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Foreword to the Second Edition

The basic structure of the Second Edition remains the same, but many changes have
been introduced, responding to several years’ worth of comments from students and
other users of the First Edition. Most of the figures have been redrawn to better show
the scale of the quantities represented in them, some notation and terminology have
been adjusted to better reflect the concepts under discussion, and several sections
have been considerably expanded by the addition of new examples, illustrations, and
commentary. Thus the original conciseness has been somewhat softened. A typical
example here would be the addition of Remark 4.1.2, which explains how one can
see the Bernoulli white noise in continuous time as a scaling limit of switching
signals with exponential interswitching times. There are also new, more applied
exercises as well, such as Problem 9.7.9 on simulating signals produced by spectra
generated by incandescent and luminescent lamps.

Still the book remains more mathematical than many other signal processing
books. So, at Case Western Reserve University, the course (required for most elec-
trical engineering and some biomedical engineering juniors/seniors) based on this
book runs in parallel with a signal processing course that is entirely devoted to prac-
tical applications and software implementation. This one–two-punch approach has
been working well, and the engineers seem to appreciate the fact that all proba-
bility/statistics/Fourier analysis foundations are developed within the book; adding
extra mathematical courses to a tight undergraduate engineering curriculum is al-
most impossible. A gaggle of graduate students in applied mathematics, statistics,
and assorted engineering areas also regularly enrolls. They are often asked to make
in-class presentations of special topics included in the book but not required of the
general undergraduate audience.

Finally, by popular demand, there is now a large appendix which contains solu-
tions of selected problems from each of the nine chapters. Here, most of the credit
goes to my former graduate students who served as TAs for my courses: Aleksan-
dra Piryatinska (now at San Francisco State University), Sreenivas Konda (now at
Temple University), Dexter Cahoy (now at Louisiana Tech), and Peipei Shi (now
at Eli Lilly, Inc.). In preparing the Second Edition, the author took into account
useful comments that appeared in several reviews of the original book; the review

xi



xii Foreword to the Second Edition

published in September 2009 in the Journal of the American Statistical Association
by Charles Boncelet was particularly thorough and insightful.

Cleveland Wojbor A. Woyczyński
May 2010 http://stat.case.edu/�Wojbor



Introduction

This book was designed as a text for a first, one-semester course in statistical signal
analysis for students in engineering and physical sciences. It had been developed
over the last few years as lecture notes used by the author in classes mainly popu-
lated by electrical, systems, computer, and biomedical engineering juniors/seniors,
and graduate students in sciences and engineering who have not been previously
exposed to this material. It was also used for industrial audiences as educational and
training materials, and for an introductory time-series analysis class.

The only prerequisite for this course is a basic two- to three-semester calculus
sequence; no probability or statistics background is assumed except the usual high
school elementary introduction. The emphasis is on a crisp and concise, but fairly
rigorous, presentation of fundamental concepts in the statistical theory of station-
ary random signals and relationships between them. The author’s goal was to write
a compact but readable book of less than 200 pages, countering the recent trend
toward fatter and fatter textbooks.

Since Fourier series and transforms are of fundamental importance in random
signal analysis and processing, this material is developed from scratch in Chap. 2,
emphasizing the time-domain vs. frequency-domain duality. Our experience showed
that although harmonic analysis is normally included in the calculus syllabi, stu-
dents’ practical understanding of its concepts is often hazy. Chapter 3 introduces
basic concepts of probability theory, law of large numbers and the stability of fluc-
tuations law, and statistical parametric inference procedures based on the latter.

In Chap. 4 the fundamental concept of a stationary random signal and its autocor-
relation structure is introduced. This time-domain analysis is then expanded to the
frequency domain by a discussion in Chap. 5 of power spectra of stationary signals.
How stationary signals are affected by their transmission through linear systems is
the subject of Chap. 6. This transmission analysis permits a preliminary study of
the issues of designing filters with the optimal signal-to-noise ratio; this is done
in Chap. 7. Chapter 8 concentrates on Gaussian signals where the autocorrelation
structure completely determines all the statistical properties of the signal. The text
concludes, in Chap. 9, with the description of algorithms for computer simulations
of stationary random signals with a given power spectrum density. The routines are
based on the general spectral representation theorem for such signals, which is also
derived in this chapter.

xiii



xiv Introduction

The book is essentially self-contained, assuming the indispensable calculus
background mentioned above. A complementary bibliography, for readers who
would like to pursue the study of random signals in greater depth, is described at
the end of this volume.

Some general advice to students using this book: The material is deliberately
written in a compact, economical style. To achieve the understanding needed for
independent solving of the problems listed at the end of each chapter in the Problems
and Exercises sections, it is not sufficient to read through the text in the manner you
would read through a newspaper or a novel. It is necessary to look at every single
statement with a “magnifying glass” and to decode it in your own technical language
so that you can use it operationally and not just be able to talk about it. The only
practical way to accomplish this goal is to go through each section with pencil and
paper, explicitly completing, if necessary, routine analytic intermediate steps that
were omitted in the exposition for the sake of the clarity of the presentation of the
bigger picture. It is the latter that the author wants you to keep at the end of the day;
there is no danger in forgetting all the little details if you know that you can recover
them by yourself when you need them.

Finally, the author would like to thank Profs. Mike Branicky and Ken Loparo of
the Department of Electrical and Computer Engineering, and Prof. Robert Edwards
of the Department of Chemical Engineering of Case Western Reserve University
for their kind interest and help in the development of this course and comments
on the original version of this book. My graduate students, Alexey Usoltsev and
Alexandra Piryatinska, also contributed to the editing process, and I appreciate the
time they spent on this task. Partial support for this writing project from the Colum-
bus Instruments International Corporation of Columbus, Ohio, Dr. Jan Czekajewski,
President, is also gratefully acknowledged.

Four anonymous referees spent considerable time and effort trying to improve the
original manuscript. Their comments are appreciated and, almost without exception,
their sage advice was incorporated in the final version of the book. I thank them for
their help.



Notation

To be used only as a guide and not as a set of formal definitions.
AVx time average of signal x.t/

BWn equivalent-noise bandwidth of the system
BW1=2 half-power bandwidth of the system
C the set of all complex numbers
Cov.X; Y / D
EŒ.X � EX/.Y � EY /� covariance of X and Y

ımn Kronecker’s delta, = 0 if m ¤ n, and =1 if m D n

ı.x/ Dirac delta “function”
ENx energy of signal x.t/

E.X/ expected value (mean) of a random quantity X

FX .x/ cumulative distribution function (c.d.f.) of a
random quantity X

fX .x/ probability density function (p.d.f.) of a random
quantity X

�X .�/ D
E.X.t/��X /.X.t C�/��X / autocovariance function of a stationary signal X.t/

h.t/ impulse response function of a linear system
H.f / transfer function of a linear system, Fourier

transform of h.t/

jH.f /j2 power transfer function of a linear system
L2

0.P/ space of all zero-mean random quantities with
finite variance

m˛.X/ D EjX j˛ ˛th absolute moment of a random quantity X

�k.X/ D E.Xk/ kth moment of a random quantity X

N.�; �2/ Gaussian (normal) probability distribution with
mean � and variance �2

P period of a periodic signal
P.A/ probability of event A

PWx power of signal x.t/

xv



xvi Notation

QX .˛/ D F �1
X .˛/ ˛’s quantile of random quantity X

R resolution
R the set of all real numbers
�X;Y D Cov.X; Y /=.�X�Y / correlation coefficient of X and Y

Std .X/ D �X D p
Var.X/ the standard deviation of a random quantity X

SX .f / power spectral density of a stationary signal X.t/

SX .f / cumulative power spectrum of a stationary signal
X.t/

T sampling period
u.t/ Heaviside unit step function, u.t/ D 0, for t < 0,

and D 1, for t � 0

Var .X/ D E.X � EX/2 D
EX2 � .EX/2 the variance of a random quantity X

W.n/ discrete-time white noise
W.n/ cumulative discrete-time white noise
W.t/ continuous-time white noise
W.t/ the Wiener process
x.t/; y.t/; etc: deterministic signals
X D .X1; X2; : : : ; Xd / a random vector in dimension d

x.t/ � y.t/ convolution of signals x.t/ and y.t/

X.f /; Y.f / Fourier transforms of signals x.t/ and y.t/,
respectively

X; Y; Z random quantities (random variables)
z� complex conjugate of complex number z; i.e., if

z D ˛ C jˇ, then z� D ˛ � jˇ

bac “floor” function, the largest integer not exceeding
number a

h : ; : i inner (dot, scalar) product of vectors or signals
, if and only if
:= is defined as



Chapter 1
Description of Signals

Signals are everywhere. Literally. The universe is bathed in the background
radiation, the remnant of the original Big Bang, and as your eyes scan this page, a
signal is being transmitted to your brain, where different sets of neurons analyze and
process it. All human activities are based on the processing and analysis of sensory
signals, but the goal of this book is somewhat narrower. The signals we will be
mainly interested in can be described as data resulting from quantitative measure-
ments of some physical phenomena, and our emphasis will be on data that display
randomness that may be due to different causes, be it errors of measurements, the
algorithmic complexity, or the chaotic behavior of the underlying physical system
itself.

1.1 Types of Random Signals

For the purpose of this book, signals will be functions of the real variable t

interpreted as time. To describe and analyze signals, we will adopt the functional
notation: x.t/ will denote the value of a nonrandom signal at time t . The values
themselves can be real or complex numbers, in which case we will symbolically
write x.t/ 2 R or, respectively, x.t/ 2 C. In certain situations it is necessary to
consider vector-valued signals with x.t/ 2 Rd , where d stands for the dimension
of the vector x.t/ with d real components.

Signals can be classified into different categories depending on their features. For
example:

� Analog signals are functions of continuous time, and their values form a con-
tinuum. Digital signals are functions of discrete time dictated by the computer’s
clock, and their values are also discrete and dictated by the resolution of the sys-
tem. Of course, one can also encounter mixed-type signals which are sampled at
discrete times but whose values are not restricted to any discrete set of numbers.

� Periodic signals are functions whose values are periodically repeated. In other
words, for a certain number P > 0, we have x.t C P / D x.t/, for any t .
The number P is called the period of the signal. Aperiodic signals are signals
that are not periodic.

W.A. Woyczyński, A First Course in Statistics for Signal Analysis,
DOI 10.1007/978-0-8176-8101-2 1, c� Springer Science+Business Media, LLC 2011
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2 1 Description of Signals

Fig. 1.1.1 The signal x.t/ D sin.t / C 1
3

cos.3t/ [V] is analog and periodic with period P D 2�

[s]. It is also deterministic

� Deterministic signals are signals not affected by random noise; there is no
uncertainty about their values. Random signals, often also called stochastic
processes, include an element of uncertainty; their analysis requires the use of
statistical tools, and providing such tools is the principal goal of this book.

For example, the signal x.t/ D sin.t/ C 1
3

cos.3t/ [V] shown in Fig. 1.1.1 is de-
terministic, analog, and periodic with period P D 2� [s]. The same signal, digitally
sampled during the first 5 s at time intervals equal to 0.5 s, with resolution 0.01 V,
gives tabulated values:

t 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

x.t/ 0.50 0.51 0.93 1.23 0.71 �0.16 0.51 �0.48 �0.78 �1.21

This sampling process is called the analog-to-digital conversion: Given the
sampling period T and the resolution R, the digitized signal xd .t/ is of the form

xd .t/ D R

$
x.t/

R

%

; for t D T; 2T; : : : ; (1.1.1)

where the (convenient to introduce here) “floor” function bac is defined as the
largest integer not exceeding the real number a. For example, b5:7c D 5, but
b5:0c D 5 as well.

Note the role the resolution R plays in the above formula. Take, for example,
R D 0:01. If the signal x.t/ takes all the continuous values between m D mint x.t/

and M D maxt x.t/, then x.t/=0:01 takes all the continuous values between 100 �m
and 100 �M , but bx.t/=0:01c takes only integer values between 100 �m and 100 �M .
Finally, 0:01bx.t/=0:01c takes as its values only all the discrete numbers between
m and M that are 0:01 apart.

The randomness of signals can have different origins, be it the quantum un-
certainty principle, the computational complexity of algorithms, chaotic behavior
in dynamical systems, or random fluctuations and errors in the measurement of



1.1 Types of Random Signals 3

Fig. 1.1.2 The signal x.t/ D sin.t / C 1
3

cos.3t/ [V] digitally sampled at time intervals equal to
0.5 s with resolution 0.01 V

0 2 4 6 8 10
-0.2
-0.1

0
0.1
0.2

Fig. 1.1.3 The signal x.t/ D sin.t /C 1
3

cos.3t/ [V] in the presence of additive random noise with
a maximum amplitude of 0.2 V. The magnified noise component itself is pictured under the graph
of the signal

outcomes of independently repeated experiments.1 The usual way to study them
is via their aggregated statistical properties. The main purpose of this book is to
introduce some of the basic mathematical and statistical tools useful in analysis of
random signals that are produced under stationary conditions, that is, in situations
where the measured signal may be stochastic and contain random fluctuations, but

1 See, e.g., M. Denker and W.A. Woyczyński, Introductory Statistics and Random Phenomena:
Uncertainty, Complexity, and Chaotic Behavior in Engineering and Science, Birkhäuser Boston,
Cambridge, MA, 1998.



4 1 Description of Signals

Fig. 1.1.4 Several computer-generated trajectories (sample paths) of a random signal called the
Brownian motion stochastic process or the Wiener stochastic process. Its trajectories, although very
rough, are continuous. It is often used as a simple model of diffusion. The random mechanism that
created different trajectories was the same. Its importance for our subject matter will become clear
in Chap. 9

the basic underlying random mechanism producing it does not change over time;
think here about outcomes of independently repeated experiments, each consisting
of tossing a single coin.

At this point, to help the reader visualize the great variety of random signals
appearing in the physical sciences and engineering, it is worthwhile reviewing a
gallery of pictures of random signals, both experimental and simulated, presented
in Figs. 1.1.4–1.1.8. The captions explain the context in each case.

The signals shown in Figs. 1.1.4 and 1.1.5 are, obviously, not stationary and
have a diffusive character. However, their increments (differentials) are stationary
and, in Chap. 9, they will play an important role in the construction of the spec-
tral representation of stationary signals themselves. The signal shown in Fig. 1.1.4
can be interpreted as a trajectory, or sample path, of a random walker moving, in
discrete-time steps, up or down a certain distance with equal probabilities 1/2 and
1/2. However, in the picture these trajectories are viewed from far away and in ac-
celerated time, so that both time and space appear continuous.

In certain situations the randomness of the signal is due to uncertainty about
initial conditions of the underlying phenomenon which otherwise can be described
by perfectly deterministic models such as partial differential equations. A sequence
of pictures in Fig. 1.1.6 shows the evolution of the system of particles with an ini-
tially random (and homogeneous in space) spatial distribution. The particles are then
driven by the velocity field Ev.t; Ex/ 2 R2 governed by the 2D Burgers equation

@Ev.t; Ex/

@t
C
�
r � Ev.t; Ex/

�
Ev.t; Ex/ D D

�
@2 Ev.t; Ex/

@x1

C @2 Ev.t; Ex/

@x2

�
; (1.1.2)



1.1 Types of Random Signals 5

Fig. 1.1.5 Several computer-generated trajectories (sample paths) of random signals called Lévy
stochastic processes with parameter ˛ D 1:5; 1, and 0.75, respectively (from top to bottom). They
are often used to model anomalous diffusion processes wherein diffusing particles are also per-
mitted to change their position by jumping. The parameter ˛ indicates the intensity of jumps of
different sizes. The parameter value ˛ D 2 corresponds to the Wiener process (shown in Fig. 1.1.4)
which has trajectories that have no jumps. In each figure, the random mechanism that created differ-
ent trajectories was the same. However, different random mechanisms led to trajectories presented
in different figures

where Ex D .x1; x2/, the nabla operator r D @=@x1 C @=@x2, and the positive
constant D is the coefficient of diffusivity. The initial velocity field is also assumed
to be random.
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Fig. 1.1.6 Computer simulation of the evolution of passive tracer density in a turbulent velocity
field with random initial distribution and random “shot-noise” initial velocity data. The simulation
was performed for 100,000 particles. The consecutive frames show the location of passive tracer
particles at times t D 0.0, 0.3, 0.6, 1.0, 2.0, 3.0 s

1.2 Characteristics of Signals

Several physical characteristics of signals are of primary interest.

� The time average of the signal: For analog, continuous-time signals, the time
average is defined by the formula

AVx D lim
T !1

1

T

Z T

0

x.t/ dt; (1.2.1)
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Fig. 1.1.7 Some deterministic signals (in this case, the images) transformed by deterministic sys-
tems can appear random. Above is a series of iterated transformations of the original image via
a fixed linear 2D mapping (matrix). The number of iterations applied is indicated in the top left
corner of each image. The curious behavior of iterations – the original image first dissolving into
seeming randomness only to return later to an almost original condition – is related to the so-
called ergodic behavior. Thus irreverently transformed is Prof. Henri Poincaré (1854–1912) of the
University of Paris, the pioneer of ergodic theory of stationary phenomena2

and for digital, discrete-time signals which are defined only for the time instants
t D n; n D 0; 1; 2; : : : ; N � 1, it is defined by the formula

AVx D 1

N

N �1X

nD0

x.nT /: (1.2.2)

2 From Scientific American, reproduced with permission. c� 1986, James P. Crutchfield.
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Fig. 1.1.8 A signal (again, an image) representing the large-scale and apparently random distri-
bution of mass in the universe. The data come from the APM galaxy survey and show more than
two million galaxies in a section of sky centered on the South Galactic pole. The adhesion model
of the large-scale mass distribution in the universe uses Burgers’ equation to model the relevant
velocity fields3

For periodic signals, it follows from (1.2.1) that

AVx D 1

P

Z P

0

x.t/ dt; (1.2.3)

so that, for the signal x.t/ D sin t C .1=3/ cos.3t/ pictured in Fig. 1.1.1, the time
average is 0, as both sin t and cos.3t/ integrate to zero over the period P D 2� .

� Energy of the signal: For an analog signal x.t/, the total energy is

ENx D
Z 1

0

jx.t/j2 dt; (1.2.4)

and for digital signals it is

ENx D
1X

nD0

jx.nT /j2 � T: (1.2.5)

Observe that the energy of a periodic signal, such as the one from Fig. 1.1.1 is
necessarily infinite if considered over the whole positive timeline. Also note that
since in what follows it will be convenient to consider complex-valued signals,
the above formulas include notation for the square of the modulus of a complex
number: jzj2 D .Re z/2 C .Im z/2 D z � z�I more about it in the next section.

3 See, e.g., W.A. Woyczyński, Burgers–KPZ Turbulence – Göttingen Lectures, Springer-Verlag,
New York, 1998.
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� Power of the signal: Again, for an analog signal, the (average) power is

PWx D lim
T !1

1

T

Z T

0

jx.t/j2 dt; (1.2.6)

and for a digital signal it is

PWx D lim
N !1

1

NT

N �1X

nD0

jx.nT /j2 � T D lim
N !1

1

N

N �1X

nD0

jx.nT /j2: (1.2.7)

As a consequence, for an analog periodic signal with period P ,

PWx D 1

P

Z P

0

jx.t/j2 dt: (1.2.8)

For example, for the signal in Fig. 1.1.1,

PWx D 1

2�

Z 2�

0

�
sin t C .1=3/ cos.3t/

�2

dt

D 1

2�

Z 2�

0

�
sin2 t C 2

3
sin t cos.3t/ C 1

9
cos2.3t/

�
dt

D 1

2�

Z 2�

0

�
1

2
.1� cos.2t// C 2

3

1

2
.sin.4t/ � sin.2t// C 1

9

1

2
.1� cos.6t//

�
dt

D 1

2�

�
1

2
2� C 1

9

1

2
2�

�
D 5

9
: (1.2.9)

The above routine calculation, deliberately carried out here in detail, was some-
what tedious because of the need for various trigonometric identities. To simplify
such manipulations and make the whole theory more elegant, we will introduce
in the next section a complex number representation of the trigonometric func-
tions via the so-called de Moivre formulas.

Remark 1.2.1 (Timeline infinite in both direction). Sometimes it is convenient to
consider signals defined for all time instants t , �1 < t < C1, rather than just for
positive t . In such cases all of the above definitions have to be adjusted in obvious
ways, replacing the one-sided integrals and sums by two-sided integrals and sums,
and adjusting the averaging constants correspondingly.

1.3 Time-Domain and Frequency-Domain Descriptions
of Periodic Signals

The time-domain description. The trigonometric functions

x.t/ D cos.2�f0t/ and y.t/ D sin.2�f0t/
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represent a harmonically oscillating signal with period P D 1=f0 (measured, say,
in seconds [s]), and the frequency f0 (measured, say, in cycles per second, or Hertz
[Hz]), and so do the trigonometric functions

x.t/ D cos.2�f0.t C 	// and y.t/ D sin.2�f0.t C 	//

shifted by the phase shift 	 . The powers

PWx D 1

P

Z P

0

cos2.2�f0t/ dt D 1

P

Z P

0

1

2
.1 C cos.4�f0t// dt D 1

2
; (1.3.1)

PWy D 1

P

Z P

0

sin2.2�f0t/ dt D 1

P

Z P

0

1

2
.1 � cos.4�f0t// dt D 1

2
; (1.3.2)

using the trigonometric formulas from Table 1.3.1. The phase shifts obviously do
not change the power of the above harmonic signals.

Taking their linear combination (like the one in Fig. 1.1.1), with amplitudes A

and B , respectively,

z.t/ D Ax.t/ C By.t/ D A cos.2�f0.t C 	// C B sin.2�f0.t C 	//; (1.3.3)

also yields a periodic signal with frequency f0. For a signal written in this form, we
no longer need to include the phase shift explicitly since

cos.2�f0.t C 	// D cos.2�f0t/ cos.2�f0	/ � sin.2�f0t/ sin.2�f0	/

Table 1.3.1 Trigonometric formulas

sin.˛ ˙ ˇ/ D sin ˛ cos ˇ ˙ sin ˇ cos ˛

cos.˛ ˙ ˇ/ D cos ˛ cos ˇ � sin ˛ sin ˇ

sin ˛ C sin ˇ D 2 sin
˛ C ˇ

2
cos

˛ � ˇ

2

sin ˛ � sin ˇ D 2 cos
˛ C ˇ

2
sin

˛ � ˇ

2

cos ˛ C cos ˇ D 2 cos
˛ C ˇ

2
cos

˛ � ˇ

2

cos ˛ � cos ˇ D �2 sin
˛ C ˇ

2
sin

˛ � ˇ

2

sin2 ˛ � sin2 ˇ D cos2 ˇ � cos2 ˛ D sin.˛ C ˇ/ sin.˛ � ˇ/

cos2 ˛ � sin2 ˇ D cos2 ˇ � sin2 ˛ D cos.˛ C ˇ/ cos.˛ � ˇ/

sin ˛ cos ˇ D 1

2

h
sin.˛ C ˇ/ C sin.˛ � ˇ/

i

cos ˛ cos ˇ D 1

2

h
cos.˛ C ˇ/ C cos.˛ � ˇ/

i

sin ˛ sin ˇ D 1

2

h
cos.˛ � ˇ/ � cos.˛ C ˇ/

i
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and

sin.2�f0.t C 	// D sin.2�f0t/ cos.2�f0	/ C cos.2�f0t/ sin.2�f0	/;

so that
z.t/ D a cos.2�f0t/ C b sin.2�f0t/; (1.3.4)

with the new amplitudes

a D A cos.2�f0	/CB sin.2�f0	/ and b D B cos.2�f0	/�A sin.2�f0	/:

The power of the signal z.t/, in view of (1.3.1 and 1.3.2), is given by the
Pythagorean-like formula

PWz D 1

P

Z P

0

z2.t/ dt D 1

P

Z P

0

.a cos.2�f0t/ C b sin.2�f0t//2 dt

D a2 � PWx C b2 � PWy C 2ab
1

P

Z P

0

cos.2�f0t/ sin.2�f0t/ dt

D 1

2
.a2 C b2/; (1.3.5)

because (again, see Table 1.3.1)

1

P

Z P

0

cos.2�f0t/ sin.2�f0t/ dt D 1

P

Z P

0

1

2
sin.4�f0t/ dt D 0: (1.3.6)

The above property (1.3.6), called orthogonality of the sine and cosine signals, will
play a fundamental role in this book.

The next observation is that signals

z.t/ D a cos.2�.mf0/t/ C b sin.2�.mf0/t/; m D 0; 1; 2; : : : ;

have frequency equal to the multiplicity m of the fundamental frequency f0, and as
such have, in particular, period P (but also period P=m). Their power is also equal
to .a2 C b2/=2. So if we superpose M of them, with possibly different amplitudes
am and bm, for different m D 0; 1; 2; : : : ; M; the result is a periodic signal

x.t/ D
MX

mD0

�
am cos.2�.mf0/t/ C bm sin.2�.mf0/t/

�

D a0 C
MX

mD1

�
am cos.2�.mf0/t/ C bm sin.2�.mf0/t/

�
(1.3.7)

with period P , and the fundamental frequency f0 D 1=P , which has mean and
power
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AVx D a0 and PWx D a2
0 C 1

2

MX

mD1

.a2
m C b2

m/: (1.3.8)

The above result follows from the fact that not only are sine and cosine signals
(of arbitrary frequencies) orthogonal to each other [see (1.3.6)], but also cosines
of different frequencies are orthogonal to each other, and so are sines. Indeed, if
m ¤ n, that is, m � n ¤ 0, then

1

P

Z P

0

cos.2�mf0t/ cos.2�nf0t/ dt

D 1

P

Z P

0

1

2

�
cos.2�.m � n/f0t/ C cos.2�.m C n/f0t/

�
dt D 0 (1.3.9)

and

1

P

Z P

0

sin.2�mf0t/ sin.2�nf0t/ dt

D 1

P

Z P

0

1

2

�
cos.2�.m � n/f0t/ � cos.2�.m C n/f0t/

�
dt D 0: (1.3.10)

Example 1.3.1 (Superposition of simple cosine oscillations). Consider the signal

x.t/ D
12X

mD1

1

m2
cos.2�mt/: (1.3.11)

Its fundamental frequency is f0 D 1, its average is AVx D 0, and its power is [see
(1.3.8)]

PWx D 1

2

12X

mD1

�
1

m2

�2

� 0:541:

With its sharp cusps, the shape of the above signal is unlike that of any sim-
ple harmonic oscillation, and one could start wondering what kind of other periodic
signals can be well represented (approximated) by superpositions of harmonic oscil-
lations of the form (1.3.7). The answer, discussed at length in Chap. 2, is that almost
all of them can, as long as their power is finite.

The frequency-domain description. The signal x.t/ in Example 1.3.1 would be
completely specified if, instead of writing the whole formula (1.3.11), we just listed
the frequencies present in the signal and the corresponding amplitudes, that is, con-
sidered the list

.1; 1=12/; .2; 1=22/; .3; 1=33/; : : : ; .12; 1=122/:
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0

−0.5

0.0

0.5

1.0

1.5

1 2 3 4

Fig. 1.3.1 The signal x.t/ D P12
mD1 m�2 cos.2�mt/ in its time-domain representation

Similarly, in the case of the general superposition (1.3.7), it would be sufficient to
list the cosine and sine frequencies and associated amplitudes, that is, compile the
lists

.0; a0/; .1f0; a1/; .2f0; a2/; : : : ; .Mf0; aM / (1.3.12)

and
.1f0; b1/; .2f0; b2/; : : : ; .Mf0; bM /: (1.3.13)

The lists (sequences) (1.3.12) and (1.3.13) are called the frequency-domain (spec-
tral) representation of the signal (1.3.7).

Remark 1.3.1 (Amplitude-phase form of the spectral representation). Alternatively,
if the signal x.t/ in (1.3.7) is rewritten in the amplitude-phase form

x.t/ D
MX

mD0

cn cos.2�.mf0/.t C 	m//;

then the frequency-domain representation must list the frequencies present in
the signal, mf0; m D 0; 1; : : : ; M , and the corresponding amplitudes cm m D
0; 1; : : : ; M , and phases 	m; m D 0; 1; : : : ; M .

For the signal from Example 1.3.1, such a representation is graphically pictured
in Fig. 1.3.2. We will see in Chap. 2 that, for any periodic signal, the spectrum is
always concentrated on a discrete set of frequencies, namely, the multiplicities of
the fundamental frequency.

Finally, formula (1.3.8) shows how the total power of the signal x.t/ is distributed
over different frequencies. Such a distribution, provided by the list

.0; a2
0/; .1f0; .a2

1 C b2
1/=2/; .2f0; .a2

2 C b2
2/=2/; : : : ; .Mf0; .a2

M C b2
M /=2/;

(1.3.14)
is called the power spectrum of the periodic signal (1.3.7).
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0

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12

Fig. 1.3.2 The signal x.t/ D P12
mD1 m�2 cos.2�mt/ in its frequency-domain representation.

Only the amplitudes of frequencies m D 1; 2; : : : ; 12 are shown since all the phase shifts are zero

Observe that, in general, knowledge of the power spectrum is not sufficient for
the reconstruction of the signal x.t/ itself, while knowledge of the whole represen-
tation in the frequency domain is.

To complete our elementary study of periodic signals, note that if an arbitrary
signal is studied only in a finite time interval Œ0; P �, then it can always be treated
as a periodic signal with period P since one can extend its definition periodically
to the whole timeline by copying its waveform from the interval Œ0; P � to intervals
ŒP; 2P �; Œ2P; 3P �, and so on.

1.4 Building a Better Mousetrap: Complex Exponentials

Catching the structure of periodic signals via their decomposition into a super-
position of basic trigonometric functions leads to some cumbersome calculations
employing various trigonometric identities (as we have seen in Sect. 1.3). A greatly
simplified, and also more elegant, approach to the same problem employs a rep-
resentation of trigonometric functions in terms of exponential functions of the
imaginary variable. The cost of moving into the complex domain is not high, as
we will rely, essentially, on a single relationship,

ej˛ D cos ˛ C j sin ˛; where j D p�1; (1.4.1)

which is known as de Moivre’s formula,4 and which immediately yields two
identities:

4 Throughout this book we denote the imaginary unit
p�1 by the letter j , which is standard usage

in the electrical engineering signal processing literature, just as the letter i is reserved for electrical
current in the mathematical literature.
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cos ˛ D 1

2
.ej˛ C e�j˛/ and sin ˛ D 1

2j
.ej˛ � e�j˛/: (1.4.2)

In what follows, we are going to routinely utilize the complex number techniques.
Thus, for the benefit of the reader, the basic notation and facts about them are sum-
marized in Table 1.4.1.

Table 1.4.1 Complex numbers and de Moivre’s formulas

i. By definition,
j D p�1:

ii. Hence, for any integer m,

j 4m D 1; j 4mC1 D j; j 4mC2 D �1; j 4mC3 D �j:

iii. Cartesian representation of the complex number:

z D a C jb; a D Re z; b D Im z;

where both a and b are real numbers and are called, respectively, the real and imaginary
components of z. The complex number

z� D a � jb

is called the complex conjugate of z.
iv. The polar representation of the complex number (it is a good idea to think about complex

numbers as representing points, or vectors, in the two-dimensional plane spanned by the two
basic unit vectors, 1 and j ):

z D jzj.cos 	 C j sin 	/ D jzj � ej	

and
z� D jzj.cos 	 � j sin 	/ D jzj � e�j	 ;

where

jzj D p
a2 C b2 D p

z � z� and 	 D Arg z D arctan
Imz

Rez

are called, respectively, the modulus of z and the argument of z. Alternatively,

Re z D z C z�
2

D jzj cos 	; Im z D z � z�
2j

D jzj sin 	:

v. For any complex number w D ˇ C j˛,

ew D eˇCj˛ D eˇ.cos ˛ C j sin ˛/:

vi. For any complex number z D a C jb D jzjej	 ; and any integer n,

zn D jzjnejn	 D .a2 C b2/n=2.cos n	 C j sin n	/:
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Since de Moivre’s formula is so crucial for us, it is important to understand its
origin. The proof is straightforward and relies on the power-series expansion of the
exponential function,

ej˛ D
1X

kD0

j k˛k

kŠ
: (1.4.3)

However, the powers of the imaginary unit j can be expressed via a simple formula

j k D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

1; if k D 4mI
j; if k D 4m C 1I
�1; if k D 4m C 2I
�j; if k D 4m C 3;

so the whole series (1.4.3) splits neatly into the real part, corresponding to even
indices of the form k D 2n; n D 0; 1; 2; : : : ; and the imaginary part, corresponding
to the odd indices of the form k D 2n C 1; n D 0; 1; 2; : : : :

1X

kD0

j k˛k

kŠ
D

1X

nD0

.�1/n˛2n

.2n/Š
C j

1X

mD0

.�1/n˛2nC1

.2n C 1/Š
:

Now, it suffices to recognize in the above formula the familiar power-series
expansions for trigonometric functions,

cos ˛ D
1X

nD0

.�1/n˛2n

.2n/Š
; sin ˛ D

1X

mD0

.�1/n˛2nC1

.2n C 1/Š
;

to obtain de Moivre’s formula.
Given de Moivre’s formulas, which provide a representation of sine and cosine

functions via the complex exponentials, we can now rewrite the general superposi-
tion of harmonic oscillation:

x.t/ D a0 C
MX

mD1

am cos.2�mf0t/ C
MX

mD1

bm sin.2�mf0t/; (1.4.4)

in terms of the complex exponentials

x.t/ D
MX

mD�M

zmej 2�mf0t ; (1.4.5)
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with the real amplitudes am and bm in representations (1.2.4), and the complex
amplitudes zm in the representation (1.2.4), connected by the formulas

a0 D z0; am D zm C z�m; bm D j.zm � z�m/; m D 1; 2; : : : ;

or, equivalently,

z0 D a0 zm D am � jbm

2
; z�m D am C jbm

2
; m D 1; 2; : : : ;

The above relationships show that for the signal of the form (1.4.5) to represent
a real-valued signal x.t/, it is necessary and sufficient that the paired amplitudes for
symmetric frequencies mf0 and �mf0 be complex conjugates of each other:

z�m D z�
m; m D 1; 2; : : : : (1.4.6)

However, in the future it will be convenient to consider general complex-valued
signals of the form (1.4.5) without the restriction (1.4.6) on its complex amplitudes.

At the first sight, the above introduction of complex numbers and functions of
complex-valued variables may seem an unnecessary complication in the analysis of
signals. But let us calculate the power of the signal x.t/ given by (1.4.5). The need
for unpleasant trigonometric formulas disappears as now we need to integrate only
exponential functions. Indeed, remembering that jzj2 D z � z� now stands for the
square of the modulus of a complex number, we have

PWx D 1

P

Z P

tD0

jx.t/j2 dt D 1

P

Z P

tD0

ˇ
ˇ̌

MX

mD�M

zmej 2�mf0t
ˇ
ˇ̌2 dt

D 1

P

Z P

tD0

� MX

mD�M

zmej 2�mf0t �
MX

kD�M

z�
ke�j 2�kf0t

�
dt

D 1

P

MX

mD�M

MX

kD�M

zmz�
k

Z P

tD0

ej 2�.m�k/f0 t dt D
MX

mD�M

jzmj2; (1.4.7)

because, for m � k ¤ 0,

1

P

Z P

tD0

ej 2�.m�k/f0t dt D 1

j2�.m � k/f0

ej 2�.m�k/f0t
ˇ
ˇ
ˇ
P

tD0
D 0; (1.4.8)

as the function ej 2�.m�k/f0t D cos.2�.m � k/f0t/ C j sin.2�.m � k/f0t/ is
periodic with period P , and for m � k D 0,

1

P

Z P

tD0

ej 2�.m�k/f0t dt D 1: (1.4.9)
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Thus all the off-diagonal terms in the double sum in (1.4.7) disappear. The formulas
(1.4.8) and (1.4.9) express mutual orthogonality and normalization of the complex
exponential signals,

ej 2�mf0t ; m D 0; ˙1; ˙2; : : : ; ˙M:

In view of (1.4.7), the distribution of the power of the signal (1.4.5) over different
multiplicities of the fundamental frequency f0 can be written as a list with a simple
structure:

.mf0; jzmj2/; m D 0; ˙1; ˙2; : : : ; ˙M: (1.4.10)

Remark 1.4.1 (Aperiodic signals). Nonperiodic signals can also be analyzed in
terms of their frequency domains, but their spectra are not discrete. We will study
them later.

1.5 Problems and Exercises

1.5.1. Find the real and imaginary parts of .j C 3/=.j � 3/I .1 C j
p

2/3I
1=.2 � j /I .2 � 3j /=.3j C 2/.

1.5.2. Find the moduli jzj and arguments 	 of complex numbers z D 5; z D �2j ;
z D �1 C j ; z D 3 C 4j .

1.5.3. Find the real and imaginary components of complex numbers z D 5 ej�=4;
z D �2 ej.8�C1:27/; z D �1 ej ; z D 3 eje.

1.5.4. Show that

5

.1 � j /.2 � j /.3 � j /
D j

2
and .1 � j /4 D �4:

1.5.5. Sketch sets of points in the complex plane .x; y/; z D x C jy; such that
jz � 1 C j j D 1I jz C j j 	 3I Re .z� � j / D 2I j2z � j j D 4I z2 C .z�/2 D 2:

1.5.6. Using de Moivre’s formulas, find .�2j /1=2 and Re .1 � j
p

3/77. Are these
complex numbers uniquely defined?

1.5.7. Write the signal x.t/ D sin t C cos.3t/=3 from Fig. 1.1.1 as a sum of phase-
shifted cosines.

1.5.8. Using de Moivre’s formulas, write the signal x.t/ D sin t C cos.3t/=3 from
Fig. 1.1.1 as a sum of complex exponentials.

1.5.9. Find the time average and power of the signal x.t/ D �2e�j 2�4t C
3e�j 2�t C 1 � 2ej 2�3t . What is the fundamental frequency of this signal? Plot
the distribution of power of x.t/ over different frequencies. Write this (complex)
signal in terms of cosines and sines. Find and plot its real and imaginary parts.
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1.5.10. Using de Moivre’s formula, derive the complex exponential representa-
tion (1.4.5) of the signal x.t/ given by the cosine series representation x.t/ DPM

mD1 cm cos.2�mf0.t C 	m//.

1.5.11. Find the time average and power of the signal x.t/ from Fig. 1.3.1. Use a
symbolic manipulation language such as Mathematica or Matlab if you like.

1.5.12. Using a computing platform such as Mathematica, Maple, or Matlab, pro-
duce plots of the signals

xM .t/ D �

4
C

MX

mD1

�
.�1/m � 1

�m2
cos mt � .�1/m

m
sin mt

�
;

for M D 0; 1; 2; 3; : : : ; 9, and �2� < t < 2� . Then produce their plots in the
frequency-domain representation. Calculate their power (again, using Mathematica,
Maple, or Matlab, if you wish). Produce plots showing how power is distributed
over different frequencies for each of them. Write down your observations. What is
likely to happen with the plots of these signals as we take more and more terms of the
above series, that is, as M ! 1? Is there a limit signal x1.t/ D limM!1 xM .t/?
What could it be?

1.5.13. Use the analog-to-digital conversion formula (1.1.1) to digitize signals from
Problem 1.5.12 for a variety of sampling periods and resolutions. Plot the results.

1.5.14. Use your computing platform to produce a discrete-time signal consisting of
a string of random numbers uniformly distributed on the interval [0,1]. For example,
in Mathematica, the command

Table[Random[], {20}]

will produce the following string of 20 random numbers between 0 and 1:

{0.175245, 0.552172, 0.471142, 0.910891, 0.219577,
0.198173, 0.667358, 0.226071, 0.151935, 0.42048,
0.264864, 0.330096, 0.346093, 0.673217, 0.409135,
0.265374, 0.732021, 0.887106, 0.697428, 0.7723}

Use the “random numbers” string as additive noise to produce random versions
of the digitized signals from Problem 1.5.12. Follow the example described in
Fig. 1.1.3. Experiment with different string lengths and various noise amplitudes.
Then center the noise around zero and repeat your experiments.



Chapter 2
Spectral Representation of Deterministic
Signals: Fourier Series and Transforms

In this chapter we will take a closer look at the spectral, or frequency-domain,
representation of deterministic (nonrandom) signals which was already mentioned
in Chap. 1. The tools introduced below, usually called Fourier, or harmonic, anal-
ysis will play a fundamental role later in our study of random signals. Almost all
of the calculations will be conducted in the complex form. Compared with working
in the real domain, the manipulation of formulas written in the complex form turns
out to be simpler and all the tedium of remembering various trigonometric formulas
is avoided. All of the results written in the complex form can be translated quickly
into results for real trigonometric series expressed in terms of sines and cosines via
the familiar de Moivre’s formula from Chap. 1, ejt D cos t C j sin t:

2.1 Complex Fourier Series for Periodic Signals

Any finite-power, complex-valued signal x.t/, periodic with period P (say,
seconds), can1 be written in the form of an infinite complex Fourier series, meant
as a limit (in a sense to be made more precise later), for M ! 1, of finite su-
perposition of complex harmonic exponentials discussed in Sect. 1.4 [see (1.4.5)]:

x.t/ D
1X

mD�1
zmej 2�mf0t D

1X

mD�1
zmejm!0t ; (2.1.1)

where f0 D 1
P

is the fundamental frequency of the signal (measured in Hz D 1/s),
and !0 D 2�f0 is called the fundamental angular velocity (measured in rad/s). The
complex number zm; where m can take values : : : ; �2; �1; 0; 1; 2; : : : ; is called
the mth Fourier coefficient of signal x.t/. Think about it as the amplitude of the
harmonic component, with the frequency mf0, of the signal x.t/.

1 For mathematical issues related to the feasibility of such a representation, see the discussion in
the subsection of this section devoted to the analogy between the orthonormal basis in a 3D space
and complex exponentials.

W.A. Woyczyński, A First Course in Statistics for Signal Analysis,
DOI 10.1007/978-0-8176-8101-2 2, c� Springer Science+Business Media, LLC 2011
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In this text we will carry out our calculations exclusively in terms of the
fundamental frequency f0, although one can find in the printed and software signal
processing literature sources where all the work is done in terms of !0. It is an
arbitrary choice, but some formulas are simpler if written in the frequency domain;
transitioning from one system to the other is easily accomplished by adjusting
various constants appearing in the formulas.

The infinite Fourier series representation (2.1.1) is unique in the sense that two
different signals2 will have two different sequences of Fourier coefficients. The
uniqueness is a result of the fundamental property of complex exponentials

em.t/ WD ej 2�mf0t ; m D : : : ; �2; �1; 0; 1; 2; : : : ; (2.1.2)

called orthonormality:
The scalar product (sometimes also called the inner, or dot, product) of two com-

plex exponentials en and em is 0 if the exponentials are different, and it is 1 if they
are the same. Indeed,

hen; emi WD 1

P

Z P

0

en.t/e�
m.t/ dt

D 1

P

Z P

0

ej 2�.n�m/f0t dt D
(

0; if n ¤ mI
1; if n D m:

(2.1.3)

Recall that for a complex number z D a C jb D jzjej� with real component
a and imaginary component b, the complex conjugate z� D a � jb D jzje�j� .
Sometimes it is convenient to describe the orthonormality using the Kronecker delta
notation:

ı.n/ D
(

0; if n ¤ 0I
1; if n D 0:

Then, simply,
hem; eni D ı.n � m/:

Using the orthonormality property, we can directly evaluate the coefficients zm

in the Fourier series (2.1.1) of a given signal x.t/ by formally calculating the scalar
product of x.t/ and em.t/:

hx; emi D 1

P

Z P

0

� 1X

nD�1
znen.t/

�
� e�

m.t/ dt

D
1X

nD�1
zn

1

P

Z P

0

en.t/e�
m.t/ dt D zm; (2.1.4)

2 Meaning that their difference has positive power.
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so that we get an explicit formula for the Fourier coefficient of signal x.t/:

zm D hx; emi D 1

P

Z P

0

x.t/e�j 2�mf0 t dt: (2.1.5)

Thus, the basic Fourier expansion (2.1.1) can now be rewritten in the form of a
formal identity:

x.t/ D
1X

nD�1
hx; enien.t/: (2.1.6)

It is worthwhile recognizing that the above calculations on infinite series and
interchanges of the order of integration and infinite summations were purely for-
mal; that is, the soundness of the limit procedures was not rigorously established.
The missing steps can be found in the mathematical literature devoted to Fourier
analysis.3 For our purposes, suffice it to say that if a periodic signal x.t/ has finite
power,

PWx D 1

P

Z P

0

jx.t/j2 dt < 1; (2.1.7)

and the concept of convergence of the functional infinite series (2.1.1) is defined in
the right way, then all of the above formal manipulations can be rigorously justified.
We will return to this issue at the end of this section. In what follows we will usually
consider signals with finite power.

Real-valued signals. Signal x.t/ is real-valued if and only if the coefficients zm

satisfy the algebraic condition
z�m D z�

m; (2.1.8)

in which case cancellation of the imaginary parts in the Fourier series (2.1.1) occurs.
Indeed, under assumption (2.1.8),

zm D jzmjej�m ; 	�m D �	m; (2.1.9)

and since
ej˛ C e�j˛

2
D cos ˛;

we get

x.t/ D c0 C
1X

mD1

cm cos.2�mf0t C 	m/; (2.1.10)

where
c0 D z0 and cm D 2jzmj; m D 1; 2; : : : : (2.1.11)

3 See, e.g., A. Zygmund, Trigonometric Series, Cambridge University Press, Cambridge, UK,
1959.
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The power PWx of a periodic signal x.t/ given by its Fourier series (2.1.1) can
also be directly calculated from its Fourier coefficient zm. Indeed, again calculating
formally, we obtain that

PWx D 1

P

Z P

0

jx.t/j2 dt D 1

P

Z P

0

x.t/x�.t/ dt

D 1

P

Z P

0

 1X

kD�1
zkek.t/

!

�
 1X

mD�1
zmem.t/

!�
dt

D
1X

kD�1

1X

mD�1
zkz�

m

1

P

Z P

0

ek.t/e�
m.t/ dt D

1X

mD�1
zmz�

m;

in view of the orthonormality (2.1.3) of the complex exponentials. The multiplica-
tion of the two infinite series was carried out term by term. The resulting relationship

PWx D 1

P

Z P

0

jx.t/j2 dt D
1X

mD�1
jzmj2 (2.1.12)

is known as Parseval’s formula. A similar calculation for the scalar product
.1=P /

R P

0 x.t/y�.t/ of two different periodic signals, x.t/ and y.t/, gives an
extended Parseval formula listed in Table 2.1.1.

Remark 2.1.1 (Distribution of power over frequencies in a periodic signal).
Parseval’s formula describes how the power PWx of the signal x.t/ is distributed
over different frequencies. The sequence (or its plot)

.mf0; jzmj2/; m D 0; ˙1; ˙2; : : : ; (2.1.13)

is called the power spectrum of the signal x.t/. Simply stated, it says that the
harmonic component of x.t/, with frequency mf0, has power jzmj2 (always a non-
negative number!).

Analogy between the orthonormal basis of vectors in the 3D space R3 and the
complex exponentials; the completeness theorem. It is useful to think about the
complex exponentials em.t/ D e2�jmf0t ; m D : : : ; �1; 0; 1; : : : ; as an infinite-
dimensional version of the orthonormal basic vectors in R3. In this mental picture
the periodic signal x.t/ is now thought of as an infinite-dimensional “vector”
uniquely expandable into an infinite linear combination of the complex exponentials
in the same way a 3D vector is uniquely expandable into a finite linear combination
of the three unit coordinate vectors. Table 2.1.1 describes this analogy more fully.
Note that the Parseval formula can now be seen just as an infinite-dimensional ex-
tension of the familiar Pythagorean theorem.
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Table 2.1.1 Analogy between orthogonal expansions in 3D and in the space of periodic signals
with finite power

Objects

3D vectors Signals with finite power
Ex D .x1; x2; x3/ x.t/ D P

1

mD�1

zmem.t/;

Ey D .y1; y2; y3/ y.t/ D P
1

mD�1

wmem.t/;

Bases
Unit coordinate vectors Complex exponentials

:
:
:

Ee1 D .1; 0; 0/ e1.t/ D ej2�f0t

Ee2 D .0; 1; 0/ e2.t/ D ej2�.2f0/t

Ee3 D .0; 0; 1/ e3.t/ D ej2�.3f0/t

:
:
:

Scalar products

hEx; Eyi D P3
iD1 xi yi hx.t/; y.t/i D 1

P

R P

0 x.t/y�.t /dt
Orthonormality

h Eem; Eeni D ı.n � m/ hem.t/; en.t/i D ı.n � m/

Expansions

Basis Fourier
Ex D P3

mD1hEx; Eemi Eem x.t/ D P
1

iD�1

hx; emiem.t/

Formulas

Pythagoras’ Parseval’s

jjExjj2 D P3
mD1 x2

m PWx D 1
P

R P

0 jx.t/j2 dt
D P

1

mD�1

jzmj2
Scalar product Extended Parseval’s

hEx; Eyi D P3
mD1 xmym

1
P

R P

0 x.t/y�.t / dt D P
1

mD�1

zmw�

m

So far, the delicate issue of the very feasibility of the Fourier expansion (2.1.1)
for any periodic signal with finite power has been left out. Note that in the 3D
case, the fact that any vector Ex is representable in the form x1 Ee1 C x2 Ee2 C x3Ee3,
where Ee1; Ee2; Ee3 are the unit coordinate vectors, is due to the fact that Ee1; Ee2; Ee3 is
a “maximal” system of orthogonal vectors in 3D; it cannot be further expanded.
In other words, if a vector Ee is orthogonal to Ee1; Ee2; Ee3; then it must be zero. A
similar situation arises if one considers the system of all basic harmonic complex
exponentials,4 em.t/ D e2�jmf0t ; m D : : : ; �1; 0; 1; : : : ; in the space of finite-
power periodic complex signals with period P D 1=f0. If x.t/ is such a signal
and hx.t/; em.t/i D 0 for all m D : : : ; �1; 0; 1; : : : ; then, necessarily, x.t/ D 0.
This fact is known as the completeness theorem for complex exponentials, and one
can find its proof in any mathematical textbook on harmonic or functional analysis.
Removing even one of the complex exponentials from the above system creates an
incomplete orthonormal system.

4 Note that the sequence also includes the constant e0.t/ � 1.
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Examples. Recall that a signal is called even if it is symmetric under the change
of the direction of time, i.e., if x.t/ D x.�t/; it is called odd if it is antisym-
metric under the change of the direction of time, i.e., if x.t/ D �x.�t/. Not
unexpectedly, the real Fourier expansion of a real-valued signal x.t/, whose pe-
riodic extension to the whole real line is even, i.e., x.t/ D x.�t/ for all t 2 R,
will contain only cosine functions (which are even) and, similarly, the real Fourier
expansion of an odd real-valued signal x.t/ D �x.�t/ will contain only sine
functions (which are odd). This phenomenon will be illustrated in the following
examples.

Example 2.1.1 (Pure cosine expansion of an even rectangular waveform). Con-
sider a rectangular waveform with period P , and amplitude a > 0, defined by the
formula

x.t/ D

8
ˆ̂<

ˆ̂
:

a; for 0 	 t < P=4I
0; for P=4 	 t < 3P=4I
a; for 3P=4 	 t < P:

The signal is pictured in Fig. 2.1.1, for the particular values P D 1 and a D 1.

Calculating the coefficients zm in the expansion of the signal x.t/ into a complex
Fourier series is straightforward here: For m D 0,

z0 D 1

P

Z P

0

x.t/e�j 2�0t=P dt D a

P

�
P

4
� 0 C P � 3P

4

�
D a

2
:

0.0 0.5 1.0 1.5−0.5
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 2.1.1 An even rectangular waveform signal from Example 2.1.1. The period P D 1, and the
amplitude a D 1



2.1 Complex Fourier Series for Periodic Signals 27

In the case m ¤ 0,

zm D 1

P

Z P

0

x.t/e�j 2�mt=P dt

D a

P

 Z P=4

0

e�j 2�mt=P dt C
Z P

3P=4

e�j 2�mt=P dt

!

D a

P

 
P

�j2�m
e�j 2�mt=P

ˇ̌
ˇ
ˇ

P=4

0

C P

�j2�m
e�j 2�mt=P

ˇ̌
ˇ
ˇ

P

3P=4

!

D a

�j2�m

�
e�j.�=2/m � 1 � e�j.3�=2/m C 1

�

D � a

�m
e�j.2�=2/m

 
ej.�=2/m � e�j.�=2/m

2j

!

D � a

�m
cos �m sin

�

2
m D � a

�m
.�1/m sin

�

2
m:

If m D 2k, then sin..�=2/m/ D 0 and if m D 2k C 1, k D 0; ˙1; ˙2; : : :, then
sin .�=2/m D .�1/k; which gives, for k D ˙1; ˙2; : : : ;

z2k D 0

and

z2kC1 D �a

�.2k C 1/
.�1/2kC1.�1/k D .�1/ka

�.2k C 1/
:

Thus, the complex Fourier expansion of the signal x.t/ is

x.t/ D a

2
C a

�

1X

kD�1

.�1/k

2k C 1
ej 2�.2kC1/t=P :

Observe that for any m D : : : ; �1; 0; 1; : : : , we have zm D z�m. Pairing up complex
exponentials with the exponents of opposite signs, and using de Moivre’s formula,
we arrive at the real Fourier expansion that contains only cosine functions:

x.t/ D a

2
C a

�

�
2 cos.2�t=P / � 2

3
cos.2�3t=P / C � � �

�
:

Example 2.1.2 (Pure sine expansion of an odd rectangular waveform). Consider a
periodic rectangular waveform of period P which is defined by the formula

x.t/ D

8
ˆ̂<

ˆ̂
:

a; for 0 	 t < P=4I
0; for P=4 	 t < 3P=4I
�a; for 3P=4 	 t < P:
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−0.5 0.0 0.5 1.0 1.5
−1.0

−0.5

0.0

0.5

1.0

Fig. 2.1.2 An odd rectangular waveform signal from Example 2.1.2. The period P D 1, and the
amplitude a D 1

The signal is pictured in Fig. 2.1.2 for the particular values P D 1 and a D 1.

For m D 0,

z0 D 1

P

Z P

0

x.t/dt D 0;

and for m ¤ 0,

zm D a

P

 Z P=4

0

e�j 2�mt=P dt �
Z P

3P=4

e�j 2�mt=P dt

!

D �a

j2�m

�
e�j.�=2/m � 1 � 1 C e�j.3�=2/m

�

D � a

j2�m

h
e�j.2�=2/m

�
ej.�=2/m C e�j.�=2/m

�
� 2

i

D � a

j�m

�
.�1/m � cos

�

2
m � 1

�
;

since, by de Moivre’s formula, e�j�m D cos �m � j sin �m, cos �m D .�1/m,
and sin �m D 0, for any integer m. On the other hand, cos.�=2/m D 0 if m is odd,
and D .�1/k when m D 2k is even, so we get that

zm D
(

a=.j�.2k C 1//; for odd m D 2k C 1I
aŒ1 � .�1/k�=.j�2k/; for even m D 2k:

Thus, the complex Fourier series of the signal x.t/ is of the form

x.t/ D a

�

1X

kD�1

"
1

j.2k C 1/
ej 2�.2kC1/t=P C Œ1 � .�1/k�

j 2k
ej 2�.2k/t=P

#

:

Observe that in this case, for any m D : : : ; �1; 0; 1; : : : ; we have zm D �z�m,
so pairing up the exponentials with opposite signs in the exponents, and using
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de Moivre’s formula, we get a real Fourier series expansion for x.t/ that contains
only sine functions:

x.t/ D 2a

�

�
sin 2�.1/t=P C sin.2�.2/t=P / C 1

3
sin.2�.3/t=P /

C 0 � sin.2�.4/t=P / C 1

5
sin.2�.5/t=P / C 1

6
sin.2�.6/t=P / C : : :

�
:

The purpose of going through the above example was to show that, for irregular
periodic signals, the calculation of Fourier coefficients can get quite messy although
the final result may display a pleasing symmetry.

Example 2.1.3 (A general expansion for a rectangular waveform which is neither
odd nor even). Consider a periodic rectangular waveform of period P which is de-
fined by the formula

x.t/ D

8
ˆ̂
<

ˆ̂
:

0; for 0 	 t < P=4I
a; for P=4 	 t < P=2I
0; for P=2 	 t < P:

The signal is pictured in Fig. 2.1.3 for the parameter values P D 1 and a D 1 and,
for simplicity’s sake, we will carry out our calculations only in that case. For m D 0,

z0 D
Z 1=2

1=4

D 1

4
:

For m ¤ 0,

zm D jzmjei�m D
Z 1=2

1=4

e�j 2�mt dt D 1

�j2�m

h
e�j 2�m=2 � e�j 2�m=4

i

D 1

�m
e�j 3�m=4

 
ej�m=4 � e�j�m=4

2j

!

