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Preface 


Over the past 10 years there has been a heightened interest in improving quality, 
productivity, and reliability of manufactured products. Global competition and higher 
customer expectations for safe, reliable products are driving this interest. To meet 
this need, many companies have trained their design engineers and manufacturing 
engineers in the appropriate use of designed experiments and statistical process 
monitoringkontrol. Now reliability is being viewed as the product feature that has 
the potential to provide an important competitive edge. A current industry concern 
is in developing better processes to move rapidly from product conceptualization to 
a cost-effective highly reliable product. A reputation for unreliability can doom a 
product, if not the manufacturing company. 

Data collection, data analysis, and data interpretation methods are important tools 
for those who are responsible for product reliability and product design decisions. 
This book describes and illustrates the use of proven traditional techniques for relia- 
bility data analysis and test planning, enhanced and brought up to date with modem 
computer-based graphical, analytical, and simulation-based methods. The material in 
this book is based on our interactions with engineers and statisticians in industry as 
well as on courses in applied reliability data analysis that we have taught to MS-level 
statistics and engineering students at both Iowa State University and Louisiana State 
University. 

Audience and Assumed Knowledge 
We have designed this book to be useful to statisticians and engineers working in 
industry as well as to students in university engineering and statistics programs. The 
book will be useful for on-the-job training courses in reliability data analysis. There 
is challenge in addressing such a wide-ranging audience. Communications among 
engineers and statisticians, however, is not only necessary but essential in the indus- 
trial research and development environment. We hope that this book will aid such 
communication. To produce a book that will appeal to both engineers and statisti- 
cians, we have placed primary focus on applications, data, concepts, methods, and 
interpretation. We use simple computational examples to illustrate ideas and concepts 
but, as in practical applications, rely on computers to do most of the computations. 
We have also included a collection of exercise problems at the end of each chapter. 

xv 
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These exercises will give readers a chance to test their knowledge of basic material, 
to explore conceptual ideas of reliability testing, data analysis, and interpretation, and 
to see possible extensions of the material in the chapters. 

It will be helpful for readers to have had a previous course in intermediate sta- 
tistical methods covering basic ideas of statistical modeling and inference, graphical 
methods, estimation, confidence intervals, and regression analysis. Only the simplest 
concepts of calculus are used in the main body of the text (e.g., probability for a con- 
tinuous random variable is computed as area under a density curve; a first derivative is 
a slope or a rate of change; a second derivative is a measure of curvature). Appendix 
B and some advanced exercises use calcuIus, linear algebra, basic optimization ideas, 
and basic statistical theory. Concepts, however, are presented in a relaxed and intu-
itive manner that we hope will also appeal to interested nonstatisticians. Throughout 
the book we have attempted to avoid the heavy language of mathematical statistics. 

A detailed understanding of underlying statistical theory is not necessary to apply 
the methods in this book. Such details are, however, often important to understanding 
how to extend methods to new situations or developing new methods. Appendix B, 
at the end of the book, outlines the general theory and provides references to more 
detailed information. Also, many derivations and interesting extensions are covered 
in advanced guided exercises at the end of each chapter. 

Particularly challenging exercises (i.e., exercises requiring knowledge of calculus 
or statistical theory) are marked with a triangle (A).Exercises requiring computer 
programming (beyond the use of standard statistical packages) are marked with a 
diamond (+). 

Special Features of the Book 
Special features of this book include the following: 

1. We emphasize general methods that can be applied to the wide range of prob- 
lems found in industrial reliability data analysis-specifically, nonparamet-
ric estimation of a failure-time distribution function, probability plotting, and 
maximum likelihood estimation of important reliability characteristics (failure 
probabilities, distribution quantiles, and hazard functions), and associated sta- 
tistical intervals. In the basic chapters (3,  6, 7, 8, 17, and 19), we apply these 
methods to the most frequently encountered models in reliability data analy- 
sis. In special chapters (which can be skipped without loss of continuity or 
understanding), we apply the general methods to important but less frequently 
occurring situations (e.g., problems involving truncation and prediction). 

2. Throughout the book we use computer graphics for displaying data, for dis- 
playing the results of analyses, and for explaining technical concepts. 

3. We use simulation methods to complement large-sample asymptotic theory 
(practical sample sizes are often small to moderate in size). We explain and 
illustrate modern, more accurate (but computationally demanding) methods of 
inference: likelihood and bootstrap methods for constructing statistical inter- 
vals. 
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4. For both nonparametric and parametric analyses, we illustrate the use of general 
likelihood-based methods of handling arbitrarily censored data (including left, 
right, and interval censoring with overlapping intervals) and truncated data that 
frequently arise in statistical reliability studies. 

5. We provide methods for planning reliability studies (length of test, number of 
specimens, and levels of experimental factors). 

6. We cover methods for analyzing degradation data. Such data are becoming 
increasingly important where there are requirements for extremely high relia- 
bility. 

7. Almost all of our examples and exercises use real data, including many data sets 
that have not previously appeared in any book. In order to protect proprietary 
information, some data have been changed by a scale factor and, i n  some 
cases, generic product names have been used (e.g., Device-A, Component-B, 
Alloy-A). 

8. Numerical examples in this book were done using the S-PLUS system for 
graphics and data analysis (a product of MathSoft, Inc., Seattk, WA). A suite 
of special S-PLUS functions was developed in parallel with this book. Although 
we have not included explicit information about software use in the chapters, the 
suite of special S-PLUS functions and a listing of the S-PLUS commands used 
to do the examples in the book are available from the authors via anonymous 
ftp at the Wiley ftp site. Instructions about how to access the software are given 
below. 

How to Download the Software Examples 
The Wiley public ftp site includes special S-PLUS function examples created for 
the applications discussed in this book. The files can be accessed through either a 
standard ftp program or the ftp client of a Web browser using the http protocol. You 
can access the files from a Web browser through the following address: 

http://www.wiley.com/products/subject/mathematics 

On the Mathematics and Statistics home page you will see a link to the ftp Software 
Archive, which includes a link to information about the book and access to the 
software. 

To gain ftp access, type the following at your Web browser's URL address input 
box: 

ftp://ftp. wiley.com 

You can set an ID of anonymous; no password is required. 
The files are located in the publidsci-techmedreliability directory. Be sure to 

also download and read the README.TXT file, which includes directions on how 
to install and use the program. 

If you need further information about downloading the files, you can reach Wiley's 
tech support line at 21 2-850-6753. 
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Other Software to Use with the Book 
Today there are many commercial statistical software packages. Unfortunately, only 
a few of these packages have adequate capabilities for doing reliability data analysis 
(e.g., the ability to do nonparametric and parametric estimation with censored data). 
Nelson (1990a, pages 237-240) outlines the capabilities of a number of commercial 
and noncommercial packages that were available at that time. As software vendors 
become more aware of their customers’ needs, capabilities in commercial packages 
are improving. Here we describe briefly the capabilities of a few packages that we 
and our colleagues have found to be useful. 

MINITAB (1997), SAS PROC RELIABILITY (1997), SAS JMP (1995), S-PLUS 
( 1996), and a specialized program called WinSMITH (Abernethy 1996) can do non- 
parametric and parametric product censored data analysis to estimate a single distri- 
bution (Chapters 3, 6, 7, and 8). SAS JMP can also analyze data with more than one 
failure mode (Chapter 15). MINITAB, SAS PROC RELIABILITY, SAS JMP, and 
S-PLUS can do parametric regression and accelerated life test analyses (Chapters 17 
and 19), as well as semiparametric Cox proportional hazards regression analysis. 
SAS PROC RELIABILITY can, in addition, do the nonparametric repairable sys- 
tems analyses (Chapter 16). 

Overview and Paths Through the Book 
There are many possible paths that readers and instructors might take through this 
book. Chapters 1- 16 cover single distribution models without any explanatory vari- 
ables. Chapters 17-2 1 describe failure-time regression models. Chapter 22 presents 
case studies that illustrate, in the context of real problems, the integration of ideas 
presented throughout the book. This chapter also usefully illustrates how some of 
the general methods presented in the earlier chapters can be extended and adapted to 
deal with new problems. 

Chapters 1-3 and 6-8 provide basic material that will be of interest to almost all 
readers and should be read in sequence. Chapter 4 discusses parametric failure-time 
models based on location-scale distributions and Chapter 5 covers more advanced 
distributional models. It is possible to use only a light reading of Chapter 4 and to 
skip Chapter 5 altogether before proceeding on to the important methods in Chap-
ters 6-8. Chapter 9 explains and illustrates the use of bootstrap (simulation-based) 
methods for obtaining confidence intervals. Chapter 10 focuses on test planning: 
evaluating the effects of choosing sample size and length of observation. Chap- 
ters 11-16 cover a variety of special more advanced topics for single distribution 
models. Some of the material in Chapter 5 is prerequisite for the material in Chap-
ter 1 1 ,  but it is possible simply to work in Chapter 11, referring back to Chapter 5 
only as needed. Otherwise, each of Chapters 10 through 14 has only material up to 
Chapter 8 as prerequisite. Chapter 15 introduces some important system reliability 
concepts and shows how the material in the first part of the book can be used to 
make statistical statements about the reliability of a system or a population of sys- 
tems. Chapter 16 explains and illustrates the fundamental ideas behind analyzing 
system-repair and other recurrence data (as opposed to data on components and other 
replaceable units). 
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There are several groups of chapters on special topics that can be read in sequence. 

Accelerated testing. Chapter 17 introduces models and methods for regression 
analysis (assessing the effects of explanatory variables) for failure-time data. 
Chapter 18 introduces physically based reliability models used in accelerated 
testing. Chapter 19 shows how to analyze data from accelerated life tests. Chap- 
ter 20 describes test planning for regression and accelerated test applications 
with censored data. 
Degradation analysis. Chapter 13 provides methods for analyzing degradation 
reliability data. Use of degradation data in accelerated tests is covered in Chap-
ter 21. Chapter 22 contains a case study that describes a method for planning 
accelerated degradation tests. 
Bayesian methods. Chapter 14 introduces concepts and applications of Bayes- 
ian methods for failure-time data. A case study in Chapter 22 extends these 
ideas to regression with an application to accelerated life test data analysis. 

Appendix A provides a summary and index of notation used in the book. Appen- 
dix B outlines the general maximum likelihood and other statistical theory on which 
the methods in the book are based. Appendix C gives tables for some of the larger 
data sets used in our examples. 

Use as a Textbook 
A two-semester course would be required to cover thoroughly all of the material 
in the book. For a one-semester course, aimed at engineers andor statisticians, an 
instructor could cover Chapters 1-4, 6-8, and 17-19, along with selected material 
from the appendices (according to the background of the students), and a few other 
chapters according to interests and tastes. 

This book could be used as the basis for workshops or short courses aimed 
at engineers or statisticians working in industry. For an audience with a working 
knowledge of basic statistical tools, Chapters 1-3, key sections in Chapter 4, and 
Chapters 6-8 could be covered in one day. If the purpose of the short course is 
to introduce the basic ideas and illustrate with examples, then some material from 
Chapters 17-20 could also be covered. For a less experienced audience or for a more 
relaxed presentation, allowing time for exercises and discussion, two days would be 
needed to cover this material. Extending the course to three or four days would allow 
covering selected material in Chapters 9-22. 

WILLIAMQ. MEEKER 
LUISA. ESCOBAR 

Antes, Iowva 
Baton Rouge, Louisiana 
April 1998 
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C H A P T E R  1 


Reliability Concepts and 
Reliability Data 

0bjectives 

This chapter explains: 

Basic ideas behind product reliability. 
Reasons for collecting reliability data. 

Distinguishing features of reliability data. 
General models for reliability data. 
Examples of reliability data and the motivation for the collection of the data. 
A general strategy that can be used for data analysis, modeling, and inference 
from reliability data. 

Overview 

This chapter introduces some of the basic concepts of product reliability. Section 1 . 1  
explains the relationship between quality and reliability and outlines how statistical 
studies are used to obtain information that can be used to assess and improve product 
reliability. Section 1.2 presents examples to illustrate studies that resulted in different 
kinds of reliability data. These examples are used in data analysis and exercises in 
subsequent chapters. Section 1.3 explains, in general terms, important qualitative 
aspects of statistical models that are used to describe populations and processes in  
reliability applications. Section 1.4 emphasizes the important distinction between 
studies focusing on data from repairable systems and nonrepairable units. Section I .S 
describes a general strategy for exploring, analyzing, and drawing conclusions from 
reliability data. This strategy is illustrated in examples throughout the book and in  
the case studies in Chapter 22. 

1 



2 RELIABILITY CONCEPTS A N D  RELIABILITY DATA 

1.1 INTRODUCTION 

1.1.1 Quality and Reliability 

Rapid advances in technology, development of highly sophisticated products, intense 
global competition, and increasing customer expectations have put new pressures 
on manufacturers to produce high-quality products. Customers expect purchased 
products to be reliable and safe. Systems, vehicles, machines, devices, and so on 
should, with high probability, be able to perform their intended function under usual 
operating conditions, for some specified period of time. 

Technically, reliability is often defined as the probability that a system, vehicle, 
machine, device, and so on will perform its intended function under operating con- 
ditions, for a specified period of time. Improving reliability is an important part of 
the larger overall picture of improving product quality. There are many definitions of 
quality, but general agreement that an unreliable product is not a high-quality product. 
Condra (1993)emphasizes that “reliability is quality over time.” 

Modern programs for improving reliability of existing products and for assuring 
continued high reliability for the next generation of products require quantitative 
methods for predicting and assessing various aspects of product reliability. In most 
cases this will involve the collection of reliability data from studies such as laboratory 
tests (or designed experiments) of materials, devices, and components, tests on early 
prototype units, careful monitoring of early-production units in the field, analysis of 
warranty data, and systematic longer-term tracking of products in the field. 

1.1.2 Reasons for Collecting Reliability Data 

There are many possible reasons for collecting reliability data. Examples include the 
following: 

Assessing characteristics of materials over a warranty period or over the prod- 
uct’s design life. 
Predicting product reliability. 
Predicting product warranty costs. 
Providing needed inputs for system-failure risk assessment. 
Assessing the effect of a proposed design change. 
Assessing whether customer requirements and government regulations have 
been met. 
Tracking the product in the field to provide information on causes of failure and 
methods of improving product reliability. 
Supporting programs to improve reliability through the use of laboratory exper- 
iments, including accelerated life tests. 
Comparing components from two or more different manufacturers, materials, 
production periods, operating environments, and so on. 
Checking the veracity of an advertising claim. 
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1.1.3 Distinguishing Features of Reliability Data 

Reliability data can have a number of special features requiring the use of special 
statistical methods. For example: 

Reliability data are typically censored (exact failure times are not known). The 
most common reason for censoring is the frequent need to analyze life test 
data before all units have failed. More generally, censoring arises when actual 
response values (e.g., failure times) cannot be observed for some or all units 
under study. Thus censored observations provide a bound or bounds on the 
actual failure times. 
Most reliability data are modeled using distributions for positive random vari- 
ables like the exponential, Weibull, gamma, and lognormal. Relatively few 
applications use the normal distribution as a model for product life. 
Inferences and predictions involving extrapolation are often required. For ex-
ample, we might want to estimate the proportion of the population that will fail 
after 900 hours, based on a test that runs only 400 hours (extrapolation in time). 
Also we might want to estimate the time at which 1 %  of a product population 
will fail at 50°C based on tests at 85°C (extrapolation in operating conditions). 
It is often necessary to use past experience or other scientific or engineering 
judgment to provide information as input to the analysis of data or to a decision- 
making process. This information may take the form of a physically based model 
andor the specification of one or more parameters (e.g., physical constants or 
materials properties) of such a model. This is also a form of extrapolation from 
the past to the present or future behavior of a process or product. 
Typically, the traditional parameters of a statistical model (e.g., mean and stan- 
dard deviation) are not of primary interest. Instead, design engineers, reliability 
engineers, managers, and customers are interested in specific measures of prod- 
uct reliability or particular characteristics of a failure-time distribution (e.g., 
failure probabilities, quantiles of the life distribution, failure rates). 
Especially with censored data, model fitting requires computer implementation 
of numerical methods, and often there is no exact theory for statistical inferences. 
Integrated software to do all of the needed analyses is not available yet. There are 
useful, but limited, capabilities in commercial packages like BMDP, MINITAB, 
SAS, S-PLUS, SYSTAT, and WinSMITH. The examples in this book were done 
with extensions of the S-PLUS system, as described in the preface. 

This book emphasizes the analysis of data from studies conducted to assess or 
improve product reliability. Data from reliability studies, however, closely resemble 
data from time-to-event studies in other areas of science and industry including 
biology, ecology, medicine, economics, and sociology. The methods of analysis in 
these other areas are the same or similar to those used in reliability data analysis. 
Some synonyms for reliability data are failure-time data, life data, survival data (used 
in medicine and biological sciences), and event-time data (used in the social sciences). 
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1.2 EXAMPLES OF RELIABILITY DATA 

This section describes examples and data sets that illustrate the wide range of appli- 
cations and characteristics of reliability data. These and other examples are used in 
subsequent chapters to illustrate the application of statistical methods for analyzing 
and drawing conclusions from such data. 

1.2.1 Failure-Time Data with no Explanatory Variables 

In many applications reliability data will be collected on a sample of units that are 
assumed to have come from a particular process or population and to have been 
tested or operated under nominally identical conditions. More realistically, there are 
physical differences among units (e.g., strength or hardness) and operating conditions 
(e.g., temperature, humidity, or stress) and these contribute to the variability in the 
data. The assumption used in drawing inferences from such single disrribirtiori data 
is that these differences accurately reflect the variability in life caused by the actual 
differences in the population or process of interest. 

Example 1.1 Ball Bearing Fatigue Data. Lieblein and Zelen (1956) describe 
and give data from fatigue endurance tests for deep-groove ball bearings. The ball 
bearings came from four different major bearing companies. There was disagreement 
in the industry on the appropriate parameter values to use to describe the relationship 
between fatigue life and stress loading, The main objective of the study was to 
estimate values of the parameters in the equation relating bearing life to load. 

The data shown in Table 1 . 1  are a subset of ri = 23 bearing failure times for units 
tested at one level of stress, reported and analyzed by Lawless (1982). Figure I .  1 
shows that the data are skewed to the right. Because of the lower bound on cycles (or 
time) to Failure at zero, this distribution shape is typical of reliability data. Figure 1.2 
illustrates the failure pattern over time. II3 

Modern electronic systems may contain anywhere from hundreds to hundreds of 
thousands of integrated circuits (ICs). In order for such a system to have high relia- 
bility, i t  is necessary for the individual ICs and other components to have extremely 
high reliability, as in the following example. 

Example 1.2 Integrated Circuit Life Test Data. Meeker (1987) reports the 
results ofa life test of n = 4 156 integrated circuits tested for 1370 hours at accelerated 
conditions of 80°C and 80% relative humidity. The accelerated conditions were used 

Table 1.1. Ball Bearing Failure Times in Millions of Revolutions 

17.88 28.92 33.00 41.52 42.12 45.60 
38.40 5 1.84 5 1.96 54.12 55.56 67.80 
68.64 68.64 68.88 84. I2 93.12 98.64 

1 OS.I2 105.84 127.92 128.04 173.40 
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Figure 1.1. Histogram of the ball hearing failure data. 

Figure 1.2. Diyday of the ball hearing failure data. 
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Table 1.2. Integrated Circuit Failure Times in Hours 

. I0 .I0 .I5 .60 .80 .80 
I .20 2.50 3.00 4.00 4.00 6.00 

10.00 10.00 12.50 20.00 20.00 43.00 
43.00 48.00 48.00 54.00 74.00 84.00 
Y4.00 168.00 263.00 593.00 

’ When the test ended a1 I370 hours, there were 4128 unfailed units. Data from Meeker (1987). 

to shorten the test by causing defective units to fail more rapidly. The primary purpose 
of the experiment was toestimate the proportion of defective units being manufactured 
in the current production process and to estimate the amount of “burn-in” time that 
would be required to remove most of the defective units from the product population. 
The reliability engineers were also interested in whether it might be possible to get 
the needed information about the state of the production process, in the future, using 
much shorter tests (say, 200 or 300 hours). The data are reproduced in Table 1.2. 
There were 25 failures in the first 100hours, three more between 100 and 600 hours. 
and no more failures out to 1370 hours, when the test was terminated. Ties in the 
data indicate that failures were detected at inspection times. A subset of the data is 
depicted in Figure I .3. 

Figure 1.3. General failure pattern of the integrated circuit life test, showing a subset of the data where 
28 out of 4156 units failed in the 1370-hour test. 

0 
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Table 1.3. Failure Data from a Circuit Pack Field Tracking Study 

Operating Hours 
Interval Endpoint Number Failing 

Lower Upper Vendor 1 Vendor 2 

0 I 10 unknown 
I 2 1 unknown 
2 5 3 unknown 
5 10 I unknown 

10 20 2 unknown 
20 50 6 unknown 
50 100 3 unknown 

100 200 2 unknown 
200 500 8 unknown 
500 1 ,000 4 unknown 

I ,000 2,000 5 2 
2.000 5,000 6 5 
5,000 6,000 3 6 
6,000 7,000 9 I I  
7,000 8,000 10 7 
8.000 9.000 16 14 
9.000 1 0.000 7 1 0 

I 0.000 I1.000 unknown 14 
~~ ~ 

After 10,OOO hours of operation. there were 4897 unfailed packs for Vendor I and after I I,(K)o hours of 
operation there were 4924 unfailed packs for Vendor 2. 

Example 1.3 Circuit Pack Reliability Field Trial. Table I .3 gives information 
on the number of failures observed during periodic inspections in a field trial of early-
production circuit packs employing new technology devices. The circuit packs were 
manufactured under the same design, but by two different vendors. The trial ran for 
10,OOO hours. The 4993 circuit packs from Vendor I came straight from production. 
The 4993 circuit packs from Vendor 2 had already seen 1OOO hours of bum-in testing 
at the manufacturing plant under operating conditions similar to those in the field trial. 
Such circuit packs were sold at a higher price because field reliability was supposed 
to have been improved by the bum-in screening of circuit packs containing defective 
components. Failures during the first loo0 hours of burn-in were not recorded. This 
is the reason for the unknown entries in the table and for having information out to 
1 1,OOO hours for Vendor 2. The data in Table 1.3 is for the first failure in a position; 
information on circuit packs replaced after initial failure in a position was not part of 
the study. 

