimensional case k > 1 is the same. O

THEOREM 4.2.9. Let representation (4.2.14) hold for the density f.(z;0) of
a sample €™ and let the density belong to a family P, of distributions where the
function c(6) and the set © are such that the image of the set © under the mapping

0 — RF

contains some k-dimensional parallelepiped. Then the statistic T occurring in rep-
resentation (4.2.14) is complete and sufficient.
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PROOF. It is sufficient to show that if ¢ is a measurable function on (R*, B¥)
and that there exists

(4.2.17) / 6(w)PT(dy) =0, 6eo,

then ¢(y) = 0 (P1-a.s.) for all € © where P} is the distribution of the statistic 7.
Let ¢ = ¢t — ¢~ where ¢* =0V ¢ and ¢~ = —(0A @). Then (4.2.17) implies that

/ #* (v) PT (dy) = / ¢~ (y)PT(dy) forall 6O

This yields by Lemma 4.2.1 that
[ ¢ @otwit)vd) = [ 4 Wotwio)viay) foransee,

/ ¢t (y)e @V y(dy) = / ¢~ )@V y(dy) forall § € ©.

Consider o-finite measures v4(dy) = ¢*(y) v(dy). By the assumptions of the
theorem we get

/ e’V v, (dy) = / e’V v_(dy)

for all ¢ of some parallelepiped in R*. Now it remains to apply Lemma 4.2.2. O

COROLLARY 4.2.4. Let all the assumptions of Theorem 4.2.9 hold. Let 8 be an
estimator of the parameter 0 of the class K, constructed from a sample €™ . Then
01 = E¢(6/T) is an optimal estimator of the parameter 6 in the class Ky where T
is the statistic occurring in representation (4.2.14).

COROLLARY 4.2.5. Let all the assumptions of Theorem 4.2.9 hold. Let g be
some estimator of a function g(0) of a parameter 6 of the class K9 constructed from
a sample €™, Then Gr = Eg(g/T) is an optimal estimator of the function g(8) in
the class K9.

ProoOF. It is sufficient to apply Corollary 4.2.4 to estimators of the class K
where b(6) = g(6) — 0 for all § € ©. O

Some applications of sufficient statistics. In a series of examples above
we learned how to construct sufficient, or minimal, or complete and sufficient statis-
tics. We consider in this section some applications of sufficient statistics for several
models and construct optimal estimators of a parameter § and a function g(8).

EXAMPLE 4.2.5. Let an observation be a vector £ = (&,&,,...,£,) where
&=0+mn, 1=1,2,...,n,

and random variables 71,...,7, (being dependent, generally speaking) do not de-
pend on 6 and are such that En; = 0 and En? < oco. Consider the class L
of linear unbiased estimators of the parameter 8, that is, the class of functions
l=1U(z) =37 cizi where ) i ; ¢; =1, = (1,...,Zp). Our aim is to construct
an optimal estimator I* = )7 ; cf; in the class L with respect to the quadratic
loss function.
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Assume that random variables 71,72,... form an autoregression sequence of
first order, more precisely let

(4.2.18) m = €1, nj =)\7]j_1 +€5, J =2,3,...,

where 61,52, . are independent Gaussian random variables with Ec; = 0 and

Ee = a , 0 < O'J < 00, for all j; here A # 1 is a known parameter.

Let p(ul, ., Un) be the probability density of the vector (7, ...,7,) and let
¢j(z) be the probability density of the normal N(0, 07} 2) law. Since

E1=", E€2=T—M1, ..., En=1n—Mn-1
by (4.2.18), the density p(u1,...,u,) is of the form
p(u1y .-, un) = d1(u1)d2(uz — Aua) - -+ $(un — Aup—1).
This implies that the probability density of the vector ({1, ...,&x) is equal to

f(@1,.. ., zn;0)=p(z1—6,...,2, — 6)
= ¢1(z1-0)¢2(z2—0—A(21-0)) - - P (T~ O~ A(Tn—1—0))

(1= 0)* g~ (25-0-A(z5-1-0))’
(4.2.19) H \/%GJ { :v12a% B J\L;; x; 4 :Jz] 1
= C(0)R(x1,-..,Zn) €Xp 2 +(1-)) Z z; U/\:z;] -1

=2 J

In what follows we do not need the explicit expressions for C(0) and R(z1,...,Zn).
It follows from (4.2.19) that the linear statistic

T Lz — Az
’($>=;§+(1-A)ZJ(,—2’1
j=2

J

1 /\ 1 1-)

] .7+ n

(4.2.20)

is sufficient for the parameter 6. It is also seen from (4.2.19) that the linear statistic
given by (4.2.20) is complete and sufficient (according to Theorem 4.2.9). It is clear
that the optimal linear estimator /*(z) is a function of the statistic {(z). Thus the
coefficients ¢} are proportional to the corresponding coefficients of the statistic I(z).

Thus
. 1 A1-2)
c1=c(—2— ( - )),
1 A
g=cl-N|5-—-], 2<j<n-1,
’ (‘712 "12'+1>
. 1-A
Cc, =¢C

where the constant c is defined from the condition Z] ~1¢ =1
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The assumption that the distribution of the random variables €1, ¢€2,...,6, is
Gaussian is not crucial. The same result can be obtained for a general distribution
of random variables €;,¢€2, .. .,&, [15)].

EXAMPLE 4.2.6. Let £™ = (&,...,£,) be a sample from the Bernoulli dis-
tribution, that is, Pg(§; = 1) = 0 and Pg(§; = 0) = 1-0, 1 = 1,2,...,n,
where 8 € (0,1) is an unknown parameter. The total number of “successes”
T(x) = )i, ; in n Bernoulli trials is a sufficient statistic (see Example 4.1.7).
We show that T is a complete statistic.

Note that T has the binomial distribution:

Po{T =y} = (Z) (1-0)"Y, y=0,1,2...,n.

Let ¢(y) be an arbitrary function on {0,1,2,...,n}. Then condition (4.2.7) can be
rewritten as

> ) (n) 6¥(1-0)" v =0 forall6e(0,1)
y=0 y
or, putting z = 6/(1 - 0),

) (Z) V=0 forallz>0.

y=0

This implies that all the coefficients of the latter polynomial are zero, that is,
¢(y) =0forally =0,1,...,n. Thus T is a complete sufficient statistic and § = T'/n
is an optimal estimator of the parameter §. Moreover, according to Corollary 4.2.3
any function of T is an optimal estimator of its own mean.

Since the moment generating function of the random variable T is

Eoz" = ¢(2,0) = (1 + (2 - 1)0)",
we put (a)y =a(a—1)---(a—k+1), k> 1, and obtain

8*¢(2;6)

7 = (n)ka.

z=1

Eo(T)x =

This implies that for any integer k, 1 < k < n, the statistic (T)x/(n) is an optimal
estimator of the function #*. At the same time, other functions 6° with i > n
cannot be estimated from a sample of size n in the class of unbiased estimators.
Finally, according to Corollary 4.2.3 we get that § = 3°7_, ¢;(T);/(n); is an optimal

estimator for the polynomial g(6) = E§=1 ¢j07 if k < n. Therefore
T T(T-1) Tn-T)

~
T=—

n nn-1  nmn-1)

is an optimal estimator of the variance 7(f) = (1 — 6) in the case of the binomial
distribution.
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EXAMPLE 4.2.7. Let a discrete random variable assume values [,1+1, ... with
probabilities

a(z)6*
O

where f(8) = Y oo, a(x)0” is a series whose radius of convergence R is nonzero.
We treat § € © = (0, R) as an unknown parameter. Discrete distributions (4.2.21)
are sometimes called power series distributions (see [21]).

Distributions (4.2.21) include many well-known discrete distributions with an
infinite number of values, say Poisson (f(0) = €%, R = 00), logarithmic (f(z;8) =
6*/In(1-6)"%,z=0,1,2,..., R = 1), negative binomial (f(f) = (1-6)~", R=1),
and others as well as their truncated versions.

Let £™ = (&,...,&,) be a sample from a distribution (4.2.21). Then the
distribution of the sample is of the form

(4.2.21) f(z;0) = Po{t =z} = c=Ll+1,...,

(4.2.22) fn(z;0) =Py {gw = a:} = g7 f[ a(z;)f ™), 6¢€0,
i=1

where T(z) = Y i) @i, & = (T1,...,%n), i = 1,14+1,...,foralli = 1,2,...,n. This
together with the factorization criterion implies that T'(z) is a sufficient statistic.
Since (4.2.21) is a distribution of the exponential type, Theorem 4.2.9 implies
that T'(x) is a complete and sufficient statistic.
Note also that (4.2.21) yields

61'(6)

E za(z)6”/f(0 = 7(0).
ot = 2_; @p/10) = L8 =+0)
Then 7 = n~1T(z) = n~1 Y1, z;, z = (21,...,Zy), is an optimal unbiased esti-

mator of the function 7(0) = E¢T by Corollary 4.2.3.
Let a function g(f) be represented as a power series g(6) = Y72, a;67 conver-

gent on ©. To estimate the function g(#) we find the distribution of the statistic
T(z). We have

(4.2.23)  g(t;0) =Py {T(g(")) = t} = D fal®i6) =6 (t)f(0)
{z:T(z)=t}
where t =nl,nl+1,... and
@)= Y @) alza).
Tyt tEn =t

Thus by, (t) is equal to the coefficient of z* in the expansion of the function f*(z).
It follows from (4.2.23) that the condition (4.2.12) can be rewritten as

Y H(t)ba ()6 = f(0)9(6) = Z bn (i)6" Za 69
t=nl i=nl
k—nl

Z BkZaJ bn(k — 7).

k=nl+r j=r
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This is an identity with respect to . Equating the coefficients of 6* we get
Zt._"t ajb.(k—j7), ift>nl+r,

J=r

0, ift<nl+r

H(£)ba(t) = {

This implies that the optimal estimator g* of the function g(8) is of the form

b (T) o1 ajbn(T = 5), T >nl+r,
0

g @ { ifT<nl+nr.

In particular, if g(6) = 0" for some r > 1, then
. (T —7)/bo(T), T >nl+r,
g={0’ ifT <nl+r.

Therefore one can construct optimal estimators for an arbitrary function of

the parameter represented as a power series of 6 in the case of discrete distribu-
tions (4.2.21).






CHAPTER 5

General Methods for Constructing Estimators

In the previous two chapters we dealt with the optimal and efficient statistical
estimators of unknown parameters of distributions or of functions of parameters.
‘We considered some methods for constructing optimal and efficient estimators based
on some properties of families of distributions. In particular, we considered the
method based on sufficient statistics.

In this chapter, we consider general methods of forming estimators, namely the
method of moments, the maximum likelihood method, the Bayes method, and the
integral estimation method.

5.1. Method of moments

The oldest general method proposed to construct estimators of unknown pa-
rameters is the method of moments introduced by K. Pearson (1894). This method
can be described as follows.

Let ™) = (£1,&,. . .,£&,) be a sample from a distribution belonging to a family
of distributions {Py,0 € ©} where 8 = (6y,...,0) is an unknown parameter of a
set © C R¥, k > 1. Assume that Eg|¢;|¥ < 0o. Then the following k functions
a;j(0) = a;(61,...,0k) = E9§{, Jj = 1,2,...,k, are well defined. Let a; be the
sampling moment of order j constructed from the sample £(™), that is,

1N, )
a]=—z:£f, ]=1,2,...,k.
ni=

Consider the system of equations
(5.1.1) aj(Gl,...,ok)=aj, j=1,2,...,k,

with unknowns 6, ...,60;. Solutions Z)}, j=1,2,...,k, of system (5.1.1), if they
exist, are called method of moments estimators of a parameter.

Note that Eg|¢1)7 < oo for all j = 1,2,...,k if Eg|é1|¥ < oco. Using results
of Section 1.2 we obtain a; — a;(61,...,0k) as n — oo in probability Py for all
Jj =1,2,...,k. Assume that the functions o;(61,...,60k), 7 = 1,2,...,k, deter-
mine a continuous one-to-one correspondence between vectors (61,02, ...,0;) and
(a1,...,ax), that is, there exist continuous functions ¢;, j = 1,2,...,k, such that
aj = ¢j(a1,...,ar), j =1,2,...,k. Then solutions of system (5.1.1) can be repre-
sented as

(5.1.2) b, =oi(a1,...,ax), Ji=1,2...,k

Thus estimators (5.1.2) are consistent by Theorem 1.2.2. .
The sampling moments a; are asymptotically normal if Eg|¢1|% < oo (see
Theorem 1.2.3). Moreover, we noticed in Section 1.2 that the asymptotic normality

131



132 5. GENERAL METHODS FOR CONSTRUCTING ESTIMATORS

can be proved for a continuous function of a finite number of sampling moments
a; provided suitable conditions on the function are posed (more details are given
in [5, 9]). Therefore conditions can be posed on moments of random variables &;
to guarantee that estimators (5.1.2) are asymptotically normal.

On the other hand, Fisher (1921) pointed out that estimators (5.1.2) are not
asymptotically efficient. Moreover, the method of moments cannot be applied in the
cases where the corresponding moments do not exist (say, in the case of the Cauchy
distribution). Nevertheless the method of moments has an advantage because of
its practical expediency. Estimators (5.1.2) can be treated sometimes as a first
approximation used for other methods to construct estimators of a higher efficiency.

REMARK 5.1.1. One can also use another form of the method of moments,
namely one can use the moments m;(0) = Egg;(&1), j = 1,2,...,k, instead of
moments a;(0), j = 1,2,...,k, where g;(z), j = 1,...,k, are some measurable
functions. Then we obtain the system of equations

(513) m.‘)(e) ZQJ(&)’ J = 1a2""ak)

'L—l

instead of (5.1.1). Solutions of system (5.1.3) are also called method of moments
estimators (more detail is given in [5]). Note that system (5.1.3) reduces to (5.1.1)
ifgj(z)=2?,7=1,2,...,k.

EXAMPLE 5.1.1. Let £ = (&1, ..,&n) be a sample from the Gamma distri-
bution, so that the density is

f(z;6) = r(a) 16" I(0,00) ()

where 6 € © = (0, 00) is an unknown parameter. In this case a;(f) = Eg¢; = 0 and
therefore a solution of the equation

a1(0) =a; = %Zfi
i=1

is a method of moments estimator and it is given by § = n~! o1 &. This esti-
mator is unbiased and consistent. On the other hand, this estimator is not asymp-
totically efficient whatever the parameter 8 is (see Example 3.4.3).

EXAMPLE 5.1.2. Let £ = (¢1,...,&,) be a sample from a distribution with
the density f(z;0) = 0e=%"I(5 )(z) where § € © = (0 o0) is an unknown pa-
rameter. We use two functions g;(z) = = and gy(z) = 22 to construct estimators
according to the method of moments (see Remark 5.1.1). Since m;(0) = Eqg;(&1) =
E¢é] = jO9 for j = 1,2, equations (5.1.3) are of the form

1 n
m1(0) = a; = - Z{i,
i=1

m2(0) =ag = %ZEE

=1
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There are two solutions of these equations with respect to 6:

Lo -1 L& -1/2
-(35e) . - (me)

Every solution is a method of moments estimator of the parameter 6. One can show
(see [5]) that both estimators 8 and 9 are asymptotically normal with parameters
N(8, n=16%) and N(6,(5/4)n"16%), respectively. Thus the estimator 8 is better
than 6, since n=16% < (5/4)71,‘102 The Fisher information of 8 is I(§) = 672,
whence it follows that 8 is asymptotically efficient in the weak sense.

EXAMPLE 5.1.3. Let (™) = (&1,--.,&n) be a sample from the Gamma distri-
bution with the density

1
;0 — 02—1 —2/911‘ oo x
f(z;0) ey © (0,00) (%)
where 6 = (61,0;) € © = {(01,02): 61 > 0,602 > 0}. It is clear that
I'(62 + j)

() = Eot] = G{W =0702(62+ 1)+ (b2 + 3 —1).

In particular, a; () = 6162 and a2(0) = 6262(62 + 1). Thus solutions of the system
of equations (5.1.1) are of the form

2

2 a?

~ az —aj ~
f=22""1 4= 5
a; az — aj

REMARK 5.1.2. When considering maximum likelihood estimators for samples
from the normal distribution, we will show that estimators obtained by the method
of moments and by the maximum likelihood method coincide and both are efficient.
This is an exceptional case where the method of moments estimators are efficient.

5.2. The maximum likelihood method

From a theoretical point of view, the most important general method of esti-
mation of parameters is the method of moments. In particular cases, this method is
already used by F. Gauss. As a general method of estimation it was first introduced
by Fisher (1912) and afterwards it was further developed by the same author. In
1925 Fisher studied asymptotic properties of maximum likelihood estimators.

Maximum likelihood estimators. Let £ be an observation that is a random
element assuming values in a measurable space (X, B) and whose distribution is
determined by a measure of a family of measures P = {Py,6 € ©} where

= (01,...,0k)

is an unknown parameter belonging to a set © C R¥, k > 1. Let the family P be
dominated by a o-finite measure p and let f(z;6) be the density of the measure Py
with respect to the measure p. The function f(z;0) of an argument 6 is called
the likelihood function, while L(z;0) = In f(z;0) is called the logarithmic likelihood
function.
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A statistic § = 5(93) such that

(5.2.1) L(z; 5(:1;)) = sup L(z;6), z€ X,

is called the mazimum likelihood estimator of the parameter @ if such a point
f(z) € ©

exists. Otherwise, if there is no 8(z) satisfying (5.2.1), then we take an arbitrary
point of © as 8(z). If the function L(z;06) is continuous with respect to 8 and the
set © is close, then the supremum on the right-hand side of (5.2.1) is attained, thus
the maximum likelihood estimator is well defined.

The maximum likelihood estimator 6,, can be defined in an equivalent way
as a statistic maximizing the likelihood function f(z;60). Below we consider the
case where the likelihood functions are differentiable with respect to #. One can
substitute the closure © instead of © in (5.2.1) in this case, the supremum on the
right-hand side of (5.2.1) is attained, and the maximum likelihood estimator exists.
If the supremum on the right-hand side of (5.2.1) is attained at an interior point
of © and the function L(z;#) is differentiable with respect to 6, then one can seek

the maximum likelihood estimator 8 among solutions of the system of equations

8 -

The equations of system (5.2.2) are called likelihood equations.
The following are two properties of the maximum likelihood estimators:
1) if there exists an efficient unbiased estimator T = T'(z) of a scalar param-
eter 8, then the mazimum likelihood estimator 8 exists and coincides with
the estimator T
2) if there exists a sufficient statistic T = T(x) and the mazimum likelihood
estimator exists and is unique, then 8isa function of T.
It is sufficient to apply Theorem 3.4.1 (or Theorem 3.4.3) to prove property 1),
and the factorization criterion to prove property 2).
Consider some examples of maximum likelihood estimators.

EXAMPLE 5.2.1. Let ¢(®) = (¢4,...,&,) be a sample from the normal NV(61, 62)
distribution where § = (6;,62) is an unknown parameter such that 6; € (—oo0,00)
and 03 > 0. Then the logarithmic likelihood function for the distribution of the
sample is given by

L(536) = — % In(2nty) - = S 61)? =
(z; )-‘5 n(7"2)—2—922($i— 1)% z=(Z1,...,Zn)

i=1
The system of likelihood equalities (5.2.2) is of the form in this case:

n

OL(z;0) _ 1 a2
601 - 02 ;(ml 01) - 0;

OL(z;0) 1 < _ 2
86, 262 ;(‘” 61)" — 24, = ©
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Solving this system of equations with respect to 6; and 62 we obtain the following
maximum likelihood estimators:

n

~ 1 ~ 1 ~
(523) 01 = E ;:Ei, 02 = - Z(mz - 01)2.

i=1

It is easy to see that these estimators coincide with the estimators of the pa-
rameters 6; and 6, obtained by the method of moments. Further, it is easy to
check that the maximum of the function L(z;6) is attained at the point (6;,8).
Thus the maximum likelihood estimator exists, is unique, and is defined by (5.2.3).
Note that this maximum likelihood estimator is a function of the sufficient statis-
ticT = (T1,T2) considered in Example 4.1.3. Moreover the maximum likelihood

estimator 8 = (01, 02) itself is a sufficient statistic (see Example 4.1.3).

EXAMPLE 5.2.2. Let £ = (¢;,...,&,) be a sample from the uniform distri-
bution on the interval [0, 6] where § > 0 is an unknown parameter. The likelihood
function in this case is of the form

f(z;8) = 07" I(0,00)(%n,1)(~00,6) (Tn,n)

(see Example 4.1.5). The function f(z;6) is discontinuous with respect to 6 and
moreover f(z;0) = 0 for 6 < z,, and f(z;60) = 07" for 6 > z,, if z,; > 0.
Then the maximum likelihood estimator is 8 = T If 2,3 <0, then f(z;0) =0
for all 8 and any number can be taken as the maximum likelihood estimator, in
particular one can put 6= Znn. If the sampling space is R7}, then the maximum
likelihood estimator § = Znn is unique and is a complete sufficient statistic (see
Example 4.2.4). We learned from Example 4.2.4 that the estimator 6 = "—;‘;—‘wnn is
optimal in the class of unbiased estimators of the parameter 6.

EXAMPLE 5.2.3. Let £(™) = (¢,...,&,) be a sample from the uniform distri-
bution on the interval [#, 6 + 1] where 8 € (—o00, 00) is an unknown parameter. The
likelihood function in this case is given by

f(z; 0) I[B oo)(wn I)I(-oo 0+1](zn n), T = (z11~-~:zn)~

The maximum likelihood estimator is not unique in this case. In particular, g= Zn,1
is one of the maximum likelihood estimators, another one is § = z,, — 1. Note
that T'(z) = (Zn,1,Zn,n) is a sufficient statistic in this case.

The invariance principle for maximum likelihood estimators. The fol-
lowing result is known as the invariance principle for maximum likelihood estimators
with respect to the change of a parameter.

THEOREM 5.2.1. Let P = {Py,0 € ©} be a family of probability measures on
(X, B) defining the distribution of an observation &, and let g = g(6) be a one-
to-one mapping of © into some set G. If 8 is a mazimum likelihood estimator of
the parameter 6 constructed from an observation €, then g = g(g) is a mazimum
likelihood estimator of the function g(6) constructed from the observation &.
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PROOF. Let 6(7) be the inverse function to g(f) and let Q, = Py, for all
7 € G. Then the logarithmic likelihood function for the family {Q.,y € G} is of
the form

(5.2.4) M (v; ) = In(dQy /dpu(z)) = L(8(v); 2)-

Let 8 be the maximum likelihood estimator of the parameter 8 and let § be the
maximum likelihood estimator of the parameter . Then equality (5.2.4) implies

that & = 6(g) or, equivalently, § = 9(0). O

EXAMPLE 5.2.4. Let €™ = (&,...,£,) be a sample from the logarithmic
distribution, that is, £(In¢&;) = N(6;,602) where —co < 6; < 00 and 0 < 62 < oo.
Let @ = (01,02). It is not hard to show that

1
7 = Egé1 = exp {01 + 592} . v2=Dgby =067 (" -1).

Consider the function g(61,62) = (v1,72) and find the maximum likelihood esti-
mator (71,%2) of the function g(6;, 62). We obtain from Example 5.2.1 that the

maximum likelihood estimator § = (51, 52) is of the form
a=i%0 Bnl3i0 oy
l_n, s 2—n, i 1
i=1 i=1
where 7; = In&;. We obtain from the invariance principle for maximum likelihood
estimators that

R - 1a P
M = exp {01 + 592} , Yo = 67 (e‘92 - 1) )

Asymptotic properties of maximum likelihood estimators. In this sec-
tion we consider asymptotic properties of maximum likelihood estimators, namely
we prove that a maximum likelihood estimator is consistent, asymptotically normal,
and asymptotically efficient.

Let an observation ™ = (&, ..., £,) be a sample from a distribution belonging
to a family {Pg,8 € ©} dominated by some o-finite measure p. Denote by f(z;6)
the density of the measure Py with respect to p. Then fo(z;0) = [T, f(z:;0),
z = (z1,...,%x), is the likelihood function, while L,(z;0) = Y i ; In f(z:; 0) is the
logarithmic likelihood function. We denote by 8, = gn(:c) the maximum likelihood
estimator.

First we consider the case of a one-dimensional parameter @, that is, we consider
the case k = 1. The following result is an assertion on asymptotic properties of the
maximum likelihood estimator ,, of a one-dimensional parameter 6.

THEOREM 5.2.2. Let © be an open interval. Assume that

1) for all 6 € © there exist the derivatives &’ In f(z; 6)/867, j = 1,2,3, for
p-almost all x;

2) for all 6 € © there exist nonnegative functions Fi(z), Fx(z), and H(z)
depending on x and such that

& f(z;6)

067

83 1n f(z;0)

30° < M(z);

<Fj(z), 7=1,%
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the functions Fj(z), j = 1,2, are integrable with respect to the measure p
and Eg H(&1) < M < oo where the constant M does not depend on 6;

3) 0< I(6) = Eg(81n f(£1;6)/96)% < oo for all € ©.

Then the likelihood equation (5.2.2) has a solution 8,, = 8, (™) that converges
in probability Py, to the true value 0y of the parameter; moreover the mazimum
likelihood estimator By, is an asymptotically normal and asymptotically efficient es-
timator of the parameter 6.

PROOF. Let 05 € © be the true value of the parameter 6. First we show that
there exists a solution of the likelihood equation that converges in probability to .

Expanding 8L, (£€(™; 8)/88 into the Taylor series in a neighborhood of the point
0 = 6y we get

OLn(6™;60) <~ 0In f(&;0)
o6 _; o6

(5.2.5) -3 [<aln f(sz,(a))oo (60— 00) (62 lnaj;(za;o)>oo

i=1

Xi(6 - 00)2H(£,)}

l\DlD—'

where |X;] < 1 and the symbol (-)g, stands for (¢(6))s, = ¢(fo). Substituting

(5.2.5) into the likelihood equation (5.2.2) we get

1
(5.2.6) By + B1(8 — 6o) + 5ABa2 (60 — 60)> =0
where |A| <1 and

1~ (8*1n f(&;9) .
sz_. ( 99i+1 _)9 y J=0,1,
(5.2.7) =1 °

Now we show that Py, approaches 1 as n — oo for an arbitrary § > 0 where Py,
is the probability that equation (5.2.6) has a solution on the interval (6o — d, 6o + ).
To prove this result we study the limit behavior of B; as n — oo.

Assumptions 1) and 2) imply that

T 2 f(
/ 1) ar) = / ZH0) ’;(02’ ) wdz) = 0.
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Thus

Olnf(&;0)\ [ (0f(x;0) _
(5.2.8) Eo, (Tl>a,, = / ( % )00 u(dz) =0,

8In f(&1;6)

E00 ( 502 - )00
82g§§;9> 21(z:0) 2

- [ 7w - (f(w;0)> o)l
(5.2.9) oreo 2 %

= —/ <f(3?9)>00 f(z;60) p(dz)

. 2
= —Eq, (%(51,9))9 = —I(6o).

According to the law of large numbers we have By — 0 and B; — —I (6o) as
n — 00 in probability Pg,. Similarly By — Eg H({1) < M < o0 as n — oo in
probability Pg,.

Let 6 > 0 and € > 0 be two arbitrary numbers. Then there exists an integer
number 1o = ng(4, €) such that

p1=Po, {|Bo| > 6°} < g,

1 €
p2 = Py, {31 > —51(90)} < 3’

ps = Po {B1 2 2M} <

for n > ng. Consider events S = {|Bo| <6%,B; < %I(Go),Bz < 2M}. Then
Po, (2\ S) < p1 +p2+p3 <¢,

whence Pg,(S) > 1 — ¢ for all n > ng.

The left-hand side of equality (5.2.6) is equal to By £ B8 + 271 ABy42 at the
point § = 6y £ 4. If the event S occurs, then |By + 271AByd?| < 6% + |A\| M2 <
(M +1)6? and B,6 < —2711(0)8. Thus the sign of By+ B15+2"1\B,6? is defined
by the second term if § < I(6p)27(M + 1)~!, whence 8L, (¢(™;0)/80 > 0 for
6 =0y — 6 and L, (¢(™;0)/88 < 0 for § = 6y + 8. Assumption 1) implies that
0L, (x;0)/08 is a continuous function of § € © for y-almost all z. Therefore for
arbitrary 6 > 0 and € > 0 the likelihood equation (5.2.6) has, with probability
greater than 1—¢, a solution belonging to the interval (6o — 6, 8 +96) if n > ng(d, €).
This proves the first part of the theorem. R

Now we prove that the maximum likelihood estimator 6, is asymptotically
normal and asymptotically efficient.

Let 8, = §n(§(n>) be a solution of the likelihood equation. It follows from
(5.2.6) and (5.2.7) that

B, — 60 = Bo _ .
—-Bl - 2—1/\B2(0n bl 00)
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This implies that

1y (alnf(gl e))
(5.2.10) V/rI(00)(8r — 60) = V“’(9° = Py bo
'@’35 )\Bz 1(00)

Thus the denominator on the right-hand side of (5.2.10) converges in probability Pg,
to 1 as n — co. Every term of the sum in the numerator on the right-hand side
of (5.2.10) has expectation 0 and variance I(6g) according to equalities (5.2.8) and
(5.2.9). Thus the central limit theorem implies that the numerator on the right-
hand side of (5.2.10) is asymptotlcally N(0,1) normal. Hence (5.2.10) implies that

the random variable /nI(8o) (8, — 6o) is asymptotically A'(0, 1) normal. Therefore
the estimator 6, is asymptotically efficient. O

Asymptotic properties of the maximum likelihood estimator §n of a multidi-
mensional parameter 6 = (61,...,0;) are listed in the following result.

THEOREM 5.2.3. Let © be an open nondegenerate k-dimensional parallelepiped.

Assume that
1) for all @ € © and for p-almost all = there exist partial derivatives up to
third order inclusive of the function In f(z;6) with respect to 6;
2) forallfc®©

f(z;

0f(;6)
83 1n f(z;6)
— | <
58,00,00, | <~ 1)

the functions Fj(x) are integrable with respect to the measure u, and there
is a constant M such that EgH(&1) < M < oo for all §;
3) for all § € © the matriz

B(8,60) = ‘ E

, Oln f(£1;6) 31nf(§1,0) H
° 06

is nonsingular and det B(0,6;) < oo.
Then the system of likelihood equations (5.2.2) has a solution that is a consistent,
asymyptotically N'(6p,n"*B~1(o,600)) normal, and asymptotically efficient estima-
tor of the parameter 6 where 0q is the true value of the parameter.

The proof of Theorem 5.2.3 is similar to that of Theorem 5.2.2, thus we omit

it.

EXAMPLE 5.2.5. Let £ = (¢1,...,¢&,) be a sample from the normal V(61 62)
distribution where § = (61,6) is an unknown parameter, —co < 6; < oo, 62 >
0. We learned in Example 5.2.1 that the maximum likelihood estimators of the
parameter 6 are of the form (5.2.3), and moreover they coincide with the estimators
obtained by the method of moments. By Theorem 5.2.3 estimators (5.2.3) are
consistent, asymptotically N (6p,n"1171(6p)) normal, and asymptotically efficient.
Here 6, is the true value of the parameter and the Fisher information matrix I(6)

2
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(see Example 3.5. 1). Note that the estimator 8, defined in (5.2.3) is unbiased, while
the estlmator 92 is bla,sed On the other hand, we learned in Example 3.5.1 that the
estimator 8, (01 02 ,n) is unbiased and asymptotically efﬁment Moreover it is
easy to see that the estimator 8, is also asymptotically A/ (60,n~1I71(6p)) normal.

EXAMPLE 5.2.6. Let £ = (¢;,...,£,) be a sample from the Gamma distri-
bution, so that the density is

f(z;0) = 1™ (0,00 (2)

1
oM
where § € © = (0,00) is an unknown parameter. We showed in Examples 3.4.3
and 5.1.1 that the estimator 8, = n~! S, & of the parameter 8 obtained by the
method of moments is unbiased and consistent but it is not asymptotically efficient
whatever the parameter 8 is. On the other hand, the maximum likelihood method
leads to the equation

1 dlnT(9)
(5.2.11) n;ln& 7 =0

and the maximum likelihood estimator 5,, is a unique positive solution of this
equation. According to Theorem 5.2.2 the estimator 6,, is asymptotically

d?InT(6)\ -1
N (90) (n—doz )00 )
normal and asymptotically efficient. This can easily be obtained explicitly from
equation (5.2.11), since

dInT(6) d?InT'(6)
g ’ d6?

and the random variable n=1 Y7 | In¢; is asymptotically

(5, 5).)

normal by the central limit theorem.

Eg lnfl = Dg lnfl =

Applications of regularity conditions for families of distributions for
studying asymptotic properties of maximum likelihood estimators. If the
derivatives up to third order of the logarithmic likelihood function In f(z; 6) exist,
then Theorems 5.2.2 and 5.2.3 show that the maximum likelihood estimator §n is
consistent, asymptotically normal, and asymptotically efficient under some extra
assumptions that are, in fact, not necessary for these properties.

First we consi/t\:ler sufficient conditions for the consistency of the maximum like-
lihood estimator 6,,. For all sets A C R* such that AN© # @ put

fa(@; A) = sup{fa(;6);6 € ©N A}

where z = (z1,...,Z,). For n =1 we have f*(z; A) = f;(z; A).
The following result contains sufficient conditions for the consistency of the

maximum likelihood estimator 0 as n — oo.
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THEOREM 5.2.4. Let 0y € © be the true value of the parameter. Assume that

1) if 0 # 6o, then [|f(z;0) — f(z;60)| u(dz) > 0

2) for all x the density f(z;0) is a semicontinuous function with respect to 6
on the set O, that is, for all ' € ©

’lliirbsup {f(z;0);10 — €&'| < b} = f(x;6');
3) for somer
Ego In(£-(6);60)/ 2 (6™ H)) > —

If H is a compact subset of © containing the point 0y, then there exists §n e H
such that

Folz;0,) = folz; H), z=(21,...,Zn),

and §n — b with Pg,-probability 1 as n — co. Moreover,
4) if additionally

Eao In(f-(67;60)/ £ (6; 0\ H)) >0,

then wzth Pe,-probability 1 the likelihood functwn has the global mazimum at the
point ), if n is sufficiently large, that is, fn(x; 6, ) = fr(z;0).

The proof of Theorem 5.2.4 can be found in [25]. Note that Theorem 5.2.4
claims that the maximum likelihood estlmator bn approaches 6y with Pg,-probabi-
lity 1 as n — co. We say in this case that 8, is a strongly consistent estimator of
the parameter.

Analyzing the assumptions of Theorem 5.2.4 one can see that the continuity of
the function f(z;6) with respect to 6 is close to bemg a necessary condition for the
consistency of the maximum likelihood estimator 0

Now we discuss sufficient conditions for the asymptotic normality and asymp-
totic efficiency of the maximum likelihood estimator 0 We consider the case where
0 is a one-dimensional parameter.

THEOREM 5.2.5. Let 6 € © be the true value of the parameter. Assume that
1) f(z;0) is a measurable function with respect to the pair of variables (z;0)
and [ |f(z;0) — f(z;0')| u(dz) > O for all § # 6;
2) for all z the functzon f(z;0) is absolutely continuous with respect to 6 and
J10f(x;6)/86|d < oo for p-almost all z;
3) Eg,|01n f(£1;60)/06|*F8 for some 6§ > 0 and all @ € ©; the Fisher infor-
mation I(0) = E¢(Oln f(&;;0)/00)? is a continuous function such that
I(0) < C(1+|6[P) for some C > 0 and p > 0;
4) supg |0 — 60" [(f(z;0)f(x; 6'0))1/2 u(dz) < oo for some vy > 0.
Then the mazimum likelihood estimator 0,, is asymptotically N'(8o, (nI(60)) 1) nor-
mal and asymptotically efficient as n — oo.

The proof of Theorem 5.2.5 can be found in [13].

Note that the assumptions of Theorem 5.2.5 can be weakened (see [13]). More-
over Theorem 5.2.5 can be proved for a multidimensional parameter. We also note
that the asymptotic normality and asymptotic efficiency of the maximum likelihood
estimator 6, is proved in [5] under conditions weaker than those in Theorems 5.2.2
and 5.2.3 but stronger than those in Theorem 5.2.5. In particular, it is assumed



142 5. GENERAL METHODS FOR CONSTRUCTING ESTIMATORS

in [5] that the function In f(z;0) is twice continuously differentiable with respect
to @ for p-almost all z. It is also proved in [5] that the maximum likelihood es-
timator is asymptotically Bayes and asymptotically minimax. More properties of
the maximum likelihood estimator can be found in [13].

5.3. Bayes and minimax methods

The Bayes approach. Let £ be an observation that is a random element
assuming values in a measurable space (X,B) and whose distribution belongs to
a family P = (Pg,0 € ©) where 8 = (64,...,0;) is an unknown parameter and
© C R* is a Borel set. For the sake of simplicity we assume that © is an interval
for k = 1 and © is a k-dimensional interval (parallelepiped) in R* for k > 1. Let
(y, 8) be a nonnegative loss function, § € R¥, y € R¥, and let Q be a probability (a
priori) measure on (R¥, B¥) such that Q(R*\ ©) = 0. For any estimator T' = T'(£)
of the parameter 8 we introduce the risk function

(5.3.1) R(T;0) = Eer(T(£),0), 6¢€6.

Following ideas from Section 3.1 one can study estimators of a general function
9(8) of the parameter 6. Since a general function g() can be studied similarly to
the particular function g(f) = 6, we restrict ourselves to the latter case.

Consider the risk of the estimator T = T'(§) defined as

(5.3.2) R(T) = / R(T;6) Q(df).

An estimator 8 = 6(¢) is called a Bayes estimator of the parameter 8 (with respect
to the loss function r(y, ) and the a priori measure Q) if

(5.3.3) R(6) = inf R(T)

where the infimum is taken over all estimators T of the parameter 6.

A posteriori Bayes estimators are also considered in the literature. Moreover
the same name “Bayes estimators” is used for them. Usually this does not cause
any misunderstanding, since the classes of a priori Bayes estimators and a posteriori
Bayes estimators coincide in most cases.

When following the Bayes approach it is natural to treat the parameter 8 as
a random vector with the distribution Q and the measure P, as the conditional
distribution of the observation ¢ given = y, that is, Py(4) = P{§ € A/0 = y},
A € B. In this case the a posteriori measure Q,(B) = P{# € B/¢ = z}, B € B,
is well defined. We define a posteriori risk R(T/z) of the estimator T' = T'(£) by
putting

(534)  R(T/x) = E{r(T(€),6)/¢ =z} = / r(T(x),5) Qe(dy).

An estimator 8 = g(w) is called an a posteriori Bayes estimator of the parameter
6 (with respect to the loss function 7(y,t) and the a priori measure Q) if the
a posteriori risk (5.3.4) attains its minimum at this estimator; more precisely, if

(5.3.5) R(6/z) = inf R(T/z)  (w-as.).
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There are sufficient conditions posed on the a priori measure Q and loss function
r(y, t) under which the infimum in (5.3.5) is attained and the corresponding a pos-
teriori Bayes estimator is unique (see [36]). Under these conditions, the a posteriori
Bayes estimator coincides with the Bayes estimator defined by (5.3.3).

Equalities (5.3.3) and (5.3.5) can be used to construct estimators of parameters.
It is natural to refer to the method of estimation based on (5.3.3) and (5.3.5) as the
Bayes method. An advantage of this approach is that the corresponding estimators
are optimal in the sense that they minimize the risk of the estimators. Moreover
one can freely choose the a priori measure Q and the loss function r(y, t) to reflect
the features of the case under consideration. A disadvantage of this approach is
that the corresponding Bayes estimators are not easy to evaluate.

Below we give some examples of the evaluation of Bayes and a posteriori Bayes
estimators. These examples also show some problems when following the Bayes
approach (more examples of Bayes estimators can be found in Examples 3.1.5 and
3.1.6).

EXAMPLE 5.3.1. Let an observation be a sample £(™ = (¢,...,&,) from the
normal N (6, 1) distribution where 8 is an unknown parameter such that

—00 < 0 < oo.

Then T, = "}, & is a complete sufficient statistic for the parameter 6 in this case
(see Section 4.2). Let the a priori distribution Q of the parameter § be normal

N(0,72). Our aim is to get the a posteriori Bayes estimator ,, of the parameter 6
with respect to the loss function

( t)_{o, if ly — | < 6,
TEEN 1, ifly—t>6

where § > 0 is a certain fixed number. Since there exists a complete sufficient
estimator T, a posteriori distribution depends on z = (z1,...,2,) through T, (z)
(see Remark 4.1.1 and Corollary 4.1.3). Then an a posteriori Bayes estimator should

also be a function of the sufficient statistic T7,, that is, 5,, =d(Ty).
Given the statistic T, an a posteriori distribution of the parameter 6 is normal

T, 1\?
N(n+7"2’<n+r_2) )

This result can easily be derived from properties of the normal distribution. Thus
a posteriori risk of the estimator 6,, = d(T,) is

R(gn/x) =1- P{ld(Tn) - 9' < d/Tn(x)}
d(T, 6—T, n+72
1o (AEED ST o)

d(Tn(z)) = 0 — Tu(z)/(n+772)
+<1>< 2 (n+r—2)f1/2 )

To minimize R(f,/z) one should choose d(T},) to maximize

UTs@) 45 - To(@)/(n 477 g (UTa(a)) =8 = Tula)/(n+77)
o (MBI o (REITRER ).
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Consider the function f(z) = ®(z + € — n) — ®(z — € — 7). Differentiating it with
respect to  we obtain a sufficient condition for zo to be a point of maximum
of f(z), namely

(5.3.6) #(zo +€—1n) = d(xo — € —1n)

where ¢(x) is the density of the normal A(0, 1) distribution. Since ¢(¢) = ¢(—¢), we
get zo = 7n. It is easy to check that zo = 7 is a unique solution of equation (5.3.6).
The second derivative of f(z) at the point zo = 7 is equal to —2e¢(e). Thus z is
the point of maximum of the function f(z). Putting

d(T,) T

S ()2 and 5= (n+7-2)1/2
we prove that a unique a posteriori Bayes estimator of the parameter 6 is given by
~ o~ Tn(z
On = n($)=n_:(7__)2, :17=(121,...,:Bn).

Note that
~ 1<
Tll'ngo On(z) = - le,
z=

The following example shows that there are a posteriori Bayes estimators for
which the risk is infinite and thus the evaluation of a Bayes estimator does not
make any sense from a practical point of view.

ExAMPLE 5.3.2. Let an observation £ be a random variable with the distribu-
tion belonging to the family of uniform distributions on (0, |§|~) where 6 is a real
number such that 1 < |0] < oo, that is, f(z;60) = |0] for 0 < z < |6]71.

Let an a priori distribution Q be absolutely continuous with respect to the
Lebesgue measure with the density

(t)_{ 3%, 1<t < oo,
=10, if [t < 1.

An a posteriori distribution of the parameter 6 given £ = z possesses the density

-1
q(t/z) = é%;——x,, fr<|t1<1,
0, if Itl—'l ¢ [:L‘, 1]

Let the loss function r(y,t) 'be quadratic, that is, r(y,t) = |y — t|>. Then the
a posteriori Bayes estimator #(z) minimizes the a posteriori risk

|t~

R(T/z =/ T —t)? dt.
/o) {wsm-lsu( ) Pz

The only function T'(z) minimizing R(T'/z) is the a posteriori mean of the parame-
ter 6 given ¢ = z, that is, T'(z) = E{8/€ = z}. Since the a posteriori density q(t/z)
is symmetric with respect to z = 0, we get that 5(:1:) =0 (p-a.s.) is an a posteriori
Bayes estimator. The a posteriori risk of this estimator is given by

R(@/z) = / Mo 1=2 0 (was).

(e<iy-1<yy 20z~ 222 Ing?
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However the risk of the a posteriori Bayes estimator 5(:1:) =0is
~ ~ S |
R@) =E@-0)2 = 2/ 221" dt = oo
1

Note that the a posteriori Bayes estimator §(z) = 0 (u-a.s.) is of no interest at
all, since it does not depend on observations. Moreover the estimator 6(z) assumes
values outside the set of parameters © = (—o0,1] U (1, 00).

Below are some concluding remarks.

REMARK 5.3.1. The problem of how to construct Bayes estimators in the case
of the loss function r(y,t) = |y — t|™, m = 1,2,..., is quite well studied in the
literature. It is known in the case m = 1 that the median of an a posteriori dis-
tribution is the Bayes estimator (and the a posteriori Bayes estimator, as well) of
a parameter 0 (see Remark 3.2.4 and [9], pp. 178-179). If m = 2, then the expec-
tation of an a posteriori distribution is the Bayes estimator (and the a posteriori
Bayes estimator, as well) of a parameter 8 (see Theorem 2.2.1 concerning the gen-
eral regression). In the case of a general loss function r(y,t) = w(|y — t|) De Groot
and Rao (1963) obtained necessary and sufficient conditions that an estimator is
a posteriori Bayes (see [36], Theorem 6.2.2).

REMARK 5.3.2. If the a priori distribution Q is such that a posteriori risk with
respect to the loss function r(y,t) = A(t)(y — t)? is finite (u-a.s.) for all estimators
0(z), then an a posteriori Bayes estimator is given by

5 _ E(0A(6)/€)
0(.’1?) = W ([ll-a.S.)

(see [36]). Here 0 < A(t) < oo for all t € ©. If R(T/z) < oo (p-a.s.) only for
T = Ty, then Tp(z) is an a posteriori Bayes estimator. In general, an a posteriori
Bayes estimator is unique (see Theorem 6.2.1 in [36]).

REMARK 5.3.3. In Section 3.1 we defined a generalized Bayes estimator as an
estimator minimizing the risk if the a priori measure Q is not a probability measure.
Generalized Bayes estimators are sometimes defined as limits of Bayes estimators
constructed with respect to a priori probability measures Q,, as m — oo (see, for
example, Theorem 3.2.6). The estimator

_ Jtf(=it) Qdt)
[ f(z;t) Q(dt)

is also called a generalized Bayes estimator where Q is some o-finite measure (see
[36]). More results on Bayes estimators can be found in [36].

0" (z)

Asymptotic properties of Bayes estimators. Let an observation be a sam-
ple £™ = (¢,...,¢&,) from a distribution belonging to a family {Pg,8 € ©} domi-
nated by some o-finite measure u. Let f(z;6) be the density of the measure Pg with
respect to the measure u. Let 5,, be the Bayes estimator of the parameter § with
respect to the quadratic loss function r(y,t) = (y — t)? and the a priori measure Q
possessing the density g(t) with respect to the Lebesgue measure.

The following result describes the asymptotic behavior of 6, as n — oo in the
case of a one-dimensional parameter 6.
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THEOREM 5.3.1. Let assumptions 1)-4) of Theorem 5.2.5 hold. Let addition-
ally
5) the function ¢(t) is continuous in a neighborhood of the pointt = tg, q(to) #
0, and sup, ¢(t)(1 + [¢[P°)~! < oo for some po > 0.
Then the Bayes estimator 8,, given 0 = to is asymptotically N (to, (nl(to))~!) nor-
mal as n — 0.

The proof of Theorem 5.3.1 can be found in [13].
The assumptions of Theorem 5.3.1 can be weakened (see [13]). Moreover this
result can be generalized to the case of a multidimensional parameter 6.

The minimax approach. The minimax method allows one to construct es-
timators, called minimaz, that minimize the maximum of the risk function. Some
necessary and sufficient conditions for estimators to be minimax are given in Sec-
tion 3.1 (see Theorems 3.1.3 and 3.1.4). In many cases the minimax estimator is
a Bayes estimator with respect to the less favorable a priori distribution. In those
cases the construction of a minimax estimator is reduced to the construction of an

appropriate Bayes estimator.
Some examples of minimax estimators are given in Examples 3.1.5 and 3.1.6.
Below we give another example related to the loss function introduced in Exam-

ple 5.3.1.
EXAMPLE 5.3.3. We learned in Example 5.3.1 that

1 -1
9-,-(:1:) =Tp (1 + m)

where T, =n"! E?=1 z;, ¢ = (Z1,...,Tn), is a Bayes estimator with respect to the
a priori normal AV(0,72) distribution and the loss function r(y,t) that equals 0 for
ly—t| < § and 1 for |[y—t| > 4, § > 0. Let us show that T, is a minimax estimator.
The risk function of the estimator Z,, is equal to

R(Zn,t) = P{[E, — t| > 0} = 2(1 - ®(8v/n)) = p*

for all t € (—o0,00) where £, = n~'> 1, &. It is easy to check that the risk of
the estimator 6, is given by

Putting 7 = 71,72,... we get a sequence of a priori N(0,72) distributions, m =
1,2,.... We denote the risk with respect to the a priori N'(0,72) distribution by

(5.3.8) R.(6;) = E+R(6:;0)

where E, is the expectation with respect to the ./\[ (0,72) distribution. For the
right-hand side of (5.3.8) we apply the estimate R(6,;t) < 2. Then the Lebesgue
dominated convergence theorem and (5.3.7) imply

lim R.(6,) = 2(1 - ®(dy/n)) = p*.

T—00
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Now we apply Theorem 3.1.4 for the sequence of a priori N(0,7,,) distributions
and Bayes estimators 0, and obtain that T, is the minimax estimator of the
parameter 6.

REMARK 5.3.4. Further results on minimax estimators can be found in [36].

5.4. Confidence intervals and regions

The notion of a confidence interval. In the preceding sections we consid-
ered the problem of constructing point estimators of an unknown parameter or a
function of a parameter. Every point estimator is a statistic assuming values in
the region of values of the parameter (or of the function of the parameter). It is a
useful method in practice to construct an interval or a region from the observation
or from the sample. The idea behind this method is that the interval or region
mentioned above should contain the parameter with a probability close to 1.

Let ¢ be an observation that is a random element assuming values in a mea-
surable space (X,B). Let its distribution belong to a family (P, € ©) where
6 = (61,...,0x) is an unknown parameter such that 6 € © C Rk, k > 1. First we
consider the case of a one-dimensional parameter 6, that is, we consider the case
k=1.

Let T} = T1(€) and T = T»(£) be two statistics such that 71 < T3 and let

Po{T1(§) <0 < T2(§)} > forallde®

for a given v € (0,1). In this case the interval (T1,T2) is called a v-confidence
interval or a confidence interval of level v for the parameter 6. The number 7 is
called a confidence probability or a confidence level, while Ty and T3 are called the

lower and upper confidence limits, respectively.

Constructing a confidence interval by a given statistic. Let 8 be an
estimator of a parameter 6. It is natural to seek a confidence interval of a level v in

the form of (5— A7, ), 8-+A(,¢&)). However the random variables A(v, ) depend,
generally speaking, on the unknown parameter 6, since these random variables are

found from the equation
Po{f— A(1,8) <O <F+A(ME} 27 forallbeo.

Along with the estimator 6 one can use any other statistic T’ when constructing

a confidence interval. Let Go(v) = Pe{T(€) < y} be the distribution function of the
statistic T. Assume that Gs(Y) depends on the parameter § monotonically. More

precisely let
(541) Gol (y) > G92 (y) for all Yy and 91 < 92.

If additionally the function Gy(y) is continuous with respect to 6, then the
equation
(5.4.2) Go(y) =7
r every v € (0,1). We denote this solution by

has a solution with respect to 8 fo
b(y,7)-
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THEOREM 5.4.1. Let v = 71 + 7o. If the distribution function Ge(y) of the
statistic T is continuous with respect to 0 and satisfies condition (5.4.1), then the
statistics

T = b(T, 1- '72)’ I = b(T’ 'Yl)
are lower and upper limits of a confidence interval of level 1 — 1.

PROOF. The random variable Go(T'(£)) has the uniform distribution with re-
spect to Pg on the interval [0,1]. Thus

Po{1 <Go(T(§)) <1—7}=1-7
or, equivalently,

Po{b(T(£),1-72) < 6 < b(T(£),71)} = 1-7. o

The inversion procedure of the function Gy(T) used in the proof of Theo-
rem 5.4.1 can be done in two steps. First one inverts the function Gg(y) with
respect to y, that is, one finds the quantiles of G L(+) that are solutions of equa-
tion (5.4.2). Then one solves the following equations with respect to 6:

Gylm) =T, Gyl(l-m)=T.

Solutions of these equations exist, since the function G; () is monotone and con-
tinuous with respect to 6 for all y € (0,1).

If the function Gg(y) is not continuous with respect to 8, then Theorem 5.4.1
still holds and the above procedure still works. The only difference is that an
equality in the definition of quantiles is substituted by the inequality

Go(Gy'(m),Gg (1 —12)) =1 -4

where Gy is the measure on (—o00,00) generated by the distribution of Gg(y).
Since we assumed continuity in Theorem 5.4.1, the quantiles were evaluated from
the corresponding equalities in the proof above.

The problem of finding the most precise estimator also exists in the case of the
interval setting. We will solve this problem when studying hypotheses testing.

Constructing confidence intervals for the Bayes approach. Let a pa-
rameter 6 be random with a priori distribution Q possessing the density g(y) with
respect to some o-finite measure A\. Assume that a family (Pg,8 € ©) of distribu-
tions of the observation £ is dominated by some o-finite measure p. Thus f(z;6)
is the density of the measure Py with respect to the measure p. In this case there
exists an a posteriori distribution of the parameter 6 given £ = z. Its density with
respect to A is given by

_ f(zy)a(y)
W/%) = T i t)att) M@

As lower and upper limits for a confidence interval of level 1 — v one can take
statistics T1(z) and T2(z) such that

Ta(z)
/ a(t/2) \(dt) =14

Ty (x)



5.4. CONFIDENCE INTERVALS AND REGIONS 149

or
T2 (z)
] gt/z) M(dt) > 1—

Y (3

depending on the continuity or discontinuity of the function | * oo 4(u/x) A(du) with
respect to ¢. In other words, as statistics 77 and T one should take a «;-quantile
and a (1 — v2)-quantile, respectively, of an a posteriori distribution for all y; and

72 such that 7, + v2 = 7.
In contrast to the non-Bayesian approach, in the relation 77 < 6 < T3 both T
and T3, as well as the parameter 6, are now random.

