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Foreword from the DPM 2017 Program Chairs

This volume contains the proceedings of the 12th Data Privacy Management Interna-
tional Workshop (DPM 2017), held in Oslo, Norway, during September 14–15, 2017,
in conjunction with the 22nd European Symposium on Research in Computer Security
(ESORICS) 2017. The DPM series started in 2005 when the first workshop took place
in Tokyo (Japan). Since then, the event has been held in different venues: Atlanta, USA
(2006); Istanbul, Turkey (2007); Saint Malo, France (2009); Athens, Greece (2010);
Leuven, Belgium (2011); Pisa, Italy (2012); Egham, UK (2013); Wroclaw, Poland
(2014); Vienna, Austria (2015); and Crete, Greece (2016).

The aim of DPM is to promote and stimulate the international collaboration and
research exchange in areas related to the management of privacy-sensitive information.
This is a very critical and important issue for organizations and end-users. It poses
several challenging problems, such as translation of high-level business goals into
system-level privacy policies, administration of sensitive identifiers, data integration
and privacy engineering, among others.

For this workshop edition we received 51 submission, and each one was evaluated
on the basis of significance, novelty, and technical quality. The Program Committee,
formed by 41 members, performed an excellent task and with the help of an additional
18 referees all submissions went through a careful review process (three or more
reviews per submission). In the end, 16 full papers were accepted for presentation at the
event. In addition, the program was completed with a keynote talk given by Vicenç
Torra (University of Skövde, Sweden) on integral privacy (privacy models and dis-
closure risk).

We would like to thank everyone who helped organize the event, including all the
members of the Organizing Committee of both ESORICS and DPM 2017.

Our gratitude goes also to Pierangela Samarati, Steering Committee Chair of the
ESORICS Symposium, for all her arrangements to make possible the satellite events,
and Socratis Katsikas, Workshops Chair of ESORICS 2017. Last but by no means
least, we thank all the DPM 2017 Program Committee members, additional reviewers,
all the authors who submitted papers, and all the workshop attendees.

Finally, we want to acknowledge the support received from the sponsors of the
workshop: Institut Mines-Telecom (Telecom SudParis), CNRS Samovar UMR 5157
(R3S team), Universitat Autonoma de Barcelona, UNESCO Chair in Data Privacy,
Universitat Rovira i Virgili, and project TIN2014-55243-P from the Spanish MINECO.

August 2017 Joaquin Garcia-Alfaro
Guillermo Navarro-Arribas
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Foreword from CBT 2017 Program Chairs

This volume contains the proceedings of the First International Workshop on
Cryptocurrencies and Blockchain Technology (CBT 2017) held in Oslo, Norway, on
September 14, 2017, in conjunction with the 22nd European Symposium on Research
in Computer Security (ESORICS) 2017.

Since the appearance of Bitcoin in 2009, a plethora of new cryptocurrencies and
other blockchain-based systems have been proposed and deployed. While some
of them are slightly different copies of Bitcoin, others propose interesting improve-
ments or new usages of the underlying blockchain technology. Owing to their
construction as blockchain-based systems, security and dependability aspects need to
be rigorously designed and analyzed. The goal of the CBT workshop is to provide a
forum for researchers in this area to carefully analyze current systems and propose new
ones in order to create a scientific background for the solid development of new
cryptocurrencies and blockchain technology systems.

In response to the call for papers, we received 27 submissions that were carefully
reviewed by the Program Committee comprising 15 members and by additional
reviewers. Each submission received at least three reviews. The Program Committee
selected six papers as full papers (resulting in an acceptance rate of about 22%) and
four short papers for presentation at the workhop. The selected papers cover aspects of
identity management, smart contracts, soft- and hardforks, proof-of-works and
proof-of-stake as well as on network layer aspects and the application of blockchain
technology for secure concert/event ticketing.

Furthermore, the workshop was enhanced by the keynote offered by
Prof. Roger Wattenhofer, a talk that was made possible thanks to the sponsorship of
Blockchain Inc.

We would like to thank all the authors who submitted papers to CBT 2017 and the
Program Committee and the additional reviewers who worked hard to review the
submissions and discussed the final program. We would also like to thank the
ESORICS workshop chair Sokratis Katsikas and his team as well as the ESORICS
organizers for putting faith in us and in the topic of cryptocurrencies and blockchain
technology.

We hope that you find the proceedings of CBT 2017 interesting and inspiring and
that there will be follow-ups of the CBT workshop in the coming years.

Jordi Herrera-Joancomartí
Hannes Hartenstein
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A Proof Calculus for Attack Trees in Isabelle

Florian Kammüller1,2(B)

1 Middlesex University London, London, UK
f.kammueller@mdx.ac.uk

2 Technische Universität Berlin, Berlin, Germany

Abstract. Attack trees are an important modeling formalism to iden-
tify and quantify attacks on security and privacy. They are very useful
as a tool to understand step by step the ways through a system graph
that lead to the violation of security policies. In this paper, we present
how attacks can be refined based on the violation of a policy. To that end
we provide a formal definition of attack trees in Isabelle’s Higher Order
Logic: a proof calculus that defines how to refine sequences of attack
steps into a valid attack. We use a notion of Kripke semantics as formal
foundation that then allows to express attack goals using branching time
temporal logic CTL. We illustrate the use of the mechanized Isabelle
framework on the example of a privacy attack to an IoT healthcare sys-
tem.

1 Introduction

Identifying attacks and quantifying the attacker is a major challenge in security
engineering. Attack trees are a simple classical approach but they still thrive in
practical applications. One of the reasons is their simplicity and transparency to
the user; the other is that their notion of attack analysis is a natural mechanism
of a gradual approach to understanding security risks. In this paper, we provide
a formal basis for attack trees in the interactive theorem prover Isabelle: a proof
calculus for attack trees using a notion of refinement and attack validity. An
existing emulation of modelchecking [6] provides a Kripke semantics for the proof
calculus for attack trees. We introduce the proof calculus and the underlying
mechanisation of the Kripke semantics. Finally, we illustrate the application of
the presented Isabelle formalisation of attack trees on a case study from the
health care sector which is the target of the CHIST-ERA project SUCCESS [3].

The main novelty of this paper is a mechanized theory for attack trees using
Kripke structures to provide a state based foundation for the attack sequences as
well as enabling the combination with the branching time logic CTL to facilitate
detection and analysis of attacks.

The paper first introduces attack trees, Kripke structures, and attack tree
refinement (Sect. 2) before presenting the proof calculus (Sect. 3). Section 4 then
summarises the Isabelle Insider framework that can be used as an application of
the attack tree formalisation. A health care system Insider attack is introduced
and used as an illustrative example for the application of Isabelle attack trees
and Kripke structures.
c© Springer International Publishing AG 2017
J. Garcia-Alfaro et al. (Eds.): DPM/CBT 2017, LNCS 10436, pp. 3–18, 2017.
DOI: 10.1007/978-3-319-67816-0 1



4 F. Kammüller

2 Attack Trees and Kripke Structures

2.1 Attack Trees

Attack Trees [16] are a graphical tree-based design language for the stepwise
investigation and quantification of attacks. We believe that attack trees are a
succinct way of representing attacks and thus not only useful as an immediate
tool to quantify the attacker as part of a security analysis but also a good way of
making security and privacy risks transparent to users. In attack trees [13,16],
the root represents a goal, and the children represent sub-attacks. Sub-attacks
can be alternatives for reaching the goal (disjunctive node) or they must all be
completed to reach the goal (conjunctive node). Figure 1 illustrates the clarity
of this graphical formalism by giving an example of an attack tree for opening
a safe [16]. Leaf nodes represent the basic actions in an attack. Nodes of attack
trees can be adorned with attributes, for example costs of attacks or probabilities
which allows quantification of attacks (not used in the example). Sub-trees can
be combined disjunctively (or-nodes) or conjunctively (and-nodes).

Fig. 1. Attack tree example illustrating mainly disjunctive nodes for alternative attacks
refining the root node “open safe” and one conjunctive node for “eavesdrop”.

As much as this clarity is encouraging to employ the formalism in the early
stages of a security engineering process, it is also abstract and may lead to
ambiguities. Therefore, it is desirable to lay foundations for attack trees that help
us to use them not only to grasp intuitive attacks but to provide a foundation
that helps to disambiguate and verify the intuition.

There are excellent foundations available based on graph theory [13]. They
provide a very good understanding of the formalism, various extensions (like
attack-defense trees [12] and differentiations of the operators (like sequential
conjunction (SAND) versus parallel conjunction [5]) and are amply documented
in the literature. These theories for attack trees provide a thorough foundation
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for the formalism and its semantics. The main problem that adds complexity to
the semantical models is the abstractness of the descriptions in the nodes. This
leads to a variety of approaches to the semantics, e.g. propositional semantics,
multiset semantics, and equational semantics for ADtrees [12]. The theoretical
foundations allow comparison of different semantics, and provide a theoretical
framework to develop evaluation algorithms for the quantification of attacks.

Surprisingly, the use of an automated proof assistant, like Isabelle, has not
been considered despite its potential of providing a theory and analysis of attacks
simultaneously. The essential attack tree mechanism of disjunction and conjunc-
tion in tree refinement is relatively simple. The complexity in the theories is
caused by the attempt to incorporate semantics to the attack nodes and relate
the trees to actual scenarios. This is why we consider the formalisation of a foun-
dation of attack trees in the interactive prover Isabelle since it supports logical
modeling and definitions of datatypes very akin to algebraic specification but
directly supported by semi-automated analysis and proof tools.

2.2 Attack Tree Datatype in Isabelle

The attack trees formalisation including Kripke structures is formalised in
Isabelle’s Higher Order Logic. All sources are available online [7]. This Isabelle
formalisation constitutes a tool for proving security properties using the assis-
tance of the semi-automated theorem prover [11]. Isabelle is an interactive proof
assistant based on Higher Order Logic (HOL). Applications can be specified as
so-called object-logics in HOL providing reasoning capabilities for examples but
also for the analysis of the meta-theory. An object-logic contains new types, con-
stants and definitions. These items reside in a theory file, e.g., the file AT.thy
contains the object-logic for attack trees. This Isabelle Insider framework is a
conservative extension of HOL. This means that an object logic does not intro-
duce new axioms and hence guarantees consistency.

Attack trees have already been integrated as an extension to the Isabelle
Insider framework [9,15] but with a limited scope to conjunctive nodes only and
no added semantics to construct a proof calculus. In the current paper, we not
only generalise the attack trees for arbitrary state systems but also properly
extend to disjunctive nodes.

The principal idea is that base attacks are defined as a datatype and attack
sequences as lists over them. Base attacks consist of actor’s moves to locations,
performing of actions and stealing of credentials stored at locations as expressed
in the following datatype definition.

datatype baseattack = Goto "location"

| Perform "action"

| Credential "location"

The following datatype definition attree defines attack trees. The simplest case
of an attack tree is a base attack. Attacks can also be combined as the conjunction
or disjunction of other attacks. The operator ⊕∨ creates or-trees and ⊕∧ creates
and-trees. And-attack trees l⊕s

∧ and or-attack trees l⊕s
∨ combine lists of attack



6 F. Kammüller

trees l either conjunctively or disjunctively on the attack goal s. The attack goal
s is of arbitrary type α. It can be instantiated simply to the type string to
represent the attack goal “informally” by an attack name. However, we can here
also instantiate to a predicate type thereby enabling a constructive predicative
description of the attack state using logic.

datatype attree = BaseAttack "baseattack" ("N (_)")

| AndAttack "attree list "α" ("_ ⊕( )
∧ ")

| OrAttack "attree list" "α" ("_ ⊕( )
∨ ")

The functions get attseq and get attack are corresponding projections on
attack trees returning the entire attack sequence or the final attack (the root),
respectively. They are needed for defining the rule for attack refinement in
Sect. 2.4.

2.3 Kripke Structures

Due to the expressiveness of Higher Order Logic (HOL), Isabelle allows us to
formalise within HOL the notion of Kripke structures and temporal logic by
directly encoding the fixpoint definitions for each of the CTL operators [6]. To
realize this, a change of the considered system’s state needs to be incorporated
into Isabelle. A relation on system states is defined as an inductive predicate
called state transition. It introduces the syntactic infix notation I →i I’ to
denote that system state I and I’ are in this relation.

inductive state_transition :: [state, state] ⇒ bool ("_ →i _")

The definition of this inductive relation is given by a set of specific rules which
are, however, not yet necessary to understand the notion of a Kripke structure
and attack trees. They can be left out for the moment and will be introduced in
Sect. 4.1, when we present the application of a healthcare Insider attack.

The set of states of a Kripke structure can be defined as the set of states
reachable by the state transition from some initial state, for example, Istate.

Example states ≡ { I. Istate →i^* I }

The relation →i^* is the reflexive transitive closure – an operator supplied by
the Isabelle theory library – applied to the relation →i.

The Kripke constructor combines a set of states, like the above example, and
an initial state into a Kripke structure that is the graph formed by the closure
over the state transition relation →i starting in the initial state.

Example Kripke ≡ Kripke Example states {Istate}

When we now try to verify that some global security policy, say global policy,
holds for all paths globally in the example system, this can be expressed as
follows in our Isabelle embedding of Kripke structures and branching time logic
CTL [6].

Example Kripke � AG global_policy
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The relation →i provides a transition between states of a system. State tran-
sitions transform a state into another state by actions that change this state. In
the human centric systems that we focus on, these actions are executed by actors.
By contrast for attack trees, we have not yet explicitly introduced an effect on
the system’s state but we equally investigate and refine attacks as sequences of
actions eventually mapping those actions onto sequences of base attacks. In the
current approach, we use the Kripke models as the semantics for the attack tree
analysis. More precisely, the sequences of attack steps that are eventually found
by the process of refining an attack, need to be checked against sequences of
state transitions possible in the Kripke structure that consists of the graph of
system state changes.

Technically, we need a slight transformation between sequences of steps of the
system’s state changing relation →i and sequences of actions of actors leading
to states where policies are violated. We simply annotate the state transitions
by actions. Then, sequences of actions naturally correspond to the paths that
determine the way through the Kripke structure and can be one-to-one translated
into attack vectors.

Formally, we simply define a relation very similar to →i but with an addi-
tional parameter added as a superscript after the arrow.

inductive state_step :: [state, action, state] ⇒ bool ("_ →( ) _")

We define an iterator relation state step list over the state step that
enables collecting the action sequences over state transition paths.

inductive state_step_list :: [state, action list, state] ⇒ bool

("_ →( ) _")

where
state_step_list_empty: I →[] I |

state_step_list_step : � I →[a] I’; I’ →l I’’ �
=⇒ I →a#l I’’

With this extended relation on states we can now trace the action sequences.
Finally, a simple translation of attack sequences from the attack tree model to
action sequences can simply be formalised by first defining a translation of base
attacks to actions.

primrec transform :: baseattack ⇒ action

where
transform_move: transform (Goto l’) = move |

transform_get: transform (Credential l’) = get |

transform_perform: transform (Perform a) = a

From this we define a function transf for transforming sequences of attacks.

primrec transf :: baseattack list ⇒ action list

where
transf_empty : transf [] = [] |

transf_step: transf (ba#l) = (transform ba)#(transf l)



8 F. Kammüller

2.4 Attack Refinement

The main construction concept for attack trees is refinement defined by an induc-
tive predicate refines to syntactically represented as the infix operator �. Intu-
itively, refinement corresponds to developing an attack tree from the root to the
leaves (see Fig. 2). Refinement is an order relation on sub-trees of an attack tree
formalising this intuition. There are rules trans and refl making the refine-
ment a preorder; the rule refineI shows how attack vectors can be integrated
into the refinement process by extending an abstract attack into a conjunctive
sequence of more concrete attacks. The term sublist rep l a (get attseq A)
replaces an attack a by the attack sequence l in the attack sequence of attack
tree A given by its leaves. The definition of this function is a straightforward
recursive list function and omitted here for brevity [7]. The rule refineO defines
how an attack A can be refined into a disjunction of attacks as if each of these
attacks refines A. The complete definition of the inductive definition of attack
tree refinement is given in Table 1.

Table 1. Attack tree refinement: inductive definition containing defining rules.

inductive refines_to :: [attree, state, attree] ⇒ bool ("_ �( ) _")

where
refineI: I →∗

i I’; I’ →l′ I’’; transf l = l’;

sublist_rep l a (get_attseq A) = (get_attseq A’);

get_attack A = get_attack A’ =⇒ A �I A’ |

refineO: ∀ A’ ∈ set(as). A �I A’ ∧ get_attack A = s =⇒ A �I as ⊕s
∨ |

trans: A �I A’; A’ �I A’’ =⇒ A �I A’’ |

refl : A �I A

An application can be seen in Sect. 4.3 where we apply the attack tree analysis
to the health care case study.

Fig. 2. Attack refinement for healthcare case study (see also Sect. 4.3).

The refinement of attacks allows the expansion of top level abstract attacks
into longer sequences or disjunctions. Ultimately, we need to have a notion of
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when a sufficiently refined sequence of attacks is valid. This notion is provided
by the proof calculus for attack trees which allows the deduction of validity of
attacks expressed formally as I, h � a saying that in the state I the actor h can
perform attack a. The proof calculus integrates attack tree refinement and is
presented in the following Sect. 3.

3 Proof Calculus

The proof calculus for attack trees provides a notion of validity of an attack
tree with respect to a given system and an attacker. The definition of the proof
calculus for attack trees is given in Tables 2 and 3.

For individual attack steps, it presupposes a definition of the behaviour of an
attacker in a system given by the enables predicate to set off the derivation of
valid base attacks (rules att act, att goto, att cred). This enables predi-
cate is treated here as an abstract predicate over the state describing whether
an actor is entitled by the policy to execute a specific action. In the application
example in the following section, we will see an example for a concrete definition
for this enables predicate in the Isabelle Insider framework.

The rule att ref states that an abstract attack that can be refined into a
valid concrete attack is itself valid. The rule att comp and defines how an attack
as ⊕s′

∧ can be conjoined with a valid conjunctive attack as’ ⊕s
∧ into a larger

conjunctive attack as @ as’ ⊕s
∧. The operator @ is the Isabelle list operator for

appending two lists. In this rule, the system state I before the first attack needs
to allow a state transition I →∗ I’ to the state I’ before the second attack.
Since Isabelle is a Higher Order Logic theorem prover, the variables I, I’ are
higher order variables. This permits a flexible instantiation within a derivation
and a gradual development of concrete states that exhibit corresponding pre-
conditions and post-conditions of attacks. Since we use the reflexive transitive
closure →∗ (available in Isabelle as a constructor of relations) the rule also
allows the pre-states and post-states I, I’ to be identical. Thus, we can in one
rule express sequential and concurrent conjunctive attacks. We do not need a
separate rule for SAND as in other foundations for attack trees, e.g. [5]. The rule
for disjunctive composition uses universal quantification to express that a list of
disjunctive attacks needs to have the same pre-state and post-state (these states
I, I’ are fixed by the same quantifier) in order to be unified in an “or” attack
tree. The rule att comp and defines how two and-sequences of attacks can be
added to one larger attack.

As a consequence of introducing also or-attacks for attack trees, we naturally
create the need to define how or-attacks and and-attacks relate to each other. We
therefore extend the inductive definition with the distribution rules presented in
Table 3.

An advantage of using an interactive theorem prover like Isabelle is that
the rules of the inductive definition can be used to derive within the theorem
prover. This avoids introducing inconsistencies but in general also enables the
development of meta-theory, i.e., theoretical consequences of the definitions of
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Table 2. Proof calculus for attack trees: main part

inductive is_and_attack_tree :: [state, actor, attree] ⇒ bool

("_, _ � _")

where
att_act: enables I l h a =⇒ I , h � N(Perform(a)) |

att_goto: enables I l h (move) =⇒ I, h � N(Goto l) |

att_cred: enables I l h (get) =⇒ I, h � N(Credential l) |

att_ref: A �I A’; I, h � A’ =⇒ I, h � A |

att_and_one: I, h � a =⇒ I, h � [a] ⊕s
∧ |

att_comp_and: I, h � as ⊕s′
∧ ; I →∗ I’; I’, h � as’ ⊕s

∧
=⇒ I, h � as @ as’ ⊕s

∧ |

att_comp_or: ∀ a ∈ (set(as)). I, h � a ∧ get_attack a = s

=⇒ I, h � as ⊕s
∨

...

Table 3. Proof calculus for attack trees: distributivity rules

...

att_and_distr_left: I, h � ( [a,(as ⊕s
∨)] ⊕s

∧)
=⇒ I, h � ((map (λ x. [a, x]⊕s

∧) as) ⊕s
∨) |

att_and_distr_right: I, h � ( [(as ⊕s
∨),a] ⊕s

∧)
=⇒ I, h � ((map (λ x. [x, a] ⊕s

∧) as) ⊕s
∨) |

att_or_distr_left: I, h � ((map (λ x. [a, x]⊕s
∧) as) ⊕s

∨)
=⇒ I, h � ( [a,(as ⊕s

∨)] ⊕s
∧) |

att_or_assoc_right: I, h � ((map (λ x. [x, a] ⊕s
∧) as) ⊕s

∨)
=⇒ I, h � ( [(as ⊕s

∨),a] ⊕s
∧)

the concepts, here attack trees. For example, standard rules, like associativity
rules, for attack trees can be derived. But also other rules, like for example a
“one-step” composition rule for and-attacks adding just a single attack a at the
front of an attack sequence as using the cons-operation # on lists.

lemma att_comp_and_cons: � I, h � a ; I’, h � as ⊕s
∧; I →∗ I’ �

=⇒ (I, h � (a # as) ⊕s
∧)

In this paper, we base the definitions of system, actors, their behaviour,
and the corresponding state transitions on the Isabelle Insider framework. The
presented proof calculus for attack trees is easily applicable to other models of
applications by exchanging the behaviour predicate and using the corresponding
state transition relation. The calculus only considers attacks by single actors.
An extension to sets of actors can be defined in a straightforward manner based
on this calculus.
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4 Application: Insider Attack in IoT Healthcare

In this section, we finally illustrate how the proof calculus for attack trees is
applied to an example. We instantiate the formalism to the Isabelle Insider
framework that supports the representation of infrastructures as graphs with
actors and policies attached to nodes. These infrastructures are the states of
the Kripke structure for the attack trees. This section gives a brief summary
of the main relevant parts of the Isabelle Insider framework: actions, actors,
infrastructures, behaviour and state transition relation. We next give a summary
of our health care case study before illustrating how the attack tree analysis is
performed on it using the attack tree mechanism.

4.1 Isabelle Insider Framework

The Isabelle Insider framework [11] is based on a logical process of sociological
explanation [4] inspired by Weber’s Grundmodell, to explain Insider threats by
moving between societal level (macro) and individual actor level (micro).

The interpretation into a logic of explanation is formalized in the Isabelle
Insider framework [11]. The micro-level and macro-level of the sociological expla-
nation give rise to a two-layered model in Isabelle, reflecting first the psycholog-
ical disposition and motivation of actors and second the graph of the infrastruc-
ture where nodes are locations with actors associated to them. Security policies
can be defined over the agents, their properties, and the infrastructure graph;
properties can be proved mechanically with Isabelle.

In the Isabelle/HOL theory for Insiders, one expresses policies over actions
get, move, eval, and put. The framework abstracts from concrete data – actions
have no parameters:

datatype action = get | move | eval | put

The human component is the Actor which is represented by an abstract type
actor and a function Actor that creates elements of that type from identities
(of type string):

typedecl actor

type_synonym identity = string

consts Actor :: string ⇒ actor

Policies describe prerequisites for actions to be granted to actors given by pairs
of predicates (conditions) and sets of (enabled) actions:

type_synonym policy = ((actor ⇒ bool) × action set)

Policies are integrated with a graph into the infrastructure providing an organ-
isational model where policies reside at locations and actors are adorned with
additional predicates to specify their ‘credentials’, and a predicate over locations
to encode attributes of infrastructure components:
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datatype infrastructure = Infrastructure

"igraph" "location ⇒ policy set"

"actor ⇒ bool" "location ⇒ bool"

These local policies serve to provide a specification of the ‘normal’ behaviour of
actors but are also the starting point for possible attacks on the organisation’s
infrastructure. The enables predicate specifies that an actor a can perform an
action a’∈ e at location l in the infrastructure I if a’s credentials (stored in
the tuple space tspace I a) imply the location policy’s (stored in delta I l)
condition p for a:

enables I l a a’ ≡ ∃ (p,e) ∈ delta I l. a’ ∈ e

∧ (tspace I a ∧ lspace I l −→ p(a))

This definition of the behaviour for the Insider framework allows to define the
rules for the state transition relation of the Kripke structure (see Sect. 2.3) for
each of the actions. Here is the rule for move.

move: � G = graphI I; a @G l; l ∈ nodes G;

l’ ∈ nodes G; a ∈ actors_graph(graphI I);

enables I l (Actor a) move;

I’ = Infrastructure (move_graph_a a l l’

(graphI I))(delta I)(tspace I)(lspace I)

� =⇒ I →i I’

4.2 Health Care Case Study

The case study we use as a running example in this paper is a simplified sce-
nario from the context of the SUCCESS project for Security and Privacy of the
IoT [3]. A central topic of this project for the pilot case study is to support
security and privacy when using cost effective methods based on the IoT for
monitoring patients for the diagnosis of Alzheimer’s disease. As a starting point
for the design, analysis, and construction, we currently develop a case study of
a small device for the analysis of blood samples that can be directly connected
to a mobile phone. The analysis of this device can then be communicated by a
dedicated app on the smart phone that sends the data to a server in the hospital.

In this simplified scenario, there are the patient and the carer within a room
together with the smart phone.

We focus on the carer having access to the phone in order to support the
patient in handling the special diagnosis device, the smart phone, and the app.

The insider threat scenario has a second banking app on the smart phone
that needs the additional authentication of a “secret key”: a small electronic
device providing authentication codes for one time use as they are used by many
banks for private online banking.

Assuming that the carer finds this device in the room of the patient, he can
steal this necessary credential and use it to get onto the banking app. Thereby
he can get money from the patient’s account without consent.
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Fig. 3. Health care scenario: carer and patient in the room may use smartphone apps.

4.3 Health Care Case Study in Isabelle Insider Framework

We only model two identities, Patient and Carer representing a patient and
his carer. We define the health care scenario in the locale scenarioHealthcare.
The syntax fixes and defines are keywords of locales that we drop together
with the types for clarity of the exposition from now on. The double quotes
’’s’’ represent strings in Isabelle/HOL. The global policy is ‘no one except the
patient can use the bank app’:

fixes global_policy :: [infrastructure, identity] ⇒ bool

defines global_policy I a ≡ a �= ’’Patient’’ −→
¬(enables I bankapp (Actor a) eval)

The graph representing the infrastructure of the health care case study has the
following locations: (0) smart phone, (1) room, (2) bank app, and (3) health app:
In order to define the infrastructure, we first define the graph representing the
scenario’s locations and the positions of its actors. The actors patient and carer
are both initially in room. The graph is given as a set of nodes of locations and
the actors residing at certain locations are specified by a function associating
lists of nodes with the locations.

ex_graph ≡
Lgraph {(room, sphone), (sphone, healthapp),

(sphone, bankapp)}

(λ x. if x = room then

[’’Patient’’, ’’Carer’’] else [])

In the following definition of local policies for each node in the office scenario,
we additionally include the parameter G for the graph. The predicate @G checks
whether an actor is at a given location in the graph G.

local_policies G ≡
(λ x. if x = room then {(λ y. True,{get, put, move})}

else (if x = sphone then

{((λ y. has (y, ’’PIN’’)), {put,get,eval,move}), (λ y. True, {})}

else (if x = healthapp then
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{((λ y. (∃ n. (n @G sphone) ∧ Actor n = y)),

{get,put,eval,move})}

else (if x = bankapp then

{((λ y. (∃ n. (n @G sphone) ∨ (n @G bankapp)

∧ Actor n = y ∧ has (y, ’’skey’’))),

{get,put,eval,move})}

else {}))))

In this policy, any actor can move to the room and when in possession of the PIN
can move onto the sphone and do all actions there. The following restrictions
are placed on the two other locations.

healthapp: to move onto the healthapp and perform any action at this location,
an actor must be at the position sphone already;

bankapp: to move onto the bankapp and perform any action at this location, an
actor must be at the position sphone already and in possession of the skey.

The possession of credentials like PINs or the skey is assigned in the
infrastructure as well as the roles that actors can have. We define this assignment
as predicate over actors being true for actors that have these credentials. For the
health care scenario, the credentials express that the actors Patient and Carer
possess the PIN for the sphone but Patient also has the skey.

ex_creds ≡
(λ x. if x = Actor ’’Patient’’ then

has (x,’’PIN’’) ∧ has (x, ’’skey’’)

else (if x = Actor ’’Carer’’ then

has (x, ’’PIN’’) else True))

The graph and credentials are put into the infrastructure hc scenario.

hc_scenario ≡ Infrastructure

ex_graph (local_policies ex_graph)

ex_creds ex_locs

4.4 Attack Tree Analysis

System states in the application to the Insider framework are given by infrastruc-
tures. The initial state corresponds to the above hc scenario; following states
are introduced by applying the state transition function. We introduce the fol-
lowing definitions to denote changes to the infrastructure. A first step towards
critical states is that the carer gets onto the smart phone. We first define the
changed infrastructure graph.

ex_graph’ ≡ Lgraph

{(room, sphone), (sphone, healthapp),

(sphone, bankapp)}

(λ x. if x = room

then [’’Patient’’] else

(λ x. if x = sphone

then [’’Carer’’] else []))



A Proof Calculus for Attack Trees in Isabelle 15

The dangerous state has a graph in which the actor Carer is on the bankapp.

ex_graph’’ ≡ Lgraph

{(room, sphone), (sphone, healthapp),

(sphone, bankapp)}

(λ x. if x = room

then [’’Patient’’] else

(λ x. if x = bankapp

then [’’Carer’’] else []))

The critical state of the credentials is where the carer has the skey as well.

ex_creds’ ≡
(λ x. if x = Actor ’’Patient’’ then

has (x,’’PIN’’) ∧ has (x, ’’skey’’)

else (if x = Actor ’’Carer’’ then

has (x, ’’PIN’’) ∧ has (x, ’’skey’’)

else True))

We use these changed state components to define a series of infrastructure states.

hc_scenario’ ≡ Infrastructure

ex_graph (local_policies ex_graph)

ex_creds’ ex_locs

hc_scenario’’ ≡ Infrastructure

ex_graph’(local_policies ex_graph’)

ex_creds’ ex_locs

hc_scenario’’’≡ Infrastructure

ex_graph’’(local_policies ex_graph’’)

ex_creds’ ex_locs

We next look at the abstract attack that we want to analyse before we see how
Kripke structures and temporal logic support the analysis.

The abstract attack is stated as [Goto bankapp, Perform eval]
⊕move−grab

∧ . The following refinement encodes a logical explanation of how this
attack can happen by the carer taking the skey, getting on the phone, on the
bankapp and then evaluating.

[Goto bankapp, Perform eval] ⊕move−grab
∧

�hc scenario

[Perform get, Goto sphone, Goto bankapp, Perform eval] ⊕move−grab
∧

This refinement is proved by applying the rule refineI (see Sect. 2.4). In fact,
this attack could be found by applying refineI and using interactive proof with
Isabelle to instantiate the higher order parameter ?l in the following resulting
subgoal.

hc_scenario →transf(?l) hc_scenario’’’

This proof results in instantiating the variable ?l to the required attack sequence
[Perform get, Goto sphone, Goto bankapp, Perform eval].
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So far, we have used the combination of a slightly adapted notion of the
state transition of the Kripke structures to build a model for attack refinement
of attack trees. We can further use the correspondence between Kripke struc-
tures and attack trees to find attacks. We first define the Kripke structure for
the health case scenario representing the state graph of all infrastructure states
reachable from the initial state.

hc_states ≡ { I. hc_scenario →∗
i I }

hc_Kripke ≡ Kripke hc_states {hc_scenario}

Since it is embedded into Isabelle [6], we may use branching time logic CTL to
express that the global policy (see Sect. 4.3) holds for all paths globally.

hc_Kripke � AG {x. global_policy x ’’Carer’’}

Trying to prove this must fail. However, using instead the idea of invalidation
[10] we can prove the negated global policy.

hc_Kripke � EF {x. ¬ global_policy x ’’Carer’’}

The interactive proof of this EF property means proving the theorem

hc_Kripke � EF {x. enables x bankapp

(Actor ’’Carer’’) eval}

This results in establishing a trace l that goes from the initial state hc scenario
to a state I such that enables I bankapp (Actor ’’Carer’’) eval. This
I is for example hc scenario’’’ and the action path get, move, move is a
side product of this proof. Together with the states on this path the transf
function delivers the required attack path [Perform get, Goto sphone, Goto
bankapp, Perform eval].

5 Conclusion

Summarizing, we have provided a mechanized foundation for attack trees. The
semantics of attack trees has been defined using an embedding of modelchecking
in Isabelle leading to a proof calculus for attack trees. We illustrated the benefits
on a health care case study of an Insider attack using the semantics on the
Isabelle Insider framework infrastructures as our system state but this state
model can be replaced by other suitable state models to apply Isabelle attack
trees and Kripke structures.

There is a range of observations concerning the relation between attack trees
and Kripke structures in Isabelle that we presented in this paper and whose
conception, construction, and demonstration represents our contribution.

– Kripke structures can be used as the underlying semantics for state based
systems interpreting the attacks, i.e., providing semantics for attack trees.

– Therefore, the state transition relation can be used to define refinement steps
in the refinement part of a proof calculus for attack trees.



A Proof Calculus for Attack Trees in Isabelle 17

– Higher Order Logic variables for pre-states and post-states of an attack step
can be dynamically derived in applications of our proof calculus.

– Temporal logic formulas in the branching time logic CTL can be used in our
Isabelle framework extension supporting the detection of attacks.

– The attack tree proof calculus serves as a logical basis to judge the validity
of an attack in a given model.

– The attack tree proof calculus can be applied to case studies as demonstrated
on an IoT health care application case study.

Clearly relevant to this work are the Isabelle Insider framework and its exten-
sions [6,8,9,11] but also the related experiments with the invalidation approach
for Insider threat analysis using classic implementation techniques like static
analysis and implementation in Java [15] or probabilistic modeling and analysis
[2].

We believe that the combination of Kripke structures and attack trees is
novel in the way we tie these concepts up at the foundational level. Considering
the simplicity of this pragmatically driven approach and the relative ease with
which we arrived at convincing results, it seems a fruitful prospect to further
explore this combination. Beyond the mere finding of attack vectors in proofs,
the expressivity of Higher Order Logic will allow developing meta-theory that in
turn can be used for the transfer between state based reasoning and attack tree
analysis.

The presented foundation of attack trees in Isabelle is consistent with the
existing foundations [5,12,13] but instead of providing an on paper mathematical
foundation it provides a direct formalisation in Higher Order Logic in the proof
assistant. This enables the application of the resulting framework to case studies
and does not necessitate a separate implementation of the mathematical foun-
dation in a dedicated tool. Clearly, the application to case studies requires user
interaction. However, the formalisation in Isabelle supports not only the appli-
cation of the formalised theory but furthermore the consistent development of
meta-theorems thus guaranteeing consistency at all levels. In addition, dedicated
proof automation by additional proof of supporting lemmas is straightforward
and even code generation is possible for executable parts of the formalisation.

In comparison to the existing foundations [5,12,13], the presented attack
tree framework only covers a portion of available extensions for attack trees.
For example, it does not support attack-defense trees, i.e., the integration of
defenses within the attack tree. This is a straightforward future development.
Other work on attack trees includes the extension of the formalism by probabil-
ities and time [1]. To support this quantitative analysis, automated verification
techniques using modelchecking with the UPPAAL system and timed automata
are applied as well [14]. This direct application of modelchecking provides auto-
mated analysis of attack trees but unlike our proof theory for attack trees it
does not allow any proofs about attack trees. Thereby, the consistency and par-
tially also the adequacy of the model is not guaranteed. However, we believe
that a complementary use of these works with our more expressive formalisation
is fruitful for developing secure systems from early requirements.
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Abstract. We consider a general concurrency model for distributed
systems, based on concurrent objects communicating by asynchronous
methods. This model is suitable for modeling of modern service-oriented
systems, and gives rise to efficient interaction avoiding active waiting and
low-level synchronization primitives such as explicit signaling and lock
operations. This concurrency model has a simple semantics and allows
us to focus on information flow at a high level of abstraction, and allows
realistic analysis by avoiding unnecessary restrictions on information flow
between confidential and non-confidential data. We formalize our app-
roach by introducing a high-level language for this concurrency model,
and we provide a secrecy-type system to capture inter-object communi-
cation. We prove soundness based on an operational semantics, which
includes runtime secrecy levels.

Keywords: Concurrent objects · Asynchronous methods · Communica-
tion patterns · Information flow · Secrecy · Confidentiality · Distributed
systems · Inter-object leakage

1 Introduction

Programming languages can provide fine-grained control for security issues
because they allow accurate and flexible security information analysis of pro-
gram components [8]. In particular, to specify and enforce information-flow poli-
cies, the effectiveness of language-based techniques has been established. Secure
information flows are often expressed by semantic models of program execution
in the form of a noninterference policy. Noninterference stipulates that manip-
ulation and modification of confidential data should be allowed in programs, as
long as their visible outputs do not improperly reveal information about the
confidential data. Attackers are assumed to be able to view “low” information.
The usual method for showing that noninterference holds is to demonstrate that
the attacker cannot observe any difference between two executions that differ
only in their confidential input [7]. However, attackers may also see intermediate
outputs [1] and observe the progress of the program, e.g., absence or presence
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of the next observable value, which leads to the concept of progress-sensitive
noninterference [1].

In this paper, we are interested in service-oriented and object-oriented sys-
tems at a high level of abstraction, and consider the setting of distributed concur-
rent objects communicating by asynchronous methods calls. We focus on efficient
interaction, including non-blocking calls and high-level mechanisms for process
control, suitable for modern service-oriented systems. Our notion of noninterfer-
ence reflects the non-deterministic nature of interacting concurrent objects.

Fields are encapsulated by objects and remote access is forbidden. Thus, fields
are non-observable, and the (typically) illegal flows in the sense of assignment of
confidential values to non-confidential variables inside objects are not critical.

To formalize our approach we introduce a high-level imperative language
based on the chosen concurrency model. This language is derived from the object-
oriented language Creol [12]. We define an extension of Creol called SeCreol,
adding awareness of secrecy levels as well as secrecy type information. We define
an operational semantics, and prove that our secrecy-type system is sound with
respect to the operational semantics, ensuring that every well-typed program of
our language satisfies the proposed non-interference property.

2 Object-Oriented Distributed Systems in SeCreol

We consider concurrent, distributed objects where each object has its own exe-
cution thread. An object does not have access to the internal state variables of
other objects. Communication is only by method calls, allowing asynchronous
and synchronous communication, implemented by means of asynchronous mes-
sage passing. In order to avoid undesirable waiting in the distributed setting,
we allow mechanisms for non-blocking method calls. By means of a suspension
mechanism, unfinished method invocations in an object may be placed on the
object’s process queue, for instance while waiting for a response from another
object. The process will be enabled when then object receives the response. This
allows flexible interleaving of incoming calls and (enabled) suspended processes.
Internally in an object, there is at most one process executing at any time.
Objects reflect concurrent system components, while data structure inside an
object is defined by data types using functional programming.

A SeCreol program consists of a number of interfaces and classes (with the
last class being the “main” class). An interface may have a number of super-
interfaces and method declarations. A class C takes a list of class parameters cp,
defines fields w, and has an optional initialization part followed by method def-
initions. Class parameters cp are like fields apart from being initialized through
the new statement. Class parameters, the implicit class parameter this, and the
implicit method parameter caller are read-only. A class may implement a num-
ber of interfaces, and for each method of an interface it is required that the
class implements the method such that the type and secrecy level information
is respected. Additional methods may be defined in a class as well, but these
may not be called from outside the class. All variables and parameters are typed
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by data types or interfaces. Classes are not allowed as types, which means that
an object can only be seen through an interface, and therefore, remote access
to fields nor methods that are not exported through an interface is not allowed.
Thus shared variable concurrency is avoided. With respect to security analysis,
fields are then not observable, and observable behavior is limited to interactions
by means of method-oriented communication.

Expressions e and functions f are side-effect free, and e is a (possibly empty)
expression list, comma-separated. Statements include standard constructs for
assignment, skip, if, while, object generation, and sequential composition. The
simple call statement e!m(e) is like message passing; a message is sent to the
object expressed by e (the callee) indicating that it should execute method m
(when the callee is free to do this) with a list of actual parameters e. Thus the
current object is not blocked, and will not wait for the return value. If the return
value is desired by the calling object, it may use the blocking call statement
v := e.m(e) or the non-blocking call statement await v := e.m(e). The latter
call statement forces the caller object to suspend the current process, allowing it
to continue with any enabled suspended process in its process queue or handle
incoming calls. Similarly, the conditional await statement await e suspends,
placing the current process on the process queue. This process is enabled when
the Boolean condition e is satisfied. The considered core language allows high-
level and yet efficient method-based interaction, supporting both passive and
active waiting. The operational semantics of SeCreol is given in Sect. 4.

The language is strongly typed, and a typing system can be given in the style
of [13]. A variable is typed either by an interface or by a data type, called object
variable or data variable, respectively. The runtime value of an object variable
is an object identity (or null), and that of a data variable is a data value. Data
variables are passed by value and object variables are passed by reference (i.e.,
the object identity is passed by value). Note that all object expressions are typed
by an interface, except this, which is typed by the enclosing class. In a well-typed
program, we may assume that each call is annotated by the interface/class of
the callee, as in o.mI(. . .) where I contains a declaration of m.

Secrecy Levels. We enrich the typing system with secrecy levels. Secrecy levels
range over L of basic secrecy descriptions with ordering �, such that (L, �) is a
lattice, i.e., a partially ordered set with meet (�), join (�), a top element � and
bottom element ⊥. Higher in the lattice means more secure. A lattice may be
indexed by object identities for controlling access rights. This would be essential
at runtime for controlling object secrecy; however, in our static analysis we will
not use levels indexed by identities, since there is limited static knowledge about
object identities.

In a program, all declarations of fields, formal parameters, and return values
are given a secrecy level, with level Low as default (if none is specified). Local
variables do not have a declared secrecy level; their level starts as Low but may
change after each statement. At runtime, objects are assigned a secrecy level
that protects against unauthorized changes. Such a protected part is typical in
policy enforcement research [6]. The statically assigned level of a formal data
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parameter represents the maximal level of any actual parameter. The declared
secrecy level of an object variable expresses the secrecy of the object identity,
which is typically low, reflecting that object identities (as such) are considered
non-secret, whereas the runtime secrecy level of an object gives more detailed
information, for instance about the access rights of the object.

The static analysis is class-based, and therefore the analysis is based on
the (statically) declared levels, and not the runtime object levels. However, the
language allows specification of restrictions on the secrecy level of a new object
(as in x:=new C():Low) which determines the initial runtime secrecy level of
the generated object. At runtime an object generated by the statement x:=new
C():l will get the level l � lthis where lthis is the level of the parent object. Note
that l � lthis � lthis, ensuring that the secrecy level of the generated object will
not exceed that of the parent object. As an object encapsulates local data and
fields, these are not accessible from outside of the object, and we do not need
static control of write access to fields of an object. In a program, the runtime
secrecy level of an object can be tested using the � operation.

In the static analysis, we consider all possibilities for levels that can be
assigned at runtime. This allows us to detect a maximal secrecy level for each
program variables at a given point in a program (see Sect. 3).

3 Secrecy-Type System

Our analysis is done class-wise, which is possible since remote access to fields
is forbidden and since all object interaction is done by methods declared in an
interface. This means that limitations on information flow between high and low
variables (such as vHigh := vLow and vHigh := vLow) are not needed. However,
we rely on level information about fields before and after suspension, maintained
in a way similar to a class invariant. The secrecy analysis of a class only depends
on that class declaration, related interfaces, and the class parameter declaration
of instantiated classes.

We assume a well-typed program and assume each method call e.m(. . .) is
augmented by annotating the method name m by the interface of the callee e (as
in e.mI(. . .)), or the enclosing class when e is this. The secrecy-type system for
classes and methods are shown in Fig. 1. The confidentiality of a class definition
Cl is formalized by judgments of the form

� Cl ok

expressing that the class definition obeys the confidentiality rules. And the con-
fidentiality of a method definition M is formalized by judgments of the form

C � M ok

where C is the enclosing class. The confidentiality of a statement s is formulated
by considering judgments of the form

C � [Γ, pc] s [Γ ′, pc′]
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Fig. 1. SeCreol confidentiality type system for classes and methods where ΓC denotes
the declared secrecy levels for class parameters and fields, in class C, and Γ expresses
confidentiality information at a particular program point.

where Γ is a mapping binding variable names to confidentiality levels for a given
program point, and pc is the confidentiality level of the current program point.
As Γ and pc depends on the program point, we let the “pre-binding” [Γ, pc]
denote the bindings in the pre-state of s and the “post-binding” [Γ ′, pc′] those
in the post-state of s. Moreover, for a class C we let the mapping ΓC represent
the declared secrecy levels of fields and class parameters, as given in the class
definition, i.e., if the secrecy level of a field w is declared as l, the binding w �→ l
is included in ΓC . The notation Λ[I,m, i] denotes the level of the ith parameter
of the method as declared in interface I, and similarly for classes. For a class C,
we let C also denote the class constructor (initialization code). In contrast, Γ
expresses confidentiality information depending on a particular program point.
Since Γ -levels of class fields can increase and decrease, the type rules insist
that at the end of each method (and at each suspension point) their resulting
levels should not exceed the declared secrecy levels. This allows us to assume
the declared levels at method start and after suspension.

Map Notation. A finite mapping M is given by a set of bindings zi �→ valuei
for a finite set of disjoint identifiers zi, the domain. The empty map is denoted
∅. Map look-up is written M [z]. A map update, written M [z �→ d], is the map
M updated by binding z to d, regardless of any previous bindings of z. Similarly
M [S] denotes M updated with a set S of (disjoint) bindings. And the map
composition M +M ′ is the map M overwritten by M ′ (on the common domain).

According to Rule S-CLASS in Fig. 1, confidentiality of each class is sat-
isfied, or simply is ok, if the confidentiality of each method is satisfied. The
confidentiality of a method (see Rule S-METHOD) is satisfied if its body satis-
fies confidentiality, starting with the declared level bindings (for fields and class
parameters, method parameters, and local variables) and with Low as starting
pc level, and resulting in some binding [Γ, pc] such that Γ respects the declared
field and class parameter bindings levels (i.e., Γ [z] � ΓC [z] for each field/class-
parameter z) and such that the returned value respects the declared output level
of the method. As stated before, we check Γ [z] � ΓC [z] because the secrecy level
of program variables is allowed to be changed in different program points.

The SeCreol secrecy-type system for expressions and statements is shown in
Figs. 2 and 3, respectively. These figures present typing rules describing which
secrecy type is assigned to each occurrence of an expression and program vari-
able. The confidentiality of expressions and right-hand-sides rhs, given in Fig. 2,
are formulated by judgments of the form
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C � [Γ, pc] rhs :: l

where l is the resulting confidentiality level of rhs. The rules check that each
occurrence of an actual parameter (or return value) respects the declared level of
the corresponding formal parameter (or method return level), and that fields and
class parameters respect the corresponding declared levels at suspension points
and at method returns. In our formalization this is checked by premises in the
rules; thus if these premises cannot be derived, the program will not satisfy the
secrecy rules. Note that each statement may adjust Γ , but only if and while
statements may affect pc. Thus the level of variables and pc may differ at different
program points, which for example means that a call that is acceptable at one
program point, might be unacceptable at another point.

Rule S-EXP states that the confidentiality of an expression e is achieved by
Γ [e] � pc, where pc represents the context level of the current program branch.
Thus a low level expression occurring in a program branch with level pc, gets pc
as its level, since it may reveal context information. We define Γ [e] as follows: For
a constant c (including null, this, void, and caller) Γ [c] is Low (i.e., ⊥), Γ [e � e′] is
High (i.e., �), and for other kinds of expressions (including function applications)
Γ [e] is defined as �v∈e Γ [v], where v ranges over the variables textually occurring
in e, and Γ [v] is its level recorded in Γ . (For simplicity, we here ignore so-called
sanitizer functions, i.e., special functions resulting in a lower level than an input.)

Moreover, object identities are not confidential, thus object variables are
typically declared with a Low level. However, the level of such variables in Γ is
affected by the branch level pc as other program variables. Thus the resulting
level of object creation is pc as object identities as such are considered Low. For
the right-hand-side of a call or new construct, corresponding to the other rules
in Fig. 2, each actual parameter is required to have a level not exceeding the
declared level of the corresponding formal parameter. The resulting level of the
call’s right-hand-side is the declared return level of the method, joined with the
current context level pc. We observe that C � [Γ, pc] rhs :: l ⇒ pc � l, which
means the rhs level is always at least as high as pc. This can be easily proved
by looking at each case of a right-hand-side rhs in the rules.

Fig. 2. SeCreol secure-type system for expressions and right-hand-sides.

According to the secure-type system for statements in Fig. 3, a simple call
does not change Γ nor pc, but the actual parameter levels must respect the
declared levels of the corresponding formal parameters (as above). And we have
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Fig. 3. SeCreol secure-type system for statements.

C � [Γ, pc] skip [Γ, pc]. For an assignment, object creation statement, or call,
v := rhs, with level l for rhs, the level of v in Γ is changed to l, which could imply
a downgrade or an upgrade (or no change) of level. The pc is not modified since
such a statement is considered efficiently terminating without any branching.

For an await statement we must ensure that the declared levels of all
fields and class parameters are respected, since the suspension may cause other
processes to continue, for which we assume these declared levels. Levels of local
variables will remain after an await statement since local variables are not
affected by other processes. We therefore use map composition (+) in the post-
state of an await to overwrite the levels of fields and class parameters by the
declared levels (ΓC). For simplicity we consider only Low await conditions. In
the case of a suspending call, the effect of the assignment part is added after the
map composition since this assignment happens after suspension.

Rule S-IF lifts the pc level of each branch by the level of the test. This will
make all expressions occurring in both branches at least as high as the if-test.
Thereby implicit leakage is avoided. Since the static analysis does not know
which branch is taken at runtime, the resulting value of Γ for each variable
is calculated as the highest level of each branch. An if statement without an
else-branch is like an if statement with skip in the else-branch. The treatment
of while is similar to an if statement without an else-branch, except that
the static analysis cannot predict how many times the branch is iterated. Each
iteration may lift the levels in Γ or pc. However, a loop will have a finite number
of program variables and since there is a finite number of static levels, there is
a minimal fixpoint reachable in a finite number of approximations (typically i
equal to one or two). Rule S-while reflects this fixpoint calculation.

The secrecy typing ensures that there is no flow from high values to low
values, and that values evaluated in an if-branch with a high test are high (since
they may depend on the test), and similarly for values evaluated inside a while-
loop with a high test. Thus the values of low variables in any program state do
not depend on high inputs. Furthermore, this ensures that for each call (and
return) generated by o the values of parameters declared as low do not depend
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Fig. 4. An example showing a password protection class and a test program. In the
latter, level changes in fields and local variables are indicated to the right in each line.

on high inputs. We provide a proof of this in Sect. 5, based on a semantics that
includes runtime secrecy levels.

Example. A small example is given in Fig. 4 to illustrate possible changes in the
levels of fields (xh and xl) and local variables (x). The implementation of Passw
uses an if-test to check p � caller before returning a high value in check. A test
class with non-trivial secrecy typing is added. Here, level changes are written
to the right of each line, not repeating unchanged information. The program
satisfies the rules for confidentiality, i.e., the program does not leak information
in its explicit output and respects field levels at return/await statements. Note
that the lowering of xh was needed to make the check call allowed, that the
higher level of the local variable x was maintained over the await (since x is
local), that the higher level of x was acceptable in the passw call, and that the
high level of x is allowed at the return point (after which x is deallocated).

4 Operational Semantics

The operational semantics is given in Fig. 5. We explain the main elements, while
a more detailed explanation is given in the extended version [16]. A runtime con-
figuration of a system is a multiset of objects and messages (using blank-space
as the binary multiset constructor). Each rule in the operational semantics deals
with only one object o, and possibly messages, reflecting that we deal with con-
current distributed systems communicating asynchronously. When a subconfigu-
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ration C can be rewritten to a C′, this means that the whole configuration . . . C . . .
can be rewritten to . . . C′ . . ., reflecting interleaving semantics. Each object o is
responsible for executing all method calls to o as well as self-calls. An object
has at most one active process, reflecting a method execution, and a sequence of
suspended processes organized in a process queue PQ. Remote calls and replies
are handled by messages. Objects have the form

o : ob(δ, s)

where o is the object identity, δ is the current object state, and s is a sequence of
statements ending with a return, representing the remaining part of the active
process, or idle when no active process. A message has the form

msg o → o′.m(e)

representing a call with o as caller, o′ callee, and e actual parameters, or

msg o ← o′.(u, d)

representing a completion event where d is the returned value and u the identity
of the call. The operational rules reflect small-step semantics. For instance, the
rule for skip is given by o : ob(δ,skip; s) −→ o : ob(δ, s), saying that the
execution of skip has no effect on the state δ of the object. A while loop is
handled by expanding while b do s od to if b then s; while b do s od fi upon
execution of the while-statement. The semantics of an if-statement without an
else-part is equivalent to if b then s else skip fi.

The operational semantics uses some additional variables, like PQ for hold-
ing the process queue and nextId for generating unique identities for calls. These
appear as fields in the operational semantics. Furthermore, this is handled as
an implicit class parameter, while callId and caller appear as implicit method
parameters, holding the identity of a call and its caller, respectively. The opera-
tional semantics uses an additional query statement, [await] get u, for dealing
with the termination of call/await call statements. The query get u is blocking
while waiting for the method response with identity u, and await get u is a
suspending query.

The state of an object is given by a twin mapping, written (α|β), where
α is the state of the field variables (including PQ, nextId) and class para-
meters cp (including this), and β is the state of the local variables and for-
mal parameters (including callId and caller) of the current process. Look-up
in a twin mapping, (α|β)[z], is simply given by (α + β)[z]. The notation
α[z := e] abbreviates α[z �→ alpha[e]], and the notation (α|β)[v := e] abbre-
viates if v in β then (α |β[v �→ (α|β)[e]]) else (α[v �→ (α|β)[e]] |β), where in
is used for testing domain membership.

The process queue PQ is the queue of suspended processes, of form (β, s)).
The operations enq(PQ, p) and deq(PQ,α) are used to add a process p to the
queue, and to select an enabled process (if any) from the queue, respectively.
The latter results in the sequence (p;PQ′) of the selected enabled process p and
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Fig. 5. Operational rules reflecting small-step semantics of SeCreol with secrecy levels.



Confidentiality of Interactions in Concurrent Object-Oriented Systems 29

the remainder of the queue PQ′ (depending on the specific scheduling policy),
or the empty sequence empty if no process is enabled. A process (β, s) is enabled
if it starts with an enabled statement. A conditional await is enabled if the
condition evaluates to true (in state α|β), and an await call statement is not
enabled unless reduced by the query rule. All other statements are enabled.

The given language fragment may be extended with constructs for local
(stack-based) method calls, e.g., by using the approach of [12].

Runtime Secrecy Levels. We here explain the secrecy aspects of the oper-
ational semantics. We assume a program that has passed the secrecy typing,
and therefore the operational semantics does not include explicitly checks for
confidentiality errors during reduction. However, we prove that any secrecy level
obtained at runtime is less or equal to the one calculated by the static secrecy
typing. This property, called secrecy soundness, is formalized in the next section.
This guarantees that the static secrecy level checks will be satisfied at run-time,
even when based on the runtime secrecy levels. And non-interference is then
proved.

At runtime the evaluation of an expression e gives a secrecy tag l, in addition
to a (normal) value d. We let the tagged value dl denote this result, and let c
denote tagged values. We let dl.tag be l. If this value is assigned to a program
variable v, the binding v �→ dl is added to the state. The state of an object is
given by a twin-mapping as above, but the values of variables are now bound
to tagged values. Thus the values appearing in the extended semantics are all
tagged. Each object identifier has the form of a pair (oid, l) where oid is a normal
object identifier and l is the secrecy level of the object. We refer to the secrecy
level of an object o by the meta-notation o.level, letting (oid, l).level be l. For
data values c, we define c.level by c.tag. The secrecy semantics uses an additional
variable pcs in each method, reflecting the context secrecy level of enclosing if-
and while-branches. (pcs is local since it must be retrieved after suspension.) And
pcs is a stack of levels reflecting the levels of the enclosing if- and while-branches,
such that the top of the stack is the innermost branch.

The evaluation of an expression e in a state δ is denoted δ[e], where the
value is evaluated ignoring tags, and the tag is defined by level(pcs) �i vi.tag,
where �ivi.tag is the join of the tags of all variables occurring in e, and where
level(pcs) is the join of all levels in the stack pcs. This assumes strictness of
all functions in the language, i.e., the level of f(c) is simply �ici. The special
expression e � e′ is evaluated by δ[e].level � δ[e′].level and with tag as defined
above. (Other kinds of non-strict functions are for simplicity ignored here.) The
runtime secrecy level of a variable v in an execution state will be less or equal
to that of the static level in a corresponding program point. There are several
reasons for this. For instance, there can be many calls to the same method, some
with actual parameters of less secrecy level than for other calls. And at the start
of a method, the static analysis will assume the declared secrecy level for fields,
whereas at runtime the levels might be less. Similarly, any expression may have
a lower level at runtime since the variables involved might have a lower level
than in the static analysis.
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5 Theoretical Results

In order to relate runtime states to those of the static secrecy typing, we use
statement labels. Following [15], each basic statement and each if- and while-
condition in a given program is tagged by a unique statement label (i.e., state-
ment number) n appearing as a superscript (when needed).

The result of the secrecy analysis can be captured by a mapping SL (Sta-
tic Level) such that SL(C, n) gives the binding environment of the pre-state of
statement n in class C. Thus SL(C, n)[v] is the level statically assigned to vari-
able v in this state by the secrecy typing analysis, and SL(C, n)[pc] is the level
statically assigned to pc in this state. If an execution reaches a configuration
where a C object is about to execute a basic statement sn, and similarly for
another execution, we say that the two pre-states of n are low equal if the values
of all variables v such that SL(C, n)[v] is Low are equal in the two pre-states.

In the operational semantics, the level information at time t (i.e., the number
of execution steps) in an execution is captured by a function RT (t) returning
the executing object (of form o : ob(δ, s)) such that RT (t).class is its class, and
RT (t).label is the label of the statement to be executed, and RT (t)[v] is the
secrecy level of variable v, i.e., the level of δ[v]. Similarly, RT (t)[pc] is the level
of pc in this state, and RT (o)[pcs] is the level of the stack pcs given by �ipcs[i]
where i ranges over all indexes in the stack. The following theorem ensures that
the evaluation of variables and expressions at runtime gives levels that are less
or equal to those of the static analysis.

Theorem 1 (Soundness). At any time t in an execution where the active
object RT (t) is of the form o : ob(δ, sn; s) of class C, then

(i) the levels of δ are less or equal to the corresponding ones in SL(C, n), i.e.,
δ[v] � SL(C, n)[v] for all program variables v and level(δ[pcs]) � SL(C, n)[pc].

(ii) if C � [Γ, pc] e :: l and δ[e] = dl′ for an expression e, then l′ � l.

Proof. We use induction on the time t, and may assume that the conclusion
holds up to a given time t and must ensure that it holds in the next state. We
first note that (i) implies (ii) because the static level of an expression e is given
by the join of the static levels of all variables in e and of pc, whereas the runtime
level of e is given by the join of the runtime levels of all variables in e and of
level(δ[pcs]). By (i) the latter cannot exceed the former since the runtime level
of each variable v cannot exceed the static level of v, and since the runtime level
of pcs cannot exceed the static level of pc.

It remains to show that (i) holds in the next state. Consider all basic state-
ments that modify the state (of the active object). For an assignment v := e
the new runtime level of v is the runtime level of e evaluated in the current
state. This level is less than the static level of e by (ii), thus the conclusion
holds in this case. Similar arguments apply to all assignment-like statements,
such as new and call statements, in which cases the assignment to the implicit
and unobservable object variable nextId is unproblematic. The operational rules
for skip and return give no state change. The operational rules for continue and



Confidentiality of Interactions in Concurrent Object-Oriented Systems 31

suspend give a twin state where fields are not changed. In the case of suspend,
the local state is empty (ignoring the PQ which is not a program variable), and
in the case of continue, the local state is reset to an old state, for which we may
use the induction hypothesis. The rules for if and while give a next state (after
evaluating the condition) that is the same as before except that the pcs level
may be raised. We need to show level(δ[pcs]) � SL(C, n)[pc]. This follows by
(ii) since the condition is evaluated in the object state of time t. The discussion
of the rule for await is similar. ��
In our context of message-based systems, we define non-interference by:

Definition 1 (Non-interference). Non-interference means that if two execu-
tions reach the pre-state of a basic statement sn with configurations C1 and C2,
respectively, such that C1 =Low C2, then the observable output resulting from
execution of sn on the two configurations, will be the same.

The output of a basic statement s is the message (msg) generated by the
operational rule for s, if any, and otherwise empty. The observable part of a
message is the values of parameters/method results declared as Low in the method
declaration (as detected by the secrecy-type analysis).

Theorem 2 (Non-interference). A program that is secrecy-type correct will
satisfy non-interference.

Proof. We consider all basic statements. The ones generating output are the
call statements and the return statement. The output of a call statement is
given by the rule for simple call, and the observable output is the values of
the parameters of m for which the declared level is Low. Since this parame-
ter information is static, the sublist of Low parameters have the same length
for two executions. Consider a call statement with label n of a given class C.
Each parameter expression ei of a low parameter has a static level l, which by
Theorem 1 must be less than the runtime level l′ of the evaluation of RT (t)[ei]
for any execution at time t, where RT (t) has an active object of the given class
and with label n. Since the states of the two executions are low equal, the values
of any expression with a low runtime label must be the same since only low
variables are used on the evaluation (otherwise the runtime label could not be
low). Therefore the value of each such ei must be the same in the two executions.
Similarly, the values of any return expression e evaluated in different pre-states
of the same statement n are equal if the resulting runtime level is low, provided
the two pre-states are low equal. Since static low level implies runtime low level,
the two pre-states give the same observable output. The above discussion applies
also to object identities since the only observable relation over object identities
with low output is equality.

The argument above can be extended to new statements and any basic state-
ment. It follows that the new state of all variables is low equal for two executions
after a basic statement since each basic statement is deterministic (apart from
generated object identities). Thus we have also shown that low equality of states
is preserved by all basic statements. ��
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Note that the code if b then o!m1() else o!m2() fi leaks the outcome
of the if-test to object o. To deal with such implicit leakage, one may define
a stronger notion of non-interference involving communication events. This is
studied in [17] defining interaction non-interference and showing that this can
be enforced by static analysis involving communication traces.

6 Related Work

A number of complications arise from the different concurrency and communica-
tion models [3,19]. For imperative concurrent programs, the multi-thread, shared
variable, and channel-based paradigms have been studied [18]. These paradigms
give non-trivial privacy challenges. For instance the channel paradigm gives intri-
cate timing leaks, based on observations of channel size [4,18]. In our paradigm,
an object’s process queue and queue of incoming calls are encapsulated and are
non-observable (as well as their size). There are several works on static checking
of noninterference for active objects communicating by asynchronous methods,
including [10,11] and work based on [9], but with different goals, assumptions,
and results ([9] with other forms of noninterference). Kammüller [11] considers
a functional language with futures, with a different treatment of methods. To
preserve confidentiality, we have considered Multilevel Security(MLS) which is a
well-established concept for confidentiality while the goal of multilateral security
in [10] is useful to satisfy complex and very different sets of policies in distributed
computer systems. The multilateral security of [10] is relevant for our operational
semantics. In our setting, instead of the traditional concept of public and private
methods in [11], we use interfaces to control visibility of methods. Moreover, our
approach is not dependent on the concept of futures. In addition, in [11] remote
method calls are considered side-effect free which guarantees that no informa-
tion from the caller side is leaked. Therefore, although secure down-calls are
supported in [11], interaction noninterference is not preserved.

Our paradigm is based on a simple, compositional semantic model, which
gives flexible analysis of program variables, including fields and communicated
values, and of synchronization mechanisms, thereby reducing the amount of false
positives. Scheduling-related primitives are included in our high-level language;
this enables further static analysis than in [3]. Compared to [3], we consider
more high-level concurrency constructs such as asynchronous calls and suspen-
sion mechanisms. A complementary work on SeCreol [17] focuses on indirect
leakage caused by observations of network traffic, where enforcement of network-
level non-interference is handled by means of static trace analysis. It assumes a
similar secrecy typing system, but without including an operational semantics
with secrecy levels nor a soundness proof of the secrecy typing.

While most of the related work aim at preventing traditional progress-
insensitive non-interference, we are considering progress-sensitive non-
interference, where an attacker can indirectly observe the progress of an object,
caused by e.g. process termination or suspension (assuming termination proofs
of while loops). Another aim of that paper is minimizing the Trusted Comput-
ing Base (TCB) by not trusting the compiler and using Proof-Carrying Code
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(PCC). Moreover, [3,11] prevent all flows from secret to public variables, while in
our setting this is not necessary. In addition, for explicit flows, we also consider
interaction between objects such as if secret then call fi for different
method calls.

Dynamic checking of runtime access control, which has been done in the
Java virtual machine and the .NET runtime systems, provides useful guarantee
especially in the application of dynamic code involvements like mobile code. For
example, in [2] static permissions are assigned to classes based on code origin,
and when untrusted code calls trusted code, then the permission is checked using
the run-time stack, while our approach is static. However, we aim at an extension
to runtime checks in future work.

7 Conclusion

We have considered a model for concurrent object-oriented systems suitable for
distributed service-oriented systems. The concurrent objects may communicate
confidential and non-confidential information, restricting confidential informa-
tion to method parameters/returns declared as safe for confidential information.
The language is high-level and includes process control and suspension, with-
out explicit signaling and locking operations. Objects are imperative and non-
deterministic. We introduce a type and effect system and prove a noninterference
property, as well as soundness of the secrecy typing system. Due to hiding and
encapsulation, we do not impose unnecessary restrictions on information flow
inside objects. The language has a compositional semantics and supports com-
positional program reasoning [5]; and the process control mechanisms include
primitives typically part of an operating system. This allows class-wise secrecy
analysis that goes beyond what is normally possible by static checking. The
absence of futures simplifies the analysis. As shown in a complimentary work
[16], one can deal with implicit leakage caused by network level observations of
observable aspects of communicated messages.

The Creol concurrency model is adopted by the ABS language [14], and the
work here can be extended to ABS by considering object groups, which impose
concurrency restrictions, and futures, which may give rise to implicit informa-
tion leakage. We have presented a more high-level language without (explicit)
futures and object groups, which simplifies the formalization. We are initiating
an implementation based on a Creol interpreter in Maude. The ABS tool support
will be used for an ABS implementation.
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Abstract. Since the development of tree-based Oblivious RAMs by Shi
et al. it has become apparent that privacy preserving outsourced storage
can be practical. Although most current constructions follow a client-
server model, in many applications, such as Genome Wide Association
Studies (GWAS), it is desirable that multiple entities can share data,
while being able to hide access patterns not only from the server, but
also from any other entities that can access parts of the data. Inspired
by the efficiency and simplicity of Path-ORAM, in this work, we study
an extension of Path-ORAM that allows oblivious sharing of data in
a multi-client setting, so that accesses can be hidden from the server
and from other clients. We address various challenges that emerge when
using Path-ORAM in a multi-client setting, and prove that with adequate
changes, Path-ORAM is still secure in a setting, where the clients are
semi-honest, do not trust each other, but try to learn the access patterns
of each other. We demonstrate our ORAM construction in a GWAS
setting. Our experiments show that in databases storing 223 data blocks
(corresponding to a database holding 217 blocks per client, capable of
storing human genome in the form of SNPs, for 100 clients), the average
query time is less than 7 s, yielding a secure and practical solution.

Keywords: Path-ORAM · Multiple clients · Genomic privacy

1 Introduction

As cloud applications continue to grow in popularity, outsourcing sensitive data
to remote servers has become common practice, and with it, significant ramifica-
tions to users’ privacy have been induced. While encryption plays a central role
in data protection and privacy, it has become apparent that simply employing
encryption is not enough to protect sensitive data, since significant information
leakage can already occur when a remote server merely observes the clients’
access patterns. Take, for example, the case of genomic data: it is foreseeable,
that in the future, genomic data will be stored as part of patients’ electronic
health records. This has the benefit that large sets of genomic data will also
be available to research institutions, which will have the opportunity to carry
out genomic tests, such as Genome Wide Association Studies (GWAS), on large
datasets. In this setting, a third party, such as a medical research center (fur-
ther called an investigator), could be granted access to specific parts of multiple
c© Springer International Publishing AG 2017
J. Garcia-Alfaro et al. (Eds.): DPM/CBT 2017, LNCS 10436, pp. 35–52, 2017.
DOI: 10.1007/978-3-319-67816-0 3
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patients’ genomic data, which he could analyze in a study. Clearly, in such a
setting encryption is not enough to protect the interests of both the participants
and the research center: even with encrypted data, the server can observe which
portions of the genome are accessed, and deduce vital information, such as which
test has been run, or what disease a patient is suspected to suffer from.

Inspired by the above scenario, in this work, we ask ourselves if an ORAM
solution can be found, that guarantees access pattern hiding not only against
the server, but also against fellow clients. We answer this question in a positive
way, by extending the highly efficient Path-ORAM [15] so that it can support
multiple clients who access parts of a specific database, and share them with
each other. At the same time, access pattern privacy is guaranteed both against
the server and against other clients who share parts of the database.

The problem of constructing a privacy preserving multi-client storage solution
has been explored in a number of works, namely [1,4,7,10,11]. In a privacy
preserving multi-client storage, each client has his own data (all stored in a
single ORAM) and is free to share only parts of his data with other clients.
In [4] the authors propose a solution, where a data owner can delegate rights to
read or write some of his data items to other clients. This solution is based on the
square-root ORAM [5] and thus suffers from heavy communication complexity.
Equally important, it requires the data owner to be constantly online, thus
restricting the applicability of the solution. The construction in [7] avoids this
drawback, but suffers from high storage requirements on the client side. In a
recent work of Maffei et al. [10], a multi-client ORAM is proposed, which is
based on Path-ORAM [15] and achieves security guarantees against a malicious
server. Regarding the security against the clients, however, the main focus lies
on anonymity, i.e., unlinkability of a given operation on a datablock and a client,
among the set of clients who have access to that specific data-block. Further,
the construction does not guarantee hiding access patterns between clients who
share data, as privacy leakage can occur due to the stash or due to the position
map. Facing a similar problem, Backes et al. [1] examined the problem of access
pattern anonymity in a multi-client ORAM, and proposed two constructions that
achieve this goal. Both proposed solutions do not deal with the privacy leakage
occurring between the multiple clients, and therefore cannot be applied in the
scenario we are looking at. In our work, we sacrifice user anonymity, in order
to build a solution that guarantees access pattern privacy between all involved
parties. We leave adding user anonymity to our current solution as future work.

In this work, we focus on the development of an ORAM that allows multiple
clients to store their data on a server and share parts of their data with each
other. At the same time, the system protects the access pattern privacy of the
clients, not only against the server, but also against other clients. In our solution,
we assume K semi-honest clients, with each of them storing up to N blocks of
data. Every client encrypts his datablocks with his individual encryption key,
and all encrypted datablocks are stored in a classical Path-ORAM of height
log N , with Z blocks per node. The resulting K Path-ORAM trees are merged
on each node, resulting in a Path-ORAM of height log N with ZK blocks per
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node. At this point, in every node, blocks of all the clients can be found. After
a number of data accesses (that also include block sharing), the blocks found in
every node are eventually shuffled, and due to the presence of shared blocks, it
can happen that some clients have more blocks in a node than others. Thus, we
end up with a “blurred” version of the originally merged client trees. To differen-
tiate our construction from a simple concatenation of Path-ORAM trees, where
each client is allocated a fixed number of blocks in every node, we will refer to
our construction as Blurry-ORAM. Sharing a data block between two clients is
done by having the original block owner change the private key under which the
block is encrypted and handing over this new key to the client. Our ORAM con-
struction is very efficient and achieves full privacy, i.e., provides access pattern
hiding against both the server and other clients. In Table 1 we sum up proper-
ties of the existing multi-client ORAM constructions, show their communication
complexity and recall if they allow access pattern privacy against other clients,
allow for anonymous accesses or sharing of data between the clients. To our
knowledge, our construction is the first to allow data sharing between clients in
an ORAM, and to guarantee access pattern hiding not only against the server,
but also against other clients.

To this end, our solution is directly applicable to the case of GWAS: multiple
clients store their encrypted genomic data in a Blurry-ORAM and give partial
access to multiple investigators. The investigators can then access only specific
parts of the clients’ sequenced genome, without leaking any information about
the parts they are interested, to any other investigators. Indeed, our experiments
showed that our construction is efficient, as retrieving one block in a database
where 100 clients store their whole genome in the form of Single Nucleotide
Polymorphisms (SNPs) and they share parts of it with 10 investigators, can be
done on average in 14.94 s.

1.1 Organization of the Paper

The rest of the paper is organized as follows: in Sect. 2, we describe the function-
ality we want to achieve, and define the security of the protocol. In Sect. 3, we
recall the Path-ORAM protocol, and we describe our architecture. In Sect. 4, we
examine the stash occupancy by our protocol, and analyze the time and space
requirements of our solution. In Sect. 5, we analyze the security of our construc-
tion. In Sects. 6 and 7, we apply our solution to the case of genomic studies, and
present our experimental results. We conclude with open problems and future
work in Sect. 8.

2 System Model

In our ORAM construction we consider one server and multiple clients. Both
the server and the clients are assumed to be semi-honest, i.e., they try to extract
as much information possible about the data belonging to other clients, but
they never deviate from the protocol. Each client stores his data on the server,
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Table 1. Comparison of multi-client ORAM solutions; A.P.H. stands for Access Pat-
tern Hiding, N : Number of blocks per client, G: Number of groups, K: Number of
clients.

Solution Communication complexity A.P.H.
against
server

A.P.H.
against
clients

Client
anonymity

Data
sharing

[4] O(
√
N log2 N) (amort.) � × × �

[7] O(log2 N) � × × �
[11] O(log2 N) to O(log5 N) � × × �
[10] O(G log2 N) � × � �
[1] O(log2(KN)) � × � ×
This work O(K log2 N log(logN)) � � × �

partitioned in N blocks of fixed size B, and each block is identified by a unique
identifier id. Thus, we consider a block as a tuple (id, dat), with id being a unique
identifier and dat the actual data. In the following we will abuse this notation,
and, for ease of presentation, denote by idji the block with identifier idi, that
belongs to client j, without referring to the actual data of the block, unless it is
crucial for the description.

2.1 Functionality

Since we want to build a multi-client ORAM solution that allows block shar-
ing between the clients, our architecture must support operations for reading,
writing, sharing and revoking access to shares. The operations used in our con-
struction are defined as follows:

Init(λ): The Init operation is run by every client, takes as input a security
parameter λ and outputs an encryption/decryption key pair, which the client
uses to encrypt and decrypt his datablocks.
Read(idji , enc key, dec key): The read operation is a protocol run between a
client clij and the server. It returns the block identified by idji or NULL, if the
block was not found (for example, if a client queries for a block to which he does
not have access rights).
Write(idji , enc key, dec key, dat): The write operation is a protocol executed
between a client clij and the server. It is similar to the read operation, as it
returns the block with identifier idji , but overwrites its contents with dat, in case
the read operation was successful.
Share(clii, clij , idiu, enc key, dec key): The share operation is a protocol run
between the server and the clients clii and clij . The goal is to make the block
with identifier idiu, which is accessible by client clii, also accessible (for read,
write, share and revoke) to client clij .
Revoke(clii, clij , id, enc key, dec key): The revoke operation is a protocol run
between the server and a client clii. For a block with identifier id that can be
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accessed by clients clii and clij , the purpose of this operation is to disallow clij
from further being able to access (read, write, share or revoke) block id. Note,
that the revoke operation is not recursive and disallows only one specific client
(client clij) all further access to the block; thus, after a revoke operation, all
other clients, to whom the revoked client granted access in the past, are still
allowed to read, write, share and revoke the particular block.

2.2 Definitions

In order to argue about the security of our scheme, we first need to define the
notion of a view (or access pattern). We do this in the following definitions, that
are tailored towards our setting of extended ORAM functionality, that allows
block sharing between clients.

Definition 1. A data request is a tuple of the form (op, id, dat, clij) where op ∈
{Read,Write,Share,Revoke}, id is the block’s identifier, and dat is the data to be
written. If op = Read, then dat = NULL and clij = NULL. If op = Write, then
clij = NULL. If op ∈ {Share,Revoke}, then dat = NULL and clij is the client with
which the block will be shared or from whom the sharing will be revoked.

Definition 2. A data request sequence is a tuple of the form (x1,x2, . . . ,xl),
where each xi is a data request. The number l of data requests in a data request
sequence is called the data request sequence’s length.

Definition 3 (View). Let X be a data request sequence of length l. We call
the view (or access pattern) induced by X, everything that the server sees during
the execution of X (ofter referred to also, as the protocol’s transcript).

Definition 4 (Shared Block). In a multi-client ORAM construction that
allows data sharing between clients, we call a block idi shared if at least two
clients have access to it.

2.3 Security Properties

We consider a semi-honest server and semi-honest clients that do not collude
with each other, or with the server. Thus, all involved parties try to gain as
much information possible (e.g., which data blocks were read or written by which
client, how many blocks are shared with whom, etc.) by examining the views of
the access transactions. As far as the security against the server is concerned,
we follow the classical access pattern privacy definition [15]:

Definition 5 (Client-to-Server Privacy). We say that a multi-client ORAM
protocol provides client-to-server privacy, if any two views of a client induced by
data request sequences of the same length, are computationally indistinguishable
by the server.
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Hiding the access patterns against the server is already a non-trivial problem,
so it is no surprise that when multiple clients are present, the situation becomes
much more involved. Suppose that two clients share blocks with each other, and
that one of them, the attacking client, acquires views of the other client’s accesses
(for example by eavesdropping the communication channel). The views poten-
tially include datablocks that the attacker shares with the attacked client and
he thus can decrypt. Therefore, traditional proof techniques used in the simple
client-server model (showing, for example indistinguishability of these views)
cannot be adapted directly to the multi-client case, due to the fact that the
adversary can potentially read parts of the view. In our security model, which is
based on the IND-CPA paradigm and detailed in Definition 6, we let the adver-
sary have “oracle” access to any operations on blocks he does not have access
to. In the challenge phase, the adversary issues two data request sequences on
blocks that he does not have access to (ultimately, we are interested in breaking
the access pattern privacy for blocks that the adversary cannot see), and Share
and Revoke operations can also be included, as long as they do not result in
the adversary gaining or losing access to blocks, after their execution. Observe
that the notion described here, resembles exactly the adversary’s ability to read
parts of the views that do not belong to him, and can thus help him to (poten-
tially) gain information about blocks he does not have access to. Further, remark
that the problem we are dealing with has little to do with client anonymity as
opposed to other works in the literature like [1,10,11], where the identity of the
clients accessing the oram is protected. Here we model and want to minimize the
privacy leakage potentially appearing between clients who share parts of their
data, about the parts of the data they do not share. Having these in mind, we
can now define access pattern privacy in a multi-client ORAM construction as
follows:

Definition 6 (Client-to-Client Privacy). We say that a multi-client ORAM
protocol which allows sharing of blocks between the clients provides client-to-
client privacy (i.e., hides the access patterns of a client against other semi-honest
clients), if for every PPT adversary A, the advantage of winning the IND-CQA
game, described in Table 2, is negligible in the security parameter.

3 Blurry-ORAM Construction

3.1 Review of Path-ORAM

Our starting point is the Path-ORAM construction of Stefanov et al. [15], where
a client stores N blocks of data in a binary tree structure of N leaves, with
each node holding Z blocks. If less than Z real blocks are stored in a node, then
the node is filled with fake blocks. Real and fake blocks are encrypted under
a semantically secure encryption scheme, ensuring that encryptions of real and
fake blocks are indistinguishable. Since each tree node can hold up to a constant
amount of Z blocks, for N real blocks, Z(2N − 1) − N fake blocks are stored



Using Oblivious RAM in Genomic Studies 41

Table 2. The IND-CQA game.

Initialization: The challenger runs the Init algorithm and creates the
public/private key pairs for all the clients except the adversary. The adversary
runs the Init algorithm, creates his own private/public key pair and sends his
public key to the challenger. The challenger uploads every client’s encrypted data
blocks to the ORAM and the adversary uploads his own data blocks

Pre-challenge phase: For polynomially many (in the security parameter) times,
the adversary runs any data request (may it be read, write, share or revoke) on
any blocks of his choosing. For blocks he has access to, he executes the data
request with the challenger. For blocks that the adversary does not have access to,
he gets “oracle” access and receives by the challenger the view yielded by the
corresponding data request of this operation

Challenge: The challenge phase consists of two steps
1. The adversary chooses two data request sequences (drs0c , drs

1
c) and sends them

to the challenger. The data request sequences may include read or write requests on
blocks that the adversary does not have access to, and share or revoke operations
that do not result in the adversary gaining or losing access to blocks
2. The challenger chooses randomly a bit b, runs drsbc and returns the view to the
adversary

Post-challenge phase: Similar to the pre-challenge phase, with the restriction
that no share or revoke operation on the blocks included in the challenge phase are
allowed

Guess: The adversary guesses which data request was ran by the challenger
during the challenge phase, and outputs a bit b′. He wins the game if b′ = b

in the structure. Each real block is mapped to a leaf of the tree, and every
time the client wants to retrieve one of his elements, he downloads the whole
path from the root node to the respective leaf; the client is guaranteed to find
the desired block in one of the nodes along this path. The client then chooses
randomly a new leaf, re-maps the retrieved block to this leaf, and places it in the
node closest to the leaf, which is the common ancestor of the retrieved element’s
previous and new mappings, if there is enough space in its buckets. Otherwise
the block is moved to higher and higher levels, until a node with enough space
is found. It can happen (in fact, this event occurs with probability 1/2 during
every remapping) that the only common ancestor of the two leaves is the root
node. Thus, the root may quickly get filled up with elements in which case,
a small auxiliary storage, called a stash, is used to store the element instead.
Furthermore, for every real block replaced in the path’s node, a fake block is
put in its position and all blocks in every accessed node are rerandomized. The
resulting path is then uploaded to the server, while the stash (due to its small
size) is stored directly on the client. In order for the client to know to which leaf
an element is mapped in the tree, the client must store a table (called position
map) that grows linear with the amount of elements he has outsourced to the
server, but as shown in [12] can be recursively stored in smaller Path-ORAMs,
until a Path-ORAM of constant size is reached.
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3.2 Construction of Blurry-ORAM

In our setting, we consider K clients, who store their data on a data structure
residing on a remote server. Every client stores a maximum number of N real
blocks and their corresponding fakes, just like in Path-ORAM. How the clients’
data is laid on the remote data structure is of grave importance: The easiest way
to do this, would be to construct a tree with KN leaves and assign every block
to one of those leaves, as in a Path-ORAM. However, such a solution affects the
stash size in a way that renders the underlying Path-ORAM inoperable, due to
an exceedingly big stash size. The reason for this is the following: assume that
each node of the tree can hold Z blocks and that all clients’ blocks are uniformly
distributed in the tree. Assume further, that every client can access only those
blocks that belong to him or are shared with him. Then, in every path, a client
can only find on average Z/K log(KN) blocks belonging to him, as opposed to
Z log N blocks that he would find if he had stored his blocks in a single client
Path-ORAM. This means that it will be more difficult for the client to put the
element he read back into the path, which will eventually force him to use his
stash more often. We indeed observed this behavior experimentally.

In contrast, in Blurry-ORAM we store the clients’ blocks differently: we let
each of the K clients store his N blocks in a separate binary tree with N leaves,
where each node holds ZK blocks, as can be seen in Fig. 1. Every block (real or
fake) is encrypted using the client’s public key, but in such a way that the block
can be re-randomized without knowledge of the owner’s public key (using for
example the encryption scheme proposed in [6]). Further, we employ a homo-
morphic encryption scheme, which is IND-CPA and IK-CPA secure. The latter
notion is referred to as ‘key privacy’, introduced in [2] and is modeled similarly
to the IND-CPA game, but in the challenge phase, the adversary sends a mes-
sage and two keys to the challenger. The challenger then, chooses one of the
two keys, and encrypts the message under this key and the adversary wins, if he
can tell under which key the ciphertext presented to him was encrypted. This
way, the property is achieved that all blocks (real and fake) belonging to a client,
are indistinguishable for anyone but the client who can decrypt them. Note here,
that the ElGamal encryption scheme (which we use in the implementation of our
construction) has all the required properties, i.e. it is homomorphic, and is both
IND-CPA and IK-CPA secure. As our construction is based on Path-ORAM, it
inherits the need of using a stash, since there is a chance that during an access,
some blocks cannot be put back in the downloaded path. For blocks that belong
solely to one client each client locally maintains a stash (called localstash in the
rest of the paper). The bounds on Path-ORAM stash size apply here. However, it
might happen that blocks shared between clients cannot be written back into the
path. For this case we maintain a so-called “commonstash”, which will contain
all the encrypted shared blocks that could not fit into the tree. The size of this
commonstash can be upper bounded, as we show in Sect. 4. The commonstash
is initially filled with encrypted fake items, so that the server cannot observe if
shared blocks have been added or removed, and remains stored on the server;
each client retrieves this stash before he performs any operation. Furthermore,
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we use a dedicated private key for the fake blocks on the commonstash, so that
the clients can distinguish between fake and real blocks in the commonstash.

Unfortunately, however, this ability of the clients can be a source of privacy
leakage: once client clii notices that after a client’s clij access, a shared datablock
has been moved on the commonstash, clii immediately knows that in the last
accessed path, all blocks of clij are real. Therefore, we must make sure that the
commonstash remains as small as possible. We achieve this by changing the way
the Read operation is performed – due to lack of space, we give here only a
brief overview of the algorithm, and refer the reader to the full version of the
paper, in [8] for details. In order for a client to read a block id, he first finds the
leaf i, to which id is mapped. The client then downloads the commonstash and
two paths1: One determined by the leaf i (which we will from then on call the
“original” path), and the “symmetric” path, which is the path leading to the
symmetric leaf of i, when considering as symmetry axis the line that cuts the
leaf level into two parts of equal size. The client then identifies the blocks he
has access to (real, fake and shared). This is done by having the client iterate
on his keys, and checking for every block, if he can decrypt it – as we detail
however in Sect. 7.2, this can be done more efficiently, by using the properties of
homomorphic schemes. By construction, one of these blocks is guaranteed to be
the block that the client is looking for. Consequently, the client copies the real
and shared blocks of his in a local list, along with the blocks in his localstash,
and replaces his real, shared and fakes in the paths, with empty placeholders.
The client can now use all the empty placeholders in the paths for his eviction.
First the client evicts all shared blocks, trying to store them as deep down in
either of the paths as possible. If a shared block cannot fit in any of the paths,
it replaces a fake block in the commonstash. Subsequently, he evicts in a similar
manner those blocks that are not shared. If there is not enough space in the
paths, the localstash is used. The client then fills up the remaining placeholders
with fake elements, and finally re-randomizes all the blocks in the paths and
the commonstash. The paths and the commonstash are then sent back to the
server. Indeed, using these ideas, we observed during our experiments (cf. Sect. 7)
that the stash sizes were very small, with the commonstash being almost empty
during all our experiments, even when we let Z as small as 2.

In our construction, sharing a block between clients is straightforward: Sup-
pose client clii wants to share block idu with client clij ; clii retrieves his block
idu (by means of Read operation, which changes also the block’s path assign-
ment), re-encrypts the block with a new key and uploads the block to the server.
Finally, clii hands over to clij the new key and the new index of the leaf to which
idu is mapped. In a similar way, revocation of access rights is performed: If clii
wants to revoke access rights of block idu from clij , clii changes the key under
which block idu is encrypted (again by reading block idu, and thus changing its
path assignment) and informs other clients about the change of key and of path

1 Adopting directly the eviction from [12], which also involves reading two paths,
would unnecessarily degrade the protocol’s performance, since we would have to
store smaller ORAMs of size log(KN) in every node.
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Fig. 1. Path-ORAMs of three clients, concatenated together, forming the initialization
of Blurry-ORAM, on the left (blocks of different clients have different colors), and a
Blurry-ORAM state after some accesses (the ‘blurred’ version of the multiple Path-
ORAMs), on the right.

assignment. Note here, that clii and clij can share multiple blocks under the
same key, thus forming groups of shared datablocks. This way, more clients can
share only one key for a whole set of blocks.

Storing the Position Map. In order to save space, in ORAM constructions
that use a position map, such as [12–15], the position map is stored recursively
on the server, in smaller ORAMs, ORAM1, . . . , ORAMk, where ORAM1 stores the posi-
tions of the data and ORAMk is of constant size. In a multi-client ORAM allowing
data sharing, at least ORAM2, . . . , ORAMk must be accessible by all clients. But in
such a case, any client can infer that a position has been changed in ORAM1, by
noticing the changes in ORAM2, thus trivially breaking the access pattern privacy
of other clients, regardless if they share their data or not. In order to avoid this
potential leakage, in Blurry-ORAM we store the clients’ position maps in the
following way: Every client stores a position map for his own blocks in a clas-
sic Path-ORAM on the server. Similarly, we store a position map in a separate
ORAM for every group of shared datablocks to which all the members of the
group have access. In order further to prevent the server from knowing whether
a client is asking for a shared block (which the server can see by observing the
position maps being accessed), all clients must access all the position maps for
every access they make, even if they cannot decrypt blocks from certain position
maps. In such a case, the client simply downloads a path, re-encrypts it and
uploads it.

4 Analysis

4.1 Stash Size

As mentioned above, it is important that the commonstash remains very small.
For this reason, the client first evicts all shared blocks found in the downloaded
paths. Clearly, however, this does not guarantee that shared blocks never need
to be stored outside the tree, and surely the greater the amount of shared blocks,
the greater the probability that the commonstash will be used. We thus have to
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place a restriction on the amount of shared blocks. Suppose that in a Blurry-
ORAM with N leaves, and K clients, each client shares at most m blocks. Since
every client has a fixed amount of buckets that he can use in every node of the
Blurry-ORAM, we could simulate every client’s data as being stored in a single
Path-ORAM, in which the client stores N +m real blocks in a tree with N leaves.
Since during eviction we let the shared items take the place of real items that
belong to the client and we first push these shared items into the structure, in
essence we treat these m blocks as the real blocks and all other blocks as fakes.
Thus, in order to examine the commonstash size, we can simulate a Blurry-
ORAM by a Path-ORAM, in which a client stores m real blocks in a tree with
N leaves. Based on the proof of [15] we can estimate the probability of using a
stash of size O(log log N) for m = log2 N , by following the same argumentation
as in the classical Path-ORAM, adjusting the number of leaves of the tree. These
ideas are summarized in the following lemmata:

Lemma 1. For a data request sequence α in a Blurry-ORAM with K clients,
each having N blocks and sharing O(log2 N) blocks, with Z = 5 buckets per
client per node, that uses a commonstash of size R, the probability that the size
of the commonstash during a data request sequence α exceeds R during one of
the requests is bounded by Prob[st(Blurry − ORAMZ

L)[α] > R] ≤ 1.002 ·(0.5006)R.

We can further use the above lemma in order to show that, in case O(log2 N)
blocks are shared, the commonstash does not grow larger than O(log log N). The
proof follows the one given in [15] and is thus omitted.

Proposition 1. For a Blurry-ORAM of height L = log N , Z = 5 buckets per
client, per node, O(log2 N) blocks shared by every client, and a data request
sequence α, of length N +log2 N , the probability that the commonstash st exceeds
the size R, after a series of load/store operations that correspond to α, is at most
Prob[st(Blurry − ORAMZ

L)[α] > R] = 14 · (0.6002)R.

The above lemmata show that, as long as the amount of the shared elements
is in O(log2 N), the commonstash will remain small. We observed this behaviour
also during our simulations, where the commonstash was never used (cf. Sect. 7).

4.2 Time and Space Requirements

Based on the observations made earlier in this section, we can now analyze
the time and space requirements of our protocol. A client that participates in
O(log N) groups needs O(log N) space for the keys and O(log N) for the position
maps (given the recursive position map storage). The client also needs to store
his private stash, which follows the bounds provided in Proposition 1, and is thus
limited to O(log N). Each time the client performs a data request, he downloads
two paths of size O(log N), and the commonstash, which is in the worst case of
size O(log log N) ∈ O(log N). Thus, the amount of space needed during protocol
execution for the client is O(log N).
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As far as the computational complexity of the client is concerned, recall that
the client has to iterate on his O(log N) keys for each of the downloaded blocks
found in the paths, thus the computational complexity is O(log2 N). Note that
since we have restricted the amount of shared items to O(log N) per client, there
is a total O(K log N) ∈ O(log N) position maps from each of which a client will
read and rerandomize a path during a query.

Suppose that a client shares N − 1 blocks of his with K clients. Instead of
holding a different key for every group, the client can share all the common blocks
with all the clients, using only one key, and create smaller position maps only for
the blocks that are not shared with all of the clients. Thus, each smaller position
map will not exceed a size of O(log N), which means that for every query, the
client will have to dedicate O(log2 N log(log N)) time for the recursive position
map accesses.

5 Security

Proposition 2. Blurry-ORAM achieves Client-to-Server Privacy.

Proof (sketch). Recall that the position map and stash of every client are stored
in exactly the same way as in the classical Path-ORAM. The commonstash is of
fixed size and re-randomized every time a data request is performed by a client.
Thus, it is easy to see, that the security of Blurry-ORAM against the server can
be reduced to the security of Path-ORAM.

Proving that our construction achieves access pattern privacy against clients
is more involved and is done by showing that Blurry-ORAM satisfies Definition 6.
To do this, however, we must first make sure that the commonstash is empty.
Indeed, recalling Lemma 1 we see that the size of the commonstash is very small
with high probability. Thus, we can show the following proposition, which we
prove in the paper’s full version, found in [8]:

Proposition 3. Assuming that the commonstash is empty, Blurry-ORAM
achieves Client-To-Client privacy, if the used encryption scheme E is both IND-
CPA and IK-CPA secure.

The main proof idea is that we assume the existence of a PPT adversary that
breaks the Client-To-Client privacy, by winning the IND-CQA game with non-
negligible advantage, and we then construct an algorithm that by carefully craft-
ing the views the adversary creates, as well as the views he is given through oracle
access to other clients’ data requests, he implants the IND-CPA or the IK-CPA
challenge in the IND-CQA challenge, and can break the encryption scheme’s
semantic security, or its IK-CPA property, thus yielding a contradiction.

6 Application to Genomic Studies

We return to our motivating scenario of genomic studies, and we give a brief
overview of the techniques used to store and query genomic data. A sequenced
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human genome is a set of approximately 3.3 billion characters, out of which only
around 1% seem to be relevant. This specific part of the genome is typically
stored in the form of Single Nucleotide Polymorphisms (SNPs), which are the
positions in the sequenced genome of an individual which differ from what is
known as the reference genome – and what is believed to be a representative
example of a human genome.

Once a donor’s SNPs have been determined, they are stored in biobanks,
alongside those of other individuals, and can be used for various tests. These
tests range from simple paternity and ancestry tests, to complex genome wide
association studies. In the latter, the sequenced genome of multiple DNA donors
is examined, and associations between specific parts of the human genome and
various diseases are made. To do this, a biostatistician (in the following called
an investigator) examines parts of the genome of multiple DNA samples that
are suspected to be associated with a specific disease. Further, the investigator
consults a table indicating whether if a DNA donor suffers from the disease or
not, and thus can extract the probability that a particular DNA region (or SNP)
is correlated with the disease. As pointed out in [9], estimating this probability
in a privacy preserving way, can be done efficiently, using Secure Two Party
Computation (STC) protocols. However, privacy leakage can occur, while the
investigator retrieves the required SNPs (since the biobank can link parts of the
genome to various diseases). Dealing with this leakage against the biobank is
the main contribution of [9]. However, the authors in that solution, do not deal
with the privacy leakage that may occur if multiple investigators are allowed to
perform tests. To this end, our solution can be applied: By extending the highly
efficient Path-ORAM construction, to a multi-client setting (where now a client
might be a DNA donor or an investigator) so that information leakage between
the participating entities is eliminated, we can substitute the ORAM used in [9]
with Blurry-ORAM. This way, not only do we improve the computational com-
plexity of the construction, we also improve the security guarantees. Observe
here, that changing the ORAM construction of [9] does not affect either the
security or the performance of the STC protocol used to evaluate the correlation
probability. Since retrieving the relevant genome parts in a privacy preserving
way is the bottleneck of [9], we focus the evaluation on this part.

Note also that the honest-but-curious and non-colluding assumption in this
setting is realistic, since the investigators might get permission from the DNA
donors to share specific parts of the DNA between them. At the same time, the
investigators and the biobank would not jeopardise their reputation, by colluding
with each other (Fig. 2).
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1. DNA donors (clients)
send encrypted genome
to server

3. Investigators access 
parts of clients' DNA

2.Clients give access to

to investigators

Fig. 2. Clients upload their encrypted genome on a Blurry-ORAM structure (step 1),
give to investigators access to parts of it (step 2), which the latter access (step 3)

7 Experimental Results

7.1 Experimental Setup

We implemented Blurry-ORAM on a Virtual Machine running Ubuntu Version
16.10 with 8 cores and 16 GB of RAM, hosted on a 2x Xeon E5 2620v2 server with
12 Cores (24HT) and 64 GB of RAM, using VMWare ESXi 6 for the virtualiza-
tion. For the client we used a desktop PC equipped with an AMD FX(tm)-8350
Eight-Core Processor and 24 GB of RAM, running on Ubuntu Desktop Version
16.04. As backend on the server, we used MySQL version 5.7.16. The code was
compiled using g++ version 6.2.0, for the cryptographic backend we used the
OpenSSL library, version 1.0.2, and the experiments were ran on a 1 Gbit LAN
network. Note that using as many cores as possible is crucial in boosting the
efficiency of our construction: After the client has identified the blocks he can
decrypt, he can perform the eviction in parallel, with the rerandomization of all
other blocks, using all available cores.

7.2 Instantiation

Throughout the description of our architecture (cf. Sect. 3.2), we have assumed
a public key encryption scheme that provides indistinguishability of keys, indis-
tinguishability of ciphertexts (so that fake blocks are indistinguishable from real
ones), and allows re-randomization of ciphertexts without knowledge of the pub-
lic key. We achieve these properties using a variant of the ElGamal encryption
scheme on elliptic curves: For a given block B, we store as its encryption the
tuple (c0, c1, c2, c3), where (c0, c1) = Enck(B) and (c2, c3) = Enck(1). Thus for a
client who has sk as one of his secret keys, in order to check if a block belongs
to him, he simply checks if csk2 = c3, instead of performing a costly decryption.
Rerandomization without knowledge of the public key can also be easily done,
due to the homomorphic properties, by using the ideas from [6].
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7.3 Experiments

Using the techniques proposed in [3], one can efficiently store a patient’s genome,
by using roughly 217 SNPs. Using an elliptic curve over a prime field G(p) with
p of size 256 bits, we can map a SNP to a single point of the elliptic curve.
Typically for elliptic curve cryptography, mapping a plaintext to a point of the
elliptic curve is not a trivial task. This is usually solved by concatenating random
noise to the plaintext so that it can be mapped to a point of the elliptic curve.
Indeed, doing this and using 16 bits of randomness for every block, we were able
to map all the plaintexts we had, to points of the elliptic curve. Observe also,
that for every SNP, we needed maximally 17 bits to represent the identifier and
16 bits of randomness to do the mapping to the elliptic curve. This left us with
223 bits, which provide adequate space to store the SNP, using the techniques
described in [3].

In our simulations, therefore, we stored the SNPs of 100 clients, resulting in a
database that stores a total of 223 blocks (217 SNPs per client, enough to hold a
human genome stored in the form of SNPs as described in [3]). We then allowed
multiple investigators access specific parts of the stored genomic data. We assume
that every client distributed a different key to every investigator, so that neither
other clients, nor investigators could learn anything about datablocks they would
not have access to. The top left graph of Fig. 3 shows the performance of our
construction: we performed 10 rounds of 1000 queries and measured the time
needed for every query, depending on the number of keys a client has access
to. The time needed for each query is affected by the number of investigators
present (since decryption is attempted with all the client’s keys), and varies
from 6.48 s on average, when only one investigator is present to 63.01 s when 100
investigators are present.

In a similar setting, we varied the number of clients storing their data, (again
with use 217 SNPs per client), while 100 investigators were present, each one of
them using a different key. We performed 10 rounds of 1000 queries. The results
are presented in the top right graph of Fig. 3. We observe that, when 10 clients
were present, the average time for a query was 6.9 s, when 50 clients were present,
the average time was 31.40 s and when 100 clients were present, the average time
for a query was 63.01 s.

In the lower left graph of Fig. 3 we examined how the number of datablocks
affects the performance of our construction. We instantiated our construction
with 50 clients and 10 investigators (i.e., 10 keys per client) and stored 215, 216

and 217 datablocks per client. We performed again 10 rounds of 1000 queries
and measured an average query time of 6.92 s, 7.42 s and 7.71 s, when each client
stored 215, 216 and 217 datablocks, respectively.

As we have seen in Sect. 5, the occupancy of the commonstash plays a very
important role for client-to-client privacy. To experimentally assess the size of
the stashes, we performed 10 rounds of 217 queries (i.e., access of all blocks) in
the database of 100 clients with 217 blocks, 1000 keys each, and set Z = 2, i.e.
2 blocks per client per node. We examined the sizes of the localstash and the
commonstash. The results are shown in the bottom right graph of Fig. 3, where
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Fig. 3. Performance of Blurry-ORAM, when varying the number of keys (top left),
and varying the number of clients (top right) in the scenario of storing the SNPs. Per-
formance of Blurry-ORAM when varying the number of datablocks per client (bottom
left). Sizes of the local- and commonstash for Z = 2 with each client sharing 1000
blocks and storing 217 blocks (bottom right).

we see that the commonstash was never used. On the other hand, the localstash
attained once a maximum occupancy of 20 blocks.

The previous experiment focused on storing all SNPs, which store only of
the positions where a human’s genome differs from the reference genome. Now
we examine the applicability of the solution to databases storing full genomes.
Using elliptic curves as described above, we can store the approximately 3d9
characters, using 223 blocks per client, with each block storing approximately
128 characters2. We ran a series of 10 rounds of 1000 queries in a database with
2, 4 and 8 clients that share 10 blocks. The results are shown in the left graph of
Fig. 4, where we see that the average query time was 50 s, 55 s, 60 s respectively.
In a similar manner, we ran 10 rounds of 1000 queries in a database storing the
whole genome of 8 clients, that share 10, 50 and 100 blocks and the results. The
right graph of Fig. 4 shows that the average query time was 4.11, 6.98 and 11.26
respectively in this case, thus yielding a practical solution.

2 Note that since the genome’s alphabet consists only of the four letters A, T, G, C,
we only need 2 bits to represent each letter of the alphabet.
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Fig. 4. Blurry-ORAM performance, when varying the number of clients (left), and the
number of keys per client (right). The experiment used Z = 2, and allowed each client
to store 223 blocks.

8 Conclusion

In this work, we developed an ORAM construction that allows multiple clients
to store their data on a remote server, share parts of it with each other, and
access it in a way that protects their privacy both against the server, and other
clients. We formalized the notion of access pattern privacy in a multi-client
setting, and inspired by the GWAS case, we showed that our construction is
practical. We leave as future work, extending our security model against collud-
ing and malicious clients, as well as combining ideas of other multi-client ORAM
constructions, in order to achieve client anonymity as well.
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Abstract. In database systems with three parties consisting of a data
owner, a database manager and a data analyst, the data owner uploads
encrypted data to a database and the data analyst delegated by the data
owner analyzes the data by accessing to the database without knowing
plaintexts. In this work, towards an efficient and secure scheme whose
encryption can be processed in real time, we extend message-locked
encryption (Bellare et al. [2]), where parts of ciphertexts are generated
from their plaintexts deterministically. In particular, we introduce both
delegations of relational search between ciphertexts from a data owner
to a data analyst, and re-encryption of ciphertexts such that ciphertexts
of the message-locked encryption become truly probabilistic against a
database manager. We call the scheme message-locked encryption with
re-encryption and relational search, and formalize the security, which is
feasible and practical, in two cases, i.e., any relationship in a general set-
ting and only an equality test in a restricted setting. Both settings are
useful from a standpoint of trade-offs between the security and the effi-
ciency. We also propose an instantiation with the equality test between
ciphertexts.

Keywords: Message-locked encryption · Encrypted database · Re-
encryption · Relational search · Three-party model

1 Introduction

1.1 Backgrounds and Research Problem

Motivation for Three-Party Model. In recent years, there are several big
data services whereby a data owner stores data in a storage server and outsources
a job of analysis to an expert. For example, in the life-science area, a research
institute corresponding to a data analyst analyzes genome data provided by
each user corresponding to a data owner (and its centralized control center) via
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a computational resource such as Amazon EC2 to process a large amount of
the data. These services provide potential advantages to both data owner and
expert since the owner has data but not an analysis skill and vice versa. Such
a situation is modeled as a three-party model between a data owner who stores
data in a cloud, a database manager who manages a storage, and a data analyst
to whom the data owner outsources a job. These data are often provided per
second in real time because a large number of patients may exist in the above
life-science area. Since big data services need a large amount of data in general
to discover a new fact as soon as possible, processing and analyzing the data in
real time is necessary.

Problem Statement. We describe more details of the three-party model below.
First, each data is generated per second by a data owner, and the owner adds
the data in a database in real time. Next, an analyst specified by the data owner
analyzes the data via the database. In such a situation, the data owner often want
to give the database manager no information on the stored data. Furthermore,
the data owner may also want to hide any information other than the results
of the analysis, i.e., not only plaintexts but also their substrings and related
keywords, from the data analyst. For example, in the life-science area described
above, the data analyst needs to know the number of patients with the same sick.
However, the analyst may not know their personal information, e.g., names and
addresses. Here, the results of the analysis mean results of relational searches
between ciphertexts, e.g., ciphertexts such that the number of occurrences is
greater than some threshold. Meanwhile, the owner may want to add new data in
the database in real time, and sometimes receives information about the analysis
from the analyst. That is, there are two standpoints in the three-party model,
i.e., the confidentiality of data and the efficiency of processing data in real time.
We summarize the scenario described above in Fig. 1.

Fig. 1. Our targeting three-party model

We note that conventional encryption schemes are not useful for the above
analysis. In particular, the schemes satisfy either one of the two standpoints.
First, several cryptographic schemes [5,7,15,17] can satisfy the confidentiality
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since they can compute plaintexts without their knowledge. However, their com-
putational costs are heavy, and are inefficient in dealing with data added in real
time. Meanwhile, symmetric searchable encryption [18] can provide fast encryp-
tion and analysis of encrypted data by searching a specified keyword without
decryption. Although the symmetric searchable encryption can satisfy the effi-
ciency, the scheme forces a user who searches data, i.e., a data analyst, to know
the keyword. Hence, the scheme cannot satisfy the confidentiality in the three-
party model.

Message-Locked Encryption (MLE) and Its Limitations. In this work,
we focus on message-locked encryption (MLE) [2] whose encryption keys are
generated by plaintexts as a potentially suitable and efficient scheme for process-
ing encrypted data. This cryptographic scheme can generate ciphertexts whose
equality can be checked without knowledge of their plaintexts even if the cipher-
texts are generated by different signers. Namely, ciphertexts between two parties,
e.g., a sender and a receiver, can be analyzed. Especially, the scheme proposed
by Bellare et al. [2] has been constructed by well-known building blocks such as
hash functions and a standard symmetric key encryption scheme, e.g., SHA-2
and AES. Hence, their scheme is also able to provide fast encryption.