DD 1

�m
sin
��

4
m
�

e�j 3�m=4:

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2.1.3 A neither odd nor even rectangular waveform signal from Example 2.1.3. The period
P D 1, and the amplitude a D 1
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Thus

jzmj D 1

�m
sin.�m=4/ and 	m D �j3�m=4;

and the complex Fourier series for x.t/ is

x.t/ D 1

4
C

1X

mD�1; m¤0

1

�m
sin.�m=4/e�j 3�m=4ej 2�mt :

Again, pairing up the complex exponentials with opposite signs in the exponents,
we obtain the real expansion in terms of the cosines, but this time with phase shifts
that depend on m:

x.t/ D 1

4
C

1X

mD1

2

�m
sin.�m=4/ cos .2�mt � 3�m=4/;

which, using the trigonometric formula cos.˛ Cˇ/ D cos ˛ cos ˇ � sin ˛ sin ˇ, also
can be written as a general real Fourier series,

x.t/ D a0 C
1X

mD1

am cos.2�mt/ C bm sin.2�mt/;

with

a0 D 1

4
; am D 2

�m
sin

�m

4
cos

3�m

4
; bm D 2

�m
sin

�m

4
sin

3�m

4
:

2.2 Approximation of Periodic Signals by Finite Fourier Sums

Up to this point the equality in the Fourier series representation

x.t/ D
1X

mD�1
hx; emiem.t/;

for periodic signals, or its real version in terms of sine and/or cosine functions, was
understood only formally. But, of course, the usefulness of such an expansion will
depend on whether we can show that the signal x.t/ can be well approximated by a
finite cutoff of the infinite Fourier series, that is, on whether we can prove that

x.t/ � sM .t/ WD
MX

mD�M

hx; emiem.t/ (2.2.1)

for M large enough, with the error in the above approximate equality � rigorously
estimated.
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One can pursue several options here:

Approximation in power: Mean-square error. If the error of approximation is
measured as the power of the difference between the signal x.t/ and the finite
Fourier sum sM .t/ in (2.2.1), then the calculation is relatively simple and the error
is often called the mean-square error. Indeed, using the Parseval formula,

PWx�sM
D 1

P

Z P

0

jx.t/ � sM .t/j2 dt

D 1

P

Z P

0

ˇ
ˇ̌
ˇ
ˇ

1X

mD�1
hx; emiem.t/ � sM .t/

ˇ
ˇ̌
ˇ
ˇ

2

dt

D 1

P

Z P

0

ˇ
ˇ̌
ˇ
ˇ
ˇ

X

jmj>M

hx; emiem.t/

ˇ
ˇ̌
ˇ
ˇ
ˇ

2

dt D
X

jmj>M

jhx; emij2;

which converges to 0 as M ! 1, because we assumed that the power of the signal
is finite:

PWx D
1X

mD�1
jhx; emij2 < 1:

Note that the unspoken assumption here is that the orthonormal system en.t/;

n D 0; ˙1; ˙2; : : : ; is rich enough to make the Fourier representation possible
for any finite power signal. This assumption, often called completeness of the above
orthonormal system, can actually be rigorously proven (see the footnote and other
sources cited in the Bibliographical Comments at the end of this volume).

Approximation at each time instant t separately. This type of approximation is
often called the pointwise approximation, and the goal is to verify that, for each time
instant t ,

lim
M!1 sM .t/ D x.t/: (2.2.2)

Here the situation is delicate, as examples at the end of this section will show, and
the assumption that the signal x.t/ has finite power is not sufficient to guarantee
the pointwise approximation. Neither is a stronger assumption that the signal is
continuous. However,

If the signal is continuous, except, possibly, at a finite number of points, and has a bounded
continuous derivative, except, possibly, at a finite number of points, then the pointwise ap-
proximation (2.2.2) holds true.

Uniform approximation in time t . If one wants to control the error of approxima-
tion simultaneously (uniformly) for all times t , then more stringent assumptions on
the signal are necessary. Namely, we have the following theorem:5

If the signal is continuous everywhere and has a bounded continuous derivative except at a
finite number of points, then

5 Proofs of these two mathematical theorems and other results quoted in this section can be found
in, e.g., T. W. Körner, Fourier Analysis, Cambridge University Press, Cambridge, UK, 1988.
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max
0	t	P

ˇ
ˇ
ˇx.t/ � sM .t/

ˇ
ˇ
ˇ ! 0 as M ! 1: (2.2.3)

Note that the above statements do not resolve the question of what happens with
the finite Fourier sums at discontinuity points of a signal, like those encountered
in the rectangular waveforms in Examples 2.1.1–2.1.3. It turns out that under the
assumptions of the above-quoted theorems, the points of discontinuity of the signal
x.t/ are necessarily jumps, that is, the left and right limits

x.t�/ D lim
s"t

x.s/ and x.tC/ D lim
s#t

x.s/; (2.2.4)

exist, and the finite Fourier sums sM .x/ of x.t/ converge, as M ! 1, to the
average value of the signal at the jump:

lim
M!1 sM .t/ D x.t�/ C x.tC/

2
: (2.2.5)

Example 2.2.1 (Approximation of a rectangular signal by finite Fourier sums). For
the signal x.t/ in Example 2.1.1, the first three nonzero terms of its cosine expansion
were

x.t/ D a

2
C a

�

�
2 cos

�
2�

t

P

�
� 2

3
cos

�
2�

3t

P

�
C : : :

�
:

Hence, in the case of period P D 1 and amplitude a D 1, the first four approximat-
ing sums are as follows:

s0.t/ D 1

2
; s1.t/ D 1

2
C 2

�
cos 2�t;

s2.t/ D 1

2
C 2

�
cos 2�t; s3.t/ D 1

2
C 2

�
cos 2�t � 2

3�
cos 6�t:

The graphs of s1.t/ and s3.t/ are compared with the original signal x.t/ in
Figs. 2.2.1 and 2.2.2. Note the behavior of the Fourier sums at the signal’s dis-
continuities, where the Fourier sums converge to the average value of the signal on
both sides of the jump according to formula (2.2.5).

Remark 2.2.1 (Irregular behavior of Fourier sums). A word of warning is appropri-
ate here. Abandoning the assumptions in the above two theorems leads very quickly
to difficulties with approximating the signal by its Fourier series. For example, there
are continuous signals which, at some time instants, have nice Fourier sums di-
verging to infinity. However, even for them, one can guarantee that the averages of
consecutive Fourier sums converge to the signal for each t :

s0.t/ C s1.t/ C � � � C sM .t/

M C 1
! x.t/; as M ! 1:

The expression on the left-hand side of the above formula is called the M th Césaro
average of the Fourier series. If one only assumes that the signal x.t/ is integrable,
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Fig. 2.2.1 Graph of the Fourier sum s1.t/ for the rectangular waveform signal x.t/ from Example
2.1.1, plotted against the original signal x.t/
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Fig. 2.2.2 Graph of the Fourier sum s3.t/ for the rectangular waveform signal x.t/ from Example
2.1.1, plotted against the original signal x.t/. Note the behavior of the Fourier sum s3.t/ at the
signal’s discontinuities, where it matches the average value of the signal at both sides of the jump,
reflecting the asymptotics of formula (2.2.5)

that is,
R P

0
jx.t/j dt < 1, which is the minimum assumption assuring that the

Fourier coefficients zm D hx; emi make sense, then one can find signals whose
Fourier sums diverge to infinity, for all time instants t .

The Gibbs phenomenon. Another observation is that the finite Fourier sums of
a signal satisfying the assumptions of the above-quoted statements, despite being
convergent to the signal, may have shapes that are very unlike the signal itself.

Example 2.2.2 (Behavior of Fourier sums at signal’s discontinuities). Consider the
signal x.t/, with period P D 1, defined by the formula

x.t/ D t; for � 1=2 	 t < 1=2:
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Fig. 2.2.3 Approximation of the periodic signal x.t/ from Example 2.2.2 by Fourier sums
s1.t/; s4.t /, and s10.t / (top to bottom). Visible is the Gibbs phenomenon demonstrating that the
shape of the Fourier sum near a point of discontinuity of the signal does not necessarily resemble
the shape of the signal itself

Clearly, it is an odd signal, so z0 D 0. For m ¤ 0, integrating by parts,

zm D
Z 1=2

�1=2

te�j 2�mt dt D t
�1

j2�m
e�j 2�mt

ˇ̌
ˇ
1=2

�1=2
� �1

j2�m

Z 1=2

�1=2

e�j 2�mt dt

D �1

j2�m
.�1/m
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because the last integral is zero. The complex Fourier expansion of x.t/ is

x.t/ D
1X

mD�1; m¤0

�1

j2�m
.�1/mej 2�mt ;

which yields a pure sine real Fourier expansion:

x.t/ D
1X

mD1

� �1

j2�m
.�1/mej 2�mt C �1

j2�.�m/
.�1/�mej 2�.�m/t

�

D
1X

mD1

.�1/mC1

�m
sin.2�mt/:

Figure 2.2.3 shows the approximation of the periodic signal x.t/ from Example
2.2.2 by Fourier sums s1.t/; s4.t/, and s10.t/. Visible is the Gibbs phenomenon
demonstrating that the shape of the Fourier sum near a point of discontinuity of
the signal does not necessarily resemble the shape of the signal itself. Yet, as the
order M of the approximation increases, the oscillations move closer to the jump,
so that the mean-square convergence of finite Fourier sums to the signal x.t/ is still
obtained.

2.3 Aperiodic Signals and Fourier Transforms

Periodic signals with increasing period: From Fourier series to Fourier trans-
form. Consider a signal xP .t/ of period P and fundamental frequency f0 D
1=P . We already know that such signals can be represented by their Fourier
series

xP .t/ D
1X

mD�1

�
1

P

Z P=2

�P=2

x.s/e�j 2�mf0s ds

�
� ej 2�mf0t : (2.3.1)

Notice that, for the purposes of this section, we have written the formula for the
Fourier coefficients of xP .t/ as an integral over a symmetric interval .�P=2; P=2�

rather than the usual interval of periodicity .0; P �. Since the signal xP .t/ and the
complex exponentials

exp.�j2�mf0s/ D cos.2�mf0s/ C j sin.2�mf0s/

are periodic with period P , any interval of length P will do.
Instead of considering aperiodic signals right off the bat, we will make a gradual

transition from the analysis of periodic to aperiodic signals by considering what
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happens with the Fourier series if, in the above representation (2.3.1), the period P

increases to 1; the limit case of infinite period P D 1 would then correspond to
the case of an aperiodic signal.

To see the limit behavior of the Fourier series (2.3.1), we shall introduce the
following notation:

1. The multiplicities of the fundamental frequency will become a running discrete
variable fm:

fm D m � f0I
2. The increments of the new running variable will be denoted by


fm D fm � fm�1 D f0 D 1

P
:

In this notation the Fourier expansion (2.3.1) can be rewritten in the form

xP .t/ D
1X

mD�1

�Z P=2

�P=2

x.s/e�j 2�fms ds

�
ej 2�fmt 
fm (2.3.2)

because 
fm D f0 D 1=P: Now, if the period P ! 1, which is the same as as-
suming that the fundamental frequency f0 D 
fm ! 0, the sum on the right-hand
side of formula (2.3.2) converges to the integral so that our Fourier representation
(2.3.2) of a periodic signal xP .t/ becomes the following integral identity for the
aperiodic signal:

x1.t/ D
Z 1

�1

�Z 1

�1
x1.s/e�j 2�f s ds

�
ej 2�f t df: (2.3.3)

The inner transformation,

X.f / D
Z 1

�1
x.t/e�j 2�f t dt; (2.3.4)

is called the Fourier transform of the signal x.t/, and the outer transform,

x.t/ D
Z 1

�1
X.f /ej 2�f t df; (2.3.5)

is called the inverse Fourier transform of the (complex in general) function X.f /.
The variable in the Fourier transform is the frequency f .

Note that since je�j 2�f t j D 1, the necessary condition for the existence of the
Fourier transform in the usual sense is the absolute integrability of the signal:

Z 1

�1
jx.t/j dt < 1: (2.3.6)

Later on we will try to extend its definition to some important nonintegrable signals.
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Example 2.3.1 (Fourier transform of a double exponential signal). Let us trace the
above limit procedure in the case of an aperiodic signal x1.t/ D e�jt j. If this signal
is approximated by periodic signals with period P obtained by truncating x.t/ to
the interval Œ�P=2; P=2/ and extending it periodically, i.e.,

xP .t/ D e�jt j; for � P=2 	 t < P=2;

then the Fourier coefficients of the latter are, remembering that P D 1=f0,

zm;P D 1

P

Z P=2

�P=2

e�jt je�j 2�mt=P dt

D 2f0

1 C .2�mf0/2

�
1 � e�1=.2f0/

�
cos.2�mf0/ C 2�mf0 sin.2�mf0/

��
:

Since the original periodic signal xP .t/ was even, the Fourier coefficients
zm D z�m, so that the discrete spectrum of xP .t/ is symmetric. Now, as
P ! 1, that is, f0 D 1=P ! 0, the exponential term e�1=.2f0/ ! 0, and
with f0 D 
f; mf0 D f , we get that

zm;P ! 2

1 C .2�f /2
df; as P ! 1:

Thus, the Fourier transform of the aperiodic signal x1.t/ is

X1.f / D 2

1 C .2�f /2
:

Taking the inverse Fourier transform, we verify6 that

Z 1

�1
2

1 C .2�f /2
ej 2�f t df D e�jt j:

Figure 2.3.1 illustrates the convergence, as the period P increases, of Fourier coef-
ficients zm;P to the Fourier transform X1.f /.

2.4 Basic Properties of the Fourier Transform

The property that makes the Fourier transform of signals so useful is its linearity;
that is, the Fourier transform of a linear composition ˛x.t/ C ˇy.t/ of signals x.t/

and y.t/ is the same linear composition ˛X.f /CˇY.f / of their Fourier transforms.

6 When faced with integrals of this sort, the reader is advised to consult a book of integrals, or a
computer package such as Mathematica or Maple.
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Fig. 2.3.1 Adjusted Fourier coefficients Zm;P � P of a truncated and periodically extended double
exponential signal from Example 2.3.1 (shown above, for graphical convenience, as functions of
continuous parameter m) approach the Fourier transform X

1
.f / of the aperiodic signal x

1
.t / D

e�jtj: The values of P , from top left to bottom right, are 1, 2, 4, 8

To facilitate notation, we will often denote the fact that X.f / is the Fourier trans-
form of the signal x.t/ by writing x.t/ 7! X.f / [read “x.t/ maps into X.f /”]. So

˛x.t/ C ˇy.t/ 7�! ˛X.f / C ˇY.f /: (2.4.1)

The proof is instantaneous using linearity of the integral.
The familiar Parseval formula for periodic signals carries over in the form

ENx D
Z 1

�1
jx.t/j2 dt D

Z 1

�1
jX.f /j2 df: (2.4.2)

It shows how the total energy of the signal is distributed over the continuous
range of frequencies from minus to plus infinity. The nonnegative function jX.f /j2
is called the energy spectrum of the aperiodic signal x.t/. The energy of the signal
contained in the frequency band Œf1; f2� can then be calculated as the integral of the
square of the modulus of its Fourier transform over that frequency interval:

ENxŒf1; f2� D
Z f2

f1

jX.f /j2 df: .2:4:2a/

An observant reader will see immediately that integrability of the signal necessary to
define the Fourier transform is not sufficient for the validity of the Parseval formula
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(2.4.2), as the finiteness of the integral
R1

�1 jx.t/j dt does not imply that the signal
has finite energy ENx (and, vice versa, finiteness of ENx does not imply the absolute
integrability of the signal; see Problem 2.7.11).

Parseval’s formula also has the following useful extension:

Z 1

�1
x.t/ � y.t/ dt D

Z 1

�1
X.f / � Y �.f / df: (2.4.3)

In the context of transmission of signals through linear systems, the critical
property of the Fourier transform is that the convolution Œx � y�.t/ of signals x.t/

and y.t/,

Œx � y�.t/ D
Z 1

�1
x.s/y.t � s/ ds; (2.4.4)

a fairly complex, nonlocal operation, has the Fourier transform that is simply the
pointwise product of the corresponding Fourier transforms:

Œx � y�.t/ 7�! X.f / � Y.f /: (2.4.5)

Indeed,

Z 1

�1
Œx � y�.t/e�j 2�f t dt D

Z 1

�1

hZ 1

�1
x.s/y.t � s/ ds

i
e�j 2�f t dt

D
Z 1

�1

Z 1

�1
y.t � s/e�j 2�f .t�s/x.s/e�j 2�f s ds dt

D
Z 1

�1
y.u/e�j 2�f u du �

Z 1

�1
x.s/e�j 2�f s ds

D X.f / � Y.f /;

where the penultimate equality resulted from the substitution t � s D u.
Since many electrical circuits are described by linear differential equations, the

behavior of the Fourier transform under differentiation of the signal is another im-
portant issue. Here the calculation is also direct:

Z 1

�1
x0.t/e�j 2�f t dt D x.t/e�j 2�f t j1�1 C j2�f

Z 1

�1
x.t/e�j 2�f t dt

D 0 C j2�f XZ.f /:

The first term is 0 because the signal’s absolute integrability (remember, we have to
assume it to guarantee the existence of the Fourier transform) implies that x.1/ D
x.�1/ D 0. Thus we have a rule:

x0.t/ 7�! .j 2�f / � X.f /: (2.4.6)



40 2 Spectral Representation of Deterministic Signals: Fourier Series and Transforms

Table 2.4.1 Properties of the Fourier transform

Signal Fourier Transform

Linearity
˛x.t/ C ˇy.t/ 7�! ˛X.f / C ˇY.f /

Convolution
Œx � y�.t/ 7�! X.f / � Y.f /

Differentiation
x.n/.t / 7�! .j 2�f /nX.f /

Time reversal
x.�t / 7�! X.�f /

Time delay
x.t � t0/ 7�! X.f / � e�j2�t0f

Frequency translation
x.t/ � ej2�f0t 7�! X.f � f0/

Frequency differentiation
.�j /ntnx.t/ 7�! .2�/�1X.n/.f /

Frequency convolution
x.t/y.t/ 7�! ŒX � Y �.f /

Similarly, one can employ the Fourier transform technique to study linear partial
differential equations which describe the temporal evolution of physical phenomena
in continuous media; see Problem 2.7.18.

The above and other simple-to-derive operational rules for Fourier transforms are
summarized in Table 2.4.1.

Example 2.4.1 (Deterministic Gaussian signal and its Fourier transform have the
same functional shape). Consider the curious example of a signal of the form
x.t/ D e��t2

, which has the familiar bell shape. Its Fourier transform is

X.f / D
Z 1

�1
e��t2�j 2�f t dt D

Z 1

�1
e��.tCjf /2

e��f 2

dt D e��f 2

;

because Z 1

�1
e��.tCjf /2

dt D
Z 1

�1
e��t2

dt D 1:

Indeed, changing to polar coordinates r; 	 , we can evaluate easily that

�Z 1

�1
e��t2

dt
�2 D

Z 1

�1
e��t2

dt �
Z 1

�1
e��s2

ds

D
Z 1

�1

Z 1

�1
e��.t2Cs2/ dt ds D

Z 2�

0

d	

Z 1

0

e��r2

r dr D 1:

Thus, the signal x.t/ D e��t2
has the remarkable property of having the Fourier

transform of exactly the same functional shape. This fact has profound conse-
quences in Fourier analysis, mathematical physics, quantum mechanics, and the
theory of partial differential equations.
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2.5 Fourier Transforms of Some Nonintegrable
Signals; Dirac’s Delta Impulse

There exist important nonintegrable signals, such as x.t/ D const or x.t/ D cos t ,
that are not absolutely integrable over the whole timeline; as a result, their Fourier
transforms are not well defined in the context of the classical calculus. Nevertheless,
to cover these and other important cases, it is possible to extend the standard calculus
by introduction of the Dirac delta “function” ı.f /, which, loosely speaking, is an
infinitely high but infinitely narrow spike located at f D 0 which, very importantly,
has “area,” that is, “integral,” equal to 1. Of course, one can similarly introduce the
time-domain Dirac delta ı.t/, in which case it is often called the Dirac delta impulse.

Heuristically (but one can also make this approach rigorous), the best way to
think about the Dirac delta is as a limit,

ı.f / D lim
�!0

r�.f /; (2.5.1)

where

r�.f / D
(

1=.2�/; for � � 	 f 	 C�I
0; elsewhere;

is a family of rectangular functions of width 2�, which have area 1 underneath; see
Fig. 2.5.1.

Obviously, the choice of the rectangular functions is not unique here. Any se-
quence of nonnegative functions which integrate to 1 over the whole real line and
converge to zero pointwise at every point different from the origin would do. For
example, as approximants to the Dirac delta, we can also take the family of double-
sided exponential functions of the variable x,

1

2a
exp

� jf j
a

�
;

indexed by parameter a ! 0C. Three functions of this family, for the parameter
values a D 1; 1=3; 1=9, are pictured in Fig. 2.5.2.

Fig. 2.5.1 Approximation of
the Dirac delta ı.f / by
rectangular functions r�.f /

for � D 1; 1=3; and 1/9
0
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5
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Fig. 2.5.2 Approximation of
the Dirac delta ı.f / by
two-sided exponential
functions
.1=.2a// exp.�jf j=a/ for
a D 1; 1=3; and 1/9
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More formally, the Dirac delta will be defined here as a “functional” charac-
terized by its “probing property” describing its scalar products with other, regular
functions:

hı; Xi WD
Z 1

�1
ı.f /X.f / df D X.0/: (2.5.2)

In other words, integration of a function X.f / against the Dirac delta produces the
value of that function at f D 0. This property permits us to use the Dirac delta
operationally whenever it appears inside integrals.

The “probing” formula (2.5.2) can be justified by remembering our intuitive
definition (2.5.1). Indeed, if the function X.f / is regular enough, then

Z 1

�1
ı.f /X.f / df D lim

�!0

Z 1

�1
r�.f /X.f / df

D lim
�!0

1

2�

Z �

��

X.f / df D X.0/

in view of the fundamental theorem of calculus.
Other properties of the Dirac delta follow immediately. For the Dirac delta shifted

to f D f0, Z 1

�1
ı.f � f0/X.f / df D X.f0/: (2.5.3)

Also, Z �

��

ı.f / df D 1 (2.5.4)

and Z 1

�1
ı.f /X.f /df D 0 if X.0/ D 0: (2.5.5)

The last property is often intuitively stated as follows:

ı.f / D 0; for f ¤ 0: (2.5.6)

Equipped with the Dirac delta technique, we can immediately obtain the Fourier
transform of some nonintegrable signals.
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Example 2.5.1 (Fourier transforms of complex exponentials). Finding the Fourier
transform of the harmonic oscillation signal x.t/ D ej 2�f0t is impossible by direct
integration, as

Z 1

�1
ej 2�f0te�j 2�f t dt

D 1

j2�.f0 � f /

�
cos 2�.f0 � f /t C j sin 2�.f0 � f /t

� ˇ̌
ˇ
ˇ

1

tD�1
;

and the limits

lim
t!˙1 cos 2�.f0 � f /t and lim

t!˙1 sin 2�.f0 � f /t

do not exist. But one immediately notices that, in view of (2.5.2), the inverse
transform of the shifted Dirac delta is

Z 1

�1
ı.f � f0/ej 2�f t df D ej 2�f0t :

Thus, the Fourier transform of x.t/ D ej 2�f0t is ı.f �f0/. In particular, the Fourier
transform of a constant 1 is ı.f / itself.

Example 2.5.2 (Fourier transforms of real harmonic oscillations). The Fourier
transform of the signal x.t/ D cos 2�t has to be found in a similar fashion, as the
direct integration of

R1
�1 cos .2�t/ e�j 2�f t dt is again impossible. But one observes

that the inverse Fourier transform

Z 1

�1
1

2

�
ı.f � 1/ C ı.f C 1/

�
ej 2�f t df D ej 2�t C e�j 2�t

2
D cos 2�t;

so the Fourier transform of cos 2�t is .ı.f � 1/ C ı.f C 1//=2.

Table 2.5.1 lists Fourier transforms of some common signals. Here, and there-
after, u.t/ denotes Heaviside’s unit step function equal to 0, for t < 0, and 1, for
t � 0.

Calculus of Dirac delta “functions”: Theory of Schwartzian distributions.
There exists a large theory of Dirac delta “functions,” and of similar mathematical
objects called distributions (in the sense of Schwartz),7 which develops tools that
help carry out operations such as distributional differentiation. To give the reader
a little taste of it, let us start here with the classical integration-by-parts formula,
which, for the usual functions X.f / and Y.f / vanishing at f D ˙1, states that

7 For a more complete exposition of the theory and applications of the Dirac delta and related “dis-
tributions,” see A. I. Saichev and W. A. Woyczyński, Distributions in the Physical and Engineering
Sciences, Vol. 1: Distributional Calculus, Integral Transforms and Wavelets, Birkhäuser Boston,
Cambridge, MA, 1997. Also see the Bibliographical Comments at the end of this volume.
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Table 2.5.1 Common Fourier transforms

Signal Fourier Transform

e�ajtj 7�! 2a

a2 C .2�f /2
, a > 0

e��t2 7�! e��f 2

(
1; for jt j 	 1=2I
0; for jt j > 1=2:

7�! sin �f

�f
(

1 � jt j; for jt j 	 1I
0; for jt j > 1:

7�! sin2 �f

�2f 2

ej2�f0t 7�! ı.f � f0/

ı.t/ 7�! 1

cos 2�f0t 7�! ı.f C f0/ C ı.f � f0/

2

sin 2�f0t 7�! j
ı.f C f0/ � ı.f � f0/

2

e�at � u.t / 7�! 1

a C j 2�f
; a > 0

hX; Y 0i D
Z 1

�1
X.f / �Y 0.f / df D �

Z 1

�1
X 0.f / �Y.f / df D �hX 0; Y i: (2.5.7)

This identity, applied formally, can be used as the definition of the derivative ı0.f /

of the Dirac delta by assigning to it the following probing property:

hX; ı0i D
Z 1

�1
X.f / � ı0.f / df D �

Z 1

�1
X 0.f / � ı.f / df D �X 0.0/: (2.5.8)

Symbolically, we can write

X.f / � ı0.f / D �X 0.f / � ı.f /:

In the particular case X.f / D f (here, the function has to be thought of as a limit
of functions vanishing at ˙1), we get

f � ı.f / D �ı.f /;

a useful computational formula.

2.6 Discrete and Fast Fourier Transforms

In practice, for many signals, we only sample the value of the signal at discrete
times, although in reality the signal continues between these sampling times. In
such cases we can approximate the integrals involved in calculation of the Fourier
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transforms in the same way as one does in numerical integration in calculus, using
left-handed rectangles, trapezoids, Simpson’s rule, etc. We use the simplest approx-
imation, which is equivalent to assuming that the signal is constant between the
sampling times (and rectangles’ areas approximate the area under the function).

So suppose that the sampling period is Ts , with the sampling frequency fs D
1=Ts, so that the signal’s sample is given in the form of a finite sequence,

xk D x.kTs/; k D 0; 1; 2; : : : ; N � 1; (2.6.1)

so that we can interpret it as a periodic signal with period

P D 1

f0

D NTs D N

fs

: (2.6.2)

The integral in formula (2.3.1) approximating the Fourier transform of the signal
x.t/ at discrete frequencies mf0; m D 0; 1; 2; : : : ; N � 1; can now be, in turn,
approximated by the sum

Xm D X.mf0/ D 1

P

N �1X

kD0

x.kTs/e�j 2�mf0kTs � Ts

D 1

N

N �1X

kD0

xke�j 2�mk=N ; (2.6.3)

in view of relationships (2.6.2). The sequence

Xm; m D 0; 1; 2; : : : ; N � 1; (2.6.4)

is traditionally called the discrete Fourier transform (DFT) of the signal sample
xk ; k D 0; 1; 2; : : : ; N � 1; described in (2.6.1).

Note that the calculation of the DFT via formula (2.6.3) calls for N 2

multiplications,

xk � e�j 2�mk=N ; m; k D 0; 1; 2; : : : ; N � 1:

One often says that the formula’s computational (algorithmic) complexity is of the
order N 2. This computational complexity, however, can be dramatically reduced by
cleverly grouping terms in the sum (2.6.3). The technique, which usually is called
the fast Fourier transform (FFT), was known to Carl Friedrich Gauss at the begin-
ning of the nineteenth century, but was rediscovered and popularized by Cooley and
Tukey in 1965.8 We will explain it in the special case when the signal’s sample size
N is a power of 2.

8 J. W. Cooley and O. W. Tukey, “An algorithm for the machine calculation of complex Fourier
series,” Math. Comput. 19, 297–301, 1965.
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So assume that N D 2n, and let !N D e�j 2�=N . The complex number !N is
called a complex N th root of unity because !N

N D 1. Obviously, for M D N=2, we
have

!
.2k/m
2M D !km

M ; !MCm
M D !m

M ; and !MCm
2M D �!m

2M : (2.6.5)

The crucial observation is to recognize that the sum (2.6.3) can be split into two
pieces:

Xm D 1

2

�
X even

m C Xodd
m � !m

2M

�
; (2.6.6)

where

X even
m D 1

M

M�1X

kD0

x2k!km
M ; and Xodd

m D 1

M

M�1X

kD0

x2kC1!km
M ; (2.6.7)

and that, in view of (2.6.5),

XmCM D 1

2

�
X even

m � Xodd
m � !m

2M

�
: (2.6.8)

As a result, only values Xm; m D 0; 1; 2; : : : ; M � 1 D N=2 � 1, have
to be calculated by computationally laborious multiplications. The values Xm;

m D M; M C 1; : : : ; 2M � 1 D N � 1, are simply obtained by formula (2.6.8).
The above trick is then repeated at levels N=22; N=23; : : : ; 2. If we denote by
CC.n/ the computational complexity of the above scheme, that is, the number of
multiplications required, we see that

CC.n/ D 2CC.n � 1/ C 2n�1;

with the first term on the right being the result of halving the size of the sample at
each step, and the second term resulting from multiplications of Xodd

m by !m
2M in

(2.6.6) and (2.6.8). Iterating the above recursive relation, one obtains

CC.n/ D 2n�1 log2 2n D 1

2
N log2 N; (2.6.9)

a major improvement over the N 2-order of the computational complexity of the
straightforward calculation of the DFT.

2.7 Problems and Exercises

2.7.1. Prove that the system of real harmonic oscillations

sin.2�mf0t/; cos.2�mf0t/; m D 1; 2; : : : ;
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forms an orthogonal system. Is the system normalized? Is the system complete? Use
the above information to derive formulas for coefficients in the Fourier expansions
in terms of sines and cosines. Model this derivation on calculations in Sect. 2.1.

2.7.2. Using the results from Problem 2.7.1, find formulas for amplitudes cm and
phases 	m in the expansion of a periodic signal x.t/ in terms of only cosines, x.t/ DP1

mD0 cm cos.2�mf0t C 	m/:

2.7.3. Find a general formula for the coefficients cm in the cosine Fourier expansion
for the even rectangular waveform x.t/ from Example 2.1.1.

2.7.4. Find a general formula for the coefficients bm in the sine Fourier expansion
for the odd rectangular waveform x.t/ from Example 2.1.2.

2.7.5. Carry out calculations of Example 2.1.3 in the case of arbitrary period P and
amplitude a.

2.7.6. Find three consecutive approximations by finite Fourier sums of the signal
x.t/ from Example 2.1.3. Graph them and compare the graphs with the graph of the
original signal.

2.7.7. Find the complex and real Fourier series for the periodic signal with period
P defined by the formula

x.t/ D
(

a; for 0 	 t < P=2I
�a; for P=2 	 t < P:

In the case P D � and a D 2:5, produce graphs comparing the signal x.t/ and its
finite Fourier sums of order 1, 3, and 6.

2.7.8. Find the complex and real Fourier series for the periodic signal with period
P D 1 defined by the formula

x.t/ D
(

1 � t=2; for 0 	 t < 1=2I
0; for 1=2 	 t < 1:

Produce graphs comparing the signal x.t/ and its finite Fourier sums of order 1, 3,
and 6.

2.7.9. Find the complex and real Fourier series for the periodic signal x.t/ D
j sin t j. Produce graphs comparing the signal x.t/ and its finite Fourier sums of
order 1, 3, and 6. in electrical engineering, the signal j sin t j is produced by running
the sine signal through a rectifier.
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2.7.10. Find the complex and real Fourier series for the periodic signal with period
P D � defined by the formula

x.t/ D et ; for � �=2 < t 	 �=2:

Produce graphs comparing the signal x.t/ and its finite Fourier sums of order 1, 3,
and 6.

2.7.11. Find an example of a signal x.t/ that is absolutely integrable, i.e.,R1
�1 jx.t/j dt < 1, but has infinite energy ENx D R1

�1 jx.t/j2 dt, and vice
versa, find an example of a signal which has finite energy but is not absolutely
integrable.

2.7.12. Provide a detailed verification of the Fourier transform properties listed in
Table 2.4.1. Provide a detailed verification of the Fourier transforms in Table 2.5.1.

2.7.13.(a) The nonperiodic signal x.t/ is defined as equal to 1/2 on the interval
Œ�1; C1� and 0 elsewhere. Plot it and calculate its Fourier transform X.f /. Plot
the latter.

(b) The nonperiodic signal y.t/ is defined as equal to .t C 2/=4 on the interval
Œ�2; 0�, .�t C 2/=4 on the interval Œ0; 2�, and 0 elsewhere. Plot it and calculate
its Fourier transform Y.f /. Plot the latter.

(c) Compare the Fourier transforms X.f / and Y.f /. What conclusion do you draw
about the relationship of the original signals x.t/ and y.t/?

2.7.14. Find the Fourier transform of the periodic signal x.t/ D P1
mD�1

zmej 2�mf0t .

2.7.15. Find the Fourier transform of the solution x.t/ of the differential equation
x00.t/ C x.t/ D cos t .

2.7.16. Find the Fourier transform of the signals given below. Graph both the signal
and its Fourier transform (real and imaginary parts separately, if necessary):

.a/ x.t/ D 1

1 C t2
; �1 < t < 1:

.b/ e�t2=2; �1 < t < 1:

.c/ x.t/ D
(

sin t � e�t ; for t � 0I
0; for t < 0:
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.d/ x.t/ D sin t � e�jt j:

.e/ x.t/ D y � z.t/; y.t/ D u.t/ � u.t � 1/; z.t/ D e�jt j

where u.t/ is the unit step signal, which = 0 for negative t and = 1 for t � 0.

2.7.17. Find the convolution .x � x/.t/ if x.t/ D u.t/ � u.t � 1/, where u.t/ is
the unit step function. First, use the original definition of the convolution and then
verify your result using the Fourier transform method.

2.7.18. Utilize the Fourier transform (in the space variable z) to find a solution of
the diffusion (heat) partial differential equation

@u

@t
D �

@2u

@z2
;

for a function u.t; z/ satisfying the initial condition u.0; z/ D ı.z/. The solution of
the above equation is often used to describe the temporal evolution of the density of
a diffusing substance.9

2.7.19. Assuming the validity of the Parseval formula
R1

�1 jx.t/j2 dt D R1
�1jX.f /j2 df , prove its extended version

R1
�1 x.t/�y�.t/ dt D R1

�1 X.f /�Y �.f / df .
Hint: In the case of real-valued x.t/; y.t/; X.f /; and Y.f /, it suffices to utilize the
obvious identity 4xy D .x C y/2 � .x � y/2, but in the general, complex case, first
verify and then apply the following polarization identity:

4xy D jx C yj2 � jx � yj2 C j.jx C jyj2 � jx � jyj2/:

Remember that the modulus square jzj2 D zz�.

9 It was the search for solutions to this problem that induced Jean-Baptiste Fourier (born March
21, 1768, in Auxerre, France; died May 16, 1830, in Paris) to introduce in his treatise Théorie
analytique de la chaleur (1822; The Analytical Theory of Heat) the tools of infinite functional series
and integral transforms now known under the names of Fourier series and transforms. During the
Napoleonic era, Fourier was also known as an Egyptologist and administrator. The modern young
author of research papers, impatient with delays in publication of his or her work, should find
solace in the fact that the appearance of Fourier’s great memoir was held up by the referees for 15
years; it was first presented to the Institut de France on December 21, 1807.



Chapter 3
Random Quantities and Random Vectors

By definition, values of random signals at a given sampling time are random
quantities which can be distributed over a certain range of values. The tools for
the precise, quantitative description of those distributions are provided by classical
probability theory. However natural, its development has to be handled with care
since the overly heuristic approach can easily lead to apparent paradoxes.1 But the
basic intuitive idea – that for independently repeated experiments, probabilities of
their particular outcomes correspond to their relative frequencies of appearance – is
correct. Although the concept of probability is more elementary than the concept of
cumulative probability distribution function, we assume that the reader is familiar
with the former at the high school level, and we start our exposition with the latter,
which not only applies universally to all types of data, both discrete and continu-
ous, but also gives us a tool to immediately introduce the probability calculus ideas,
including the physically appealing probability density function.

Think here about an electrical engineer whose responsibility is to monitor the
voltage on the electrical outlets in the university’s circuits laboratory. The record of
a month’s worth of daily readings on a very sensitive voltmeter may look as follows:

109.779, 109.37, 110.733, 109.762, 110.364, 110.73, 109.906,
110.378, 109.132, 111.137, 109.365, 108.968, 111.275, 110.806,
110.99, 111.522, 110.728, 109.689, 111.163, 107.22, 109.661,
108.933, 111.057, 111.055, 112.392, 109.55, 111.042, 110.679,
111.431, 112.06

Not surprisingly, the voltage varies slightly and irregularly from day to day, and
this variability is visualized in Fig. 3.0.1.

In the presence of such uncertainty, the engineer may want to get a better idea of
how the voltage values are distributed within its range and is likely to visualize this
information in the form of a histogram, as shown in Fig. 3.0.2.

In this chapter we will discuss analytical tools for the study of such random
quantities. The discrete and continuous random quantities are introduced, but we
also show that, in the presence of fractal phenomena, the above classification is not
exhaustive.

1 See, e.g., Problem 3.7.25.

W.A. Woyczyński, A First Course in Statistics for Signal Analysis,
DOI 10.1007/978-0-8176-8101-2 3, c� Springer Science+Business Media, LLC 2011
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Fig. 3.0.1 Variability of daily voltage readings on an electrical outlet

Fig. 3.0.2 The histogram of daily voltage readings on an electrical outlet

3.1 Discrete, Continuous, and Singular Random Quantities

For the purposes of these lectures, random quantities (also called random variables
in the literature), denoted by capital letters X; Y; etc., will symbolize measurements
of experiments with uncertain outcomes.

A random quantity X will be fully characterized by its cumulative distribution
function (c.d.f.), denoted FX .x/, which gives the probability, P.X 	 x/, the out-
comes of experiment X do not exceed the number x:

FX .x/ WD P.X 	 x/: (3.1.1)

Necessarily,
FX .�1/ D 0; FX .1/ D 1; (3.1.2)
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the function FX .x/ is nondecreasing,

FX .x/ 	 FX .y/; if x < y; (3.1.3)

and the probability of the measurement being contained in the interval .a; b� is

P.a < X 	 b/ D FX .b/ � FX .a/: (3.1.4)

If a < b < c, we thus have

P.a < X 	 c/ D FX .c/ � FX .a/ D ŒFX .b/ � FX .a/� C ŒFX .c/ � FX .b/�

D P.a < X 	 b/ C P.b < X 	 c/:

This fundamental property of probabilities, called additivity, can be extended from
disjoint intervals to more general disjoint2 sets A and B , yielding the formula

P.X 2 A [ B/ D P.X 2 A/ C P.X 2 B/:

In other words, probability behaves like the area measure of planar sets.

Discrete probability distributions. A random quantity X with a discrete prob-
ability distribution takes on only (finitely or infinitely many) discrete values, say
x1; x2; : : : , so that

P.X D xi / D pi ; i D 1; 2; : : : ; (3.1.5a)

where

0 < pi < 1;
X

pi D 1: (3.1.5b)

In the discrete case, the c.d.f. is

FX .x/ D
1X

iD1

pi u.x � xi /; (3.1.6)

where u.x/ is the unit step function. In other words, the c.d.f. has jumps of size pi

at locations xi and is constant at other points of the real line.

Example 3.1.1 (Bernoulli distribution). In this case the values of X , that is, the
possible outcomes of the experiment, are assumed to be either 1 or 0 (think about
it as a model of an experiment in which “success” or “failure” are the only possible
outcomes), with P.X D 1/ D p > 0; P.X D 0/ D q > 0; with p; q satisfying
condition p C q D 1. The c.d.f. of the Bernoulli random quantity is

2 Recall that sets A and B are called disjoint if their intersection is the empty set, i.e., A \ B D ;:
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Fig. 3.1.1 The cumulative distribution function FX .x/ of a Bernoulli random quantity X defined
in Example 3.1.1, with parameter p D 0:4 has a jump of size q D 1 � 0:4 D 0:6 at x D 0, and a
jump of size p D 0:4 at x D 1

FX .x/ D

8
ˆ̂
<

ˆ̂
:

0; for x < 0I
q D 1 � p; for 0 	 x < 1I
1; for 1 	 x:

The Bernoulli family of distributions has one parameter p, which must be a number
between 0 and 1. Then q D 1 � p. An example is provided in Fig. 3.1.1.

Example 3.1.2 (Binomial distribution). The binomial random quantity X can take
values 0; 1; : : : ; n, with corresponding probabilities

pk D P.X D k/ D
 

n

k

!

pk.1 � p/n�k ; k D 0; 1; 2; : : : ; n;

where the binomial coefficient is defined by
 

n

k

!

D nŠ

kŠ.n � k/Š
:

Recall, that the name “binomial coefficient” comes from the elementary binomial
formula

.a C b/n D
nX

kD0

 
n

k

!

akbn�k;

familiar in the special cases:

.a C b/2 D a2 C 2ab C b2;

.a C b/3 D a3 C 3a2b C 3ab2 C b3;

and so on.
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Fig. 3.1.2 The cumulative distribution function FX .x/ of a binomial random quantity X defined
in Example 3.1.2, with parameters p D 0:5 and n D 5

The probabilities pk D pk.n; p/ in the binomial probability distribution are
probabilities that exactly k “successes” occur in n independent3 Bernoulli experi-
ments, each with probability of “success” equal to p.

The normalization condition
P

k pk D 1 (3.1.5b) is satisfied here because, in
view of the above-mentioned binomial formula,

nX

kD0

 
n

k

!

pk.1 � p/n�k D .p C q/n D 1:

The binomial family of distributions has two parameters: p, which must be between
0 and 1, and n, which can be an arbitrary positive integer. An example is provided
in Fig. 3.1.2.

Example 3.1.3 (Poisson distribution). The values of a Poisson random quantity X

can be arbitrary nonnegative integers 0; 1; 2; : : : ; and their probabilities are defined
by the formula

pk D P.X D k/ D e�� �k

kŠ
; k D 0; 1; 2; : : : :

The normalization condition
P

k pk D 1 is satisfied in this case because of the
power-series expansion for the exponential function:

1X

kD0

e�� �k

kŠ
D e��

1X

kD0

�k

kŠ
D e��e� D 1:

The family of Poisson distributions has one parameter � > 0. Poisson random
quantities are often used as models of the number of arrivals of “customers” in

3 A rigorous definition of the concept of the independence of random quantities will be discussed
later in this chapter.
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queueing systems (an Internet website, a line at the checkout counter, etc.) within a
given time interval.

Continuous distributions. A random quantity X is said to have a continuous prob-
ability distribution4 if its c.d.f. FX .x/ can be written as an integral of a certain
nonnegative function fX .x/ which traditionally is called the probability density
function (p.d.f.) of X ; that is,

FX .x/ D P.X 	 x/ D
Z x

�1
fX .z/ d z: (3.1.7)

Then, of course, the probability of the random quantity to assume values between a

and b is just the integral of the p.d.f. over the interval Œa; b� (see Fig. 3.1.3), where
fX .x/ was selected to be .3=5

p
�/e�x2 C .2=5

p
�/e�.x�2/2

. Note that in the con-
tinuous case it does not matter whether the interval between a and b is open or closed
since the probability of the random quantity taking a particular value is always zero.
Thus we have

P.a < X 	 b/ D FX .b/ � FX .a/ D
Z b

a

fX .z/ d z: (3.1.8)

Also, necessarily, we have the normalization condition
Z 1

�1
fX .x/ dx D FX .C1/ D 1; (3.1.9)

Fig. 3.1.3 The shaded area under fX .x/, and above the interval Œ�1; 2�, is equal to the probability
that a random quantity X with the p.d.f. fX .x/ takes values in the interval Œ�1; 2�

4 Strictly speaking, c.d.f.s that admit the integral representation (3.1.7), that is, have densities, are
called absolutely continuous distributions, as there exist continuous c.d.f.s which do not admit this
integral representation; see an example of a singular c.d.f. later in this section and, e.g., M. Denker
and W. A. Woyczyński, Introductory Statistics and Random Phenomena: Uncertainty, Complexity
and Chaotic Behavior in Engineering and Science, Birkhäuser Boston, Cambridge, MA, 1998.
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and, in view of (3.1.7), and the fundamental theorem of calculus, we can obtain the
p.d.f. fX .x/ by differentiation of the c.d.f. FX .x/:

d

dx
FX .x/ D fX .x/:

Example 3.1.4 (Uniform distribution). The density of a uniformly distributed
random quantity X is defined to be a positive constant within a certain inter-
val, say Œc; d �, and zero outside this interval. Thus, because of the normalization
condition (3.1.9),

fX .x/ D
(

.d � c/�1; for c 	 x 	 d I
0; elsewhere:

The family of uniform densities is parameterized by two parameters c and d , with
c < d . An example is provided in Fig. 3.1.4.
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Fig. 3.1.4 (Top) The probability density function (p.d.f) fX .x/ for a random quantity with val-
ues uniformly distributed over the interval Œ0; 1�. (Bottom) The c.d.f. FX .x/ for the same random
quantity which was defined in Example 3.1.4
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The c.d.f. of a uniform random quantity is

FX .x/ D

8
ˆ̂
<

ˆ̂
:

0; for x < cI
.x � c/=.d � c/; for c 	 x 	 d I
1; for d 	 x:

Example 3.1.5 (Exponential distribution). An exponentially distributed random
quantity X has the p.d.f. of the form

fX .x/ D
(

0; for x < 0I
e�x=�=�; for x � 0:

There is one parameter, � > 0. The c.d.f. in this case is easily computable:

FX .x/ D
(

0; for x < 0I
1 � e�x=�; for x � 0:

An exponential p.d.f. and the corresponding c.d.f. are pictured in Fig. 3.1.5.
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Fig. 3.1.5 (Top) The probability density function (p.d.f) fX .x/ of an exponentially distributed
random quantity defined in Example 3.1.5, with parameter � D 1. (Bottom) The cumulative dis-
tribution function (c.d.f.) FX .x/ for the same random quantity
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Exponential p.d.f.s often appear in applications as probability distributions of
random waiting times between Poisson events discussed earlier in this section. For
example, under certain simplifying assumptions, it can be proven that the random
time intervals between consecutive hits at a website have an exponential probability
distribution. For this reason, exponential p.d.f.s play a crucial role in analysis of
Internet traffic and other queueing networks.

Example 3.1.6 (Gaussian (normal) distribution). The density of a Gaussian (also
called normal) random quantity X is defined by the formula

fX .x/ D 1p
2� �

e
�.x��/2

2�2 :

There are two parameters, � – which is a real number – and � > 0, and this
distribution is often denoted N.�; �2/ p.d.f. (N for “normal”). The Gaussian c.d.f.
is of the form (see Fig. 3.1.4)

FX .x/ D
Z x

�1
1p

2� �
e

�.z��/2

2�2 d z;

but, unfortunately, the integral cannot be expressed in terms of the elementary func-
tions of the variable x. An example is provided in Fig. 3.1.6. Thus the values of this
c.d.f., and the probabilities of a Gaussian random quantity taking values within a
given interval, have to be evaluated numerically, using tables (provided at the end
of this chapter) or mathematical software such as Matlab, Maple, or Mathematica;
see Example 3.1.6 (continued) ahead.

However, the normalization condition for the Gaussian p.d.f. can be verified di-
rectly analytically by a clever trick that replaces the square of the integral by a
double integral which is then evaluated in polar coordinates r; 	 . We carry out this
calculation in the special case � D 0; �2 D 1:

�Z 1

�1
fX .x/ dx

�2

D
Z 1

�1
fX .x/ dx �

Z 1

�1
fX .y/ dy

D
Z 1

�1

Z 1

�1
fX .x/ � fX .y/ dx dy

D 1

2�

Z 1

�1

Z 1

�1
e

�x2
�y2

2 dx dy

D 1

2�

Z 2�

0

Z 1

0

e
�r2

2 r dr d	 D 1:

Example 3.1.6 ((continued) Calculations of N (0,1) probabilities). The values of the
Gaussian N.0; 1/ cumulative distribution, traditionally denoted ˆ.x/, are tabulated
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Fig. 3.1.6 (Top) The probability density function (p.d.f.) fX .x/ for a Gaussian random quantity
defined in Example 3.1.6, with parameters � D 0; � D 1. (Bottom) The cumulative distribution
function (c.d.f.) FX .x/ for the same random quantity

at the end of this chapter. They are listed only for positive values of the variable x,
because, in view of the symmetry of the N.0; 1/ density, we have

˚.�x/ D 1 � ˚.x/:

Thus

P.�1:53 < X < 2:11/ D ˆ.2:11/ � ˆ.�1:53/ D ˆ.2:11/ � .1 � ˆ.1:53//

D 0:9826 � .1 � 0:9370/ D 0:9196:

This leaves unanswered the question of how to calculate the general N.�; �2/ prob-
abilities. For a solution, see Example 3.1.9.

Remark 3.1.1 (Importance of the Gaussian distribution). The fundamental impor-
tance of the Gaussian probability distribution stems from the central limit theorem
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(see Sect. 3.5), which asserts that, for a large number of independent repetitions
of experiments with random outcomes, the fluctuations (errors) of the outcomes
around their mean value have, approximately, a Gaussian p.d.f. At a more funda-
mental level, this result is related to the invariance of Gaussian densities under the
Fourier transformation; see Example 2.4.1.

Mixed and singular distributions. A random quantity is said to have a c.d.f. of
mixed type if it has both discrete and continuous components. The c.d.f. thus has
both discrete jumps, perhaps infinitely (but countably) many, as well as points of
continuous increase where its derivative is well defined. For example, see, Fig. 3.1.7,
the c.d.f.

FX .x/ D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂:

0; for x < �1I
x=6 C 2=6; for � 1 	 x < 0I
x=6 C 4=6; for 0 	 x < 1I
1; for 1 	 x;

(3.1.10)

represents a random quantity X which is uniformly distributed on the intervals
.�1; 0/ [ .0; 1/ with probability 1/3, but also takes the discrete values �1; 0; 1,
with positive probabilities equal to the jump sizes of the c.d.f. at those points. Think
here about a cloud of particles randomly and uniformly distributed over the inter-
vals .�1; 0/ [ .0; 1/, with absorbing boundaries at x D ˙1, and a sticky trap at
x D 0; the probability of finding a particle at those discrete points is positive; 1/6 at
x D ˙1, and 1/3 at x D 0.

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3.1.7 The cumulative distribution function (c.d.f.) FX .x/ of mixed type described by formula
(3.1.10). This distribution has both discrete and continuous components
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Thus, for example,

P
�

�1

2
< X 	 1

2

�
D FX

�
1

2

�
� FX

�
�1

2

�
D
�

1

12
C 4

6

�
�
�

� 1

12
C 2

6

�
D 1

2
;

and

P.X D 0/ D lim
�!0

P.�� < X 	 �/ D lim
�!0

.FX .�/ � FX .��//

D lim
�!0

Œ.�=6 C 4=6/ � .��=6 C 2=6/� D 1=3:

Similarly,

P.X D �1/ D 1=6; P.X D 0/ D 2=6; P.X D 1/ D 1=6:

Remark 3.1.2 (Mixture of Gaussian p.d.f.s). The reader will notice that the example
of a p.d.f. which appeared in Fig. 3.1.3 is a mixture of two Gaussian p.d.f.s.

It is tempting to venture a guess that all c.d.f.s have to be discrete, continuous, or
of mixed type. This, however, is not the case.

The limit of the so-called devil’s staircase c.d.f.s shown in Fig. 3.1.8 is an exam-
ple of a c.d.f. which, although continuous and differentiable “almost everywhere,”
does not have a p.d.f.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3.1.8 The construction of the singular “devil’s staircase” c.d.f. FX .x/. It continuously grows
from 0, at x D 0, to 1, at x D 1, and yet it has no density; its derivative is equal to 0 on disjoint
intervals whose lengths add up to 1
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Observe that inside the interval [0,1] its derivative is 0 on the union of the infinite
family of disjoint intervals whose lengths add up to 1. Indeed, as is clear from the
construction displayed in Fig. 3.1.8, this set has the linear measure

lim
n!1

�
1

3
C 2 � 1

32
C � � � C 22 � 1

3n

�
D 1

3

1X

iD0

�
2

3

�i

D 1

3
� 1

1 � 2=3
D 1;

in view of the formula for the sum of a geometric series. Thus integration of this
derivative cannot possibly give a c.d.f. which must grow from 0 to 1. Distributions
of this type are called singular, and they arise in studies of fractal phenomena. One
can prove that the set of points of increase of the “devil’s staircase” limit, i.e., the set
of points on which the probability is concentrated, has a fractional dimension equal
to ln 2= ln 3 D 0:6309 : : : .5

Distributions of functions of random quantities. One often measures random
quantities through devices that distort the original quantity X to produce a new
random quantity, say, Y D g.X/, and the natural question is how the c.d.f. FX .x/

of X is affected by such a transformation. In other words, the question is: Can FY .y/

be expressed in terms of g and FX .x/? In the case when the transforming function
g.x/ is monotonically increasing, the answer is simple:

Fg.X/.y/ D P.g.X/ 	 y/ D P
�
X 	 g�1.y/

�
D FX .g�1.y//; (3.1.11)

where g�1.y/ is the inverse function of g.x/, that is, g�1.g.x// D x, or, equiva-
lently, if y D g.x/, then x D g�1.y/.

Remembering the chain rule of the elementary calculus, and the formula for the
derivative of the inverse function g�1.y/, we also immediately obtain, in the case
of monotonically increasing g.x/, the expression of the p.d.f. of Y D g.X/ in terms
of the p.d.f. of X itself:

fg.X/.y/ D d

dy
FX .g�1.y// D fX .g�1.y// � 1

g0.g�1.y//
: (3.1.12)

Example 3.1.7 (Linear transformation of a standard Gaussian random quantity).
Recall that a Gaussian random quantity X is called standard [or N.0; 1/] if its p.d.f.
is of the form

fX .x/ D 1p
2�

e
�x2

2 :

5 See, for example, M. Denker and W. A. Woyczyński, Introductory Statistics and Random Phe-
nomena: Uncertainty, Complexity and Chaotic Behavior in Engineering and Science, Birkhäuser
Boston, Cambridge, MA, 1998.



64 3 Random Quantities and Random Vectors

-2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 3.1.9 Probability density functions of N.0; 1/; N.0:5; 0:25/; and N.1; 2:25/ random quanti-
ties (from left to right)

It is a special case of the general Gaussian p.d.f. introduced in Example 3.1.6, with
the parameters � and � specified to be 0 and 1, respectively. Consider now a new
random quantity Y obtained from X by a linear transformation

Y D aX C b; a > 0:

Think about this transformation as representing the change in units of measurement
and the choice of the origin (like changing the temperature measurements from de-
grees Celsius to Fahrenheit: If X represents temperature measurements in degrees
Celsius, then Y D 1:8 �X C32 gives the same measurements in degrees Fahrenheit).

The transforming function in this case, y D g.x/ D ax C b, is monotonically
increasing, and

g0.x/ D a and g�1.y/ D .y � b/=a:

Formula (3.1.12) now gives the following expression for the p.d.f. of Y :

fY .y/ D 1p
2�

e
�..y�b/=a/2

2 � 1

a
D 1p

2�a2
e

�.y�b/2

2a2 :

The conclusion is that the transformed random quantity Y also has a Gaussian p.d.f.,
but with parameters � D b and �2 D a2; in other words, Y is N.b; a2/-distributed.
Several examples of Gaussian p.d.f.s are shown in Fig. 3.1.9.