Asymptotically confidence intervals. Assume that an observation

‘E(n) = (61,' e ){'n)

is a sample from a distribution belonging to a family (Pg, 6 € ©). Let
T,=Ti(7,6™) and Tn=Ty(7,6™)
be two statistics such that

(5.4.3) liminf Po{T, <8 <T,} >~ forallfe®O.

Then the interval (T,,,T,) is called a confidence interval of level . In fact, now
one should speak of a sequence of intervals (T,,,Tr), n = 1,2,... .

In the preceding sections we considered point estimators that in the majority
of cases are asymptotically normal. Below we construct asymptotic confidence
intervals jrom the point estimators.

Let 6,, be an asymptotically N (,02(0)/n) normal estimator where () is a
continuous function. Since 5,1 — 0 in Py-probability as n — oo, we also have
o(6,) — o(0) in Pg-probability as n — oo. This implies that the sequence

w, n=12,.
‘7(011)

is asymptotically A(0,1) normal. Denote by 25 a solution of the equation
B(2)=1-6

with respect to z, that is, zs is a (1 — §)-quantile of the distribution A(0,1). Here
the symbol ®(z) stands for the distribution function of the law N (0,1). If n is a
random variable distributed according to the law N(0, 1), then P{|n| < 25} = 1-24.
Let 8 = 2,/ for a fixed number v > 0. Hence

<ﬂ}=1—7

lim Py { (6 -9 N
n—oo U(Gn)
{"9‘ ﬂo(@n) N ﬂo'(an) }

or, in other words,

lim Py

n—0o0

B
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Therefore relation (5.4.3) holds for the random variables

po(Bn)  ~ _ 5 Bo(Bn)

Jn T,=06,+ Jn
Equalities (5.4.4) define lower and upper limits of an asymptotic confidence interval
of level 1 — .

0, —

(5.4.4) T,

EXAMPLE 5.4.1. Let £ = (&,...,£,) be a sample from the Gamma distri-
bution, so that the density is f(z;8) = 8e~%%, z > 0, where § € © = (0,00) is an
unknown parameter. The random variable T,, = > &; is a complete sufficient
statistic and moreover EgT;7! = 6/(n — 1). Thus 8, = (n — 1)T.;! is an unbiased
optimal estimator of the parameter 6. Further Dgf, = 62/ (n — 2) and therefore
02(8) = 6%. Therefore the limits defined by (5.4.4) become of the form

~ Jé] A B
In:‘en(l_% ) Tn=9n 1+ﬁ .
The asymptotic confidence level of the interval (T,,Ty) is 1 —v. One can find
a precise confidence level of the interval (T,,T,) for a fixed n by evaluating the

probability
B 6T, B
LA il LR BT
Py {1 n < no1 <l+ \/ﬁ
which is possible by taking into account that 67;, has the Gamma distribution with
the density z"~! e=%/(n — 1)!, z > 0.

The multidimensional case. If a parameter § € © C RF is multidimen-
sional, that is, kK > 1, then we consider a confidence region instead of a confidence

interval.
A random subset ©* = ©*(v,£) of the region of parameters © is called a

confidence region of level v if

Pe{0 € ©*} >« forallf€®O.

In other words, a confidence region ©* of level 4 contains the unknown param-
eter § with a probability greater than or equal to v.
If an observation is a sample (™), then a random set O} = ©*(y, (™) c ©
such that
liminf Po{0 € ©}} > v
n—00

is called an asymptotic confidence region of level .
The procedure for constructing confidence regions is the same as in the one-

dimensional case.

Confidence intervals for normal distributions. We use the exact distri-
butions of linear and quadratic forms of Gaussian random variables (see Section 1.4)
to construct exact confidence intervals for parameters of the normal distribution.

EXAMPLE 5.4.2. Let £ = (&,...,£&n) be a sample from the normal N'(4, 02)
distribution where # € © = (—o00,00) is an unknown parameter, while the vari-
ance o2 is known. Thus Eg¢; = 0 and Deéy = o2 for all § € ©. Our goal is to
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construct a confidence interval of level -y for the parameter §. We use the estimator
- n
On = n~t Z &
i=1

of the parameter 6 to find a confidence interval (5,1 —Anq, b, + An,y) where A,
is a solution of the equation

Pe {677; —~Dpy <0 <O+ An,.,} = 1.

Since the distribution of the estimator 8, is N (6,0%/n), the latter equation is
equivalent to
y \/E?m} _ 2 (&) “1=n.
o

This implies that Ay, o = ot(1_.)/2/+/n Where t, is a p-quantile of the law N(0,1),
that is, ®(t,) = p. Thus, a confidence interval is of the form

-~ 8, —
Po{|6n — 8] < Any} = Pg { ( ae)\/ﬁ

~ [ ~ g
(9n = Jmta-myOnt ﬁt(l—v)ﬂ) :

The procedure described in Theorem 5.4.1 can also be used to construct a confidence
interval.

EXAMPLE 5.4.3. Let (™ = (¢,,...,&,) be a sample from the normal NV (a, §)
distribution where o is known and 6 € (0,00) is an unknown parameter. Now we
use the statistic T, = Y .-, (& — @)? which, as we know, is a sufficient statistic for
the parameter 4. It is obvious that the distribution of the random variable T, /0 is
x*(n). Thus there are two numbers r,, ., and 7, , such that

Po {Tny < Tn/0 <Tnny}="1.

Note that a solution of the latter equation is not unique. A confidence interval of
level « for the variance 6 can be taken as follows:

(Tn/Fn,'ya Tn/ﬂn,’y)-

Note that numbers r,, ., and 7, ., possessing this property are not unique.

=N,y

EXAMPLE 5.4.4. Let ¢ = (£;,...,&,) be a sample from the normal NV (6;, 6,)
distribution where # = (61,6>) is an unknown parameter such that 6; € (—oo, o)
and 6, € (0,00), that is, we assume that both the expectation #; and variance 6;
are unknown. First we construct a confidence interval of level v € (0,1) for the

expectation #,. We use the random variable T, = (a; — 61)m, 172 where

“150 and ma= P36’
al_;-l& an mz_”“ i —a)
= =

are the sampling mean and sampling variance, respectively. According to Theorem
1.4.2 the random variable T, has the Student distribution with n — 1 degrees of
freedom. Let ¢, 4 be a constant such that

Po{|Tn| < cniv} =1-
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Such a constant ¢, exists and is unique. Its approximate value can be found from
tables of the Student distribution. Therefore a confidence interval of level « is of
the form (a1 — Cn,yy/M2,01 + Cny /M2).

Now we construct a confidence interval of level v € (0,1) for the variance
0;. We use the random variable S, = nmgy/6;. According to Theorem 1.4.2 the
distribution of the random variable S, is x?(n—1). Thus one can find two numbers

Tp—1,y and Tr_1,, (see Example 5.4.3) such that

Py {7_‘,,,__1,7 < nmg/Bg < Fn—l,’y} =.
This implies that a confidence interval of level  for the variance s can be taken
as (nmg/Tn—1,y,nM2/T,_1,). It is obvious that the numbers r,,_; ., and Tp_1
satisfying the above equality are not unique and thus confidence intervals also are
not unique.
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Preface to Part 2

Part 1 of this book dealt with the estimation of unknown parameters, while
Part 2 is devoted to testing statistical hypotheses.

The theory of hypotheses testing appears, in more or less detail, in practically
any textbook or monograph on mathematical statistics. We mention here the books
by Lehmann [34], and Hajek and Siddk [22] that are entirely devoted to statistical
tests, as well as the book by Borovkov and Mogul’skil [10] that is devoted to
asymptotic problems in testing statistical hypotheses.

Part 2 begins with an exposition of a general theory of testing (Chapter 1), that
is, of problems related to testing statistical hypotheses in the scheme of general
statistical experiments according to Ibragimov and Khas’minskii [25], Barra [2],
and Soler [49]. First, in Section 1.1, we deal with testing two hypotheses, we study
the structure of the set formed by type I and type II error probabilities, and we
introduce Neyman-Pearson tests, Bayes tests, and minimax tests. In Section 1.2,
the theory of testing a finite number of simple hypotheses is presented and the
most powerful tests, Bayes tests, and minimax tests are introduced. Section 1.3
deals with testing composite hypotheses and discusses different approaches to the
definition of optimal tests. A relationship between tests and confidence intervals is
investigated.

Chapter 2 deals with problems for asymptotically distinguishable families of
simple statistical hypotheses in the scheme of general statistical experiments fol-
lowing the books [47] and [37]. A complete group of types of families of statistical
hypotheses that can be asymptotically distinguished is introduced and character-
ization theorems are given, which enables one to determine the type to which a
family of hypotheses belongs (Section 2.2). Complete asymptotic testing under the
strong law of large numbers (Section 2.3) or under weak convergence (Section 2.4)
of the logarithm of the likelihood ratio are presented. Section 2.5 deals with testing
contiguous families of hypotheses.

Chapter 3 is devoted to goodness-of-fit tests for independent observations. The
Kolmogorov test (Section 3.1), the Pearson test (Section 3.2), and the Smirnov test
(Section 3.3) are considered in detail. Section 3.4 focuses on some other well-known
goodness-of-fit tests.

Chapter 4 presents elements of sequential analysis applied to the problem of
testing statistical hypotheses. Section 4.1 deals with the Bayes theory of sequential
testing of, generally speaking, composite hypotheses. Sections 4.2 and 4.3 are
devoted to the Wald sequential test for testing two simple hypotheses. Section 4.2
presents the basic properties of the Wald test and Section 4.3 establishes that the
Wald test is optimal.

157



158 PREFACE TO PART 2

The list of references at the end of the book contains only those references that
are directly related to the topics we treat in the book and is by no means a complete

list of references on testing statistical hypotheses.
In Part 2 we follow the same system of notational conventions as in Part 1.

We also enumerate theorems, lemmas, formulas, etc., in the same way as we did in
Part 1.



CHAPTER 1

General Theory of Hypotheses Testing

1.1. Testing two simple hypotheses

Statistical hypotheses and tests. Type I and type II error probabili-
ties of a test. Let £ be a random element assuming values in a measurable space
(X,%) and let & = (P,P) be a pair of probability measures defined on (X, %).
Assume that the distribution.of the random element £ is generated by one of the
measures of the family 2. The random element ¢ is called an observation. The
problem is to make a decision about the distribution of the random element £ by
the observation £ = x.

Any conjecture about the distribution of an observation ¢ is called a statistical
hypothesis or, simply, a hypothesis. If a statistical hypothesis uniquely determines
the distribution of an observation, then it is called a simple hypothesis. Otherwise
it is called a composite hypothesis.

Let H and H be two statistical hypotheses that the distribution of an obser-
vation & corresponds to the measure P and P, respectively. It is clear that the
hypotheses H and H are simple. Therefore the problem is to decide by using the
observation § = z which of the hypotheses H or H is true. In other words, this is a
problem of distinguishing two simple hypotheses H and H by an observation £ = z.

Any measurable mapping d: (X, 8) — ([0, 1], ([0, 1])) where B(A) is the Borel
o-algebra of the set A is called a statistical test for distinguishing hypotheses H
and H. We treat d(z) as the probability of accepting the hypothesis H given
€ = z, while 1 — §(z) is the probability of accepting the hypothesis H given £ = z.
The mapping ¢ is sometimes called a decision rule or a decision function. If the
function é(z) assumes only two values 0 and 1, then it is called a nonrandomized
test. Otherwise ¢ is called a randomized test.

If a test § is nonrandomized, then X = X, U X; where X; = {z:(z) = i},
i=0,1, and Xo N X; = @. In this case the hypothesis H is accepted for z € X,
while the hypothesis H is accepted for £ € X;. Thus every nonrandomized test is
of the form §(z) = Ix,(z), z € X, where I4(z) is the indicator of the set A, that
is, Ia(z) =1forz € A and Ia(z) =0forz € A°= X\ A

Throughout this chapter we write § = §(§). To measure the quality of a test &
we consider the two numbers

(1.1.1) a(6) =E6 and B(8) = E(1 - 6)

where E and E are expectations with respect to the measures P and P, respectively.
If f(z) is a measurable function, then we write P{f(¢) € A} or P{ f € A} and
P{f(¢) € A} or P{f € A} instead of P{z: f(z) € A} and P{z: f(z) € A}, respec-
tively. The number «(4) is called the type I error probability or §-level of the test 4.
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160 1. GENERAL THEORY OF HYPOTHESES TESTING

Similarly, the number 3(6) is called the type II error probability of the test 6. The
number 1 — 3(6) is called the power of the test 6.

It is natural to say that a test §; is better than a test & if a(d1) < a(d2),
B(61) < B(d2), and at least one of these two inequalities is strict. However it is not
always possible to compare tests §; and §5 in the specified way. In what follows we
consider the set 9 of points (c(6), 3(d)) corresponding to all possible tests é. It is
clear that 9t C [0,1] x [0,1]. The definition of the set 91 implies that (a, 8) € N if
and only if there is a test J such that a(é) = o and B(d) = 5.

Properties of the set 9. First we consider some properties of the set It that
hold for each pair of measures (P, P).

LEMMA 1.1.1. The set N is convez.

PROOF. Let &; and d; be two arbitrary tests. Then (a(d1),8(61)) € 9 and
(a(82),B(82)) €N. Let 0 <A <1 and

(11.2) a=Aa(8)+ (1= Na(B),  B=AB(61) + (1 - V().
We prove that (a,3) € 9 for all A € [0,1]. We get from (1.1.1) and (1.1.2) that
a=EMN;+(1-Nb), B=E[1- 06+ (1—-Nd).

This implies that o = &(6) and B = 5(8) where § = A6 + (1 — A)d2. It is obvious
that 4 is a test for any A € [0, 1]. Thus (e, 3) € 9 for any ) € [0, 1] and therefore N
is a convex set. O

LEMMA 1.1.2. The points (0,1) and (1,0) belong to the set N.

PROOF. Let dp(z) = 0 for all z € X. Then a(dp) = 0 and B(dp) = 1, whence
(0,1) € M. Further let §;(z) = 1 for all z € X. Thus a(é;) = 1 and B(d1) = 0,
whence (1,0) € 91. O

LEMMA 1.1.3. The set N is symmetric about the point (1/2,1/2).

PRrOOF. It is sufficient to prove that if (o, 8) € N, then (1 —a,1 - f) € N.
Let 4 be a test such that a(d) = @ and B(8) = 8. It follows from (1.1.1) that

1—-a(d)=E(1-6), 1-p(6) =Es.
Putting § = 1 — 4, we get

a)=1-a(@)=1-a, PB@)=1-p0)=1-4,
that is, (1 —a,1—B) € N. O

REMARK 1.1.1. Lemmas 1.1.1 and 1.1.2 imply that the diagonal of the square
[0,1] x [0, 1] joining its corners (0,1) and (1,0) belongs to the set 9. Lemma 1.1.3
implies that the subset of 9t above this diagonal coincides with the image under the
central symmetry about the point (1/2,1/2) of the subset of M below the diagonal.
Therefore one can derive all the properties for the set 91 from their counterparts
for one of the two parts of 9t specified above.

Now we consider other properties of the set 91 that depend on the measures

P and P. We need some definitions and results from measure theory that can be
found, for example, in [19, 23, 31, 32].
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A measure P is called absolutely continuous with respect to a measure P if
P(4) =

for all A € % such that P(4) = 0. We write in this case P<P IfP<P
and P <« P then the measures P_and P are called equivalent. The equivalence of
measures P and P is denoted by P~P.

LEMMA 1.1.4. IfP ~ P, then for all tests § we have
(1.1.3) a(8) =0 <= B(8) =1,
(1.1.4) a(d) =1 (%) =

PROOF. Since 0 < §(z) < 1, we get

a(d) =0<=Ed=0<= P{z:4(z) #0} =0
— P{z:6(z) #0} =0 <= E(1-46) =1

and (1.1.3) is proved. Relation (1.1.4) is proved similarly. O

We say that a measure P is not absolutely continuous with respect to a measure P
(denoted by P £ P) if there is a set C € % such that P(C) =0 and P(C) > 0.

LeEmMA 1.1.5. If P<PandP £ P, then for all tests § we have
(1.1.5) a(6) =0= B(8) =1,
(1.1.6) a(d) =1=pB(8) =

Moreover there are tests &' and 8" such that B(8') = 0, a(8’) < 1, B(6") =1, and
a(d”) > 0.

PROOF. Since 0 < §(z) < 1, we have
a(6) =0= P{z:8(z) #0} =0 = P{z:6(z) #0} =0 = E(1 - 6) =1,

whence (1.1.5) follows. Relation (1.1.6) is proved similarly.
Further let C' € 4 be such that P(C) =0 and P(C) > 0. Puttmg

8'(z) = Ix\c()
we get

a(6)=E&F =P(X\C)=1-P(C) <1
B(8) =E(1-46")=P(C) =0.

If §"(z) = Ic(z), then we get in a similar way that a(6”) = P(C) > 0 and

B(8") = P(X\C) = 1. ]
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LEMMA 1.1.6. If P < P and P & P, then for all tests § we have
B)=0= a(d) =1,
B()=1= a(d)=0.

Moreover there are tests §' and 8" such that a(6’) =0, B(0') < 1, a(8”) =1, and
4(8") > 0.

The proof is similar to that of Lemma 1.1.5 and thus is omitted.

LEMMA 1.1.7. Ifls £ P and P & 5, then there are tests 01, 02, 03, and &4
such that

a(dl) = 01 ﬂ(‘sl) < 11 0(62) < 1) :8(62) = 07
0(53) = 1) :B(53) > 0: 0(54) > 0’ 13(54) =1
The proof is similar to that of Lemma 1.1.5 and thus is omitted.

REMARK 1.1.2. To prove Lemmas 1.1.5 and 1.1.6 one can put §” =1—¢' and
apply Lemma 1.1.3. Similarly, to prove Lemma 1.1.7 one can put é3 =1 — §; and
d4 = 1— 02 and apply Lemma 1.1.3.

Measures P and P are called singular (denoted by P L P) if there exists C € &
such that P(C) =0 and P(X\ C) =0.

LEMMA 1.1.8. If P L P, then (0,0) € 9.

PROOF. Let C € % be such that P(C) = 0 and P(C) = 1. Putting 8°(z) =
Io(z) we get

a(6®) =E* =P(C)=0, B(°) =E1-8%=P(X\C)=0,
that is, (0,0) € M. 0O

COROLLARY 1.1.1. IfP L P, then 9t = [0,1] x [0, 1].

PROOF. According to Lemmas 1.1.8 and 1.1.3 we get (1,1) € 9. Since (0,1) €
N and (1,0) € 9 by Lemma 1.1.2, we apply Lemma 1.1.1 and obtain

9t = [0,1]x0, 1]. o

We write P = P if P(A) = P(A) for all A € 8. Put
(1.1.7) N={(a,8):8=1—aforall a €[0,1]}, N =1[0,1] x [0,1].

It is clear that 9 is the diagonal of the square [0, 1] x [0, 1] joining its corners (0, 1)
and (1,0).

COROLLARY 1.1.2. The following hold:

(1.1.8) P=P=m=
(1.1.9) PLP«Mm=
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PROOF. Let P = P. Then for all tests &
B(8) =E(1-6) =E(1-8) =1-a(9),

that is, 9t = 91. Thus the implication = in (1.1.8) is proved.
Let 9t = N. Then B(6) = 1 — a(d) for all tests §. Consider §(z) = I4(z) for
A€ %B. Then

(1.1.10) B(6) =E(1—6)=1-P(4), af8) =Es=P(A).

Since B(8) = 1 — a(8) for all tests 8, we obtain from (1.1.10) that P(A) = P(A) for
all A€ %B. Thus P = P. Therefore the implication < in (1.1.8) is also proved.
According to Corollary 1.1.1, relation (1.1.9) follows from the implication < in
(1.1.9).
Let 91 = M. Then (0,0) € 9 and therefore there is a test 6° such that a(5%) =
and 4(6°) = 0. Thus P{z:8°(z) # 0} = 0 if (6°) = 0. Similarly, the equahty
ﬂ(do) = 0 implies that P{z:8°(z) # 1} = 0, that is, P{z:6°(z) = 1} = 1. Putting
= {2:6%z) # 0}, we obtain from {z: 60(:1:) 1} C C that P(C) = 0 and
P(C’) =1, that is, P L P. Thus the implication < in (1.1.9) is also proved. O

Likelihood ratio and Lebesgue decomposition. Let Q be some o-finite
measure on (X, %) dominating the family & = (P, P). This means that P < Q and
P< Q. It is obvious that such a measure exists. In particular, as the measure Q
one can take Q = (P + P)/2. Let 3(z) = dP/dQ(z) and j(z) = dP/dQ(z) be the
Radon-Nikodym derivatives (densities) of the measures P and P with respect to
the measure Q, respectively. Note that 0 < 3(z) < oo and 0 < j(z) < oo almost
everywhere with respect to the measure Q. Moreover, P{z:3(z) = 0} = 0 and
F’{x: 3(z) = 0} = 0. We define the likelihood ratios as follows:

(1.1.11) z(z) =3()/3(x),  Z(z) =3(z)/3(=).

If we agree that 0 = 0/0, then 2(z) and Z(z) in (1.1.11) are well defined. Note that

P{z:3(z) =0, 3(z) = 0} = 0,
P{z:3(z) =0, 3(z) = 0} = 0.

The following result provides the Lebesgue decomposition of one of the mea-
sures P or P with respect to the other one.

LEMMA 1.1.9. For all sets A€ B
(1.1.12) B4) = /A #(z) P(dz) + P(A N {z:3(z) = 0}),
(1.1.13) P(4) = /A 3(z) P(dz) + P(AN {z:3(z) = 0})

where z(z) and Z(z) are defined in (1.1.11).
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PROOF. Note that for all A € % we have
(1.1.14) P(A)=P(AN{3>0})+PAN{3 =0}).
Since P(3 = 0) = 0, we get
P(AN{3>0}) =EqiI(ANn {3 > 0})

(1115) =Ed§ﬂAn&>0D=E§KAnb>OD

=EdMﬁiA4@HM)

where Egq is the integral with respect to the measure Q and I(A) is the indicator of
the set A (in other words, of the event {£ € A}). Thus I(A)=1ifz € Aor £ € A,
while I(A) = 0if z € A or £ ¢ A. Decomposition (1.1.12) follows from (1.1.14)

and (1.1.15). Decomposition (1.1.13) is proved similarly. O
Put
(1.1.16) a=PG>0), B=P3E>0).

The Lebesgue decompositions (1.1.12) and (1.1.13) imply that
(1.1.17) P<P<=p=1,
(1.1.18) P«<Pea=1
It follows from (1.1.11) and (1.1.16) that
(1.1.19) o =P(z>0) =P(z < 00),
(1.1.20) B =P(z>0)=P(z < o).

The Lebesgue decompositions yield the following result.

LEMMA 1.1.10. If n is an arbitrary nonnegative and measurable function de-
fined on (X, %B), then

(1.1.21) En = Enz + Enl(3 = 0),
(1.1.22) En = Enz + Enl(3 = 0).

The following result contains more properties of the set 1.

LEMMA 1.1.11. For all tests 6
(1.1.23) B(8) =0=a(d) >a.

Moreover there exists a test & such that 5(8') = 0 and a(8') = a. Further, for all
tests §

(1.1.24) a(6) =0=B(6) >B
and there exists a test 6" such that a(6") =0 and B(8") = B.
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Proor. If 5(§) =0, then 5(6 = 1) = 1. Taking into account equalities (1.1.22)
and P(3 = 0) = 0, we obtain
o(6) = E6 = E6% + ESI(3 = 0) = EZ + ESI(§ = 0)
> EzI(G > 0) =Egz3I(3>0) =EI(>0) =0
Thus the implication (1.1.23) is proved. Putting §’ = I(3 > 0), we get
of)=PG>0=a A)=PGF=0)=0.
The proof of the implication (1.1.24) is similar and follows from (1.1.21).
Putting §” = I(3 = 0), we obtain a(4”) = 0 and B(6") = . O

We derive the following useful relations from Lemma 1.1.11 and Corollary 1.1.2:

(1.1.25) PLPepB=0,
(1.1.26) PLP<=a=0.

g

1

8

n
0 a i
FIGURE 1.1.1

REMARK 1.1.3. The set 91 is shown in Figure 1.1.1. The points (&, 0) and (0, 3)
depicted in Figure 1.1.1 are defined by equalities (1.1.16), (1.1.19), and (1.1.20).
Using (1.1.17) and (1.1.25) we get

(1.1.27) 0<B<l<>P&P PLP.
Similarly, it follows from (1.1.18) and (1.1.26) that
(1.1.28) 0<a<lePgP, PLP.

The properties of the set 9 proved above together with equivalences (1.1.27) and
(1.1.28) completely describe the set 91. Note that the tests corresponding to the
points (&,0) and (B,0) are defined in Lemma 1.1.11. Thus (&,0) € N and (0,0) €
. Since N is convex, the two segments of the straight lines joining the points
(@,0) and (1,0) and (0, ) and (0,1), respectively, belong to the set 91. Since N
is symmetric about the point (1/2,1/2), two segments of the straight lines joining
the points (0,1) and (1 —&,0) and (1,1 — ) and (1,0), respectively, also belong to
the set 9.
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The most powerful, Bayes, and minimax tests. Consider the following

two classes of tests:

(1.1.29) Ko = {6: a(8) = a}, K* = {6:a(d) < a}

where a is some number of the interval [0,1]. It is clear that K, C K* for all
a € [0,1]). Put

(1.1.30) Ny ={(a(6),8(8)):6 € Ka},  N* ={((6),8()):6 € K}

Then N, C N°.
A test %@ is called the most powerful test of level o if
(1.1.31) B(6*%) = min{B(8): € Kun}

(in what follows we show that the minimum in (1.1.31) is attained for all « € [0, 1],
indeed). It is clear that the test 6** has the maximal power 1— 3(§) among tests ¢
of the class K,. Also, it follows from (1.1.29), (1.1.30), and the definition of the
set 91 that the test 6™ has the maximal power among the tests of the class K.
This is an explanation of why we say that 6*% is the most powerful test in the
class K.

The intersection of the straight line @ = ag and the lower bound of the set
N in Figure 1.1.2 determines the point A whose coordinates are (ag, 3(6**)) and
which corresponds to the most powerful test §*'*° in the class %o,

BA
1
_ M@
B
Nn
A\
ol ao a ‘a
FIGURE 1.1.2

There is a different approach to compare tests. This is the Bayes approach
based on the assumption that the tests H and H are random events and their
probabilities 7 = P(H) and 7 = P(H ) =1 — m are known. The probabilities 7 and
7 are called a priori error probabilities of tests H and H. The quality of a test ¢ is
defined as the average of the error probabilities:

(1.1.32) ex(6) = ma(d) + (1 — m)B(9).

A test & is called a Bayes test with respect to the a priori distribution (m,1—m)
if
(1.1.33) er(0x) = mln ex(6)

where the minimum is considered with respect to all tests §. In Figure 1.1.3 the
straight line ma + (1 — 7)@ = c and set N have only one common point B and



1.1. TESTING TWO SIMPLE HYPOTHESES 167

BA
1

=,

FIGURE 1.1.3

it corresponds to the Bayes test d, where ¢ is some constant. It is clear that the
Bayes test &, is the most powerful one in the class K for apg = a(d,).

The following approach to compare tests is called minimaz and is based on the
maximal probability of errors of a test.

A test §* is called minimaz if

(1.1.34) a(6") v B(8*) = min(a(6) V B(8))

where oV is the maximum of two numbers o and 3, while the minimum in (1.1.34)
is considered with respect to all tests 4.

We will discuss Bayes and minimax tests in more detail when considering the
problem of testing a finite number of simple tests.

The maximum likelihood test and the Neyman—Pearson fundamental
lemma. Consider the test

(1.1.35) 0 =I(z>c)+el(z=c)

where z is the likelihood ratio defined by (1.1.11), and ¢ € [0,00] and ¢ € [0,1] are
the parameters of the test. The test 6>¢ defined by (1.1.35) is called the mazimum
likelihood test.

The following result is known as the Neyman—-Pearson fundamental lemma. It
shows that every maximum likelihood test is the most powerful one and, more-
over, every most powerful test coincides (in a certain sense) with some maximum
likelihood test.

THEOREM 1.1.1.
1) For every a € (0,@) there exists a mazimum likelihood test of level c.
2) The mazimum likelihood test is the most powerful test of level a.
3) If 6** is the most powerful test of level o € (0,@), then there exists a
constant ¢ such that

P(Sc) =P(S:) =0
where
(1.1.36) Se = {z:0%%(z) # §°°(z)} N {z: 2(x) # ¢}

and € is an arbitrary constant of the interval [0, 1.
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PrROOF. 1) Consider the function F(c) = P(z < ¢). Obviously F(c) = 0 for
c<0and F(0+)=1—-P(z2>0)=1-P(3 >0) =1—a. Moreover,

F(o)=1—-P(z=00)=1-P(3=0)=1.
Let ¢(a) be the minimal solution of the system of inequalities
(1.1.37) Fle)<1—-a<F(c+0)=F(c)+P(z=c¢).
Further let (o) € [0,1] be such that
(1.1.38) 1-a=F(c(a))+ (1-e(a))P(z=c(a)).

If P(z = ¢(a)) = 0, then an arbitrary number of the interval [0, 1] can be taken as
€(a). Otherwise, if P(z = ¢(a)) # 0, then we get from (1.1.38) that

(1.1.39) ela) = F(C(olg)(: 2)czoz()l) =,

Equality (1.1.38) implies that the level of the maximum likelihood test §<(@)-(2)
is a.

2) Let 0 < a < @ and let §° be the maximum likelihood test of level a. It is
sufficient to show that 3(8) > B(4%¢) for every test 6 of level a. We have

(1.1.40) B(8) — B(6°¢) = E(6°¢ — 6).
Since the levels of the tests §%¢ and § are equal to a, it follows that
(1.1.41) a(6%f) — a(d) =E(6%* —-6) =0

holds. When proving the first statement of the theorem we showed that
F(o+)=1-1, F(o0) =1.

This implies that the minimal solution ¢ = ¢(a) of the system of inequalities (1.1.37)
for a € (0,@) is such that 0 < ¢ < oco. Multiplying (1.1.41) by ¢ and subtracting
the result from (1.1.40) we get

(1.1.42) B(8) — B(85°) = E(6%¢ — &) — cE(6°¢ - 8).
Applying equality (1.1.21) we derive from (1.1.42) that
(1.1.43) B(8) — B(6°%) = E(6%¢ — §)(z — ) + E(6° — 8)I(3 = 0).

Since (3 =0) C (z=0) U (z = 00), we have (2 =¢,3 =0) = & and
P(z<¢3=0)=PGF=0,3=0)=0.
Thus
E(6%¢ — 8)I(3 = 0)
=EQ1-08)I(z>¢3=0)
+E(e-08)I(z=¢3=0)—EI(2<¢3=0)
=E(1-9)I(z>¢3=0)2>0.

(1.1.44)
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Taking into account (1.1.44) we obtain from (1.1.43) that

B(8) — B(6°%) = E(6°° = 8)(2 — ¢)

(1.1.45) =EQ1-06)(z—)I(z>c)+E(=8)(z— c)I(z < ¢c) > 0

Therefore §(8) > 5(6%¢).

3) Let 6*“ be the most powerful test of level @ € (0,@) and let §>¢ be the
likelihood ratio test of level . Since B(6*) — B(6%¢) < 0 and §** is the most
powerful test, we obtain that

(1.1.46) E(6% — §%%)(2 — ¢)I(S.) + E(65° — 6*)I(S, N (3 = 0)) = 0

in view of relations (1.1.43) and (1.1.44) for § = §** where S. is the set defined
by (1.1.36). Note that (§¢ — §**)(z — ¢) > 0 on the set S, and §¢ — §** > 0 on
the set S; N (3 = 0). Thus relation (1.1.46) implies that P(S;) = 0 and

P(S.N (3 =0)) = 0.
Lebesgue decomposition yields
B(S.) = / 2dP + (8.1 (3 = 0)) =0,
whence the third statement of Theorem 1.1.1 follows. O
Combining Lemmas 1.1.3 and 1.1.11 with Remark 1.1.3 and Theorem 1.1.1 we
obtain the following result.

LEMMA 1.1.12. The set N is closed.

REMARK 1.1.4. It is easy to see that the level of the likelihood ratio test §°°¢
is @ = 0 for all ¢ € [0,1]. Indeed, according to relations (1.1.1) and (1.1.35) we
have for all € € [0,1]

a(6°°) = P(z > 00) + eP(z = 00) = eP(3 =0) = 0.

Thus statement 1) of Theorem 1.1.1 holds for a = 0, too. Further, as can be seen
from the proof of Lemma 1.1.11, §*° = I(3 = 0) is the most powerful test of level
a = 0 and that B(6*°) = B. Taking into account (1.1.20) we obtain from (1.1.1)
and (1.1.35) that

B(6°) = P(z < 00) + (1 — €)P(z = 00) = B+ (L —€)(1 - B) 2 B.

This implies that the test §°°¢ is the most powerful only for ¢ = 1. This means
that statement 2) of Theorem 1.1.1 does not hold in general. As we proved above
it only holds for € = 1. Note that §°! = I(z = 00). Finally, the set S, defined
by (1.1.36) is of the form

Soo = (60 #6%°°) N (2 # 00) = (3=0) N (2 # 00) = (3= 0,5 =0)

for all € € [0,1]. Moreover P(Seo) = P(Seo) = 0. Therefore statement 3) of
Theorem 1.1.1 holds for o = 0, too.
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REMARK 1.1.5. According to equality (1.1.19) the level of the likelihood ratio
test %€ is
a(6%) =P(z2>0)+eP(z=0)=a+¢e(l - @)
for € € [0,1]. This implies that if @ < 1, then a(6*¢) = a for o € [@,1] and
e = (a—@)/(1 —@). On the other hand, if a = 1, then a(6%¢) =1 for all € € [0, 1].
This shows that statement 1) of Theorem 1.1.1 holds for a € (@, 1], too. Further,
we have

B(6°) =P(2 < 0)+ (1-e)P(z=0) = (1 -e)P(3=0,3 20) =0

for all € € [0,1], that is, the likelihood ratio test §%¢ of an arbitrary level « € [, 1]
is the most powerful. Thus statement 2) of Theorem 1.1.1 holds for a € [@, 1], too.
The set S, defined by (1.1.36) is of the form

So = (8% # 6%¢) N (2 > 0) = (6~ £ 1) N (z > 0)

for ¢ = 0 and arbitrary € € [0,1] where §*% is the most powerful test of level
a € [@,1]. It can be seen from the proof of Lemma 1.1.11 that the most powerful
test of level & = @ is given by 6% = I(3 > 0). Moreover §*! = 1 (see the proof of
Lemma 1.1.2). Thus the most powerful test of level « is

l1-a a—o a—a
*o ’ - = —1I(3=0).
6 T 16>0+T—==16>0+7—716=0

-

Note that (§** # 1) = & for @ = 1 and (§** # 1) = (3 = 0) for & < 1. Since
(2 > 0) = (3 > 0), it holds that Sy = @, whence P(So) = P(So) = 0. Therefore
statement 3) of Theorem 1.1.1 holds for « € [, 1], too, that is, all the statements
of Theorem 1.1.1 hold for « € [@, 1].

Neyman—Pearson test. The fundamental Neyman—Pearson lemma (Theo-
rem 1.1.1) and Remarks 1.1.4 and 1.1.5 imply that for any o € [0, 1] there exists a
likelihood ratio test §¢(®)<() of level o where (c(ar),(a)) is some solution of the
equation a(6%°) = a with respect to (c,e). Moreover §¢(*)<(*) js the most pow-
erful test in the class Ko if £(0) = 1 and o = 0. The test §°(*)<(®) for £(0) = 1
is called the Neyman-Pearson test of level a for distinguishing the hypotheses H
and H. In what follows we denote this test by +*. One can see from the proof of
Theorem 1.1.1 and Remarks 1.1.4 and 1.1.5 that the functions c() and £(a) can
be taken of the form

00, a=0, 1, a=0,
(1.1.47) cla) =1 ¢(a), 0<a<a, ela)=4 &), 0<a<a,
0, a<a<l, £(e), a<a<l,

where ¢(a) is the minimal number ¢ such that

(1.1.48) P(z>c¢)<a<P(z>c¢),
(1.1.49) &) = a—;(':(——i_%(z()‘;ﬁ, Fa) = ‘1’:;

If P(z = ¢(a)) = 0, then P(z > &()) = a which leads to an expression &(a) = 0/0.
In this case an arbitrary number of the interval [0, 1] can be taken as &(a). If @ =1,
then [@, 1] = {1} and this also results in an expression £(1) = 0/0. In this case an
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arbitrary number of the interval [0, 1] can be taken as £(1). The definition of the
test 6% and equalities (1.1.47) imply

B, a=0,
(1.150) BT ={ P(z<e(@)+ (1 —-&a)P(z=¢), 0<a<d,
0, a<a<l.

It is clear that the function B(§1:*) determines the lower boundary of the set .

ExAMPLE 1.1.1. Let an observation £ be a Gaussian random variable with
the normal N (a, 1) distribution under the hypothesis H and let its distribution be
N (@,1) under the hypothesis . Then the measures P and P corresponding to the
distribution of the observation £ under the hypotheses H and H , respectively, are
absolutely continuous and

(z) = Z—E(w) = exp <(Ei—a)z+ il ;52) .

It is obvious in this case that @ = 1 and f = 1. Moreover, the random vari-
able z = z(£) has a continuous distribution for both hypotheses H and H. Thus
equalities (1.1.37) and (1.1.48) defining the constant ¢(a) for 0 < a@ < 1 become
P(z < ¢) =1 — a. For the sake of definiteness let @ > a. Then

P(z<c)=P(§< Inc +a+a)=¢<lnc -I-a—a)=1—a

a—a 2 a—a 2

where ®(z) is the distribution function of the normal N (0,1) law. This implies
that
Inc(e) @—a
a—a 2
where t,, is the p-quantile of the law A (0,1), that is, ®(¢,) = p. Thus we have for
all o € (0,1) that

=t1-a

c(a) = exp <(6 —a)ti—o — (E—za)2> .

The number &(a) can be chosen arbitrarily from the interval [0,1]. Taking into
account (1.1.50) we get
) =Pz < (@) = P(§ < tr—a +a) = B(t1—a ~ d+a).

Note also that the Neyman—Pearson test of level « can be represented in the form
0t =I(2(z) > c(a)) = I(z > t1—a + a).

EXAMPLE 1.1.2. Let an observation ¢ have the normal N (0,1) distribution
under the hypothesis H and the exponential distribution with the density

3(z) = e7"I(0,00) ()

with respect to the Lebesgue ‘measure under the hypothesis H. Then P < P,
P £ P, and moreover z(z) = dP/dP(z) where z(z) = 0 for z < 0, while

z2(z) = \/gexp ((:c_—21)_2>
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for £ > 0. In this case 8 = 1 and @ = P(3(z) > 0) = P(z > 0) = 1/2. The random
variable z = z(£) is continuous under the hypothesis H. Thus the constant c(c)
for a € (0,@) = (0,1/2) can be determined from the equation P(2 < ¢) =1 —a or,
equivalently, from

2 2
P 1+\/ln£ -® 1—\/1112 =1-a.
2T 2T

According to Remark 1.1.5 the Neyman—Pearson test of level o can be represented
as

6 = I(2(z) > c(a)) =1 ((a: ~1)2>In e_cZ%a_))
for o € [0,@) and as
§t* =1I(zx > 0)+ (20— 1)I(z < 0)

for a € [@,1], since @ = 1/2. Thus e(a) determined by equalities (1.1.47) and
(1.1.49) for a € [@,1] is equal to €(a) = 2a — 1. The type II error probability of
the test 6T is given by relation (1.1.50). Moreover

ﬂ((5+’°‘) — i‘p'{lE _ 1| < C’(a)} — e—(l—C’(a))VO _ e—l—C(a)

for a € (0,@) where
ec?()

Cla)=4/In o

_ If one interchanges the hypotheses H and Hin Example 1.1.2, then P < P and
P & P. In this case @ = 1 and 8 < 1. Details are left to the reader.

EXAMPLE 1.1.3. Let an observation ¢ assume two values 1 and 0 with proba-
bilities p and g = 1—p under the hypothesis H and with probabilities pand § = 1-p
under the hypothesis H. Then P ~ P and the likelihood ratio z(z) = dP/dP(z) is

given by
~\ T s~ 1l—x
z(z) = (£> (2) , z=0,1.
p q

Thus the random variable z = 2(£) assumes two values p/p and g/q with proba-
bilities p and g under the hypothesis H and with probabilities p and g under the
hypothesis H. For the sake of definiteness let » > p. Then g/q < 1 < p/p. Since
P ~ P, we get @ = B = 1. Solving equation (1.1.48) and evaluating c(c) and e(a)
we obtain
0, a=1,
cl@)=4 a/9, p<La<l,
p/p, 0<a<p,
and
1, a=1,
€(Ot)= (a—p)/q’ PSO!<1,
a/p, 0<a<p.
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This together with (1.1.50) implies

13

+
Btey=4 - P
(1-a), p<a<l

(p—a)i 0S01<P,

Q) R

The function B(67*) determines the lower boundary of the set 9 for 0 < o < 1.
The set 91 is shown in Figure 1.1.4.

,BA
1
n
q
0 P 1 «
FIGURE 1.1.4

1.2. Distinguishing a finite number of simple hypotheses

Setting of the problem. The most powerful tests. Let (2, %, P) be the
main probability space, let £ be an observation that is a measurable mapping of the
space (£, %) into some measurable space (X, %), and let & = {P1,P,...,Pn},
1 < N < 0, be a family of probability measures defined on the space (X, %). We
assume that the distribution of the observation £ is generated by some measure of
the family 2.

Let H; = {6 = j} be the hypothesis that the distribution of the observation £
is generated by the measure P;. We write in this case

Pj(A) =P;{¢ € A} =P{¢ € A/H;}, A€,

and say that P;(A) is the probability of the event {{ € A} under the hypothesis
H; = {0 = j}. The parameter § assumes values in the set © = {1,2,...,N}
and is the index of the measure of the family &2 generating the distribution of the
observation £. Thus we deal with N simple hypotheses H;, Hs, ..., Hy. Given an
observation &, the problem is to decide which hypothesis of the set of hypotheses
Hy,H,,...,Hy is true.

Any measurable mapping 6: (X, %) — O is called a statistical test for distin-
guishing N hypotheses H,, H», ..., Hy by an observation £. The equality §(z) = j
means that the hypothesis H; is accepted if { = = (that is, § = j in the parametric
setting). A mapping § is sometimes called a decision rule or a decision function.
Every test § uniquely determines a partition of the space (and vice versa) X into N
disjoint measurable sets X; € %, j = 1,2,..., N, such that X; = {z:4(z) = j},
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i=L12,...,N, U;V=1 X; = X. The test § corresponding to a partition is closely
related to the problem of estimation of an unknown parameter 6, namely §(z) is
an estimator of an unknown parameter 0 if £ = z. A test é defined in this way is a
nonrandomized test (see also Section 1.1). Any random variable § = §(§) is called
a test.

We consider below randomized tests defined as follows. Every measurable map-
ping §: (X X, BxF) — O is called a statistical test for distinguishing N hypotheses
H,,H,,...,Hy by an observation £&. Given { = z, the hypothesis H; is accepted if
the random variable §(z,w) is equal to j. If the function é(z,w) does not depend
on the variable w, then the test § is nonrandomized. Otherwise a test § is called
randomized. In general, every random variable § = §(¢(w),w), w € Q, is called a
statistical test.

Consider a family of functions ¢®(z) = (¢(z),¢3(z),...,q%(z)), = € X, such
that qg(z) = P{d = j/¢ = x} is the conditional probability that the hypothesis H;
is accepted under the test § given £ = z (that is, q;? is the conditional probability
of the event {§ = j} given £ = z). It is clear that a test ¢ is uniquely determined
by the family of conditional probabilities

¢@) = (E@),d@),...,d(), zeX

Sometimes this family is called a statistical test (see Section 1.1). Note that
Q@)+ +i(z) =1

for all z € X. If the functions ¢¢(z) assume only two values 0 and 1, then the test §
is nonrandomized. Otherwise a test § is called randomized. The decision domain
of the hypotheses H;, j = 1,2,..., N, is given by X; = {x: qf(:c) = 1} in the case
of nonrandomized tests. Note that X; N X; = @, i # j, and Ufl:l X;=X.

The definition of a statistical test given in the preceding section differs to some
extent from that given in this section, since the latter definition is inconvenient in
the case N = 2. In what follows we use the simpler definition of the preceding
section if we deal with the case of only two hypotheses.

To measure the quality of a test § we introduce, as in the preceding section,
the error probabilities:

(1.2.1) a,-(&):P{a;ej/Hj}:/X(1—q;?(z)) Pi(dz), j=12,...,N.

The number a;(J) is the probability to reject the hypothesis H; by using the test §
if the hypothesis Hj; is true. The number a;(6) is called the type j error probability
of the test 4.

It is natural to say that a test d; is better than a test ds if (1) < a;(d2) for
all j =1,2,...,N and at least one of these inequalities is strict. However not all
tests §; and d2 can be compared in this way. In what follows we restrict the set of
tests in order to have the possibility to compare them. Let

(1.2.2) Kaoion,an-y ={0:0;(0) = 05,5 =1,2,...,N -1}

where a; € [0,1], j =1,2,..., N — 1, are some fixed numbers.
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A test 6* € Kq,,....an_, is called the most powerful test (MP test, for short) in
the class Kq,,....an_, if
an(6%) < an(9)
for all tests § € Ka,,....an_; -
Prior to constructing the most powerful tests in the class Ky, ,... . ay_, We con-
sider two other approaches for comparing the tests, namely the Bayes and the
minimax approaches.

The Bayes approach. Assume that the hypotheses Hy,..., Hy are random
events whose probabilities are known. Put

P(H;) = mj, i=12,...,N.

The family of probabilities 7 = (71, ma, ..., ) is called the a priori distribution of
the hypotheses. This family determines a distribution on the set © = {1,2,...,N}.
The numbers P;(A) = P{¢ € A/H;} are conditional probabilities of the event
{¢€ € A} given the event H; occurs. Moreover, we assume that the loss is A where
A = A;; if the hypothesis Hj is accepted, while the hypothesis Hj is true. Therefore,
the loss A is a random variable whose values are uniquely determined by the test §
and the index of the true hypothesis. To compare tests in the Bayes approach we
use the risk of a test § defined as the expectation of the loss:

N N
(1.2.3) R() =EA=) > Ayplm

i=1 j=1

where p‘;/i = P{é = j/H;}. Since

(12.4) P = /X ¢!(z) P;(da),

the risk (1.2.3) can be rewritten as

(1.2.5) ZZAzm / ¢§ () P;(dz).

i=1 j=1

A test 6, 4 that minimizes the risk R(J) is called the Bayes test corresponding to
a priori distribution m and loss A.

Let u be some o-finite measure on (X, %) dominating the family of probability
measures & = {P1,Ps,...,Pny}, 1 < N < 00, and let p;(x) be the density of the
measure P; with respect to the measure p. Note that such a measure u always
exists. In particular, the measure p = Ef;l ¢;P; where ¢; > 0 for all ¢ possesses
this property. The risk (1.2.5) can be expressed in terms of the measure p and
densities p;(z):

(1.2.6) / ZZAuqJ (z)pi(z)m; p(dz).
i=1 j=1

Consider the measure P = 21N=1 m;P; which defines the unconditional distribu-
tion of the observation £. Note that P is absolutely continuous with respect to p
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and f(x) = 21_1 7;p;(z) is the density of the measure P with respect to the mea-
sure . Let C = {z: f(z) > 0}. Then P(X \ C) = 0 and P;(X \ C) = 0 for all i.
For all z € C consider the functions

(1.2.7) mi(z) = pi(ﬁ)ﬂ'i’ i=1,2,...,N.
1( ) f(m)
Equality (1.2.7) is the well-known Bayes formula for evaluating the conditional

probability m;(z) of a hypothesis H; given £ = z. The numbers 7;(z) are called a
priori probabilities of hypotheses H;.

THEOREM 1.2.1. For all tests § it holds that

N
(1.2.8) R() > E g;iSnN;Aim(g)

A test § = dr 4 is a Bayes test with respect to a priori distribution m and loss A if
and only if

N N
(1.2.9) k@) =1 if Y Awm(e)= min Y Aymi(x)

c 1<j<N
i=1 =1

almost surely with respect to P. If § = 0. 4, then inequality (1.2.8) becomes an
equality.
PRrROOF. We obtain from equalities (1.2.6) and (1.2.7) that

R(6) = / Zq]u S Auym(s) £(0) u(da)
(1.2.10) =t

N
/C min Z Aijmi(z)P(dz) = E lg}lan ; Aijmi(€)

1<j<N
where C = {z: f(z) > 0},P = Zi=1 m;P;, and f(z) is the density of the measure P
with respect to the measure . Thus inequality (1.2.8) is proved.
The sufficiency of condition (1.2.9) follows from (1.2.10). The case of an equality
in (1.2.8) also follows from (1.2.10).

Now we prove the necessity of condition (1.2.9) by contradiction. Let § = 0 4
be a Bayes test such that gf(z) = 1 and

N N N
; Aikﬂi(il?) > Zl Auﬂ'i(:l)) = 1£lanz; Aijﬂ'i(.’l?)
= = =

for z € A, where A is some event of positive probability, P(A) > 0. Let d; be a test
that differs from & only on the event A and such that ¢®*(z) = 1 for z € A. Then

N _ N N _
Ro) = [ S dumto)Plaa) + [ 324 0) Y- Agmlo) Pl
/ ZAM(:,; P(dz) / qu (x)ZAum(w )P(ds)

- R(5).
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This is a contradiction, since ¢ is a Bayes test. The necessity of condition (1.2.9) is
proved. O

If A;; = 1—0;; where J;; is the Kronecker symbol (that is, 6;; = 0 for < = j and
dij = 1 for i # j), then the Bayes test o, 4 for the loss A is called the mazimum
a posteriori probability test. In this case

N
> Aimi(e) =) _mi(z) = 1-m;(z)
i=1 i#]
and condition (1.2.9) defining the Bayes test can be rewritten as

Sy — 1 = .
(1.2.11) G@)=1 if m(z) = DX, m; (z).

The risk of an arbitrary test  with loss A;; = 1 — d;; is of the form

N
(1.2.12) R(6)=EA=Y_Y pb,m =P{5 # 0} = ex(6)

i=1 j5#i
where 6 is the index of a hypothesis and {# = j} = H;. We see that R(J) in this
case is the unconditional probability of a wrong decision e, (d) for the test . Thus
the maximum a posteriori probability test minimizes the error probability e () of
the test 0. Taking into account (1.2.1) and (1.2.4) we obtain from (1.2.12) that

N N
(1.2.13) en(8) =Y P{6 #i/Hi}mi =Y a;(8)m.
=1 i=1

If N = 2 and A;; = 1—0;5, then according to (1.2.11) the maximum a posteriori
probability test is of the form

(1.2.14) g5(x) = { (1)’ ::Ez; Z :ig;,

¢i(z) = 1 - gi(a).
Moreover, if m(z) = m(z), then one can put either g§(z) = 1 or ¢f(z) = 1.
Applying equality (1.2.7) one can rewrite equality (1.2.14) as
5 1, 7l'2p2($) > 7T1P1(1’),
%2(z) =
0, mapa(z) < mpi(z),
Note that condition (1.2.9) does not uniquely determine the test &, 4. In
particular, it does not uniquely determine which hypothesis should be accepted
if two or more numbers among vazl A;jmi(z) are maximal. This is a matter of
definition of the probabilities ¢°(z) = (qf(x), @), ..,q% (z)) on the boundaries

N N
Iy = {a:: ZlAikm(a:) = EEEZIA“M(Q:)}

(1.2.15) gi(z) = 1 - gi(x).

of the sets
_ N N
Xi = {z:;Aikm(m) < rjr;éig;Aijm(x)}.

Using condition (1.2.9) the hypothesis Hy, is accepted on I'y according to the test
0x 4. Therefore the problem is to decide about the points of the boundary I'y to be
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included into the set X), where the hypothesis Hy is accepted. One of the possible
approaches is to include points of I'x. to any of the regions X; adjacent to I'g; in this
case condition (1.2.9) holds and the risk R(d,4) does not change. More precisely,
if A C Tk, N---NTYy,, then, according to the Bayes test, it makes no difference
for £ € A which hypothesis among Hy,, ..., Hy, is accepted. Moreover, one can
accept the hypotheses Hy,,..., Hy, randomly with probabilities q,‘zl (z),---, q,‘zl (z),
Zﬁ=1 ¢ ,(z) = 1. The risk R(0x,4) does not change in this case.
The general definition of a Bayes test d, 4 is based on the sets

l
(1.2.16) Thyde = [Tk () Ty

i=1 J#k1,.... ki

where T; = X \T;. As ¢°(z) for z € T'y,, .k, one can take an arbitrary vector
of the set Ry,,... x, of vectors (g1,92,...,9n) With ¢; >0, g2 > 0,...,qn > 0 and
Zf;l ¢; = 1 and whose coordinates with indices different from k;, ..., k; are zero.
It is clear that the set Ry includes only one vector e, whose k-th ~coordina,te is 1,
while all others are zero. Thus one should put ¢° (z) = e for z € X.. This implies
the following improvement of Theorem 1.2.1.