Inspections were costly and were spaced more closely at the beginning of the study 
because more failures were expected there. The early "infant mortality" failures were 
caused by component defects in a small proportion of the circuit packs. Such failures 
are typical for an immature product. For such products, burn-in of circuit packs can 
be used to weed out most of the packs with weak components. Such burn-in, however. 
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is expensive, and one of the manufacturer’s goals was to develop robust design and 
manufacturing processes that would eliminate or reduce, as quickly as possible, the 
occurrence of such defects in future generations of similar products. 

There were several goals for this study: 

Determine if there was an important difference in the reliability of the products 
from the two different vendors. 
Determine the specific causes of failures so that the information could be used 
to improve product design or manufacturing methods. 
Estimate the circuit pack “hazard function” (a measure of failure propensity 
defined in Chapter 2) out to 10,000hours. 
Estimate the point at which the hazard function levels off. After this point in 
time, burn-in would not be useful for improving the reliability of the circuit 
packs. 
Judge if and when the burn-in period can be used effectively to improve early-life 
reliability. 
Estimate the failure-time distribution for the first 0,000 hours of life (the 
warranty period for the product). 
Estimate the proportion of units that will fail in the first 50,000 hours of life 
(expected technological life of the units). Cl 

Example 1.4 Diesel Generator Fan Failure Data. Nelson (1982, page 133) 
gives data on diesel generator fan frlilures. Failures in 12 of 70 generator fans were 
reported at times ranging between 450 hours and 8750 hours. Of the 58 units that 
did not fail, the reported running times (Le., censoring times) ranged between 460 
and 11,500 hours. Different fans had different running times because units were in- 
troduced into service at different times and because their use-rates differed. The data 
are reproduced in Appendix Table C. 1 .  Figure 1.4 provides an initial graphical rep- 
resentation of the data. Figure 1 .S shows the censoring data. The data were collected 
to answer questions like: 

What percentage of the units will fail under warranty‘? 
Would the fan failure problem get better or worse in the future‘? In reliability ter- 
minology, does hazard function (sometimes called failure rate) for fans increase 
or decrease with fan age‘? c7 

Example 1.5 Heat Exchanger Tube Crack Data. Nuclear power plants use 
heat exchangers to transfer energy from the reactor to steam turbines. A typical 
heat exchanger contains thousands of tubes through which steam flows continuously 
when the heat exchanger is in service. With age, heat exchanger tubes develop 
cracks, usually due to some combination of stress-corrosion and fatigue. A heat 
exchanger can continue to operate safely when the cracks are small. If cracks get 
large enough, however, leaks can develop, and these could lead to serious safety 
problems and expensive, unplanned plant shut-down time. To protect against having 
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Figure 1.4. Histogram showing failure times (light shade) and running times (dark shade) for the diesel 
generator fan data. 

Figure 1.5. Failure pattern in a subset of the diesel generator fan data. There were 12 fan failures and 58 
right-censored observations. 
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leaks, heat exchangers are taken out of service periodically so that its tubes (and other 
components) can be inspected with nondestructive evaluation techniques. At the end 
of each inspection period, tubes with detected cracks are plugged so that water will 
no longer pass through them. This reduces plant efficiency but extends the life of the 
expensive heat exchangers. With this in mind, heat exchangers are built with extra 
capacity and can remain in operation up until the point where a certain percentage 
(e.g., 5 % )  of the tubes have been plugged. 

Figure 1.6 illustrates the inspection data, available at the end of 1983, from three 
different power plants. At this point in time, Plant 1 had been in operation for 3 
years, Plant 2 for 2 years, and Plant 3 for only 1 year. Because all of the heat 
exchangers were manufactured according to the same design and specifications and 
because the heat exchangers were operated in generating plants run under similar 
tightly controlled conditions, it seemed that it should be reasonable to combine the 
data from the different plants for the sake of making inferences and predictions about 
the time-to-crack distribution of the heat exchanger tubes. Figure I .7 illustrates the 
same data displayed in terms of amount of operating time instead of calendar time. 

The engineers were interested in predicting tube life of a larger population of 
tubes in similar heat exchangers in other plants, for purposes of proper accounting 
and depreciation and so that the company could develop efficient inspection and 
replacement strategies. They also wanted to know if the tube failure rate was constant 

100 new 
tubes 

Plant 1 

Plant 2 

100 new 
tubes 1 failure 

L 

-m 

Plant 3 a 
99 - - - -3-

D 

L 

1981 1982 1983 

Figure 1.6. Heat exchanger tube crack inspection data in calendar time. 
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over time or if suspected wearout mechanisms (corrosion and fatigue) would, as 
suspected, begin to cause failures to occur with higher frequency as the heat exchanger 
ages. 

Example 1.6 Transmitter Vacuum Tube Data. Table 1.4 gives life data for 
a certain kind of transmitter vacuum tube (designated as “V7” within a particular 
transmitter design). Although solid-state electronics has made vacuum tubes obsolete 
for most applications, such tubes are still widely used in the output stage of high- 

Table 1.4. Failure Times for the V7 Transmitter’hbe 

Days 

Interval Endpoint Number 
Lower Upper Failing 

0 25 I09 
25 50 42 
50 75 17 
75 100 7 

100 00 13 

Data from Davis (1952). 
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power transmitters. These data were originally analyzed in Davis (1952). As seen in 
many practical situations, the exact failure times were not reported. Instead, we have 
only the number of failures in each interval or bin. Such data are known as grouped 
data, interval data, binned data, or read-out data. 0 

Example I .  7 Turbine Wheel Crack Initiation Data. Nelson ( 1982)describes 
a study to estimate the distribution of time to crack initiation for turbine wheels. Each 
of 432 wheels was inspected once to determine if it had started to crack or not. At 
the time of the inspections, the wheels had different amounts of service time (age). 
A unit found to be crucked at its inspection was lefr-censored at its age (because the 
crack had initiated at some unknown point before its inspection age). A unit found to 
be irncracked at its inspection was right-censored at its age (because a crack would 
be initiated at some unknown point after that age). The data in Table 1.5, taken from 
Nelson (1982), show the number of cracked and uncracked wheels in different age 
categories, showing the midpoint of the time intervals given by Nelson. The data 
were put into intervals to facilitate simpler analyses. 

In some applications components with an initiated crack could continue in ser-
vice for rather long periods of time with the expectation that in-service inspections, 
scheduled frequently enough, could detect cracks before they grow to a size that 
could cause a safety hazard. 

The important objectives of the study were to obtain information that could be 
used to: 

Estimate the distribution of the time to crack initiation. 
Schedule in-service inspections. 
Assess whether the wheel's crack initiation rate is increasing as the wheels age. 
An increasing rate would suggest preventive replacement of the wheels by some 
age when the risk of cracking gets too high. 

Table 1.5. 'hrbine Wheel Inspection Data Summary at Time of Study 

100-hours of Exposure Interval 
Interval Midpoint # Cracked # Not Cracked 

0-8 4 0 39 
8-12 10 4 49 

12-16 14 2 31 
16-20 18 7 66 
20-24 22 5 25 
24-28 26 9 30 
28-32 30 9 33 
32-36 34 6 7 
3 6 4 0  38 22 12 
40-44 42 21 19 
44+ 46 21 15 

Data from Nelson (1982),page 409. 
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Turbine Wheel 
Number 

I 
Not Cracked Cracked 

(Right -Censored) (Left -Censored) 

10 20 30 40 50 

Hundreds of Hours 
Figure 1.8. Turbine wheel inspection data summary at time of study. 

The failurekensoring pattern of these data is quite different from the previous 
examples and is illustrated in Figure 1.8. The analysts did not know the initiation 
time for any of the wheels. Instead, all they knew about each wheel was its age and 
whether a crack had initiated or not. CI 

1.2.2 Failure-Time Data with Explanatory Variables 

Example 1.8 Printed Circuit Board Accelerated Life Test Data. Meeker and 
LuValle (1995) give data from an accelerated life test on failure of printed circuit 
boards. The purpose of the experiment was to study the effect of the stresses on the 
failure-time distribution and to predict reliability under normal operating conditions. 
More specifically, the experiment was designed to study a particular failure mode- 
the formation and growth of conductive anodic filaments between copper-plated 
through-holes in the printed circuit boards. Actual growth of the filaments could not 
be monitored. Only failure time (defined as a short circuit) could be observed directly. 
Special test boards were constructed for the experiment. The data described here are 
part of the results of a much larger experiment aimed at determining the effects of 
temperature, relative humidity, and electric field on the reliability of printed circuit 
boards. 
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Figure 1.9. Scatter plot of printed circuit board accelerated life test data 

Spacing between the holes in the test boards was chosen to simulate the spacing 
in actual printed circuit boards. Each test vehicle contained three identical 8 X 18 
matrices of holes with alternate columns charged positively and negatively. These 
matrices, or “boards,” were the observational units in the experiment. Data analysis 
indicated that any clustering effect of boards within test boards was small enough to 
ignore in the study. 

Meeker and LuValle (1995) give the number of failures that was observed in 
each of a series of 4-hour and 12-hour long intervals over the life test period. This 
experiment resulted in interval-censored data because only the interval in which each 
failure occurred was known. In this example all test units had the same inspection 
times. A graph of the data in Figure 1.9 plots the midpoint of the intervals containing 
failures versus relative humidity. The graph shows that failures occur earlier at higher 
levels of humidity. 0 

Example I .9 Accelerated Test of Spacecraft Nickel-Cadmium Battery Cells. 
Brown and Mains (1979) present the results of an extensive experiment to evaluate 
the long-term performance of rechargable nickel-cadmium battery cells that were 
to be used in spacecraft. The study used eight experimental factors. The first five 
factors shown in the table were environmental or accelerating factors (set to higher 
than usual levels to obtain failure information more quickly). The other three factors 
were product-design factors that could be adjusted in the product design to optimize 
performance and reliability of the batteries to be manufactured. The experiment ran 82 
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Figure 1.10. Alloy-A fatigue crack size as a function of number of cycles. 

batteries, each containing 5 individual cells. Each battery was tested at a combination 
of factor levels determined according to a central composite experimental plan (see 
page 487 of Box and Draper, 1987, for information on central composite experimental 
designs). 0 

1.2.3 Degradation Data with no Explanatory Variables 

Example 1.10 Fatigue Crack-Size Data. Figure 1.10 and Appendix Table 
C.14 give the size of fatigue cracks as a function of number of cycles of applied stress 
for 2 1 test specimens. This is an example of degradation data. The data were reported 
originally in Hudak, Saxena, Bucci, and Malcolm (1978). The data were collected to 
obtain information on crack growth rates for the alloy. The data in Appendix Table 
C. 14 were obtained visually from Figure 4.5.2 of Bogdanoff and Kozin (1985, page 
242). For our analysis in the examples in Chapter 13, we will refer to these data as 
Alloy-A and assume that a crack of size 1.6 inches is considered to be a failure. 0 

1.3 GENERAL MODELS FOR RELIABILITY DATA 

1.3.1 Definition of the Target Population or Process 

Unless there is a clear definition of the target process or population, conclusions 
from a statistical study will appear fuzzy. Clear definition of the target population or 



16 RE LI A B 1LI'IY CON C E PIS A N  D R E L I A B I LI'IY DATA 

process also allows precise statements about assumptions needed for the validity of 
conclusions to be drawn from a study. 

As suggested by Deming (1975), statistical studies can be divided, broadly, into 
two different categories: 

Enumerative studies answer questions about popirlarions that consist of a finite 
set of identifiable units. In the product reliability context, these units may be in 
service in the field or they may be stored in boxes in a warehouse. Typically, the 
statistical study is conducted by selecting a random sample from the population, 
carefully evaluating the units in the sample, and then making an inference or  
inferences about the larger population from which the sample was taken. 
Analytic studies answer questions about processes that generate units or other 
output over time. Again, in the reliability context, interest might center on the 
life distribution of electric motors that will be produced, in the future, by a 
particular production process. 

Although the statistical data presentation and analysis methods may appear to be 
the same or very similar for these two different types of studies, the underlying 
assumptions required to make inferences (and thus statements of conclusions from 
a study) are quite different. In an enumerative study, the key assumption is that the 
sampling frame (list of population units from which the sample will be randomly 
selected) accurately represents the actual units in the population. In an analytic study, 
there is no population. Instead, the key assumption needed for inferences about 
characteristics of the process is that the process will behave in the future as it has in 
the past. Most reliability studies are analytic studies. For a more detailed description 
of these ideas, other examples, and references, see Deming (1975) and Chapter 1 of 
Hahn and Meeker (1991 ). 

1.3.2 Causes of Failure and Degradation Leading to Failure 

Many failure modes can be traced to some underlying degradation process. For 
example, fatigue cracks will initiate and grow in a steel frame if there are sufficiently 
high stresses. Tread on automobile tires and friction material on automobile brake 
pads and clutches wear with use. Corrosion causes thinning of walls of pipes in a 
chemical reactor. Filament material in operating incandescent light bulbs evaporates 
over time. 

Traditionally, most statistical studies of product reliability have been based on 
failure-time data. For some reliability tests, however, it is possible to record the 
actual level of degradation on units as a function of time. Such data, particularly 
in applications where few or no failures are expected, can provide considerably 
more reliability information than would be available from traditional failure-time 
data. For most products it is difficult, expensive, or impossible to obtain degradation 
measurements and only (censored) failure-time data will be available. Thus because 
of its continuing importance in reliability analysis, most of the material in this book 
focuses on failure-time data. Chapters 13 and 21, however, describe methods for 
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using degradation data for making inferences on reliability. Examples of degradation 
data are given there and in Section I .2.3. 

Not all failures can be traced to degradation; some product failures are caused 
by sudden accidents. For example, a tire may be punctured by a nail in the road, 
or a computer modem may fail from a lightning-induced charge on an unprotected 
telephone line. 

Especially when the goal of a reliability study is to develop a highly reliable product 
or to improve the reliability of an existing product, it  is important to consider the cause 
or causes of product failure (sometimes known as “modes” of failure). Understanding 
the physical and chemical mechanisms (including sources of variability in these 
mechanisms) and random risk factors leading to failure can suggest methods for 
eliminating failure modes or reducing the probability of a failure mode, thereby 
improving reliability. 

1.3.3 Environmental Effects on Reliability 

Environmental factors play an important part in product reliability. Automobiles 
corrode more rapidly in geographic areas with heavy use of salt on icy roads. An 
automobile battery would be expected to last longer in the warm climate of Florida 
than in the stressfully cold climate of Alaska. Due to increased heat and ultraviolet 
ray exposure, paints and other coating materials degrade more rapidly in the sunny 
southern parts of the United States. Driving automobiles on poorly maintained roads 
will cause fatigue failures of certain components to occur more rapidly than on 
smooth roads. Electronic components installed in the engine compartment of an 
automobile are subjected to much higher failure-causing heat, humidity, and vibration 
than are similar components installed in an air-conditioned office. Closely related is 
the effect of harsher-than-usual handling or operation of a product. For example. 
some household sump pumps are designed for a 50% duty cycle. If such a pump, 
in an emergency situation, has to run continuously, the temperature of the electric 
motor’s components will become exceedingly high and the motor’s life will be much 
shorter than expected. Excessive acceleration and braking of an automobile will lead 
to excessive wear on brake pads, relative to the number of miles driven. Attaching a 
trailer to an automobile can put additional strain on the engine and transmission as 
well as on parts of the electrical system. 

A large proportion of product reliability problems result from unanticipated failure 
modes caused by environmental effects that were not part of the initial reliability- 
evaluation program. When making an assessment of reliability it is important to 
consider environmental effects. Data from designed experiments or field-tracking 
studies can be used to assess the effect that anticipated environmental factors and 
operational variables will have on reliability. 

In some applications it is possible to protect products from harsh environments. 
Alternatively, products can be designed to be robust enough to withstand the harshest 
expected environments. Such products may have increased cost but could be expected 
to have exceedingly high reliability in more benign environments. One of the chal- 
lenges of product design is to discover and develop economical means of building in 
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robustness to environmental and other factors that manufacturers and users are unable 
to control. See the Epilogue of this book for further discussion and Hamada (1995a,b) 
for a description of some particular examples. 

1.3.4 Definition of Time Scale 

The life of many products can be measured on more than one scale. For example, the 
lifetimes of many automobile components are measured in terms of distance driven; 
others are measured in terms of calendar age. Light bulb life is typically measured in 
terms of the number of hours of use, but the number of on-off cycles could also affect 
life length. For factory life tests of products like washing machines and toasters, life 
would be measured in number of use-cycles. For data from the field, information on 
the number of use-cycles may not be available for individual units; time in service 
and average-use profiles are more commonly available. 

As suggested by these examples, the choice of a time for measuring product life 
is often suggested by an underlying process leading to failure, even if the degrada- 
tion process cannot be observed directly. For example, in a population of washing 
machines with different use-rates, wear on washing machine components is more 
directly related to use-cycles than to months in service. There would be more relative 
variability in the months-in-service data than in the number-of-use-cycles data. 

In some cases there may be more than one measure of product life. For example, 
the ability of an automobile battery to hold a charge depends on the battery's age and 
on the number of chargeldischarge cycles it has seen. There are a number of possible 
methods that could be used for handling such data. For example, it may be possible to 
estimate (directly or indirectly) the effect that both use-cycles and charge/discharge 
cycles have on degradation of battery-cell components (as described in Chapter 1-3) 
and use this information to develop a suitable measure of the amount of battery life as 
a function of these variables. Alternatively one could develop a statistical model that 
uses the observed number of charge/discharge cycles to help explain the variability 
in the time to failure measured in real time (see Chapter 17). 

1.3.5 Definitionsof Time Origin and Failure Time 

When conducting a study of lifetimes of a product or material it is important to define 
clearly the begin-point and the endpoint of life. The definition may be arbitrary 
but should be purposeful. For example, in a constant-burn life test of incandescent 
light bulbs, the definitions would be clear and unambiguous. The beginning of life 
of a refrigerator installed in the field may, however, be more difficult to define or 
determine. Possibilities, with varying degrees of accessibility and relevance, include 
the date manufactured, date of sale, or reported date of installation. Similarly, end 
of life of customers* automobile tires often depends on subjective judgment on the 
amount of remaining tread, made at a convenient time (e.g., when the automobile is 
being serviced). In life tests of fluorescent light bulbs manufacturers define failure as 
the time when a bulb reaches 60% of its initial lumens output. 
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1.4 REPAIRABLE SYSTEMS AND NONREPAIRABLE UNITS 

It is important to distinguish between data from and models for the following two 
situations: 

The time of failure (or other clearly specified event) for nonrepairable units or 
components (including data in nonrepairable components within a repairable 
system), or time to$rst failure of a system (whether it is repaired or not). 
A sequence of reported system-failure times (or the times of other events) for a 
repairable system. 

Both of these applications can be important in reliability analyses. The models and 
data analysis methods appropriate for these two different areas are, however, generally 
quite different. 

1.4.1 Reliability Data from Components and Other Nonrepairable Units 

Data from nonrepairable units arise from many different kinds of reliability studies. 
Examples include: 

Laboratory tests to study durability, wear, or other lifetime properties of partic- 
ular materials or components. 
Operational life tests on complete systems or subsystems, conducted before a 
product is released to customers when information is obtained on components 
and subsystems that are replaced upon failure. 
Data from customer field operation of larger integrated systems or subsystems, 
especially, when information is obtained on components and subsystems that 
are replaced upon failure. 

When reliability tests are conducted on larger systems and subsystems (even those 
that may be repaired), it is essential that component-level information on cause of 
failure be obtained if the purpose of the data collection is improvement of system 
reliability, as opposed to mere assessment of overall system reliability. 

In some simple situations it might be possible to assume that failure-time data 
from a sample of nonrepairable units or components can be modeled as a sample 
from a particular population or manufacturing process having a single failure-time 
distribution. In other situations, failure time depends on explanatory variables (which 
we will denote collectively by a vector x) such as environmental variables, operating 
conditions, manufacturer, and date manufactured. Starting in Chapter 17, the focus 
of this book will turn to models and methods that use explanatory variables in 
the modeling and analysis of reliability data. In more complicated situations, the 
failure-time distribution may depend on the age (or more accurately on the physical 
condition) of the system in which it is installed. 
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1.4.2 Repairable Systems Reliability Data 

The purpose of some reliability studies is to describe the failure trends and patterns of 
an overull system or population of systems. System failures are followed by system 
repairs and data consist of a sequence of failure times for one or more copies of 
the system. When a single component or subsystem in a larger system is repaired 
or replaced after a failure, the distribution of the time to the next system failure will 
depend on the overall state of the system at the time just before the current failure 
and the nature of the repair. Thus repairable system data, in many situations, could 
be described with models that allow for changes in the state of the system over time 
or for dependencies between failures over time. There are also simpler models that 
describe a system's failure intensity (rate of occurrence of failures) as a function of 
system age and, perhaps, other explanatory variables. Such models are also useful 
for describing the failure-time distribution of repairable systems. Basic models and 
methods of analysis of repairable system data are covered in Chapter 16. 

1.5 STRATEGY FOR DATA COLLECTION, MODELING, 
AND ANALYSIS 

Reliability studies involving, for example, laboratory experimentation or field track- 
ing require careful planning and execution. Mistakes can be extremely costly in 
terms of material and time, not to mention the possibility of drawing erroneous con- 
clusions. Even if a mistake is recognized, rarely will there be enough time or money 
to comfortably repeat a flawed reliability study. 

The rest of this book develops and illustrates the use of statistical methods for 
reliability data analysis. Chapters 2-8 describe basic models and reliability data anal- 
ysis. Chapters 10 and 20 and Section 22.5 describe methods of planning reliability 
studies that will provide the desired degree of precision for estimating or predict-
ing reliability. The other chapters describe more advanced methods and models for 
analyzing reliability data. 