Example 3.1.7 ((continued) Calculation of general N.�; �2/ probabilities). The re-
lationship established in Example 3.1.7 permits utilization of tables of the N.0; 1/

distributions supplied at the end of this chapter to calculate N.�; �2/ probabilities
for arbitrary values of parameters �, and �2 > 0. Indeed, if a random quantity Y

has the N.�; �2/ distribution, then it is of the form

Y D �X C �;
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where X has the N.0; 1/ distribution with the c.d.f. FX .x/ D ˚.x/, so that

FY .y/ D P.Y 	 y/ D P.�X C � 	 y/

D P.X 	 .y � �/=�/ D ˚
�y � �

�

�
; (3.1.13)

and the values of the latter can be taken from Table 3.6.1. For example, if Y is
Gaussian with parameters � D 1:8 and � D 32, then

P.30 < Y < 36/ D ˚

�
36 � 32

1:8

�
� ˚

�
30 � 32

1:8

�

D ˚ .2:22/ � .1 � ˚ .�1:11//

D 0:9868 � .1 � 0:8665/ D 0:8533:

In the next two examples we will consider the quadratic transformation
Y D X2=2 corresponding to calculation of the (random) kinetic energy6 Y of
an object of unit mass m D 1, traveling with random velocity X .

Example 3.1.8 (Kinetic energy of a unit mass traveling with random, exponentially
distributed velocity). Suppose that the random quantity X has an exponential c.d.f.,
and the p.d.f. given in Example 3.1.5, with parameter � D 1. It is transformed by
a quadratic “device” g.x/ D x2=2 into the random quantity Y D X2=2. Note that
the exponential p.d.f. is concentrated on the positive half-line and that the trans-
forming function g.x/ is monotonically increasing in that domain. Then the c.d.f.
FY .y/ D 0, for y 	 0, and, for y > 0, we can repeat the argument from formula
(3.1.11) to obtain

FY .y/ D P.Y 	 y/ D P.X2=2 	 y/

D P.X 	 p
2y/ D FX .

p
2y/ D 1 � e�p

2y :

Similarly, using (3.1.12), one gets the p.d.f. of X2=2:

fY .y/ D d

dy
FY .y/ D

(
0; for y 	 0I
e�p

2y=
p

2y/; for y > 0:

Note that this p.d.f. has a singularity at the origin; indeed, fY .y/ " C1 as
y # 0C. Observe, however, that the singularity does not affect the p.d.f. normal-
ization condition

R1
�1 fY .y/ dy D 1.

If the transforming function y D g.x/ is not monotonically increasing (or de-
creasing; see Problem 3.7.26 and Sects. 8.1 and 8.2) over the range of the random

6 Recall that an object of mass m traveling with velocity v has kinetic energy E D mv2=2.
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quantity X [as, for example, g.x/ D x2 in the case when X takes both positive
and negative values], then a more subtle analysis is required to find the p.d.f. of the
random quantity Y D g.X/.

Example 3.1.9 (Square of a standard Gaussian random quantity). Assume that
X has the standard N.0; 1/ Gaussian p.d.f. and that the transforming function is
quadratic: y D g.x/ D x2. The quadratic function is monotonically increasing
only over the positive half-line; it is monotonically decreasing over the negative
half-line. So, we have to proceed with caution, and start with an analysis of the
c.d.f. of Y D X2, taking advantage of the symmetry of the Gaussian p.d.f.:

FY .y/ D P.Y 	 y/ D P.X2 	 y/

D 2P.0 	 X 	 p
y/ D 2.FX .

p
y/ � 1=2/:

The above formula, obviously, is valid only for y > 0; on the negative half-line
the c.d.f. of Y D X2 vanishes. Thus the p.d.f. of Y D X2 is

fY .y/ D d

dy
FY .y/ D

(
0; for y 	 0I
e�y=2=.

p
2�y/; for y > 0:

This p.d.f. is traditionally called the chi-square probability density function. We’ll
see its importance in Sect. 3.6, where it plays the central role in the statistical pa-
rameter estimation problems.

Random quantities as functions on a sample space. For those who insist on
mathematical precision, the above introduction of random quantities via their prob-
ability distributions should be preceded by their formal definition as functions on
a sample space. This approach had been pioneered by A. N. Kolomogorov7 and
has become a commonly accepted, mainstream approach to mathematical probabil-
ity theory.

The definition starts with an introduction of the triple .�;B; P/, where the sam-
ple space � is an arbitrary set8 consisting of sample points !. They should be
thought of as labels for different (not necessarily numerical) outcomes of a ran-
dom experiment being modeled. The field B consists of subsets of the sample space
� which are called random events. To make the logical operations (such as “not,”
“or,” and “and”) on random events possible, it is assumed that B contains the whole

7 See his fundamental Grundbegriffe der Wahrscheinlichkeisrechnung, Springer-Verlag, Berlin,
1933, but also an earlier work in the same direction by A. Lomnicki and H. Steinhaus published in
the 1923 volume of the journal Fundamenta mathematicae, and the Bibliographical Comments at
the end of this volume.
8 Without loss of generality, one can always take as � the unit interval Œ0; 1�; see Remark 3.1.2.
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sample space � and the empty set ;, and is closed under complements, unions, and
intersections. In other words, one imposes on B the following axioms:

A1.1. �; ; 2 B.
A1.2. If B 2 B, then its complement � n B 2 B.
A1.3. If A; B 2 B, then A [ B 2 B, and A \ B 2 B.

The probability measure is then defined as a function P W B 7! Œ0; 1�, assigning
to any random event B a real number between 0 and 1, so that it is normalized to
1 on the whole sample space and is additive on mutually exclusive (disjoint) ran-
dom events. In other words, one imposes on the probability measure the following
axioms:

A2.1. P.�/ D 1 (normalization).
A2.2. If A \ B 2 ;, then P.A [ B/ D P.A/ C P.B/ (additivity).

Finally, a random quantity (variable) X is any function on the sample space
� which assigns to each sample point ! (that is, to each outcome of a random
experiment) a real number X.!/ in such a way that determining probabilities of
X.!/ taking values in any given interval on the real line is possible. In other words,
one demands that the function X W � 7! R is measurable, i.e., it satisfies the
following axiom:

A3.1. For each a; b 2 R, the set of sample points f! W a < X.!/ 	 bg 2 B.

The consequence is that B D f! W a < X.!/ 	 bg is always a (measurable)
random event whose probability P.B/ is well defined. This now permits an intro-
duction of the cumulative distribution function of the random quantity X (and brings
us back to the beginning of Sect. 3.1) via the formula

FX .x/ D P.f! W �1 < X.!/ 	 xg/; x 2 R:

To permit limit operations on random events and random quantities, one usually
extends the above axioms to guarantee that infinite unions are permitted in Axioms
A1.3 and A2.2. A wide spectrum of examples of sample spaces can encountered in
research practice; we provide three – the first is very simple, and the third, rather
complex.

Example 3.1.10 (Coin toss – a small sample space). In this case the outcomes
can be labeled H (heads) and T (tails), and the sample space, � D fH; T g, has
only two sample points, H and T . The field of random events can be taken to be
B D f;; fH g; fT g; �g. For any number p 2 Œ0; 1�, the probability measure P on all
random events in B can now be defined as follows:

P.;/ D 0; P.H/ D p; P.T / D 1 � p; P.�/ D 1:
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Now one can define a variety of random quantities on .�;B; P/. If in the game you
are playing one wins $1 if heads come up and nothing if tails come up, then the
corresponding random quantity X is a function on � defined by the equalities

X.H/ D 1; X.T / D 0;

and its probability distribution is

P.f! W X.!/ D 1g/ D p; P.f! W X.!/ D 0g/ D 1 � p:

However, if in the game you are playing one wins $1 if heads come up and one
loses $1 if tails come up, then the corresponding random quantity X is a function
on ˝ defined by the equalities

X.H/ D C1; X.T / D �1;

and its probability distribution is

P.f! W X.!/ D C1g/ D p; P.f! W X.!/ D �1g/ D 1 � p:

Example 3.1.11 (Coin toss – a larger sample space). The above “natural” choice of
the “minimal” sample space is not unique. For example, one can choose � D Œ0; 1�,
with P being the length measure of the subsets of the unit interval. Then take

X.!/ D
(

0; for ! 2 Œ0; 1 � p�I
1; for ! 2 .1 � p; 1/:

Then, obviously, P.f! W X.!/ D 0g/ D 1 � p, and P.f! W X.!/ D 1g/ D p.

Example 3.1.12 (Gas of particles – a large sample space). Consider a gas consisting
of 6 �1023 (Avogadro’s number) of particles (say, of mass 1) moving in R3 according
to Newtonian mechanics. The sample space consists of all possible configurations
(states) of the gas described by the particles’ positions .x1; x2; x3/ and velocities
.v1; v2; v3/. Hence, each sample point

! D .x1
1 ; x2

1 ; x3
1 ; v1

1; v2
1 ; v3

1 ; : : : ; x1
N ; x2

N ; x3
N ; v1

N ; v2
N ; v3

N /

is a 6 � 6 � 1023-dimensional vector, and the sample space is of the same huge dimen-
sion:

� D R6�6�1023

:

The field B of random events here is also huge and consists of all the subsets of
� that are defined by imposing upper and lower bounds on the components of the
positions and velocities of all 6 � 1023 particles.
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Fig. 3.1.10 Distribution of particle speed for 106 oxygen particles at �100; 20, and 600ıC (left
to right). The speed distribution was derived from the Maxwell–Boltzmann distribution (from
http://en.wikipedia.org/wiki/Maxwell-Boltzmann statistics)

Various probability measures on B can then be defined. In statistical mechanics
the standard way to define it is by assigning energy E.!/ to each configuration
! and then demanding that the probability (fraction of all particles) of the system
being in state ! is proportional to exp.�ˇ/E! . The resulting probability measure
on � is called the Gibbs–Boltzmann measure.

If the random quantity of interest is just the kinetic energy (temperature) of the
configuration,

E! D 1

2

NX

iD1

�
.v1

i /2 C .v2
i /2 C .v3

i /2
	
;

then the above Gibbs–Boltzmann distribution correctly gives the classical Maxwell
probability density function of gas particle speed’s s D p

.v1/2 C .v2/2 C .v3/2:

fS .s/ D .2=�/1=2.kT /�3=2s2 exp.�s2=2kT /; s � 0;

where k is the Boltzmann constant, and T is the absolute temperature. To accom-
modate different types of particles, additional parameters are usually included in the
above formula; see Fig. 3.1.10 for an example of plots of p.d.f.s of particle speeds
for oxygen particles.9

Remark 3.1.3 (Unit interval as a universal sample space). For any random quan-
tity X , one can always choose the unit interval Œ0; 1� as the underlying sample
space � (although this is not always the most natural selection), with sample points
! 2 � being numbers between 0 and 1. Indeed, equip � with the Lebesgue (length)

9 See, e.g., A. H. Carter, Classical and Statistical Thermodynamics, Prentice-Hall, Englewood
Cliffs, NJ, 2001.
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measure as the underlying probability P. That is, if A D Œa; b� 
 � D Œ0; 1�, then
we set

P.A/ D P.f! W a 	 ! 	 bg/ D b � a;

and let ! D FX .x/ be the cumulative distribution function of X . Since the above
c.d.f. is not necessarily a strictly increasing function, we will define its inverse
F �1

X .!/; ! 2 Œ0; 1�; as the reflection in the diagonal, x D !, in the .x; !/-plane
of the plot of the p.d.f. FX .x/. More precisely, we uniquely define the (generalized)
inverse of the c.d.f. by the equality10

F �1
X .!/ D minfx W FX .x/ � !g:

Of course, if FX .x/ is strictly increasing, then the above definition yields the usual
inverse function satisfying the conditions

F �1
X .FX .x// D x and FX .F �1

X .!// D !:

In the next step, define

X.!/ D F �1
X .!/; ! 2 ˝ D Œ0; 1�:

Clearly, X.!/ defined in this fashion has the correct c.d.f.,

P.f! 2 Œ0; 1� W X.!/ 	 xg/ D P.f! 2 Œ0; 1� W F �1
X .!/ 	 xg/

D P.f! W 0 	 ! 	 FX .x/g/ D FX .x/:

For instance, Example 3.1.1 defines the Bernoulli random quantity as a func-
tion on Œ0; 1� via the above “generalized” inverse of the Bernoulli c.d.f. shown in
Fig. 3.1.1. As an example of the strictly increasing c.d.f., we can take the Cauchy
random quantity X with the c.d.f.

FX .x/ D 1

�

�
arctan.x/ C �

2

�
;

which continuously increases from 0 to 1 as X ranges from �1 to C1. Solving
the equation FX .x/ D ! yields the inverse function

F �1
X .!/ D tan

�
�! � �

2

�
D X.!/

and a representation of the Cauchy random quantity as a function on the unit inter-
val. Both the Cauchy c.d.f. and its inverse are shown in Fig. 3.1.11.

10 Traditionally, the inverse of the c.d.f. of a random quantity is called its quantile function; see
Sect. 3.6.
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Fig. 3.1.11 The cumulative distribution function, FX .x/, of a Cauchy random quantity (thick line)
and its inverse, X.!/ D F �1

X .!/ (thin line), providing a representation of the Cauchy random
quantity X.!/ as a function on the sample space ˝ D Œ0; 1�

3.2 Expectations and Moments of Random Quantities

The expected value, or, in brief, the expectation of a random quantity X is its mean
value (or, for a physics-minded reader, the center of the probability mass) with dif-
ferent values of X given weights equal to their probabilities. The expectation of
X will be denoted EX , or E.X/, whichever is more convenient. So, for a discrete
random quantity X with P.X D xi / D pi ;

P
i pi D 1; we have

EX D
X

i

xi pi ; (3.2.1)

and for an (absolutely) continuous random quantity with probability density fX .x/

EX D
Z 1

�1
xfX .x/ dx: (3.2.2)

More generally, one can consider the expectation of a function g.X/ of a random
quantity X which is defined by the formulas,

EŒg.X/� D
(P

i g.xi /pi ; in the discrete caseI
R1

�1 g.x/fX .x/ dx; in the continuous case:
(3.2.3)
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In particular, if g.x/ D xk ; k D 1; 2; : : : , then the numbers

�k.X/ D Eg.X/ D EXk D
(P

i xk
i pi ; in the discrete caseI

R1
�1 xkfX .x/ dx; in the continuous case:

(3.2.4)

are called k-th moments of X . The first moment �1 D �1.X/ is just the expectation
of EX of the random quantity X .

If g.x/ D jxj˛; �1 < ˛ < 1, then

mk.X/ D EjX j˛

are called the ˛th absolute moments, and for g.x/ D jx � �1j˛, the numbers

EjX � �1j˛ D EjX � EX j˛

are called the ˛th absolute central moments of X . The latter measure the mean value
of the ˛th power of the deviation of the random quantity X from its expectation EX .
In other words, they provide a family of parameters which measure how the values
of the random quantity are spread around its “center of mass.” In the special case
˛ D 2, the second central moment

E.X � EX/2 D
(P

i .xi � �1/2pi ; in the discrete caseI
R1

�1.x � �1/2fX .x/ dx; in the continuous case;
(3.2.5)

is called the variance of the random quantity X and denoted Var.X/. Again, for a
physically minded reader, it is worth noticing that the variance is just the moment of
inertia of the probability mass distribution. A simple calculation gives the formula

Var.X/ D EX2 � .EX/2; (3.2.6)

which is sometimes simpler computationally than (3.2.5); the variance is thus the
difference between the second moment (sometimes also called the mean square of a
random quantity) and the square of the first moment. This rule is then often phrased:
Variance is equal to the mean square minus the squared mean.

Example 3.2.1 (Moments of the Bernoulli distribution). For the Bernoulli random
quantity X , with distribution given in Example 3.1.1, all the moments are

�k.X/ D 1k � p C 0k � .1 � p/ D p;

and the variance is

Var.X/ D .1 � p/2p C .0 � p/2.1 � p/ D p.1 � p/:
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Example 3.2.2 (Mean and variance of the uniform distribution). A uniformly dis-
tributed random quantity X (see Example 3.1.4) has expectation

EX D
Z d

c

x
1

d � c
dx D d C c

2
:

Its variance is

Var .X/ D
Z d

c

�
x � d C c

2

�2
1

d � c
dx D .d � c/2

12
:

Notice that the expectation, or expected value EX , of a random quantity X scales
linearly, that is,

E.˛X/ D ˛E.X/; �1 < ˛ < 1; (3.2.7)

so that the change of scale of the measurements affects the expectations proportion-
ally: If, for example, X is measured in meters, then EX is also measured in meters.
Indeed, in the continuous case,

E.˛X/ D
Z 1

�1
.˛x/fX .x/ dx D ˛

Z 1

�1
xfX .x/ dx D ˛E.X/;

and the discrete case can be verified in an analogous fashion.
On the other hand, the variance Var.X/ has the quadratic scaling

Var.˛X/ D ˛2Var.X/: (3.2.8)

This follows immediately from the linear scaling of the expectations (3.2.7) and
the formula (3.2.6). Thus the mean-square deviation has a somewhat unpleasant
nonlinear property which implies that if X is measured, say, in meters, then its
variance is measured in meters squared.

For this reason, one often considers the standard deviation Std.X/ of a random
quantity X which is defined as the square root of the variance:

Std.X/ D
p

Var .X/: (3.2.9)

The standard deviation scales linearly, at least for positive ˛, since

Std.˛X/ D j˛j Std.X/; �1 < ˛ < 1: (3.2.10)

This means that changing the measurement units affects the standard deviation
proportionately as well. If a random quantity is measured in meters, then its standard
deviation is also measured in meters.

Additionally, observe that the expectation is additive with respect to constants;
that is, for any constant ˇ; �1 < ˇ < 1;

E.X C ˇ/ D E.X/ C ˇ: (3.2.11)
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The verification is again immediate and follows from the additivity property of
the integrals (or, in the discrete case, sums):

E.X C ˇ/ D
Z 1

�1
.x C ˇ/fX .x/ dx

D
Z 1

�1
xfX .x/ dx C

Z 1

�1
f̌X .x/ dx D E.X/ C ˇ;

because
R1

�1 fX .x/ dx D 1.
Finally, the variance is invariant under translations; that is, for any constant

ˇ; �1 < ˇ < 1;

Var.X C ˇ/ D Var.X/: (3.2.12)

Indeed,

Var.X C ˇ/ D E
�
.X C ˇ/ � E.X C ˇ/

�2 D E
�
X C ˇ � E.X/ � ˇ

�2 D Var.X/:

The above properties indicate that any random quantity X can be standardized
by first centering it, and then rescaling it, so that the standardized random quantity
has expectation 0 and variance 1. Indeed, if

Z D X � EX

Std.X/
; (3.2.13)

then it immediately follows from (3.2.10) to (3.2.11) that EZ D 0 and Var.Z/ D 1.

Example 3.2.3 (Mean and variance of the Gaussian distribution). Let us begin with
a random quantity X with the standard N.0; 1/ p.d.f. Its expectation is

E.X/ D
Z 1

�1
x

1p
2�

e�x2=2 dx D 0

because the integrand is an odd function and is integrated over the interval
.�1; 1/, which is symmetric about the origin. Thus its variance is just the sec-
ond moment (mean square) of X , which can be evaluated easily by integration by
parts11:

Var .X/ D
Z 1

�1
x2 1p

2�
e�x2=2 dx D 1p

2�

Z 1

�1
x � .xe�x2=2/ dx:

D 1p
2�

�
�x � e�x2=2

ˇ̌
ˇ
1
�1 C

Z 1

�1
e�x2=2 dx

�
D 1;

because limx!˙1 x � e�x2=2 D 0 and .1=
p

2�/
R1

�1e�x2=2 dx D 1.

11 Recall the integration-by-parts formula:
R

f .x/g0.x/ dx D f .x/g.x/ � R
f 0.x/g.x/ dx.
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Now, let us consider a general Gaussian random quantity Y with N.�; �2/ p.d.f.,

fY .y/ D 1p
2��2

e
� .y��/2

2�2 :

In view of Example 3.1.7,
Y D �X C �:

The above properties of the expectation and the variance [(3.2.7)–(3.2.8) and
(3.2.11)–(3.2.12)], immediately give

E.Y / D E.�X C �/ D �E.X/ C � D �

and
Var.Y / D Var.�X C �/ D Var.�X/ D �2Var.X/ D �2:

Thus the parameters � and �2 in the Gaussian N.�; �2/ p.d.f. are, simply, its ex-
pectation and variance.

Remark 3.2.1 (Sums of random quantities?). Note that the discussions carried out
in the previous two sections permitted us, in principle, to determine the probability
distributions (and thus expectations, moments, etc.) of functions g.X/, once the
distribution of X itself was known. However, an effort to determine the distribution
of the sum X C Y if the separate distributions of X and Y are known is bound to
end up in failure; there is simply not enough information about how the values of X

and Y are paired up. This is one of the reasons why one must study the distribution
of the pair .X; Y / viewed as the distribution of a single random vector. This will be
done in the next section.

3.3 Random Vectors, Conditional Probabilities, Statistical
Independence, and Correlations

A random vector X has components X1; X2; : : : ; Xd , which are scalar random
quantities; that is,

X D .X1; X2; : : : ; Xd /;

where d is the dimension of the random vector. For simplicity of notation, we shall
consider first the case of dimension d D 2, and we shall write X D .X; Y /.

Statistical properties of random vectors are characterized by their joint
probability distributions. In the discrete case, for a random vector X taking discrete
values x D .x; y/, the joint probability distribution is

P.X D x/ D P.X D x; Y D y/ D pX .x; y/; (3.3.1)
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and X

.x;y/

pX .x; y/ D 1: (3.3.2)

Example 3.3.1 (A Bernoulli random vector). The random vector .X; Y / takes val-
ues .0; 0/; .0; 1/; .1; 0/; .1; 1/, with the following joint probabilities:

p.X;Y /.0; 0/ D .1 � p/2; p.X;Y /.0; 1/ D p.1 � p/;

p.X;Y /.0; 1/ D .1 � p/p; p.X;Y /.1; 1/ D p2:

It is easy to check that

1X

xD0

1X

yD0

p.X;Y /.x; y/ D 1:

In the special case p D 1=2, all four possible values of this random vector are taken
with the same probability equal to 1=4.

A continuous random vector is characterized by its joint p.d.f. f.X;Y /.x; y/,
which is a nonnegative function of two variables x; y, such that

Z 1

�1

Z 1

�1
f.X;Y /.x; y/ dx dy D 1: (3.3.3)

In this case the probability that the random vector .X; Y / takes values in a certain
domain A of the 2D space is calculated by evaluating the double integral of the joint
p.d.f. over the domain A:

P..X; Y / 2 A/ D
Z Z

A

f.X;Y /.x; y/ dx dy: (3.3.4)

For example, if the domain A is a rectangle Œa; b� � Œc; d � D f.x; y/ W a 	 x 	
b; c 	 y 	 d g, then

P..X; Y / 2 A/ D P.a 	 X 	 b; c 	 Y 	 d/ D
Z b

a

Z d

c

f.X;Y /.x; y/ dy dx:

(3.3.5a)

If the domain B D f.x; y/ W x2 C y2 	 R2g is a centered disk of radius R, then

P..X; Y / 2 B/ D P.X2 C Y 2 	 R2/ D
Z R

�R

Z p
R2�x2

�p
R2�x2

f.X;Y /.x; y/ dy dx:

(3.3.5b)

The graph of a 2D joint p.d.f. is a surface over the .x; y/-plane such that the
volume underneath it is equal to 1; see (3.3.3).
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Example 3.3.2 (A 2D Gaussian random vector). An example of the 2D Gaussian
joint p.d.f. is given by the formula

f.X;Y /.x; y/ D 1

2��x�y

exp

"

� .x � �x/2

2�2
x

� .y � �y/2

2�2
y

#

; (3.3.6)

where �x; �y > 0, and �x ; �y are arbitrary real numbers. Figure 3.3.1 shows the
plot of the surface representing a 2D Gaussian joint p.d.f. in the case �x; �y D 1

and �x; �y D 0:

Calculation of the probabilities P.a 	 X 	 b; c 	 Y 	 d/ is reduced here to
the calculation of one-dimensional Gaussian probabilities since the joint 2D density
in this case is the product of two 1D Gaussian densities – one depending only on x,
and the other on y12 – and the double integral splits into the product of two single
integrals. To obtain numerical values, tables of (or software for) 1D N.0; 1/ c.d.f.s
have to be used; see Sect. 3.5.

In the special case of equal variances �2
x D �2

y D �2, the probability that
the above Gaussian random vector takes values in a disk of radius R centered at
.�x; �y/ can, however, be carried out explicitly by calculation of the integral in
polar coordinates .	; r/:

Fig. 3.3.1 Plot of the surface representing a 2D Gaussian joint p.d.f. (3.3.6) in the case �x; �y D 1

and �x; �y D 0

12 We will have more to say about joint p.d.f.s of this type in the next few pages. The multiplicative
property is equivalent to the concept of statistical independence of components of a random vector.
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P
�
.X � �x/2 C .Y � �y/2 	 R2

�

D
Z R

�R

Z p
R2�x2

�p
R2�x2

1

2��2
exp

�
�x2 C y2

2�2

�
dy dx

D 1

2��2

Z 2�

0

Z R

0

exp

�
� r2

2�2

�
r dr d	

D 1

�2

�
��2 exp

�
� r2

2�2

��R

0

D 1 � e�R2=2�2

:

Because the joint p.d.f. gives complete information about the random vector
.X; Y /, it also yields complete information about the probability distributions of
each of the component random quantities. These distributions are called marginal
distributions of the random vector.

In particular, for a discrete random vector, the marginal distribution of the com-
ponent X is

pX .x/ D
X

y

p.X;Y /.x; y/: (3.3.7)

To find the probability of X taking a particular value x0, we simply need to sum,
over all possible y’s, the probabilities of .X; Y / taking values .x0; y/. For a contin-
uous random vector, the marginal p.d.f. of the component X is

fX .x/ D
Z 1

�1
f.X;Y /.x; y/ dy: (3.3.8)

It is important to observe that the marginal distributions of components of a ran-
dom vector do not determine its joint distribution. Indeed, the example provided
below shows that it is quite possible for random vectors to have the same marginal
probability distributions of their components while their joint probability distribu-
tions are different.

Example 3.3.3 (Different random vectors with the same marginal probability dis-
tributions). A random vector .X; Y / has components X and Y which take values 1,
2, and 3, and 1 and 2, respectively. The joint probability distribution of this random
vector is given in the following table:

Y nX 1 2 3 Y

1 30/144 24/144 18/144 6/12
2 30/144 24/144 18/144 6/12

X 5/12 4/12 3/12
P D 1

So, for example, P..X; Y / D .3; 2// D 3=24. The last row in the above table gives
the marginal probability distribution for the component X , and the last column gives
the marginal probability distribution for the component Y .
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Consider now another random vector .W; Z/ with components W and Z which
also take values 1, 2, and 3, and 1 and 2, respectively. The joint distribution of this
random vector is given by a different table:

ZnW 1 2 3 Z

1 1/12 2/12 3/12 6/12
2 4/12 2/12 0 6/12

W 5/12 4/12 3/12
P D 1

This time P..X; Y / D .3; 2// D 0. The last row in the above table gives the marginal
probability distribution for the component W , and the last column gives the marginal
probability distribution for the component Z. The marginal probability distribu-
tions for vectors .X; Y / and .W; Z/ are the same, while their joint distributions are
different.

Conditional probabilities. Knowledge of the joint p.d.f. permits us also to in-
troduce the concept of the conditional probability (in the discrete case) and the
conditional density (in the continuous case). Thus, the conditional probability of
the component X taking value x, given that the second component Y took value y,
is given by the formula13

pX jY .xjy/ � P.X D xjY D y/ D P.X D x; Y D y/

P.Y D y/
D p.X;Y /.x; y/

pY .y/
; (3.3.9)

and the conditional probability density function of X given Y D y is given by the
formula

fX jY .xjy/ D f.X;Y /.x; y/

fY .y/
: (3.3.10)

In other words, conditional probability distributions are distributions of values of
one component of a random vector calculated under the assumption that the value
of the other component has already been determined.

Conditional probabilities are bona fide probabilities, as they satisfy the normal-
ization property. Indeed, say, in the continuous case, for each fixed y,

Z 1

�1
fX jY .xjy/ dx D

R1
�1 f.X;Y /.x; y/ dx

fY .y/
D fY .y/

fY .y/
D 1;

in view of formula (3.3.8), which calculates the marginal density from the joint
density.

If the component X of a random vector .X; Y / takes on distinct values
x1; x2; : : : ; xn, then the additive property of probabilities immediately gives the
following total probability formula:

13 The notation pXjY .xjy/ � P.X D xjY D y/ reads: The probability of X D x, given Y D y.
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P.Y D y/ D
nX

iD1

P.Y D yjX D xi / � P.X D xi /:

Example 3.3.4 (How to avoid running into a bear?). Heuristically, one can think
about conditional probabilities as probabilities obtained under additional con-
straints. Think here about the probability of your running into a bear during a
hike. Given that you are hiking in the Cleveland Metroparks, the probability of the
event may be only 0.0001; in Yellowstone the similar conditional probability may
be as high as 0.75. Now assume you participate, with 51 of your classmates, in a
raffle and the prize is a trip to Yellowstone; the consolation prize is a group hike
in the Metroparks. The total probability of your running into a bear would then be
0:0001 � .51=52/ C 0:75 � .1=52/ � 0:015.

One of the corollaries of the total probability formula is the celebrated Bayes’
formula for reverse conditional probabilities, which, loosely speaking, computes
the conditional probability of X , given Y , in terms of the conditional probabilities
of Y , given X :

P.X D xi jY D y/ D P.Y D yjX D xi / � P.X D xi /Pn
iD1 P.Y D yjX D xi / � P.X D xi /:

Indeed,

P.X D xi jY D y/ D P.X D xi ; Y D y/

P.Y D y/
� P.X D xi /

P.X D xi /

D P.Y D yjX D xi / � P.X D xi /

P.Y D y/
;

and an application of the total probability formula immediately gives the final result.

Example 3.3.5 (Transmission of a binary signal in the presence of random errors).
A channel transmits the binary symbols 0 and 1 with random errors. The probability
that the symbols 0 and 1 appear at the input of the channel is, respectively, 0.45 and
0.55. Because of transmission errors, if the symbol 0 appears at the input, then the
probability of it being received as 0 at the output is 0.95. The analogous conditional
probability is 0.9 for the symbol 1 to be received, given that it was transmitted. Our
task is to find the reverse conditional probability that the symbol 1 was transmitted
given that 1 was received.

The random vector here is .X; Y /, where X is the input signal and Y is the output
signal. The problem’s description contains the following information:

P.X D 0/ D 0:45; P.X D 1/ D 0:55;

and
P.Y D 0jX D 0/ D 0:95; P.Y D 1jX D 1/ D 0:9;

so that
P.Y D 1jX D 0/ D 0:05; P.Y D 0jX D 1/ D 0:1:



3.3 Random Vectors, Conditional Probabilities, Statistical Independence, and Correlations 81

We are seeking P.X D 1jY D 1/, and Bayes’ formula gives the answer:

P.X D 1jY D 1/ D P.Y D 1jX D 1/ � P.X D 1/

P.Y D 1jX D 0/ � P.X D 0/ C P.Y D 1jX D 1/ � P.X D 1/

D 0:9 � 0:55

0:05 � 0:45 C 0:9 � 0:55
� 0:9565:

Statistical independence. The components X and Y of a random vector
X D .X; Y / are said to be statistically independent if the conditional probabili-
ties of X given Y are independent of Y , and vice versa. In the discrete case, this
means that, for all x and y,

P.X D xjY D y/ D P.X D x/;

which is equivalent to the statement that the joint p.d.f. is the product of the marginal
p.d.f.s. Indeed, the above independence assumption and the formula defining the
conditional probabilities yield

P.X D x; Y D y/ D P.X;Y /.x; y/

D PX .x/ � PY .y/ D P.X D x/ � P.Y D y/: (3.3.11)

In the continuous case the analogous definition of the independence of X and Y

can be stated via the multiplicative formula for the joint p.d.f.:

f.X;Y /.x; y/ D fX .x/ � fY .y/: (3.3.12)

Note that both the 2D Bernoulli distribution of Example 3.3.1 and the 2D Gaus-
sian distribution of Example 3.3.2 have statistically independent components X and
Y . Also, components of the random vector .X; Y / in Example 3.3.3 are indepen-
dent since the table was actually obtained by multiplying the marginal probabilities
in the corresponding rows and columns. However, the components W and Z of the
random vector .W; Z/ in Example 3.3.3 are not statistically independent. To see
this, it is sufficient to observe that

P.W D 3; Z D 2/ D 0;

but
P.W D 3/ � P.Z D 2/ D 3=12 � 6=12 D 18=144 ¤ 0:

Moments of random vectors and correlations. If a random quantity Z is a func-
tion of a random vector .X; Y /, say,

Z D g.X; Y /;
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then, as in Sect. 3.2, we can calculate the mean of Z using the joint p.d.f. Indeed,

EZ D
X

x

X

y

g.x; y/p.X;Y /.x; y/ (3.3.13)

in the discrete case, and

EZ D
Z 1

�1

Z 1

�1
g.x; y/f.X;Y /.x; y/ dx dy (3.3.14)

in the continuous case.
A mixed central second-order moment corresponding to function g.x; y/

D .x � �X /.y � �Y / will play a pivotal role in the analysis of random signals.
The number

Cov .X; Y / D E
h
.X � �X /.Y � �Y /

i
D E.XY / � E.X/E.Y /; (3.3.15)

is called the covariance of X and Y . Obviously, the covariance of X and X is just
the variance of X :

Cov .X; X/ D E
h
.X � �X /.X � �Y /

i
D Var .X/: (3.3.16)

In the case when the expectations of X and Y are zero,

Cov .X; X/ D E.X � Y /: (3.3.17)

By the Cauchy–Schwartz inequality,14

jCov .X; Y /j 	 Std.X/ � Std.Y /: (3.3.18)

This suggests the introduction of yet another parameter for a 2D random vector
which is called the correlation coefficient of X and Y :

Cor .X; Y / � �X;Y D Cov .X; Y /

Std.X/ � Std.Y /
: (3.3.19)

In view of (3.3.18), the correlation coefficient is always contained between �1

and C1:
�1 	 �X;Y 	 1; (3.3.20)

14 Recall that if a D .a1; : : : ; ad / and b D .b1; : : : ; bd / are two d -dimensional vectors, then
the Cauchy–Schwartz inequality says that the absolute value of their scalar (dot) product is not
larger than the product of their norms (magnitudes), i.e., jha; bij 	 kak � kbk, where ha; bi D
a1b1 C � � � C ad bd , and kak2 D a2

1 C � � � C a2
d ; see Sect. 3.7.
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and, in view of (3.3.17), if the random components X and Y are linearly dependent,
that is, Y D ˛X , then the correlation coefficient takes its extreme values

�X;˛X D ˙1; (3.3.21)

depending on whether ˛ is positive or negative. In those cases we say that the
random quantities X and Y are perfectly (positively, or negatively) correlated. If
�X;Y D 0, then the random quantities X and Y are said to be uncorrelated.

The opposite case is that of statistically independent random quantities X and Y .
Then, because of the multiplicative property f.X;Y /.x; y/ D fX .x/fY .y/ (3.3.11)
and (3.3.12) of the joint p.d.f., we always have

E.XY / D
Z Z

xyfX .x/fY .y/ dx dy D EX � EY; (3.3.22)

so that
Cov .X; Y / D E.XY / � EX � EY D 0; (3.3.23)

and the correlation coefficient �X;Y D 0. Thus independent random quantities are
always uncorrelated. In this context, the correlation coefficient �X;Y is often con-
sidered as a measure of the “independence” of the random quantities X and Y ; more
appropriately, it should be interpreted as a measure of the “linear association” of the
random quantities X and Y .

Remark 3.3.1 (Uncorrelated random quantities need not be independent). Although
statistically independent random quantities are always uncorrelated, the reverse
implication is not true in general. Indeed, consider an example of a 2D random
vector .X; Y / with values uniformly distributed inside the unit circle. Obviously,
because of the symmetry, EX D EY D 0, and the covariance (calculated in polar
coordinates) is

Cov.X; Y / D
Z 1

�1

Z Cp
1�x2

�p
1�x2

xy
dy dx

�
D
Z 2�

0

Z 1

0

r3 cos 	 sin 	
dr d	

�
D 0:

So X and Y are uncorrelated. But they are not independent, because, for example,

P.
p

2=2 < X < 1;
p

2=2 < Y < 1/ ¤ P.
p

2=2 < X < 1/ � P.
p

2=2 < Y < 1/:

Indeed, the left-hand side is zero since the square f.x; y/ W p
2=2 < x < 1;

p
2=2 <

y < 1g lies outside the unit circle, but the right-hand side is positive since

P.
p

2=2 < X < 1/ D
Z 1

p
2=2

Z Cp
1�x2

�p
1�x2

dy dx

�
D P.

p
2=2 < Y < 1/ > 0I

each of the above probabilities is simply the (normalized) area of the sliver of the
unit disk to the right of the vertical line x D p

2=2. However, in certain special
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cases the reverse implication is true: Gaussian random quantities are independent if
and only if they are uncorrelated; see Chap. 8.

Example 3.3.6 (A discrete 2D distribution with nontrivial correlation). Consider the
random vector .W; Z/ from Example 3.3.3. The expectations of the components are

EW D 1.5=12/ C 2.4=12/ C 3.3=12/ D 11=6;

EZ D 1.6=12/ C 2.6=12/ D 3=2:

The variances are

Var.W / D .1 � 11=6/2.5=12/ C .2 � 11=6/2.4=12/

C.3 � 11=6/2.3=12/ D 23=36;

Var.Z/ D .1 � 3=2/2.6=12/ C .2 � 3=2/2.6=12/ D 1=4:

The expectation of the product is

E.W Z/ D .1 � 1/.1=12/ C .2 � 1/.2=12/ C .3 � 1/.3=12/

C .1 � 2/.4=12/ C .2 � 2/.2=12/ C .3 � 2/0 D 5=2:

Thus the covariance is

Cov.W; Z/ D E.W Z/ � E.W /E.Z/ D 5=2 � .11=6/.3=2/ D �1=4;

and, finally, the correlation coefficient of W and Z is

Cor.W; Z/ D Cov .W; Z/

Std.W / � Std.Z/
D �1=4
p

23=36 �p1=4
D �

p
3=23 � �0:361:

Example 3.3.7 (A continuous 2D distribution with nontrivial correlation). A ran-
dom vector .X; Y / has a continuous joint p.d.f. of the form

f.X;Y /.x; y/ D
(

C.1 � .x C y//; forx; y � 0; x C y 	 1I
0; elsewhere:

The constant C can be determined from the normalization condition,

Z 1

0

Z 1�x

0

C.1 � .x C y// dy dx D 1;

which gives C D 6. The plot of the surface representing this density is given in
Fig. 3.3.2.
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Fig. 3.3.2 The plot of the surface representing the joint p.d.f. from Example 3.3.7

Fig. 3.3.3 The marginal
density FX .x/ of the X

component of the random
vector from Example 3.3.7
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The marginal density of the component X is

fX .x/ D
Z 1�x

0

6.1 � .x C y// dy D 3.1 � x/2;

for 0 < x < 1. It is equal to 0 elsewhere, and its plot is pictured in Fig. 3.3.3.
The expectations of X and Y are easily evaluated using the marginal p.d.f.:

EX D EY D
Z 1

0

x � 3.1 � x/2 dx D 1

4
:

Similarly, the variances are

�2.X/ D �2.Y / D
Z 1

0

.x � 1=4/2 � 3.1 � x/2 dx D 3

80
:
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Finally, the covariance is

Cov .X; Y / D
Z 1

0

Z 1�x

0

.x � 1=4/.y � 1=4/ � 6.1 � .x C y// dy dx D � 1

80
:

So the random components X and Y are not independent; they are negatively cor-
related. The correlation coefficient itself is now easily evaluated to be

�X;Y D �1=80

3=80
D �1

3
:

3.4 The Least-Squares Fit, Linear Regression

The roles of the covariance and the correlation coefficient will become better under-
stood in the context of the following least-squares regression problem. Consider a
sample,

.x1; y1/; .x2; y2/; : : : ; .xN ; yN /;

of N 2D vectors. Its representation in the .x; y/-plane is called the scatter plot of
the sample; see, for example, Fig. 3.4.1. Our goal is to find a line,

y D ax C b;

which would provide the best approximation to the scatterplot in the sense of min-
imizing the sum of the squares of the errors of the approximation measured in the
vertical direction. To be more precise, the error of the approximation for the i th
sample point is expressed by the formula

�i .a; b/ D jyi � .axi � b/j; i D 1; 2; : : : ; N;

and the sum of the squares of the errors,

NX

iD1

�2
i .a; b/ D

NX

iD1

.yi � .axi � b//2;

is a nice, differentiable function of two variables a and b. We can find its minimum
by taking partial derivatives with respect to a and b and equating them to 015:

15 This explains why we consider quadratic errors rather than the straight absolute errors; in the
latter case the calculus tools would not work so well.
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@

@a

NX

iD1

�2
i .a; b/ D �2

NX

iD1

.yi � .axi C b//xi D 0;

@

@b

NX

iD1

�2
i .a; b/ D �2

NX

iD1

.yi � .axi C b// D 0:

These two equations, sometimes called the normal equations, are linear in a and b

and can be easily solved by the substitution method. To make the next step more
transparent, we will introduce the following simplified notation for different sample
means (think here about the means of random quantities with N possible values,
with each value assigned probability 1=N ). The x and y components of the above
data will be treated as N D vectors and denoted

x D .x1; : : : ; xN /; y D .y1; : : : ; yN /:

Various sample means will be denoted as follows:

x D 1

N

MX

iD1

xi ; y D 1

N

MX

iD1

yi ;

x2 D 1

N

MX

iD1

x2
i ; y2 D 1

N

MX

iD1

y2
i ;

xy D 1

N

MX

iD1

xi yi :

Now, the normal equations for a and b can be written in the form

ax C b � y D 0 and ax2 C bx � xy D 0;

which can be immediately solved to give

b D y � ax; a D xy � x � y

x2 � .x/2
:

The first of the above two equations indicates that the point with coordinates
formed by the sample means Nx and Ny is located on the regression line. To better see
the meaning of the second equation, observe that

xy � x � y D 1

N

NX

iD1

.xi � x/.yi � y/ D Cov.x; y/
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is just the sample covariance of the x- and y-coordinates of 2D data, and that

x2 � .x/2 D Var.x/; y2 � .y/2 D Var.y/:

Thus the equation y D ax C b of the regression line now becomes

y D Cov.x; y/

Var.x/
x C

�
y � Cov.x; y/

Var.x/

�
x;

and can finally be rewritten in a more elegant and symmetric form,

y � y

Std.y/
D �x;y � x � x

Std.x/
; (3.4.1)

where

�x;y D Cov.x; y/

Std.x/
p

Std.y/

is the sample correlation coefficient; the standard deviation Std, as usual, denotes
the square root of the variance Var. The significance of the form of the regression
equation (3.4.1) is now clear: �x;y is the slope of the regression line but only after the
x- and y-coordinates were standardized [see (3.2.11)]; that is, they were centered
by the means x and y, and rescaled by the standard deviations Std.x/ and Std.y/,
respectively.

Example 3.4.1. Consider a 2D vector sample of size 10:

x y

1.05983 1.10539

2.07758 3.36697

3.28160 3.22934

4.13003 6.91638

5.28022 7.65665

6.38872 6.78509

7.11893 8.11736

8.04133 9.94112

9.23407 9.55498

10.3814 10.8697

The coefficients are a D 0:9934 and b D 1:0925, so that the equation of the regres-
sion line is

y D 0:9934 � x C 1:0925;
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Fig. 3.4.1 The scatterplot and the least-squares fit regression line for data from Example 3.4.1

and the correlation coefficient,

�x;y D 0:9503;

turns out to be relatively close to 1, indicating a strong positive “linear association”
between the x- and y-data. The scatterplot of these data as well as the plot of the
regression line (best linear fit) are shown in Fig. 3.4.1.

3.5 The Law of Large Numbers and the Stability
of Fluctuations Law

One of the fundamental theorems of statistics, called the law of large numbers
(LLN), says that if X1; X2; : : : ; Xn, are independent random quantities with iden-
tical probability distributions, and finite identical expectations
EXi D �X , then, as n ! 1, the averages converge to that expectation, i.e.,

NXn � X1 C X2 C � � � C Xn

n
�! �X ; as n ! 1: (3.5.1)

Of course, the immediate issue is what we mean here by the convergence of
random variables NXn. For the purpose of these lectures, the convergence of NXn to
�X will mean that the standard deviation of the fluctuations of the averages NXn

around the mean �X , that is, the differences NXn ��X , converges to zero as n ! 1.
More formally,

lim
n!1 Std . NXn � �X / D 0: (3.5.2)
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The statement (3.5.2) can be easily verified if we observe first that:

(a) For any random vector .X; Y / with finite absolute first moments of the compo-
nents, the expectation

E .X C Y / D E .X/ C E .Y /: (3.5.3a)

Indeed, taking g.x; y/ D x C y in formulas (3.3.14) and (3.3.15) defining
expectations of functions of random vectors so that (say, in the continuous case)

E .X C Y / D
Z 1

�1

Z 1

�1
.x C y/f.X;Y /.x; y/ dx dy

D
Z 1

�1
x

�Z 1

�1
f.X;Y /.x; y/ dy

�
dx

C
Z 1

�1
y

�Z 1

�1
f.X;Y /.x; y/ dx

�
dy

D
Z 1

�1
xfX .x/ dx C

Z 1

�1
yfY .y/ dy D E .X/ C E .Y /;

in view of formula (3.3.9) for the marginal p.d.f. of a component of a random
vector.16

(b) For any random .X; Y / with independent components with finite variances, the
variance

Var .X C Y / D Var .X/ C Var .Y /: (3.5.3b)

This follows immediately from the multiplicative property (3.3.22) of the ex-
pectations of independent random variables; see Sect. 3.3.

Now, if X and Y are independent, then X ��X and Y ��Y are also independent,
so that, utilizing (3.5.3a) and (3.5.3b),

Var .X C Y / D E..X � �X / C .Y � �Y //2

D E.X � �X /2 C 2E.X � �X /E.Y � �Y / C E.Y � �Y /2

D Var .X/ C Var .Y /;

because E.X � �X / D E.Y � �Y / D 0. Hence,

Var . NXn � �X / D Var

�
X1 � �X

n
C � � � C Xn � �X

n

�
D Var .X/

n
; (3.5.4)

16 Note how the knowledge of the joint probability distribution of the random vector .X; Y /, and
also of .X1; X2; : : : ; Xn/, is what permits us to study the sums X C Y and X1 C X2 C � � � C Xn

as real-valued random quantities with well-defined probability distributions; see Remarks 3.2.1
and 3.5.1.
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which obviously approaches 0 as n ! 1. Thus the law of large numbers (3.5.1),
also often called the law of averages, is verified, at least in the situation when ran-
dom quantities Xi have well-defined finite variances.17

More subtle information about the averages is provided by the following stability
of fluctuations law, usually called the central limit theorem (CLT) in the mathemat-
ical and statistical literature. It states that as the averages NXn fluctuate around the
expectation �X , the fluctuations, if viewed under a “magnifying glass,” turn out to
follow, asymptotically as n ! 1, a Gaussian or normal probability distribution.
More precisely, the c.d.f. of the standardized [see (3.2.13)] random fluctuations of
the averages NXn around the mean �X ,

Zn D
p

n

Std .X/
� . NXn � �X /; (3.5.5)

converges to the standard N.0; 1/ Gaussian c.d.f.; that is,

lim
n!1 P.Zn 	 z/ D ˚.z/ �

Z z

�1

.x/ dx; (3.5.6)

where the density


.z/ D 1p
2�

e�z2=2 (3.5.7)

is that of the standard N.0; 1/ Gaussian random quantity. The important assumption
of the central limit theorem is that the common variance of Xi s is finite.

Summarizing the above discussion, the central limit theorem can be loosely
rephrased as follows:

Standardized random fluctuations of averages of independent and identically dis-
tributed random quantities around their common expected value have a limiting
standard Gaussian cumulative distribution function.

Remark 3.5.1 (Probability distribution of a sum of independent random quanti-
ties.). It can be immediately verified that all of the Zns in (3.5.5) have mean zero
and variance one [see (3.2.13) and (3.5.3)], but the proof of the convergence to a
Gaussian limit is more delicate. Without going into the details (for a sketch of the
full proof, see Sect. 3.7), it is clear that the proof has to rely on the determination of
the probability distribution of the sum Z D X C Y of two (or more) independent
random quantities X and Y . In the case of continuous random quantities (for the
derivation in case of discrete random quantities, see Sect. 3.7), it turns out that the
p.d.f. of Z D X CY is the convolution of the p.d.f.s of X and Y . Indeed, in view of
the independence of X and Y , the c.d.f. of Z, for an arbitrary but fixed z, is equal to

FZ.z/ D P.Z 	 z/ D P.X C Y 	 z/ D
Z Z

f.x;y/WxCy	zg
f.X;Y /.x; y/ dx dy

D
Z 1

�1

Z z�y

�1
fX .x/fY .y/ dx dy D

Z 1

�1

�Z z�y

�1
fX .x/ dx

�
fY .y/ dy

17 Observe that not all random quantities have well-defined, finite variances; see Problem 3.7.28.
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D
Z 1

�1

�Z z

�1
fX .u � y/ du

�
fY .y/ dy

D
Z z

�1

�Z 1

�1
fX .u � y/fY .y/ dy

�
du;

after a change of variables, x D u �y, and then a change of the order of integration.
Consequently, the p.d.f.

fZ.z/ D fXCY .z/ D
Z 1

�1
fX .z � y/fY .y/ dy D .fX � fY /.z/: (3.5.8)

As we have seen in Chap. 2, convolution can be a fairly complex operation even
in the case of relatively simple fX .x/ and fY .y/. Moreover, the distribution of
X1 C � � � C Xn in (3.5.1) is an n-fold convolution of the p.d.f. fX .x/, and the n is
growing to infinity. So dealing directly with the p.d.f. of the average NXn; n ! 1;

seems to be a hopeless task. However, in view of Chap. 2, it is obvious that the
whole problem would be greatly simplified if, instead of dealing with p.d.f.s, one
could employ their Fourier transforms; the convolution is replaced in the frequency
domain by simple pointwise products. This idea is implemented in the sketch of the
proof suggested in Problem 3.7.24.

3.6 Estimators of Parameters and Their Accuracy; Confidence
Intervals

The law of large numbers can be reinterpreted as follows: If X1; X2; : : : ; Xn are
independent and identically distributed random quantities representing repeated
sampling from a certain probability distribution FX .x/, then, as n increases, the
sample means NXn; n D 1; 2; : : : ; become better and better estimators of the expec-
tation of that distribution. In statistical terminology the law of large numbers (3.5.1)
says that NXn is a consistent estimator for parameter �X .

The central limit theorem (3.5.5) and (3.5.6) permits us to say what is, the error
of approximation of the theoretical mean �X by the sample mean NXn or, in other
words, to establish the accuracy of the above estimation. Indeed, for a given sample
of size n, the CLT says that the difference between the parameter �X and its esti-
mator, the sample mean NXn, is, after normalization by

p
n=Std.X/, approximately

N.0; 1/-distributed, so that, for large n,

P
�

��
Std.X/p

n
	 NXn � �X 	 �

Std.X/p
n

�
� ˚.�/ � ˚.��/ D 2˚.�/ � 1; (3.6.1)

where ˆ.z/ is the c.d.f. of the standard Gaussian (N.0; 1/) random quantity tabu-
lated in Table 3.6.1.
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Table 3.6.1 Gaussian N.0; 1/ c.d.f.: ˆ.z/ D .2�/�1=2
R z

�1

e�x2=2 dx

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5395 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6296 0.6331 0.6366 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6884 0.6879

0.5 0.6915 0.6956 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7857 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8075 0.8106 0.8133
0.9 0.8195 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8503 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8613 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8796 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8977 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9359 0.9370 0.9382 0.9309 0.9404 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9606 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9666 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9773 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9891 0.9861 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.4 0.9918 0.9820 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9983 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

If X itself has a Gaussian p.d.f., the above approximate equality becomes exact
for all n. This follows from the fact that the sum of two independent Gaussian ran-
dom quantities is again a Gaussian random quantity, obviously with the mean and
variance being the sums of means and variances, respectively, of the corresponding
random summands; see Sect. 3.7.
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The contents of formula (3.6.1) can be rephrased as follows: The true value of
parameter �X is contained in the random interval

�
NXn � �

Std.X/p
n

; NXn C �
Std.X/p

n

�

with probability
C D C.�/ D 2ˆ.�/ � 1:

The above random interval is called the confidence interval, and the probability
C D C.�/ is called its confidence level. The above statement is sometimes abbrevi-
ated by writing

�X D NXn ˙ �
Std.X/p

n

at the confidence level C . Note that it is the center of the above random interval that
is random; its length is not random unless Std.X/ itself has to be estimated from the
sample.

Example 3.6.1 (A 95% confidence interval for �X with known Std.X/). Sixteen
independently repeated measurements of a random quantity X were conducted,
resulting in NX16 D 2:56. Suppose that we know that Std.X/ D 0:12. To find
the 95% confidence interval for �X using (3.6.1), we need to find � such that
2ˆ.�/ � 1 D 0:95I i.e., ˆ.�/ D 0:975. From Table 3.6.1 of the Gaussian N.0; 1/

c.d.f., we have � D 1:96. Thus, at the 95% confidence level,

2:56 � 1:96
0:12p

16
	 �X 	 2:56 C 1:96

0:12p
16

I

that is,
�X D 2:56 ˙ 0:059

at the 95% confidence level. The above approximate confidence interval is exact if
X has a Gaussian distribution.

Remark 3.6.1 (Error of the Gaussian approximation in the CLT). To be honest,
we left open the essential, but delicate, question of how good is the approximate
equality in the basic formula (3.6.1), or, equivalently, the question of how precise is
the estimation of the error in the central limit theorem (3.5.6), which, by itself, only
says that the difference

P.Zn 	 z/ � ˆ.z/ ! 0; as n ! 1;

where

Zn D .X1 C � � � C Xn/ � n�Xp
n � Std.X/

are standardized sums X1 C � � � C Xn. It turns out that the accuracy in the CLT is
actually pretty good if the Xi s have higher absolute moments finite. In particular, if
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the third central moment m3 D EjX � �X j3 < 1 then, for all �1 < x < 1 and
n D 1; 2; : : : ;

jP.Zn 	 z/ � ˆ.z/j 	 km3p
n.Std.X//3

;

where k is a universal (independent of n and X ) constant contained in the interval
.0:4097; 0:7975/. Its exact value is not known.18

Of course, the procedure used in Example 3.6.1 requires advance knowledge of
the standard deviation Std.X/. If that parameter is unknown, then the obvious step is
to try to estimate it from the sample X1; X2; : : : ; Xn itself using the sample variance
estimator

S2
n D 1

n � 1

nX

iD1

.Xi � NX/2; (3.6.2)

which is an unbiased estimator for Var.X/; see, Problem 3.7.29.
But in this case, even if the Xi s are Gaussian, the standardized random quantity

T D
p

n

Sn

. NX � �X / (3.6.3)

is no longer N.0; 1/-distributed, so a simple construction of the confidence interval
for �X using the Gaussian distribution is impossible.

However, in the narrower situation of a Gaussian random sample X1; X2; : : : ; Xn,
it is known that the random quantity T has the p.d.f.

fT .xI n � 1/ D � ..n/=2/p
n�� ..n � 1/=2/

�
1 C x2

n � 1

��n=2

; (3.6.4)

which, traditionally, is called Students t p.d.f. with .n � 1/ degrees of freedom.19

A sample of different Student t p.d.f.s is shown in Fig. 3.6.1.
The gamma function � .�/ appearing in the definition of fT is defined by the

formula

� .�/ D
Z 1

0

x��1e�x dx; � > 0: (3.6.5)

It is worth noting that

�� .�/ D � .� C 1/ and � .n/ D .n � 1/Š (3.6.6)

18 This error estimate in the CLT is known as the Berry–Esseen theorem and its proof can be
found, for example, in V. V. Petrov’s monograph Sums of Independent Random Variables, Springer,
New York, 1975.
19 See, for example, M. Denker and W. A. Woyczyński, Introductory Statistics and Random Phe-
nomena: Uncertainty, Complexity and Chaotic Behavior in Engineering and Science, Birkhäuser
Boston, Cambridge, MA, 1998, for more details on the statistical issues discussed in this section.
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Fig. 3.6.1 Student’s t p.d.f.s defined in (3.6.4), with (bottom to top) 1; 2; 5; 15, and 1 degrees of
freedom (from http://en.wikipedia.org/wiki/Student’s t -distribution)

if n is a positive integer. So the gamma function is an interesting extension of the
concept of the factorial to noninteger numbers.