THEOREM 1.2.2. A test  is Bayes if and only if

5 forz € )?k,
¢’ (z) =
Rkl. Sk forz €Tk K

for P-almost all = where Tk,,...k are the sets defined by (1.2.16).

Theorems 1.2.1 and 1.2.2 show that randomized tests do not decrease the risk
R(8), however they enlarge the set of different Bayes tests d,,4. Moreover Theorems
1.2.1 and 1.2.2 imply that among Bayes tests dr, 4 there is at least one nonrandom-

ized test.
Let N = 2. Then

fal
Il

2
{z Z ami(z) < ZAmr,(z }

i=1

2
= {:c Z Appmi(z) < ZAu?Ti(fE)} )

i=1 i=1
2
Pl = Fz = {.’E:ZAH'M(CE) = ZAQ?T-,;(Q?)} .
i=1 =1

Hence we deal with a single set I'; = I'; = I'; instead of sets (1.2.16); moreover
Rio={(q1,92):q1 > 0,2 > 0,q1+¢2 = 1} in this case. According to Theorem 1.2.2
we obtain for the Bayes test dr 4 that ¢f(z) = 1 for z € X; and gé(z) = 1 for
z € X5. As ¢’(z) = (¢{(z),¢}(z)) for z € T'1 5 one can take an arbitrary function
with values in R 3.

In the case of N = 2, the Bayes test § = 0,4 equals the maximum a posteriori
probability for A;; = 1 — §;;. Applying (1.2.14) and (1.2.15) we represent the test
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0 = dz,4 in the form

1, 221(z) > ¢,
(1.2.17) @) =1 9@, =i@@)=c  g(z)=1-q(x)
0, 22,1 (:l?) <egc,

where ¢ = 71 /72, 22,1(z) = pa(x)/p1(x) is the likelihood ratio (we assume that
0/0 = 0), and ¢(z) is an arbitrary measurable function with values in [0,1]. A
test of the form (1.2.17) for an arbitrary function g(z) is called the likelihood ratio
test. Note that we considered in the preceding section a likelihood ratio test of the
form (1.2.17) for a specific function g(z) being constant on the set {22;(z) = ¢}
(see (1.1.35)). Like the preceding section, we denote by §%7 the likelihood ratio
test 0 defined by relation (1.2.17).

The minimax approach. The quality of a test é in the minimax approach
is measured by

(1.2.18) e(d) = pax, a;(6) = max ex(9)
where e, (d) is the unconditional error probability of the test § defined in (1.2.13).
Recall that e, (8) is the risk of the test § if a priori distribution is determined by

the vector 7 = (my,72,...,mn) and loss is A;; = 1 — ;.
A test 6* such that

(1.2.19) e(6*) = n%in e(d)
is called minimaz, where e(d) is the maximal error probability of the test & (see

relation (1.2.18)).
The following result contains a sufficient condition that a test is minimax.

THEOREM 1.2.3. Let there exist a Bayes test § (with respect to some a priori
distribution @ = (71,...,7n) and loss A;; = 1 — &;5) such that

(1.2.20) a1(8) = = an(0).
Then the test § is minimaz.

PROOF. For all tests § it holds that

1<j<N

6(6)>Z7r,az((5 ZZ = max o;(8) = e(d),

whence it follows that the test & is minimax. O

Let 7 be a test satisfying (1.2.20). The a priori distribution 7 corresponding
to the test 7 is called the worst or the least favorable. This notion is explained by
saying that the maximum

(1.2.21) max e, (0y) = max n%in ex(d)
™ ™
is attained at m = 7 where J, is the Bayes test with respect to a priori distribution w

and loss A;j = 1 — §;5. Therefore the minimax test satisfying (1.2.20) is the Bayes
test with the maximal error probability. The proof of equality (1.2.21) and of the
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existence of the worse a priori distribution and the minimax test can be found in
[8, 10]. More detail on the minimax approach can be found in [4, 52].

In the case N = 2, the minimax test §* can be found by applying the fun-
damental Neyman-Pearson lemma and the set 91 described in Section 1.1. By
Theorem 1.2.3 the minimax test 6* is a Bayes test § with respect to some a priori
distribution 7 = (71, 72) and loss A;; = 1 — §;; such that a;(6) = az(J) provided

such a test exists. Such a Bayes test  exists, indeed, and it corresponds to the
point A = (a1(d),a2(d)) € 9 of the intersection of the lower boundary of the set
N and the diagonal of the square [0,1] x [0, 1] joining its corners (0,0) and (1,1)

(see Figure 1.2.1).

Qa2
1
N
as(9) A
0] a() 1 &
FIGURE 1.2.1

Moreover the following result gives an explicit form of the test §.

THEOREM 1.2.4. There is a likelihood test §%9 that is a minimaz test. The
parameters ¢ and q(z) = q = const of the likelihood test 67 are determined by the
equation a1 (6%9) = ay(6%9).

PROOF. According to Theorem 1.2.3 it is sufficient to find a Bayes test § corre-
sponding to some a priori distribution 7 = (71, 72) and loss A;; = 1 — é;; such that
@1(6) = az(8) and & coincides with a likelihood ratio test §>7 for some parameters
¢ and §(z) = § = const. We have seen above that such a Bayes test exists and it
corresponds to the point A = (a;(8), az(8)) € N of the intersection of the lower
boundary of the set 91 and the straight line joining the points (0,0) and (1,1) (see
Figure 1.2.1). According to Theorems 1.2.1 and 1.2.2 this Bayes test § coincides
with the likelihood ratio test %7 for some parameters ¢ and § where ¢ = 71 /7, and
# = (71,72 is the a priori distribution corresponding to the Bayes test 4. a

REMARK 1.2.1. Since an arbitrary Bayes test coincides with a likelihood ratio
test §%9 for some constants ¢ and ¢, the proof of Theorem 1.2.4 follows from the
existence of a solution of the equation a;(6%?) = ax(d9) with respect to (c, q).
Note that this equation is of the form

P1(22,1 > C) + P2(22,1 > C) + q[P1 (22,1 = C) + P2(22,1 = C)] =1.

The proof that this equation has a solution with respect to (c,q) is the same as
that of the existence of a solution of the equation @;(6?) = a € [0,1] used in
Theorem 1.1.1 and in Remarks 1.1.4 and 1.1.5.
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The most powerful tests. We turn to the construction of the most powerful
test in the class Ky, ... ay_, defined by relation (1.2.2). Like the case of the minimax
test, one can apply Bayes tests for this purpose, too.

THEOREM 1.2.5. Let there exist an a priori distribution m = (m1,m2,...,TN)
such that
(1.2.22) a;(6x) = aj, ji=12,...,N -1,

where 0, is the Bayes test corresponding to a priori distribution m and loss A;; =
1 —0;j. Then 0 is the most powerful test in the class Kq,,....an_,-

PROOF. The definition of a Bayes test implies that
ex(6x) < ex(6)

for all tests 4, whence
N N-1

(1.2.23) D o miai(6e) < D mias + mnan(6)
; ot

for all tests § € Kq,,..,an_,- Condition (1.2.22) implies that o;(6r) = a; for
j < N — 1. Then it follows from (1.2.23) that an(én) < an(d), that is, d, is the
most powerful test in the class Kq,,....an_;- O

REMARK 1.2.2. One can treat equalities (1.2.22) (and equalities (1.2.20), too)
as the system of N — 1 equations and use it to evaluate the a priori distribution
7 and the corresponding Bayes test §,. Generally speaking, this Bayes test d, is
randomized. See Section 1.1 for another method of finding the most powerful test
for N = 2 that does not use the Bayes tests.

ExAMPLE 1.2.1 (Change point problem). Let an observation be a sample
€M) = (&,...,&,) where &,...,&, are independent random variables. The first
0 — 1 of them have a distribution G;, while all other random variables have a
distribution Gy and G5 # G;. The number 0 is called the change point (of the
distribution). Possible values of § are 1,2,...,n. Let H; = {6 = j},j=1,2,...,n
be the statistical hypotheses about the parameter §. Without loss of generality we
assume that the measures G; and G, have densities g;(z) and g(z), respectively,
with respect to some o-finite measure p. Then the measure P;") generating the

distribution of £(®) under the hypothesis H ; is absolutely continuous with respect
to the measure u™ and its density is given by

Hgl(xz ng z'L $=(131,$2,.--,$n),

i=j

where we put []0_, = 1.

Let 6* be the maximum a posteriori probability test and let the a priori
distribution be uniform, that is, 6* is the Bayes test corresponding to the loss
A;j = 1 — 6;; where J;; is the Kronecker symbol and the a priori distribution is
m = =(1/n,1/n,...,1/n). According to (1.2.11) the test * is such that

(1.2.24) Po(o) (¢) = max p;(z), = €RT,
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that is, the test §* maximizes the density p;(z). A test §* satisfying equality (1.2.24)
is called the mazimum likelihood test (see [9]). Condition (1.2.24) means that for
allj=1,2,...,n

5 (2)-1
(1225) H g1 ID@) H 92 371,) > Hg1 mz)Hg2 xi)
i=1 i=6*(x) i=j

Dividing inequality (1.2.25) by p;(z) one can prove that the test 6*(z) is such that

5" (x)—1

91(z:) o = gu(m)
i 92(20) T i1 92(@)

for all j =1,2,...,n. Properties of the test §*(z) are studied in detail in [9], §72.

To complete a brief discussion of the change point problem we mention [9],
a survey paper [30], and a monograph [46] where more detail is given about the
change point analysis (however there is an extensive literature devoted to this topic).

1.3. Distinguishing composite hypotheses

The setting of the problem and main definitions. Let £ be an observation
that is a random element assuming values in a measurable space (X, %) and let
P = {Py; 0 € ©} be a parametric family of probability measures defined on (X, &)
where O is some set containing more than two points. Let the distribution of the
random element £ be generated by a measure of the family &.

Let #; = {Py;0 € ©;}, i = 1,2, where ©, N O, = & and ©; UO; = O, so
that 92, U P, = Z. Consider the hypotheses H; and H, that the distribution of
the element £ belongs to the sets &; and 92, respectively. For the sake of brevity
we write H;: 0 € ©;, 1 = 1,2. It is clear that at least one of the hypotheses H;
and H, is composite, since at least one of the sets ©; and O, contains at least two
points. Consider the problem of distinguishing two hypotheses H; and Hj; by the
observation { =z, z € X.

As in Section 1.1 we consider a statistical test ¢ for distinguishing hypotheses Hy
and Hj by the observation £ = z. The test is a measurable mapping

8: (X, ®) — ([0,1], 2([0,1])).

We treat §(z) as the probability that the hypothesis H is accepted if { = z, while
1—4(z) is the probability that the hypothesis H; is accepted if £ = . We also put
6 =46(6).

To measure the quality of a test § we consider the function
(1.3.1) B(8;0) = Eq9, 0 €0,

where Ejy is the expectation with respect to the distribution Py. The function 5(J; 6)
is called the power function of the test §. It is clear that (5(4;8) for § € ©; is the
probability of a wrong decision, while for § € © it is the probability of a correct
decision.
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DEFINITION 1.3.1. We say that a test d; is uniformly more powerful than a
test &y if

(132) ,6((51,0) < ,3(62,0) for all 6 € ©,,
(1.3.3) B(81;0) > B(62,0) for all 6 € Oy,

and at least one of the inequalities for at least one @ is strict.

DEFINITION 1.3.2. A test that is uniformly more powerful than any other test
is called the uniformly most powerful test (UMP test).

There is a different approach for measuring the quality of tests, namely the
Bayes approach. When following this approach we consider a random variable A
treated as a loss: it assumes the value A;(0) if the hypothesis H; is accepted and
the true parameter is . The mean loss of the test § is

(1.34)  EGA= Ai(0)Es(1— 8) + A2(0)Eed = (A2(8) — A1(8))B(6;6) + Ar(6)

if the parameter is §. Here Eg is the expectation with respect to the distribution
generated by the test § if the true parameter is 6 and ((4; 8) is the power function
of the test & defined by (1.3.1).

Let a o-algebra %(0) of measurable subsets of © be given and let a probability
measure Q be defined on the measurable space (0, %(0)), that is, 6 is a random
parameter and Q(B) = P{6 € B}, B € #(0). Applying (1.3.4) one can evaluate
the mean loss:

(135) EA= [ EAQUD = [ A QU+ [ (4a(0) - Axe)BL6s0) Qe
where E° is the expectation with respect to the distribution generated by the test 4.

The measure Q is sometimes called a priori measure or a priori distribution.

DEFINITION 1.3.3. A test d4,g is called Bayes with respect to the loss A and
a priori distribution Q if

(1.3.6) Ebae4 <E’A
for any test § where E® A is the mean loss defined by (1.3.5).

The following result allows one to compare the quality of tests in the Bayes
approach and in an approach based on the power function.

THEOREM 1.3.1. Let Q be an arbitrary a priori measure. Assume that the loss
Junction A;(t) is such that

(137) Al(t) < Az(t) fO’f‘ allt € @1,
(1.3.8) Ai(t) > Aa(t) for allt € O,.

If a test §; is uniformly more powerful than a test 0, then their mean losses are
such that

(1.3.9) EfA<E%2A.
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PROOF. Let a test §; be uniformly more powerful than a test d;. Then inequal-
ities (1.3.2) and (1.3.3) hold. Taking into account inequalities (1.3.2) and (1.3.3)
and conditions (1.3.7) and (1.3.8) we obtain from (1.3.5) that

ES A P4 — /e (Aa(t) — A1(8))(BG1;t) — Ada; ) Q)
+ /@ (Ag(t) — Av(9)(B(1; ) — B(52: 1)) Q) < 0,

that is, inequality (1.3.9) is proved. O

COROLLARY 1.3.1. If 6* is a UMP test, then it also is a Bayes test with
respect to an arbitrary a priori distribution Q and any loss function A;(t) satisfying
conditions (1.3.7) and (1.3.8).

REMARK 1.3.1. Conditions (1.3.7) and (1.3.8) posed on the loss functions A; (t)
and A,(t) are natural in the sense that if t € ©,, then A;(t) is the loss due to the
acceptance of the hypothesis H; if it is true, while A3(¢) is the loss due to the
acceptance of the alternative hypothesis Hs if the hypothesis H; is true. Thus it
is reasonable to assume that A;(t) < Ay(t) for ¢ € ©;. The same remark can be
made regarding inequality (1.3.8).

REMARK 1.3.2. The method of comparing the quality of tests based on Def-
inition 1.3.3 is sometimes called the complete Bayes approach (see [7]). Following
this approach, one treats the numbers m; = Q(0;) = P{6 € ©;}, 1 = 1,2, as a pri-
ori probabilities of the hypotheses H; and Hj, respectively. Considered in (7] the
so-called partial Bayes approach does not require that the probabilities m; and
are known. Instead, the distributions of the parameter 6 are known on both sets
@1 and @2.

Along with the Bayes approach we consider the minimax approach under which
one seeks a test minimizing the maximum of the conditional mean loss ESA.

DEFINITION 1.3.4. A test ¢ is called minimaz for the loss A if

(1.3.10) supESA < supESA
ted te®

for all tests § where EJ A is the conditional mean loss defined by (1.3.4).

Generally speaking, the UMP tests do not exist in the class of all possible tests.
Thus we consider proper subsets of tests and look for the UMP tests there. The
following example exhibits this idea. The method below is suitable for finding both
Bayes and minimax tests.

ExXAMPLE 1.3.1. Let an observation ¢ be a vector £ = (£1,&2,-..,£,) whose
components are independent and have normal N (6,02), i = 1,2,...,n, distribu-
tions. Put ©; = (—00,0) and ©; = [0,00). To distinguish the hypotheses Hy:0 €
©; and H,:0 € ©, we consider the class of linear nonrandomized tests §(r) of the
form é(z;r) = I((z,7) > 0) where z = (z1,%2,...,%n), T = (r1,72,...,7), and
(z,7) = Yi mizi; the vector r is such that > i ; r; = 1. Put G(r;0) = B(8(r); 6).
It is clear that

n -1/2
G(r;0) = Po{(£,r) >0} = & (0(2 a?r?) )
=1
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where ®(z) is the distribution function of the law A(0,1). Taking into account
inequalities (1.3.2) and (1.3.3) we prove that §(7) is a UMP test if

n -1/2 n -1/2
® (e(z aza?) ) <o (e (Z agrf) ) for all § < 0,
i=1 =1
n -1/2 n -1/2
® (o (Zaf?f) ) >® (e (Z afr,?> > for all § > 0

for all vectors r = (r1,72,...,7,) Where ¥ = (¥1,72,...,7,). The latter inequalities
are equivalent to

n n
Zof?iz < Zcr?riz for all r = (r1,72,...,75).
=1 i=1
Thus in order to find a UMP test it is necessary to find a vector 7 for which the
function ) 1 ; 02r? assumes its minimal value on the set of vectors r such that

S, i =1. It is clear that the components of the vector 7 with this property are
such that
n -1
7i =a;2(Zo;2> ,  i=12..,n
=1

The following result provides necessary and sufficient conditions for the exis-
tence of a UMP test.

THEOREM 1.3.2. In order that a test is UMP for distinguishing the hypotheses
Hy:0 € ©; and Hy:0 € O, it is necessary and sufficient that it is an MP test for
distinguishing two arbitrary simple hypotheses Hi:0 = 6; and Hj:0 = 0, where
6, € @1 and 0 € O,.

PROOF. Necessity. Let 6* be a UMP test and let § be an arbitrary test. Then
B(6*;0) < B(6;6) for all # € ©, and B(6*;6) > B(6;0) for all @ € O©,. Let 6; € ©;
and 0 € ©,. Consider two simple hypotheses H;:0 = 6; and Hj):0 = 65. Then
type I and type II error probabilities of the test are such that

a(8*) = B, 6" = B(6";61) < B(6;61) = (d),
B(8") = Egy(1-6%) =1 - B(6%;02) < 1 - (6;62) = B(9)

(see Section 1.1), that is, 6* is an MP test.

Sufficiency. Let 6* be an MP test for distinguishing the hypotheses H{:0 = 0,
and Hj:6 = 6, for all ; € ©;, i = 1,2. The Neyman-Pearson fundamental lemma
(see Theorem 1.1.1) implies that B(6*) < B(d) for all tests § of level Eg, 6* =
B(6*%;61). It follows from (1.3.11) that B(d;62) < B(6*;62) for all §; € O and all
tests & such that 3(d;6;) = B(6*;601). Interchanging the hypotheses H; and Hj
and applying the Neyman—-Pearson fundamental lemma once more we prove that
B(6*;61) < B(6;61) for all tests § such that B(J;62) = B(6*;62) and all §; € ©;. O

(1.3.11)

The following example is a continuation of Example 1.3.1. It exhibits an appli-
cation of Theorem 1.3.2 for finding a UMP test for another restriction of the class
of tests as compared to that studied in Example 1.3.1.
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ExXAMPLE 1.3.2. Let & = (&1,&,...,&n) and random variables &; be indepen-
dent and distributed according to the N'(6,02), i = 1,2,...,n, laws. Consider the
hypotheses H;:6 < 0 and Hs:6 > 0. In order to construct an UMP test we use
Theorem 1.3.2 and find an MP test for distinguishing the hypotheses Hj: 8 = 6; and
Hj}:0 = 6 for all §; < 0 and 6 > 0. The Neyman—Pearson fundamental lemma
implies that this can be done by constructing a likelihood ratio test for distinguish-
ing the hypotheses H{ and Hj. Let p(z; 6;) be the density of the distribution of the
vector £ in the case of § = ;. Then

) = 07 1
(1.3.12) Alz)=In pgm 02; (62 — 61) z;z—z ;?

where ¢ = (z1,Z2,...,2Z,). This means that §(z) = I(A(z) > c) is the desired
likelihood ratio test where c is some constant. Since 8 > 8;, we obtain from (1.3.12)
that this test is of the form

(1.3.13) §(z) = I(i o %z > k>
i=1

where k is some constant. If the constant k is such that Egd(¢) = o where a € (0,1)
is a certain number, then the test § given by (1.3.13) for some constant k& does not
depend on 6; and 6. Now Theorem 1.3.2 implies that the test defined by (1.3.13) is
UMP in the class of all tests such that 8(d;0) = o where the constant k is specified
above.

The latter example suggests a general idea on how to restrict the class of tests
under consideration.

DEFINITION 1.3.5. The number
a1(6) = sup B(6;6)
6€0,

is called a level or type I error probability of the test 4.

The number a; (6) is sometimes called the size of the test §. This is the maximal
probability of rejecting the hypothesis H; if it is true.
Consider the class of tests

Ky = {0:a1(9) < a}

where o is some number of the interval [0, 1].

DEFINITION 1.3.6. A test §* is called a uniformly most powerful (UMP) test
in the class K, if

B(6*;6) > B(5;6), 0 €Oy
for an arbitrary test § € K,.

Similar definitions in the class K, can be introduced for Bayes and minimax
tests [7].
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UMP test for distributions with a monotone likelihood ratio. Let
© = (—o0, 00), ©; = (—00,6p), and O3 = (6o, 00)

where 6y is a fixed point of ©. The hypotheses H;:0 € ©; and Ha:0 € Oy are
called one-sided hypotheses in contrast to the case of Hs:6 # 6y and Hy:60 = 6
where they are called two-sided hypotheses, since the sign of § — 6y can be arbitrary
in the latter case.

In what follows we assume that the measure Py for all § € © is absolutely
continuous with respect to some o-finite measure p and the density is

p(z;0) = dPy/du(z), z€X.
Moreover we assume that for all §; < 6 the likelihood ratio

p(z; 02)
p(z;61)’

is a monotone (either nondecreasing or nonincreasing) function of some statis-
tic T(xz). We say in this case that the family & = {Py;0 € O} has a mono-
tone likelihood ratio. For the sake of definiteness we assume that the likelihood
ratio (1.3.14) is a nondecreasing function of T'(z). The case where 2(z;62,6,) is a
nonincreasing function of T'(z) can be considered analogously.

(1.3.14) z(z; 02,6,) = z € X,

THEOREM 1.3.3. Let 6 € © = (—o00,00) be a one-dimensional parameter.
Assume that a family P = {Pg; 0 € ©} has a monotone likelihood ratio z(z; 62, 6,).
Then

1. In the class of tests K, a € (0,1), there exists a UMP test for distinguish-
ing the hypotheses Hy:0 € ©, = (—00, 0g] and H2:0 € O, = (6p,00). The
test is given by

(1.3.15) 0*(z) =1(T(z) > c)+ qI(T(z) =¢)
where ¢ € (—00;00) and g € [0,1] are the parameters defined by
(1.3.16) Eg 6™ = Pg(T'(£) > c) + qPg, (T(§) = ¢) =

2. The power function ((6*;6) of the test 6* defined by equalities (1.3.15)
and (1.3.16) is a nondecreasing function of 0 € ©.

3. For all ' € © the test (1.3.15) is a UMP test in the class Kpg(s+,g) for
distinguishing the hypotheses Hy:0 < 6’ and Hj:0 > 6¢'.

4. For every 0 < @y the test 6* defined by equalities (1.3.15) and (1.3.16)
minimizes the function 3(3;0) in the class K.

ProOF. Consider the two simple hypotheses Hy:0 = 0, and H,: 6 = 6, where
62 > 6p. According to the Neyman—Pearson fundamental lemma (Theorem 1.1.1), a
most powerful test for distinguishing the hypotheses H; and H, in the class of tests
d such that Eg,d = a is of the form (1.3.15), since the inequality z(z;62,60p) > c is
equivalent to the inequality T'(z) > ¢ in view of the monotonicity of the likelihood
ratio where the constants ¢ and ¢ are defined by (1.3.16). Since the parameters c
and ¢ do not depend on 65, the test §* is the most powerful for distinguishing the
hypotheses Hy:6 = 0y and Hj: 6 = 05 for all §; € ©3. Thus Theorem 1.3.2 implies
that the test 6* maximizes 3(J;6) for all § € O, in the class of tests § such that

B(8;60) = c.
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Now let & and " be two arbitrary points such that 8’ < 6”. Again by the
Neyman-Pearson fundamental lemma the test 6* is the most powerful for distin-
guishing the simple hypotheses Hj:0 = 6] and H%:0 = 6" in the class of tests of
level o/ = 3(6*;6'). By the definition of the set 9 (see Section 1.1) a(6*) < 1—5(6*)
for the most powerful test 6*. Thus

o = B(6";6') = a(6*) < 1 - B(8") = B(8™;6").

Therefore §(6*;60') < B(6*;8") for all < 6” and statement 2 of the theorem is
proved.

Since the function 8(6*; 8) is nondecreasing, the test 6* is such that 8(6*;6) < «
for all 6 < 6y, that is, the test §* belongs to the class K,. In its turn K, belongs
to a wider class {§: Eg,6 = a}. Since §* is a UMP test in the class {d: Eg,6 = a}, it
also is a UMP test in the class K.

Statement 3 of the theorem can be proved in the same manner.

Statement 4 follows from statements 1-3 applied to the problem of distin-
guishing the hypotheses HY:0 > 6y and HY:0 < 6. A UMP test in the class
{6:supg>g, Es6 < 1 — a} is 6°(z) = 1 — &(x) for this problem and the power func-
tion 1 — B(6*;60) = Egd° is maximal for @ < 6. Therefore the test §* minimizes
B(6;0) for 6 < 6y and for tests § of the class K. O

REMARK 1.3.3. Equality (1.3.12) shows that the likelihood ratio in Exam-
ple 1.3.2 is a monotone function of the statistic
n
T(Il:) =Za1;_2mi1 T= (zl’xZ,"'axn)'
i=1
Thus Theorem 1.3.3 is applicable in this case and a UMP test exists for distinguish-
ing the one-sided hypotheses.

EXAMPLE 1.3.3. Let & = (&1,&,...,&n) Where §1,&2,. .., &, are independent
identically distributed random variables whose distribution depends on a parameter
6 € (0,1) such that Pe{¢; = 1} = 0 and Pg{§; = 0} = 1 — 6. The space X of
possible values of the random vector £ consists of the vectors z = (21,23, ...,Zy)
whose coordinates x; are either 0 or 1. The distribution of the vector £ is given by

Po(z) = Po{€ =z} = 0= %i(1 — )" T ™ g = (z4,...,2n),

whence we obtain the likelihood ratio:

z( 00 B0) — 0—2 Yo T 1_92 n‘E?:lzi_ 02(1_01) PIHIE S 1-6, n
202, 61) = 0 1-6, “\61(1-6,) 1-6,/)

We see that the likelihood ratio z(z;62,6:) for §; < 0 is an increasing function of
the statistic T'(z) = Z?zl z;. According to Theorem 1.3.3 there exists a UMP test
for distinguishing one-sided hypotheses in the class K,.

An important class of distributions for which the likelihood ratio is monotone
is presented by the one parameter exponential family. The density p(z;6) in this
case is given by

(1.3.17) p(z;0) = h(z) exp{a()T(z) + V(6)}, z € X,
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where all the functions on the right-hand side are finite and measurable (see [38],
Section 1.2). In view of the factorization criterion (Theorem 4.1.2 in [38]), the
statistic T'(z) is sufficient. The likelihood ratio in this case is given by

2(z;02,0,) = exp{(a(f2) — a(61))T(z) + (V(62) — V(61))}

This implies that if a(62) — a(61) does not change its sign for all 6; < 62, then the
likelihood ratio z(z;6z,6:) is a monotone function of the statistic T'(z).
Theorem 1.3.3 implies the following assertion.

COROLLARY 1.3.2. Let the density p(z,6) be of the form (1.3.17) where a(6)
is a monotone function. Then there exists a UMP test §* in the class K, for
distinguishing the hypotheses H1:0 < 6p and Hz:60 > 6. If the function a(6)
increases, then the test 6* is defined by (1.3.15) and (1.3.16). If the function a(6)
decreases, then the test 6* is defined by (1.3.15) and (1.3.16) where T(z) < ¢ and
T(€) < c substitute T(z) > ¢ and T'(§) > c, respectively.

REMARK 1.3.4. If we distinguish the hypothesis H;: 60 = 6y and its two-sided
alternative Hy: 0 # 6, then a UMP test does not exist in the case of exponential
distributions (1.3.17). Indeed, for simplicity let the function a(f) increase and let
the Py-distribution of T'(§) for all  possess the density. Then by the Neyman-
Pearson fundamental lemma a most powerful test for distinguishing the hypotheses

H1:0 = 90 and HQ:G =02

with 6 > 6 is nonrandomized and moreover ¢*(z) = I(T'(z) > ¢). On the other
hand, if 6, < 6y, then the most powerful test is §’(z) = I(T'(z) < ¢). Thus there
is no unique UMP test for all 6, > 6y and 02 < 6p. In a similar manner we get
that there is no UMP test for distinguishing the hypotheses H;:8 € (6;,62) and
Hy:0 ¢ (01,0,) where 6; < 6. However if Hy:0 ¢ (61,62) is the null hypothesis
and Hj: 0 € (61, 62) is its alternative, then a UMP test exists. This case is studied
in the next section.

Two-sided null hypotheses. Exponential families of distributions. Let
a distribution Py be absolutely continuous with respect to some o-finite measure p
and let the density p(z;6) = dPg/dp(z) be of the form (1.3.17).

THEOREM 1.3.4. Let p(x;6) be of the form (1.3.17) where the function a(0) is
monotone. Let Hy:0 & (61,02) be the null hypothesis and let Hy: 0 € (6y,02) be its
alternative where 6, < 0y are two fized numbers. Then

1) in the class

K, = {5: sup Egd(¢) < a}

0¢(61,02)
there exists a UMP test 6* such that

(1.3.18) *(z) =I(c1 < T(z) < c2) + @1 I(T(z) = 1) + I (T(z) = ¢2)
where c1, ¢z, q1, and gz are the constants defined by
(1.3.19) Eq, 8" (€) = Ea,0(¢) = 5

2) the test 6* defined by equalities (1.3.18) and (1.3.19) mazimizes the power
function (3(6;0) inside the interval (61,62) and minimizes it outside this
interval;
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3) for 0 < a < 1 the power function §(8*;0) attains its marimum at some
point Oy € (01,02); moreover it strictly decreases in both cases if the argu-
ment goes to the left of 0 or if it goes to the right of 6p. Note that the case
where the distribution of T'(§) is concentrated at two points is not excluded,
that is, the case where there are t; and to such that for all 6

Po{T(§) = t1} + Po{T(§) =t2} = 1.

We omit the proof of Theorem 1.3.4 that can be found in [7, 9], or [34].

The generalized Neyman—Pearson fundamental lemma. The construc-
tion of MP and UMP tests requires, in fact, the solution of a variational problem and
finding a maximum of a certain functional of the test satisfying some restrictions.
In particular, we deal with the test 6* in Theorem 1.3.4 for which we maximize the

functional
| @i u(as)
in the class of tests ¢ such that
[ sa@nEoiudn =a,  i=12
b's

The following result is sometimes called the generalized Neyman—Pearson fun-
damental lemma.

THEOREM 1.3.5. Let f1, f2,..., fm+1 be real Borel functions defined on (X, B)
that are integrable with respect to a measure p. Consider the tests § such that

(1.3.20) / 5@ fi(@) pds) = s,  i=1,2,...,m,
X

where a1, @z, ...,y are some numbers. Then the test 6*(z) that mazimizes the
functional [y 6(x) frms1(z) u(dz) is of the form

5(z) = { L if fmga(e) > Y0 kifile),
0, f fm+1(z) < i) kifi(2),
where the constants k1, ...,k are defined by conditions (1.3.20).

ProOF. Put
F¢(6)=/X6(x)f,-(a:)p(dm), i=1,2,...,m+1.

A test ¢ such that

F,-(J):ai, i=1,2,...,m,
maximizes F,41(d) if and only if it maximizes Fin41(0) — Y i, k;F;(0) for some
constants ky, k2, ..., km (i, kiFi(8) is fixed in this expression). This is the case
if the test §(z) maximizes the functional

/x (fm+1(:c) - gkifi(ﬁ))é(m) u(dz).
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The latter expression is maximal for the test § such that §(z) =1 if

Fri1(2) = D kifi(z) >0

i=1
and d(z) = 0 otherwise. The constants ky, ko, . .., kn occurring in the definition of
the test 4, as well as the values of §(z) on the set

{fmirto) - g;kifxw)},

should be chosen to satisfy conditions (1.3.20). a

Unbiased tests. Another restricted class we use to construct UMP tests con-
sists of the so-called unbiased tests.

Consider the general problem of distinguishing the hypotheses H;:0 € ©; and
Hj:0 € ©; where ©; N0y = @ and ©; U O, = O. Let § be a test of the class

K, = {6: a1(6) = sup Epd < a}.
0€0,

If ©, contains only a single point 6; and Eg,d = a, then a is the probability of
rejecting the hypothesis H; if it is true. It is natural to require that a test & is
such that the probability of rejecting the hypothesis Hi, if it is wrong, is bigger
than o, that is, 8(d;6) > a for all § € ©,. If this is not the case, then there are
alternative hypotheses # € ©5 such that the probability of accepting the hypothesis
H, is bigger than 1 — @ = 1 — Ep, 4 and the latter is the probability of accepting
the hypothesis H; if it is true. It is reasonable to exclude such cases from our
consideration.

DEFINITION 1.3.7. A test J is called unbiased if
(1.3.21) inf B(8;6) > sup 5(6;6).
0€0O2 0€0,

Condition (1.3.21) implies that a test § € Ko of level 1(8) = o is unbiased if
B(8;0) > a for all § € ©5. The class of unbiased tests of level « is denoted by K.
By 90; we denote the boundary of the set ©;, that is, all the limit points of the
set ©;.

LEMMA 1.3.1. LetI''= 80, N 0O, # &. Assume that the density p(x;0) is
continuous in 0 for p-almost all x € X. Then

(1.3.22) B(5;0)=a forall@eT
for any test § € I?a.
PROOF. Since
pE0) = [ depEouds),  0<s@ <1,
X

and the function p(x;8) is continuous in @ by Corollary 3.4.1 in [38], the power
function (3(8; ) is also continuous for any test 4. This implies equality (1.3.22) for

any test § € K. (]
We denote by K, the class of tests § satisfying condition (1.3.22).
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LEMMA 1.3.2. Let T = 80, N 9O, # @ and Ky C Ko. Then any UMP test
in the class Ko N K, is UMP in the class K, too.

Proor. Let & be a UMP test in the class K, NKq. It is sufficient to prove
that ¢’ € K, and K., c By N K. The inclusion K, C K, N K, follows from
K c K, and K C K, Since ¢’ is a UMP test in the class K, N K, and the test
8 = a belongs to K, N K,, we have §(8';0) > (4;6) = « for all § € ©,, whence

- I. . . —
olenefg B(d ’0) 2 Blengz B(5;6) = a.
Therefore &' € K. O

Lemma 1.3.2 implies that the problem of finding an unbiased UMP test can be
reduced to the problem of finding a usual UMP test satisfying condition (1.3.22).
If the number of points of the boundary I is finite, then the conditions of Theo-
rem 1.3.5 hold and one needs to prove that an optimal test 6* does not depend on
the point § € ©, at which the test maximizes the functional 3(d;0) = Egd. This
means that 6* is a UMP test.

Consider condition (1.3.22) for the following case. Let

O =(-00,00),  ©1=1[01,65], and Oz = [0),02]° = (—00,00)\ [61,62].

If 6, < 6, then the common boundary I' of the sets ©; and ©5 contains only two
points 6, and 6. Therefore condition (1.3.22) becomes of the form £(4;6;) = a,
i=1,2. If ©; = {6}, then condition (1.3.22) is equivalent to 3(J;6:) = a.

The following result gives a necessary condition for a test of level a to be
unbiased.

LEMMA 1.3.3. Let 6 be a test of level a for distinguishing the hypotheses
Hy:0=0, and H,:0 #6,.

Assume that the regularity conditions (R) hold for the density p(z;80) of the mea-
sure Pg with respect to a o-finite measure p. If the test § is unbiased, then

(1.3.23) Es,6(£)S(£;61) =0
where S(z;0) = 6% Inp(z;0).

PROOF. Since the test § is unbiased, the power function B(é;0) attains its
minimum at the point §;. Since the function p(x;6) satisfies the regularity con-
ditions (R), the power function (§(6;0) is differentiable by Lemma 3.4.4 of [38].
Therefore the equality ((d;61) = 0 is satisfied. Applying again Lemma 3.4.4
of [38], we obtain

B(600 = [ dehh(oi0n) ude) = [ 5(a)S(a:00)p(zi0r) o)
This together with the equality 8'(4;6:) = 0 implies (1.3.23). (]

REMARK 1.3.5. The regularity conditions (R) can be found in [38] (also see [7]
or [9]). Lemma 1.3.3 implies that an unbiased test of level « for distinguishing the
hypotheses Hy:0 = 6, and Hj:0 # 6, is a solution of the following two equations:

(1.3.24) Ead(€) =a,  Eqd(¢)S(&01) =0.
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EXAMPLE 1.3.4. Let the distribution of £ be exponential with a density of the
form (1.3.17) where the functions a(@) and V(6) are differentiable. Then

S(z;6) = &'(O)T(z) + V'(6).
Since EgS(¢;6) = 0, we get V'(6) = —a’(9)EsT(£). Thus
Eed(€)S(£;6) = a'(0)Ead(€)T(€) — a'(6)Eed(§)ET(€).
This implies that equations (1.3.24) become of the form

Eo,(0(6) —) =0,  E5,(6(£) —)T(§) = 0.

The following result describes the form of an unbiased UMP test for distin-
guishing a null hypothesis and its two-sided alternative hypothesis for exponential
families.

THEOREM 1.3.6. Let p(x;6) be of the form (1.3.17) where the function a(6) is
monotone. Assume that the problem is to distinguish the hypotheses H;:0 € [0y, 0]
and Hz: 0 ¢ [01,92] where 91 S 92. Then

1. In the class of tests K there exists a UMP test & such that

(1.3.25) §(z) = I(T(z) ¢ [e1, ¢2]) + @I (T(z) = e1) + 21 (T(z) = c2)
where the constants c; and g;, i = 1,2, are defined by

(1.3.26) Eo.6(¢)=a, i=1,2,
if 61 < 65, and by

(1.3.27) End(€) =0,  Eg(8(6) —a)T() =0

if 01 = 65.

2. The test § defined by (1.3.25)—(1.3.27) minimizes the power function 3(J;0)
inside the interval [61,602] if (1.3.26) holds and mazimizes it outside the
interval [0y, 02] if (1.3.26) holds and 6, < 62 or (1.3.27) holds and 6, = 0,.

3. If 0< <1 and 6, < 0y, then the function B(8;0) attains its minimum at
some point 0y € (61, 02); moreover it strictly decreases in both cases: either
the argument goes to the left of 6y or it goes to the right of 6y. Note that
the case where the distribution of T(€) is concentrated at two points is not
excluded, that is, we do not exclude the case where there are t, and ty such
that for all 0

Po{T(¢) = t1} + Po{T(£) = t2} = 1.

Theorem 1.3.6 is similar to Theorem 1.3.4; however the words “minimizes”
and “maximizes” are interchanged and the case of §; = 6, is not excluded in
Theorem 1.3.6. The proof of Theorem 1.3.6 is omitted (it can be found in [7, 9],
or [34]).
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EXAMPLE 1.3.5. Let £ = (£1,&2,...,&n) Where £1,&9,...,&, are independent
identically distributed random variables with the A(0,02) distribution. Consider
the hypotheses H;:0 = 0¢ and Hy:0 # oo where g¢ € (0,00) is a fixed number.
The density of the distribution belongs to the family of densities

1 n
(27r¢7)""“/2exp(—27‘2 zwf), o € (0,00), z=(Z1,...,Zn).
i=1

The statistic T'(z) = Y5, z; is essential for this family and the density of T'(¢) is
072 fu(y/0?) where

1
= — - (n/2)-1,-y/2 >0
fn(y) 2n/2P(n/2)y e ’ y )

is the x2(n) density with n degrees of freedom.

An unbiased UMP test 6*(z) of level a is of the form (1.3.25) where the con-
stants ¢; and c; satisfy condition (1.3.27), while the constants q; and ¢, are arbi-
trary, since the distribution of the statistic T'(€) is continuous. Putting ¢; = g2 =1
one can represent the test §*(z) as

6*(z) = I(;lg > oal¢ (01,02))
i=1

where C; = ¢;/02,i = 1,2. Then condition (1.3.27) becomes of the form

Cz C2
(1.3.28) f@)dy=1-a, / yfu(y) dy = (1 - a).
C1

C

To determine the constants ¢; and c; one can use, for example, the tables of the
x%(n) distribution. Using the equality yf,(y) = nfn+2(y) the second equation in
(1.3.28) can be rewritten as

Ca
frr2(y)dy=1-a.

C1

Another way to determine C; and C; is to integrate by parts the second equation
in (1.3.28) and obtain
CP/2e=Cal2 _ OIl2g=0al2,

A relationship between tests and confidence sets. Let { be an observa-
tion whose distribution belongs to a family {Pg;8 € ©}.

DEFINITION 1.3.8. A random set ©*(&,7) is called a confidence set of level y
if ©*(£,7) C © and

(1.3.29) Po{0 € ©*(£,7)} =

for all 8 € ©.
Put

(1.3.30) X(8,7) ={z € X:0 € ©*(z,7)}.
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Then the inclusions
(1.3.31) 6 € ©*(z,v) and ze€ X(4,7)

are equivalent.

In the definition of a confidence set we assume that the set X (6,+) in (1.3.30)
is measurable, thus the probability in (1.3.29) is well defined. In view of the equiv-
alence of inclusions (1.3.31), the latter probability is equal to

(1.3.32) Po{6 € ©*(¢,7)} = Po{é € X(6,7)}-

The following result describes a relationship between confidence sets and sta-
tistical tests for distinguishing the hypotheses H(6p): 6 = 6y and

K(80):0 € ©\ {60} = ©(60).

THEOREM 1.3.7. 1) For every 0y let a nonrandomized test §(6o) of level 1 —
be given for distinguishing the hypotheses H(6p) and K(6p). Let X(6o,7) be the
acceptance set for the hypothesis H(0) defined by (1.3.30). Then

©* (&) ={0 € ©:£ € X(60,7)}

is a confidence set of level .

Conversely, if ©*(&;7) is a confidence set of level v and 6y € ©*(€;7), then the
acceptance set X (0o,7) defined by (1.3.30) for the hypothesis H(fy) determines a
test for distinguishing the hypotheses H(6p) and K (o).

2) Let X(0o,7) be the set defined by (1.3.30) for the hypothesis H(6o). If (o)
is a UMP test of level 1— for all 6y, then the corresponding set ©*(&,~y) minimizes
the probability

(1.3.33) Pe{0' € ©*(&,7)} for all 6 and 6’ such that 6 € ©(8')

in the class of all confidence sets of level .
Conversely, the minimal probability in (1.3.33) corresponds to a set X(0,7)
that generates a UMP test.

ProoF. Equality (1.3.32) yields
Pe{0 € ©*(£,7)} =Po{¢ € X(6,7)} >,

whence the first statement of the theorem follows. To prove the second statement
of the theorem we consider another confidence set ©*(¢,~) and the corresponding

subset X(,7) in X. Then
Po{¢ € X(0,7)} = Po{0 € 8*(6,7)} 2 .
Since X (6o,7) is the acceptance set for a UMP test,
Po{¢ € X(60,7)} = Po{¢ € X(60,7)}
for all § € ©(6p). Thus
Po{60 € ©*(¢,7)} > Po{o € ©*(£,7)}
for all 8 € ©(6y). 0
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DEFINITION 1.3.9. Confidence sets for which the probability in (1.3.33) is min-
imal given (1.3.29) are called uniformly most precise confidence sets of level v with
respect to alternatives ¢’ such that § € ©(¢’).

Consider in more detail the notion introduced above for a particular case of a
one-dimensional parameter. The following result holds in this case.

THEOREM 1.3.8. Let the set X (0,~) for a UMP test described in Theorem 1.3.7
be of the form
c1(6,7) < T(z) < c2(6,7)
where c;(0,y) are monotone and continuous in 0. If the functions c;(8,y) increase
in 6, then a uniformly most precise confidence set of level «y with respect to alter-
natives 8’ such that 0 € ©(8') is the interval

3 1(T(2),7) < 6 < T M (T(2),7)
where ¢ (t,y) is a solution in 8 of the equation c;(6,y) = t.

The proof of Theorem 1.3.8 is obvious and omitted.

Consider in more detail one-sided confidence intervals for a one-dimensional
parameter 6, namely we consider the intervals (8(¢,7),00) and (—o0,8(¢,7)). We
restrict our consideration to the case of a lower confidence bound 6(&,~) for which

(1.3.34) Pe{0(¢,7) <6} 2,
since an upper confidence bound 0(¢,) is considered similarly.

DEFINITION 1.3.10. A bound 8 = (¢, ) for which the probability Pe{8 < 6'}
is minimal for all §’ < 8 is called a uniformly most precise lower confidence bound
of level 4.

Below we consider another definition of an optimal confidence interval. Let
L(6,0) be a loss arising if 6 is underestimated, so that for all fixed 6 the function
L(8,6) is defined as follows: L(#,8) = 0 for § > 6 and L(6,6) > 0 for § < 0. We
also assume that L(0,0) is continuously increasing if § goes away from 6 and that
EoL(6,6) < oo for all . Given (1.3.34) our goal is to minimize EqL(0, §).

The following auxiliary result establishes a relationship between two notions of
optimality.

LEMMA 1.3.4. Given (1.3.34) a uniformly most precise lower bound 0 mini-
mizes EgL(0,8) for any loss function L(6,0) satisfying the above conditions.

PROOF. Let @’ be an arbitrary lower bound. Since the increments of the loss
function L(6,u) in u in the domain u < 6 are negative, we get

0 6
EoL(6,6) = / L(8,u)d,Py(8 < u) = —/ Po(0 < u) dy L(0,u)
0
<- / Po(8' < u)duL(6,u) = EsL(6,8')
where d,, is the differential with respect to the variable u. O

It is natural to call the number EgL(8,0) a risk of the underestimation of the
parameter 6. Therefore Lemma 1.3.4 implies that a uniformly most precise lower
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bound @ minimizes the risk of the underestimation of the parameter 6. This together
with Theorems 1.3.7 and 1.3.8 allows one to construct a uniformly most precise one-
sided interval in an explicit form for families with monotone likelihood ratio.

THEOREM 1.3.9. Let a family {Pg,0 € ©} have the monotone likelihood ratio
with respect to a statistic T(x) whose distribution function Go(t) = Pe{T(§) <t} is
continuous in 6 and t. Then the distribution of the statistic T'(z) monotonically and
continuously depends on the parameter 0, that is, G(t) continuously decreases if 6
increases (see relation (5.4.1) in [38]). If b(t,v) is a solution in @ of the equation
Go(t) = v, then a uniformly most precise lower bound 8(¢,) of level vy is

Q(g’ 7) = b(T(‘E)"Y)

PROOF. We put ©() = {t:t > 0} in Theorems 1.3.7 and 1.3.8. According
to Theorem 1.3.3 there exists a nonrandomized UMP test for distinguishing the
hypotheses Hy: 6 = 6 and Ha: 6 > 6. Moreover the acceptance set for the hypoth-
esis Hy is X (6o,7) = {z:T(z) < c} where the constant ¢ = ¢(fo,7) = Gy, 1(y) is
such that

Poo{T'(€) < c(60,7)} = 7-
By the assumptions of the theorem we have

Po{T(£) 2 c} > 1 —v =P {T(£) 2 c}

for all @ > 6. The latter relation means that c(6y,7) < c(6,7) for 8y < 6, that is,
the function ¢(6,) increases in §. The continuity of c(6,v) = G5 (v) in 6 follows
from that of Ge(t).

Thus the conditions of Theorems 1.3.7 and 1.3.8 hold for c3(6,7) = ¢(6,v) and
therefore a uniformly most precise confidence interval is (c=1(T'(£);7y),00) where
obviously ¢~ (¢,7) = b(t, 7).

A uniformly most precise upper bound 8(¢,~) can be constructed by the same
method if the assumptions of Theorem 1.3.9 hold.

Now let 8(¢,71) < 8(¢£,v2) where 8(£,7v1) and 8(¢,2) are lower and upper
bounds of levels y; and 7., respectively. Let y; and -y be such that the events
{68(¢,71) > 6} and {8(¢,72) < 6} are disjoint. Then

Pe{0(6,m) <0 <0(¢72)} >m+7 -1,

that is, (8(¢,71),8(€,72)) is a confidence interval of level y; + 2 — 1.

Let L;(6,8) and Ly(6,6) be the loss functions due to the underestimation of
the parameter 6 for bounds @ and 8, respectively. Assume that L; (6, §) and L (6,6)
satisfy the conditions indicated above.

_LemmaA 1.3.5. Let L(6,0,0) = L(6,0) + L(6,0). Then the confidence interval
(6,0) whose end points are uniformly most precise lower and upper bounds mini-
mizes EgL(6,8,0) under the conditions

Po{Q>0}Sl—’)’1, Pg{a<0}51—’}’2.
This result is an obvious corollary of Lemma 1.3.4. Using Theorem 1.3.9 and

Lemma, 1.3.5 one can construct optimal intervals in an explicit form for families
with the monotone likelihood ratio.
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To conclude this section we show how to construct confidence sets and intervals
with the help of unbiased tests.
As before let a set ©(8) correspond to every 8 such that 6 ¢ ©(6).

DEFINITION 1.3.11. A confidence set ©*(&,~) of level v for a parameter 6 is
called unbiased with respect to the alternative hypothesis 8’ such that 6 € ©(¢') if

(1.3.35) Po{6' € ©*(¢£,7)} <« for all § and ¢’ such that 6 € O(F’).

The set ©*(&,~) is called unbiased if (1.3.35) holds for all 8’ # 6.

If a confidence set is unbiased, then the probability that it contains a wrong
value §' of the parameter is less than or equal to the probability that it contains the
true value of the parameter.

DEFINITION 1.3.12. If conditions (1.3.29) and (1.3.35) hold, then a confidence
set for which the probability (1.3.33) is minimal is called a uniformly most precise
unbiased confidence set of level v against the alternatives 6’ such that 8 € ©(6').

THEOREM 1.3.10. 1) Since inclusions (1.3.31) are equivalent, unbiased non-
randomized tests generate unbiased confidence sets, and vice versa.
2) If X(6o,7) for any 6y € O is the acceptance set of the null hypothesis

H129=00

for a nonrandomized UMP test against the alternative Ho:0 € ©(6,), then the
corresponding set ©*(&,7) is a uniformly most precise unbiased confidence set, and
vice versa.

ProOOF. The method of proof is the same as that of Theorem 1.3.7. An addi-
tional reasoning is that if a test is unbiased, then so is the corresponding confidence
set, and vice versa. Indeed relations (1.3.29) and (1.3.35) are equivalent to inequal-
ities

sup Po{€ € X(60,7)} <7 < Pgo{€ € X(60,7)}-
0€0(0o)
If § is a nonrandomized test (that is, é(z) = 0 for = € X (6p,7)), then

E06(§) =1- P0{€ € X(0017)}) oeien(feo) Eg&(g) >1- Y > E006(€)~

These conditions obviously mean that the test is unbiased and this property is
equivalent to (1.3.35). O

Applying Theorem 1.3.10 one can construct a uniformly most precise unbiased
confidence interval for a parameter of the exponential family. The method of this

construction is the same as above.

EXAMPLE 1.3.6. Let £ = (¢1,&2,...,&,) where &1,&,,. .., &, are independent
identically distributed random variables with the density

0~ 1I(z > 0) exp(—z/0), 0<6<o0.

The statistic T, (z) = Y ;=1 Zi» T = (Z1,. .., Zn), is a minimal essential statistic and
moreover the distribution of T;,(£)/(26) is x%(2n). Denote by x?Y(Zn) the y-quantile
of the x2(2n) law. Then

Po {0 > Tn(€)/(22(2n))} = 7,
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that is, 8 = T,,(&)/ (2x?,(2n)) is a lower confidence bound of level  for the param-

eter 0. Further let ¢, ; = minj<i<n & be the minimal order statistic. Then the
distribution of n¢, 1/(26) is x2(2). This implies that 4= nén,1/(2x2(2)) also is a
lower bound of level v for the parameter 6.

Which of these two bounds is better? To answer this question note that the
distribution of £ has the monotone likelihood ratio with respect to the statistic
T,.(z). Thus the UMP test of level o for distinguishing the hypotheses H;: 8 = 6,
and Hj: 0 > 6y is determined by the acceptance set of the hypothesis H; which is of
the form X (6p,1— a) = {z: T,.(z) < 200x?_,(2n)}. Thus a uniformly most precise
lower bound of level v for the parameter 6 is 8 = T;,(£)/(2x2(2n)). Therefore

Po{6' > 0} < Pe{¢’ > 8} for all § and ¢’ such that 8 > ¢'.

This implies that the bound @ is better, since it is a uniformly most precise lower
bound.

More details on confidence sets and intervals and on an application of statistical
tests to construct confidence sets as well as various examples can be found in [54].

Bayes tests for distinguishing a finite number of composite hypothe-
ses. The last topic of this section is the problem of distinguishing N composite
hypotheses for N > 2. As before let the distribution of an observation £ belong
to a family & = {Py,0 € O} and let & = Uf;l P; where Z; = {Pg:0 € 6,},
1=12,...,N;0;N0; =0, 1 #j; Uf_’__l ©; = ©. Assume that at least one of the
sets ©1,0,...,0y contains at least two points. Let the hypothesis H; be that the
distribution of £ belongs to the set £2;. We write in this case H;: 6 € ©;. Consider a
randomized test § whose values are 1,2,..., N and the corresponding probabilities
are g} (z) = P{6 = i/¢ = z}. The event {§ = i} means that the hypothesis H; is
accepted, and ¢/(z) is the conditional probability of accepting the hypothesis H;
according to the test d given £ = 2.