1.5.1 Planning a Reliability Study 

Discussion of technical details for planning reliability studies is delayed until data 
analysis methods have been covered. This is necessary because proper planning 
depends on knowledge and, in many cases, simulated use of analysis methods befiire 
the final study plan is specified. 

The initial stages of a reliability study should include: 

Careful definition of the problem to be solved (including a precise specification 
of the target population or process) and the questions to be answered by the 
study, in particular, the estimates to be obtained. 
Consideration of the resources available for the study (time, money, materials, 
equipment, personnel, etc.). 
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Design of the experiment or study, including a careful assessment of precision 
of estimates as a function of the size of the study (i.e., sample size and expected 
number of failures). Because estimation precision generally depends on un-
known model parameters, making such an assessment requires planning values 
of unknown population and process characteristics. 
In some situations, when little is known about the target population or process, 
it is often useful to conduct a pilot study to obtain the information needed for 
success of the main study. 
In new or unfamiliar situations, it is useful, before the test, to conduct a trial 
analysis of data simulated from a proposed model suggested from available 
information, engineering judgment, or previous experience. These ideas are 
illustrated in Chapters 10 and 20 and in Section 22.5. 

1.5.2 Strategy for Data Analysis and Modeling 

After the data collection has been completed, or at various points in time during 
the study, available data will be analyzed. The data analyses described in this book 
illustrate the steps in the following general strategy. 

Begin the analysis by looking at the data without making any distributional 
or other strong model assumptions. This will allow information to pass to the 
analyst without distortion that could be caused by making inappropriate model 
assumptions. The primary tool for these initial steps is graphical analysis, as 
illustrated in Section 1.2 and in examples throughout this book. Chapters 3 and 
6 introduce other graphical analysis methods. 
For many applications it will be useful to fit one or more parametric models 
to the data, for purposes of description, estimation, or prediction. Generally 
this process progresses from simple to more elaborate models, depending on 
the purpose of the study, the amount of data, and other information that is 
available. In some cases it might be desirable or necessary to combine current 
data with previous data or other prior information. Chapter 4 describes some 
simple commonly used distributions for reliability data. Chapter 5 describes 
more advanced distributional models for reliability data. Methods of fitting 
such distributions to data are described starting in Chapter 7. 
Before using a fitted model for estimation or prediction, one should examine 
appropriate diagnostics and use other tools for assessing the adequacy of model 
assumptions. Graphical tools are especially useful for this purpose. It is impor- 
tant to remember that, especially in situations where there is little data, i t  will 
be difficult to detect small-to-moderate departures from model assumptions and 
that just because we have no strong evidence against model assumptions, does 
not mean that those assumptions can be trusted. 
If there are no obvious departures from the assumed model, one will generally 
proceed, with caution, to estimating parameters or predicting future outcomes 
(e.g., number of failures). For most reliability applications, such estimates and 
predictions include statistical intervals to reflect uncertainty and variability. 
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In addition to using graphical methods for initial analyses and for diagnostics, 
it is helpful to display results of the analysis graphically, including estimates or 
predictions and uncertainty bounds (e.g., confidence or prediction intervals). 
Finally, it may be possible to use the results of the study to draw conclusions 
about product reliability, perhaps contingent on particular model assumptions. 
For some model assumptions it is possible to use the available data to assess 
the adequacy of the assumption (e.g., adequacy of model fit within the range 
of the data). For other assumptions, the data may provide no information about 
model adequacy. In situations where there is no information to assess the ad- 
equacy of assumptions, it is useful (even important) to vary assumptions and 
assess the impact that such perturbations have on final answers. The additional 
uncertainty uncovered by such sensitivity analyses should be reported along 
with conclusions. 

BIBLIOGRAPHIC NOTES 

Nelson (1982, 1990a) and Lawless (1982) provide other interesting reliability data 
sets. Hahn and Meeker (1982a,b) describe basic concepts and outline potential pitfalls 
of life data analysis. Chapter 1 of Hahn and Meeker (199 1)  provides a detailed discus- 
sion of implicit assumptions that are required to draw valid inferences from statistical 
studies. These assumptions parallel those needed to make inferences from reliability 
data. Ansell and Phillips (1989) describe some of the practical problems that arise 
in the analysis of reliability data. Nelson (1990a, page 237) outlines the capabilities 
of a variety of software packages that have procedures for analyzing censored reli- 
ability data. Kalbfleisch and Lawless (1988), Lawless and Kalbfleisch (1992), and 
Baxter and Tortorella (1994) describe some technical methods for dealing with field 
reliability data. 

Kordonsky and Gertsbakh (1993) discuss the important problem of choosing 
appropriate time scales when analyzing reliability data. They formalize and discuss 
the concepts of optimal and good time scales and they show how to find a best linear 
combination of observable time scales when the criterion is minimizing the coefficient 
of variation of the time scale. Kordonsky and Gertsbakh (1995a) discuss theoretical 
aspects of finding a best time scale for monitoring systems whose failure has serious 
consequences (airplanes, nuclear power plants, etc.). They present a method for 
calculating this scale when the observed data are complete (noncensored) on two 
observable time scales like operational time and number of cycles. Kordonsky and 
Gertsbakh (1995b) generalize these results to the case in which the data are censored. 
For another view on combining multiple time scales into a single time scale for life 
testing with complete data, see Farewell and Cox (1979). 

EXERCISES 

1.1. Discuss the assumptions that would be needed to take the heat exchanger data 
for calendar time in Figure 1.6and convert them to operating-time data shown 
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in Figure 1.7and then use these data for purposes of analysis and inference on 
the life distribution of heat exchanger tubes of the type in these exchangers. 

1.2. It has been argued both that quality is a part of reliability and that reliability 
is a part of quality. Discuss the relationship between these two disciplines. 
To help make your discussion concrete, use your knowledge of a particular 
product to help express your ideas. 

1.3. In the development and presentation of traditional statistical methods, de- 
scription and inference are often presented in terms of means and variances 
(or standard deviations) of distributions. 
(a) Use some of the examples in this chapter to explain why, in many appli- 

cations, reliability or design engineers would be more interested in the 
time at which 1% (or some smaller percentage) of a particular component 
will fail instead of the time at which 50% would fail. 

(b) Explain why means and variances of time to failure may not be of such 
high interest in reliability studies. 

( c )  Give at least one example of a product for which mean time to failure 
would be of interest. Explain why. 

1.4. Consider the following situations. For each, discuss the reasons why the study 
might be considered to be either analytic or enumerative. For each example 
outline the assumptions needed so that the sample data will be useful for 
making inferences about the population or process of interest. 
(a) Ten light bulbs were selected at random points in time from a production 

process. One of these bulbs was then selected at random and put aside for 
future use. The other nine bulbs were tested until failure. The data from 
the nine failures were to be used to construct a prediction interval for the 
last bulb. 

(b) A company has entered into a contract to buy a large lot of light bulbs. 
The price will be determined as a function of the average failure time of 
a random sample of 100 bulbs. 

( c )  Example 1.5. 
(d) Example 1.9. 

1.5. An important part of quantifying product reliability is specification of an 
appropriate time scale (or time scales) on which life should be measured 
(e.g., hours of operation, cycles of operation). For each of the following prod- 
ucts, suggest and give reasons for an appropriate scale (or scales) on which 
one might measure life for the following products. Also, discuss possible 
environmental factors that might affect the lifetime of individual units. 
(a) Painted surface of an automobile. 
(b) Automobile lead-acid battery. 
(c )  Automobile windshield wipers. 
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(d) Automobile tires. 
(e) Incandescent light bulb. 

1.6. For each of the products listed in Exercise 1.5, explain your best understanding 
of the underlying failure mechanism. Also, describe possible ways in which 
an analyst could define failure. 

1.7. For each of the following, discuss whether field failures of the unit or product 
should be considered to be a failure of a repairable system, a failure of 
replaceable unit within a system, or both. Explain why. 
(a) Automobile alternator. 
(b) Video cassette recorder. 
(c )  Microwave oven. 
(d) Home air conditioner. 
(e) Hand-held calculator. 
(f) Clothes dryer. 

1.8. For each of the products listed in Exercise 1.7, describe the range of environ-
ments that the product might encounter in use and the effect that environment 
could have on the product’s reliability. 

1.9. Consider the turbine wheel data in Table 1.5. 
(a) Compute the proportion cracked at each level of exposure.$ 
(b) How do you explain the fact that the proportion of cracked wheels de- 

creases as age increases at 14, 30, and 42 hundred hours of exposure‘? 
(c) Discuss the assumptions that one would have to make in order to answer 

the questions raised by the objectives listed in Example 1.7. 

1.10. Construct a histogram for the V7 tube data in Table 1.4. Discuss alternative 
methods of handling the last open-ended time interval. What information does 
this plot provide? 

1.11. Figure 1.4 shows both the number of failures and the number of censored 
observations in each of six time intervals. Explain why such a graphical 
display needs to be interpreted differently than a histogram of uncensored 
failure times like Figure 1.1. 

1.12. A telephone electronic switching system contains a large number of nominally 
identical circuit packs. When a circuit pack fails, only a small part of the 
system’s functionality is lost. Failed packs are replaced, as soon as possible, 
with new circuit packs. All of the circuit packs have serial numbers and 
detailed records are kept so that the failure times are known for all packs that 
fail and so that the running times are known for all of the packs that do not 
fail. In practice, to assess circuit pack reliability, it would be common to treat 
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the circuit packs in the system as a sample from a larger population of circuit 
packs and use the data to make inferences about the larger population. 
(a) List three distinct different precise definitions for the larger population or 

process that could be of interest to reliability engineers, design engineers, 
or financial managers. 

(b) For each of the definitions in part (a), state the assumptions that must be 
satisfied to make the desired inferences about the circuit pack life distri- 
bution. Comment on the reasonableness of these assumptions and how 
departures from the assumptions could result in misleading conclusions. 

( c )  Assume that you have been given the above description of a switching 
system and have been asked to attend a meeting where a study is to be 
planned to monitor, continuously, the early-life reliability (defined as the 
first 1000hours) of circuit packs. The purpose of the study is to determine 
the effect of recent design and manufacturing process changes on circuit 
pack reliability. Data will be obtained from three particular systems that 
are physically close to the design and manufacturing facilities of the 
circuit pack manufacturer. Before offering advice on the plan you will 
need further information. Prepare a list of questions that you would ask 
of design engineers, reliability engineers, and manufacturing engineers 
who will be attending the meeting. 

1.13. Explain how graphical methods can be used to complement analytical methods 
of data analysis. 

1.14. There was a considerable amount of censoring at low levels of humidity in the 
printed circuit accelerated life test data shown in Figure 1.9.Explain how such 
censoring can obscure important information about the relationship between 
humidity and time to failure. 
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Models, Censoring, and Likelihood 
for Failure-Time Data 

0bject ives 

This chapter explains: 

Models for continuous failure-time processes. 

Models for the discrete data from these continuous failure-time processes. 

Common censoring mechanisms that restrict our ability to observe all of the 
failure times that might occur in a reliability study. 

Principles of likelihood and how likelihood is related to the probability of the 
observed data. 

How likelihood ideas can be used to make inferences from reliability data. 

Overview 

This chapter introduces basic concepts of modeling failure-time processes. Sec- 
tion 2.1 explains the basic relationships among cumulative distributions, densities, 
survival, hazard, and quantile functions for modeling of continuous failure-time pro- 
cesses. These relationships are used extensively in subsequent chapters and they are 
essential background to read the rest of the book. Section 2.2 describes the modeling 
of discrete data that arise from our limited ability to observe continuous processes. 
This section also explains briefly the importance of censoring, censoring mecha- 
nisms, and important assumptions about censoring mechanisms, needed for proper 
application of the methodology in the book. Section 2.4 introduces likelihood-based 
statistical methods. This section provides general rules for writing the likelihood for 
reliability data with several kinds of censoring. This section is an integral part of the 
methodology used in the book and it should be read by most readers. 

26 
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2.1 MODELS FOR CONTINUOUS FAILURE-TIME PROCESSES 

As explained in Chapter 1,  the most widely used metric for reliability of a product is 
its failure-time distribution and the most commonly collected reliability data contain 
information on the failure times of samples of materials, components, or of complete 
systems. This chapter presents basic models for such data. 

Most failure-time processes are modeled on a continuous scale. This section 
describes some common models for describing such processes. The symbol T will 
be used to denote a nonnegative, continuous random variable describing the failure 
time of a unit or system. 

2.1.1 Failure-Time Distribution Functions 

The probability distribution for failure time T can be characterized by a cumulative 
distribution function, a probability density function, a survival function, or a hazard 
function. These functions are described below and illustrated, for a typical failure-time 
distribution, in Figure 2.1. The choice of which function or functions to use depends 
on convenience of model specification, interpretation, or technical development. All 
of these functions are important for one purpose or another. 

Cumulative Distribution Function Probability Density Function 
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Figure 2.1. Failure-time cdf, pdf, sf, and hf corresponding to Examples 2.1-2.8. 
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Cumulative Distribution Function 
The cumulative distribution function (cdf) of T , F ( t )  = Pr(T 5 t ) , gives the proba- 
bility that a unit will fail before time t .  Alternatively, F ( t ) can be interpreted as the 
proportion of units in the population (or taken from some stationary process) that will 
fail before time t .  [Here a stationary process is defined as one that generates units 
that have a F ( r ) that does not change over time.] 

Example 2.1 cdf. The NW corner of Figure 2.1 shows the particularcdf F ( r )  = 
1 - exp( - t1 .7 )for t between 0 and 2.5. 0 

Probability Density Function 
The probability density function (pdf) for a continuous random variable T is defined 
as the derivative of F ( t )  with respect to t :  f ( t )  = dF( t ) /d t .  The pdf can be used 
to represent relative frequency of failure times as a function of time. Although the 
pdf is less important than the other functions for applications in reliability, it is used 
extensively in the development of technical results. As illustrated in Figure 2.3, the 
cdf at t is computed as the area under the pdf from 0 to t ,  giving the probability of 
failing before t .  That is, F ( t )  = $ f ( x ) d x .  

Example 2.2 pdf. Corresponding to Example 2.1, the NE corner of Figure 2.1 
shows the particular pdf f ( t )  = dF(t)/dr = 1 .7r7exp(-1' 7 ,  for t between 0 and 
2.5. U 

Survival Function 
The survival function (sf), also known as the reliability function, is the complement 
of the cdf, S ( r )  = Pr(T > t )  = 1 - F ( t )  = Jx f ( x ) d x ,  and gives the probability of 
surviving beyond time t .  

Example 2.3 sf. Corresponding to Example 2.1, the SW corner of Figure 2.1 
shows the particular sf S ( r )  = I - F ( t )  = exp( - t ' . 7 )  for t between 0 and 2.5. 0 

Hazard Function 
The hazard function (hf),  also known as the hazard rate, the instantaneous failure rate 
function, and by other names, is defined by 

Pr(t < T 6 t + A t  I T > t )  -
h(t)= lim -- f ( r )  

Af -4 At  1 - F ( t ) '  

The hazard function expresses the propensity to fail in the next small interval of time, 
given survival to time t .  That is, for small A t ,  

h ( t )  X A t  = Pr(t < T 5 t + A t  I T > t ) .  (2.1) 

Example 2.4 hf. Corresponding to Example 2.1, the SE corner of Figure 2.1 
shows the particular hf h( t ) = f ( t ) / [I - F ( t ) ]= 1.7 X t7for t between 0 and 2.5. 

0 
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The hazard function can be interpreted as a failure rate in the following sense. If 
there is a large number of items [say, n(t)] in operation at time r ,  then i i ( r )  X h ( r )  is 
approximately equal to the number of failures per unit time [or h ( r )  is approximately 
equal to the number of failures per unit time per unit at risk]. The hazard function 
has units of fraction failed per unit time. Because of its close relationship with failure 
processes and maintenance strategies, some reliability engineers think of modeling 
failure time in terms of h(t) . The “bathtub curve” shown in Figure 2.2 provides a 
useful conceptual model for the hazard of some product populations. There may be 
early failures of units with quality-related defects (infant mortality). During much 
of the useful life of a product, the hazard may be approximately constant because 
failures are caused by external shocks that occur at random. Late-life failures are due 
to wearout. Many reliability studies focus on one side or the other of this curve. 

Cumulative Hazard Function 
For some purposes it is useful to define the function 

rl 

commonly known as the cumulative hazard function. The cdf or survival function 
for T can be obtained from the hazard function. For example, for any continuous 
distribution 

F ( t )  = 1 - exp[ -H(t)] = 1 - exp [-1‘h ( x )dx] 

Random Failures Wearout Failures 

I 

t 

Figure 2.2. Bathtub curve hazard function. 
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Average Hazard Rate 
The average hazard rate between times t l  and t 2  is 

and can be viewed as a typical hazard rate value over the interval. Also, if F(t2)-F ( t l) 
is small (say, less than . l) ,  then 

An important special case arises when tl = 0, giving 

(2.4) 

and the approximation is good for small F(t) ,say, F( t )  < .10. The right-hand sides 
of (2.3)and (2.4)provide simple interpretation for the AHR expressions. In either 
case, AHR can be interpreted as the approximate fraction failing per unit time over 
the specified interval. Of course, if one is really interested in computing the fraction 
failing, this is easy to do directly without any approximation. 

Hazard Rute in FITs 
Especially in high-reliability electronics applications, it is common to express hazard 
rates in units of FITs. A FIT rate is defined as the hazard function in units of lhours, 
multiplied by 10’. FITs (failures in time) were originally used to describe hazard 
rates corresponding to components for which h(t)  is constant over time (a model 
that will be described in Section 4.4). In such applications, and when the number 
of components at risk is large relative to the number that will fail, FITs can be 
interpreted, for example, as a prediction for the number of failures per billion hours 
of operation or the number of failures per 1000 hours of operation per one million 
units at risk. 

The use of FIT rates has carried over to the more modern and realistic failure 
models with nonconstant h(t) . In this case it is important to distinguish between a 
FIT rate for a particular point in time [h(r)X 10’1 or an average from beginning of 
life to a particular point in time [AHR(t)X 10’11;both uses are common. Because 
these FIT rates can be vastly different, the distinction is important. 

Example 2.5 Constant-Hazard FIT Rate. In a large computing network there 
are 165,OOO copies of a particular component that are at risk to fail. The manufacturer 
of the components claims that the component hazard is constant over time at 15 FITs. 
Thus h( t )  = 15 X 10-’ failures per unit per hour for all time t measured in units of 
hours. A prediction for the number of failures from this component in 1 year (8760 
hours) of operation is 15 X 10-’ X 165,000 X 8760 = 217. 0 
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Example 2.6 Nonconstant-Hazard FIT Rate. The manufacturer of a partic- 
ular integrated circuit device claims that the device's hazard function is h ( r )  = 

1.8 X 10-7 X t - . 8  and time t is measured in units of hours. From this, the FIT rate 
for this population of components at 1 hour is 1.8 X 10-7 X (I)- . '  X 109 = 180 
FITs. The FIT rate for this population of components at 10,000 hours is 1.8 X 1OP7 X 

( 1000O)-~s  X 109 = .1136 FITs. By simple integration, the average hazard rate to 
10,000hours is AHR(10000) = (1.8/.2) X 10-7 X (10000)-.' = 5.68 X 10-l' or 
.568 FITs. 0 

2.1.2 The Quantile Function and Distribution Quantiles 

The quantile t p  is the inverse of the cdf; it is the time at which a specified proportion 
p of the population fails. For example, 1 . 2 ~is the time by which 20% of the population 
will fail. This is illustrated in Figure 2.3. By definition, the cdf F ( t )  is nondecreasing. 
This leaves two possibilities. 

When F ( t ) is strictly increasing there is a unique value t ,  that satisfies F(t ,>)= p ,  
and we write t ,  = F - ' ( p ) .  

When F ( t )  is constant (i.e., flat) over some interval or intervals, there can be 
more than one solution t to the equation F(r)  = p . Taking r,, equal to the smallest 
value o f t  satisfying F ( r )  = p is the standard convention. 

In general, for 0 < p < 1, we define the p quantile of F(r )  as the sriiallest time t 
such that Pr(T 5 t )  = F ( t )  2 p .  
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Figure 2.3. Plots showing that the quantile function is the inverse of the cdf. 
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Example 2.7 Quantile Function. Using p = F ( t )  = 1 - exp( - t ’ . 7 )  from Ex-
ample 2.1, solving for t gives t,, = [ - log( 1 -p ) ]’/’.’ and t . ~= [ - log( 1 - .2)]’/’.’ = 
.414. as shown in Figure 2.3. 0 

2.2 MODELS FOR DISCRETE DATA FROM A CONTINUOUS PROCESS 

Most failure-time processes are modeled on a continuous scale. Because of inherent 
limitations in measurement precision, however, failure-time data are cilcvqs discrete. 
Limitations in ability to observe or in a measuring instrument’s ability to record 
can cause data to be censored or truncated, as illustrated in the examples in Section 
1.2. The rest of this chapter develops a general structure for modeling such data. 
Subsequent sections describe different kinds of observations that arise in reliability 
data analysis and show how to compute the likelihood (or “probability of the data”). 

2.2.1 Multinomial Failure-Time Model 

Because all data are discrete, it  is convenient to partition the time line (0,x )  into m + 1 
observation intervals. The partitioning depends on inspection times, measurement 
precision, andor roundoff; it can be expressed as follows: 

where to = 0 and tnr+1 = m. This partition is illustrated in Figure 2.4. For example, 
if failure times are recorded to the nearest hour, then each interval would be 1 hour 
long, up until t,,,, the last recording. In general, these intervals need not be of equal 
length. Observe that the last interval is of infinite length. Define 

.rr, = Pr(t,-I < T It , )  = F(t , )  - F(t,-1) (2.6) 

as the multinomial probability that a unit will fail in interval i. Note that T,2 0 
and E’’:,’n, = 1. The survival function evaluated at t ,  is S ( r , )  = Pr(T > t , )  = 

1 - F( t ,) = E:=+,:I T,.Then 

is the conditional probability that a unit will fail in interval i, given that the unit was 
still operating at the beginning of interval i. Thus pnlt1 = 1 but the only restriction 
on / > I , .  . . .pN,is 0 5 p ,  5 1. 