Thus, in the Gaussian case with unknown variance, the confidence interval for
�X at the confidence level C D .2FT .�/ � 1/ is of the form

�
NXn � �

Snp
n

; NXn C �
Snp

n

�
: (3.6.7)

Since in practice the goal is often to construct confidence intervals at given confi-
dence levels, instead of tabulating the Student’s t c.d.f.s FT .t/, it is convenient to
tabulate the relevant probabilities via the tail quantile function q.˛I n/ defined by
the equality

q.˛I n/ D QT .1 � ˛I n/;

where the quantile function QT .˛I n/ (see Remark 3.1.2) is the inverse function to
the c.d.f. FT .t/ i.e.,

FT .QT .˛I n// D ˛: (3.6.8)

Thus the tail quantile q.˛I n/ is the number such that the probability that Student’s t

random quantity with n degrees of freedom if greater than ˛. Selected tail quantiles
qT .˛I n/ are provided in Table 3.6.2.

Using the tail quantiles qT .˛I n/, we can now write the C -confidence level inter-
val for �X simply in the form

�
NXn � qT

�
1 � C

2
; n � 1

�
Snp

n
; NXn C qT

�
1 � C

2
; n � 1

�
Snp

n

�
: (3.6.9)

The Student’s t p.d.f.s are symmetric about zero and bell-shaped but flatter than
the N.0; 1/ pd.f. (why?). For large values of N , say n > 20, they are practically
indistinguishable from the standard Gaussian p.d.f. (why?; see Problem 3.7.18), and
the latter can be used in the construction of confidence intervals even in the case of
unknown variance.
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Table 3.6.2 Tail quantiles qT .˛I n/ of Student’s t distribution

nn˛ 0.1000 0.0500 0.0250 0.0100 0.0050 0.0010 0.0005

1 3.078 6.314 12:706 31:821 63:657 318:317 636:61

2 1.886 2.920 4:303 6:965 9:925 22:326 31:598

3 1.638 2.353 3:182 4:451 5:841 10:213 12:924

4 1.533 2.132 2:776 3:747 4:604 7:173 8:610

5 1.476 2.015 2:571 3:365 4:032 5:893 8:610

6 1.440 1.943 2:447 3:143 3:707 5:208 5:959

7 1.415 1.895 2:365 2:998 3:500 4:785 5:408

8 1.397 1.860 2:306 2:896 3:355 4:501 5:041

9 1.383 1.833 2:262 2:821 3:250 4:297 4:781

10 1.372 1.813 2:228 2:764 3:169 4:144 4:587

11 1.364 1.796 2:201 2:718 3:106 4:025 4:437

12 1.356 1.782 2:179 2:681 3:055 3:930 4:318

13 1.350 1.771 2:160 2:650 3:012 3:852 4:221

14 1.345 1.761 2:145 2:624 2:977 3:787 4:141

15 1.341 1.753 2:131 2:602 2:947 3:733 4:073

16 1.337 1.746 2:120 2:584 2:921 3:686 4:015

17 1.333 1.740 2:110 2:567 2:898 3:646 3:965

18 1.330 1.734 2:101 2:553 2:879 3:610 3:992

19 1.328 1.729 2:093 2:540 2:861 3:579 3:883

20 1.325 1.725 2:086 2:528 2:845 3:552 3:849

21 1.323 1.721 2:080 2:518 2:831 3:527 3:819

22 1.321 1.717 2:074 2:508 2:819 3:505 3:792

23 1.320 1.714 2:069 2:500 2:807 3:485 3:768

24 1.318 1.711 2:064 2:492 2:797 3:467 3:745

25 1.316 1.708 2:059 2:485 2:787 3:450 3:725

26 1.315 1.706 2:056 2:479 2:779 3:435 3:707

27 1.314 1.703 2:052 2:473 2:771 3:421 3:690

28 1.312 1.701 2:049 2:467 2:763 3:408 3:674

29 1.311 1.699 2:045 2:462 2:756 3:396 3:659

30 1.311 1.697 2:042 2:457 2:750 3:385 3:646

40 1.303 1.684 2:021 2:423 2:704 3:307 3:551

60 1.296 1.671 2:000 2:390 2:660 3:232 3:460

120 1.289 1.658 1:980 2:358 2:617 3:160 3:373

1 1.282 1.645 1:960 2:326 2:576 3:090 3:291

Example 3.6.2 (A 95% confidence interval for �X with unknown Std.X/). Sixteen
independent measurements of a Gaussian random quantity X resulted in NX16 D
2:56 and S16 D 0:12. With the desired confidence level C D 0:95, Table 3.6.2
yields the tail quantile

qT ..1 � 0:95/=2I 15/ D qT .0:025I 15/ D 2:13:
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Hence the 95% confidence interval for the expectation �X is of the form

�
2:56 � 2:13 � 0:12p

16
; 2:56 C 2:13 � 0:12p

16

�
;

or, in other words, �X D 2:56 ˙ 0:064 at the 95% confidence level. Observe that,
not surprisingly, in the absence of the precise knowledge of the variance Var.X/,
which had to be replaced by the estimator S16, this confidence interval is wider
than that in Example 3.6.1 (�X D 2:56 ˙ 0:059 at the same 95% confidence level),
where the value of the variance was assumed to be known exactly.

The final question in this section is: How good is the sample variance estima-
tor S2

n introduced in (3.6.2)? Here again the answer is difficult for a general c.d.f.
FX . However, in the case of a Gaussian N.�X ; �2

X / sample, one can prove that the
nonnegative random quantity

�2 D 1

�2
X

nX

iD1

.Xi � NXn/2 (3.6.10)

has the p.d.f. of the form

f�2 .xI n � 1/ D 1

2.n�1/=2� ..n � 1/=2/
x.n�3/=2e�x=2; x � 0; (3.6.11)

which traditionally is called the chi-square p.d.f. with .n � 1/ degrees of freedom.
Again, it is more convenient here to tabulate the tail quantiles q�2 .˛I n/ rather

than the c.d.f.s themselves; see Table 3.6.3. Thus a C -confidence-level interval for
�2

X is of the form

 
.n � 1/S2

X

q�2 ..1 � C /=2I n � 1/
;

.n � 1/S2
X

q�2..1 C C /=2I n � 1/

!

(3.6.12)

if we decide to make symmetric cutoffs at the top and bottom of the range of the
chi-square p.d.f.

Example 3.6.3 (A 99% confidence interval for Var.X/). Twenty-six independent
measurements of a Gaussian random quantity X resulted in the estimate S2

26 D 1:37

for the variance Var.X/. With C D 0:99, Table 3.6.3 yields

q�2 ..1 C 0:99/=2I 25/ D q�2 .0:995I 25/ D 10:52

and
q�2 ..1 � 0:99/=2I 25/ D q�2 .0:005I 25/ D 46:92:

Thus the 99% confidence-level interval for the variance �2
X is

�
25 � 1:37

46:92
;

25 � 1:37

10:52

�
D .0:72; 3:25/:
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Table 3.6.3 Tail quantiles q�2.˛I n/ of the chi-square distribution

nn˛ 0.9950 0.9900 0.9750 0.9500 0.9000 0.1000 0.0500 0.0250 0.0100 0.0050

1 0:000 0:000 0:001 0:004 0:016 2:706 3:843 5:025 6:637 7:882

2 0:010 0:020 0:051 0:103 0:211 4:605 5:992 7:378 9:210 10:597

3 0:072 0:115 0:216 0:352 0:584 6:251 7:815 9:348 11:344 12:937

4 0:207 0:297 0:484 0:711 1:064 7:779 9:488 11:143 13:277 14:860

5 0:412 0:554 0:831 1:145 1:160 9:236 11:070 12:832 15:085 16:748

6 0:676 0:872 1:237 1:635 2:204 10:645 12:592 14:440 16:812 18:548

7 0:989 1:239 1:690 2:167 2:833 12:17 14:067 16:012 18:474 20:276

8 1:344 1:646 2:180 2:733 3:490 13:362 15:507 17:534 20:090 21:954

9 1:735 2:088 2:700 3:325 4:168 14:684 16:919 19:022 21:665 23:587

10 2:156 2:558 3:247 3:940 4:865 15:987 18:307 20:483 23:209 25:188

11 2:603 3:053 3:816 4:575 5:578 17:275 19:675 21:920 24:724 26:755

12 3:074 3:571 4:404 5:226 6:304 18:549 21:026 23:337 26:217 28:300

13 3:565 4:107 5:009 5:892 7:041 19:812 22:362 24:735 27:687 29:817

14 4:075 4:660 5:629 6:571 7:790 21:064 23:685 26:119 29:141 31:319

15 4:600 5:229 6:262 7:261 8:547 22:307 24:996 27:488 30:577 32:799

16 5:142 5:812 6:908 7:962 9:312 23:542 26:296 28:845 32:000 34:267

17 5:697 6:407 7:564 8:682 10:085 24:769 27:587 30:190 33:408 35:716

18 6:265 7:015 8:231 9:390 10:865 25:989 28:869 31:526 34:805 37:156

19 6:843 7:632 8:906 10:117 11:651 27:203 30:143 32:852 36:190 38:580

20 7:434 8:260 9:591 10:851 12:443 28:412 31:410 34:170 37:566 39:997

21 8:033 8:897 10:283 11:591 13:240 29:615 32:670 35:479 38:930 41:399

22 8:643 9:542 10:982 12:338 14:042 30:813 33:924 36:781 40:289 42:796

23 9:260 10:195 11:688 13:090 14:848 32:007 35:172 38:075 41:637 44:179

24 9:886 10:856 12:401 13:848 15:659 33:196 36:415 39:364 42:980 45:558

25 10:519 11:523 13:120 14:611 16:473 34:381 37:652 40:646 44:313 46:925

26 11:160 12:198 13:844 15:379 17:292 35:563 38:885 41:923 45:642 48:290

27 11:807 12:878 14:573 16:151 18:114 36:741 40:113 43:194 46:962 49:642

28 12:461 13:565 15:308 16:928 18:939 37:916 41:337 44:461 48:278 50:993

29 13:120 14:256 16:147 17:708 19:768 39:087 42:557 45:772 49:586 52:333

30 13:787 14:954 16:791 18:493 20:599 40:256 43:773 46:979 50:892 53:672

31 14:457 15:655 17:538 19:280 21:433 41:422 44:985 48:231 52:190 55:000

32 15:134 16:362 18:291 20:072 22:271 42:585 46:194 49:480 53:486 56:328

33 15:814 17:073 19:046 20:866 23:110 43:745 47:400 50:724 54:774 57:646

34 16:501 17:789 19:806 21:664 23:952 44:903 48:602 51:966 56:061 58:964

35 17:191 18:508 20:569 22:465 24:796 46:059 49:802 53:203 57:340 60:272

36 17:887 19:233 21:336 23:269 25:643 47:212 50:998 54:437 58:619 61:581

37 18:584 19:960 22:105 24:075 26:492 48:363 52:192 55:667 59:891 62:880

38 19:289 20:691 22:878 24:884 27:343 49:513 53:384 56:896 61:162 64:181

39 19:994 21:425 23:654 25:695 28:196 50:660 54:572 58:119 62:462 65:473

40 20:706 22:164 24:433 26:509 29:050 51:805 55:758 59:342 63:691 66:766
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Fig. 3.6.2 Chi-square p.d.f.s with (top to bottom) 1, 2, 3, 4, and 5 degrees of freedom (from
http://en.wikipedia.org/wiki/chi-square-distribution)

The interval is relatively large because the confidence level demanded is very high.
Note that it is not symmetric about the estimated value S2

26 D 1:37.

Remark 3.6.2 (Asymmetry of the chi-square distribution). Both the standard Gaus-
sian and Student’s t distribution are symmetric about the origin; their p.d.f.s are
even functions. For that reason, to construct confidence intervals for them at a given
(high) confidence level, it is sufficient to know their tail quantiles only for small
tail probabilities. However, the chi-square distribution is asymmetric; see, Fig. 3.6.2
Thus the tables need to contain tail quantiles for both small and large (close to 1)
tail probabilities. This need is on display in the above Example 3.6.3.

3.7 Problems, Exercises, and Tables

Use Mathematica, Maple, or Matlab as needed throughout this and other problem
sections.

3.7.1. Plot the c.d.f.s of binomial random quantities X with p D 0:21 and n D
5; 13; 25. Calculate probabilities that X takes values between 1.3 and 3.7. Repeat
the same exercise for p D 0:5 and p D 0:9.

3.7.2. Calculate the probability that a random quantity uniformly distributed over
the interval Œ0; 3� takes values between 1 and 3. Do the same calculation for the ex-
ponentially distributed random quantity with parameter � D 1:5, and the Gaussian
random quantity with parameters � D 1:5; �2 D 1.
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3.7.3. Prove that �� .�/ D � .� C 1/ and that � .n/ D .n � 1/Š Use the integration-
by-parts formula. Verify analytically that � .1=2/ D p

� . Use the idea employed
in Example 3.1.6 to prove that the standard Gaussian density is normalized. Then
calculate moments of order n of the standard Gaussian distribution.

3.7.4. The p.d.f. of a random variable X is expressed by the quadratic function
fX .x/ D ax.1 � x/; for 0 < x < 1, and is zero outside the unit interval. Find a

from the normalization condition and then calculate FX .x/; EX; Var.X/; Std.X/;

the nth central moment, and P.0:4 < X < 0:9/. Graph fX .x/ and FX .x/.

3.7.5. Find the c.d.f and p.d.f. of the random quantity Y D X3, where X is uni-
formly distributed on the interval Œ1; 3�.

3.7.6. Find the c.d.f and p.d.f. of the random quantity Y D tan X , where X is
uniformly distributed over the interval .��=2; �=2/. Find a physical (geometric)
interpretation of this result. Show that the second moment of Y (and thus variance)
is infinite, and that the expectation E.Y / is not well defined despite the symmetry
of the p.d.f. about zero. Also, see Problem 3.7.28.

3.7.7. Verify that Var.X/ D EX2 � .EX/2; see formula (3.2.6).

3.7.8. Calculate the expectation and the variance of the binomial distribution from
Example 3.1.2.

3.7.9. Calculate the expectation and the variance of the Poisson distribution from
Example 3.1.3.

3.7.10. Calculate the expectation, variance, and nth moment of the exponential dis-
tribution from Example 3.1.5.

3.7.11. Calculate the nth central moment of the Gaussian distribution from
Example 3.1.6.

3.7.12. Derive the formula for the binomial distribution from Example 3.1.2 relying
on the observation that it is the distribution of the sum of n independent and identi-
cally distributed Bernoulli random quantities. Show that if p D �=n and n ! 1,
then the binomial probabilities converge to the Poisson probabilities.

3.7.13. A random quantity X has an even p.d.f. fX .x/ of the triangular shape shown
in Fig. 3.7.1.

(a) How many parameters do you need to describe this p.d.f.? Find an explicit ana-
lytic formula for the p.d.f. fX .x/ and the c.d.f. FX .x/. Graph both.

(b) Find the expectation and variance of X .
(c) Let Y D X3. Find the p.d.f. fY .y/ and graph it.
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Fig. 3.7.1 A triangular p.d.f. from Problem 3.7.13

3.7.14. A discrete 2D random vector .X; Y / has the following joint p.d.f.:

P.X D 1; Y D 1/ D 2

12
; P.X D 2; Y D 1/ D 1

12
; P.X D 3; Y D 1/ D 1

12
;

P.X D 1; Y D 3/ D 2

12
; P.X D 2; Y D 3/ D 4

12
; P.X D 3; Y D 2/ D 2

12
:

Find the marginal distributions of X and Y , their expectations and variances, as
well as the covariance and correlation coefficient of X and Y . Are X and Y

independent?

3.7.15. Verify the Cauchy–Schwartz inequality (3.3.18). Hint: Take Z D .X

� EX/=�.X/ and W D .Y � EY=�.Y /, and consider the discriminant of the
expression E.Z C xW /2. The latter is quadratic in the x variable and necessarily
always nonnegative, so it can have at most one root.

3.7.16. The following sample of the random vector .X; Y / was obtained: .1; 1:7/;

.2; 2/; .5; 4:3/; .7; 5:9/; .9; 8/; .9; 8:7/. Produce the scatterplot of the sample and the
corresponding least-squares regression line.

3.7.17. Using the table of N.0; 1/ c.d.f. provided at the end of this chapter, calculate
P.�1 	 Y 	 2/ if Y � N.0:7; 4/.

3.7.18. Produce graphs of Student’s t p.d.f. fT .x; n/, for n D 2; 5; 12; 20, and
compare them with the standard normal p.d.f.

3.7.19. Produce graphs of the chi-square p.d.f. f�2 .x; n/ for n D 2; 5; 12; 20.

3.7.20. Find a constant c > 0 such that the function

fX .x/ D
(

c.1 C x/�4; for x > 0I
0; for x 	 0;

is a valid p.d.f. Find P.1=5 < X < 5/; E.X/, and the p.d.f. fY .y/, of Y D X1=5.
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3.7.21. Measurements of voltage V and current I on a resistor yielded the following
n D 5 paired data: (1.0, 2.3), (2.0, 4.1), (3.0, 6.4), (4.0, 8.5), (5.0, 10.5). Draw the
scatterplot and find the regression line providing the least-squares fit for the data.

3.7.22. Independent measurements of the leakage current I on a capacitor yielded
the following data: 2.71, 2.66, 2.78, 2.67, 2.71, 2.69, 2.70, 2.73 mA. Assuming
that the distribution of the random quantity I is Gaussian, find the 95% confidence
intervals for the expectation EI and the variance �2

I .

3.7.23. Verify that the random quantities Zn; n D 1; 2; : : : ; defined in (3.5.5) have
expectation 0 and variance 1.

3.7.24. Complete the following sketch of the proof of the central limit theorem from
Sect. 3.5. Start with a simplifying observation (based on Problem 3.7.23) that it is
sufficient to consider random quantities Xn; n D 1; 2; : : : ; with expectations equal
to 0, and variances 1.

(a) Define FX .u/ as the inverse Fourier transform of the distribution of X :

FX .u/ D EejuX D
Z 1

�1
ejux dFX .x/:

Find F 0
X .0/ and F 00

X .0/. In the statistical literature FX .u/ is called the charac-
teristic function of the random quantity X . Essentially, it completely determines
the probability distribution of X via the Fourier transform (inverse of the inverse
Fourier transform).

(b) Calculate FX .u/ for the Gaussian N.0; 1/ random quantity. Note the fact that its
functional shape is the same as that of the N.0; 1/ p.d.f. This fact is the crucial
reason for the validity of the CLT.

(c) Prove that, for independent random quantities X and Y ,

FXCY .u/ D FX .u/ � FY .u/:

(d) Utilizing (c), calculate
Fp

n. NX��X /=Std.X/.u/:

Then find its limit as n ! 1. Compare it with the characteristic of the Gaussian
N.0; 1/ random quantity. (Hint: It is easier to work here with the logarithm of
the above transform.)

3.7.25. Use the above-introduced characteristic function technique to prove that the
sum of two independent Gaussian random quantities is again a Gaussian random
quantity.



104 3 Random Quantities and Random Vectors

3.7.26. What is the probability P that a randomly selected chord is shorter than
the side S of an equilateral triangle inscribed in the circle? Here are two seemingly
reasonable solutions20

(a) A chord is determined by its two endpoints. Fix one of them to be A. For the
chord to be shorter than the side S , the other endpoint must be chosen on either
the arc AB or on the arc CA, and each of them is subtended by an angle of
120ı. Thus, P D 2=3.

(b) A chord is completely determined by its center. For the chord to be shorter than
the side S , the center must lie outside the circle of radius equal to half the radius
of the original circle and the same center. Hence, the probability P equals the
ratio of the annular area between two circles and the area of the original circle,
which is 3/4.

These two solutions are different. How is that possible?

3.7.27. Derive formulas for the c.d.f. FY .y/ and the p.d.f. fY .y/ of a transforma-
tion Y D g.X/ of a random quantity X , in terms of its c.d.f. FX .x/ and p.d.f.
fX .x/ when the transforming function y D g.x/ is monotonically decreasing.
Follow the line of reasoning used to derive the analogous formulas (3.1.11) and
(3.1.12) for monotonically increasing transformations. How would you extend these
formulas to transformations that are monotonically increasing on some intervals and
decreasing on their complement?

3.7.28. Consider the Cauchy random quantity X defined in Remark 3.1.2. Plot its
c.d.f., and then plot X D X.!/ as a function on the unit interval. Calculate the
probability that X takes values between �3 and C3. Compare it with the similar
probability for the standard Gaussian random quantity. Find and plot its p.d.f. Com-
pare the rate of decay at C1 of the Cauchy p.d.f. with that of the N.0; 1/ p.d.f.
Show that the expectation of the Cauchy random quantity is undefined and its vari-
ance is infinite.

3.7.29. Show that the variance estimator S2
n introduced in (3.6.2) is unbiased; that

is, ES2
n D Var.X/: Also, see Problem 3.7.6.

20 For more information, see Example 5.1.1. in M. Denker and W. A. Woyczyński, Introductory
Statistics and Random Phenomena: Uncertainty, Complexity and Chaotic Behavior in Engineering
and Science, Birkhäuser-Boston, Cambridge, MA, 1998.



Chapter 4
Stationary Signals

In this chapter we introduce basic concepts necessary to study the time-dependent
dynamics of random phenomena. The latter will be modeled as a family of random
quantities indexed by a parameter, interpreted in this book as time. The parameter
may be either continuous or discrete. Depending on the context, and on the tradition
followed by different authors, such families are called random signals, stochastic
processes, or (random) time series. The emphasis here is on random dynamics that
are stationary, that is, governed by underlying statistical mechanisms that do not
change in time, although, of course, particular realizations of such families will be
functions that vary with time. Think here about a random signal produced by the
proverbial repeated coin tossing; the outcomes vary while the fundamental mechan-
ics remain the same.

4.1 Stationarity and Autocovariance Functions

A random (or stochastic) signal is a time-dependent family of real-valued1 random
quantities X.t/. Depending on the context, one can consider random signals on the
positive timeline, t � 0, on the whole timeline, �1 < t < 1, or on a finite time
interval, t0 	 t 	 t1. Also, it is useful to be able to consider random vector signals
and signals with discrete time t D : : : ; �2; �1; 0; 1; 2; : : : .

In this book we will restrict our attention to signals that are statistically stationary,
which means that at least some of their statistical characteristics do not change in
time. Several choices are possible here:

First-order strictly stationary signals. In this case the c.d.f. FX.t/.x/ D P.X.t/

	 x/ does not change in time (is time-shift invariant); that is,

FX.t/.x/ D FX.tC	/.x/; for all t; �; x: (4.1.1)

1 At the end of this section we will show how the concepts discussed below should be adjusted if
one considers the complex-valued stochastic signals.

W.A. Woyczyński, A First Course in Statistics for Signal Analysis,
DOI 10.1007/978-0-8176-8101-2 4, c� Springer Science+Business Media, LLC 2011
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Second-order strictly stationary signals. In this case the joint c.d.f.

F.X.t1/;X.t2//.x1; x2/ D P.X.t1/ 	 x1; X.t2/ 	 x2/

does not change in time; that is,

F.X.t1/;X.t2//.x1; x2/ D F.X.t1C	/;X.t2C	//.x1; x2/; for all t1; t2; �; x1; x2

(4.1.2)

In a similar fashion one can define the nth-order strict stationarity of a random
signal X.t/ as the time-shift invariance of the nth-order joint c.d.f., that is, the re-
quirement that

F.X.t1/;:::;X.tn//.x1; : : : ; xn/ D F.X.t1C	/;:::;X.tnC	//.x1; : : : ; xn/; (4.1.3)

for all t1; : : : ; tn; �; x1; : : : ; xn:

Finally, a random signal X.t/ is said to be strictly stationary if, for each n D
1; 2; : : : ; it is nth-order strictly stationary.

Obviously, as n increases, verifying the nth-order stationarity gets more and
more difficult, not to mention the practical difficulties in checking the full strict
stationarity. For this reason, a more modest concept of second-order weakly sta-
tionary signals is useful. In this case the invariance property is demanded only of
the moments of the signal up to order two. More precisely, we have the following
fundamental.

Definition 4.1.1. A signal X.t/ is said to be second-order weakly stationary if its
expectations and covariances are time-shift-invariant, that is, if for all t; � ,

�X .t/ � EŒX.t/� D EŒX.t C �/� � �X .t C �/; (4.1.4)

and, for all t1; t2; � , the autocovariance function (ACvF) is

�X .t1; t1 C �/ � Cov.X.t1/; X.t1 C �//

D Cov.X.t2/; X.t2 C �// � �X .t1; t2 C �/; (4.1.5)

where, as in Chap. 3, for a random vector .X; Y /, the covariance is

Cov.X; Y / D E.X � �X /.Y � �Y /:

It is a consequence of the above two conditions that, for any second-order weakly
stationary signal,

�X .t/ D �X D const; (4.1.6)

and the autocovariance function depends only on the time lag � and can be written
as a function of a single variable:

�X .t; t C �/ D �X .0; �/ D �X .�/; (4.1.7)
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or, equivalently,
�X .s; t/ � �X .0; t � s/ D �X .t � s/: (4.1.8)

Note that the variance of the stationary signal is also independent of time and is
equal to the value of ACvF at � D 0. Indeed,

Var.X.t// D Cov.X.t/; X.t// D �X .t; t/ D �X .0/ D �2
X D const (4.1.9)

In the remainder of these lecture notes we will restrict our attention to second-order weakly
stationary signals X.t/, which we will simply call stationary signals. We will analyze
them assuming only the knowledge of their mean value �X and their autocovariance
function �X .t/.

The following properties of the autocovariance function follow directly from its
definition and the Schwartz inequality (see Sect. 3.7):

�X .��/ D �X .�/ (4.1.10)

and
j�X .�/j 	 �X .0/ D �2

X : (4.1.11)

In other words, the covariance function is even and its absolute value is dominated
by its value at � D 0, where it is simply equal to the signal’s variance.

Remark 4.1.1 (Autocovariance function (ACvF) vs. autocorrelation function
(ACF)). You may remember that in Chap. 3 [see (3.3.19)] we defined the corre-
lation coefficient of the random quantities X and Y as normalized covariance, that
is, the covariance of X and Y divided by the product of the standard deviations of
X and Y . Thus, for weakly stationary signals, the autocorrelation function is also
dependent only on the time lag and is expressed by the formula

�X .�/ D Cov.X.t/; X.t C �//

Std.X.t//Std.X.t C �//
D �X .�/

�X .0/
:

So, in view of (4.1.11), the autocorrelation function always takes values between �1

and C1. However, in this book we will employ only the autocovariance function, as
it also contains information about the variance of the signal (as its value at � D 0),
which, as we will see later on, represents the mean power of the signal. However, in
the signal processing literature, one often finds the autocovariance function �X .�/,
called the autocorrelation function, without normalizing it. So, when consulting
a particular book or article, one has to make sure what definition of the ACvF is
employed.

The reminder of this section is devoted to a series of examples of stationary data.
The first, a real-life example shown in Fig. 4.1.1, displays a sample of a 21-channel
recording of the sleep electroencephalogram (EEG), of a neonate. The duration of
this multidimensional random signal is 1 min and the sampling rate is 64 Hz. This
particular EEG was taken during the so-called mixed-frequency sleep stage and, in
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Fig. 4.1.1 A sample of a 21-channel recording of the sleep electroencephalogram (EEG) of a
neonate. The duration of this multidimensional random signal is 60 s and the sampling rate is
64 Hz. (From A. Piryatinska’s Ph.D. dissertation, Department of Statistics, Case Western Reserve
University, Cleveland, OH, 2004)

addition to the EEG, also shows related signals such as electrocardiogram (EKG),
breathing signal, eye muscle contraction signal, etc. the signal’s components seem
stationary for some channels while other channels seem to violate the stationarity
property. This can be due to some artifacts in the recordings caused, for example, by
the physical movements of the infant or by the onset of a different sleep stage [ac-
tive, passive, rapid eye movement (REM), etc]. The study of EEG signals provides
important information on the state of the brain’s neural network and, in the case of
infants, can be used to assess the maturity level of their brain. In Sect. 4.2 we will
provide a method to estimate the autocovariance function for such real-life data.

Examples 4.1.1–4.1.6 provide various mathematical models of stationary signals.
In those cases, the autocovariance functions can be explicitly calculated.

Example 4.1.1 (A random harmonic oscillation). Consider a signal which is a
simple harmonic oscillation with nonrandom frequency f0 D 1=P but random am-
plitude A such that the second moment EA2 < 1, and random phase ‚ uniformly
distributed over the period and independent of A. In other words,

X.t/ D A cos.2�f0.t C ‚//:

The signal is stationary because its mean value is

EX.t/ D EA cos 2�f0.t C ‚/ D EA �
Z P

0

cos 2�f0.t C 	/
d	

P
D EA � 0 D 0;
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and its autocovariance is

�X .t; t C �/ D EX.t/X.t C �/ D EŒA cos 2�f0.t C ‚/ � A cos 2�f0.t C � C ‚/�

D EA2 �
Z P

0

cos 2�f0.t C 	/ � cos 2�f0.t C � C 	/
d	

P

D EA2 1

2

 Z P

0

cos 2�f0.t C t C � C 2	/
d	

P
C
Z P

0

cos 2�f0.�/
d	

P

!

;

D EA2

2
cos 2�f0.�/;

where we used Table 1.3.1 as well as and the independence of the amplitude A and
the phase ‚ to split the expectations of the product into the product of the expecta-
tions. As a result, we see that the autocovariance �X .t; t C �/ is just a function of
the time lag � , which means the signal is stationary. Thus, the ACvF is

�X .�/ D EA2

2
cos .2�f0�/:

Example 4.1.2 (Superposition of random harmonic oscillations). In this example
we consider a signal which is a sum of simple harmonic oscillations with fre-
quencies kf0; k D 1; 2; : : : ; N , random amplitudes Ak; k D 1; 2; : : : ; N; such that
EA2

k
< 1, and random phases ‚k; k D 1; 2; : : : ; N; uniformly distributed over the

corresponding periods. All of the above random quantities are assumed to be inde-
pendent of each other. In other words,

X.t/ D
NX

kD1

Ak cos.2�kf0.t C ‚k//:

In this case one can verify (see Sect. 4.3, Problems and Exercises) that the signal is
again stationary and the covariance function is of the form

�X .�/ D 1

2

NX

kD1

EA2
k cos.2�kf0�/:

Example 4.1.3 (Discrete-time white noise). In this example the time is discrete, that
is, t D n D : : : ; �2; �1; 0; 1; 2; : : : , and the random signal W.n/ has mean zero and
values at different times that are independent (uncorrelated would suffice) and iden-
tically distributed; we will denote their common variance by �2

W . In other words,

�W D 0

and

�W .n; n C �/ D E.W.n/W.n C �// D
(

�2
W ; if � D 0I

0; if � ¤ 0:
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Note that the above-defined signal is stationary because its autocovariance is
indeed a function of only the time lag and can be written in the form

�W .n; n C �/ D �2
W ı.�/;

where

ı.�/ D
(

1; if � D 0I
0; if � ¤ 0;

is the discrete-time version of the Dirac delta function which is usually called the
Kronecker delta. This kind of signal is called discrete-time white noise and has mean
zero and autocovariance function

�W .�/ D �2
W ı.�/:

Observe that in the definition of the white noise we did not specify the distri-
bution of the random quantities W.n/. So, in principle, the white noise can have
an arbitrary distribution as long as its variance is finite. In practice, the distribu-
tion in the white noise model to be employed must be determined from the detailed
analysis of the physical phenomenon under consideration (or experimentation and
estimation). Figure 4.1.2 shows a sample discrete-time white noise random sig-
nal W.n/; n D 1; 2; : : : ; 50, with the Wns all distributed uniformly on the interval
Œ�1=2 C 1=2�. Hence EWn D 0, and �2

W D 1=12.
By the standard white noise, we will always mean the white noise with variance

�2
W D 1. Thus we can standardize any white noise W.n/ by dividing all of its

values by its standard deviation �W . So, in Example 4.1.1, the white noise W.n/ is
not standard, but the white noise W.n/=

p
12 is.

0 20 40 60 80

-0.4

-0.2

0.0

0.2

0.4

Fig. 4.1.2 A sample discrete-time white noise random signal W.n/; n D 1; 2; : : : ; 50; with uni-
form distribution on the interval Œ�1=2; C1=2�, so that �2

W D 1=12. For the sake of the clarity of
the picture, values of W.n/ for consecutive integers n were joined by straight-line segments
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Example 4.1.4 (Moving average of the white noise). The moving average signal
X.n/ is obtained from the white noise W.n/ with variance �2

W by the “window-
ing” procedure. The windowing procedure mixes values of the white noise, W.n/;

W.n � 1/; : : : ; W.n � q/, in the time window of fixed width q C 1, extending into
the past, giving values with different time lags different weights, say, b0; b1; : : : ; bq .
More precisely,

X.n/ D b0W.n/ C b1W.n � 1/ C � � � C bqW.n � q/:

You can interpret the moving average signal as a discrete-time convolution of the
white noise with the windowing weight sequence. One immediately obtains that
�X D 0. Since, for independent random quantities, the variance of the sum is equal
to the sum of the variances, the variance is

�2
X D �2

W

qX

iD0

b2
i :

Calculation of the autocovariance function is a little more complicated (see Sect. 4.3,
Problems and Exercises) and for now we will carry it out only in the case of the
window of width 2, when

X.n/ D b0W.n/ C b1W.n � 1/:

Then

�X .n; n C �/ D EX.n/X.n C �/

D E ..b0W.n/ C b1W.n � 1// .b0W.n C �/ C b1W.n C � � 1///

D b2
0E.W.n/W.n C �// C b0b1E .W.n � 1/W.n C �//

Cb0b1E .W.n/W.n C � � 1// C b2
1E.W.n � 1/W.n C � � 1//

D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

.b2
0 C b2

1/�2
W ; if � D 0I

b0b1�2
W ; if � D 1I

b0b1�2
W ; if � D �1I

0; if j� j > 1:

Since �X .n; n C �/ depends only on the time lag � , the moving average signal
is stationary. For the sample white noise signal from Fig. 4.1.2. the moving average
signal X.n/ D 2W.n/ C 5W.n � 1/ is shown in Fig. 4.1.3, and its corresponding
autocovariance function,
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Fig. 4.1.3 Sample moving average signal X.n/ D 2W.n/C5W.n�1/ for the sample white noise
shown in Fig. 4.1.2. Note that the moving average signal appears smoother than the original white
noise. The constrained oscillations are a result of nontrivial – although short-term in this example
– correlations

-3 -2 -1 0 1 2 3
0.0
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2.5

Fig. 4.1.4 Autocovariance function for the moving average signal X.n/ D 2W.n/ C 5W.n � 1/.
Note that the values of the signal separated by more that, one time unit are uncorrelated

�X .�/ D

8
ˆ̂
<

ˆ̂:

29=12; if � D 0I
10=12; if � D ˙1I
0; if � D ˙2; ˙3; : : : ;

is shown in Fig. 4.1.4. Compare Figs. 4.1.3 and 4.1.4, and note that the moving
average operation smoothed out the original white noise signal.

The method of determining the ACvF for a moving average signal from Example
4.1.4 can be streamlined using the fact that the ACvF of a standard white noise is
the Kronecker delta. This “Kronecker delta calculus” makes it also easy to obtain
the ACvF of an arbitrary infinite moving average of the white noise of the form
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X.n/ D
1X

kD�1
bkW.n � k/; (4.1.12)

where W.n/ is the standard white noise. Since EW.n/W.n C �/ D ı.�/, which is 0
if � ¤ 0 and 1 if � D 0 we have automatically that

�X .�/ D E

 1X

kD�1
bkW.n � k/ �

1X

lD�1
blW.n C � � l/

!

D
1X

kD�1

1X

lD�1
bkblE .W.n � k/ � W.n C � � l//

D
1X

kD�1

1X

lD�1
bkblı ..n C � � l/ � .n � k//

D
1X

kD�1

1X

lD�1
bkblı ..� C k/ � l/ :

Since ı.� � .l � k// D 1 if and only if l D � C k (otherwise, it is zero), the whole
double summation over the whole .k; l/ lattice reduces to the single summation on
the “diagonal,” l D � C k, and we get the final result:

�X .�/ D
1X

kD�1
bkbkC	 : (4.1.13)

The variance of such a moving average signal is

�2
X D �X .0/ D

1X

kD�1
b2

k;

and to assure that it is finite, the sequence of coefficients, : : : ; b�1; b0; b1; : : : ; must
be square-summable; i.e., the condition

P1
kD�1 b2

k
< 1 must be satisfied.

Example 4.1.5 (Random switching signal). Consider a continuous-time signal X.t/

switching back and forth between values C1 and �1 at random times. More pre-
cisely, the initial value of the signal, X.0/, is a random quantity with the symmetric
Bernoulli distribution [i.e., P.X.0/ D ˙1/ D 1=2], and the interswitching times
form a sequence T1; T2; : : : of independent random quantities with the identical
standard exponential c.d.f.s:

P.Ti 	 t/ D 1 � e�t ; t > 0;

of mean 1. The initial random value X.0/ is assumed to be independent of the inter-
switching times Ti . A typical sample of such a signal is shown in Fig. 4.1.5.
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Fig. 4.1.5 A sample of the random switching signal from Example 4.1.4. The values are ˙1 and
the initial value is C1. The interswitching times are independent and have an exponential c.d.f. of
mean 1

Calculation of the mean and autocovariance function of the switching signal
depends on the knowledge of the fact that such a random signal can be written
in the form

X.t/ D X.0/ � .�1/N.t/;

where N.t/ is the (nonstationary) random signal counting the number of switches up
to time t ; in particular, N.0/ D 0. One can prove2 that N.t/ has increments in dis-
joint time intervals that are statistically independent, with the distributions thereof
depending only on the interval’s length. More strikingly, these increments must have
the Poisson probability distribution with mean equal to the interval’s length, that is,

P .N.t C �/ � N.t/ D k/ D P .T1 C � � � C Tk 	 � < T1 C � � � C TkC1/ D e�	 � �
k

kŠ
;

for any t; � � 0, and k D 0; 1; 2; : : : . Indeed,

P.N.t/ � k/ D P.T1 C � � � C Tk 	 t/ D
Z t

0

e�s sk�1

.k � 1/Š
ds D e�t

kX

lD0

t l

lŠ
;

because the p.d.f. of the sum of k independent standard exponential random quanti-
ties is

fT1C���CTk
.s/ D e�s sk�1

.k � 1/Š
; s � 0I

see Problem 4.3.8; the above integral was evaluated by repeated integration by parts.

2 See, for example, O. Kallenberg, Foundations of Modern Probability, Springer-Verlag, New York,
1997.



4.1 Stationarity and Autocovariance Functions 115

Armed with this information, we can now easily complete calculations of the
mean and autocovariance function of the switching signal:

�X .t/ D EX.t/ D EX.0/ � E.�1/N.t/ D 0;

and, for � > 0,

�X .t; t C �/ D EŒX.t/X.t C �/� D EX2.0/ � E
h
.�1/N.t/.�1/N.tC	/

i

D 1 � E
h
.�1/2N.t/.�1/N.tC	/�N.t/

i
D E.�1/N.tC	/�N.t/

D
1X

kD0

.�1/k � e�	 �k

kŠ
D e�2	 :

Therefore, the random switching signal X.t/ is stationary and, because of the sym-
metry property of all autocovariance functions, its ACvF is

�X .�/ D e�2j	 j:

Remark 4.1.2 (Transition from a switching signal to the Bernoulli white noise in
continuous time). Now, let us make the switching model more flexible by permit-
ting the exponential interswitching times T1; T2; : : : to have mean (expected value)
� > 0. That means that the common p.d.f. of the Tks is fT .t/ D e�t=�=�; t � 0.
Recall that in Example 4.1.5 we simply assumed that � D 1. The corresponding
counting, Poisson signal, N�.t/, now has the distribution

P.N�.t/ D k/ D e�t=� .t=�/k

kŠ
; k D 0; 1; 2; : : : ;

with expectation EN�.t/ D t=�: Define the rescaled switching signal

X�.t/ D X.0/p
�

� .�1/N�.t/;

with X.0/ independent of N�.t/, and P.X.0/ D ˙1/ D 1=2, so that the signal
X�.t/ now switches between the values C1=

p
� and �1=

p
�. Repeating the cal-

culation from Example 4.1.5 in the present, general case, we obtain the following
expression for its ACvF:

�X�
.t; t C �/ D EŒX�.t/X�.t C �/� D EX2.0/

�
� E
h
.�1/N�.t/.�1/N�.tC	/

i

D 1

�
E.�1/N�.tC	/�N�.t/

D 1

�

1X

kD0

.�1/k � e�	=�.�=�/k

kŠ
D 1

�
e�2	=�;
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for � � 0. So the random switching signal X�.t/ is stationary and its autocovariance
function is

�X�
.�/ D 1

�
e�2j	 j=�:

Now, if we let ET D � ! 0, that is, if we permit the switching signal to switch
more and more often, as the size of the, switches increase, then its ACvF converges
to the Dirac delta impulse ı.t/; see Fig. 2.1.2. So we can think about the limit of the
switching signals, with � ! 0, as continuous-time white noise; it switches between
C1 and �1 “infinitely often” in any finite time interval. Indeed, for any t; t0, the
expected number of switches in the time interval Œt0; t0 C t � is

E.N�.t C t0/ � N�.t0// D t

�
! 1; as � ! 0:

Example 4.1.6 (Solution of a stochastic difference equation). Consider a stochastic
difference equation

X.n/ D ˛X.n � 1/ C ˇW.n/; n D �2; �1; 0; 1; 2; : : : ;

where W.n/ is standard discrete-time white noise with �2
W D 1. Observe that the

above system, rewritten in the form

X.n/ � X.n � 1/


n
D .˛ � 1/X.n � 1/ C ˇW.n/; n D �2; �1; 0; 1; 2; : : : ;

can be viewed as a discrete-time version of the stochastic differential equation

dX.t/ D .˛ � 1/X.t/ dt C ˇW.t/dt;

where W.t/ represents the continuous-time version of the white noise to be dis-
cussed in later chapters and mentioned in Remark 4.1.2.

The solution of the above stochastic difference equation can be found by
recursion. So

X.n/ D ˛.˛X.n � 2/ C ˇW.n � 1// C ˇW.n/

D ˛2X.n � 2/ C ˛ˇW.n � 1/ C ˇW.n/ D � � �

D ˛l X.n � l/ C
l�1X

kD0

˛kˇW.n � k/;

for any l D 1; 2; : : : : Assuming that j˛j < 1 and that X.n� k/ remain bounded, the
first term ˛kX.n � k/ ! 0 as k ! 1: In that case the second term converges to
the infinite sum and the solution is of the form

X.n/ D ˇ

1X

kD0

˛kW.n � k/:



4.1 Stationarity and Autocovariance Functions 117

This is the special form of the general moving average signal appearing in (4.1.12),
with the windowing sequence

ck D
(

ˇ˛k ; for k D 0; 1; 2; : : : I
0; for k D �1; �2; : : : :

Hence its autocovariance function is [see (4.1.12) and (4.1.13); also, see Problem
4.3.4]

�X .�/ D
1X

kD�1
ckc	Ck D ˇ2

1X

kD0

˛k˛	Ck D ˇ2 ˛	

1 � ˛2
;

for positive ˛ < 1.

Example 4.1.7 (Using moving averages to filter noise out of a signal). Consider a
signal of the form

X.n/ D sin.0:02n/ C W.n/;

where W.n/ is the white noise considered in Example 4.1.3, and let Y.n/ be a mov-
ing average of signal X.n/ with the windowing sequence b0 D b1 D b2 D b3 D b4

D 1=5; that is,

Y.n/ D 1

5
X.n/ C 1

5
X.n � 1/ C 1

5
X.n � 2/ C 1

5
X.n � 3/ C 1

5
X.n � 4/:

The values of both signals X.n/ and Y.n/, for time instants n D 1; 2; : : : ; 750,
are shown in Fig. 4.1.6. Clearly, the moving average operation filtered some of the
white noise out of the original signal, and the transformed signal appears smoother.

Remark 4.1.3 (ACvF for complex-valued signals). For complex-valued stationary
signals X.t/, the definition of the autocovariance function has to be adjusted so that
the value of the ACvF at t D 0 remains the variance of the signal which must be
a nonnegative number. That is why taking the expectation of the simple product of
values of the signal separated by the time lag � will not do; a square of a complex
number is, in general, a complex number. For that reason, for complex-valued sta-
tionary signals, the autocovariance function is defined, in the zero-mean case, by the
formula

�X .�/ D EŒX�.t/ � X.t C �/�; (4.1.14)

where the asterisk denotes the complex conjugate. In this case, of course, the vari-
ance is

Var X.t/ D EŒX�.t/ � X.t/� D EjX.t/j2 D �X .0/ � 0:

Note that in the complex-valued case, the ACvF is not necessarily an even function
of the time lag � . However, we do have the equality

�X .��/ D EŒX�.t/ � X.t � �/� D 

EŒX�.t � �/ � X.t/�

�� D ��
X .�/: (4.1.15)
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Fig. 4.1.6 (Top) The signal X.n/ from Example 4.1.6 containing a nonrandom harmonic com-
ponent plus random white noise. (Bottom) The same signal after a smoothing, moving average
operation filtered out some of the white noise. The figure shows values of both signals for times
n D 1; 2; : : : ; 750

Example 4.1.8 (Simple complex random harmonic oscillation). Consider a
complex-valued random signal represented by a simple complex exponential with a
random, possibly complex-valued, amplitude A of zero mean, EA D 0, and finite
variance �2

A D EjAj2:
X.t/ D A � ej 2�f0t :

Then, clearly, E X.t/ D E A � ej 2�f0t D 0; and

�X .�/ D EŒX�.t/ � X.t C �/� D EjAj2 � e�j 2�f0t � ej 2�f0.tC	/ D �2
A � ej 2�f0	 :

This result is analogous to the result for the simple random real-valued oscillation
introduced at the beginning of this section. However, in the complex-valued case,
no random phase is needed to produce a stationary signal.

Example 4.1.9 (Superposition of simple complex-valued random harmonic oscilla-
tions). As in the real-valued case in Example 4.1.2, we can consider a superposition
of simple complex-valued random harmonic oscillations. Let A1; A2; : : : ; An be a
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sequence of independent (or just uncorrelated, possibly complex-valued) random
amplitudes with EAk D 0 and finite variance �A2

k
D EjAk j2. Set

X.t/ D
nX

kD1

Ak � ej 2�fk t ;

where f1; f2; : : : ; fn is a sequence of different frequencies. Then, again,

E X.t/ D E
nX

kD1

Ak � ej 2�fk t D
nX

kD1

E.Ak/ � ej 2�fk t D 0

and

�X .�/ D EŒX�.t/ � X.t C �/� D E

 
nX

kD1

A�
k � e�j 2�fk t �

nX

lD1

Al � ej 2�fl .tC	/

!

D
nX

kD1

nX

lD1

E.A�
kAl/ � e�j 2�.fk�fl /t � ej 2�fl 	 D

nX

kD1

EjAkj2 � ej 2�fk	 ;

because, for different k; l , the covariance E.A�
k
Al/ D E.A�

k
/E.Al / D 0.

4.2 Estimating the Mean and the Autocovariance
Function; Ergodic Signals

If one can obtain multiple independent samples of the same random stationary sig-
nal, then the estimation of its parameters, the mean value and the autocovariance
function can be based on procedures described in Sect. 3.6. However, very often,
the only available information is a single but, perhaps, long (timewise) sample of
the signal; think here about the historical temperature records at a given location,
Dow Jones stock market index daily quotations over the past 10 years, or measure-
ments of the sun spot activity over a period of time; these measurements cannot be
independently repeated. Estimation of the mean and the autocovariance function of
a stationary signal X.t/ based on its single sample is a delicate matter because the
standard law of large numbers and the central limit theorem cannot be applied. So
one has to proceed with caution, as we now illustrate.

Estimation of the mean �X . If a stationary signal X.t/ is sampled with the sam-
pling interval T , that is, the known values are

X.0/; X.T /; X.2T /; : : : ; X.NT /; : : : ;
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then the obvious candidate for an estimator O�X of the signal’s mean �X is

O�X .N / D 1

N

N �1X

iD0

X.iT /:

This estimator is easily seen to be unbiased as

EŒ O�X .N /� D 1

N

N �1X

iD0

EŒX.iT /� D �X : (4.2.1)

To check whether the estimator O�X .N / converges to �X as the observation interval
NT ! 1, that is, to check the estimator’s consistency, we will take a look at the
estimation error in the form of the mean-square distance (variance) between O�X .N /

and �X :

Var. O�X .N // D EŒ. O�X � �X /2�

D 1

N 2
E

"
N �1X

iD0

.X.iT / � �X /

N �1X

kD0

.X.kT / � �X /

#

D 1

N 2

N �1X

iD0

N �1X

kD0

�X .iT; kT / D 1

N 2

N �1X

iD0

N �1X

kD0

�X ..i � k/T /

D �2
X

N
C 2

N

N �1X

kD0

�
1 � k

N

�
�X .kT /: (4.2.2)

So the error of replacing the true value �X by the estimator O�X will converge to
zero, as N ! 1, only if the sum in (4.2.2) increases more slowly3 than N , i.e.,

N �1X

kD0

�
1 � k

N

�
�X .kT / D o.N /; as N ! 1: (4.2.3)

So, for example, if the covariance function �X .�/ vanishes outside a finite interval,
as was the case for finite moving averages in Example 4.1.2, then O�X is a consistent
estimator for �X .

Example 4.2.1 (Consistency of the estimator O�X for solutions of discrete-time
stochastic difference equations). Consider the solution X.n/ of the stochastic dif-
ference equation from Example 4.1.5. Its autocovariance function was found to be
of the form

�X .�/ D ˇ2 j˛j	
1 � ˛2

; j˛j < 1:

3 Here we use Landau’s asymptotic notation: We write that f .x/ D o.g.x//, as x ! x0, and say
that f .x/ is little “oh” of g.x/ at x0 if limx!x0 f .x/=g.x/ D 0.
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Since it decays exponentially as � ! 1, the sum in (4.2.2) converges and condition
(4.2.3) is satisfied. The mean-square error of replacing �X by the estimator O�X can
now be controlled:

Var. O�X .N // D EŒ. O�X � �X /2� D �X .0/

N
C 2

N

N �1X

kD0

�
1 � k

N

�
ˇ2 j˛jk

1 � ˛2

	 ˇ2

N.1 � ˛2/

 

1 C 2

N �1X

kD0

j˛jk
!

D ˇ2.3 � j˛j � 2j˛jN /

N.1 � ˛2/.1 � ˛/
:

Estimation of the autocovariance function �X.�/. For simplicity’s sake, assume
that �X D 0, the sampling interval T D 1, the signal is real-valued, and that
observations X.0/; : : : ; X.N / are given. The natural candidate for an estimator of
the autocovariance function �X .�/ D EX.0/X.�/ is the time average:

O�X .� I N / D 1

N � �

N �	�1X

kD0

X.k/X.k C �/: (4.2.4)

It is an unbiased estimator since, for each fixed time lag, � ,

EŒ O�X .�; N /� D 1

N � �
E

"
N �	�1X

kD0

X.k/X.k C �/

#

D 1

N � �

N �	�1X

kD0

�X .�/ D �X .�/:

One can also prove that if �X .�/ ! 0 sufficiently fast,4 as n ! 1, and if
�X .0/ D �2

X < 1, then the mean-square distance from O�X .� I N / to �X .�/ de-
creases to 0 as N ! 1. In other words, the estimator (4.2.4) is consistent.

Remark 4.2.1 (Ergodicity). If the estimator O�X is unbiased and consistent, that is,

E O�X .N / D �X and Var. O�X .N // ! 0;

as N ! 1, then one often says that the signal is ergodic in the mean. Note that,
in general, this does not imply that for every sample path of the random signal the
estimator converges to the estimated parameter. To guarantee that, for a general test
function g, the time averages

g.X.1// C g.X.2// C � � � C g.X.N //

N

4 For a thorough exposition of these issues, see, for example, P.J. Brockwell and R.A. Davis, Time
Series: Theory and Methods, Springer-Verlag, New York, 1991.
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converge to Eg.X.1//, as N ! 1, for (almost) every sample path of the
random signal, stronger ergodicity and stricter stationarity assumptions are needed.
A.I. Khinchin proved5 (in the context of statistical mechanics) that a decay of the
autocorrelation function to zero is a sufficient condition for ergodicity. A more
detailed analysis of the ergodic behavior of stationary time series can be found in
the above-quoted books by M. Denver and W.A. Woyczyński and by P.J. Brockwell
and R.A. Davis.

Remark 4.2.2 (Confidence intervals). Under fairly weak assumptions one can show
that the asymptotic distributions .N ! 1/ of the suitably rescaled estimators
O�X .N /; O�X .� I N / are asymptotically normal. Thus their confidence intervals can
be constructed following the ideas discussed in Sect. 3.6.

Example 4.2.2 (Estimated autocorrelation functions of EEG signals). Figure 4.2.1
shows two samples of the central channel recording for a full-term neonate EEG
(see Fig. 4.1.1, for a sample of the full 21-channel EEG). The duration of each of
the samples was 3 min, and the signals were sampled at 64 Hz. The data in the top
picture were recorded during the quiet sleep stage, and in the bottom picture – during
the active sleep stage.

The estimated autocorrelation functions (ACFs) (not ACvFs!) for both signals
were then calculated using formula (4.2.4) and are shown in Fig. 4.2.2. The example
is taken from A. Piryatinska’s Case Western Reserve Ph.D. dissertation mentioned
in Sect. 4.1.

0 0.5 1 1.5 2 2.5 3
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−500

0

500

Quiet sleep

0 0.5 1 1.5 2 2.5 3

−1000

−500

0

500

min

Active sleep

Fig. 4.2.1 (Top) Three-minute recording of the central channel EEG for an infant in a quiet sleep
stage discussed in Example 4.2.2. (Bottom) Analogous recording for an active sleep stage

5 See A.I. Khinchin, Mathematical Foundation of Statistical Mechanics, Dover Publications,
New York, 1949, p. 68.
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Fig. 4.2.2 (Left) The estimated autocovariance function (ACF) for the quiet sleep EEG signal from
Fig. 4.2.1. (Right) Analogous estimated ACF for the active sleep stage

Note that the ACF of the active sleep signal decays much more slowly than the
ACF of the quiet sleep signal, indicating the longer-range dependence structure of
the former. Information on the rate of decay in EEG ACFs can then be used to au-
tomatically classify stationary segments of the EEG signals as those corresponding
to different sleep stages recognized by pediatric neurologists.

4.3 Problems and Exercises

4.3.1. Consider a random signal

X.t/ D
nX

kD0

Ak cos .2�kfk.t C ‚k// ;

where A0; ‚1; : : : ; An; ‚n are independent random variables of finite variance, and
‚1; : : : ; ‚n are uniformly distributed on the time interval Œ0; P D 1=f0�. Is this
signal stationary? Find its mean and autocovariance functions.

4.3.2. Consider a random signal

X.t/ D A1 cos 2�f0.t C ‚0/;
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where A1; ‚0 are independent random variables, and ‚0 is uniformly distributed
on the time interval Œ0; P=3 D 1=.3f0/�. Is this signal stationary? Is the signal
Y.t/ D X.t/ � EX.t/ stationary? Find its mean and autocovariance functions.

4.3.3. Find the mean and autocovariance functions of the discrete-time signal

Y.n/ D 3W.n/ C 2W.n � 1/ � W.n � 2/;

where W.n/; n D : : : ; �2; �1; 0; 1; 2; : : : ; is the discrete-time white noise with
�2

W D 4; that is,
EW.n/ D 0

and

E.W.k/W.n// D
(

4; if n � k D 0I
0; if n � k ¤ 0:

4.3.4. Consider a general complex-valued moving average signal

X.n/ D
1X

kD�1
ckWn�k;

where ck is a complex-valued “windowing” sequence. Determine a condition on the
windowing sequence that would guarantee that X.n/ has finite variance. W.n/ is
the standard white noise signal with mean zero, and �W .n/ D ı.n/.