Let Ai(t), ¢ = 1,2,...,N, be nonnegative functions defined on © that are
measurable with respect to some o-algebra of subsets of ©. Let A be a random
variable treated as the loss; it is equal to A;(¢) if the hypothesis H; is accepted and
the parameter 6 is t. Further we assume that a probability measure Q (a priori
measure) is given on ©, so that the parameter can be treated to be random with
the distribution Q. Then we define the mean loss or risk of the test § (see (1.3.4)
and (1.3.5)):

(1.3.36) R(6)=E°A= f EZAQ(dt)
(S]
where
N
(1.3.37) E;A = Ai(t)P{8(¢) =1}
i=1

It is obvious that

(1.3.38) P{8(E) = i} = /X ¢(z) Pu(da).
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Combining (1.3.36)—(1.3.38) we obtain

al )
(1.3.39) R(6) = /e > 40 /X ¢f (2)P4(dz) Q(dt).

According to Definition 1.3.3, a test d4,¢ is Bayes with respect to a loss A and
a priori measure Q if it minimizes the risk (1.3.39). Let us find the test d4,¢ in an
explicit form.

Let the family &2 be dominated by some o-finite measure y and let

p(z;t) = dP¢/du(z)

be the density of the measure P, with respect to u. Then the risk R(d) can be
written as

N
(1.3.40) RO = [ > @) . 4:p(ai0) Q(at) o)
Put
(1.3.41) Ri(z) = /@ Ait)p(z;t) Q(df), i=1,2,...,N, z€ X.

It follows from (1.3.40) that the test § minimizes the risk if

qf(x) _ { 1, if Ri(.'l,‘) = minlstN Rj(.’l:),

1.3.42
( ) 0, otherwise,

where R;(z) are defined by (1.3.41). If mini<j<n R;j(z) is attained for several
indices 1%;,...,1, then one can proceed in the same way as in the case of simple
hypotheses (see Section 1.2). Thus equality (1.3.42) defines a Bayes test §4,g.

More details about Bayes tests for distinguishing composite hypotheses can be
found in [9, 54].

ExXAMPLE 1.3.7. Let the distribution of £ be N (0,1) and § € © = (—00,0).
Let © = ©; U©®, U O3 where

@1 = (—OO, —1), 92 — [—1, 1], @3 = (1,00).
Consider the loss functions
A(t)=1I(t>-1), A)=1I(t[=1), As(t)=I(t<1).

Let the a priori distribution Q of the parameter § be N'(0,72). Then the distribution
of ¢ is N(0,1 + 72), whence

72 4
p(z;t) Q(dt) = n (;0,1+7°)n (t; T—s —) dt
where n(z; a, b?) is the density of the A(a,b?) law. Thus in view of (1.3.41) we get
00 2 4
_ ) 2 T T
Ry(z) =n(z;0,1+77) /_1 n (t,a:—l T TT +7'2) dt

=n(w;0,1+7'2)<1><1_;$ )
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where .
T o T

BTl

*

x

Similarly we get

Ry(z) =n (z;0,1+72) / n(t;z*,0%) dt

|lz|>1

=n(a:;0,1+'r2) [2—@ (1—:_1:*) -® <1—Ua:*)] )

Ra(z) =n (2;0,1+7%) (1 ;“’) .

Let

R;(z) = Rj(z)/n (x;0,1+7%).
The function Rj(z) is symmetric with respect to z*; its minimum is 0 and it is
attained at the point £ = 0. Further

(1.3.43) EZ—*RE(w) = —% [‘P (1 J;w> - (1 j)]

where ¢(z) is the density of the (0, 1) law.

For all z* < 0it holds that |1+z*| < 1—z*. Hence p((1+z*)/0) > p((1—z*)/0)
for all z* < 0. Equality (1.3.43) implies that R3(z) is decreasing in (—oc0,0) and
lim,_,_o R3(z) = 1. The function R}(z) is increasing and

mll)lzloo Ri(z) =0, zango Ri(z)=1.

Thus there exists a unique point z’ in the interval (—oo, 0) such that

Ri(z') = R3(2).
Since the problem is symmetric, there exists a unique point z” = —2’ in the in-
terval (0,00) such that R3(z”) = R3(z”). Thus the partition X = X; U X, U X3

where X; = (—o0,2'), Xo = [2/,2"], and X3 = (z”,00) determines a Bayes test.
According to this test the hypothesis H;, 1 = 1,2, 3, is accepted if z € X;.

REMARK 1.3.6. More details about distinguishing composite hypotheses can
be found in [9, 34, 54]. Distinguishing composite hypotheses can be viewed as
a problem of the general theory of statistical decisions; see [4, 9, 15, 52, 54)].
Asymptotic problems of distinguishing composite hypotheses for independent ob-
servations are considered in [10]. Tests of significance are studied in Chapter 3
below.






CHAPTER 2

Asymptotic Distinguishability
of Simple Hypotheses

2.1. Statistical hypotheses and tests

Let &8, t € R, be a family of observations assuming values in a measurable
space (X*t, %) and let #* = {P!, P} be a family of two probability measures de-
fined on (X, %*). Let H' and H* be two statistical hypotheses that the distribution
of the observation £! is generated by the measures P* and ﬁt, respectively. Denote
by &; a measurable mapping of the space (X*, #*) into the space ([0, 1], ([0, 1])).
The mapping J; (as well as the random variable §(£*) denoted by the same symbol
d:) is called a test for distinguishing the hypotheses H* and H by the observation
&*; here we treat d;(z) as the conditional probability of rejecting the hypothesis H*
(or, equivalently, of accepting the hypothesis H*) given & = z. Denote by =t the
set of all tests d; for distinguishing the hypotheses H* and H?; for all &, € Xt we
introduce the type I and type II error probabilities

(2.1.1) a(6;) =ES, and B(6;) = EX(1 - &),

respectively, where E¢ and E? are expectations with respect to the distributions P*
and Pt, respectively. For all o € [0, 1] we denote by ¢, the set of all tests &; of %t
such that a(d;) < a.

Let Q' = (Pt + Pt)/2 be another probability measure on the measurable space
(Xt, ) and let 3, = dP'/dQt and j. = dP*/dQ! be two finite versions of the
Radon-Nikodym derivatives of the measures P* and ﬁt, respectively, with respect
to the measure Q°. Consider the likelihood ratios

(2.1.2) ze=3t/3t, %= t/bt

Here we agree that 0/0 = 0 and the likelihood ratios are well defined for all ¢. Note
that 3¢ + 3: = 2.

Put
(2.1.3) a, =PG5, >0), B,=P >0).
Then
(2.1.4) a; = P'(z > 0) = P*(2; < o),
(2.1.5) B, = P4(% > 0) = Pt(2; < o).

Equalities (2.1.3)-(2.1.5) and Lemma 1.1.9 imply the following Lebesgue de-
composition of any of the measures P* or Pt with respect to the other one.

203
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LEMMA 2.1.1. For all A € 9Bt it holds that

(2.1.6) Bt(4) = / 2 dPt +PHAN {z = oo}),
A

2.1.7) Pt(A) = / % dPt + P (AN {Z = o0})
A

where z; and Z; are the likelihood ratios defined by equalities (2.1.2).
Lemma 1.1.10 can also be rewritten in the following form.
LEMMA 2.1.2. For all nonnegative measurable functions n defined on (Xt, B?)
it holds that
(2.1.8) En = Etnz + Etpl(2; = ),
(2.1.9) Etn = E'nZ, + E'nI(Z = o0).

Consider the set
(2.1.10) Nt = {(a(8s), B(6:)): 6; € =}

where a(d;) and B(d;) are type I and type II error probabilities of the test §; € X*
defined by (2.1.1).

The properties of the set 9t are studied in Section 1.1. In particular, the set 91
is convex, closed, and symmetric about the point (1/2,1/2), 2M* contains the points
(0,1) and (1,0), and 9 C [0,1] x [0,1]. An example of the set M is shown in
Figure 2.1.1.

ﬂ A
1
B,
mt
0 a; 1 ‘o
FiGURE 2.1.1

Now we introduce the likelihood ratio test by
(2.1.11) 8 =1I(2¢ >c)+el(z =c)

where ¢ € [0,00] and € € [0,1] are parameters of the test. Let (c;(c),e¢(c)) be
some solution of the equation a(8;°) = o with respect to (c, ).

A likelihood ratio test 65*(*)*¢(®) with £,(0) = 1 is called the Neyman—Pearson
test of level o for distinguishing the hypotheses H® and Ht. In what follows we
denote this test by d;*. The functions c;(c) and ¢;(c) as well as the type II error
probability 3(J;'*) can be obtained by applying results of Section 1.1.
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According to the Neyman—Pearson fundamental lemma, the point (a, 3(5; %))
belongs to the boundary of the set 9 for all a € [0, 1]. In various cases where the
level o depends on t, one can study the behavior of the set 91 as t — oo instead of
that of B(6;) as t — oco.

Below we consider the Neyman—Pearson test ¢ of level a; that depends,
generally speaking, on ¢t. We will use the notation ¢; = c;(a;) and e = e¢(ay).

+,0¢
t

Moreover we put A; = In z; and d; = In¢; assuming that In0 = —co. Then the test
8,7 can be rewritten as
(2.1.12) 65 = I(Ay > di) + eI (Mg = dy).

Consider the Bayes test 6] with respect to the a priori distribution (7,1 — )
for distinguishing the hypotheses H' and H* that minimizes the error probability
ex(8:) (see (1.1.32)) in the class X* of all tests 4.

Denote by §; the minimaz test for distinguishing the hypotheses H and Ht
that minimizes a(d;) V B(8;) in the class Tt of all tests &;. It follows from Theo-
rem 1.2.4 that the likelihood ratio test &, is minimax if a(d65°) = B(d5*¢). Accord-
ing to (2.1.11) and (2.1.12) the Neyman-Pearson test is minimax if 8(6;"%*) = a.
Moreover we learned in Section 1.2 that the Neyman-Pearson test §;** coincides
with some Bayes test 4;*, and the probability m; depends, generally speaking, on t.

Below we study the asymptotic behavior (as t — o) of the Neyman—Pearson
test &;"**, the minimax &} test, and the Bayes 87 test. The asymptotic behavior
of these tests depends on the behavior of the set N which in turn is determined
by the behavior of the measures P* and Pt as t — oo (see Section 1.1). In the next
section we consider all the possible types of the asymptotic behavior of the set 9t
ast — oo.

2.2. Types of the asymptotic distinguishability of
families of hypotheses. The characterization of types

Consider two families of statistical hypotheses (H*) and (H*) and the two cor-
responding families of probability measures (P?) and (5t). Here and throughout
this section the symbols (H*) and (H*) stand for (H)scr , and (H)ser +» Tespec-
tively. For other families of measures, random variables, etc. we follow the same
notation to make them shorter.

Below we define the types of the asymptotic distinguishability of families of
hypotheses (H?) and (H) as t — co. Our approach is based on the asymptotic
behavior of sets N* as t — oo.

The distance in variance between measures. The Kakutani—-Hellinger
distance and Hellinger integrals. To state the main results on the characteri-
zation of types we need the following notions.

DEFINITION 2.2.1. Let P and P? be two measures. The full variation of the
charge P* — Pi is called the distance in variance between measures P* and Pt and is
denoted by ||Pt — P*||, namely

(2.2.1) [Pt — P¥|| = E5 3¢ — 3¢l

where Efg stands for the expectation with respect to the measure Q.
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DEFINITION 2.2.2. Let
~ 1 . 2
(22.2) PP = 2B (37 -5%)

The nonnegative numker p(P, ﬁ‘) is called the Kakutani—-Hellinger distance between
the measures P* and Pt.

DEFINITION 2.2.3. Let

(2.2.3) H(e; Pt PY) = EH35ai—.
Here we put
(Oa €<0,3 =0,and 3 =0,
00, €<0,3 =0, and 3 >0,
5 1—-e _ J 3tI(gt > 0), e=0,
tdt =9 -
31(3:>0), e=1,
0, €>1,3=0,and 3; =0,
\ 00, €>1,3 =0,and 3 > 0.

Then H(g; Pt, P*) is well defined for all € and ¢. The number H(; P, P*) is called
the Hellinger integral of order € € R = (—00,00) for the measures Pt and Pt. The
number H(1/2; P, P?) is called the Hellinger integral for the measures Pt and P
and is denoted by H(Pt, P?).

Properties of ||Pt — Pt||, p(Pt, Pt), and H(e; Pt,P!) defined by (2.2.1), (2.2.2),
and (2.2.3), respectively, can be found in [28, 33, 35, 47]. In particular, neither
[Pt = P|| nor p(Pt, Pt) nor H(e; Pt,P?) depend on the dominating measure Q.

Below we give an auxiliary result on some relationships between these notions.

LEMMA 2.2.1. We have
e24)  2(1-H(FPY)) <P P < \/8 (1-1 (7)),

(2.2.5) IP* —PY| < 24/1- B2 (ﬁt, P).

In particular

(2.2.6) 20%(P,P?) < ||IPt — Pt|| < VB p(Pt, PY).

PROOF. By the definitions of the Kakutani-Hellinger distance and Hellinger
integral

(2.2.7) p*(Pt,Pt) = 1 — H(Pt,PY).
Thus inequalities (2.2.6) follow from (2.2.4). Let us prove inequalities (2.2.4)
and (2.2.5).

Since 3; + 3: = 2, it follows from the Jensen inequality that

1 = 1,
SIP* = Pl = SEQ[5 — 3¢l = EQIL — 3¢l < \/EG(1 — 30)?

= \/1 - EtQ3t(2 —3t) = \/1 - EtQ3t3t-
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It follows from the Cauchy-Bunyakovskil inequality that

EQV/3ede < \/E%,

and thus

1 D ~ ~
2P =Pl < /1 - B < V1= (Ev/adn)’ = /1 - 2P, P,

that is, (2.2.5) is proved.
Since H(Pt,P?) < 1, we have

1- B*(F,PY) = (1- H(P,PY) (1+ H(PY, P) <2(1- HE,PY).

This estimate together with (2.2.5) implies the second inequality in (2.2.4).
Since (a — b)% < |a? — b?| for a > 0 and b > 0, we get

1
(2.2.8) 5(\/2—\/2—z)25|z—1|, 0<z<2.
Using (2.2.7), equality 3; + 3: = 2, and inequality (2.2.8) we obtain
~ = 1
1— H(Pt, P*) = p%(P!,P?) = iEtQ(\/;,—t —/1—3)?

1 5 1 -
< Eqlae —1]= 5Else —3el = SIIP* — P,

that is, the first inequality in (2.2.4) is also proved. O
Let
(2.29) IP* APE|| = inf {a(ds) + B(5:): 6 € =} .

It is clear that ||P* A Pt|| is the doubled error of the Bayes test with respect to the
a priori distribution (1/2,1/2).

LEMMA 2.2.2. We have
(2:2.10) IP* AP =1~ 2|t P,

PROOF. Since the Bayes test with respect to the a priori distribution (1/2,1/2)
can be represented as 6,"" = I(z > 1), relation (2.2.9) implies

IP* AP = E'T(2e 2 1) + E*(1 — (2 2 1))
(2.2.11) =1+EQsel (2 > 1) — Eb3el (2 > 1)
=1- EtQ(gt —3:)I(z > 1).
Since EtQ(jt —3¢t) = 0, we obtain from (2.2.1) that
IP* = PYll = EGGe — 30) (2 2 1) + E(ae — )1 (2¢ < 1)
= 2E6 (e — 3e)I(2 > 1).
Now (2.2.11) and (2.2.12) imply equality (2.2.10). O

(2.2.12)
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REMARK 2.2.1. Similarly to (2.2.11) we prove that

[Pt AP = E I (2 > 1) + EtI (2 < 1) = ES3ed (2 > 1) + ES5ed (2 < 1)
= EtQ(ét A3t)

where a A b stands for the minimum of two numbers a and b. The latter equality
makes the notation ||P* A Pt|| clear.

The complete asymptotic distinguishability. First we give some neces-
sary definitions.

DEFINITION 2.2.4. Families of hypotheses (H*) and (H?) are called completely
asymptotically distinguishable (denoted by (H®) A (H?)) if there exist a sequence
tn 1 00, n — 00, and tests J;, € ¥*» such that

(2.2.13) a(é,)—0 and P(6,) —0 asn— oo.

DEFINITION 2.2.5. Families of measuresN(Pt) and (P*) are called completely
asymptotically separable (denoted by (P?) A (P?)) if there exist a sequence t,, 1 0o,
n — oo, and sets A, € &' such that

(2.2.14) Pi»(A,) — 0 and ptn (An) =1 asn — oo.

The following result contains a characterization of the complete asymptotic
distinguishability (H*) A (H*).

THEOREM 2.2.1. The following statements are equivalent:
a) (HY) o (HY);
b) (P& (F);
¢) limsup,_, Pt(z; > N) =1 for all N < oo
d) limsup,_,,, P*(2 < N) =1 for all N > 0;
e) liminfs e [|P* A Pl = 0;
f) liminf,.co H(e; P, P*) =0 for all € € (0,1);
g) limsup,_,. ||P* —~Pt|| =2;
h) limsup,_, p(P*P*) =1.
PROOF. a) = b). Let tn T 00 as n — oo and let tests d¢, € Y= be such that
o(8:,) — 0 and B(6;,) — 0. Put Ap = I(é;, > 7) for 0 <y < 1. By the Chebyshev
inequality we have

ptr(An) = P (8, > 7) <7 'a(8;,) — 0.
Similarly we obtain
Pin (8, <v) SP"(1—-6, > 1-9) <(1-7)7"8(s,) -0,

that is, Pt»(A4,) — 1. Thus the implication a) = b) is proved.
b) = d). Let t, 1 00 8 n — 0o and let sets A, € £’ be such that

(2.2.15) Pt (4n) >0,  P'(4,) > L
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By the Lebesgue decomposition (2.1.7) we have for all A € £¢ that
P'(4) = PYAN{Z < N}) +PHAN{Z > N})

(2.2.16) =/ % dPt + PY(AN {Z, > N}) < NP'(A) + P{(% > N)
An{Z; <N}

for 0 < N < oo. Relations (2.2.15) and estimate (2.2.16) for A = AS = X*\ A, and
t = t,, imply that P*»(%;, > N) — 1 for all N € (0, 00), whence we obtain d), since
(2.2.17) P(Z; > N) = P*(2; < N71).

d) = f). For all ¢, A € (0,1) and y > 0 we have

H(e; P, PY) = ER3sar *I(e < 7) + ES3538 °1(Ge > 71,3¢ <))
+ES353: TG > 7,8 > N)
<YEQs: %+ AUTUEQHE + EbaesfIGe > 7,5t > N)
<Y+ ANTEHERIG > )
<A AT (B (B G 2 ) °
<A HNTEH PG > ),

(2.2.18)

since Eg;}‘e <1 and Egif < 1 by the Holder inequality, and E*z < 1 by (2.1.8)
for n = 1.

Equality (2.2.17) and relation d) imply that limsup,_,., P*(Z > N) = 1. Since
3t + 3t = 2, we have Z; = 2/3; — 1, whence

. t/~ _
(2.2.19) hgglf P'G: >v)=0
for all v > 0. It follows from (2.2.18) and (2.2.19) that
litmian(e; Pt PY) < 4f + A1
—00

Since v and A are arbitrary, the latter inequality proves f).
f) = h). Follows from (2.2.7).
h) = g). This implication follows from the first inequality in (2.2.6) and

Pt - P <2

(the latter estimate holds in view of (2.2.1)).

g) = e). Follows from inequality (2.2.10).

e) = a). Relation (2.2.9) and Theorem 1.2.2 for N = 2, 4;; = 1 — ¢;;, and
T =y = 1/2 yield

(2:2.20) IP* AP = a(8) + B(6:)

where 6;"' = I(z; > 1). Condition ) and equality (2.2.20) imply that there exists
a sequence t, T 00, n — 00, such that a(étl;l) — 0 and ﬂ(dtl;‘l) — 0 as n — oo, that
is, condition a) holds.

Therefore conditions a), b), d), e), f), g), and h) are equivalent. It remains to
prove that conditions b) and c) are equivalent.



210 2. ASYMPTOTIC DISTINGUISHABILITY OF SIMPLE HYPOTHESES

b) = c). Let t, — 0o as n — oo and let sets A, € #' be such that relations
(2.2.14) hold. The Lebesgue decomposition (2.1.6) for all A € #* and 0 < N < o©
imply similarly to (2.2.16) that

Pt(4) < NPY(A) + Pi(z > N).
This together with (2.2.14) yields c).
c) = b). Condition c) implies that there exists a sequence t, T 0o, n — o0,
such that _
Pt”(ztn >n)>1- n~ L.
Thus Pt (2t, >n) — 1 as n — 00. On the other hand, the Chebyshev inequality
implies that
Pt (2, >n) <n lErz, <n7l,
since E'z < 1 in view of (2.1.8). This implies that P**(z,, > n) — 0 as n — oo
and condition b) is proved. O

REMARK 2.2.2. If (H*) A (H?), then there exist a sequence t, T 00, n — 00,
and tests &;, € X*» such that conditions (2.2.13) hold. Then, obviously,

oNir — [0,1] x [0,1]
as t — oo where the set 91 is defined by (2.1.10). On the other hand, if
(P a (P,
then there exist a sequence t, 1 0o, n — oo, and sets A, € &'~ such that re-
lations (2.2.14) hold. These relations mean that the sequences of measures pt»
and P», n=1,2,..., are asymptotically singular (cf. (1.1.9)).

Now we define the counterparts of the notions of the complete asymptotic
distinguishability (H*) A (H*) and complete asymptotic separability (P*) A (P?).

DEFINITION 2.2.6. We say that families of hypotheses (H*) and (H*) are not
completely asymptotically distinguishable (denoted by (H*)A (H®)) if there is no
sequence t,, T 00, n — 0o, and tests &, € L'~ such that relations (2.2.13) hold.

DEFINITION 2.2.7. We say that families of measures (P*) and (P') are not
completely asymptotically separable (denoted by (P*) A (P?)) if there is no sequence
tn T 00, n — 00, and sets A, € &' such that relations (2.2.14) hold.

REMARK 2.2.3. If (H') A (H), then according to Definition 2.2.6
liminf B(é,) > 0
n—oo

for all sequences t, T 00, n — o0, and all tests &;, € X~ such that a(d;,) — 0 as
n — co. A similar remark regarding the notion (P*) A (P*) also holds. Therefore
we have the following dichotomy: either (H*) A (H®) or (H*) A (H?) (respectively,
either (P*) A (P) or (P*) & (5‘)) Since Theorem 2.2.1 provides the necessary and
sufficient conditions for (H!) A (H?), it can be used to characterize the notion
(H') & (HY). For example, (H*) A (H!) <= liminf;_o [|P* A Pt|| > 0.

The complete asymptotic indistinguishability. Now we consider an as-
ymptotic analog of the indistinguishability of hypotheses (cf. (1.1.8)).
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DEFINITION 2.2.8. We say that families of hypotheses (H:) and (H t) are com-
pletely asymptotically indistinguishable (denoted by (H?) & (H?)) if

(2.2.21) Jim o) =@ = lim (&) =1-a

for all @ € [0, 1] and all families (8;) of tests §; € 3¢ such that the limit lim;_, o, c(8¢)
exists.

DEFINITION 2.2.9. We say that families of measures (P) and (Pt) are com-
pletely asymptotically inseparable (denoted by (P?) = (P?)) if

(2.2.22) Jim P(4;) = = lim Pt(A) =a

for all @ € [0,1] and families (A;) of sets A; € B¢ such that the limit lim; o, P*(A4;)
exists.

The following result contains a characterization of the complete asymptotic
indistinguishability of families of hypotheses.

THEOREM 2.2.2. The following statements are equivalent:
8) (HY) = (HY)

b) (PY) = (PY);

¢) limy—,o0 PX(|At] > ) =0 for all v > 0;

d) limy_,e PE(JAs| > 7) = 0 for all v > 0;

€) limy_,o0o H(e; Pt,Pt) =1 for all € € (0,1);

£) limg_o0 p(P?, Pt) = 0;

g) limi oo [Pt — P = 0;

h) limg o [|PE AP = 1.

PROOF. a) = b). Let a be an arbitrary number of the interval [0,1] and
let (A;) be an arbitrary family of sets A; € ¢ such that P*(4;) — o as t — oo.
The test 6; = I(A;) is such that a(d;) = P*(4;) — a. Then condition a) implies
that P*(A;) = 1 — B(6;) — a as t — oo, that is, the implication (2.2.22) is proved.

b) = ¢). We prove this implication by contradiction. Assume that condition b)
holds and condition ¢) does not hold. Then there exist a number vy > 0 and a
sequence (t,) such that ¢, — oo and P*(|A,| > 7) — a > 0 as n — oco. Thus
there are sequences (m) C (n) and (k) C (n) such that either P*™(A; > ) — b
as m — oo for some constant b > 0, or P* (A, < —7v0) — c as k — oo for some
constant ¢ > 0.

Let P™™(A;, > v) — b > 0 as m — oo. Then condition b) implies that
ptm (At,, > %) — b as m — oo. From the Lebesgue decomposition (2.1.6) we
obtain

Bt(As > 7o) = / exp(Ay) dP* + PE(A, = o00) > €PH(A, > o).
(At>v0)
Passing to the limit in this inequality along the sequence (t,,) we get b > €7°b.
Since b > 0 and 79 > 0, we obtain the contradiction b > b. Now we let
P*(At, < —70) 2 ¢>0

as k — oo and arrive at a similar contradiction. These contradictions prove the
implication b) = c).
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¢) = d). Using the Lebesgue decomposition (2.1.6) we obtain

PUAI <9 2PAI <) = [ exp(A)dP* 2 e 7 PH(IA < )
(1Ae1<)
for ally > 0 and v’ € (0,+), whence liminf, o, P*(JA;| < ) > e~ by condition c).
Passing to the limit as 4/ — 0 we prove that Pt(JA¢] < 7) — 1 as ¢t — oo for all
v > 0, that is, condition d) holds.
d) = e). Let € € (0,1) and 7 > 0. Since (JA¢| <) C (3¢ > 0, 3: > 0), it holds
that

H(e; P*,PY) > Eb 3531 I(JAe] <)
= EQ 3z I(|A] <) 2 e«TPY(|A < ).
In view of d) this implies that
(2.2.23) lim inf H(e; Pt,Pt) > (s~

for all € € (0,1) and v > 0. Passing to the limit in (2.2.23) as v — 0 and taking
into account the inequality H(e; Pt, P%) < 1 we obtain condition e).

e) = f). Follows from equality (2.2.7).

f) = g). Follows from inequalities (2.2.6).

g) = h). Follows from equality (2.2.10).

h) = a). Let o be an arbitrary number of the interval [0,1] and let (5;) be an
arbitrary family of tests §; € Xt such that a(d;) — « as t — co. By Lemma 1.1.3
the set 91! is symmetric about the point (1/2, 1/2), so that it contains both points
(o, B) and (1 — @, 1 — B). Thus

(2.2.24) inf {(8¢) + B(8¢): 6 € £'} = 2 — sup {@(8:) + B(8¢): 6; € T'} .
Now we obtain from h) that

(2.2.25) tll'ngo sup{a(dt) + B(8:):6: € Z‘t} =1.

Applying the inequality

inf{a(6;) + B(8:): 6 € =t} < a(8s) + B(52)
< sup{a(6;) + B(8:): 6: € =*},

condition h), and relation (2.2.25) we prove that B(8:) = 1 — o as t — oo, that is,
the implication (2.2.21) is proved. g

(2.2.26)

Definitions 2.2.8 and 2.2.9 are nonsymmetric with respect to a(d;) and 3(d;).
Nevertheless using (2.2.24)—(2.2.26) one can prove the following result showing that
(2.2.21) and (2.2.22) are, in fact, equivalent.

LEMMA 2.2.3. If (H?) = (H?), then
i!lirro1°,8(<‘)}) =p = Jlim a(d)=1-p0

for all numbers B € [0,1] and all families (5;) of tests 0 € L* such that the limit
lim; 00 B(0:) exists.



2.2. TYPES OF THE ASYMPTOTIC DISTINGUISHABILITY 213
If (P*) = (PY), then
i Dt — : t —
t&rgloP (At) =a = tl_lfl;P (A) =a

for all numbers o € [0,1] and for all families (A:) of sets Ay € Bt such that the
lzmzt hmt__,oo Pt (At) exists.

REMARK 2.2.4. Definition 2.2.8 in the case of (H?) 2 (H*) implies that

Nt >N ast— oo,
that is, the set 2 “approaches”, as t — oo, the diagonal of the square
[0,1] x [0, 1]

joining its corners L 1,0) and (0,1). The measures Pt and Pt corresponding to the hy-
potheses H® and H?, respectively, asymptotically coincide in this case (cf. (1.1.8)).

Contiguous families of hypotheses. Now we consider families of hypotheses
(H') and (H?®) whose asymptotic behavior differs from the complete asymptotic
indistinguishability (H?®) & (I:j *) and complete asymptotic distinguishability (H?) A
(HY).

DEFINITION 2.2.10. We say that a family of hypotheses (fl *) is contiguous to
a family of hypotheses (H*) (denoted by (H) < (H)) if 8(6;) — 1 as t — oo for

all tests 6, € X* such that a(§;) — 0 as t — oco. Otherwise, that is, if there exists
a family (4;) of tests §; € Xt such that

lim a(é:) =0, liminf 8(6:) < 1,
t—o0 t—o0

we say that a family of hypotheses (I:T t) is noncontiguous to a family of hypotheses
(H:) (denoted by (H®) < (Hy)).

DEFINITION 2.2.11. We say that a family of measures (ﬁt) is contiguous to a
family (P*) (denoted by (Pt) <t (P!)) if Pt(A4;) — 0 as t — oo for all sets A, € B*
such that P*(4;) — 0 as t — co. Otherwise, that is, if there exists a family (A;) of
sets A; € 98t such that

lim Pt(4;) =0,  limsupP*(4;) >0,
t—oo t—oo

we say that a family of measures (ﬁt) is noncontiguous to a family of measures (Py)
(denoted by (P*) < (Py)).

Let (X%, &), t € R4, be a family of measurable spaces, let S be a probability
measure on (X*,%%), and let ¢;, t € R, be a measurable function defined on
(Xt,%*) and assuming values in R = [—o0, o0].

DEFINITION 2.2.12. We say that a family ((;) is dense with respect to a family
of measures (S*) (denoted by (|S?)) if

lim limsup S¥(|¢:) > N) =0.
N—oo teo



214 2. ASYMPTOTIC DISTINGUISHABILITY OF SIMPLE HYPOTHESES

DEFINITION 2.2.13. We say that a family ((:) is uniformly integrable with
respect to a family of measures (St) if

lim sup /I(|Ct| > N)|¢:| dS* = 0.
N—'°°tER+

The characterization of (H?) <t (H?) is given in the following result.

THEOREM 2.2.3. The following statements are equivalent:
a) (HY) < (HY);
b) (P*) < (PY);
¢) limy—oo Pt(2: = 00) = 0 and the family (2) is uniformly integrable with
respect to the family of measures (P?);
d) (z[P*);
e) (1/3:P*); B
f) limgq; liminf,— oo H(e; P, P?) = 1.
PROOF. a) = b). Let A; € #* and P*(4;) — 0 as t — co. Then a(8;) — 0 as
t — oo for the test §; = I(A:). Condition a) implies that Pt(A)) =1-P(6:) —» 0
as t — oo.
b) = a). Let (§;) be an arbitrary family of tests such that a(d;) — 0 as ¢t — oo,
and let € be an arbitrary positive number. Put A = I(d; > €). Then

Pt(Af) <eg! /A‘ 8 dPt < e‘la(dt),

whence it follows that P*(A5) — 0 as t — oo for all ¢ > 0. This together with
condition b) implies that P*(A$) — 0 as t — oo for all € > 0. Since

1— B(d) = / 5, dP* +f 5, dPt < PH(AS) + ¢
Af (Af)e
and ¢ is arbitrary, we deduce that §(8;) — 1 as t — oo.

b) = c). Since P*(2; = c0) = 0, condition b) implies that Pt(2t = 00) — 0 as
t — 00. A family (2;) is uniformly integrable with respect to (P?) if and only if

(2.2.27) sup / 2z dP* < oo,
teER4
(2228) i PY(4) -0 for A, € &', then / 2dPt =0
A

(see Lemma 2.6.2 in [47]). It follows from the Lebesgue decomposition that
/ 2 dPt < PH(Ay) < 1.
A

This implies (2.2.27), while condition b) implies (2.2.28).
¢) = d). According to the Lebesgue decomposition

Pt(z > N) = / 2z dPt + Pt(2 = 00).
(z:>N)

This together with condition c) implies d).
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d) = b). Let A; € B* be sets such that P*(4;) — 0 as ¢t — co. According to
the Lebesgue decomposition

Pt(A;) = PH(As N (2¢ < N)) = P(A: N (2 > N))
S/ thpt+i5t(2't >N) SNPt(At)-f-ist(Zt >N)
Agn(Zg<N)

Using the latter result and condition d) we prove that Pt(4;) — 0 as t — oo.
d) & e). Follows from equality z; = 2/3: — 1.
e) = f). Let v > 0. Then for € € (0,1)

1—¢
Hie; P, PY) > ES 3 <§7> TG 2 13 > 0) = EGe/3e) 1 (3e 2 )

> (7/2)1 P (3¢ > ),

since 3; + 3; = 2. Thus for all ¥ > 0

l—¢
pt pt Y s oDt s oDt
151%111 lngg)lfH(e, P, P > hmT11nf <2> llgélgfp (3:>7) > llﬂg}fP (3¢ > 7).
Condition e) implies that lim. o lim;—,oo ﬁt(gt > ) = 1, therefore the latter result
and inequality H(e; Pt, P*) < 1 prove condition f).

f) = e). For all ¢, € (0,1) and v > 0 we obtain similarly to (2.2.18) that

H(e; P, PY) <M+ X + B Ge/3) (e > 7,5 > N)
<AITE AT+ (/NP > ).
Then for all €, A € (0,1) we get

A

- A\ 5
o A .. .pt pty _ _N
llmlnflltrggolfP(ztz'y)Z(2) htrgg)lfH(e,P,P) ol—¢"

740
Passing to the limit in this inequality as € T 1 and using condition f), then passing
to the limit as A | 0 we prove that

T . Dt > >
lll}yll{]nf htrfl_,,l,rolfp (3t=>7) 21,
whence condition e) follows. a

REMARK 2.2.5. If (H?) <t (H*) and 91! — M as t — oo, then according to
Definition 2.2.10 the limit set 91 does not contain any point of the interval of the
straight line joining the points (0,0) and (0, 1), except for the point (0, 1).

DEFINITION 2.2.14. If (H*) < (H,) and (H?) < (Hy), then the families of
hypotheses (H') and (H*) are called mutually contiguous (denoted by (H?) <>
(Hy)). If (H*) S (H,) and (H*) S (H,), then they are called mutually noncontiguous
(denoted by (H*) I (Hy)). If either (H*) 3 (H;) or (H) < (Hy), then we say that
the families of hypotheses (H*) and (H*) are not mutually contiguous (denoted by
(H") <5 (Hy)).
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DEFINITION 2.2.15. If (Pt) < (P;) and (P!) < (P;), then the families of mea-
sures (Pt) and (P?) are called mutually contiguous (denoted by (Pt) <i> (Py)). If
(ﬁt) J(P;) and (PH) S (5t), then they are called mutually noncontiguous (denoted
by (P%) G5 (Py)). If either (5‘) G (Py) or (Pt)J(Py), then we say that the families
of measures (P*) and (ﬁt) are not mutually contiguous (denoted by (P?) 5> (Py)).

REMARK 2.2.6. Theorem 2.2.3 implies the characterization of all types
(EYI(HY), (H)<>(HY), (H)IS(H'), and (H)I>(H).

For example,
(HHI(HY) <= li%'xlllitmian(e; P, P%) < 1.
€ —00

Further results on the contiguous families can be found in [21, 22, 37, 45].

The whole range of types of the asymptotic distinguishability. Using
the notions of the asymptotic distinguishability of families of hypotheses we ob-
tain the whole range of types of the asymptotic distinguishability of families of
hypotheses (H?) and (H*). We will use the following conditions:

ag) (H®)=(H");

a) (H) <> (H);

b) (H) < (HY), (H)I(HY);
o) (HY)I(HY), (H") < (HY);
d) (H")3E (HY), (HY) B (HY);
e) (HY)a(HY).

DEFINITION 2.2.16. We say that the the asymptotic distinguishability of fam-
ilies of hypotheses (H®) and (H') is of type ag (vespectively, of type a, b, ¢, d,
or e), if condition ag) (respectively a), b), ¢), d), or €)) holds.

Note that the types a, b, c, d, and e are disjoint and form the whole range
of types of the asymptotic distinguishability of families of hypotheses. Since ag) =
a), type ap is a subtype of type a. If the type a; is defined as a subtype of the
type a for which condition ag) does not hold, then the types ag, a;, b, ¢, d, and e
still form the whole range of disjoint types of the asymptotic distinguishability of
families of hypotheses (H*) and (H?).

A characterization of types e and ag is given in Theorems 2.2.1 and 2.2.2,
respectively. A characterization of other types can easily be obtained by combining
Theorems 2.2.1-2.2.3 and taking into account Remarks 2.2.3 and 2.2.6. We do not
give this characterization and leave it to the reader.

EXAMPLE 2.2.1. Let an observation be the vector £ = (£,1,6n2,...,6nn)
where £,1,&n2, - - - , Enn are independent random variables such that the distribution

of &, is N (ani, 1) under the hypothesis H™ or N (an;, 1) under the hypothesis Hn,
Then the likelihood ratio z,(z), z € R™, is the density of the measure P™ corre-
sponding to the hypothesis H™ with respect to the measure P* corresponding to
the hypothesis H™. The likelihood ratio is given by

zn(z) = exp (Z(Em' — Qni)Ti — % Z (a3 - a’?vi))

i=1 =1
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where = (21,Z2,...,Zs). Put Ay = Ap(€™) for Ap(z) = Inz,(z). It is clear
that

(2.2.29) L) AH™) =N (—%vﬁ,vﬁ) :
(2230 £O A" = (Go2.02)
where
(2.2.31) vi = i(ani — ani)”

P

and £ (() An,|H™) is the distribution of A, under the hypothesis H". From equality
(2.2.29) we derive that

(2.2.32) P*(An < N) = & (”—" + E) ,
2 Un
whence it follows by Theorem 2.2.1 that
(2.2.33) (H™) A (H") < limsupv, = co.
n—oo
Using equality (2.2.30) we obtain
(2.2.34) P(A, > N) =& (% - vﬁ) ,
whence
(2.2.35) limsupv, < 00 = (H") <1 (H™)

n—oo

in view of Theorem 2.2.3. By contradiction, we derive from (2.2.33) that

(2.2.36) (H™) < (H") = limsupv, < co.

n—oo

Analogously, using (2.2.32) and Theorem 2.2.3 with the hypotheses H™ and H"
interchanged we obtain

(2.2.37) (H") < (H™) <= limsupu, < 0.

n—oo

Combining (2.2.35)—(2.2.37) we prove that

(2.2.38) (H™) <> (H") <= limsupv, < co.
n—oo
It follows from (2.2.33) and (2.2.38) that either (H™) A (H™) or (H™) <> (H™). In

other words, either the distinguishability is of type a or of type e. Moreover using
Theorem 2.2.2 and relations (2.2.29) and (2.2.30) one can show that

(H™ = (H™) < limsupw, = 0.

n—oo
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Therefore either the distinguishability is of type ag or of type a; or of type e.
Namely
type ag < limsupv, =0,
n—0o0

type a3 <= 0 < limsup v, < oo,

n-—=00
type e <= limsupv, = oo.

n—o0

Further results on types of the asymptotic distinguishability of families of hy-
potheses and various examples can be found in [37].

2.3. Complete asymptotic distinguishability
under the strong law of large numbers

Consider the Neyman—Pearson test 8;** of level o; € [0,1] defined by (2.1.12)
and assume that the complete asymptotic distinguishability (H*) A (H*) holds. By
Theorem 2.2.1, we have

(2.3.1) wﬂmﬁﬁ¢¢@ﬁgp@h+m&ﬂ=ofmwce@w)

where 67! = I(2; > c) is the likelihood ratio test defined by (2.1.11).

This implies that if (H?) A (H?), for any ¢ € (0, c0) there exists a sequence (t,)
for the test ;'™ with a; = a(65") such that t, — 0o, oz, — 0, and B(6;"**) = 0
as n — 00. By equivalence (2.3.1), obtaining more refined properties of the function
B(6*) requires that we consider a more stringent constraint than (H?) A (H?).

Relative entropy and the law of large numbers. Consider the following
condition:
Al. lim¢eo P(Ix; *At + 1| > ) = 0 for any v > 0 where ; is a nonrandom
positive function such that y; — oo as ¢t — oo.
It is easy to see that, in view of Theorem 2.2.1,

Al = (H) A (HY),
that is, the complete asymptotic distinguishability holds under condition Al.

DEFINITION 2.3.1. The number
(23.2) I(P*IP*) = E&3: In(3e/3¢)

is called the relative entropy of a measure P* with respect to a measure Pt. We agree
that 3; In(3:/3:) equals 0 if 3; = 0 and equals oo if 3; = 0. Then the relative entropy
is well defined for all £.

The relative entropy I (Ptlﬁt) is often called the Kullback-Leibler divergence,
or distance or deviation (7, 9, 11, 33], or the Kullback-Leibler information defined

for the measures Pt and P* [1, 33].
LEMMA 2.3.1. We have

(2.3.3) I(Pt|Pt) = E'InZ, = —E'Inz,
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where 2, and Z; are the likelihood ratios defined by (2.1.2). Moreover
(2.3.4) I(P!|P?) = E'% In7Z,
if Pt < Pt and I(P*|P*) = oo if Pt & Pt.
PROOF. The first equality in (2.3.3) follows immediately from definitions (2.3.2)
and (2.1.2). The second equality in (2.3.3) holds, since 2; = z;” ! (Ptas.).
If Pt <« Pt, then 2; = dPt/dIit (P*-a.s.). Thus equality (2.3.4) follows from the
first equality in (2.3.3). If P* & P, then P*(3; = 0) > 0. Therefore
P3¢ > 0,5: =0) >0
implying that Q%(3: > 0,3: = 0) > 0. Then definition (2.3.2) gives
I(PY|P!) = oo. ]

LEMMA 2.3.2. The relative entropy I (P|P?) of a measure P* with respect to a
measure Pt is nonnegative. Moreover I(P*|P?) = 0 if and only if P* = Pt.

PROOF. By Lemma 2.3.1, it is sufficient to consider the case P! < Pt in view
of equality (2.3.4). Put ¢(t) = tlnt. Equality (2.3.4) and the Jensen inequality
imply that

I(P'PY) = E'o(Z) > p(E'%) = p(1) = 0
where the inequality becomes an equality if and only if Z; = const = a (Bt—a.s.).
Note that a = EtZ = 1 in this case. This means that if the equality holds, we have
for any A € #*

PH(A) = /A %dP* = /A dPt = B(4),
that is, Pt = Pt. O

REMARK 2.3.1. Condition Al is known as relative stability of A; as t — oo
and is the most natural and general form of the law of large numbers [20]. If the

relative entropy I(P%|Pt) is finite for any ¢ € R, and I(P!|P*) — oo as t — oo,
then, by putting x; = I(P%|Pt), condition Al can be transformed into the following
form resembling the law of large numbers:

_Et
lim P* ( A—EA
t—oo0 Xt
where, by (2.3.3), we have E*A, = —I(Pt|P?).

The following result describes the behavior of the points (@;,0) and (0, 8;) of
the set 91 under the law of large numbers.

>e)=0 foralle >0

LEMMA 2.3.3. The following relations hold:
(2.3.5) AL lim & =1,
(2.3.6) Al= liminfx; ' InfB, > 1.

—00
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PRrOOF. Implication (2.3.5) follows from (2.1.4) and the estimate
P(A; < —ax:) > PH(A; = —00) = P¥(2; = 0)

where 1 < a < co. By the Lebesgue decomposition-(2.1.7) and in view of equality
(2.1.5), we obtain for any a € (1,00) that

PY(A; > —ax:) < et EfeMey (A > —ax:) < e®XtE'z = eax‘ﬁt(zt < 00) = e*Xt 3,
which together with condition Al yields
iminf x; ' In g, > —a.
htrgglfxt Ing;, > —a

Approaching the limit as ¢ — 1, we obtain implication (2.3.6). O

REMARK 2.3.2. By equality (1.1.50), implication (2.3.6) is equivalent to

A1 = liminf x; 'InB(6;°) > —1.

Behavior of the Neyman—Pearson test under the law of large num-
bers. Introduce the following conditions:

al) liminf oy > 0; a2) limsupa; < 1;
t—oo t—o0

dl) limsup x; 'd; < —1; d2) liminf x;td; > —1;
t—oo t—o00

B1) limsupx; 'nB(6%) < -1;  pB2) litminfxt_llnﬁ(éf'a‘) > -1,
t—o0 —00

where ; is the normalizing term appearing in the law of large numbers Al.
The following result establishes relationships between the behavior of oy, di,
and B(6;"**) under condition Al.

THEOREM 2.3.1. The following implications hold:

(2.3.7) Al,el = dl = f1,
(2.3.8) Ale2 = 2 = d2.

PRrROOF. The implication Al,al = dl is proved by contradiction. Representa-
tion (2.1.12) implies
(2.3.9) ar = PY(Y, > y) + &P (Y = )

where V; = x; 'A; and y; = x; d;.

Let (t») be a sequence such that ¢, — oo and y;, — 7 = limsup,_,, ¥: as
n — 00. Assume that @ = liminf; . oz > 0 and condition Al holds, but 7 > —1.
Then, by condition Al, we obtain that Pt(Ytn > y:,) — 0 as n — co. On the other
hand, the inequality @ > 0 and equality (2.3.9) imply that

lim P™(Y;, >y:,) > liminf oy, > liminf oy = @ > 0.
n—o0o0 n—o0 t—oo

The contradiction we have obtained proves the implication Al, al = d1.



2.3. COMPLETE ASYMPTOTIC DISTINGUISHABILITY UNDER THE SLLN 221

Using equality (2.1.8) we obtain that

By = BH(1 - 6%) = E*(1 — 6} )z + E4(1 — 6;7°) I(2 = 00)

2.3.10
(2:3.10) =EN(1—67)z < e*,

proving the implications d1 = 81 and 2 = d2.

Now we prove the implication Al,a2 = 2. Let a > 1 and v > 0 be arbitrary
numbers and let S; = {x;'A; > —a}. In view of condition Al, there exists a
number ty = to(a,y) depending on a and - such that P*(SF) < « for all ¢ > to.
Therefore we obtain from (2.1.8) for ¢ > t( that

(2.3.11) B& ™) = E z(1 - 67°) 2 E* I(S,) z(1 — &)
) > e E I(S)(1 - &™) 2 e (1 - @y — ),

In view of condition o2 and since a > 1 and y > 0 are arbitrary, relation (2.3.11)
proves the implication Al, a2 = (2. (]

Implications (2.3.7) and (2.3.8) give the following result.

COROLLARY 2.3.1. If the law of large numbers Al holds and the level o sat-
isfies conditions al end a2, then

(2.3.12) Jim x; ' In B ) = —1.

Corollary 2.3.1 implies that if the law of large numbers Al holds for the
Neyman-Pearson test d;"** whose level a; tends to a limit o € (0,1) as t — oo,
then the rate of decay of the type II error probability B(5;"**) does not depend

on a. More specifically, (2.3.12) means that
(2.3.13) A& ™) = exp(—bxe(1 +0(1)),  t— o0,
where b =1 for all o € (0,1).

Independent observations. Stein’s lemma. Assume that an observation
is the vector £¢M™ = (én1:€n2s-- -1 €nn), n = 1,2,..., where &n1,€n2,. .., Enn are
independent random variables. The hypothesis H™ is that &,; has a distribution
P,; with Ehe density pn;(z) with respect to the Lebesgue measure, while the hy-
pothesis H™ is that the distribution of &,; is 5m with the density pp;(z). Then the
distribution of the vector £(™) under the hypothesis H" is P" = Py XPpy X+ - X Py,
and the density of this distribution with respect to the Lebesgue measure is

Pn(z) = Hpni(a:i), z = (T1,--.,%n).

Similarly, the distribution of the vector £(® under the hypothesis H™is
§"=ﬁn1 Xﬁng X oo X Isn,,

and the density with respect to the Lebesgue measure equals

511.(33) = Hfﬁm(.’z,), T = (zl,...,a:n).
=1
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The likelihood ratio z,(z) for the measures P™ and P™ is

n ~
i(z
(2.3.14) () = };[lzm(zi), Zni(T3) = ﬁ:gz; z = (1, ...,Zn),
where we agree that 0/0 = 0. It is clear that the relative entropies I (P"|P") and
I(Pp;|Pri), 1 =1,2,...,n, are related as follows:
(2.3.15) I(PPP™) =3I (PuilPas)
(#F) =S
Let
(2316) An(z) =In zn(:z;), )\ni(zi) =In Zni(l‘«,;), 1= 1, 2, ey,

where we agree that In0 = —oco. If

Ap=An(E™) and Ani = Mni(éni), =1,2,...,7,
then A, = Y7 | Ani. It follows from (2.3.3) that
(2.3.17) I(P*P™) = —E™An,  I(PnilPni) = —Enin;

where E™ and E,; are mathematical expectations with respect to the distribu-
tions P™ and P,;, respectively.
Corollary 2.3.1 can be stated in the following form.

COROLLARY 2.3.2. Let I(P"|5") <o foralln=1,2,..., and let
I(P"P") - 00 asn — oo.

If the law of large numbers A1 holds for A, n=1,2,..., with xn = I(P"lﬁ"-) and
the level o, satisfies conditions al and a2, then

(2.3.18) lim x;!mn@(5He) = -1.
n—00

Now let £ = (£,&,...,&,) where £1,&,...,&, are independent identically
distributed random variables such that the distribution of &; under the hypothe-
sis H™ is P with the density p(z) with respect to the Lebesgue measure, while the
distribution of & under the hypothesis A" is P with the density p(z). We assume
that the distribution of &; is independent of n both under H™ and under H™. Then
(2.3.14) and (2.3.16) can be rewritten as

T \ _ P(z:)
(2:3.19) o) = [[ e, oo = 22,
(2.3.20) An(z) = Inz,(z), A(zi) = In z(z;)

where £ = (21,...,%n). Put A, = Ap(€™) and \; = A\(&), i =1,2,...,n. Then
A, =37, A and (2.3.15) and (2.3.17) imply

(2.3.21) I(P"P") = nI(P|P),  I(P|P) = —E),.

Therefore the following classical result follows from Corollary 2.3.2.
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COROLLARY 2.3.3. Let £™ = (£1,...,&,) where &,...,&, are independent
identically distributed random wvariables both under the hypothesis H™ and under
the hypothesis H™. Assume that the distributions of &, are independent of n and
the relative entropy I (Pls) is positive and finite. If an — o € (0,1) as n — oo,
then

3 1 +0n) — _ [
(2.3.22) Jim = InB(67%") = —I(P[P).

PrOOF. It follows from (2.3.19) and (2.3.20) that A, = > ; A; where the
random variables A1, Ag,...,An are independent and identically distributed un-
der H™ with mean E); = —I(P|P). By the Khintchine law of large numbers for
sums of independent identically distributed random variables [20], we obtain that
condition Al holds with x, = nI(P|P). Since a, — & € (0,1) as n — oo, the
assumptions of Corollary 2.3.2 hold. Therefore (2.3.22) follows from (2.3.18). O

Corollary 2.3.3 is proved by Rao [43]. Corollary 2.3.3 with oy, = a € (0, 1) for
all n is called the Stein lemma (see [1, 33]).

EXAMPLE 2.3.1. Let an observation be E(") = (€n1,&n2y- - -, €nn) Where &1,
&n2y - -+ &nn are independent random variables such that the distribution (lf &ni is
N (ans, 1) under the hypothesis H™ and N (@ni, 1) under the hypothesis H™ (see
Example 2.2.1). Using the notation of Example 2.2.1 we obtain from (2.2.29)-
(2.2.31) that

(2.3.23) Ap=vpn— %vﬁ,

(2.3.24) A = vl + %uﬁ

where

(2.3.25) L@HEM=N(©0,1), £ (7H")=N(©,1).