Although one might think that the above problem statement in the three-
party model can be overcome by the use of MLE, we need to solve the following
problem about MLE. First, since the motivation of MLE is deduplication to
decrease the size of a cloud storage storing ciphertexts, MLE is discussed in
two-party model between a sender and a receiver. That is, processing encrypted
data in the three-party model is out of the scope of the original work. Hence, a
new MLE scheme suitable in the three-party model is necessary. However, such
an extension of MLE is non-trivial. Loosely speaking, whereas a feasible and
meaningful definition is necessary, the security of variants of MLE is weaker than
that of standard cryptographic schemes. More specifically, results of the analysis
of data is leaked to a data analyst in the three-party model while an adversary
against MLE is disallowed to know plaintexts to be encrypted. To avoid this
dilemma, an extension of MLE in the three-party model and its security should
be discussed carefully.

1.2 Our Contribution

In this paper, we extend MLE to a scheme suitable in the three-party model
by introducing re-encryption from a data owner to a data analyst and search of
relationships between ciphertexts. We call the extended scheme message-locked
encryption with re-encryption and relational search (MLERERS), and also show
its instantiation which generates ciphertexts probabilistically. This essentially
contributes to processing encrypted data by searching relationships such as fre-
quency analysis. Furthermore, by formalizing the above features, subsequent
works can analyze the security rigorously via our formalization.

We briefly describe our main idea of the extension of MLE in the three-
party model. A data owner first converts ciphertexts of MLE, i.e., first-level
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ciphertexts, to fully probabilistic ciphertexts, i.e., second-level ciphertexts by a
re-encryption key. The data owner then outsources analysis of data to a data
analyst by sending the data analyst the re-encryption key. Next, the data ana-
lyst generates a trapdoor by the re-encryption key for any search of a relation-
ship between ciphertexts, and then a database manager receiving the trapdoor
extracts search results of first-level ciphertexts. By generating such a trapdoor
securely, the database manager cannot extract the re-encryption key and the
raw first-level ciphertexts from the search results.

We formalize the security in the situation described above. The main tech-
nical problem of this formalization is to define a feasible and practical security.
We note that achieving a perfect security, where a database manager obtains
no information about results in search, seems to be impossible: because a data
analyst knows nothing about plaintexts (and their keywords) to be searched and
has no ciphertexts themselves in local. That is, for any search, the database man-
ager can know that ciphertexts meet some relationships via the search although
the manager does not know its condition and raw ciphertexts. Instead of such a
perfect security, our security definition guarantees that “any search in the past”
does not affect search of newly added data. Intuitively, our security is feasible
since a data analyst can potentially generate ciphertexts unsuitable for known
trapdoors. Moreover, the security is practical since a database manager extracts
nothing about a new ciphertext. We also define the unforgeability of trapdoors
to guarantee the security strictly. Note that we define the security from two
settings, i.e., any search as the general setting and only equality tests as the
restricted setting. We mention that both settings are useful: in particular, the
equality tests are enough in the sense of providing frequency analysis and more
efficient, while wider searches are available for the former scheme. See Sect. 4 for
more details.

We also propose an instantiation with equality tests under the security
described above. Our scheme is an extension of the randomized convergent
encryption scheme by Bellare et al. [2] in the model of MLERERS. This scheme
can be instantiated by standard cryptographic tools such as AES and SHA-2.
See Sect. 5 for more details.

1.3 Related Works

Message-Locked Encryption and its Re-encryption. To the best of our
knowledge, there are several MLE schemes [1,8,11,12] which probabilistically
generate ciphertexts fully in the sense that all parts of the ciphertexts are ran-
dom. However, these schemes are discussed in two-party model and are still
insufficient in the three-party model. Meanwhile, Lei et al. [11] and Li et al. [12]
have proposed re-encryption schemes for MLE, and their works are the closest
to our work. However, their schemes do not target the three-party model and
a receiver designated by a re-encryption key can obtain plaintexts. Namely, our
work is not implied by their works.

Searchable Encryption. Another scheme close to our work is search-
able encryption. There are two classifications of searchable encryption, i.e.,
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symmetric searchable encryption [18] and publicly encrypted keyword search [4].
We note that, the limitation described in Sect. 1.1 exist in both schemes. Mean-
while, several efficient schemes suitable for real-time data have been proposed in
the symmetric searchable encryption. For instance, Ogata et al. [14] proposed a
scheme utilizing only hash functions. In addition, there are several schemes [9,13]
with dynamic update of encrypted dataset. These ideas are close to our
instantiations.

2 Preliminaries

In this section, we define mathematical backgrounds to understand our work.
Hereafter, we denote by ε a negligible function.

Symmetric Key Encryption. A symmetric key encryption scheme is defined
as follows: a key generation algorithm KG takes a security parameter n as input
and outputs a secret key sk; an encryption algorithm Enc takes sk and a plain-
text m as input and outputs a ciphertext c; a decryption algorithm Dec takes
sk and c as input and outputs m. The correctness of the scheme is defined as,
for any n,m and sk ← KG(1n), m = Dec(sk,Enc(sk,m)).

Next, we recall the indistinguishablity against a chosen plaintext attack [10],
IND-CPA for short. The security is defined as the following game between a
challenger C and an adversary A, which are probabilistic polynomial time algo-
rithms. C generates a secret key sk ← KG(1n) for a given n. Given n and access
to an oracle Enc(sk, ·), A outputs a pair (m0,m1) of plaintexts. Next, C chooses
a random bit b ← {0, 1} and computes a challenge ciphertext c ← Enc(sk,mb).
C then gives c to A. A is given access to the oracle Enc(sk, ·) again, and
finally outputs a bit b′ ∈ {0, 1}. In this game, an advantage of A is defined
as AdvSK

IND-CPA,A(1n) = |Pr[b′ = b] − 1
2 |. We say that a scheme is IND-CPA

secure if the advantage is negligible, i.e., AdvSK
IND-CPA,A(1n) ≤ ε(1n).

Message Locked Encryption (MLE). We recall the definition of MLE and
a source as its basic notion by Bellare et al. [2]. First, a source M generates
(m0, ...,mN−1, Z), where m0, ...,mN−1 are vectors in {0, 1}∗, Z ∈ {0, 1}∗ is any
auxiliary information, and N is the number of operands in the source. Let len be
the length of a message from the source. For instance, for all i ∈ [λ(1n)] and all
j ∈ [0, N − 1], where λ is a function to represent the number of messages in the
source, a string mj [i] has length len(1n, i). A guessing probability of messages
by M is assumed to be negligibly small although we omit the detail due to the
page limitation.

An MLE scheme is then defined by the following algorithms: a parameter
generation algorithm P takes a security parameter 1n as input and outputs a
parameter P ; a key generation algorithm K takes P and a plaintext m and
outputs a secret key k; an encryption algorithm E takes (P, k,m) as input
and outputs a ciphertext c; a decryption algorithm D takes (P, k, c) as input
and outputs a plaintext m; a tag generation algorithm T takes (P, c) as input
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and outputs a tag T . The correctness of a MLE scheme is defined as fol-
lows, where MsgSpMLE described below means a MLE-valid source in [2]: for
any security parameter 1n and any message m ∈ MsgSpMLE , P ← P(1n),
m = D(K(P,m), E(K(P,m))) and, for any messages m,m′ ∈ MsgSpMLE such
that m = m′, T (P, E(K(P,m),m)) = T (P, E(K(P,m′),m′)) hold.

The security of an MLE scheme is defined as privacy against chosen dis-
tribution attacks (PRV-CDA) and tag consistency [2]. The former is the con-
fidentiality of data and the latter is a notion for deduplication. The security
discussion in the rest of this paper deals with the former feature, and we omit
the latter notion due to the page limitation. Intuition of the PRV-CDA security
is that ciphertexts are indistinguishable unless messages are predictable. Accord-
ing to Bellare et al. [2], there is no MLE scheme classical security notion such
as IND-CPA because secret keys are generated by messages to be encrypted.
That is, an adversary can easily obtain secret keys if the messages are pre-
dictable. Therefore, the PRV-CDA security is the best possible notion although
messages are required to be unpredictable. The PRV-CDA security is defined
via the following game: A challenger C generates P(1n) for a given n, and
choses a bit b ← {0, 1}. Next, C generates (m0,m1, Z) ← M(1n) and, for all
i ∈ [1, |mb|], computes C[i] ← E (P,K (P,mb[i]),mb[i]). Given n and C[i] for all
i ∈ [1, |mb|], A outputs a guess b′. In this game, an advantage of A is defined as
AdvMLE

PRV-CDA,M,A (1n) =
∣
∣Pr[b = b′] − 1

2

∣
∣. We say that an MLE scheme is PRV-

CDA secure if the advantage is negligible, i.e. AdvMLE
PRV-CDA,M,A (1n) ≤ ε(1n).

3 Our Motivating Three-Party Model

In this section, we describe a three-party model as our motivating scenario. First,
we define three parties and their requirements in this model.

3.1 Entities in Three-Party Model

There are three entities in the model as follows:

Data Owner is able to access to any plaintext. The owner stores encrypted
data in a database and delegates its analysis to other users.

Database Manager receives encrypted data from the data owner, and pro-
vides an encrypted database. The manager also returns responses to queries
by a data analyst.

Data Analyst is delegated analysis of data by the data owner, and accesses to
the database by issuing search queries. The analyst then receives responses
from the database.

3.2 Requirements in the Three-Party Model

We describe requirements in the three-party model below. The main motivation
described in Sect. 1.1 is to discuss extension of MLE and its security suitable for
the following requirements.
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Real-Time Processing for Encryption. A database system deals with a
large amount of data which is added per second in real time. To process such
kind of data, a cryptographic scheme should be able to dynamically update the
database, i.e., without re-construction. It should also be able to provide fast
encryption.

Prevention of Undesirable Extraction of Plaintexts and Searchability
for Data Analyst. A data analyst specifies a rule of analysis for ciphertexts,
and then queries the rule to a database. Here, the data analyst can obtain only
the results, but not plaintexts themselves stored in the database and their related
keywords. In other words, the data analyst needs to search only by relationships
between ciphertexts, e.g., the number of occurrences or a series of the same
ciphertexts. In general, storing plaintexts in local may pose an unnecessary risk
to the data analyst, e.g., the accountability and compensation to the data owner.
Meanwhile, the results themselves are necessary for the data analyst to analyze
data.

Data Confidentiality against Database Manager. Since a malicious server
may exists, the confidentiality of data against a database manager should be
guaranteed. That is, we regard the confidentiality against a database manager
as the same level against an adversary, and discuss whether information about
plaintexts are leaked from ciphertexts. Meanwhile, we tolerate that the database
manager obtains results in search.

Decryption via Feedback from Data Analyst. A data owner may want to
decrypt ciphertexts in a database via feedback of analysis of data from a data
analyst. Then, the data owner needs to keep the capability of decryption in the
database even after delegating analysis of the data.

4 Message Locked Encryption with Re-encryption
and Relational Search

In this section, we introduce re-encryption and searchability of relationships
between ciphertexts in MLE. We call this scheme message-locked encryption
with re-encryption and relational search (MLERERS). We first define a syntax
of MLERERS and show that the syntax meets the three-party model described
in the previous section. Next, we formalize its security more precisely. These are
the main contribution in this work.

4.1 Syntax

A message-locked encryption scheme with re-encryption and relational search
(MLERERS) is defined via the following ten algorithms.

Parameter Generation P takes a security parameter 1n and outputs a para-
meter P .

Key Generation K takes P and a message m and outputs a key K.
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Re-encryption Key Generation RKG takes P and outputs a re-encryption
key RK.

Encryption E takes P,m and K, and outputs a first-level ciphertext C.
Re-encryption RE takes P,C and RK, and outputs a second-level

ciphertext C ′.
Tag T takes C, and outputs a tag T .
Trapdoor Generation T G takes P , RK and a query condition X to search

relationships between ciphertexts, and outputs a trapdoor t(RK).
Re-encryption Test RT takes a set C′ of second-level ciphertexts and a list

of trapdoors t(RK), and outputs its resulting set Data of ciphertexts.
Second-level Decryption RD takes RK and a second-level ciphertext C ′ and

outputs a first-level ciphertext C.
Decryption D takes P,K and a first-level ciphertext C, and outputs a message

m. If any error happens, It outputs an error symbol ⊥.

(Note 1) The re-encryption test algorithm RT searches ciphertexts for a given
trapdoor with any condition X. This is a generic definition and, when only
equality tests are executed, the following algorithm can be defined as a simpler
algorithm. Here, input X in the trapdoor generation algorithm T G is omitted
in the following simpler algorithm.

Equal EQ takes two ciphertexts (C ′
1, C

′
2) and a list of trapdoors t(RK), and

outputs true or false as equality.

Correctness. We say that a scheme is correct if the following condi-
tions hold, where MsgSpMLE is a MLE-valid source in [2]: for any secu-
rity parameter n, any message m ∈ MsgSpMLE and P ← P(1n), m =
D(P,K(P,m), E(P,m,K(P,m))) holds; for any RK ← RK(P ), C = RD(P,RK,
RE(RK,C)) holds; and for any RK ← RK(P ), DataX = RT (C′, T G(P,RK,
X)) holds where DataX is a subset of C′ which meets the condition X.

(Note 2) The correctness of a scheme with the equal algorithm EQ is
defined as, instead of the above third condition, true = EQ(E(P,m,K(P,m)),
E(P,m′,K(P,m′)), T G(P,RK)) holds if and only if m = m′ holds.

We summarize the flow of algorithms in MLERERS in Fig. 2.
(Note 3) We note that MLERERS is suitable for the three-party model described
in the previous section. First, the encryption algorithm and the re-encryption
algorithm encrypt each input individually, and hence MLERERS can support
real-time processing by dynamically updating a database. Next, a data owner
stores data in the database after executing the re-encryption algorithm, and then
delegates analysis of the data to a data analyst by sending the re-encryption
key. Next, the data analyst generates trapdoors by the re-encryption key, and
sends a database manager the trapdoors. The database manager executes the
re-encryption test algorithm by the use of the given trapdoors, and returns a
set of data corresponding to the relation to the data analyst. Here, the database
manager cant obtain neither plaintexts nor first-level ciphertexts, and hence
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Fig. 2. Flow of MLERERS

Fig. 3. MLERERS in the three-party model

MLERERS can provide the data confidentiality against a database manager.
Moreover, the data analyst can decrypt only second-level ciphertexts to first-
level ciphertexts. This means that both prevention of undesirable extraction of
plaintexts and searchability for the data analyst can be achieved. We summarize
the algorithms described above in Fig. 3.

4.2 Definition of Security

We define security of MLERERS in this section, where that with the equal
algorithm EQ can also be defined by replacing RT in the following definition
with EQ.

Security Definition of First-Level Ciphertext. The security of first-level
ciphertexts captures a situation in which a data analyst cannot distinguish
ciphertexts of the message-locked encryption. Intuitively, the security is an exten-
sion of the security definition of PRV-CDA in Sect. 2 in the sense that a view of
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an adversary is identical to that in Sect. 2; more specifically, we discuss a situa-
tion whereby a challenger just outputs a first-level ciphertext C for any message
m with an encryption key K. We define two notions in this security, privacy
against chosen distribution attacks for re-encryption (PRV-CDA-R) and strong
privacy against chosen distribution attacks for re-encryption (PRV$-CDA-R).

Privacy against Chosen Distribution Attack for Re-Encryption (PRV-CDA-R).
The PRV-CDA-R is defined via the following game with a challenger and an
adversary: A challenger C generates P ← P(1n) for a given n, and chooses
a bit b ← {0, 1}. A is given n and access to an a re-encryption key gener-
ation oracle ORK(P ). Next, C generates (m0,m1, Z) ← M(1n) and, for all
i ∈ [1, λ(1n)], computes C[i] ← E (P,K (P,mb[i]),mb[i]). C then gives C[i] to A
for all i ∈ [1, |mb|]. Next, A is given access to the re-encryption key generation
oracle ORK(P ) again. Finally, A outputs a guess b′.

Definition 1 (PRV-CDA-R). We say that a MLERERS scheme achieves
PRV-CDA-R if an advantage of any probabilistic polynomial time adversary A
in the game is negligibly small. That is, a MLERERS scheme achieves PRV-
CDA-R if AdvMLERERS

PRV-CDA-R,M,A (1n) =
∣
∣Pr[b = b′] − 1

2

∣
∣ ≤ ε(1n) holds, where

AdvMLERERS
PRV-CDA-R,M,A is an advantage of A in the game.

(Note) The main difference from the PRV-CDA security in Sect. 2 is whether
an adversary A has an access to the oracle ORK or not. Via accessing to the
oracle, A can learn knowledge related to a parameter P , which is never given
in the PRV-CDA security. Moreover, oracles for re-encryption and second-level
decryption are unnecessary because, by receiving re-encryption keys from ORK ,
A can perform them by his-/herself.

Strong Privacy against Chosen Distribution Attack for Re-Encryption (PRV$-
CDA-R). The PRV$-CDA-R is defined similarly as the PRV-CDA-R secu-
rity except for generating challenge ciphertexts. In particular, by utilizing a
source such that (m,Z) ← M(1n), a challenger generates C1[i] by running
E(K(m[i]),m[i]). C also generates C0[i] ← {0, 1}|C1[i]| randomly, and then gives
Cb[i] to A for i ∈ [1, λ(1n)]. We say that a MLERERS scheme achieves PRV$-
CDA-R if an advantage in the game is negligibly small. We omit the full definition
due to the page limitation.

Security Definition of Second-Level Ciphertexts. Next, we define the secu-
rity of second-level ciphertexts. The security is a requirement against a data-
base manager, and captures a situation where the manager cannot distinguish
a second-level ciphertext corresponding to first-level ciphertexts. The security is
an extension from the IND-CPA security in the sense that a view of an adversary
is identical to that of a symmetric key encryption: in particular, we discuss a
situation whereby a challenger just outputs a second-level ciphertext from first-
level ciphertexts as plaintexts with a key RK. We then define indistinguishablity
against chosen plaintext attacks for re-encryption (IND-CPA-R) and indistin-
guishablity against chosen ciphertext attacks for re-encryption (IND-CCA-R).
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Indistinguishablity against Chosen Plaintext Attacks for Re-Encryption (IND-
CPA-R). The security is defined as the following game between a challenger C
and an adversary A: C generates a parameter P ← P(1n) for a given n and a re-
encryption key RK ← RK(P ). Given n, P and accesses to a re-encryption oracle
ORE(RK, ·) and a tag generation oracle OTG(RK, ·), A outputs a pair (C0, C1)
of ciphertexts with the same length. Next, C chooses a random bit b ← {0, 1} and
computes a challenge second-level ciphertext C ′ ← RE(RK,Cb). C then gives
C ′ to A. A is given access to ORE(RK, ·), and finally outputs a bit b′ ∈ {0, 1}.

Definition 2 (IND-CPA-R). We say that a MLERERS scheme achieves
IND-CPA-R if the advantage of any probabilistic polynomial time adversary A in
the game is negligibly small. That is, a MLERERS scheme achieves IND-CPA-R
if AdvMLERERS

IND-CPA-R,A(1n) =
∣
∣Pr[b = b′] − 1

2

∣
∣ ≤ ε(1n) holds, where AdvMLERERS

IND-CPA-R,A
is an advantage of A.

Indistinguishablity against Chosen Ciphertext Attacks for Re-Encryption (IND-
CCA-R). The security is defined similarly as the IND-CPA-R security except
that an adversary A can access to a second-level decryption oracle ORD

1. More
precisely, A can receive first-level ciphertexts by requesting second-level cipher-
texts to the oracle ORD. We omit the full definition due to the page limitation.

Security Definition of Trapdoors. A data analyst delegated by a data owner
generates trapdoors for any relation to search in a encrypted database. If an
adversary can extract knowledge of a re-encryption key RK or can forge trap-
doors t(RK) by the re-encryption test algorithm RT for any condition X, the
adversary is able to search any relation between ciphertexts. To prevent such
an attack, trapdoors have to be secure. In particular, we define onewayness of
trapdoors and unforgeability of trapdoors below.

Onewayness of Trapdoors. The onewayness of trapdoors guarantees preventing
an adversary from extracting a re-encryption key via given trapdoors. We define
the security as the following game between a challenger C and an adversary
A: C generates a parameter P ← P(1n) for a given n and then generates a
re-encryption key RK ← RK(P ). A is given n, P and access to a trapdoor
generation oracle OTG(RK, ·). A then outputs a re-encryption key RK ′.

Definition 3 (Onewayness of Trapdoor). We say that a MLERERS scheme
achieves the onewayness of trapdoors if the advantage of any probabilistic
polynomial time adversary A in the game is negligibly small. That is, a
MLERERS scheme achieves the onewayness of trapdoors if AdvMLERERS

TR,A (1n) =
|Pr[RK = RK ′]| ≤ ε(1n) holds, where AdvMLERERS

TR,A is an advantage of A.

Unforgeability of Trapdoors. The unforgeability of trapdoors is a stronger security
notion than the onewayness with respect to trapdoors. The security is defined as
follows: C generates a parameter P ← P(1n) for a given n, and then generates

1 Note that the IND-CCA security of a standard symmetric key encryption scheme
has been defined by Katz and Lindel [10] by introducing the decryption oracle.
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a re-encryption key RK ← RK(P ) and a set C′ of second-level ciphertexts. A
is given P and access to a trapdoor generation oracle OTG(RK, ·). Here, we
denote by PreX a set of conditions which are queried by A to OTG(RK, ·). A
then outputs a pair (t′(RK),X) of a trapdoor and a condition.

Definition 4 (Unforgeability of Trapdoors). We say that a MLERERS
scheme achieves the unforgeability of trapdoors if the advantage of any
probabilistic polynomial time adversary A in the game is negligibly small.
That is, a MLERERS scheme achieves the unforgeability of trapdoors if
AdvMLERERS

TRU,A (1n) = |Pr[RT (C′, T G(P,RK,X)) = RT (C′, t′(RK,X))∧ X �∈
PreX]| ≤ ε(1n) holds, where AdvMLERERS

TRU,A is an advantage of A.

5 Instantiation of MLERERS with Equality Tests

In this section, we show the concrete construction with equality tests.

5.1 The Algorithms

Let SKE be a symmetric key encryption scheme consisting of a key generation
algorithm SKE.K, an encryption algorithm SKE.E and a decryption algorithm
SKE.D. We also denote by H a family of collision-resistant hash functions, by
⊕

XOR operation and by || a concatenation of any two elements. Moreover,
let �(1n) be a length of output of a hash function, and let Data be a set of
ciphertexts stored in a database. In the scheme, we also assume that each file is
indexed as unique identifier i ∈ Z without loss of generality.

Parameter Generation P: Choose a hash function H from H and a symmet-
ric key encryption scheme SKE. Return P = (H,SKE).

Key Generation K(P,m): Return K = H(P,m).
Re-encryption Key Generation RKG(P ): Randomly choose RK ← {0,

1}�(1n), and return RK.
Encryption E(P,K,m): Randomly choose L ← {0, 1}�(1n), and compute T =

H(P,K). Then, compute C1 ← SKE.E(L,m) and C2 = L
⊕

K. Finally,
return C = C1||C2||T .

Re-encryption RE(P,C,RK): Parse C as C1||C2||T , and compute T ′ =
T

⊕
H(RK||i). Return C ′ = C1||C2||T ′.

Tag T (C): Parse C as C1||C2||T , and return T as a tag.
Trapdoor Generation T G(P,RK): Randomly choose r ← {0, 1}�(1n) and

compute t(RK||i) = H(RK||i)
⊕

H(r) for any i ∈ |Data|. Return t(RK||i)
as a trapdoor.

Equal EQ(Ci, Ci′ , t(RK)): Parse Ci as Ci,1||Ci,2||T ′
i , Ci′ as Ci′,1||Ci′,2||T ′

i′ and
t(RK) as t(RK||i) and t(RK||i′). For i and i′, compute Ti = T ′

i

⊕
t(RK||i)

and Ti′ = T ′
i′

⊕
t(RK||i′), respectively. Then, check if Ti = T ′

i . If so, return
true. Otherwise, return false.

Second-Level Decryption RD(RK,C ′): Parse C ′ as C1||C2||T ′, and com-
pute T = T ′ ⊕H(RK||i). Then, return C = C1||C2||T
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Decryption D(P,K,C): Parse C as C1||C2||T , and compute L = C2

⊕
K.

Then, compute m = SKE.D(L,C1) and T ′ = H(P,H(P,m)). If T ′ �= T ,
then return ⊥ as error. Otherwise, return m.

5.2 Security Analysis

In this section, we discuss the security proposed in the previous section. Due to
the page limitation, we briefly describe the results in the analysis.

PRV$-CDA-R for First-Level Ciphertexts. The proposed scheme achieves
PRV$-CDA-R if a symmetric key encryption is secure in the sense of key recovery
security and one-time real-or-random security [16] and a hash function is modeled
as a random oracle. Although we omit the notions and the detail, the proof of
the proposed scheme is almost the same as that of the randomized convergent
encryption scheme by Bellare et al. [2]. Intuitively, the view of an adversary in
the PRV-CDA-R game with the proposed scheme is identical to that against the
randomized convergent encryption scheme except for generation of re-encryption
keys. Moreover, the generation of re-encryption keys is exactly identical to a
generation of random strings. Hence, in a similar manner as the proof in [2], we
can construct a reduction algorithm to the symmetric key encryption scheme
from the proposed scheme by generating random strings for the re-encryption
key generation oracle.

IND-CPA-R for Second-Level Ciphertexts. The proposed scheme is IND-
CPA-R if a symmetric key encryption scheme is IND-CPA and a hash function
is modeled as a random oracle. In particular, by setting an encryption oracle of
the symmetric key encryption as a challenge re-encryption key in the proposed
scheme, a reduction algorithm to the symmetric key encryption scheme can
forward queries to any first-level ciphertext by an adversary to the re-encryption
oracle in the symmetric key encryption scheme. Moreover, via the random oracle,
the reduction algorithm can identify any pair of a plaintext and a ciphertext
including a tag, and can then generate a trapdoor for any index by generating a
random number. Then, the reduction algorithm can simulate the oracles in the
IND-CPA-R security. Hence, the reduction algorithm can succeed the guess in
the IND-CPA game by which the adversary succeeds the guess in the IND-CPA-
R game.

Onewayness of Trapdoors. The proposed scheme achieves the onewayness of
trapdoors if a hash function has preimage resistance, where an input of the hash
function cannot be computed from an output. In particular, t(RK) is computed
as H(RK||i)

⊕
H(r), where r is a random number generated by a data analyst.

This r is not given to a database manager, and the database manager cannot
extract H(RK||i) from t(RK). Moreover, since a hash function has the preimage
resistance, an adversary cannot also extract RK from H(RK||i).
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6 Conclusion

In this work, we proposed a new framework called message-locked encryption
with re-encryption and relational search (MLERERS) by extending MLE to the
three-party model. Our main ideas were to re-encrypt ciphertexts of MLE and
to provide the capability of search of relationships between ciphertexts by gener-
ating trapdoors from a re-encryption key. Hence, a data analyst can search rela-
tionships between ciphertexts while a database manager cannot extract anything
for newly added data. We formalized the security of MLERERS to encourage
analysis of the security in subsequent works and showed the concrete construc-
tion with equality tests.

Our future work is to implement the proposed scheme. As described in Sect. 1,
big data services often require users to deal with a large amount of data in real
time, and hence we evaluate the performance of the proposed scheme rigorously
via implementation. Another future work is to extend the capability of search
in an instantiation of MLERERS. Although our definition captured search of
any relationship, our concrete scheme provided equality tests. Thus, we plan to
propose an instantiation with the capability of search of any relationship.

Acknowledgments. We would like to thank Taisuke Yamauchi in NIPPON TELE-
GRAPH AND TELEPHONE WEST CORPORATION for his support.
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Abstract. We point out the risks of protecting relational databases via
Searchable Symmetric Encryption (SSE) schemes by proposing an infer-
ence attack exploiting the structural properties of relational databases.
We also show that record-injection attacks mounted on relational data-
bases have worse consequences than their file-injection counterparts on
unstructured databases. Moreover, we discuss some techniques to reduce
the effectiveness of inference attacks exploiting the access pattern leakage
existing in SSE schemes.

1 Introduction

One of the practical solutions for searching on encrypted data is provided by
Searchable Symmetric Encryption (SSE) schemes. The very first such scheme
was proposed by Song et al. in [19]. Later, Curtmola et al.’s [12] introduced
two security notions for SSE schemes, namely, the non-adaptive semantic secu-
rity definition and the adaptive semantic security definition. Subsequent SSE
schemes [6–8] are all based on Curtmola et al.’s security model. The price of the
efficiency offered by SSE schemes comes at the cost of leaking the frequency of
each keyword after it has been queried. This makes them vulnerable to infer-
ence attacks [5,14] which recovers the issued queries by combining its access
pattern leakage by background information about the protected dataset. Most
of the proposed SSE schemes are designed to protect unstructured document
datasets such as emails or a backup of anyve files. However, recently two SSE
schemes proposed by Cash et al. [6,7] are designed to efficiently run and pro-
tect relational databases where they achieved a query speed comparable to the
unprotected MySQL (release 5.5) [6,7].

In addition to SSE schemes, there are several practical solutions proposed to
execute SQL queries on an encrypted database. Recently, Popa et al. proposed
CryptDB as a solution to protect confidentiality for applications using SQL data-
bases [18]. CryptDB uses column-level encryption to encrypt the database tables.
To enable equality searches, CryptDB uses deterministic encryption. Order pre-
serving encryption (OPE) is used to enable range and comparison queries on
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encrypted data. OPE is the weakest encryption scheme used in CryptDB whose
design concept is based on the trade-off between functionality and confidential-
ity. Recently, Naveed et al. [17] mounted inference attacks that recovered the
plaintext from CryptDB’s columns protected by deterministic encryption and
order preserving encryption schemes.

Another line of research in preserving database privacy is achieved by dis-
tributing and fragmenting the database table across two or more servers [2,9,11]
using vertical fragmentation where the table’s columns are partitioned across
the servers. Privacy in the scheme proposed in [2] is provided under the assump-
tion that the two cloud servers are unable to communicate directly with each
other. However, privacy in the work proposed in [9,11] is achieved without this
assumption where encryption is used as little as possible and fragmentation is
used to provide security by breaking the associations among the attributes and
also to provide functionality by keeping most attributes in plaintext. In the
scheme proposed in [10], privacy is preserved by using fragmentation only and
no encryption is employed. This comes at the cost of saving sensitive data in
the clear at the data owner, i.e. the client. All these privacy constraints schemes
provide efficiency and functionality but at the cost of having plaintext fields and
only encrypting sensitive data which makes them vulnerable to be attacked by
an adversary with background information about the database. Also adding or
modifying a record reveals the relation among the fragments to passive adversary
monitoring the fragments.

Comparing the above methods for searching on encrypted data in terms of
security, one can see that SSE schemes offer better security than deterministic
or order preserving encryption schemes since they do not leak the frequency
of a keyword before querying it. They also provide better security than the
data fragmentation method via privacy constraints [9] since they encrypt all the
plaintext data and they can also securely manage a dynamic database [6].

However, SSE schemes suffer from leaking the access pattern of a queried
keyword which make them vulnerable to inference attacks as demonstrated by
Islam et al. [14] and Cash et al. [5]. In this paper, we study the effect of these
inference attacks as well as the recent file-injection attacks [21] on relational
databases. We also propose a suitable inference control to safeguard relational
databases secured via SSE schemes from being completely recovered by strong
adversaries with background knowledge about the relational database.

Our Contribution. We exploit the properties of relational databases and pro-
pose an inference attack [5,14] targeting relational databases. We also study the
injection attacks [21] in the context of relational databases protected via SSE
schemes. We propose the use of privacy constraints [2,9,11] to distribute the
encrypted index of an SSE scheme into several fragments or servers to reduce
the effectiveness of inference attacks exploiting the access pattern leakage [5,14]
which is inherent in SSE schemes. Note that the privacy constraints as defined
in [2,9,11] were mainly used to depart completely from the use of encryption or
to use encryption as less as possible. However, in this paper we propose using
them to strengthen the security of SSE schemes against inference attacks.
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Related Work. Query recovery attacks exploiting the access pattern leakage
of SSE schemes were proposed by Islam et al. [14] and recently improved by
Cash et al. [5]. Both attacks assume background knowledge in the form of joint
frequencies between keywords and were proposed mainly to deal with unstruc-
tured datasets. However, in this work we propose an inference attack called
Relational-Count that uses only knowledge about the frequency of keywords in
the target relational database. We show that this might lead to complete record-
recovery attacks. Moreover, we propose the use of privacy constraints as an
additional countermeasure that should be used together with padding to reduce
the effectiveness of inference attacks. The recently proposed file-injection attack
by Zhang et al. [21] recovers only a set of keywords in encrypted document and
could be prevented by limiting the content of each injected file. However, in
this paper we show that record-injection attacks have more severe consequences
than file-injection attacks since they can achieve full record recovery on relational
databases protected via SSE schemes. Moreover, record-injection attacks cannot
be simply prevented by limiting the content of an injected record as done to pre-
vent file-injection attacks [21] since that would hinder the addition of complete
records to the protected relational databases.

Organization of the Paper. Section 2 gives a brief overview about SSE
schemes. In Sect. 3, we give a brief overview about inference attacks and pro-
pose a new inference attack targeting relational databases. In Sect. 4, we point
out the security risks of protecting relational databases via SSE schemes where
we show that inference attacks and record-injection attacks can fully recover a
significant number of database records. In Sect. 5, we propose the use of pri-
vacy constraints as an inference control and countermeasure to reduce the risk
of inference attacks.

2 Background

Definition. An SSE scheme takes as inputs a plaintext database index together
with the client’s secret keys and outputs an encrypted and frequency-hiding
database index where the keywords are encrypted using a deterministic encryp-
tion algorithm and the document/records identifiers are encrypted using a ran-
domized algorithm. When the SSE-protected database is a relational database
(i.e. searchable encrypted relational databases), a keyword wi will represent
an attribute-value pair which points to a cell in the relational database (i.e.
wi = (attributei : vi) where attributei refers to the column name or attribute
name and vi refers to the value of the attribute). All recent SSE schemes follow
the adaptive security definition proposed by Curtmola et al. [12] where security
is achieved against an honest-but-curious server.

Leakage Profile. An SSE scheme leaks the access pattern: the result size of
the query and the document/record IDs corresponding to the queried keyword
wi and also leaks the search pattern: the fact that whether two searches are the
same or not.
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Passive Attacks on SSE Schemes. Two passive attacks against SSE schemes
exploiting the access pattern leakage have been proposed recently by Islam
et al. [14] and later developed by Cash et al. [5]. These passive attacks are
inference attacks mounted by an honest-but-curious server who knows the dis-
tribution of the dataset under attack or knows a significant number of the client’s
plaintext documents.

Active Attacks on SSE Schemes. Another class of attacks outlined by Cash
et al. [5] are the chosen-document attacks and the chosen-query attacks. Both
attacks are mounted by an active adversary who is somehow capable of deceiving
the client into including her own chosen-document into the documents set as well
as into choosing her favorite queries respectively. Recently, Zhang et al. [21] pre-
sented a concrete description of a chosen-document attack (file-injection) where
the attacker is able to recover all the queries without any prior knowledge about
the client’s dataset under attack. The equivalent of file-injection in the context
of searchable encrypted relational databases is record-injection and it has worse
consequences that go beyond query recovery, namely, full record recovery or
partial record recovery (cf. Sect. 4.2).

3 Inference Attacks

Inference attacks are mounted on SSE schemes to recover the plaintext of
encrypted keywords involved on previous queries issued by the client and
observed by the attacker. This kind of attack is called query recovery and was
proposed by Islam, Kuzu and Kantarcioglu (IKK) in [14]. Their attack, known
in the literature as the IKK attack, targets the strongest kinds of SSE schemes
which are those proved to be secure under the adaptive security definition. The
IKK attack models the problem of recovering the unknown keywords as an opti-
mization problem solved using a simulated annealing algorithm. Recently, Cash
et al. [5] improved the IKK by proposing another inference attack, called the
Count attack, that is simpler and more efficient than the IKK attack. The Count
attack assumes knowledge about the joint frequency of any two keywords as well
as the frequency of each keyword in the dataset under attack.

However, in this section, we propose an inference attack that assumes only
that the attacker knows the frequency of each keyword (attribute-value pair).
We call our attack, the Relational-Count attack. Our attack targets relational
databases by exploiting their structural properties. First we describe the Count
attack and then describe the Relational-Count attack.

The Count Attack. The Count attack [5] assumes knowledge about the joint
frequency (or co-occurrence count) of any two plaintext keywords wi, wj ∈ W
where W is the set of all unique keywords in the target database. It also assumes
knowledge about the occurrence of each keyword w (attribute-value pair) over
all the database documents/records, say size(w). Assume that the number of
unique keywords (or attribute-value pairs) indexed by an SSE scheme is m. Then
the attacker uses the joint frequency knowledge to construct an m × m matrix
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M where its entry M [i, j] holds the co-occurrence value or the joint frequency of
having the ith unique keyword and jth unique keyword together in the database
indexed by the SSE scheme under consideration. The constructed matrix M rep-
resents the background knowledge of the attacker about the encrypted database.
Using the access pattern leakage, the attacker also constructs another matrix C
that represents the observed joint frequency between any two queries intercepted
by the attacker. Obviously, any keyword w with unique result size will be easily
recovered when queried since the size of the result set of its query q, size(q),
will be known to the attacker who will use the knowledge about the frequency
or occurrence of each keyword w to find the keyword whose frequency matches
the result size of q (i.e. find a keyword w such that size(q) = size(w)). The
unique counts approach will recover all the queries corresponding to keywords
with unique result sizes which can be significant in some databases. A query q
with non-unique result size is recovered by creating a candidate list consisting
of all keywords with the same result size as q and then discarding the wrong
keywords from the candidate list by comparing the observed joint frequency
between q and any previously recovered query qk with the prior known joint
frequency between ci and wk where ci is the candidate keyword under consider-
ation and wk is the recovered keyword corresponding to qk. If they are unequal
(i.e. C[q, qk] �= M [ci, wk]), then ci will be discarded from the candidate list.

The Relational-Count Attack. Similar to the Count attack, our attack
assumes that the attacker has knowledge about the frequency of each attribute-
value pair which allows the attacker to recover the queries with unique result
sizes and to add a candidate list for each query with non-unique result size.
However, unlike the Count attack, we do not assume that the attacker has any
knowledge about the joint frequencies between attribute-value pairs. Instead, we
use the following simple observation about the structural properties of relational
databases to filter out the wrong candidates.

Observation 1. If the joint frequency (or the co-occurrence count) between any
two different queries (tokens) is non-zero, then their corresponding attribute
names are different.

In other words, the joint frequency between two queries with the same
attribute name is zero. The observation should be clear from the fact that each
relational database record has only one value for each column or attribute name.
This observation allows us to reduce the list of candidates for a given query with
non-unique result size. Assume that there is an unknown query qi with non-
unique result size, then one can see that a candidate keyword wj = (aj : vj),
where aj is the attribute name and vj is its value, will be discarded if there
is a previously recovered query qk whose attribute name is aj and whose joint
frequency with qi is non-zero. In other words, If C[qi, qk] �= 0, then discard wj ,
where C is the observed joint frequency matrix. This is because the right can-
didate keyword must have the same attribute name as the unknown query qi.
Next, we apply the Count attack and the Relational-Count attack on searchable
encrypted relational databases.
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4 Risks of Using Searchable Encrypted Relational
Databases

In this section, we point out three risks that might occur when protecting rela-
tional databases via SSE schemes. The first risk is breaking query privacy by
a passive adversary with knowledge about the target relational database rep-
resented in the form of joint frequencies between attribute-value pairs and the
frequency of each attribute-value pair (i.e. knowledge of all the database records).
This means that the attacker here is only interested in recovering queries to break
query privacy. The second risk is the possibility of complete record recovery
attack by a passive adversary who has knowledge about the frequency distribu-
tion of attribute-value pairs. The third risk is the possibility of complete record
recovery via record-injection attacks performed by an active adversary with no
prior knowledge about the target database.

4.1 Query and Record Recovery Attacks

One can see that inference attacks on searchable encrypted relational databases
will probably lead to a partial or full record recovery since query recovery directly
translates to partial record recovery in this case. Thus, inference attacks that do
not require the knowledge of all the database records but only the frequency dis-
tribution of attribute-value pairs, such as our Relational-Count attack, are more
interesting from the attacker’s point’s of view since they extend the attacker’s
goal from only breaking query privacy by performing query recovery as done
in the Count attack to gaining new knowledge through partial or full record
recovery.

In the following, we apply the Count and Relational-Count attacks on search-
able encrypted relational databases. Our goal is to firstly break query privacy
using the Count attack which employs a strong attacker who knows almost
all the database records (i.e. so the attacker is able to compute joint frequen-
cies between attribute-value pairs and frequencies of attribute-value pairs) and
then secondly recover complete records using our Relational-Count attack which
employs a weaker attacker who knows only the frequency distribution of the
attribute-value pairs of the target database.

Data Sets. We mount the Count attack over the Census dataset [16], the Bank
dataset [3] and the Adult dataset [15]. These are real world datasets from the
UCI Machine Learning Repository [13]. The Census dataset consists of 299285
records, 40 columns, and 3993 distinct attribute-value pairs when we exclude the
8 missing attribute-value pairs (in total there are 4001 attribute-value pairs but
we do not consider the empty or missing values in our keywords set). The Bank
dataset consists of 4521 records, 17 columns, and 3720 distinct attribute-value
pairs. The Adult dataset consists of 32561 records, 14 columns, and 498 distinct
attribute-value pairs.

Query Generation. We used a standard single-keyword SSE scheme where
a Bitmap encrypted index is used similar to the single-keyword Bitmap index
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scheme described in [1,14,20] to transform each target relational database into
a separate searchable encryption relational database. We conducted four exper-
iments per each target dataset where different sets of random queries within
the target protected database are issued in each experiment. The access pat-
tern leakage (result size + retrieved record IDs) of each query is intercepted
by a passive attacker who combines this knowledge with background knowledge
about the dataset and then execute the Count or the Relational-Count attacks
described above to recover the queries.

Query Recovery via the Count Attack. Table 1 shows the query recovery
results on the three datasets. Three experiments are conducted for each dataset.
One can see that when the number of issued queries increases, the rate of query
recovery also increases. For example, the Census dataset contains 3993 unique
attribute-value pairs and only 77.60% are recovered when 600 queries are issued.
But when all queries are issued as shown in the 3rd experiment, we see that a high
percentage of queries (≈98.1%) are recovered in the Census dataset. So query
privacy is completely broken by the Count attack. Note that the record recovery
rate will be high but the attacker here is only concerned about query recovery
and not record recovery since we assume that the attacker already knows all the
database records.

Table 1. Query recovery results on different relational databases. All queries are issued
in the 3rd experiment. Results are averaged over 3 tests, where queries are chosen
randomly, in the 1st and 2nd experiments. 455/600 indicates an average of 455 queries
out of 600 issued queries were recovered successfully using the Count attack.

Exp. no Census data set Bank data set Adult data set

1 455/600 300/600 135/150

2 1432/1500 1237/1500 230/250

3 3917/3993 3460/3720 466/498

Record Recovery via the Relational-Count Attack. We applied our attack
on the three relational databases described above. Table 2 shows that our attack
recovers only 757 queries out of 3993 queries whereas the Count attack recovers
3917 queries out of 3993 queries. Thus, our attack is not as effective as the Count
attack. However, our attack assumes that the attacker only knows the frequency
distribution of the attribute-value pairs which is a more realistic assumption that
could hold in practice. Table 3 shows that the 757 queries recovered in the Census
dataset allowed us to recover 447 complete records in the Census dataset whereas
the 122 queries recovered in the Bank dataset allowed us to recover only recover
1 complete database record in the Bank dataset. The Bank dataset also has
989 records where 64.99–52% (9–11 attributes) of the attributes are recovered.
The results on the Census displayed in Table 3 show that even recovering as
few as 757/3993 queries allows us to learn a high percentage of records in the
Census data set. For example 109433 records are recovered where only between
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Table 2. The table shows the total number of queries recovered in three relational
databases when all the queries are issued and the Relational-Count attack is used. The
unique recovery column shows the number of queries recovered whose result sizes are
unique and the non-unique recovery column shows the number of queries whose result
sizes are non-unique which are recovered using the Relational-Count attack.

Data set Unique recovery Non-unique recovery Total

Adult dataset 155 81 236/498

Bank 97 25 122/3720

Census 531 226 757/3993

Table 3. The table shows the number of records recovered with the percentage of
attributes recovered (record recovery rate) in each record when all queries are exe-
cuted in the SSE-protected Bank and Census datasets together. 100% Rec. means all
attributes are recovered, 95–85% Rec. means all attributes are recovered except 5–15%
of them have not been recovered, and so on. The entry 708/4521 indicates that around
84.99–74% attributes (i.e. 13–14 attributes out of 17 attributes) of 708 records out of
4521 records of the Bank dataset are recovered. Note that the bank dataset has 989
records where 64.99–52% (i.e. 9–11 attributes) of the attributes are recovered which
is not shown in the table. 4521 ≡ total number of records for the Bank dataset and
299285 ≡ total number of records for the Census dataset.

Data set 100% Rec. 95–85% Rec. 84.99–74% Rec. 73.99–65% Rec.

Bank 1/4521 39/4521 997/4521 2495/4521

Census 447/299285 109433/299285 131253/299285 58152/299285

2 and 6 attributes are missing. This could enable a strong attacker that uses
machine learning to predict the missing values given the 757 records that are fully
recovered. We have not investigated this possibility and we leave it for future
work. Note that we can recover only 149 complete records from the Census
dataset after recovering only the 531 attribute-value pairs with unique result
sizes compared to recovering 447 complete records when we resolve the attribute-
value pairs with non-unique result sizes using our Relational-Count attack. This
shows the effect of our Relational-Count attack in recovering complete database
records.

4.2 Record-Injection Attacks

Zhang et al.’s non-adaptive file-injection binary attack [21] cannot be applied
exactly in searchable encrypted relational databases since we are dealing with
a structured text governed by a relational database rather than unstructured
text. Depending on the relational database under attack, there might be a large
number of records needed to be injected in order to recover all the possible
encrypted queries if the database contains attributes whose values are variables
(not discrete) with a big range. However, if the attacker is concerned about a
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small subset of attribute-value pairs. Then the attacker can inject a number of
records by focusing on some attributes whose values are discrete with a small
range as noted in [21]. This will reduce the number of injected records and will
lead to query recovery and consequently partial record recovery without any
prior knowledge.

We focus here on non-adaptive record injections as adaptive injection attacks
need background knowledge about the target encrypted database and they can
be prevented by using a forward secure SSE scheme [4]. Similar to Zhang
et al. [21], we assume that the attacker can identify the record ID of each
injected record. Let D be a relational database with n records and m attributes
or columns where each attribute is denoted by ai and its cardinality is denoted
by |ai|, 1 ≤ i ≤ m. Assume that the number of records need to be injected in
D in order to cover the whole attribute-value pair space |W| or a target subset
of attribute-value pairs S is l. Suppose that R = r1r2 · · · rl is the search result
on the injected records regarding an observed query q, where ri = 1 iff the ith
injected record is part of the result set of the query q, otherwise ri = 0. Clearly
l ≥ |ai| for all i, otherwise the injected records will not recover all the values
of the attribute ai. Assume that there are t attributes (a1, · · · , at) with the
same cardinality d, then in order to cover all the d · t values one can construct a
mapping that assigns each attribute-value pair to a unique search result string
on the injected records by simply injecting d · t records as follows. Let the first
d records contain all the values of the 1st attribute (i.e. a11, a12, · · · , a1d) and
the other attributes belonging to S are empty. Also, let the second d records
contain all the values of the 2nd attribute (i.e. a21, a22, · · · , a2d) and the other
attributes belonging to S are empty and so on until the last and tth d records
contain all the values of the tth attribute and the other attributes belonging
to S are empty. Now one can see that the search result on the injected records
regarding any attribute-value pair in S will yield a binary string with Hamming
weight one where the location of the i-th active bit in the binary string indi-
cates that the attribute value is located at position i mod d (or last position if
i mod d = 0) in the �i/d�th attribute.

However, one can inject l records, where l is much less than d · t, by injecting
t columns of length l where the search results of all the attribute-value pairs in
a single column have active bits at different positions and all the possible search
results representing all attribute-value pairs are disjoint. In other words, we
need to separate the l-bit binary strings where each l-bit corresponds to a search
result into t disjoint sets where each set Sj has d elements representing the d
attribute-value pairs of the jth column (note that all the t columns have the same
cardinality). Each element in Sj is an l-bit binary string representing a search
result of an attribute-value pair belonging to the jth column. Assume that all the
elements of Sj have the same Hamming weight wj . Assume also that d divides l.
Then, wj must be ≤ l/d in order to have a valid set Sj representing unique search
results. The number of l-bit binary strings of Hamming weight i is

(
l
i

)
. Therefore,

one can look for the smallest l satisfying the inequality
(

l
l/d

)
+ · · · +

(
l
1

) ≥ d · t

and the same time construct a one-to-one mapping between the l-bit binary
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strings of Sj representing the unique search results and the injected columns Cj

of length l for all 1 ≤ j ≤ t.

Concrete Example. The Census dataset discussed above, has 7 attributes with
cardinality 3. By setting t = 7 and d = 3 in the above inequality, one can see
that l = 6 is the smallest integer to satisfy it. Now we need to divide all the
6-bit binary vectors with Hamming weight ≤ 2 (since l/d = 6/3 = 2) into 7 dis-
joint sets where each set Sj holds three (since d = 3) 6-bit binary vectors that
have different active positions. The elements of Sj must contain binary vectors of
Hamming weight two or one as otherwise we will not be able to cover all the d·t =
3 · 7 = 21 attribute-value pairs. One can see that S1 = {100000, 010000, 001000}
is a set whose binary strings can represent the search results corresponding to
the attribute-value pairs injected in the column C1 =

[
a11 a12 a13 ? ? ?

]T where
‘?’ means an empty entry and T is the transpose operator. Let C1 be the first
column injected in our records. When one searches for a11, a12 and a13 the search
results on the injected records will be 100000, 010000 and 001000 respectively.
Now, from S1 we could generate another valid search results set S2 by looking
at the other possible binary strings of Hamming weight one representing valid
search results. There are exactly 3 other possible binary strings, namely, 000100,
000010 and 000001. So S2 = {000100, 000010, 000001} and it represents the
search results corresponding to the attribute-value pairs injected in the column
C2 =

[
? ? ? a21 a22 a23

]T . Let C2 be the second column injected in our records.
Now we consider search results whose binary strings have Hamming weight 2
such as S3 = {110000, 001100, 000011} which represents the attribute-value pairs
injected in the column C3 =

[
a31 a31 a32 a32 a33 a33

]T . Let C3 be the third col-
umn injected in our records. Thus we have three sets and we need to construct
another four sets in order to obtain seven sets that cover all the search results
of the 21 attribute-value pairs. One set S3 has three binary strings of Hamming
weight 2. So there remains another

(
6
2

)− 3 = 15− 3 = 12 binary strings of Ham-
ming weight 2 and we need to divide them into 4 sets S4, S5, S6 and S7 where
each set has 3 elements which have different positions for the active bits similar to
S3. Note that each binary string in S3 have four non-active bits, so interchanging
the location of an active bit with the location of a non-active bit will yield a new
binary string but we need to interchange the location of active bits with the loca-
tion of non-active bits for all the binary strings of S3. So the four sets, S4, S5, S6

and S7, can be obtained by permuting the locations of active bits within each
element in S3. To do so, we need to consider the elements of S3 as columns
of a matrix M3 where the first column is

[
1 1 0 0 0 0

]T , the second column is
[
0 0 1 1 0 0

]T and the last column is
[
0 0 0 0 1 1

]T . In each column of M3, there
are four locations to move the active bits in order to get a new valid and unique
column. However, we want all the new columns to have active bits at different
positions in order to form valid and unique search results (e.g. Si i ≥ 4). To con-
struct the set S4, we change the positions of the active bits in M3 by multiplying
it by a 6× 6 permutation matrix, Pπ4 where the first and third rows of the 6× 6
identity matrix I6 are permuted and also the second and fifth rows are permuted.
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In cyclic notation, the permutation π4 can be written as follows π4 = (13)(25).
Now, M4 = Pπ4 × M3. The first column of M4 is

[
0 0 1 0 1 0

]T . The second

column is
[
1 0 0 1 0 0

]T and the last column is
[
0 1 0 0 0 1

]T . The columns of
M4 form valid search results and thus S4 = {001010, 100100, 010001}. Its corre-
sponding injected column is C4 =

[
a41 a42 a43 a41 a43 a42

]T . Similarly, we form
another 6×6 permutation matrix, Pπ5 by interchanging the first and fourth rows
and also interchanging the second and the sixth rows in the identity matrix I6.
In cyclic notation, the permutation π5 can be written as follows π5 = (14)(26).
The columns of M5 = Pπ5 × M3 gives us S5 = {0000101, 101000, 010010}. Its
corresponding injected column is C5 =

[
a51 a52 a51 a53 a52 a53

]T . S6 is obtained
from the columns of M6 = Pπ6 ×M3 where Pπ6 is a permutation matrix obtained
by interchanging the rows of the identity matrix corresponding to the cyclic per-
mutation π6 = (15)(24). S6 = {000110, 011000, 100001} and its corresponding
injected column is C6 =

[
a61 a62 a62 a63 a63 a61

]T . Finally, S7 is obtained from
the columns of M7 = Pπ7 × M3 where Pπ7 is a permutation matrix obtained by
interchanging the rows of the identity matrix corresponding to the cyclic per-
mutation π7 = (16)(23). S7 = {001001, 010100, 100010} and its corresponding
injected column is C7 =

[
a71 a72 a73 a72 a71 a73

]T . Thus, we can inject only
l = 6 records instead of l = d · t = 3.7 = 21 records in order to cover all the 7
attributes with the same cardinality 3 in the Census dataset. Table 4 shows the
injected 6 records formed by injecting 7 columns yielding unique search results.

Table 4. The table shows that for each attribute-value aij we have a unique search
result on the injected records. Injecting 6 records to cover 7 attributes each with 3
attribute-value pairs. A query for the attribute-value a21 will yield the search result
000100 on the injected records while a query for the attribute-value a71 will yield the
search result 100010.

No a1 a2 a3 a4 a5 a6 a7

1 a11 ? a31 a41 a51 a61 a71

2 a12 ? a31 a42 a52 a62 a72

3 a13 ? a32 a43 a51 a62 a73

4 ? a21 a32 a41 a53 a63 a72

5 ? a22 a33 a43 a52 a63 a71

6 ? a23 a33 a42 a53 a61 a73

Discussion. It is clear that once an attacker is able to inject records then
record-injection will lead to query recovery and eventually could lead to full
record recovery. The above record injection attack works under the assumption
that the attacker can identify the record identifiers of the injected records. This
assumption was also adopted by Zhang et al. [21]. If the client updates one
record at a time, then the attacker will always be able to identify the identi-
fier of an injected records based on the time at which it is stored in the server.
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However, if the client does only batch updates, then an attacker could inject
records in a certain way such that each attribute-value pair has a unique num-
ber of appearances in all the injected records. The file-injection countermeasure
proposed by Zhang et al. [21] which restricts the number of keywords per doc-
ument to a certain threshold T (e.g. T 	 |W|/2) cannot be applied here since
a relational database record has a certain number of keywords (attribute-value
pairs) equivalent to its number of attributes and any restriction would hinder
the work of any application using the searchable encrypted relational database.
So one needs to use a forward secure SSE scheme such as the one proposed
in [4] in order to protect relational databases against adaptive injection attacks
(Note that the above described attacks are non-adaptive attacks but an adaptive
injection attacks similar to the one proposed in [21] can easily be realized).

5 Countermeasures Against Attacks on SSE Schemes

Countermeasures against inference attacks must be used in order to reduce the
their effectiveness. A well known technique is padding which is proposed in [5,14]
as a potential countermeasure to reduce the effectiveness of inference attacks.
Basically, during the setup of the encrypted database, the client adds dummy
record (or document) IDs to each attribute-value pair (or keyword) in the index
in order to hide the actual frequency of the keyword. Also, the client adds an
encrypted dummy record (or document) corresponding to each dummy ID added
in the index. Later, during search, the client filters out the dummy records (or
documents). Experiments in [5], show that a padding level that increases the
index size by 15% for a real world sample dataset and 30% for another real
world sample dataset, does not affect the success rate of the generalized Count
attack [5] which is a slight improvement of the Count attack. It basically does
not depend on resolving queries with unique frequency which will not exist in
a padded SSE scheme but it initially guesses these queries. The detection of a
wrong guess is done during the co-occurrence testing phase which does equality
matches in a window or a range of a fixed size to nullify the noise coming from
the dummy records (or documents) causing false co-occurrence count values.
Thus, the generalized Count attack presented in [5] suggests that padding alone
does not reduce the effectiveness of inference attacks as matches in a range can
be done through the observed co-occurrence matrix. The effect of our Relational-
Count attack can be reduced by padding to reduce the number of attribute-value
pairs with unique result sizes. So we focus here on preventing the Count attack.

Countermeasure Against the Count Attack. In addition to reducing the
effectiveness of the actual query result size by padding, one might think of reduc-
ing the effectiveness of the queries’ observed joint frequency matrix C by forcing
the observed joint frequency between some queries to be zero. One can see that
if qi and qj are distributed in different fragments according to a defined pri-
vacy constraints, then C[qi, qj ] will be zero when each query is executed in only
one fragment and the fragments are not allowed to interact with each other to
evaluate any query. Now an equality match or a window equality match with
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the joint frequency knowledge-matrix M [si, tj ] as done in [5] will never happen
which will significantly reduce the effectiveness of the Count attack. This can be
done by applying vertical fragmentation to a relational database table according
to a pre-defined set of privacy constraints on its columns.

The aim behind the privacy constraints is hiding the association among the
attributes which means that there should be no joint appearance of the attributes
in the privacy constraints [2,9,11]. For example, consider the relation of the fol-
lowing attributes about patients in a hospital: Name, Date of Birth (DOB),
Disease, Medical Doctor (MD), and ZIP. Now one can define the following pri-
vacy constraints c1 = {Name, DOB}, c2 = {Name, Disease}, c3 = {Name, ZIP},
c4 = {Name, MD}, c5 = {DOB, ZIP, Disease} and c6 = {DOB, ZIP, MD}. Now
a privacy constraint prevents some columns from being together, so the privacy
constraint c1 = {Name,DoB} prevents the Name column or attribute from being
together in one fragment with the DoB column since they might reveal together
more information about a specific person if one of them is recovered using an
inference attack. We note that the privacy constraints should be used to produce
the minimal amount of fragments possible using the heuristic algorithm proposed
in [9]. For instance, a valid minimal fragmentation for the relation and privacy
constraints defined above is the following F = {F1 = {Name}, F2 = {DoB,ZIP},
F3 = {Disease,MD}}. After applying the fragmentation, we need to ensure that
each query is executed in only one fragment in order to prevent an attacker mon-
itoring all the fragments (or collaborative honest-but-curious fragment servers)
from gaining any information about the correlation of the records between any
two fragments which will obviously break the pre-defined the privacy constraints
set by the data owner. Moreover, we need to have different record IDs for the
same original record at each fragment in order to achieve security against an
attacker monitoring all fragments (or collaborative honest-but-curious fragment
servers) and also apply secure random shuffling for the fragment’s records. After
that, we can apply the same SSE scheme in each fragment using a different key.
This ensures that applying inference attacks on each fragment is not effective
since the encrypted attributes within each fragment does not provide sufficient
information if they are recovered. Note that the generalized Count attack is effec-
tive in each fragment and it could probably recover entire records in each frag-
ment. However, the fragments are defined according to the privacy constraints
which means that the recovered records are unlinkable and thus will not reveal
useful information. If all fragments are recovered, the attacker will not be able to
link or combine them to recover the original record before fragmentation. This
is because each fragment is shuffled differently and each fragment’s record has a
different record ID secretly pointing to the same original record.

Security Gain. Vertical fragmentation using privacy constraints prevents full
record recovery but the fragmented SSE scheme will still leak the access pat-
tern inside each fragment as well as leaking the attribute of the queries in each
fragment. We performed one experiment to show the security gain when we
employ vertical fragmentation via privacy constraints. We split the Bank dataset
into three fragments. The first fragment contains five attributes, namely, “age”,
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“job”, “marital”, “education” and “duration”. The second fragment contains
seven attributes, namely, “default”, “balance”, “housing”, “loan”, “contact”,
“day” and “month”. The third fragment contains five attributes, namely, “cam-
paign”, “pdays”, “previous”, “poutcome” and “y”. The Count attack was not
able to resolve 130/961 queries in the first fragment, 1264/2405 queries in the
second fragment, and 105/354 queries in the third fragment. In total, there are
1499/3720 queries that have not been recovered in all the three fragments com-
pared to only, 3620 – 3460 = 260, queries that have not been recovered when ver-
tical fragmentation is not employed as shown in Table 1 where 3460/3720 queries
are recovered. The increased number of unresolved queries after fragmentation
shows the impact of vertical fragmentation as an effective countermeasure in
reducing the strength of the Count attack. We note here that in some scenarios,
vertical fragmentation alone might not be enough to prevent the Count attack,
for example in a small dataset such as the Adult dataset, the Count attack will
always recover most of the fragments and the security gain will only be in pre-
venting the attacker from linking the recovered records and combine them to
recover one or more original records. Such a gain can be useful to reduce the
effect of the Relational-Count attack where record recovery is the one of the
attacker’s goals. However, an attacker who is able to perform the Count attack
is concerned only about query recovery and not record recovery. Therefore, we
need to employ padding also as an additional countermeasure needed to reduce
the effectiveness of the Count attack.

Privacy Constraints vs. Record Injection Attacks. Privacy constraints
can not prevent record injection attacks but they can reduce their effectiveness
since the attacker will not be able to re-construct and combine the recovered
fragments to form the original plaintext records even if all the records of each
fragment are recovered since each fragment has a different record ID secretly
pointing to the same original record before fragmentation. Note that an attacker
injecting records that do not have any prior knowledge about the target database
will not be able to link and combine the fragmented records in case all fragments
are recovered.

Performance Gain. The drawback with the fragmentation approach is in the
extra computational work done when a multi-keyword query whose keywords or
attribute-value pairs exist in different fragments. But this can be improved using
a fragmentation algorithm which takes usage data into account [11] which will
allow us to find a suitable minimal fragmentation providing efficient execution
for multi-keyword queries and the same time meeting the security demands set
by the privacy constraints.

6 Conclusion

In this paper, we pointed out that inference and record-injection attacks pose a
real threat to searchable encrypted relational databases. We proposed the use of
privacy constraints together with padding on top of any SSE scheme in order to
reduce the effectiveness of the inference attacks proposed in [5,14].
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Universidade Federal de Santa Catarina, Florianópolis, Brazil

Abstract. Patient-centered medical systems promote empowerment of
patients, who can decide on the accesses and usage of their personal
data. To inspire a sense of trust and encourage the adoption of such sys-
tems, it is desired to allow one to verify whether the system has acted
in accordance with the patients’ preferences. However, it is argued that
even audit logs and usage policies, normally used when verifying such
property, may already be enough for one to learn sensitive information,
e.g., the medical specialists a given patient has visited in the past. This is
not only damaging for the patients, but is also against the interests of the
medical system, which may lose back the trust earned and gain a bad rep-
utation. Verifiability should not come at the expense of patients’ privacy.
It is, therefore, imperative that these systems take necessary precautions
towards patient’s information when providing means for verifiability. In
this work we study how to realize that. In particular, we explore how
searchable encryption techniques could be applied to allow the verifica-
tion of systems in a private fashion, providing no information on patient’s
sensitive data.

Keywords: Verifiability · Audit · Compliance · Privacy · Searchable
encryption · Patient-centered medical systems

1 Introduction

Verification is, by the pure meaning of the word, “the process of establishing the
truth, accuracy, or validity of something”1. Verifiability is regarded in literature
as a property desired in many information systems (e.g., [11,12,25]). It is also
presented as one of the properties composing the principle of transparency, which
is said to promote accountability and to realize people’s right to privacy [36].

Verifiability has been studied as a mean for compliance with data access
and usage policies [31]. It is presented from two perspectives: preventative and
1 Definition taken from the Online Oxford Dictionaries.
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detective. The preventative ensures that policies are enforced in IT operations.
Thus non-compliant actions are prevented from even happening. The detective
approach focus in validating the actions a posteriori.

The two approaches are not conflicting. In fact both can be combined in a way
that the detective approach gives evidences that preventative techniques are in
place and working properly. In some cases the combination of the two approaches
is even mandatory. For example, medical systems usually need to be flexible and
allow for emergency exceptions, such as break-the-glass. In these systems the
preventative approach alone cannot enforce compliance. Detective approaches
need to be in place in order to verify for obligations after the exceptional accesses
happened.

In the medical systems domain, verifiability (also called auditability) has
been explored with regard to access control (e.g., [14,24]). Even though there
are solutions proposed for verifying access of personal data in medical systems
(e.g., [20,21,32,33]), to the best of our knowledge, none do that while ensuring
the details about patient’s information are kept confidential [20,37]. In fact,
according to Butin and Le Métayer [7], this is the most commonly used argument
against verifiability in the context of personal data protection.

Allowing patients to manually verify compliance with policies is possible, but
is not ideal. It would overwhelm them with the technical charge. A good ver-
ifiability solution in the medical domain should be automatically executed. To
demonstrate good faith and commitment towards the fair use of personal data,
it is desired that medical systems allow the verification process to be executed
independently. In a way that the patient can choose to trust the system with
the verification task, or to execute it with an external auditing tool. Moreover,
it is imperative that the verifying solution ensures the privacy of the subjects
involved. No personal and private information should be leaked during the ver-
ification process, even if unintentionally. However, those requirements are not
easily achieved together. Commonly, verifiability solutions imply in the disclo-
sure of information while privacy advocates the opposite. The independent ver-
ification requirement, while fostering the trust on the system may also become
a privacy vulnerability if proper measures are not in place.

In this work we demonstrate how independent verifiability can be realized in
a private fashion. We model an initial theoretical solution for detective compli-
ance through verifiability in a patient-centered medical system. We use search-
able encryption techniques for that. Our scheme allows for the access logs from
medical system to be independently checked by a third party tool without leak-
ing private information. It also protects the verification conditions by encrypting
the queries executed by this third-party. Moreover, empowering users with the
ability of privately checking compliance with access policies, helps supporting
the confidence these users have in the system.

In what follows we present the related works and review the literature on
searchable encryption techniques in Sect. 2. In Sect. 3 we contextualize and
present the basic concepts on medical systems, and in Sect. 4 we model the
requirements and the entities involved in our scheme. Section 5 deepens into the
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details of our scheme, while in Sect. 6 we present a high-level analysis of the
complexity and security of our proposal. Finally, in Sect. 7 we conclude our work
and present the future directions.

2 Related Works

A survey from Reuben et al. [31] classifies the existing automated audits for
privacy compliance verification. They study several solutions and separate them
according to their auditing goals. The authors highlight three main goals: 1. audit
for ex-post obligations – which regards compliance with after-the-fact obligations
that cannot be verified beforehand, such as mandatory deletion of data after a
fixed amount of time; 2. audit for permitted exceptions – which includes excep-
tional actions that happen in case of emergency (break-the-glass policies); and
3. audits for access legitimacy – which intends to demonstrate compliance with
the data owner’s preferences.

Audits for ex-post obligations do not necessarily imply on disclosure of per-
sonal data. In fact Butin and Le Métayer [7] propose a formal framework for
verifying compliance in a privacy friendly way. They check compliance with
data protection policies based on logs free of any personal data. However, they
are not able to demonstrate compliance with access policies. They only verify
properties such as “delete requests are fulfilled before expiration of request ful-
fillment delay”, and “no personal data should appear in an abstract state after
its global deletion delay has expired”.

Audits for permitted exceptions and for access legitimacy pose more challenge
for the privacy of personal and sensitive data. In most of the cases they mandate
the analysis of audit logs, which contain information on who accessed what kind
of information from whom [20,37]. In this work we intend to demonstrate how
one could conduct these kind of audits in a private manner. For this purpose
we show a model to automatically verify the latter (access legitimacy). Our
scheme is capable of identifying accesses that do not match the user’s preferences.
Which can be later manually investigated for permitted exceptions (break-the-
glass policies, for example). Automatic verification of permitted exceptions in a
private manner would require a more in-depth study that is outside of the scope
of our work. It will be subject of our future work.

In [20] authors point out security and privacy issues involved in making
access policies and audit logs available in medical domain. They advocate that
policies and logs, even though not containing personal and sensitive information
(only references to it), may be enough for revealing details that should be kept
private. Someone in possession of such policies and logs can gain knowledge
of what kind of treatment a patient has received in the past, or what types
of medical data are available. Authors advocate that by properly controlling
the access to policies and logs it is possible to solve this privacy issue. They
propose an adapted Information Accountability Framework [15] in which only
the patient (data owners), medical professionals and medical authorities (e.g.,
government agency conducting audits) can access the policies and logs with
restrictions according to their roles.
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However, this work is not suitable to be applied to our context. In [20] inde-
pendent auditing processes, one of our goals, are not considered. Even if this
work was adapted to allow independent verification, the principle of privacy
would still not be realized. External entities would still have access to more
information than necessary to the purpose of verification. Restricted access con-
trol when applied in an uncontrolled environment (possibly insecure) does not
suffice to prevent leakage of personal information.

While in [20] the confidentiality of sensitive information is realized only by
controlling access to policies and logs, Walters et al. [37] propose a different
solution for the problem: to operate on encrypted audit logs.

In [37], authors assume a scenario in which a system is being audited but
the controllers of the system do not wish to share information from the audit
logs with other entities. Similarly, the authors also believe it is possible to learn
sensitive details about the system and the users by analyzing the logs. For exam-
ple, one can instantly learn what actions were conducted by a given user. The
authors build an scheme for conducting searches in encrypted audit logs. For
each log registered, the system should define a few keywords with which this log
can be found. It then distributes searching capabilities for those keywords only
to specific authorized persons. Each log is encrypted with a key that can only be
retrieved by persons that possess searching capabilities for, at least, one of its
keywords. Consequently, this scheme only allows authorized persons to decrypt
the audit logs.

The audit process presented in [37] cannot be fully independent though. It
relies on the system providing searching capabilities to the auditor for the given
set of actions he or she can audit. Despite that, this scheme is also not in accor-
dance with the privacy principle. In our scenario, in order to verify compliance
with the patient’s preferences the auditor would search for log entries match-
ing the set of allowed actions and be able to decrypt them, in detriment of the
patient’s privacy. Ideally the external entity should not be able to decrypt, only
learning whether or not a given log entry matches a search (and consequently is
an allowed action) would suffice.

There are several other works that, similarly to the one mentioned above,
suggest schemes for privately processing personal data. The majority of those
use searchable encryption techniques for that. In what follows we present the
most relevant of those works while reviewing basic concepts of the technique.

2.1 Searchable Encryption

Searchable encryption (SE) techniques were initially introduced in the context of
outsourced databases. With the growth of the amount of data generated, came
an increasing need for outsourced options to store it. However, one cannot fully
trust outsourced databases and may want to keep its data confidential. One pos-
sible solution to guarantee confidentiality involves encrypting the data before
the storage on the database. Only the ones in possession of the key can decrypt
it and learn its contents. However, denying the database access to the informa-
tion increases the difficulty of performing queries and selectively retrieving data.
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Searchable encryption techniques try to approach this problem by allowing the
database to execute queries on encrypted data.

Search on encrypted data was initially introduced by Goldreich and
Ostrovsky [18], and Song et al. [35]. It is, to this day, an active research area with
three main research directions [5]: to improve efficiency; to improve security; and
to enhance the expressiveness of the search. Usually we see a trade-off between
them. For example, guaranteeing a stronger security usually compromises the
efficiency.

An important scheme based on searchable encrypted index was first pre-
sented by Goh [17] and later considered in other works (i.e. [8,29,30] and many
others). For each encrypted data, keywords are extracted and those are used to
generate an encrypted index. In the outsourced database scenario, the indexes
are generated by the client and sent with the respective encrypted data to the
database. Later, the client can send an encrypted query and the indexes will
help the database/server to search over the encrypted data without the need of
decryption. Indexes and queries should not leak information about the encrypted
data, while guaranteeing that clients obtain what they are searching for.

There are specific techniques for searching on public key [2,3,16] and symmet-
ric key [10,17,35] encrypted data. The last one is known as searchable symmetric
encryption (SSE). Several works presented solutions for searching single key-
words [9,10,37]. Other schemes propose a search using more expressive keyword
searches, such as conjunctions [4,6,19,34], ranges [4,34], or even dealing with
keyword occurrence frequency [6]. This improves the expressiveness and security
of searches, as opposed to perform several single-keyword searches and combin-
ing the results [29]. A few even more expressive schemes support general Boolean
searches with conjunction, disjunction and negation of keywords in disjunctive
normal form (DNF) and/or conjunctive normal form (CNF) [8,13,23,26,29,30].
We demonstrate later that these works are of a special interest since it is possible
to model our problem into queries in a disjunctive normal form (DNF).

Symmetric searchable encryption are usually applied to scenarios where data
owners want to query their own encrypted data stored in some third party server.
In our work we propose the use of SSE techniques in a slightly different scenario,
where data owners (patients) share their data with medical services and use SSE
to independently verify accesses, while guaranteeing the confidentiality of their
personal data.

It is necessary to note though, that we have a few different (and more
relaxed) requirements in comparison to the conventional application of SSE
in outsourced data storage. The first is related to the amount of data stored,
searched and returned: while outsourced data applications may have to deal with
large amounts of data, our application deals only with the event registers (logs)
related to one specific patient (as shown in Sect. 3). We assume these logs to be
in a smaller scale. This implies that the use of SSE algorithms with non-optimal
search time is not prohibitive in our application. Second, the patient already
has access to all encrypted data and uses the verifier only for auditing. There-
fore, if the search returns all the data, which is an expected result for the cases
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where no violation of the policy was made, we can save on communication and
avoid returning everything again to the client, i.e. we can return just a positive
message instead.

3 Technical Aspects of Medical Systems

The term “medical systems” is broad and encompasses several types of systems
with different goals: clinical data management systems, telemedicine systems,
hospital information systems, pharmaceutical, etc. In our work we only distin-
guish those which are patient-centered. The goal of these systems is to allow the
patient to be in control of the personal data being processed. From this point
on we refer to patient-centered systems simply as medical systems.

One example of a patient-centered medical system is Microsoft HealthVault2,
an online platform that allows users to gather, use and share health information.
The information stored in the system can be provided manually by the user;
or automatically by mobile applications or compatible medical devices. In this
system the users are able to control which information is stored, deleted, and who
will be able to access or edit their data [28]. Other example is the national Dossier
de Soins Partagé3 (Shared Care Dossier in English) from Luxembourg. In this
system the goal is to facilitate the communication between health professionals
intervening with a patient. Health data is uploaded to the system by authorized
institutions, e.g., laboratories and hospitals, and shared with a default set of
persons (the patient, the doctor assigned to him or her and the team related to
them). But similarly to the Microsoft HealthVault, the patients have full control
over sharing of data, being able even to revoke the default access privileges.

Generally speaking we can assume these patient-centered medical systems
to adopt a discretionary access control system (DAC) [22]. In DAC systems the
owner of a resource, in our case the patient, may grant or revoke access to other
entities (users) based on their identities. We do not affirm that every patient-
centered medical system implements DAC exactly as described in [22]. We just
claim their access control method resembles DAC and could be modelled using
it. For the sake of simplicity we assume discretionary access control policies as
a set of fixed size clauses as shown in Eq. (1), where idi is the identity of the
person authorized to realize an action actionj on the patient’s data.

π = {(idi, actionj)} (1)

It is, however, unrealistic to assume one access control system to be the per-
fect fit for every variation of medical systems. We do not attempt doing that. We
instead chose to model our solution based on DAC systems to demonstrate that
private verification can be accomplished even in systems implementing highly
malleable and granular access control mechanisms. We present arguments to

2 https://www.healthvault.com/.
3 https://www.esante.lu/portal/fr/espace-patient/le-dsp-au-quotidien,199.html?

https://www.healthvault.com/
https://www.esante.lu/portal/fr/espace-patient/le-dsp-au-quotidien,199.html?
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endorse this claim in Sect. 5. And later, in Sect. 7, we discuss how our solution
can also handle other types of policies richer in attributes.

Our simplified policy is only suitable to represent patient-centered medical
systems though. In general these systems do not handle the definition of pre-
conditions, post-conditions, obligations and other more complex policies that
may be found in other types of medical system. To add more representativeness
to the verification one could also explore revocation of access rights, which would
mandate clauses to be time anchored. However, this is out of our scope. We
restrict ourselves to the study of static policies and verification without temporal
aspects.

Every action a person realizes on the patient’s data, whether authorized
or not, should be registered as an event in the audit logs. Similarly to how
we defined the policies, we do for the register of events. We do not go into
details on how they are in fact implemented because that may vary in different
implementations. But according to a recent work [38] which surveys log files in
the medical domain, it is reasonable to assume at least the following attributes
would have to be registered in order to provide verifiability: 1. event identification
(action) – the action performed; 2. date and time (t); 3. actor identification (id)
– who performed the action; 4. object identification (ob) – the data that suffered
the actions. Some standards are more complete and consider more attributes (i.e.,
RFC 3881 [27]), but in general these four attributes are commonly observed in
medical systems [38]. We assume the register of events simply as the set of logs
as displayed in Eq. (2).

L = {(action, t, id, ob)} (2)

4 Model Description

As described in Sect. 3, our scenario assumes a patient-centered medical system.
Users of such a system should be able to verify whether their data has been
accessed in compliance to the access policy. We assume three different players:

– Medical System: Stores patient’s data, which can be accessed by its owner
(the patient), and few predetermined professionals. This decision is agreed
with the patient through an access policy.

– Patient: May want to verify if specific statements of the policy are being
enforced, or search for possible violations.

– Verifier: Third party tool or mechanism responsible for verifying compliance
of the medical system with regard to specific statements of the agreed policy.

Additionally, we also assume the ideal solution would take into consideration
the following requirements:

– Automated verification: The medical system should provide means for the
patients to avoid the overburden of manually verifying logs;

– Independent audit: Allowing a third party to verify compliance with pri-
vacy policies demonstrates good faith and commitment towards the fair use
of personal data;
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– Privacy: During the auditing, patients’ privacy should be ensured – only the
strictly necessary information to determine compliance should be disclosed.
From this information one should not be able to infer any personal details
about the patients.

Patients should access and be able to export logs of actions performed on their
data. However, data and the logs are private and should only be accessed by its
owner (the patient) and a few designated medical staff. Therefore, both patient
and the medical system are interested on keeping communications confidential.
We chose to encrypt data with a symmetric key that is only known by the
medical system and the patient. Keys differ for each patient of the system.

Patients may require the logs related to their data to check if the agreed policy
is being followed. They can decrypt all logs received and verify by themselves,
or they have the option to execute this task with an independent verifier. For
that, the patient simply redirects the encrypted logs to the verifier. Since the
verifier does not have access to the key used for encryption, a (good) traditional
symmetric encryption is enough to guarantee that this verifier will not learn any
information about the events these logs represent. Finally, in order to allow the
verifier to operate over the encrypted logs while protecting the patient’s privacy,
we propose the use of symmetric searchable encryption (SSE).

4.1 Trust Model

The medical system we model is assumed to be honest, but not trustworthy. In
systems that implement break-the-glass, for example, the policy may be relaxed
and this can cause abuses. It may also be the case that the access control mech-
anism implemented does not flawlessly represent the policy agreed prior the
disclosure of data. In both cases the medical system does not act ill-intentioned,
but the patients’ data can still be misused, and this may cause mistrust. Hence,
the medical system’s goal is to regain the trust of its users. This is realized by
allowing them to independently verify whether the system has acted in compli-
ance with the agreed policy. By doing that, we also avoid requiring the patient
to place major trust in one single entity.

Our attacker model also assumes an honest-but-curious verifier, which will
not actively behave dishonestly, but my retain any information disclosed to it. We
also assume an external attacker, who will try to extract or infer information
on the patients. The attacker is assumed to have access to the verifier, and
any information exchanged between the other players. Because our goal is to
demonstrate how independent verifiability can be achieved in a private manner
(without leaking any sensitive information), we are only interested in what an
attacker can learn through the use of the verifier. The capabilities of the attacker
towards the medical system are not explored in this work.

In order to avoid a possible collusion between medical system and verifier, we
suggest the implementation of several verifiers by different entities. In this way,
the patients can double-check with different verifiers in case of suspicion. Verifiers
would avoid collusion with medical systems in order to maintain reputation, and
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medical systems would avoid collusion with verifiers as that can be identified by
other verifiers. Verifiers can also be tested by the users with a set of logs and
policies for which the expected results are known. Even though these approaches
do not demonstrate the verifier correctness, they provide stronger evidences that
can be used as criteria to support the choice of verifier.

It is important to note that we do not investigate into the matter of how
to ensure the logs’ accuracy and integrity. This topic is out of the scope of our
work. We assume the medical system is honest and has its own reliable and
trustworthy logging mechanism, and that it securely stores and handles data
and logs. The following section presents in details our proposal for verification
using searchable encryption.

5 Solving Verification with Searchable Encryption

Symmetric searchable encryption (SSE) schemes are popular in cloud settings.
Data owners store encrypted data in an outsourced database, perform encrypted
queries, and receive the encrypted data they searched for. We propose the use
of SSE in a different setting: to verify whether the medical system is compliant
to the access policy agreed with the patient. This verification is done through
an external and independent audit. In our scenario, the verifier plays the role
of the outsourced cloud service (even though it is not necessarily remote) and
the patient is the data owner. We have added a third role played by the medical
system, that is responsible for encrypting the data and generating the search
indexes.

Next we present our scheme dividing it into the encryption of logs and index
generation, the query generation and policy verification.

5.1 Encryption and Index Generation

For each patient that requires his or her logs, the medical system performs a
key agreement process, where system and patient agree on a symmetric key k to
be used for encryption and decryption. After that, the medical system encrypts
each log individually and generates an index for each one of them, summarizing
its content. The index includes all the keywords that can be searched in the
encrypted data. Specifically for our scenario, the index of a log should contain
the keywords related to the policy, such as the action registered by that log
and the identity id of the user who performed the action (see Eq. (2)). The
index generation depends on the SSE method used, but a common requirement
is that no keyword in the index should be exposed. This is usually achieved by
encrypting or through the use of scrambling-related techniques [6,13,17,29]. We
abstract the process of encryption and index generation in Algorithm1.
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Algorithm 1. EncryptLogs(logs[n])
Input: array of logs with n entries
for each i ∈ {1, . . . , n} do

c[i] = Enc(k, logs[i])
keywords = extractKeywords(logs[i])
index[i] = generateIndex(k, keywords)

end for
Output: c, index

5.2 Query Generation

The medical system sends indexes and encrypted logs to the patient, who can
redirect this information to the verifier for auditing purposes. On the patient’s
side, the main computation is related to the query generation. The query indi-
cates which clauses the patient wants to verify. By generating one query con-
taining each clause in the policy π (see Eq. (1)), it is possible to determine
compliance. We present here Algorithm 2 as a generic algorithm for query gen-
eration.

In a traditional SSE approach, the data owner would generate an encrypted
query and the database should simply execute this query over the indexes and
return the respective encrypted data that matches the search. We adopt a similar
approach. Here we assume that the patient has access to the policy agreed with
the medical system. The patient then generates an encrypted query that contain
the clauses from the policy, in order to check if the actions registered in the logs
comply with the policy agreed. If the policy and the key used to encrypt the logs
and indexes do not change, this query could also be further reused by the same
patient.

We represent our query as a Boolean expression in a disjunctive normal form
(DNF). We assume a simple policy containing only a set of s identities and t
actions as keywords, and relations in the format (idi, actionj) representing a
clause of the policy allowing a person identified by idi to execute actionj . To
search for all logs that match the policy, the patient can generate a query in the
DNF form as follows: (idi1 ∧actionj1)∨. . .∨(idis ∧actionjt), where (idi∧actionj)
is an allowed relation of the policy.

We abstract the query generation with a call to “generate query”. The details
of this generation depend on the SSE method, but it basically identifies the
clauses from the DNF expression and perform specific computations depend-
ing on the method used. Since we don’t want the verifier to obtain information
about the encrypted logs, some computation must be performed on the query
as well to guarantee its confidentiality. This is a reasonable assumption consid-
ering that several SSE algorithms already guarantee that by using encryption or
scrambling-based techniques [8,23,29]. As an example, the query generation by
Moataz and Shikfa [29] consists on converting keywords to vectors, and applying
consecutive multiplications, sums and divisions to them. The confidentiality in
this case is guaranteed by incorporating random integers in the query computa-
tion (see [29, Sect. 4.2] for more details).
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Note that the query generation is quite flexible, since it allows the patient
to search for a range of different options. For example, he or she can search for
all logs that match the policy, for some combination of specific clauses from the
policy, or even for logs that do not match the policy by simply negating the
search expression. It is important to note that most SSE schemes (specially the
most traditional ones) search for single keywords on encrypted data. Here we
require the use of a more expressive SSE that supports Boolean queries, such
as the solutions proposed in [8,23,29]. Algorithm 2 summarizes the process of
query generation.

Algorithm 2. GenerateQuery(π)
Input: Policy π = {(idi, actioni)} with m clauses
DNF = empty string
for each i ∈ {1, . . . , m} do

DNF = DNF ‖(idi ∧ actioni)
if i �= m then

DNF = DNF ‖∨
end if

end for
Q = generateQuery(DNF)
Output: Q

Recall that we created indexes for the encrypted logs with the keywords
(idi, actionj) contained in each log. The verifier can then search through the
logs indexes and identify the ones that match at least one of the conjunctions
(idi ∧ actionj) from the query. Here we considered small policy clauses, but if
necessary, we can easily adapt the query to be more expressive. For example, by
considering extra information such as identification of the objects that suffered
the actions. In order to incorporate extra keywords in the search, these keywords
also need to be incorporated in the policy and during the generation of the logs’
indexes.

5.3 Policy Verification

After the verifier receives the encrypted logs, respective indexes, and the query
Q, it has enough information to perform the verification for policy compliance.
The search process consists on going through the encrypted logs to find the ones
that match the query. For each log, the verifier obtains the corresponding index
and use it to check if it matches the query. Here we call this comparison “test”
and the logs that “pass” the test are added to the vector of results. If a log pass
a test, it means that this log contains at least all the keywords from one of the
conjunctions of the query, which represents compliance with one of the clauses
of the policy.

Note that the search depends on the SSE method as well. Some constructions
propose visiting each encrypted data and its indexes [29], while others present
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some more efficient search methods [13,23,30]. After the search, the verifier sends
to the patient a list of encrypted logs that match the query. As logs, indexes,
and queries are encrypted, the verifier is not able to learn anything about the
confidential information. As an example, the verification by Moataz and Shikfa
[29] consists on visiting every index and comparing it to the query. Generally
speaking, every index is multiplied by the query and the ones that output a
result equals to “1” correspond to logs that satisfy at least one clause from the
policy. Algorithm 3 summarizes the our verification process.

Algorithm 3. Search(Q, c[n], index[n])
Input: Encrypted query Q, vector c with n encrypted logs, and their indexes
for each i ∈ {1, . . . , n} do

r = test(Q, index[i])
if r = true then

result.add(c[i])
end if

end for
Output: result

The results can be simplified by returning the number of logs that match
the query, or a custom message for the special cases, such as “All logs match
your query”, or “No logs match your query”. If further investigation is desired,
Algorithm 3 can easily be adapted to return the logs that caused a mismatch.
If the patient is interested in learning the cause for the mismatch he or she can
decrypt those logs (using the key k) and understand what event is not compliant
to the policy. Alternatively, these logs could be redirected to the medical system
in order to inquire for a justification. How to better display and interpret the
results, or how to request for justification are definitely relevant issues, but we
understand they would require a research on their own. We refrain from delving
into those matter in this work.

6 Complexity and Security Analysis

Several searchable encryption schemes are designed for the settings of big data
applications, where there is a large amount of encrypted data and it is, for
example, unfeasible to search through every single record. Our scenario is slightly
different and some of the assumptions in those settings are not applicable here.
In what follows we discuss how technical aspects of SSE methods impact our
solution. We first examine aspects of computational complexity of those methods
(Subsect. 6.1) and later we discuss about their security (Subsect. 6.2).

6.1 Complexity

The efficiency of our scheme is directly related to the efficiency of the SSE
method used. However, the use of non-optimal SSE methods, such as [8,29],



98 T.B. Idalino et al.

while prohibitive for big data applications, is acceptable in our scenario. In fact,
SSE techniques are very well suited for our application. Our verifier processes
only the audit logs related to one specific patient. These logs are assumed to
be small pieces of data and in a much smaller scale than in cloud settings.
Consequently, the efficiency problems presented in outsourced databases are not
applicable here. Moreover, the generation of keywords in our application does
not require complex calculations. The keywords are defined by the policy and
logs, and can be automatically extracted from those.

Other more efficient SSE methods, such as the ones with sub-linear search
time [23,30], could also be considered here. In this case, the efficiency would
depend on the query we are searching for. When searching for all logs that
match the policy, it is expected the result to be close to the total amount of
logs n. Hence, our search complexity will end up being close to O(n) as well.
However, when searching for the logs that do not match the policy, or that match
some specific patters, we should expect a small number of results. In this case,
methods that have search time close to the number of results may be the right
choice. We assume the complexity of our worst-case scenario to be O(n).

Intuitively one would tend to believe that the most efficient SSE methods on
the literature are the best fit. However, there are trade-offs on these methods
that need to be consider. Some of these methods use complicated structures and
increase the spacial complexity, and others end up revealing parts of sensitive
information. For a more extensive discussion on the trade-offs related to expres-
siveness of the query, efficiency, and security, the reader may want to refer to [5].
The choice of the method is not straightforward, it needs to be carefully studied.
However, we suggest that in cases where the number of logs (n) is reasonable, it
is a good practice to prioritize secure over efficient methods, even if they offer
search complexity of O(n).

6.2 Security

The confidentiality of personal information in our scheme is provided by the
chosen symmetric key encryption algorithm. To avoid brute force and the most
common attacks it is recommended to use encryption algorithms that have at
least 112 bits of security (i.e. AES) [1]. Moreover, the use of deterministic encryp-
tion algorithms commonly implies in the leakage of patterns [5]. Therefore, the
most secure SSE schemes are usually non-deterministic.

The security of the scheme is not only given by the encryption algorithm
though, it also depends on the security of the SSE method itself. The SSE
methods in the literature present a concern on the amount of information that
can be inferred by the results of the search. Although they do not reveal directly
the content of the encrypted data, the majority of these schemes will not prevent
probabilistic analysis if the same data is repeatedly searched. This is a problem
common to any application of this nature.

In our application the verifier returns all the results that match an spe-
cific query. This means that the verifier knows which encrypted logs are being
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returned, but not their plain content. The same applies to the attacker we con-
sider in our model, since we assume it has access to the verifier and any exchanged
message. There are SSE methods that aim to hide all information. In this way, the
verifier is not even able to detect which logs are being returned to the data owner.
However, these SSE methods are usually based on oblivious RAMs (ORAMs),
and are not efficient in practice (for more details, see survey [5]).

We understand that the searches will usually be related to the logs that
match or do not match the policy. By analyzing the number of results from
an specific query one could guess which search was performed. The search with
several results is likely to be a search for all logs that match the policy, and the
search with a few results is probably for the logs that do not match the policy. In
this sense the verifier (or attacker) would be able to identify which logs match/do
not match the policy, but would not be able to learn their content. We do not
consider this as a threat to our scheme. A well chosen encryption algorithm
would make sure that encrypted logs and queries are not available in plain text
(they are encrypted or scrambled depending on the SSE scheme). Nonetheless, it
is important to consider this case when applying our solution to other scenarios.

It is also important to note that any technical limitation of the underlying
schemes (symmetric encryption or SSE) also reflects on a limitation of our pro-
posed solution. We can cite, for example, the case of compromised or revoked
private keys. In this case every data encrypted with that key is assumed to be
compromised as well. A known solution to neutralize the potential damage is
to reduce the lifetime of the key, and for example, use session keys instead of
a single private key. In our scenario this solution would come at the cost of
recalculating the queries, which could no longer be reused. This is the classical
trade-off between efficiency and security.

Furthermore, a slight modification of our scheme is also needed to cope with
the problem of compromised keys. Compromising one session key is enough for
breaking privacy, even if forward and backwards secrecy are maintained, and
no other message is obtained. The damage cause by compromising one session
key is proportional to the amount of logs encrypted with that key. Therefore, to
minimize this problem, only a small subset of logs should be verified at a time,
i.e. the logs of the day or past week. Note that the maximum number of logs that
are encrypted by the same session key is determined by the security guarantees
required for specific applications of our scheme.

7 Discussion and Conclusion

In this work we modeled a scheme for verifying data access in the context of
patient-centered medical systems. Our scheme is based on Symmetric Searchable
Encryption methods and suggests how to meet the three requirements we deem
imperative in the medical context: 1. automated verification – patients should not
be required to manually verify audit logs; 2. independent audit – demonstrates
the honest intentions of the medical system and helps building reputation; and
3. privacy – protects the right for privacy of the patients.
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We propose the introduction of an entity for auditing the Medical System
on behalf of the Patient. This entity is the Verifier. The implementation of the
verifier as a Transparency Enhancing Tool controlled by the patient or by a third
party would suffice to accomplish requirements for automated independent audit
(requirements 1 and 2).

The privacy principle poses the biggest challenge as it conflicts with the other
two requirements. To be able to verify whether a system acted in compliance
with a given policy the verifier needs access to audit logs. However, those logs
may reveal private information about the patients [20,37]. Revealing them is
outside of the patient’s interest. But not revealing them would mean the patient
needs to trust the medical system with the verification. Obliging the patient
to place major trust in one single entity. In this paper we demonstrate that
Symmetric Searchable Encryption (SSE) can be adapted to provide the right
balance between the requirements.

By using SSE methods we allow the verifier to operate on encrypted logs.
In this way the interests of the patient are protected. Our scheme defines that
compliance is achieved whenever a log entry matches, at least, one clause in the
policy. This is possible since the policy describes every allowed action in the
system. The SSE method allows then the verifier to search for those matches
over encrypted audit logs and the obfuscated policy clauses. This ensures the
verifier, and consequently the attacker, will not learn any sensitive information.
The only information the one can learn is the number of logs that match (or
not) a given search. This is, however, acceptable in our scheme since the logs are
encrypted and indistinguishable from each other, and the policy is obfuscated.
We understand that this is a necessary trade-off between privacy and verifiability
in medical systems. Moreover, this does not violate requirement 3, which foresees
a minimal disclosure to determine compliance.

One may question the simplicity of our policy model. Only the identity of
the actor and the action executed are considered. This was deliberately done
to simplify the description. Our model supports other types of access control
policies and any number of attributes. This can be realized by computing extra
keywords in the indexes and conjunctions of the query. The model we propose
can handle the verification of actors’ roles, attributes, sections of personal data,
for example. Given the medical system supports such attributes in its policy and
register them in the audit logs.

At this stage, our proposal is limited to the identification of log entries that
match and the ones that do no match a given policy. The latter can then be man-
ually investigated for permitted exceptions (break-the-glass policies), or other
events also relevant in medical systems, such as delegation. Including these events
in our verifier is a natural evolution of our proposal. As our next step we plan
to investigate this matter.

We also foresee the formalization of our scheme as a future work. A good
starting point is the work from Butin and Le Métayer [7]. We plan to extend that
model now accounting for access legitimacy. To do so we will have to take a more
careful look into the representation of events (logs) and authorized actions (pol-
icy), and to define protocols for obtaining and transferring these data between
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the players. We will also need to investigate deeper on the SSE schemes in order
to select the most suitable ones. The extension of searching capabilities is directly
dependant on the evolution of these schemes.

Finally, another interesting evolution of our work is to allow the verification
of data access even in the presence of a dishonest medical systems. A possible
starting point is to study how to ensure the logs integrity and accuracy. This
is important to prevent medical systems from intentionally removing or altering
logs that do not comply with the policy.
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Abstract. While user-centric privacy settings are important to protect
the privacy of users, often users have difficulty changing the default
ones. This is partly due to lack of awareness and partly attributed to
the tediousness and complexities involved in understanding and chang-
ing privacy settings. In previous works, we proposed a mechanism for
helping users set their default privacy settings at the time of registra-
tion to Internet services, by providing personalised privacy-by-default
settings. This paper evolves and evaluates our privacy setting predic-
tion engine, by taking into consideration users’ settings preferences and
personal attributes (e.g. gender, age, and type of mobile phone). Results
show that while models built on users’ privacy preferences have improved
the accuracy of our scheme; grouping users by attributes does not make
an impact in the accuracy. As a result, services potentially using our
prediction engine, could minimize the collection of user attributes and
based the prediction only on users’ privacy preferences.

Keywords: Privacy preference · Privacy setting · Machine learning

1 Introduction

Usage of personal data is increasing as it is believed to promote innovation.
However, it also raises privacy concerns. In many cases, a service delivered to
users is provided with embedded privacy functionality that can limit the shar-
ing of personal data by the user in specific scenarios or given situations. For
instance, Facebook provides the user with the privacy setting functionality that
enable users to manage which other users can browse his/her posts, pictures,
etc. Similarly, modern smartphones (e.g. Android and iPhone) provide users the
possibility to control which applications can access different resources including
personal or privacy related data. In future, such settings may be used not only
for permitting to provide personal data but also for deciding some privacy level
such as anonymization level. Generally speaking, personal data is anonymized in
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higher level, the usability becomes lower. So if starting with the most privacy-
friendly pre-setting, the users may not be able to use high quality services unless
they manually change their settings. However, many users do not change the pri-
vacy settings, either because of the effort required or due to the lack of a proper
understanding of privacy settings. Thus, to address this, general frameworks,
such as PDS (Personal Data Store) [4] and PPM (Privacy Policy Manager) [14]
have emerged, which provide the user with a generic privacy manager for various
types of personal data and service providers.

When providing a privacy function, the default settings are very important
because many users may not spend the time and effort to set their privacy
preferences adequately. It is especially difficult to manually configure appropri-
ate privacy settings as the combinations of service providers, types of personal
data, and the applications for personal data have become so vast. Hence, it is
important to simplify this task of setting privacy-preserving default preferences
by providing tailoring mechanisms that will address individual privacy concerns
and translate these concerns into personalized privacy settings to users.

In our initial efforts to overcome this, we proposed a conceptual design and
a mechanism based on a Support Vector Machine (SVM) for the automatic
generation of personalized privacy settings [17]. In our basic approach we have
designed a questionnaire of 80 questions that considered the combination of
16 different data types shared for 5 different utilization purposes and services.
The basic approach delivered a minimal set of (5) questions to each user at
registration time, and from the user’s answers, it predicted the default privacy
settings for each user.

In this paper, we present a more advanced scheme and a prototype that
improve the accuracy of the privacy setting prediction, based on the grouping
of users’ attributes and setting preferences. Thus, the contribution of this paper
is twofold. First, we present an extension and improvement of previous work
[17], which was focused on selecting optimal and minimal number of questions
to predict the privacy settings. In this work, we further elaborate and give an
in-depth analysis on the improvement mechanisms by considering user attributes
and privacy preferences. Second, to showcase the applicability of the proposed
models, we implemented a prototype of the prediction engine in R using SVM
based models in order to predict user privacy settings.

The rest of the paper is organized as follows. Section 2 provides an overview
of related work in the area of privacy preferences. Section 3 describes the main
methodology and approach of the SVM-based prediction scheme proposed in [17]
and the questionnaires designed and used to derived initial settings database.
Section 4 describes the experimental evaluation for both user attributes and pri-
vacy preferences. Section 5 discusses the results of the evaluation. Section 6 draws
the main conclusions and points out future directions for research.

2 Related Work

In privacy policy management the burden of checking on and maintaining privacy
policies has been identified as a major issue. In one study, Madejski et al. [15]
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showed that a serious mismatch existed between intentions for privacy settings
and real settings in an online social network service. Users are commonly required
to check the privacy policies of a given service offered by a service provider
before starting to use the service. Thus, each service provider prepares a privacy
policy for each service. Because it is frequently the case that users must check a
large number of privacy policies, it becomes irksome and difficult to understand.
Consequently, users are not able to determine or customise the privacy policies
for themselves. Furthermore, if a user does not agree with the privacy policy of
a service, the user simply cannot use the service.

In this regard, Solove suggested that the privacy self-management model
cannot achieve its objectives, and it has been pushed beyond its limits, while
privacy law has been relying too heavily upon the privacy self-management
model [20]. Moreover, other studies such as the experimental study conducted by
Acquisti and Grossklags [1] demonstrated users’ lack of knowledge about tech-
nological and legal forms of privacy protection when confirming privacy policies.
Their observations suggest that several difficulties obstruct individuals in their
attempts to protect their own private information, even those concerned about
and motivated to protect their privacy. This was reinforced by authors in [18]
who also supported the presumption that users are not familiar with technical
and legal terms related to privacy. Moreover, it was suggested that users’ knowl-
edge about privacy threats and technologies that help to protect their privacy
is inadequate [12]. In this regard, Guo and Chen [11] proposed an algorithm to
optimise privacy configurations based on desired privacy level and utility pref-
erence of users.

Fang et al. [9,10] have proposed a privacy wizard for social networking sites.
The purpose of the wizard is to automatically configure a user’s privacy settings
with minimal effort required by the user. The wizard is based on the underly-
ing observation that real users conceive their privacy preferences based on an
implicit structure. Thus, after asking the user a limited number of carefully
chosen questions, it is usually possible to build a machine learning model that
accurately predicts the user’s preferences. This approach is very similar to ours.
The difference is the target dataset. Fang et al. treated real data of Facebook, so
the variety of the items was limited and the number of the participants is small.
We treat more general data items and the number of the participants is larger
because our approach does not focus on a specific service such as Facebook.

Some languages to describe privacy policies have been presented in [3,7,8].
Backes et al. examined some comparisons of enterprise privacy policies using for-
mal abstract syntax and semantics to express the policy contents [2]. Tondel and
Nyre [22] proposed a similarity metric for comparing machine-readable policies.

There is some existing research about learning privacy preferences. Berendt
et al. [5] emphasised the importance of privacy preference generation and Sadah
et al. [19] suggested that machine learning techniques have the power to generate
more accurate preferences than users themselves in a mobile social networking
application. Tondel et al. [21] proposed a conceptual architecture for learning
privacy preferences based on the decisions a user makes in their normal inter-
actions on the web. They suggested that learning of privacy preferences has the
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Table 1. Types of personal data

No. Data type

1 Addresses and telephone numbers

2 Email addresses

3 Service accounts

4 Purchase records

5 Bank accounts

6 Device information (e.g., IP addresses, OS)

7 Browsing histories

8 Logs on a search engine

9 Personal info (age, gender, income)

10 Contents of email, blog, twitter etc.

11 Session information (e.g., Cookies)

12 Social Info. (e.g., religion, volunteer records)

13 Medical Info.

14 Hobby

15 Location Info.

16 Official ID (national IDs or license numbers)

Table 2. Usage purposes

No. Data purpose

A Providing the service

B System administration

C Marketing

D Behavior analysis

E Recommendation

potential to increase the accuracy of preferences without requiring users to have
a high level of knowledge or willingness to invest time and effort in their privacy.
Kelley et al. [13] showed preferences for a mobile social network application.
Preference modeling for eliciting preferences was studied by Bufett and Fleming
[6]. Mugan et al. [16] proposed a method for generating persona and suggestions
intended to help users incrementally refine their privacy preferences over time.

3 SVM Based Privacy Setting Prediction Scheme

This section introduces the SVM-scheme used as the basis of our approach, as
well as the questionnaires designed in order to get the initial privacy settings
database.

3.1 Design of Questionnaires

We designed a questionnaire survey focused on the acceptability from users to
provide personal data, considering a combinations of 16 data types (cf. Table 1)
for 5 utilization purposes (cf. Table 2). The data types and usage purposes were
selected from the items defined in P3P [23]. In this work, we prioritized to
make them close to P3P categories. We recognize that there are some misleading
and uneasy to understand points, hence we will modify them next evaluation.
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Table 3. Distribution of participants

Gender Age Ratio (%)

Male 20s 10.0

Male 30s 10.0

Male 40s 10.0

Male 50s 10.0

Male Over 60 10.0

Female 20s 10.0

Female 30s 10.0

Female 40s 10.0

Female 50s 10.0

Female Over 60 10.0

Table 4. Distribution of types of mobile
phone

Mobile phone Ratio (%)

iPhone 23.5

Android 30.0

Others 1.71

Not smart phone 44.9

Additionally, other attributes related to demographics and type of mobile device
used were considered because they might have possibility to find any special
features in the groups separated with them.

We collected responses from 10,000 Japanese participants and they answered
our questionnaires by web-based system. As it is shown in Table 3 the distrib-
ution of the participants was uniform over all the categories. Each participant
evaluated all 80 combinations of types of personal data and usage purposes on a
Likert scale of 1 to 6 (“1” for strongly disagree, and “6” for strongly agree.). The
distribution of mobile devices used by participants is shown in Table 4. Table 5
shows the distribution of the results. As can be observed from Table 5, the per-
centage decreases with the increasing acceptance of providing personal data. For
the sake of simplicity, the obtained results were merged initially into the follow-
ing three classes on a scale from 0 to 2, i.e.: i) 1 & 2 into scale 0; ii) 3 & 4 into
scale 1; and, iii) 5 & 6 into scale 2. In future, we also plan to perform experiments
using a different merging approach. The differences between questions are shown
in Fig. 1.

Table 5. Distribution of result

Likert scale 1 2 3 4 5 6 Total

Number 317497 238826 145952 67629 24583 5513 800000

Ratio 0.3969 0.2985 0.1824 0.08454 0.03073 0.006891 1

3.2 Comparison Based on Attributes

The trend based on the attributes of participants is shown in Fig. 2. Between
genders, the trend for males is more positive than for females, that is, the ratios
for answering “2” (means positive for providing personal data) and “1” (means
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Fig. 1. Differences between questions

Fig. 2. Tendency on attributes

neutral) for males are about 1% and 2% higher than those for females, respec-
tively. Based on age, the most positive age group is in their 20s, while the most
negative group is in their 40s. The ratios for those answering “2” and “1” in
their 20s are about 3% and 6% higher than for those in their 40s, respectively.
For the type of mobile phone, the ratio for answering “2” for iPhone users is
about 1% higher than that for Android users, while the others are similar.

3.3 SVM-based Prediction Scheme

This paper considers as a basis only the first SVM-based scheme introduced in
[17] and evaluates the change of accuracy when the dataset is either grouped by
user attributes or grouped by user setting preferences. Thus, we used the same
dataset detailed in Sect. 3.1 for the evaluation. A high level description of the
prediction scheme is shown in Fig. 3. The main procedure is as follows:
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Fig. 3. The framework of our prediction scheme

1. An existing user settings database is the input to a prediction model generator
in order to generate an optimal question set and the prediction model.

2. A user is provided with the question set (5 questions).
3. The user’s answers to the selected questions are then the input to the pre-

diction model so that the privacy setting prediction engine generates the
corresponding (personalized) prediction values.

4. The prediction values are then recommended to the user.

The abstract of the prediction-model-generating algorithm is shown in Fig. 4.
The prediction-model-generating algorithm is detailed below.

1. The existing user settings database is split into learning data and test data.
2. Questions are randomly selected for prediction.
3. SVM models are generated for the rest of the questions (75) in the learning

data by using selected questions in the learning data as feature vectors.
4. The SVM models that were created in the previous step are evaluated using

the test data.
5. The process is repeated to evaluate for an adequate number of combinations

of questions, and the combination of questions achieving the highest accuracy
as the selected questions is adopted.