4.3.5. Simulation of a discrete-time white noise with an arbitrary probability distri-
bution. Formula (3.1.11), FY .y/ D FX .g�1.y//, describes the c.d.f. FY .y/ of the
random quantity Y D g.X/ in terms of the c.d.f. FX .x/ of the random quantity X ,
and a strictly increasing function g.x/. It also permits construction of an algorithm
to produce random samples from any given probability distribution provided a ran-
dom sample uniformly distributed on the interval Œ0; 1� is given. The latter can be
obtained by using the random number generator in any computing platform, see
Problem 1.5.15.

Let U be random quantity U uniformly distributed on [0,1] with the c.d.f.

FU .u/ D u; 0 	 u 	 1; (4.3.1)

Then, for a given c.d.f. FZ.z/, the random quantity Z D F �1
Z .U /, where F �1

Z .u/ is
the function inverse to FZ.z/ [that is, a solution of the equation u D FZ.F �1

Z .u//],
has the c.d.f. FZ.z/. Indeed, a simple calculation, using (4.3.1), shows that

P.F �1
Z .U / 	 z/ D P.U 	 FZ.z// D FZ.z/;

because 0 	 FZ.z/ 	 1: So, for example, if the desired c.d.f. is exponential, with
FZ.z/ D 1 � e�z; z � 0; then F �1

Z .u/ D � ln.1 � u/; 0 	 u 	 1; and the random
quantity Z D � ln.1 � U / has the above exponential c.d.f.
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The general simulation algorithm is thus as follows:

(a) Choose the sample size N , and produce a random sample, u1; u2; : : : ; uN , uni-
formly distributed on [0,1].

(b) Calculate the inverse function F �1
Z .u/.

(c) Substitute the random sample, u1; u2; : : : ; uN into F �1
Z .u/ to obtain the random

sample
z1 D F �1

Z .u1/; z2 D F �1
Z .u2/; : : : ; zN D F �1

Z .uN /;

which has the desired c.d.f. FZ.z/.

Use the above algorithm, and Problem 1.5.15, to produce and plot examples of
the white noise W.n/ with:

(a) The standard Gaussian N.0; 1/ p.d.f.
(b) The double exponential p.d.f. fW .w/ D e�jwj=2. Be careful, as its c.d.f. has a

different analytic expression for positive and negative ws.
(c) The p.d.f. fW .w/ D p

2.�.1 C w4//�1. Check that the variance is finite in this
case. Start with a calculation of the corresponding c.d.f.s; a symbolic manipu-
lation platform such as Mathematica is going to be great help here. Check the
result graphically by plotting the histograms of the random samples against the
theoretical p.d.f.s.

4.3.6. Simulations of stationary random signals. Using the algorithm from the
Problem 4.3.5, produce simulations of stationary signals from Examples 4.1.4 and
4.1.6, using both uniformly distributed white noise, and the white noises constructed
in parts (a), (b), and (c) of the above problem. Experiment with these simulations
by varying parameters in the above models and changing the length of the sample
of the produced discrete-time random signals.

4.3.7. Using the procedures described in Sect. 4.2, estimate the means and the auto-
covariance functions (ACvF) for sample signals obtained in simulations in Problem
4.3.6. Then graphically compare the estimated and theoretical ACvFs.

4.3.8. Show that if X1; X2; : : : ; Xn are independent, exponentially distributed ran-
dom quantities with identical p.d.f.s e�x ; x � 0, then their sum Yn D X1 C X2 C
� � �CXn has the p.d.f. e�yyn�1=.n�1/Š; y � 0. Use the technique of characteristic
functions (Fourier transforms) from Chap. 3. The random quantity Yn is said to have
the gamma probability distribution with parameter n. Thus the gamma distribution
with parameter 1 is just the standard exponential distribution; see Example 4.1.4.
Produce plots of gamma p.d.f.s with parameters n D 2; 5; 20; and 50. Comment on
what you observe as n increases.



Chapter 5
Power Spectra of Stationary Signals

The Fourier transform X.f / of the sample paths of a stationary, real-valued random
signal X.t/ does not exist in the usual sense and analysis of the spectral contents
of such signals requires a different, more subtle approach which has to rely on the
concept of the mean power of the random signal. Only then we can investigate how
it is distributed over different frequencies. The question is, of course, of fundamental
importance in practical applications, as real-life signal processing devices such as
measuring instruments, amplifiers, antennas, etc. transmit different frequencies with
different attenuation.

5.1 Mean Power of a Stationary Signal

For stationary signals with periodic sample paths, like the superpositions of sim-
ple harmonic oscillations with random amplitudes discussed in Examples 4.1.2 and
4.1.9, the concept of the mean power is a straightforward adaptation of the power
concept for periodic nonrandom signals:

E.PWX / D E

 
1

P

Z P

0

jX.t/j2 dt

!

D 1

P

Z P

0

EjX.t/j2 dt D �2
X :

Note that PWX itself is a random quantity here. Hence, in particular, in Example
4.1.9, where

X.t/ D
nX

kD1

Ak � ej 2�.kf0/t ;

with P D 1=f0, we have

E.PWX / D �2
X D �X .0/ D

nX

kD1

EjAk j2;

W.A. Woyczyński, A First Course in Statistics for Signal Analysis,
DOI 10.1007/978-0-8176-8101-2 5, c� Springer Science+Business Media, LLC 2011
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and the last expression provides a clear description how the mean power is
distributed over different component frequencies of the signal’s sample paths;
the power spectrum in this case is discrete and the mean power carried by the
frequency fk is equal to EjAkj2.

For general stationary signals, the situation is more complicated. The mean
energy E.ENX / of a stationary signal X.t/ over the whole timeline, that is, the
expected value of energy, is infinite. Indeed, using the linearity property of expecta-
tions, we can interchange the order of taking the mean and the integration to obtain

E.ENX / D E
Z 1

�1
X2.t/ dt D

Z 1

�1
E.X2.t// dt D

Z 1

�1
�2

X dt D 1: (5.1.1)

However, the mean power E.PWX / of a stationary signal, taken as a limit of the
mean power over finite but expanding time intervals, is always finite since

E.PWX / D E lim
T !1

1

2T

Z T

�T

X2.t/ dt D �2
X < 1: (5.1.2)

To find the distribution of the mean power E.PWX / over different frequencies
f , we will consider a windowed signal,

XT .t/ D
(

X.t/; for jt j 	 T I
0; otherwise;

(5.1.3)

that is, the original signal restricted to the time window �T 	 t 	 T; of duration
2T . Then, with the well-defined Fourier transform of the windowed signal defined
by the equality

XT .f / D
Z 1

�1
XT .t/e�j 2�f t dt D

Z T

�T

X.t/e�j 2�f t dt;

we can express the mean power of the original signal by the formula

EŒPWX � D E

"

lim
T !1

1

2T

Z T

�T

X2.t/ dt

#

D E

"

lim
T !1

1

2T

Z 1

�1
X2

T .t/ dt

#

D E

"

lim
T !1

1

2T

Z 1

�1
jXT .f /j2 df

#

D
Z 1

�1
lim

T !1
EjXT .f /j2

2T
df;
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where the Parseval equality (see Sect. 2.4) was used in the second line of the above
calculation. Denoting

SX .f / WD lim
T !1

EjXT .f /j2
2T

; (5.1.4)

the mean power has the representation

E.PWX / D �2
X D

Z 1

�1
SX .f / df: (5.1.5)

The function SX .f / is called the power spectral density or, simply, the power spec-
trum, of the stationary signal X.t/. It shows how the mean power PWX of the
random stationary signal X.t/ is distributed over different frequencies f; �1 <

f < 1. The mean power concentrated in a frequency band f1 < f < f2 is then
given by the integral

PWX Œf1; f2� D
Z f2

f1

SX .f / df:

5.2 Power Spectrum and Autocovariance Function

What makes the power spectrum SX .f / a practical tool in the analysis of random
stationary signals is the fact that it is simply the Fourier transform of the signal’s
autocovariance function �X .t/. In other words,

SX .f / D
Z 1

�1
�X .t/e�j 2�f t dt: (5.2.1)

This fundamental property can be easily verified by direct calculation. Indeed,

S.f / D lim
T !1

EjXT .f /j2
2T

D lim
T !1

E.X�
T .f /XT .f /

2T

D lim
T !1

1

2T
E

"Z T

�T

X�.t/e2�jf t dt
Z T

�T

X.s/e�2�jf sds

#

D lim
T !1

1

2T

Z T

�T

Z T

�T

EŒX�.t/X.s/�e�2�jf .s�t/dt ds

D lim
T !1

1

2T

"Z T

�T

 Z T �s

�T �s

�X .�/e�2�jf 	 d�

!

ds

#

D
Z 1

�1
�X .�/e�2�jf 	d�:
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Given the properties of the Fourier transform, we also immediately obtain that
the autocovariance �X .�/ of the signal X.t/ is the inverse Fourier transform of the
power spectrum SX .f /:

�X .�/ D
Z 1

�1
SX .f /ej 2�f 	 df: (5.2.2)

Remark 5.2.1. What kind of functions can serve as autocovariance functions of sta-
tionary signals? Although any integrable nonnegative function,

S.f / � 0;

Z 1

�1
S.f / df < 1;

can serve as a power spectrum of some stationary signal, the above formula (5.2.2)
shows that for �.t/ to be an autocovariance function of a stationary process, it must
be the inverse Fourier transform of a nonnegative integrable function S.f /. This
turns out to be a very restrictive condition. In particular, it forces �.t/ to satisfy the
following positive-definiteness condition:

For any positive integer N , any real number t1; : : : ; tN , and any complex num-
bers z1; : : : ; zN , the quadratic form is

NX

nD1

NX

kD1

�.tn � tk/znz�
k � 0:

Indeed, since S.f / � 0,

NX

nD1

NX

kD1

�.tn � tk/znz�
k D

NX

nD1

NX

kD1

Z 1

�1
SX .f /ej 2�f .tn�tk / df znz�

k

D
Z 1

�1
SX .f /

NX

nD1

NX

kD1

�
znej 2�f tn

�
�
�

zkej 2�f tk

��
df

D
Z 1

�1
SX .f /

ˇ
ˇ
ˇ
ˇ
ˇ

NX

nD1

znej 2�f tn

ˇ
ˇ
ˇ
ˇ
ˇ

2

df � 0:

Actually, the positive-definiteness condition is necessary and sufficient of a function
to be an ACvF. This result is known as Bochner’s theorem. The practical lesson
is that one cannot pick examples of ACvF’s off the top of one’s head. There are
numerous criteria guaranteeing that a given function actually is positive definite.
For example, one can prove that if �.�/ is even, and decreasing and convex on the
positive half-line [like �.t/ D e�j	 j], then it is positive definite; see the bibliography
on Fourier analysis provided at the end of this book.
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Estimation of the power spectrum SX .f /. For simplicity’s sake, assume that the
signal is real-valued and that the observations X.0/; : : : ; X.N / are made at discrete
sampling times, t D 0; 1; 2; : : : ; N . To estimate the spectrum, the natural way to
proceed is to replace the theoretical ACvF �X .�/ in (5.2.1) by the estimated ACvF
O�X .� I N / given by formula (4.2.4) and replacing the integral by the finite sum. This
yields the estimator

OSX .f I N / D
N �1X

nD�.N �1/

O�X .j� jI N /e�j 2�f 	 :

A direct discretization of the defining formula (5.1.4) immediately gives another
estimator for the power spectrum:

IN .f / WD 1

N

ˇ
ˇ
ˇ
ˇ̌

NX

nD1

X.n/e�j 2�f n

ˇ
ˇ
ˇ
ˇ̌

2

: (5.2.3)

For large N; OSX .f I N / � IN .f / (see Sect. 9.2), and the random quantity IN .f /

is usually called the periodogram of the sampled signal X.t/ based on a sample of
size N .

Observe that if we have a concrete, discrete-time sample,

X.1/ D x1; : : : ; X.N / D xN

of the signal X.t/, then the (nonrandom) sum inside the modulus of the periodogram
formula,

NX

nD1

xne�j 2�f n;

is a finite Fourier (complex-valued) trigonometric polynomial with coefficients
x1; : : : ; xN . It is a periodic function of f with period P D 1, so the periodogram
IN .f / needs to be studied only for f in the interval Œ0; 1� (or any other interval of
length 1, such as, e.g., Œ�1=2 C 1=2�). In view of the Parseval formula (2.1.12) for
Fourier series,

Z 1

0

IN .f / df D
Z 1

0

1

N

ˇ
ˇ
ˇ
ˇ̌

NX

nD1

xne�j 2�f n

ˇ
ˇ
ˇ
ˇ̌

2

df D 1

N

NX

nD1

x2
n:

The expression on the right is, of course, the average power (the energy per unit
time) of the sample signal x1; : : : ; xN . Thus the above formula shows that, indeed,
the periodogram IN .f / gives the correct distribution of the average power of the
sample signal over the frequencies f 2 Œ0; 1�.
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Fig. 5.2.1 Left: Periodogram of the neonatal quiet sleep EEG signal from Fig. 4.2.2. Right: Anal-
ogous periodogram for the active sleep stage. (From A. Piryatinska’s 2004 Case Western Reserve
University Ph.D. dissertation)

Let us return now to two samples of neonatal sleep signals displayed in
Fig. 4.2.1. Their estimated autocovariance functions were shown in Fig. 4.2.2.
Their periodograms have been calculated using formula (5.2.3) and are reproduced
in Fig. 5.2.1. Since the signal was recorded at the sampling frequency of 64 Hz,
and the duration of each recording was 3 min, the total number of sample points is
N D 192. The reader will notice that the periodogram is quite noisy and, perhaps,
should be smoothed out to better reflect the true spectrum of the random signal.
Nevertheless, a comparison of these rough spectra for quiet sleep and active sleep
segments clearly shows that the active sleep signal shows a bigger concentration of
the spectrum at low frequencies than the quite sleep signal.

Example 5.2.1 (Simple random harmonic oscillation). In this case the random sig-
nal is of the form

X.t/ D A cos.2�f0.t C �//;

where the random amplitude A has zero mean, EA D 0, and the finite variance
EA2 < 1. The random phase � is independent of A and uniformly distributed on
the interval Œ0; P � with P D 1=f0. In Chap. 4 we calculated that the autocovariance
function for this signal is

�X .�/ D EjAj2
2

cos.2�f0�/:

Hence, the power spectrum of the simple random harmonic oscillation with funda-
mental frequency f0 is
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SX .f / D
Z 1

�1
�X .�/e�2�jf 	d�

D
Z 1

�1
EjAj2

2

ej 2�f0	 C e�2�jf0	

2
e�j 2�f 	 d�

D EjAj2
4

�
ı.f � f0/ C ı.f C f0/

�
;

because the inverse Fourier transform of ı.f � f0/ is

Z 1

�1
ı.f � f0/e2�jf 	 df D e2�jf0	 :

Example 5.2.2 (Superposition of random harmonic oscillations (random periodic
signal)). The signal is of the form

X.t/ D
NX

kD1

Ak cos.2�kf0.t C �k//;

where the zero-mean amplitudes A1; : : : ; AN and phases �1; : : : ; �N are all inde-
pendent random quantities and �1; : : : ; �N are uniformly distributed on the interval
Œ0; P �, P D 1=f0. The autocovariance function of this signal is

�X .�/ D
NX

kD1

EjAkj2
2

cos.2�kf0�/;

and, arguing as in Example 5.2.1, the power spectrum is a linear combination of the
Dirac-deltas:

SX .f / D 1

4

NX

kD1

EjAkj2
�
ı.f � kf0/ C ı.f C kf0/

�
:

Thus in this case the power spectrum is concentrated on the discrete frequencies
˙f0; ˙2f0; : : : ; ˙Nf0.

Example 5.2.3 (Band-limited noise). A stationary signal X.t/ is said to be a band-
limited noise if its spectrum is

SX .f / D
(
N0; for �f max < f < fmaxI
0; elsewhere:

In other words, for a band-limited noise the mean power is distributed uniformly
over the frequency band Œ�fmax; Cfmax�. The mean power of the band-limited white
noise,
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PWX D
Z 1

�1
SX .f / df D

Z fmax

�fmax

N0 df D 2fmaxN0;

is finite. The autocovariance function of the band-limited white noise can be easily
calculated by taking the inverse Fourier transform. Thus we obtain

�X .�/ D
Z 1

�1
SX .f /ej 2�f 	 df D N0

Z fmax

�fmax

ej 2�f 	 df

D N0

j2��

�
ej 2�fmax	 � e�j 2�fmax	

�
D N0

��
sin.2�fmax�/:

Figure 5.2.2 shows both the power spectrum of a band-limited white noise
and its autocovariance function, for fmax D 1 and N0 D 1. Observe that, not sur-
prisingly, as the bandwidth 2fmax expands to infinity, the autocovariance function
approaches the Dirac delta – the autocovariance function of the ideal white noise,

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-6 -4 -2 0 2 4 6
-0.5

0.0

0.5

1.0

1.5

2.0

Fig. 5.2.2 Top: Power spectrum of the band-limited white noise X.t/ from Example 5.2.4. The
bandwidth is 2fmax and the mean power PWX D 2. Bottom: Autocovariance function of the above
band-limited noise. Observe that as the bandwidth expands to infinity the autocovariance function
approaches the Dirac delta – the autocovariance function of the ideal white noise
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which will be discussed in the next example. Note that the maximum value of
the autocovariance function �X .�/ is attained at � D 0 and is equal to the mean
power PWX D 2fmax, which diverges to C1 as the bandwidth increases. How-
ever,

R1
�1�X .�/ d� D SX .0/ D 1, and the value of the power spectrum at zero

frequency is independent of the bandwidth and remains constant.

Example 5.2.4 (The continuous-time white noise signal). By a standard white noise
signal, we mean a stationary signal W.t/ with a totally flat power spectrum over the
whole frequency range,

SW .f / D 1; �1 < f < 1:

We can think about it as a limit, for fmax ! 1, of the band-limited noise described
in Example 5.2.3, but, clearly, the white noise signal is not realizable physically
since its mean power is infinite:

E.PWW / D
Z 1

�1
1 df D 1:

However, it is a very useful abstraction. The Fourier transform of its autocovariance
function �W .�/ must satisfy the equation

Z 1

�1
�W .�/e�j 2�f 	 d� � 1

for all �1 < f < 1; which implies that

�W .�/ D ı.�/:

Loosely speaking, the above formula can be interpreted as follows: We can say that,
for t ¤ s, the white noise has “values,” X.t/ and X.s/, that are uncorrelated and,
for t D s, the covariance between X.t/ and X.s/ is infinite. This autocovariance
function is thus not a true function, but its shape is not surprising if you compare it to
the shape of the autocovariance function for the discrete-time white noise discussed
in Chap. 4. Because of the form of its autocovariance function, the white noise is
sometimes called a delta-correlated signal.

If a random signal W.t/ has the spectrum SW .f / � N′ > 0, then we shall call
W.t/ a white noise of amplitude N′.

Example 5.2.5 (Random switching signal). The random switching signal X.t/ dis-
cussed in Chap. 4 has the autocovariance function

�X .�/ D e�2j	 j:

Thus its power spectral density can be directly calculated by taking the Fourier
transform of the autocovariance function:
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SX .f / D
Z 1

�1
e�2jt je�j 2�f t dt D

Z 1

0

e�.2Cj 2�f /t dt C
Z 0

�1
e�.�2Cj 2�f /t dt

D 1

2

1

1 C j�f
C 1

2

1

1 � j�f
D 1

1 C .�f /2
:

Observe that the autocovariance function decays exponentially here as the time lag
increases, while the power spectrum decays only like the inverse square of the fre-
quency when the latter goes to infinity. The situation is pictured in Fig. 5.2.3.

At this point it is worth recalling Remark 4.1.2, where we made the following ob-
servation: If instead of the above standard switching signal X , with standard, mean-
one exponential interswitching times, one considers a more general switching signal
X�, with � (on the average) switches per unit time, then as � ! 0, its ACvF is

�X�
.�/ D 1

�
e�2j	 j=� ! ı.�/:

-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5.2.3 Top: Autocovariance function of the random switching signal from Example 5.2.5.
Bottom: The corresponding power spectrum
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Thus, the standard white noise can also be seen as a limit of the general switching
signals for which both the switching rate and the amplitude of the switches become
larger and larger.

5.3 Power Spectra of Interpolated Digital Signals

A random signal sampled at discrete sampling time interval Ts, that is, with sam-
pling frequency fs D 1=Ts, produces a sequence of random quantities

: : : ; X.�2Ts/; X.�Ts/; X.0/I X.Ts/; X.2Ts/; : : : : (5.3.1)

To fill in the gaps in the signal produced by discrete sampling at times nTs , we
shall interpolate the discrete signal1 by extending its definition to other times t via
the formula

X.t/ D X.nTs/; for nTs 	 t < .n C 1/Ts; (5.3.2)

and n D : : : ; �2; �1; 0; 1; 2; : : : : Having extended the definition of the signal to
continuous time, we can obtain its power spectrum following the method developed
in Sect. 5.1. In the present case the windowed signal is of the form

XN .t/ D
(

X.t/; for � NTs 	 t < NTsI
0; elsewhere;

with the window size being 2NTS .
Now the mean power is

E.PWX / D E lim
N !1

1

2NTs

N �1X

nD�N

X2.nTs/Ts

D E lim
N !1

1

2NTs

Z 1

�1
jXN .f /j2df (5.3.3)

D
Z 1

�1
lim

N !1
EjXN .f /j2

2NTs

df D
Z 1

�1
S.f / df;

with the power spectral density

S.f / D lim
N !1

EjXN .f /j2
2NTs

; (5.3.4)

and the equality in (5.3.3) resulting from Parseval’s formula.

1 The material in this section should be compared with analysis of the discrete and fast Fourier
transforms carried out in Sect. 2.7 for nonrandom, deterministic signals.
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In the next step we evaluate the Fourier transform XN .f / of the windowed
interpolated signal which is needed in formula (5.3.4):

XN .f / D
Z 1

�1
XN .t/e�j 2�f t dt D

N �1X

nD�N

Z .nC1/Ts

nTs

X.t/e�j 2�f t dt

D 1

�j2�f

N �1X

nD�N

X.nTs/
�
e�j 2�f .nC1/Ts � e�j 2�f nTs

�

D 1 � e�j 2�f Ts

j2�f

N �1X

nD�N

X.nTs/e
�j 2�f nTs :

Substituting this result into (5.3.4), we get the following structure of the power spec-
trum of X.t/:

S.f / D lim
N !1

j1 � e�j 2�f Ts j2
4�2f 2

� EjPN �1
nD�N X.nTs/e

�2�jf nTs j2
2NTs

D 1 � cos 2�f Ts

2�2f 2
lim

N !1

N �1X

kD�N

N �1X

nD�N

�X ..n � k/Ts/e�2�j.n�k/f Ts
1

2NTs

:

Changing the second summation variable by the substitution n D m C k, we get

S.f / D 1 � cos 2�f Ts

2�2f 2
lim

N !1

N �1X

kD�N

N �1�kX

mD�N �k

�X .mTs/e
�j 2�mf Ts

1

2NTs

D 1 � cos 2�f Ts

2�2f 2T 2
s

�
1X

mD�1
�X .mTs/e

�j 2�mf Ts Ts:

Hence, the power spectrum can be written as a product,

S.f / D S1.f /S2.f /; (5.3.5)

where the factor

S1.f / D 1 � cos 2�f Ts

2�2f 2T 2
s

(5.3.6)

decays to 0 at infinite frequencies (f ! ˙1) and is independent of the statisti-
cal properties of the signal [that is, of the autocovariance function �X .nTs/]. The
second factor,

S2.f / D
1X

mD�1
�X .mTs/e

�j 2�mf Ts Ts ; (5.3.7)
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is a periodic function with period fs D 1=Ts, represented by the Fourier series
with coefficients given by the discrete-time autocovariance function of the discretely
sampled signal.

So, if instead of the original power spectrum we consider the ratio S.f /=S1.f /,
then we obtain a clean relationship paralleling the symmetry of formulas for
continuous-time signals:

S.f /

S1.f /
D

1X

mD�1
�X .mTs/e

�j 2�mf Ts Ts (5.3.8)

and

�X .mTs/ D
Z fs=2

�fs=2

S.f /

S1.f /
ej 2�mf Ts df: (5.3.9)

Remark 5.3.1. It is clear that all the relevant information about the spectrum of the
signal sampled with the sampling interval Ts is contained in the frequency inter-
val .�fs=2; Cfs=2/. Power assigned to higher frequencies, appearing in the side
“lobes” of the spectrum (see Fig. 5.3.1), is simply an artifact of the interpolation.
Should we select a different interpolation scheme, the factor S1.f / responsible for
the decay of the “lobes” would look different (see Sect. 5.4).

Example 5.3.1 (Interpolated moving average of the discrete-time white noise). Let
the sampling interval Ts D 1, and let W.n/ be a discrete-time white noise signal
[EW.n/ D 0; �W .�/ D ı.�/=2]. For the moving average signal

Y.n/ D 1

2
W.n/ C 1

2
W.n � 1/;
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Fig. 5.3.1 Power spectrum of the interpolated moving average of the discrete-time white noise
signal. The sampling rate is fs D 1=Ts D 1, and the relevant spectrum is concentrated in the
interval .�fs=2; Cfs=2/. The side “lobes” are an artifact of the interpolation scheme
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we calculated in Chap. 4 that

�Y .0/ D 1=4; �Y .˙1/ D 1=8; �Y .�/ D 0; for j� j � 2:

So the periodic S2.f / factor of the power spectrum of the interpolated Y.n/ is
of the form

S2.f / D 1

8
ej 2�f �1 C 1

4
C 1

8
e�j 2�f �1 D 1

4
.1 C cos 2�f /;

and the power spectral density itself of the interpolated Y is

SY .f / D S1.f /S2.f / D 1 � cos 2�f

2�2f 2
� 1

4
.1 C cos 2�f / D 1

2

�
sin.2�f /

2�f

�2

:

5.4 Problems and Exercises

5.4.1. Consider the first-order moving average signal

Y.n/ D 4W.n/ � 6W.n � 1/ C 3W.n � 2/;

where W.n/ is the standard discrete-time white noise signal with �2
W D 1.

(a) Simulate long samples of this signal using both uniformly distributed (symmet-
ric) and standard Gaussian white noises, and estimate its power spectrum via
the periodogram formula (5.1.3). Plot it. Then smooth it out by taking its con-
volution with a Gaussian kernel. Plot it again.

(b) Calculate and plot the power spectrum density of Y via the “interpolation” for-
mula in Example 5.3.1. Compare this plot with the plots obtained in part (a).

5.4.2. With W.n/ being the discrete-time white noise signal with �2
W D 5 (either

uniformly distributed and symmetric, or Gaussian), simulate long samples of the
signal

Y.n/ D W.n/ C 0:5W.n � 1/ � 0:3W.n � 2/:

Derive and plot the power spectrum density of Y via both the periodogram formula
(5.1.3) and the “interpolated” formula in Example 5.3.1. Follow the plan described
in Exercise 5.4.1.

5.4.3. For a given window of size q, find the power spectrum density of a general
moving average signal

Y.n/ D b0W.n/ C b1W.n � 1/ C � � � C bqW.n � q/;

where W.n/ is the discrete-time white noise with �2
W D 1.
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5.4.4. Discrete sampling with linear interpolation. Consider a signal X sampled at
the sampling interval Ts. Its interpolation to continuous-time signal is given by the
following formula:

X.t/ D
1X

mD�1
X.mTs/�.t � mTs/;

where the interpolating kernel

�.t/ D

8
ˆ̂
<

ˆ̂
:

1 � t=Ts; for 0 < t < Ts I
1 C t=Ts; for � Ts < t < 0I
0; elsewhere:

(a) Plot the kernel �.t/ and the interpolated X.t/ for an example of the sampled
signal selected by you. Explain the interpolation effect.

(b) Demonstrate that the Fourier transform of the interpolated signal is of the form

XN .f / D
NX

mD�N

X.mTs/e
�2�jmTsf �.f /;

where �.f / is the Fourier transform of the kernel �.t/. Produce a plot of �.f /.
(c) Verify that the power spectrum density for the interpolated signal X.t/ is

S.f / D lim
N !1

EjXN .f /j2
.2N C 1/Ts

D �2.f /
1

Ts

1X

mD�1
�X .mTs/e

�2�jmf Ts :

5.4.5. A stationary signal X.t/ has the autocovariance function

�X .�/ D 16e�5j	 j cos 20�� C 8 cos 10��:

(a) Find the variance of this signal.
(b) Find the power spectrum density of this signal.
(c) Find the value of the spectral density at zero frequency.

5.4.6. A stationary signal X.t/ has the spectral density of the form

SX .f / D
(

5; for 10
2�

	 jf j 	 20
2�

I
0; elsewhere:

(a) Find the mean power of X .
(b) Find the autocovariance function of X .
(c) Find the value of the autocovariance at � D 0.
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5.4.7. A stationary signal X.t/ has the spectral density of the form

SX .f / D 9

.2�f /2 C 64
:

At what frequency does the spectral density fall to one half of its maximal value
(this value is called the half-power bandwidth)?

(a) Write an expression for the spectral density of a band-limited white noise Y

that has the same value at zero frequency and the same mean power as X . What
is its bandwidth? It is called the equivalent noise bandwidth of X . Compare it
with the half-power bandwidth.

(b) Find the autocovariance function of the signal X .
(c) Find the autocovariance function of the signal Y .
(d) Compare the values of these two autocovariance functions at � D 0.

5.4.8. (a) Consider a solution of the stochastic differential equation described in
Example 4.1.6. Take ˛ D 0:7; ˇ D 1, and assume that the white noise W.n/

is Gaussian, N (0,1). Produce pictures of five different trajectories of length 100
of this solution truncating the infinite series representing the solution to the first
10 terms.

(b) Use the above-generated sample signals to estimate their mean and ACvF. Plot
the ACvF and compare it graphically with the theoretically derived ACvF. For
better comparison, smooth out the empirical ACvFs by taking their convolution
with a “nice” kernel; cf. the “moving average” technique applied in Chap. 4 to
random signals themselves.

(c) Use the periodogram formula from Sect. 5.2 to estimate the power spectra of
the above sample signals. Smooth them out. Compare them graphically with the
theoretical power spectrum of the same signal.

5.4.9. Verify the positive-definiteness (see Remark 5.2.1) of autocovariance func-
tions of stationary signals directly from their definition,

�X .�/ D E
h
.X.t/ � E.X.t///� � .X.t C �/ � E.X.t///

i
:

Is the stationarity condition necessary for positive-definiteness of the covariance
function of X.t/?



Chapter 6
Transmission of Stationary Signals Through
Linear Systems

Signals produced in nature are almost never experienced in their original form.
Usually, we have access to them after they pass through various sensing and/or
transmission devices such as a voltmeter for electric signals, an ear for acoustic sig-
nals, an eye for visual signals, a fiber-optic cable for wide-band Internet signals, and
so forth. All of them impose restrictions on the signal being transmitted by attenuat-
ing different frequency components of the signal to a different degree. This process
is generally called filtering and the devices that change the signal’s spectrum are
traditionally called filters.

A typical example here is a band-pass filter, which permits transmission of the
components of the signal only in a certain frequency band, attenuating the frequen-
cies in that band in a uniform fashion, but totally “killing” the frequencies outside
this band. Figure 6.0.1 shows results of filtering a portion of the EEG signal from
Fig. 4.1.1 through four band-pass filters with frequency bands (top to bottom) 0.5–
3.5, 4–7.5, 8–12.5, and 13–17 Hz. In the neurological literature, the contents of
the EEG signal within these frequency bands are traditionally called Delta, Theta,
Alpha, and Beta waves, respectively.

In this chapter we study how statistical characteristics of random stationary sig-
nals are affected by transmission through linear filters. The linearity assumption
means that we suppose that there is a linear relationship between the signals on the
input and output of the filter. In real life it is not always the case, but the study of
nonlinear filters is much more difficult than the linear theory presented below, and
beyond the scope of this book.

6.1 Time-Domain Analysis

In this section we conduct the time-domain analysis of the transmission of random
signals through a linear system shown schematically below:

X.t/ �! h(t) �! Y.t/:

W.A. Woyczyński, A First Course in Statistics for Signal Analysis,
DOI 10.1007/978-0-8176-8101-2 6, c� Springer Science+Business Media, LLC 2011
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Fig. 6.0.1 A portion of the
EEG signal from Fig. 4.1.1
filtered through four
band-pass filters with
frequency bands (top to
bottom) 0.5–3.5, 4–7.5,
8–12.5, and 13–17 Hz,
respectively

The input signal X.t/ is assumed to be (real-valued) random and stationary, with
mean �X D EX.t/ and autocovariance function �X .�/ D EX.t/X.t C �/. The
system is identified by a “structure” function h.t/, and the output signal Y.t/ is
defined as the continuous-time moving average (convolution):

Y.t/ D
Z 1

�1
X.s/h.t � s/ ds D

Z 1

�1
X.t � s/h.s/ ds: (6.1.1)

Note that in the case of a nonrandom Dirac delta impulse input ı.t/; the nonran-
dom output signal is

y.t/ D
Z 1

�1
ı.s/h.t � s/ ds D h.t � 0/ D h.t/:

For this reason the system-identifying time-domain “structure” function h.t/ is usu-
ally called the impulse response function.

The mean value of the output signal is easily calculated in terms of the input
signal and of the impulse response function:

EY.t/ D
Z 1

�1
EŒX.t � s/�h.s/ ds D �X

Z 1

�1
h.s/ ds: (6.1.2)

The above formula makes sense only if the last integral is well defined. For this
reason we will always assume that the system is realizable, that is,

Z 1

�1
jh.s/j ds < 1: (6.1.3)

In view of (6.1.2), for realizable systems, if the input signal has zero mean, then the
output signal also has zero mean:

�X D 0 H) �Y D 0:

In this situation, from now on, we will restrict our attention only to zero-mean
signals.
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The calculation of the autocovariance function of the output signal Y.t/ is a little
bit more involved. Replacing the product of the integrals by the double integral, we
obtain

�Y .�/ D E.Y.t/Y.t C �//

D E
�Z 1

�1
X.t � s/h.s/ ds

Z 1

�1
X.t C � � u/h.u/ du

�

D
Z 1

�1

Z 1

�1
E
h
X.t � s/X.t C � � u/

i
h.s/h.u/ ds du:

Then, in view of the stationarity assumption,

E
h
X.t � s/X.t C � � u/

i
D E

h
X.�s/X.� � u/

i
D �X .� � u C s/;

so that, finally,

�Y .�/ D
Z 1

�1

Z 1

�1
�X .� � u C s/h.s/h.u/ ds du: (6.1.4)

A system is said to be causal if the current values of the output depend only on
the past and present values of the input. This property can be equivalently stated as
the requirement that the impulse response function,

h.t/ D 0; for t 	 0: (6.1.5)

In other words, the moving average is performed only over the past. This condition,
in particular, implies that the second output integral in (6.1.1) is restricted to the
positive half-line,

Y.t/ D
Z 1

0

X.t � s/h.s/ ds; (6.1.6)

and formula (6.1.4) for the autocovariance function takes the form

�Y .�/ D
Z 1

0

Z 1

0

�X .� � u C s/h.s/h.u/ ds du: (6.1.7)

In what follows in this chapter we will consider only causal filters.

Example 6.1.1 (An integrating circuit). A standard integrating circuit with a single
capacitor is shown in Fig. 6.1.1.

The impulse response function for this system is the unit step function u.t/ mul-
tiplied by 1=C , where the constant C represents the capacitance of the capacitor:

h.s/ D 1

C
u.s/ D

�
0; for s < 0I
1=C; for s � 0.



146 6 Transmission of Stationary Signals Through Linear Systems

X(t) C Y(t)

Fig. 6.1.1 A standard integrating circuit. The voltage Y.t/ on the output is the integral of the
current X.t/ on the input

The output is

Y.t/ D 1

C

Z 1

�1
X.s/u.t � s/ds D 1

C

Z t

�1
X.s/ ds:

Obviously, this system, although causal, is not realizable over the whole timeline
since Z 1

�1
jh.t/j dt D

Z 1

0

1

C
dt D 1:

To avoid this difficulty, we need to restrict the integrating circuit to a finite time
interval and assume that the adjusted impulse response function is of the form

h.s/ D

8
ˆ̂
<

ˆ̂
:

0; for s < 0I
1=C; for 0 	 s 	 T I
0; for s > T:

(6.1.8)

In this situation the system is realizable and the output is

Y.t/ D
Z 1

�1
X.s/h.t � s/ds D 1

C

Z t

t�T

X.s/ds:

The autocovariance function is equal to

�Y .�/ D
Z T

0

Z T

0

�X .� � u C s/ h.s/ h.u/ ds du

D 1

C 2

Z T

0

Z T

0

�X .u � .� C s// ds du; (6.1.9)

because, for real-valued signals, the autocovariance function is even, �X .��/ D
�X .�/.

Therefore, if the input signal is the standard white noise X.t/ D W.t/ with the
autocovariance function �W .t/ D ı.t/, and C D 1, then for � � 0, the output auto-
covariance function is
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Fig. 6.1.2 The output autocovariance function �Y .�/ (6.1.10) of the integrating system (6.1.8)
with T D 1, in the case of the standard white noise input X.t/ D W.t/

�Y .�/ D
Z T

0

Z T

0

ı.u � .� C s// du ds D
Z T

0

�.s/ ds;

where

�.s/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

0; for � C s < 0I
1=2; for � C s D 0I
1; for 0 < � C s < T I
1=2; for � C s D T I
0; for � C s > T:

Hence, the autocovariance function, pictured in Fig. 6.1.2, is

�Y .s/ D

8
ˆ̂<

ˆ̂
:

0; for � < �T I
T � j� j; for � T 	 � 	 T I
0; for � > T:

(6.1.10)

If the input signal X.t/ is a simple random harmonic oscillation with the autoco-
variance function �X .�/ D cos � and, again, C D 1, then the output autocovariance
function, several examples thereof are shown in Fig. 6.1.3, is

�Y .�/ D
Z T

0

Z T

0

cos.� � u C s/ ds du D 2 cos �.1 � cos T /: (6.1.11)

As simple as formula (6.1.9) for the output autocovariance function seems to
be, the analytic evaluation of the double convolution may get tedious very quickly.
Consider, for example, an input signal X.t/ with the autocovariance function
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Fig. 6.1.3 The output
autocovariance functions
�Y .�/ (6.1.11) of the
integrating system (6.1.8)
with T D 1; 2; and 3 (top to
bottom), in the case of simple
random harmonic oscillation
input with �X .�/ D cos � .
Note the increasing amplitude
of �Y .�/ as T increases

�X .�/ D 1

1 C �2
; (6.1.12)

which corresponds to the exponentially decaying power spectrum (see Sect. 6.4).
In this case,

�Y .�/ D
Z T

0

Z T

0

1

1 C .� � u C s/2
ds du

D 1

2

 

2.T � �/ arctan.T � �/ � 2� arctan � � log.1 C .T � �/2/

C log.1 C �2/

!
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Fig. 6.1.4 The output autocovariance functions �Y .�/ (6.1.13) of the integrating system (6.1.8)
with T D 1; 2; 3; and 4, in the case of input with �X .�/ D 1=.1C�2/. Note the growing maximum
and spread of �Y .�/ as T increases

R

C Y(t)X(t)

Fig. 6.1.5 A standard RC filter with the impulse response function h.t/ D .1=RC/ exp.�t

=RC/ � u.t /

C 1

2

 

�2� arctan.�/ C 2.� C T / arctan.� C T /

C log.1 C �2/ C log.1 C T 2 C 2T � C �2/

!

: (6.1.13)

So, even for a relatively simple autocovariance function of the input, the output au-
tocovariance may be quite complex. And, yes, you guessed right, to avoid the tedium
of paper-and-pencil calculations, we obtained the above formula using Mathemat-
ica. Figure 6.1.4 traces the dependence of �Y .�/ on T graphically.

Example 6.1.2. An RC filter. A standard RC filter is shown in Fig. 6.1.5.
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Fig. 6.1.6 The output autocovariance function �Y .�/ for the RC filter (6.1.14) with a standard
white noise input with �X .�/ D ı.�/: The figure on the left shows the case of a small time constant,
RC D 1, and the one on the right, the case of a larger time constant, RC D 3. Note the difference
in the maximum and the spread of �Y .�/ in these two cases

The impulse response function of this circuit is of the form

h.t/ D 1

RC
exp

�
� t

RC

�
� u.t/; (6.1.14)

where u.t/ is the usual unit step function, R is the electrical resistance, and C is the
capacitance. The product RC represent the so-called time constant of the circuit.

In the case of the white noise input signal with �X .�/ D ı.�/, the output autoco-
variance function, for � > 0, is

�Y .�/ D
Z 1

0

Z 1

0

ı.u � .s C �//h.u/h.s/ du ds D
Z 1

0

h.s C �/h.s/ ds

D
Z 1

0

1

RC
e

sC�
RC � 1

RC
e

s
RC ds D 1

2RC
e� �

RC :

So

�Y .�/ D 1

2RC
exp

�
� j� j

RC

�
: (6.1.15)

The shape of the output autocovariance function for small and large values of the
RC constant is shown in Fig. 6.1.6.

Remark 6.1.1 (Ornstein–Uhlenbeck stationary signals). You may have noticed that
the ACvF appearing in (6.1.15) has the same exponential shape as that of the switch-
ing signal considered in Sect. 4.1, and also, in discrete time, that of the solution of
a stochastic difference equation considered in the same section. However, if the in-
put white noise in the above example has a Gaussian distribution, then the output
is also Gaussian (obviously, not a switching signal, which takes only two values).
A Gaussian stationary signal with the exponential ACvF (6.1.15) is traditionally
called the Ornstein–Uhlenbeck signal (process), and it appears as a model in nu-
merous physical and engineering problems, see Chap. 8 for a detailed discussion of
Gaussian stationary signals.
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For the simple random harmonic oscillation with autocovariance function
�X .�/ D cos � as the input, the output autocovariance function is

�Y .�/ D
Z 1

0

Z 1

0

cos.� � u C s/
1

RC
exp

��s

RC

� 1

RC
exp

��u

RC

�
ds du

D cos �

1 C .RC/2
:

But a slightly more complex input autocovariance function,

�X .�/ D e�2j	 j;

corresponding to the switching input signal produces the output autocovariance
function of the form

�Y .�/ D 1

.RC /2

Z 1

0

Z 1

0

e�j	�uCsje�.sCu/=.RC / ds du

D 1

.RC /2

"Z 	

0

Z 1

0

e�.	�uCs/e�.sCu/=.RC / ds du

C
Z 1

	

 Z u�	

0

e	�uCse�.sCu/=.RC / ds

C
Z 1

u�	

e�.	�uCs/e�.sCu/=.RC / ds

!

du

#

; (6.1.16)

which, although doable (see Sect. 6.4, Problems and Exercises), is not fun to
evaluate.

6.2 Frequency-Domain Analysis and System’s Bandwidth

Examples provided in the preceding section demonstrated analytic difficulties re-
lated to the time-domain analysis of random stationary signals transmitted through
linear systems. In many cases the analysis becomes much simpler if it is carried
out in the frequency domain. For this purpose let us consider the Fourier transform
H.f / of the system’s impulse response function h.t/:

H.f / D
Z 1

�1
h.t/e�2�jf t dt; (6.2.1)

which traditionally is called the system’s transfer function.
Now the task is to calculate the power spectrum,

SY .f / D
Z 1

�1
�Y .�/e�2�jf 	 d�; (6.2.2)
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of the output signal given the power spectrum,

SX .f / D
Z 1

�1
�X .�/e�2�jf 	 d�;

of the input signal. Since the output autocovariance function �Y .t/ has been cal-
culated in Sect. 6.1, substituting the expression obtained in (6.1.4) into (6.2.1), we
get

SY .f / D
Z 1

�1

 Z 1

�1

Z 1

�1
�X .� � s C u/h.s/h.u/ ds du

!

e�2�jf 	 d�

D
Z 1

�1

Z 1

�1

 Z 1

�1
�X .� �s Cu/e�2�jf .	�sCu/ d�

!

h.s/e�2�jf sds

� h.u/e2�jf udu:

Making the substitution � � s C u D w in the inner integral, we arrive at the final
formula:

SY .f / D SX .f / � H.f / � H �.f / D SX .f / � jH.f /j2: (6.2.3)

So the output power spectrum is obtained simply by multiplying the input power
spectrum by a fixed factor jH.f /j2, which is called the system’s power transfer
function.

The appearance of the power transfer function, jH.f /j2, in formula (6.2.3) sug-
gests we introduce the concept of the system’s bandwidth. As in the case of signals
(see Sect. 5.4), several choices are possible.

The equivalent-noise bandwidth BWn is defined as the cutoff frequency fmax of
the limited-band white noise with the amplitude equal to the value of the system’s
power transfer function at 0 and the mean power equal to the integral of the system’s
power transfer function; that is,

2BWnjH.0/j2 D
Z 1

�1
jH.f /j2 df;

which gives

BWn D 1

2jH.0/j2
Z 1

�1
jH.f /j2 df: (6.2.4)

The half-power bandwidth BW1=2 is defined as the frequency where the sys-
tem’s power transfer function declines to one half of its maximum value, which is
always equal to jH.0/j2. Thus it is obtained by solving, for an unknown BW1=2, the
equation

jH.BW1=2/j2 D 1

2
jH.0/j2: (6.2.5)
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Obviously, the above bandwidth concepts make the best sense for lowpass filters,
that is, in the case when the system’s power transfer function has a distinctive maxi-
mum at 0, dominating its values elsewhere. But for other systems, such as bandpass
filters, similar bandwidth definitions can be easily devised.

Example 6.2.1. An RC filter. Recall that in this case the impulse response function
is given by

h.t/ D 1

RC
e� t

RC � u.t/:

So the transfer function is

H.f / D
Z 1

�1
h.t/e�2�jf t dt D

Z 1

0

1

RC
e� t

RC e�2�jf t dt D 1

1 C 2�jRCf

and, consequently, the power transfer function is

jH.f /j2 D 1

1 C 2�jRCf
� 1

1 � 2�jRCf
D 1

1 C .2�RCf /2
: (6.2.6)

Several examples of this function are shown in Fig. 6.2.1. The half-power band-
width of the RC filter is easily computable from the equation

1

1 C .2�RC.BW1=2//2
D 1

2
;

which gives

BW1=2 D 1

2�RC
:

The bandwidth decreases hyperbolically with the increase of the RC constant.
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Fig. 6.2.1 Power transfer functions jH.f /j2 D 1=.1 C .2�RCf /2/ for the RC filter discussed in
Example 6.2.1, with the RC constants 0:1 (thick line), 0.5 (medium line), and 2.0 (thin line). The
half-power bandwidths BW1=2 are, respectively, 1.6, 0.32, and 0.08
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The output power spectra for an RC filter are thus easily evaluated. In the case of
the standard white noise input with SX .f / � 1, the output power spectrum is

SY .f / D 1

1 C .2�RCf /2
:

If the input signal is a random oscillation with the power spectrum

SX .f / D A2
0

2

�
ı.f � f0/ C ı.f C f0/

�
;

then the output power spectrum is

SY .f / D A2
0

2

�
ı.f � f0/ C ı.f C f0/

�
� 1

1 C .2�RCf /2
:

If the input is a switching signal with the power spectrum

SX .f / D 1

1 C .af /2
;

then the output power spectrum is

SY .f / D 1

1 C .af /2
� 1

1 C .2�RCf /2
:

Example 6.2.2. Bandwidth of the finite-time integrating circuit. Let us calculate the
bandwidths BWn and BW1=2 for the finite-time integrator with the impulse response
function

h.t/ D
(

1; for 0 	 t 	 T I
0; elsewhere:

In this case the transfer function is

H.f / D
Z T

0

e�2�jf t dt D 1

2�jf

�
1 � e�2�jf T

�
;

so that the power transfer function is

jH.f /j2 D .1 � e�2�jf T /.1 � e2�jf T /

.2�f /2
D 2.1 � cos 2�f T /

.2�f /2
: (6.2.7)

Finding the integral of the power transfer function directly is a little tedious, but,
fortunately, by Parseval’s formula,
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Fig. 6.2.2 Top: Power transfer function (6.2.7) of the finite-time integrating circuit with T D 1.
Bottom: Magnified portion of the power transfer function for f between 0.44 and 0.45. This graph-
ical analysis gives the half-power bandwidth BW1=2 D 0:443

Z 1

�1
jH.f /j2 df D

Z 1

�1
h2.t/ dt D

Z T

0

dt D T

and

H.0/ D
Z T

0

h.t/ dt D T:

Thus the equivalent-noise bandwidth (6.2.4) is

BWn D 1

2T 2
� T D 1

2T
:

Finding the half-power bandwidth requires solving equation (6.2.5),

2.1 � cos 2�.BW1=2/T /

.2�.BW1=2//2
D T 2

2
;

which can be done only numerically. Indeed, a quick graphical analysis (see
Fig. 6.2.2), for T D 1, gives the half-power bandwidth BW1=2 D 0:443, slightly
less than the corresponding equivalent-noise bandwidth BWeqn D 0:500.

6.3 Digital Signal, Discrete-Time Sampling

In this section we will take a look at the transmission of random stationary sig-
nals through linear systems when the signals are sampled at discrete times with the
sampling interval Ts . The system can be schematically represented as follows:

X.nTs/ �! h.nTs/ �! Y.nTs/:
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The input signal now forms a stationary random sequence,

X.nTs/; n D : : : � 1; 0; 1; : : : ; (6.3.1)

and the output signal,

Y.nTs/; n D : : : � 1; 0; 1; : : : ; (6.3.2)

is produced by the discrete-time convolution of the input signal X.nTs/ with the
discrete-time impulse response sequence h.nT s/:

Y.nTs/ D
1X

iD�1
X.iTs/h.nTs � iTs/Ts : (6.3.3)

In the discrete-time case, the realizability condition is

1X

nD�1
jh.nTs/j < 1;

and the causality condition means that

h.nTs/ D 0; for n < 0:

With discrete-time inputs and outputs, the autocovariance functions are just discrete
sequences and are defined by the formulas

�X .kTs/ D E.X.nTs/X.nTs C kTs//; �Y .kTs/ D E.Y.nTs/Y.nTs C kTs//:

Then a direct application of (6.3.3) yields the following formula for the output au-
tocovariance sequence as a function of the input autocovariance sequence and the
impulse response sequence:

�Y .kTs/ D
1X

lD�1

1X

iD�1
�X .kTs � lTs C iTs/h.lTs/h.iTs/T

2
s : (6.3.4)

To move into the frequency domain, one can either directly apply the discrete or
fast Fourier transform or, as in Sect. 6.3, use the straight continuous-time Fourier
transform technique, assuming that both the signal and the impulse response func-
tion have been interpolated by constants between sampling points. We will follow
the latter approach. So, using formula (5.3.5), we get

SX .f / D S1.f / � S2;X .f /; (6.3.5)

with

S2;X .f / D
1X

mD�1
�X .mTs/e

�j 2�mf Ts Ts

and
SY .f / D S1.f / � S2;Y .f /; (6.3.6)
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with

S2;Y .f / D
1X

mD�1
�Y .mTs/e

�j 2�mf Ts Ts

and

S1.f / D 1 � cos 2�f Ts

2�2f 2T 2
s

:

Remember that all the relevant information about the discrete sampled signal is
contained in the frequency interval .�fs=2; fs=2/ (see Remark 5.3.1). The transfer
function of this system is

H.f / D
Z 1

�1
h.t/e�j 2�f t dt D

1X

kD�1
h.kTs/

Z .kC1/Ts

kTs

e�j 2�f t dt

D 1 � ej 2�f Ts

�j2�f Ts

1X

kD�1
h.kTs/e�j 2�f kTs Ts ; (6.3.7)

so that the power transfer function is

jH.f /j2 D 1 � cos 2�f Ts

2�2f 2T 2
s

1X

kD�1

1X

nD�1
h.kTs/h.nTs/e�j 2�f .k�n/Ts T 2

s : (6.3.8)

Again, all the relevant information about the discrete power transfer function is
contained in the frequency interval .�fs=2; fs=2/ (see Remark 5.3.1).

Finally, since we already know from Sect. 6.2 that

SY.f / D jH.f /j2SX .f /;

we also get from (6.3.5) and (6.3.6) that

S2;Y .f / D jH.f /j2S2;X .f / (6.3.9)

or, equivalently,

1X

mD�1
�Y .mTs/e

�j 2�mf Ts Ts D jH.f /j2 �
1X

mD�1
�X .mTs/e

�j 2�mf Ts Ts :

(6.3.10)

Example 6.3.1 (Autoregressive moving average signal (ARMA)). We now take the
sampling period Ts D 1 and the output Y.n/ determined from the input X.n/

via the autoregressive moving average scheme with parameters p and q [in short,
ARMA.p; q/]:

Y.n/ D
qX

lD0

b.l/X.n � l/ �
pX

lD1

a.l/Y.n � l/: (6.3.11)
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Defining a.0/ D 1, we can then write

pX

lD0

a.l/Y.n � l/ D
qX

lD0

b.l/X.n � l/:

Since the Fourier transform of the convolution is a product of Fourier transforms,
we have

X.f /

qX

lD0

b.l/e�2�jf lT D Y.f /

pX

lD0

a.l/e�2�jf lT ;

so the transfer function is

H.f / D Y.f /

X.f /
D
Pq

lD0
b.l/e�2�jf lT

Pp

lD0
a.l/e�2�jf lT

: (6.3.12)

Example 6.3.2. A solution of the stochastic difference equation. This example was
considered in Chap. 4, but let us observe that it is a special case of Example 6.3.1,
with parameters p D 1, q D 0, and the input signal being the standard discrete
white noise W.n/ with �2

W D 1. In other words,

Y.n/ D �a1Y.n � 1/ C b0W.n/:

In view of (6.3.12), the power transfer function is

jH.f /j2 D b0

1 C a1e�2�jf
� b0

1 C a1se2�jf
D b2

0

1 C a2
1 C 2a1 cos 2�f

;

with, again, all the relevant information contained in the frequency interval �1=2 <

f < 1=2.
Given that the input is the standard white noise, we have that

SY .f / D jH.f /j2 � 1 D b2
0

1 C a2
1 C 2a1 cos 2�f

: (6.3.13)

One way to find the output autocovariance sequence �Y .n/ would be to take
into account the relationship (6.3.10) and expand (6.3.13) into the Fourier series;
its coefficients will form the desired autocovariance sequence. This procedure is
straightforward and requires only an application of the formula for the sum of a
geometric series (see Sect. 6.4).

However, we would like to explore a different route here and employ a recursive
procedure to find the output autocovariance sequence. First, observe that

�Y .k/ D E.Y.n/Y.n C k//

D E.�a1Y.n � 1/ C b0X.n// � .�a1Y.n C k � 1/ C b0X.n C k//

D a2
1E.Y.n � 1/Y.n C k � 1// � a1b0E.Y.n � 1/X.n C k//

� a1b0E.X.n/Y.n C k � 1// C b2
0E.X.n/X.n C k//
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D a2
1�Y .k/ � a1b0�XY .k � 1/ C b2

0�X .k/;

where
�XY .k/ D E.X.n/Y.n C k//

is the cross-covariance sequence of signals X.n/ and Y.n/. So

�Y .k/ D b0

1 � a2
1

�
�a1�XY .k � 1/ C b0�X .k/

�
:

For k D 0,

�Y .0/ D �2
Y D b0

1 � a2
1

�
�a1E.X.n/Y.n � 1// C b0�X .0/

�

D b2
0

1 � a2
1

�X .0/ D b2
0

1 � a2
1

:

For k D 1,

�Y .1/ D b0

1 � a2
1

�
�a1�XY .0/ C b0�X .1/

�
D b0.�a1/

1 � a2
1

E.X.0/Y.0//

D b0.�a1/

1 � a2
1

E
�
X.0/

�
a1Y.�1/ C b0X.0/

��
D b2

0.�a1/

1 � a2
1

:

For a general k > 1,

�Y .k/ D b0

1 � a2
1

�
�a1�XY .k � 1/ C b0�X .k/

�
;

and, as above,

�XY .k � 1/ D E
�
X.0/Y.k � 1/

�

D E
�
X.0/.�a1Y.k � 2/ C b0X.k � 1//

�

D .�a1/E
�
X.0/Y.k � 2/

�

D .�a1/�XY .k � 2/ D � � � D .�a1/k�1�XY .0/ D b.0/.�a1/k�1:

Since the autocovariance sequence must be an even function of the variable k, we
finally get, for any k D : : : ; �2; �1; 0; 1; 2; : : : ;

�Y .k/ D b2
0

1 � a2
1

.�a1/jkj;

thus recovering the result from Chap. 4.
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6.4 Problems and Exercises

In Exercises 6.4.1–6.4.3, also try solving the problem by first finding the autoco-
variance function of the output to see how hard the problem is in the time-domain
framework.