Assume that the complete asymptotic distinguishability (H™) A (fI”) holds.
Considering (2.2.33) we assume without loss of generality that v, — oo as n — 0.
It follows from (2.3.23)—(2.3.25) that

~ ~ 1
(2-3.26) I(P"|P™) = I(P"|P™) = Eug.
Since v, — 00 as n — 00, relation (2.3.23) implies that the law of large numbers

holds with ¥y, = v2 /2. Therefore Corollary 2.3.2 holds if conditions a1 and a2 are
satisfied. Note that (2.2.32) yields

(2.3.27) a(EHom) = PM(Ay > dp) =1- 8 <%ﬂ + j_n> ,

whence

(2.3.28) dn = —%vf, + Unti-an
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where t, is the p-quantile of the distribution A (0,1). This implies that condi-
tions al and a2 hold if the parameter d,, of the test ;' is such that

(2.3.29) lim inf e +2) > 0,  limsup & +20) < co.
n—oo Un 2 n—oo VUn 2
Therefore Corollary 2.3.2 implies that
+,an 1 2
(2.3.30) B(6;7%") = exp —§”n(1 + 0o(1))

as n — oo if conditions (2.3.29) hold.
Moreover o, — a € (0,1) as n — oo if conditions (2.3.27) and (2.3.28) hold
and if

1
(2.3.31) dn = —§v§ + Vnti—q + 0(vn).
It follows from (2.2.34) and (2.3.28) that
(2.3.32) BH*) =P (A, <dp) =1—®(vn —t1_a,).
By the well-known asymptotic expansion
1 ©0 2 1 2

2.3.33 1-&(z) = — A= ——e " ?(1+0(1
(2333 @=—= [ e rdz= —e 14 o(1)

as £ — oo (see [34]) we obtain (2.3.30) from equality (2.3.32) if condition (2.3.31)
holds. If we put o, = a € (0,1) for all n (as in the Stein lemma), then (2.3.32)
and (2.3.33) imply a stronger result:

1 1
(2.3.34) BEH™) = —— exp (— o2 +t1_atn 2t%_a+o(1>)

\/_n

or, in other words,
(2.3.35) InB(5;*) = —%vﬁ +ti—aqUp — Inv, — %t%_a — Inv27 + o(1).

It is clear from asymptotic expansion (2.3.35) that the dependence on a in the
behavior of B(d;'*) shows up in the second term of the asymptotic expansion of
In 8(4;5*) only, while the first term is independent of a (cf. (2.3.13)).

Large deviations. Implications (2.3.7) and (2.3.8) show that under condi-
tion Al, relations #1 and 32 require conditions a1l and a2 to be satisfied; the latter
conditions prohibit the level o; to approach 0 and 1, respectively. However, if we
impose a more restrictive condition on the likelihood ratio z;, relations #1 and (2
can also be obtained for levels a; that tend to 0 or 1 as t — 0o, but rather slowly.
To be more specific, let us introduce the following conditions:

al’) lim x;'lna; = 0;
t—o0
a2') Jim xt"l In(1 - a;) =0

A2) limsup limsupe~lx;* In Hy(e) < —1;
elo0 t—o0

A3) hIngan llgil'glfs_ x;tn Hy(e) > —
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where x; is the normalization occurring in condition Al and H;(e) = H(g; Pt PY)
is the Hellinger integral of order e for the measures P* and P?.
Observe that the definition of H;(e) gives

Pt(zt > O)a €= 0’
(2.3.36) Hy(e) = H(e;Pt,PY) = { Pt(3,>0), e=1,
Eh35 ™, e#0, e#1

Introduce the following notation:
(2.3.37) e =inf{e: Hy(e) > —o0}, €% =sup{e: Hy(e) < oo}.
It is clear that €. < 0 and €%, > 1, since Hi(e) < 1 for € € [0,1]. The following

result gives a useful representation for the Hellinger integral H;(¢) in terms of the
likelihood ratios z; and Z;.

LEMMA 2.3.4. For anye € (¢*.,€) different from 0 and 1,

(2.3.38) Hi(e) = E' 25 = EtZr°.

ProOOF. If 0 < € < 1, then

Hy(e) = Egitss *1(3¢ > 0) = E'2{I(3, > 0) = E* 2§,
Hy(e) = EQ 351G > 0) = E'Z~°I(Ge > 0) = E'%/~
proving equalities (2.3.38) for 0 < e < 1.
\ Now let &£ < 0 and ¢ € (¢%,0). Since H(e) < oo by (2.3.37), we have
E6353'°I(G: = 0,3 > 0) < oo. This implies that Q(3; = 0,3: > 0) = 0 and
therefore P*(3; = 0). Thus

Hy(e) = EG35si “I(Ge > 0) = E(34/3:) ¢ = E'2,
Hy(e) = Eb3eds st “I(Ge > 0) = E'Z~°I(3, > 0) = E'z}~°.

Therefore equalities (2.3.38) are proved for € € (¢*,0) and €2 < 0.
Finally let €% > 1 and € € (1,€%). Since Hy(e) < 0o, we also have

Eb353: I(Ge > 0,3 = 0) < oo.

Then Q(3: > 0,3; = 0) = 0 and hence Pt(3: = 0). Therefore

~t —e— _ ~ - _ ~iq_
Hy(e) = Eg3; 3171 (3¢ > 0) = E*(3/3¢)° ! = E'Z} —°,
Hy(e) = E3e3587 ©I(3¢ > 0) = E*2§1(3 > 0) = E'2¢.

This proves equalities (2.3.38) for € € (1,¢%,) and &', > 1. 0O
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REMARK 2.3.3. If Hy(et) < 0o, then the same argument as that used to prove
Lemma 2.3.4 shows that equality (2.3.38) holds for € = €%, too. If Hy(e%,) < oo,
then equality (2.3.38) holds for € = &%, too. Put E‘zf = P%(j; > 0) in the case
€ =0 and P{(; = 0) > 0 and put E‘Zf = Pt(3; > 0) in the case £ = 0 and
Pt(3; = 0) > 0. Then equality (2.3.38) holds for any € € (—o00,00). Moreover we
get for any € € (—00,00)

(2.3.39) Hi(e) = EteMe,

that is, Hi(¢) is the moment generating function of the random variable A; which
is, generally speaking, an extended random variable since P*(A; = —00) can be
positive.

REMARK 2.3.4. If & < 0, then the proof of Lemma 2.3.4 shows that
P'(3: = 0) = 0.

By (1.1.18), this means that P <« Pt. Moreover H,(0) = 1 by (2.3.36) in this
case. If €%, > 1, then it has also been shown in the proof of Lemma 2.3.4 that

5t(3t =0) = 0. By (1.1.17), this means that Pt <« Pt. Relation (2.3.36) implies in
this case that Hy(1) = 1.

REMARK 2.3.5. Condition A3 implies that there exist numbers g¢ < 0 and
to < oo such that Hy(e) < oo for all € € (g0,0) and t > to. Then we have by
Remark 2.3.4 that

A3=P <P forallt> to-

In view of (1.1.18), this implies
A3=a; =1 forallt>tg.
The following result establishes a relationship between conditions A2, al, a2

and conditions A2, A3, al’, o2'.
LEMMA 2.3.5. We have

(2.3.40) al = al’; a2 = a2/
(2.3.41) A2,A3 = Al

PRrOOF. Implications (2.3.40) are obvious. To prove implication (2.3.41) let
4 > 0 be an arbitrary number. Then, by condition A2, there exists a positive
number £y = £o(y) such that

. - 1
(2.3.42) limsup x; ! In Hy(e) < —e + -y
t—o0 2

for all € € (0,€0). Fix some € € (0,€0). Then, in view of (2.3.42), there exists a
number ¢y = to(€,7y) such that for all ¢ > ¢

1 1
x: ' InHy(e) < —e + 56’)’-{- Ze'y,
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whence we obtain for ¢ > tg that

pt (Xt_lAt > -1+ 'y) = pt (zf > 3_5(1_‘7))0) < eE(l—’Y)X: Et ZtE
(2.3.43) 1
= e*1"MX H,(e) < exp (—stx:)

by the Chebyshev inequality and equality (2.3.38) for € € (0,1). Following a similar
argument, we obtain from condition A3 that for any y > 0 there exists ; < 0 such
that

1
(2.3.44) Pt (x; 'As < —1—19) <exp (ZE’YXt>

for all € € (e1,0) and all ¢ > ¢,(e,y). Bounds (2.3.43) and (2.3.44) imply that
condition Al holds. Thus implication (2.3.41) is proved. O

Conditions A2 and A3 are related to a theorem on large deviations for A; as
t — oo. To state it we introduce the following condition.
A*. For any € € (—00,00), the limit

(2.3.45) Jim ;7 In Hy(€) = s(e)

exists where ¢p; — 00 as t — oo and (e) is a proper convex function
differentiable in the interval (e—,e4) where
(2.3.46) e- = inf{e: x#(e) < oo}, e+ = sup{e: x#(e) < oo}.
It is clear that e < 0 and e > 1. Let

Y = %I(O)a m= I(]-)7

y- = lim 5/(g), 4+ = lim 5/ (¢).
ele- efes

(2.3.47)

Note that 7y is defined for e < 0 only and +; is defined for £, > 1. If condition A*
holds with e~ < 0, then it is clear that conditions A2 and A3 hold with x; = —7yo:.
It follows from the properties of the function H;(e) that 9 < 0. In what follows,
we will reveal a tighter relationship between conditions A2, A3 and condition A*
providing a theorem on large deviations for A;.

The following result gives upper and lower bounds for 3(6;*) for all & € (0,1)
enabling us to obtain 81 and (2 if conditions a1’ and a2’ hold.

THEOREM 2.3.2. For alla € (0,1) and allt € R4
(2348) (6% 2 (1- ) V(H(1- )V, >,
(2.3.49) B(6;7%) < (1 —€)(e/a)/ P (H,(1—-¢€)/9,  0<e<]l.
PROOF. If H;(1—¢€) = oo for € > 1, then estimate (2.3.48) is trivial. Therefore

we assume that H;(1 —¢) < oo for € > 1. By the definition of a Bayes test, we have
for any c € (0, 00)

ca+ B(6;%) > inf{ca(d:) + B(8:): 6 € Tt} = car (ag’l) +8 (5?1)

(2.3.50)
=1-EQH (e —c3e)*
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where at = a V0. By the fundamental Neyman-Pearson lemma and by the defini-
tion of a Bayes test, there exists a constant ¢ € (0, 00) such that inequality (2.3.50)
becomes an equality. Therefore

(2.3.51) B(6F%) =1 — inf {co+ E (3¢ — c3e)T;¢ > 0}
The condition H;(1 — €) < oo for € > 1 implies that Q(3: = 0) = 0. Hence
(2.3.52) ELGe —c3e)T =E'(1Vez) —c

Since 1Vz<azf+1fore > 1, 2>0,and a=¢e"(— 1)}, relations (2.3.51)
and (2.3.52) imply that

(2.3.53) B(6;*) > sup{(1 — a)c— ac®Hy(1 — €); ¢ > 0}
by (2.3.38) for € > 1. The upper bound (2.3.53) is attained at
(2.3.54) c=c" = (1—a)/EV(aeH,(1 — )/~

Therefore (2.3.53) and (2.3.54) imply estimate (2.3.48).
Now we prove estimate (2.3.49). As in the proof of equality (2.3.52) we get

(2.3.55) E5 (e — cpe)t =1 - E(1 A cZ).

Since

(2.3.56) ZA1<25,  2>0,0<e<]l,

we obtain from (2.3.51), (2.3.55), and (2.3.38) for 0 < € < 1 that

(2.3.57) B(8:%) < sup {c°Hy(1 — €) — ca; ¢ > 0}.

The upper bound in (2.3.57) is attained at

(2.3.58) c=c* =/ V(eH,(1 - €)Y/,

Therefore (2.3.57) and (2.3.58) imply estimate (2.3.49). O

COROLLARY 2.3.4. For alle,a € (0,1) andt € R
Ht(E) > 'Bs((s:-,a)al—eeh(e)

where h(e) = —elne — (1 — €) In(1 — €) is the Shannon entropy of the distribution
of the random variable taking two values with probabilities € and 1 — €.

REMARK 2.3.6. If @; < 1, then H;(€) = oo for all € < 0. Therefore, in the case
of @ < 1, estimate (2.3.48) acquires the trivial form B(6;%) > 0 for all a € (0, 1).
We also note that (1.1.50) implies 3(6;**) = 0 for « € [@, 1]. Estimate (2.3.49) is
rather rough for a € [@, 1], however @; — 1 as ¢t — oo by (2.3.5) and if condition A1
holds. Moreover if condition A3 holds, then Remark 2.3.5 yields that there exists
to < oo such that @; = 1 for all ¢ > ¢y (see Theorem 2.7.2 in [37] for improved
estimates (2.3.48) and (2.3.49)).

THEOREM 2.3.3. The following implications hold:

(2.3.59) A2, al’ = dl = fI,
(2.3.60) A3, a2’ =32 = d2.
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PRrROOF. According to Theorem 2.3.1, it is sufficient to prove the first impli-
cations in (2.3.59) and (2.3.60). The first equality in (2.3.50) implies that for all
c>0

ca (Jf’l) + 4 (Jf’l) < EFE'E, 0<e<l,
in view of (2.3.55) and (2.3.56). Thus
edtat +ﬂ (6:',0&) S eedth(l _ 5)

for 0 < € < 1 by the first equality in (2.3.50) and by equality (2.3.38). Therefore
we have for 0 < e < 1

di<(l-¢e) 'lnHy(l—¢)—(1—-¢) 'Inay,

whence the implication A2, a1’ = B1 follows.
The implication A3, a2’ = (2 follows from estimate (2.3.48). O

REMARK 2.3.7. The implication A2, al’ = 31 can be obtained directly from
estimate (2.3.49).

Theorem 2.3.3 implies the following well-known result of Krafft and Plachky
(see [37]).

COROLLARY 2.3.5. Let the assumptions of Corollary 2.3.3 hold. If conditions
al’ and o2’ are satisfied with xn = n, then (2.3.22) holds.

ExXAMPLE 2.3.2. This is a continuation of Example 2.3.1. Relations (2.3.23)-
(2.3.25) imply for all t € R4 and € € (—00,00) that

(2.3.61) H,(e) = exp {—6(12—_6)0;‘;} )

whence
lim lim (ex,) ' InHy(e) = -1

e—0n—o0

for x», = 27102, that is, conditions A2 and A3 hold. Theorem 2.3.3 implies (2.3.30)
for the test §}'*» of level o, satisfying conditions a1’ and o2’.

The following result of independent interest holds under the assumptions of the
latter example.

THEOREM 2.3.4. If v, — 00 as n — oo, then
1) if an — 0 as n — oo, then

(2.3.62) al' < dl < Pl < z_q, = o(vn);
2) ifap — 1 as n — oo, then
(2.3.63) a? = d2 <= B2 < z1_qa, = 0(vn)

where zp is a p-quantile of the distribution N (0,1) and xn, = 27 0v2.
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PROOF. Let o, — 0 as n — o0o. Then it follows from (2.3.33) that

(2.3.64) Inoy, =-27127_, (1+0(1)), n — 0.
Therefore
(2.3.65) al’ < 21_q, = o(v,).

Since v, — o0 as n — oo, conditions A1, A2, and A3 hold for x, = 2 !v2.
Therefore, in view of Theorems 2.3.1 and 2.3.3, relation (2.3.62) follows from the
chain of implications

(2.3.66) Bl =dl=al

Since 21_q, — 00 a8 n — 00, it follows from (2.3.28) that d1 = 21_,, = o(vy),
whence the implication d1 = a1’ follows in view of (2.3.65).
If 81 holds, we have by (2.3.32) that v, — 21—, — 00 as n — oco. Applying
(2.3.33) we get
Jergo(vn - Z1—a,) 2InB(6) = —271L

Thus 21_,, = o(vn) by 1. Hence the implication 81 = d1 follows from (2.3.65)
and the equivalence d1 <= al’ proved above. Therefore implication (2.3.66) is

proved.
The proof of (2.3.63) is similar to that of (2.3.62) and thus is omitted. O

REMARK 2.3.8. Since condition A2 holds, we see from statement 1) in The-
orem 2.3.4 that conditions a1’ and d1 cannot be weakened to prove the chain of
implications A2, a1’ = d1 = 31 in Theorem 2.3.3. Since condition A3 also holds,
we obtain from statement 2) in Theorem 2.3.4 that conditions a2’ and 52 cannot
be weakened in the chain of implications A3, a2’ = 32 = d2 in Theorem 2.3.3.
Moreover, it follows from Theorem 2.3.4 that

(al',a2') < (d1,d2) < (B1,82) < 2zi—qa, = o(vn),
that is, relation (2.3.30) is equivalent to conditions a1’ and o2’.

Rates of decay of probabilities of error of the Neyman—Pearson,
Bayes, and minimax tests under condition A*. Throughout this section we
assume that condition A* holds. In this case, the Neyman-Pearson test d;'* can be
used even if the level a; tends to zero as t — oo faster than is allowed by condition
al’. In particular, if ¢; 'lna; — —a for some positive number a, then one can
prove that ¢; ! InB(d;*) — —b(a) where b(a) is a positive function of a. In order
to provide an exact statement, we need the following result on large deviations of
A;. Below we use the following notation (see also (2.3.45)—(2.3.47)):

(2.3.67) To =vI(e- <0)+~-I(e- =0),
(2.3.68) Iy =ml(ey > 1) +v+I(e+ =1).
THEOREM 2.3.5. Let condition A* be satisfied. If
Fo <4, .
then for all v € (To,v+)
(2369)  lim o7 InP* (97 'Ae > ) = lim o ' InP* (7' Ay 2 ) = ~I(v).
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Further if y_ < Ty, then for all v € (y-,T'1)
(2.3.70) lim ¢ In Pt (07 A <7) = Jim ¢ In P (o7 Ay <) = —I(7) +7

where I(y) = ~ve(y) — »(e(y)) and e(v) is an arbitrary solution of the equation
7'(e) =1.

Theorem 2.3.5 can be deduced from Theorem 2.6.3 of [17] in view of equality
(2.3.39). This proof can be found in [39)].

REMARK 2.3.9. Applying the methods of convex analysis [44], we can readily
obtain that the function I(v) is strictly convex in the interval (y_,74) and has the
unique minimum at v = 7o if e < 0. Moreover I(yp) = 0 in this case, while the

minimum is attained at v =- if e_ =0.

First we consider the Bayes test 67 with respect to the a priori distribution
(m, %), m + 7 = 1, and the loss A;; = 1 — §;; (see Section 2.1). It follows from
Section 1.2 that we can put 67 = §,"° where ¢ = 7/7 and € € [0,1] is an arbitrary
number.

THEOREM 2.3.6. Let condition A* hold withTg <0< TI';. Then

(2.3.71) Jim o7 Ino(87) = lim ¢ InB(57) = ~1(0),
(2.3.72) Jim v; L ne, (87) = —1(0)

where e, is the probability of error of the test 6T (see (1.1.32)).

PROOF. It is clear that for any Bayes test 67
(2.3.73) PY(A¢ > In(m/7)) < a(87) < P(A¢ > In(n /7)),
(2.3.74) Pt(As < In(n/7)) < B(6T) < PH(A¢ < In(m/7)).
Then (2.3.69), (2.3.70), (2.3.73), and (2.3.74) imply (2.3.71). Now the equality
ex(07) = ma(67) + 7A(67)

and (2.3.71) imply (2.3.72). O

REMARK 2.3.10. By (2.3.67) and (2.3.68), the condition I'y < 0 < I'; implies
that
Fo<v+ and - <Iy,
which enables us to apply relation (2.3.69) for v € (I'g,v+) and relation (2.3.70)
for v € (y=,T'1). On the other hand,

@y In(n/T) -y =0¢€ (To,T)) ast— oo.
Now let §; be the minimax test for distinguishing the hypotheses H® and Ht

(see Section 2.1). According to the results of Section 1.2, e(d;) is the probability
of error for the test &; (see (1.2.19)).
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THEOREM 2.3.7. Let condition A* hold with T'g <0 < TI';. Then

. -1 *\ 13 -1 *) __
(2.3.75) Jim ¢ Ina(é) = lim o In B(87) = -1(0),
(2.3.76) Jim o; tner (67) = —I(0).

PROOF. Let (m,7) be the a priori distribution of the hypotheses, 7 + 7 = 1.
Then the definitions of Bayes tests and minimax tests imply that

en(87) = minex(de) < min(a(6:) v A(8:)) = e(5),
ex(87) 2 (m AT)(a(67) V B(67)) = (m A T)e(57),

that is,

(2.3.77) (m AT)e(67) < ex(87) < e(07).

Combining (2.3.72) and (2.3.77), we obtain (2.3.76). Relation (2.3.75) follows from
(2.3.76), since a(8}) = B(8;) = e(87) (see Theorem 1.2.4). a

The following result describes a relationship between the rates of decay of the
level a; and the type II error probability ﬂ(6+ %) for the Neyman-Pearson test
under condition A*.

THEOREM 2.3.8. Let condition A* hold with I'o < T'y. Then
(2.3.78) tl_l’rgj oillney = —a < tl_i’rgocp{l In B (6;*) = —b(a)

for any a € (I(To), I(T'1)) where
b(a) =a-— 'y(a) € (I(Pl) - Fl,I(Fo) - Fo)
and y(a) is a unique solution of the equation I(7y) = a.

PROOF. We prove the implication = in (2.3.78). Assume that ¢; may — —a
as t — oo for a € (I(Ty),I(I'1)). We have

ar = P (Y > yi) + ePH(Ye = )

where Y; = o7 'A; and y; = ¢; 'ds. Our current goal is to show that y; — 7(a) as
t — co. Put

y = liminf y;, 7 = limsup y;.
= t—oo t—o00

Then it is sufficient to prove that y = v(a) and 7 = v(a).
First we show that y = 7y(a). Assume for contradiction that y # v(a). Below
we use the obvious estimates

(2.3.79) PHY; > 4) < oy < PY(Y: > 1)

By the definition of y, there exists a sequence (tn) such that ¢, — oo and y;, — y as
n — 00. Then, if y is finite, for any 3’ < y and y' > y there exists ng = no(y’,y")
such that ' <y, < y” for all n > no If y = 400, then for any y’ < y = oo there
ex1sts no = no(y’) such that y;, >y’ for all n > ng, while if y = —oco, then for any
y" > y = —oo there exists ng = no(y") such that y, < y" for all n > nyg.
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First let y < T and y” € (T'p,y(a)). Since y;, < y” for all n > ng, we have by
Theorem 2.3.5

gt i, P (Y, > 1) 2 Jlim ot P (¥, > 4) = 1)
Therefore (2.3.79) implies
Jim oplinat > ~I(y") > ~I(y(a)) = —a,

since I'g < y” < (a). By Remark 2.3.9, the function I(7) is strictly increasing on
the interval (I'o,v+), giving a contradiction.

Now assume that y € (I'g,v(a)) U (v(a),7+) and that 3’ and y” are such that
(', y") € (To,7(a)) U (v(a),v+). Then by Theorem 2.3.5 we have

liminf ¢, InP* (%, > 3,,) 2 lim o7 InP™(¥;, > y") = ~I("),

— n—0o0

limsup p; ' InP™(Y;, >y, ) < Jim e InPi(Y;, > ¢) = —I(y).
—00

n—0o0

Since ' and y” are arbitrary and since the function I(y) is continuous on the
interval (y-,74), we obtain in view of inequalities (2.3.79) that

Jim ;M noy, = ~I(y).

Since y # (a) by assumption and since I(v) is strictly increasing on (T'o, v+ ), this
again gives a contradiction.

Finally, let y > 74 and ¢’ € (y(a),v+). Since y;, > ¥’ for all n > ng, we apply
Theorem 2.3.5 once more to obtain

lim sup <pt'"1 In Pt"(Ytn >yt,) < lingo <p;1 InP(Y;, > o) = —I(¥).
n—oo n—

Since y(a) < ¥’ < ¥4, we have I(y') > I(y(a)) = a, giving a contradiction by
(2.3.79).

The above contradictions show that y = y(a). By a similar argument, we can
prove that 5 = ~(a). Therefore y; — v(a) as t — oo.

Let € > 0 be arbitrary and let ¢t = to(¢) be such that |y;—v(a)| < € for all ¢ > to.
Assume that € > 0 is small enough in order that (y(a) —€,7(a) +¢€) C (T, I'1). It
is clear that the following inequalities hold for all ¢ > ¢q:

Pt (oA <1(a) —€) S BEH") <P* (o7 " A S v(a) +6)
whence
liminf o;* In 8 (&%) > ~I(v(a) — &) +(a) — ¢,
liﬂigp ey InB (67°%) < —I(y(a) +¢€) +v(a) +¢

by Theorem 2.3.5. Approaching the limit in these inequalities as € — 0 we obtain
that the upper and lower bounds in these inequalities coincide and

Jim o n B (6%) = —a + y(a) = —b(a),
since the function I(vy) is continuous in the interval (y—,v4) and I(y(a)) = a.

Therefore the implication = in (2.3.78) is proved. The inverse implication <
in (2.3.78) can be proved along similar lines. O
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REMARK 2.3.11. The behavior of 8(d;**) in the case where ;' Inay — —a
for a ¢ (I(Ty),I(T'1)) is studied in [39]. In particular, the results in [39] show that
for any a € [0,(I'o)] we have

(2.3.80) tlirglo ¢; ' ln = a; = —a = limsup o;'ng (5t+’°“) < Ty — I(Ty).
- t—oo
Let e~ < 0. Then I'p = o and I(T'g) = 0. Therefore (2.3.80) becomes of the form
(2.3.81) lim ;'In=a = 0= limsupy; ' Ing (6;7*) < 7.
t—oo t—o0
As we have already observed, in this case conditions A2 and A3 hold with

Xt = —Y0pt-

Therefore implication (2.3.81) is equivalent to the implication a1’ = £1. If condi-
tion a2’ holds, then we obtain from the implication a2’ = 32 that

al’,a2 = lim o7 In B (67%) = —yo
t—oo
if condition A* holds with e_ < 0 and I’y < T';.

b
I(Fo) —-Te T

I(Ty) —T -

FIGuRE 2.3.1

REMARK 2.3.12. The function b(a) is shown in Figure 2.3.1. According to
Remark 2.3.11 we have I(Ty) = 0 and I(T'g) —T'o = —yp ife- < 0. Ife_ =0,
then T'g = y- = »/(0+) and I(I'g) — o = —2(0+) — »/'(0+). If e > 1, then
'y =7, I(m) =m, and I(T1) - T =0. If ey =1, then I'; = v4 = 5/(1-) and
I(T) =T = —»(1-).

EXAMPLE 2.3.3. This is a continuation of Example 2.3.2. Relation (2.3.61)
implies condition A* with ¢, = v2, () = —271¢(1 — €), e = —00, and €4 = co.
Hence y- = —00, 74 = 00, 70 = —27%, and 71 = 27!, It is easy to show that
I(y) = 27Y(y+271)2. It is clear that Ty < 0 < I';. Therefore Theorems 2.3.6-2.3.8
hold. In particular, Theorems 2.3.6 and 2.3.7 imply that

€x(67) = exp {—%vgu + 0(1))} L en(8) =exp {—%vﬁ(l + 0(1))} .
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Since y(a) = v2a — 27! is a solution of the equation () = a, we obtain
b(a) = 2_1(\/ﬁ - 1)2

for all
€ (0,27") = (I(To), I(T1))-
Therefore, in view of Theorem 2.3.8 we have that

2
lim v;?Ina, = —a < 11m vy, 21n,8(6+°‘")——2— (\/%—1)

n-00
for all a € (0,271)
EXAMPLE 2.3.4. Let an observation be
€M = (bn1,6n2, - »6nn)

where &n1,&n2, . . -, &nn are independent both under H™ and H™. Assume that the
random variable &,; has the exponential distribution with the density

Ani exp(")\m'(m - bnz))I(x > bm)
under the hypothesis H™, and the exponential distribution with the density
Ani €xp(—Ani(2 — bpi)) I(@ 2 bni)

under the hypothesis H™. Here \n; € (0, 00), Ani € (0,00), bp; € (—00,00), and
bn; € (—00,00). It is easy to show that

- -1
_ o -
(2.3.82) 511 = - 1211'2171 [((}\_:: \% 1) - 1) I(b'n.':, < b‘n%):l )
X -1
n o mi _ | 2ni P )
(2.3.83) e = lrsniléln [1 ( N A 1) I(bni > bm)} ,

and that for all € € (¢7,¢%)

- Ani Ani
InHa(e) =Y deln 2 e (20 1) 41
(2:3.84) nn(e) ; {E R W [e (’\m' ) ¥ }}

+elnH,(1) + (1 — €) In H,(0)

where
n ~ ~ ~

(2'3'85) In H’n(l) = - Z )\'m'(bni - bni)I(b‘m’ > bni),
i-—l

(2.3.86) In H,(0) = Z Ani(Bri — bps) I (Bri > bps).
=1

Relations (2.3.82)—(2.3.86) allow us to completely study the problem of the
asymptotic distinguishability of the hypotheses H™ and H™, although we consider
some particular cases only.



236 2. ASYMPTOTIC DISTINGUISHABILITY OF SIMPLE HYPOTHESES

EXAMPLE 2.3.5. This is a continuation of Example 2.3.4. Let Zm- = bp; for all

i=1,2,...,nand all n = 1,2,.... Then it is clear that the measures P" and P"
are equivalent and therefore @, = (3,, = 1 for all n. Assume that Ap; = Api = pp
foralli =1,2,...,nand all n = 1,2,..., and let p, — p as n — co. Relations

(2.3.82)—(2.3.86) imply that

InH,(¢) =n(elnp, —Infe(pn — 1) +1]), €€ (e2,€}),
et =—((pV1)-1)7}, el =(1=(pn A 1))~
Now we find p for which condition A* holds and evaluate the function b(a) defined

in Theorem 2.3.8.
If p € (0,00) \ {1}, then condition A* holds and

Pn =N, €— =—((pV1)—1)—1, €+=(1—(P/\1))_1,
n(e) =elnp—In(e(p—1)+1), €€ (e e4).
In this case, 7v_ = Inp and v; = o0 if p € (0,1), while y- = —00 and y4 = Inp if
p € (1,00). Moreover, we have for any p
Yo=—(p—1-Inp), m=p'-1-lnp~"
It is easy to show that for all y € (7—,~+) we have
I(y) =2(y) —1-Inz(y)
where
z(v)=(np—7)/(p-1).
Observe that the condition I'y < 0 < I'; (and therefore the condition I'y < T'y)

holds, since I'y = 99 < 0 and I'; = 71 > 0. Therefore Theorems 2.3.6-2.3.8 hold
and in Theorems 2.3.6 and 2.3.7 we have that
Inp Inp
= —1-1 .
I(0) -1 1 np_1
If p € (0,1), then v > 4 for z(y) > 1. Let 2, be a solution of the equation
z—1-Inz=afor z>1anda € (0,71). Then y(a) =1Inp+ (1— p)z, and therefore

bla)=a—Inp—(1—p)z,.

If p € (1,00), then v > g for 2(7) € (0,1). Let Z, be a solution of the equation
z—1—Inz=afor z € (0,1) and a € (0,71). Then y(a) =Inp— (p— 1)z, and
therefore

bla)=a—Inp+ (p—1)z,.

Now let p = 1. Assume that n(p, — 1)> — 0o as n — co. Then condition A*

holds with

on = n(pn — 1)%, () = —e(1—¢€)/2, €- = —00, €4 = 00.
This implies that

= — = 1 = l = [( ) = l + = ’
V- = —00, 70—_5, 71—2a T+ = 00, 7_2 Y 2 .
Therefore we have I(0) = 1/8 in Theorems 2.3.6 and 2.3.7 and b(a) = (1 —/2a)?/2
in Theorem 2.3.8 (cf. Example 2.3.3).
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If p = 0, then condition A* holds with ¢, = nlnp;!, e = —00, €4 = 1, and
x(e) = —e. Since »/(¢) = —1 for all €, we have 7_ = 4 = —1. Therefore the
conditions I'g < I'; and I'yp < 0 < I'; fail to hold and Theorems 2.3.6-2.3.8 do not
apply. Since e_ < 0, conditions A1, A2, and A3 hold and therefore Theorems 2.3.1
and 2.3.3 apply.

If p = oo, then condition A* holds with ¢, = nlnp;!, e_ =0, e; = oo, and
#(g) = e—1. In this case, »/(¢) = 1 for all . Therefore y_ = 44 = 1 and Theorems
2.3.6-2.3.8 do not apply. Observe that conditions A1, A2, and A3 fail to hold in
this case.

EXAMPLE 2.3.6. This is a continuation of Example 2.3.4. Let \,; = A, Xni = X,
bni =b,and by; =bforalli=1,2,...,nand all n =1,2,.... Then condition A*
holds with ¢, =n,

_=—((pv) -D)TIG <),  ep=—[1-(pADIGE=0)] 7,

and
xw(e) =elnp—Infe(p — 1) + 1] + €2¢(1) + (1 — €)(0)
for all € € (e—,e4) where

> >

#(1)=-Ab=b)I(b>0b), #(0)=-Ab-bIb>b), p=

Ifp=1andb # b, then v_ = 7, and therefore Theorems 2.3.6-2.3.8 do not apply.
In this case conditions A1, A2, and A3 hold and therefore Theorems 2.3.1 and 2.3.3

apply ifb<b. _
Let p # 1 and b > b. Then

e~ =0, ey=(1—(pA1))"Y,  s(e) =elnp—Infe(p—1)+1]—(1—€)(b—b)A

in condition A*. In this case, y_ = —(p—1—Inp) +(b—b)A for all p € (0,00)\ {1},
while 74 = oo if p € (0,1), and y4 = Inp+ (b—b)A if p € (1,00). Observe that
lo=9_andT; =7, = (p~!=1—Inp~1)+(b—b)A. The condition Iy < I'; clearly
holds and therefore Theorem 2.3.8 applies. The condition I'y < 0 < I'; holds if
(5— b)A < p— 1 —Inp and therefore Theorems 2.3.6 and 2.3.7 apply only in this
case. It is easy to show that for all v € (v-,7+)

I(7) = 2(y) = 1 = In2z(y) + (b — b)A

where 2(7) = (p— 1)~} (lnp + (b — b)A — ).
If p € (0,1), then v > 7 for z() > 1. Let z, be a solution of the equation

z—1—1Inz+ (b—b)A = a with respect to z € (1,00) where
& (I(To), I(T1)) = (B~ ) m).
Then v(a) = Inp+ (1 — p)zq + (b — b) and therefore
ba)=a—Inp—(1-p)za— (5= b\

If p € (1,00), then v > v for 2(7) € (0,1). Let Z, be a solution of the equation
z—1-Inz+ (b b)A = a with respect to z € (0,1) where a € ((b b)A,v1). Then
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y(@)=lnp—-(p—-1)Z, + (Z— b)A and therefore
b(a) =a—Inp+ (p— 1)z — (b — b)A.
Ifp#landb<b thene. =—((pA1)—1)"1, &4 =1, and
#(e) =€lnp —Infe(p — 1) + 1] — (b — b)A.
This case can be considered similarly to the case b>b.

2.4. Complete asymptotic distinguishability
under the weak convergence

Consider completely asymptotically distinguishable families of hypotheses (H*)

and (H*) in two cases:
1) the law of large numbers (LLN) for A; does not hold;
2) the law of large numbers for A; holds and, moreover, (A¢—¢:)/9; converges
weakly with some y; and ;.

The case where the LLN does not hold. Let £ (n;|P?) be the distribution

of 7, with respect to the measure P* and let the symbol = stand for the weak
convergence of probability distributions. Introduce the following condition:
Ad. L (p;"A¢|P*) = L as t — oo where 9 is a positive function such that
Py — 00 as t — oo and L is a probability distribution on R whose distri-
bution function is L(z).

LEMMA 2.4.1. If condition A4 holds, then @, — 1 ast — oo and L(z) =1 for
any z > 0. Moreover,

(2.4.1) (H*) A (H?) <= L(0) = 1.

PROOF. For any a € (—00,0), we have
Pt (Y7 A < @) > P(Ay = —00) = 1 — G,

If a is a point of continuity of the function L(z), then L(a) > limsup,_, (1 — @)
by condition A4. Passing to the limit over the points of continuity a — —oo, we
obtain @; — 1 as t — oo.

Choose a > 0 and apply the Chebyshev inequality to obtain

P* (% *Ae > a) = P* (2 > e™¥) < e E'z < e7o%.

Passing to the limit as t — oo in this inequality, we have 1 — L(a) = 0 and therefore
L(a) =1 for any a > 0.
Further, in view of condition A4, we have as t — oo

A N> {l—L(O), N <0,

t _ pt jatal 2
P(A:>N) =P (wt>¢t 1-L(0+), N >0.

Since L(0+) = 1, Theorem 2.2.1 gives the required equivalence (2.4.1). O
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REMARK 2.4.1. Equivalence (2.4.1) means the following: If condition A4 holds,
then the complete asymptotic distinguishability (H?) A (H*) holds if and only if
the distribution function L(z) is continuous at the point z = 0.

The next result, which is an analog of Theorem 2.3.1 (see also Corollary 2.3.1),
describes the behavior of the Neyman—Pearson test §;°** as t — oo under condi-
tion A4.

THEOREM 2.4.1. If condition A4 holds, then for any o € (0,1)

_ 1 5+,Olt _
(2.4.2) tliglo a; = a = limsup ﬂ < li_o = limsup iﬂ(—t—) <li_q,

t—o0 t t—o0 ¢t

(2.4.3) tl_i’rg)at =a= litfil,i’glf li-ﬂ(j:& >l o= liﬁi’é‘fd_i >l o
where
(2.4.4) lp =inf{u: L(u) > p}, I, =sup{u: L(u) < p}
forp e (0,1).
ProoF. We have
(2.4.5) ar = PH(Y; > ye) + &P (Vs = 1)

where Y; = gbt_lAt and y; = 1/)[1dt.
First we prove the first implication in (2.4.2). Suppose that o; — «, but

limsupy; =9 > u
t—oo

where u is a point of continuity of L(z) such that L(u) > 1—a. Let t,, be a sequence
such that y;, — 7 as n — oo. Then

o= ltlir{;lo ot < limsup P (Y;, > ;) < limsup P*(Y;, > u) =1 — L(u) < .

n—00 n—o00

This contradiction shows that limsup, ., ¥+ < u for any point u of continuity
of L(z). This proves the first implication in (2.4.2).
The second implications in (2.4.2) and (2.4.3) follow from estimate (2.3.10).
Assume again that oy — o as t — 0o and let u < 0 be a point of continuity of
the function L(z) such that L(u) < 1 — a. By equality (2.1.8), we obtain

B(&*) 2B I(Y: 2 w) (1 - 67%) 2 E'I(Y; 2 w) (1 - &) 2
> e PEI(Y, > ) (1 - 67%) > e (PHY; > u) — ) .

This yields in view of condition A4 that
: -1 +,
Jim 7 In B (5°4) > u,
whence the first implication in (2.4.3) follows, since  is arbitrary. O

If the distribution function L(z) in condition A4 is continuous, then Theo-
rem 2.4.1 can be made more precise. First we give a necessary definition.
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DEFINITION 2.4.1. Let p € [0,1]. Let S be a probability distribution and let
S(z) be its distribution function. Any number z, € R! such that

S(zp) <p < S(zp+0)

is called a quantile of order p € [0,1] or, simply, a p-quantile of a probability
distribution S. Such a number z, is also called a p-quantile of the distribution
function S(z). If for some p € [0,1] we have S(z) > p for all z € R!, then we put
z, = —oo. If S(z) < p for all z € R, then we put z, = +oo.

REMARK 2.4.2. If L is the probability distribution appearing in condition A4,
then it is clear that for p € (0,1), the p-quantile I, of the distribution L and the
quantities !, and I, defined by relations (2.4.4) are related in the following way:

by <lp <1y

THEOREM 2.4.2. Assume that condition A4 holds and the function L(z) is
continuous and strictly increasing in the interval (I,1) where

(2.4.6) l=sup{z: L(z) =0}, I=inf{z:L(z)=1}.
(We agree that sup(@) = —oco and inf(&) = 00.) Then for any a € (0,1)
. _ .dr : n,8(6 )
(2.4.7) tlg(r)lo = a <= tllrrclo % =li_o &= tl—l-» 'lﬁt =li_q

where p € (0,1), I, =1, = l, is a p-quantile of the distribution L, and where the
quantities 1, and l, are deﬁned by (2.4.4).

PROOF. Since the function L(z) is continuous and strictly increasing in the
interval (1,,1,), we have I, = L, =, for p € (0,1). Put L¢(z) = PY(Y; < z) where
Y; = ¥;*A;. Then for any € > 0 and y; € R!

PY(Y: = 3¢) < Le(ye +€) — Le(e)
(2.4.8) = [Le(ys +€) — L(ye +€)]
— [Le(ys) — L(ye)] + [Lye + €) — L(ge)]-
By the Pélya theorem (see, for example, [16]) we have

(2.4.9) Jim sup |Le(y) — L(y)| = 0.
—00 o

Since the continuity of the function L(z) implies its uniform continuity, we obtain
from (2.4.8) and (2.4.9)

(2.4.10) lim P*(Y; =y) =0.
t—o0
Therefore it follows from (2.4.5) and (2.4.10) that
(2.4.11) lim a; = a <= lim Li(y) =1—q,
t—o0 t—o0
whence
(24.12) thm o =a<= hm Yt = li—a,
—00

since L(z) is continuous and strictly increasing in the interval (I, D).
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By (2.1.9), we have for any € > 0
(2.4.13) B(6%) > Elzy (1 - 6;7%) > E I (3 — & < Vi) (1 — 6;7%)
> Py — e < Yi < ) exp((ye — €)¥e).

Using (2.4.13) we get
: : -1 o)
(2.4.14) Jim g, =l _o = lim ¢ In g (67%) =l_q
in view of the second implication in (2.4.2) and since ¢ is arbitrary. The relation
: : -1 o)
Jim g, =l_q = lim ;" In B (67) = h-q
follows from

(2.4.15) tlim w;llnﬁ (6;'""") =lj—q = limsupy; <l1_o
—00 t—o0

in view of the second implication in (2.4.3).
We prove (2.4.15) by contradiction. Let

(2.4.16) lim ;7 InB (6;7%) =l1—a,  limsupy > li—aq,
t—oo t—o0

and let (t,) be a sequence such that t, — oo and y;, — limsup;_,, ¥: as n — oo.
Then estimate (2.4.13) implies that

limsup; ! In g (6;""’“) > limsup1,l){n1 Ing (6;’“’") >li_a,
t—oo n—0o00

contradicting the equality in (2.4.16). This proves implication (2.4.15). By com-
bining (2.4.12), (2.4.14), (2.4.15), and (2.4.3), we obtain (2.4.7). O

REMARK 2.4.3. If the limit distribution L in condition A4 is singular and
concentrated at a point zg € (—00,0), then the law of large numbers A1l holds, and
the statements of the previous section apply. If the function L(z) in condition A4
is discontinuous at a point 2y € (—o0,0) such that 0 < L(zo) < L(zo+0) < 1, then
Theorem 2.4.1 implies the following result: If oy — « as t — oo, then we have for
any a € (1 — L(zo + 0),1 — L(zo))

d In B (8;)

(2.4.17) lim —£ =1;_q, lim

=1l
t—o0 '{pt t—oo 'll)t 1-a

where l;_ = To. Moreover, if condition A4 holds and L~(a) = inf{u: L(u) > o},
a € [0, 1], is the inverse function of L(z), then Theorems 2.4.1 and 2.4.2 imply the
following result: If oy — a as t — o0, then for any a € (0,1) that is a point of
continuity of L~Y(c), relations (2.4.17) hold with l;_o = L™(a).

REMARK 2.4.4. If the assumptions of Theorem 2.4.2 hold and &;"** is the
Neyman-—Pearson test whose level oy has a limit value a € (0, 1), then Theorem 2.4.2
implies that

di = li—aWe +0(®),  InB(67%) = li_ats + o(s).

Here, I, _4 is strictly decreasing from 0 to —oo as « increases from 0 to 1. Therefore
the rate of decay of B(6;**) depends on a for each particular value of . This differs
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crucially from the case where the law of large numbers Al holds; in the latter case,
the rate of decay of 3(5;"**) is independent of o (see the preceding section).

Second-order behavior of the Neyman—Pearson test. Now we consider
the case where the law of large numbers holds for A;. In this case, the rate of decay
of the type II error probability of the Neyman—Pearson test 6;" "*t is independent
of a = lim,00 @ if @ € (0,1). Below is a condition enabling us to evaluate the
second term in the asymptotic expansion of In B(d;*t) as t — oco.

A5. L (o7 (A¢ + )| Pt) = L ast — oo where ¢ and 9; are positive functions
such that ¢; — oo and ¥y — oo as t — oo, ¢ = o(y), and L is a
probability distribution on R! whose distribution function is L(z).

It is easy to see that A5 = Al for x; = .

THEOREM 2.4.3. If condition A5 holds, then for any a € (0,1)

lim a; = a = limsup M <li-o
(2.4.18) t—oo t—o0 Pt
v +, 0
= lim sup M S il—a)
t—oo Pt
1 6+,OZ¢
lim ot = o = liminf M >l o
(2.4.19) teo tmeo bt
> liminf 2 5% 5
t—o0 (pt

where [, and I, are defined by (2.4.4).

PRrooOF. It is sufficient to follow the proof of Theorem 2.4.1 with appropriate
modifications. First of all we note that equality (2.4.5) holds with

(2.4.20) Yo =07 "(Ae+ve), v =07 (de + ).

The proof of the first implication in (2.4.18) is the same as that of the first impli-
cation in (2.4.2). The second implications in (2.4.18) and (2.4.19) follow from the

estimate (2.3.10).
Now let @y — a as t — oo and let u € R! be a point of continuity of the

function L(z) such that L(u) < 1 — a. We have
B (6;'"“‘) > E (Y; > u) (1- 5t+’°") z¢ > exp(ups — Pt) [Pt(Yt >u) — at]
by equality (2.1.8), whence the first implication in (2.4.19) follows. O

The following result improves Theorem 2.4.3 for the case where the func-
tion L(z) in condition A5 is continuous.

THEOREM 2.4.4. Assume that condition A5 holds and the function L(x) is
continuous and strictly increasing on the interval (1,1) where | and | are defined by
(2.4.6). Then for any a € (0,1)

In g (87°) +

=li_q &= tlim ————— =14

(2421) lim 0p = o <= lim 2%
t—oo pol ©:

tmoo Py

where I, is a p-quantile of the distribution L.
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PrOOF. It suffices to repeat the proof of Theorem 2.4.2 with appropriate modi-
fications. First, we should use equality (2.4.5) where Y; and y; are given by (2.4.20).
By literally repeating the proof of equivalence (2.4.12), the first equivalence in
(2.4.21) is proved.
Next, we have for any € > 0

B(51™) 2 E'I(y — e < Yoz (1 - 67°)

(2.4.22) .
> P*(ys — e < Y: < ye) exp((ys — €)pr — ¥t).

Then the second implication in (2.4.18) implies
s — : - +,a¢ —
(2.4.23) Jim ye = o = lim ;" (Inf(87%) + ) =l

since ¢ is arbitrary in (2.4.22) and I, = [, for p € (0, 1) in view of the continuity and
strict monotonicity of the function L(z) in the interval ({,1). Further, the relation

Jm e = ho = Jim o7 (Inf (67%) + ) = h-a
follows from the second implication in (2.4.19) if
(2.4.24) Jim et (InB (67%) + ) = li—a = li?lil:p Yt < l-a.
Relation (2.4.24) is readily proved by contradiction. Indeed, assume that
(2.4.25) tllf{.lo o;' (Ing (5:-'0“) + %) =l_a, liiflsgip Yt > li—q

and let (t,) be a sequence such that ¢, — oo and y;, — limsup,_,., ¥: as n — oo.
In view of estimate (2.4.22)

limsup ;™ (Inf (&%) + 1) 2 Tim ;! (lnﬂ (Q’a'”) + %) > li—a

contradicting the equality in (2.4.25). This proves implication (2.4.24), completing
the proof of the second equivalence in (2.4.21). O

REMARK 2.4.5. If the assumptions of Theorem 2.4.4 hold and if oy — a €
(0,1) as t — 0o, then Theorem 2.4.4 gives the following asymptotic expansions for

the Neyman-Pearson test &;**:
(2.4.26) de = =t + li—atpt + o(t),
(2.4.27) In B (67°%) = =ty + li—apt + o(2)-

Expansions (2.4.26) and (2.4.27) show that, under these assumptions, the asymp-
totic behavior of the test 8;*** depends, in the second term of the asymptotic ex-
pansion, on the limit value « of the level o; (cf. Remark 2.4.4 and relation (2.3.12)
in the case where the law of large numbers Al holds).
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EXAMPLE 2.4.1. Let an observation £ be the vector

€n=(£1’€2"",5’n)’ n=1)2"'-a

where the random variables &1, &;,. .., &, form a first order autoregressive process
(2.4.28) &=06i1+w, 1=12...,§=0,
where # € R is an unknown parameter and w;,ws,... are independent Gauss-

ian random variables with the A (0,1) distribution (which are independent of 6).
Denote by Py the probability measure generating the distribution of the observa-
tion £”. Let the measures Py and Pg correspond to the hypotheses H™ and H ",
respectively, where 6 and § are some points in R such that |6] > 1 and 6+6. We
assume that 6 is independent of n, while 6 depends, generally speaking, on n. We
write § = 0, if § depends on n. It is clear that the measures P} and P% generate
Gaussian distributions. Moreover, Py ~ Py and, in view of (2.4.28), the logarithm
of the density of the measure Pg with respect to the measure Py can be represented
as follows (Pg-a.s.):

(2429) n - (0 0) Z&—l'wz - _(0 9)2 Z&z—

i=1
By (2.4.28), we have

Eg (0_"_1§n+1 - 9—n§")2 = Eg (G_n_l'wn+1)2 = 0—2(""’1).

Using Proposition I1.4.2 in [42] we obtain that ~"&, is a Cauchy sequence with
probability 1 and therefore the limit lim, .., 0~ "¢, exists almost surely with re-
spect to the probability Pg. On the other hand (2.4.28) implies that the random
variable &; is normally distributed with mean 0 and variance

(2.4.30) ’9‘&2 = g% (1 40724044+ 0—21) '
Thus
(2431) v 92 - lg_né.n -7, n — oo,

almost surely with respect to the probability Py where the random variable 7 is
normally A (0, 1) distributed. Further, we obtain by (2.4.31)

n

0—211. Zﬁz—l — _ 1)2 Z (0i——n§n_i)2 92t

=1

(2.4.32) -
= (2= 1)* Y (0" "6n-s) Tum(@)0™% - 7
i=1
as n — oo with probability 1. Here, we have used the dominated convergence, since
for any w where convergence (2.4.31) holds, there exists a constant C(w) such that
|677¢;(w)| < C(w) for all j = 1,2,.... It is easy to show, in view of (2.4.28) and
(2.4.30), that

02n

n - = 02
(2.4.33) Ej (;&‘lw‘) ZE e, < Zez( 1) — < @12

=1
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Now assume that § = ,, depends, generally speaking, on n and 2"A2 — oo
as n — 0o where A, = 8,, — 0. Then (2.4.29) implies the following representation
(Pg-a.s.):

n n
(24.34) YA, =2(6*- 1)2 Ao~ Z&—lwi —(6° - 1)2 62" Z &1
i=1

i=1

where ¥, = 271(6? — 1)726?"A2. But, in view of estimate (2.4.33), we have

n 2
(2.4.35) Eg (0-2%;1 Zfi—lwi) < A% (67 - 1)"" -0, n-— o0

i=1
Relations (2.4.32), (2.4.34), and (2.4.35) imply that condition A4 holds where
Pn = 271(82 — 1)726?"A2, L is the distribution of the random variable —? whose
distribution function is

Lz)=P(-n*<z)=2(1-28=2), =<0,

L(z) = 1 for z > 1, and ®(z) is the distribution function of the normal N (0,1)
distribution.

Since the function L(z) is continuous, Lemma 2.4.1 implies that the complete
asymptotic distinguishability (H™) A (fI") holds and, moreover, Theorem 2.4.2
applies. Observe that [ = —oo, [ = 0, and for any p € (0,1) a p-quantile of the
distribution L can be represented in the form I, = —22_ p/2 where z, is a p-quantile
of the distribution A/ (0, 1). Therefore relations (2.4.7) become of the following form
for any a € (0,1):

In B (5) 2

. . d
lim o, =a < lim —ﬁ=—zi = lim —2 = —21,..
n—oo n—oo Py, n—o0 n 2

EXAMPLE 2.4.2. Let an observation be a sample & = (£1,&,,...,£,) where
&1,&s,...,&, are independent identically distributed random variables. Assume
that the distribution of §; under the hypothesis H™ is generated by a measure P
whose density with respect to some o-finite measure p is p(z), while under the
hypothesis H™ the distribution is given by a measure P having density p(z) with
respect to u. Consider the likelihood ratios

m(@) = [[ (@),  #@)= PE) o (oae.. ).

ol p(z:)’
Put
An(z) = In 2z, (), AMz;) = In 2(z;), z = (z1,2Z2,-..,%n),
An = n(f"’), )‘i =11’12:(§i), 1= 1,2,...,n
Then

n
A=) "N, n=12...,
=1

I(P"P™) = nI(P|P),  I(P|P)=—E\,
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where P" and P" are the measures generating the distribution of {™ under the
hypothesis H™ and H™, respectively (see Section 2.3).
Assume that

0<IPPP)<oo0, 0<c*PP)=D) <oo

where the symbol D stands for the variance under the hypothesis H". Then the
central limit theorem [47] implies

c (\/ﬁa(Plﬁ) (A,, + nI(P|i5)) |P") 2 N(0,1), n— .
Therefore condition A5 holds with
on=+vno(PP), Y,=nI(PP), L=N(0,1).

Thus the assumptions of Theorem 2.4.4 hold with [ = —oo0, | = 00, and L(z) = ®(z).
Hence relation (2.4.21) holds for any a € (0,1) where I, = z, is a p-quantile of the
distribution N (0,1). Therefore the following asymptotic expansion holds for the
Neyman-Pearson test 5,1~ if a,, — a € (0,1), n — oo:

InB(6}2") = —nI(P|P) — vno(P|P)21—a + o(v/7)
(cf. relation (2.3.22)).