4 Experimental Evaluation

Appropriate parameters need to be chosen such as the number of learning data,
test data, items for prediction of answers, and combinations of items for evalu-
ation in order to efficiently make experiments in various conditions. Generally,
if a greater number of learning data items and combinations of items for evalu-
ation are used for prediction, higher accuracy can be expected, but meanwhile,
the processing time (especially critical for generating the SVM model) is also
increasing.
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Fig. 4. The abstract of our prediction algorithm

Table 6. Experiment settings

OS Windows8.1

Memory 8GB

CPU intel core i7-4770 @ 3.40 GHz

Language, Library R, e1071(SVM), doSNOW(Multi core processing)

A preliminary experiment was performed for choosing the appropriate val-
ues for these parameters. The experimental parameters are shown in Table 6.
This experiment was performed using parallel processing with two machines.
In this experiment, the parameters of SVM were not adjusted, and the default
parameters such that γ = 0.2 and cost = 1 were always used.

In order to discover an adequate number of samples of combinations of items
and finding the most suitable combination for prediction of answers, the accuracy
is evaluated by varying the number of samples of combinations from 1,000 to
10,000 in increments of 1,000 and fixing the number of learning data, test data,
and items for prediction of answers at 100, 50, and 5, respectively. Learning data
and test data were randomly chosen from the original dataset twice and called
dataset A and dataset B. For each dataset, we randomly choose samples of com-
binations of items, evaluate all combinations, and find the best combination and
its accuracy. After five evaluations, we regard the average of accuracy of the five
evaluations as the accuracy of the dataset. The results show that 10,000 samples
of combinations are sufficient because the maximum differences in accuracy in
dataset A and B are only about 0.46% and 0.67%, Fig. 5.

As a second step, in order to discover an adequate number of test data, the
accuracy is evaluated by varying the number of test data from 500 to 5,000 in
increments of 250 and fixing the number of learning data, items for prediction,
samples of combinations of items at 100, 5, and 10,000, respectively. Learning
data from the original dataset are randomly chosen 14 times, as samples of
combinations of items, and called datasets A to N. For each dataset, we randomly
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Fig. 5. Influence of the number of samples of combinations

Fig. 6. Influence of the number of test data

choose test data from original dataset for ten times, evaluate all combinations
of items, and find the best combination and its accuracy. After ten evaluations,
we regard the average of accuracy of the ten evaluations as the accuracy of the
dataset. The result is shown in Fig. 6. The result shows that 1,000 test data are
sufficient because the variance is about 0.00007 when the number of test data is
750, the variance is about 0.00001 when the number of test data is 1,000, and
the variance does not decrease much with further increases of the number of test
data above 1,000.

For learning data, the accuracy is evaluated by varying the number of learning
data from 50 to 500 and fixing the number of test data, items for prediction of
answers, samples of combinations of items at 1,000, 5, and 10,000, respectively.
Test data are randomly chosen from the original dataset five times, as samples
of combinations of items, and called datasets A to E. For each dataset, we
randomly choose learning data from original dataset for ten times, evaluate all
combinations of items, and find the best combination and its accuracy. After
ten evaluations, we regard the average of accuracy of the ten evaluations as the
accuracy of the dataset. The results show (Fig. 7) that the accuracy linearly
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Fig. 7. Influence of the number of learning data

increases with the increase in size of learning data, hence the number of learning
data is set to 100, considering the processing time for evaluation.

Finally, in order to discover an adequate number of items for prediction, the
accuracy is evaluated by varying the number of items for prediction from 2 to 10
and fixing the number of learning data, test data, and samples of combinations
of items at 100, 1,000, and 10,000, respectively. We randomly choose learning
data and test data from original dataset for five times, evaluate all combinations
of items, and find the best combination and its accuracy. After five evaluations,
we regard the average of the accuracy of the five evaluations as the accuracy of
the dataset. The results show (Fig. 8) that the increase of accuracy is reduced
when the number of items for prediction is greater than six, hence the number
of items for prediction is set at five.

From the previous results, the parameters in this experiment are set as shown
in Table 7. Note that the SVM parameters are not adjusted, and the default SVM
parameters are used such that γ = 0.2 and cost = 1 both in this section and in
Sect. 4.1 and 4.2.

Regarding the computation time, the process of selecting the best combi-
nation of items from 10,000 combinations, requires about 4,013 seconds with a
single-core computation in the environment shown in Table 6. Using the same
setup, the process of generating the prediction requires about 0.32 s. Note that,
the process of choosing the best combination does not affect the user experience,
thus, even with larger numbers it could be neglected; furthermore, the overall
computation time could be reduced by using parallel computation.

4.1 Evaluation by Attributes Grouping

In this section, the original data set is grouped by the participants’ attributes
such as gender, age, and type of mobile phone. The accuracy is evaluated in order
to generate the prediction model from the grouped data set. The parameters
used for the evaluations are the same as in Sect. 4. Note that the size of learning
data or test data does not decrease even if the data set is divided into small
subsets. Learning data and test data are randomly chosen from the grouped
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Fig. 8. Influence of the number of items for prediction

Table 7. Parameters in this experiment

# learning data 100

# test data 1000

# items for prediction 5

# samples of combinations 10000

γ (Parameter on SVM) 0.2

cost (Parameter on SVM) 1.0

subset 10 times, as samples of combinations of items, and the average of the
accuracy is evaluated in the 10 trials. The result is shown in Table 8. Note that
on the type of mobile phone, the item “other smart phone” is omitted because
the number is too small.

According to the results, in all the cases where the original data set is grouped
by gender, age, and type of mobile phone, the total accuracy decreases compared
to the original approach (data set not grouped), though there are some categories
in which the accuracy increases.

4.2 Evaluation by Privacy Preferences

We selected the K-means algorithm, and used it to observe the participants’
answer preferences. The number of clusters is varied between 1 and 10. For
instance, the case where the number of clusters is 4 is shown in Fig. 9.

The results show that there are two characteristic clusters: Cluster 1 and
Cluster 4. The participants in Cluster 1 tend to answer “0” (means negative),
and the participants in Cluster 4 tend to answer “1” (means neutral) for almost
all the questions. It is easy to determine to which cluster a person belongs,
e.g., Cluster 1, Cluster 4, or another cluster, because it is only necessary to ask
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Fig. 9. Tendency of each cluster
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Table 8. Accuracy by grouping by attributes

Not grouping Accuracy

Total 0.8415

Gender Male 0.8364

Female 0.8348

Total 0.8356

Age 20s 0.8073

30s 0.8421

40s 0.8519

50s 0.8511

Over 60 0.8243

Total 0.8353

Type of mobile phone iPhone 0.8248

Android 0.8282

Other smart phone

Not smart phone 0.8445

Total 0.8325

his/her basic privacy attitude directly, for example, “Would you prefer that your
personal data never be provided at all?”. If accuracy is improved by grouping
the original data set by clustering on the answer preferences, it may be possible
to improve our scheme by adding only one question that may determine to which
cluster a person belongs. Hence in the next subsection, the case is evaluated with
the original data set divided into Cluster 1, Cluster 4, and the other clusters,
and each prediction model is generated for each cluster.

4.3 Evaluation by Grouping of Clusters

The parameters used for the evaluations are the same as for Sects. 4 and 4.1.
Learning data and test data are randomly chosen 10 times from the grouped
subset, as samples of combinations of items, and the average of the accuracy is
evaluated in the 10 trials. The case when applying the prediction model from
the whole data set to each cluster is compared with the case when applying each
prediction model from the data set grouped by each cluster to each cluster. The
result is shown in Table 9.

Results in Table 9 show that the improvement in accuracy is less than 1% for
Cluster 1 and Clusters 2+3, while the improvement for Cluster 4 is about 5%
and the total improvement is about 1%.
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Table 9. Evaluation in grouping by clustering

Cluster Using model from all data Using models from divided data

(Previous scheme [17])

Accuracy Ratio Accuracy × Ratio Accuracy Ratio Accuracy × Ratio

1 0.9698 47.10% 0.456776 0.9738 47.10% 0.45866

2+3 0.7088 38.50% 0.272888 0.7126 38.50% 0.274351

4 0.7767 14.40% 0.111845 0.8237 14.40% 0.118613

Total 0.841509 Total 0.851624

5 Discussion

Results based on privacy preferences (Sect. 4.2) show that it is possible to
improve the accuracy of the prediction scheme by grouping based on clustering of
the answer preferences and generating prediction models for each cluster. How-
ever, results based on users’ attributes (Sect. 4.1) show no improvement, this may
be, because there are less differences in the answer preferences tendency among
the different categories of users. For instance, the answer preferences for those
aged in their 20s and 40s show no significant difference, as it can be obeserve in
Fig. 10.

Table 10. Evaluation in the case dividing Cluster 2 and 3

Cluster Using model from all data Using models from divided data

(Previous scheme [17])

Accuracy Ratio Accuracy × Ratio Accuracy Ratio Accuracy × Ratio

1 0.9698 47.10% 0.4568 0.9738 47.10% 0.4587

2 0.7617 21.50% 0.1638 0.7855 21.50% 0.1689

3 0.6420 17.00% 0.1091 0.6768 17.00% 0.1151

4 0.7767 14.40% 0.1118 0.8237 14.40% 0.1186

Total 0.8415 Total 0.8612

Regarding the results in Sect. 4.2, accuracy is improved for Cluster 4; how-
ever, no significant improvement is obtained for Cluster 1 and Clusters 2+3. The
reason why the accuracy is not improved for Cluster 1 may be that sufficiently
high accuracy was already achieved from using the prediction model generated
from the whole data set because the ratio of answering “0” (i.e., negative) is
very high (about 96.8%). The reason the accuracy is not improved for Clusters
2+3 may be that the prediction model is generated from mixed data with two
clusters with different tendencies. Results of the additional evaluations, where
Clusters 2+3 are split into Cluster 2 and Cluster 3 from the evaluation are shown
in Table 10. These results show an improvement of accuracy of about 2.4% and
3.4% for Clusters 2 and 3, respectively. These results raise the possibility for
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Fig. 10. Tendencies of 20s and 40s

improving the accuracy by subdividing the clusters even further based on the
answer preferences.

6 Conclusions

In this paper, we proposed and evaluated the applicability of SVM-based models
to predict default privacy settings of users at the time of registration to service
providers. Furthermore, we evaluated the improvement in accuracy of a privacy
setting prediction scheme when the machine learning data sets were grouped
based on users’ attributes and setting preferences. First, we evaluated the case
where the data sets were grouped by gender, age, and type of mobile phone; how-
ever, the accuracy was not improved. In terms of privacy protection, this result
shows that the collection of additional user attributes could be minimized. We
then evaluated our scheme by grouping privacy setting preferences using the
K-means algorithm, from the results we could observe an improvement in accu-
racy. Future work will focus on enhancing the prediction accuracy, for instance
by trying a different combination when merging the classes. We also plan to trial
the model in real world scenarios; i.e. by integrating our prediction engine to an
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online service such as a social network site. We plan to analyze the behavior of
users and collect their feedback regarding the usefulness and expected accuracy
of the prediction engine. We also plan to execute some statistical tests on the
significance of this improvement. Additionally, we would also like to investigate
the impacts of the predicted settings with respect to the regulatory require-
ments, such as GDPR or the law of personal data protection in Japan, of service
providers and the rights of users.
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Abstract. We propose a new definition for privacy, called δ-privacy,
for privacy preserving data mining. The intuition of this work is, after
obtaining a result from a data mining method, an adversary has bet-
ter ability in discovering data providers’ privacy; if this improvement is
large, the method, which generated the response, is not privacy consid-
erate. δ-privacy requires that no adversary could improve more than δ.
This definition can be used to assess the risk of privacy leak in any data
mining methods, in particular, we show its relations to differential pri-
vacy and data anonymity, the two major evaluation methods. We also
provide a quantitative analysis on the tradeoff between privacy and util-
ity, rigorously prove that the information gains of any δ-private methods
do not exceed δ. Under the framework of δ-privacy, it is able to design
a pricing mechanism for privacy-utility trading system, which is one of
our major future works.

1 Introduction

Privacy is a high-profile public issue that attracts attention from the entire soci-
ety. Information collectors and/or processors, such as Internet business, market
consulting companies, and governments, are eager to collect as much information
as they could to discover people’s behavioral patterns. They acquires information
from a large number of people, then extract useful knowledges (e.g., statistics
and patterns) from the data set using statistical methods and/or data mining
techniques. However, data mining on genuine data would be harmful to data pri-
vacy, data providers are not willing to commit their sensitive data to a untrusted
data collector.

The goal of privacy preserving data mining is to extract knowledge from a
data set, while maintaining data contributor’s privacy. However, there is a trade-
off between knowledge discovering and privacy preservation: the more knowledge
discovered from the data set, the higher possibility that the privacy is leaked.
To preserve privacy, a data mining method should hide a certain amount of
information before giving them to public.

This work was done while this author was studying in The Ohio State University.
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There are two major classes of privacy protection methods in knowledge
discovering, one is input perturbation, which pre-process the input data to “de-
privatize” them, then extract knowledge from the modified data; the other is
output perturbation, which generates the true result on the original data set,
but modify it before publishing.

Input Perturbation. Input perturbations are also called data anonymity, the idea
was first proposed by Sweeney [23]. A database is divided into different equiva-
lence classes with a “identifying tag,” records that fit the identifying information
will fall into that class. Then those classes, along with the original private data
from each record, are published. In that case, even if an adversary knew a tar-
get’s identifying information and locates it in a equivalence class, he cannot
determine which one is it because there are multiple records having the same
identifying tag.

Sweeney proposed a rule for grouping similar records, called k-anonymity [23],
it requires each class to hold at least k records, such that even if an adversary
can identify that a target falls in one class, he only has 1/k chance to identify
the target record in the class. However, having k entries in a class is not enough,
if everyone in a class has the same private data, an adversary can still learn
the secret. l-diversity [17] is proposed based on k-anonymity, requiring that each
equivalence class should contain k records and l distinct values of private data.
t-closeness principle [13] is then developed based on k-anonymity and l-diversity,
it further requires the distribution of private data in a equivalence class should
be close to that in the whole data set. See Definition 10 for more details.

Output Perturbation. Instead of modifying the input data, output perturbation
methods modify the data mining results. Differential privacy [6,7] is a privacy
constraint on how to change the true result to prevent privacy leak. The result
should be “de-privatized” such that any adversary is not able to distinguish
whether it is generated from a data set that contains the target record, or from
a data set that does not contain the target. If the target is not in a data set, the
data mining result does not contain any information about the target, therefore,
adversary is not able to learn any privacy of the target from such a unrelated
result; if a data mining result “looks like” such a unrelated result, an adversary
is not likely to discover useful fact about the target either.

Our Contribution. In this paper, we propose a metric that measures the largest
possible privacy leak in a knowledge discovering process, and provide a new
definition of privacy, called δ-privacy, that restricts the privacy leak in a data
mining process. Compared with existing privacy definitions, δ-privacy is from
an adversary’s perspective; by studying adversaries’ behavior, we can tell how
they are going to harm privacy, that is the most direct way to assess the risk of
privacy leak. Under this framework, we are able to tell the data providers what’s
the risk that their secret is learned by an adversary, and in the meantime, we
can tell the data collectors how much information they could acquire. We also
show the following:
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1. Our framework can be used to evaluate any privacy preserving data mining
algorithms; in particular, we show the relation between δ-privacy and existing
privacy definitions, namely, if a method satisfy ε-differential privacy [6], it
will also satisfy δ-privacy with δ = ε (Lemma 2); if a data anonymity method
satisfies t-closeness [13] w.r.t. variational distance, it also satisfies δ-privacy
with δ = t (Lemma 3).

2. Utility and privacy are zero-summed in the sense that the maximum utility
gained by the data processor is bounded by the maximum privacy leak allowed
(Theorem 1). To obtain more information from the data set, data processors
need to ask the data provider to increase the privacy loss limit, i.e., δ. To the
best of our knowledge, this is the first work that quantitatively proves this
idea.

Informally speaking, if a data mining method is δ-private, then any partial
privacy of data providers are protected, in the sense that no adversary can tell
the secret much better than random guessing. We model a partial privacy of a
target record r as a binary-valued function priv on r. An adversary discloses the
secret fact by calculating priv(r). We assume that the adversary is well-informed,
he is aware of all publicly accessible information of r, he knows the intrinsic
knowledge of priv, i.e., the distribution of priv over the records in the database.
He makes queries to the database, obtains result m (which is generated by a
privacy preserving data mining method) to discover more knowledge, then he
outputs one bit as the prediction of priv(r). We say the data mining result reveals
privacy if given m, the adversary can compute priv(r) with higher success rate
versus that before he gets the result. More generally, an adversary A computes
priv(r); his success rate increases after he gets m. This difference in probability
is the improvement of A after getting m, it reflects how much privacy A learns
from m. We use this difference as the indicator of privacy leak and say a data
mining method is δ-private if the privacy leak is always smaller than δ.

Our research focus on large scale databases, which enroll enough samples
from the real world. Therefore, the distribution of priv(r) over the records in the
database is close to that over the whole human population. This distribution
is an important prior knowledge for adversaries to predict priv on a particular
target.

The utility of a data mining method is the quantity of information that one
could learn from the data mining result, while the utility gain is the utility minus
the intrinsic utility, which can be achieved without querying. This research shows
that privacy loss and utility gain are zero-summed, the maximum knowledge that
can be extracted is no more than δ. To get more utility, data processor should
convince (using money) the data providers to increase the limit of privacy leak.
This enables “privacy trading” in the future: data providers can put a price tag
on their data based on the risk of privacy leak, and the data user can determine
the amount of information to purchase based on how much utility he could get
from the data mining process.
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2 Preliminaries

Records and Tables. A record is composed of fields, each field contains one
attribute of the record. More specifically, a record is a member of a Cartesian
product F � F1 ×F2 ×· · ·×Fk, where Fi is a finite set of all possible values for
a field. A table X is a collection of records. There are 2 different types of fields:

1. identifiers, such as name, social security number, or other information that
uniquely identifies a record in the database, or quasi-identifiers, such as
address, sex, etc. which can help to, albeit not uniquely, identify a record
in the database.

2. sensitive data, the information that the data contributors want to keep secret
from the public.

Take the farmer’s survey database (Table 1) as an example, gender, age, zip
code, and owned acres are quasi-identifiers, the combination of those fields can
be used to identify a farmer. Note that those fields are accessible to public:
gender and age are not considered secret to a farmer; his address and how many
acres he owns are available in county auditor. If an attacker knows a farmer in
person, he is able to get all those facts. On the other hand, the rented acres and
rental rates are sensitive fields in this database, they are not publicly accessible.
Also, because they are directly related to farmers’ income, farmers would like to
keep them secret. In this paper, we consider identifiers and quasi-identifiers as
public fields, which are accessible to public, and consider sensitive data as secret
fields, which should be kept secret from the public.

Table 1. The Original Farmers Database. In this table, gender, age, zip code and
owned acres are quasi-identifiers; rented acres and rental rate are considered secret.

Gender Age Zip code Owned acres Rented acres Rental rate

Female 43 43111 100 120 130

Male 37 42102 551 1100 140

Male 35 43110 120 91 125

Male 56 43208 625 110 180

Male 31 43315 220 630 175

Male 51 43111 64 0 NA

Female 45 43102 250 2000 200

Male 37 43215 320 1200 200

Male 41 43215 580 400 170

Male 25 43102 200 200 150

Queries. A query is a question or request for information to the database man-
agement system (or database for short). We regard it as step-by-step instruc-
tions which retrieve information and/or discover knowledge from the database.
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Traditionally, when given a query, the database follows the all instructions in
the query, then returns the result as response.

In our research, there is no constraint on the query, an adversary can ask
any question. Also, the adversary is allowed to ask multiple questions, and the
same question can be asked for multiple times. See Sect. 4 for more discussion.

Privacy-Preserving Data Mining Methods. We regard a privacy preserv-
ing data mining method M as a mechanism to generate responses to queries.
M(q,X ) takes as input one query q and a database X , it produces a result of
q, but that result should not reveal privacy of the records in X . Obviously, if
it exactly follows the instructions in q as a traditional database does, it is not
safe to data providers’ privacy because adversaries can design queries to retrieve
secret data he wants. To protect privacy, M would either (1) follow the instruc-
tions in q but add noise to the result, or (2) follow the instructions but perform
them over the de-privatized table, or (3) takes other possible approaches that
would not follow the instructions but still generate a response.

Usually, M is a randomized algorithm, the message generated by it is a
random variable. We denote by

m ← M(q,X )

the messages/transcripts generated by M and sent to A.

3 Attacker Model

To define privacy, we first discuss what information an adversary wants to learn,
and what prior knowledge he already has. In our discussion, we always assume
that an adversary, who wants to disclose partial privacy of records in the data-
base, is well informed, which means (1) he knows all the public information, e.g.,
the identifying information, of the target, and (2) he holds intrinsic knowledge,
i.e., he know how normal people behave. To discover more knowledge about the
target, he makes query to a database, which runs privacy preserving data mining
algorithms to answer queries. Finally, he makes a judgment on the target. In this
section, we will explain the above concepts.

What to Learn. In a database, sensitive fields contains private information
of a record. If any adversary is able to learn any partial information about a
secret field (not necessarily the whole field), it is considered a privacy leak. Take
the farmers’ survey as example (see Table 1), rented acres and rental rates are
secret fields. Adversaries may not know exactly how many acres a farmer rents,
but they are more interested in partial information like “does Bob rent over 200
acres” or “is Alice’s rental rate in between 90 to 110 dollars” or “is Eve’s rental
acres below average.” Conceptually, a partial privacy is a statement about the
records in the database. If an adversary can correctly determine whether the
statement is true or false, we say the adversary discloses the partial privacy of
the target record.
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We model such partial privacy as privacy predicates. A privacy predicate
priv : F �→ {0, 1} is a binary-valued function, its input is a record r (including
all fields), its output is either true or false on some statement about r. If the
statement is true, then priv(r) = 1, otherwise priv(r) = 0. An adversary is then
an algorithm computing priv(r) based on his knowledge about r.

Not every predicate is a privacy predicate. Computing priv on r should involve
at least one bit in the sensitive fields; predicates that can be computed using only
public information are not private. We will precisely define privacy predicates
in Definition 1. They should not be computed by any well-informed adversary,
who holds the public information of the target record, as well as the intrinsic
knowledge of the privacy, which we will discuss below.

Public Information. Public information of a record consists of (quasi-)
identifying fields of the record. We denote the public information as a func-
tion pub : F1 × · · · × Fk �→ F1 × · · · × Fl that maps a record to its public
fields, where fields F1, . . . ,Fl are (quasi-)identifiers, and Fl+1, . . . ,Fk are sensi-
tive fields. Public information is assumed accessible to adversaries. In the farmer
survey, the public information of a farmer are her/his gender, age, owned acres
and zip code. Those information are considered not private, for example, a curi-
ous neighbor of Bob is potentially an attacker of Bob. He knows the Bob’s age
and location, and he can learn the farmer’s ownership information from county
auditor. These information are not private to Bob’s neighbor. Any information
that is derivable from those fields are not considered private.

Once an adversary knows a target’s public information, he is able to perform
queries to discover more particular information about the target. For example,
if Bob’s zip code is 43111, adversaries design query like “what is the average
rental rate in area of zip code 43111”, where zip code 43111 is used to confined
the search range.

Public information function pub(r) is “one-wayed”: it is easy to compute
given r, but given pub(r), it is hard to recover all fields of r. We assume that
at least some “hardcore” bits in the sensitive fields Fl+1 × · · · × Fk are not
computable given pub(r), otherwise, if every bit in the sensitive fields is com-
putable given the public information, we say the database contains no secret.
See “Comments on Privacy Predicates and Hardcore Predicates” on Page 8 for
more discussion on the one-wayness of public informations.

Intrinsic Knowledges. Intrinsic knowledges are also referred to as common
knowledges, existing knowledge or prior knowledges. These knowledges are about
the privacy itself, they may come from the nature of priv, or from the perception
of behaviors of general people, or from social statistics, etc. Intrinsic knowledges
are of great importance in predicting priv on a particular target. For example, the
rental rates are from 0 to 500 dollar per acre, and this knowledge is a common
sense for all people, so the fact “is Bob’s rental rate less than 800” becomes
trivial because every adversary can answer it with 100% success rate. Another
example is, an experienced market analyst is aware that most rental rates are
below 400 dollars with only a few exceptions, then he can answer the question
“is Bob’s rental rate less than 400” with high success rate.
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We use the probability distribution of priv(r) over r ∈ X to represent the
intrinsic knowledge about priv:

ppriv � Pr[priv(r) = 0|r ← X ],

which we may simplify to p when understood. This knowledge is known to all
adversaries. Take the experienced market analyst as example again, he knows
that 98% of the rental rates are less than 400 dollar, that is, Pr[priv(r) = 1] = 0.98
for r ∈ X . When he tries to predict the rental rate of a particular person in the
database (say, Bob), suppose he does not know anything particular about Bob,
he will refer to his intrinsic knowledge about priv (i.e., 98% farmers’ rental rate
is less than 400) and predicts that Bob has rental rate under 400, as most people
do. This strategy is obviously better than random guessing. In this example, the
probability of priv(r) = 1 over all people plays an important role in predicting
priv on a particular person.

A very important assumption in our discussion is that the database is large-
scaled and it is equipped with real world data. Generally speaking, if a database
enrolls enough samples from the entire population, the distribution of priv over
the database would be close enough to that over the entire population, the latter
is what we call the “intrinsic knowledge.” Intrinsic knowledge is considered public
to a well-informed adversary.

Information that is not yet known. Although a well-informed adversary
has a good sense of common knowledge, he does not know anything about any
specific record(s). As a counter example, suppose A knew his friend Bob was
enrolled in the database X , and he also knew Bob’s rental rate is around 140
to 180 dollars (this fact is considered a personal secret, it is not common for
every farmer); when given question “is Bob’s rental rate greater than 140?”
he was quite confident to answer yes, regardless of the rental rate distribution
in X . The second example is, the fact “area of zip code 43113 has rental rate
from 200 to 350 dollar per acre” is not considered a common knowledge either,
because this fact does not apply to all farmers. Actually, such knowledges are
what A wants to learn in a data mining process. After he knows this kind of
knowledge, he is able to make better prediction on priv(r). We required that a
well-informed adversary only knows the general information over all records; he
does not hold any specific information on any record(s), before he makes queries
to the database. See Sect. 4 for more discussion on what information A has before
and after the knowledge discovering process.

Defining Privacy Predicate. More formally, a well informed adversary A
knows the public information pub(r) on a target record r, as well as the overall
distribution of priv(r) over r ∈ X . He wants to predict priv(r) on target r. We
denote as r ← X that r is chosen from X at uniform random. Let Ω(·) be the big
Ω notation, denote |X | the number of records in the table. Let p = Pr[priv(r) =
0|r ← X ] (therefore, 1−p = Pr[priv(r) = 1|r ← X ]); p represents the distribution
of priv over r ∈ X . We define privacy predicate as one that no adversary can
compute it better than random guessing, even they know pub(r) and p.



δ-privacy: Bounding Privacy Leaks in Privacy Preserving Data Mining 131

Definition 1 (Privacy Predicate). A predicate priv is a privacy predicate if
(1) it is efficiently computable from r, and (2) there exists a function in Ω(|X |)
such that for any well informed, probabilistic polynomial time adversary A,

Pr
r←X

[A(pub(r), p) = priv(r)] ≤ max{p, 1 − p} +
1

Ω(|X |) . (1)

Remark. If priv is a privacy predicate, no adversary can predict it better than
random guessing, even if they know the public information of the target. That
is, the success rate of any adversary given the public information pub(r) is less
than maxA {Prr←X [A(p) = priv(r)]} = max{p, 1 − p}, the best success rate in
guessing priv(r), without pub(r). See “maximum success rate in guessing” for
more discussion. It is required that priv(r) involves at least some bits in the
sensitive fields, those bits are not predicable given pub(r).

Definition 1 only considers adversaries A(pub(r), p) who never make query
to the database before. After getting data mining result m ← M from method
M, an adversary A(pub(r), p,m) gains new knowledge, then he makes a better
judgment on priv(r). See Sect. 4 for more details.

Maximum Success Rate in Guessing. Given the distribution of a predicate
priv over X , the best strategy of guessing priv(r) (without any information of r,
merely guessing) for a randomly chosen input is simply returning the majority
bit b in {priv(r)|r ∈ X}, which yields a success rate equal to the ratio of b in
all priv(r). It is not hard to see that other guessing strategies have lower success
rate, that is,

max
A

{
Pr

r←X
[A(p) = priv(r)]

}

= max
b∈{0,1}

{
Pr

r′←X
[priv(r′) = b]

}

= max{p, 1 − p} (2)

that’s because, if A does not know any information about r, he can only output
a random bit. Suppose A outputs 0 with probability q, and 1 with probability
1 − q. By calculating the success rate of A:

Pr[A = priv(r)]
= Pr[A = 0, priv(r) = 0] + Pr[A = 1, priv(r) = 1]
= q · p + (1 − q) · (1 − p)
= 1 − q − p + 2qp

= p − (2p − 1)(1 − q) = (1 − p) − q(1 − 2p) (3)

we have if p > 0.5 then he gets the maximum rate p with q = 1, otherwise if
p < 0.5 then he gets the maximum 1 − p with q = 0. That means, A will get the
best success rate when it always returns the majority bit in {priv(r)|r ∈ X}.

Comments on Privacy Predicates and Hardcore Predicates. Readers
with knowledge on cryptography may have been aware that the definition of a
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privacy predicate is superficially similar to that of a hardcore predicate. Infor-
mally, public information function pub(r) is “one-wayed” in the sense that it is
hard to compute r given pub(r)1, privacy predicate can be viewed as its “hard-
core predicate.” Indeed, hardcore predicate is a special form of privacy predi-
cate. Assume that there exists a one-way function f : {0, 1}n �→ {0, 1}∗ with a
hardcore predicate h : {0, 1}n �→ {0, 1}, then for any PPT adversary A, and x
sampled from the universe {0, 1}n at uniform random, there exists a negligible
function negl such that

Pr
x←{0,1}n

[A(f(x)) = h(x)] <
1
2

+ negl(|x|). (4)

Due to its definition, distribution of {h(x)} is 50 : 50 for x ← {0, 1}n, where each
possible x is equally chosen. Compare Eq. (4) to Eq. (1), a hardcore predicate
is indeed a privacy predicate with p = 0.5 and X = F = {0, 1}n. Notice that if
X = {0, 1}n, then |X | = 2|x|. If negl(|x|) = 2−|x| (a typical choice of negligible
function), then negl(|x|) = 1

|X | ∈ 1
Ω(|X |) , still satisfies Eq. (1).

However, secret predicate priv is not a hardcore predicate of pub. priv and
pub’s input are records sampled from X , but the records in X is not necessarily
evenly distributed over the universe F : some values in F are never chosen to
X and some may be chosen multiple times. As a result, the distribution of
{priv(r)|r ∈ X} is not 50 : 50 for most priv.

In next section, we will define δ-privacy. Our intuition is, if A’s success rate
increases a lot after he gets a response from M, we say M reveals too much
information. δ-privacy is defined as even after the adversary gains new knowl-
edge from data mining, his success rate in predicting priv(r) is not much higher
(limited by δ) than before.

4 δ-privacy

We provide a new privacy definition for privacy preserving data mining, called
δ-privacy. δ-privacy protects all partial secrets in the following sense: a well-
informed adversary A makes a guess on priv(r); then he makes a query to the
database, gets a response from a privacy preserving data mining method M,
from which he learns new knowledge about r; then he makes a new judgment on
priv(r). The second prediction is supposed to have higher success rate compared
with that before he makes a query; δ-privacy requires that the extra success rate
is limited by δ, for any privacy predicate priv.

To better illustrate the above idea, we design a game between adversary A
and a privacy preserving data mining method M as follow.

1 If f is a one-way function, then given f(x), it is hard to compute an x′ such that
f(x′) = f(x). But by definition of pub, given pub(r), it is not hard to find a r′ ∈ F
such that pub(r′) = pub(r), therefore, pub is not a one-way function. See Chap. 6
of [5] or Chap. 6 of [12] for rigorous definition of one-way functions and hardcore
predicates.
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Game 1. Game of Privacy Preserving Data Mining.
1: Target record r ← X is chosen at uniform random.
2: A is given the public information pub(r).
3: A chooses a privacy predicate priv.
4: A is given the probabilities {p, 1 − p} of distributions of priv(r′) over r′ ∈ X .
5: A(pub(r), p) predicts priv(r).
6: A makes query q = qpriv,pub(r).
7: M is given the query q and the database X . It returns a result m to A.
8: A(pub(r), p, m) makes a new judgement on priv(r).

In the above game, the adversary gets the public information of r and the
intrinsic knowledge of priv, we say he becomes a well informed adversary at
step 4; he makes the first judgment at step 5. After that, he starts a knowledge
discovering process, retrieves more information from the database. Finally, based
on all information he receives in the game, he computes priv(r).

The success rate of prediction made in step 8 should not be much higher than
that of the guess made in step 5; if the gap is large, which means A performs
much better in computing priv(r) after he gets m, we say m discloses excessive
information/privacy. The difference

Pr
r∈X

[A(pub(r), p,m) = priv(r)|m ← M(q,X )]

− Pr
r∈X

[A(pub(r), p) = priv(r)]

is the extra success rate after A gets a response from M. We also notice that
before A makes any query to the database, the best possibility A(pub(r), p) can
achieve is max{p, 1 − p}, as shown in Eq. (1). We use the following difference to
capture the probability gain (in successfully computing priv(r)) after A discovers
new knowledge from the database:

Pr
r∈X

[A(pub(r), p,m) = priv(r)|m ← M(q,X )]

− max{p, 1 − p}. (5)

Intuitively, this difference is the amount of privacy leaked to the adversary.
For the purpose of protecting privacy, this difference should be small. δ-privacy
is then defined as no adversary can gain extra success rate more than δ.

Definition 2 (δ-privacy). Let priv be a privacy predicate. Suppose a com-
putationally bounded adversary A is given pub(r) of some r ∈ X , and let
p = Pr[priv(r) = 0|r ← X ] denote the distribution of priv(r) over r ∈ X . A
makes query q and obtains response m from a privacy preserving data mining
method M. A outputs a bit to predict priv(r). M is said to preserving δ-privacy if
there exists a positive real number δ, for any privacy predicate priv,

Pr
r←X

[A(pub(r), p,m) = priv(r)|m ← M(q,X )]

≤ max{p, 1 − p} +
1

Ω(|X |) + δ, (6)
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where, on the left hand side, the probability of A successfully computing priv(r)
depends on the random coin used by M.

Remark. For the ease of presentation, we sometimes may omit the term
1/Ω(|X |) in our discussion. Also, we only consider the case that δ ∈ (0, 1

2 ],
because if δ > 1

2 , max{p, 1 − p} + δ exceeds 1, the formula will be always true.

Variants of δ-Privacy. The privacy Definition 2 introduces a absolute bound
on the privacy leaks. This constraint can also be in other mathematical forms,
the following variant introduces a relative bound, which depends on the intrinsic
knowledge of the secret.

Definition 3 (δ-privacy-variant-I). Let the notations be the same with those
in Definition 2. The variant I of δ-privacy requires that for all computationally
bounded adversaries in Game 1,

Pr
r←X

[A(pub(r), p,m) = priv(r)|m ← M(q,X )]

≤
(

max{p, 1 − p} +
1

Ω(|X |)
)

· exp(δ). (7)

Dealing with Multiple Queries. Note that in Game 1, step 6 and 7 can
be repeated multiple times, that is, we allow the adversary to make multiple
queries, and to adaptively choose queries. If the queries are different, we can
consider them as one big query, and that will be just the same with the single
query case.

Another case is A makes the same queries for multiple times. As mentioned
above, M(q,X ) is a random variable (r.v.). To learn the distribution of this r.v.,
adversaries may make the same query q for multiple times to get more samples.
The more samples he gets, the more detailed he learns about the distribution,
then he is able to use the distribution of M to predict q(X ) and hence priv(r).
There are three strategies to deal with multiple queries:

1. M will always return the same answer for the same query. An example for
this is the anonymized table (Definition 10): once the anonymized table is
published, adversaries run the query on the (deterministic) anonymized table,
that is equivalent to a method M that always output the same answer to the
same query.

2. M returns the same answer by maintaining a hash table, with the key being
the input pair 〈q,X〉 and the value being the output m; when a request is
made to M, it first checks the hash table. If the request is new, M generates
a new answer m, add it to the hash table and returns it; otherwise, it returns
the existing answer. Such a method requires a large amount of storage space if
there are many different queries and/or the database X is updated frequently.
Also, this method may be not safe either: if X is updated frequently, and
each update is small (such that the changes of q(X ) is small in each update),
adversaries may still have a good estimation on q(X ).
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3. M generates a new answer to every request. That means adversary is able
to learn the distribution of M(q,X ). It implicitly requires that even if A
knows the distribution of M(q,X ), he does not know q(X ), or the relationship
between q(X ) and M(q,X ).

5 Tradeoff Between Privacy and Utility

In this section, we will discuss the relation between privacy and utility. Intu-
itively, the need for privacy is incompatible with the need for utility: to protect
privacy, a data provider wishes to hide information, while a data user wishes to
collect as much information as he could. We provide a quantitative analysis for
the tradeoff between privacy and utility, showing that the amount of informa-
tion gain is bounded by the largest possible privacy loss of the data provider. To
get more information, the data user should negotiate with the data provider to
increase the limit of privacy leak.

The utility of a data mining method is how much knowledge can be discovered
from its results. If the result is generated by a privacy preserving data mining
method M(q,X ), its utility should be measured by the “distance” to the true
result q(X ). More precisely, the output of M(q,X ) is a random variable; the
utility is the closeness between the random variable and the true value q(X ).
Intuitively, if M(q,X ) is close to q(X ), the result is likely to be useful, otherwise
it is not.

Some literatures (e.g., [24]) employ the entropy of M(q,X ) to estimate util-
ities for perturbation-based methods. The idea behind is, the more “concen-
trated” are the results (which are drawn from M(q,X ), the closer they are to
the real result q(X ). However, this definition is correct if and only if the true
answer is always at the “center” of the random variable, it does not apply to all
methods.

Utility of a Data Mining Method. Before we define the utility of a method
M on query q and database X , we first introduce one kind of adversaries called
honest users to determine the utility of a method. An honest user is a determin-
istic algorithm that, given the answer of q(X ), he correctly computes a knowl-
edge knlg, where knlg : F �→ {0, 1}. More specifically, we define an honest user
Ã = Ãknlg as an adversary who takes part in the Game 2. He would like to com-
pute a knowledge predicate (a privacy predicate) knlg on some r ∈ X . He is an
honest user if he always wins the game, that is, Ã designs query q = qknlg,pub(r),
after he receives the true result of q(X ), he returns one bit as result such that

Ã(pub(r), q(X )) = knlg(r) (8)

for any X , any choice of r ∈ X , and any appropriately chosen knlg.

Existence of Honest Users. Note that such honest user and knlg may not always
exist; if pub(r) is not unique, Ã may not win the game with probability 1. For
example, assume that there are two records r and r′ which have the same public
information, but one’s rental rate is 150 and the other is 250. Then Ã may only
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Game 2. Game of Honest User.
1: A target record r is chosen uniformly at random from the database X .
2: User Ã is given the public information pub(r).
3: User Ã chooses a knowledge predicate knlg.
4: Based on knlg, Ã designs query q = qknlg,pub(r).
5: An oracle O responses to Ã with the true result of q(X ).
6: Ã outputs a bit b.
7: User Ã wins the game if b = knlg(r).

have 1
2 chance in computing knowledge predicate “does r’s rental rate greater

than 200”, no matter how Ã designed the query qknlg,pub(r). We assume here that
the public information pub(r) is unique in database X , so that such intelligent
adversaries always exist.

Loosely speaking, we can think of a honest user as a person who lives in a
world that people trust each other, he will treat any result given to him as the
true q(X ) and computes knlg(r) from it. Now suppose we replace the oracle O
by a privacy preserving method M, Ã remains innocent. Game 2 becomes the
Game 1 (on Page 10), with knlg being priv.

Definition 4 (Utility of a Single Result m). Given a single result m ←
M(q,X ), the utility of m with respect to a honest user Ã = Ãknlg is defined by
a function uÃ:

uÃ(r,m) =
{

1 ifÃ(pub(r),m) = knlg(r)
0 otherwise

(9)

If an honest user Ã correctly computes knlg given m, we say that m is useful
(uÃ(m) = 1), otherwise it is not (uÃ(m) = 0).

Given results from M(q,X ), Ã evaluates the utilities of single results, we
define the utility of the method as the expectation of utilities.

Definition 5 (Utility of M(q,X )). The utility (with respect to Ã = Ãknlg) of
a method M on query q and data set X is defined as the expected utility of the
random variable M(q,X ):

UÃ(M(q,X )) � E[uÃ(r,m)|r ← X ,m ← M(q,X )]

=
∑
r,m

uÃ(r,m) × Pr[r ← X ,M(q,X ) = m] (10)

Notice that the intrinsic knowledge p = pknlg of knlg also provides some
“utility”: even without querying to M, there are adversaries that can achieve
some utility, which we refer to as intrinsic utility. Assume, w.l.o.g., that p > 0.5.
We fix an adversary (denoted as A′ = Aknlg) which outputs 0 with probability
1 (that is, A′(r,m) = 0 for all r and m). We define the intrinsic utility as the
expected utility evaluated by A′ (perhaps with a little abuse of notation):
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Definition 6 (Intrinsic Utility of knlg). The intrinsic utility of knowledge
predicate knlg is defined as the expected utility evaluated by a user A′ = Aknlg

UA′(1) � E[uA′(r, 1)|r ← X ] (11)

The reason we employ the special user A′ to define intrinsic utility is this
user is the one that achieves the largest possible utility among all guessing users,
see “maximum success rate in guessing”, Page 8 for more information.

The intrinsic utility is the one that obtained by a user without querying
to M, we define the utility gain of a method M on q and X as the utility of
M(q,X ) (w.r.t. Ãknlg) minus the intrinsic utility of knlg.

Definition 7 (Utility Gain of M(q,X )). The utility gain (w.r.t. Ãknlg) of
M(q,X ) is the difference between the utility of the method minus the prior utility
of knlg, that is,

GÃ(M(q,X )) � UÃ(M, q,X ) − UA′(1), (12)

the (value of) utility of M(q,X ) depends on the choice of Ã.

The utility gain reflects how much information is gained from the data mining
method. Intuitively, the larger is the gain, the better is the result. However, we
show the following theorem, saying that the largest possible utility gain of a
δ-private method, can not exceed the amount of privacy loss, namely, δ.

Theorem 1. If M is δ-private, then

GÃ(M(q,X )) ≤ δ +
1

Ω(|X |)
for all q, all X , all knlg and all Ã.

Remark. We can achieve a similar result for δ-privacy-variant-I (but in different
mathematics form). This theorem is an important result that shows the relation
between privacy and utility: they are zero-summed in the sense that the utility
gain is always less than the amount of largest possible privacy leak. Suppose a
user wants to learn some knowledge knlg, he wants to get Δ utility gain versus
his intrinsic knowledge, he have to ask his data providers to increase the privacy
leak limit to at least Δ.

The Theorem also depicts a framework for potential privacy trading. Data
providers can consider “selling” their private data, the price is the largest possible
privacy leak; and data processors can purchase those data based on how much
information they can learn from them.

6 The Relations Between δ-privacy and Other Existing
Privacy Definitions

In this section, we will discuss the relationship between δ-privacy and existing
privacy definitions, namely, differential privacy and data anonymity. We will
show that differential privacy (with parameter δ) implies δ-privacy-variant-I,
and t-closeness w.r.t. variational distance implies δ-privacy with t = δ.
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6.1 A Supporting Lemma

We will show a lemma used in the proof Lemmas 2 and 3. Reader may proceed
to the next sections for now and come back for this lemma later.

We will show that if two random variables Y1 and Y2 are close, then the r.v.’s
generated by running A on Y1 and Y2 are still close.

Denote A(Y) the binary-valued random variable generated by randomized
algorithm A, whose input is sampled from discrete random variable Y. We argue
that if the distance between two random variables Y1 and Y2 is less than δ, then
A(Y1) and A(Y2) also have distance less than δ. On the other hand, if for all
algorithm A, A(Y1) and A(Y2) are close, then Y1 and Y2 must be close to each
other.

A very important question arises: how to define the distance of two random
variables? There are many way to define it, for example, variational distance,
Kullback-Leibler distance, Earth Mover’s Distance, just to name a few. In this
paper, we use the variational distance to define statistical distance of two random
variables.

Definition 8 (Variational Distance of Two Random Variables [15]).
Suppose P1 and P2 are probability distribution functions (p.d.f.) of two dis-
crete random variables (with respect sample space Ω1 and Ω2). The two random
variables are statistically close if for some δ > 0,

sup
S⊆Ω1∪Ω2

|P1(S) − P2(S)| ≤ δ.

If the random variables are discrete ones, the above formula becomes

max
S⊆Ω1∪Ω2

⎧
⎨
⎩

∑
y∈S

(P1(y) − P2(y))

⎫
⎬
⎭ ≤ δ. (13)

Variation distance is the maximum difference between the probabilities that two
p.d.f.’s can assign to the same event.

Lemma 1. Suppose A is a randomized algorithm whose output is one bit, Y1

and Y2 are two discrete random variables with sample space Ω. A(Y1) and
A(Y2) satisfy

Pr [A(Y1) = b] ≤ Pr [A(Y2) = b] + δ (14)

for b = 0, 1 if and only if the variational distance of Y1 and Y2 are less than δ,
i.e., for any subset S ⊆ Ω,

Pr [y ∈ S|y ← Y1] ≤ Pr [y ∈ S|y ← Y2] + δ. (15)

Lemma 1 will be used to show the relationship between δ-privacy and differ-
ential privacy, and between δ-privacy and t-closeness. Note that even if Eq. (14)
is true for both b = 0 and 1, it does not imply that

Pr[A(y) = f(y)|y ← Y1] ≤ Pr[A(y) = f(y)|y ← Y2] + δ

is true for all binary valued function f .
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Corollary 1. Let algorithm A, random variables Y1 and Y2, sample space Ω be
the ones defined in Lemma 1. The random variables A(Y1) and A(Y2) satisfy

Pr [A(Y1) = b] ≤ Pr [A(Y2) = b] × exp(δ) (16)

if and only if for any set S ⊆ Ω,

Pr [y ∈ S|y ← Y1] ≤ Pr [y ∈ S|y ← Y2] × exp(δ). (17)

6.2 Relation to Differential Privacy

In this section, we will show the relation between differential privacy and δ-
privacy. If a privacy preserving data mining method is differentially private (with
parameter ε), then it is δ-private-variant-I with parameter δ = ε. But on the
other hand, a method satisfies δ-privacy does not necessarily mean it satisfies
δ-differential privacy. That means, in terms of the maximum privacy leak, δ-
differential privacy is more secure than δ-privacy, which, by Theorem 1, gives
less flexibility in getting utility.

Differential privacy [6] is one of the most influential definition of privacy,
which is widely adopted by output perturbation methods. It captures the idea
that the result of the query should not leak information of any person, as if the
target person were not included in the table.

Definition 9 (differential privacy [6]). An algorithm M is said to satisfy ε-
differential privacy if for all database X and X1 which only differ in one record,
and for any set S of possible outcomes,

Pr [m1 ∈ S|m1 ← M(q,X1)]
≤ Pr [m ∈ S|m ← M(q,X ) ∈ S] × exp(ε). (18)

Lemma 2. If M satisfies ε-differential privacy, it also satisfies ε-privacy-
variant-I.

Remarks. Lemma 2 shows that if a method is ε-differential privacy, then it
is ε-private-variant-I, however, the reverse is not necessarily true: a method is
δ-private is not necessarily δ-differentially-private.

6.3 Relation to Data Anonymity

Data anonymity is family of privacy preserving data mining methods. In this
section, we will show that if a data anonymity method is t-close w.r.t. variational
distance (which is the strongest requirement in the series), it is δ-private with
δ = t.

Instead of answering to queries, data anonymity methods publish a modified
table for everyone to query on. Records in the database are grouped into equiva-
lence classes sharing a same identifying tag, their secret fields remain unchanged.
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Using the (original) public information of a target record, an adversary can locate
the target to a specific class by the tags on the classes, but he does not know
which one in the class is the target, since everyone in the group looks the same.

It is required that in each equivalence class, the distribution of the sensitive
data is close to that of the entire table, otherwise, if for some class, the distribu-
tion is greatly different from that of the entire table, an adversary can conclude
that targets in this class have special properties that other records do not have.

Definition 10 (t-closeness [13]). An equivalence class is t-close to the whole
table if the distance between the following two distributions is no more than a
threshold t: the distribution of sensitive data in that equivalence class, and the
one in the whole table. An anonymized table is t-close to the original table if all
equivalence classes are t-close to the whole table.

The definition of t-closeness does not specify how to measure the divergence
of two distributions. In the following lemma, we will show that data anonymity
methods satisfies t-closeness w.r.t. variational distance (Definition 8), then it is
δ-private:

Lemma 3. A privacy preserving method M publishes an anonymized table with
equivalence classes, it is δ-private if the variational distance between the distrib-
ution of sensitive data in any equivalence class, and the distribution of sensitive
data in the whole table, is no more than δ.

7 Conclusion

In this paper, we proposed δ-privacy, a new privacy definition for privacy pre-
serving data mining. By analyzing adversaries’ behaviors, δ-privacy directly tells
the data provider the risk of privacy leak in a data mining process. We show that
existing data privacy analysis mechanisms are also compatible to ours; actually,
our method can be applied to any data mining process, not limited to particular
ones. Another important contribution of our work is, we mathematically shows
that the amount of information extracted from a data mining process does not
exceed the amount of possible privacy loss; this idea seems not surprising, but
to the best of our knowledge, we are the first one to rigorously prove this conjec-
ture. A potential application for this is, we can develop a pricing system for “data
trading,” data providers could sell their data, get compensated based on their
(possible) privacy loss; on the other hand, data users could purchase data based
on the amount of information they could get. This trading system is possible
under our δ-privacy framework.
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Abstract. Passwords are the most widely used form of online user
authentication. In a traditional setup, the user, who has a human-
memorable low entropy password, wants to authenticate with a login
server. Unfortunately, existing solutions in this setting are either non-
portable or insecure against many attacks, including phishing, man-
in-the-middle, honeypot, and offline dictionary attacks. Three previous
studies (Acar et al. 2013, Bicakci et al. 2011, and Jarecki et al. 2016)
provide solutions secure against offline dictionary attacks by addition-
ally employing a storage provider (either a cloud storage or a mobile
device for portability). These works provide solutions where offline dic-
tionary attacks are impossible as long as the adversary does not corrupt
both the login server and the storage provider.

For the first time, improving these previous works, we provide a more
secure generalized solution employing multiple storage providers, where
our solution is proven secure against offline dictionary attacks as long
as the adversary does not corrupt the login server and threshold-many
storage providers. We define ideal and real world indistinguishability for
threshold single password authentication (Threshold SPA) schemes, and
formally prove security of our solution via ideal-real simulation. Our solu-
tion provides security against all the above-mentioned attacks, including
phishing, man-in-the-middle, honeypot, and offline dictionary attacks,
and requires no change on the server side. Thus, our solution can imme-
diately be deployed via a browser extension (or a mobile application) and
support from some storage providers. We further argue that our proto-
col is efficient and scalable, and provide performance numbers where the
user and storage load are only a few milliseconds.

Keywords: Password based authentication · Threshold secret sharing ·
Dictionary attack · Phishing

1 Introduction

Passwords are the most widely used form of online user authentication. In a
traditional password based authentication, there are two parties: the user who
has a human-memorable low entropy password and the login server that cre-
ates an account for the user and keeps the user’s account information (e.g.
<username, hash(password)>) to authenticate the user later when she wants
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to login. Another related field includes password authenticated key exchange
(PAKE) protocols, where a user and a server desire to establish a secure and
authenticated channel via a shared secret password [3,6,7,19,20]. Passwords are
also employed in password-protected secret sharing (PPSS) techniques, where
the user stores her credential(s) on a server or among multiple servers [5,8,9,16].
The server(s) verify that the user is legitimate before giving an access to the
stored secret, and this authentication is done via passwords.

The existence of servers’ adversarial behaviors such as phishing, man-in-the-
middle, and honeypot attacks, where the adversarial server tries to trick the
user to willingly reveal her password (unaware of the attack), as well as offline
dictionary attacks that can be mounted by the server or hackers obtaining the
server database are commonly known and powerful attacks on users’ passwords.
Unfortunately, all the above-cited constructions, where the server stores the
user’s password as plain text or the hash of the password, lose security against
such attacks. Indeed, such attacks are very prevalent, and recent studies even
propose improved offline dictionary attacks [24]. The damage of the successful
attack is increased dramatically if the user reuses the same password to register
with more than one login server, which is a common practice [13].

Our focus in this paper is on password based authentication secure against
those attacks. Consider the following approaches:

– Traditional insecure approach: Store the output of a deterministic (hash)
function of the password at the login server. The user’s password is easily com-
promised in the current traditional approach against adversarial servers (e.g.
phishing, man-in-the-middle, honeypot). Moreover, it is directly vulnerable
to offline dictionary attacks by hackers obtaining the login server database,
since recomputing the output of the deterministic function and comparing
against the database enables such offline dictionary attacks.

– Secure but non-portable approach: Store a verification key at the login
server, where the corresponding secret key is blinded by the user’s password
and stored on the user’s machine or USB device. When the keys are generated
independent of the password, such an approach will protect the user against
the mentioned attacks. Unfortunately, this approach is not user friendly in
the contemporary setting where each user owns multiple devices or employs
public terminals, as this incurs portability issues (even with USB storage
employed, note that not all devices have USB ports).1

– Secure and usable approach: Store the verification key at the login server
and securely store the corresponding secret key blinded by some function of
user password at storage provider(s) different from the login server. Such a
storage provider can be a cloud storage or mobile device (as opposed to a
non-portable location above). This was first observed and the first solution

1 Non-cloud-based password managers also fall into this setting.



Threshold Single Password Authentication 145

was constructed by Acar et al. [1] (with their patent application dating 2010
[2]), and later also used by Jarecki et al. [17] and also Bicakci et al. [4].2

The only known provably secure (against offline dictionary attacks) and usable
password based authentication or PAKE systems are the Acar et al. [1] (with
their patent application dating 2010 [2]) and Jarecki et al. [17] solutions (Bicakci
et al. [4] present a solution idea briefly, but without a formal security proof).
They include a single storage provider (which is either a cloud storage or a mobile
device) for the secret storage. The underlying assumption is that the protocol is
secure unless the login server and the storage provider are corrupted by the same
adversary. Thus, when the same adversary corrupts both the login server and the
storage provider, or they simply collude, they can mount an offline dictionary
attack to find the user password. Any weaker adversary can always perform an
online attack ; however, online attacks are not big threats due to several reasons.
Firstly, they are inherently many orders of magnitude slower compared to offline
attacks due to network delays. Secondly, the honest login servers and storage
providers will block the adversary after several unsuccessful attempts, or limit
the rate of such attempts.

For the first time, we present a single password authentication (SPA)
protocol that can employ possibly more than one storage provider (any combi-
nation of cloud or mobile devices). In our Threshold SPA solution, we employ
a total of n storage providers, and a threshold 1 ≤ t ≤ n. This setting serves two
purposes. Firstly, for an adversary to be able to successfully mount an offline dic-
tionary attack, he must corrupt the login server in addition to t storage providers.
Secondly, to login, the user must access t storage providers out of n; thus avail-
ability can be balanced against security easily by setting these parameters. While
the underlying techniques are different, in terms of security, the previous solu-
tions correspond to setting t = n = 1.

Delving deeper, Acar et al. [1] discuss in one paragraph that it is possible
to convert their solution to employ more than one storage provider using secret
sharing. Unfortunately, when done in a straightforward manner, this results in
an insecure solution in the sense that corrupting the login server and only one
storage provider will still enable the adversary to perform an offline dictionary
attack. As mentioned earlier, they employ the storage provider to store the secret
key needed for authentication. This secret key is protected by the password.
When this secret is simply shared among multiple storage providers, there needs
to be a mechanism to prevent the login server to obtain these shares from the
storage providers, as otherwise the adversarial login server can simply request
these shares and perform an offline dictionary attack. To prevent this, only the
entity knowing the password should be able to retrieve these shares, meaning that
there needs to be another password based authentication mechanism also done at
the storage provider side, creating a recursive problem, needing further storage
providers indefinitely. If traditional password based authentication approaches
2 Cloud-based password managers are related to this setting, but almost all of them

employ the user master password for authenticating with their own servers, hence
having the same insecurities there.



146 D. İşler and A. Küpçü

are employed instead, then this password based authentication subprotocol will
enable the login server to collude with only one storage provider to mount the
offline dictionary attack, since the user only has a single password and hence the
same authentication is employed at every storage provider. Moreover, their one
paragraph extension idea lacks any formal proof where we give a formal proof
for Threshold SPA for the first time.

In our solution, while the user still has only a single password, our protocol
provably ensures that the following adversaries will be completely
unsuccessful:

– An adversary that controls threshold-many storage providers (but not the
login server).

– An adversary that controls less than threshold-many storage providers in
addition to the login server.

– An adversary who successfully mounts a phishing, man-in-the-middle, or hon-
eypot attack.

We assume that if any party is corrupted by an adversary once, it remains
corrupted (which is realistic, since the adversary can install backdoors on a
system once corrupted). Our solution only fails against a local adversary (such
as a keylogger on the user’s computer), since it can sniff the password. Our
contributions are as follows:

1. We define a general structure of threshold single password authentication
(Threshold SPA) systems and propose the first construction with a formal
proof.

2. We formally present ideal and real world definitions for security of Thresh-
old SPA protocols, for the first time in the literature.

3. We formally prove the security of our Threshold SPA solution via ideal-real
simulation, showing impossibility of offline dictionary attacks.

4. Our Threshold SPA method is also secure against phishing and man-in-
the-middle attacks during authentication, after a secure registration, and
honeypot attacks during registration and authentication.

5. We present performance evaluation numerically, showing that our tech-
niques are easily applicable with today’s hardware.

6. Our construction does not require any change at the login server side and
can work with a variety of storage providers (e.g. mobile devices and cloud
providers).

Overview: Our solution achieves full threshold security as follows: We create
a salt as the secret independent of the password pwd and compute verification
information as the hash of salt, password, and login server domain name ls
(Hash(salt||pwd||ls)). Then, the verification information is shared with the login
server whereas the salt is secret shared. But, these shares are not directly sent
to the storage providers. We employ a layer of encryption to hide each share,
and this encryption employs an oblivious pseudorandom function (OPRF) F
output over the password pwd as its key. Moreover, each storage provider will
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use a different key ki for the OPRF, and thus each share will be encrypted with
the corresponding Fki

(pwd) as the key. This means, the storage providers also
hold essentially no information regarding the password. This is true because
as first observed by Acar et al. [1] (for this discussion simply assume one time
pad is employed for encryption, though they discuss in further detail how a
block cipher can be employed), when a random value (such as the secret key or
shares) is encrypted with the password or any deterministic value derived from
the password (such as hash or OPRF over the password), an offline dictionary
attack is impossible without knowing what the decryption needs to reveal since
any password in the dictionary would yield a valid plaintext.

Later, for authentication, the user interacts with threshold-many servers
using the OPRF protocol, reconstructs the original secret salt after decryption
with her correct password, and then computes the verification information as
Hash(salt||pwd||ls) and sends it along with her username to the login server.
Only when the login server and at least threshold-many storage providers collude
they can reconstruct the secret salt by trying different passwords, and calculate
the hashes offline. Otherwise, offline dictionary attacks are impossible. Consider,
for example, the adversarial login server potentially colluding with t − 1 storage
providers. He needs to interact online through the OPRF protocol with at least
one honest storage provider to be able to reconstruct the secret salt, which can be
rate/attempt limited. Moreover, consider that threshold-many storage providers
are colluding while the login server is honest. Even though they can reconstruct
a secret salt, since all passwords yield to a valid (in terms of format) secret salt,
they can only try to authenticate online with the login server to verify whether
or not the secret salt they constructed is the correct one. Again, this can easily
be rate/attempt limited.

2 Related Work

Traditional password-based authentication takes place between two parties (a
user and a login server). However, Boyen [5] showed that any password-based
authentication between a user and a login server is vulnerable to an offline dic-
tionary attack by the login server (or hackers obtaining its database). Tatlı [24]
improved offline dictionary attacks on password hashes to find some additional
passwords assumed to be strong and complex.

Ford et al. [14] suggest a password hardening protocol where the user, hold-
ing a weak-password pwd, interacts with one or more servers by blinding the
password to create a secret credential (to decrypt, or authenticate herself to
a login server, etc.) from shares received by the hardening server(s) (which is
like storage providers). The hardening server(s) cannot learn anything about the
password and the secret unless all of them collude. During the authentication,
for each login server, the user runs the password hardening protocol to retrieve
the same secret as in the registration by communicating with hardening servers.
The solution proposed do not have a formal proof and requires interaction with
all of the servers to be able to reconstruct the secret. MacKenzie et al. [20]
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propose a threshold PAKE where the password is secure unless threshold-many
servers collude. [20] requires servers to know each other. [18] proposes to create a
password file storing false passwords called honeywords per user account. In case
the adversary steals the password file, and mistakenly employs a honeyword, the
system is alerted.

Mannan et al. [21] propose to secure user’s password from untrusted user
computer (malicious browser) assuming the server holds the user password.
Camenish et al. [10] distribute the password verification over multiple servers
to secure the password against server compromise where the server keeps the
hash of username and password hash(username||password). PwdHash [22] pro-
duce a different password for each login server by simply computing the hash
of the password and login server domain where the hash is a pseuodorandom
function of the domain keyed with the user password H(password, domain) =
PRFpassword(domain) and the server stores the hash value. The discussed solu-
tions do not provide security against offline dictionary attack in case the server
database is compromised. Increasing the number of parties by adding storage
provider(s) is one way to help prevent offline dictionary attacks.

Acar et al. [1] (with their patent application dating 2010 [2]) present the first
provably secure single password authentication protocols where the user employs
a cloud or mobile storage provider to keep her secret to prevent offline dictionary
attacks. The user’s password is secure against offline dictionary attacks unless the
storage provider and the server are colluding. Their mobile device based solution
inputs the password to the device, and hence provides security against malware
on the public terminal. They provide security against phishing indirectly because
the user identifier used at the storage provider depends on the server name. Since
the phishing site name is different from the actual login server name, the retrieval
of the user secret fails. Our main differences are to enable a fully secure threshold
construction for the first time, without requiring any changes at the login server,
making our solution much easier to deploy.

Following Acar et al. [1], Jarecki et al. [17] provided a device enhanced pass-
word authenticated key exchange protocol employing a mobile device storage.
Similar to [1], their protocol is secure against offline dictionary attacks assuming
the login server and the mobile device are not colluding. They provide a recov-
ery procedure in case the device is lost. They leave threshold authentication as
future work, which is what we achieve.

Bicakci et al. [4] discuss briefly a single password solution employing a storage
provider for unique blind signatures (similar to Acar et al. [1]), but they neither
delve into the details of their solution nor present a security proof. Nevertheless,
we are influenced by their work in terms of requiring no change at the login
server, and achieve to distribute the storage provider for the first time.

3 Preliminaries

Let λ ∈ N be security parameter. A probabilistic polynomial time (PPT) algo-
rithm A is a probabilistic algorithm taking 1λ as an input and has running time
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bounded by a polynomial in λ. We say that a function negl(λ) is negligible if
for every positive polynomial poly(λ) there exists a λ′ ∈ N such that ∀λ > λ′

negl(λ)<1/poly(λ).

Hash Function: A hash function H is a deterministic function from an arbitrary
size input to a fixed size output, denoted H : {0, 1}∗ → {0, 1}l. The hash function
is assumed to be collision resistant if it is hard to find two different inputs x �= y
that hash to the same output H(x) = H(y).

Oblivious Pseudorandom Function (OPRF): A psuedorandom function
(PRF) F is a function that takes two inputs: a secret function key k and an input
x to compute on, and outputs Fk(x). A function chosen randomly from a PRF
family (a PRF with random key k) is secure if it is distinguishable from a random
function with the same domain and range with only negligible probability for
all PPT distinguishers given oracle access. An Oblivious PRF (OPRF) [15] is a
protocol between two parties (sender and receiver) that securely computes Fk(x)
where the k and x are the inputs of sender and receiver, respectively, such that
the sender learns nothing from the interaction and the receiver learns Fk(x).

Symmetric Encryption Scheme: consists of three PPT algorithms:
KeyGen(1λ) generates a secret key sk, Encsk(msg) encrypts the message using
the secret key and outputs the ciphertext c. The decryption algorithm Decsk(c)
uses the secret sk to decrypt the ciphertext c, and outputs the original message
msg. The encryption scheme we use need to be semantically secure.

Threshold Secret Sharing (TSS): consists of two PPT algorithms
<s1, ..., sn> ← TSS(S) to create the n shares of the secret S, and for a threshold
t we use S ← TSSRecon(s1, ..., st) to reconstruct the original secret. We employ
the methodology of Shamir [23]. The security is that less than threshold many
shares provide theoretically no information regarding the original secret.

4 Threshold Single Password Authentication

In a Threshold SPA protocol, there are three types of players. There are users
who register with one or more login servers using (possibly) the same password,
and later on authenticate with these login servers. For this purpose, the users
store some secret information (that is needed for authentication with the login
servers) at one or more storage providers. The main objective of a Threshold
SPA solution is to protect the user’s password against offline dictionary attacks
by the storage providers, the login servers, and many other adversaries (including
phishing sites). Figure 1 shows an overview of the registration and authentica-
tion phases of a Threshold SPA protocol, considering a single user who registers
with a login server and stores the secret at n storage providers. Threshold in
this context refers to the fact that the user must communicate with some subset
(defined by the threshold) of storage providers to facilitate authentication with
the login server. It furthermore refers to the security of the solution: An offline
dictionary attack is possible only when the adversary controls the login server
and at least threshold many storage providers.
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Fig. 1. Threshold-SPA Overview. The registration and authentication protocols are
separated by the dashed line.

The registration phase is for the user to register with the login server and
store the secret among storage providers. The user registers with the login server
whose domain is ls using a low-entropy password pwd (only secure against online
attacks). The login server obtains the user’s verification information vk and iden-
tifier userID such that the login server can authenticate the legitimate user
whenever the user wants to login. The user further stores some secret informa-
tion sharei with the storage providers, in a distributed manner. Some identifier
storUIDi is associated with this secret to facilitate later retrieval. More formally
we have the following multi-party protocol:

Registration

1. The user’s inputs are a user name userID for the login server whose domain
is ls, and a password pwd.

2. Each storage provider receives as output an identifier storUIDi and
a share sharei and stores the data received in the database. This share is
what the user wants to store among the storage providers depending on the
Threshold SPA protocol. The identifier is employed for later retrieval of the
stored share.
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3. The login server receives as output an identifier userID and a server
verification information based on user’s password vk of the user, and stores
them in his database. The verification information vk is used by the login
server to verify the user during the authentication phase.

The authentication phase is for the user who remembers the user name
userID and the password pwd to authenticate herself to the login server with
domain ls by interacting with threshold-many (t) storage providers to retrieve
and reconstruct the secret needed for authentication. Of course, in general it is
possible that t = n and hence all storage providers may need to be contacted.

Authentication

1. The user’s inputs are as before: the user name userID, the password pwd,
and the domain ls of the login server to authenticate with.

2. The login server’s inputs include the user identifier userID, as well as the
verification information vk corresponding to the user, and its domain ls.

3. Each storage provider’s inputs are the share sharei that they hold for
that user and the identifier storUIDi of that user.

4. The login server outputs accept or reject. The domain name ls is employed
to prevent phishing/man-in-the-middle attacks.

4.1 Security Definition

We define the ideal world and the real world for a Threshold SPA protocol, in
the spirit of Canetti [11].

Ideal World: The ideal world consists of a user U , a login server LS, n-many
storage providers SP = (Stor1, Stor2, . . . , Storn) (realize that SP denotes the
set of storage providers), and the universal trusted party T P (which is not a
real entity, and only exists in the ideal world).

Registration

1. U sends <userID, pwd> to T P.
2. T P computes the necessary steps to obtain the shares sharei and identifiers

storUIDi, and the verification information vk.
3. T P sends <userID, vk> to LS and <storUIDi, sharei> to each storage

provider in SP.

Authentication

1. U sends <userID, pwd> to T P.
2. T P sends userID to LS for login request.
3. T P sends storUIDi to at least threshold-many storage providers in SP for

retrieving the secret shares (wlog. assume all storage providers are employed).
4. SP send their shares share = {share1, share2, . . . , sharet}.
5. T P calculates the verification information vk using the shares from the SP

and the pwd from U , and sends vk to LS.
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Real World: The real world consists of a user U , a login server LS, and storage
providers SP = (Stor1, Stor2, . . . , Storn). There is no universal trusted party
T P for a real world protocol π for the threshold-single password authentication.
The parties U , LS, and SP are involved in the real execution of the protocol π.

Definition 1 (Secure Threshold Single Password Authentication). Let
π be a probabilistic polynomial time (PPT) protocol for a threshold single pass-
word authentication. We say that π is secure if for every non-uniform PPT real
world adversary A attacking π, there exists a non-uniform PPT ideal world sim-
ulator S such that for both registration and authentication phases, the real and
ideal world interactions and outputs are computationally indistinguishable;

{IDEALS(aux)(userID, pwd, ls, λ)} ≡c {REALπ,A(aux)(userID, pwd, ls, λ)}

where aux ∈ {0, 1}∗ denotes the auxiliary input, and λ is the security parameter.

Note that such an ideal world definition assumes secure and authenticated
channels between parties. Furthermore, as there is only a single login server in
the ideal world, it does not include phishing (this is why ls domain is not part
of the ideal world). But it provides security against offline dictionary attacks.
In Sect. 5.2 we discuss the security of our solution for attacks like phishing not
covered by this ideal model definition.

5 Threshold SPA Construction

Our Threshold SPA construction is represented visually in Fig. 2 (registration
phase) and Fig. 3 (authentication phase). It is also described below.

Fig. 2. Threshold SPA construction registration phase
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Fig. 3. Threshold SPA construction authentication phase

Registration

1. The user
(a) generates a random salt as salt ← {0, 1}λ

(b) generates one OPRF key per storage provider as
ki ← OPRFKeyGen(1λ).

(c) runs threshold secret sharing construction scheme on salt to create the
secret share for each storage provider <s1, s2, ..., sn> ← TSS(salt).

(d) encrypts each share using oblivious pseudorandom function of the pass-
word pwd using generated OPRF key of each storage provider obtaining
ci ← EncFki

(pwd)(si).
Remark: Since the secret shares are random bitstrings, offline dictionary
attacks on these encryptions are impossible. Therefore, in our solution,
even all the storage providers,without the help of the login server, they
cannot break the security.

(e) computes verification information for the login server via a collusion-
resistant hash function as vk = H(salt||pwd||ls)
Remark: Salt is a randomstring with size of security parameter. For
that reason, the login server, without colluding at least t-many storage
provider, cannot perform a successful dictionary attack.

(f) computes the same identifier for all storage providers via a collusion-
resistant hash function as storUIDi ← H(userID||ls).
Remark: This identifier is only used to retrieve the correct values from
the storage providers that serve multiple clients. Remember that ls is
the domain name of the server the user is registering/connected to (e.g.
ls = paypal.com).

(g) sends <userID, vk = H(salt||pwd||ls)> to the login server, and
<storUIDi, sharei = (ci, ki)> to each storage provider.

(h) can forget all the data she computed that are cumbersome for her to
remember (e.g. K, ki=1,..,n).
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2. The login server receives <userID, vk = H(salt||pwd||ls)>, and stores the
pair in his database.

3. Each storage provider receives <storUIDi, sharei = (ci, ki)> and stores
in the database.

Authentication

1. The user who is trying to authenticate with the login server with domain ls
computes the same storage identifier storUIDi ← H(userID||ls) and sends
it to at least t-many storage providers, and sends userID to login server.

2. Each storage provider finds the associated <sharei = (ki, ci)> with
storUIDi.

3. The user and each storage provider jointly execute the oblivious
pseudorandom function (OPRF) protocol. Each storage provider acts the
sender and the user acts as the receiver in these protocol executions. The
user obtains the OPRF value (with key ki) of the password Fki

(pwd) ←
OPRF (pwd, ki) as the output.
Remark: The OPRF result is received only by the user.

4. Each storage provider sends ci to the user.
5. The user decrypts each ciphertext ci using the corresponding OPRF output

already received to obtain the secret shares si ← DecFki
(pwd)(ci) and com-

putes threshold secret sharing reconstruction algorithm to reconstruct the
secret salt ← TSSRecon(s1, s2, ..., st).
Remark: Even when at least threshold-many storage providers collude and
reconstruct the ciphertext salt of the original secret salt by trying different
passwords in the dictionary, they still need to try the resulting salts online
against the login server, since each password in the dictionary would result
in a valid salt when decrypting shares S.

6. The user computes the verification information as vk = H(salt||pwd||ls)
and sends <userID, vk = H(salt||pwd||ls)> to the login server.

7. The login server looks up the verification information vk associated with
userID, and it accepts the response if and only if the vk sent by the user same
as the vk in the database.3

Remark: The domain name of the login server ls in the hash is to prevent
a phishing/man-in-the-middle attacks. This attack prevention is discussed in
Sect. 5.2 in details.

5.1 Security Proof

Theorem 1. Our Threshold SPA protocol is secure according to Definition 1
against any non-uniform PPT adversary A corrupting the login server LS
and (t-1) many storage providers SPc, assuming that the threshold secret
sharing construction is secure, encryption scheme is semantically-secure, the
oblivious pseudorandom function is secure, and the hash function is collision
resistant.
3 Or a hashed version of vk can be stored in the database, as usual.
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Proof. The simulator S simulates honest parties in the real world (which are
the user U and n − t + 1 storage providers denoted by SPh = {Storih} where
ih = t, ..., n wlog. since all storage providers in our solution are identical) and
corrupted parties in the ideal world (which are the login server LS and t − 1
storage providers denoted by SPc = {Storic} where ic = 1, ..., t − 1). S behaves
as follows:

Registration Phase:

1. S receives <userID, vk = H(salt||pwd||ls), {storUIDi, sharei = (ci,
ki)}i=1,...,t−1> from T P.
Remark: Since S simulates LS and SPc = {Storic}ic=1,...,t−1 in the ideal
world, S receives whatever they receive from T P. Because of the symmetry
of the actions of the storage providers in our construction, which ones are
corrupted by the adversary does not change anything in the proof as long as
the number of corrupted storage providers is below the threshold.

2. S sends <userID, vk = H(salt||pwd||ls)> to the adversarial LS in the real
world.

3. S follows the protocol as a user choosing a random password pwd′ from the
dictionary and a secret share si

′
c for each corrupted storage provider, and

sends <storUIDic , shareic = (c′
ic

, kic)> where ci
′
c = EncFki

(pwd′)(si
′
c) to

each adversarial storage provider {Storic}ic=t,...,n.
Remark: Adversarial storage providers receive encrypted shares of random
values with the random password pwd′. There is no efficient way for adver-
sarial storage providers to distinguish this from real behavior since one more
storage provider needs to be corrupted to mount a successful offline dictionary
attack. For our protocol, all storUIDi values are the same.

4. S stores all the data in its database.

Authentication Phase:

1. S receives <{storUIDi}i=1,...,t−1> from T P.
Remark: In general, since T P may pick any (threshold size) subset of storage
providers to work with, and so not all adversarial storage providers may need
to be contacted. We are assuming the most powerful adversary here, therefore
suppose that all adversarial storage providers are contacted.

2. S sends storUIDic to each storage provider Storic where ic = 1, ..., t − 1.
Remark: While S could already contact the T P regarding the storage
providers at this point (since it already possesses the necessary shares), this
may be distinguishable by the adversary. It is possible that the adversarial
storage providers will not provide correct values in the real world, and hence
the real authentication may fail. The simulator must ensure in that case that
the ideal authentication also fails. The following steps are hence necessary for
indistinguishability.

3. S executes the OPRF protocol with each {Storic}ic=1,...,t−1 using the pass-
word pwd′, and receives pic = Fkic

(pwd′) and also cic from each real Storic .
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4. S checks whether or not each {Storic}ic=1,...,t−1 used the correct correspond-
ing shareic = (cic , kic) values. S already possesses the correct values obtained
from T P during registration in the database. For each pic , cic received from
Storic , S does the following: Using the corresponding c′

ic
, ki stored in its

database during registration, it computes pi = Fki
(pwd′) locally and checks

whether or not pic = pi and cic = c′
ic

. There are two cases for each Storic :
(a) Case 1: Correct shareic = (cic , kic) employed by the adversary in

the real protocol. S detects this by verifying that pic = pi and cic =
c′
ic

. Therefore, S sends (ci, ki) in its database to T P where ci, ki was
sent by T P during the registration.

(b) Case 2: Incorrect shareic = (cic , kic) employed by the adversary
in the real protocol. S detects this by verifying that pic �= pi or cic �=
c′
ic

.
i. If pic = pi and cic �=c′

ic
, S sends (cic , ki) to T P, where ki was in its

database.
ii. If pic �= pi, S generates a random OPRF key k′

i �= ki, and sends
(ci, k

′
i) to T P where ci sent by T P during registration.

Remark: Even though S does not have any knowledge about kic used
by Storic , he can easily understand if each Storic used the correct
input ki by computing the OPRF locally using ki in the database.
Then, if incorrect kic or cic are employed in the real protocol, S also
sends incorrect values to T P, in which case both the real and ideal
responses will fail.

5. T P calculates and sends the verification information vk and userID to S
based on the {ci, ki}i=1,...,t−1 received from S, together with (at least) one
(ci, ki) pair from one of the remaining n-t+1 honest storage providers to reach
the threshold t.
Remark: T P employs the ideal user provided password in the ideal world.
Therefore, if the adversarial storage providers in the real world acted honestly
meaning that the simulator provided correct ci, ki pairs, then the calculated
verification information will be valid, since it is computed using the actual
password. On the other hand, if the storage providers acted maliciously in
the real world, S would have detected this in the previous step, and would
have provided wrong pairs to T P in the ideal world, so in both worlds the
response will be invalid.

6. S forwards <userID, vk> to the adversarial LS in the real world.

Claim. The view of adversary A, controlling the login server LS and t − 1 stor-
age providers SPc, in his interaction with the simulator S is indistinguishable
from the view of his interaction with a real honest party.

Proof. S acts differently while sending shares c′
i calculated based on randomly

chosen pwd′ instead of sending actual ci (sent by T P) calculated based on actual
password pwd and executing the OPRF with the Storic using the password
pwd′ chosen randomly because S does not have the correct password. If A can
distinguish these behaviors, then we can construct another adversary A′ which
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breaks either the OPRF construction or TSS construction. We skip this relatively
straightforward reductions for the sake of space, but intuitively;

1. Reduction 1: The OPRF security ensures that the sender (the adversarial
storage providers) cannot distinguish the receiver (the simulated user) input,
whether it is the actual password pwd or another randomly chosen password
pwd′. Such a reduction will be a hybrid proof, where if at least one adversarial
storage provider distinguishes the simulator from the real user, that can be
used to distinguish the OPRF receiver input.

2. Reduction 2: The TSS security ensures that less than threshold many
providers cannot reconstruct the secret and also cannot check if the shares are
indeed related to the same secret. Intuitively, if adversarial storage providers
can distinguish the simulator, who employs random secret shares during the
registration, from the real user, then that can be used to break the security
of the underlying threshold secret sharing scheme.

Moreover, even though A knows the verification information vk =
H(salt||pwd||ls) and {ci, ki}i=1,...,t−1 from the registration, A cannot perform
an offline dictionary attack on the password because he needs one more (ci, ki)
to reach the threshold t to reconstruct the secret salt. This part can be informa-
tion theoretically secured if an information theoretically secure threshold secret
sharing scheme (e.g. Shamir [23]), semantically secure encryption scheme and
collision resistant hash function are employed.

Theorem 2. Our Threshold-SPA protocol is secure according to Definition 1
against any non-uniform PPT adversary A corrupting threshold many (t) stor-
age providers SPc, assuming that the threshold secret sharing construction
is secure, encryption scheme is semantically-secure, the oblivious pseudorandom
function is secure, and the hash function is collision resistant.

Proof. The simulator S simulates honest parties (which are the login server LS
n-t storage providers denoted by SPh = {Storih where ih = t+1, ..., n−t wlog.}
the user U) in the real world and corrupted parties (which are n storage providers
denoted by SPc = {Storic}ic=1,...,t) in the ideal world. S behaves as follows:

Registration Phase

1. S receives <storUIDi, sharei = (ci, ki)>, where i = 1, ..., t from T P. S fol-
lows the protocol as a user choosing a random password pwd′ from the
dictionary and a secret share sic for each corrupted storage provider, and
sends <storUIDic , shareic = (c′

ic
, kic)> where ci

′
c = EncFki

pwd′(si
′
c) to �-

many adversarial storage providers {Storic}ic=1,...,� and for the rest, it sends
<storUIDic , shareic = (ci, ki)> in the real world

2. S stores the all the data in its database.
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Authentication Phase

1. S receives {storUIDi}i=1,...,t from T P.
Remark: If more than t-many storage providers (e.g. t+1) are corrupted then
they can employ a successful offline dictionary attack by taking advantage of
TSS. Since a wrong password would result wrong shares (from decryption
by the wrong password) and two reconstruction results of these shares (e.g.
two different combinations of t+1 shares) will be two different salts. If the
password is correct, then the reconstruction of the combinations will result
same salt.

2. S sends storUIDic to each Storic where ic = 1, ..., t.
3. S executes OPRF protocol with each {Storic}ic=1,...,t using the password

pwd′, and receives pic ← OPRF (pwd′, kic) and cic from each Storic in real.
4. S checks whether or not each {Storic}ic=1,...,t used the correct corresponding

shareic = (cic , kic) values. S already holds the correct corresponding values
during registration in the database. For each (pic , cic) received from Storic ,
S does the following: Using the corresponding ci, ki stored in its database
during registration, it computes pi = Fki

(pwd′) locally and checks whether
or not pic = pi, cic = ci for corresponding t − � Storic and cic = c′

ic
for �

many Storic . There are two cases for each Storic :
(a) Case 1: Correct shareic = (cic , kic) employed by the adversary

in the real protocol. S detects this by verifying that pic = pi and
cic = c′

ic
for �-many Storic and cic = ci for n-�-many Storic . Therefore,

S sends (ci, ki) in its database to T P.
(b) Case 2: Incorrect shareic = (cic , kic) employed by the adversary

in the real protocol. S detects this by verifying that pic �= pi or
cic �= c′

ic
for �-many Storic and cic �= ci for t-�-many Storic .

i. If pic = pi and cic �= ci are sent by α − many Storic and pic = pi and
cic �= c′

ic
are sent by β −many Storic , S sends α+β many (cic , ki) to

T P,where ki was in its database, in case α+β ≥ n− t+1. Otherwise,
meaning that α + β = t, S sends α + β many (ci, ki) to T P.

ii. If pic �= pi, S generates a random OPRF key k′
i �= ki, and sends

(cic , k
′
i) to T P.

Remark: Even though S does not have any knowledge about kic used
by Storic , he can easily understand if each Storic used the correct
input ki by computing the OPRF locally using ki in the database.
Then, if incorrect kic or cic are employed in the real protocol, S also
sends incorrect values to T P, in which case both the real and ideal
responses will fail. On the other hand, if t values were correct in the
real protocol, responses in ideal and real worlds will be both valid.

5. S will not receive anything from T P, and hence halts.

Claim. The view of adversary A, controlling t-many storage providers SPc, in
his interaction with the simulator S is indistinguishable from the view of his
interaction with a real honest party.
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Proof. S acts differently while sending �-many shares c′
i calculated based on

randomly chosen pwd′ instead of sending actual ci (sent by T P) calculated based
on actual password pwd and executing the OPRF with the Storic using the
password pwd′ chosen randomly because S does not have the correct password.
If A can distinguish this behavior, then we can construct another adversary A′

which breaks either the OPRF construction (as in Theorem 1) or password based
encryption scheme.

If adversarial storage providers can distinguish the simulator, who employs �
random secret shares and t−� actual shares during the registration, from the real
user, than it can distinguish actual secret share ci based on pwd from chosen ran-
dom share c′

ic
based on pwd′, that can be used to break the security of the under-

lying encryption scheme. Moreover, A can compute sic ← DecFkic
(pwd∗)(cic) for

each pwd∗ in the dictionary, then compute the threshold secret sharing recon-
struction algorithm to reconstruct the salt∗ ← TSSRecon(s1, s2, ..., st). For A
to verify if salt∗ (and hence pwd∗) is correct, he needs to have actual verifi-
cation information vk = H(salt||pwd||ls) to compare, which he does not have,
since only the login server has that information.

5.2 Further Analysis

Phishing protection: We consider a strong phishing attack with man-in-the-
middle between the user and the login server during authentication (not reg-
istration). This means, the user registered with a legitimate server with ls
(e.g. ls = paypal.com), but now is trying to authenticate with an attacker
with ls′ (e.g. ls′=paypat.com). Therefore, during registration, the user com-
puted storUIDi ← H(userID||ls), but now for authentication, storUID′

i ←
H(userID||ls′) values are computed instead. Thus, honest storage providers will
not proceed with the OPRF protocol if a phishing domain ls′ is used. Even when
all storage providers are corrupted by the phishing attacker and the correct salt is
obtained, remember that the original registered vk ← H(salt||pwd||ls), whereas
during attack, the user will send vk′ ← H(salt||pwd||ls′) to the attacker. This
means the phishing/man-in-the-middle attacker cannot authenticate with the
original login server on the user’s behalf. Furthermore, because of the security
of salt, the adversary cannot obtain any information about the user password,
unless threshold-many storage providers are also corrupted.

Handling different domains of the same login server: Ross et al. [22] sug-
gest an approach that enables recognizing that amazon.com.de and amazon.co.uk
accounts belong to the same login server and one registration is indeed enough.
Using the same approach for setting ls values, we can also enable the user to
authenticate with any one of the valid domains of the login server.

Remembering the storage providers: The human user is not required to
remember the storage providers. There are several easy solutions. As addressed
by Camenisch et al. [9], the user can remember only a few storage providers who
can help direct to other storage providers. Alternatively, a browser extension or
a mobile device may remember the list of storage providers employed. Finally,

https://www.amazon.de/
https://www.amazon.co.uk/
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if all storage providers in the whole system are employed by all users, such a
public list can be employed, and t of them may be contacted by the user for any
given authentication attempt. Observe that publicly listing storage providers
does not affect cryptographic security. Our ideal model allows the adversary to
know all the storage providers. Therefore, their identities are not hidden when
protecting against offline dictionary attacks.

6 Performance Evaluation

In this section, we discuss performance evaluation for the user and storage
providers. Since the login server acts the same as current servers, we did not
discuss its efficiency. Performance measurement is processed on a standard lap-
top machine with Intel Core(TM) i7-5600U CPU 2.60 GHz, 8.00 GB RAM, and
64-bit OS. For our implementation, we choose AES [12], OPRF in [17], and
TSS [23] with various thresholds. Table 1 shows the computational performance
of the authentication and registration phases. For the registration, the storage
providers do not compute anything, only receive and store some value. Finally,
the user can communicate with the storage providers in parallel, which decreases
the network round trip to 1.5 rounds per authentication, which should be added
to the login total time in practice.

Table 1. Performance evaluation of Threshold SPA (in milliseconds)

User (Reg.) User (Auth.) Storage provider Login total

1–1 Threshold 0.85 1.14 0.35 1.50

3–6 Threshold 2.84 2.83 0.70 3.53

5–10 Threshold 4.46 3.99 1.30 5.30

7 Conclusion

Recent studies [1,4,17] introduced cloud or mobile storage providers to secure
passwords against offline dictionary attacks currently prevalent in password-
based authentication systems. They provided solutions that ensure that as long
as the adversary does not corrupt the login server and the storage provider
together, offline dictionary attacks will be prevented. For the first time, in this
paper, we provide novel techniques to ensure that multiple storage providers can
be employed, and the adversary now must corrupt the login server and threshold-
many storage providers to be able to mount an offline dictionary attack. We
provided an ideal and real world security definition and presented an ideal-real
simulation proof. We further ensure phishing, man-in-the-middle, and honeypot
attacks are also thwarted. Lastly, our construction employs efficient symmet-
ric key primitives and can easily work with today’s hardware, even on mobile
devices.
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Abstract. We present a flexibly configurable toolkit for the automatic
pseudonymization of datasets that keeps certain utility. The toolkit could
be used to pseudonymize data in order to preserve the privacy of data
owners while data processing and to meet the requirements of the new
European general data protection regulation. We define some possible
utility requirements and corresponding utility options a pseudonym can
meet. Based on that, we define a policy language that can be used to
produce machine-readable utility policies. The utility policies are used
to configure the toolkit to produce a pseudonymized dataset that offers
the utility options. Here, we follow a confidentiality-by-default principle.
I.e., only the data mentioned in the policy is transformed and included in
the pseudonymized dataset. All remaining data is kept confidential. This
stays in contrast to common pseudonymization techniques that replace
only personal or sensitive data of a dataset with pseudonyms, while
keeping any other information in plaintext. If applied appropriately, our
approach allows for providing pseudonymized datasets that includes less
information that can be misused to infer personal information about the
individuals the data belong to.

Keywords: Privacy · Pseudonymization · Data utility · Confidential-
ity · Policy language · Utility requirements

1 Introduction

Pseudonymizing privacy-relevant datasets is done to keep the contained privacy-
relevant information confidential. On the other hand, the pseudonymized data
should keep some of its original utility for fulfilling the use case. Consider the
following application scenario: multiple sensors want to share log file content with
a centralized analysis entity for obtaining knowledge of indicators of possible
network attacks. They want to hide the privacy-relevant information contained
in the log file data. On the other hand, they are interested in the results of the
analysis the centralized analysis entity would provide. Hence, certain utility of
c© Springer International Publishing AG 2017
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the data must be kept. On the other hand, they want to keep person-identifiable
information contained in the logfiles confidential. In order to solve the resulting
conflict between privacy and utility requirements, the sensors agree with the
analysis entity on the required utility options the data should fulfill. Then, they
transform the data into a pseudonymized dataset with utility options that meet
the formulated requirements.

Another motivating example is the data processing of IoT devices in smart
buildings. Consider a simple smart building that consists of actors holding one
of the roles system administrator and employee. The sensors include a door to
the building that permits entrance using an employee’s smart card. For that, a
smart card reader is included. When an employee makes use of the smartcard
reader, it gathers working time data with the employee’s ID eID, the time of
entrance te and the time of leave tl, storing (eID, te) and (eID, tl), respectively.
For simplicity, we assume that presence time equals working time. On receiving
a signal from the smartcard reader’s site, it immediately activates the door to
allow for entrance or leave. The data is stored for three purposes: Working time
data is collected for tracking the total hours of work of each employee (purpose
1) and for reproducing the exact working times for conflict resolution (purpose
2). The times employees enter and leave the building are also collected to be
able to reconstruct the presence of individuals in certain time intervals, e.g. in
case of theft detection (purpose 3). While some of the data is processed and
stored locally on sensors side’s registers, e.g. the signals the barrier receives
for activation, some other data, e.g. the working time information is sent to
a centralized database. Despite the fact that not all the data is collected and
stored on a centralized system, the administrators are allowed to access the data.
Obviously, the collected data is person-identifiable and prone to be misused for
other purposes. A curious administrator may use the working time data to infer
the daily routine of an employee, including habits like starting to work the
same time every day [28]. This clearly contradicts the stated purposes the data
have been collected for. Moreover, the use of data containing person-identifiable
information is legally restricted [9].

In this work, we present a tool that transforms textual data into a representa-
tion that meets certain, purpose-specific utility requirements without revealing
the privacy-relevant plaintext. We call that data transformation pseudonymiza-
tion with utility options. Our contribution is as follows:

1. We define a categorization of utility requirements a pseudonymized dataset
can meet.

2. We present an XML-based policy language that allows for a precise definition
and machine-readable formulation of the defined utility requirements in a
so-called utility policy.

3. We present a pseudonymization toolkit that allows for
– a definition of utility requirements using the XML policy language;
– a transformation of a given file that contains semi-structured data into

a data representation in an XML structure that can be referenced by a
utility policy;

– generating a pseudonymized dataset with utility options according to the
utility policy.
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Note that the goal of this work is not to trade-off privacy for utility. We aim
at providing pseudonymized datasets that makes it difficult to an attacker
to retrieve privacy-relevant information while keeping desired utility. This is
done by carefully selecting utility options that a pseudonymized dataset should
provide. Compared to providing access to the plaintext data, the resulting
pseudonymized dataset keeps most of the contained information confidential.
Compared to sanitizing data by identifying and removing any privacy-relevant
information, our technique provides only information that is necessary for the
computation. This makes it harder for an attacker to use such a pseudonymized
dataset to re-identify persons. However, we must point out that our goal is not
to anonymize data.

The rest of this work is structured as follows: After introducing notions and
cryptographic facts required for this work in Sect. 2, related work is reviewed
in Sect. 3. We describe the construction of pseudonyms with utility options in
Sect. 4. The architecture of the pseudonymization toolkit is described in Sect. 5.
In Sect. 6, the security requirements for a system that processes and stores
pseudonymized datasets is discussed. Finally, the work is concluded and future
work is discussed in Sect. 7.

2 Preliminaries

To enhance the understanding of the approach presented in this work, we shortly
introduce the relevant basic notions.

We consider a dataset D being a semi-structured set of plaintext data entries
di, 1 ≤ i ≤ n, where n is the number of data entries in D. Each data entry
consists of data items dij , j ∈ {1, · · · ,mi}, where mi is the number of data
items of the data entry di. A pseudonym of a data item dij contained in a data
entry di ∈ D is a sequence of lij utility tags, i.e. (u1(dij), · · ·ulij (dij)), each
of them consisting of possibly multiple strings. Its construction depends on the
utility it is intended to represent. The set of all pseudonyms of all data items dij
and all data entries di contained in D is the pseudonymized superset of D,

P(D) =
n⋃

i=1

mi⋃

j=1

p(dij).

The set of pseudonyms that fulfill a subset of utility requirements is called a
pseudonymized dataset P (D), where P (D) ⊆ P(D). In the following, we use the
abbreviation UR for utility requirement, and PsD for pseudonymized dataset.
Depending on the utility options required, cryptosystems may be used to gen-
erate pseudonyms. A symmetric cryptosystem is a cryptosystem that utilizes
the same key k for encryption and decryption. In an asymmetric cryptosystem,
a public key kpub and a corresponding private key kpriv are used for encryp-
tion and decryption, respectively. Original data is referred to as plaintexts, and
encrypted data as ciphertexts. A cryptosystem is called deterministic if, given a
plaintext p and a key k, the output is always the same ciphertext c(p), indepen-
dently from the execution of the cryptographic algorithm. Its output only relies
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on the given input plaintext and the key. Otherwise, the cryptosystem is called
probabilistic [13]. A homomorphic cryptosystem produces ciphertexts that allow
for executing operations on them. These operations produce encrypted results
of corresponding homomorphic operations on the underlying plaintexts. If the
homomorphic operation on the plaintexts is an addition or multiplication, the
cryptosystem is called additively homomorphic or multiplicatively homomorphic,
respectively. Homomorphic cryptosystems that allow for the execution of sim-
ple operations, like addition or multiplication, are called partially homomorphic
(PH). Somewhat and threshold homomorphic cryptosystems (SWH) allow for
the execution of functions of limited deep on the ciphertexts [3,4]. Fully homo-
morphic cryptosystems (FH) produce ciphertexts that can be used for arbitrary
computation [12]. Due to their impracticability for our use cases, we are not
considering SWH and FH cryptosystems here and omit an explanation.

The AES is an example of a symmetric, deterministic cryptosystem [7]. The
Paillier cryptosystem is an asymmetric, probabilistic, additively homomorphic
cryptosystem [20]. The RSA cryptosystem in its unpadded version is asymmetric
and deterministic [23]. The ElGamal cryptosystem is asymmetric and probabilis-
tic [11]. Both RSA and ElGamal cyptosystems are multiplicative homomorphic.

3 Related Work

Saving some specific utility of structured data while keeping the plaintext content
confidential has been well-studied for different usage scenarios. For SQL data-
bases, Popa et al. have introduced CryptDB [21], a confidentiality-preserving
database system that enables for SQL querying encrypted database content.
For that, it provides certain, database-utility preserving encryption schemes. In
contrast to our work, it only encrypts database entries that have been identi-
fied as sensitive. Any other data is kept in plaintext. Among other reasons, this
increases the probability of successful inference and correlation attacks [18]. Also,
the whole approach is database-specific. For processing textual data, CryptDB
requires fundamental conceptual adjustments.

Analogous to our approach on textual data, Bkakria et al. [25] present a
flexible, policy-based configuration of utility-preserving encryption of relational
structured data. It includes the detection of conflicting goals in a policy and
algorithms that propose conflict resolution.

LidSec [14] is a use-case independent pseudonymization framework for the
preparation of textual data for data sharing. The data consists of so-called enti-
ties of possibly multiple features. One can choose for each entity feature whether
it should be kept in plaintext or removed. Other possibilities include suppress-
ing, i.e. replacing the value of a feature with a pseudonym, or removing an
entity completely. Different data formats can be used. In contrast to our work,
the pseudonyms generated here provide a comparably limited variety of utility
options, e.g. the ability to check whether underlying plaintexts are equal. For
more utility, the affiliated data has to be represented in plaintext.

FLAIM [27] is an open-source log data sanitization tool for privacy-respecting
information sharing. FLAIM uses sanitization rules that technically define how to
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treat the data. While the goal of our approach is to reach reversible anonymiza-
tion using pseudonymization, the goal of FLAIM is to anonymize data in a
utility-preserving way. Moreover, our utility policy approach allows for describing
the desired utility of a PsD without the need to describe the pseudonymization
technique.

Flegel et al. [10] describe how to preserve the privacy of involved individuals
when sharing security incident-related information in an early warning system
(EWS). After analyzing the URs of each party involved in the EWS, they define
pseudonyms consisting of linkability and disclosability tags to achieve privacy-
respecting linkability and disclosability, respectively. In contrast to our app-
roach, their approach is use-case dependent and does not include the definition
of pseudonyms that allow for performing mathematical operations.

There exist several approaches to pseudonymize textual data for reversible,
context-based confidentiality of privacy-relevant information [2,19,22]. All these
approaches have in common that they are application-dependent. Different from
our approach, almost all of them do not provide a policy that clearly indicates
the desired and achieved utility of the PsD. This makes it hard to estimate the
quality of a PsD and to extend the utility after the data has been pseudonymized
once. Also, the definition of the pseudonymization mechanism depends on the
utilized pseudonymization techniques rather than the desired utility.

Several privacy policy languages for various different purposes have been
introduced [15,17,29]. To the best of our knowledge, none of the introduced
languages can be utilized for the definition of URs for certain data items of a
dataset.

4 Utility Requirements and Construction of Pseudonyms
with Utility Options

Given a semi-structured data file and the URs as an input, the pseudonymization
toolkit automatically generates and outputs a file that contains the PsD.

To construct a PsD of a semi-structured set of data entries D, the purposes
of processing must be identified. Based on the analysis of the purposes, the
URs for each dij are defined. For each dij , one or more utility tags will be
constructed based on the defined URs. This is done by applying appropriate
mechanisms to dij . The resulting pseudonym p(dij) is then a sequence of all
constructed utility tags. For each UR, p(dij) includes a utility tag ul(dij) that
offers the corresponding utility option of dij . In case cryptographic parameters
are required, they will be included in the belonging utility tags.

4.1 Utility Requirements

In the following, we present a definition and classification of the utility options
which a pseudonym can support to meet corresponding URs.

Linkability. A pseudonym p(dij) ∈ P (D) of a plaintext dij ∈ D is linkable with
respect to a relation r, i.e. fulfills the UR “linkability w.r.t. r”, if, given another
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pseudonym p(dxy) that is linkable w.r.t. the same relation r, one can determine
whether the underlying plaintexts dij and dxy are in a certain relation r or not.
This can be modeled by a function f : (P (D), P (D)) → {0, 1} with

f(p(dij), p(dxy))
{

1, if(dij , dxy) ∈ r (1)
0, else (2)

Linkability w.r.t. a relation r is available on a set of pseudonyms P , if the
aforementioned function f is defined on all pseudonyms of P .

Disclosability. A pseudonym p(dij) ∈ P of a plaintext dij ∈ D is disclosable,
i.e. fulfills the UR “disclosability”, if a mapping p−1(p(dij)) = dij is defined for
p(dij).

Mathematical Operations. A mathematical operation + is available on a set
of pseudonyms P , if there is a corresponding operation ∗ that can be applied to
each pair of pseudonyms p(dxy), p(dij) ∈ P with

p(dij) ∗ p(dxy) = p(dij + dxy)

for all plaintexts dxy, dij ∈ D with pseudonyms in P , and there is a mapping
p−1 : P → D with

p−1(p(dij + dxy)) = dij + dxy

for all p(dij), p(dxy) ∈ P .

Binding the Accessibility of the Utility Options. The accessibility of a util-
ity option in a PsD can be bound to certain roles a subject in the system may
hold, or to a purpose that has to be fulfilled. Hence, the utility of a pseudonym
p(dij) itself underlies access control mechanisms.

In the Smart Building example stated in the Introduction, the URs of the stated
purposes are as follows:

– Purpose 1: “How many hours has employee x worked?”
UR 1:

• The accountant must be able to disclose the employee’s ID eID to create
the payroll.

• The accountant must be able to calculate the working hours of each day
by calculating the differences between the corresponding entrance and
leaving times te, tl to create the payroll.

– Purpose 2: “At what time has employee x entered and leaved the building,
respectively?” (conflict resolution).
UR 2:

• The conflict resolver of the company must be able to disclose eID, te
and tl to prove the entrance and leaving times used for calculating the
working hours in case an employee has not consented the payroll.

– Purpose 3: “Who of the employees has been present during a time interval
T?” (theft detection).
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UR 3:
• When a detected theft is likely to have happened in a certain time interval
T = [ti, tj ], the security responsible of the company must be able to dis-
close te and tl to identify the presence of employees in that time interval,
i.e. all employees with last te < tj and last tl > ti. He also must be able
to disclose all eID that correspond to suspicious timestamps.

4.2 Pseudonym Construction

The pseudonyms are constructed as sequences of utility tags, where each utility
tag is used to provide a certain, well-defined utility option. We give example
mechanisms that can be used to generate utility tags of a pseudonym.

Pseudonyms with Linkability options. Selecting an appropriate mechanism
for generating pseudonyms that are linkable depends on the desired relation
r. A simple example for the linkability option is linkability with respect to
equality. Here, pseudonyms are generated such that for two given pseudonyms
p(dij) and p(dxy) of dij and dxy, f(p(dij), p(dxy)) = 1 implies dij = dxy, and
f(p(dij), p(dxy)) = 0 implies dij �= dxy. Pseudonyms that are linkable w.r.t.
equality can be obtained by generating a utility tag u(dij) of dij using a sym-
metric block cipher. For a fast and secure utility tag and pseudonym generation,
e.g. AES may be utilized as a pseudonymization function. To prevent the dis-
closure of dij , the symmetric key has to be kept secret.

The notion for a pseudonym with a utility tag for linkability w.r.t. equality for
dij would be p(dij) = (· · · , u=(dij), · · · ). In case AES is used for the generation,
u=(dij) = (AESk=(dij)). Note that the key k= is not rolled out with the utility
tag.

Pseudonyms with the Disclosability option. To generate a disclosable
pseudonym of dij , one may utilize a symmetric encryption scheme using a key
kdiscl. To obtain a unique disclosable pseudonym for each dij , randomization is
included. One possibility is to append a nonce ndij

of fixed, known length to
each plaintext under consideration before encrypting. kdiscl is made accessible
to an entity that is responsible for managing the disclosure of the plaintext of
dij . This is to ensure that only making use of the disclosability option makes
plaintext information available.

The notion for a pseudonym with a utility tag for disclosability for dij
would be p(dij) = (· · · , udiscl(dij), · · · ). In case AES is used for the genera-
tion, udiscl(dij) = (AESkdiscl

(dij |ndij
), kdiscl). Note that the key kdiscl is rolled

out within the utility tag. To prevent the misuse of this utility option, a secure
handling of the key in the processing system is required.

Pseudonyms with the Mathematical Operation option. In this work, the
utility option for a UR “mathematical operation” is implemented using homo-
morphic encryption. To apply the mathematical operation “addition” on data
items dij from a subset D+ ⊆ D, we use the Paillier cryptosystem [20] using
the same public key k+pub

for generating the corresponding utility tags of all
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the dij . The resulting pseudonym pij includes a utility tag u+(dij) that can be
homomorphically added with other utility tags u+(dxy). The result of the homo-
morphic addition is an encrypted sum. To decrypt the sum, access to the private
key k+priv

that corresponds to k+pub
is required.

The notion for a pseudonym with a utility tag for the addition operation
for dij would be p(dij) = (· · · , u+(dij), · · · ). In case the Paillier cryptosystem
is used for the generation, u+(dij) = (Paillierk+pub

(dij), k+ = (k+pub
, k+priv

)).
Note that the key k+ = (k+pub

, k+priv
) is rolled out within the utility tag. Due to

the construction of homomorphic cryptosystems, k+priv
can be used to decrypt

the pseudonyms and hence, allows for disclosure of the plaintexts dij . Also, k+pub

can be used to malleableize u+(dij), i.e. for a known plaintext x, generating
a utility tag u+(x) and homomorphically add it to a given u+(dij), yielding
u+(dij +x). Subtracting x from the decrypted sum would reveal dij . Thus, there
is the need for a secure handling of the public and private key on the processing
system.

For the utility option of the mathematical operation “multiplication”, the
ElGamal cryptosystem is utilized similarly.

Fig. 1. Structure of a PsD with utility options.

Pseudonyms with utility options bound to roles or purposes. For con-
trolling the access to a utility option of a pseudonym P (dij), the matching utility
tag u(dij) can be bound to a role or purpose. For that, it is probabilistically
encrypted. The decryption key can be accessed only by a subject holding that
certain role, or is proving to fulfill the dedicated purpose, respectively. This
additional encryption introduces a layer of access control on the pseudonyms.
To obtain a probabilistic encryption of a utility tag, we use a symmetric block
cipher, e.g. AES, together with a nonce of fixed known length for generating
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each utility tag. The goal of using probabilistic encryption is to prevent a pos-
sible attacker from detecting duplicate plaintexts by checking encrypted utility
tags and hence, gaining a benefit that might rise the success probability of a
correlation attack using background knowledge.

The key used for role or purpose binding of the availability of a utility option
of a utility tag must be securely stored and processed in the system.

Summarizing, a PsD P (D) of a dataset D can be considered as a set

P (D) ⊆
n⋃

i=1

mi⋃

j=1

p(dij).

Each utility option of each dij addressed in the utility policy is represented in
the PsD as a utility tag. This results in a pseudonym of dij being a sequence of
utility tags uk(dij), i.e.

p(dij) = (u1(dij), · · · , ulij (dij)),

where lij is the number of utility tags required for meeting all URs defined for
p(dij). I.e., lij equals the number of URs. The strings required to offer a single
utility option are summarized in one utility tag. Figure 1 shows the structure of
a PsD with utility options.

Note that for each utility tag, corresponding cryptographic parameters may
be required for security reasons. In order to prevent a misuse of the utility options
offered by a PsD, the parameters have to be treated carefully in the processing
systems.

Note that generating pseudonyms with utility options may have side effects
that lead to a disclosure of unwanted information by combining the knowledge
gained from different utility options. For that, the definition of the URs has to
be done very carefully and respecting the principle of data minimization and
purpose binding [9] together with a strict access control.