6.4.1. The impulse response function of a linear system is h.t/ D 1�t for 0 	 t 	 1

and 0 elsewhere:

(a) Produce a graph of h.t/:

(b) Assume that the input is the standard white noise. Find the autocovariance func-
tion of the output.

(c) Find the power transfer function of the system, its equivalent-noise bandwidth,
and its half-power bandwidth.

(d) Assume that the input has the autocovariance function �X .t/ D 3=.1 C 4t2/.
Find the power spectrum of the output signal.

(e) Assume that the input has the autocovariance function �X .t/ D exp.�4jt j/.
Find the power spectrum of the output signal.

(f) Assume that the input has the autocovariance function �X .t/ D 1 � jt j for
jt j < 1 and 0 elsewhere. Find the power spectrum of the output signal.

6.4.2. The impulse response function of a linear system is h.t/ D e�2t for 0 	 t 	
2 and 0 elsewhere:

(a) Produce a graph of h.t/:

(b) Assume that the input is the standard white noise. Find the autocovariance func-
tion of the output.

(c) Find the power transfer function of the system, its equivalent-noise bandwidth,
and its half-power bandwidth.

(d) Assume that the input has the autocovariance function �X .t/ D 3=.1 C 4t2/.
Find the power spectrum of the output signal.

(e) Assume that the input has the autocovariance function �X .t/ D exp.�4jt j/.
Find the power spectrum of the output signal.

(f) Assume that the input has the autocovariance function �X .t/ D 1 � jt j for
jt j < 1 and 0 elsewhere. Find the power spectrum of the output signal.

6.4.3. The impulse response function of a linear system is h.t/ D e�0:05t for t � 10

and 0 elsewhere:

(a) Produce a graph of h.t/:

(b) Assume that the input is the standard white noise. Find the autocovariance func-
tion of the output.

(c) Find the power transfer function of the system, its equivalent-noise bandwidth,
and its half-power bandwidth.

(d) Assume that the input has the autocovariance function �X .t/ D 3=.1 C 4t2/.
Find the power spectrum of the output signal.
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(e) Assume that the input has the autocovariance function �X .t/ D exp.�4jt j/.
Find the power spectrum of the output signal.

(f) Assume that the input has the autocovariance function �X .t/ D 1 � jt j for
jt j < 1 and 0 elsewhere. Find the power spectrum of the output signal.

6.4.4. For a pair of random signals, X.t/ and Y.t/, the cross-covariance, �XY , is
defined as follows:

�XY .t; s/ D E..X.t/ � �X .t//.Y.s/ � �Y .s///:

The random signals X.t/ and Y.t/ are said to be jointly stationary if they are sta-
tionary and their cross-covariance satisfies the condition

�XY .t; t C �/ D �XY .�/:

Consider the random signals

X.t/ D a cos.2�.f0t C ‚//; Y.t/ D b sin.2�.f0t C ‚//;

where a and b are nonrandom constants and ‚ is uniformly distributed on Œ0; 1�.
Find the cross-covariance function for X and Y . Are these signals jointly stationary?

6.4.5. Consider the circuit shown in Fig. 6.4.1.
Assume that the input, X.t/, is the standard white noise:

(a) Find the power spectra SY .f / and SZ.f / of the outputs Y.t/ and Z.t/.
(b) Find the cross-covariance,

�YZ.�/ D E
�
Z.t/Y.t C �/

�
;

between those two outputs.

6.4.6. Find the output autocovariance sequence for the discrete-time system repre-
senting a stochastic difference equation described in Example 6.3.2. Use the Fourier
series expansion of formula (6.3.12).

Fig. 6.4.1 The circuit
discussed in Problem 6.4.5

X(t)

Z(t)

Y(t)C

R
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Fig. 6.4.2 The circuit
discussed in Problem 6.4.7

R1 R2

C2X(t) Y(t)C1

6.4.7. Consider the circuit shown in Fig. 6.4.2:

(a) Assume that the input is the standard white noise. Find the power spectrum
SY .f / and the autocovariance function �Y .�/ of the output Y.t/. Hint: Think
about the above circuit as two simple RC filters in series.

(b) Find the half-power and equivalent-noise bandwidth for the system shown in
Fig. 6.4.2 in the case when R1 D R2 and C1 D C2.

6.4.8. Show that a continuum limit of RC filters in series has a Gaussian p.d.f.-like
power transfer function. Then prove that a white noise transmitted through such a
filter yields a stationary signal on the output with a Gaussian p.d.f.-like autocovari-
ance function. More precisely, consider n rescaled RC filters in series, each with
the time constant equal to RC=

p
n. Calculate its power transfer function, and take

n ! 1, to obtain the sought power transfer function of the form

jH.f /j2 D e�.2�RCf /2

:

Hint: Use the basic calculus fact that .1 C 1=x/x ! e, as x ! 1. Then use
the inverse Fourier transform to calculate the desired ACvF of the output. Note the
following fundamental fact: The (inverse) Fourier transform of a Gaussian p.d.f.-like
function is also a Gaussian p.d.f.-like function.



Chapter 7
Optimization of Signal-to-Noise Ratio
in Linear Systems

Useful, deterministic signals passing through various transmission devices often
acquire extraneous random components due to, say, thermal noise in conducting
materials, radio clutter or aurora borealis magnetic field fluctuations in the atmo-
sphere, or deliberate jamming in warfare. If there exists some prior information
about the nature of the original useful signal and the contaminating random noise,
it is possible to devise algorithms to improve the relative power of the useful com-
ponent of the signal, or, in other words, to increase the signal-to-noise ratio of the
signal, by passing it through a filter designed for the purpose. In this short chapter
we give a few examples of such designs just to show how the previously introduced
techniques of analysis of random signals can be applied in this context.

7.1 Parametric Optimization for a Fixed Filter Structure

The general problem of optimization (maximization) of the signal-to-noise ratio in
a linear system schematically pictured here,

x.t/ C N.t/ �! h(t) �! y.t/ C M.t/;

can be formulated as follows: Consider a linear filter (system) characterized by its
impulse response function h.t/ with the input signal X.t/ of the form

X.t/ D x.t/ C N.t/; (7.1.1)

where x.t/ is a deterministic “useful” signal, and N.t/ is a random stationary
“noise” signal with zero mean and autocovariance function �N .t/. Given the lin-
earity of the system, the output signal Y.t/ is of the form

Y.t/ D y.t/ C M.t/; (7.1.2)

W.A. Woyczyński, A First Course in Statistics for Signal Analysis,
DOI 10.1007/978-0-8176-8101-2 7, c� Springer Science+Business Media, LLC 2011
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where the deterministic “useful” output component is

y.t/ D
Z 1

�1
x.s/h.t � s/ds; (7.1.3)

and the “noise” output is a stationary zero-mean signal with the autocovariance
function

�M .�/ D
Z 1

�1

Z 1

�1
�N .� � s C u/h.s/h.u/ ds du:

The task is as follows: Given the shape of the input signal, design the structure of
the filter which would maximize the signal-to-noise power ratio on the output. More
precisely, we need to find an impulse response function h.t/ such that, for a given
detection time t , the signal-to-noise ratio

S=N D PWy.t/

E.PWM /
(7.1.4)

is maximized over all possible impulse response functions; in brief, we want to find
h.t/ for which

S=N D max:

Here, PWy.t/ D y2.t/ is the instantaneous power of the output signal, and
E.PWM / D �M .0/ D �2

M is the mean power of the output noise. Hence, the opti-
mization problem is to find h.t/, and also the detection time t0, such that

S=N D y2.t0/

�M .0/
D y2.t0/

�2
M

D max : (7.1.5)

In the present section we will take a look at a relatively simple situation when the
general structure of the filter is essentially fixed and only certain parameters, includ-
ing the detection time t0, need to be optimized.

To show the essence of our approach, we will just consider the RC filter with the
impulse response function

h.t/ D be�bt � u.t/; (7.1.6)

with a single parameter b D 1=RC to be determined in addition to the optimal
detection time t0.

Suppose that the “useful” input signal we are trying to detect on the output is a
rectangular impulse

x.t/ D
(

A; for 0 	 t 	 T I
0; elsewhere;

(7.1.7)

and that the input noise is a white noise of “amplitude” N0, with the autocovariance
�N .t/ D N0ı.t/.
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Fig. 7.1.1 Response y.t/ (7.1.8) of the RC filter (7.1.6) to the rectangular input signal x.t/ (7.1.7).
The parameter values are T D 1, A D 1, and b D 1=RC D 1. The maximum is clearly attained
for t0 D T

The deterministic “useful” output signal is

y.t/ D
Z 1

�1
x.s/h.�.s � t//ds

D
( R t

0
Abe�b.t�s/ ds; for 0 < t < T I

R T

0 Abe�b.t�s/ ds; for t � T;

D
(

A.1 � e�bt /; for 0 < t 	 T I
A.1 � e�bT /e�b.t�T /; for t � T;

(7.1.8)

and is pictured in Fig. 7.1.1.
Clearly, the maximum of the output signal is attained at t0 D T . On the other

hand, as calculated in Chap. 6, the autocovariance function of the output noise is

�M .�/ D N0

b

2
e�b	 ;

so that, at the already-optimized detection time t0 D T ,

S
N D y2.T /

�M .0/
D A2Œ1 � e�bT �2

bN0=2
:

To simplify our calculations, we will substitute z D bT . Now, our final task is to
find the maximum of the function

S
N .z/ D 2A2T

N0

� .1 � e�z/2

z
(7.1.9)
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Fig. 7.1.2 Graph of the factor .1�e�z/2=z in formula (7.1.9) for the signal-to-noise ratio S=N .z/
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Fig. 7.1.3 A plot of the function ez � 1 � 2z D 0: The nontrivial zero is approximately at
zmax D 1:25

of one variable z. The function S=N .z/, although simple-looking, is a little tricky,
and we will start the exploration of its maximum by graphing it; see Fig. 7.1.2. To
find the location of the maximum, we calculate the derivative and try to solve the
equation

d

d z

.1 � e�z/2

z
D 2.1 � e�z/e�zz � .1 � e�z/2

z2
D 0:

Although the above equation can be easily simplified to the equation

ez � 1 � 2z D 0;

the latter cannot be solved explicitly. So, as usual, as the first step we explore the
solution graphically; see Fig. 7.1.3. The nontrivial zero is approximately at zmax D
1:25, which gives bmax D 1:25=T , so that the optimal RC constant is
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RCmax � 1

bmax
D T

1:25
D 0:8T: (7.1.10)

Note that RCmax is independent of the “amplitude,” N0, of the input noise.
Evaluated at the optimal values of parameters t0 and b, the maximum available

signal-to-noise ratio is

S
N max

� y2.T /

bmaxN0=2
D 2A2Œ1 � e�bmaxT �2

bmaxN0

D 0:81 � A2T

N0

: (7.1.11)

It is proportional to the signal’s duration T , and to the square of its amplitude A, but
is inversely proportional to the “amplitude,” N0, of the noise.

7.2 Filter Structure Matched to Input Signal

In this section we will solve a more ambitious problem of designing the structure
of the filter to maximize the signal-to-noise ratio on the output rather than just opti-
mizing filter parameters. To be more precise, the task at hand is to find an impulse
response function h.t/, and the detection time t0, such that

S=N D y2.t0/

�2
M

D max; (7.2.1)

for a given deterministic (nonrandom) input signal x.t/ transmitted in the presence
of the white noise input N.t/ with autocovariance function �N .t/ D N0ı.t/, where,
as before, x.t/ D 0, for t 	 0, and

y.t/ D
Z 1

0

x.t � s/h.s/ ds: (7.2.2)

For the output noise,

�2
M D �M .0/ D

Z 1

0

�Z 1

0

ı.u � s/h.u/ du

�
h.s/ ds D N0

Z 1

0

h2.s/ ds:

(7.2.3)

In this situation

S=N D y2.t0/

�2
M

D .
R1

0 x.t0 � s/h.s/ ds/2

N0

R1
0

h2.s/ds
: (7.2.4)
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In view of the Cauchy–Schwartz inequality,

S=N 	
R1

0
x2.t0 � s/ ds � R1

0
h2.s/ ds

N0

R1
0 h2.s/ds

D 1

N0

Z 1

0

x2.t0 � s/ ds; (7.2.5)

with the equality, that is, the maximum for S=N , achieved when the two factors,
h.s/ and x.t0 � s/, in the scalar product in the numerator of (7.2.4) are linearly
dependent. In other words, for any constant c, the impulse response function

h.s/ D cx.t0 � s/u.s/ D cx.�.s � t0//u.s/ (7.2.6)

gives the optimal structure of the filter and maximizes the S=N ratio. This so-called
matching filter has the impulse response function equal to the input signal x.t/ run
backward in time, then shifted to the right by t0, and, finally, cut off at 0.

With the selection of the matching filter, in view of (7.2.4), the maximal value of
the S=N ratio is

S=Nmax D .
R1

0 x.t0 � s/cx.t0 � s/u.s/ ds/2

N0

R1
0

.cx.t0 � s/u.s//2 ds
D
R1

0 x2.t0 � s/ ds

N0

: (7.2.7)

Example 7.2.1 (Matching filter for a rectangular input signal). Consider a rectan-
gular input signal of the form

x.t/ D
(

A; for 0 < t < T I
0; elsewhere ;

transmitted in the presence of an additive white noise with autocovariance function
�N .t/ D N0ı.t/. According to formula (7.2.6), its matching filter at detection time
t0 is

h.t/ D
(

A; for 0 < t < t0I
0; elsewhere ;

if 0 	 t0 	 T , and

h.t/ D
(

A; for t0 � T < t < t0I
0; elsewhere ;

if t0 > T . So the S=Nmax, as a function of the detection time t0, is

S=Nmax.t0/ D
(

A2t0=N0; for 0 < t0 < T I
A2T=N0; for t0 > T:

Clearly, the earliest detection time t0 to maximize S=Nmax.t0/ is t0 D T (see
Fig. 7.2.1).
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Fig. 7.2.1 The dependence of the optimal signal-to-noise ratio on the detection time t0 for the
matching filter from Example 7.2.1. The input signal is the sum of a rectangular signal of amplitude
A D 1, and duration T D 1, and the white noise with autocovariance function �N .t/ D ı.t/

At the optimal detection time t0 D T , or any later detection time,

S=Nmax D A2T

N0

: (7.2.8)

This result should be compared with the maximum signal-to-noise ratio
0:81A2T=N0 [see (7.1.11)] obtained in Sect. 7.1 by optimally tuning the RC-
filter: The best matching filter gives about a 25% gain in the signal-to-noise ratio
over the best RC-filter.

It is also instructive to trace the behavior of the deterministic part y.t/ of the
output signal for the matching filter as a function of the detection time t0. Formula
(7.2.2) applied to the matching filter immediately gives that, for 0 < t0 < T ,

y.t/ D

8
ˆ̂
ˆ̂<

ˆ̂
ˆ̂:

A2t; for 0 < t < t0I
A2t0; for t0 < t < T I
�A2.t � .t0 C T //; for T < t < t0 C T I
0; elsewhere;

(7.2.9)

and, for t0 � T ,

y.t/ D

8
ˆ̂
<

ˆ̂
:

A2.t � .t0 � T //; for t0 � T < t < t0I
�A2.t � .t0 C T //; for t0 < t < t0 C T I
0; elsewhere:

(7.2.10)

These two output signals are depicted in Fig. 7.2.2.
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Fig. 7.2.2 The response y.t/ of the matching filter for the rectangular input signal with amplitude
A D 1 and duration T D 1 (see Example 7.2.1). Top: For detection time t0 D 0:25 < T D 1.
Bottom: For detection time t0 D 1:25 > T D 1

7.3 The Wiener Filter

Acausal filter. Given stationary random signals X.t/, and Y.t/, the problem is to
find a (not necessarily causal) impulse response function h.t/ such that the mean-
square distance between Y.t/ and the output signal,

Yh.t/ D
Z 1

�1
X.t � s/h.s/ ds;

is the smallest possible. In other words, we need h.t/ minimizing the error quantity

E
�
Y.t/ � Yh.t/

�2

:

In the space of all finite variance (always zero-mean) random quantities equipped
with the covariance as the scalar product, the best approximation Yh.t/ of a random
quantity Y.t/ by elements of the linear subspace X spanned by linear combinations
of values of X.t � s/; �1 < s < 1, is given by the orthogonal projection of
X.t/ on X .1 That means that the difference Y.t/ � Yh.t/ must be orthogonal to all
X.t � s/; �1 < s < 1, or more formally,

E
�
.Y.t/ � Yh.t// � X.t � s/

�
D E

�
Y.t/ � X.t � s/

�

�E
�Z 1

�1
X.t � u/h.u/ du � X.t � s/

�

D �YX .s/ �
Z 1

�1
�X .s � u/h.u/ du D 0;

1 This argument is analogous to the one encountered in Chap. 2, when we discussed the best
approximation in power of deterministic periodic signals by their Fourier series.
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for all s; �1 < s < 1. Hence, the optimal h.t/ can be found by solving, for each
s, the integral equation

�YX .s/ D
Z 1

�1
�X .s � u/h.u/ du; (7.3.1)

which involves only the autocovariance function �X .s/ and the cross-correlation
function �YX .s/. The solution is readily found in the frequency domain. Remember-
ing that the Fourier transform of a convolution is the product of Fourier transforms,
and denoting by H.f / the transfer function (the Fourier transform of the impulse
response function) of the optimal h.t/, (7.3.1) can be rewritten in the form

SYX .f / D SX.f / � H.f /;

which immediately gives the explicit formula for the transfer function of the optimal
filter:

H.f / D SYX .f /

SX .f /
: (7.3.2)

The minimal error can then also be calculated explicitly:

E
�
Y.t/ � Yh.t/

�2 D �Y .0/ �
Z 1

�1
�YX .s/h.s/ ds; (7.3.3)

or, in terms of the optimal transfer function, using Parseval’s formula for the last
integral, we have

E
�
Y.t/ � Yh.t/

�2 D
Z 1

�1

�
SY .f / � S�

YX .f /H.f /
�

df: (7.3.4)

Example 7.3.1 (Filtering white noise out of a stationary signal). Assume that the
signal X.t/ is the sum of a “useful” signal Y.t/ and noise N.t/, that is, X.t/ D
Y.t/ C N.t/, where Y.t/ has the power spectrum

SY .f / D 1

1 C f 2
;

and is uncorrelated with the white noise N.t/, which is assumed to have the power
spectrum SN .f / � 1. Then

SYX .f / D SY .f / D 1

1 C f 2
and SX .f / D SY .f /CSN .f / D 2 C f 2

1 C f 2
:

The transfer function of the optimal filter is then

H.f / D SYX .f /

SX .f /
D 1

2 C f 2
;
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with the corresponding impulse response function

h.t/ D 1

2
p

2
e�p

2jt j;

and the error is

E
�
Y.t/ � Yh.t/

�2 D
Z 1

�1

�
1

1 C f 2
� 1

1 C f 2
� 1

2 C f 2

�
df

D
Z 1

�1
1

2 C f 2
df D �p

2
:

Causal filter. For given stationary random signals X.t/ and Y.t/, the construction
of the optimal causal filter requires finding a causal impulse response function
h.t/ D 0, for t 	 0, such that the error

E
�

Y.t/ �
Z 1

0

X.t � s/h.s/ ds

�2

is minimal. In other words, we are trying to find the best mean-square approximation
to Y.t/ by (continuous) linear combinations of the past values of X.t/. Using the
same orthogonality argument we applied for the acausal optimal filter, we obtain
another integral equation for the optimal h.t/:

�YX .s/ D
Z 1

0

�X .s � u/h.u/ du;

this time valid only for all s > 0. This equation is traditionally called the Wiener–
Hopf equation. It is clear that to solve the above equation via an integral transform
method, we have to replace the Fourier transform used in the acausal case by the
Laplace transform. However, the details here are more involved and, for the solution,
we refer the reader to the literature on the subject.2

7.4 Problems and Exercises

7.4.1. The triangular signal x.t/ D 0:01t , for 0 < t < 0:01, and 0 elsewhere, is
combined with white noise having a flat power spectrum of 2 V2=Hz. Find the value
of the RC constant such that the signal-to-noise ratio at the output of the RC filter
is maximal at t D 0:01 s.

2 Norbert Wiener’s original Extrapolation, Interpolation, and Smoothing of Stationary Time Series,
MIT Press and Wiley, New York, 1950, is still very readable, but also see Chap. 10 of A. Papoulis,
Signal Analysis, McGraw-Hill, New York, 1977.
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7.4.2. A signal of the form x.t/ D 5e�.tC2/u.t/ is to be detected in the presence of
white noise with a flat power spectrum of 0:25 V2=Hz using a matched filter.

(a) For t0 D 2, find the value of the impulse response of the matched filter at
t D 0; 2; 4:

(b) Find the maximum output signal-to-noise ratio that can be achieved if t0 D 1:

(c) Find the detection time t0 that should be used to achieve an output signal-to-
noise ratio that is equal to 95% of the maximum signal-to-noise ratio discovered
in part (b).

(d) The signal x.t/ D 5e�.tC2/u.t/ is combined with white noise having a power
spectrum of 2 V2=Hz. Find the value of RC such that the signal-to-noise ratio
at the output of the RC filter is maximal at t D 0:01 s.

7.4.3. Repeat construction of the optimal filter from Example 7.3.1 in the case when
the useful signal Y.t/ has a more general power spectrum

SY .f / D a

b2 C f 2
;

and the uncorrelated white noise N.t/ has the arbitrary power spectrum
SN .f / � N . Discuss the properties of this filter when the noise power is much
bigger than the power of the useful signal, that is, when N 
 SY .f /. Construct
the optimal acausal filters for other selected spectra of Y.t/ and N.t/.



Chapter 8
Gaussian Signals, Covariance Matrices,
and Sample Path Properties

In general, determining the shape of the sample paths of a random signal X.t/

requires knowledge of n-D (or, in the terminology of signal processing, n-point)
probabilities

P
�
a1 < X.t1/ < b1; : : : ; an < X.tn/ < bn

�
;

for an arbitrary n and arbitrary windows a1 < b1; : : : ; an < bn. But, usually,
this information cannot be recovered if the only signal characteristic known is
the autocorrelation function. The latter depends on the two-point distributions but
does not uniquely determine them. However, in the case of Gaussian signals, the
autocovariances determine not only two-point probability distributions but also all
the n-point probability distributions, so that complete information is available within
the second-order theory. In particular, that means that you only have to estimate
means and covariances to obtain the complete model. Also, in the Gaussian uni-
verse, the weak stationarity implies the strict stationarity as defined in Chap. 4. For
the sake of simplicity, all signals in this chapter are assumed to be real-valued. The
chapter ends with a more subtle analysis of sample path properties of stationary sig-
nals such as continuity and differentiability; in the Gaussian case these issues have
fairly complete answers.

Of course, faced with real-world data, the proposition that they are distributed
according to a Gaussian distribution must be tested rigorously. Many such tests have
been developed by statisticians.1 In other cases, one can make an argument in favor
of such a hypothesis based on the central limit theorem (3.5.5) and (3.5.6).

8.1 Linear Transformations of Random Vectors

In Chap. 3 we calculated probability distributions of transformed random quantities.
Repeating that procedure in the case of a linear transformation of the 1D random
quantity X given by the formula

1 See, e.g., M. Denker and W. A. Woyczyński’s book mentioned in previous chapters.

W.A. Woyczyński, A First Course in Statistics for Signal Analysis,
DOI 10.1007/978-0-8176-8101-2 8, c� Springer Science+Business Media, LLC 2011
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Y D aX; a > 0; (8.1.1)

we can obtain the cumulative distribution function (c.d.f.) FY .y/ of the random
quantity Y in terms of the c.d.f. FX .x/ of the random quantity X as follows:

FY .y/ D P.Y 	 y/ D P.aX 	 y/ D P.X 	 y=a/ D FX .y=a/: (8.1.2)

To obtain an analogous formula for the probability density functions (p.d.f.s),
it suffices to differentiate both sides of (8.1.2) to see that

fY .y/ D d

dy
FY .y/ D 1

a
fX

� u

a

�
: (8.1.3)

Example 8.1.1. Consider a standard 1D Gaussian random quantity X � N.0; 1/

with the p.d.f.

fX .x/ D 1p
2�

e�x2=2: (8.1.4)

Then the random quantity Y D aX; a > 0; has the p.d.f.

fY .y/ D 1p
2�a

e
� x2

2a2 : (8.1.5)

Obviously, the expectation is

EY D E.aX/ D aEX D 0;

and the variance of Y is

�2
Y D E.aX/2 D a2EX2 D a2: (8.1.6)

If we conduct the same argument for a < 0, the p.d.f. of Y D aX will be

fY .y/ D 1p
2�.�a/

e
� x2

2a2 : (8.1.7)

Thus formulas (8.1.6) and (8.1.7) can be unified in a single statement: If X �
N.0; 1/, then, for any a ¤ 0, the random quantity Y D aX has the p.d.f.

fY .y/ D 1p
2�jaje

� x2

2a2 : (8.1.8)

Using the above elementary reasoning as a model, we will now derive the formula
for a d -dimensional p.d.f.

f EY . Ey/ D f EY .y1; : : : ; yd /



8.1 Linear Transformations of Random Vectors 177

of a random (column) vector

EY D

0

B
@

Y1

:::

Yd

1

C
A

obtained by a nondegenerate linear transformation

EY D A EX (8.1.9)

consisting of multiplication of the random vector

EX D

0

B
@

X1

:::

Xd

1

C
A ;

with a known p.d.f.
f EX .Ex/ D f EX .x1; : : : ; xd /;

by a fixed nondegenerate nonrandom matrix

A D
0

@
a11; : : : ; a1d

� � �
ad1; : : : ; add

1

A :

In other words, we assume that det.A/ ¤ 0, or, equivalently, that the rows of the
matrix A form a linearly independent system of vectors.

In terms of its coordinates, the result of the linear transformation (8.1.9) can be
written in the explicit form

EY D

0

BB
@

a11X1 C a12X2 C � � � C a1d Xd

a21X1 C a22X2 C � � � C a2d Xd

� � � � � � � � � � � �
ad1X1 C ad2X2 C � � � C add Xd

1

CC
A :

To calculate the probability distribution of EY following the above 1D approach, we
must make use of the essential assumption of invertibility of the matrix A, an analog
of the assumption a ¤ 0 in the 1D case. Then, for a domain D in the d -dimensional
space Rd ,

P. EY 2 D/ D P.A EX 2 D/ D P. EX 2 A�1D/: (8.1.10)

This identity can be rewritten in terms of the p.d.f.s of EY and EX as follows:

Z

D

f EY . Ey/ dy1 � � � � � dyd D
Z

A�1D

f EX .Ex/ dx1 � � � � � dxd :
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Making a substitution Ex D A�1Ez in the second integral, in view of the d -
dimensional change-of-variables formula, we get that

Z

D

f EY . Ey/ dy1 � � � � � dyd D
Z

D

f EX .A�1Ez / � j det .A�1/j d z1 � � � � � �d zd ;

where det .A�1/ is just the Jacobian of the substitution Ex D A�1Ez. Remembering
that the determinant of the inverse matrix A�1 is the reciprocal of the determinant
of the matrix A, we get the identity

Z

D

f EY . Ey/ dy1 � � � � � dyd D
Z

D

f EX .A�1Ez /

j det .A/j d z1 � � � � � d zd :

Since this identity holds true for any domain D, the integrands on both sides must
be equal, which gives the final formula for the p.d.f. of EY :

f EY . Ey/ D f EX .A�1 Ey/

j det .A/j ; if det.A/ ¤ 0: (8.1.11)

The 1D formula (8.1.3) is, obviously, the special case of the above general result.

8.2 Gaussian Random Vectors

As in the one-dimensional case, all nondegenerate zero-mean d -dimensional
Gaussian random vectors can be obtained as nondegenerate linear transformations
of a standard d -D Gaussian random vector

EX D

0

B
@

X1

:::

Xd

1

C
A

in which the coordinates X1; : : : ; Xd are independent N.0; 1/ random quantities.
Because of their independence, the d -dimensional p.d.f. of EX is the product of 1D
N.0; 1/ p.d.f.s and is thus of the product form

f EX .Ex/ D e
�x2

1
2p
2�

� � � � � e
�x2

d
2p
2�

D 1

.2�/d=2
e� 1

2
.x2

1
C���Cx2

d
/

D 1

.2�/d=2
e� 1

2
kExk2 D 1

.2�/d=2
e� 1

2
ExT Ex; (8.2.1)
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where kExk stands for the norm (magnitude) of the vector Ex, and the superscript T

denotes the transpose of a matrix. Indeed,

ExT Ex D .x1; : : : ; xd / �

0

B
@

x1

:::

xd

1

C
A D x2

1 C � � � C x2
d D kExk2:

It is the latter form in (8.2.1) that will be useful now in applying formula (8.1.11).
Indeed, substituting the last expression for f EX .Ex/ in (8.2.1) into (8.1.11), one im-
mediately gets2

f EY . Ey/ D 1

.2�/d=2j det.A/je
� 1

2 kA�1 Eyk2

D 1

.2�/d=2j det.A/je
� 1

2
.A�1 Ey/T �.A�1 Ey/

D 1

.2�/d=2j det.A/je
� 1

2
EyT .AAT /�1 Ey : (8.2.2)

Thus formula (8.2.2) gives the general form of the d -dimensional zero-mean
Gaussian p.d.f., and just as we identified the parameter a2 in the 1D case (8.1.5)
and (8.1.6) as the variance of the random quantity Y , we can identify entries of the
matrix

� D AAT (8.2.3)

appearing in the exponent in (8.2.2) as statistically significant parameters of the
random vector EY .

To see what they are, let us first calculate the entries �ij ; i; j D 1; 2; : : : ; d; of
the matrix � :

�ij D ai1aj1 C ai2aj 2 C � � � C aid ajd : (8.2.4)

On the other hand, covariances (we are working with zero-mean vectors!) of differ-
ent components of the random vector EY are

E.YiYj / D E
�
.ai1X1 C � � � C aid Xd / � .aj1X1 C � � � C ajd Xd /

�

D ai1aj1 C ai2aj 2 C � � � C aid ajd (8.2.5)

because EXi Xj D 1 if i D j and D 0 if i ¤ j .
So it turns out that

� D .�ij / D .EYi Yj /; (8.2.6)

2 Remember that for any matrices M and N, we have .MN/T D NT MT , .MN/�1 D N�1M�1,
and .MT /�1 D .M�1/T .
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and the matrix � D .�ij / is simply the covariance matrix of the general zero-mean
Gaussian random vector EY . Thus, since

det.�/ D det.AAT / D det.A/ � det.AT / D .det.A//2;

we finally get that the p.d.f. of EY can be written in the form

f EY . Ey/ D 1

.2�/d=2j det.�/j1=2
e� 1

2 EyT ��1 Ey ; (8.2.7)

where � is the covariance matrix of EY satisfying the nondegeneracy condition
det.�/ ¤ 0.

Remark 8.2.1 (Gaussian random vectors with nonzero mean). Of course, to get the
p.d.f. of a general Gaussian random vector with nonzero expectation

E EY D E� D .�1; : : : ; �d /T ;

it suffices to shift the p.d.f. (8.2.7) by E� to obtain

f EY . Ey/ D 1

.2�/d=2j det.†/j1=2
e� 1

2 . Ey� E�/T †�1. Ey� E�/; (8.2.8a)

where
† D .�ij / D .E.Yi � �i /.Yj � �j // (8.2.8b)

is the covariance matrix of EY . A Gaussian random vector with a joint p.d.f. given
by formulas (8.2.7) and (8.2.8b) is often called a normal N. E�; †/ random vector.

Example 8.2.1 (2D zero-mean Gaussian random vectors (see, also, Example
3.3.2)). Let us carry out the above calculation explicitly in the special case of
dimension d D 2. Then the covariance matrix

� D
�

EY1Y1 EY1Y2

EY2Y1 EY2Y2

�
D
�

�2
1 �1�2�

�1�2� �2
2

�
;

where the variances of coordinate vectors are

�2
1 D EY 2

1 ; �2
2 D EY 2

2 ;

and the correlation coefficient of the two components is

� D EY1Y2

�1�2

:

The determinant of the covariance matrix is

det.�/ D �2
1 �2

2 .1 � �2/;
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and its inverse is

��1 D 1

�2
1 �2

2 .1 � �2/

�
�2

2 ��1�2�

��1�2� �2
1

�
:

Hence, the p.d.f. of a general zero-mean 2D Gaussian random vector is of the
form

fEY.y1; y2/ D 1

.2�/2=2�1�2

p
1 � �2

� exp

2

6
6
6
4

�1

2
.y1; y2/

�
�2

2 ��1�2�

��1�2� �2
1

�

�2
1 �2

2 .1 � �2/

�
y1

y2

�

3

7
7
7
5

;

which, after performing the prescribed matrix algebra, leads to the final expression:

fEY.y1; y2/ D 1

2��1�2

p
1 � �2

� exp

�
� 1

2.1 � �2/

�
y2

1

�2
1

� 2�
y1y2

�1�2

C y2
2

�2
2

��
:

(8.2.9)

The plots of the above densities are bell-shaped surfaces; we saw one example of
such a surface in Chap. 3 (Fig. 3.3.1). The level curves of these densities, described
by the equations

y2
1

�2
1

� 2�
y1y2

�1�2

C y2
2

�2
2

D const;

are ellipses in the .y1; y2/-plane, with semiaxes and orientations depending on the
parameters �; �1, and �2, representing, respectively, the correlation coefficient be-
tween the two components of the Gaussian random vector EY , and the variances of
the first and second components. Figure 8.2.1 shows the level curves of 2D Gaussian
densities for four selections of the three above parameters.

8.3 Gaussian Stationary Signals

By definition, a nondegenerate zero-mean random signal X.t/ is Gaussian if, for
any positive integer N and any selection of sampling times t1 < t2 < � � � < tN , the
random vector

EX.t1;:::;tN / D

0

B
BB
@

X.t1/

X.t2/
:::

X.tN /

1

C
CC
A

(8.3.1)
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Fig. 8.2.1 Level curves for the 2D Gaussian probability density functions f
EY .y1; y2/ (8.2.9), for

the following selection of parameters .�; �1; �2/ (clockwise, from the top left corner): (0,9,9),
(0,8,10), (3/4,9,9), and (3/4,8,10). There are nine level curves in each plot, equally spaced between
level zero and the maximum of the p.d.f.

is a Gaussian zero-mean random vector with a nondegenerate covariance ma-
trix. Thus, in view of results of Sect. 8.2, its N -dimensional joint p.d.f. f.t1;:::;tN /

.x1; : : : ; xN / is given by the formula3

f.t1;:::;tN /.x1; : : : ; xN / D 1

.2�/N=2j det.�/j1=2
� e� 1

2 ExT ��1 Ex; det.�/ ¤ 0; (8.3.2)

where � is the N � N covariance matrix

� D � .t1;:::;tN / D .�X .ti ; tj // D .EX.ti /X.tj //: (8.3.3)

3 Note that for some simple (complex-valued) Gaussian stationary signals, like, e.g., X.t/ D X �ejt ,
where X 
 N.0; 1/, one can choose the ti s so that the determinant of the covariance matrix is zero;
take, for example, N D 2 and t1 D �; t2 D 2� . Then the joint p.d.f. of the Gaussian random vector
.X.t1/; : : : ; X.tN //T is not of the form (8.3.2). Such signals are called degenerate.
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Thus, in view of (8.3.1) and (8.3.2), the only information needed to completely
determine all finite-dimensional joint probability distributions of a zero-mean Gaus-
sian random signal X.t/ is the knowledge of its autocovariance function,

�X .s; t/ D EX.s/X.t/:

For stationary Gaussian signals, the situation is simpler, yet the autocovariance
function �X .s; t/ is just a function of a single variable:

�X .s; t/ D �X .t � s/:

Thus the covariance matrix � for a stationary random signal X.t/ sampled at
t1; t2; : : : ; tN is of the form

� .t1;:::;tN /D

0

B
B
@

�X .0/ �X .t2 � t1/ �X .t3 � t1/ : : : �X .tN � t1/

�X .t1 � t2/ �X .0/ �X .t3 � t2/ � � � �X .tN � t2/

� � � � � � � � � � � � � � �
�X .t1 � tN / �X .t2 � tN / �X .t3 � tN / � � � �X .0/

1

C
C
A :

For the real-valued signals under consideration, it is always symmetric because, in
that case, the ACvF is an even function, so that �X .ti � tj / D �X .tj � ti /. Also, it
is obviously invariant under translations, that is, for any t ,

� .t1;:::;tN / D � .t1Ct;:::;tN Ct/; (8.3.4)

which, in view of (8.3.2) and (8.3.3), implies that all finite-dimensional p.d.f.s of
X.t/ are also invariant under translations; that is, for any positive integer N , any
sampling times t1; : : : ; tN , and any time shift t ,

f.t1;:::;tN /.x1; : : : ; xN / D f.t1Ct;:::;tN Ct/.x1; : : : ; xN /: (8.3.5)

In other words:

a Gaussian weakly stationary signal is strictly stationary.

In the particular case when the sampling times are uniformly spaced with the
intersampling time interval 
t , the covariance matrix � of the signal X.t/ sampled
at times

t; t C 
t; t C 2
t; : : : ; t C .N � 1/
t

is

0

BB
@

�X .0/ �X .
t/ �X .2
t/ � � � �X ..N � 1/
t/

�X .
t/ �X .0/ �X .
t/ � � � �X ..N � 2/
t/

� � � � � � � � � � � � � � �
�X ..N � 1/
t/ �X ..N � 2/
t/ �X ..N � 3/
t/ � � � �X .0/

1

CC
A :
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Example 8.3.1 (Ornstein–Uhlenbeck random signal (process)). Consider a Gaus-
sian signal X.t/ with autocovariance function

�X .t/ D e�0:3jt j:

We are interested in finding the joint p.d.f. of the signal at times t1 D 1; t2 D 2 and
the probability that the signal has values between �0.6 and 1.4 at t1, and between
0.7 and 2.6 at t2.

The first step is then to find the covariance matrix

� .1;2/ D
 

�X .0/ �X .1/

�X .1/ �X .0/

!

D
 

e0 e�0:3

e�0:3 e0

!

D
 

1 0:74

0:74 1

!

:

The covariance coefficient of X.1/ and X.2/ is then

� D �X .2 � 1/

�X .0/
D 0:74;

and, in view of Example 8.2.1 (8.2.9), the joint p.d.f. of X.1/ and X.2/ is of the
form

f.1;2/.x1; x2/ D 1

2�
p

1 � 0:742
� exp

� �1

2.1 � 0:742/



x2

1 � 2 � 0:74x1x2 C x2
2

��

D 0:24 � exp
��1:11



x2

1 � 1:48x1x2 C x2
2

�	
:

Finally, the desired probability is

P
�
�0:6 	 X.1/ 	 1:4 and 0:7 	 X.2/ 	 2:6

�

D
Z 1:4

�0:6

Z 2:6

0:7

0:24 � e�1:11.x2
1

�1:48x1x2Cx2
2

/ dx1 dx2 D 0:17;

where the last integral was evaluated numerically in Mathematica with two-digit
precision.

8.4 Sample Path Properties of General and Gaussian
Stationary Signals

Mean-square continuity and differentiability. It is clear that the local prop-
erties of the autocovariance function �X .�/ of a stationary signal X.t/ affect
properties of the sample paths of the signal itself in the mean-square sense, that is,
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in terms of the behavior of the expectation of the square of the signal’s increments,
i.e., the variances of the increments.4 Indeed, with no distributional assumptions on
X.t/, we have

�2.�/ D E.X.t C �/ � X.t//2 D 2.�X.0/ � �X .�//I

the variance of the increment is independent of t . Hence, we have the following
result:

A stationary signal X.t/ is continuous in the mean-square sense, that is, for any
t > 0,

lim
	!0

E.X.t C �/ � X.t//2 D 0

if, and only if, the autocovariance function �X .�/ is continuous at � D 0; that is,

lim
	!0

�X .�/ D �X .0/:

In particular, signals with autocovariance functions �X .�/ D ej
	 j or �X .�/ D

1=.1 C �2/ are mean-square continuous.
A similar mean-square analysis of the limit at � D 0 of the differential ratio

E
�

.X.t C �/ � X.t//

�

�2

D 2
�X.0/ � �X .�/

�2

shows that a stationary signal with autocovariance function �X .�/ D ej
	 j cannot

possibly be mean-square differentiable because in this case

lim
	!0

�X .0/ � �X .�/

�2
D lim

	!0

1 � e�j	 j

�2
D 1;

whereas the differentiability cannot be excluded for the signal with autocovariance
�X .�/ D 1=.1 C �2/ because, in this case,

lim
	!0

�X .0/ � �X .�/

�2
D lim

	!0

1 � 1=.1 C �2/

�2
D 1:

Of course, the above brief discussion just verifies the boundedness of the variance
of the signal’s differential ratio as � ! 0, not whether the latter has a limit. So let
us take a closer look at the issue of the mean-square differentiability of a stationary
signal, that is, the existence of the random quantity X 0.t/, for a fixed t . First, observe
that this existence is equivalent to the statement that5

4 Recall that the sequence .Xn/ of random quantities is said to converge to X , in the mean square,
if EjXn � X j2 ! 0, as n ! 1.
5 This argument relies on the so-called Cauchy criterion of convergence for random quantities with
finite variance: A sequence Xn converges in the mean square as n ! 1; that is, there exists
a random quantity X such that limn!1

E.Xn � X/2 D 0 if and only if limn!1
limm!1
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lim
	1!0

lim
	2!0

E
�

X.t C �1/ � X.t/

�1

� X.t C �2/ � X.t/

�2

�2

D 0:

But the expression under the limit signs is equal to

E
�

X.t C �1/ � X.t/

�1

�2

C E
�

X.t C �2/ � X.t/

�2

�2

� 2E
�

X.t C �1/ � X.t/

�1

� X.t C �2/ � X.t/

�2

�
:

So the existence of the derivative X 0.t/ in the mean square is equivalent to the
fact that the first two terms converge to �X 0.0/ and the third to �2�X 0.0/. But the
convergence of the last term means the existence of the limit

lim
	1!0

lim
	2!0

1

�1�2

E
�
.X.t C �1/ � X.t// � .X.t C �2/ � X.t//

�

D lim
	1!0

lim
	2!0

1

�1�2

�
�X .�2 � �1/ � �X .�1/ � �X .�2/ C �X .0/

�

D lim
	1!0

lim
	2!0

1

�1�2


�	1

	2

�X .0/;

where 
	 f .t/ WD f .t C �/ � f .t/ is the usual difference operator. Indeed,


�	1

	2

�X .0/ D 
	1
.�X .�2/ � �X .0//

D .�X .�2 � �1/ � �X .��1// � .�X .�2/ � �X .0//:

Since the existence of the last limit appearing above means twice differentiability of
the autocovariance function of X at � D 0, we arrive at the following criterion:

A stationary signal X.t/ is mean-square differentiable if and only if its autoco-
variance function �X .�/ is twice differentiable at � D 0. Moreover, in this case, the
cross-covariance of the signal X.t/ and its derivative X 0.t/ is

EX.t/X 0.s/ D lim
	!0

�X .t C � � s/ � �X .t � s/

�
D @

@t
�X .t � s/; (8.4.1)

and the autocovariance of the derivative signal is

EX 0.t/X 0.s/ D lim
	!0

1

�

�
@

@t
�X .t C � � s/ � @

@t
�X .t � s/

�
D @2

@t @s
�X .t � s/:

(8.4.2)

E.Xn � Xm/2 D 0. This criterion permits the verification of the convergence without knowing
what the limit is; see, e.g., Theorem 11.4.2 in W. Rudin, Principles of Mathematical Analysis,
McGraw-Hill, New York, 1976.
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In a similar fashion, one can calculate the cross-covariance of higher derivatives
of the signal X.t/ to obtain that6

EX .n/.t/X .m/.s/ D @nCm

@tn@sm
�X .t � s/: (8.4.3)

Sample path continuity. A study of properties of the individual sample paths
(trajectories, realizations) of stationary random signals is a more delicate mat-
ter, with the most precise results obtainable only in the case of Gaussian signals.
Indeed, we have observed in the previous sections that for a Gaussian signal,
the autocovariance function determines all the finite-dimensional probability
distributions of the signal, meaning that for any finite sequence of windows
Œa1; b1�; Œa2; b2�; : : : ; ŒaN ; bN � and any collections of time instants t1; t2; : : : ; tN
we can find the probability that the signal fits into those windows at prescribed
times; that is,

P.a1 < t1 < b1; a2 < t2 < b2; : : : ; aN < tN < bN /:

So it seems that by taking N to 1, and making the time instants closer to each other,
and the windows narrower, one could find the probability that the signal’s sample
path has any specific shape or property. This idea is, roughly speaking, correct but
only in a subtle sense that will be explained below.

The discussion of the sample path properties of stationary signals will be based
here on the following theorem of the theory of general random signals (stochastic
processes) due to N. N. Kolmogorov:

Theorem 8.4.1. Let g.h/ be an even function, nondecreasing for h > 0, and such
that g.h/ ! 0 as h ! 0. Furthermore, suppose that X.t/ is a random signal such
that

P
�
jX.t C h/ � X.t/j > g.h/

�
	 q.h/; (8.4.4)

for a function q.h/ satisfying the following three conditions:

q.h/ ! 0; as h ! 0I (8.4.5)
1X

nD1

2nq.2�n/ < 1I (8.4.6)

1X

nD1

g.2�n/ < 1: (8.4.7)

Then, with probability 1, the sample paths of the signal X.t/ are continuous.

6 For details, see M. Loève, Probability Theory, Van Nostrand, Princeton, NJ, 1963, Sect. 34.3.
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Although the proof of the above theorem is beyond the scope of this book,7 the
intuitive meaning of the assumptions (8.4.4)–(8.4.7) is clear: For the signal to have
continuous sample paths, the increments of the signal over small time intervals can
be permitted to be large only with a very small probability.

Applied to the second-order (not necessarily stationary) signals, Theorem 8.4.1
immediately gives the following.

Corollary 8.4.1. If there exists a �0 such that, for all �; 0 	 � < �0, and all t in a
finite time interval,

E
�
X.t C �/ � X.t/

�2 	 C j� j1C� (8.4.8)

for some constants C; � > 0, then the sample paths of the signal X.t/ are continuous
with probability 1.

To see how Corollary 8.4.1 follows from Theorem 8.4.1, observe first that for
any random quantity Z and any constant a > 0,8

P.Z > a/ 	
Z 1

a

fZ.z/ d z 	
Z 1

a

z2

a2
fZ.z/ d z 	 EZ2

a2
:

Condition (8.4.8) implies then that

P
�
X.t C �/ � X.t/j > g.�/

�
	 C j� j1C�

g2.�/
;

so that selecting g.�/ D j� j�=4 and

q.�/ D C j� j1C�

g2.�/
D C j� j1C�=2;

we easily see that g.�/ and q.�/ are continuous functions vanishing at � D 0, and
that conditions (8.4.4)–(8.4.7) of the theorem are also satisfied. Indeed,

1X

nD1

2nq.2�n/ D C

1X

nD1

2n.2�n/1C�=2 D C

1X

nD1

2�n�=2 < 1

and 1X

nD1

g.2�n/ D
1X

nD1

2�n�=4 < 1:

7 For a more complete discussion of this theorem and its consequences for the sample path, con-
tinuity and differentiability of random signals, see, for example, M. Loève, Probability Theory,
Van Nostrand, Princeton, NJ, 1963, Sect. 35.3.
8 This inequality is known as the Chebyshev inequality and its proof here has been carried out only
in the case of absolutely continuous probability distributions. The proof in the discrete case is left
to the reader as an exercise; see Sect. 8.5.
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In the special case of a stationary signal, we have E.X.tC�/�X.t//2 D 2.�X.0/

��X .�//, so the sample path continuity is guaranteed by the following condition on
the autocovariance function:

j�X .0/ � �X .�/j 	 C j� j1C�; (8.4.9)

for some constant � > O and small enough � .
In particular, for the autocovariance function �X .�/ D 1=.1 C �2/,

j�X.0/ � �X .�/j D 1 � 1

1 C �2
D �2

1 C �2
	 �2;

and condition (8.4.8) is satisfied, thus giving the sample path continuity.
However, for a signal with autocovariance function �X .�/ D e�j	 j, the differ-

ence �X .0/ � �X .�/ behaves asymptotically like � , for � ! 0. Therefore, there is
no positive � for which condition (8.4.9) is satisfied and we cannot claim the conti-
nuity of the sample path in this case – not a surprising result if one remembers that
the exponential autocovariance was first encountered in the context of the obviously
sample path discontinuous switching signal. Nevertheless, as we observed at the be-
ginning of this section, a signal with an exponential autocovariance is mean-square
continuous.

For a Gaussian stationary signal X.t/, Theorem 8.4.1 can be applied in a more
precise fashion since the probabilities P.X.t C �/ � X.t/ > a/ are known exactly.
Indeed, since for any positive z,

Z 1

z
e�x2=2 dx 	

Z 1

z

x

z
e�x2=2 dx D 1

z
e�z2=2;

because x=z � 1 in the interval of integration, we have, for any nonnegative function
g.�/ and positive constant C ,

P
�

jX.t C �/ � X.t/j > Cg.�/
�

	
r

2

�

�.�/

Cg.�/
exp

�
�1

2

C 2g2.�/

�2.�/

�
; (8.4.10)

where �2.�/ D E.X.t C �/ � X.t//2 D 2.�X.0/ � �X.�//. This estimate yields the
following result:

Corollary 8.4.2. If there exists �0 such that for all �; 0 	 � 	 �0, the autocovari-
ance function �X .�/ of a stationary Gaussian signal X.t/ satisfies the condition

�X .0/ � �X .�/ 	 K

j ln j� jjı ; (8.4.11)

for some constants K > 0 and ı > 3, then the signal X.t/ has continuous sample
paths with probability 1.
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The proof of the corollary is completed by selecting

g.�/ D j ln j� jj�
 ;

with any number � satisfying condition 1 < � < .ı � 1/=2, choosing

q.C; �/ D K 0

C j ln j� jjı=2�

exp

�
� C 2

2K
j ln j� jjı�2


�

and verifying the convergence of the two series in conditions (8.4.6)–(8.4.7); see an
exercise in Sect. 8.5.

Returning to the case of a stationary random signal with an exponential au-
tocovariance function, we see that if the signal is Gaussian, then Corollary 8.4.2
guarantees the continuity of its sample paths with probability 1. Indeed, condition
(8.4.11) is obviously satisfied since (e.g., picking ı D 4) we have

lim
	!0

.�X .0/ � �X .�// � j ln j� jj4 D lim
	!0

.1 � e�j	 j/ � j ln j� jj4 D 0

in view of de l’Hôpital’s rule.

8.5 Problems and Exercises

8.5.1. A zero-mean Gaussian random signal has the autocovariance function of the
form

�X .�/ D e�0:1j	 j cos 2��:

Plot it. Find the power spectrum SX .f /: Write the covariance matrix for the signal
sampled at four time instants separated by 0.5 s. Find its inverse (numerically; use
any of the familiar computing platforms, such as Mathematica, Matlab, etc.).

8.5.2. Find the joint p.d.f. of the signal from Problem 8.5.3 at t1 D 1 and t2 D 2.
Write the integral formula for

P.0 	 X.1/ 	 1; 0 	 X.2/ 	 2/:

Evaluate the above probability numerically.

8.5.3. Find the joint p.d.f. of the signal from Problem 8.5.1 at t1 D 1; t2 D 1:5;

t3 D 2, and t4 D 2:5. Write the integral formula for

P.�2 	 X.1/ 	 2; �1 	 X.1:5/ 	 4; �1 	 X.2/ 	 1; 0 	 X.2:5/ 	 3/:

Evaluate the above probability numerically.
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8.5.4. Show that if a 2D Gaussian random vector EY D .Y1; Y2/ has uncorrelated
components Y1; Y2, then those components are statistically independent random
quantities.

8.5.5. Produce 3D surface plots for p.d.f.s of three 2D Gaussian random vectors:
.X.1:0/; X.1:1//T , .X.1:0/; X.2:0//T , .X.1:0/; X.5:0//T , where X.t/ is the sta-
tionary signal described in Example 8.3.1. Comment on similarities and differences
in the three plots.

8.5.6. Prove that if there exists a �0 such that for all � < �0 and all t in a finite time
interval,

E
�
X.t C �/ � X.t/

�2 	 C
j� j

j ln j� jj1Cı
;

for some C > 0 and ı > 2, then the sample paths of the signal X.t/ are continuous
with probability 1. Hint: This result is a little more delicate than Corollary 8.4.1,
but the idea of the proof is similar: Take g.�/ D j ln j� jj�ˇ , for a ˇ between 1 and
ı=2, whereby q.�/ D j� j=j ln j� jj1Cı�2ˇ , and check conditions (8.4.4)–(8.4.7) in
Theorem 8.4.1.

8.5.7. Verify the Chebyshev inequality P.jZj > a/ 	 EZ2=a2; a > 0, for a
discrete random quantity Z.

8.5.8. Produce 3D plots of several 2D Gaussian densities with selected means and
covariance matrices. Then plot level curves for them.

8.5.9. The random signal X.t/ has an autocovariance function of the form �X .�/ D
exp.�j� j˛/ with 0 < ˛ 	 2. For which values of parameter ˛ can you claim the
continuity of sample paths of X.t/ with probability 1? For ˛ > 2, the above formula
does not give a covariance function of any stationary signal. Why? Hint: Check the
positive-definiteness condition from Remark 5.2.1.

8.5.10. Verify formula (8.4.3) for the cross-covariance of higher derivatives of a
stationary signal.

8.5.11. Verify the convergence of the series (8.4.6)–(8.4.7) in the proof of Corollary
8.4.2.



Chapter 9
Spectral Representation of Discrete-Time
Stationary Signals and Their Computer
Simulations

Given an arbitrary power spectrum SX.f / or, equivalently, its inverse Fourier
transform, the autocovariance function �X .�/, our ability to simulate the corre-
sponding stationary random signals X.t/, using only the pseudo-random number
generator, which produces, say, discrete-time white noise, depends on the obser-
vation that, in some sense, all stationary random signals can be approximated by
superpositions of random harmonic oscillations such as those discussed in Examples
4.1.2 and 4.1.9. Recall that if A1; : : : ; AN are independent, zero-mean random vari-
ables with finite variance, and f1; : : : ; fN is a sequence of distinct frequencies, then
a random superposition of N simple complex-valued harmonic oscillations in dis-
crete time, n D : : : ; �1; 0; 1; : : : ;

XN .n/ D
NX

kD1

Ak � ej 2�fkn; (9.0.1)

is a stationary signal with the autocovariance function of the form

�XN
.n/ D

NX

kD1

EjAk j2 � ej 2�fkn: (9.0.2)

This suggests the following, intuitive approach to our simulation problem: Given
a power spectrum SX .f /, concentrated, say, on the frequency interval Œ0; 1�, mim-
icking the continuous-time analysis of Sect. 5.2, we can expect the corresponding
ACvF to be the “discrete-time inverse Fourier transform,” i.e., the Fourier coeffi-
cients of SX .f /,

�X .n/ D
Z 1

0

S.f /ej 2�f n df:

The latter integral can now be approximated by its discretized version, so that

�X .n/ �
NX

kD1

S.f / 
fk ej 2�fkn; (9.0.3)

W.A. Woyczyński, A First Course in Statistics for Signal Analysis,
DOI 10.1007/978-0-8176-8101-2 9, c� Springer Science+Business Media, LLC 2011
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where
0 D f0 < f1 < � � � < fN D 1

is a partition of the Œ0; 1� interval and 
fk D fk � fk�1. Comparing (9.0.2) and
(9.0.3), it seems that to produce an approximated version of X.n/, it now suffices to
generate a standard white noise W.k/; k D 1; : : : ; N , take as the random amplitudes
in (9.0.1) the sequence

Ak D p
S.fk/
fkW.k/; k D 1; : : : ; N; (9.0.4)

so that EjAkj2 D S.fk/
fk , and produce the sequence

XN .n/ D
NX

kD1

p
S.fk/
fkW.k/ � ej 2�fkn � X.n/: (9.0.5)

Alternatively, we can consider the Fourier series expansion of the power spec-
trum (see Chap. 2, but here the variable is the frequency f )

SX .f / D
1X

nD�1
cn � ej 2�f n; (9.0.6)

with the Fourier coefficients

cn D
Z 1

0

SX .f / � e�j 2�f n df: (9.0.7)

Now, the above integral can be replaced, approximately, by the discretized sum

cn �
KX

kD1

ak � e�j 2�fkn; (9.0.8)

with the Fourier coefficients

ak D
Z fk

fk�1

SX.f / df ; k D 1; 2; : : : ; K; (9.0.9)

corresponding to the power of the signal X.n/ concentrated in each of the frequency
bands Œfk�1; fk � ; k D 1; : : : ; K . Finally, we recognize in (9.0.8) the discrete-time
version of the ACvF of the form (9.0.2) of the signal of the form (9.0.1), which gives
us yet another approximate expression for the sought-after signal X.n/:

XK.n/ �
KX

kD1

Ak � e�j 2�fkn; (9.0.10)
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where the Aks are selected to be arbitrary zero-mean, independent random variables,
with EjAk j2 D ak ; k D 1; : : : ; K , so that

�XK
.n/ D

KX

kD1

ak � e�j 2�fkn � cn: (9.0.11)

If W.k/ is the standard white noise (of an arbitrary distribution), then choosing

Ak D p
ak � W.k/; k D 1; : : : ; K; (9.0.12)

will also do the job.
Obviously, the key to applying the above schemes is in the details: In what sense

is the approximation meant? What are the precise algorithms? What is the rigorous
justification for them? Also, clearly, for smooth spectra, S.f / and large K and N ,
the difference between expressions (9.0.5) and (9.0.10) is negligible.