EXAMPLE 2.4.3. Let an observation be a column-vector £ = (£1,&2,...,&,)
having Gaussian distributions P™ and P" under the hypotheses H™ and H", re-
spectively, namely

LElH™) =N (1,0°R,), £ (&™) =N (5,5°Rn)

where N (a, B) is the Gaussian distribution with the vector of means a and matrix
of the second order mixed moments B, p = (@1, 2, .- tn)’y &= (H1, B2, - - - Bin)’,
and R, = (R;;) is an n X n-matrix. This model can be written as

gn =0+ ,Ucn
where (" = ((1,{2,..-,¢n)’ is a Gaussian vector with distribution
L(C1H™) = £ (¢IH™) = N (0, Rn)

and where = (64,62,...,6,) and v € (0,00) are unknown parameters such that
6 = p and v = o under the hypothesis H", while § = i and v = o under the
hypothesis H™.

Assurrie that the matrix R, is nondegenerate for all n = 1,2,.... Then the
measures P™ and P" are mutually absolutely continuous. Therefore the likelihood
ratio 2, has the form z,(z) = dP™/dP"(z), z = (21, z2,...,Zn), where

o 1 ) ~ 1 _
An(z) =Inzn(z) =nln = — o= (2 ~ B) Ry (z— 1) + 253 (& )R (z — )

2
11 1\, _, 1 , _ 1,
=nln= +2<0_2 &') Ry mR y 252man
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and m = — p and y = z — . This implies that

An = An(€")
(2.4.36) 1 ( 11

nnZ+2 (-5

5 ) ’R‘n————mR“ —;m’R;Im

262
where n = ™ — pu. Note that Theorem 1.4.1 in [38] implies E™y'R;'n = no?,
whence we obtain
2 2
npny - A = P (O T L et

(2.4.37) I(P"|P™) = —E"A, 5 (52 1 ln52> +5=m R, 'm
by equality (2.4.36). N

Put ¢, = m'R;'m and let I(P"|P™) — 0o as n — co. Considering (2.4.37) we

distinguish the following three cases.
a) Let @ = 0 and ¢, — 00 as n — 0o. Then (2.4.36) and (2.4.37) imply for any

n=1,2,... that
.c( ~1/25 [A + —] | P") =N (0,1)

and thus condition A5 holds with

Crlz/z Cn
Pn = ?7 Yn = ﬁ’ L= N(O, 1)’ L((B) = @(a:)

Therefore the assumptions of Theorem 2.4.4 are satisfied and thus

1/2
an) — _ € tn 1/2
(2.4.38) Inf (65%%) = — 535 — =—1-a+0 (c,/ )
if ap — @ € (0,1) as n — oo.
b) Let & # o and n/c, — 00 as n — oco. Equalities (2.4.36) and (2.4.37) imply
that

2.4.39 [A +I(P"|P")] L(2 _Ne.-x&
( <z, ) T \/ﬁ a«z n n
where
_ 1 (1, _
(2.4.40) H, \/_~2m 'R-Y, Ga= = (gn’ R-ln— n) .

It is clear that H,, — 0 in probability as n — oo under the hypothesis H™. By the
central limit theorem and in view of Theorem 1.4.1 in [38], we have

L(G.|P™) = N (0,1) asn — oo.
Therefore condition A5 holds with
2
o

n n|pn _
On = 55-5—1}, '(,bn=I(P |P ), L=N(0,1).

Then Theorem 2.4.4 implies that

2
= —1

Ing (50) = ~I(P"P") - \/g 2~ 1|21 +o(vR)
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if o, — @ € (0,1) as n — oo. Observe that this expansion takes the following form
in the case of ¢, = o(y/n):

n (o? o2 n
InB (&) =-3 <5—2 —1—ln5—2-> - \/;

c) Let & # o and n/c, — 0 as n — oco. Then relations (2.4.39) and (2.4.40)
imply that

0.2
=2

1| 21-a + O(\/—)

~2
g n|pn n w
c (—a\/c_n [Aa+1(1F7)] | P ) N (0,1)
as n — 00. Therefore condition A5 holds with

Pn = 25 =alt, Y =IP"P"), L=N(01).

Hence Theorem 2.4.4 implies that

Ing (67) = —1(P"|P") - 1/2z1 —a+0(ct?) ifan— ae(0,1).
The latter expansion becomes of the following form if n = o(c}/ 2):
1
Ing (6 = ~ozaln T —C 22210 +0(c/?)

(cf. (2.4.38)).

Examples where conditions A4 and A5 hold and the observation £¢ is a stochas-
tic process on the interval [0, ] can be found in the monograph [37].

2.5. Contiguous families of hypotheses

Relative compactness and tightness of a family of probability mea-
sures. The concepts of relative compactness and tightness of families of probabil-
ity measures play a fundamental role in studying contiguous families of statistical
hypotheses. Assume that all underlying measures are defined on a metric space
(E, &, p) equipped with a distance p where the o-algebra & is generated by the met-
ric p. In what follows, we often consider the case (F,&) = (R™,8™) with the
Euclidean metric p.

DEFINITION 2.5.1. A family of probability measures 2 = (Q,; u € ) is called
relatively compact if any sequence of measures belonging to 2 contains a subse-
quence that converges weakly to a probability measure.

Note that this definition does not assume that the limit probability measure
belongs to the family 2.

DEFINITION 2.5.2. A family of probability measures 2 = (Q,;u € 2) is called
tight if for any € > 0 there exists a compact set K. C F such that

sup{Qu(E\Ke);u € Ql} <e.

The following result is fundamental for the theory of weak convergence of prob-
ability measures.
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THEOREM 2.5.1 (Prokhorov’s theorem). Assume that 2 = (Qu;u € %) is a
family of probability measures defined on a complete separable metric space (E, &, p).
The family 2 is relatively compact if and only if 2 is tight.

The proof of this theorem can be found in various textbooks on probability
theory (see, for example, (3, 47]).

Consider a family of probability measures 2 = (Q;;t € R4) on the space
(R, B) where Q; is the probability measure defining the likelihood ratio z; with
respect to the measure Pt. If a family of hypotheses (I:T t) is contiguous to a fam-
ily (H?), then Theorem 2.2.3 implies that the family (z) is tight with respect
to (Pt). Therefore the family of measures 2 is tight and thus, by the Prokhorov
theorem, relatively compact. In a similar way, if a family (H?) is contiguous to the
family (H*), then the family of distributions of % with respect to the measure P*
is relatively compact. It is clear that the family (z;) is tight with respect to (P?).
Therefore the family of distributions of A; = Inz; is relatively compact with re-
spect to P¥, since (H!) <1 (H?). Therefore if (H?) <1 (H?), then every sequence of
distributions of A; with respect to P* has a weakly convergent subsequence. For
the sake of brevity we assume throughout this section that the distribution of A;
with respect to P* is weakly convergent.

Weak convergence of the logarithm of the likelihood ratio. We intro-
duce the following condition:
A6. L (At|Pt) = L where L is a probability distribution on R. whose distribu-
tion function is denoted by L(z).

THEOREM 2.5.2. If condition A6 holds, then
(2.5.1) c (Atlﬁt) Ny

where L is a probability distribution on the extended real line R = [—o00, 00| whose
distribution function is

(2.5.2) i(z) = / © evar(y).

~

In this case, L(c0) <1 and

(2.5.3) im lim P(A; > N) =1 — L(0).

1
N—oo0 t—o0

PROOF. By the Lebesgue decomposition we have for any z € R
-~ exp(z)
(2.5.4) Bt(A, < 2) = EI(In 2 < @)z = / 2dGy(2)
0

where Gi(z) = P'(z < z), z € Ry. By the Helly theorem [47], condition A6
implies that

T

(25.5) Jim [ 2dGy(2) = / * 246 ()
lim A

0
for any z € (0, 00) such that Inz is a point of continuity of L(z), where

G(z) = L(Inz), z € (0,00).
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It is clear that

(2.5.6) /0 " L dG() = / ' e dl(z)

—0o

It follows from (2.5.4)-(2.5.6) that for any y € R which is a point of continuity
of L(z),

~ Y
(2.5.7) Jim Pt(A, <) = / ¢ dL(z),

—00
whence relations (2.5.1) and (2.5.2) follow. The inequality f(oo) < 1 and relation
(2.5.3) also follow from (2.5.7). O

COROLLARY 2.5.1. We have
(2.5.8) A6= lm @ =1, liminffF, > L(0).

PROOF. Tt is clear that for any z € R

1—a = P{(A; = —00) < PYAy <), B, = Pt(As < 00) > PH(A; < ).
Since the number z € R is arbitrary, we obtain (2.5.8) from condition A6 and
relation (2.5.3). 0

COROLLARY 2.5.2. If condition A6 holds for L=N (a,0?) where a€(—00,00)
and o € (0,00), then a < —0%/2 and (2.5.1) holds with the distribution function

(2.5.9) I(z) = ho® (”’—'%;£>

where h = exp(a + 02%/2).
PROOF. It is clear that

T T _ — — 2
/ eYdL(y) = / evdd <y a) dy = h® <u).
—oo —oo o o

By relation (2.5.7) and by equality (2.5.2), this implies (2.5.1) and equality (2.5.9).
Since A(0o) < 1 by Theorem 2.5.1, equality (2.5.9) implies that a < —0?/2 in view
of ®(c0) = 1. O

REMARK 2.5.1. I£ condition A6 holds, then it follows from Theorem 2.5.2 tllat
the limit distribution L is, in general, a mixture of two probability distributions L+
and €() weighted by L(co) and 1 — L(00), respectively, that is,

L =L(c0)L* + (1 = L(00))€ (o0}

where €(} is the Dirac measure concentrated at co and L* is a distribution on R

determined by its distribution function L*(z) = L(z)/ f/(oo), z € R. In particular,
by Corollary 2.5.2

L(co) = h=exp (a+0?%/2), It =N (a+ 0% 0%
for L =N (a,0?).
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REMARK 2.5.2. Assume that condition A6 holds where the distribution L is a
mixture of the normal distributions N (—02/2,0%) with respect to the parameter o
with a probability distribution K on (0,00). Then the distribution function L(z)
is continuous and increasing in (—o0,00). It is clear that the distribution L is a
mixture of the normal distributions N (¢2/2,02) with respect to the parameter o

distributed according to the same distribution K. Therefore L(co) = 1.

THEOREM 2.5.3. We have
(2.5.10) A6 = (HY) <1 (HY).
In particular, if condition A6 holds, then

(2.5.11) (H') < (H) < L(c0) =1,
(2.5.12) (HY) S (H?) < L(0) < 1.

ProoF. Condition A6 implies that

(2.5.13) lim lim P*(A; < N) =0.

N——oo0 t—o0

By Theorem 2.2.3, with the hypotheses H® and Ht interchanged, we obtain (2.5.10)
in view of the equality
Pz < N)=P*(z% > N7?)

and relation (2.5.13). N
Now we assume that condition A6 is satisfied. Then L(co) < 1 by Theo-
rem 2.2.3 and thus (2.5.3) holds. Hence Theorem 2.2.3 implies (2.5.11). Relation

(2.5.12) follows from the inequality Z(go) < 1, equivalence (2.5.11), and the follow-
ing property: either (H*) <1 (H?®) or (H*) J(H?Y). O

REMARK 2.5.3. The implication < in (2.5.12) is known as the first Le Cam
theorem (see [22]).
REMARK 2.5.4. The following property follows from Theorem 2.5.3 under con-
dition A6: either (H?®) <> (H?) (type a) or (H') < (H?) (type b). Moreover
(H*) <> (HY) < L(c0) =1,
(H) < (H?) < L(0) < 1.

IfL=N (a, 02) in condition A6, then a < —0%/2 by Corollary 2.5.2. Moreover,

L(0) =1 < a = —0?/2,
L() <1< a < —g?/2.

Behavior of the Neyman—Pearson tests. The following result establishes
a relationship between the behavior of the level a; and that of the type II error
probability 3(6;**) for the Neyman-Pearson test under condition A6.
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THEOREM 2.5.4. If condition A6 holds, then for any a € (0,1):

(2.5.14) Jlim a; = = limsup 8 (§7**) < L(l-a +0),
- t—oo
(2.5.15) Jim o = o = liminf §(67*) 2 Ll —o)

where L, and 1, are defined by equalities (2.4.4).

PROOF. Assume that oy — a € (0,1) as t — oco. First suppose that u is a
point of continuity of the function L(z) satisfying L(u) > 1 — c.. As in the proof of
Theorem 2.4.1, we obtain that limsup,_, ., d; < u. Therefore

(2.5.16)  limsup B (6;*) < limsup P*(A; < d;) < lim Pt(Ay < u) = L(u),
t—oo t—o00 t—oo

since, by (2.5.2), the point u is also a point of continuity of Z(x)
Inequality (2.5.16) yields

limsup 8 (6;*) < inf{L(u): L(u) > 1 — a} = L(l1—s +0)
t—oo

where the infimum is taken over all points u of continuity of L(z) such that
L(u)>1-c.

Therefore implication (2.5.14) is proved.
Now we suppose that u is a point of continuity of L(z) such that L(u) < 1—a.
Then liminf;_,. d; > u, whence

liminf 8 (67*) > liminf Pi(Ay < dy) > Jim Pt(Ay < u) = L(u).
Therefore
s +,0¢ T . _ -7
lim inf 3 (67*) > sup{L(u) : L(u) <1—a} = L(l;_,)

where the supremum is taken over all points u of continuity of L(z) such that
L(u) < 1 — ¢. Implication (2.5.15) is also proved. O

If condition A6 holds and the function L(z) is continuous, then Theorem 2.5.4
can be sharpened. First we prove an auxiliary result which is also of interest on its
own.

LEMMA 2.5.1. Let (Zt,2%,S), t € Ry, be a family of probability measures and
let Y; be a measurable mapping of the space (Z¢, ) into the space (R, PB) such that

(2.5.17) L(Ys) =58,  t— oo,

where S is a probability distribution on R whose distribution function S(z) is con-
tinuous for x € (—00,00) and such that S(—oo0) =0 and S(oo) < 1. Then

(2.5.18) lim S(Y; =y;) =0
t—o0
for any family (y;) of numbers such that yz € R and limsup,_,,,y: < oo if

S(00) < 1. Further assume that the function S(z) is strictly increasing in the
interval (z, %) where

z =sup{z:S(z) =0}, 7 =inf{a:S(z) = S(c0)}.
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Let (y:) and (1) be arbitrary families of numbers such that y; € R, €; € [0,1], and
the limit

(2.5.19) Jim [SY(Y, > y) +€.S8* (Ve = w)] = B
exists. Then the limit lim;_,oo y; ezists for any B € (1 — S(00),1) and
(2.5.20) tlirglo Yt = S1-8
where s, is a p-quantile of the distribution S. Moreover, if B =1, then
(2.5.21) limsupy; < z,

t—o0

while if =1 — S(00), then
(2.5.22) liminfy, > 7.

PROOF. First assume that S(co) = 1 and prove relations (2.5.18) and (2.5.20).
Put S;(y) = S*(Y;: < y). Then

S'(Y: = 1) < Si(ye +€) — Si(ve)
= [Se(ys +€) — S(ye + €)] — [Se(we) — S(we)] + [S(ye +€) — S(3e)]

for any ¢ > 0. By the Pélya theorem (see [16]) and since the function S(z) is
uniformly continuous, the latter inequality and condition (2.5.17) imply (2.5.18).
It is clear that relation (2.5.18) implies that

(2.5.19) <— tlil’{.lo Se(ye) =1- 6.
Therefore, again by the Pélya theorem, we obtain
(2.5.23) (2.5.19) <= tllglo S(y)=1-0.

The properties of the function S(z) and relation (2.5.23) imply that the limit
lim;—, o0 y; exists and (2.5.20) holds.

Now we assume that S(co) < 1. It follows from condition (2.5.17) and the
equality S(—o0) = 0 that

(2.5.24) Jim S,(z) = S(a)

uniformly in z < N for any N < co. Now the proof of the required relation (2.5.18)
follows the lines of the proof of the same relation in the case where S(c0) = 1.
The only difference is that the reference to the Pélya theorem is replaced with the
uniform convergence (2.5.24) in the interval (—oo, limsup,_,, ¥: + €) where £ > 0.

It is clear that § € [1 — S(c0),1]. First assume that 8 € (1 — S(0),1). In
order to prove that the limit lim;_,, y; exists and relation (2.5.20) holds in this
case, note that

lim lim S;(N)=0
N—o—oot—0o0

by (2.5.17) and in view of S(—00) = 0. Therefore conditions (2.5.17) and (2.5.19)
yield limsup,_,., ¥+ < 00. Let us prove this fact by contradiction. Assume that
limsup;_,., ¥ = co. Then there exists a sequence (¢,) such that ¢, — 0o and
Y, — oo as n — o0o. Let € > 0 be arbitrary and let N € R be such that
S(Ne) > S(c0) —e. By (2.5.24), there exists an integer no = ng(e) such that
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|t (Ne) — S(Ne)| < € for all n > ng. Now suppose that n; = n;(€) is an integer
and y;, > N, for all n > n;. Therefore

St (Ye,) 2 S, (Ne) = S(Ne) — € 2 S(00) — 2¢
for all n > ng V n,. Hence
lim inf 8*(Y; > y¢) < liminf 8* (Y3, > 4,) <1~ 8(c0),
since € is arbitrary. On the other hand,
litn_1)£13fSt(Yt >y) > tl_i{go[st(n >y) +eSH(Ye=u)] =B8>1-5(0)

by condition (2.5.19). This contradiction proves that limsup, . y: < oo. By
(2.5.18), we obtain S*(Y; = y;) — 0 as t — oo. Now the proof of equality (2.5.20)
follows the lines of the same proof in the case S(co0) = 1.

Now we prove (2.5.21) and (2.5.22) assuming that S(c0) < 1. Both proofs are
carried out by contradiction.

Suppose that f = 1 but limsup;_,., y+ > z. Then for any N € (z,7), where
¥ = limsup,_, ., ¥t, there exists to = to(IN) € Ry such that y, > N for all ¢ > ¢,.
Therefore the inequality

SHY: <y) + (1 —&)SH(Ye = ye) > SU(Ye < me) > SHY: < N)

holds for ¢ > ty. By inequalities (2.5.17) and (2.5.19) and by the equality S(z) =0
we obtain
Jim [S*(%: < ) + (1 - e)S* (% = w)] >0,

since S(z) is strictly monotone in the interval (z,Z). The latter inequality contra-
dicts (2.5.19) for 8 = 1. Therefore inequality (2.5.21) is true.

Now assume that 8 = 1 — S(00), but y = liminf; .o 9: < Z. Then there exists
a sequence (t,) such that ¢, — oo and y;, — y as n — oo. By conditions (2.5.17)
and (2.5.19) and by relation (2.5.18) we obtain

nlLHgo[St"(Ytn > ygn) +€tnst"(},tn = ytn)] =1- S(E) >1- S(EE) =1- S(OO),

since S(z) is strictly monotone in the interval (z,Z). This contradicts (2.5.19) for
B =1- S(c0). Therefore (2.5.22) is true. O

REMARK 2.5.5. If x = —oo under the assumptions of Theorem 2.5.1, then the
limit lim,; o, y; exists for B = 1 and equality (2.5.20) holds with sy = z = —oo0.
In a similar way, if T = oo, then the limit lim; o ¥ exists for 8 = 1 — S(c0) and
equality (2.5.20) holds with s;_g = Sg(e0) = T = 00. In the case § = N (a,0?), see
[45] for additional information if a = —02/2, and [36] if a < —02/2.

THEOREM 2.5.5. Assume that condition A6 holds and the function L(z) is
continuous and strictly increasing in the interval (I,1) where

L = sup{z: L(z) = 0}, I =inf{z: L(z) = 1}.
Then for any a € [0,1]

(2.5.25) |t1_1’11(;10 ap = a &= tl_i’r{.loﬂ (6:"“‘) = L(l1-qa)
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where I, is a p-quantile of the distribution L and E(x) is the distribution function
of the distribution L defined by equality (2.5.2).

ProOF. Condition A6 and Theorem 2.5.1 imply weak convergence (2 5.1),
where L is the probability distribution on R whose distribution function L( ) is
given by (2.5.2) and L(co) < 1. Equality (2.5.2) shows that

sup{z:L(z) =0} =1,  inf{z:L(z) = L(c0)} =1,

and that the function L(z) is continuous on R and strictly increasing on the interval
L.

( )Assurne that s > @ ast — 0c0. If 0 < a < 1, then the limit lim; ,, d; =
li_o exists by Theorem 2.5.1. Therefore limsup,_,.,d; < co. Then, again by
Theorem 2.5.1, we have ﬁt(At =d;) » 0ast — oco. By (2.5.1) and (2.5.2), by the
inequality limsup,_,., d: < oo, and since ﬁ‘(At < y) converges to L(y) uniformly
in y < N for any N < oo, we obtain

(2.5.26) B(6H) = L(li—a), t— oo

If a = 0, then Lemma 2.5.1 implies that liminf; .o d; > 1. Therefore, for any
N € (—o00,1), there exists t’ = t/(N) such that d; > N for all £ > t’. Hence

B (5°) > Pt(As < dg) > PE(A; < N)

for all t > t'. Since lj_o > 1 for o = 0 and N is arbitrary, convergence (2.5.1)
implies convergence (2.5.26) for o = 0.

If @ = 1, Lemma 2.5.1 implies limsup;_,,, d; < I. Then for any N € (I, 00)
there exists t” = ¢ (V) such that dy < N for any t > t”. Therefore

(2.5.27) B (67*) < PH(As < N) 4+ PH(Ay = dy)

for all t > ¢". _ ‘

It is clear that limsup, ,d: < oo and P¥(A; = d;) — 0 ast — oo by
Lemma 2.5.1. Therefore we obtain (2.5.26) for @ = 1 from estimate (2.5.27) and
convergence (2.5.1). This completes the proof of the implication = in (2.5.25).

Now assume that B(6;*) — L(l1_o) as t — o0o. Then 1 — B(5;) — B
where =1-L(l1-4) € [1 - Z(oo), 1]. For o € (0,1), we have 8 € (1 — f,(oo), 1)
and, by Lemma, 2.5.1, d; — Zl_ﬁ = iZ(ll—a) = lj_ where l~p is a p-quantile of the
distribution L. By condition A6 and by Lemma 2.5.1, we obtain a; — 1—L(l1_4) =
a ast — oo. _

If @ =0, then # = 1 — L(cc). By Lemma 2.5.1, we have liminf;_,o d; > 1.
Then for any N € (—o0,1) there exists to = to(N) such that d; > N for all t > to.
Hence

oy < Pt(At > N) +€tPt(At = dt)
for all t > ty. By condition A6 and Lemma 2.5.1, we obtain o; — 0 as t — o0,
since N is arbitrary.

The proof of the relation a; — a as t — co for a = 1 is similar. Therefore the
implication < in (2.5.25) is also proved. O
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L(co)
;noo
0 ] >cv
FIGURE 2.5.1

REMARK 2.5.6. Under the assumptions of Theorem 2.5.5, the function L(l;_q)
determines the equation for the lower bound of the limit 91 of the set 91t as t — oo.
It is clear that this limit exists in our case. An example of the set 91 is shown in
Figure 2.5.1.

Behavior of Bayes tests and minimax tests. Theorem 2.5.2 combined
with Lemma 2.5.1 enables us to obtain results on the asymptotic behavior of the
probabilities of error for Bayes tests and minimax tests.

Let 67 be the Bayes test with respect to the a priori distribution (m,7),7+7% =
1, and the loss function A;; = 1 — §;;.

THEOREM 2.5.6. Assume that condition A6 holds and x = In(w/7) is a point
of continuity of the function L(x). Then

(2.5.28) Jim a(67) =1-L (ln %’) ,
(2.5.29) lim B(67) = L (1n %) ,
(2.5.30) Jim e (67) = (1- L (1 %)) +7L (1n %)

where L(z) is defined by (2.5.2).

PROOF. Since the Bayes test ] can be represented as 67 = I(A; > In(m /7)),
condition A6 implies (2.5.28), while relation (2.5.29) follows from Theorem 2.5.2 and
definition (2.5.2) of the function L(z). Relation (2.5.30) follows from the equality

ex(87) = ma(87) +7B(57)
in view of (2.5.28) and (2.5.29). a

Now assume that 8} is the minimax test for testing the hypotheses H* and H®.

THEOREM 2.5.7. Let condition A6 hold where the function L(z) is continuous
and strictly increasing in the interval (1,1). Then

(2.5.31) Jm a(dy) = tlingoﬂ(éf) = lim e(d;) =a*
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where a* is a unique solution of the equation L(li_o) = o, L(z) is defined by
(2.5.2), and 1, is a p-quantile of the distribution L in condition A6.

PRrOOF. Observe that Theorem 1.2.4 yields
(2.5.32) a(dy) = B(o;) = e(&;).

Now, by Remark 2.5.6 and by Theorem 1.2.4 we obtain (2.5.31) from (2.5.32).
The existence and uniqueness of a solution of the equation L(ll__a) = « follows,
since L(z) is continuous and strictly monotone in the interval (i, ). O

REMARK 2.5.7. It is clear that it is sufficient to find solution d* of the equation
1 — L(d) = L(d) in order to find solution a* of the equation L(l;_o) = . Then
o* = 1— L(d*) = L(d*), that is, d* = l;_s+ = lg-. Further, by Theorem 1.2.4,
there exists a Bayes test &; ¢ with respect to the a prior distribution (7,1 — })
and a loss function A;; such that a(8;* ) = B(6;* ). This implies that a(5]* ) — a*.
Therefore, by Lemma 2.5.1, m; — «* as t — oo where 7 € (0,1) is such that
In(m*/(1 — n*)) = d*.

Independent observations. Let an observation be the vector

€M = (&1,6,..., &)

where £;,&s,...,&, are independent identically distributed random variables with
the distribution Py having density p(z; ) with respect to some o-finite measure p.
Here, 6 is an unknown parameter taking values in an open set © C R. Then the
distribution P} of the vector £(™ has density with respect to the measure x” and
this density is of the form p, (z;0) = [}, p(zi; ), € = (z1,Z2,...,Zn). For a fixed
point ¢ € ©, introduce the following regularity conditions (R;) on the family of
probability distributions {Pg,6 € ©}:
1) the function p(z;6) is absolutely continuous with respect to € in some
neighborhood of the point 8 =t for all z € R;
2) the derivative pj(z;6) = 9p(x;6)/00 exists for any 0 belonging to a neigh-
borhood of the point 8 =t for u-almost all z € R;
3) the function I(f) = E¢(01lnp(&1;60)/06)? is continuous and positive for
0=t.
The function I(8) is the Fisher information (see 25, 38]) and Ey is expectation
with respect to the measure Py.
Suppose that the hypothesis H™ is that the distribution of £(™ is determined
by the measure Py, while the hypothesis H™ is that the distribution of ¢™ is
determined by the measure P?ﬂ o where u is a fixed number such that

t+u/yv/ne€o.
Then the logarithm of the likelihood ratio is given by

(2.5.33) An =) In(p(&;t +u/vn)/p(&;:1)) -

=1

Consider the random variables

(2534) Nin = (p(E'u t+ u/ﬁ)/p(g‘u t))1/2 -1, i= 1, 21 PR 2



258 2. ASYMPTOTIC DISTINGUISHABILITY OF SIMPLE HYPOTHESES

and events A, = {maXi<i<n |7in| < €} where € > 0 is a fixed (small) number. If
the event A, occurs, then we use (2.5.33) and (2.5.34) to expand the logarithm into
the Taylor series and obtain

n n n n
(2.5.35) An=2) W1 +7Mn) =23 min =Y 12, + D tinltinl®
=1 =1 i=1 i=1

where o, are some numbers such that |a;,| < 1.
Before studying the asymptotic behavior of A, as n — oo, consider three
auxiliary results.

LEMMA 2.5.2. Let a nonnegative function g(y) be absolutely continuous in the
interval [a,b] and, moreover,

S0

a V9(y)

Then the function \/g(y) is also absolutely continuous in the interyal [a, b].

PROOF. Assume that g(y) > 0 in an interval (o, 8) C [a, b). Then it is clear
that the function /g(y) is absolutely continuous in the interva] [, B] and

B 1
\/g(ﬂ)—\/g(a)=/a \g/%dy-

Given ¢ € [a, b], consider the open set {y € (a,c): 9(y) > 0}. As is well known [41],

this set can be represented as the union of an at most countable number of disjoint
intervals (o4, 8;) such that g(a;) = g(8;) = 0 if @; # a and B: # ¢. Therefore

Bi

oy, & g , _
il Y M- LR ORI}

=1

that is, the function 1/g(y) is also absolutely continuous. 0

Consider the random variables

u =‘/IM_ — 19In(g;¢
C( ) p(§1,t) 1, <P(€1) = 2?{;12

where u is a number such that ¢t + u € ©.

LEMMA 2.5.3. If regularity conditions (R;) hold, then

2
(2.5.36) E, (@ _ <p(§1)) 0

u

as u — 0.
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PROOF. Since the function I(f) is continuous in a neighborhood of the point
0 = t, we have by the Fubini theorem

/_: </tt+ @Zf—g)‘zd@) dp = /t:EI(e)da <oo

where the internal integral on the left-hand side is u-finite, whence it follows that

the integral
[ o,
t-e /p(;0)
also is p-finite. Then we obtain in view of Lemma 2.5.2 that the function \/p(z;8)

is absolutely continuous in a neighborhood of the point # = ¢ for y-almost all .
Then we apply the Cauchy—Bunyakovskii inequality to obtain

<C(u)> /(\/P(a: t+u) — /p(z; t))2 du

2
1 /t+u P’g((l) 0) 1 t+u
== —==_df | du< —/ I(0)dé.
u? ( t  2v/p(z;6) T 4u J; ©)

Since the function I(6) is continuous at 6 = ¢, we deduce from (2.5.37) that

(2.5.37)

(2.5.38) lim sup E; (M) ’ < @
u—0 u - 4
It is clear that
(2.5.39) Eep?(1) = % (1),
(2.5.40) C(u) —¢), u—0, (Pras.).

Therefore the required relation (2.5.36) follows from Theorem 1.A.4 in [25]. O

LEMMA 2.5.4. If regularity conditions (R:) hold, then

(2541) Ee¢*(w) - 21(0)u? = o(u?),
(2.5.42) 2 (c2<u) - (L”;f“”)zu?) = ou?),
(2.5.43) Pe{l¢(u)] > €} = o(u?),

(2.5.44) EeC(u) + %I(t)uz = o(u?)

asu — 0.

. PROOF. By Lemma 2.5.3, relation (2.5.36) holds and moreover it can be rewrit-
en as

(2.5.45) Ee(C(w) — o(&)u)? = o (w?), uw-0,
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whence (2.5.42) follows. Further, equality (2.5.41) follows from (2.5.39) and (2.5.40)
in view of Theorem 5.3 in (2] and inequality (2.5.38). Using (2.5.41), we obtain from
(2.5.37)

@s46)  lm L [ (Ve e - vaGD) du = Lo,

We split the domain of integration in (2.5.46) into the sets {z:p(z;t) = 0} and
{z:p(z;t) # 0} obtaining

(2.5.47) / plz;t+u)du=o0(u?), wu—0,
{z:p(z;t)=0}
in view of (2.5.41). Further we use (2.5.47) and obtain
2
E:¢*(u) =/ (\/p(w;t+U) - \/p(-'c;t)) dp
{=:p(=;t)#0}

=240 ("‘2) = 2E¢(p(€15t +u)/p(€15t))Y/2 = —2E4C(u) + 0 (uz) .

This implies (2.5.44) in view of (2.5.41).
Now we prove (2.5.43). It is clear that

Puticel > < P fcw - s 7REE 5 £ 4 {(%&M)»Z}
_1}2_ <C() ;aln%(fl;t))

u? |0Inp(z;t) € Olnp(z;t) 2
oo [1(=750 > ) (P250)

The first term on the right-hand side is o(u?) by (2.5.45) and the second term is
also o(u?), since I(t) is finite. 0

REMARK 2.5.8. It is clear that (2.5.45) implies

() - SE2EEY o),y

By (2.5.44), we obtain then

(2.5.48) Et%Inp(El;t) = / o(z;?) pu(dz) =

{zp(mt)r0}  Of

The following result gives an asymptotic expansion of A, as n — oo under
regularity conditions (R;).

THEOREM 2.5.8. If regularity conditions (R;) hold, then

(2.5.49) g ) Z alnp &’ - E;I (t) + Pn(u,t)

where

(2.5.50) P?{lzﬁn(u, t)| > 5} — 0, n — 00,
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for any e >0 and all u € R. We also have
(2.5.51) (\/_ PPl mnp 5”0 | P”) SN(0,I(t), n— oo

PROOF. The Taylor expansion (2.5.35) is valid if the event A, occurs. In this
case (2.5.35) implies representation (2.5.49)-(2.5.51) if for all € > 0

(2.5.52) Py (A9) — o0,

(2553) { 2an \/_ Z 3lnp(§z,t) 9’4_1-(1:)
(2.5.54) P} { 2 —
i=1

n
(2.5.55) PP {z |7in|® > e} -0
i=1

as n — 0o.
First we prove (2.5.52). Since the random variables 7, . . ., Jn, are identically
distributed and 71, = ((u/+/n), relation (2.5.43) implies that

G-

)

PR(AS) < 3" Pu{lninl > €} = P, {

=1

as n — oo. Further,

i tE () |-

o
i=1

17.
wmn n

™ |

etas

i=1

()25

€

n
<2

3

—0

by (2.5.42) where E} is mathematical expectation with respect to the measure P}.
Moreover, since the sum

n 2
> (ovrEit)/e)
i=1
converges in probability P} to I(t)/4 by the law of large numbers, relation (2.5.54)

is also proved.
Relation (2.5.55) follows from (2.5.52) and (2.5.54), since

n
n 13 n i b
P {Z"’hnl > E} <Py {llgiagnlnml > 1 +I(t)'”'2}

i=1
n
+ P?{ann >14+ I(t)uz}.

i=1
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It remains to prove (2.5.53). Applying (2.5.44), we get

on-ee() 2% ()

as n — o0o. Therefore (2.5.53) is equivalent to

Jn=p;»{2

n

u_Olnp(&;t)
z (ﬂin — E¢iin — m'—at—>

i=1

>e}—>0.

Since £1,. .., &, are independent, we obtain from (2.5.48) that

2
4 . | u Olnp(&;t)
Jn S €_2Et I:E : (nzn - Et"7in - 2\/7—7’ 8t

i=1

S -=() -5
- 8 [a () s (3

Since the right-hand side of the latter inequality tends to zero as n — oo by
(2.5.36) and (2.5.44), relation (2.5.53) as well as representation (2.5.49)—(2.5.50) is

proved.

Relation (2.5.51) follows from equality (2.5.48), since the Fisher information
I(t) is finite in view of the central limit theorem for sums of independent identically
distributed random variables. O

COROLLARY 2.5.3. If regularity conditions (R;) hold, then
(2.5.56) L(A|PT) BN (— %I(t)uz,l(t)uz) ,  n— 00,

that is, condition A6 is satisfied with L = N (—3I(t)u?, I(t)u?).

REMARK 2.5.9. Asymptotic representations like (2.5.49)—(2.5.51) are known as
the local asymptotic normality (LAN) property of a family of probability measures
{P3,0 € ©} at the point § = t as n — oo. Representation (2.5.49)—(2.5.51) for
the observation £™ = (£;,&,,. . .,&,) can be found in the monographs [25, 37] for
the case of independent but not necessarily identically distributed random variables

£1a§2»* .. )gn'

REMARK 2.5.10. Relation (2.5.56) and Corollary 2.5.2 imply that convergence
(2.5.1) holds where L(z) is the distribution function of the law N (3I(t)u?, I(t)u?).
According to Remark 2.5.4, the mutual contiguity (H™) <> (H™) holds in this case.



CHAPTER 3

Goodness-of-Fit Tests

3.1. The setting of the problem. Kolmogorov test

Main definitions. Throughout this chapter we assume that the observation
is a sample £ = (&,6,,...,&,) where £1,&,...,&, are independent identically
distributed random variables. Thus the random variables &3,&2,...,&, are inde-
pendent observations of a random variable £. Consider a hypothesis H about the
distribution of the random variable £&. We call H the main or null hypothesis. Our
aim is to test the hypothesis H, that is, either accept H or reject it. The decision is
to be made on the basis of the information contained in the sample £(®). The alter-
native hypothesis is that the null hypothesis H is false. The alternative hypothesis
is denoted by K. The null hypothesis H can be either simple or composite. There-
fore our aim is to decide whether results of the observation £(™) are in agreement
with the hypothesis H. The tests described above are called goodness-of-fit tests.

We follow the general procedure to construct a goodness-of-fit test. Namely we
introduce a statistic T = T'(£(™) treated as the measure of disagreement between
the data £(™ and the hypothesis H. We require that, if H is true, the distribution
of this statistic is known exactly or at least approximately. In particular, if the
hypothesis H is composite, then the distribution of the statistic 7'(6(™)) should
be the same for all simple hypotheses forming H. If we treat T'(z) as a mapping
of (R™,#™) into a measurable space (Y,.#), then the probability of the event
{T(¢£"™) € B}, B € &, is well defined if H is true. We write in this case P{T'(¢(™) €
B/H}.

Consider a set Y, € .#of large deviations of the hypothesis H from the data £(™
such that P{T'(¢™) € Y,/H} < o where & > 0 is a sufficiently small number. Then
the goodness-of-fit test can be described as follows. If T'(¢£(™) € Y,, then, under
the assumption that the hypothesis H is true, an event occurs whose probability
is small and thus the hypothesis H should be rejected, since it contradicts the
observation ¢(™. Otherwise, that is, if T(£(™)) ¢ Y,, then there is no reason to
reject the hypothesis H, since the observation does not contradict the hypothesis.

The goodness-of-fit test §(z), z € R™, for the hypothesis H is then such that
§(z) =1for all z € {x:T(z) € Yo} and &(z) =0 for all z € {z:T(z) € Y \ Yo},
that is, 6(z) is a nonrandomized test for distinguishing two composite, generally
speaking, hypotheses (see Section 1.3). The statistic T is called the statistic of the
test &, while the set Y, (or the set {z:T'(z) € Y,}) is called the critical set for the
hypothesis H. As usual, the number « is called the significance level or type I error
probability for the test . Below we consider some examples of goodness-of-fit tests.

Kolmogorov goodness-of-fit test. Let the simple hypothesis H be that
the distribution function of a random variable £ equals F(z). As the measure of

263
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disagreement between the data £(™) and hypothesis H we consider the statistic

(3.1.1) Dp=Dn((™)= sup |Fu(z)- F(z)|

—oo<z<

where F,(z) is the empirical distribution function constructed from the sample & (),
that is,

(3.1.2) F,.(z) = vp(z)/n, z€R,
(313) Vn($) = ZI(—oo,z)(éi)
i=1

where I4(z) is the indicator of the set A C R. It follows from the Glivenko theorem
that

(3.1.4) P{ lim D, = O/H} =1

(see [38], Theorem 1.1.1).

The latter relation allows one to use the statistic D,, to construct a goodness-
of-fit test for the hypothesis H by treating small values of the statistic D,, in
favor of the hypothesis H. Large values of D,, suggest to a statistician that the
hypothesis H is false and it should be rejected. The following result, known as the
Kolmogorov theorem, allows one to construct the test for the hypothesis H if F(z)
is a continuous function.

THEOREM 3.1.1 (Kolmogorov). If the function F(z) is continuous, then for
allz>0

(3.1.5) nli—»nolop {V/nD, < 2/H} = K(z) = i (_1)1'5—21%2_

j=—c0

Note that K (z) is called the Kolmogorov distribution function (obviously, we
have K(2) =0 for z < 0).

The proof of Theorem 3.1.1 is quite complicated and we omit it. We only
mention that the method of proof of the Kolmogorov theorem and many other
limit results for functionals of empirical distribution functions is to show first that

(3.1.6) lim P{y/nD, < z/H} = P{ sup |wl(t)| < z}
n—o0 0<t<1

for all 2 € R where w°(t), 0 < ¢t < 1, is the Brownian bridge (see [48], §8).
Using then the exact distribution of supy<,<; |w°(t)| (see [48]) we obtain (3.1.5)
from (3.1.6). Also see [16, 24] for the proof of Theorem 3.1.1.

Now we construct the goodness-of-fit test for the hypothesis H based on the
statistic Dy, defined by (3.1.1). Let o > 0 be the significance level of the test and
let z(a) be a solution of the equation K(z) = 1 —a with respect to z. Then (3.1.5)
implies for large n that

(3.1.7) P{v/nD,, > z(c)/H} 21— K(2(a)) = o

Put 6, = I(y/nD, > z(a)). It follows from (3.1.7) that the level of the test &,
for large n is approximately equal to a. The test d, is called the Kolmogorov
goodness-of-fit test. This test rejects the hypothesis H if /nD, > 2(c), that is,
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if D, > z(a)/y/n. Otherwise v/nD,, < z(c) and there is no reason to reject the
hypothesis H and it is accepted.

Let K¢ be the simple hypothesis that the distribution function of a random
variable § is G. If sup, |G(z) — F(z)| # 0, that is, if the distribution function G
differs from F, then the hypothesis H is false given the alternative hypothesis K¢
is true. The behavior of the statistic D,, if the hypothesis K¢ is true is described
in the following result.

THEOREM 3.1.2. Let the distribution function F(z) be continuous, and let
G(x) be another distribution function such that sup, |G(z) — F(z)| # 0. Then for
allz>0

(3.1.8) Jim P {V/nDy, < z/Kg} =0.

PROOF. According to the Glivenko theorem, for all € > 0 and § > O there
exists ng = no(€, d) such that for all n > ng

P {sgp |Fn(z) — G(z)| > E/Kg} <é.
Let € < sup,, |G(z) — F(z)|. Then
P{VAD, <2/Ko} = P { ViDn < 5,509 |Fu(e) - G(@)] < ¢/ K

+P {ﬁDn < z,sup |Fp(z) — G(z)| > E/KG}
(3.1.9) *
<p {ﬁ(sgplG(w) —F)-e) < z/KG}

+P {sgp |Fn(z) — G(z)| > E/Kg} .

Since {y/n(sup, |G(x) — F(z)| — €) < 2} is a null event for n > n; = n, (¢, 2z) where

2
n1 (e, 2) = 2 (sgp |G(z) — F(z)| — e) ,

the first term on the right-hand side of inequality (3.1.9) is zero for n > n;. Taking
into account (3.1.9) we obtain for n > ng V n; that P{y/nD, < z/Kg} < 4. Thus
relation (3.1.8) is proved. O

If we put 2z = z() in relation (3.1.8), then
(3.1.10) Jim P {v/nDp, < 2(a)/Kg} =0

which means that the probability to accept the hypothesis H for the Kolmogorov
test of level a given the hypothesis K¢ is true and if sup, |G(z) — F(z)| # 0 tends
to zero as n — oo. The tests satisfying condition (3.1.10) are called consistent.
Thus the Kolmogorov test of level « is consistent. The behavior of the probability
P {v/nD, < 2(a)/Kg} is studied in (7], §3.12, for distribution functions G(z) that
are close to F'(z) in a certain sense.
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2. The Pearson test

The hypothesis. Measure of disagreement between a sample and the
hypothesis. Let £ be a random variable assuming values in a measurable space
(X,%). Consider a partition of the set X into r, r > 2, domains:

(3:2.1) x=Js

i=1
where S;NS; = @, i # j, and S; € % for all i. Consider the following hypothesis H
about the distribution of &:

P{¢ € Si/H} = p;, 1=1,2,...,7

where p;,p2, ..., D, are given positive numbers such that p; +ps+---+p, = 1. Let
€M) = (€1,€2,...,&,) be a sample from the distribution of £ and denote by v; the
total number of members of the sample £(® belonging to the domain S;, that is,

n
(3.2.2) vi=Y Is (&), i=1,2,...,r
=1

It is clear that v; + v + -+ + v, = n. We consider the following measure of
disagreement between the sample £(®) and hypothesis H:

-
Ui 2
(3.2.3) o = Zci (; “pi)
=1
where ¢;, 1 = 1,2,...,r, are some positive constants. By the Borel strong law of

large numbers
P{hm i—p,/H}—l i=12,...,r
n—o0
Thus P {limn . ¢» = 0/H} = 1. Moreover if K is a hypothesis of the form
P{¢ € S;/ K5} = ps, i=12,...,7

where p = (p1,D2,...,9r) # (P1,D2,---,Pr), then again by the Borel strong law of
large numbers

,
P {nll_{lgo Cn = Za‘(ﬁi -pi)?> O/Kﬁ} =1.
i=1

Thus the random variable ¢, defined by (3.2.3) can be used as a measure of dis-
agreement between the data and hypothesis H.

Pearson studied the behavior of {, in the case of ¢; = n/p;, i =1,2,...,r. The
random variable ¢, can be rewritten in this case as

(3.2.4) ¢n=i(i;”_pi)2=i_”i_n_

i=1 i im1 P

Consider the distribution of the random variable {, defined by (3.2.4) under
the condition that the hypothesis H is true. Then

(3.2.5) E{Ca/H} =7 —1.
Indeed E{v;/H} = np; and D{v;/H} = np;q; where ¢; = 1 — p;. This implies that
E{v}/H} = npigi + (nps)® = np;(1 + (n — 1)ps).
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Thus .
E{G./H} =) (1+(n—1)p;)-n=r—-1
i=1

and equality (3.2.5) is proved. Similarly we obtain that

1/ 1
3.2.6 D{¢x/H} =2(r—1 +—< ——r2—2r+2>.
(326) Gy =20 -+ (3

Relations (3.2.5) and (3.2.6) imply that the first two moments of the random vari-
able (,, under the condition that the hypothesis H is true converge to the corre-
sponding moments of the x?(r — 1) distribution as n — oco. Here x?(r — 1) stands
for the chi-square distribution with 7 — 1 degrees of freedom.

Pearson theorem. The following result, known as the Pearson theorem, pro-
vides the limit distribution of random variables ¢, as n — oo under the condition
that the hypothesis H is true.

THEOREM 3.2.1. Forallz >0
(3.2.7) nlgrg(J P{¢n <z/H} = K,_1(z)
where K,_1(z) is the chi-square distribution function with r — 1 degrees of freedom.
ProoF. Consider the random variables
b =TI (&), i=1,2,...,n k=12,...,n

Then ' ‘ .

vi =l + 4+ ), i=1,2,...,m
The random variables ,ugi),p,g), e ,uﬁf) are independent, identically distributed,
and such that

P{ud =/H} =Pl&ceSi/H} =pi, i=12...,n
Put v = (v1,v2,...,1,)". Then v = Z;.‘zl p; where p; = (uﬁ-l),uﬁ-z),-u,u?))’,
ji=1,2,...,n, are independent identically distributed random variables such that

P{Mj=ek/H}=P{u§-k)=1/H}=pk, k=1,2,...,r.

Here ¢, = (0,...,0,1,0,...,0) is the r-dimensional vector whose k-th coordinate
equals 1 and all other coordinates are zero. If y, (t) denotes the characteristic
function of the vector p;, then

pu;(t) = E {e“/“’ /H } = pre?'e = ppeits
k=1 k=1

where t = (t1,...,t,)'. This determines the characteristic function of the vector v:
n r n
(3:28) 00 = [T 0w (0 = (L pe) .
j=1 k=1
Now we introduce the random variables
(3.2.9) m=2""P 19,

np;



268 3. GOODNESS-OF-FIT TESTS
It is clear that
T
(3.2.10) > mivpi =0.
i=1

It follows from (3.2.4) and (3.2.9) that

(3.2.11) o=

i=1

According to (3.2.8), the characteristic function of the vector = (11,712, .. .,7)’
can be rewritten as

onlt) = E{""/H)

—E xp ) v —tl +...+l/ —tr
{e ('I. [ 1\/77471 " npr]
—iftiy/np1 + - + t,.,/np,.|>/H}

e ——
= exp(—i\/ﬁjzzjltj\/p_a (’;pr exp (z\}%))n

Taking the logarithm of both sides of equality (3.2.12) and then expanding the
exponent exp(ity/,/npx) and logarithm In(1 + z) into the Taylor series we obtain

T T
Inp,(t) = nlnZpkeit"/\’""”c - z\/ﬁZt,\/pZ'

(3.2.12)

k=1 j=1
_ iy 1Ny ey
=nln [1+\/ﬁk¥1tk\/p— 2n:4_:1tk+0(n )
(3.2.13) . =
—wﬁZtm»—j

=_—Ztk+ (Ztkﬁ> +o( —1/2)

Passing to the limit in (3.2.13) as n — oo we prove that

. 1
(3.2.14) Jim () = exp (—EQ(t)>
uniformly with respect to ¢ in any bounded domain where
r T 2
(3.2.15) Q) = Zti - (Ztkm) ,  t=(ti,ta,...,t).
k=1 k=1

It is clear that the quadratic form Q(t) defined by (3.2.15) can be represented as
Q(t) = t'At where A is a matrix such that A = I —pp’. The symbol I stands for the
r X r unit matrix, while p = (/p1,...,/pr)". Thus the right-hand side of (3.2.14)
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is @yo(t) = exp{—1t/At} which is the characteristic function of the (0, A) normal
vector n° = (79,719, ...,n°)". Therefore convergence (3.2.14) implies that

. _ 1,
nango ©n(t) = Pyo(t) = exp (—Et At)

uniformly with respect to ¢ in any bounded domain. The continuity theorem for
characteristic functions implies then that as n — oo

L(nH) = L (n°|H) = N(0,A),
whence
(3.2.16) L(GH) = L(C1H), n-— oo,

in view of (3.2.11) where
(3.2.17) =) ()2
i=1
Equality (3.2.10) for the limit vector n° implies that

T
(3.2.18) > ndvpi=0.
=1

Let A be an orthogonal r X r matrix whose bottom row is (/p1, /P2, .- ., /Pr)-
Then by (3.2.18)

T
(3.2.19) =Y 10\/Pi=0
=1

where 3 = (3,...,3,) = An°. On the other hand, it is known that orthogonal
transformations do not change the canonical representation of quadratic forms.
Thus the quadratic form (3.2.17) is given by

T T r—1
(3.2.20) C=Y =) =) s
=1 =1 =1

in view of (3.2.19).
The quadratic form Q(t) can be rewritten for new coordinates u = At as

r T 2 T r—1
Q)= th - (Z tkm) =Y i -ul=) ul=Q(4A ).
k=1 k=1 k=1 k=1

Therefore the characteristic function of the vector s can be represented for new
coordinates as

0s(u) =E (ei"’”/H) =E (e"U’A"" /H) =E (ei<A'“>’"° /H)
r—1

= exp <—%Q(A_1u)) = exp(—% l;“i)»

that is, the coordinates s, . .., 3,._; of the vector 3¢ = (51, ..., 5¢.) are independent
N(0,1) identically distributed random variables and ;. = 0. Now it follows from
(3.2.20) that £ (¢°|H) = x3(r — 1). Therefore (3.2.7) follows from (3.2.16). (]
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The Pearson goodness-of-fit test. Applying Theorem 3.2.1 one can con-
struct a goodness-of-fit test for the hypothesis H in a way similar to that used
to construct the Kolmogorov goodness-of-fit test based on the Kolmogorov limit
theorem.

Let o > 0 be a significance level and let z,_1(c) be a solution of the equation
K,_1(2) = 1 — o with respect to z where K,_;(2) is the chi-square distribution
function with r — 1 degrees of freedom. Then relation (3.2.7) implies for large n
that

(3.2.21) P{¢n > zr—1(@)/H} = 1 - K,_1(2r-1(0)) = c.

Now the test for the hypothesis H is §, = I({ > 2r—1()). Relation (3.2.21)
implies that the level of this test is approximately equal to a. The test is called the
Pearson goodness-of-fit test. Sometimes it is called the chi-square test. The Pearson
test rejects the hypothesis H if ¢, > z.—1(a), and it accepts the hypothesis H if
G < zr—l(a)-

Let Kj be the simple hypothesis of the form P{¢ € S;/ K3} =p;, i =1,2,...,7,
where p = (p1,D2,...,Pr) #P = (P1,P2,.-.,Pr). It turns out that the Pearson test
of level a € (0, 1) is consistent.

THEOREM 3.2.2. For all vectorsp # p

nllngo P{¢(n < 2r—1(a)/ K5} = 0.

The proof of Theorem 3.2.2 can be found in [37], Theorem 3.2.
Examples of the Pearson goodness-of-fit tests for special models of observations
can be found in [7, 9, 14, 26, 34].

REMARK 3.2.1. The hypothesis H tested with the help of the Pearson test is,
generally speaking, composite. This hypothesis is simple only in the case where
the vector u = (u®),u®,..., u")) assumes values ey, k = 1,2,...,r, and the
hypothesis H is that P{yu = ex/H} = pk, k = 1,2,...,r. One can show in this case
that the Pearson test coincides with the likelihood ratio test (see [7, 9).

REMARK 3.2.2. Let Hp be the hypothesis that the distribution function of
¢is F(z), r € R = (—00,00), and R = |J;_, X; where X; N X; = @, i # j.
Moreover let P{¢( € X;/Ho} = pi, i = 1,2,...,r,and p1 +p2+ - +p, = L
As above let H be the hypothesis that P{¢{ € X;/H} = p;, i = 1,2,...,7. The
Pearson test constructed above for the hypothesis H is sometimes used to test the
hypothesis Hy. However there are distributions G(z) such that the hypothesis H
is true but sup, |G(z) — F(z)| > 0, that is, the null hypothesis Hy is false. The
Pearson test does not detect the difference between such functions G(z) and F(x)
and therefore is not consistent for testing the hypothesis Hy.