In the example of the Introduction, data produced in a simple smart building
could be pseudonymized according to each described UR stated in Sect. 4.1. This
would result in utility tags constructed as follows:

Req. 1: Tracking the total number of hours of an employee.

Utility tags:

• eID is probabilistically encrypted using a purpose-specific key k1 that is only
accessible for that purpose. The result is e1k1(eID).

• Every working day, te and tl are used to generate pseudonyms that preserve
distances within a limited time interval, e.g. using the functions described in
[16]. The result is ed(te) and ed(tl), respectively. As soon as the smartcard
reader gathers an employee’s leave, it calculates the difference of ed(te) and
ed(tl), yielding ed(tl − te). For purpose binding, the result is encrypted using
k1 to e1k1(ed(tl − te)).
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Req. 2: Resolving conflicts about the working hours between an employee and the
company.

Utility tags: eID, te and tl are probabilistically encrypted using a purpose-
specific key k2 that is only accessible for that purpose. The result is
(e1k2(eID), e1k2(te), e1k2(tl)). On conflicts, only conflict-resolving subjects in
the system can access the key and hence decrypt and access the plaintext values.

Req. 3: Suspect identification after theft detection.

Utility tags: eID, te and tl must be probabilistically encrypted using a purpose-
specific key k3. The result is (e1k3(eID), e1k3(te), e1k3(tl)). To identify suspects,
only security responsible subjects can access the key and decrypt and access the
plaintext values. The PsD is then

– for the time stamps te and tl:
u1(te, tl) = (e1k1(ed(te)), e1k1(ed(tl)), e1k1(ed(tl − te)), k1))
u2(te, tl) = (e1k2(te), e1k2(tl)), k2). u3(te, tl) = (e1k3(te), e1k3(tl)), k3). Note
that each value of the utility tag is generated as soon as the corresponding
plaintext value occurs.
The result is p(te, tl) = (u1(te, tl), u2(te, tl), u3(te, tl));

– for the employee’s ID eID: p(eID) = (u1(eID), u2(eID), u3(eID)).
u1(eID) = (e1k1(eID), k1),
u2(eID) = (e1k2(eID), k2), and
u3(eID) = (e1k3(eID), k3);

k1 is only accessible to the accountant for payroll generation, k2 is only accessible
to the conflict resolver in case of conflicts, and k3 is only accessible to the security
responsible in case of theft detection.

5 Architecture

The pseudonymization toolkit consists of a policy builder, an input transforma-
tion tool, and a pseudonymization tool that utilizes pseudonymization functions.
Given a semi-structured data file and the URs as an input, the pseudonymization
toolkit automatically generates and outputs a pseudonymized data file (Fig. 2).

The Transformation Tool

The toolkit accepts data of arbitrary semi-structured data formats as an input. In
order to allow the pseudonymization tool to address the data items and apply the
corresponding pseudonymization rules on each addressed data item, the trans-
formation tool generates an XML structured representation of the input dataset.
It identifies the data entries and generates an XML node for each data entry. For
each identified data item of a data entry, a corresponding sub-node is generated
in the XML representation.

The transformation tool includes Python scripts [24] as plug-ins for different
semi-structured data formats, including JSON [6], YAML [1], CSV [26] and the
content of electronic health records written in HL7 compatible formats [8].
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The Policy Builder

The policy builder is the human interface to the toolkit. It provides a GUI for
passing the file that contains the plaintext data D and inserting the URs that
have to be provided by each data item. With the input, it generates a machine-
readable policy using the specific XML based policy language.

The Policy Language

A utility policy has two purposes. Firstly, it serves as a machine-readable, yet
human-comprehensible documentation of the URs for a PsD of a dataset D. Sec-
ondly, the pseudonymization tool infers the configuration required for generating
a PsD that meets the formulated URs from the policy. Here, a configuration of
the pseudonymization tool is the selection of appropriate mechanisms and para-
meters, e.g. cryptographic keys, to generate an appropriate PsD of D.

The policy language consists of XML-based syntax. A utility policy has the
parent tag <utility policy>.

Fig. 2. Dataflow of the toolkit.

Addressing a dataset and data entries. The dataset is addressed with the
child tag <dataset id="f">, where f is the identifier of the file that contains
the dataset. Each data entry di that contains data items to be represented in
the PsD by pseudonyms is addressed by an annotating child tag <dataentry>.
The data item dij is represented by the XML tag of the column it belongs to. To
define a UR for a single dij , the id attribute of the tag <dataentry> is set to
the number of the containing data entry. We call this referencing method “indi-
vidual addressing”. To address all data items of the same type in a dataset, e.g.
all data items of the type <time>, the tag <time> is used. The id attribute of
<dataentry> is set to all. We call this referencing method “tag-based address-
ing”. Note that a data item can only be referenced by its position and tags, and
not by its value. To address data by value-based properties, the tagging must
indicate these properties.

Formulation of the policy rules. The rules that define the URs for a
pseudonym of dij are annotated with the child tag <utility>.
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Utility options. A <utility> rule contains the child tag <option> that defines
whether the utility option is of the type linkability, disclosability or mathe-
matical operation. To annotate these utility options, the values linkability,
disclosability, or mathematical operation are included, respectively.

For denoting the relation of linkability options, the child tag <relation> of
<utility> is used. The child tag <operation> indicates the intended math-
ematical operation.

Binding a utility option to a role or purpose. The utility option defined in a
<utility> rule can be bound to a role or purpose using the child tag binding
of utility. For role binding, the binding is extended with an attribute type.
The value of type is either set to role or purpose. The value of the <binding>
tag is set to a system-based identifier of the intended role or purpose, respectively.
An example of a XML utility policy is given on our website1. A utility policy can
be addressed by extending the <utility policy> tag with the id attribute.

The Pseudonymization Tool

The input of the pseudonymization tool is a utility policy file and an XML struc-
tured input plaintext dataset file. The tool is configured based on the URs. For
each UR, it selects an appropriate pseudonymization function from the pool of
pseudonymization functions. It applies the functions to each data entry men-
tioned in the policy and writes the PsD output into an XML structured output
file. Only data entries with matching rules in the utility policy are pseudony-
mously included in the PsD output file. Data entries with no matching rules are
omitted in the PsD. Note that the provided mathematical operation “addition”
is homomorphic and requires access to the corresponding Paillier public and pri-
vate key. For that, the key is included in the utility tag. On deployment, it must
be ensured that the key is stored and accessed securely.

6 Security Requirements

The goal of this work is to present a flexible, almost use-case independent
pseudonymization toolkit. The system architecture must provide means that
provide security against a realistic, well-defined attacker model. Here, we assume
the honest-but-curious adversarial model. For that, the system architecture must
fulfill the following conditions:

Data minimization. Depending on the usage scenario, (possibly multiple) par-
ties may be involved in the definition of the URs a PsD P (D) should fulfill. We
assume that the parties agree on the minimum possible set of URs. This includes
that the data holder would only provide pseudonyms of data entries of D with
utility options that are required for fulfilling the computation purpose. I.e., the
parties under consideration strictly follow the principle of data minimization.

1 https://net.cs.uni-bonn.de/wg/itsec/staff/saffija-kasem-madani/appendix/.

https://net.cs.uni-bonn.de/wg/itsec/staff/saffija-kasem-madani/appendix/
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Access control on the pseudonyms. Whenever required, the parties of the
system agree on clear purposes the utility options should be used for. This implies
purpose-based access control on the utility tags of a pseudonym, i.e. purpose
binding. If necessary, the utility options should be made accessible to certain,
well-defined roles. This leads to a role-based access control on the utility tags of
the pseudonyms. The access control comprises keys, salts and nonces contained
in the utility tags. We assume that the system architecture provides means of
secure key storage and access.

Secure decryption management. The system ensures that the private keys
are only used for enabling a utility of a pseudonym according to the formulated
utility policy. This includes trusted means that ensure that no plaintexts of D
are revealed unless it is required to meet a well-defined disclosure condition.
In order to fulfill this security requirement, hardware security modules may be
utilized.

7 Evaluation

The goal of our evaluation is to elaborate the overhead of utilizing a PsD with
utility options instead of a plaintext dataset described and to compare the over-
head caused by different utility options. For that, we have considered the time
and space consumption of the PsD of different utility options during generation
and utilization. We have examined the utility options disclosability, linkability
w.r.t. equality, mathematical operation “addition”, and mathematical operation
“multiplication”. Each of the utility options has been considered with binding
to a purpose/role, and without binding. We have run our experiments on a
Microsoft Windows 10 Home 64-bit system with a Intel(R) Core(TM) i7-4500U
CPU and a 1.80 GHz clock rate, a 8 GB RAM and a hard disk drive. We have
followed the BSI2 recommendations for key and block sizes [5]. The key and
block sizes are as follows: To generate a utility tag for the utility option “disclos-
ablity”, we have performed an AES encryption with a 128-bit salt and a 128-bit
key and 128-bit block size. For linkability w.r.t. equality, we have used a SHA2
hash function of 256 bit length. For the mathematical operation “addition”, we
have used a Paillier encryption with a key and block size both of 2048 bits. For
multiplication, we have used an ElGamal encryption with 2048 bits for both
key and block sizes. For binding, we have re-encrypted each generated utility
tag with an AES encryption with 128 bit for both key and block size. Overall,
we have considered a utility tag that is disclosable without being bound to a
role/purpose to be a plaintext.

For the evaluation, we have generated a CSV file that contains a simulated log
of the working times of six different simulated employees. The file consists of 250
data entries. Each data entry consists of three data items: the employee’s ID, the
time he started to work, and the time he finished his work. We have generated

2 Bundesamt für Sicherheit in der Informationstechnik: German Federal Office for
Information Security.



176 S. Kasem-Madani et al.

Table 1. Space consumption for PsD with different utility options.

Utility/Option With binding Without binding

Disclosability 188.9% 100%

Linkability w.r.t. equality 572.12% 240.69%

Mathematical operation “addition” 8586.31% 3266.90%

Mathematical operation “multiplication” 8665.55% 3283.83%

Table 2. Pseudonym generation: time consumption in seconds for pseudonymizing all
data items of a file that contains 250 entries with three data items for each entry.

Utility/Option Without binding With binding

Disclosability 0.264 19.212

Linkability w.r.t. equality 0.311 31.517

Mathematical operation “addition” 2015.674 2643.181

Mathematical operation “multiplication” 66.635 90.365

PsD of one utility option for each data item, i.e. each data item contained in
the CSV file is represented by a pseudonym that consists of one utility tag.
Depending on the desired utility option, it took between 0.26 s (including a
plaintext for an unbound disclosable data item) and 44 min (bound addition) to
generate the pseudonyms. Table 2 shows the time consumed for pseudonymizing
the whole dataset.

We compared the size of the XML representation of plaintext CSV file, i.e.
the plaintext after being transformed to an XML-tagged file to the size of the
PsD file in its XML representation. Here, we omitted the key sizes. For unbound
disclosability, we simply keep the plaintext. The remaining utility options lead
to file sizes between 1.8-fold for unbound linkability w.r.t. equality, and 86-fold
for bound addition. The detailed space consumptions are listed in Table 1.

We consider the generation of a PsD being a process that is done once before
rolling out data. Thus, we conclude that the space and time consumption for
generating a PsD is feasible. In the related work, we could identify that Flegel
et al. stated comparably small ressource consumptions for their approach [10].
In contrast to their work, our approach allows for various utility options. This
comes together with the use of cryptographic mechanisms that are highly time
and space consuming. Summarizing, we believe that there is the possibility of
optimizations in future work.

8 Conclusions and Future Work

We have presented a toolkit for pseudonymization with utility options. It allows
for the formulation of URs in a machine-readable utility policy of a PsD. Based
on the utility policy, it generates an XML structured PsD that fulfills the URs.
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To this stage of research, we have identified three types of URs and formulated
corresponding constructs in the policy language. Therefore, the policy language
can be used to formulate matching policies. We aim at identifying more URs and
extend the policy language to serve them as well. Based on the future findings,
we would extend the toolkit to produce PsDs with more utility.

Formulating URs of a PsD and balancing them with the privacy requirements
of the individuals the data belong to requires experience and knowledge about
the possible privacy implications of rolling out pseudonymized data. For example,
a pseudonym with the utility option “disclosability” may lead to the disclosure of
personal information. Therefore, it is important to balance between the need for
privacy and the need for utility. Some combinations of utility options that may
be contained in a PsD may be prone to correlation attacks. Building upon the
presented work, one may develop technologies that enhance privacy-respecting
selections of URs. Future work would also include a study about privacy risks
implied by different combinations of utility tags for a data item. A deeper knowl-
edge of these implications would enable us to design recommendations on how
to combine URs to achieve appropriate utility policies for certain application
scenarios.

At this stage of research, the toolkit provides a graphical user interface (GUI)
that allows a user to formulate a policy by clicking desired URs in a multi-step
process. The GUI allows to combine arbitrary URs for each data item in a
dataset to formulate a utility policy. On the other hand, there is no guidance
that enhances the user in choosing the URs that are appropriate for the current
use case. Therefore, the user must have some experience to be able to formulate
appropriate utility policies. We aim at providing use-case dependent combina-
tions of URs that can be used as templates for the formulation of utility policies.
One possible example is a template that consists of the URs that come from the
need of applying a certain algorithm on the pseudonymized data.

We have presented a comparably simple usage scenario in the Internet
of Things. There, we identified three requirements that have resulted in
pseudonyms for the timestamps’ tuples consisting of two different utility tags,
and pseudonyms for the employee’s ID consisting of three utility tags. Consider-
ing the increased storage space caused by the cryptographic outputs, we believe
that there is potential for optimization. In future work, our goal is to study and
implement those optimizations.

We have shown how the availability of the utility option of a utility tag can be
bound to a specific purpose or role using symmetric encryption. Utilizing asym-
metric cryptography may ease the key deployment and management. However,
it may imply higher storage and processing costs.

When decryption is required for making a utility option of a pseudonym
available, mechanisms that ensure that the decryption key is securely accessed
and utilized are required as well. One may extend this work to include safe
decryption mechanisms.
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Abstract. Dashcams are small, dashboard mounted camera systems
that continuously monitor the area around a vehicle and record video
images on a portable storage device. According to many data protec-
tion authorities, dashcams constitute surveillance systems that are oper-
ated by private individuals in public places. By continuously acquiring
personal data they interfere disproportionately with the right of infor-
mational self-determination. One approach to make dashcams compliant
to data protection law is to automatically identify personal informa-
tion – at least pedestrian’s faces and license plates – in the captured
video image and subsequently disguise them. Even though appropriate
anonymization methods exist, high computational costs prevent their
use in portable dashcams. This article presents a new approach that
enforces the anonymization of encrypted dashcam videos on a dedicated
computer system, before the user gets access to the videos. To accomplish
this, classified images are safeguarded by usage control techniques on the
way from the camera to the anonymization component. By applying the
developed system, any existing dashcam can ultimately be enhanced by
privacy protection capabilities.

1 Introduction

Dashcams are small cameras that are installed on dashboards and behind wind-
screens of cars. During the recent years they became increasingly popular in
many parts of the world, including Europe. Drivers expect dashcam footage to
simplify claim settlement in case of traffic accidents as well as to proof their
innocence. Simultaneously the spread of dashcams is accompanied by a contro-
versy regarding data protection. For example, dashcams can be seen as mobile
surveillance systems, which can hardly be operated legitimately by private indi-
viduals in public places. Furthermore all existing types of dashcams may acciden-
tally capture personal information in terms of depicted faces or license plates of
cars. Hence dashcams interfere with the affected persons’ right of informational
c© Springer International Publishing AG 2017
J. Garcia-Alfaro et al. (Eds.): DPM/CBT 2017, LNCS 10436, pp. 183–201, 2017.
DOI: 10.1007/978-3-319-67816-0 11
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self-determination. Whether these interferences with personal rights are propor-
tionate is still controversially disputed. Compared to that, so-called crashcams
constitute a more privacy-friendly approach, since they only record images in
an event-driven manner, for example triggered by an acceleration sensor. Crash-
cams use a ring buffer to record video images for a fixed time period before and
after an event. But even with crashcams the acquisition of personal information
cannot be entirely prevented.

The admissibility of dashcams under applicable European data protection
law is still disputed within the member states. While in Germany there is no
leading decision by superior courts regarding dashcams yet, in Austria dashcams
have been inadmissible since 2012. Furthermore in 2015 the Austrian Supreme
Administrative Court in Vienna prohibited the use of a crashcam that operates
with reduced image resolution to protect the privacy of depicted persons. The
court did not consider an artificially lowered image resolution to be a sufficient
countermeasure against the acquisition of personal information and suggested
a camera system that automatically disguises privacy relevant image areas like
faces and license plates. Although adequate anonymization methods exist, their
computational costs prevent an integration into portable camera systems.

As of May 25th 2018 the European General Data Protection Regulation
(GDPR) must be applied directly in the member states (Art. 288 TFEU, Art. 99
no. 2 GDPR). However, as the GDPR lacks a specific legal norm for video
surveillance, only its very generally phrased regulations remain for application.1

Art. 6 no. 1 f GDPR relies on a balancing of interests between the dashcam user
and the affected individuals, but it does not provide further narrowing criteria.2

Therefore it is questionable whether such a broadly defined permission as phrased
in Art. 6 no. 1 f GDPR can regulate an intrusive technology like dashcams.3

Hence the legal standard exclusively amounts to a balancing of interests. The
dashcam user has a legal interest in an effective demonstration of evidence in
a trial as well as in an effective prosecution of hit-and-run drivers.4 Individuals
affected can claim the protection of their personal data according to Art. 7 and
Art. 8 of the Charter of Fundamental Rights of the European Union. However,
this balancing of interests must also account for the technical specification of a
concrete dashcam, since privacy enhancing technologies (PETs) may contribute
to an adequate level of data protection (cf. recital 78 GDPR and Art. 25 GDPR).

When considering the current regulations of the member states concerning
video surveillance, the GDPR may prove to be too indeterminate due to the lack

1 See Bretthauer/Krempel/Birnstill, CR 2015, 239 (242) [3].
2 E. g. § 6 b BDSG, § 50 a ff. ÖDSG, §§ 16 ff. Data Protection Act, Lithuania, § 26 Act

on Processing of Personal Data, Denmark, § 6 Data Protection Act, Liechtenstein,
§§ 36 ff. Personal Data Act, Norway.

3 See Bretthauer/Krempel, in: Schweighofer/Kummer/Htzendorfer (ed.), Transparenz
– Tagungsband des 17. Internationalen Rechtsinformatik Symposions, 2014, S. 525,
532 [2]; on the requirements laid down in Art. 52 of the Charter of Fundamental
Rights of the EU see Rieckhoff, Der Vorbehalt des Gesetzes im Europarecht, 2007,
p. 155 ff [13].

4 E. g. Ernst, CR 2015, 620 (623) [6].
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of further narrowing criteria. The use of dashcams in the private sector is then
no longer covered by the GDPR. Legal certainty on an international level should
not be expected within the next few years. In any case, future legal norms will
most likely not define exact design specifications of a privacy-friendly dashcam,
but instead state certain mandatory guidelines for such a system. It is our goal
to show that privacy-friendly dashcams are possible by implementing technical
measures that enforce anonymization on dashcam videos. The existence of a
proof-of-concept system may then serve as input for future jurisdiction.

This article presents an approach that securely outsources the image exploita-
tion algorithms required for an appropriate image anonymization to a dedicated,
powerful computer system. For this purpose a storage medium is used that
encrypts videos immediately. Access to this storage medium is only possible
via a computer that is protected by data flow tracking and usage control (UC)
mechanisms. These mechanisms ensure the anonymization of the dashcam video
material prior to any user access. Furthermore they guarantee that the user can-
not modify or delete any acquired data. This idea has been published by the
authors in [16] in a preliminary and condensed version.

Related Work. The task of video image anonymization consists of two indepen-
dent steps. First, image classifiers detect privacy relevant image areas like faces
or license plates. These regions of interest (ROIs) are then obfuscated so as to
remove all sensitive information in the actual anonymiyation step.

From the perspective of privacy protection in dashcam recordings, the most
challenging image classification task is pedestrian detection. The best perfor-
mances have recently been obtained using advancements of the integral channel
features detector (ICF) [17,18] and also by using deep learning approaches for
augmenting classification models with high-level features learnt from various
tasks and datasets [8,15]. For privacy protection a detector’s miss rate is the
vital performance metric, and the referred detectors achieve miss rates of less
than 20Furthermore, Zhang et al. [17] found that small scale and side-view per-
sons are the largest sources of false negative detections, whereby at least persons
captured in small scale are not a major privacy issue.

Anonymizing video images to obfuscate privacy-sensitive regions is an inten-
sively researched task as well. Naive anonymization methods such as blurring or
pixelization can quickly obfuscate certain image areas, but have been shown to
be generally ineffective [4] while possibly reducing the utility of the remaining
video images for later evaluation. More advanced image anonymization tech-
niques like image warping [10], region-based transform-domain scrambling [5],
or a combination of different filters can yield better results. As shown in [1]
effective privacy filters can be found that preserve the utility of filtered video
data [1].

In the field of privacy-sensitive video acquisition, real-time image anonymiza-
tion on embedded devices has been proposed. With the prototype TrustEYE.M4
Rinner and Winkler [14] present a trusted camera with integrated privacy
enhancing technologies (PET). The hardware is based on a Raspberry PI,
an inexpensive single-board computer, which immediately processes the data
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acquired by the camera before they can be stored or distributed. After detecting
ROIs, a privacy filter is applied to the images before they are stored perma-
nently, thus ensuring that only anonymized data is available. However, since
the available computing power is limited, only simple detection and anonymiza-
tion methods can be used. It is not yet clear whether those simple anonymiza-
tion methods are capable of adequately protecting personalized image areas,
while still keeping the resulting video images suitable for reconstructing traffic
accidents. Sufficiently powerful image processing algorithms, which can reliably
detect privacy critical image areas in real time, generally have high computa-
tional costs and thus are only of limited use in mobile camera systems. In 2015
Janard and Marurngsith implemented a face detection based on local binary
patterns (LBP) on a Raspberry PI and achieved no more than 17 fps for QVGA
(320 × 240 px) [9]. As most customary dashcams achieve a higher resolution and
frame rate, it seems appropriate to outsource the ROI detection and anonymiza-
tion to a dedicated computer system.

In order to outsource the anonymization of acquired video material to a
dedicated computer, the dashcam has to store the videos on a separate storage
medium, which is then connected to the processing computer system by the
dashcam user himself. At this point it has to be ensured that the user cannot
access the video files before they have been anonymized. By encrypting the
video material on the storage medium and applying UC techniques [11,12] as
soon as the video material is being decrypted in a controlled environment, the
usage of data can be continuously supervised. UC is a generalization of access
control where data usage can be restricted even after an initial access to the
data has been granted. However, for this purpose the protected data has to be
continuously monitored, which is why UC is often extended by data flow tracking.
Data flow tracking allows to restrict data usage by expressing (in)admissible data
flows instead of defining restrictions in terms of observable system events [7].

2 System Model

As explained above, the European jurisdiction assumes that dashcams cannot be
operated in public places without acquiring personal information of uninvolved
persons. Hence dashcam videos must be regarded as containing privacy sensitive
information and must therefore be protected from illegitimate access. We propose
and analyze a system model that is capable of preventing illegitimate accesses to
the recorded dashcam videos until all personal information has been removed by
anonymization. The basic system design consists of a customary dashcam and
a storage device that stores video files and related meta data. Video images are
considered to be classified until a designated declassification component, running
on a separate computer, removed all personal information by anonymizing the
images. On the way from the storage to the declassification component, the video
data has to be properly protected. The declassified video data can then be shown
to the user. Firstly, we define the protection goals for the system as well as the
attacker and trust model for the considered scenario.
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Protection Goals. The main assets that have to be protected are personal infor-
mation embedded into the acquired video images, especially faces and license
plates of cars. Furthermore many dashcams also produce meta data like time
stamps and GPS locations, which may be either embedded into the original
video files or stored in separate files. In any case this information has to be
protected as well. The most important protection goal is the confidentiality of
the video images and the embedded personal information. The system needs to
protect the classified video images in the scope of the system from being viewed
by unauthorized eyes. Note that at this point we abstract from the detection
and obfuscation techniques that are used to detect and anonymize image areas
containing privacy relevant information. The implemented image classifiers used
for this task will always have an error rate, and hence might miss some of the
privacy relevant image areas. However, the goal of the proposed system is to
securely enforce anonymization on dashcam videos, i.e., to prevent an attacker
from bypassing the mandatory classification and anonymization step, regardless
of the used algorithms. What types of image classifiers can detect privacy rele-
vant image areas with sufficient precision in order for the resulting anonymized
images to be considered unproblematic in a legal sense is still an open question.

Another protection goal is the integrity of the acquired information, espe-
cially the meta data. If they should be used as evidence in court, it has to be
ensured that the data has not been manipulated. Finally the authenticity of
users with extended access rights, like prosecution authorities (see below), has
to be guaranteed. Privacy protection goals like intervenability, unlinkability and
transparency are not directly applicable to our system, since we focus on remov-
ing privacy related information altogether instead of gathering and processing
them.

Attacker Model. The main attacker against our system is interested in extracting
and distributing the personal information embedded into the acquired video
images. This privacy attacker has access to the camera, the encrypted storage
medium as well as the processing computer system that is used to view the
anonymized videos. The system must not disclose any privacy relevant data to
this attacker. This goal is substantially complicated by the fact that the privacy
attacker is not an uninvolved third person, who for example steals a camera
system, but the user of the camera system itself. So we obviously need to allow
the user to operate the camera system and partially view the recorded images,
but still make sure that no privacy related information is leaked to him. This
type of ambivalence, that the user of a system simultaneously is the attacker, is
a typical characteristic of UC enforced systems. Nevertheless, a dashcam system
can only be privacy friendly if it is resistant against a privacy attacker.

The modifying attacker pursues the goal of manipulating recorded videos or
meta data. For example, a modifying attacker could try to forge the GPS loca-
tions or time stamps on the video images to make the evidence more favorable
for him. Unlike the privacy attacker, this type of attacker may also operate on
unclassified data like meta data. Therefore a mechanism is required to specifi-
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cally protect the integrity of unclassified data as well. The modifying attacker
usually has access to both the storage device and the declassification system.

The third type of attacker is the destructive attacker, who wants to destroy
unfavorable video images recorded by the camera system, for example after caus-
ing a traffic accident. Since a physical destruction of the storage medium can
hardly be prevented, the destructive attacker is restricted by the assumption
that he wants to delete information in a way that it is undetectable for third
persons. The destructive attacker has access to both the declassification system
and the storage medium, but desists from mechanical destruction.

A fourth typical attacker to be considered is the outsider attacker. The out-
sider attacker is completely unaffiliated with the persons operating either the
dashcam or the declassification tool and might come into possession of one or
more system components by accident. The classical example of this type of
attacker is the thief who broke into the car and stole the dashcam. The out-
sider attacker is a special type of privacy attacker who has access to the storage
medium and is interested in all saved information, be it classified or unclassified.
Furthermore, the outsider attacker has no access to the declassification system.

Trust Model. In our scenario four different actors use, interact with or have
an interest in the camera system. The operator is the actor who buys, deploys
and uses the camera system in order to benefit from video footage in case of
traffic accidents or similar incidents. The operator acts on his own behalf, so he
must not be granted access to the classified data. Because the operator is the
one who generates potentially privacy sensitive information, he is simultaneously
the main antagonist of the system. He can act as privacy attacker, modifying
attacker, and also as destructive attacker. Because the operator is not trusted in
the first place, there is also no need to authenticate him explicitly in the system.

The evaluator is generally interested in the acquired video data as well as its
integrity, but does not operate the dashcam himself. The evaluator is allowed
to review anonymized dashcam videos for certain purposes. However, just like
the operator, the evaluator must not be granted access to the classified data. An
example for this actor is an insurance company that offers lower fees for dashcam
users and wants to evaluate the video images after an insurance claim has been
filed. In that case the insured person is the operator, whose driving behavior
is assessed by the evaluator using anonymized dashcam footage. The insurance
company is also interested in the integrity of the dashcam footage, in order to
prevent insurance fraud. Similarly, the insured person wants to be guaranteed
that the insurance company does not tamper with the recorded videos in order to
escape payment obligations. Hence the evaluator is a possible privacy attacker,
modifying attacker and destructive attacker. Because the evaluator is not allowed
to view classified data, the exemplary insurance company cannot identify the
other party in case of a hit-and-run accident, as the license plates are being
anonymized. However, in that case the incident is of criminal relevance and legal
action is necessary, involving a prosecution authority as a third actor.

In specific cases the prosecution authority has a legitimate interest in the
recorded video images to serve as evidence in court. By court order it may get
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entitled to access the classified video data and identify depicted persons. Because
the prosecution authority is granted sufficient rights to bypass the protection
mechanisms, it has to be fully trusted. Hence the proper authentication and
enforcement of access rights of this actor is of major importance.

The administrator is the actor who puts the system into operation and ini-
tially specifies the access rights for all other actors. Naturally, the administrator
has to be fully trusted as well. In the following it will be assumed that the
administrator only gets one-time access to the system in order to set it up. After
that the system is operated in an environment that the administrator cannot
influence and has no access to. Hence the administrator can be ignored for the
security analysis later in Sect. 5. Nevertheless, there are some crucial measures
that the administrator has to take in order to set up a secure system.

3 System Specification

In the following sections the concrete system is specified. In order to do so, the
various components as well as their interaction with each other is defined. Finally
a possible implementation of the developed system model is presented.

Components. The system model distinguishes between the camera itself and
a storage that saves the acquired data for further processing. How the video
images that contain personal information reach the system is irrelevant for the
model. Hence the model can abstract from the camera and view the dashcam
as consisting of only a storage device. Therefore the approach depicted in Fig. 1
can be used for any customary camera devices.

System

Declassification

Enforcement

Operator

Prosecution
Authority

Dashcam

Activate

Decrypt

Classified
data Classified

data

Declassified
dataUsage

Control

Fig. 1. System design

The storage consists of an encrypted (SD) memory card that can encrypt
data on-the-fly when it is written to the storage. The encryption takes place
transparently for the writing camera device. It does not notice that the data is
encrypted while writing, but will not be able to read from the storage again. The
cryptographic key that the memory card uses for the encryption is itself stored
in a specifically secured area of the storage, which is not readable from the out-
side. Reading the encrypted data from the storage in plain-text is only possible
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after unlocking the key with a secret PIN. If the memory card is unlocked the
stored data is decrypted on-the-fly when reading from the device. Hence the
decryption takes place transparently for the process that is reading. Encrypted
memory cards that implement these requirements are available from special man-
ufacturers. In Sect. 3 a suitable storage device is specified. The memory device
ensures that any information saved on the storage cannot be retrieved without
the knowledge of the secret PIN. As a matter of principle, only trusted systems
may posses the PIN that is required for decrypting the storage. Before decrypt-
ing the storage, these trusted systems ensure that neither operator nor evaluator
can access any classified data in a non-anonymized fashion.

The declassification component reads classified videos containing privacy rel-
evant images and applies a declassification function to generate a declassified
representation of the videos. This is usually done by anonymizing the privacy
relevant image areas using image obfuscation techniques. Images that have been
processed by a declassification function do not contain privacy relevant infor-
mation anymore and hence are considered to be declassified. At this point it
is assumed that the image classifiers used by the declassification function can
detect all relevant image areas. To what extent image exploitation algorithms
exist that can sufficiently hide personal information in order for data protection
law not to be applicable is still unclear. However, for the mere task of enforcing
image obfuscation on dashcam videos, this is not relevant. Subsequently, only
declassified videos are allowed to leave the system scope to be viewed by the
user, whereas classified data must never leave the declassification component.

Since the only legitimate access to the storage is executed by the declassifica-
tion component, all further accesses must be prevented. This could be achieved
by giving the secret PIN that is necessary for decrypting the storage only to the
declassification component. However, a more flexible solution is to maintain a
loose coupling of the two components by introducing another component, the
usage control component. This component establishes data connections between
the storage and any number of declassification components if the latter apply
declassification functions that are considered sufficiently powerful for protect-
ing personal information in the images. Hence the secret PIN is known only
to the UC component, not to the declassification components. Furthermore the
UC component authenticates special users, i.e., prosecution authorities. After
a successful authentication the prosecution authorities are also granted access
to specific not yet anonymized data sets. The respective authority is trusted to
treat the classified data in a legal and responsible manner.

The enforcement component constitutes the core of the system. This com-
ponent supervises the classified data flowing from the storage into the system
and prohibits any abusive data usage within the system. In order to do so, the
enforcement component monitors all data flows within the system and prevents
all the operations that could transmit classified data to an unauthorized actor.
Interaction. Figure 2 shows the interaction between the various components as
soon as an operator connects a storage device to a computer that runs the
declassification system. The storage component consists of an encrypted SD
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memory card that contains classified data in form of dashcam footage. To decrypt
the stored data a PIN is necessary, which must be well hidden from the dashcam
operator. This PIN has been randomly generated during the system deployment.
It is securely stored by the UC component in a protected area that the user has
no access to, for example as an encrypted registry entry. Hence the storage device
can only be decrypted and operated at a computer system that is equipped with
a trusted UC component, i.e., a UC component that knows the correct PIN for
this encrypted memory card.

Operator Prosecution Authority

Declassification Usage Control Storage

Enforcement Registry

1. Connect

4. Decrypt

5. Load video 9. Declassified
data

6. File read 8. Classified
data

2. Protection
policy 3. Read key

10. Classified data

7. Classified data

System

OS

Fig. 2. System interaction

If the computer runs such a UC component, it recognizes the encrypted
storage device and activates the enforcement component (step 2). This activation
is performed by issuing a protection policy, uniquely identifying the device that
should be protected. After the protection mechanisms are up and running, all
data flows within the system are monitored by the enforcement component.
Hence the UC component may now use the PIN to decrypt the storage device
(steps 3 and 4). This does not actually decrypt all the data on the storage,
but makes the memory card transparently decrypt the requested data for any
process that is reading from the storage. From now on the classified data is
accessible in plain text on the storage and can be read by any system process. If
the storage is removed from the computer in this decrypted state, the memory
card is automatically locked again. Therefore classified data can never be read
from the storage without providing the PIN.

Preventing unwanted accesses to the classified data available on the memory
card is now the task of the enforcement component. The enforcement compo-
nent filters all read operations on the storage device and only allows those with
an authenticated target – i.e., either from the declassification component or the
prosecution authority. Hence an operator cannot access dashcam videos directly,
but only through the declassification component, which is allowed to read the
classified data (steps 5 to 9). Solely the protection authority is entitled to view
the classified data (step 10) after an explicit authentication at the UC com-
ponent. Thereby the enforcement component ensures that classified data may
only flow from the storage to declassification components and the prosecution
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authority. The dashcam operator cannot intercept classified data at any point in
the system, since the declassification components only display the video images
in a declassified, i.e., anonymized representation. The enforcement component
also prevents write operations on the storage for every actor, including the pros-
ecution authority. Hence it is guaranteed that both the confidentiality as well as
the integrity of the classified data is protected.

Implementation. After defining the system model some possible model instanti-
ations are presented. In general the proposed protection techniques need to be
deeply included into the computer system in order to be effective. Particularly
the enforcement component has to be able to intercept any operation that leads
to data flows within the system. Among other things this includes file opera-
tions, IPC and network communication. Hence it seems appropriate to enforce
the protection mechanisms directly on an operating system level. That way, the
operating system can identify and alter system calls that may result in possibly
dangerous data flows. Therefore the data flow model encompassed in the pro-
posed formalization (see below) uses system call interposition to enforce UC on
the operating system level. In particular, the system call constraints presented
in Sect. 4 can be used as a starting point for an implementation on the OS level.

While UC enforcement on an operating system level provides comprehen-
sive, system-wide data protection, implementing a model instantiation in user
space is considerably easier. On Windows, the enforcement component can be
implemented as a file system filter driver that registers itself in the Windows
kernel, subsequently filters all file operations requests occurring in the system,
and prevents them when necessary. Even though a file system filter driver cannot
monitor data flows as comprehensively as an enforcement component directly in
the kernel, filtering file system operations is also sufficient if the classified data
is stored in files on the storage device. The UC component can be realized as
a Windows system service, which runs in the background, continuously listens
for connecting storage devices, deploys respective protection policies, and takes
care of further management responsibilities. The service also authenticates pros-
ecution authorities with the system and must securely store the PIN that is
needed to decrypt the memory card. This can be achieved by using the Win-
dows Data Protection API to store the PIN as an encrypted registry entry. As
soon as the UC service detects an encrypted storage, it activates the file system
filter driver, and it reads the PIN, which it then uses for decrypting the storage.
Any unwanted file operations on the classified data are then blocked by the filter
driver.

In both cases, the software implementing the declassification component will
be running in user space, since operators and evaluators use it to create and view
the anonymized videos. This software has to be able to detect and anonymize
privacy relevant image areas in dashcam videos. The implemented enforcement
component allows classified data from the storage to flow only in this software
module. Thanks to the loose coupling of the declassification components and the
UC component in the system model, any suitable third-party software can be
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used for this task, insofar as it does not allow an unauthenticated user (everyone
but the prosecution authority) to view or to export raw video data.

Furthermore for an actual implementation an encrypted memory card is nec-
essary that meets all the requirements as specified in the previous sections. The
requirements include on-the-fly encryption of data using an encryption key that
is securely stored on the device itself as well as on-the-fly decryption of requested
data as soon as a secret PIN is specified. Furthermore it has to be ensured
that the storage device cannot be removed from the declassification system in
an unlocked state. Instead the storage device has to fall back to an encrypted
state in that case. Memory cards that satisfy all necessary requirements are for
instance the security microSD memory cards manufactured by SwissBit5.

Additionally, the question of how to delete recorded videos from the storage
device has to be addressed. Usually dashcams store the recorded video data per-
manently on the memory card. Since the system prevents any modification or
deletion of recorded video files, the memory card could soon run out of usable
space. This problem is less severe if a crashcam is used as recording device,
because due to the event-driven recording of usually one minute prior to as well
as after the event hundreds of videos can be stored on a single memory card. This
solution is also favorable in terms of data protection. If a continuously recording
dashcam shall be used, the declassification system can be extended with a dele-
tion mode that allows to delete all those video files from the storage, whose meta
data do not show abnormalities like unusually high acceleration/deceleration.
This way a full memory card can be made usable again, without allowing the
deletion of possibly important video data.

4 Formalization

In the previous section we presented a system model that can enforce anonymiza-
tion on classified data before displaying it to the user. In order to evaluate
whether the system is actually privacy compliant by fulfilling the described
UC requirements, we use data flow modeling as a more formal approach. The
formalization presented in this section is based on the work of Harvan and
Pretschner [7]. The authors propose a state based view on a system rather than
an event based approach, which is more user-centric and has been applied by
most UC formalizations. Since it would be rather tedious to explicitly state all
user actions that could possibly lead to any unwanted data flow, the state based
approach is more suitable for our system. Furthermore the authors propose data
flow tracking as well as UC mechanisms, which simplifies the specification of
formal policies that protect classified data in our system. We use the definitions
and notations of [7] to express UC policies in the form of model equations, which
need to be fulfilled by our system to be considered secure. These formal policies
ultimately allow us to determine if a system is in fact privacy compliant.

5 https://www.swissbit.com/products/security-products/overwiev/security-products-
overview/.

https://www.swissbit.com/products/security-products/overwiev/security-products-overview/
https://www.swissbit.com/products/security-products/overwiev/security-products-overview/
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According to Harvan and Pretschner a formal data flow model is described
by a tuple (D,C, F,Σ, σi, P,A,R). D is the set of data that is controlled by
the system. In our case, D denotes the set of classified data at large. C is the
set of containers available in the system, like files, system processes or network
connections. P ⊆ C is the set of principals that can trigger actions in the system,
most importantly processes. Processes are containers, since they can keep data in
the memory or in CPU registers. F is the set of names that can be used to identify
containers, for example file names Ffn ⊆ F or file descriptors Fdsc ⊆ F . The
current system state is described by Σ = (C → 2D)× (C → 2C)× (P ×F → C)
and consists of three mappings. A storage function s : C → 2D gives a mapping
of data stored in a container. An alias function l : C → 2C gives a mapping
of containers, which get updated implicitly whenever the storage function of a
container changes. Finally a naming function f : P × F → C maps process
specific identifiers to containers. σi = (si, li, fi) ∈ Σ is the initial state of the
system. Here the storage relation holds the initial representation of the controlled
data. A is a set of state-changing actions that can be performed by processes.
How these actions change the system state is defined by a transition relation
R ⊆ Σ × P × A × Σ, which updates an old state to a new state given a process
and an action. In order to describe changes to the three mapping functions, the
following notation is used. Let m : S → T be any mapping and x ∈ X ⊆ S a
variable. Then m[x ← expr]x∈X = m′ with m′ : S → T is defined by

m′(y) =

{
expr if y ∈ X

m(y) otherwise

In order to express the presented system in this formal model, there has to
be a way to identify processes that reside in the scope of the declassification
component as well as containers within the storage component. Hence we define
the two sets Cstorage ⊆ (C \ P ) and Cdecl ⊆ P . The initial state of the model
assumes that classified data only resides on the storage. Furthermore, in the
beginning no aliases exist for both storage and declassification containers. This
is described in Eqs. 1 and 2.

si (C \ Cstorage) ∩ D = ∅ (1)
∀c ∈ (Cstorage ∪ Cdecl) : li(c) = ∅ (2)

Policies. After defining a formal system model, we can specify formal UC policies
that restrict the usage of classified data throughout the system. As described
more in-depth in [7], policies for this model are state-based. Therefore those
policies do not prohibit or allow any type of user events that might occur, but
rather define what system states are illegal and need to be avoided.

The most important policy for our system is that classified data must not be
processed or displayed by the user, which addresses the protection goal of confi-
dentiality. In terms of the formal model this means that no container within the
system must hold classified data, with the exceptions being storage containers,
where the classified data originates from and declassification containers, where
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the classified data becomes declassified. Formally this policy is stated in Eq. 3.

∀c ∈ C \ (Cstorage ∪ Cdecl) : s(c) = ∅ (3)

Apart from protecting confidentiality by preventing the leakage of classified data,
we also want to enforce integrity by making sure that the user cannot modify or
delete any protected data. This is necessary to prevent voluntary modification
or destruction of evidence by a modifying or destructive attacker respectively.
Since this formal model is state-based rather than event-based, there are no user
events that could be filtered for write or delete requests. We can however state
that within the formal system Eq. 4 needs to be satisfied at all points in time.

∀c ∈ Cstorage : si(c) = s(c) (4)

The policies in Eqs. 3 and 4 ensure that no unwanted data flow can occur in the
system. This is regardless of any aliases that may exist in the system. However,
to ease the later implementation we can explicitly forbid aliases between the
storage and the declassification component, as expressed in Eq. 5.

∀c ∈ (Cstorage ∪ Cdecl) : l(c) = ∅ (5)

State Transitions. Even though Eq. 3 is sufficient to ensure confidentiality in
the system, it is rather cumbersome to quantify over the whole container
set. State-based policies like in Eqs. 3 and 4 can be used to easily declare
what system states are to be avoided, but they are not suitable as start-
ing point for an actual implementation. In order to enforce these policies
in an actual implementation, the data flow model must be able to interpret
actions that are observed in the system in terms of information flow so as
to decide whether they would put the system into an unauthorized system
state. Thus, a more appropriate approach for obtaining policies that can be
enforced by an implementation is to examine the actions that can trigger a
system state change and restrict those actions in order to avoid unsafe sys-
tem states. To do so, we need to specify the semantics of these actions in
terms of data flow. The original formal model by Harvan and Pretschner was
intended to model an operating system, which is why the defined actions A =
{open, pipe, close, read,write, rename, unlink, fork, execve, kill,mmap, . . . }
correspond to system calls. The semantics of those actions are specified by defin-
ing the respective state transitions that are contained in the transition relation
R. For example, Eq. 6 defines the semantics of the operation read.

∀s ∈ [C → 2D],∀l ∈ [C → 2C ],∀f ∈ [P × F → C],∀p ∈ P,∀e ∈ Fdsc :(
(s, l, f), p, read(e), (s[t ← s(t) ∪ s(f(p, e))]t∈l∗(p), l, f)

) ∈ R
(6)

According to Eq. 6, the read action modifies the storage function in a way to map
every member of l∗(p) to the data of the container that is read from. Hereby l∗

denotes the reflexive transitive closure of the alias function, i.e. l∗(p) contains
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all containers that have an alias relation with the calling process p. Similarly the
write operation is defined in Eq. 7.

∀s ∈ [C → 2D],∀l ∈ [C → 2C ],∀f ∈ [P × F → C],∀p ∈ P,∀e ∈ Fdsc :(
(s, l, f), p, write(e), (s[t ← s(t) ∪ s(p)]t∈l∗(f(p,e)), l, f)

) ∈ R
(7)

Instead of describing the secure system states with state-based policies like in
the previous section, we can also achieve a secure system model by restricting the
transition relation R to those actions that do not interfere with confidentiality
and integrity. Based on the policies for confidentiality and integrity (Eqs. 3 and
4), the Eqs. 8–19 describe conditions for the transition relation R that a model
instantiation has to enforce in order to ensure a safe system state.

Equation 8 defines that reads on the storage are allowed for the declassifica-
tion component only.

∀(
(s, l, f), p, read(e), (s̄, l, f)

) ∈ R : f(p, e) ∈ Cstorage =⇒ l∗(p) ⊆ Cdecl (8)

Equation 9 defines that writes on the storage are prohibited altogether.

∀(
(s, l, f), p, write(e), (s̄, l, f)

) ∈ R : f(p, e) /∈ Cstorage (9)

Equation 10 defines that reads on the classification component must be prohib-
ited by the operating system.

∀(
(s, l, f), p, read(e), (s̄, l, f)

) ∈ R : f(p, e) /∈ Cdecl (10)

Equation 11 defines that the declassification component must not write classified
data.

∀(
(s, l, f), p, write(e), (s̄, l, f)

) ∈ R : p /∈ Cdecl (11)

Equation 12 defines that files on the storage cannot be renamed. Also, no external
file may be renamed to replace a file on the storage. The action rename(n1, n2)
renames the file specified by the name n1 ∈ Ffn to n2 ∈ Ffn.

∀((s, l, f), p, rename(n1, n2), (s̄, l, f̄)
) ∈ R : f(p, n1) /∈ Cstorage ∧ f(p, n2) /∈ Cstorage (12)

Equation 13 defines that files on the storage must not be deleted. The action
unlink(n) deletes the file specified by the name n ∈ Ffn.

∀(
(s, l, f), p, unlink(n), (s̄, l̄, f)

) ∈ R : f(p, n) /∈ Cstorage (13)

Equation 14 defines that a fork of a declassification process must also be a declas-
sification process. No other process can join the declassification component by
forking itself. This condition is not required for Cstorage ⊆ (C \ P ), because the
storage does not contain any processes. The action fork(rv) clones the current
process p. The new child process is rv ∈ P .

∀(
(s, l, f), p, fork(rv), (s̄, l̄, f̄)

) ∈ R : p ∈ Cdecl ⇔ rv ∈ Cdecl (14)
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Equation 15 defines that a process must not execute any files containing classified
data from the storage or the declassification component. The only exception is
the declassification component itself. The action execve(n) replaces the memory
image of the current process p with the contents of a file specified by n ∈ Ffn.

∀(
(s, l, f), p, execve(n), (s̄, l, f)

) ∈ R : p /∈ Cdecl =⇒ f(p, n) /∈ (Cstorage ∪Cdecl)
(15)

Equation 16 defines that the declassification component must not send any clas-
sified data via IPC. This condition is similar to preventing write operations in
Eq. 11.

∀(
(s, l, f), p, kill(q), (s̄, l, f)

) ∈ R : p /∈ Cdecl (16)

Equation 17 defines that no process may map read-only memory that
points to either the storage or the declassification component. The action
mmap(e, PROT READ) maps the contents of a file specified by the file descrip-
tor e ∈ Fdsc to the memory of the current process p. The mapped file cannot be
written to.

∀(
(s, l, f), p,mmap(e, PROT READ), (s̄, l̄, f)

) ∈ R : f(p, e) /∈ {Cdecl ∪ Cstorage}
(17)

Equation 18 defines that no process may map writable memory that points to
the storage. The action mmap(e) maps the contents of a file specified by the file
descriptor e ∈ Fdsc to the memory of the current process p. The mapped file can
be written to.

∀(
(s, l, f), p,mmap(e), (s̄, l̄, f)

) ∈ R : f(p, e) /∈ Cstorage (18)

Equation 19 defines that the declassification component must not map any
writable memory itself.

∀(
(s, l, f), p,mmap(e), (s̄, l̄, f)

) ∈ R : p /∈ Cdecl (19)

The above conditions define the semantics of system calls that safeguard classi-
fied data from the storage to the declassification component. As such they are a
good starting point for an implementation on the operating system level. In the
proposed user space implementation, the conditions in Eqs. 8, 9, 12, 13 and 15–
18 are ensured by the file system filter driver. Then the operating system is only
responsible for enforcing condition 10. In any case conditions 11, 14 and 19 can-
not be directly enforced. They are the responsibility of the used declassification
tool.

5 Security Analysis

Based on the presented formalization of a system that enforces anonymiza-
tion on dashcam videos, we now analyze the system’s security properties given
the attacker model. Subsequently the soundness of the system model instanti-
ation, i.e., a user space implementation complying with Eqs. 8–19, is evaluated
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and underlying assumptions are explained. We finally introduce configuration
requirements that an administrator setting up the implemented system needs to
take care of so that these assumptions hold true.

Data Protection. Regarding the data protection capabilities of the proposed sys-
tem specification, the most important question is whether or not the system is
robust against a privacy attacker, i.e., if the protection goal of confidentiality
is fulfilled. According to the policy in Eq. 3, classified data can only exist on
the storage medium as well as within the declassification component. The dash-
cam operator can only view any data that has previously been anonymized by
the declassification component. Thus it is ensured that classified data can never
leave the system scope in a classified representation, i.e., with privacy relevant
information still remaining in the video images. No privacy attacker can extract
any classified data from the system, which is why confidentiality is fulfilled.

For the protection goal of integrity we need to consider the modifying attacker
and the destructive attacker. According to the policy in Eq. 4 it is not possible
to alter or delete any classified data on the storage. Hence the system is robust
against modifying and destructive attackers. The physical destruction of the
storage medium has already been excluded in the attacker model.

Finally we need to analyze the protection of recorded video data against
an outsider attacker, who is not related to the dashcam operator and might
have acquired the camera system by theft. Hence he does have access to the
storage medium, but not to the declassification system. Since the storage medium
automatically encrypts any data written to it, and the shared secret required for
decryption is securely stored on the declassification system, the outsider attacker
is unable to extract any data whatsoever from the system.

Implementation Soundness. Before analyzing the soundness of the implemented
system, some assumptions have to be made regarding the environment in which
the system is deployed. The first assumption is that the system modules in
question have been implemented correctly and are free of bugs, so they behave
as they are specified in Eqs. 8–19. This is particularly important for the used
declassification tool as it may consist of third-party software. Furthermore it is
assumed that the modules cannot be modified after they have been deployed. In
particular, attackers must not have any influence on their internal behavior or on
the data that they process. Also attackers that have comprehensive influence on
the operating system are explicitly excluded. Essentially, the latter assumptions
demand that the integrity of the underlying system is ensured. Such assumptions,
which require that the administrator sets up a secure execution environment,
are common for instantiations of UC. We outline the prerequisites for securely
deploying our declassification system in Sect. 5. Eventually we assume that the
system’s initial state fulfills Eqs. 1 and 2, i.e., classified data only resides on the
storage medium when it is connected to the system and aliases neither exist for
storage containers nor for the declassification component.

As described in Sect. 4, a secure system model instantiation has to comply
with the conditions in Eqs. 8–19. In case of the proposed user space implemen-
tation, the conditions are implemented by the file system filter driver, which
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is responsible for the policy enforcement, and the declassification tool, which
applies the anonymization to the images. According to the Eqs. 8, 15 and 17,
a valid system implementation must not allow classified data from the storage
to flow anywhere else but to the declassification tool. Furthermore, according to
Eqs. 10, 11, 14, 15, 16 and 19, classified data must not leave the declassification
tool. Only declassified data, i.e., anonymized data, is allowed to leave the scope
of the declassification tool. Since at the time the storage medium is connected to
the system, classified data exist nowhere but on the storage device, classified data
can never exist anywhere else but on the storage component and in the declassi-
fication tool. Apparently this behavior is equivalent to what is demanded in the
policy in Eq. 3, which is why the system implementation does fulfill the protec-
tion goal of confidentiality. Regarding the protection goal of integrity, Eqs. 9, 12
and 18 demand that no process, including the declassification tool, must write
any data to the storage. Similarly, Eqs. 12 and 13 ensure that no process is able
to delete any data from the storage. Hence the classified data that initially reside
on the storage device must remain there unaltered at all times, which effectively
corresponds to the policy in Eq. 4. Since both confidentiality and integrity, as
defined in the original policies in Eqs. 3 and 4, are also fulfilled when restrict-
ing the system state updates according to Eqs. 8–19, model instantiations that
implement those restrictions can be considered secure as well.

System Prerequisites. For the data protection analysis to be valid, we made some
assumptions in the previous section. First of all we assumed that the operating
system ensures the integrity of the deployed system components. This particu-
larly means that the dashcam operator must not have administrator rights on the
declassification system and his access to program executables and configuration
files is restricted. Similarly the operator must not be allowed to deactivate the
UC and enforcement component by setting the proper access rights for the oper-
ator’s user account. The shared secret used by the UC component to decrypt the
storage medium must be protected from the operator’s access as well. This can
be achieved, e.g., by encrypting the secret using the Windows data protection
API in the context of the trusted user account. To obtain a secure system, the
administrator must apply all these settings correctly on the declassification com-
puter. It becomes apparent that the administrator as a trusted actor is of vital
importance for the secure deployment of the system. While in some scenarios
such a trusted actor can be identified, e.g., if an insurance company hands out
dashcams to customers along with a correctly configured declassification system,
it is however not yet clear how to achieve this for private individuals.

Similar to the software components, the hardware components must be phys-
ically secured as well. The operator must not get direct access to the hard drive
that contains the anonymization system, or else he could easily escalate his priv-
ileges and retrieve administrator rights. This type of bypassing the operating
system’s security mechanisms can be effectively prevented by using a so-called
trusted platform module (TPM).
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6 Conclusion

We introduced a declassification system, which ensures confidentiality and
integrity of privacy relevant image areas in video data recorded by a dashcam.
By outsourcing the anonymization to a separate computer system, we can apply
more powerful image processing algorithms so that (i) personal information can
be minimized according to the state-of-the-art, and (ii) any customary dashcam
along with an encrypting memory card can be enhanced with privacy protection
capabilities. Dashcam operation according to data protection requirements thus
seems possible under the assumptions named in Sect. 5.

As discussed in the legal considerations, the technical design of privacy-
friendly dashcam solutions may play a more prominent role in future jurisdiction
concerning dashcam usage. In this sense, we conceive our approach as an input
for an interdisciplinary discussion of dashcams in law and computer science.
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Abstract. The prevalence of mobile devices and their capability to
access high speed Internet has transformed them into a portable pocket
cloud interface. In order to protect user’s privacy, the European Union
Data Protection regulations restricts the transfer of European users’ per-
sonal data within the geographical boundaries of the European Union
itself. The matter of concern, however, is the enforcement of such regu-
lations. Since cloud service provision is independent of physical location
and data can travel to various servers, it is a challenging task to deter-
mine the location of data and enforce jurisdiction policies. In this paper
we introduce a framework, named DLoc, which enables the end-users to
track the location of their data after being transferred to the cloud. DLoc
does not require a network of monitoring servers (landmarks) and does
not need to reside and run within the target server. It uses a proof of data
possession technique to guarantee that the cloud storage service possess
the particular file and estimates its location(s) in a distributed man-
ner without requiring the collaboration of the data controller or cloud
provider. Empirical evaluations demonstrate that DLoc provides a better
accuracy than its rival approaches in real world scenarios.

Keywords: Smartphone · Data transfer · Privacy protection · Jurisdic-
tion policy

1 Introduction

Steadily increasing data volumes and the rising dependency of business and social
life on data ubiquity have led to massive growth of cloud storage services such as
Amazon S3, DropBox, or Google Drive. These services allow users to store their
data on remote servers independently of geographical location. Cloud storage
services utilize a federation schema by maintaining data at different providers
which then distributes and replicates the data among different cloud storage
providers. This reduces vendor lock-in and increases data availability through
additional redundancy.
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Applying such federation schema can raise issues with compliance require-
ments. Especially the transparent data distribution and replication on the
provider-side limit the user’s direct control over data flows which lead to poten-
tial violations of compliance constraints. Personal data, for instance, sometimes
must not leave a particular jurisdiction while the distribution in such a case is
reasonable in terms of availability, it clearly can violate privacy compliance reg-
ulations such as the EU Data Protection Regulation [12]. Russia1 and China2

are imposing restriction on the location of the data processing as well.
The approaches introduced to track a file in cloud are divided into two major

groups. The first group propose a schema requiring modification of underlying
cloud services and collaboration of cloud service providers. The second group
observes the environmental parameters (from outside of the cloud) in order to
estimate the location of a file in cloud. The parameters include network delay,
hop counts, mode of delay, median of delay, standard deviation of delay, and
population density.

The second group has a clear advantage since it does not require modifying
the underlying services; however, they require a wide spread network of servers
communicating to each other, pinging cloud storage servers and monitor their
data transfer practices. Having such network brings a significant cost to the
system. In previous work [4], we introduced VLOC, a technique which monitors
the dynamics of the network delay of the cloud service and builds a model out of
it and keeps updating the model. It does it through measuring RTT delay from
servers which have two major characteristics: (a) they are chosen randomly, so
cloud provider is not able to filter them; (b) their physical location is known
to VLOC. VLOC needs to be installed on a virtual machine and be initialized
with the actual location of the data center; therefore, it can be used by data
controllers to monitor and verify the location of their virtual machine in cloud.
Data owners need to find the location of their data in cloud and VLoc does
not provide such service. In fact, we need a technique which does not require
the collaboration of cloud provider or data controller in order to monitor the
location of data from a client machine.

In this work, we propose a framework, named DLoc, which does not require
a network of monitoring servers and does not need to reside within the cloud.
The idea is to distribute the monitoring tasks to DLoc agents. Each user who
subscribes for the file tracking service participates in the file tracking procedure
as a DLoc agent by letting her phone to challenge the cloud storage services and
share her coarse-grained location with our service. DLoc makes use of proof of
data possession technique to guarantee that the cloud storage service possess the
particular file in question and estimates the location of all copies of files publicly
available in the cloud.

The major challenge is to minimize the number of messages going to and
coming from the DLoc agents while maximizing the accuracy of location estima-
tion. It achieves that by observing the environment and studying the algorithms

1 https://techcrunch.com/2016/11/17/linkedin-is-now-officially-blocked-in-russia/.
2 http://www.bbc.co.uk/news/technology-40106826.

https://techcrunch.com/2016/11/17/linkedin-is-now-officially-blocked-in-russia/
http://www.bbc.co.uk/news/technology-40106826
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used in the system and provide a measurement to evaluate the accuracy and
performance.

2 DLoc

In this section, we explain how DLoc, Distributed Data Localization frame-
work, works. Figure 1 illustrates a general overview of DLoc and the major steps
required to track a file in cloud. There are four major entities:

– Data owner wants to upload a file into Cloud Storage B which is located in
her country. She wants to assure that her file stays in that region.

– Cloud Storages are the storage services used as backup storage and file
sharing platform.

– DLoc agents are actually other smartphone users who use cloud storage
services as well. They challenge a given target server and collect network
latency information.

– TPA is a third party auditor server, which coordinates the DLoc agents and
handles the file tracking procedure.

The data owner runs Algorithm 1 on her phone to upload the file. This algo-
rithm encrypts the given file with an encryption key generated by the user’s
device. Then, it produces a set of meta-data required by DLoc to track the file
securely.

Algorithm 1, first, encrypts the given file (F ) with the input key (k). Then,
it generates the hash value for each block of the encrypted file (hi). The next
step is to compute MAC (Message Authentication Code) for each of hash values
of the blocks (mi) with a randomly generated key. Please note that this random
generated key is the same for all blocks of the given file (Msk). The encrypted
file (Fc) is uploaded to the cloud and the MAC values (M = {m1,m2, . . . ,mn})

Input: F : input file; k: encryption key;
Output: Fc: encrypted file; M : set of MAC codes for Fc blocks; Msk: MAC

encryption key;

1 Fc = Encrypt( F , k);
2 Msk = new RandomKey();
3 BFc = Fc.getBlocks();
4 for ( bi in BFc) do
5 hi = Hash(bi);
6 mi = MAC(hi, Msk);

7 end
8 M = {m1, m2, . . . , mn};
9 return {Fc, M , Msk};
Algorithm 1. The data owner runs this algorithm on her phone in order
to prepare the file for upload and provide required metadata for the tracking
procedure.
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Fig. 1. System overview of DLoc.

along with the MAC key (Msk) are published to the TPA. This procedure is
shown by 1© in Fig. 1.

When the data owner wants to track her file in the cloud, she queries the
TPA (shown by by 2© in Fig. 1). The TPA runs the Algorithm 2 which receives
the list of DLoc agents (S), the number of required challenges (c) and the file
identifier (Fid) which specified in the query coming from the data owner; and
then it generates a list of challenge requests (R). The parameter S does not
contain all the DLoc agents rather a selected subset of them. The selection
policy is based on their availability, location, and the number of requests they
have performed already. The number of challenges, c, is tunable; as its value
grows the accuracy and also the overhead. The algorithm, first chooses c random
blocks (B) of the file, then chooses a random member of DLoc agents and assigns
a random block to it 〈si, ri〉. In this setting, it is possible that a block is requested
more than once and a DLoc agents receives more than one request. Finally the
TPA sends each request to its corresponding DLoc agents, which is indicated
by 3© in Fig. 1.

When a DLoc agent receives a challenge request from the TPA, it per-
forms the Algorithm 3 shown by 4© in Fig. 1. This algorithm receives a set of
requests (R′), challenges the server and provides challenge results (CR) to the
TPA. This algorithm has two major tasks. First, to challenge the server whether
it possesses the file or not. Second, to estimate the distance between the server
and the DLoc agent in order to provide information for distributed localization.
In order to challenge the server for the file possession, Since each request (ri)
contain a file block number, this algorithm queries the server for that particular
block, then it computes the hash value of the block (hi). In the meanwhile it
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Input: Fid: file identifier; S: list of
DLoc agents; c: number of
challenges;

Output: R: list of challenge
requests;

1 n = Fid.getNumberOfBlocks();
2 B = {b ∈ N|(bi =

RandomNumber(0, n)
c

)
i=1

};

3 R = {};
4 for ( b′

i in B) do
5 si = S.getRandomMember();
6 ri = new Request(

Fid.getURL(), b′
i);

7 R ← 〈si, ri〉;
8 end
9 return R;

Algorithm 2. Preparing the challenge

messages for broadcasting to the DLoc

agents.

Input: R′: subset of challenge
requests;

Output: CR: challenge results;

1 H = {}; //Hash values of the

blocks

2 Nspeed = Network.AnalyzeSpeed();
3 for ( ri in R′) do
4 u = ri.getURL();
5 x = ri.getBlockNumber();
6 tstart = Now();
7 bi = download file-block #x

from u;
8 tend = Now();
9 Δti = tend − tstart;

10 hi = Hash(bi);
11 H ← 〈x, hi〉;
12 end
13 N = NormalizeNet(Nspeed, Δt);

//Network Measurements

14 L = DeviceLocation();
15 return {H, N, L};

Algorithm 3. Challenging the server.

measures the download time (Δti) that will be used later for distance estima-
tion. The hash values and the measured round trip time (RTT) of the challenge
request are sent to the TPA for further analysis.

There is a direct correlation between RTT value and physical distance [4];
however, there are a number of parameters involved which affect the accuracy.
The major issue is that DLoc agents are located in various locations and use
different network bandwidths. In order to mitigate the effect of the network vari-
ety, we take two approaches. The first one is to use an off-the-shelf technique to
observe the DLoc agent network connection before challenging the server (Nspeed

in Algorithm 3). It uses an API provided by http://www.speedtest.net which
encompasses a network of servers around the globe and finds a nearby server
and communicate a number of packages, then it provides an observation on the
network performance. The results of this API are useful to tune the weights
of the RTT values in order to mitigate the effect of different network band-
widths on the estimation procedure. Moreover, due to network load, the traffic
goes through different paths which causes various network delays; therefore, it
lowers the accuracy of distance estimation based on RTT. In order to tackle
this issue, we employ a machine learning technique, to tune the wights of para-
meters and adapt the estimation to the network fluctuation which is indicated
by “NormalizeNet(Nspeed,Δt)” in Algorithm 3.

http://www.speedtest.net
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Finally, each DLoc agent sends a set of the hashed value of each block (H),
normalized network measurements (N) and its location (L) to the TPA ( 5© in
Fig. 1). The TPA collects all the information from the DLoc agents and carries
out two tasks: it verifies the challenges by running Algorithm4 and determines
the location of the server by executing Algorithm5 which is discussed later.

Since the TPA possesses the MAC values of all blocks and their key (Msk),
by receiving the hash value of each block (hj) is able to verify its integrity.
Algorithm 4 receives the file identifier (Fid) and all collected challenge results
and evaluates them. Each challenge result consists of a pair of block numbers
and its hash value 〈xj , hj〉 which is retrieved from the server by a DLoc agent.
This algorithm first computes the MAC value of the block number specified
in the challenge result (m′

j) then compares it with the already stored MAC
value for the same block (mj). By doing the same procedure for all the received
challenge results, we can verify the integrity of the stored file with a certain level
of confidence. The confidence level depends on the number of challenge requests
which may cause overheads.

Input: Fid: file identifier; CR: challenge results;
Output: verification result;

1 Msk = Fid.getMACkey();
2 for ( ci in CR) do
3 Hi = ci.HashValues();
4 for ( 〈xj , hj〉 in Hi) do
5 m′

j = MAC( hj , Msk);
6 mj = Fid.getMACValue(block# = xj);
7 if ( m′

j �= mj) then
8 return “Integrity Error!”;
9 end

10 end

11 end
12 return “Verified!”;

Algorithm 4. Verifying the challenges.

Computing the Location of a Point By triangulation. Computing the
location of a point, px, on a surface is possible when we have the locations of
at least three nearby points, {p1, p2, p3}, and their distance from px. As Fig. 2
illustrates, if we draw a circle with the center of each point and the radius of their
distances (d1, d2, d3) from px, all the circles meet each other at px. By finding
their intersection point, we can determine the location of px. This technique is
called “Triangulation” [18] or “Trilateration” [15].

Before we utilize triangulation technique, we need to consider that since
Earth is not a surface rather a sphere, the location of objects on earth is repre-
sented by the latitude (φ) and longitude (λ) values which are defined in polar
system. The latitude of a point is the angle between the equatorial plane and the
straight line that passes through that point and through (or close to) the center
of the Earth. The longitude of a point is the angle east or west of a reference
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Fig. 2. Triangulation for specifying the physical location of a host by knowing the
physical locations and distances from other nearby hosts.

meridian to another meridian that passes through that point [16]. In order to
calculate the intersection points of the circles, we convert this coordination into
the Cartesian system by utilizing Eq. 1 and for the reverse operation, Eq. 2.

x = λ. cos(φ)
y = λ. sin(φ) (1)

λ =
√

x2 + y2

φ = tan−1( yx )
(2)

We write the equation of a circle in the following form:

(x − xi)2 + (y − yi)2 = d2i i = 1 . . . n (3)

where (xi, yi) indicates the center of the circle (the location of the ith DLoc agent
in our system) and di its radius, which is the distance between the server and the
agent. In order to find intersection point of multiple circles, we do it two by two
i.e. in pairs. However, before trying to find intersection of two circles we have to
figure out if they touch each other. Suppose that we have two circles i, j; if we
draw a line between the two centers (dij), compare its length with the radii (di
and dj) and employing the triangle existing conditions [17], we can conclude that
whether those circles can be used for our purpose or not. We obtain the distance
between the centers of two circles by measuring their Euclidean distance as the
following:

dij =
√

(xi − xj)2 + (yi − yj)2 (4)

The situation of the two circles is determined by the following conditions:

– dij <
√

(di − dj)2: One circle is inside the other so there is no intersection.
– dij > di + dj : The circles are too far apart to intersect.
– dij = di + dj : The circles touch at a single point.
– dij < di + dj : The circles touch at two points.
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If two circles touch at least at one point, we subtract their two equations,
in 3, to get the line equation. By solving that subtraction the following equation
is yielded which determines the intersection point(s):

(x, y) =
1
2
(xj + xi, yj + yi) +

d2i − d2j
2dij

(xj − xi, yj − yi)

± 1
2

√

2
d2i + d2j

d2ij
− (d2i − d2j )2

d4ij
− 1(xj − xi, yj − yi)

(5)

In order to compute the location of a point, this equation is applied on the
locations of at least three nearby points and yields the intersection point which
equals to the location of the first point.

2.1 Estimating the Data Location

Algorithm 5, named the localization algorithm, uses Eq. 5 and estimates the loca-
tion of the data based on a set of given challenge results (CR). Each challenge
result contains the location of the DLoc agent (center of the circle) and net-
work measurement information to compute the its distance from the server (the
radius of the circle). This algorithm estimates at least one location for the data.
As the cloud storage provider might create multiple copies of the data on various
servers, this algorithm handles this matter as well by determining the locations
of all accessible copies of data.

The localization algorithm, first, creates an empty list of points (P ). Then,
for each given challenge result, it computes the distance from server by calling
Distance() function. This function basically models the correlation between
network delay and distance using a polynomial regression function, which is
employed by VLOC as well [4]. The next major step is to calculate the intersec-
tion points of the circle of the current challenge results with the results received
from the other DLoc agents. Then it verifies the circles and drops the ones which
are not useful for localization according to the conditions mentioned above. There
is an exception to this. Since in practice there is always a negligible error in dis-
tance estimation, sometimes the circles are close to each other but just for few
meters, they do not match the condition. In order to overcome this issue, we
define an error tolerance range parameter (ε) to compensate the error. The algo-
rithm finds all intersection points amongst all the given circles and keep them
in the P list. At the end, it determines the popular ranges (FL) in which a
considerable number of points are estimated. These popular ranges indicate the
location of servers storing the data.

3 Empirical Evaluation

To evaluate DLoc we run experiments on 4 android devices (playing the role of
servers) situated in four cities and in total, 1, 422 web hosts playing as DLoc
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Input: CR: challenge results; ε: error tolerance range;
Output: FL: locations of the file;

1 P = new List();
2 for ( ci in CR) do
3 di = Distance( ci.Net()); //Network Measurements

4 li = ci.DeviceLocation();
5 for ( cj in CR ∧ j > i) do
6 dj = Distance( cj .Net());
7 lj = cj .DeviceLocation();
8 dij = ‖li − lj‖; //Euclidean distance

9 if ( dij <
√

(di − dj)2 ) then
10 continue; //Ignore j
11 end
12 if ( dij > di + dj ) then
13 if ( dij > di + dj + ε ) then
14 continue;
15 end
16 inc di, dj until dij ≤ di + dj ;
17 report “ε is used”;

18 end
19 (p1, p2) = IntersectPoints(ci, cj);
20 P ← p1;
21 P ← {p2|p1 �= p2};

22 end

23 end
24 FL = A set of the most popular ranges in P ;
25 return FL;

Algorithm 5. Localization procedure.

agents. As we measure the round trip time value (RTT) such role changing does
not influence the final result.

We designed and implemented an android app to challenge the servers and
collect network delay measurements between each DLoc agent and the nearby
smartphone. Please note that in order to avoid confusion, we use the same ter-
minology that we have explained in the approach. In other words, in the data
analysis we do not consider this role changing.

This section explains the data collection process and describes the evaluation
measures, the experimental results and their analysis.

3.1 Dataset Collection

In our settings there are four servers located in Trento, Turin, Eindhoven, and
Leuven and there are many DLoc agents challenging them. We partially used the
data collected in [4] including the address and location of numerous landmarks
situated near the mentioned cities. Each DLoc agent challenges the server by
utilizing an HTTP request for over 15 times a day and measures the RTT values



DLoc: Distributed Auditing for Data Location Compliance in Cloud 211

of each challenge. In the following sections we analyze the data collected by DLoc
agents and study the effect of various factors on the final results.

3.2 Evaluation Goals

The experiments are designed to answer the following research questions:

– RQ1 Accuracy: How accurate is DLoc to estimate the location of server
hosting the file?

– RQ2 Environment: What are the parameters, such as number of DLoc
agents, distance of the agents from the server, etc., influencing the accuracy
of DLoc?

3.3 Evaluation Measure

As the main task of DLoc is to determine the location(s) of an uploaded file
(data) in the cloud, to evaluate it, the distance between the actual physical
location of the machine where data resides and its estimated location. We used
error of average distance estimation defined in the Eq. 6 for accuracy evaluation.

Eavg =
1
N

N∑

i=1

‖pie − pio‖ (6)

where N is the number of executions of the test, pie denotes the estimated physi-
cal location of the server (cloud storage) in the ith test pio is the observed location
(the real physical location) for that server. Finally, Eavg refers to the calculated
average error in KM .

We evaluated the approach with challenges generated by various DLoc agents
that spread widely around the servers. In order to provide a comprehensive
assessment we apply a random value combination. We used a slightly modified
version of cross validation technique [7] to perform such a it. We trained the
system with 80% of the data and test with the remaining 20%. The operation
was repeated for a 1000 times by shuffling the data each time. Moreover, we used
the same setting for all 4 different servers situated in 4 cities.

3.4 Results and Discussions

The results of the experiment composed of 1000 runs in each of the four cites, i.e.,
Trento, Turin, Eindhoven, Leuven, are aggregated in Fig. 3(a–d), respectively.
Figure 3 shows the actual location of the file hosting cloud servers, location of
the surrounding DLoc agents and the location of the server hosting the file as
estimated by DLoc. On the map shown in the figure, the blue, yellow and red
markers represent the actual location, the estimated location and the location
of the DLoc agents. As shown in the figure, DLoc estimates the location of the
server with a reasonable degree of accuracy, i.e., the estimated location is within
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Fig. 3. Screen shots of DLoc estimating a file on the four servers situated in multiple
cities. The light red markers show the locations of the DLoc agents, the blue marker
indicates the actual location of the server, and the yellow marker points to the estimated
physical location of the server. (Color figure online)

92 KM of the actual location for the Trento node, 153 KM for the Turin node,
45 KM for the Eindhoven node and 20 KM for the Leuven node (RQ1). Table 1
summarizes the results for each city.

Figure 4 illustrates the average error of the location determination for various
number of challenges. As the results in this figure show, for the servers located
in Eindhoven and Leuven, increasing the number of challenges does not have
a significant impact on the estimation error while for the other two servers
specially Turin, a notable change can be observed. While one of the reasons
is the sparsity of DLoc agents around each server, we also study the influence of
distance, between the agents and the server, on the accuracy.

To study the influence of distance on the accuracy of location estimation
(RQ2), we unitized the distance into multiple ranges and performed experiments
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Table 1. The summary of the results for each city.

Eindhoven Leuven Trento Turin

Min error (KM) 22.25 16.54 70.06 134.38

Max error (KM) 47.39 33.92 219.32 295.54

Standard deviation 2.22 2.02 30.67 30.54

Fig. 4. GeoLocation error estimation per various number of challenges.

on all DLoc agents situated only in each individual range. Figure 5 illustrates
the results of such experiment. As it shows in the range of 20−40 KM , only in
Leuven there are a number of agents surrounding the server and sent 320 chal-
lenges while there is no agent until the range of 140−160 KM where the number
of challenges increased and the accuracy slightly declined due to the distance.
The similar steady move is observed for Eindhoven for the ranges of 60−80 KM ,
100−120 KM and 140−160 KM . Turin and Trento have a bit different story;
their closest agents are in the ranges of 140−160 KM and 200−220 KM respec-
tively. Moreover, the number of challenges in these ranges are quite small (20 and
85) compare to what the servers located in Eindhoven and Leuven experience
in their closest range. These two reasons explain the yielded lower accuracy for
Turin and Trento. Therefore, not only the number of DLoc agents influences the
accuracy, also their distance from the servers has a notable effect. Which means,
the closer to the server the agents are, the less number of challenges is required
to track data effectively.

It worth to mention that the obtained results even for Turin and Trento are
acceptable as the main usage of DLoc is to monitor the enforcement of jurisdic-
tion regulations which, at its finest granularity, limits the data to boundaries of
a country. Moreover, it can have other usage as well including quality of service
measurement.
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Fig. 5. Location estimation error per individual ranges. “#c” denotes the number of
challenges sent from the DLoc agents in the corresponding range.

4 Security and Privacy Analysis

DLoc does not require the cloud storage provider (CSP) to modify their systems.
When DLoc is running, all the CSP can realize is that a user shares her files
with a number of other users and the other smartphones (DLoc agents) partic-
ipating in geolocating the file are chosen randomly and can be anywhere near
the server or elsewhere; therefore, the CSP is not able to impose a fake delay on
the responses of the challenges it receives.

In order to bypass DLoc, there are two possible scenarios. The first one is to
break into the TPA which handles the challenges, DLoc agents and prepares the
results. The second scenario is to register a huge number of smart devices (DLoc
agents) in the TPA and make them to collude with each other to prepare a fake
delay time and fake location. Both scenarios are quite expensive for the CSP to
perform. Therefore, the cost of compliance is negligible compare to bypassing
DLoc.

5 Limitations

Although DLoc is promising in a real world application, there are a number
of limitations need to be considered. The first limitation is dependency to the
number of DLoc agents and their distance to the target server. If there is not
enough DLoc agents in less than about 400 KM of a server, the accuracy of
DLoc will fall down.

Moreover since the cloud provider is considered as an adversary, it can inject
random delays to the outgoing traffic to reduce the accuracy of DLoc. As the
location of DLoc agents are considered as trusted, such random delay can yield
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different measurement by each agent and increase the estimation error. How-
ever, the strength point is that by doing so the cloud provider practically cuts
its quality of service; therefore, abusing such limitation is costly for the could
provider.

In practice, integrating DLoc to the current cloud storage providers
(e.g. Amazon, Google drive, etc.) without modification of their systems imposes
another limitation on the user. In fact, the data owner must share the file with
the other users (giving them access to the file), even if it is encrypted for them
to challenge the servers, it is still a limitation.

6 Related Work

In the literature, there are a number of approaches to determine the location of
data in cloud. Some focus on providing a cloud infrastructure which is able to
handle the enforcement of data location policies which certainly require hardware
and/or software modification in cloud services. Recently studies have drawn their
attentions to finding the correlation between the network delay and geographic
distance which then can be used to determine the location of an Internet node.
Here we review both groups briefly with more emphasis on the second group as
its more close to our work.

6.1 Server Side Data Geolocation

Krau and Fusenig propose an approach utilizing a Trusted Platform Mod-
ule (TPM) on host platforms for data geolocation in clouds [9]. They assume that
a certification authority stores the location of a host with its TMP’s identity.
Then, the owner of a virtual machine requests a certification of the host in order
to transfer data. This solution is costly to implement due to the variety in cloud
platforms and it requires administrative methods to perform the verification of
the location.

Paladi et al. introduce a high-level architecture in cloud storage systems
for a trustful location-based mechanism for data transfer control [11]. These
approaches require the modification of underlaying layer of cloud services which
are quite costly and difficult to be adopted by cloud providers.

6.2 Delay Based Data Geolocation

Geoping assumes that the hosts with a similar network delay are at the same
location [10]. Basically, Geoping challenges the target server from a number of
known landmarks and builds a set of path-delay information. To find the location
of an unknown target server, it constantly pings the server from the landmarks
at known paths and uses Euclidean distance and finally chooses the landmark
with the best match.

Constraint-based geolocation employs multilateration, which is used by DLoc
as well, where each landmark draws a circle around itself with a radius of the
distance to the target server [6].
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Yong et al. introduce a three layer geolocation algorithm, which employs
a large database of landmarks, their relative distances and delay measure-
ments [13]. A constraint-based geolocation algorithm to find the gross area, a
distance constraint-based method to shrink the possible area, and then a map-
ping technique to determine a near landmark.

In order to reduce cost, IGOD selects a small subset of landmarks with their
optimal position based on the diversity parameter [8]. Although the authors even
achieved a better accuracy compare to the similar previous works, it still needs
a network of fixed landmarks (e.g. Planet Lab) which is difficult to implement
in practice.

Watson et al. demonstrate that verifying the location of data in a cloud
storage has a limited accuracy [14]. They show that a collusion of the cloud
provider with a number of malicious host makes it impossible for users to verify
the location of their file accurately. The main drawback of this approach is that
it requires a set of trusted landmarks exists in order to verify the existence of a
file on a host.

GeoProof combines a proof of retrievability scheme with a delay based pro-
tocol to determine the distance between a host and a verifier [2]. They assume a
tamper proof GPS device in the local network of cloud provider communicating
with a third party to verify the location of data. The major drawback of this
protocol is that cloud providers are not willing to have a black box attached to
their local network. Moreover, the GPS signals received by the device can be
faked by a malicious cloud provider.

Gondree and Peterson proposed a schema to tackle such problem by employ-
ing a latency function built based on the current network traffic observation [5].
The main disadvantage of this approach is the requirement of a dedicated net-
work of landmarks which is quite costly. Moreover, in the model building phase
the landmarks send messages amongst themselves in order to find a baseline
for the Internet delay which does not quite represent the real environment. In
fact, this scenario does not consider the latencies imposed by cloud mediation
services such as authentication, decryption, etc. Therefore, the observation has
an inherent limitation which influences the distance estimation.

Abdou et al. show that having a fixed network of landmarks can be manipu-
lated [1]. The location of landmarks will be revealed over time and since usually
delay based approaches use UDP or ICMP protocols, an adversary is able to fil-
ter them out and play with the delays of the responses in order to misrepresent
its own location.

There is a parallel work with DLoc which uses network delays and a network
of smartphones to estimate the physical location of a server [3]. However, the
focus of DLoc is to estimate the location of data (e.g. a file) in the cloud. It
verifies the server for the possession of user’s data and tracks all available online
copies of the file on all servers. Moreover, the best error rate reported in their
study is 189 KM while the average error rate for DLoc in Leuven and Eindhoven
is less than 50 KM and for Turin and Trento less than 150 KM . DLoc proposes
a comprehensive framework which adapt itself automatically by observing the
environment and remove noisy data.
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7 Conclusions and Future Work

This paper introduces DLoc, which determines the location of a file transferred
to the cloud. It uses a proof of data possession technique to guarantee that the
cloud storage service possess the particular file and estimates its location(s) in
a distributed manner without requiring the collaboration of the data controller
or cloud provider. DLoc has a number of advantages compare to its rivals. First,
it does not require a dedicated network of trusted landmarks which makes it
quite economic to be used in a real world setting. Second, it does not require a
modification to the cloud services. Third, it is able to deal with multiple copies
of data. Fourth, employing machine learning techniques has made DLoc robust
against network fluctuations and various types of connections. Finally, since it
uses smartphones instead of fixed landmarks, it has motivation for DLoc agents
to use the service and participate in the process.

In a real-world scenario where DLoc serves a huge number of smartphone
users, therefore it is able to find the locations of data centers precise enough in
order to report all the data centers in the world representing a physical risk to
all cloud providers. Moreover, since DLoc provides measurements and statistics
on where data is stored and how long does it take to be delivered, it can be used
to measure the quality of service for content delivery to mobile users and help
to improve it.

We are planning to include anonymization techniques to offer more protection
to the DLoc mobile users, and provide test data for the Toreador project.
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Abstract. In invitation-based systems, a user is allowed to join upon
receipt of a certain number of invitations from the existing members. The
system administrator approves the new membership if he authenticates
the inviters and the invitations, knowing who is invited by whom. How-
ever, the inviter-invitee relationship is privacy-sensitive information and
can be exploited for inference attacks: The invitee’s profile (e.g., polit-
ical view or location) might leak through the inviters’ profiles. To cope
with this problem, we propose Inonymous, an anonymous invitation-
based system where the administrator and the existing members do not
know who is invited by whom. We formally define and prove the inviter
anonymity against honest but curious adversaries and the information
theoretic unforgeability of invitations. Inonymous is efficiently scalable
in the sense that once a user joins the system, he can immediately act
as an inviter, without re-keying and imposing overhead on the existing
members. We also present InonymouX, an anonymous cross-network
invitation-based system where users join one network (e.g., Twitter)
using invitations of members of another network (e.g., Facebook).

Keywords: Invitation-based system · Anonymity · Unforgeability ·
Cross-network invitation

1 Introduction

An invitation-based system consists of a server (administrator) and a group of
members. New users join the system only by obtaining invitations from a certain
number of existing members. Each invitation confirms some level of trust to the
invitee. This authentication method is also known as trustee-based social authen-
tication. Invitation-based systems benefit from trustee-based authentication for
the initial registration of a user to the system. Afterward, any authentication
technique e.g., a password, can be utilized for the further logging into the system.

Invitation-based systems are employed due to various reasons such as a lim-
ited number of server resources to cover an arbitrary number of users, improving
the quality of services by constraining the number of members, securing the sys-
tem against fake users, and providing data or service privacy for the system. As
a well-known historical example, Google applied invitation-based registration in
the early stages of its new services like Gmail, Orkut, and Google Wave [1].
c© Springer International Publishing AG 2017
J. Garcia-Alfaro et al. (Eds.): DPM/CBT 2017, LNCS 10436, pp. 219–235, 2017.
DOI: 10.1007/978-3-319-67816-0 13
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In invitation-based systems, the administrator knows the identity of the
user’s inviters to authenticate and manage new registrations. In some other
cases, not only the administrator but also other members of the system are
informed about the correspondence of a newcomer and his inviters. For exam-
ple, in Telegram chat application, once a new user joins a group, its referee’s
identity is broadcasted to the group members. The user’s referees are mostly
among the user’s acquaintances (e.g., colleagues, home mates, family members,
close friends) who have many common preferences with the user. Due to this
reason, information like location, religious beliefs, sexual orientation, and politi-
cal views can be inferred about a user by analyzing the common features among
his inviters [3,8]. Thus, the set of user’s referees is privacy-sensitive information.

Related Works: Typically, trustee-based social authentication is considered as
a backup authentication method, rather than the primary one. A backup authen-
tication method is employed where the user fails to pass the primary authen-
tication e.g., forgetting the password [4]. The account holder determines a set
of trustees to the server in advance. When the user loses access to his account,
the server sends recovery codes to the trustees. Upon collection of enough num-
ber (recovery threshold) of codes from the trustees, the user recovers his access.
Forest fire attack [9] is the most significant security issue in this context where
an attacker compromises a few seed accounts and exploits this to steal other
accounts. The main security measures against forest fire attack are increasing
the recovery threshold [10], assigning time to live to the recovery codes [10,13],
keeping the identity of trustees hidden from the recovery requester [9], bit stuff-
ing [9], and using encrypted recovery codes [13]. None of the mentioned solutions
preserve the anonymity of inviters as it is not a concern in those applications.
Instead, the identity of a trustee (i.e., inviter) is by default known to the server
so that the server can communicate with the trustees for the account recov-
ery procedure. On the contrary, in invitation based systems, the anonymity of
trustees (inviters) is a security concern due to the inference attacks. This indi-
cates that the existing trustee-based solutions are not applicable to invitation
based systems as they disregard the anonymity of trustees.

To cope with this problem, we developed an anonymous invitation-based sys-
tem named Inonymous. Our system overview is depicted in Fig. 1. Inonymous
consists of three entities: A server (administrator), existing members (inviters)
and a newcomer (invitee). The invitee receives invitations from a subset of
existing members i.e., inviters. The invitee knows the inviters beforehand via
some other means outside the network to be joined to. In the Gmail exam-
ple, Google employees and their families/friends are the inviters and invitees,
respectively. The invitee combines the invitations into a single invitation letter
and submits to the server. If the invitation is verified by the server, the invi-
tee joins the system. No interaction is required between inviters and the server.
In contrast to the prior studies, in Inonymous inviters can anonymously add
new users. This anonymity is not only against the server but also against the
other members including inviters of the same invitee. Despite the anonymity
of the inviters, the server can still verify the integrity of the invitations.
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That is, a malicious invitee cannot join the system without threshold many
legitimate invitations. We formally define inviter anonymity and invitation
unforgeability and provide game based proofs of security. Furthermore, Inony-
mous efficiently enables the recently invited users to act as inviters. This
is done instantly and without rekeying the system and contacting existing
members.

Note that, while Inonymous guarantees the anonymity of the inviters in the
phase of registration, it does not tackle with the anonymous interaction and
relationship of users within the system. For example, while a user is invited to
a Facebook group using Inonymous, his interaction with other group members
might imply some information about his potential inviters. Thus, the anonymous
interaction of users must be addressed independently and is out of the scope of
this paper. But recall that the application of invitation-based system is not
limited to the social networks e.g., a cloud does not constitute a social network
while it may employ invitation-based notion to offer a limited service or storage
to the recommended customers.

Additionally, we construct InonymouX, an anonymous cross-network
invitation-based system on top of Inonymous which can be of independent inter-
est. In the cross-network design, a user joins one system e.g., Twitter, by obtain-
ing invitations from members of another network e.g., Facebook. The cross-
network design is beneficial especially to bootstrap a system, for example in the
case where a research group wants to hire qualified researchers from another
group. A qualified researcher is the one with enough recommendations i.e., invi-
tations from his own group.

Our contributions are as follows:

– Inonymous is the first anonymous invitation-based system that provides
inviter anonymity and invitation unforgeability.

– We provide formal security definitions and proofs for both security
objectives.

– Inonymous is efficiently scalable in terms of the number of inviters.
– We propose the first cross-network anonymous invitation-based sys-

tem called InonymouX where the possibility of inter-network invitation is
provided.

Fig. 1. Inonymous system overview.
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2 Model

Inonymous is composed of three entities: a server, a set of existing members
and a new user who is willing to join the system. The server is responsible for
managing and validating users’ registrations and generating certificates upon
the occurrence of a new membership. The existing members are given neces-
sary information which enables them to make anonymous individual invitations
for their trusted ones. The newcomer becomes the member of the system if
he obtains a certain number (denoted by t as threshold) of invitations from the
existing members i.e., inviters. The invitee knows his inviters prior to joining the
system. He collects and aggregates individual invitations to make a single final
invitation letter. The aggregation of invitations has the main effect in inviters
anonymity. Once the newcomer hands over his invitation to the server, the server
is in charge to authenticate the invitation and provide necessary information for
him. We assume that the system starts with at least t initially registered mem-
bers (e.g., Google employees in the Gmail example), who are given credentials to
join the system by the server directly. Henceforth, those existing members start
inviting others.

Throughout the paper, we assume secure and authenticated channels per
communication. In Inonymous, we seek two security objectives:

– Inviter anonymity: By inviter anonymity, we aim at protecting the identity
of the inviters against the server and other members. The invitations should
not leak any information about the inviters. We assume that the adversary is
the server who may collude with a subset of a newcomer’s inviters (obviously
not all of them). The adversary is presumed to be honest but curious. We
formally prove that the identity of non-colluding inviters remains anonymous
to the adversary. Note that the newcomer is supposed to be concerned about
his privacy hence does not reveal the identity of his inviters to the adversary,
otherwise, the inviter anonymity is meaningless. This is defined in Sect. 7.1
as a game where the adversary controls the server and t − 1 inviters.

– Invitation unforgeability: The invitation unforgeability indicates that a
user i.e., an adversary who has an insufficient number (t

′
) of inviters (t

′
< t)

should not be able to join the system even if he acts maliciously. The adversary
can join if he forges some invitations on his own. Recall that the assumption of
t

′
< t is not a restriction imposed by our system but it is a requirement in any

invitation-based system. Indeed, threshold-many members collude then they
can control the system in the sense that they can add an arbitrary number
of users to the system by generating valid invitations. Thus, a collusion of t
members threats any invitation-based system independent of how the system
is cryptographically designed. We define invitation unforgeability in Sect. 7.2
as a game where the adversary controls up to t − 1 existing users, but the
server and other members are honest.

Overview: Inonymous is managed by a server who owns a master value and a
decryption key. The server shares the master value among the existing members
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using (t)-Shamir secret sharing scheme where t is the threshold value. Each
newcomer requires t invitations to join the system. Each invitation is the masked
version of an inviter’s master share alongside with the encryption of masking
value that is pseudorandomly generated. Once the invitee obtains his invitations,
he can unify them into a single invitation by utilizing the homomorphic property
of Shamir shares and El Gamal encryption scheme. Invitations are tied to a
specific invitee using a server generated token given to each invitee.

3 Preliminaries

Negligible Function. A function f is called negligible if for every polynomial
p(.) there exists integer N such that for every n > N , f(n) < 1

p(n) .

Pseudo Random Generator. A deterministic polynomial time function P :
{0, 1}n → {0, 1}l(n) (where l(.) is a polynomial) is called Pseudo Random Gen-
erator (PRG) if n < l(n) and for any probabilistic polynomial-time distinguisher
D there exists a negligible function negl(.) such that:

|Pr[x ← {0, 1}n : D(P (x)) = 1] − Pr[y ← {0, 1}l(n) : D(y) = 1]| = negl(n) (1)

Shamir Secret Sharing Scheme. Secret sharing is a tool by which a secret is
shared among several parties such that the secret is recoverable in the presence
of a certain number of shareholders. The Shamir secret sharing scheme [2,6]
works based on polynomial evaluations. The secret owner selects a polynomial
f of degree t − 1 randomly and sets the secret data S as the evaluation of that
function at point 0 i.e., f(0) = S. Since each polynomial of degree t − 1 can
be uniquely reconstructed by having t distinct points of that function, t Shamir
shareholders are able to reconstruct the secret. Shamir shares are homomorphic
under addition operation i.e., let [s1] and [s2] be Shamir shares of S1 and S2,
then [s1] + [s2] constitutes a share of S1 + S2.

Multiplicative Homomorphic Encryption Scheme. A public key encryp-
tion scheme consists of three algorithms π = (KeyGen,Enc,Dec). π is called
multiplicative homomorphic encryption if for every a and b, Enc(a) ⊗ Enc(b) =
Enc(a · b) where a and b belong to the encryption message space and ⊗ is an
operation over ciphertexts. As an example, in El Gamal encryption [11], ⊗ cor-
responds to a simple multiplication of two ciphertexts. Additionally, we have
Enc(a)c = Enc(ac) where a is a plain message and c is any integer. Throughout
the paper, we consider El Gamal scheme as our underlying encryption scheme.

Signature Scheme. A signature scheme [12] consists of three algorithms γ =
(SGen, Sign, SV rfy). A pair of keys (sk, vk) is generated via SGen where sk
is the signature key and vk is the verification key. The signer signs a message m
using sk by computing η = Signsk(m). Given the verification key vk, a receiver
of signature runs SV rfyvk(η,m) to verify.

Bilinear Map. Consider G1 and G2 as multiplicative groups of prime order q.
Let g1 be the generator of G1. We employ an efficiently computable bilinear map
e : G1 × G1 → G2 with the following properties [14]
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– Bilinearity: ∀u, v ∈ G1 and ∀a, b ∈ Zq : e(ua, vb) = e(u, v)a·b.
– Non-degeneracy: e(g1, g1) �= 1.

Computational Diffie-Hellman Assumption. Given a cyclic group G of
prime order q with a generator g, and two randomly selected group elements
h1 = gr1 , h2 = gr2 , the Computational Diffie-Hellman (CDH) assumption [5] is
hard relative to G if for every PPT adversary A there exists a negligible function
negl(λ) where λ is the security parameter, such that:

Pr[A(G, q, g, h1, h2) = gr1·r2 ] = negl(λ)

4 Construction

Inonymous consists of six algorithms: SetUp, Token generation (Tgen), Invi-
tation generation (Igen), Invitation collection (Icoll), Invitation Verification
(Ivrfy) and Registration (Reg). Figure 2 visualizes the interaction of entities and
the order of execution of algorithms in Inonymous. The server runs the SetUp
algorithm to set the system’s parameters. Every new user (invitee) must obtain
a token from the server. To generate a token, the server runs Tgen algorithm.
The invitee receives the token and delivers to his inviters. Tokens are used in the
invitation generation and tie each invitation to its invitee (i.e., the invitations
issued using different tokens cannot be used interchangeably). This makes sure
that invitees cannot cheat by combining invitations that are for different pur-
poses. Provided a token, an inviter executes Igen algorithm to make an invita-
tion. The invitee aggregates the individual invitations by running Icoll algorithm
and delivers a unified invitation letter to the server. If the server authenticates
the invitations by running Ivrfy algorithm, then the user is allowed to join the
system. The server generates data necessary for the new member to be able to
invite others by executing the Reg algorithm. Thenceforth, the invitee who is now
a new member is able to add other users to the system. Detailed descriptions
of the algorithms follow (the entity running the algorithm is indicated inside
square braces).

Fig. 2. The order of algorithms’ execution in Inonymous.
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SetUp(1λ). This algorithm is run by the server who inputs the security para-
meter λ and generates system parameters as follows.

– Two big primes p and q such that q|p − 1.
– g is a generator of a cyclic subgroup G of order q in Z∗

p . Let h ∈ Zp and

h �= 0, then g satisfies g = h
p−1
q mod p.

– El Gamal encryption scheme π = (EGen,Enc,Dec) with the key pair (ek, dk)
denoting encryption key and decryption key, respectively. dk remains at the
server while ek is published publicly.

– A signature scheme γ = (SGen, Sign, SV rfy). The signature and verification
keys (sk, vk) are generated according to SGen. vk is publicized.

– A pseudo random generator PRG:{0, 1}λ → Zq

– A master value S ← Zq

– A randomly chosen polynomial function F (y) = ft−1y
t−1 + ... + f1y + f0 of

degree t − 1 whose coefficients f1, ..., ft−1 belong to Zq and f0 = S.

We assume that there are (at least) t users initially registered in the system.
Each registered user is known by a unique numerical index i. Each member has
the evaluation of function F on his own index i.e. the ith member is given master
share si = F (i).

Token Generation: A new user who tends to join the system, initially must
connect to the server and obtain an index and the corresponding token. For this
sake, the server executes the token generation algorithm shown in Algorithm 4.1.
In this procedure, the server assigns the user a unique index and a corresponding
token. Indices can simply be given to the users sequentially based on their arrival
order hence the jth coming user receives the index value of j. Then, the server
computes a token as ω = gr (line 2) where r is a randomly selected value
(line 1). The server certifies the association of user index and ω by generating
a signature on their concatenation (line 3). The server’s generated certificate
constitutes the user’s token (line 4). Observe that the server need not remember
any information regarding a registration attempt. Thus, generated tokens can
simply be discarded and only the last value of j (the number of token requests)
need to be remembered, not incurring any storage load on the server per token.

Algorithm 4.1. Tgen [Server]
Input: sk, j
Output: Token

1 r ← Zq

2 ω = gr

3 η = Signsk(j||ω)
4 Token = (η, j, ω)

Invitation Generation: The user, after obtaining his token Token, asks his
inviters to issue an invitation letter. Each inviter uses his master share si to
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compute an invitation letter as indicated in Algorithm 4.2. Firstly, the referee
authenticates the token (line 1). Then, he computes a masked version of his
master share as given in lines 2–4. δi is the masking value which is the output of
the PRG (line 3). He also encrypts the masking value under the server’s public
encryption key (line 5). Note that the invitation letter is tied to the token as τi

is the combination of the token and the inviter’s master share.

Algorithm 4.2. Igen [Inviter]
Input: Token, si, vk, ek
Output: Invi

1 if Svrfyvk(η, j||ω)=accept then

2 r ← {0, 1}λ

3 δi = PRG(r)

4 τi = ωsi+δi

5 eδi = Encek(ωδi)
6 Invi = (τi, eδi)

Invitation Collection: Invitation Collection (Icoll) is run by the new user i.e.,
invitee, once he obtains a set of t individual invitations. He computes the final
invitation letter i.e. InvLet as indicated in Algorithm 4.3. The final invitation
letter is indeed the aggregation of the individual invitations Invi (line 3–4). For
aggregation, we benefit from the homomorphic property of both Shamir shares
and encryption scheme under addition and multiplication operations, respec-
tively. The invitee re-masks the aggregated invitation letter by contributing to
the sum of masking values with another randomness i.e., δ∗. The re-masking
is required to cancel out the effect of Lagrange coefficients and make the final
masking value independent of Bi values. Recall that the Lagrange coefficients
are dependent on the inviters’ indices. This way, we achieve inviter anonymity.

We expand lines 3 and 4 of Algorithm 4.3 in Eqs. 2 and 3, respectively, where
Bi values are the Lagrange coefficients computed with respect to the index of
the ith inviter. As indicated, T is composed of the token ω and a masked version
of master value i.e., S + Δ. eΔ constitutes the encryption of masking value Δ.
The encryption of masking value i.e., eΔ would be required at the server for the
verification purpose (see invitation verification).

T = ωδ∗ ·
t∏

i=1

τBi
i = ωδ∗ ·

t∏

i=1

ωBi·si+Bi·δi = ωδ∗+
∑t

i=1 Bi·si+
∑t

i=1 Bi·δi

= ωS+δ∗+
∑t

i=1 Bi·δi = ωS+Δ

(2)

eΔ = Encek(ωδ∗
).

t∏

i=1

eδBi
i = Encek(ωδ∗

).
t∏

i=1

Encek(ωBi·δi)

= Encek(ωδ∗+
∑t

i=1 Bi·δi) = Encek(ωΔ)

(3)
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Algorithm 4.3. Icoll [Invitee]
Input: {Invi = (τi, eδi)|1 ≤ i ≤ t}, ek
Output: InvLet

1 r ← {0, 1}λ

2 δ∗ = PRG(r)

3 T = ωδ∗ ·∏t
i=1 τBi

i

4 eΔ = Encek(ωδ∗
) ·∏t

i=1 eδBi
i

5 InvLet = (T, eΔ)

Invitation Verification: This protocol (shown in Algorithm 4.4) is invoked by
the server to verify the validity of a new user’s invitation letter InvLet corre-
sponding to a Token. First, the token is authenticated (line 1). When the authen-
tication phase passed, the server checks the validity of the invitation letter. He
first decrypts the masking value (line 2) and checks whether the invitations are
issued by existing members and really intended for the new user (line 3). If
all the invitations are generated correctly then the verification of line 3 will be
accepted (the correctness results from Eqs. 2 and 3). If all the verification steps
passed successfully, then the server accepts the user’s membership request.

Algorithm 4.4. IVrfy [Server]
Input: InvLet = (T, Delta), T oken = (η, j, ω),vk, dk
Output: reject/accept

1 if Svrfyvk(η, j||ω)=accept then
2 ωΔ = Decdk(eΔ)

3 if ωS · ωΔ = T then
4 return accept

Registration: When a user passes the verification phase, the server runs the
registration algorithm given in Algorithm 4.5 to issue the new member’s master
share sj . sj is the evaluation of function F on the point j that was in the user’s
token (line 1). Hereinafter, the new user is able to invite other users to the
system.

Algorithm 4.5. Reg [Server]
Input: j
Output: sj

1 sj = F (j)

5 InonymouX: Anonymous Cross Network
Invitation-Based System

Consider the situation where one system e.g. Twitter offers a special service for
users of another system e.g. Facebook. You may assume other scenarios as well.
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We name Twitter as the host network i.e. the network serving a special service
whereas Facebook is called the guest network whose users will benefit from the
services offered by the host network. A user of the guest network is served by the
host network by convincing the host server on being invited by adequate inviters
from the guest network. To do so, one simple but cumbersome solution is to fol-
low the regular invitation-based system i.e., each time a guest user wants to join
the host network, the guest server authenticates that user and communicates
the authentication result to the host server. However, this solution requires two
servers keep in contact with each other and imposes unnecessary overhead on the
guest server. Whereas in our proposal i.e. InonymouX, we provide an efficient
solution for cross network invitations which is independent of two servers interac-
tion. in InonymouX, the host server is given enough information to authenticate
guest users by his own. The solution is as follows.

The guest network with the master value Sguest publicizes gSguest along-
side the signature verification key vkguest. On the other side, the host network
announces an encryption key denoted by ekhost. Members of the guest network
proceed as in the regular invitation procedure where the inviters use the encryp-
tion key of host network to encrypt their masking values. Indeed, in Algorithms
4.2 and 4.3, the inviter uses ekhost as input. Therefore, the invitation letters
received by the host server are of the form InvLet = (T, eΔ) where eΔ is an
encrypted masking value under ekhost. The host server runs a different verifi-
cation routine, which is given in Algorithm 5.1. We assume the existence of a
bilinear map e: G×G → G2 where G and G2 are multiplicative groups of prime
order q. The only difference between Algorithm 5.1 and Algorithm 4.4 is at the
second verification step i.e., line 3. The correctness holds by the bilinearity of
the bilinear map e, as in Eq. 4.

e(ω, gSguest) · e(ωΔ, g) = e(ω, g)Sguest · e(ω, g)Δ = e(w, g)Sguest+Δ = e(wSguest+Δ, g)

= e(T, g)
(4)

Algorithm 5.1. XIVerify [Host Server]
Input: InvLet = (T, eΔ), T oken = (η, j, ω), vkguest, dkhost, gSguest

Output: reject/accept

1 if Svrfyvkguest(η, j||ω)=accept then
2 ωΔ = Decdkhost(eΔ)

3 if e(ω, gSguest) · e(ωΔ, g) = e(T, g) then
4 return accept

6 Performance

In this section we aim at analyzing the running time of each algorithm. Table 1
shows the results in millisecond. We used DSA signature scheme [7] with the key
size of 1024 bits. The required number of inviters i.e., t is set to 5. The running
time is measured on a standard laptop with 8 GB 1600 MHz DDR3 memory
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Table 1. Running time of Inonymous Algorithms.

SetUp Tgen Igen Icoll IVerify Reg

842 ms 3.46 ms 37.4 ms 35.3 ms 29.4 ms 0.129 ms

and 1.6 GHz Intel Core i5 CPU. Although the running time of SetUp algorithm
has a huge difference with the other algorithms, it is run only once by the server
just to bootstrap the system.

7 Security

In this section, we provide security definitions for inviter anonymity and invita-
tion unforgeability, and then prove the security of Inonymous.

7.1 Inviter Anonymity

Security Definition: An invitation-based system protects inviter anonymity if
a new user having enough inviters can convince the server without revealing the
identity of his inviters. We model this security objective as a game denoted by
InvAnonymA(λ) played between a challenger and an adversary. The members
controlled by the adversary and challenger are called colluding and non-colluding
members, respectively. The adversary controls the server as well. The challenger
acts as a new user who wants to join the system and is required to obtain t
invitations from t different members. We assume that t − 1 inviters come from the
colluding members (clearly it is the maximum power that can be considered for
the adversary). The adversary selects two non-colluding members. The challenger
uses one of them as the remaining inviter and registers into the system. If the
adversary cannot guess the identity of the non-colluding inviter with more than
a negligible advantage, then the system provides inviter anonymity.

Inviter Anonymity Experiment InvAnonymA(λ)

1. The adversary outputs encryption key ek and signature verification
key vk.

2. The challenger registers polynomially many users denoted by U to the
system.

3. The adversary selects two users u0, u1 ∈ U and generates a token
Token. Also, the adversary outputs t−1 individual invitations for the
given Token.

4. The challenger tosses a coin and selects a bit value b accordingly. Then,
the challenger generates an invitation letter InvLet using ub as one
of the inviters in addition to the t − 1 invitations received from the
adversary, and sends InvLet to the adversary.

5. The adversary guesses a bit b
′

indicating that which of the two users
u0, u1 is used as the inviter.