In this chapter we work with discrete-time signals, and the rigorous answer to
the above questions is contained in the so-called spectral representation theorem for
stationary random signals which is derived in this chapter. On the way to its for-
mulation we introduce the necessary concepts, including the crucial construction of
stochastic integrals with respect to a white noise signal, often called the white noise
integrals. We conclude with a computer algorithm based on the spectral represen-
tation theorem.

9.1 Autocovariance as a Positive-Definite Sequence

In this chapter we will study random stationary signals in discrete time, that is,
sequences of complex-valued random quantities

: : : ; X.�2/; X.�1/; X.0/; X.1/; X.2/; : : : ;

with time n extending all the way from minus to plus infinity. The stationarity
is meant in the second-order weak sense; that is, we will assume that the means
EX.n/ D 0 and the autocovariance function, now really a sequence,

EŒX�.m/X.n/� D �.n � m/; m; n D : : : ; �2; �1; 0; 1; 2; : : : ;

depends only on the time lag � D n � m. The following properties of the autoco-
variance sequence are immediately verified:

For any n,

EjX.n/j2 D EŒX�.n/X.n/� D EjX.0/j2 D �X .0/ � 0; (9.1.1)

�X .�n/ D ��
X .n/; (9.1.2)

j�X .n/j 	 �X .0/: (9.1.3)

The last inequality is a direct consequence of the Cauchy–Schwartz inequality.
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Also, importantly, the autocovariance sequence is positive-definite; that is, for
any positive integer N , arbitrary integers, n1; n2; : : : ; nN , and arbitrary complex
numbers �1; �2; : : : ; �N ,

NX

i;kD1

�X .ni � nk/�i�
�
k � 0: (9.1.4)

Indeed,

NX

i;kD1

�X .ni � nk/�i�
�
k

D
NX

i;kD1

EŒX.ni /X
�.nk/��i �

�
k D E

NX

i;kD1

Œ�i X.ni /� � Œ�kX.nk/��

D E
NX

iD1

�iX.ni / �
NX

kD1

Œ�kX.nk/�� D E

ˇ
ˇ
ˇ̌
ˇ

NX

iD1

�iX.ni /

ˇ
ˇ
ˇ̌
ˇ

2

� 0:

Recall (see Remark 5.2.1) that the ACvF in continuous time was also proven to be
positive-definite.

9.2 Cumulative Power Spectrum of Discrete-Time
Stationary Signal

The development of this section will be analogous to the development of the con-
cept of the power spectrum of continuous-time signals in Sect. 5.2. However, we
will proceed in a slightly different fashion, and with more mathematical precision.
The basic structural result regarding the autocovariance function of a discrete-time
stationary signal can be formulated as follows:

Herglotz’s theorem. The following statements about the sequence �.n/;

n D : : : ; �2; �1; 0; 1; 2; : : : ; of complex numbers are equivalent:

(i) The sequence �.n/ is an autocovariance sequence of a stationary discrete-time
signal; that is, there exists a stationary signal X.n/ such that �.n/ D �X .n/.

(ii) The sequence �.n/ is positive-definite; that is, it satisfies condition (9.0.4).
(iii) There exists a nondecreasing bounded function SX .f /, defined on the interval

Œ0; 1�, such that

�.n/ D
Z 1

0

ej 2�nf dS.f /; n D : : : ; �2; �1; 0; 1; 2; : : : : (9.2.1)

The function SX .f / is called the cumulative power spectrum of the signal X .
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Remark 9.2.1 (Power spectrum density). The integral of the form
R

a.f / dS.f /,
called the Stieltjes integral, is to be understood as the limit of sums

P
a.fi /�
S.fi /

when maxi j
S.fi /j D S.fi / � S.fi�1/ ! 0. As before, 0 D f0 < f1 < � � � <

fN D 1 stands for a partition of the interval Œ0; 1�.
If the cumulative power spectrum has a spectral density S.f /; 0 	 f 	 1, that is,

S.f / D
Z f

0

S.g/ dg;
dS.f /

df
D S.f / � 0;

then formula (9.1.1) takes the form of the usual Riemann integral

�.n/ D
Z 1

0

ej 2�nf S.f / df; n D : : : ; �2; �1; 0; 1; 2; : : : ; (9.2.2)

and the sequence �.�n/ can be viewed simply as the sequence of Fourier coeffi-
cients of the power spectrum density S.f /.

In the special case when the cumulative power spectrum is constant, except for
jumps, that is,

S.f / D
X

k

sk u.f � fk/; 0 D f0 < f1 < � � � < fN D 1;

where u.t/ is the unit step function, then

Z
a.f / dS.f / D

X

l

a.fk/sk ;

so that

�.n/ D
X

k

skej 2�nfk ; n D : : : ; �2; �1; 0; 1; 2; : : : ; (9.2.3)

and the power spectrum density can be understood as a sum of the Dirac deltas:

S.f / D
X

k

sk ı.f � fk/:

However, it is worth remembering that there are so-called singular cumulative
power spectra that are not of either of the two types described above (nor their
mixtures).1

1 See Sect. 3.1 or, e.g., M. Denker and W.A. Woyczyński, Introductory Statistics and Random Phe-
nomena. Uncertainty, Complexity and Chaotic Behavior in Engineering and Science, Birkhäuser,
Boston, Cambridge, MA, 1998.
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Proof of Herglotz’s theorem. The implication (i) H) (ii) has been proved follow-
ing the definition (9.1.4).

We shall now prove that (ii) H) (iii). Assume that �.n/ is positive-definite. In
view of (9.1.4), selecting ni D i; �i D e�j 2�if ; i D 1; 2; : : : ; N; we have

0 	
NX

i;kD1

�.i � k/e�j 2�if ej 2�kf D
NX

i;kD1

�.i � k/e�j 2�.i�k/f

D
N �1X

mD�N C1

.N � jmj/�.m/e�j 2�mf ;

after the substitution m D i � k. Define

SN .f / WD 1

N

N �1X

mD�N C1

.N � jmj/�.m/e�j 2�mf :

Then

SN .f / � 0 and
Z 1

0

SN .f / df D �.0/: (9.2.4)

By a fundamental real analysis result called the Arzelà–Ascoli theorem,2 conditions
(9.2.4) guarantee the existence of a function S.f / and a sequence Ni % 1; i !
1, such that for each bounded and smooth function a.f /,

Z 1

0

a.f /SNi
.f / df �!

Z 1

0

a.f / dS.f /:

Therefore, selecting a.f / D ej 2�mf , we have

Z 1

0

ej 2�mf dS.f / D lim
i!1

Z 1

0

ej 2�mf SNi
.f / df D �.m/

because, for each m such that jmj 	 Ni ,

Z 1

0

ej 2�mf SNi
.f / df D �.m/

�
1 � jmj

Ni

�
:

Thus, the existence of the cumulative spectral measure for each discrete-time sta-
tionary signal has been established.

2 See, e.g., G. B. Folland, Real Analysis, Wiley, New York, 1984.
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The implication (iii) H) (ii) can be verified directly. Indeed, given assumption
.iii/,

NX

i;kD1

�.ni � nk/�i�
�
k D

NX

i;kD1

Z 1

0

ej 2�.ni �nk/f dS.f / � �i�
�
k

D
Z 1

0

NX

i;kD1

h
�i e

j 2�ni f
i

�
h
�kej 2�nkf

i�
dS.f /

D
Z 1

0

ˇ̌
ˇ
ˇ
ˇ

NX

iD1

�ie
j 2�ni f

ˇ̌
ˇ
ˇ
ˇ

2

dS.f / � 0;

because S.f / is nondecreasing, so that its increments, “dS.f /,” are nonnegative.
The implication (ii) H) (i) follows from the following fact established in

Sect. 8.2. For any given positive-definite matrix � D .�ik/; i; k D 1; 2; : : : ; N;

there exists a Gaussian random vector X D .X1; X2; : : : ; XN /; with covariance ma-
trix � . Now, for any N , it suffices to take � D .�.i � k// ; i; k D 1; 2; : : : ; N; and
define

X.1/ D X1; X.2/ D X2; : : : ; X.N / D XN :

This proves the existence of a finite discrete-time stationary random signal with an
autocovariance sequence given by a prescribed positive-definite sequence.3

9.3 Stochastic Integration with Respect to Signals
with Uncorrelated Increments

Recall that our goal in this chapter is to develop a simulation algorithm for discrete-
time stationary signals with a given power spectrum. One of the methods used for
that purpose involves representation of the random signal as a stochastic integral
with respect to another random signal which has uncorrelated increments which is
easy to simulate via a pseudo-random number generator. The purpose of this section
is to introduce such integrals.

The finite variance, zero-mean, real-valued signal W.w/ of continuous or dis-
crete parameter w is said to have uncorrelated increments if, for any w1 	 w2 	 w3,

EŒ.W.w3/ � W.w2// � .W.w2/ � W.w1//� D 0: (9.3.1)

In other words, such signals have uncorrelated increments over disjoint intervals of
parameter w. Observe that condition (9.3.1) can be rewritten in terms of the auto-
covariance function �W.v; w/ D EW.v/W.w/ (which here is truly a function of

3 A step proving the existence of an infinite such sequence requires an application of the so-
called Kolmogorov extension theorem; see, e.g., P. Billingsley, Probability and Measure, Wiley,
New York, 1986.
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two variables v; w, and not just the parameter lag w � v, as is the case for stationary
signals) as follows:

EŒ.W.w3/ � W.w2// � .W.w2/ � W.w1//�

D EW.w3/W.w2/ � EW.w2/W.w2/ � EW.w3/W.w1/ C EW.w2/W.w1/

D �W.w3; w2/ � �W.w2; w2/ � �W.w3; w1/ C �W.w2; w1/ D 0: (9.3.2)

Example 9.3.1 (Random walk: The cumulative white noise in discrete time). In dis-
crete time, the white noise, W.n/, was defined simply as a sequence of zero-mean,
independent (and thus uncorrelated), identically distributed random quantities with
finite variance, so that its autocovariance sequence is

�W .n; m/ D �W .m � n/ D EW.n/W.m/ D
(

0; if n � m ¤ 0I
�2; if n � m D 0:

We will define the random walk, or cumulative white noise, generated by the white
noise W.n/ as the random signal

W.n/ D W.1/ C W.2/ C � � � C W.n/; n D 1; 2; : : : ;

with the convention W.0/ D 0.
The following mental picture is worth keeping in mind: In the case of the sym-

metric Bernoulli white noise W.n/, with P.W.n/ D ˙1/ D 1=2, the generated
random walk W.n/ moves “forward” by 1 whenever W.n/ D C1, and “backward”
by 1 whenever W.n/ D �1; each possibility occurs with probability 1/2.

The cumulative white noise has uncorrelated increments. Indeed, if n1 	 n2 	
n3, then

E Œ.W.n3/ � W.n2// � .W.n2/ � W.n1//�

D E

" 
n3X

nD1

W.n/ �
n2X

nD1

W.n/

!

�
 

n2X

nD1

W.n/ �
n1X

nD1

W.n/

!#

D E Œ.W.n2 C 1/ C � � � C W.n3// � .W.n1 C 1/ C � � � C W.n2//�

D E .W.n1 C 1/ C � � � C W.n2// � E .W.n2 C 1/ C � � � C W.n3// D 0;

because W.n1 C 1/ C � � � C W.n2/ and W.n2 C 1/ C � � � C W.n3/ are independent
and zero-mean.

For any signal W.w/ with uncorrelated increments, we will introduce a cumula-
tive control function

C.w/ WD EŒW.w/ � W.0/�2 D EŒW.w/�2 � 0; (9.3.3)
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which simply measures the variance of the increment of the signal from 0 to w.
Since the variance of the sum of uncorrelated random quantities is the sum of their
variances, the cumulative control function is always nondecreasing because, for
0 	 v 	 w,

C.w/ D EŒ.W.w/ � W.0/�2 D EŒ.W.w/ � W.v// C .W.v/ � W.0//�2

D EŒ.W.w/ �W.v//�2 C EŒ.W.v/ � W.0//�2 � EŒ.W.v/ � W.0//�2 D C.v/:

(9.3.4)

Observe that, under condition W.0/ D 0, the cumulative control function de-
termines the correlation structure of W.w/, and vice versa. If, say, 0 	 v 	 w,
then

�W.v; w/ D EW.v/W.w/

D EŒW.v/ � W.0/� � Œ.W.w/ � W.v// C .W.v/ � W.0//�

D EŒW.v/ � W.0/� � Œ.W.v/ � W.0//� D C.v/;

because the increments over the intervals Œ0; v� and Œv; w� are uncorrelated. Since an
analogous reasoning holds true in the case 0 	 w 	 v, we get the general formula

�W.v; w/ D C.min.v; w//: (9.3.5)

An important class of signals with independent (and thus uncorrelated) in-
crements are those that also have stationary increments, that is, for which the
c.d.f. of the increment W.w/ � W.v/ is the same as the c.d.f. of the increment
W.w C z/ � W.v C z/, for any z. The random walk from Example 9.3.1 is such
a signal. For signals with independent and stationary increments, the cumulative
control function satisfies condition

C.w C v/ D C.w/ C C.v/ (9.3.6)

because

EŒW.w C v/ � W.0/�2 D EŒW.w C v/ � W.v/�2 C EŒW.v/ � W.0/�2

D EŒW.w/ � W.0/�2 C EŒW.v/ � W.0/�2:

Condition (9.3.6) forces the cumulative function to be linear, that is, of the form

CW.w/ D const � w; (9.3.7)

and, in view of (9.3.5), the autocovariance structure of a signal with stationary and
uncorrelated increments is of the form

�W .v; w/ D const � min.v; w/: (9.3.8)
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Example 9.3.2 (The Wiener, or Brownian motion process). A continuous-time
Gaussian signal with stationary and independent increments with

CW.w/ D w; �W .v; w/ D min.v; w/;

is called the Wiener stochastic process (or the Brownian motion process). Its sample
trajectories are shown in Fig. 1.1.4. Notice that in this case, in view of Sect. 8.3,
the autocovariance function gives a complete description of all finite-dimensional
distributions of W.w/. Indeed, given parameter values

w1 	 w2 	 � � � 	 wN ;

the random vector
.W.w1/;W.w2/; : : : ;W.wN //

is a Gaussian random vector with the covariance matrix � D .min.wi ; wk//, so that
its joint c.d.f. can be explicitly calculated:

P
�
W.w1/ 	 a1;W.w2/ 	 a2; : : : ;W.wN / 	 aN

�

D
Z a1

�1

Z a2

�1
: : :

Z aN

�1
e

� �2
1

2w1p
2�w1

� e
� .�2��1/2

2.w2�w1/

p
2�.w2 � w1/

� � � � � e
� .�N ��N �1/2

2.wN �wN �1/

p
2�.wN � wN �1/

� d�N � � � d�2 � d�1: (9.3.9)

At this point, we are able to introduce the stochastic integral

Z 1

0

x.w/ dW.w/;

with respect to a signal W.w/ with uncorrelated increments, for a deterministic,
possibly complex-valued, function x.w/. If x.w/ is a step function of the form

x.w/ D
NX

iD1

xi 1.wi�1;wi �.w/; (9.3.10)

with 0 D w0 < w1 < � � � < wN �1 < wN D 1, and 1A.w/ denoting the indicator
function of set A,4 then, obviously,

Z 1

0

x.w/ dW.w/ WD
NX

iD1

xi � .W.wi / � W.wi�1//: (9.3.11)

4 Recall that the indicator function 1A.w/ is defined as being equal to 1 for w belonging to set A,
and being 0 for w outside A.
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Note that the variance of the stochastic integral in (9.3.11) is

E

ˇ
ˇ̌
ˇ

Z
x.w/ dW.w/

ˇ
ˇ̌
ˇ

2

D E

ˇ
ˇ̌
ˇ
ˇ

NX

iD1

xi � .W.wi / � W.wi�1//

ˇ
ˇ̌
ˇ
ˇ

2

D
NX

iD1

jxi j2E.W.wi / � W.wi�1//2

D
NX

iD1

jxi j2.C.wi / � C.wi�1//

D
Z 1

0

jx.w/j2 dC.w/; (9.3.12)

because, in view of (9.3.3), for any 0 < v < w,

E.W.w/ � W.v//2 D C.w/ � C.v/: (9.3.13)

Since any function x.w/ such that

Z 1

0

jx.w/j2 dC.w/ < 1 (9.3.14)

is a limit of a sequence xn.w/ of step functions,5 in the sense that

Z 1

0

jxn.w/ � x.w/j2 dC.w/ ! 0; as n ! 1;

definition (9.3.11) of the stochastic integral for step functions can now be extended
to any x.w/ satisfying condition (9.3.14), that is, square integrable with respect to
dC.w/, by setting

Z 1

0

x.w/ dW.w/ WD lim
n!1

Z 1

0

xn.w/ dW.w/; (9.3.15)

where the limit is understood as the limit in the mean square of random quantities
(that is, variance, given that all the random quantities have zero means). In view of
this procedure, the general stochastic integral for a function x.w/ satisfying condi-
tion (9.3.14) enjoys the “isometric” property

E

ˇ
ˇ̌
ˇ

Z 1

0

x.w/ dW.w/

ˇ
ˇ̌
ˇ

2

D
Z 1

0

jx.w/j2 dC.w/: (9.3.16)

5 See, e.g., G. B. Folland, Real Analysis, Wiley, New York, 1984.
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Example 9.3.3 (Gaussian stochastic integrals). Note that if the cumulative control
function C.w/ of a Gaussian process with independent increments V.w/ has a den-
sity c.w/, that is,

C.w/ D
Z w

0

c.v/ dv;
dC.w/

dw
D c.w/ � 0; 0 	 w 	 1;

then, in view of (9.3.16),

E.V.w//2 D E
�Z w

0

dV.v/

�2

D
Z w

0

c.v/ dv D
Z w

0

�p
c.v/

�2

dv;

which implies that for any x.w/ satisfying (9.3.14), the statistical properties of the
stochastic integrals,

Z 1

0

x.v/ dV.v/ and
Z 1

0

x.w/
p

c.w/ dW.w/; (9.3.17)

where W.w/ is the Wiener process, are the same. Later on this fact will serve as the
basis of a computer simulation of stationary random signals with a given spectrum.

Because, for any complex numbers �; �, we have the so-called polarization
formulas,

Re Œ� � ��� D 1

4
.j� C �j2 � j� � �j2/;

Im Œ� � ��� D 1

4
.j� C j�j2 � j� � j�j2/;

which express the product in terms of the squared moduli, the “isometric” relation
(9.3.16) extends from the mean squares to scalar products. In other words, for any
x.w/; y.w/ satisfying condition (9.3.14),

E

"Z 1

0

x.w/ dW.w/ �
�Z 1

0

y.w/ dW.w/

��#
D
Z 1

0

x.w/ � y�.w/ dC.w/:

(9.3.18)

9.4 Spectral Representation of Stationary Signals

The fundamental result about the structure of discrete-time stationary signals is that
they are, essentially, sequences of random Fourier coefficients of stochastic pro-
cesses with uncorrelated increments. More precisely, we have the following
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Spectral representation theorem. A discrete-time random signal X.n/; n D : : : ;

�2; �1; 0; 1; 2; : : : ; is stationary if and only if it has the representation

X.n/ D
Z 1

0

ej 2�nf dW.f / (9.4.1)

for a certain random process W.f /; 0 	 f 	 1; which has uncorrelated in-
crements. Moreover, the cumulative spectral function of X.n/ is identical to the
cumulative control function of W.f /; that is,

SX .f / D CW.f /; 0 	 f 	 1: (9.4.2)

Proof. If the random signal X.n/ is of the form (9.4.1), then it is stationary because
it has zero mean and because, in view of the “isometry” (9.3.17),

EŒX.n/X�.m/� D E

"Z 1

0

ej 2�nf dW.f / �
�Z 1

0

ej 2�mf dW.f /

��#

D
Z 1

0

ej 2�.n�m/f dCW.f /:

The above calculation also identifies the cumulative control function of the process
W.f / as the cumulative spectral function of the random signal X.n/.

The proof of the reverse implication is more delicate, as it requires identification,
for each signal X.n/, of a process W.f / yielding representation (9.4.1). So assume
that X.n/ is a stationary signal with autocovariance sequence

�X .n/ D
Z 1

0

ej 2�nf dSX .f /:

Denote by L2
0.P/ the space of random quantities with zero mean and finite vari-

ance into the space L2.dSX .f // of complex functions on Œ0; 1� which are square
integrable with respect to the cumulative spectral function SX .f /. Next, consider a
linear mapping I from L2

0.P/ into L2.dSX .f // defined by the identity

I ŒX.n/� WD ej 2�nf ; n D : : : ; �2; �1; 0; 1; 2; : : : ; (9.4.3)

on complex exponentials and extended, in a natural way, to all their combinations.
In other words, for any complex numbers c�N ; : : : ; c�1; c0; c1; : : : ; cN ,

I

"
NX

nD�N

cnX.n/

#

D
NX

nD�N

cnej 2�nf : (9.4.4)
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The mapping I is an isometry6 on such linear combinations because

E

ˇ
ˇ̌
ˇ
ˇ

NX

nD�N

cnX.n/

ˇ
ˇ̌
ˇ
ˇ

2

D
NX

n;mD�N

cnc�
mEŒX.n/X�.m/�

D
NX

n;mD�N

cnc�
m

Z 1

0

ej 2�.n�m/f dCW.f /

D
Z 1

0

ˇ
ˇ
ˇ
ˇ̌

NX

nD�N

cnej 2�nf

ˇ
ˇ
ˇ
ˇ̌

2

dSX .f /;

and, as such, it extends to the linear isometry

I W LŒX.n/; n D : : : ; �2; �1; 0; 1; 2; : : : � 7�! L2.dSX .f //;

where LŒX.n/; n D : : : ; �2; �1; 0; 1; 2; : : : � is the subspace of L2.P/ consisting of
linear combinations of X.n/s and their mean-square limits. Since any isometry is
necessarily a one-to-one mapping, I has a well-defined inverse:

I �1 W L2.dSX .f // 7�! LŒX.n/; n D : : : ; �2; �1; 0; 1; 2; : : : �;

which is also a linear isometry. ut
Now we will define a stochastic process W.f / by the formula

W.f / WD I �1.1Œ0;f �/;

where 1Œ0;f �.g/; 0 	 g 	 1; is the indicator function of the interval Œ0; f �. This
process has zero mean and uncorrelated increments since, for f1 	 f2 	 f3, in
view of the isometric property of I �1,

EŒ.W.f3/ � W.f2// � .W.f2/ � W.f1//�

D EŒ.I �1.1Œ0;f3�/ � I �1.1Œ0;f2�// � .I �1.1Œ0;f2�/ � I �1.1Œ0;f1�//�

D EŒ.I �1.1Œ0;f3�/ � .1Œ0;f2�// � .I �1.1Œ0;f2�/ � 1Œ0;f1�//�

D EŒI �1.1.f2;f3�/ � I �1.1.f1;f2�/�

D
Z 1

0

1.f2;f3�.f / � 1.f1;f2�.f / dCX .f / D 0:

6 In the sense that it preserves the norms: The standard deviation is in space L2
0.P/, and kak D

.
R 1

0 ja.f /j2 dSX .f //1=2, for an a.f / in L2.dSX .f //.
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The same calculation shows that

EW2.f / D
Z 1

0

12
Œ0;f �.g/ dCX .g/ D CX .f /:

Now, proceeding again via step functions as in Sect. 9.2, using the linearity and
isometry properties of I �1, we have, for any function a.f / in space L2.dCX .f //,

I �1.a/ D
Z 1

0

a.f / dW.f /:

In particular, selecting a.f / D ej 2�nf , we obtain

X.n/ D I �1.ej 2�nf / D
Z 1

0

ej 2�nf dW.f /;

which concludes the proof of the spectral representation theorem.

Example 9.4.1 (Spectral representation of white noise). Let W.f / be the Wiener
process. Its cumulative control function

CW.f / D f D
Z f

0

df

has a control density function CW.f / � 1. The stationary, discrete-time signal

X.n/ D
Z 1

0

ej 2�nf dW.f /

has the spectral density function SX .f / D CW.f / � 1, and the autocovariance
sequence is

�X .n/ D EX.n/X�.0/ D
Z 1

0

ej 2�nf df D ı.n/ D
(

0; if n ¤ 0I
1; if n D 0:

Hence, X.n/ is the discrete-time white noise discussed in Chap. 5.

Example 9.4.2 (Spectral representation of filtered white noise). Let X.n/ be the
white noise discussed above. Consider the (acausal) filtered (i.e., moving average of)
white noise

Y.n/ D
1X

kD�1
ckX.n � k/ D

Z 1

0

 1X

kD�1
ckej 2�.n�k/f

!

dW.f /;



208 9 Discrete-Time Stationary Signals and Their Computer Simulations

for n D : : : ; �2; �1; 0; 1; 2; : : : : Its autocovariance sequence is

�Y .n/ D EY.n/Y �.0/

D E

 1X

kD�1
ckX.n � k/ �

1X

kD�1
c�

k X�.�k/

!

D E
1X

k;lD�1
ckc�

l X.n � k/X�.�l/ D
1X

k;lD�1
ckc�

l ı.n � .k � l//

D
1X

k;lD�1
ckc�

l

Z 1

0

ej 2�.n�.k�l//f df D
Z 1

0

jc.f /j2ej 2�nf df;

where

c.f / D
1X

kD�1
cke�j 2�kf ;

is well defined as long as
P1

kD�1 jckj2 < 1. Hence, the power spectral density of
the filtered white noise is

SY .f / D jc.f /j2:

9.5 Computer Algorithms: Complex-Valued Case

Given a spectral density SX .f / of a discrete-time, stationary Gaussian signal X.n/,
we can simulate a sample path of X.n/; n D 1; 2; : : : ; N; by first calculating the
autocovariance function �X .n/ using formula (9.2.2),

�X .n/ D
Z 1

0

ej 2�nf SX .f / df ; (9.5.1)

and then by producing a sample of an N -dimensional Gaussian random vector
X D .X1; X2; : : : ; Xn/, with the covariance matrix � D .�X .n � m/; n; m D
1; 2; : : : ; N /, using the standard statistical software. This, however, would be com-
putationally expensive, and even infeasible if n is large.

So in this section we will describe a different, explicit algorithm for such a
simulation based on the spectral representation of Sect. 9.4. The algorithm is math-
ematically justified by the discussions of the preceding sections, and it has the
advantage of not being restricted to Gaussian signals.

The starting point is, of course, the spectral representation theorem and, in partic-
ular, formula (9.4.1), which writes the signal X.n/ as a random Fourier coefficient,

X.n/ D
Z 1

0

ej 2�nf dW.f /; n D 1; 2; : : : ; N; (9.5.2)
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of a process W.f / with uncorrelated increments and cumulative control function
CW.f / equal to the desired cumulative spectrum SX .f /.

We will assume that the spectrum of X.n/ is (absolutely) continuous; that is, it
has a power spectrum density SX .f / such that

CW.f / D SX .f / D
Z f

0

SX .g/ dg: (9.5.3)

For computational purposes, the random integral (9.5.2) has to be discretized.
More precisely, we have to choose an integer K , and partition

f0 D 0; f1 D 1

K
; f2 D 2

K
; : : : ; fK�1 D K � 1

K
; fK D 1;

of the interval Œ0; 1�, and replace the right-hand side of (9.5.2) by the sums

XK.n/ D
KX

kD1

ej 2�nfk

�
W.fk/ � W.fk�1/

�

D
KX

kD1

ej 2�n.k=K/

�
W
� k

K

�
� W

�k � 1

K

��
:

The increments

W
� 1

K

�
� W

� 0

K

�
; W

� 2

K

�
� W

� 1

K

�
; : : : ; W

�K

K

�
� W

�k � 1

K

�
;

are zero-mean and uncorrelated and have, respectively, variances

�2
1 D

Z 1=K

0

SX .f / df ; �2
2 D

Z 2=K

1=K

SX .f / df ; : : : ; �2
K D

Z 1

.K�1/=K

SX .f / df :

Hence, the total mean powers of X.n/ and XK.n/ match exactly. Thus, the simula-
tion algorithm calls for the following steps:

Step 0. Select a positive integer K determining the accuracy of our simulation.
Step 1. Generate, via a random number generator, a sequence

�1; �2; : : : ; �K ;

of zero-mean, variance 1, uncorrelated random values of an otherwise arbi-
trary distribution.

Step 2. Calculate the variances
�2

1 ; �2
2 ; : : : ; �2

K

defined above via the desired power spectrum density.
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Step 3. Calculate the complex numbers

xn D
KX

kD1

ej 2�n.k=K/�k�k ; n D 1; 2; : : : ; N:

They represent an approximate sample of our desired random signal.
Step 4. Plot the real and imaginary parts of the sequence xn; n D 1; 2; : : : ; N;

Re xn D
KX

kD1

cos.j 2�n.k=K//�k�k; Re xn D
KX

kD1

sin.j 2�n.k=K//�k�k;

as functions of the variable n.

Remark 9.5.1. It should be observed that if the power spectrum density is symmetric
about the midpoint f D 1=2, that is, SX.1=2 C f / D SX .1=2 � f /, then the
autocovariance function is real-valued because

�X .n/ D
Z 1

0

ej 2�nf SX .f / df D
Z 1

0

cos.2�nf /SX .f / df:

We shall illustrate the above algorithm on a concrete example implemented in
the symbolic manipulation language Mathematica.

Example 9.5.1 (Mathematica simulation of a complex-valued stationary signal).
The goal is to simulate a discrete-time signal X.n/; n D 1; 2; : : : ; 150; with the
spectral density function SX .f / D f .1 � f /; 0 	 f 	 1, pictured below.

Step 0. Select a positive integer K determining the accuracy of the simulation.

In[1]:= K=100
Out[1]= 100

Step 1. Generate, via a pseudo-random number generator, a sequence

�1; �2; : : : ; �K

of zero-mean, variance 1, uncorrelated random values of an otherwise ar-
bitrary distribution. Here we start with a sample of 100 pseudo-random
numbers with the Gaussian, N Œ0; 1�-distribution; see Fig. 9.5.1.

In[2]:= xi = Table[Random[NormalDistribution[0, 1]], {100}]

Out[2]= {-0.608542, -0.193407, 0.667423, 0.665791, 0.796963, 1.50578,
-1.38957, -2.00677, 0.710005, 3.05874, 0.351129, 0.274176, -0.57993,
-0.317531, -1.9642, 0.418438, -1.21485, 0.311505, 2.14493, -0.665234,
0.440417, -1.24286, 0.217456, -1.48803, -1.66472, 0.720181, 2.09662,
0.751509, -0.748984, 0.203246, -0.490937, 1.91771, -0.696637,
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-0.661528, -0.456505, 1.19835, 0.667494, 1.04284, 0.534665, 0.756436,
0.0707936, 0.375792, -1.56415, 0.559878, 1.20885, -2.45781,
-0.724939, -1.04777, -0.0669847, -0.321047, 0.993232, 1.1395,
-0.325509, 0.611529, 0.890348, 0.716697, 0.203702, -0.863057,
-1.49988, 0.308803, 0.148938, 0.863372, 0.413497, -0.392592, 1.24894,
-0.795932, 0.929254, -1.40817, 0.728825, 0.0811022, -1.13286,
-0.368274, -1.59267, 0.155889, 0.332486, 1.14419, -1.19604,
-0.713426, -0.839724, 0.827024, -0.154212, -0.357799, -0.341499,
-0.0706729, -0.58252, 1.31315, 1.41184, 0.376868, -0.0139196,
-1.60352, -0.783236, -0.223895, 1.19736, 0.707607, -0.212544,
0.115375, 1.27051, -0.18183, 1.27593, -0.775792}

In[2]:= ListPlot[xi, PlotJoined->True, Frame->True,
GridLines->Automatic]

Out[2] -Graphics-

Step 2. Calculate the standard deviations,

�1; �2; : : : ; �K ;

defined via the above power spectrum density.

In[4]:= SX[f_]:=f*(1-f)

In[5]:= sigma =

Table[ Sqrt[NIntegrate[SX[f], {f, (k-1)/100, (k )/100}]],

{k,1,100}]

Out[5]= {0.00704746,0.0121518,0.0156098,0.0183757,0.0207284,0.0227962,

0.0246509,0.0263376,0.0278867,0.0293201,0.030654,0.0319009,0.0330706,

0.0341711,0.0352089,0.0361893,0.0371169,0.0379956,0.0388287,0.039619,

0.0403691,0.0410812,0.0417572,0.0423989,0.0430078,0.0435852,0.0441324,

0.0446505,0.0451405,0.0456034,0.0460398,0.0464507,0.0468366,0.0471982,

0.047536, 0.0478505,0.0481422,0.0484114,0.0486587,0.0488842,0.0490884,

0.0492714,0.0494335,0.0495749,0.0496957,0.0497963,0.0498765,0.0499366,

0.0499767,0.0499967,0.0499967,0.0499767,0.0499366,0.0498765,0.0497963,
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0.0496957,0.0495749,0.0494335,0.0492714,0.0490884,0.0488842,0.0486587,

0.0484114,0.0481422,0.0478505,0.047536,0.0471982,0.0468366,0.0464507,

0.0460398,0.0456034,0.0451405,0.0446505,0.0441324,0.0435852,0.0430078,

0.0423989,0.0417572,0.0410812,0.0403691,0.039619,0.0388287,0.0379956,

0.0371169,0.0361893,0.0352089,0.0341711,0.0330706,0.0319009,0.030654,

0.0293201,0.0278867,0.0263376,0.0246509,0.0227962,0.0207284,0.0183757,

0.0156098,0.0121518,0.00704746}

Step 3. Calculate the numbers

Re xn D
KX

kD1

cos.2�n.k=K//�k�k ; n D 1; 2; : : : ; N;

and

Im xn D
KX

kD1

sin.2�n.k=K//�k�k ; n D 1; 2; : : : ; N;

for N D 150. They represent approximate samples of the real and imagi-
nary parts of our desired random signal.

In[6] ReXi= Table[N[Sum[Cos[2*Pi*n*(k/100)] * sigma[[k]] * xi[[k]],

{k,1,100}]],{n,1,150}]

Out[6] = {-0.023415, 0.204973, 0.262053, -0.306833, 0.0423987, 0.0801657,

-0.114673, 0.180827, -0.182326, 0.0501663, 0.241876, -0.422759,

-0.267774, -0.2427, 0.018383, 0.664823, -0.415174, 0.173961,

-0.0833322, 0.197514, -0.078882, 0.203239, 0.00381133, -0.486851,

0.193364, -0.182158, 0.0293311, -0.381732, 0.304001, 0.0549667,

0.410134, -0.0548758, 0.104368, 0.00517703, -0.213219, 0.0621887,

0.122844, 0.119623, -0.21869, -0.00453364, -0.416995, 0.0884643,

0.459038, -0.279907, 0.0401727, -0.216858, 0.00620257, -0.202628,

0.0410997, 0.211609, 0.0410997, -0.202628, 0.00620257, -0.216858,

0.0401727, -0.279907, 0.459038, 0.0884643, -0.416995, -0.00453364,

-0.21869, 0.119623, 0.122844, 0.0621887, -0.213219, 0.00517703,

0.104368, -0.0548758, 0.410134, 0.0549667, 0.304001, -0.381732,

0.0293311, -0.182158, 0.193364, -0.486851, 0.00381133, 0.203239,

-0.078882, 0.197514, -0.0833322, 0.173961, -0.415174, 0.664823,

0.018383, -0.2427, -0.267774, -0.422759, 0.241876, 0.0501663,

-0.182326, 0.180827, -0.114673, 0.0801657, 0.0423987, -0.306833,

0.262053, 0.204973, -0.023415, 0.103954, -0.023415, 0.204973,

0.262053, -0.306833, 0.0423987, 0.0801657, -0.114673, 0.180827,

-0.182326, 0.0501663, 0.241876, -0.422759, -0.267774, -0.2427,

0.018383, 0.664823, -0.415174, 0.173961, -0.0833322, 0.197514,

-0.078882, 0.203239, 0.00381133, -0.486851, 0.193364, -0.182158,

0.0293311, -0.381732, 0.304001, 0.0549667, 0.410134, -0.0548758,

0.104368, 0.00517703, -0.213219, 0.0621887, 0.122844, 0.119623,

-0.21869, -0.00453364, -0.416995, 0.0884643, 0.459038, -0.279907,

0.0401727, -0.216858, 0.00620257, -0.202628, 0.0410997, 0.211609}
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In[7]:= ImXi = Table[N[Sum[Sin[2*Pi*n*(k/100)]*sigma[[k]]*xi[[k]]

, {k, 1, 100}]], {n, 1, 150}]

Out[7] = {0.15977, -0.103151, -0.157232, 0.333, -0.139511, 0.245695,

-0.43247, 0.407358, -0.70167, -0.0945059, 0.27421, 0.58988, 0.0705348,

-0.11186, -0.0567596, -0.0596612, -0.574812, -0.467159, 0.0811688,

0.38486, -0.463603, 0.178059, 0.791538, -0.0854149, -0.0661586,

-0.106904, 0.0448853, 0.110552, -0.261648, -0.19714, -0.26017,

0.357341, -0.276876, 0.314915, 0.108389, -0.143431, -0.232836,

-0.121447, 0.474415, -0.426709, 0.176697, -0.123609, -0.138301,

0.132275, 0.660073, -0.661418, -0.361657, 0.239999, -0.134132, 0.,

0.134132, -0.239999, 0.361657, 0.661418, -0.660073, -0.132275,

0.138301, 0.123609, -0.176697, 0.426709, -0.474415, 0.121447,

0.232836, 0.143431, -0.108389, -0.314915, 0.276876, -0.357341,

0.26017, 0.19714, 0.261648, -0.110552, -0.0448853, 0.106904,

0.0661586, 0.0854149, -0.791538, -0.178059, 0.463603, -0.38486,

-0.0811688, 0.467159, 0.574812, 0.0596612, 0.0567596, 0.11186,

-0.0705348, -0.58988, -0.27421, 0.0945059, 0.70167, -0.407358,

0.43247, -0.245695, 0.139511, -0.333, 0.157232, 0.103151, -0.15977,

0., 0.15977, -0.103151, -0.157232, 0.333, -0.139511, 0.245695,

-0.43247, 0.407358, -0.70167, -0.0945059, 0.27421, 0.58988,

0.0705348, -0.11186, -0.0567596, -0.0596612, -0.574812, -0.467159,

0.0811688, 0.38486, -0.463603, 0.178059, 0.791538, -0.0854149,

-0.0661586, -0.106904, 0.0448853, 0.110552, -0.261648, -0.19714,

-0.26017, 0.357341, -0.276876, 0.314915, 0.108389, -0.143431,

-0.232836, -0.121447, 0.474415, -0.426709, 0.176697, -0.123609,

-0.138301, 0.132275, 0.660073, -0.661418, -0.361657, 0.239999,

-0.134132, 0.}

Step 4. Plot the complex-valued sequence xn as a function of the variable n. The
consecutive values of the real (left plot) and imaginary (right plot) parts
of the numbers x1; : : : ; x150 were joined in Fig. 9.5.2 to better show their
progression in time.

In[8]:= ListPlot[ReXi, PlotJoined->True, Frame->True,
GridLines->Automatic]

Out[8] -Graphics-
In[9]:= ListPlot[ImXi, PlotJoined->True, Frame->True,

GridLines->Automatic]
Out[9] -Graphics-
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Note that for K D 100, the smallest frequency present in the representation is
f D 1=100. Thus, the produced signal sample is periodic with period P D 100.

Remark 9.5.2. The above simulation can be adapted to any discrete-time signal
X.tn/ with tn D n � 
t , extending the procedures described above in the case

t D 1 (see Problem 4.5.3). In the theoretical limit, 
t ! 0, one obtains the
spectral representation of continuous time (see Problem 4.5.4).

Remark 9.5.3. The fact that the spectral density was concentrated on the interval
Œ0; 1� was related to the selection of the complex exponentials of the form ej 2�nf in
the spectral representation theorem. A different selection of complex exponentials
would lead to different intervals. For example, choosing the complex exponentials
of the form ejn! , that is, conducting spectral analysis in terms of the angular ve-
locity rather than the frequency, would lead to spectral densities concentrated on
the interval Œ0; 2��, or any other interval of length 2� . Figure 9.5.3 shows several
examples of such spectral densities concentrated on the symmetric frequency inter-
val Œ��; C��, and the real parts of the sample paths of the corresponding stationary
signals.

Remark 9.5.4. Another way to produce a graphical representation of the complex-
valued signal xn considered in Example 9.5.1 would be to plot its moduli and
arguments instead of its real and imaginary parts.

9.6 Computer Algorithms: Real-Valued Case

To produce a sample of a real-valued stationary discrete-time signal, it is not enough
to take a real part of the complex-valued signal, because the real part of a complex-
valued stationary signal need not be stationary at all. Indeed, as we have observed
before (see Example 4.1.9), the simple complex random harmonic oscillation

X.n/ D A � ej 2�f0n;

with the zero-mean random amplitude A, is stationary, with the ACvF

EX�.n/X.n C �/ D E
�
A�e�j 2�f0n � Aej 2�f0.nC	/

�
D EjAj2 � ej 2�f0	 D �X .�/;

but its real part,
ReX.n/ D A � cos.2�f0n/;

is not because

EŒReX�.n/ � ReX.n C �/� D EjAj2 � cos.2�f0n/ cos.2�f0.n C �//

D 1

2
EjAj2

�
cos.2�f0.2n C �// C cos.2�f0�/

�

obviously depends not only on the time lag � , but also on the time n.
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The solution here becomes clear if we abandon the complex domain altogether
and return full circle to the very first examples of stationary signals discussed in
Chap. 4 (see Examples 4.1.2 and 4.1.3), this time considering them in discrete time,
n D : : : ; �1; 0; 1; : : : . Without again going through all the rigorous mathematical
details developed in the complex case earlier in this chapter, we just present the
basic algorithm.

Consider the real-valued superposition of harmonic oscillations with distinct fre-
quencies f1; : : : ; fK ;

XK.n/ D
KX

kD1

Ak cos.2�fk.n C ‚k//; (9.6.1)

Fig. 9.5.3 Examples of real parts of simulated discrete-time stationary signals (right column)
with prescribed spectral density functions (left column). Note that the spectral densities in these
simulations are even and concentrated on the interval [��; C�]
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where Ak; k D 1; : : : ; K are independent, zero-mean real-valued random ampli-
tudes, and ‚k; k D 1; : : : ; K , are independent random phases, independent of
the amplitudes and uniformly distributed over the corresponding periods Pk D
1=fk; k D 1; : : : ; K:

The signal XK.n/ has, obviously, zero mean, and (following calculations
analogous to those in Example 4.1.2) the autocovariance sequence is

EXK.n/XK.n C �/

D E
KX

kD1

Ak cos.2�fk.n C ‚k// �
KX

lD1

Ak cos.2�fl .n C � C ‚l//

D
KX

kD1

KX

lD1

E
h�

Ak cos.2�fk.n C ‚k//
��

Al cos.2�fl .n C � C ‚l//
�i

D
KX

kD1

EA2
k � E

�
cos.2�fk.n C ‚k// � cos.2�fk.n C � C ‚k//

�
:

Taking into account the trigonometric formula for the product of the cosines in
Table 1.3.1, and the uniform distributions of ‚k over the periods Pk , we finally
obtain the autocovariance sequence

�XK
.�/ D EXK.n/XK.n C �/ D 1

2

KX

kD1

EA2
k � cos.2�fk�/: (9.6.2)

The above autocovariance sequence corresponds to the power spectrum (see
Example 5.2.2)

SXK
.f / D 1

4

KX

kD1

EA2
k �
�
ı.f � fk/ C ı.f C fk/

�
: (9.6.3)

Now, let us consider an arbitrary even power spectrum SX.f /, i.e., satisfying
condition

SX .�f / D �SX .f /;

and restricted, for the sake of convenience, to the symmetric interval Œ�1=2; C1=2�.
The strategy is to approximate SX.f / by SXK

.f / described in (9.6.3), while pre-
serving the total power, that is, requiring that

P WX D
Z C1=2

�1=2

SX .f / df D
Z C1=2

�1=2

SK.f / df D P WXK
D �XK

.0/: (9.6.4)

The frequencies fk will now be taken to correspond to the partition of the interval
Œ0; 1=2�, that is,

fk D 1

2
� k

K
; k D 1; : : : ; K: (9.6.5)
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So it suffices to select the random amplitudes Ak , so that

1

4
EA2

k D
Z fk

fk�1

SX .f / df � �2
k ; k D 1; : : : ; K: (9.6.6)

As a result,

P WXK
D 1

2

KX

kD1

EA2
k D 2

KX

kD1

Z fk

fk�1

SX .f / df D 2

Z 1=2

0

SX .f / df D P WX ;

as required.
Now if we start with realizations of the standard white noise, �k D W.k/; k D

1; : : : ; K (of any distribution), and the white noise �k D U.k/; k D 1; : : : ; K;

uniformly distributed on Œ�1=2; C1=2�, then

	k D 2K

k
�k; k D 1; : : : ; K;

form a realization of independent random quantities, uniformly distributed over the
intervals �

�K

k
; CK

k

�
D
�
�Pk

2
; CPk

2

�
; k D 1; : : : ; K;

respectively, and the superposition of real-valued harmonic oscillations,

XK.n/ D
KX

kD1

�k�k cos
�
2�fk.n C 2K�k=k/

�
; (9.6.7)

will approximate, in the mean-square sense, the signal X.n/ with the required power
spectrum SX .f /.

Example 9.6.1 (Mathematica simulation of a real-valued stationary signal). We
will implement the above algorithm for the power spectrum SX .f / D 100f 2;

�1=2 	 f 	 C1=2, and a Gaussian signal. The general outlines are the same
as in Example 9.5.1. First we obtain a sample �k of length K D 100 of the standard
Gaussian white noise:

In[1]:= xi = Table[Random[NormalDistribution[0, 1]], {100}]

Out[1]= {-0.856053, 1.08187, 2.46229, 0.714797, 0.714182, -0.213566,
-0.433184, -0.851746, -0.0462548, 1.50339, -1.51236, -1.28448,
0.0673793, -0.108364, 0.270925, -0.330244, 1.35095, -0.44158,
-0.357206, -0.647803, -1.09377, -1.34072, 0.849032, 0.0500218,
-0.575234, -0.0171291, -1.79476, 1.31388, -0.628999, -0.593384,
-0.464793, 1.90548, 0.691585, -0.426236, -0.420072, 0.133262,
-0.0273259, -0.499321, -0.169682, -0.91716, 1.63794, 0.746604,
0.0121301, 0.997426, 1.3202, -0.510749, -0.198871, -0.439695,
0.908916, 1.75012, -0.244048, 0.0384926, 0.182402, 0.00244352,
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-2.0007, 0.259864, -0.755299, -1.06697, 0.177168, 0.518347, 0.127846,
-0.426915, 0.831972, 0.130949, -0.708484, 0.744263, 0.0306772,
-2.40272, -0.388865, 1.04692, -2.36268, 1.26858, 0.020974, -1.19099,
-0.0972772, -1.11214, -0.253469, -1.07956, -1.73907, 1.55135,
-0.273338, 0.814078, 0.280743, 0.199324, 1.59616, -0.569614,
-1.32923, -0.0159629, 1.58278, -0.966994, -1.19754, -1.77986,
1.41761, -1.27518, 0.322685, -0.398681, 1.02684, -0.735058,
-0.141971, -0.41919}

The next step is to produce a sample of length K D 100 of the white noise
�k uniformly distributed on the interval �1=2; C1=2. This is accomplished by first
producing a white noise uniformly distributed on Œ0; 1� and then subtracting 1/2 from
each of its terms:

In[2]:= eta = Table[Random[Real, {0, 1}] - 1/2, {100}]

Out[2]= {0.041948, 0.484289, -0.318925, -0.0276171, 0.0359713,
-0.088659, 0.252302, 0.353539, 0.255555, 0.089573, -0.0901944,
0.227213, 0.0284539, -0.273957, 0.441175, -0.189807, -0.0364003,
0.273394, 0.445258, -0.40948, 0.152135, -0.333722, -0.124852,
-0.42935, -0.389813, -0.318011, -0.305928, 0.0982668, 0.0742158,
0.270648, -0.0582301, 0.244727, 0.318661, -0.318925, -0.468036,
-0.482485, -0.209793, 0.455031, -0.409211, 0.207322, 0.326608,
-0.318363, -0.354468, 0.116801, -0.325528, -0.484641, 0.270384,
0.0461516, -0.435715, 0.33337, 0.0763118, 0.447885, -0.00993046,
-0.437278, -0.365458, -0.296843, 0.171408, 0.381647, -0.397422,
-0.314357, -0.118799, 0.426616, -0.488212, -0.0216788, 0.0545938,
0.244979, 0.366257, 0.36152, -0.119879, 0.22962, -0.404127,
-0.184632, -0.184164, 0.39625, 0.0195609, -0.132516, 0.325766,
0.333528, -0.114981, -0.335674, -0.345642, 0.451881, -0.217559,
0.478683, 0.273157, -0.474735, -0.229347, 0.000362175, -0.281437,
-0.219714, -0.095604, 0.138842, 0.338442, 0.0506663, -0.191477,
-0.176526, 0.0226057, 0.154416, 0.288962, 0.45599}

The standard deviations �k are

In[3]:=sigma=Table[ Sqrt[NIntegrate[100 fˆ2, {f, (k - 1)/200, (k )/200}]],

{k, 1, 100}]

Out[3]={0.00204124, 0.00540062, 0.00889757, 0.0124164, 0.0159426,

0.0194722, 0.0230036, 0.0265361, 0.0300694, 0.0336031, 0.0371371,

0.0406714, 0.044206, 0.0477406, 0.0512754, 0.0548103, 0.0583452, 0.0618803,

0.0654153, 0.0689505, 0.0724856, 0.0760208, 0.0795561, 0.0830913,

0.0866266, 0.0901619, 0.0936972, 0.0972325, 0.100768, 0.104303,

0.107839, 0.111374, 0.114909, 0.118445, 0.12198, 0.125516, 0.129051,

0.132586, 0.136122, 0.139657, 0.143193, 0.146728, 0.150264, 0.153799,

0.157335, 0.16087, 0.164405, 0.167941, 0.171476, 0.175012, 0.178547,

0.182083, 0.185618, 0.189154, 0.192689, 0.196225, 0.19976, 0.203296,

0.206831, 0.210367, 0.213902, 0.217438, 0.220973, 0.224509, 0.228044,

0.23158, 0.235115, 0.238651, 0.242186, 0.245722, 0.249257, 0.252793,

0.256328, 0.259864, 0.263399, 0.266935, 0.27047, 0.274006, 0.277541,

0.281077, 0.284612, 0.288148, 0.291683, 0.295219, 0.298754, 0.30229,

0.305825, 0.309361, 0.312896, 0.316432, 0.319967, 0.323503, 0.327038,

0.330574, 0.33411, 0.337645, 0.341181, 0.344716, 0.348252, 0.351787}
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Entering the above data in formula (9.6.7) gives us a sample of 150 consecutive
values of the desired signal.

In[4]:= xn = Table[

N[Sum[Cos[2*Pi*(n + (200*eta[[k]]/k))*(k/200)]*sigma[[k]]*xi[[k]],

{k, 1, 100}]], {n, 1, 150}]

Out[4] = {0.902888, -1.44987, 0.73034, -0.0467446, -0.981386, 1.85137,

-1.14327, 0.505844, -0.702551, -0.480106, 2.02188, -0.324226,

-2.58959, 3.54, -2.15705, 0.535498, -0.696431, 1.32388, -0.624256,

-1.37706, 0.71946, 0.258689, 2.11401, -2.44596, 1.29879, -1.55369,

0.938206, 0.444133, -0.487131, 0.11673, 0.286159, -1.11297, 0.330835,

-0.246013, -0.0297903, 2.28609, -0.11916, -2.36099, 2.56028,

-2.65337, -0.0894128, 2.2119, -0.816799, 0.344593, -0.698824,

-0.470619, 0.502274, 0.940286, -1.94194, 0.897492, 1.39516, -1.53023,

-0.126247, 0.8947, -0.958154, 0.199293, 0.66053, -1.34534, 1.75322,

-0.338096, -2.11878, 3.2534, -1.21718, -0.405543, 0.413332,

-0.375367, -2.4344, 4.33465, -4.15149, 2.44168, -1.26502, 1.6717,

0.914773, -2.10289, 0.713696, -0.939291, 0.124809, -0.515525,

0.914653, 0.102627, 0.567457, 0.766725, -1.09135, 0.278225, -2.12101,

1.92608, 1.28077, -0.336511, -1.8577, 0.656761, 1.33076, -1.24178,

-0.317488, -0.0655308, 0.540343, 0.00291415, -0.714359, 1.1559,

-1.01383, 0.619388, 1.85065, -3.39279, 2.73494, -1.73749, 0.369481,

0.452425, 0.801605, -1.06127, 1.04946, -1.34485, 0.351694,

-0.0323086, 0.0127435, -1.72899, 0.569055, 1.27245, -1.53539,

2.53497, -1.98056, 1.01728, 0.252221, -0.123346, -0.963119, 1.52522,

-2.59951, 2.70631, -0.853903, 0.17498, -1.08285, -0.805603, 3.50613,

-4.1166, 2.18343, -2.56471, 2.55596, 0.624361, -2.45507, 2.09628,

-0.794994, -0.201666, 0.713224, 0.803646, -1.89323, 1.88523,

-1.57122, 0.958893, -2.30286, 2.02618, 0.408114, -1.40083}

This sample path is then plotted in Fig. 9.6.1. To better visualize its progression
in time, the discrete plot points are joined. The required code follows on the next
page.
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Fig. 9.6.1
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In[5]:= ListPlot[xn, PlotJoined -> True, Frame -> True,
GridLines -> Automatic, PlotStyle -> {Thickness[0.005]}]

Out[5]=

9.7 Problems and Exercises

9.7.1. Verify the polarization formulas preceding the “isometric” formula (9.3.17).

9.7.2. Given a discrete-time stationary signal X.n/ with cumulative power spec-
trum SX .f /, find the cumulative power spectrum for the filtered signal Y.n/ DP1

kD�1 ckX.n � k/. Follow the calculations in Example 9.4.2. Repeat the calcula-
tion in the case when X.n/ has the power spectral density.

9.7.3. Extend the spectral representation (and the algorithm based on it) in the case
of the discrete-time signal X.tn/, with tn D n � 
t , extending procedures described
above in the case 
t D 1.

9.7.4. Find the theoretical spectral representation for continuous-time stationary
signals taking 
t ! 0 in Problem 9.7.3.

9.7.5. Use the simulation algorithm described in Sect. 9.5 to produce sample tra-
jectories of complex-valued signals with the following spectral density functions
defined on the interval 0 	 f 	 1. Plot the spectral densities first.

(a)

S.f / D 1
p

f .1 � f /

What is special about this spectrum? Check that the power of the corresponding
signal is finite.

