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Preface to the 3rd Edition

The third edition of this book on Applied Multivariate Statistical Analysis offers the
following new features.

1. A new Chapter 8 on Regression Models has been added.
2. Almost all numerical examples have been reproduced in MATLAB or R.

The chapter on regression models focuses on a core business of multivariate
statistical analysis. This contribution has not been subject of a prominent discus-
sion in earlier editions of this book. We now take the opportunity to cover classical
themes of ANOVA and ANCOVA analysis. Categorial responses are presented Sec-
tion 8.2. The spectrum of log linear models for contingency tables is presented in
Section 8.2.2 and applications to count data e.g. in the economic and medical sci-
ence is presented there. Logit models are discussed in great detail and the numerical
implementation in terms of matrix manipulations are presented.

The majority of pictures and numerical examples has been now calculated in
the (almost) standard language R & MATLAB. The code for each picture is indi-
cated with a small sign near the picture, e.g. MVAdenbank denotes the corre-
sponding quantlet for reproduction of Figure 1.9, where we display the densities of
the diagonal of genuine and counterfeit bank notes. We believe that these publicly
available Quantlets (see also www.quantlet.com) create a valuable contribution to
distribution of knowledge in the statistical science. The symbols and notations have
also been standardized. In the preparation of the 3rd edition, we received valuable
input from Song Song, Weining Wang and Mengmeng Guo. We would like to thank
them.

Wolfgang Karl Härdle
Léopold Simar

Berlin
Louvain la Neuve
June 2011
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Preface to the 2nd Edition

The second edition of this book widens the scope of the methods and applications
of Applied Multivariate Statistical Analysis. We have introduced more up to date
data sets in our examples. These give the text a higher degree of timeliness and
add an even more applied flavour. Since multivariate statistical methods are heavily
used in quantitative finance and risk management we have put more weight on the
presentation of distributions and their densities.

We discuss in detail different families of heavy tailed distributions (Laplace,
Generalized Hyperbolic). We also devoted a section on copulae, a new concept of
dependency used in the financial risk management and credit scoring. In the chap-
ter on computer intensive methods we have added support vector machines, a new
classification technique from statistical learning theory. We apply this method to
bankruptcy and rating analysis of firms. The very important CART (Classification
and Regression Tree) technique is also now inserted into this chapter. We give an
application to rating of companies.

The probably most important step towards readability and user friendliness of
this book is that we have translated all Quantlets into the R and Matlab language.
The algorithms can be downloaded from the authors’ web sites. In the preparation
of this 2nd edition, we received helpful output from Anton Andriyashin, Ying Chen,
Song Song and Uwe Ziegenhagen. We would like to thank them.

Wolfgang Karl Härdle
Léopold Simar

Berlin
Louvain la Neuve
June 2007
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Preface to the 1st Edition

Most of the observable phenomena in the empirical sciences are of a multivariate
nature. In financial studies, assets in stock markets are observed simultaneously and
their joint development is analyzed to better understand general tendencies and to
track indices. In medicine recorded observations of subjects in different locations
are the basis of reliable diagnoses and medication. In quantitative marketing con-
sumer preferences are collected in order to construct models of consumer behavior.
The underlying theoretical structure of these and many other quantitative studies of
applied sciences is multivariate. This book on Applied Multivariate Statistical Anal-
ysis presents the tools and concepts of multivariate data analysis with a strong focus
on applications.

The aim of the book is to present multivariate data analysis in a way that is under-
standable for non-mathematicians and practitioners who are confronted by statistical
data analysis. This is achieved by focusing on the practical relevance and through
the e-book character of this text. All practical examples may be recalculated and
modified by the reader using a standard web browser and without reference or ap-
plication of any specific software.

The book is divided into three main parts. The first part is devoted to graphical
techniques describing the distributions of the variables involved. The second part
deals with multivariate random variables and presents from a theoretical point of
view distributions, estimators and tests for various practical situations. The last part
is on multivariate techniques and introduces the reader to the wide selection of tools
available for multivariate data analysis. All data sets are given in the appendix and
are downloadable from www.md-stat.com. The text contains a wide variety of exer-
cises the solutions of which are given in a separate textbook. In addition a full set
of transparencies on www.md-stat.com is provided making it easier for an instruc-
tor to present the materials in this book. All transparencies contain hyper links to
the statistical web service so that students and instructors alike may recompute all
examples via a standard web browser.

The first section on descriptive techniques is on the construction of the boxplot.
Here the standard data sets on genuine and counterfeit bank notes and on the Boston
housing data are introduced. Flury faces are shown in Section 1.5, followed by the

ix



x Preface to the 1st Edition

presentation of Andrews curves and parallel coordinate plots. Histograms, kernel
densities and scatterplots complete the first part of the book. The reader is introduced
to the concept of skewness and correlation from a graphical point of view.

At the beginning of the second part of the book the reader goes on a short ex-
cursion into matrix algebra. Covariances, correlation and the linear model are intro-
duced. This section is followed by the presentation of the ANOVA technique and
its application to the multiple linear model. In Chapter 4 the multivariate distribu-
tions are introduced and thereafter specialized to the multinormal. The theory of
estimation and testing ends the discussion on multivariate random variables.

The third and last part of this book starts with a geometric decomposition of
data matrices. It is influenced by the French school of analyse de données. This
geometric point of view is linked to principal components analysis in Chapter 10.
An important discussion on factor analysis follows with a variety of examples from
psychology and economics. The section on cluster analysis deals with the various
cluster techniques and leads naturally to the problem of discrimination analysis. The
next chapter deals with the detection of correspondence between factors. The joint
structure of data sets is presented in the chapter on canonical correlation analysis
and a practical study on prices and safety features of automobiles is given. Next
the important topic of multidimensional scaling is introduced, followed by the tool
of conjoint measurement analysis. The conjoint measurement analysis is often used
in psychology and marketing in order to measure preference orderings for certain
goods. The applications in finance (Chapter 18) are numerous. We present here the
CAPM model and discuss efficient portfolio allocations. The book closes with a
presentation on highly interactive, computationally intensive techniques.

This book is designed for the advanced bachelor and first year graduate student
as well as for the inexperienced data analyst who would like a tour of the various sta-
tistical tools in a multivariate data analysis workshop. The experienced reader with
a bright knowledge of algebra will certainly skip some sections of the multivariate
random variables part but will hopefully enjoy the various mathematical roots of the
multivariate techniques. A graduate student might think that the first part on descrip-
tion techniques is well known to him from his training in introductory statistics. The
mathematical and the applied parts of the book (II, III) will certainly introduce him
into the rich realm of multivariate statistical data analysis modules.

The inexperienced computer user of this e-book is slowly introduced to an inter-
disciplinary way of statistical thinking and will certainly enjoy the various practical
examples. This e-book is designed as an interactive document with various links to
other features. The complete e-book may be downloaded from www.xplore-stat.de
using the license key given on the last page of this book. Our e-book design offers a
complete PDF and HTML file with links to MD*Tech computing servers.

The reader of this book may therefore use all the presented methods and data via
the local XploRe Quantlet Server (XQS) without downloading or buying additional
software. Such XQ Servers may also be installed in a department or addressed freely
on the web (see www.i-xplore.de for more information).

A book of this kind would not have been possible without the help of many
friends, colleagues and students. For the technical production of the e-book we
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would like to thank Jörg Feuerhake, Zdeněk Hlávka, Torsten Kleinow, Sigbert
Klinke, Heiko Lehmann, Marlene Müller. The book has been carefully read by
Christian Hafner, Mia Huber, Stefan Sperlich, Axel Werwatz. We would also like
to thank Pavel Čížek, Isabelle De Macq, Holger Gerhardt, Alena Myšičková and
Manh Cuong Vu for the solutions to various statistical problems and exercises. We
thank Clemens Heine from Springer Verlag for continuous support and valuable
suggestions on the style of writing and on the contents covered.

W. Härdle
L. Simar

Berlin
Louvain-la-Neuve
August 2003
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Part I
Descriptive Techniques



Chapter 1
Comparison of Batches

Multivariate statistical analysis is concerned with analysing and understanding data
in high dimensions. We suppose that we are given a set {xi}ni=1 of n observations
of a variable vector X in R

p . That is, we suppose that each observation xi has p
dimensions:

xi = (xi1, xi2, . . . , xip),
and that it is an observed value of a variable vector X ∈ R

p . Therefore, X is com-
posed of p random variables:

X = (X1,X2, . . . ,Xp)

whereXj , for j = 1, . . . , p, is a one-dimensional random variable. How do we begin
to analyse this kind of data? Before we investigate questions on what inferences we
can reach from the data, we should think about how to look at the data. This involves
descriptive techniques. Questions that we could answer by descriptive techniques
are:

• Are there components of X that are more spread out than others?
• Are there some elements of X that indicate sub-groups of the data?
• Are there outliers in the components of X?
• How “normal” is the distribution of the data?
• Are there “low-dimensional” linear combinations of X that show “non-normal”

behaviour?

One difficulty of descriptive methods for high dimensional data is the human
perceptional system. Point clouds in two dimensions are easy to understand and
to interpret. With modern interactive computing techniques we have the possibil-
ity to see real time 3D rotations and thus to perceive also three-dimensional data.
A “sliding technique” as described in Härdle and Scott (1992) may give insight
into four-dimensional structures by presenting dynamic 3D density contours as the
fourth variable is changed over its range.

A qualitative jump in presentation difficulties occurs for dimensions greater than
or equal to 5, unless the high-dimensional structure can be mapped into lower-

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
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dimensional components Klinke and Polzehl (1995). Features like clustered sub-
groups or outliers, however, can be detected using a purely graphical analysis.

In this chapter, we investigate the basic descriptive and graphical techniques al-
lowing simple exploratory data analysis. We begin the exploration of a data set using
boxplots. A boxplot is a simple univariate device that detects outliers component by
component and that can compare distributions of the data among different groups.
Next, several multivariate techniques are introduced (Flury faces, Andrews’ curves
and parallel coordinate plots) which provide graphical displays addressing the ques-
tions formulated above. The advantages and the disadvantages of each of these tech-
niques are stressed.

Two basic techniques for estimating densities are also presented: histograms and
kernel densities. A density estimate gives a quick insight into the shape of the dis-
tribution of the data. We show that kernel density estimates overcome some of the
drawbacks of the histograms.

Finally, scatterplots are shown to be very useful for plotting bivariate or trivariate
variables against each other: they help to understand the nature of the relationship
among variables in a data set and allow for the detection of groups or clusters of
points. Draftman plots or matrix plots are the visualization of several bivariate scat-
terplots on the same display. They help detect structures in conditional dependences
by brushing across the plots. Outliers and observations that need special attention
may be discovered with Andrews curves and Parallel Coordinate Plots. This chapter
ends with an explanatory analysis of the Boston Housing data.

1.1 Boxplots

Example 1.1 The Swiss bank data (see Appendix, Table B.2) consists of 200 mea-
surements on Swiss bank notes. The first half of these measurements are from gen-
uine bank notes, the other half are from counterfeit bank notes.

The authorities measured, as indicated in Figure 1.1,

X1 = length of the bill

X2 = height of the bill (left)

X3 = height of the bill (right)

X4 = distance of the inner frame to the lower border

X5 = distance of the inner frame to the upper border

X6 = length of the diagonal of the central picture.

These data are taken from Flury and Riedwyl (1988). The aim is to study how
these measurements may be used in determining whether a bill is genuine or coun-
terfeit.

The boxplot is a graphical technique that displays the distribution of variables. It
helps us see the location, skewness, spread, tail length and outlying points.
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Fig. 1.1 An old Swiss 1000-franc bank note

It is particularly useful in comparing different batches. The boxplot is a graph-
ical representation of the Five Number Summary. To introduce the Five Number
Summary, let us consider for a moment a smaller, one-dimensional data set: the
population of the 15 largest world cities in 2006 (Table 1.1).

In the Five Number Summary, we calculate the upper quartile FU , the lower
quartile FL, the median and the extremes. Recall that order statistics {x(1), x(2), . . . ,
x(n)} are a set of ordered values x1, x2, . . . , xn where x(1) denotes the minimum and
x(n) the maximum. The medianM typically cuts the set of observations in two equal
parts, and is defined as

M =
{
x
( n+1

2 )
n odd

1
2

{
x( n2 )

+ x( n2+1)
}

n even.
(1.1)

The quartiles cut the set into four equal parts, which are often called fourths (that
is why we use the letter F ). Using a definition that goes back to Hoaglin, Mosteller
and Tukey (1983) the definition of a median can be generalised to fourths, eights,
etc. Considering the order statistics we can define the depth of a data value x(i) as
min{i, n− i + 1}. If n is odd, the depth of the median is n+1

2 . If n is even, n+1
2 is

a fraction. Thus, the median is determined to be the average between the two data
values belonging to the next larger and smaller order statistics, i.e., M = 1

2 {x( n2 ) +
x( n2+1)}. In our example, we have n= 15 hence the median M = x(8) = 1815.
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Table 1.1 The 15 largest world cities in 2006

City Country Pop. (10000) Order Statistics

Tokyo Japan 3420 x(15)

Mexico City Mexico 2280 x(14)

Seoul South Korea 2230 x(13)

New York USA 2190 x(12)

Sao Paulo Brazil 2020 x(11)

Bombay India 1985 x(10)

Delhi India 1970 x(9)

Shanghai China 1815 x(8)

Los Angeles USA 1800 x(7)

Osaka Japan 1680 x(6)

Jakarta Indonesia 1655 x(5)

Calcutta India 1565 x(4)

Cairo Egypt 1560 x(3)

Manila Philippines 1495 x(2)

Karachi Pakistan 1430 x(1)

We proceed in the same way to get the fourths. Take the depth of the median and
calculate

depth of fourth= [depth of median] + 1

2
with [z] denoting the largest integer smaller than or equal to z. In our example this
gives 4.5 and thus leads to the two fourths

FL = 1

2

{
x(4) + x(5)

}
FU = 1

2

{
x(11) + x(12)

}
(recalling that a depth which is a fraction corresponds to the average of the two
nearest data values).

The F -spread, dF , is defined as dF = FU − FL. The outside bars

FU + 1.5dF (1.2)

FL − 1.5dF (1.3)

are the borders beyond which a point is regarded as an outlier. For the number of
points outside these bars see Exercise 1.3. For the n= 15 data points the fourths are
1,610= 1

2 {x(4) + x(5)} and 2,105= 1
2 {x(11) + x(12)}. Therefore the F -spread and

the upper and lower outside bars in the above example are calculated as follows:

dF = FU − FL = 183.5− 74= 495 (1.4)

FL − 1.5dF = 74− 1.5 · 109.5= 867.5 (1.5)
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Table 1.2 Five number
summary (world cities)

# 15 World Cities

M 8 1815

F 4.5 1610 2105

1 1430 3420

FU + 1.5dF = 183.5+ 1.5 · 109.5= 2847.5. (1.6)

Since Tokyo is beyond the outside bars it is considered to be an outlier. The mini-
mum and the maximum are called the extremes. The mean is defined as

x = n−1
n∑
i=1

xi,

which is 1939.7 in our example. The mean is a measure of location. The median
(1815), the fourths (1610; 2105) and the extremes (1430; 3420) constitute basic
information about the data. The combination of these five numbers leads to the Five
Number Summary as shown in Table 1.2. The depths of each of the five numbers
have been added as an additional column.

Construction of the Boxplot

1. Draw a box with borders (edges) at FL and FU (i.e., 50% of the data are in this
box).

2. Draw the median as a solid line (|) and the mean as a dotted line ( ).
3. Draw “whiskers” from each end of the box to the most remote point that is NOT

an outlier.
4. Show outliers as either “�” or “•” depending on whether they are outside of
FUL ± 1.5dF or FUL ± 3dF respectively (this feather is not contained in some
software). Label them if possible.

In the world cities example, the cut-off points (outside bars) are at 867.5 and
2847.5, hence we can draw whiskers to Karachi and Mexico City. We can see from
Figure 1.2 that the data are very skew: The upper half of the data (above the median)
is more spread out than the lower half (below the median), the data contains one
outlier marked as a circle and the mean (as a non-robust measure of location) is
pulled away from the median.

Boxplots are very useful tools in comparing batches. The relative location of the
distribution of different batches tells us a lot about the batches themselves. Before
we come back to the Swiss bank data let us compare the fuel economy of vehicles
from different countries, see Figure 1.3 and Table B.3.
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Fig. 1.2 Boxplot for world

cities MVAboxcity

Fig. 1.3 Boxplot for the
mileage of American,
Japanese and European cars

(from left to right)
MVAboxcar

Example 1.2 The data are from the second column of Table B.3 and show the
mileage (miles per gallon) of U.S. American, Japanese and European cars. The five-
number summaries for these data sets are {12,16.8,18.8,22,30}, {18,22,25,30.5,
35}, and {14,19,23,25,28} for American, Japanese, and European cars, respec-
tively. This reflects the information shown in Figure 1.3. The following conclusions
can be made:

• Japanese cars achieve higher fuel efficiency than U.S. and European cars.
• There is one outlier, a very fuel-efficient car (VW-Rabbit Golf Diesel).
• The main body of the U.S. car data (the box) lies below the Japanese car data.
• The worst Japanese car is more fuel-efficient than almost 50 percent of the U.S.

cars.
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Fig. 1.4 The X6 variable of
Swiss bank data (diagonal of

bank notes)
MVAboxbank6

Table 1.3 Five number
summary (genuine bank
notes X6) # 100 Genuine Bank Notes

M 50.5 141.5

F 25.75 141.25 141.8

1 140.65 142.4

• The spread of the Japanese and the U.S. cars are almost equal.
• The median of the Japanese data is above that of the European data and the U.S.

data.

Now let us apply the boxplot technique to the bank data set. In Figure 1.4 we
show the parallel boxplot of the diagonal variable X6. On the left is the value of the
genuine bank notes and on the right the value of the counterfeit bank notes.

One sees that the diagonals of the genuine bank notes tend to be larger. It is
harder to see a clear distinction when comparing the length of the bank notes X1,
see Figure 1.5. There are a few outliers in both plots. Almost all the observations
of the diagonal of the genuine notes are above the ones from the counterfeit notes.
There is one observation in Figure 1.4 of the genuine notes that is almost equal
to the median of the counterfeit notes. Can the parallel boxplot technique help us
distinguish between the two types of bank notes?
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Table 1.4 Five number
summary (counterfeit bank
notes X6) # 100 Counterfeit Bank Notes

M 50.5 139.5

F 25.75 139.2 139.8

1 138.3 140.65

Fig. 1.5 The X1 variable of
Swiss bank data (length of

bank notes)
MVAboxbank1

Summary
↪→ The median and mean bars are measures of locations.

↪→ The relative location of the median (and the mean) in the box is a
measure of how skewed it is.

↪→ The length of the box and whiskers are a measure of spread.

↪→ The length of the whiskers indicate the tail length of the distribu-
tion.

↪→ The outlying points are indicated with a “�” or “•” depending on if
they are outside of FUL ± 1.5dF or FUL ± 3dF respectively.

↪→ The boxplots do not indicate multi modality or clusters.

↪→ If we compare the relative size and location of the boxes, we are
comparing distributions.
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1.2 Histograms

Histograms are density estimates. A density estimate gives a good impression of
the distribution of the data. In contrast to boxplots, density estimates show possible
multimodality of the data. The idea is to locally represent the data density by count-
ing the number of observations in a sequence of consecutive intervals (bins) with
origin x0. Let Bj (x0, h) denote the bin of length h which is the element of a bin grid
starting at x0:

Bj (x0, h)= [x0 + (j − 1)h, x0 + jh), j ∈ Z,

where [., .) denotes a left closed and right open interval. If {xi}ni=1 is an i.i.d. sample
with density f , the histogram is defined as follows:

f̂h(x)= n−1h−1
∑
j∈Z

n∑
i=1

I{xi ∈ Bj (x0, h)} I{x ∈ Bj (x0, h)}. (1.7)

In sum (1.7) the first indicator function I{xi ∈ Bj (x0, h)} (see Symbols & Notation
in Appendix A) counts the number of observations falling into bin Bj (x0, h). The
second indicator function is responsible for “localising” the counts around x. The
parameter h is a smoothing or localising parameter and controls the width of the
histogram bins. An h that is too large leads to very big blocks and thus to a very un-
structured histogram. On the other hand, an h that is too small gives a very variable
estimate with many unimportant peaks.

The effect of h is given in detail in Figure 1.6. It contains the histogram (upper
left) for the diagonal of the counterfeit bank notes for x0 = 137.8 (the minimum
of these observations) and h = 0.1. Increasing h to h = 0.2 and using the same
origin, x0 = 137.8, results in the histogram shown in the lower left of the figure.
This density histogram is somewhat smoother due to the larger h. The binwidth is
next set to h= 0.3 (upper right). From this histogram, one has the impression that
the distribution of the diagonal is bimodal with peaks at about 138.5 and 139.9.
The detection of modes requires fine tuning of the binwidth. Using methods from
smoothing methodology (Härdle, Müller, Sperlich and Werwatz, 2003) one can find
an “optimal” binwidth h for n observations:

hopt =
(

24
√
π

n

)1/3

.

Unfortunately, the binwidth h is not the only parameter determining the shapes of f̂ .
In Figure 1.7, we show histograms with x0 = 137.65 (upper left), x0 = 137.75

(lower left), with x0 = 137.85 (upper right), and x0 = 137.95 (lower right). All
the graphs have been scaled equally on the y-axis to allow comparison. One sees
that—despite the fixed binwidth h—the interpretation is not facilitated. The shift of
the origin x0 (to 4 different locations) created 4 different histograms. This property
of histograms strongly contradicts the goal of presenting data features. Obviously,
the same data are represented quite differently by the 4 histograms. A remedy has
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Fig. 1.6 Diagonal of counterfeit bank notes. Histograms with x0 = 137.8 and h= 0.1 (upper left),

h= 0.2 (lower left), h= 0.3 (upper right), h= 0.4 (lower right) MVAhisbank1

Fig. 1.7 Diagonal of counterfeit bank notes. Histogram with h = 0.4 and origins x0 = 137.65

(upper left), x0 = 137.75 (lower left), x0 = 137.85 (upper right), x0 = 137.95 (lower right)
MVAhisbank2
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Fig. 1.8 Averaged shifted histograms based on all (counterfeit and genuine) Swiss bank notes:
there are 2 shifts (upper left), 4 shifts (lower left), 8 shifts (upper right), and 16 shifts (lower right)

MVAashbank

been proposed by Scott (1985): “Average the shifted histograms!”. The result is
presented in Figure 1.8. Here all bank note observations (genuine and counterfeit)
have been used. The (so-called) averaged shifted histogram is no longer depen-
dent on the origin and shows a clear bimodality of the diagonals of the Swiss bank
notes.

Summary
↪→ Modes of the density are detected with a histogram.

↪→ Modes correspond to strong peaks in the histogram.

↪→ Histograms with the same h need not be identical. They also de-
pend on the origin x0 of the grid.

↪→ The influence of the origin x0 is drastic. Changing x0 creates dif-
ferent looking histograms.

↪→ The consequence of an h that is too large is an unstructured his-
togram that is too flat.
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Summary (continued)
↪→ A binwidth h that is too small results in an unstable histogram.

↪→ There is an “optimal” h= (24
√
π/n)1/3.

↪→ It is recommended to use averaged histograms. They are kernel
densities.

1.3 Kernel Densities

The major difficulties of histogram estimation may be summarised in four critiques:

• determination of the binwidth h, which controls the shape of the histogram,
• choice of the bin origin x0, which also influences to some extent the shape,
• loss of information since observations are replaced by the central point of the

interval in which they fall,
• the underlying density function is often assumed to be smooth, but the histogram

is not smooth.

Rosenblatt (1956), Whittle (1958), and Parzen (1962) developed an approach
which avoids the last three difficulties. First, a smooth kernel function rather than
a box is used as the basic building block. Second, the smooth function is centred
directly over each observation. Let us study this refinement by supposing that x is
the centre value of a bin. The histogram can in fact be rewritten as

f̂h(x)= n−1h−1
n∑
i=1

I
(
|x − xi | ≤ h

2

)
. (1.8)

If we define K(u)= I(|u| ≤ 1
2 ), then (1.8) changes to

f̂h(x)= n−1h−1
n∑
i=1

K

(
x − xi
h

)
. (1.9)

This is the general form of the kernel estimator. Allowing smoother kernel functions
like the quartic kernel,

K(u)= 15

16
(1− u2)2 I(|u| ≤ 1),

and computing x not only at bin centres gives us the kernel density estimator. Kernel
estimators can also be derived via weighted averaging of rounded points (WARP-
ing) or by averaging histograms with different origins, see Scott (1985). Table 1.5
introduces some commonly used kernels.

Different kernels generate different shapes of the estimated density. The most
important parameter is the so-called bandwidth h, and can be optimised, for exam-
ple, by cross-validation; see Härdle (1991) for details. The cross-validation method
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Table 1.5 Kernel functions
K(•) Kernel

K(u)= 1
2 I(|u| ≤ 1) Uniform

K(u)= (1− |u|) I(|u| ≤ 1) Triangle

K(u)= 3
4 (1− u2) I(|u| ≤ 1) Epanechnikov

K(u)= 15
16 (1− u2)2 I(|u| ≤ 1) Quartic (Biweight)

K(u)= 1√
2π

exp(− u2

2 )= ϕ(u) Gaussian

minimises the integrated squared error. This measure of discrepancy is based on the
squared differences {f̂h(x)−f (x)}2. Averaging these squared deviations over a grid
of points {xl}Ll=1 leads to

L−1
L∑
l=1

{
f̂h(xl)− f (xl)

}2
.

Asymptotically, if this grid size tends to zero, we obtain the integrated squared error:∫ {
f̂h(x)− f (x)

}2
dx.

In practice, it turns out that the method consists of selecting a bandwidth that min-
imises the cross-validation function∫

f̂ 2
h − 2

n∑
i=1

f̂h,i (xi)

where f̂h,i is the density estimate obtained by using all datapoints except for the i-
th observation. Both terms in the above function involve double sums. Computation
may therefore be slow. There are many other density bandwidth selection methods.
Probably the fastest way to calculate this is to refer to some reasonable reference
distribution. The idea of using the Normal distribution as a reference, for example,
goes back to Silverman (1986). The resulting choice of h is called the rule of thumb.

For the Gaussian kernel from Table 1.5 and a Normal reference distribution, the
rule of thumb is to choose

hG = 1.06 σ̂ n−1/5 (1.10)

where σ̂ =
√
n−1

∑n
i=1(xi − x)2 denotes the sample standard deviation. This

choice of hG optimises the integrated squared distance between the estimator and
the true density. For the quartic kernel, we need to transform (1.10). The modified
rule of thumb is:

hQ = 2.62 · hG. (1.11)

Figure 1.9 shows the automatic density estimates for the diagonals of the coun-
terfeit and genuine bank notes. The density on the left is the density corresponding
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Fig. 1.9 Densities of the
diagonals of genuine and
counterfeit bank notes.
Automatic density estimates

MVAdenbank

Fig. 1.10 Contours of the
density of X5 and X6 of
genuine and counterfeit bank

notes MVAcontbank2

to the diagonal of the counterfeit data. The separation is clearly visible, but there is
also an overlap. The problem of distinguishing between the counterfeit and genuine
bank notes is not solved by just looking at the diagonals of the notes. The question
arises whether a better separation could be achieved using not only the diagonals,
but one or two more variables of the data set. The estimation of higher dimensional
densities is analogous to that of one dimensional. We show a two dimensional den-
sity estimate for X4 and X5 in Figure 1.10. The contour lines indicate the height
of the density. One sees two separate distributions in this higher dimensional space,
but they still overlap to some extent.
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Fig. 1.11 Contours of the
density of X4,X5,X6 of
genuine and counterfeit bank

notes MVAcontbank3

We can add one more dimension and give a graphical representation of a three
dimensional density estimate, or more precisely an estimate of the joint distribution
of X4, X5 and X6. Figure 1.11 shows the contour areas at 3 different levels of
the density: 0.2 (green), 0.4 (red), and 0.6 (blue) of this three dimensional density
estimate. One can clearly recognise two “ellipsoids” (at each level), but as before,
they overlap. In Chapter 13 we will learn how to separate the two ellipsoids and how
to develop a discrimination rule to distinguish between these data points.

Summary
↪→ Kernel densities estimate distribution densities by the kernel

method.
↪→ The bandwidth h determines the degree of smoothness of the esti-

mate f̂ .
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Summary (continued)
↪→ Kernel densities are smooth functions and they can graphically rep-

resent distributions (up to 3 dimensions).
↪→ A simple (but not necessarily correct) way to find a good bandwidth

is to compute the rule of thumb bandwidth hG = 1.06σ̂ n−1/5. This
bandwidth is to be used only in combination with a Gaussian ker-
nel ϕ.

↪→ Kernel density estimates are a good descriptive tool for seeing
modes, location, skewness, tails, asymmetry, etc.

1.4 Scatterplots

Scatterplots are bivariate or trivariate plots of variables against each other. They help
us understand relationships among the variables of a data set. A downward-sloping
scatter indicates that as we increase the variable on the horizontal axis, the variable
on the vertical axis decreases. An analogous statement can be made for upward-
sloping scatters.

Figure 1.12 plots the 5th column (upper inner frame) of the bank data against the
6th column (diagonal). The scatter is downward-sloping. As we already know from
the previous section on marginal comparison (e.g., Figure 1.9) a good separation
between genuine and counterfeit bank notes is visible for the diagonal variable. The
sub-cloud in the upper half (circles) of Figure 1.12 corresponds to the true bank
notes. As noted before, this separation is not distinct, since the two groups overlap
somewhat.

This can be verified in an interactive computing environment by showing the
index and coordinates of certain points in this scatterplot. In Figure 1.12, the 70th
observation in the merged data set is given as a thick circle, and it is from a genuine

Fig. 1.12 2D scatterplot for
X5 vs. X6 of the bank notes.
Genuine notes are circles,

counterfeit notes are stars
MVAscabank56
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Fig. 1.13 3D Scatterplot of
the bank notes for
(X4,X5,X6). Genuine notes
are circles, counterfeit are

stars MVAscabank456

bank note. This observation lies well embedded in the cloud of counterfeit bank
notes. One straightforward approach that could be used to tell the counterfeit from
the genuine bank notes is to draw a straight line and define notes above this value
as genuine. We would of course misclassify the 70th observation, but can we do
better?

If we extend the two-dimensional scatterplot by adding a third variable, e.g., X4
(lower distance to inner frame), we obtain the scatterplot in three-dimensions as
shown in Figure 1.13. It becomes apparent from the location of the point clouds that
a better separation is obtained. We have rotated the three dimensional data until this
satisfactory 3D view was obtained. Later, we will see that the rotation is the same
as bundling a high-dimensional observation into one or more linear combinations of
the elements of the observation vector. In other words, the “separation line” parallel
to the horizontal coordinate axis in Figure 1.12 is, in Figure 1.13, a plane and no
longer parallel to one of the axes. The formula for such a separation plane is a linear
combination of the elements of the observation vector:

a1x1 + a2x2 + · · · + a6x6 = const. (1.12)

The algorithm that automatically finds the weights (a1, . . . , a6) will be investigated
later on in Chapter 13.

Let us study yet another technique: the scatterplot matrix. If we want to draw
all possible two-dimensional scatterplots for the variables, we can create a so-called
draftman’s plot (named after a draftman’s who prepares drafts for parliamentary
discussions). Similar to a draftman’s plot the scatterplot matrix helps in creating
new ideas and in building knowledge about dependencies and structure.

Figure 1.14 shows a draftman’s plot applied to the last four columns of the full
bank data set. For ease of interpretation we have distinguished between the group
of counterfeit and genuine bank notes by a different colour. As discussed several
times earlier, the separability of the two types of notes is different for different
scatterplots. Not only is it difficult to perform this separation on, say, scatterplot
X3 vs. X4, in addition the “separation line” is no longer parallel to one of the
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Fig. 1.14 Draftman’s plot of the bank notes. The pictures in the left-hand column show (X3,X4),
(X3,X5) and (X3,X6), in the middle we have (X4,X5) and (X4,X6), and in the lower right

(X5,X6). The upper right half contains the corresponding density contour plots MVAdraf-
bank4

axes. The most obvious separation happens in the scatterplot in the lower right-
hand side where indicated, as in Figure 1.12, X5 vs. X6. The separation line here
would be upward-sloping with an intercept at about X6 = 139. The upper right
half of the draftman’s plot shows the density contours that we introduced in Sec-
tion 1.3.

The power of the draftman’s plot lies in its ability to show the internal con-
nections of the scatter diagrams. Define a brush as a re-scalable rectangle that we
can move via keyboard or mouse over the screen. Inside the brush we can high-
light or colour observations. Suppose the technique is installed in such a way that
as we move the brush in one scatter, the corresponding observations in the other
scatters are also highlighted. By moving the brush, we can study conditional depen-
dence.

If we brush (i.e., highlight or colour the observation with the brush) the X5 vs.
X6 plot and move through the upper point cloud, we see that in other plots (e.g.,
X3 vs. X4), the corresponding observations are more embedded in the other sub-
cloud.
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Summary
↪→ Scatterplots in two and three dimensions helps in identifying sepa-

rated points, outliers or sub-clusters.
↪→ Scatterplots help us in judging positive or negative dependencies.

↪→ Draftman scatterplot matrices help detect structures conditioned on
values of other variables.

↪→ As the brush of a scatterplot matrix moves through a point cloud,
we can study conditional dependence.

1.5 Chernoff-Flury Faces

If we are given data in numerical form, we tend to also display it numerically.
This was done in the preceding sections: an observation x1 = (1,2) was plot-
ted as the point (1,2) in a two-dimensional coordinate system. In multivariate
analysis we want to understand data in low dimensions (e.g., on a 2D computer
screen) although the structures are hidden in high dimensions. The numerical dis-
play of data structures using coordinates therefore ends at dimensions greater than
three.

If we are interested in condensing a structure into 2D elements, we have to con-
sider alternative graphical techniques. The Chernoff-Flury faces, for example, pro-
vide such a condensation of high-dimensional information into a simple “face”.
In fact faces are a simple way of graphically displaying high-dimensional data.
The size of the face elements like pupils, eyes, upper and lower hair line, etc.,
are assigned to certain variables. The idea of using faces goes back to Chernoff
(1973) and has been further developed by Bernhard Flury. We follow the de-
sign described in Flury and Riedwyl (1988) which uses the following character-
istics.

1 right eye size
2 right pupil size
3 position of right pupil
4 right eye slant
5 horizontal position of right eye
6 vertical position of right eye
7 curvature of right eyebrow
8 density of right eyebrow
9 horizontal position of right eyebrow
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10 vertical position of right eyebrow
11 right upper hair line
12 right lower hair line
13 right face line
14 darkness of right hair
15 right hair slant
16 right nose line
17 right size of mouth
18 right curvature of mouth

19–36 like 1–18, only for the left side.

First, every variable that is to be coded into a characteristic face element is trans-
formed into a (0,1) scale, i.e., the minimum of the variable corresponds to 0 and the
maximum to 1. The extreme positions of the face elements therefore correspond to
a certain “grin” or “happy” face element. Dark hair might be coded as 1, and blond
hair as 0 and so on.

As an example, consider the observations 91 to 110 of the bank data. Recall that
the bank data set consists of 200 observations of dimension 6 where, for example,
X6 is the diagonal of the note. If we assign the six variables to the following face
elements

X1 = 1, 19 (eye sizes)

X2 = 2, 20 (pupil sizes)

X3 = 4, 22 (eye slants)

X4 = 11, 29 (upper hair lines)

X5 = 12, 30 (lower hair lines)

X6 = 13, 14, 31, 32 (face lines and darkness of hair),

we obtain Figure 1.15. Also recall that observations 1–100 correspond to the gen-
uine notes, and that observations 101–200 correspond to the counterfeit notes. The
counterfeit bank notes then correspond to the upper half of Figure 1.15. In fact the
faces for these observations look more grim and less happy. The variable X6 (diag-
onal) already worked well in the boxplot on Figure 1.4 in distinguishing between
the counterfeit and genuine notes. Here, this variable is assigned to the face line and
the darkness of the hair. That is why we clearly see a good separation within these
20 observations.

What happens if we include all 100 genuine and all 100 counterfeit bank notes
in the Chernoff-Flury face technique? Figures 1.16 and 1.17 show the faces of the
genuine bank notes with the same assignments as used before and Figures 1.18
and 1.19 show the faces of the counterfeit bank notes. Comparing Figure 1.16 and
Figure 1.18 one clearly sees that the diagonal (face line) is longer for genuine bank
notes. Equivalently coded is the hair darkness (diagonal) which is lighter (shorter)
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Fig. 1.15 Chernoff-Flury faces for observations 91 to 110 of the bank notes MVAface-
bank10

Fig. 1.16 Chernoff-Flury faces for observations 1 to 50 of the bank notes MVAfacebank50
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Fig. 1.17 Chernoff-Flury faces for observations 51 to 100 of the bank notes MVAface-
bank50

Fig. 1.18 Chernoff-Flury faces for observations 101 to 150 of the bank notes MVAface-
bank50

for the counterfeit bank notes. One sees that the faces of the genuine bank notes have
a much darker appearance and have broader face lines. The faces in Figures 1.16–
1.17 are obviously different from the ones in Figures 1.18–1.19.
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Fig. 1.19 Chernoff-Flury faces for observations 151 to 200 of the bank notes MVAface-
bank50

Summary
↪→ Faces can be used to detect sub-groups in multivariate data.

↪→ Sub-groups are characterised by similar looking faces.

↪→ Outliers are identified by extreme faces, e.g., dark hair, smile or a
happy face.

↪→ If one element of X is unusual, the corresponding face element
significantly changes in shape.

1.6 Andrews’ Curves

The basic problem of graphical displays of multivariate data is the dimensionality.
Scatterplots work well up to three dimensions (if we use interactive displays). More
than three dimensions have to be coded into displayable 2D or 3D structures (e.g.,
faces). The idea of coding and representing multivariate data by curves was sug-
gested by Andrews (1972). Each multivariate observation Xi = (Xi,1, . . . ,Xi,p) is
transformed into a curve as follows:
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fi(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xi,1√
2
+Xi,2 sin(t)+Xi,3 cos(t)+ · · · +Xi,p−1 sin(p−1

2 t)

+Xi,p cos(p−1
2 t) for p odd

Xi,1√
2
+Xi,2 sin(t)+Xi,3 cos(t)+ · · · +Xi,p sin(p2 t) for p even

(1.13)

the observation represents the coefficients of a so-called Fourier series (t ∈
[−π,π]).

Suppose that we have three-dimensional observations: X1 = (0,0,1), X2 =
(1,0,0) and X3 = (0,1,0). Here p = 3 and the following representations corre-
spond to the Andrews’ curves:

f1(t)= cos(t)

f2(t)= 1√
2

and

f3(t)= sin(t).

These curves are indeed quite distinct, since the observations X1, X2, and X3 are
the 3D unit vectors: each observation has mass only in one of the three dimensions.
The order of the variables plays an important role.

Example 1.3 Let us take the 96th observation of the Swiss bank note data set,

X96 = (215.6,129.9,129.9,9.0,9.5,141.7).

The Andrews’ curve is by (1.13):

f96(t)= 215.6√
2
+ 129.9 sin(t)+ 129.9 cos(t)+ 9.0 sin(2t)+ 9.5 cos(2t)

+ 141.7 sin(3t).

Figure 1.20 shows the Andrews’ curves for observations 96–105 of the Swiss
bank note data set. We already know that the observations 96–100 represent genuine
bank notes, and that the observations 101–105 represent counterfeit bank notes. We
see that at least four curves differ from the others, but it is hard to tell which curve
belongs to which group.

We know from Figure 1.4 that the sixth variable is an important one. Therefore,
the Andrews’ curves are calculated again using a reversed order of the variables.

Example 1.4 Let us consider again the 96th observation of the Swiss bank note data
set,

X96 = (215.6,129.9,129.9,9.0,9.5,141.7).

The Andrews’ curve is computed using the reversed order of variables:

f96(t)= 141.7√
2
+ 9.5 sin(t)+ 9.0 cos(t)+ 129.9 sin(2t)+ 129.9 cos(2t)

+ 215.6 sin(3t).
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Fig. 1.20 Andrews’ curves
of the observations 96–105
from the Swiss bank note
data. The order of the
variables is 1, 2, 3, 4, 5, 6
MVAandcur

Fig. 1.21 Andrews’ curves
of the observations 96–105
from the Swiss bank note
data. The order of the
variables is 6, 5, 4, 3, 2, 1
MVAandcur2

In Figure 1.21 the curves f96–f105 for observations 96–105 are plotted. Instead of
a difference in high frequency, now we have a difference in the intercept, which
makes it more difficult for us to see the differences in observations.

This shows that the order of the variables plays an important role in the inter-
pretation. If X is high-dimensional, then the last variables will only have a small
visible contribution to the curve: they fall into the high frequency part of the curve.
To overcome this problem Andrews suggested using an order which is suggested
by Principal Component Analysis. This technique will be treated in detail in Chap-
ter 10. In fact, the sixth variable will appear there as the most important variable for
discriminating between the two groups. If the number of observations is more than
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20, there may be too many curves in one graph. This will result in an over plotting
of curves or a bad “signal-to-ink-ratio”, see Tufte (1983). It is therefore advisable to
present multivariate observations via Andrews’ curves only for a limited number of
observations.

Summary
↪→ Outliers appear as single Andrews’ curves that look different from

the rest.
↪→ A sub-group of data is characterised by a set of simular curves.

↪→ The order of the variables plays an important role for interpretation.

↪→ The order of variables may be optimised by Principal Component
Analysis.

↪→ For more than 20 observations we may obtain a bad “signal-to-ink-
ratio”, i.e., too many curves are overlaid in one picture.

1.7 Parallel Coordinate Plots

Parallel Coordinates Plots (PCP) is a method for representing high-dimensional
data, see Inselberg (1985). Instead of plotting observations in an orthogonal coordi-
nate system, PCP draws coordinates in parallel axes and connects them with straight
lines. This method helps in representing data with more than four dimensions.

One first scales all variables to max = 1 and min= 0. The coordinate index j is
drawn onto the horizontal axis, and the scaled value of variable xij is mapped onto
the vertical axis. This way of representation is very useful for high-dimensional
data. It is however also sensitive to the order of the variables, since certain trends in
the data can be shown more clearly in one ordering than in another.

Example 1.5 Take, once again, the observations 96–105 of the Swiss bank notes.
These observations are six dimensional, so we can’t show them in a six dimensional
Cartesian coordinate system. Using the parallel coordinates plot technique, however,
they can be plotted on parallel axes. This is shown in Figure 1.22.

PCP can also be used for detecting linear dependencies between variables: if all
lines are of almost parallel dimensions (p = 2), there is a positive linear dependence
between them. In Figure 1.23 we display the two variables weight and displacement
for the car data set in Appendix B.3. The correlation coefficient ρ introduced in
Section 3.2 is 0.9. If all lines intersect visibly in the middle, there is evidence of a
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Fig. 1.22 Parallel
coordinates plot of

observations 96–105
MVAparcoo1

Fig. 1.23 Parallel
coordinates plot indicating
strong positive dependence
with ρ = 0.9, X1 =weight,

X2 = displacement
MVApcp2

negative linear dependence between these two variables, see Figure 1.24. In fact the
correlation is ρ =−0.82 between two variables mileage and weight: The more the
weight the less the mileage.

Another use of PCP is sub-groups detection. Lines converging to different dis-
crete points indicate sub-groups. Figure 1.25 shows the last three variables - dis-
placement, gear ratio for high gear and company’s headquarters of the car data; we
see convergence to the last variable. This last variable is the company’s headquar-
ters with three discrete values: U.S., Japan and Europe. PCP can also be used for
outlier detection. Figure 1.26 shows the variables headroom, rear seat clearance and
trunk (boot) space in the car data set. There are two outliers visible. The boxplot
Figure 1.27 confirms this.
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Fig. 1.24 Parallel
coordinates plot showing
strong negative dependence
with ρ =−0.82, X1 =
mileage, X2 =weight
MVApcp3

Fig. 1.25 Parallel
coordinates plot with

sub-groups MVApcp4

Fig. 1.26 PCP for
X1 = headroom, X2 = rear
seat clearance and X3 = trunk

space MVApcp5
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Fig. 1.27 Boxplots for
headroom, rear seat clearance

and trunk space
MVApcp6

Fig. 1.28 Which line is

which observation?
MVApcp7

PCPs have also possible shortcomings: We cannot distinguish observations when
two lines cross at one point unless we distinguish them clearly (e.g. by different line
style). In Figure 1.28, observation A and B both have the same value at j = 2. Two
lines cross at one point here. At the 3rd and 4th dimension we cannot tell which line
belongs to which observation. A dotted line for A and solid line for B could have
helped there.

To solve this problem one uses an interpolation curve instead of straight lines,
e.g. cubic curves as in Graham and Kennedy (2003). Figure 1.29 is a variant of
Figure 1.28. In Figure 1.29, with a natural cubic spline, it is evident how to follow
the curves and distinguish the observations. The real power of PCP comes though
through colouring sub-groups.
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Fig. 1.29 PCP with cubic

spline interpolation
MVApcp8

Fig. 1.30 Parallel
coordinates plot for car data

MVApcp1

Example 1.6 Data in Figure 1.30 are coloured according to X13 - car company’s
headquarters. Red stands for European car, green for Japan and black for U.S. This
PCP with colouring can provide some information for us:

1. U.S. cars (black) tend to have large value inX7,X8,X9,X10,X11 (trunk (boot)
space, weight, length, turning diameter, displacement), which means U.S. cars are
generally larger.

2. Japanese cars (green) have large value in X3, X4 (both for repair record),
which means Japanese cars tend to be repaired less.
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Summary
↪→ Parallel coordinates plots overcome the visualisation problem of

the Cartesian coordinate system for dimensions greater than 4.
↪→ Outliers are visible as outlying polygon curves.

↪→ The order of variables is important, especially in the detection of
sub-groups.

↪→ Sub-groups may be screened by selective colouring.

1.8 Hexagon Plots

This section closely follows the presentation of Lewin-Koh (2006). In geometry, a
hexagon is a polygon with six edges and six vertices. Hexagon binning is a type of
bivariate histogram with hexagon borders. It is useful for visualising the structure
of data sets entailing a large number of observations n. The concept of hexagon
binnning is as follows:

1. The xy plane over the set (range(x), range(y)) is tessellated by a regular grid of
hexagons.

2. The number of points falling in each hexagon is counted.
3. The hexagons with count > 0 are plotted by using a colour ramp or varying the

radius of the hexagon in proportion to the counts.

This algorithm is extremely fast and effective for displaying the structure of data sets
even for n ≥ 106. If the size of the grid and the cuts in the colour ramp are chosen
in a clever fashion, then the structure inherent in the data should emerge in the
binned plot. The same caveats apply to hexagon binnning as histograms. Variance
and bias vary in opposite directions with bin width, so we have to settle for finding
the value of the bin width that yields the optimal compromise between variance and
bias reduction. Clearly, if we increase the size of the grid, the hexagon plot appears
to be smoother, but without some reasonable criterion on hand it remains difficult
to say which bin width provides the “optimal” degree of smoothness. The default
number of bins suggested by standard software is 30.

Applications to some data sets are shown as follows. The data is taken from ALL-
BUS (2006)[ZA No.3762]. The number of respondents is 2946. The following nine
variables have been selected to analyse the relation between each pair of variables.

X1: Age
X2: Net income
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Fig. 1.31 Hexagon plots between X1 and X2 MVAageIncome

X3: Time for television per day in minutes
X4: Time for work per week in hours
X5: Time for computer per week in hours
X6: Days for illness yearly
X7: Living space (square meters)
X8: Size
X9: Weight

Firstly, we consider two variables X1 = Age and X2 = Net income in Figure
1.31. The top left picture is a scatter plot. The second one is a hexagon plot with
borders making it easier to see the separation between hexagons. Looking at these
plots one can see that almost all individuals have a net monthly income of less than
2000 EUR. Only two individuals earn more than 10000 EUR per month.

Figure 1.32 shows the relation between X1 and X5. About forty percent of re-
spondents from 20 to 80 years old do not use a computer at least once per week.
The respondent who deals with a computer 105 hours each week was actually not
in full-time employment.

Clearly, people who earn modest incomes live in smaller flats. The trend here is
relatively clear in Figure 1.33. The larger the net income, the larger the flat. A few
people do however earn high incomes but live in small flats.

Summary
↪→ Hexagon binning is a type of bivariate histogram, used for visual-

ising large data.
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Fig. 1.32 Hexagon plot between X1 and X5 MVAageCom

Summary (continued)
↪→ Variance and bias vary in opposite directions with bin width.

↪→ Hexagons have the property of “symmetry of nearest neighbours”
which lacks in square bins.

↪→ Hexagons are visually less biased for displaying densities than
other regular tesselations.

1.9 Boston Housing

Aim of the Analysis

The Boston Housing data set was analysed by Harrison and Rubinfeld (1978) who
wanted to find out whether “clean air” had an influence on house prices. We will
use this data set in this chapter and in most of the following chapters to illustrate the
presented methodology. The data are described in Appendix B.1.

What Can Be Seen from the PCPs

In order to highlight the relations of X14 to the remaining 13 variables we colour
all of the observations with X14 >median(X14) as red lines in Figure 1.34. Some of
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Fig. 1.33 Hexagon plot between X2 and X7 MVAincomeLi

Fig. 1.34 Parallel
coordinates plot for Boston

Housing data
MVApcphousing

the variables seem to be strongly related. The most obvious relation is the negative
dependence between X13 and X14. It can also be argued that a strong dependence
exists between X12 and X14 since no red lines are drawn in the lower part of X12.
The opposite can be said about X11: there are only red lines plotted in the lower part
of this variable. Low values of X11 induce high values of X14.

For the PCP, the variables have been rescaled over the interval [0,1] for better
graphical representations. The PCP shows that the variables are not distributed in
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Fig. 1.35 Scatterplot matrix for variables X1, . . . ,X5 and X14 of the Boston Housing data
MVAdrafthousing

a symmetric manner. It can be clearly seen that the values of X1 and X9 are much
more concentrated around 0. Therefore it makes sense to consider transformations
of the original data.

The Scatterplot Matrix

One characteristic of PCPs is that many lines are drawn on top of each other. This
problem is reduced by depicting the variables in pairs of scatterplots. Including all
14 variables in one large scatterplot matrix is possible, but makes it hard to see any-
thing from the plots. Therefore, for illustratory purposes we will analyse only one
such matrix from a subset of the variables in Figure 1.35. On the basis of the PCP
and the scatterplot matrix we would like to interpret each of the thirteen variables
and their eventual relation to the 14th variable. Included in the figure are images for
X1–X5 and X14, although each variable is discussed in detail below. All references
made to scatterplots in the following refer to Figure 1.35.

Per-capita Crime Rate X1

Taking the logarithm makes the variable’s distribution more symmetric. This can be
seen in the boxplot of X̃1 in Figure 1.37 which shows that the median and the mean
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Fig. 1.36 Scatterplot matrix for variables X̃1, . . . , X̃5 and X̃14 of the Boston Housing data
MVAdrafthousingt

have moved closer to each other than they were for the original X1. Plotting the
kernel density estimate (KDE) of X̃1 = log (X1) would reveal that two sub-groups
might exist with different mean values. However, taking a look at the scatterplots
in Figure 1.36 of the logarithms which include X1 does not clearly reveal such
groups. Given that the scatterplot of log (X1) vs. log (X14) shows a relatively strong
negative relation, it might be the case that the two sub-groups of X1 correspond to
houses with two different price levels. This is confirmed by the two boxplots shown
to the right of the X1 vs. X2 scatterplot (in Figure 1.35): the right boxplot’s shape
differs a lot from the black one’s, having a much higher median and mean.

Proportion of Residential Area Zoned for Large Lots X2

It strikes the eye in Figure 1.35 that there is a large cluster of observations for which
X2 is equal to 0. It also strikes the eye that - as the scatterplot of X1 vs. X2 shows
- there is a strong, though non-linear, negative relation between X1 and X2; almost
all observations for whichX2 is high have anX1-value close to zero, and vice versa,
many observations for which X2 is zero have quite a high per-capita crime rate X1.
This could be due to the location of the areas, e.g., urban districts might have a
higher crime rate and at the same time it is unlikely that any residential land would
be zoned in a generous manner.
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As far as the house prices are concerned it can be said that there seems to be no
clear (linear) relation between X2 and X14, but it is obvious that the more expensive
houses are situated in areas where X2 is large (this can be seen from the two box-
plots on the second position of the diagonal, where the red one has a clearly higher
mean/median than the black one).

Proportion of Non-retail Business Acres X3

The PCP (in Figure 1.34) as well as the scatterplot of X3 vs. X14 shows an obvious
negative relation between X3 and X14. The relationship between the logarithms of
both variables seems to be almost linear. This negative relation might be explained
by the fact that non-retail business sometimes causes annoying sounds and other
pollution. Therefore, it seems reasonable to use X3 as an explanatory variable for
the prediction of X14 in a linear-regression analysis.

As far as the distribution of X3 is concerned it can be said that the kernel density
estimate of X3 clearly has two peaks, which indicates that there are two sub-groups.
According to the negative relation between X3 and X14 it could be the case that
one sub-group corresponds to the more expensive houses and the other one to the
cheaper houses.

Charles River Dummy Variable X4

The observation made from the PCP that there are more expensive houses than cheap
houses situated on the banks of the Charles River is confirmed by inspecting the scat-
terplot matrix. Still, we might have some doubt that proximity to the river influences
house prices. Looking at the original data set, it becomes clear that the observations
for which X4 equals one are districts that are close to each other. Apparently, the
Charles River does not flow through very many different districts. Thus, it may be
pure coincidence that the more expensive districts are close to the Charles River -
their high values might be caused by many other factors such as the pupil/teacher
ratio or the proportion of non-retail business acres.

Nitric Oxides Concentration X5

The scatterplot of X5 vs. X14 and the separate boxplots of X5 for more and less
expensive houses reveal a clear negative relation between the two variables. As it
was the main aim of the authors of the original study to determine whether pollution
had an influence on housing prices, it should be considered very carefully whether
X5 can serve as an explanatory variable for price X14. A possible reason against it
being an explanatory variable is that people might not like to live in areas where the
emissions of nitric oxides are high. Nitric oxides are emitted mainly by automobiles,
by factories and from heating private homes. However, as one can imagine there are
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many good reasons besides nitric oxides not to live in urban or industrial areas.
Noise pollution, for example, might be a much better explanatory variable for the
price of housing units. As the emission of nitric oxides is usually accompanied by
noise pollution, using X5 as an explanatory variable for X14 might lead to the false
conclusion that people run away from nitric oxides, whereas in reality it is noise
pollution that they are trying to escape.

Average Number of Rooms per Dwelling X6

The number of rooms per dwelling is a possible measure of the size of the houses.
Thus we expect X6 to be strongly correlated with X14 (the houses’ median price).
Indeed - apart from some outliers - the scatterplot of X6 vs. X14 shows a point
cloud which is clearly upward-sloping and which seems to be a realisation of a
linear dependence of X14 on X6. The two boxplots of X6 confirm this notion by
showing that the quartiles, the mean and the median are all much higher for the red
than for the black boxplot.

Proportion of Owner-Occupied Units Built prior to 1940 X7

There is no clear connection visible between X7 and X14. There could be a weak
negative correlation between the two variables, since the (red) boxplot of X7 for the
districts whose price is above the median price indicates a lower mean and median
than the (black) boxplot for the district whose price is below the median price. The
fact that the correlation is not so clear could be explained by two opposing effects.
On the one hand, house prices should decrease if the older houses are not in a good
shape. On the other hand, prices could increase, because people often like older
houses better than newer houses, preferring their atmosphere of space and tradition.
Nevertheless, it seems reasonable that the age of the houses has an influence on their
price X14.

Raising X7 to the power of 2.5 reveals again that the data set might consist of
two sub-groups. But in this case it is not obvious that the sub-groups correspond
to more expensive or cheaper houses. One can furthermore observe a negative rela-
tion between X7 and X8. This could reflect the way the Boston metropolitan area
developed over time; the districts with the newer buildings are further away from
employment centres and industrial facilities.

Weighted Distance to Five Boston Employment Centres X8

Since most people like to live close to their place of work, we expect a negative
relation between the distances to the employment centres and house prices. The
scatterplot hardly reveals any dependence, but the boxplots of X8 indicate that there
might be a slightly positive relation as the red boxplot’s median and mean are higher



1.9 Boston Housing 41

than the black ones. Again, there might be two effects in opposite directions at work
here. The first is that living too close to an employment centre might not provide
enough shelter from the pollution created there. The second, as mentioned above, is
that people do not travel very far to their workplace.

Index of Accessibility to Radial Highways X9

The first obvious thing one can observe from the scatterplots, as well in the his-
tograms and the kernel density estimates, is that there are two sub-groups of dis-
tricts containing X9 values which are close to the respective group’s mean. The
scatterplots deliver no hint as to what might explain the occurrence of these two
sub-groups. The boxplots indicate that for the cheaper and for the more expensive
houses the average of X9 is almost the same.

Full-Value Property Tax X10

X10 shows behaviour similar to that of X9: two sub-groups exist. A downward-
sloping curve seems to underlie the relation of X10 and X14. This is confirmed by
the two boxplots drawn for X10: the red one has a lower mean and median than the
black one.

Pupil/Teacher Ratio X11

The red and black boxplots of X11 indicate a negative relation between X11 and
X14. This is confirmed by inspection of the scatterplot of X11 vs. X14: The point
cloud is downward sloping, i.e., the less teachers there are per pupil, the less people
pay on median for their dwellings.

Proportion of African American B , X12 = 1000(B − 0.63)2 I(B < 0.63)

Interestingly, X12 is negatively - though not linearly - correlated with X3, X7 and
X11, whereas it is positively related withX14. Looking at the data set reveals that for
almost all districts X12 takes on a value around 390. Since B cannot be larger than
0.63, such values can only be caused by B close to zero. Therefore, the higher X12
is, the lower the actual proportion of African-Americans is. Among observations
405 to 470 there are quite a few that have a X12 that is much lower than 390. This
means that in these districts the proportion of African-Americans is above zero.
We can observe two clusters of points in the scatterplots of log (X12): one cluster
for which X12 is close to 390 and a second one for which X12 is between 3 and
100. When X12 is positively related with another variable, the actual proportion of
African-Americans is negatively correlated with this variable and vice versa. This
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means that African-Americans live in areas where there is a high proportion of non-
retail business land, where there are older houses and where there is a high (i.e., bad)
pupil/teacher ratio. It can be observed that districts with housing prices above the
median can only be found where the proportion of African-Americans is virtually
zero.

Proportion of Lower Status of the Population X13

Of all the variables X13 exhibits the clearest negative relation with X14 - hardly any
outliers show up. Taking the square root of X13 and the logarithm of X14 transforms
the relation into a linear one.

Transformations

Since most of the variables exhibit an asymmetry with a higher density on the left-
hand side, the following transformations are proposed:

X̃1 = log (X1)

X̃2 =X2/10

X̃3 = log (X3)

X̃4 none, since X4 is binary

X̃5 = log (X5)

X̃6 = log (X6)

X̃7 =X7
2.5/10000

X̃8 = log (X8)

X̃9 = log (X9)

X̃10 = log (X10)

X̃11 = exp (0.4×X11)/1000

X̃12 =X12/100

X̃13 =
√
X13

X̃14 = log (X14).

Taking the logarithm or raising the variables to the power of something smaller
than one helps to reduce the asymmetry. This is due to the fact that lower values
move further away from each other, whereas the distance between greater values is
reduced by these transformations.

Figure 1.37 displays boxplots for the original mean variance scaled variables as
well as for the proposed transformed variables. The transformed variables’ boxplots
are more symmetric and have less outliers than the original variables’ boxplots.
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Fig. 1.37 Boxplots for all of the variables from the Boston Housing data before and after the

proposed transformations MVAboxbhd

1.10 Exercises

Exercise 1.1 Is the upper extreme always an outlier?

Exercise 1.2 Is it possible for the mean or the median to lie outside of the fourths
or even outside of the outside bars?

Exercise 1.3 Assume that the data are normally distributed N(0,1). What percent-
age of the data do you expect to lie outside the outside bars?

Exercise 1.4 What percentage of the data do you expect to lie outside the outside
bars if we assume that the data are normally distributed N(0, σ 2) with unknown
variance σ 2?

Exercise 1.5 How would the five-number summary of the 15 largest U.S. cities
differ from that of the 50 largest U.S. cities? How would the five-number summary
of 15 observations of N(0,1)-distributed data differ from that of 50 observations
from the same distribution?

Exercise 1.6 Is it possible that all five numbers of the five-number summary could
be equal? If so, under what conditions?
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Exercise 1.7 Suppose we have 50 observations of X ∼ N(0,1) and another 50
observations of Y ∼ N(2,1). What would the 100 Flury faces look like if you had
defined as face elements the face line and the darkness of hair? Do you expect any
similar faces? How many faces do you think should look like observations of Y even
though they are X observations?

Exercise 1.8 Draw a histogram for the mileage variable of the car data (Table B.3).
Do the same for the three groups (U.S., Japan, Europe). Do you obtain a similar
conclusion as in the parallel boxplot on Figure 1.3 for these data?

Exercise 1.9 Use some bandwidth selection criterion to calculate the optimally cho-
sen bandwidth h for the diagonal variable of the bank notes. Would it be better to
have one bandwidth for the two groups?

Exercise 1.10 In Figure 1.9 the densities overlap in the region of diagonal≈ 140.4.
We partially observed this in the boxplot of Figure 1.4. Our aim is to separate the two
groups. Will we be able to do this effectively on the basis of this diagonal variable
alone?

Exercise 1.11 Draw a parallel coordinates plot for the car data.

Exercise 1.12 How would you identify discrete variables (variables with only a
limited number of possible outcomes) on a parallel coordinates plot?

Exercise 1.13 True or false: the height of the bars of a histogram are equal to the
relative frequency with which observations fall into the respective bins.

Exercise 1.14 True or false: kernel density estimates must always take on a value
between 0 and 1. (Hint: Which quantity connected with the density function has to
be equal to 1? Does this property imply that the density function has to always be
less than 1?)

Exercise 1.15 Let the following data set represent the heights of 13 students taking
the Applied Multivariate Statistical Analysis course:

1.72,1.83,1.74,1.79,1.94,1.81,1.66,1.60,1.78,1.77,1.85,1.70,1.76.

1. Find the corresponding five-number summary.
2. Construct the boxplot.
3. Draw a histogram for this data set.

Exercise 1.16 Describe the unemployment data (see Table B.19) that contain un-
employment rates of all German Federal States using various descriptive techniques.

Exercise 1.17 Using yearly population data (see B.20), generate
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1. a boxplot (choose one of variables)
2. an Andrew’s Curve (choose ten data points)
3. a scatterplot
4. a histogram (choose one of the variables)

What do these graphs tell you about the data and their structure?

Exercise 1.18 Make a draftman plot for the car data with the variables

X1 = price,

X2 =mileage,

X8 =weight,

X9 = length.

Move the brush into the region of heavy cars. What can you say about price, mileage
and length? Move the brush onto high fuel economy. Mark the Japanese, European
and U.S. American cars. You should find the same condition as in boxplot Fig-
ure 1.3.

Exercise 1.19 What is the form of a scatterplot of two independent random vari-
ables X1 and X2 with standard normal distribution?

Exercise 1.20 Rotate a three-dimensional standard normal point cloud in 3D space.
Does it “almost look the same from all sides”? Can you explain why or why not?

Exercise 1.21 There are many reasons for using hexagons to visualise the structure
of data.

1. Hexagons have the property of “symmetry of nearest neighbours” which lacks in
square bins.

2. Hexagons have the maximum number of sides that a polygon can have for a
regular tesselation of the plane.

3. Hexagons are visually less biased for displaying densities than other regular tes-
selations.

The hexagon binning algorithm is as follows:

1. Decrease y-axis variable by a factor of
√

3 (making the calculation more quickly)
2. Create a dual lattice (circle and star lines in Figure 1.38)
3. Bin each point into a pair of near neighbour rectangles
4. Choose the closest of the rectangle centres (adjusting for

√
3)

The rectangles created from dual lattice have length hx (bin width of hexagons) and
height hy =

√
3hx . From these rectangles we can get hexagons with bin width hx .

The first point of the star lattice has coordinates x0 and y0. The other star points
will have coordinates x0 + k1hx and y0 + l1hy , where k1, l1 = 1,2, . . . The first

point of the circle lattice has coordinates x0+ hx
2 and y0+

√
3hx
2 . Other circle points
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Fig. 1.38 Hexagon binnning algorithm MVAhexaAl

are calculated like star points. Suppose an arbitrary point with coordinates x, y lies
in the intersection of two near neighbour rectangles. What’s the distance from this
point to one of two corners?
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Multivariate Random Variables



Chapter 2
A Short Excursion into Matrix Algebra

This chapter serves as a reminder of basic concepts of matrix algebra, which are
particularly useful in multivariate analysis. It also introduces the notations used in
this book for vectors and matrices. Eigenvalues and eigenvectors play an important
role in multivariate techniques. In Sections 2.2 and 2.3, we present the spectral de-
composition of matrices and consider the maximisation (minimisation) of quadratic
forms given some constraints.

In analyzing the multivariate normal distribution, partitioned matrices appear nat-
urally. Some of the basic algebraic properties are given in Section 2.5. These prop-
erties will be heavily used in Chapters 4 and 5.

The geometry of the multinormal and the geometric interpretation of the multi-
variate techniques (Part III) intensively uses the notion of angles between two vec-
tors, the projection of a point on a vector and the distances between two points.
These ideas are introduced in Section 2.6.

2.1 Elementary Operations

A matrix A is a system of numbers with n rows and p columns:

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 . . . . . . . . . a1p
... a22

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

an1 an2 . . . . . . . . . anp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We also write (aij ) for A and A(n × p) to indicate the numbers of rows and
columns. Vectors are matrices with one column and are denoted as x or x(p × 1).
Special matrices and vectors are defined in Table 2.1. Note that we use small letters
for scalars as well as for vectors.

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-642-17229-8_2, © Springer-Verlag Berlin Heidelberg 2012
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Table 2.1 Special matrices and vectors

Name Definition Notation Example

scalar p = n= 1 a 3

column vector p = 1 a

(
1

3

)

row vector n= 1 a	
(

1 3
)

vector of ones (1, . . . ,1︸ ︷︷ ︸
n

)	 1n

(
1

1

)

vector of zeros (0, . . . ,0︸ ︷︷ ︸
n

)	 0n

(
0

0

)

square matrix n= p A(p× p)
(

2 0

0 2

)

diagonal matrix aij = 0, i 
= j , n= p diag(aii )

(
1 0

0 2

)

identity matrix diag(1, . . . ,1︸ ︷︷ ︸
p

) Ip

(
1 0

0 1

)

unit matrix aij = 1, n= p 1n1	n

(
1 1

1 1

)

symmetric matrix aij = aji
(

1 2

2 3

)

null matrix aij = 0 0

(
0 0

0 0

)

upper triangular matrix aij = 0, i < j

⎛
⎜⎝

1 2 4

0 1 3

0 0 1

⎞
⎟⎠

idempotent matrix AA=A

⎛
⎜⎝

1 0 0

0 1
2

1
2

0 1
2

1
2

⎞
⎟⎠

orthogonal matrix A	A= I =AA	
⎛
⎝ 1√

2
1√
2

1√
2
− 1√

2

⎞
⎠

Matrix Operations

Elementary operations are summarised below:

A	 = (aji)
A+B = (aij + bij )
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A−B = (aij − bij )
c ·A= (c · aij )

A ·B =A(n× p) B(p×m)= C(n×m)=
⎛
⎝ p∑
j=1

aij bjk

⎞
⎠ .

Properties of Matrix Operations

A+B = B+A
A(B+ C)=AB+AC

A(BC)= (AB)C
(A	)	 =A
(AB)	 = B	A	

Matrix Characteristics

Rank

The rank, rank(A), of a matrix A(n × p) is defined as the maximum number of
linearly independent rows (columns). A set of k rows aj of A(n × p) are said to
be linearly independent if

∑k
j=1 cj aj = 0p implies cj = 0,∀j , where c1, . . . , ck are

scalars. In other words no rows in this set can be expressed as a linear combination
of the (k − 1) remaining rows.

Trace

The trace of a matrix is the sum of its diagonal elements

tr(A)=
p∑
i=1

aii .

Determinant

The determinant is an important concept of matrix algebra. For a square matrix A,
it is defined as:

det(A)= |A| =
∑

(−1)|τ | a1τ(1) . . . apτ(p),
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the summation is over all permutations τ of {1,2, . . . , p}, and |τ | = 0 if the permu-
tation can be written as a product of an even number of transpositions and |τ | = 1
otherwise.

Example 2.1 In the case of p = 2, A= ( a11 a12
a21 a22

)
and we can permute the digits “1”

and “2” once or not at all. So,

|A| = a11 a22 − a12 a21.

Transpose

For A(n× p) and B(p× n)
(A	)	 =A, and (AB)	 = B	A	.

Inverse

If |A| 
= 0 and A(p× p), then the inverse A−1 exists:

A A−1 =A−1 A= Ip.

For small matrices, the inverse of A= (aij ) can be calculated as

A−1 = C
|A| ,

where C = (cij ) is the adjoint matrix of A. The elements cji of C	 are the co-factors
of A:

cji = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1(j−1) a1(j+1) . . . a1p
...

a(i−1)1 . . . a(i−1)(j−1) a(i−1)(j+1) . . . a(i−1)p
a(i+1)1 . . . a(i+1)(j−1) a(i+1)(j+1) . . . a(i+1)p
...

ap1 . . . ap(j−1) ap(j+1) . . . app

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

G-inverse

A more general concept is the G-inverse (Generalised Inverse) A− which satisfies
the following:

A A−A=A.
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Later we will see that there may be more than one G-inverse.

Example 2.2 The generalised inverse can also be calculated for singular matrices.
We have: (

1 0
0 0

)(
1 0
0 0

)(
1 0
0 0

)
=

(
1 0
0 0

)
,

which means that the generalised inverse of A= ( 1 0
0 0

)
is A− = ( 1 0

0 0

)
even though

the inverse matrix of A does not exist in this case.

Eigenvalues, Eigenvectors

Consider a (p× p) matrix A. If there a scalar λ and a vector γ exists such as

Aγ = λγ, (2.1)

then we call

λ an eigenvalue
γ an eigenvector.

It can be proven that an eigenvalue λ is a root of the p-th order polynomial
|A − λIp| = 0. Therefore, there are up to p eigenvalues λ1, λ2, . . . , λp of A. For
each eigenvalue λj , a corresponding eigenvector γj exists given by equation (2.1).
Suppose the matrix A has the eigenvalues λ1, . . . , λp . Let �= diag(λ1, . . . , λp).

The determinant |A| and the trace tr(A) can be rewritten in terms of the eigen-
values:

|A| = |�| =
p∏
j=1

λj (2.2)

tr(A)= tr(�)=
p∑
j=1

λj . (2.3)

An idempotent matrix A (see the definition in Table 2.1) can only have eigenvalues
in {0,1} therefore tr(A)= rank(A)= number of eigenvalues 
= 0.

Example 2.3 Let us consider the matrix A =
(

1 0 0
0 1

2
1
2

0 1
2

1
2

)
. It is easy to verify that

AA=A which implies that the matrix A is idempotent.
We know that the eigenvalues of an idempotent matrix are equal to 0 or 1. In this

case, the eigenvalues of A are λ1 = 1, λ2 = 1, and λ3 = 0 since

⎛
⎝1 0 0

0 1
2

1
2

0 1
2

1
2

⎞
⎠

⎛
⎝1

0
0

⎞
⎠= 1

⎛
⎝1

0
0

⎞
⎠ ,

⎛
⎝1 0 0

0 1
2

1
2

0 1
2

1
2

⎞
⎠

⎛
⎜⎝

0√
2

2√
2

2

⎞
⎟⎠= 1

⎛
⎜⎝

0√
2

2√
2

2

⎞
⎟⎠ ,
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and ⎛
⎝1 0 0

0 1
2

1
2

0 1
2

1
2

⎞
⎠

⎛
⎜⎝

0√
2

2

−
√

2
2

⎞
⎟⎠= 0

⎛
⎜⎝

0√
2

2

−
√

2
2

⎞
⎟⎠ .

Using formulas (2.2) and (2.3), we can calculate the trace and the determinant
of A from the eigenvalues: tr(A) = λ1 + λ2 + λ3 = 2, |A| = λ1λ2λ3 = 0, and
rank(A)= 2.

Properties of Matrix Characteristics

A(n× n), B(n× n), c ∈R

tr(A+B)= trA+ trB (2.4)

tr(cA)= c trA (2.5)

|cA| = cn|A| (2.6)

|AB| = |BA| = |A||B| (2.7)

A(n× p), B(p× n)
tr(A·B)= tr(B·A) (2.8)

rank(A)≤min(n,p)

rank(A)≥ 0 (2.9)

rank(A)= rank(A	) (2.10)

rank(A	A)= rank(A) (2.11)

rank(A+B)≤ rank(A)+ rank(B) (2.12)

rank(AB)≤min{rank(A), rank(B)} (2.13)

A(n× p), B(p× q), C(q × n)
tr(ABC)= tr(BCA)

= tr(CAB) (2.14)

rank(ABC)= rank(B) for nonsingular A,C (2.15)

A(p× p)
|A−1| = |A|−1 (2.16)

rank(A)= p if and only if A is nonsingular. (2.17)
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Summary
↪→ The determinant |A| is the product of the eigenvalues of A.

↪→ The inverse of a matrix A exists if |A| 
= 0.

↪→ The trace tr(A) is the sum of the eigenvalues of A.

↪→ The sum of the traces of two matrices equals the trace of the sum
of the two matrices.

↪→ The trace tr(AB) equals tr(BA).

↪→ The rank(A) is the maximal number of linearly independent rows
(columns) of A.

2.2 Spectral Decompositions

The computation of eigenvalues and eigenvectors is an important issue in the analy-
sis of matrices. The spectral decomposition or Jordan decomposition links the struc-
ture of a matrix to the eigenvalues and the eigenvectors.

Theorem 2.1 (Jordan Decomposition) Each symmetric matrix A(p × p) can be
written as

A= � � �	 =
p∑
j=1

λjγj γ
	
j

(2.18)

where

�= diag(λ1, . . . , λp)

and where

� = (γ1 , γ2, . . . , γp )

is an orthogonal matrix consisting of the eigenvectors γ
j

of A.

Example 2.4 Suppose that A= ( 1 2
2 3

)
. The eigenvalues are found by solving |A−

λI| = 0. This is equivalent to
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2 3− λ

∣∣∣∣= (1− λ)(3− λ)− 4= 0.

Hence, the eigenvalues are λ1 = 2 + √5 and λ2 = 2 − √5. The eigenvectors are
γ1 = (0.5257,0.8506)	 and γ2 = (0.8506,−0.5257)	. They are orthogonal since
γ	1 γ2 = 0.

Using spectral decomposition, we can define powers of a matrix A(p×p). Sup-
pose A is a symmetric matrix with positive eigenvalues. Then by Theorem 2.1

A= ���	,
and we define for some α ∈R

Aα = ��α�	, (2.19)

where �α = diag(λα1 , . . . , λ
α
p). In particular, we can easily calculate the inverse of

the matrix A. Suppose that the eigenvalues of A are positive. Then with α = −1,
we obtain the inverse of A from

A−1 = ��−1�	. (2.20)

Another interesting decomposition which is later used is given in the following
theorem.

Theorem 2.2 (Singular Value Decomposition) Each matrix A(n× p) with rank r
can be decomposed as

A= � � �	,

where �(n × r) and �(p × r). Both � and � are column orthonormal, i.e.,
�	� = �	� = Ir and � = diag(λ1/2

1 , . . . , λ
1/2
r ), λj > 0. The values λ1, . . . , λr

are the non-zero eigenvalues of the matrices AA	 and A	A. � and � consist of
the corresponding r eigenvectors of these matrices.

This is obviously a generalisation of Theorem 2.1 (Jordan decomposition). With
Theorem 2.2, we can find a G-inverse A− of A. Indeed, define A− =� �−1 �	.
Then A A− A= � � �	 =A. Note that the G-inverse is not unique.

Example 2.5 In Example 2.2, we showed that the generalised inverse of A= ( 1 0
0 0

)
is A−

( 1 0
0 0

)
. The following also holds(

1 0
0 0

)(
1 0
0 8

)(
1 0
0 0

)
=

(
1 0
0 0

)

which means that the matrix
( 1 0

0 8

)
is also a generalised inverse of A.
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Summary
↪→ The Jordan decomposition gives a representation of a symmetric

matrix in terms of eigenvalues and eigenvectors.
↪→ The eigenvectors belonging to the largest eigenvalues indicate the

“main direction” of the data.
↪→ The Jordan decomposition allows one to easily compute the power

of a symmetric matrix A: Aα = ��α�	.
↪→ The singular value decomposition (SVD) is a generalisation of the

Jordan decomposition to non-quadratic matrices.

2.3 Quadratic Forms

A quadratic form Q(x) is built from a symmetric matrix A(p × p) and a vector
x ∈R

p:

Q(x)= x	 A x =
p∑
i=1

p∑
j=1

aij xixj . (2.21)

Definiteness of Quadratic Forms and Matrices

Q(x) > 0 for all x 
= 0 positive definite
Q(x)≥ 0 for all x 
= 0 positive semidefinite

A matrix A is called positive definite (semidefinite) if the corresponding quadratic
form Q(.) is positive definite (semidefinite). We write A> 0 (≥ 0).

Quadratic forms can always be diagonalized, as the following result shows.

Theorem 2.3 If A is symmetric and Q(x)= x	Ax is the corresponding quadratic
form, then there exists a transformation x �→ �	x = y such that

x	 A x =
p∑
i=1

λiy
2
i ,

where λi are the eigenvalues of A.

Proof A = � � �	. By Theorem 2.1 and y = �	α we have that x	Ax =
x	���	x = y	�y =∑p

i=1 λiy
2
i . �
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Positive definiteness of quadratic forms can be deduced from positive eigenval-
ues.

Theorem 2.4 A> 0 if and only if all λi > 0, i = 1, . . . , p.

Proof 0< λ1y
2
1 + · · · + λpy2

p = x	Ax for all x 
= 0 by Theorem 2.3. �

Corollary 2.1 If A> 0, then A−1 exists and |A|> 0.

Example 2.6 The quadratic form Q(x) = x2
1 + x2

2 corresponds to the matrix A =( 1 0
0 1

)
with eigenvalues λ1 = λ2 = 1 and is thus positive definite. The quadratic form

Q(x) = (x1 − x2)
2 corresponds to the matrix A = ( 1 −1

−1 1

)
with eigenvalues λ1 =

2, λ2 = 0 and is positive semidefinite. The quadratic form Q(x) = x2
1 − x2

2 with
eigenvalues λ1 = 1, λ2 =−1 is indefinite.

In the statistical analysis of multivariate data, we are interested in maximising
quadratic forms given some constraints.

Theorem 2.5 If A and B are symmetric and B > 0, then the maximum of x
	Ax
x	Bx is

given by the largest eigenvalue of B−1A. More generally,

max
x

x	Ax
x	Bx = λ1 ≥ λ2 ≥ · · · ≥ λp =min

x

x	Ax
x	Bx ,

where λ1, . . . , λp denote the eigenvalues of B−1A. The vector which maximises

(minimises) x	Ax
x	Bx is the eigenvector of B−1A which corresponds to the largest

(smallest) eigenvalue of B−1A. If x	Bx = 1, we get

max
x
x	Ax = λ1 ≥ λ2 ≥ · · · ≥ λp =min

x
x	Ax.

Proof By definition, B1/2 = �B �1/2
B �	B is symmetric. Then x	Bx = ‖x	B1/2‖2 =

‖B1/2x‖2. Set y = B1/2x‖B1/2x‖ , then

max
x

x	Ax
x	Bx = max

{y:y	y=1}
y	B−1/2 AB−1/2y. (2.22)

From Theorem 2.1, let

B−1/2 A B−1/2 = � � �	

be the spectral decomposition of B−1/2 A B−1/2. Set

z= �	y, then z	z= y	� �	 y = y	y.
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Thus (2.22) is equivalent to

max
{z:z	z=1}

z	 � z= max
{z:z	z=1}

p∑
i=1

λiz
2
i .

But

max
z

∑
λiz

2
i ≤ λ1 max

z

∑
z2
i︸ ︷︷ ︸

=1

= λ1.

The maximum is thus obtained by z= (1,0, . . . ,0)	, i.e.,

y = γ1, hence x = B−1/2γ1 .

Since B−1A and B−1/2 A B−1/2 have the same eigenvalues, the proof is complete.
To maximise (minimise) x	Ax under x	Bx = 1, below is another proof using

the Lagrange method.

max
x
x	Ax =max

x
[x	Ax − λ(x	Bx − 1)].

The first derivative of it in respect to x, is equal to 0:

2Ax − 2λBx = 0,

so

B−1Ax = λx.
By the definition of eigenvector and eigenvalue, our maximiser x∗ is B−1A’s eigen-
vector corresponding to eigenvalue λ. So

max
{x:x	Bx=1}

x	Ax = max
{x:x	Bx=1}

x	BB−1Ax = max
{x:x	Bx=1}

x	Bλx =maxλ

which is just the maximum eigenvalue of B−1A, and we choose the corresponding
eigenvector as our maximiser x∗. �

Example 2.7 Consider the following matrices

A=
(

1 2
2 3

)
and B =

(
1 0
0 1

)
.

We calculate

B−1A=
(

1 2
2 3

)
.

The biggest eigenvalue of the matrix B−1A is 2+√5. This means that the maximum
of x	Ax under the constraint x	Bx = 1 is 2+√5.

Notice that the constraint x	Bx = 1 corresponds, with our choice of B, to the
points which lie on the unit circle x2

1 + x2
2 = 1.
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Summary
↪→ A quadratic form can be described by a symmetric matrix A.

↪→ Quadratic forms can always be diagonalised.

↪→ Positive definiteness of a quadratic form is equivalent to positive-
ness of the eigenvalues of the matrix A.

↪→ The maximum and minimum of a quadratic form given some con-
straints can be expressed in terms of eigenvalues.

2.4 Derivatives

For later sections of this book, it will be useful to introduce matrix notation for
derivatives of a scalar function of a vector x with respect to x. Consider f : Rp→
R and a (p × 1) vector x, then ∂f (x)

∂x
is the column vector of partial derivatives

{ ∂f (x)
∂xj

}, j = 1, . . . , p and ∂f (x)

∂x	 is the row vector of the same derivative ( ∂f (x)
∂x

is
called the gradient of f ).

We can also introduce second order derivatives: ∂2f (x)

∂x∂x	 is the (p × p) matrix of

elements ∂2f (x)
∂xi∂xj

, i = 1, . . . , p and j = 1, . . . , p. ( ∂
2f (x)

∂x∂x	 is called the Hessian of f .)

Suppose that a is a (p× 1) vector and that A=A	 is a (p× p) matrix. Then

∂a	x
∂x

= ∂x	a
∂x

= a, (2.23)

∂x	Ax
∂x

= 2Ax. (2.24)

The Hessian of the quadratic form Q(x)= x	Ax is:

∂2x	Ax
∂x∂x	

= 2A. (2.25)

Example 2.8 Consider the matrix

A=
(

1 2
2 3

)
.

From formulas (2.24) and (2.25) it immediately follows that the gradient of Q(x)=
x	Ax is

∂x	Ax
∂x

= 2Ax = 2

(
1 2
2 3

)
x =

(
2x 4x
4x 6x

)



2.5 Partitioned Matrices 61

and the Hessian is

∂2x	Ax
∂x∂x	

= 2A= 2

(
1 2
2 3

)
=

(
2 4
4 6

)
.

2.5 Partitioned Matrices

Very often we will have to consider certain groups of rows and columns of a matrix
A(n× p). In the case of two groups, we have

A=
(
A11 A12
A21 A22

)

where Aij (ni × pj ), i, j = 1,2, n1 + n2 = n and p1 + p2 = p.
If B(n× p) is partitioned accordingly, we have:

A+B =
(
A11 +B11 A12 +B12
A21 +B21 A22 +B22

)

B	 =
(
B	11 B	21

B	12 B	22

)

AB	 =
(
A11B	11 +A12B	12 A11B	21 +A12B	22

A21B	11 +A22B	12 A21B	21 +A22B	22

)
.

An important particular case is the square matrix A(p × p), partitioned in such a
way that A11 and A22 are both square matrices (i.e., nj = pj , j = 1,2). It can be
verified that when A is non-singular (AA−1 = Ip):

A−1 =
(
A11 A12

A21 A22

)
(2.26)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A11 = (A11 −A12A−1
22 A21)

−1 def= (A11·2)−1

A12 =−(A11·2)−1A12A−1
22

A21 =−A−1
22 A21(A11·2)−1

A22 =A−1
22 +A−1

22 A21(A11·2)−1A12A−1
22 .

An alternative expression can be obtained by reversing the positions of A11 and A22
in the original matrix.

The following results will be useful if A11 is non-singular:

|A| = |A11||A22 −A21A−1
11 A12| = |A11||A22·1|. (2.27)

If A22 is non-singular, we have that:

|A| = |A22||A11 −A12A−1
22 A21| = |A22||A11·2|. (2.28)
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A useful formula is derived from the alternative expressions for the inverse and
the determinant. For instance let

B =
(

1 b	
a A

)

where a and b are (p× 1) vectors and A is non-singular. We then have:

|B| = |A− ab	| = |A||1− b	A−1a| (2.29)

and equating the two expressions for B22, we obtain the following:

(A− ab	)−1 =A−1 + A−1ab	A−1

1− b	A−1a
. (2.30)

Example 2.9 Let’s consider the matrix

A=
(

1 2
2 2

)
.

We can use formula (2.26) to calculate the inverse of a partitioned matrix, i.e., A11 =
−1,A12 =A21 = 1,A22 =−1/2. The inverse of A is

A−1 =
(−1 1

1 −0.5

)
.

It is also easy to calculate the determinant of A:

|A| = |1||2− 4| = −2.

Let A(n × p) and B(p × n) be any two matrices and suppose that n ≥ p.
From (2.27) and (2.28) we can conclude that∣∣∣∣−λIn −A

B Ip

∣∣∣∣= (−λ)n−p|BA− λIp| = |AB− λIn|. (2.31)

Since both determinants on the right-hand side of (2.31) are polynomials in λ, we
find that the n eigenvalues of AB yield the p eigenvalues of BA plus the eigenvalue
0, n− p times.

The relationship between the eigenvectors is described in the next theorem.

Theorem 2.6 For A(n × p) and B(p × n), the non-zero eigenvalues of AB and
BA are the same and have the same multiplicity. If x is an eigenvector of AB for an
eigenvalue λ 
= 0, then y = Bx is an eigenvector of BA.

Corollary 2.2 For A(n× p), B(q × n), a(p× 1), and b(q × 1) we have

rank(Aab	B)≤ 1.

The non-zero eigenvalue, if it exists, equals b	BAa (with eigenvector Aa).
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Proof Theorem 2.6 asserts that the eigenvalues of Aab	B are the same as those
of b	BAa. Note that the matrix b	BAa is a scalar and hence it is its own eigen-
value λ1.

Applying Aab	B to Aa yields

(Aab	B)(Aa)= (Aa)(b	BAa)= λ1Aa. �

2.6 Geometrical Aspects

Distance

Let x, y ∈R
p . A distance d is defined as a function

d :R2p→R+ which fulfills

⎧⎨
⎩
d(x, y) > 0 ∀x 
= y
d(x, y)= 0 if and only if x = y
d(x, y)≤ d(x, z)+ d(z, y) ∀x, y, z.

A Euclidean distance d between two points x and y is defined as

d2(x, y)= (x − y)TA(x − y) (2.32)

where A is a positive definite matrix (A> 0). A is called a metric.

Example 2.10 A particular case is when A= Ip , i.e.,

d2(x, y)=
p∑
i=1

(xi − yi)2. (2.33)

Figure 2.1 illustrates this definition for p = 2.

Note that the sets Ed = {x ∈R
p | (x−x0)

	(x−x0)= d2} , i.e., the spheres with
radius d and centre x0, are the Euclidean Ip iso-distance curves from the point x0
(see Figure 2.2).

The more general distance (2.32) with a positive definite matrix A (A> 0) leads
to the iso-distance curves

Ed = {x ∈R
p | (x − x0)

	A(x − x0)= d2}, (2.34)

i.e., ellipsoids with centre x0, matrix A and constant d (see Figure 2.3).

Fig. 2.1 Distance d
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Fig. 2.2 Iso-distance sphere

Fig. 2.3 Iso-distance
ellipsoid

Let γ1, γ2, . . . , γp be the orthonormal eigenvectors of A corresponding to the
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp . The resulting observations are given in the next
theorem.

Theorem 2.7

(i) The principal axes of Ed are in the direction of γi; i = 1, . . . , p.

(ii) The half-lengths of the axes are
√
d2

λi
; i = 1, . . . , p.

(iii) The rectangle surrounding the ellipsoid Ed is defined by the following inequal-
ities:

x0i −
√
d2aii ≤ xi ≤ x0i +

√
d2aii , i = 1, . . . , p,

where aii is the (i, i) element of A−1. By the rectangle surrounding the el-
lipsoid Ed we mean the rectangle whose sides are parallel to the coordinate
axis.

It is easy to find the coordinates of the tangency points between the ellipsoid and
its surrounding rectangle parallel to the coordinate axes. Let us find the coordinates
of the tangency point that are in the direction of the j -th coordinate axis (positive
direction).

For ease of notation, we suppose the ellipsoid is centred around the origin (x0 =
0). If not, the rectangle will be shifted by the value of x0.

The coordinate of the tangency point is given by the solution to the following
problem:

x = arg max
x	Ax=d2

e	j x (2.35)
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where e	j is the j -th column of the identity matrix Ip . The coordinate of the tan-
gency point in the negative direction would correspond to the solution of the min
problem: by symmetry, it is the opposite value of the former.

The solution is computed via the Lagrangian L= e	j x − λ(x	Ax − d2) which
by (2.23) leads to the following system of equations:

∂L

∂x
= ej − 2λAx = 0 (2.36)

∂L

∂λ
= xTAx − d2 = 0. (2.37)

This gives x = 1
2λA

−1ej , or componentwise

xi = 1

2λ
aij , i = 1, . . . , p (2.38)

where aij denotes the (i, j)-th element of A−1.
Premultiplying (2.36) by x	, we have from (2.37):

xj = 2λd2.

Comparing this to the value obtained by (2.38), for i = j we obtain 2λ =
√
ajj

d2 .

We choose the positive value of the square root because we are maximising e	j x. A
minimum would correspond to the negative value. Finally, we have the coordinates
of the tangency point between the ellipsoid and its surrounding rectangle in the
positive direction of the j -th axis:

xi =
√
d2

ajj
aij , i = 1, . . . , p. (2.39)

The particular case where i = j provides statement (iii) in Theorem 2.7.

Remark: Usefulness of Theorem 2.7

Theorem 2.7 will prove to be particularly useful in many subsequent chapters. First,
it provides a helpful tool for graphing an ellipse in two dimensions. Indeed, knowing
the slope of the principal axes of the ellipse, their half-lengths and drawing the
rectangle inscribing the ellipse, allows one to quickly draw a rough picture of the
shape of the ellipse.

In Chapter 7, it is shown that the confidence region for the vectorμ of a multivari-
ate normal population is given by a particular ellipsoid whose parameters depend on
sample characteristics. The rectangle inscribing the ellipsoid (which is much easier
to obtain) will provide the simultaneous confidence intervals for all of the compo-
nents in μ.

In addition it will be shown that the contour surfaces of the multivariate normal
density are provided by ellipsoids whose parameters depend on the mean vector
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and on the covariance matrix. We will see that the tangency points between the
contour ellipsoids and the surrounding rectangle are determined by regressing one
component on the (p − 1) other components. For instance, in the direction of the
j -th axis, the tangency points are given by the intersections of the ellipsoid contours
with the regression line of the vector of (p − 1) variables (all components except
the j -th) on the j -th component.

Norm of a Vector

Consider a vector x ∈ R
p . The norm or length of x (with respect to the metric Ip)

is defined as

‖x‖ = d(0, x)=
√
x	x.

If ‖x‖ = 1, x is called a unit vector. A more general norm can be defined with
respect to the metric A:

‖x‖A =
√
x	Ax.

Angle Between Two Vectors

Consider two vectors x and y ∈R
p . The angle θ between x and y is defined by the

cosine of θ :

cos θ = x	y
‖x‖ ‖y‖ , (2.40)

see Figure 2.4. Indeed for p = 2, x = ( x1
x2

)
and y = ( y1

y2

)
, we have

‖x‖ cos θ1 = x1; ‖y‖ cos θ2 = y1

‖x‖ sin θ1 = x2; ‖y‖ sin θ2 = y2,
(2.41)

Fig. 2.4 Angle between
vectors
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Fig. 2.5 Projection

therefore,

cos θ = cos θ1 cos θ2 + sin θ1 sin θ2 = x1y1 + x2y2

‖x‖ ‖y‖ = x	y
‖x‖ ‖y‖ .

Remark 2.1 If x	y = 0, then the angle θ is equal to π
2 . From trigonometry, we

know that the cosine of θ equals the length of the base of a triangle (||px ||) divided
by the length of the hypotenuse (||x||). Hence, we have

||px || = ||x||| cos θ | = |x
	y|
‖y‖ , (2.42)

where px is the projection of x on y (which is defined below). It is the coordinate
of x on the y vector, see Figure 2.5.

The angle can also be defined with respect to a general metric A

cos θ = x	Ay
‖x‖A ‖y‖A . (2.43)

If cos θ = 0 then x is orthogonal to y with respect to the metric A.

Example 2.11 Assume that there are two centred (i.e., zero mean) data vectors. The
cosine of the angle between them is equal to their correlation (defined in (3.8)).
Indeed for x and y with x = y = 0 we have

rXY =
∑
xiyi√∑
x2
i

∑
y2
i

= cos θ

according to formula (2.40).

Rotations

When we consider a point x ∈R
p , we generally use a p-coordinate system to obtain

its geometric representation, like in Figure 2.1 for instance. There will be situations
in multivariate techniques where we will want to rotate this system of coordinates
by the angle θ .
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Consider for example the point P with coordinates x = (x1, x2)
	 in R

2 with
respect to a given set of orthogonal axes. Let � be a (2 × 2) orthogonal matrix
where

� =
(

cos θ sin θ
− sin θ cos θ

)
. (2.44)

If the axes are rotated about the origin through an angle θ in a clockwise direction,
the new coordinates of P will be given by the vector y

y = � x, (2.45)

and a rotation through the same angle in a anti-clockwise direction gives the new
coordinates as

y = �	 x. (2.46)

More generally, premultiplying a vector x by an orthogonal matrix � geometri-
cally corresponds to a rotation of the system of axes, so that the first new axis is
determined by the first row of �. This geometric point of view will be exploited in
Chapters 10 and 11.

Column Space and Null Space of a Matrix

Define for X (n× p)

Im(X ) def= C(X )= {x ∈R
n | ∃a ∈R

p so that Xa = x},
the space generated by the columns of X or the column space of X . Note that
C(X )⊆R

n and dim{C(X )} = rank(X )= r ≤min(n,p).

Ker(X ) def= N(X )= {y ∈R
p |Xy = 0}

is the null space of X . Note that N(X )⊆R
p and that dim{N(X )} = p− r .

Remark 2.2 N(X	) is the orthogonal complement of C(X ) in R
n, i.e., given a

vector b ∈R
n it will hold that x	b= 0 for all x ∈ C(X ), if and only if b ∈N(X	).

Example 2.12 Let X =
(

2 3 5
4 6 7
6 8 6
8 2 4

)
. It is easy to show (e.g. by calculating the deter-

minant of X ) that rank(X )= 3. Hence, the columns space of X is C(X )=R
3. The

null space of X contains only the zero vector (0,0,0)	 and its dimension is equal
to rank(X )− 3= 0.

For X =
(

2 3 1
4 6 2
6 8 3
8 2 4

)
, the third column is a multiple of the first one and the matrix

X cannot be of full rank. Noticing that the first two columns of X are independent,
we see that rank(X )= 2. In this case, the dimension of the columns space is 2 and
the dimension of the null space is 1.
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Projection Matrix

A matrix P(n× n) is called an (orthogonal) projection matrix in R
n if and only if

P = P	 = P2 (P is idempotent). Let b ∈ R
n. Then a = Pb is the projection of b

on C(P).

Projection on C(X )

Consider X (n× p) and let

P =X (X	X )−1X	 (2.47)

and Q= In −P . It’s easy to check that P and Q are idempotent and that

PX =X and QX = 0. (2.48)

Since the columns of X are projected onto themselves, the projection matrix P
projects any vector b ∈ R

n onto C(X ). Similarly, the projection matrix Q projects
any vector b ∈R

n onto the orthogonal complement of C(X ).

Theorem 2.8 Let P be the projection (2.47) and Q its orthogonal complement.
Then:

(i) x =Pb entails x ∈ C(X ),
(ii) y =Qb means that y	x = 0 ∀x ∈ C(X ).

Proof (i) holds, since x = X (X	X )−1X	b = Xa, where a = (X	X )−1X	b ∈
R
p .
(ii) follows from y = b − Pb and x = Xa. Hence y	x = b	Xa −

b	X (X	X )−1X	Xa = 0. �

Remark 2.3 Let x, y ∈ R
n and consider px ∈ R

n, the projection of x on y (see
Figure 2.5). With X = y we have from (2.47)

px = y(y	y)−1y	x = y	x
‖y‖2

y (2.49)

and we can easily verify that

‖px‖ =
√
p	x px =

|y	x|
‖y‖ .

See again Remark 2.1.
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Summary
↪→ A distance between two p-dimensional points x and y is a quadratic

form (x−y)	A(x−y) in the vectors of differences (x−y). A dis-
tance defines the norm of a vector.

↪→ Iso-distance curves of a point x0 are all those points that have the
same distance from x0. Iso-distance curves are ellipsoids whose
principal axes are determined by the direction of the eigenvectors
of A. The half-length of principal axes is proportional to the inverse
of the roots of the eigenvalues of A.

↪→ The angle between two vectors x and y is given by cos θ =
x	Ay

‖x‖A ‖y‖A w.r.t. the metric A.

↪→ For the Euclidean distance with A= I the correlation between two
centred data vectors x and y is given by the cosine of the angle
between them, i.e., cos θ = rXY .

↪→ The projection P =X (X	X )−1X	 is the projection onto the col-
umn space C(X ) of X .

↪→ The projection of x ∈R
n on y ∈R

n is given by px = y	x
‖y‖2 y.

2.7 Exercises

Exercise 2.1 Compute the determinant for a (3× 3) matrix.

Exercise 2.2 Suppose that |A| = 0. Is it possible that all eigenvalues of A are posi-
tive?

Exercise 2.3 Suppose that all eigenvalues of some (square) matrix A are different
from zero. Does the inverse A−1 of A exist?

Exercise 2.4 Write a program that calculates the Jordan decomposition of the ma-
trix

A=
⎛
⎝1 2 3

2 1 2
3 2 1

⎞
⎠ .

Check Theorem 2.1 numerically.

Exercise 2.5 Prove (2.23), (2.24) and (2.25).

Exercise 2.6 Show that a projection matrix only has eigenvalues in {0,1}.
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Exercise 2.7 Draw some iso-distance ellipsoids for the metric A=�−1 of Exam-
ple 3.13.

Exercise 2.8 Find a formula for |A + aa	| and for (A + aa	)−1. (Hint: use the
inverse partitioned matrix with B = (

1 −a	
a A

)
.)

Exercise 2.9 Prove the Binomial inverse theorem for two non-singular matrices
A(p×p) and B(p×p): (A+B)−1 =A−1−A−1(A−1+B−1)−1A−1. (Hint: use

(2.26) with C =
( A Ip

−Ip B−1

)
.)



Chapter 3
Moving to Higher Dimensions

We have seen in the previous chapters how very simple graphical devices can help in
understanding the structure and dependency of data. The graphical tools were based
on either univariate (bivariate) data representations or on “slick” transformations
of multivariate information perceivable by the human eye. Most of the tools are
extremely useful in a modelling step, but unfortunately, do not give the full picture
of the data set. One reason for this is that the graphical tools presented capture
only certain dimensions of the data and do not necessarily concentrate on those
dimensions or sub-parts of the data under analysis that carry the maximum structural
information. In Part III of this book, powerful tools for reducing the dimension of
a data set will be presented. In this chapter, as a starting point, simple and basic
tools are used to describe dependency. They are constructed from elementary facts
of probability theory and introductory statistics (for example, the covariance and
correlation between two variables).

Sections 3.1 and 3.2 show how to handle these concepts in a multivariate setup
and how a simple test on correlation between two variables can be derived. Since lin-
ear relationships are involved in these measures, Section 3.4 presents the simple lin-
ear model for two variables and recalls the basic t-test for the slope. In Section 3.5,
a simple example of one-factorial analysis of variance introduces the notations for
the well known F -test.

Due to the power of matrix notation, all of this can easily be extended to a more
general multivariate setup. Section 3.3 shows how matrix operations can be used to
define summary statistics of a data set and for obtaining the empirical moments of
linear transformations of the data. These results will prove to be very useful in most
of the chapters in Part III.

Finally, matrix notation allows us to introduce the flexible multiple linear model,
where more general relationships among variables can be analysed. In Section 3.6,
the least squares adjustment of the model and the usual test statistics are presented
with their geometric interpretation. Using these notations, the ANOVA model is just
a particular case of the multiple linear model.