6. The output of game is 1 if b == b
′
, 0 otherwise.
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Definition 1. An invitation-based system has inviter anonymity if for every
probabilistic polynomial time adversary A there exists a negligible function
negl(.) such that:

Pr[InvAnonymA(λ) = 1] =
1
2

+ negl(λ)

Security Proof: Before the formal proof, let us summarize informally. In Inony-
mous, the anonymity of inviter relies on the security of the pseudo random gen-
erator. The invited user delivers to the server (the adversary) an invitation letter
of the form InvLet = (ωS+Δ, eΔ) where S is the server’s master value, eΔ is the
encryption of Δ and Δ = ωδ∗+

∑t
i=1 Bi·δi (δ∗ is the masking value added by the

invitee, δi is inviter’s masking value resulted from a PRG and Bi is the Lagrange
coefficient computed based on the inviter’s index). The adversary may get some
idea about the inviters’ identity by extracting the Lagrange coefficients from Δ
value (Lagrange coefficients are the function of inviters’ indices). Two cases may
occur. If the random values δi and δ∗ are selected truly at random, then we
know that Δ is also a random value and conveys nothing about the Lagrange
coefficient Bi. Though, if δi and δ∗ are the output of a PRG then the adversary
may have advantages to extract the Lagrange coefficients. We denote the adver-
sary’s advantage by ε. If ε is non-negligible, it implies that we can distinguish
between a PRG and a random number generator hence we break the security of
the PRG. In the following we provide the formal proof.

Theorem 1. If PRG is a pseudo random generator then Inonymous provides
inviter anonymity.

We reduce the security of Inonymous to the security of the employed PRG. If
there exists a PPT adversary A who breaks the inviter anonymity of Inonymous
with non-negligible advantage then we can construct a PPT adversary B who
distinguishes between a random generator and a pseudo random generator with
the same advantage of A. Assume A’s success probability is

Pr[InvAnonymA(λ) = 1] =
1
2

+ ε(λ) (5)

B runs A as its subroutine to distinguish the pseudo random number generator
from the truly random generator. B is given a vector of values in Zq denoted by
→
δ = (δ

′
, δ

′′
) and aims at specifying whether

→
δ is selected truly at random or

is the output of a PRG. B invokes A as his subroutine and emulates the game

of inviter anonymity for A as follows. If A succeeds then B realizes that
→
δ is

pseudo random, otherwise random.

1. B is given the security parameter λ and a vector of two values denoted by
→
δ = (δ

′
, δ

′′
) where δ

′
, δ

′′ ∈ Zq. Adversary A outputs the encryption and
signature public keys ek and vk, respectively.
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2. B registers polynomially many users into the system. U indicates the set of
indices registered by B.

3. A outputs two users u0, u1 ∈ U and a token Token = (η, u∗, ω). u∗ is the index
of the new user. A also submits t − 1 invitation letters i.e. Invi = (τi, eδi) for
1 ≤ i ≤ t − 1.

4. B selects a random bit b and creates an invitation letter from ub as Invub
=

(τub
, eδub

) = (ωsub
+δ

′
, Encek(ωδ

′
)). He finally computes

T = ωδ
′′ · τ

Bub
ub · ∏t−1

i=1 τBi
i

and
eΔ = Encek(ωδ

′′
) · Encek(ωδ

′
)Bub ·∏t−1

i=1 eδBi
i = Encek(ωδ

′′
+δ

′ ·Bub
+
∑t−1

i=1 δi·Bi).

Bi and Bub
denote the Lagrange coefficients. B submits InvLet = (T, eΔ) to

the adversary A.
5. A outputs a bit b

′
.

6. If b = b
′
then B outputs 0, otherwise 1.

Let
→
δ be a truly random vector. Once the adversary decrypts eΔ he obtains

Δ = ωδ
′′
+Γ

where

Γ = δ
′ · Bub

+
t−1∑

i=1

δi · Bi

Γ is a function of inviters indices due to the presence of Lagrange coefficients

whereas δ
′′

is a random value completely independent of inviters. If
→
δ is a random

vector then δ
′′

is also a random value from Zq. Therefore, in ωδ
′′
+Γ , Γ is indeed

masked with δ
′′

(δ
′′

+ Γ mod q is a completely random element of Zq). By this
masking, Δ becomes completely independent of Lagrange coefficients and A has
no advantage to infer the inviters identity. Thus, A’s advantage is exactly 1

2 i.e.,

Pr[B(
→
δ ← Zq) = 1] = Pr[b = b

′
] =

1
2

(6)

but if δ is the output of a PRG then

Pr[r ← {0, 1}λ : B(
→
δ = PRG(r)) = 1] = Pr[b = b

′
] =

1
2

+ ε(λ) (7)

where 1
2 + ε(λ) is the success probability of A as assumed in our proof in Eq. 5.

By combining Eqs. 6 and 7 we have

|Pr[r ← {0, 1}λ : B(
→
δ = PRG(r)) = 1] − Pr[B(

→
δ ← Zq) = 1]| = ε(λ) (8)
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Equation 8 corresponds to the security definition of PRG (see Eq. 1). Thus, if ε(λ)
is non-negligible then the distinguisher B can distinguish a PRG from a random
generator which contradicts with the security definition of PRG. Therefore, ε(λ)
must be negligible according to the PRG definition. This concludes the security
proof of inviter anonymity of Inonymous.

Discussion: We proved inviter anonymity against an honest but curious adver-
sary who follows the algorithm descriptions, whereas a malicious adversary
breaks the anonymity of the inviters in the following attack scenario. First
note that for the inviter anonymity, the adversary is the server who is col-
luding with t − 1 inviters. According to the inviter anonymity game defini-
tion, the server obtains InvLet = (T = ωS+Δ, eΔ). As we discussed, if all
the inviters act honestly and use their real master shares for the invitation gen-
eration, then the adversary obtains the wS value. According to Shamir secret
sharing scheme, even if the adversary knows t− 1 inviters, the remaining inviter
can be any of the existing shareholders, hence the inviter anonymity holds.
Now, consider that the colluding t − 1 inviters put zeros instead of their real
master shares i.e., s1 = ... = st−1 = 0 (wlog. 1, ..., t − 1 are the indices
of colluding inviters). Then, the server obtains wS

′
with the following value:

S
′
= s1.B1 + ... + st−1.Bt−1 + st.Bt = st.Bt. The adversary can simply try all

the combinations of generated master shares st with different possible values for
Bt and figure out the honest inviter’s index (the possible number of values is
linear in the number of remaining inviters, which in the inviter anonymity game
is 2, and in practice corresponds to the number of registered users). This attack
is defeated only if the inviters act honestly and follow the genuine routine of
algorithms.

7.2 Invitation Unforgeability

Security Definition: In an invitation based system, the invitation unforgeabil-
ity indicates that people who do not have enough inviters (<t) should not be
able to join the system. Hence, no adversary can forge invitations by his own.
We define the following game denoted by InvUnforgeA(λ) running between
a challenger and an adversary. The adversary controls a set of t − 1 members
denoted by Q. The adversary may query as many tokens as he wants and queries
the challenger to check the validity of his pseudo-invitation letters. Finally, if
the adversary registers to the system successfully, it shows that the invitations
are forgeable, otherwise the system has invitation unforgeability. Note that we
assume secure authenticated channels between entities hence we ignore the threat
of eavesdropping.
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Invitation Unforgeability experiment InvUnforgeA(λ):

1. The challenger runs the setup algorithm. The adversary is given the
encryption key ek, the signature verification key vk, as well as the
security parameter λ.

2. The adversary registers a set of t − 1 users denoted by Q.
3. The adversary asks the challenger to issue a token. The challenger

generates a token for the next available index j. This step may be
repeated polynomially many times upon the adversary’s request.

4. The adversary queries invitation verification function on the invita-
tions of his own choice. The challenger responds accordingly.

5. The challenger outputs a token denoted by Token∗. The adversary
outputs an invitation letter InvLet corresponding to the given token.

6. If the output of IV rfy(InvLet, Token∗, vk, dk) is accepted then the
game’s output is 1 indicating the adversary’s success, 0 otherwise.

Definition 2. An invitation-based system has invitation unforgeability if for
every probabilistic polynomial time adversary A there exists a negligible func-
tion negl(.) such that:

Pr[InvUnforgeA(λ) = 1] = negl(λ)

Security Proof. Forging invitations is information-theoretically infeasible. In
fact, the adversary, in the best case, has t − 1 inviters hence t − 1 evaluations
of function F (.). Recall that a valid invitation letter contains the master value
S i.e. ωS+Δ (S is the evaluation of F (0)). Since the adversary is confined to
t − 1 points on this polynomial, he cannot reconstruct the S value in any way.
Without the final share of S, ωS+Δ is a random element. Therefore, Inonymous
has information-theoretic invitation unforgeability.

7.3 Security of InonymouX

InonymouX provides inviter anonymity as Inonymous does, hence the same
proof of Sect. 7.1 applies here. However, invitation unforgeability needs a differ-
ent proof, due to the publicity of gSguest , which provides computational infor-
mation to the adversary. Note that a final aggregated invitation letter has the
form of T = ωSguest+Δ = gr·Sguest+r·Δ. For an adversary who has ω and gSguest ,
making a valid invitation letter corresponds to solving the Computational Diffie-
Hellman (CDH) problem i.e., given gSguest and gr compute gr·Sguest . Thus,
assuming that CDH is hard to solve, then the invitation unforgeability holds
for InonymouX as well. Full reduction follows.

Security Proof

Theorem 2. If the computational Diffie-Hellman problem is hard to solve rela-
tive to G, then InonymouX has invitation unforgeability.
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If there exists a PPT adversary A who breaks the invitation unforgeability with
probability ε(λ), then we construct an adversary B who solves CDH problem
with ε(λ) probability. The adversary A acts as a new user with t-1 inviters. The
adversary B plays as host and guest servers and the rest of members. B simulates
the invitation unforgeability game for adversary A to break CDH problem.

1. B is given (G, q, g, gr, gS) (G is a cyclic group of order q with generator g) and
the security parameter λ. B generates signature key pair vk, sk and public
encryption key pair ek, dk. B sends gS , vk and ek to A. Note that S is the
master value which is unknown to B.

2. Adversary A registers t − 1 users to the system. As B does not know the
master value S, he generates random master shares for A’s requests. Adver-
sary A cannot distinguish between the real master shares and the randomly
generated ones. Note that for every given t − 1 points, we can construct a
polynomial F of degree t such that F (0) = S. Thus, as long as the adversary
A has only t − 1 points of F , he does not distinguish whether B knows the
master value (i.e., has generated real master shares) or is a simulator.

3. The adversary A asks for polynomially many tokens from B.
4. The adversary A outputs an invitation letter and asks B to verify it. A

may repeat invitation verification query polynomially many times. B runs
Algorithm 6 to answer the queries.

5. The challenger outputs Token∗ as (η, adv, w) where adv is an index, η =
Signsk(adv||w) and w = gr (B sets w as one of the inputs given in the CDH
game). A outputs an invitation letter:

InvLet = (T = wS+Δ, eΔ = Encek(ωΔ)).

If XIvrfy(InvLet, Token∗) = accept then B computes wΔ = Decdk(eΔ). As
the solution for CDH problem, B outputs

T.(wΔ)−1 = wS+Δ.w−Δ = wS = gr.S (9)

If A manages to output a valid invitation letter InvLet, then B can extract
the solution of CDH problem from that invitation letter as indicated in Eq. 9.
Therefore,

Pr[B breaks CDH] = Pr[A breaks Invitation Unforgeability] = ε(λ)

If ε(λ) is non-negligible then CDH problem is also solved with non-negligible
probability. This implies a contradiction for the hardness assumption of CDH,
hence we conclude that ε(λ) must be negligible. Therefore, invitation unforge-
ability of InonymouX is proven.

8 Conclusion

We proposed Inonymous, an anonymous invitation-based system by seeking two
security objectives i.e., inviter anonymity against the system administrator and
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existing members and invitation unforgeability against newcomers with insuffi-
cient inviters. We present security definition and formal proof for each security
objective. The anonymity of inviter relies on the security of the employed pseudo
random generator (for masking value generation) and the invitation unforgeabil-
ity is information-theoretically proven due to the Shamir secret sharing scheme’s
security. We also proposed InonymouX, an anonymous cross-network invitation-
based system by a slight modification on Inonymous so that users of one network
can act as inviters for another network. InonymouX invitation unforgeability
assumes Computational Diffie-Hellman problem. In the future, we aim to provide
efficient user revocation capability as well as inviter anonymity against malicious
adversaries.
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Abstract. We present PCS, a privacy-preserving certification mecha-
nism that allows users to conduct anonymous and unlinkable actions.
The mechanism is built over an attribute-based signature construction.
The proposal is proved secure against forgery and anonymity attacks. A
use case on the integration of PCS to enhance the privacy of learners
of an e-assessment environment, and some details of the ongoing imple-
mentation, are briefly presented.

Keywords: Attribute-based signatures · Attribute-based credentials ·
Anonymity · Bilinear pairings · Anonymous certification

1 Introduction

We present PCS, a privacy-preserving certification scheme that provides the
possibility of conducting anonymous authentication. This allows organizations
to issue certificates to end-users in a way that they can demonstrate their posses-
sion in a series of transactions without being linked. PCS builds over an existing
attribute-based signature scheme previously presented by Kaaniche and Laurent
in ESORICS 2016 [10], called HABS (for Homomorphic Attribute Based Signa-
tures). The objective of HABS is to enable users to anonymously authenticate
with verifiers. At the same time, users minimize the amount of information sub-
mitted to the service provider, with respect to a given presentation policy. In
[20,21], Vergnaud reported some limitations of HABS and proved that some
of its security assumptions may fail in the random oracle model. PCS takes
over HABS and addresses the limitations reported by Vergnaud. An ongoing
implementation of the PCS proposal for e-learning scenarios, under the scope
of a EU-funded project (cf. http://tesla-project.eu/ for further information), is
available online1 to facilitate its understanding and validation.

Paper Organization — Sections 2 and 3 provide additional background on
the use of Anonymous Credentials (AC) and Attribute-based Signatures (ABS).
Sections 4 and 5 provide a generic presentation of the PCS construction, as well
as the main differences with respect to the previous HABS scheme. Section 6
presents the security analysis of PCS. Section 7 briefly discusses a use case of
PCS for e-assessment environments. Section 8 concludes the paper.
1 Source code snippets available at http://j.mp/PKIPCSgit.
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2 Background on Anonymous Credentials (AC)

In [5], Chaum introduced the notion of Anonymous Credentials (AC). Camenisch
and Lysyanskaya fully formalized the concept in [3,4]. AC, also referred to
as privacy-preserving attribute credentials, involve several entities and proce-
dures. It fulfills some well-identified security and functional requirements. In the
sequel, we present some further details about the type of entities, procedures
and requirements associated to traditional AC schemes.

2.1 Entities

An anonymous credential system involves several entities. This includes manda-
tory entities (e.g., users, verifiers and issuing organizations) and optional enti-
ties (e.g., revocation authorities and inspectors) [2]. The central entity in AC is
the user entity. Its interest is to obtain a privacy-preserving access to a series
of services. The providers of such services are denoted as verifiers. Each veri-
fier enforces an access control policy with regard to its resources and services.
This access control is based on the credentials owned by the users. The related
information is included in what is called the presentation tokens.

With the purpose of accessing the resources, a user has to obtain its creden-
tials from a series of issuing organizations. Then, the user selects the appropriate
information with regard to the issued credentials and shows the selected infor-
mation to the requesting verifier, under a presentation token. The access control
policy associated to the verifier is referred to as the presentation policy. Both
the user and the verifier have to obtain the most recent revocation informa-
tion from the revocation authority to either generate or verify the presentation
tokens. The revocation authority may eventually revoke some issued credentials
and maintain the list of valid credentials in the system. When a credential is
revoked, the associated user will no longer be able to derive the corresponding
presentation tokens. An additional trusted entity, denoted as the inspector, holds
the technical capabilities to remove the anonymity of a user, if needed.

2.2 Procedures

An anonymous credential system mainly relies on the execution of the following
series of procedures and algorithms:

– Setup — It takes as input a security parameter ξ that represents the security
level; and returns some public parameters, as well as the public (pk) and secret
(sk) key pair of the issuing organization, denoted as (pko, sko).

– UserKeyGen — Returns the key pairs of users. For instance, let j ∈ N

represent the request of user j, it returns a key pair denoted as (pkuj
, skuj

).
– Obtain ↔ Issue — It presents the issuance procedure. The Issue proce-

dure is executed by the issuing organization. It takes as input some public
parameters, the secret key of the issuing organization sko, the public key of
the user pku and the set of attributes {ai}N

i=1. N is the number of attributes.
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The Obtain procedure is executed by the user and takes as input the secret
key of the user sku and the public key of the issuing organization pko. At the
end of this phase, the user receives a credential C.

– Show ↔ Verify — It represents the procedures between the user and the
verifier. With respect to the presentation policy, the Show procedure takes
as input the secret key of the user sku, the public key of the issuing orga-
nization pko, the credential C and the set of required attributes {ai}N ′

i=1. N ′

is the number of required attributes. The resulting output of this algorithm
is the presentation token. The Verify procedure is publicly executed by the
verifier. It takes as input the public key of the issuing organization pko, as
well as the set of attributes {ai}N ′

i=1 and the presentation token. The Ver-
ify procedure provides as output a bit value b ∈ {0, 1}, denoting either the
success or the failure associated to the verification process.

2.3 Requirements of AC Systems

An AC system has to fulfill the following requirements:

– Correctness — Honest users shall always succeed in anonymously proving
validity proofs to the verifiers.

– Anonymity — Honest users shall remain anonymous with regard to other
system users while conducting the presentation procedure in front of a series
of verifiers.

– Unforgeability — Users that fail at holding an appropriate set of legitimate
credentials shall not be able to generate presentation tokens for the system.

– Unlinkability — Honest users shall not be related to two or more observed
items of the system. This requirement is often divided in two subproperties:

• Issue-show unlinkability. It ensures that data gathered during the proce-
dure of issuing credentials cannot be used by system entities to link a
presentation token to the original credential.

• Multi-show unlinkability. Presentation tokens derived from the same cre-
dentials and transmitted over different system sessions cannot be linked
together by the verifiers.

Privacy-preserving attribute credential systems have to ensure some addi-
tional functional requirements, such as revocation, inspection and selective dis-
closure. Selective disclosure refers to the ability of the system users to present
only partial information to the verifiers. Such information may be derived from
the user credentials, in order to prove, e.g., that the user is at least eighteen
years old to be eligible for accessing a service, without revealing the exact age.

3 Attribute-Based Signatures for AC Support

Attribute-based Signatures (ABS for short) is a cryptographic primitive that
enables users to sign data with fine-grained control over the required identifying



242 N. Kaaniche et al.

information [14]. To use ABS, a user shall possess a set of attributes and a secret
signing key per attribute. The signing key must be provided by a trusted author-
ity. The user can sign, e.g., a document, with respect to a predicate satisfied by
the set of attributes. Common settings for ABS must include a Signature Trustee
(ST ), an Attribute Authority (AA), and several signers and verifiers. The ST
acts as a global entity that generates valid global system parameters. The AA
issues the signing keys for the set of attributes of the users (e.g., the signers).
The role of the ST and the AA can be provided by the same entity. The AA can
hold knowledge about the signing keys and the attributes of the users. However,
the AA should not be capable to identifying which attributes have been used in
a given valid signature. This way, the AA will not be able to link the signature
to the source user. The AA should not be able to link back the signatures to the
signers. This is a fundamental requirement from ABS, in order to fulfill common
privacy requirements.

3.1 Related Work

Several ABS schemes exist in the related literature, considering different design
directions. This includes ABS solutions in which (i) the attribute value can be a
binary-bit string [9,13–16] or general-purpose data structures [22]; (ii) ABS solu-
tions satisfying access structures under threshold policies [9,13,16], monotonic
policies [14,22] and non-monotonic policies [15]; and (iii) ABS solutions in which
the secret keys associated to the attributes are either issued by a single authority
[14,16,22] or by a group of authorities [14,15]. General-purpose threshold cryp-
tosystems can also be adapted in order to achieve traceability protection [7,8].

A simple ABS system can rely on using only one single AA entity. The AA
entity derives the secret keys {sk1, · · · , skN}, with respect to the attribute set
that identifies a given signer, denoted by S = {a1, · · · , aN}. N is the number
of attributes. The procedure to generate the secret keys is performed using the
master key of the AA entity, as well as some additional public parameters. These
elements shall be generated during the setup procedure. A message m is sent
by the verifier to the user, along with a signing predicate Υ . In order to sign
m, the signing user shall hold a secret key and a set of attributes satisfying the
predicate Υ . The verifier shall be able to verify whether the signing user holds
the set of attributes satisfying the predicate associated to the signed message.

In [10], Kaaniche and Laurent presented an anonymous certification primi-
tive, called HABS, and constructed over the use of ABS. In addition to common
requirements such as privacy and unforgeability, HABS was designed with these
additional properties in mind:

– Signature traceability — HABS includes a procedure denoted as Inspec, in
order to grant some entities the ability of identifying the user originating an
ABS signature. To prevent common issuing organizations from tracing the
system users, the Inspec procedure is provided only to a tracing authority.
This authority, typically an inspector, shall hold a secret key. The Signature
traceability is important to guarantee accountability and prevent fraud.
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– Issuer unlinkability — When a user requests multiple authorities to issue
credentials with respect to a set of attributes, common ABS authorities can
link the set of credentials to one user through the corresponding public key.
HABS includes an issuance procedure to avoid this situation.

– Replaying sessions — To mitigate the possibility of replay attacks (common
to ABS setups), HABS forces its verifiers to generate for each authentication
session, a new message. Such a message shall depend on the session data, e.g.,
the identity of the verifier and a timestamp.

In [20,21], some of the requirements imposed by HABS were questioned by
Vergnaud. The concrete realization of the HABS primitive was proved unsatis-
factory with regard to the expected unforgeability and privacy properties under
the random oracle model. The privacy-preserving certification scheme presented
in this paper addresses such limitations. We present next the revisited primitives
and procedures, and answer some of the claims reported by Vergnaud in [20,21].

4 The PCS Construction

4.1 System Model

The PCS construction relies on a series of modified algorithms with regard to
the original HABS construction reported in [10], involving several users (i.e.,
signers). To ease the comparison to the initial approach, we denote by PCS the
modifications, and by HABS the main algorithms originally defined in [10].

– PCS.Setup – It runs the original HABS.Setup algorithm. It takes as input
the security parameter ξ and returns a set of global public parameters. All
the algorithms include as default input such global public parameters.

– PCS.KeyGen – This algorithm returns the key pairs of either users or issu-
ing organization. The key pairs are denoted (pku, sku) for the users, e.g.,
(pkuj

, skuj
) for a user j; and (pko, sko) for the issuing organization.

– PCS.Obtain ↔ PCS.Issue – The PCS.Issue algorithm executed by the
issuing organization takes as input the secret key of the issuing organization
sko, the public key of the user pku, and a set of attributes S ⊂ S. S = {ai}N

i=1,
where N is the number of attributes. S is the attribute universe. The algorithm
returns a signed commitment C over the set of attributes S.

The PCS.Obtain algorithm is executed by the user and corresponds to the
collection of the certified credentials from the issuer. The user can verify the
correctness of the received signed commitment over the provided attributes.
In case the user wants to conduct the verification process, the PCS.Obtain
algorithm takes as input the signed commitment C, the secret key of the
user sku and the public key of the issuing organization pko. It returns a bit
b ∈ {0, 1} with the result of the verification (either success or failure).
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– PCS.Show ↔ PCS.Verify – It enables the verifier to check whether a user
has previously obtained credentials on some attributes from a certified issuing
organization, to get granted access to a service with respect to a given access
policy. The verifier has to send a blinded group element M based on a random
message m sent to the user. Following the HABS construction, and in order to
avoid replay attacks, each authentication session is personalized with a nonce
— for instance, the identity of the verifier concatenated with a timestamp.
By using the credentials, the user signs the nonce. To do so, the user selects
some attributes satisfying the signing predicate Υ (Υ (S ′) = 1) and signs the
value of M. The resulting signature Σ is sent to the verifier.

The PCS.Show algorithm takes as input the randomized message M, a signing
predicate Υ , the secret key of the user sku, the credential C and a subset of
the user attributes S ′, such as Υ (S ′) = 1. The algorithm returns a signature
Σ (or an error message ⊥).

The PCS.Verify algorithm takes as input the received signature Σ, the
public key of the issuing organization(s) pko, the signing predicate Υ and
the message m. It returns a bit b ∈ {0, 1} with the result of the verification,
where 1 denotes acceptance for a successful verification of the signature; and
0 denotes rejection.

4.2 Security Model

We present in this section the threat models assumed to validate the require-
ments of PCS. We first assume a traditional honest but curious model for the
verifier and the issuing organization entities. Under such a model, the verifiers
and the issuing organizations are honest in the sense that they provide proper
inputs and outputs, at each step of their respective algorithms, as well as prop-
erly performing the computations that are supposed to be conducted; but they
are curious in the sense that they may attempt to gain some extra information
they are not supposed to obtain. We assume the honest but curious threat model
against the validation of the privacy requirements of PCS, i.e., with respect to
the anonymity and unlinkability properties. We consider as second threat model
the case of malicious users trying to override their rights. That is, malicious
users that misuse some of the steps of their associated algorithms, e.g., by pro-
viding invalid inputs or outputs. We assume this second threat model against
the unforgeability requirement of PCS provided below.

4.2.1 Unforgeability

The unforgeability requirement expects that it is not possible to forge a valid
credential — in case of the Issue algorithm (respectively, the presentation token
of the user – in case of the Show algorithm). This requirement ensures that
colluding users will not be able to frame a user who did not generate a valid
presentation token. The unforgeability requirement is defined with respect to
three security games, as presented in [10]. Each security game is defined between
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an adversary A and a challenger C, that simulates the system procedures to
interact with the adversary.

Definition 1. Unforgeability — PCS satisfies the unforgeability requirement
if for every Probabilistic Polynomial Time (PPT) adversary A, there exists a
negligible function ε such that:

Pr[ExpA
unforg(1ξ) = 1] ≤ ε(ξ)

where ExpA
unforg is the security experiment against the unforgeability require-

ment, with respect to the MC-Game, MU-Game and Col-Game games, as presented
in the original HABS construction [10].

The aforementioned security games are defined as follows:

– MC-Game – A is allowed to conduct an unbounded number of queries to the
PCS.Issue algorithm for different sets of attributes with respect to a fixed
user public key and issuing organization secret key (i.e., the secret key of the
issuing organization is not known by A). To successfully win the MC-Game, the
adversary shall obtain a valid credential C∗ for a challenge set of attributes
S∗, and this shall be accepted by the PCS.Obtain algorithm.

– MU-Game – given a user public key pku, a set of attributes S and a credential
C over S for pku, the adversary A can conduct an unbounded number of
presentation queries — as a verifier — for any signing predicate Υ such that
Υ (S) equals one. To successfully win the MU-Game, A shall obtain a valid
presentation token for a credential C accepted by an honest verifier.

– Col-Game – given two pairs of public and secret keys (pku1 , sku1) and (pku2 ,
sku2), two disjoint and non-empty sets of attributes S1 and S2, and two
credentials C1 associated to S1 for pku1 and C2 associated to S2 for pku2 ,
the adversary A shall be able to generate a valid presentation token for a key
pair (pkuj

, skuj
) for j ∈ {1, 2} with respect to a signing predicate Υ such that

Υ (Sj) �= 1.

4.2.2 Privacy

The privacy requirement covers the anonymity, the issue-show and the multi-
show requirements, as defined in Sect. 2. We introduce three security games
based on an adversary A and a challenger C, similarly to the HABS construction
[10]. We assume that A does not directly run or control the PCS.Obtain ↔
Issue or PCS.Show ↔ Verify algorithms, but may request the results of
these algorithms to the challenger C in charge of such algorithms.

Definition 2. Privacy – PCS satisfies the privacy requirement, if for every
PPT adversary A, there exists a negligible function ε such that:

Pr[ExpA
priv(1ξ) = 1] =

1
2

± ε(ξ)
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where ExpA
priv is the security experiment against the privacy requirement, with

respect to the PP-Game, MS-Game and IS-Game games, as presented in the original
HABS construction [10].

In the aforementioned indistinguishability security games, A is given two
pairs of public and secret keys ((pku1 , sku1) and (pku2 , sku2)) and a set of
attributes S. The adversary can conduct an unbounded number of presenta-
tion queries — as a verifier — for any signing predicate Υ satisfied by S; or a
subset of S for two fixed credentials C1 associated to S for pku1 and C2 associ-
ated to S for pku2 . To successfully win one of the following security games, A
should be able to guess, with a probability greater than a half:

– PP-Game – which key pair (pkuj
, skuj

) for j ∈ {1, 2}, was used in the presen-
tation procedure, with respect to a fixed signing predicate Υ and a chosen set
of attributes S.

– MS-Game – whether the same key pair (pkuj
, skuj

) for j ∈ {1, 2} was used
in two different presentation procedures with respect to a chosen signing
predicate Υ and a set of attributes S.

– IS-Game – which key pair (pkuj
, skuj

) and related credential Cj for j ∈ {1, 2},
was used in the presentation procedure, with respect to a fixed signing pred-
icate Υ and a set of attributes S.

Notice that the PP-Game and IS-Game formalize the notions of anonymity.
The MS-Game formalizes the unlinkability requirement.

5 Concrete Construction

In this section, we complement the elements provided in previous sections to
conclude the concrete construction of PCS.

5.1 Access Structures

Definition 3 (Monotone Access Structure [1]). Let P = {P1, P2, · · · , Pn}
be a set of parties. Let A be an access structure, i.e., a collection of non-
empty subsets of {P1, P2, · · · , Pn}. Then, a collection A ⊆ 2{P1,P2,··· ,Pn} is called
monotone if for all B,C ⊆ 2{P1,P2,··· ,Pn}, it holds that B ∈ A, B ⊆ C and C ∈ A.
The sets in A are known as the authorized sets. The remainder sets, not in A,
are known as the unauthorized sets.

Definition 4 (Linear Secret Sharing Schemes (LSSS) [1]). A secret
sharing scheme Π over a set P = {P1, P2, · · · , Pn} is called linear (over Zp) if:

1. The share assigned to each party forms a vector over Zp;
2. There exists a matrix M with l rows, called the sharing generating matrix

for Π, such that for each i ∈ [1, l], we can define a function ρ, where ρ(i)
corresponds to the party associated to the ith row of M . If we consider the
column vector v = (v1, · · · , vk)T , where v1 = s ∈ Zp is the secret to be shared,
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such that vt ∈ Zp and t ∈ [2, k] are chosen at random, then M ·v is the vector
of l shares of s according to Π. The share λi = (M · v)i shall belong to the
party designed by ρ(i).

Assume Π is an LSSS for the access structure A. Let S be an authorized
set, such that S ∈ A and I ⊆ {1, 2, ·, l} is defined as I = {i : ρ(i) ∈ S}. If
{λi}i∈I are valid shares of a secret s according to Π, then there shall exist some
constant {wi ∈ Zp}i∈I that can be computed in polynomial time, such that∑

i∈I λiwi = s [1].
It is known that any monotonic boolean formula can be converted into a

valid LSSS representation. Generally, boolean formulae are used to describe the
access policy, and their equivalent LSSS matrices are used to sign and verify
the signatures. The labeled matrix in Definition 4 is also known in the related
literature as monotone span program [11,14].

Definition 5 (Monotone Span Programs (MSP) [11,14]). A Monotone
Span Program (MSP) is a tuple (K,M, ρ, t), such that K is a field, M is a
l × c matrix (where l is the number of rows and c the numbers of columns),
ρ : [l] → [n] is the labeling function and t is the target vector. The size of the
MSP is the number l of rows. Since ρ is the function labeling each row i of M to
a party Pρ(i), each party can be considered as associated to one or more rows.
For any set of parties S ⊆ P, the sub-matrix consisting of rows associated to the
parties in S is denoted as MS. The span of a matrix M , denoted as span(M),
corresponds to the subspace generated by the rows of M , i.e., all vectors of the
form v · M . An MSP is said to compute an access structure A if for each S ∈ A

then the target vector t is in span(MS). This can be formally described as follows:

A(S) = 1 ⇐⇒ ∃v ∈ K
1×l : vM = t

5.2 Bilinear Maps

Consider three cyclic groups G1, G2, and GT of prime order p, such that g1 and
g2 are the generators of, respectively, G1 and G2. A bilinear map ê is a function
ê : G1 × G2 → GT such that the following properties are satisfied:

– (i) for all g1 ∈ G1, g2 ∈ G2 (i.e., bilinearity property);
– (ii) ê(g1, g2) �= 1 (i.e., non-degeneracy property);
– (iii) there exists an efficient algorithm that can compute ê(g1, g2) for any

g1 ∈ G1 and g2 ∈ G2 (i.e., computability property).

5.3 Complexity Assumptions

For our construction, we shall consider the following complexity assumptions:

– q-Diffie Hellman Exponent Problem (q-DHE) – Let G be a multi-
plicative cyclic group of a prime order p. Let g be a generator of G. Then,
the q-DHE problem can be stated as follows: given a tuple of elements
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(g, g1, · · · , gq, gq+2, · · · , g2q), such that gi = gαi

, where i ∈ {1, · · · , q, q +

2, · · · , 2q} and α
R←− Zp, there is no efficient probabilistic algorithm AqDHE

that can compute the missing group element gq+1 = gαq+1
.

– Discrete Logarithm Problem (DLP) – Let G be a multiplicative cyclic
group of a prime order p. Let g be a generator of G. Then, DLP problem can
be stated as follows [18]. Given the public element y = gx ∈ G, there is no
efficient probabilistic algorithm ADLP that can compute the integer x.

– Computational Diffie Hellman Assumption (CDH) – Let G be a
group of a prime order p. Let g be a generator of G. The CDH problem,
whose complexity is assumed stronger than DLP, is stated as follows: given
the tuple of elements (g, ga, gb), where {a, b} R←− Zp, there is no efficient
probabilistic algorithm ACDH that computes gab.

5.4 Resulting Construction

Find below the revisited set of algorithms that conclude the PCS construction:

– Setup — It takes as input the security parameter ξ and returns the public
parameters params. The public parameters are considered an auxiliary input
to all the algorithms of PCS.
Global Public Parameters params – the Setup algorithm first generates an
asymmetric bilinear group environment (p,G1,G2,GT , ê) where ê is an asym-
metric pairing function such as ê : G1 × G2 → GT .
The random generators g1, h1 = g1

α, {γi}i∈[1,N ] ∈ G1 and g2, h2 = g2
α ∈ G2

are also generated, as well as α ∈ Zp where N denotes the maximum num-
ber of attributes supported by the span program. We note that each value
γi is used to create the secret key corresponding to an attribute ai. Let H
be a cryptographic hash function. The global parameters of the system are
denoted as follows:

params = {G1,G2,GT , ê, p, g1, {γi}i∈[1,N ], g2, h1, h2,H}

– KeyGen — It returns a pair of secret and public keys for each participating
entity (i.e., issuing organization and user). In other words, the user gets a key
pair (pku, sku) where sku is chosen at random from Zp; and pku = h1

sku is
the corresponding public key. The issuing organization also gets a key pair
(pko, sko). The issuing organization secret key sko relies on the couple defined
as sko = (so, xo), where so is chosen at random from Zp and xo = g1

so .
The public key of the issuing organization pko corresponds to the couple
(Xo, Yo) = (ê(g1, g2)so , h2

so).
– Issue — It is executed by the issuing organization. The goal is to issue the

credential to the user with respect to a pre-shared set of attributes S ⊂ S, such
that S represents the attribute universe, defined as: S = {a1, a2, · · · , aN},
where N is the number of attributes such that N < N .
The Issue algorithm takes as input the public key of the user pku, the set of
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attributes S and the secret key of the issuing organization sko. It also selects
an integer r at random and returns the credential C defined as:

C = (C1, C2, {C3,i}i∈[1,N ]) = (xo · [pku
soH(S)−1

] · h1
r, g2

r, {γi
r}i∈[1,N ])

where H(S) = H(a1)H(a2) · · · H(aN ) and γi
r represent the secret key associ-

ated to the attribute ai, where i ∈ [1, N ].

– Obtain — It is executed by the user. It takes as input the credential C, the
secret key of the user sku, the public key of the issuing organization pko and
the set of attributes S. It returns 1 if Eq. 1 is true (0 otherwise).

ê(C1, g2)
?= Xo · ê(gskuH(S)−1

1 , Yo) · ê(h1, C2) (1)

– Show — It is also executed by the user. The goal is to authenticate itself. The
rationale is as follows. The user sends a request to the verifier to get granted
access to a service. The verifier sends a presentation policy to the user. The
presentation policy is given by a randomized message M, a predicate Υ and
the set of attributes that have to be revealed by the user. The user signs
the message M = g1

m with respect to the predicate Υ , satisfying a subset of
attributes in S. As introduced in Sect. 4, m is different for each authentication
session.
In the following, we denote by SR, the set of attributes revealed to the verifier,
and SH the set of non-revealed attributes, such as S = SR ∪ SH . The signing
predicate Υ is represented by an LSSS access structure (M,ρ), i.e., M is a
l × k matrix, and ρ is an injective function that maps each row of the matrix
M to an attribute. The Show algorithm takes as input the user secret key
sku, the credential C, the attribute set S, the message m and the predicate
Υ such that Υ (S) = 1. The process works as follows:

1. The credentials of the user are randomized by choosing an integer r′ ∈ Zp

at random, and conducting the following operations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C ′
1 = C1 · h1

r′
= xo · [pku

soH(S)−1
] · h1

r+r′

C ′
2 = C2 · g2

r′
= g2

r+r′

C ′
3,i = C ′

3,i · γi
r′

= γi
r+r′

The resulting credential C ′ is set as follows:

C′ = (C′
1, C′

2, {C′
3,i}i∈[1,N ]) = (xo · [pku

soH(S)−1
] · h1

r+r′
, g2

r+r′
, {γir+r′}i∈[1,N ])

2. As the attributes of the user in S satisfy Υ , the user can compute a
vector v = (v1, · · · , vl) that also satisfies vM = (1, 0, · · · , 0) according to
Definition 5.
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3. For each attribute ai, where i ∈ [1, l], the user computes ωi = C ′
2
vi and

calculates a quantity B that depends on {C ′
3,i}i∈[1,N ] such that B =

∏l
i=1(γ

′
ρ(i))

vi .
4. Afterwards, the user selects a random rm and computes the couple

(σ1, σ2) = (C ′
1 · B · Mrm , g1

rm). Notice that the user may not have knowl-
edge about the secret value of each attribute in Υ . If this happens, vi is
set to 0, so to exclude the necessity of this value.

5. Using now the secret key of the user, it is possible to compute an accu-
mulator on non-revealed attributes as follows:

A = Yo

skuH(SH )−1

rm

The user returns the presentation token Σ = (Ω, σ1, σ2, C
′
2, A,SR), that

includes the signature of the message M with respect to the predicate Υ ,
and where Ω = {ω1, · · · , ωl} is the set of committed element values of
the vector v, based on the credential’s item C ′

2.
– Verify — Given the presentation token Σ, the public key of the issuing

organization pko, the set of revealed attributes SR, the message m and the
signing predicate Υ corresponding to (Ml×k, ρ), the verifier checks the received
set of revealed attributes SR, and computes an accumulator AR such that
AR = σ2

H(SR)−1
. Then, the verifier picks uniformly at random k − 1 integers

μ2, · · · , μk and calculates l integers τi ∈ Zp for i ∈ {1, · · · , l}, such that
τi =

∑k
j=1 μjMi,j , and where Mi,j is an element of the matrix M . The verifier

accepts the presentation token as valid (i.e., it returns 1) if Eq. 2 holds true:

ê(σ1, g2)
?= Xoê(AR, A)ê(, h1, C

′
2)

l∏

i=1

ê(γρ(i)h1
τi , ωi)ê(σ2, g2

m) (2)

6 Security Analysis

Theorem 1. Correctness – PCS is correct if for all (params) ← Setup(ξ),
all pairs of public and secret keys {(pko, sko), (pku, sku)} ← KeyGen(params),
all attribute sets S, all credentials C ← Issue (S, sko, pku), all claiming predi-
cates Υ such as Υ (S) = 1 and all presentation tokens Σ ← Show (C, sku, M, Υ ),
we have Obtain (C, sku, pko,S) = 1 and Verify (Σ,m, Υ, pko) = 1.

Proof. The correctness of Theorem 1 relies on Eqs. 1 and 2 (cf. Sect. 5.4). The
correctness of Eq. 1 is straightforward by following the bilinearity requirement
of pairing functions (cf. Sect. 5.2), summarized as follows:

ê(C1, g2) = ê(xo · [pku
soH(S)−1

] · h1
r, g2)

= ê(g1so , g2) · ê(h1
skusoH(S)−1

, g2) · ê(h1
r, g2)

= ê(g1, g2)so · ê(g1skuH(S)−1
, h2

so) · ê(h1, g2
r)

= Xo · ê(g1skuH(S)−1
, Yo) · ê(h1, C2)
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Recall that the correctness of the presentation token is validated by the
verifier. It verifies if the received token Σ = (Ω, σ1, σ2, C

′
2, A,SR) holds a valid

signature of message M, based on the predicate Υ . For this purpose, the verifier
checks the set of revealed attributes SR and computes an accumulator AR of the
revealed attributes’ values, using σ2, such as AR = σ2

H(SR)−1
, where H(SR) =∏

ai∈SR
H(ai)−1. The value of σ1 can be expressed as follows:

σ1 = C ′
1 · B · Mrm

= C ′
1 ·

l∏

i=1

(γ′
ρ(i))

vi · g1
rmm

= xo · pku
soH(S)−1 · h1

r+r′ ·
l∏

i=1

(γρ(i))(r+r′)vi · g1
rmm

To prove the correctness of the presentation token verification, let us denote
(r + r′) by R, and the first side of Eq. 2 by �, such that:

� = ê(xo · pku
soH(S)−1 · h1

r+r′ ·
l∏

i=1

(γρ(i))Rvi · Mrm , g2)

= ê(xo, g2) · ê(pku
soH(S)−1

, g2) · ê(h1
R, g2) · ê(g1rmm, g2) · ê(

l∏

i=1

γρ(i)
Rvi , g2)

= ê(g1, g2)so · ê(g1skuH(SR∪SH)−1
, g2

αso) · ê(h1
R, g2) · ê(σ2, g2

m) ·
l∏

i=1

ê(γρ(i)
Rvi , g2)

= Xo · ê([g1sku ]H(SR)−1H(SH)−1
, h2

so) · ê(h1, g2
R) · ê(σ2, g2

m) ·
l∏

i=1

ê(γρ(i), g2
Rvi)

= Xo · ê(g1H(SR)−1
, [Yo

sku ]H(SH)−1
) · ê(h1, C

′
2) · ê(σ2, g2

m) ·
l∏

i=1

ê(γρ(i), ωi)

= Xo · ê(AR, A) · ê(h1, C
′
2) ·

l∏

i=1

·ê(γρ(i)h1
τi , ωi) · ê(σ2, g2

m)

Given that τi =
∑k

i=1 μjMi,j , then the last equality is simplified to:

l∑

i=1

τi(viR) = R

l∑

i=1

τivi = R · 1 = R

and the term ê(h1
R, g2) leads to ê(h1

R, g2) =
∏l

i=1 ê(h1
Rτi , g2

Rvi) �

Theorem 2. Unforgeability – The PCS scheme ensures the unforgeability
requirement, under the CDH, q-DHE and DLP cryptographic assumptions.



252 N. Kaaniche et al.

Sketch of proof. To prove that PCS satisfies the unforgeability requirement, we
show that an adversary A who does not own an appropriate legitimate credential,
is not able to generate a valid presentation token. Thus, A cannot violate the state-
ments of Theorem 2 by reaching the advantage Pr[ExpA

unforg(1ξ) = 1] ≥ ε(ξ).
Theorem 2 is based on the security games presented in Sect. 4.2 for the

unforgeability requirement, namely MC-Game, MU-Game and Col-Game. We recall
that the PCS scheme mainly relies on the HABS mechanism [10] for the
PCS.Obtain ↔ PCS.Issue and PCS.Show ↔ PCS.Verify algorithms. It is,
therefore, similarly resistant to forgery attacks under the CDH, q-DHE and DLP
assumptions.

For the first game, namely MC-game, A may try a forgery attack against the
CDH assumption, considering that the credential element C1 is a product of an
accumulator over the set of user attributes, the secret key of the issuing organi-
zation xo and a randomization of the public group element h1. Knowing that this
randomization is required for deriving the remaining credential elements, A is
led to violate the CDH assumption. In [20,21], Vergnaud details a forgery attack
against the HABS construction. The assumption is to imagine a situation in
which A overrides the granted rights by multiplying the first credential element
C1 such that C1 = C1 ·Xu

−H(S)−1 ·Xu
H(S′)−1

, where Xu is the public key of the
user, S = {a1, · · · , aN}, S ′ = {a1, · · · , aM} and N < M . This attack does not
affect the PCS construction, since the secret key of the issuing organization is
used during the generation of the credential element C1. This protects the PCS
construction from the attack reported by Vergnaud against HABS in [20,21].

By building over the previous attack, Vergnaud also states in [20,21] that
an adversary A can override the granted rights by conducting a collusion attack
(i.e., Col-Game) based on two different credentials Cu1 for pku1 and Cu2 for pku2 .
The use of the secret key of the issuing organization for the derivation of the
credential element C1 also makes unfeasible this forgery attack against PCS.

Similarly, and under the MU-Game, Vergnaud states in [20,21] that an adver-
sary can try a forgery attack against the HABS construction, by eavesdropping
the communication of a presentation protocol for a signing predicate Υ and a
public key (pku); then, by impersonating the same user during the following ses-
sions under the same predicate Υ . In fact, A can compute σ1

′ = σ1−σ2(m′−m) =
C ′

1 · B · g1
mrm , for some known rm. This attack does not affect the PCS con-

struction, since the signing message m is properly randomized, and only the
corresponding group element M = g1

m is provided to the signer.
Finally, PCS is also resistant to replay attacks. The randomness elements

appended by the challenger, for each request addresses the issue. Therefore, the
PCS scheme ensures the unforgeability requirement, under the q-DHE, CDH
and DLP assumptions, with respect to MC-Game, MU-Game and Col-Game.

Theorem 3. Privacy – PCS satisfies the privacy requirement, with respect to
the anonymity and unlinkability properties.

Sketch of proof. Theorem 3 relies on the security games introduced in Sect. 4.2,
namely PP-Game, MS-Game and IS-Game. They assume an adversary A trying
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to distinguish between two honestly derived presentation tokens for different
settings with respect to every security game. As in the original HABS proposal
[10], each specific setting of the PCS construction randomizes the secret keys of
the users, as well as the presentation tokens.

During the PP-Game, since a new presentation token for the same message M
and the same access predicate Υ is computed from random nonces, generated by
C, both presentation tokens are identically distributed in both cases. Then, an
adversary A, against the issue-show requirement — with respect to IS-Game —
has an access to the Issue oracle for generating users’ credentials. However, an
honest user produces a different presentation token for each presentation session
PCS.Show, by using the randomness introduced by the user while generating
the presentation token. As such, the probability of predicting j is bounded by 1

2 .
In [20,21], Vergnaud identifies an anonymity attack against HABS with respect
to the PP-Game and the IS-Game. Vergnaud states in [20,21] that an adversary
A can compute AH(SH)rm = g2

skuj
H(SH)−1rm

−1

= g2
skuj for some known rm and

j ∈ {1, 2}, in order to identify the signing user. This attack does not affect the
PCS construction, since the secret key of the issuer is used during the generation
of the credential element C1.

Similarly, the MS-Game relies on a left-or-right oracle, where an adversary A
cannot distinguish the oracle’s outputs better than just flipping a coin. In fact,
both presentation tokens for the same message M and the same access predi-
cate Υ sent to different users, such as Υ (Su1) = Υ (Su2) = 1, are statistically
indistinguishable. Using the previous attack against the HABS construction,
Vergnaud states in [20,21] that the adversary can check whether two presen-
tation tokens Σ(1) and Σ(2) were generated using the same pair of public and
secret keys (skuj

, pkuj
), by computing two group elements T1 = C ′

1
(2)

/C ′
1
(2)

and T2 = C ′
2
(2)

/C ′
2
(2), hence evaluating the equality between two bilinear maps

values ê(T1, g2) and ê(g1−1, T2). This same attack does not affect the PCS con-
struction, since C ′

1 and C ′
2 are no longer provided with the presentation token.

Indeed, the adversary A cannot distinguish two different presentations tokens
with probability Adv(A, t) �= 1

2 +ε. As such, PCS is unlinkable, ensuring as well
the privacy requirement.

7 E-assessment Use Case for PCS
E-assessment is an innovative form for the evaluation of learners’ knowledge and
skills in online education, where part of the assessment activities is carried out
online. As e-assessment involves online communication channel between learn-
ers and educators, as well as data transfer and storage, security measures are
required to protect the environment against system and network attacks. Issues
concerning the security and privacy of learners is a challenging topic. Such issues
are discussed under the scope of the TeSLA project (cf. http://tesla-project.eu/
for further information), a EU-funded project that aims at providing learners
with an innovative environment that allows them to take assessments remotely,
thus avoiding mandatory attendance constraints.

http://tesla-project.eu/


254 N. Kaaniche et al.

In [12], the security of the TeSLA e-assessment system was analyzed and
discussed w.r.t. the General Data Protection Regulation (GDPR) [6] recommen-
dations. To meet such recommendations, it is necessary to ensure a reasonable
level of privacy in the system. TeSLA implements several privacy technologi-
cal filters. For instance, a randomized system identifier is associated to each
learner. This identifier is used each time the learner accesses the TeSLA system,
hence ensuring pseudo-anonymity to every learner — full anonymity not being
an option in TeSLA for legal reasons. Yet, a randomized identifier alone cannot
protect the learners against more complex threats such as unwanted traceability.
The system can still be able to link two different sessions of the same learner.
To handle such issues, the PCS construction is being integrated along with the
security framework of the TeSLA architecture.

Available as a multi-platform C++ source code at http://j.mp/PKIPCSgit,
and mainly based on existing cryptographic libraries such as PBC [19] and MCL
[17], the construction is available online to facilitate understanding, comparison
and validation of the solution. For the time being, the integration of PCS in
TeSLA is expected to allow learner-related tools to prove they are authorized to
access a resource without revealing more than needed about the identity of the
learners. For example, learners can be issued with certified attributes that may
be required by the system verifier, such as enrolled on engineering courses or
conducting graduate studies. When the learners want to prove that they own the
right set of attributes, they perform a digital signature based on the required
attributes, allowing the system verifier to check if a precise user is authorized,
sometimes without even knowing precisely which attributes were used.

Such an approach can be easily integrated to access electronic resources on
e-learning environments such as Moodle (cf. https://moodle.org/). It should be
enough to prove that the learner comes from an allowed university or that the
learner is registered for a given e-learning course. That way, it becomes impos-
sible for the learning environment to follow some unnecessary information of
each learner, while still letting them access specific resources of the system (e.g.,
anonymous quizzes and polls, to quickly validate the percentage of understanding
of the learners, prior the final e-assessment). Similarly, when a learner takes the
final e-assessment, the learner’s work can be anonymously sent to anti-cheating
tools (such as anti-plagiarism). With anonymous certification, each tool might
receive a request for the same work without being able to know which learner
wrote it, but also without being able to correlate the requests and decide whether
they were issued by the same learner. Some further information about the inte-
gration of PCS into the TeSLA platform is under evaluation for testing purposes.
It will be reported soon, in a forthcoming publication.

8 Conclusion

We have proposed an anonymous certification scheme called PCS, as a build-
ing block of new privacy-friendly electronic identity systems. By using PCS,
a user can anonymously agree with a verifier about the possession of a set of

http://j.mp/PKIPCSgit
https://moodle.org/
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attributes, such as age, citizenship and similar authorization attributes. While
staying anonymous and having the control over all the released data, users can
preserve their privacy during the verification procedure.

PCS builds over HABS (short for Homomorphic Attribute Based Signa-
tures), presented by Kaaniche and Laurent in ESORICS 2016 [10]. PCS revis-
its the previous construction and addresses some security and privacy concerns
reported by Vergnaud in [20,21]. Based on several security games, PCS handles
the limitations in HABS with respect to forgery and anonymity. PCS supports
a flexible selective disclosure mechanism with no-extra processing cost, which is
directly inherited from the expressiveness of attribute-based signatures for defin-
ing access policies. A use case dealing with the integration of PCS to allow the
learners of an e-assessment platform to reveal only required information to cer-
tificate authority providers has also been briefly presented. Multi-platform C++
snippets of code, available at http://j.mp/PKIPCSgit, and based on two differ-
ent cryptographic libraries [17,19], are released to facilitate the understanding,
comparison and validation of PCS, with regard to HABS.

Acknowledgements. This work is supported by the H2020-ICT-2015/H2020-ICT-
2015 TeSLA project An Adaptive Trust-based e-assessment System for Learning,
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tures for threshold predicates. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol.
7178, pp. 51–67. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27954-6 4

http://j.mp/PKIPCSgit
http://dx.doi.org/10.1007/3-540-44987-6_7
http://dx.doi.org/10.1007/978-3-642-15898-8_13
http://dx.doi.org/10.1007/978-3-642-27954-6_4


256 N. Kaaniche et al.

10. Kaaniche, N., Laurent, M.: Attribute-based signatures for supporting anonymous
certification. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.)
ESORICS 2016. LNCS, vol. 9878, pp. 279–300. Springer, Cham (2016). doi:10.
1007/978-3-319-45744-4 14

11. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the 8th IEEE
Structure in Complexity Theory (1993)

12. Kiennert, C., Rocher, P.O., Ivanova, M., Rozeva, A., Durcheva, M., Garcia-Alfaro,
J.: Security challenges in e-assessment and technical solutions. In 8th International
Workshop on Interactive Environments and Emerging Technologies for eLearning,
21st International Conference on Information Visualization, London, UK (2017)

13. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its
applications. In: ASIACCS 2010 (2010)

14. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19074-2 24

15. Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone
predicates in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19379-8 3

16. Shahandashti, S.F., Safavi-Naini, R.: Threshold attribute-based signatures and
their application to anonymous credential systems. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 198–216. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-02384-2 13

17. Shigeo, M.: MCL - Generic and fast pairing-based cryptography library. https://
github.com/herumi/mcl. Version: release20170402

18. Shor, P.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

19. Stanford University: PBC - The Pairing-Based Cryptography Library. https://
crypto.stanford.edu/pbc/. Version: 0.5.14

20. Vergnaud, D.: Comment on “attribute-based signatures for supporting anonymous
certification” by N. Kaaniche and M. Laurent (ESORICS 2016). IACR Cryptology
ePrint Archive (2016)

21. Vergnaud, D.: Comment on attribute-based signatures for supporting anonymous
certification by N. Kaaniche and M. Laurent (ESORICS 2016). Comput. J. 1–8
(2017)

22. Zhang, Y., Feng, D.: Efficient attribute proofs in anonymous credential using
attribute-based cryptography. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012.
LNCS, vol. 7618, pp. 408–415. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34129-8 39

http://dx.doi.org/10.1007/978-3-319-45744-4_14
http://dx.doi.org/10.1007/978-3-319-45744-4_14
http://dx.doi.org/10.1007/978-3-642-19074-2_24
http://dx.doi.org/10.1007/978-3-642-19379-8_3
http://dx.doi.org/10.1007/978-3-642-02384-2_13
https://github.com/herumi/mcl
https://github.com/herumi/mcl
https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/
http://dx.doi.org/10.1007/978-3-642-34129-8_39
http://dx.doi.org/10.1007/978-3-642-34129-8_39


Order-Preserving Encryption Using
Approximate Integer Common Divisors

James Dyer1(B), Martin Dyer2, and Jie Xu2

1 School of Computer Science, University of Manchester, Manchester, UK
james.dyer@postgrad.manchester.ac.uk

2 School of Computing, University of Leeds, Leeds, UK

Abstract. We present a new, but simple, randomised order-preserving
encryption (OPE) scheme based on the general approximate common
divisor problem (GACDP). This appears to be the first OPE scheme to
be based on a computational hardness primitive, rather than a security
game. This scheme requires only O(1) arithmetic operations for encryp-
tion and decryption. We show that the scheme has optimal informa-
tion leakage under the assumption of uniformly distributed plaintexts,
and we indicate that this property extends to some non-uniform distri-
butions. We report on an extensive evaluation of our algorithms. The
results clearly demonstrate highly favourable execution times in com-
parison with existing OPE schemes.

Keywords: Order-preserving encryption · Symmetric cryptography ·
Cloud computing · Data analytics

1 Introduction

Outsourcing computation to the cloud has become increasingly important to
business, government, and academia. However, in some circumstances, data on
which those computations are performed may be sensitive. Therefore, outsourced
computation proves problematic.

To address these problems, we require a means of secure computation in the
cloud. One proposal, is that of homomorphic encryption, where data is encrypted
and computation is performed on the encrypted data [32]. The data is retrieved
and decrypted. Because the encryption is homomorphic over the operations per-
formed by the outsourced computation, the decrypted result is the same as that
computed on the unencrypted data.

Fully homomorphic encryption has been proposed as a means of achieving
this. However, as currently proposed, it is not practical. Therefore, we believe
that somewhat homomorphic encryption, which is homomorphic only for certain
inputs or operations, is only of current practical interest.

For sorting and comparison of data we require an encryption scheme that
supports homomorphic comparisons of ciphertexts. Order-preserving encryption
(OPE) is a recent field that supports just such a proposition. An OPE is defined
c© Springer International Publishing AG 2017
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as an encryption scheme where, for plaintexts m1 and m2 and corresponding
ciphertexts c1 and c2,1

m1 < m2 =⇒ c1 < c2

Our work presents an OPE scheme that is based on the general approximate
common divisor problem (GACDP) [18], which is believed to be hard. Using
this problem we have devised a system where encryption and decryption require
O(1) arithmetic operations.

1.1 Notation

x
$←− S represents a value x chosen uniformly at random from the discrete set S.
KeyGen : S → K denotes the key generation function operating on the secu-

rity parameter space S and whose range is the secret key space K.
Enc : M × K → C denotes the symmetric encryption function operating

on the plaintext space M and the secret key space K and whose range is the
ciphertext space C.

Dec : C × K → M denotes the symmetric decryption function operating
on the ciphertext space C and the secret key space K and whose range is the
plaintext space M.

m,m1,m2, . . . denote plaintext values. Similarly, c, c1, c2, . . . denote cipher-
text values.

[x, y] denotes the integers between x and y inclusive.
[x, y) denotes [x, y] \ {y}.
R[x, y) denotes the real numbers in the interval [x, y).

1.2 Scenario

Our OPE system is intended to be employed as part of a system for single-party
secure computation in the cloud. In this system, a secure client encrypts data
and then outsources computation on the encrypted data to the cloud. Then
computation is performed homomorphically on the ciphertexts. The results of
the computation are retrieved by the secure client and decrypted. We intend
that our OPE scheme will support sorting and comparison of encrypted data.

1.3 Formal Model of Scenario

We have n integer inputs, m1,m2, . . . ,mn, where mi ∈ M = [0,M ] and n � M .2

We wish to be able to compare and sort these inputs. A secure client A selects
an instance EK of the OPE algorithm E using the secret parameter set K. A

1 This relationship is typically represented as m1 ≤ m2 =⇒ c1 ≤ c2. However, this
seems to introduce an insecurity, by permitting an equality test for plaintexts using
two comparisons.

2 We must assume n � M to avoid the “sorting attack” of Naveed et al. [27].
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encrypts the n inputs by computing ci = EK(mi), for i ∈ [1, n]. A uploads
c1, c2, . . . , cn to the cloud computing environment. These encryptions do not all
need to be uploaded at the same time but n is a bound on the total number of
inputs. The cloud environment conducts comparisons on the ci, i ∈ [1, n]. Since
E is an OPE, the mi will also be correctly sorted. A can retrieve some or all of
the ci from the cloud and decrypt each ciphertext ci by computing mi = E−1

K (ci).
A snooper is only able to inspect c1, c2, . . . , cn in the cloud environment.

The snooper may compute additional functions on the c1, c2, . . . , cn as part of a
cryptanalytic attack, but cannot make new encryptions.

1.4 Observations from Scenario

From our scenario we observe that we do not require public-key encryption as we
do not intend another party to encrypt data. Symmetric encryption will suffice.
Furthermore, there is no key escrow or distribution problem, as only ciphertexts
are distributed to the cloud.

It is common in the literature [2,3] to refer to an encryption or decryption
oracle in formal models of security. However, our scenario has no analogue of
an oracle because another party has no way of encrypting or decrypting data
without breaking the system. Any cryptological attacks will have to be per-
formed on ciphertexts only. Therefore, we see chosen plaintext attacks (CPA)
and chosen ciphertext attacks (CCA) as not relevant to our scenario. Indeed,
it can be argued that any notion of indistinguishability under CPA is not rel-
evant to OPE in practice (see Sect. 2.2). Various attempts have been made by
Boldyreva and others [5,6,33,36] to provide such indistinguishability notions.
However, the security models impose practically unrealistic restrictions on an
adversary. See, for example, our discussion of IND-OCPA below (Sect. 2.2). It
should also be pointed out that satisfying an indistinguishability criterion does
not guarantee that a cryptosystem is unbreakable, and neither does failure to
satisfy it guarantee that the system is breakable.

We also note that a known plaintext attack (KPA) is considered possible only
by brute force, and not through being given a sample of pairs of plaintext and
corresponding ciphertext.

Our notion of security requires only that determining the plaintext values
is computationally infeasible within the lifetime of the outsourced computation.
However, in some cases, we can show that the information leaked about the
plaintexts is not significantly greater than is leaked by the total ordering revealed
by the OPE.

1.5 Related Work

Prior to Boldyreva et al. [6], OPE had been investigated by Agrawal et al. [1]
and others (see [1] for earlier references). However, it wasn’t until Boldyreva
et al. that it was claimed that an OPE scheme was provably secure. Boldyreva
et al.’s algorithm constructs a random order-preserving function by mapping
M consecutive integers in a domain to integers in a much larger range [1, N ],
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by recursively dividing the range into M monotonically increasing subranges.
Each integer is assigned a pseudorandom value in its subrange. The algorithm
recursively bisects the range, at each recursion sampling from the domain until
it hits the input plaintext value. The algorithm is designed this way because
Boldyreva et al. wish to sample uniformly from the range. This would require
sampling from the negative hypergeometric distribution, for which no efficient
exact algorithm is known. Therefore they sample the domain from the hyperge-
ometric instead. As a result, each encryption requires at least log N recursions.
Furthermore, so that a value can be decrypted, the pseudorandom values gen-
erated must be reconstructible. Therefore, for each instance of the algorithm,
a plaintext will always encrypt to the same ciphertext. This implies that the
encryption of low entropy data might be very easy to break by a “guessing”
attack (see Sect. 4). For our OPE scheme, multiple encryptions of a plaintext
will produce differing ciphertexts. In [6], the authors claim that N = 2M , a
claim repeated in [10], although [5] suggests N ≥ 7M . We use N ≥ M2 in our
implementations of Boldyreva et al.’s algorithm, since this has the advantage
that the scheme can be approximated closely by a much simplified computation,
as we discuss in Sect. 3.2. The cost is only a doubling of the ciphertext size.
However both [5,6] take no account of n, the number of values to be encrypted.
As in our scheme, the scheme should have n � M to avoid the sorting attack
of [27]. If c = f(m) is Boldyreva et al.’s OPE, it is straightforward to show that
we can estimate f−1(c) by m̂ = Mc/N , with standard deviation approximately√

2m̂(1 − m̂/M). For this reason, Boldyreva et al.’s scheme always leaks about
half the plaintext bits.

Yum et al. [37] extend Boldyreva et al.’s work to non-uniformly distributed
plaintexts. This can improve the situation in the event that the client knows
the distribution of plaintexts. This “flattening” idea already appears in [1].
In Sect. 2.3 we discuss a similar idea.

In [5], Boldyreva et al. suggest an extension to their original scheme, modu-
lar order-preserving encryption (MOPE), by simply transforming the plaintext
before encryption by adding a term modulo M . The idea is to cope with some of
the problems discussed above, but any additional security arises only from this
term being unknown. Note also that this construction again always produces the
same ciphertext value for each plaintext.

Teranishi et al. [33] devise a new OPE scheme that satisfies their own security
model. However, their algorithms are less efficient, being linear in the size of the
message space. Furthermore, like Boldyreva et al., a plaintext always encrypts
to the same ciphertext value.

Krendelev et al. [22] devise an OPE scheme based on a coding of an integer
as the real number

∑
i bi2−i where bi is the ith bit of the integer. The algorithm

to encode the integer is O(n) where n is the number of bits in the integer. Using
this encoding, they construct a matrix-based OPE scheme where a plaintext is
encrypted as a tuple (r, k, t). Each element of the tuple is the sum of elements
from a matrix derived from the private key matrices σ and A. Their algorithms
are especially expensive, as they require computation of powers of the matrix A.
Furthermore, each plaintext value always encrypts to the same ciphertext value.
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Khadem et al. [19] propose a scheme to encrypt equal plaintext values to
differing values. Their scheme is similar to Boldyreva et al. where a plaintext is
mapped to a pseudorandom value in a subrange. However, this scheme relies on
the domain being a set of consecutive integers for decryption. Our scheme allows
for non-consecutive integers. This means that our scheme can support updates
without worrying about overlapping “buckets” as Khadem et al.

Liu et al. [25] addresses frequency of plaintext values by mapping the plain-
text value to a value in an extended message space and splitting the message
and ciphertext spaces nonlinearly. As in our scheme, decryption is a simple divi-
sion. However, the ciphertext interval must first be located for a given ciphertext
which is Ω(log n) when n is the total number of intervals.

Liu and Wang [24] describe a system similar to ours where random “noise”
is added to a linear transformation of the plaintext. However, in their examples,
the parameters and noise used are real numbers. Unlike our work, the security
of such a scheme is unclear.

In [29], Popa et al. discuss an interactive protocol for constructing a binary
index of ciphertexts. Although this protocol guarantees ideal security, in that it
only reveals the ordering, it is not an OPE. The ciphertexts do not preserve the
ordering of the plaintexts, rather the protocol requires a secure client to decrypt
the ciphertexts, compare the plaintexts, and return the ordering. It is essentially
equivalent to sorting the plaintexts on the secure client and then encrypting
them. Popa et al.’s protocol has a high communication cost: Ω(n log n). This
may be suitable for a database server where the comparisons may be made in
a secure processing unit with fast bus communication. However, it is unsuitable
for a large scale distributed system where the cost of communication will become
prohibitive. Kerschbaum and Schroepfer [21] improved the communication cost
of Popa et al.’s protocol to Ω(n) under the assumption that the input is random.
However, this is still onerous for distributed systems. Kerschbaum [20] further
extends this protocol to hide the frequency of plaintexts. Boelter et al. [4] extend
Popa et al.’s idea by using “garbled circuits” to obfuscate comparisons. However,
the circuits can only be used once, so their system is one-time use.

Also of note is order-revealing encryption (ORE), a generalisation of OPE
introduced by Boneh et al. [7], that only reveals the order of ciphertexts. An
ORE is a scheme (C,E,D) where C is a comparator function that takes two
ciphertext inputs and outputs ‘<’ or ‘≥’, and E and D are encryption and
decryption functions. This attempts to replace the secure client’s responsibility
for plaintext comparisons in Popa’s scheme with an exposed function acting on
the ciphertexts.

Boneh et al.’s construction uses multilinear maps. However, as stated in
Chenette et al. [10], “The main drawback of the Boneh et al. ORE construc-
tion is that it relies on complicated tools and strong assumptions on these tools,
and as such, is currently impractical to implement”.

Chenette et al. offer a more practical construction, with weaker claims to
provable security. However, since it encrypts the plaintexts bit-wise, it requires
a number of applications of a pseudorandom function f linear in the bit size of
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the plaintext to encrypt an integer. The security and efficiency of this scheme
depends on which pseudorandom function f is chosen.

Lewi et al. [23] devise an ORE scheme where there are two modes of encryp-
tion: left and right. The left encryption consists of a permutation of the domain
and a key generated by hashing the permuted plaintext value. The right cipher-
text consists of encryptions of the comparison with every other value in the
domain. It is a tuple of size d + 1 where d is the size of the domain. Lewi et al.
then extend this scheme to domains of size dn. This results in right ciphertext
tuples of size dn + 1. Our experimental results compare favourably with theirs,
largely because the ciphertext sizes of Lewi et al.’s scheme are much larger.

The security of these ORE schemes is proven under a scenario similar to
IND-OCPA [6] (see Sect. 2.2). However, under realistic assumptions on what an
adversary might do, these ORE schemes seem to have little security advantage
over OPE schemes. For example, in O(n log n) comparisons an adversary can
obtain a total ordering of the ciphertexts, and, hence the total ordering of the
plaintexts. A disadvantage of ORE schemes are that they permit an equality
test on ciphertexts [7, p. 2] by using two comparisons. This could be used to
aid a guessing attack on low-entropy plaintexts, e.g. [15,27]. A randomised OPE
scheme, like ours, does not permit this. On the other hand, the information
leakage of the ORE schemes so far proposed appears to be near-optimal.

1.6 Road Map

In Sect. 2, we present our OPE scheme. In Sect. 3, we provide the generic version
of Boldyreva et al.’s algorithm and the Beta distribution approximation used in
our experiments. In Sect. 4, we discuss the results of experiments on our OPE
scheme. Finally, in Sect. 5 we conclude the paper.

2 An OPE Scheme Using Approximate Common Divisors

Our OPE scheme is the symmetric encryption system (KeyGen, Enc, Dec). The
message space, M, is [0,M ], and the ciphertext space, C, is [0, N ], where N > M .
We have plaintexts mi ∈ M, i ∈ [1, n] such that 0 < m1 ≤ m2 ≤ · · · ≤ mn ≤ M .

Key Generation. Both the security parameter space S and the secret key
space K are the set of positive integers. Given a security parameter λ ∈ S, with
λ > 8/3 lg M , KeyGen randomly chooses an integer k ∈ [2λ, 2λ+1) as the secret
key, sk. So k is a (λ+1)-bit integer such that k > M 8/3 (see Sect. 2.1). Note that
k does not necessarily need to be prime.

Encryption. To encrypt mi ∈ M, we compute,

ci = Enc(mi, sk) = mik + ri,

where ri
$←− (k3/4, k − k3/4).
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Decryption. To decrypt ci ∈ C, we compute,

mi = Dec(ci, sk) = 	ci/k
.

Order-Preserving Property. If m > m′, then c ≥ c′ provided mk + r >
m′k + r′, if k(m − m′) > (r′ − r), which follows, since the lhs is at least k, and
the rhs is less than (k − 1). If m′ = m, then the order of the encryptions is
random, since Pr(r′ > r) ≈ 1

2 − 1/k ≈ 1
2 .

2.1 Security of the Scheme

Security of our scheme is given by the general approximate common divisor
problem (GACDP), which is believed to be hard. It can be formulated [9,11] as:

Definition 1 (General approximate common divisor problem). Suppose
we have n integer inputs ci of the form ci = kmi + ri, i ∈ [1, n], where k is
an unknown constant integer and mi and ri are unknown integers. We have a
bound B such that |ri| < B for all i. Under what conditions on mi and ri, and
the bound B, can an algorithm be found that can uniquely determine k in a time
which is polynomial in the total bit length of the numbers involved?

GACDP and partial approximate common divisor problem (PACDP), its close
relative, are used as the basis of several cryptosystems, e.g. [12,14,16]. Solving
the GACDP is clearly equivalent to breaking our system. To make the GACDP
instances hard, we need k � M (see below). Furthermore, we need the mi to
have sufficient entropy to negate a simple “guessing” attack [26]. However, note
that the model in [26] assumes that we are able to verify when a guess is correct,
which does not seem to be the case here. Although our scenario does not permit
it, even if we knew a plaintext, ciphertext pair (m, c), it would not allow us to
break the system, since c/m = k + r/m ∈ [k, k + k/M ], which is a large interval
since k � M . A number n of such pairs would give more information, but it still
does not seem straightforward to estimate k closer than Ω

(
k/(M

√
n)

)
. Thus the

system has some resistance to KPA, even though this form of attack is excluded
by our model of single-party secure computation.

Howgrave-Graham [18] studied two attacks against GACD, to find divisors
d of a0 + x0 and b0 + y0, given inputs a0, b0 of similar size, with a0 < b0. The
quantities x0, y0 are the “offsets”. The better attack in [18], GACD L, succeeds
when |x0|, |y0| < X = bβ0

0 , and the divisor d ≥ bα0
0 and

β0 = 1 − 1
2α0 −

√
1 − α0 − 1

2α2
0 − ε.

where ε > 0 is a (small) constant, such that 1/ε governs the number of possible
divisors which may be output. We will take ε = 0. This is the worst case for
Howgrave-Graham’s algorithm, since there is no bound on the number of divisors
which might be output.
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Note that β0 < α0, since otherwise
√

1 − α0 − 1
2α2

0 ≤ 1− 3
2α0. This can only

be satisfied if α0 ≤ 2
3 . But then squaring both sizes of the inequality implies

α0 ≥ 8
11 > 2

3 , contradicting α0 ≤ 2
3 .

Suppose we take α0 = 8
11 . Then, to foil this attack, we require β0 ≥ 6

11 .
For our system we have, b0 − a0 = max mi − min mi = M .3 To ensure that the
common divisor k will not be found we require bα0

0 ≥ k, so we will take k = b
8/11
0 .

Since b0 ∼ Mk, this then implies b0 = M11/3. Thus the ciphertexts will then
have about 11/3 times as many bits as the plaintexts. Now GACD L could only
succeed for offsets less than bβ0

0 = b
6/11
0 = k3/4. Thus, we choose our random

offsets in the range (k3/4, k − k3/4).
Cohn and Heninger [11] give an extension of Howgrave-Graham’s algorithm

to find the approximate divisor of m integers, where m > 2. Unfortunately, their
algorithm is exponential in m in the worst case, though they say that it behaves
better in practice. On the other hand, [8, Appendix A] claims that Cohn and
Heninger’s algorithm is worse than brute force in some cases. In our case, the
calculations in [11] do not seem to imply better bounds than those derived above.

We note also that the attack of [9] is not relevant to our system, since it
requires smaller offsets, of size O(

√
k), than those we use.

For a survey and evaluation of the above and other attacks on GACD, see [17].

2.2 Security Models

One-Wayness. The one-wayness of the function c(m) = km + r used by the
scheme clearly follows from the assumed hardness of the GACD problem, since
we avoid the known polynomial-time solvable cases.

IND-OCPA. The model in [6, p. 6] and [23, p. 20] is as follows: given two equal-
length sequences of plaintexts (m1

0 . . . mq
0) and (m1

1 . . . mq
1), where the mj

b (b ∈
[0, 1], j ∈ [1, q]) are distinct,4 an adversary is allowed to present two plaintexts to
a left-or-right oracle [2], LR(m0,m1,b), which returns the encryption of mb. The
adversary is only allowed to make queries to the oracle which satisfy mi

0 < mj
0

iff mi
1 < mj

1 for 1 ≤ i, j ≤ q. The adversary wins if it can distinguish the left
and right orderings with probability significantly better than 1/2.

However, Boldyreva et al. [6, p. 5] note, concerning chosen plaintext attacks:
“in the symmetric-key setting a real-life adversary cannot simply encrypt mes-
sages itself, so such an attack is unlikely to be feasible”. Further, they prove that
no OPE scheme with a polynomial size message space can satisfy IND-OCPA.
Lewi et al. [23] strengthen this result under certain assumptions.

The IND-OCPA model seems inherently rather impractical, since an adver-
sary with an encryption oracle could decrypt any ciphertext using lg M compar-
isons, where M is the size of the message space. Furthermore, Xiao and Yen [35]

3 Note this is our M , not Howgrave-Graham’s.
4 [6, p. 6] and [23, p. 20] do not clearly state this assumption but it appears that all

plaintext values used must be distinct. This assumption clearly does not weaken the
model.
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construct an OPE for the domain [1, 2] and prove that it is IND-OCPA secure.
However, this system is trivially breakable using a “sorting” attack [27]. For
these reasons, we do not consider security models assuming CPA to be relevant
to OPE.

Window One-Wayness. We may further analyse our scheme under the same
model as in [5], which was called window one-wayness. The scenario is as follows.
An adversary is given the encryptions c1 ≤ c2 ≤ · · · ≤ cn of a sample of n
plaintexts m1 ≤ m2 ≤ . . . ≤ mn, chosen uniformly and independently at random
from the plaintext space [0,M). The adversary is also given the encryption c of
a challenge plaintext m, and must return an estimate m̂ of m and a bound r,
such that m ∈ (m̂ − r, m̂ + r) with probability greater than 1/2, say. How small
can r be so that the adversary can meet the challenge?

This model seems eminently reasonable, except for the assumption that
the plaintexts are distributed uniformly. However, as we show in Sect. 2.3, this
assumption can be weakened in some cases for our scheme.

Since the mi are chosen uniformly at random, a random ciphertext satisfies,
for c ∈ [0, kM),

Pr(c = c) = Pr(km + r = km + r) = Pr(m = m) Pr(r = r) =
1
M

1
k

=
1

Mk
,

where m $←− [0,M), r $←− [0, k). Thus c is uniform on [0, kM). Note that this is
only approximately true, since we choose r uniformly from [k3/4, k − k3/4]. How-
ever, the total variation distance between these distributions is 2Mk3/4/Mk =
2/k1/4. The difference between probabilities calculated using the two distribu-
tions is negligible, so we will assume the uniform distribution.

By assumption, the adversary cannot determine k by any polynomial time
computation. So the adversary can only estimate k from the sample. Now, in a
uniformly chosen sample c1 ≤ c2 ≤ · · · ≤ cn from [0, kM), the sample maximum
cn is a sufficient statistic for the range kM , so all information about k is captured
by cn. So we may estimate k by k̂ = cn/M . This is the maximum likelihood
estimate, and is consistent but not unbiased. The minimum variance unbiased
estimate is (n + 1)k̂/n, but using this does not improve the analysis, since the
bias k/(n+1) is of the same order as the estimation error, as we now prove. For
any 0 ≤ ε ≤ 1,

Pr
(
k̂ ∈ k(1 ± ε)

) ≤ Pr
(
cn ≥ kM(1 − ε)

)

= 1 − (1 − ε)n

{ ≤ nε < 1/2 if ε < 1/(2n);
≥ 1 − e−nε ≥ 1/2 if ε ≥ ln 2/n.

Now, if c = mk + r, we can estimate m by m̂ = c/k̂ ≈ mk/k̂. Then

Pr
(
m ∈ m̂(1 ± ε)

) ≈ Pr
(
m ∈ mk/k̂(1 ± ε)

)
= Pr

(
k̂ ∈ k(1 ± ε)

)
< 1/2,

if ε < 1/(2n). Thus, if r ≤ m/2n, Pr(m ∈ m̂±r) < 1/2. Similarly, if r ≥ m lg 2/n,
Pr(m ∈ m̂ ± r) ≥ 1/2. Thus the adversary cannot succeed if r ≤ m/2n, but can
if r ≥ m lg 2/n.
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It follows that only lg m− lg(m/n)+O(1) = lg n+O(1) bits of m are leaked
by the system. However, lg n bits are leaked by inserting c into the sequence
c1 ≤ c2 ≤ · · · ≤ cn, so the leakage is close to minimal. By contrast the scheme
of [6] leaks 1/2 lg m + O(1) bits, independently of n. Therefore, by this criterion,
the scheme given here is superior to that of [6] for all n � √

M . Note that we
have not assumed that m is chosen uniformly from [0,M), but the leakage of
the random sequence c1 ≤ c2 ≤ · · · ≤ cn is clearly n lg n + O(n) of the M lg M
plaintext bits. This reveals little more than the n lg n bits revealed by the known
order m1 ≤ m2 ≤ · · · ≤ mn.

2.3 Further Observations

This scheme can be used in conjunction with any other OPE method, i.e. any
unknown increasing function f(m) of m. We might consider any integer-valued
increasing function, e.g. a polynomial function of m, or Boldyreva et al.’s scheme.
If f(m) is this function, then we encrypt m by c = f(m)k + r, where r

$←−
(k3/4, k − k3/4), and decrypt by m = f−1

(	c/k
). The disadvantage is that the
ciphertext size will increase.

If f(m) is an unknown polynomial function, we solve a polynomial equation
to decrypt. The advantage over straight GACD is that, even if we can break
the GACD instance, we still have to solve an unknown polynomial equation to
break the system. For example, suppose we use the linear polynomial f(m) =

a1(m + a0) + s, where s
$←− [0, a0] is random noise. But this gives c = a1k(m +

a0) + (ks + r), which is our OPE system with a deterministic linear monic

polynomial f(m) ← m + a0, k ← a1k and r ← ks + r
$←− [0, a1k), so f(m)

contains a single unknown parameter, a0. More generally, we need only consider
monic polynomials, for the same reason.

If c = f(m) is Boldyreva et al.’s OPE, we can invert f only with error
O(

√
m). Therefore a hybrid scheme offers greater security than either alone.

Flattening. Another use of such a transformation is when the distribution func-
tion F (m) of the plaintexts is known, or can be reasonably estimated. Then the
distribution of the plaintexts can be “flattened” to an approximate uniform dis-
tribution on a larger set [0, N), where N � M . Thus, suppose the distribution
function F (m) (m ∈ [0,M)) is known, and can be computed efficiently for given
m. Further, we assume that Pr(m = m) ≥ 1/N , so F is strictly increasing. This
assumption is weak, since the probability that m is chosen to be an m with too
small probability is at most M/N , which we assume to be negligible.

We interpolate the distribution function linearly on the real interval R[0,M),
by F (x) = (1 − u)F (m) + uF (m + 1) for x = (1 − u)m + u(m + 1), where
u ∈ R[0, 1). Then we will transform m ∈ [0,M) randomly by taking m̃ = NF (x)
where u is chosen randomly from the continuous uniform distribution on R[0, 1).
It follows that m̃ is uniform on R[0, N), since F is increasing, and m̃ = NF (x),
since

Pr(m̃ ≤ y) = Pr(x ≤ F−1(y/N)) = F (F−1(y/N)) = y/N.
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Now, since we require a discrete distribution, we take m̄ = 	m̃
. We invert this
by taking m̂ = 	F−1(m̄)
. Now, since F is strictly increasing,

m̂ = 	F−1(m̄/N)
 ≤ F−1(m̃/N) < F−1(NF (m + 1)/N) = m + 1

m̂ = 	F−1(m̄/N)
 > F−1((m̃ − 1)/N) ≥ F−1(NF (m − 1)/N) = m − 1,

and so m̂ = m. Thus the transformation is uniquely invertible. Of course, this
does not imply that m̂ and m will have exactly the same distribution, but we
may also calculate

Pr(m̂ ≤ x) ≤ Pr(m̄ ≤ NF (x)) < Pr(m̃ ≤ NF (x) + 1) = F (x) + 1/N,

Pr(m̂ ≤ x) ≥ Pr(m̄ < NF (x + 1)) ≥ Pr(m̄ < NF (x)) = F (x).

This holds, in particular, for integers x ∈ [0,M). Thus the total variation dis-
tance between the distributions of m̂ and m is at most M/N . Thus the difference
between the distributions of m and m̂ will be negligible, since N � M .

This flattening allows us to satisfy the assumptions of the window one-
wayness scenario above. The bit leakage in m is increased, however. It is not
difficult to show that it increases by approximately lg(mpm/F (m)), where pm

is the frequency function Pr(m = m). Thus the leakage remains near-optimal
for near-uniform distributions, where α/M ≤ pm ≤ β/M , for some constants
α, β > 0. In this case lg(mpm/F (m)) ≤ lg(β/α) = O(1). There are also distrib-
utions which are far from uniform, but the ratio mpm/F (m) remains bounded.
Further, suppose we have a distribution satisfying 1/mα ≤ pm ≤ 1/mβ , for con-
stants α, β > 0 such that 0 < α − β < 1/2. Then lg(mpm/F (m)) < 1/2 lg m, so
the leakage is less than in the scheme of [6].

This transformation also allows us to handle relatively small plaintext spaces
[0,M), by expanding them to a larger space [0, N).

Finally, note that the flattening approach here is rather different from those
in [1,37], though not completely unrelated.

3 Algorithms of Boldyreva Type

We have chosen to compare our scheme with that of Boldyreva et al. [6], since
it has been used in practical contexts by the academic community [5, p. 5], as
well as in Popa et al.’s original version of CryptDB [30], which has been used or
adopted by several commercial organisations [31]. However, scant computational
experience with the scheme has been reported [30]. Therefore, we believe it is of
academic interest to report our experimental results with respect to Boldyreva
et al.’s scheme. We also discuss some simpler variants which have better com-
putational performance. These are compared computationally with our scheme
in Sect. 4 below. The relative security of the schemes has been discussed above.

In this section we describe generic encryption and decryption algorithms
based on Boldyreva et al.’s algorithm [6], which sample from any distribution
and which bisect on the domain (Sect. 3.1). We also present an approximation of
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Boldyreva et al.’s algorithm which samples from the Beta distribution (Sect. 3.2).
The approximation and generic algorithms are used in our experimental evalu-
ation presented in Sect. 4.

3.1 Generic Algorithms

Algorithm 1 below constructs a random order-preserving function f : M → C,
where M = [0,M ],M = 2r, and C = [1, N ], N ≥ 22r, so that c = f(m) is the
ciphertext for m ∈ M. Algorithm 1 depends on a pseudorandom number gener-
ator, P , and a deterministic seed function, S. Likewise, Algorithm 2 constructs
the inverse function f−1 : C → M so that m = f−1(c).

Algorithm 1. Generic Boldyreva-type Encryption Algorithm
1: function RecursiveEncrypt(a, b, f(a), f(b), m)
2: x ← (a + b)/2
3: y ← f(b) − f(a)
4: Initiate P with seed S(a, b, f(a), f(b))
5: Determine z ∈ [0, y] pseudorandomly, so that Pr(z /∈ [y/4, 3y/4]) is negligible
6: � The condition implies that y cannot become smaller than

3N/4(1/4)r = 3N/4M2 = 3M/4, with high probability.
7: f(x) ← f(a) + z
8: if x = m then
9: return f(x)

10: else if x > m then
11: return RecursiveEncrypt(a, x, f(a), f(x), m))
12: else
13: return RecursiveEncrypt(x, b, f(x), f(b), m)
14: end if
15: end function
16: Initiate P with a fixed seed S0.
17: Choose f(0), f(M) pseudorandomly so that f(M) − f(0) > 3N/4
18: return RecursiveEncrypt(0, M, f(0), f(M), m)

3.2 An Approximation

We have a plaintext space,[1,M ], and ciphertext space, [1, N ]. Boldyreva et al.
use bijection between strictly increasing functions [1,M ] → [1, N ] and subsets of
size M from [1, N ], so there are

(
N
M

)
such functions. There is a similar bijection

between nondecreasing functions [1,M ] → [1, N ] and multisets of size M from
[1, N ], and there are NM/M ! such functions. If we sample n points from such
a function f at random, the probability that f(m1) = f(m2) for any m1 �= m2

is at most
(
n
2

) × 1/N < n2/2N . We will assume that n � √
N , so n2/2N

is negligible. Hence we can use sampling either with or without replacement,
whichever is more convenient.
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Algorithm 2. Generic Boldyreva-type Decryption Algorithm
1: function RecursiveDecrypt(a, b, f(a), f(b), c)
2: x ← (a + b)/2
3: y ← f(b) − f(a)
4: Initiate P with seed S(a, b, f(a), f(b))
5: Determine z ∈ [0, y] pseudorandomly
6: f(x) ← f(a) + z
7: if f(x) = c then
8: return x
9: else if f(x) > c then

10: return RecursiveDecrypt(a, x, f(a), f(x), c)
11: else
12: return RecursiveDecrypt(x, b, f(x), f(b), c)
13: end if
14: end function
15: Initiate P with a fixed seed S0.
16: Choose f(0), f(M) pseudorandomly so that f(M) − f(0) > 3N/4
17: return RecursiveDecrypt(0, M, f(0), f(M), c)

Suppose we have sampled such a function f at points m1 < m2 < · · · < mk,
and we now wish to sample f at m, where mi < m < mi+1. We know f(mi) = ci,
f(mi+1) = ci+1, and let f(m) = c, so ci ≤ c ≤ ci+1.5 Let x = m − mi,
a = mi+1 − mi − 1, y = c − ci, b = ci+1 − ci + 1, so 1 ≤ x ≤ a and 0 ≤ y ≤ b.
Write f̃(x) = f(x+mi)−ci. Then, if we sample a values from [0, b] independently
and uniformly at random, c−ci will be the xth smallest. Hence we may calculate,
for 0 ≤ y ≤ b,

Pr
(
f̃(x) = y

)
=

a!
(x − 1)! (a − x)!

(y

b

)x−1 1
b

(
b − y

b

)a−x

(1)

This is the probability that we sample one value y, (x − 1) values in [0, y) and
(a−x) values in (y, b], in any order. If b is large, let z = y/b, and dz = 1/b, then
(1) is approximated by a continuous distribution with, for 0 ≤ z ≤ 1,

Pr
(
z ≤ f̃(x)/b < z + dz

)
=

zx−1(1 − z)a−x

B(x, a − x + 1)
dz (2)

which is the B(x, a−x+1) distribution. Thus we can determine f(m) by sampling
from the Beta distribution to lg N bits of precision. In fact, we only need lg b
bits. However, using n ≤ M ≤ √

N ,

Pr(∃i : mi+1 − mi < N1/3) ≤ nN1/3

N
≤ M

N2/3
≤ 1

N1/6

is very small, so we will almost always need at least 1
3 lg N bits of precision. Thus

the approximation given by (2) remains good even when a = 1, since it is then
the uniform distribution on [0, b], where b ≥ N1/3 with high probability.
5 We can have equality because we sample with replacement.
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When the mi arrive in random order, the problem is to encrypt them consis-
tently without storing and sorting them. Boldyreva et al. use binary search. If
M = 2r, we will always have a = 2s and x = 2s−1 in (2), so a − x = x, and (2)
simplifies to

Pr
(
z ≤ f̃(x)/b < z + dz

)
=

zx−1(1 − z)x

B(x, x + 1)
dz,

for 0 ≤ z ≤ 1, This might be closely approximated by a Normal distribution if
Beta sampling is too slow.

4 Experimental Results

To evaluate our scheme in practice, we conducted a simple experiment to pseudo-
randomly generate and encrypt 10,000 ρ-bit integers. The ciphertexts were then
sorted using a customised TeraSort MapReduce (MR) algorithm [28]. Finally,
the sorted ciphertexts were decrypted and it was verified that the plaintexts were
also correctly sorted.

Table 1. Timings for each experimental configuration (n = 10000). ρ denotes the
bit length of the unencrypted inputs. Init is the initialisation time for the encryp-
tion/decryption algorithm, Enc is the mean time to encrypt a single integer, Exec is
the MR job execution time, Dec is the mean time to decrypt a single integer

Algorithm ρ Encryption MR job Decryption

Init. (ms) Enc. (μs) Exec. (s) Init. (ms) Dec. (μs)

GACD 7 50.13 1.51 63.79 11.62 1.47

GACD 15 58.04 2.18 61.28 10.86 2.46

GACD 31 58.66 2.07 63.02 12.18 2.59

GACD 63 70.85 1.94 65.20 10.61 4.22

GACD 127 91.94 2.38 61.08 11.10 6.29

BCLO 7 143.72 191.48 70.78 154.01 192.42

BCLO 15 135.04 74390.95 65.47 148.29 79255.23

Beta 7 189.52 57.87 64.77 208.16 58.27

Beta 15 202.64 124.79 63.70 218.91 121.53

Beta 31 181.14 221.92 63.64 208.22 221.83

Beta 63 176.24 477.23 66.74 193.03 466.03

Uniform 7 167.66 42.61 64.64 182.27 42.92

Uniform 15 166.98 83.40 66.29 176.14 82.53

Uniform 31 162.11 179.92 63.89 176.53 180.52

Uniform 63 156.53 409.13 63.91 173.57 412.79

Uniform 127 162.17 1237.34 65.30 170.74 1232.19
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The MR algorithm was executed on a Hadoop cluster of one master node
and 16 slaves. Each node was a Linux virtual machine (VM) having 1 vCPU
and 2 GB RAM. The VMs were hosted in a heterogeneous OpenNebula cloud.
In addition, a secure Linux VM having 2 vCPUs and 8 GB RAM was used to
generate/encrypt and decrypt/verify the data.

Our implementation is pure, unoptimised Java utilising the JScience library
[13] arbitrary precision integer classes. It is denoted as algorithm GACD in
Table 1. In addition, to provide comparison for our algorithm we have imple-
mented Boldyreva et al.’s algorithm (referred to as BCLO) [6] along with two
variants of the Boldyreva et al. algorithm. These latter variants are based on our
generic version of Boldyreva et al.’s algorithm (see Sect. 3.1). One is an approxi-
mation of Boldyreva et al.’s algorithm which samples ciphertext values from the
Beta distribution (referred to as Beta in Table 1). The derivation of this approx-
imation is given in Sect. 3.2. The second samples ciphertexts from the uniform
distribution (referred to as Uniform in Table 1). This variant appears in Popa
et al.’s CryptDB [30] source code [31] as ope-exp.cc. The mean timings for
each experimental configuration is tabulated in Table 1. The chosen values of
ρ for each experimental configuration are as a result of the implementations of
Boldyreva et al. and the Beta distribution version of the generic Boldyreva algo-
rithm. The Apache Commons Math [34] implementations of the hypergeometric
and Beta distributions we used only support Java signed integer and signed
double precision floating point parameters respectively, which account for the
configurations seen in Table 1. To provide fair comparison, we have used similar
configurations throughout. It should be pointed out that, for the BCLO, Beta
and Uniform algorithms, when ρ = 7, this will result in only 128 possible cipher-
texts, even though we have 10,000 inputs. This is because these algorithms will
only encrypt each plaintext to a unique value. Such a limited ciphertext space
makes these algorithms trivial to attack. Our algorithm will produce 10,000 dif-
ferent ciphertexts as a result of the “noise” term. Each ciphertext will have an
effective entropy of at least 21 bits for ρ = 7 (see Sect. 2.1). So, our algorithm is
more secure than BCLO, Beta, and Uniform for low entropy inputs.

As shown by Table 1, our work compares very favourably with the other
schemes. The encryption times of our algorithm outperform the next best algo-
rithm (Uniform) by factors of 28 (ρ = 7) to 520 (ρ = 127). Furthermore, the
decryption times grow sublinearly in the bit length of the inputs. Compare this
with the encryption and decryption times for the generic Boldyreva algorithms
which, as expected, grow linearly in the bit length of the inputs. Boldyreva et
al.’s version performs even worse. We believe this is down to the design of the
algorithm, as stated in [6], which executes n recursions where n is the bit-size
of the ciphertexts. We also discovered that the termination conditions of their
algorithm can result in more recursions than necessary.

It should also be noted that the size of the ciphertext generated by each
algorithm seems to have minimal bearing on the MR job execution time. Table 1
shows that the job timings are similar regardless of algorithm.
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Of course, it is impossible to compare the security of these systems exper-
imentally, since this would involve simulating unknown attacks. But we have
shown above that the GACD approach gives a better theoretical guarantee of
security than that of [5,6,33], which defines security based on a game, rather
than on the conjectured hardness of a known computational problem.

5 Conclusion

Our work has produced an OPE scheme based on the general approximate com-
mon divisor problem (GACDP). This appears to be the first OPE scheme to
be based on a computational hardness primitive, rather than a security game.
We have described and discussed the scheme, and proved its security properties,
in Sect. 2. In Sect. 4 we have reported on experiments to evaluate its practi-
cal efficacy, and compare this with the scheme of [6]. Our results show that our
scheme is very efficient, since there are O(1) arithmetic operations for encryption
and decryption. As a trade-off against the time complexity of our algorithms, our
scheme produces larger ciphertexts, ∼ 3.67 times the number of bits of the plain-
text. However, as pointed out in Sect. 4, ciphertext sizes had minimal impact on
the running time of the MR job used in our experiments.

With regard to our stated purpose, our experimental results show that the
efficiency of our scheme makes it suitable for practical computations in the cloud.

We have noted that, like any “true” OPE, our scheme cannot guarantee
indistinguishability under CPA [6], unlike the non-OPE protocols of Popa and
others [21,29]. However, with proper choice of parameters, we believe that its
security is strong enough for the purpose for which it is intended: outsourcing
of computation to the cloud.
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Abstract. Secure computation (i.e., performing computation while
keeping inputs private) is a fundamental problem in cryptography. In
this paper, we present an efficient and secure 2-party computation pro-
tocol for deterministic automata evaluation, a problem of large prac-
tical relevance. Our result is secure under standard assumptions and
bypasses roadblocks in previous general solutions, like Yao’s garbled
circuits and Gentry’s lattice-based fully homomorphic encryption, by
performing secure computations over data blocks (instead of bits) and
using typical-size (instead of impractically large) cryptographic keys.
An important efficiency property achieved is that the number of both
asymmetric and symmetric cryptographic operations in the protocol is
sublinear in the size of the circuit representing the computed function
(specifically, improving linear-complexity protocols by a multiplicative
factor equal to a block size). All previous protocols for deterministic
automata evaluation required a linear number of asymmetric crypto-
graphic operations. Moreover, we use quantitative comparison techniques
to show that in typical parameter settings, our protocols’ latency is at
least 1 to 2 orders of magnitude smaller than the protocol obtained by
a direct application of both state-of-the-art general-purpose secure 2-
party computation protocols. Even though not as general as in these two
general-purpose techniques, our result is applicable to the class of all
constant-space computations.

1 Introduction

Managing data privacy for real-life systems is a complex endeavor with many
different areas in need of investigation. Cryptography research has tradition-
ally produced cornerstone technical solutions to a large variety of data privacy
problems. In some domains, like communication security, a wide variety of cryp-
tography solutions with various dimensions of desirable properties have been
produced, and a typical system designer has several valid options to choose from
at development stage. Unfortunately this is not the case for other areas, many of
which related to data privacy. This paper focuses on one of these areas, 2-party
secure computation [22], where several solutions have been proposed, but still
different types of gaps remain towards regular deployment of this technology
in real-life systems. Existing solution paradigms, like garbled circuits [22] and
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fully homomorphic encryption [10], address a large spectrum of assumptions and
satisfy many desirable properties, but do not exhaustively cover needs that may
arise from real-life systems.

In this paper, we propose new cryptography solutions for 2-party secure com-
putation based on a recent paradigm of privacy-preserving computations over
encrypted data blocks [5]. We show that solutions can be exhibited for the impor-
tant problem of deterministic automata evaluation, going beyond a previous
result of [5] that only applied to monotone formulae over equality statements.

Automata evaluation. Deterministic automata evaluation is a well-known prob-
lem in computer science, also equivalent to regular expression matching, with
several applications (most notably, pattern matching). We consider the design
of secure 2-party protocols for deterministic automata evaluation, where Alice
holds the (pattern) automata, Bob holds the (text) string, and one of the two
parties obtains the match result, while the two parties learn no other information
on the other party’s input. A practical and secure 2-party protocol for determin-
istic automata evaluation is expected to have several interesting applications,
including DNA identity testing, firewall policy checking on web traffic, keyword
search on emails, etc.

Secure computation: state of the art. Secure two-party computation is a fun-
damental cryptographic primitive with significant application potential. In the
formulation of interest for this paper, there are two parties, Alice and Bob,
who would like to interactively compute a function f on their inputs x and y,
respectively, such that at the end of the protocol: Bob obtains f(x, y); an effi-
cient adversary corrupting Alice learns nothing new about Bob’s input y; and
an efficient adversary corrupting Bob learns nothing new about Alice’s input x,
in addition to what is efficiently computable from f(x, y). The first general solu-
tion to this problem for any arbitrary function f was presented by Yao in [22],
assuming that the adversary is semi-honest (i.e., he follows the protocol as the
corrupted party but may at the end try any polynomial-time algorithm to learn
about the other party’s input). The generality of this solution is so attractive
that, even decades after their introduction, researchers are considering improve-
ments and optimizations (see, e.g., [14,17]), thus bringing them closer to being
usable in practice, at least in some specific scenarios (i.e., with the help of addi-
tional servers [1]). An important roadblock in this process is represented by the
fact that Yao’s protocol, using a boolean circuit representation of the function
f , requires cryptographic operations for all input bits and binary gates in the
circuit.

Recently, another general and powerful cryptographic primitive, fully homo-
morphic encryption, has been realized [10]. This primitive allows arbitrary
polynomial-time computations over encrypted data and thus can be applied to
construct secure 2-party computation protocols for any arbitrary polynomial-size
arithmetic circuit (and therefore any polynomial-size boolean circuit). Even in
this case, researchers are recently considering improvements and optimizations,
trying to bring it closer to being usable in practice (see, e.g., [3]). The road-
block for garbled circuits does not apply here, when using arithmetic circuits,
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since in that case fully homomorphic encryption solutions typically do operate
over data blocks (instead of bits). However, another roadblock on the way to effi-
ciency appears here: the security of all known constructions of fully homomorphic
encryption is based on problems whose required key lengths are significantly high
and the overall scheme is only theoretically efficient, but not in practice.

Computations over encrypted data blocks, as introduced in [5], attempt to
combine the best features from both cited general-purpose approaches: com-
puting over encrypted data blocks (as in fully homomorphic encryption over
arithmetic circuits), limited requirements on key lengths (as in garbled circuits),
and achieving solutions for a large class of problems (as in both). The solution
proposed in [5], shows secure protocols over encrypted data blocks for the class
of monotone formulae over string equality statements.

Our contribution. Our main result in this paper is an efficient and secure 2-
party protocol, based on computations over encrypted data blocks, for determin-
istic automata evaluation, thus being applicable to all constant-space computa-
tions. The security of our protocol holds under standard cryptographic assump-
tions and is proved based on the existence of secure 2-party protocols for simpler
tasks: (a) pseudo-random function evaluation, which, in turn, were previously
proved secure based on standard number-theoretic assumptions with conven-
tional key lengths (see, e.g., [8,16]); and (b) conditional transfer [6] for string
equality and AND of string equality statements, which, in turn, can be based
on symmetric encryption alone, given the information shared between the two
parties during the protocol for pseudo-random function evaluation. We give two
instantiations of the secure 2-party protocols for these two simpler tasks, result-
ing in two instantiations of our main protocol with different desirable efficiency
properties.

The main efficiency property is the protocol’s time complexity, as we show,
in our main protocol’s first instantiation, that it only requires a number of cryp-
tographic operations sub-linear in the size of the circuit computing the function.
Specifically, it improves over the natural application of the garbled circuit tech-
nique from [22] by a factor equal to the length of alphabet symbols. In practice,
depending on the alphabet required by the specific application, this can be any-
where between a small and a very large improvement. In our main protocol’s
second instantiation, we also show a variant that improves multiplicative con-
stants for small alphabets, by using an alternative implementation of the secure
2-party protocol for pseudo-random function evaluation. We show a performance
analysis of both variants, and comparisons with previously known protocols in
the literature [9,15,18], all requiring at least a linear number of asymmetric
cryptographic operations. Moreover, we use quantitative comparison techniques
to compare the latency of both our protocols with the protocol obtained by a
direct application of both state-of-the-art general-purpose secure 2-party com-
putation protocols. We obtain that our protocols’ latency is at least 1 to 2 orders
of magnitude smaller in typical parameter settings.

Organization of the paper. In Sect. 2 we detail definitions and models of
interest, including a formal definition for secure function evaluation protocols,
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and for tools used in our constructions, such as symmetric encryption schemes,
pseudo-random functions, oblivious PRF evaluation protocols, and conditional
OT protocols.

In Sect. 3 we present our main result: a practical and secure protocol for 2-
party evaluation of a deterministic automata, based on building blocks such as a
PRF, an oblivious PRF evaluation protocol, and a conditional OT protocol for
string equality and AND of string equality conditions.

In Sect. 4 we describe a first instantiation of our main result that is par-
ticularly efficient for large automata alphabets, based on an adaptation of an
oblivious PRF evaluation protocol from [16], and a simple variant of conditional
OT protocols in [4,6].

In Sect. 5 we describe a second instantiation of our main result that is par-
ticularly efficient for small automata alphabets. This differs from the previous
instantiation in that the oblivious PRF evaluation protocol is now replaced by
a suitable combination of results from [19,20].

In Sect. 6 we discuss the practical performance of the two instantiations of our
protocols, showing improved efficiency with respect to previous work, including a
protocol that can be constructed by an application of the original Yao’s general-
purpose protocol [22].

2 Definitions and Background

In this section we give definitions and background useful in the rest of the doc-
ument. Definitions in Sect. 2.1 are specific to the main problem of interest in
the paper, and include deterministic automata, secure 2-party function evalua-
tion protocols, and efficiency requirements. Definitions in Sect. 2.2 are specific
to our solutions to the main problem considered, and include pseudo-random
functions, and secure 2-party protocols for pseudo-random function evaluation
and conditional transfer.

2.1 Secure 2-Party Evaluation of Deterministic Automata

Deterministic automata. A deterministic automata is formally defined as a
tuple DA = (S, s0, F,A, τ), where S is the set of automata states, s0 is the initial
state, F is a subset of S representing the set of final states, A is an alphabet,
and τ : S ×A → S is a transition function that maps any state and any alphabet
element to the next state (when defined). We also denote as |S| = s the number
of states, as |F | = f the number of final states, and as |A| = a the number of
alphabet symbols. An input string x = (x1, . . . , xm) is a sequence of alphabet
symbols xi ∈ A, for i = 1, . . . , m.

The deterministic automata evaluation (briefly, DAE) problem consists of
computing si = τ(si−1, xi), for i = 1, . . . , m, and then returning as output
outae = 1 if sm is in F (denoting that a final state is reached) or outae = 0
otherwise.
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In the 2-party DAE problem, the two parties, called Alice and Bob, are given
as input the automata objects S, s0, A and the parameters s, a,m; Alice is given
as input F, τ ; Bob holds the input string x; and at the end of the 2-party protocol,
Bob obtains the output outae, defined as for the DAE problem.

Secure 2-party function evaluation protocols. The expression z ← D
denotes the probabilistic process of randomly and independently choosing x
according to distribution D. By Prob[z ← D : E] we denote the probability of
event E after the execution of the probabilistic process z ← D. Let σ denote
a security parameter. A function over the set of natural numbers is negligible if
for all sufficiently large natural numbers σ ∈ N , it is smaller than 1/p(σ), for
all polynomials p. Two distribution ensembles {D0

σ : σ ∈ N} and {D1
σ : σ ∈ N}

are computationally indistinguishable if for any efficient algorithm A, the quan-
tity |Prob[x ← D0

σ : A(x) = 1] − Prob[x ← D1
σ : A(x) = 1]| is negligible in

σ (i.e., no efficient algorithm can distinguish if a random sample came from
one distribution or the other). In a 2-party protocol execution, a party’s view
is the sequence containing the party’s input, the party’s random string, and all
messages received during the execution.

We use the simulation-based definition from [11] for security of 2-party func-
tion evaluation protocols in the presence of semi-honest adversaries (i.e., adver-
saries that corrupt one party, follow the protocol as that party and then attempt
to obtain some information about the other party’s input). According to this
definition, a protocol π to evaluate a (possibly probabilistic) function f satis-
fies simulation-based security in the presence of a semi-honest adversary, if there
exists two efficient algorithms SimA, SimB (called the simulators), such that:

1. let outS,A be SimA’s output on input Alice’s input and Alice’s output (if
any); then, it holds that the pair (outS,A, Bob’s output) is computationally
indistinguishable from the pair (Alice’s view, Bob’s output); and

2. let outS,B be SimB ’s output on input Bob’s input and Bob’s output (if any);
then, it holds that the pair (Alice’s output, outS,B) is computationally indis-
tinguishable from the pair (Alice’s output, Bob’s view).