Figure 2.4. Partitioning of time into nonoverlapping intervals. 
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2.2.2 Multinomial cdf 

Using (2.7), i t  is easy to show that 

This result and those following are important for data analysis methods developed in 
Chapter 3. Then the cdf of T , evaluated at t , , can be expressed as 

I 

F ( f ; )= 1 - [ I  - p i ] ,  i = 1, . . .  , m+ 1 
j =  I 

or as 

i 


Thus rn = ( 7 ~ 1 , .. . ,n,,,+1 ) o r p  = ( P I , .. . ,p,,,) are alternative sets of h a . s i c . p r r r - ~ r i ~ i ~ ~ ~ ~ ~ r - , s  
to model discrete failure-time data. 

Example 2.8 Computation of F(ti), S(ti), ni, andpi. Table 2. I shows values of 
F ' ( f , ) ,  S ( t l ) ,n,,and p ,  based on cdf F ( t )  = 1 - exp( - t '  ') used in Examples 2.1-2.7. 
The quantities in the table illustrate the use of (2.6), (2.7), (2.8), and (2.9) for 
inspections at .5, 1 ,  1.5, 2, and 2.5 (note that some arithmetic using values in the 
table may be off a little in the last digit due to the limited precision in the three digits 
shown in the table). Figure 2.5 shows, graphically, the relationship between the 7~ 

values and F ( t ) for this example. 0 

Table 2.1. Illustration of Probabilities for the Multinomial Failure-Time 
Model Computed from F(t ) = 1 - exp(4.') 

0 .o .ooo 1 .WO 
1 .5 .265 .735 .265 .265 .73s 
2 1.o .632 .368 .367 .so0 .S O 0  
3 I .5 .864 .I36 .23 I .629 .37 I 
4 2.0 .96I .0388 ,0976 .7 IS 2 x 5  
5 X 1.000 .m .0388 1 .000 ,000 

I .ooo 
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I I I 1 
0.0 0.5 1.o 1.5 2.0 

t0  t l  t2 t3 t 4  

Figure 2.5. Graphical interpretation of the relationship between the .rr, values and F ( t ) .  

2.3 CENSORING 

2.3.1 Censoring Mechanisms 

Censoring restricts the ability to observe failure times exactly. As illustrated in the 
examples in Chapter 1, censoring is common in reliability data analysis and arises 
for a number of different reasons. 

Generally there are constraints on the length of life tests or other reliability 
studies and, as a result, data have to be analyzed before all units have failed. 
Removing unfailed units from test at a prespecified time is known as “time 
censoring” or “Type I censoring.” Units may be tested simultaneously or in 
sequence (e.g., because of a limited number of test positions). Examples 1.2 
and 1.3 illustrate time censoring. 
A life test that is terminated after a specified number of failures results in “failure 
censoring,” also known as “Type I1 censoring.” Although the statistical proper-
ties of estimates from failure-censored data are simpler than the corresponding 
properties from time-censored data, failure-censored tests are less common in 
practice. 
In many life tests, failures are discovered only at times of inspection. Interval-
censored observations consist of upper and lower bounds on a failure time. Such 
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data are also known as inspection data, grouped data, or read-out data. If a unit 
has failed at its first inspection, it is the same as a left-censored observation. 
If a unit has not failed by the time of the last inspection, it is right-censored, 
the upper endpoint of the interval being W. See Examples 1.5 and 1.6. If each 
unit has only one inspection time (perhaps differing from unit to unit), and 
where the observation is on whether the unit failed or not, the data are known 
as quantal-response data, as in Example I .7. 

Some products have more than one cause of failure. If primary interest is focused 
on one particular cause of failure, failure from other causes (sometimes known 
as competing risks) can, in some situations, be viewed as a form of random right 
censoring. This kind of random censoring can lead to multiple right censoring 
where some failure times and censoring times are intermixed as in Example 3.8. 
In some situations units are introduced into the field or put on test at different 
times. This is known as staggered entry. If the data are to be analyzed at a 
point in time when not all units have failed, the data will, usually, be multiply 
right-censored with some failure times again exceeding some of the running 
times as in Example 1.4. Censoring due to staggered entry of units is a type of 
systematic multiple censoring. 

If it is a reasonable approximation that units manufactured over the period of time 
came from the same process, the data could be pooled together and analyzed to 
make inferences about that process. Often, however, a process or product design 
will change over time and pooling such data could lead to misleading conclusions. 
Caution is advised and it is good practice to look for time trends in data. The case 
study in Section 22.1 illustrates such a situation. 

2.3.2 Important Assumptions on Censoring Mechanisms 

Use of most models and methods to analyze censored data implies important as- 
sumptions about the nature of the censoring and its relationship to the failure process. 
Simply stated, a censoring time (i.e., the time at which we stop observing a unit 
that has not failed) can be either random or predetermined. In order for standard 
censored data analysis methods to be valid, it is necessary that the censoring time of 
a unit depend only on the history of the observed failure-time process. Using future 
events (or indicators of future events) to stop observing a unit could introduce bias. 
This cause-of-censoring assumption would be violated, for example, if units were 
taken off test before actual failure, but in response to some precursor to a future 
failure (e.g., increase in vibration for an electrical motor). For the standard censor- 
ing mechanisms described in Section 2.3.1, the stopping times depend only on the 
history of the observed failure-time process. Relatedly, standard methods of ana- 
lyzing censored data require the assumption that censoring is noninformative. This 
implies that the censoring times of units provide no information about the failure-time 
distribution. 



36 MODELS,  CENSORING,  A N D  LIKELIHOOD FOR FAILURE-TIME DATA 

2.4 LIKELIHOOD 

2.4.1 Likelihood-Based Statistical Methods 

The general idea of likelihood inference is to fit models to data by entertaining 
model-parameter combinations for which the probability of the data is large. Model- 
parameter combinations with relatively high probabilities are more plausible than 
combinations with low probability. Likelihood methods provide general and versatile 
tools for fitting models to data. The methods can be applied with a wide variety of 
parametric and nonparametric models with censored, interval, and truncated data. It 
is also possible to fit models with explanatory variables (i.e., regression analysis). 

There is a well-developed large-sample likelihood theory for regular models that 
provides straightforward methods for fitting models to data. The theory guarantees 
that these methods are, in large samples, statistically efficient (i.e., yield the most 
accurate estimates). These properties are approximate in moderate and small sample 
sizes, and various studies have shown that likelihood methods generally perform as 
well as other available methods. With censored data, “large sample” really means 
“large number of failures” and a typical guideline for large is 20 or more, but this 
really depends on the problem and the questions to be answered. 

Likelihood theory can be extended to more complicated nonregular models and 
the basic concepts are similar. Also, much current statistical research is focused on 
the development of more refined, but computationally intensive, methods that will 
work better for smaller sample sizes. 

2.4.2 Specifying the Likelihood Function 

The likelihood function is either equal to or approximately proportional to the proba- 
bility of the data. This section describes ageneral method of computing the probability 
of a given data set. Then, for a given set of data and specified model, the likelihood 
is viewed as a function of the unknown model parameters (where we can use either 
the n, values or the p ,  values in the multinomial model introduced in Section 2.2). 
The form of the likelihood function will depend on factors like: 

The assumed probability model. 
The form of available data (censored, interval censored, etc.). 
The question or focus of the study. This includes issues relating to identifiability 
of parameters (i.e., the data’s ability or inability to estimate certain features of 
a statistical model). 

The total likelihood can be written as the joint probability of the data. Assuming 
IZ independent observations, the sample likelihood is 

tl 

L ( p )  = L(p;DATA) = C n L , ( p ; d a t a , ) ,  (2.10) 
I =  I 

where L,(p;data,) is the probability of the observation i, data, is the data for ob- 
servation i, and p is the vector of parameters to be estimated. To estimate p from 



LIK EL1HOOD 37 

the available DATA, we find the values of p that maximize L ( p ) .  In the usual sit- 
uations where the constant term C in (2.10) does not depend on p ,  one can simply 
take C = 1 for purposes of estimating p (see Section 2.4.4 for more information 
on C). The likelihood in (2.10) can also be written as a function of the niultinomial 
cell probabilities v. Similarly, if there is a specified parametric form for F ( t ;8 ) the 
likelihood can be written as a function of the parameters 8. We use p here because 
Chapter 3 illustrates the direct estimation of p .  

2.4.3 Contributions to the Likelihood Function 

Figure 2.6 illustrates the intervals of uncertainty for examples of left-censored, 
interval-censored, and right-censored observations. The likelihood contributions for 
each of these cases, shown in Table 2.2, is simply the probability of failing in the 
corresponding interval of uncertainty. 

Interval-Censored Observations 
If a unit’s failure time is known to have occurred between times t i - ]  and t , ,  the 
probability of this event is 

(2. I 1 ) 

The three middle rows in Table 1.4 are examples of interval-censored observations. 

Example 2.9 Likelihood for an Interval Censored Observation. Refer to 
Figure 2.6 and Table 2.1. If a unit is still operating at the t = 1.0 inspection but a 

Interval censoring 

n 
u 
v.c 

0.5 1.o 1.5 2.0 

t 

Figure 2.6. Likelihood contributions for different kinds of censoring. 
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Table 2.2. Contributionsto Likelihood for Life Table Data 

Censoring Type Range Likelihood 

d, observations 
interval-censored 

t,-l < T 5 t ,  [ F ( t , )- F(t ,  I )Id1 

in t,- I and t ,  

t,observations T 5 t ,  
left-censored at t, 

r, observations 
right-censored at t, 

T > t ,  [ I  -wf)lrl 

failure is found at the t = 1.5 inspection, then the likelihood (probability) for the 
interval-censored observation is T; = F( 1.5) - F( 1.O) = .231. U 

Although most data arising from observation of a continuous-time process can be 
thought of as having occurred in intervals similar to (ti- I ,I ; ) ,  the following important 
special cases warrant separate consideration. 

Left- Censored Observations 
Left-censored observations occur in life test applications when a unit has failed at the 
time of its first inspection; all that is known is that the unit failed before the inspection 
time (e.g., the first row of Table 1.4). In other situations, left-censored observations 
arise when the exact value of a response has not been observed and we have, instead, 
an upper bound on that response. Consider, for example, a measuring instrument that 
lacks the sensitivity needed to measure observations below a known threshold (e.g., 
a noise floor in an ultrasonic measuring system). When the measurement is taken, if 
the signal is below the instrument threshold, all that is known is that the measurement 
is less than the threshold. If there is an upper bound t , for observation i, causing it to 
be left-censored, the probability and likelihood contribution of the observation is 

L i ( P )  = / f ( W t  = F ( t ; )- F ( 0 )  = F(ti) .  (2.12) 
JO 

Equation (2.7) shows how Li can be written as a function of p .  Alternatively, (2.6) 
shows how Lican be written as a function of m. Note that a left-censored observation 
can also be considered to be an interval-censored observation between 0 and t , .  

Example 2.10 Likelihood of a Left-Censored Observation. Refer to Fig-
ure 2.6 and Table 2.1. If a failure is found at the first inspection time t = .5, 
then the likelihood (probability) for the left-censored observation is F ( S )  = .265. 

Right-Censored Observations 
Right censoring is common in reliability data analysis. For example, the last bin in 
Table 1.4 contains all lifetimes greater than 100 days. The observations in this bin 

0 
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are right-censored because all that is known about the failure times in this bin is that 
they were greater than 100 days. 

If there is a lower bound ti for the ith failure time, the failure time is somewhere 
in the interval ( t , ,m). Then the probability and likelihood contribution for this right- 
censored observation is 

Example 2.11 Likelihood of a Right-Censored Observation. Refer to Fig-
ure 2.6 and Table 2.1. If a unit has not failed by the last inspection at t = 2, then the 
likelihood (probability) for the right-censored observation is 1 - F ( 2 )  = .0388. 0 

Total Likelihood 
The total likelihood, or joint probability of the DATA, for n independent observations 
is 

n 


L( p ;DATA) = C nL,( p ;data,) (2.14) 
l =  1 

where n = (d j  + r, + 4,) and C is a constant depending on the sampling 
inspection scheme but not on the parameters p .  So we can take C = 1.  We want 
to find p so that L ( p )  is large. The p that maximizes L ( p )  provides a maximum 
likelihood estimate of F ( t ) .  For some problems, it will be more convenient to write 
the likelihood and do the optimization in terms of n.As described in Section 2.2.1, 
either set of basic parameters can be used. 

2.4.4 Form of the Constant Term C 

The form of constant term C in (2.10) and (2.14) depends on the underlying sam- 
pling and censoring mechanisms and is difficult to characterize in general. For our 
multinomial model, assuming inspection data and no losses (i.e., no right-censored 
observations before the last interval), 

which is the usual multinomial coefficient. Another important special case arises 
when we increase the number of intervals, approaching continuous inspection. Then 
with an underlying continuous failure-time process (so there will be no ties), all d, 
values will be either 0 or 1 depending on whether there is a failure or not in interval i. 
In this case C reduces to n ! ,corresponding to the number of permutations of the n 
order statistics. With Type I single-time censoring at I,,, and no more than one failure 
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in any of the intervals before in,, C = n!/r , ,+ I !, where r,,,+ 1 = d,,,+ 1 is the number 
of right-censored observations, all of which are beyond rn,. 

Because, for most models, C is a constant that does not depend on the model 
parameters, i t  is common practice to take C = I and suppress C from likelihood 
expressions and computations. 

2.4.5 Likelihood Terms for General Reliability Data 

Although some reliability data sets are reported in life table form (e.g., Table 1.4). 
other data sets report only the times or the intervals in which failures actually occurred 
or observations were censored. For such data sets there is an alternative, more general 
form for writing the likelihood. This form of the likelihood is commonly used as 
input for computer software for analyzing failure-time data. In general, observation 
i consists of an interval (tf.,r , ] ,  i = 1,. . . ,n, that contains the failure time T for unit 
i in the sample. The intervals (if.,t,]may overlap and their union may not cover the 
entire time line (0,m).  In general, tf- # t , - I .  Assuming that the censoring is at t ,  the 
likelihood for individual observations can be computed as shown in Table 2.3; the 
joint likelihood for the DATA with n independent observations is 

L( p ;DATA) = n L;(p ;datai). 
i =  I 

Some of the failure times or intervals may appear more than once in a data set. 
Then ,vj is used to denote the frequency (weight or multiplicity) of such identical 
observations and 

(2.15) 

Chapter 3 shows how to compute the maximum likelihood estimate of F ( r )without 
having to make any assumption about the underlying distribution of T .  Starting in 
Chapter 7 we show how to estimate a small number of unknown parameters from a 
more highly structured parametric model for F(r) .  

Table 2.3. Contributions to the Likelihood for General Failure Time Data 

Likelihood of a Single 
Type of Observation Characteristic Response L,(p ;data,) 

Interval-censored 
Left-censored at t, 
Right-censored at f, 
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2.4.6 Other Likelihood Terms 

The likelihood contributions used in (2.14) and (2.15) will cover the vast majority 
of reliability data analysis problems that arise in practice. There are, however, other 
kinds of observations and corresponding likelihood contributions that can arise and 
these can be handled with only a slight extension of this framework. 

Random Censoring in the Intervals 
Until now, i t  has been assumed that right censoring occurs at the end of the inspection 
intervals. If C is a random censoring time, an observation is censored in the interval 
( t , - i , t , ]  if t,-l < C 5 t, and C 5 T. Similarly, an observation is a failure in that 
interval if t,-l < T 5 t, and T 5 C. To account for right-censored observations 
that occur at unknown random points in the intervals, one usually assumes that the 
censoring is determined by a random variable C with pdf fc(r)and cdf F C ( t )  and 
that the failure time T and censoring time C are statistically independent. (But it is 
important to recognize that making such an assumption does not make i t  so!)Then 
for continuous T, the joint probability (likelihood) for I; right-censored observations 
in ( t l - 1 , t J ]and d, failures in ( t J - l , t J ]is 

L,(p;data,) = {Pr[(T5 C) f l  ( t , - l  < T 5 tJ)]}"i{Pr[(C5 T )n (t,-I < C 5 f , ) ] } "  

Example 2.12 Battery Failure Data with Multiple Failure Modes. Morgan 
(1980)presents data from a study conducted on 68 battery cells. The purpose of the 
test was to determine early causes of failure, to determine which causes reduce product 
life the most, and to estimate failure-time distributions. Each test cell was subjected to 
automatic cycling (charging and discharging) at normal operating conditions. Some 
survived until the end of the test and others were removed before failure for physical 
examination. The original data giving precise times of failure or removal were not 
available. Instead, the data in Appendix Table C.6 provide a useful summary. By the 
nature of this summary, however, the removals (censoring times) do not occur at the 
ends of the intervals (as in the examples in Chapter 1). 0 

Truncated Data 
In some reliability studies, observations may be truncated. Truncation, which is sim- 
ilar to but different from censoring, arises when observations are actually observed 
only when they take on values in a particular range. For observations that fall outside 
the certain range, the existence is not known (and this is what distinguishes trun- 
cation from censoring). Equivalently, sampling from a truncated distribution leads 
to truncated data. Examples and appropriate likelihood-based methods for handling 
truncated data, based on conditional probabilities, will be given in Section I I .6. 
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BIBLIOGRAPHIC NOTES 

Theory for likelihood inference based on grouped and multinomial data has been 
given, for example, by Kulldorff (1961), Rao (1973), and Elandt-Johnson and John- 
son (1980). Aalen and Husebye (199 l) ,  in a biomedical context, describe a general 
structure for observation stopping times that can be viewed as the cause of censoring. 
They explain the conditions under which the likelihood methods in this chapter are 
appropriate and give examples of stopping rules that could lead to biased inferences. 
Lagakos (1979). Kalbfleisch and Prentice (1980),and Lawless (1982, Chapter 1) also 
discuss these issues. 

EXERCISES 

2.1. Although the diesel generator fan failure times in Appendix Table C. 1 were 
reported as exact failures, the ties suggest that the data are really discrete due to 
rounding or because failures were found on inspection. Suggest appropriate 
partitioning of the time line to reflect the true discrete nature of the data. 
Explain how you arrived at this partitioning. Use this partitioning to develop 
an expression for the discrete-data likelihood. 

2.2. It is possible for a continuous cdf to be constant over some intervals of time. 
(a) Give an example of a physical situation that would result in a cdf F ( t )  

that is constant over some values of t .  
(b) Sketch such a cdf and its corresponding pdf. 
(c )  For your example, explain why the convention for defining quantiles 

given in Section 2.1.2 is sensible. Are there alternative definitions that 
would also be suitable? 

2.3. Consider a random variable with cdf F ( t )  = t / 2 , 0  < t 5 2. Do the following: 
(a) Derive expressions for the corresponding pdf and hazard functions. 
(b) Use the results of part (a) to verify the relationship given in (2 .2) .  
(c) Sketch (or use the computer to draw) the cdf and pdf functions. 
(d) Sketch (or use the computer to draw) the hazard function. Give a clear 

intuitive reason for the behavior of h( t )as t - 2. Hirzt: By the time t = 2,  
all units in the population must have failed. 

(e) Derive an expression for I,>, the p quantile of F ( t ) ,and use this expression 
to compute 1.4. Illustrate this on your plots of the cdf and pdf functions. 

(f)  Compute Pr(.l < T 5 .2) and Pr(.8 < T 5 .9). Illustrate or indicate 
this probabilities on your graphs. 

(g) Compute Pr(.l < T L- .2 I T > . I )  and Pr(.8 < T 5 .9 I T > .8). 
Compare your answers with the approximation in (2. I ) .  

(h) Explain the results in part (g) and give a general result on the relationship 
between Pr(t < T 5 t + A t  I T > t )  and the approximation in (2.1). 
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2.4. Consider a cdf F ( t )  = 1 - exp[ - ( ? / q ) p ] ,  t > 0, q > 0, p > 0. (This is the 
cdf of the Weibull distribution, which will be discussed in detail in Chapter 4.) 
(a) Derive an expression for the pdf f( t ) .  
(b) Derive an expression for the hazard function h(r). 
(c) Sketch (or use the computer to draw) the cdf, pdf, and hazard functions 

for q = 1 and p = .5, 1, and 2. 

2.5. Consider a cdf F ( t )  = 1 - exp(-t), t > 0. Do the following: 
(a) Derive expressions for the corresponding pdf and hazard functions. 
(b) Sketch (or use the computer to draw) the cdf, pdf, and hazard functions. 
(c) Derive an expression for t p , the p quantile of F ( t ) ,and use this expression 

to compute t .1 .  Illustrate this on your plots of the cdf and pdf functions. 
(d) Compute Pr(.l < T 5 .2). Illustrate this probability on your graphs. 

Also compute Pr(.l < T 5 .2 I T > . l ) .  Compare your answer with the 
approximation in (2.1). 

A2.6. Consider a continuous random variable with cdf F ( t )  = I - exp( - t )  and the 
partitioning time points to = 0, tl = . I ,  t 2  = .2, t j  = .5, t4  = 1,  t 5  = 2, 
ts = 03 to do the following: 
(a) Sketch (or use the computer to make) a graph of F ( t )  over the range 

O < t r  10. 
(b) Compute and make a table of values of F(t , ) ,S( t i ) ,and n;,p, at t j  for 

i = 1, . . . ,  6. 

2.7. An electronic system contains 20 copies of a particular integrated circuit that 
is at risk to failure during operation. The manufacturer of the integrated circuit 
claims that its average hazard rate over the first 2 years of operation is 75 
FITS. For the 1500 systems just put into operation, compute a prediction for 
the total number of these integrated circuits that will fail over the next 2 years 
of operation. 

2.8. Write an expression for the likelihood of the turbine wheel data in Table 
1.5. Also give an explicit expression for the constant term C. How would the 
likelihood differ if we knew the actual service time of each of the inspected 
turbine wheels? 