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-642-17229-8_3, © Springer-Verlag Berlin Heidelberg 2012
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3.1 Covariance

Covariance is a measure of dependency between random variables. Given two (ran-
dom) variables X and Y the (theoretical) covariance is defined by:

σXY = Cov(X,Y )= E(XY)− (EX)(EY). (3.1)

The precise definition of expected values is given in Chapter 4. If X and Y are
independent of each other, the covariance Cov(X,Y ) is necessarily equal to zero,
see Theorem 3.1. The converse is not true. The covariance of X with itself is the
variance:

σXX = Var(X)= Cov(X,X).

If the variable X is p-dimensional multivariate, e.g., X =
⎛
⎝ X1

...
Xp

⎞
⎠, then the theoreti-

cal covariances among all the elements are put into matrix form, i.e., the covariance
matrix:

� =
⎛
⎜⎝
σX1X1 . . . σX1Xp
...

. . .
...

σXpX1 . . . σXpXp

⎞
⎟⎠ .

Properties of covariance matrices will be detailed in Chapter 4. Empirical versions
of these quantities are:

sXY = 1

n

n∑
i=1

(xi − x)(yi − y) (3.2)

sXX = 1

n

n∑
i=1

(xi − x)2. (3.3)

For small n, say n≤ 20, we should replace the factor 1
n

in (3.2) and (3.3) by 1
n−1 in

order to correct for a small bias. For a p-dimensional random variable, one obtains
the empirical covariance matrix (see Section 3.3 for properties and details)

S =
⎛
⎜⎝
sX1X1 . . . sX1Xp
...

. . .
...

sXpX1 . . . sXpXp

⎞
⎟⎠ .

For a scatterplot of two variables the covariances measure “how close the scatter
is to a line”. Mathematical details follow but it should already be understood here
that in this sense covariance measures only “linear dependence”.
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Example 3.1 If X is the entire bank data set, one obtains the covariance matrix S
as indicated below:

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.14 0.03 0.02 −0.10 −0.01 0.08
0.03 0.12 0.10 0.21 0.10 −0.21
0.02 0.10 0.16 0.28 0.12 −0.24
−0.10 0.21 0.28 2.07 0.16 −1.03
−0.01 0.10 0.12 0.16 0.64 −0.54

0.08 −0.21 −0.24 −1.03 −0.54 1.32

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.4)

The empirical covariance between X4 and X5, i.e., sX4X5 , is found in row 4 and
column 5. The value is sX4X5 = 0.16. Is it obvious that this value is positive? In
Exercise 3.1 we will discuss this question further.

If Xf denotes the counterfeit bank notes, we obtain:

Sf =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.123 0.031 0.023 −0.099 0.019 0.011
0.031 0.064 0.046 −0.024 −0.012 −0.005
0.024 0.046 0.088 −0.018 0.000 0.034
−0.099 −0.024 −0.018 1.268 −0.485 0.236

0.019 −0.012 0.000 −0.485 0.400 −0.022
0.011 −0.005 0.034 0.236 −0.022 0.308

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.5)

For the genuine Xg , we have:

Sg =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.149 0.057 0.057 0.056 0.014 0.005
0.057 0.131 0.085 0.056 0.048 −0.043
0.057 0.085 0.125 0.058 0.030 −0.024
0.056 0.056 0.058 0.409 −0.261 −0.000
0.014 0.049 0.030 −0.261 0.417 −0.074
0.005 −0.043 −0.024 −0.000 −0.074 0.198

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.6)

Note that the covariance between X4 (distance of the frame to the lower border)
and X5 (distance of the frame to the upper border) is negative in both (3.5) and
(3.6). Why would this happen? In Exercise 3.2 we will discuss this question in more
detail.

At first sight, the matrices Sf and Sg look different, but they create almost the
same scatterplots (see the discussion in Section 1.4). Similarly, the common prin-
cipal component analysis in Chapter 10 suggests a joint analysis of the covariance
structure as in Flury and Riedwyl (1988).

Scatterplots with point clouds that are “upward-sloping”, like the one in the up-
per left of Figure 1.14, show variables with positive covariance. Scatterplots with
“downward-sloping” structure have negative covariance. In Figure 3.1 we show the
scatterplot of X4 vs. X5 of the entire bank data set. The point cloud is upward-
sloping. However, the two sub-clouds of counterfeit and genuine bank notes are
downward-sloping.

Example 3.2 A textile shop manager is studying the sales of “classic blue” pullovers
over 10 different periods. He observes the number of pullovers sold (X1), variation
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Fig. 3.1 Scatterplot of
variables X4 vs. X5 of the

entire bank data set
MVAscabank45

in price (X2, in EUR), the advertisement costs in local newspapers (X3, in EUR)
and the presence of a sales assistant (X4, in hours per period). Over the periods, he
observes the following data matrix:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

230 125 200 109
181 99 55 107
165 97 105 98
150 115 85 71

97 120 0 82
192 100 150 103
181 80 85 111
189 90 120 93
172 95 110 86
170 125 130 78

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

He is convinced that the price must have a large influence on the number of pullovers
sold. So he makes a scatterplot of X2 vs. X1, see Figure 3.2. A rough impression
is that the cloud is somewhat downward-sloping. A computation of the empirical
covariance yields

sX1X2 =
1

9

10∑
i=1

(
X1i − X̄1

) (
X2i − X̄2

)=−80.02,

a negative value as expected.
Note: The covariance function is scale dependent. Thus, if the prices in this ex-

ample were in Japanese Yen (JPY), we would obtain a different answer (see Exer-
cise 3.16). A measure of (linear) dependence independent of the scale is the corre-
lation, which we introduce in the next section.
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Fig. 3.2 Scatterplot of
variables X2 vs. X1 of the

pullovers data set
MVAscapull1

Summary
↪→ The covariance is a measure of dependence.

↪→ Covariance measures only linear dependence.

↪→ Covariance is scale dependent.

↪→ There are nonlinear dependencies that have zero covariance.

↪→ Zero covariance does not imply independence.

↪→ Independence implies zero covariance.

↪→ Negative covariance corresponds to downward-sloping scatter-
plots.

↪→ Positive covariance corresponds to upward-sloping scatterplots.

↪→ The covariance of a variable with itself is its variance Cov(X,X)=
σXX = σ 2

X.

↪→ For small n, we should replace the factor 1
n

in the computation of
the covariance by 1

n−1 .
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3.2 Correlation

The correlation between two variables X and Y is defined from the covariance as
the following:

ρXY = Cov(X,Y )√
Var(X)Var(Y )

· (3.7)

The advantage of the correlation is that it is independent of the scale, i.e., changing
the variables’ scale of measurement does not change the value of the correlation.
Therefore, the correlation is more useful as a measure of association between two
random variables than the covariance. The empirical version of ρXY is as follows:

rXY = sXY√
sXXsYY

· (3.8)

The correlation is in absolute value always less than 1. It is zero if the covariance
is zero and vice-versa. For p-dimensional vectors (X1, . . . ,Xp)

	 we have the theo-
retical correlation matrix

P =
⎛
⎜⎝
ρX1X1 . . . ρX1Xp
...

. . .
...

ρXpX1 . . . ρXpXp

⎞
⎟⎠ ,

and its empirical version, the empirical correlation matrix which can be calculated
from the observations,

R=
⎛
⎜⎝
rX1X1 . . . rX1Xp
...

. . .
...

rXpX1 . . . rXpXp

⎞
⎟⎠ .

Example 3.3 We obtain the following correlation matrix for the genuine bank notes:

Rg =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.00 0.41 0.41 0.22 0.05 0.03
0.41 1.00 0.66 0.24 0.20 −0.25
0.41 0.66 1.00 0.25 0.13 −0.14
0.22 0.24 0.25 1.00 −0.63 −0.00
0.05 0.20 0.13 −0.63 1.00 −0.25
0.03 −0.25 −0.14 −0.00 −0.25 1.00

⎞
⎟⎟⎟⎟⎟⎟⎠
, (3.9)

and for the counterfeit bank notes:

Rf =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.00 0.35 0.24 −0.25 0.08 0.06
0.35 1.00 0.61 −0.08 −0.07 −0.03
0.24 0.61 1.00 −0.05 0.00 0.20
−0.25 −0.08 −0.05 1.00 −0.68 0.37

0.08 −0.07 0.00 −0.68 1.00 −0.06
0.06 −0.03 0.20 0.37 −0.06 1.00

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.10)
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As noted before for Cov(X4,X5), the correlation between X4 (distance of the frame
to the lower border) and X5 (distance of the frame to the upper border) is negative.
This is natural, since the covariance and correlation always have the same sign (see
also Exercise 3.17).

Why is the correlation an interesting statistic to study? It is related to indepen-
dence of random variables, which we shall define more formally later on. For the
moment we may think of independence as the fact that one variable has no influence
on another.

Theorem 3.1 If X and Y are independent, then ρ(X,Y )= Cov(X,Y )= 0.

�
�
��

�
�

!
In general, the converse is not true, as the following example shows.

Example 3.4 Consider a standard normally-distributed random variable X and a
random variable Y =X2, which is surely not independent of X. Here we have

Cov(X,Y )= E(XY)− E(X)E(Y )= E(X3)= 0

(because E(X) = 0 and E(X2) = 1). Therefore ρ(X,Y ) = 0, as well. This exam-
ple also shows that correlations and covariances measure only linear dependence.
The quadratic dependence of Y = X2 on X is not reflected by these measures of
dependence.

Remark 3.1 For two normal random variables, the converse of Theorem 3.1 is true:
zero covariance for two normally-distributed random variables implies indepen-
dence. This will be shown later in Corollary 5.2.

Theorem 3.1 enables us to check for independence between the components
of a bivariate normal random variable. That is, we can use the correlation and
test whether it is zero. The distribution of rXY for an arbitrary (X,Y ) is unfor-
tunately complicated. The distribution of rXY will be more accessible if (X,Y )
are jointly normal (see Chapter 5). If we transform the correlation by Fisher’s Z-
transformation,

W = 1

2
log

(
1+ rXY
1− rXY

)
, (3.11)

we obtain a variable that has a more accessible distribution. Under the hypothesis
that ρ = 0, W has an asymptotic normal distribution. Approximations of the expec-
tation and variance of W are given by the following:

E(W) ≈ 1

2
log

(
1+ ρXY
1− ρXY

)
Var(W) ≈ 1

(n− 3)
·

(3.12)

The distribution is given in Theorem 3.2.
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Fig. 3.3 Mileage (X2) vs.
weight (X8) of U.S. (star),
European (plus signs) and

Japanese (circle) cars
MVAscacar

Theorem 3.2

Z = W − E(W)√
Var(W)

L−→N(0,1). (3.13)

The symbol “
L−→” denotes convergence in distribution, which will be explained

in more detail in Chapter 4.
Theorem 3.2 allows us to test different hypotheses on correlation. We can fix the

level of significance α (the probability of rejecting a true hypothesis) and reject the
hypothesis if the difference between the hypothetical value and the calculated value
of Z is greater than the corresponding critical value of the normal distribution. The
following example illustrates the procedure.

Example 3.5 Let’s study the correlation between mileage (X2) and weight (X8) for
the car data set (B.3) where n = 74. We have rX2X8 = −0.823. Our conclusions
from the boxplot in Figure 1.3 (“Japanese cars generally have better mileage than
the others”) needs to be revised. From Figure 3.3 and rX2X8 , we can see that mileage
is highly correlated with weight, and that the Japanese cars in the sample are in fact
all lighter than the others.

If we want to know whether ρX2X8 is significantly different from ρ0 = 0, we
apply Fisher’s Z-transform (3.11). This gives us

w = 1

2
log

(
1+ rX2X8

1− rX2X8

)
=−1.166 and z= −1.166− 0√

1
71

=−9.825,

i.e., a highly significant value to reject the hypothesis that ρ = 0 (the 2.5% and
97.5% quantiles of the normal distribution are −1.96 and 1.96, respectively). If we
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Fig. 3.4 Hours of sales
assistants (X4) vs. sales (X1)

of pullovers
MVAscapull2

want to test the hypothesis that, say, ρ0 =−0.75, we obtain:

z= −1.166− (−0.973)√
1

71

=−1.627.

This is a non-significant value at the α = 0.05 level for z since it is between the
critical values at the 5% significance level (i.e., −1.96< z < 1.96).

Example 3.6 Let us consider again the pullovers data set from Example 3.2. Con-
sider the correlation between the presence of the sales assistants (X4) vs. the number
of sold pullovers (X1) (see Figure 3.4). Here we compute the correlation as

rX1X4 = 0.633.

The Z-transform of this value is

w = 1

2
loge

(
1+ rX1X4

1− rX1X4

)
= 0.746. (3.14)

The sample size is n= 10, so for the hypothesis ρX1X4 = 0, the statistic to consider
is:

z=√7(0.746− 0)= 1.974 (3.15)

which is just statistically significant at the 5% level (i.e., 1.974 is just a little larger
than 1.96).

Remark 3.2 The normalising and variance stabilising properties of W are asymp-
totic. In addition the use of W in small samples (for n ≤ 25) is improved by
Hotelling’s transform (Hotelling, 1953):

W ∗ =W − 3W + tanh(W)

4(n− 1)
with Var(W ∗)= 1

n− 1
.



82 3 Moving to Higher Dimensions

The transformed variable W ∗ is asymptotically distributed as a normal distribution.

Example 3.7 From the preceding remark, we obtainw∗ = 0.6663 and
√

10− 1w∗ =
1.9989 for the preceding Example 3.6. This value is significant at the 5% level.

Remark 3.3 Note that the Fisher’s Z-transform is the inverse of the hyperbolic tan-

gent function: W = tanh−1(rXY ); equivalently rXY = tanh(W)= e2W−1
e2W+1

.

Remark 3.4 Under the assumptions of normality of X and Y , we may test their
independence (ρXY = 0) using the exact t-distribution of the statistic

T = rXY
√

n− 2

1− r2
XY

ρXY=0∼ tn−2.

Setting the probability of the first error type to α, we reject the null hypothesis
ρXY = 0 if |T | ≥ t1−α/2;n−2.

Summary
↪→ The correlation is a standardised measure of dependence.

↪→ The absolute value of the correlation is always less than one.

↪→ Correlation measures only linear dependence.

↪→ There are nonlinear dependencies that have zero correlation.

↪→ Zero correlation does not imply independence.

↪→ Independence implies zero correlation.

↪→ Negative correlation corresponds to downward-sloping scatter-
plots.

↪→ Positive correlation corresponds to upward-sloping scatterplots.

↪→ Fisher’s Z-transform helps us in testing hypotheses on correlation.

↪→ For small samples, Fisher’s Z-transform can be improved by the
transformation W ∗ =W − 3W+tanh(W)

4(n−1) .
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3.3 Summary Statistics

This section focuses on the representation of basic summary statistics (means, co-
variances and correlations) in matrix notation, since we often apply linear transfor-
mations to data. The matrix notation allows us to derive instantaneously the corre-
sponding characteristics of the transformed variables. The Mahalanobis transforma-
tion is a prominent example of such linear transformations.

Assume that we have observed n realisations of a p-dimensional random vari-
able; we have a data matrix X (n× p):

X =

⎛
⎜⎜⎜⎜⎝
x11 · · · x1p
...

...
...

...

xn1 · · · xnp

⎞
⎟⎟⎟⎟⎠ . (3.16)

The rows xi = (xi1, . . . , xip) ∈ R
p denote the i-th observation of a p-dimensional

random variable X ∈R
p .

The statistics that were briefly introduced in Sections 3.1 and 3.2 can be rewritten
in matrix form as follows. The “centre of gravity” of the n observations in R

p is
given by the vector x of the means xj of the p variables:

x =
⎛
⎜⎝
x1
...

xp

⎞
⎟⎠= n−1X	1n. (3.17)

The dispersion of the n observations can be characterised by the covariance ma-
trix of the p variables. The empirical covariances defined in (3.2) and (3.3) are the
elements of the following matrix:

S = n−1X	X − x x	 = n−1(X	X − n−1X	1n1	n X ). (3.18)

Note that this matrix is equivalently defined by

S = 1

n

n∑
i=1

(xi − x)(xi − x)	.

The covariance formula (3.18) can be rewritten as S = n−1X	HX with the centring
matrix

H= In − n−11n1	n . (3.19)

Note that the centring matrix is symmetric and idempotent. Indeed,

H2 = (In − n−11n1	n )(In − n−11n1	n )
= In − n−11n1	n − n−11n1	n + (n−11n1	n )(n−11n1	n )
= In − n−11n1	n =H.
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As a consequence S is positive semidefinite, i.e.

S ≥ 0. (3.20)

Indeed for all a ∈R
p ,

a	Sa = n−1a	X	HXa
= n−1(a	X	H	)(HXa) since H	H=H,

= n−1y	y = n−1
p∑
j=1

y2
j ≥ 0

for y =HXa. It is well known from the one-dimensional case that n−1 ∑n
i=1(xi −

x)2 as an estimate of the variance exhibits a bias of the order n−1 (Breiman, 1973).
In the multi-dimensional case, Su = n

n−1 S is an unbiased estimate of the true co-
variance. (This will be shown in Example 4.15.)

The sample correlation coefficient between the i-th and j -th variables is rXiXj ,
see (3.8). If D = diag(sXiXi ), then the correlation matrix is

R=D−1/2SD−1/2, (3.21)

where D−1/2 is a diagonal matrix with elements (sXiXi )
−1/2 on its main diagonal.

Example 3.8 The empirical covariances are calculated for the pullover data set.
The vector of the means of the four variables in the dataset is x = (172.7,104.6,

104.0,93.8)	.

The sample covariance matrix is S =

⎛
⎜⎜⎝

1037.2 −80.2 1430.7 271.4
−80.2 219.8 92.1 −91.6
1430.7 92.1 2624 210.3

271.4 −91.6 210.3 177.4

⎞
⎟⎟⎠ .

The unbiased estimate of the variance (n= 10) is equal to

Su = 10

9
S =

⎛
⎜⎜⎝

1152.5 −88.9 1589.7 301.6
−88.9 244.3 102.3 −101.8
1589.7 102.3 2915.6 233.7

301.6 −101.8 233.7 197.1

⎞
⎟⎟⎠ .

The sample correlation matrix is R=

⎛
⎜⎜⎝

1 −0.17 0.87 0.63
−0.17 1 0.12 −0.46

0.87 0.12 1 0.31
0.63 −0.46 0.31 1

⎞
⎟⎟⎠ .

Linear Transformation

In many practical applications we need to study linear transformations of the orig-
inal data. This motivates the question of how to calculate summary statistics after
such linear transformations.
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Let A be a (q × p) matrix and consider the transformed data matrix

Y =XA	 = (y1, . . . , yn)
	. (3.22)

The row yi = (yi1, . . . , yiq) ∈ R
q can be viewed as the i-th observation of a q-

dimensional random variable Y =AX. In fact we have yi = xiA	. We immediately
obtain the mean and the empirical covariance of the variables (columns) forming the
data matrix Y :

y = 1

n
Y	1n = 1

n
AX	1n =Ax (3.23)

SY = 1

n
Y	HY = 1

n
AX	HXA	 =ASXA	. (3.24)

Note that if the linear transformation is non-homogeneous, i.e.,

yi =Axi + b where b(q × 1),

only (3.23) changes: y =Ax + b. The formulas (3.23) and (3.24) are useful in the
particular case of q = 1, i.e., y =Xa, i.e. yi = a	xi; i = 1, . . . , n:

y = a	x
Sy = a	SX a.

Example 3.9 Suppose that X is the pullover data set. The manager wants to compute
his mean expenses for advertisement (X3) and sales assistant (X4).

Suppose that the sales assistant charges an hourly wage of 10 EUR. Then the
shop manager calculates the expenses Y as Y = X3 + 10X4. Formula (3.22) says
that this is equivalent to defining the matrix A(4× 1) as:

A= (0,0,1,10).

Using formulas (3.23) and (3.24), it is now computationally very easy to obtain the
sample mean y and the sample variance Sy of the overall expenses:

y =Ax = (0,0,1,10)

⎛
⎜⎜⎝

172.7
104.6
104.0

93.8

⎞
⎟⎟⎠= 1042.0

SY =ASXA	 = (0,0,1,10)

⎛
⎜⎜⎝

1152.5 −88.9 1589.7 301.6
−88.9 244.3 102.3 −101.8
1589.7 102.3 2915.6 233.7

301.6 −101.8 233.7 197.1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0
1

10

⎞
⎟⎟⎠

= 2915.6+ 4674+ 19710= 27299.6.
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Mahalanobis Transformation

A special case of this linear transformation is

zi = S−1/2(xi − x), i = 1, . . . , n. (3.25)

Note that for the transformed data matrix Z = (z1, . . . , zn)
	,

SZ = n−1Z	HZ = Ip. (3.26)

So the Mahalanobis transformation eliminates the correlation between the variables
and standardises the variance of each variable. If we apply (3.24) using A= S−1/2,
we obtain the identity covariance matrix as indicated in (3.26).

Summary
↪→ The centre of gravity of a data matrix is given by its mean vector

x = n−1X	1n.
↪→ The dispersion of the observations in a data matrix is given by the

empirical covariance matrix S = n−1X	HX .
↪→ The empirical correlation matrix is given by R=D−1/2SD−1/2.

↪→ A linear transformation Y = XA	 of a data matrix X has mean
Ax and empirical covariance ASXA	.

↪→ The Mahalanobis transformation is a linear transformation zi =
S−1/2(xi − x) which gives a standardised, uncorrelated data ma-
trix Z .

3.4 Linear Model for Two Variables

We have looked several times now at downward and upward-sloping scatterplots.
What does the eye define here as a slope? Suppose that we can construct a line
corresponding to the general direction of the cloud. The sign of the slope of this
line would correspond to the upward and downward directions. Call the variable on
the vertical axis Y and the one on the horizontal axis X. A slope line is a linear
relationship between X and Y :

yi = α + βxi + εi, i = 1, . . . , n. (3.27)

Here, α is the intercept and β is the slope of the line. The errors (or deviations from
the line) are denoted as εi and are assumed to have zero mean and finite variance
σ 2. The task of finding (α,β) in (3.27) is referred to as a linear adjustment.
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In Section 3.6 we shall derive estimators for α and β more formally, as well
as accurately describe what a “good” estimator is. For now, one may try to find a
“good” estimator (̂α, β̂) via graphical techniques. A very common numerical and
statistical technique is to use those α̂ and β̂ that minimise:

(̂α, β̂)= arg min
(α,β)

n∑
i=1

(yi − α − βxi)2. (3.28)

The solution to this task are the estimators:

β̂ = sXY

sXX
(3.29)

α̂ = y − β̂x. (3.30)

The variance of β̂ is:

Var(β̂)= σ 2

n · sXX . (3.31)

The standard error (SE) of the estimator is the square root of (3.31),

SE(β̂)= {Var(β̂)}1/2 = σ

(n · sXX)1/2 . (3.32)

We can use this formula to test the hypothesis that β = 0. In an application the
variance σ 2 has to be estimated by an estimator σ̂ 2 that will be given below. Under
a normality assumption of the errors, the t-test for the hypothesis β = 0 works as
follows.

One computes the statistic

t = β̂

SE(β̂)
(3.33)

and rejects the hypothesis at a 5% significance level if |t | ≥ t0.975;n−2, where the
97.5% quantile of the Student’s tn−2 distribution is clearly the 95% critical value
for the two-sided test. For n≥ 30, this can be replaced by 1.96, the 97.5% quantile
of the normal distribution. An estimator σ̂ 2 of σ 2 will be given in the following.

Example 3.10 Let us apply the linear regression model (3.27) to the “classic blue”
pullovers. The sales manager believes that there is a strong dependence on the num-
ber of sales as a function of price. He computes the regression line as shown in
Figure 3.5.

How good is this fit? This can be judged via goodness-of-fit measures. Define

ŷi = α̂ + β̂xi, (3.34)

as the predicted value of y as a function of x. With ŷ the textile shop manager in
the above example can predict sales as a function of prices x. The variation in the
response variable is:

nsYY =
n∑
i=1

(yi − y)2. (3.35)
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Fig. 3.5 Regression of sales
(X1) on price (X2) of

pullovers MVAregpull

The variation explained by the linear regression (3.27) with the predicted values
(3.34) is:

n∑
i=1

(ŷi − y)2. (3.36)

The residual sum of squares, the minimum in (3.28), is given by:

RSS=
n∑
i=1

(yi − ŷi )2. (3.37)

An unbiased estimator σ̂ 2 of σ 2 is given by RSS/(n− 2).
The following relation holds between (3.35)–(3.37):

n∑
i=1

(yi − y)2 =
n∑
i=1

(ŷi − y)2 +
n∑
i=1

(yi − ŷi )2, (3.38)

Total variation= Explained variation+Unexplained variation.

The coefficient of determination is r2:

r2 =

n∑
i=1
(ŷi − y)2

n∑
i=1
(yi − y)2

= explained variation

total variation
· (3.39)

The coefficient of determination increases with the proportion of explained variation
by the linear relation (3.27). In the extreme cases where r2 = 1, all of the variation
is explained by the linear regression (3.27). The other extreme, r2 = 0, is where the
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Fig. 3.6 Regression of sales
(X1) on price (X2) of
pullovers. The overall mean is

given by the dashed line
MVAregzoom

empirical covariance is sXY = 0. The coefficient of determination can be rewritten
as

r2 = 1−

n∑
i=1
(yi − ŷi )2

n∑
i=1
(yi − y)2

. (3.40)

From (3.39), it can be seen that in the linear regression (3.27), r2 = r2
XY is the

square of the correlation between X and Y .

Example 3.11 For the above pullover example, we estimate

α̂ = 210.774 and β̂ =−0.364.

The coefficient of determination is

r2 = 0.028.

The textile shop manager concludes that sales are not influenced very much by the
price (in a linear way).

The geometrical representation of formula (3.38) can be graphically evaluated
using Figure 3.6. This plot shows a section of the linear regression of the “sales”
on “price” for the pullovers data. The distance between any point and the overall
mean is given by the distance between the point and the regression line and the
distance between the regression line and the mean. The sums of these two distances
represent the total variance (solid blue lines from the observations to the overall
mean), i.e., the explained variance (distance from the regression curve to the mean)
and the unexplained variance (distance from the observation to the regression line),
respectively.
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Fig. 3.7 Regression of X5
(upper inner frame) on X4
(lower inner frame) for

genuine bank notes
MVAregbank

In general the regression of Y on X is different from that of X on Y . We will
demonstrate this, once again, using the Swiss bank notes data.

Example 3.12 The least squares fit of the variables X4 (X) and X5 (Y ) from the
genuine bank notes are calculated. Figure 3.7 shows the fitted line if X5 is approxi-
mated by a linear function of X4. In this case the parameters are

α̂ = 15.464 and β̂ =−0.638.

If we predict X4 by a function of X5 instead, we would arrive at a different
intercept and slope

α̂ = 14.666 and β̂ =−0.626.

The linear regression of Y on X is given by minimising (3.28), i.e., the vertical
errors εi . The linear regression of X on Y does the same but here the errors to be
minimised in the least squares sense are measured horizontally. As seen in Exam-
ple 3.12, the two least squares lines are different although both measure (in a certain
sense) the slope of the cloud of points.

As shown in the next example, there is still one other way to measure the main di-
rection of a cloud of points: it is related to the spectral decomposition of covariance
matrices.

Example 3.13 Suppose that we have the following covariance matrix:

� =
(

1 ρ

ρ 1

)
.

Figure 3.8 shows a scatterplot of a sample of two normal random variables with
such a covariance matrix (with ρ = 0.8).
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Fig. 3.8 Scatterplot for a
sample of two correlated
normal random variables
(sample size n= 150,

ρ = 0.8)
MVAcorrnorm

The eigenvalues of � are, as was shown in Example 2.4, solutions to:∣∣∣∣1− λ ρ

ρ 1− λ
∣∣∣∣= 0.

Hence, λ1 = 1+ ρ and λ2 = 1− ρ. Therefore �= diag(1+ ρ,1− ρ). The eigen-
vector corresponding to λ1 = 1 + ρ can be computed from the system of linear
equations: (

1 ρ

ρ 1

)(
x1
x2

)
= (1+ ρ)

(
x1
x2

)
or

x1 + ρx2 = x1 + ρx1
ρx1 + x2 = x2 + ρx2

and thus

x1 = x2.

The first (standardised) eigenvector is

γ1 =
(

1
/√

2
1
/√

2

)
.

The direction of this eigenvector is the diagonal in Figure 3.8 and captures the main
variation in this direction. We shall come back to this interpretation in Chapter 10.
The second eigenvector (orthogonal to γ1 ) is

γ2 =
(

1
/√

2
−1

/√
2

)
.



92 3 Moving to Higher Dimensions

So finally

� = (
γ1, γ2

)= (
1
/√

2 1
/√

2
1
/√

2 −1
/√

2

)

and we can check our calculation by

� = � � �	.

The first eigenvector captures the main direction of a point cloud. The linear
regression of Y on X and X on Y accomplished, in a sense, the same thing. In
general the direction of the eigenvector and the least squares slope are different.
The reason is that the least squares estimator minimises either vertical or horizontal
errors (in 3.28), whereas the first eigenvector corresponds to a minimisation that is
orthogonal to the eigenvector (see Chapter 10).

Summary
↪→ The linear regression y = α + βx + ε models a linear relation be-

tween two one-dimensional variables.
↪→ The sign of the slope β̂ is the same as that of the covariance and the

correlation of x and y.
↪→ A linear regression predicts values of Y given a possible observa-

tion x of X.
↪→ The coefficient of determination r2 measures the amount of varia-

tion in Y which is explained by a linear regression on X.

↪→ If the coefficient of determination is r2 = 1, then all points lie on
one line.

↪→ The regression line ofX on Y and the regression line of Y onX are
in general different.

↪→ The t-test for the hypothesis β = 0 is t = β̂

SE(β̂)
, where SE(β̂) =

σ̂

(n·sXX)1/2 .

↪→ The t-test rejects the null hypothesis β = 0 at the level of signifi-
cance α if |t | ≥ t1−α/2;n−2 where t1−α;n−2 is the 1− α/2 quantile
of the Student’s t-distribution with (n− 2) degrees of freedom.

↪→ The standard error SE(β̂) increases/decreases with less/more
spread in the X variables.

↪→ The direction of the first eigenvector of the covariance matrix of
a two-dimensional point cloud is different from the least squares
regression line.
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Table 3.1 Observation
structure of a simple ANOVA Sample element Factor levels l

1 y11 · · · y1l · · · y1p

2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

k yk1 · · · ykl · · · ykp
.
.
.

.

.

.
.
.
.

.

.

.

m= n/p ym1 · · · yml · · · ymp

3.5 Simple Analysis of Variance

In a simple (i.e., one–factorial) analysis of variance (ANOVA), it is assumed that
the average values of the response variable y are induced by one simple factor.
Suppose that this factor takes on p values and that for each factor level, we have
m = n/p observations. The sample is of the form given in Table 3.1, where all of
the observations are independent.

The goal of a simple ANOVA is to analyse the observation structure

ykl = μl + εkl for k = 1, . . . ,m, and l = 1, . . . , p. (3.41)

Each factor has a mean value μl . Each observation ykl is assumed to be a sum of the
corresponding factor mean value μl and a zero mean random error εkl . The linear
regression model falls into this scheme with m= 1, p = n and μi = α+βxi , where
xi is the i-th level value of the factor.

Example 3.14 The “classic blue” pullover company analyses the effect of three mar-
keting strategies

1 advertisement in local newspaper,
2 presence of sales assistant,
3 luxury presentation in shop windows.

All of these strategies are tried in 10 different shops. The resulting sale observa-
tions are given in Table 3.2.

There are p = 3 factors and n=mp = 30 observations in the data. The “classic
blue” pullover company wants to know whether all three marketing strategies have
the same mean effect or whether there are differences. Having the same effect means
that all μl in (3.41) equal one value, μ. The hypothesis to be tested is therefore

H0 : μl = μ for l = 1, . . . , p.

The alternative hypothesis, that the marketing strategies have different effects, can
be formulated as

H1 : μl 
= μl′ for some l and l′.

This means that one marketing strategy is better than the others.
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Table 3.2 Pullover sales as
function of marketing strategy Shop

k

Marketing strategy

factor l

1 2 3

1 9 10 18

2 11 15 14

3 10 11 17

4 12 15 9

5 7 15 14

6 11 13 17

7 12 7 16

8 10 15 14

9 11 13 17

10 13 10 15

The method used to test this problem is to compute as in (3.38) the total variation
and to decompose it into the sources of variation. This gives:

p∑
l=1

m∑
k=1

(ykl − ȳ)2 =m
p∑
l=1

(ȳl − ȳ)2 +
p∑
l=1

m∑
k=1

(ykl − ȳl)2. (3.42)

The total variation (sum of squares= SS) is:

SS(reduced)=
p∑
l=1

m∑
k=1

(ykl − ȳ)2 (3.43)

where ȳ = n−1 ∑p

l=1

∑m
k=1 ykl is the overall mean. Here the total variation is de-

noted as SS(reduced), since in comparison with the model under the alternative H1,
we have a reduced set of parameters. In fact there is 1 parameter μ= μl under H0.
Under H1, the “full” model, we have three parameters, namely the three different
means μl .

The variation under H1 is therefore:

SS(full)=
p∑
l=1

m∑
k=1

(ykl − ȳl)2 (3.44)

where ȳl =m−1 ∑m
k=1 ykl is the mean of each factor l. The hypothetical model H0

is called reduced, since it has (relative to H1) fewer parameters.
The F -test of the linear hypothesis is used to compare the difference in the vari-

ations under the reduced model H0 (3.43) and the full model H1 (3.44) to the vari-
ation under the full model H1:

F = {SS(reduced)− SS(full)}/{df (r)− df (f )}
SS(full)/df (f )

. (3.45)
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Here df (f ) and df (r) denote the degrees of freedom under the full model and the
reduced model respectively. The degrees of freedom are essential in specifying the
shape of the F -distribution. They have a simple interpretation: df (·) is equal to the
number of observations minus the number of parameters in the model.

From Example 3.14, p = 3 parameters are estimated under the full model, i.e.,
df (f )= n− p = 30− 3= 27. Under the reduced model, there is one parameter to
estimate, namely the overall mean, i.e., df (r)= n− 1= 29. We can compute

SS(reduced)= 260.3

and

SS(full)= 157.7.

The F -statistic (3.45) is therefore

F = (260.3− 157.7)/2

157.7/27
= 8.78.

This value needs to be compared to the quantiles of the F2,27 distribution. Looking
up the critical values in a F -distribution shows that the test statistic above is highly
significant. We conclude that the marketing strategies have different effects.

The F -test in a Linear Regression Model

The t-test of a linear regression model can be put into this framework. For a linear
regression model (3.27), the reduced model is the one with β = 0:

yi = α + 0 · xi + εi .
The reduced model has n−1 degrees of freedom and one parameter, the intercept α.

The full model is given by β 
= 0,

yi = α+ β · xi + εi,
and has n− 2 degrees of freedom, since there are two parameters (α,β).

The SS(reduced) equals

SS(reduced)=
n∑
i=1

(yi − ȳ)2 = total variation.

The SS(full) equals

SS(full)=
n∑
i=1

(yi − ŷi )2 = RSS= unexplained variation.



96 3 Moving to Higher Dimensions

The F -test is therefore, from (3.45),

F = (total variation− unexplained variation)/1

(unexplained variation)/(n− 2)
(3.46)

= explained variation

(unexplained variation)/(n− 2)
. (3.47)

Using the estimators α̂ and β̂ the explained variation is:

n∑
i=1

(
ŷi − ȳ

)2 =
n∑
i=1

(
α̂+ β̂xi − ȳ

)2

=
n∑
i=1

{
(ȳ − β̂x̄)+ β̂xi − ȳ

}2

=
n∑
i=1

β̂2(xi − x̄)2

= β̂2nsXX.

From (3.32) the F -ratio (3.46) is therefore:

F = β̂2nsXX

RSS/(n− 2)
(3.48)

=
(

β̂

SE(β̂)

)2

. (3.49)

The t-test statistic (3.33) is just the square root of the F - statistic (3.49).
Note, using (3.39) the F -statistic can be rewritten as

F = r2/1

(1− r2)/(n− 2)
.

In the pullover Example 3.11, we obtain F = 0.028
0.972

8
1 = 0.2305, so that the null hy-

pothesis β = 0 cannot be rejected. We conclude therefore that there is only a minor
influence of prices on sales.

Summary
↪→ Simple ANOVA models an output Y as a function of one factor.

↪→ The reduced model is the hypothesis of equal means.

↪→ The full model is the alternative hypothesis of different means.
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Summary (continued)
↪→ The F -test is based on a comparison of the sum of squares under

the full and the reduced models.
↪→ The degrees of freedom are calculated as the number of observa-

tions minus the number of parameters.
↪→ The F -statistic is

F = {SS(reduced)− SS(full)}/{df (r)− df (f )}
SS(full)/df (f )

.

↪→ The F -test rejects the null hypothesis if the F -statistic is larger than
the 95% quantile of the Fdf (r)−df (f ),df (f ) distribution.

↪→ The F -test statistic for the slope of the linear regression model yi =
α+ βxi + εi is the square of the t-test statistic.

3.6 Multiple Linear Model

The simple linear model and the analysis of variance model can be viewed as a
particular case of a more general linear model where the variations of one variable y
are explained by p explanatory variables x respectively. Let y (n×1) and X (n×p)
be a vector of observations on the response variable and a data matrix on the p
explanatory variables. An important application of the developed theory is the least
squares fitting. The idea is to approximate y by a linear combination ŷ of columns
of X , i.e., ŷ ∈ C(X ). The problem is to find β̂ ∈R

p such that ŷ =X β̂ is the best fit
of y in the least-squares sense. The linear model can be written as

y =Xβ + ε, (3.50)

where ε are the errors. The least squares solution is given by β̂:

β̂ = arg min
β
(y −Xβ)	(y −Xβ)= arg min

β
ε	ε. (3.51)

Suppose that (X	X ) is of full rank and thus invertible. Minimising the expres-
sion (3.51) with respect to β yields:

β̂ = (X	X )−1X	y. (3.52)

The fitted value ŷ =X β̂ =X (X	X )−1X	y =Py is the projection of y ontoC(X )
as computed in (2.47).

The least squares residuals are

e= y − ŷ = y −X β̂ =Qy = (In −P)y.

The vector e is the projection of y onto the orthogonal complement of C(X ).

Remark 3.5 A linear model with an intercept α can also be written in this frame-
work. The approximating equation is:
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yi = α + β1xi1 + · · · + βpxip + εi; i = 1, . . . , n.

This can be written as:

y =X ∗β∗ + ε
where X ∗ = (1n X ) (we add a column of ones to the data). We have by (3.52):

β̂∗ =
(
α̂

β̂

)
= (X ∗	X ∗)−1X ∗	y.

Example 3.15 Let us come back to the “classic blue” pullovers example. In Ex-
ample 3.11, we considered the regression fit of the sales X1 on the price X2 and
concluded that there was only a small influence of sales by changing the prices. A
linear model incorporating all three variables allows us to approximate sales as a
linear function of price (X2), advertisement (X3) and presence of sales assistants
(X4) simultaneously. Adding a column of ones to the data (in order to estimate the
intercept α) leads to

α̂ = 65.670 and β̂1 =−0.216, β̂2 = 0.485, β̂3 = 0.844.

The coefficient of determination is computed as before in (3.40) and is:

r2 = 1− e	e∑
(yi − y)2

= 0.907.

We conclude that the variation of X1 is well approximated by the linear relation.

Remark 3.6 The coefficient of determination is influenced by the number of regres-
sors. For a given sample size n, the r2 value will increase by adding more regres-
sors into the linear model. The value of r2 may therefore be high even if possibly
irrelevant regressors are included. A corrected coefficient of determination for p
regressors and a constant intercept (p+ 1 parameters) is

r2
adj = r2 − p(1− r2)

n− (p+ 1)
. (3.53)

Example 3.16 The corrected coefficient of determination for Example 3.15 is

r2
adj = 0.907− 3(1− 0.9072)

10− 3− 1
= 0.818.

This means that 81.8% of the variation of the response variable is explained by the
explanatory variables.

Note that the linear model (3.50) is very flexible and can model nonlinear re-
lationships between the response y and the explanatory variables x. For example,
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a quadratic relation in one variable x could be included. Then yi = α + β1xi +
β2x

2
i + εi could be written in matrix notation as in (3.50), y =Xβ + ε where

X =

⎛
⎜⎜⎜⎝

1 x1 x2
1

1 x2 x2
2

...
...

...

1 xn x2
n

⎞
⎟⎟⎟⎠ .

Properties of ̂β

When yi is the i-th observation of a random variable Y , the errors are also random.
Under standard assumptions (independence, zero mean and constant variance σ 2),
inference can be conducted on β . Using the properties of Chapter 4, it is easy to
prove:

E(β̂)= β
Var(β̂)= σ 2(X	X )−1.

The analogue of the t-test for the multivariate linear regression situation is

t = β̂j

SE(β̂j )
.

The standard error of each coefficient β̂j is given by the square root of the diagonal
elements of the matrix Var(β̂). In standard situations, the variance σ 2 of the error ε
is not known. One may estimate it by

σ̂ 2 = 1

n− (p+ 1)
(y − ŷ)	(y − ŷ),

where (p + 1) is the dimension of β . In testing βj = 0 we reject the hypothesis at
the significance level α if |t | ≥ t1−α/2;n−(p+1). More general issues on testing linear
models are addressed in Chapter 7.

The ANOVA Model in Matrix Notation

The simple ANOVA problem (Section 3.5) may also be rewritten in matrix terms.
Recall the definition of a vector of ones from (2.1) and define a vector of zeros as
0n. Then construct the following (n× p) matrix, (here p = 3),

X =
⎛
⎝1m 0m 0m

0m 1m 0m
0m 0m 1m

⎞
⎠ , (3.54)

where m= 10. Equation (3.41) then reads as follows.
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The parameter vector is β = (μ1,μ2,μ3)
	. The data set from Example 3.14 can

therefore be written as a linear model y = Xβ + ε where y ∈ R
n with n = m · p

is the stacked vector of the columns of Table 3.1. The projection into the column
space C(X ) of (3.54) yields the least-squares estimator β̂ = (X	X )−1X	y. Note
that (X	X )−1 = (1/10)I3 and that X	y = (106,124,151)	 is the sum

∑m
k=1 ykj

for each factor, i.e., the 3 column sums of Table 3.1. The least squares estimator
is therefore the vector β̂H1 = (μ̂1, μ̂2, μ̂3) = (10.6,12.4,15.1)	 of sample means
for each factor level j = 1,2,3. Under the null hypothesis of equal mean values
μ1 = μ2 = μ3 = μ, we estimate the parameters under the same constraints. This
can be put into the form of a linear constraint:

−μ1 +μ2 = 0

−μ1 +μ3 = 0.

This can be written as Aβ = a, where

a =
(

0
0

)
and

A=
(−1 1 0
−1 0 1

)
.

The constrained least-squares solution can be shown (Exercise 3.24) to be given by:

β̂H0 = β̂H1 − (X	X )−1A	{A(X	X )−1A	}−1(Aβ̂H1 − a). (3.55)

It turns out that (3.55) amounts to simply calculating the overall mean ȳ = 12.7 of
the response variable y: β̂H0 = (12.7,12.7,12.7)	.

The F-test that has already been applied in Example 3.14 can be written as

F = {||y −X β̂H0 ||2 − ||y −X β̂H1 ||2}/2
||y −X β̂H1 ||2/27

(3.56)

which gives the same significant value 8.78. Note that again we compare the RSSH0

of the reduced model to the RSSH1 of the full model. It corresponds to comparing
the lengths of projections into different column spaces. This general approach in
testing linear models is described in detail in Chapter 7.

Summary
↪→ The relation y = Xβ + e models a linear relation between a one-

dimensional variable Y and a p-dimensional variable X. Py gives
the best linear regression fit of the vector y onto C(X ). The least
squares parameter estimator is β̂ = (X	X )−1X	y.



3.7 Boston Housing 101

Summary (continued)
↪→ The simple ANOVA model can be written as a linear model.

↪→ The ANOVA model can be tested by comparing the length of the
projection vectors.

↪→ The test statistic of the F-Test can be written as

{||y −X β̂H0 ||2 − ||y −X β̂H1 ||2}/{df (r)− df (f )}
||y −X β̂H1 ||2/df (f )

.

↪→ The adjusted coefficient of determination is

r2
adj = r2 − p(1− r2)

n− (p+ 1)
.

3.7 Boston Housing

The main statistics presented so far can be computed for the data matrix X (506×
14) from our Boston Housing data set. The sample means and the sample medians
of each variable are displayed in Table 3.3. The table also provides the unbiased
estimates of the variance of each variable and the corresponding standard devia-
tions. The comparison of the means and the medians confirms the assymmetry of
the components of X that was pointed out in Section 1.9.

Table 3.3 Descriptive
statistics for the Boston
Housing data set

MVAdescbh

X x median(X) Var(X) std(X)

X1 3.61 0.26 73.99 8.60

X2 11.36 0.00 543.94 23.32

X3 11.14 9.69 47.06 6.86

X4 0.07 0.00 0.06 0.25

X5 0.55 0.54 0.01 0.12

X6 6.28 6.21 0.49 0.70

X7 68.57 77.50 792.36 28.15

X8 3.79 3.21 4.43 2.11

X9 9.55 5.00 75.82 8.71

X10 408.24 330.00 28405.00 168.54

X11 18.46 19.05 4.69 2.16

X12 356.67 391.44 8334.80 91.29

X13 12.65 11.36 50.99 7.14

X14 22.53 21.20 84.59 9.20
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The (unbiased) sample covariance matrix is given by the following (14 × 14)
matrix Sn:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

73.99 −40.22 23.99−0.12 0.42 −1.33 85.41 −6.88 46.85 844.82 5.40 −302.38 27.99 −30.72
−40.22 543.94 −85.41−0.25−1.40 5.11−373.90 32.63 −63.35−1236.45−19.78 373.72 −68.78 77.32

23.99 −85.41 47.06 0.11 0.61 −1.89 124.51 −10.23 35.55 833.36 5.69 −223.58 29.58 −30.52
−0.12 −0.25 0.11 0.06 0.00 0.02 0.62 −0.05 −0.02 −1.52 −0.07 1.13 −0.10 0.41

0.42 −1.40 0.61 0.00 0.01 −0.02 2.39 −0.19 0.62 13.05 0.05 −4.02 0.49 −0.46
−1.33 5.11 −1.89 0.02−0.02 0.49 −4.75 0.30 −1.28 −34.58 −0.54 8.22 −3.08 4.49
85.41 −373.90 124.51 0.62 2.39 −4.75 792.36 −44.33 111.77 2402.69 15.94 −702.94 121.08 −97.59
−6.88 32.63 −10.23−0.05−0.19 0.30 −44.33 4.43 −9.07 −189.66 −1.06 56.04 −7.47 4.84
46.85 −63.35 35.55−0.02 0.62 −1.28 111.77 −9.07 75.82 1335.76 8.76 −353.28 30.39 −30.56

844.82−1236.45 833.36−1.52 13.05−34.58 2402.69−189.66 1335.76 28404.76 168.15−6797.91 654.71−726.26
5.40 −19.78 5.69−0.07 0.05 −0.54 15.94 −1.06 8.76 168.15 4.69 −35.06 5.78 −10.11

−302.38 373.72−223.58 1.13−4.02 8.22−702.94 56.04−353.28−6797.91−35.06 8334.75−238.67 279.99
27.99 −68.78 29.58−0.10 0.49 −3.08 121.08 −7.47 30.39 654.71 5.78 −238.67 50.99 −48.45
−30.72 77.32 −30.52 0.41−0.46 4.49 −97.59 4.84 −30.56 −726.26−10.11 279.99 −48.45 84.59

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the corresponding correlation matrix R(14× 14) is:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.00−0.20 0.41−0.06 0.42−0.22 0.35−0.38 0.63 0.58 0.29−0.39 0.46−0.39
−0.20 1.00−0.53−0.04−0.52 0.31−0.57 0.66−0.31−0.31−0.39 0.18−0.41 0.36

0.41−0.53 1.00 0.06 0.76−0.39 0.64−0.71 0.60 0.72 0.38−0.36 0.60−0.48
−0.06−0.04 0.06 1.00 0.09 0.09 0.09−0.10−0.01−0.04−0.12 0.05−0.05 0.18

0.42−0.52 0.76 0.09 1.00−0.30 0.73−0.77 0.61 0.67 0.19−0.38 0.59−0.43
−0.22 0.31−0.39 0.09−0.30 1.00−0.24 0.21−0.21−0.29−0.36 0.13−0.61 0.70

0.35−0.57 0.64 0.09 0.73−0.24 1.00−0.75 0.46 0.51 0.26−0.27 0.60−0.38
−0.38 0.66−0.71−0.10−0.77 0.21−0.75 1.00−0.49−0.53−0.23 0.29−0.50 0.25

0.63−0.31 0.60−0.01 0.61−0.21 0.46−0.49 1.00 0.91 0.46−0.44 0.49−0.38
0.58−0.31 0.72−0.04 0.67−0.29 0.51−0.53 0.91 1.00 0.46−0.44 0.54−0.47
0.29−0.39 0.38−0.12 0.19−0.36 0.26−0.23 0.46 0.46 1.00−0.18 0.37−0.51
−0.39 0.18−0.36 0.05−0.38 0.13−0.27 0.29−0.44−0.44−0.18 1.00−0.37 0.33

0.46−0.41 0.60−0.05 0.59−0.61 0.60−0.50 0.49 0.54 0.37−0.37 1.00−0.74
−0.39 0.36−0.48 0.18−0.43 0.70−0.38 0.25−0.38−0.47−0.51 0.33−0.74 1.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Analyzing R confirms most of the comments made from examining the scatterplot
matrix in Chapter 1. In particular, the correlation between X14 (the value of the
house) and all the other variables is given by the last row (or column) of R. The
highest correlations (in absolute values) are in decreasing order X13,X6,X11,X10,

etc.
Using the Fisher’s Z-transform on each of the correlations between X14 and the

other variables would confirm that all are significantly different from zero, except
the correlation between X14 and X4 (the indicator variable for the Charles River).
We know, however, that the correlation and Fisher’s Z-transform are not appropriate
for binary variable.

The same descriptive statistics can be calculated for the transformed variables
(transformations were motivated in Section 1.9). The results are given in Table 3.4
and as can be seen, most of the variables are now more symmetric. Note that the
covariances and the correlations are sensitive to these nonlinear transformations.
For example, the correlation matrix is now
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Table 3.4 Descriptive
statistics for the Boston
Housing data set after the
transformation

MVAdescbh

X̃ x̃ median(X̃) Var(X̃) std(X̃)

X̃1 −0.78 −1.36 4.67 2.16

X̃2 1.14 0.00 5.44 2.33

X̃3 2.16 2.27 0.60 0.78

X̃4 0.07 0.00 0.06 0.25

X̃5 −0.61 −0.62 0.04 0.20

X̃6 1.83 1.83 0.01 0.11

X̃7 5.06 5.29 12.72 3.57

X̃8 1.19 1.17 0.29 0.54

X̃9 1.87 1.61 0.77 0.87

X̃10 5.93 5.80 0.16 0.40

X̃11 2.15 2.04 1.86 1.36

X̃12 3.57 3.91 0.83 0.91

X̃13 3.42 3.37 0.97 0.99

X̃14 3.03 3.05 0.17 0.41

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.00−0.52 0.74 0.03 0.81−0.32 0.70−0.74 0.84 0.81 0.45−0.48 0.62−0.57
−0.52 1.00−0.66−0.04−0.57 0.31−0.53 0.59−0.35−0.31−0.35 0.18−0.45 0.36

0.74−0.66 1.00 0.08 0.75−0.43 0.66−0.73 0.58 0.66 0.46−0.33 0.62−0.55
0.03−0.04 0.08 1.00 0.08 0.08 0.07−0.09 0.01−0.04−0.13 0.05−0.06 0.16
0.81−0.57 0.75 0.08 1.00−0.32 0.78−0.86 0.61 0.67 0.34−0.38 0.61−0.52
−0.32 0.31−0.43 0.08−0.32 1.00−0.28 0.28−0.21−0.31−0.32 0.13−0.64 0.61

0.70−0.53 0.66 0.07 0.78−0.28 1.00−0.80 0.47 0.54 0.38−0.29 0.64−0.48
−0.74 0.59−0.73−0.09−0.86 0.28−0.80 1.00−0.54−0.60−0.32 0.32−0.56 0.41

0.84−0.35 0.58 0.01 0.61−0.21 0.47−0.54 1.00 0.82 0.40−0.41 0.46−0.43
0.81−0.31 0.66−0.04 0.67−0.31 0.54−0.60 0.82 1.00 0.48−0.43 0.53−0.56
0.45−0.35 0.46−0.13 0.34−0.32 0.38−0.32 0.40 0.48 1.00−0.20 0.43−0.51
−0.48 0.18−0.33 0.05−0.38 0.13−0.29 0.32−0.41−0.43−0.20 1.00−0.36 0.40

0.62−0.45 0.62−0.06 0.61−0.64 0.64−0.56 0.46 0.53 0.43−0.36 1.00−0.83
−0.57 0.36−0.55 0.16−0.52 0.61−0.48 0.41−0.43−0.56−0.51 0.40−0.83 1.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Notice that some of the correlations between X̃14 and the other variables have in-
creased.

If we want to explain the variations of the price X̃14 by the variation of all the
other variables X̃1, . . . , X̃13 we could estimate the linear model

X̃14 = β0 +
13∑
j=1

βj X̃j + ε. (3.57)

The result is given in Table 3.5.
The value of r2 (0.765) and r2

adj (0.759) show that most of the variance of X14 is
explained by the linear model (3.57).

Again we see that the variations of X̃14 are mostly explained by (in decreasing
order of the absolute value of the t-statistic) X̃13, X̃8, X̃11, X̃10, X̃12, X̃6, X̃9, X̃4
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Table 3.5 Linear regression
results for all variables of
Boston Housing data set

MVAlinregbh

Variable β̂j SE(β̂j ) t p-value

constant 4.1769 0.3790 11.020 0.0000

X̃1 −0.0146 0.0117 −1.254 0.2105

X̃2 0.0014 0.0056 0.247 0.8051

X̃3 −0.0127 0.0223 −0.570 0.5692

X̃4 0.1100 0.0366 3.002 0.0028

X̃5 −0.2831 0.1053 −2.688 0.0074

X̃6 0.4211 0.1102 3.822 0.0001

X̃7 0.0064 0.0049 1.317 0.1885

X̃8 −0.1832 0.0368 −4.977 0.0000

X̃9 0.0684 0.0225 3.042 0.0025

X̃10 −0.2018 0.0484 −4.167 0.0000

X̃11 −0.0400 0.0081 −4.946 0.0000

X̃12 0.0445 0.0115 3.882 0.0001

X̃13 −0.2626 0.0161 −16.320 0.0000

and X̃5. The other variables X̃1, X̃2, X̃3 and X̃7 seem to have little influence on
the variations of X̃14. This will be confirmed by the testing procedures that will be
developed in Chapter 7.

3.8 Exercises

Exercise 3.1 The covariance sX4X5 between X4 and X5 for the entire bank data
set is positive. Given the definitions of X4 and X5, we would expect a negative
covariance. Using Figure 3.1 can you explain why sX4X5 is positive?

Exercise 3.2 Consider the two sub-clouds of counterfeit and genuine bank notes in
Figure 3.1 separately. Do you still expect sX4X5 (now calculated separately for each
cloud) to be positive?

Exercise 3.3 We remarked that for two normal random variables, zero covariance
implies independence. Why does this remark not apply to Example 3.4?

Exercise 3.4 Compute the covariance between the variables

X2 =miles per gallon,

X8 =weight

from the car data set (Table B.3). What sign do you expect the covariance to have?
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Exercise 3.5 Compute the correlation matrix of the variables in Example 3.2. Com-
ment on the sign of the correlations and test the hypothesis

ρX1X2 = 0.

Exercise 3.6 Suppose you have observed a set of observations {xi}ni=1 with x = 0,
sXX = 1 and n−1 ∑n

i=1(xi − x)3 = 0. Define the variable yi = x2
i . Can you imme-

diately tell whether rXY 
= 0?

Exercise 3.7 Find formulas (3.29) and (3.30) for α̂ and β̂ by differentiating the
objective function in (3.28) w.r.t. α and β .

Exercise 3.8 How many sales does the textile manager expect with a “classic blue”
pullover price of x = 105?

Exercise 3.9 What does a scatterplot of two random variables look like for r2 = 1
and r2 = 0?

Exercise 3.10 Prove the variance decomposition (3.38) and show that the coeffi-
cient of determination is the square of the simple correlation between X and Y .

Exercise 3.11 Make a boxplot for the residuals εi = yi − α̂ − β̂xi for the “classic
blue” pullovers data. If there are outliers, identify them and run the linear regression
again without them. Do you obtain a stronger influence of price on sales?

Exercise 3.12 Under what circumstances would you obtain the same coefficients
from the linear regression lines of Y on X and of X on Y ?

Exercise 3.13 Treat the design of Example 3.14 as if there were thirty shops and
not ten. Define xi as the index of the shop, i.e., xi = i, i = 1,2, . . . ,30. The null hy-
pothesis is a constant regression line, EY = μ. What does the alternative regression
curve look like?

Exercise 3.14 Perform the test in Exercise 3.13 for the shop example with a 0.99
significance level. Do you still reject the hypothesis of equal marketing strategies?

Exercise 3.15 Compute an approximate confidence interval for ρX2X8 in Exam-
ple 3.2. Hint: start from a confidence interval for tanh−1(ρX2X8) and then apply the
inverse transformation.

Exercise 3.16 In Example 3.2, using the exchange rate of 1 EUR= 106 JPY, com-
pute the same empirical covariance using prices in Japanese Yen rather than in Eu-
ros. Is there a significant difference? Why?

Exercise 3.17 Why does the correlation have the same sign as the covariance?
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Exercise 3.18 Show that rank(H)= tr(H)= n− 1.

Exercise 3.19 Show that X∗ = HXD−1/2 is the standardized data matrix, i.e.,
x∗ = 0 and SX∗ =RX .

Exercise 3.20 Compute for the pullovers data the regression of X1 on X2,X3 and
of X1 on X2,X4. Which one has the better coefficient of determination?

Exercise 3.21 Compare for the pullovers data the coefficient of determination for
the regression of X1 on X2 (Example 3.11), of X1 on X2,X3 (Exercise 3.20) and of
X1 on X2,X3,X4 (Example 3.15). Observe that this coefficient is increasing with
the number of predictor variables. Is this always the case?

Exercise 3.22 Consider the ANOVA problem (Section 3.5) again. Establish the
constraint Matrix A for testing μ1 = μ2. Test this hypothesis via an analog of (3.55)
and (3.56).

Exercise 3.23 Prove (3.52). (Hint, let f (β) = (y − xβ)	(y − xβ) and solve
∂f (β)
∂β

= 0.)

Exercise 3.24 Consider the linear model Y = Xβ + ε where β̂ = arg minβ ε	ε is
subject to the linear constraints Aβ̂ = a where A(q × p), (q ≤ p) is of rank q and
a is of dimension (q × 1). Show that

β̂ = β̂OLS − (X	X )−1A	
(
A(X	X )−1A	

)−1 (
Aβ̂OLS − a

)
where β̂OLS = (X	X )−1X	y. (Hint, let f (β,λ)= (y−xβ)	(y−xβ)−λ	(Aβ−
a) where λ ∈R

q and solve ∂f (β,λ)
∂β

= 0 and ∂f (β,λ)
∂λ

= 0.)

Exercise 3.25 Compute the covariance matrix S = Cov(X ) where X denotes the
matrix of observations on the counterfeit bank notes. Make a Jordan decomposition
of S . Why are all of the eigenvalues positive?

Exercise 3.26 Compute the covariance of the counterfeit notes after they are lin-
early transformed by the vector a = (1,1,1,1,1,1)	.



Chapter 4
Multivariate Distributions

The preceeding chapter showed that by using the two first moments of a multivariate
distribution (the mean and the covariance matrix), a lot of information on the rela-
tionship between the variables can be made available. Only basic statistical theory
was used to derive tests of independence or of linear relationships. In this chapter
we give an introduction to the basic probability tools useful in statistical multivariate
analysis.

Means and covariances share many interesting and useful properties, but they
represent only part of the information on a multivariate distribution. Section 4.1
presents the basic probability tools used to describe a multivariate random variable,
including marginal and conditional distributions and the concept of independence.
In Section 4.2, basic properties on means and covariances (marginal and conditional
ones) are derived.

Since many statistical procedures rely on transformations of a multivariate ran-
dom variable, Section 4.3 proposes the basic techniques needed to derive the dis-
tribution of transformations with a special emphasis on linear transforms. As an
important example of a multivariate random variable, Section 4.4 defines the multi-
normal distribution. It will be analysed in more detail in Chapter 5 along with most
of its “companion” distributions that are useful in making multivariate statistical
inferences.

The normal distribution plays a central role in statistics because it can be viewed
as an approximation and limit of many other distributions. The basic justification
relies on the central limit theorem presented in Section 4.5. We present this central
theorem in the framework of sampling theory. A useful extension of this theorem
is also given: it is an approximate distribution to transformations of asymptotically
normal variables. The increasing power of computers today makes it possible to
consider alternative approximate sampling distributions. These are based on resam-
pling techniques and are suitable for many general situations. Section 4.8 gives an
introduction to the ideas behind bootstrap approximations.

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-642-17229-8_4, © Springer-Verlag Berlin Heidelberg 2012
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4.1 Distribution and Density Function

Let X = (X1,X2, . . . ,Xp)
	 be a random vector. The cumulative distribution func-

tion (cdf) of X is defined by

F(x)= P(X ≤ x)= P(X1 ≤ x1,X2 ≤ x2, . . . ,Xp ≤ xp).
For continuous X, a nonnegative probability density function (pdf) f exists, that

F(x)=
∫ x

−∞
f (u)du. (4.1)

Note that ∫ ∞

−∞
f (u)du= 1.

Most of the integrals appearing below are multidimensional. For instance,∫ x
−∞ f (u)du means

∫ xp
−∞ · · ·

∫ x1
−∞ f (u1, . . . , up)du1 · · ·dup . Note also that the cdf

F is differentiable with

f (x)= ∂pF (x)

∂x1 · · · ∂xp .

For discrete X, the values of this random variable are concentrated on a countable
or finite set of points {cj }j∈J , the probability of events of the form {X ∈ D} can
then be computed as

P(X ∈D)=
∑

{j :cj∈D}
P(X = cj ).

If we partitionX asX = (X1,X2)
	 withX1 ∈R

k andX2 ∈R
p−k , then the function

FX1(x1)= P(X1 ≤ x1)= F(x11, . . . , x1k,∞, . . . ,∞) (4.2)

is called the marginal cdf. F = F(x) is called the joint cdf. For continuous X the
marginal pdf can be computed from the joint density by “integrating out” the vari-
able not of interest.

fX1(x1)=
∫ ∞

−∞
f (x1, x2)dx2. (4.3)

The conditional pdf of X2 given X1 = x1 is given as

f (x2 | x1)= f (x1, x2)

fX1(x1)
· (4.4)

Example 4.1 Consider the pdf

f (x1, x2)=
{ 1

2
x1 + 3

2
x2 0≤ x1, x2 ≤ 1,

0 otherwise.
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f (x1, x2) is a density since

∫
f (x1, x2)dx1dx2 = 1

2

[
x2

1

2

]1

0

+ 3

2

[
x2

2

2

]1

0

= 1

4
+ 3

4
= 1.

The marginal densities are

fX1(x1)=
∫
f (x1, x2)dx2 =

∫ 1

0

(
1

2
x1 + 3

2
x2

)
dx2 = 1

2
x1 + 3

4
;

fX2(x2)=
∫
f (x1, x2)dx1 =

∫ 1

0

(
1

2
x1 + 3

2
x2

)
dx1 = 3

2
x2 + 1

4
·

The conditional densities are therefore

f (x2 | x1)=
1
2x1 + 3

2x2
1
2x1 + 3

4

and f (x1 | x2)=
1
2x1 + 3

2x2
3
2x2 + 1

4

·

Note that these conditional pdf’s are nonlinear in x1 and x2 although the joint pdf
has a simple (linear) structure.

Independence of two random variables is defined as follows.

Definition 4.1 X1 and X2 are independent iff f (x)= f (x1, x2)= fX1(x1)fX2(x2).

That is, X1 and X2 are independent if the conditional pdf’s are equal to the
marginal densities, i.e., f (x1 | x2) = fX1(x1) and f (x2 | x1) = fX2(x2). Indepen-
dence can be interpreted as follows: knowing X2 = x2 does not change the proba-
bility assessments on X1, and conversely.

�
�
��

�
�

!
Different joint pdf’s may have the same marginal pdf’s.

Example 4.2 Consider the pdf’s

f (x1, x2)= 1, 0< x1, x2 < 1,

and

f (x1, x2)= 1+ α(2x1 − 1)(2x2 − 1), 0< x1, x2 < 1, −1≤ α ≤ 1.

We compute in both cases the marginal pdf’s as

fX1(x1)= 1, fX2(x2)= 1.

Indeed ∫ 1

0
1+ α(2x1 − 1)(2x2 − 1)dx2 = 1+ α(2x1 − 1)[x2

2 − x2]10 = 1.

Hence we obtain identical marginals from different joint distributions.
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Fig. 4.1 Univariate estimates of the density of X4 (left) and X5 (right) of the bank notes
MVAdenbank2

Let us study the concept of independence using the bank notes example. Consider
the variables X4 (lower inner frame) and X5 (upper inner frame). From Chapter 3,
we already know that they have significant correlation, so they are almost surely
not independent. Kernel estimates of the marginal densities, f̂X4 and f̂X5 , are given
in Figure 4.1. In Figure 4.2 (left) we show the product of these two densities. The
kernel density technique was presented in Section 1.3. IfX4 andX5 are independent,
this product f̂X4 · f̂X5 should be roughly equal to f̂ (x4, x5), the estimate of the joint
density of (X4,X5). Comparing the two graphs in Figure 4.2 reveals that the two
densities are different. The two variables X4 and X5 are therefore not independent.

An elegant concept of connecting marginals with joint cdfs is given by copu-
lae. Copulae are important in Value-at-Risk calculations and are an essential tool in
quantitative finance (Härdle, Hautsch and Overbeck, 2009).

For simplicity of presentation we concentrate on the p = 2 dimensional case.
A 2-dimensional copula is a function C : [0,1]2 → [0,1] with the following prop-
erties:

• For every u ∈ [0,1]: C(0, u)= C(u,0)= 0.
• For every u ∈ [0,1]: C(u,1)= u and C(1, u)= u.
• For every (u1, u2), (v1, v2) ∈ [0,1] × [0,1] with u1 ≤ v1 and u2 ≤ v2:

C(v1, v2)−C(v1, u2)−C(u1, v2)+C(u1, u2)≥ 0 .

The usage of the name “copula” for the function C is explained by the following
theorem.
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Fig. 4.2 The product of univariate density estimates (left) and the joint density estimate (right) for

X4 (left) and X5 of the bank notes MVAdenbank3

Theorem 4.1 (Sklar’s theorem) Let F be a joint distribution function with marginal
distribution functions FX1 and FX2 . Then a copula C exists with

F(x1, x2)= C{FX1(x1),FX2(x2)} (4.5)

for every x1, x2 ∈R. If FX1 and FX2 are continuous, then C is unique. On the other
hand, if C is a copula and FX1 and FX2 are distribution functions, then the function
F defined by (4.5) is a joint distribution function with marginals FX1 and FX2 .

With Sklar’s Theorem, the use of the name “copula” becomes obvious. It was
chosen to describe “a function that links a multidimensional distribution to its one-
dimensional margins” and appeared in the mathematical literature for the first time
in Sklar (1959).

Example 4.3 The structure of independence implies that the product of the distribu-
tion functions FX1 and FX2 equals their joint distribution function F ,

F(x1, x2)= FX1(x1) · FX2(x2). (4.6)

Thus, we obtain the independence copula C =� from

�(u1, . . . , un)=
n∏
i=1

ui.

Theorem 4.2 Let X1 and X2 be random variables with continuous distribution
functions FX1 and FX2 and the joint distribution function F . Then X1 and X2 are
independent if and only if CX1,X2 =�.

Proof From Sklar’s Theorem we know that there exists an unique copula C with

P(X1 ≤ x1,X2 ≤ x2)= F(x1, x2)= C{FX1(x1),FX2(x2)}. (4.7)
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Independence can be seen using (4.5) for the joint distribution function F and the
definition of �,

F(x1, x2)= C{FX1(x1),FX2(x2)} = FX1(x1)FX2(x2). (4.8)
�

Example 4.4 The Gumbel-Hougaard family of copulae (Nelsen, 1999) is given by
the function

Cθ(u, v)= exp
[
−{

(− logu)θ + (− logv)θ
}1/θ

]
. (4.9)

The parameter θ may take all values in the interval [1,∞). The Gumbel-Hougaard
copulae are suited to describe bivariate extreme value distributions.

For θ = 1, the expression (4.9) reduces to the product copula, i.e., C1(u, v) =
�(u,v)= uv. For θ→∞ one finds for the Gumbel-Hougaard copula:

Cθ(u, v)−→min(u, v)=M(u,v),

where the function M is also a copula such that C(u, v) ≤M(u,v) for arbitrary
copula C. The copula M is called the Fréchet-Hoeffding upper bound.

Similarly, we obtain the Fréchet-Hoeffding lower bound W(u,v)=max(u+v−
1,0) which satisfies W(u,v)≤ C(u, v) for any other copula C.

Summary
↪→ The cumulative distribution function (cdf) is defined as F(x) =

P(X < x).
↪→ If a probability density function (pdf) f exists then F(x) =∫ x

−∞ f (u)du.

↪→ The pdf integrates to one, i.e.,
∫∞
−∞ f (x)dx = 1.

↪→ Let X = (X1,X2)
	 be partitioned into sub-vectors X1 and X2

with joint cdf F . Then FX1(x1) = P(X1 ≤ x1) is the marginal
cdf of X1. The marginal pdf of X1 is obtained by fX1(x1) =∫∞
−∞ f (x1, x2)dx2. Different joint pdf’s may have the same

marginal pdf’s.
↪→ The conditional pdf of X2 given X1 = x1 is defined as f (x2 | x1)=

f (x1, x2)
fX1(x1)

·
↪→ Two random variables X1 and X2 are called independent iff

f (x1, x2) = fX1(x1)fX2(x2). This is equivalent to f (x2 | x1) =
fX2(x2).
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Summary (continued)
↪→ Different joint pdf’s may have identical marginal pdf’s.

↪→ Copula is a function which connects marginals to form joint cdfs.

4.2 Moments and Characteristic Functions

Moments—Expectation and Covariance Matrix

If X is a random vector with density f (x) then the expectation of X is

EX =
⎛
⎜⎝

EX1
...

EXp

⎞
⎟⎠= ∫

xf (x)dx =
⎛
⎜⎝

∫
x1f (x)dx

...∫
xpf (x)dx

⎞
⎟⎠= μ. (4.10)

Accordingly, the expectation of a matrix of random elements has to be understood
component by component. The operation of forming expectations is linear:

E (αX+ βY)= αEX+ β EY. (4.11)

If A(q × p) is a matrix of real numbers, we have:

E(AX)=AEX. (4.12)

When X and Y are independent,

E(XY	)= EXEY	. (4.13)

The matrix

Var(X)=� = E(X−μ)(X−μ)	 (4.14)

is the (theoretical) covariance matrix. We write for a vector X with mean vector μ
and covariance matrix �,

X ∼ (μ,�). (4.15)

The (p× q) matrix

�XY = Cov(X,Y )= E(X−μ)(Y − ν)	 (4.16)

is the covariance matrix ofX ∼ (μ,�XX) and Y ∼ (ν,�YY ). Note that�XY =�	YX
and that Z = (

X
Y

)
has covariance �ZZ =

(�XX �XY
�YX �YY

)
. From

Cov(X,Y )= E(XY	)−μν	 = E(XY	)− EXEY	 (4.17)

it follows that Cov(X,Y )= 0 in the case where X and Y are independent. We often
say that μ = E(X) is the first order moment of X and that E(XX	) provides the
second order moments of X:

E(XX	)= {E(XiXj )}, for i = 1, . . . , p and j = 1, . . . , p. (4.18)
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Properties of the Covariance Matrix � = Var(X)

� = (σXiXj ), σXiXj = Cov(Xi,Xj ), σXiXi = Var(Xi) (4.19)

� = E(XX	)−μμ	 (4.20)

� ≥ 0 (4.21)

Properties of Variances and Covariances

Var(a	X)= a	Var(X)a =
∑
i,j

aiajσXiXj (4.22)

Var(AX+ b)=AVar(X)A	 (4.23)

Cov(X+ Y,Z)= Cov(X,Z)+Cov(Y,Z) (4.24)

Var(X+ Y)= Var(X)+ Cov(X,Y )+Cov(Y,X)+ Var(Y ) (4.25)

Cov(AX,BY)=ACov(X,Y )B	. (4.26)

Let us compute these quantities for a specific joint density.

Example 4.5 Consider the pdf of Example 4.1. The mean vector μ= (μ1
μ2

)
is

μ1 =
∫ ∫

x1f (x1, x2)dx1dx2 =
∫ 1

0

∫ 1

0
x1

(
1

2
x1 + 3

2
x2

)
dx1dx2

=
∫ 1

0
x1

(
1

2
x1 + 3

4

)
dx1 = 1

2

[
x3

1

3

]1

0

+ 3

4

[
x2

1

2

]1

0

= 1

6
+ 3

8
= 4+ 9

24
= 13

24
,

μ2 =
∫ ∫

x2f (x1, x2)dx1dx2 =
∫ 1

0

∫ 1

0
x2

(
1

2
x1 + 3

2
x2

)
dx1dx2

=
∫ 1

0
x2

(
1

4
+ 3

2
x2

)
dx2 = 1

4

[
x2

2

2

]1

0

+ 3

2

[
x3

2

3

]1

0

= 1

8
+ 1

2
= 1+ 4

8
= 5

8
·

The elements of the covariance matrix are

σX1X1 = EX2
1 −μ2

1 with

EX2
1 =

∫ 1

0

∫ 1

0
x2

1

(
1

2
x1 + 3

2
x2

)
dx1dx2 = 1

2

[
x4

1

4

]1

0

+ 3

4

[
x3

1

3

]1

0

= 3

8
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σX2X2 = EX2
2 −μ2

2 with

EX2
2 =

∫ 1

0

∫ 1

0
x2

2

(
1

2
x1 + 3

2
x2

)
dx1dx2 = 1

4

[
x3

2

3

]1

0

+ 3

2

[
x4

2

4

]1

0

= 11

24

σX1X2 = E(X1X2)−μ1μ2 with

E(X1X2)=
∫ 1

0

∫ 1

0
x1x2

(
1

2
x1 + 3

2
x2

)
dx1dx2 =

∫ 1

0

(
1

6
x2 + 3

4
x2

2

)
dx2

= 1

6

[
x2

2

2

]1

0

+ 3

4

[
x3

2

3

]1

0

= 1

3
.

Hence the covariance matrix is

� =
(

0.0815 0.0052
0.0052 0.0677

)
.

Conditional Expectations

The conditional expectations are

E(X2 | x1)=
∫
x2f (x2 | x1) dx2 and E(X1 | x2)=

∫
x1f (x1 | x2) dx1. (4.27)

E(X2|x1) represents the location parameter of the conditional pdf of X2 given that
X1 = x1. In the same way, we can define Var(X2|X1 = x1) as a measure of the
dispersion of X2 given that X1 = x1. We have from (4.20) that

Var(X2|X1 = x1)= E(X2 X
	
2 |X1 = x1)− E(X2|X1 = x1) E(X	2 |X1 = x1).

Using the conditional covariance matrix, the conditional correlations may be defined
as:

ρX2 X3|X1=x1 =
Cov(X2,X3|X1 = x1)√

Var(X2|X1 = x1) Var(X3|X1 = x1)
.

These conditional correlations are known as partial correlations between X2 and
X3, conditioned on X1 being equal to x1.

Example 4.6 Consider the following pdf

f (x1, x2, x3)= 2

3
(x1 + x2 + x3) where 0< x1, x2, x3 < 1.
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Note that the pdf is symmetric in x1, x2 and x3 which facilitates the computations.
For instance,

f (x1, x2) = 2

3

(
x1 + x2 + 1

2

)
0< x1, x2 < 1

f (x1) = 2

3
(x1 + 1) 0< x1 < 1

and the other marginals are similar. We also have

f (x1, x2|x3) = x1 + x2 + x3

x3 + 1
, 0< x1, x2 < 1

f (x1|x3) = x1 + x3 + 1
2

x3 + 1
, 0< x1 < 1.

It is easy to compute the following moments:

E(Xi)= 5

9
; E(X2

i )=
7

18
; E(XiXj )= 11

36
(i 
= j and i, j = 1,2,3)

E(X1|X3 = x3)= E(X2|X3 = x3)= 1

12

(
6x3 + 7

x3 + 1

)
;

E(X2
1|X3 = x3)= E(X2

2|X3 = x3)= 1

12

(
4x3 + 5

x3 + 1

)
and

E(X1X2|X3 = x3)= 1

12

(
3x3 + 4

x3 + 1

)
.

Note that the conditional means of X1 and of X2, given X3 = x3, are not linear
in x3. From these moments we obtain:

� =
⎛
⎝ 13

162 − 1
324 − 1

324
− 1

324
13

162 − 1
324

− 1
324 − 1

324
13

162

⎞
⎠ in particular ρX1X2 =−

1

26
≈−0.0385.

The conditional covariance matrix of X1 and X2, given X3 = x3 is

Var

((
X1

X2

)
|X3 = x3

)
=

⎛
⎝ 12x2

3+24x3+11
144(x3+1)2

−1
144(x3+1)2

−1
144(x3+1)2

12x2
3+24x3+11

144(x3+1)2

⎞
⎠ .

In particular, the partial correlation between X1 and X2, given that X3 is fixed at x3,
is given by ρX1X2|X3=x3 =− 1

12x2
3+24x3+11

which ranges from −0.0909 to −0.0213

when x3 goes from 0 to 1. Therefore, in this example, the partial correlation may be
larger or smaller than the simple correlation, depending on the value of the condition
X3 = x3.
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Example 4.7 Consider the following joint pdf

f (x1, x2, x3)= 2x2(x1 + x3); 0< x1, x2, x3 < 1.

Note the symmetry of x1 and x3 in the pdf and that X2 is independent of (X1,X3).
It immediately follows that

f (x1, x3)= (x1 + x3) 0< x1, x3 < 1

f (x1)= x1 + 1

2
;

f (x2)= 2x2;
f (x3)= x3 + 1

2
.

Simple computations lead to

E(X)=

⎛
⎜⎜⎜⎝

7
12

2
3

7
12

⎞
⎟⎟⎟⎠ and � =

⎛
⎝ 11

144 0 − 1
144

0 1
18 0

− 1
144 0 11

144

⎞
⎠ .

Let us analyze the conditional distribution of (X1,X2) given X3 = x3. We have

f (x1, x2|x3) = 4(x1 + x3)x2

2x3 + 1
0< x1, x2 < 1

f (x1|x3) = 2

(
x1 + x3

2x3 + 1

)
0< x1 < 1

f (x2|x3) = f (x2)= 2x2 0< x2 < 1

so that again X1 and X2 are independent conditional on X3 = x3. In this case

E

((
X1

X2

)
|X3 = x3

)
=

(
1
3

(
2+3x3
1+2x3

)
2
3

)

Var

((
X1

X2

)
|X3 = x3

)
=

(
1
18

(
6x2

3+6x3+1
(2x3+1)2

)
0

0 1
18

)
.

Properties of Conditional Expectations

Since E(X2|X1 = x1) is a function of x1, say h(x1), we can define the random vari-
able h(X1)= E(X2|X1). The same can be done when defining the random variable
Var(X2|X1). These two random variables share some interesting properties:

E(X2)= E{E(X2|X1)} (4.28)

Var(X2)= E{Var(X2|X1)} + Var{E(X2|X1)}. (4.29)
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Example 4.8 Consider the following pdf

f (x1, x2)= 2e
− x2
x1 ; 0< x1 < 1, x2 > 0.

It is easy to show that

f (x1)= 2x1 for 0< x1 < 1; E(X1)= 2

3
and Var(X1)= 1

18

f (x2|x1)= 1

x1
e
− x2
x1 for x2 > 0; E(X2|X1)=X1 and Var(X2|X1)=X2

1.

Without explicitly computing f (x2), we can obtain:

E(X2)= E {E(X2|X1)} = E(X1)= 2

3

Var(X2)= E {Var(X2|X1)} + Var {E(X2|X1)} = E(X2
1)+ Var(X1)= 2

4
+ 1

18
= 10

18
.

The conditional expectation E(X2|X1) viewed as a function h(X1) ofX1 (known
as the regression function of X2 on X1), can be interpreted as a conditional approxi-
mation of X2 by a function of X1. The error term of the approximation is then given
by:

U =X2 − E(X2|X1).

Theorem 4.3 Let X1 ∈ R
k and X2 ∈ R

p−k and U = X2 − E(X2|X1). Then we
have:

(1) E(U)= 0
(2) E(X2|X1) is the best approximation of X2 by a function h(X1) of X1 where

h : Rk −→R
p−k . “Best” is the minimum mean squared error (MSE), where

MSE(h)= E[{X2 − h(X1)}	 {X2 − h(X1)}].

Characteristic Functions

The characteristic function (cf) of a random vector X ∈R
p (respectively its density

f (x)) is defined as

ϕX(t)= E(eit	X)=
∫
eit	xf (x) dx, t ∈R

p,

where i is the complex unit: i2 =−1. The cf has the following properties:

ϕX(0)= 1 and |ϕX(t)| ≤ 1. (4.30)

If ϕ is absolutely integrable, i.e., the integral
∫∞
−∞ |ϕ(x)|dx exists and is finite, then

f (x)= 1

(2π)p

∫ ∞

−∞
e−it	xϕX(t) dt. (4.31)
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If X = (X1,X2, . . . ,Xp)
	, then for t = (t1, t2, . . . , tp)	

ϕX1(t1)= ϕX(t1,0, . . . ,0), . . . , ϕXp(tp)= ϕX(0, . . . ,0, tp). (4.32)

If X1, . . . ,Xp are independent random variables, then for t = (t1, t2, . . . , tp)	
ϕX(t)= ϕX1(t1)· . . . ·ϕXp(tp). (4.33)

If X1, . . . ,Xp are independent random variables, then for t ∈R

ϕX1+···+Xp(t)= ϕX1(t)· . . . ·ϕXp(t). (4.34)

The characteristic function can recover all the cross-product moments of any order:
∀jk ≥ 0, k = 1, . . . , p and for t = (t1, . . . , tp)	 we have

E
(
X
j1
1 · . . . ·X

jp
p

)
= 1

ij1+···+jp

[
∂ϕX(t)

∂t
j1
1 · · · ∂t

jp
p

]
t=0

. (4.35)

Example 4.9 The cf of the density in Example 4.5 is given by

ϕX(t)=
∫ 1

0

∫ 1

0
eit	xf (x)dx

=
∫ 1

0

∫ 1

0
{cos(t1x1 + t2x2)+ i sin(t1x1 + t2x2)}

(
1

2
x1 + 3

2
x2

)
dx1dx2

= 0.5 ei t1
(
3 i t1 − 3 i ei t2 t1 + i t2 − i ei t2 t2 + t1 t2 − 4 ei t2 t1 t2

)
t12 t22

− 0.5
(
3 i t1 − 3 i ei t2 t1 + i t2 − i ei t2 t2 − 3 ei t2 t1 t2

)
t12 t22

.

Example 4.10 Suppose X ∈R
1 follows the density of the standard normal distribu-

tion

fX(x)= 1√
2π

exp

(
−x

2

2

)
(see Section 4.4) then the cf can be computed via

ϕX(t)= 1√
2π

∫ ∞

−∞
eitx exp

(
−x

2

2

)
dx

= 1√
2π

∫ ∞

−∞
exp

{
−1

2
(x2 − 2itx + i2t2)

}
exp

{
1

2
i2t2

}
dx

= exp

(
− t

2

2

) ∫ ∞

−∞
1√
2π

exp

{
− (x − it)2

2

}
dx

= exp

(
− t

2

2

)
,

since i2 =−1 and
∫ 1√

2π
exp

{− (x−it)2
2

}
dx = 1.
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Table 4.1 Characteristic functions for some common distributions

pdf cf

Uniform f (x)= I(x ∈ [a, b])/(b− a) ϕX(t)= (eibt − eiat )/(b− a)it

N1(μ,σ
2) f (x)= (2πσ 2)−1/2 exp{−(x −μ)2/2σ 2} ϕX(t)= eiμt−σ 2 t2/2

χ2(n) f (x)= I(x > 0)xn/2−1e−x/2/{�(n/2)2n/2} ϕX(t)= (1− 2it)−n/2

Np(μ,�) f (x)= |2π�|−1/2 exp{−(x −μ)	�(x −μ)/2} ϕX(t)= eit	μ−t	�t/2

A variety of distributional characteristics can be computed from ϕX(t). The stan-
dard normal distribution has a very simple cf, as was seen in Example 4.10. Devia-
tions from normal covariance structures can be measured by the deviations from the
cf (or characteristics of it). In Table 4.1 we give an overview of the cf’s for a variety
of distributions.

Theorem 4.4 (Cramer-Wold) The distribution of X ∈R
p is completely determined

by the set of all (one-dimensional) distributions of t	X where t ∈R
p .

This theorem says that we can determine the distribution of X in R
p by specify-

ing all of the one-dimensional distributions of the linear combinations

p∑
j=1

tjXj = t	X, t = (t1, t2, . . . , tp)	.

Cumulant Functions

Moments mk =
∫
xkf (x)dx often help in describing distributional characteris-

tics. The normal distribution in d = 1 dimension is completely characterised by
its standard normal density f = ϕ and the moment parameters are μ = m1 and
σ 2 = m2 − m2

1. Another helpful class of parameters are the cumulants or semi-
invariants of a distribution. In order to simplify notation we concentrate here on the
one-dimensional (d = 1) case.

For a given one dimensional random variable X with density f and finite mo-
ments of order k the characteristic function ϕX(t)= E(eitX) has the derivative

1

ij

[
∂j log {ϕX(t)}

∂tj

]
t=0
= κj , j = 1, . . . , k.

The values κj are called cumulants or semi-invariants since κj does not change
(for j > 1) under a shift transformation X �→ X + a. The cumulants are natural
parameters for dimension reduction methods, in particular the Projection Pursuit
method (see Section 19.2).
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The relationship between the first k moments m1, . . . ,mk and the cumulants is
given by

κk = (−1)k−1

∣∣∣∣∣∣∣∣∣∣∣

m1 1 . . . 0

m2

(
1
0

)
m1 . . .

...
...

. . .
...

mk

(
k−1

0

)
mk−1 . . .

(
k−1
k−2

)
m1

∣∣∣∣∣∣∣∣∣∣∣
. (4.36)

Example 4.11 Suppose that k = 1, then formula (4.36) above yields

κ1 =m1.

For k = 2 we obtain

κ2 =−
∣∣∣∣∣
m1 1

m2

(
1
0

)
m1

∣∣∣∣∣=m2 −m2
1.

For k = 3 we have to calculate

κ3 =
∣∣∣∣∣∣
m1 1 0
m2 m1 1
m3 m2 2m1

∣∣∣∣∣∣ .
Calculating the determinant we have:

κ3 =m1

∣∣∣∣m1 1
m2 2m1

∣∣∣∣−m2

∣∣∣∣ 1 0
m2 2m1

∣∣∣∣+m3

∣∣∣∣ 1 0
m1 1

∣∣∣∣
=m1(2m

2
1 −m2)−m2(2m1)+m3

=m3 − 3m1m2 + 2m3
1. (4.37)

Similarly one calculates

κ4 =m4 − 4m3m1 − 3m2
2 + 12m2m

2
1 − 6m4

1. (4.38)

The same type of process is used to find the moments from the cumulants:

m1 = κ1

m2 = κ2 + κ2
1

m3 = κ3 + 3κ2κ1 + κ3
1

m4 = κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ

2
1 + κ4

1 .

(4.39)
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A very simple relationship can be observed between the semi-invariants and the
central moments μk = E(X − μ)k , where μ = m1 as defined before. In fact, κ2 =
μ2, κ3 = μ3 and κ4 = μ4 − 3μ2

2.
Skewness γ3 and kurtosis γ4 are defined as:

γ3 = E(X−μ)3/σ 3

γ4 = E(X−μ)4/σ 4.
(4.40)

The skewness and kurtosis determine the shape of one-dimensional distributions.
The skewness of a normal distribution is 0 and the kurtosis equals 3. The relation of
these parameters to the cumulants is given by:

γ3 = κ3

κ
3/2
2

. (4.41)

From (4.39) and Example 4.11

γ4 = κ4 + 3κ2
2 + κ4

1 −m4
1

σ 4
= κ4 + 3κ2

2

κ2
2

= κ4

κ2
2

+ 3. (4.42)

These relations will be used later in Section 19.2 on Projection Pursuit to determine
deviations from normality.

Summary
↪→ The expectation of a random vector X is μ= ∫

xf (x) dx, the co-
variance matrix � = Var(X) = E(X − μ)(X − μ)	. We denote
X ∼ (μ,�).

↪→ Expectations are linear, i.e., E(αX + βY) = αEX + β EY . If X
and Y are independent, then E(XY	)= EXEY	.

↪→ The covariance between two random vectors X and Y is �XY =
Cov(X,Y )= E(X−EX)(Y −EY)	 = E(XY	)−EXEY	. If X
and Y are independent, then Cov(X,Y )= 0.

↪→ The characteristic function (cf) of a random vector X is ϕX(t) =
E(eit	X).

↪→ The distribution of a p-dimensional random variable X is com-
pletely determined by all one-dimensional distributions of t	X
where t ∈R

p (Theorem of Cramer-Wold).
↪→ The conditional expectation E(X2|X1) is the MSE best approxima-

tion of X2 by a function of X1.
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4.3 Transformations

Suppose thatX has pdf fX(x). What is the pdf of Y = 3X? Or ifX = (X1,X2,X3)
	,

what is the pdf of

Y =
⎛
⎝ 3X1
X1 − 4X2

X3

⎞
⎠?

This is a special case of asking for the pdf of Y when

X = u(Y ) (4.43)

for a one-to-one transformation u: Rp→R
p . Define the Jacobian of u as

J =
(
∂xi

∂yj

)
=

(
∂ui(y)

∂yj

)

and let abs(|J |) be the absolute value of the determinant of this Jacobian. The pdf
of Y is given by

fY (y)= abs(|J |) · fX{u(y)}. (4.44)

Using this we can answer the introductory questions, namely

(x1, . . . , xp)
	 = u(y1, . . . , yp)= 1

3
(y1, . . . , yp)

	

with

J =
⎛
⎜⎝

1
3 0

. . .

0 1
3

⎞
⎟⎠

and hence abs(|J |)= ( 1
3 )
p . So the pdf of Y is 1

3p fX(
y
3 ).

This introductory example is a special case of

Y =AX+ b, where A is nonsingular.

The inverse transformation is

X =A−1(Y − b).

Therefore

J =A−1,

and hence

fY (y)= abs(|A|−1)fX{A−1(y − b)}. (4.45)
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Example 4.12 Consider X = (X1,X2) ∈R
2 with density fX(x)= fX(x1, x2),

A=
(

1 1
1 −1

)
, b=

(
0

0

)
.

Then

Y =AX+ b=
(
X1 +X2
X1 −X2

)
and

|A| = −2, abs(|A|−1)= 1

2
, A−1 =−1

2

(−1 −1
−1 1

)
.

Hence

fY (y)= abs(|A|−1) · fX(A−1y)

= 1

2
fX

{
1

2

(
1 1
1 −1

)(
y1
y2

)}

= 1

2
fX

{
1

2
(y1 + y2),

1

2
(y1 − y2)

}
. (4.46)

Example 4.13 Consider X ∈ R
1 with density fX(x) and Y = exp(X). According

to (4.43) x = u(y)= log(y) and hence the Jacobian is

J = dx

dy
= 1

y
.

The pdf of Y is therefore:

fY (y)= 1

y
fX{log(y)}.

Summary
↪→ If X has pdf fX(x), then a transformed random vector Y , i.e., X =

u(Y ), has pdf fY (y) = abs(|J |) · fX{u(y)}, where J denotes the
Jacobian J = ( ∂u(yi )

∂yj

)
.

↪→ In the case of a linear relation Y =AX + b the pdf’s of X and Y
are related via fY (y)= abs(|A|−1)fX{A−1(y − b)}.
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4.4 The Multinormal Distribution

The multinormal distribution with mean μ and covariance � > 0 has the density

f (x)= |2π�|−1/2 exp

{
−1

2
(x −μ)	�−1(x −μ)

}
. (4.47)

We write X ∼Np(μ,�).
How is this multinormal distribution with mean μ and covariance � related to

the multivariate standard normal Np(0,Ip)? Through a linear transformation using
the results of Section 4.3, as shown in the next theorem.

Theorem 4.5 Let X ∼ Np(μ,�) and Y = �−1/2(X − μ) (Mahalanobis transfor-
mation). Then

Y ∼Np(0,Ip),
i.e., the elements Yj ∈R are independent, one-dimensional N(0,1) variables.

Proof Note that (X − μ)	�−1(X − μ) = Y	Y . Application of (4.45) gives J =
�1/2, hence

fY (y)= (2π)−p/2 exp

(
−1

2
y	y

)
(4.48)

which is by (4.47) the pdf of a Np(0,Ip). �

Note that the above Mahalanobis transformation yields in fact a random variable
Y = (Y1, . . . , Yp)

	 composed of independent one-dimensional Yj ∼N1(0,1) since

fY (y)= 1

(2π)p/2
exp

(
−1

2
y	y

)

=
p∏
j=1

1√
2π

exp

(
−1

2
y2
j

)

=
p∏
j=1

fYj (yj ).

Here each fYj (y) is a standard normal density 1√
2π

exp(− y2

2 ). From this it is clear

that E(Y )= 0 and Var(Y )= Ip .
How can we create Np(μ,�) variables on the basis of Np(0,Ip) variables? We

use the inverse linear transformation

X =�1/2Y +μ. (4.49)

Using (4.11) and (4.23) we can also check that E(X) = μ and Var(X) = �. The
following theorem is useful because it presents the distribution of a variable after it
has been linearly transformed. The proof is left as an exercise.
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Fig. 4.3 Scatterplot of a normal sample and contour ellipses for μ=
(

3
2

)
and � =

(
1
−1.5

−1.5
4

)
MVAcontnorm

Theorem 4.6 Let X ∼Np(μ,�) and A(p × p), c ∈ R
p , where A is nonsingular.

Then Y =AX+ c is again a p-variate Normal, i.e.,

Y ∼Np(Aμ+ c,A�A	). (4.50)

Geometry of the Np(μ,�) Distribution

From (4.47) we see that the density of the Np(μ,�) distribution is constant on
ellipsoids of the form

(x −μ)	�−1(x −μ)= d2. (4.51)

Example 4.14 Figure 4.3 shows the contour ellipses of a two-dimensional normal
distribution. Note that these contour ellipses are the iso-distance curves (2.34) from
the mean of this normal distribution corresponding to the metric �−1.

According to Theorem 2.7 in Section 2.6 the half-lengths of the axes in the con-
tour ellipsoid are

√
d2λi where λi are the eigenvalues of �. If � is a diagonal

matrix, the rectangle circumscribing the contour ellipse has sides with length 2dσi
and is thus naturally proportional to the standard deviations of Xi (i = 1,2).

The distribution of the quadratic form in (4.51) is given in the next theorem.
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Theorem 4.7 If X ∼Np(μ,�), then the variable U = (X−μ)	�−1(X−μ) has
a χ2

p distribution.

Theorem 4.8 The characteristic function (cf) of a multinormal Np(μ,�) is given
by

ϕX(t)= exp

(
it	μ− 1

2
t	�t

)
. (4.52)

We can check Theorem 4.8 by transforming the cf back:

f (x)= 1

(2π)p

∫
exp

(
−it	x + it	μ− 1

2
t	�t

)
dt

= 1

|2π�−1|1/2|2π�|1/2

·
∫

exp

[
−1

2
{t	�t + 2it	(x −μ)− (x −μ)	�−1(x −μ)}

]

· exp

[
−1

2
{(x −μ)	�−1(x −μ)}

]
dt

= 1

|2π�|1/2 exp

[
−1

2
{(x −μ)	�(x −μ)}

]
since∫

1

|2π�−1|1/2 exp

[
−1

2
{t	�t + 2it	(x −μ)− (x −μ)	�−1(x −μ)}

]
dt

=
∫

1

|2π�−1|1/2 exp

[
−1

2
{(t + i�−1(x −μ))	�(t + i�−1(x −μ))}

]
dt

= 1.

Note that if Y ∼Np(0,Ip) (e.g., the Mahalanobis-transform), then

ϕY (t)= exp

(
−1

2
t	Ipt

)
= exp

(
−1

2

p∑
i=1

t2i

)

= ϕY1(t1) · . . . · ϕYp(tp)
which is consistent with (4.33).

Singular Normal Distribution

Suppose that we have rank(�)= k < p, where p is the dimension of X. We define
the (singular) density of X with the aid of the G-Inverse �− of �,

f (x)= (2π)−k/2

(λ1 · · ·λk)1/2 exp

{
−1

2
(x −μ)	�−(x −μ)

}
(4.53)

where
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(1) x lies on the hyperplane N	(x −μ)= 0 with N (p× (p− k)) :N	� = 0 and
N	N = Ik .

(2) �− is the G-Inverse of �, and λ1, . . . , λk are the nonzero eigenvalues of �.

What is the connection to a multinormal with k-dimensions? If

Y ∼Nk(0,�1) and �1 = diag(λ1, . . . , λk), (4.54)

then an orthogonal matrix B(p× k) with B	B = Ik exists that means X = BY +μ
where X has a singular pdf of the form (4.53).

Gaussian Copula

In Examples 4.3 and 4.4 we have introduced copulae. Another important copula is
the Gaussian or normal copula,

Cρ(u, v)=
∫ �−1

1 (u)

−∞

∫ �−1
2 (v)

−∞
fρ(x1, x2)dx2dx1, (4.55)

see Embrechts, McNeil and Straumann (1999). In (4.55), fρ denotes the bivariate
normal density function with correlation ρ for n = 2. The functions �1 and �2
in (4.55) refer to the corresponding one-dimensional standard normal cdfs of the
margins.

In the case of vanishing correlation, ρ = 0, the Gaussian copula becomes

C0(u, v)=
∫ �−1

1 (u)

−∞
fX1(x1)dx1

∫ �−1
2 (v)

−∞
fX2(x2)dx2

= uv
=�(u,v).

Summary
↪→ The pdf of a p-dimensional multinormal X ∼Np(μ,�) is

f (x)= |2π�|−1/2 exp

{
−1

2
(x −μ)	�−1(x −μ)

}
.

The contour curves of a multinormal are ellipsoids with half-
lengths proportional to

√
λi , where λi denotes the eigenvalues of

� (i = 1, . . . , p).
↪→ The Mahalanobis transformation transformsX ∼Np(μ,�) to Y =

�−1/2(X −μ)∼Np(0,Ip). Going in the other direction, one can
create a X ∼Np(μ,�) from Y ∼Np(0,Ip) via X =�1/2Y +μ.
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Summary (continued)
↪→ If the covariance matrix � is singular (i.e., rank(�) < p), then it

defines a singular normal distribution.
↪→ The Gaussian copula is given by

Cρ(u, v)=
∫ �−1

1 (u)

−∞

∫ �−1
2 (v)

−∞
fρ(x1, x2)dx2dx1.

↪→ The density of a singular normal distribution is given by

(2π)−k/2

(λ1 · · ·λk)1/2 exp

{
−1

2
(x −μ)	�−(x −μ)

}
.

4.5 Sampling Distributions and Limit Theorems

In multivariate statistics, we observe the values of a multivariate random variable
X and obtain a sample {xi}ni=1, as described in Chapter 3. Under random sampling,
these observations are considered to be realisations of a sequence of i.i.d. random
variablesX1, . . . ,Xn, where eachXi is a p-variate random variable which replicates
the parent or population random variable X. Some notational confusion is hard to
avoid: Xi is not the ith component of X, but rather the ith replicate of the p-variate
random variable X which provides the ith observation xi of our sample.

For a given random sampleX1, . . . ,Xn, the idea of statistical inference is to anal-
yse the properties of the population variable X. This is typically done by analysing
some characteristic θ of its distribution, like the mean, covariance matrix, etc. Sta-
tistical inference in a multivariate setup is considered in more detail in Chapters 6
and 7.

Inference can often be performed using some observable function of the sample
X1, . . . ,Xn, i.e., a statistics. Examples of such statistics were given in Chapter 3: the
sample mean x̄, the sample covariance matrix S . To get an idea of the relationship
between a statistics and the corresponding population characteristic, one has to de-
rive the sampling distribution of the statistic. The next example gives some insight
into the relation of (x, S) to (μ,�).

Example 4.15 Consider an iid sample of n random vectors Xi ∈R
p where E(Xi)=

μ and Var(Xi)=�. The sample mean x̄ and the covariance matrix S have already
been defined in Section 3.3. It is easy to prove the following results

E(x̄)= n−1
n∑
i=1

E(Xi)= μ

Var(x̄)= n−2
n∑
i=1

Var(Xi)= n−1� = E(x̄x̄	)−μμ	
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E(S)= n−1 E

{
n∑
i=1

(Xi − x̄)(Xi − x̄)	
}

= n−1 E

{
n∑
i=1

XiX
	
i − nx̄x̄	

}

= n−1{n(� +μμ	)− n(n−1� +μμ	)}
= n− 1

n
�.