Quantile test. Sign test. Let a random variable ¢ be real-valued, that is,
X =R = (—00,00). Assume that the hypothesis H is that

F(yi)zp‘iv t=12,...,7r-1,
where F(z) is the distribution function of the random variable ¢,

O<p1 <" <pr1 <1
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are given numbers,

—0 <Y < < Ypyg <00
are quantiles of levels p;,p2,...,Ppr—1, respectively, and r > 2. Thus the hypoth-
esis H is composite and deals with all distributions with fixed quantiles and their

levels.
Put S; = [yi-1,¥:), 1 =1,2,...,7, yo = —00, and y, = co. Let

£(n) = (51)527' o aé‘n)

be a sample of size n and let v; be the number of its members ¢; belonging to the
interval S;. One can apply the Pearson test for the hypothesis H based on the
statistic ¢, defined by (3.2.4). The test in this case is called the quantile test. If
r =2 and p; = 0,5, then the corresponding test is called the sign test. The null
hypothesis H in the latter case is that the median of the distribution of a random
variable ¢ is y;. The statistic (3.2.4) in this case is (4/n)(v1 —n/2)? where v, is the
total number of members of the sample £(™ belonging to the interval (—oo, ;). In
other words, v; is the number of negative signs in the sequence é;—1,,1 = 1,2,...,n.

The sign test is used under the following assumptions. Let (£1,m1),- .., (ény7n)
be a sample of size n whose members are independent observations of the vector
(&,m). One needs to test the hypothesis Hp that the coordinates £ and n are
independent and identically distributed, that is, F(z,y) = F(z)F(y) where F(z,y)
is the distribution function of the vector (£,7) and F(z) is the distribution function
of the random variable £ (and, of course, of 7 if the hypothesis Hy is true). Let
G =& —m,%=12,...,n. Then P{{; < 0/Ho} = P{(; > 0/Ho} = 1/2 and the
null hypothesis Hy is that the data ({1,(s,...,{s) is sampled from a distribution
whose median is 0. The statistic »; in this case is the total number of negative
members in the sequence (1, (s,...,{,. According to Theorem 3.2.1

L (41 — n/2)%/n|Hy) = x*(1), n— oo.

This relation allows one to construct the sign test for the null hypothesis Hy that
random variables £ and 7 are independent and identically distributed for a given
level a. The procedure is the same as in the case of the Pearson test. More details
on the sign tests are given in [5].

The Pearson goodness-of-fit test for distributions with unknown pa-
rameters. Let a random variable ¢ assume values in a measurable space (X, %)
and let its distribution depend on an unknown s-dimensional parameter

0 = (61,62,...,0,)

where 01,60, ...,0, are real numbers. As above we introduce a partition (3.2.1) of
the set X consisting of » domains.
Let the hypothesis H about the distribution of ¢ be that

(3.2.22) P{¢eS;/H} =p:i(6), i=12,...,m

where p1(0),p2(6),...,p-(8) are known functions of the parameter 6 such that
p1(6) + p2(f) + -+ + p-(6) = 1. The parameter  is unknown and our aim is
to estimate it by the observation £. Let £(™ = (£;,&,,...,£&,) be a sample of size n
and let v1,1s,.. ., v, be the numbers of members of the sample £;,&2, . . ., &, belong-
ing to the domains Sy, 9,,...,S,, respectively (see relation (3.2.2)). The measure
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of disagreement (3.2.4) between the sample and hypothesis (3.2.22) is in this case
given by

(3.2.23) ¢a(0) = Z (v n;p :

Note that (, depends on the unknown parameter  and this does not allow one to
use (, to construct a test for the hypothesis H. Thus the first step is to exclude the
unknown parameter from (3.2.23). To do so we substitute into (3.2.23) an estimator
6, = 0,(£™) for 6 and obtain the statistic

(3.2.24) En — Cn(e Z (vi n:l(’;(e)n)) '

The statistic En defined by (3.2.24) depends on the sample £(® and does not depend
on @ and thus it can be used to test the hypothesis H. When constructing a test
for the hypothesis H based on the statistic £(™) one needs to know its distribution
or, at least, its limit distribution (the latter depends on the estimator 6,,). Below
we consider the most famous method of estinlation of the parameter § which leads
to a simple limit distribution of the statistic {,,. This method was successfully used
by R. Fisher, J. Neyman, and K. Pearson in the early twentieth century.

As an estimator of 6 it is natural to take a value of the parameter for which
(n(0) defined by (3.2.23) attains its minimum. This is the so-called minimum x?
method. If the derivatives exist, then the problem of finding such a value is reduced
to solving the following system of equations with respect to 0:

acnw —2Z<”’ npi(6 (-—npzw))?)api(e):o,
=1

2np} (6) 96;
i=12,...,s

(3.2.25)

Note however that this system is not easy to solve even in the simplest cases. On
the other hand, one can show that the influence of the second term in parentheses
is negligible for large n. Omitting this term, system (3.2.25) becomes of the form

"\ v; — np;(6) 9pi(0) ~
3.2.26 —0, =1,2,...,s.
(3.226) L To® e y s

The method of estimation based on solving the system (3.2.26) is called the modified
minimum x* method. Under rather general assumptions both methods have the
same limit distribution ¢,(f,) as n — co. Below we consider a simpler method
based on solving the system (3.2.26).

. Since p1(6) + p2(6) + - - - + pr(6) = 1 for all 8, system (3.2.26) becomes of the
orm

v Opi(6) .
(3.2.27) v =0, =12,...,
gme) a9, ! °

The system (3.2.27) can be rewritten as

dlnLy,(6)

3.2.28
(3.2.28) 5

=0, i=12,...,s,
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where L, () = p;*(6)...ptr(6). The method of estimation based on solving the
system (3.2.28) is nothing else but the maximum likelihood method for the polyno-
mial distribution. Thus the estimator 6,, obtained as a solution of system (3.2.27)
(as well as that of (3.2.26)) is called the mazimum likelihood polynomial estimator.
The limit distribution of the random variable {,, = (n(0y) asn — oo is described
in the following result where 8, is the maximum likelihood polynomial estimator.

THEOREM 3.2.3. Let the functions p;(0), j =1,2,...,r, 0 = (61,0s.... ,03)',
s <, be such that:
1) p1(6) +p2(6) + -+ +p(6) =1 for all §;
2) pi(0) >c>0 foralli=1,2,...,r and the derivatives %ﬁl and %Z%G%},
5k=12,...,5,1=1,2,...,7, are continuous;
3) the rank of the r x s matriz ” ag,'o(f) “ is equal to s for all 0.
Then

(3.2.29) lim P {E,, < z/H} = Ky_y_1(2) forallz>0

where Zn = (n(6n) and 0, is the mazimum likelihood polynomial estimator.

The proof of Theorem 3.2.3 can be found in [14].

Based on Theorem 3.2.3 the goodness-of-fit test for the hypothesis (3.2.22) is
constructed in the same way as in the case of the Pearson test for distributions
whose parameters are known. The constructed test is also called the Pearson test.

REMARK 3.2.3. An estimator of § can be evaluated without ranking the data.
This can be done, for example, by maximizing the likelihood function

f(@1;0)f(22;0) ... f(2n; 0)

with respect to § where f(z;0) is the density of the distribution of £ with respect
to some measure. The estimator of the parameter 6 is not based in this case
on frequencies vy, vs,...,V, for domains S, Ss,...,S, but uses the observations
&,&,...,&, instead. Chernoff and Lehmann (see [12]) showed however that the
limit relation (3.2.29) does not hold for this method of estimation.

EXAMPLE 3.2.1. Let a random variable £ assume values 0,1,2,... . Set
S;={j-1}, j=1,2..,r-1,
and S, = {r — 1,7,...}. Let the hypothesis H be defined by (3.2.22) where

0i-1 .
Pj(0)=m€ o’ i=L12,...,7 -1,
(o) oi a
pr(0) = Z _i—'e 0’ 6>0.
i=r—1

In this case s = 1 and thus the system (3.2.27) is reduced to the equation

rf(%—l)uj+1+w i (%—1)%(§: %:>_1=0,

Jj=v i=r—1 i=r—1



274 3. GOODNESS-OF-FIT TESTS

whence

r—2 00 P 00 0.,; -1

Sivntu 3 ig( 2 §)

Jj=v i=r—1 i=r—1
where vy, va, . . ., vy are the numbers of members of the sample £(™ = (¢1,&,...,&,)
belonging to S1,52,...,S, respectively. The first term in the square brackets is
equal to the sum of all members of the sample &1,&s,...,&, such that § < r — 2,
while the second term is approximately equal to the sum of all members of the
sample &1,€2,...,&, that are greater than or equal to r — 1. Thus as an estima-

tor 6, of the parameter 6 one can take the sampling mean b, = €. Note that the
maximum likelihood estimator of the parameter 8 is equal to £ in the case of the
Poisson distribution. Note also that the limit distribution as n — oo of the statistic
(n = (n(6,,) is the chi-square distribution with 7 — 2 degrees of freedom (this result
follows from Theorem 3.2.3).

EXAMPLE 3.2.2. Let
£ = (6,6, 6n)
be a sample of size n. Let vy, vs,...,v. be the number of members of the sam-
ple £ belonging to Si,Ss,..., Sy, respectively (see relation (3.2.2)), where S; =
(—o0,z1 + %h), S; = (z; — %h, z; + %h) fori=2,3,...,7r—1, 8, = (z, — %h,oo),
zi=1z1+ (i —1)h for i = 2,3,...,r, and z; is some number of (—co,00). Let the
hypothesis H be defined by (3.2.22) where

p¢(0)=/ (z;0) dz, i=1,2,...,7,
S;

¢(z;0) is the density of the normal N (m,0?) law, and § = (m,0). Then the
system of equations (3.2.27) becomes of the form

m= %gui/&wga(mﬂ)dm (/Siw(:c;é’)dx)-l,
ol = %gw /Sl(z - m)%p(z;0) dz </S, <p(a:;0)d:c)_1.

First we assume that z; and r are such that v, = v, = 0. If h is small, then
an approximate solution can be obtained by substituting the values of integrands
at the middle points z; of the corresponding intervals S; instead of the integrands.
Then we get the estimators M, and &, defined by

1 1
My, = — E ViT;, s =— E vi(z; — M)
n< n <

To improve an approximation of the solution one can expand the integrands into
the Taylor series in the neighborhoods of points z;. Then the expressions for 7,
and &, for small A become of the form

_1 . 4 1 2__ 4
n = n;ula:¢+0(h ), Z%(ﬂh in) +O(h)

Thus omitting the terms of order h* we obtain estimators for m and o2. These
estimators are the mean value and variance of the ranked sample % corrected with
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the help of the Sheppard correction ’1‘—; [14]. The ranked sample is obtained from
the original sample if one substitutes the middle point of an underlying interval
instead of any member of the sample belonging to this interval.

This procedure gives a better approximation even if h is not small but the end
intervals are not empty and contain a small proportion of sampling values. Often
it is convenient to merge the end intervals such that the union contains at least 10
sampling values. As estimators for m and o2 one can take Z and s? evaluated by
the original ranked sample with the Sheppard correction applied to s2. If ' is the
number of groups in the merged sample used for the evaluation of ¢, then the limit
distribution of {,, has r’ — 3 degrees of freedom, since two parameters are already
estimated from the sample.

More details on the Sheppard correction are given in [14] (our Examples 3.2.1
and 3.2.2 are considered there for particular numerical values).

3.3. Smirnov test

The hypothesis on the homogeneity. Measure of disagreement be-
tween a sample and the hypothesis. It is an important applied problem to
check whether the data is homogeneous. More precisely let £&(™ = (&,&,,...,€,)
be a sample of size n consisting of n independent observations of a random vari-
able ¢ and let p(™ = (m1,m2,.--,Mm) be a sample of size m, independent of £
and consisting of m independent observations of a random variable . The hypoth-
esis H on the homogeneity is that the distributions of the random variables £ and
7 coincide, that is, P{¢{ < z/H} = P{n < z/H} for all z € (—00,00). In other
words, the hypothesis H means that the samples £ and 7(™) are, in fact, the
observations of the same random variable.

Let S,(z) be the empirical distribution function constructed from the sample
€™ and let Tp,(z) be the empirical distribution function constructed from the
sample (™). Consider the following measures of disagreement between the sample
and hypothesis H:

(3.3.1) D}, = sup[Sn(z) — T (x)),
(3.3.2) Dnm = sup |Sn(z) — Trm(2)|.
Since

Sn(2) — Tm(z) = (Sa(2) — F(2)) — (Trm(2) - F(2)),

where F(z) = P{¢ < z/H} = P{n < z/H} is the common distribution function of
¢ and 7 if the hypothesis H is true, the Glivenko theorem implies

P{ lim D,‘.'[m=0/H}=P{ lim Dn,m=O/H}=1.
! n,m—00

n,Mm—00

On the other hand, if Hp ¢ is the hypothesis that P{¢ < z} = F(z) and P{n < z} =
G(z) where F(z) and G(z) are distribution functions such that sup, |F'(z)-G(z)| #
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0, then again by the Glivenko theorem

P { limooD,'tm = sgp[F(a:) - G(x)]/Hp,G} =1,

n,m—

P{ lim Dy =sup|F(z) — G(a:)|/HF,G} =1.
n,m—00 z

The above argument shows that the statistics defined by (3.3.1) and (3.3.2) can
be used as measures of disagreement between the data the and hypothesis on the
homogeneity.

Similarly to the Kolmogorov and Pearson goodness-of-fit tests we apply limit
results on the behavior of measures of disagreement between the sample and the
hypothesis. In the case of the hypothesis H we deal with D}, and Dy as
n, m — 00. The method described below is due to Gnedenko. It allows one to find
the distributions of statistics D}, and Dy . We restrict the discussion to the
case m = n. Other methods for studying the limit behavior of D,‘.';, m and Dy, n, can
be found in [24].

The distributions of statistics D;f,, and Dy, . The following result con-
tains the explicit expressions for the distribution functions of D;f’ m and Dy, if the
hypothesis H is true.

THEOREM 3.3.1. If the distribution function P{¢ < z/H} = P{n < z/H} is
continuous, then

0, 2<0,
639 {205, <am}=]1-(2)/CD, 0<2< VAT
2 1 2> 2,

0, z < 1/v/2n,
P{f30nm <5/} = Suisia-DH (/) VIR <2< VaTs
1, z>+/n/2,

where ¢ = ]z\/ 2n[ is the minimal integer number which is greater than or equal to
zv/2n.

(3.3.4)

PrOOF. We assume below that the hypothesis H is true. Then the random

variables &1,...,&, and m,...,n, are independent and identically distributed and
their common distribution function is P{¢ < z/H} = P{n < z/H}. We rearrange
the random variables &1,...,&n, M1, ..., 7 in ascending order:

<< <Con

The equalities in this sequence may occur with probability 0, since the distribu-

tion function is continuous. Define the random variables x1, X2, - - -, X2n as follows:
Xt = 1 if {x is a member of the sample &;,&3,...,&n, while xx = —1 if (; is a
member of the sample 71,72, ..., M.

Put

k
So=0, Se=)x, k=1,2,...,2n.

i=1
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It is clear that

(3.3.5) nD}Y,. = sup S, nDpm = sup |Sk|-
0<k<2n 0<k<2n

Consider the points (k, Sk) on the plane (¢,z) for £ = 0,1,..., 2n and join them
by segments of straight lines. As a result we get a polygonal line for which there
are n subintervals [k — 1,k] of [0,2n] where the line goes up and n subintervals
[l = 1,1] of [0,2n] where it goes down. This line starts at the point (0,0) and ends
at the point (2n,0). Polygonal lines with these properties are called trajectories.
Since the number of intervals of any trajectory where it rises is equal to n and
the number of intervals where it descends is equal to n, the total number of tra-
jectories is (2:) All these trajectories are equiprobable. Indeed, any trajectory
corresponds to the event {&;, < &, < --- < &, } where 41,12,...,12, is a permu-
tation of the numbers 1,2,...,2n and &, < §&;, < -+ < &,, are random variables
1,69, ..., €n,&nt1, - - -, &on arranged in ascending order, &4k =Mk, K =1,2,...,n.
Since the random variables &1, &, .. ., £2n are identically distributed, we have

P{i, <&, <+ <& /H} =P{§, <&, <--- <&, /H}

for all permutations ;,%2,...,%2, and j1,j2,...,J2n Of the numbers 1,2,...,2n.
Thus the probability of any of the trajectories is 1/(%7).

According to (3.3.5) the random variables nD;}, and nD,, assume integer
values and thus

P{\/gD,tn < z/H} =P {nD}, <c¢/H},

P{ Z-D,,,n < z/H} =P {nDpn < c/H}

where ¢ =]zv/2n/[. It remains to evaluate the probabilities

P{ sup S < c/H} and P{ sup |Sk| < c/H}
0<k<2n 0<k<2n

to complete the proof of (3.3.3) and (3.3.4). Since all the trajectories are equiprob-
able, we need to determine the total numbers of trajectories favorable to the events

{ sup Sk < c} and { sup |Sk| < c} .
0<k<2n 0<k<2n )

First we prove equality (3.3.3). We determine the total number of trajectories
favorable to the event

{ sup Sk < c} ={nD}, <c},
0<k<2n

that is, the total number of trajectories below the straight line z = ¢ (line o). We
obtain this number by evaluating the total number of trajectories favorable to the
converse event

{ sup Sk Zc} = {nD,"L"n Zc},
0<k<2n

that is, the total number of trajectories that have common points with the line o
(we say in this case that a trajectory meets a). Every trajectory meeting the line a
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(and called an old trajectory in this case) corresponds to another (new) trajectory
defined as follows: the new trajectory coincides with the old one from the point
(0,0) until it meets the line a for the first time; after this point the new trajectory
is the mirror reflection of the old one. Thus the new trajectory starts at the point
(0,0) and ends at the point (2n,2c). The total number of different new trajectories
(hence the trajectories meeting the line @) is equal to (nzfc), since the number of
intervals where a new trajectory rises is equal to n+c, while the number of intervals
where it descents is equal to n — ¢. Thus the total number of trajectories that do
not meet the line « is equal to (**) — (2" ) and equality (3.3.3) is proved.

Now we turn to equality (3.3.4). We split the set 9t of all trajectories into
disjoint subsets 2;, ¢ > 0, and B;, 7 > 1: the set Uy consists of trajectories that
do not meet both lines z = ¢ (line &) and £ = —c (line B); the set 2A; consists of
trajectories meeting the line o but not the line §; the set B consists of trajectories
meeting B but not ¢; the set 2, consists of trajectories meeting first , then g,
and then not meeting o anymore; the set B, consists of trajectories meeting first
B, then ¢, and then not meeting B anymore; the set 3 consists of trajectories
meeting first o, then g, then again o, and then not meeting # anymore, and so on.
Obviously these sets are eventually empty. Moreover

(3.3.6) m==2Au | J@&Uus)
i>1
and the sets /;,%As,... and By,DB,,... are disjoint.

Along with the sets defined above we introduce the following sequence: the
set A; consists of trajectories meeting o at least one time; the set B; consists of
trajectories meeting 3 at least one time; the set Ay consists of trajectories meeting
a at least one time and then meeting (; the set By consists of trajectories meeting
B at least one time and then meeting o; the set Az consists of trajectories meeting
o at least two times and (3 at least one time each in the following order: first c,
then (3, then «, and so on. It is clear that

A =2V U(miU%i) , By =9, U U(Ql,»USB,-) s

i>2 i>2
Ar=%uU||J@UuB) ], B=%BU([J@us)]|,
i>3 i>3
and so on. This implies for all ¢ > 1 that
(Agi—1 \ A2:;) U (Bgi—1 \ Bas) = i1 URA2; U B3 UBy;.
The latter equality together with (3.3.6) implies

(3.3.7) Ao = I\ U [(A2i—1 \ A2;) U (Bz2i—1 \ Bgi)]
i>1
To complete the proof we determine the total number of trajectories in the
sets Ag;_1, Agi, Ba;_1, and By; for ¢ = 1,2,.... We demonstrate the method
for the case of sets A; and A;. Every trajectory starting from the point (0,0)
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and meeting the line a corresponds to a new trajectory starting from the point
(0,0) and coinciding with the original trajectory until the point where it meets the
line a; then the new trajectory is the mirror reflection of the old trajectory about
the line a. The new trajectory ends at the point (2n,2c¢). The number of such
trajectories is already determined above and it is equal to (nzfc). Note that the
cardinality of the set A; also is (,?",). If the original trajectory meets the line o
first and then meets the line 3, then the new trajectory meets the line z = 3¢ (this
is the mirror reflection of the line 3).

To determine the cardinality of the set Az we introduce new trajectories as
follows: the new trajectory coincides with the original one from the point (0,0)
until it meets «, then it coincides with the first mirror reflection about the line
until meeting the line z = 3¢, and, finally, the last part of the new trajectory is the
second reflection about the line = 3¢ of the trajectory reflected first. Such new
trajectories end at the point (2n,4c). The total number of such trajectories (thus,
the cardinality of the set As) is equal to (%% ).

A similar reasoning (using an appropriate number of reflections) proves that
the cardinality of the set A; is (n : c) In the same way we find that the number of

trajectories in the set B; also is (n ™ ). Since the sets Az;—1 \ Az; and Bai_1 \ By
are disjoint and the terms in (3.3.7) also are disjoint, we obtain from (3.3.7) that
the total number of trajectories in the set % is

2n 2n 2n
(n) "Zz;((n—(zi—l)c) - (n—zic)>‘
Thus equality (3.3.4) is proved. O
REMARK 3.3.1. The process Sk, k = 0,1,...,2n, used in the proof of Theo-
rem 3.3.1 is called a random walk on the axis. The method of evaluation of the

number of trajectories in the sets A; and B; applied in the proof of Theorem 3.3.1
is well known in the theory of random walks as the reflection method [24, 47).

The Smirnov limit theorem. The following result describes the asymptotic
behavior of the statistics D} ,, and Dy, , as n — oo.

THEOREM 3.3.2 (Smirnov). If the distribution function
P{¢ <z/H}=P{n<=z/H}

s continuous, then

) no4 _ 0, 2<0,
(3.3.8) Jl’ngoP {\/gDn’n < z/H} = { 1—e2? 550,

(3.3.9) lim P {\/ﬁ o < z/H} = K(z)
n—oo 2
where K(z) is the Kolmogorov distribution function defined by (3.1.5).

PROOF. Let z > 0 be a fixed number. Consider the ratio

(7% (n)?

Iy = (2:) - (n = ke)! (n + ke)!
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where k is a fixed constant independent of n. Using the Stirling formula
m! = V2rmm™e™™(1 + o(1)), m — 00,

we obtain
k —n+ke k —n—ke
(3.3.10) h:(r-f) (L+f) (1 + o(1)).

Since ¢ = |2v/2n[ = z2v/2n(1+0o(1)) as n — oo, we have kc/n = az+/2/n(1+o(1)).
Then taking the logarithm of both sides of (3.3.10) and expanding the result into
the Taylor series we get that

k%c?
lnIk = —T + 0(1) = —2k222 + 0(1), n — o0.

Thus
(3.3.11) Iy = 722 (1 4 o(1)).

This equality for k¥ = 1 proves relation (3.3.8).
Now we turn to relation (3.3.9). For given z > 0 and € > 0 there is a number
N (e, z) > 0 such that

Z (_l)ke—2k2z2

k|>N

(3.3.12) e 2N o £

<&
16’ 4

for N > N(g, z). Since

2n 2n
(n—kc>>(n—(k+1)c>’ k>0,

Yo (kL

N<|k|<[n/c]
Taking into account (3.3.11) and the first inequality in (3.3.12) we obtain for suffi-
ciently large n that

we have

< 2Iy.

(3.3.13) g%”mf<2

> DL

N<[k|<[n/e]

Now we apply the second inequality in (3.3.12) and inequality (3.3.13) to prove
that for large n

<8 E_C
4 4 2

Z (—l)klk _ Z (_l)ke—2k222

N<|k|<[n/c] |kI>N

Further we deduce from (3.3.11) that for a fixed N and sufficiently large n

Z (—l)ka _ Z (_l)ke—zkzz2

[kI<N [kI<N

(3.3.14)

€
(3.3.15) <3
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Thus (3.3.14) and (3.3.15) imply for fixed z > 0 and € > 0 and sufficiently large n

that
'P {\/%D:n < z/H} - K(2)

Thus relation (3.3.9) is proved. 0

<e.

The Smirnov homogeneity test. The hypothesis H on the homogeneity,
that is, P{¢ < z} = P{n < z}, can be tested in the case of continuous distribution
functions by using either the statistic D;},, or the statistic Dnm. As above we
consider the case m = n. To construct a test one can use either Theorem 3.3.1
or Theorem 3.3.2. For the sake of simplicity we construct a test by using Theo-
rem 3.3.2.

We consider a goodness-of-fit test for the hypothesis H on the homogeneity
based on the statistic Dy, ». Let oo > 0 be a significance level and let z(a) be a
solution of the equation K(2) = 1 — a with respect to z. Then relation (3.3.9)
implies that for sufficiently large n

(3.3.16) P {\/gDn,n > z(e)/H } ~1-K(2(a)) =

The test is defined by
On = I{\/gDn.n > z(a)}

It follows from relation (3.3.16) that the level of the test 6, is approximately equal
to o for large n. The test §, is called the Smirnov test or Smirnov homogeneity
test or Smirnov goodness-of-fit test. The Smirnov test rejects the hypothesis H if
V/1/2 Dy > 2(), that is, if Dy, > 2()4/2/n. Otherwise there is no reason to
reject the hypothesis H and it is accepted.

It is not hard to show that the test J,, is consistent. Indeed, let Krg be
the hypothesis that P{¢ < z/Kr¢} = F(z) and P{n < z/Krc} = G(z) where
sup, |F(z) — G(z)| # 0. Similarly to the proof of Theorem 3.1.2 we obtain from
the Glivenko theorem that

nlmgoP{\/g o < z(a)/Kpg} =0,

that is, the test d,, is consistent.
In the same way one can construct a goodness-of-fit test for the hypothesis H
based on the statistic D;} ,. Namely, we introduce a solution 2% (c) of the equation

e~2%" = o with respect to z where a > 0 is a given significance level. It follows
from relation (3.3.8) that

P {\/gD:;n 2 z+(a)/H} ~ e 2@ — g

for sufficiently large n. Thus the level of the test

=1 (\/gDIn > z+(a))

is approximately equal to a for sufficiently large n. The test ;" can also be used
for the hypothesis H on the homogeneity and it is called the Smirnov test, too.



282 3. GOODNESS-OF-FIT TESTS

3.4. Other goodness-of-fit tests

We studied Kolmogorov, Smirnov, and Pearson tests in the preceding sections.
Many other goodness-of-fit tests are well known in mathematical statistics. Some
of them are considered in this section.

Symmetric tests. Let a random variable £ be real valued and let

€M = (&,8&,...,&n)

be a sample of size n. We split the real axis R = (—o0,00) into r intervals

(3.4.1) Si = [Yi-1,¥5), 1=1,2,...,7, yYo= —00, Yr = 0.
Let the hypothesis H be such that P{¢ € S;/H} =p; =1/rforalli=1,2,...,r.
Let v = (v1,vs,...,V,) be the vector whose coordinates equal the number of

members of the sample ¢(®) belonging to intervals (3.4.1), that is, v;, i = 1,2, ...,r,
are evaluated by (3.2.2). Consider the class of statistics

n

(3.4.2) nr(9) =D g(vs)

=1

where g(z) is some real function defined for all nonnegative integer arguments
z=0,1,2,.... Since the random variables v1, vs, ..., v, form a symmetric expres-
sion in (3.4.2), the statistic ¢, (g) is called symmetric and tests based on statistic
(3.4.2) are called symmetric.

If g(z) = Ijky(x) in (3.4.2) for some k € {0,1,2,...,n}, then the statistic
¢n,r(g) is equal to the number of intervals among S, Sz, . . ., Sy that contain exactly
k members of the sample &1,£3,...,&,. We denote this statistic by

(34.3) e = p(n,m) =Y Iy ().

=1

Thus we have a collection of symmetric statistics po, p1,. - ., tn defined by (3.4.3).
It is obvious that these statistics are such that

n n
(3.44) Z wr(n,r) =17, Z kuk(n,r) =n.
k=0 k=0
Relation (3.4.2) can be rewritten in terms of the statistics uo, g1, . . - , fin:
n
(3.4.5) Cnr(9) =D g (k) sk,
k=0
whence it follows that an arbitrary symmetric statistic is a linear combination
of po,p1,...,n. The converse is also true, namely any linear combination of
[0y 11, - -« » b IS @ Symmetric statistic, since
n T
D ckme =Y g(vi)
k=0 i=1
where g(k) = ¢k, k = 0,1,...,n. Thus the class of symmetric statistics coincides

with the class of all linear combinations of pg, 1, ..., tin.
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Note that the statistic ¢,, defined by (3.2.4) and used in Section 3.2 to construct
the Pearson test coincides with the symmetric statistic (3.4.2) for g(z) = rz?/n—=z
and if intervals (3.4.1) are equiprobable.

Empty bozes test. The symmetric test based on the statistic uo is called the
empty bozes test. Note that ug is the number of intervals Sy, Sz, ..., S, that do not

contain any member of the sample &;1,&s,...,&n-

Below we evaluate the first two moments of the statistic ug if the hypothe-
sis Hp is true where Hy, is such that P{{ € S;/Hp} = p;, i = 1,2,...,7. Here the
numbers p; are arbitrary and p = (p1,p2,...,pr). Consider the random variables
71,72, - - - , M Such that 7; = 1 if the interval S; does not contain any member of the
sample &1,...,&,, and 7; = 0 otherwise. It is clear that pg = m + - - + 1, whence

E{uo/Hp} = Z E{m/Hp} = Z P{n: = 1/H,},
i=1 i=1

D{uo/Hp} =Y _ D{mi/Hp} +2)  E{(m — E{mi/Hp})(n; — E{n;/Hyp})/Hyp}
i=1

i<j
= Z P{mi = 1/Hp}[1 — P{n; = 1/Hp}|

+2) [P{m =1,mj = 1/Hp} — P{m = 1/Hp}P{n; = 1/H,}].

i<j
Since the random variables &1, &2, . . ., €, are independent and identically distributed
and
n n
==& ¢S}h {m=1Ln=1}=[){&¢Sié € S;},
j=1 k=1
we have

P{ni =1/Hp}=(1-p)", P{m=1,m=1/H} =1 —pi—p;)"
Thus

(3.4.6) E{uo/Hp} =) (1 -p)",
=1

(347)  D{po/Hp} =2 (1 —p; — ps)" + E{po/ Hp} — (E{mo/ Hp})*.

i<j
It is easy to show that E{uo/Hp} as a function of p = (p1,p2,...,pr) attains its
minimum at p = p° = (p?,pY,...,p%) where p§ = p3 = ... = pl = 1/r. Equalities
(3.4.6) and (3.4.7) for p = pg become of the form

E{wo/H} =r(1 - 1/7)",
D{uo/H} = r(r — 1)(1 = 2/7)* + r(1 — 1/7)* — (1 — 1/7)*"

(note that H = Hyo in this case).

This shows that if the hypothesis H is not true, that is, if not all probabilities
for intervals S1, Ss, ..., S, are equal to 1/r, the statistic yo tends to increase, since
E{uo/Hp} > E{po/Hpo} for p # po. Thus large values of o lead to the rejection
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of the hypothesis H. The empty boxes test for testing the hypothesis H is then as
follows: the hypothesis H is rejected if uo > to(n,r), while it is accepted otherwise.
The number t,(n,7) can be evaluated by using the distribution of the statistic uo
given the hypothesis H is true. However this distribution is complicated and the
limit results for g are often used instead (see [26, 27]).

The empty boxes test has the same disadvantage as the Pearson test (see Re-
mark 3.2.2). To avoid this disadvantage one should assume that r is large enough,
that is, r — oo as n — oo. This assumption allows one to apply the empty
boxes test for testing the simple null hypothesis Hy that P{{ < z/Hp} = F(z)
and P{¢ € S;/Ho} = p; =1/2,i=1,2,...,r, where F(z) is a given distribution
function. More details are given in [26, 27].

General symmetric tests. The empty boxes test is based on the statistic p that
does not contain all the information available from the sample £(™. It is clear that

the statistic
n
D cri
k=0

contains more statistical information than po where ¢; > 0,...,¢, > 0 are some
weights. It is natural to choose the weights c;,cs,. .., c, such that the test is the
most powerful in the class of all symmetric tests. The theory of symmetric tests
is considered in [27]. Note also that the Pearson test has the maximal asymptotic
power among all symmetric tests under appropriate conditions (see [26, 27]).

Tests of the homogeneity. We considered the Smirnov test in Section 3.3,
however there exist many other tests of the homogeneity. We briefly discuss some
of them below.

Chi-square test of the homogeneity. Consider s independent samples of inde-
pendent observations. Assume that samples 1,2,...,s contain n;, ng,...,n; mem-
bers, respectively. We assume that an attribute &; is checked in the sample ¢ and
denote by &;1,&:,. - -,&in, the observations of the attribute, so that we deal with
independent random variables §;;, j = 1,2,...,n;,4=1,2,...,s. Further let the re-
sults of every observation fall into 7 groups according to their values. Namely the do-
main X of the attribute &; fall into parts Sy, Sz, ..., Sr such that |J;_, Sk = X and
SkNS; = &, k # l. Let v;; be the number of members of the sample §;1, &2, . . ., &in,
belonging to Sj,j = 1,2,...,r. Putpi; =P{¢{; € S;},i=1,2,...,8,5=1,2,...,7
Consider the hypothesis H: (p;1,...,pir) = (P11,...,P1r) forall i =1,2,...,s. We
form the vector p = (p1,p2,...,pr) and note that p1 +--- +p. = L.

The vector p is, generally speaking, unknown. However if the vector p is known,
then E{v;;/H} = n;p; and

(3.48) Guip) = S5 L)

j=1li=1 niPj

can be viewed as the measure of disagreement between the data and the null hypoth-
esis (cf. relation (3.2.4)). Since p1,p2,...,pr are unknown in general, we modify
the x2 method and substitute the estimators

(349) ﬁj = %: .7‘: 1,2,...,mn
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for p1,...,p, where

S
(3.4.10) vj= Z Vijs n= Zn, Z Z Vij.
i=1

=1 j=1

Substituting (3.4.9) into (3.4.8) and taking into account (3.4.10) we get the statistic

(3411) G =Cd) = "E Z (vij —n?;;/n) (Z > v 1)

V.
j=11=1 j=11i=1 T J

where p = (p1,...,DPr). Note that
(3.4.12) L (En|H) 2 ((r—1)(s—-1), n—oo

(see [14], §30.6).

Based on the statistic Zn and using the limit relation (3.4.12) we construct the
goodness-of-fit test for the hypothesis H. Some examples of applications of this
test can be found in (14, 26].

Empty blocks test. Let ¢ = (&,...,&) and ™ = (ny,...,7m) be two
independent samples of independent observations of random variables £ and 7,
respectively. Assume that both £ and 7 have continuous distribution functions.
The hypothesis H is that P{¢{ < z/H} = P{n < z/H} for all z € (—o0,00).
Consider the order statistics {n,1 < (n2 < -+ < (n,n related to the sample M),
These statistics split the set (—oo, 00) into the intervals

S’lf = [Cﬂ,‘i—17<n,‘i)1 2= 1¢2)"')n+17

where we put (0 = —oo and {,ny1 = 00. These intervals are called sampling
blocks. Consider those sampling blocks that contain exactly r random variables of
M1,7M2, - - -, Mm and let s, = s,(n, m) be the number of such blocks, r =0,1,2,...,m.
Every linear combination

1
m)=Zcrsr(n,m), 1=0,1,2,...,m

can be viewed as a test for the goodness-of-fit test of the hypothesis H where
co,C1,-..,C are some positive numbers. The test corresponding to the case [ = 0
is called the empty blocks test. The number of blocks that do not contain any
observation of the second sample is the test statistic (denoted by sg) in this case.
The following result on the asymptotic distribution of the statistic sq is crucial for
constructing this test: if n,m — oo such that m/n — p € (0,00), then

c (((1;5)3)1/2 (so(n, m) — %) ’H) N (0,1)

(see [53]). It is proved in [53] that the empty blocks test against the alternative
P{¢ < z} = Fi(z) # F2(z) = P{n < z} is consistent if the derivative g(u) of
the function Fy(F;*(u)), u € [0,1], differs from 1 on a nonzero Lebesgue set. If
the hypothesis H is true, then g(u) = 1, u € [0,1]. The class of such alternative
hypotheses is denoted by H*.
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Test of series. As in the case of empty blocks test we deal with two independent
samples £(™ = (¢,...,&,) and (™ = (ny,...,7y) that are independent observa-
tions of random variables £ and 7, respectively. We also assume that £ and 7 have
continuous distribution functions. Consider the hypothesis H that

P{¢ <z} =P{np <z} forallze (—o0,00).

It is a quite interesting case when the alternative hypothesis Hp, r, is such that
P{¢ < z/HF, r,} = F1; P{n < /HF, p,} = F», and Fi(z) > Fy(z) for all z. The
random variable 7 in this case is stochastically bigger than the random variable &,
since for all z the random variable 7 exceeds  with a larger probability than &
does. The test detecting a disagreement between the data and the hypothesis H
can be constructed as follows.

First we merge the samples £ and (™ and obtain the sample

<n+m = (El""’gn,nla'-"nm)

of size n+m. Then we construct the order statistics for the sample ("*™. Finally,
in the sequence of order statistics, we substitute the symbol C for all members
of the sample £ and the symbol C for all members of the sample 7(™). As a
result we get a sequence of n symbols C and m symbols C. The total number
of such sequences is ("‘;m) It is clear that if H is true, then all such sequences
are equiprobable (the proof is the same as that in the case of Theorem 3.3.1; also
see the proof of Theorem 14.3.1 in [53]). If the alternative hypothesis is Hr, r,
where Fy > Fy, then it is more likely that symbols C appear far away from the
origin of the sequence. The measure of the displacement of the symbols C to the
right can be characterized by the statistic W(n, m) which is the number of series
of symbols C and C. Any sequence of symbols C or C is called a series. The
number of series is small if the symbols C (or C) are grouped in a specified place
of the sequence. Thus the critical set for testing the hypothesis H can be taken in
the form {W(n,m) < to(n,m)} where to(n,m) is a certain number defined by the
level .. The test related to such a critical set was proposed by Wald and Wolfowitz
in 1940 and is called the test of series.

The following result on the limit behavior of the statistic W (n, m) is useful for
the evaluation of to(n,m): if n,m — oo such that m/n — p € (0, 00), then

()" (woum - 5) ) =0

(see [53]).

Wald and Wolfowitz proved that the test of series is consistent if the alternative
hypothesis belongs to the class H*. The test of series is discussed in detail in [53].

Rank tests. Most nonparametric methods use observations ranked in order of
their magnitude. Statistics constructed from ranks of observations are called rank
statistics. Tests based on rank statistics are called rank tests.

Let €M™ = (¢y,...,&,) and 9™ = (ny,...,nm) be two independent samples of
independent observations of random variables £ and n whose distribution functions
are continuous. Using the samples £(™ and 7(™ we want to test the hypothesis
H that P{¢ < z} = P{n < z} for all z € (—00,00). We merge the samples
¢™ and 5{™ and obtain the sample ¢"t™ = (£1,...,&m,7M1,.-.,%m). Then we
construct the sequence of order statistics {1 < {n2 < -+ < {nnN, N =n+m,
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from the sample ("t™. Let R; be the index in this sequence corresponding to the
member &; of the sample §("), that is, & = {n,r;, © = 1,2,...,n. Thus we deal
with ranks R, Ra,..., R, of the observations &;,&s,...,&,. Consider the statistic
T=Ry;+---+ R,, that is, T is the sum of indices of members of the first sample
&1,...,&n in the sequence of order statistics constructed from the merged sample.
The test based on the rank statistic 7" was proposed by Wilcoxon in 1945 for the
case of identical sizes of samples (n = m) and is called the Wilcozon rank sum test.

Consider the random variable Z;; that equals 1 if §; < 7; and 0 otherwise. Put

(3.4.13) U=U(n,m)= i i Zij.

=1 j=1
It is clear that U is the total number of the cases in the merged sample where
members of the sample £(™ precede members of the sample 7(™). The test for
testing the hypothesis H on the homogeneity based on the statistic U was studied
by Mann and Whitney in 1947 and is called the Mann—Whitney U -test.

One can show that T+ U = nm + n(n + 1)/2. Thus the Wilcoxon rank sum
test and Mann—-Whitney U-test are equivalent.

Let Hp, F, be the hypothesis that P{{ < z} = Fi(z) and P{n < z} = Fy(z)
where Fi(z) and F3(z) are continuous distribution functions. It follows from
(3.4.13) that

E{U/HF,,F,} = nmE{Z11/HF, F,} = nma
where
{o o]
o =El& <m/Hrn) = [ Fi(z)dFu(o).
—00
If the hypothesis H is true, that is, if F(z) = F2(z), then a = 1/2. Similarly
D{U/HF,,r,} =nm[a+ (n—1)b+ (m — L)c— (n+m — 1)a?]

where
b=/_ F2(z) dFy(z), c=/_ (1= Fy())? dFy(z).

If the hypothesis H is true, then b = ¢ = 1/3 and thus D{U/H} = nm(n+m+1)/12.
It is known that

(3.4.14) c ((m“l’;”—“)) o (U(n,m) - %"-) |H> 2 N (0,1)

as 1, m — 00

Relation (3.4.14) is useful for the Wilcoxon test of homogeneity (and for the
Mann-Whitney test, too). The critical set for this test depends on the alternative
hypothesis Hr, r, and especially on the value of a: either a < 1/2 or a > 1/2
or a = 1/2. More details on the Wilcoxon and Mann-Whitney tests are given
in [53]. The general theory of rank tests as well as examples of various rank tests
is presented in [22].

Tests of independence. Below we consider a couple of tests for testing the
hypothesis that two random variables £ and 7 are independent. The statistical
inference is based on independent observations (£1,71), (€2,72),- - -, (€n,Mn) Of the
vector (§,7). If Fen)(z,y) is the distribution function of the vector (§,7), then
the hypothesis H is that Fi¢ ) (z,y) = Fe(z)F;(y) where F¢(z) and Fy(y) are
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distribution functions of the random variables £ and 7, respectively. Note that the
distribution functions Fi¢ . (z,y), F¢(z), and Fy(y) are unknown.

Chi-square test of independence. Let X and Y be the sets of values of random
variables ¢ and 7, respectively. Consider the following partitions of the sets X
and Y: . s

x=Js® and v=|Js?
=1 =1
where
SUNSM =g, i#j4, and SPNSP =0, k£L

These partitions generate the partition of the set X x Y:

XxY= O O (Si(l) xS](-z))

i=1j=1
where
2 ..
(s xsP)n (s xsP) =2, (i,d) # (kD).

Here S,w X 51(2) = {(x,y)::z: € Si(l), Yy E S_,EZ)} are rectangles in the set X x Y.
The hypothesis of the independence H means in this case that p;; = p;q; for
alli=1,2,...,7rand j =1,2,...,s where

py=P{eesnesP/a}, p=p{cesP/n},

and
g =P {77 € SJ(-2)/H} .
Denote by v;; the total number of observations (¢x,7x), £ = 1,...,n, belonging
to the set (Si(l) X S](.z)), so that Y37, 375, vi5 = n. If the probabilities p; and g;
are known, then one can use the statistic

(3.4.15) Galpyg) = 33 W= pi)®

=1 j=1 npij

to test the hypothesis H. However these probabilities are usually unknown and
thus we use their estimators

(3.4.16) ﬁi=%,i=1,...,n, and @:%,j:L...,n,

where
s r
Vi, = E U,;j, Vg = E Vij.
Jj=1 i=1

By substituting (3.4.16) into (3.4.15) instead of the probabilities p; and g; we obtain
the statistic

3417 G=G{E9 = nZZ L,:,,Jﬁl)_ "’(Z v_yli_, - 1)’

=1 j=1

The Pearson theorem implies that

(3.4.18) c (Z,,|H) 22((r-1)(s-1), n— oo
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Now we use statistic (3.4.17) and construct the goodness-of-fit test for testing the
hypothesis H of the independence of two random variables. This is a standard
procedure using the limit relation (3.4.18) and leading to the so-called x? test of
independence. More details on the x? test of independence are given in [14, 26].

Spearman test. Let R; be the rank of the member &; in the sequence of order
statistics £p1 < €n2 < - -+ < €nn constructed from the sample (§1,&3,...,&,). Note
that the sample (1,...,&,) consists of the first components of the members of
the sample (&1,7), (€2,M2), - - -5 (€n,7n). Similarly, let S; be the rank of the mem-
ber 7; in the sequence of order statistics 7,1 < Mpz < -+ < Nppn constructed from
the sample (71, ...,m,). The sample (&1,m1),- .., (én,7n) thus generates the set of
pairs of ranks (R;,S51),..., (Rn,Sn). We rearrange these pairs in ascending order
with respect to their first component and denote the rearranged set of pairs by
(1’ Tl)a (27 T2)a crey (77,, Tn)

Consider the rank statistic

1/2
(3.4.19) p= Z(R, R)(S; — S)(Z(R R)?Z(s 3)2)

i=1
which is the coefficient of correlation between two sets of ranks (Ry,...,R,) and
(S1,-..,Sn) where
. 1 n _ 1 n
R=T—L;Ri, S=;;Sz

The statistic p defined by (3.4.19) is called the Spearman rank correlation coefficient.
The test based on the statistic p is called the Spearman test.

Since (R1,...,Rs) and (S1,...,S,) are certain permutations of the numbers
(1,2,...,n), we have
(3.4.20) R—?—lzn:i—n—ﬂ
- n i=1 2

(3421) i(Rz _ R)Z — Zn:(sz _ 3)2 — izz — n(nT—f-l)z _ n(niz— 1)

i=1 =1 =1

Combining (3.4.19)—(3.4.21) we get

= (R ) (5-757)
n(nZ—l)i( n+1>(T"nT+1)'

There is another useful formula for the Spearman coefficient, namely

(3.4.22)

(3.4.23) p=1- n(n2 1)Z(R S)P=1- Z(z T;)?.

It is straightforward to check that (3.4.22) and (3.4.23) are equivalent.
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Let two distribution functions P{{ < z/H} and P{n < z/H} be continuous.
Since all n! permutations (71,73, ..,T,) of the numbers (1,2,...,n) are equiprob-
able, we have

Br/my =y 0ot
whence we obtain by (3.4.23) that =
E{p/H}=1- ——— [ Zz 2zzE{T/H}] =0.
i=1 i=1
Similarly
D{p/H} = ——.

If the ranks coincide, that is, if R; = S;, ¢ = 1,2,...,n, then p = 1, while if
the ranks are opposite, that is, if T; =n—i+1,i=1,2,...,n, then p=-1. In
general, —1 < p < 1. If p is close to either —1 or 1, then the hypothesis H is false.
Thus the critical set of the Spearman test is {|p| > to(n)} where t,(n) is defined
for the level o by using the distribution of the statistic p. One approach to evaluate
ta(n) is to use for n = 2,3,...,30 the tables of the distribution of the statistic p
(see references in [22]). Another approach is based on the limit relation

L(VaplH) BN (©0,1), n— oo,

whence one can also find ¢,(n) (see [29], §37.28).
Kendall test. Another rank test of independence, called the Kendall test, is
based on the statistic

Z sign(T; — T)
z<J
where sign(a) = 1 for a > 0 and sign(a) = —1 for a < 0; ¢, is a certain constant.
The statistic 7 is called the Kendall statistic. It is known that
2(2n +5)

E{T/H} =0, D{T/H} gn(n 1)

(3.4.24) .

L(E\/ﬁTIH> 2 N(0,1), n — 00

(see [29]). The critical set for the Kendall test is {|7| > to(n)} where the constant

ta(n) can be found for the level a from relation (3.4.24). It is shown in [29] that

the Spearman and Kendall tests are asymptotically equivalent as n — oo, since the

coefficient of the correlation between the statistics p and 7 approaches 1 as n — oo.
Other rank tests of independence can be found in [22).

The von Mises—Smirnov test. Let £ = (¢,...,£,) be a sample of size
n. We treat &,...,&, as independent observations of a random variable £. Let the
hypothesis H be such that P{{ < z/H} = F(z) for all z € (—00,00). One possible
approach to test the hypothesis H is to use the Kolmogorov test. Consider another
goodness-of-fit test for testing the hypothesis H based on the statistic

(3.4.25) wi = / ” (Fp(z) — F(z))? dF (z)
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where F,(z) is the empirical distribution function constructed from the sample § (n),
It is proved in [9] that if F'(z) is a continuous function, then

(3.4.26) lim P{nw? <z/H} =Qz) =P { / 1 (w°(t))? dt < x}
n—00 0

where w®(t), 0 < t < 1, is the Brownian bridge. We follow standard procedure
to construct the goodness-of-fit test for testing the hypothesis H based on statis-
tic (3.4.25) and on the limit relation (3.4.26). This procedure leads to the so-called
von Mises-Smirnov test. Sometimes it also is called the w? test.

The distribution function of Q(z) is complicated. However one can use the
tables of values of the function Q(z) (see [6]). Note that the distribution of the
statistic w? does not depend on the function F(z) and moreover

1 4n —3
(3.4.27) E{wi/H} = &> D {W2/H} = TS0

(see [14]). More details about the w? test can be found in [40].

Moran test. As in the preceding section let £ be a sample and let the hy-
pothesis H be such that P{¢{ < z/H} = F(x) for all z where F(z) is a continuous
distribution function. Consider the statistic

(3.4.28) My = [F((rkt1) = F(Gnp))
k=0
where (n x, k = 1,2,...,n, are order statistics constructed from the sample £ (n)

Cn,l S Cn,2 S e S C'n.,'n.;

and F((n0) = 0 and F({n,n+1) = 1. The test based on the statistic (3.4.28) is
called the Moran test. It rejects the hypothesis H if M, > c,(a) where c,() is a
constant determined by a level « and the distribution of the statistic M,,.

Since the random variable F'((y ) is uniformly distributed on the interval [0, 1],
the distribution of the statistic M,, does not depend on the function F(z). Thus
one can consider the test based on the statistic

n
(3.4.29) My = (Gnet1 — Gn )
k=0
The aim of the Moran test is to test whether the distribution of the random vari-
able ¢ is uniform on the interval [0, 1]. The number c,(a) for the Moran test can
be evaluated by applying the following assertion: if the distribution function F(z)
is continuous, then

c <\/ﬁ (”]g" - 1) IH) 2, N (0,1)

as n — oo (see [9]).

It is also proved in [9] that the Moran test is consistent. On the other hand,
the Moran test does not distinguish close hypotheses (see [9]).

To conclude this section we note that many other goodness-of-fit tests are
known and an extensive literature is devoted to them. Some references are given
above. We also mention the book [50] on the nonparametric statistics where special
attention is given to the goodness-of-fit tests.






CHAPTER 4

Sequential Tests

4.1. Bayes sequential tests of hypotheses

Setting of the problem. Let (0,%) be a measurable space and let £ =
(&1,&2,...) be a sequence of independent identically distributed random variables
whose distribution Py depends on a parameter § € ©. Let {©1,02,...,0,,} be a
partition of the space ©, that is, ©® = |J=; ©; and ©, N ©; = &, i # j. Assume
that m loss functions A;(#), ¢ = 1,2,...,m, are defined on ©. The parameter
determining the distribution Py is chosen in © according to the a priori distribution
Qon (6,%).

Consider the problem of testing m hypotheses H;:0 € ©;, i = 1,2,...,m, by
the sequence of random variables &;,&;, . ... The difference between sequential tests
and tests with a fixed size of the sample is as follows. In the case of a sequential
test, a statistician is free to decide at any time whether it is necessary to terminate
the sampling. More precisely, a statistician may terminate the sampling at any
time n and decide to accept a certain hypothesis H; on the basis of the sample
&1,€2,...,&,. When deciding to terminate the sampling, the statistician takes into
account the cost per observation on the one hand and the amount of information
about the parameter 6 available in the next observation on the other hand. Let
K, (™) be the ezpenses caused by the observation £™ = (£1,&,,...,En). Assume
that the expenses are such that

1) Kpy1(HD) > K, (6(™) a.s. for all n > 0;
2) limp—e0 Kn (€M) = 00 as.

Every sequential test is determined by two components: a stopping rule and a
decision rule. Denote by s(Q,§) a stopping rule and let v(s) be a random variable
denoting the size of the sample if the stopping rule s(Q,¢) is applied. A decision
rule is denoted by 6(Q,£). Our assumption is that the decision depends only on
€M) = (€&,,8,...,&) if v(s) = n. Consider the following set of sequential tests.

1. After a statistician terminates the sampling he applies a decision rule 6(Q, £)
that is assumed to be Bayes under the a priori distribution Q. This means that if
Q and ¢ = (¢1,,...,&,) are given and v(s) = n, then

8(Q.6) = (af(€™), (€™, .., dh(e™))

where the functions g (¢(™)) are defined by (1.3.42) with £(™ instead of z. We also
assume that the measure Py is absolutely continuous with respect to some o-finite
measure p and that its density is p(z; 8). Then the distribution of the sample £(™ is
absolutely continuous with respect to the measure u™ = pxpx- - x u (n times) and
its density is p,(z(™;0) = [T, p(z:;6), 2™ = (21,2a,...,2,). Thus p,(z(™,1)
should be used in (1.3.40) and (1.3.41) instead of p(z;t).