2.9. Consider the V7 vacuum tube data in Table 1.4. 
(a) Explain why the failures in the interval 0-25 days could be considered to 

be left-censored observations. 
(b) Explain why the failures in the interval 100-x days are right-censored 

observations. 

2.10. Write down an expression for the likelihood of the V7 tube data in Table 1.4. 
Also give an explicit expression for the constant term C. 
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2.11. A test facility with 20 test positions is being used to conduct a life test of a 
newly designed battery. Each battery will be tested until failure or until i t  has 
accumulated 100 chargehecharge cycles or until it  is taken off test for some 
other reason. When a battery fails, it will be replaced with a new unit, keeping 
the 20 test positions busy. At several randomly occurring times during the 
test it will be necessary to remove one or more unfailed units from test. The 
removed units will be used for other experiments and demonstrations but will 
not be returned to the life test. Removed units will be treated as censored 
observations (all that is known is that the unit did not fail by the time the unit  
was removed from test). The following list suggests some methods that might 
be used for choosing which battery to remove from test. For each method of 
choosing, explain whether the censoring mechanism is “fair” or not (i.e., a 
censoring method that will not lead to undue bias for making inferences about 
the distribution of battery life). If it is a “fair” censoring method, explain why 
the method might be better than the other suggested methods (acknowledging 
that this would depend on the purpose of the test). If the selection method will 
result in bias, explain the direction of the bias. 

A battery selected at random. 
The battery with the most running time. 
The battery with the least running time. 
The battery with the lowest measured capacity (as measured at the end 
of each cycle). 

2.12. Consider the life test described in Exercise 2.1 1. Generally, experimenters 
would want to assume that there would be no differences among the 20 test 
positions. Describe the consequences of incorrectly making such an assump- 
tion and how one could detect such differences and/or protect against such 
consequences. 

A2.13. Show that the pdf, cdf, survival, hazard, and cumulative hazard are mathe- 
matically equivalent descriptions of a continuous distribution in the sense that 
given any of these functions the other four are completely determined. 

A2.14. Consider the setting given in Section 2.2. 
(a) Prove that equation (2.7) is true. 
(b) Show that 

i- I 
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I(c) Provide an argument to show that if 7 ~ 1> 0,. . . ,ntt,+ > 0, then 0 < 
p ,  < 1 is the only restriction on the p ,  values for i = 1 , .  . . ,in. 

(d) Prove that equation (2.8) is true. 

A2.15. Consider the special case of (2.16), where f c ( t )is a probability mass function 
assigning all of its probability to points t ,  (i = 1,. ..,nzj. 
(a) Show, in this case, that (2.16) reduces to 

(b) Give conditions under which parts of this likelihood term L,( p ;data,) can 
be absorbed into the likelihood constant C so that this likelihood term will 
correspond to the L,( p ;datai) in (2.15). 

A2.16. If a continuous random variable T has a cdf F ( t )  = Pr(T 5 t ) ,  then it is easy 
to show that the transformed random variable F ( T ) follows a 0-1 uniform 
distribution. A similar property for random variables is that the cumulative 
hazard transformation H ( T ) follows an exponential distribution. Show this. 



C H A P T E R  3 


Nonparametric Estimation 

0bjectives 

This chapter explains: 

Simple statistical methods, based on the binomial distribution, to estimate a cdf 
F ( t ) from interval and singly right-censored data, without having to assume an 
underlying parametric distribution. This is called “nonparametric” estimation. 

Standard errors of the nonparametric estimator and approximate confidence 
intervals for F ( t ) .  

Life table methods to extend nonparametric estimation to allow for combinations 
of interval-censored and multiply right-censored data. 
The Kaplan-Meier nonparametric estimator for data with observations reported 
as exact failure times. 

A generalized nonparametric estimator of F ( t )for arbitrary censoring (including 
combinations and mixtures of exact failure times with left, right, and interval 
censoring). 

Overview 

The nonparametric (model-free) estimates described in this chapter are used through- 
out this book as a tool for reliability data analysis. Section 3.2 starts with a simple 
method that applies to problems with complete data or single censoring. Section 3.3 
explains the basic ideas of statistical inference and introduces the ideas behind the use 
of confidence intervals, another statistical tool used throughout this book. Confidence 
intervals for complete data or single censoring are described in Section 3.4.The meth- 
ods are generalized to the commonly encountered multiple censoring in Sections 3.5, 
3.6, and 3.7. Simultaneous confidence bands (used for helping to choose a model in 
Chapter 6) are presented in Section 3.8. Sections 3.9 and 3.10 provide other general 
methods for handling more complicated kinds of censoring. 

46 



ESTIMATION FROM SINGLY CENSORED INTERVAL DATA 47 

3.1 INTRODUCTION 

As explained in Section 1S.2, data analysis should begin with analytical and graphical 
tools that do not require strong model assumptions. Such methods allow the data to 
be interpreted without distortion that might be caused by using inadequate model 
assumptions. This chapter describes methods for computing nonparametric estimates 
and confidence intervals for F(r ) .  In some cases, such estimates are all that will 
be needed for an analysis. In other situations a nonparametric analysis provides an 
intermediate step toward a more highly structured model allowing more precise or 
more extensive inferences, provided that the additional assumptions of such a model 
are valid. 

3.2 ESTIMATION FROM SINGLY CENSORED INTERVAL DATA 

This section shows how to compute a nonparametric estimate of a cdf from interval- 
censored data when either all units fail or all of the right censoring is at one point at 
the end of the study (known as single right censoring). 

Example 3.1 Plant I Heat Exchanger Data. Figure 3.1 shows the Plant 1 data 
from Example 1.5. As a first step in our analysis of the heat exchanger data we want 
to estimate F ( t )for just Plant 1. 0 

Most studies involving inspection start at time zero with an initial sample of units. 
Information is available on the status of the units at the end of each time interval. 
Let n be the initial number of units (sample size) and let d, denote the numbzr of 
units that died or failed in the ith interval (ti- 1 ,  t ; ] .The nonparametric estimator F(t , ) ,  
based on the simple binomial distribution, is 

F(r;) = # of failures up to time ci -- 1 dj 
(3.1) -

n n 

Example 3.2 Nonparametric Estimator of F(t). The data from Plant 1 ( i i  = 

l00,dl = 1,d2 = 2,d3 = 2)give 

F(l) = 1/100, p(2)= 3/100, p(3) = 5/100. 

This estimate is shown graphically with the 0 symbols in Figure 3.2. 0 

Cracked tubes Uncracked tubes 

Plant 1 1 2 2 95 

Figure 3.1. Plant 1 heat exchanger data. 
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Figure 3.2. Plot of the nonparametric estimate for the Plant I heat exchanger data with pointwise approx-
imate 95% confidence intervals based on binomial theory. 

h 

In general, this nonparametric estimator F(r,) is defined at all values o f t ,  (upper 
endpoints of all intervals). Additionally, if interval i is known to have no failures, 
then F ( t )  = F(t ,- I )  for t ,- I 5 t 5 t, .  I,f interval i is known to contain one or more 

h A h 

failures, F ( t ) increases from F‘(t,-l) to F( t , ) in the interval ( t , - l , t ,J . In this case F ( t )  
is undefined for t , - 1 < t < t,. Intuitively, this is because we do not know the exact 
location of the failure( s) within the interval ( t ,- t l ]  and thus we have no information 
on how F(r)is increasing in the interval. By using the binomial distribution, it is easy 
to show that p(t,)is the maximum likelihood estimator of F ( t ) .  

3.3 BASIC IDEAS OF STATISTICAL INFERENCE 

3.3.1 The Sampling Distribution of k(ti) 
h 

Estimates like F ( t , ) ,i = 1,. . . ,m,computed from a set of sample data can be inter-
preted in at least two different ways. 

Estimates can be viewed as descriptive of thepnrriciilardatcr set used to compute 
the estimate. This is known as “descriptive statistics.” 
More commonly, there is interest beyond the particular sample units and esti-
mates are used to make inferences about the process or larger existing population 
of units from which the sample units were chosen at random. This is an example 
of “inferential statistics.” 
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In inferential applications, an estimate [say, ?(t,) at a particular time t ,]will deviate 
from F( t , ) ,  the actual population or process cdf at t , .  The standard_(non-Bayesian’ ) 
approach to quantifying the possible size of the difference between F ( t , )and F ( t , )is to 
consider what would happen if the inferential procedure (sampling and estimation) 
were repeatzd a large number of timzs, each time getting different data and thus 
a different F(t , ) .  The distribution of F( t , )  values is called a sampling disKibution, 
and this distribution provides insight into the probable deviation between F ( t , )and 
F( t />. 

3.3.2 Confidence Intervals 

A point estimate, by itself, can be misleading, as it may or may not be close to the 
quantity being estimated. Confidence intervals are one of the most useful ways of 
quantifying uncertainty due to “sampling error” arising from limited sample sizes. 
Confidence intervals, however, generally do not quantify possible errors and biases 
arising from an inadequate model or other invalid model assumptions. 

Confidence intervals have a specified “level of confidence,” typically 90% or 
95%, expressing one’s confidence (notprobabiliht) that a specific interval contains 
the quantity of interest. A specific interval either contains the quantity of interest 
or not; the truth is unknown. It is important to recognize that the confidence level 
pertains to a probability statement about the performance of the confidence interval 
procedure rather than a statement about any particular interval. See Chapter 2 of 
Hahn and Meeker (1991) for further discussion of the interpretation of statistical 
intervals. 

“Coverage probability” is the probability that a confidence interval procedirre will 
result in an interval containing the quantity of interest. When the specified level of 
confidence [generically 100(1 - a)%]is not equal to the coverage probability, the 
procedure and resulting intervals are said to be upproxirnate. In some simple prob- 
lems coverage probability for a given procedure can be computed analytically and, 
correspondingly, exact confidence interval methods can be developed. “Conserva- 
tive” procedures have a coverage probability that is at least as large as the specified 
confidence level. In most practical problems involving censored data, there are no 
“exact” confidence interval procedures. There are, however, a number of useful, and 
often simple, approximate methods. Better approximations generally require more 
computations. The adequacy of the approximations can be checked with repeated 
simulation. In turn, often simulation can be used to obtain better approximations, 
as described in Chapter 9, Section 3.6 describes simple methods for computing ap- 
proximate confidence intervals. Chapter 9 presents a more accurate simulation-based 
approach. 

‘Bayesian methods of statistical inference, described in Chapter 14, are based on the specification of a 
prior distribution to describe prior knowledge or opinion about the model parameters. As explained in 
Chapter 14, this alternative approach to inference leads to inference statements with a somewhat different 
interpretation. 
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3.4 CONFIDENCE INTERVALS FROM COMPLETE OR SINGLY 
CENSORED DATA 

3.4.1 Pointwise Binomial-Based Confidence Interval for F(ti) 

A conservative 100(1 - a)%confidence interval [F( t i ) ,  F(t,)]for F( t ; ) based on 
binomial sampling is 

where F^ = F^(ti)and .F(p;u,,uz)is the p quantile of the F distribution with (v1,v2) 
degrees of freedom. Elementary statistics textbooks provide tables of F distribution 
quantiles. The confidence interval in (3.2)is conservative in the sense that the coverage 
probability is greater than or equal to 1 - a.  Theory for this confidence interval is 
given, for example, in Brownlee (1960, pages 1 19-120). 

A one-sided approximate 100(1 -a)% confidence bound for F ( t )can be obtained 
by replacing F(l-a/2)  in (3.2) and using the appropriate endpoint of the with F(I-~) 
two-sided confidence interval. For example, a conservative 90% confidence interval 
from (3.2)can also be viewed as two conservative 95% one-sided confidence bounds. 

Example 3.3 Binomial Conpence Interval for F(t). To illustrate the compu- 
tation of the binomial confidence intervals from (3.2),we compute a 95% confidence 
interval for F ( 2 )at which point 3 of the 100 tubes had failed. Then with n = 1 0 0  and 
n p ( 2 )  = 3, ?.975;1y6,6) = 4.8831, and 3;.975;8,194) = 2.2578, substituting into (3.2) 
gives 

100-3
F(2)  = { 1 + = .0852. 

(3 -/- l)F(.975;6+2,200-6) 

Thus we are (at least) 95% confident that the probability of failing before the end of 
2 years is between .0062 and .0852. 0 

3.4.2 Pointwise Normal-Approximation Confidence Interval for F(&) 

For a specified value of ti, a simpler approximate loo(1 - a)%confidence interval 
for F ( t ; )is - ..-. 

h 

[E( t i ) ,  F(ti)I = F( t i )  2 z ( I - ~ / ~ ) s ~ F ,  (3.3) 
where qp)is the p quantile of the standard normal distribution and 

(3.4) 
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is an estimate of the standard error of F(f;),This confidence interval is based on the 
assumption that 

can be adequately approximated by a_NOR(O, 1) (standard normal) distribution. For 
this approximation to be adequate, nF(t i )  should be at least 5 to 10 and no more than 
IZ - 5 or n - 10.Otherwise the approximation will be crude, and it is even possible to 
get confidence limits that are outside the interval 0 to 1 .  The computations for (3.3) 
are, however, simple and can be done easily by hand. 

Example 3.4 Normal-Approximation Conwence Interval for the Plant I F(t). 
To illustrate these intervals we compute an approximate 95% confidence interval for 
F ( 3 )  for the Plant 1 heat exchanger tubes. At t = 3, 5 of the 100 tubes had failed. 
Then with n = 100, p(3)= .05, and 2.~75= 1.960,substituting into (3.3) gives 

[F(3) ,  F(3)] = .05 _+ 1.960 X .02179 = [.0073, .0927], 

where Gk = J.05 (1  - .05)/100 = .02179 is an estimate of the standard error of 
h).


Table 3.1 also shows confidence intervals for F(  1)  and F ( 2 )  (both the conservative 
and the normal-approximation). Note that the normal-approximation intervals for 

Table 3.1. Nonparametric Estimates and Approximate Confidence Intervals for the 
Heat Exchanger Tube F ( t )  

Point wise Approximate 
Confidence Intervals 

h

Year t l  d, POl)  sep FUI) F ( f , )  

(0-1 1 1 1 .o1 .00995 

95% Conjidence Intervalsfor F( 1 ) 

Based on binomial theory [.0003, .0545] 
Based on Z,: NOR(0, I )  [ -.0095, .0295] 

( 1-21 2 2 .03 .O 1706 

95% Conjidence Inten~als for F ( 2 )  

Based on binomial theory [.0062, .0852] 
Based on Z,- N O R ( 0 , I )  [ - .0034,.0634] 

(2-3 1 3 2 .05 .02179 

95% Confidence Intervals for F ( 3 )  

Based on binomial theory [.0164,.1128] 
Based on Zp NOR(0, I )  [.0073, .0927] 
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Figure 3.3. Plot of the nonparametric estimate of the cdf of the integrated circuit failure times. Also 
shown are a set of normal-approximation 95% confidence intervals. 

F( 1 )  and F ( 2 )  have nonsensical negative lower endpoints, Section 3.6  provides a 
method of improving the normal-approximation interval for situations in which the 
conservative binomial interval does not apply. 0 

Example 3.5 Nonparametric ConJidence Intervals for Integrated Circuit Fail- 
ure Data. The integrated circuit failure data in Table 1.2 are singly censored at 1370 
hours. Ties in the data suggest that failures were found at points in times where there 
was an inspection. For this example, however, as is commonly done in practice 
when the intervals are small relative to the spread in the data, this discreteness in 
the data will be ignored. Thus the simple binomial methods can be used to esti- 
mate F(r) at any specified value o f t .  Figure 3.3 shows the nonparametric estimate 
along with normal-approximation 95% confidence intervals for each estimated point. 
The normal-approximation intervals are nonsymmetric because they are based on an 
approximation-improving transformation explained in Section 3.6.  U 

3.5 ESTIMATION FROM MULTIPLY CENSORED DATA 

This section shows how to compute a nonparametric estimate of a cdf from data 
with multiple right censoring (failures occur after some units have been censored). 
Suppose that an initial sample of tz units start operating at time zero. If a unit does 
not fail in interval i, it is either censored at the end of interval i or it continues into 
interval i + 1. Information is available on the status of the units at the end of each 
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interval. The intervals may be large or small and need not be of equal length, as long 
as the intervals for different units do not overlap (Section 3.10 extends the method to 
data with different, overlapping intervals, which arise, for example, when units are 
not subject to the same inspection schedule). Let di denote the number of units that 
died or failed in the ith interval t ,].Also, let r, denote the number of units that 
survive interval i and are right-censored at t,. The units that are alive at the beginning 
of interval i are called the “risk set” for interval i (i.e., those at risk to failure) and the 
size of this risk set at the beginning of interval i is 

i - 1 i - 1 

(3.5) 
j=O j = O  

where rn is the number of intervals and it is understood that do = 0 and r-0 = 0. An 
estimator of the conditional probability of failing in interval i, given that a unit enters 
this interval, is the sample proportion failing 

di 
Pi = -, i = l ,  . . . ,rn. 

ni 

Substituting these into (2.8) provides an estimator of the survival function: 

i 

= -5j1, i = I ,  . . . , in. (3.6) 
j =  I 

Then the corresponding nonparametric estimator of F ( t ; )is 

Here E,is the maximum likelihood (ML) estimator of the conditional probability p ,  
from (2.7). This implies that F(t[)is the ML estimator of F(r,)(see Exercise 3.22).The 
nonparametric estimator F(t,)is defined at all t, values (endpoints of all observation 
intervals). Additionally, if interval i is known to have zero failures, then F^(t,) = 
h 

F( t ,- I ) for t,- 1 It It,. If interval i is known to contain one or more failures, 
h 

&t) increases from F(t,- 1 )  to F^(t,)in the interval ( t , - 1 ,  r , ]  but, as before, F ( t )  is not 
defined over the interval. Note that when there are no censored observations before 
the last failure, (3.7) is numerically equivalent to (3.1). 

Example 3.6 Nonparamehic Estimate of F(t)for the Pooled Heat Exchanger 
Tube Data. Returning to the heat exchanger data from Example 1.5, Figure 3.4 
displays the pooled data from Figure 1.7 across the three different plants. For each 
year of operation, the bottom of Figure 3.4 shows the number in the risk set (in the 
upper left-hand corner), the number that cracked in each interval, and the number 
censored at the end of each interval. Table 3.2 illustrates numerical computations. 
Figures 3.5 and 3.8 show the estimate with different sets of approximate confidence 
intervals and bands that are explained in Sections 3.6.3 and 3.8, respectively. 0 
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Year 1 Year 2 Year 3 

Plant 1 

r 
.loOJ 1 , 99  1 h97 I 2 95 

Plant 2 .lwJ 
2 

,98 I 
3 95 

Plant 3 1 4  1 99 

300 I 197 1
IAll Plants 4 5 

Conditional 
Failure Probability 41300 51197 2/97 

Figure 3.4. Pooling of the heat exchanger data in preparation for computing the nonparametric estimate 
of F(r ) .The number of units at risk in each cell is shown in the small rectangles. 

Table 3.2. Calculations for the Nonparametric Estimate of F(ti) for the Pooled Heat 
Exchanger Tbbe Data 

Failed Censored Entered 

(0-11 I 4 99 300 4/300 296/300 .9867 .(I133 
(1-2) 2 5 95 197 5/197 192/197 .9616 .0384 
(2-31 3 2 95 97 2/97 95/91 .9418 .0582 

3.6 POINTWISE CONFIDENCE INTERVALS FROM MULTIPLY 
CENSORED DATA 

3.6.1 Approximate Variance of f i ( t i )  

Because F^(tj) = 1 - ?(t;) ,Var[F̂ (t,)] Using the delta method approach = Var[?(t;)]. 
in Appendix Section B.2, a first-order Taylor series approximation for $ ( t ; )  is 
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where 9, = 1 - pj. Because the q, values are approximately uncorrelated binomial 
proportions (the q j  values are asymptotically, as n --+ x,uncorrelated), it follows that 

(3.8) 


The right-hand side of (3.8) is also an asymptotic (large-sample approximate) variance 
denoted by Av~[F^(ti)]. This can be shown by using the large-sample approximation 
in Appendix Sections B.6.1 and B.6.3. 

3.6.2 Greenwood’s Formula 

Substituting F j  forpj and &t;) for S( t i ) in (3.8) gives the following variance estimator: 

1 h 

(3.9) 

This is known as “Greenwood’s formula.” An estimator of the standard error of F(ti) 
is 

(3.10) 

Note that when there are no censored observations before t ; ,  (3.10)is numerically 
equivalent to (3.4). 

3.6.3 Pointwise Normal-Approximation Confidence Interval for F(ti) 

Because F^(t)is defined only at the upper endpoint of intervals that contain failures, 
F^(t) is generally estimated only at such points [if there are no failures in an interval, 
F^(t)remains constant over that interval]. For a specified upper endpoint ti at which an 
estimate of F ( t ) is desired, a normal-approximation 100( 1 - a)%confidence interval 
for F(t ; )is 

where z(,) is the p quantile of the standard normal distribution. In general, a one-sided 
approximate 100(1 - a)%confidence bound can be obtained by replacing q1-a /2 )  
with z(1-a)  and using the appropriate endpoint of the two-sided confidence interval. 

The approximate confidence intervals from (3.3) or (3.11) are based on the as- 
sumption that the distribution of 

h 


(3.12) 
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can be approximated adequately by a NOR(0, 1 )  distribution. Then 

implies that 

This gives the approximate coverage probability for intervals computed with the 
procedure in (3.1 1). Note that in (3.14), F ( t , )is fixed while F ( t , )and ŝ ep are random. 
The approximation in (3.14) is a large-sample approximation and improves with 
increasing sample size. Appendix Section B.5 provides more information on such 
large-sample approximations. 