This shows in particular that S is a biased estimator of �. By contrast, Su = n
n−1S

is an unbiased estimator of �.

Statistical inference often requires more than just the mean and/or the variance
of a statistic. We need the sampling distribution of the statistics to derive confidence
intervals or to define rejection regions in hypothesis testing for a given significance
level. Theorem 4.9 gives the distribution of the sample mean for a multinormal
population.

Theorem 4.9 LetX1, . . . ,Xn be i.i.d. withXi∼Np(μ,�). Then x̄∼Np(μ,n−1�).

Proof x̄ = n−1 ∑n
i=1Xi is a linear combination of independent normal variables,

so it has a normal distribution (see Chapter 5). The mean and the covariance matrix
were given in the preceding example. �

With multivariate statistics, the sampling distributions of the statistics are often
more difficult to derive than in the preceding Theorem. In addition they might be
so complicated that approximations have to be used. These approximations are pro-
vided by limit theorems. Since they are based on asymptotic limits, the approxima-
tions are only valid when the sample size is large enough. In spite of this restriction,
they make complicated situations rather simple. The following central limit theorem
shows that even if the parent distribution is not normal, when the sample size n is
large, the sample mean x̄ has an approximate normal distribution.

Theorem 4.10 (Central Limit Theorem (CLT)) Let X1,X2, . . . ,Xn be i.i.d. with
Xi ∼ (μ,�). Then the distribution of

√
n(x −μ) is asymptotically Np(0,�), i.e.,

√
n(x −μ) L−→Np(0,�) as n−→∞.

The symbol “
L−→” denotes convergence in distribution which means that the

distribution function of the random vector
√
n(x̄ −μ) converges to the distribution

function of Np(0,�).

Example 4.16 Assume that X1, . . . ,Xn are i.i.d. and that they have Bernoulli dis-
tributions where p = 1

2 (this means that P(Xi = 1) = 1
2 , P (Xi = 0) = 1

2 ). Then
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μ= p = 1
2 and � = p(1− p)= 1

4 . Hence,

√
n

(
x − 1

2

)
L−→N1

(
0,

1

4

)
as n−→∞.

The results are shown in Figure 4.4 for varying sample sizes.

Fig. 4.4 The CLT for
Bernoulli distributed random
variables. Sample size n= 5

(up) and n= 35 (down)
MVAcltbern
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Fig. 4.5 The CLT in the two-dimensional case. Sample size n = 5 (up) and n = 85 (down)
MVAcltbern2

Example 4.17 Now consider a two-dimensional random sample X1, . . . ,Xn that is
i.i.d. and created from two independent Bernoulli distributions with p = 0.5. The
joint distribution is given by P(Xi = (0,0)	)= 1

4 , P(Xi = (0,1)	)= 1
4 , P(Xi =

(1,0)	)= 1
4 , P(Xi = (1,1)	)= 1

4 . Here we have

√
n

{
x̄ −

( 1
2
1
2

)}
=N2

((
0

0

)
,

( 1
4 0
0 1

4

))
as n−→∞.

Figure 4.5 displays the estimated two-dimensional density for different sample
sizes.

The asymptotic normal distribution is often used to construct confidence intervals
for the unknown parameters. A confidence interval at the level 1− α, α ∈ (0,1), is
an interval that covers the true parameter with probability 1− α:

P(θ ∈ [θ̂l , θ̂u])= 1− α,

where θ denotes the (unknown) parameter and θ̂l and θ̂u are the lower and upper
confidence bounds respectively.

Example 4.18 Consider the i.i.d. random variables X1, . . . ,Xn with Xi ∼ (μ,σ 2)

and σ 2 known. Since we have
√
n(x̄−μ) L→N(0, σ 2) from the CLT, it follows that

P

(
−u1−α/2 ≤√n(x̄ −μ)

σ
≤ u1−α/2

)
−→ 1− α, as n−→∞
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where u1−α/2 denotes the (1 − α/2)-quantile of the standard normal distribution.
Hence the interval [

x̄ − σ√
n
u1−α/2, x̄ + σ√

n
u1−α/2

]

is an approximate (1− α)-confidence interval for μ.

But what can we do if we do not know the variance σ 2? The following corollary
gives the answer.

Corollary 4.1 If �̂ is a consistent estimate for �, then the CLT still holds, namely

√
n �̂−1/2(x̄ −μ) L−→Np(0,I) as n−→∞.

Example 4.19 Consider the i.i.d. random variables X1, . . . ,Xn with Xi ∼ (μ,σ 2),
and now with an unknown variance σ 2. From Corollary 4.1 using σ̂ 2 = 1

n

∑n
i=1(xi−

x̄)2 we obtain

√
n

(
x̄ −μ
σ̂

)
L−→N(0,1) as n−→∞.

Hence we can construct an approximate (1− α)-confidence interval for μ using the
variance estimate σ̂ 2:

C1−α =
[
x̄ − σ̂√

n
u1−α/2, x̄ + σ̂√

n
u1−α/2

]
.

Note that by the CLT

P(μ ∈ C1−α)−→ 1− α as n−→∞.

Remark 4.1 One may wonder how large should n be in practice to provide reason-
able approximations. There is no definite answer to this question: it mainly depends
on the problem at hand (the shape of the distribution of the Xi and the dimension of
Xi ). If the Xi are normally distributed, the normality of x̄ is achieved from n= 1. In
most situations, however, the approximation is valid in one-dimensional problems
for n larger than, say, 50.

Transformation of Statistics

Often in practical problems, one is interested in a function of parameters for which
one has an asymptotically normal statistic. Suppose for instance that we are inter-
ested in a cost function depending on the mean μ of the process: f (μ) = μ	Aμ
where A> 0 is given. To estimate μ we use the asymptotically normal statistic x̄.
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The question is: how does f (x̄) behave? More generally, what happens to a statis-
tic t that is asymptotically normal when we transform it by a function f (t)? The
answer is given by the following theorem.

Theorem 4.11 If
√
n(t − μ)

L−→ Np(0,�) and if f = (f1, . . . , fq)
	 : Rp → R

q

are real valued functions which are differentiable at μ ∈R
p , then f (t) is asymptot-

ically normal with mean f (μ) and covariance D	�D, i.e.,

√
n{f (t)− f (μ)} L−→Nq(0,D	�D) for n−→∞, (4.56)

where

D =
(
∂fj

∂ti

)
(t)

∣∣∣∣
t=μ

is the (p× q) matrix of all partial derivatives.

Example 4.20 We are interested in seeing how f (x̄) = x̄	Ax̄ behaves asymptoti-
cally with respect to the quadratic cost function of μ,f (μ)= μ	Aμ, where A> 0.

D = ∂f (x̄)

∂x̄

∣∣∣∣
x̄=μ

= 2Aμ.

By Theorem 4.11 we have

√
n(x̄	Ax̄ −μ	Aμ) L−→N1 (0,4μ

	A�Aμ).

Example 4.21 Suppose

Xi ∼ (μ,�); μ=
(

0

0

)
, � =

(
1 0.5

0.5 1

)
, p = 2.

We have by the CLT (Theorem 4.10) for n→∞ that

√
n(x −μ) L−→N(0,�).

Suppose that we would like to compute the distribution of
(
x2

1−x2

x1+3x2

)
. According to

Theorem 4.11 we have to consider f = (f1, f2)
	 with

f1(x1, x2)= x2
1 − x2, f2(x1, x2)= x1 + 3x2, q = 2.

Given this f (μ)= (0
0

)
and

D = (dij ), dij =
(
∂fj

∂xi

)∣∣∣∣
x=μ

=
(

2x1 1
−1 3

)∣∣∣∣
x=0

.
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Thus

D =
(

0 1
−1 3

)
.

The covariance is(
0 −1
1 3

) (
1 1

2
1
2 1

) (
0 1
−1 3

)
=

(
0 −1
1 3

) (− 1
2

5
2−1 7
2

)
=

(
1 − 7

2− 7
2 13

)
D	 � D D	 �D D	�D

,

which yields

√
n

(
x2

1 − x2
x1 + 3x2

)
L−→N2

((
0

0

)
,

(
1 − 7

2− 7
2 13

))
.

Example 4.22 Let us continue the previous example by adding one more compo-
nent to the function f . Since q = 3 > p = 2, we might expect a singular normal
distribution. Consider f = (f1, f2, f3)

	 with

f1(x1, x2)= x2
1 − x2, f2(x1, x2)= x1 + 3x2, f3 = x3

2 , q = 3.

From this we have that

D =
(

0 1 0
−1 3 0

)
and thus D	�D =

⎛
⎝ 1 − 7

2 0
− 7

2 13 0
0 0 0

⎞
⎠ .

The limit is in fact a singular normal distribution!

Summary
↪→ If X1, . . . ,Xn are i.i.d. random vectors with Xi ∼ Np(μ,�), then

x̄ ∼Np(μ, 1
n
�).

↪→ If X1, . . . ,Xn are i.i.d. random vectors with Xi ∼ (μ,�), then the
distribution of

√
n(x−μ) is asymptoticallyN(0,�) (Central Limit

Theorem).
↪→ If X1, . . . ,Xn are i.i.d. random variables with Xi ∼ (μ,σ ), then

an asymptotic confidence interval can be constructed by the CLT:
x̄ ± σ̂√

n
u1−α/2.

↪→ If t is a statistic that is asymptotically normal, i.e.,
√
n(t −μ) L−→

Np(0,�), then this holds also for a function f (t), i.e.,
√
n{f (t)−

f (μ)} is asymptotically normal.
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Fig. 4.6 Comparison of the pdf of a standard Gaussian (blue) and a Cauchy distribution (red) with

location parameter 0 and scale parameter 1 MVAgausscauchy

4.6 Heavy-Tailed Distributions

Heavy-tailed distributions were first introduced by the Italian-born Swiss economist
Pareto and extensively studied by Paul Lévy. Although in the beginning these dis-
tributions were mainly studied theoretically, nowadays they have found many ap-
plications in areas as diverse as finance, medicine, seismology, structural engineer-
ing. More concretely, they have been used to model returns of assets in financial
markets, stream flow in hydrology, precipitation and hurricane damage in meteo-
rology, earthquake prediction in seismology, pollution, material strength, teletraffic
and many others.

A distribution is called heavy-tailed if it has higher probability density in its tail
area compared with a normal distribution with same mean μ and variance σ 2. Fig-
ure 4.6 demonstrates the differences of the pdf curves of a standard Gaussian distri-
bution and a Cauchy distribution with location parameter μ= 0 and scale parameter
σ = 1. The graphic shows that the probability density of the Cauchy distribution is
much higher than that of the Gaussian in the tail part, while in the area around the
centre, the probability density of the Cauchy distribution is much lower.

In terms of kurtosis, a heavy-tailed distribution has kurtosis greater than 3 (see
Chapter 4, formula (4.40)), which is called leptokurtic, in contrast to mesokurtic dis-
tribution (kurtosis= 3) and platykurtic distribution (kurtosis< 3). Since univariate
heavy-tailed distributions serve as basics for their multivariate counterparts and their
density properties have been proved useful even in multivariate cases, we will start
from introducing some univariate heavy-tailed distributions. Then we will move on
to analyse their multivariate counterparts, and their tail behavior.
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Fig. 4.7 pdf (left) and cdf (right) of GH (λ= 0.5), HYP and NIG with α = 1, β = 0, δ = 1, μ= 0

MVAghdis

Generalised Hyperbolic Distribution

The generalised hyperbolic distribution was introduced by Barndorff-Nielsen and at
first applied to model grain size distributions of wind blown sands. Today one of
its most important uses is in stock price modelling and market risk measurement.
The name of the distribution is derived from the fact that its log-density forms a
hyperbola, while the log-density of the normal distribution is a parabola.

The density of a one-dimensional generalised hyperbolic (GH) distribution for
x ∈R is

fGH (x;λ,α,β, δ,μ)
= (

√
α2 − β2/δ)λ√

2πKλ(δ
√
α2 − β2)

Kλ−1/2{α
√
δ2 + (x −μ)2}√

δ2 + (x −μ)2/α)1/2−λ e
β(x−μ) (4.57)

where Kλ is a modified Bessel function of the third kind with index λ

Kλ(x)= 1

2

∫ ∞

0
yλ−1e−

x
2 (y+y−1)dy. (4.58)

The domain of variation of the parameters is μ ∈R and

δ ≥ 0, |β|< α, if λ > 0

δ > 0, |β|< α, if λ= 0

δ > 0, |β| ≤ α, if λ < 0.

The generalised hyperbolic distribution has the following mean and variance

E[X] = μ+ δβ√
α2 + β2

Kλ+1(δ
√
α2 + β2)

Kλ(δ
√
α2 + β2)

(4.59)
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Var[X] = δ2

[
Kλ+1(δ

√
α2 + β2)

δ
√
α2 + β2Kλ(δ

√
α2 + β2)

+ β2

α2 + β2

[
Kλ+2(δ

√
α2 + β2)

Kλ(δ
√
α2 + β2)

−
{
Kλ+1(δ

√
α2 + β2)

Kλ(δ
√
α2 + β2)

}2]]
, (4.60)

where μ and δ play important roles in the density’s location and scale respectively.
With specific values of λ, we obtain different sub-classes of GH such as hyperbolic
(HYP) or normal-inverse Gaussian (NIG) distribution.

For λ= 1 we obtain the hyperbolic distributions (HYP)

fHYP(x;α,β, δ,μ)=
√
α2 − β2

2αδK1(δ
√
α2 − β2)

e{−α
√
δ2+(x−μ)2+β(x−μ)} (4.61)

where x,μ ∈R, δ ≥ 0 and |β|< α.
For λ=−1/2 we obtain the normal-inverse Gaussian distribution (NIG)

fNIG(x;α,β, δ,μ)= αδ

π

K1
(
α
√
(δ2 + (x −μ)2))√
δ2 + (x −μ)2 e{δ

√
α2−β2+β(x−μ)}. (4.62)

Student’s t-distribution

The t-distribution was first analysed by Gosset (1908). He published his results
under his pseudonym “Student” by request of his employer. Let X be a normally
distributed random variable with mean μ and variance σ 2, and Y be the random

Fig. 4.8 pdf (left) and cdf (right) of t -distribution with different degrees of freedom (t3 stands for

t -distribution with degree of freedom 3) MVAtdis
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variable such that Y 2/σ 2 has a chi-square distribution with n degrees of freedom.
Assume that X and Y are independent, then

t
def= X

√
n

Y
(4.63)

is distributed as Student’s t with n degrees of freedom. The t-distribution has the
following density function

ft (x;n)= �(n+1
2 )√

nπ�(n2 )

(
1+ x2

n

)− n+1
2

(4.64)

where n is the number of degrees of freedom, −∞< x <∞, and � is the gamma
function, e.g. Giri (1996),

�(α)=
∫ ∞

0
xα−1e−xdx. (4.65)

The mean, variance, skewness, and kurtosis of Student’s t-distribution (n > 4) are:

μ= 0

σ 2 = n

n− 2
Skewness= 0

Kurtosis= 3+ 6

n− 4
.

The t-distribution is symmetric around 0, which is consistent with the fact that its
mean is 0 and skewness is also 0.

Student’s t-distribution approaches the normal distribution as n increases, since

lim
n→∞ft (x;n)=

1√
2π

e−
x2
2 . (4.66)

In practice the t-distribution is widely used, but its flexibility of modelling is re-
stricted because of the integer-valued tail index.

In the tail area of the t-distribution, x is proportional to |x|−(n+1). In Figure 4.13
we compared the tail-behaviour of t-distribution with different degrees of freedom.
With higher degree of freedom, the t-distribution decays faster.

Laplace Distribution

The univariate Laplace distribution with mean zero was introduced by Laplace
(1774). The Laplace distribution can be defined as the distribution of differences
between two independent variates with identical exponential distributions. There-
fore it is also called the double exponential distribution.
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Fig. 4.9 pdf (left) and cdf (right) of Laplace distribution with zero mean and different scale pa-

rameters (L1 stands for Laplace distribution with θ = 1) MVAlaplacedis

The Laplace distribution with mean μ and scale parameter θ has the pdf

fLaplace(x;μ,θ)= 1

2θ
e−

|x−μ|
θ (4.67)

and the cdf

FLaplace(x;μ,θ)= 1

2

{
1+ sign(x −μ)(1− e− |x−μ|θ )

}
, (4.68)

where sign is sign function. The mean, variance, skewness, and kurtosis of the
Laplace distribution are

μ= μ
σ 2 = 2θ2

Skewness= 0

Kurtosis= 6.

With mean 0 and θ = 1, we obtain the standard Laplace distribution

f (x)= e−|x|

2
(4.69)

F(x)=
{
ex

2 for x < 0
1− e−x

2 for x ≥ 0.
(4.70)

Cauchy Distribution

The Cauchy distribution is motivated by the following example.
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Fig. 4.10 Introduction to
Cauchy distribution - robber
vs. policeman

Example 4.23 A gangster has just robbed a bank. As he runs to a point s meters
away from the wall of the bank, a policeman reaches the crime scene. The robber
turns back and starts to shoot but he is such a poor shooter that the angle of his fire
(marked in Figure 4.10 as α) is uniformly distributed. The bullets hit the wall at
distance x (from the centre). Obviously the distribution of x, the random variable
where the bullet hits the wall, is of vital knowledge to the policeman in order to
identify the location of the gangster. (Should the policeman calculate the mean or
the median of the observed bullet hits xi?)

Since α is uniformly distributed:

f (α)= 1

π
I(α ∈ [−π/2,π/2])

and

tanα = x

s

α = arctan
(x
s

)
dα = 1

s

1

1+ ( x
s
)2
dx.

For a small interval dα, the probability is given by

f (α)dα = 1

π
dα

= 1

sπ

1

1+ ( x
s
)2
dx

with
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∫ π
2

− π
2

1

π
dα = 1

∫ ∞

−∞
1

sπ

1

1+ ( x
s
)2
dx = 1

π

{
arctan

(x
s

)}∞
−∞

= 1

π

{π
2
−

(
−π

2

)}
= 1.

So the pdf of x can be written as:

f (x)= 1

sπ

1

1+ ( x
s
)2
.

The general formula for the pdf and cdf of the Cauchy distribution is

fCauchy(x;m,s)= 1

sπ

1

1+ ( x−m
s
)2

(4.71)

FCauchy(x;m,s)= 1

2
+ 1

π
arctan

(
x −m
s

)
(4.72)

where m and s are location and scale parameter respectively. The case in the above
example where m= 0 and s = 1 is called the standard Cauchy distribution with pdf
and cdf as following,

fCauchy(x)= 1

π(1+ x2)
(4.73)

FCauchy(x;m,s)= 1

2
+ arctan(x)

π
. (4.74)

The mean, variance, skewness and kurtosis of Cauchy distribution are all undefined,
since its moment generating function diverges. But it has mode and median, both
equal to the location parameter m.

Mixture Model

Mixture modelling concerns modelling a statistical distribution by a mixture (or
weighted sum) of different distributions. For many choices of component density
functions, the mixture model can approximate any continuous density to arbitrary
accuracy, provided that the number of component density functions is sufficiently
large and the parameters of the model are chosen correctly. The pdf of a mixture
distribution consists of n distributions and can be written as:

f (x)=
L∑
l=1

wlpl(x) (4.75)
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Fig. 4.11 pdf (left) and cdf (right) of Cauchy distribution with m= 0 and different scale parame-

ters (C1 stands for Cauchy distribution with s = 1) MVAcauchy

under the constraints:

0≤wl ≤ 1
L∑
l=1

wl = 1

∫
pl(x)dx = 1

where pl(x) is the pdf of the l’th component density and wl is a weight. The mean,
variance, skewness and kurtosis of a mixture are

μ=
L∑
l=1

wlμl (4.76)

σ 2 =
L∑
l=1

wl{σ 2
l + (μl −μ)2} (4.77)

Skewness=
L∑
l=1

wl

{(
σl

σ

)3

SKl + 3σ 2
l (μl −μ)
σ 3

+
(
μl −μ
σ

)3
}

(4.78)

Kurtosis=
L∑
l=1

wl

{(
σl

σ

)4

Kl + 6(μl −μ)2σ 2
l

σ 4
+ 4(μl −μ)σ 3

l

σ 4
SKl

+
(
μl −μ
σ

)4
}
, (4.79)

where μl, σl, SKl and Kl are respectively mean, variance, skewness and kurtosis of
l’th distribution.
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Fig. 4.12 pdf (left) and cdf (right) of a Gaussian mixture (Example 4.23) MVAmixture

Mixture models are ubiquitous in virtually every facet of statistical analysis,
machine learning and data mining. For data sets comprising continuous variables,
the most common approach involves mixture distributions having Gaussian compo-
nents.

The pdf for a Gaussian mixture is:

fGM(x)=
L∑
l=1

wl√
2πσl

e
− (x−μl )2

2σ2
l . (4.80)

For a Gaussian mixture consisting of Gaussian distributions with mean 0, this can
be simplified to:

fGM(x)=
L∑
l=1

wl√
2πσl

e
− x2

2σ2
l , (4.81)

with variance, skewness and kurtosis

σ 2 =
L∑
l=1

wlσ
2
l (4.82)

Skewness= 0 (4.83)

Kurtosis=
L∑
l=1

wl

(
σl

σ

)4

3. (4.84)

Example 4.24 Consider a Gaussian Mixture which is 80% N(0,1) and 20%
N(0,9). The pdf of N(0,1) and N(0,9) are
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Table 4.2 basic statistics of
t , Laplace and Cauchy
distribution

t Laplace Cauchy

mean 0 μ not defined

variance n
n−2 2θ2 not defined

skewness 0 0 not defined

kurtosis 3+ 6
n−4 6 not defined

fN(0,1)(x)= 1√
2π

e−
x2
2

fN(0,9)(x)= 1

3
√

2π
e−

x2
18

so the pdf of the Gaussian Mixture is

fGM(x)= 1

5
√

2π

(
4e−

x2
2 + 1

3
e−

x2
18

)
.

Notice that the Gaussian Mixture is not a Gaussian distribution:

μ= 0

σ 2 = 0.8× 1+ 0.2× 9= 2.6

Skewness= 0

Kurtosis= 0.8×
(

1√
2.6

)4

× 3+ 0.2×
( √

9√
2.6

)4

× 3= 7.54.

The kurtosis of this Gaussian mixture is higher than 3.

A summary of the basic statistics is given in Table 4.2.

Multivariate Generalised Hyperbolic Distribution

The multivariate Generalised Hyperbolic Distribution (GHd ) has the following pdf

fGHd
(x;λ,α,β, δ,�,μ)= ad

K
λ− d

2
{α√δ2 + (x −μ)	�−1(x −μ)}

{α−1
√
δ2 + (x −μ)	�−1(x −μ)} d2−λ

eβ
	(x−μ)

(4.85)

ad = ad(λ,α,β, δ,�)= (
√
α2 − β	�β/δ)λ

(2π)
d
2Kλ(δ

√
α2 − β	�β

, (4.86)

and characteristic function
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Table 4.3 basic statistics of GH distribution and mixture model

GH

mean μ+ δβ√
α2+β2

Kλ+1(δ
√
α2+β2)

Kλ(δ
√
α2+β2)

variance δ2

[
Kλ+1(δ

√
α2+β2)

δ
√
α2+β2Kλ(δ

√
α2+β2)

+ β2

α2+β2

[
Kλ+2(δ

√
α2+β2)

Kλ(δ
√
α2+β2)

−
{
Kλ+1(δ

√
α2+β2)

Kλ(δ
√
α2+β2)

}2]]

Mixture

mean
∑L

l=1wlμl

variance
∑L

l=1wl{σ 2
l + (μl −μ)2}

skewness
∑L

l=1wl

{(
σl
σ

)3
SKl + 3σ 2

l (μl−μ)
σ 3 + (

μl−μ
σ

)3
}

kurtosis
∑L

l=1wl

{(
σl
σ

)4
Kl + 6(μl−μ)2σ 2

l

σ 4 + 4(μl−μ)σ 3
l

σ 4 SKl +
(
μl−μ
σ

)4
}

φ(t)=
(

α2 − β	�β
α2 − β	�β + 1

2 t
	�t − iβ	�t

) λ
2

×
Kλ(δ

√
α2 − β	�β	 + 1

2 t
	�t − iβ	�t)

Kλ(δ
√
α2 − β	�β	) . (4.87)

These parameters have the following domain of variation:

λ ∈R, β,μ ∈R
d

δ > 0, α > β	�β
� ∈R

d×d positive definite matrix
|�| = 1.

For λ= d+1
2 we obtain the multivariate hyperbolic (HYP) distribution; for λ=− 1

2
we get the multivariate normal inverse Gaussian (NIG) distribution.

Blæsild and Jensen (1981) introduced a second parameterization (ζ,�,�),
where

ζ = δ
√
α2 − β	�β (4.88)

�= β
√

�

α2 − β	�β (4.89)

� = δ2�. (4.90)

The mean and variance of X ∼GHd
E[X] = μ+ δRλ(ζ )�� 1

2 (4.91)

Var[X] = δ2{ζ−1Rλ(ζ )�+ Sλ(ζ )(�� 1
2 )	(��

1
2 )
}

(4.92)

where
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Rλ(x)= Kλ+1(x)

Kλ(x)
(4.93)

Sλ(x)=
Kλ+2(x)Kλ(x)−K2

λ+1(x)

K2
λ(x)

. (4.94)

Theorem 4.12 Suppose that X is a d-dimensional variate distributed according to
the generalised hyperbolic distribution GHd . Let (X1,X2) be a partitioning of X,
let r and k denote the dimensions of X1 and X2, respectively, and let (β1, β2) and
(μ1,μ2) be similar partitions of β and μ, let

�=
(
�11 �12
�21 �22

)
(4.95)

be a partition of � such that �11 is a r × r matrix. Then one has the following

1. The distribution of X1 is the r-dimensional generalised hyperbolic distribution,
GHr(λ

∗, α∗, β∗, δ∗,μ∗,�∗), where

λ∗ = λ
α∗ = |�11|− 1

2r {α2 − β2(�22 −�21�
−1
11 �12)β

	
2 }

1
2

β∗ = β1 + β2�21�
−1
11

δ∗ = δ|�11|
1

2ρ

μ∗ = μ1

�∗ = |�|− 1
r �11.

2. The conditional distribution of X2 given X1 = x1 is the k-dimensional gener-
alised hyperbolic distribution GHk(λ̃, α̃, β̃, δ̃, μ̃, �̃),where

λ̃= λ− r

2

α̃ = α|�11| 1
2k

β̃ = β2

δ̃ = |�11|− 1
2k {δ2 + (x1 −μ1)�

−1
11 (x1 −μ1)

	} 1
2

μ̃= μ2 + (x1 −μ1)�
−1
11 �12

�̃= |�11| 1
k (�22 −�21�

−1
11 �12).

3. Let Y =XA+B be a regular affine transformation of X and let ||A|| denote the
absolute value of the determinant ofA. The distribution of Y is the d-dimensional
generalised hyperbolic distribution GHd(λ+, α+, β+, δ+,μ+,�+),where

λ+ = λ
α+ = α||A||− 1

d

β+ = β(A−1)	

δ+ = ||A|| 1
d
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μ+ = μA+B
�+ = ||A||− 2

d A	�A.

Multivariate t-distribution

If X and Y are independent and distributed as Np(μ,�) and X 2
n respectively, and

X
√
n/Y = t −μ, then the pdf of t is given by

ft (t;n,�,μ)= � {(n+ p)/2}
�(n/2)np/2πp/2 |�|1/2 {1+ 1

n
(t −μ)	�−1(t −μ)}(n+p)/2 .

(4.96)

The distribution of t is the noncentral t-distribution with n degrees of freedom and
the noncentrality parameter μ, Giri (1996).

Multivariate Laplace Distribution

Let g and G be the pdf and cdf of a d-dimensional Gaussian distribution Nd(0,�),
the pdf and cdf of a multivariate Laplace distribution can be written as

fMLaplaced (x;m,�)=
∫ ∞

0
g(z−

1
2 x − z 1

2m)z−
d
2 e−zdz (4.97)

FMLaplaced (x,m,�)=
∫ ∞

0
G(z−

1
2 x − z 1

2m)e−zdz (4.98)

the pdf can also be described as

fMLaplaced (x;m,�)=
2ex

	�−1m

(2π)
d
2 |�| 1

2

(
x	�−1x

2+m	�−1m

) λ
2

×Kλ
(√

(2+m	�−1m)(x	�−1x)
)

(4.99)

where λ= 2−d
2 and Kλ(x) is the modified Bessel function of the third kind

Kλ(x)= 1

2

(
x

2

)λ ∫ ∞

0
t−λ−1e−t−

x2
4t dt, x > 0. (4.100)

Multivariate Laplace distribution has mean and variance

E[X] =m (4.101)

Cov[X] =� +mm	. (4.102)
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Fig. 4.13 Tail comparison of t -distribution, pdf (left) and approximation (right) MVAtdis-
tail

Multivariate Mixture Model

A multivariate mixture model comprises multivariate distributions, e.g. the pdf of a
multivariate Gaussian distribution can be written as

f (x)=
L∑
l=1

wl

|2π�l | 1
2

e−
1
2 (x−μl)	�−1(x−μl). (4.103)

Generalised Hyperbolic Distribution

The GH distribution has an exponential decaying speed

fGH(x;λ,α,β, δ,μ= 0)∼ xλ−1e−(α−β)x as x→∞, (4.104)

Figure 4.14 illustrates the tail behaviour of GH distributions with different value of
λ with α = 1, β = 0, δ = 1,μ= 0. It is clear that among the four distributions, GH
with λ= 1.5 has the lowest decaying speed, while NIG decays fastest.

In Figure 4.15, Chen, Härdle and Jeong (2008), four distributions and especially
their tail-behaviour are compared. In order to keep the comparability of these dis-
tributions, we specified the means to 0 and standardised the variances to 1. Further-
more we used one important subclass of the GH distribution: the normal-inverse
Gaussian (NIG) distribution with λ = − 1

2 introduced above. On the left panel, the
complete forms of these distributions are revealed. The Cauchy (dots) distribution
has the lowest peak and the fattest tails. In other words, it has the flattest distribu-
tion. The NIG distribution decays second fast in the tails although it has the highest
peak, which is more clearly displayed on the right panel.
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Fig. 4.14 Tail comparison of GH distribution (pdf) MVAghdistail

Fig. 4.15 Graphical comparison of the NIG distribution (line), standard normal distribution
MVAghadatail

4.7 Copulae

The cumulative distribution function (cdf) of a 2-dimensional vector (X1,X2) is
given by

F (x1, x2)= P (X1 ≤ x1, Y1 ≤ y1) . (4.105)

For the case that X1 and X2 are independent, their joint cumulative distribution
function F(x1, x2) can be written as a product of their 1-dimensional marginals:

F(x1, x2)= FX1 (x1)FX2 (x2)= P (X1 ≤ x1)P (X2 ≤ x2) . (4.106)

But how can we model dependence of X1 and X2? Most people would suggest lin-
ear correlation. Correlation is though an appropriate measure of dependence only
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when the random variables have an elliptical or spherical distribution, which in-
clude the normal multivariate distribution. Although the terms “correlation” and
“dependency” are often used interchangeably, correlation is actually a rather imper-
fect measure of dependency, and there are many circumstances where correlation
should not be used.

Copulae represent an elegant concept of connecting marginals with joint cu-
mulative distribution functions. Copulae are functions that join or “couple” mul-
tivariate distribution functions to their 1-dimensional marginal distribution func-
tions. Let us consider a d-dimensional vector X = (X1, . . . ,Xd)

	. Using copulae,
the marginal distribution functions FXi (i = 1, . . . , d) can be separately modelled
from their dependence structure and then coupled together to form the multivari-
ate distribution FX . Copula functions have a long history in probability theory and
statistics. Their application in finance is very recent. Copulae are important in Value-
at-Risk calculations and constitute an essential tool in quantitative finance (Härdle
et al. (2009)).

First let us concentrate on the 2-dimensional case, then we will extend this con-
cept to the d-dimensional case, for a random variable in R

d with d ≥ 1. To be able
to define a copula function, first we need to represent a concept of the volume of a
rectangle, a 2-increading function and a grounded function.

Let U1 and U2 be two sets in R=R∪ {+∞} ∪ {−∞} and consider the function
F :U1 ×U2 −→R.

Definition 4.2 The F -volume of a rectangle B = [x1, x2] × [y1, y2] ⊂ U1 × U2 is
defined as:

VF (B)= F(x2, y2)− F(x1, y2)− F(x2, y1)+ F(x1, y1). (4.107)

Definition 4.3 F is said to be a 2-increasing function if for every B = [x1, x2] ×
[y1, y2] ⊂U1 ×U2,

VF (B)≥ 0. (4.108)

Remark 4.2 Note, that “to be 2-increasing function” neither implies nor is implied
by “to be increasing in each argument”.

The following lemmas (Nelsen, 1999) will be very useful later for establishing
the continuity of copulae.

Lemma 4.1 Let U1 and U2 be non-empty sets in R and let F :U1×U2 −→R be a
two-increasing function. Let x1, x2 be in U1 with x1 ≤ x2, and y1, y2 be in U2 with
y1 ≤ y2. Then the function t �→ F(t, y2)−F(t, y1) is non-decreasing on U1 and the
function t �→ F(x2, t)− F(x1, t) is non-decreasing on U2.

Definition 4.4 If U1 and U2 have a smallest element minU1 and minU2 respec-
tively, then we say, that a function F :U1 ×U2 −→R is grounded if:
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for all x ∈U1 : F(x,minU2)= 0 and (4.109)

for all y ∈U2 : F(minU1, y)= 0. (4.110)

In the following, we will refer to this definition of a cdf.

Definition 4.5 A cdf is a function from R
2 �→ [0,1] which

i) is grounded.
ii) is 2-increasing.

iii) satisfies F (∞,∞)= 1.

Lemma 4.2 Let U1 and U2 be non-empty sets in R and let F :U1×U2 −→R be a
grounded two-increasing function. Then F is non-decreasing in each argument.

Definition 4.6 If U1 and U2 have a greatest element maxU1 and maxU2 respec-
tively, then we say, that a function F : U1 × U2 −→ R has margins and that the
margins of F are given by:

F(x)= F(x,maxU2) for all x ∈U1 (4.111)

F(y)= F(maxU1, y) for all y ∈U2. (4.112)

Lemma 4.3 Let U1 and U2 be non-empty sets in R and let F : U1 × U2 −→ R

be a grounded two-increasing function which has margins. Let (x1, y1), (x2, y2) ∈
S1 × S2. Then

|F(x2, y2)− F(x1, y1)| ≤ |F(x2)− F(x1)| + |F(y2)− F(y1)|. (4.113)

Definition 4.7 A two-dimensional copula is a function C defined on the unit square
I 2 = I × I with I = [0,1] such that

i) for every u ∈ I holds: C(u,0)= C(0, v)= 0, i.e. C is grounded.
ii) for every u1, u2, v1, v2 ∈ I with u1 ≤ u2 and v1 ≤ v2 holds:

C(u2, v2)−C(u2, v1)−C(u1, v2)+C(u1, v1)≥ 0, (4.114)

i.e. C is 2-increasing.
iii) for every u ∈ I holds C(u,1)= u and C(1, v)= v.

Informally, a copula is a joint distribution function defined on the unit square
[0,1]2 which has uniform marginals. That means that if FX1(x1) and FX2(x2) are
univariate distribution functions, then C{FX1(x1),FX2(x2)} is a 2-dimensional dis-
tribution function with marginals FX1(x1) and FX2(x2).

Example 4.25 The functions max(u+v−1,0), uv, min(u, v) can be easily checked
to be copula functions. They are called respectively the minimum, product and max-
imum copula.
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Fig. 4.16 Surface plot of the
Gumbel-Hougaard copula,

θ = 3 MVAghsurface

Example 4.26 Consider the function

CGauss
ρ (u, v)=�ρ

{
�−1(u),�−1(v)

}
=

∫ �−1
1 (u)

−∞

∫ �−1
2 (v)

−∞
fρ(x1, x2)dx2dx1 (4.115)

where �ρ is the joint 2-dimensional standard normal distribution function with cor-
relation coefficient ρ, while �1 and �2 refer to standard normal cdfs and

fρ(x1, x2)= 1

2π
√

1− ρ2
exp

{
−x

2
1 − 2ρx1x2 + x2

2

2(1− ρ2)

}
(4.116)

denotes the bivariate normal pdf.
It is easy to see, that CGauss is a copula, the so called Gaussian or normal copula,

since it is 2-increasing and

�ρ

{
�−1(u),�−1(0)

}=�ρ

{
�−1(0),�−1(v)

}= 0 (4.117)

�ρ

{
�−1(u),�−1(1)

}= u and �ρ

{
�−1(1),�−1(v)

}= v. (4.118)

A simple and useful way to represent the graph of a copula is the contour diagram
that is, graphs of its level sets - the sets in I 2 given by C(u, v) = a constant. In
Figures 4.16–4.17 we present the countour diagrams of the Gumbel-Hougard copula
(Example 4.4) for different values of the copula parameter θ .

For θ = 1 the Gumbel-Hougaard copula reduces to the product copula, i.e.

C1(u, v)=�(u,v)= uv. (4.119)

For θ→∞, one finds for the Gumbel-Hougaard copula:

Cθ(u, v)−→min(u, v)=M(u,v) (4.120)

where M is also a copula such that C(u, v) ≤M(u,v) for an arbitrary copula C.
The copula M is called the Fréchet-Hoeffding upper bound.
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Fig. 4.17 Contour plots of the Gumbel-Hougard copula MVAghcontour

The two-dimensional function W(u,v) = max(u + v − 1,0) defines a copula
with W(u,v)≤ C(u, v) for any other copula C. W is called the Fréchet-Hoeffding
lower bound.

In Figure 4.18 we show an example of Gumbel-Hougaard copula sampling for
fixed parameters σ1 = 1, σ2 = 1 and θ = 3.

One can demonstrate the so-called Fréchet-Hoeffding inequality, which we have
already used in Example 1.3, and which states that each copula function is bounded
by the minimum and maximum one:

W(u,v)=max(u+ v − 1,0)≤ C(u, v)≤min(u, v)=M(u,v). (4.121)

The full relationship between copula and joint cdf depends on Sklar theorem.

Example 4.27 Let us verify that the Gaussian copula satisfies Sklar’s theorem in
both directions. On the one side, let

F(x1, x2)=
∫ x1

−∞

∫ x2

−∞
1

2π
√

1− ρ2
exp

{
−x

2
1 − 2ρx1x2 + x2

2

2(1− ρ2)

}
dx2dx1 (4.122)
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Fig. 4.18 10000-sample
output for σ1 = 1, σ2 = 1,

θ = 3
MVAsample1000

be a 2-dimensional normal distribution function with standard normal cdf’s FX1(x1)

and FX2(x2). Since FX1(x1) and FX2(x2) are continuous, a unique copula C exists

such that for all x1, x2 ∈R
2

a 2-dimensional distribution function can be written as
a copula in FX1(x1) and FX2(x2):

F (x1, x2)= C
{
�X1 (x1) ,�X2 (x2)

}
. (4.123)

The Gaussian copula satisfies the above equality, therefore it is the unique copula
mentioned in Sklar’s theorem. This proves that the Gaussian copula, together with
Gaussian marginals, gives the two-dimensional normal distribution.

Conversely, if C is a copula and FX1 and FX2 are standard normal distribution
functions, then

C
{
FX1(x1),FX2(x2)

}
=

∫ φ−1
1

{
FX1 (x1)

}
−∞

∫ φ−1
2

{
FX2 (x2)

}
−∞

1

2π
√

1− ρ2
exp

{
−x

2
1 − 2ρx1x2 + x2

2

2(1− ρ2)

}
dx2dx1

(4.124)

is evidently a joint (two-dimensional) distribution function. Its margins are

C
{
FX1(x1),FX2(+∞)

}=�ρ

[
�−1 {FX1(x1)

}
,+∞]= FX1(x1) (4.125)

C
{
FX1(+∞),FX2(x2)

}=�ρ

[+∞,�−1 {FX2(x2)
}]= FX2(x2). (4.126)

The following proposition shows one attractive feature of the copula represen-
tation of dependence, i.e. that the dependence structure described by a copula is
invariant under increasing and continuous transformations of the marginal distribu-
tions.
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Theorem 4.13 If (X1,X2) have copula C and set g1, g2 two continuously increas-
ing functions, then {g1 (X1) , g2 (X2)} have the copula C, too.

Example 4.28 Independence implies that the product of the cdf’s FX1 and FX2

equals the joint distribution function F , i.e.:

F(x1, x2)= FX1(x1)FX2(x2). (4.127)

Thus, we obtain the independence or product copula C =�(u,v)= uv.

While it is easily understood how a product copula describes an independence
relationship, the converse is also true. Namely, the joint distribution function of two
independent random variables can be interpreted as a product copula. This concept
is formalised in the following theorem:

Theorem 4.14 Let X1 and X2 be random variables with continuous distribution
functions FX1 and FX2 and the joint distribution function F . Then X1 and X2 are
independent if and only if CX1,X2 =�.

Example 4.29 Let us consider the Gaussian copula for the case ρ = 0, i.e. vanishing
correlation. In this case the Gaussian copula becomes

CGauss0 (u, v)=
∫ �−1

1 (u)

−∞
ϕ(x1)dx1

∫ �−1
2 (v)

−∞
ϕ(x2)dx2

= uv
=�(u,v). (4.128)

The following theorem, which follows directly from Lemma 4.3, establishes the
continuity of copulae.

Theorem 4.15 Let C be a copula. Then for any u1, v1, u2, v2 ∈ I holds

|C(u2, v2)−C(u1, v1)| ≤ |u2 − u1| + |v2 − v1|. (4.129)

From (4.129) it follows that every copula C is uniformly continuous on its do-
main.

A further important property of copulae concerns the partial derivatives of a cop-
ula with respect to its variables:

Theorem 4.16 Let C(u, v) be a copula. For any u ∈ I , the partial derivative ∂C(u,v)
∂v

exists for almost all u ∈ I . For such u and v one has:

∂C(u, v)

∂v
∈ I. (4.130)

The analogous statement is true for the partial derivative ∂C(u,v)
∂u

:
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∂C(u, v)

∂u
∈ I. (4.131)

Moreover, the functions

u �→ Cv(u)
def= ∂C(u, v)/∂v and

v �→ Cu(v)
def= ∂C(u, v)/∂u

are defined and non-increasing almost everywhere on I .

Until now, we have considered copulae only in a 2-dimensional setting. Let us
now extend this concept to the d-dimensional case, for a random variable in R

d with
d ≥ 1.

Let U1,U2, . . . ,Ud be non-empty sets in R and consider the function F : U1 ×
U2 × · · · ×Ud −→R. For a = (a1, a2, . . . , ad) and b= (b1, b2, . . . , bd) with a ≤ b
(i.e. ak ≤ bk for all k) let B = [a, b] = [a1, b1] × [a2, b2] × · · · × [an, bn] be the
d-box with vertices c= (c1, c2, . . . , cd). It is obvious, that each ck is either equal to
ak or to bk .

Definition 4.8 The F -volume of a d-box B = [a, b] = [a1, b1] × [a2, b2] × · · · ×
[ad, bd ] ⊂U1 ×U2 × · · · ×Ud is defined as follows:

VF (B)=
d∑
k=1

sign(ck)F (ck) (4.132)

where sign(ck)= 1, if ck = ak for even k and sign(ck)=−1, if ck = ak for odd k.

Example 4.30 For the case d = 3, the F -volume of a 3-box B = [a, b] = [x1, x2] ×
[y1, y2] × [z1, z2] is defined as:

VF (B)= F(x2, y2, z2)− F(x2, y2, z1)− F(x2, y1, z2)− F(x1, y2, z2)

+ F(x2, y1, z1)+ F(x1, y2, z1)+ F(x1, y1, z2)− F(x1, y1, z1).

Definition 4.9 F is said to be a d-increasing function if for all d-boxes B with
vertices in U1 ×U2 × · · · ×Ud holds:

VF (B)≥ 0. (4.133)

Definition 4.10 If U1,U2, . . . ,Ud have a smallest element minU1,minU2, . . . ,

minUd respectively, then we say, that a function F : U1 × U2 × · · · × Ud −→ R

is grounded if :

F(x)= 0 for all x ∈U1 ×U2 × · · · ×Ud (4.134)

such that xk =minUk for at least one k.

The lemmas, which we presented for the 2-dimensional case, have analogous
multivariate versions, see Nelsen (1999).
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Definition 4.11 A d-dimensional copula (or d-copula) is a function C defined on
the unit d-cube I d = I × I × · · · × I such that

i) for every u ∈ I d holds: C(u) = 0, if at least one coordinate of u is equal to 0;
i.e. C is grounded.

ii) for every a, b ∈ I d with a ≤ b holds:

VC([a, b])≥ 0; (4.135)

i.e. C is 2-increasing.
iii) for every u ∈ I d holds: C(u)= uk , if all coordinates of u are 1 except uk .

Analogously to the 2-dimensional setting, let us state the Sklar’s theorem for the
d-dimensional case.

Theorem 4.17 (Sklar’s theorem in d-dimensional case) Let F be a d-dimensional
distribution function with marginal distribution functions FX1,FX2, . . . ,FXd . Then

a d-copula C exists such that for all x1, . . . , xd ∈R
d
:

F (x1, x2, . . . , xd)= C
{
FX1 (x1) ,FX2 (x2) , . . . ,FXd (xd)

}
. (4.136)

Moreover, if FX1,FX2, . . . ,FXd are continuous then C is unique. Otherwise C

is uniquely determined on the Cartesian product Im(FX1) × Im(FX2) × · · · ×
Im(FXd ).

Conversely, if C is a copula and FX1,FX2, . . . ,FXd are distribution functions
then F defined by (4.136) is a d-dimensional distribution function with marginals
FX1,FX2, . . . ,FXd .

In order to illustrate the d-copulae we present the following examples:

Example 4.31 Let � denote the univariate standard normal distribution function
and ��,d the d-dimensional standard normal distribution function with correlation
matrix �. Then the function

CGaussρ (u,�)=��,d

{
�−1(u1), . . . ,�

−1(ud)
}

=
∫ φ−1

1 (ud )

−∞
· · ·

∫ φ−1
2 (u1)

−∞
f�(x1, . . . , xn)dx1 · · ·dxd (4.137)

is the d-dimensional Gaussian or normal copula with correlation matrix �. The
function

fρ(x1, . . . , xd)= 1√
det(�)

× exp

{
− (�

−1(u1), . . . ,�
−1(ud))

	(�−1 − Id)(�−1(u1), . . . ,�
−1(ud))

2

}
(4.138)
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is a copula density function. The copula dependence parameter α is the collection of
all unknown correlation coefficients in �. If α 
= 0, then the corresponding normal
copula allows to generate joint symmetric dependence. However, it is not possible
to model a tail dependence, i.e. joint extreme events have a zero probability.

Example 4.32 Let us consider the following function

CGHθ (u1, . . . , ud)= exp

[
−
{

d∑
j=1

(− loguj
)θ}1/θ]

. (4.139)

One recognize this function is as the d-dimensional Gumbel-Hougaard copula func-
tion. Unlike the Gaussian copula, the copula (4.139) can generate an upper tail de-
pendence.

Example 4.33 As in the 2-dimensional setting, let us consider the d-dimentional
Gumbel-Hougaard copula for the case θ = 1. In this case the Gumbel-Hougaard
copula reduces to the d-dimensional product copula, i.e.

C1(u1, . . . , ud)=
d∏
j=1

uj =�d(u). (4.140)

The extension of the 2-dimensional copula M , which one gets from the d-
dimensional Gumbel-Hougaard copula for θ→∞ is denoted Md(u):

Cθ(u1, . . . , ud)−→min(u1, . . . , ud)=Md(u). (4.141)

The d-dimensional function

Wd(u)=max(u1 + u2 + · · · + ud − d + 1,0) (4.142)

defines a copula with W(u) ≤ C(u) for any other d-dimensional copula function
C(u). Wd(u) is the Fréchet-Hoeffding lower bound in the d-dimensional case.

The functions Md and �d are d-copulae for all d ≥ 2, whereas the function Wd

fails to be a d-copula for any d > 2 (Nelsen, 1999). However, the d-dimensional
version of the Fréchet-Hoeffding inequality can be written as follows:

Wd(u)≤ C(u)≤Md(u). (4.143)

As we have already mentioned, copula functions have been widely applied in
empirical finance.

Summary
↪→ The cumulative distribution function (cdf) is defined as F(x) =

P(X < x).
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Summary (continued)
↪→ If a probability density function (pdf) f exists then F(x) =∫ x

−∞ f (u)du.

↪→ The pdf integrates to one, i.e.,
∫∞
−∞ f (x)dx = 1.

4.8 Bootstrap

Recall that we need large sample sizes in order to sufficiently approximate the crit-
ical values computable by the CLT. Here large means n > 50 for one-dimensional
data. How can we construct confidence intervals in the case of smaller sample sizes?
One way is to use a method called the Bootstrap. The Bootstrap algorithm uses the
data twice:

1. estimate the parameter of interest,
2. simulate from an estimated distribution to approximate the asymptotic distribu-

tion of the statistics of interest.

In detail, bootstrap works as follows. Consider the observations x1, . . . , xn of the
sample X1, . . . ,Xn and estimate the empirical distribution function (edf) Fn. In the
case of one-dimensional data

Fn(x)= 1

n

n∑
i=1

I(Xi ≤ x). (4.144)

This is a step function which is constant between neighboring data points.

Example 4.34 Suppose that we have n= 100 standard normal N(0,1) data points
Xi , i = 1, . . . , n. The cdf of X is �(x)= ∫ x

−∞ ϕ(u)du and is shown in Figure 4.19
as the thin, solid line. The empirical distribution function (edf) is displayed as a thick
step function line. Figure 4.20 shows the same setup for n= 1000 observations.

Now draw with replacement a new sample from this empirical distribution. That
is we sample with replacement n∗ observations X∗1, . . . ,X∗n∗ from the original sam-
ple. This is called a Bootstrap sample. Usually one takes n∗ = n.

Since we sample with replacement, a single observation from the original sample
may appear several times in the Bootstrap sample. For instance, if the original sam-
ple consists of the three observations x1, x2, x3, then a Bootstrap sample might look
like X∗1 = x3, X∗2 = x2, X∗3 = x3. Computationally, we find the Bootstrap sample by
using a uniform random number generator to draw from the indices 1,2, . . . , n of
the original samples.

The Bootstrap observations are drawn randomly from the empirical distribution,
i.e., the probability for each original observation to be selected into the Bootstrap
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Fig. 4.19 The standard
normal cdf (thick line) and
the empirical distribution
function (thin line) for

n= 100
MVAedfnormal

Fig. 4.20 The standard
normal cdf (thick line) and
the empirical distribution
function (thin line) for

n= 1000
MVAedfnormal

sample is 1/n for each draw. It is easy to compute that

EFn(X
∗
i )=

1

n

n∑
i=1

xi = x̄.

This is the expected value given that the cdf is the original mean of the sample
x1. . . . , xn. The same holds for the variance, i.e.,

VarFn(X
∗
i )= σ̂ 2,

where σ̂ 2 = n−1 ∑(xi − x̄)2. The cdf of the bootstrap observations is defined as in
(4.144). Figure 4.21 shows the cdf of the n = 100 original observations as a solid
line and two bootstrap cdf’s as thin lines.
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Fig. 4.21 The cdf Fn (thick
line) and two bootstrap cdf‘s

F ∗n (thin lines)
MVAedfbootstrap

The CLT holds for the bootstrap sample. Analogously to Corollary 4.1 we have
the following corollary.

Corollary 4.2 If X∗1, . . . ,X∗n is a bootstrap sample from X1, . . . ,Xn, then the dis-
tribution of

√
n

(
x̄∗ − x̄
σ̂ ∗

)

also becomes N(0,1) asymptotically, where x∗ = n−1 ∑n
i=1X

∗
i and (̂σ ∗)2 =

n−1 ∑n
i=1(X

∗
i − x̄∗)2.

How do we find a confidence interval for μ using the Bootstrap method? Recall
that the quantile u1−α/2 might be bad for small sample sizes because the true dis-
tribution of

√
n(

x̄−μ
σ̂
) might be far away from the limit distribution N(0,1). The

Bootstrap idea enables us to “simulate” this distribution by computing
√
n( x̄

∗−x̄
σ̂ ∗ )

for many Bootstrap samples. In this way we can estimate an empirical (1− α/2)-
quantile u∗1−α/2. The bootstrap improved confidence interval is then

C∗1−α =
[
x̄ − σ̂√

n
u∗1−α/2, x̄ +

σ̂√
n
u∗1−α/2

]
.

By Corollary 4.2 we have

P(μ ∈ C∗1−α)−→ 1− α as n→∞,

but with an improved speed of convergence, see Hall (1992).
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Summary
↪→ For small sample sizes the bootstrap improves the precision of the

confidence interval.
↪→ The bootstrap distribution L{√n(x∗ − x)/σ̂ ∗} converges to the

same asymptotic limit as the distribution L{√n(x∗ − x)/σ̂ }.

4.9 Exercises

Exercise 4.1 Assume that the random vector Y has the following normal distribu-
tion: Y ∼ Np(0,I). Transform it according to (4.49) to create X ∼ N(μ,�) with
mean μ = (3,2)	 and � = ( 1 −1.5

−1.5 4

)
. How would you implement the resulting

formula on a computer?

Exercise 4.2 Prove Theorem 4.7 using Theorem 4.5.

Exercise 4.3 Suppose that X has mean zero and covariance � = ( 1 0
0 2

)
. Let Y =

X1 +X2. Write Y as a linear transformation, i.e., find the transformation matrix A.
Then compute Var(Y ) via (4.26). Can you obtain the result in another fashion?

Exercise 4.4 Calculate the mean and the variance of the estimate β̂ in (3.50).

Exercise 4.5 Compute the conditional moments E(X2 | x1) and E(X1 | x2) for the
pdf of Example 4.5.

Exercise 4.6 Prove the relation (4.28).

Exercise 4.7 Prove the relation (4.29). Hint: Note that

Var(E(X2|X1))=E(E(X2|X1)E(X
	
2 |X1))−E(X2)E(X

	
2 ))

and that

E(Var(X2|X1))=E[E(X2X
	
2 |X1)−E(X2|X1)E(X

	
2 |X1)].

Exercise 4.8 Compute (4.46) for the pdf of Example 4.5.

Exercise 4.9 Show that

fY (y)=
{ 1

2
y1 − 1

4
y2 0≤ y1 ≤ 2, |y2| ≤ 1− |1− y1|

0 otherwise

is a pdf.



164 4 Multivariate Distributions

Exercise 4.10 Compute (4.46) for a two-dimensional standard normal distribution.
Show that the transformed random variables Y1 and Y2 are independent. Give a
geometrical interpretation of this result based on iso-distance curves.

Exercise 4.11 Consider the Cauchy distribution which has no moment, so that the
CLT cannot be applied. Simulate the distribution of x (for different n’s). What can
you expect for n→∞?

Hint: The Cauchy distribution can be simulated by the quotient of two indepen-
dent standard normally distributed random variables.

Exercise 4.12 A European car company has tested a new model and reports the
consumption of petrol (X1) and oil (X2). The expected consumption of petrol is 8
liters per 100 km (μ1) and the expected consumption of oil is 1 liter per 10.000
km (μ2). The measured consumption of petrol is 8.1 liters per 100 km (x1) and
the measured consumption of oil is 1.1 liters per 10,000 km (x2). The asymptotic
distribution of

√
n
{( x1

x2

)− (μ1
μ2

)}
is N

(( 0
0

)
,
( 0.1 0.05

0.05 0.1

))
.

For the American market the basic measuring units are miles (1 mile ≈ 1.6 km)
and gallons (1 gallon ≈ 3.8 liter). The consumptions of petrol (Y1) and oil (Y2) are
usually reported in miles per gallon. Can you express y1 and y2 in terms of x1 and
x2? Recompute the asymptotic distribution for the American market.

Exercise 4.13 Consider the pdf f (x1, x2) = e−(x1+x2), x1, x2 > 0 and let U1 =
X1 +X2 and U2 =X1 −X2. Compute f (u1, u2).

Exercise 4.14 Consider the pdf‘s

f (x1, x2) = 4x1x2e
−x2

1 x1, x2 > 0,
f (x1, x2) = 1 0< x1, x2 < 1 and x1 + x2 < 1

f (x1, x2) = 1

2
e−x1 x1 > |x2|.

For each of these pdf’s compute E(X),Var(X),E(X1|X2),E(X2|X1),V (X1|X2)

and V (X2|X1).

Exercise 4.15 Consider the pdf f (x1, x2) = 3
2x
− 1

2
1 , 0 < x1 < x2 < 1. Compute

P(X1 < 0.25),P (X2 < 0.25) and P(X2 < 0.25|X1 < 0.25).

Exercise 4.16 Consider the pdf f (x1, x2)= 1
2π , 0< x1 < 2π , 0< x2 < 1. LetU1 =

sinX1
√−2 logX2 and U2 = cosX1

√−2 logX2. Compute f (u1, u2).

Exercise 4.17 Consider f (x1, x2, x3)= k(x1 + x2x3); 0< x1, x2, x3 < 1.

a) Determine k so that f is a valid pdf of (X1,X2,X3)=X.
b) Compute the (3× 3) matrix �X .
c) Compute the (2× 2) matrix of the conditional variance of (X2,X3) given X1 =
x1.
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Exercise 4.18 Let X ∼N2
(( 1

2

)
,
( 2 a
a 2

))
.

a) Represent the contour ellipses for a = 0; − 1
2 ; + 1

2 ; 1.
b) For a = 1

2 find the regions of X centred on μ which cover the area of the true
parameter with probability 0.90 and 0.95.

Exercise 4.19 Consider the pdf

f (x1, x2)= 1

8x2
e
−( x1

2x2
+ x2

4 ) x1, x2 > 0.

Compute f (x2) and f (x1|x2). Also give the best approximation of X1 by a function
of X2. Compute the variance of the error of the approximation.

Exercise 4.20 Prove Theorem 4.6.



Chapter 5
Theory of the Multinormal

In the preceeding chapter we saw how the multivariate normal distribution comes
into play in many applications. It is useful to know more about this distribution,
since it is often a good approximate distribution in many situations. Another reason
for considering the multinormal distribution relies on the fact that it has many ap-
pealing properties: it is stable under linear transforms, zero correlation corresponds
to independence, the marginals and all the conditionals are also multivariate normal
variates, etc. The mathematical properties of the multinormal make analyses much
simpler.

In this chapter we will first concentrate on the probabilistic properties of the
multinormal, then we will introduce two “companion” distributions of the multinor-
mal which naturally appear when sampling from a multivariate normal population:
the Wishart and the Hotelling distributions. The latter is particularly important for
most of the testing procedures proposed in Chapter 7.

5.1 Elementary Properties of the Multinormal

Let us first summarize some properties which were already derived in the previous
chapter.

• The pdf of X ∼Np(μ,�) is

f (x)= |2π�|−1/2 exp

{
−1

2
(x −μ)	�−1(x −μ)

}
. (5.1)

The expectation is E(X) = μ, the covariance can be calculated as Var(X) =
E(X−μ)(X−μ)	 =�.

• Linear transformations turn normal random variables into normal random vari-
ables. If X ∼ Np(μ,�) and A(p × p), c ∈ R

p , then Y = AX + c is p-variate
Normal, i.e.,

Y ∼Np(Aμ+ c,A�A	). (5.2)

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
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• If X ∼Np(μ,�), then the Mahalanobis transformation is

Y =�−1/2(X−μ)∼Np(0,Ip) (5.3)

and it holds that

Y	Y = (X−μ)	 �−1(X−μ)∼ χ2
p. (5.4)

Often it is interesting to partition X into sub-vectors X1 and X2. The following
theorem tells us how to correct X2 to obtain a vector which is independent of X1.

Theorem 5.1 LetX = (
X1
X2

)∼Np(μ,�),X1 ∈R
r ,X2 ∈R

p−r . DefineX2.1 =X2−
�21�

−1
11 X1 from the partitioned covariance matrix

� =
(
�11 �12
�21 �22

)
.

Then

X1 ∼Nr(μ1,�11), (5.5)

X2.1 ∼Np−r (μ2.1,�22.1) (5.6)

are independent with

μ2.1 = μ2 −�21�
−1
11 μ1, �22.1 =�22 −�21�

−1
11 �12. (5.7)

Proof

X1 =AX with A= [ Ir , 0 ]
X2.1 = BX with B = [ −�21�

−1
11 , Ip−r ].

Then, by (5.2) X1 and X2.1 are both normal. Note that

Cov(X1,X2.1)=A�B	

=

⎛
⎜⎜⎝

1 0
. . .

0 1

0

⎞
⎟⎟⎠

(
�11 �12
�21 �22

)
⎛
⎜⎜⎜⎜⎜⎜⎝

(−�21�
−1
11 )

	

1 0
. . .

0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
,

A� = (I 0)

(
�11 �12
�21 �22

)
= (�11 �12) ,

hence, A�B	 = (�11 �12)

((
−�21�

−1
11

)	
I

)

=
(
−�11

(
�21�

−1
11

)	 +�12

)
.

Recall that �21 = (�12)
	. Hence A�B	 =−�11�

−1
11 �12 +�12 ≡ 0!
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Using (5.2) again we also have the joint distribution of (X1,X2.1), namely(
X1

X2.1

)
=

(A
B

)
X ∼Np

((
μ1

μ2.1

)
,

(
�11 0

0 �22.1

))
.

With this block diagonal structure of the covariance matrix, the joint pdf of
(X1,X2.1) can easily be factorised into

f (x1, x2.1)= |2π�11|− 1
2 exp

{
−1

2
(x1 −μ1)

	�−1
11 (x1 −μ1)

}

× |2π�22.1|− 1
2 exp

{
−1

2
(x2.1 −μ2.1)

	�−1
22.1(x2.1 −μ2.1)

}
from which the independence between X1 and X2.1 follows. �

The next two corollaries are direct consequences of Theorem 5.1.

Corollary 5.1 Let X = (X1
X2

) ∼ Np(μ,�), � =
(�11 �12
�21 �22

)
. �12 = 0 if and only if

X1 is independent of X2.

The independence of two linear transforms of a multinormal X can be shown via
the following corollary.

Corollary 5.2 If X ∼ Np(μ,�) and given some matrices A and B, then AX and
BX are independent if and only if A�B	 = 0.

The following theorem is also useful. It generalises Theorem 4.6. The proof is
left as an exercise.

Theorem 5.2 If X ∼Np(μ,�), A(q ×p), c ∈R
q and q ≤ p, then Y =AX+ c is

a q-variate Normal, i.e.,

Y ∼Nq(Aμ+ c,A�A	).

The conditional distribution of X2 given X1 is given by the next theorem.

Theorem 5.3 The conditional distribution of X2 given X1 = x1 is normal with
mean μ2 +�21�

−1
11 (x1 −μ1) and covariance �22.1, i.e.,

(X2 |X1 = x1)∼Np−r (μ2 +�21�
−1
11 (x1 −μ1),�22.1). (5.8)

Proof SinceX2 =X2.1+�21�
−1
11 X1, for a fixed value ofX1 = x1,X2 is equivalent

to X2.1 plus a constant term:

(X2|X1 = x1)= (X2.1 +�21�
−1
11 x1),

which has the normal distribution N(μ2.1 +�21�
−1
11 x1,�22.1). �
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Fig. 5.1 Shifts in the

conditional density
MVAcondnorm

Note that the conditional mean of (X2 |X1) is a linear function ofX1 and that the
conditional variance does not depend on the particular value of X1. In the following
example we consider a specific distribution.

Example 5.1 Suppose that p = 2, r = 1, μ= ( 0
0

)
and� = ( 1 −0.8

−0.8 2

)
. Then�11 =

1, �21 = −0.8 and �22.1 = �22 − �21�
−1
11 �12 = 2 − (0.8)2 = 1.36. Hence the

marginal pdf of X1 is

fX1(x1)= 1√
2π

exp

(
−x

2
1

2

)

and the conditional pdf of (X2 |X1 = x1) is given by

f (x2 | x1)= 1√
2π(1.36)

exp

{
− (x2 + 0.8x1)

2

2× (1.36)

}
.

As mentioned above, the conditional mean of (X2 |X1) is linear in X1. The shift in
the density of (X2 |X1) can be seen in Figure 5.1.

Sometimes it will be useful to reconstruct a joint distribution from the marginal
distribution of X1 and the conditional distribution (X2|X1). The following theorem
shows under which conditions this can be easily done in the multinormal framework.

Theorem 5.4 If X1 ∼Nr(μ1,�11) and (X2|X1 = x1)∼Np−r (Ax1 + b,�) where

� does not depend on x1, then X = (X1
X2

)∼Np(μ,�), where

μ=
(

μ1

Aμ1 + b
)

� =
(
�11 �11A	
A�11 �+A�11A	

)
.
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Example 5.2 Consider the following random variables

X1 ∼N1(0,1),

X2|X1 = x1 ∼N2

((
2x1
x1 + 1

)
,

(
1 0
0 1

))
.

Using Theorem (5.4), where A = (2 1)	, b = (0 1)	 and � = I2, we easily
obtain the following result:

X =
(
X1
X2

)
∼N3

⎛
⎝
⎛
⎝0

0
1

⎞
⎠ ,

⎛
⎝1 2 1

2 5 2
1 2 2

⎞
⎠
⎞
⎠ .

In particular, the marginal distribution of X2 is

X2 ∼N2

((
0
1

)
,

(
5 2
2 2

))
,

thus conditional on X1, the two components of X2 are independent but marginally
they are not.

Note that the marginal mean vector and covariance matrix of X2 could have
also been computed directly by using (4.28)–(4.29). Using the derivation above,
however, provides us with useful properties: we have multinormality.

Conditional Approximations

As we saw in Chapter 4 (Theorem 4.3), the conditional expectation E(X2|X1) is the
mean squared error (MSE) best approximation of X2 by a function of X1. We have
in this case

X2 = E(X2|X1)+U = μ2 +�21�
−1
11 (X1 −μ1)+U. (5.9)

Hence, the best approximation ofX2 ∈R
p−r byX1 ∈R

r is the linear approximation
that can be written as:

X2 = β0 +BX1 +U (5.10)

with B =�21�
−1
11 , β0 = μ2 −Bμ1 and U ∼N(0,�22.1).

Consider now the particular case where r = p − 1. Now X2 ∈ R and B is a row
vector β	 of dimension (1× r)

X2 = β0 + β	X1 +U. (5.11)

This means, geometrically speaking, that the best MSE approximation of X2 by a
function of X1 is hyperplane. The marginal variance of X2 can be decomposed via
(5.11):

σ22 = β	�11β + σ22.1 = σ21�
−1
11 σ12 + σ22.1. (5.12)
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The ratio

ρ2
2.1...r =

σ21�
−1
11 σ12

σ22
(5.13)

is known as the square of the multiple correlation between X2 and the r variables
X1. It is the percentage of the variance of X2 which is explained by the linear ap-
proximation β0 + β	X1. The last term in (5.12) is the residual variance of X2. The
square of the multiple correlation corresponds to the coefficient of determination in-
troduced in Section 3.4, see (3.39), but here it is defined in terms of the r.v. X1 and
X2. It can be shown that ρ2.1...r is also the maximum correlation attainable between
X2 and a linear combination of the elements of X1, the optimal linear combination
being precisely given by β	X1. Note, that when r = 1, the multiple correlation ρ2.1
coincides with the usual simple correlation ρX2X1 between X2 and X1.

Example 5.3 Consider the “classic blue” pullover example (Example 3.15) and sup-
pose that X1 (sales), X2 (price), X3 (advertisement) and X4 (sales assistants) are
normally distributed with

μ=

⎛
⎜⎜⎝

172.7
104.6
104.0

93.8

⎞
⎟⎟⎠ and � =

⎛
⎜⎜⎝

1037.21
−80.02 219.84
1430.70 92.10 2624.00

271.44 −91.58 210.30 177.36

⎞
⎟⎟⎠ .

(These are in fact the sample mean and the sample covariance matrix but in this
example we pretend that they are the true parameter values.)

The conditional distribution of X1 given (X2,X3,X4) is thus an univariate nor-
mal with mean

μ1 + σ12�
−1
22

⎛
⎝X2 −μ2
X3 −μ3
X4 −μ4

⎞
⎠= 65.670− 0.216X2 + 0.485X3 + 0.844X4

and variance

σ11.2 = σ11 − σ12�
−1
22 σ21 = 96.761.

The linear approximation of the sales (X1) by the price (X2), advertisement (X3)

and sales assistants (X4) is provided by the conditional mean above. (Note that
this coincides with the results of Example 3.15 due to the particular choice of
μ and �.) The quality of the approximation is given by the multiple correlation

ρ2
1.234 = σ12�

−1
22 σ21
σ11

= 0.907. (Note again that this coincides with the coefficient of

determination r2 found in Example 3.15.)
This example also illustrates the concept of partial correlation. The correlation

matrix between the 4 variables is given by

P =

⎛
⎜⎜⎝

1 −0.168 0.867 0.633
−0.168 1 0.121 −0.464

0.867 0.121 1 0.308
0.633 −0.464 0.308 1

⎞
⎟⎟⎠ ,
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so that the correlation betweenX1 (sales) andX2 (price) is−0.168. We can compute
the conditional distribution of (X1,X2) given (X3,X4), which is a bivariate normal
with mean: (

μ1
μ2

)
+

(
σ13 σ14
σ23 σ24

)(
σ33 σ34
σ43 σ44

)−1 (
X3 −μ3
X4 −μ4

)

=
(

32.516+ 0.467X3 + 0.977X4
153.644+ 0.085X3 − 0.617X4

)
and covariance matrix:(
σ11 σ12
σ21 σ22

)
−

(
σ13 σ14
σ23 σ24

)(
σ33 σ34
σ43 σ44

)−1 (
σ31 σ32
σ41 σ42

)
=

(
104.006
−33.574 155.592

)
.

In particular, the last covariance matrix allows the partial correlation between X1
and X2 to be computed for a fixed level of X3 and X4:

ρX1X2|X3X4 =
−33.574√

104.006 · 155.592
=−0.264,

so that in this particular example with a fixed level of advertisement and sales assis-
tance, the negative correlation between price and sales is more important than the
marginal one. MVAbluepullover

Summary
↪→ If X ∼Np(μ,�), then a linear transformation AX+ c, A(q × p),

where c ∈R
q , has distribution Nq(Aμ+ c,A�A	).

↪→ Two linear transformations AX and BX with X ∼ Np(μ,�) are
independent if and only if A�B	 = 0.

↪→ If X1 and X2 are partitions of X ∼Np(μ,�), then the conditional
distribution of X2 given X1 = x1 is again normal.

↪→ In the multivariate normal case,X1 is independent ofX2 if and only
if �12 = 0.

↪→ The conditional expectation of (X2|X1) is a linear function if(X1
X2

)∼Np(μ,�).
↪→ The multiple correlation coefficient is defined as ρ2

2.1...r =
σ21�

−1
11 σ12
σ22

.

↪→ The multiple correlation coefficient is the percentage of the vari-
ance of X2 explained by the linear approximation β0 + β	X1.
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5.2 The Wishart Distribution

The Wishart distribution (named after its discoverer) plays a prominent role in the
analysis of estimated covariance matrices. If the mean of X ∼ Np(μ,�) is known
to be μ = 0, then for a data matrix X (n × p) the estimated covariance matrix is
proportional to X	X . This is the point where the Wishart distribution comes in,
because M(p× p)=X	X =∑n

i=1 xix
	
i has a Wishart distribution Wp(�,n).

Example 5.4 Set p = 1, then for X ∼N1(0, σ 2) the data matrix of the observations

X = (x1, . . . , xn)
	 with M=X	X =

n∑
i=1

xixi

leads to the Wishart distribution W1(σ
2, n)= σ 2χ2

n . The one-dimensional Wishart
distribution is thus in fact a χ2 distribution.

When we talk about the distribution of a matrix, we mean of course the joint
distribution of all its elements. More exactly: since M = X	X is symmetric we
only need to consider the elements of the lower triangular matrix

M=

⎛
⎜⎜⎜⎝
m11
m21 m22
...

...
. . .

mp1 mp2 . . . mpp

⎞
⎟⎟⎟⎠ . (5.14)

Hence the Wishart distribution is defined by the distribution of the vector

(m11, . . . ,mp1,m22, . . . ,mp2, . . . ,mpp)
	. (5.15)

Linear transformations of the data matrix X also lead to Wishart matrices.

Theorem 5.5 If M∼Wp(�,n) and B(p × q), then the distribution of B	MB is
Wishart Wq(B	�B, n).

With this theorem we can standardise Wishart matrices since with B = �−1/2

the distribution of �−1/2M�−1/2 is Wp(I, n). Another connection to the χ2-
distribution is given by the following theorem.

Theorem 5.6 If M∼Wp(�,m), and a ∈R
p with a	�a 
= 0, then the distribution

of a
	Ma
a	�a is χ2

m.

This theorem is an immediate consequence of Theorem 5.5 if we apply the linear
transformation x �→ a	x. Central to the analysis of covariance matrices is the next
theorem.

Theorem 5.7 (Cochran) Let X (n×p) be a data matrix from a Np(0,�) distribu-
tion and let C(n× n) be a symmetric matrix.



5.2 The Wishart Distribution 175

(a) X	CX has the distribution of weighted Wishart random variables, i.e.

X	CX =
n∑
i=1

λiWp(�,1),

where λi , i = 1, . . . , n, are the eigenvalues of C.
(b) X	CX is Wishart if and only if C2 = C. In this case

X	CX ∼Wp(�, r),

and r = rank(C)= tr(C).
(c) nS =X	HX is distributed as Wp(�,n− 1) (note that S is the sample covari-

ance matrix).
(d) x̄ and S are independent.

The following properties are useful:

1. If M∼Wp(�,n), then E(M)= n�.
2. If Mi are independent Wishart Wp(�,ni) i = 1, . . . , k, then M=∑k

i=1 Mi ∼
Wp(�,n) where n=∑k

i=1 ni .
3. The density of Wp(�,n− 1) for a positive definite M is given by:

f�,n−1(M)= |M| 1
2 (n−p−2)e− 1

2 tr(M�−1)

2
1
2p(n−1)π

1
4p(p−1)|�| 1

2 (n−1)∏p

i=1�{n−i2 }
, (5.16)

where � is the gamma function, see Feller (1966): �(z)= ∫∞
0 tz−1e−t dt .

For further details on the Wishart distribution, see Mardia, Kent and Bibby
(1979).

Summary
↪→ The Wishart distribution is a generalisation of the χ2-distribution.

In particular W1(σ
2, n)= σ 2χ2

n .

↪→ The empirical covariance matrix S has a 1
n
Wp(�,n− 1) distribu-

tion.
↪→ In the normal case, x̄ and S are independent.

↪→ For M∼Wp(�,m),
a	Ma
a	�a ∼ χ2

m.
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5.3 Hotelling’s T 2-Distribution

Suppose that Y ∈ R
p is a standard normal random vector, i.e., Y ∼ Np(0,I),

independent of the random matrix M ∼ Wp(I, n). What is the distribution of
Y	M−1Y ? The answer is provided by the Hotelling T 2-distribution: n Y	M−1Y

is Hotelling T 2 (p,n) distributed.
The Hotelling T 2-distribution is a generalisation of the Student t-distribution.

The general multinormal distribution N(μ,�) is considered in Theorem 5.8. The
Hotelling T 2-distribution will play a central role in hypothesis testing in Chapter 7.

Theorem 5.8 If X ∼Np(μ,�) is independent of M∼Wp(�,n), then

n(X−μ)	M−1(X−μ)∼ T 2(p,n).

Corollary 5.3 If x is the mean of a sample drawn from a normal population
Np(μ,�) and S is the sample covariance matrix, then

(n− 1)(x −μ)	S−1(x −μ)= n(x −μ)	S−1
u (x −μ)∼ T 2(p,n− 1). (5.17)

Recall that Su = n
n−1S is an unbiased estimator of the covariance matrix. A con-

nection between the Hotelling T 2- and the F -distribution is given by the next theo-
rem.

Theorem 5.9

T 2(p,n)= np

n− p+ 1
Fp,n−p+1.

Example 5.5 In the univariate case (p = 1), this theorem boils down to the well
known result: (

x̄ −μ√
Su/
√
n

)2

∼ T 2(1, n− 1)= F1,n−1 = t2n−1.

For further details on Hotelling T 2-distribution see Mardia et al. (1979). The next
corollary follows immediately from (3.23), (3.24) and from Theorem 5.8. It will be
useful for testing linear restrictions in multinormal populations.

Corollary 5.4 Consider a linear transform of X ∼ Np(μ,�), Y = AX where
A(q×p) with (q ≤ p). If x and SX are the sample mean and the covariance matrix,
we have

y =Ax ∼Nq
(
Aμ, 1

n
A�A	

)
nSY = nASXA	 ∼Wq(A�A	, n− 1)

(n− 1)(Ax −Aμ)	(ASXA	)−1(Ax −Aμ)∼ T 2(q,n− 1).
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The T 2 distribution is closely connected to the univariate t-statistic. In Exam-
ple 5.4 we described the manner in which the Wishart distribution generalises the
χ2-distribution. We can write (5.17) as:

T 2 =√n(x −μ)	
(∑n

j=1(xj − x)(xj − x)	
n− 1

)−1√
n(x −μ)

which is of the form

(
multivariate normal

random vector

)	⎛
⎜⎜⎝

Wishart random
matrix

degrees of freedom

⎞
⎟⎟⎠
−1 (

multivariate normal
random vector

)
.

This is analogous to

t2 =√n(x −μ)(s2)−1√n(x −μ)
or

(
normal

random variable

)⎛
⎜⎜⎝

χ2-random
variable

degrees of freedom

⎞
⎟⎟⎠
−1 (

normal
random variable

)

for the univariate case. Since the multivariate normal and Wishart random variables
are independently distributed, their joint distribution is the product of the marginal
normal and Wishart distributions. Using calculus, the distribution of T 2 as given
above can be derived from this joint distribution.

Summary
↪→ Hotelling’s T 2-distribution is a generalisation of the t-distribution.

In particular T (1, n)= tn.

↪→ (n− 1)(x −μ)	S−1(x −μ) has a T 2(p,n− 1) distribution.

↪→ The relation between Hotelling’s T 2− and Fisher’s F -distribution
is given by T 2(p,n)= np

n−p+1 Fp,n−p+1.
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5.4 Spherical and Elliptical Distributions

The multinormal distribution belongs to the large family of elliptical distributions
which has recently gained a lot of attention in financial mathematics. Elliptical dis-
tributions are often used, particularly in risk management.

Definition 5.1 A (p × 1) random vector Y is said to have a spherical distribution
Sp(φ) if its characteristic function ψY (t) satisfies: ψY (t)= φ(t	t) for some scalar
function φ(.) which is then called the characteristic generator of the spherical dis-
tribution Sp(φ). We will write Y ∼ Sp(φ).

This is only one of several possible ways to define spherical distributions. We can
see spherical distributions as an extension of the standard multinormal distribution
Np(0,Ip).

Theorem 5.10 Spherical random variables have the following properties:

1. All marginal distributions of a spherical distributed random vector are spherical.
2. All the marginal characteristic functions have the same generator.
3. LetX ∼ Sp(φ), thenX has the same distribution as ru(p) where u(p) is a random

vector distributed uniformly on the unit sphere surface in R
p and r ≥ 0 is a

random variable independent of u(p). If E(r2) <∞, then

E(X)= 0, Cov(X)= E(r2)

p
Ip.

The random radius r is related to the generator φ by a relation described in Fang,
Kotz and Ng (1990, p. 29). The moments of X ∼ Sp(φ), provided that they exist,
can be expressed in terms of one-dimensional integrals (Fang et al., 1990).

A spherically distributed random vector does not, in general, necessarily possess
a density. However, if it does, the marginal densities of dimension smaller than
p − 1 are continuous and the marginal densities of dimension smaller than p − 2
are differentiable (except possibly at the origin in both cases). Univariate marginal
densities for p greater than 2 are non-decreasing on (−∞,0) and non-increasing on
(0,∞).

Definition 5.2 A (p× 1) random vector X is said to have an elliptical distribution
with parameters μ(p×1) and�(p×p) ifX has the same distribution as μ+A	Y ,
where Y ∼ Sk(φ) and A is a (k×p) matrix such that A	A=� with rank(�)= k.
We shall write X ∼ECp(μ,�,φ).
Remark 5.1 The elliptical distribution can be seen as an extension of Np(μ,�).

Example 5.6 (The multivariate t-distribution) Let Z ∼ Np(0,Ip) and s ∼ χ2
m be

independent. The random vector

Y =√m Z

s
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has a multivariate t-distribution with m degrees of freedom. Moreover the t-
distribution belongs to the family of p-dimensional spherical distributions.

Example 5.7 (The multinormal distribution) Let X ∼ Np(μ,�). Then X ∼
ECp(μ,�,φ) and φ(u) = exp (−u/2). Figure 4.3 shows a density surface of the

multivariate normal distribution: f (x) = det(2π�)− 1
2 exp{− 1

2 (x − μ)	�−1(x −
μ)} with � = ( 1 0.6

0.6 1

)
and μ= ( 0

0

)
. Notice that the density is constant on ellipses.

This is the reason for calling this family of distributions “elliptical”.

Theorem 5.11 Elliptical random vectors X have the following properties:

1. Any linear combination of elliptically distributed variables are elliptical.
2. Marginal distributions of elliptically distributed variables are elliptical.
3. A scalar function φ(.) can determine an elliptical distribution ECp(μ,�,φ)

for every μ ∈ R
p and � ≥ 0 with rank(�) = k iff φ(t	t) is a p-dimensional

characteristic function.
4. Assume that X is non-degenerate. If X ∼ECp(μ,�,φ) and X ∼ECp(μ∗,�∗,
φ∗), then a constant c > 0 exists that

μ= μ∗, � = c�∗, φ∗(.)= φ(c−1.).

In other words �,φ,A are not unique, unless we impose the condition that
det(�)= 1.

5. The characteristic function of X, ψ(t)= E(eit
	X) is of the form

ψ(t)= eit	μφ(t	�t)

for a scalar function φ.
6. X ∼ECp(μ,�,φ) with rank(�)= k iff X has the same distribution as:

μ+ rA	u(k) (5.18)

where r ≥ 0 is independent of u(k) which is a random vector distributed uni-
formly on the unit sphere surface in R

k and A is a (k × p) matrix such that
A	A=�.

7. Assume that X ∼ECp(μ,�,φ) and E(r2) <∞. Then

E(X)= μ Cov(X)= E(r2)

rank(�)
� =−2φ	(0)�.

8. Assume that X ∼ECp(μ,�,φ) with rank(�)= k. Then

Q(X)= (X−μ)	�−1(X−μ)

has the same distribution as r2 in equation (5.18).
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5.5 Exercises

Exercise 5.1 Consider X ∼ N2(μ,�) with μ = (2,2)	 and � = ( 1 0
0 1

)
and the

matrices A= ( 1
1

)	, B = ( 1
−1

)	. Show that AX and BX are independent.

Exercise 5.2 Prove Theorem 5.4.

Exercise 5.3 Prove proposition (c) of Theorem 5.7.

Exercise 5.4 Let

X ∼N2

((
1
2

)
,

(
2 1
1 2

))

and

Y |X ∼N2

((
X1

X1 +X2

)
,

(
1 0
0 1

))
.

a) Determine the distribution of Y2 | Y1.
b) Determine the distribution of W =X− Y .

Exercise 5.5 Consider

(
X
Y
Z

)
∼N3(μ,�). Compute μ and � knowing that

Y | Z ∼N1(−Z,1)
μZ|Y =−1

3
− 1

3
Y

X | Y,Z ∼N1(2+ 2Y + 3Z,1).

Determine the distributions of X | Y and of X | Y +Z.

Exercise 5.6 Knowing that

Z ∼N1(0,1)

Y | Z ∼N1(1+Z,1)
X | Y,Z ∼N1(1− Y,1)

a) find the distribution of

(
X
Y
Z

)
and of Y |X,Z.

b) find the distribution of (
U

V

)
=

(
1+Z
1− Y

)
.

c) compute E(Y |U = 2).



5.5 Exercises 181

Exercise 5.7 Suppose
(
X
Y

)∼N2(μ,�) with � positive definite. Is it possible that

a) μX|Y = 3Y 2,
b) σXX|Y = 2+ Y 2,
c) μX|Y = 3− Y , and
d) σXX|Y = 5?

Exercise 5.8 Let

X ∼N3

⎛
⎝
⎛
⎝1

2
3

⎞
⎠ ,

⎛
⎝ 11 −6 2
−6 10 −4

2 −4 6

⎞
⎠
⎞
⎠ .

a) Find the best linear approximation of X3 by a linear function of X1 and X2 and
compute the multiple correlation between X3 and (X1,X2).

b) Let Z1 =X2−X3, Z2 =X2+X3 and (Z3 |Z1,Z2)∼N1(Z1+Z2,10). Com-

pute the distribution of

(
Z1
Z2
Z3

)
.

Exercise 5.9 Let (X,Y,Z)	 be a trivariate normal r.v. with

Y | Z ∼N1(2Z,24)

Z |X ∼N1(2X+ 3,14)

X ∼N1(1,4)

and ρXY = 0.5.

Find the distribution of (X,Y,Z)	 and compute the partial correlation between X
and Y for fixed Z. Do you think it is reasonable to approximate X by a linear
function of Y and Z?

Exercise 5.10 Let

X ∼N4

⎛
⎜⎜⎝
⎛
⎜⎜⎝

1
2
3
4

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

4 1 2 4
1 4 2 1
2 2 16 1
4 1 1 9

⎞
⎟⎟⎠
⎞
⎟⎟⎠ .

a) Give the best linear approximation of X2 as a function of (X1,X4) and evaluate
the quality of the approximation.

b) Give the best linear approximation ofX2 as a function of (X1,X3,X4) and com-
pare your answer with part a).

Exercise 5.11 Prove Theorem 5.2. (Hint: complete the linear transformation Z =( A
Ip−q

)
X+ ( c

0p−q
)

and then use Theorem 5.1 to get the marginal of the first q com-
ponents of Z.)

Exercise 5.12 Prove Corollaries 5.1 and 5.2.



Chapter 6
Theory of Estimation

We know from our basic knowledge of statistics that one of the objectives in statis-
tics is to better understand and model the underlying process which generates data.
This is known as statistical inference: we infer from information contained in sample
properties of the population from which the observations are taken. In multivariate
statistical inference, we do exactly the same. The basic ideas were introduced in
Section 4.5 on sampling theory: we observed the values of a multivariate random
variable X and obtained a sample X = {xi}ni=1. Under random sampling, these ob-
servations are considered to be realisations of a sequence of i.i.d. random variables
X1, . . . ,Xn where each Xi is a p-variate random variable which replicates the par-
ent or population random variable X. In this chapter, for notational convenience, we
will no longer differentiate between a random variable Xi and an observation of it,
xi , in our notation. We will simply write xi and it should be clear from the context
whether a random variable or an observed value is meant.

Statistical inference infers from the i.i.d. random sample X the properties of the
population: typically, some unknown characteristic θ of its distribution. In paramet-
ric statistics, θ is a k-variate vector θ ∈R

k characterising the unknown properties of
the population pdf f (x; θ): this could be the mean, the covariance matrix, kurtosis,
etc.

The aim will be to estimate θ from the sample X through estimators θ̂ which
are functions of the sample: θ̂ = θ̂ (X ). When an estimator θ̂ is proposed, we must
derive its sampling distribution to analyse its properties (is it related to the unknown
quantity θ it is supposed to estimate?).

In this chapter the basic theoretical tools are developed which are needed to de-
rive estimators and to determine their properties in general situations. We will ba-
sically rely on the maximum likelihood theory in our presentation. In many situa-
tions, the maximum likelihood estimators indeed share asymptotic optimal proper-
ties which make their use easy and appealing.

We will illustrate the multivariate normal population and also the linear regres-
sion model where the applications are numerous and the derivations are easy to do.
In multivariate setups, the maximum likelihood estimator is at times too complicated
to be derived analytically. In such cases, the estimators are obtained using numerical
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methods (nonlinear optimisation). The general theory and the asymptotic properties
of these estimators remain simple and valid. The following chapter, Chapter 7, con-
centrates on hypothesis testing and confidence interval issues.

6.1 The Likelihood Function

Suppose that {xi}ni=1 is an i.i.d. sample from a population with pdf f (x; θ). The
aim is to estimate θ ∈ R

k which is a vector of unknown parameters. The likelihood
function is defined as the joint density L(X ; θ) of the observations xi considered as
a function of θ :

L(X ; θ)=
n∏
i=1

f (xi; θ), (6.1)

where X denotes the sample of the data matrix with the observations x	1 , . . . , x	n in
each row. The maximum likelihood estimator (MLE) of θ is defined as

θ̂ = arg max
θ
L(X ; θ).

Often it is easier to maximise the log-likelihood function

�(X ; θ)= logL(X ; θ), (6.2)

which is equivalent since the logarithm is a monotone one-to-one function. Hence

θ̂ = arg max
θ
L(X ; θ)= arg max

θ
�(X ; θ).

The following examples illustrate cases where the maximisation process can be
performed analytically, i.e., we will obtain an explicit analytical expression for θ̂ .
Unfortunately, in other situations, the maximisation process can be more intricate,
involving nonlinear optimisation techniques. In the latter case, given a sample X
and the likelihood function, numerical methods will be used to determine the value
of θ maximising L(X ; θ) or �(X ; θ). These numerical methods are typically based
on Newton-Raphson iterative techniques.

Example 6.1 Consider a sample {xi}ni=1 from Np(μ,I), i.e., from the pdf

f (x; θ)= (2π)−p/2 exp

{
−1

2
(x − θ)	(x − θ)

}

where θ = μ ∈R
p is the mean vector parameter. The log-likelihood is in this case

�(X ; θ)=
n∑
i=1

log{f (xi; θ)} = log (2π)−np/2 − 1

2

n∑
i=1

(xi − θ)	(xi − θ). (6.3)
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The term (xi − θ)	(xi − θ) equals

(xi − x)	(xi − x)+ (x − θ)	(x̄ − θ)+ 2(x − θ)	(xi − x).
Summing this term over i = 1, . . . , n we see that

n∑
i=1

(xi − θ)	(xi − θ)=
n∑
i=1

(xi − x)	(xi − x)+ n(x − θ)	(x − θ).

Hence

�(X ; θ)= log(2π)−np/2 − 1

2

n∑
i=1

(xi − x)	(xi − x)− n

2
(x − θ)	(x̄ − θ).

Only the last term depends on θ and is obviously maximised for

θ̂ = μ̂= x.
Thus x is the MLE of θ for this family of pdfs f (x, θ).

A more complex example is the following one where we derive the MLE’s for μ
and �.

Example 6.2 Suppose {xi}ni=1 is a sample from a normal distribution Np(μ,�).
Here θ = (μ,�) with � interpreted as a vector. Due to the symmetry of � the
unknown parameter θ is in fact {p+ 1

2p(p+ 1)}-dimensional. Then

L(X ; θ)= |2π�|−n/2 exp

{
−1

2

n∑
i=1

(xi −μ)	�−1(xi −μ)
}

(6.4)

and

�(X ; θ)=−n
2

log |2π�| − 1

2

n∑
i=1

(xi −μ)	�−1(xi −μ). (6.5)

The term (xi −μ)	�−1(xi −μ) equals

(xi − x)	�−1(xi − x)+ (x −μ)	�−1(x̄ −μ)+ 2(x −μ)	�−1(xi − x).
Summing this term over i = 1, . . . , n we see that

n∑
i=1

(xi −μ)	�−1(xi −μ)=
n∑
i=1

(xi − x)	�−1(xi − x)+ n(x −μ)	�−1(x −μ).

Note that from (2.14)

(xi − x)	�−1(xi − x)= tr
{
(xi − x)	�−1(xi − x)

}
= tr

{
�−1(xi − x)(xi − x)	

}
.



186 6 Theory of Estimation

Therefore, by summing over the index i we finally arrive at
n∑
i=1

(xi −μ)	�−1(xi −μ)= tr

{
�−1

n∑
i=1

(xi − x)(xi − x)	
}

+ n(x −μ)	�−1(x −μ)
= tr{�−1nS} + n(x −μ)	�−1(x −μ).

Thus the log-likelihood function for Np(μ,�) is

�(X ; θ)=−n
2

log |2π�| − n

2
tr{�−1S} − n

2
(x −μ)	�−1(x −μ). (6.6)

We can easily see that the third term is maximised by μ= x̄. In fact the MLE’s are
given by

μ̂= x, �̂ = S.
The derivation of �̂ is a lot more complicated. It involves derivatives with respect
to matrices with their notational complexities and will not be presented here; for
more elaborate proof see Mardia et al. (1979, p. 103–104). Note that the unbiased
covariance estimator Su = n

n−1S is not the MLE of �!

Example 6.3 Consider the linear regression model yi = β	xi + εi for i = 1, . . . , n,
where εi is i.i.d. and N(0, σ 2) and where xi ∈ R

p . Here θ = (β	, σ ) is a (p + 1)-
dimensional parameter vector. Denote

y =
⎛
⎜⎝
y1
...

yn

⎞
⎟⎠ , X =

⎛
⎜⎝
x	1
...

x	n

⎞
⎟⎠ .

Then

L(y,X ; θ)=
n∏
i=1

1√
2πσ

exp

{
− 1

2σ 2
(yi − β	xi)2

}

and

�(y,X ; θ)= log

{
1

(2π)n/2σn

}
− 1

2σ 2

n∑
i=1

(yi − β	xi)2

=−n
2

log(2π)− n logσ − 1

2σ 2
(y −Xβ)	(y −Xβ)

=−n
2

log(2π)− n logσ − 1

2σ 2
(y	y + β	X	Xβ − 2β	X	y).

Differentiating w.r.t. the parameters yields

∂

∂β
�=− 1

2σ 2
(2X	Xβ − 2X	y)

∂

∂σ
�=− n

σ
+ 1

σ 3

{
(y −Xβ)	(y −Xβ)

}
.
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Note that ∂
∂β
� denotes the vector of the derivatives w.r.t. all components of β (the

gradient). Since the first equation only depends on β , we start with deriving β̂ .

X	X β̂ =X	y, hence β̂ = (X	X )−1X	y.

Plugging β̂ into the second equation gives

n

σ̂
= 1

σ̂ 3
(y −X β̂)	(y −X β̂), hence σ̂ 2 = 1

n
||y −X β̂||2,

where || • ||2 denotes the Euclidean vector norm from Section 2.6. We see that the
MLE β̂ is identical with the least squares estimator (3.52). The variance estimator

σ̂ 2 = 1

n

n∑
i=1

(yi − β̂	xi)2

is nothing else than the residual sum of squares (RSS) from (3.37) generalised to
the case of multivariate xi .

Note that when the xi are considered to be fixed we have

E(y)=Xβ and Var(y)= σ 2In.

Then, using the properties of moments from Section 4.2 we have

E(β̂)= (X	X )−1X	 E(y)= β, (6.7)

Var(β̂)= σ 2(X	X )−1. (6.8)

Summary
↪→ If {xi}ni=1 is an i.i.d. sample from a distribution with pdf f (x; θ),

then L(X ; θ)=∏n
i=1 f (xi; θ) is the likelihood function. The max-

imum likelihood estimator (MLE) is that value of θ which max-
imises L(X ; θ). Equivalently one can maximise the log-likelihood
�(X ; θ).

↪→ The MLE’s of μ and � from a Np(μ,�) distribution are μ̂ = x

and �̂ = S . Note that the MLE of � is not unbiased.
↪→ The MLE’s of β and σ in the linear model y = Xβ +

ε, ε ∼ Nn(0, σ 2I) are given by the least squares estimator β̂ =
(X	X )−1X	y and σ̂ 2 = 1

n
||y − X β̂||2. E(β̂) = β and Var(β̂) =

σ 2(X	X )−1.
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6.2 The Cramer-Rao Lower Bound

As pointed out above, an important question in estimation theory is whether an esti-
mator θ̂ has certain desired properties, in particular, if it converges to the unknown
parameter θ it is supposed to estimate. One typical property we want for an estimator
is unbiasedness, meaning that on the average, the estimator hits its target: E(θ̂)= θ .
We have seen for instance (see Example 6.2) that x̄ is an unbiased estimator of μ and
S is a biased estimator of � in finite samples. If we restrict ourselves to unbiased
estimation then the natural question is whether the estimator shares some optimality
properties in terms of its sampling variance. Since we focus on unbiasedness, we
look for an estimator with the smallest possible variance.

In this context, the Cramer-Rao lower bound will give the minimal achievable
variance for any unbiased estimator. This result is valid under very general regularity
conditions (discussed below). One of the most important applications of the Cramer-
Rao lower bound is that it provides the asymptotic optimality property of maximum
likelihood estimators. The Cramer-Rao theorem involves the score function and its
properties which will be derived first.

The score function s(X ; θ) is the derivative of the log likelihood function w.r.t.
θ ∈R

k

s(X ; θ)= ∂

∂θ
�(X ; θ)= 1

L(X ; θ)
∂

∂θ
L(X ; θ). (6.9)

The covariance matrix Fn = Var{s(X ; θ)} is called the Fisher information matrix.
In what follows, we will give some interesting properties of score functions.

Theorem 6.1 If s = s(X ; θ) is the score function and if θ̂ = t = t (X , θ) is any
function of X and θ , then under regularity conditions

E(st	)= ∂

∂θ
E(t	)− E

(
∂t	

∂θ

)
· (6.10)

The proof is left as an exercise (see Exercise 6.9). The regularity conditions required
for this theorem are rather technical and ensure that the expressions (expectations
and derivations) appearing in (6.10) are well defined. In particular, the support of the
density f (x; θ) should not depend on θ . The next corollary is a direct consequence.

Corollary 6.1 If s = s(X ; θ) is the score function, and θ̂ = t = t (X ) is any unbi-
ased estimator of θ (i.e., E(t)= θ ), then

E(st	)= Cov(s, t)= Ik. (6.11)

Note that the score function has mean zero (see Exercise 6.10).

E{s(X ; θ)} = 0. (6.12)

Hence, E(ss	)= Var(s)=Fn and by setting s = t in Theorem 6.1 it follows that

Fn =−E

{
∂2

∂θ∂θ	
�(X ; θ)

}
.
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Remark 6.1 If x1, . . . , xn are i.i.d., Fn = nF1 where F1 is the Fisher information
matrix for sample size n= 1.

Example 6.4 Consider an i.i.d. sample {xi}ni=1 from Np(θ,I). In this case the pa-
rameter θ is the mean μ. It follows from (6.3) that

s(X ; θ)= ∂

∂θ
�(X ; θ)

=−1

2

∂

∂θ

{
n∑
i=1

(xi − θ)	(xi − θ)
}

= n(x − θ).
Hence, the information matrix is

Fn = Var{n(x − θ)} = nIp.

How well can we estimate θ? The answer is given in the following theorem which
is from Cramer and Rao. As pointed out above, this theorem gives a lower bound for
unbiased estimators. Hence, all estimators, which are unbiased and attain this lower
bound, are minimum variance estimators.

Theorem 6.2 (Cramer-Rao) If θ̂ = t = t (X ) is any unbiased estimator for θ , then
under regularity conditions

Var(t)≥F−1
n , (6.13)

where

Fn = E{s(X ; θ)s(X ; θ)	} = Var{s(X ; θ)} (6.14)

is the Fisher information matrix.

Proof Consider the correlation ρY,Z between Y and Z where Y = a	t , Z = c	s.
Here s is the score and the vectors a, c ∈ R

p . By Corollary 6.1 Cov(s, t) = I and
thus

Cov(Y,Z)= a	Cov(t, s)c= a	c
Var(Z)= c	 Var(s)c= c	Fnc.

Hence,

ρ2
Y,Z =

Cov2(Y,Z)

Var(Y )Var(Z)
= (a	c)2

a	 Var(t)a· c	Fnc ≤ 1. (6.15)

In particular, this holds for any c 
= 0. Therefore it holds also for the maximum of
the left-hand side of (6.15) with respect to c. Since

max
c

c	aa	c
c	Fnc

= max
c	Fnc=1

c	aa	c
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and

max
c	Fnc=1

c	aa	c= a	F−1
n a

by our maximisation Theorem 2.5 we have

a	F−1
n a

a	 Var(t)a
≤ 1 ∀ a ∈R

p, a 
= 0,

i.e.,

a	{Var(t)−F−1
n }a ≥ 0 ∀ a ∈R

p, a 
= 0,

which is equivalent to Var(t)≥F−1
n . �

Maximum likelihood estimators (MLE’s) attain the lower bound if the sample
size n goes to infinity. The next Theorem 6.3 states this and, in addition, gives
the asymptotic sampling distribution of the maximum likelihood estimation, which
turns out to be multinormal.

Theorem 6.3 Suppose that the sample {xi}ni=1 is i.i.d. If θ̂ is the MLE for θ ∈ R
k ,

i.e., θ̂ = arg max
θ
L(X ; θ), then under some regularity conditions, as n→∞:

√
n(θ̂ − θ) L−→Nk(0,F−1

1 ) (6.16)

where F1 denotes the Fisher information for sample size n= 1.

As a consequence of Theorem 6.3 we see that under regularity conditions the MLE
is asymptotically unbiased, efficient (minimum variance) and normally distributed.
Also it is a consistent estimator of θ .