In the above, the first (resp., second) condition says that a semi-honest adver-
sary’s view when corrupting Alice (resp., Bob), can be generated by an efficient
algorithm not knowing Bob’s (resp., Alice’s) input, and thus the adversary does
not learn anything about the uncorrupted party’s input. This definition also
implies correctness of the protocol’s output: that is, the intended recipient of
the 2-party problem formulation’s output does receive this output at the end of
the protocol.

Efficiency requirements. We will consider the following efficiency metrics,
relative to a single execution of a given secure 2-party protocol:

1. time complexity: time between the protocol execution’s beginning and end;
2. communication complexity: length of all messages exchanged; and
3. round complexity: number of messages exchanged.
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All efficiency metrics are expressed as a function of the security parameter σ, and
parameters s, a,m associated with the deterministic automata and input string
that are input to the protocol. In evaluating protocol latency, we will pay special
attention to the number of asymmetric cryptography operations (e.g., modular
exponentiations in a large group) and of symmetric cryptographic operations
(e.g., block cipher executions), since the former are typically orders of magni-
tude more expensive than the latter (although the latter might be applied a
larger number of times). As a comparison result, we will target the general solu-
tion from [22] for the 2-party secure evaluation of function f(x, y), where x is
Alice’s input and y is Bob’s input, which requires O(|y|) asymmetric cryptogra-
phy operations and O(|Cf |) symmetric cryptography operations, if Cf denotes
the size of the boolean circuit computing f . Even if we will mainly focus our
efficiency analysis on time complexity, our design targets minimization of all the
mentioned efficiency metrics.

2.2 Cryptographic Primitives and Protocols Used in Our Solutions

Pseudo-random function families. A family of functions {rn : n ∈ N} is a
random function family if, for each value of the security parameter n, the func-
tion rn associated with that value is chosen with distribution uniform across
all possible functions of the pre-defined input and output domains. A fam-
ily of keyed functions {Fn(k, ·) : n ∈ N} is a pseudo-random function family
(briefly, a PRF family, first defined in [12]) if, after key k is randomly chosen,
no efficient algorithm allowed to query an oracle function On can distinguish
whether On is Fn(k, ·) or On is a random function Rn(·) over the same input
and output domain, with probability greater than 1/2 plus a negligible (in n)
quantity. We consider symmetric-type PRFs, which are implemented in practice
using symmetric-key cryptography primitives (e.g., block ciphers like AES), and
asymmetric-type PRFs, which are based on a public and a secret key, usually
implemented using number-theoretic functions, the most expensive often being
modular exponentiations.

Secure evaluation protocols for specific functions. In our solutions, we
use or build constructions of 2-party secure evaluation protocols for the follow-
ing functionalities: pseudo-random function, scalar product, and real-or-random
conditional transfer.

A secure pseudo-random function evaluation protocol (briefly, sPRFeval pro-
tocol) is a protocol between two parties: Alice, having as input a key k for a PRF
F , and Bob, having as input a string x, where the description of F is known
to both parties. The protocol is defined as a secure function evaluation of the
value F (k, x), returned to Bob (thus, without revealing any information about
x to Alice, or any information about k to Bob in addition to F (k, x)). Efficient
constructions of sPRFeval protocols, based on the hardness of number-theoretic
problems, were given in [8,16].

A secure conditional transfer protocol for the condition predicate p (briefly,
p-sCTeval protocol, or sCTeval protocol when p is clear from the context) is a
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protocol between two parties: Alice, having as input a message m and a string x,
and Bob, having as input a string y. The protocol is defined as a secure function
evaluation of the value m′, returned to Bob, where m′ = m if p(x, y) = 1 or
m′ is computationally indistinguishable from a string random and independent
from m, and of the same length as m, if p(x, y) = 0. Thus, an execution of the
protocol does not reveal any information about y to Alice, or any information
about x to Bob in addition to m′, and m′ only reveals m when p(x, y) = 1 or the
(possibly padded) length of m when p(x, y) = 0. Also, note that if m is a pseudo-
random string, then at the end of a p-sCTeval protocol, Bob does not obtain any
information about the value of predicate p. The notion of a p-sCTeval protocol is
a generalization of the symmetrically-private conditional transfer notion in [4],
which, in turn, generalizes the conditional oblivious transfer from [6]. Specifically,
it differs in formalizing privacy according to the secure computation notion. Both
notions from [4,6] are, in turn, variants of the much studied oblivious transfer
(OT) protocol notion from [21].

3 Secure Evaluation of Deterministic Automata

In this section we present our 2-party protocol for secure evaluation of a deter-
ministic automata. The protocol consists of a private evaluation of Alice’s
deterministic automata on Bob’s input string, using cryptographic primitives
such as encrypted data blocks (also called pseudonyms), a symmetric-type and
an asymmetric-type pseudo-random function, a secure pseudo-random function
evaluation protocol, and a secure conditional transfer protocol. Formally, our
protocol satisfies the following result.

Theorem 1. Assume the existence of:

1. symmetric-type pseudo-random function family prFs

2. asymmetric-type pseudo-random function family prFa,
3. an sPRFeval protocol for the evaluation of prFa, and
4. an sCTeval protocol for equalities, and AND of equalities condition predicates.

There exists a (black-box) construction of a 2-party sDAeval protocol π, requir-
ing O(m) executions of the sPRFeval protocol, and O(sam) applications of an
sCTeval protocol, where s, a denote the number of states and alphabet symbols
of the Alice’s input automata, and m denotes the number of alphabet symbols
in Bob’s input string.

We note that the sPRFeval protocol from [8] only requires O(1) asymmetric
cryptography operations, and thus an execution of π based on them only requires
O(m) asymmetric cryptography operations, which is linear in the number of
alphabet symbols input to Bob, and thus sublinear in the length n = O(m log a+
sa log s) of the input to the 2-party DAE problem. Instead, a direct application of
the general solution from [22] would require O(m log a) asymmetric cryptography
operations. We now prove Theorem 1 with a description of protocol π, and then
show its efficiency and security properties.
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Narrative and formal description of π. The description of protocol π can be
divided into 4 phases: Alice’s input processing, Bob’s input processing, transition
processing and output computation. At a high-level, π can be summarized as
follows: in the first two phases, Alice and Bob compute encrypted data blocks or
pseudonyms for their inputs; in the transition processing phase, Alice and Bob
compute the transition steps in the DAE problem over encrypted data blocks; in
the output computation phase, Alice and Bob compute the output of the DAE
problem over encrypted data blocks, in a way that Bob receives the cleartext
output. We now describe all 4 phases of protocol π in greater detail.

Alice’s input processing. In this phase, Alice randomly chooses two keys: ks for the
symmetric-type pseudo-random function prFs, and ka for the asymmetric-type
pseudo-random function prFa. Then, Alice computes an initial set of encrypted
pseudonyms for all s DFA states, as the output of the pseudo-random function
prFs on input the state symbol sj and a position index i = 0, for j = 1, . . . , s.
Moreover, Alice computes an encrypted pseudonym for the a DFA alphabet sym-
bols, as the output of the pseudo-random function prFa on input the alphabet
symbol ah, for h = 1, . . . , a. The detailed steps of this phase go as follows:

1. Alice randomly chooses keys ks, ka

2. For j = 1, . . . , s, Alice computes pS,j,0 = prFs(ks, (0|j))
3. For h = 1, . . . , a, Alice computes pA,h = prFa(ka, h)

Bob’s input processing. In this phase, Bob transforms each symbol in Bob’s input
string x into an encrypted pseudonym, to be computed as output of the pseudo-
random function prFa on input the symbol x(i). This computation is performed
by an execution of the sPRFeval protocol for each i = 1, ...,m, where Alice uses key
ka as input, and Bob uses xi as input and receives prFa(ka, xi) as output. By the
end of this phase, Bob has obtained the encrypted pseudonyms associated with all
his input symbols x1, . . . , xm. A formal description of this phase goes as follows:

1. For i = 1, . . . ,m,
Alice and Bob run the sPRFeval protocol for function prFa, where

Alice’s input is key ka

Bob’s input is xi

Bob’s output is px,i, intended to be = prFa(ka, xi)

Circuit processing. In this phase, Alice sends to Bob the encrypted pseudonym
associated with the initial state s0 (set, wlog, =1), also being the current state.
The invariant that Bob holds a valid encrypted pseudonym for the current state
will be maintained throughout the protocol execution. Alice and Bob perform
private evaluation of the deterministic automata, using the sCTeval protocol
and the encrypted pseudonyms computed in the input processing phases. In
the private evaluation of the deterministic automata, the execution continues
in n iterations, where the i-th iteration, for i = 1, . . . , n, goes as follows. First,
Alice randomly chooses permutations αi of (1, . . . , s) and βi of (1, . . . , a), and
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computes an encrypted pseudonym for i-th variants of the s DFA states, as
follows: the pseudonyms are outputs of the pseudo-random function prFs on
input the state symbol sj and the position index i, for j = 1, . . . , s. Then, for
each symbol and state, Alice transfers the next state pseudonym to Bob, using
an sCTeval protocol, where the condition is an AND of 2 equalities, defined so
that Bob obtains the next state pseudonym sent by Alice in correspondence to
the current state pseudonym and the current symbol pseudonym held by Bob.
Alice will perform one execution of an sCTeval protocol for each of the possible
current states and each of the possible symbols (in random orders according
to permutations αi, βi), but only for one such pair is Bob holding the valid
pseudonyms that meet both equalities; thus, Bob will receive the next state
pseudonym only in correspondence of one such pair, in a random position, except
with negligible probability. The detailed steps of this phase go as follows:

1. Alice computes pS,1,0 = prFs(ks, (0|1)) and sends pS,1,0 to Bob
2. Bob sets qS,0 = pS,1,0

3. For i = 1, . . . , m,
Alice randomly chooses permutations αi of (1, . . . , s) and βi of (1, . . . , a)
for j = 1, . . . , s,

Alice computes pS,j,i = prFs(ks, (i|j))
4. For i = 1, . . . , m,

for j = αi(1), . . . , αi(s),
for h = βi(1), . . . , βi(a),

Alice and Bob run the sCTeval protocol for the AND-of-equality function, where
Alice uses as input key ks and pseudonyms pS,j,i−1, pA,h and pseudonym pS,j,i

Bob uses as input pseudonyms qS,i−1 and px,i

Bob’s output is in {⊥, z} for some string z ∈ {0, 1}�, and
it is intended to be = pS,j,i �=⊥ if (pS,j,i−1 = qS,i−1) AND (pA,h = px,i)

if Bob’s output is z �=⊥ then Bob sets qS,i = z

Output computation. In the output computation phase, after the last symbol from
string x is processed, Alice computes encrypted pseudonyms for the two expres-
sions in set {yes, no} = {final-state, non-final-state} and transfers each of these
two pseudonyms using an sCTeval protocol, using an equality condition, defined
so that Bob obtains the appropriate pseudonym sent by Alice in correspondence to
the current state pseudonym held by Bob. Alice will perform one execution of an
sCTeval protocol for each of the possible current states, but only for one of these
states, Bob is holding the valid pseudonym; thus, Bob will receive the final-state or
non-final-state pseudonym only in correspondence of one such state, except with
negligible probability. The detailed steps of this phase go as follows:

1. For j = 1, . . . , s,
Alice and Bob run the sCTeval protocol for the equality function, where

Alice sets sj =‘yes’ if j ∈ F or sj =‘no’ if j �∈ F
Alice uses as input key ks, pseudonym pS,j,m, and string sj

Bob uses as input pseudonym qS,m

Bob’s output is in {⊥, z} for some string z ∈ {0, 1}�, and
it is intended to be = sj �=⊥ if (pS,j,m = qS,m) and ⊥ otherwise

if Bob’s output is z �=⊥ then Bob returns z and halts.
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Pictorial description. A pictorial description of this protocol can be found
in Fig. 1. We remark that the circuit processing phase may be actually run in
parallel across all i = 1, . . . , n, and that the protocol in Fig. 1 can be easily
adapted if we require Alice to be the party receiving the computation output, as
follows. In the output computation phase, instead of obliviously transferring to
Bob a yes or no string, Alice obliviously transfers a large random pseudonym for
such strings, and then Bob sends back the received string to let Alice determine
the output.

Alice (input: FA=(S,s0=1,F,A,τ)) Bob(input: x=x(1),…,x(m))

Circuit
Processing,
for i=1,…,m

Alice’s input 
processing

Alice randomly chooses keys ks,ka and computes state 
pseudonyms pS,j,0 = prFs(ks,(0|j)), for j=1,…,s, and alphabet 
symbol pseudonyms pA,h = prFa(ka,h) for h=1,…,a  

Interac�vely compute and return to Bob (using an sPRFeval protocol) 
pseudonyms px,i = prFa (ka,x(i)), for each symbol x(i), i=1,…,m

pseudonym ps,1,0 of ini�al state s0=1

Set qS,0 = pS,1,0

Alice randomly chooses permuta�ons αi of (1,…,s) and βi of (1,…,a), and 
computes pseudonyms pS,j,i = prFs(ks,(i|j)), for j=1,…,s. Alice transfers to Bob 
(using an sCTeval protocol) next state pseudonyms pS,j,i using a τ-based condi�on 
“(pS,j,i-1 = qS,i-1) AND (pA,h = px,i)”, for all j=αi(1),…,αi(s) and h=βi(1),…,βi(a).

Set qS,i be the received pS,j,i for some j in {1,..,s}

Output 
Computa�on

Alice transfers to Bob (using an sCTeval protocol) a “yes” (resp., “no”) string 
using as condi�on “(pS,j,m = qS,m)”, for all pS,j,m in F (resp., not in F)

Output:  received yes/no string

Bob’s input 
processing

Fig. 1. Our sDAeval protocol

Properties of π. It is easy to calculate Alice and Bob’s runtime by inspection
of protocol π. Specifically, Alice’s runtime is dominated by her program in m
executions of an sPRFeval protocol, (ma+1)s executions of an sCTeval protocol,
(m + 1)s computations of pseudo-random function prFs and a computations of
pseudo-random function prFa. Bob’s runtime is dominated by his program in m
executions of an sPRFeval protocol and in (ma + 1)s executions of an sCTeval
protocol. We now show the security properties of protocol π, considering two
cases, depending on which of the two participants is corrupted by the adversary
Adv.

Security, part 1 (Adv corrupts Alice): We note that in protocol π Alice’s pro-
gram consists of running a polynomial number of sPRFeval and sCTeval proto-
cols, and sending an initial state pseudonym to Bob. Since these subprotocols
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are secure, they admit an efficient simulator whose output is computationally
indistinguishable from the adversary’s view during protocol execution. By suit-
ably composing these simulators and running some of Alice’s instructions, we
obtain an efficient simulator for Adv’s view when corrupting Alice in π. Specifi-
cally, simulator SimA runs Alice’s program to simulate Alice’s view during her
input processing phase, runs the simulator for the sPRFeval protocol to sim-
ulate Alice’s view during Bob’s input processing phase, runs Alice’s program
to simulate the sending of the initial state pseudonym from Alice to Bob, and
runs the simulator for the sCTeval protocol to simulate Alice’s view during the
circuit processing and output computation phases. The simulation’s output is
computationally indistinguishable from Alice’s view since an analogue property
holds for the simulators for the sPRFeval protocol and the sCTeval protocol.

Security, part 2 (Adv corrupts Bob): We note that in protocol π Bob’s program
consists of running a polynomial number of sPRFeval and sCTeval protocols, and
receiving multiple pseudo-random state pseudonyms. Since these subprotocols
are secure, they admit an efficient simulator whose output is computationally
indistinguishable from the adversary’s view during protocol execution. For every
i = 1, . . . ,m, sa sCTeval protocols are executed by Bob and only one results in
a pseudo-random state pseudonym (different than the error symbol) as output.
The position of this non-erroneous execution can be simulated as a random posi-
tion in the s × a matrix, and the received pseudo-random state pseudonyms can
be simulated using a random string of the same length. By suitably composing
these simulators and the generation of the next-state pseudonyms, we obtain an
efficient simulator for Adv’s view when corrupting Bob in π. Specifically, simu-
lator SimB runs the simulator for the sPRFeval protocol to simulate Bob’s view
during Bob’s input processing phase, randomly chooses pseudonym ps,1,0 of ini-
tial state s0 = 1 and sets qs,0 = ps,1,0, randomly chooses next state pseudonym
ps,j,i and sets qs,j = ps,j,i, runs the simulator for the sPRFeval protocol to sim-
ulate Bob’s view during the executions of the sPRFeval protocol in the circuit
processing phase, and runs the simulator for the sCTeval protocol to simulate the
output computation phase. The simulation’s output is computationally indistin-
guishable from Alice’s view since an analogue property holds for the simulators
for the sPRFeval protocol and the sCTeval protocol, and since a random per-
mutation of both rows and columns of the transition matrix at each iteration
i = 1, . . . ,m implies that the distribution of the position of the state pseudonym
received by Bob during the protocol is random within the s × a matrix.

4 Our sDAeval Protocol: A First Instantiation

In this section we describe a first instantiation of our main result that is asymp-
totically more efficient than previous schemes in the literature, having, in par-
ticular, running time sublinear in the length of Bob’s input string x. The instan-
tiation is obtained by an adaptation of the family of asymmetric-type PRF and
related sPRFeval protocol from [2,7,13,16], and a simple sCTeval protocol for
an AND of equalities between pseudo-random cryptographic pseudonyms, based
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on any symmetric-type PRF. In the rest of this section, we describe these 3
ingredients, and the efficiency properties of the resulting instantiation, denoted
as π1, of our main protocol.

A family of asymmetric-type PRFs. In this instantiation of π, the family
of asymmetric-type pseudo-random functions, denoted as prFa, is realized as an
adaptation of the family used in [16], as we detail here. First, on input a security
parameter 1σ, the function’s parameters are generated by running the following
steps:

1. randomly choose p1, p2, p
′
1, p

′
2 ∈ {0, 1}σ such that

p1 = 2p′
1 + 1, p2 = 2p′

2 + 1, and p1, p2, p
′
1, p

′
2 are primes

2. set n = p1p2
3. randomly choose an element g1 of order n in a group Z∗

p such that
p is the first prime such that p divides (n − 1)

4. output: parameters (n, g1)

Then, on input a randomly chosen key k in Z∗
n and an input string x in {0, 1}q,

the function prFa returns gt
1 mod p, for t = 1/(k + x) if gcd(k + x, n) = 1

and 1 otherwise. Two remarks are necessary on this definition. First, the event
gcd(k + x, n) �= 1 happens with negligible probability over the random choice
of k, assuming the hardness of factoring numbers of the same distribution as n.
Second, the length q of the input string was first thought in [16] to be limited
by the number-theoretic assumption needed to prove the pseudo-randomness of
this function family, but later [13] observed that such restriction is not needed
(see below for more details). This function family, defined in [16], is a variant
of the one in [7], in turn based on an unpredictable function from [2], the only
modification being of using a group whose order is a safe RSA modulus instead
of a group of prime order. The function from [2] was proved to be unpredictable
under a number-theoretic assumption on the underlying group (i.e., the com-
putational q-DHI assumption). A proof from [7] can be extended to show that
this same function is a pseudo-random function under the mentioned number-
theoretic assumption. Moreover, as stated in [16], the same arguments from [2]
for prime-order groups also imply that (1) the function family considered here
in a composite-order group is pseudo-random assuming the decisional q-DHI
assumption on such groups and the hardness of factoring, and (2) the same
generic-group argument which motivated trust in the q-DHI assumption on the
prime-order groups carries to composite-order groups as well. Here, we recall a
sketch of the definition of the q-DHI assumption: all efficient algorithms, given
n and g, can only distinguish the two tuples

– (g, gu, gu2
, . . . , guq

, g1/u),
– (g, gu, gu2

, . . . , guq

, h)

for random h ∈ Z∗
p and u ∈ Z∗

n, with negligible probability. In later work [13], it
has been showed that no restriction of value q is needed by observing that the
function family we consider is (almost) a permutation.
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An sPRFeval protocol for function prFa. This protocol is a simplified ver-
sion of the oblivious evaluation protocol from Fig. 1 of [16] for the above pseudo-
random function prFa. Specifically, this protocol evaluates the pseudo-random
function fK in Sect. 2.1 of the same paper and uses the encryption scheme in
Sect. 2.2 of the same paper. The simplification is possible since we only require
our protocol to be secure against semi-honest adversaries, and is thus obtained
by removing the three zero-knowledge proofs of knowledge π1, π2, and π3 from
the protocol in Fig. 1 of [16]. The resulting protocol is an sPRFeval protocol for
pseudo-random function prFa, which will be run interactively by Alice and Bob
and evaluate function prFa on input Bob’s input symbols. The proof for this
fact is obtained as a corollary of the proof in [16]. As an optimization that does
not affect the theorem validity, our implementation for π1 also avoids the initial
exponentiation to the k-th power of generator g2 and just randomly chooses a
symmetric key k instead. In this instantiation of π, function prFa will also be
computed non-interactively by Alice, on input relatively short strings denoting
the alphabet symbols of the DA states.

An sCTeval protocol for 2 equalities conditions. We describe an sCTeval
protocol for an equality condition and then one for an AND-of-equality condition.
In both cases, we assume that all inputs to the equality statements are (large-size
and pseudo-random) cryptographic pseudonyms. First, assume Alice wants to
transfer some pseudonym p to Bob under the condition that Alice’s pseudonym
pA is equal to Bob’s pseudonym pB . Based on any symmetric-type PRF prFs

with output length, the sCTeval protocol goes as follows:

1. Alice sets kA = pA, randomly chooses r ∈ {0, 1}σ, computes u = prFs(kA, r),
v = u ⊕ (p|0σ), and sends (r, v) to Bob;

2. Bob sets kB = pB, computes u′ = prFs(kB , r); if u′ ⊕ v = (m|0σ) for some
m, it returns: p; if not, it returns a special error symbol.

Note that if Alice’s pseudonym pA is equal to Bob’s pseudonym pB then Bob
returns the same pseudonym p sent by Alice with probability 1; moreover, if
Alice’s pseudonym pA is not equal to Bob’s pseudonym pB then Bob returns p
only with negligible probability; finally, by the pseudo-randomness properties of
prFs, Alice learns no information about pB and Bob learns no information about
pA, which implies the security of the protocol. This protocol is run s times in
the output computation phase of π1. Now, assume Alice wants to transfer some
pseudonym p to Bob under the condition that Alice’s pseudonym pA is equal to
Bob’s pseudonym pB and Alice’s pseudonym qA is equal to Bob’s pseudonym
qB . Based on any symmetric-type PRF prFs with output length, the sCTeval
protocol goes as follows:

1. Alice randomly chooses p1 and computes p2 = p ⊕ p1
2. Alice transfers p1 via the above sCTeval protocol for the string equality pred-

icate, using the equality (pA = pB) as condition;
3. Alice transfers p1 via the above sCTeval protocol for the string equality pred-

icate, using the equality (qA = qB) as condition;
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4. If Bob returns p′
1, p

′
2 (and thus no error symbol) on any of these two execu-

tions, he returns p′ = p′
1 + p′

2; else Bob returns an error symbol.

Note that if both equalities are satisfied then Bob can compute p′
1 = p1 and

p′
2 = p2 and return p′ = p with probability 1; moreover, if at least one equality

is not satisfied then Bob returns p′ = p only with negligible probability. The
security of this protocol directly follows from the security of the individual single-
equality sCTeval protocols used.

Efficiency properties of π1. Protocol π1 only requires 3 messages between
Alice and Bob, as the sPRFeval protocols require 3 messages (where Alice sends
first), the sCTeval protocols require a single messages between Alice and Bob,
and this latter message can be combined with the last message in the sPRFeval
protocols. Alice’s input processing phase requires O(s) symmetric cryptogra-
phy operations in Alice’s executions of prFs and O(a) asymmetric cryptography
operations in Alice’s executions of prFa. Bob’s input processing phase requires
O(m) applications of an sPRFeval protocol, which only need O(m) asymmetric
cryptography operations. The circuit processing and output computation phase
require (sa+1)m applications of an sCTeval protocol, which need O(sam) sym-
metric cryptography operations. Thus, in total, π1 only requires O(sam) sym-
metric cryptography and O(m) asymmetric cryptography operations (instead
of O(m log a), as required in a direct application of the general solution from
[22]). An analogue improvement is observed in the protocol’s communication
complexity.

5 Our sDAeval Protocol: A Second Instantiation

In this section we describe a second instantiation of our main protocol that,
although asymptotically less efficient than the first instantiation, is actually effi-
cient for small automata alphabets, including some encountered in practice. The
instantiation is obtained by replacing the use of asymmetric-type PRFs with any
symmetric-type PRFs, and realizing a sPRFeval protocol by a suitable combina-
tions of protocols from [19,20]. This realization uses the fact that the automata
alphabet is small (i.e., polynomial in the security parameter), and that the PRF
needs to be evaluated over any one of the a alphabet elements. In the rest of this
section, we describe this different sPRFeval protocol, and the efficiency proper-
ties of the resulting instantiation, denoted as π2, of our main protocol.

An sPRFeval protocol for any small-domain symmetric-type function
prFs. While in the first instantiation of π, we used a simplified version of the
oblivious pseudo-random function evaluation protocol from Fig. 1 of [16], here,
assuming that the number a of automata’s alphabet symbols is small (i.e., poly-
nomial in the security parameter, as opposed to super-polynomial), we use a
protocol that can be based on: (1) any arbitrary symmetric-type pseudo-random
function, including the already assumed prFs, which we implement using a block
cipher (e.g., AES), and (2) any secure (1-out-of-a)-OT protocol, such as the one
in [19], which is in turn based on any arbitrary symmetric-type pseudo-random
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function, including the already assumed prFs, and any arbitrary (1-out-of-2)-
OT protocol, such as the one in [20], based on the hardness of the Decisional
Diffie-Hellman problem. Specifically, the new oblivious pseudo-random function
evaluation protocol will be an oblivious protocol for the evaluation of function on
input (i, xi), where xi is the i-th element from Bobs input string x = x1, . . . , xm,
for all i = 1, . . . ,m. This protocol goes as follows:

1. Alice computes zh = prFs(h, ash), for h = 1, . . . , a, where ash denotes the
h-th alphabet symbol according to a standard, lexicographic, ordering;

2. Alice uses the (1-out-of-a)-OT protocol from [19] to transfer zt to Bob, where
Alice uses as input strings z1, . . . , za, Bob uses as input t ∈ {1, . . . , a} such
that ast = xj

The resulting protocol is a sPRFeval protocol for pseudo-random function prFs,
whenever a is polynomial in the security parameter. To summarize, protocol
π1 and π2 differ in how the design of the sPRFeval protocol, affecting the type
of PRF used and the assumption on the size of the automata alphabet. In π1,
the sPRFeval protocol is designed as an adaptation of the scheme from [16],
and works for a specific asymmetric-type PRF, and for arbitrary-size automata
alphabets. On the other hand, in π2, the sPRFeval protocol is designed building
from a (1-out-of-a)-OT scheme from [19], works for any arbitrary symmetric-type
PRF, and for polynomial-size automata alphabets.

Efficiency properties of π2. Protocol π2 only requires 2 messages between
Alice and Bob, as the sPRFeval protocols require 2 messages (where Bob sends
first), the sCTeval protocols require a single messages between Alice and Bob,
and this latter message can be combined with the last message in the sPRFe-
val protocols. As in π1, Alice’s input processing phase requires O(s) symmet-
ric cryptography operations in Alice’s executions of prFs and O(a) asymmetric
cryptography operations in Alice’s executions of prFa. Bob’s input processing
phase requires O(m) applications of an sPRFeval protocol, which need O(m log a)
asymmetric and symmetric cryptography operations. The circuit processing and
output computation phase require (sa + 1)m applications of an sCTeval proto-
col, which need O(sam) symmetric cryptography operations. Thus, in total, π2

requires O(sam) symmetric cryptography and O(m log a) asymmetric cryptog-
raphy operations, which is asymptotically similar to a direct application of the
general solution from [22], but, as later shown in the performance evaluation of
our implementation, comes with considerable runtime improvements.

6 Performance Analysis

In this section we discuss the practical performance of the two instantiations
π1, π2 of our main protocol π, showing improved latency with respect to the
original Yao’s protocol, as well as previous protocols in the literature. We per-
formed two types of analysis of our protocols’ on-line computation (or latency):
an asymptotic analysis, with comparison with previous sDAeval protocols,
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and a more practical numerical analysis based on measurements of our imple-
mentations running time.

Implementation setup, metric and parameter settings. Testing of our implemen-
tations of protocols π1 and π2 was done on 2 Dell PowerEdge 1950 processors and
one Dell PowerEdge 2950 processor, Intel(R) Xeon(R) CPU E5405 @ 2.00 GHz.
We run Alice and Bob’s programs on the 2 PowerEdge 1950 processors, and the
testing control was run on the 2950 processor. All offline and online communica-
tion traffic was run over a dedicated gigabit Ethernet LAN. Testing control and
collection of timing measurement traffic was isolated on a separate dedicated
gigabit Ethernet LAN.

In our performance experiments, we mainly evaluated on-line computation
time (or latency), divided into asymmetric cryptographic operations, with secu-
rity parameter σ, and symmetric cryptography operations, with security parame-
ter λ. Recall that in practice the former type of operations is expected to require
computing resources greater than the latter type by orders of magnitude (slightly
more than 3 orders on our machines, when setting σ = 2048 and λ = 128). In
addition than σ and λ, latency was evaluated over input length parameters s
(the number of DA states), a (the number of DA alphabet symbols) and m (the
number of symbols in Bob’s input string x).

Performance evaluation of π1, π2. Off-line computation performance (used for
the generation of one-time public keys and parameter value settings) required
200 s in π1 and less than 4 s in π2. Memory used by π1 (resp., π2) was 337 Mbytes
(resp., 2.553 Mbytes).

Practical numeric latency times of our protocols are heavily dependent on the
subset of values that we consider as settings for parameters s, a, n. We considered
three main cases for parameter a, reflecting related application scenarios; namely:

– a = 2 (binary alphabet),
– a = 27 (English alphabet plus one special symbol for all other alphabet

symbols),
– a = 128 (smallest power of 2 that includes all ASCII symbols).

For these three values, we measured running times and extrapolated them into
estimates of close-to-maximum values of s and n such that the overall latency
of the protocols would remain below 30 s or 10 s.

The found values are captured in Table 1 below.

Comparison of asymptotic performance with previous sDAeval protocols. We
compared our protocols π1, π2 with previous sDAeval protocols achievable from
results in [9,15,18,22]. This comparison was performed by evaluation of asymp-
totic expressions for their latency, and is summarized in Table 2 below. (While
we were able to extend the protocol from [22] to a non-binary automata alphabet
size, it was unclear how to do the same with the protocol in [18], which is defined
for binary alphabets.)

We remark that the number O(m) of asymmetric cryptography operations
in π1 is sublinear in the total length of the input n = O(m log a + sa log s) to
Alice and Bob.
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Table 1. Max s, a, n parameter values obtained for our protocols, under constraints of
latency ≤ 30 s (columns 2, 3, 4) and of latency ≤ 10s s (columns 5, 6, 7).

Protocol s a n s a n

π1 200 2 84 200 2 28

π1 70 27 70 70 27 23

π1 80 128 42 80 128 14

π2 200 2 6200 200 2 2100

π2 100 27 1500 100 27 500

π2 80 128 75 80 128 25

Table 2. Asymptotic latency analysis, relative to alphabet type.

Protocol Asymmetric crypto Symmetric crypto Alphabet

Operations Operations Type

[22] O(m log a) O(sm log a log s) a-ary, for any a ≥ 2

[9] O(ms log a) None a-ary, for any a ≥ 2

[15] O(ms log a) None a-ary, for any a ≥ 2

[18] O(m log a) O(sm log a) Binary

π1 O(m) O(sam) a-ary, for any a ≥ 2

π2 O(m log a) O(sam) a-ary, for any a ≥ 2

Performance comparison with Yao’s protocol. To obtain some insights on the
‘computing with encrypted data blocks’ paradigm underlying our sDAeval pro-
tocol, we compared our sDAeval protocols’ performance with sDAeval protocols
obtained by instantiating the state-of-the-art solutions in the area of general-
purpose secure 2-party function evaluation (specifically, the garbled circuit par-
adigm, starting with [22], and the fully homomorphic encryption paradigm, start-
ing with [10]). We expanded the quantitative performance comparison framework
used in [5] to obtain numeric (as opposed to asymptotic) performance estimates
and derive a comparison of these 3 approaches. It was quickly apparent that an
sDAeval protocol obtained using the fully homomorphic encryption paradigm,
would be the least efficient. Accordingly, we focused our analysis on comparing
our sDAeval protocols obtained using the computing with encrypted data blocks
paradigm with the sDAeval protocol obtained using the garbled circuit paradigm
from [22].

Let πY denote the 2-party sDAeval protocol obtained using the garbled cir-
cuit paradigm from [22]. Then, for any 2-party sDAeval protocol π, we define
the latency ratio for π, as follows:

latency ratio(π) = latency(πY )/latency(π).

In our analysis, we have found that the latency ratio is essentially independent
on parameter m, which makes it much easier to analyze as a function of the
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Fig. 2. Latency ratio of π1 and π2, with alphabet size 27, as a function of the number
s of states

remaining parameters s and a. Using a combination of runtime measurements
and estrapolations based on protocol analysis, we characterized the latency ratio
for our protocols π1 and π2 in Fig. 2 below. We observe that the improvement of
π1 (respectively, π2) over πY varies between almost 1 to about 1.8 (respectively,
almost 1.5 to about 2.2) orders of magnitude in the shown parameter value space
and further increases with the number s of states.

7 Conclusions and Open Directions

This work can be considered a next step in the direction of [5], where we have
introduced a paradigm for the design of more efficient secure function evalua-
tion protocols, performing the most computationally expensive operations (i.e.,
asymmetric cryptography operations) over input data blocks instead of input
data bits, while maintaining efficient key sizes. This addresses performance short-
comings of the 2 main general-purpose secure function evaluation approaches in
the literature: Yao’s garbled circuits, which has efficient key sizes but operates
on single data bits, and Gentry’s fully homomorphic encryption, which operates
on input data blocks when applied to arithmetic circuits, but with inefficient
key sizes. In [5], we had shown efficient secure function evaluation protocols
satisfying both requirements, for the class of monotone formulae over equality
statements. In this paper, we show such a protocol for deterministic automata
evaluation, which, being equivalent to regular expression matching, captures all
constant-space computations. A first open research direction is to improve the
practical performance of secure protocols for pseudo-random function evalua-
tion protocols, which would improve the performance of the first instantiation of
our protocol on practical parameter settings. A second and more general open
research direction is that of finding more instances of protocols following the
paradigm of computations over encrypted data blocks, possibly including large
classes of polynomial-size circuits.
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Abstract. Proof-of-Stake (PoS) protocols have been actively researched
for the past five years. PoS finds direct applicability in open blockchain
platforms and has been seen as a strong candidate to replace the largely
inefficient Proof of Work mechanism that is currently plugged in most
existing open blockchains. Although a number of PoS variants have been
proposed, these protocols suffer from a number of security shortcomings;
for instance, most existing PoS variants suffer from the nothing at stake
and the long range attacks which considerably degrade security in the
blockchain.

In this paper, we address these problems and we propose two PoS pro-
tocols that allow validators to generate at most one block at any given
“height”—thus alleviating the problem of nothing at stake and prevent-
ing attackers from compromising accounts to mount long range attacks.
Our first protocol leverages a dedicated digital signature scheme that
reveals the identity of the validator if the validator attempts to work
on multiple blocks at the same height. On the other hand, our second
protocol leverages existing pervasive Trusted Execution Environments
(TEEs) to limit the block generation requests by any given validator to
a maximum of one at a given height. We analyze the security of our
proposals and evaluate their performance by means of implementation;
our evaluation results show that our proposals introduce tolerable over-
head in the block generation and validation process when compared to
existing PoS protocols.

1 Introduction

The blockchain is gaining increasing attention nowadays motivated by the wide
success of the Bitcoin cryptocurrency. To reach distributed agreement, the
blockchain relies on consensus protocols which ensure that all nodes in the
network share a consistent view on a common distributed ledger. Most exist-
ing blockchain systems rely on Bitcoin’s Proof-of-Work (PoW) to reach network
consensus in permission-less systems that do not require the knowledge of nodes’
identities. However, PoW has been often criticized for its huge waste of energy;
for instance, it is estimated that Bitcoin miners can consume as much electricity
as Ireland in 2005 [16].

To remedy the limitations of PoW, the community has turned to Proof of
Stake (PoS) protocols in the hope of offering a more efficient and environment-
friendly alternative. Unlike PoW, PoS leverages virtual resources such as the
c© Springer International Publishing AG 2017
J. Garcia-Alfaro et al. (Eds.): DPM/CBT 2017, LNCS 10436, pp. 297–315, 2017.
DOI: 10.1007/978-3-319-67816-0 17
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stake of a node in order to perform leader election and maintain consensus in
the network. Since the mining resources are virtual, PoS-based consensus process
is instant and results in negligible costs.

Nevertheless, although many PoS variants have been proposed [7,12,15,17–
19,21], PoS is still not widely deployed in existing blockchains. Namely, in spite
of their efficiency, PoS-powered blockchains still account for less than 2% of the
market capitalization of existing digital currencies. This is mostly due to the fact
that most existing PoS protocols are vulnerable to a number of security threats,
such as the nothing at stake and the long-range attacks. The former attack allows
the nodes to mine conflicting blocks without risking their stake which increases
the number of forks in the system as well as the time to reach consensus in the
network. The latter attack (commonly referred to as history attack) consists of
an adversary that aims to alter the entire history of the blockchain starting from
early blocks (even from the genesis block). This can be achieved when e.g., the
attacker acquires the private keys of older accounts which no longer have any
stake at the moment, but that have accrued majority stake at previous block
height h; the attacker can construct a fork starting from block h leveraging these
accounts.

To remedy these attacks, a number of proposals suggest the reliance on
deposit-based PoS [3,22] and checkpoints [12,18,19,21]. Deposit-based PoS
essentially requires each validator to make a deposit in the system; this deposit
will be withdrawn by the system if the validator generates conflicting blocks,
thus preventing nothing at stake attacks. Checkpoints, on the other hand, corre-
spond to previous blocks up to which the blockchain does not allow forks. This
limits the impact of the long-range attack to some extent, as the earliest attack
point has to be after the last checkpoint. Clearly, such solutions do not however
completely prevent misbehavior in the blockchain.

In this paper, we address these problems and we propose two PoS variant
protocols that are secure against the nothing at stake and the long-range attacks.
Our first solution leverages a digital signature scheme that is directly linked to
the registered identities of the nodes. In case blocks in parallel forks are mined
by the same node, the private key of that node along with his identity will be
immediately revealed. As such, this solution complements existing solutions in
the area [3,12,18,19,21,22] by embedding accountability in case of misbehavior
but at the expense of relying on an identity manager. Our second solution solves
this shortcoming and leverages Trusted Execution Environments (TEEs) to pre-
vent validators from signing two blocks of the same height in parallel chains.
We analyze the security of both solutions and we show that they can effectively
prevent malicious validators from generating conflicting blocks with nothing at
stake. We also implement prototypes derived from our proposals and evaluate
their performance. Our results show that our first solution only introduces an
additional ∼500 ms of latency and ∼19 KB of block header payload when gener-
ating and verifying the cryptographic proofs compared to existing PoS protocols.
On the other hand, our second solution does not incur any meaningful overhead
compared to Nxt’s PoS protocol.
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The remainder of the paper is organized as follows. We overview existing
PoS protocols and the main intuition behind the nothing at stake attack and
the long range attack in Sect. 2. We then introduce our solutions and analyze
their security provisions in Sects. 3 and 4. We evaluate the performance of our
proposals in Sect. 5 and we conclude the paper in Sect. 6.

2 Background and Related Work

Blockchain is a distributed ledger technology based on a peer-to-peer network.
Transactions are broadcast in the network for every node to verify. Most exist-
ing blockchains leverage consensus protocols allowing nodes to collaboratively
maintain a common ledger of validated transactions.

Proof-of-Stake (PoS) is a consensus protocol dedicated for open blockchains—
which feature open membership allowing any node to join the network. PoS
defines a group of validators whose task is to propose the next transaction(s) to
be included in the ledger. These proposals are broadcast in the network in the
form of blocks. Blocks typically build on each other, thereby forming a chain of
blocks—hence the blockchain.

Since there are multiple validators in the network, PoS introduces a compu-
tational problem for the validators to solve when generating a block to throttle
the number of block proposals in the network. Typically, the block generation
time is manipulated by the means of a target value that denotes the difficulty
of the problem to be solved by the validators. Each validator who finds a PoS
solution then includes the solution along with the proposed block as a proof that
he is “eligible” to generate the block. Blocks are deemed correct if their proof
is correct with respect to all correct transactions that they confirm. If multiple
validators find a solution simultaneously, a fork occurs in the block chain.

2.1 Proof-of-Stake (PoS)

In what follows, we summarize the general operations on a validator to maintain
consensus defined by a PoS consensus protocol:

IsEligible(blkhder, T, keyV, stakeV). This qualification function verifies, given the
prepared block header blkhder and the target T , whether the validator is eli-
gible to generate the next block given the account information (keyV, stakeV).
This function aims to elect a leader among the validators to generate the next
block.

GenerateBlock(blk, T ). This routine refers to the block generation function. Given
a block blk and target T , the validator first checks the predicate IsEligible and
returns a proof prf whether the validator is eligible.

ValidateBlock(blk, T, prf). This routine corresponds to the block verification
function. It returns true if the information in the block blk is correct and
if the proof prf is valid for the predicate IsEligible.

Resolve(fork1, . . . , forkn). This routine is a fork resolution algorithm that
returns a unique fork forkk to work on if multiple forks are detected.
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As mentioned earlier, PoS constitutes one of the few workable candidates set
to replace that largely inefficient PoW in the near future. PoS leverages virtual
resources denoted by the stake of a validator to solve the computation problem.
Stakes refer to the assets (or cryptocurrencies) owned by a node. The idea is that
the more stake a validator has, the more likely he will find a solution to generate a
block. Thus, PoS defines the predicate IsEligible as f(blkhder, keyV) < T ·stakeV ,
where f(·) is a deterministic function on the block header and the validator’s
account key. Recall that the account key and the amount of stake is publicly
verifiable by all nodes in the network.

GenerateBlock returns empty if the validator’s 〈keyV, stakeV〉 does not satisfy
the statement of the IsEligible predicate; otherwise it returns a proof prf =
〈Prfe, Sigb〉, where Prfe is the eligibility proof and Sigb is the block signature
of the validator. This also implies that validators do not need to search for
the PoS solution exhaustively (as in PoW) since the solution only depends on
the validator’s account information. Meanwhile, ValidateBlock returns true if the
proof prf is valid and the validator’s account 〈keyV, stakeV〉 satisfies the IsEligible
statement.

The community currently features a number of PoS variants. For instance,
Peercoin [12], Cloakcoin [7], and Novacoin [15] use coin age as mining resources
to generate blocks in their PoS protocols. Coin age is defined as the accumu-
lated time that a node holds his stake before using them to generate a block.
However, relying on coin age discourages nodes from actively participating in
the consensus process, as nodes would have incentives to hoard the coins so that
they have a better chance to generate a block. VeriCoin [17] uses “stake-time”
based on coin age, which also takes into account the activity of the nodes in
the network. The stake time starts to degrade at a certain point of time if the
nodes do not participate in block generation with their stake. Blackcoin [19] and
Nxt [21] only rely on the amount of stake in the consensus protocol. Nxt [21]
uses a deterministic algorithm (IsEligible) to elect the leaders in order to mitigate
the grinding vulnerability [4,10], where adversaries use computational resources
to increase their probabilities of being elected as leaders. This leads to another
issue that the leader of each valid block is predictable in the network, thus mak-
ing it vulnerable to planned denial of service attack or selfish-mining strategies.
Additionally, an adversary can still perform stake grinding by skipping an oppor-
tunity to create a block if he is able to increase his advantage over the future
blocks [4]. Blackcoin [19] defines a “stake modifier” which periodically introduces
some entropy to the eligibility test, but only limits the period where leaders are
predictable until the next update of the stake modifier. BitShares [18] proposes
Delegated Proof-of-Stake where the shareholders first vote for a group of dele-
gated witnesses who then generate the blocks in round-robin fashion. Slasher [3]
and Casper [22] are deposit-based PoS proposed by Ethereum. They require the
nodes to submit a deposit in order to become a validator.

Snow white [2] offers robustness under sporadic node participation
with epoch-based committees composed of selected active stakeholders.
Ouroboros [11] increases the incentives for honest behavior with a novel reward
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mechanism. It also prevents stake grinding while keeping the leaders unpre-
dictable using verifiable secure multi-party computation. However, this approach
requires the coordination amongst the validators in the network. Algorand [6,9]
is rather a Byzantine Agreement protocol [1] in a public blockchain setting that
does not generate forks (with a high probability). Block proposers and voting
committee members are elected based on their stake through Verifiable Random
Function [13]. However, this protocol requires at least three rounds of Byzantine
Agreement voting if the block proposal is honest assuming a voting committee
size of 4000 nodes. If the block proposal is malicious, an empty block will still
be generated after a long consensus process.

Example—Nxt’s PoS: We now describe Nxt’s PoS which emerges as one of
the most popular PoS protocols.

In Nxt’s PoS, each block contains two additional values: a base target value
Tb and an eligibility proof (called generation signature in Nxt) Prfe, which vary
from block to block. Similar to the difficulty level used in PoW, the base target
value aims to adjust the average block generation time to match the desired
value, which is 60 s in Nxt. On the other hand, the eligibility proof Prfe is used
to check whether the current validator is eligible to generate the next block. It
is computed as the hash value over the public key of validator’s account and the
eligibility proof of the previous block: Prf

(i)
e = Hash(PubKeyV ||Prf

(i−1)
e ).

Then, each validator has his own target value T based on the elapsed time
timee since the last block and the current effective stake in his account: T =
Tb · timee · stakeV . Finally, the leading l bytes of the eligibility proof Prfe are
checked against the target T . To summarize, the predicate IsEligible is defined
as follows:

Prefix(Hash(PubKeyV ||Prf (i−1)
e ), l) < Tb · timee · stakeV (1)

GenerateBlock returns a proof prf = 〈Prfe, Sigb〉, where Sigb is the block
signature Sigb = Sign(PrivKeyV , blkhder).

To verify a block, nodes first check if the block signature is valid before re-
evaluating the IsEligible predicate defined in Eq. 1. Here, the block signature is
required for nodes to verify validator’s public key used in the eligibility proof as
well as validator’s stake.

In case multiple forks are detected, a cumulative difficulty value is defined for
each block. This difficulty is computed based on the cumulative difficulty of the
previous block and the base target value of the current block: CD(i) = CD(i−1)+
264

Tb
. Resolve returns a fork whose last block exhibits the highest cumulative

difficulty.

2.2 The “Nothing at Stake” Attack

Despite the variety of PoS protocols, since generating a block in PoS is no more
than generating one signature, validators have incentive to work on multiple
forks. In other words, in order to maximize the benefits, validators could generate
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conflicting blocks on all possible forks with nothing at stake. This problem is
commonly referred to as the nothing at stake attack.

This attack slows down the consensus time in the network and thus reduces
the efficiency of the system. Moreover, it results in blockchain forks which weaken
the ability of the blockchain to resolve double spending attacks and other threats.

Notice that the aforementioned Nxt’s PoS does not address the nothing at
stake problem. Namely, validators can ignore the fork resolution algorithm and
generate blocks on top of multiple forks. Moreover, since the eligibility proof
is deterministic for each account, one can easily predict which validators will
generate valid blocks in the future. This is often referred to as “transparent
forging” and opens an additional attack surface to the blockchain, allowing the
attackers to selectively nit-pick the next leader to compromise.

Ouroboros [11] introduces a new reward mechanism that incentivizes the
validators to behave honestly. However, it only discourages opportunistic adver-
saries and cannot prevent targeted attacks that would benefit from (temporarily)
forked blockchain such as double-spending attack. Slasher [3] proposes to address
this attack by requiring validators to provide a deposit which will be locked for a
period. In case conflicting blocks at the same height are signed by the same val-
idator, the misbehaving validator will lose his deposit. In this way, the network
punishes the validators who simultaneously create conflicting blocks on multiple
forks. BitShares [18] adopts a similar approach to Slasher. Here, if a validator
(witness) misbehaves, they will lose their ability to generate blocks in the future.
Other deposit-based PoS protocols even penalize the validators if they are voting
on the “wrong” fork—assuming that there is only one correct fork at all time.
Nevertheless, all such countermeasures freeze a considerable amount of stake in
the network. In addition, in spite of the deposit-based mechanism, malicious val-
idators can still profit from targeted attacks as they can create conflicting blocks
with double-spending transactions whose value surpasses that of the deposit that
they committed in the network.

2.3 The “Long Range” Attack

Long range attacks on PoS (also known as history attacks) refer to the case
where an attacker tries to alter the blockchain history by creating a fork from
an already generated block. While this attack in theory requires an attacker
that controls the majority of stake in the network, long range attacks can be
practically instantiated if the attacker controls/compromises accounts that have
no stake at the moment, but have a large stake at some past block height h. For
example, an account that had 30% stake at block height h and no stake at block
height h+1 can still use his 30% stake to re-generate another block at height h.

This allows an attacker to create forks from past blocks that can overtake
the current chain with (past) majority stake. This can be achieved by compro-
mising the private keys of older accounts which no longer have any stake at the
moment, but that have accrued majority stake at previous block height. Notice
that accounts that exhibit zero stake might not be as protected as other active
accounts—which would further facilitate this attack.
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At present, most existing countermeasures [2,12,18,19,21] against long range
attack use checkpoints to limit the range of such attacks. A checkpoint refers to
a block until which the blockchain is regarded as “finalized” and immutable. A
number of PoS instantiations [12,18,19] rely on a centralized checkpoint server
to define a correct chain periodically; on the other hand, Nxt [21] nodes do
not accept a change to a fork that differs from a block more than 720 blocks
old. Similarly, Snow White’s nodes [2] do not accept a (longer) chain which
modifies blocks “too far” in the past. However, these approaches require nodes
to be synchronized; for instance, nodes that recently join the network can hardly
distinguish which chain of the forks is the correct one.

Table 1 summarizes the security of existing PoS protocols against the nothing
at stake and long range attacks. We see that the existing protocols are either
insecure against these attacks, or only secure under specific conditions.

Table 1. Resilience of existing PoS protocols against the nothing at stake and long
range attacks. Here, ◦ denotes refers to the case where a property is partially achieved.

Blockchain (PoS) Secure against

Nothing at stake Long range attack

Cloakcoin × ×
Novacoin × ×
Blackcoin × ◦
Peercoin × ◦
Nxt × ◦
Slasher ◦ ×
Vericoin ◦ ×
BitShares ◦ ◦
Snow white × ◦
Ouroboros × ◦

2.4 System Model

We assume a similar system model to Nxt (cf. Sect. 2.1). More specifically, we
assume a peer-to-peer system where nodes commit their virtual resources in the
system; and the stake of nodes is publicly verifiable by all participants in the
network.

We rely on a trusted infrastructure with which the nodes interact off-chain.
In our first solution, nodes trust identity providers and their certificates. On the
other hand, in our second solution, we assume that nodes trust the implemen-
tation of the trusted hardware and TEE architectures. Notice that this model
can be easily adopted by permission-based blockchain, where participants can
quickly agree on a set of trusted infrastructures. However, we stress that our
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model equally applies to permissionless blockchain deployments by relying on
existing public identity providers and/or TEE supported devices.

We further assume that nodes are rational and are only interested in increas-
ing their advantage in the system without being identified. We assume that no
node controls majority stake in the network presently; this however does not pre-
vent an adversary from compromising different accounts to accrue stake majority
at a prior block height. We further assume that all participants are computation-
ally bounded and cannot break the signature schemes or the guarantees provided
by secure proof of knowledge schemes.

Whenever secure hardware and TEE are used, we assume that the adversary
cannot compromise the TEE environment. For example, the adversary cannot
extract the keys from the trusted applications within TEE or change the behavior
of the trusted applications.

In what follows, we present two PoS solutions that are resilient against the
aforementioned nothing at stake and long range attacks. To ease the presen-
tation, we describe these solutions as extensions to the well-known Nxt PoS
protocol (cf. Sect. 2.1).

3 Identity-Based PoS

As mentioned earlier, the limitation of conventional deposit-based PoS is that
even if a malicious node is caught creating conflicting blocks, the punishment of
losing his deposit is not severe enough to totally discourage him. For example, an
attacker can launch double-spending attacks that involve huge amount of stake
through the forks he creates.

We start by showing that the combined use of deposit-based PoS and identity
management in the network can alleviate this limitation. Namely, we describe
a solution that requires the validators to submit their identity information in a
privacy-preserving fashion, while their private keys used for generating blocks
are bound to their committed identity information. We show how to conceal the
nodes’ identities—unless misbehavior happens.

The intuition behind our solution is to bind the randomness of the DSA sig-
nature of the block to the block height value. Therefore, once a validator creates
two conflicting blocks at the same block height, a node can recover the validator’s
private key based on the block signatures and reveal the corresponding identity
accordingly. Before describing our solution, we start by introducing the building
blocks that we will use.

3.1 Building Blocks

Notations. Throughout this section, we denote p, q, g as the public parameters
in DSA signature scheme, where p, q are the prime numbers such that q|p − 1.
g is a generator of order q in Zp. We further introduce a subgroup of Zq with
prime order w generated by a and h; while h’s discrete logarithm to the base
a is not known. Each node has one DSA key pair (x, y) for his account, where
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0 < x < w is the private key and y = gx mod p is the public key. Each node
also publishes another public key y′ = ax mod q to the network.

Recall that DSA [20] signature is of the form of (r, s), where r is a random
value whose seed k is picked randomly by the signer: r = (gk mod p) mod q.
Recall that DSA requires that k should never be re-used for signing different
messages, otherwise the private key is able to be recovered from these signatures.

We denote r
R←− Zn as randomly picking an element r from Zn. We use H

for block height value included in each block header. We distinguish this with
H(·) which is a cryptographic hash function.

Verifiable Random Function (VRF). VRF [13] refers to a pseudo-random func-
tion which provides a publicly verifiable proof that a given number is correctly
generated based a public input and a private key. We need to use VRF in our
block signature construction in order to enforce the validators to generate the
randomness k which is bound to the block height H and prove to the others.
Since DSA’s security also relies on the fact that k is unpredictable, we require
the VRF outputs to be unpredictable too.

Dodis et al. [8] have presented an efficient VRF scheme. However, since this
scheme reveals k in the verification process, which is not allowed in DSA, we
need to revise and extend it with Proofs of Knowledge [14] to prove that k is
correctly generated according to the VRF scheme and is also used to compose r
without revealing its value.

3.2 Protocol Specification

We now detail the various procedures used in our solution.

Identity Management: Our Identity-based PoS consensus protocol only allows
registered validators who have committed their identity information to generate
blocks. We therefore start by defining the setup phase in this protocol.

Our scheme requires a trusted identity provider that can issue identity-linked
certificates for everyone, such as the credentials of the citizen’s ePass. To commit
his identity, a validator first generates his anonymous account key pair (x, y).
The validator provides the public key y (along with the proof of knowledge of
x) to the identity provider or uses his e-Identity card. He obtains in return an
encrypted identity Cid under y along with a certificate CertIP that binds key
and encryption together, issued by the identity provider or the e-Identity card
respectively. Then, the validator commits his encrypted identity (Cid, CertIP )
to the blockchain network. A validator will be successfully registered with his
account and identity (y, Cid) if the certificate from the identity provider is valid.

Notice that during this process, the validator’s identity is only revealed to the
identity provider or protected inside the e-Identity card. Therefore, committed
identities do not violate nodes’ privacy. Note that we do not restrict the way how
a node looks up registered validators. We can achieve this either by introducing a
trusted CA service in the blockchain to verify the committed identities and issue
certificates for these validators, or each node can locally perform the validation.
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Block Generation and Validation: The block generation and validation
process is similar to Nxt’s PoS as described in Sect. 2.1. Miners have to first
create an eligibility proof Prfe to check their eligibility of generating the cur-
rent block. Subsequently, a block signature Sigb is included in the created block
to authenticate the validator.

In our protocol, in order to prevent a malicious node from signing conflicting
blocks, validators construct the eligibility proof and the block signature as fol-
lows: a validator first generates the randomness k and r = gk (cf. Algorithm 2),
along with the proof of knowledge Ck, Ca, π1, π2, [〈Ci

r, π
i
r〉] that k and r are

correctly computed. Here, π1 is a proof of knowledge of equality of discrete log-
arithm constructed from the Schnorr Proof of Knowledge as described in [5].
This allows us to prove that e.g., two elements y1 = ga and y2 = ha have the
same discrete logarithm a without revealing a. We describe the non-interactive
variant of this proof of knowledge in Algorithm1. [〈Ci

r, π
i
r〉] is standard proof of

knowledge with probabilistic result. We skip the details of how to construct π2

as it is standard Schnorr Proof of Knowledge.

Algorithm 1. Proof of knowledge of the same discrete logarithm
Input: y1 = ga and y2 = ha where a is not revealed.
Output: A proof s that y1 and y2 have the same discrete log a.

1: r
R←− Z

∗
q

2: t1 ← gr

3: t2 ← hr

4: c ← H(t1||t2)
5: s ← r − c · a mod q
6: Send s to the verifier

� Verifier accepts if gs · yc
1 = t1 and hs · yc

2 = t2

Subsequently, we use k and r to create the eligibility proof Prfe =
Hash(r, y, Prf

(H−1)
e ). If the validator is eligible to generate the next block, the

block signature is computed as follows: Sigb = Sign(x, blkheader) = (r, s).
To validate a block, nodes first verify the proof of knowledge to see if the

block signature uses the correct randomness r given the block height H. Then,
the block signature is verified similarly to the DSA signature verification process.
Finally, the eligibility proof is checked against the IsEligible predicate function.

In case of forks, the resolution algorithm is similar to that of Nxt. Namely,
each block contains a value of cumulative difficulty and nodes will adopt the fork
chain that has accrued the largest cumulative difficulty (cf. Sect. 2.1).

3.3 Security Analysis

To show the security of our protocol, it suffices to show that a node can reveal
the identity of a malicious validator based on his block signatures on conflicting
blocks and all nodes are able to verify whether the block signatures are correctly
constructed. Notice that since the nodes’ private keys are bound to their identity,
nodes will protect (e.g., they will not sell) their unused accounts—thus alleviating
long-range attacks.
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Algorithm 2. Generate k and r used for block signature
Input: Block height H, key pair (x, y′)
Output: DSA randomness k, r, and the proof of knowledge Ck, Ca, π1, π2, [〈Ci

r, π
i
r〉]

1: k ← a
1

H+x mod q � random function on H

2: r0
R←− Zw

3: Ck ← k · hr0 mod q � commit to k
4: Ca ← (Ck)

H+x mod q

5: π1 ← PK of same discrete log on Ca and aH+x = aH · y′

� Ca is correctly computed as CH+x
k

6: π2 ← Schnorr PK on Ca · a−1 = hr0·(H+x)

� k is correctly computed as a
1

H+x

� π1, π2: VRF proof of k masked by r0

7: r ← (gk mod p) mod q
8: for i ← 1 to n do
9: ri1

R←− Zw

10: Ci
r ← H(rh

r0+ri
1 mod p) � commit to ri1

11: end for
12: challenge ← H(C1

r || . . . ||Cn
r )

13: for i ← 1 to n do
14: if bit i of challenge == 0 then

15: πi
r ← r0 + ri1 mod w � verify if Ci

r = H(rh
πi

r )
16: else

17: πi
r ← ri1 � verify if Ci

r = H(gCk·hπi
r )

18: end if
19: end for

� πi
r: proof that r = gk with high probability

We first show that the block signatures generated by a malicious validator
MA on different blocks with the same block height H will recover the validator’s
private key, and therefore reveal his committed identity.

According to the construction of the block signature (r, s), r is deterministic
and only depends on the value of the block height H and the validator’s private
key x. In other words, if MA generates multiple blocks at the same height, the
block signature component r will be the same. According to the DSA signature
scheme, this will allow anyone to recover the validator’s private key x from two
signatures (r, s) and (r, s′). Since validator’s identity is encrypted by his pub-
lic key and committed to the network (cf. Identity Management in Sect. 3.2),
any node that has recovered a validator’s private key is able to reveal the cor-
responding identity. As a result, our block signature scheme discourages the
validators from creating conflicting blocks. In addition, the proof of knowledge
which comes along with the block signature proves that k and r are computed
correctly according to the VRF function (cf. Algorithm2 line 1) without reveal-
ing the value of k.
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We use multiple proof of knowledge (PK) schemes to achieve this. First, the
PK of equality of discrete logarithm π1 proves that Ca is indeed Ck to the power
of (H + x) with the help of aH+x. Then, the Schnorr PK π2 (cf. line 4) together
with π1 proves that k is correctly computed as a

1
H+x . This is because if Ca · a−1

cannot cancel out a, then the prover is not able to know the discrete logarithm
of hr0·(H+x). Finally, based on the standard PK [〈Ci

r, π
i
r〉], the validator proves

that r is correctly computed from k with the help of the committed value Ck,
for rh

r0 = gCk . Here, the proof of knowledge is repeated n times (line 13–19)
that can prevent cheating with a high probability of P = 1 − 2−n.

We also point out that the identity of an honest node will not be revealed, as
there is at most one signature per block height, thus the randomness of the DSA
signature is chosen securely. It is straightforward to show that if the attacker is
able to retrieve the identity of an honest node, he has to acquire the private key
of the node based on the DSA signatures.

Notice that according to [5], the VRF function a
1

H+x outputs an unpre-
dictable random number, therefore k can be used as the randomness for the
DSA signature. Moreover, DSA also requires that the value of k should never
be revealed. Our proof of knowledge schemes guarantee that the verifiers do not
have the knowledge of k.

Finally, our eligibility proof is computed based on the randomness compo-
nent r used in the block signature. This modification allows the eligibility proof
remain deterministic as our r is constructed deterministically given a certain
block height; moreover, it eliminates the problem of transparent forging (i.e.,
forger of each block is predictable in the network) as r is also unpredictable.
Compared to Ouroboros [11], our construction achieves grinding-resilience with-
out requiring the validators to coordinate in the network.

4 TEE-Based PoS

In the previous section, we introduced a solution that strongly penalizes misbe-
havior by exposing the identities of validators. Although this solution can indeed
deter misbehavior of the rational nodes in the network, it requires the reliance
on an identity provider. In this section, we introduce another PoS protocol that
drops this requirement and leverages Trusted Execution Environments (TEEs)
to enforce security.

4.1 Protocol Specification

Specification of the Setup Stage: We require all validators in the network
to be equipped with secure hardware to run trusted applications within TEE.
TEEs are pervasive nowadays and supported by many commodity platforms.
For instance, Intel’s SGX is being deployed on PCs and servers, while mobile
platforms are mostly supported by ARM’s Trustzone. TEEs define an isolated
environment running in parallel with the rich operating system. They addi-
tionally provide standard cryptographic functionalities and restrict the memory
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access from the hosting OS—thus ensuring secure execution for the code running
inside TEE.

We require that the eligibility proof and the block signature (cf. Sect. 2.1) are
generated by a trusted application within TEE. We denote it in the following as
the trusted application. To enforce this requirement, the validators need to prove
to the network that they are hosting legitimate trusted application for block
signing and their account keys are protected by the TEE and not accessible from
outside of TEE. This can be achieved by distributing the trusted application
as part of the client wallet application when nodes first join the network; and
the account key pairs are only generated inside the TEE during the application
initialization. The validators should also allow remote attestation for other nodes
to verify the integrity of the deployed trusted application. Here, we require the
platform certificates of validators’ secure hardware to be publicly verifiable.

PoS Protocol Specification: The main intuition behind our solution is to use
the trusted application to restrict the signing operations on the blocks. More
specifically, we rely on TEE’s monotonic counter to guarantee that there will
be at most one block generated at each height of the block chain; recall that
monotonic counters refer to increase-only registers that are resilient by design
to replay attacks.

In our trusted application, we track the block height information of each
signing request using monotonic counters. More specifically, we reserve two reg-
isters in the trusted application CTRep and CTRbs which are implemented using
monotonic counters. CTRep tracks the block height value submitted by the eli-
gibility proof requests, while CTRbs tracks the block height value submitted by
the block signature requests.

To construct an eligibility proof, the validator submits the eligibility proof
of the previous block along with the block height H of the current block to the
trusted application. The latter checks whether CTRep < H; if so, the validator
computes the eligibility proof as follows: Prfe = Sign(“ep”, x,H, Prf

(H−1)
e ),

where x is the validator’s private key; otherwise the request will be rejected.
Meanwhile, the trusted application updates its register CTRep with the height
information H. If validator’s eligibility proof is lower than the target (cf. Eq. 1),
the validator is eligible to generate the next block and becomes a leader. The
validator can therefore submit a request of block signature to the trusted applica-
tion with the information of the block header1. Similarly, the trusted application
checks if CTRbs < H is true, then a block signature is returned to the validator
as Sigb = Sign(“bs”, x, blkhdr), and the register CTRbs is updated. The block
validation process is similar as in Nxt (cf. Sect. 2.1). Nodes first verify if the sig-
natures are correct. Then, they check if the validator is eligible to generate the
block given the eligibility proof in his block. Similarly, we keep the fork resolu-
tion algorithm the same as Identity-based PoS. Figure 1a depicts the interaction
between the validator’s wallet application (which is untrusted) and the trusted
application for block signature. Here, a signing request with increasing block

1 The block height value is included in the block header.
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height can be processed successfully while a request with the same or smaller
block height will be rejected.

Protecting against Chain Switching: Notice that this aforementioned
process does not restrict the validators to only work on one particular fork of
the block chain. For example, while it is prohibited that a validator generates a
block at height H on both fork F and F ′, it is allowed that a validator generates
a block at height H on fork F and later on at height H + 1 on fork F ′. The
validators are allowed to do so as in some cases they might initially work on a
wrong fork (i.e., that differs from the output of the fork resolution algorithm)
because of network partitioning; therefore the validators are allowed to later
switch to work on another fork.

In other cases when the blockchain is able to define a correct chain to work on,
we should further restrict the node to only work on one fork and cannot switch
to other forks. To enforce this requirement, we extend our protocol to identify a
fork by tracking the blocks of the fork. Specifically, we reserve a register Hfork

in the trusted application to keep the accumulated hash of all the confirmed
blocks of a fork that the validator submits in the block signature requests. This
accumulated hash can uniquely identify a fork as it contains the information of
all the confirmed blocks in the fork.

To generate the block signature, the validator submits block headers
[blkhdrm, . . . , blkhdrn] that were confirmed since the last block signature request
to the trusted application. The latter computes and updates the accumulated
hash as H

(n)
fork = H(. . . (H(H(m−1)

fork , blkhdrm), . . . , blkhdrn). This value is then
included in the block signature, so that all nodes in the network are able to
verify it: Sigb = Sign(“bs”, x,Hfork, blkhdrn+1).

Figure 1b depicts an example where the validator requests the block sig-
nature to the trusted application. Here, we assume that the last signed block
is at height H = 3. We also assume there are two forks F with blocks
[blk1, blk2, blk3, blk4, blk5] and F ′ with blocks [blk1, blk2, blk3, blk

′
4, blk

′
5]. In the

first attempt, the validator submits a signing request for fork F at height H = 5.
The validator sends the confirmed blocks since the last signing request blk3 and
blk4 along with the request. To this point, the trusted application records the
accumulated hash of fork F up to blk4. In the second request, the validator
switches to another fork F ′ and requests a block signature at height H = 6.
Block blk′

5 is sent to the trusted application along with the request. As a result,
the trusted application updates the register Hfork to include blk′

5 and adds this
value to the block signature. However, this block signature will not be accepted
by the network, since H ′

fork identifies a fork composed by non-existing blocks
[blk1, blk2, blk3, blk4, blk

′
5].

4.2 Security Analysis

Notice that the account private keys are protected by the TEE, which prevents
an adversary from acquiring additional accounts to mount long-range attacks.
Therefore, to prove that our TEE-based PoS is secure, it suffices to show that:
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(i) a validator is unable to acquire more than one eligibility proof or block
signature for a block at a certain height, and (ii) a validator is unable to acquire
valid block signatures for blocks on other forks if a validator has already worked
on a different fork.

We first show that validators can only acquire at most one eligibility proof
or block signature for a block at a certain height. Since the account keys are
unique and protected by the trusted application whose integrity is attested by the
network, no one can generate a valid eligibility proof or block signature except the
trusted application (recall that we assume that the adversary cannot compromise
the TEE). For each signature request, the trusted application will first compare
the block height with what was signed last time before advancing the monotonic
counter. The TEE’s monotonic counter guarantees that the recorded block height
value is never repeated: an attacker can neither restart the counter nor replay a
previous block height value. Therefore, TEE-based PoS ensures that a validator
has only one chance to create an eligibility proof or a block signature for a
block at a certain height. This additionally prevents a malicious validator from
exhaustively searching the space of valid eligibility proof by changing the volatile
fields of a block such as the transactions set and the timestamp. Moreover, recall
that the forger of each block is predictable in the original Nxt’s PoS. Here, we use
digital signatures to generate eligibility proofs in an unpredictable manner—thus
eliminating the problem of transparent forging.

Fig. 1. (a) Misbehaved validator requests to sign the second block for another fork.
(b) Misbehaved validator requests to sign the second block for another fork.

We further show that our protocol extension prevents validators from gener-
ating blocks for different forks. Suppose any two forks fork and fork′ contain
two different confirmed blocks blkm and blk′

m at height m. Given the previous
guarantee, a validator can only generate one block signature for blocks at height
m. We assume it is block blkm and therefore blkm is included in the register
value Hfork. Later on, the validator would like to generate a block for fork′ at
height n. However, since blk′

m can never be included in Hfork (as blkm is already
included in Hfork), the validator cannot generate a valid block signature that
includes the information blk′

m for fork fork′, which is required for successful
block validation.
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5 Performance Evaluation

We implemented both PoS variants as well as Nxt’s PoS protocol [21]. To ensure
a fair comparison, we use in our implementation the same block structure as in
Nxt; our protocols only differ in the algorithms to compute and verify a block.

5.1 Experimental Setup

Our implementation is based on Golang. We use Intel SGX to provide hardware
security support and implement the trusted application of TEE-based PoS as
an SGX enclave. In all solutions, we use SHA256 as the hash function. For
Identity-based PoS, we implement our own DSA signature scheme for the block
signature with security parameters of 256-bit w, 2048-bit q, 2072-bit p, and
n = 80 challenges for the proof of knowledge; for TEE-based PoS, we use 256-bit
ECDSA as the signature scheme.

We deploy our validator on a server equipped with 8-Core Intel Xeon E3-1240
and 32 GB RAM. We vary the block size2 from 1 KB to 1000 KB and measure
the performance of signing and verifying a block.

5.2 Performance Evaluation

We measure the block generation time and block verification time of each pro-
tocol with respect to the block size. For Identity-based PoS, we additionally
compare the size overhead induced by the proof of knowledge.

Impact on the Block Generation Time: We first measure the latency to
generate a block for each protocol. Figure 2a shows that for small block sizes,
Nxt is slightly faster than TEE-based PoS. For example, when the block size
is 1KB, it takes 0.42 ms for Nxt to generate a block, compared to 1.7 ms for
TEE-based PoS. This is due to the fact that TEE-based PoS requires context
switching for the SGX enclave and leverages digital signature instead of hash
functions to compute the eligibility proof. However, this difference becomes less
pronounced as the block grows bigger; in these cases, the computation of the
hashes dominates the time to generate a block. For instance, when the block size
is as big as 500 KB, the block generation time for TEE-based PoS is equivalent
to Nxt’s (cf. Fig. 2c).

While TEE-based PoS is almost as efficient as Nxt, the block generation
process is however slower for Identity-based PoS. Even for small block sizes of
1 KB, Identity-based PoS requires 548 ms to generate a block. This overhead is
mostly due to the generation of the proof of knowledge for the block signature;
in this case, approximately 98% of the time is consumed in the generation of the
proof. In addition, the size of the block header also increases dramatically due
to the data field of the employed proof of knowledge schemes; the size grows to
19 KB for Identity-based PoS compared to only 200 B for Nxt.

2 We denote block size as size of the transaction set.



Securing Proof-of-Stake Blockchain Protocols 313

Impact on the Block Verification Time: We now assess the impact of our
protocols on the resulting block verification process. Our evaluation results are
depicted in Fig. 2a and d.

Our results show that TEE-based PoS and Nxt require almost identical block
verification times. For instance, when the block size is 1 KB, TEE-based PoS
requires 0.34 ms while Nxt takes 0.28 ms. Recall that signature verification does
not need to be performed inside the SGX enclave—which explains the compa-
rable verification time for block signature. However, verifying eligibility proof
is slightly slower in TEE-based PoS, as the eligibility proof used in TEE-based
PoS consists of a digital signature rather than a cryptographic hash.

As expected, the block verification for Identity-based PoS incurs considerable
verification times as the operation to verify the proof of knowledge is time con-
suming; our results show that it takes 772 ms to verify the proof of knowledge.
For block sizes of 1000 KB, this sums up to 870 ms to verify a block, which is
almost 8 times slower than Nxt.

Fig. 2. Performance evaluation results. Each data point in our plots is averaged over
4000 independent measurements; where appropriate, we include the corresponding 95%
confidence interval. EP stands for eligibility proof, BS for block signature, proof for
proof of knowledge, and Hash for hash over the transaction set.
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6 Conclusion

Although a number of PoS consensus protocols have been proposed for open
blockchain platforms in the past five years, these protocols still suffer from a
number of security shortcomings which prevents their large scale adoption in
existing open blockchains.

In this paper, we propose two PoS protocols that are secure against a num-
ber of threats including the nothing at stake attack and long range attack. The
idea of both protocols is to restrict the validators to generate at most one block
at a given block height. Our first protocol is a software-based solution with an
enhanced signature scheme which binds the randomness of the signature to the
block height value. Signing multiple blocks at the same height will thus reveal
validator’s private key as well as his identity. The limitation of this approach,
however, is the storage and computation overhead, as the block header needs to
include extra information over the proof of knowledge to verify that the signa-
ture randomness is correctly computed. Our second protocol is a hardware-based
solution which relies on the tamper-resistant hardware and the trusted applica-
tion for block generation. The trusted application records the information about
the last issued blocks and prevents the validator from repeatedly generating an
already generated block. We also extend our protocol to further prevent valida-
tors from working on different forks.

We implemented both protocols and evaluated their performance when com-
pared to Nxt’s PoS protocol. Our results show that the overhead incurred by
TEE-based PoS is negligible compared to Nxt’s PoS. On the other hand, by obvi-
ating the reliance on secure hardware support, Identity-based PoS results in more
significant overhead when generating and verifying of the proofs of knowledge.
We argue however that the performance of Identity-based PoS is still acceptable
when compared to reasonable block creation time. We therefore hope that our
results motivate further research in this area.
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Abstract. Merged mining refers to the concept of mining more than
one cryptocurrency without necessitating additional proof-of-work effort.
Although merged mining has been adopted by a number of cryptocur-
rencies already, to this date little is known about the effects and impli-
cations. We shed light on this topic area by performing a comprehensive
analysis of merged mining in practice. As part of this analysis, we present
a block attribution scheme for mining pools to assist in the evaluation of
mining centralization. Our findings disclose that mining pools in merge-
mined cryptocurrencies have operated at the edge of, and even beyond,
the security guarantees offered by the underlying Nakamoto consensus
for extended periods. We discuss the implications and security consider-
ations for these cryptocurrencies and the mining ecosystem as a whole,
and link our findings to the intended effects of merged mining.

1 Introduction

The topic of merged mining has received little attention from the scientific com-
munity, despite having been actively employed by a number of cryptocurrencies
for several years. New and emerging cryptocurrencies such as Rootstock continue
to consider and expand on the concept of merged mining in their designs to this
day [19]. Merged mining refers to the process of searching for proof-of-work
(PoW) solutions for multiple cryptocurrencies concurrently without requiring
additional computational resources. The rationale behind merged mining lies in
leveraging on the computational power of different cryptocurrencies by bundling
their resources instead of having them stand in direct competition, and also to
serve as a bootstrapping mechanism for small and fledgling networks [27,33].

In the past, concerns have been voiced that merged mining could lead to
additional security risks and challenges [27]. In particular, the realistic threat
of network centralization has rendered merged mining a controversial topic. Ali
et al. [1] observed a critical level of mining centralization in the merge-mined
cryptocurrency Namecoin, concluding that merged mining is failing in practice.
These alarming findings were not the result of direct investigations into merged
mining itself, but rather emerged as part of a report on the experiences with the
real-world deployment of a decentralized PKI service on top of the Namecoin
blockchain. Hence, an in-depth analysis of merge-mined cryptocurrencies based
on real-world data is necessary to determine if such observed failures in practical
applications are systemic to the underlying concept of merged mining.
c© Springer International Publishing AG 2017
J. Garcia-Alfaro et al. (Eds.): DPM/CBT 2017, LNCS 10436, pp. 316–333, 2017.
DOI: 10.1007/978-3-319-67816-0 18
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In this paper we conduct the first extensive study on the impacts of merged
mining on individual cryptocurrencies. We discuss security implications and con-
siderations regarding merged mining, while relating previous arguments from [27]
to the results of our study. We seek to provide empirical evidence either confirm-
ing or falsifying these arguments and extend the discussion by providing ideas
and examples for future experiments, which can lead to a better understanding
and classification of merged mining.

To cover a broad spectrum of merge-mined cryptocurrencies we analyzed
two established players and pioneers of the field, namely Namecoin and Doge-
coin, as well as two relatively young merge-mined cryptocurrencies supporting
merged mining with more than one PoW algorithm, namely Huntercoin [14] and
Myriadcoin [23]. Thereby, we present the following contributions:

– We analyze the effects and implications of merged mining in four cryptocur-
rencies over time and comment on its adoption, the related difficulty increase,
as well as other characteristic patterns.

– We introduce a deterministic mapping scheme that attributes blocks to spe-
cific miners and mining pools.

– We provide empirical evidence for centralization risks in cryptocurrencies
involved in merged mining. Furthermore, we are successful in attributing
merged mining activity to an apparently small set of mining pools.

– Concluding, we discuss the related security implications for cryptocurrencies
implementing merged mining.

The remainder of this paper is structured as follows. Section 2 provides the neces-
sary background information on fundamental concepts regarding proof-of-work
based cryptocurrencies and merged mining. Section 3 describes the cryptocurren-
cies considered in our study as well as the experimental methodology. Section 4
presents the results of our empirical analysis. In Sect. 5, we discuss the security
implications in relation to established claims and theoretical arguments regard-
ing merged mining. Furthermore, we propose new research questions and con-
clude the paper in Sect. 6, pointing out interesting directions for future work.

2 Background

A key aspect of Bitcoin constitutes its novel distributed consensus mechanism,
generally termed Nakamoto consensus. It leverages on proof-of-work (PoW) puz-
zles and the blockchain data structure to achieve eventual agreement on the set
and ordering of transactions by an anonymous and changing set of participants.
Nakamoto consensus thereby facilitates decentralized or so-called permissionless
cryptocurrencies. The process by which consensus participants in proof-of-work
cryptocurrencies search for valid PoW puzzle solutions is referred to as mining
and the speed at which such miners find solution candidates for the PoW is
called hash rate.

While efforts towards replacing the resource-intensive mining process have
so far yielded various promising approaches such as [5,18,22], their viability
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in practice is yet to be tested at a larger scale. Furthermore, due to the high
degree of adoption of proof-of-work in various cryptocurrencies and the difficul-
ties related to changing this consensus critical component, it can be assumed
that PoW will remain an integral part of the overall cryptocurrency landscape
in the foreseeable future.

2.1 Attacks on the PoW Security Model

The security properties of PoW cryptocurrencies are derived from the assump-
tion that the majority of the overall mining power belongs to honest miners.
Early work in Bitcoin security modeling concluded that the mining power of all
the honest miners has to be strictly greater than 50% to sustain the security
of the blockchain [24,31]. Should adversaries accumulate the majority of min-
ing power, they can control the insertion of new transactions, the transaction
fee market, and the supply of newly-mined coins, as well as potentially revert
already recorded transactions.

Attack strategies which can be successful even without controlling the
majority of mining power, most notably selfish mining [10,32] and eclipse
attacks [12,13,28] have been the topic of recent work. The success probabil-
ity of such adversarial strategies depends on the mining power share (α), as well
as the network connectivity (γ) of the adversary [10,28]. While a poorly con-
nected attacker (γ ≈ 0.1) is shown to require α > 0.33 to successfully perform
selfish mining attacks, an adversary connected to half of the nodes in the network
(γ ≈ 0.5) only requires α > 0.25. Hence, in a conservative analysis, successful
attacks on PoW cryptocurrencies are more likely when dishonest entities control
more than 25% of the total mining power.

2.2 Merged Mining

Merged mining refers to the process of reusing (partial) PoW solutions from a
parent cryptocurrency as valid proofs-of-work for one or more child cryptocur-
rencies. It was introduced as a solution to the fragmentation of mining power
among competing cryptocurrencies and as a bootstrapping mechanism for small
networks. Merged mining was first implemented in Namecoin in 2011, with Bit-
coin acting as the parent cryptocurrency. One of the earliest descriptions of the
mechanism as it is used today was presented by Satoshi Nakamoto in [33]. Apart
from the source code of the respective cryptocurrencies implementing merged
mining, a detailed technical explanation is presented in the Bitcoin Wiki [25].

The general idea of reusing proof-of-work such that the computational effort
invested may also serve to verify a separate computation was first introduced
by Jakobsson and Juels under the term bread pudding protocols in 1999 [15].
Previous research related to merged mining is mostly limited to the application
layer of the underlying cryptocurrencies. A short description of merged min-
ing is provided by Kalodner et al. in an empirical study of name squatting in
Namecoin [16]. Ali et al. highlights that Namecoin suffers from centralization
issues linked to merged mining, but provides no detailed study on the extent
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of the problem, nor on merged mining in general [1]. Other descriptions of and
references to merged mining can be found in [2,11,27], whereas [4,19] seek to
employ merged mining as a component of various blockchain-based applications.

For a cryptocurrency to allow merged mining the parent blockchain must
fulfill just one requirement: it must be possible to include arbitrary1 data within
the input over which the proof-of-work in the parent is established. The main
protocol logic of merged mining resides in (i) the specification and preparation
of the data linked to (or included in) the block header of the parent, e.g., a hash
of the child block header, and (ii) the implementation of the verification logic in
the client of the child blockchain.

2.3 Mining Pools

To generate a constant stream of revenue, miners may team up and form so
called mining pools, where they bundle their resources and share the rewards
based on their contribution and according to the rules of the pool. A mining
pool can be described as a “pool manager and a cohort of miners” [9]. To com-
pensate the administrative effort, the mining pool keeps a small proportion of
the total revenue as a fee2. Different reward distribution policies and related
game-theoretic aspects are studied in [20,30,34]. Optimal strategies for mining
pools in the context of adversarial behavior are discussed in [9,28,32]. Pool man-
agers can have the ability to maliciously mislead their miners into participating
in attacks, as happened in the case of Eligius (See Footnote 9). Although doing
so might result in miners switching to another pool once they learn about the
attack. The delay of these consequences however might be enough for the pool
to complete the attack.

3 Methodology

In this paper we consider the following subset of cryptocurrencies exemplary for
merged mining. Bitcoin, the first and currently largest cryptocurrency based on a
SHA256 PoW, serves as a starting point of our analysis and acts as one of the two
parent blockchains for merged mining we consider. Litecoin [21] is a fork of Bit-
coin, which replaces SHA256 with the memory-hard Scrypt cryptographic hash
function in its PoW algorithm. Litecoin’s primary aim was to counter the dom-
ination of ASICs, i.e., hardware devices specifically-built for high-performance
SHA256 hashing operations, in Bitcoin. At the time of writing it is the largest
Scrypt PoW cryptocurrency.

Namecoin [26], which intends to provide a decentralized and censorship resis-
tant alternative to the Domain Name System (DNS), was the first alternative
cryptocurrency and the first blockchain to introduce merged mining, in this case
with Bitcoin. While its design is heavily based on Bitcoin, Namecoin extends
1 In practice, being able to include the output of a cryptographically secure hash

function can be considered sufficient space.
2 Usually between 1 and 5%.
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the underlying protocol by introducing new transaction types, which enable the
storage and management of additional information in the blockchain (e.g., DNS
entries). Dogecoin [8] initially started as a non-serious project based on an inter-
net meme but was able to attract and maintain a vivid community. It is roughly
based on the Litecoin codebase and was the first cryptocurrency to introduce
Scrypt-based merged mining with Litecoin.

A new generation of so called multi-PoW cryptocurrencies was marked by
the introduction of Huntercoin [14] which supports SHA256 and Scrypt. Another
notable pioneer in this field is Myriadcoin [23], maintaining five different PoW
algorithms in parallel. The concept of multi-PoW aims to provide resistance
to mining centralization by including different types of proof-of-work in a sin-
gle cryptocurrency. Huntercoin and Myriadcoin furthermore are the first multi-
merge-mined cryptocurrencies, as they allow merged mining with multiple parent
chains, namely Bitcoin and Litecoin.

3.1 Data Set Collection

For our analysis we rely on the open and publicly-accessible ledgers (i.e.,
blockchains) of the examined cryptocurrencies, as they represent the most reli-
able source of information with regards to historical data3. The results pre-
sented in the rest of this paper are based on data collected from Bitcoin,
Litecoin, Namecoin, Dogecoin, Huntercoin and Myriadcoin up to a cut-off date
set to June 18, 2017 23:59:59 (UTC), i.e., Block 471,892 in Bitcoin, 347,175 in
Namecoin, 1,224,533 in Litecoin, 1,763,524 in Dogecoin, 1,788,998 in Huntercoin
and 2,089,974 in Myriadcoin.

3.2 Block Attribution Scheme

A key element for the investigation of mining power centralization issues is a cor-
rect attribution of blocks to the original miners. Hence, we devise an attribution
scheme using publicly-available information contained in the coinbase transac-
tions of both the parent and child blockchains as indicators. Thereby we rely on
the following fields:

Reward payout addresses. The coinbase transaction represents the first transac-
tion in a block and creates new currency units as reward for its miner. Assuming
miners act rationally and profit-oriented, they are expected to specify one of
their own addresses as output of this transaction. Hence, the reward payout
addresses of blocks can be used as strong indicator in the attribution scheme.

Coinbase signatures (markers). Miners and especially mining pools often utilize
the coinbase field of the coinbase transaction to publicly claim the creation
of the respective block, by inserting their so-called block- or coinbase signature.
As the latter represents a human-readable string indicating the pool name or

3 While some public APIs are available for Bitcoin (e.g., http://blockchain.info/),
online sources the other cryptocurrencies are scarce and not well-maintained.

http://blockchain.info/
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an abbreviation thereof, rather than a cryptographically-strong signature, we
hereafter refer to this piece of information as marker.

Collecting and Linking Markers and Addresses. At the time of writing
there exists no global registry for markers or reward payout addresses of min-
ers or mining pools4. Therefore, this information must be collected by analysis
of publicly-available records including but not limited to websites of mining
pools and discussion forums, as well as direct contacts with pool operators.
As an outcome of this process, we are able to compile a list of block attribut-
ion indicators for 95 miners and mining pools, which operated in the observed
cryptocurrencies.

Merge-mined blocks can contain up to four attribution indicators: the coin-
base marker and reward payout addresses of the child chain, as well as the coin-
base marker and reward payout addresses of the parent chain, which are stored
in the so called AuxPoW header5. This allows to establish connections between
reward payout addresses across multiple cryptocurrencies and to detect if miners
switch between multiple addresses. Hence, reward payout addresses appearing in
parent and child coinbase transactions of all blocks are checked for intersections.
More specific: an address of the parent chain appearing in the coinbase of the
AuxPow header allows to link it to the child chain address used in the coinbase
transaction of the block. The child chain address in turn can appear in blocks
together with other parent chain addresses, creating more links, and so on.

Attributing Blocks to Miners. A block is considered attributed to a miner if
one of his markers or reward payout addresses appears in the respective fields of
the coinbase transaction. However, a miner is technically allowed to use this first
transaction to immediately split the block rewards to multiple outputs, this way
also potentially obfuscating his identity. It is not easily possible to determine
the miner of a block, unless a known coinbase marker is used or all addresses
appearing in the outputs of the coinbase transaction are associated with the same
miner or mining pool. If this is the case, the block is marked as non-attributable.
A visualization of the scheme for merge-mined blockchains is provided in Fig. 1.
Payout addresses appearing often in mined blocks but which cannot be linked
to an identified miner or mining pool are denoted as other unknown miners.

However, for a permissionless proof-of-work cryptocurrency, where partici-
pants are not obliged to disclose their activity, it is not feasible for a third party
to fully reconstruct a miner’s history of action retroactively. Furthermore, miners
may actively try to hide their identity by avoiding the reuse of payout addresses,
not using any markers or using markers associated with other identities. Hence,

4 To the best of our knowledge, the most detailed list of Bitcoin mining pools
can be found here: github.com/blockchain/Blockchain-Known-Pools/blob/master/
pools.json.

5 Additional header in merge-mined blocks, used to verify the PoW performed in the
parent chain.

https://github.com/blockchain/Blockchain-Known-Pools/blob/master/pools.json
https://github.com/blockchain/Blockchain-Known-Pools/blob/master/pools.json
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Fig. 1. Block attribution scheme for merge-mined blockchains. The process for parent
chains like Bitcoin and Litecoin is analogous.

it is not possible to identify all miners and mining pools with 100% accuracy by
relying only on the information present in the public ledger.

4 Merged Mining in Practice

In this section we present the results of our analysis of merged mining and
provide evidence for mining power centralization issues in the implementing
cryptocurrencies.

4.1 Degree of Adoption

Merged mining was introduced at block 19,200 in Namecoin (Oct. 2011), 11,163
in Huntercoin (Feb. 2014), 317,337 in Dogecoin (Jul. 2014) and 1,402,791 in
Myriadcoin (Sept. 2015). The developers of Namecoin, Dogecoin and Huntercoin
also disabled normal mining in the official clients at introduction. Hence, from
that point forward over 99% of the blocks have been created through the process
of merged mining in these cryptocurrencies. Table 1 shows the total distribution
of normal and merge-mined blocks.

Table 1. Merge-mined blocks in examined cryptocurrencies.

Blockchain Normal Merge-mined % of Total

Huntercoin 15,083 1,773,916 99.2

Namecoin 19,330 327,846 94.4

Dogecoin 373,927 1,389,553 78.8

Myriadcoin 1,789,994 299,981 14.4
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4.2 Effects on PoW Difficulty

The main objective of merged mining is to attract more miners and hence
increase the difficulty of the child blockchain [27]. By extracting the informa-
tion on the PoW difficulty encoded in each block header, we are able to confirm
merged mining indeed has a positive effect in this respect.

Figure 2 visualizes the development of the SHA256 PoW difficulty in Bit-
coin compared to Namecoin, Huntercoin and Myriadcoin on a logarithmic scale.
The PoW difficulty of the merge-mined chains rapidly increased after the intro-
duction of merged mining. Furthermore, the behavior of Bitcoin’s difficulty is,
to some extent, mirrored to the merge-mined cryptocurrencies. For example,
between January 2012 and April 2013 the difficulty remained stable in both Bit-
coin and Namecoin, until an upward trend occurred in May 2013. The latter
coincides with the wide deployment of specialized hardware dedicated to mining
(ASICs) [35]. The visualization for Litecoin and Scrypt merge-mined cryptocur-
rencies is provided in Fig. 3. An interesting observation is that the PoW difficulty
of the multi-merge-mined cryptocurrency Myriadcoin exceeded that of Litecoin,
one of its parent blockchains, by 31,85%.

Fig. 2. Difficulty development in Bitcoin compared to SHA256 merge-mined cryp-
tocurrencies over time on a logarithmic scale (since the launch of Bitcoin).

4.3 Impacts on Mining Power Distribution

In order to investigate the connection of merged mining and mining power cen-
tralization, we apply the attribution scheme described in Sect. 3.2 to the eval-
uated cryptocurrencies. A block is considered successfully mapped, if we can
attribute it to either a known mining pool, or a reused reward payout address.
Based on this scheme we are able to map the following percentage of blocks
within the respective cryptocurrency: 59.1% for Bitcoin, 88.5% for Namecoin,
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Fig. 3. Difficulty development in Litecoin compared to Scrypt merge-mined cryptocur-
rencies over time on a logarithmic scale (since the launch of Litecoin).

73.2% for Litecoin, 99.5% for Dogecoin, 82.7% for Huntercoin and 87.2% for
Myriadcoin.

The low attribution success rate for Bitcoin may be explained by taking into
consideration its early mining landscape, where blocks were primarily mined by
individuals. It is generally considered best practice not to reuse reward payout
addresses and the official client at the time would exhibit this behavior. The use
of markers only became popular once miners started to join forces by forming
mining pools in late 2011.

Similar observations can be made for the other cryptocurrecies we analyzed,
albeit at a smaller scale.

The attribution results, summarized in Tables 2, 3, 4, 5, 6 and 7, suggest
that a small set of mining pools are able to control significant portions of the
overall mining power across multiple cryptocurrencies. While in some cases this
is explained by their long-term commitment to mining on the respective chain,
pools like GHash.IO, BW Pool and F2Pool appear to have enough capacity to
concurrently conduct competitive mining operations in both Bitcoin and Litecoin
(i.e., on different PoWs). In fact, F2Pool, which represents one of the largest
mining pools across both SHA256 and Scrypt PoW cryptocurrencies, was able
to accumulate block shares exceeding the security guarantees of the Nakamoto
consensus protocol (cf. Fig. 4).

However, not all miners and mining pools currently participate in merged
mining. A possible explanation is the economies of scale attributed to merged
mining [27]. Since no additional computational effort is required for the PoW,
the costs of merged mining, namely bandwidth, storage and validation of
blocks/transactions, are the same for all miners, regardless of their mining
power. In particular smaller mining operations may face the situation that their
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Table 2. Bitcoin block
attribution

Pool Blocks (%)

Smaller pools (share <1.5%) 74,753 15.8

F2Pool 35,955 7.62

BTC Guild 32,932 6.98

AntPool 26,884 5.70

GHash.IO 23,063 4.89

SlushPool 19,650 4.16

BitFury 16,070 3.41

BTCC 15,228 3.23

Other unknown miners 11,706 2.48

Eligius 11,424 2.42

BW Pool 11,075 2.35

Attributed (total) 278,740 59.1

Non-attributable blocks 193,151 40.9

Table 3. Namecoin block
attribution

Pool Blocks (%)

F2Pool 88,795 25.6

BTC Guild 54,623 15.7

GHash.IO 34,239 9.86

SlushPool 26,726 7.70

Smaller pools (share <1.5%) 24,832 7.15

Eligius 21,144 6.09

BitMinter 18,788 5.41

EclipseMC 12,954 3.73

BTCC 11,298 3.25

ViaBTC 7,734 2.23

N3aNrkyTKY... 6,027 1.74

Attributed (total) 307,160 88.5

Non-attributable blocks 39,927 11.5

Table 4. Litecoin block
attribution

Pool Blocks (%)

Smaller pools (share <1.5%) 284,339 23.2

F2Pool 240,691 19.7

LTm3aN5CbZ... 62,623 5.11

Clevermining 56,340 4.60

Other unknown miners 51,671 4.22

BW Pool 47,229 3.86

litecoinpool.org. 35,806 2.92

LTC1BTC/LTC.BTC.TOP 28,627 2.34

LTZaRkmkTJ... 23,342 1.91

GHash.IO 22,435 1.83

LiteGuardian 22,148 1.81

Give Me Coins 21,299 1.74

Attributed (total) 896,550 73.2

Non-attributable blocks 327,984 26.8

Table 5. Dogecoin block
attribution

Pool Blocks (%)

F2Pool 497,013 28.2

Other unknown miners 353,671 20.1

Clevermining 187,376 10.6

Smaller pools (share <1.5%) 186,348 10.6

Litecoin pool using LTm3aN5CbZ2Ns34... 160,644 9.11

litecoinpool.org. 113,283 6.42

BW Pool 91,265 5.18

LTC1BTC/LTC.BTC.TOP 65,228 3.70

yihaochi.com 35,745 2.03

Coinotron 34,694 1.97

GHash.IO 29,814 1.69

Attributed (total) 1,755,081 99.5

Non-attributable blocks 8,443 0.5

Table 6. Huntercoin block
attribution

Pool Blocks (%)

F2Pool 1,142,821 63.9

litecoinpool.org. 282,136 15.8

HaoBTC 27,974 1.56

Smaller pools (share < 1.5%) 26,057 1.46

Attributed (total) 1,478,988 82.7

Non-attributable blocks 310,010 17.3

Table 7. Myriadcoin block
attribution

Pool Blocks (%)

Smaller pools (share <1.5%) 587,986 28.1

Other unknown miners 423,684 20.3

nonce-pool 192,193 9.20

MiningPoolHub 181,168 8.67

Zpool 135,876 6.50

MJv9fLd7Qj... 64,720 3.10

LTC1BTC/LTC.BTC.TOP 48,132 2.30

Multipool 44,510 2.13

MWQVvPypce... 40,281 1.93

GHash.IO 37,916 1.81

wafflepool 33,605 1.61

Nut2Pools 31,359 1.50

Attributed (total) 1,821,430 87.2

Non-attributable blocks 268,544 12.8

additional expenditures for merge-mining another cryptocurrency exceed the
expected rewards.

Resulting Mining Power Centralization Issues. The number of blocks
found by a miner over a certain period indicate his actual hash rate (i.e., their
mining power) during this period. Hence, we use the number of blocks generated
by the largest miner or mining pool per day as an approximation for measuring
the centralization of mining power6. Our findings are visualized as heatmaps in
Fig. 4. Therein, each bar (column) represents the number of blocks mined by
the largest entity on that day. We use the thresholds described in Sect. 2.1 as
centralization indicators. If exceeded, the latter are known to introduce potential
threats on the decentralization and security level of a PoW blockchain:

6 We set the observation period to 24 hours to avoid extreme variance caused by
lucky/unlucky streaks of miners since the time between found blocks is exponentially
distributed, while still achieving accurate results.



326 A. Judmayer et al.

– Below 25% (green) - Highest share is below the pessimistic threshold.
– Greater 25% (yellow) - Highest share is between 25% and one third.
– Greater 33.33% (orange) - Highest share is between one third and 50%.
– Greater 50% (red) - Highest share controls the majority of mining power.

In Bitcoin no single miner or mining pool has been able to aggregate and
maintain more than 50% of the overall mining power for an extended period,
since blocks became attributable7. (Table 8) However, the situation is quite dif-
ferent in Namecoin: here, F2Pool reached and maintained a majority of the
mining power for prolonged periods.

Litecoin, despite being the largest Scrypt PoW blockchain, has experienced
slight centralization since mid-2014, among others caused by Clevermining and
lately F2Pool. Through merged mining, this situation is reflected and amplified
in Dogecoin: F2Pool was responsible for generating more than 33% of the blocks
per day for significant periods, even exceeding the 50% threshold around the end
of 2016.

The effects of introducing merged mining have played out differently in the
two multi-PoW cryptocurrencies we analyzed. While Huntercoin was instantly
dominated by F2Pool and remained in this state until mid-2016, Myriadcoin
appears to have experienced only a moderate impact. However, we note that so
far none of the large mining pools that are active in other merge-mined chains
have been observed to also operate in Myriadcoin.

Table 8. Distribution of overall percentage of days below/above the centralization
indicator thresholds.

Blockchain ≤ 25% > 25% > 33.33% > 50%

Bitcoin 75.7 24.3 5.43 0.03

Namecoin 11.7 88.3 66.6 30.5

Litecoin 45.0 55.0 35.9 0.75

Dogecoin 16.3 83.7 60.7 2.45

Huntercoin 1.53 98.5 96.1 81.0

Myriadcoin 87.7 12.3 6.20 0.2

Mining Power Fluctuation. The operation of a mining pool requires exten-
sive coordination effort in terms of recruiting miners or purchasing and installing
the necessary infrastructure. Hence, it usually takes time until a mining pool
is able to accumulate significant mining power shares. Merged mining, how-
ever, requires only minimal effort and can be described as a “software switch”.
Consequently, the observable high fluctuations of mining power in merge-mined
cryptocurrencies may be attributed to mining pools being able to easily start
7 It is in the realm of possibility that in the early days of Bitcoin individual miners,

such as Satoshi Nakamoto himself have controlled large shares of the overall mining
power.
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Fig. 4. Block share of largest miner/mining pool per day for Bitcoin (144
blocks), Litecoin (576 blocks), Namecoin (144 blocks), Dogecoin (1,440 blocks),
Huntercoin (1,440 blocks) and Myriadcoin (1,440 blocks) since launch of the respective
cryptocurrency. (Color figure online)
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Fig. 5. Distribution of blocks in Namecoin per pool over time. Each data point resem-
bles the share among 2,016 blocks (∼ 2 weeks), i.e., the difficulty adjustment period.

or end their operation without major preparations (cf. Fig. 5, e.g. around block
300,000).

A further interesting observation is the increase of non-attributable blocks
occurring simultaneously to drops of mined blocks that are attributable to large
mining pools. Such behavior is observed in Litecoin, Huntercoin and Namecoin
(cf. Fig. 5 approximately at block 250,000). Further analysis and investigation
into such events is necessary to rule out that these are attempts of pools to
conceal their total mining power when operating near or beyond the security
guarantees offered by Nakamoto consensus

5 Discussion

In this section we discuss the security implications of merged mining on the
ecosystem of cryptocurrencies and study how current theoretic arguments relate
to our findings.

Introduction of New Attack Vectors. The advantage of merged mining is
that miners are no longer forced to choose between mining one cryptocurrency
or another. However, its biggest strength can also be viewed as a potential attack
vector [27]. The ability to generate blocks for the merge-mined child blockchains
at almost no additional cost, apart from maintaining a client node, allows mis-
behaving miners to carry out attacks without risking financial losses in both the
parent and other child blockchains. Such an attack was carried out by the Eligius
mining pool in 2012. Without their explicit consent, its miners were coerced
to participate in an attack led by the pool operator, ultimately stalling the
operation of the fledgling cryptocurrency CoiledCoin by mining empty blocks8.
8 cf. https://bitcointalk.org/index.php?topic=56675.msg678006#msg678006.

https://bitcointalk.org/index.php?topic=56675.msg678006#msg678006
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This attack serves as the predominant example for highlighting threats posed by
merged mining on child cryptocurrencies: the miners of the pool did not suffer
any financial loss and, as it appears, were not even aware of the attack, as all
actions were performed solely by the operator.

However, to the best of our knowledge, it was never explicitly stated that
merged mining may also facilitate attacks against a parent cryptocurrency. Con-
sider for example a miner who is highly invested in a multi-merge-mined cryp-
tocurrency. Due to merged mining this miner can perform attacks on one of
the supported parent blockchains (e.g. selfish mining or DoS through mining
empty blocks) at no additional mining cost. While such scenarios previously
seemed far-fetched, as the PoW difficulty of a parent blockchain was generally
considered to exceed that of a merge-mined child, this is no longer the case for
multi-merge-mined cryptocurrencies (see Sect. 4.2). This highlights that merged
mining as an attack vector works both ways. Such attacks are particularly inter-
esting because parent cryptocurrencies cannot easily prevent being merge-mined
by child blockchains.

Furthermore, we describe a reputation attack as a noteworthy adversarial
strategy in the context of merged mining. Since block attribution to pools is
currently based on markers and addresses, rather than cryptographic signatures,
an adversary can fake attribution of parent blocks while still earning revenue in
the child chains. We consider a scenario where a targeted mining pool P holds
a 24% mining power share of a parent chain Cparent, which can be used to
merge-mine a child chain Cchild. We assume a malicious merged mining entity
M holds only 10% share of Cparent and uses the Cchild (and not Cparent) as its
main revenue channel. In such a scenario, it would be possible for M to create
≈ 10% of the blocks in Cparent. M could now fake the attribution of its blocks in
Cparent by using the (public) reward address and/or coinbase marker of P. Due
to the false flag blocks attributed to P, this pool would appear to hold 34% of
the share for Cparent. As a result, P might be regarded as too large or nefarious
for the parent cryptocurrency, which could in turn undermine the integrity of
the parent chain as a whole. While M will lose all revenue in Cparent, it will still
gain revenue in Cchild.

Centralization Risks. Merged mining does not increase the costs to the
miner in regards to solving the Proof-of-Work puzzle, which is considered to
be the primary cost factor in PoW cryptocurrencies. However additional costs
regarding bandwidth, storage and validation of the merge-mined blockchain’s
blocks/transactions are incurred regardless of the relative size or hash rate of
the miner. Therefore, according to [27] merge-mined cryptocurrencies have a
greater risk of centralization or concentration of mining power (economies of
scale).

Our analysis indicates that merge-mined child blockchains experienced pro-
longed periods where individual mining pools have held shares beyond the the-
oretical bounds that guarantee the security of the cryptocurrency. We con-
clude that current merge-mined currencies have a trend towards centralization.
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However, it is too early to tell if the centralization trend also applies to multi-
merged-mining in cryptocurrencies such as Myriadcoin. Multi-merge-mined
blockchains allow for more than one parent cryptocurrency and have a greater
chance to acquire a higher difficulty per PoW algorithm, in comparison to
the respective parent blockchain. This, in fact, may change the underlying
(crypto)economic assumptions with regards to merged mining and introduces
new directions for research in this field.

The theoretic implications of a dishonest miner holding a large share of the
network hash rate are well known [3,12,17,28]. However, we are not aware of
any recent case where such an attack has been carried out in one of the analyzed
cryptocurrencies, as such evidence cannot easily be derived solely by analyzing
the blockchain data structures. Rather, active measurements within the P2P
network of the cryptocurrency are necessary [17]. Our analysis serves as a cau-
tionary note – the impact of such an attack on the cryptocurrency market and
the mining ecosystem are unclear. The apparent lack of cryptographically verifi-
able attribution information regarding the hash rate of mining pools only renders
the situation worse. This bares additional risks of intended or unintended mis-
attribution of non negligible fractions of the overall hash rate.

Furthermore, we want to point out that through the alternative use-cases of
some of the merge-mined cryptocurrencies, certain attacks may also have addi-
tional implications. Namecoin for example, can be used to register and update
arbitrary name-value pairs, such as DNS entries. In this case, every registered
domain expires after a certain number of blocks (i.e., amount of time). Should a
mining pool hold a large block share at that time, it can take over a domain name
by blocking the required update (refresh) transaction to enter the blockchain in
time. Once the domain name has expired, the misbehaving pool can register the
domain himself.

Validation Disincentive. Not only the detection of misbehaving pools with
large hash rates requires active network monitoring, but also the verification of
the validation disincentive assumption: In [27] the authors propose that miners
which participate in merged mining have an incentive to skimp on (transaction)
validation, since it becomes the main (computational) cost driver in merged
mining. Although not mentioned explicitly in [27], the rate of blockchain forks,
i.e., stale block rate of merged mined cryptocurrencies, could be an indicator
for relaxed transaction validation of miners. Since stale blocks are not directly
recorded in the blockchain, the only way to acquire the required measurements
is through active monitoring of the involved peer-to-peer networks, as demon-
strated in [6,7]. Conducting these measurements for multiple merge-mined cryp-
tocurrencies is topic for future work. In addition, it might be necessary to actively
trigger those conditions by broadcasting incorrect transactions/blocks. However,
we stress that performing such tests in live networks raises ethical and financial
questions.
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Long-Term Dependency. Merged mining was originally conceived as a boot-
strapping technique for alternative cryptocurrencies [27,33]. To the best of our
knowledge, once introduced, no cryptocurrency has abandoned merged mining
– not even the child cryptocurrencies which our analysis in Sect. 4 has shown to
suffer from centralization issues. Hence, we argue that although merged mining
can increase the hash rate of child blockchains, it is not conclusively successful
as a bootstrapping technique.