When the sample size is not large, however, the distribution of ZF may be badly 
skewed and the normal distribution may not pr_ovide an adequate approximation, 
particularly in the tails of the distribution [where F ( t ) is close to 0 or 11. For example, 
it is possible that (3.1 1 )  gives & r )  < 0 or F(t) > 1, a result that is outside the possible 
range for F ( t ) .Generally a better approximation might be obtained by using the Iogit 
transformation (logit(p) = log[p/( 1 - p ) ] )and basing the confidence intervals on 
the distribution of 

(3.15) 

Because logit( F( t , ) ] ,like a standard normal random variable, is unrestricted (i.e., 
ranges between --x and x ) ,  (3.15) can be expected to be closer to NOR(0, 1 )  than 
(3.12). This leads (the needed steps are left as an exercise) to the two-sided approxi- 
mate loo(1 - a)%confidence interval 

where b t t  = exp{z(l-a/zli%,/(F( 1 - F)]}.The endpoints of this interval will always 
lie between 0 and 1. A one-sided approximate 100(1 - a)%confidence bound can 
be obtained by replacing :(with- a / 2 )  I - a )  and using the appropriate endpoint of 
the two-sided confidence interval. 

Example 3.7 Normal-Approximation Conjidence Intervals for the Heat Ex- 
changer Data. This example illustrates the computation of standard errors and 
nonparametric approximate confidence intervals for the heat exchanger data, us- 
ing both large-sample happroximations in this section. For the failure probability at 
ti = t l  = 1, we have F(1) = .0133and 

A A .O 133
Var[F( 1 ) ]  = (.9867)2 
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Then i k ~= J,0000438 = .00662and the approximate 95%confidence interval for 
F(  1 )  from (3.11 )  is 

[F(l), F(1)]= .0133 2 1.960(.00662)= 1.0003, .0263]. 

The corresponding interval from (3.16), based on the logit transformation, is 

.O 133 .o133 
~ 7 '"(')' '(')I = .0133 + (1  - .0133) X .0133 + ( 1  - .0133)/\r, 1 

= [.0050, .0350], 

where w = exp{ 1.960( .OO662)/[ .0133(1 - .O 133)]}= 2.6878 16. Differences be- 
tween the two methods are large enough to be of practical importance. The intervals 
based on the logit transformation are expected to provide a better approximation to 
the nominal 95% confidence level. 

For the failure probability at t; = t2 = 2, we have 

A A .0133 .0254
Var[F(2)]= (.9616)* = .0001639[300(.9867) -I- 197( .9746) 1 

so that GF = d.0001639 = .0128. The approximate 95% confidence intervals for 
F(2)are 

[F(2), F(2)]= .0384 2 1.960(.0128)= [.0133, .0635] 

and 

= [.0198, .0730], 

where N' = exp{1.960(.0128)/[.0384(1 - .0384)]}= 1.972739. 
Table 3.3 gives and Figure 3.5 shows the nonparametric estimates for F ( t , )  and 

pointwise approximate 95% confidence intervals. The intervals are not symmetric 
around the estimates because of the logit transformation. The intervals are wide 
because of the heavy censoring and the small number of failures. 

3.7 ESTIMATION FROM MULTIPLY CENSORED DATA WITH 
EXACT FAILURES 

Failures are often reported at exact times. In such cases, the reported times are denoted 
by ti.This section shows how to apply the methods of Sections 3.5 and 3.6 to estimate 
F ( t )  for such exact failures. 

0 
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Table 3.3. Summary of Calculationsfor Nonparametric Approximate Confidence 
Intervals for F( t )  for the Pooled Heat Exchanger 'hbe Data 

Year t, Fct,) 
h sep Pointwise Confidence Intervals 

(0-1 1 1 .O 133 .00662 

95% Confidence lnten~alsfor F(  1 ) 

NOR(0, I )Based on Z,og,l,t) 
Based on Z i  A NOR(0, 1 )  

[.0050,.0350] 
[.OW,.O I 331 

(1-21 2 .0384 .O 128 

9.5% Confidence Intervalsfor F ( 2 )  

Based on Z,oglI(~)-L NOR(0, 1 ) [ .O 198, .0730] 
Based on Z; -L NOR(0, 1 )  [ .O 133, .0635] 

(2-31 3 .O582 .O 1 87 

9S7c Conjidunce 1nrurvctlsfi)r F(3) 

Based on Z,oglI,j,-L NOR(0, I )  [ .0307, .1076] 
Based on Z; NORiO, I )  [ .02 16, .0949] 
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Figure 3.5. Plot of the nonparametric estimate for the heat exchanger data along with a set of pointwise 
logistic-transform normal-approximation 95% confidence intervals for F(r) .  
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Example3.8 Shock Absorber Failure Data. Appendix Table C.2 gives the 
failure times (in number of kilometers of use) of vehicle shock absorbers, first re- 
ported in O’Connor (1985). The table shows two different failure modes, denoted 
by M1 and M2. Engineers responsible for shock absorber manufacturing and reli- 
ability would be interested in the distribution of time to failure for the individual 
failure modes. Engineers responsible for higher-level automobile system reliability 
and choosing among alternative vendors would be more interested in the overall 
failure-time distribution for the part. 0 

Exact failure times arise from a continuous inspection process (or, perhaps, from 
having used a very large number of closely-spaced inspections). In the limit, as the 
number of inspections increases and the width of the inspection intervals approaches 
zero, failures are concentrated in a relatively small number of intervals. Most intervals 

h 

will not contain any failure?. F(t)  is constant over all intervals that have no failures. 
Thus with small intervals, F will become a step function with gaps over the intervals 
where there were failures and with jumps at the upper endpoint of these intervals. In 
the limit, as the width of the intervals approaches 0, the size of the gaps approaches 
0 and the step function increases at the reported failure times. This limiting case of 
the interval-based nonparametric estimator is generally known as the product-limit 
or Kaplan-Meier estimator. 

Example 3.9 Nonparametric Estimator and Normal-Approximation Confi-
dence Intervals for the Shock Absorber Data. For the data from Example 3.8 and 
Appendix Table C.2 we do not differentiate between the two different failure modes. 
Instead, we estimate the time to failure when both mode M1 and M2 are acting. 
Table 3.4 illustrates the computations for the product-limit estimator up to 12,200 

Table 3.4. Nonparametric Estimates for the Shock Absorber Data up to 12,200 km 

Failed Censored Entered 

6,700 1 0 38 1/38 37/38 .9737 .0263 
6,950 0 1 37 
7,820 0 1 36 
8,790 0 1 35 
9,120 1 0 34 1/34 33/34 .9451 .0549 
9,660 0 1 33 
9,820 0 1 32 

11,310 0 1 31 
11,690 0 I 30 
11,850 0 1 29 
11,880 0 1 28 
12,I40 0 I 27 
12,200 1 0 26 1/26 25/26 .9087 .0913 
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Figure 3.6. Plot of the nonpurametric e.\timate for the shock absorber data along with a set of pointwise 
logistic-transform nornmal-approximation 95% confidence intervals for F ( r ) .  

km. Figure 3.6 shows the nonparametric estimator and a set of pointwise approximate 
95% confidence intervals for F ( t ) .  Estimated standard errors were computed using 
(3.10)and the confidence intervals were computed using the logistic-transformation 
method in Section 3.6.3. The wide confidence intervals indicate a high degree of 
uncertainty. 0 

3.8 SIMULTANEOUS CONFIDENCE BANDS 

3.8.1 Motivation 

The pointit*ise confidence intervals defined in Section 3.6.3 are useful for making a 
statement about F ( t , )at m e  particular specified value oft, (even though it is common 
practice to plot a set of such intervals). In many applications, however, it  is necessary 
to quantify the sampling uncertainty, simultaneously, over a range of values oft. To do 
this, we can use simultaneous confidence bands for F ( t ) . As explained in Chapter 6, 
simultaneous confidence bands are particularly useful for judging the magnitude of 
observed departures from fitted parametric models. 

The overall coverage probability for the collection of pointwise intervals (e.g., 
Figure 3.6) is generally less than that for any individual interval. Plotting an estimate of 
F(t) showing imultaneous confidence bands more accurately reflects the uncertainty 
over the range of times displayed on the plot. 
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3.8.2 Large-Sample Simultaneous Confidence Bands for F(t )  

Approximate loo(1 - a)%simultaneous confidence bands for F ( t )can be obtained 
from 

where the range [tL(a),tu(b)]is a complicated function of the censoring pattern in 
the data, as described in Section 3.8.3. With no censoring the range o f t  is given by 

h 

the values o f t  for which n 5 F ( t )  5 b. The approximate factors e,c , ,h. l -a/7, ,given in 
Table 3.5 were computed from a large-sample approximation given in Nair (1984). 
Because the factor e(c,,h.I-a/2)is the same for all values of t ,  this family of bands is 
known as the “equal precision” or “EP’ simultaneous confidence bands. The factors 
e,a,b,l- a / 2 )  are larger than the corresponding pointwise normal-approximation :I - a / 2 )  

values. Thus the width of the simultaneous bands, at any given point t ,  is wider than 
the corresponding pointwise confidence interval at that point. This is as expected (and 
necessary) to account for the simultaneous nature of the bands afforded by (3.17). 

Simultaneous approximate confidence bands like those defined in (3.17) are based 
on the approximate distribution of 

(3.18) 

As explained in Section 3.6.3 for the pointwise confidence intervals, it  is generally 
better to compute the simultaneous confidence bands based on the logit transformation 

Table 3.5. Factors elabml- a / 2 l  for the EP Simultaneous Approximate Confidence Bands 

Limits Confidence Level 

U b .80 .90 .95 .99 

.005 .995 2.86 3.12 3.36 3.85 

.01 .995 2.84 3.10 3.34 3.83 

.05 .995 2.76 3.03 3.28 3.77 

. I  .995 2.72 3.00 3.25 3.75 

.005 .99 2.84 3.10 3.33 3.83 

.0I .99 2.81 3.07 3.31 3.8 1 

.05 .99 2.73 3.00 3.25 3.75 

. I  .99 2.68 2.96 3.2 I 3.72 

.005 .95 2.76 3.03 3.28 3.77 

.01 .95 2.73 3.00 3.25 3.75 

.05 .95 2.62 2.9 1 3.16 3.68 

. I  .95 2.56 2.85 3.1 I 3.63 

.005 .9 2.72 3.00 3.25 3.75 

.01 .9 2.68 2.96 3.2 I 3.72 

.05 .9 2.56 2.85 3.1 1 3.63 

. I  .9 2.48 2.79 3.06 3.59 
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of F^. These can be computed from 

h h 

where w = exp{r,,,,h,l_,/2,s^e,l/[F(1 -F)]} .The endpoints of these bands will always 
lie between 0 and 1. The bands computed from (3.19) are based on the approximate 
distribution of the random function 

(3.20) 

The bands that we have computed for our examples use this approximation. 

3.8.3 Determining the Time Range for Simultaneous Confidence Bands 
for F ( f )  

Specifying the quantities (1 and b determines the range [tL(a),tu(b)]over which 
simultaneous confidence bands for F ( r )are defined. Let 

where the summation is over j such that t ,  5 t .  Then the simultaneous confidence 
bands have a range covering all values of [_such that a 5 k(t)5 b. Thehfunction 
K(r)>ehaves like a nonparametric estimate F(r ) : it is nondecreasing, 0 5 K ( r )  5 1 ,  
and K(r) = F(r )  when there is no censoring. 

Example 3.10 Simultaneous Conmence Bands for the Shock Absorber Life 
cdf. Figure 3.7 is similar to Figure 3.6, but it displays approximate 95% simulta-
neous confidence bands for F ( t )  instead of a set of pointwise confidence intervals. 
Note that the upper limit of the simultaneous confidence bands is constant from 6700 
km to 12,200 km, even though there is a failure and a corresponding jump in F ( r )  
at 9120 km. This is due to an adjustment made to (3.19) so that the simultaneous 
confidence bands for F ( t )  do not decrease, thus agreeing with the nondecreasing 
characteristic of cdfs. If the upper band is decreasing on the left, it is made flat from 
r L ( a )  to the point of the minimum. If the lower band is decreasing on the right, i t  is 
made flat from the point of maximum to tu(b).These adjustments, if needed, give 
tighter, more sensible bands and have no effect on the actual coverage probability of 
the simultaneous bands. 0 

Example 3.11 Simultaneous ConJidence Bands for the Pooled Heat Ex-
changer Tube Data. Figure 3.8 for the heat exchanger data shows simultaneous 
confidence bands. As expected, the simultaneous bands are much wider than the set 
of pointwise confidence intervals in Figure 3.5. 0 



63 SIMULTANEOUS CONFIDENCE BANDS 

1.O 

0.8 


Q, 

.-.--t 
a 0.6

L 

0.4 

0.2 


0.0 


0 5000 10000 15000 20000 25000 


Kilometers 
Figure 3.7. Plot of the nonparametric estimate for the shock absorber data along with simultaneous 
logistic-transform normal-approximation 95%confidence bands for F(r)computed from (3.19). 

0.20 


0.15 
[3) 

.-.-C-
a 

L v 

V 

0.05 


0.0 

0.0 0.5 1.o 1.5 2.0 2.5 

Years 
Figure 3.8. Plot of the nonparametric estimate for the heat exchanger data along with simultaneous 
logistic-transform normal-approximation 95% confidence intervals for F(r )computed from (3.19). 

3.0 



64 N 0N PA R AM ETR 1C ESTI M A’II 0  N 

3.9 UNCERTAIN CENSORING TIMES 

The methods in earlier sections of this chapter assume that all left- and right-censored 
observations occur at upper endpoints of the intervals. If all of the censoring times 
are krzorrw this is not a serious restriction because the data intervals can be defined 
to accommodate all of the data. If, however, censoring times are known only to be 
rrtithirz specified intervals, the risk set is decreasing over the intervals in a manner 
that cannot be specified precisely. If the censoring times are random and the form 
of  the distribution is known, a likelihood estimation method could be based on the 
likelihood in (2.16). Without such knowledge, another approach is needed. 

Two extreme methods of handling the censored observations in the intervals are: 

Assume that all censored observations are removed at t , ,  the upper endpoint o f  
the interval. This gives PI = d , / r z ,  as used in Section 3.5. This estimate of p, is 
biased upward. 
Assume that all censored observations are removed at t , - I ,  the lower endpoint of 
the interval. This gives pf = d , ( n ,  - rf).This estimate of p ,  is biased downward. 

A commonly used compromise is PI = d,/(rzl - r I / 2 ) ,the harmonic mean of the 
two more extreme estimates. These compromise estimates E, can be substituted into 
(3.6) and (3.9) leading through (3.7) and (3.10) to the “actuarial” or “life table” 

h 

nonparametric estimate F ( t )  and the corresponding standard error Gp. 

Example 3.12 Nonparametric Estimate for the Prototype Battery Data with 
Uncertain Censoring Times. The prototype battery failure data in Example 2.12 
and Appendix Table C.6 have both failure times and censored observations within 

Table 3.6. Calculations for the Nonparametric Life Table Estimate of F(t i )for the 
Prototype Battery Data 

Interval 
in  Hour\ 

Failed in Censored in Entered 
(1, I ,  t , ]  ( t ,  I ,t, I ( t ,  I , t , ]  

Adjusted 
at Risk 

(1, I . f , l  4 I’, 1 1 ,  1 1 ,  - r , / 2  i;, 1 - i;, S(r,)  I.’(t,) 

(0- S O ]  1 5 68 65.5 1/65.5 64.5/65.5 .985 .O15 
( 5 0  - I001 0 6 62 59 0/59 59/59 .985 .o 15 

( I00 - 15 0 1 1 1 56 55.5 1/55.5 54.5/55.5 .967 .033 
( 1 5 0  - 200j 3 6 54 51 4/51 47/51 .891 ,109 
(200 - 2501 I 2 34 43 1/43 42/43 .870 .I30 
(250 - 3001 1 I 31 40.5 1/40.5 39.5/40.5 .849 ,151 
(300 - 3501 1 2 39 38 1/38 37/38 .827 ,173 
(350 - 300) 4 2 36 35 4/35 31/35 ,732 ,268 
(350-- 500) 3 3 30 28.5 4/28.5 24.5/28.5 .629 .311 
(500 - 55oj 2 01 23 22.5 2/22.5 20.5/22.5 .573 .427 
(550 - 600j 2 20 20 2/20 18/20 516 ,383 
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the given intervals. Here we consider the life distribution of the batteries, without dis- 
tinguishing among the different failure modes. Table 3.6 illustrates the computations 
for the nonparametric life table estimate of F ( t ) up to 600 hours. 0 

3.10 ARBITRARY CENSORING 

The nonparametric estimate in (3.6)works only for some kinds of censoring patterns 
(e.g., multiple right censoring and interval censoring with intervals that do not over- 
lap). When censoring is more complicated, an alternative is needed. This need arises 
because, with complicated censoring, we do not know the 1 1 ,  values in (3.5). 

The Peto-Turnbull estimator provides the needed generalization of the nonpara- 
metric ML estimator that can be used for: 

Arbitrary censoring (e.g., combinations of left and right censoring and interval 
censoring with overlapping intervals). 
Truncated data (as described in Section 1 1.6). 

The basic idea is to write the likelihood as in (2.10) and to maximize this like- 
lihood to estimate the vector p or n from which one can compute an estimate of 
F ( t ) . We illustrate the basic idea in the following example. With the simple right- 
censoring patterns used previously, the Peto-Turnbull estimator is equivalent to the 
nonparametric estimator defined in Sections 3.5 and 3.7. 

Example 3.13 Nonparametric Estimate of the Turbine Wheel Distribution of 
Time to Crack Initiation Based on Inspection Data. As explained in Example 1.7, 
the turbine wheel inspection data on time-to-crack-initiation can be viewed as a 
collection of overlapping right- and left-censored observations. Figure 3.9 plots the 
raw observed proportion failing as a function of hours of exposure. Due to random 
variability, this crude estimate of F(r )  is decreasing in several places. The true cdf 
is, of course, a nondecreasing function of time. Although i t  is not possible to use the 
product-limit estimator to compute the nonparametric maximum likelihood estimate 
of F ( t ) ,  the general maximum likelihood approach introduced in Section 2.3 still 
works. Figure 3.10 illustrates the basic parameters n, used in computing the non- 
parametric estimate of F(t , )  for this example. Using terms like those in (2.12) and 
(2.13) and the data summarized in Table 1.5 leads to 
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Figure 3.9. Plot of proportions failing versus hours of exposure for the turbine wheel inspection data. 

where q2= 1 - E,‘:I T,.The elements of n = ( ~ 1 , .  . . , 7 q  1 )  that maximize L(n) 
give 6,the ML estimator of n.Substituting the elements of 6into (2.9) provides the 
nonparametric estimator of F(r ) .The estimate, which is nondecreasing, is plotted in 
Figure 3.1 1 .  The pointwise confidence intervals in Figure 3.1 1 were computed using 
(3.19). The needed s ^ e ~values were computed based on general methods given in 
Appendix Section B.6.4. 0 

0 4  10 18 26 34 42 46 

Hundreds of Hours 
Figure 3.10. Basic parameter\ used in computing the nonparametric ML e\timate of F ( t ,1 for the turbine 
Nheel mpectron data. 
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Figure 3.11. Plot of  the nonparametric ML estimate for the turbine wheel inspection data along with a 
set of  pointwise logistic-transform normal-approximation 95%confidence intervals for F ( t ) .  

BIBLIOGRAPHIC NOTES 

For the estimator given in (3.6), Kaplan and Meier (1958) allowed the width of the 
intervals in (2.5) to approach zero and the number of intervals to approach x.This 
is the origin of the alternative name “product-limit estimator.” This estimator is also 
widely known as the “Kaplan-Meier estimator.’’ Kaplan and Meier ( 1958), Elandt-
Johnson and Johnson ( 1  980, page 172), and Lawless ( 1982, page 74) provide more 
detailed justification for (3.6) as an ML estimator. 

Nelson ( 1  969, 1972, 1982)defined and illustrated the use of a nonparametric esti-
mator for the cumulative hazard function. Corresponding asymptotic theory is given 
by Aalen (1976). This provides an alternative estimator for F(r) ,sometimes referred 
to as the “Nelson-Aalen estimator.” The Nelson-Aalen nonparametric estimator is 
asymptotically equivalent, as the sample size increases, to the product-limit nonpara-
metric estimator. Some properties of this estimator are explored in Exercise 3.23. 

Fleming and Harrington ( I  992), and Anderson, Borgan, Gill, and Keiding ( 1993) 
give detailed treatment of the general theory for both the product-limit estimator 
and the Nelson-Aalen estimator and outline the related literature with biomedical 
applications. 

Nair (1981) gives asymptotic theory for the simultaneous confidence bands de-
scribed in Section 3.8. Nair (1984) used simulation to compare these bands with 
alternative bands suggested in the literature. Weston and Meeker ( 1990) suggest 
and use simulation to evaluate the modification to Nair’s bands, based on the logit 
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transformation. Their results showed that the logit transformation provides a better 
approximation to the nominal coverage probability. 

Peto ( 1973) defined the nonparametric maximum likelihood estimator for arbitrary 
censoring, including complicated overlapping interval-censored data. Turnbull ( 1976) 
further generalized the estimator to cover “truncated data” (to be discussed in Sec-
tion 1 1.6) and suggested an EM (expectation-maximization)algorithm to compute the 
estimate. Gentleman and Geyer ( 1994) describe asymptotic theory and computational 
issues for this estimator. 

Thomas and Grunkemeier ( 1975) compare several different nonparametric confi- 
dence intervals for F(t).They conclude that confidence intervals based on inverting 
a likelihood ratio test for F ( t ) are more accurate than intervals based on the normal 
approximation. Owen ( 1990) describes “empirical likelihood,” providing a theoreti- 
cal basis for nonparametric likelihood ratio confidence regions. Li (1995a), using the 
Thomas and Grunkemeier (1975) problem as a starting point, provides theory and 
an algorithm for computing nonparametric confidence intervals based on inverting a 
likelihood ratio test for F ( t ) .The work is extended to truncated data in Li (199Sb). 

EXERCISES 

3.1. Use the ball bearing life test data in Table I .  1 to do the following: 
(a) Compute a nonparametric estimate of the population fraction failing by 

75 million cycles. 
(b) Use the conservative interval in (3.2) to compute an approximate 90% 

confidence interval for the population fraction failing by 75 million cycles. 
( c )  Use the normal-approximation method in (3.3) to compute an approxi- 

mate 90% confidence interval for the population fraction failing by 75 
million cycles. 