Note that from property (5.4) of the multinormal it follows that asymptotically

n(θ̂ − θ)	F1(θ̂ − θ) L→ χ2
p. (6.17)

If F̂1 is a consistent estimator of F1 (e.g. F̂1 =F1(θ̂ )), we have equivalently

n(θ̂ − θ)	F̂1(θ̂ − θ) L→ χ2
p. (6.18)

This expression is sometimes useful in testing hypotheses about θ and in construct-
ing confidence regions for θ in a very general setup. These issues will be raised in
more details in the next chapter but from (6.18) it can be seen, for instance, that
when n is large,

P
{
n(θ̂ − θ)	F̂1(θ̂ − θ)≤ χ2

1−α;p
}
≈ 1− α,

where χ2
ν;p denotes the ν-quantile of a χ2

p random variable. So, the ellipsoid n(θ̂ −
θ)	F̂1(θ̂ − θ) ≤ χ2

1−α;p provides in R
p an asymptotic (1 − α)-confidence region

for θ .



6.3 Exercises 191

Summary
↪→ The score function is the derivative s(X ; θ) = ∂

∂θ
�(X ; θ) of the

log-likelihood with respect to θ . The covariance matrix of s(X ; θ)
is the Fisher information matrix.

↪→ The score function has mean zero: E{s(X ; θ)} = 0.

↪→ The Cramer-Rao bound says that any unbiased estimator θ̂ = t =
t (X ) has a variance that is bounded from below by the inverse of
the Fisher information. Thus, an unbiased estimator, which attains
this lower bound, is a minimum variance estimator.

↪→ For i.i.d. data {xi}ni=1 the Fisher information matrix is: Fn = nF1.

↪→ MLE’s attain the lower bound in an asymptotic sense, i.e.,

√
n(θ̂ − θ) L−→Nk(0,F−1

1 )

if θ̂ is the MLE for θ ∈R
k , i.e., θ̂ = arg max

θ
L(X ; θ).

6.3 Exercises

Exercise 6.1 Consider a uniform distribution on the interval [0, θ ]. What is the
MLE of θ? (Hint: the maximisation here cannot be performed by means of deriva-
tives. Here the support of x depends on θ .)

Exercise 6.2 Consider an i.i.d. sample of size n from the bivariate population with
pdf f (x1, x2) = (θ1θ2)

−1 exp(−x1/θ1 − x2/θ2), x1, x2 > 0. Compute the MLE of
θ = (θ1, θ2). Find the Cramer-Rao lower bound. Is it possible to derive a minimal
variance unbiased estimator of θ?

Exercise 6.3 Show that the MLE of Example 6.1, μ̂ = x, is a minimal variance
estimator for any finite sample size n (i.e., without applying Theorem 6.3).

Exercise 6.4 We know from Example 6.4 that the MLE of Example 6.1 has F1 =
Ip . This leads to

√
n(x −μ) L−→Np(0,I)

by Theorem 6.3. Can you give an analogous result for the square x2 for the case
p = 1?
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Exercise 6.5 Consider an i.i.d. sample of size n from the bivariate population with
pdf f (x1, x2) = (θ2

1 θ2x2)
−1 exp(−x1/θ1x2 − x2/θ1θ2), x1, x2 > 0. Compute the

MLE of θ = (θ1, θ2). Find the Cramer-Rao lower bound and the asymptotic vari-
ance of θ̂ .

Exercise 6.6 Consider a sample {xi}ni=1 fromNp(μ,�0)where�0 is known. Com-
pute the Cramer-Rao lower bound for μ. Can you derive a minimal unbiased esti-
mator for μ?

Exercise 6.7 Let X ∼Np(μ,�) where � is unknown but we know

� = diag(σ11, σ22, . . . , σpp).

From an i.i.d. sample of size n, find the MLE of μ and of �.

Exercise 6.8 Reconsider the setup of the previous exercise. Suppose that

� = diag(σ11, σ22, . . . , σpp).

Can you derive in this case the Cramer-Rao lower bound for θ	 = (μ1 . . .μp,

σ11 . . . σpp)?

Exercise 6.9 Prove Theorem 6.1. (Hint: start from

∂

∂θ
E(t	)= ∂

∂θ

∫
t	(X ; θ)L(X ; θ)dX ,

then permute integral and derivatives and note that s(X ; θ)= 1
L(X ;θ)

∂
∂θ
L(X ; θ).)

Exercise 6.10 Prove expression (6.12). (Hint: start from

E{s(X ; θ)} =
∫

1

L(X ; θ)
∂

∂θ
L(X ; θ)L(X ; θ)∂X

and then permute integral and derivative.)



Chapter 7
Hypothesis Testing

In the preceding chapter, the theoretical basis of estimation theory was presented.
Now we turn our interest towards testing issues: we want to test the hypothesis H0
that the unknown parameter θ belongs to some subspace of Rq . This subspace is
called the null set and will be denoted by �0 ⊂R

q .
In many cases, this null set corresponds to restrictions which are imposed on the

parameter space: H0 corresponds to a “reduced model”. As we have already seen in
Chapter 3, the solution to a testing problem is in terms of a rejection region R which
is a set of values in the sample space which leads to the decision of rejecting the null
hypothesis H0 in favour of an alternative H1, which is called the “full model”.

In general, we want to construct a rejection region R which controls the size of
the type I error, i.e. the probability of rejecting the null hypothesis when it is true.
More formally, a solution to a testing problem is of predetermined size α if:

P(Rejecting H0 |H0 is true)= α.
In fact, since H0 is often a composite hypothesis, it is achieved by finding R such
that

sup
θ∈�0

P(X ∈R | θ)= α.

In this chapter we will introduce a tool which allows us to build a rejection region in
general situations; it is based on the likelihood ratio principle. This is a very useful
technique because it allows us to derive a rejection region with an asymptotically
appropriate size α. The technique will be illustrated through various testing prob-
lems and examples. We concentrate on multinormal populations and linear models
where the size of the test will often be exact even for finite sample sizes n.

Section 7.1 gives the basic ideas and Section 7.2 presents the general problem
of testing linear restrictions. This allows us to propose solutions to frequent types
of analyses (including comparisons of several means, repeated measurements and
profile analysis). Each case can be viewed as a simple specific case of testing lin-
ear restrictions. Special attention is devoted to confidence intervals and confidence
regions for means and for linear restrictions on means in a multinormal setup.

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
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7.1 Likelihood Ratio Test

Suppose that the distribution of {xi}ni=1, xi ∈R
p , depends on a parameter vector θ .

We will consider two hypotheses:

H0 : θ ∈�0

H1 : θ ∈�1.

The hypothesis H0 corresponds to the “reduced model” and H1 to the “full
model”. This notation was already used in Chapter 3.

Example 7.1 Consider a multinormal Np(θ,I). To test if θ equals a certain fixed
value θ0 we construct the test problem:

H0 : θ = θ0

H1 : no constraints on θ

or, equivalently, �0 = {θ0}, �1 =R
p .

Define L∗j = maxθ∈�j L(X ; θ), the maxima of the likelihood for each of the
hypotheses. Consider the likelihood ratio (LR)

λ(X )= L∗0
L∗1
. (7.1)

One tends to favour H0 if the LR is high and H1 if the LR is low. The likelihood
ratio test (LRT) tells us when exactly to favour H0 over H1. A likelihood ratio test
of size α for testing H0 against H1 has the rejection region

R = {X : λ(X ) < c}
where c is determined so that supθ∈�0

Pθ (X ∈ R) = α. The difficulty here is to
express c as a function of α, because λ(X ) might be a complicated function of X .

Instead of λ we may equivalently use the log-likelihood

−2 logλ= 2(�∗1 − �∗0).
In this case the rejection region will be R = {X : −2 logλ(X ) > k}. What is the
distribution of λ or of −2 logλ from which we need to compute c or k?

Theorem 7.1 (Wilks Theorem) If �1 ⊂ R
q is a q-dimensional space and if �0 ⊂

�1 is an r-dimensional subspace, then under regularity conditions

∀ θ ∈�0 : −2 logλ
L−→ χ2

q−r as n→∞.

An asymptotic rejection region can now be given by simply computing the 1−α
quantile k = χ2

1−α;q−r . The LRT rejection region is therefore

R = {X : −2 logλ(X ) > χ2
1−α;q−r }.
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Theorem 7.1 is thus very helpful: it gives a general way of building rejection regions
into many problems. Unfortunately, it is only an asymptotic result, meaning that
the size of the test is only approximately equal to α, although the approximation
becomes better when the sample size n increases. The question is “how large should
n be?”. There is no definite rule: we encounter here the same problem that was
already discussed with respect to the Central Limit Theorem in Chapter 4.

Fortunately, in many standard circumstances, we can derive exact tests even for
finite samples because the test statistic −2 logλ(X ) or a simple transformation of it
turns out to have a simple form. This is the case in most of the following standard
testing problems. All of them can be viewed as an illustration of the likelihood ratio
principle.

Test Problem 1 is an amuse-bouche: in testing the mean of a multinormal popu-
lation with a known covariance matrix the likelihood ratio statistic has a very simple
quadratic form with a known distribution under H0.

Test Problem 1 Suppose that X1, . . . ,Xn is an i.i.d. random sample from a
Np(μ,�) population.

H0 : μ= μ0, � known versus H1 : no constraints.

In this case H0 is a simple hypothesis, i.e., �0 = {μ0} and therefore the dimen-
sion r of �0 equals 0. Since we have imposed no constraints in H1, the space �1 is
the whole R

p which leads to q = p. From (6.6) we know that

�∗0 = �(μ0,�)=−n
2

log |2π�| − 1

2
n tr(�−1S)− 1

2
n(x −μ0)

	�−1(x −μ0).

Under H1 the maximum of �(μ,�) is

�∗1 = �(x,�)=−
n

2
log |2π�| − 1

2
n tr(�−1S).

Therefore,

−2 logλ= 2(�∗1 − �∗0)= n(x −μ0)
	�−1(x −μ0) (7.2)

which, by Theorem 4.7, has a χ2
p-distribution under H0.

Example 7.2 Consider the bank data again. Let us test whether the population mean
of the forged bank notes is equal to

μ0 = (214.9,129.9,129.7,8.3,10.1,141.5)	.

(This is in fact the sample mean of the genuine bank notes.) The sample mean of
the forged bank notes is

x = (214.8,130.3,130.2,10.5,11.1,139.4)	.
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Suppose for the moment that the estimated covariance matrix Sf given in (3.5) is
the true covariance matrix �. We construct the likelihood ratio test and obtain

−2 logλ= 2(�∗1 − �∗0)= n(x −μ0)
	�−1(x −μ0)

= 7362.32,

the quantile k = χ2
0.95;6 equals 12.592. The rejection consists of all values in the

sample space which lead to values of the likelihood ratio test statistic larger than
12.592. Under H0 the value of −2 logλ is therefore highly significant. Hence, the
true mean of the forged bank notes is significantly different from μ0!

Test Problem 2 is the same as the preceding one but in a more realistic situation
where the covariance matrix is unknown; here the Hotelling’s T 2-distribution will
be useful to determine an exact test and a confidence region for the unknown μ.

Test Problem 2 Suppose that X1, . . . ,Xn is an i.i.d. random sample from a
Np(μ,�) population.

H0 : μ= μ0, � unknown versus H1 : no constraints.

Under H0 it can be shown that

S0 = 1

n

[
x − 1nμ

	
0 − 1nx

	 + 1nx
	]	[x − 1nμ

	
0 − 1nx

	 + 1nx
	]

= S + (x −μ0) (x −μ0)
	

�∗0 = �(μ0,S + dd	), d = (x −μ0) (7.3)

and under H1 we have

�∗1 = �(x,S).
This leads after some calculation to

−2 logλ= 2(�∗1 − �∗0)
=−n log |S| − n tr(S−1S)− n (x − x)	 S−1 (x − x)+ n log |S + dd	|
+n tr

[
(S + dd	)−1S

]+ n (x −μ0)
	 (S + dd	)−1 (x −μ0)

= n log

∣∣∣∣S + dd	S

∣∣∣∣+ n tr
[
(S + dd	)−1S

]+ nd	(S + dd	)−1d − np

= n log

∣∣∣∣S + dd	S

∣∣∣∣+ n tr
[
(S + dd	)−1(dd	 + S)

]− np
= n log

∣∣∣∣S + dd	S

∣∣∣∣
= n log |1+ S−1/2dd	S−1/2|.
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By using the result for the determinant of a partitioned matrix, it equals to

n log

∣∣∣∣ 1 −d	S−1/2

S−1/2d I

∣∣∣∣

= n log

∣∣∣∣∣∣∣∣∣∣∣

1 −d	S−1/2
1 −d	S−1/2

2 . . . −d	S−1/2
p

S−1/2d1 1 0 . . . 0
S−1/2d2 0 1 0

...
...

. . .

S−1/2dp 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣

= n log 1+ n log
p∑
i=1

−d	S−1/2
i (−1)1+(i+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S−1/2d1 1 0 . . . 0
S−1/2d2 0 1 . . . 0

...
. . .

S−1/2di 0 0 . . . 0
...

S−1/2dp 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= n log 1+

p∑
i=1

−d	S−1/2
i (−1)2+iS−1/2di(−1)i+1

= n log(1+ d	S−1d). (7.4)

This statistic is a monotone function of (n − 1)d	S−1d . This means that
−2 logλ > k if and only if (n− 1)d	S−1d > k′. The latter statistic has by Corol-
lary 5.3, under H0, a Hotelling’s T 2-distribution. Therefore,

(n− 1)(x̄ −μ0)
	S−1(x̄ −μ0)∼ T 2(p,n− 1), (7.5)

or equivalently (
n− p
p

)
(x̄ −μ0)

	S−1(x̄ −μ0)∼ Fp,n−p. (7.6)

In this case an exact rejection region may be defined as(
n− p
p

)
(x̄ −μ0)

	S−1(x̄ −μ0) > F1−α;p,n−p.

Alternatively, we have from Theorem 7.1 that under H0 the asymptotic distribution
of the test statistic is

−2 logλ
L
−→ χ2

p, as n→∞
which leads to the (asymptotically valid) rejection region

n log{1+ (x̄ −μ0)
	S−1(x̄ −μ0)}> χ2

1−α;p,

but of course, in this case, we would prefer to use the exact F -test provided just
above.
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Example 7.3 Consider the problem of Example 7.2 again. We know that Sf is the
empirical analogue for �f , the covariance matrix for the forged banknotes. The test
statistic (7.5) has the value 1153.4 or its equivalent for the F distribution in (7.6)
is 182.5 which is highly significant (F0.95;6,94 = 2.1966) so that we conclude that
μf 
= μ0.

Confidence Region for μ

When estimating a multidimensional parameter θ ∈ R
k from a sample, we saw in

Chapter 6 how to determine the estimator θ̂ = θ̂ (X ). For the observed data we end
up with a point estimate, which is the corresponding observed value of θ̂ . We know
θ̂ (X ) is a random variable and we often prefer to determine a confidence region for
θ . A confidence region (CR) is a random subset of Rk (determined by appropriate
statistics) such that we are “confident”, at a certain given level 1−α, that this region
contains θ :

P(θ ∈ CR)= 1− α.
This is just a multidimensional generalisation of the basic univariate confidence
interval. Confidence regions are particularly useful when a hypothesis H0 on θ is
rejected, because they eventually help in identifying which component of θ is re-
sponsible for the rejection.

There are only a few cases where confidence regions can be easily assessed, and
include most of the testing problems on mean presented in this section.

Corollary 5.3 provides a pivotal quantity which allows confidence regions for μ
to be constructed. Since ( n−p

p
)(x̄ −μ)	S−1(x̄ −μ)∼ Fp,n−p , we have

P

{(
n− p
p

)
(μ− x̄)	S−1(μ− x̄) < F1−α;p,n−p

}
= 1− α.

Then,

CR=
{
μ ∈R

p | (μ− x̄)	S−1(μ− x̄)≤ p

n− pF1−α;p,n−p
}

is a confidence region at level (1 − α) for μ. It is the interior of an iso-distance
ellipsoid in R

p centred at x̄, with a scaling matrix S−1 and a distance constant
(
p

n−p )F1−α;p,n−p . When p is large, ellipsoids are not easy to handle for practical
purposes. One is thus interested in finding confidence intervals for μ1,μ2, . . . ,μp
so that simultaneous confidence on all the intervals reaches the desired level of
say, 1− α.

Below, we consider a more general problem. We construct simultaneous confi-
dence intervals for all possible linear combinations a	μ, a ∈ R

p of the elements
of μ.

Suppose for a moment that we fix a particular projection vector a. We are back
to a standard univariate problem of finding a confidence interval for the mean a	μ
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of a univariate random variable a	X. We can use the t-statistics and an obvious
confidence interval for a	μ is given by the values a	μ such that

∣∣∣∣∣
√
n− 1(a	μ− a	x̄)√

a	Sa

∣∣∣∣∣≤ t1− α
2 ;n−1

or equivalently

t2(a)= (n− 1){a	(μ− x̄)}2
a	Sa ≤ F1−α;1,n−1.

This provides the (1− α) confidence interval for a	μ:⎛
⎝a	x̄ −

√
F1−α;1,n−1

a	Sa
n− 1

≤ a	μ≤ a	x̄ +
√
F1−α;1,n−1

a	Sa
n− 1

⎞
⎠ .

Now it is easy to prove (using Theorem 2.5) that:

max
a
t2(a)= (n− 1)(x̄ −μ)	S−1(x̄ −μ)∼ T 2(p,n− 1).

Therefore, simultaneously for all a ∈R
p , the interval(

a	x̄ −
√
Kαa	Sa, a	x̄ +

√
Kαa	Sa

)
(7.7)

where Kα = p
n−pF1−α;p,n−p , will contain a	μ with probability (1− α).

A particular choice of a are the columns of the identity matrix Ip , providing si-
multaneous confidence intervals for μ1, . . . ,μp . We therefore have with probability
(1− α) for j = 1, . . . , p

x̄j −
√

p

n− pF1−α;p,n−psjj ≤ μj ≤ x̄j +
√

p

n− pF1−α;p,n−psjj . (7.8)

It should be noted that these intervals define a rectangle inscribing the confidence el-
lipsoid for μ given above. They are particularly useful when a null hypothesis H0 of
the type described above is rejected and one would like to see which component(s)
are mainly responsible for the rejection.

Example 7.4 The 95% confidence region for μf , the mean of the forged banknotes,
is given by the ellipsoid:{

μ ∈R
6 | (μ− x̄f )	S−1

f (μ− x̄f )≤ 6

94
F0.95;6,94

}
.

The 95% simultaneous confidence intervals are given by (we use F0.95;6,94 =
2.1966)
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214.692≤ μ1 ≤ 214.954

130.205≤ μ2 ≤ 130.395

130.082≤ μ3 ≤ 130.304

10.108≤ μ4 ≤ 10.952

10.896≤ μ5 ≤ 11.370

139.242≤ μ6 ≤ 139.658.

Comparing the inequalities with μ0 = (214.9,129.9,129.7,8.3,10.1,141.5)	
shows that almost all components (except the first one) are responsible for the re-
jection of μ0 in Examples 7.2 and 7.3.

In addition, the method can provide other confidence intervals. We have at the
same level of confidence (choosing a	 = (0, 0, 0, 1, −1, 0))

−1.211≤ μ4 −μ5 ≤ 0.005

showing that for the forged bills, the lower border is essentially smaller than the
upper border.

Remark 7.1 It should be noted that the confidence region is an ellipsoid whose
characteristics depend on the whole matrix S . In particular, the slope of the axis
depends on the eigenvectors of S and therefore on the covariances sij . However, the
rectangle inscribing the confidence ellipsoid provides the simultaneous confidence
intervals for μj , j = 1, . . . , p. They do not depend on the covariances sij , but only
on the variances sjj (see (7.8)). In particular, it may happen that a tested value μ0
is covered by the confidence ellipsoid but not covered by the intervals (7.8). In this
case, μ0 is rejected by a test based on the simultaneous confidence intervals but not
rejected by a test based on the confidence ellipsoid. The simultaneous confidence in-
tervals are easier to handle than the full ellipsoid but we have lost some information,
namely the covariance between the components (see Exercise 7.14).

The following problem concerns the covariance matrix in a multinormal popula-
tion: in this situation the test statistic has a slightly more complicated distribution.
We will therefore invoke the approximation of Theorem 7.1 in order to derive a test
of approximate size α.

Test Problem 3 Suppose that X1, . . . ,Xn is an i.i.d. random sample from a
Np(μ,�) population.

H0 :� =�0, μ unknown versus H1 : no constraints.

Under H0 we have μ̂= x, and � =�0, whereas under H1 we have μ̂= x, and
�̂ = S . Hence
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�∗0 = �(x,�0)=−1

2
n log |2π�0| − 1

2
n tr(�−1

0 S)

�∗1 = �(x,S)=−
1

2
n log |2πS| − 1

2
np

and thus

−2 logλ= 2(�∗1 − �∗0)
= n tr(�−1

0 S)− n log |�−1
0 S| − np.

Note that this statistic is a function of the eigenvalues of �−1
0 S . Unfortunately, the

exact finite sample distribution of −2 logλ is very complicated. Asymptotically, we
have under H0

−2 logλ
L→ χ2

m as n→∞
with m= 1

2 {p(p+ 1)}, since a (p×p) covariance matrix has only these m param-
eters as a consequence of its symmetry.

Example 7.5 Consider the US companies data set (Table B.5) and suppose we
are interested in the companies of the energy sector, analysing their assets (X1)

and sales (X2). The sample is of size 15 and provides the value of S = 107 ×[ 1.6635 1.2410
1.2410 1.3747

]
. We want to test if Var

(
X1
X2

) = 107 × [ 1.2248 1.1425
1.1425 1.5112

] = �0. (�0 is in
fact the empirical variance matrix for X1 and X2 for the manufacturing sector.) The
test statistic ( MVAusenergy) turns out to be −2 logλ= 5.4046 which is not
significant for χ2

3 (p-value= 0.1445). So we cannot conclude that � 
=�0.

In the next testing problem, we address a question that was already stated in
Chapter 3, Section 3.6: testing a particular value of the coefficients β in a linear
model. The presentation is carried out in general terms so that it can be built on in
the next section where we will test linear restrictions on β .

Test Problem 4 Suppose that Y1, . . . , Yn are independent r.v.’s with
Yi ∼N1(β

	xi, σ 2), xi ∈ R
p .

H0 : β = β0, σ
2 unknown versus H1 : no constraints.

Under H0 we have β = β0, σ̂
2
0 = 1

n
||y − Xβ0||2 and under H1 we have β̂ =

(X	X )−1X	y, σ̂ 2 = 1
n
||y −Xβ||2 (see Example 6.3). Hence by Theorem 7.1

−2 logλ = 2(�∗1 − �∗0)
= n log

( ||y −Xβ0||2
||y −X β̂||2

)
L−→ χ2

p.
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We draw upon the result (3.45) which gives us

F = (n− p)
p

( ||y −Xβ0||2
||y −X β̂||2 − 1

)
∼ Fp,n−p,

so that in this case we again have an exact distribution.

Example 7.6 Let us consider our “classic blue” pullovers again. In Example 3.11
we tried to model the dependency of sales on prices. As we have seen in Figure 3.5
the slope of the regression curve is rather small, hence we might ask if

( α
β

)= ( 211
0

)
.

Here

y =
⎛
⎜⎝
y1
...

y10

⎞
⎟⎠=

⎛
⎜⎝
x1,1
...

x10,1

⎞
⎟⎠ , X =

⎛
⎜⎝

1 x1,2
...

...

1 x10,2

⎞
⎟⎠ .

The test statistic for the LR test is

−2 logλ= 9.10

which under the χ2
2 distribution is significant. The exact F -test statistic

F = 5.93

is also significant under the F2,8 distribution (F2,8;0.95 = 4.46).

Summary
↪→ The hypothesesH0 : θ ∈�0 againstH1 : θ ∈�1 can be tested using

the likelihood ratio test (LRT). The likelihood ratio (LR) is the quo-
tient λ(X )= L∗0/L∗1 where the L∗j are the maxima of the likelihood
for each of the hypotheses.

↪→ The test statistic in the LRT is λ(X ) or equivalently its logarithm
logλ(X ). If�1 is q-dimensional and�0 ⊂�1 r-dimensional, then
the asymptotic distribution of −2 logλ is χ2

q−r . This allows H0
to be tested against H1 by calculating the test statistic −2 logλ =
2(�∗1 − �∗0) where �∗j = logL∗j .

↪→ The hypothesisH0 : μ= μ0 forX ∼Np(μ,�), where� is known,
leads to −2 logλ= n(x −μ0)

	�−1(x −μ0)∼ χ2
p.

↪→ The hypothesis H0 : μ = μ0 for X ∼ Np(μ,�), where � is un-
known, leads to−2 logλ= n log{1+ (x−μ0)

	S−1(x−μ0)} −→
χ2
p, and (n− 1)(x̄ −μ0)

	S−1(x̄ −μ0)∼ T 2(p,n− 1).
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Summary (continued)
↪→ The hypothesis H0 : � = �0 for X ∼ Np(μ,�), where μ is un-

known, leads to −2 logλ = n tr(�−1
0 S)− n log |�−1

0 S| − np −→
χ2
m, m= 1

2p(p+ 1).

↪→ The hypothesis H0 : β = β0 for Yi ∼ N1(β
	xi, σ 2), where σ 2 is

unknown, leads to −2 logλ= n log
( ||y−Xβ0||2
||y−X β̂||2

)
−→ χ2

p.

7.2 Linear Hypothesis

In this section, we present a very general procedure which allows a linear hypothesis
to be tested, i.e., a linear restriction, either on a vector mean μ or on the coefficient
β of a linear model. The presented technique covers many of the practical testing
problems on means or regression coefficients.

Linear hypotheses are of the form Aμ= a with known matrices A(q × p) and
a(q × 1) with q ≤ p.

Example 7.7 Let μ= (μ1,μ2)
	. The hypothesis that μ1 = μ2 can be equivalently

written as:

Aμ= (
1 −1

)(μ1
μ2

)
= 0= a.

The general idea is to test a normal population H0 : Aμ= a (restricted model)
against the full modelH1 where no restrictions are put on μ. Due to the properties of
the multinormal, we can easily adapt the Test Problems 1 and 2 to this new situation.
Indeed we know, from Theorem 5.2, that yi =Axi ∼Nq(μy,�y), where μy =Aμ
and �y =A�A	.

Testing the null H0 : Aμ= a, is the same as testing H0 : μy = a. The appropri-
ate statistics are ȳ and Sy which can be derived from the original statistics x̄ and S
available from X :

ȳ =Ax̄, Sy =ASA	.

Here the difference between the translated sample mean and the tested value is d =
Ax̄ − a. We are now in the situation to proceed to Test Problems 5 and 6.

Test Problem 5 Suppose X1, . . . ,Xn is an i.i.d. random sample from a
Np(μ,�) population.

H0 :Aμ= a, � known versus H1 : no constraints.
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By (7.2) we have that, under H0:

n(Ax̄ − a)	(A�A	)−1(Ax̄ − a)∼X 2
q ,

and we reject H0 if this test statistic is too large at the desired significance level.

Example 7.8 We consider hypotheses on partitioned mean vectors μ= (μ1
μ2

)
. Let us

first look at

H0 : μ1 = μ2, versus H1 : no constraints,

for N2p
((μ1
μ2

)
,
(
� 0
0 �

))
with known �. This is equivalent to A = (I,−I), a =

(0, . . . ,0)	 ∈R
p and leads to

−2 logλ= n(x1 − x2)(2�)
−1(x1 − x2)∼ χ2

p.

Another example is the test whether μ1 = 0, i.e.,

H0 : μ1 = 0, versus H1 : no constraints,

forN2p
((μ1
μ2

)
,
(
� 0
0 �

))
with known�. This is equivalent to Aμ= a with A= (I,0),

and a = (0, . . . ,0)	 ∈R
p . Hence

−2 logλ= nx1�
−1x1 ∼ χ2

p.

Test Problem 6 Suppose X1, . . . ,Xn is an i.i.d. random sample from a
Np(μ,�) population.

H0 :Aμ= a, � unknown versus H1 : no constraints.

From Corollary (5.4) and under H0 it follows immediately that

(n− 1)(Ax − a)	(ASA	)−1(Ax − a)∼ T 2(q,n− 1) (7.9)

since indeed under H0,

Ax ∼Nq(a,n−1A�A	)

is independent of

nASA	 ∼Wq(A�A	, n− 1).

Example 7.9 Let’s come back again to the bank data set and suppose that we want
to test if μ4 = μ5, i.e., the hypothesis that the lower border mean equals the larger
border mean for the forged bills. In this case:



7.2 Linear Hypothesis 205

A= (0 0 0 1 −1 0 )

a = 0.

The test statistic is:

99(Ax̄)	(ASfA	)−1(Ax̄)∼ T 2(1,99)= F1,99.

The observed value is 13.638 which is significant at the 5% level.

Repeated Measurements

In many situations, n independent sampling units are observed at p different times
or under p different experimental conditions (different treatments, . . . ). So here we
repeat p one-dimensional measurements on n different subjects. For instance, we
observe the results from n students taking p different exams. We end up with a
(n× p) matrix. We can thus consider the situation where we have X1, . . . ,Xn i.i.d.
from a normal distribution Np(μ,�) when there are p repeated measurements. The
hypothesis of interest in this case is that there are no treatment effects, H0 : μ1 =
μ2 = · · · = μp . This hypothesis is a direct application of Test Problem 6. Indeed,
introducing an appropriate matrix transform on μ we have

H0 : Cμ= 0 where C((p− 1)× p)=

⎛
⎜⎜⎜⎝

1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 · · · 0 1 −1

⎞
⎟⎟⎟⎠ . (7.10)

Note that in many cases one of the experimental conditions is the “control” (a
placebo, standard drug or reference condition). Suppose it is the first component.
In that case one is interested in studying differences to the control variable. The
matrix C has therefore a different form

C((p− 1)× p)=

⎛
⎜⎜⎜⎝

1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
...

...
...

1 0 0 · · · −1

⎞
⎟⎟⎟⎠ .

By (7.9) the null hypothesis will be rejected if:

(n− p+ 1)

p− 1
x̄	C	(CSC	)−1Cx̄ > F1−α;p−1,n−p+1.

As a matter of fact, Cμ is the mean of the random variable yi = Cxi

yi ∼Np−1(Cμ,C�C	).
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Simultaneous confidence intervals for linear combinations of the mean of yi have
been derived above in (7.7). For all a ∈R

p−1, with probability (1− α) we have

a	Cμ ∈ a	Cx̄ ±
√

(p− 1)

n− p+ 1
F1−α;p−1,n−p+1a

	CSC	a.

Due to the nature of the problem here, the row sums of the elements in C are zero:
C1p = 0, therefore a	C is a vector having sum of elements equals to 0. This is
called a contrast. Let b = C	a. We have b	1p =∑p

j=1 bj = 0. The result above

thus provides for all contrasts of μ, and b	μ simultaneous confidence intervals at
level (1− α)

b	μ ∈ b	x̄ ±
√

(p− 1)

n− p+ 1
F1−α;p−1,n−p+1b

	Sb.

Examples of contrasts for p = 4 are b	 = (1 −1 0 0) or (1 0 0 −1) or even
(1 − 1

3 − 1
3 − 1

3 ) when the control is to be compared with the mean of 3 different
treatments.

Example 7.10 Bock (1975) considers the evolution of the vocabulary of children
from the eighth through eleventh grade. The data set contains the scores of a vocab-
ulary test of 40 randomly chosen children. This is a repeated measurement situation,
(n = 40,p = 4), since the same children were observed from grades 8 to 11. The
statistics of interest are:

x̄ = (1.086,2.544,2.851,3.420)	

S =

⎛
⎜⎜⎝

2.902 2.438 2.963 2.183
2.438 3.049 2.775 2.319
2.963 2.775 4.281 2.939
2.183 2.319 2.939 3.162

⎞
⎟⎟⎠ .

Suppose we are interested in the yearly evolution of the children. Then the matrix C
providing successive differences of μj is:

C =
⎛
⎝1 −1 0 0

0 1 −1 0
0 0 1 −1

⎞
⎠ .

The value of the test statistic is Fobs = 53.134 which is highly significant for F3.37.
There are significant differences between the successive means. However, the anal-
ysis of the contrasts shows the following simultaneous 95% confidence intervals

−1.958≤ μ1 −μ2 ≤−0.959

−0.949≤ μ2 −μ3 ≤ 0.335

−1.171≤ μ3 −μ4 ≤ 0.036.
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Thus, the rejection of H0 is mainly due to the difference between the childrens’
performances in the first and second year. The confidence intervals for the following
contrasts may also be of interest:

−2.283≤ μ1 − 1

3
(μ2 +μ3 +μ4)≤−1.423

−1.777≤ 1

3
(μ1 +μ2 +μ3)−μ4 ≤−0.742

−1.479≤ μ2 −μ4 ≤−0.272.

They show that μ1 is different from the average of the 3 other years (the same being
true for μ4) and μ4 turns out to be higher than μ2 (and of course higher than μ1).

Test Problem 7 illustrates how the likelihood ratio can be applied to testing a
linear restriction on the coefficient β of a linear model. It is also shown how a
transformation of the test statistic leads to an exact F test as presented in Chapter 3.

Test Problem 7 Suppose Y1, . . . , Yn, are independent with Yi ∼N1(β
	xi, σ 2),

and xi ∈ R
p .

H0 :Aβ = a, σ 2 unknown versus H1 : no constraints.

To get the constrained maximum likelihood estimators under H0, let f (β,λ)=
(y−xβ)	(y−xβ)−λ	(Aβ−a)where λ ∈R

q and solve ∂f (β,λ)
∂β

= 0 and ∂f (β,λ)
∂λ

=
0 (Exercise 3.24), thus we obtain:

β̃ = β̂ − (X	X )−1A	{A(X	X )−1A	}−1(Aβ̂ − a)
for β and σ̃ 2 = 1

n
(y − X β̃)	(y − X β̃). The estimate β̂ denotes the unconstrained

MLE as before. Hence, the LR statistic is

−2 logλ = 2(�∗1 − �∗0)

= n log

( ||y −X β̃||2
||y −X β̂||2

)
L−→ χ2

q

where q is the number of elements of a. This problem also has an exact F -test since

n− p
q

( ||y −X β̃||2
||y −X β̂||2 − 1

)

= n− p
q

(Aβ̂ − a)	{A(X	X )−1A	}−1(Aβ̂ − a)
(y −X β̂)	(y −X β̂)

∼ Fq,n−p.
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Example 7.11 Let us continue with the “classic blue” pullovers. We can once more
test if β = 0 in the regression of sales on prices. It holds that

β = 0 iff (0 1 )

(
α

β

)
= 0.

The LR statistic here is

−2 logλ= 0.284

which is not significant for the χ2
1 distribution. The F -test statistic

F = 0.231

is also not significant. Hence, we can assume independence of sales and prices
(alone). Recall that this conclusion has to be revised if we consider the prices to-
gether with advertising costs and hours sales manager hours.

Recall the different conclusion that was made in Example 7.6 when we rejected
H0 : α = 211 and β = 0. The rejection there came from the fact that the pair of
values was rejected. Indeed, if β = 0 the estimator of α would be ȳ = 172.70 and
this is too far from 211.

Example 7.12 Let us now consider the multivariate regression in the “classic blue”
pullovers example. From Example 3.15 we know that the estimated parameters in
the model

X1 = α + β1X2 + β2X3 + β3X4 + ε
are

α̂ = 65.670, β̂1 =−0.216, β̂2 = 0.485, β̂3 = 0.844.

Hence, we could postulate the approximate relation:

β1 ≈−1

2
β2,

which means in practice that augmenting the price by 20 EUR requires the adver-
tising costs to increase by 10 EUR in order to keep the number of pullovers sold
constant. Vice versa, reducing the price by 20 EUR yields the same result as be-
fore if we reduced the advertising costs by 10 EUR. Let us now test whether the
hypothesis

H0 : β1 =−1

2
β2

is valid. This is equivalent to

(
0 1

1

2
0
)
⎛
⎜⎜⎝
α

β1
β2
β3

⎞
⎟⎟⎠= 0.
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The LR statistic in this case is equal to ( MVAlrtest)

−2 logλ= 0.012,

the F statistic is

F = 0.007.

Hence, in both cases we will not reject the null hypothesis.

Comparison of Two Mean Vectors

In many situations, we want to compare two groups of individuals for whom a set
of p characteristics has been observed. We have two random samples {xi1}n1

i=1 and
{xj2}n2

j=1 from two distinct p-variate normal populations. Several testing issues can
be addressed in this framework. In Test Problem 8 we will first test the hypothesis
of equal mean vectors in the two groups under the assumption of equality of the two
covariance matrices. This task can be solved by adapting Test Problem 2.

In Test Problem 9 a procedure for testing the equality of the two covariance ma-
trices is presented. If the covariance matrices differ, the procedure of Test Problem 8
is no longer valid. If the equality of the covariance matrices is rejected, an easy rule
for comparing two means with no restrictions on the covariance matrices is provided
in Test Problem 10.

Test Problem 8 Assume that Xi1 ∼Np(μ1,�), with i = 1, . . . , n1 and Xj2 ∼
Np(μ2,�), with j = 1, . . . , n2, where all the variables are independent.

H0 : μ1 = μ2, versus H1 : no constraints.

Both samples provide the statistics x̄k and Sk , k = 1,2. Let δ = μ1 − μ2. We
have

(x̄1 − x̄2)∼Np
(
δ,
n1 + n2

n1n2
�

)
(7.11)

n1S1 + n2S2 ∼Wp(�,n1 + n2 − 2). (7.12)

Let S=(n1 + n2)
−1(n1S1 + n2S2) be the weighted mean of S1 and S2. Since the

two samples are independent and since Sk is independent of x̄k (for k = 1,2) it
follows that S is independent of (x̄1 − x̄2). Hence, Theorem 5.8 applies and leads
to a T 2-distribution:

n1n2(n1 + n2 − 2)

(n1 + n2)2
{(x̄1 − x̄2)− δ}	 S−1 {(x̄1 − x̄2)− δ})∼ T 2(p,n1 + n2 − 2)

(7.13)
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or

{(x̄1 − x̄2)− δ}	 S−1 {(x̄1 − x̄2)− δ} ∼ p(n1 + n2)
2

(n1 + n2 − p− 1)n1n2
Fp,n1+n2−p−1.

This result, as in Test Problem 2, can be used to test H0: δ=0 or to construct a
confidence region for δ ∈R

p . The rejection region is given by:

n1n2(n1 + n2 − p− 1)

p(n1 + n2)2
(x̄1 − x̄2)

	 S−1 (x̄1 − x̄2)≥ F1−α;p,n1+n2−p−1. (7.14)

A (1− α) confidence region for δ is given by the ellipsoid centred at (x̄1 − x̄2)

{δ− (x̄1− x̄2)}	S−1{δ− (x̄1− x̄2)} ≤ p(n1 + n2)
2

(n1 + n2 − p− 1)(n1n2)
F1−α;p,n1+n2−p−1,

and the simultaneous confidence intervals for all linear combinations a	δ of the
elements of δ are given by

a	δ ∈ a	(x̄1 − x̄2)±
√

p(n1 + n2)2

(n1 + n2 − p− 1)(n1n2)
F1−α;p,n1+n2−p−1a

	Sa.

In particular we have at the (1− α) level, for j = 1, . . . , p,

δj ∈ (x̄1j − x̄2j )±
√

p(n1 + n2)2

(n1 + n2 − p− 1)(n1n2)
F1−α;p,n1+n2−p−1sjj . (7.15)

Example 7.13 Let us come back to the questions raised in Example 7.5. We compare
the means of assets (X1) and of sales (X2) for two sectors, energy (group 1) and
manufacturing (group 2). With n1 = 15, n2 = 10, and p = 2 we obtain the statistics:

x̄1 =
(

4084.0
2580.5

)
, x̄2 =

(
4307.2
4925.2

)

and

S1 = 107
(

1.6635 1.2410
1.2410 1.3747

)
, S2 = 107

(
1.2248 1.1425
1.1425 1.5112

)
,

so that

S = 107
(

1.4880 1.2016
1.2016 1.4293

)
.

The observed value of the test statistic (7.14) is F = 2.7036. Since F0.95;2,22 =
3.4434 the hypothesis of equal means of the two groups is not rejected although
it would be rejected at a less severe level (F > F0.90;2,22 = 2.5613). By directly
applying (7.15), the 95% simultaneous confidence intervals for the differences
( MVAsimcidif) are obtained as:
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−4628.6≤ μ1a −μ2a ≤ 4182.2

−6662.4 ≤ μ1s −μ2s ≤ 1973.0.

Example 7.14 In order to illustrate the presented test procedures it is interesting to
analyse some simulated data. This simulation will point out the importance of the
covariances in testing means. We created 2 independent normal samples in R

4 of
sizes n1 = 30 and n2 = 20 with:

μ1 = (8,6,10,10)	

μ2 = (6,6,10,13)	.
One may consider this as an example of X = (X1, . . . ,Xn)

	 being the students’
scores from 4 tests, where the 2 groups of students were subjected to two different
methods of teaching. First we simulate the two samples with � = I4 and obtain the
statistics:

x̄1 = (7.607,5.945,10.213,9.635)	

x̄2 = (6.222,6.444,9.560,13.041)	

S1 =

⎛
⎜⎜⎝

0.812 −0.229 −0.034 0.073
−0.229 1.001 0.010 −0.059
−0.034 0.010 1.078 −0.098

0.073 −0.059 −0.098 0.823

⎞
⎟⎟⎠

S2 =

⎛
⎜⎜⎝

0.559 −0.057 −0.271 0.306
−0.057 1.237 0.181 0.021
−0.271 0.181 1.159 −0.130

0.306 0.021 −0.130 0.683

⎞
⎟⎟⎠ .

The test statistic (7.14) takes the value F = 60.65 which is highly significant: the
small variance allows the difference to be detected even with these relatively mod-
erate sample sizes. We conclude (at the 95% level) that:

0.6213≤ δ1 ≤ 2.2691

−1.5217≤ δ2 ≤ 0.5241

−0.3766≤ δ3 ≤ 1.6830

−4.2614≤ δ4 ≤−2.5494

which confirms that the means for X1 and X4 are different.
Consider now a different simulation scenario where the standard deviations are

4 times larger: � = 16I4. Here we obtain:

x̄1 = (7.312,6.304,10.840,10.902)	

x̄2 = (6.353,5.890,8.604,11.283)	

S1 =

⎛
⎜⎜⎝

21.907 1.415 −2.050 2.379
1.415 11.853 2.104 −1.864
−2.050 2.104 17.230 0.905

2.379 −1.864 0.905 9.037

⎞
⎟⎟⎠
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S2 =

⎛
⎜⎜⎝

20.349 −9.463 0.958 −6.507
−9.463 15.502 −3.383 −2.551

0.958 −3.383 14.470 −0.323
−6.507 −2.551 −0.323 10.311

⎞
⎟⎟⎠ .

Now the test statistic takes the value 1.54 which is no longer significant (F0.95,4,45 =
2.58). Now we cannot reject the null hypothesis (which we know to be false!) since
the increase in variances prohibits the detection of differences of such magnitude.

The following situation illustrates once more the role of the covariances between
covariates. Suppose that � = 16I4 as above but with σ14 = σ41 = −3.999 (this
corresponds to a negative correlation r41 =−0.9997). We have:

x̄1 = (8.484,5.908,9.024,10.459)	

x̄2 = (4.959,7.307,9.057,13.803)	

S1 =

⎛
⎜⎜⎝

14.649 −0.024 1.248 −3.961
−0.024 15.825 0.746 4.301

1.248 0.746 9.446 1.241
−3.961 4.301 1.241 20.002

⎞
⎟⎟⎠

S2 =

⎛
⎜⎜⎝

14.035 −2.372 5.596 −1.601
−2.372 9.173 −2.027 −2.954

5.596 −2.027 9.021 −1.301
−1.601 −2.954 −1.301 9.593

⎞
⎟⎟⎠ .

The value of F is 3.853 which is significant at the 5% level (p-value = 0.0089).
So the null hypothesis δ = μ1 − μ2 = 0 is outside the 95% confidence ellipsoid.
However, the simultaneous confidence intervals, which do not take the covariances
into account are given by:

−0.1837≤ δ1 ≤ 7.2343

−4.9452≤ δ2 ≤ 2.1466

−3.0091≤ δ3 ≤ 2.9438

−7.2336≤ δ4 ≤ 0.5450.

They contain the null value (see Remark 7.1 above) although they are very asym-
metric for δ1 and δ4.

Example 7.15 Let us compare the vectors of means of the forged and the genuine
bank notes. The matrices Sf and Sg were given in Example 3.1 and since here
nf = ng = 100, S is the simple average of Sf and Sg : S = 1

2 (Sf + Sg).

x̄g = (214.97,129.94,129.72,8.305,10.168,141.52)	

x̄f = (214.82,130.3,130.19,10.53,11.133,139.45)	.

The test statistic is given by (7.14) and turns out to be F = 391.92 which is highly
significant for F6,193. The 95% simultaneous confidence intervals for the differences
δj = μgj −μfj , j = 1, . . . , p are:
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−0.0443≤ δ1 ≤ 0.3363

−0.5186≤ δ2 ≤−0.1954

−0.6416≤ δ3 ≤−0.3044

−2.6981≤ δ4 ≤−1.7519

−1.2952≤ δ5 ≤−0.6348

1.8072≤ δ6 ≤ 2.3268.

All of the components (except for the first one) show significant differences in
the means. The main effects are taken by the lower border (X4) and the diago-
nal (X6).

The preceding test implicitly uses the fact that the two samples are extracted from
two different populations with common variance �. In this case, the test statistic
(7.14) measures the distance between the two centres of gravity of the two groups
w.r.t. the common metric given by the pooled variance matrix S . If �1 
= �2 no
such matrix exists. There are no satisfactory test procedures for testing the equality
of variance matrices which are robust with respect to normality assumptions of the
populations. The following test extends Bartlett’s test for equality of variances in
the univariate case. But this test is known to be very sensitive to departures from
normality.

Test Problem 9 (Comparison of Covariance Matrices) Let Xih ∼Np(μh,�h),
i = 1, . . . , nh, h= 1, . . . , k be independent random variables,

H0 :�1 =�2 = · · · =�k versus H1 : no constraints.

Each sub-sample provides Sh, an estimator of �h, with

nhSh ∼Wp(�h,nh − 1).

Under H0,
∑k

h=1 nhSh ∼ Wp(�,n − k) (Section 5.2), where � is the common

covariance matrix Xih and n =∑k
h=1 nh. Let S = n1S1+···+nkSk

n
be the weighted

average of the Sh (this is in fact the MLE of � when H0 is true). The likelihood
ratio test leads to the statistic

−2 logλ= n log |S| −
k∑

h=1

nh log |Sh| (7.16)

which under H0 is approximately distributed as a X 2
m where m= 1

2 (k−1)p(p+1).
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Example 7.16 Let’s come back to Example 7.13, where the mean of assets and
sales have been compared for companies from the energy and manufacturing sector
assuming that �1 =�2. The test of �1 =�2 leads to the value of the test statistic

−2 logλ= 0.9076 (7.17)

which is not significant (p-value for a χ2
3 = 0.82). We cannot reject H0 and the

comparison of the means performed above is valid.

Example 7.17 Let us compare the covariance matrices of the forged and the genuine
bank notes (the matrices Sf and Sg are shown in Example 3.1). A first look seems to
suggest that�1 
=�2. The pooled variance S is given by S = 1

2 (Sf +Sg) since here
nf = ng . The test statistic here is −2 logλ = 127.21, which is highly significant
χ2 with 21 degrees of freedom. As expected, we reject the hypothesis of equal
covariance matrices, and as a result the procedure for comparing the two means in
Example 7.15 is not valid.

What can we do with unequal covariance matrices? When both n1 and n2 are large,
we have a simple solution:

Test Problem 10 (Comparison of two means, unequal covariance matrices,
large samples) Assume that Xi1 ∼ Np(μ1,�1), with i = 1, . . . , n1 and Xj2 ∼
Np(μ2,�2), with j = 1, . . . , n2 are independent random variables.

H0 : μ1 = μ2 versus H1 : no constraints.

Letting δ = μ1 −μ2, we have

(x̄1 − x̄2)∼Np
(
δ,
�1

n1
+ �2

n2

)
.

Therefore, by (5.4)

(x̄1 − x̄2)
	
(
�1

n1
+ �2

n2

)−1

(x̄1 − x̄2)∼ χ2
p.

Since Si is a consistent estimator of �i for i = 1,2, we have

(x̄1 − x̄2)
	
(S1

n1
+ S2

n2

)−1

(x̄1 − x̄2)
L→ χ2

p. (7.18)

This can be used in place of (7.13) for testing H0, defining a confidence region for
δ or constructing simultaneous confidence intervals for δj , j = 1, . . . , p.

For instance, the rejection region at the level α will be

(x̄1 − x̄2)
	
(S1

n1
+ S2

n2

)−1

(x̄1 − x̄2) > χ2
1−α;p (7.19)
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and the (1− α) simultaneous confidence intervals for δj , j = 1, . . . , p are:

δj ∈ (x̄1 − x̄2)±
√√√√χ2

1−α;p

(
s
(1)
jj

n1
+ s

(2)
jj

n2

)
(7.20)

where s(i)jj is the (j, j) element of the matrix Si . This may be compared to (7.15)
where the pooled variance was used.

Remark 7.2 We see, by comparing the statistics (7.19) with (7.14), that we mea-
sure here the distance between x̄1 and x̄2 using the metric (S1

n1
+ S2

n2
). It should

be noted that when n1 = n2, the two methods are essentially the same since then
S = 1

2 (S1 + S2). If the covariances are different but have the same eigenvectors
(different eigenvalues), one can apply the common principal component (CPC) tech-
nique, see Chapter 10.

Example 7.18 Let us use the last test to compare the forged and the genuine bank
notes again (n1 and n2 are both large). The test statistic (7.19) turns out to be 2436.8
which is again highly significant. The 95% simultaneous confidence intervals are:

−0.0389≤ δ1 ≤ 0.3309

−0.5140≤ δ2 ≤−0.2000

−0.6368≤ δ3 ≤−0.3092

−2.6846≤ δ4 ≤−1.7654

−1.2858≤ δ5 ≤−0.6442

1.8146≤ δ6 ≤ 2.3194

showing that all the components except the first are different from zero, the largest
difference coming from X6 (length of the diagonal) and X4 (lower border). The
results are very similar to those obtained in Example 7.15. This is due to the fact
that here n1 = n2 as we already mentioned in the remark above.

Profile Analysis

Another useful application of Test Problem 6 is the repeated measurements problem
applied to two independent groups. This problem arises in practice when we observe
repeated measurements of characteristics (or measures of the same type under dif-
ferent experimental conditions) on the different groups which have to be compared.
It is important that the p measures (the “profile”) are comparable, and, in particular,
are reported in the same units. For instance, they may be measures of blood pres-
sure at p different points in time, one group being the control group and the other
the group receiving a new treatment. The observations may be the scores obtained
from p different tests of two different experimental groups. One is then interested in
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Fig. 7.1 Example of

population profiles
MVAprofil

comparing the profiles of each group: the profile being just the vectors of the means
of the p responses (the comparison may be visualised in a two dimensional graph
using the parallel coordinate plot introduced in Section 1.7).

We are thus in the same statistical situation as for the comparison of two means:

Xi1 ∼Np(μ1,�) i = 1, . . . , n1

Xi2 ∼Np(μ2,�) i = 1, . . . , n2

where all variables are independent. Suppose the two population profiles look like
in Figure 7.1.

The following questions are of interest:

1. Are the profiles similar in the sense of being parallel (which means no interaction
between the treatments and the groups)?

2. If the profiles are parallel, are they at the same level?
3. If the profiles are parallel, is there any treatment effect, i.e., are the profiles hori-

zontal (profiles remain the same no matter which treatment received)?

The above questions are easily translated into linear constraints on the means and a
test statistic can be obtained accordingly.

Parallel Profiles

Let C be a (p− 1)× p matrix defined as

C =

⎛
⎜⎜⎜⎝

1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 · · · 0 1 −1

⎞
⎟⎟⎟⎠ .
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The hypothesis to be tested is

H
(1)
0 : C(μ1 −μ2)= 0.

From (7.11), (7.12) and Corollary 5.4 we know that under H0:

n1n2

(n1 + n2)2
(n1 + n2 − 2) {C(x̄1 − x̄2)}	 (CSC	)−1C(x̄1 − x̄2)

∼ T 2(p− 1, n1 + n2 − 2) (7.21)

where S is the pooled covariance matrix. The hypothesis is rejected if

n1n2(n1 + n1 − p)
(n1 + n2)2(p− 1)

(Cx̄)	(CSC	)−1Cx̄ > F1−α;p−1,n1+n2−p.

Equality of Two Levels

The question of equality of the two levels is meaningful only if the two profiles are
parallel. In the case of interactions (rejection of H(1)

0 ), the two populations react
differently to the treatments and the question of the level has no meaning.

The equality of the two levels can be formalised as

H
(2)
0 : 1	p (μ1 −μ2)= 0

since

1	p (x̄1 − x̄2)∼N1

(
1	p (μ1 −μ2),

n1 + n2

n1n2
1	p�1p

)

and

(n1 + n2)1
	
pS1p ∼W1(1

	
p�1p,n1 + n2 − 2).

Using Corollary 5.4 we have that:

n1n2

(n1 + n2)2
(n1 + n2 − 2)

{1	p (x̄1 − x̄2)}2
1	pS1p

∼ T 2(1, n1 + n2 − 2) (7.22)

= F1,n1+n2−2.

The rejection region is

n1n2(n1 + n2 − 2)

(n1 + n2)2

{1	p (x̄1 − x̄2)}2
1	pS1p

> F1−α;1,n1+n2−2.
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Treatment Effect

If it is rejected that the profiles are parallel, then two independent analyses should
be done on the two groups using the repeated measurement approach. But if it is
accepted that they are parallel, then we can exploit the information contained in
both groups (possibly at different levels) to test a treatment effect, i.e., if the two
profiles are horizontal. This may be written as:

H
(3)
0 : C(μ1 +μ2)= 0.

Consider the average profile x̄

x̄ = n1x̄1 + n2x̄2

n1 + n2
.

Clearly,

x̄ ∼Np
(
n1μ1 + n2μ2

n1 + n2
,

1

n1 + n2
�

)
.

Now it is not hard to prove that H(3)
0 with H(1)

0 implies that

C
(
n1μ1 + n2μ2

n1 + n2

)
= 0.

So under parallel, horizontal profiles we have

√
n1 + n2Cx̄ ∼Np(0,C�C	).

From Corollary 5.4 we again obtain

(n1 + n2 − 2)(Cx̄)	(CSC	)−1Cx̄ ∼ T 2(p− 1, n1 + n2 − 2). (7.23)

This leads to the rejection region of H(3)
0 , namely

n1 + n2 − p
p− 1

(Cx̄)	(CSC	)−1Cx̄ > F1−α;p−1,n1+n2−p.

Example 7.19 Morrison (1990b) proposed a test in which the results of 4 sub-tests
of the Wechsler Adult Intelligence Scale (WAIS) are compared for 2 categories of
people: group 1 contains n1 = 37 people who do not have a senile factor and group 2
contains n2 = 12 people who have a senile factor. The four WAIS sub-tests are X1

(information), X2 (similarities), X3 (arithmetic) and X4 (picture completion). The
relevant statistics are

x̄1 = (12.57,9.57,11.49,7.97)	

x̄2 = (8.75,5.33,8.50,4.75)	
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S1 =

⎛
⎜⎜⎝

11.164 8.840 6.210 2.020
8.840 11.759 5.778 0.529
6.210 5.778 10.790 1.743
2.020 0.529 1.743 3.594

⎞
⎟⎟⎠

S2 =

⎛
⎜⎜⎝

9.688 9.583 8.875 7.021
9.583 16.722 11.083 8.167
8.875 11.083 12.083 4.875
7.021 8.167 4.875 11.688

⎞
⎟⎟⎠ .

The test statistic for testing if the two profiles are parallel is F = 0.4634, which is
not significant (p-value = 0.71). Thus it is accepted that the two are parallel. The
second test statistic (testing the equality of the levels of the 2 profiles) is F = 17.21,
which is highly significant (p-value ≈ 10−4). The global level of the test for the
non-senile people is superior to the senile group. The final test (testing the horizon-
tality of the average profile) has the test statistic F = 53.32, which is also highly
significant (p-value ≈ 10−14). This implies that there are substantial differences
among the means of the different subtests.

Summary
↪→ Hypotheses about μ can often be written as Aμ = a, with matrix

A, and vector a.
↪→ The hypothesis H0 : Aμ = a for X ∼ Np(μ,�) with � known

leads to−2 logλ= n(Ax− a)	(A�A	)−1(Ax− a)∼ χ2
q , where

q is the number of elements in a.
↪→ The hypothesis H0 :Aμ= a for X ∼ Np(μ,�) with � unknown

leads to−2 logλ= n log{1+ (Ax−a)	(ASA	)−1(Ax−a)} −→
χ2
q , where q is the number of elements in a and we have an exact

test (n− 1)(Ax̄ − a)	(ASA	)−1(Ax̄ − a)∼ T 2(q,n− 1).

↪→ The hypothesis H0 : Aβ = a for Yi ∼ N1(β
	xi, σ 2) with σ 2 un-

known leads to −2 logλ = n
2 log

( ||y−X β̃||2
||y−X β̂||2 − 1

)
−→ χ2

q , with q

being the length of a and with

n− p
q

(Aβ̂ − a){A(X	X )−1A	}−1(Aβ̂ − a)
(y −X β̂)	(y −X β̂)

∼ Fq,n−p.
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7.3 Boston Housing

Returning to the Boston housing data set, we are now in a position to test if the
means of the variables vary according to their location, for example, when they are
located in a district with high valued houses. In Chapter 1, we built 2 groups of
observations according to the value of X14 being less than or equal to the median of
X14 (a group of 256 districts) and greater than the median (a group of 250 districts).
In what follows, we use the transformed variables motivated in Section 1.9.

Testing the equality of the means from the two groups was proposed in a multi-
variate setup, so we restrict the analysis to the variables X1, X5, X8, X11, and X13
to see if the differences between the two groups that were identified in Chapter 1 can
be confirmed by a formal test. As in Test Problem 8, the hypothesis to be tested is

H0 : μ1 = μ2, where μ1 ∈R
5, n1 = 256, and n2 = 250.

� is not known. The F -statistic given in (7.13) is equal to 126.30, which is much
higher than the critical value F0.95;5,500 = 2.23. Therefore, we reject the hypothesis
of equal means.

To see which component, X1, X5, X8, X11, or X13, is responsible for this rejec-
tion, take a look at the simultaneous confidence intervals defined in (7.14):

δ1 ∈ ( 1.4020, 2.5499)

δ5 ∈ ( 0.1315, 0.2383)

δ8 ∈ (−0.5344,−0.2222)

δ11 ∈ ( 1.0375, 1.7384)

δ13 ∈ ( 1.1577, 1.5818).

These confidence intervals confirm that all of the δj are significantly different from
zero (note there is a negative effect for X8: weighted distances to employment cen-
tres) MVAsimcibh.

We could also check if the factor “being bounded by the river” (variable
X4) has some effect on the other variables. To do this compare the means of
(X5,X8,X9,X12,X13,X14)

	. There are two groups: n1 = 35 districts bounded
by the river and n2 = 471 districts not bounded by the river. Test Problem 8
(H0 : μ1 = μ2) is applied again with p = 6. The resulting test statistic, F = 5.81, is
highly significant (F0.95;6,499 = 2.12). The simultaneous confidence intervals indi-
cate that only X14 (the value of the houses) is responsible for the hypothesis being
rejected. At a significance level of 0.95

δ5 ∈ (−0.0603,0.1919)

δ8 ∈ (−0.5225,0.1527)

δ9 ∈ (−0.5051,0.5938)

δ12 ∈ (−0.3974,0.7481)

δ13 ∈ (−0.8595,0.3782)

δ14 ∈ ( 0.0014,0.5084).
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Testing Linear Restrictions

In Chapter 3 a linear model was proposed that explained the variations of the price
X14 by the variations of the other variables. Using the same procedure that was
shown in Testing Problem 7, we are in a position to test a set of linear restrictions
on the vector of regression coefficients β .

The model we estimated in Section 3.7 provides the following ( MVAlin-
regbh):

Variable β̂j SE(β̂j ) t p-value

constant 4.1769 0.3790 11.020 0.0000

X1 −0.0146 0.0117 −1.254 0.2105

X2 0.0014 0.0056 0.247 0.8051

X3 −0.0127 0.0223 −0.570 0.5692

X4 0.1100 0.0366 3.002 0.0028

X5 −0.2831 0.1053 −2.688 0.0074

X6 0.4211 0.1102 3.822 0.0001

X7 0.0064 0.0049 1.317 0.1885

X8 −0.1832 0.0368 −4.977 0.0000

X9 0.0684 0.0225 3.042 0.0025

X10 −0.2018 0.0484 −4.167 0.0000

X11 −0.0400 0.0081 −4.946 0.0000

X12 0.0445 0.0115 3.882 0.0001

X13 −0.2626 0.0161 −16.320 0.0000

Recall that the estimated residuals Y −X β̂ did not show a big departure from nor-
mality, which means that the testing procedure developed above can be used.

1. First a global test of significance for the regression coefficients is performed,

H0 : (β1, . . . , β13)= 0.

This is obtained by defining A= (013,I13) and a = 013 so that H0 is equivalent
to Aβ = a where β = (β0, β1, . . . , β13)

	. Based on the observed values F =
123.20. This is highly significant (F0.95;13,492 = 1.7401), thus we rejectH0. Note
that under H0 β̂H0 = (3.0345,0, . . . ,0) where 3.0345= y.

2. Since we are interested in the effect that being located close to the river has on
the value of the houses, the second test is H0 : β4 = 0. This is done by fixing

A= (0,0,0,0,1,0,0,0,0,0,0,0,0,0)	

and a = 0 to obtain the equivalent hypothesis H0 :Aβ = a. The result is again
significant: F = 9.0125 (F0.95;1,492 = 3.8604) with a p-value of 0.0028. Note
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that this is the same p-value obtained in the individual test β4 = 0 in Chapter 3,
computed using a different setup.

3. A third test notices the fact that some of the regressors in the full model (3.57)
appear to be insignificant (that is they have high individual p-values). It can
be confirmed from a joint test if the corresponding reduced model, formulated
by deleting the insignificant variables, is rejected by the data. We want to test
H0 : β1 = β2 = β3 = β7 = 0. Hence,

A=

⎛
⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0

⎞
⎟⎟⎠

and a = 04. The test statistic is 0.9344, which is not significant for F4,492. Given
that the p-value is equal to 0.44, we cannot reject the null hypothesis nor the
corresponding reduced model. The value of β̂ under the null hypothesis is

β̂H0 = (4.16,0,0,0,0.11,−0.31,0.47,0,−0.19,0.05,−0.20,−0.04,

0.05,−0.26)	.

A possible reduced model is

X14 = β0 + β4X4 + β5X5 + β6X6 + β8X8 + · · · + β13X13 + ε.

Estimating this reduced model using OLS, as was done in Chapter 3, provides
the results shown in Table 7.1.

Note that the reduced model has r2 = 0.763 which is very close to r2 = 0.765
obtained from the full model. Clearly, including variables X1,X2,X3, and X7

does not provide valuable information in explaining the variation of X14, the
price of the houses.

Table 7.1 Linear regression
for Boston housing data set

MVAlinreg2bh

Variable β̂j SE t p-value

const 4.1582 0.3628 11.462 0.0000

X4 0.1087 0.0362 2.999 0.0028

X5 −0.3055 0.0973 −3.140 0.0018

X6 0.4668 0.1059 4.407 0.0000

X8 −0.1855 0.0327 −5.679 0.0000

X9 0.0492 0.0183 2.690 0.0074

X10 −0.2096 0.0446 −4.705 0.0000

X11 −0.0410 0.0078 −5.280 0.0000

X12 0.0481 0.0112 4.306 0.0000

X13 −0.2588 0.0149 −17.396 0.0000
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7.4 Exercises

Exercise 7.1 Use Theorem 7.1 to derive a test for testing the hypothesis that a dice
is balanced, based on n tosses of that dice. (Hint: use the multinomial probability
function.)

Exercise 7.2 Consider N3(μ,�). Formulate the hypothesis H0 : μ1 = μ2 = μ3 in
terms of Aμ= a.

Exercise 7.3 Simulate a normal sample with μ = ( 1
2

)
and � = ( 1 0.5

0.5 2

)
and test

H0 : 2μ1 − μ2 = 0.2 first with � known and then with � unknown. Compare the
results.

Exercise 7.4 Derive expression (7.3) for the likelihood ratio test statistic in Test
Problem 2.

Exercise 7.5 With the simulated data set of Example 7.14, test the hypothesis of
equality of the covariance matrices.

Exercise 7.6 In the U.S. companies data set, test the equality of means between the
energy and manufacturing sectors, taking the full vector of observations X1 to X6.
Derive the simultaneous confidence intervals for the differences.

Exercise 7.7 Let X ∼N2(μ,�) where � is known to be � = ( 2 −1
−1 2

)
. We have an

i.i.d. sample of size n= 6 providing x̄	 = (1 1
2 ). Solve the following test problems

(α = 0.05):

a) H0 : μ=
(
2, 2

3

)	
H1 : μ 
=

(
2, 2

3

)	
b) H0 : μ1 +μ2 = 7

2 H1 : μ1 +μ2 
= 7
2

c) H0 : μ1 −μ2 = 1
2 H1 : μ1 −μ2 
= 1

2

d) H0 : μ1 = 2 H1 : μ1 
= 2.

For each case, represent the rejection region graphically (comment).

Exercise 7.8 Repeat the preceeding exercise with � unknown and S = ( 2 −1
−1 2

)
.

Compare the results.

Exercise 7.9 Consider X ∼N3(μ,�). An i.i.d. sample of size n= 10 provides:

x̄ = (1,0,2)	

S =
⎛
⎝3 2 1

2 3 1
1 1 4

⎞
⎠ .
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a) Knowing that the eigenvalues of S are integers, describe a 95% confidence
region for μ. (Hint: to compute eigenvalues use |S| = ∏3

j=1 λj and tr(S) =∑3
j=1 λj .)

b) Calculate the simultaneous confidence intervals for μ1, μ2 and μ3.
c) Can we assert that μ1 is an average of μ2 and μ3?

Exercise 7.10 Consider two independent i.i.d. samples, each of size 10, from two
bivariate normal populations. The results are summarised below:

x̄1 = (3,1)	; x̄2 = (1,1)	

S1 =
(

4 −1
−1 2

)
; S2 =

(
2 −2
−2 4

)
.

Provide a solution to the following tests:

a) H0 : μ1 = μ2 H1 : μ1 
= μ2

b) H0 : μ11 = μ21 H1 : μ11 
= μ21

c) H0 : μ12 = μ22 H1 : μ12 
= μ22.

Compare the solutions and comment.

Exercise 7.11 Prove expression (7.4) in the Test Problem 2 with log-likelihoods �∗0
and �∗1. (Hint: use (2.29).)

Exercise 7.12 Assume that X ∼Np(μ,�) where � is unknown.

a) Derive the log likelihood ratio test for testing the independence of the p com-
ponents, that is H0 : � is a diagonal matrix. (Solution: −2 logλ = −n log |R|
where R is the correlation matrix, which is asymptotically a χ2

1
2p(p−1)

un-

der H0.)
b) Assume that � is a diagonal matrix (all the variables are independent). Can an

asymptotic test for H0 : μ= μo against H1 : μ 
= μo be derived? How would this
compare to p independent univariate t-tests on each μj ?

c) Show an easy derivation of an asymptotic test for testing the equality of the p
means (Hint: use (CX̄)	(CSC	)−1CX̄→ χ2

p−1 where S = diag(s11, . . . , spp)

and C is defined as in (7.10).) Compare this to the simple ANOVA procedure
used in Section 3.5.

Exercise 7.13 The yields of wheat have been measured in 30 parcels that have been
randomly attributed to 3 lots prepared by one of 3 different fertilisers A, B and C.
The data are
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Fertilizer yield A B C

1 4 6 2

2 3 7 1

3 2 7 1

4 5 5 1

5 4 5 3

6 4 5 4

7 3 8 3

8 3 9 3

9 3 9 2

10 1 6 2

Using Exercise 7.12,

a) test the independence between the 3 variables.
b) test whether μ	 = [2 6 4] and compare this to the 3 univariate t-tests.
c) test whether μ1 = μ2 = μ3 using simple ANOVA and the χ2 approximation.

Exercise 7.14 Consider an i.i.d. sample of size n= 5 from a bivariate normal dis-
tribution

X ∼N2

(
μ,

(
3 ρ

ρ 1

))

where ρ is a known parameter. Suppose x̄	 = (1 0). For what value of ρ would the
hypothesis H0 : μ	 = (0 0) be rejected in favour of H1 : μ	 
= (0 0) (at the 5%
level)?

Exercise 7.15 Using Example 7.14, test the last two cases described there and test
the sample number one (n1 = 30), to see if they are from a normal population with
� = 4I4 (the sample covariance matrix to be used is given by S1).

Exercise 7.16 Consider the bank data set. For the counterfeit bank notes, we want
to know if the length of the diagonal (X6) can be predicted by a linear model in X1

toX5. Estimate the linear model and test if the coefficients are significantly different
from zero.

Exercise 7.17 In Example 7.10, can you predict the vocabulary score of the children
in eleventh grade, by knowing the results from grades 8–9 and 10? Estimate a linear
model and test its significance.

Exercise 7.18 Test the equality of the covariance matrices from the two groups in
the WAIS subtest (Example 7.19).
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Exercise 7.19 Prove expressions (7.21), (7.22) and (7.23).

Exercise 7.20 Using Theorem 6.3 and expression (7.16), construct an asymptotic
rejection region of size α for testing, in a general model f (x, θ), with θ ∈R

k , H0 :
θ = θ0 against H1 : θ 
= θ0.

Exercise 7.21 Exercise 6.5 considered the pdf f (x1, x2) = 1
θ2

1 θ
2
2 x2
e
−( x1

θ1x2
+ x2
θ1θ2

)
,

x1, x2 > 0. Solve the problem of testing H0 : θ	 = (θ01, θ02) from an iid sample
of size n on x = (x1, x2)

	, where n is large.

Exercise 7.22 In Olkin and Veath (1980), the evolution of citrate concentrations in
plasma is observed at 3 different times of day,X1 (8 am),X2 (11 am) andX3 (3 pm),
for two groups of patients who follow different diets. (The patients were randomly
attributed to each group under a balanced design n1 = n2 = 5.) The data are:

Group X1 (8 am) X2 (11 am) X3 (3 pm)

I 125 137 121

144 173 147

105 119 125

151 149 128

137 139 109

II 93 121 107

116 135 106

109 83 100

89 95 83

116 128 100

Test if the profiles of the groups are parallel, if they are at the same level and if they
are horizontal.
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Chapter 8
Regression Models

The aim of regression models is to model the variation of a quantitative re-
sponse variable y in terms of the variation of one or several explanatory variables
(x1, . . . , xp)

	. We have already introduced such models in Chapters 3 and 7 where
linear models were written in (3.50) as

y =Xβ + ε,
where y(n× 1) is the vector of observation for the response variable, X (n× p) is
the data matrix of the p explanatory variables and ε are the errors. Linear models
are not restricted to handle only linear relationships between y and x. Curvature is
allowed by including appropriate higher order terms in the design matrix X .

Example 8.1 If y represents response and x1, x2 are two factors that explain the
variation of y via the quadratic response model:

yi = β0 + β1xi1 + β2xi2 + β3x
2
i1 + β4x

2
i2 + β5xi1xi2 + εi, i = 1, . . . , n. (8.1)

This model (8.1) belongs to the class of linear models because it is linear in β . The
data matrix X is:

X =

⎛
⎜⎜⎜⎝

1 x11 x12 x2
11 x2

12 x11x12

1 x21 x22 x2
21 x2

22 x21x22
...

...
...

...
...

...

1 xn1 xn2 x2
n1 x2

n2 xn1xn2

⎞
⎟⎟⎟⎠ .

For a given value of β , the response surface can be represented in a 3-dimensional
plot as in Figure 8.1 where we display y = 20+ 1x1 + 2x2 − 8x2

1 − 6x2
2 + 6x1x2,

i.e. β = (20,1,2,−8,−6,+6)	.

Note also that pure nonlinear models can sometimes be rewritten as a linear
model by choosing an appropriate transformation of the coordinates of the variables.
For instance the Cobb-Douglas production function

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-642-17229-8_8, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 8.1 A 3-D response surface MVAresponsesurface

yi = k xβ1
i1 x

β2
i2 x

β3
i3 ,

where y is the level of the production of a plant and (x1, x2, x3)
	 are 3 factors of

production (e.g., labour, capital and energy), can be transformed into a linear model
in the log scale. We have indeed

logyi = β0 + β1 logxi1 + β2 logxi2 + β3 logxi3,

where β0 = logk and the βj , j = 1, . . . ,3 are the elasticities (βj = ∂ logy/∂ logxj ).
Linear models are flexible and cover a wide class of models. They can easily be

estimated by least squares β̂ = (X	X )−1X	y and linear restrictions on the β’s can
be tested using the tools developed in Chapter 7.

In Chapter 3, we saw that even qualitative explanatory variables can be used by
defining appropriate coding of the nominal values of x. In this chapter, we will ex-
tend our toolbox by showing how to code these qualitative factors in a way which
allows the introduction of several qualitative factors including the possibility of
interactions. This covers more general ANOVA models than those introduced in
Chapter 3. This includes the ANCOVA models where qualitative and quantitative
variables are both present in the explanatory variables.

When the response variable is qualitative or categorical (for instance, an indi-
vidual can be employed or unemployed, a company may be bankrupt or not, the
opinion of one person relative to a particular issue can be ‘in favour’, ‘against’ or
‘indifferent to’, etc.), linear models have to be adapted to this particular situation.
The most useful models for these cases will be presented in the second part of the
chapter; this covers the log-linear models for contingency tables (where we analyse
the relations between several categorical variables) and the logit model for quantal
or binomial responses where we analyse the probability of being in one state as a
function of explanatory variables.
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8.1 General ANOVA and ANCOVA Models

8.1.1 ANOVA Models

One-Factor Models

In Section 3.5, we introduced the example of analysing the effect of one factor (3
possible marketing strategies) on the sales of a product (a pullover), see Table 3.2.
The standard way to present one factor ANOVA models with p levels, is as follows

yk� = μ+ α� + εk�, k = 1, . . . , n�, and �= 1, . . . , p, (8.2)

all the ε being independent. Here � is the label which indicates the level of the
factor and α� is the effect of the �th level: it measures the deviation from μ, the
global mean of y, due to this level of the factor. In this notation, we need to impose
the restriction

∑p

�=1 α� = 0 in order to identify μ as the mean of y. This presenta-
tion is equivalent, but slightly different, to the one presented in Chapter 3 (compare
with equation (3.41)), but it allows for easier extension to the multiple factors case.
Note also that here we allow different sample sizes for each level of the factor (an
unbalanced design, more general than the balanced design presented in Chapter 3).

To simplify the presentation, assume as in the pullover example that p = 3. In
this case, one could be tempted to write the model (8.2) under the general form of a
linear model by using 3 indicator variables

yi = μ+ α1xi1 + α2xi2 + α3xi3 + εi,
where xi� is equal to 1 or 0 according to the ith observation and belongs (or not)
to the level � of the factor. In matrix notation and letting, for simplicity, n1 = n2 =
n3 = 2 we have with β = (μ,α1, α2, α3)

	

y =Xβ + ε, (8.3)

where the design matrix X is given by:

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Unfortunately, this type of coding is not useful because the matrix X is not of full
rank (the sum of each row is equal to the same constant 2) and therefor the matrix
X	X is not invertible. One way to overcome this problem is to change the coding
by introducing the additional constraint that the effects add up to zero. There are
many ways to achieve this. Noting that α3 =−α1−α2, we do not need to introduce
α3 explicitly in the model. The linear model could indeed be written as
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yi = μ+ α1xi1 + α2xi2 + εi,
with a design matrix defined as

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0
1 1 0
1 0 1
1 0 1
1 −1 −1
1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠
,

which automatically implies that α3 = −(α1 + α2). The linear model (8.3) is now
correct with β = (μ,α1, α2)

	. The least squares estimator β̂ = (X	X )−1X	y can
be computed providing the estimator of the ANOVA parameters μ and α�,� =
1, . . . ,3. Any linear constraint on β can be tested by using the techniques described
in Chapter 7. For instance, the null hypothesis of no factor effect H0 : α1 = α2 =
α3 = 0 can be written as H0 :Aβ = a, where A= ( 0 1 0

0 0 1

)
and a = (0 0)	.

Multiple-Factors Models

The coding above can be extended to more general situations with many qualita-
tive variables (factors) and with the possibility of interactions between the factors.
Suppose that in a marketing example, the sales of a product can be explained by
two factors: the marketing strategy with 3 levels (as in the pullover example) but
also the location of the shop that may be either in a big shopping centre or in a less
commercial location (2 levels for this factor). We might also think that there is an
interaction between the two factors: the marketing strategy might have a different
effect in a shopping centre than in a small quiet area. To fix the idea the data are
collected as in Table 8.1.

Table 8.1 A two factor
ANOVA data set, factor A,
three levels of the marketing
strategy and factor B , two
levels for the location. The
figures represent the resulting
sales during the same period

B1 B2

A1 18 15

15 20

25

30

A2 5 10

8 12

8

A3 10 20

14 25
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The general two factor model with interactions can be written as

yijk = μ+ αi + γj + (αγ )ij + εijk; i = 1, . . . , r, j = 1, . . . , s, k = 1, . . . , nij

(8.4)

where the identification constraints are:
r∑
i=1

αi = 0 and
s∑

j=1

γj = 0

r∑
i=1

(αγ )ij = 0, j = 1, . . . , s (8.5)

s∑
j=1

(αγ )ij = 0, i = 1, . . . , r.

In our example of Table 8.1 we have r = 3 and s = 2. The α’s measure the effect
of the marketing strategy (3 levels) and the γ ’s the effect of the location (2 levels).
A positive (negative) value of one of these parameters would indicate a favourable
(unfavourable) effect on the expected sales; the global average of sales being repre-
sented by the parameter μ. The interactions are measured by the parameters (αγ )ij ,
i = 1, . . . , r , j = 1, . . . , s, again identification constraints implies the (r + s) con-
straints in (8.5) on the interactions terms.

For example, a positive value of (αγ )11 would indicate that the effect of the sale
strategy A1 (advertisement in local newspaper), if any, is more favourable on the
sales in the location B1 (in a big commercial centre) than in the location B2 (not
a commercial centre) with the relation (αγ )11 = −(αγ )12. As another example,
a negative value of (αγ )31 would indicate that the marketing strategy A3 (luxury
presentation in shop windows) has less effect, if any, in location type B1 than in B2:
again (αγ )31 =−(αγ )32, etc.

The nice thing is that it is easy to extend the coding rule for one-factor model
to this general situation, in order to present the model a standard linear model with
the appropriate design matrix X . To build the columns of X for the effect of each
factor, we will need, as above, r − 1 (and s − 1) variables for coding a qualitative
variable with r (and s, respectively) levels with the convention defined above in the
one-factor case. For the interactions between a r level factor and a s level factor, we
will need (r − 1)× (s − 1) additional columns that will be obtained by performing
the product, element by element, of the corresponding main effect columns. So, at
the end, for a full model with all the interactions, we have {1+ r − 1+ s− 1+ (r −
1)(s − 1)} = rs parameters where the first column of 1’s is for the intercept (the
constant μ). We illustrate this for our marketing example where r = 3 and s = 2.
We first describe a model without interactions.

1. Model without interactions
Without the interactions (all the (αγ )ij = 0) the model could be written with
3= (r − 1)+ (s − 1) coded variables in a simple linear model form as in (8.3),
with the matrices:
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y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

18
15
15
20
25
30
5
8
8

10
12
10
14
20
25

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1
1 1 0 1
1 1 0 −1
1 1 0 −1
1 1 0 −1
1 1 0 −1
1 0 1 1
1 0 1 1
1 0 1 1
1 0 1 −1
1 0 1 −1
1 −1 −1 1
1 −1 −1 1
1 −1 −1 −1
1 −1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and β = (μ,α1, α2, γ1)
	. Then, α3 =−(α1 + α2) and γ2 =−γ1.

2. Model with interactions
A model with interaction between A and B is obtained by adding new columns
to the design matrix. We need 2= (r − 1)× (s − 1) new coding variables which
are defined as the product, element-by-element, of the corresponding columns
obtained for the main effects. For instance for the interaction parameter (αγ )11,
we multiply the column used for coding α1 by the column defined for coding γ1,
where the product is element-by-element. The same is done for the parameter
(αγ )21. No other columns are necessary, since the remaining interactions are
derived from the identification constraints (8.5). We obtain

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 1 0
1 1 0 1 1 0
1 1 0 −1 −1 0
1 1 0 −1 −1 0
1 1 0 −1 −1 0
1 1 0 −1 −1 0
1 0 1 1 0 1
1 0 1 1 0 1
1 0 1 1 0 1
1 0 1 −1 0 −1
1 0 1 −1 0 −1
1 −1 −1 1 −1 −1
1 −1 −1 1 −1 −1
1 −1 −1 −1 1 1
1 −1 −1 −1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with β = (μ,α1, α2, γ1, (αγ )11, (αγ )21)
	. The other interactions can indeed be

derived from (8.5)

(αγ )12 =−(αγ )11
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(αγ )22 =−(αγ )21

(αγ )31 =− ((αγ )11 + (αγ )21)

(αγ )32 =−(αγ )31.

The estimation of β is again simply given by the least squares solution β̂ =
(X	X )−1X	y.

Example 8.2 Let us come back to the marketing data provided by the two-way Ta-
ble 8.1. The values of β̂ in the full model, with interactions, are given in Table 8.2.
The p-values in the right column are for the individual tests: it appears that the in-
teractions do not provide additional significant explanation of y, but the effect of the
two factors seems significant.

Using the techniques of Chapter 7, we can test some reduced model correspond-
ing to linear constraints on the β’s. The full model is the model with all the parame-
ters, including all the interactions. The overall fit test H0 : all the parameters, except
μ, are equal to zero, gives the value Fobserved = 6.5772 with a p-value of 0.0077 for
a F5,9, so that H0 is rejected. In this case, the RSSreduced = 735.3333. So there is
some effect by the factors.

We then test a less reduced model. We can test if the interaction terms are signif-
icantly different to zero. This is a linear constraint on β with

A=
(

0 0 0 0 1 0
0 0 0 0 0 1

)
; a =

(
0
0

)
.

Under the null we obtain:

β̂H0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

15.3035
4.0975
−6.0440
−3.2972

0
0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

Table 8.2 Estimation of the
two factors ANOVA model
with data from Table 8.1

β̂ p-values

μ 15.25

α1 4.25 0.0218

α2 −6.25 0.0033

γ1 −3.42 0.0139

(αγ )11 0.42 0.7922

(αγ )21 1.42 0.8096

RSSfull 158.00
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and RSSreduced = 181.8019. The observed value of F = 0.6779 which is not sig-
nificant (r = 11, f = 9) the p-value = P(F2,9 ≥ 0.6779)= 0.5318, confirming the
absence of interactions.

Now taking the model without the interactions as the full model, we can test if
one of the main effects α (marketing strategy) or γ (location) or both are signifi-
cantly different from zero. We leave this as an exercise for the reader.

8.1.2 ANCOVA Models

ANCOVA (ANalysis of COVAriances) are mixed models where some variables are
qualitative and others are quantitative. The same coding of the ANOVA will be used
for the qualitative variable. The design matrix X is completed by the columns for
the quantitative explanatory variables x. Interactions between a qualitative variable
(a factor with r levels) and a quantitative one x is also possible, this corresponds to
situations where the effect of x on the response y is different according to the level
of the factor. This is achieved by adding into the design matrix X , a new column
obtained by the product, element-by-element, of the quantitative variable with the
coded variables for the factor (r − 1 interaction variables if the categorical variable
has r levels).

For instance consider a simple model where a response y is explained by one
explanatory variable x and one factor with 2 levels (for instance the gender level 1
for men and level 2 for women), we would have in the case n1 = n2 = 3

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 x1 1 x1
1 x2 1 x2
1 x3 1 x3
1 x4 −1 −x4
1 x5 −1 −x5
1 x6 −1 −x6

⎞
⎟⎟⎟⎟⎟⎟⎠
,

with β = (β1, β2, β3, β4)
	. The intercept and the slope are (β1+ β3) and (β1+ β4)

for men and (β1 − β3) and (β1 − β4) for women. This situation is displayed in
Figure 8.2.

Fig. 8.2 A model with
interaction
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Table 8.3 Estimation of the
effects of weight and
displacement on the mileage

MVAcareffect

β̂ p-values β̃ p-values

μ 41.0066 0.0000 43.4031 0.0000

W −0.0073 0.0000 −0.0074 0.0000

D 0.0118 0.2250 0.0081 0.4140

C −0.9675 0.1250

Table 8.4 Different factor levels on the response MVAcareffect

μ p-values W p-values D p-values

c= 1 40.043 0.0000 −0.0065 0.0000 0.0058 0.3790

c= 2 47.557 0.0005 0.0081 0.3666 −0.3582 0.0160

c= 3 44.174 0.0002 0.0039 0.7556 −0.2650 0.3031

Example 8.3 Consider the Car Data provided in Appendix B.3. We want to analyse
the effect of the weight (W ), the displacement (D) on the mileage (M). But we
would like to test if the origin of the car (the factor C) has some effect on the
response and if the effect of the continuous variables is different for the different
levels of the factor.

From the regression results in Table 8.3, we observe that only the weight affects
the mileage, while the displacement does not. We also consider the origin of the car,
however, both the displacement and the factor are not significant. Table 8.4 is for
different factor levels.

8.1.3 Boston Housing

In Chapters 3 and 7, linear models were used to analyse if the variations of the
price (the variables were transformed in Section 1.9) could be explained by other
variables. A reduced model was obtained in Section 7.3 with the results shown in
Table 7.1, with r2 = 0.763. The model was:

X14 = β0 + β4X4 + β5X5 + β6X6 + β8X8 + β9X9 + β10X10 + β11X11

+ β12X12 + β13X13.

One factor (X4) was coded as a binary variable (1, if the house is close to the
Charles River and 0 if it is not). Taking advantage of the ANCOVA models described
above, we would like to add to a new factor built from the original quantitative
variable X9 = index of accessibility to radial highways. So we will transform X4 as
being 1 if close to the Charles River and −1 if not, and we will replace X9 by a new
factor coded X15 = 1 if X9 ≥median(X9) and X15 =−1 if X9 <median(X9). We
also want to consider the interaction of X4 with X12 (proportion of blacks) and the
interaction of X4 with the new factor X15. The results are shown in Table 8.5.
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Table 8.5 Estimation of the
ANCOVA model using the
Boston housing data

MVAboshousing

β̂ p-values β̃ p-values

β0 32.27 0.00 27.65 0.00

β4 1.54 0.00 −3.19 0.32

β5 −17.59 0.00 −16.50 0.00

β6 4.27 0.00 4.23 0.00

β8 −1.13 0.00 −1.10 0.00

β10 0.00 0.97 0.00 0.95

β11 −0.97 0.00 −0.97 0.00

β12 0.01 0.00 0.02 0.01

β13 −0.54 0.00 −0.54 0.00

β15 0.21 0.46 0.23 0.66

β4∗14 0.01 0.13

β4∗15 0.03 0.95

Summary
↪→ ANOVA models can be dividend into one-factor models and mul-

tiple factor models.
↪→ Multiple factor models analyse many qualitative variables and the

interactions between them.
↪→ ANCOVA models are mixed models with qualitative and quantita-

tive variables, and can also incorporate the interaction between a
qualitative and a quantitative variable.

8.2 Categorical Responses

8.2.1 Multinomial Sampling and Contingency Tables

In many applications, the response variable of interest is qualitative or categorical,
in the sense that the response can take its nominal value in one of, say, K classes
or categories. Often we observe counts yk , the number of observations in category
k = 1, . . . ,K . If the total number of observations n =∑K

k=1 yk is fixed and we
may assume independence of the observations, we obtain a multinomial sampling
process.

If we denote by pk the probability of observing the kth category with
∑K

k=1 pk =
1, we have E(yk)=mk = npk . The likelihood of the sample can then be written as:

L= n!∏K
k=1 yk!

K∏
k=1

(mk
n

)yk
. (8.6)
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In contingency tables, the categories are defined by several qualitative variables.
For example in a (J ×K) two-way table, the observations (counts) yjk , j = 1, . . . , J
and k = 1, . . . ,K are reported for row j and column k. Here n=∑J

j=1
∑K

k=1 yjk .
Log-linear models introduce a linear structure on the logarithms of the expected
frequencies mjk = E(yjk)= npjk , with

∑J
j=1

∑K
k=1 pjk = 1. Log-linear structures

on mjk will impose the same structure for the pjk , the estimation of the model will
then be obtained by constrained maximum likelihood. Three-way tables (J ×K ×
L) may be analysed in the same way.

Sometimes additional information is available on explanatory variables x. In this
case, the logit model will be appropriate when the categorical response is binary
(K = 2). We will introduce these models when the main response of interest is
binary (for instance tables (2 × K) or (2 × K × L)). Further, we will show how
they can be adapted to the case of contingency tables. Contingency tables are also
analysed by multivariate descriptive tools in Chapter 14.

8.2.2 Log-linear Models for Contingency Tables

Two-Way Tables

Consider a (J ×K) two-way table, where yjk is the number of observations having
the nominal value j for the first qualitative character and nominal value k for the sec-
ond character. Since the total number of observations is fixed n=∑J

j=1
∑K

k=1 yjk ,
there are JK − 1 free cells in the table. The multinomial likelihood can be written
as in (8.6)

L= n!∏J
j=1

∏K
k=1 yjk!

J∏
j=1

K∏
k=1

(mjk
n

)yjk
, (8.7)

where we now introduce a log-linear structure to analyse the role of the rows and
the columns to determine the parameters mjk = E(yjk) (or pjk).

1. Model without interaction
Suppose that there is no interaction between the rows and the columns: this corre-
sponds to the hypothesis of independence between the two qualitative characters.
In other words, pjk = pjpk for all j, k. This implies the log-linear model:

logmjk = μ+ αj + γk for j = 1, . . . , J, k = 1, . . . ,K, (8.8)

where, as in ANOVA models for identification purposes
∑J

j=1 αj =
∑K

k=1 γk =
0. Using the same coding devices as above, the model can be written as

logm=Xβ. (8.9)

For a (2× 3) table we have:
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logm=

⎛
⎜⎜⎜⎜⎜⎜⎝

logm11
logm12
logm13
logm21
logm22
logm23

⎞
⎟⎟⎟⎟⎟⎟⎠
, X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0
1 1 0 1
1 1 −1 −1
1 −1 1 0
1 −1 0 1
1 −1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠
, β =

⎛
⎜⎜⎝
β0
β1
β2
β3

⎞
⎟⎟⎠

where the first column of X is for the constant term, the second column is the
coded column for the 2-levels row effect and the two last columns are the coded
columns for the 3-levels column effect. The estimation is obtained by maximis-
ing the log-likelihood which is equivalent to maximising the function L(β) in β:

L(β)=
J∑
j=1

K∑
k=1

yjk logmjk. (8.10)

The maximisation is under the constraint
∑

j,k mjk = n. In summary we have
1+ (J − 1)+ (K − 1)− 1 free parameters for JK − 1 free cells. The number of
degrees of freedom in the model is the number of free cells minus the number of
free parameters. It is given by

r = JK − 1− (J − 1)− (K − 1)= (J − 1) (K − 1).

In the example above, we have therefore (3− 1)× (2− 1)= 2 degrees of free-
dom.

The original parameters of the model can then be estimated as:

α1 = β1

α2 =−β1

γ1 = β2 (8.11)

γ2 = β3

γ3 =−(β2 + β3).

2. Model with interactions
In two-way tables the interactions between the two variables are of interest. This
corresponds to the general (full) model

logmjk = μ+ αj + γk + (αγ )jk, j = 1, . . . , J, k = 1 . . . ,K, (8.12)

where in addition, we have the J +K restrictions

K∑
k=1

(αγ )jk = 0, for j = 1, . . . , J

J∑
j=1

(αγ )jk = 0, for k = 1, . . . ,K.

(8.13)
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As in the ANOVA model, the interactions may be coded by adding (J − 1)(K −
1) columns to X , obtained by the product of the corresponding coded variables.
In our example for the (2× 3) table the design matrix X is completed with two
more columns:

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1 0
1 1 0 1 0 1
1 1 −1 −1 −1 −1
1 −1 1 0 −1 0
1 −1 0 1 0 −1
1 −1 −1 −1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠
, β =

⎛
⎜⎜⎜⎜⎜⎜⎝

β0
β1
β2
β3
β4
β5

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Now the interactions are determined by using (8.13):

(αγ )11 = β4

(αγ )12 = β5

(αγ )13 =−{(αγ )11 + (αγ )12} = −(β4 + β5)

(αγ )21 =−(αγ )11 =−β4

(αγ )22 =−(αγ )12 =−β5

(αγ )23 =−(αγ )13 = β4 + β5.

We have again a log-linear model as in (8.9) and the estimation of β goes through
the maximisation in β of L(β) given by (8.10) under the same constraint.

The model with all the interaction terms is called the saturated model. In
this model there are no degrees of freedom, the number of free parameters to
be estimated equals the number of free cells. The parameters of interest are the
interactions. In particular, we are interested in testing their significance. These
issues will be addressed below.

Three-Way Tables

The models presented above for two-way tables can be extended to higher order
tables but at a cost of notational complexity. We show how to adapt to three-way ta-
bles. This deserves special attention due to the presence of higher-order interactions
in the saturated model.

A (J ×K ×L) three-way table may be constructed under multinomial sampling
as follows: each of the n observations falls in one, and only one, category of each
of three categorical variables having J,K and L modalities respectively. We end
up with a three-dimensional table with JKL cells containing the counts yjk� where
n=∑

j,k,� yjk�. The expected counts depend on the unknown probabilities pjk� in
the usual way:

mjk� = npjk�, j = 1, . . . , J, k = 1, . . . ,K, �= 1, . . . ,L.
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1. The saturated model
A full saturated log-linear model reads as follows:

logmjk� = μ+ αj + βk + γ� + (αβ)jk + (αγ )j� + (βγ )k� + (αβγ )jk�, (8.14)

j = 1, . . . , J, k = 1, . . . ,K, �= 1, . . . ,L.

The restrictions are the following (using the “dot” notation for summation on the
corresponding indices):

α(•) = β(•) = γ(•) = 0

(αβ)j• = (αγ )j• = (βγ )k• = 0

(αβ)•k = (αγ )•� = (βγ )•� = 0

(αβγ )jk• = (αβγ )j•� = (αβγ )•k� = 0.

The parameters (αβ)jk , (αγ )j�, (βγ )k� are called first-order interactions. The
second-order interactions are the parameters (αβγ )jk�, they allow to take into
account heterogeneities in the interactions between two of the three variables.
For instance, let � stand for the two gender categories (L= 2), if we suppose that
(αβγ )jk1 =−(αβγ )jk2 
= 0, we mean that the interactions between the variable
J and K are not the same for both gender categories.

The estimation of the parameters of the saturated model are obtained through
maximisation of the log-likelihood. In the multinomial sampling scheme, it cor-
responds to maximising the function:

L=
∑
j,k,�

yjk� logmjk�,

under the constraint
∑

j,k,� mjk� = n.
The number of degrees of freedom in the saturated model is again zero. In-

deed, the number of free parameters in the model is

1+ (J − 1)+ (K − 1)+ (L− 1)+ (J − 1)(K − 1)+ (J − 1)(L− 1)

+ (K − 1)(L− 1)+ (J − 1)(K − 1)(L− 1)− 1= JKL− 1.

This is indeed equal to the number of free cells in the table and so, there is no
degree of freedom.

2. Hierarchical non-saturated models
As illustrated above, a saturated model has no degrees of freedom. Non-saturated
models correspond to reduced models where some parameters are fixed to be
equal to zero. They are thus particular cases of the saturated model (8.14). The
hierarchical non-saturated models that we will consider here, are models where
once a set of parameters is set equal to zero, all the parameters of higher-order
containing the same indices are also set equal to zero.

For instance if we suppose α1 = 0, we only consider non-saturated models
where also (αγ )1� = (αβ)1k = (αβγ )1k� = 0 for all values of k and �. If we only
suppose that (αβ)12 = 0, we also assume that (αβγ )12� = 0 for all �.
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Hierarchical models have the advantage of being more easily interpretable.
Indeed without this hierarchy, the models would be difficult to interpret. What
would be, for instance, the meaning of the parameter (αβγ )12�, if we know that
(αβ)12 = 0? The estimation of the non-saturated models will be achieved by the
usual way i.e. by maximising the log-likelihood function L as above but under
the new constraints of the reduced model.

8.2.3 Testing Issues with Count Data

One of the main practical interests in regression models for contingency tables is to
test restrictions on the parameters of a more complete model. These testing ideas are
created in the same spirit as in Section 3.5 where we tested restrictions in ANOVA
models.

In linear models, the test statistics is based on the comparison of the goodness
of fit for the full model and for the reduced model. Goodness of fit is measured by
the residual sum of squares (RSS). The idea here will be the same here but with a
more appropriate measure for goodness of fit. Once a model has been estimated, we
can compute the predicted value under that model for each cell of the table. We will
denote, as above, the observed value in a cell by yk and m̂k will denote the value
predicted by the model. The goodness of fit may be appreciated by measuring, in
some way, the distance between the series of observed and of predicted values. Two
statistics are proposed: the Pearson chi-squareX2 and the Deviance notedG2. They
are defined as follows:

X2 =
K∑
k=1

(yk − m̂k)2
m̂k

(8.15)

G2 = 2
K∑
k=1

yk log

(
yk

m̂k

)
(8.16)

where K is the total number of cells of the table. The deviance is directly related
to the log-likelihood ratio statistic and is usually preferred because it can be used to
compare nested models as we usually do in this context.

Under the hypothesis that the model used to compute the predicted value is true,
both statistics (for large samples) are approximately distributed as a χ2 variable
with degrees of freedom d.f. depending on the model. The d.f. can be computed
as follows:

d.f.= # free cells− # free parameters estimated. (8.17)

For saturated models, the fit is perfect: X2 =G2 = 0 with d.f.= 0.
Suppose now that we want to test a reduced model which is a restricted version of

a full model. The deviance can then be used as the F statistics in linear regression.
The test procedure is straightforward:
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H0 : reduced model with r degrees of freedom

H1 : full model with f degrees of freedom.
(8.18)

Since, the full model contains more parameters, we expect the deviance to be
smaller. We reject the H0 if this reduction is significant, i.e. if G2

H0
−G2

H1
is large

enough. Under H0 one has:

G2
H0
−G2

H1
∼ χ2

r−f .

We reject H0 if the p-value:

P
{
χ2
r−f > (G2

H0
−G2

H1
)
}
.

is small. Suppose we want to test the independence in a (J ×K) two-way table (no
interaction). Here the full model is the saturated one with no degrees of freedom
(f = 0) and the restricted model has r = (J − 1) (K − 1) degrees of freedom. We
reject H0 if the p-value of H0 P{χ2

r > (G2
H0
)} is too small.

This test is equivalent to the Pearson chi-square test for independence in two-way
tables (G2

H0
≈X2

H0
when n is large).

Example 8.4 Everitt and Dunn (1998) provide a three-dimensional (2×2×5) count
table of n = 5833 interviewed people. The count were on prescribed psychotropic
drugs in the fortnight prior to the interview as a function of age and gender. The
data are summarised in Table 8.6, where the categories for the 3 factors are M for
male, F for female, DY for “yes” having taken drugs, DN for “no” not having taking
drugs and the 5 age categories: A1 (16–29), A2 (30–44), A3 (45–64), A4 (65–74),
A5 for over 74. The table provides the observed frequencies yjk� in each of the
cells of the three-way table: where j stands for gender, k for drug and � for age
categories. The design matrix X for the full saturated model can be found in the
quantlet MVAdrug.

The saturated model gives the estimates displayed in Table 8.7.
We see for instance that β̂1 < 0, so there are fewer men than women in the study,

since β̂7 is also negative it seems that the tendency of men taking the drug is less
important than for women. Also, note that β̂12 to β̂15 forms an increasing sequence,
so that the age factor seems to increase the tendency to take the drug. Note that in this

Table 8.6 A three-way
contingency table: top table
for men and bottom table for

women MVAdrug

M A1 A2 A3 A4 A5

DY 21 32 70 43 19

DN 683 596 705 295 99

F A1 A2 A3 A4 A5

DY 46 89 169 98 51

DN 738 700 847 336 196
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Table 8.7 Coefficient
estimates based on the
saturated model

MVAdrug

β̂ β̂

β̂0 intercept 5.0089 β̂10 0.0205

β̂1 gender: M −0.2867 β̂11 0.0482

β̂2 drug: DY −1.0660 β̂12 drug*age −0.4983

β̂3 age −0.0080 β̂13 −0.1807

β̂4 0.2151 β̂14 0.0857

β̂5 0.6607 β̂15 0.2766

β̂6 −0.0463 β̂16 gender*drug*age −0.0134

β̂7 gender*drug −0.1632 β̂17 −0.0523

β̂8 gender*age 0.0713 β̂18 −0.0112

β̂9 −0.0092 β̂19 −0.0102

Table 8.8 Coefficients
estimates based on the
maximum likelihood method

MVAdrug3waysTab

β̂ β̂

β̂0 intercept 5.0051 β̂8 gender*age 0.0795

β̂1 gender: M −0.2919 β̂9 0.0321

β̂2 drug: DY −1.0717 β̂10 0.0265

β̂3 age −0.0030 β̂11 0.0534

β̂4 0.2358 β̂12 drug*age −0.4915

β̂5 0.6649 β̂13 −0.1576

β̂6 −0.0425 β̂14 0.0917

β̂7 gender*drug −0.1734 β̂15 0.2822

saturated model, there are no degrees of freedom and the fit is perfect, m̂jk� = yjk�
for all the cells of the table.