Results presented in [29] indicate that even if a PoW blockchain should just
be used in a bootstrapping phase before switching to a different consensus algo-
rithm, it is theoretically necessary to keep on mining infinitely long. Otherwise
it would be impossible for new nodes joining the network to distinguish between
the original bootstrapping chain and a longer, but malicious counterpart. In
theory, this might pose a new use case for merged mining in scenarios where a
blockchain is bootstrapped using PoW and then switches to a different consensus
algorithm. In this case the PoW bootstrapping chain can be continued relatively
cheap through merged mining by appending empty blocks.

6 Conclusion

In this paper, we assessed current theories regarding merged mining from an
empirical point of view and contributed to the discussion by raising new questions
and directions for future work.

We derived a simple attribution scheme and achieved to map a significant
portion of the mining pool ecosystem of the analyzed cryptocurrencies, beyond
what was publicly known until now. The collected information sheds some light
on the long-term evolution of merged mining in different cryptocurrencies. While
merged mining is a common practice in the cryptocurrency space, the empirical
evidence suggests that only a small number of mining pools is involved in merged
mining. These pools enjoy block shares beyond the desired security and decen-
tralization goals. It is currently unclear and topic of future research whether new
constructs, such as multi-merged mining, will succeed in resolving the outlined
issues.

The multi-purpose usage of PoW in merged mining is an interesting applica-
tion, not only from a resource consumption point-of-view, but also in the con-
text of future sharding and scalability discussions. Therefore, further research
and analysis regarding merged mining is required as a basis for developing and
building solutions, which will be able to stand the test of time.
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Abstract. We present atomic trade protocols for Bitcoin and Ethereum
that can bind two parties to swap coins in the event that two blockchains
emerge from a single “pre-fork” blockchain. This work is motivated by
a bet between two members of the Bitcoin community, Loaded and
Roger Ver, to trade 60,000 bitcoins in the event that Bitcoin Unlim-
ited’s planned hardfork occurs and the blockchain splits into two distinct
forks. Additionally we study several ways to provide replay protection
in the event of hardfork alongside a novel mechanism called migration
inputs. We provide a detailed survey and history of previous softforks
and hardforks in Ethereum and Bitcoin.

1 Introduction

Bitcoin [29] is the world’s first successful and most valuable cryptocurrency. In
June 2017, it reached a market cap of $ 43 bn USD [10] and processed ≈ 250,000
transactions per day [4]. However, Bitcoin’s future is uncertain; it is reaching its
capacity limits, and so far the community has failed to reach consensus on how
best to increase its capacity.

One proposed approach for increasing capacity, called Bitcoin Unlimited
(BU), involves removing the 1-megabyte-per-block parameter that most directly
effects the capacity limit [35]. A competing approach, the Core Roadmap [26],
calls for a technical upgrade called SegWit [24], followed by deployment of the
overlay payment network, Lightning [30]. Both approaches require changing the
network’s consensus rules; however there is a critical difference between them,
BU is implemented as a hardfork upgrade, whereas Core relies on softforks.
These two approaches are mutually incompatible: unlike a hardfork, a softfork
is “forward-compatible” in the sense that blocks mined using the new rules can
still be processed by non-upgraded clients (for additional details see Sect. 2.3).

If the community remains divided on which approach to support, then
the result may be a schism, where each faction maintains a distinct fork of
c© Springer International Publishing AG 2017
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Bitcoin with mutually incompatible consensus rules.1 Both blockchains will
diverge post-fork, but share the same pre-fork transaction history. We denote
the non-upgraded fork as Fork-1 and the fork with new consensus rules as
Fork-2. As both forks share a common history, a party holding X coins in the
pre-fork blockchain will, after the hardfork, hold X coins in Fork-1 and hold X
coins in Fork-2.

In this paper we consider the scenario where, prior to a hardfork, Alice and
Bob decide to bet on which of the two forks will be most valuable. After the
hardfork, Alice’s coins in Fork-1 are sent to Bob, and Bob’s coins in Fork-2
are sent to Alice. Remarkably, this gambling scenario is inspired by real-world
events: two wealthy members of the Bitcoin community, Loaded2 and Roger Ver,
have expressed the desire to arrange a 1:1 trade of coins in the event that Bitcoin
Unlimited performs a hardfork from Bitcoin [23]. Roger wants to exchange 60,000
of his coins on Fork-2 for 60,000 of Loaded’s coins on Fork-1. After the trade
Loaded would have 120,000 coins on Fork-1 and Roger would have 120,000
coins on Fork-2 (this trade was roughly $120 million USD when proposed).

There are two previously known approaches we could employ for cross-chain
trades, though both have drawbacks in this scenario. In the first approach, both
parties escrow funds with a third party who facilitates the trade; several protocols
have been outlined by Goldfeder et al. [14] that could mediate such a trade. The
second approach, an atomic cross-chain swap smart contract, was proposed by
TierNolan [33] (see Appendix A for details). Unfortunately the first approach
requires a trusted third party and the second does not allow users to commit to
the bet prior to the hardfork.

In this paper we introduce a novel atomic cross-chain trade where the trade
can be committed prior to the activation of a hardfork, but executed after the
hardfork. We construct protocols for both Bitcoin and Ethereum (the second
most popular cryptocurrency with a market cap of $29 bn USD as of June 2017
and which had four hardforks in 2016). It is worth mentioning that our protocol
for Bitcoin does not require a fix for transaction malleability, but relies on the
hardforked blockchain Fork-2 implementing replay protection3. On the other
hand, our protocol for Ethereum leverages a Hardfork Oracle contract that can
detect if it is on Fork-1 or Fork-2. Our contributions are:

– The first atomic cross-chain trade protocols for Bitcoin and Ethereum that
can transfer coins across both sides of a hardfork

– A novel mechanism which we call migration inputs that provides replay pro-
tection in the event of a Bitcoin hardfork.

– A detailed history of hardforks and softforks in Bitcoin and Ethereum.

1 A schism has previously occurred in the case of Ethereum, whose TheDAO hardfork
precipitated a split into Ethereum and Ethereum Classic.

2 Loaded is a pseudonym used by a person on the bitcointalk forums.
3 The user can choose which blockchain can accept their newly signed transaction.
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2 Background

In this section we cover technical background for our protocols, a history of
soft/hardforks in Bitcoin and Ethereum and a survey of replay protection propos-
als for Bitcoin including migration inputs a novel replay protection mechanism.

2.1 Bitcoin

Bitcoin is a digital currency that facilitates trading the ownership of a single asset
(i.e. bitcoins). Users send bitcoins to other users by publishing transactions.
All transactions are stored in a globally replicated data structure called the
blockchain. A computationally expensive process called mining (i.e. Proof-of-
Work) is responsible for periodically electing a leader to create and append a new
block of recently authorised transactions to the blockchain. To understand our
protocol we focus on a Bitcoin transaction’s scripting and lock time capability.

A Bitcoin transaction contains a list of inputs and outputs. Inputs specify
the source of bitcoins along with evidence that the spender is authorized to
spend these bitcoins. Outputs specify the conditions that must be satisfied before
its associated bitcoins can be spent. Inputs and outputs are controlled using a
limited forth-like language called script. The most popular script is the pay-to-
pubkey-hash script which requires a digital signature σA from the corresponding
secret key of a specified Bitcoin address (i.e. hash of the public key H(PKA)).

Scripts can include a function CHECKLOCKTIMEVERIFY [34] to prevent spend-
ing an output until time t. This lock time t is compared against the median time
of the previous 11 block’s timestamps [21]. It is worth mentioning that a block’s
timestamp must be greater than the median timestamp computed over the 11
previous blocks and it must not be greater than 2 hours from a node’s network
time. As a result, the median time is loosely-bound with current time.

2.2 Ethereum

The motivation for Ethereum (and Ethereum Classic4) is to store and execute
expressive smart contracts on a peer-to-peer network as opposed to simply trad-
ing a single asset. Similar to Bitcoin, users must authorize transactions using an
Ethereum account (i.e. public-secret key pairs) and miners are responsible for
appending new blocks to the blockchain. Unlike Bitcoin, the transaction payload
contains the code/execution instructions for the contract and the transaction’s
destination is the contract address5. Here we focus on the capability of smart
contracts and how coins can be locked for a pre-determined period of time.

Ethereum smart contracts are written in Solidity which is a Javascript-like
language. Prior to being stored in the blockchain this code is compiled from
Solidity to EVM (Ethereum Virtual Machine) code. Transactions that contain

4 Emerged in July 2016 after Ethereums’s TheDAO hardfork.
5 The hash of the transaction’s nonce and the creator’s Ethereum accounts address.
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Table 1. Previous forks. A list of significant softforks, hardforks and blockchain
splits in Bitcoin, Ethereum and Ethereum Classic.

Name Date Softfork Hardfork Split

Bitcoin

1MB Block Size 12th Sep 2010 ✓ ✗ ✗

182 Billion Coins 15th Aug 2010 ✓ ✗ ✓

BIP30 15th Mar 2012 ✓ ✗ ✗

BIP16 15th Apr 2012 ✓ ✗ ✗

Bitcoin Core 0.8 11th Mar 2013 ✗ ✗ ✓

BIP34 24th Mar 2013 ✓ ✗ ✗

BIP50 16th Aug 2013 ✗ ✓ ✗

BIP66 4th Jul 2015 ✓ ✗ ✓a

BIP65 8th Dec 2015 ✓ ✗ ✗

BIP68/112/113 4th Jul 2016 ✓ ✗ ✗

Ethereum

Homestead 14th Mar 2016 ✗ ✓ ✗

TheDAO 20th Jul 2016 ✗ ✓ ✓

Tangerine Whistle 18th Oct 2016 ✗ ✓ ✗

Spurious Dragon 22nd Nov 2016 ✗ ✓ ✓b

Ethereum Classic

Gas Reprice 25th Oct 2016 ✗ ✓ ✗

Die Hard 13th Jan 2017 ✗ ✓ ✗
a It was discovered that a significant portion of miners who
signaled for the activation of BIP66 were not fully validating
blocks (i.e. spv mining). This led to a temporary blockchain
split and the invalid fork was eventually discarded.
b The blockchain split occurred on the 24th November 2016.

EVM code are propagated throughout the network and deterministically exe-
cuted by all peers using their copy of the EVM. The transaction is stored in the
blockchain to ensure the contract’s state is no longer reversible.

It is worth mentioning that locking coins until time t can be expressed in a
straight-forward manner. Solidity supports accessing a block’s timestamp using
block.timestamp or a block’s height using block.number. Furthermore, there
is a tighter-bound on a block’s timestamp as it must be greater than the previous
block and strictly less than the user’s local clock [28]. Next, we discuss soft and
hardforks that have occurred in Bitcoin and Ethereum.

2.3 History of Forks

Cryptocurrencies have clearly defined consensus rules on which all network peers
(including both miners and relay nodes) must agree in order to deterministically
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validate scripts, transactions and blocks. These rules define a transaction’s for-
mat, the semantics of its scripting language, the rate at which new coins are
minted, parameters such as the maximum block size, and many more con-
straints. Changing these consensus rules to upgrade a cryptocurrency requires
community-wide co-ordination and approaches generally fall into two categories:

– A softfork introduces new rules such that a new block conforming to the
changed consensus rules is considered valid by non-upgraded nodes, i.e. the
proposed change is “forward compatible.”

– A hardfork introduces new rules such that a new block conforming to the
changed consensus rules is not considered valid by non-upgraded nodes.

In both cases, a fork proposal typically has a “flag day” activation time
and built-in activation conditions, such as requiring a threshold limit of miners
and/or validators to indicate support before the change is activated. This pro-
vides ample time for the entire community to upgrade their nodes to support the
new consensus rules. However, the difference between a softfork and hardfork is
how non-upgraded nodes are impacted. In the former, non-upgraded nodes will
follow the majority of miners, whereas in the latter non-upgraded nodes will find
themselves in a partitioned network. In practice, Table 1 highlights that Bitcoin
has performed softforks (with the exception of one hardfork due to BerkeleyDB’s
misconfiguration), whereas Ethereum (and Ethereum Classic) have used hard-
forks. Next, we explore the new consensus rules introduced in Bitcoin, Ethereum
and Ethereum classic.

Bitcoin. So far, Bitcoin has implemented over six softforks. These softforks
range from introducing rules to prevent miners creating coinbase transactions
with duplicated identification hashes [1,38], requiring all ECDSA signatures to
strictly enforce DER coding [39], and introducing both absolute [34] and relative
lock times [13] for individual transaction outputs. In terms of implementation,
this involves storing new information in the scriptsig of the coinbase transac-
tion, constraining transaction validation rules or re-defining the use of special
OP NOP function.

On the other hand, Bitcoin has experienced two accidental (and temporary)
splits (i.e. Fork-1,Fork-2 emerged) that required miner intervention to remedy.
The first split permitted a user to exploit an integer overflow bug and create 184
billion coins. This required miners to co-operatively extend a new blockchain
without the coin creation transaction [5] and to enforce a soft-fork to prevent
this exploit. The second split involved miners who upgraded to Bitcoin Core 0.8
accidentally creating blocks that were invalid for Bitcoin Core 0.7. Unfortunately,
BerkeleyDB’s configuration in Bitcoin Core 0.7 was non-deterministic and as a
result was not compatible with LevelDB’s configuration in Bitcoin Core 0.8.
Resolving this fork required miners to immediately downgrade to Bitcoin Core
0.7 and abandon the forked blockchain. Next, the developers released Bitcoin



Atomically Trading with Roger: Gambling on the Success of a Hardfork 339

Core 0.8.1 that enforced the activation of a hardfork6 after a two-month grace
period for miners and users to upgrade [2,27].

Ethereum. Ethereum has executed four hardforks in response to community
demand and to reduce the impact of network spam attacks. Homestead modified
the gas cost for creating transactions and EVM operation codes [36], TheDAO
fork reversed a theft of approximately $40 m worth of ether [16], Tangerine Whis-
tle reduced long-term gas changes for IO-heavy operations [7] in response to a
spam atack and Spurious Dragon enabled transactions to delete empty accounts
by touching them [37]. All hardforks required peers on the network to upgrade
their software to continue participating in the network.

TheDAO hardfork precipitated the creation of Ethereum Classic (market cap
of $2 bn, June 2017) as a distinct fork of Ethereum [16]. One of the reasons this
split occurred was that a faction of the community disagreed in principle with
modifying TheDAO smart contract in order to reverse the theft. An accidental
split also occurred after the Spurious Dragon hardfork as both Geth and Parity
(i.e. distinct implementations of the Ethereum protocol) failed to identically
implement the new consensus rules. Geth was updated to fix a bug in order to
resolve the fork and of course the forked blockchain was abandoned [17].

Ethereum Classic. There have been two hardforks in Ethereum Classic. Gas-
Reprice replicated Ethereum’s hardfork to increase the cost for underpriced EVM
operation codes in order to prevent future spam attacks [18]. Die Hard removed
the difficulty time-bomb that was hard-coded into Ethereum [19]. So far, there
have been no accidental splits.

In the next section, we highlight that Ethereum’s inclusive hardfork for
TheDAO allowed an attacker to perform replay attacks against unprepared
exchanges before presenting a survey of replay protection proposals for Bitcoin.

Other cryptocurrencies. We briefly note that other cryptocurrencies besides
Bitcoin and Ethereum, such as Litecoin and Monero, have also endured softforks
and hardforks. Monero notably has committed to regularly scheduled every six
months (and therefore predictable) hardforks [32].

2.4 Replay Protection

A replay attack is when the sender signs a transaction with the intention that it
is accepted into one blockchain (i.e. Fork-1), but it can also be accepted into an
alternative blockchain (i.e. Fork-2). Thus, the purpose of replay protection is
to permit users to decide which blockchain can accept their newly signed trans-
actions. Unfortunately, the lack of replay protection after Ethereum’s TheDAO
hardfork caused some companies to lose a substantial number of Ethereum Clas-
sic coins (ETC). For example, a Chinese exchange YUNBI lost 40k ETC as a
single transaction was unexpectedly accepted in both blockchains.
6 The community disputes whether BIP50 (deployed in response to BIP34’s acciden-

tal split) should be considered a hardfork, and therefore to what degree Bitcoin
governance has established a precedent of avoiding hardforks.
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Table 2. An overview of the replay protection proposals. �� highlights that this feature
depends on whether the proposal was introduced via a softfork or hardfork.

Proposal Any Fork Fork-1 First Prior to HF Tx Format Softfork

Transaction version �� �� ✗ ✗ ✓

Check block at height ✓ ✗ ✓ ✗ ✓

Sighash Enum ✓ ✗ ✗ ✓ ✗

Migration Input ✓ ✗ ✗ ✗ ✗

Chain ID ✓ ✗ ✗ ✓ ✗

In Ethereum, this incident led to the Spurious Dragon hardfork which intro-
duced chain id [8]. The sender is responsible for updating the transaction’s
chain id to state which blockchain can accept it. On the other hand, several
companies in Bitcoin have co-operatively signed a letter [20] to request replay
protection in any future hardfork. We provide a survey on four approaches for
replay protection from the community before proposing migration inputs below.

Transaction Version. All transactions have a version number that can be
incremented to inform clients that a new feature is supported. For example, a
recent softfork incremented the version number from 1 to 2 when the developers
introduced relative lock times.7 Both Harding [15] and Lau [22] proposed that
a single bit in the transaction version can be re-purposed as an opt-in/opt-out
bit. The sender can update this bit to dictate which blockchain can accept this
transaction. However, the Fork-1 blockchain cannot respect this new consensus
rule without a softfork. As a result the sender must first create a transaction
that is only valid in Fork-1 before creating a second transaction for Fork-2.

Check Block At Height. Dashjr proposed a new Bitcoin script function
OP CHECKBLOCKATHEIGHT. This allows the sender to specify that a block hash
(at a given height) must exist in the blockchain before this transaction can
be accepted [11]. It was originally proposed to prevent double-spending and
blockchain re-organization attacks. However, it can conceivably be used to decide
whether a transaction can be accepted into Fork-1 or Fork-2. Although, the
function must be introduced via a softfork for Fork-1 and a block hash after
the hardfork must be known before transactions that spend “pre-fork” coins can
be signed.

Sighash Enum. One approach proposed by Zander was to change the
hash-type enum (i.e. SIGHASH8) to begin with 10 instead of zero [41].

7 OP CHECKSEQUENCEVERIFY [13] and a new consensus rule was introduced to only check
for relative lock times if the transaction version number is two or higher [3].

8 A marker in the transaction input to specify how to construct the transaction’s hash
before verifying the signature. For example, the transaction hash can contain no
transaction outputs, all transaction outputs, or a 1:1 mapping of inputs/outputs.
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The purpose is to change the transaction format such that all signed trans-
actions are only valid in the forked blockchain Fork-2. The full proposal can be
found here [12].

Chain ID. In a similar style to Ethereum it is feasible to incorporate a chain id.
This value can be included explicitly in the transaction as an additional field
which allows all validating peers for Fork-1 to reject the transaction as its
format is not valid, whereas peers for Fork-2 can confirm that chain id is part
of the signed message.

Migration Input. We propose a new consensus rule for the forked blockchain
Fork-2 to include an additional transaction input when a transaction is spend-
ing “pre-fork” coins. Technically, it is a sentinel 41 byte transaction input of
zeros.9 Of course, the previous transaction hash can be reduced from 32 bytes
to 1 byte if structural changes to the transaction are implemented in the forked
blockchain, and if so the overall cost per transaction is 10 bytes. Peers con-
forming to the previous consensus rules will reject this transaction, while peers
with the new set of consensus rules will accept it.

Compatibility. Table 2 presents a comparison of the proposals. The criteria is
based on whether the sender can dictate if a transaction is accepted into Fork-1
or Fork-2, if the sender must first sign a transaction for Fork-1 before Fork-2,
if a transaction must be stored in Fork-1 prior to the hardfork, if the transaction
format must be changed or if a softfork in Fork-1 is necessary.

We highlight that Sighash Enum, Migration Input and the Chain ID propos-
als are compatible with our protocol as no new consensus rules is required for
Fork-1 while the sender can explicitly dictate if a transaction is accepted into
Fork-1 or Fork-2. As well, transaction version can be used if Fork-1 performs
a softfork. On the other hand, OP CHECKBLOCKATHEIGHT is not compatible as the
block hash immediately after the hardfork must be available and thus prevents
both parties setting up the atomic trade prior to the hardfork.

3 Bitcoin Hardfork Atomic Cross-Chain Trade

To set the scene, both Alice and Bob publicly commit to the atomic trade by
depositing coins into a single transaction. Next, both parties co-operatively set
up the atomic trade by signing off-chain transactions before the hard-fork acti-
vation time ΔFORK

10. After the hardfork has occurred, one party (i.e. Alice)
is responsible for triggering the trade. If she fails to trigger the atomic trade,
then Bob can claim all coins in both Fork-1 and Fork-2. Next, we present the
Bitcoin’s hardfork atomic trade protocol.
9 Previous transaction hash as 32 bytes, the previous transaction output index as 4

bytes, the length of the script as 1 byte and the sequence number as 4 bytes.
10 The activation time can be determined by a publicly announced flag day (i.e. similar

to Bitcoin Cash [31]). There is a signalling process outlined in BIP9 [40], but this is
designed for softforks. If the signalling process is used, then this atomic trade must
be set up after the new rules are locked in.
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Fig. 1. High-level overview. Our protocol has four outcomes: (1). both parties
successfully perform the trade, (2). Alice aborts the protocol shortly after TFund is
accepted into the blockchain and both parties are refunded, (3). Bob cancels the atomic
trade and both parties are immediately refunded, and (4). Alice forfeits her coins in
both blockchains to Bob by not triggering the atomic trade

3.1 Proposed Protocol for Bitcoin

Table 6 presents the atomic trade protocol that permits two parties to exchange
coins in the event of a hardfork. We present the establishment, off-chain setup
and atomic trade aspects of the protocol below.

On-chain Establishment. Alice computes the secret SA and hashes it hA =
H(SA) before both parties co-operatively deposit coins into a Funding Trans-
action TFund . This transaction has an output for Alice’s deposit, Bob’s deposit
and an auxiliary output that we denote as Cancel Timer11. Both deposit outputs
can be redeemed if either condition is satisified:

11 Both parties deposit a sufficient number of coins in this output to cover a future
transaction fee.
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1. Refund. Each party is refunded their deposit if the trade times-out after
time ΔA for Alice or ΔB for Bob.

2. Transfer. One party can claim the deposit if both parties have signed the
transaction and SA is revealed.

3. Cancel. A sentinel condition that cancels the atomic trade if it is redeemed
simultaneously with the Cancel Timer output of this transaction.

4. Forfeit (Alice Deposit Only). Alice forfeits her deposit if she does not
trigger the transfer by ΔB .

Alice’s refund time ΔA must be after Bob’s refund time ΔB such that ΔA >
ΔB . As well, both timers must be after the hardfork activation time ΔFORK

such that ΔA,ΔB > ΔFORK . This provides a grace period for Alice to reveal
SA (i.e. trigger the trade) and for Bob to find SA to claim his coins.

The Cancel Timer output has a Cancel condition that can cancel the atomic
trade if it is signed by both parties before ΔCANCEL. Otherwise the output also
has a Commit condition that allows Alice to single-handedly sign this output
after ΔCANCEL. The lock time ΔCANCEL must expire before the hardforks
activation time ΔFORK such that ΔFORK > ΔCANCEL. This is to ensure the
atomic trade is set up within a timely manner and before the hardfork. Finally
the Funding Transaction TFund must achieve sufficient depth in the blockchain
before both party’s can co-operatively begin the off-chain setup.

Set up cancellation. Alice signs and sends Bob TCancel . This transaction
satisfies the Cancel condition for all three outputs12 of the Funding Transaction
TFund and sends both parties their deposits The purpose of this transaction is
to allow Bob to cancel the atomic trade if it is not set up before ΔCANCEL. Alice
can sign and broadcast TCommit after ΔCANCEL that spends the Cancel Timer’s
output (i.e. Commit condition) in order to invalidate TCancel and prevent Bob
cancelling the atomic trade.

Set up trade. Alice signs and sends Bob TA→B
FORK1 . This transaction spends

both deposit outputs using the Transfer condition and sends all coins to Bob if
the pre-image SA is revealed and the transaction is accepted into the blockchain
Fork-1 before ΔB . Next, Bob signs and sends Alice TB→A

FORK2 . This transaction
spends both deposit outputs using the Transfer condition and will send all coins
to Alice if the pre-image SA is revealed and the transaction is accepted into the
blockchain Fork-2 before ΔA. As well, this transaction must incorporate relay
protection such that it is only valid for the forked blockchain Fork-2. It is worth
mentioning that the atomic trade can be performed after the hardfork activation
time ΔFORK if Alice broadcasts TCommit to invalidate TCancel . However, Alice
currently has an unfair advantage as she can abort the protocol (i.e. not reveal
the pre-image SA) and cancel the atomic trade without a penalty.

12 Table 6 highlights that each transaction output in the Funding Transaction has a
Cancel condition. For example, Alice’s deposit can be spent if Cancel(PKA3 , PKB3)
is satisfied and the Cancel Timer can be spent if Cancel(PKA2 , PKB2). is satisfied.
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Set up forfeit. To overcome this fairness issue, Alice must sign and send Bob
TForfeit

FORK1 ,TForfeit
FORK2 . Both transactions spend Alice’s deposit using the Forfeit con-

dition and Bob’s deposit using the Transfer condition. Of course, these transac-
tions will send all coins to Bob in both Fork-1 and Fork-2. This allows Bob
to penalize Alice for aborting the protocol (i.e. not triggering the trade before
ΔB). Furthermore, Alice must sign and send Bob both transactions before the
lock time ΔCANCEL. Otherwise, Bob is expected to cancel the atomic trade by
signing and broadcasting TCancel .

Commit to Atomic Trade. Alice signs and broadcasts TCommit . This trans-
action spends the Cancel Timer output using the Commit condition after
ΔCANCEL in order to invalidate the cancellation transaction TCancel . Thus,
both parties are committed to performing the atomic trade.

Trigger Trade. After the hardfork activation time ΔFORK Alice can claim
both deposits in Fork-2 using TB→A

FORK2 . This reveals SA in Fork-2 and allows
Bob to claim both deposits in Fork-1 using TA→B

FORK1 .

Forfeit. As we mentioned previously Bob can penalise Alice if she does not
trigger the transfer. He can broadcast the transactions TForfeit

FORK1 ,TForfeit
FORK2 after

ΔB to claim all coins in both blockchains Fork-1,Fork-2.

3.2 Distinct Keys

We highlight that the protocol is only secure if each condition in a transaciton
output has a unique signing key i.e. PKA1 , ..., PKA4 . The core issue is that the
message signed for a transaction output is the same regardless of the condition
the signer intends to satisfy. This insecurity can be highlighted if we assume all
conditions for Alice’s deposit output rely on a single signing key PKA1 .

Alice signs the transaction output that represents her deposit during the
trade setup phase. She intends for her signature to satisify the Transfer(PKA1 ,
PKB2 , hA) condition that sends her deposit to Bob if SA is revealed. Unex-
pectedly, Bob can re-use her signature to also satisfy the forfeit condition
Forfeit(PKA1 , PKB4 ,ΔB). This guarantees that he receives both deposits in
the non-forked blockchain Fork-1 after ΔB and thus he has no motivation to
continue following the protocol.

4 Ethereum Hardfork Atomic Cross-Chain Trade

The key insight for this protocol is that both parties can deposit their coins into a
smart contract. After the hardfork has occurred the contract can use a Hardfork
Oracle to determine whether it is on the blockchain Fork-1 or Fork-2 before
sending each respective party their coins. In this section, we discuss how to
construct Hardfork Oracles before presenting the protocol.
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Table 3. Ethereum Hardfork Atomic Cross-Chain Trade. Both parties deposit
coins into the Trade Contract. This contract can detect if it is on Fork-1,Fork-2
using Hardfork Oracle contract before sending the deposits.

1. Alice and Bob agree on the refund lock time ΔREFUND based on the fixed
hardfork time ΔFORK

2. Alice creates the Trade contract that specifies the deposits da, db required by
both parties, the refund lock time ΔREFUND and Hardfork Oracle contract’s
address σ

3. The contract locks both parties into the exchange once the deposits da, db are
confirmed

4. Both parties wait for the hardfork at time ΔFORK

5. Alice signs TB→A
FORK2 and claims both deposits in the forked blockchain Fork-2

before ΔREFUND

− Contract communicates with Oracle Hardfork contract to confirm this is

the forked blockchain Fork-2

6. Bob signs TA→B
FORK1 and claims both deposits in the non-forked blockchain

Fork-1 before ΔREFUND

− Contract communicates with Oracle Hardfork contract to confirm this is

the non-forked blockchain Fork-1

4.1 Hardfork Oracle

We propose that a Hardfork Oracle contract can be used to distinguish whether
it is on Fork-1 or Fork-2 without the need for a trusted third party. There are
two approaches to realize this oracle:

Detection within contract. As mentioned in Sect. 2.4, Ethereum has imple-
mented replay protection in the form of a chain id. The simplest approach
is for the contract to query tx.chain id to determine if the transaction was
accepted into Fork-1 or Fork-2. Unfortunately, the chain id cannot yet be
programmatically accessed by the contract’s code.

The Ethereum Community have also proposed the concept of an oracle con-
tract that can detect the activation of a hardfork and have provided an example
for TheDAO hardfork [25]. This contract checks TheDAO’s contract balance after
the publicly announced hardfork time ΔFORK to determine if the contract is
in Fork-2 (i.e. the balance is reverted to reverse the theft) or Fork-1 (i.e. the
coins remain stolen and the balance has not changed).

Detection outside contract. One approach is that the user can provide the
contract evidence that a transaction with the desired chain id was accepted into
the blockchain after the ΔFORK . This evidence can be a confirmed transaction
alongside its patricia tree branch and the respective block’s header. The contract
can verify that the transaction is accepted in the respective block before confirm-
ing that it is in the blockchain’s most recent 256 blocks. Finally, the contract
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can extract the chain id from the transaction and determine if this blockchain
is Fork-1 or Fork-2.

Future Hardforks. Ethereum have recently approved changes that will be
included as a hardfork in the future. This includes EIP96 [6] that proposes extend-
ing block.blockhash to return hashes that are more than 256 blocks deep and
EIP98 [9] that proposes removing the intermediate state value from a transac-
tion’s receipt. We highlight that a hardfork for EIP96 can be detected within a
contract as block.blockhash(257) will either return 0 for the oracle contract on
Fork-1 or the respective block hash for the oracle contract on Fork-2. On the
other hand, a hardfork for EIP98 can be detected in a similar manner to chain id
by providing a transaction receipt, patricia tree branch and the respective block
header. The contract can verify if the intermediate root’s value is removed (or set
to 0) to decide if it is on Fork-1 or Fork-2. We leave it for future work to deter-
mine if oracles can be built to detect gas changes or new functions (i.e. opcodes).

4.2 Proposed Protocol for Ethereum

Given a Hardfork Oracle we can perform an Atomic Cross-Chain Trade in
Ethereum and the protocol is presented in Table 3. We briefly explain how to
establish the atomic trade prior to the hardfork, how to perform the trade using
the hardfork oracle and why the trigger is no longer necessary.

Establishment. First, Alice establishes the Trade contract and specifies the
required deposits da, db, the timers ΔFORK ,ΔREFUND, and the Hardfork
Oracle’s address. Finally, both parties deposit their coins into the contract before
the hardfork activation time ΔFORK .

Atomic Trade. Both Alice and Bob must claim both deposits from the Trade
contract during the grace period between ΔFORK and ΔREFUND. Otherwise,
either party can withdraw their deposit from the contract after ΔREFUND.
Notably, at the time of withdrawal, the Trade contract contacts the Hardfork
Oracle to determine if this blockchain is Fork-1 or Fork-2.

Triggering Trade. The Bitcoin protocol’s trigger served two purposes. The first
was to ensure both deposits could not be spent until the activation of the hard-
fork, and the second was to ensure the trade was only conducted if the hardfork
occurred. The Trade contract can enforce both purposes without a trigger as the
contract can detect which fork it is on after the hardfork activation time ΔFORK .
Most importantly, this also removes the requirement for a synchronised clock for
both Fork-1,Fork-2 in order to perform the atomic trade.

5 Discussion

In this section, we discuss the requirement for a synchronised global clock, the
potential for miner censorship and bribery attacks, and the impact of transaction
malleability for designing our protocols.
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Synchronised Time. Unlike the TierNolan protocol, the Bitcoin atomic trade
protocol in this paper does not rely on both blockchains having a synchronised
block height or timestamp in order to co-ordinate and enforce the atomic trade’s
fair exchange. We highlight that Bob is guaranteed to receive his coins in Fork-1
after ΔB using the forfeiture transaction TForfeit

FORK1 . The only crucial timer is ΔB

in Fork-2 that dictates when Alice should reveal SA to claim both deposits. As
a result, both the block height and the median time of the previous 11 blocks is
suitable for our protocol.

In Ethereum, no single party is responsible for triggering the trade and
the ΔREFUND timer used by the transfer contract is independent for both
blockchains. It is feasible for miner’s to slow the passage of time although this
simply increases the affected party’s grace period to claim both deposits.

Miner Censorship. A cartel of miners have the authority to censor transactions
in both Bitcoin and Ethereum. This censorship permits miners to interfere with
the atomic trade and coerce either party to share a portion of their deposit. To
illustrate for the Bitcoin protocol, it is feasible for miners in blockchain Fork-2
to simply censor TB→A

FORK2 if Alice refuses to pay a bribe. At the same time, Bob
can agree to pay this bribe by sending the miners a new bribery transaction which
is only valid if the forfiture transaction TForfeit

FORK2 is accepted into Fork-2 after
ΔB . In Ethereum, miners can simply stop the atomic trade by preventing both
parties depositing or withdrawing the contract’s coins. It is worth mentioning that
bribery and censorship attacks also violate the security guarantees for timelock
based atomic cross-chain trade protocols/off-chain payment channels.

Hardfork Time. The hardfork’s activation time ΔFORK must be fixed to per-
mit both parties to agree suitable lock times for the atomic trade. Alice must
only sign the forfeit transactions if she is confident the hard-fork activation time
ΔFORK will not be delayed. Otherwise, the delay can result in ΔFORK > ΔB for
the Bitcoin protocol. This allows Bob to claim the deposits in both blockchains
Fork-1 and Fork-2 using the forfeiture transactions. On the other hand, in
Ethereum, both parties mutually agree upon a single ΔREFUND and if the hard-
fork is delayed until after this time then both parties are refunded.

TransactionMalleability. The atomic trade protocol for Bitcoin is designed to
account for transaction malleability which is why both parties are required to co-
operatively sign cancellation, trade and forfeit transactions after TFund is stored
in the blockchain. If transaction malleability is fixed, then it is feasible to sim-
plify the protocol such that only the trade transactions TA→B

FORK1 ,TB→A
FORK2 need

to be signed off-chain before both parties co-operatively sign and broadcast the
funding transaction (protocol in full paper). (see AppendixB for details). On the
other hand, the Ethereum protocol is not impacted by transaction malleability as
the contract can store the current state of the atomic trade and parties are not
required to co-operatively authorise transactions.

Nature of the Bet. It is important to distinguish if both parties are betting that
the hardfork activates at ΔFORK , or if both parties are betting whether Fork-1
or Fork-2 will be more valuable if the hard-fork occurs. Our protocol is focused
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on the former bet as Alice only signs the forfeit transactions once she is confident
the hardfork will activate at time ΔFORK . If the hardfork does not occur at time
ΔFORK , then she forfeits her deposit to Bob. It is feasible to perform the latter bet
(i.e. refund both parties if the hardfork does not occur) if Alice does not perform
the final forfeiture step. However, this has a fairness issue as Alice can evaluate
whether to perform the trade or to abort the protocol (i.e. not to reveal SA) and
cancel the atomic trade.

6 Conclusion

In this paper, we propose the first protocol that can commit two parties to swap-
ping “pre-fork” coins before a hardfork activates, and then enforce the swap after
the hardfork has occurred without the assistance of a trusted third party. Our
protocols are inspired by real-world events as Loaded and Roger voiced interest
in atomically trading 120 k bitcoins (i.e. approximately $120 m USD at the time)
to effectively gamble on the success of a future hardfork in Bitcoin.

We show how to realize the atomic trade protocols in Bitcoin and Ethereum.
The former relies on the hardfork deploying replay protection and a global clock,
whereas the latter simply leverages a Hardfork Oracle contract that allows
another contract to detect if it is in blockchainFork-1 orFork-2. Finally, also we
provided a detailed survey on the history of soft/hard forks for Bitcoin, Ethereum
and Ethereum Classic, and a survey on proposed replay protection mechanisms
in Bitcoin.

Acknowledgements. We thank Nick Johnson for bringing to our attention hardfork
oracles, Tadge Dryja for his comments and criticisms, Roger Ver for allowing us to use
his name in the paper’s title, Iddo Bentov for insightful discussions and #bitcoin-wizards
IRC channel for answering questions regarding forks. Patrick McCorry is supported by
EPSRC grant EP/N028104/1, Ethan Heilman is supported by NSF 1350733.

A TierNolan’s Atomic Cross-Chain Trading Protocol

Table 4 presents the protocol proposed by TierNolan in 2013. The TierNolan pro-
tocol allows two parties to atomically exchange coins across two blockchains. Such
protocols are called Atomic Swaps because the two transactions happen atomi-
cally i.e., either swap occurs or it does not. It requires both parties to deposit
coins in separate blockchains and for one of the parties to trigger the exchange.

Brief overview. Consider two blockchains, the first blockchain we denote as
Fork-1, the second blockchain we denote as Fork-2. Alice wants to trade her
coins on blockchain Fork-1 for coins which Bob controls on blockchain Fork-2.
First, Alice picks a random value SA, hashes it to H(SA) and deposits her coins
into a transaction T1 which is confirmed on Fork-1. Bob can claim the funds in
T1 if and only if he learns the value SA. However if the coins in T1 are still unspent
by ΔA Alice can refund the coins in this transaction back to herself.
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Table 4. Atomic Cross-Chain Trading Protocol. This protocol allows two parties
to atomically exchange coins across two distinct blockchains

1. Alice and Bob agree on lock times ΔA, ΔB

2. Alice picks random SA, hashes it hA = H(SA) and constructs T1 with her
deposit. This transaction has a single output:

− Alice’s deposit: Output script is (PKA1 , ΔA)a OR (H(SA), B)

This transaction is signed by Alice and published to the first blockchain Fork-1

3. Bob has knowledge of H(SA) and creates T2 with his deposit. This transaction
has a single output:

− Bob’s deposit: Output script is (PKB1 , ΔB) OR (H(SA), A)

This transaction is signed by Bob and published to the second blockchain Fork-2
It is important that ΔA > ΔB by a sufficient margin

4. Alice must claim Bob’s deposit before ΔB . She signs a transaction that spends
T2, includes SA and publishes it to the second blockchain Fork-2

5. Bob must claim Alice’s deposit before ΔA. He learns SA, signs a transaction that
spends T1 and publishes it to the first blockchain Fork-1
a The original protocol had an explicit refund transaction that Bob was required to
sign. It is possible to remove this step using CHECKLOCKTIMEVERIFY.

B Proposed Bitcoin Protocol if TransactionMalleability is
fixed

Table 5 presents the Bitcoin hard-fork atomic cross-chain protocol if transaction
malleability is fixed. It assumes that both parties can use replay protection to dic-

Table 5. Bitcoin’s Hard Fork Atomic Cross-Chain Trade if transaction mal-
leability is fixed. Both parties authorise the atomic trade transactions prior to sign-
ing and broadcasting the funding transaction TFund . Both trade transactions can be
accepted into their respective blockchain after the hard-fork activation time ΔFORK .

1. Funding Transaction. Alice and Bob agree on lock times ΔA, ΔB that should be
sufficiently after the hardfork activation time ΔFORK

2. Alice constructs a transaction we call the Funding Transaction or TFund . This
transaction requires a deposit from each parties and has a single output:

− Deposits: Trade(PKA1 , PKB1 , ΔFORK + 1)

3. Alice signs and sends Bob TA→B
FORK1 . This transaction is only valid in Fork-1 and

cannot be accepted into the blockchain until after the hard-fork activation time ΔFORK

4. Bob signs and sends Alice TB→A
FORK2 . This transaction is only valid in Fork-2 and

cannot be accepted into the blockchain until after the hard-fork activation time ΔFORK

5. Both parties co-operatively sign and broadcast TFund for acceptance into the
blockchain

6. Atomic Trade. Both parties can broadcast TA→B
FORK1 ,TB→A

FORK2 after the hard-fork
activation time ΔFORK
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Table 6. Bitcoin’s Hard Fork Atomic Cross-Chain Trade. Our proposed protocol
commits both Alice and Both to the trade prior to the hardfork’s activation

1. Funding Transaction. Alice and Bob agree on lock times ΔA, ΔB that should
be sufficiently after the hardfork activation time ΔFORK

2. Alice picks random SA, hashes it hA = H(SA) and constructs a transaction we
call the Funding Transaction or TFund . This transaction requires a deposit from
each parties and has three outputs:

− Alice’s deposit: Refund(PKA1 , ΔA) OR Transfer(PKA2 , PKB2 , hA) OR
Cancel(PKA3 , PKB3) OR Forfeit(PKA4 , PKB4 , ΔB)

− Bob’s deposit: Refund(PKB1 , ΔB) OR Transfer(PKA2 , PKB2 , hA) OR
Cancel(PKA3 , PKB3)

− Cancel timer: Commit(PKA1 , ΔCANCEL) OR Cancel(PKA2 , PKB2)

This transaction must be accepted into the blockchain before ΔFORK and achieve
sufficient depth before performing the next step

3. Set up cancellation. Alice signs and sends Bob TCancel . This transaction
spends all three outputs using the Cancel condition and sends both parties their
deposit. He can sign and broadcast TCancel before ΔCANCEL to cancel the atomic
swap

4. Off-chain setup. Alice signs and sends Bob TA→B
FORK1 , and Bob signs and sends

Alice TB→A
FORK2 . Both transactions spend Alice’s and Bob’s deposit outputs using

the Transfer condition

5. Set up forfeit: Alice signs and sends Bob two transactions TForfeit
FORK1 and

TForfeit
FORK2 . Both transaction’s spend Alice’s deposited coins using the Forfeit

condition and is valid after time ΔB

6. Commit to Atomic Trade. If Alice does not sign and send the forfeit
transactions before time ΔCANCEL then Bob must sign and broadcast TCancel .
Otherwise, she signs and broadcasts TCommit after time ΔCANCEL. This
transaction effectively invalidates TCancel by spending the Cancel Timer output
using the Commit condition

7. Both parties wait for the hardfork at time ΔFORK

8. Trigger Trade. If Alice triggers the trade:

(a) Alice signs TB→A
FORK2 , reveals SA and claims both deposits in the forked

blockchain Fork-2 before ΔB

(b) Bob finds SA, signs TA→B
FORK1 and claims both deposits in the non-forked

blockchain Fork-1 before ΔA

8. Forfeit. If Alice does not trigger the trade by ΔB :

(a) Bob signs TForfeit
FORK1 and TForfeit

FORK2 claims both deposits in Fork-2 and Fork-1
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tate if a transaction can be accepted into Fork-1 or Fork-2. As we will soon see
this variation is significantly simpler compared to the protocol outlined in Sect. 3.

Briefly, both parties co-operatively create a Funding Transaction TFund and
the two trade transactions TA→B

FORK1 ,TB→A
FORK2 . Next, both parties must exchange

signatures for the trade transactions before signing and broadcasting the funding
transaction. Finally, both parties wait until after the hard-fork activation time
ΔFORK to claim both deposits in their respective blockchain.

This approach follows a similar style to payment protocols such as Duplex
Micropayment Systems and Lightning as the off-chain’s transactions are signed
prior to the funding transaction. The order of signing off-chain transactions does
not necessarily matter as these transactions are only valid if the funding trans-
action is accepted into the blockchain. Furthermore, it is worth highlighting that
this approach does not require one party (i.e. Alice) to reveal a pre-image SA or
to sign cancel/forfeit transactions.
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Abstract. Program code stored on the Ethereum blockchain is consid-
ered immutable, but this does not imply that its control flow cannot
be modified. This bears the risk of loopholes whenever parties encode
binding agreements in smart contracts. In order to quantify the issue,
we define a heuristic indicator of control flow immutability, evaluate
it based on a call graph of all smart contracts deployed on Ethereum,
and find that two out of five smart contracts require trust in at least
one third party. Besides, the analysis reveals that significant parts of
the Ethereum blockchain are interspersed with debris from past attacks
against the platform. We leverage the call graph to develop a method for
data cleanup, which allows for less biased statistics of Ethereum use in
practice.

Keywords: Smart contract · Trustless · Code analysis · Call graph ·
Ethereum

1 Introduction

Smart contracts are computer programs that encode agreements between parties.
They can be settled in virtual currency by decentralized systems of networked
nodes. This is advantageous in situations where conventional means of contract
enforcement are prohibitively costly, or the parties have no access to a common
arbiter or juridical system.

Like for conventional natural-language contracts, a number of conditions
must be fulfilled before a party can accept being bound by the terms: the party
must understand the content of the contract with the same semantic applied
by a potential judge, the integrity of the contract must be guaranteed over its
entire lifetime, and the contract must not contain or refer to any terms that can
be changed unilaterally after the contract is signed. These three conditions can
be mapped to technical requirements (in the same order): access to verifiable
source code, immutability of compiled code, and control flow immutability.

If any of these conditions is violated, the party accepting contract terms
must trust at least one third party in that the enforcement does not thwart the
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358 M. Fröwis and R. Böhme

contract’s designated objectives. Ethereum presents itself as a platform for trust-
less smart contracts, and provides means to meet the above-mentioned technical
requirements. However, users are free to write smart contracts in a Turing com-
plete language, so the extent to which smart contracts meet the requirements in
practice remains an empirical question.

We set out to answer this question with special emphasis on control flow
immutability. We apply abstract interpretation techniques to all bytecode
deployed on the public Ethereum blockchain, and synthesize the information
in a complete call graph of static dependencies between all smart contracts.

We are not the first to systematically analyze smart contracts on Ethereum.
Luu et al. [13] execute 19 366 smart contracts symbolically with the intention
to uncover security vulnerabilities, which they find in about 8833 cases. Using
source code provided by Etherscan, Bartoletti and Livio [5] manually classify
811 smart contracts by application domain (e. g., financial, gaming, notary) and
identify typical design patterns. Norvill et al. [16] propose unsupervised cluster-
ing to group 936 smart contracts on the Ethereum blockchain. We are not aware
of any prior work that builds or analyzes a call graph of dependencies between
smart contracts on Ethereum or a similar platform.

Systemic analyses of all smart contracts on the Ethereum blockchain are
impeded by the presence of a significant number of smart contracts originat-
ing from attacks against the platform. Therefore, as a second contribution, we
propose a cleanup method to pre-process the smart contracts. This is necessary
before any meaningful and generalizable measurements of legitimate1 use can be
made.

The paper is organized as follows. Section 2 recalls the vision of trustless
smart contracts and derives necessary technical requirements for the trustless-
ness property. Section 3 briefly describes the Ethereum platform and documents
our data extraction and analysis methods. Section 4 motivates the cleanup and
describes how we accomplished it. Results are presented in Sect. 5. Finally, Sect. 6
concludes the paper with a discussion of limitations and implications.

2 Trustless Smart Contracts

We provide some background by reflecting on the notion of trustlessness.
Section 2.1 reviews the vision of smart contracts as defined by Szabo [18].
Section 2.2 defines the technical requirements to reach the vision of trustless
smart contracts.

2.1 The Vision

Smart contracts are not a very new concept. Szabo introduced the term in 1997.
The idea of smart contracts is that many kinds of contractual clauses, in fact

1 In a slight abuse of legal terminology, this notion of legitimacy includes everything
except attacks against the platform as a whole.
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every computable clause, can be encoded in logic. That means we can encode
contract clauses in computer programs and let the program decide what happens
in the course of the contract’s lifetime.

This automation of contracts has many advantages, such as reduced trans-
action cost, less subjectivity, easier auditing, etc. It also facilitates machines to
enforce in contractual agreements. Think of a car that only starts when the
insurance premium is paid. The vision also comprises scenarios where machines
enter contractual agreements as partners. Think of autonomous trading agents.

As long as programs encoding contracts are run on local trusted hard- and
software, and the source code (or some human readable representation) is avail-
able for verification, no trust in other parties is needed. This rationale has been
around for long. It serves, e. g., as a philosophical pillar of the free software
movement.

In the real world, contracts regulate relationships between different parties
who may have different interests and objectives, and do not necessarily trust each
other. This raises the question of who executes the program encoding a contract?
If only one party executes it, the others have to trust in its honesty. If many
execute it, what happens if they disagree about the output? A simple approach,
also known from paper-based contracts, is the involvement of an impartial trusted
third party. This can happen in two ways. First, the third party computes the
outcome of the contract. Second, whenever a conflict arises, the trusted third
party acts as an arbiter. In both cases, all other parties must trust that the third
party is fair and abide to its decisions.

Trusted third parties only shift the problem to another hopefully trustworthy
party. The declared vision of smart contracts is a system where nobody has to
trust a central party. Szabo argues that every algorithmic intermediary can be
replaced by a trustworthy virtual computer. He contemplates a trustless system
using “post-unforgeable transaction logs” and “mutually confidential computa-
tion” [18].

Although, in theory, it was known in 1997 that is is possible to build a trust-
less system based on cryptographic multiparty computation, practical universal
systems remained out of reach for lack of efficiency. The advent of blockchain-
based systems has demonstrated the existence of a sweet spot that offers more
efficient solutions by combining off-the-shelf cryptography with probabilistic dis-
tributed consensus protocols. This has led to a renaissance of the ideas behind
trustless smart contracts as well as practical freely programmable systems.

2.2 Technical Requirements of Trustless Smart Contracts

Blockchains, or more specifically their underlying consensus protocols, allow to
resolve conflicts between parties over a public network without a trusted third
party [15]. With the ideas behind Bitcoin, it was possible to build a more efficient
version of the trustworthy virtual computer, called consensus computer [14].

Consensus computers carry out and verify computations over a public net-
work as if they ran on local trusted hardware. Individual parties do not need to
trust in any other single party in the system. It is sufficient to make behavioral
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assumptions about collectives of parties, e. g., that the majority follows the pro-
tocol. This brings us back to the desirable situation where we do not have to
trust anyone as long as we can verify a program’s source code. But now we can
run programs that affect many parties, not just one.

If the programs encode contractual clauses, access to the source code is only
one of several necessary requirements for trustless smart contracts. We also need
immutability of control flow. Once we send a smart contract to a consensus
computer, it is not supposed to change anymore; just akin to conventional con-
tracts should not be altered after signing. More specifically, if a smart contract
has dependencies to other smart contracts on the consensus computer (e. g.,
by following the common practice of code reuse through libraries, which has
been adopted on practical consensus computers), those references should be hard
coded in the smart contract. Especially, they should not be determined by (later)
input or state of the consensus computer. In other words, once the program is
deployed, the control flow must not be changed.

Observe that code immutability is necessary but not sufficient for control
flow immutability; which again is necessary but not sufficient for trustlessness,
because a contract’s outcome may also depend on data, which can be unknown at
the time of the deployment. In this work, we make first steps towards measuring
trustlessness in practice using a heuristic indicator of control flow immutability.

3 Method

Now we describe the data collection and analysis process. Section 3.1 introduces
specifics of the Ethereum platform and the terminology needed to understand
the analysis (For details, we refer to [3,19].). Section 3.2 explains how we extract
smart contract code and build a call graph. Section 3.3 describes how we measure
trustlessness of the smart contracts deployed on the public Ethereum blockchain.

3.1 Ethereum in a Nutshell

Ethereum [3,19] can be seen as a generalization of the ideas behind Bitcoin.
It is a decentralized system that updates a global state stored in an authen-
ticated data structure called blockchain. Besides transferring virtual currency
tokens, the Ethereum platform enables users to create smart contracts. Smart
contracts are implemented as a special kind of account, which is controlled by
program code. More specifically, the program in such a code account represents
an encoding for arbitrarily complex state transitions. Those state transitions are
triggered by sending transactions to the address of the code account. Parameters
can be passed in the transaction’s data field. Code accounts can hold private2

state in state variables . All state variables are persisted in the blockchain and
can be modified only by the code of the corresponding code account. Besides
code accounts, there exist user accounts that are controlled by external parties

2 Private refers to scope and write access. It does not imply any confidentiality.
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(i. e., private keys belonging to public keys that define the account). User
accounts are best comparable to standard Bitcoin accounts. Both account types
can create arbitrary transactions and thus interact with other code accounts,
create new code accounts, or transfer virtual currency tokens.

The program in a code account is executed by the Ethereum Virtual Machine
(EVM), a stack-based virtual machine that executes bytecode. Users typically
create smart contracts using a high-level programming language that compiles
to EVM bytecode. A popular smart contract language is Solidity [1].

Once a smart contract is compiled to EVM bytecode, it can be deployed to
the Ethereum blockchain and thus made available to others. This is done by
sending a transaction without a specified recipient to the Ethereum network.
The code is sent within the init field of the transaction. When the transaction
is included in a valid block, every node that processes and verifies the block sees
the transaction without recipient. If a node3 encounters such a transaction, it
passes the payload contained in the init field to the EVM, which executes it.
The output is saved as code of the newly created code account. The address
assigned to the code account is determined by the rightmost 160 bits of the
Keccak hash of the recursive length prefix (RLP) encoded creator address and the
account’s nonce. The nonce of a code account is incremented as smart contracts
are created.4

The typical payload of a smart contract creation looks as follows:
(initialization code ‖ code ‖ initialization parameters), where ‖
denotes concatenation. The EVM starts by executing the payload, thus the
initialization code is executed. The initialization code is responsible
for setting up initial values of state variables, if needed. The initialization
code returns the code that will be stored at the newly created address. By
default, the initialization code loads the code part from the payload into
memory and returns the memory address and length. But this is just a conven-
tion. The initialization code could also dynamically build code in memory,
or even return garbage. We found that almost all smart contract creations follow
the default deployment convention (see Table 1 on page 12).

When a code account is created, its code is part of the blockchain, inheriting
the property that it gets harder to modify as more blocks are added to the chain.
After several confirmations, the possibility of modification is negligible, therefore
the code becomes practically immutable over time. (Recall that immutable code
does not imply control flow immutability. Measuring the latter is our objective.).

Although code is practically immutable, there is a possibility to disable code
accounts. The EVM has an instruction that indicates that the current smart
contract should be disabled and the space used by state variables and the account
itself can be freed. This operation is called self destruction.5 After a code account
has self destructed, it can still be called, but it behaves as if there is no code

3 A node that follows the protocol. We make this assumption throughout the paper.
4 For completeness: also user accounts have nonces. The nonce of an user account is
the number of transactions sent by that account.

5 EVM instruction SELFDESTRUCT.
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available. This means a call to a self destructed smart contract returns without
any effect [4]. We call smart contracts that have called self destruct at some
point in time dead smart contracts . By contrast, all smart contracts that have
not called self destruct are called active smart contracts .

As mentioned in Sect. 2.2, source code availability is critical to smart con-
tracts. Whenever the semantic of a smart contract on the blockchain shall be
evaluated based on higher-level source code, a verifiable mapping between byte-
code, source code, and addresses is needed. We are aware of two relevant services
that aim to provide this mapping on a larger scale.

Etherscan6 is a closed source web application. Users can upload source code
that runs on a certain address. The user must provide the exact compiler version
and flags used to generate the bytecode at the address. Etherscan then checks if
the compiled source matches the bytecode at the supplied address. If it matches,
Etherscan saves the corresponding source code and considers this code account
a verified smart contract. At the time of writing,7 Etherscan hosts 1728 verified
smart contracts, which is less than 1% of all active smart contracts.

Swarm [2], the other service, is a decentralized peer-to-peer system built as
storage service for the Ethereum development stack. It is linked to Ethereum’s
virtual currency to incentivize honest participation. The idea is as follows: when-
ever a smart contract is deployed to the blockchain, at the same time one deploys
to Swarm a metadata file containing compiler version, flags, and source code.
The address of the metadata in Swarm is the hash of its content. This hash is
added to the compiled bytecode, hence the bytecode itself refers to its metadata.
The verification of the mapping involves the same steps as done by Etherscan,
but all metadata is available and can be automatically gathered from Swarm.
Although this system sounds promising, and the Solidity compiler already gener-
ates metadata and adds hashes to the compiled bytecode, we found that Swarm
is barely used to host metadata at the time of writing (see “Swarm metadata”
and “Swarm hashes” in Table 1).

3.2 Parsing, Data Extraction and Call Graph Creation

Our goal is to analyze smart contracts and especially the call relationships
between them. We extract the call relationship information directly from byte-
code because source code is barely availability, as discussed in the previous
section.

To extract bytecode from the Ethereum blockchain, we built upon an existing
open source blockchain parser project.8 The project uses the JSON–RPC API,
which is part of all major Ethereum node implementations,9 to extract data from
the blockchain. Although this approach is probably slower than parsing the on-
disk blockchain format directly, it is more convenient and less error prone.

6 https://etherscan.io/.
7 Accessed on 19 June 2017.
8 https://github.com/alex-miller-0/Ethereum Blockchain Parser.
9 https://github.com/ethereum/wiki/wiki/JSON-RPC.

https://etherscan.io/
https://github.com/alex-miller-0/Ethereum_Blockchain_Parser
https://github.com/ethereum/wiki/wiki/JSON-RPC
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As already said, code accounts are created by transactions without recip-
ient. To extract the code of all smart contracts, we iterate over all transac-
tions and select those which have no recipient. The code of the smart contract
can be found in the init field of the transaction [19]. Unfortunately, this app-
roach is limited to smart contracts created by user accounts. smart contracts
created by code accounts are not manifested as transactions in the blockchain
itself, but are side effects of the transaction that invoked the contract execution.
Interactions between smart contracts (calls) or creations of new smart contracts
by other smart contracts are done by so called internal transactions. To make
internal transaction visible, the execution of the smart contract code needs to
be instrumented. Fortunately, the parity client supports a tracing mode10 that
instruments the EVM for this purpose. The tracing API also allows to analyze
whether a contract self destructed during an invocation.

All smart contract creations found are written to a MongoDB11 instance for
further processing. We store the bytecode, creation block number, and destruc-
tion block number of every smart contract we found. This enables us to filter for
active smart contracts in a given time range.

To analyze if a smart contract is trustless, we need to know its call rela-
tionships to other smart contracts. We want to distinguish calls to hard coded
addresses from calls to addresses provided as input parameter or read from state
variables. If a call destination is hard coded, we want to be able to extract it.
Our target is to build a call graph of all smart contracts we parsed. To do so,
we analyze the bytecode of all smart contracts to extract calls to other smart
contracts.

We start by disassembling the bytecode. For that purpose, we use the
evmdis12 project as a starting point. Evmdis supports data flow analysis13 on
EVM bytecode. Of interest to us is the reaching definition analysis. Informally
speaking, reaching definition means that instructions are annotated with a set
of variables that are visible to this instruction. For every such variable, evmdis
stores the position in code where the variable was assigned last before the instruc-
tion. Therefore, evmdis annotates every instruction with the EVM’s stack layout
before the execution of the instruction. Instead of actual values, this stack layout
contains references to instructions that could have produced this stack entry.

We use the reaching definition annotations to find the source of call addresses.
To do so, we first search the bytecode for call instructions.14 A call instruction on
the EVM consumes seven stack entries. We are interested in the address, which
is stored in the second entry. What we obtain from the annotation is either a
static value or a set of n instructions that could have generated the relevant stack
entry. If we reach a static value, we are done. Otherwise we follow the links to
the instructions that potentially produced the stack entry. We recursively follow

10 https://github.com/paritytech/parity/wiki/JSONRPC-trace-module.
11 https://www.mongodb.com/.
12 https://github.com/Arachnid/evmdis/.
13 Via abstract interpretation.
14 Specifically: CALL, DELEGATECALL, CALLCODE.

https://github.com/paritytech/parity/wiki/JSONRPC-trace-module
https://www.mongodb.com/
https://github.com/Arachnid/evmdis/
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all stack positions consumed by the instruction until we either find evidence
(in the form of indicator instructions) that the address is derived from input
parameters,15 state variables,16 or we find a constant pushed to the stack.17

The fact that we do not evaluate address calculations besides length padding
sounds over-simplifying. However, this does not matter in practice for two rea-
sons. First, if the address is not hard coded, we are not interested in its computa-
tion because it has no effect on our measurement. Second, we are not aware of any
instance where smart contracts use hard coded addresses that are modified before
the call. Address arithmetic is impractical on the EVM because addresses can-
not be systematically assigned. Moreover, the most popular high-level language
Solidity disallows address computation. Nevertheless, there remains a small risk
of wrongly extracted addresses, which we handle later in the analysis.

Another thing to consider are smart contracts that cannot be analyzed at all.
This may happen if a code account hosts invalid bytecode. The code provided
to the EVM upon creation of a smart contract is not necessarily valid EVM
bytecode. We also have to consider the time needed for the extraction of call
data. Although smart contracts tend to be rather small (see “Bytecode size” in
Table 1), it can take some time to follow all code paths to extract the address
origin. To keep the time to extract data manageable over all code accounts, we
limit the runtime of the extraction process to 30 s per smart contract. A total of
539 smart contracts where not included in our dataset because of this restriction.

With the calls extracted from the bytecode of all code accounts, we can
build the desired call graph. The graph is generated by iterating over all active
smart contracts in our database.18 Vertices represent smart contracts and are
annotated with the address and the block number of the smart contract creation.
Edges are directed and represent call relationships (from caller to callee).

Our graph contains five special nodes. Not all active smart contracts have
corresponding transactions in the blockchain: the EVM supports four19 hard
coded smart contracts. Our fifth special node is Unknown. It is used whenever
a smart contract has calls where no hard coded address could be extracted. In
the later analysis, we treat Unknown as not trustless because the code is not
known, whereas the hard coded addresses of the EVM are considered trustless.

Another possible point of failure is the extraction of hard coded addresses,
especially if arithmetic on addresses is involved. To prevent wrong addresses, we
check before the creation of new edges if the called address belongs to an active
smart contract. If so, we insert the edge. Otherwise we check if the address is in
the set of dead smart contracts. If so, we can be almost certain that the smart
contract is no longer active. If not, we either extracted a wrong address or the
user deployed a smart contract with a wrong address. We ignore calls to wrong
addresses as well as calls to dead smart contracts for our analysis of trustlessness.

15 Reaching a CALLDATALOAD instruction.
16 Reaching a SLOAD instruction.
17 Reaching a PUSH20: an address is 20 bytes long.
18 Using the networkX graph library, https://networkx.github.io/.
19 at the addresses 0x1, 0x2, 0x3, 0x4.

https://networkx.github.io/
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As calls to addresses that do not host code return without effect, we consider
such calls as trustless. Even though we do distinguish between dead and wrong
to build our call graph, we learned how many smart contracts refer to smart
contracts that are not longer active (see “Calls to dead addresses” in Table 1).

3.3 Measuring Trustlessness

The call graph is the basis for analyzing the trustlessness of smart contracts.
A simple indicator of trustlessness can be defined as follows: Let G = (V,E)

be the directed call graph and succ(v) = { w | (v, w) ∈ E} with v, w ∈ V . Now,

trustless(v) =

⎧
⎪⎨

⎪⎩

true, if succ(v) = ∅
false, if Unknown ∈ succ(v)
∧s∈succ(v)trustless(s), otherwise.

Informally, a smart contract is trustless if and only if all calls in its depen-
dency tree have hard coded addresses, hence all code that a smart contract can
execute is fixed upon deployment of the smart contract.

A disadvantage of this recursive indicator is that it does not terminate on
cyclic graphs. Note that Ethereum makes it difficult (but not impossible) to
produce cycles. Every smart contract is deployed in its own transaction. The
address is returned after the smart contract is deployed. To introduce cyclical
dependencies, one has to deploy a smart contract with a reference to a smart
contract that is not yet deployed. Thus, one must be able to predict the address
a smart contract is deployed to. This is possible because the address creation
is deterministic. Therefore, with some effort, it is possible to deliberately cre-
ate dependency loops. We found that loops do exist (see Table 1). To handle
cyclic dependencies, we use a set that tracks already visited vertices when calcu-
lating the trustlessness indicator and stop the recursion. A vertex encountered
twice signals that there is a cycle in the dependency graph. We consider smart
contracts with cyclic dependencies as not trustless in our analysis.

4 Call Graph Cleanup

Extracting statistics from the raw Ethereum call graph can be misleading as the
data is interspersed with attack debris. Here we report our cleanup procedure.

The Ethereum platform has been target of multiple attacks in the last couple
of months [9,10]. Two attacks are especially notable because they led to hard
forks of the Ethereum blockchain [8,12]. One of them is the infamous DAO
Attack. The DAO (Decentralized Autonomous Organisation) is a blockchain-
based venture capital fund, designated to fund new Ethereum projects. Due to
a bug, an attacker was able to steal coins worth roughly 60 million USD, at the
time of the attack [9]. Besides the ominious fork, the DAO Attack has left no
obvious traces in the call graph of smart contracts.
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Fig. 1. Creation and destruction rate (moving window over 100 k blocks)

This cannot be said of the other major attack on Ethereum, a DoS (Denial
of Service) attack which unfolded in October 2016. An attacker flooded the
Ethereum network with transaction spam, using various strategies to overload
and slow down the network [17]. To prepare the attack, the attacker deployed
thousands of smart contracts that called other smart contracts in a tree structure.
The addresses of the called smart contracts are hard coded in the calling smart
contract. The leaves of the tree carried out the actual attack, e. g., by cheap
contract creation via self-destruct [7].

One example of such an attack can be seen in block 2 416 461,20 where
one invocation of a smart contract caused 15 000 others to call self-destruct.
The attack is easily observable in our dataset. In Fig. 1a, the spike in contract
destructions in October 2016 as well as the spike in contract creations July
and October 2016 are indicators of the attack. We also observed many smart
contracts created and destructed in the same block, which is atypical for non-
malicious uses (see “With zero lifetime” in Table 1).

The volume and patterns of smart contracts involved in the DoS attack
present a significant bias for our analysis. To clean our data, we asked the
Ethereum community for help and were provided with a set of 99 addresses that
where directly involved in the attacks. 34 of them are code accounts. Directly
involved means they were used for the actual attack on the network. We know
that the attacker created far more code accounts than he actually used in the
attack. Ideally, we want to filter all smart contracts created in preparation of
the attack. Therefore we started to look for patterns to identify suspect code
accounts.

One pattern we filter are code accounts created and destroyed in the same
block around the time of the attacks21 (see “With zero lifetime” in Table 1).

By looking at connected components in the call graph, we found 45 star-
shaped subgraphs with 171 vertices each, sharing a very similar structure: one
20 See TxHash: 0xf435a354924097686ea88dab3aac1dd464e6a3b387c77aeee94145b0fa

5a63d2.
21 From 01 May 2016 until the hard fork on 18 Oct 2016.
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Fig. 2. Call graph perspective on the 2016 DoS attack (selected components)

master code account deployed in October called 170 sub-code accounts deployed
earlier. Figure 2 illustrates this behavior for one selected death star. All of them
were created between July and October 2016 by the same address.22 This address
is in the set provided by the Ethereum community. As illustrated in Fig. 2, the
attackers also deployed at least two large connected components in October 2016.

Our final set of smart contracts to be excluded from the analysis is composed
of all 34 smart contracts flagged by the Ethereum community, all code accounts
identified by our heuristics as well as their direct and indirect neighbors in the
directed call graph. We obtain a total of 95 791 code accounts that are potentially
related to the attack, of which 30 668 are still active on 01 May 2017.

Observe from Fig. 1b that the cleanup largely removed the spikes in smart
contract creation and destruction. There remains a suspicious spike in smart
contract creations in July 2016. We conjecture that most of the smart contracts
created in July 2016 are also related to the attacks. But due to a lack of evidence
and the risk of false positives, we decided to not filter our data further.

5 Results

We study the Ethereum main chain from the day of its inception until 01 May
2017.23 We report results before and after the cleanup, as described in Sect. 4. We
have 225 000 active smart contracts before cleanup and 194 332 after cleanup.

5.1 Stylized Facts

Table 1 summarizes our quantitative results. General statistics include the mean
and median of bytecode sizes (“Bytecode size”). Observe that the cleanup
reduced both mean and median bytecode sizes. This means that the smart con-
tracts used for the attacks were exceptionally large. We also measured the mean
and median lifetime of smart contracts (“Lifetime”). It is easy to see the bias
22 Address: 0x1fa0e1dfa88b371fcedf6225b3d8ad4e3bacef0e.
23 Block number: 3 633 433.
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Table 1. Summary of active smart contracts in Ethereum until 01 May 2017

Concept Statistic Analysis mode

Before cleanup After cleanup

Smart Contracts

Total active smart contracts # 225 000 194 332

Bytecode size (bytes) mean 1078 775

median 578 542

With zero lifetimea # 52 689 65

Lifetime of dead contracts (blocks) mean 10 061 40 687

median 0 39 001

Violate deployment convention # 6 6

Source Code Availability

Swarm hashes # 29 496 29 480

Swarm metadata # 14 14

Dependencies

Smart contracts with calls # 196 176 167 110

Smart contracts without calls # 25 456 24 430

Could not analyze dependencies # 3368 2792

Smart contracts with self loopsb # 1 1

Smart contracts with loops # 30 7

Calls to dead addresses # 14 196 1712

Calls to wrong addresses # 6983 5487

Trustlessness

Trustless smart contracts # 122 375 119 493

% of total 54.4 61.5
a Created and self destruct in the same block.
b Address: 0x938162cc5d6f4fc5d3f9edec18c93c5379d56062.

introduced by the attacks in the before cleanup column. The median smart con-
tract lifetime before cleanup is 0. This is a consequence of the 52 689 smart
contracts created and self destructed in the same block (“With zero lifetime”).
This is a significant bias in a set of 69 875 destructed smart contracts in total. If
we look at the results after cleanup, we see that mean an median are about the
same, approximately five and a half days.24 As mentioned in Sect. 3.1, we found
only 6 smart contracts that violated the default deployment convention.

In terms of source code availability, we find that about 13 to 15% of all
active smart contracts contain references to Swarm metadata (Swarm hashes).
But only 14 (in absolute terms!) actually host metadata (Swarm content). We
conclude that Swarm is not a reliable source of source code for the study period.

24 Assuming 12 s block time.
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Fig. 3. Cumulative degree distributions of the directed call graph

When it comes to dependencies, we find that most smart contracts have calls
(dependencies) to other smart contracts (“smart contracts with calls”,“smart
contracts without calls”). Our cleanup filtered very few smart contracts without
calls. Many of the smart contracts used in the attacks create big dependency
trees to amplify the attack, thus the result is not surprising. The row “Could
not analyze dependencies” reports the number of smart contracts we were not
able to extract dependency information from. Both values are around 1.5% of the
total active smart contracts. As mentioned in Sect. 3.3, our call graph contains
cyclic dependencies. Interestingly, most of the loops we found are related to
the attacks, only 7 are left after cleanup. In Sect. 3.2 we described how we deal
with calls to wrong and dead smart contracts. It is interesting to see that after
cleanup, the references to self destructed smart contracts decrease significantly
(“Call to dead addresses”).

Another way of looking at dependencies is the degree distribution of the
call graph depicted in Fig. 3. The in-degrees follow a typical Pareto shape in the
cumulative log-scaled representation both before and after cleanup. We annotate
the smart contract that are called from the highest number of other smart con-
tract in Fig. 3a. Two of them are hard coded smart contracts (cf. Sect. 3.2). The
distribution of out-degrees is visibly more affected by the attacks. The singularity
around degree 170 can be attributed to the death stars. It disappears largely, but
not completely, after cleanup. We conjecture that we might have missed 10–20
suspicious smart contracts after successfully removing several hundreds. Com-
paring both distributions highlights the importance of removing attack debris
from the Ethereum call graph.
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5.2 Trustlessness

In Sect. 2.2 we described the requirements for trustless smart contracts. Some
of the requirements are supported by the design of the Ethereum platform,
such as distribution, consensus, fairness, and determinism. The extent to which
these requirements are met depends largely on behavioral assumptions about
the participating nodes, which are beyond the scope of this paper. Here we
concentrate on the immutability of the control flow, a necessary requirement for
trustlessness and a property of individual smart contracts.

Figure 4 compares active smart contracts to trustless active smart contracts
using the trustlessness indicator presented in Sect. 3.3 over time. We find that,
before cleanup, 54% of all active smart contracts in our sample are trustless in
principle. The ratio raises to 62% after cleanup.

Fig. 4. Active smart contracts compared to active trustless smart contracts

In other words, two out of five smart contracts deployed on Ethereum do
require trust in at least one third party who, in principle, can alter the con-
trol flow of the program that enforces an agreement after it is committed to
the blockchain. This is not necessarily concerning, but a remarkable observation
against the backdrop of trustlessness being framed as the key benefit of smart
contracts and blockchain-based systems in general over conventional (central-
ized) infrastructures. In simple terms, there remains a gap between vision and
practice.

6 Discussion and Conclusion

We have developed a measurement approach for the trustlessness of smart con-
tracts and applied it to all the smart contracts on Ethereum. Two out of five
smart contracts we found on Ethereum are not trustless according to our call
graph-based indicator. This means it is hard or even impossible for users to ver-
ify these smart contracts. We also motivated the need for data cleanup when
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analyzing smart contract properties in order to avoid biases introduced by the
large scale attacks against the Ethereum platform. Accordingly, we propose a
cleanup strategy that leverages the call graph. This allows us to produce unbi-
ased summary statistics of legitimate use of Ethereum, including indicators of
bytecode size, smart contract lifetime, and source code availability.

Our approach has some limitations. It is based on the extraction of hard
coded addresses from bytecode. Although it seems to be robust in practice, it
is heuristic in nature with the possibility of extracting wrong information. The
apparent robustness also depends on the usage conventions on the Ethereum
platform. For example, if languages that allow address arithmetic gain popu-
larity, the current approach will resolve fewer dependencies. Other limitations
persist independent of the extraction of code dependencies. Currently, our app-
roach is blind to data dependencies. Those can range from simple deactivation
flags, which differ from self destruct only in the gas impact, to emulations of
Turing equivalent machines inside the smart contract. This means that even if a
smart contract is trustless according to our indicator, it can still encode agree-
ments where trust in individual parties is needed. Tackling data dependencies is
hard, because many use cases of smart contract need them.

Furthermore, we do not consider gas restrictions at the moment. Callers can
limit the amount of work a callee can do by restricting the gas supply of the
callee, this directly influences the amount of trust needed between parties.

Let us conclude with a broader outlook: Ethereum promises to fulfill the
vision of trustless smart contracts. However, trustlessness is not only a property
of the platform, but also of every individual smart contract. Our measurements
show that many smart contracts violate necessary conditions for trustlessness
in practice. We assume that many of these violations are the result of a lack
of awareness rather than intentional. This raises the need for tooling that helps
to avoid such mistakes, or at least increases awareness for the subject. Static
analysis of source code (for example Solidity) could be used to prevent the most
common trustlessness violations, such as calling addresses obtained from para-
meters or state variables. Furthermore, there is a relation to the verifiability
of smart contracts: existing formal verifiers for Ethereum [6,11] need certain
assumptions, which seem to be implied in our notion of trustlessness. Therefore,
the subset of trustless smart contracts is more amenable to formal verification
than general code for the Ethereum platform.
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Abstract. Bitcoin is a decentralized cryptocurrency that uses a ledger
(or “blockchain”) to keep track of the transactions made between its
users. Because it is a fully decentralized system and anyone can join,
every transaction is by necessity public. Thus, to preserve some sem-
blance of privacy, users in the system are represented not by their
real-world identities but by pseudonyms. While pseudonyms are accept-
able for a standalone cryptocurrency, the emergence of other potential
blockchain-based applications — e.g., using them to administer benefits
and pensions — poses a need to associate certain attributes with the
users of the system. In this paper, we address the question of how to
register identities and attributes in a system built on globally visible
ledgers. We propose a variety of possible solutions and in each case, we
analyze the tradeoff our solution provides between privacy (ensuring that
no one can associate the user’s real-world identity with the pseudonym
or other attributes they use on the ledger), usability (ensuring that ver-
ification of their attributes poses the lowest possible burden to users),
and integrity (ensuring that no one can impersonate a user). We also
present an implementation of one of our solution using Ethereum.

1 Introduction

Distributed ledgers, or “blockchains,” have received a lot of attention for their
potential applications: in addition to being used as the underlying architecture
for cryptocurrencies such as Bitcoin, they have been discussed for achieving
decentralized versions of identity management, DNS and public-key infrastruc-
tures, notary publics, and file storage. While centralized versions of these sys-
tems already exist, the attraction of distributed ledgers is that they minimize
the extent to which users must place trust in a single entity such as a certificate
authority.

In all existing deployments of distributed ledgers, users identify themselves
using pseudonyms — or even more anonymous identifiers, as in the cryptocur-
rency Zcash [4] — that they create themselves. The use of pseudonyms is impor-
tant for two reasons: first, all existing distributed ledgers are transparent, mean-
ing their contents are globally visible, so having users reveal their real-world
identities would completely violate their privacy. Second, allowing users to gen-
erate their own identifiers is necessary to preserve the openness of the system
and allow anyone to join.
c© Springer International Publishing AG 2017
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While these “on-chain” pseudonyms are thus seemingly quite useful (and
to some extent necessary) in public distributed ledgers, there are certain cases
in which it may be necessary for someone to know some quality of the owner
of a pseudonym, e.g., gambling services would like to know that their users
are over 18. As a more involved example, we consider the case of governments
administering pensions or benefits on a distributed ledger; the argument that has
been made for doing this is that it could provide recipients with better visibility
into their spending and reduce fraud [13], but such programs have recently come
under significant scrutiny [9,19] due to the fact that they allow the government
to identify its recipients on the ledger and thus track and monitor their spending.
In all of these settings, we would thus like the user to not be forced to reveal
to anyone the tie between their real-world identity and their pseudonym(s), but
rather to have some information that proves that the real-world user associated
with their pseudonym has been registered for some scheme (e.g., a pension) or
is associated with some required set of attributes (e.g., is over 18).

Our focus in this paper is on the role that registration of identity can play
in public distributed ledgers. While certain settings such as the ones described
above might require a centralized registration protocol (e.g., only the government
can decide whether or not a user is eligible for a pension), we also consider more
informal notions of registration such as the so-called “web of trust.” The web-
of-trust concept has historically been used solely within the setting of certificate
issuance, wherein users sign each others’ PGP identity certificates to vouch for
their authenticity, but has recently been discussed for the more general concept
of identity in distributed ledgers. These decentralized settings are particularly
appealing, as they remove the need for a single trusted party and provide an
opportunity to improve privacy for users.

Our Contributions. In this paper, we propose methods for achieving registra-
tion in decentralized settings — such as the web of trust — in which multiple
entities, in potentially flexible configurations, can act to validate attributes of a
user’s identity. We consider the registration of users’ pseudonyms, unless stated
otherwise. Our results focus on public open (or “permissionless”) ledgers, but
the same results would hold in the more restricted setting of “permissioned”
ledgers.

Before presenting these methods, in Sect. 4 we consider both the functional
and security properties that we hope to achieve. In particular, we consider how
to provide privacy for users, so that even the registrar who sees their real-world
identity and signs off on their attributes cannot subsequently link that identity
to the pseudonyms that the user goes on to adopt within the ledger.

Due to space constraints, we relegate our centralized constructions to a full
version of the paper. In the decentralized setting, in Sect. 5, we begin with a
registration protocol in the style of the web of trust (but again, leveraging some
of the key properties of distributed ledgers), and then build off of it to achieve
protocols that provide better privacy and overall security.

Finally, in Sect. 6, we present an implementation of a decentralized registra-
tion protocol — that most closely resembles the web of trust, but allows for the
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blinding of attributes — as an Ethereum smart contract. In this setting, users
can publish certain attributes (e.g., their Twitter handle) associated with their
Ethereum address. Other users or institutions can then publish a signature on
these attributes, reflecting a certain belief in its veracity. For attributes that the
user may not want to directly link to their real-world identity (e.g., a particular
Bitcoin or other cryptocurrency address), we provide a blind signing protocol
in which users can publish blinded attributes on the blockchain and other users
can sign them (and then the user can unblind them locally).

2 Related Work

In the setting of certificate issuance, our proposed systems are related to the idea
of a public-key infrastructure (PKI). Some of our proposed registration protocols
rely on a fixed set of specified registrars. These are related to the decentralized
PKIs proposed by Fromknecht et al. [14] and the ARPKI system [3], which both
distribute the process of certificate issuance to not only provide transparency
into the process but also prevent misbehavior in the first place. In the more
ad-hoc setting in which we allow any user to act as a registrar, our protocols are
related to the idea of the web of trust.

The notion of accessing a service in a privacy-preserving manner can seem-
ingly be achieved by anonymous credentials [7,8,11], which allow an issuer to
create credentials that vouch for a user’s identity or other generic attribute
(e.g., their age). These credentials can then be shown to a verifier in a way that
doesn’t reveal anything to the verifier beyond the fact that the user possesses the
attribute (e.g., is over 18 years old). The idea of issuing anonymous credentials
has also been explored in the decentralized setting [15]. Our goal in this paper,
however, is to allow users to not only access services but also to openly engage
in existing blockchain-based systems using a registered identifier that — despite
being vouched for by some registrar — cannot be linked to their real-world iden-
tity. To the best of our knowledge, this goal cannot be achieved directly by any
solution based on anonymous credentials, at least not in an efficient manner: even
if credentials could be issued on-chain, they would be larger than a blockchain
address and issuance would consume a prohibitively high amount of gas.

Finally, a lot of recent work, both in the academic literature and in the
broader community, has focused on the question of using the blockchain to
establish and manage identities (see, e.g., https://github.com/peacekeeper/
blockchain-identity for a comprehensive list). The ChainAnchor project [17]
presents a system for identity and access control, with the purpose of having
anonymous but verified on-chain identities, and of providing incentives to min-
ers to include only transactions from verified users. While some of the techniques
used are similar to our own, as they also adopt a form of registration, their focus
is on permissioned ledgers and on requiring registration for all users (which is
useful in, e.g., the setting of providing compliance with know-your-customer and
anti-money-laundering regulations). In terms of industrial solutions, uPort [12]
is a web identity management system that links an Ethereum address with a

https://github.com/peacekeeper/blockchain-identity
https://github.com/peacekeeper/blockchain-identity
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name, profile picture, and other information like an email address or Twitter
account, and OneName is a similar initiative that does the same with Bitcoin
addresses. MIT also recently introduced its Digital Certificates Project [20] using
the Bitcoin blockchain, with the goal of making “certificates transferable and
more easily verifiable.” These solutions have seen some level of adoption and we
borrow some useful features from each of them (e.g., we use a similar technique
to achieve revocation as the Digital Certificates project), but add the benefit of
additional points of comparison, and a security framework and analysis.

3 Background

3.1 The Web of Trust

The web of trust is a public-key authentication system established by PGP. In
this setting, if Alice trusts that a certain key belongs to Bob (e.g., they have
met in person), she can demonstrate this by signing his public key. The more
signatures associated with Bob’s public key, the more confident another user can
be that this public key does indeed belong to him and not to someone who wants
to impersonate him in order to intercept his communications.

In this system, one must of course be careful that it achieves some notion of
Sybil resistance; i.e., that an adversary has not simply created alternate identities
in order to vouch for their own impersonated key. To do this, users in the web
of trust can form a trust path. For example, if Alice trusts Bob’s public key, and
Bob trusts Dave’s public key, then there is a trust path from Alice to Dave and
she can have added confidence in Dave’s public key (as Bob’s public key, which
she trusts, was used to sign it). The shorter the trust path, the stronger the trust
can be in the associated public keys.

3.2 Distributed Ledgers

Bitcoin relies on a peer-to-peer network to process transactions. Within the sys-
tem, users are represented by addresses addr, each of which is uniquely linked
to a pair of public and private ECDSA keys (pk, sk). We denote by addr(pk) the
address associated with pk. Every time Alice wants to pay Bob using Bitcoin she
generates a transaction tx(addr(pkA) → addr(pkB)) and signs it with her private
key skA. (More generally, Bitcoin transactions can have arbitrarily many input
and output addresses, in which case the transaction must be signed by all pri-
vate keys associated with the input addresses, or even m-of-n multi-signature
transactions, in which a transaction must be signed by the private keys asso-
ciated with at least m of the input addresses.) She then broadcasts the signed
transaction to the network, which checks its validity and if applicable, adds it
to the blockchain, which acts as a public ledger of all such transactions.

To achieve more general functionality, Ethereum is a decentralized platform
that operates with the same underlying blockchain technology as Bitcoin, except
that it provides a Turing-complete scripting language. In Ethereum, a smart
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contract consists of program code, a storage file, and an account balance. The
program’s code is executed by the network, which is responsible for maintaining
a consistent view of the state of every contract in the blockchain. Users can call
the contract by sending transactions to its address, which updates the state of the
contract in the blockchain. Moreover, the execution of a program’s instructions
induces a cost; the currency used to pay for it is called gas.

3.3 Cryptographic Primitives and Notation

Following standard cryptographic notation, we use x
$←− S to denote the process

of sampling a member uniformly from S and assigning it to x. In particular,
we use x

$←− [n] to denote sampling x uniformly from {1, . . . , n}. We use y ←
A(x1, . . . , xn;R) to denote running algorithm A on inputs x1, . . . , xn and random

coins R and assigning its output to y. By y
$←− A(x1, . . . , xn) we denote y ←

A(x1, . . . , xn;R) for R sampled uniformly at random.
Both Bitcoin and Ethereum rely on ECDSA for signing. In what follows we

use (pk, sk) $←− Sig.KeyGen(1λ) to denote key generation, σ
$←− Sig.Sign(sk,m) to

denote signing, and 0/1 ← Sig.Verify(pk,m, σ) to denote verification.
Some of our decentralized registration protocols make use of public-key

encryption; here we denote the appropriate generic algorithms as c
$←− Enc(pk,m)

(for encryption) and m ← Dec(sk, c) (for decryption). In order to maintain com-
patibility with Bitcoin and Ethereum, the Elliptic Curve Integrated Encryption
Scheme (ECIES) provides an encryption scheme that is compatible with ECDSA;
i.e., one that allows for the encryption of ECDSA secret keys.

Finally, some of our schemes also make use of blind signatures. As initially
defined by Chaum [10], a blind signature provides an interaction — denoted
U(pk,m) ↔ S(sk) — wherein a user U obtains a signature from a signer S
on a message without the signer learning anything about the message. One
commonly used construction is the RSA blind signature [16], which we use in
our constructions due to the lack — to the best of our knowledge — of any
provably secure blind signatures that are compatible with ECDSA.

4 Definitions and Threat Model

We consider a setting in which users maintain attributes about themselves and
require registrars to vouch for these attributes. For example, in order to register
the attribute “over 18 years old,” a user reveals their identity to the government,
who verifies their age. If they are over 18, the government registers the user’s
pseudonym, and they are now able to use it directly on the blockchain. For
Bitcoin, we consider only the registration of pseudonyms, but in Ethereum, we
consider the registration of more general types of attributes. Confirmation that
the user possesses a given pseudonym may in turn be carried out by verifiers
in order for the user to gain access to a particular service; i.e. for the users
to interact with the service using their registered pseudonyms (e.g., use it to
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receive a pension from the government). We break this system down into four
phases: (1) setup, in which various actors may initialize certain information about
themselves (e.g., keys); (2) registration, in which the user interacts with the
registrar(s) to register their pseudonym(s) and receive some evidence of this; (3)
verification, in which the user interacts with the verifier to convince them that
certain pseudonyms have been registered; and (4) revocation, in which either the
registrar or (in some cases) the user revokes the registration of their pseudonym.

In order for the system to function, we must have a way for verifiers to
check certain information about users without the intervention of the registrar.
Let’s assume, for example, that the user wants to register as an attribute the
fact that they are over 18 years old so they can use a gambling service. If the
registrar must intervene in order to confirm this attribute — as in the recently
proposed brokered identification systems proposed in the US and UK [5,18,21] —
then the registrar must be online at all times and can link the user’s identity
with their usage of certain services, neither of which is desirable. If instead this
information is stored on a blockchain, then the verification step can happen in a
non-interactive, or passive, fashion, as the verifier can simply check for themselves
if the user’s pseudonym has been registered or not. If evidence of the registration
is not stored on the ledger, or if additional information is needed to “unlock” it
(e.g., it is encrypted), then it may be necessary for the user to send additional
information to — or otherwise interact with — the verifier. We capture these
two functional properties as follows:

Definition 1 (Passive/active verification). The verification process is pas-
sive if any verifier with access to the shared ledger can determine whether or
not a given user has registered a particular attribute. The verification process is
instead active if verifiers require additional information beyond what is available
on the shared ledger.

In order for the system to be secure, we would like to ensure that users are
able to register only accurate attributes about themselves; e.g., they can reg-
ister only for services, such as a pension scheme, that they are eligible to use.
We must also ensure that the individual identities of users are protected and
cannot be impersonated by anyone else. Once the user has completed the regis-
tration process and is interacting within the system using only their registered
pseudonyms (e.g., their Bitcoin address), we should be able to ensure privacy ;
i.e., that the registrar cannot link the user’s real-world and “on-chain” identifiers
(even across separate attributes). We consider the different types of security we
would like to achieve as follows:

Definition 2 (Attribute integrity). Attribute integrity holds if attributes
are registered only to those users to whom they belong; i.e., in the presence of an
honest registrar, malicious users are unable to either register a fake attribute or
one that otherwise does not belong to them, and malicious registrars are unable
to impersonate an individual honest user.

Definition 3 (Attribute privacy). Attribute privacy holds if malicious enti-
ties (i.e., registrars and verifiers who are allowed to collude) are unable to link
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the attributes a user claims within the system to their identity. In particular,
after the registration process is complete, malicious registrars are unable to dis-
tinguish the behavior of two users within the system that have different real-world
identities but the same set of attributes.

As we will see in our constructions, while revocation is useful and often
necessary — as keys are frequently compromised or lost — it also tends to
require active verification, as registrations cannot be deleted from the ledger
(because it is immutable) and it is difficult to efficiently prove the absence of
a revocation entry. To thus separate out these complexities, we analyze our
protocols separately in the cases where revocation is and isn’t supported.

5 Decentralized Registration

The “web of trust” reputation system can be considered a decentralized regis-
tration process in which any user can act as a registrar. The more signatures
one accumulates for a particular attribute, the more trusted that attribute can
be considered. In the PGP web of trust, however, the system still uses a central
website to provide the lookup and signing services. In our constructions below,
we use the blockchain to provide these two services. We also consider additional
decentralized protocols that provide more robust properties or are useful in set-
tings outside of the web of trust (see Table. 1).

Table 1. The different properties of a blockchain-based registration protocol and
whether or not they are satisfied by our various constructions. No circle indicates
that the property is not satisfied, a filled circle indicates it is, and a partially filled
circle indicates it is partially satisfied.

Verification Attribute integrity Privacy

Passive Active

Basic web of trust � ��
Blinded web of trust (with revocation) � �� ��
Blinded web of trust (without) � �� �
Multi-Casascius � � �
Mix-network � � �

5.1 Basic Web of Trust

One simple way of translating the web of trust into the setting of blockchains is
to have users create transactions that vouch for each others’ attributes. This can
be done either individually or — if a user knows in advance which other users
will vouch for their attribute — as a multi-input transaction.

Construction. In the setup phase, the user optionally chooses a set of peers to
validate their attribute and act as registrars. We assume each registrar creates
and publishes an on-chain identity addrR.
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In the registration phase, the user sends their identity id and address addrid to
each registrar, who determines if the address belongs to id (or just if id is a valid
identity), using some off-chain mechanisms that we omit here. If it does, each

registrar Ri creates a revocation keypair (pk
(i)
rev, sk

(i)
rev)

$←− Sig.KeyGen(1λ), and
publishes to the blockchain a transaction tx(addr(Ri) → {addrid, addr(pk

(i)
rev)}). In

a basic system like Bitcoin this could involve sending a specific amount of bitcoins
to both the attribute and revocation addresses, while in a more sophisticated
system like Ethereum it could be a registration smart contract. Alternatively, if
the set of registrars is fixed ahead of time, a user can create an n-input n + 1-
output transaction and, after collecting signatures on it from each registrar,
publish it to the blockchain.

In the verification phase, when the user wishes to prove that they have reg-
istered the pseudonym, the verifier checks for the existence of these transactions
in the blockchain, and that the output address addr(pkrev) has not spent its con-
tents. (While this may seem inefficient, if we associate with the ledger a list of
unspent transaction outputs, or utxos, then it becomes significantly faster.)

Our approach to revocation here and in what follows is inspired by the app-
roach of the MIT Digital Certificates project [20]. In the revocation phase, a
registrar Ri can revoke their registration by spending the contents of addr(pk

(i)
rev).

Security Analysis

Verification is passive, as the verifier needs to check only whether or not certain
transactions are in the blockchain.

Attribute integrity is partially satisfied: restricting ourselves to the setting
of on-chain pseudonyms, no registrar is able to impersonate the user, as
they don’t know the private key corresponding to a user’s addrid. We could
strengthen integrity by requiring the user to also send a signature to prove
its ownership of addrid. Because the user can pick its own set of registrars,
however, we cannot unilaterally guarantee that a user can’t register a fake
attribute, as a malicious coalition of users could act to register each other’s
fake identities or attributes. This is the same problem faced in the web of
trust, however, and it can be mitigated by having the verifier place trust only
in registrars with whom they can create a trust path of a certain (short)
length (see Sect. 3.1). If malicious registrars can place themselves along this
trust path with a certain proximity to the verifier, this is analogous to launch-
ing a Sybil attack, which can be prevented or detected in a variety of ways [2].
Thus, if the verifier sets a low threshold for the required length of the trust
path and a high threshold for the number of registrars required to have reg-
istered the attribute, we can argue that the probability that malicious users
can register fake attributes is low.

Privacy is not satisfied, as every registrar sees both id and addrid at the same
time.
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5.2 Blinded Web of Trust

We provide a blinded version of the web of trust in which the user collects blind
signatures from a set of nodes and the verifier then verifies the unblinded signa-
tures. In Sect. 6, we present the results of an implementation and deployment of
this approach on Ethereum.

Construction. In the setup phase, each registrar maintains as before a public
on-chain identity addrR linked to a public signing key pkR.

In the registration phase, the user sends their identity id to a registrar,
who determines whether or not they believe the user is eligible for the ser-
vice. If they do, the user and registrar engage in the blind signing protocol
U(addrR, pk) ↔ R(skR) at the end of which the user obtains a signature σ such
that Sig.Verify(pkR, pk, σ) = 1 and the registrar learns nothing about pk. The

registrar also creates a revocation keypair (pkrev, skrev)
$←− Sig.KeyGen(1λ), sends

it to the user, publishes to the blockchain a transaction tx(addrR → addr(pkrev)),
and maintains the mapping from id to pkrev. The user repeats this process with
every registrar. In the verification phase, the verifier verifies the unblinded sig-
natures, and the user proves they control the revocation address pkrev by signing
a message using skrev. The verifier verifies this signature, checks the existence
of the revocation transaction in the blockchain, and checks that addr(pkrev) has
not yet spent its contents.

In the revocation phase, the registrar spends the contents of addr(pkrev).

Security Analysis

Verification is active, as the user must provide the signatures to the verifier.
To allow for passive verification without revocation, the user could, after some
delay, send pk and σ back to the registrar. The registrar would then check its
own signature and, if it verifies, publish to the ledger a transaction of the form
tx(addrR → addr(pk)). The verifier would, in this case, simply check for a the
transaction tx(addrR → addr(pk)) in the blockchain to verify the registration,
making it passive.
If we require revocation, however, we cannot achieve passive verification. The
user would need to prove to the verifier that the coins in their revocation
address are unspent, but to do that they would still need to prove that they
know the secret key associated with their revocation address — as otherwise
they could find and use any revocation address in the ledger — which requires
active participation.

Attribute integrity is partially satisfied, as malicious registrars cannot imper-
sonate users since they do not know the private key associated with the public
key they register. While the unforgeability of the blind signature guarantees
that a malicious user cannot fake the approval of an honest registrar, we can-
not guarantee that malicious users and registrars cannot collude to register
fake attributes. Instead, we can diminish the probability of this by requiring
short trust paths and numerous registrars.
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Privacy is satisfied, as the unlinkability of the blind signature means that mali-
cious registrars are unable to link id and pk. If we consider malicious verifiers
as well, however, then the verifier could collude with the registrar and use
pkrev to de-anonymize the user. If we ignore revocation then privacy is (fully)
satisfied.

5.3 Multi-Casascius

In this setting, we assume that the registrar consists of several entities (e.g.,
different certificate authorities) that are assumed to have some level of trust in
each other; in particular, one registrar must be trusted by the others to correctly
verify the identity of the user. As an improvement over the previous construction,
these multiple entities make the registration process anonymous and provide
passive verification, even in the case where revocation is necessary.

Our solution is based on the two-factor key generation protocol used to gen-
erate physical Casascius coins [6]. In this process, the manufacturer (Casascius)
encodes on a physical coin a public key and a share of the associated secret key.
(Traditional Casascius coins have the full secret key, meaning the manufacturer
knows it and is able to spend the contents in the same way as the person who
bought it.) The user who purchases the product can then fold in their own share
of the secret key (which has been communicated to Casascius in the obfuscated
form of an “intermediate code”), which yields the full secret key needed to spend
the coins stored in the public key; thus, only the user and not the manufacturer
can spend the coins. Our solution attempts to retain this property, which allows
for attribute integrity, but provides a decentralized version for use in a wider
variety of settings.

Construction. In the setup phase, each registrar Ri establishes some on-chain
identity addrRi

associated with a public key pki, and the user creates a keypair

(pkpub, skpub)
$←− Sig.KeyGen(1λ). The user chooses a set of registrars with whom

they want to register, as well as the order in which the registrars will proceed.
(This can be thought of as either a property of the system, or as a choice made
by the user that they communicate to the registrars.)

The registration phase proceeds in two phases. First, the user sends pkpub

and their real world identity id to R1. This registrar verifies that the user is
legitimate; if so, it picks a random secret key sk1, sends pk1 ← (pkpub)sk1 to R2,
and keeps (for use in the second phase) the mapping sk1 �→ pkpub. Now, for all
i, 2 ≤ i < n, registrar Ri picks a random secret key ski, sends pki ← (pki−1)ski

to registrar Ri+1, and keeps the mapping ski �→ pki−1. Upon receiving pkn−1,
registrar Rn also picks a random secret key skn and forms pkn ← (pkn−1)skn . It

then creates a revocation keypair (pkrev, skrev)
$←− Sig.KeyGen(1λ) and publishes

a transaction tx(addrRn
→ {addr(pkn), addr(pkrev)}) that acts as a registration.

In the second phase, the registrars create an onion to send the secret keys
back to the user. In particular, Rn encrypts skn using pkn−1 and sends cn

$←−
Enc(pkn−1, (skn,⊥)) to Rn−1. Now, for all i, n > i ≥ 2, Ri folds their own secret
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key into the onion by sending ci
$←− Enc(pki−1, (ski, ci+1)) to Ri−1. At the end, R1

creates c1
$←− Enc(pkpub, (sk1, c2)) and sends this to the user. The user can now

recover all the individual ski values by computing (ski, ci+1) ← Dec(ski−1, ci)
for all i, 1 ≤ i ≤ n (where sk0 = skpub), and can thus reconstruct the public key
pkn as

pkn ← (pkpub)
∏n

i=1 ski ,

and the private key as skn ← skpub · ∏n
i=1 ski.

In the verification phase, the verifier checks for the existence of the transac-
tion tx(addrRn

→ {addr(pkn), addr(pkrev)}) in the blockchain, and verifies that
the contents of pkrev are unspent.

In the revocation phase, R1 is the only registrar that can initiate revocation
(as it is the only one that knows id), but Rn is the only registrar that can spend
the contents of addr(pkrev). Thus, R1 starts by sending a revocation request for
key pk1 to R2. In turn, using the mapping ski �→ pki+1, Ri sends a revocation
request for key pki to Ri+1 for all i, 2 ≤ i < n. When the request reaches Rn,
they can revoke the registration by spending the coins in addr(pkrev).

Security Analysis

Verification is passive, as the verifier needs to check only whether or not certain
transactions exist in the blockchain.

Attribute integrity is satisfied. The first registrar R1 checks for the validity of
id, so a user cannot register a fake or ineligible identity as long as R1 is honest.
Similarly, because the user sends a value pkpub to the registrar that involves a
partial secret key skpub known only to them, even if all the registrars collude
the user is still the only entity who knows the full secret key associated with
pkn, which means they cannot be impersonated. We could require the user to
send a signature under skpub to additionally prove their ownership of pkpub.

Privacy is satisfied, as long as at least one registrar is honest. For all i, 2 ≤
i ≤ n, each registrar Ri knows the mapping between pki−1 and pki, and R1

knows the mapping between id and pk1. If all the registrars collude, they
can thus learn the mapping between id and pkn, but as long as one registrar
doesn’t collude with the others and n ≥ 3, the user cannot be de-anonymized.
Assuming that R1 does not know which node is acting as Rn, which is plausible
as it communicates directly only with R2, R1 cannot de-anonymize the user by
observing the transactions published in the blockchain. Timing attacks can be
mitigated by adding some random delays in the publication of the registration
transaction. Our next protocol will completely thwart this attack.

5.4 Mix-Network

While the blinded web of trust protocol in Sect. 5.2 and the multi-Casascius pro-
tocol in Sect. 5.3 provide strong privacy guarantees, the former has the drawback
that verification required active participation on behalf of the user, and the lat-
ter has the drawback that all registrars must trust the initial one to verify the
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identities and allows timing attacks. Here, we try to maintain the advantages of
these protocols but eliminate these drawbacks.

Without adopting the time delay from our protocol in Sect. 5.2, we cannot
achieve passive verification unilaterally. Instead, we consider how to provide
passive verification in a setting in which multiple users register at the same time
through the same set of nodes (e.g., voter registration), which also allows us to
provide each registrar with the ability to verify the set of identities for themselves
without violating privacy. As we will see, if k users register at the same time
then this provides each user with an anonymity set of size k.

Construction. In the setup phase, each user j creates a keypair (pk
(j)
pub, sk

(j)
pub)

$←−
Sig.KeyGen(1λ), and each registrar Ri maintains some on-chain identity addrRi

.
The order of registrars is determined beforehand.

The registration phase is similar to the two-phase process in Sect. 5.3. First,
each user j sends its public key pk

(j)
pub and id(j) to R1. This first registrar then

verifies that all the identities are legitimate; if not it drops the illegitimate iden-
tities and waits to receive a legitimate set of k users. For each user, R1 then
picks a random secret key sk

(j)
1 , computes pk

(j)
1 ← (pk

(j)
pub)

sk
(j)
1 , and keeps the

mapping sk
(j)
1 �→ pk

(j)
pub. It then performs a permutation π1 on the identities and

sends the public keys {pk
(j)
1 }k

j=1 and the permuted identities π1({id(j)}k
j=1) to

R2. For all i, 2 ≤ i < n, Ri verifies for itself the set of identities and, if they are
eligible, picks for each user j a random secret key sk

(j)
i , computes

pk
(j)
i ← (pk

(j)
i−1)

sk
(j)
i ,

and keeps the mapping sk
(j)
i �→ pk

(j)
i−1. It then applies its own permutation πi

to the mapping and sends the public keys {pk
(j)
i }k

j=1 and the permuted iden-
tities πi ◦ · · · π1({id(j)}k

j=1) to Ri+1. Finally, Rn creates k revocation keypairs

(pk
(j)
rev , sk

(j)
rev )

$←− Sig.KeyGen(1λ) and k transactions

tx({addrR1 , . . . , addrRn
} → {addr(pk(j)

n ), addr(pk(j)
rev )}). (1)

It signs each transaction tx(j) of this form with its private key.
In the second phase, the registrars must now jointly create the transactions

to publish to the blockchain, and create an onion (as in Sect. 5.3) to send the
keys back to the users. So, Rn first signs each transaction tx(j) of the form
specified in Eq. 1 with its private key. It then encrypts sk

(j)
n with pk

(j)
n−1 to form

c
(j)
n

$←− Enc(pk
(j)
n−1, (sk

(j)
n ,⊥)) and sends the set {tx(j), c(j)n }k

j=1 to Rn−1.
For all i, n > i ≥ 2, Ri incorporates its own signature into the transactions

tx(j), encrypts sk
(j)
i with pk

(j)
i−1 to form c

(j)
i

$←− Enc(pk
(j)
i−1, (sk

(j)
i , ci+1)), and

sends {tx(j), c(j)i }k
j=1 to Ri−1.

Finally, R1 incorporates its own signature into the transactions tx(j) and,
now that they have the full set of signatures needed for validity, publishes these
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transactions to the blockchain. It also creates c
(j)
1

$←− Enc(pk
(j)
pub, (sk

(j)
1 , c

(j)
2 )) and

sends c
(j)
1 to each user j.

At the end, user j recovers the secret key shares sk
(j)
i in the same manner as

in Sect. 5.3; i.e., they compute (sk(j)
i , c

(j)
i+1) ← Dec(sk(j)

i−1, c
(j)
i ) for all i, 1 ≤ i ≤ n

(using sk0 = skpub), and computes the secret key as sk
(j)
n ← sk

(j)
pub · ∏n

i=1 sk
(j)
i

and the public key as
pk(j)

n ← (pk
(j)
pub)

∏n
i=1 sk

(j)
i .

In the verification phase, the verifier check for the existence of the transaction
in the blockchain and verifies that the contents of pk

(j)
rev are unspent.

As in Sect. 5.3, the revocation request can be initiated only by R1, but revo-
cation can be carried out only by Rn. R1 can initiate the process by sending a
revocation request for pk

(j)
1 (which represents id(j)) to R2. In turn, Ri transmits

the revocation request to Ri+1 using their partial key pk
(j)
i and their knowledge

of the mapping pk
(j)
i−1 �→ pk

(j)
i . Once this reaches Rn, it can spend the coins in

pk
(j)
rev to revoke the registration.

Security Analysis

Verification is passive, as the verifier needs to check only whether or not certain
transactions exist in the blockchain.

Attribute integrity is satisfied, as long as one registrar is honest: every regis-
trar verifies the set of identities {id(j)}k

j=1 for themselves, so if one registrar
is honest then it will drop any fake identities and users cannot register fake
ones. As in our previous protocols, malicious registrars cannot impersonate a
user as they do not have access to the private key.

Privacy is satisfied, as k-anonymity is provided as long as one registrar is hon-
est. In particular, Ri knows only the mapping between pk

(j)
i−1 and pk

(j)
i , and

only R1 knows the mapping between id(j) and pk
(j)
1 . Thus, as long as not all

registrars collude, id(j) and pk
(j)
n are unlinkable.

6 Implementation and Deployment

We now present an implementation of the decentralized registration systems
described in Sects. 5.1 and 5.2; i.e., a system that allow for decentralized regis-
tration in both a standard (in which no privacy is achieved) and blinded (in which
privacy is achieved) fashion. Our implementation is built on top of SCPKI [1],
which implements a basic web of trust system on the Ethereum blockchain. We
extended SCPKI to supported a blinded web of trust.

6.1 Overview

We have developed an identity management system based on blind signatures
and deployed it on the Ethereum blockchain as a smart contract. As in SCPKI,
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each user has their own identity on the blockchain that corresponds to an
Ethereum address. Using the methods of the smart contract, users can add
attributes to their Ethereum address, sign attributes, and revoke signatures. The
system also provides a way for users to search and retrieve attributes, by pro-
ducing Ethereum events, which allow clients to efficiently watch the blockchain
for new changes by a smart contract.

Due to the expensive fees of Ethereum data storage, data associated with
attributes may be stored off the blockchain but authenticated on the blockchain.
This can be done by adding an address (e.g., a URI) for the location of the
data instead of the data itself along with its cryptographic hash if necessary for
authenticity. The smart contract allows for the ability to store data using IPFS
(https://ipfs.io/) where the cryptographic hash of the data is also its address.