(d) Comparing the intervals from parts b and c, what do you conclude about 
the adequacy of the normal-approximation method for these data? 

3.2. Repeat Exercise 3.1, using the population fraction failing by 25 million cycles. 
Why does the normal-approximation method not work so well in this case‘? 

3.3. Show how (3. I I )  follows from (3.14) and how (3.14) follows from (3.12). 

3.4. Parida (1991) gives data from a load-controlled high-cycle fatigue test con- 
ducted on 130 chain links. The 130 links were selected randomly from a 
population of different heats used to manufacture the links. Each link was 
tested until failure or until it  had run for 80 thousand cycles, whichever came 
first. There were 10 failures--one each reported at 33,46,50, 59,62, 7 1, 74, 
and 75 thousand cycles and 2 reported at 78 thousand cycles. The other 120 
links had not failed by 80 thousand cycles. 
(a) Use (3.1 ) to compute the nonparametric estimate of F ( t ) and correspond- 

ing standard errors. 
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(b) Compute a set of pointwise approximate 90% confidence intervals for 
F ( t ) .Explain the proper interpretation of these intervals. 

( c )  For the first three failures, compare the numerical estimates from (3.7) 
with the numerical estimates from (3.1). 

(d) The original paper reported the number of cycles to failure, as given 
above. Suggest reasons why the numbers of cycles to failures were not 
given with more precision and the effect that this has on the results of the 
analysis. 

(e) The original paper reported that the tested units had been selected from a 
random sample of heats. What might have happened in the experiment if 
all of the sample links had been selected from just one or two heats'? 

(f) The original paper did not report the order in which the tests were run. 
Typically, fatigue tests require the use of one or a few expensive test 
stands and tests are done in sequence. The order in which the failures 
occurred was not described in the original paper. Is it  possible that there 
was some useful information in knowing the order in which the 130 units 
had been tested? Discuss. 

3.5. The supplier of an electromechanical control for a household appliance ran 
an accelerated life test on sample controls. In the test, 25 controls were put on 
test and run until failure or until 30 thousand cycles had been accumulated. 
Failures occurred at 5 ,  21, and 28 thousand cycles. The other 22 controls did 
not fail by the end of the test. 
(a) Compute and plot a nonparametric estimate for F(r ) .  

(b) Compute an approximate 95% confidence interval for the probability that 
an electromechanical device from the same production process, tested in 
the same way, would fail before 30 thousand cycles. Use the conservative 
binomial distribution approach. 

( c )  Compute an approximate 95% confidence interval for the probability that 
an electromechanical device from the same production process, tested in 
the same way, would fail before 30 thousand cycles. Use the normal- 
approximation method based on Z F ( ~ ~ ,& NOR(0, 1 ) .  

(d) Explain why, in this situation, the approach in part (b) would be preferred 
to the approach in part (c). 

(e) The appliance manufacturer is really interested in the probability of the 
number of days to failure for its product. Use-rate differs from household 
to household, but the average rate is 2.3 cycles per day. What can the 
manufacturer say about the proportion of devices that would fail in 10 
years of operation (the expected technological life of the product)? 

(f) Refer to part (e). Describe an appropriate model to use when use-rate 
varies in the population of units. To simplify, start by assuming that there 
are only two different use-rates. Discuss, using appropriate expressions. 
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3.6. Over the past 18 months, ten separate copies of an electronic system have 
been deployed in earth orbit, where repair is impossible. Continuous remote 
monitoring, however, provides information on the state of the system and 
each of its main subsystems. Each system contains three nominally identical 
devices and it was learned, after deployment, that these devices are, in the 
system’s environment, failing unexpectedly. The failures cause degradation to 
the overall system operation. For future systems that are to be deployed, the 
problem will be fixed, but owners of the systems have asked for information on 
the amount of degradation that can be expected in future years of operation 
among these currently deployed. To date, 5 of the 30 devices have failed. 
Due to the staggered entry of the systems into service, the available data are 
multiply censored. The following table summarizes the available information 
with times given in hours. Times of unfailed units are marked with a “+.” 

System Device 1 Device 2 Device 3 

1 564 + 564 + 564 + 
2 1321 + 1104 1321 + 
3 1933 + 1933 + 1933 + 
4 1965 + 1965 + 1965 + 
5 2578 + 2345 2578 + 
6 3122 + 3122 + 3122 + 
7 5918 + 5918 + 4467 
8 7912 + 7912 + 6623 
9 8156 + 8156 + 8156 + 

10 7885 12229 + 12229 + 

(a) Compute a nonparametric estimate of F(t),the life distribution of the de- 
vices, assuming that the devices are operating and failing independently. 

(b) Plot the nonparametric estimate of F(r). 

(c) Compute pointwise approximate 95% confidence intervals for F ( t ) and 
add these to your plot. 

(d) Explain why it might be that the 30 devices are not operating and failing 
independently and how this would affect conclusions drawn from the 
data. 

(e) Describe possible reasons why this failure-causing problem was not dis- 
covered earlier and what might be done to minimize the chance of such 
problems occurring in the future. What questions would you ask of a 
client who wants you to help interpret the information in the failure data? 

3.7. Consider the Plant 1 heat exchanger data in Figure 3.4. 
(a) Write the likelihood for these data in terms of 7 ~ 1 ,n-2, 7 ~ 3 ,and 7 ~ 4 .  

(b) Write the likelihood for these data in terms of p i , p2, p3, and p4. 
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A3.8. For a given t i ,  i = 1,. . . ,n,show that the expression in (3.1) is the maximum 
likelihood estimator for F^(tj). 

A3.9. The expression in (3.4) was obtained by evaluating the ssuare root of Var[ F(r,)I 
at F(t,).Show this by deriving the expression for Var[F(t,)]. 

+3.10. Some computer programs (e.g., statistical packages and spreadsheets) can 
be used to generate pseudorandom samples from a uniform distribution. 
Let UI,. . . ,U,, denote such a sample. Then TI = - log(1 - U1), . . . ,T,, = 
- log(1 - U,,) is a pseudorandom sample from an exponential distribution 
(to be described in more detail in Chapter 4). Simulate a sequence of 50 such 
samples each of size n = 200. For each sample: 
(a) Compute and plot Fh. 
(b) Make a histogram of the 50 values of ?(1 ). 
( c )  Make a histogram of the 50 values of Zp, ). 

(d) Make a histogram of the 50 values of Zlc)g,t(~, .  
(e) Compare the histograms in parts (c) and (d). Which statistic seems to be 

better approximated by a NOR(0, 1) distribution? 

+3.11. Repeat Exercise 3.10 using samples of size tz = 20 (and perhaps other values 
of n). Compare the plots with those from Exercise 3.10 and describe how 
sample size affects the distribution of statistics like p,ZF.and Z,c ,g i t t~ , .  

3.12. Weis, Caldararu, Snyder, and Croitoru (1986) report on the results of a life 
test on silicon photodiode detectors in which 28 detectors were tested at 85°C 
and 40 volts reverse bias. These conditions, which were more stressful than 
normal use conditions, were used in order to get failures quickly. Specified 
electrical tests were made at 0, 10, 25, 75, 100, 500, 750, 1000, 1500, 2000, 
2500, 3000, 3600, 3700, and 3800 hours to determine if the detectors were 
still performing properly. Failures were found after the inspections at 2500 
( 1  failure), 3000 ( 1  failure), 3500 (2 failures), 3600 (1  failure), 3700 (1 failure), 
and 3800 ( 1 failure). The other 2 I detectors had not failed after 3800 hours of 
operation. Use these data to estimate the life distribution of such photodiode 
detectors running at the test conditions. 
(a) From the description given above, the data would be useful for making 

inferences about what particular populations or process'? Explain your 
reasoning. 

(b) Compute and plot a nonparametric estimate of the cdf for time to failure 
at the test conditions. 

( c )  Compute standard errors for the nonparametric estimate in part (b). 
(d) Compute a set of pointwise approximate 95%-confidence intervals for 

F ( t ) and add these to your plot. 
( e )  Compute simultaneous approximate 95% confidence bands for F ( r )over 

the complete range of observation. 
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( f )  Provide a careful explanation of the differences in interpretation and 
application of the pointwise confidence intervals and the simultaneous 
confidence bands. 

A3.13. Use the delta method (Appendix Section B.2) and the assumptions given i n  
Section 3.6.1 to derive (3.8). 

A3.14. Show how (3.16) iollows from (3.15). Begin by using the delta method (e.g., 
Appendix Section B.2) to obtain an expression for &,t,g,,+j as a function of/.sep. 

3.15. Example 3.9 illustrates the computations for the nonparametric estimation of 
the cdf for the shock absorber data up to 12,220 km. Complete the computa- 
tions for the rest of the data (i.e., out to 28,100 km). Use S(  12200) = .9086984 
to continue the cumulative product in (3.6). 
(a) Plot the nonparametric estimate out to 28,100 km. 
(b) Compute 2~out to 28,100 km. 
( c )  Compute a set of pointwise approximate 90% confidence intervals for 

F ( r )out to 28,100 km and add these to the plot in part (a). 
(d) Explain why, with right-censored data, for the nonparametric estimation 

method, there is only a limited range of time over which we can estimate 
FO) .  

A3.16. Show that with single censoring (Le., all failures precede the first censoring 
time) that (3.7) simplifies to (3.1) and that (3.9) simplifies to (3.4). 

3.17. Example 3.6 illustrated the computations for the nonparametric and approx- 
imate confidence intervals for F ( I )  and F ( 2 ) for the pooled heat exchanger 
tube data. Complete similar computations for F (3). 

3.18. Explain why the nonparametric estimate of F ( r ) is a set of points for the heat 
exchanger data in Example 3.6 but a step function for the shock absorber data 
in Example 3.9. 

3.19. Use the data in Table 1.4 to do the following for the V7 transmitter tube: 
(a) Compute an estimate of the conditional probability of failing for each 

cell. 
(b) Compute a nonparametric estimate for F ( t ) for each cell. 
(c) Plot the estimate of F ( t ) along with a set of pointwise approximate 95% 

confidence intervals. 
(d) For each interval, compute and plot an estimate of the probability of 

failing in that interval given a unit enters the interval. 
( e )  Explain how these estimates could be used to plan for preventive main- 

tenance for a group of radio transmitters, each with one such tube. 
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3,20. Use the diesel engine fan data in Appendix Table C. 1 to compute the product- 
limit nonparametric estimate of F ( r ) using (3.6). 

3.21. Example 3.12 illustrated the computations for the nonparametric estimate of 
the cdf for prototype batteries with both failure times and censored observa- 
tions within the given intervals. Complete the cTmputations for the rest of the 
data in Table C.6 (i.e., out to 1700 hours). Use S(600) = S1608 to continue 
the cumulative product in (3.6). 
(a) Plot the nonparametric estimate out to 1700 hours. 
(b) Compute s ^ e ~out to 1700 hours. 
( c )  Compute a set of approximate pointwise 90% confidence intervals for 

F(r ) out to 1700 hours and add these to the plot in part (a). 

A3.22. Consider the model in Section 2.2.1 and the data collection method described 
in Section 3.5. 
(a) Show that the likelihood of the data, as a function of the parameters, is 

(b) Show that in terms of the parameters p = ( p , , .. . ,P,?~), 

j =  1 

where n] = n - EJ-II =o d; - r;,with the understanding that do = 0 
and ro = 0. 

(c) Show that the maximum likelihood estimators of the parameters are 

(d) Show that the observed information matrix for the parameters p is diag- 
onal and that the j t h  diagonal element of the matrix is equal to 

evaluated at 5.This shows that, asymptotically (in large samples), the 
components of 5are uncorrelated and V@j) = pj(l - P j ) / n j .  Use 
these results and the delta method to derive Greenwood's formula as 
given in (3.9). 

A3.23. Consider the relationship S(ri)  = exp[-H(r,)], where H ( r )  is the cumula- 
tive hazard function. Note that a nonuarametric ML estimator (based on the 
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product-limit estimator) of H ( f )without assunling a distributional form is 

h -
h 

H ( f , ) isknown as the Nelson-Aalen estimator of If([,).Thus F(t , )  = 1 -
expl -fi(?,)] is another nonparametric estimator for F(t , ) .  

h 

Give conditions to assure a good agreement between f i ( r , )  and 6(t,)and 
h 

thus between F(r , ) and &t, ) .  

Use the delta method to compute approximate expressions for Var[fi(t,)]
h 

and Var[fi(t,)].Comment on the expression(s) you get. 
Compute Nelson-Aalen estimate of F ( r ) and compare with the estimate 
computed in Exercise 3.20. Describe similarities and differences. 

h A 

Show that @ ( I , )  < f i ( r , )  and that F(t; )< F ( t l ) .  

Describe suitable modifications of the estimator that can be used when 
failure and censoring times are grouped into common intervals. 
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Location-Scale-B ased 
Parametric Distributions 

Objectives 

This chapter explains: 

Important ideas behind parametric models in the analysis of reliability data. 
Motivation for important functions of model parameters that are of interest in 
reliability studies. 
The location-scale family of probability distributions. 
Properties and the importance of the exponential distribution. 
Properties and the importance of log-location-scale distributions such as the 
Weibull, lognormal, and loglogistic distributions. 
How to generate pseudorandom data from a specified distribution (such random 
data are used in simulation evaluations in subsequent chapters). 

Overview 

This chapter introduces some basic ideas of parametric modeling and the most im- 
portant parametric distributions. Parametric distributions are used extensively in sub-
sequent chapters. Section 4.1 explains some of the basic concepts and motivation for 
using parametric models. Section 4.2 describes important functions of parameters like 
failure probabilities and distribution quantiles. Section 4.3 introduces the important 
location-scale family of distributions. Sections 4.4-4.1 1 give detailed information on 
these and the important log-location-scale distributions. Subsequent chapters require 
at least a basic understanding of the characteristics and notation for the exponential, 
Weibull, and lognormal distributions. Applications for the other distributions follow 
without difficulty. Physical motivation for these and the other distributions is help- 
ful in practical modeling applications. Section 4.12 describes alternative choices for 
parameters. Section 4.13 describes methods for generating simulated values from a 
specified distribution. In various parts of this book we will use simulation to develop 
and explore data analysis methods. 
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LOCATION-SCALE-BASED PARAMETRIC D I S I R I B U T I O N S  

4.1 INTRODUCTION 

As we saw in Chapter 3, it  is possible to make certain kinds of inferences without 
having to assume a particular parametric form for a failure-time distribution. There 
are, however, many problems in reliability data analysis where it is either useful or 
essential to use a parametric distribution form. This chapter describes a number of 
simple probability distributions that are commonly used to model failure-time pro- 
cesses. Chapter 5 does the same for other important and useful, but more complicated, 
distributions. The discussion in these chapters concerns underlying continuous-time 
models, although much of the material also holds for discrete-time models. 

As explained in Chapter 2, a natural model for a continuous random variable, 
say, T , is the cumulative distribution function (cdf). Specific examples given in this 
chapter and in Chapter 5 are of the form Pr(T 5 t )  = F ( t ; O ) ,  where 8 is a vector of 
parameters. In this book, we use T to denote positive random variables like failure 
time, so that T > 0; correspondingly, we will use Y to denote unrestricted random 
variables so that --x < Y = log(T) < m. Unlike the “basic parameters” in n 
and p used in the “nonparametric” formulation in Chapters 2 and 3, the parametric 
models described in this chapter will have a 8 containing a small fixed number 
of parameters. The most commonly used parametric probability distributions have 
between one and four parameters, although there are some distributions with more 
than four parameters. More complicated models could contain many more parameters 
involving mixtures, competing failure modes, or other combinations of distributions 
or models that include explanatory variables. One simple example that we will use 
later in this chapter is the exponential distribution for which 

Pr(T 5 t )  = F ( t ; 8 )= 1 - exp( -:) , (4.1) 

where 8 is the single scalar parameter of the distribution (equal to the mean or first 
moment, in this example). 

Use of parametric distributions complements nonparametric techniques and pro- 
vides the following advantages: 

Parametric models can be described concisely with just a few parameters, instead 
of having to report an entire curve. 
It is possible to use a parametric model to extrapolate (in time) to the lower or 
upper tail of a distribution. 
Parametric models provide smooth estimates of failure-time distributions. 

In practice it is often useful to do various parametric and nonparametric analyses of 
a data set. 

4.2 QUANTITIES OF INTEREST IN RELIABILITY APPLICATIONS 

Starting in Chapter 7, we will focus on the problem of estimating the parameters 8 and 
important functions of 8. In this section we describe ideas behind parameterization of 
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a probability distribution and describe a number of particular functions of parameters 
that are of interest for reliability analysis. 

In most practical problems, interest centers on quantities that are functions of 8 and 
the ML estimates of these functions will not depend on the particular parameterization 
that is used to specify the parametric model. The quantities of interest discussed here 
extend the list introduced in Chapter 2, and now these quantities will be expressed as 
functions of the small set of parameters 8. Specifically, for distributions of positive 
and continuous random variables (there are similar definitions for discrete andor 
nonpositive random variables): 

The “probability of failure” p = Pr(T 5 t )  = F ( t ;8 ) by a specified t .  For 
example, if T is the time of failure of a unit, then p is the probability that the 
unit will fail before t .  

The “ p  quantile” of the distribution of T is the smallest value t such that 
F ( t ;8 )  2 p .  We will express the p quantile as t, = F - ’ ( p ;  8) .For the failure- 
time example, r, is the time at which loop%of the units in the product population 
will have failed. The median is equal to 1 . 5 .  

The “hazard function” (hf) is defined as 

(4.2) 

As described in Section 2.1.1, the hazard function is of particular interest in 
reliability applications because it indicates, for surviving units, the propensity 
to fail in the following small interval of time, as a function of age. 
The mean life (also known as the “average,” “expectation,” or “first moment”) 
of T 

is a measure of the center of f(t ;  0).When f ( t ; 0) is highly skewed, the mean 
may differ appreciably from other measures of central tendency like the median. 
The mean is sometimes, but not always, one of the distribution parameters. For 
some pdfs, the value of the integral will be infinite. Then it is said that the mean 
of T “does not exist.” When T is time to failure, the mean is sometimes referred 
to as the MTTF, for mean time to failure. 
The variance (also known as the “second central moment”) of T 

Var(T) = [ t  - E(T)]*f(t; 8)d tLrn 
is a measure of spread of the distribution of T . Var(T) is the average squared 
deviation of T from its mean. Again, if the value of the integral is infinite, it is 
said that the variance of T “does not exist.” The quantity SD(T) = d m ,  
known as the “standard deviation” of T , is easier to interpret because it has the 
same units as T .  
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The unitless quantity 72 = SD(T)/E(T), known as the “coefficient of variation” 
of T ,  is useful for comparing the relative amount of variability in different 
distributions. The quantity l/y2 = E ( T ) / S D ( T )  is sometimes known as the 
“signal-to-noise ratio.” 
The unitless quantity 

Jox[t- E ( T ) ] ” f ( t ;0)dr 
Y3 = 

[Var( T )]3’2 
7 

known as the “standardized third central moment’’ or “coefficient of skewness” 
of T ,  is a measure of the skewness in the distribution of T .  When a distribution 
is symmetric, y3 = 0. It is, however, possible to have ‘y3 = 0 for a distribution 
that is not perfectly symmetric (e.g., the Weibull distribution, discussed in 
in Section 4.8,has y3 = 0 when p = 3.602, but the distribution is only 
approximately symmetric). Usually, however, when y3 is positive (negative), 
the distribution of T is skewed to the right (left). 

For reliability applications, quantiles, failure probabilities, and the hazard function 
are typically of higher interest than distribution moments. In subsequent chapters we 
will describe point estimution and, at the same time, emphasize methods of obtaining 
confidence intervuls (for scalars) and conjdence regions (for simultaneous inference 
on a vector of two or more quantities) for parameters and important functions of 
parameters. Confidence intervals and regions quantify the uncertainty in parameter 
estimates arising from the fact that inferences are generally based on only a finite 
number of observations from the process or population of interest. 

4.3 LOCATION-SCALE AND LOG-LOCATION-SCALE DISTRIBUTIONS 

A random variable Y belongs to the location-scale family of distributions if its cdf 
can be expressed as 

Pr(Y 5 y )  = F ( y ;p, (T) = a(-), 

where @ does not depend on any unknown parameters. In this case we say that 
-m < p < TX: is a location parameter and that D > 0 is a scale parameter. Substitution 
shows that <f> is the cdf of Y when p = 0 and (T = 1. Also, @ is the cdf of ( Y  -p ) / ( ~ .  
Location-scale distributions are important for a number of reasons including: 

Many of the widely used statistical distributions are either location-scale distri- 
butions or closely related. These distributions include the exponential, normal, 
Weibull, lognormal, loglogistic, logistic, and extreme value distributions. 
Methods of data analysis and inference, statistical theory, and computer software 
developed for the location-scale family can be applied to any of the members 
of the family. 
Theory for location-scale distributions is relatively simple. 
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In cases where @ does depend on one or more unknown parameters (as with a number 
of the distributions described in Chapter 5 ) ,  Y is not a member of the location-scale 
family, but the location-scale structure and notation will still be useful for us. 

A random variable T belongs to the log-location-scale family distribution if 
Y = log(T) is a member of the location-scale family. The Weibull, lognormal, 
and loglogistic distributions are the most important members of this family. 

4.4 EXPONENTIAL DISTRIBUTION 

When T has an exponential distribution, we indicate this by T - EXP(B, y). The 
two-parameter exponential distribution (to distinguish it from the more commonly 
used one-parameter exponential distribution) has cdf, pdf, and hf 

F ( t ;8, y )  = 1 - exp (--t ; y ) *  

f ~ ;  1 7)8, y )  = -8 exp( - 1 


where 8 > 0 is a scale parameter and y is both a location and a threshold parameter. 
For y = 0 this is the well-known one-parameter exponential distribution (and often 
known simply as the exponential distribution). When T has this simpler distribution, 
we indicate it by T - EXP(0). The cdf, pdf, and hf are graphed in Figure 4.1 for 
8 = .5,1, and 2 and y = 0. 