The second order interactions have a lower order of magnitude, so we want to
test if they are significantly different to zero. We consider a restricted model where
(αβγ )jk� are all set to zero. This can be achieved by testingH0 : β16 = β17 = β18 =
β19 = 0. The maximum likelihood estimators of the restricted model are obtained by
deleting the last 4 columns in the design matrix X . The results are given in Table 8.8.

We have J = 2, K = 2 and L= 5, this makes JKL− 1= 19 free cells. The full
model has f = 0 degrees of freedom and the reduced model has r = 4 degrees of
freedom. The G2 deviance is given by 2.3004; it has 4 degrees of freedom (the chi-
square statistics is 2.3745). The p-value of the restricted model is 0.6807, so we do
not reject the null hypothesis (the restricted model without 2nd order interaction). In
others words, age does not interfere with the interactions between gender and drugs,
or equivalently, gender does not interfere in the interactions between age and drugs.
The reader can verify that the first order interactions are significant, by taking, for
instance, the model without interactions of the second order as the new full model
and testing a reduced model where all the first order interactions are all set to zero.

MVAdrug3waysTab
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8.2.4 Logit Models

Logit models are useful to analyse how explanatory variables influence a binary
response y. The response y may take the two values 1 and 0 to denote the presence
or absence of a certain qualitative trait (a person can be employed or unemployed,
a firm can be bankrupt or not, a patient can be affected by a certain disease or not,
etc.). Logit models are designed to estimate the probability of y = 1 as a logistic
function of linear combinations of x. Logit models can be adapted to the analysis of
contingency tables where one of the qualitative variables is binary. One obtains the
probability of being in one of the two states of this binary variable as a function of
the other variables. We concentrate here on (2×K) and (2×K ×L) tables.

Logit Models for Binary Response

Consider the vector y (n× 1) of observations on a binary response variable (a value
of ‘1’ indicating the presence of a particular qualitative trait and a value of ‘0’, its
absence). The logit model makes the assumption that the probability for observ-
ing yi = 1 given a particular value of xi = (xi1, . . . , xip)

	 is given by the logistic
function of a “score”, a linear combination of x:

p (xi)= P(yi = 1 |xi)=
exp(β0 +∑p

j=1 βjxij )

1+ exp(β0 +∑p

j=1 βjxij )
. (8.19)

This entails the probability of the absence of the trait:

1− p (xi)= P(yi = 0 |xi)= 1

1+ exp(β0 +∑p

j=1 βjxij )
,

which implies

log

{
p (xi)

1− p (xi)
}
= β0 +

p∑
j=1

βjxij . (8.20)

This indicates that the logit model is equivalent to a log-linear model for the odds
ratio p (xi)/{1− p (xi)}. A positive value of βj indicates an explanatory variable
xj that will favour the presence of the trait since it improves the odds. A zero value
of βj corresponds to the absence of an effect of this variable on the appearance of
the qualitative trait.

For i.i.d. observations the likelihood function is:

L(β0, β)=
n∏
i=1

p (xi)
yi {1− p (xi)}1−yi .

The maximum likelihood estimators of the β’s are obtained as the solution of the
non-linear maximisation problem (β̂0, β̂)= arg maxβ0,β logL(β0, β) where



8.2 Categorical Responses 247

Table 8.9 Probabilities of
the bankruptcies with the
logit model

MVAbankrupt

β̂ p-values

β0 3.6042 0.0660

β3 −0.2031 0.0037

β4 −0.0205 0.0183

logL(β0, β)=
n∑
i=1

[
yi logp (xi)+ (1− yi) log{1− p (xi)}

]
.

The asymptotic theory of the MLE of Chapter 6 (see Theorem 6.3) applies and thus
asymptotic inference on β is available (test of hypothesis or confidence intervals).

Example 8.5 In the bankruptcy data set, (see Appendix B.22), we have measures on
5 financial characteristics on 66 banks, 33 among them being bankrupt and the other
33 still being solvent. The logit model can be used to evaluate the probability of
bankruptcy as a function of these financial ratios. We obtain the results summarised
in Table 8.9. We observe that only β3 and β4 are significant.

Logit Models for Contingency Tables

The logit model may contain quantitative and qualitative explanatory variables. In
the latter case, the variable may be coded according to the rules described in the
ANOVA/ANCOVA sections above. This enables a revisit to the contingency tables
where one of the variables is binary and is the variable of interest. How can the
probability of taking one of the two nominal values be evaluated as a function of the
other variables? We keep the notations of Section 8.1 and suppose, without loss of
generality, that the first variable with J = 2 is the binary variable of interest. In the
drug Example 8.4, we have a (2×2×5) table and one is interested in the probability
of taking a drug as a function of age and gender.

(2 × K) Tables with Binomial Sampling

In Table 8.10 we have displayed the situation. Let pk be the probability of falling
into the first row for the k-th column, k = 1, . . . ,K . Since we are mainly interested
in the probabilities pk as a function of k, we suppose here that y•k are fixed for k =
1, . . . ,K (or we work conditionally on the observed value of these column totals),
where y•k =∑J

j=1 yjk . Therefore, we haveK independent binomial processes with
parameters (y•k,pk). Since the column variable is nominal we can use an ANOVA
model to analyse the effect of the column variable on pk through the logs of the
odds

log

(
pk

1− pk
)
= η0 + ηk, k = 1, . . . ,K, (8.21)
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Table 8.10 A (2×K)
contingency table 1 · · · k · · · K Total

1 y11 · · · y1k · · · y1K y1

2 y21 · · · y2k · · · y2K y2

Total y•1 · · · y•k · · · y•K y• = n

where
∑K

k=1 ηk = 0. As in the ANOVA models, one of the interests will be to test
H0 : η1 = . . . = ηK = 0. The log-linear model for the odds has its equivalent in a
logit formulation for pk

pk = exp(η0 + ηk)
1+ exp(η0 + ηk) , k = 1, . . . ,K. (8.22)

Note that we can code the RHS of (8.21) as a linear model X θ , where for instance,
for a (2× 4) table (K = 4) we have:

X =

⎛
⎜⎜⎝

1 1 0 0
1 0 1 0
1 0 0 1
1 −1 −1 −1

⎞
⎟⎟⎠ , θ =

⎛
⎜⎜⎝
β0
β1
β2
β3

⎞
⎟⎟⎠ ,

where η0 = β0, η1 = β1, η2 = β2, η3 = β3 and η4 = −(β1 + β2 + β3). The logit
model for pk , k = 1, . . . ,K can now be written, with some abuse of notation, as the
K-vector

p = exp(X θ)
1+ exp(X θ) ,

where the division has to be understood as being element-by-element. The MLE of
θ is obtained by maximising the log-likelihood

L(θ)=
K∑
k=1

{y1k logpk + y2k log(1− pk)}, (8.23)

where the pk are elements of the K-vector p.
This logit model is a saturated model. Indeed the number of free parameters is

K , the dimension of θ , and the number of free cells is also equal to K since we
consider the column totals y•k as being fixed. So, there are no degrees of freedom
in this model. It can be proven that this logit model is equivalent to the saturated
model for a table (2×K) presented in Section 8.2.2 where all the interactions are
present in the model. The hypothesis of all interactions (αγ )jk being equal to zero
(independence case) is equivalent to the hypothesis that the ηk , k = 1, . . . ,K are all
equal to zero (no column effect on the probabilities pk).

The main interest of the logit presentation is its flexibility when the variable
defining the column categories is a quantitative variable (age group, number of chil-
dren, . . . ). Indeed, when this is the case, the logit model allows to quantify the effect
of the column category by using less parameters and a more flexible relationship
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than a linear relation. Suppose that we could attach a representative value xk to each
column category for this class (for instance, it could be the median value, or the
average value of the class category). We can then choose the following logit model
for pk

pk = exp(η0 + η1xk)

1+ exp(η0 + η1xk)
, k = 1, . . . ,K, (8.24)

where we now have only two free parameters for K free cells, so we have K − 2 de-
grees of freedom. We could even introduce a quadratic term to allow some curvature
effect of x on the odds

pk = exp(η0 + η1xk + η2x
2
k )

1+ exp(η0 + η1xk + η2x
2
k )
, k = 1, . . . ,K.

In this latter case, we would still have K − 3 degrees of freedom.
We can follow the same idea for a three-way table when we want to model the

behaviour of the first binary variable as a function of the two other variables defin-
ing the table. In the drug example, one is interested in analysing the tendency of
taking a psychotropic drug as a function of the gender category and of the age. Fix
the number of observations in each cell k� (i.e. y•k�), so that we have a binomial
sampling process with an unknown parameter pk� for each cell. As for the two-way
case above, we can either use ANOVA-like models for the logarithm of the odds and
ANCOVA-like models when one (or both) of the two qualitative variables defining
the K and/or L categories is a quantitative variable.

One may study the following ANOVA model for the logarithms of the odds

log

(
pk�

1− pk�
)
= μ+ ηk + ζ�, k = 1, . . . ,K, �= 1, . . . ,L,

with η= ζ = 0. As another example, if x� is a representative value (like the average
age of the group) of the �th level of the third categorical variable, one might think
of:

log

(
pk�

1− pk�
)
= μ+ ηk + ζx�, k = 1, . . . ,K, �= 1, . . . ,L, (8.25)

with the constraint η = 0. Here also, interactions and the curvature effect for x�
can be introduced, as shown in the following example. Since the cell totals y•k� are
considered as fixed, the log-likelihood to be maximised is:

K∑
k=1

L∑
�=1

{y1k� logpk� + y2k� log(1− pk�)}, (8.26)

where pk� follows the appropriate logistic model.

Example 8.6 Consider again Example 8.4. One is interested in the influence of gen-
der and age on drug prescription. Take the number of observations for each “gender-
age group” combination, y•k� as fixed. A logit model (8.25) can be used for the
odds-ratios of the probability of taking drugs, where the value x� is the average
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age of the group. In the linear form it may be written as one of the two following
equivalent forms:

log

(
p

1− p
)
=X θ,

p = exp(X θ)
1+ exp(X θ) ,

where θ = (β0, β1, β2)
	 and the design matrix X is given by

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0 1.0 23.2
1.0 1.0 36.5
1.0 1.0 54.3
1.0 1.0 69.2
1.0 1.0 79.5
1.0 −1.0 23.2
1.0 −1.0 36.5
1.0 −1.0 54.3
1.0 −1.0 69.2
1.0 −1.0 79.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The first column of X is for the intercept, the second is the coded variable for the
two gender categories and the last column is the average of the ages for the corre-
sponding age-group. Then we estimate β by maximising the log-likelihood function
(8.26). We obtain:

β̂0 =−3.5612

β̂1 =−0.3426

β̂2 = 0.0280,

the intercept for men is β̂0 + β̂1 =−3.9038 and for women is β̂0 − β̂1 =−3.2186,
indicating a gender effect and the common slope for the positive age effect being
β̂2 = 0.0280. The fit appears to be reasonably good. There are K ×L= 2× 5= 10
free cells in the table. A saturated “full” model with 10 parameters and a zero degree
of freedom would involve a constant (1 parameter) plus an effect for gender (1
parameter) plus an effect for age (4 parameters) and finally the interactions between
gender and age (4 parameters). The model retained above is a “reduced model”
with only 3 parameters, that can be tested against the most general saturated model.
We obtain the value of the deviance G2

H0
= 11.5584 with 7 degrees of freedom

(7= 10− 3), whereas, G2
H1
= 0 with no degree of freedom. This gives a p-value =

0.1160, so we cannot reject the reduced model.
Figure 8.3 shows how well the model fits the data. It displays the fitted values of

the log of the odds-ratios by the linear model for the men and the women along with
the log of the odds-ratios computed from the observed corresponding frequencies.
It seems that the age effect shows a curvature. So we fit a model introducing the
square of the ages. This gives the following design matrix:



8.2 Categorical Responses 251

Fig. 8.3 Fit of the log of the
odds-ratios for taking drugs:
linear model for age effect
with a “gender” effect (no
interaction). Men are the stars
and women are the circles

MVAdruglogistic

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0 1.0 23.2 538.24
1.0 1.0 36.5 1332.25
1.0 1.0 54.3 2948.49
1.0 1.0 69.2 4788.64
1.0 1.0 79.5 6320.25
1.0 −1.0 23.2 538.24
1.0 −1.0 36.5 1332.25
1.0 −1.0 54.3 2948.49
1.0 −1.0 69.2 4788.64
1.0 −1.0 79.5 6320.25

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The maximum likelihood estimators are:

β̂0 =−4.4996

β̂1 =−0.3457

β̂2 = 0.0697

β̂3 =−0.0004.

MVAdruglogistic
The fit is better for this more flexible alternative, giving a devianceG2

H1
= 3.3251

with 6 degrees of freedom (6= 10−4). If we testH0: no curvature for the age effect
against H1: curvature for the age effect, the reduction of the deviance is G2

H0
−

G2
H1
= 11.5584 − 3.3251 = 8.2333 with one degree of freedom. The p-value =

0.0041, so we reject the reduced model (no curvature) in favour of the more general
model with a curvature term.

We know already from Example 8.4 that second order interactions are not sig-
nificant for this data set (the influence of age on taking a drug is the same for both
gender categories), so we can keep this model as a final reasonable model to analyse
the probability of taking the drug as a function of the gender and of the age. To sum-
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marise this analysis we end up saying that the probability of taking a psychotropic
drug can be modelled as (with some abuse of notation)

log

(
p

1− p
)
= β0 + β1 ∗ Sex+ β2 ∗ Age+ β3 ∗ Age2. (8.27)

Summary
↪→ In contingency tables, the categories are defined by the qualitative

variables.
↪→ The saturated model has all of the interaction terms, and 0 degree

of freedom.
↪→ The non-saturated model is a reduced model since it fixes some

parameters to be zero.
↪→ Two statistics to test for the full model and the reduced model are:

X2 =
K∑
k=1

(yk − m̂k)2/m̂k

G2 = 2
K∑
k=1

yk log(yk/m̂k).

↪→ The logit models allow the column categories to be a quantitative
variable, and quantify the effect of the column category by us-
ing fewer parameters and incorporating more flexible relationships
than just a linear one.

↪→ The logit model is equivalent to a log-linear model.

log
[
p (xi)/{1− p (xi)}

]= β0 +
p∑
j=1

βjxij .

8.3 Exercises

Exercise 8.1 For the one factor ANOVA model, show that if the model is “bal-
anced” (n1 = n2 = n3), we have μ̂ = ȳ. If the model is not balanced, show that
ȳ = μ̂+ n1α̂1 + n2α̂2 + n3α̂3.

Exercise 8.2 Redo the calculations of Example 8.2 and test if the main effects of
the marketing strategy and of the location are significant.
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y price gender brand

30 3.5 M A

4 4 F B

20 4.1 F B

15 3.75 M A

24 3.25 F A

11 5 F B

8 4.1 F B

9 3.5 M A

17 4.5 M B

1 4 F B

23 3.65 M A

13 3.5 M A

Exercise 8.3 Redo the calculations of Example 8.3 with the Car Data set.

Exercise 8.4 Redo the calculations of the Boston housing example in Section 8.1.3.

Exercise 8.5 We want to analyse the variations in the consumption of packs of
cigarettes per month as a function of the brand (A or B), of the price per pack and
as a function of the gender of the smoker (M or F). The data are below.

1. In addition to the effects of brand, price and gender, test if there is an interaction
between the brand and the price.

2. How would the design matrix of a full model with all the interactions between
the variables appear? What would be the number of degrees of freedom of such
a model?

3. We would like to introduce a curvature term for the price variable. How can we
proceed? Test if this coefficient is significant.

Exercise 8.6 In the drug Example 8.4, test if the first order interactions are signifi-
cant.



Chapter 9
Decomposition of Data Matrices by Factors

In Chapter 1 basic descriptive techniques were developed which provided tools for
“looking” at multivariate data. They were based on adaptations of bivariate or uni-
variate devices used to reduce the dimensions of the observations. In the following
three chapters, issues of reducing the dimension of a multivariate data set will be
discussed. The perspectives will be different but the tools will be related.

In this chapter, we take a descriptive perspective and show how using a geomet-
rical approach provides a “best” way of reducing the dimension of a data matrix.
It is derived with respect to a least-squares criterion. The result will be low dimen-
sional graphical pictures of the data matrix. This involves the decomposition of the
data matrix into “factors”. These “factors” will be sorted in decreasing order of im-
portance. The approach is very general and is the core idea of many multivariate
techniques. We deliberately use the word “factor” here as a tool or transformation
for structural interpretation in an exploratory analysis. In practice, the matrix to be
decomposed will be some transformation of the original data matrix and as shown
in the following chapters, these transformations provide easier interpretations of the
obtained graphs in lower dimensional spaces.

Chapter 10 addresses the issue of reducing the dimensionality of a multivariate
random variable by using linear combinations (the principal components). The iden-
tified principal components are ordered in decreasing order of importance. When
applied in practice to a data matrix, the principal components will turn out to be
the factors of a transformed data matrix (the data will be centered and eventually
standardized).

Factor analysis is discussed in Chapter 11. The same problem of reducing the di-
mension of a multivariate random variable is addressed but in this case the number
of factors is fixed from the start. Each factor is interpreted as a latent characteristic
of the individuals revealed by the original variables. The non-uniqueness of the solu-
tions is dealt with by searching for the representation with the easiest interpretation
for the analysis.

Summarizing, this chapter can be seen as a foundation since it develops a basic
tool for reducing the dimension of a multivariate data matrix.

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-642-17229-8_9, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 9.1 Cloud of n points
in R

p

Fig. 9.2 Cloud of p points
in R

n

9.1 The Geometric Point of View

As a matter of introducing certain ideas, assume that the data matrix X (n× p) is
composed of n observations (or individuals) of p variables.

There are in fact two ways of looking at X , row by row or column by column:

(1) Each row (observation) is a vector x	i = (xi1, . . . , xip) ∈R
p .

From this point of view our data matrix X is representable as a cloud of n
points in R

p as shown in Figure 9.1.
(2) Each column (variable) is a vector x[j ] = (x1j . . . xnj )

	 ∈R
n.

From this point of view the data matrix X is a cloud of p points in R
n as

shown in Figure 9.2.

When n and/or p are large (larger than 2 or 3), we cannot produce interpretable
graphs of these clouds of points. Therefore, the aim of the factorial methods to be
developed here is two-fold. We shall try to simultaneously approximate the column
spaceC(X ) and the row spaceC(X	)with smaller subspaces. The hope is of course
that this can be done without loosing too much information about the variation and
structure of the point clouds in both spaces. Ideally, this will provide insights into
the structure of X through graphs in R, R2 or R3. The main focus then is to find the
dimension reducing factors.

Summary
↪→ Each row (individual) of X is a p-dimensional vector. From this

point of view X can be considered as a cloud of n points in R
p.
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Summary (continued)
↪→ Each column (variable) of X is a n-dimensional vector. From this

point of view X can be considered as a cloud of p points in R
n.

9.2 Fitting the p-dimensional Point Cloud

Subspaces of Dimension 1

In this section X is represented by a cloud of n points in R
p (considering each row).

The question is how to project this point cloud onto a space of lower dimension. To
begin consider the simplest problem, namely finding a subspace of dimension 1. The
problem boils down to finding a straight line F1 through the origin. The direction of
this line can be defined by a unit vector u1 ∈ R

p . Hence, we are searching for the
vector u1 which gives the “best” fit of the initial cloud of n points. The situation is
depicted in Figure 9.3.

The representation of the i-th individual xi ∈ R
p on this line is obtained by the

projection of the corresponding point onto u1, i.e., the projection point pxi . We
know from (2.42) that the coordinate of xi on F1 is given by

pxi = x	i
u1

‖u1‖ = x
	
i u1. (9.1)

We define the best line F1 in the following “least-squares” sense: Find u1 ∈ R
p

which minimizes
n∑
i=1

‖xi − pxi‖2. (9.2)

Since ‖xi − pxi‖2 = ‖xi‖2 − ‖pxi‖2 by Pythagoras’s theorem, the problem of min-
imizing (9.2) is equivalent to maximizing

∑n
i=1 ‖pxi‖2. Thus the problem is to find

Fig. 9.3 Projection of point
cloud onto u space of lower
dimension
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u1 ∈R
p that maximizes

∑n
i=1 ‖pxi‖2 under the constraint ‖u1‖ = 1. With (9.1) we

can write ⎛
⎜⎜⎜⎝
px1

px2
...

pxn

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝
x	1 u1

x	2 u1
...

x	n u1

⎞
⎟⎟⎟⎠=Xu1

and the problem can finally be reformulated as: find u1 ∈ R
p with ‖u1‖ = 1 that

maximizes the quadratic form (Xu1)
	(Xu1) or

max
u	1 u1=1

u	1 (X	X )u1. (9.3)

The solution is given by Theorem 2.5 (using A= X	X and B = I in the theo-
rem).

Theorem 9.1 The vector u1 which minimizes (9.2) is the eigenvector of X	X as-
sociated with the largest eigenvalue λ1 of X	X .

Note that if the data have been centered, i.e., x = 0, then X = Xc , where Xc
is the centered data matrix, and 1

n
X	X is the covariance matrix. Thus Theorem

9.1 says that we are searching for a maximum of the quadratic form (9.3) w.r.t. the
covariance matrix SX = n−1X	X .

Representation of the Cloud on F1

The coordinates of the n individuals on F1 are given by Xu1. Xu1 is called the first
factorial variable or the first factor and u1 the first factorial axis. The n individuals,
xi , are now represented by a new factorial variable z1 =Xu1. This factorial variable
is a linear combination of the original variables (x[1], . . . , x[p]) whose coefficients
are given by the vector u1, i.e.,

z1 = u11x[1] + · · · + up1x[p]. (9.4)

Subspaces of Dimension 2

If we approximate the n individuals by a plane (dimension 2), it can be shown via
Theorem 2.5 that this space contains u1. The plane is determined by the best linear
fit (u1) and a unit vector u2 orthogonal to u1 which maximizes the quadratic form
u	2 (X	X )u2 under the constraints

‖u2‖ = 1, and u	1 u2 = 0.
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Fig. 9.4 Representation of
the individuals x1, . . . , xn as
a two-dimensional point
cloud

Theorem 9.2 The second factorial axis, u2, is the eigenvector of X	X correspond-
ing to the second largest eigenvalue λ2 of X	X .

The unit vector u2 characterizes a second line, F2, on which the points are pro-
jected. The coordinates of the n individuals on F2 are given by z2 = Xu2. The
variable z2 is called the second factorial variable or the second factor. The repre-
sentation of the n individuals in two-dimensional space (z1 =Xu1 vs. z2 =Xu2) is
shown in Figure 9.4.

Subspaces of Dimension q (q ≤ p)

In the case of q dimensions the task is again to minimize (9.2) but with projection
points in a q-dimensional subspace. Following the same argument as above, it can be
shown via Theorem 2.5 that this best subspace is generated by u1, u2, . . . , uq , the
orthonormal eigenvectors of X	X associated with the corresponding eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λq . The coordinates of the n individuals on the k-th factorial axis,
uk , are given by the k-th factorial variable zk =Xuk for k = 1, . . . , q . Each factorial
variable zk = (z1k, z2k, . . . , znk)

	 is a linear combination of the original variables
x[1], x[2], . . . , x[p] whose coefficients are given by the elements of the k-th vector
uk : zik =∑p

m=1 ximumk .

Summary
↪→ The p-dimensional point cloud of individuals can be graphically

represented by projecting each element into spaces of smaller di-
mensions.
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Summary (continued)
↪→ The first factorial axis is u1 and defines a line F1 through the origin.

This line is found by minimizing the orthogonal distances (9.2).
The factor u1 equals the eigenvector of X	X corresponding to its
largest eigenvalue. The coordinates for representing the point cloud
on a straight line are given by z1 =Xu1.

↪→ The second factorial axis is u2, where u2 denotes the eigenvector
of X	X corresponding to its second largest eigenvalue. The co-
ordinates for representing the point cloud on a plane are given by
z1 =Xu1 and z2 =Xu2.

↪→ The factor directions 1, . . . , q are u1, . . . , uq , which denote the
eigenvectors of X	X corresponding to the q largest eigenvalues.
The coordinates for representing the point cloud of individuals on
a q-dimensional subspace are given by z1 =Xu1, . . . , zq =Xuq .

9.3 Fitting the n-dimensional Point Cloud

Subspaces of Dimension 1

Suppose that X is represented by a cloud of p points (variables) in R
n (considering

each column). How can this cloud be projected into a lower dimensional space? We
start as before with one dimension. In other words, we have to find a straight line
G1, which is defined by the unit vector v1 ∈ R

n, and which gives the best fit of the
initial cloud of p points.

Algebraically, this is the same problem as above (replace X by X	 and follow
Section 9.2): the representation of the j -th variable x[j ] ∈ R

n is obtained by the
projection of the corresponding point onto the straight line G1 or the direction v1.
Hence we have to find v1 such that

∑p

j=1 ‖px[j ]‖2 is maximized, or equivalently, we

have to find the unit vector v1 which maximizes (X	v1)
	(X v1) = v	1 (XX	)v1.

The solution is given by Theorem 2.5.

Theorem 9.3 v1 is the eigenvector of XX	 corresponding to the largest eigenvalue
μ1 of XX	.

Representation of the Cloud on G1

The coordinates of the p variables onG1 are given by w1 =X	v1, the first factorial
axis. The p variables are now represented by a linear combination of the original
individuals x1, . . . , xn, whose coefficients are given by the vector v1, i.e., for j =
1, . . . , p

w1j = v11x1j + · · · + v1nxnj . (9.5)
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Fig. 9.5 Representation of
the variables x[1], . . . , x[p] as
a two-dimensional point
cloud

Subspaces of Dimension q (q ≤ n)

The representation of the p variables in a subspace of dimension q is done in the
same manner as for the n individuals above. The best subspace is generated by
the orthonormal eigenvectors v1, v2, . . . , vq of XX	 associated with the eigenval-
ues μ1 ≥ μ2 ≥ · · · ≥ μq . The coordinates of the p variables on the k-th factorial
axis are given by the factorial variables wk = X	vk, k = 1, . . . , q . Each factorial
variable wk = (wk1,wk2, . . . ,wkp)

	 is a linear combination of the original individ-
uals x1, x2, . . . , xn whose coefficients are given by the elements of the k-th vector
vk : wkj =∑n

m=1 vkmxmj . The representation in a subspace of dimension q = 2 is
depicted in Figure 9.5.

Summary
↪→ The n-dimensional point cloud of variables can be graphically rep-

resented by projecting each element into spaces of smaller dimen-
sions.

↪→ The first factor direction is v1 and defines a line G1 through the
origin. The vector v1 equals the eigenvector of XX	 corresponding
to the largest eigenvalue of XX	. The coordinates for representing
the point cloud on a straight line are w1 =X	v1.

↪→ The second factor direction is v2, where v2 denotes the eigenvector
of XX	 corresponding to its second largest eigenvalue. The co-
ordinates for representing the point cloud on a plane are given by
w1 =X	v1 and w2 =X	v2.
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Summary (continued)
↪→ The factor directions 1, . . . , q are v1, . . . , vq , which denote the

eigenvectors of XX	 corresponding to the q largest eigenvalues.
The coordinates for representing the point cloud of variables on a q-
dimensional subspace are given by w1 =X	v1, . . . ,wq =X	vq .

9.4 Relations Between Subspaces

The aim of this section is to present a duality relationship between the two ap-
proaches shown in Sections 9.2 and 9.3. Consider the eigenvector equations in R

n

(XX	)vk = μkvk (9.6)

for k ≤ r , where r = rank(XX	)= rank(X )≤min(p,n). Multiplying by X	, we
have

X	(XX	)vk = μkX	vk (9.7)

or (X	X )(X	vk)= μk(X	vk) (9.8)

so that each eigenvector vk of XX	 corresponds to an eigenvector (X	vk) of X	X
associated with the same eigenvalue μk . This means that every non-zero eigenvalue
of XX	 is an eigenvalue of X	X . The corresponding eigenvectors are related by

uk = ckX	vk,
where ck is some constant.

Now consider the eigenvector equations in R
p:

(X	X )uk = λkuk (9.9)

for k ≤ r . Multiplying by X , we have

(XX	)(Xuk)= λk(Xuk), (9.10)

i.e., each eigenvector uk of X	X corresponds to an eigenvector Xuk of XX	 asso-
ciated with the same eigenvalue λk . Therefore, every non-zero eigenvalue of (X	X )
is an eigenvalue of XX	. The corresponding eigenvectors are related by

vk = dkXuk,
where dk is some constant. Now, since u	k uk = v	k vk = 1 we have ck = dk = 1√

λk
.

This lead to the following result:

Theorem 9.4 (Duality Relations) Let r be the rank of X . For k ≤ r , the eigenvalues
λk of X	X and XX	 are the same and the eigenvectors (uk and vk , respectively)
are related by
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uk = 1√
λk

X	vk (9.11)

vk = 1√
λk

Xuk. (9.12)

Note that the projection of the p variables on the factorial axis vk is given by

wk =X	vk = 1√
λk

X	Xuk =
√
λk uk. (9.13)

Therefore, the eigenvectors vk do not have to be explicitly recomputed to get wk .
Note that uk and vk provide the SVD of X (see Theorem 2.2). Letting U =

[u1 u2 . . . ur ], V = [v1 v2 . . . vr ] and �= diag(λ1, . . . , λr ) we have

X = V �1/2 U	

so that

xij =
r∑

k=1

λ
1/2
k vik ujk. (9.14)

In the following section this method is applied in analysing consumption behav-
ior across different household types.

Summary
↪→ The matrices X	X and XX	 have the same non-zero eigenvalues

λ1, . . . , λr , where r = rank(X ).
↪→ The eigenvectors of X	X can be calculated from the eigenvectors

of XX	 and vice versa:

uk = 1√
λk

X	vk and vk = 1√
λk

Xuk.

↪→ The coordinates representing the variables (columns) of X in a q-
dimensional subspace can be easily calculated by wk =√λkuk .

9.5 Practical Computation

The practical implementation of the techniques introduced begins with the com-
putation of the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp and the corresponding eigenvectors
u1, . . . , up of X	X . (Since p is usually less than n, this is numerically less involved
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than computing vk directly for k = 1, . . . , p). The representation of the n individu-
als on a plane is then obtained by plotting z1 = Xu1 versus z2 = Xu2 (z3 = Xu3

may eventually be added if a third dimension is helpful). Using the Duality Rela-
tion (9.13) representations for the p variables can easily be obtained. These repre-
sentations can be visualized in a scatterplot of w1 =√λ1 u1 against w2 =√λ2u2

(and eventually against w3 =√λ3 u3). Higher dimensional factorial resolutions can
be obtained (by computing zk and wk for k > 3) but, of course, cannot be plot-
ted.

A standard way of evaluating the quality of the factorial representations in a
subspace of dimension q is given by the ratio

τq = λ1 + λ2 + · · · + λq
λ1 + λ2 + · · · + λp , (9.15)

where 0≤ τq ≤ 1. In general, the scalar product y	y is called the inertia of y ∈R
n

w.r.t. the origin. Therefore, the ratio τq is usually interpreted as the percentage of
the inertia explained by the first q factors. Note that λj = (Xuj )	(Xuj ) = z	j zj .
Thus, λj is the inertia of the j -th factorial variable w.r.t. the origin. The denominator
in (9.15) is a measure of the total inertia of the p variables, x[j ]. Indeed, by (2.3)

p∑
j=1

λj = tr(X	X )=
p∑
j=1

n∑
i=1

x2
ij =

p∑
j=1

x	[j ]x[j ].

Remark 9.1 It is clear that the sum
∑q

j=1 λj is the sum of the inertia of the first q
factorial variables z1, z2, . . . , zq .

Example 9.1 We consider the data set in Table B.6 which gives the food ex-
penditures of various French families (manual workers = MA, employees = EM,
managers = CA) with varying numbers of children (2, 3, 4 or 5 children). We are
interested in investigating whether certain household types prefer certain food types.
We can answer this question using the factorial approximations developed here.

The correlation matrix corresponding to the data is

R=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.00 0.59 0.20 0.32 0.25 0.86 0.30
0.59 1.00 0.86 0.88 0.83 0.66 −0.36
0.20 0.86 1.00 0.96 0.93 0.33 −0.49
0.32 0.88 0.96 1.00 0.98 0.37 −0.44
0.25 0.83 0.93 0.98 1.00 0.23 −0.40
0.86 0.66 0.33 0.37 0.23 1.00 0.01
0.30 −0.36 −0.49 −0.44 −0.40 0.01 1.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

We observe a rather high correlation (0.98) between meat and poultry, whereas
the correlation for expenditure for milk and wine (0.01) is rather small. Are there
household types that prefer, say, meat over bread?
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We shall now represent food expenditures and households simultaneously us-
ing two factors. First, note that in this particular problem the origin has no specific
meaning (it represents a “zero” consumer). So it makes sense to compare the con-
sumption of any family to that of an “average family” rather than to the origin.
Therefore, the data is first centered (the origin is translated to the center of grav-
ity, x). Furthermore, since the dispersions of the 7 variables are quite different each
variable is standardized so that each has the same weight in the analysis (mean 0
and variance 1). Finally, for convenience, we divide each element in the matrix by√
n = √12. (This will only change the scaling of the plots in the graphical repre-

sentation.)
The data matrix to be analyzed is

X∗ = 1√
n
HXD−1/2,

where H is the centering matrix and D = diag(sXiXi ) (see Section 3.3). Note that by
standardizing by

√
n, it follows that X	∗ X∗ =R where R is the correlation matrix

of the original data. Calculating

λ= (4.33,1.83,0.63,0.13,0.06,0.02,0.00)	

shows that the directions of the first two eigenvectors play a dominant role (τ2 =
88%), whereas the other directions contribute less than 15% of inertia. A two-
dimensional plot should suffice for interpreting this data set.

The coordinates of the projected data points are given in the two lower windows
of Figure 9.6. Let us first examine the food expenditure window. In this window we
see the representation of the p = 7 variables given by the first two factors. The plot
shows the factorial variables w1 and w2 in the same fashion as Figure 9.4. We see
that the points for meat, poultry, vegetables and fruits are close to each other in the
lower left of the graph. The expenditures for bread and milk can be found in the
upper left whereas wine stands alone in the upper right. The first factor, w1, may
be interpreted as the meat/fruit factor of consumption, the second factor, w2, as the
bread/wine component.

In the lower window on the right-hand side, we show the factorial variables z1
and z2 from the fit of the n= 12 household types. Note that by the Duality Relations
of Theorem 9.4, the factorial variables zj are linear combinations of the factors
wk from the left window. The points displayed in the consumer window (graph
on the right) are plotted relative to an average consumer represented by the origin.
The manager families are located in the lower left corner of the graph whereas the
manual workers and employees tend to be in the upper right. The factorial variables
for CA5 (managers with five children) lie close to the meat/fruit factor. Relative to
the average consumer this household type is a large consumer of meat/poultry and
fruits/vegetables. In Chapter 10, we will return to these plots interpreting them in a
much deeper way. At this stage, it suffices to notice that the plots provide a graphical
representation in R

2 of the information contained in the original, high-dimensional
(12× 7) data matrix.
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Fig. 9.6 Representation of food expenditures and family types in two dimensions MVAde-
cofood

Summary
↪→ The practical implementation of factor decomposition of matrices

consists of computing the eigenvalues λ1, . . . , λp and the eigenvec-
tors u1, . . . , up of X	X . The representation of the n individuals is
obtained by plotting z1 = Xu1 vs. z2 = Xu2 (and, if necessary,
vs. z3 = Xu3). The representation of the p variables is obtained
by plotting w1 = √λ1u1 vs. w2 = √λ2u2 (and, if necessary, vs.
w3 =√λ3u3).

↪→ The quality of the factorial representation can be evaluated using τq
which is the percentage of inertia explained by the first q factors.

9.6 Exercises

Exercise 9.1 Prove that n−1Z	Z is the covariance of the centered data matrix,
where Z is the matrix formed by the columns zk =Xuk .
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Exercise 9.2 Compute the SVD of the French food data (Table B.6).

Exercise 9.3 Compute τ3, τ4, . . . for the French food data (Table B.6).

Exercise 9.4 Apply the factorial techniques to the Swiss bank notes (Table B.2).

Exercise 9.5 Apply the factorial techniques to the time budget data (Table B.14).

Exercise 9.6 Assume that you wish to analyze p independent identically distributed
random variables. What is the percentage of the inertia explained by the first factor?
What is the percentage of the inertia explained by the first q factors?

Exercise 9.7 Assume that you have p i.i.d. r.v.’s. What does the eigenvector, corre-
sponding to the first factor, look like?

Exercise 9.8 Assume that you have two random variables,X1 andX2 = 2X1. What
do the eigenvalues and eigenvectors of their correlation matrix look like? How many
eigenvalues are nonzero?

Exercise 9.9 What percentage of inertia is explained by the first factor in the previ-
ous exercise?

Exercise 9.10 How do the eigenvalues and eigenvectors in Example 9.1 change if
we take the prices in USD instead of in EUR? Does it make a difference if some of
the prices are in EUR and others in USD?



Chapter 10
Principal Components Analysis

Chapter 9 presented the basic geometric tools needed to produce a lower dimen-
sional description of the rows and columns of a multivariate data matrix. Principal
components analysis has the same objective with the exception that the rows of the
data matrix X will now be considered as observations from a p-variate random
variable X. The principle idea of reducing the dimension of X is achieved through
linear combinations. Low dimensional linear combinations are often easier to in-
terpret and serve as an intermediate step in a more complex data analysis. More
precisely one looks for linear combinations which create the largest spread among
the values of X. In other words, one is searching for linear combinations with the
largest variances.

Section 10.1 introduces the basic ideas and technical elements behind principal
components. No particular assumption will be made on X except that the mean vec-
tor and the covariance matrix exist. When reference is made to a data matrix X in
Section 10.2, the empirical mean and covariance matrix will be used. Section 10.3
shows how to interpret the principal components by studying their correlations with
the original components of X. Often analyses are performed in practice by looking
at two-dimensional scatterplots. Section 10.4 develops inference techniques on prin-
cipal components. This is particularly helpful in establishing the appropriate dimen-
sion reduction and thus in determining the quality of the resulting lower dimensional
representations. Since principal component analysis is performed on covariance ma-
trices, it is not scale invariant. Often, the measurement units of the components of X
are quite different, so it is reasonable to standardize the measurement units. The nor-
malized version of principal components is defined in Section 10.5. In Section 10.6
it is discovered that the empirical principal components are the factors of appropriate
transformations of the data matrix. The classical way of defining principal compo-
nents through linear combinations with respect to the largest variance is described
here in geometric terms, i.e., in terms of the optimal fit within subspaces generated
by the columns and/or the rows of X as was discussed in Chapter 9. Section 10.9
concludes with additional examples.

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-642-17229-8_10, © Springer-Verlag Berlin Heidelberg 2012
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10.1 Standardized Linear Combination

The main objective of principal components analysis (PC) is to reduce the dimen-
sion of the observations. The simplest way of dimension reduction is to take just
one element of the observed vector and to discard all others. This is not a very rea-
sonable approach, as we have seen in the earlier chapters, since strength may be lost
in interpreting the data. In the bank notes example we have seen that just one vari-
able (e.g. X1 = length) had no discriminatory power in distinguishing counterfeit
from genuine bank notes. An alternative method is to weight all variables equally,
i.e., to consider the simple average p−1 ∑p

j=1Xj of all the elements in the vector

X = (X1, . . . ,Xp)
	. This again is undesirable, since all of the elements of X are

considered with equal importance (weight).
A more flexible approach is to study a weighted average, namely

δ	X =
p∑
j=1

δjXj , such that
p∑
j=1

δ2
j = 1. (10.1)

The weighting vector δ = (δ1, . . . , δp)
	 can then be optimized to investigate and

to detect specific features. We call (10.1) a standardized linear combination (SLC).
Which SLC should we choose? One aim is to maximize the variance of the projec-
tion δ	X, i.e., to choose δ according to

max
{δ:‖δ‖=1}

Var(δ	X)= max
{δ:‖δ‖=1}

δ	 Var(X)δ. (10.2)

The interesting “directions” of δ are found through the spectral decomposition of
the covariance matrix. Indeed, from Theorem 2.5, the direction δ is given by the
eigenvector γ1 corresponding to the largest eigenvalue λ1 of the covariance matrix
� = Var(X).

Figures 10.1 and 10.2 show two such projections (SLCs) of the same data set with
zero mean. In Figure 10.1 an arbitrary projection is displayed. The upper window
shows the data point cloud and the line onto which the data are projected. The mid-
dle window shows the projected values in the selected direction. The lower window
shows the variance of the actual projection and the percentage of the total variance
that is explained.

Figure 10.2 shows the projection that captures the majority of the variance in the
data. This direction is of interest and is located along the main direction of the point
cloud. The same line of thought can be applied to all data orthogonal to this direction
leading to the second eigenvector. The SLC with the highest variance obtained from
maximizing (10.2) is the first principal component (PC) y1 = γ	1 X. Orthogonal to
the direction γ1 we find the SLC with the second highest variance: y2 = γ	2 X, the
second PC.

Proceeding in this way and writing in matrix notation, the result for a random
variable X with E(X) = μ and Var(X) = � = ���	 is the PC transformation
which is defined as

Y = �	(X−μ). (10.3)

Here we have centered the variable X in order to obtain a zero mean PC variable Y .
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Fig. 10.1 An arbitrary SLC

MVApcasimu

Fig. 10.2 The most

interesting SLC
MVApcasimu

Example 10.1 Consider a bivariate normal distributionN(0,�)with� = ( 1 ρ
ρ 1

)
and

ρ > 0 (see Example 3.13). Recall that the eigenvalues of this matrix are λ1 = 1+ ρ
and λ2 = 1− ρ with corresponding eigenvectors

γ1 = 1√
2

(
1

1

)
, γ2 = 1√

2

(
1

−1

)
.

The PC transformation is thus

Y = �	(X−μ)= 1√
2

(
1 1
1 −1

)
X

or
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Y1
Y2

)
= 1√

2

(
X1 +X2
X1 −X2

)
.

So the first principal component is

Y1 = 1√
2
(X1 +X2)

and the second is

Y2 = 1√
2
(X1 −X2).

Let us compute the variances of these PCs using formulas (4.22)–(4.26):

Var(Y1)= Var

{
1√
2
(X1 +X2)

}
= 1

2
Var(X1 +X2)

= 1

2
{Var(X1)+ Var(X2)+ 2 Cov(X1,X2)}

= 1

2
(1+ 1+ 2ρ)= 1+ ρ

= λ1.

Similarly we find that

Var(Y2)= λ2.

This can be expressed more generally and is given in the next theorem.

Theorem 10.1 For a given X ∼ (μ,�) let Y = �	(X−μ) be the PC transforma-
tion. Then

EYj = 0, j = 1, . . . , p (10.4)

Var(Yj )= λj , j = 1, . . . , p (10.5)

Cov(Yi, Yj )= 0, i 
= j (10.6)

Var(Y1)≥ Var(Y2)≥ · · · ≥ Var(Yp)≥ 0 (10.7)
p∑
j=1

Var(Yj )= tr(�) (10.8)

p∏
j=1

Var(Yj )= |�|. (10.9)

Proof To prove (10.6), we use γi to denote the ith column of �. Then

Cov(Yi, Yj )= γ	i Var(X−μ)γj = γ	i Var(X)γj .
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As Var(X)=� = ���	, �	� = I , we obtain via the orthogonality of �:

γ	i ���	γj =
{

0 i 
= j
λi i = j.

In fact, as Yi = γ	i (X − μ) lies in the eigenvector space corresponding to γi , and
eigenvector spaces corresponding to different eigenvalues are orthogonal to each
other, we can directly see Yi and Yj are orthogonal to each other, so their covariance
is 0. �

The connection between the PC transformation and the search for the best SLC is
made in the following theorem, which follows directly from (10.2) and Theorem 2.5.

Theorem 10.2 There exists no SLC that has larger variance than λ1 = Var(Y1).

Theorem 10.3 If Y = a	X is a SLC that is not correlated with the first k PCs of X,
then the variance of Y is maximized by choosing it to be the (k + 1)-st PC.

Summary
↪→ A standardized linear combination (SLC) is a weighted average

δ	X =∑p

j=1 δjXj where δ is a vector of length 1.

↪→ Maximizing the variance of δ	X leads to the choice δ = γ1, the
eigenvector corresponding to the largest eigenvalue λ1 of � =
Var(X).
This is a projection of X into the one-dimensional space, where
the components of X are weighted by the elements of γ1. Y1 =
γ	1 (X−μ) is called the first principal component (PC).

↪→ This projection can be generalized for higher dimensions. The PC
transformation is the linear transformation Y = �	(X−μ), where
� = Var(X)= ���	 and μ= EX.
Y1, Y2, . . . , Yp are called the first, second, . . . , and p-th PCs.

↪→ The PCs have zero means, variance Var(Yj )= λj , and zero covari-
ances. From λ1 ≥ · · · ≥ λp it follows that Var(Y1)≥ · · · ≥ Var(Yp).
It holds that

∑p

j=1 Var(Yj )= tr(�) and
∏p

j=1 Var(Yj )= |�|.
↪→ If Y = a	X is a SLC which is not correlated with the first k PCs

of X then the variance of Y is maximized by choosing it to be the
(k + 1)-st PC.
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10.2 Principal Components in Practice

In practice the PC transformation has to be replaced by the respective estimators: μ
becomes x, � is replaced by S , etc. If g1 denotes the first eigenvector of S , the first
principal component is given by y1 = (X − 1nx	)g1. More generally if S = GLG	
is the spectral decomposition of S , then the PCs are obtained by

Y = (X − 1nx
	)G. (10.10)

Note that with the centering matrix H = I − (n−11n1	n ) and H1nx	 = 0 we can
write

SY = n−1Y	HY = n−1G	(X − 1nx
	)	H(X − 1nx

	)G
= n−1G	X	HXG = G	SG = L (10.11)

where L = diag(�1, . . . , �p) is the matrix of eigenvalues of S . Hence the variance
of yi equals the eigenvalue �i !

The PC technique is sensitive to scale changes. If we multiply one variable by a
scalar we obtain different eigenvalues and eigenvectors. This is due to the fact that
an eigenvalue decomposition is performed on the covariance matrix and not on the
correlation matrix (see Section 10.5). The following warning is therefore important:

�
�
��

�
�

!
The PC transformation should be applied to data that have approximately

the same scale in each variable.

Example 10.2 Let us apply this technique to the bank data set. In this example we
do not standardize the data. Figure 10.3 shows some PC plots of the bank data set.
The genuine and counterfeit bank notes are marked by “o” and “+” respectively.

Recall that the mean vector of X is

x = (214.9, 130.1, 129.9, 9.4, 10.6, 140.5)	 .

The vector of eigenvalues of S is

�= (2.985, 0.931, 0.242, 0.194, 0.085, 0.035)	 .

The eigenvectors gj are given by the columns of the matrix

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.044 0.011 0.326 0.562 −0.753 0.098
0.112 0.071 0.259 0.455 0.347 −0.767
0.139 0.066 0.345 0.415 0.535 0.632
0.768 −0.563 0.218 −0.186 −0.100 −0.022
0.202 0.659 0.557 −0.451 −0.102 −0.035
−0.579 −0.489 0.592 −0.258 0.085 −0.046

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The first column of G is the first eigenvector and gives the weights used in the linear
combination of the original data in the first PC.
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Fig. 10.3 Principal components of the bank data MVApcabank

Example 10.3 To see how sensitive the PCs are to a change in the scale of the
variables, assume that X1, X2, X3 and X6 are measured in cm and that X4 and X5
remain in mm in the bank data set. This leads to:

x̄ = (21.49, 13.01, 12.99, 9.41, 10.65, 14.05)	.

The covariance matrix can be obtained from S in (3.4) by dividing rows 1, 2, 3, 6
and columns 1, 2, 3, 6 by 10. We obtain:

�= (2.101, 0.623, 0.005, 0.002, 0.001, 0.0004)	

which clearly differs from Example 10.2. Only the first two eigenvectors are given:

g1 = (−0.005, 0.011, 0.014, 0.992, 0.113, −0.052)	

g2 = (−0.001, 0.013, 0.016, −0.117, 0.991, −0.069)	.

Comparing these results to the first two columns of G from Example 10.2, a com-
pletely different story is revealed. Here the first component is dominated by X4
(lower margin) and the second byX5 (upper margin), while all of the other variables
have much less weight. The results are shown in Figure 10.4. Section 10.5 will show
how to select a reasonable standardization of the variables when the scales are too
different.
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Fig. 10.4 Principal components of the rescaled bank data MVApcabankr

Summary
↪→ The scale of the variables should be roughly the same for PC trans-

formations.
↪→ For the practical implementation of principal components analysis

(PCA) we replace μ by the mean x and � by the empirical co-
variance S . Then we compute the eigenvalues �1, . . . , �p and the
eigenvectors g1, . . . , gp of S . The graphical representation of the
PCs is obtained by plotting the first PC vs. the second (and eventu-
ally vs. the third).

↪→ The components of the eigenvectors gi are the weights of the orig-
inal variables in the PCs.

10.3 Interpretation of the PCs

Recall that the main idea of PC transformations is to find the most informative pro-
jections that maximize variances. The most informative SLC is given by the first
eigenvector. In Section 10.2 the eigenvectors were calculated for the bank data. In
particular, with centered x’s, we had:
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Table 10.1 Proportion of
variance of PC’s Eigenvalue Proportion of variance Cumulated proportion

2.985 0.67 0.67

0.931 0.21 0.88

0.242 0.05 0.93

0.194 0.04 0.97

0.085 0.02 0.99

0.035 0.01 1.00

y1 =−0.044x1 + 0.112x2 + 0.139x3 + 0.768x4 + 0.202x5 − 0.579x6

y2 = 0.011x1 + 0.071x2 + 0.066x3 − 0.563x4 + 0.659x5 − 0.489x6

and

x1 = length

x2 = left height

x3 = right height

x4 = bottom frame

x5 = top frame

x6 = diagonal.

Hence, the first PC is essentially the difference between the bottom frame vari-
able and the diagonal. The second PC is best described by the difference between
the top frame variable and the sum of bottom frame and diagonal variables.

The weighting of the PCs tells us in which directions, expressed in original co-
ordinates, the best variance explanation is obtained. A measure of how well the first
q PCs explain variation is given by the relative proportion:

ψq =
∑q

j=1 λj∑p

j=1 λj
=

∑q

j=1 Var(Yj )∑p

j=1 Var(Yj )
. (10.12)

Referring to the bank data Example 10.2, the (cumulative) proportions of ex-
plained variance are given in Table 10.1. The first PC (q = 1) already explains 67%
of the variation. The first three (q = 3) PCs explain 93% of the variation. Once
again it should be noted that PCs are not scale invariant, e.g., the PCs derived from
the correlation matrix give different results than the PCs derived from the covariance
matrix (see Section 10.5).

A good graphical representation of the ability of the PCs to explain the variation
in the data is given by the scree plot shown in the lower right-hand window of
Figure 10.3. The scree plot can be modified by using the relative proportions on the
y-axis, as is shown in Figure 10.5 for the bank data set.

The covariance between the PC vector Y and the original vector X is calculated
with the help of (10.4) as follows:
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Fig. 10.5 Relative
proportion of variance

explained by PCs
MVApcabanki

Cov(X,Y )= E(XY	)− EXEY	 = E(XY	)
= E(XX	�)−μμ	� = Var(X)�

=��
= ���	�
= ��. (10.13)

Hence, the correlation, ρXiYj , between variable Xi and the PC Yj is

ρXiYj =
γijλj

(σXiXi λj )
1/2
= γij

(
λj

σXiXi

)1/2

. (10.14)

Using actual data, this of course translates into

rXiYj = gij
(

�j

sXiXi

)1/2

. (10.15)

The correlations can be used to evaluate the relations between the PCs Yj where
j = 1, . . . , q , and the original variables Xi where i = 1, . . . , p. Note that

p∑
j=1

r2
XiYj

=
∑p

j=1 �jg
2
ij

sXiXi
= sXiXi

sXiXi
= 1. (10.16)

Indeed,
∑p

j=1 �jg
2
ij = g	i Lgi is the (i, i)-element of the matrix GLG	 = S , so that

r2
XiYj

may be seen as the proportion of variance of Xi explained by Yj .
In the space of the first two PCs we plot these proportions, i.e., rXiY1 versus

rXiY2 . Figure 10.6 shows this for the bank notes example. This plot shows which of
the original variables are most strongly correlated with PC Y1 and Y2.

From (10.16) it obviously follows that r2
XiY1

+ r2
XiY2

≤ 1 so that the points are
always inside the circle of radius 1. In the bank notes example, the variables X4, X5
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Fig. 10.6 The correlation of
the original variable with the

PCs MVApcabanki

Table 10.2 Correlation
between the original variables
and the PCs

rXiY1 rXiY2 r2
XiY1

+ r2
XiY2

X1 length −0.201 0.028 0.041

X2 left h. 0.538 0.191 0.326

X3 right h. 0.597 0.159 0.381

X4 lower 0.921 −0.377 0.991

X5 upper 0.435 0.794 0.820

X6 diagonal −0.870 −0.410 0.926

and X6 correspond to correlations near the periphery of the circle and are thus well
explained by the first two PCs. Recall that we have interpreted the first PC as being
essentially the difference between X4 and X6. This is also reflected in Figure 10.6
since the points corresponding to these variables lie on different sides of the vertical
axis. An analogous remark applies to the second PC. We had seen that the second
PC is well described by the difference between X5 and the sum of X4 and X6. Now
we are able to see this result again from Figure 10.6 since the point corresponding
to X5 lies above the horizontal axis and the points corresponding to X4 and X6 lie
below.

The correlations of the original variablesXi and the first two PCs are given in Ta-
ble 10.2 along with the cumulated percentage of variance of each variable explained
by Y1 and Y2. This table confirms the above results. In particular, it confirms that
the percentage of variance of X1 (and X2, X3) explained by the first two PCs is
relatively small and so are their weights in the graphical representation of the in-
dividual bank notes in the space of the first two PCs (as can be seen in the upper
left plot in Figure 10.3). Looking simultaneously at Figure 10.6 and the upper left
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plot of Figure 10.3 shows that the genuine bank notes are roughly characterized by
large values of X6 and smaller values of X4. The counterfeit bank notes show larger
values of X5 (see Example 7.15).

Summary
↪→ The weighting of the PCs tells us in which directions, expressed

in original coordinates, the best explanation of the variance is ob-
tained. Note that the PCs are not scale invariant.

↪→ A measure of how well the first q PCs explain variation is given by
the relative proportion ψq =∑q

j=1 λj/
∑p

j=1 λj . A good graphical
representation of the ability of the PCs to explain the variation in
the data is the scree plot of these proportions.

↪→ The correlation between PC Yj and an original variable Xi is

ρXiYj = γij ( λj
σXiXi

)1/2. For a data matrix this translates into r2
XiYj

=
�j g

2
ij

sXiXi
. r2
XiYj

can be interpreted as the proportion of variance of Xi
explained by Yj . A plot of rXiY1 vs. rXiY2 shows which of the orig-
inal variables are most strongly correlated with the PCs, namely
those that are close to the periphery of the circle of radius 1.

10.4 Asymptotic Properties of the PCs

In practice, PCs are computed from sample data. The following theorem yields re-
sults on the asymptotic distribution of the sample PCs.

Theorem 10.4 Let � > 0 with distinct eigenvalues, and let U ∼ m−1Wp(�,m)

with spectral decompositions � = ���	, and U = GLG	. Then

(a)
√
m(�− λ) L−→ Np(0,2�2), where � = (�1, . . . , �p)

	 and λ = (λ1, . . . , λp)
	

are the diagonals of L and �,

(b)
√
m(gj − γj ) L−→Np(0,Vj ), with Vj = λj ∑k 
=j

λk
(λk−λj )2 γkγ

	
k ,

(c) Cov(gj , gk) = Vjk , where the (r, s)-element of the matrix Vjk(p × p) is

− λj λkγrkγsj

m(λj−λk)2 ,

(d) the elements in � are asymptotically independent of the elements in G.
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Example 10.4 Since nS ∼Wp(�,n− 1) if X1, . . . ,Xn are drawn from N(μ,�),
we have that

√
n− 1(�j − λj ) L−→N(0,2λ2

j ), j = 1, . . . , p. (10.17)

Since the variance of (10.17) depends on the true mean λj a log transformation is
useful. Consider f (�j ) = log(�j ). Then d

d�j
f |�j=λj = 1

λj
and by the Transforma-

tion Theorem 4.11 we have from (10.17) that
√
n− 1(log�j − logλj )

L−→N(0,2). (10.18)

Hence, √
n− 1

2
(log�j − logλj )

L−→N(0,1)

and a two-sided confidence interval at the 1− α = 0.95 significance level is given
by

log(�j )− 1.96

√
2

n− 1
≤ logλj ≤ log(�j )+ 1.96

√
2

n− 1
.

In the bank data example we have that

�1 = 2.98.

Therefore,

log(2.98)± 1.96

√
2

199
= log(2.98)± 0.1965.

It can be concluded for the true eigenvalue that

P{λ1 ∈ (2.448,3.62)} ≈ 0.95.

Variance Explained by the First q PCs

The variance explained by the first q PCs is given by

ψ = λ1 + · · · + λq
p∑
j=1

λj

.

In practice this is estimated by

ψ̂ = �1 + · · · + �q
p∑
j=1

�j

.
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From Theorem 10.4 we know the distribution of
√
n− 1(�− λ). Since ψ is a non-

linear function of λ, we can again apply the Transformation Theorem 4.11 to obtain
that

√
n− 1(ψ̂ −ψ) L−→N(0,D	VD)

where V = 2�2 (from Theorem 10.4) and D = (d1, . . . , dp)
	 with

dj = ∂ψ

∂λj
=

⎧⎨
⎩

1−ψ
tr(�) for 1≤ j ≤ q,
−ψ

tr(�) for q + 1≤ j ≤ p.

Given this result, the following theorem can be derived.

Theorem 10.5
√
n− 1(ψ̂ −ψ) L−→N(0,ω2),

where

ω2 =D	VD = 2

{tr(�)}2
{
(1−ψ)2(λ2

1 + · · · + λ2
q)+ψ2(λ2

q+1 + · · · + λ2
p)

}

= 2 tr(�2)

{tr(�)}2 (ψ
2 − 2βψ + β)

and

β = λ2
1 + · · · + λ2

q

λ2
1 + · · · + λ2

p

.

Example 10.5 From Section 10.3 it is known that the first PC for the Swiss bank
notes resolves 67% of the variation. It can be tested whether the true proportion is
actually 75%. Computing

β̂ = �2
1

�2
1 + · · · + �2

p

= (2.985)2

(2.985)2 + (0.931)2 + · · · (0.035)2
= 0.902

tr(S)= 4.472

tr(S2)=
p∑
j=1

�2
j = 9.883

ω̂2 = 2 tr(S2)

{tr(S)}2 (ψ̂
2 − 2β̂ψ̂ + β̂)

= 2 · 9.883

(4.472)2
{
(0.668)2 − 2(0.902)(0.668)+ 0.902

}= 0.142.
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Hence, a confidence interval at a significance of level 1− α = 0.95 is given by

0.668± 1.96

√
0.142

199
= (0.615,0.720).

Clearly the hypothesis that ψ = 75% can be rejected!

Summary
↪→ The eigenvalues �j and eigenvectors gj are asymptotically, nor-

mally distributed, in particular
√
n− 1(�− λ) L−→Np(0,2�2).

↪→ For the eigenvalues it holds that
√
n−1

2 (log�j − logλj )
L−→

N(0,1).
↪→ Given an asymptotic, normal distribution approximate confidence

intervals and tests can be constructed for the proportion of variance
which is explained by the first q PCs. The two-sided confidence

interval at the 1−α = 0.95 level is given by log(�j )−1.96
√

2
n−1 ≤

logλj ≤ log(�j )+ 1.96
√

2
n−1 .

↪→ It holds for ψ̂ , the estimate of ψ (the proportion of the variance

explained by the first q PCs) that
√
n− 1(ψ̂ − ψ) L−→ N(0,ω2),

where ω is given in Theorem 10.5.

10.5 Normalized Principal Components Analysis

In certain situations the original variables can be heterogeneous w.r.t. their vari-
ances. This is particularly true when the variables are measured on heterogeneous
scales (such as years, kilograms, dollars, . . . ). In this case a description of the infor-
mation contained in the data needs to be provided which is robust w.r.t. the choice
of scale. This can be achieved through a standardization of the variables, namely

XS =HXD−1/2 (10.19)

where D = diag(sX1X1, . . . , sXpXp). Note that xS = 0 and SXS
= R, the correla-

tion matrix of X . The PC transformations of the matrix XS are refereed to as the
Normalized Principal Components (NPCs). The spectral decomposition of R is

R= GRLRG	R, (10.20)

where LR = diag(�R1 , . . . , �
R
p ) and �R1 ≥ · · · ≥ �Rp are the eigenvalues of R with

corresponding eigenvectors gR1 , . . . , g
R
p (note that here

∑p

j=1 �
R
j = tr(R)= p).
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The NPCs, Zj , provide a representation of each individual, and is given by

Z =XSGR = (z1, . . . , zp). (10.21)

After transforming the variables, once again, we have that

z= 0, (10.22)

SZ = G	RSXS
GR = G	RRGR = LR. (10.23)

�
�
��

�
�

!
The NPCs provide a perspective similar to that of the PCs, but in terms of

the relative position of individuals, NPC gives each variable the same weight (with
the PCs the variable with the largest variance received the largest weight).

Computing the covariance and correlation betweenXi and Zj is straightforward:

SXS,Z =
1

n
X	S Z = GRLR, (10.24)

RXS,Z = GRLRL−1/2
R = GRL1/2

R . (10.25)

The correlations between the original variables Xi and the NPCs Zj are:

rXiZj =
√
�jgR,ij (10.26)

p∑
j=1

r2
XiZj

= 1 (10.27)

(compare this to (10.15) and (10.16)). The resulting NPCs, theZj , can be interpreted
in terms of the original variables and the role of each PC in explaining the variation
in variable Xi can be evaluated.

10.6 Principal Components as a Factorial Method

The empirical PCs (normalized or not) turn out to be equivalent to the factors that
one would obtain by decomposing the appropriate data matrix into its factors (see
Chapter 9). It will be shown that the PCs are the factors representing the rows of the
centered data matrix and that the NPCs correspond to the factors of the standardized
data matrix. The representation of the columns of the standardized data matrix pro-
vides (at a scale factor) the correlations between the NPCs and the original variables.
The derivation of the (N)PCs presented above will have a nice geometric justifica-
tion here since they are the best fit in subspaces generated by the columns of the
(transformed) data matrix X . This analogy provides complementary interpretations
of the graphical representations shown above.

Assume, as in Chapter 9, that we want to obtain representations of the individuals
(the rows of X ) and of the variables (the columns of X ) in spaces of smaller dimen-
sion. To keep the representations simple, some prior transformations are performed.
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Since the origin has no particular statistical meaning in the space of individuals, we
will first shift the origin to the center of gravity, x, of the point cloud. This is the
same as analyzing the centered data matrix XC =HX . Now all of the variables have
zero means, thus the technique used in Chapter 9 can be applied to the matrix XC .
Note that the spectral decomposition of X	C XC is related to that of SX , namely

X	C XC =X	H	HX = nSX = nGLG	. (10.28)

The factorial variables are obtained by projecting XC on G,

Y =XCG = (y1, . . . , yp). (10.29)

These are the same principal components obtained above, see formula (10.10).
(Note that the y’s here correspond to the z’s in Section 9.2.) Since HXC = XC ,
it immediately follows that

y = 0, (10.30)

SY = G	SXG = L= diag(�1, . . . , �p). (10.31)

The scatterplot of the individuals on the factorial axes are thus centered around the
origin and are more spread out in the first direction (first PC has variance �1) than
in the second direction (second PC has variance �2).

The representation of the variables can be obtained using the Duality Rela-
tions (9.11), and (9.12). The projections of the columns of XC onto the eigenvectors
vk of XCX	C are

X	C vk =
1√
n�k

X	C XCgk =
√
n�kgk. (10.32)

Thus the projections of the variables on the first p axes are the columns of the matrix

X	C V =√nGL1/2. (10.33)

Considering the geometric representation, there is a nice statistical interpretation of
the angle between two columns of XC . Given that

x	C[j ]xC[k] = nsXjXk , (10.34)

||xC[j ]||2 = nsXjXj , (10.35)

where xC[j ] and xC[k] denote the j -th and k-th column of XC , it holds that in the
full space of the variables, if θjk is the angle between two variables, xC[j ] and xC[k],
then

cos θjk =
x	C[j ]xC[k]

‖xC[j ]‖ ‖xC[k]‖ = rXjXk (10.36)

(Example 2.11 shows the general connection that exists between the angle and cor-
relation of two variables). As a result, the relative positions of the variables in the
scatterplot of the first columns of X	C V may be interpreted in terms of their correla-
tions; the plot provides a picture of the correlation structure of the original data set.
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Clearly, one should take into account the percentage of variance explained by the
chosen axes when evaluating the correlation.

The NPCs can also be viewed as a factorial method for reducing the dimension.
The variables are again standardized so that each one has mean zero and unit vari-
ance and is independent of the scale of the variables. The factorial analysis of XS
provides the NPCs. The spectral decomposition of X	S XS is related to that of R,
namely

X	S XS =D−1/2X	HXD−1/2 = nR= nGRLRG	R.

The NPCs Zj , given by (10.21), may be viewed as the projections of the rows of XS
onto GR .

The representation of the variables are again given by the columns of

X	S VR =
√
nGRL1/2

R . (10.37)

Comparing (10.37) and (10.25) we see that the projections of the variables in the
factorial analysis provide the correlation between the NPCs Zk and the original
variables x[j ] (up to the factor

√
n which could be the scale of the axes).

This implies that a deeper interpretation of the representation of the individuals
can be obtained by looking simultaneously at the graphs plotting the variables. Note
that

x	S[j ]xS[k] = nrXjXk , (10.38)

‖xS[j ]‖2 = n, (10.39)

where xS[j ] and xS[k] denote the j -th and k-th column of XS . Hence, in the full
space, all the standardized variables (columns of XS ) are contained within the
“sphere” in R

n, which is centered at the origin and has radius
√
n (the scale of

the graph). As in (10.36), given the angle θjk between two columns xS[j ] and xS[k],
it holds that

cos θjk = rXjXk . (10.40)

Therefore, when looking at the representation of the variables in the spaces of re-
duced dimension (for instance the first two factors), we have a picture of the cor-
relation structure between the original Xi ’s in terms of their angles. Of course, the
quality of the representation in those subspaces has to be taken into account, which
is presented in the next section.

Quality of the Representations

As said before, an overall measure of the quality of the representation is given by

ψ = �1 + �2 + · · · + �q∑p

j=1 �j
.
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In practice, q is chosen to be equal to 1, 2 or 3. Suppose for instance that ψ = 0.93
for q = 2. This means that the graphical representation in two dimensions captures
93% of the total variance. In other words, there is minimal dispersion in a third
direction (no more than 7%).

It can be useful to check if each individual is well represented by the PCs. Clearly,
the proximity of two individuals on the projected space may not necessarily coin-
cide with the proximity in the full original space R

p , which may lead to erroneous
interpretations of the graphs. In this respect, it is worth computing the angle ϑik
between the representation of an individual i and the k-th PC or NPC axis. This can
be done using (2.40), i.e.,

cosϑik = y	i ek
‖yi‖‖ek‖ =

yik

‖xCi‖
for the PCs or analogously

cos ζik = z	i ek
‖zi‖‖ek‖ =

zik

‖xSi‖
for the NPCs, where ek denotes the k-th unit vector ek = (0, . . . ,1, . . . ,0)	. An
individual i will be represented on the k-th PC axis if its corresponding angle is
small, i.e., if cos2 ϑik for k = 1, . . . , p is close to one. Note that for each individual i,

p∑
k=1

cos2 ϑik = y	i yi
x	CixCi

= x	CiGG	xCi
x	CixCi

= 1.

The values cos2 ϑik are sometimes called the relative contributions of the k-th axis
to the representation of the i-th individual, e.g., if cos2 ϑi1 + cos2 ϑi2 is large (near
one), we know that the individual i is well represented on the plane of the first two
principal axes since its corresponding angle with the plane is close to zero.

We already know that the quality of the representation of the variables can be
evaluated by the percentage of Xi ’s variance that is explained by a PC, which is
given by r2

XiYj
or r2

XiZj
according to (10.16) and (10.27) respectively.

Example 10.6 Let us return to the French food expenditure example, see Ap-
pendix B.6. This yields a two-dimensional representation of the individuals as
shown in Figure 10.7.

Calculating the matrix GR we have

GR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.240 0.622 −0.011 −0.544 0.036 0.508
−0.466 0.098 −0.062 −0.023 −0.809 −0.301
−0.446 −0.205 0.145 0.548 −0.067 0.625
−0.462 −0.141 0.207 −0.053 0.411 −0.093
−0.438 −0.197 0.356 −0.324 0.224 −0.350
−0.281 0.523 −0.444 0.450 0.341 −0.332

0.206 0.479 0.780 0.306 −0.069 −0.138

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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Fig. 10.7 Representation of the individuals MVAnpcafood

Table 10.3 Eigenvalues and
explained variance eigenvalues proportion of variance cumulated proportion

4.333 0.6190 61.9

1.830 0.2620 88.1

0.631 0.0900 97.1

0.128 0.0180 98.9

0.058 0.0080 99.7

0.019 0.0030 99.9

0.001 0.0001 100.0

which gives the weights of the variables (milk, vegetables, etc.). The eigenvalues �j
and the proportions of explained variance are given in Table 10.3.

The interpretation of the principal components are best understood when looking
at the correlations between the original Xi ’s and the PCs. Since the first two PCs
explain 88.1% of the variance, we limit ourselves to the first two PCs. The results are
shown in Table 10.4. The two-dimensional graphical representation of the variables
in Figure 10.8 is based on the first two columns of Table 10.4.

The plots are the projections of the variables into R
2. Since the quality of the

representation is good for all the variables (except maybe X7), their relative angles
give a picture of their original correlation: wine is negatively correlated with the veg-
etables, fruits, meat and poultry groups (θ > 90◦), whereas taken individually this
latter grouping of variables are highly positively correlated with each other (θ ≈ 0).
Bread and milk are positively correlated but poorly correlated with meat, fruits and
poultry (θ ≈ 90◦).
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Table 10.4 Correlations with
PCs rXiZ1 rXiZ2 r2

XiZ1
+ r2

XiZ2

X1: bread −0.499 0.842 0.957

X2: vegetables −0.970 0.133 0.958

X3: fruits −0.929 −0.278 0.941

X4: meat −0.962 −0.191 0.962

X5: poultry −0.911 −0.266 0.901

X6: milk −0.584 0.707 0.841

X7: wine 0.428 0.648 0.604

Fig. 10.8 Representation of

the variables
MVAnpcafood

Now the representation of the individuals in Figure 10.7 can be interpreted bet-
ter. From Figure 10.8 and Table 10.4 we can see that the the first factor Z1 is a
vegetable–meat–poultry–fruit factor (with a negative sign), whereas the second fac-
tor is a milk–bread–wine factor (with a positive sign). Note that this corresponds to
the most important weights in the first columns of GR. In Figure 10.7 lines were
drawn to connect families of the same size and families of the same professional
types. A grid can clearly be seen (with a slight deformation by the manager fami-
lies) that shows the families with higher expenditures (higher number of children)
on the left.

Considering both figures together explains what types of expenditures are re-
sponsible for similarities in food expenditures. Bread, milk and wine expenditures
are similar for manual workers and employees. Families of managers are charac-
terized by higher expenditures on vegetables, fruits, meat and poultry. Very often
when analyzing NPCs (and PCs), it is illuminating to use such a device to introduce
qualitative aspects of individuals in order to enrich the interpretations of the graphs.
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Summary
↪→ NPCs are PCs applied to the standardized (normalized) data ma-

trix XS .
↪→ The graphical representation of NPCs provides a similar type of

picture as that of PCs, the difference being in the relative position
of individuals, i.e., each variable in NPCs has the same weight (in
PCs, the variable with the largest variance has the largest weight).

↪→ The quality of the representation is evaluated by ψ =
(
∑p

j=1 �j )
−1(�1 + �2 + · · · + �q).

↪→ The quality of the representation of a variable can be evaluated by
the percentage ofXi’s variance that is explained by a PC, i.e., r2

XiYj
.

10.7 Common Principal Components

In many applications a statistical analysis is simultaneously done for groups of data.
In this section a technique is presented that allows us to analyze group elements that
have common PCs. From a statistical point of view, estimating PCs simultaneously
in different groups will result in a joint dimension reducing transformation. This
multi-group PCA, the so called common principle components analysis (CPCA),
yields the joint eigenstructure across groups.

In addition to traditional PCA, the basic assumption of CPCA is that the space
spanned by the eigenvectors is identical across several groups, whereas variances
associated with the components are allowed to vary.

More formally, the hypothesis of common principle components can be stated in
the following way (Flury, 1988):

HCPC :�i = ��i�
	, i = 1, . . . , k

where �i is a positive definite p × p population covariance matrix for ev-
ery i, � = (γ1, . . . , γp) is an orthogonal p × p transformation matrix and �i =
diag(λi1, . . . , λip) is the matrix of eigenvalues. Moreover, assume that all λi are
distinct.

Let S be the (unbiased) sample covariance matrix of an underlying p-variate
normal distribution Np(μ,�) with sample size n. Then the distribution of nS has
n−1 degrees of freedom and is known as the Wishart distribution (Muirhead, 1982,
p. 86):

nS ∼Wp(�,n− 1).
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The density is given in (5.16). Hence, for a given Wishart matrix Si with sample
size ni , the likelihood function can be written as

L(�1, . . . ,�k)= C
k∏
i=1

exp

[
tr

{
−1

2
(ni − 1)�−1

i Si
}]
|�i |− 1

2 (ni−1) (10.41)

where C is a constant independent of the parameters �i . Maximizing the likelihood
is equivalent to minimizing the function

g(�1, . . . ,�k)=
k∑
i=1

(ni − 1)
{
log |�i | + tr(�−1

i Si )
}
.

Assuming that HCPC holds, i.e., in replacing �i by ��i�
	, after some manipu-

lations one obtains

g(�,�1, . . . ,�k)=
k∑
i=1

(ni − 1)
p∑
j=1

(
logλij +

γ	j Siγj
λij

)
.

As we know from Section 2.2, the vectors γj in � have to be orthogonal. Orthog-
onality of the vectors γj is achieved using the Lagrange method, i.e., we impose
the p constraints γ	j γj = 1 using the Lagrange multipliers μj , and the remaining

p(p−1)/2 constraints γ	h γj = 0 for h 
= j using the multiplier 2μhj (Flury, 1988).
This yields

g∗(�,�1, . . . ,�k)= g(·)−
p∑
j=1

μj (γ
	
j γj − 1)− 2

p∑
h=1

p∑
j=h+1

μhjγ
	
h γj .

Taking partial derivatives with respect to all λim and γm, it can be shown that the
solution of the CPC model is given by the generalized system of characteristic equa-
tions

γ	m

{
k∑
i=1

(ni − 1)
λim − λij
λimλij

Si

}
γj = 0, m, j = 1, . . . , p, m 
= j. (10.42)

This system can be solved using

λim = γ	m Sγm, i = 1, . . . , k, m= 1, . . . , p

under the constraints

γ	m γj =
{

0 m 
= j
1 m= j.

Flury (1988) proves existence and uniqueness of the maximum of the likelihood
function, and Flury and Gautschi (1986) provide a numerical algorithm.

Example 10.7 As an example we provide the data sets XFGvolsurf01, XFGvol-
surf02 and XFGvolsurf03 that have been used in Fengler, Härdle and Villa (2003)
to estimate common principle components for the implied volatility surfaces of



292 10 Principal Components Analysis

Fig. 10.9 Factor loadings of
the first (thick), the second
(medium), and the third (thin)

PC MVAcpcaiv

the DAX 1999. The data has been generated by smoothing an implied volatility
surface day by day. Next, the estimated grid points have been grouped into maturi-
ties of τ = 1, τ = 2 and τ = 3 months and transformed into a vector of time series of
the “smile”, i.e., each element of the vector belongs to a distinct moneyness ranging
from 0.85 to 1.10.

Figure 10.9 shows the first three eigenvectors in a parallel coordinate plot. The
basic structure of the first three eigenvectors is not altered. We find a shift, a slope
and a twist structure. This structure is common to all maturity groups, i.e., when
exploiting PCA as a dimension reducing tool, the same transformation applies to
each group! However, by comparing the size of eigenvalues among groups we find
that variability is decreasing across groups as we move from the short term contracts
to long term contracts.

Before drawing conclusions we should convince ourselves that the CPC model is
truly a good description of the data. This can be done by using a likelihood ratio test.
The likelihood ratio statistic for comparing a restricted (the CPC) model against the
unrestricted model (the model where all covariances are treated separately) is given
by

T(n1,n2,...,nk) =−2 log
L(�̂1, . . . , �̂k)

L(S1, . . . ,Sk)
.

Inserting the likelihood function, we find that this is equivalent to

T(n1,n2,...,nk) =
k∑
i=1

(ni − 1)
det (�̂i)

det (Si )
,
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which has a χ2 distribution as min(ni) tends to infinity with

k

{
1

2
p(p− 1)+ 1

}
−

{
1

2
p(p− 1)+ kp

}
= 1

2
(k − 1)p(p− 1)

degrees of freedom. This test is included in the quantlet MVAcpcaiv.
The calculations yield T(n1,n2,...,nk) = 31.836, which corresponds to the p-value

p = 0.37512 for the χ2(30) distribution. Hence we cannot reject the CPC model
against the unrestricted model, where PCA is applied to each maturity separately.

Using the methods in Section 10.3, we can estimate the amount of variability,
ζl , explained by the first l principal components: (only a few factors, three at the
most, are needed to capture a large amount of the total variability present in the
data). Since the model now captures the variability in both the strike and matu-
rity dimensions, this is a suitable starting point for a simplified VaR calculation for
delta-gamma neutral option portfolios using Monte Carlo methods, and is hence a
valuable insight in risk management.

10.8 Boston Housing

A set of transformations were defined in Chapter 1 for the Boston Housing data set
that resulted in “regular” marginal distributions. The usefulness of principal com-
ponent analysis with respect to such high-dimensional data sets will now be shown.
The variable X4 is dropped because it is a discrete 0–1 variable. It will be used later,
however, in the graphical representations. The scale difference of the remaining 13
variables motivates a NPCA based on the correlation matrix.

The eigenvalues and the percentage of explained variance are given in Table 10.5.

Table 10.5 Eigenvalues and
percentage of explained
variance for Boston housing

data MVAnpcahousi

Eigenvalue Percentages Cumulated percentages

7.2852 0.5604 0.5604

1.3517 0.1040 0.6644

1.1266 0.0867 0.7510

0.7802 0.0600 0.8111

0.6359 0.0489 0.8600

0.5290 0.0407 0.9007

0.3397 0.0261 0.9268

0.2628 0.0202 0.9470

0.1936 0.0149 0.9619

0.1547 0.0119 0.9738

0.1405 0.0108 0.9846

0.1100 0.0085 0.9931

0.0900 0.0069 1.0000
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Table 10.6 Correlations of
the first three PC’s with the
original variables

MVAnpcahous

PC1 PC2 PC3

X1 −0.9076 0.2247 0.1457

X2 0.6399 −0.0292 0.5058

X3 −0.8580 0.0409 −0.1845

X5 −0.8737 0.2391 −0.1780

X6 0.5104 0.7037 0.0869

X7 −0.7999 0.1556 −0.2949

X8 0.8259 −0.2904 0.2982

X9 −0.7531 0.2857 0.3804

X10 −0.8114 0.1645 0.3672

X11 −0.5674 −0.2667 0.1498

X12 0.4906 −0.1041 −0.5170

X13 −0.7996 −0.4253 −0.0251

X14 0.7366 0.5160 −0.1747

The first principal component explains 56% of the total variance and the first
three components together explain more than 75%. These results imply that it is
sufficient to look at 2, maximum 3, principal components.

Table 10.6 provides the correlations between the first three PC’s and the original
variables. These can be seen in Figure 10.10.

The correlations with the first PC show a very clear pattern. The variables X2,
X6, X8, X12, and X14 are strongly positively correlated with the first PC, whereas
the remaining variables are highly negatively correlated. The minimal correlation in
the absolute value is 0.5. The first PC axis could be interpreted as a quality of life
and house indicator. The second axis, given the polarities of X11 and X13 and of
X6 and X14, can be interpreted as a social factor explaining only 10% of the total
variance. The third axis is dominated by a polarity between X2 and X12.

The set of individuals from the first two PCs can be graphically interpreted if
the plots are color coded with respect to some particular variable of interest. Fig-
ure 10.11 color codes X14 >median as red points. Clearly the first and second PCs
are related to house value. The situation is less clear in Figure 10.12 where the color
code corresponds to X4, the Charles River indicator, i.e., houses near the river are
colored red.

10.9 More Examples

Example 10.8 Let us now apply the PCA to the standardized bank data set (Ta-
ble B.2). Figure 10.13 shows some PC plots of the bank data set. The genuine and
counterfeit bank notes are marked by “o” and “+” respectively.

The vector of eigenvalues of R is

�= (2.946,1.278,0.869,0.450,0.269,0.189)	 .
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Fig. 10.10 NPCA for the Boston housing data, correlations of first three PCs with the original

variables MVAnpcahousi

The eigenvectors gj are given by the columns of the matrix

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.007 −0.815 0.018 0.575 0.059 0.031
0.468 −0.342 −0.103 −0.395 −0.639 −0.298
0.487 −0.252 −0.123 −0.430 0.614 0.349
0.407 0.266 −0.584 0.404 0.215 −0.462
0.368 0.091 0.788 0.110 0.220 −0.419
−0.493 −0.274 −0.114 −0.392 0.340 −0.632

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Each original variable has the same weight in the analysis and the results are inde-
pendent of the scale of each variable.

The proportions of explained variance are given in Table 10.7. It can be con-
cluded that the representation in two dimensions should be sufficient. The correla-
tions leading to Figure 10.14 are given in Table 10.8. The picture is different from
the one obtained in Section 10.3 (see Table 10.2). Here, the first factor is mainly
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Fig. 10.11 NPC analysis for the Boston housing data, scatterplot of the first two PCs. More ex-

pensive houses are marked with red color MVAnpcahous

Table 10.7 Eigenvalues and
proportions of explained
variance

�j Proportion of variances Cumulated proportion

2.946 0.491 49.1

1.278 0.213 70.4

0.869 0.145 84.9

0.450 0.075 92.4

0.264 0.045 96.9

0.189 0.032 100.0

Table 10.8 Correlations
with PCs rXiZ1 rXiZ2 r2

XiZ1
+ r2

XiZ2

X1: length −0.012 −0.922 0.85

X2: left height 0.803 −0.387 0.79

X3: right height 0.835 −0.285 0.78

X4: lower 0.698 0.301 0.58

X5: upper 0.631 0.104 0.41

X6: diagonal −0.847 −0.310 0.81

a left–right vs. diagonal factor and the second one is a length factor (with nega-
tive weight). Take another look at Figure 10.13, where the individual bank notes
are displayed. In the upper left graph it can be seen that the genuine bank notes
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Fig. 10.12 NPC analysis for the Boston housing data, scatterplot of the first two PCs. Houses

close to the Charles River are indicated with red squares MVAnpcahous

Fig. 10.13 Principal components of the standardized bank data MVAnpcabank
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Fig. 10.14 The correlations
of the original variable with

the PCs
MVAnpcabanki

are for the most part in the south-eastern portion of the graph featuring a larger di-
agonal, smaller height (Z1 < 0) and also a larger length (Z2 < 0). Note also that
Figure 10.14 gives an idea of the correlation structure of the original data ma-
trix.

Example 10.9 Consider the data of 79 U.S. companies given in Table B.5. The data
is first standardized by subtracting the mean and dividing by the standard deviation.
Note that the data set contains six variables: assets (X1), sales (X2), market value
(X3), profits (X4), cash flow (X5), number of employees (X6).

Calculating the corresponding vector of eigenvalues gives

�= (5.039,0.517,0.359,0.050,0.029,0.007)	

and the matrix of eigenvectors is

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.340 −0.849 −0.339 0.205 0.077 −0.006
0.423 −0.170 0.379 −0.783 −0.006 −0.186
0.434 0.190 −0.192 0.071 −0.844 0.149
0.420 0.364 −0.324 0.156 0.261 −0.703
0.428 0.285 −0.267 −0.121 0.452 0.667
0.397 0.010 0.726 0.548 0.098 0.065

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Using this information the graphical representations of the first two principal com-
ponents are given in Figure 10.15. The different sectors are marked by the following
symbols:
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Fig. 10.15 Principal components of the U.S. company data MVAnpcausco

H . . . Hi Tech and Communication

E . . . Energy

F . . . Finance

M . . . Manufacturing

R . . . Retail

� . . . all other sectors.

The two outliers in the right-hand side of the graph are IBM and General Electric
(GE), which differ from the other companies with their high market values. As can
be seen in the first column of G, market value has the largest weight in the first
PC, adding to the isolation of these two companies. If IBM and GE were to be
excluded from the data set, a completely different picture would emerge, as shown
in Figure 10.16. In this case the vector of eigenvalues becomes

�= (3.191,1.535,0.791,0.292,0.149,0.041)	 ,

and the corresponding matrix of eigenvectors is

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.263 −0.408 −0.800 −0.067 0.333 0.099
0.438 −0.407 0.162 −0.509 −0.441 −0.403
0.500 −0.003 −0.035 0.801 −0.264 −0.190
0.331 0.623 −0.080 −0.192 0.426 −0.526
0.443 0.450 −0.123 −0.238 −0.335 0.646
0.427 −0.277 0.558 0.021 0.575 0.313

⎞
⎟⎟⎟⎟⎟⎟⎠
.



300 10 Principal Components Analysis

Fig. 10.16 Principal components of the U.S. company data (without IBM and General Electric)

MVAnpcausco2

Table 10.9 Eigenvalues and
proportions of explained
variance

�j Proportion of variance Cumulated proportion

3.191 0.532 0.532

1.535 0.256 0.788

0.791 0.132 0.920

0.292 0.049 0.968

0.149 0.025 0.993

0.041 0.007 1.000

The percentage of variation explained by each component is given in Table 10.9.
The first two components explain almost 79% of the variance. The interpretation
of the factors (the axes of Figure 10.16) is given in the table of correlations (Ta-
ble 10.10). The first two columns of this table are plotted in Figure 10.17.

From Figure 10.17 (and Table 10.10) it appears that the first factor is a “size
effect”, it is positively correlated with all the variables describing the size of the
activity of the companies. It is also a measure of the economic strength of the firms.
The second factor describes the “shape” of the companies (“profit-cash flow” vs.
“assets-sales” factor), which is more difficult to interpret from an economic point of
view.

Example 10.10 Volle (1985) analyzes data on 28 individuals (Table B.14). For each
individual, the time spent (in hours) on 10 different activities has been recorded over
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Table 10.10 Correlations
with PCs rXiZ1 rXiZ2 r2

XiZ1
+ r2

XiZ2

X1: assets 0.47 −0.510 0.48

X2: sales 0.78 −0.500 0.87

X3: market value 0.89 −0.003 0.80

X4: profits 0.59 0.770 0.95

X5: cash flow 0.79 0.560 0.94

X6: employees 0.76 −0.340 0.70

Fig. 10.17 The correlation of
the original variables with the

PCs MVAnpcausco2i

100 days, as well as informative statistics such as the individual’s sex, country of
residence, professional activity and matrimonial status. The results of a NPCA are
given below.

The eigenvalues of the correlation matrix are given in Table 10.11. Note that the
last eigenvalue is exactly zero since the correlation matrix is singular (the sum of all
the variables is always equal to 2400= 24× 100). The results of the 4 first PCs are
given in Tables 10.12 and 10.13.

From these tables (and Figures 10.18 and 10.19), it appears that the professional
and household activities are strongly contrasted in the first factor. Indeed on the
horizontal axis of Figure 10.18 it can be seen that all the active men are on the right
and all the inactive women are on the left. Active women and/or single women are
inbetween. The second factor contrasts meal/sleeping vs. toilet/shopping (note the
high correlation between meal and sleeping). Along the vertical axis of Figure 10.18
we see near the bottom of the graph the people from Western-European countries,
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Table 10.11 Eigenvalues of
correlation matrix for the
time budget data

�j Proportion of variance Cumulated proportion

4.59 0.459 0.460

2.12 0.212 0.670

1.32 0.132 0.800

1.20 0.120 0.920

0.47 0.047 0.970

0.20 0.020 0.990

0.05 0.005 0.990

0.04 0.004 0.999

0.02 0.002 1.000

0.00 0.000 1.000

Table 10.12 Correlation of
variables with PCs rXiW1 rXiW2 rXiW3 rXiW4

X1: prof 0.9772 −0.1210 −0.0846 0.0669

X2: tran 0.9798 0.0581 −0.0084 0.4555

X3: hous −0.8999 0.0227 0.3624 0.2142

X4: kids −0.8721 0.1786 0.0837 0.2944

X5: shop −0.5636 0.7606 −0.0046 −0.1210

X6: pers −0.0795 0.8181 −0.3022 −0.0636

X7: eati −0.5883 −0.6694 −0.4263 0.0141

X8: slee −0.6442 −0.5693 −0.1908 −0.3125

X9: tele −0.0994 0.1931 −0.9300 0.1512

X10: leis −0.0922 0.1103 0.0302 −0.9574

who spend more time on meals and sleeping than people from the U. S. (who can
be found close to the top of the graph). The other categories are inbetween.

In Figure 10.19 the variables television and other leisure activities hardly play
any role (look at Table 10.12). The variable television appears in Z3 (negatively
correlated). Table 10.13 shows that this factor contrasts people from Eastern coun-
tries and Yugoslavia with men living in the U.S. The variable other leisure activities
is the factor Z4. It merely distinguishes between men and women in Eastern coun-
tries and in Yugoslavia. These last two factors are orthogonal to the preceeding axes
and of course their contribution to the total variation is less important.

10.10 Exercises

Exercise 10.1 Prove Theorem 10.1. (Hint: use (4.23).)



10.10 Exercises 303

Table 10.13 PCs for time
budget data Z1 Z2 Z3 Z4

maus 0.0633 0.0245 −0.0668 0.0205

waus 0.0061 0.0791 −0.0236 0.0156

wnus −0.1448 0.0813 −0.0379 −0.0186

mmus 0.0635 0.0105 −0.0673 0.0262

wmus −0.0934 0.0816 −0.0285 0.0038

msus 0.0537 0.0676 −0.0487 −0.0279

wsus 0.0166 0.1016 −0.0463 −0.0053

mawe 0.0420 −0.0846 −0.0399 −0.0016

wawe −0.0111 −0.0534 −0.0097 0.0337

wnwe −0.1544 −0.0583 −0.0318 −0.0051

mmwe 0.0402 −0.0880 −0.0459 0.0054

wmwe −0.1118 −0.0710 −0.0210 0.0262

mswe 0.0489 −0.0919 −0.0188 −0.0365

wswe −0.0393 −0.0591 −0.0194 −0.0534

mayo 0.0772 −0.0086 0.0253 −0.0085

wayo 0.0359 0.0064 0.0577 0.0762

wnyo −0.1263 −0.0135 0.0584 −0.0189

mmyo 0.0793 −0.0076 0.0173 −0.0039

wmyo −0.0550 −0.0077 0.0579 0.0416

msyo 0.0763 0.0207 0.0575 −0.0778

wsyo 0.0120 0.0149 0.0532 −0.0366

maes 0.0767 −0.0025 0.0047 0.0115

waes 0.0353 0.0209 0.0488 0.0729

wnes −0.1399 0.0016 0.0240 −0.0348

mmes 0.0742 −0.0061 −0.0152 0.0283

wmes −0.0175 0.0073 0.0429 0.0719

mses 0.0903 0.0052 0.0379 −0.0701

fses 0.0020 0.0287 0.0358 −0.0346

Exercise 10.2 Interpret the results of the PCA of the U.S. companies. Use the anal-
ysis of the bank notes in Section 10.3 as a guide. Compare your results with those
in Example 10.9.

Exercise 10.3 Test the hypothesis that the proportion of variance explained by the
first two PCs for the U.S. companies is ψ = 0.75.

Exercise 10.4 Apply the PCA to the car data (Table B.7). Interpret the first two
PCs. Would it be necessary to look at the third PC?
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Fig. 10.18 Representation of the individuals MVAnpcatime

Fig. 10.19 Representation of

the variables
MVAnpcatime

Exercise 10.5 Take the athletic records for 55 countries (Appendix B.18) and apply
the NPCA. Interpret your results.
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Exercise 10.6 Apply a PCA to � = ( 1 ρ
ρ 1

)
, where ρ > 0. Now change the scale of

X1, i.e., consider the covariance of cX1 and X2. How do the PC directions change
with the screeplot?

Exercise 10.7 Suppose that we have standardized some data using the Mahalanobis
transformation. Would it be reasonable to apply a PCA?

Exercise 10.8 Apply a NPCA to the U.S. CRIME data set (Table B.10). Interpret
the results. Would it be necessary to look at the third PC? Can you see any difference
between the four regions? Redo the analysis excluding the variable “area of the
state.”

Exercise 10.9 Repeat Exercise 10.8 using the U.S. HEALTH data set (Table B.16).

Exercise 10.10 Do a NPCA on the GEOPOL data set (see Table B.15) which com-
pares 41 countries w.r.t. different aspects of their development. Why or why not
would a PCA be reasonable here?

Exercise 10.11 Let U be an uniform r.v. on [0,1]. Let a ∈ R
3 be a vector of con-

stants. Suppose that X =Ua	 = (X1,X2,X3). What do you expect the NPCs of X
to be?

Exercise 10.12 Let U1 and U2 be two independent uniform random variables
on [0,1]. Suppose that X = (X1,X2,X3,X4)

	 where X1 = U1, X2 = U2, X3 =
U1 + U2 and X4 = U1 − U2. Compute the correlation matrix P of X. How many
PCs are of interest? Show that γ1 = ( 1√

2
, 1√

2
,1,0)	 and γ2 = ( 1√

2
, −1√

2
,0,1)	 are

eigenvectors of P corresponding to the non trivial λ’s. Interpret the first two NPCs
obtained.

Exercise 10.13 Simulate a sample of size n = 50 for the r.v. X in Exercise 10.12
and analyze the results of a NPCA.

Exercise 10.14 Bouroche and Saporta (1980) reported the data on the state ex-
penses of France from the period 1872 to 1971 (24 selected years) by noting the
percentage of 11 categories of expenses. Do a NPCA of this data set. Do the three
main periods (before WWI, between WWI and WWII, and after WWII) indicate a
change in behavior w.r.t. to state expenses?



Chapter 11
Factor Analysis

A frequently applied paradigm in analyzing data from multivariate observations is to
model the relevant information (represented in a multivariate variable X) as coming
from a limited number of latent factors. In a survey on household consumption, for
example, the consumption levels, X, of p different goods during one month could
be observed. The variations and covariations of the p components of X throughout
the survey might in fact be explained by two or three main social behavior fac-
tors of the household. For instance, a basic desire of comfort or the willingness to
achieve a certain social level or other social latent concepts might explain most of
the consumption behavior. These unobserved factors are much more interesting to
the social scientist than the observed quantitative measures (X) themselves, because
they give a better understanding of the behavior of households. As shown in the ex-
amples below, the same kind of factor analysis is of interest in many fields such as
psychology, marketing, economics, politic sciences, etc.

How can we provide a statistical model addressing these issues and how can we
interpret the obtained model? This is the aim of factor analysis. As in Chapter 9 and
Chapter 10, the driving statistical theme of this chapter is to reduce the dimension of
the observed data. The perspective used, however, is different: we assume that there
is a model (it will be called the “Factor Model”) stating that most of the covariances
between the p elements of X can be explained by a limited number of latent fac-
tors. Section 11.1 defines the basic concepts and notations of the orthogonal factor
model, stressing the non-uniqueness of the solutions. We show how to take advan-
tage of this non-uniqueness to derive techniques which lead to easier interpretations.
This will involve (geometric) rotations of the factors. Section 11.2 presents an em-
pirical approach to factor analysis. Various estimation procedures are proposed and
an optimal rotation procedure is defined. Many examples are used to illustrate the
method.

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-642-17229-8_11, © Springer-Verlag Berlin Heidelberg 2012
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11.1 The Orthogonal Factor Model

The aim of factor analysis is to explain the outcome of p variables in the data ma-
trix X using fewer variables, the so-called factors. Ideally all the information in X
can be reproduced by a smaller number of factors. These factors are interpreted as
latent (unobserved) common characteristics of the observed x ∈ R

p . The case just
described occurs when every observed x = (x1, . . . , xp)

	 can be written as

xj =
k∑
�=1

qj�f� +μj , j = 1, . . . , p. (11.1)

Here f�, for � = 1, . . . , k denotes the factors. The number of factors, k, should al-
ways be much smaller than p. For instance, in psychology x may represent p results
of a test measuring intelligence scores. One common latent factor explaining x ∈R

p

could be the overall level of “intelligence”. In marketing studies, x may consist of p
answers to a survey on the levels of satisfaction of the customers. These p measures
could be explained by common latent factors like the attraction level of the product
or the image of the brand, and so on. Indeed it is possible to create a representa-
tion of the observations that is similar to the one in (11.1) by means of principal
components, but only if the last p− k eigenvalues corresponding to the covariance
matrix are equal to zero. Consider a p-dimensional random vector X with mean μ
and covariance matrix Var(X)=�. A model similar to (11.1) can be written for X
in matrix notation, namely

X =QF +μ, (11.2)

where F is the k-dimensional vector of the k factors. When using the factor
model (11.2) it is often assumed that the factors F are centered, uncorrelated
and standardized: E(F ) = 0 and Var(F ) = Ik . We will now show that if the last
p − k eigenvalues of � are equal to zero, we can easily express X by the factor
model (11.2).

The spectral decomposition of � is given by ���	. Suppose that only the first
k eigenvalues are positive, i.e., λk+1 = · · · = λp = 0. Then the (singular) covariance
matrix can be written as

� =
k∑
�=1

λ�γ�γ
	
� = (�1�2)

(
�1 0
0 0

)(
�	1
�	2

)
.

In order to show the connection to the factor model (11.2), recall that the PCs are
given by Y = �	(X−μ). Rearranging we haveX−μ= �Y = �1Y1+�2Y2, where
the components of Y are partitioned according to the partition of � above, namely

Y =
(
Y1
Y2

)
=

(
�	1
�	2

)
(X−μ), where

(
�	1
�	2

)
(X−μ)∼

(
0,

(
�1 0
0 0

))
.

In other words, Y2 has a singular distribution with mean and covariance matrix equal
to zero. Therefore, X−μ= �1Y1+�2Y2 implies that X−μ is equivalent to �1Y1,
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which can be written as

X = �1�
1/2
1 �

−1/2
1 Y1 +μ.

Defining Q= �1�
1/2
1 and F =�−1/2

1 Y1, we obtain the factor model (11.2).
Note that the covariance matrix of model (11.2) can be written as

� = E(X−μ)(X−μ)	 =QE(FF	)Q	 =QQ	 =
k∑

j=1

λjγjγ
	
j . (11.3)

We have just shown how the variableX can be completely determined by a weighted
sum of k (where k < p) uncorrelated factors. The situation used in the derivation,
however, is too idealistic. In practice the covariance matrix is rarely singular.

It is common praxis in factor analysis to split the influences of the factors into
common and specific ones. There are, for example, highly informative factors that
are common to all of the components of X and factors that are specific to certain
components. The factor analysis model used in praxis is a generalization of (11.2):

X =QF +U +μ, (11.4)

where Q is a (p × k) matrix of the (non-random) loadings of the common factors
F(k × 1) and U is a (p × 1) matrix of the (random) specific factors. It is assumed
that the factor variables F are uncorrelated random vectors and that the specific
factors are uncorrelated and have zero covariance with the common factors. More
precisely, it is assumed that:

EF = 0,

Var(F )= Ik,
EU = 0, (11.5)

Cov(Ui,Uj )= 0, i 
= j
Cov(F,U)= 0.

Define

Var(U)=" = diag(ψ11, . . . ,ψpp).

The generalized factor model (11.4) together with the assumptions given in (11.5)
constitute the orthogonal factor model.

Orthogonal Factor Model
X = Q F + U + μ

(p× 1) (p× k) (k× 1) (p× 1) (p× 1)
μj = mean of variable j
Uj = j -th specific factor
F� = �-th common factor
qj� = loading of the j -th variable on the �-th factor

The random vectors F and U are unobservable and uncorrelated.
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Note that (11.4) implies for the components of X = (X1, . . . ,Xp)
	 that

Xj =
k∑
�=1

qj�F� +Uj +μj , j = 1, . . . , p. (11.6)

Using (11.5) we obtain σXjXj = Var(Xj ) =∑k
�=1 q

2
j� + ψjj . The quantity h2

j =∑k
�=1 q

2
j� is called the communality and ψjj the specific variance. Thus the covari-

ance of X can be rewritten as

� = E(X−μ)(X−μ)	 = E(QF +U)(QF +U)	
=QE(FF	)Q	 + E(UU	)=QVar(F )Q	 + Var(U)

=QQ	 +". (11.7)

In a sense, the factor model explains the variations of X for the most part by a small
number of latent factors F common to its p components and entirely explains all
the correlation structure between its components, plus some “noise”U which allows
specific variations of each component to enter. The specific factors adjust to capture
the individual variance of each component. Factor analysis relies on the assumptions
presented above. If the assumptions are not met, the analysis could be spurious. Al-
though principal components analysis and factor analysis might be related (this was
hinted at in the derivation of the factor model), they are quite different in nature. PCs
are linear transformations of X arranged in decreasing order of variance and used
to reduce the dimension of the data set, whereas in factor analysis, we try to model
the variations of X using a linear transformation of a fixed, limited number of la-
tent factors. The objective of factor analysis is to find the loadings Q and the specific
variance" . Estimates of Q and" are deduced from the covariance structure (11.7).