(b)
S.f / D 2=3;

(c)
S.f / D cos.�f /;

(d)
S.f / D 1 � jf j;

(e)
S.f / D j sin.8�f /j:

In the simulations start with (a) the white noise having the N.0; 1/ distribu-
tions; (b) the white noise having the U.�1; 1/ distributions normalized to have
variance 1.
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9.7.6. Use the simulation algorithm described in Sect. 9.6 to produce sample trajec-
tories of real-valued signals with the following spectral density functions defined on
the interval �1=2 	 f 	 C1=2. Plot the spectral densities first.

(a)

S.f / D 1
p

.1=2 C f /.1=2 � f /

(b)
S.f / D 2=3

(c)
S.f / D cos.�f /

(d)
S.f / D 1 � f

(e)
S.f / D j sin.8�f /j

In the simulations start with (A) the white noise having the N.0; 1/ distribu-
tions, (B) the white noise having the U.�1; 1/ distributions normalized to have
variance 1.

9.7.7. Produce plots of several sample paths of the cumulative discrete-time white
noise defined in Sect. 9.3. Use (A) the white noise having the N.0; 1/ distributions;
(B) the white noise having the U.�1; 1/ distributions normalized to have variance 1.

9.7.8. Verify that the additivity property (9.3.7) of any continuous function forces
its linear form (9.3.8). Start by checking the property for the integers, then move
on to rational numbers, and finally extend the result to all real numbers using the
continuity assumption.

9.7.9. Figure 9.7.1 shows experimental power spectral densities S.�/ of the light
emitted by an incandescent lamp at 2,800 degrees Kelvin (on the left), and a fluo-
rescent lamp at 5,000 degrees Kelvin (on the right). The horizontal scale shows the
wavelength � in nanometers.

Fig. 9.7.1
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(a) Produce approximate mathematical formulas for S.�/ representing the above
two power spectral densities. Assume an arbitrary vertical scale of the experi-
mental spectra (say, from 0 to 1). Plot them on top of pictures in Fig. 9.7.1 to
verify your fit.

(b) Remembering the relationship f Œ1=s� � �Œm� D cŒm=s�, among the frequency,
wavelength, and speed of the travelling wave, and knowing the speed of light,
cŒm=s� D 3:0 � 108, convert the approximate mathematical formulas from part
(a) to formulas representing the two spectral densities as functions of the fre-
quency f . Plot them.

(c) Use the numerical algorithm from Sect. 9.6 to produce several sample paths of
stationary signals with the power spectral densities from (b). Start with the white
noise having the N.0; 1/ distributions. Plot them.

(d) Do a literature search to comment on whether the selection of the Gaus-
sian distribution in (c) was appropriate for the physical phenomenon under
consideration.
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Chapter 1

Problem 1.5.1. Find the real and imaginary parts of (a) .j C 3/=.j � 3/ and (b)
.1 C j

p
2/3.

Solution. (a)

j C 3

j � 3
D .j C 3/.�j � 3/

.j � 3/.�j � 3/
D 1 � 3j � 3j � 9

12 C 32
D �4

5
� 3

5
j:

(b)

.1 C j
p

2/3 D 13 C 3 � 12.j
p

2/ C 3 � 1.j
p

2/2 C .j
p

2/3 D �5 C p
2j:

Problem 1.5.2. Find the moduli jzj and arguments 	 of complex numbers (a) z D
�2j ; (b) z D 3 C 4j .

Solution. (a) j z jD p
.�2/2 C 0 D 2, tan 	 D 1 ) 	 D ��=2. (You have to be

careful with the coordinate angle; here cos 	 D 0, sin 	 < 0.)
(b) j z jD p

9 C 16 D 5, tan 	 D 4=3 ) 	 D arctan 4=3.

Problem 1.5.3. Find the real and imaginary components of complex numbers (a)
z D 5 ej�=4; (b) z D �2 ej.8�C1:27/.

Solution. (a) z D 5ej�=4 D 5 cos.�=4/ C j sin.�=4/ D 5
p

2
2

C j 5
p

2
2

) Re z D
5

p
2

2
; Im z D 5

p
2

2
:

(b) z D �2ej.8�C1:27/ D �2 cos.1:27/ � 2j sin.1:27/ ) Re z D �2 cos.1:27/,
Im z D �2 sin.1:27/:

Problem 1.5.4. Show that

5

.1 � j /.2 � j /.3 � j /
D j

2
:

W.A. Woyczyński, A First Course in Statistics for Signal Analysis, 223
DOI 10.1007/978-0-8176-8101-2, c� Springer Science+Business Media, LLC 2011
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Solution.

5

.1 � j /.2 � j /.3 � j /
D 5

.1 � 3j /.3 � j /
D � 5

10j
D j

2
:

Problem 1.5.5. Sketch sets of points in the complex plane .x; y/; z D xCjy; such
that (a) jz � 1 C j j D 1; (b) z2 C .z�/2 D 2:

Solution. (a) f.x; y/ W jz � 1 C j j D 1g D f.x; y/ W jx C jy � 1 C j j D 1g
D f.x; y/ W j.x � 1/ C j.y C 1/j D 1g D f.x; y/ W .x � 1/2 C .y C 1/2 D 12g:
So the set is a circle with radius 1 and center at .1; �1/.

(b) f.x; y/ W z2 C .z�/2 D 2g D f.x; y/ W .x C jy/2 C .x � jy/2 D 2g D f.x; y/ W
x2 C 2jxy � y2 C x2 � 2jxy � y2 D 2g D f.x; y/ W x2 � y2 D 1g: So the set
is a hyperbola (sketch it, please).

Problem 1.5.6. Using de Moivre’s formula, find .�2j /1=2. Is this complex number
uniquely defined?

Solution.

.�2j /1=2 D p
2
�
ej. 3�

2 C2�k/
�1=2 D p

2ej. 3�
4 C�k/; k D 0; 1; 2; : : :

D
(p

2ej. 3�
4

/; for k D 0; 2; 4; : : : Ip
2ej. 3�

4
C�/; for k D 1; 3; 5; : : : I

D
(p

2


cos. 3�

4
/ C j sin. 3�

4
/
�

; for k D 0; 2; 4; : : : Ip
2


cos. 7�

4
/ C j sin. 7�

4
/
�

; for k D 1; 3; 5; : : : :

Problem 1.5.10. Using de Moivre’s formula, derive the complex exponential rep-
resentation (1.4.5) of the signal x.t/ given by the cosine series representation
x.t/ D PM

mD1 cm cos.2�mf0t C 	m/.

Solution.

x.t/ D c0 C
MX

mD1

cm cos.2�mf0t C 	m/

D c0ej 2�0f0t C
MX

mD1

cm

1

2

�
ej.2�mf0tC�m/ C e�j.2�mf0tC�m/

�

D c0ej 2�0f0t C
MX

mD1

cm

2
ej.2�mf0tC�m/ C

MX

mD1

cm

2
e�j.2�mf0tC�m/

D
�MX

mD�1

�c�m

2
e�j�

�m

�
ej 2�mf0t C c0ej 2�0f0t C

MX

mD1

�cm

2
ej�m

�
ej 2�mf0t :
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Problem 1.5.12. Using a computing platform such as Mathematica, Maple, or
Matlab, produce plots of the signals

xM .t/ D �

4
C

MX

mD1

�
.�1/m � 1

�m2
cos mt � .�1/m

m
sin mt

�
;

for M D 0; 1; 2; 3; : : : ; 9 and �2� < t < 2� . Then produce their plots in the
frequency-domain representation. Calculate their power (again, using Mathematica,
Maple, or Matlab, if you wish). Produce plots showing how power is distributed
over different frequencies for each of them. Write down your observations. What is
likely to happen with the plots of these signals as we take more and more terms of the
above series, that is, as M ! 1? Is there a limit signal x1.t/ D limM!1 xM .t/?
What could it be?

Partial solution. Sample Mathematica code for the plot:

M = 9;

Plot[
Sum[

(((-1)ˆm - 1)/(Pi*mˆ2))*Cos[m*t] - (((-1)ˆm)/m)*Sin[m*t],
{m, M}],

{t, -2*Pi, 2*Pi}]

Sample power calculation:

M2 = 2;

N[Integrate[(1/(2*Pi))*
Abs[Pi/4 +

Sum[(((-1)ˆm - 1)/(Pi*mˆ2))*Cos[m*u] - (((-1)ˆm)/m)*
Sin[m*u], {m, M2}]]ˆ2, {u, 0, 2*Pi}], 5]

1.4445

Problem 1.5.13. Use the analog-to-digital conversion formula (1.1.1) to digitize
signals from Problem 1.5.12 for a variety of sampling periods and resolutions. Plot
the results.

Solution. We provide sample Mathematica code:

M=9;
x[t_]:=Sum[(((-1)ˆm-1)/(Pi*mˆ2))*Cos[m*t]-

(((-1)ˆm)/m)*Sin[m*t],{m,M}]
T=0.1;
R=0.05;

xDigital=Table[R*Floor[x[m T]/R],{m,1,50}];

ListPlot[xDigital]
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Problem 1.5.14. Use your computing platform to produce a discrete-time signal
consisting of a string of random numbers uniformly distributed on the interval [0,1].
For example, in Mathematica, the command

Table[Random[], {20}]

will produce the following string of 20 random numbers between 0 and 1:

{0.175245, 0.552172, 0.471142, 0.910891, 0.219577,
0.198173, 0.667358, 0.226071, 0.151935, 0.42048,
0.264864, 0.330096, 0.346093, 0.673217, 0.409135,
0.265374, 0.732021, 0.887106, 0.697428, 0.7723}

Use the “random numbers” string as additive noise to produce random versions
of the digitized signals from Problem 1.5.12. Follow the example described in
Fig. 1.1.3. Experiment with different string lengths and various noise amplitudes.
Then center the noise around zero and repeat your experiments.

Solution. We provide sample Mathematica code:

M=9;
x[t_]:=Sum[(((-1)ˆm-1)/(Pi*mˆ2))*Cos[m*t]-

(((-1)ˆm)/m)*Sin[m*t],{m,M}]
T=0.1;
R=0.05;
xDigital=Table[R*Floor[x[m T]/R],{m,1,50}];
ListPlot[xDigital]
Noise=Table[Random[],{50}];
noisysig = Table[Noise[[t]] + xDigital[[t]], {t, 1, 50}];
ListPlot[noisysig]
Centernoise = Table[Random[] - 0.5, {50}];
noisysig1 = Table[Centernoise[[t]] + xDigital[[t]], {t, 1,
50}];
ListPlot[noisysig1]

Chapter 2

Problem 2.7.1. Prove that the system of real harmonic oscillations

sin.2�mf0t/; cos.2�mf0t/; m D 1; 2; : : : ;

forms an orthogonal system. Is the system normalized? Is the system complete? Use
the above information to derive formulas for coefficients in the Fourier expansions
in terms of sines and cosines. Model this derivation on calculations in Sect. 2.1.

Solution. First of all, we have to compute the scalar products:

1

P

Z P

0

sin .2�mf0t/ cos .2�nf0t/dt;
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1

P

Z P

0

sin .2�mf0t/ sin .2�nf0t/dt;

1

P

Z P

0

cos .2�mf0t/ cos .2�nf0t/dt:

Using the trigonometric formulas listed in Sect. 1.2, we obtain

1

P

Z P

0

sin .2�mt=P / cos .2�nt=P / dt

D 1

2P

Z P

0

.sin .2�.m�n/t=P / C sin .2�.mCn/t=P // dt D 0 for all m; nI
1

P

Z P

0

cos .2�mt=P / cos .2�nt=P / dt

D 1

2P

Z P

0

.cos .2�.m � n/t=P / C cos .2�.m C n/t=P // dt

D
�

1
2
; if m D n;

0; if m ¤ n:

Similarly,

1

P

Z P

0

sin .2�mt=P / sin .2�nt=P / dt D
�

1
2
; m D nI

0; m ¤ n:

Therefore, we conclude that the given system is orthogonal but not normalized. It
can be normalized by multiplying each sine and cosine by 1=

p
2. It is not complete,

but it becomes complete, if we add the function identically equal to 1 to it; it is
obviously orthogonal to all the sines and cosines.

Using the orthogonality property of the above real trigonometric system, we ar-
rive at the following Fourier expansion for a periodic signal x.t/:

x.t/ D a0 C
1X

mD1

Œam cos.2�mf0t/ C bm sin.2�mf0t/�;

with coefficients

a0 D 1

P

Z P

0

x.t/ dt;

am D 2

P

Z P

0

x.t/ cos .2�mt=P / dt;

bm D 2

P

Z P

0

x.t/ sin .2�mt=P / dt;

for m D 1; 2; : : : .



228 Solutions to Selected Problems

Problem 2.7.2. Using the results from Problem 2.7.1, find formulas for amplitudes
cm and phases 	m in the expansion of a periodic signal x.t/ in terms of only cosines,
x.t/ D P1

mD0 cm cos.2�mf0t C 	m/:

Solution. Obviously, c0 D a0: To find the connection among am; bm and cm; and
	m, we have to solve the following system:

am D cm cos 	m; bm D �cm sin 	m:

This gives us

	m D arctan

�
�bm

am

�
; cm D

q
a2

m C b2
m:

Problem 2.7.9. Find the complex and real Fourier series for the periodic signal
x.t/ D j sin t j. Produce graphs comparing the signal x.t/ and its finite Fourier
sums of order 1, 3, and 6.

Solution. The first observation is that x.t/ has period � . So

zm D 1

�

Z �

0

j sin t je�2jmt dt D 1

�

Z �

0

sin t � e�2jmt dt

D 1

�

Z �

0

ejt � e�jt

2j
� e�2jmt dt D 1

2j�

Z �

0

.ejt.1�2m/ � e�jt.1C2m// dt

D 1

2j�

 
ej�.1�2m/ � 1

j.1 � 2m/
� e�j�.1C2m/

�j.1 C 2m/

!

dt D 2

�.1 � 4m2/
;

because ej� D e�j� D �1 and e�2jm� D 1 , for all m. Therefore, the sought-after
complex Fourier expansion is

x.t/ D 2

�

1X

mD�1

1

1 � 4m2
� ej 2mt :

We observe that for any m D : : : � 1; 0; 1; : : : , we have z�m D zm. Pairing up
complex exponentials with the exponents of opposite signs, and using de Moivre’s
formula, we arrive at the real Fourier expansion that contains only cosine functions:

x.t/ D 2

�

 

1 C 2

1X

mD1

cos.2mt/

1 � 4m2

!

:

In particular, the partial sums of orders 1 and 3 are, respectively,

s1.t/ D 2

�

�
1 � 2 cos 2t

3

�
;

s3.t/ D 2

�

�
1 � 2 cos 2t

3
� 2 cos 4t

15
� 2 cos 6t

35

�
:
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0.0
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1.0

0.0

0.2

0.4

0.6

0.8

1.0

x[t_] := Abs[Sin[t]]

sum[t_, M_] := (2/Pi) * (1 + Sum[(2 / (1 - 4 * m^2)) * Cos[2 * m * t], {m, 1, M}])

pl = Plot[x[t], {t, -2 * Pi, 2 * Pi}, Frame -> True,
   GridLines -> Automatic, PlotStyle -> {Thickness[0.01]}]

sl = Plot[sum[t, 1],{t, -2 * Pi, 2 * Pi}, Frame -> True,
   GridLines -> Automatic, PlotStyle -> {Thickness[0.01]}]

s3 = Plot[sum[t, 6],{t, -2 * Pi, 2 * Pi}, Frame -> True,
   GridLines -> Automatic, PlotStyle -> {Thickness[0.01]}]

      

Mathematica code and the output showing x.t/; s1.t/, and s6.t/ are shown on the
next page.

Problem 2.7.13. (a) The nonperiodic signal x.t/ is defined as equal to 1/2 on the
interval Œ�1; C1� and 0 elsewhere. Plot it and calculate its Fourier transform
X.f /. Plot the latter.
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(b) The nonperiodic signal y.t/ is defined as equal to .t C 2/=4 on the interval
Œ�2; 0�, .�t C 2/=4 on the interval Œ0; 2�, and 0 elsewhere. Plot it and calculate
its Fourier transform Y.f /. Plot the latter.

(c) Compare the Fourier transforms X.f / and Y.f /. What conclusion do you draw
about the relationship of the original signals x.t/ and y.t/?

Solution. (a) The Fourier transform of x.t/ is

X.f / D
Z C1

�1

1

2
e�j 2�f t dt D e�j 2�f � ej 2�f

�4j�f
D sin 2�f

2�f
:

(b) Integrating by parts, the Fourier transform of y.t/ is

Y.f / D
Z 0

�2

..t C 2/=4/e�j 2�f t dt C
Z C2

0

..�t C 2/=4/e�j 2�f t dt

D 1

4

�
1

�j2�f
� 2 � 1

.�j2�f /2
.1 � ej 2�f 2/

�

C1

4

� �1

�j2�f
� 2 � 1

.�j2�f /2
.e�j 2�f 2 � 1/

�

D 1

4

1

.�j2�f /2

�
�.1 � ej 2�f 2/ � .e�j 2�f 2 � 1/

�

D 1

4

1

.j2�f /2

�
ej 2�f � e�j 2�f

�2 D
�

sin 2�f

2�f

�2

:

(c) So we have that Y.f / D X2.f /. This means that the signal y.t/ is the convo-
lution of the signal x.t/ with itself: y.t/ D .x � x/.t/.

Problem 2.7.18. Utilize the Fourier transform (in the space variable z) to find a
solution of the diffusion (heat) partial differential equation

@u

@t
D �

@2u

@z2
;

for a function u.t; z/ satisfying the initial condition u.0; z/ D ı.z/. The solution of
the above equation is often used to describe the temporal evolution of the density of
a diffusing substance.

Solution. Let us denote the Fourier transform (in z) of u.t; z/ by

U.t; f / D
Z 1

�1
u.t; z/e�j 2�f z d z:

Then, for the second derivative,

@2u.t; z/

@z2
7�! .j 2�f /2U.t; f / D �4�2f 2U.t; f /:
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So taking the Fourier transform of both sides of the diffusion equation gives the
equation

@

@t
U.t; f / D �4�2f 2�U.t; f /;

which is now just an ordinary differential linear equation in the variable t , which
has the obvious exponential (in t) solution

U.t; f / D Ce�4�2f 2�t ;

where C is a constant to be matched later to the initial condition u.0; z/ D ı.z/ .
Taking the inverse Fourier transform gives

u.t; z/ D 1p
4��t

e� z2
4�t :

Indeed, by completing the square,

Z 1

�1
U.t; f /ej 2� fx df D C

Z 1

�1
e�4�2f 2�t ej 2� fx df

D Ce
�x2

4�t

Z 1

�1
e�4�2�t.f �jx=.4��//2

df;

with the last (Gaussian) integral being equal to 1=
p

4�� t. A verification of the
initial condition gives C D 1.

Chapter 3

Problem 3.7.2. Calculate the probability that a random quantity uniformly dis-
tributed over the interval Œ0; 3� takes values between 1 and 3. Do the same calculation
for the exponentially distributed random quantity with parameter � D 1:5, and the
Gaussian random quantity with parameters � D 1:5; �2 D 1.

Solution. (a) Since X has a uniform distribution on the interval [0, 3], then the
value of the p.d.f. is 1/3 between 0 and 3 and 0 elsewhere.

Pf1 	 X 	 3g D .3 � 1/ � 1=3 D 2=3:

(b)

Z 3

1

1

�
e�x=�dx D 2

3

Z 3

1

e�2x=3dx D �1.e�2�3=3 � e�2=3/ D 0:378:
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(c) We can solve this problem using the table for the c.d.f. of the standard normal
random quantity:

P.1 	 X 	 3/ D P.1 � 1:5 	 X � � 	 3 � 1:5/ D P.�0:5 	 Z 	 1:5/

D ˆ.1:5/ � ˆ.�0:5/ D 0:9332 � .1 � ˆ.0:5//

D 0:9332 � 1 C 0:6915 D 0:6247:

Problem 3.7.4. The p.d.f. of a random variable X is expressed by the quadratic
function fX .x/ D ax.1 � x/; for 0 < x < 1, and is zero outside the unit interval.
Find a from the normalization condition and then calculate FX .x/; EX; Var.X/;

Std.X/; the nth central moment, and P.0:4 < X < 0:9/. Graph fX .x/ and FX .x/.

Solution. (a) We know that for the p.d.f. of any random quantity, we have

Z 1

�1
fX .x/ dx D 1:

So

1 D
Z 1

0

ax.1 � x/ dx D a

6
:

Thus, the constant a D 6.
(b) To find the c.d.f., we will use the definition

FX .x/ D
Z x

�1
fX .y/ dy:

In our case, when 0 < x < 1,

FX .x/ D
Z x

0

6y.1 � y/ dy D x2.3 � 2x/:

Finally,

FX .x/ D

8
<̂

:̂

0; for x < 0I
x2.3 � 2x/; for 0 	 x < 1I
1; for x � 1:

(c)

EX D
Z 1

0

6x2.1 � x/ dx D 1

2
;

Var.X/ D E.X2/ � .EX/2 D
Z 1

0

6x3.1 � x/ dx � 1

4
D 3

10
� 1

4
D 0:05;

Std.X/ D p
Var.X/ D p

0:05 � 0:224:
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(d) The nth central moment is

Z 1

0

.x � 0:5/n6x.1 � x/ dx D 6

Z 1

0

x.1 � x/

nX

kD0

xk

�
�1

2

�n�k

dx

D 6

nX

kD0

 
n

k

!�
�1

2

�n�k Z 1

0

xkC1.1 � x/ dx

D 6

nX

kD0

 
n

k

!�
�1

2

�n�k
1

6 C 5k C k2
:

(e)

P.0:4 < X < 0:9/ D
Z 0:9

0:4

6x.1 � x/ dx D 0:62:

Problem 3.7.6. Find the c.d.f and p.d.f. of the random quantity Y D tan X ,
where X is uniformly distributed over the interval .��=2; �=2/. Find a physical
(geometric) interpretation of this result.

Solution. The p.d.f. fX .x/ is equal to 1=� for x 2 .��=2; �=2/ and 0 elsewhere.
So the c.d.f. is

FX .x/ D

8
ˆ̂
<

ˆ̂
:

0; for x 	 ��=2I
.1=�/.x C �=2/; for x 2 .��=2; �=2/I
1; for x � �=2:

Hence,

FY .y/ D P.Y 	 y/ D P.tan X 	 y/ D P.X 	 arctan.y//

D FX .arctan.y// D 1

�
.arctan.y/ C �=2/:

The p.d.f. is

fY .y/ D d

dy
FY .y/ D d

dy

1

�
.arctan.y/ C �=2/ D 1

�.1 C y2/
:

This p.d.f. is often called the Cauchy probability density function.
A physical interpretation: A particle is emitted from the origin of the .x; y/-plane

with the uniform distribution of directions in the half-plane y > 0. The p.d.f. of the
random quantity Y describes the probability distribution of locations of the particles
when they hit the vertical screen located at x D 1.

Problem 3.7.13. A random quantity X has an even p.d.f. fX .x/ of the triangular
shape shown in Sect. 3.7.
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(a) How many parameters do you need to describe this p.d.f.? Find an explicit ana-
lytic formula for the p.d.f. fX .x/ and the c.d.f. FX .x/. Graph both.

(b) Find the expectation and variance of X .
(c) Let Y D X3. Find the p.d.f. fY .y/ and graph it.

Solution. (a) Notice that the triangle is symmetric about the line x D 0. Let us
assume that the vertices of the triangle have the following coordinates: A.a; 0/,
B.�a; 0/, C.0; c/. Then the p.d.f is represented by the equations y D � c

a
x C c

in the interval Œ0; a� and y D c
a

x C c in the interval Œ�a; 0�. So we need at most
two parameters.

Next, the normalization condition says that area under the p.d.f is 1. So nec-
essarily, ac D 1 ) c D 1=a. Therefore, actually, one parameter suffices and
our one-parameter family of p.d.f.s has the following analytic description:

fX .x/ D

8
ˆ̂
ˆ̂<

ˆ̂
ˆ̂:

0; for x < �aI
x
a2 C 1

a
; for � a 	 x < 0I

� x
a2 C 1

a
; for 0 	 x < aI

0; for x � a:

The corresponding c.d.f. is as follows: If x < �a, then FX .x/ D 0; if �a 	
x < 0, then FX .x/ D R x

�a
. t

a2 C 1
a
/ dt D x2

2a2 C x
a

C 1
2

; if 0 	 x < a, then

FX .x/ D 1
2

C R x

0
.� t

a2 C 1
a
/ dt D 1

2
� x2

2a2 C x
a

; if x > a, then F.x/ D 1.
(b) Find the expectation and variance of X .

EX D
Z 1

�1
x fX .x/ dx D

Z 0

�a

x

�
x

a2
C 1

a

�
dxC

Z a

0

x

�
� x

a2
C 1

a

�
dx D 0:

Of course, the above result can be obtained without any integration by observing
that the p.d.f. is an even function, symmetric about the origin.

VarX D
Z 1

�1
x2 fX .x/ dx D

Z 0

�a

x2

�
x

a2
C 1

a

�
dx C

Z a

0

x2

�
� x

a2
C 1

a

�
dx

D a2

6
:

(c) The function y D g.x/ D x3 is monotone; therefore, there exists an inverse
function, which in this case is x D g�1.y/ D y1=3. The derivative g0.x/ D 3x2,
and g0.g�1.y/ D 3y2=3. Then [see (3.1.12)]
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fY .y/ D fX .g�1.y//

g0.g�1.y/
D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

0; for y < .�a/3I�
y1=3

a2 C 1
a

�
1

3y2=3 ; for .�a/3 	 y < 0I
�
� y1=3

a2 C 1
a

�
1

3y2=3 ; for 0 < y < a3I
0; for y � a3:

Here is the needed Mathematica code producing the desired plots:

(*pdf, a=2*)
H[x_] := If[x < 0, 0, 1]
f[a_, b_, x_] := H[x - a] - H[x - b];
ff[x_, a_] := (x/aˆ2 + 1/a)*f[-a, 0, x] +

(-x/aˆ2 + 1/2)*f[0, a, x]
Plot[ff[x, 2], {x, -3, 3}]

F[x_, a_] := (xˆ2/(2*aˆ2) + x/a + 1/2)*f[-a, 0, x] +
(1/2 - xˆ2/(2*aˆ2) + x/a)*f[0, a, x]

Plot[F[x, 2], {x, -4, 4}]

Problem 3.7.15. Verify the Cauchy–Schwartz inequality (3.3.18). Hint: Take Z D
.X � EX/=�.X/ and W D .Y � EY=�.Y /, and consider the discriminant of the
expression E.Z C xW /2. The latter is quadratic in the x variable and necessarily
always nonnegative, so it can have at most one root.

Solution. The quadratic form in x,

0 	 E.Z C xW /2 D EZ2 C 2xE.ZW / C x2EW 2 D p.x/;

is nonnegative for any x. Thus, the quadratic equation p.x/ D 0 has at most one
solution (root). Therefore, the discriminant of this equation must be nonpositive,
that is,

.2E.ZW //2 � 4EW 2EZ2 	 0;

which gives the basic form of the Cauchy–Schwarz inequality,

jE.ZW /j 	
p

EW 2 �
p

EZ2:

Finally, substitute for Z and W as indicated in the above hint to obtain the desired
result.

Problem 3.7.24. Complete the following sketch of the proof of the central limit the-
orem from Sect. 3.5. Start with a simplifying observation (based on Problem 3.7.23)
that it is sufficient to consider random quantities Xn; n D 1; 2; : : : ; with expecta-
tions equal to 0, and variances 1.

(a) Define FX .u/ as the inverse Fourier transform of the distribution of X :

FX .u/ D EejuX D
Z 1

1
ejux dFX .x/:
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Find F 0
X .0/ and F 00

X .0/. In the statistical literature FX .u/ is called the charac-
teristic function of the random quantity X . Essentially, it completely determines
the probability distribution of X via the Fourier transform (inverse of the inverse
Fourier transform).

(b) Calculate FX .u/ for the Gaussian N.0; 1/ random quantity. Note the fact that its
functional shape is the same as that of the N.0; 1/ p.d.f. This fact is the crucial
reason for the validity of the CLT.

(c) Prove that, for independent random quantities X and Y ,

FXCY .u/ D FX .u/ � FY .u/:

(d) Utilizing (c), calculate
Fp

n. NX��X /=Std.X/.u/:

Then find its limit as n ! 1. Compare it with the characteristic of the Gaussian
N.0; 1/ random quantity. (Hint: It is easier to work here with the logarithm of
the above transform.)

Solution. Indeed, .Xk � EXk/=Std.Xk/ has expectation 0 and variance 1, so it is
enough to consider the problem for such random quantities. Then

(a)

F 0
X .0/ D d

du
EejuX

ˇ
ˇ
ˇ
uD0

D j EXejuX
ˇ
ˇ
ˇ
uD0

D j EX D 0;

F 00
X .0/ D d

du
j EXejuX

ˇ
ˇ
ˇ
uD0

D j 2EX2ejuX
ˇ
ˇ
ˇ
uD0

D �EX2 D �1:

(b) If Z is an N.0; 1/ random quantity, then

FZ.u/ D
Z 1

�1
ejuX e�x2=2

p
2�

dx D e�u2=2

Z 1

�1
e� 1

2 .x2�2juXC.j u/2/ 1p
2�

dx

D e�u2=2

Z 1

�1
e� 1

2
.x�j u/2 1p

2�
dx

D e�u2=2

Z 1

�1
e� 1

2
z2 1p

2�
d z D e�u2=2

by changing the variable x � j u 7! z in the penultimate integral and because
the Gaussian density in the last integral integrates to 1.

(c) Indeed, if X and Y are independent, then

FXCY .u/ D Eej u.XCY / D E.ejuX � ejuY/ D EejuX � EejuY D FX .u/ � FY .u/

because the expectation of a product of independent random quantities is the
product of their expectations.
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(d) Observe first that

p
n. NX � �X /

Std.X/
D 1p

n
.Y1 C � � � C Yn/;

where

Y1 D X1 � �X

Std.X/
; : : : ; Yn D Xn � �X

Std.X/
;

so that, in particular, Y1; : : : ; Yn are independent, identically distributed with

EY1 D 0 and EY 2
1 D 1. Hence, using (a)–(c),

Fp
n. NX��X /=Std.X/.u/ D F.Y1=

p
nC���CYn=

p
n/.u/

D F.Y1=
p

n/.u/ � � �F.Yn=
p

n/.u/

D ŒFY1
.u=

p
n/�n:

Now, for each fixed but arbitrary u, instead of calculating the limit n ! 1 of
the above characteristic functions, it will be easier to calculate the limit of their
logarithm. Indeed, in view of de l’HOopital’s rule applied twice (differentiating
with respect to n; explain why this is okay),

lim
n!1 logFp

n. NX��X /=Std.X/.u/

D lim
n!1 logŒFY1

.u=
p

n/�n D lim
n!1

logFY1
.u=

p
n/

1=n

D lim
n!1

.1=FY1
.u=

p
n// � F 0

Y1
.u=

p
n/ � .� 1

2
u=n3=2/

�1=n2

D 1

2
u lim

n!1
1 � F 0

Y1
.u=

p
n/

1=n1=2
D 1

2
u lim

n!1
F 00

Y1
.u=

p
n/ � .� 1

2
u=n3=2/

� 1
2

� 1=n3=2

D �1

2
u2;

because F 0
Y1

.0/ D 0 and F 00
Y1

.0/ D �1; see part (a). So for the characteristic
functions themselves,

lim
n!1Fp

n. NX��X /=Std.X/.u/ D e�u2=2;

and we recognize the above limit as the characteristic function of the N.0; 1/

random quantity; see part (b).
The above proof glosses over the issue of whether indeed the convergence of
characteristic functions implies the convergence of c.d.f.s of the corresponding
random quantities. The relevant continuity theorem can be found in any of the
mathematical probability theory textbooks listed in the Bibliographical Com-
ments at the end of this volume.
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Chapter 4

Problem 4.3.1. Consider a random signal

X.t/ D
nX

kD0

Ak cos
�
2�kfk.t C ‚k/

�
;

where A0; ‚1; : : : ; An; ‚n are independent random variables of finite variance, and
‚1; : : : ; ‚n are uniformly distributed on the time interval Œ0; P D 1=f0�. Is this
signal stationary? Find its mean and autocovariance functions.

Solution. The mean value of the signal (we use the independence conditions) is

EX.t/ D E
�
A1 cos 2�f0.t C ‚1/

�
C � � � C E

�
An cos 2�nf0.t C ‚n/

�

D EA1 �
Z P

0

cos 2�f0.t C 	1/
d	1

P
C � � � C EAn �

�
Z P

0

cos 2�nf0.t C 	n/
d	n

P
D 0:

The mean value doesn’t depend on time t ; thus, the first requirement of stationarity
is satisfied.

The autocorrelation function is

�X .t; t C �/ D EŒX.t/X.t C �/�

D E

 
nX

iD1

Ai cos.2�if0.t C ‚i // �
nX

kD1

Ak cos.2�kf0.tC� C ‚k//

!

D
nX

iD1

nX

kD1

E.AiAk/ � E
�

cos.2�if0.tC‚i // � cos.2�kf0.tC�C‚k//
�

D
nX

iD1

EA2
i

2
cos .2�if0�/;

because all the cross-terms are zero. The autocorrelation function is thus depending
only on � (and not on t), so that the second condition of stationarity is also satisfied.

Problem 4.3.2. Consider a random signal

X.t/ D A1 cos 2�f0.t C ‚0/;

where A1; ‚0 are independent random variables, and ‚0 is uniformly distributed
on the time interval Œ0; P=3 D 1=.3f0/�. Is this signal stationary? Is the signal
Y.t/ D X.t/ � EX.t/ stationary? Find its mean and autocovariance functions.
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Solution. The mean value of the signal is

EX.t/ D E
�
A cos 2�f0.t C ‚/

�
D EA �

Z P=3

0

cos.2�f0.t C 	//
d	

P=3

D 3EA

2�
sin.2�f0.tC	//

ˇ
ˇ̌P=3

�D0
D 3EA

2�

�
sin.2�f0.t C P=3// � sin.2�f0t/

�
:

Since

sin p � sin q D 2 cos
p C q

2
sin

p � q

2
;

we finally get

EX.t/ D EA
3
p

3

2�
cos

�
2�f0t C �

3

�
;

which clearly depends on t in an essential way. Thus, the signal is not stationary.
The signal Y.t/ D X.t/ � EX.t/ obviously has mean zero. Its autocovariance

function is

�Y .t; s/ D EŒX.t/X.s/� � EX.t/EX.s/

D EA2

Z P=3

0

cos 2�f0.t C 	/ cos 2�f0.s C 	/
3

P
d	 � EX.t/EX.s/;

with EX.t/ already calculated above. Since cos ˛ cos ˇ D Œcos .˛ C ˇ/ C
cos .˛ � ˇ/�=2, the integral in the first term is

cos 2�f0.t � s/ C 3

4�

�
sin

�
2�f0

�
t C s C 2

3f0

��
� sin.2�f0.t C s//

�
:

Now, �Y .t; s/ can be easily calculated. Simplify the expression (and plot the
ACF) before you decide the stationarity issue for Y.t/.

Problem 4.3.8. Show that if X1; X2; : : : ; Xn are independent, exponentially dis-
tributed random quantities with identical p.d.f.s e�x; x � 0, then their sum Yn D
X1 C X2 C � � � C Xn has the p.d.f. e�yyn�1=.n � 1/Š; y � 0. Use the technique
of characteristic functions (Fourier transforms) from Chap. 3. The random quantity
Yn is said to have the gamma probability distribution with parameter n. Thus, the
gamma distribution with parameter 1 is just the standard exponential distribution;
see Example 4.1.4. Produce plots of gamma p.d.f.s with parameters n D 2; 5; 20;

and 50. Comment on what you observe as n increases.

Solution. The characteristic function (see Chap. 3) for each of the Xi s is

FX .u/ D EejuX D
Z 1

0

ejuxe�x dx D 1

1 � j u
:

In view of the independence of the Xi s, the characteristic function of Yn is neces-
sarily the nth power of the common characteristic function of the Xi s:
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FYn
.u/ D Eej u.X1C���CXn/ D Eej uX1 � � � � � Eej uXn D 1

.1 � j u/n
:

So it suffices to verify that the characteristic function of the p.d.f. fn.u/ D
e�yyn�1=

.n � 1/Š; y � 0, is also of the form .1 � j u/�n. Indeed, integrating by parts,
we obtain

Z 1

0

ejuye�y yn�1

.n � 1/Š
dy D e.j u�1/y

j u � 1
� yn�1

.n � 1/Š

ˇ
ˇ
ˇ
1
yD0

C 1

1 � j u

Z 1

0

e.j u�1/y yn�2

.n � 2/Š
dy:

The first term on the right side is zero, so that we get the recursive formula

Ffn
.u/ D 1

1 � j u
Ffn�1

.u/;

which gives the desired result since Ff1
.u/ D FX .u/ D .1 � j u/�1:

Chapter 5

Problem 5.4.5. A stationary signal X.t/ has the autocovariance function

�X .�/ D 16e�5j	 j cos 20�� C 8 cos 10��:

(a) Find the variance of the signal.
(b) Find the power spectrum density of this signal.
(c) Find the value of the spectral density at zero frequency.

Solution. (a)
�2 D �X .0/ D 16 C 8 D 24:

(b) Let us denote the operation of Fourier transform by F . Then writing perhaps a
little informally, we have

SX .f / D
Z 1

�1
�X .�/e�j 2�f 	 d� D .F�X /.f /

D F
�
16e�5j	 j � cos .20��/ C 8 cos .10��/

�
.f /

D 16 �
�
F.e�5j	 j/ � F.cos.20��//

�
.f / C 8 � F.cos .10��//.f /:
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But

F.e�5j	 j/.f / D 2 � 5

52 C .2�f /2
D 10

25 C .2�f /2

and

F.cos 20��/.f / D ı.f C 10/ C ı.f � 10/

2
;

so that
�
F.e�5j	 j/ � F.cos .20��//

�
.f /

D
Z 1

�1
10

25 C .2�f /2
� ı.f � s C 10/ C ı.f � s � 10/

2
ds

D 5

�Z 1

�1
ı.s � .f C 10//

25 C .2�f /2
ds C

Z 1

�1
ı.s � .f � 10//

25 C .2�f /2
ds

�

D 5

�
1

25 C 4�2.f C 10/2
C 1

25 C 4�2.f � 10/2

�
;

because we know that
R

ı.f � f0/X.f / df D X.f0/. Since F.cos 10��/.f /

D ı.f C 5/=2 C ı.f � 5/=2,

SX .f / D 80

25 C 4�2.f C 10/2
C 80

25 C 4�2.f � 10/2
C4ı.f C5/C4ı.f �5/:

Another way to proceed would be to write e�5j	 j �cos .20��/ as e�5	 �.ej.20�	/�
e�j.20�	//=2, for � > 0 (similarly for negative �s), and do the integration
directly in terms of just exponential functions (but it was more fun to do convo-
lutions with the Diracdelta impulses, wasn’t it?).

(c)

SX .0/ D 80

25 C 4�2100
C 80

25 C 4�2100
C 4ı.5/ C 4ı.�5/ D 160

25 C 400�2
:

Problem 5.4.9. Verify the positive-definiteness (see Remark 5.2.1) of autocovari-
ance functions of stationary signals directly from their definition.

Solution. Let N be an arbitrary positive integer, t1; : : : ; tN 2 R, and z1; : : : ; zN 2 C.
Then, in view of the stationarity of X.t/,

NX

nD1

NX

kD1

�.tn � tk/znz�
k D

NX

nD1

NX

kD1

EŒX�.t/X.t C .tn � tk//�znz�
k

D
NX

nD1

NX

kD1

EŒX�.t C tk/X.t C tn/�znz�
k
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D E
NX

nD1

NX

kD1

.zkX.t C tk//� � .znX.t C tn//

D E

ˇ
ˇ
ˇ
ˇ̌

NX

nD1

znX.t C tn/

ˇ
ˇ
ˇ
ˇ̌

2

� 0:

Chapter 6

Problem 6.4.1. The impulse response function of a linear system is h.t/ D 1 � t

for 0 	 t 	 1 and 0 elsewhere.

(a) Produce a graph of h.t/:

(b) Assume that the input is the standard white noise. Find the autocovariance func-
tion of the output.

(c) Find the power transfer function of the system, its equivalent-noise bandwidth,
and its half-power bandwidth.

(d) Assume that the input has the autocovariance function �X .t/ D 3=.1 C 4t2/.
Find the power spectrum of the output signal.

(e) Assume that the input has the autocovariance function �X .t/ D exp.�4jt j/.
Find the power spectrum of the output signal.

(f) Assume that the input has the autocovariance function �X .t/ D 1 � jt j for
jt j < 1 and 0 elsewhere. Find the power spectrum of the output signal.
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Solution. (a)
(b) With �X .�/ D ı.�/, the autocovariance function of the output is

�Y .�/ D
Z 1

0

Z 1

0

�X .� � u C s/h.s/h.u/ ds du

D
Z 1

0

Z 1

0

ı.s � .u � �//.1 � s/.1 � u/ ds du:



Chapter 6 243

As long as 0 < u � � < 1, which implies that �1 < � < 1, the inner integral is

Z 1

0

ı.s � .u � �//.1 � s/ ds D 1 � .u � �/;

and otherwise it is zero.
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So, for 0 < � < 1,

�Y .�/ D
Z 1

	

.1 � .u � �//.1 � u/ du D 1

6
.� � 1/2.� C 2/;

and, in view of the evenness of the ACvF,

�Y .�/ D 1

6
.j� j � 1/2.j� j C 2/ for �1 < � < 1;

and it is zero outside the interval Œ�1; 1�; see the preceding figure.
(c) The transfer function of the system is

H.f / D
Z 1

0

.1 � t/e�2� jftdt D sin2.�f /

2�2f 2
� j

2�f � sin.2�f /

4�2f 2
:

Therefore, the power transfer function is

jH.f /j2 D H.f /H �.f / D
 

sin2.�f /

2�2f 2

!2

C
�

2�f � sin.2�f /

4�2f 2

�2

D �1 C cos 2�f C 2�f sin 2�f � 2�2f 2

8�4f 4
;

as shown in the following figure.
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To find the value of the power transfer function at f D 0, one can apply
l’HOopital’s rule, differentiating the numerator and denominator of jH.f /j2 three
times, which yields jH.0/j2 D 1=4. Thus, the equivalent-noise bandwidth is

BWn D 1

2jH.0/j2
Z 1

0

.1 � t/2 dt D 2=3:

Checking the above plot of the power transfer function, one finds that the half-
power bandwidth is approximately BW1=2 D 0:553:

(d) The power spectrum of the output signal is given by

SY .f / D SX .f /jH.f /j2;

where SX .f / is the power spectrum of the input signal. In our case,

SX .f / D
Z 1

�1
3

1 C 4t2
� cos.2�f t/ dt D 3�

2
e��jf j:

Therefore,

SY .f / D 3�

2
e��jf j � �1 C cos 2�f C 2�f sin 2�f � 2�2f 2

8�4f 4
:

(e) In this case, similarly,

SX .f / D
Z 1

�1
e�4jt j � cos.2�f t/ dt D 2

4 C �2f 2

and

SY .f / D 2

4 C �2f 2
� �1 C cos 2�f C 2�f sin 2�f � 2�2f 2

8�4f 4
:
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(f) Finally, here

SX.f / D .sin �f /2

�2f 2

and

SY .f / D .sin �f /2

�2f 2
� �1 C cos 2�f C 2�f sin 2�f � 2�2f 2

8�4f 4
:

Problem 6.4.5. Consider the circuit shown in Fig. 6.4.2. Assume that the input,
X.t/, is the standard white noise.

(a) Find the power spectra SY .f / and SZ.f / of the outputs Y.t/ and Z.t/.
(b) Find the cross-covariance,

�YZ.�/ D E
�
Z.t/Y.t C �/

�
;

between those two outputs.

Solution. (a) Note that X.t/ D Y.t/CZ.t/. The impulse response function for the
“Z” circuit is

hZ.t/ D 1

RC
e�t=RC ;

and

Y.t/ D X.t/ �
Z 1

0

hZ.s/X.t � s/ ds:

So the impulse response function for the “Y” circuit is

hY .t/ D ı.t/ �
Z 1

0

1

RC
e�s=RC ı.t � s/ ds

D ı.t/ � 1

RC
e�t=RC ; t � 0:

The Fourier transform of hY .t/ will give us the transfer function

HY .f / D
Z 1

0

�
ı.t/ � 1

RC
e�t=RC

�
e�2� jft dt D 2�jRCf

1 C 2�jRCf
:

For the standard white noise input X.t/, the power spectrum of the output is
equal to the power transfer function of the system. Indeed,

SY .f / D 1 � jHY .f /j2 D 4�2R2C 2f 2

1 C 4�2R2C 2f 2
:

The calculation of SX .f / has been done before, as the “Z” circuit represents
the standard RC-filter.
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(b)

�yz.�/ D E.Y.t/Z.t C �//

D E

�Z 1

�1
X.t � s/hY .s/ ds

Z 1

�1
X.t C � � u/hZ.u/ du

�

D
Z 1

�1

Z 1

�1
EX.t � s/X.t C � � u/hY .s/hZ.u/ ds du

D
Z 1

0

Z 1

0

ı.� � u C s/

�
ı.s/ � 1

RC
e�s=RC

�
1

RC
e�u=RC du ds

D
Z 1

0

�
ı.s/ � 1

RC
e�s=RC

�
1

RC
e�.	Cs/=RC ds

D
Z 1

0

ı.s/
1

RC
e�.	Cs/=RC ds �

Z 1

0

1

RC
e�s=RC 1

RC
e�.	Cs/=RC ds

D 1

RC
e�	=RC � 1

2RC
e�	=RC D 1

2RC
e�	=RC :

Chapter 7

Problem 7.4.2. A signal of the form x.t/ D 5e�.tC2/u.t/ is to be detected in the
presence of white noise with a flat power spectrum of 0:25 V2=Hz using a matched
filter.

(a) For t0 D 2, find the value of the impulse response of the matched filter at
t D 0; 2; 4:

(b) Find the maximum output signal-to-noise ratio that can be achieved if t0 D 1:

(c) Find the detection time t0 that should be used to achieve an output signal-to-
noise ratio that is equal to 95% of the maximum signal-to-noise ratio discovered
in part (b).

(d) The signal x.t/ D 5e�.tC2/u.t/ is combined with white noise having a power
spectrum of 2 V2=Hz. Find the value of RC such that the signal-to-noise ratio at
the output of the RC filter is maximal at t D 0:01 s.

Solution. (a) The impulse response function for the matched filter is of the form

h.s/ D 5 expŒ�.t0 � s C 2/� � u.t0 � s/ D 5e�.4�s/u.2 � s/;

where t0 is the detection time and u.t/ is the usual unit step function. Therefore,

h.0/ D 5e�4; h.2/ D 5e�2; h.4/ D 0:
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(b) The maximum signal-to-noise ratio at detection time t0 is

S
N max

.t0/ D
R1

0
x2.t0 � s/ ds

N0

D
R t0

0
25e�2.t0�sC2/ ds

0:25
D 50e�4.1 � e�2t0 /:

So S
N max

.t0 D 0/ D 50e�4:

(c) The sought detection time t0 can thus be found by numerically solving the equa-
tion

50e�4.1 � e�2t0 / D 0:95 � 50e�4;

which yields, approximately, t0 D � log 0:05=2 � 1:5.

Chapter 8

Problem 8.5.1. A zero-mean Gaussian random signal has the autocovariance func-
tion of the form

�X .�/ D e�0:1j	 j cos 2��:

Plot it. Find the power spectrum SX .f /: Write the covariance matrix for the signal
sampled at four time instants separated by 0.5 s. Find its inverse (numerically; use
any of the familiar computing platforms, such as Mathematica, Matlab, etc.).

Solution. We will use Mathematica to produce plots and do symbolic calculations
although it is fairly easy to calculate SX .f / by direct integration. The plot of �X .�/

follows.
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The power spectrum SX .f / is the Fourier transform of the ACvF, so
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In[1]:= GX[t_] := Exp[- Abs[t]]*Cos[2*Pi*t];

In[2]:= FourierTransform [GX[t], t, 2*Pi*f]
Out[2]=

1

2p 2p(1+4(-1+f)2 p2) (1+4(1+f)2 p2)

1

Note that the Fourier transform in Mathematica is defined as a function of the angu-
lar velocity variable ! D 2�f ; hence the above substitution. The plot of the power
spectrum is next.
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Problem 8.5.3. Find the joint p.d.f. of the signal from Problem 8.5.1 at t1 D 1; t2 D
1:5; t3 D 2, and t4 D 2:5. Write the integral formula for

P.�2 	 X.1/ 	 2; �1 	 X.1:5/ 	 4; �1 	 X.2/ 	 1; 0 	 X.2:5/ 	 3/:

Evaluate the above probability numerically.

Solution. Again, we use Mathematica to carry out all the numerical calculations.
First, we calculate the relevant covariance matrix.

In[3]:= CovGX = N[{{GX[0], GX[0.5], GX[1], GX[1.5]},
{GX[0.5], GX[0], GX[0.5], GX[1]},
{GX[1], GX[0.5], GX[0], GX[0.5]},
{GX[1.5], GX[1], GX[0.5], GX[0]}}] // MatrixForm

Out[3]=
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1. −0.606531 0.367879 −0.22313
−0.606531 1. −0.606531 0.367879

0.367879 −0.606531 1. −0.606531
−0.22313 0.367879 −0.606531 1.

Its determinant and its inverse are

In[4]:=Det [CovGX]
Out[4]= 0.25258

In[5]:= ICovGX = Inverse[CovGX] // MatrixForm
Out[5]=

1.58198 0.959517

0.959517 2.16395 0.959517

−1.11022�10−16 0.959517 2.16395 0.959517

−5.55112�10−17 −2.22045�10−16

−6.73384�10−17 −1.11022�10−16

−2.63452�10−16

0.959517 1.58198

Thus, the corresponding 4D Gaussian p.d.f. is

In[6]:= f[x1, x2, x3, x4]= (1/((2*Pi)ˆ2*Sqrt[Det[CovGX]])) *
Exp[-(1/2)*
Transpose[{{x1},{x2},{x3},{x4}}]. ICovGX. {x1,x2,x3,x4}]

Out[6]= 0.05 * Eˆ( -0.79 x1ˆ2 - 1.08 x2ˆ2 - 0.96 x2 x3 -
1.08 x3ˆ2 + x1 (-0.96 x2 + 8.92*10ˆ-17 x3 + 8.33*10ˆ-17 x4) +
2.43*10ˆ-16 x2 x4 - 0.96 x3 x4 - 0.79 x4ˆ2

Note the quadratic form in four variables, x1, x2, x3, x4, in the exponent.
The calculation of the sought probability requires evaluation of the 4D integral,

P
�
�2 	 X.1/ 	 2; �1 	 X.1:5/ 	 4; �1 	 X.2/ 	 1; 0 	 X.2:5/ 	 3

�

D
Z 2

�2

Z 4

�1

Z 1

�1

Z 3

0

f .x1; x2; x3; x4/ dx1 dx2 dx3 dx4;

which can be done only numerically:

In[7]:= NIntegrate[ f[x1, x2, x3, x4],
{x1, -2, 2}, {x2, -1, 4}, {x3, -1, 1}, {x4, 0, 3}]

Out[7]= {0.298126}

Problem 8.5.4. Show that if a 2D Gaussian random vector EY D .Y1; Y2/ has un-
correlated components Y1; Y2, then those components are statistically independent
random quantities.
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Solution. Recall the p.d.f. of a general zero-mean 2D Gaussian random vector
.Y1; Y2/ [see (8.2.9)]:

f EY .y1; y2/ D 1

2��1�2

p
1 � �2

� exp

�
� 1

2.1 � �2/

�
y2

1

�2
1

� 2�
y1y2

�1�2

C y2
2

�2
2

��
:

If the two components are uncorrelated, then � D 0, and the formula takes the
following simplified shape:

f EY .y1; y2/ D 1

2��1�2

� exp

�
�1

2

�
y2

1

�2
1

C y2
2

�2
2

��
I

it factors into the product of the marginal densities of the two components of the
random vector EY :

f EY .y1; y2/ D 1p
2��1

exp

�
�1

2

�
y2

1

�2
1

��
� 1p

2��2

exp

�
�1

2

�
y2

2

�2
2

��
;

D fY1
.y1/ � fY2

.y2/;

which proves the statistical independence of Y1 and Y2.

Chapter 9

Problem 9.7.8. Verify that the additivity property (9.3.7) of any continuous func-
tion forces its linear form (9.3.8).

Solution. Our assumption is that a function C.v/ satisfies the functional equation

C.v C w/ D C.v/ C C.w/ (S.9.1)

for any real numbers v; w. We will also assume that is it continuous although the
proof is also possible (but harder) under a weaker assumption of measurability. Tak-
ing v D 0; w D 0 gives

C.0/ D C.0/ C C.0/ D 2C.0/;

which implies that C.0/ D 0. Furthermore, taking w D �v, we get

C.0/ D C.v/ C C.�v/ D 0;

so that C.v/ is necessarily an odd function.
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Now, iterating (S.9.1) n times, we get that for any real number v,

C.nv/ D n � C.v/I

choosing v D 1=n, we see that C.1/ D nC.1=n/ for any positive integer n. Replac-
ing n by m in the last equality and combining it with the preceding equality with
v D 1=m, we get that for any positive integers n; m,

C
� n

m

�
D n

m
� C.1/:

Finally, since any real number can be approximated by the rational numbers of the
form n=m, and since C was assumed to be continuous, we get that for any real
number,

C.v/ D v � C.1/I
that is, C.v/ is necessarily a linear function.
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[12] M. Denker and W. A. Woyczyński, Introductory Statistics and Random Phenomena: Uncer-
tainty, Complexity, and Chaotic Behavior in Engineering and Science, Birkhäuser Boston,
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[15] M. Loève, Probability Theory, Van Nostrand, Princeton, NJ, 1961.

All three also contain a substantial account of the theory of stochastic processes.

Readers more interested in the general issues of statistical inference and, in particular, paramet-
ric estimation, should consult

[16] G. Casella and R. L. Berger, Statistical Inference, Duxbury, Pacific Grove, CA, 2002,

or

[17] D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for Engineers, Wiley,
New York, 1994.

The classic texts on the general theory of stationary processes (signals) are

[18] H. Cramer and M. R. Leadbetter, Stationary and Related Stochastic Processes: Sample Func-
tion Properties and Their Applications, Dover Books, New York, 2004,

[19] A. M. Yaglom, Correlation Thoery of Stationary and Related Random Functions, Vols. I and
II, Springer-Verlag, New York, 1987.

However, the original,

[20] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series, MIT Press
and Wiley, New York, 1950.

still reads very well.

Statistical tools in the spectral analysis of stationary discrete-time random signals (also known
as time series) are explored in

[21] P. Bloomfield, Fourier Analysis of Time Series: An Introduction, Wiley, New York, 1976,
[22] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, Springer-Verlag, New

York, 1991.

and difficult issues in the analysis of nonlinear and nonstationary random signals are tackled in

[23] M. B. Priestley, Non-linear and Non-stationary Time Series Analysis, Academic Press, Lon-
don, 1988,

[24] W. J. Fitzgerald, R. L. Smith, A. T. Walden, and P. C. Young, eds., Nonlinear and Nonsta-
tionary Signal Processing, Cambridge University Press, Cambridge, UK, 2000.

The latter is a collection of articles, by different authors, on the current research issues in the area.

A more engineering approach to random signal analysis can be found in a large number of
sources, including

[25] A. Papoulis, Signal Analysis, McGraw-Hill, New York, 1977,
[26] R. G. Brown and P. Y. Hwang, Introduction to Random Signal Analysis and Kalman Filtering,

Wiley, New York, 1992.

A general discussion of transmission of signals through linear systems can be found in



Bibliographical Comments 255

[27] M. J. Roberts, Signals and Systems: Analysis of Signals Through Linear Systems, McGraw-
Hill, New York, 2003,

[28] B. D. O. Anderson, and J. B. Moore, Optimal Filtering, Dover Books, New York, 2005.

Gaussian stochastic processes are thoroughly investigated in

[29] I. A. Ibragimov and Y. A. Rozanov, Gaussian Random Processes, Springer -Verlag, New
York, 1978,

[30] M. A. Lifshits, Gaussian Random Functions, Kluwer Academic Publishers, Dordrecht,
the Netherlands, 1995.

and for a review of the modern mathematical theory of not necessarily second-order and not nec-
essarily Gaussian stochastic integrals, we refer to
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