The signing and verification of signature validity is performed client-side. As
described in Sect. 5.2, when checking a signature, the client must also look for
the existence of a revocation transaction as well as check the optional signa-
ture expiry date. Because of the incompatibility discussed in Sect. 5.2 between
revocation and privacy, our implementation does not allow for the revocation of
blind signatures — only standard signatures can be revoked.

6.2 Technical Specification

The smart contract is written in Solidity, a high-level language for writing
Ethereum contracts, and the client is written in Python. Our open-source imple-
mentation, based on SCPKI, consists of 1502 lines of Python and Solidity code.
The client is a command line console application and provides access to the
smart contract’s methods and functionality to search for user attributes, retrieve
attributes, retrieve signatures, and verify signatures. For the blind signature, we
use the RSA blind signature scheme with 2048-bit RSA keys.

Simple Signing. In the setup phase, the user generates their own Ethereum
address. To obtain a simple signature the user first adds an attribute to
their Ethereum address, by calling the method addAttribute and specifying
the attribute type and data. This creates an AttributeAdded event on the
blockchain containing the attribute properties, which can be detected by the
client. Because Ethereum events are indexable, the client can easily search for
attributes. In the registration phase, the registrar signs the attribute by call-
ing the method signAttribute and specifying the ID of the attribute to sign
and optionally an expiry date of its signature. This creates an AttributeSigned
event containing the signature properties, including the Ethereum address of the
signer. Because only the owner of the private key of an Ethereum address can
create transactions originating from that address, this cryptographically proves
that a specific Ethereum address signed an attribute. In the verification phase,
the verifier checks the published signature on the user’s attributes, checking that
there are no revocations and that the signature has not expired.

Blind Signing. If a user wants to obtain a blind signature in order to anony-
mously register a public key, they first publish a blinded public key attribute

https://ipfs.io/
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using the method addBlindedAttribute, providing the data for the blinded
key and specifying the ID of the registrar’s public key attribute on the blockchain
that the key is blinded for; i.e., specifying which registrar the user wants to
blindly sign the key. This creates a BlindedAttributeAdded event that can
be detected by the owner of the signing public key attribute. To blindly sign an
attribute, the registrar calls the method signBlindedAttribute on the blinded
public key attribute previously added by the user, providing the data of the
signature, this is done client-side. This creates a AttributeBlindSigned event.
On receiving the event, the user can then unblind the signature client-side. In
the verification phase, the user shows the unblinded signature to the verifier (as
described in Sect. 5.2).

6.3 Costs

In Ethereum, every operation has a cost paid using gas. As of May 2017,
this cost can be translated into ether and USD using the exchange rate of
1 gas = 0.00000002 ether, and 1 ether = $192.00. Table 2 shows the cost of each
operation when data is stored on and off the blockchain. Aside from the obser-
vation that operations are relatively cheap — publishing the contract is the
most expensive step, at about $3, and all of the operations involving individ-
ual attributes cost a few cents — we also see that the operations that involve
adding and signing attributes are significantly cheaper when the data represent-
ing attributes and blind signatures is stored on IPFS.

Table 2. Cost for operations, where all data is stored on the blockchain.

Operation Gas Ether USD

Publish contract 786586 0.0157 3.01

Add standard RSA attribute 70952 0.0014 0.27

Add standard RSA attribute (IPFS) 40713 0.0008 0.15

Sign standard attribute 49904 0.001 0.19

Revoke standard attribute 28514 0.0006 0.12

Add blinded RSA attribute 60173 0.0012 0.23

Add blinded RSA attribute (IPFS) 38303 0.0008 0.15

Sign blinded RSA attribute 58012 0.0012 0.23

Sign blinded RSA attribute (IPFS) 36079 0.0007 0.13

7 Conclusions and Open Problems

In this paper, we have proposed different methods for achieving registration in
public distributed ledgers. We presented a decentralized setting, where registra-
tion is potentially flexible and can be done by several entities. For each case we
presented the trade-offs between security (in the form of privacy and integrity),
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usability (in the form of passive or active verification), and efficiency. Moreover,
all our solutions use only lightweight cryptographic primitives, as opposed to
approaches that adopt zero-knowledge proofs or other advanced cryptography.
We have also implemented a decentralized registration process that operates on
the Ethereum blockchain and evaluated its costs and efficiency.

Our system doesn’t provide a mechanism for key recovery, but we view this
as an important open problem and an avenue for future research, especially in
the setting in which a user has accumulated many signatures on an attribute
and built up a robust on-chain identity.
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EP/N028104/1.
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Abstract. We present an identity management scheme built into the
Bitcoin blockchain, allowing for identities that are as indelible as the
blockchain itself. Moreover, we take advantage of Bitcoin’s decentralized
nature to facilitate a shared control between users and identity providers,
allowing users to directly manage their own identities, fluidly coordinat-
ing identities from different providers, even as identity providers can
revoke identities and impose controls.

Keywords: Bitcoin blockchain · Identity proofs · Discrete Logarithm
REPresentation (DLREP) · Personal Identity Management Systems
(PIMS)

1 Introduction

We live in a world where the ways in which a person’s identity is being used are
increasingly complex. Appropriately handling sensitive personal data, such as
medical, financial, and employment data, is subtle and requires care [21]. In this
context, it is important to employ technical solutions that promote good security
practices and that ensure that users have appropriate controls over how their
data is being used. There are many [5] who advocate for a decentralized app-
roach in which users directly manage their own identities via personal servers,
Personal Identity Management Systems (PIMS). Meanwhile, blockchains, most
notably Bitcoin [18], have provided new models of decentralization. In this work,
we propose a sort of “light-PIMS,” to be implemented on the Bitcoin blockchain.
The decentralized nature of the blockchain allows us to create a neutral space
where identity issuers and users share responsibility for users’ identities, provid-
ing protections and the capacity for oversight for both parties.

Related Work. In 2015 MIT Media Labs introduced a system for academic
certificates on the Bitcoin blockchain [20]. Taking advantage of the blockchain’s
c© Springer International Publishing AG 2017
J. Garcia-Alfaro et al. (Eds.): DPM/CBT 2017, LNCS 10436, pp. 390–407, 2017.
DOI: 10.1007/978-3-319-67816-0 22
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persistence over time, this system gives students a convenient way of proving
that they graduated, see Sect. 2. The Blockstack project [6] has implemented
decentralized versions of PKI and DNS on the Bitcoin network. In [11], a decen-
tralized scheme to issue credentials in the absence of a trusted third party is pro-
posed using Bitcoin. This scheme incorporates zero-knowledge protections such
as those we will deal in Sect. 2.3. The startup CryptID [1] has proposed a sys-
tem where encrypted records of fingerprints (along with a password) are stored
in the Factom blockchain, which is itself periodically committed to the Bitcoin
blockchain, replacing the traditional centralized server in fingerprint scanning
identification systems with a more lightweight system. We generalize these ideas
to permit more flexible user identities that can contain different fields of infor-
mation useful in interacting with diverse service providers. We further explore
the possibilities enabled by performing these interactions on a blockchain. Some
architectures propose new, application designed blockchains. For example, the
proposal of IDCoins [2] relies on a custom blockchain in which the proof of work
is related to the generation of GPG/PGP keys necessary to create a web of trust.
The Guardtime KSI blockchain, which forms the base of an electronic records
system used in Estonia [4,23], is a permissioned blockchain. In [28] a system is
proposed to store user information such as the GPS data from their phone in a
distributed hash table and then store pointers to this data and permissions on
how it may be used or retrieved on a blockchain. The proposition of ChainAn-
chor [14] even allows to create a semi-permissioned structure that can be placed
on top of an existing blockchain such as that of Bitcoin by changing the incen-
tive structure of miners to promote permissioned transactions. For a survey on
other proposals that touch on the relationship between blockchains and identity
management, see [16,27].

Our Contribution. We propose an identity management system that will take
advantage of the decentralized nature of the Bitcoin blockchain to allow for a
balance between the ability for users to manage their own identities and for
issuers to establish controls. The different entities of our proposal communi-
cate via Bitcoin transactions, allowing identity issuers to outsource much of the
infrastructure required for this system to the Bitcoin network, which as the most
robust, most established blockchain, has strong security properties, most notably,
that miner’s work maintains strong integrity of its data. Privacy during identity
verification is ensured thanks to the attribute-based credentials of Brands [8].
While [11] already proposes using Brands credentials in Bitcoin, their protocol
could, in fact, be implemented in any blockchain without major modifications.
In contrast, our proposal takes advantage of the specifics of the Bitcoin scripting
language to encode identity meaning in Bitcoin syntax. Specifically, we build
upon the idea of MIT Media Labs [20] that revocation can be encoded in terms
of the status of a Bitcoin transaction to enable additional mechanisms for issuer
oversight which are then enforced by the Bitcoin network. Particularly, in our
system an issuer can limit the number of times an identity can be used, see
Sect. 3.5. At the same time, we will see that our system gives a great deal of
control to the user over her identity.
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Note that in traditional systems the reconciliation between user control and
issuer oversight is problematic; in most systems the identity is generally con-
trolled entirely by an on-line issuer with little input from the user [5], or alterna-
tively the issuer will sign an identity to be managed by the user, then the issuer
will go offline ceding his capacity for oversight (See [9] for a further discussion
on the advantages and disadvantages of these two models.)

Compared to a traditional decentralized system, we offer more integrated
issuer controls. For example, compare the revocation mechanism discussed in
Sect. 3.4 to the challenges encountered using revocation lists in public key
infrastructures (PKIs) [17]. Additionally, we will see that our system has the
following advantages compared to centralized systems:

– Our system does not require identity providers to be as “lively” as they
must be in traditional, centralized systems. If an identity provider has placed
controls on an identity, such as a limit on the number of times it can be used,
then even if an identity issuer has a service interruption, a user can continue
to use her identity and these limits will continue to be enforced by the robust,
worldwide Bitcoin network. A user can even revoke her own identity without
intervention by the issuer.

– By providing a common space, control over which is shared between the
different actors through the mechanisms of the blockchain, we allow users to
coordinate several micro-identities, only needing to trust a small portion of
their identities to any given identity provider, see Sect. 3.6. While a similar
coordinate scheme is possible without a blockchain, in practice it is highly
impractical for a user to coordinate identities from different identity providers
each of whom uses his own distinct formatting and infrastructure.

On the other hand, our system has two (potential) drawbacks. First, as
authentications are encoded in Bitcoin transactions, this requires paying trans-
action fees to miners, see Sect. 3.7 for an estimate of these fees. Second, Bitcoin
transactions are by their nature public, posing risks to user anonymity. The typ-
ical suggestion to ensure (pseudo-)anonymity in Bitcoin is to use each Bitcoin
address exactly one time. An analogous idea works here, at the expense of having
higher user fees, see Remark 5. Note that users have differing standards regard-
ing the privacy that they expect in their interactions. Some users may be willing
to sacrifice some anonymity in exchange for lower fees. In fact, some users, such
as those that gladly link their Facebook account to their Instagram account or
their favorite blogs, may even prefer that metadata on their transactions be tied
to them, allowing them to create a digital presence on which they can build a
reputation. See Sect. 5 for a proposal on how a reputation system can be built on
top of our architecture. A user should be empowered to make choices regarding
how private they want to be.

2 Background

In this section we briefly recall some of the existing ideas, in Bitcoin and in the
work of Brands [8], upon which our system is built.
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2.1 Bitcoin Relevant Notions

It is a particularity of Bitcoin that all bitcoins exist in the form of Unspent Trans-
action Outputs (UTXOs) [7, Chap. 5], [18]. Each transaction may have several
inputs, each of which was an output UTXO for some previous bitcoin transac-
tion, and it may have several outputs. Most transaction outputs correspond to a
bitcoin address, the hash of the public key that can spend it or a hash of a script
detailing how the coin can be reclaimed. (These are called Pay to Public Key
Hash P2PKH and Pay to Script Hash P2SH outputs respectively.) Particularly,
one can create P2SH outputs that can then be spend by an m of n multisig. Also
relevant to our work will be OP RETURN outputs; each such output contains up to
80 bytes of space in which the sender of a transaction can store arbitrary infor-
mation. Note, OP RETURN outputs must have zero bitcoins associated to them;
as such, they are provably not usable as inputs to later transactions.

The raw transaction that is broadcast to the nodes contains the amount
of bitcoin to associate to each output, the script permitting validation of each
output (P2SH, P2PKH, etc.), and the scripts for each input that satisfy the
requirements set up when the corresponding input UTXO was created, generally
including a signature from a corresponding private key. The hash of this raw
transaction becomes the transaction identifier (txid), which is included in the
Merkle tree that produces a block header and is ultimately recorded in the
block chain in an immutable way. Thus, the given inputs and outputs of a given
transaction are provably linked together.

Financial Friction in Bitcoin Transactions. Miners are compensated by
“fees.” The amount paid in fees for a given transaction is the difference between
the combined values of the inputs and the combined values of the outputs. Min-
ers, who are limited in how many bytes they can fit a given block, generally
choose to include the transactions with the most profitable fees with respect to
the number of bytes in its raw transaction [7, Chap. 5]. When discussing our
schema, we will denote the fees for a given transaction by FNAME-OF-TRANSACTION. See
Sect. 3.7 for estimations of these amounts.

In order for a Bitcoin transaction to be considered valid it must satisfy certain
basic properties such as not double spending a previously spent output, having
valid signatures, etc. Any block that contains an invalid transaction will be
rejected by the network. In addition, the Bitcoin Core software distributions to
miners suggests requirements that transactions need to satisfy in order to be
considered “standard.” These requirements are implemented at the discretion
of each miner and thus vary slightly across the network; a miner may refuse
to include a given transaction in the blocks he mines as “non-standard,” but
if another miner broadcasts a block with this transaction in it, he will still
accept that block if the transaction is valid. In particular, for a transaction to
be considered standard, each of its non-OP RETURN output must have a minimal
value so as to prevent the network from being spammed by extremely low value
transactions. Any amount of bitcoin below this minimum is called “dust.” As
of version 0.14 (March 2017), Bitcoin Core [12] recommends that miners refuse
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transactions that have a P2PKH output of less than .00000546 bitcoin, currently
(June 2017, 1BTC = 2720 USD) around .01 USD. We denote by D this minimal
amount. Fees and the requirement to leave dust can greatly erode the value of a
user’s bitcoins if she engages in many transactions of small amounts.

2.2 MIT Media Labs Certificate Issuing Schema

We are inspired by the transaction structure used in [20]. In this system a cer-
tificate or diploma is issued to a user who completes a given program of study,
encoded in a Bitcoin transaction. The transaction has a single input, from the
credential issuer, so the transaction must be signed by the private key corre-
sponding to the issuer’s address. Hence, verifiers can be confident that credential
was issued by an approved party. There are three outputs. The first is the Bitcoin
address of the user. Then the user can authenticate herself as the holder of the
credential by signing messages using the corresponding private key. The second
output is to an address again belonging to the issuer. If this output is spent, the
certificate is seen as being revoked. We view this revocation mechanism as a key
innovation of [20], and we integrate and develop it into our system. Finally, the
third output is an OP RETURN that contains the certificate information. Note that
as each of these UXTOs is thought of as having symbolic meaning, their bitcoin
values are secondary; indeed, they are assigned values slightly larger than D.

Input Addresses Amounts Output Addresses Amounts

Issuer .000155 BTC Recipient
Issuer (for revocation)
OP RETURN( Certificate info)

.000275 BTC

.000275 BTC
0 BTC

Fees: .0001 BTC

Fig. 1. Schema of an MIT certificate issuing transaction as in [20]. See, for example,
txid: 41740ae0812e5a7804778f43c9fd1f8df50fe1bcd0545e9d627a83ab9d0d3d07

2.3 The DLREP Function

In [8], Brands proposed very efficient ways of revealing parts of an identity to
verifiers, relying on discrete logarithms and hash functions. All the following is
from [8]. Assume that n identity fields X1, . . . , Xn are to be cryptographically
blinded for further proofs. Let q be a prime number and G a group of order q,
in which the discrete logarithm is hard. Typically, we take G to be the Koblitz
elliptic curve secp256k1 where points are represented with 64 bytes (we use
multiplicative notation for compatibility with [8]), namely we use the same G
that is already being used for the Bitcoin signature protocol. Let g0, g1, . . . , gn ∈
G. Furthermore, there is the need (see Sect. 3) for an auxiliary random X0 to
protect unknown fields from a dictionary attack when the other fields are known.

https://blockchain.info/tx/41740ae0812e5a7804778f43c9fd1f8df50fe1bcd0545e9d627a83ab9d0d3d07
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Definition 1. The tuple (X0,X1, . . . , Xn) ∈ Z
n+1
q is called a Discrete Log-

arithm REPresentation (DLREP) of h =
n∏

j=0

g
Xj

j ∈ G with respect to

(g0, g1, . . . , gn).

To (non-interactively) prove knowledge of a DLREP of h to a verifier V, a
prover P performs the following protocol steps [8, Sect. 2.4.3]

1. P generates n+1 secret, random numbers a0, a1, . . . , an in G. Let A =
n∏

j=0

g
aj

j ,

and compute c as c = H(A), where H is a one-way hash function.
2. P computes bj = aj + cXj , j = 0, 1, . . . , n and sends them, as well as c to V.

3. The verifier V checks that H(
n∏

j=0

g
bj
j h−c) = c holds.

Then, [8, Chap. 3] shows how the DLREP can be used to selectively prove prop-
erties about the Xj ’s, while any other information remains hidden. These tech-
niques can be used to prove arbitrary satisfiable Boolean statements about the
Xj ’s. For example, a prover can demonstrate that she is a French citizen AND
that she is either under 18 OR over 65. P can prove (true) statements about her
identity that contain an arbitrary number of ANDs, ORs, and NOTs in such a
way that V only learns information that can be computed using the status of the
formulas requested and information available a priori. See [8, Proposition 3.6.1]
for a formal statement of this result. Brands [8] also shows that if the discrete
logarithm problem is difficult, DLREP is one-way and collision-intractable, pre-
venting an adversary from forging an identity with a given DLREP.

3 Our Proposal

3.1 Actors, Protocol Structure, and Security Assumptions

Our system will have three types of actors: Identity Providers (IP), Service
Providers (SP), and Users (USR). We borrow the following from [20]:

Definition 2. An identity is a tuple (X1, . . . , Xn) where each Xj ∈ Zq stands
for a different attribute, as exemplified below.

An attribute Xj may represent a name, a date of birth, a social insurance num-
ber, medical or financial data, or some other personal information about a user.
Typically, based on an identity provided by IP, a user (USR) wants to convince
SP to give her access to its services.

Assumptions on Actors. We consider that both the Bitcoin addresses of IP
and SP are well-established and public, aIP and aSP respectively. We will con-
sider scenarios in which we have multiple identity providers and service providers,
whose addresses are denoted aIP1 , aIP2 , . . . and aSP1 , aSP2 , . . . respectively. In
contrast, USR may have different Bitcoin addresses a

(1)
USR, a

(2)
USR, . . . in order to



396 D. Augot et al.

obfuscate the link between her identity transactions. When discussing a given
user’s address generally, we write a(i)USR to indicate one her addresses. Note that a
user should not re-use Bitcoin addresses that she has used for non-identification
transactions, in order to not link this identity with her other Bitcoin activity.

We assume that all of USR, IP, and SP are capable of sending and receiving
bitcoin and that they can perform operations in secp256k1. We will explore in
Sect. 3.9 further technical requirements on the ability of SP to track Bitcoin
transactions which will depend on SP’s security requirements. We assume that
IP validates a user’s real world identity (via a more or less rigorous verification
process) and then publishes documents that are correct. Furthermore, IP should
handle user personal data in a way that respects user-privacy. Note that IP does
not need to stay online for the identities it issues to be used, and only participates
for issuing and revocation of identities, and certain exceptional maintenance, see
Sect. 3.5. Service providers accept identities issued by identity providers they
wish to trust. Note that service providers may fail or refuse to provide a service,
a fact which can not be managed by our protocol. They may deviate from the
protocol (at the risk of impairing their reputation, see below).

Assumptions on Bitcoin Network. We will use the public ledger function-
ality of Bitcoin: it is a “bulletin board” where anyone can post messages and
read messages posted. More precisely, [13,22] provide the definitions of liveness,
i.e. every honest participant will have its posted messages seen by every hon-
est participant after some delay, and persistence, which means that every posted
message will indefinitely be seen at the same position by all participants. We will
also rely on the security semantics of the Bitcoin transaction verification pro-
cedure which ensure no double-spending, that each non-generation transaction
has inputs linked to previous transaction outputs, etc. Under some quantitative
bounds on the relative power of the adversary, be it computing power in [13],
and or computing and network power [22], the Bitcoin core protocol is proven
to securely provide these functionalities.

The above results are theoretical and quantitative. There could be real world
situations in the Bitcoin blockchain where the adversary has enough power to
violate the above quantitative bounds, and also accidental cases where problems
occurs like small forks, peer-to-peer failures, etc. We will discuss the impact of
these possible attacks and failures in Sect. 3.9 below.

Remark 1. Note that there are other relatively well-established blockchains such
as Ethereum that can also serve as a “bulletin board.” However, by working in
Bitcoin, we can use the linking mechanism of Bitcoin transactions, which is
not natively present in the account based model of Ethereum [26]. Also, the
total hash power of the Bitcoin network is substantially greater than that of
Ethereum [15], which can be seen as a sign that Bitcoin has a great resilience to
51% attacks.

There are three steps for our protocol: a Setup phase, an Enrollment
phase, and an Operational phase.
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3.2 Setup Phase

Each IP will choose some set of g0, g1 . . . , gn ∈ G that will serve as the base for a
DLREP function. These gj should be public and readily available. For example,
IP could create a series of Bitcoin transactions with inputs from his address in
which the gj and the fields they represent are stored in OP RETURN outputs.

3.3 Enrollment Phase

During the Enrollment phase, USR brings to IP the (physical, biometric, etc.)
elements required to assert that her identity indeed matches all the Xj ’s. This
can be as strong as a physical meeting, in which the user shows a passport, or
as light as an authentication on a web server, depending on the policy of IP.
During this phase USR should provide IP with a Bitcoin address a

(i)
USR that

she controls and an element gX0
0 to protect against dictionary attacks, where X0

is chosen at random by USR so that IP does not learn it. Then, IP can form
h
a
(i)
USR

= gX0
0 gX1

1 . . . gXn
n , as in Sect. 2.3.

The Enrollment phase corresponds to a single Bitcoin transaction, TXPUBLISH.
The primary purpose of this transaction is to record h

a
(i)
USR

in the blockchain;
however, we see that this transaction will include other structure.

TXPUBLISH (Identity Establishment): IP sends amounts of bitcoin to two out-
puts. First a minimal amount of bitcoin D is sent to the user’s address a

(i)
USR;

this ties the user’s address to the identity. Also, IP sends bitcoin to a 1 of 2
P2SH multisig of a(i)USR and aIP , denoted MSIG1 2(a(i)USR, aIP), which we view
as an authentication token that the user will spend upon using her identity.
Moreover, either USR or IP can prevent further use of the token by USR by
sending it to IP or even spending it to a random address. This should be seen
as revocation. More precisely, when using her identity as described below in
Sect. 3.4, USR will send transactions of a specific form that return bitcoin to the
same multisg address of aIP and aUSR leaving a transaction output for future
authentications; if at any point USR or IP spend this output in a transac-
tion that is not of the form of another authentication, then this transaction is
a TXREVOKE and the identity is seen as revoked. Finally, an OP RETURN contains
h
a
(i)
USR

.
The authentication token will be used in subsequent transactions; its amount

V will be calibrated to cover the costs of these transactions, see Sect. 3.7.
Note that the structure of TXPUBLISH is similar to that of the transactions in

the architecture of [20] as shown in Fig. 1. Now, revocation can be performed by
both IP and by USR as both parties can destroy the authentication token via
a TXREVOKE.

Remark 2. There are alternative zero-knowledge selective credential systems in
addition to that of Brands [8]. As discussed above, one advantage of using
Brands’ scheme is that its cryptographic primitives: discrete logarithms (in our
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TXPUBLISH
Input Addresses Amounts Output Addresses Amounts

aIP V + D + FPUBLISH a
(i)
USR

MSIG1 2(a
(i)
USR, aIP)

OP RETURN h
a
(i)
USR

D
V

Fees: FPUBLISH

Fig. 2. Structure of TXPUBLISH.

case on secp256k1) and hash functions are also primitives of Bitcoin, so we mini-
mize the number of cryptographic assumptions necessary. Also, the commitments
of Brands are small enough (a compressed elliptic curve point of 33 bytes) to fit
in an OP RETURN. In contrast this is not the case for example for the commit-
ments of the Camenisch-Lysyanskaya scheme which produces commitments of
670 bytes [24, Table 2].

Remark 3. One can imagine cases where a hostile or hacked IP uses the authen-
tication token to obtain services acting as if it were the user, possibly with the
aim of harming the user’s reputation. However, when spending a multisig output,
it is visible which of the public keys one is signing by [7], thus such an attack
would be visible and, in fact, damage IP’s reputation.

3.4 Operational Phase

The Operational phase is made up of two further Bitcoin transactions. We think
of certain outputs as being distinguished (or colored with a transferable semantic
meaning in the sense of Colored Coins [10], [19, Sect. 9.2]), corresponding to the
authentication token. The flow of this token will chain the transactions together
and ultimately to the creation of the identity in TXPUBLISH (see Fig. 4). We suppose
SP informs USR of what statement about her identity she needs to prove to
authenticate. Then we have the Bitcoin transactions:

TXREQUEST (Request for Service): USR creates a transaction where the input is
the MSIG1 2(a(i)USR, aIP) from TXPUBLISH. One output is sent to aSP . One output
is sent back to MSIG1 2(a(i)USR, aIP) and will serve as the authentication token for
future transactions. USR proves to SP the required Boolean statement about
the Xj ’ s without revealing them as in Sect. 2.3 (see below for a discussion of
how this proof is transmitted and stored).

TXACCEPT (Acknowledgment of the Identity by SP): Upon validating the
proof of USR, checking that the authentication token is the result of a series of
TXREQUEST’s each of whose input is the output of the previous chained back to a
TXPUBLISH, checking that TXPUBLISH was issued by a trusted IP, and verifying that
the multisig output of the most recent TXREQUEST has not been spent (namely that
there has not been a TXREVOKE), SP accepts USR’s authentication and uses its
output from TXREQUEST to send bitcoins to aIP .



A User-Centric System for Verified Identities on the Bitcoin Blockchain 399

TXREQUEST
Input Addresses Amounts Output Addresses Amounts

MSIG1 2(a
(i)
USR, aIP) V aSP

MSIG1 2(a
(i)
USR, aIP)

OP RETURN(proof-ref)

FACCEPT + D
V − (FREQUEST + FACCEPT + D)

Fees: FREQUEST

TXACCEPT

aSP FACCEPT + D aIP D
Fees: FACCEPT

Fig. 3. The transactions that compose a typical authentication The inputs and outputs
highlighted in red are thought of as an authentication token that chain the user’s
transactions together and to TXPUBLISH.

Storage of Proofs. A careful reading of [8, Chap. 3] shows that the size of
the Brands proofs required to demonstrate a given Boolean statement about an
identity (X0, . . . , Xn) scales linearly in n, but also depends on the statement
being proven. We note that these proofs will generally be too large to be con-
tained directly in an OP RETURN. Depending on the needs of USR and SP, we
propose three different mechanisms by which these proofs might be transmitted
and stored. 1. A user can store in the OP RETURN of TXREQUEST a link to a site where
the proofs are stored externally as well as a hash of the relevant contents of this
site. We denote this information by proof-ref. The hash will be included in mined
blocks, so the information on the site has the same protections against mutability
as other information on the blockchain. This is similar to how metadata is stored
in [10]. 2. A user that is very concerned about privacy, or who is proving a state-
ment that is already sensitive, can transmit the Brands proofs entirely off-chain.
3. If one wants to avoid an off-chain storage mechanism, there are a number of
non-OP RETURN ways to store data in the Bitcoin blockchain (see [10]) such as in
a vanity address or using a fake 1 of N multisig. Alternatively, one can issue a
P2SH output in TXREQUEST with Pubkey Script OP HASH160 H(data) OP EQUAL
for which the corresponding input Sig Script is simply the data itself (see
txid db195e4bfcfb3cc6d47f8d6231cb59e543c31e01d196d557457bca0fa5c1aba0).
While there are still limits on how much data can be placed in a single input,
through using multiple inputs, one can store larger amounts of data in this fash-
ion in exchange for paying (much) higher transaction fees.

For the remainder of this article (and in Fig. 3) we assume that proofs are
being referenced via a link and a hash in an OP RETURN.

Remark 4. TXACCEPT publicly shows that SP has accepted USR’s identity proofs
as valid, contributing to the reputation of a(i)USR (see Sect. 5). This is particularly
useful if the proofs were conveyed off-chain or are otherwise unavailable. TXACCEPT
can also serve to alert IP that SP has used an identity that it provided, and
can even be a basis for a payment by SP for the issuing of this identity.

https://blockchain.info/tx/db195e4bfcfb3cc6d47f8d6231cb59e543c31e01d196d557457bca0fa5c1aba0
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aIP

MSIG1 2(a
(i)
USR, aIP) aSP

TXREQUEST

TX
PU
BL
IS
H TX

ACCEPT

Fig. 4. Scheme for users to prove their identity to service providers. An identity is
issued via a TXPUBLISH. Subsequently, each transaction takes as input the output of a
previous transaction (TXPUBLISH for the first authentication, TXREQUEST thereafter). For
simplicity, the OP RETURN output is not shown.

Remark 5. The transaction output of TXREQUEST to MSIG1 2(a(i)USR, aIP) is neces-
sary if the user wishes to reuse an identity, so that USR will have an UTXO tied
to her identity to spend in a subsequent TXREQUEST. This cyclic structure chains
the various authentications together permitting a verifier to trace any of them
back to the original identity issued in TXPUBLISH. Alternatively, USR can obtain a
new TXPUBLISH attached to a different address a(j)USR for each authentication if she
wishes to maintain a more complete anonymity in her authentications. However,
doing so is slightly more expensive as additional fees need to be paid for each
TXPUBLISH. Additionally, this limits the ability of a user to take advantage of the
reputation system we propose in Sect. 5. (See the discussion in the introduction
on user empowerment over her level of privacy and compare to [8, Chap. 5.2.1],
where Brands discusses the balance between reputation and anonymity and pro-
poses reuse solutions for his certificates.) In cases where the identity is only
designed to be used one time, this transaction output is unnecessary.

3.5 Limited Use Identities and Setting Bitcoin Values

Due to the chaining of authentications, when SP verifies the continued validity
of USR’s identity, the number of times this identity has been used can also be
calculated. Thus, if IP includes a use limit of N authentications with h

a
(i)
USR

in
the OP RETURN of TXPUBLISH, SP can check if this identity can still be used. Then,
IP should calibrate the amount of bitcoin, V , that is placed in the a

(i)
USR output

to cover these N authentications. As we saw in Fig. 3 that each authentication
consumes FREQUEST+FACCEPT+D bitcoin before the authentication token is returned
to the user, and this returned token needs to have a value of at least D after the
last usage for the transaction to be accepted as standard, V must be at least
N(FREQUEST + FACCEPT + D) + D. Note, the fees required for a transaction to be
processed in a timely fashion slowly vary based on market forces, so IP should,
in practice, set V to be slightly larger than current market demands in case
miners increase their fees. Then, situations requiring IP to come online and top
up its users’ balances can be limited to cases of extreme changes in Bitcoin fees.
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3.6 Coordinating Multiple Identities

Suppose a given user has obtained identities h
a
(1)
USR

and h
a
(2)
USR

from more than
one identity provider. We see that these identities can be coordinated.

TXREQUEST-DOUBLE
Input Addresses Amounts Output Addresses Amounts

MSIG1 2(a
(1)
USR, aIP)

MSIG1 2(a
(2)
USR, aIP)

V1

V2

aSP
MSIG1 2(a

(1)
USR, aIP)

MSIG1 2(a
(2)
USR, aIP)

OP RETURN(proof-ref)

2FACCEPT + 2D
V1 − (FREQUEST + FACCEPT + D)
V2 − (FREQUEST + FACCEPT + D)

Fees: FREQUEST-DOUBLE

TXACCEPT-DOUBLE

aSP 2FACCEPT + 2D aIP1

aIP2

D
D

Fees: FACCEPT-DOUBLE

Fig. 5. Use of the authentication tokens of two identities together. The paths of these
tokens are colored in red and blue. The Brands proofs referenced in proof-ref are with
respect to the DLREP of Eq. 1

Concretely, suppose a user has been issued an identity by IP1 consisting of

h
a
(1)
USR

=
n∏

j=0

g
Xj

j and another identity by IP2 consisting of h
a
(2)
USR

=
m∏

u=0
(g′

u)Yu .

A service provider will be able to verify that each of these values correspond to
the respective TXPUBLISH transactions issued by the identity providers. Then

h
a
(1)
USR

· h
a
(2)
USR

=
n∏

j=0

g
Xj

j

m∏

u=0

(g′
u)Yu (1)

is a DLREP commitment of the union of X0, . . . , Xn and Y0, . . . , Ym. The user
can do proofs with selective disclosure using this commitment.

We preserve the chaining properties by having two transactions
TXREQUEST-DOUBLE, which takes in the authentication tokens from both identities,
and TXACCEPT-DOUBLE, which notifies both identity providers. The amounts used in
these transactions are chosen as in Fig. 5 to ensure that a user’s balances decrease
by no more than what would have been the case for separate authentications
with the two identities, in keeping with the calibration of V in Sect. 3.5. (We will
see in Sect. 3.7, FREQUEST-DOUBLE ≤ 2FREQUEST and FACCEPT-DOUBLE ≤ 2FACCEPT, so ade-
quate fees are paid here; the change can be split between USR’s authentication
tokens for use in case of future Bitcoin fee increases, paid to SP, or left to the
miners to increase the speed of the transaction’s approvals). This schema can
obviously generalize to more than two identities.
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Thus, a user can obtain many “micro-identities” - from the government,
from her bank, from her employer, from her health care provider - which she can
manage together without having to unnecessarily share information between her
identity providers. This is very much in the spirit of a PIMS [5].

Remark 6. The ability of USR to issue a transaction as in Fig. 5, which requires
signing with the private key corresponding to the address of each identity, is
already a weak way of establishing that these identities belong to the same
person. However, it is possible for malicious users to pool the private keys from
identities corresponding to distinct people. USR can provide stronger proof of
the connection of her identities if she shows as part of her proof in TXREQUEST that
h and h′ share common fields, such as name or social insurance number.

3.7 Estimates of Cost

We now estimate the costs of the transactions we have introduced in the pre-
ceeding sections. As mentioned in Sect. 2, Bitcoin miners have flexibility in what
fees they demand. However, the current standard fee to have one’s transaction
processed in a timely manner is 360 satoshis, namely .0000036 bitcoins, per byte
[3]. Based on our schema, TXPUBLISH will contain one input, one P2PKH output,
one P2SH output, and an OP RETURN that contains one (compressed) point on
secp256k1. Hence the OP RETURN contains 33 bytes resulting in a total transac-
tion size of roughly 267 bytes (see [7, Chap. 2] for more information on the size
of the various components of a Bitcoin transaction) costing .0009612 bitcoin.
At current market rates (June 2017, 1BTC = 2720 USD), this corresponds to a
minimum transaction fee of approximately 2.61 USD. We compute the sizes and
costs of the other transactions similarly (based on proof-ref consisting of a 32
byte SHA-256 hash and a 30 byte url when necessary):

Transaction TXPUBLISH TXREVOKE TXREQUEST TXACCEPT TXREQUEST-DOUBLE TXACCEPT-DOUBLE

# Bytes 267 229 334 191 479 225

Cost (USD) 2.61 2.24 3.28 1.87 5.41 2.20

Then, building off Sect. 3.5, the total cost to issue an N use identity is the
value of the input issued by IP in TXPUBLISH. As in Fig. 2, this is

Cost of N -use Id = V + D + FPUBLISH
= N(FREQUEST + FACCEPT + D) + 2D + FPUBLISH
≈ 5.2N + 2.6 USD.

Note that Bitcoin fees have increased substantially recently as the Bitcoin
community seeks consensus on how to scale block capacity. It is hoped that a
solution to this issue, such as an implementation of SegWit, will reduce fees [25].
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3.8 Obtaining Information About the Bitcoin Network

Note that in the processing of an authentication, it is the service provider that
must verify the status of past Bitcoin transactions. Service providers with rigor-
ous verification requirements, such as banks and insurance companies, should
run a full node or possibly a Simplified Payment Verification (SPV) client,
see [7]. Note the SPV protocol, which is already commonly used by vendors
who payment in Bitcoin, allows someone who downloads merely the 80 byte
header of each block to verify that a given transaction has been included in a
block, upon being provided with information related to that transaction by a full
node. Hence, a service provider running this protocol can verify that each of the
TXREQUEST’s a user has issued, chained back to TXPUBLISH, counting the number of
times the identity has been used. This process also checks that the identity has
not been revoked as the SPV client sees that the network has accepted the most
recent transaction, so the transaction output controlled by the multisig between
USR and IP could not have already been spent in a TXREVOKE. Service providers
with less rigorous standards may retrieve their information from an online block
explorer if they accept the additional risks of attacks on these sites.

3.9 Security Considerations in Case of Blockchain Failures

In Sect. 3.1, we place ourselves in a security model in which Bitcoin possesses
certain properties of an ideal blockchain. Here we explore the consequences on
our system when these properties are not satisfied.

Inconsistencies in the Bitcoin ledger: The integrity of the Bitcoin ledger
serves in our system to allow issuer oversight, concretely to allow the issuer to
revoke identities and to impose limits on the number of uses. On the other hand,
if there is a fork, a dishonest user can to continue to use an identity which
an issuer has revoked until the revocation transaction finally appears in the
dominant chain. If an attacker can issue a double spend (due to an accidental
fork, because the attacker has a large percentage of the mining power, etc.), then
she can reuse her authentication token allowing her to exceed her usage limit.

Bitcoin network failure: We also rely on Bitcoin P2P infrastructure to prop-
agate the transactions that make up our protocol, and we rely on being able to
download information on previous Bitcoin transactions from nodes to check the
state of an identity. An attack on the P2P Bitcoin network can translate into a
denial of service attack on our system as one cannot issue TXPUBLISH, TXREQUEST,
etc. if the network does not relay them or if one cannot verify relevant previ-
ous transactions. How vulnerable a service provider is to network attacks will
depend on how it receives information about the network as in Sect. 3.8. Note
that, regardless of this choice, user privacy is protected and impersonation is pre-
vented by the security of Brands’ protocols, see [8]. Even a service provider that
obtains its information from a block explorer can assure itself of the correctness
of Brands proofs and the validity of signatures.
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4 Example Use Cases

In this section we propose a few use cases of our system that highlight its advan-
tages versus existing systems.

4.1 University ID

We consider a university where the administration delivers identity credentials
to students, teachers, and staff. These credentials provide certificates of various
fields related to the user including their name, their status at the university
(student, teacher, etc.), and their academic records. Individuals may use such
identities, revealing some (or none) of these fields, to authenticate themselves to
various university services such as the university pool or medical clinic.

Now imagine that a user wants to claim a discount on car insurance reserved
for students with high GPAs. This student may need to coordinate her uni-
versity identity with a driver’s license issued by her local government. Then
she can selectively reveal information to the service provider, the insurer, using
the multi-IP protocols described in Sect. 3.6. If her status at the university
changes, her university identity can be revoked preventing her from performing
such authentications, even as her driver’s license identity remains valid.

4.2 Network of Small Museums

We imagine a group of small museums that form a partnership in which any
member of one museum is allowed a limited number of visits to the other muse-
ums. In this case, the user is a member of one of the museums, the identity
provider is the museum that issued the membership, and the other museums
are service providers. Then the user may selectively disclose fields such as her
membership status or category of membership. More sensitive information may
be included in the identity allowing the user to authenticate to tax authorities
which give a tax credit for museum memberships. The limit on the number of
visits is controlled through the methods of Sect. 3.5.

In contrast to the tax authorities, the security requirements of the muse-
ums may allow them to obtain the transaction information from an online block
explorer, completely outsourcing the costs of transmitting and storing informa-
tion to the Bitcoin network similar to how [1] uses the blockchain as a virtual
server. This may be substantially cheaper and more streamlined than traditional
systems (namely, either for each of the museums to invest in infrastructure that
then has to be coordinated or for a single museum to set up infrastructure to
manage the entire system which may create conflicts of interest and be unac-
ceptable to the other museums). Thus, our system allows the museums to create
a shared, neutral management space, maintaining transparency into exactly how
the data is stored and used, that minimizes infrastructure costs.
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5 Building a Reputation on the Blockchain

We see in Sect. 4.2, in the case of our museums, that little infrastructure is
required of SP. Nonetheless, SP must be able to compute in secp256k1, perform
Bitcoin transactions, and be able to access the blockchain history, as discussed
in Sects. 3.1 and 3.9. Imagine that some very lightweight service provider wants
to participate in this network, but does not have the security requirements, nor
the resources to justify performing these operations. For example, this may be
the case of a university pool in the university ID example of Sect. 4.

As all transactions are visible in the blockchain, a user can then simply direct
a lightweight service provider to her past transactions, which requires merely an
Internet connection, and prove that she controls the private key corresponding to
those transactions by issuing a signature. Then, if the lightweight service provider
is willing to trust the larger service providers that have already accepted the
user’s identity (e.g. if the university pool is willing to trust the campus medical
clinic in accepting that the user is a member of the university community),
it is not necessary to re-validate the relevant Brands proofs. As seen before
(see Sect. 3.6), a user may have had her identity established under different
Bitcoin addresses and proven to different service providers in such a way that
is unknown that these addresses belong to the same user. If the user has used
the two identities together in a TXREQUEST-DOUBLE, the light service provider may
be again willing to trust that the other service provider has verified these two
identities as corresponding to the same person. Alternatively, in situations with
lower security standards (as per Remark 6), the user can issue signatures for
both of the private keys corresponding to the identities used.

Moreover, the collection of transactions of a user, seen as having been
accepted via TXACCEPT transactions, gradually forms a digital footprint of the
user. While some users will want to avoid reusing the same TXPUBLISH for multiple
authentications for greater anonymity, for other users this digital presence, over
which the user has a great deal of direct control, can be a useful addition to the
online reputation they develop, for example through social media.

6 Conclusion

The Bitcoin blockchain is a global network, and by building on top of this net-
work, we can take advantage of its existing infrastructure to reach a global scope
while minimizing overhead. Moreover, by placing an identity management sys-
tem in this decentralized space, we have seen that we can strike a more equitable
balance between the rights and responsibilities of users and identity issuers.
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Abstract. Payment channel networks use off-chain transactions to pro-
vide virtually arbitrary transaction rates. In this paper, we provide a new
perspective on payment channels and consider them as a flow network.
We propose an extended push-relabel algorithm to find payment flows
in a payment channel network. Our algorithm enables a distributed and
concurrent execution without violating capacity constraints. To this end,
we introduce the concept of capacity locking. We prove that flows are
valid and present first results.

1 Introduction

It seems that blockchain-based systems such as Bitcoin [9] will, due to their
requirements regarding storage, processing power, and bandwidth, not be able
to natively scale to high transaction rates [2]. Off-chain approaches [3,10], how-
ever, offer a way to create long-lived payment channels between two nodes. The
payments transferred via a payment channel are processed locally and therefore
eliminate the need to commit each individual transaction to the blockchain.

In order to enable payments between any two nodes—whether they are
directly connected or not—payment channels form a network in which payments
can be routed over more than one hop. Finding a route that can process a cer-
tain transaction volume is challenging, though. Related approaches [11] cannot
guarantee to utilize the available capacities as they focus on finding a single
path from payer to payee that meets the capacity constraints. We argue that
single-path routing restricts the transferable amount and misses many payment
opportunities due to bottleneck capacities in the network. Particularly, if pay-
ment channel networks may ultimately become a viable payment alternative and
process large transaction volumes that exceed channel capacities, single-path
routing will probably fail.

In this paper, we propose to aggregate multiple paths to a payment flow,
which can in sum provide larger transaction volumes. We believe that algorithms
from the domain of flow networks in general and the push-relabel algorithm [5]
in particular are appropriate candidates for route selection in payment networks.

Our main contribution is a new route selection algorithm, which is based
on the push-relabel algorithm. It can find feasible flows in a payment channel
c© Springer International Publishing AG 2017
J. Garcia-Alfaro et al. (Eds.): DPM/CBT 2017, LNCS 10436, pp. 411–419, 2017.
DOI: 10.1007/978-3-319-67816-0 23
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network. While it may be executed in a centralized setup, it is also safe for
concurrent fully distributed execution. To this end, we introduce the concept of
capacity locking. We show that our algorithm guarantees that routes are feasi-
ble flows and at the same time does not violate any capacity constraints. Our
first results confirm that the approach is able to handle a high number of flows
and transaction volumes. The results emphasize that our approach succeeds in
scenarios where single-path routing schemes are bound to fail. In summary, we
offer a new perspective on payment channel networks.

The remainder is structured as follows. Section 2 discusses related work. Sub-
sequently, Sect. 3 introduces payment flows and describes the basic algorithmic
design. Section 4 develops a distributed and concurrent route selection algo-
rithm. In Sect. 5, we present and discuss first results, before Sect. 6 concludes
the paper.

2 Background and Related Work

Payment channels are a new and unexplored concept. The specifications [6] of
the Lightning Network [10], for example, are subject to constant change. For the
sake of clarity, we abstract from any specific payment channel design [3,10].

Routing in a payment channel network poses many challenges, e. g., regarding
the routing paradigm (per-hop routing vs. source routing) and the topology
(hub-and-spoke vs. peer-to-peer). In this paper, we focus on route selection, i. e.,
finding a route in a payment channel network that meets certain constraints.
Flare [11], a proposed routing system for the Lightning Network, creates a list
of candidate routes from the set of channels with sufficient capacity. So far,
however, Flare and current implementations [4,7,8] of the Lightning Network
opt for selecting single-path routes only. In our work, we consider a payment as
a flow and provide an algorithm that finds and aggregates multiple paths based
on local knowledge.

We identify flow network algorithms as a promising direction to find multi-
path routes. While multi-commodity flows address a similar problem, most of the
existing approaches require global knowledge and/or a centralized routing coor-
dinator. The approach in [1] allows a distributed and concurrent execution but
solves the feasible-flow problem only approximately. Our distributed algorithm,
in contrast, guarantees that the selected route is a feasible flow. Moreover, it
can be executed concurrently without violating capacity constraints and enables
route selection in a fully distributed scenario.

3 Payment Flows

Payment flows describe a flow of units between pairs of nodes in a payment chan-
nel network. Figure 1 shows an example of a payment channel network in which
node s wants to send a payment to node t. We consider the payment channel
network as a peer-to-peer network in which nodes communicate directly with
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Fig. 1. Payment channel network example.

each other and build an overlay network congruent with the payment channel
network. That is, we aim for a decentralized route selection.

In order to process the payment, a path between s and t must exist. Every
path is a concatenation of payment channels. Since payment channels have a
capacity, as indicated by the edge labeling in Fig. 1, a path’s transaction volume
is limited by the smallest payment channel capacity of this path. While we cannot
eliminate this limit, we can use multiple paths, which in sum provide a higher
transaction volume.

Determining the maximum transferable amount poses a challenge. For exam-
ple, simply finding all paths from source to sink and summing up their respective
capacities does not suffice; paths may have common edges and thus need to share
the respective capacities. For the example in Fig. 1, this naive approach would
violate payment channel capacities.

The problem of finding the largest payment flow between two nodes s and t
in a capacitated flow network is known as the maximum-flow problem. Several
algorithmic solutions to the maximum-flow problem exist. In the following, we
elaborate on the efficient and well-studied push-relabel [5] algorithm and adopt
it for the route selection of payment flows in payment channel networks.

We consider a network of payment channels as a directed graph G = (V,E)
and a non-negative function c : V × V → R≥0. We call c the capacity function,
which determines a channel’s capacity c(u, v) with u, v ∈ V and (u, v) ∈ E.
Moreover, nodes s and t are the source and sink of the flow. The resulting
network F = (G, c, s, t) is called a flow network.

Definition 1 (pseudo-flow, pre-flow, feasible flow). A pseudo-flow on
the capacitated graph (G, c) is a mapping f : V × V → R with the properties:

f(u, v) ≤ c(u, v), ∀(u, v) ∈ E (capacity constraint)
f(u, v) = −f(v, u), ∀(u, v) ∈ E (skew symmetry)

Note that pseudo-flows do not require incoming and outgoing flows of a node
to be equal. Therefore, nodes can hold excess flow, denoted by

xf (u) =
∑

v∈V

f(v, u) −
∑

v∈V

f(u, v).
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A pre-flow and a feasible flow are special kinds of pseudo-flows with one of
the following constraints. A pre-flow requires

xf (v) ≥ 0, ∀v ∈ V \ {s, t} (non-negativity constraint)

and a feasible flow requires

xf (v) = 0, ∀v ∈ V \ {s, t} (conservation constraint).

Definition 2 (residual capacity and residual graph). The residual
capacity cf with regard to the pseudo-flow f of an edge (u, v) ∈ E is defined as
the difference between the edge’s capacity and its flow:

cf (u, v) = c(u, v) − f(u, v).

Then, the residual graph Gf (V,Ef ) indicates when changes can be made
to flow f in the network G(V,E), where

Ef = {(u, v) ∈ V × V : cf (u, v) > 0}.

Note that edges (u, v) do not have to be in the original set of edges E.

Definition 3 (height function). A mapping h : V → N is a height function
for the push-relabel algorithm, if

h(s) = |V |, h(t) = 0, h(u) ≤ h(v) + 1, ∀(u, v) ∈ Ef .

At the beginning, the generic push-relabel algorithm initializes node heights
and flow excess, as well as the edge pre-flow values with 0. Please note that
source node s, in contrast to all other nodes, is set to a height |V |. Moreover, s’s
outgoing edges are saturated according to the height function’s third condition.
After these initialization steps, the algorithm repeatedly selects a node u as
active node and applies one of the two basic operations push and relabel. Both
operations have mutually exclusive conditions, which ensure that either push or
relabel is applicable at a time.

The push procedure (cf. Procedure 1) tries to push an excess δ from node u
towards a neighbor v with a smaller height. The maximum possible δ is deter-
mined as the minimum between the excess flow and the residual capacity of edge
(u, v). Accordingly, edge capacities and excess values are updated to reflect flow
changes in the residual graph. The procedure requires that u has excess flow and
that an unsaturated edge (u, v) to a neighbor v one level below u exists.

Eventually, node u will saturate all outgoing edges that lead to neighbors on
a lower level. In this case, the relabel procedure (cf. Procedure 2) “raises” node
u to a higher level. The procedure calculates the minimal height of its neighbor
nodes and sets u’s height to the level above this minimum. Therefore, the excess
of node u is guaranteed to be “pushable” in the next step.

The generic push-relabel algorithms continues until the conditions fail for all
nodes. That means, the highest possible transaction volume has been pushed
to the sink t and all network excess has been pushed back to the source, i. e.,
xf (v) = 0, ∀v ∈ V . At this point, the push-relabel algorithm has transformed
the pre-flow into a maximum flow and hence solved the maximum-flow problem.



Towards a Concurrent and Distributed Route Selection 415

Fig. 2. Push-relabel algorithm [5], which solves the maximum-flow and the feasible-flow
problem in flow networks.

In a payment channel network, however, it is often not necessary to know the
maximum transaction volume. Rather, we want to find a payment flow that can
process a certain amount only. This is a slightly different problem, which is known
as the feasible-flow problem. Fortunately, the push-relabel can easily be modified
to solve the feasible-flow problem: in order to find a payment flow from source
s to sink t with a transaction volume d, we can simply insert a new (virtual)
node to the payment network. We call it the pre-source s′, with a single edge
(s′, s) and capacity c(s′, s) = d. The virtual edge caps the transferable amount
at exactly d. Note that this slight modification of the input data enables the
push-relabel algorithm, as described before, to find feasible flows in the network.

So far, we assumed only one instance of the push-relabel algorithm. If multiple
flows ought to be found subsequently in the same network, the initial flow of
one instance is the result of the last instance. A generalization for subsequent
flows, however, is easily possible. This subsequent approach can be used to find
payment flows in a centralized or federated fashion. The following section is
dedicated to show how the push-relabel algorithm can be adapted to enable
route selection for concurrent and distributed payment flows.

4 Concurrent and Distributed Payment Flows

In payment channel networks, it is desirable to allow a concurrent execution of
the route selection algorithm. To this end, simply running multiple instances of
the push-relabel algorithm in parallel is not enough: one instance for flow f1,
for example, could consume the reverse edges’ residual capacity that belong to
another instance for flow f2. We call this issue capacity stealing.

The problem domain of finding flows f1, . . . , fk for k commodities with
source-sink pairs (s1, t1), . . . , (sk, tk) that meet the total capacity constraint

F (u, v) =
k∑

i=1

fi(u, v) ≤ c(u, v), ∀(u, v) ∈ E,

are known as multi-commodity flow problems.
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As our main contribution, we propose a modified push-relabel algorithm that
allows to find feasible flows in a concurrent multi-commodity scenario. To this
end, we introduce the concept of capacity locking : flow volumes are accounted for
every commodity independently, while still respecting each payment channel’s
total capacity constraint. The capacities on the reverse edges created by a flow
f1 are therefore locked for another flow f2, which prevents capacity stealing.

Definition 4 (locked capacities and new residual capacity). Let the
locked capacity and total locked capacity of flow fi on edge (u, v) be

li(u, v) = max(0, fi(u, v)) and L(u, v) =
k∑

i=1

li(u, v).

Accordingly, the residual capacity is redefined as

ci(u, v) = c(u, v) − L(u, v) + li(v, u),

which yields an individual residual graph Gi(V,Ei) for each commodity i.

Definition 4 ensures that there is always enough residual capacity on the
reverse edges available to push the existing excess back to the source. Except for
this augmented definition of the residual capacity, the locked-push procedure
(cf. Procedure 3) is similar to the original push procedure. Note, however, that
the modified push-relabel algorithm does not necessarily yield optimal flows in
the multi-commodity scenario. It guarantees validity, though, which makes it
superior compared to other approaches from this domain [1].

In the following, we prove validity for our proposed algorithm. As the skew-
symmetry and flow-conservation constraints follow directly from the definition
of the algorithm, it suffices to show that it yields flows that respect the total
capacity constraint.

Lemma 1. The total capacity constraint F (u, v) ≤ c(u, v), ∀(u, v) ∈ E is never
violated.

Proof. For a locked-push of commodity i on edge (u, v), the change in flow
volume δ is always chosen to be at maximum the remaining residual capacity
of the flow on this edge. Accordingly, lock li(u, v) cannot be greater than δ.
Therefore, the locked capacity never exceeds the edge capacity for each individual
edge. It follows that the total capacity constraint is never violated:

F (u, v) =
k∑

i=1

fi(u, v) ≤ L(u, v) =
k∑

i=1

li(u, v) ≤
k∑

i=1

ci(u, v) ≤ c(u, v). �

In order to execute the modified algorithm in a distributed scenario, the
asynchronous distributed algorithm, introduced in [5], is adapted to our needs:
each node maintains a local view on flow states, channel capacities, and its
neighbors’ height. Furthermore, each node maintains routing information and its
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Fig. 3. Capacity locking enables concurrent push-relabel execution without violating
capacity constraints, i. e., capacity stealing.

own height. Then, every node u with positive excess tries to push its excess along
an unsaturated outgoing edge to a neighbor v of smaller height. A locked-push
can only be committed, if v acknowledges u that it is has indeed a smaller height.
Alternatively, v can reject the locked-push and respond with its actual height.
This way, u learns its neighbors’ height and can trigger relabel, if necessary.
After relabeling, u sends height updates to its neighbors. The source and sink
node can determine the termination of the algorithm and communicate the result
to finalize route selection. The payment flow, i. e., the selected multi path, is
secured with Hashed Timelock Contracts (HTLC) in the same way as a single
path. Therefore, the payment flow can be atomically resolved.

5 Evaluation

In order to evaluate our approach, we constructed a Watts-Strogatz graph with
β = 0.5, n = 200, and a node degree of 10. Channel capacities were generated by
uniform random sampling from [0, 10]. In the following, we compare the sequen-
tial (seq., cf. Sect. 3) and the concurrent (conc., cf. Sect. 4) algorithm. Moreover,
we contrast our results with the capabilities of single-path approaches.

First, we are interested in the number of flows that each algorithm can handle.
To this end, we sampled the transaction volume from [0, 20] and calculated the
mean success rate over 10 runs, i. e., the share of successfully found flows. The
results, shown on the left of Fig. 4, indicate that both algorithms are able to
find a large number of flows (relative to the network size). At some point, when
network capacities are exhausted, the success rate eventually drops. Single-path
approaches, in contrast, achieve in the best case a 0.5 success rate (cf. horizontal
line in the plot): while the maximum channel capacity is 10, on average every
second transaction volume is in (10, 20] and therefore not feasible with a single
path. Effectively, this reduces the utilization of the available capacities by 50%.

Second, we are interested in the transaction volume that we can achieve by
aggregating multiple paths. To this end, we set the number of flows to 128,
increased the transaction volume, and calculated the mean success rate. The
results, shown on the right of Fig. 4, suggest that again both variations are able
to route relatively large volumes. In more than 50% of the cases, the concurrent
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Fig. 4. Flow Network Simulation: mean success rate over 10 runs, dependant on the
number of flows and transaction volume. Error bars show the 95% confidence interval.

algorithm still manages to process all 128 flows for up to a volume of 15 each. This
is especially noteworthy, as a single-path approach would not be able to route a
single payment with a volume exceeding 10 in our scenario (cf. vertical line in
the plot). These first results illustrate that our approach is superior compared
to single-path route selection schemes.

6 Conclusion

In this paper, we argued that currently deployed single-path routing schemes
for payment channel networks suffer from a number of drawbacks. Most promi-
nently, they utilize the available capacities in the network inefficiently. Eventu-
ally, single-path routes will lead to on-chain transactions as a fallback strategy
and therefore subvert the idea of payment channels.

We addressed this issue by presenting a novel perspective on route selection
that considers payment channel networks as flow networks. Flow network algo-
rithms utilize the available capacity by aggregating multiple paths, which allow
to route transactions of larger volume. We proposed an extended push-relabel
algorithm that finds flows based on local knowledge. Thus, it is suitable for the
concurrent and distributed scenario encountered in payment channel networks.
We proved the validity of the flows and showed that our algorithm is indeed able
to satisfy demands, where single-path based approaches fail.
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Abstract. We devise a novel method of interactive set reconciliation
for efficient block distribution. Our approach, called Graphene, cou-
ples a Bloom filter with an IBLT. We evaluate performance analytically
and show that Graphene blocks are always smaller. For example, while
a 17.5 KB Xtreme Thinblock can be encoded in 10 KB with Compact
Blocks, the same information can be encoded in 2.6 KB with Graphene.
We show in simulation that Graphene reduces traffic overhead by reduc-
ing block overhead.

1 Introduction

Blockchain-based currencies [8], such as Bitcoin and Ethereum, have seen wide-
spread adoption despite several limitations not present in traditional financial
systems, such as credit cards or cash. Network delays and overhead are notice-
able in blockchains. Once discovered, the propagation delay and network cost
for distributing new blocks is dependent on their size, and reducing either delay
or traffic is desirable.

We contribute an extremely efficient method of announcing new blocks called
Graphene. Our protocol is applicable to a variety of blockchain-based network
protocols, such as Bitcoin, Ethereum [5], Litecoin (https://litecoin.org), and
Zerocash [10]. Our blocks are a fraction of the size of related methods, such as
Compact Blocks [3] and Xtreme Thinblocks [11]. For example, while a 17.5 KB
Xtreme Thinblock can be encoded in 10 KB with Compact Blocks, the same
information can be encoded in 2.6 KB with Graphene. We use a novel interac-
tive combination of Bloom filters [2] and IBLTs [6], providing an efficient solution
to the problem of set reconciliation in the p2p network. We evaluate performance
analytically and empirically via a detailed network simulation. Graphene reduces
traffic overhead to about 60% compared to using Compact Blocks if blocks are
sent every 2.5 min; Ethereum would see higher gains from Graphene, and the
gains for Bitcoin would be lower, since blocks are sent more and less frequently,
respectively.
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2 Background

In this section, we review the operation of IBLTs and summarize related work.

Overview of IBLTs. We make use of Invertible Bloom Lookup Tables
(IBLTs) [6], which is an efficient data structure for set reconciliation between
two peers. Like Bloom filters [2], IBLTs allow two parties to determine, with high
probability, which values from a set they share in common. But unlike Bloom
filters, IBLTs enable the recovery of any missing values, which are assumed to
be of fixed size and encoded as binary strings. Key-value pairs can be inserted,
retrieved and deleted like an ordinary hash table. An IBLT consists of m entries,
each storing a count, a keySum, and a valueSum, all initialized to zero.

A new value v is inserted into location i = h(v) based on the hash of its value
such that i < m. At entry i, all three fields are incremented or xored. IBLTs use
k > 1 hash functions to store each value in k entries, which we collectively call
a value’s entry set. If table space is sufficient, then with high probability for at
least one of the k entries, count ≡ 1.

Suppose that two peers each have a list of values, V and V ′, respectively, such
that the difference is expected to be small. The first peer constructs an IBLT L
(with m entries) from V . The second peer constructs V ′ from L′ (also having
m entries). Eppstein et al. [4] showed that a cell-by-cell difference operator can
be used to efficiently compute the symmetric difference L � L′. For each pair
of fields (f, f ′), at each entry in L and L′, we compute either f ⊕ f ′ or f − f ′

depending on the field type. When |count| ≡ 1 at any entry, the corresponding
value can be recovered. Peers proceed by removing the recoverable key-value
pair from all entries in the value’s entry set. This process will generally produce
new recoverable entries, and continues until nothing is recoverable.

Related Work. The main limitation we are addressing with Graphene is the
inefficiency of blockchain systems in disseminating block data. A block announce-
ment must be validated using the transaction content comprising the block.
However, it is likely that the majority of the peers have already received these
transactions, and they only need to discern them from those in their mempool.
In principle, a block announcement needs to include only the IDs of those trans-
actions, and accordingly, Corallo’s Compact Block design [3] — which has been
recently deployed — significantly reduces block size by including a transaction
ID list at the cost of increasing coordination to 3 roundtrip times. We fur-
ther detail Compact Block’s operation in Sect. 3 and compare it quantitatively
in Sect. 4. Xtreme Thinblocks [11], an alternative protocol, works similarly to
Compact Blocks but has greater data overhead. Specifically, if an inv is sent for
a block that is not in the receiver’s mempool, the receiver sends a Bloom filter
of her IDpool along with the request for the missing block. As a result, Xtreme
Thinblocks are larger than Compact Blocks but require just 2 roundtrip times.
Relatedly, the community has discussed in forums the use of IBLTs (alone) for
reducing block announcements [1,9], but these schemes have not been formally
evaluated and are less efficient than our approach. Our novel method, which we
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prove and demonstrate is smaller than all of these recent works, requires just 2
roundtrip times for coordination.

3 Graphene: Efficient Block Announcements

In this section, we detail Graphene, where a receiver learns the set of specific
transaction IDs that are contained in a (pending or confirmed) block containing
n transactions. Unlike other approaches, Graphene never sends an explicit list
of transaction IDs, instead it sends a small Bloom filter and a very small IBLT.

PROTOCOL 1: Graphene

1: Sender: Sends inv for a block.
2: Receiver: Requests unknown block; includes count of txns in her IDpool, m.
3: Sender: Sends Bloom filter §and IBLT I(each created from the set of n

txn IDs in the block) and essential Bitcoin header fields. The FPR of the filter is
f = a

m−n
, where a = n/(cτ).

4: Receiver: Creates IBLT I′ from the txn IDs that pass through S. She decodes
the subtraction [4] of the two blocks, I � I′.

The Protocol. The intuition behind Graphene is as follows. The sender creates
an IBLT I from the set of transaction (txn) IDs in the block. To help the
receiver create the same IBLT (or similar), he also creates a Bloom filter §of the
transaction IDs in the block. The receiver uses §to filter out transaction IDs from
her pool of received transaction IDs (which we call the IDpool) and creates her
own IBLT I’. She then attempts to use I’ to decode I, which, if successful, will
yield the transaction IDs comprising the block. The number of transactions that
falsely appear to be in §, and therefore are wrongly added to I’, is determined
by a parameter controlled by the sender. Using this parameter, he can create I
such that it will decode with very high probability.

A Bloom filter is an array of x bits representing y items. Initially, the x bits
are cleared. Whenever an item is added to the filter, k bits, selected using k hash
functions, in the bit-array are set. The number of bits required by the filter is
x = y − ln(f)

ln2(2)
, where f is the intended false positive rate (FPR). For Graphene,

we set f = a
m−n , where a is the expected difference between I and I’. Since

the Bloom filter contains n entries, and we need to convert to bytes, its size is
− ln( a

m−n )

ln2(2)
1
8 . It is also the case that a is the primary parameter of the IBLT size.

IBLT I can be decoded by IBLT I’ with very high probability if the number of
cells in I is d-times the expected symmetric difference between the list of entries
in I and the list of entries in I’. In our case, the expected difference is a, and we
set d = 1.5 (see Eppstein et al. [4], which explores settings of d). Each cell in an
IBLT has a count, a hash value, and a stored value. (It can also have a key, but
we have no need for a key). For us, the count field is 2 bytes, the hash value is 4
bytes, and the value is the last 5 bytes of the transaction ID (which is sufficient
to prevent collisions). In sum, the size of the IBLT with a symmetric difference
of a entries is 1.5(2 + 4 + 5)a = 16.5a bytes. Thus the total cost in bytes, T , for
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the Bloom filter and IBLT are given by T (a) = n− ln(f)
c +aτ = n

− ln( a
m−µ )

c +aτ ,
where all Bloom filter constants are grouped together as c = 8 ln2(2), and we let
the overhead on IBLT entries be the constant τ = 16.5.

To set the Bloom filter as small as possible, we must ensure that the FPR
of the filter is as high as permitted. If we assume that all inv messages are sent
ahead of a block, we know that the receiver already has all of the transactions in
the block in her IDpool (they need not be in her mempool). Thus, μ = n; i.e., we
allow for a of m−n transactions to become false positives, since all transactions
in the block are already guaranteed to pass through the filter. It follows that

T (a) = n
− ln( a

m−n )
c

+ aτ. (1)

Taking the derivative w.r.t. a, Eq. 1 is minimized1 when when a = n/(cτ).
Due to the randomized nature of an IBLT, there is a non-zero chance that

it will fail to decode. In that case, the sender resends the IBLT with double the
number of cells (which is still very small). In our simulations, presented in the
next section, this doubling was sufficient for the incredibly few IBLTs that failed.

PROTOCOL 2: CompactBlocks

1: Sender: Sends invfor a block that has n txns.
2: Receiver: If block is not in mempool, requests compact block.
3: Sender: Sends the block header information, all txn IDs in the block and any

full txns he predicts the sender hasn’t received yet.
4: Receiver: Recreates the block and requests missing txns if there exist any.

Comparison to Compact Blocks. Compact Blocks [3] is to our knowledge
the best-performing related work. It has several modes of operation. We exam-
ined the Low Bandwidth Relaying mode due to its bandwidth efficiency, which
operates as follows. After fully validating a new block, the sender sends an inv,
for which the receiver sends a getdata message if she doesn’t have the block.
The sender then sends a compact block that contains block header information,
all transaction IDs (shortened to 5 bytes) in the block, and any transactions

1 Actual implementations of Bloom filters and IBLTs involve several (non-continuous)
ceiling functions such that we can re-write:

T (a) =

(
�ln(

m − n

a
)�
⌈

n ln(m−n
a

)

�ln(m−n
a

)� ln2(2)

⌉)
1

8
+ �a�τ. (2)

The optimal value of Eq. 2 can be found with a simple brute force loop. We compared
the value of a picked by using a = n/(cτ) to the cost for that a from Eq. 2, for valid
combinations of 50 ≤ n ≤ 2000 and 50 ≤ m ≤ 10000. We found that it is always
within 37% of the cost of the optimal value from Eq. 2, with a median difference of
16%. In practice, a for-loop brute-force search for the lowest value of a is almost no
cost to perform, and we do so in our simulations.
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that he predicts the receiver does not have (e.g., the coinbase). If the receiver
still has missing transactions, she requests them via an inv message. Protocol 2
outlines this mode of Compact Blocks. The main difference between Graphene
and Compact Blocks is that instead of sending a Bloom filter and an IBLT, the
sender sends block header information and all shortened transaction IDs to the
receiver.

A detailed example of how to calculate the size of each scheme is below; but
we can state more generally the following result. For a block of n transactions,
Compact Blocks costs 5n bytes. For both protocols, the receiver needs the inv
messages for the set of transactions in the block before the sender can send it.
Therefore, we expect the size of the IDpool of the receiver, m, to be constrained
such that m ≥ n. Assuming that m > 0 and n > 0, the following inequality must
hold for Graphene to outperform Compact Blocks:

n
− ln( a

m−n )
c

+ aτ < 5n (3)

n > m/1287670 (4)

In other words, Graphene is strictly more efficient than Compact Blocks unless
the set of unconfirmed transactions held by peers is 1,287,670 times larger than
the block size (e.g., over 22 billion unconfirmed transactions for the current
block size.) Finally, we note that Xtreme Thinblocks [11] are strictly larger than
Compact Blocks since they contain all IDs and a Bloom filter, and therefore
Graphene performs strictly better than Xtreme Thinblocks as well. In Sect. 4,
we provide specific empirical results from network simulation, where we use real
IBLTs and Bloom filters to evaluate Graphene and Compact Blocks.

Example. A receiver with an IDpool of m = 4000 transactions makes a request
for a new block that has n = 2000 transactions. The value of a that minimizes
the cost is a = n/(cτ) = 31.5. The sender creates a Bloom filter §with f =

a
m−n = 31.5/2000 = 0.01577, with total size of 2000 × −ln(0.01577)

c = 2.1 KB.
The sender also creates an IBLT with a cells, totaling 16.5a = 521B. In sum, a
total of 2160B + 521B = 2.6 KB bytes are sent. The receiver creates an IBLT
of the same size, and using the technique introduced in Eppstein et al. [4], the
receiver subtracts one IBLT from the other before decoding. In comparison, for a
block of n transactions, Compact Blocks costs 2000 × 5B = 10 KB, over 3 times
the cost of Graphene.

Ordered Blocks. Graphene does not specify an order for transactions in the
blocks, and instead assumes that transactions are sorted by ID. Bitcoin requires
transactions depending on another transaction in the same block to appear later,
but a canonical ordering is easy to specify. If a miner would like to order trans-
actions with some proprietary method (e.g., [7]), that ordering would be sent
alongside the IBLT. For a block of n items, in the worst case, the list will be
n log2(n) bits long. Even with this extra data, our approach is much more effi-
cient than Compact Blocks. In terms of the example above, if Graphene was
to impose an ordering, the additional cost for n = 2000 transactions would be
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n log2(n) bits = 2000 × log2(2000) bits = 2.74 KB. This increases the cost of
Graphene to 5.34 KB, still almost half of Compact Blocks.

4 Evaluation

Our evaluation addresses the following question: What is the reduction in traffic
from using Graphene for block announcements compared to Compact Blocks?

Simulator Assumptions. Our evaluations are based on a detailed, custom
blockchain simulator using a Python-based discrete event simulator package. Our
simulation models the propagation of messages across network links (ignoring
effects from variable network bandwidth, TCP, etc.). Nodes accurately model
any part of typical blockchain operation necessary for evaluating our metrics,
including maintaining a mempool, the blockchain and its forks, and using real-
istic signaling.

Fig. 1. When the current topology is used, Graphene reduces traffic to 60% of the cost
of Compact Blocks (or to 10% for total traffic, which includes transaction data).

For Graphene and Compact Blocks, our simulator creates and decodes real
Bloom filters and IBLTs, rather than merely estimating whether they might
decode or return any false positives. If these data structures fail due to random
chance, the nodes recover within the simulation. Because our simulation models
detailed signaling and is written in a high-level language, our evaluations are
based on a modest number of peers. Since our goal is a comparison between two
choices, we expect that our results are representative of larger-scale scenarios.

A challenging parameter to set is the number of transactions per second
offered to the network by peers. Our approach is to create kernel density esti-
mates (KDEs) from the transaction generation patterns of real world peers. To
that end, we gathered data for all Bitcoin transactions during a three-month
period from http://blockchain.info. Each transaction in the dataset is labeled
with an IP associated with the peer believed to have generated it, as well as the
time it was released to the network. For each peer, we normalized the release

http://blockchain.info
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times by the time of the day in which they were released. We then constructed
the KDE for each peer using these normalized transactions times and gaussian
kernels with one hour bandwidth. The KDE for a given peer represents a prob-
ability distribution from which we can draw transactions over the course of a
simulated day. For each peer in the simulator, we randomly select one of the
KDEs corresponding to a real world peer. Because these distributions have been
generated from real data, they are a good approximation of the activity of real
peers over the average one-day interval. On the other hand, this approach is not
able to model days of the week or seasonal phenomena in transaction creation
times.

Results. Each simulation is configured to use the following parameters: (i)
Topology: a high-degree p2p graph topology. (ii) Block Protocol: Compact
Blocks; or our Graphene protocol. (iii) Block capacity: 2,000 transactions. (iv)
Full nodes: 50, 100, 150, or 200 peers. In all, we ran 8 combinations of parame-
ters, and we ran each combination with 67 different seeds; all told, we completed
536 simulations. The seeds determined the number of transactions per second
(by sampling our KDE, as described above), and the interarrival of transactions
and blocks. In all simulations, we used 6 miner nodes, representing 6 mining
pools. Each simulation was equivalent to 120 min; in sum, we simulated about
45 days of blockchain operation. Blocks are generated every 2.5 min, like Lite-
coin; our results would show Graphene to have significantly greater savings if
blocks were every 15 s (like Ethereum), and show significantly smaller savings if
blocks were every 10 min (like Bitcoin).

Our main results are shown in Fig. 1, where we evaluated the total bandwidth
ratio of Graphene to Compact Blocks, as a function of the number of nodes in
the network. Since each run is a different number of KBs, we compare the ratio
of an exact set of parameters (including the seed), varying only the protocol.
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Fig. 2. A comparison of traffic, by mes-
sage type, for two specific seeds for
Graphene and Compact Blocks. N.b.,
traffic does not include transaction
data.
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Fig. 4. Traffic sent by Graphene and Compact Blocks, where each trial’s transaction
rate is the independent variable. Transparency reveals some over-plotting in this scat-
terplot.

Boxplots show the distribution of results across all trials. Figure 1(left) shows
that Graphene reduces traffic to 60% of the cost of using Compact Blocks. Note
that gains reduce to 10% (i.e., are 90% of Compact Blocks) when transaction
data is also included because they account for the largest portion of network
traffic. However, as the number of full nodes increases along the x-axis, the ratio
of total traffic in the network remains steady, suggesting that our results are
representative of larger networks.

We also evaluated the sum number of bytes per message type for two exam-
ple seeds, and details appear in Figs. 2 and 3. We saw that the amount of data
used by Compact Blocks is much greater than Graphene’s use of a Bloom filter
and an IBLT. In Fig. 4, we also grouped our larger set of results according to
transactions-per-second, and found that Compact Blocks generates a wide range
of bytes-per-transaction, even at the lowest transactions-per-second rate. In con-
trast, Graphene is both more efficient and stable as load changes. Even when
more transactions are generated, Graphene uses less traffic because the differ-
ence between the IDpool (of size m) and the block (of size n) is small, perhaps
even zero, causing both its Bloom filter and IBLT to be negligible in size — see
Eq. 1.

5 Conclusion

We presented Graphene, a protocol that uses Bloom filters and IBLTs for efficient
block propagation. We have shown that Graphene is strictly more efficient than
Compact Blocks unless the set of unconfirmed transactions held by peers is
1,287,670 times larger than the block size. Typically, the savings are significant
on a per block basis. Additionally, using a detailed network simulation, we have
demonstrated that Graphene reduces network traffic compared to the-state-of-
the-art use of Compact Blocks.
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Abstract. The Bitcoin whitepaper [1] states that security of the sys-
tem is guaranteed as long as honest miners control more than half of
the current total computational power. The whitepaper assumes a static
difficulty, thus it is equally hard to solve a cryptographic proof-of-work
puzzle for any given moment of system history. However, the real Bitcoin
network is using an adaptive difficulty adjustment mechanism.

In this paper we introduce and analyze a new kind of attack on the
mining difficulty retargeting function used in Bitcoin which we call “coin-
hopping”. In a coin-hopping attack, a malicious miner increases his min-
ing profits while at the same time increasing the average delay between
blocks.

We propose an alternative difficulty adjustment algorithm in order to
reduce the incentive to perform a coin-hopping attack, and also decrease
inter-block delays. Finally, we evaluate our proposed approach and show
how its novel algorithm performs better than the original algorithm of
Bitcoin.

1 Introduction

Blockchain systems have attracted significant amount of interest after the Bitcoin
whitepaper [1] was published in 2008. Bitcoin security relies on a distributed
protocol which maintains a distributed ledger. In the protocol miners are trying
to find a partial hash collision in order to generate a valid block by iterating
over nonce field values.

Alternative systems may rely on other types of computational puzzles rather
than finding a partial hash collision, e.g., [2,3]. Nevertheless, all of them assume
some algorithm that changes the difficulty of the puzzle dynamically. An algo-
rithm for difficulty readjustment is required in order to make an open blockchain
system working stable in the face of participants joining and leaving the system
(resulting in constantly changing available computational power for puzzle solv-
ing), and also to stabilize mean latency between blocks.

The difficulty readjustment algorithm in Bitcoin assumes that the total com-
putational power involved in the mining process does not significantly change
c© Springer International Publishing AG 2017
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from epoch to epoch. In contrast, real networks show that a significant variance
in computational power happens over long periods. For example, as we show
in this paper, due to continuous non-linear growth of computational power in
the Bitcoin network the mean delay between blocks differs from the expected
value by 7%. Noteworthy, exponential growth of computational power, often
observed in practice, is the absolute worst scenario (regarding the mean block
delay divergence) for Bitcoin’s difficulty readjustment algorithm [4].

In this paper we also consider a new type of miner behavior with regards
to difficulty readjustment which provides unfair advantage to the miner, and
also makes inter-block delays worse. We call the discovered strategy the coin-
hopping attack following the “pool-hopping” term raised in [5]. In this attack, an
adversarial miner is switching from mining one coin to another in the beginning
of an epoch, then he is switching back in the beginning of next epoch when
difficulty becomes lower. We show how adversarial mining profit is increasing for
Bitcoin’s difficulty readjustment function, and how inter-block delays grow as a
result of coin-hopping attack.

As a solution for the significant variance in computational power and also
in order to reduce incentive of the described coin-hopping strategy, we propose
an alternative difficulty readjustment procedure. We show that the proposed
solution is better suited for exponential growth of the total mining power. It
also reduces profit and negative side-effects of coin-hopping attacks.

1.1 Related Work

In this section we provide an overview of known formal and informal studies on
dynamic nature of difficulty parameters in Bitcoin. Following the well known
paper of Garay et al. [6], generalizing the Bitcoin backbone protocol in a sta-
tic difficulty setting, a newer paper from the same authors [7] is providing a
positive answer on whether basic security properties of the Bitcoin backbone
protocol (common prefix, chain quality and chain growth) are hold in case of
dynamic difficulty, in a cryptographic setting with an arbitrary adversary. Nev-
ertheless, studying concrete attacks against the real protocol is still needed.

The Timejacking attack [8] allows an attacker to first shift the network time
at a victim node (which is calculating network time by averaging timestamps it
gets regularly from neighbors), and then force the victim node to reject a block
with a specially crafted timestamp (other nodes are accepting). The time wrap-
ping attack [9] is exploiting the fact that Bitcoin is using difference in timestamps
between last and first block of an epoch, not the last block of an epoch and the
last block of a previous epoch. By using specially crafted timestamps for the last
block of each epoch, an attacker can produce more blocks for a time window,
with more work contributed to his chain. The difficulty raising attack, intro-
duced in [10], allows an attacker to discard n-depth block, for any n, and for any
computational power of the attacker, with probability 1 if he is willing to wait
long enough.
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The paper [4] is introducing an alternative difficulty readjustment function
designed to work better than Bitcoin’s not just for almost constant mining power
but also when the power is growing exponentially with time.

1.2 Structure of the Paper

The paper is organized as follows: in Sect. 2 we provide a detailed view of Bit-
coin’s readjustment function. In Sect. 3 we introduce the coin-hopping attack, fol-
lowed by the definition of an improved difficulty readjustment function, described
in Sect. 4. Section 5 provides experimental results for new algorithm evaluation.

2 Bitcoin Mining

The concept of Bitcoin mining was introduced in Sect. 4 of the Bitcoin whitepa-
per [1], and then discussed in detail in the papers [4,7]. A Bitcoin miner generates
a block by iterating over a nonce value and calculating the hash of a block with
the nonce value included. For a block B to be valid, a value of a hash function
has to be less than the current target T , hash(B) < T , where hash is an ideal
cryptographic hash function. Hardness to find a block could be expressed also
via difficulty D as D = 1

T . If output of the hash function is µ bits long then
the probability to generate a block by doing q requests to the hash function
is T ·q

2µ = q
D·2µ . We define miner’s hashrate R as R = qs

2µ , where qs is number
of queries done by miner s per time unit. The probability to generate a block
within a time unit is then R

D . In our analysis we assume that number of blocks
mined over long period of time is proportional to hashrate of a miner. However,
there are known strategies to mine a disproportionally high number of blocks,
such as [11], and the strategies are in correspondence with a general result in [6],
which is introducing chain quality property. The property sets an upper bound
on number of blocks an adversary can generate over a sufficiently long period,
however, this number can be higher than the relative hashrate of the adversary;
the result got under an assumption of static difficulty. Adversarial manipula-
tions with difficulty can be combined with selfish mining and other strategies to
achieve disproportionally high number of blocks, making previous results worse,
but this is out of scope of this paper: here, we study manipulations with difficulty
in isolation.

Every M blocks (M = 2016 for Bitcoin) the difficulty is recalculated as

Di+1 = Di · M · |Δ|
Sm

,

where |Δ| is the expected time interval between blocks and Sm is the actual time
spent to generate M blocks. For the Bitcoin network, the observed time interval
of ≈9 min 20 s is less than the planned value of |Δ| = 10 min due to continu-
ous growth of the computational power of the network. Difficulty recalculation
interval M = 2016 has been chosen to recalculate difficulty every 2 weeks on
average. The epoch length is big enough to see the computational power of the
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network being changing over it: mean delay is close to the planned 10 min right
after target recalculation, whereas at the end of an epoch it is less than 9 min
on average.

The next section describes an attack against the recalculation algorithm.

3 Coin-hopping Attack

We consider the following attack involving an adversarial miner A:

– There are at least 2 possible coins (C1,C2) A can contribute to. Without
a loss of generality, we assume that each of them provides about the same
profitability of the mining activity.

– A is mining coin C2 before the beginning of an epoch A. At the beginning of
A he is switching to mine coin C1.

– Without the contribution of miner A the total mining power of the C2 network
for the epoch decreases.

– For an epoch B right after epoch A, the difficulty of C2 is to be readjusted
to a lower value. So A starts mining C2 again with a lower difficulty.

We call this strategy a coin-hopping attack.
To calculate the profit the adversarial miner gains from this attack, we

use Bitcoins’ difficulty recalculation function and assume a constant network
hashrate (with respect to the rest of the network, without the adversarial miner).
We denote the hashrate of miners not participating in the coin-hopping attack
as R0 in both C1 and C2, and we denote the hashrate of the adversarial miner as
Ra = R0 ·p, 0 < p < 1. Before epoch A the adversary is mining coin C2, thus the
difficulty of the C2 network is D0 = (R0 +Ra) · |Δ| (see Sect. 3.1 in [4]). During
the epoch A the difficulty of the C2 network is still D0, and A switches to mine
coin C1 at a difficulty D1 = R0 · |Δ| calculated from honest miners hashrate R0

only. During the epoch B the adversary starts mining of C2, now at difficulty
D1, while honest miners on chain C1 continue to mine it with higher difficulty
D0. After that A continues to switch between chains C1 and C2 always mining
on the chain with lower difficulty D1, spending R0 · |Δ| computational power
per block, whereas honest miners spend (R0 +Ra)|Δ| computational power per
block.

Every epoch honest miners with hashrate R0 will generate M ·R0
R0+Ra

, blocks,
whereas A will generate M ·Ra

R0
blocks. If W is block reward, the additional profit

of the adversary is calculated as the difference of what he mines based on the
lower difficulty in contrast to the difficulty he would mine at without hopping
between the coins:

W · M · Ra

R0
− W · M · Ra

R0 + Ra
= W · M · R2

a

R0 · (Ra + R0)

= W · M · R2
0 · p2

R0 · (R0 · p + R0)
= W · M · p2

1 + p
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Remarkably, under such an attack the mean time between blocks in both
chains C1 and C2 will be

Ta =
T

2
(
R0 + Ra

R0
+

R0

R0 + Ra
) = T (1 +

p2

2(1 + p)
) (1)

which is bigger than the planned time T .

4 Improved Difficulty Adjustment

The difficulty adjustment algorithm employed by Bitcoin works as designed: if
the hash rate of the network is constant, it yields to the desired block rate.
However it does not achieve the desired block rate in other situations, and is
vulnerable to the attack described in 3. In this section we propose an alternative
difficulty adjustment algorithm.

1. It should be resistant to known types of attacks based on difficulty manipu-
lation.

2. It should lead to an almost constant desired block rate for random fluctuations
in the network hashrate.

We propose a difficulty adjustment algorithm based on the well-known linear
least squares method [12], we name it linear algorithm. In the simplest case of
pair linear regression y = kx + b, coefficients may be calculated as follows:{

k = xy−x̄ȳ

x2−x2

b = y − kx

Difficulty of the i − th epoch Di can be caclulated from the observed diffi-
culties of previous N epochs Di−1, ...,Di−N as follows:

⎧⎪⎪⎨
⎪⎪⎩
k =

4·∑i−1
n=i−N (Dn·n)−2·(2·i−N−1)

∑i−1
n=i−N Dn

4·∑i−1
n=i−N (Dn)−N ·(2·i−N−1)2

b =
2·∑i−1

n=i−N Dn−N ·k(2·i−N−1)

2·N
Di = k · i + b

Note that for accurate difficulty prediction we use N last observed difficulties,
rather than just one, as implemented in Bitcoin, but it is still possible to use
this algorithm right after the second epoch of the history.

The next section provides an evaluation of the linear algorithm.

5 Evaluation

In this section we present simulation results. They show that the linear algorithm
proposed in Sect. 4 outperforms Bitcoin’s algorithm in all the three experiments.
The first experiment is about exponential difficulty growth, which is the worst
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case for the original algorithm, as the previous study [4] shows. The second
one is comparing two algorithms on real difficulty data from Bitcoin history. In
the third experiment we compare the algorithms for a case of the coin-hopping
attack. For all the experiments, N = 4 (we use data from last 4 epochs to
calculate a difficulty value for a new epoch).

5.1 Exponential Difficulty Growth

First, we observe exponential difficulty growth, which occurs in practice in the
Bitcoin network. Exponential difficulty growth is the absolutely worst case pos-
sible for Bitcoin [4]. In the experiment we consider a situation where network
hashrate is increasing by 10% each epoch (more complicated research of expo-
nential difficulty growth can be found in [4]). Figure 1 presents how Bitcoin and
linear algorithms perform over epochs.

Fig. 1. Real difficulty values (red), values calculated by Bitcoin (black) and linear
(blue) algorithms (Color figure online)

Note that the difficulty calculated from Bitcoin algorithm is always signif-
icantly lower than the real one. This leads to average delay between blocks of
about 9 min 5 s, which is ≈10% lower than the planned 10 min value. Difficul-
ties calculated by the linear algorithm are also always lower than the real ones,
but closer to them. Mean delay between blocks when linear algorithm is used is
about 9 min 45 s, which is closer to the planned value. Concretely, the algorithm
currently used in the Bitcoin network has an average error of about 9.1%, while
our algorithm has an error of about 1.9%.

While a difficulty readjustment algorithm proposed in [4] leads to better
results for exponential difficulty growth with a constant rate, we note that our
algorithm is simpler and can be implemented with integer arithmetic only.
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5.2 Real Bitcoin Data

We compare the real Bitcoin network data with difficulty values calculated by
the algorithm used in Bitcoin, and we do the same with values calculated by the
linear algorithm.

Results show that in average Bitcoin algorithm has an error of about 12.3%
while our approach has an error of about 8.4%. Thus our approach performs
about 33% better than the approach currently used in the Bitcoin network.

5.3 Coin-hopping Attack

We consider the coin-hopping attack as described in the Sect. 3, with an attacker
possessing 20% of total computational power of network. The attacker repeatedly
turns on and then turns off his mining to manipulate difficulty and produce more
blocks. Figure 2 represents difficulty over epochs for this scenario.

Fig. 2. Real difficulties (red), difficulties calculated from Bitcoin (black) and lin-
ear (blue) algorithms in the coin-hopping attack (Color figure online)

Note that the difficulty calculated with the Bitcoin algorithm is always in
antiphase with the real one. The Bitcoin difficulty update algorithm leads to
10 min 10 s mean delay between blocks, which is in good correlation with the
Eq. 1. The linear algorithm also leads to bigger than planned mean delay between
blocks of 10 min 5 s, which is about two times lower difference in comparison
with the algorithm of Bitcoin. Obviously, the profit of the attacker then is also
2 times lower.

Thus the linear difficulty control algorithm, proposed in Sect. 4 is better than
the one used in Bitcoin for the coin-hopping attack scenario, both in terms of
block rate and attacker’s profit.
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Abstract. Concert tickets “are” nowadays unique identifiers that are
printed on paper as barcodes, and scanned at the entrance gate. While
this system is convenient and secure for the concert organizer, it bears
risks and inconveniences for the ticket owner.

We developed a prototype system in which concert tickets are man-
aged as assets on a blockchain. The system prevents ticket theft as well
as fraud such as selling invalid tickets, or selling multiple copies of a
ticket, by leveraging the consistency features of the blockchain.

We implemented the system based on Hyperledger Fabric V1. We
developed a smart contract that manages the tickets as assets on the
blockchain. We also developed a client application that runs on a smart
phone and allows to seamlessly transfer tickets between two users using
their phones, as well as the control at the entrance gate.

1 Introduction

Concert tickets, and those for most other events, are nowadays usually printed
on cheap paper, and often customers also have the option to print their ticket
at home. The unforgeability of those tickets is not guaranteed physically but
through a unique identifier that is printed on the ticket, often as a barcode. At
the entrance gate, the code is scanned, and the customer is granted access if the
same code has not been used before.

While convenient and secure from the concert organizer’s perspective—
proper handling of the identifiers makes forging tickets impossible—this system
bears risks and inconveniences for the ticket owner. “Ticket selfies” posted online
can lead to ticket theft [6], fraudsters can extract the barcode from the picture
and reproduce the ticket. Fraud related to re-printing tickets or selling invalid
tickets has become a serious concern in recent years [1]. Furthermore, there is no
secure way to re-sell spare tickets, because a buyer has no way to check whether
the barcode on the ticket is valid, and in particular there is no way to check
whether the same ticket has been re-sold to multiple other buyers.

One standard solution to the problem is to personalize tickets and bind them
to the owner’s name [6]. However, beyond complicating the entrance check at the
venue through the necessary ID check, this severely complicates re-selling the
ticket. The question we asked in this work is: Can we use blockchain technology
to achieve the convenience of standard tickets, but with the improved security
of ID-based ones?
c© Springer International Publishing AG 2017
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The setting. There are three different types of parties involved in the scenario.
The first ones are ticket sellers that sell and deliver tickets for certain events to
customers. The second ones are the customers, which may also want to re-sell
the tickets among each other. The third type of party are event organizers that
check the tickets for validity, and provide access to the event.

Blockchain systems. The concept of a blockchain was made popular by the cryp-
tocurrency Bitcoin [8]. Conceptually, a blockchain is a list of blocks, each one
containing a (short) sequence of transactions, which are linked by including a
hash of block n− 1 as part of block n. The chain is extended through some type
of consensus mechanism depending on the particular blockchain system under
consideration, and the entire chain of blocks therefore describes a sequence of
transactions. Summarizing the above, the core idea of a blockchain is that it
guarantees a globally consistent view on a sequence of transactions as long as
the preconditions of the consensus are satisfied.

For Bitcoin, the consensus mechanism is based on a specific type of proof
of work, and each transaction allows a party that has been the recipient of a
previous transaction to distribute the received value to other parties. Each party
is identified by a (often ephemeral) cryptographic identity, and the complete
blockchain keeps track of which identity owns which amounts of currency.

Our solution in a nutshell. The core idea of our solution is to store the unique
identifiers of concert tickets together with the cryptographic identity of the cur-
rent owner on the blockchain. Each transaction can then either generate a new
ticket, or transfer a ticket to a new owner, or invalidate a ticket, when the cur-
rent owner decides to use the ticket to enter the event venue. All actions change
the state of the ticket on the blockchain.

We developed a solution that is based on Hyperledger Fabric as a blockchain,
uses digital signatures to protect all transactions, and allows users to manage,
sell, and use the tickets with an application on their smart phone. We imple-
mented the solution using in a simple Blockchain setup and with the client
applications running on a commodity smart phone.

Related work. After the rise of Bitcoin, several new blockchain systems have been
developed. While Bitcoin is restricted to its purpose as a cryptocurrency, later
systems such as (most prominently) Ethereum [2] allow for generic smart con-
tracts. The blockchain platform that we use in this work, Hyperledger Fabric [7],
also supports generic smart contracts, but with different trust assumptions.

Other blockchain systems for managing assets have been published, such
as Chain [3]. More recently, a commercial ticket trading application was
announced [4], but we could not find any details on the actual implementation
of the system that would have allowed a serious comparison.

2 Preliminaries

Algorithms may be randomized unless otherwise indicated. Running time is
worst case. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A
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with random coins r on inputs x1, . . . and assigning the output to y. We let
y←$A(x1, . . .) be the result of picking r at random and letting y ← A(x1, . . . ; r).

Digital signatures. A digital signature scheme DS specifies the following. A prob-
abilistic key-generation algorithm DS.keygen that takes as input the security
parameter and produces a pair (sk, pk) ←$ DS.keygen of (private) signature key
sk and (public) verification key pk. Second, a (possibly probabilistic) signature
algorithm DS.sign that takes as input a secret key sk and a message m and
outputs s ←$ DS.sign(sk, m), a signature. Third, a (deterministic) verification
algorithm DS.verify that takes as input public key pk, message m, and signature
s, and produces a Boolean b ← DS.verify(pk, m, s).

Hyperledger Fabric. Hyperledger Fabric [7] is a permissioned blockchain plat-
form with a modular architecture. In particular, the consensus mechanism and
the identity provider are pluggable and can be instantiated according to the
application scenario. The smart contracts, which are referred to as chaincode in
Fabric, can be implemented in common programming languages. The current
version is Fabric V1, which is also the version that we use in our system.

One crucial aspect of Fabric V1 is a separation of roles into ordering ser-
vice, peers, and clients. A client invokes a transaction by generating a transac-
tion proposal and sending it to peers for so-called endorsement. The endorsing
peers run the chaincode and manage the chaincode state in a key-value store.
When receiving a transaction proposal, the peers execute the transaction, track
the read- and write-accesses to the key-value store, and sign the read-/write-
sets (i.e., the effects of the transaction on the key-value store) including version
information to manage concurrent accesses. These endorsements, i.e. the signed
read-/write-sets, are sent back to the client.

After collecting sufficiently many endorsements (this can be managed on a
per-chaincode basis), the client sends them to the ordering service. This service
implements the consensus aspect known from other blockchain architectures; its
purpose is to receive endorsed transactions, order them, and create the chain
of blocks that contain the sequence of transactions. The ordering service has
signature keys with which the blocks are authenticated.

The committing peers take the output of the ordering service and apply effects
of the valid transactions1 to the local key-value store. Usually endorsing peers
are also committing, but a peer can be only committing and not endorsing. The
pre-ordering execution of transactions makes sure that although the chaincode
can be non-deterministic (e.g., access system state), the effects of the transaction
are agreed and consistent.

The separation of roles has several advantages. First, the ordering service is
separated from the execution of the chaincode; this makes the actual consensus
method pluggable and also reduces the computational burden on the consensus
nodes. Second, each chaincode can have its own set of peers that execute it.
(Sets for different chaincodes may intersect.) The per-chaincode endorsement
policy allows to adapt to the specific setting of each application. Third, clients

1 Endorsed transactions can be invalid if they use outdated values.
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do not need to keep the state of the blockchain, since the blocks are signed by
the ordering service, and the chaincode state is managed collaboratively by the
peers.

3 Design

For the purpose of this prototype, we consider a simplified scenario in which there
is only a single ticket seller. (We describe a more general solution in Sect. 6.)
Each party, the ticket seller, the customers, and the organizers, are identified by
a digital signature key pair.

System structure and components. The ticket seller s has a signature key pair
(sks, pks) that is used for enrolling new tickets to the blockchain; this action is
protected by requiring each enrollment request to be signed with the key sks.
Each customer c has a signature key pair (skc, pkc) that is needed for re-selling
the ticket to other customers and for presenting it at the entrance gate. Each
concert organizer also has a key pair (sko, pko) that is used for invalidating tickets
at the entrance gate.

The core component of the system is the chaincode that is executed on the
blockchain, and that tracks the owner and state of each ticket. The chaincode is
provisioned with the public key pks of the ticket seller.

Chaincode. Each ticket on the blockchain is a tuple (id, pkc, pko, st, age) of ticket
identifier id ∈ {0, 1}∗, signature public key pkc{0, 1}∗ of the customer owning the
ticket, signature public key pko ∈ {0, 1}∗ of the concert organizer, ticket state
st ∈ {0, 1}, where st = 1 means that the ticket is valid and st = 0 means the
ticket has been invalidated, and ticket age age ∈ N. The chaincode then allows
for the following actions:

Enrolling a ticket: Takes as input ticket identifier id ∈ {0, 1}∗, organizer pub-
lic key pko ∈ {0, 1}∗, owner public key pkc ∈ {0, 1}∗, and signature s ∈ {0, 1}∗.
If there is no ticket id and DS.verify((enroll, id, pko, pkc), s, pks) = 1, then
store the tuple (id, pko, pkc, 1, 0).

Re-selling a ticket: Takes as input ticket identifier id ∈ {0, 1}∗, buyer public
key pkb ∈ {0, 1}∗, and signature s ∈ {0, 1}∗. If a ticket id exists, with owner
key pkc and state st = 1, then check DS.verify((sell, id, pkb, age), s, pkc)
and, if this check verifies, change the tuple (id, pko, pkc, 1, age) to (id, pko,
pkb, 1, age + 1). Storing the ticket age prevents replay attacks when one user
owns the same ticket multiple times.

Invalidating a ticket: Takes as input ticket identifier id ∈ {0, 1}∗, owner pub-
lic key pkc, and signature s. If a ticket id exists, with owner key pkc, organizer
key pko, and state st = 1, then check DS.verify((invalidate, id, pkc, age), s,
pko) and, if the check verifies, change the tuple (id, pko, pkc, 1, age) to (id, pko,
pkc, 1, age).

Seller application. The seller application allows enrolling new tickets on the
blockchain. On input ticket identifier id ∈ {0, 1}∗, organizer public key pko,
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and owner public key pkc, the seller application signs an enrollment request
s←$DS.sign((enroll, id, pko, pkc), sks) and sends the request and s to the block-
chain.

Client application. The client application supports two basic functionalities: re-
selling the ticket to a different customer, and presenting the ticket to an organizer
for invalidation.

For re-selling a ticket, the owner obtains the public key pkb of the intended
buyer b (see Sect. 5 for our implementation of this step), signs a re-selling request
s ←$ DS.sign((sign, id, pkb, age), skc) and sends the request together with s to
the blockchain.

For presenting a ticket for invalidation, the ticket owner has to provide the
ticket identifier id and the public key pkc to the organizer. To ensure that only
the valid ticket owner can present the ticket, we also require a signature s on the
ticket identifier id with respect to the owner public key pkc. As (in our imple-
mentation) this signature is transferred through a QR code, to prevent “selfie
attacks”, we additionally include the current time t into the signed message.

Organizer application. At the entrance gate, the organizer obtains from
the client the ticket identifier id, the public key pkc, and a signature
on the ticket identifier and the current time. He checks whether the
time is sufficiently accurate and the signature is valid, creates a signature
s ←$ DS.sign((invalidate, id, pkc, age), sko) and sends the invalidation request
together with s to the blockchain.

4 Security Discussion

The security of the described system rests on two main pillars: the consistency
guarantee of the blockchain and the unforgeability of digital signatures. In a
nutshell, the consistency of the blockchain guarantees that each ticket only makes
valid state transitions: that it can only be enrolled if no ticket by the same
identifier exists, that it can only be sold by the current owner and if it is valid,
and that it can only be invalidated if it belongs to the claimed owner. The
unforgeability of the digital signatures in turn ensures that requests sent to the
blockchain can only be generated by the relevant party; only ticket sellers can
enroll tickets, only current ticket owners can sell them, and only the assigned
organizers can invalidate them.

While a full security analysis is beyond the scope of this short paper, some
aspects should be discussed in more detail, which we do below.

Ticket theft from posted images. The main countermeasure against reproduction
of tickets from images posted on the Internet is that the ticket is bound to the
user identity on the blockchain, and the presentation of the ticket at the entrance
gate incorporates the identification of the user through a digital signature on the
ticket state. If this signature would only contain static data, however, it would
again be prone to attacks of the same type.
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The signature for presenting the ticket to the organizer is therefore computed
on a message that also includes the current time. This scheme works well if
one can assume the clocks of all devices to be approximately synchronous—
which seems reasonable given that today’s smart phones usually get the time
information from the mobile network. (It still seems to make sense to allow the
organizer to override this check.) The scheme prevents “selfie attacks” if the
selfies are not taken immediately before the concert.

Better security could be achieved by a challenge-response authentication
method between the organizer and the ticket owner. However, as this requires
either mobile network connectivity (which may not be available), or an ad-hoc
wireless connection between the devices (which requires additional capabilities
of the devices), or cumbersome handling in case of mutual QR code scanning,
we chose the less secure time-based scheme in our prototype.

“Double re-selling” tickets. Paper-based tickets allow a re-seller to sell copies of
the same ticket to different buyers. As our solution stores the owner together
with each ticket, and the blockchain guarantees atomicity of transactions, such
a “double re-selling” attack is not possible.

Sale of non-valid or invalidated tickets. While for today’s paper ticket system
it is easy to print tickets with invalid identifiers, this is not the case in the
blockchain-based solution, where only legitimate tickets are stored on the ledger.
Furthermore, the invalidation of a ticket is also a transaction on the blockchain.
Re-selling invalidated tickets is not allowed by the chaincode, and the atomicity
guaranteed by the blockchain ensures a consistent state of each ticket.

Invalidating without user consent. The organizer is supposed to check the user
signature, but the invalidation message can actually be generated by the orga-
nizer without the owner’s consent (given he knows id and pkc, none of which is
secret). The reason for not checking the user signature in the chaincode is that
the concert organizer could anyway (physically) prevent the ticket owner from
entering the concert venue—this is not an “attack” that can be prevented by
blockchain technology. The purpose of the invalidate-request is to set st = 0
for the ticket and to prevent re-selling the invalid tickets to other customers.

Necessity of blockchain. From a theoretical perspective, the described application
does not require a blockchain: for each particular ticket, the assigned organizer
must be trusted to allow the ticket owner to enter the event venue. Consequently,
one could alternatively implement the above scheme by running the chaincode
part of the system under the organizer’s control (instead of on a blockchain),
and having each concert organizer run its own instance of the system.

From a practical perspective, however, using a blockchain allows the concert
organizer (which also has a risk of having its servers compromised) to outsource
the application to multiple providers without fully trusting any one of them.
Furthermore, it seems reasonable for multiple concert organizers to run such
a system together; this allows to increase resilience (e.g., against compromised
servers) by distributing the trust in their infrastructure and improve customer
experience by having all tickets be managed in a single application.
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5 Implementation

We use Hyperledger Fabric V1 as a blockchain platform. For simplicity, the test
platform uses the “solo orderer”, a single node that orders the transactions;
this can easily be switched to other consensus methods without affecting the
remainder of the system. The digital signatures are ECDSA with curve secp256,
as this curve is supported by the required platforms.

Chaincode. The chaincode is written in plain Go using the standard Fabric bind-
ings and the provided LevelDB key-value store. For efficiency, we store the data
in a redundant way; for each ticket we store the current state as described in
Sect. 3, and for each user we store the list of identifiers of tickets he owns.

Client and organizer application. The application used by clients and organizers
is programmed in Swift and runs on iOS devices. The data transmission in the
selling and checking steps is implemented by generating and scanning QR codes.
A ticket buyer b simply presents a QR code that contains the signature public key
pkb to the seller; the seller scans it and generates the sell-request. As already
described above, a ticket owner c presenting a ticket to a concert organizer also
does this through a QR code; in this case, however, the code contains the public
key pkc, the ticket identifier id, and a signature of c.

Access to the blockchain is implemented via a REST proxy. The client appli-
cation generates the signed request and sends it to the REST proxy. The REST
proxy then acts as a client in the blockchain and takes care of endorsing the
transaction and submitting it to the ordering service. Note that this does not
affect the security, as all requests are still signed by the client application—the
REST proxy only has to be trusted for liveness, it cannot violate consistency.

Efficiency and scalability. All operations performed by the clients can easily be
implemented on commodity smart phones. Each transaction requires the gener-
ation of one ECDSA signature on the respective client device and its verification
in the chaincode running on the blockchain. Each ticket verification at the con-
cert venue also requires one transaction on the blockchain. While especially for
large venues with several thousand attendees this appears prohibitive on today’s
permissionless blockchains, the significantly greater transaction throughput of
permissioned systems such as Fabric is expected to be sufficient.

6 Next Steps

We consider several modifications to the prototype to better exploit (and exem-
plify) the flexibility of the Fabric platform.

Use membership services to authenticate seller. While the current authentication
via signature keys generated in the client application is reasonable for customers,
provisioning the chaincode with the seller public key makes the scheme inflexible.
This can be resolved by using Fabric membership services and providing the
ticket vendors with certificates issued by the membership services. The chaincode
then checks within the enroll-request whether it came from a certified vendor.
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Flexible endorsement. The Fabric endorsement mechanism can be used to have
each concert organizer run an endorsing peer that endorses the tickets for the
respective venues. Thereby it can be assured that the ticket vendor cannot create
new tickets without the respective organizer’s consent.

Inter-ledger payment. The current prototype does not include any payment—
the ticket re-selling is designed to easily allow transfer of tickets while the two
trading customers are in the same place, and payment can occur in cash. Support
of interledger transactions [5] may allow for atomic ticket transactions.

Analytics, privacy, and restricted contracts. The current version of the system
keeps a transaction graph in which the individual customers are pseudonymous—
as in Bitcoin—but otherwise the information is public. This allows for “mining”
the graph. An obvious extension is to employ privacy-preserving techniques to
better protect privacy. The current policy of unlimited re-selling could also be
restricted, e.g. by bounding the number of steps per ticket or re-sales per identity,
such as to curb commercial re-selling.

7 Conclusion

The presented prototype application shows how blockchain technology can solve
ticket-fraud crime, an urgent real-world problem, without degrading the user
experience. Tickets can be traded easily in a person-to-person scenario by simply
scanning a QR code from the receiver’s smart phone, and entrance control at
the venue also amounts to scanning a QR code, as in today’s system. In contrast
to today’s system, however, the blockchain backend guarantees to the customers
that tickets they obtained are indeed valid and not counterfeit or copied.
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