Interpretation of the Factors

Assume that a factor model with k factors was found to be reasonable, i.e., most
of the (co)variations of the p measures in X were explained by the k fixed latent
factors. The next natural step is to try to understand what these factors represent. To
interpret F�, it makes sense to compute its correlations with the original variables
Xj first. This is done for � = 1, . . . , k and for j = 1, . . . , p to obtain the matrix
PXF . The sequence of calculations used here are in fact the same that were used to
interprete the PCs in the principal components analysis.

The following covariance between X and F is obtained via (11.5),

�XF = E{(QF +U)F	} =Q.

The correlation is

PXF =D−1/2Q, (11.8)
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where D = diag(σX1X1, . . . , σXpXp). Using (11.8) it is possible to construct a fig-
ure analogous to Figure 10.6 and thus to consider which of the original variables
X1, . . . ,Xp play a role in the unobserved common factors F1, . . . ,Fk .

Returning to the psychology example where X are the observed scores to p dif-
ferent intelligence tests (the WAIS data set in Table B.12 provides an example), we
would expect a model with one factor to produce a factor that is positively corre-
lated with all of the components in X. For this example the factor represents the
overall level of intelligence of an individual. A model with two factors could pro-
duce a refinement in explaining the variations of the p scores. For example, the first
factor could be the same as before (overall level of intelligence), whereas the second
factor could be positively correlated with some of the tests, Xj , that are related to
the individual’s ability to think abstractly and negatively correlated with other tests,
Xi , that are related to the individual’s practical ability. The second factor would then
concern a particular dimension of the intelligence stressing the distinctions between
the “theoretical” and “practical” abilities of the individual. If the model is true, most
of the information coming from the p scores can be summarized by these two latent
factors. Other practical examples are given below.

Invariance of Scale

What happens if we change the scale of X to Y = CX with C = diag(c1, . . . , cp)? If
the k-factor model (11.6) is true for X with Q=QX , " ="X , then, since

Var(Y )= C�C	 = CQXQ	XC	 + C"XC	,

the same k-factor model is also true for Y with QY = CQX and "Y = C"XC	.
In many applications, the search for the loadings Q and for the specific variance
" will be done by the decomposition of the correlation matrix of X rather than the
covariance matrix�. This corresponds to a factor analysis of a linear transformation
of X (i.e., Y =D−1/2(X − μ)). The goal is to try to find the loadings QY and the
specific variance "Y such that

P =QY Q	Y +"Y . (11.9)

In this case the interpretation of the factors F immediately follows from (11.8) given
the following correlation matrix:

PXF = PYF =QY . (11.10)

Because of the scale invariance of the factors, the loadings and the specific variance
of the model, where X is expressed in its original units of measure, are given by

QX =D1/2QY

"X =D1/2"YD
1/2.

It should be noted that although the factor analysis model (11.4) enjoys the scale
invariance property, the actual estimated factors could be scale dependent. We will
come back to this point later when we discuss the method of principal factors.
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Non-uniqueness of Factor Loadings

The factor loadings are not unique! Suppose that G is an orthogonal matrix. Then X
in (11.4) can also be written as

X = (QG)(G	F)+U +μ.
This implies that, if a k-factor of X with factors F and loadings Q is true, then

the k-factor model with factors G	F and loadings QG is also true. In practice, we
will take advantage of this non-uniqueness. Indeed, referring back to Section 2.6 we
can conclude that premultiplying a vector F by an orthogonal matrix corresponds
to a rotation of the system of axis, the direction of the first new axis being given by
the first row of the orthogonal matrix. It will be shown that choosing an appropriate
rotation will result in a matrix of loadings QG that will be easier to interpret. We
have seen that the loadings provide the correlations between the factors and the
original variables, therefore, it makes sense to search for rotations that give factors
that are maximally correlated with various groups of variables.

From a numerical point of view, the non-uniqueness is a drawback. We have
to find loadings Q and specific variances " satisfying the decomposition � =
QQ	+" , but no straightforward numerical algorithm can solve this problem due to
the multiplicity of the solutions. An acceptable technique is to impose some chosen
constraints in order to get—in the best case—an unique solution to the decomposi-
tion. Then, as suggested above, once we have a solution we will take advantage of
the rotations in order to obtain a solution that is easier to interprete.

An obvious question is: what kind of constraints should we impose in order to
eliminate the non-uniqueness problem? Usually, we impose additional constraints
where

Q	"−1Q is diagonal (11.11)

or

Q	D−1Q is diagonal. (11.12)

How many parameters does the model (11.7) have without constraints?

Q(p× k) has p · k parameters, and

"(p× p) has p parameters.

Hence we have to determine pk + p parameters! Conditions (11.11) respec-
tively (11.12) introduce 1

2 {k(k − 1)} constraints, since we require the matrices to
be diagonal. Therefore, the degrees of freedom of a model with k factors is:

d = (# parameters for � unconstrained)− (# parameters for � constrained)

= 1

2
p(p+ 1)−

(
pk+ p− 1

2
k(k − 1)

)

= 1

2
(p− k)2 − 1

2
(p+ k).
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If d < 0, then the model is undetermined: there are infinitely many solutions
to (11.7). This means that the number of parameters of the factorial model is larger
than the number of parameters of the original model, or that the number of factors
k is “too large” relative to p. In some cases d = 0: there is a unique solution to
the problem (except for rotation). In practice we usually have that d > 0: there are
more equations than parameters, thus an exact solution does not exist. In this case
approximate solutions are used. An approximation of �, for example, is QQ	+" .
The last case is the most interesting since the factorial model has less parameters
than the original one. Estimation methods are introduced in the next section.

Evaluating the degrees of freedom, d , is particularly important, because it already
gives an idea of the upper bound on the number of factors we can hope to identify in
a factor model. For instance, if p = 4, we could not identify a factor model with 2
factors (this results in d =−1 which has infinitly many solutions). With p = 4, only
a one factor model gives an approximate solution (d = 2). When p = 6, models with
1 and 2 factors provide approximate solutions and a model with 3 factors results in
an unique solution (up to the rotations) since d = 0. A model with 4 or more factors
would not be allowed, but of course, the aim of factor analysis is to find suitable
models with a small number of factors, i.e., smaller than p. The next two examples
give more insights into the notion of degrees of freedom.

Example 11.1 Let p = 3 and k = 1, then d = 0 and

� =
⎛
⎝σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎞
⎠=

⎛
⎝q2

1 +ψ11 q1q2 q1q3

q1q2 q2
2 +ψ22 q2q3

q1q3 q2q3 q2
3 +ψ33

⎞
⎠

with Q =
(
q1
q2
q3

)
and " =

(
ψ11 0 0

0 ψ22 0
0 0 ψ33

)
. Note that here the constraint (11.8) is

automatically verified since k = 1. We have

q2
1 =

σ12σ13

σ23
; q2

2 =
σ12σ23

σ13
; q2

3 =
σ13σ23

σ12

and

ψ11 = σ11 − q2
1 ; ψ22 = σ22 − q2

2 ; ψ33 = σ33 − q2
3 .

In this particular case (k = 1), the only rotation is defined by G =−1, so the other
solution for the loadings is provided by −Q.

Example 11.2 Suppose now p = 2 and k = 1, then d < 0 and

� =
(

1 ρ

ρ 1

)
=

(
q2

1 +ψ11 q1q2

q1q2 q2
2 +ψ22

)
.

We have infinitely many solutions: for any α (ρ < α < 1), a solution is provided by

q1 = α; q2 = ρ/α; ψ11 = 1− α2; ψ22 = 1− (ρ/α)2.
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The solution in Example 11.1 may be unique (up to a rotation), but it is not proper
in the sense that it cannot be interpreted statistically. Exercise 11.5 gives an example
where the specific variance ψ11 is negative.

�
�
��

�
�

!
Even in the case of a unique solution (d = 0), the solution may be incon-

sistent with statistical interpretations.

Summary
↪→ The factor analysis model aims to describe how the original p vari-

ables in a data set depend on a small number of latent factors k < p,
i.e., it assumes thatX =QF +U+μ. The (k-dimensional) random
vector F contains the common factors, the (p-dimensional) U con-
tains the specific factors and Q(p× k) contains the factor loadings.

↪→ It is assumed that F and U are uncorrelated and have zero means,
i.e., F ∼ (0,I), U ∼ (0,") where " is diagonal matrix and
Cov(F,U)= 0.
This leads to the covariance structure � =QQ	 +".

↪→ The interpretation of the factor F is obtained through the correla-
tion PXF =D−1/2Q.

↪→ A normalized analysis is obtained by the model P = QQ	 + ".
The interpretation of the factors is given directly by the loadings
Q : PXF =Q.

↪→ The factor analysis model is scale invariant. The loadings are not
unique (only up to multiplication by an orthogonal matrix).

↪→ Whether a model has an unique solution or not is determined by
the degrees of freedom d = 1/2(p− k)2 − 1/2(p+ k).

11.2 Estimation of the Factor Model

In practice, we have to find estimates Q̂ of the loadings Q and estimates "̂ of the
specific variances " such that analogously to (11.7)

S = Q̂Q̂	 + "̂,

where S denotes the empirical covariance of X . Given an estimate Q̂ of Q, it is
natural to set
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ψ̂jj = sXjXj −
k∑
�=1

q̂2
j�.

We have that ĥ2
j =

∑k
�=1 q̂

2
j� is an estimate for the communality h2

j .
In the ideal case d = 0, there is an exact solution. However, d is usually greater

than zero, therefore we have to find Q̂ and "̂ such that S is approximated by Q̂Q̂	+
"̂ . As mentioned above, it is often easier to compute the loadings and the specific
variances of the standardized model.

Define Y =HXD−1/2, the standardization of the data matrix X , where, as usual,
D = diag(sX1X1 , . . . , sXpXp) and the centering matrix H = I − n−11n1	n (recall

from Chapter 2 that S = 1
n
X	HX ). The estimated factor loading matrix Q̂Y and

the estimated specific variance "̂Y of Y are

Q̂Y =D−1/2Q̂X and "̂Y =D−1"̂X.

For the correlation matrix R of X , we have that

R= Q̂Y Q̂	Y + "̂Y .

The interpretations of the factors are formulated from the analysis of the load-
ings Q̂Y .

Example 11.3 Let us calculate the matrices just defined for the car data given in
Table B.7. This data set consists of the averaged marks (from 1= low to 6= high)
for 24 car types. Considering the three variables price, security and easy handling,
we get the following correlation matrix:

R=
⎛
⎝ 1 0.975 0.613

0.975 1 0.620
0.613 0.620 1

⎞
⎠ .

We will first look for one factor, i.e., k = 1. Note that (# number of parameters of �
unconstrained−# parameters of � constrained) is equal to 1

2 (p− k)2− 1
2 (p+ k)=

1
2 (3− 1)2− 1

2 (3+ 1)= 0. This implies that there is an exact solution! The equation

⎛
⎝ 1 rX1X2 rX1X3

rX1X2 1 rX2X3

rX1X3 rX2X3 1

⎞
⎠=R=

⎛
⎝ q̂2

1 + ψ̂11 q̂1q̂2 q̂1q̂3

q̂1q̂2 q̂2
2 + ψ̂22 q̂2q̂3

q̂1q̂3 q̂2q̂3 q̂2
3 + ψ̂33

⎞
⎠

yields the communalities ĥ2
i = q̂2

i , where

q̂2
1 =

rX1X2rX1X3

rX2X3

, q̂2
2 =

rX1X2rX2X3

rX1X3

and q̂2
3 =

rX1X3rX2X3

rX1X2

.
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Combining this with the specific variances ψ̂11 = 1− q̂2
1 , ψ̂22 = 1− q̂2

2 and ψ̂33 =
1− q̂2

3 , we obtain the following solution

q̂1 = 0.982 q̂2 = 0.993 q̂3 = 0.624

ψ̂11 = 0.035 ψ̂22 = 0.014 ψ̂33 = 0.610.

Since the first two communalities (̂h2
i = q̂2

i ) are close to one, we can conclude that
the first two variables, namely price and security, are explained by the single factor
quite well. This factor can be interpreted as a “price+security” factor.

The Maximum Likelihood Method

Recall from Chapter 6 the log-likelihood function � for a data matrix X of observa-
tions of X ∼Np(μ,�):

�(X ;μ,�)=−n
2

log |2π�| − 1

2

n∑
i=1

(xi −μ)�−1(xi −μ)	

=−n
2

log |2π�| − n

2
tr(�−1S)− n

2
(x −μ)�−1(x −μ)	.

This can be rewritten as

�(X ; μ̂,�)=−n
2
{log |2π�| + tr(�−1S)}.

Replacing μ by μ̂= x and substituting � =QQ	 +" this becomes

�(X ; μ̂,Q,")=−n
2
[log{|2π(QQ	 +")|} + tr{(QQ	 +")−1S}]. (11.13)

Even in the case of a single factor (k = 1), these equations are rather complicated
and iterative numerical algorithms have to be used (for more details see Mardia
et al. (1979, p. 263ff)). A practical computation scheme is also given in Supple-
ment 9A of Johnson and Wichern (1998).

Likelihood Ratio Test for the Number of Common Factors

Using the methodology of Chapter 7, it is easy to test the adequacy of the factor
analysis model by comparing the likelihood under the null (factor analysis) and
alternative (no constraints on covariance matrix) hypotheses.

Assuming that Q̂ and "̂ are the maximum likelihood estimates corresponding
to (11.13), we obtain the following LR test statistic:

−2 log

(
maximized likelihood under H0

maximized likelihood

)
= n log

(
|Q̂Q̂	 + "̂|

|S|

)
, (11.14)

which asymptotically has the χ2
1
2 {(p−k)2−p−k}

distribution.
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The χ2 approximation can be improved if we replace n by n− 1− (2p + 4k +
5)/6 in (11.14) (Bartlett, 1954). Using Bartlett’s correction, we reject the factor
analysis model at the α level if

{n− 1− (2p+ 4k+ 5)/6} log

(
|Q̂Q̂	 + "̂|

|S|

)
> χ2

1−α;{(p−k)2−p−k}/2, (11.15)

and if the number of observations n is large and the number of common factors k is
such that the χ2 statistic has a positive number of degrees of freedom.

The Method of Principal Factors

The method of principal factors concentrates on the decomposition of the correla-
tion matrix R or the covariance matrix S . For simplicity, only the method for the
correlation matrix R will be discussed. As pointed out in Chapter 10, the spec-
tral decompositions of R and S yield different results and therefore, the method of
principal factors may result in different estimators. The method can be motivated as
follows: Suppose we know the exact " , then the constraint (11.12) implies that the
columns of Q are orthogonal since D = I and it implies that they are eigenvectors
of QQ	 =R−" . Furthermore, assume that the first k eigenvalues are positive. In
this case we could calculate Q by means of a spectral decomposition of QQ	 and
k would be the number of factors.

The principal factors algorithm is based on good preliminary estimators h̃2
j of the

communalities h2
j , for j = 1, . . . , p. There are two traditional proposals:

• h̃2
j , defined as the square of the multiple correlation coefficient of Xj with (Xl),

for l 
= j , i.e., ρ2(V ,Wβ̂) with V = Xj , W = (X�)�
=j and where β̂ is the least
squares regression parameter of a regression of V on W .

• h̃2
j =max�
=j |rXjX� |, where R= (rXjX�) is the correlation matrix of X .

Given ψ̃jj = 1− h̃2
j we can construct the reduced correlation matrix, R− "̃ . The

Spectral Decomposition Theorem says that

R− "̃ =
p∑
�=1

λ�γ�γ
	
� ,

with eigenvalues λ1 ≥ · · · ≥ λp . Assume that the first k eigenvalues λ1, . . . , λk are
positive and large compared to the others. Then we can set

q̂� =
√
λ� γ�, �= 1, . . . , k

or

Q̂= �1�
1/2
1
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with

�1 = (γ1, . . . , γk) and �1 = diag(λ1, . . . , λk).

In the next step set

ψ̂jj = 1−
k∑
�=1

q̂2
j�, j = 1, . . . , p.

Note that the procedure can be iterated: from ψ̂jj we can compute a new reduced
correlation matrix R− "̂ following the same procedure. The iteration usually stops
when the ψ̂jj have converged to a stable value.

Example 11.4 Consider once again the car data given in Table B.7. From Exer-
cise 10.4 we know that the first PC is mainly influenced by X2–X7. Moreover, we
know that most of the variance is already captured by the first PC. Thus we can
conclude that the data are mainly determined by one factor (k = 1).

The eigenvalues of R− "̂ for "̂ = (maxj 
=i |rXiXj |) are

(5.448,0.003,−.246,−0.646,−0.901,−0.911,−0.948,−0.964)	.

It would suffice to choose only one factor. Nevertheless, we have computed two
factors. The result (the factor loadings for two factors) is shown in Figure 11.1.

We can clearly see a cluster of points to the right, which contain the factor load-
ings for the variables X2–X7. This shows, as did the PCA, that these variables are
highly dependent and are thus more or less equivalent. The factor loadings for X1

(economy) and X8 (easy handling) are separate, but note the different scales on the
horizontal and vertical axes! Although there are two or three sets of variables in the
plot, the variance is already explained by the first factor, the “price+security” factor.

Fig. 11.1 Loadings of the
evaluated car qualities, factor

analysis with k = 2
MVAfactcarm
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The Principal Component Method

The principal factor method involves finding an approximation "̃ of " , the matrix
of specific variances, and then correcting R, the correlation matrix of X, by "̃ .
The principal component method starts with an approximation Q̂ of Q, the factor
loadings matrix. The sample covariance matrix is diagonalized, S = ���	. Then
the first k eigenvectors are retained to build

Q̂= [√λ1γ1, . . . ,
√
λkγk]. (11.16)

The estimated specific variances are provided by the diagonal elements of the ma-
trix S − Q̂Q̂	,

"̂ =

⎛
⎜⎜⎜⎝
ψ̂11 0

ψ̂22
. . .

0 ψ̂pp

⎞
⎟⎟⎟⎠ with ψ̂jj = sXjXj −

k∑
�=1

q̂2
j�. (11.17)

By definition, the diagonal elements of S are equal to the diagonal elements of
Q̂Q̂	+ "̂ . The off-diagonal elements are not necessarily estimated. How good then
is this approximation? Consider the residual matrix

S − (Q̂Q̂	 + "̂)
resulting from the principal component solution. Analytically we have that∑

i,j

(S − Q̂Q̂	 − "̂)2ij ≤ λ2
k+1 + · · · + λ2

p.

This implies that a small value of the neglected eigenvalues can result in a small
approximation error. A heuristic device for selecting the number of factors is to
consider the proportion of the total sample variance due to the j -th factor. This
quantity is in general equal to

(A) λj/
∑p

j=1 sjj for a factor analysis of S ,
(B) λj/p for a factor analysis of R.

Example 11.5 This example uses a consumer-preference study from Johnson and
Wichern (1998). Customers were asked to rate several attributes of a new prod-
uct. The responses were tabulated and the following correlation matrix R was con-
structed:

Attribute (Variable)
Taste 1
Good buy for money 2
Flavor 3
Suitable for snack 4
Provides lots of energy 5

⎛
⎜⎜⎜⎜⎝

1.00 0.02 0.96 0.42 0.01
0.02 1.00 0.13 0.71 0.85
0.96 0.13 1.00 0.50 0.11
0.42 0.71 0.50 1.00 0.79
0.01 0.85 0.11 0.79 1.00

⎞
⎟⎟⎟⎟⎠
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Table 11.1 Estimated factor loadings, communalities, and specific variances

Estimated factor
loadings

Communalities Specific
variances

Variable q̂1 q̂2 ĥ2
j ψ̂jj = 1− ĥ2

j

1. Taste 0.56 0.82 0.98 0.02

2. Good buy for money 0.78 −0.53 0.88 0.12

3. Flavor 0.65 0.75 0.98 0.02

4. Suitable for snack 0.94 −0.11 0.89 0.11

5. Provides lots of energy 0.80 −0.54 0.93 0.07

Eigenvalues 2.85 1.81

Cumulative proportion of total
(standardized) sample variance

0.571 0.932

The bold entries of R show that variables 1 and 3 and variables 2 and 5 are highly
correlated. Variable 4 is more correlated with variables 2 and 5 than with variables 1
and 3. Hence, a model with 2 (or 3) factors seems to be reasonable.

The first two eigenvalues λ1 = 2.85 and λ2 = 1.81 of R are the only eigenval-
ues greater than one. Moreover, k = 2 common factors account for a cumulative
proportion

λ1 + λ2

p
= 2.85+ 1.81

5
= 0.93

of the total (standardized) sample variance. Using the principal component method,
the estimated factor loadings, communalities, and specific variances, are calculated
from formulas (11.16) and (11.17), and the results are given in Table 11.1.

Take a look at:

Q̂Q̂	 + "̂ =

⎛
⎜⎜⎜⎜⎝

0.56 0.82
0.78 −0.53
0.65 0.75
0.94 −0.11
0.80 −0.54

⎞
⎟⎟⎟⎟⎠

(
0.56 0.78 0.65 0.94 0.80
0.82 −0.53 0.75 −0.11 −0.54

)

+

⎛
⎜⎜⎜⎜⎝

0.02 0 0 0 0
0 0.12 0 0 0
0 0 0.02 0 0
0 0 0 0.11 0
0 0 0 0 0.07

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

1.00 0.01 0.97 0.44 0.00
0.01 1.00 0.11 0.79 0.91
0.97 0.11 1.00 0.53 0.11
0.44 0.79 0.53 1.00 0.81
0.00 0.91 0.11 0.81 1.00

⎞
⎟⎟⎟⎟⎠ .
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This nearly reproduces the correlation matrix R. We conclude that the two-factor
model provides a good fit of the data. The communalities (0.98,0.88,0.98,0.89,
0.93) indicate that the two factors account for a large percentage of the sample vari-
ance of each variable. Due to the nonuniqueness of factor loadings, the interpretation
might be enhanced by rotation. This is the topic of the next subsection.

Rotation

The constraints (11.11) and (11.12) are given as a matter of mathematical conve-
nience (to create unique solutions) and can therefore complicate the problem of
interpretation. The interpretation of the loadings would be very simple if the vari-
ables could be split into disjoint sets, each being associated with one factor. A well
known analytical algorithm to rotate the loadings is given by the varimax rotation
method proposed by Kaiser (1985). In the simplest case of k = 2 factors, a rotation
matrix G is given by

G(θ)=
(

cos θ sin θ
− sin θ cos θ

)
,

representing a clockwise rotation of the coordinate axes by the angle θ . The corre-
sponding rotation of loadings is calculated via Q̂∗ = Q̂G(θ). The idea of the varimax
method is to find the angle θ that maximizes the sum of the variances of the squared
loadings q̂∗ij within each column of Q̂∗. More precisely, defining q̃j l = q̂∗j l/ĥ∗j , the
varimax criterion chooses θ so that

V = 1

p

k∑
�=1

[
p∑
j=1

(q̃∗j l)4 −
{

1

p

p∑
j=1

(q̃∗j l)2
}2]

is maximized.

Example 11.6 Let us return to the marketing example of Johnson and Wichern
(1998) (Example 11.5). The basic factor loadings given in Table 11.1 of the first
factor and a second factor are almost identical making it difficult to interpret the fac-
tors. Applying the varimax rotation we obtain the loadings q̃1 = (0.02,0.94,0.13,
0.84,0.97)	 and q̃2 = (0.99,−0.01,0.98,0.43,−0.02)	. The high loadings, indi-
cated as bold entries, show that variables 2, 4, 5 define factor 1, a nutricional factor.
Variables 1 and 3 define factor 2 which might be referred to as a taste factor.

Summary

↪→ In practice, Q and " have to be estimated from S = Q̂Q̂	 + "̂.
The number of parameters is d = 1

2 (p− k)2 − 1
2 (p+ k).
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Summary (continued)
↪→ If d = 0, then there exists an exact solution. In practice, d is usually

greater than 0, thus approximations must be considered.
↪→ The maximum-likelihood method assumes a normal distribution

for the data. A solution can be found using numerical algorithms.
↪→ The method of principal factors is a two-stage method which cal-

culates Q̂ from the reduced correlation matrix R − "̃, where
"̃ is a pre-estimate of ". The final estimate of " is found by
ψ̂ii = 1−∑k

j=1 q̂
2
ij .

↪→ The principal component method is based on an approximation, Q̂,
of Q.

↪→ Often a more informative interpretation of the factors can be found
by rotating the factors.

↪→ The varimax rotation chooses a rotation θ that maximizes V =
1
p

∑k
�=1

[∑p

j=1(q̃
∗
j l)

4 − { 1
p

∑p

j=1(q̃
∗
j l)

2
}2].

11.3 Factor Scores and Strategies

Up to now strategies have been presented for factor analysis that have concentrated
on the estimation of loadings and communalities and on their interpretations. This
was a logical step since the factors F were considered to be normalized random
sources of information and were explicitely addressed as nonspecific (common fac-
tors). The estimated values of the factors, called the factor scores, may also be useful
in the interpretation as well as in the diagnostic analysis. To be more precise, the fac-
tor scores are estimates of the unobserved random vectors Fl , l = 1, . . . , k, for each
individual xi , i = 1, . . . , n. Johnson and Wichern (1998) describe three methods
which in practice yield very similar results. Here, we present the regression method
which has the advantage of being the simplest technique and is easy to implement.

The idea is to consider the joint distribution of (X − μ) and F , and then to
proceed with the regression analysis presented in Chapter 5. Under the factor
model (11.4), the joint covariance matrix of (X−μ) and F is:

Var

(
X−μ
F

)
=

(
QQ	 +" Q

Q	 Ik

)
. (11.18)

Note that the upper left entry of this matrix equals � and that the matrix has size
(p+ k)× (p+ k).

Assuming joint normality, the conditional distribution of F |X is multinormal,
see Theorem 5.1, with

E(F |X = x)=Q	�−1(X−μ) (11.19)

and using (5.7) the covariance matrix can be calculated:

Var(F |X = x)= Ik −Q	�−1Q. (11.20)
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In practice, we replace the unknown Q, � and μ by corresponding estimators, lead-
ing to the estimated individual factor scores:

f̂i = Q̂	S−1(xi − x). (11.21)

We prefer to use the original sample covariance matrix S as an estimator of �,
instead of the factor analysis approximation Q̂Q̂	 + "̂ , in order to be more robust
against incorrect determination of the number of factors.

The same rule can be followed when using R instead of S . Then (11.18) remains
valid when standardized variables, i.e., Z =D−1/2

� (X−μ), are considered if D� =
diag(σ11, . . . , σpp). In this case the factors are given by

f̂i = Q̂	R−1(zi), (11.22)

where zi =D−1/2
S (xi − x), Q̂ is the loading obtained with the matrix R, and DS =

diag(s11, . . . , spp).
If the factors are rotated by the orthogonal matrix G, the factor scores have to be

rotated accordingly, that is

f̂ ∗i = G	f̂i . (11.23)

A practical example is presented in Section 11.4 using the Boston Housing data.

Practical Suggestions

No one method outperforms another in the practical implementation of factor anal-
ysis. However, by applying a tâtonnement process, the factor analysis view of the
data can be stabilized. This motivates the following procedure.

1. Fix a reasonable number of factors, say k = 2 or 3, based on the correlation
structure of the data and/or screeplot of eigenvalues.

2. Perform several of the presented methods, including rotation. Compare the load-
ings, communalities, and factor scores from the respective results.

3. If the results show significant deviations, check for outliers (based on factor
scores), and consider changing the number of factors k.

For larger data sets, cross-validation methods are recommended. Such methods in-
volve splitting the sample into a training set and a validation data set. On the training
sample one estimates the factor model with the desired methodology and uses the
obtained parameters to predict the factor scores for the validation data set. The pre-
dicted factor scores should be comparable to the factor scores obtained using only
the validation data set. This stability criterion may also involve the loadings and
communalities.

Factor Analysis versus PCA

Factor analysis and principal component analysis use the same set of mathematical
tools (spectral decomposition, projections, . . .). One could conclude, on first sight,
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that they share the same view and strategy and therefore yield very similar results.
This is not true. There are substantial differences between these two data analysis
techniques that we would like to describe here.

The biggest difference between PCA and factor analysis comes from the model
philosophy. Factor analysis imposes a strict structure of a fixed number of common
(latent) factors whereas the PCA determines p factors in decreasing order of impor-
tance. The most important factor in PCA is the one that maximizes the projected
variance. The most important factor in factor analysis is the one that (after rotation)
gives the maximal interpretation. Often this is different from the direction of the first
principal component.

From an implementation point of view, the PCA is based on a well-defined,
unique algorithm (spectral decomposition), whereas fitting a factor analysis model
involves a variety of numerical procedures. The non-uniqueness of the factor anal-
ysis procedure opens the door for subjective interpretation and yields therefore a
spectrum of results. This data analysis philosophy makes factor analysis difficult
especially if the model specification involves cross-validation and a data-driven se-
lection of the number of factors.

11.4 Boston Housing

To illustrate how to implement factor analysis we will use the Boston housing data
set and the by now well known set of transformations. Once again, the variable X4
(Charles River indicator) will be excluded. As before, standardized variables are
used and the analysis is based on the correlation matrix.

In Section 11.3, we described a practical implementation of factor analysis.
Based on principal components, three factors were chosen and factor analysis was
applied using the maximum likelihood method (MLM), the principal factor method
(PFM), and the principal component method (PCM). For illustration, the MLM will
be presented with and without varimax rotation.

Table 11.2 gives the MLM factor loadings without rotation and Table 11.3 gives
the varimax version of this analysis. The corresponding graphical representations
of the loadings are displayed in Figures 11.2 and 11.3. We can see that the vari-
max does not significantly change the interpretation of the factors obtained by the
MLM. Factor 1 can be roughly interpreted as a “quality of life factor” because it is
positively correlated with variables like X11 and negatively correlated withX8, both
having low specific variances. The second factor may be interpreted as a “residential
factor”, since it is highly correlated with variables X6, and X13. The most striking
difference between the results with and without varimax rotation can be seen by
comparing the lower left corners of Figures 11.2 and 11.3. There is a clear separa-
tion of the variables in the varimax version of the MLM. Given this arrangement
of the variables in Figure 11.3, we can interpret factor 3 as an employment factor,
since we observe high correlations with X8 and X5.

We now turn to the PCM and PFM analyses. The results are presented in Ta-
bles 11.4 and 11.5 and in Figures 11.4 and 11.5. We would like to focus on the
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Table 11.2 Estimated factor loadings, communalities, and specific variances, MLM
MVAfacthous

Estimated factor loadings Communalities Specific
variances

q̂1 q̂2 q̂3 ĥ2
j ψ̂jj = 1− ĥ2

j

1. crime 0.9295 0.1653 0.1107 0.9036 0.0964

2. large lots −0.5823 0.0379 0.2902 0.4248 0.5752

3. nonretail acres 0.8192 −0.0296 −0.1378 0.6909 0.3091

5. nitric oxides 0.8789 0.0987 −0.2719 0.8561 0.1439

6. rooms −0.4447 0.5311 −0.0380 0.4812 0.5188

7. prior 1940 0.7837 −0.0149 −0.3554 0.7406 0.2594

8. empl. centers −0.8294 −0.1570 0.4110 0.8816 0.1184

9. accessibility 0.7955 0.3062 0.4053 0.8908 0.1092

10. tax-rate 0.8262 0.1401 0.2906 0.7867 0.2133

11. pupil/teacher 0.5051 −0.1850 0.1553 0.3135 0.6865

12. African American 0.4701 −0.0227 −0.1627 0.2480 0.7520

13. lower status 0.7601 −0.5059 −0.0070 0.8337 0.1663

14. value −0.6942 0.5904 −0.1798 0.8628 0.1371

Fig. 11.2 Factor analysis for Boston housing data, MLM MVAfacthous
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Table 11.3 Estimated factor loadings, communalities, and specific variances, MLM, varimax ro-

tation MVAfacthous

Estimated factor loadings Communalities Specific
variances

q̂1 q̂2 q̂3 ĥ2
j ψ̂jj = 1− ĥ2

j

1. crime 0.7247 −0.2705 −0.5525 0.9036 0.0964

2. large lots −0.1570 0.2377 0.5858 0.4248 0.5752

3. nonretail acres 0.4195 −0.3566 −0.6287 0.6909 0.3091

5. nitric oxides 0.4141 −0.2468 −0.7896 0.8561 0.1439

6. rooms −0.0799 0.6691 0.1644 0.4812 0.5188

7. prior 1940 0.2518 −0.2934 −0.7688 0.7406 0.2594

8. empl. centers −0.3164 0.1515 0.8709 0.8816 0.1184

9. accessibility 0.8932 −0.1347 −0.2736 0.8908 0.1092

10. tax-rate 0.7673 −0.2772 −0.3480 0.7867 0.2133

11. pupil/teacher 0.3405 −0.4065 −0.1800 0.3135 0.6865

12. African American −0.3917 0.2483 0.1813 0.2480 0.7520

13. lower status 0.2586 −0.7752 −0.4072 0.8337 0.1663

14. value −0.3043 0.8520 0.2111 0.8630 0.1370

Fig. 11.3 Factor analysis for Boston housing data, MLM after varimax rotation MVAfact-
hous
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Table 11.4 Estimated factor loadings, communalities, and specific variances, PCM, varimax ro-

tation MVAfacthous

Estimated factor loadings Communalities Specific
variances

q̂1 q̂2 q̂3 ĥ2
j ψ̂jj = 1− ĥ2

j

1. crime 0.6034 −0.2456 0.6864 0.8955 0.1045

2. large lots −0.7722 0.2631 0.0270 0.6661 0.3339

3. nonretail acres 0.7183 −0.3701 0.3449 0.7719 0.2281

5. nitric oxides 0.7936 −0.2043 0.4250 0.8521 0.1479

6. rooms −0.1601 0.8585 0.0218 0.7632 0.2368

7. prior 1940 0.7895 −0.2375 0.2670 0.7510 0.2490

8. empl. centers −0.8562 0.1318 −0.3240 0.8554 0.1446

9. accessibility 0.3681 −0.1268 0.8012 0.7935 0.2065

10. tax-rate 0.3744 −0.2604 0.7825 0.8203 0.1797

11. pupil/teacher 0.1982 −0.5124 0.3372 0.4155 0.5845

12. African American 0.1647 0.0368 −0.7002 0.5188 0.4812

13. lower status 0.4141 −0.7564 0.2781 0.8209 0.1791

14. value −0.2111 0.8131 −0.3671 0.8394 0.1606

Fig. 11.4 Factor analysis for Boston housing data, PCM after varimax rotation MVAfact-
hous
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Table 11.5 Estimated factor loadings, communalities, and specific variances, PFM, varimax rota-

tion MVAfacthous

Estimated factor loadings Communalities Specific
variances

q̂1 q̂2 q̂3 ĥ2
j ψ̂jj = 1− ĥ2

j

1. crime 0.5477 −0.2558 −0.7387 0.9111 0.0889

2. large lots −0.6148 0.2668 0.1281 0.4655 0.5345

3. nonretail acres 0.6523 −0.3761 −0.3996 0.7266 0.2734

5. nitric oxides 0.7723 −0.2291 −0.4412 0.8439 0.1561

6. rooms −0.1732 0.6783 0.1296 0.0699 0.5046

7. prior 1940 0.7390 −0.2723 −0.2909 0.7049 0.2951

8. empl. centers −0.8565 0.1485 0.3395 0.8708 0.1292

9. accessibility 0.2855 −0.1359 −0.8460 0.8156 0.1844

10. tax-rate 0.3062 −0.2656 −0.8174 0.8325 0.1675

11. pupil/teacher 0.2116 −0.3943 −0.3297 0.3090 0.6910

12. African American 0.1994 0.0666 0.4217 0.2433 0.7567

13. lower status 0.4005 −0.7743 −0.2706 0.8333 0.1667

14. value −0.1885 0.8400 0.3473 0.8611 0.1389

Fig. 11.5 Factor analysis for Boston housing data, PFM after varimax rotation MVAfact-
hous
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PCM, because this 3-factor model yields only one specific variance (unexplained
variation) above 0.5. Looking at Figure 11.4, it turns out that factor 1 remains a
“quality of life factor” which is clearly visible from the clustering of X5, X3, X10

and X1 on the right-hand side of the graph, while the variables X8, X2, X14, X12

and X6 are on the left-hand side. Again, the second factor is a “residential factor”,
clearly demonstrated by the location of variables X6, X14, X11, and X13. The inter-
pretation of the third factor is more difficult because all of the loadings (except for
X12) are very small.

11.5 Exercises

Exercise 11.1 In Example 11.4 we have computed Q̂ and "̂ using the method of
principal factors. We used a two-step iteration for "̂ . Perform the third iteration step
and compare the results (i.e., use the given Q̂ as a pre-estimate to find the final ").

Exercise 11.2 Using the bank data set, how many factors can you find with the
Method of Principal Factors?

Exercise 11.3 Repeat Exercise 11.2 with the U.S. company data set!

Exercise 11.4 Generalize the two-dimensional rotation matrix in Section 11.2 to
n-dimensional space.

Exercise 11.5 Compute the orthogonal factor model for

� =
⎛
⎝ 1 0.9 0.7

0.9 1 0.4
0.7 0.4 1

⎞
⎠ .

[Solution: ψ11 =−0.575, q11 = 1.255]

Exercise 11.6 Perform a factor analysis on the type of families in the French food
data set. Rotate the resulting factors in a way which provides the most reasonable
interpretation. Compare your result with the varimax method.

Exercise 11.7 Perform a factor analysis on the variables X3 to X9 in the U.S. crime
data set (Table B.10). Would it make sense to use all of the variables for the analysis?

Exercise 11.8 Analyze the athletic records data set (Table B.18). Can you recognize
any patterns if you sort the countries according to the estimates of the factor scores?

Exercise 11.9 Perform a factor analysis on the U.S. health data set (Table B.16) and
estimate the factor scores.
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Exercise 11.10 Redo Exercise 11.9 using the U.S. crime data in Table B.10. Com-
pare the estimated factor scores of the two data sets.

Exercise 11.11 Analyze the vocabulary data given in Table B.17.



Chapter 12
Cluster Analysis

The next two chapters address classification issues from two varying perspectives.
When considering groups of objects in a multivariate data set, two situations can
arise. Given a data set containing measurements on individuals, in some cases we
want to see if some natural groups or classes of individuals exist, and in other cases,
we want to classify the individuals according to a set of existing groups. Cluster
analysis develops tools and methods concerning the former case, that is, given a
data matrix containing multivariate measurements on a large number of individuals
(or objects), the objective is to build some natural subgroups or clusters of indi-
viduals. This is done by grouping individuals that are “similar” according to some
appropriate criterion. Once the clusters are obtained, it is generally useful to de-
scribe each group using some descriptive tool from Chapters 1, 9 or 10 to create a
better understanding of the differences that exist among the formulated groups.

Cluster analysis is applied in many fields such as the natural sciences, the med-
ical sciences, economics, marketing, etc. In marketing, for instance, it is useful to
build and describe the different segments of a market from a survey on potential
consumers. An insurance company, on the other hand, might be interested in the
distinction among classes of potential customers so that it can derive optimal prices
for its services. Other examples are provided below.

Discriminant analysis presented in Chapter 13 addresses the other issue of clas-
sification. It focuses on situations where the different groups are known a priori.
Decision rules are provided in classifying a multivariate observation into one of the
known groups.

Section 12.1 states the problem of cluster analysis where the criterion cho-
sen to measure the similarity among objects clearly plays an important role. Sec-
tion 12.2 shows how to precisely measure the proximity between objects. Finally,
Section 12.3 provides some algorithms. We will concentrate on hierarchical algo-
rithms only where the number of clusters is not known in advance.

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-642-17229-8_12, © Springer-Verlag Berlin Heidelberg 2012
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12.1 The Problem

Cluster analysis is a set of tools for building groups (clusters) from multivariate
data objects. The aim is to construct groups with homogeneous properties out of
heterogeneous large samples. The groups or clusters should be as homogeneous as
possible and the differences among the various groups as large as possible. Cluster
analysis can be divided into two fundamental steps.

1. Choice of a proximity measure:
One checks each pair of observations (objects) for the similarity of their values.
A similarity (proximity) measure is defined to measure the “closeness” of the
objects. The “closer” they are, the more homogeneous they are.

2. Choice of group-building algorithm:
On the basis of the proximity measures the objects assigned to groups so that
differences between groups become large and observations in a group become as
close as possible.

In marketing, for example, cluster analysis is used to select test markets. Other
applications include the classification of companies according to their organiza-
tional structures, technologies and types. In psychology, cluster analysis is used to
find types of personalities on the basis of questionnaires. In archaeology, it is ap-
plied to classify art objects in different time periods. Other scientific branches that
use cluster analysis are medicine, sociology, linguistics and biology. In each case a
heterogeneous sample of objects are analyzed with the aim to identify homogeneous
subgroups.

Summary
↪→ Cluster analysis is a set of tools for building groups (clusters) from

multivariate data objects.
↪→ The methods used are usually divided into two fundamental steps:

The choice of a proximity measure and the choice of a group-
building algorithm.

12.2 The Proximity Between Objects

The starting point of a cluster analysis is a data matrix X (n × p) with n mea-
surements (objects) of p variables. The proximity (similarity) among objects is de-
scribed by a matrix D(n× n)



12.2 The Proximity Between Objects 333

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d11 d12 . . . . . . . . . d1n
... d22

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

dn1 dn2 . . . . . . . . . dnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (12.1)

The matrix D contains measures of similarity or dissimilarity among the n ob-
jects. If the values dij are distances, then they measure dissimilarity. The greater
the distance, the less similar are the objects. If the values dij are proximity mea-
sures, then the opposite is true, i.e., the greater the proximity value, the more similar
are the objects. A distance matrix, for example, could be defined by the L2-norm:
dij = ‖xi − xj‖2, where xi and xj denote the rows of the data matrix X . Distance
and similarity are of course dual. If dij is a distance, then d ′ij =maxi,j {dij } − dij is
a proximity measure.

The nature of the observations plays an important role in the choice of proximity
measure. Nominal values (like binary variables) lead in general to proximity val-
ues, whereas metric values lead (in general) to distance matrices. We first present
possibilities for D in the binary case and then consider the continuous case.

Similarity of Objects with Binary Structure

In order to measure the similarity between objects we always compare pairs of ob-
servations (xi, xj ) where x	i = (xi1, . . . , xip), x	j = (xj1, . . . , xjp), and xik, xjk ∈
{0,1}. Obviously there are four cases:

xik = xjk = 1,

xik = 0, xjk = 1,

xik = 1, xjk = 0,

xik = xjk = 0.

Define

a1 =
p∑
k=1

I(xik = xjk = 1),

a2 =
p∑
k=1

I(xik = 0, xjk = 1),

a3 =
p∑
k=1

I(xik = 1, xjk = 0),
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Table 12.1 The common
similarity coefficients Name δ λ Definition

Jaccard 0 1 a1
a1+a2+a3

Tanimoto 1 2 a1+a4
a1+2(a2+a3)+a4

Simple Matching (M) 1 1 a1+a4
p

Russel and Rao (RR) – – a1
p

Dice 0 0.5 2a1
2a1+(a2+a3)

Kulczynski – – a1
a2+a3

a4 =
p∑
k=1

I(xik = xjk = 0).

Note that each al, l = 1, . . . ,4, depends on the pair (xi, xj ).
The following proximity measures are used in practice:

dij = a1 + δa4

a1 + δa4 + λ(a2 + a3)
(12.2)

where δ and λ are weighting factors. Table 12.1 shows some similarity measures for
given weighting factors.

These measures provide alternative ways of weighting mismatchings and positive
(presence of a common character) or negative (absence of a common character)
matchings. In principle, we could also consider the Euclidian distance. However,
the disadvantage of this distance is that it treats the observations 0 and 1 in the same
way. If xik = 1 denotes, say, knowledge of a certain language, then the contrary,
xik = 0 (not knowing the language) should eventually be treated differently.

Example 12.1 Let us consider binary variables computed from the car data set (Ta-
ble B.7). We define the new binary data by

yik =
{

1 if xik > xk,

0 otherwise,

for i = 1, . . . , n and k = 1, . . . , p. This means that we transform the observations
of the k-th variable to 1 if it is larger than the mean value of all observations of the
k-th variable. Let us only consider the data points 17 to 19 (Renault 19, Rover and
Toyota Corolla) which lead to (3× 3) distance matrices. The Jaccard measure gives
the similarity matrix

D =
⎛
⎝1.000 0.000 0.333

1.000 0.250
1.000

⎞
⎠ ,
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the Tanimoto measure yields

D =
⎛
⎝1.000 0.231 0.600

1.000 0.455
1.000

⎞
⎠ ,

whereas the Single Matching measure gives

D =
⎛
⎝1.000 0.375 0.750

1.000 0.625
1.000

⎞
⎠ .

Distance Measures for Continuous Variables

A wide variety of distance measures can be generated by the Lr -norms, r ≥ 1,

dij = ||xi − xj ||r =
{

p∑
k=1

|xik − xjk|r
}1/r

. (12.3)

Here xik denotes the value of the k-th variable on object i. It is clear that dii = 0 for
i = 1, . . . , n. The class of distances (12.3) for varying r measures the dissimilarity
of different weights. The L1-metric, for example, gives less weight to outliers than
the L2-norm (Euclidean norm). It is common to consider the squared L2-norm.

Example 12.2 Suppose we have x1 = (0,0), x2 = (1,0) and x3 = (5,5). Then the
distance matrix for the L1-norm is

D1 =
⎛
⎝ 0 1 10

1 0 9
10 9 0

⎞
⎠ ,

and for the squared L2- or Euclidean norm

D2 =
⎛
⎝ 0 1 50

1 0 41
50 41 0

⎞
⎠ .

One can see that the third observation x3 receives much more weight in the squared
L2-norm than in the L1-norm.

An underlying assumption in applying distances based on Lr -norms is that the
variables are measured on the same scale. If this is not the case, a standardization
should first be applied. This corresponds to using a more general L2- or Euclidean
norm with a metric A, where A> 0 (see Section 2.6):

d2
ij = ‖xi − xj‖A = (xi − xj )	A(xi − xj ). (12.4)
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L2-norms are given by A= Ip , but if a standardization is desired, then the weight
matrix A = diag(s−1

X1X1
, . . . , s−1

XpXp
) may be suitable. Recall that sXkXk is the vari-

ance of the k-th component. Hence we have

d2
ij =

p∑
k=1

(xik − xjk)2
sXkXk

. (12.5)

Here each component has the same weight in the computation of the distances and
the distances do not depend on a particular choice of the units of measure.

Example 12.3 Consider the French Food expenditures (Table B.6). The Euclidean
distance matrix (squared L2-norm) is

D = 104

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.00 5.82 58.19 3.54 5.15 151.44 16.91 36.15 147.99 51.84 102.56 271.83
0.00 41.73 4.53 2.93 120.59 13.52 25.39 116.31 43.68 76.81 226.87

0.00 44.14 40.10 24.12 29.95 8.17 25.57 20.81 20.30 88.62
0.00 0.76 127.85 5.62 21.70 124.98 31.21 72.97 231.57

0.00 121.05 5.70 19.85 118.77 30.82 67.39 220.72
0.00 96.57 48.16 1.80 60.52 28.90 29.56

0.00 9.20 94.87 11.07 42.12 179.84
0.00 46.95 6.17 18.76 113.03

0.00 61.08 29.62 31.86
0.00 15.83 116.11

0.00 53.77
0.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Taking the weight matrix A = diag(s−1
X1X1

, . . . , s−1
X7X7

), we obtain the distance ma-
trix (squared L2-norm)

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.00 6.85 10.04 1.68 2.66 24.90 8.28 8.56 24.61 21.55 30.68 57.48
0.00 13.11 6.59 3.75 20.12 13.13 12.38 15.88 31.52 25.65 46.64

0.00 8.03 7.27 4.99 9.27 3.88 7.46 14.92 15.08 26.89
0.00 0.64 20.06 2.76 3.82 19.63 12.81 19.28 45.01

0.00 17.00 3.54 3.81 15.76 14.98 16.89 39.87
0.00 17.51 9.79 1.58 21.32 11.36 13.40

0.00 1.80 17.92 4.39 9.93 33.61
0.00 10.50 5.70 7.97 24.41

0.00 24.75 11.02 13.07
0.00 9.13 29.78

0.00 9.39
0.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(12.6)

When applied to contingency tables, a χ2-metric is suitable to compare (and
cluster) rows and columns of a contingency table.

If X is a contingency table, row i is characterized by the conditional frequency
distribution

xij
xi• , where xi• =∑p

j=1 xij indicates the marginal distributions over the
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rows: xi•
x•• , x•• =∑n

i=1 xi•. Similarly, column j of X is characterized by the con-

ditional frequencies
xij
x•j , where x•j =∑n

i=1 xij . The marginal frequencies of the

columns are
x•j
x•• .

The distance between two rows, i1 and i2, corresponds to the distance between
their respective frequency distributions. It is common to define this distance using
the χ2-metric:

d2(i1, i2)=
p∑
j=1

1

(
x•j
x•• )

(
xi1j

xi1•
− xi2j

xi2•

)2

. (12.7)

Note that this can be expressed as a distance between the vectors x1 = (
xi1j

x•• ) and

x2 = ( xi2jx•• ) as in (12.4) with weighting matrix A= {diag(
x•j
x•• )}−1. Similarly, if we

are interested in clusters among the columns, we can define:

d2(j1, j2)=
n∑
i=1

1

(
xi•
x•• )

(
xij1

x•j1

− xij2

x•j2

)2

.

Apart from the Euclidean and the Lr -norm measures one can use a proximity
measure such as the Q-correlation coefficient

dij =
∑p

k=1(xik − xi)(xjk − xj ){∑p

k=1(xik − xi)2
∑p

k=1(xjk − xj )2
}1/2

. (12.8)

Here xi denotes the mean over the variables (xi1, . . . , xip).

Summary
↪→ The proximity between data points is measured by a distance or

similarity matrix D whose components dij give the similarity coef-
ficient or the distance between two points xi and xj .

↪→ A variety of similarity (distance) measures exist for binary data
(e.g., Jaccard, Tanimoto, Simple Matching coefficients) and for
continuous data (e.g., Lr -norms).

↪→ The nature of the data could impose the choice of a particular met-
ric A in defining the distances (standardization, χ2-metric etc.).

12.3 Cluster Algorithms

There are essentially two types of clustering methods: hierarchical algorithms and
partioning algorithms. The hierarchical algorithms can be divided into agglomera-
tive and splitting procedures. The first type of hierarchical clustering starts from the
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finest partition possible (each observation forms a cluster) and groups them. The
second type starts with the coarsest partition possible: one cluster contains all of
the observations. It proceeds by splitting the single cluster up into smaller sized
clusters.

The partioning algorithms start from a given group definition and proceed by
exchanging elements between groups until a certain score is optimized. The main
difference between the two clustering techniques is that in hierarchical clustering
once groups are found and elements are assigned to the groups, this assignment
cannot be changed. In partitioning techniques, on the other hand, the assignment of
objects into groups may change during the algorithm application.

Hierarchical Algorithms, Agglomerative Techniques

Agglomerative algorithms are used quite frequently in practice. The algorithm con-
sists of the following steps:

Agglomerative Algorithm

1. Construct the finest partition.
2. Compute the distance matrix D.

DO

3. Find the two clusters with the closest distance.
4. Put those two clusters into one cluster.
5. Compute the distance between the new groups and obtain a reduced distance

matrix D.

UNTIL all clusters are agglomerated into X .

If two objects or groups say, P and Q, are united, one computes the distance
between this new group (object) P +Q and group R using the following distance
function:

d(R,P +Q)= δ1d(R,P )+ δ2d(R,Q)+ δ3d(P,Q)+ δ4|d(R,P )− d(R,Q)|.
(12.9)

The δj ’s are weighting factors that lead to different agglomerative algorithms as
described in Table 12.2. Here nP =∑n

i=1 I(xi ∈ P) is the number of objects in
group P . The values of nQ and nR are defined analogously.

For the most common used Single and Complete linkages, below are the modified
agglomerative algorithm steps:
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Table 12.2 Computations of group distances

Name δ1 δ2 δ3 δ4

Single linkage 1/2 1/2 0 −1/2

Complete linkage 1/2 1/2 0 1/2

Average linkage
(unweighted)

1/2 1/2 0 0

Average linkage
(weighted)

nP
nP+nQ

nQ
nP+nQ 0 0

Centroid nP
nP+nQ

nQ
nP+nQ − nP nQ

(nP+nQ)2 0

Median 1/2 1/2 −1/4 0

Ward nR+nP
nR+nP+nQ

nR+nQ
nR+nP+nQ − nR

nR+nP+nQ 0

Modified Agglomerative Algorithm

1. Construct the finest partition.
2. Compute the distance matrix D.

DO

3. Find the smallest (Single linkage)/largest (Complete linkage) value (between
objects m and n) in D.

4. If m and n are not in the same cluster, combine the clusters m and n belong-
ing to together, and delete the smallest value.

UNTIL all clusters are agglomerated into X or the value in Step 3 exceeds the
preset level.

As instead of computing new distance matrixes every step, a linear search in the
original distance matrix is enough for clustering in the modified algorithm, it is more
efficient in practice.

Example 12.4 Let us examine the agglomerative algorithm for the three points in
Example 12.2, x1 = (0,0), x2 = (1,0) and x3 = (5,5), and the squared Euclidean
distance matrix with single linkage weighting. The algorithm starts with N = 3
clusters: P = {x1}, Q = {x2} and R = {x3}. The distance matrix D2 is given in
Example 12.2. The smallest distance in D2 is the one between the clusters P and Q.
Therefore, applying step 4 in the above algorithm we combine these clusters to form
P +Q= {x1, x2}. The single linkage distance between the remaining two clusters
is from Table 12.2 and (12.9) equal to

d(R,P +Q)= 1

2
d(R,P )+ 1

2
d(R,Q)− 1

2
|d(R,P )− d(R,Q)|

= 1

2
d13 + 1

2
d23 − 1

2
· |d13 − d23|
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= 50

2
+ 41

2
− 1

2
· |50− 41|

= 41. (12.10)

The reduced distance matrix is then
( 0 41

41 0

)
. The next and last step is to unite the

clusters R and P +Q into a single cluster X , the original data matrix.

When there are more data points than in the example above, a visualization of
the implication of clusters is desirable. A graphical representation of the sequence
of clustering is called a dendrogram. It displays the observations, the sequence of
clusters and the distances between the clusters. The vertical axis displays the indices
of the points, whereas the horizontal axis gives the distance between the clusters.
Large distances indicate the clustering of heterogeneous groups. Thus, if we choose
to “cut the tree” at a desired level, the branches describe the corresponding clusters.

Example 12.5 Here we describe the single linkage algorithm for the eight data
points displayed in Figure 12.1. The distance matrix (L2-norms) is

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 10 53 73 50 98 41 65
0 25 41 20 80 37 65

0 2 1 25 18 34
0 5 17 20 32

0 36 25 45
0 13 9

0 4
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the dendrogram is shown in Figure 12.2.

Fig. 12.1 The 8-point

example MVAclus8p
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Fig. 12.2 The dendrogram
for the 8-point example,

Single linkage algorithm
MVAclus8p

If we decide to cut the tree at the level 10, three clusters are defined: {1,2},
{3,4,5} and {6,7,8}.

The single linkage algorithm defines the distance between two groups as the
smallest value of the individual distances. Table 12.2 shows that in this case

d(R,P +Q)=min{d(R,P ), d(R,Q)}. (12.11)

This algorithm is also called the Nearest Neighbor algorithm. As a consequence of
its construction, single linkage tends to build large groups. Groups that differ but
are not well separated may thus be classified into one group as long as they have
two approximate points. The complete linkage algorithm tries to correct this kind
of grouping by considering the largest (individual) distances. Indeed, the complete
linkage distance can be written as

d(R,P +Q)=max{d(R,P ), d(R,Q)}. (12.12)

It is also called the Farthest Neighbor algorithm. This algorithm will cluster groups
where all the points are proximate, since it compares the largest distances. The av-
erage linkage algorithm (weighted or unweighted) proposes a compromise between
the two preceding algorithms, in that it computes an average distance:

d(R,P +Q)= nP

nP + nQ d(R,P )+
nQ

nP + nQ d(R,Q). (12.13)

The centroid algorithm is quite similar to the average linkage algorithm and uses
the natural geometrical distance between R and the weighted center of gravity of P
and Q (see Figure 12.3):

d(R,P +Q)= nP

nP + nQ d(R,P )+
nQ

nP + nQ d(R,Q)−
nP nQ

(nP + nQ)2 d(P,Q).
(12.14)
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Fig. 12.3 The centroid
algorithm

The Ward clustering algorithm computes the distance between groups according
to the formula in Table 12.2. The main difference between this algorithm and the
linkage procedures is in the unification procedure. The Ward algorithm does not put
together groups with smallest distance. Instead, it joins groups that do not increase
a given measure of heterogeneity “too much”. The aim of the Ward procedure is
to unify groups such that the variation inside these groups does not increase too
drastically: the resulting groups are as homogeneous as possible.

The heterogeneity of group R is measured by the inertia inside the group. This
inertia is defined as follows:

IR = 1

nR

nR∑
i=1

d2(xi, xR) (12.15)

where xR is the center of gravity (mean) over the groups. IR clearly provides a
scalar measure of the dispersion of the group around its center of gravity. If the
usual Euclidean distance is used, then IR represents the sum of the variances of the
p components of xi inside group R.

When two objects or groups P and Q are joined, the new group P +Q has a
larger inertia IP+Q. It can be shown that the corresponding increase of inertia is
given by

�(P,Q)= nP nQ

nP + nQ d2(P,Q). (12.16)

In this case, the Ward algorithm is defined as an algorithm that “joins the groups that
give the smallest increase in �(P,Q)”. It is easy to prove that when P and Q are
joined, the new criterion values are given by (12.9) along with the values of δi given
in Table 12.2, when the centroid formula is used to modify d2(R,P +Q). So, the
Ward algorithm is related to the centroid algorithm, but with an “inertial” distance
� rather than the “geometric” distance d2.

As pointed out in Section 12.2, all the algorithms above can be adjusted by the
choice of the metric A defining the geometric distance d2. If the results of a clus-
tering algorithm are illustrated as graphical representations of individuals in spaces
of low dimension (using principal components (normalized or not) or using a cor-
respondence analysis for contingency tables), it is important to be coherent in the
choice of the metric used.
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Fig. 12.4 PCA for 20
randomly chosen bank notes

MVAclusbank

Fig. 12.5 The dendrogram
for the 20 bank notes, Ward

algorithm
MVAclusbank

Example 12.6 As an example we randomly select 20 observations from the bank
notes data and apply the Ward technique using Euclidean distances. Figure 12.4
shows the first two PCs of these data, Figure 12.5 displays the dendrogram.

Example 12.7 Consider the French food expenditures. As in Chapter 10 we use
standardized data which is equivalent to using A = diag(s−1

X1X1
, . . . , s−1

X7X7
) as the

weight matrix in the L2-norm. The NPCA plot of the individuals was given in Fig-
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Fig. 12.6 The dendrogram
for the French food
expenditures, Ward algorithm

MVAclusfood

ure 10.7. The Euclidean distance matrix is of course given by (12.6). The dendro-
gram obtained by using the Ward algorithm is shown in Figure 12.6.

If the aim was to have only two groups, as can be seen in Figure 12.6, they would
be {CA2, CA3, CA4, CA5, EM5} and {MA2, MA3, MA4, MA5, EM2, EM3, EM4}.
Clustering three groups is somewhat arbitrary (the levels of the distances are too
similar). If we were interested in four groups, we would obtain {CA2, CA3, CA4},
{EM2, MA2, EM3, MA3}, {EM4, MA4, MA5} and {EM5, CA5}. This grouping
shows a balance between socio-professional levels and size of the families in deter-
mining the clusters. The four groups are clearly well represented in the NPCA plot
in Figure 10.7.

Summary
↪→ The class of clustering algorithms can be divided into two types:

hierarchical and partitioning algorithms. Hierarchical algorithms
start with the finest (coarsest) possible partition and put groups to-
gether (split groups apart) step by step. Partitioning algorithms start
from a preliminary clustering and exchange group elements until a
certain score is reached.

↪→ Hierarchical agglomerative techniques are frequently used in prac-
tice. They start from the finest possible structure (each data point
forms a cluster), compute the distance matrix for the clusters and
join the clusters that have the smallest distance. This step is re-
peated until all points are united in one cluster.
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Fig. 12.7 Boxplots of the 14 standardized variables of the Boston housing data MVAclusbh

Summary (continued)
↪→ The agglomerative procedure depends on the definition of the dis-

tance between two clusters. Single linkage, complete linkage, and
Ward distance are frequently used distances.

↪→ The process of the unification of clusters can be graphically repre-
sented by a dendrogram.

12.4 Boston Housing

Presented multivariate techniques are now applied to the Boston housing data. We
focus our attention to 14 transformed and standardized variables, see e.g. Fig-
ure 12.7 that provides descriptive statistics via boxplots for two clusters, as dis-
cussed in the sequel. A dendrogram for 13 variables (excluding the dummy variable
X̃4 - Charles River indicator) using the Ward method is displayed in Figure 12.8.
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Fig. 12.8 Dendrogram of the
Boston housing data using the

Ward algorithm
MVAclusbh

Table 12.3 Means and
standard errors of the 13
standardized variables for
Cluster 1 (251 observations)
and Cluster 2
(255 observations)

MVAclusbh

Variable Mean C1 SE C1 Mean C2 SE C2

1 −0.7105 0.0332 0.6994 0.0535

2 0.4848 0.0786 −0.4772 0.0047

3 −0.7665 0.0510 0.7545 0.0279

5 −0.7672 0.0365 0.7552 0.0447

6 0.4162 0.0571 −0.4097 0.0576

7 −0.7730 0.0429 0.7609 0.0378

8 0.7140 0.0472 −0.7028 0.0417

9 −0.5429 0.0358 0.5344 0.0656

10 −0.6932 0.0301 0.6823 0.0569

11 −0.5464 0.0469 0.5378 0.0582

12 0.3547 0.0080 −0.3491 0.0824

13 −0.6899 0.0401 0.6791 0.0509

14 0.5996 0.0431 −0.5902 0.0570

One observes two dominant clusters. A further refinement of say, 4 clusters, could
be considered at a lower level of distance.

To interpret the two clusters, we present the mean values and their respective
standard errors of the thirteen X̃ variables by groups in Table 12.3. Comparison
of the mean values for both groups shows that all the differences in the means are
individually significant. Moreover, cluster one corresponds to housing districts with
better living quality and higher house prices, whereas cluster two corresponds to less
favored districts in Boston. This can be confirmed, for instance, by a lower crime
rate, a higher proportion of residential land, lower proportion of African American,
etc. for cluster one. Cluster two is identified by a higher proportion of older houses,
a higher pupil/teacher ratio and a higher percentage of the lower status population.
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Fig. 12.9 Scatterplot matrix for variables X̃1 to X̃7 of the Boston housing data MVAclusbh

This interpretation is underlined by visual inspection of all the variables via scat-
terplot matrices, see e.g. Figures 12.9 and 12.10. For example, the lower right box-
plot of Figure 12.7 and the correspondingly colored clusters in the last row of Fig-
ure 12.10 confirm the role of each variable in determining the clusters. This in-
terpretation perfectly coincides with the previous PC analysis (Figure 10.11). The
quality of life factor is clearly visible in Figure 12.11, where cluster membership is
distinguished by the shape and color of the points graphed according to the first two
principal components. Clearly, the first PC completely separates the two clusters
and corresponds, as we have discussed in Chapter 10, to a quality of life and house
indicator.

12.5 Exercises

Exercise 12.1 Prove formula (12.16).
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Fig. 12.10 Scatterplot matrix for variables X̃8 to X̃14 of the Boston housing data MVA-
clusbh

Exercise 12.2 Prove that IR = tr(SR), where SR denotes the empirical covariance
matrix of the observations contained in R.

Exercise 12.3 Prove that

�(R,P +Q)= nR + nP
nR + nP + nQ �(R,P )+ nR + nQ

nR + nP + nQ �(R,Q)

− nR

nR + nP + nQ �(P,Q),

when the centroid formula is used to define d2(R,P +Q).
Exercise 12.4 Repeat the 8-point example (Example 12.5) using the complete link-
age and the Ward algorithm. Explain the difference to single linkage.

Exercise 12.5 Explain the differences between various proximity measures by
means of an example.
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Fig. 12.11 Scatterplot of the
first two PCs displaying the

two clusters
MVAclusbh

Exercise 12.6 Repeat the bank notes example (Example 12.6) with another random
sample of 20 notes.

Exercise 12.7 Repeat the bank notes example (Example 12.6) with another cluster-
ing algorithm.

Exercise 12.8 Repeat the bank notes example (Example 12.6) or the 8-point exam-
ple (Example 12.5) with the L1-norm.

Exercise 12.9 Analyze the U.S. companies example (Table B.5) using the Ward
algorithm and the L2-norm.

Exercise 12.10 Analyze the U.S. crime data set (Table B.10) with the Ward algo-
rithm and the L2-norm on standardized variables (use only the crime variables).

Exercise 12.11 Repeat Exercise 12.10 with the U.S. health data set (use only the
number of deaths variables).

Exercise 12.12 Redo Exercise 12.10 with the χ2-metric. Compare the results.

Exercise 12.13 Redo Exercise 12.11 with the χ2-metric and compare the results.



Chapter 13
Discriminant Analysis

Discriminant analysis is used in situations where the clusters are known a priori.
The aim of discriminant analysis is to classify an observation, or several observa-
tions, into these known groups. For instance, in credit scoring, a bank knows from
past experience that there are good customers (who repay their loan without any
problems) and bad customers (who showed difficulties in repaying their loan). When
a new customer asks for a loan, the bank has to decide whether or not to give the
loan. The past records of the bank provides two data sets: multivariate observations
xi on the two categories of customers (including for example age, salary, marital
status, the amount of the loan, etc.). The new customer is a new observation x with
the same variables. The discrimination rule has to classify the customer into one of
the two existing groups and the discriminant analysis should evaluate the risk of a
possible “bad decision”.

Many other examples are described below, and in most applications, the groups
correspond to natural classifications or to groups known from history (like in the
credit scoring example). These groups could have been formed by a cluster analysis
performed on past data.

Section 13.1 presents the allocation rules when the populations are known, i.e.,
when we know the distribution of each population. As described in Section 13.2
in practice the population characteristics have to be estimated from history. The
methods are illustrated in several examples.

13.1 Allocation Rules for Known Distributions

Discriminant analysis is a set of methods and tools used to distinguish between
groups of populations �j and to determine how to allocate new observations into
groups. In one of our running examples we are interested in discriminating between
counterfeit and true bank notes on the basis of measurements of these bank notes,
see Table B.2. In this case we have two groups (counterfeit and genuine bank notes)
and we would like to establish an algorithm (rule) that can allocate a new observa-
tion (a new bank note) into one of the groups.

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
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Another example is the detection of “fast” and “slow” consumers of a newly in-
troduced product. Using a consumer’s characteristics like education, income, family
size, amount of previous brand switching, we want to classify each consumer into
the two groups just identified.

In poetry and literary studies the frequencies of spoken or written words and
lengths of sentences indicate profiles of different artists and writers. It can be of in-
terest to attribute unknown literary or artistic works to certain writers with a specific
profile. Anthropological measures on ancient sculls help in discriminating between
male and female bodies. Good and poor credit risk ratings constitute a discrimina-
tion problem that might be tackled using observations on income, age, number of
credit cards, family size etc.

In general we have populations �j, j = 1,2, . . . , J and we have to allocate an
observation x to one of these groups. A discriminant rule is a separation of the
sample space (in general Rp) into sets Rj such that if x ∈ Rj , it is identified as a
member of population �j .

The main task of discriminant analysis is to find “good” regions Rj such that the
error of misclassification is small. In the following we describe such rules when the
population distributions are known.

Maximum Likelihood Discriminant Rule

Denote the densities of each population �j by fj (x). The maximum likelihood dis-
criminant rule (ML rule) is given by allocating x to �j maximizing the likelihood
Lj (x)= fj (x)=maxi fi(x).

If several fi give the same maximum then any of them may be selected. Mathe-
matically, the sets Rj given by the ML discriminant rule are defined as

Rj = {x : Lj (x) > Li(x) for i = 1, . . . , J, i 
= j}. (13.1)

By classifying the observation into a certain group we may encounter a misclas-
sification error. For J = 2 groups the probability of putting x into group 2 although
it is from population 1 can be calculated as

p21 = P(X ∈R2|�1)=
∫
R2

f1(x)dx. (13.2)

Similarly the conditional probability of classifying an object as belonging to the first
population �1 although it actually comes from �2 is

p12 = P(X ∈R1|�2)=
∫
R1

f2(x)dx. (13.3)

The misclassified observations create a cost C(i|j) when a �j observation is as-
signed to Ri . In the credit risk example, this might be the cost of a “sour” credit.
The cost structure can be pinned down in a cost matrix:
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Classified population
�1 �2

�1 0 C(2|1)
True population

�2 C(1|2) 0

Let πj be the prior probability of population �j , where “prior” means the a pri-
ori probability that an individual selected at random belongs to �j (i.e., before
looking to the value x). Prior probabilities should be considered if it is clear ahead
of time that an observation is more likely to stem from a certain population �j . An
example is the classification of musical tunes. If it is known that during a certain
period of time a majority of tunes were written by a certain composer, then there is
a higher probability that a certain tune was composed by this composer. Therefore,
he should receive a higher prior probability when tunes are assigned to a specific
group.

The expected cost of misclassification (ECM) is given by

ECM = C(2|1)p21π1 +C(1|2)p12π2. (13.4)

We will be interested in classification rules that keep the ECM small or minimize
it over a class of rules. The discriminant rule minimizing the ECM (13.4) for two
populations is given below.

Theorem 13.1 For two given populations, the rule minimizing the ECM is given by

R1 =
{
x : f1(x)

f2(x)
≥

(
C(1|2)
C(2|1)

)(
π2

π1

)}

R2 =
{
x : f1(x)

f2(x)
<

(
C(1|2)
C(2|1)

)(
π2

π1

)}
.

The ML discriminant rule is thus a special case of the ECM rule for equal mis-
classification costs and equal prior probabilities. For simplicity the unity cost case,
C(1|2) = C(2|1) = 1, and equal prior probabilities, π2 = π1, are assumed in the
following.

Theorem 13.1 will be proven by an example from credit scoring.

Example 13.1 Suppose that �1 represents the population of bad clients who create
the cost C(2|1) if they are classified as good clients. Analogously, define C(1|2) as
the cost of loosing a good client classified as a bad one. Let γ denote the gain of the
bank for the correct classification of a good client. The total gain of the bank is then

G(R2)=−C(2|1)π1

∫
I(x ∈R2)f1(x)dx −C(1|2)π2

∫
{1− I(x ∈R2)}f2(x)dx

+ γ π2

∫
I(x ∈R2)f2(x)dx

=−C(1|2)π2 +
∫

I(x ∈R2){−C(2|1)π1f1(x)+ (C(1|2)+ γ )π2f2(x)}dx.
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Since the first term in this equation is constant, the maximum is obviously obtained
for

R2 = {x : −C(2|1)π1f1(x)+ {C(1|2)+ γ }π2f2(x) ≥ 0 }.
This is equivalent to

R2 =
{
x : f2(x)

f1(x)
≥ C(2|1)π1

{C(1|2)+ γ }π2

}
,

which corresponds to the set R2 in Theorem 13.1 for a gain of γ = 0.

Example 13.2 Suppose x ∈ {0,1} and

�1 : P(X = 0)= P(X = 1)= 1

2

�2 : P(X = 0)= 1

4
= 1− P(X = 1).

The sample space is the set {0,1}. The ML discriminant rule is to allocate x = 0 to
�1 and x = 1 to �2, defining the sets R1 = {0}, R2 = {1} and R1 ∪R2 = {0,1}.

Example 13.3 Consider two normal populations

�1 :N(μ1, σ
2
1 ),

�2 :N(μ2, σ
2
2 ).

Then

Li(x)= (2πσ 2
i )
−1/2 exp

{
−1

2

(
x −μi
σi

)2}
.

Hence x is allocated to �1 (x ∈ R1) if L1(x)≥ L2(x). Note that L1(x)≥ L2(x) is
equivalent to

σ2

σ1
exp

[
−1

2

{(
x −μ1

σ1

)2

−
(
x −μ2

σ2

)2}]
≥ 1

or

x2
(

1

σ 2
1

− 1

σ 2
2

)
− 2x

(
μ1

σ 2
1

− μ2

σ 2
2

)
+

(
μ2

1

σ 2
1

− μ2
2

σ 2
2

)
≤ 2 log

σ2

σ1
. (13.5)

Suppose that μ1 = 0, σ1 = 1 and μ2 = 1, σ2 = 1
2 . Formula (13.5) leads to

R1 =
{
x : x ≤ 1

3
(4−√

4+ 6 log(2)) or x ≥ 1

3
(4+√

4+ 6 log(2))

}
,

R2 =R \R1.

This situation is shown in Figure 13.1.



13.1 Allocation Rules for Known Distributions 355

Fig. 13.1 Maximum
likelihood rule for normal

distributions
MVAdisnorm

The situation simplifies in the case of equal variances σ1 = σ2. The discriminant
rule (13.5) is then (for μ1 <μ2)

x→�1, if x ∈R1 =
{
x : x ≤ 1

2
(μ1 +μ2)

}
,

x→�2, if x ∈R2 =
{
x : x > 1

2
(μ1 +μ2)

}
.

(13.6)

Theorem 13.2 shows that the ML discriminant rule for multinormal observa-
tions is intimately connected with the Mahalanobis distance. The discriminant rule
is based on linear combinations and belongs to the family of Linear Discriminant
Analysis (LDA) methods.

Theorem 13.2 Suppose �i =Np(μi,�).
(a) The ML rule allocates x to �j , where j ∈ {1, . . . , J } is the value minimizing

the square Mahalanobis distance between x and μi :

δ2(x,μi)= (x −μi)	�−1(x −μi), i = 1, . . . , J.

(b) In the case of J = 2,

x ∈R1 ⇐⇒ α	(x −μ)≥ 0,

where α =�−1(μ1 −μ2) and μ= 1
2 (μ1 +μ2).

Proof Part (a) of the theorem follows directly from comparison of the likelihoods.
For J = 2, part (a) says that x is allocated to �1 if

(x −μ1)
	�−1(x −μ1)≤ (x −μ2)

	�−1(x −μ2).
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Rearranging terms leads to

−2μ	1 �−1x + 2μ	2 �−1x +μ	1 �−1μ1 −μ	2 �−1μ2 ≤ 0,

which is equivalent to

2(μ2 −μ1)
	�−1x + (μ1 −μ2)

	�−1(μ1 +μ2)≤ 0,

(μ1 −μ2)
	�−1

{
x − 1

2
(μ1 +μ2)

}
≥ 0,

α	(x −μ)≥ 0. �

Bayes Discriminant Rule

We have seen an example where prior knowledge on the probability of classifi-
cation into �j was assumed. Denote the prior probabilities by πj and note that∑J

j=1 πj = 1. The Bayes rule of discrimination allocates x to the �j that gives
the largest value of πifi(x), πjfj (x)=maxi πifi(x). Hence, the discriminant rule
is defined by Rj = {x : πjfj (x) ≥ πifi(x) for i = 1, . . . , J }. Obviously the Bayes
rule is identical to the ML discriminant rule for πj = 1/J .

A further modification is to allocate x to �j with a certain probability φj (x),
such that

∑J
j=1 φj (x)= 1 for all x. This is called a randomized discriminant rule.

A randomized discriminant rule is a generalization of deterministic discriminant
rules since

φj (x)=
{

1 if πjfj (x)=maxi πifi(x),
0 otherwise

reflects the deterministic rules.
Which discriminant rules are good? We need a measure of comparison. Denote

pij =
∫
φi(x)fj (x)dx (13.7)

as the probability of allocating x to�i if it in fact belongs to�j . A discriminant rule
with probabilities pij is as good as any other discriminant rule with probabilities p′ij
if

pii ≥ p′ii for all i = 1, . . . , J. (13.8)

We call the first rule better if the strict inequality in (13.8) holds for at least one i.
A discriminant rule is called admissible if there is no better discriminant rule.

Theorem 13.3 All Bayes discriminant rules (including the ML rule) are admissi-
ble.
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Probability of Misclassification for the ML Rule (J = 2)

Suppose that �i = Np(μi,�). In the case of two groups, it is not difficult to de-
rive the probabilities of misclassification for the ML discriminant rule. Consider for
instance p12 = P(x ∈R1 |�2). By part (b) in Theorem 13.2 we have

p12 = P{α	(x −μ) > 0 |�2}.
If X ∈R2, α	(X−μ)∼N(− 1

2δ
2, δ2) where δ2 = (μ1−μ2)

	�−1(μ1−μ2) is the
squared Mahalanobis distance between the two populations, we obtain

p12 =�
(
−1

2
δ

)
.

Similarly, the probability of being classified into population 2 although x stems from
�1 is equal to p21=�(− 1

2δ).

Classification with Different Covariance Matrices

The minimum ECM depends on the ratio of the densities f1(x)
f2(x)

or equivalently on the
difference log{f1(x)}− log{f2(x)}. When the covariance for both density functions
differ, the allocation rule becomes more complicated:

R1 =
{
x : −1

2
x	(�−1

1 −�−1
2 )x + (μ	1 �−1

1 −μ	2 �−1
2 )x − k

≥ log

[(
C(1|2)
C(2|1)

)(
π2

π1

)]}
,

R2 =
{
x : −1

2
x	(�−1

1 −�−1
2 )x + (μ	1 �−1

1 −μ	2 �−1
2 )x − k

< log

[(
C(1|2)
C(2|1)

)(
π2

π1

)]}
,

where k = 1
2 log( |�1||�2| )+ 1

2 (μ
	
1 �

−1
1 μ1 −μ	2 �−1

2 μ2). The classification regions are
defined by quadratic functions. Therefore they belong to the family of Quadratic
Discriminant Analysis (QDA) methods. This quadratic classification rule coincides
with the rules used when �1 =�2, since the term 1

2x
	(�−1

1 −�−1
2 )x disappears.

Summary
↪→ Discriminant analysis is a set of methods used to distinguish among

groups in data and to allocate new observations into the existing
groups.
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Summary (continued)
↪→ Given that data are from populations �j with densities fj , j =

1, . . . , J , the maximum likelihood discriminant rule (ML rule) al-
locates an observation x to that population �j which has the max-
imum likelihood Lj (x)= fj (x)=maxi fi(x).

↪→ Given prior probabilities πj for populations �j , Bayes discrimi-
nant rule allocates an observation x to the population �j that max-
imizes πifi(x) with respect to i. All Bayes discriminant rules (incl.
the ML rule) are admissible.

↪→ For the ML rule and J = 2 normal populations, the probabilities of
misclassification are given by p12 = p21 =�(− 1

2δ) where δ is the
Mahalanobis distance between the two populations.

↪→ Classification of two normal populations with different covariance
matrices (ML rule) leads to regions defined by a quadratic function.

↪→ Desirable discriminant rules have a low expected cost of misclassi-
fication (ECM).

13.2 Discrimination Rules in Practice

The ML rule is used if the distribution of the data is known up to parameters.
Suppose for example that the data come from multivariate normal distributions
Np(μj ,�). If we have J groups with nj observations in each group, we use xj
to estimate μj , and Sj to estimate �. The common covariance may be estimated by

Su =
J∑
j=1

nj

( Sj
n− J

)
, (13.9)

with n=∑J
j=1 nj . Thus the empirical version of the ML rule of Theorem 13.2 is to

allocate a new observation x to �j such that j minimizes

(x − xi)	S−1
u (x − xi) for i ∈ {1, . . . , J }.

Example 13.4 Let us apply this rule to the Swiss bank notes. The 20 randomly
chosen bank notes which we had clustered into two groups in Example 12.6 are
used. First the covariance � is estimated by the average of the covariances of �1

(cluster 1) and �2 (cluster 2). The hyperplane α̂	(x − x)= 0 which separates the
two populations is given by

α̂ = S−1
u (x1 − x2)= (−12.18,20.54,−19.22,−15.55,−13.06,21.43)	,

x = 1

2
(x1 + x2)= (214.79,130.05,129.92,9.23,10.48,140.46)	.
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Now let us apply the discriminant rule to the entire bank notes data set. Counting
the number of misclassifications by

100∑
i=1

I{̂α	(xi − x) < 0},
200∑
i=101

I{̂α	(xi − x) > 0},

we obtain 1 misclassified observation for the conterfeit bank notes and 0 misclassi-
fication for the genuine bank notes.

When J = 3 groups, the allocation regions can be calculated using

h12(x)= (x1 − x2)
	S−1

u

{
x − 1

2
(x1 + x2)

}

h13(x)= (x1 − x3)
	S−1

u

{
x − 1

2
(x1 + x3)

}

h23(x)= (x2 − x3)
	S−1

u

{
x − 1

2
(x2 + x3)

}
.

The rule is to allocate x to⎧⎨
⎩
�1 if h12(x)≥ 0 and h13(x)≥ 0
�2 if h12(x) < 0 and h23(x)≥ 0
�3 if h13(x) < 0 and h23(x) < 0.

Estimation of the Probabilities of Misclassifications

Misclassification probabilities are given by (13.7) and can be estimated by replacing
the unknown parameters by their corresponding estimators.

For the ML rule for two normal populations we obtain

p̂12 = p̂21 =�
(
−1

2
δ̂

)

where δ̂2= (x̄1 − x̄2)
	S−1

u (x̄1 − x̄2) is the estimator for δ2.
The probabilities of misclassification may also be estimated by the re-substitution

method. We reclassify each original observation xi , i = 1, . . . , n into �1, . . . ,�J

according to the chosen rule. Then denoting the number of individuals coming from
�j which have been classified into �i by nij , we have p̂ij = nij

nj
, an estimator of

pij . Clearly, this method leads to too optimistic estimators of pij , but it provides a
rough measure of the quality of the discriminant rule. The matrix (p̂ij ) is called the
confusion matrix in Johnson and Wichern (1998).
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Example 13.5 In the above classification problem for the Swiss bank notes (Ta-
ble B.2), we have the following confusion matrix: MVAaper

true membership
genuine (�1) counterfeit (�2)

�1 100 1
predicted

�2 0 99

The apparent error rate (APER) is defined as the fraction of observations that
are misclassified. The APER, expressed as a percentage, is

APER=
(

1

200

)
100%= 0.5%.

For the calculation of the APER we use the observations twice: the first time to
construct the classification rule and the second time to evaluate this rule. An APER
of 0.5% might therefore be too optimistic. An approach that corrects for this bias
is based on the holdout procedure of Lachenbruch and Mickey (1968). For two
populations this procedure is as follows:

1. Start with the first population �1. Omit one observation and develop the classi-
fication rule based on the remaining n1 − 1, n2 observations.

2. Classify the “holdout” observation using the discrimination rule in Step 1.
3. Repeat steps 1 and 2 until all of the �1 observations are classified. Count the

number n′21 of misclassified observations.
4. Repeat steps 1 through 3 for population �2. Count the number n′12 of misclassi-

fied observations.

Estimates of the misclassification probabilities are given by

p̂′12 =
n′12

n2

and

p̂′21 =
n′21

n1
.

A more realistic estimator of the actual error rate (AER) is given by

n′12 + n′21

n2 + n1
. (13.10)

Statisticians favor the AER (for its unbiasedness) over the APER. In large samples,
however, the computational costs might counterbalance the statistical advantage.
This is not a real problem since the two misclassification measures are asymptoti-
cally equivalent.
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Fisher’s Linear Discrimination Function

Another approach stems from R. A. Fisher. His idea was to base the discriminant
rule on a projection a	x such that a good separation was achieved. This LDA pro-
jection method is called Fisher’s linear discrimination function. If

Y =Xa

denotes a linear combination of observations, then the total sum of squares of y,∑n
i=1(yi − ȳ)2, is equal to

Y	HY = a	X	HXa = a	T a (13.11)

with the centering matrix H= I − n−11n1	n and T =X	HX .
Suppose we have samples Xj , j = 1, . . . , J , from J populations. Fisher’s sug-

gestion was to find the linear combination a	x which maximizes the ratio of the
between-group-sum of squares to the within-group-sum of squares.

The within-group-sum of squares is given by

J∑
j=1

Y	j HjYj =
J∑
j=1

a	X	j HjXj a = a	Wa, (13.12)

where Yj denotes the j -th sub-matrix of Y corresponding to observations of group
j and Hj denotes the (nj × nj ) centering matrix. The within-group-sum of squares
measures the sum of variations within each group.

The between-group-sum of squares is

J∑
j=1

nj (yj − y)2 =
J∑
j=1

nj {a	(xj − x)}2 = a	Ba, (13.13)

where yj and xj denote the means of Yj and Xj and y and x denote the sample
means of Y and X . The between-group-sum of squares measures the variation of
the means across groups.

The total sum of squares (13.11) is the sum of the within-group-sum of squares
and the between-group-sum of squares, i.e.,

a	T a = a	Wa + a	Ba.
Fisher’s idea was to select a projection vector a that maximizes the ratio

a	Ba
a	Wa

. (13.14)

The solution is found by applying Theorem 2.5.

Theorem 13.4 The vector a that maximizes (13.14) is the eigenvector of W−1B
that corresponds to the largest eigenvalue.
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Now a discrimination rule is easy to obtain: Classify x into group j where a	x̄j
is closest to a	x, i.e.,

x→�j where j = arg min
i
|a	(x − x̄i )|.

When J = 2 groups, the discriminant rule is easy to compute. Suppose that
group 1 has n1 elements and group 2 has n2 elements. In this case

B =
(n1n2

n

)
dd	,

where d = (x1 − x2). W−1B has only one eigenvalue which equals

tr(W−1B)=
(n1n2

n

)
d	W−1d,

and the corresponding eigenvector is a =W−1d . The corresponding discriminant
rule is

x→�1 if a	
{
x − 1

2
(x1 + x2)

}
> 0,

x→�2 if a	
{
x − 1

2
(x1 + x2)

}
≤ 0.

(13.15)

The Fisher LDA is closely related to projection pursuit (Chapter 19) since the sta-
tistical technique is based on a one dimensional index a	x.

Example 13.6 Consider the bank notes data again. Let us use the subscript “g” for
the genuine and “f” for the conterfeit bank notes, e.g., Xg denotes the first hundred
observations of X and Xf the second hundred. In the context of the bank data set
the “between-group-sum of squares” is defined as

100{(yg − y)2 + (yf − y)2} = a	Ba (13.16)

for some matrix B. Here, yg and yf denote the means for the genuine and counter-

feit bank notes and y = 1
2 (yg + yf ). The “within-group-sum of squares” is

100∑
i=1

{(yg)i − yg}2 +
100∑
i=1

{(yf )i − yf }2 = a	Wa, (13.17)

with (yg)i = a	xi and (yf )i = a	xi+100 for i = 1, . . . ,100.
The resulting discriminant rule consists of allocating an observation x0 to the

genuine sample space if

a	(x0 − x) > 0,

with a =W−1(xg − xf ) (see Exercise 13.8) and of allocating x0 to the counterfeit
sample space when the opposite is true. In our case

a = (0.000,0.029,−0.029,−0.039,−0.041,0.054)	·
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Fig. 13.2 Densities of
projections of genuine and
counterfeit bank notes by
Fisher’s discrimination rule

MVAdisfbank

One genuine and no counterfeit bank notes are misclassified. Figure 13.2 shows the
estimated densities for yg = a	Xg and yf = a	Xf . They are separated better than
those of the diagonals in Figure 1.9.

Note that the allocation rule (13.15) is exactly the same as the ML rule for
J = 2 groups and for normal distributions with the same covariance. For J = 3
groups this rule will be different, except for the special case of collinear sample
means.

Summary
↪→ A discriminant rule is a separation of the sample space into sets Rj .

An observation x is classified as coming from population �j if it
lies in Rj .

↪→ The expected cost of misclassification (ECM) for two populations
is given by ECM= C(2|1)p21π1 +C(1|2)p12π2.

↪→ The ML rule is applied if the distributions in the populations are
known up to parameters, e.g., for normal distributions Np(μj ,�).

↪→ The ML rule allocates x to the population that exhibits the smallest
Mahalanobis distance

δ2(x;μi)= (x −μi)	�−1(x −μi).
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Summary (continued)
↪→ The probability of misclassification is given by

p12 = p21 =�
(
−1

2
δ

)
,

where δ is the Mahalanobis distance between μ1 and μ2.
↪→ Classification for different covariance structures in the two popula-

tions leads to quadratic discrimination rules.
↪→ A different approach is Fisher’s linear discrimination rule which

finds a linear combination a	x that maximizes the ratio of the
“between-group-sum of squares” and the “within-group-sum of
squares”. This rule turns out to be identical to the ML rule when
J = 2 for normal populations.

13.3 Boston Housing

One interesting application of discriminant analysis with respect to the Boston hous-
ing data is the classification of the districts according to the house values. The ra-
tionale behind this is that certain observables must determine the value of a district,
as in Section 3.7 where the house value was regressed on the other variables. Two
groups are defined according to the median value of houses X̃14: in group �1 the
value of X̃14 is greater than or equal to the median of X̃14 and in group �2 the value
of X̃14 is less than the median of X̃14.

The linear discriminant rule, defined on the remaining 12 variables (excluding X̃4
and X̃14) is applied. After reclassifying the 506 observations, we obtain an apparent
error rate of 0.146. The details are given in Table 13.1. The more appropriate error
rate, given by the AER, is 0.160 (see Table 13.2).

Let us now turn to a group definition suggested by the Cluster Analysis in Sec-
tion 12.4. Group �1 was defined by higher quality of life and house. We define

Table 13.1 APER for price
of Boston houses

MVAdiscbh

True

�1 �2

�1 216 40

Predicted

�2 34 216

Table 13.2 AER for price of
Boston houses

MVAaerbh

True

�1 �2

�1 211 42

Predicted

�2 39 214
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Table 13.3 APER for
clusters of Boston houses

MVAdiscbh

True

�1 �2

�1 244 13

Predicted

�2 7 242

Table 13.4 AER for clusters
of Boston houses

MVAaerbh

True

�1 �2

�1 244 14

Predicted

�2 7 241

Fig. 13.3 Discrimination scores for the two clusters created from the Boston housing data
MVAdiscbh

the linear discriminant rule using the 13 variables from X̃ excluding X̃4. Then we
reclassify the 506 observations and we obtain an APER of 0.0395. Details are sum-
marized in Table 13.3. The AER turns out to be 0.0415 (see Table 13.4).

Figure 13.3 displays the values of the linear discriminant scores (see Theo-
rem 13.2) for all of the 506 observations, colored by groups. One can clearly see
the APER is derived from the 7 observations from group �1 with a negative score
and the 13 observations from group �2 with positive score.

13.4 Exercises

Exercise 13.1 Prove Theorem 13.2 (a) and 13.2 (b).

Exercise 13.2 Apply the rule from Theorem 13.2 (b) for p = 1 and compare the
result with that of Example 13.3.

Exercise 13.3 Calculate the ML discrimination rule based on observations of a one-
dimensional variable with an exponential distribution.
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Exercise 13.4 Calculate the ML discrimination rule based on observations of a two-
dimensional random variable, where the first component has an exponential distri-
bution and the other has an alternative distribution. What is the difference between
the discrimination rule obtained in this exercise and the Bayes discrimination rule?

Exercise 13.5 Apply the Bayes rule to the car data (Table B.3) in order to dis-
criminate between Japanese, European and U.S. cars, i.e., J = 3. Consider only the
“miles per gallon” variable and take the relative frequencies as prior probabilities.

Exercise 13.6 Compute Fisher’s linear discrimination function for the 20 bank
notes from Example 12.6. Apply it to the entire bank data set. How many obser-
vations are misclassified?

Exercise 13.7 Use the Fisher’s linear discrimination function on the WAIS data set
(Table B.12) and evaluate the results by re-substitution the probabilities of misclas-
sification.

Exercise 13.8 Show that in Example 13.6

(a) W = 100(Sg + Sf ), where Sg and Sf denote the empirical covariances (3.6)
and (3.5) w.r.t. the genuine and counterfeit bank notes,

(b) B = 100{(xg − x)(xg − x)	 + (xf − x)(xf − x)	}, where x = 1
2 (xg + xf ),

(c) a =W−1(xg − xf ).

Exercise 13.9 Recalculate Example 13.3 with the prior probability π1 = 1
3 and

C(2|1)= 2C(1|2).

Exercise 13.10 Explain the effect of changing π1 or C(1|2) on the relative location
of the region Rj , j = 1,2.

Exercise 13.11 Prove that Fisher’s linear discrimination function is identical to the
ML rule when the covariance matrices are identical (J = 2).

Exercise 13.12 Suppose that x ∈ {0,1,2,3,4,5,6,7,8,9,10} and

�1 :X ∼ Bi(10,0.2) with the prior probability π1 = 0.5;
�2 :X ∼ Bi(10,0.3) with the prior probability π2 = 0.3;
�3 :X ∼ Bi(10,0.5) with the prior probability π3 = 0.2.

Determine the sets R1, R2 and R3. (Use the Bayes discriminant rule.)



Chapter 14
Correspondence Analysis

Correspondence analysis provides tools for analyzing the associations between rows
and columns of contingency tables. A contingency table is a two-entry frequency
table where the joint frequencies of two qualitative variables are reported. For in-
stance a (2× 2) table could be formed by observing from a sample of n individuals
two qualitative variables: the individual’s sex and whether the individual smokes.
The table reports the observed joint frequencies. In general (n× p) tables may be
considered.

The main idea of correspondence analysis is to develop simple indices that will
show the relations between the row and the columns categories. These indices will
tell us simultaneously which column categories have more weight in a row category
and vice-versa. Correspondence analysis is also related to the issue of reducing the
dimension of the table, similar to principal component analysis in Chapter 10, and
to the issue of decomposing the table into its factors as discussed in Chapter 9. The
idea is to extract the indices in decreasing order of importance so that the main
information of the table can be summarized in spaces with smaller dimensions. For
instance, if only two factors (indices) are used, the results can be shown in two-
dimensional graphs, showing the relationship between the rows and the columns of
the table.

Section 14.1 defines the basic notation and motivates the approach and Sec-
tion 14.2 gives the basic theory. The indices will be used to describe the χ2 statistic
measuring the associations in the table. Several examples in Section 14.3 show how
to provide and interpret, in practice, the two-dimensional graphs displaying the re-
lationship between the rows and the columns of a contingency table.

14.1 Motivation

The aim of correspondence analysis is to develop simple indices that show relations
between the row and columns of a contingency tables. Contingency tables are very
useful to describe the association between two variables in very general situations.
The two variables can be qualitative (nominal), in which case they are also referred
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to as categorical variables. Each row and each column in the table represents one
category of the corresponding variable. The entry xij in the table X (with dimension
(n×p)) is the number of observations in a sample which simultaneously fall in the
i-th row category and the j -th column category, for i = 1, . . . , n and j = 1, . . . , p.
Sometimes a “category” of a nominal variable is also called a “modality” of the
variable.

The variables of interest can also be discrete quantitative variables, such as the
number of family members or the number of accidents an insurance company had
to cover during one year, etc. Here, each possible value that the variable can have
defines a row or a column category. Continuous variables may be taken into account
by defining the categories in terms of intervals or classes of values which the variable
can take on. Thus contingency tables can be used in many situations, implying that
correspondence analysis is a very useful tool in many applications.

The graphical relationships between the rows and the columns of the table X
that result from correspondence analysis are based on the idea of representing all
the row and column categories and interpreting the relative positions of the points
in terms of the weights corresponding to the column and the row. This is achieved
by deriving a system of simple indices providing the coordinates of each row and
each column. These row and column coordinates are simultaneously represented in
the same graph. It is then clear to see which column categories are more important
in the row categories of the table (and the other way around).

As was already eluded to, the construction of the indices is based on an idea sim-
ilar to that of PCA. Using PCA the total variance was partitioned into independent
contributions stemming from the principal components. Correspondence analysis,
on the other hand, decomposes a measure of association, typically the total χ2 value
used in testing independence, rather than decomposing the total variance.

Example 14.1 The French “baccalauréat” frequencies have been classified into re-
gions and different baccalauréat categories, see Appendix, Table B.8. Altogether
n= 202100 baccalauréats were observed. The joint frequency of the region Ile-de-
France and the modality Philosophy, for example, is 9724. That is, 9724 baccalau-
réats were in Ile-de-France and the category Philosophy.

The question is whether certain regions prefer certain baccalauréat types. If we
consider, for instance, the region Lorraine, we have the following percentages:

A B C D E F G H

20.5 7.6 15.3 19.6 3.4 14.5 18.9 0.2

The total percentages of the different modalities of the variable baccalauréat are
as follows:

A B C D E F G H

22.6 10.7 16.2 22.8 2.6 9.7 15.2 0.2
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One might argue that the region Lorraine seems to prefer the modalities E, F,
G and dislike the specializations A, B, C, D relative to the overall frequency of
baccalauréat type.

In correspondence analysis we try to develop an index for the regions so that
this over- or underrepresentation can be measured in just one single number. Simul-
taneously we try to weight the regions so that we can see in which region certain
baccalauréat types are preferred.

Example 14.2 Consider n types of companies and p locations of these companies.
Is there a certain type of company that prefers a certain location? Or is there a
location index that corresponds to a certain type of company?

Assume that n= 3, p = 3, and that the frequencies are as follows:

X =
⎛
⎝4 0 2

0 1 1
1 1 4

⎞
⎠ ← Finance

← Energy

← HiTech

↑ Frankfurt

↑ Berlin

↑ Munich

The frequencies imply that four type 3 companies (HiTech) are in location 3 (Mu-
nich), and so on. Suppose there is a (company) weight vector r = (r1, . . . , rn)	 such
that a location index sj could be defined as

sj = c
n∑
i=1

ri
xij

x•j
, (14.1)

where x•j =∑n
i=1 xij is the number of companies in location j and c is a constant.

s1, for example, would give the average weighted frequency (by r) of companies in
location 1 (Frankfurt).

Given a location weight vector s∗ = (s∗1 , . . . , s∗p)	, we can define a company
index in the same way as

r∗i = c∗
p∑
j=1

s∗j
xij

xi•
, (14.2)

where c∗ is a constant and xi• =∑p

j=1 xij is the sum of the i-th row of X , i.e., the
number of type i companies. Thus r∗2 , for example, would give the average weighted
frequency (by s∗) of energy companies.

If (14.1) and (14.2) can be solved simultaneously for a “row weight” vector
r = (r1, . . . , rn)

	 and a “column weight” vector s = (s1, . . . , sp)
	, we may rep-

resent each row category by ri , i = 1, . . . , n and each column category by sj ,
j = 1, . . . , p in a one-dimensional graph. If in this graph ri and sj are in close
proximity (far from the origin), this would indicate that the i-th row category has
an important conditional frequency xij /x•j in (14.1) and that the j -th column cate-
gory has an important conditional frequency xij /xi• in (14.2). This would indicate a
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positive association between the i-th row and the j -th column. A similar line of ar-
gument could be used if ri was very far away from sj (and far from the origin). This
would indicate a small conditional frequency contribution, or a negative association
between the i-th row and the j -th column.

Summary
↪→ The aim of correspondence analysis is to develop simple indices

that show relations among qualitative variables in a contingency
table.

↪→ The joint representation of the indices reveals relations among the
variables.

14.2 Chi-square Decomposition

An alternative way of measuring the association between the row and column cat-
egories is a decomposition of the value of the χ2-test statistic. The well known
χ2-test for independence in a two-dimensional contingency table consists of two
steps. First the expected value of each cell of the table is estimated under the hy-
pothesis of independence. Second, the corresponding observed values are compared
to the expected values using the statistic

t =
n∑
i=1

p∑
j=1

(xij −Eij )2/Eij , (14.3)

where xij is the observed frequency in cell (i, j) and Eij is the corresponding esti-
mated expected value under the assumption of independence, i.e.,

Eij = xi• x•j
x••

. (14.4)

Here x•• =∑n
i=1 xi•. Under the hypothesis of independence, t has a χ2

(n−1)(p−1)
distribution. In the industrial location example introduced above the value of t =
6.26 is almost significant at the 5% level. It is therefore worth investigating the
special reasons for departure from independence.

The method of χ2 decomposition consists of finding the SVD of the matrix
C (n× p) with elements

cij = (xij −Eij )/E1/2
ij . (14.5)

The elements cij may be viewed as measuring the (weighted) departure between the
observed xij and the theoretical values Eij under independence. This leads to the
factorial tools of Chapter 9 which describe the rows and the columns of C.
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For simplification define the matrics A (n× n) and B (p× p) as

A= diag(xi•) and B = diag(x•j ). (14.6)

These matrices provide the marginal row frequencies a(n × 1) and the marginal
column frequencies b(p× 1):

a =A1n and b= B1p. (14.7)

It is easy to verify that

C
√
b= 0 and C	

√
a = 0, (14.8)

where the square root of the vector is taken element by element and R = rank(C)≤
min{(n− 1), (p− 1)}. From (9.14) of Chapter 9, the SVD of C yields

C = ���	, (14.9)

where � contains the eigenvectors of CC	, � the eigenvectors of C	C and � =
diag(λ1/2

1 , . . . , λ
1/2
R ) with λ1 ≥ λ2 ≥ · · · ≥ λR (the eigenvalues of CC	). Equa-

tion (14.9) implies that

cij =
R∑
k=1

λ
1/2
k γikδjk. (14.10)

Note that (14.3) can be rewritten as

tr(CC	)=
R∑
k=1

λk =
n∑
i=1

p∑
j=1

c2
ij = t. (14.11)

This relation shows that the SVD of C decomposes the total χ2 value rather than,
as in Chapter 9, the total variance.