293
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2. The class of stopping rules s(Q,£) is the collection of all randomized rules
that can be described as follows. For any n > 1, denote by %, the o-algebra
generated by the vector (0,&1,&,...,£,) and let %y = %. It is clear that

FyCFHF CHFrC -
Let % denote the class of all sequences s = (s1, S2, ... ) such that s; = 5;(Q) and
Sn+1 = Sn4+1(Q, &1,&2, . . ., &n) is an Fp,-measurable random variable,

0<sn41(Q,&1,82,---,&n) <1, n2>1
We treat s,41 as the probability that the random variable {,41 occurs in the
sampling. Set
1, with probability s,+1(Q,£&™),
0, with probability 1 — sp41(Q,¢™).
Following the stopping rule generated by the sequence s € . a statistician de-

cides to terminate the sampling at the minimal n > 0 such that J,4+; = 0. The
corresponding size of the sample is a random variable given by

v(s) = min {n >0:Jpy1 (Q,E(”)) = 0} .

It is clear that {v(s) = n} € Fn, n > 0, that is, v(s) is a stopping rule with respect
to the family of o-algebras Zo, %1, %2,

Given (Q, £™) denote by Q(-/¢(™) the a posteriori distribution of the param-
eter 0. Let Pg be the joint unconditional (weighted) distribution of the vector ¢n)
given Q. Denote by po(Q, £(™) the Bayes risk corresponding to the Bayes decision
for given (Q,£™) and v(s) = n, that is,

p(QE™) = min [ A40)Qas/e™).

Then a priori risk corresponding to the stopping rule s and the Bayes decision rule
is defined by

R(Q;s) = Z/ :v(”) ) +p0(Q, a:("))]

Jnt1 = Jn41(Q, €M) = {

X H sk+1(Q Q,z* )) 1—8Sn41 (Q,w("))) [ (dw("))

+(1- 31(Q))po(Q)

where s;(Q, z(?)) = 51(Q) and po(Q) is the Bayes risk to make a decision without
sampling, that is,

p(@ = min [ A:9)Qa0).
<i<m Jgo
A stopping rule s* is called Bayes (or optimal) for the a priori distribution Q if
*) = inf R(Q,s).
R(Q,s") = inf R(Q,s)
In what follows we assume that R(Q, s*) < oo.

The problem of evaluating a Bayes stopping rule s* for a given a priori distri-
bution is not easy. Below we consider some general properties of the rule s*.
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Properties of a Bayes stopping rule. Let (V) be a subclass of stopping
rules s € 7 truncated at the moment v = N, that is, 5;1,(Q,£0)) =0forall j > N
and all s € #N). Below we obtain a Bayes truncated rule s(™) € (V) such that

Ny =
R(Q, S ) seg}f”) R(Q, S).

According to the dynamic programming method (see [15]), we define the rule
s(M) by constructing the N + 1 functions

PV (Q,6M) = po(Q, W),
P (Q, 6N -9))
= min {po (Q,ﬁ(N_j)), E{A(n)g(N_J)) + P;Ilq (Q: (E(N_j)’ n))/'gN—]}} )

Jj=12,...,N, where E{-/#y_;} is the conditional expectation with respect to
the distribution

P(-/Fn_j) = /@ Po() Q(dB/END),  j=0,1,...,N,

and

A EN) = K41 (6ND,m) - Kn— (6.

Let
N) _ . N
vN) = min {n:O <n<N, p&,_)n(Q,g(n)) = po(Q,g("))}.

The number »(V) is the size of the sample corresponding to the Bayes truncated
stopping rule s). Since {v(") = n} € Z, for all n > 0, v™ is a stopping rule,
The sequence s(N) = (sgN), sgN ), ...) is a Bayes stopping rule, and moreover

M) _ (V) (@ ¢G-D) _{ 1, if j <w(N),
S = 8. , =
! (@) 0, ifj>v(N).

N . Co
For any N > 1, pg\, )(Q) is the a priori risk corresponding to Q and S#(N).

Denote by .5’1(N), N 21, the subclass of stopping rules of V) for which at least
one observation is taken. Then

(4.1.1) p%v)(Q) = min {po(Q), inf R(Q, s)} .
se#M

Since .5/’1(N ) c .S’I(N 1 for all N > 1, we have

4.1.2 i < i

(412 se;f’?lffﬂ) R(Q,s) < seg;f") R(Q.9).

It follows from (4.1.1) and (4.1.2) that P%V)(Q) 2 P%v:il)(Q) for all N > 1. Since
pSzN)(Q) > 0 for all N 2 1, the limit

ANQ) = lim o (Q)

exists.
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By p(Q) we denote the a priori Bayes risk related to the class .#of all stopping
rules, that is, p(Q) = R(Q,s*). The risk p(Q) satisfies the equation

(4.1.3) p(Q) = min{po(Q), EQ{K1(n) + p(Qn)}}
where Q,(-) = Q(-/n) is the a posteriori distribution of the parameter 6 given

(Q,n).

Indeed, if # is the class of all stopping rules for which at least one observation
is taken, then

(41.4) $(Q) = min {PO(Q), inf R(Q, s)} .

s€S
For all s € .7, s = (51(Q), 52(Q, 1), 83(Q, €1, €2), - - - ), we define the reduced stop-
ping rule st = (s2(Q,&1), 53(Q,&1,&2), ... ). Thus we have for all s € # that
(4.1.5) R(Q,s) = Eq {Ki(n) + R(Qq,s™)} .
Equality (4.1.5) and the Fatou lemma imply that
inf R(Q,s) > Eq {K1(17) + 161155 R(Qm8+)}

s€S

(4.1.6)
— € {Ki(m)+ it R(Qu)} = o (Ksln) + Q).
We obtain from (4.1.4) and (4.1.6) that

o(@ > min{po(Q), Eq(Ka(n) + A(Qn)}} 2 int R(Q,5) = (@),

that is, p(Q) satisfies equation (4.1.3).
Similarly we show that for all N > 1

N .
(417) AD(Q) = min { po(Q), Eo{ Ka(m) + " (@)} } -
If Engl)(Q,?) < oo, then the Lebesgue dominated convergence theorem implies

that
o) = lim p{N41(Q) = min {po(Q), Jim {Ki(n) +0"(Q)} }

= min {po(Q), Eq{Ki(n) + P(oo)(Qn)}} )

since the risk p%v), N > 1, is monotone. Thus the limit p(°°)(Q) also satisfies
equation (4.1.3). Therefore we have proved the following result.

THEOREM 4.1.1. If EqKi(n) < oo and Equl)(n,,) < oo for a given a priori
distribution Q, then
p(Q) = lim J"(Q).

Theorem 4.1.1 implies for all € > 0 that there exists an integer number N(g)
such that the Bayes truncated stopping rule s™) for all N > N (¢) is an e-Bayes
stopping rule for the nontruncated problem, that is,

0< Q) - p(Q) <.

Below are two results about the existence of a Bayes (optimal) stopping rule.
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THEOREM 4.1.2. If p(Q) = limn_c0 o (Q) and for all n > Ny
p0(Q.6) ~E{po(Q, €™, m)/#n} <E{A(m ™)/}

almost surely, then p%:") = p(Q) and the truncated Bayes sequential rule s(No) is
optimal for the nontruncated problem.

THEOREM 4.1.3. If for alln > 1 the a posteriori risk po(Q, £) does not depend
on €™ that is, po(Q,E(n)) = po(Q,n) almost surely for all n > 1, then the Bayes
sequential stopping rule is the one with a fized size ng of the sample where ng is the
minimal positive integer number n that minimizes po(Q,n) + EQ K, (¢™).

The proofs of Theorems 4.1.2 and 4.1.3 can be found in [54].

More details on the general theory of Bayes sequential rules are given in [4,
15, 54].

The evaluation of Bayes stopping rules is a complicated problem, especially in
the case of composite hypotheses. The following example shows that this problem
is complicated even in the case of two simple hypotheses.

ExAMPLE 4.1.1. Let £,£2,... be a sequence of independent identically dis-
tributed random variables assuming two values 1 and 0 with probabilities § and
1 — 0, respectively, where 6 is an unknown parameter. Let 6 assume only two val-
ues 1/3 and 2/3, that is, © = {1/3,2/3}. Let the a priori measure Q be determined
by the number ¢ = P{6 = 1/3} =1 — P{6 = 2/3}. Thus we deal with two simple
hypotheses H;:0 = 1/3 and Hz:0 = 2/3. Let the loss functions A;(f) be defined
by the numbers A;(1/3) = A2(2/3) = 0 and A;(2/3) = A2(1/3) = 20, while the
cost per observation is determined by the equality Ky (§ (™)) = n. This means that
a single observation costs 1 dollar. Put pn(g) = py,v)(Q), N =0,1,2,.... Now
we evaluate po(q), p1(g), and p2(g). The definition of po(g) implies that without
sampling one accepts the hypothesis H, if 0 < ¢ < 1/2, and the hypothesis H; if
1/2 < g £ 1. Moreover

20q, if0<¢<1/2,
4.1. =
(418) po() { 20(1—gq), if1/2<q<1.

This implies that po(q) = po(1 — g) for 0 < g < 1. Since the problem is symmetric,
pi(q) = pj(1 —¢q) for 0 < ¢ < 1 and for all j = 1,2,.... Thus we need to

evaluate p;(q) and p2(g) only for g € [0,1/2].

Let g(x) stand for the a priori probability of the event {6 = 1/3} given the
observation 7 is equal to = where either z = 0 or z = 1. Applying the Bayes
formula we obtain
q 2q

(4.1.9) W=rma—y O xra-g

It follows from (4.1.8) and (4.1.9) that

po(g(1)) =20¢(1) for 0 < g <1/2
20¢(0), if0<g<1/3,

(4.1.10) =
po(q(0)) = { 20(1 — ¢(0)), if1/3<¢<1/2.
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The unconditional distribution of the observation 7 is given by
1 2

It is clear that
Epo(a(n)) = po(q(1))P{n = 1} + po(g(0))P{n = 0}
(4.1.12) _ [ 20q, f0<q<1/3,
B { 20/3, if1/3<q<1/2.

Since K;(¢M) = 1, we derive from (4.1.7), (4.1.8), and (4.1.12) that

. 20¢q, if 0 <q <23/60,
4.1.13 =m M =
( ) pi(g) = min{po(q), Epo(g(n) + 1)} { 23/3, if 23/60 < q < 1/2.

First we consider the case N < 1. Relations (4.1.8) and (4.1.13) imply that
if 0 < ¢ < 23/60 or 37/60 < g < 1, then one should make the final decision
without sampling, while if 23/60 < g < 37/60, then it is necessary to take the first
observation and one should make the final decision based on a sample consisting of

a single observation.
Now let N < 2. To evaluate pz(g) we note that (4.1.9) implies that there are

three pairs of equivalent inequalities, namely
q(1) <23/60 and q < 46/83 <=
q(0) < 23/60 and g < 23/97 <
q(0) > 37/60 and g > 37/83.
Using (4.1.11) and (4.1.13) and taking into account the symmetry of the function
p1(q) we get
20g, f0<g<Z,

(4.1.14) Epi(g(n) = { BLB, if B <q< I,
23—0, if % <qg< %

Thus (4.1.7) yields
20, if0<g<E,
(4.1.15)  pa(q) =min{po(q),Ep1(q(n) + 1)} = { B2, if 2 <q< T,
B, if<qg<i
Relations (4.1.8), (4.1.13), and (4.1.15) show in the case N < 2 that if
0<q<32/97 or 65/97<q<1,

then a final decision should be made without sampling, while if 37/83 < g < 46/83,
then it is necessary to take the first observation and a final decision should be made
based on a sample consisting of a single observation. Finally if

32/97 < ¢ < 37/83 or 46/83 < q < 65/97,

then it is necessary to take the second observation and a final decision should be
made based on a sample consisting of two observations.

The graphs of the functions po(g), p1(g), and p2(g) are shown in Figure 4.1.1.
The evaluation of the functions py(g) becomes a time consuming procedure for
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large N, since the number of intervals where they change their slopes increases
with N. If the size of the sample is not bounded in advance, then the optimal
procedure is described in Theorems 4.1.1-4.1.3 (see also Chapter 4 in [15]).
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FIGURE 4.1.1. Risk functions po(q), p1(g), and p2(q)

EXAMPLE 4.1.2. This is a continuation of Example 4.1.1. Let the loss func-
tions A;(#) be determined by the numbers A;(1/3) = A2(2/3) =0 and
A1(2/3) = Ay(1/3) = 10.

As in Example 4.1.1 we have p;(q) = p;(1—¢) for0<¢<1landj=0,1,2,....
Thus po(g) = 10g for 0 < ¢ < 1/2 and py(q) = 10(1 — q) for 1/2 < ¢ £ 1. Similarly
to Example 4.1.1 we get

E =
polg(n)) { 10/3, if1/3<q<1/2.
Hence (4.1.7) implies that

10g, if0< ¢ <13/30,
13/3, if13/30 < ¢ <1/2.

Relations (4.1.9) imply that g(1) < 13/30 <= ¢ < 26/43, ¢(0) < 13/30 <=
q < 13/47 and ¢(0) > 17/30 <= ¢ > 17/43. Thus

(4.1.16) m@={

10, f0<qg<%$,
Epi(a(n)) = { #2183 18 < g < g,
2, if L <g<i.

Using (4.1.7) we obtain for N = 2 that

10g, if0< ¢ < 13/30,

(4.117) p2(q) = { 13/3, if13/30<g<1/2.
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Relations (4.1.16) and (4.1.17) imply that p;(q) = p2(g) for all g € [0, 1]. Moreover
we derive from (4.1.7) that

p3(q) = min{po(q), Ep2(q(n)) + 1} = min{po(q), Ep1(a(n)) + 1} = p2(9)

if 0 < ¢ < 1. We conclude by induction that pn(q) = p1(g) for N = 2,3,..., that
is, the conditions of Theorem 4.1.3 hold.

The above discussion shows that if 13/30 < ¢ < 17/30, then it is necessary
to take the first observation and a decision should be made based on a sample
consisting of a single observation, while otherwise a decision can be made without
any observation.

In the next section we consider the Wald sequential test for distinguishing two
simple hypotheses in the case of general distributions of observations ;,&,. .. .

4.2. Wald sequential tests

Main definitions and notation. Let £ = (£1,&,...) be a sequence of in-
dependent identically distributed random variables with a distribution Py where
is an unknown parameter assuming only two values 6; and f2. Thus we deal with
the case © = {01,602} and each of the sets ©; = {#;} and ©, = {f,} contains
only a single point. Therefore there are two simple hypotheses about the dis-
tribution of an observation, namely Hy:0 = 6; and Hy:0 = 62. Let the distri-
bution Py be absolutely continuous with respect to some o-finite measure x4 and
denote the density by p(z;#). Then the measure Pg‘) determining the distribu-
tion of the sample £¢™ = (£1,£,...,&,) is absolutely continuous with respect to
the measure p™ = g X g X ++- x p and its density is p,(z™;6) = [Tr_, p(zx;6),
z(™ = (z1,22,...,Zn). Let zn(a:(”)) be the likelihood ratio

421 2
( ) (@ (n) ;01) P(wk, 91)

where (™ = (z,z3,...,2z,) (We agree that 0/0 = 0). Put
(422) An(z™) =Inzn(z™),  An=An(E™), 2, = 2, (™).

Therefore

p(€k; 02)
(€3 61)’

Throughout this section we consider sequential tests whose stopping times be-
long to the class %4 (in other words, the tests for which it is necessary to take at
least one observation) and which depend on two constants a and b such that 0 < a
and b < oco. Such a test is called a Wald sequential test for distinguishing two
simple hypotheses H; and H, if its stopping rule says that a statistician continues
the sampling until —b < A,, < a, that is, the Wald stopping time v is

(4.2.4) v=inf{n > 0:A, ¢ (-b,a)}.

n
(4.2.3) A=) X  M=A&)=In =1,2...,n
k=1

If v = n, then the decision is as follows: the hypothesis H, is accepted if A, > a,
while the alternative H; is accepted if A, < —b. The test described above is also
called the Wald sequential test with limit points (—b, a).
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The above test is often called a Wald sequential likelihood ratio test or sequential
likelihood ratio test or Wald test. For a Wald test we denote by a and 3 the type I
and type II error probabilities, respectively, that is,

(4.2.5) a=Pg{A, >a}, B=Pe{A, <-b}

where Py, {-} are the probabilities of events if the distribution of &;,&,... is de-
termined by the measure Py,. The pair of numbers (e, 3) is called the power of a
test. We say that a Wald sequential test is terminated with probability one during
a finite time if Po,{v < 0o} =1forall: =1,2.

Inequalities for error probabilities of a Wald test. The following two
results establish relationships between the power (o, 3) of a Wald test and its limit
points (—b,a).

LEMMA 4.2.1. If a Wald sequential test of power (a,3) and with limit points
(=b,a) is terminated with probability one during a finite time, then

1-8 B
2. <-—= >
(4.2.6) A<-—=,  Bxi—

where 0 < A<1<B<ooandlnB=-b,InA=a.

PROOF. Consider the sets

W, = {z("):B < zk(z(")) <Aforallk=1,2,...,n—1,

(4.2.7) ) A}’
Vo = {x("):B < zk(m(k)) <Aforallk=1,2,...,n—1,
(4.2.8) () < B}
where n = 1,2,..., ™ = (21,%3,...,2,), and z,(z™) is the likelihood ra-

tio (4.2.1). Using (4.2.2)-(4.2.4) and (4.2.7)—(4.2.8) we get

(429)  {Ah2ag=U{ew}, <= {e"e Va}.
n=1 n=1

Relations (4.2.5) and (4.2.9) imply that

a=3 / P{™) (dz) = Z AZ / P () = 122,

that is, the first inequality in (4.2.6) is proved. Here we used for i = 1 and i = 2
that

) /W P (dz) + 3 /V P(™) (dz)
n=1 n n=1""'n

(4.2.10) o
=Y Po{v =n} =Pg{v < oo} =1
n=1
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by the assumptions of the lemma. Similarly, relations (4.2.5) and (4.2.9) imply

l-a= Z / PS™ (dz) = . tz) PiM (dz) > BZ / PS™ (dz) =

that is, the second inequality in (4.2.6) is also proved. O

n

LEMMA 4.2.2. Let A=(1-8)/a, B=F/(1—¢c) and -=b=InB,a=InA. If
a Wald sequential test with limit points (—b,a) is terminated with probability one
during a finite time and its power is (¢/,3'), then

p

2. < < —
(4211) e
(4.2.12) ad+p <a+p.

PRrROOF. According to Lemma 4.2.1,
1-8 _1-4 B g

4.2.13 =—r< =—_—>
( ) 4 a ~— o’ B l-a " 1-0o
This implies

, e e (1 P B
sU-Figsi—p FsU-disio

that is, inequalities (4.2.11) hold. Moreover (4.2.13) yields
d(1-B)<a(l-p), Bl-a)<pl-d).
Combining these inequalities we obtain
of —d'f+p ~af <a-aof +B-dp,

whence inequality (4.2.12) follows. O

REMARK 4.2.1. Lemma 4.2.2 for small a and § implies that the power of a
Wald test with limit points (In(8/(1 — @)),In((1 — B)/e)) is (o, 3') where o is
close to a, A is close to 3, and always o/ + ' < a+ (3, thatis, B/ < fif &/ >
and o/ < aif f' > B.

Properties of the stopping time of a Wald sequential test. The follow-
ing result contains sufficient conditions for the finiteness of the Wald stopping time
v and its moment generating function.

LEMMA 4.2.3. Let v be the stopping time of a Wald sequential test with limit
points (—b,a). Let Po{|A1| > 0} > O where either § = 6, or 6 = 0,, and Ay = A\1(&1).
Then

a) Pe{v <oo}=1;
b) Eget” < oo for all t < to where ty is a positive number and Eq is the
expectation with respect to the distribution Py.
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PROOF. Let m and k be fixed integer numbers such that m > k and r = [m/k]
where [c] is the integer part of a number c. Consider the random variables
Ty = A, T; = Ak _A(i—l)ka 1=2,3,...,"

If v > m, then A; € (—b,a) for all i = 1,2,...,m. In particular, this inclusion
holds for i = k, 2k, ...,rk. Thus

;| <bVa=c, i=1,2,...,rm

Since the random variables T1,T5,. .., T, are independent and identically distribu-
ted, we have

(4.2.14)  Po{v>m} < Pe{|Ti| <cforalli=1,2,...,7} = (Pe{|T1| < c})".

Note that Pg{|A;1| > 0} > 0, whence it follows that there exists a positive number h
such that either Pg{A\1 > h} > 0 or Pg{A; < —h} > 0. If k is greater than c/h,
then

Pg{lTll > C} = Pg{l)\l +- 4 ’\kl > C}
c
> ;> = ) =
>Po{N > foralli=1,2,..,k}
c .
+ Py {)\i < % for all 1 = 1,2,...,k}
> (Pe{\1 > h})* + (Pe{A1 < —RA})* > 0.
This yields Pg{|T1| < ¢} < 1. In view of (4.2.14) we therefore get
Jim Po{v > m} = Pg{v = 00} =0,

that is, Pg{v < oo} = 1 and statement a) is proved.
Relation (4.2.14) for t > 0 implies that

=) [ kr
Ege® = Z e"Po{v =n} = Z Z e"Po{v = n}
n=1

r=1n=(r—1)k+1

o0 o o]
(4.2.15) <D e Pe{(r — Dk <v < kr} <) ¥ Po{v > (r — 1)k}
=1 r=1
TOO
< Zetkr,y'r—l

3
Il
-

where v = Pg{|T1| < ¢} and k is such that v < 1. It follows from (4.2.15) that
Eget” < oo for yetk < 1, thus for t € [0,%p) where to = k™1 Iny~1.

If t < 0, then the equality Pg{v > 0} = 1 implies that Ege?” < ¢ = 1 and
statement b) is also proved. O

REMARK 4.2.2. Lemma 4.2.3 holds in the case where 0 is different from both 6,
and 65 but if the random variables £;,£3,... are independent and identically dis-
tributed with respect to the measure Py. If the conditions of Lemma 4.2.3 are
satisfied for both § = 6, and @ = 0., then statement a) implies that the Wald
sequential test with limit points (—b,a) is terminated during a finite time with
probability one.
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REMARK 4.2.3. The assumption that a Wald sequential test is terminated
during a finite time with probability one (Pg,{\; # 0} > 0, i = 1,2) is not too
restrictive. Moreover this assumption is quite natural, since otherwise Py, {\;1 #
0} =0or Pg,{\1 =0} =1 for i = 1,2 and the measures Py, and Pg, coincide. The
hypotheses H; and H; are indistinguishable in this case (see Section 1.1), that is,
the problem of distinguishing the hypotheses H; and Hy makes no sense.

In what follows we need the following auxiliary result.

LEMMA 4.2.4. Let v be the stopping time of a Wald sequential test with limit
points (—b,a). If Egv < 00 and Eg|\1| < oo for 6 = 0, or § = 0,, then

(4.2.16) EoA, = EgvEgA;.

PROOF. Consider random variables n; = I{v > i—1} where ¢ =1,2,... . Here
I(A) is the indicator of an event A, that is, 7; = 1 if a decision is not made by
observations &1,&,,...,&—1. The random variable 7; is a function of £1,&2,...,§i-1

and does not depend on &;, thus it does not depend on \; = A(§;). It is clear that
Ay =dim+Ame +...,

whence

oo [o o] [o o]
EoAy =Eo Y  Mimi =) Eohami = ) EoAEqn;

i=1 i=1 =1
=Eg\1 ) Egmi = Eghr ) Po{v > i} = EghiEov.
=1 =1

We interchanged the summation and expectation in the preceding relation, since

(o] oo
> EglXimi| = Eo|\1| Y Po{v > i} = Eg|M|Eqv < co.

i=1 i=1

We also used the obvious equality
o0
Egv = Z Po{v > i}.
i=1
Thus equality (4.2.16) is proved. O

Equality (4.2.16) is called the Wald identity. It also holds in the case where
the assumptions of Lemma, 4.2.4 are satisfied for some @ different from both 6, and
02 (see Remark 4.2.2).

The expectation of the stopping time of a Wald sequential test. The
following result contains a lower bound of expectations Eg,v for ¢ = 1,2.

LEMMA 4.2.5. Let v be the stopping time of a Wald sequential test of power
(o, B) and with limit points (=b,a). If Pg,{\1 # 0} > 0 and Eg,|\1| < oo for
1=1,2, then

(4.2.17) Eo,v 2> —H(a|l - B)/Eg, A1,
(4.2.18) Eg,v > H(B|1 — a)/Eg, \1



4.2. WALD SEQUENTIAL TESTS 305

where

(4.2.19) H(zly) = :vln +(1-z)ln i - ;’

is a relative entropy of the dzstmbutzon (z,1 — ) with respect to the distribution

(¥, 1-y).

PROOF. By the assumptions of the lemma Py, (A\; # 0) > 0 for ¢ = 1,2. Thus
Eq,v < oo for 1 = 1,2 according to statement b) of Lemma 4.2.3, whence

(4.2.20) Eo,A, = Eg,vEg, N1, i=1,2,

in view of Lemma 4.2.4. Now we conclude that the Wald test is terminated during
a finite time with probability one by Lemma 4.2.3 and Remark 4.2.2, since

Po,{M #0} >0, i=1,2.
This together with (4.2.9) and (4.2.10) implies
(4.2.21) Po,{A, > a} + Pg,{Ay, < —b} =Py, {v <0} =1, i=1,2.
Taking into account (4.2.21) for ¢ = 1 we derive from (4.2.5) that
Eo, A, = Pg, {Ay < —b}Es, {AL/A, < —b}

(4.2.22) + P, {A, > a}Eo, {A,/A, > a}
= (1 - a)Eg, {A,/Ay < —b} + aEg, {A,/A, > a}.

The Jensen inequality and definition (4.2.8) of the set V,, imply that
Ep, {A,/A, < —b} < InEp, {et /A, < —b}
=In

[e o]
(4.2.23) I—a Z / o) P (do)

= / PS™ (dz) = ﬁ :
—a —-Q

0<z y<1,

Similarly we get

1 n
Eo {Av/A, > 0} <InEg, {e*/Ay 2 a} =In =3 /W e(®) P{™ (dz)
n= n

= lnl i/ Pg:)(dm) =
o = I Wa

It follows from equality (4.2.22) and inequalities (4.2.23) and (4.2.24) that

(4.2.25) Eo,v < —H(a|l - B)

where H(z|y) is the function defined by (4.2.19).
Since Py, (A1 # 0) > 0, we have Eg, \1 < 0. Indeed, applying the elementary
inequality Inz <z — 1, z > 0, we get

Eo A1 = / In p(“” 02) Po, (dz) < / (%%—1) Po, (dz)

= /p(m;Gz)N(dm) - /P(fl’; 61) p(dx) =0

(4.2.24)

(4.2.26)
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in view of

— 0 = o p(b2) O\ p(z;02)
Pg,{\1 = 0} = Py, {m.lnp—(arol) _0} = Py, {wp(THf) = 1} <1

The lower bound (4.2.17) for Eg, v follows from (4.2.20) for ¢ = 1 and inequality
(4.2.25) by considering the sign of Eg, A;.

Similarly to inequality (4.2.26) we obtain from Pg,{\; # 0} > 0 that Eg,A\; > 0.
Further we use the Jensen inequality and definition (4.2.8) of the set V,, and obtain

Eo, {Av/Ay < —b} = —Eg, {—A, /A, < —b} > —InEg, {2 /A, < —b}
1 [e o]
=—In— / e M@ pM) (g
5o [, P

1 & (n) l-a B
=—ln—z / P,™(dz) = —In =In .
ﬁn:l Vn 01( ) '3 l-a

Following the same reasoning we get

(4.2.27)

(4.2.28) Eo,{Au/A, > a} > In ;ﬁ .
Now (4.2.22), (4.2.27), and (4.2.28) imply
(4.2.20) Eg, A, > H(BL - a).

Since Eg, \; is positive, equality (4.2.20) for ¢ = 2 and inequality (4.2.29) imply the
lower bound (4.2.18). O

REMARK 4.2.4. The relative entropy of a measure P wj:ch respect to a mea-
sure P is defined in Section 2.3 and is denoted there by I(P|P) for arbitrary prob-
ability measures P and P. If P is a measure concentrated at two points with
probabilities £ and 1 — z, while P is a measure concentrated at the same points
with probabilities y and 1 — y, then Definition 2.3.1 and equality (4.2.19) imply
that I(P|P) = H(zly).

REMARK 4.2.5. If the assumptions of Lemma 4.2.5 are satisfied, then consid-
ering the sign of Eg,A1, ¢ = 1,2, one can rewrite inequalities (4.2.17) and (4.2.18)
in the form

(4.2.30) Ep,v > H(c|1 — B)|Eg, A1| 7%,
(4.2.31) Eo,v > H(B|1 — a)|Egy M| 72,
that is, inequality (4.2.31) follows from (4.2.30) if we interchange the hypotheses

H,:0 = 6; and Hy: 0 = 05. The latter means that 6, substitutes 6,, 3 substitutes «,
and a substitutes 3. In a similar manner, inequality (4.2.31) follows from (4.2.30).

REMARK 4.2.6. One can evaluate approximate values of the expectations Eg, v,
i = 1,2, as follows. Let Eg,|A;| < oo and Pg,{A; # 0} > 0 for 2 = 1,2. Then
Eg,v < 0o for i = 1,2 by Lemma 4.2.3 and

(4.2.32) Ep,A, = Eg,vEg, A1, i=1,2,
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by Lemma 4.2.4. On the other hand

Eo, Ay = Eg, {Av/A, > a}Pg,{A, > a} + Eg, {AL/A, < —b}Po, {A, < —b}
~aa—b(l—a)

where the approximation appears, since we neglect the exits of A, from the interval
(—b,a). This approximation and equality (4.2.32) yield

(4.2.33) Eo,v = (aa — b(1 — a))/Eg, A1.
Similarly we obtain
(4.2.34) Eo,v = (a(1 — B) — bB)/Eg, 1.

If

1-5 and b=ln1_a,

o B
then approximations (4.2.33) and (4.2.34) for Eg, v and Es, v coincide with the lower
bounds in (4.2.17) and (4.2.18), respectively, in the case of a Wald sequential test
with limit points (—b,a).

a=In

EXAMPLE 4.2.1. Let £1,£2,... be independent identically distributed random
variables whose distribution under the hypothesis H; is N (0,-, 02) normal, i =1,2,
where 6; < 6, and the variance o2 is known. Then

02— 61 (.
An=:aﬂ1@§:&—nwm+ﬂ0.
i=1

It is clear that Py, (A1 = 0) =0 for i = 1,2. Let v be the stopping time of a Wald
sequential test of power (a,3) with limit points (—b, a). Since

(62 — 61)*
202

(62 — 61)?

EGI A]. = - 20_2 )

and Eg,A; =
approximations (4.2.33) and (4.2.34) become of the form

2(b(1 — a) — aa)o?

(4.2.35) Ep, v ~

(62—-61)2
(4.2.36) Eo,v ~ 2(“(1(6;; b 9:)2'8 )"

Consider a test with a fixed nonrandom size n of the sample and whose power
is (o, ). For example, the Neyman-Pearson test &' of level o satisfies these
conditions. Then

@ =Po{hn > cak = P {3 (6~ ) > -0V}

i=1
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where z, is a p-quantile of the A/ (0,1) law, that is, ®(2,) = p. The test J}* has
the type II error probability g if

B = P, {i(& - 01) < zl—aa\/ﬁ}

i=1
= Py, {i(ﬁi —0;) < 210V —n(02 — 01)}
=1

or, equivalently, if
Z21—a0 — ﬁ(GZ - 01) = 2p0.
Since z1_o4 = —2za, We have

_ 020 + 28)°
(02—61)

Relations (4.2.35)-(4.2.37) provide the following approximations:

Eo,v _ 2(b(1 — @) —ac) Eo,v _ 2(a(1 - B) —bB)
n (zatz3)? n (zat+2)?

If o = B =0.05, then 2, = zg =~ 1.6449 and a = —b ~ 2.9444, whence

(4.2.37)

(4.2.38) % ~ 04897, i=1,2.

It is seen from equalities (4.2.38) that the above Wald sequential test of power
(0.05;0.05) requires two times less observations than the Neyman—Pearson test of
the same power (0.05;0.05) and with a nonrandom size of the sample.

The fundamental identity of sequential analysis. First we prove two
auxiliary results.

LEMMA 4.2.6. Let ¢ be a random variable defined on the main probability space
(2, #,P) and such that:

a) P{¢ >0} > 0 and P{¢ < 0} > 0;

b) ¢(t) = Ee*¢ exists for all t € (—00, 00);

c) EC#0.
Then there is a unique number T # 0 such that ¢(7) = 1, and moreover T < 0 if
EC>0and >0 4 EC<O.

ProoF. The condition P{{ > 0} > 0 implies that there is a constant ¢ > 0
such that P{¢ > ¢} > 0. Thus for all t > 0

o(t) = Ee* > EI(¢ > c)e's > e°P{( > ¢},

whence ¢(t) — oo as t — co. Similarly, the condition P{¢ < 0} > 0 implies that
¢(t) — oo as t — —oo. Moreover, p(0) = 1 and ¢'(0) = E{ # 0. If E¢ > 0, then
¢'(0) > 0 and thus there is 7 < 0 such that ¢(7) = 1. Similarly, if E¢ < 0, then
¢'(0) < 0 and thus there is 7 > 1 such that ¢(7) = 1. It is easy to show that
¢"(t) = E¢%e*¢ > 0, hence the function (t) is strictly convex. The latter property
means, in particular, that ¢ has a unique minimum. Therefore the solution 7 is
unique. O
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LEMMA 4.2.7. Let v be the stopping time of a Wald sequential test with limit
points (—b,a). Assume that Pe{v < 0o} = 1 where either 0 = 0, or 0 = 02. Then

(4.2.39) Eget™ (o(t)) ™ = P{v < oco/H;}

for t such that p(t) = Eget™ < oo where P{-/H;} is the conditional probability
given Hy where the hypothesis H; is that the random variables £1,€2,... are inde-
pendent, identically distributed, and whose density is

t)\(a:)
(4.2.40) p(z/Hy) = o) ——po(z).

PRrOOF. Taking into account Pg{v < co} =1 we conclude that

Eoet™ (p(t))~ Z / (tp(t ™ exp {tAn (:1;(”)) } Hpg(;pi) u" (d:z("))

- E / [T poes/Ho) 5™ (d2™) = P{v < oo Hy}

VaUWy ;1

where V,, and W, are the sets defined by (4.2.7) and (4.2.8), respectively, while
p(z/H) is the density of the distribution given by (4.2.40). Thus equality (4.2.39)
is proved. O

LEMMA 4.2.8. Let v be the stopping time of a Wald sequential test with limit
points (—b,a). Assume that Pg{)\1 # 0} > 0 where either 0 = 6, or 6 = 0;. Then

(4.2.41) Egett (o(t)) ™Y =

for t such that ¢(t) = Eget* < oo.
PROOF. The condition Pg{A\1 # 0} > 0 implies that Ps{v < oo} = 1 by
Lemma 4.2.3 and that Pg{\(&1) # 0/H:} > 0, since

Po{A(&1) # 0/H:} = et*(®) Py (dz) # 0.

<P(t) {M(z)#0}
Applying Lemma, 4.2.3 once more we get
Po{v < oo/H:} = 1.

Now equality (4.2.41) follows from (4.2.39). a

Equality (4.2.41) is called the fundamental identity of sequential analysis.

REMARK 4.2.7. Equalities (4.2.39) and (4.2.41) hold for ¢ such that ¢(t) < oco.
If Po{A\1 # 0} > 0, then it follows from Lemma 4.2.3 that there is tg > 0 such that
@(t) < oo for all ¢ < to.
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REMARK 4.2.8. Lemmas 4.2.7 and 4.2.8 hold for measures Py if 0 is different
from both 6, and 6.

The fundamental identity of sequential analysis can be applied to the problem
of distinguishing composite hypotheses.

Let &1,&2,... be independent identically distributed random variables with a
distribution Py depending on an unknown parameter § € ©. Assume that Py is
absolutely continuous with respect to some o-finite measure y and the density is
p(z;0). Let © = ©;UO, and ©; N O, = &. Consider the problem of distinguishing
the hypotheses Hy:6 € ©1 and Hs: 0 € Oy by observations &3, £, ... with the help
of a Wald sequential test that distinguishes two simple hypotheses Hi:6 = 6; and
H}:0 = 0, where 6; € ©; and 6, € O, are some fixed points. Let the random
variable { = \; satisfy the assumptions of Lemma 4.2.6 concerning the measure Py
and let # € © be an arbitrary fixed point. According to Lemma 4.2.6, there is a
number 7(0) # 0 such that @g(7(f)) = 1 where pg(t) = Eget**. Further

(4.2.42) Ege™@M =1

by Lemma 4.2.8 and Remark 4.2.8.

The function 8(8) = Pg{A, < —b} is the probability to accept the hypothesis
H, if the parameter is 0, that is, §(0) is the power function of the Wald test for
distinguishing the hypotheses H; and H,. The function B() is also called the
operating characteristic of the test in sequential analysis.

Put
(4.2.43) Ej = Eg{e"®@M /A, < —b},  E}* = Eg{e" @M /A, > a}).
It follows from equalities (4.2.42), (4.2.43) and (4.2.21) for 0; = 0 that
(4.2.44) 1 = Ege™ @A = B(O)E; + (1 — B(6))E};".

Using the approximations
E; ~ e—b‘r(G), E;* ~ eo7(®)

we derive from (4.2.44) an approximation for the operating characteristic:

1 — o7 6)

PO~ m e P€©

Similarly one can obtain approximations for Egv, 6 € ©.

More details on sequential Wald tests and their properties as well as on the
other sequential tests can be found in [15, 51, 54]. The sequential analysis is
described in [13, 46].

4.3. The optimality of a sequential Wald test

The main theorem. As in the preceding section we consider the problem of
distinguishing two simple hypotheses H;:0 = 6, and Hs:6 = 6, by observations
&1,&, ... where £,&;, ... are independent identically distributed random variables
whose distribution Py depends on an unknown parameter §. Moreover we assume
that their distribution possesses the density p(x; 6) with respect to a o-finite mea-~
sure . Throughout this section we also assume that Pg,{\; # 0} > 0 for s = 1,2.

Generally speaking, we consider a sequential test for distinguishing the hy-
potheses H; and H, by observations ¢) = (£,&,,...,£,) where v is a stopping
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time. A stopping time can be either random or deterministic. Sequential tests
are also called sequential decision procedures. Decision functions d, = d,(¢™))
are defined as follows: if v = n, then d,(z(™) assumes only two values d; and
dy. If dp(2™) = d;, then the hypothesis H) is accepted, while H; is accepted if
dn(2(™) = dy. We define the type I and type II error probabilities for a sequential
test with a decision function d,, by

(4.3.1) ai(dy) = Pg, {d, = d2}, az(dy) = P, {d, = d1}.
Note that

(432) o) = al(dﬁ) = Py, {d;: = dz} = Pol {Au > a}a
(4.3.3) az = ag(d}) = Pe,{d}, = d1} = Pg,{A, < -}

for a Wald test of power (a1, @) with limit points (—b,a) and decision function d.
The following result asserts that a sequential Wald test is optimal in the sense
that Eg, v and Eg,v are minimal for it.

THEOREM 4.3.1. The sequential Wald test of power (a1,az) minimizes both
ezpectations Eg,v and Eg,v in the set of all tests (including nonsequential tests)
such that Eg, v and Eg,v are finite and

(434) Pgl {d,, = dz} <o, P92 {du = dl} < as.

To prove Theorem 4.3.1 we consider an auxiliary Bayes problem and use it to
show that the Wald test is optimal. '

An auxiliary problem. Consider the following sequential Bayes problem for
distinguishing the hypotheses Hy:6 = 6; and H»:60 = 02. Let w; > 0 be the loss
caused by a wrong decision given the hypothesis H; is true and let the loss caused
by a correct decision be zero. Assume that the cost of every observation is ¢ > 0.
The risk of the sequential test § when making a decision given the hypothesis H;
is true equals

o;w; + cEg, v, 1=1,2,
where v is the stopping time of the sequential test § and o; and oy are the type I
and type II error probabilities, respectively. The risk of a test includes the mean loss
caused by making a decision and the mean cost per observation. Let ¢ = P{0 = 6}
and 1—g = P{6 = 6,} be a priori probabilities of the hypotheses H; and H2. Then
the (unconditional) risk of the test d is

(4.3.5) r(g,6) = q(cawy + cEg,v) + (1 — q)(aaw2 + cEg,v).

DEFINITION 4.3.1. A sequential test §* is called ¢-Bayes if r(g,0*) < r(q,6)
for all tests & where ¢ € [0,1] is given and r(q,d) is the risk of a test § defined
by (4.3.5).

DEFINITION 4.3.2. A sequential test 6* is called Bayes if r(q,0*) < 7(g, ) for
all tests  and all g € [0, 1].

The g-Bayes test for the above auxiliary problem is described in the following
result.
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LEMMA 4.3.1. Let ¢’ < q" be solutions of the equations

(4.3.6) r(d,61) =p(d),  r(d",82) = p(d"),
respectively (provided the solutions ezist), where

4.3.7 = inf y0),

(4.3.7) p(q) o r(g,9)

F is the class of tests for which it is necessary to take at least one observation,
and d; is the test rejecting the hypothesis H; without sampling. Put

438 =gt = 2
(4.3.8) ¢=q"=_—~

for the case where equations (4.3.6) have no solutions. If 0 < ¢’ < q" < 1, then
for all g € (¢',q") the Wald sequential test with limit points

_ g 1-¢" _ g 1-¢
(4.3.9) b—ln(l_q 7 ), a—ln(l_q 7

is g-Bayes.

PROOF. Step I. First we find g for which the better decision is the one made
without sampling. We get from (4.3.5) that

r(g,61) =qui,  7(q,82) = (1 — qJwa.
Further, (4.3.5) and (4.3.7) for all A € (0,1) and all g,¢2 € [0, 1] imply that
p(Aqr + (1 = N)go) = A0f, Dr(1,0) + (1 = Nr(gz, )] 2 Anl@) + (1 = Vp(ga)s
1

that is, p(g) is a convex function. Since p(q) > 0, the function p(q) is continuous
in the interval (0, 1).

A
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FIGURE 4.3.1. Graphs of the functions p(q), r(g,01), and (g, d2)
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The graphs of the functions p(q), r(g, 81), and r(q, d-) are shown in Figure 4.3.1.
If

wiwe w1 we wa w2

(4310) p(wl +UJ2> < w1 + ws =r (wl n w2,61> =r (wl n ’LU2,62) ,
then solutions ¢’ and ¢” of equations (4.3.6) exist. Otherwise we accept conven-
tion (4.3.8). Assume that relation (4.3.10) holds. Then 0 < ¢’ < ¢” < 1 and the
test ; minimizes r(q,d) if and only if ¢ < ¢/, while J, minimizes r(q,d) if and
only if ¢ > ¢”. This implies that the unique optimal decision on the first step is
as follows: if ¢ < ¢/, then the hypothesis H; is rejected and the hypothesis Hj is
accepted without sampling; if ¢ > ¢”, then the hypothesis H, is rejected and the
hypothesis H; is accepted without sampling; if ¢’ < g < ¢”, then it is necessary to
take the first observation &;.

Step II. We use induction to complete the proof. Let ¢ < ¢ < ¢” and n
observations & = z1, {2 = z2, ..., €, = x, be given. Then the procedure is the
same as that described in Step I above. The loss nc caused by making n observations
does not change the problem, since further observations cannot reimburse this loss.
If the probability that the hypothesis H; is true does not exceed ¢’ or is not less
than ¢”, then we terminate the sampling; otherwise it is necessary to take one
more observation {,4+1. According to the Bayes formula the probability that the
hypothesis H; is true given &; = 1, {2 = %o, ... , £, = T, equals

qpn (z™; 60;)
P (z™0:1) + (1 — g)pn (z™; 6,)

g(z™) =

where z(™ = (z1,22,...,T,) and pn(x("); 0) is the density of the vector

g(n) = (£I:€2$ s ,gn)

with respect to the measure p™. Thus we keep sampling if ¢’ < ¢(z(™) < ¢”, that
is, if
(n). 0
et < zn(x(")) _ pn(x H 2)
Pn (x(n); 01)

where b and a are the constants defined by (4.3.9). If z,(z(™) < e~®, then the
hypothesis H; is accepted, while if z,(z(™) > e?, then the hypothesis H; is ac-
cepted. Thus we proved for ¢’ < ¢ < ¢” that the g-Bayes test coincides with the
Wald sequential test with limit points (4.3.9). a

<e®

REMARK 4.3.1. In Step I of the proof of Lemma 4.3.1 we determined the g-
Bayes procedure (now we denote it by §*) as follows: 6* = §; if ¢ < ¢/, 6* = 82 if
g > ¢", and 6* requires the first observation if ¢’ < g < q”. The test §; minimizes
risk (4.3.5) if ¢ = ¢’. However §; is not a unique optimal test, since there exists § €
& such that r(¢',0) = p(¢’). If ¢ = ¢’ and it is necessary to take an observation ¢,
then we showed in Step II of the proof of Lemma 4.3.1 that there is a test in %
that minimizes the risk. This means that it makes no difference how one constructs
the test in the case of ¢ = ¢'. The same is true for the case of ¢ = ¢”. Moreover this
also is true for the next steps. This therefore proves that if ¢/ < ¢ < ¢”, then the
test coinciding with the Wald sequential test with limit points (4.3.9) is g-Bayes.
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A relationship between the auxiliary and main problems is established in the
following result.

LEMMA 4.3.2. For all 0 < g < q¢ <1 there are numbers w € (0,1) and c > 0

such that the Bayes solution of the auziliary problem with w; = 1—w, ws = w, and
with a priori probability q € (qg,qq) is the Wald sequential test with limit points

(—bo,a0) such that

g l1—qf g 1-gp
—by =In an=1In[ —2——-—901}
0 1(1—4 @ )’ 0 1-g g

PROOF. Stepl. Let ¢'(w, ¢) and ¢"(w, c) be solutions of equations (4.3.6) where
7(g,0) is defined by (4.3.5) for w; = 1 — w and w2 = w. Thus we need to find w
and ¢ such that ¢’'(w, c) = g and gf (w,c) = g¢. Given a fixed w let

d)=dwyc), d'(c)=¢"(w,c).

Let ¢p = co(w) be the minimal number ¢ such that ¢’(c) = ¢"’(c). Then ¢’(c) and
q"(c) for 0 < ¢ < ¢p are defined from the equations

(1-w)d =p(d,c), w(@d—4q")=p(g"c)

where p(q, ) stands for p(q) defined in (4.3.7).
Given a fixed ¢ the function p(g, c) of the argument c is such that
1) p(g,c) is continuous with respect to c;
2) p(g,c) increases with respect to ¢, since for any § € .%; the risk increases
with respect to ¢ and the minimal risk p(q, ¢) is attained for the test § € S;
3) p(g,c) 2 0asc— 0.
The latter property holds, since the type I and type II error probabilities for samples
with fixed size n can be arbitrarily small if n is sufficiently large.
The above properties of the function p imply that for 0 < ¢ < ¢ the func-
tion ¢’(c) (respectively, ¢”(c)) is continuous, increasing (respectively, decreasing),
and ¢’(c) — 0 (respectively, ¢’(c) — 1) as ¢ — 0. On the other hand,

7'(c) - q'(c) >0 asc— o,

so that both functions ¢’(c) and ¢”(c) approach the solution ¢'(c) = ¢"(¢) = w of
the equation ¢’(1—w) = (1—¢')w. The above properties also imply that for fixed w
the function

gl 1-4"()
1-q'(c) ¢"()
is continuous, increasing, and varying from 0 to 1 as c is varying from 0 to

Ae) =

co = co(w).
Step I1. Put

q'(w,c) 1-— q”(w’c) qll)l(w’ c)
A = . = ——
W= g Fwa )T T gwo

We prove that there are w and ¢ such that
_ 9% l-—gq _ _ 4
)\(w,c) - 1— (I(,) q(l)l = ’\Oa 7(wa C) - 1— qg = Y0-
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We proved in Step I that for all fixed w there exists a unique ¢ = ¢(w) such
that A(w,c) = Ao. In Step III below we prove that the function y(w) = y(w, c(w))
is a one-to-one correspondence between w € (0,1) and y € (0,00). Therefore there
exists a unique number w € (0,1) such that y(w) = 7. This will complete the
proof of the lemma.

Step III. According to Lemma 4.3.1 for the auxiliary problem with w; =1 —w
and wy = w, the cost per observation ¢ = c(w), and the a priori probability
q = ¢'(w, c(w)), there exists a sequential g-Bayes test §’ which is a Wald sequential
test with limit points (—b’,0) where

Ly (_fwew)  1-gwew)) N
b‘l(—wmmw» q%wdw)) i Aw, e(w)) = In do

Further let §” be the Wald sequential test for the auxiliary problem with constants
w; =1 —w, we =w, ¢c=c(w), and g = ¢"(w, c(w)) that is a Wald sequential test
with limit points (0,a"”) where

e (_Fwew)  1-d@ew)) _, 1
‘mh—WWAw) ﬂmdw>) ‘

Ao
Then the error probabilities o} and a2 and the expectations Eg, v’ and Eg,v’ of the
test ¢’ as well as error probabilities af and of and expectations Eg, "’ and Eg,v"” of
the test §” depend on w and ¢ through Ao but not through «. Thus they are fixed
numbers for a fixed A\g. The Bayes risks for ¢’ = ¢’(w, ¢(w)) and ¢" = ¢"(w, c(w))
are equal to

p(q/) = T(ql’ 5,)’ p= (q”)r(q”, 6”),
respectively. Relations (4.3.6) imply that

r(d,61) =r(d,8'), r(¢",862) =r(qg",8").

The latter equalities can be rewritten as

¢(1-w)=q[i(1—w)+cEp ]+ (1 - ’[a’zw+cEezv’]
(1-¢"w=q"[a](1 —w) + cEg, "] + (1 — ¢") 05w + cEg,V"].
Using

/

q
— =) 1
l_q, 07> l—q”

in the latter equalities and excluding ¢ we obtain

=7

{Aov(1 = af) — whoy(1 — 0f) + o)} (vEe, v + Eg,v")
= {—vaf + w[(1 — of) +va{]} (AoVEs, ' + Eg, V).

This equation is linear with respect to w, thus it has a solution w € (0,1) for all
v > 0. Collecting all the terms on one side of this equality we obtain a polynomial
of the second degree with respect to v such that the coefficient of 42 and constant
term have different signs if w € (0, 1). Thus there exists a unique positive solution vy
which is the desired one-to-one correspondence between v and w. O
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REMARK 4.3.2. Property 3) of the function p(g,c) mentioned in Step I of the
proof of Lemma 4.3.2 follows from the following reasoning. By assumption

Po,{\1 #0} >0

for i =1 and ¢ = 2. Then Eg, A\; < 0 and Eg,\; > 0 (see (4.2.26)). If Eg, \; > —o0,
then the Khinchine law of large numbers implies that n=!A,, — Eg, A1 as n — o0
in probability Py, . Further if Eg, \; = —00, then one can prove that n=1A, — —oco
as n — oo in probability Pg,. Thus A, — —oo0 as n — oo in probability Pg,. Then
the type I error probabilities a1 (62) approach zero as n — oo for the Bayes test §2
constructed from a sample of size n by inequalities (2.3.73). Similarly we obtain
that a2(62) — 0 as n — oo. Thus p(g,c) - 0asc— 0.

Proof of the main theorem. Now we use Lemmas 4.3.1 and 4.3.2 to prove
the main result that the Wald test is optimal.

PROOF OF THEOREM 4.3.1. Consider the Wald sequential test of power (a4,
a) with limit points (—b, a) where a > 0 and b > 0. Let v be the stopping time of
this test. Consider an arbitrary number ¢ of the interval (0,1) and put

S S S S
e(1—q)+¢’ e b(1-q)+gq

The numbers ¢’ and ¢” satisfy (4.3.9) and moreover 0 < ¢’ < ¢ < ¢” < 1. According
to Lemma 4.3.2 there are numbers w € (0,1) and ¢ > 0 such that this test is
a Bayes solution of the auxiliary problem for which a priori probabilities of the
hypotheses H; and H; are q and 1—gq, the loss due to a wrong decision is w; = 1—w
and we = w, respectively, and the cost per observation is ¢. Consider an arbitrary
test 6* (not necessarily sequential) with error probabilities @ and of and the
stopping time v* where a} < o; and Eg,v* < oo for ¢ = 1,2. Again by Lemma 4.3.2

q

q[(1 — w)ay + cEg,v] + (1 — q)[was + cEg,V]
(4.3.11) < q[(1 — w)og + cEg,v*] + (1 — q)[was + cEg, V"]
< ¢[(1 — w)a; + cEq, v*] + (1 — q)[waz + cEg,v*]
where the latter inequality holds, since o} < a; and o < ap by condition. Then
inequalities (4.3.11) imply
(4.3.12) qEg, v + (1 — g)Eg,v < gEg,v* + (1 — g)Eg,v™".

Since (4.3.12) holds for all g € (0, 1), we pass to the limit as ¢ — 0 and obtain from
(4.3.12) that Ep,v < Eg,v*. Similarly we pass to the limit as ¢ — 1 and obtain
from (4.3.12) that Eg,v < Eg, v*. O

REMARK 4.3.3. In the proof above we constructed a g-Bayes sequential test
for distinguishing the hypotheses H; and Hy with a priori distribution (g,1 — ¢) of
the hypotheses and for the loss matrix

_ 0 w1
A—<w2 O), w; >0, wy > 0.
The general case of the problem of constructing the Wald sequential tests is reduced
to the solution of the Bellman equation (also known as the optimality equation in
dynamic programming) (see Section 4.1 and [13, 15, 46]).
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