The duality relations between the row and the column space (9.11) are now for
k = 1, . . . ,R given by

δk = 1√
λk

C	γk,

γk = 1√
λk

Cδk.
(14.12)

The projections of the rows and the columns of C are given by

Cδk =
√
λkγk,

C	γk =
√
λkδk.

(14.13)

Note that the eigenvectors satisfy

δ	k
√
b= 0, γ	k

√
a = 0. (14.14)

From (14.10) we see that the eigenvectors δk and γk are the objects of interest when
analyzing the correspondence between the rows and the columns. Suppose that the
first eigenvalue in (14.10) is dominant so that

cij ≈ λ1/2
1 γi1δj1. (14.15)
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In this case when the coordinates γi1 and δj1 are both large (with the same sign)
relative to the other coordinates, then cij will be large as well, indicating a positive
association between the i-th row and the j -th column category of the contingency
table. If γi1 and δj1 were both large with opposite signs, then there would be a
negative association between the i-th row and j -th column.

In many applications, the first two eigenvalues, λ1 and λ2, dominate and the
percentage of the total χ2 explained by the eigenvectors γ1 and γ2 and δ1 and δ2

is large. In this case (14.13) and (γ1, γ2) can be used to obtain a graphical display
of the n rows of the table ((δ1, δ2) play a similar role for the p columns of the
table). The interpretation of the proximity between row and column points will be
interpreted as above with respect to (14.10).

In correspondence analysis, we use the projections of weighted rows of C and
the projections of weighted columns of C for graphical displays. Let rk(n× 1) be
the projections of A−1/2C on δk and sk(p× 1) be the projections of B−1/2C	 on γk
(k = 1, . . . ,R):

rk =A−1/2Cδk =
√
λkA−1/2γk,

sk = B−1/2C	γk =
√
λkB−1/2δk.

(14.16)

These vectors have the property that

r	k a = 0,

s	k b= 0.
(14.17)

The obtained projections on each axis k = 1, . . . ,R are centered at zero with the
natural weights given by a (the marginal frequencies of the rows of X ) for the row
coordinates rk and by b (the marginal frequencies of the columns of X ) for the
column coordinates sk (compare this to expression (14.14)). As a result, the origin
is the center of gravity for all of the representations. We also know from (14.16) and
the SVD of C that

r	k Ark = λk,
s	k Bsk = λk.

(14.18)

From the duality relation between δk and γk (see (14.12)) we obtain

rk = 1√
λk

A−1/2CB1/2sk,

sk = 1√
λk

B−1/2C	A1/2rk,

(14.19)

which can be simplified to

rk =
√
x••
λk

A−1X sk,

sk =
√
x••
λk

B−1X	rk.
(14.20)
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These vectors satisfy the relations (14.1) and (14.2) for each k = 1, . . . ,R simulta-
neously.

As in Chapter 9, the vectors rk and sk are referred to as factors (row factor and
column factor respectively). They have the following means and variances:

rk = 1

x••
r	k a = 0,

sk = 1

x••
s	k b= 0,

(14.21)

and

Var(rk)= 1

x••

n∑
i=1

xi•r2
ki =

r	k Ark
x••

= λk

x••
,

Var(sk)= 1

x••

p∑
j=1

x•j s2
kj =

s	k Bsk
x••

= λk

x••
.

(14.22)

Hence, λk/
∑j

k=1 λj , which is the part of the k-th factor in the decomposition of the
χ2 statistic t , may also be interpreted as the proportion of the variance explained by
the factor k. The proportions

Ca(i, rk)= xi•r2
ki

λk
, for i = 1, . . . , n, k = 1, . . . ,R (14.23)

are called the absolute contributions of row i to the variance of the factor rk . They
show which row categories are most important in the dispersion of the k-th row
factors. Similarly, the proportions

Ca(j, sk)=
x•j s2

kj

λk
, for j = 1, . . . , p, k = 1, . . . ,R (14.24)

are called the absolute contributions of column j to the variance of the column
factor sk . These absolute contributions may help to interpret the graph obtained by
correspondence analysis.

14.3 Correspondence Analysis in Practice

The graphical representations on the axes k = 1,2, . . . ,R of the n rows and of the p
columns of X are provided by the elements of rk and sk . Typically, two-dimensional
displays are often satisfactory if the cumulated percentage of variance explained by
the first two factors, "2 = λ1+λ2∑R

k=1 λk
, is sufficiently large.

The interpretation of the graphs may be summarized as follows:

• The proximity of two rows (two columns) indicates a similar profile in these two
rows (two columns), where “profile” referrs to the conditional frequency distri-
bution of a row (column); those two rows (columns) are almost proportional. The
opposite interpretation applies when the two rows (two columns) are far apart.
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• The proximity of a particular row to a particular column indicates that this row
(column) has a particularly important weight in this column (row). In contrast to
this, a row that is quite distant from a particular column indicates that there are
almost no observations in this column for this row (and vice versa). Of course, as
mentioned above, these conclusions are particularly true when the points are far
away from 0.

• The origin is the average of the factors rk and sk . Hence, a particular point (row
or column) projected close to the origin indicates an average profile.

• The absolute contributions are used to evaluate the weight of each row (column)
in the variances of the factors.

• All the interpretations outlined above must be carried out in view of the quality of
the graphical representation which is evaluated, as in PCA, using the cumulated
percentage of variance.

Remark 14.1 Note that correspondence analysis can also be applied to more general
(n× p) tables X which in a “strict sense” are not contingency tables.

As long as statistical (or natural) meaning can be given to sums over rows and
columns, Remark 14.1 holds. This implies, in particular, that all of the variables
are measured in the same units. In that case, x•• constitutes the total frequency of
the observed phenomenon, and is shared between individuals (n rows) and between
variables (p columns). Representations of the rows and columns of X , rk and sk ,
have the basic property (14.19) and show which variables have important weights
for each individual and vice versa. This type of analysis is used as an alternative to
PCA. PCA is mainly concerned with covariances and correlations, whereas corre-
spondence analysis analyzes a more general kind of association. (See Exercises 14.3
and 14.11.)

Example 14.3 A survey of Belgium citizens who regularly read a newspaper was
conducted in the 1980’s. They were asked where they lived. The possible an-
swers were 10 regions: 7 provinces (Antwerp, Western Flanders, Eastern Flanders,
Hainant, Liège, Limbourg, Luxembourg) and 3 regions around Brussels (Flemish-
Brabant, Wallon-Brabant and the city of Brussels). They were also asked what kind
of newspapers they read on a regular basis. There were 15 possible answers split up
into 3 classes: Flemish newspapers (label begins with the letter v), French newspa-
pers (label begins with f ) and both languages together (label begins with b). The
data set is given in Table B.9. The eigenvalues of the factorial correspondence anal-
ysis are given in Table 14.1.

Two-dimensional representations will be quite satisfactory since the first two
eigenvalues account for 81% of the variance. Figure 14.1 shows the projections of
the rows (the 15 newspapers) and of the columns (the 10 regions).

As expected, there is a high association between the regions and the type of news-
papers which is read. In particular, vb (Gazet van Antwerp) is almost exclusively
read in the province of Antwerp (this is an extreme point in the graph). The points
on the left all belong to Flanders, whereas those on the right all belong to Wallonia.
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Table 14.1 Eigenvalues and
percentages of the variance
(Example 14.3)

λj Percentage
of variance

Cumulated
percentage

183.40 0.653 0.653

43.75 0.156 0.809

25.21 0.090 0.898

11.74 0.042 0.940

8.04 0.029 0.969

4.68 0.017 0.985

2.13 0.008 0.993

1.20 0.004 0.997

0.82 0.003 1.000

0.00 0.000 1.000

Fig. 14.1 Projection of rows (the 15 newspapers) and columns (the 10 regions) MVAcor-
rjourn

Notice that the Wallon-Brabant and the Flemish-Brabant are not far from Brussels.
Brussels is close to the center (average) and also close to the bilingual newspapers.
It is shifted a little to the right of the origin due to the majority of French speaking
people in the area.

The absolute contributions of the first 3 factors are listed in Tables 14.2 and 14.3.
The row factors rk are in Table 14.2 and the column factors sk are in Table 14.3.
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Table 14.2 Absolute
contributions of row
factors rk

Ca(i, r1) Ca(i, r2) Ca(i, r3)

va 0.0563 0.0008 0.0036

vb 0.1555 0.5567 0.0067

vc 0.0244 0.1179 0.0266

vd 0.1352 0.0952 0.0164

ve 0.0253 0.1193 0.0013

ff 0.0314 0.0183 0.0597

fg 0.0585 0.0162 0.0122

fh 0.1086 0.0024 0.0656

fi 0.1001 0.0024 0.6376

bj 0.0029 0.0055 0.0187

bk 0.0236 0.0278 0.0237

bl 0.0006 0.0090 0.0064

vm 0.1000 0.0038 0.0047

fn 0.0966 0.0059 0.0269

f0 0.0810 0.0188 0.0899

Total 1.0000 1.0000 1.0000

Table 14.3 Absolute
contributions of column
factors sk

Ca(j, s1) Ca(j, s2) Ca(j, s3)

brw 0.0887 0.0210 0.2860

bxl 0.1259 0.0010 0.0960

anv 0.2999 0.4349 0.0029

brf 0.0064 0.2370 0.0090

foc 0.0729 0.1409 0.0033

for 0.0998 0.0023 0.0079

hai 0.1046 0.0012 0.3141

lig 0.1168 0.0355 0.1025

lim 0.0562 0.1162 0.0027

lux 0.0288 0.0101 0.1761

Total 1.0000 1.0000 1.0000

They show, for instance, the important role of Antwerp and the newspaper vb in
determining the variance of both factors. Clearly, the first axis expresses linguistic
differences between the 3 parts of Belgium. The second axis shows a larger disper-
sion between the Flemish region than the French speaking regions. Note also that the
3-rd axis shows an important role of the category “fi” (other French newspapers)
with the Wallon-Brabant “brw” and the Hainant “hai” showing the most important
contributions. The coordinate of “fi” on this axis is negative (not shown here) so
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Fig. 14.2 Correspondence analysis including Corsica MVAcorrbac

Table 14.4 Eigenvalues and
percentages of explained
variance (including Corsica)

Eigenvalues λ Percentage
of variances

Cumulated
percentage

2436.2 0.5605 0.561

1052.4 0.2421 0.803

341.8 0.0786 0.881

229.5 0.0528 0.934

152.2 0.0350 0.969

109.1 0.0251 0.994

25.0 0.0058 1.000

0.0 0.0000 1.000

are the coordinates of “brw” and “hai”. Apparently, these two regions also seem to
feature a greater proportion of readers of more local newspapers.

Example 14.4 Applying correspondence analysis to the French baccalauréat data
(Table B.8) leads to Figure 14.2. Excluding Corsica we obtain Figure 14.3. The
different modalities are labeled A, . . . , H and the regions are labeled ILDF, . . . ,
CORS. The results of the correspondence analysis are given in Table 14.4 and Fig-
ure 14.2.

The first two factors explain 80% of the total variance. It is clear from Fig-
ure 14.2 that Corsica (in the upper left) is an outlier. The analysis is therefore
redone without Corsica and the results are given in Table 14.5 and Figure 14.3.
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Fig. 14.3 Correspondence analysis excluding Corsica MVAcorrbac

Table 14.5 Eigenvalues and
percentages of explained
variance (excluding Corsica)

Eigenvalues λ Percentage
of variances

Cumulated
percentage

2408.6 0.5874 0.587

909.5 0.2218 0.809

318.5 0.0766 0.887

195.9 0.0478 0.935

149.3 0.0304 0.971

96.1 0.0234 0.994

22.8 0.0056 1.000

0.0 0.0000 1.000

Since Corsica has such a small weight in the analysis, the results have not changed
much.

The projections on the first three axes, along with their absolute contribution
to the variance of the axis, are summarized in Table 14.6 for the regions and in
Table 14.7 for baccalauréats.

The interpretation of the results may be summarized as follows. Table 14.7 shows
that the baccalauréats B on one side and F on the other side are most strongly re-
sponsible for the variation on the first axis. The second axis mostly characterizes
an opposition between baccalauréats A and C. Regarding the regions, Ile de France
plays an important role on each axis. On the first axis, it is opposed to Lorraine
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Table 14.6 Coefficients and absolute contributions for regions, Example 14.4

Region r1 r2 r3 Ca(i, r1) Ca(i, r2) Ca(i, r3)

ILDF 0.1464 0.0677 0.0157 0.3839 0.2175 0.0333

CHAM −0.0603 −0.0410 −0.0187 0.0064 0.0078 0.0047

PICA 0.0323 −0.0258 −0.0318 0.0021 0.0036 0.0155

HNOR −0.0692 0.0287 0.1156 0.0096 0.0044 0.2035

CENT −0.0068 −0.0205 −0.0145 0.0001 0.0030 0.0043

BNOR −0.0271 −0.0762 0.0061 0.0014 0.0284 0.0005

BOUR −0.1921 0.0188 0.0578 0.0920 0.0023 0.0630

NOPC −0.1278 0.0863 −0.0570 0.0871 0.1052 0.1311

LORR −0.2084 0.0511 0.0467 0.1606 0.0256 0.0608

ALSA −0.2331 0.0838 0.0655 0.1283 0.0439 0.0767

FRAC −0.1304 −0.0368 −0.0444 0.0265 0.0056 0.0232

PAYL −0.0743 −0.0816 −0.0341 0.0232 0.0743 0.0370

BRET 0.0158 0.0249 −0.0469 0.0011 0.0070 0.0708

PCHA −0.0610 −0.1391 −0.0178 0.0085 0.1171 0.0054

AQUI 0.0368 −0.1183 0.0455 0.0055 0.1519 0.0643

MIDI 0.0208 −0.0567 0.0138 0.0018 0.0359 0.0061

LIMO −0.0540 0.0221 −0.0427 0.0033 0.0014 0.0154

RHOA −0.0225 0.0273 −0.0385 0.0042 0.0161 0.0918

AUVE 0.0290 −0.0139 −0.0554 0.0017 0.0010 0.0469

LARO 0.0290 −0.0862 −0.0177 0.0383 0.0595 0.0072

PROV 0.0469 −0.0717 0.0279 0.0142 0.0884 0.0383

Table 14.7 Coefficients and absolute contributions for baccalauréats, Example 14.4

Baccal s1 s2 s3 Ca(j, s1) Ca(j, s2) Ca(j, s3)

A 0.0447 −0.0679 0.0367 0.0376 0.2292 0.1916

B 0.1389 0.0557 0.0011 0.1724 0.0735 0.0001

C 0.0940 0.0995 0.0079 0.1198 0.3556 0.0064

D 0.0227 −0.0495 −0.0530 0.0098 0.1237 0.4040

E −0.1932 0.0492 −0.1317 0.0825 0.0141 0.2900

F −0.2156 0.0862 0.0188 0.3793 0.1608 0.0219

G −0.1244 −0.0353 0.0279 0.1969 0.0421 0.0749

H −0.0945 0.0438 −0.0888 0.0017 0.0010 0.0112

and Alsace, whereas on the second axis, it is opposed to Poitou-Charentes and
Aquitaine. All of this is confirmed in Figure 14.3.

On the right side are the more classical baccalauréats and on the left, more tech-
nical ones. The regions on the left side have thus larger weights in the technical
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Table 14.8 Eigenvalues and
explained proportion of
variance, Example 14.5

λj Percentage
of variance

Cumulated
percentage

4399.0 0.4914 0.4914

2213.6 0.2473 0.7387

1382.4 0.1544 0.8932

870.7 0.0973 0.9904

51.0 0.0057 0.9961

34.8 0.0039 1.0000

0.0 0.0000 0.0000

baccalauréats. Note also that most of the southern regions of France are concen-
trated in the lower part of the graph near the baccalauréat A.

Finally, looking at the 3-rd axis, we see that it is dominated by the baccalau-
réat E (negative sign) and to a lesser degree by H (negative) (as opposed to A (pos-
itive sign)). The dominating regions are HNOR (positive sign), opposed to NOPC
and AUVE (negative sign). For instance, HNOR is particularly poor in baccalau-
réat D.

Example 14.5 The U.S. crime data set (Table B.10) gives the number of crimes in
the 50 states of the U.S. classified in 1985 for each of the following seven categories:
murder, rape, robbery, assault, burglary, larceny and auto-theft. The analysis of the
contingency table, limited to the first two factors, provides the following results (see
Table 14.8).

Looking at the absolute contributions (not reproduced here, see Exercise 14.6), it
appears that the first axis is robbery (+) versus larceny (−) and auto-theft (−) axis
and that the second factor contrasts assault (−) to auto-theft (+). The dominating
states for the first axis are the North-Eastern States MA (+) and NY (+) constrasting
the Western States WY (−) and ID (−). For the second axis, the differences are
seen between the Northern States (MA (+) and RI (+)) and the Southern States
AL (−), MS (−) and AR (−). These results can be clearly seen in Figure 14.4
where all the states and crimes are reported. The figure also shows in which states
the proportion of a particular crime category is higher or lower than the national
average (the origin).

Biplots

The biplot is a low-dimensional display of a data matrix X where the rows and
columns are represented by points. The interpretation of a biplot is specifically di-
rected towards the scalar products of lower dimensional factorial variables and is
designed to approximately recover the individual elements of the data matrix in
these scalar products. Suppose that we have a (10× 5) data matrix with elements
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Fig. 14.4 Projection of rows (the 50 states) and columns (the 7 crime categories) MVAcor-
rcrime

xij . The idea of the biplot is to find 10 row points qi ∈ R
k (k < p, i = 1, . . . ,10)

and 5 column points tj ∈R
k (j = 1, . . . ,5) such that the 50 scalar products between

the row and the column vectors closely approximate the 50 corresponding elements
of the data matrix X . Usually we choose k = 2. For example, the scalar product
between q7 and t4 should approximate the data value x74 in the seventh row and
the fourth column. In general, the biplot models the data xij as the sum of a scalar
product in some low-dimensional subspace and a residual “error” term:

xij = q	i tj + eij
=

∑
k

qiktjk + eij . (14.25)

To understand the link between correspondence analysis and the biplot, we need to
introduce a formula which expresses xij from the original data matrix (see (14.3))
in terms of row and column frequencies. One such formula, known as the “reconsti-
tution formula”, is (14.10):

xij =Eij
⎛
⎝1+

∑R
k=1 λ

1
2
k γikδjk√

xi•x•j
x••

⎞
⎠ (14.26)

Consider now the row profiles xij /xi• (the conditional frequencies) and the average
row profile xi•/x••. From (14.26) we obtain the difference between each row profile
and this average:
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(
xij

xi•
− xi•
x••

)
=

R∑
k=1

λ
1
2
k γik

(√
x•j
xi•x••

)
δjk. (14.27)

By the same argument we can also obtain the difference between each column pro-
file and the average column profile:(

xij

x•j
− x•j
x••

)
=

R∑
k=1

λ
1
2
k γik

(√
xi•

x•j x••

)
δjk. (14.28)

Now, if λ1 � λ2 � λ3 · · ·, we can approximate these sums by a finite number of K
terms (usually K = 2) using (14.16) to obtain(

xij

x•j
− xi•
x••

)
=

K∑
k=1

(
x•i√
λkx••

rki

)
skj + eij , (14.29)

(
xij

xi•
− x•j
x••

)
=

K∑
k=1

(
x•j√
λkx••

skj

)
rki + e′ij , (14.30)

where eij and e′ij are error terms. (14.30) shows that if we consider displaying the
differences between the row profiles and the average profile, then the projection of
the row profile rk and a rescaled version of the projections of the column profile sk
constitute a biplot of these differences. (14.29) implies the same for the differences
between the column profiles and this average.

Summary
↪→ Correspondence analysis is a factorial decomposition of contin-

gency tables. The p-dimensional individuals and the n-dimensional
variables can be graphically represented by projecting onto spaces
of smaller dimension.

↪→ The practical computation consists of first computing a spectral
decomposition of A−1XB−1X	 and B−1X	A−1X which have
the same first p eigenvalues. The graphical representation is ob-
tained by plotting

√
λ1r1 vs.

√
λ2r2 and

√
λ1s1 vs.

√
λ2s2. Both

plots maybe displayed in the same graph taking into account the
appropriate orientation of the eigenvectors ri , sj .

↪→ Correspondence analysis provides a graphical display of the asso-
ciation measure cij = (xij −Eij )2/Eij .

↪→ Biplot is a low-dimensional display of a data matrix where the rows
and columns are represented by points.
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14.4 Exercises

Exercise 14.1 Show that the matrices A−1XB−1X	 and B−1X	A−1X have an
eigenvalue equal to 1 and that the corresponding eigenvectors are proportional
to (1, . . . ,1)	.

Exercise 14.2 Verify the relations in (14.8), (14.14) and (14.17).

Exercise 14.3 Do a correspondence analysis for the car marks data (Table B.7)!
Explain how this table can be considered as a contingency table.

Exercise 14.4 Compute the χ2-statistic of independence for the French baccalau-
réat data.

Exercise 14.5 Prove that C = A−1/2(X − E)B−1/2√x•• and E = ab	
x•• and ver-

ify (14.20).

Exercise 14.6 Do the full correspondence analysis of the U.S. crime data (Ta-
ble B.10), and determine the absolute contributions for the first three axes. How
can you interpret the third axis? Try to identify the states with one of the four re-
gions to which it belongs. Do you think the four regions have a different behavior
with respect to crime?

Exercise 14.7 Repeat Exercise 14.6 with the U.S. health data (Table B.16). Only
analyze the columns indicating the number of deaths per state.

Exercise 14.8 Consider a (n × n) contingency table being a diagonal matrix X .
What do you expect the factors rk, sk to be like?

Exercise 14.9 Assume that after some reordering of the rows and the columns, the
contingency table has the following structure:

X =
J1 J2

I1 ∗ 0
I2 0 ∗

That is, the rows Ii only have weights in the columns Ji , for i = 1,2. What do you
expect the graph of the first two factors to look like?

Exercise 14.10 Redo Exercise 14.9 using the following contingency table:

X =
J1 J2 J3

I1 ∗ 0 0
I2 0 ∗ 0
I3 0 0 ∗
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Exercise 14.11 Consider the French food data (Table B.6). Given that all of the
variables are measured in the same units (Francs), explain how this table can be
considered as a contingency table. Perform a correspondence analysis and compare
the results to those obtained in the NPCA analysis in Chapter 10.



Chapter 15
Canonical Correlation Analysis

Complex multivariate data structures are better understood by studying low-
dimensional projections. For a joint study of two data sets, we may ask what type
of low-dimensional projection helps in finding possible joint structures for the two
samples. The canonical correlation analysis is a standard tool of multivariate statis-
tical analysis for discovery and quantification of associations between two sets of
variables.

The basic technique is based on projections. One defines an index (projected
multivariate variable) that maximally correlates with the index of the other variable
for each sample separately. The aim of canonical correlation analysis is to maximize
the association (measured by correlation) between the low-dimensional projections
of the two data sets. The canonical correlation vectors are found by a joint covari-
ance analysis of the two variables. The technique is applied to a marketing example
where the association of a price factor and other variables (like design, sportiness
etc.) is analysed. Tests are given on how to evaluate the significance of the discov-
ered association.

15.1 Most Interesting Linear Combination

The associations between two sets of variables may be identified and quantified by
canonical correlation analysis. The technique was originally developed by Hotelling
(1935) who analyzed how arithmetic speed and arithmetic power are related to read-
ing speed and reading power. Other examples are the relation between governmental
policy variables and economic performance variables and the relation between job
and company characteristics.

Suppose we are given two random variables X ∈ R
q and Y ∈ R

p . The idea is to
find an index describing a (possible) link between X and Y . Canonical correlation
analysis (CCA) is based on linear indices, i.e., linear combinations

a	X and b	Y

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-642-17229-8_15, © Springer-Verlag Berlin Heidelberg 2012
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of the random variables. Canonical correlation analysis searches for vectors a and
b such that the relation of the two indices a	x and b	y is quantified in some inter-
pretable way. More precisely, one is looking for the “most interesting” projections
a and b in the sense that they maximize the correlation

ρ(a, b)= ρa	Xb	Y (15.1)

between the two indices.
Let us consider the correlation ρ(a, b) between the two projections in more de-

tail. Suppose that (
X

Y

)
∼

((
μ

ν

)
,

(
�XX �XY
�YX �YY

))
,

where the sub-matrices of this covariance structure are given by

Var(X)=�XX (q × q)
Var(Y )=�YY (p× p)

Cov(X,Y )= E(X−μ)(Y − ν)	 =�XY =�	YX (q × p).
Using (3.7) and (4.26),

ρ(a, b)= a	�XYb
(a	�XXa)1/2 (b	�YY b)1/2

. (15.2)

Therefore, ρ(ca, b)= ρ(a, b) for any c ∈R
+. Given the invariance of scale we may

rescale projections a and b and thus we can equally solve

max
a,b

= a	�XYb

under the constraints

a	�XXa = 1

b	�YY b= 1.

For this problem, define

K=�−1/2
XX �XY�

−1/2
YY . (15.3)

Recall the singular value decomposition of K(q×p) from Theorem 2.2. The matrix
K may be decomposed as

K= ���	
with

� = (γ1, . . . , γk)

�= (δ1, . . . , δk) (15.4)

�= diag(λ1/2
1 , . . . , λ

1/2
k )
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where by (15.3) and (2.15),

k = rank(K)= rank(�XY )= rank(�YX),

and λ1 ≥ λ2 ≥ · · · ≥ λk are the nonzero eigenvalues of N1 =KK	 and N2 =K	K
and γi and δj are the standardized eigenvectors of N1 and N2 respectively.

Define now for i = 1, . . . , k the vectors

ai =�−1/2
XX γi, (15.5)

bi =�−1/2
YY δi, (15.6)

which are called the canonical correlation vectors. Using these canonical correla-
tion vectors we define the canonical correlation variables

ηi = a	i X (15.7)

ϕi = b	i Y. (15.8)

The quantities ρi = λ1/2
i for i = 1, . . . , k are called the canonical correlation coeffi-

cients.
From the properties of the singular value decomposition given in (15.4) we have

Cov(ηi, ηj )= a	i �XXaj = γ	i γj =
{

1 i = j,
0 i 
= j. (15.9)

The same is true for Cov(ϕi, ϕj ). The following theorem tells us that the canonical
correlation vectors are the solution to the maximization problem of (15.1).

Theorem 15.1 For any given r , 1≤ r ≤ k, the maximum

C(r)=max
a,b

a	�XYb (15.10)

subject to

a	�XXa = 1, b	�YY b= 1

and

a	i �XXa = 0 for i = 1, . . . , r − 1

is given by

C(r)= ρr = λ1/2
r

and is attained when a = ar and b= br .

Proof The proof is given in three steps.
(i) Fix a and maximize over b, i.e., solve:

max
b
(a	�XYb)2 =max

b
(b	�YXa)(a	�XYb)
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subject to b	�YY b= 1. By Theorem 2.5 the maximum is given by the largest eigen-
value of the matrix

�−1
YY�YXaa

	�XY .

By Corollary 2.2, the only nonzero eigenvalue equals

a	�XY�−1
YY�YXa. (15.11)

(ii) Maximize (15.11) over a subject to the constraints of the theorem. Put γ =
�

1/2
XXa and observe that (15.11) equals

γ	�−1/2
XX �XY�

−1
YY�YX�

−1/2
XX γ = γ	K	Kγ.

Thus, solve the equivalent problem

max
γ
γ	N1γ (15.12)

subject to γ	γ = 1, γ	i γ = 0 for i = 1, . . . , r − 1.
Note that the γi ’s are the eigenvectors of N1 corresponding to its first r − 1

largest eigenvalues. Thus, as in Theorem 10.3, the maximum in (15.12) is obtained
by setting γ equal to the eigenvector corresponding to the r-th largest eigenvalue,
i.e., γ = γr or equivalently a = ar . This yields

C2(r)= γ	r N1γr = λrγ	r γ = λr .

(iii) Show that the maximum is attained for a = ar and b= br . From the SVD of
K we conclude that Kδr = ρrγr and hence

a	r �XY br = γ	r Kδr = ρrγ	r γr = ρr . �

Let (
X

Y

)
∼

((
μ

ν

)
,

(
�XX �XY
�YX �YY

))
.

The canonical correlation vectors

a1 =�−1/2
XX γ1,

b1 =�−1/2
YY δ1

maximize the correlation between the canonical variables

η1 = a	1 X,
ϕ1 = b	1 Y.

The covariance of the canonical variables η and ϕ is given in the next theorem.
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Theorem 15.2 Let ηi and ϕi be the i-th canonical correlation variables (i =
1, . . . , k). Define η= (η1, . . . , ηk) and ϕ = (ϕ1, . . . , ϕk). Then

Var

(
η

ϕ

)
=

(
Ik �

� Ik

)

with � given in (15.4).

This theorem shows that the canonical correlation coefficients, ρi = λ1/2
i , are the

covariances between the canonical variables ηi and ϕi and that the indices η1 = a	1 X
and ϕ1 = b	1 Y have the maximum covariance

√
λ1 = ρ1.

The following theorem shows that canonical correlations are invariant w.r.t. linear
transformations of the original variables.

Theorem 15.3 Let X∗ = U	X+ u and Y ∗ = V	Y + v where U and V are nonsin-
gular matrices. Then the canonical correlations betweenX∗ and Y ∗ are the same as
those between X and Y . The canonical correlation vectors of X∗ and Y ∗ are given
by

a∗i = U−1ai,

b∗i = V−1bi.
(15.13)

Summary
↪→ Canonical correlation analysis aims to identify possible links be-

tween two (sub-)sets of variables X ∈ R
q and Y ∈ R

p. The idea is
to find indices a	X and b	Y such that the correlation ρ(a, b) =
ρa	Xb	Y is maximal.

↪→ The maximum correlation (under constraints) is attained by setting
ai =�−1/2

XX γi and bi =�−1/2
YY δi , where γi and δi denote the eigen-

vectors of KK	 and K	K, K=�−1/2
XX �XY�

−1/2
YY respectively.

↪→ The vectors ai and bi are called canonical correlation vectors.

↪→ The indices ηi = a	i X and ϕi = b	i Y are called canonical correla-
tion variables.

↪→ The values ρ1 =√λ1, . . . , ρk =√λk , which are the square roots of
the nonzero eigenvalues of KK	 and K	K, are called the canoni-
cal correlation coefficients. The covariance between the canonical
correlation variables is Cov(ηi, ϕi)=√λi , i = 1, . . . , k.
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Summary (continued)

↪→ The first canonical variables, η1 = a	1 X and ϕ1 = b	1 Y , have the
maximum covariance

√
λ1.

↪→ Canonical correlations are invariant w.r.t. linear transformations of
the original variables X and Y .

15.2 Canonical Correlation in Practice

In practice we have to estimate the covariance matrices �XX , �XY and �YY . Let
us apply the canonical correlation analysis to the car marks data (see Table B.7). In
the context of this data set one is interested in relating price variables with variables
such as sportiness, safety, etc. In particular, we would like to investigate the relation
between the two variables non-depreciation of value and price of the car and all
other variables.

Example 15.1 We perform the canonical correlation analysis on the data matrices
X and Y that correspond to the set of values {Price, Value Stability} and {Economy,
Service, Design, Sporty car, Safety, Easy handling}, respectively. The estimated co-
variance matrix S is given by

Price Value Econ. Serv. Design Sport. Safety Easy h.

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.41 −1.11 0.78 −0.71 −0.90 −1.04 −0.95 0.18
−1.11 1.19 −0.42 0.82 0.77 0.90 1.12 0.11

0.78 −0.42 0.75 −0.23 −0.45 −0.42 −0.28 0.28
−0.71 0.82 −0.23 0.66 0.52 0.57 0.85 0.14
−0.90 0.77 −0.45 0.52 0.72 0.77 0.68 −0.10
−1.04 0.90 −0.42 0.57 0.77 1.05 0.76 −0.15
−0.95 1.12 −0.28 0.85 0.68 0.76 1.26 0.22

0.18 0.11 0.28 0.14 −0.10 −0.15 0.22 0.32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence,

SXX =
(

1.41 −1.11
−1.11 1.19

)
,

SXY =
(

0.78 −0.71 −0.90 −1.04 −0.95 0.18
−0.42 0.82 0.77 0.90 1.12 0.11

)
,

SYY =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.75 −0.23 −0.45 −0.42 −0.28 0.28
−0.23 0.66 0.52 0.57 0.85 0.14
−0.45 0.52 0.72 0.77 0.68 −0.10
−0.42 0.57 0.77 1.05 0.76 −0.15
−0.28 0.85 0.68 0.76 1.26 0.22

0.28 0.14 −0.10 −0.15 0.22 0.32

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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Fig. 15.1 The first canonical variables for the car marks data MVAcancarm

It is interesting to see that value stability and price have a negative covariance. This
makes sense since highly priced vehicles tend to loose their market value at a faster
pace than medium priced vehicles.

Now we estimate K=�−1/2
XX �XY �

−1/2
YY by

K̂= S−1/2
XX SXY S−1/2

YY

and perform a singular value decomposition of K̂:

K̂= GLD	 = (g1, g2) diag(�1/2
1 , �

1/2
2 ) (d1, d2)

	

where the �i ’s are the eigenvalues of K̂K̂	 and K̂	K̂ with rank(K̂)= 2, and gi and
di are the eigenvectors of K̂K̂	 and K̂	K̂, respectively. The canonical correlation
coefficients are

r1 = �1/2
1 = 0.98, r2 = �1/2

2 = 0.89.

The high correlation of the first two canonical variables can be seen in Figure 15.1.
The first canonical variables are

η̂1 = â	1 x = 1.602 x1 + 1.686 x2

ϕ̂1 = b̂	1 y = 0.568 y1 + 0.544 y2 − 0.012 y3 − 0.096 y4 − 0.014 y5 + 0.915 y6.

Note that the variables y1 (economy), y2 (service) and y6 (easy handling) have pos-
itive coefficients on ϕ̂1. The variables y3 (design), y4 (sporty car) and y5 (safety)
have a negative influence on ϕ̂1.
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The canonical variable η1 may be interpreted as a price and value index. The
canonical variable ϕ1 is mainly formed from the qualitative variables economy, ser-
vice and handling with negative weights on design, safety and sportiness. These
variables may therefore be interpreted as an appreciation of the value of the car. The
sportiness has a negative effect on the price and value index, as do the design and
the safety features.

Testing the Canonical Correlation Coefficients

The hypothesis that the two sets of variables X and Y are uncorrelated may be tested
(under normality assumptions) with Wilk’s likelihood ratio statistic (Gibbins 1985):

T 2/n = |I − S−1
YY SYXS

−1
XXSXY | =

k∏
i=1

(1− �i).

This statistic unfortunately has a rather complicated distribution. Bartlett (1939)
provides an approximation for large n:

−{n− (p+ q + 3)/2} log
k∏
i=1

(1− �i)∼ χ2
pq. (15.14)

A test of the hypothesis that only s of the canonical correlation coefficients are
non-zero may be based (asymptotically) on the statistic

−{n− (p+ q + 3)/2} log
k∏

i=s+1

(1− �i)∼ χ2
(p−s)(q−s). (15.15)

Example 15.2 Consider Example 15.1 again. There are n = 40 persons that have
rated the cars according to different categories with p = 2 and q = 6. The canon-
ical correlation coefficients were found to be r1 = 0.98 and r2 = 0.89. Bartlett’s
statistic (15.14) is therefore

−{40− (2+ 6+ 3)/2} log{(1− 0.982)(1− 0.892)} = 165.59∼ χ2
12

which is highly significant (the 99% quantile of the χ2
12 is 26.23). The hypothesis of

no correlation between the variables X and Y is therefore rejected.
Let us now test whether the second canonical correlation coefficient is different

from zero. We use Bartlett’s statistic (15.15) with s = 1 and obtain

−{40− (2+ 6+ 3)/2} log{(1− 0.892)} = 54.19∼ χ2
5

which is again highly significant with the χ2
5 distribution.
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Canonical Correlation Analysis with Qualitative Data

The canonical correlation technique may also be applied to qualitative data. Con-
sider for example the contingency table N of the French baccalauréat data. The
dataset is given in Table B.8 in Appendix B.8. The CCA cannot be applied directly
to this contingency table since the table does not correspond to the usual data ma-
trix structure. We may wish, however, to explain the relationship between the row r

and column c categories. It is possible to represent the data in a (n× (r + c)) data
matrix Z = (X ,Y) where n is the total number of frequencies in the contingency
table N and X and Y are matrices of zero-one dummy variables. More precisely,
let

xki =
{

1 if the k-th individual belongs to the i-th row category
0 otherwise

and

ykj =
{

1 if the k-th individual belongs to the j -th column category
0 otherwise

where the indices range from k = 1, . . . , n, i = 1, . . . , r and j = 1, . . . , c. Denote
the cell frequencies by nij so that N = (nij ) and note that

x	(i)y(j) = nij ,

where x(i) (y(j)) denotes the i-th (j -th) column of X (Y).

Example 15.3 Consider the following example where

N =
(

3 2
1 4

)
.

The matrices X , Y and Z are therefore

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 0
0 1
0 1
1 0
0 1
0 1
0 1
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Z = (X ,Y)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
0 1 1 0
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.



394 15 Canonical Correlation Analysis

The element n12 of N may be obtained by multiplying the first column of X
with the second column of Y to yield

x	(1)y(2) = 2.

The purpose is to find the canonical variables η = a	x and ϕ = b	y that are
maximally correlated. Note, however, that x has only one non-zero component and
therefore an “individual” may be directly associated with its canonical variables or
score (ai, bj ). There will be nij points at each (ai, bj ) and the correlation repre-
sented by these points may serve as a measure of dependence between the rows and
columns of N .

Let Z = (X ,Y) denote a data matrix constructed from a contingency table N .
Similar to Chapter 13 define

c= xi• =
c∑

j=1

nij ,

d = x•j =
r∑
i=1

nij ,

and define C = diag(c) and D = diag(d). Suppose that xi• > 0 and x•j > 0 for all i
and j . It is not hard to see that

nS =Z	HZ =Z	Z − nz̄z̄	 =
(
nSXX nSXY
nSYX nSYY

)

=
(

n

n− 1

)(
C − n−1cc	 N − N̂
N	N̂	 D− n−1dd	

)

where N̂ = cd	/n is the estimated value of N under the assumption of indepen-
dence of the row and column categories.

Note that

(n− 1)SXX1r = C1r − n−1cc	1r = c− c(n−1c	1r )= c− c(n−1n)= 0

and therefore S−1
XX does not exist. The same is true for S−1

YY . One way out of this
difficulty is to drop one column from both X and Y , say the first column. Let c̄ and
d̄ denote the vectors obtained by deleting the first component of c and d .

Define C̄, D̄ and S̄XX , S̄YY , S̄XY accordingly and obtain

(nS̄XX)
−1 = C̄−1 + n−1

i• 1r1
	
r

(nS̄YY )
−1 = D̄−1 + n−1

•j 1c1
	
c

so that (15.3) exists. The score associated with an individual contained in the first
row (column) category of N is 0.

The technique described here for purely qualitative data may also be used when
the data is a mixture of qualitative and quantitative characteristics. One has to “blow
up” the data matrix by dummy zero-one values for the qualitative data variables.
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Summary
↪→ In practice we estimate �XX, �XY , �YY by the empirical covari-

ances and use them to compute estimates �i , gi , di for λi , γi , δi
from the SVD of K̂= S−1/2

XX SXYS−1/2
YY .

↪→ The signs of the coefficients of the canonical variables tell us the
direction of the influence of these variables.

15.3 Exercises

Exercise 15.1 Show that the eigenvalues of KK	 and K	K are identical. (Hint:
Use Theorem 2.6.)

Exercise 15.2 Perform the canonical correlation analysis for the following subsets
of variables: X corresponding to {price} and Y corresponding to {economy, easy
handling} from the car marks data (Table B.7).

Exercise 15.3 Calculate the second canonical variables for Example 15.1. Interpret
the coefficients.

Exercise 15.4 Use the SVD of matrix K to show that the canonical variables η1 and
η2 are not correlated.

Exercise 15.5 Verify that the number of nonzero eigenvalues of matrix K is equal
to rank(�XY ).

Exercise 15.6 Express the singular value decomposition of matrices K and K	
using eigenvalues and eigenvectors of matrices K	K and KK	.

Exercise 15.7 What will be the result of CCA for Y =X?

Exercise 15.8 What will be the results of CCA for Y = 2X and for Y =−X?

Exercise 15.9 What results do you expect if you perform CCA for X and Y such
that �XY = 0? What if �XY = Ip?



Chapter 16
Multidimensional Scaling

One major aim of multivariate data analysis is dimension reduction. For data mea-
sured in Euclidean coordinates, Factor Analysis and Principal Component Analysis
are dominantly used tools. In many applied sciences data is recorded as ranked in-
formation. For example, in marketing, one may record “product A is better than
product B”. High-dimensional observations therefore often have mixed data charac-
teristics and contain relative information (w.r.t. a defined standard) rather than abso-
lute coordinates that would enable us to employ one of the multivariate techniques
presented so far.

Multidimensional scaling (MDS) is a method based on proximities between ob-
jects, subjects, or stimuli used to produce a spatial representation of these items.
Proximities express the similarity or dissimilarity between data objects. It is a di-
mension reduction technique since the aim is to find a set of points in low di-
mension (typically 2 dimensions) that reflect the relative configuration of the high-
dimensional data objects. The metric MDS is concerned with such a representation
in Euclidean coordinates. The desired projections are found via an appropriate spec-
tral decomposition of a distance matrix.

The metric MDS solution may result in projections of data objects that conflict
with the ranking of the original observations. The nonmetric MDS solves this prob-
lem by iterating between a monotizing algorithmic step and a least squares projec-
tion step. The examples presented in this chapter are based on reconstructing a map
from a distance matrix and on marketing concerns such as ranking of the outfit of
cars.

16.1 The Problem

Multidimensional scaling (MDS) is a mathematical tool that uses proximities be-
tween objects, subjects or stimuli to produce a spatial representation of these items.
The proximities are defined as any set of numbers that express the amount of sim-
ilarity or dissimilarity between pairs of objects, subjects or stimuli. In contrast to
the techniques considered so far, MDS does not start from the raw multivariate data

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-642-17229-8_16, © Springer-Verlag Berlin Heidelberg 2012
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matrix X , but from a (n× n) dissimilarity or distance matrix, D, with the elements
δij and dij respectively. Hence, the underlying dimensionality of the data under in-
vestigation is in general not known.

MDS is a data reduction technique because it is concerned with the problem of
finding a set of points in low dimension that represents the “configuration” of data
in high dimension. The “configuration” in high dimension is represented by the
distance or dissimilarity matrix D.

MDS-techniques are often used to understand how people perceive and evalu-
ate certain signals and information. For instance, political scientists use MDS tech-
niques to understand why political candidates are perceived by voters as being sim-
ilar or dissimilar. Psychologists use MDS to understand the perceptions and evalua-
tions of speech, colors and personality traits, among other things. Last but not least,
in marketing researchers use MDS techniques to shed light on the way consumers
evaluate brands and to assess the relationship between product attributes.

In short, the primary purpose of all MDS-techniques is to uncover structural re-
lations or patterns in the data and to represent it in a simple geometrical model or
picture. One of the aims is to determine the dimension of the model (the goal is a
low-dimensional, easily interpretable model) by finding the d-dimensional space in
which there is maximum correspondence between the observed proximities and the
distances between points measured on a metric scale.

Multidimensional scaling based on proximities is usually referred to as metric
MDS, whereas the more popular nonmetric MDS is used when the proximities are
measured on an ordinal scale.

Example 16.1 A good example of how MDS works is given by Dillon and Goldstein
(1984) (Page 108). Suppose one is confronted with a map of Germany and asked to
measure, with the use of a ruler and the scale of the map, some inter-city distances.
Admittedly this is quite an easy exercise. However, let us now reverse the problem:
One is given a set of distances, as in Table 16.1, and is asked to recreate the map
itself. This is a far more difficult exercise, though it can be solved with a ruler and
a compass in two dimensions. MDS is a method for solving this reverse problem
in arbitrary dimensions. In Figure 16.2 you can see the graphical representation
of the metric MDS solution to Table 16.1 after rotating and reflecting the points
representing the cities. Note that the distances given in Table 16.1 are road distances

Table 16.1 Inter-city distances

Berlin Dresden Hamburg Koblenz Munich Rostock

Berlin 0 214 279 610 596 237

Dresden 0 492 533 496 444

Hamburg 0 520 772 140

Koblenz 0 521 687

Munich 0 771

Rostock 0
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Fig. 16.1 Metric MDS
solution for the inter-city road

distances
MVAMDScity1

Fig. 16.2 Metric MDS
solution for the inter-city road
distances after reflection and

90◦ rotation
MVAMDScity2

that in general do not correspond to Euclidean distances. In real-life applications,
the problems are exceedingly more complex: there are usually errors in the data and
the dimensionality is rarely known in advance.

Example 16.2 A further example is given in Table 16.2 where consumers noted their
impressions of the dissimilarity of certain cars. The dissimilarities in this table were
in fact computed from Table B.7 as Euclidean distances

dij =
√√√√ 8∑

l=1

(xil − xjl)2.
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Table 16.2 Dissimilarities
for cars Audi 100 BMW 5 Citroen AX Ferrari . . .

Audi 100 0 2.232 3.451 3.689 . . .

BMW 5 2.232 0 5.513 3.167 . . .

Citroen AX 3.451 5.513 0 6.202 . . .

Ferrari 3.689 3.167 6.202 0 . . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .

Fig. 16.3 MDS solution on

the car data
MVAmdscarm

MDS produces Figure 16.3 which shows a nonlinear relationship for all the cars
in the projection. This enables us to build a nonlinear (quadratic) index with the
Wartburg and the Trabant on the left and the Ferrari and the Jaguar on the right. We
can construct an order or ranking of the cars based on the subjective impression of
the consumers.

What does the ranking describe? The answer is given by Figure 16.4 which shows
the correlation between the MDS projection and the variables. Apparently, the first
MDS direction is highly correlated with service (−), value (−), design (−), sporti-
ness (−), safety (−) and price (+). We can interpret the first direction as the price
direction since a bad mark in price (“high price”) obviously corresponds with a good
mark, say, in sportiness (“very sportive”). The second MDS direction is highly posi-
tively correlated with practicability. We observe from this data an almost orthogonal
relationship between price and practicability.

In MDS a map is constructed in Euclidean space that corresponds to given
distances. Which solution can we expect? The solution is determined only up
to rotation, reflection and shifts. In general, if P1, . . . ,Pn with coordinates xi =
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Fig. 16.4 Correlation
between the MDS direction

and the variables
MVAmdscarm

(xi1, . . . , xip)
	 for i = 1, . . . , n represents a MDS solution in p dimensions, then

yi = Axi + b with an orthogonal matrix A and a shift vector b also represents a
MDS solution. A comparison of Figures 16.1 and 16.2 illustrates this fact.

Solution methods that use only the rank order of the distances are termed non-
metric methods of MDS. Methods aimed at finding the points Pi directly from a
distance matrix like the one in Table 16.2 are called metric methods.

Summary
↪→ MDS is a set of techniques which use distances or dissimilarities to

project high-dimensional data into a low-dimensional space essen-
tial in understanding respondents perceptions and evaluations for
all sorts of items.

↪→ MDS starts with a (n × n) proximity matrix D consisting of dis-
similarities δi,j or distances dij .

↪→ MDS is an explorative technique and focuses on data reduction.

↪→ The MDS-solution is indeterminate with respect to rotation, reflec-
tion and shifts.

↪→ The MDS-techniques are divided into metric MDS and nonmetric
MDS.
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16.2 Metric Multidimensional Scaling

Metric MDS begins with a (n × n) distance matrix D with elements dij where i,
j = 1, . . . , n. The objective of metric MDS is to find a configuration of points in p-
dimensional space from the distances between the points such that the coordinates
of the n points along the p dimensions yield a Euclidean distance matrix whose
elements are as close as possible to the elements of the given distance matrix D.

The Classical Solution

The classical solution is based on a distance matrix that is computed from a Eu-
clidean geometry.

Definition 16.1 A (n×n) distance matrix D = (dij ) is Euclidean if for some points
x1, . . . , xn ∈R

p;d2
ij = (xi − xj )	(xi − xj ).

The following result tells us whether a distance matrix is Euclidean or not.

Theorem 16.1 Define A= (aij ), aij =− 1
2d

2
ij and B =HAH where H is the cen-

tering matrix. D is Euclidean if and only if B is positive semidefinite. If D is the
distance matrix of a data matrix X , then B =HXX	H. B is called the inner prod-
uct matrix.

Recovery of Coordinates

The task of MDS is to find the original Euclidean coordinates from a given distance
matrix. Let the coordinates of n points in a p dimensional Euclidean space be given
by xi (i = 1, . . . , n) where xi = (xi1, . . . , xip)

	. Call X = (x1, . . . , xn)
	 the coor-

dinate matrix and assume x = 0. The Euclidean distance between the i-th and j -th
points is given by:

d2
ij =

p∑
k=1

(xik − xjk)2. (16.1)

The general bij term of B is given by:

bij =
p∑
k=1

xikxjk = x	i xj . (16.2)

It is possible to derive B from the known squared distances dij , and then from B the
unknown coordinates.

d2
ij = x	i xi + x	j xj − 2x	i xj
= bii + bjj − 2bij . (16.3)
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Centering of the coordinate matrix X implies that
∑n

i=1 bij = 0. Summing (16.3)
over i, over j , and over i and j , we find:

1

n

n∑
i=1

d2
ij =

1

n

n∑
i=1

bii + bjj

1

n

n∑
j=1

d2
ij = bii +

1

n

n∑
j=1

bjj (16.4)

1

n2

n∑
i=1

n∑
j=1

d2
ij =

2

n

n∑
i=1

bii .

Solving (16.3) and (16.4) gives:

bij =−1

2
(d2
ij − d2

i• − d2•j + d2••). (16.5)

With aij =− 1
2d

2
ij , and

ai• = 1

n

n∑
j=1

aij

a•j = 1

n

n∑
i=1

aij (16.6)

a•• = 1

n2

n∑
i=1

n∑
j=1

aij

we get:

bij = aij − ai• − a•j + a••. (16.7)

Define the matrix A as (aij ), and observe that:

B =HAH. (16.8)

The inner product matrix B can be expressed as:

B =XX	, (16.9)

where X = (x1, . . . , xn)
	 is the (n×p) matrix of coordinates. The rank of B is then

rank(B)= rank(XX	)= rank(X )= p. (16.10)

As required in Theorem 16.1 the matrix B is symmetric, positive semidefinite and
of rank p, and hence it has p non-negative eigenvalues and n−p zero eigenvalues.
B can now be written as:

B = ���	 (16.11)

where �= diag(λ1, . . . , λp), the diagonal matrix of the eigenvalues of B, and � =
(γ1, . . . , γp), the matrix of corresponding eigenvectors. Hence the coordinate matrix
X containing the point configuration in R

p is given by:

X = �� 1
2 . (16.12)
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How Many Dimensions?

The number of desired dimensions is small in order to provide practical interpreta-
tions, and is given by the rank of B or the number of nonzero eigenvalues λi . If B is
positive semidefinite, then the number of nonzero eigenvalues gives the number of
eigenvalues required for representing the distances dij .

The proportion of variation explained by p dimensions is given by∑p

i=1 λi∑n−1
i=1 λi

. (16.13)

It can be used for the choice of p. If B is not positive semidefinite we can mod-
ify (16.13) to ∑p

i=1 λi∑
(“positive eigenvalues”)

. (16.14)

In practice the eigenvalues λi are almost always unequal to zero. To be able to
represent the objects in a space with dimensions as small as possible we may modify
the distance matrix to:

D∗ = d∗ij (16.15)

with

d∗ij =
{

0; i = j
dij + e ≥ 0; i 
= j (16.16)

where e is determined such that the inner product matrix B becomes positive
semidefinite with a small rank.

Similarities

In some situations we do not start with distances but with similarities. The standard
transformation (see Chapter 12) from a similarity matrix C to a distance matrix D
is:

dij = (cii − 2cij + cjj ) 1
2 . (16.17)

Theorem 16.2 If C ≤ 0, then the distance matrix D defined by (16.17) is Euclidean
with centered inner product matrix B =HCH.

Relation to Factorial Analysis

Suppose that the (n× p) data matrix X is centered so that X	X equals a multiple
of the covariance matrix nS . Suppose that the p eigenvalues λ1, . . . , λp of nS are
distinct and non zero. Using the duality Theorem 9.4 of factorial analysis we see that
λ1, . . . , λp are also eigenvalues of XX	= B when D is the Euclidean distance ma-
trix between the rows of X . The k-dimensional solution to the metric MDS problem
is thus given by the k first principal components of X .
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Optimality Properties of the Classical MDS Solution

Let X be a (n× p) data matrix with some inter-point distance matrix D. The ob-
jective of MDS is thus to find X1, a representation of X in a lower dimensional
Euclidean space R

k whose inter-point distance matrix D1 is not far from D. Let
L= (L1,L2) be a (p× p) orthogonal matrix where L1 is (p× k). X1 =XL1 rep-
resents a projection of X on the column space of L1; in other words, X1 may be
viewed as a fitted configuration of X in R

k . A measure of discrepancy between D
and D1 = (d(1)ij ) is given by

φ =
n∑

i,j=1

(dij − d(1)ij )2. (16.18)

Theorem 16.3 Among all projections XL1 of X onto k-dimensional subspaces
of Rp the quantity φ in (16.18) is minimized when X is projected onto its first k
principal factors.

We see therefore that the metric MDS is identical to principal factor analysis as
we have defined it in Chapter 9.

Summary
↪→ Metric MDS starts with a distance matrix D.

↪→ The aim of metric MDS is to construct a map in Euclidean space
that corresponds to the given distances.

↪→ A practical algorithm is given as:

1. start with distances dij
2. define A=− 1

2d
2
ij

3. put B = (aij − ai• − a•j + a••)
4. find the eigenvalues λ1, . . . , λp and the associated eigenvec-

tors γ1, . . . , γp where the eigenvectors are normalized so that
γ	i γi = 1.

5. Choose an appropriate number of dimensions p (ideally p = 2).
6. The coordinates of the n points in the Euclidean space are given

by xij = γijλ1/2
j for i = 1, . . . , n and j = 1, . . . , p.

↪→ Metric MDS is identical to principal components analysis.
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16.3 Nonmetric Multidimensional Scaling

The object of nonmetric MDS, as well as of metric MDS, is to find the coordinates
of the points in p-dimensional space, so that there is a good agreement between the
observed proximities and the inter-point distances. The development of nonmetric
MDS was motivated by two main weaknesses in the metric MDS (Fahrmeir and
Hamerle, 1984, p. 679):

1. the definition of an explicit functional connection between dissimilarities and
distances in order to derive distances out of given dissimilarities, and

2. the restriction to Euclidean geometry in order to determine the object configura-
tions.

The idea of a nonmetric MDS is to demand a less rigid relationship between the
dissimilarities and the distances. Suppose that an unknown monotonic increasing
function f ,

dij = f (δij ), (16.19)

is used to generate a set of distances dij as a function of given dissimilarities δij .
Here f has the property that if δij < δrs , then f (δij ) < f (δrs). The scaling is based
on the rank order of the dissimilarities. Nonmetric MDS is therefore ordinal in char-
acter.

The most common approach used to determine the elements dij and to obtain
the coordinates of the objects x1, x2, . . . , xn given only rank order information is an
iterative process commonly referred to as the Shepard-Kruskal algorithm.

Shepard-Kruskal Algorithm

In a first step, called the initial phase, we calculate Euclidean distances d(0)ij from an
arbitrarily chosen initial configuration X0 in dimension p∗, provided that all objects
have different coordinates. One might use metric MDS to obtain these initial co-
ordinates. The second step or nonmetric phase determines disparities d̂(0)ij from the

distances d(0)ij by constructing a monotone regression relationship between the d(0)ij ’s

and δij ’s, under the requirement that if δij < δrs , then d̂(0)ij ≤ d̂
(0)
rs . This is called the

weak monotonicity requirement. To obtain the disparities d̂(0)ij , a useful approxi-
mation method is the pool-adjacent violators (PAV) algorithm (see Figure 16.5).
Let

(i1, j1) > (i2, j2) > · · ·> (ik, jk) (16.20)

be the rank order of dissimilarities of the k = n(n− 1)/2 pairs of objects. This cor-
responds to the points in Figure 16.6. The PAV algorithm is described as follows:
“beginning with the lowest ranked value of δij , the adjacent d(0)ij values are com-
pared for each δij to determine if they are monotonically related to the δij ’s. When-

ever a block of consecutive values of d(0)ij are encountered that violate the required
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Fig. 16.5 Pool-adjacent

violators algorithm
MVAMDSpooladj

Fig. 16.6 Ranks and

distances
MVAMDSnonmstart

monotonicity property the d(0)ij values are averaged together with the most recent

non-violator d(0)ij value to obtain an estimator. Eventually this value is assigned to
all points in the particular block”.

In a third step, called the metric phase, the spatial configuration of X0 is altered to
obtain X1. From X1 the new distances d(1)ij can be obtained which are more closely

related to the disparities d̂(0)ij from step two.

Example 16.3 Consider a small example with 4 objects based on the car marks
data set, see Table 16.3. Our aim is to find a representation with p∗ = 2 via MDS.
Suppose that we choose as an initial configuration of X0 the coordinates given in
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Table 16.3 Dissimilarities
δij for car marks j 1 2 3 4

i Mercedes Jaguar Ferrari VW

1 Mercedes –

2 Jaguar 3 –

3 Ferrari 2 1 –

4 VW 5 4 6 –

Table 16.4 Initial
coordinates for MDS i xi1 xi2

1 Mercedes 3 2

2 Jaguar 2 7

3 Ferrari 1 3

4 VW 10 4

Table 16.5 Ranks and
distances i, j dij rank(dij ) δij

1,2 5.1 3 3

1,3 2.2 1 2

1,4 7.3 4 5

2,3 4.1 2 1

2,4 8.5 5 4

3,4 9.1 6 6

Table 16.4. The corresponding distances dij =
√
(xi − xj )	(xi − xj ) are calculated

in Table 16.5.
A plot of the dissimilarities of Table 16.5 against the distance yields Figure 16.8.

This relation is not satisfactory since the ranking of the δij did not result in a mono-
tone relation of the corresponding distances dij . We apply therefore the PAV algo-
rithm.

The first violator of monotonicity is the second point (1,3). Therefore we average
the distances d13 and d23 to obtain the disparities

d̂13 = d̂23 = d13 + d23

2
= 2.2+ 4.1

2
= 3.17.

Applying the same procedure to (2,4) and (1,4) we obtain d̂24 = d̂14 = 7.9. The
plot of δij versus the disparities d̂ij represents a monotone regression relationship.

In the initial configuration (Figure 16.7), the third point (Ferrari) could be moved
so that the distance to object 2 (Jaguar) is reduced. This procedure however also
alters the distance between objects 3 and 4. Care should be given when establishing
a monotone relation between δij and dij .



16.3 Nonmetric Multidimensional Scaling 409

Fig. 16.7 Initial
configuration of the MDS of

the car data
MVAnmdscar1

Fig. 16.8 Scatterplot of
dissimilarities against

distances
MVAnmdscar2

In order to assess how well the derived configuration fits the given dissimilarities
Kruskal suggests a measure called STRESS1 that is given by

STRESS1=
(∑

i<j (dij − d̂ij )2∑
i<j d

2
ij

) 1
2

. (16.21)

An alternative stress measure is given by

STRESS2=
(∑

i<j (dij − d̂ij )2∑
i<j (dij − d)2

) 1
2

, (16.22)

where d denotes the average distance.
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Table 16.6 STRESS calculations for car marks example

(i, j) δij dij d̂ij (dij − d̂ij )2 d2
ij (dij − d)2

(2,3) 1 4.1 3.15 0.9 16.8 3.8

(1,3) 2 2.2 3.15 0.9 4.8 14.8

(1,2) 3 5.1 5.1 0 26.0 0.9

(2,4) 4 8.5 7.9 0.4 72.3 6.0

(1,4) 5 7.3 7.9 0.4 53.3 1.6

(3,4) 6 9.1 9.1 0 82.8 9.3

� 36.3 2.6 256.0 36.4

Example 16.4 Table 16.6 presents the STRESS calculations for the car example.
The average distance is d = 36.4/6= 6.1. The corresponding STRESS measures

are:

STRESS1=√
2.6/256= 0.1

STRESS2=√
2.6/36.4= 0.27.

The goal is to find a point configuration that balances the effects STRESS and
non monotonicity. This is achieved by an iterative procedure. More precisely, one
defines a new position of object i relative to object j by

xNEWil = xil + α
(

1− d̂ij

dij

)
(xjl − xil), l = 1, . . . , p∗. (16.23)

Here α denotes the step width of the iteration.
By (16.23) the configuration of object i is improved relative to object j . In order

to obtain an overall improvement relative to all remaining points one uses:

xNEWil = xil + α

n− 1

n∑
j=1,j 
=i

(
1− d̂ij

dij

)
(xjl − xil), l = 1, . . . , p∗. (16.24)

The choice of step width α is crucial. Kruskal proposes a starting value of α = 0.2.
The iteration is continued by a numerical approximation procedure, such as steepest
descent or the Newton-Raphson procedure.

In a fourth step, the evaluation phase, the STRESS measure is used to evaluate
whether or not its change as a result of the last iteration is sufficiently small that
the procedure is terminated. At this stage the optimal fit has been obtained for a
given dimension. Hence, the whole procedure needs to be carried out for several
dimensions.

Example 16.5 Let us compute the new point configuration for i = 3 (Ferrari). The
initial coordinates from Table 16.4 are

x31 = 1 and x32 = 3.
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Fig. 16.9 First iteration for
Ferrari using Shepard-

Kruskal algorithm
MVAnmdscar3

Applying (16.24) yields (for α = 3):

xNEW
31 = 1+ 3

4− 1

4∑
j=1,j 
=3

(
1− d̂3j

d3j

)
(xj1 − 1)

= 1+
(

1− 3.15

2.2

)
(3− 1)+

(
1− 3.15

4.1

)
(2− 1)+

(
1− 9.1

9.1

)
(10− 1)

= 1− 0.86+ 0.23+ 0

= 0.37.

Similarly we obtain xNEW
32 = 4.36.

To find the appropriate number of dimensions, p∗, a plot of the minimum
STRESS value as a function of the dimensionality is made. One possible criterion
in selecting the appropriate dimensionality is to look for an elbow in the plot. A rule
of thumb that can be used to decide if a STRESS value is sufficiently small or not is
provided by Kruskal:

S > 20%, poor; S = 10%, fair; S < 5%, good; S = 0, perfect. (16.25)

Summary
↪→ Nonmetric MDS is only based on the rank order of dissimilarities.

↪→ The object of nonmetric MDS is to create a spatial representation
of the objects with low dimensionality.
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Summary (continued)
↪→ A practical algorithm is given as:

1. Choose an initial configuration.
2. Find dij from the configuration.
3. Fit d̂ij , the disparities, by the PAV algorithm.
4. Find a new configuration Xn+1 by using the steepest descent.
5. Go to 2.

16.4 Exercises

Exercise 16.1 Apply the MDS method to the Swiss bank note data. What do you
expect to see?

Exercise 16.2 Using (16.6), show that (16.7) can be written in the form (16.2).

Exercise 16.3 Show that

1. bii = a•• − 2ai•; bij = aij − ai• − a•j + a••; i 
= j
2. B =∑p

i=1 xix
	
i

3.
∑n

i=1 λi =
∑n

i=1 bii = 1
2n

∑n
i,j=1 d

2
ij

.

Exercise 16.4 Redo a careful analysis of the car marks data based on the following
dissimilarity matrix:

j 1 2 3 4

i Nissan Kia BMW Audi

1 Nissan –

2 Kia 2 –

3 BMW 4 6 –

4 Audi 3 5 1 –

Exercise 16.5 Apply the MDS method to the U.S. health data. Is the result in ac-
cordance with the geographic location of the U.S. states?

Exercise 16.6 Redo Exercise 16.5 with the U.S. crime data.

Exercise 16.7 Perform the MDS analysis on the Athletic Records data in Ap-
pendix B.18. Can you see which countries are “close to each other”?



Chapter 17
Conjoint Measurement Analysis

Conjoint Measurement Analysis plays an important role in marketing. In the design
of new products it is valuable to know which components carry what kind of utility
for the customer. Marketing and advertisement strategies are based on the perception
of the new product’s overall utility. It can be valuable information for a car producer
to know whether a change in sportiness or a change in safety or comfort equipment is
perceived as a higher increase in overall utility. The Conjoint Measurement Analysis
is a method for attributing utilities to the components (part worths) on the basis of
ranks given to different outcomes (stimuli) of the product. An important assumption
is that the overall utility is decomposed as a sum of the utilities of the components.

In Section 17.1 we introduce the idea of Conjoint Measurement Analysis. We
give two examples from the food and car industries. In Section 17.2 we shed light
on the problem of designing questionnaires for ranking different product outcomes.
In Section 17.3 we see that the metric solution of estimating the part-worths is given
by solving a least squares problem. The estimated preference ordering may be non-
monotone. The nonmetric solution strategy takes care of this inconsistency by iter-
ating between a least squares solution and the pool adjacent violators algorithm.

17.1 Introduction

In the design and perception of new products it is important to specify the contribu-
tions made by different facets or elements. The overall utility and acceptance of such
a new product can then be estimated and understood as a possibly additive function
of the elementary utilities. Examples are the design of cars, a food article or the pro-
gram of a political party. For a new type of margarine one may ask whether a change
in taste or presentation will enhance the overall perception of the product. The ele-
mentary utilities are here the presentation style and the taste (e.g., calory content).
For a party program one may want to investigate whether a stronger ecological or a
stronger social orientation gives a better overall profile of the party. For the market-
ing of a new car one may be interested in whether this new car should have a stronger
active safety or comfort equipment or a more sporty note or combinations of both.

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
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In Conjoint Measurement Analysis one assumes that the overall utility can be
explained as an additive decomposition of the utilities of different elements. In a
sample of questionnaires people ranked the product types and thus revealed their
preference orderings. The aim is to find the decomposition of the overall utility on
the basis of observed data and to interpret the elementary or marginal utilities.

Example 17.1 A car producer plans to introduce a new car with features that appeal
to the customer and that may help in promoting future sales. The new elements
that are considered are comfort/safety components (e.g. active steering or GPS) and
a sporty look (leather steering wheel and additional kW of the engine). The car
producer has thus 4 lines of cars.

car 1: basic safety equipment and low sportiness
car 2: basic safety equipment and high sportiness
car 3: high safety equipment and low sportiness
car 4: high safety equipment and high sportiness

For the car producer it is important to rank these cars and to find out customers’ atti-
tudes toward a certain product line in order to develop a suitable marketing scheme.
A tester may rank the cars as described in Table 17.1.

The elementary utilities here are the comfort equipment and the level of sporti-
ness. Conjoint Measurement Analysis aims at explaining the rank order given by
the test person as a function of these elementary utilities.

Example 17.2 A food producer plans to create a new margarine and varies the prod-
uct characteristics “calories” (low vs. high) and “presentation” (a plastic pot vs. pa-
per package) (Backhaus, Erichson, Plinke and Weiber, 1996). We can view this in
fact as ranking four products.

product 1: low calories and plastic pot
product 2: low calories and paper package
product 3: high calories and plastic pot
product 4: high calories and paper package

These four fictive products may now be ordered by a set of sample testers as
described in Table 17.2.

Table 17.1 Tester’s ranking
of cars car 1 2 3 4

ranking 1 2 4 3

Table 17.2 Tester’s ranking
of margarine product 1 2 3 4

ranking 3 4 1 2
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The Conjoint Measurement Analysis aims to explain such a preference ranking
by attributing part-worths to the different elements of the product. The part-worths
are the utilities of the elementary components of the product.

In interpreting the part-worths one may find that for a test person one of the
elements has a higher value or utility. This may lead to a new design or to the
decision that this utility should be emphasized in advertisement schemes.

Summary
↪→ Conjoint Measurement Analysis is used in the design of new prod-

ucts.
↪→ Conjoint Measurement Analysis tries to identify part-worth utilities

that contribute to an overall utility.
↪→ The part-worths enter additively into an overall utility.

↪→ The interpretation of the part-worths gives insight into the percep-
tion and acceptance of the product.

17.2 Design of Data Generation

The product is defined through the properties of the components. A stimulus is de-
fined as a combination of the different components. Examples 17.1 and 17.2 had
four stimuli each. In the margarine example they were the possible combinations of
the factors X1 (calories) and X2 (presentation). If a product property such as

X3(usage)=
⎧⎨
⎩

1 bread
2 cooking
3 universal

is added, then there are 3 · 2 · 2= 12 stimuli.
For the automobile Example 17.1 additional characteristics may be engine power

and the number of doors. Suppose that the engines offered for the new car have
50,70,90 kW and that the car may be produced in 2-, 4-, or 5-door versions. These
categories may be coded as

X3(power of engine)=
⎧⎨
⎩

1 50 kW
2 70 kW
3 90 kW

and

X4(doors)=
⎧⎨
⎩

1 2 doors
2 4 doors
3 5 doors.
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Both X3 and X4 have three factor levels each, whereas the first two factors X1

(safety) and X2 (sportiness) have only two levels. Altogether 2 ·2 ·3 ·3= 36 stimuli
are possible. In a questionnaire a tester would have to rank all 36 different products.

The profile method asks for the utility of each stimulus. This may be time con-
suming and tiring for a test person if there are too many factors and factor levels.
Suppose that there are 6 properties of components with 3 levels each. This results in
36 = 729 stimuli (i.e., 729 different products) that a tester would have to rank.

The two factor method is a simplification and considers only two factors simul-
taneously. It is also called trade-off analysis. The idea is to present just two stimuli
at a time and then to recombine the information. Trade-off analysis is performed by
defining the trade-off matrices corresponding to stimuli of two factors only.

The trade-off matrices for the levels X1, X2 and X3 from the margarine Exam-
ple 17.2 are given in Table 17.3.

The trade-off matrices for the new car outfit are as described in Table 17.4.
The choice between the profile method and the trade-off analysis should be

guided by consideration of the following aspects:

1. requirements on the test person,
2. time consumption,
3. product perception.

The first aspect relates to the ability of the test person to judge the different stimuli.
It is certainly an advantage of the trade-off analysis that one only has to consider
two factors simultaneously. The two factor method can be carried out more easily
in a questionnaire without an interview.

Table 17.3 Trade-off
matrices for margarine X3 X1 X3 X2 X1 X2

1 1 2 1 1 2 1 1 2

2 1 2 2 1 2 2 1 2

3 1 2 3 1 2

Table 17.4 Trade-off
matrices for car design X4 X3 X4 X2 X4 X1

1 1 2 3 1 1 2 1 1 2

2 1 2 3 2 1 2 2 1 2

3 1 2 3 3 1 2 3 1 2

X3 X2 X3 X1 X2 X1

1 1 2 1 1 2 1 1 2

2 1 2 2 1 2 2 1 2

3 1 2 3 1 2
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The profile method incorporates the possibility of a complete product perception
since the test person is not confronted with an isolated aspect (2 factors) of the
product. The stimuli may be presented visually in its final form (e.g., as a picture).
With the number of levels and properties the number of stimuli rise exponentially
with the profile method. The time to complete a questionnaire is therefore a factor
in the choice of method.

In general the product perception is the most important aspect and is therefore
the profile method that is used the most. The time consumption aspect speaks for the
trade-off analysis. There exist, however, clever strategies on selecting representation
subsets of all profiles that bound the time investment. We therefore concentrate on
the profile method in the following.

Summary
↪→ A stimulus is a combination of different properties of a product.

↪→ Conjoint measurement analysis is based either on a list of all factors
(profile method) or on trade-off matrices (two factor method).

↪→ Trade-off matrices are used if there are too many factor levels.

↪→ Presentation of trade-off matrices makes it easier for testers since
only two stimuli have to be ranked at a time.

17.3 Estimation of Preference Orderings

On the basis of the reported preference values for each stimulus conjoint analysis
determines the part-worths. Conjoint analysis uses an additive model of the form

Yk =
J∑
j=1

Lj∑
l=1

βjl I(Xj = xjl)+μ, for k = 1, . . . ,K and ∀ j
Lj∑
l=1

βjl = 0. (17.1)

Xj (j = 1, . . . , J ) denote the factors, xjl (l = 1, . . . ,Lj ) are the levels of each factor
Xj and the coefficients βjl are the part-worths. The constant μ denotes an overall
level and Yk is the observed preference for each stimulus and the total number of
stimuli are:

K =
J∏
j=1

Lj .

Equation (17.1) is without an error term for the moment. In order to explain how
(17.1) may be written in the standard linear model form we first concentrate on
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J = 2 factors. Suppose that the factors engine power and airbag safety equipment
have been ranked as follows:

airbag
1 2

engine 50 kW 1 1 3
70 kW 2 2 6
90 kW 3 4 5

There are K = 6 preferences altogether. Suppose that the stimuli have been
sorted so that Y1 corresponds to engine level 1 and airbag level 1, Y2 corresponds to
engine level 1 and airbag level 2, and so on. Then model (17.1) reads:

Y1 = β11 + β21 +μ
Y2 = β11 + β22 +μ
Y3 = β12 + β21 +μ
Y4 = β12 + β22 +μ
Y5 = β13 + β21 +μ
Y6 = β13 + β22 +μ.

Now we would like to estimate the part-worths βjl .

Example 17.3 In the margarine example let us consider the part-worths of X1 =
usage and X2 = calories. We have x11 = 1, x12 = 2, x13 = 3, x21 = 1 and x22 = 2.
(We momentarily re-labeled the factors:X3 becameX1.) Hence L1 = 3 and L2 = 2.
Suppose that a person has ranked the six different products as in Table 17.5.

If we order the stimuli as follows:

Y1 = Utility (X1 = 1∧X2 = 1)

Y2 = Utility (X1 = 1∧X2 = 2)

Y3 = Utility (X1 = 2∧X2 = 1)

Y4 = Utility (X1 = 2∧X2 = 2)

Y5 = Utility (X1 = 3∧X2 = 1)

Y6 = Utility (X1 = 3∧X2 = 2) ,

Table 17.5 Ranked products
X2 (calories)

low high

1 2

X1 (usage) bread 1 2 1

cooking 2 3 4

universal 3 6 5
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we obtain from equation (17.1) the same decomposition as above:

Y1 = β11 + β21 +μ
Y2 = β11 + β22 +μ
Y3 = β12 + β21 +μ
Y4 = β12 + β22 +μ
Y5 = β13 + β21 +μ
Y6 = β13 + β22 +μ.

(17.2)

Our aim is to estimate the part-worths βjl as well as possible from a collection of
tables like Table 17.5 that have been generated by a sample of test persons. First, the
so-called metric solution to this problem is discussed and then a non-metric solution.

Metric Solution

The problem of conjoint measurement analysis can be solved by the technique of
Analysis of Variance (ANOVA). An important assumption underlying this technique
is that the “distance” between any two adjacent preference orderings corresponds to
the same difference in utility. That is, the difference in utility between the products
ranked 1st and 2nd is the same as the difference in utility between the products
ranked 4th and 5th. Put differently, we treat the ranking of the products—which is a
cardinal variable—as if it were a metric variable.

Introducing a mean utility μ equation (17.1) can be rewritten. The mean utility
in the above Example 17.3 is μ= (1+ 2+ 3+ 4+ 5+ 6)/6= 21/6= 3.5. In order
to check the deviations of the utilities from this mean, we enlarge Table 17.5 by the
mean utility p̄xj• , given a certain level of the other factor. The metric solution for
the car example is given in Table 17.6.

Example 17.4 In the margarine example the resulting part-worths for μ= 3.5 are

β11 =−2 β21 = 0.16

β12 = 0 β22 =−0.16

β13 = 2

.

Table 17.6 Metric solution
for car example X2 (airbags)

p̄x1• β1l1 2

X1 (engine) 50 kW 1 1 3 2 −1.5

70 kW 2 2 6 4 0.5

90 kW 3 4 5 4.5 1

p̄x2• 2.33 4.66 3.5

β2l −1.16 1.16
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Note that
∑Lj

l=1 βjl = 0 (j = 1, . . . , J ). The estimated utility Ŷ1 for the product with
low calories and usage of bread, for example, is:

Ŷ1 = β11 + β21 +μ=−2+ 0.16+ 3.5= 1.66.

The estimated utility Ŷ4 for product 4 (cooking (X1 = 2) and high calories (X2 = 2))
is:

Ŷ4 = β12 + β22 +μ= 0− 0.16+ 3.5= 3.33.

The coefficients βjl are computed as p̄xjl −μ, where p̄xjl is the average prefer-
ence ordering for each factor level. For instance, p̄x11 = 1/2 ∗ (2+ 1)= 1.5.

The fit can be evaluated by calculating the deviations of the fitted values to the
observed preference orderings. In the rightmost column of Table 17.8 the quadratic
deviations between the observed rankings (utilities) Yk and the estimated utilities Ŷk
are listed.

The technique described that generated Table 17.7 is in fact the solution to a least
squares problem. The conjoint measurement problem (17.1) may be rewritten as a
linear regression model (with error ε = 0):

Y =Xβ + ε (17.3)

Table 17.7 Metric solution
for Table 17.5 X2 (calories)

p̄x1• β1l

low high

1 2

X1 (usage) bread 1 2 1 1.5 −2

cooking 2 3 4 3.5 0

universal 3 6 5 5.5 2

p̄x2• 3.66 3.33 3.5

β2l 0.16 −0.16

Table 17.8 Deviations
between model and data Stimulus Yk Ŷk Yk − Ŷk (Yk − Ŷk)2

1 2 1.66 0.33 0.11

2 1 1.33 −0.33 0.11

3 3 3.66 −0.66 0.44

4 4 3.33 0.66 0.44

5 6 5.66 0.33 0.11

6 5 5.33 −0.33 0.11∑
21 21 0 1.33
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with X being a design matrix with dummy variables. X has the row dimensionK =∏J
j=1Lj (the number of stimuli) and the column dimension D =∑J

j=1Lj − J .
The reason for the reduced column number is that per factor only (Lj − 1) vectors
are linearly independent. Without loss of generality we may standardize the problem
so that the last coefficient of each factor is omitted. The error term ε is introduced
since even for one person the preference orderings may not fit the model (17.1).

Example 17.5 If we rewrite the β coefficients in the form⎛
⎜⎜⎝
β1
β2
β3
β4

⎞
⎟⎟⎠=

⎛
⎜⎜⎝
μ+ β13 + β22
β11 − β13
β12 − β13
β21 − β22

⎞
⎟⎟⎠ (17.4)

and define the design matrix X as

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 1
1 1 0 0
1 0 1 1
1 0 1 0
1 0 0 1
1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, (17.5)

then equation (17.1) leads to the linear model (with error ε = 0):

Y =Xβ + ε. (17.6)

The least squares solution to this problem is the technique used for Table 17.7.
In practice we have more than one person to answer the utility rank question for

the different factor levels. The design matrix is then obtained by stacking the above
design matrix n times. Hence, for n persons we have as a final design matrix:

X ∗ = 1n ⊗X =

⎛
⎜⎜⎜⎜⎝
X
...
...

X

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
n− times

which has dimension (nK)(L−J ) (whereL=∑J
j=1Lj ) and Y ∗ = (Y	1 , . . . , Y	n )	.

The linear model (17.6) can now be written as:

Y ∗ =X ∗β + ε∗. (17.7)

Given that the test people assign different rankings, the error term ε∗ is a necessary
part of the model.
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Example 17.6 If we take the β vector as defined in (17.4) and the design matrix X
from (17.5), we obtain the coefficients:

β̂1 = 5.33= μ̂+ β̂13 + β̂22

β̂2 =−4= β̂11 − β̂13

β̂3 =−2= β̂12 − β̂13

β̂4 = 0.33= β̂21 − β̂22
Lj∑
l=1

β̂j l = 0.

(17.8)

Solving (17.8) we have:

β̂11 = β̂2 − 1

3
(β̂2 + β̂3)=−2

β̂12 = β̂3 − 1

3
(β̂2 + β̂3)= 0

β̂13 =−1

3
(β̂2 + β̂3)= 2

β̂21 = β̂4 − 1

2
β̂4 = 1

2
β̂4 = 0.16

β̂31 =−1

2
β̂4 =−0.16

μ̂ = β̂1 + 1

3
(β̂2 + β̂3)+ 1

2
(β̂4)= 3.5.

(17.9)

In fact, we obtain the same estimated part-worths as in Table 17.7. The stimulus
k = 2 corresponds to adding up β11, β22, and μ (see (17.2)). Adding β̂1 and β̂2

gives:

Ŷ2 = 5.33− 4= 1.33.

Nonmetric Solution

If we drop the assumption that utilities are measured on a metric scale, we have
to use (17.1) to estimate the coefficients from an adjusted set of estimated utilities.
More precisely, we may use the monotone ANOVA as developed by Kruskal (1965).
The procedure works as follows. First, one estimates model (17.1) with the ANOVA
technique described above. Then one applies a monotone transformation Ẑ = f (Ŷ )
to the estimated stimulus utilities. The monotone transformation f is used because
the fitted values Ŷk from (17.3) of the reported preference orderings Yk may not
be monotone. The transformation Ẑk = f (Ŷk) is introduced to guarantee mono-
tonicity of preference orderings. For the car example the reported Yk values were
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Fig. 17.1 Plot of estimated
preference orderings vs.
revealed rankings and PAV fit

MVAcarrankings

Y = (1, 3, 2, 6, 4, 5)	. The estimated values are computed as:

Ŷ1 =−1.5− 1.16+ 3.5= 0.84

Ŷ2 =−1.5+ 1.16+ 3.5= 3.16

Ŷ3 =−0.5− 1.16+ 3.5= 2.84

Ŷ4 =−0.5+ 1.16+ 3.5= 5.16

Ŷ5 = 1.5− 1.16+ 3.5= 3.34

Ŷ6 = 1.5+ 1.16+ 3.5= 5.66.

If we make a plot of the estimated preference orderings against the revealed ones,
we obtain Figure 17.1.

We see that the estimated Ŷ6 = 5.16 is below the estimated Ŷ5 = 5.66 and
thus an inconsistency in ranking the utilities occurs. The monotone transformation
Ẑk = f (Ŷk) is introduced to make the relationship in Figure 17.1 monotone. A very
simple procedure consists of averaging the “violators” Ŷ6 and Ŷ5 to obtain 5.41.
The relationship is then monotone but the model (17.1) may now be violated. The
idea is therefore to iterate these two steps. This procedure is iterated until the stress
measure (see Chapter 16)

STRESS=
∑K

k=1(Ẑk − Ŷk)2∑K
k=1(Ŷk − ¯̂Y )2

(17.10)

is minimized over β and the monotone transformation f . The monotone transfor-
mation can be computed by the so called pool-adjacent-violators (PAV) algorithm.
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Summary
↪→ The part-worths are estimated via the least squares method.

↪→ The metric solution corresponds to analysis of variance in a linear
model.

↪→ The non-metric solution iterates between a monotone regression
curve fitting and determining the part-worths by ANOVA method-
ology.

↪→ The fitting of data to a monotone function is done via the PAV
algorithm.

17.4 Exercises

Exercise 17.1 Compute the part-worths for the following table of rankings.

X2
1 2

X1 1 1 2
2 4 3
3 6 5

Exercise 17.2 Consider again Example 17.5. Rewrite the design matrix X and the
parameter vector β so that the overall mean effect μ is part of X and β , i.e., find the
matrix X ′ and β ′ such that Y =X ′β ′.

Exercise 17.3 Compute the design matrix for Example 17.5 for n= 3 persons rank-
ing the margarine with X1 and X2.

Exercise 17.4 Construct an analog for Table 17.8 for the car example.

Exercise 17.5 Compute the part-worths on the basis of the following tables of rank-
ings observed on n= 3 persons.

X2 X2 X2

X1 1 1 2 X1 1 3 X1 3 1
2 4 3 4 2 5 2
3 6 5 5 6 6 4
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Exercise 17.6 Suppose that in the car example a person has ranked cars by the
profile method on the following characteristics:

X1 =motor

X2 = safety

X3 = doors.

There are k = 18 stimuli.

X1 X2 X3 Preference

1 1 1 1
1 1 2 3
1 1 3 2

1 2 1 5
1 2 2 4
1 2 3 6

X1 X2 X3 Preference

2 1 1 7
2 1 2 8
2 1 3 9

2 2 1 10
2 2 2 12
2 2 3 11

X1 X2 X3 Preference

3 1 1 13
3 1 2 15
3 1 3 14

3 2 1 16
3 2 2 17
3 2 3 18

Estimate and analyze the part-worths.



Chapter 18
Applications in Finance

A portfolio is a linear combination of assets. Each asset contributes with a weight
cj to the portfolio. The performance of such a portfolio is a function of the various
returns of the assets and of the weights c= (c1, . . . , cp)

	. In this chapter we inves-
tigate the “optimal choice” of the portfolio weights c. The optimality criterion is the
mean-variance efficiency of the portfolio. Usually investors are risk-averse, there-
fore, we can define a mean-variance efficient portfolio to be a portfolio that has a
minimal variance for a given desired mean return. Equivalently, we could try to op-
timize the weights for the portfolios with maximal mean return for a given variance
(risk structure). We develop this methodology in the situations of (non)existence of
riskless assets and discuss relations with the Capital Assets Pricing Model (CAPM).

18.1 Portfolio Choice

Suppose that one has a portfolio of p assets. The price of asset j at time i is denoted
as pij . The return from asset j in a single time period (day, month, year etc.) is:

xij = pij − pi−1,j

pi−1,j
·

We observe the vectors xi = (xi1, . . . , xip)	 (i.e., the returns of the assets which are
contained in the portfolio) over several time periods. We stack these observations
into a data matrix X = (xij ) consisting of observations of a random variable

X ∼ (μ,�).
The return of the portfolio is the weighted sum of the returns of the p assets:

Q= c	X, (18.1)

where c = (c1, . . . , cp)
	 (with

∑p

j=1 cj = 1) denotes the proportions of the assets
in the portfolio. The mean return of the portfolio is given by the expected value of

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
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Q, which is c	μ. The risk or variance (squared volatility) of the portfolio is given
by the variance of Q (Theorem 4.6), which is equal to two times

1

2
c	�c. (18.2)

The reason for taking half of the variance ofQ is merely technical. The optimization
of (18.2) with respect to c is of course equivalent to minimizing c	�c. Our aim is to
maximize the portfolio returns (18.1) given a bound on the volatility (18.2) or vice
versa to minimize risk given a (desired) mean return of the portfolio.

Summary
↪→ Given a matrix of returns X from p assets in n time periods, and

that the underlying distribution is stationary, i.e., X ∼ (μ,�), then
the (theoretical) return of the portfolio is a weighted sum of the
returns of the p assets, namely Q= c	X.

↪→ The expected value of Q is c	μ. For technical reasons one con-
siders optimizing 1

2 c
	�c. The risk or squared volatility is c	�c=

Var(c	X).
↪→ The portfolio choice, i.e., the selection of c, is such that the return

is maximized for a given risk bound.

18.2 Efficient Portfolio

A variance efficient portfolio is one that keeps the risk (18.2) minimal under the
constraint that the weights sum to 1, i.e., c	1p = 1. For a variance efficient portfolio,
we therefore try to find the value of c that minimizes the Lagrangian

L= 1

2
c	�c− λ(c	1p − 1). (18.3)

A mean-variance efficient portfolio is defined as one that has minimal variance
among all portfolios with the same mean. More formally, we have to find a vec-
tor of weights c such that the variance of the portfolio is minimal subject to two
constraints:

1. a certain, pre-specified mean return μ has to be achieved,
2. the weights have to sum to one.

Mathematically speaking, we are dealing with an optimization problem under two
constraints.
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Fig. 18.1 Returns of six firms from January 2000 to December 2009 MVAreturns

The Lagrangian function for this problem is given by

L= c	�c+ λ1(μ− c	μ)+ λ2(1− c	1p).

With tools presented in Section 2.4 we can calculate the first order condition for a
minimum:

∂L
∂c
= 2�c− λ1μ− λ21p = 0. (18.4)

Example 18.1 Figure 18.1 shows the monthly returns from January 2000 to De-
cember 2009 of six stocks. The data is from Yahoo Finance. For each stock we
have chosen the same scale on the vertical axis (which gives the return of the stock).
Note how the return of some stocks, such as Forward Industries and Apple, are much
more volatile than the returns of other stocks, such as IBM or Consolidated Edison
(Electric utilities).

As a very simple example consider two differently weighted portfolios contain-
ing only two assets, IBM and Forward Industries. Figure 18.2 displays the monthly
returns of the two portfolios. The portfolio in the upper panel consists of approx-
imately 10% Forward Industries assets and 90% IBM assets. The portfolio in the
lower panel contains an equal proportion of each of the assets. The text windows on
the right of Figure 18.2 show the exact weights which were used. We can clearly see
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Fig. 18.2 Portfolio of IBM
and forward industries assets,
equal and efficient weights

MVAportfol

that the returns of the portfolio with a higher share of the IBM assets (which have a
low variance) are much less volatile.

For an exact analysis of the optimization problem (18.4) we distinguish between
two cases: the existence and nonexistence of a riskless asset. A riskless asset is an
asset such as a zero bond, i.e., a financial instrument with a fixed nonrandom return
(Franke, Härdle and Hafner, 2011).

Nonexistence of a Riskless Asset

Assume that the covariance matrix � is invertible (which implies positive def-
initeness). This is equivalent to the nonexistence of a portfolio c with variance
c	�c = 0. If all assets are uncorrelated, � is invertible if all of the asset returns
have positive variances. A riskless asset (uncorrelated with all other assets) would
have zero variance since it has fixed, nonrandom returns. In this case � would not
be positive definite.

The optimal weights can be derived from the first order condition (18.4) as

c= 1

2
�−1(λ1μ+ λ21p). (18.5)

Multiplying this by a (p× 1) vector 1p of ones, we obtain

1= 1	p c=
1

2
1	p�−1(λ1μ+ λ21	p ),

which can be solved for λ2 to get:

λ2 =
2− λ11	p�−1μ

1	p�−11p
.
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Plugging this expression into (18.5) yields

c= 1

2
λ1

(
�−1μ− 1	p�−1μ

1	p�−11p
�−11p

)
+ �−11p

1	p�−11p
. (18.6)

For the case of a variance efficient portfolio there is no restriction on the mean of
the portfolio (λ1 = 0). The optimal weights are therefore:

c= �−11p
1	p�−11p

. (18.7)

This formula is identical to the solution of (18.3). Indeed, differentiation with
respect to c gives

�c= λ1p

c= λ�−11p.

If we plug this into (18.3), we obtain

L= 1

2
λ21p�

−11p − λ(λ1p�
−11p − 1)

= λ− 1

2
λ21p�

−11p.

This quantity is a function of λ and is minimal for

λ= (1p�−11p)
−1

since

∂2L
∂c	∂c

=� > 0.

Theorem 18.1 The variance efficient portfolio weights for returns X ∼ (μ,�) are

copt = �−11p
1	p�−11p

. (18.8)

Existence of a Riskless Asset

If an asset exists with variance equal to zero, then the covariance matrix � is not
invertible. The notation can be adjusted for this case as follows: denote the return of
the riskless asset by r (under the absence of arbitrage this is the interest rate), and
partition the vector and the covariance matrix of returns such that the last component
is the riskless asset. Thus, the last equation of the system (18.4) becomes

2 Cov(r,X)− λ1r − λ2 = 0,
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and, because the covariance of the riskless asset with any portfolio is zero, we have

λ2 =−rλ1. (18.9)

Let us for a moment modify the notation in such a way that in each vector and matrix
the components corresponding to the riskless asset are excluded. For example, c
is the weight vector of the risky assets (i.e., assets with positive variance), and c0
denotes the proportion invested in the riskless asset. Obviously, c0 = 1− 1	p c, and
� the covariance matrix of the risky assets, is assumed to be invertible. Solving
(18.4) using (18.9) gives

c= λ1

2
�−1(μ− r1p). (18.10)

This equation may be solved for λ1 by plugging it into the condition μ	c = μ.
This is the mean-variance efficient weight vector of the risky assets if a riskless asset
exists. The final solution is:

c= μ�−1(μ− r1p)
μ	�−1(μ− r1p) . (18.11)

The variance optimal weighting of the assets in the portfolio depends on the
structure of the covariance matrix as the following corollaries show.

Corollary 18.1 A portfolio of uncorrelated assets whose returns have equal vari-
ances (� = σ 2Ip) needs to be weighted equally:

copt = p−11p.

Proof Here we obtain 1	p�−11p = σ−21	p 1p = σ−2p and therefore c = σ−21p
σ−2p

=
p−11p . �

Corollary 18.2 A portfolio of correlated assets whose returns have equal vari-
ances, i.e.,

� = σ 2

⎛
⎜⎜⎜⎝

1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1

⎞
⎟⎟⎟⎠ , − 1

p− 1
< ρ < 1

needs to be weighted equally:

copt = p−11p.

Proof � can be rewritten as � = σ 2{(1− ρ)Ip + ρ1p1	p }. The inverse is

�−1 = Ip
σ 2(1− ρ) −

ρ1p1	p
σ 2(1− ρ){1+ (p− 1)ρ}
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since for a (p × p) matrix A of the form A = (a − b)Ip + b1p1	p the inverse is
generally given by

A−1 = Ip
(a − b) −

b 1p1	p
(a − b){a + (p− 1)b} ·

Hence

�−11p = 1p

σ 2(1− ρ) −
ρ1p1	p 1p

σ 2(1− ρ){1+ (p− 1)ρ}

= [{1+ (p− 1)ρ} − ρp]1p
σ 2(1− ρ){1+ (p− 1)ρ} =

{1− ρ}1p
σ 2(1− ρ){1+ (p− 1)ρ}

= 1p

σ 2{1+ (p− 1)ρ}
which yields

1	p�−11	p =
p

σ 2{1+ (p− 1)ρ}
and thus c= p−11p . �

Let us now consider assets with different variances. We will see that in this case
the weights are adjusted to the risk.

Corollary 18.3 A portfolio of uncorrelated assets with returns of different vari-
ances, i.e., � = diag(σ 2

1 , . . . , σ
2
p), has the following optimal weights

cj,opt =
σ−2
j∑p

l=1 σ
−2
l

, j = 1, . . . , p.

Proof From �−1 = diag(σ−2
1 , . . . , σ−2

p ) we have 1	p�−11	p =
∑p

l=1 σ
−2
l and

therefore the optimal weights are cj = σ−2
j /

∑p

l=1 σ
−2
l . �

This result can be generalized for covariance matrices with block structures.

Corollary 18.4 A portfolio of assets with returnsX ∼ (μ,�), where the covariance
matrix has the form:

� =

⎛
⎜⎜⎜⎜⎝
�1 0 . . . 0

0 �2
. . .

...
...

. . .
. . .

...

0 . . . 0 �r

⎞
⎟⎟⎟⎟⎠
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has optimal weights c= (c1, . . . , cr )
	 given by

cj,opt =
�−1
j 1

1	�−1
j 1

, j = 1, . . . , r.

Summary
↪→ An efficient portfolio is one that keeps the risk minimal under the

constraint that a given mean return is achieved and that the weights
sum to 1, i.e., that minimizes L= c	�c+ λ1(μ− c	μ)+ λ2(1−
c	1p).

↪→ If a riskless asset does not exist, the variance efficient portfolio
weights are given by

c= �−11p
1	p�−11p

.

↪→ If a riskless asset exists, the mean-variance efficient portfolio
weights are given by

c= μ�−1(μ− r1p)
μ	�−1(μ− r1p) .

↪→ The efficient weighting depends on the structure of the covariance
matrix �. Equal variances of the assets in the portfolio lead to
equal weights, different variances lead to weightings proportional
to these variances:

cj,opt =
σ−2
j∑p

l=1 σ
−2
l

, j = 1, . . . , p.

18.3 Efficient Portfolios in Practice

We can now demonstrate the usefulness of this technique by applying our method to
the monthly market returns computed on the basis of transactions at the New York
stock market and the NASDAQ stock market between January 2000 to December
2009 (Berndt, 1990).

Example 18.2 Recall that we had shown the portfolio returns with uniform and
optimal weights in Figure 18.2. The covariance matrix of the returns of IBM and
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Forward Industries is

S =
(

0.0073 0.0023
0.0023 0.0454

)
.

Hence by (18.7) the optimal weighting is

ĉ= S−112

1	2 S−112
= (0.8952,0.1048)	.

The effect of efficient weighting becomes even clearer when we expand the port-
folio to six assets. The covariance matrix for the returns of all six firms introduced
in Example 18.1 is

S = 10−3

⎛
⎜⎜⎜⎜⎝

7.3 6.2 3.1 2.3 −0.1 5.2
6.2 23.9 4.3 2.1 0.4 6.4
3.1 4.3 19.5 −0.9 1.1 3.7
2.3 2.1 −0.9 45.4 −2.1 0.8
−0.1 0.4 1.1 −2.1 2.4 −0.1

5.2 6.4 3.7 0.8 −0.1 14.7

⎞
⎟⎟⎟⎟⎠ .

Hence the optimal weighting is

ĉ= S−116

1	6 S−116
= (0.1894,−0.0139,0.0094,0.0580,0.7112,0.0458)	.

As we can clearly see, the optimal weights are quite different from the equal
weights (cj = 1/6). The weights which were used are shown in text windows on the
right hand side of Figure 18.3.

This efficient weighting assumes stable covariances between the assets over time.
Changing covariance structure over time implies weights that depend on time as
well. This is part of a large body of literature on multivariate volatility models. For
a review refer to Franke et al. (2011).

Fig. 18.3 Portfolio of all six
assets, equal and efficient

weights MVAportfol
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Summary
↪→ Efficient portfolio weighting in practice consists of estimating the

covariances of the assets in the portfolio and then computing effi-
cient weights from this empirical covariance matrix.

↪→ Note that this efficient weighting assumes stable covariances be-
tween the assets over time.

18.4 The Capital Pricing Model (CAPM)

The CAPM considers the relation between a mean-variance efficient portfolio and
an asset uncorrelated with this portfolio. Let us denote this specific asset return by
y0. The riskless asset with constant return y0 ≡ r may be such an asset. Recall from
(18.4) the condition for a mean-variance efficient portfolio:

2�c− λ1μ− λ21p = 0.

In order to eliminate λ2, we can multiply (18.4) by c	 to get:

2c	�c− λ1μ̄= λ2.

Plugging this into (18.4), we obtain:

2�c− λ1μ= 2c	�c1p − λ1μ̄1p
(18.12)

μ= μ̄1p + 2

λ1
(�c− c	�c1p).

For the asset that is uncorrelated with the portfolio, equation (18.12) can be written
as:

y0 = μ̄− 2

λ1
c	�c

since y0 = r is the mean return of this asset and is otherwise uncorrelated with the
risky assets. This yields:

λ1 = 2
c	�c
μ̄− y0

(18.13)

and if (18.13) is plugged into (18.12):

μ= μ̄1p + μ̄− y0

c	�c
(�c− c	�c1p)

μ= y01p + �c

c	�c
(μ̄− y0) (18.14)

μ= y01p + β(μ̄− y0)
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with

β
def= �c

c	�c
.

The relation (18.14) holds if there exists any asset that is uncorrelated with the
mean-variance efficient portfolio c. The existence of a riskless asset is not a neces-
sary condition for deriving (18.14). However, for this special case we arrive at the
well-known expression

μ= r1p + β(μ̄− r), (18.15)

which is known as the Capital Asset Pricing Model (CAPM), see Franke et al.
(2011). The beta factor β measures the relative performance with respect to riskless
assets or an index. It reflects the sensitivity of an asset with respect to the whole
market. The beta factor is close to 1 for most assets. A factor of 1.16, for example,
means that the asset reacts in relation to movements of the whole market (expressed
through an index like DAX or DOW JONES) 16 percents stronger than the index.
This is of course true for both positive and negative fluctuations of the whole mar-
ket.

Summary
↪→ The weights of the mean-variance efficient portfolio satisfy 2�c−

λ1μ− λ21p = 0.
↪→ In the CAPM the mean of X depends on the riskless asset and the

pre-specified mean μ as follows μ= r1p + β(μ− r).
↪→ The beta factor β measures the relative performance with respect

to riskless assets or an index and reflects the sensitivity of an asset
with respect to the whole market.

18.5 Exercises

Exercise 18.1 Prove that the inverse of A= (a − b)Ip + b1p1	p is given by

A−1 = Ip
(a − b) −

b 1p1	p
(a − b){a + (p− 1)b} ·

Exercise 18.2 The empirical covariance between the 120 returns of IBM and For-
ward Industries is 0.0023 (see Example 18.2). Test if the true covariance is zero.
Hint: Use Fisher’s Z-transform.
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Exercise 18.3 Explain why in both Figures 18.2 and 18.3 the portfolios have nega-
tive returns just before the end of the series, regardless of whether they are optimally
weighted or not! (What happened in in the mid 2007?)

Exercise 18.4 Apply the method used in Example 18.2 on the same data (Table B.5)
including also the Digital Equipment company. Obviously one of the weights is
negative. Is this an efficient weighting?

Exercise 18.5 In the CAPM the β value tells us about the performance of the port-
folio relative to the riskless asset. Calculate the β value for each single stock price
series relative to the “riskless” asset IBM.



Chapter 19
Computationally Intensive Techniques

It is generally accepted that training in statistics must include some exposure to the
mechanics of computational statistics. This exposure to computational methods is
of an essential nature when we consider extremely high dimensional data. Computer
aided techniques can help us to discover dependencies in high dimensions without
complicated mathematical tools. A draftman’s plot (i.e. a matrix of pairwise scat-
terplots like in Figure 1.14) may lead us immediately to a theoretical hypothesis
(on a lower dimensional space) on the relationship of the variables. Computer aided
techniques are therefore at the heart of multivariate statistical analysis.

With the rapidly increasing amount of data statistics faces a new challenge. While
in the 20th century the focus was on the mathematical precision of statistical model-
ing, the 21th century relies more and more on data analytic procedures that provide
information (even for extremely large data bases) on the fingertip. This demand
on fast availability of condensed statistical information has changed the statistical
paradigm and has shifted energy from mathematical analysis to computational anal-
ysis of course without loosing sight of the statistical core questions.

In this chapter we first present the concept of Simplicial Depth—a multivari-
ate extension of the data depth concept of Section 1.1. We then present Projection
Pursuit—a semiparametric technique which is based on a one-dimensional, flexible
regression or on the idea of density smoothing applied to PCA type projections. A
similar model is underlying the Sliced Inverse Regression (SIR) technique which
we discuss in Section 19.3.

The next technique is called support vector machines and is motivated by nonlin-
ear classification (discrimination) problems. Support Vector Machines (SVM) are
classification methods based on statistical learning theory. A quadratic optimization
problem determines so-called support vectors with high margin that guarantee max-
imal separability. Nonlinear classification is achieved by mapping the data into a
feature space and finding a linear separating hyperplane in this feature space. An-
other advanced technique is CART – Classification and Regression Trees, a decision
tree procedure developed by (Breiman, Friedman, Olshen and Stone, 1984).

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-642-17229-8_19, © Springer-Verlag Berlin Heidelberg 2012
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19.1 Simplicial Depth

Simplicial depth generalizes the notion of data depth as introduced in Section 1.1.
This general definition allows us to define a multivariate median and to visually
present high dimensional data in low dimension. For univariate data we have well
known parameters of location which describe the center of a distribution of a random
variable X. These parameters are for example the mean

x̄ = 1

n

n∑
i=1

xi, (19.1)

or the mode

xmod = arg max
x
f̂ (x),

where f̂ is the estimated density function of X (see Section 1.3). The median

xmed =
{
x{(n+1)/2} if n odd
x(n/2)+x(n/2+1)

2 otherwise,

where x(i) is the order statistics of the n observations xi , is yet another measure of
location.

The first two parameters can be easily extended to multivariate random variables.
The mean in higher dimensions is defined as in (19.1) and the mode accordingly,

xmod = arg max
x
f̂ (x)

with f̂ the estimated multidimensional density function of X (see Section 1.3). The
median poses a problem though since in a multivariate sense we cannot interpret the
element-wise median

xmed,j =
{
x{(n+1)/2},j if n odd
x(n/2),j+x(n/2+1),j

2 otherwise
(19.2)

as a point that is “most central”. The same argument applies to other observations
of a sample that have a certain “depth” as defined in Section 1.1. The “fourths” or
the “extremes” are not defined in a straightforward way in higher (not even for two)
dimensions.

An equivalent definition of the median in one dimension is given by the sim-
plicial depth. It is defined as follows: For each pair of datapoints xi and xj we
generate a closed interval, a one-dimensional simplex, which contains xi and xj as
border points. Redefine the median as the datapoint xmed , which is enclosed in the
maximum number of intervals:

xmed = arg max
i

#{k, l;xi ∈ [xk, xl]}. (19.3)
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Fig. 19.1 Construction of
simplicial depth

MVAsimdep1

With this definition of the median, the median is the “deepest” and “most central”
point in a data set as discussed in Section 1.1. This definition involves a computa-
tionally intensive operation since we generate n(n− 1)/2 intervals for n observa-
tions.

In two dimensions, the computation is even more intensive since the interval
[xk, xl] is replaced by a triangle constructed from three different datapoints. The
median as the deepest point is then defined by that datapoint that is covered by
the maximum number of triangles. In three dimensions triangles become pyramids
formed from 4 points and the median is that datapoint that lies in the maximum
number of pyramids.

An example for the depth in 2 dimensions is given by the constellation of points
given in Figure 19.1. If we build for example the traingle of the points 1, 3, 5 (de-
noted as  135 in Table 19.1), it contains the point 4. From Table 19.1 we count the
number of coverages to obtain the simplicial depth values of Table 19.2.

In arbitrary dimension p, we look for datapoints that lie inside a simplex (or
convex hull) formed from p + 1 points. We therefore extend the definition of the
median to the multivariate case as follows

xmed = arg max
i

#{k0, . . . , kp;xi ∈ hull(xk0 , . . . , xkp )}. (19.4)

Here k0, . . . , kp denote the indices of p + 1 datapoints. Thus for each datapoint
we have a multivariate data depth. If we compute all the necessary simplices
hull(xk0, . . . , xkp ), the computing time will unfortunately be exponential as the di-
mension increases.

In Figure 19.2 we calculate the simplicial depth for a two-dimensional, 10 point
distribution according to depth. It contains 100 data points with corresponding pa-
rameters controlling its spread. The deepest point, the two-dimensional median, is
indicated as a big star in the center. The points with less depth are indicated via grey
shades.
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Table 19.1 Coverages for
artificial configuration of
points

Triangle Coverages

1  123 1 2 3

2  124 1 2 4

3  125 1 2 5

4  126 1 2 3 4 6

5  134 1 3 4

6  135 1 3 4 5

7  136 1 3 6

8  145 1 4 5

9  146 1 3 4 6

10  156 1 3 4 5 6

11  234 2 3 4

12  235 2 3 4 5

13  236 2 3 4 6

14  245 2 4 5

15  246 2 4 6

16  256 2 5 6

17  345 3 4 5

18  346 3 4 6

19  356 3 5 6

20  456 4 5 6

Table 19.2 Simplicial depths
for artificial configuration of
points

point 1 2 3 4 5 6

depth 10 10 12 14 8 8

Summary
↪→ The “depth” of a datapoint in one dimension can be computed by

counting all (closed) intervals of two datapoints which contain the
datapoint.

↪→ The “deepest” datapoint is the central point of the distribution, the
median.

↪→ The “depth” of a datapoint in arbitrary dimension p is defined as
the number of simplices (constructed from p + 1 points) covering
this point. It is called simplicial depth.

↪→ A multivariate extension of the median is to take the “deepest” dat-
apoint of the distribution.
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Fig. 19.2 10 point
distribution according to
depth with the median shown
as a big star in the center

MVAsimdepex

Summary (continued)
↪→ In the bivariate case we count all triangles of datapoints which con-

tain the datapoint to compute its depth.

19.2 Projection Pursuit

“Projection Pursuit” stands for a class of exploratory projection techniques. This
class contains statistical methods designed for analyzing high-dimensional data us-
ing low-dimensional projections. The aim of projection pursuit is to reveal possi-
ble nonlinear and therefore interesting structures hidden in the high-dimensional
data. To what extent these structures are “interesting” is measured by an index. Ex-
ploratory Projection Pursuit (EPP) goes back to Kruskal (1969, 1972). The approach
was successfully implemented for exploratory purposes by various other authors.
The idea has been applied to regression analysis, density estimation, classification
and discriminant analysis.

Exploratory Projection Pursuit

In EPP, we try to find “interesting” low-dimensional projections of the data. For this
purpose, a suitable index function I (α), depending on a normalized projection vec-
tor α, is used. This function will be defined such that “interesting” views correspond
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to local and global maxima of the function. This approach naturally accompanies
the technique of principal component analysis (PCA) of the covariance structure of
a random vector X. In PCA we are interested in finding the axes of the covariance
ellipsoid. The index function I (α) is in this case the variance of a linear combi-
nation α	X subject to the normalizing constraint α	α = 1 (see Theorem 10.2). If
we analyze a sample with a p-dimensional normal distribution, the “interesting”
high-dimensional structure we find by maximizing this index is of course linear.

There are many possible projection indices, for simplicity the kernel based and
polynomial based indices are reported. Assume that the p-dimensional random vari-
ableX is sphered and centered, that is, E(X)= 0 and Var(X)= Ip . This will remove
the effect of location, scale, and correlation structure. This covariance structure can
be achieved easily by the Mahalanobis transformation (3.26).

Friedman and Tukey (1974) proposed to investigate the high-dimensional distri-
bution of X by considering the index

IFT,h(α)= n−1
n∑
i=1

f̂h,α(α
	Xi) (19.5)

where f̂h,α denotes the kernel estimator (see Section 1.3)

f̂h,α(z)= n−1
n∑
j=1

Kh(z− α	Xj) (19.6)

of the projected data. Note that (19.5) is an estimate of
∫
f 2(z)dz where z= α	X

is a one-dimensional random variable with mean zero and unit variance. If the high-
dimensional distribution of X is normal, then each projection z= α	X is standard
normal since ||α|| = 1 and since X has been centered and sphered by, e.g., the
Mahalanobis transformation.

The index should therefore be stable as a function of α if the high-dimensional
data is in fact normal. Changes in IFT,h(α) with respect to α therefore indicate
deviations from normality. Hodges and Lehman (1956) showed that, given a mean
of zero and unit variance, the (compact support) density which minimizes

∫
f 2 is

uniquely given by

f (z)=max{0, c(b2 − z2)},
where c = 3/(20

√
5) and b = √5. This is a parabolic density function, which is

equal to zero outside the interval (−√5,
√

5). A high value of the Friedman-Tukey
index indicates a larger departure from the parabolic form.

An alternative index is based on the negative of the entropy measure, i.e.,∫ −f logf . The density for zero mean and unit variance which minimizes the index∫
f logf

is the standard normal density, a far more plausible candidate than the parabolic
density as a norm from which departure is to be regarded as “interesting”. Thus
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in using
∫
f logf as a projection index we are really implementing the viewpoint

of seeing “interesting” projections as departures from normality. Yet another index
could be based on the Fisher information (see Section 6.2)∫

(f ′)2/f.

To optimize the entropy index, it is necessary to recalculate it at each step of the
numerical procedure. There is no method of obtaining the index via summary statis-
tics of the multivariate data set, so the workload of the calculation at each iteration
is determined by the number of observations. It is therefore interesting to look for
approximations to the entropy index. Jones and Sibson (1987) suggested that devia-
tions from the normal density should be considered as

f (x)= ϕ(x){1+ ε(x)} (19.7)

where the function ε satisfies∫
ϕ(u)ε(u)u−rdu= 0, for r = 0,1,2. (19.8)

In order to develop the Jones and Sibson index it is convenient to think in terms of
cumulants κ3 = μ3 = E(X3), κ4 = μ4 = E(X4)− 3 (see Section 1.3). The standard
normal density satisfies κ3 = κ4 = 0, an index with any hope of tracking the entropy
index must at least incorporate information up to the level of symmetric departures
(κ3 or κ4 not zero) from normality. The simplest of such indices is a positive definite
quadratic form in κ3 and κ4. It must be invariant under sign-reversal of the data since
both α	X and−α	X should show the same kind of departure from normality. Note
that κ3 is odd under sign-reversal, i.e., κ3(α

	X)=−κ3(−α	X). The cumulant κ4
is even under sign-reversal, i.e., κ4(α

	X)= κ4(−α	X). The quadratic form in κ3
and κ4 measuring departure from normality cannot include a mixed κ3κ4 term.

For the density (19.7) one may conclude with (19.8) that∫
f (u) log(u)du≈ 1

2

∫
ϕ(u)ε(u)du.

Now if f is expressed as a Gram-Charliér expansion

f (x)ϕ(x)= {1+ κ3H3(x)/6+ κ4H4(x)/24 · · ·} (19.9)

(Kendall and Stuart, 1977, p. 169) where Hr is the r-th Hermite polynomial, then
the truncation of (19.9) and use of orthogonality and normalization properties of
Hermite polynomials with respect to ϕ yields

1

2

∫
ϕ(x)ε2(x)dx = (κ2

3 + κ2
4/4)/12.

The index proposed by Jones and Sibson (1987) is therefore

IJS(α)= {κ2
3 (α

	X)+ κ2
4 (α

	X)/4}/12.

This index measures in fact the negative entropy difference
∫
f logf − ∫

ϕ logϕ.
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Fig. 19.3 Exploratory projection pursuit for the Swiss bank notes data (green = standard normal,

red = best, blue = worst) MVAppexample

Example 19.1 The exploratory Projection Pursuit is used on the Swiss bank note
data. For 50 randomly chosen one-dimensional projections of this six-dimensional
dataset we calculate the Friedman-Tukey index to evaluate how “interesting” their
structures are.

Figure 19.3 shows the density for the standard, normally distributed data (green)
and the estimated densities for the best (red) and the worst (blue) projections found.
A dotplot of the projections is also presented. In the lower part of the figure we
see the estimated value of the Friedman-Tukey index for each computed projection.
From this information we can judge the non normality of the bank note data set
since there is a lot of variation across the 50 random projections.

Projection Pursuit Regression

The problem in projection pursuit regression is to estimate a response surface

f (x)= E(Y | x)
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via approximating functions of the form:

f̂ (x)=
M∑
k=1

gk(�
	
k x)

with non-parametric regression functions gk and projection indices �k . Given ob-
servations {(x1, y1), . . . , (xn, yn)} with xi ∈ R

p and yi ∈ R the basic algorithm
works as follows.

1. Set r(0)i = yi and k = 1.
2. Minimize

Ek =
n∑
i=1

{r(k−1)
i − gk(�	k xi)}2

where �k is an orthogonal projection matrix and gk is a non-parametric regres-
sion estimator.

3. Compute new residuals

r
(k)
i = r(k−1)

i − gk(�	k xi).
4. Increase k and repeat the last two steps until Ek becomes small.

Although this approach seems to be simple, we encounter some problems. One
of the most serious is that the decomposition of a function into sums of functions of
projections may not be unique. An example is

z1z2 = 1

4ab
{(az1 + bz2)

2 − (az1 − bz2)
2}.

Numerical improvements of this algorithm were suggested by Friedman and
Stuetzle (1981).

Summary
↪→ Exploratory Projection Pursuit is a technique used to find interest-

ing structures in high-dimensional data via low-dimensional pro-
jections. Since the Gaussian distribution represents a standard situ-
ation, we define the Gaussian distribution as the most uninteresting.

↪→ The search for interesting structures is done via a projection score
like the Friedman-Tukey index IFT(α) =

∫
f 2. The parabolic dis-

tribution has the minimal score. We maximize this score over all
projections.
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Summary (continued)
↪→ The Jones-Sibson index maximizes

IJS(α)= {κ3(α
	X)+ κ2

4 (α
	X)/4}/12

as a function of α.
↪→ The entropy index maximizes

IE(α)=
∫
f (α	X) logf (α	X)

where f is the density of α	X.
↪→ In Projection Pursuit Regression the idea is to represent the un-

known function by a sum of non-parametric regression functions
on projections. The key problem is in choosing the number of terms
and often the interpretability.

19.3 Sliced Inverse Regression

Sliced inverse regression (SIR) is a dimension reduction method proposed by Duan
and Li (1991). The idea is to find a smooth regression function that operates on a
variable set of projections. Given a response variable Y and a (random) vector X ∈
R
p of explanatory variables, SIR is based on the model:

Y = m(β	1 X, . . . , β	k X, ε), (19.10)

where β1, . . . , βk are unknown projection vectors, k is unknown and assumed to
be less than p, m : Rk+1 → R is an unknown function, and ε is the noise random
variable with E (ε |X)= 0.

Model (19.10) describes the situation where the response variable Y depends
on the p-dimensional variable X only through a k-dimensional subspace. The un-
known βi ’s, which span this space, are called effective dimension reduction direc-
tions (EDR-directions). The span is denoted as effective dimension reduction space
(EDR-space). The aim is to estimate the base vectors of this space, for which nei-
ther the length nor the direction can be identified. Only the space in which they lie
is identifiable.

SIR tries to find this k-dimensional subspace of R
p which under the model

(19.10) carries the essential information of the regression between X and Y . SIR
also focuses on small k, so that nonparametric methods can be applied for the es-
timation of m. A direct application of nonparametric smoothing to X is for high
dimension p generally not possible due to the sparseness of the observations. This
fact is well known as the curse of dimensionality, see Huber (1985).

The name of SIR comes from computing the inverse regression (IR) curve. That
means instead of looking for E (Y |X = x), we investigate E (X |Y = y), a curve in
R
p consisting of p one-dimensional regressions. What is the connection between
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the IR and the SIR model (19.10)? The answer is given in the following theorem
from Li (1991).

Theorem 19.1 Given the model (19.10) and the assumption

∀b ∈R
p : E(b	X |β	1 X = β	1 x, . . . , β	k X = β	k x) = c0 +

k∑
i=1

ciβ
	
i x, (19.11)

the centered IR curve E(X |Y = y)− E(X) lies in the linear subspace spanned by
the vectors �βi , i = 1, . . . , k, where � = Cov(X).

Assumption (19.11) is equivalent to the fact that X has an elliptically symmetric
distribution, see Cook and Weisberg (1991). Hall and Li (1993) have shown that
assumption (19.11) only needs to hold for the EDR-directions.

It is easy to see that for the standardized variable Z = �−1/2{X − E(X)} the
IR curve m1(y) = E(Z |Y = y) lies in span(η1, . . . , ηk), where ηi = �1/2βi . This
means that the conditional expectationm1(y) is moving in span(η1, . . . , ηk) depend-
ing on y. With b orthogonal to span(η1, . . . , ηk), it follows that

b	m1(y) = 0,

and further that

m1(y)m1(y)
	b = Cov{m1(y)}b = 0.

As a consequence Cov{E(Z |y)} is degenerated in each direction orthogonal to all
EDR-directions ηi of Z. This suggests the following algorithm.

First, estimate Cov{m1(y)} and then calculate the orthogonal directions of this
matrix (for example, with eigenvalue/eigenvector decomposition). In general, the
estimated covariance matrix will have full rank because of random variability, esti-
mation errors and numerical imprecision. Therefore, we investigate the eigenvalues
of the estimate and ignore eigenvectors having small eigenvalues. These eigenvec-
tors η̂i are estimates for the EDR-direction ηi of Z. We can easily rescale them to
estimates β̂i for the EDR-directions ofX by multiplying by �̂−1/2, but then they are
not necessarily orthogonal. SIR is strongly related to PCA. If all of the data falls into
a single interval, which means that Ĉov{m1(y)} is equal to Ĉov(Z), SIR coincides
with PCA. Obviously, in this case any information about y is ignored.

The SIR Algorithm

The algorithm to estimate the EDR-directions via SIR is as follows:

1. Standardize x:

zi = �̂−1/2(xi − x̄).
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2. Divide the range of yi into S nonoverlapping intervals (slices) Hs , s = 1, . . . , S.
ns denotes the number of observations within slice Hs , and IHs the indicator
function for this slice:

ns =
n∑
i=1

IHs (yi).

3. Compute the mean of zi over all slices. This is a crude estimate m̂1 for the inverse
regression curve m1:

z̄s = ns
−1

n∑
i=1

zi IHs (yi).

4. Calculate the estimate for Cov{m1(y)}:

V̂ = n−1
S∑
s=1

nsz̄s z̄
	
s .

5. Identify the eigenvalues λ̂i and eigenvectors η̂i of V̂ .
6. Transform the standardized EDR-directions η̂i back to the original scale. Now

the estimates for the EDR-directions are given by

β̂i = �̂−1/2η̂i .

Remark 19.1 The number of different eigenvalues unequal to zero depends on the
number of slices. The rank of V̂ cannot be greater than the number of slices−1 (the
zi sum up to zero). This is a problem for categorical response variables, especially
for a binary response—where only one direction can be found.

SIR II

In the previous section we learned that it is interesting to consider the IR curve,
that is, E(X |y). In some situations however SIR does not find the EDR-direction.
We overcome this difficulty by considering the conditional covariance Cov(X |y)
instead of the IR curve. An example where the EDR directions are not found via the
SIR curve is given below.

Example 19.2 Suppose that (X1,X2)
	 ∼N(0,I2) and Y =X2

1. Then E(X2 |y)= 0
because of independence and E(X1 |y)= 0 because of symmetry. Hence, the EDR-
direction β = (1,0)	 is not found when the IR curve E(X |y)= 0 is considered.

The conditional variance

Var(X1 |Y = y)= E(X2
1 |Y = y)= y,

offers an alternative way to find β . It is a function of y while Var(X2 |y) is a constant.
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The idea of SIR II is to consider the conditional covariances. The principle of
SIR II is the same as before: investigation of the IR curve (here the conditional
covariance instead of the conditional expectation). Unfortunately, the theory of SIR
II is more complicated. The assumption of the elliptical symmetrical distribution of
X has to be more restrictive, i.e., assuming the normality of X.

Given this assumption, one can show that the vectors with the largest distance
to Cov(Z |Y = y) − E{Cov(Z |Y = y)} for all y are the most interesting for the
EDR-space. An appropriate measure for the overall mean distance is, according to
Li (1992),

E(||[Cov(Z |Y = y)− E{Cov(Z |Y = y)}]b||2) (19.12)

= b	 E(||Cov(Z |y)− E{Cov(Z |y)}||2)b. (19.13)

Equipped with this distance, we conduct again an eigensystem decomposition, this
time for the above expectation E(||Cov(Z |y) − E{Cov(Z |y)}||2). Then we take
the rescaled eigenvectors with the largest eigenvalues as estimates for the unknown
EDR-directions.

The SIR II Algorithm

The algorithm of SIR II is very similar to the one for SIR, it differs in only two
steps. Instead of merely computing the mean, the covariance of each slice has to be
computed. The estimate for the above expectation (19.12) is calculated after com-
puting all slice covariances. Finally, decomposition and rescaling are conducted, as
before.

1. Do steps 1 to 3 of the SIR algorithm.
2. Compute the slice covariance matrix V̂s :

V̂s = (ns − 1)−1
n∑
i=1

IHs (yi)ziz
	
i − nsz̄s z̄	s .

3. Calculate the mean over all slice covariances:

V̄ = n−1
S∑
s=1

nsV̂s .

4. Compute an estimate for (19.12):

V̂ = n−1
S∑
s=1

ns(V̂s − V̄ )2 = n−1
S∑
s=1

nsV̂
2
s − V̄ 2.

5. Identify the eigenvectors and eigenvalues of V̂ and scale back the eigenvectors.
This gives estimates for the SIR II EDR-directions:

β̂i = �̂−1/2η̂i .
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Fig. 19.4 SIR: The left plots show the response versus the estimated EDR-directions. The upper
right plot is a three-dimensional plot of the first two directions and the response. The lower right

plot shows the eigenvalues λ̂i (∗) and the cumulative sum (◦) MVAsirdata

Example 19.3 The result of SIR is visualized in four plots in Figure 19.4: the left
two show the response variable versus the first respectively second direction. The
upper right plot consists of a three-dimensional plot of the first two directions and
the response. The last picture shows "̂k , the ratio of the sum of the first k eigenvalues
and the sum of all eigenvalues, similar to principal component analysis.

The data are generated according to the following model:

yi = β	1 xi + (β	1 xi)3 + 4(β	2 xi)2 + εi,
where the xi ’s follow a three-dimensional normal distribution with zero mean, the
covariance equal to the identity matrix, β2 = (1,−1,−1)	, and β1 = (1,1,1)	.
εi is standard, normally distributed and n= 300. Corresponding to model (19.10),
m(u,v, ε)= u+ u3 + v2 + ε. The situation is depicted in Figures 19.5 and 19.6.

Both algorithms were conducted using the slicing method with 20 elements in
each slice. The goal was to find β1 and β2 with SIR. The data are designed such
that SIR can detect β1 because of the monotonic shape of {β	1 xi + (β	1 xi)3}, while
SIR II will search for β2, as in this direction the conditional variance on y is varying.
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Fig. 19.5 Plot of the true
response versus the true
indices. The monotonic and
the convex shapes can be

clearly seen
MVAsirdata

Fig. 19.6 Plot of the true
response versus the true
indices. The monotonic and
the convex shapes can be

clearly seen
MVAsirdata

If we normalize the eigenvalues for the EDR-directions in Table 19.3 such that
they sum up to one, the resulting vector is (0.852,0.086,0.062). As can be seen
in the upper left plot of Figure 19.4, there is a functional relationship found be-
tween the first index β̂	1 x and the response. Actually, β1 and β̂1 are nearly parallel,
that is, the normalized inner product β̂	1 β1/{||β̂1||||β1||} = 0.9894 is very close to
one.
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Table 19.3 SIR:
EDR-directions for simulated
data

β̂1 β̂2 β̂3

0.452 0.881 0.040

0.571 −0.349 −0.787

0.684 −0.320 0.615

Fig. 19.7 SIR II mainly sees the direction β2. The left plots show the response versus the esti-
mated EDR-directions. The upper right plot is a three-dimensional plot of the first two directions
and the response. The lower right plot shows the eigenvalues λ̂i (∗) and the cumulative sum (◦)

MVAsir2data

The second direction along β2 is probably found due to the good approximation,
but SIR does not provide it clearly, because it is “blind” with respect to the change
of variance, as the second eigenvalue indicates.

For SIR II, the normalized eigenvalues are (0.706,0.185,0.108), that is, about
69% of the variance is explained by the first EDR-direction (Table 19.4). Here, the
normalized inner product of β2 and β̂1 is 0.9992. The estimator β̂1 estimates in fact
β2 of the simulated model. In this case, SIR II found the direction where the second
moment varies with respect to β	2 x.
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Table 19.4 SIR II:
EDR-directions for simulated
data

β̂1 β̂2 β̂3

−0.272 0.964 −0.001
0.670 0.100 0.777
0.690 0.244 −0.630

In summary, SIR has found the direction which shows a strong relation regarding
the conditional expectation between β	1 x and y, and SIR II has found the direction
where the conditional variance is varying, namely, β	2 x.

The behavior of the two SIR algorithms is as expected. In addition, we have
seen that it is worthwhile to apply both versions of SIR. It is possible to combine
SIR and SIR II (Cook and Weisberg, 1991; Li, 1991; Schott, 1994) directly, or to
investigate higher conditional moments. For the latter it seems to be difficult to
obtain theoretical results.

Summary
↪→ SIR serves as a dimension reduction tool for regression problems.

↪→ Inverse regression avoids the curse of dimensionality.

↪→ The dimension reduction can be conducted without estimation of
the regression function y =m(x).

↪→ SIR searches for the effective dimension reduction (EDR) by com-
puting the inverse regression IR.

↪→ SIR II uses the EDR on computing the inverse conditional variance.

↪→ SIR might miss EDR directions that are found by SIR II.

19.4 Support Vector Machines

The purpose of this section is to introduce one of the most promising among re-
cently developed multivariate non-linear statistical techniques: the support vector
machine (SVM). The SVM is a classification method that is based on statistical
learning theory. It has been successfully applied to optical character recognition,
early medical diagnostics, and text classification. One application where SVMs out-
performed other methods is electric load prediction (EUNITE, 2001), another one is
optical character recognition (Vapnik, 1995). In a variety of applications SVMs pro-
duce better classification results than parametric methods (e.g. logit analysis) and
are outperforming widely used nonparametric techniques, such as neural networks.
Here we apply SVMs to corporate bankruptcy analysis.
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Classification Methodology

In order to illustrate the classification methodology we focus for the moment on a
company rating example that we will treat further in more detail. Investment risks
are evaluated via the default probability (PD) for a company. Each company is de-
scribed by a set of variables (predictors) x, such as financial ratios, and its class y
that can be either y =−1 (‘successful’) or y = 1 (‘bankrupt’). Financial ratios are
constructed from the variables like net income, total assets, interest payments, etc.
A training set represents a sample of data for companies which are known to have
survived or gone bankrupt. From the training set one estimates a classifier function
f that is then applied to computing PDs. These PDs can be uniquely translated into
a company rating.

Classical discriminant analysis is based on the assumption that each group of
observations is normally distributed with the same variance-covariance matrix but
different means. Under such a formulation the discriminating function will be linear,
see Theorem 13.2. Figure 19.8 displays this situation: if some linear combination
of predictors (called Z-score in the context of bankruptcy analysis) is greater than
a particular threshold value z0 the observation under consideration is regarded as
belonging to y = 1; if Z < z0 the observation would belong to y =−1 (successful).
One can change the labels “−1, +1” to the more standard notation “0, 1”. The
current labeling is done only for mathematical convenience.

The Z-score is:

Zi = a1xi1 + a2xi2 + · · · + apxip = a	xi,

where xi = (xi1, . . . , xip)
	 ∈ R

p are predictors for the i-th company. The classifi-
cation based on the Z-score are necessarily linear and, therefore, may not handle
more complex situations as in Figure 19.9 when non-linear classifiers, such as those
generated by SVMs, can produce better results.

Fig. 19.8 A linear
classification function in the
case of linearly separable data
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Fig. 19.9 Different linear
classification functions (1)
and (2) and a non-linear one
(3) in the linearly
non-separable case

Expected vs. Empirical Risk Minimization

A nonlinear classifier function f may be described by a function class F . F is fixed
a priori, e.g. it can be the class of linear classifiers (hyperplanes). A good classifier
optimizes some criterion that tells us how well f separates the classes. As in (13.4)
one considers the minimization of the expected risk:

R (f )=
∫

1

2
|f (x)− y|dF(x, y). (19.14)

The joint distribution F(x, y), however, is never known in practical applications and
must be estimated from the training set {xi, yi}ni=1. By replacing F(x, y) with the
empirical cdf Fn(x, y) one obtains the empirical risk:

R̂ (f )= 1

n

n∑
i=1

1

2
|f (xi)− yi | . (19.15)

The empirical risk is an average value of loss over the training set, while the ex-
pected risk is the expected value of loss under the true probability measure. The loss
is given by:

L(x, y)= 1

2
|f (x)− y| =

{
0, if classification is correct,
1, if classification is wrong.

One sees here that it is convenient to work with the labels “−1, 1” for y. The
solutions to the problems of expected and empirical risk minimization:

fopt = arg min
f∈F

R (f ) , (19.16)

f̂n = arg min
f∈F

R̂ (f ) , (19.17)

generally do not coincide (Figure 19.10), although converge as n→∞ if F is not
too large. According to statistical learning theory (Vapnik, 1995), it is possible to get
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Fig. 19.10 The minima fopt

and f̂n of the expected (R)
and empirical (R̂) risk
functions generally do not
coincide

a uniform upper bound on the difference between R (f ) and R̂ (f ) via the Vapnik-
Chervonenkis (VC) theory. The VC bound states that there is a function φ (mono-
tone increasing in h) so that for all f ∈F with a probability 1− η:

R (f )≤ R̂ (f )+ φ
(
h

n
,

log(η)

n

)
. (19.18)

Here h denotes the VC dimension, a measure of complexity of the involved function
class F . For a linear classification rule g(x)= sign(x	w+ b):

φ

(
h

n
,

log(η)

n

)
=

√
h
(
log 2n

h

)− log η
4

n
, (19.19)

where h is the VC dimension. By plotting the function φ(u, v) = {−u · log 2u +
log 4 − v}−1/2 for small u one sees the monotonicity of φ(u, v). In fact one can
show that

∂φ
(
h
n
,

log(η)
n

)
∂h

� 0

if and only if 2n� h. For a linear classifier with h= p+ 1 this is an easy condition
to meet.

The VC dimension of a set F of functions in a d-dimensional space is h if some
function f ∈ F can shatter h objects {xi ∈ R

d , i = 1, . . . , h}, in all 2h possible
configurations and no set {xj ∈ R

d , j = 1, . . . , q} with q > h, exists that satisfies
this property. For example, three points on a plane (d = 2) can be shattered by linear
indicator functions in 2h = 23 = 8 ways, whereas 4 points can not be shattered in
2q = 24 = 16 ways. Thus, the VC dimension of the set of linear indicator functions
in a two-dimensional space is h = 3, see Figure 19.11. The expression for the VC
bound (19.18) involves the VC dimension h, a parameter controlling complexity of
F . The term φ(h

n
,

ln(η)
n
) introduces a penalty for excessive complexity of a classifier

function. The higher is the complexity of f ∈ F the higher are h and therefore φ.
There is a trade-off between the number of classification errors on the training set
and the complexity of the classifier function. If the complexity were not controlled
for, it would be possible to construct a classifier function with no classification errors
on the training set notwithstanding how low its generalization ability would be.
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Fig. 19.11 Eight possible ways of shattering 3 points on the plane with a linear indicator function

Fig. 19.12 The separating
hyperplane x	w+ b= 0 and
the margin in the linearly
separable case

The SVM in the Linearly Separable Case

First we will describe the SVM in the linearly separable case. The family F of
classification functions in the data space is given by:

F = {x	w+ b,w ∈R
p, b ∈R} (19.20)

In order to determine the support vectors we choose f ∈F (or equivalently (w,b))
such that the so called margin – the corridor between the separating hyperplanes
– is maximal. This situation is illustrated in Figure 19.12. The margin is equal to
d−+d+. The classification function is a hyperplane plus the margin zone, where, in
the separable case, no observations can lie. It separates the points from both classes



460 19 Computationally Intensive Techniques

with the highest ‘safest’ distance (margin) between them. It can be shown that mar-
gin maximization corresponds to the reduction of complexity as given by the VC-
dimension of the SVM classifier. Apparently, the separating hyperplane is defined
only by the support vectors that hold the hyperplanes parallel to the separating one.
In Figure 19.12 there are three support vectors that are marked with bold style: two
crosses and one circle. We come now to the description of the SVM selection.

Let x	w+ b = 0 be a separating hyperplane. Then d+ (d−) will be the shortest
distance to the closest objects from the classes +1 (−1). Since the separation can
be done without errors, all observations i = 1,2, . . . , n must satisfy:

x	i w+ b ≥+1 for yi =+1

x	i w+ b ≤−1 for yi =−1.

We can combine both constraints into one:

yi(x
	
i w+ b)− 1≥ 0, i = 1,2, . . . , n. (19.21)

The canonical hyperplanes x	i w+ b=±1 are parallel and the distance between
each of them and the separating hyperplane is d+ = d− = 1/‖w‖. To maximize the
margin d+ + d− = 2/‖w‖ one therefore minimizes the Euclidean norm ‖w‖ or its
square ‖w‖2.

The Lagrangian for the primal problem that corresponds to margin maximization
subject to constraint (19.21) is:

LP (w,b)= 1

2
‖w‖2 −

n∑
i=1

αi{yi(x	i w+ b)− 1}. (19.22)

The Karush-Kuhn-Tucker (KKT) (Gale, Kuhn and Tucker, 1951) first order op-
timality conditions are:

∂LP

∂wk
= 0 : wk −

n∑
i=1

αiyixik = 0, k = 1, . . . , d

∂LP

∂b
= 0 :

n∑
i=1

αiyi = 0

yi(x
	
i w+ b)− 1≥ 0, i = 1, . . . , n

αi ≥ 0

αi{yi(x	i w+ b)− 1} = 0.

From these first order condition, we can derive w =∑n
i=1 αiyixi and therefore

the summands in (19.22) read:

1

2
‖w‖2 = 1

2

n∑
i=1

n∑
j=1

αiαjyiyj x
	
i xj

−
n∑
i=1

αi{yi(x	i w+ b)− 1} = −
n∑
i=1

αiyix
	
i

n∑
j=1

αjyjxj +
n∑
i=1

αi

=−
n∑
i=1

n∑
j=1

αiαjyiyj x
	
i xj +

n∑
i=1

αi.
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Substituting this into (19.22) we obtain the Lagrangian for the dual problem:

LD (α)=
n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyj x
	
i xj . (19.23)

The primal and dual problems are:

min
w,b

LP (w,b)

max
α
LD (α) s.t. αi ≥ 0,

n∑
i=1

αiyi = 0.

Since the optimization problem is convex the dual and primal formulations give the
same solution.

Those points i for which the equation yi(x	i w+ b)= 1 holds are called support
vectors. After “training the support vector machine” i.e. solving the dual problem
above and deriving Lagrange multipliers (they are equal to 0 for non-support vec-
tors) one can classify a company. One uses the classification rule:

g(x)= sign(x	w+ b), (19.24)

where w =∑n
i=1 αiyixi and b = 1

2 (x+1 + x−1)w. x+1 and x−1 are two support
vectors belonging to different classes for which y(x	w + b)= 1. The value of the
classification function (the score of a company) can be computed as

f (x)= x	w+ b. (19.25)

Each score f (x) uniquely corresponds to a default probability (PD). The higher
f (x) the higher the PD.

SVMs in the Linearly Non-separable Case

In the linearly non-separable case the situation is like in Figure 19.13. The slack
variables ξi represent the violation from strict separation. In this case the following
inequalities can be induced from Figure 19.13:

x	i w+ b ≥ 1− ξi for yi = 1,

x	i w+ b ≤−1+ ξi for yi =−1,

ξi ≥ 0.

They can be combined into two constraints:

yi(x
	
i w+ b)≥ 1− ξi (19.26)

ξi ≥ 0. (19.27)

SVM classification again maximizes the margin given a family of classification
functions F .
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Fig. 19.13 The separating
hyperplane x	w+ b= 0 and
the margin in the linearly
non-separable case

The penalty for misclassification, the classification error ξi ≥ 0, is related to the
distance from a misclassified point xi to the canonical hyperplane bounding its class.
If ξi > 0, an error in separating the two sets occurs. The objective function corre-
sponding to penalized margin maximization is then formulated as:

1

2
‖w‖2 +C

n∑
i=1

ξi, (19.28)

where the parameter C characterizes the weight given to the classification errors.
The minimization of the objective function with constraint (19.26) and (19.27) pro-
vides the highest possible margin in the case when classification errors are inevitable
due to the linearity of the separating hyperplane. Under such a formulation the prob-
lem is convex.

The Lagrange function for the primal problem is:

LP (w,b, ξ)= 1

2
‖w‖2 +C

n∑
i=1

ξi −
n∑
i=1

αi{yi(x	i w+ b)− 1+ ξi} −
n∑
i=1

μiξi,

(19.29)

where αi ≥ 0 and μi ≥ 0 are Lagrange multipliers. The primal problem is formu-
lated as:

min
w,b,ξ

LP (w,b, ξ) .

The first order conditions in this case are:

∂LP

∂wk
= 0 : wk −

n∑
i=1

αiyixik = 0
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∂LP

∂b
= 0 :

n∑
i=1

αiyi = 0

∂LP

∂ξi
= 0 : C − αi −μi = 0.

With the conditions for the Lagrange multipliers:

αi ≥ 0

μi ≥ 0

αi{yi(x	i w+ b)− 1+ ξi} = 0

μiξi = 0.

Note that
∑n

i=1 αiyib = 0 therefore similar to the linear separable case the primal
problem translates into:

LD (α)= 1

2

n∑
i=1

n∑
j=1

αiαjyiyj x
	
i xj −

n∑
i=1

αiyix
	
i

n∑
j=1

αjyjxj

+C
n∑
i=1

ξi +
n∑
i=1

αi −
n∑
i=1

αiξi −
n∑
i=1

μiξi

=
n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyj x
	
i xj +

n∑
i=1

ξi (C − αi −μi) .

Since the last term is 0 we derive the dual problem as:

LD (α)=
n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyj x
	
i xj , (19.30)

and the dual problem is posed as:

max
α
LD (α) ,

subject to:

0≤ αi ≤ C,
n∑
i=1

αiyi = 0.

Nonlinear Classification

The SVMs can also be generalized to the nonlinear case. In order to obtain non-
linear classifiers as in Figure 19.14 one maps the data with a non-linear structure
via a function " : Rp �→ H into a very large dimensional space H where the clas-
sification rule is (almost) linear. Note that all the training vectors xi appear in LD
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Fig. 19.14 Mapping into a three dimensional feature space from a two dimensional data space
R

2 �→ R
3. The transformation "(x1, x2)= (x2

1 ,
√

2x1x2, x
2
2 )
	 corresponds to the kernel function

K(xi, xj )= (x	i xj )2

(19.30) only as scalar products of the form x	i xj . In the nonlinear SVM situations
this transforms to ψ (xi)	ψ(xj ).

The so called kernel trick is to compute this scalar product via a kernel function.
These kernel functions are actually related to those we presented in Section 1.3. If
a kernel function K exists such that K(xi, xj )="(xi)	"(xj ), then it can be used
without knowing the transformation " explicitly. A necessary and sufficient condi-
tion for a symmetric function K(xi, xj ) to be a kernel is given by Mercer’s theorem
(Mercer, 1909). It requires positive definiteness, i.e. for any data set x1, . . . , xn and
any real numbers λ1, . . . , λn the function K must satisfy

n∑
i=1

n∑
j=1

λiλjK(xi, xj )≥ 0. (19.31)

Some examples of kernel functions are:

• K(xi, xj )= e−‖xi−xj ‖/2σ 2
– the isotropic Gaussian kernel with constant σ

• K(xi, xj ) = e−(xi−xj )	r−2�−1(xi−xj )/2 – the stationary Gaussian kernel with an
anisotropic radial basis with constant r and variance-covariance matrix � from
training set

• K(xi, xj )= (x	i xj + 1)p – the polynomial kernel of degree p
• K(xi, xj ) = tanh(kx	i xj − δ) – the hyperbolic tangent kernel with constant k

and δ.

SVMs for Simulated Data

The basic parameters of SVMs are on the scaling r of the anisotropic radial basis
functions (in the stationary Gaussian kernel) and the capacity C. The parameter r
controls the local resolution of the SVM in the sense that smaller r create smaller
curvature of the margin. The capacity C controls the amount of slack to allow for
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Fig. 19.15 SVM classification results for the “orange peel” data, n = 200, d = 2,
n−1 = n+1 = 100, x+1,i ∼ N((0,0)	,22I), x−1,i ∼ N((0,0)	,0.52I) with SVM parameters

r = 0.5 and C = 20/200 mva3svm01

unclassified observations. A large C would create a very rough and curved margin
where C close to zero makes the margin more smooth.

One of the guinea pig tests for a classification algorithm is the data described as
“orange peel”, i.e. when two groups of observations have similar means, their vari-
ance, however, being different. The classification results in this case are presented
in Figure 19.15. An SVM with a radial basis kernel is highly suitable for such a kind
of data.

Another popular non-linear test is the classification of “spiral data”. We generated
two spirals with the distance between them equal 1.0 that span over 3π radian. The
SVM was chosen with r = 0.1 and C = 10/n. The SVM was able to separate the
classes without an error if noise with parameters εi ∼N(0,0.12I) was injected into
the pure spiral data (Figure 19.16). Obviously, both the “orange peel” and the “spiral
data” are not linearly separable.

Solution of the SVM Classification Problem

The standard SVM optimization problem (19.30), which is a quadratic optimization
problem, is usually solved by means of quadratic programming (QP). This tech-
nique, however, is notorious for (i) its bad scaling properties (the time required to
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Fig. 19.16 SVM classification results for the noisy spiral data. The spirals spread over 3π radian;
the distance between the spirals equals 1.0. d = 2, n−1 = n+1 = 100, n = 200. The noise was
injected with the parameters εi ∼ N(0,0.12I). The separation is perfect with SVM parameters

r = 0.1 and C = 10/200 mva3svm02

solve the problem is proportional to n3, where n is the number of observations),
(ii) implementation difficulty and (iii) enormous memory requirements. With the
QP technique the whole kernel matrix of the size n× n has to be fit in the mem-
ory, which, assuming that each variable takes up 10 bytes of memory, will require
10× n× n bytes. This means that 1 million observation (which is not unusual for
practical applications such as credit scoring) will require 12000 TBytes (terabytes)
or 10000000 MBytes of operating memory to store. With a typical size of the com-
puter memory of 512 MBytes no more than around 5000 observations can be pro-
cessed. Thus, the main emphasis in designing new algorithms was made on using
special properties of SVMs to speed up the solution and reduce memory require-
ments.

Scoring Companies

For our illustration we selected the largest bankrupt companies with the capitaliza-
tion of no less than 1 billion USD. The dataset used in this work is from the Credit
reform database provided by the Research Data Center (RDC) of the Humboldt Uni-
versität zu Berlin. It contains financial information from about 20000 solvent and
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Table 19.5 Descriptive
statistics for financial ratios Ratio q0.05 Med. q0.95 IQR

OI/TA −0.22 0.00 0.10 0.06

AP/Sales 0.03 0.14 0.36 0.10

1000 insolvent German companies. The period spans from 1996 to 2002 and in the
case of the insolvent companies the information is gathered 2 years before the in-
solvency took place. The last annual report of a company before it goes bankrupt
receives the indicator y = 1 and for the rest (solvent) companies y =−1.

We are given 28 variables, i.e. cash, inventories, equity, EBIT, number of employ-
ees, and branch code. From the original data, we create common financial indicators
which are denoted as x1, . . . , x25. These ratios can be grouped into four categories
such as profitability, leverage, liquidity, and activity.

Obviously, data for the year of 1996 are missing and we will exclude them for fur-
ther calculations. In order to reduce the effect of the outliers on the results, all obser-
vations that exceeded the upper limit of IQ (Inter-quartile range) or the lower limit
of IQ were replaced with these values. To demonstrate how performance changes,
we will use the Accounts Payable (AP) turnover (named X24) and ratio of Op-
erating Income (OI) and Total Asset (TA) (named X3). We choose randomnly 50
solvent and 50 insolvent companies. The statistical description of financial ratios is
summarized in Table 19.5.

Keep in mind that different kernels will influence performance. We will use one
of the most common ones, the isotropic Gaussian kernel. Triangles and circles in
Figure 19.17 represent successful and failing companies from the training set, re-
spectively. The colored background corresponds to different score values f . The
more blue the area, the higher the score and the greater the probability of default.
Most successful companies lying in the red area have positive profitability and a
reasonable activity.

Figure 19.17 presents the classification results for an SVM using isotropic Gaus-
sian kernel with σ = 100 and the fixed capacity C = 1. With given priors, the SVM
has trouble classifying between solvent and insolvent company. The radial base σ ,
which determines the minimum radius of a group, is too large. Notice that SVM do
a poor jod of distinguishing between groups even though most observations are used
as support vector.

The applied SVMs differed in two aspects: (i) their capacity that is controlled by
the coefficient C in (19.29) and (ii) the complexity of classifier functions controlled
in our case by the isotropic radial basis in the Gaussian kernel. In Figure 19.18
The value σ is reduced to 2 while C remains the same. SVM start recognizing
the difference between solvent and insolvent companies resulting in sharper cluster.
Figure 19.19 demonstrate the effect of the changing capacity to the classification
result. The optimization of SVM parameters (C and σ ) can be done by using grid
search method or an other advance algorithm so called Genetic Algorithm.

Figure 19.20 shows a Cumulative Accuracy Profile (CAP) curve which is partic-
ularly useful in that it simultaneously measures Type I and Type II errors. In statis-
tical terms, the CAP curve represents the cumulative probability of default events
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Fig. 19.17 Ratings of companies in two dimensions. Low complexity of classifier functions with

σ = 100 and C = 1. Percentage of misclassification is 0.43 mva3svm01

for different percentiles of the risk score scale. Now, we introduce Accuracy Ratio
(AR) derived from CAP curve for measuring and comparing the performance of
credit risk model. Therefore, AR is defined as the ratio of the area between a model
CAP curve and the random curve to the area between the perfect CAP curve and the
random CAP curve (see Figure19.20). Perfect classification is attained if the value
of AR is equal to one.

Summary
↪→ SVM classification is done by mapping the data into feature space

and finding a separating hyperplane there.
↪→ The support vectors are determined via a quadratic optimization

problem.
↪→ SVM produces highly nonlinear classification boundaries.
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Fig. 19.18 Ratings of companies in two dimensions. The case of an average complexity of classi-
fier functions with σ = 2 and capacity is fixed at C = 1. Percentage of misclassification is reduced

to 0.27 mva3svm01

19.5 Classification and Regression Trees

Classification and Regression Trees (CART) is a relatively new method of data anal-
ysis developed by a group of American statisticians (Breiman et al., 1984). The aim
of CART is to classify observations into a subset of known classes or to predict
levels of regression functions. CART is a non-parametric tool which is designed
to represent decision rules in a form of so called binary trees. Binary trees split a
learning sample parallel to the coordinate axis and represent the resulting data clus-
ters hierarchically starting from a root node for the whole learning sample itself and
ending with relatively homogenous buckets of observations.

Regression trees are constructed in a similar way but the final buckets do not
represent classes but rather approximations to an unknown regression functions at
a particular point of the independent variable. In this sense regression trees are es-
timates via a non-parametric regression model. Here we provide an outlook of how
decision trees are created, what challenges arise during practical applications and,
of course, a number of examples will illustrate the power of CART.
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Fig. 19.19 Ratings of companies in two dimensions. High capacity (C = 200) with radial basis is

fixed at σ = 2. Percentage of misclassification is 0.24 mva3svm01

Fig. 19.20 Cumulative accuracy profile (CAP) curve
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Fig. 19.21 Decision tree for
low/high patients

How Does CART Work?

Consider the following real life example of how high risk patients (those who will
not survive at least 30 days after a heart attack is admitted) were identified at
San Diego Medical Center, University of California on the basis of initial 24-hour
data. A classification rule using at most three decisions (questions) is presented in
Figure 19.21. Left branches of the tree represent cases of positive answers, right
branches – negative ones so that e.g. if minimum systolic blood pressure over the
last 24 hours is less or equal 91, then the patient belongs to the high risk group. In
this example the dependant variable is binary: low risk (0) and high risk (1).

A different situation occurs when we are interested in the expected amount of
days the patient will be able to survive. The decision tree will probably change and
the terminal nodes will now indicate a mean expected number of days the patient
will survive. This situation describes a regression tree rather than a classification
tree.

In a more formal setup let Y be a dependent variable – binary or continuous and
X ∈R

d . We are interested in approximating

f (x)= E (Y |X = x) .
For the definition of conditional expectations we refer to Section 4.2. CART esti-
mates this function f by a step function that is constructed via splits along the co-
ordinate axis. An illustration is given in Figure 19.22. The regression function f (x)
is approximated by the values of the step function. The splits along the coordinate
axes are to be determined from the data.

The following simple one dimensional example shows that the choice of splits
points involves some decisions. Suppose that f (x)= I (x ∈ [0,1])+2 I (x ∈ [1,2])
is a simple step function with a step at x = 1. Assume now that one observes
Yi = f (xi)+ εi,Xi ∼ U [0,2], εi ∼ N (0,1). By going through the X data points
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Fig. 19.22 CART orthogonal splitting example where each color corresponds to one cluster

as possible split points one sees that in the neighborhood of x = 1 one has two pos-
sibilities: one simply takes the Xi left to 1 or the observation right to 1. In order to
make such splits unique one averages these neighboring points.

Impurity Measures

A more formal framework on how to split and where to split needs to be developed.
Suppose there are n observations in the learning sample and nj is the overall number
of observations belonging to class j , j = 1, . . . , J . The class probabilities are:

π (j)= nj

n
, j = 1, . . . , J (19.32)

π (j) is the proportion of observations belonging to a particular class. Let n(t) be the
number of observations at node t and nj (t) – the number of observations belonging
to the j -th class at t . The frequency of the event that an observation of the j -th class
falls into node t is:

p(j, t)= π(j)nj (t)
nj

. (19.33)

The proportion of observations at t are p(t) =∑J
j=1 p(j, t) the conditional

probability of an observation to belong to class j given that it is at node t is:

p(j | t)= p(j, t)

p(t)
= nj (t)

n(t)
. (19.34)
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Fig. 19.23 Parent and child
nodes hierarchy

Define now a degree of class homogeneity in a given node. This characteristic –
an impurity measure i(t) – will represent a class homogeneity indicator for a given
tree node and hence will help to find optimal splits. Define an impurity function ι(t)
which is determined on (p1, . . . , pJ ) ∈ [0,1]J with

∑J
j=1 pj = 1 so that:

1. ι has a unique maximum at point ( 1
J
, 1
J
, . . . , 1

J
);

2. ι has a unique minimum at points (1,0,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0,0,0,
. . . ,1);

3. ι is a symmetric function of p1, . . . , pJ .

Each function satisfying these conditions is called an impurity function. Given ι,
define the impurity measure i(t) for a node t as:

i(t)= ι {p(1| t),p(2| t), . . . , p(J | t)} . (19.35)

Denote an arbitrary data split by s, then for a given node t which we will call a
parent node two child nodes described in Figure 19.23 arise: tL and tR representing
observations meeting and not meeting the split criterion s. A fraction pL of data
from t falls to the left child node and pR = 1− pL is the share of data in tR .

A quality measure of how well split s works is:

�i(s, t)= i(t)− pLi(tL)− pRi(tR). (19.36)

The higher the value of �i(s, t) the better split we have since data impurity is
reduced. In order to find an optimal split s it is natural to maximize �i(s, t). Note
that in (19.36) for different splits s, the value of i(t) remains constant, hence it is
equivalent to find

s∗ = argmax
s

�i (s, t)= argmax
s

{−pLi (tL)− pRi (tR)}
= argmin

s
{pLi (tL)+ pRi (tR)} (19.37)

where tL and tR are implicit functions of s. This splitting procedure is repeated
until one arrives at a minimal bucket size. Classes are then assigned to terminal
nodes using the following rule:

If p(j | t)=max
i
p( i| t), then j∗(t)= j. (19.38)

If the maximum is not unique, then j∗(t) is assigned randomly to those classes
for which p(i| t) takes its maximum value. The crucial question is of course to
define an impurity function i (t). A natural definition of impurity is via a variance
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measure: Assign 1 to all observations at node t belonging to class j and 0 to others.
A sample variance estimate for node t observations is p(j | t) {1− p(j | t)}.

Summing over all J classes we obtain the Gini index:

i (t)=
J∑
j=1

p(j | t) {1− p(j | t)} = 1−
J∑
j=1

p2(j | t). (19.39)

The Gini index is an impurity function ι(p1, . . . , pJ ), pj = p(j | t). It is not hard
see that the Gini index is a convex function. Since pL + pR = 1, we get:

i(tL)pL + i(tR)pR = ι {p(1| tL), . . . , p(J | tL)}pL + ι {p(1| tR), . . . , p(J | tR)}pR
≤ ι {pLp(1| tL)+ pRp(1| tR), . . . , pLp(J | tL)+ pRp(J | tR)}

where inequality becomes an equality in case p(j | tL)= p(j | tR), j = 1, . . . , J .
Recall that

p(j, tL)

p(t)
= p(tL)

p(t)
· p(j, tL)
p(tL)

= pLp(j | tL)
and since

p(j | t)= p(j, tL)+ p(j, tR)
p(t)

= pLp(j | tL)+ pRp(j | tR)
we can conclude that

i(tL)pL + i(tR)pR ≤ i(t). (19.40)

Hence each variant of data split leads to �i(s, t) > 0 unless p(j | tR) =
p(j | tL)= p(j | t) i.e. when no split decreases class heterogeneity.

Impurity measures can be defined in a number of different ways, for practical
applications the so called twoing rule can also be considered. Instead of maximiz-
ing impurity change at a particular node, the twoing rule tries to balance as if the
learning sample had only two classes. The reason for such an algorithm is that such
a decision rule is able to distinguish observations between general factors on top
levels of the tree and take into account specific data characteristics at lower levels.

If S = {1, . . . , J } is the set of learning sample classes, divide it into two subsets

S1 = {j1, . . . , jn} , and S2 = S\S1.

All observations belonging to S1 get dummy class 1, and the rest dummy class 2.
The next step is to calculate �i(s, t) for different s as if there were only two
(dummy) classes. Since actually �i(s, t) depends on S1, the value �i(s, t, S1)

is maximized. Now apply a two-step procedure: first, find s∗(S1) maximizing
�i(s, t, S1) and second, find a superclass S∗1 maximizing�i {s∗(S1), t, S1}. In other
words the idea of twoing is to find a combination of superclasses at each node that
maximizes the impurity increment for two classes.

This method provides one big advantage: it finds so called strategic nodes i.e.
nodes filtering observations in the way that they are different to the maximum fea-
sible extent. Although applying the twoing rule may seem to be desirable especially
for data with a big number of classes, another challenge arises: computational speed.
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Let’s assume that the learning sample has J classes, then a set S can be split into
S1 and S2 by 2J−1 ways. For 11 classes data this will create more than 1000 com-
binations. Fortunately the following result helps to reduce drastically the amount of
computations.

It can be proven (Breiman et al., 1984) that in a classification task with two
classes and impurity measure p(1| t)p(2| t) for an arbitrary split s a superclass
S1(s) is determined by:

S1(s)= {j : p(j | tL)≥ p(j | tR)} ,

max
S1

�i(s, t, S1)= pLpR

4

⎧⎨
⎩

J∑
j=1

|p(j | tL)− p(j | tR)|
⎫⎬
⎭

2

.
(19.41)

Hence the twoing rule can be applied in practice as well as Gini index, although
the first criterion works a bit slower.

Gini Index and Twoing Rule in Practice

In this section we look at practical issues of using these two rules. Consider a learn-
ing dataset from Salford Systems with 400 observations characterizing automobiles:
their make, type, color, technical parameters, age etc. The aim is to build a deci-
sion tree splitting different cars by their characteristics based on feasible relevant
parameters. The classification tree constructed using the Gini index is given in Fig-
ure 19.24.

A particular feature here is that at each node observations belonging to one make
are filtered out i.e. observations with most striking characteristics are separated. As
a result a decision tree is able to pick out automobile makes quite easily.

The twoing rule based tree Figure 19.25 for the same data is different. Instead of
specifying particular car makes at each node, application of the twoing rule results

Fig. 19.24 Classification tree
constructed by Gini index
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Fig. 19.25 Classification tree constructed by twoing index

in strategic nodes i.e. questions which distinguish between different car classes to
the maximum extent. This feature can be vital when high-dimensional datasets with
a big number of classes are processed.

Optimal Size of a Decision Tree

Up to now we were interested in determining the best split s∗ at a particular node.
The next and perhaps more important question is how to determine the optimal tree
size i.e. when to stop splitting. If each terminal node has only class homogenous
dataset, then every point of the learning sample can be flawlessly classified using
this maximum tree. But can be such an approach fruitful?

The maximum tree is a case of overspecification. Some criterion is required to
stop data splitting. Since tree building is dependent on �i(s, t), a criterion is to stop
data splitting if

�i(s, t) < β̄ (19.42)

where β̄ is some threshold value.
The value of β̄ is to be chosen in a subjective way and this is unfortunately

a drawback. Empirical simulations show that the impurity increment is frequently
non-monotone, that is why even for small β̄ the tree may be underparametrized.
Setting even smaller values for β̄ will probably remedy the situation but at the cost
of tree overparametrization.
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Another way to determine the adequate shape of a decision tree is to demand a
minimum number of observations N̄ (bucked size) at each terminal node. A disad-
vantage is that if at terminal node t the number of observations is higher

N(t) > N̄ (19.43)

then this node is also being split as data are still not supposed to be clustered well
enough.

Cross-Validation for Tree Pruning

Cross-validation is a procedure which uses the bigger data part as a training set and
the rest as a test set. Then the process is looped so that different parts of the data
become learning and training set, so that at the end each datapoint was employed
both as a member of test and learning sets. The aim of this procedure is to extract
maximum information from the learning sample especially in the situations of data
scarceness.

The procedure is implemented in the following way. First, the learning sample
is randomly divided into V parts. Using the training set from the union of (V − 1)
subsets a decision tree is constructed while the test set is used to verify the tree
quality. This procedure is looped over all possible subsets.

Unfortunately for small values of V cross-validation estimates can be unstable
since each iteration a cluster of data is selected randomly and the number of iter-
ations itself is relatively small, thus the overall estimation result is somewhat ran-
dom. Nowadays cross-validation with V = 10 is an industry standard and for many
applications a good balance between computational complexity and statistical pre-
cision.

Cost-Complexity Function and Cross-Validation

Another method taken into account is tree complexity i.e. the number of terminal
nodes. The maximum tree will get a penalty for its big size, on the other hand
it will be able to make perfect in-sample predictions. Small trees will, of course,
get lower penalty for their size but their prediction abilities are limited. Optimiza-
tion procedure based on such a trade-off criterion could determine a good decision
tree.

Define internal misclassification error of an arbitrary observation at node t as
e(t) = 1 − maxj p(j | t), define also E(t) = e(t)p(t). Then internal misclassifi-
cation tree error is E(T ) =∑

t∈T̃ E(t) where T̃ is a set of terminal nodes. The
estimates are called internal because they are based solely on the learning sample.
It may seem that E(T ) as a tree quality measure is sufficient but unfortunately it is
not so. Consider the case of the maximum tree, here E(TMAX)= 0 i.e. the tree is of
best configuration.
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For any subtree T (≤ TMAX) define the number of terminal nodes |T̃ | as a mea-
sure of its complexity. The following cost-complexity function can be used:

Eα(T )=E(T )+ α|T̃ | (19.44)

where α ≥ 0 is a complexity parameter and α|T̃ | is a cost component. The more
complex the tree (high number of terminal nodes) the lower is E(T ) but at the same
time the higher is the penalty α|T̃ | and vice versa.

The number of subtrees of TMAX is finite. Hence pruning of TMAX leads to cre-
ation of a subtree sequence T1, T2, T3, . . . with a decreasing number of terminal
nodes.

An important question is if a subtree T ≤ TMAX for a given α minimizing Eα(T )
always exists and whether it is unique?

In (Breiman et al., 1984) it is shown that for ∀α ≥ 0 there exists an optimal tree
T (α) in the sense that

1. Eα{T (α)} =minT≤TMAX Eα(T )=minT≤TMAX {E(T )+ α|T̃ |}
2. if Eα(T )=Eα {T (α)} then T (α)≤ T .

This result is a proof of existance, but also a proof of uniqueness: consider an-
other subtree T ′ so that T and T ′ both minimize Eα and are not nested, then T (α)
does not exist in accordance with second condition.

The idea of introducing cost-complexity function at this stage is to check only a
subset of different subtrees of TMAX : optimal subtrees for different values of α. The
starting point is to define the first optimal subtree in the sequence so that E(T1)=
E(TMAX) and the size of T1 is minimum among other subtrees with the same cost
level. To get T1 out of TMAX for each terminal node of TMAX it is necessary to
verify the condition E(t)= E(tL)+ E(tR) and if it is fulfilled – node t is pruned.
The process is looped until no extra pruning is available – the resulting tree T (0)
becomes T1.

Define a node t as an ancestor of t ′ and t ′ as descendant of t if there is a con-
nected path down the tree leading from t to t ′. Consider Figure 19.26 where nodes
t4, t5, t8, t9, t10 and t11 are descendants of t2 while nodes t6 and t7 are not descen-
dants of t2 although they are positioned lower since it is not possible to connect
them with a path from t2 to these nodes without engaging t1. Nodes t4, t2 and t1 are
ancestors of t9 and t3 is not ancestor of t9.

Define the branch Tt of the tree T as a subtree based on node t and all its de-
scendants. An example is given in Figure 19.27. Pruning a branch Tt from a tree T
means deleting all descendant nodes of t . Denote the transformed tree as T − Tt .
Pruning the branch Tt2 results in the tree described in Figure 19.28.

For any branch Tt define the internal misclassification estimate as:

E(Tt )=
∑
t ′∈T̃t

E(t ′) (19.45)

where T̃t is the set of terminal nodes of Tt . Hence for an arbitrary node t of Tt :

E(t) > E(Tt ). (19.46)
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Fig. 19.26 Decision tree hierarchy

Fig. 19.27 The branch Tt2 of
the original tree T

Fig. 19.28 T − Tt2 the
pruned tree T

Consider now the cost-complexity misclassification estimate for branches or sin-
gle nodes. Define for a single node {t}:

E ({t})=E(t)+ α (19.47)
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and for a branch:

Eα(Tt )=E(Tt )+ α|T̃t |. (19.48)

When Eα(Tt ) < Eα ({t}) the branch Tt is preferred to a single node {t} according
to cost-complexity. For some α both (19.47) and (19.48) will become equal. This
critical value of α can be determined from:

Eα(Tt ) < Eα ({t}) (19.49)

which is equivalent to

α <
E(t)−E(Tt )
|T̃t | − 1

(19.50)

where α > 0 since E(t) > E(Tt ).
To obtain the next member of the subtrees sequence i.e. T2 out of T1 a special

node called weak link is determined. For this purpose a function g1(t), t ∈ T1 is
defined as

g1(t)=
{
E(t)−E(Tt )
|T̃t |−1

, t /∈ T̃1

+∞, t ∈ T̃1.
(19.51)

Node t̄1 is a weak link in T1 if

g1(t̄1)=min
t∈T1

g1(t) (19.52)

and a new value for α2 is defined as

α2 = g1(t̄1). (19.53)

A new tree T2 ≺ T1 in the sequence is obviously defined by pruning the branch
Tt̄1 i.e.

T2 = T1 − Tt̄1 . (19.54)

The process is looped until root node {t0} – the final member of sequence – is
reached. When there are multiple weak links detected, for instance gk(t̄k)= gk(t̄ ′k),
then both branches are pruned i.e. Tk+1 = Tk − Tt̄k − Tt̄ ′k .

In this way it is possible to get the sequence of optimal subtrees TMAX # T1 #
T2 # T3 # · · · # {t0} for which it is possible to prove that the sequence {αk} is
increasing i.e. αk < αk+1, k ≥ 1 and α1 = 0. For k ≥ 1: αk ≤ α < αk+1 and
T (α)= T (αk)= Tk .

Practically this tells us how to implement the search algorithm. First, the maxi-
mum tree TMAX is taken, then T1 is found and a weak link t̄1 is detected and branch
Tt̄1 is pruned off, α2 is calculated and the process is continued.

When the algorithm is applied to T1, the number of pruned nodes is usually quite
significant. For instance, consider the typical empirical evidence (see Table 19.6).

When the trees become smaller, the difference in the number of terminal nodes
also gets smaller.

Finally, it is worth mentioning that the sequence of optimally pruned subtrees is a
subset of trees which might be constructed using direct method of internal misclas-
sification estimator minimization given a fixed number of terminal nodes. Consider
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Table 19.6 Typical pruning
speed Tree T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

|T̃k | 71 63 58 40 34 19 10 9 7 6 5 2 1

Fig. 19.29 The example of
relationship between Ê(Tk)
and number of terminal nodes

an example of tree T (α) with 7 terminal nodes, then there is no other subtree T with
7 terminal nodes having lower E(T ). Otherwise

Eα(T )=E(T )+ 7α <Eα {T (α)} = min
T≤TMAX

Eα(T )

which is impossible by definition.
Applying the method of V -fold cross-validation to the sequence TMAX # T1 #

T2 # T3 # · · · # {t0}, an optimal tree is determined.
On the other hand it is frequently pointed out that choice of tree with minimum

value of ECV(T ) is not always adequate since ECV(T ) is not too robust i.e. there
is a whole range of values ECV(T ) satisfying ECV(T ) < E

CV

MIN(T ) + ε for small
ε > 0. Moreover, when V < N a simpe change of random generator seed will def-
initely result in changed values of |T̃k| minimizing Ê(TK). Hence a so called one
standard error empirical rule is applied which states that if Tk0 is the tree minimiz-
ing ECV(Tk0) from the sequence TMAX # T1 # T2 # T3 # · · · # {t0}, then a value k1

and a correspondent tree Tk1 are selected so that

argmax
k1

Ê(Tk1)≤ Ê(Tk0)+ σ {Ê(Tk0)} (19.55)

where σ(·) denotes sample estimate of standard error and Ê(·) – the relevant sample
estimators.

The dotted line on Figure 19.29 shows the area where the values of Ê(Tk) only
slightly differ from min|T̃k | Ê(Tk). The left edge which is roughly equivalent to 16
terminal nodes shows the application of one standard error rule. The use of one
standard error rule allows not only to achieve more robust results but also to get
trees of lower complexity given the error comparable with min|T̃k | Ê(Tk).
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Regression Trees

Up to now we concentrate on classification trees. Although regression trees share a
similar logical framework, there are some differences which need to be addressed.
The important difference between classification and regression trees is the type of
dependent variable Y . When Y is discrete, a decision tree is called a classification
tree, a regression tree is a decision tree with a continuous dependent variable.

Gini index and twoing rule discussed in previous sections assume that the number
of classes is finite and hence introduce some measures based mainly on p(j |t) for
arbitrary class j and node t . But since in case of continuous dependent variable
there are no more classes, this approach cannot be used anymore unless groups
of continuous values are effectively substituted with artificial classes. Since there
are no classes anymore – how can be the maximum regression tree determined?
Analogously with discrete case, absolute homogeneity can be then described only
after some adequate impurity measure for regression trees is introduced.

Recall the idea of Gini index, then it becomes quite natural to use the variance as
impurity indicator. Since for each node data variance can be easily computed, then
splitting criterion for an arbitrary node t can be written as

s∗ = argmax
s

[pLvar {tL(s)} + pRvar {tR(s)}] (19.56)

where tL and tR are emerging child nodes which are, of course, directly dependent
on the choice of s∗.

Hence the maximum regression tree can be easily defined as a structure where
each node has only the same predicted values. It is important to point out that since
continuous data have much higher chances to take different values comparing with
discrete ones, the size of maximum regression tree is usually very big.

When the maximum regression tree is properly defined, it is then of no problem
to get an optimally-size tree. Like with classification trees, maximum regression tree
is usually supposed to be upwardly pruned with the help of cost-complexity function
and cross-validation. That is why the majority of results presented above is applied
to regression trees as well.

Bankruptcy Analysis

This section provides a practical study on bankruptcy data involving decision trees.
A dataset with 84 observations representing different companies is constituted by
three variables:

• net income to total assets ratio
• total liabilities to total assets ratio
• company status (−1 if bankrupt and 1 if not)

The data is from (Securities and Exchange Commission, 2004).
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Fig. 19.30 Decision tree for bankruptcy dataset: Gini index, N̄ = 30 MVACARTBan1

The goal is to predict and describe the company status given the two primary
financial ratios. Since no additional information like the functional form of possible
relationship is available, the use of a classification tree is an active alternative.

The tree given in Figure 19.30 was constructed using the Gini index and a N̄ =
30 constraint i.e. the number of points in each of the terminal nodes can not be
more than 30. Numbers in parentheses displayed on terminal nodes are observation
quantities belonging to Class 1 and Class −1.

If we loose the constraint to N̄ = 10, the decision rule changes, see Figure 19.31.
How exactly did the situation change? Consider the Class 1 terminal nodes of the
tree on Figure 19.30. The first one contains 21 observations and thus was split for
N̄ = 10. When it was split two new nodes of different classes emerged and for both
of them the impurity measure has decreased.

We may conclude that N̄ ≈ 10 is a good choice and analyzing the tree produced
we can state that for this particular example the net income to total assets (X1)

ratio appears to be an important class indicator. The successful classification ratio
dynamic over the number of terminal nodes is shown in Figure 19.32. It is chosen
by cross-validation method.

For this example with relatively small sample size we construct two maximum
trees – using the Gini and twoing rules, see Figures 19.33 and 19.34. Looking at
both decision trees we see that the choice of impurity measure is not so important
as the right choice of tree size.
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Fig. 19.32 Successful
classification ratio dynamic
over the number of terminal
nodes: cross-validation
MVAbancrupcydis

Summary
↪→ CART is a tree based method splitting the data sequentially into a

binary tree.
↪→ CART determined the nodes by minimizing an impurity measure

at each mode.
↪→ CART is non-parametric:

When no data structure hypotheses are available, non-parametric
analysis becomes the single effective data mining tool. CART is a
flexible nonparametric data mining tool.

↪→ CART does not require variables to be selected in advance:
From a learning sample CART will automatically select the most
significant ones.

↪→ CART is very efficient in computational terms:
Although all possible data splits are analyzed, the CART architec-
ture is flexible enough to do all of them quickly.

↪→ CART is robust to the effect of outliers:
Due to data-splitting nature of decision rules creation it is possible
to distinguish between datasets with different characteristics and
hence to neutralize outliers in separate nodes.
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Summary (continued)
↪→ CART can use any combination of continuous and categorical data:

Researchers are no longer limited to a particular class of data and
will be able to capture more real-life examples.

19.6 Boston Housing

Coming back to the Boston housing data set, we compare the results of exploratory
projection pursuit on the original data X and the transformed data X̂ motivated
in Section 1.9. So we exclude X4 (indicator of Charles River) from the present
analysis.

The aim of this analysis is to see from a different angle whether our proposed
transformations yield more normal distributions and whether it will yield data with
less outliers. Both effects will be visible in our projection pursuit analysis.

We first apply the Jones and Sibson index to the non-transformed data with 50
randomly chosen 13-dimensional directions. Figure 19.35 displays the results in
the following form. In the lower part, we see the values of the Jones and Sibson
index. It should be constant for 13-dimensional normal data. We observe that this
is clearly not the case. In the upper part of Figure 19.35 we show the standard
normal density as a green curve and two densities corresponding to two extreme
index values. The red, slim curve corresponds to the maximal value of the index
among the 50 projections. The blue curve, which is close to the normal, corresponds
to the minimal value of the Jones and Sibson index. The corresponding values of the
indices have the same color in the lower part of Figure 19.35. Below the densities,
a jitter plot shows the distribution of the projected points α	xi (i = 1, . . . ,506). We
conclude from the outlying projection in the red distribution that several points are
in conflict with the normality assumption.

Figure 19.36 presents an analysis with the same design for the transformed data.
We observe in the lower part of the figure values that are much lower for the Jones
and Sibson index (by a factor of 10) with lower variability which suggests that the
transformed data is closer to the normal. (“Closeness” is interpreted here in the sense
of the Jones and Sibson index.) This is confirmed by looking to the upper part of
Figure 19.36 which has a significantly less outlying structure than in Figure 19.35.

19.7 Exercises

Exercise 19.1 Calculate the Simplicial Depth for the Swiss bank notes data set and
compare the results to the univariate medians. Calculate the Simplicial Depth again
for the genuine and counterfeit bank notes separately.

Exercise 19.2 Construct a configuration of points in R
2 such that xmed,j from (19.2)

is not in the “center” of the scatterplot.
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Fig. 19.35 Projection pursuit with the Sibson-Jones index with 13 original variables

MVAppsib

Exercise 19.3 Apply the SIR technique to the U.S. companies data with Y =
market value and X = all other variables. Which directions do you find?

Exercise 19.4 Simulate a data set with X ∼ N4(0, I4), Y = (X1 + 3X2)
2 + (X3 −

X4)
4 + ε and ε ∼N(0, (0.1)2). Use SIR and SIR II to find the EDR directions.

Exercise 19.5 Apply the Projection Pursuit technique on the Swiss bank notes data
set and compare the results to the PC analysis and the Fisher discriminant rule.

Exercise 19.6 Apply the SIR and SIR II technique on the car data set in Table B.3
with Y = price.

Exercise 19.7 Generate four regions on the two-dimensional unit square by sequen-
tially cutting parallel to the coordinate axes. Generate 100 two-dimensional Uniform
random variables and label them according to their presence in the above regions.
Apply the CART algorithm to find the regions bound and to classify the observa-
tions.
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Fig. 19.36 Projection pursuit with the Sibson-Jones index with 13 transformed variables

MVAppsib

Exercise 19.8 Modify Exercise 19.7 by defining the regions as lying above and
below the main diagonal of the unit square. Make a CART analysis and comment
on the complexity of the tree.

Exercise 19.9 Apply the SVM with different radial basis parameter r and different
capacity parameter c in order to separate two circular datasets. This example is often
called the Orange Peel exercise and involves two Normal distributions N(μ,�i),
i = 1,2, with covariance matrices �1 = 2I2 and �2 = 0.5I2.

Exercise 19.10 The noisy spiral data set consists of two intertwining spirals that
need to be separated by a nonlinear classification method. Apply the SVM with
different radial basis parameter r and capacity parameter c in order to separate the
two spiral datasets.

Exercise 19.11 Apply the SVM to separate the bankrupt from the surviving (prof-
itable) companies using the profitability and leverage ratios given in the Bankruptcy
data set in Table B.21.
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Appendix A
Symbols and Notations

Basics
X,Y random variables or vectors
X1,X2, . . . ,Xp random variables
X = (X1, . . . ,Xp)

	 random vector
X ∼ · X has distribution ·
A,B matrices, p. 49
�,� matrices, p. 55
X ,Y data matrices, p. 75
� covariance matrix, p. 74
1n vector of ones (1, . . . ,1︸ ︷︷ ︸

n-times

)	, p. 50

0n vector of zeros (0, . . . ,0︸ ︷︷ ︸
n-times

)	, p. 50

I(.) indicator function, i.e. for a set M is I= 1 on M ,
I= 0 otherwise

i
√−1

⇒ implication
⇔ equivalence
≈ approximately equal
⊗ Kronecker product
iff if and only if, equivalence

Mathematical Abbreviations
tr(A) trace of matrix A
hull(x1, . . . , xk) convex hull of points {x1, . . . , xk}
diag(A) diagonal of matrix A
rank(A) rank of matrix A
det(A) determinant of matrix A
C(A) column space of matrix A

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-642-17229-8_20, © Springer-Verlag Berlin Heidelberg 2012
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Samples
x, y observations of X and Y
x1, . . . , xn = {xi}ni=1 sample of n observations of X
X = {xij }i=1,...,n;j=1,...,p (n× p) data matrix of observations of X1, . . . ,Xp

or of X = (X1, . . . ,Xp)
T , p. 75

x(1), . . . , x(n) the order statistic of x1, . . . , xn, p. 5
H centering matrix, H= In − n−11n1	n , p. 83

Densities and Distribution Functions
f (x) density of X
f (x, y) joint density of X and Y
fX(x), fY (y) marginal densities of X and Y
fX1(x1), . . . , fXp(x2) marginal densities of X1, . . . ,Xp

f̂h(x) histogram or kernel estimator of f (x), p. 11
F(x) distribution function of X
F(x, y) joint distribution function of X and Y
FX(x),FY (y) marginal distribution functions of X and Y
FX1(x1), . . . , fXp(xp) marginal distribution functions of X1, . . . ,Xp
ϕ(x) density of the standard normal distribution
�(x) standard normal distribution function
ϕX(t) characteristic function of X
mk k-th moment of X
κj cumulants or semi-invariants of X

Moments
EX,EY mean values of random variables or vectors X

and Y , p. 74
σXY = Cov(X,Y ) covariance between random variables X and Y ,

p. 74
σXX = Var(X) variance of random variable X, p. 74

ρXY = Cov(X,Y )√
Var(X)Var(Y )

correlation between random variables X and Y ,
p. 78

�XY = Cov(X,Y ) covariance between random vectors X and Y , i.e.,
Cov(X,Y )=E(X−EX)(Y −EY)	

�XX = Var(X) covariance matrix of the random vector X

Empirical Moments

x = 1

n

n∑
i=1

xi average of X sampled by {xi}i=1,...,n, p. 7

sXY = 1

n

n∑
i=1

(xi − x)(yi − y) empirical covariance of random variables X and Y
sampled by {xi}i=1,...,n and {yi}i=1,...,n, p. 74

sXX = 1

n

n∑
i=1

(xi − x)2 empirical variance of random variable X sampled
by {xi}i=1,...,n, p. 74
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rXY = sXY√
sXXsYY

empirical correlation of X and Y , p. 78

S = {sXiXj } = x	Hx empirical covariance matrix of X1, . . . ,Xp or of
the random vector X = (X1, . . . ,Xp)

	, p. 74, 83
R= {rXiXj } =D−1/2SD−1/2 empirical correlation matrix of X1, . . . ,Xp or of

the random vector X = (X1, . . . ,Xp)
	, p. 78, 84

Distributions
ϕ(x) density of the standard normal distribution
�(x) distribution function of the standard normal

distribution
N(0,1) standard normal or Gaussian distribution
N(μ,σ 2) normal distribution with mean μ and variance σ 2

Np(μ,�) p-dimensional normal distribution with mean μ
and covariance matrix �

L−→ convergence in distribution, p. 130
CLT Central Limit Theorem, p. 130
χ2
p χ2 distribution with p degrees of freedom

χ2
1−α;p 1− α quantile of the χ2 distribution with p degrees

of freedom
tn t-distribution with n degrees of freedom
t1−α/2;n 1− α/2 quantile of the t-distribution with n d.f.
Fn,m F -distribution with n and m degrees of freedom
F1−α;n,m 1− α quantile of the F -distribution with n and m

degrees of freedom
T 2(p,n) Hotelling T 2-distribution with p and n degrees of

freedom



Appendix B
Data

All data sets are available on the Springer webpage or at the authors’ home pages.
More detailed information on the data sets may be found there.

B.1 Boston Housing Data

The Boston housing data set was collected by Harrison and Rubinfeld (1978). It
comprise 506 observations for each census district of the Boston metropolitan area.
The data set was analyzed in Belsley, Kuh and Welsch (1980).

X1: per capita crime rate
X2: proportion of residential land zoned for large lots
X3: proportion of nonretail business acres
X4: Charles River (1 if tract bounds river, 0 otherwise)
X5: nitric oxides concentration
X6: average number of rooms per dwelling
X7: proportion of owner-occupied units built prior to 1940
X8: weighted distances to five Boston employment centers
X9: index of accessibility to radial highways
X10: full-value property tax rate per $10,000
X11: pupil/teacher ratio
X12: 1000(B − 0.63)2 I(B < 0.63) where B is the proportion of African Ameri-

can
X13: % lower status of the population
X14: median value of owner-occupied homes in $1000

B.2 Swiss Bank Notes

Six variables measured on 100 genuine and 100 counterfeit old Swiss 1000-franc
bank notes. The data stem from Flury and Riedwyl (1988). The columns correspond

W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-642-17229-8_21, © Springer-Verlag Berlin Heidelberg 2012
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to the following 6 variables.

X1: Length of the bank note
X2: Height of the bank note, measured on the left
X3: Height of the bank note, measured on the right
X4: Distance of inner frame to the lower border
X5: Distance of inner frame to the upper border
X6: Length of the diagonal

Observations 1–100 are the genuine bank notes and the other 100 observations
are the counterfeit bank notes.

B.3 Car Data

The car data set (Chambers, Cleveland, Kleiner and Tukey, 1983) consists of 13
variables measured for 74 car types. The abbreviations in Table B.3 are as follows:

X1: P Price
X2: M Mileage (in miles per gallone)
X3: R78 Repair record 1978 (rated on a 5-point scale; 5 best, 1 worst)
X4: R77 Repair record 1977 (scale as before)
X5: H Headroom (in inches)
X6: R Rear seat clearance (distance from front seat back to rear seat, in

inches)
X7: Tr Trunk space (in cubic feet)
X8: W Weight (in pound)
X9: L Length (in inches)
X10: T Turning diameter (clearance required to make a U-turn, in feet)
X11: D Displacement (in cubic inches)
X12: G Gear ratio for high gear
X13: C Company headquarter (1 for U.S., 2 for Japan, 3 for Europe)

B.4 Classic Blue Pullovers Data

This is a data set consisting of 10 measurements of 4 variables. The story: A textile
shop manager is studying the sales of “classic blue” pullovers over 10 periods. He
uses three different marketing methods and hopes to understand his sales as a fit of
these variables using statistics. The variables measured are

X1: Numbers of sold pullovers
X2: Price (in EUR)
X3: Advertisement costs in local newspapers (in EUR)
X4: Presence of a sales assistant (in hours per period)
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B.5 U.S. Companies Data

The data set consists of measurements for 79 U.S. companies. The abbreviations in
Table B.5 are as follows:

X1: A Assets (USD)
X2: S Sales (USD)
X3: MV Market Value (USD)
X4: P Profits (USD)
X5: CF Cash Flow (USD)
X6: E Employees

B.6 French Food Data

The data set consists of the average expenditures on food for several different types
of families in France (manual workers = MA, employees = EM, managers = CA)
with different numbers of children (2, 3, 4 or 5 children). The data is taken from
Lebart, Morineau and Fénelon (1982).

B.7 Car Marks

The data are averaged marks for 24 car types from a sample of 40 persons. The
marks range from 1 (very good) to 6 (very bad) like German school marks. The
variables are:

X1: A Economy
X2: B Service
X3: C Non-depreciation of value
X4: D Price, Mark 1 for very cheap cars
X5: E Design
X6: F Sporty car
X7: G Safety
X8: H Easy handling

B.8 French Baccalauréat Frequencies

The data consist of observations of 202100 baccalauréats from France in 1976 and
give the frequencies for different sets of modalities classified into regions. For a
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reference see Bourouche and Saporta (1980). The variables (modalities) are:

X1: A Philosophy-Letters
X2: B Economics and Social Sciences
X3: C Mathematics and Physics
X4: D Mathematics and Natural Sciences
X5: E Mathematics and Techniques
X6: F Industrial Techniques
X7: G Economic Techniques
X8: H Computer Techniques

B.9 Journaux Data

This is a data set that was created from a survey completed in the 1980‘s in Belgium
questioning people’s reading habits. They were asked where they live (10 regions
comprised of 7 provinces and 3 regions around Brussels) and what kind of news-
paper they read on a regular basis. The 15 possible answers belong to 3 classes:
Flemish newspapers (first letter v), French newspapers (first letter f) and both lan-
guages (first letter b).

X1: WaBr Walloon Brabant
X2: Brar Brussels area
X3: Antw Antwerp
X4: FlBr Flemish Brabant
X5: OcFl Occidental Flanders
X6: OrFl Oriental Flanders
X7: Hain Hainaut
X8: Lièg Liège
X9: Limb Limburg
X10: Luxe Luxembourg

B.10 U.S. Crime Data

This is a data set consisting of 50 measurements of 7 variables. It states for one
year (1985) the reported number of crimes in the 50 states of the U.S. classified
according to 7 categories (X3–X9).

X1: land area (land)
X2: population 1985 (popu 1985)
X3: murder (murd)
X4: rape
X5: robbery (robb)
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X6: assault (assa)
X7: burglary (burg)
X8: larcery (larc)
X9: autothieft (auto)
X10: US states region number (reg)
X11: US states division number (div)

division numbers region numbers
New England 1 Northeast 1
Mid Atlantic 2 Midwest 2
E N Central 3 South 3
W N Central 4 West 4
S Atlantic 5
E S Central 6
W S Central 7
Mountain 8
Pacific 9

B.11 Plasma Data

In Olkin and Veath (1980), the evolution of citrate concentration in the plasma is
observed at 3 different times of day, X1 (8 am), X2 (11 am) and X3 (3 pm), for two
groups of patients. Each group follows a different diet.

X1: 8 am
X2: 11 am
X3: 3 pm

B.12 WAIS Data

Morrison (1990b) compares the results of 4 subtests of the Wechsler Adult Intel-
ligence Scale (WAIS) for 2 categories of people: in group 1 are n1 = 37 people
who do not present a senile factor, group 2 are those (n2 = 12) presenting a senile
factor.

WAIS subtests:
X1: information
X2: similarities
X3: arithmetic
X4: picture completion
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B.13 ANOVA Data

The yields of wheat have been measured in 30 parcels which have been randomly
attributed to 3 lots prepared by one of 3 different fertilizers A, B, and C.

X1: fertilizer A
X2: fertilizer B
X3: fertilizer C

B.14 Timebudget Data

In Volle (1985), we can find data on 28 individuals identified according to sex,
country where they live, professional activity and matrimonial status, which indi-
cates the amount of time each person spent on ten categories of activities over 100
days (100 · 24 h= 2400 hours total in each row) in the year 1976.

X1: prof: professional activity
X2: tran: transportation linked to professional activity
X3: hous: household occupation
X4: kids: occupation linked to children
X5: shop: shopping
X6: pers: time spent for personal care
X7: eat: eating
X8: slee: sleeping
X9: tele: watching television
X10: leis: other leisures

maus: active men in the U.S.
waus: active women in the U.S.
wnus: nonactive women in the U.S.
mmus: married men in U.S.
wmus: married women in U.S.
msus: single men in U.S.
wsus: single women in U.S.
mawe: active men from Western countries
wawe: active women from Western countries
wnwe: nonactive women from Western countries
mmwe: married men from Western countries
wmwe: married women from Western countries
mswe: single men from Western countries
wswe: single women from Western countries
mayo: active men from Yugoslavia
wayo: active women from Yugoslavia
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wnyo: nonactive women from Yugoslavia
mmyo: married men from Yugoslavia
wmyo: married women from Yugoslavia
msyo: single men from Yugoslavia
wsyo: single women from Yugoslavia
maes: active men from Eastern countries
waes: active women from Eastern countries
wnes: nonactive women from Eastern countries
mmes: married men from Eastern countries
wmes: married women from Eastern countries
mses: single men from Eastern countries
wses: single women from Eastern countries

B.15 Geopol Data

This data set contains a comparison of 41 countries according to 10 different politi-
cal and economic parameters.

X1: popu population
X2: giph Gross Internal Product per habitant
X3: ripo rate of increase of the population
X4: rupo rate of urban population
X5: rlpo rate of illiteracy in the population
X6: rspo rate of students in the population
X7: eltp expected lifetime of people
X8: rnnr rate of nutritional needs realized
X9: nunh number of newspapers and magazines per 1000 habitants
X10: nuth number of television per 1000 habitants

AFS South Africa DAN Denmark MAR Marocco
ALG Algeria EGY Egypt MEX Mexico
BRD Germany ESP Spain NOR Norway
GBR Great Britain FRA France PER Peru
ARS Saudi Arabia GAB Gabun POL Poland
ARG Argentine GRE Greece POR Portugal
AUS Australia HOK Hong Kong SUE Sweden
AUT Austria HON Hungary SUI Switzerland
BEL Belgium IND India THA Tailand
CAM Cameroon IDO Indonesia URS USSR
CAN Canada ISR Israel USA USA
CHL Chile ITA Italia VEN Venezuela
CHN China JAP Japan YOU Yugoslavia
CUB Cuba KEN Kenia
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B.16 U.S. Health Data

This is a data set consisting of 50 measurements of 13 variables. It states for one
year (1985) the reported number of deaths in the 50 states of the U.S. classified
according to 7 categories.

X1: land area (land)
X2: population 1985 (popu)
X3: accident (acc)
X4: cardiovascular (card)
X5: cancer (canc)
X6: pulmonar (pul)
X7: pneumonia flu (pnue)
X8: diabetis (diab)
X9: liver (liv)
X10: Doctors (doc)
X11: Hospitals (hosp)
X12: U.S. states region number (r)
X13: U.S. states division number (d)

division numbers region numbers
New England 1 Northeast 1
Mid Atlantic 2 Midwest 2
E N Central 3 South 3
W N Central 4 West 4
S Atlantic 5
E S Central 6
W S Central 7
Mountain 8
Pacific 9

B.17 Vocabulary Data

This example of the evolution of the vocabulary of children can be found in Bock
(1975). Data are drawn from test results on file in the Records Office of the Labo-
ratory School of the University of Chicago. They consist of scores, obtained from a
cohort of pupils from the eighth through eleventh grade levels, on alternative forms
of the vocabulary section of the Coorperative Reading Test. It provides the follow-
ing scaled scores shown for the sample of 64 subjects (the origin and units are fixed
arbitrarily).
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B.18 Athletic Records Data

This data set provides data on Men’s athletic records for 55 countries in 1984
Olympic Games.

B.19 Unemployment Data

This data set provides unemployment rates in all federal states of Germany in
November 2005.

B.20 Annual Population Data

The data shows yearly average population rates for Former territory of the Federal
Republic of Germany incl. Berlin-West (given in 1000 inhabitants).

B.21 Bankruptcy Data I

The data are the profitability, leverage, and bankruptcy indicators for 84 companies.
The data set contains information on 42 of the largest companies that filed for

protection against creditors under Chapter 11 of the U.S. Bankruptcy Code in 2001–
2002 after the stock market crash of 2000. The bankrupt companies were matched
with 42 surviving companies with the closest capitalizations and the same US in-
dustry classification codes available through the Division of Corporate Finance of
the Securities and Exchange Commission (CF SEC, 2004).

The information for each company was collected from the annual reports for
1998–1999 (CF SEC, 2004), i.e., three years prior to the defaults of the bankrupt
companies. The following data set contains profitability and leverage ratios calcu-
lated, respectively, as the ratio of net income (NI) and total assets (TA) and the ratio
of total liabilities (TL) and total assets (TA).

B.22 Bankruptcy Data II

Altman (1968), quoted by Morrison (1990a), reports financial data on 66 banks.

X1 = (working capital)/(total assets)
X2 = (retained earnings)/(total assets)
X3 = (earnings before interest and taxes)/(total assets)
X4 = (market value equity)/(book value of total liabilities)
X5 = (sales)/(total assets)
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The first 33 observations correspond to bankrupt banks and the last 33 for solvent
banks as indicated by the last columns: values of y.

Original Data:

X1 X2 X3 X4 X5 y

1 36.70 -62.80 −89.50 54.10 1.70 1
2 24.00 3.30 −3.50 20.90 1.10 1
3 −61.60 −120.80 −103.20 24.70 2.50 1
4 −1.00 −18.10 −28.80 36.20 1.10 1
5 18.90 −3.80 −50.60 26.40 0.90 1
6 −57.20 −61.20 −56.60 11.00 1.70 1
7 3.00 −20.30 −17.40 8.00 1.00 1
8 −5.10 −194.50 −25.80 6.50 0.50 1
9 17.90 20.80 −4.30 22.60 1.00 1

10 5.40 −106.10 −22.90 23.80 1.50 1
11 23.00 −39.40 −35.70 69.10 1.20 1
12 −67.60 −164.10 −17.70 8.70 1.30 1
13 −185.10 −308.90 −65.80 35.70 0.80 1
14 13.50 7.20 −22.60 96.10 2.00 1
15 −5.70 −118.30 −34.20 21.70 1.50 1
16 72.40 −185.90 −280.00 12.50 6.70 1
17 17.00 −34.60 −19.40 35.50 3.40 1
18 −31.20 −27.90 6.30 7.00 1.30 1
19 14.10 −48.20 6.80 16.60 1.60 1
20 −60.60 −49.20 −17.20 7.20 0.30 1
21 26.20 −19.20 −36.70 90.40 0.80 1
22 7.00 −18.10 −6.50 16.50 0.90 1
23 −53.10 −98.00 −20.80 26.60 1.70 1
24 −17.20 −129.00 −14.20 267.90 1.30 1
25 32.70 −4.00 −15.80 177.40 2.10 1
26 26.70 −8.70 −36.30 32.50 2.80 1
27 −7.70 −59.20 −12.80 21.30 2.10 1
28 18.00 −13.10 −17.60 14.60 0.90 1
29 2.03 −38.00 1.60 7.70 1.20 1
30 −35.30 −57.90 0.70 13.70 0.80 1
31 5.10 −8.80 −9.10 100.90 0.90 1
32 0.01 −64.70 −4.00 0.70 0.10 1
33 25.20 −11.40 4.80 7.00 0.90 1
34 35.20 43.00 16.40 99.10 1.30 0
35 38.80 47.00 16.00 126.50 1.90 0
36 14.00 −3.30 4.00 91.70 2.70 0
37 55.10 35.00 20.80 72.30 1.90 0
38 59.30 46.70 12.60 724.10 0.90 0
39 33.60 20.80 12.50 152.80 2.40 0
40 52.80 33.00 23.60 475.90 1.50 0
41 45.60 26.10 10.40 287.90 2.10 0
42 47.40 68.60 13.80 581.30 1.60 0
43 40.00 37.30 33.40 228.80 3.50 0
44 69.00 59.00 23.10 406.00 5.50 0
45 34.20 49.60 23.80 126.60 1.90 0
46 47.00 12.50 7.00 53.40 1.80 0
47 15.40 37.30 34.10 570.10 1.50 0
48 56.90 35.30 4.20 240.30 0.90 0
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X1 X2 X3 X4 X5 y

49 43.80 49.50 25.10 115.00 2.60 0
50 20.70 18.10 13.50 63.10 4.00 0
51 33.80 31.40 15.70 144.80 1.90 0
52 35.30 21.50 −14.40 90.00 1.00 0
53 24.40 8.50 5.80 149.10 1.50 0
54 48.90 40.60 5.80 82.00 1.80 0
55 49.90 34.60 26.40 310.00 1.80 0
56 54.80 19.90 26.70 239.90 2.30 0
57 39.00 17.40 12.60 60.50 1.30 0
58 53.00 54.70 14.60 771.70 1.70 0
59 20.10 53.50 20.60 307.50 1.10 0
60 53.70 35.90 26.40 289.50 2.00 0
61 46.10 39.40 30.50 700.00 1.90 0
62 48.30 53.10 7.10 164.40 1.90 0
63 46.70 39.80 13.80 229.10 1.20 0
64 60.30 59.50 7.00 226.60 2.00 0
65 17.90 16.30 20.40 105.60 1.00 0
66 24.70 21.70 −7.80 118.60 1.60 0
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Canonical correlation analysis, 385
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Cauchy distribution, 140
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decomposition, 270
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Data depth, 441
Degrees of freedom, 95
Dendrogram, 340
Density estimates, 11
Density functions, 108
Determinant, 51
Deviance, 243
Diagonal matrix, 50
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Discriminant analysis, 351
Discriminant rule, 352
Discrimination rules in practice, 358
Dissimilarity of cars, 399
Distance
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Euclidean, 63
iso-distance curves, 63

Distance matrix, 402
Distance measures, 335
Distribution, 108
Draftman’s plot, 19
Duality relations, 262
Duality theorem, 404

E
Effective dimension reduction directions, 448,

450
Effective dimension reduction space, 448
Efficient portfolio, 428
Eigenvalues, 53
Eigenvectors, 53
Elliptical distribution, 178
Elliptically symmetric distribution, 449
Existence of a riskless asset, 431
Expected cost of misclassification, 353
Explained variation, 88
Exploratory projection pursuit, 443
Extremes, 7

F
F -spread, 6
F -test, 96
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Factor analysis, 307
Factor analysis model, 308
Factor model, 314
Factor scores, 322
Factorial axis, 258, 259
Factorial method, 284
Factorial representation, 264, 266
Factorial variable, 258, 265
Factors, 256
Farthest neighbor, 341

Fisher information, 190
Fisher information matrix, 188, 189
Fisher’s linear discrimination function, 361
Five-number summary, 5
Flury faces, 23
Fourths, 5
French food expenditure, 287
Full model, 95
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G-inverse, 52

non-uniqueness, 56
General multinormal distribution, 176
Gradient, 60
Group-building algorithm, 332

H
Heavy-tailed distributions, 136
Hessian, 60
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Hexagon binning, 33
Hexagon binning algorithm, 45
Hexagon plot, 33
Hierarchical algorithm, 338
Histograms, 11
Hotelling T 2-distribution, 176
Hyperbolic, 138
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Idempotent matrix, 50
Identity matrix, 50
Independence copula, 111
Independent, 79, 109
Inertia, 264, 266
Information matrix, 189
Interpretation of the factors, 310
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Invariance of scale, 311
Inverse, 52
Inverse regression, 448, 450
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Jaccard, 334
Jacobian, 123
Jordan decomposition, 55, 56
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Kernel densities, 14
Kernel estimator, 14
Kulczynski, 334
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Laplace distribution, 139
Likelihood function, 184
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Likelihood ratio test, 194
Limit theorems, 129
Linear discriminant analysis, 355
Linear regression, 86
Linear transformation, 84
Link function, 448
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Log-likelihood function, 184
Log-linear, 239
Logit models, 246
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Mahalanobis distance, 355
Mahalanobis transformation, 86, 125
Marginal densities, 109
Marketing strategies, 93
Maximum likelihood discriminant rule, 352
Maximum likelihood estimator, 184
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Mean-variance, 427, 428
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Metric methods, 401
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Multinormal distribution, 125
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distribution, 145
Multivariate Laplace distribution, 148
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Norm of a vector, 66
Normal distribution, 185
Normal-inverse Gaussian, 138
Normalized principal components
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Null space, 68
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Odds, 247
Order statistics, 5
Orthogonal complement, 69
Orthogonal matrix, 50
Orthonormed, 259
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Partitioned covariance matrix, 168
Partitioned matrixes, 61
PAV algorithm, 406, 423
Pearson chi-square, 243
Pearson chi-square test for independence, 244
Pool-adjacent violators algorithm, 406, 423
Portfolio analysis, 427
Portfolio choice, 427
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Principal component method, 319
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Principal components analysis (PCA), 449,
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Principal components in practice, 274
Principal components technique, 274
Principal components transformation, 270, 273
Principal factors, 317
Profile analysis, 215
Profile method, 416
Projection matrix, 69
Projection pursuit, 443
Projection pursuit regression, 446
Projection vector, 448
Proximity between objects, 332
Proximity measure, 332

Q
Quadratic discriminant analysis, 357
Quadratic forms, 57
Quadratic response model, 229
Quality of the representations, 286

R
Randomized discriminant rule, 356
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Reduced model, 95
Rotation, 321
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Row space, 256
Russel and Rao (RR), 334
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Sampling distributions, 129
Scatterplot matrix, 19
Separation line, 19
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Simple analysis of variance (ANOVA), 93
Simple matching, 334
Single linkage, 341
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Singular normal distribution, 127
Singular value decomposition (SVD), 56,
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algorithm, 449
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algorithm, 451
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nonmetric, 422

Specific factors, 309
Specific variance, 310
Spectral decompositions, 55
Spherical distribution, 178
Standardized linear combinations (SLC),

270
Statistics, 129
Stimulus, 415
Student’s t -distribution, 87
Student’s t with n, 139
Sum of squares, 94
Summary statistics, 83
Support vector machines, 455
Swiss bank data, 4
Symmetric matrix, 50

T
t -test, 87
Tanimoto, 334
The CAPM, 436
Three-way tables, 241
Total variation, 88
Trace, 51
Trade-off analysis, 416
Transformations, 123
Transpose, 52
Two factor method, 416

U
Unbiased estimator, 189
Uncorrelated factors, 309
Unexplained variation, 88
Unit vector, 66
Upper triangular matrix, 50
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Variance explained by PCs, 281
Varimax criterion, 321
Varimax method, 321
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Ward clustering, 342
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