For integer m > 0, E[(T - y)*]  = rn! Om. Thus the mean and variance of the 
exponential distribution are, respectively, E(T) = y + 8 and Var(T) = 8*. The p 
quantile of the exponential distribution is t,, = y - log( 1 - p )  8. 

The one-parameter exponential distribution, where y = 0, is the simplest dis- 
tribution that is commonly used in the analysis of reliability data. The exponential 
distribution has the important characteristic that its hf is constant (does not depend 
on time t ) . A constant hf implies that, for an unfailed unit, the probability of failing in 
the next small interval of time is independent of the unit’s age. Physically, a constant 
hf suggests that the population of units under consideration is not wearing out or 
otherwise aging. The exponential distribution is a popular distribution for some kinds 
of electronic components (e.g., capacitors or robust, high-quality integrated circuits). 
This exponential distribution would not be appropriate for a population of electronic 
components having failure-causing quality defects (such defects are difficult to rule 
out completely and are a leading cause of electronic system reliability problems). 
On the other hand, the exponential distribution might be useful to describe failure 
times for components that exhibit physical wearout if the wearout does not show up 
until long after the expected technological life of the system in which the compo- 
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Figure 4.1. Exponential cdf, pdf, and hf for 8 = 3,1, and 2 and y = 0. 

nent would be installed (e.g., electronic components in computing equipment having 
failures caused by random external events). 

Under very special circumstances, the exponential distribution may be appropriate 
for the times between system failures, arrivals in a queue, and other interarrival time 
distributions. Specifically, the exponential distribution is the distribution of interval 
times of a homogeneous Poisson process. See Chapter 3 of Thompson (1988) and 
Chapter 16 for more information on homogeneous Poisson processes. 

The exponential distribution is usually inuppropriute for modeling the life of 
mechanical components (e.g., bearings) subject to some combination of fatigue, 
corrosion, or wear. It is also usually inappropriate for electronic components that 
exhibit wearout properties over their technological life (e.g., lasers and filament 
devices). A distribution with an increasing hf is, in such applications, usually more 
appropriate. Similarly, for populations containing mixtures of good and bad units 
the population hf may decrease with life because, as the bad units fail and leave the 
population, only the stronger units are left. 

4.5 NORMAL DISTRIBUTION 

When Y has a normal distribution, we indicate this by Y - NOR(p, a).The normal 
distribution is a location-scale distribution with cdf and pdf 
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where $nor(Z) = (1  /I/%) exp(- z 2 / 2 )  and @nor(:) = 4 n o r ( M ’ )  dw are, respec- 
tively, the pdf and cdf for the standardized NOR(p = 0, CT = 1 )  distribution. Here 
-= < p < x is a location parameter and (T > 0 is a scale parameter. When there 
is no useful simplification of the hf definition in (4.2),as with the normal distribu- 
tion, the definition will not be repeated. The normal distribution pdf, cdf, and hf are 
graphed in Figure 4.2 for p = 5 and (T = .3, -5 ,.8. 

For integer rn > 0, E[(Y - p)”] = 0 if m is odd and E[(Y - p)”’]= m!a”’/ 
[2”1/2(m/2)!]if m is even. From this, the mean and variance of the normal distribution 
are, respectively, E(Y) = p and Var(Y) = a2.The p quantile of the normal distri- 
bution is y p  = p + @,i(p)a, where @,:(p) = z p  is the p quantile of the standard 
normal distribution. 

As a model for variability, the normal distribution has a long history of use in 
many areas of application. This is due to the simplicity of normal distribution theory 
and the central limit theorem. The central limit theorem states that the distribution of 
the sum of a large number of independent identically distributed random quantities 
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Figure 4.2. Normal cdf, pdf, and hf with location parameter (mean) p = S and scale parameter (standard 
deviation) (+ =.3 ,  S, and .8. 
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has, approximately, a normal distribution. In reliability data analysis, the use of the 
normal distribution is, however, less common. As seen from Figure 4.2, the normal 
distribution has an increasing hf that begins to increase rapidly near, but before, the 
point of median life. The normal distribution has proved to be a useful distribution for 
certain life data when p > 0 and the coefficient of variation (a/”)is small. Examples 
include electric filament devices (e.g., incandescent light bulbs and toaster heating 
elements) and strength of wire bonds in integrated circuits (component strength is 
often used as an easy-to-obtain surrogate measure or indicator of eventual reliability). 
Also, as described in Section 4.6, the normal distribution is often a useful model for 
the logarithms of failure times (see the next section). 

4.6 LOGNORMAL DISTRIBUTION 

When T has a lognormal distribution, we indicate this by T - LOGNOR(”, a) .If 
T - LOGNOR(”, a ) then Y = log(T) - NOR(”, a) .The lognormal cdf and pdf 
are 

where and @)nor are pdf and cdf for the standardized normal. The median t .5  = 
exp(p) is a scale parameter and (T > 0 is a shape parameter. The lognormal cdf, pdf, 
and hf are graphed in Figure 4.3 for a = .3, .5, and .8 and p = 0, corresponding to 
the median t .5  = exp(p) = 1. 

The most common definition of the lognormal distribution uses base e (natural) 
logarithms. Base 10 (common) logarithms are also used in some areas of application. 
Bottom-line answers for important reliability metrics (e.g., estimates of failure prob- 
abilities, failure rates, and quantiles) will not depend on the base that is used. The 
definition of the parameters p (mean of the logarithm of T )and a (standard deviation 
of the logarithm of T )will, however, depend on the base that is used. For this reason 
it is important to make consistent use of one particular base. In this book we will 
generally use base e (natural) logarithms for the lognormal distribution definition. 

For integer m > 0, E(T”’) = exp(rnp+rn2a2/2). From this it follows that the mean 
and variance of the lognormal distribution are, respectively, E ( T )  = exp(p + Sa’) 
and Var(T) = exp(2p + d ) [ e x p ( d )  - 11. The quantile function of the lognormal 
distribution is tp  = exp[p + @ni:(p)a]. 

The lognormal distribution is a common model for failure times. Following from 
the central limit theorem (mentioned in Section 4.9,application of the lognormal 
distribution could be justified for a random variable that arises from the product of 
a number of identically distributed independent positive random quantities. It has 
been suggested that the lognormal is an appropriate model for time to failure caused 
by a degradation process with combinations of random rate constants that combine 
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Figure 4.3. Lognormal cdf, pdf, and hf for scale parameter 1,5 = exp(p) = I and for shape parameter 
IJ = 3,.5, and .8. 

multiplicatively (e.g., see the models in Chapter 13). The lognormal distribution is 
widely used to describe time to fracture from fatigue crack growth in metals. As 
shown in Figure 4.3 (also see Exercise 4.19), the lognormal h( t ) starts at 0, increases 
to a point in time, and then decreases eventually to zero. For large U,h(t)reaches a 
maximum early in life and then decreases. For this reason, the lognormal distribution 
is often used as a model for a population of electronic components that exhibits a 
decreasing hf. It has been suggested that early-life “hardening” of certain kinds of 
materials or components might lead to such an hf. The lognormal distribution also 
arises as the time to failure distribution of certain degradation processes, as described 
in Chapter 13. The lognormal distribution described in this section is sometimes 
referred to as the “two-parameter lognormal distribution” to distinguish it from the 
three-parameter lognormal distribution described in Section 5.10.2. 

4.7 SMALLEST EXTREME VALUE DISTRIBUTION 

When the random variable Y has a smallest extreme value distribution, we indicate 
this by Y - SEV(p, U).The SEV cdf, pdf, and hf are 
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where @ , e \ . ( ~ )  = 1 - exp[- exp(z)] and 4,,--(:) = exp(r: - exp(z)] are the cdf and 
pdf. respectively, for standardized SEV ( p  = 0, (T = 1). Here --x < < x is the 
location parameter and cr > 0 is the scale parameter. The SEV cdf, pdf, and hf are 
graphed in Figure 4.4 for p = 50 and CT = 5,6,  and 7. 

The mean, variance, and quantile functions of the smallest extreme value distri- 
bution are E(Y) = p - cry, Var(Y) = a2n2/6,and y,, = p, + @;:@)U,  where 
CP,: ( p ) = log[ - log( 1 - p ) ]and y = S772 is Euler's constant. 

Figure 4.4 shows that the smallest extreme value distribution pdf is skewed to the 
left. Although most failure-time distributions are skewed to the right, distributions 
of strength will sometimes be skewed to the left (because of a few weak units in 
the lower tail of the distribution, but a sharper upper bound for the majority of 
units in the upper tail of the strength population). The SEV distribution may have 
physical justification arising from an extreme value theorem. Namely, it is the limiting 
standardized distribution of the minimum of a large number of random variables 
from a certain class of distributions (this class includes the normal distribution as a 
special case). If a is small relative to p the SEV distribution can be used as a life 
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distribution. The exponentially increasing hf suggests that the SEV would be suitable 
for modeling the life of a product that experiences very rapid wearout after a certain 
age. The distributions of logarithms of failure times can often be modeled with the 
SEV distribution; see Section 4.8. Also see the closely related Gompertz-Makeham 
distribution in Section 5.8. 

4.8 WEIBULL DISTRIBUTION 

The Weibull distribution cdf is often written as 

(4.6) 

For this parameterization, p > 0 is a shape parameter and q > 0 is a scale parameter 
as well as the .632 quantile. The practical value of the Weibull distribution stems from 
its ability to describe failure distributions with many different commonly occurring 
shapes. As illustrated in Figure 4.5, for 0 < p < 1, the Weibull has a decreasing hf. 
With p > I ,  the Weibull has an increasing hf. 

For integer m > 0, E(T”) = qmT(1 + m/P) ,  where r ( K )  = .Tox c K - l  exp( -2) d,-
is the gamma function. From this it follows that the mean and variance of the Weibull 
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Figure 4.5. Weibull cdf, pdf, and hf for t.632 = q = exp(p) = 1 and p = 1 / U  = .8, 1,  and 1 .S. 
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Idistribution are, respectively, E(T) = qT( 1 + I/p) and Var(T)= q2[r(+ 2/p) -
r2(1+ I/p)]. The Weibull p quantile is r,, = q[- log( 1 - p ) ] l / p .Note that when 
/3 = 1, the cdf in (4.6) reduces to an exponential distribution with scale parameter 
8 = q. 

It is convenient to use a simple alternative parameterization for the Weibull dis- 
tribution. This alternative parameterization is based on the relationship between the 
Weibull distribution and the smallest extreme value distribution described in Sec- 
tion 4.7. In particular, if T has a Weibull distribution, then Y = log(7‘)- SEV(p, a), 
where U = 1//3 is the scale parameter and p = log(q) is the location parameter. 
Thus when T has a Weibull distribution, we indicate this by T - WEIB(p,a). In 
this form, the Weibull cdf, pdf, and hf can be written as 

(4.7) 

Then the Weibull p quantile is rr, = exp[p + as;,,!@) U ] .The WeibuWSEV relation- 
ship parallels the lognormal/normal relationship. The SEV parameterization is useful 
because location-scale distributions are easier to work with in general. As mentioned 
in Section 4.3, transforming the Weibull distribution into an SEV distribution allows 
the use of general results for location-scale distributions, which apply directly to all 
such distributions, including the Weibull, Iognormal, and some other distributions. 

The theory of extreme values shows that the Weibull distribution can be used to 
model the minimum of a large number of independent positive random variables 
from a certain class of distributions. Thus extreme value theory also suggests that 
the Weibull distribution may be suitable. The more common justification for its use 
is empirical: the Weibull distribution can be used to model failure-time data with 
decreasing or increasing hf. The Weibull distribution described in this section is 
sometimes referred to as the “two-parameter Weibull distribution” to distinguish it 
from the three-parameter Weibull distribution described in Section 5.10.2. 

4.9 LARGEST EXTREME VALUE DISTRIBUTION 

When Y has a largest extreme value distribution, we indicate this by Y - LEV(p, CT). 
The largest extreme value distribution cdf, pdf, and hf are 
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where @iev(z) = exp[ - exp(- z ) ]  and hev(z)= exp[- z  - exp( - z ) ]  are cdf and pdf 
for the standardized LEV(p = 0,a = 1) distribution. Here -m < p < x is a 
location parameter and a > 0 is a scale parameter. The LEV cdf, pdf, and hf are 
graphed in Figure 4.6 for p = 10 and U = 5 , 6 ,and 7. 

The mean, variance, and quantile functions of the largest extreme value distri- 
bution are E(Y) = p + ay ,  Var(Y) = 0 2 n 2 / 6 ,and y,, = p + @,,!(p)a, where 

= - log[ - log(p)]. Note the close relationship between LEV and SEV: if 
Y - LEV(p, a )then -Y - SEV(-p ,  a )and ( p )  = -@&! ( 1  - p ) .  

The theory of extreme values shows that the LEV distribution can be used to 
model the maximum of a large number of random variables from a certain class of 
distributions (which includes the normal distribution). As shown in Figure 4.6, the 
largest extreme value pdf is skewed to the right. The LEV hf always increases but 
is bounded in the sense that lim,-= h(t;p, a )  = l/a.Although most failure-time 
distributions are skewed to the right, the LEV distribution is not commonly used as a 
model for failure times. This is because the LEV distribution (like the SEV and normal 
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Figure 4.6. Largest extreme value cdf, pdf, and hf with p = 10 and (T = 5 , 6 , and 7. 
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distributions) has positive probability of negative observations and there are a number 
of other right-skewed distributions that do not have this property. Nevertheless, the 
LEV distribution could be used as a mode1 for life if U is small relative to p > 0. 

4.10 LOGISTIC DISTRIBUTION 

When Y has a logistic distribution, we indicate this by Y - LOGIS(p, a).The 
logistic distribution is a location-scale distribution with cdf, pdf, and hf 

where @logls(z) = exp(z)/[ 1 +exp(z>] and c#qogiS(z)= exp(z)/[ 1 +exp(z)]* are the cdf 
and pdf, respectively, for a standardized LOGIS(p = 0, U = 1). Here --cx: < p < x 
is a location parameter and IT > 0 is a scale parameter. The logistic cdf, pdf, and hf 
are graphed in Figure 4.7 for location parameter p = 15 and scale parameter a = 1 ,  
2, and 3. 
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Figure 4.7. Logistic cdf, pdf, and hf with p = 15 and U = 1 ,  2 ,  and 3. 
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For integer rn > 0, E[( Y -p)"] = 0 if m is odd, and E[(Y -P ) ~ ]  1 -
( 1  /2)"'-'] E;^= 

= 2a" (m!)[ 
I ( 1/Qt"  if rn is even. From this E( Y )  = p and Var( Y )  = rr'/3. 

The p quantile is y,, = p + @l;jis(p)a,where @,&\(p) = log[p/( 1 - p ) )  is the p 
quantile of the standard logistic distribution. 

The shape of the logistic distribution is very similar to that of the normal distri- 
bution; the logistic distribution has slightly "longer tails." In fact, it would require 
an extremely large number of observations to assess whether data come from a nor- 
mal or logistic distribution. The main difference between the distributions is in the 
behavior of the hf in the upper tail of the distribution, where the logistic hf levels 
off, approaching l/a for large y .  For some purposes, the logistic distribution has 
been preferred to the normal distribution because its cdf can be written in a simple 
closed form. With modern software, however, it is not any more difficult to compute 
probabilities from a normal cdf. 

4.11 LOGLOGISTIC DISTRIBUTION 

When T has a loglogistic distribution, we indicate this by T - LOGLOGIS(p, a). 
If T - LOGLOGIS(p, a)then Y = log(T) - LOGIS(", a).The loglogistic cdf, 
pdf, and hf are 

where h o g i s  and @logis are the pdf and cdf, respectively, for a standardized LOGIS, 
defined in Section 4.10. The median 2.5 = exp(p) is a scale parameter and a > 0 is a 
shape parameter. The LOGLOGIS cdf, pdf and hf are graphed in Figure 4.8 for scale 
parameter exp(p) = 1 and a = .2, .4, and .6. 

For integer m > O,E(Tm) = exp(mp)r(l + ma)T(l - mu),where T(.r) is 
the gamma function. From this E ( T )  = exp(p)r(l + a)T(l  - a)and Var(T) = 

exp(2p)[r(1 + 2 0 ) q  1 -2 a )  -r2(1 + a)r2(1 -a)].Note that for values of (T L 1, 
the mean of T does not exist and for CT 2 1/2, the variance of T does not exist. 
The p quantile function is t ,  = exp[p + @,&@)a],where @liLir(p)is defined in 
Section 4.10. 

Corresponding to the similarity between the logistic and normal distributions, 
the shape of the loglogistic distribution is similar to that of the lognormal distribu- 
tion. 
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Figure 4.8. Loglogistic cdf, pdf, and hf for f .s  = exp(p)  = 1 and c = .2, .4,and .6. 

4.12 PARAMETERS AND PARAMETERIZATION 

The choice of 8, a set of parameters (the values of which are usually unknown) 
to describe a particular model, is somewhat arbitrary and may depend on tradition, 
on physical interpretation, or on having a model parameterization with desirable 
computational properties for estimating parameters. For example, the exponential 
distribution can be written in terms of its mean 6, as in (4.I ) ,  or its constant hazard 
A = 1/ O .  The p, (T notation for the Weibull distribution allows us to see connections 
with other location-scale-based distributions. The traditional parameters of a normal 
distribution are 61 = p and 62 = U > 0, the mean and standard deviation, respec- 
tively. An alternative with no restrictions on the range of the parameters would be 
81 = p and 62 = log(a). Another parameterization, which may have better numer- 
ical properties for estimation with heavily censored data sets, is 81 = p + +U and 
02 = log(o), where z,, is the p quantile of the standard normal distribution. The best 
value of p to use depends on the amount of censoring. In particular, if the sample 
contains failure times with no censoring, choose p = .5 with z,, = 0 because then 
h 

O1 (the maximum likelihood estimate of the mean) and 6 2  (the maximum likelihood 
estimate of the log standard deviation) would be statistically independent (this is a 
well-known result from statistical theory). Exercise 8.20 explores this issue more 
thoroughly. 
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4.13 GENERATING PSEUDORANDOM OBSERVATIONS FROM A 
SPECIFIED DISTRIBUTION 

Simulation (or Monte Carlo simulation) methods are becoming increasingly impor- 
tant for many applications of statistics and, indeed, quantitative analysis in general. 
In particular, it is possible to determine, through simulation, numerical quantities that 
are difficult or impossible to compute by purely analytical means. This book uses a 
simulation approach in a number of methods, examples, and exercises. A pseudoran-
dom number generator is the basic building block of any simulation application. This 
section will show some simple methods for generating pseudorandom numbers from 
specified probability distributions. The bibliographic notes at the end of this chapter 
give references for more technical details and more advanced methods of generating 
pseudorandom numbers from specified distributions. 

4.13.1 Uniform Pseudorandom Number Generator 

Most computers, data analysis software, and spreadsheets provide a pseudorandom 
number generator for the uniform distribution on (0,l) [denoted by UNIF(0, l)] .  This 
distribution has its probability distributed uniformly from (0, 1). The cdf and pdf of the 
UNIF(0, I )  distribution are Fu(u) = U and fu(u) = 1,  0 < U < 1.  Pseudorandom 
numbers from the UNIF(0, 1)  distribution can be used easily to generate random 
numbers from other distributions, both discrete and continuous. 

4.13.2 Pseudorandom Observations from Continuous Distributions 

Suppose U , ,. . . , U,, is a pseudorandom sample from a UNIF(0, 1 ). Then if t,, = 
F,l(p) is the quantile function for the distribution of the random variable T from 
which a sample of pseudorandom numbers is desired, T I  = F,’(U]) ,  . . . . T,, = 
FFI(Urt)is a pseudorandom sample from F T .  For example, to generate a pseu- 
dorandom sample from the Weibull distribution for specified parameters q and 
p, first obtain the UNIF(0,l) pseudorandom sample U I , .. . , U,, and then com- 
pute T I  = q[- log(] - u I ) ] ~ ’ ~ ,  . . . , T, = q[- log(] - U , , ) I ~ / ~ .Similarly, for 
the lognormal distribution the pseudorandom sample can be obtained from T1 = 

exp[p + @ ; f . ( ~ a l , .. . , T,, = exp[p + @ , ~ u , J ~ I .  

4.13.3 Efficient Generation of Censored Pseudorandom Samples 

This section shows how to generate pseudorandom censored samples from a specified 
cdf F ( t ;  0). Such samples are useful for implementing simulations like those used 
throughout the book and for bootstrap methods like those described in Chapter 9. 

Genera1 Approach 
Let U(j)denote the ith order statistic from a random sample of size n from a UNIF(0, 1 ) 
distribution. Using the properties of order statistics, the conditional distribution of 
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Let U be a pseudorandom UNIF(0, 1 )  variable. Then using the method described in 
Section 4.13.2, given U(,- 1 )  (where U,(),= 0), a pseudorandom observation U,,, is 

Pseudorandom uniform order statistics generated in this way can be used to generate 
failure- and time-censored samples. 

Fcr ilure-Censored Samples 
The algorithm to generate a pseudorandom failure-censored sample (Type I 1  cen-
sored) with n units and r failures is as follows: 

1. Generate U1,. . . ,U,  pseudorandom observations from a UNIF(0, I ) .  
2. Compute the uniform pseudorandom order statistics 

3. The pseudorandom sample from F ( t ;0) is 

For example, for a log-location-scale based cdf with F(r;0) = @[(log(t)-
C L ) / 4 ,  

Erne-Censored Surnples 
The algorithm to generate a pseudorandom time-censored sample (Type I censored) 
with n units and censoring time t,. uses the formulas in Section 4.13.3 to generate 
T,1 ), Tp,,. . . sequentially. The process continues until a failure-time observation, say, 
T( ( ) ,exceeds r , ~ .This yields a censored sample consisting of T(1 ), . . . ,T,,- 1 )  failure 
times and ( n  - i + 1) censored observations. Specifically, define U(() ,= 0, start with 
i = I ,  and generate the sequence as follows: 

1. Generate a new pseudorandom observation U, from a UNIF(0, 1). Compute 
U ( , )= 1 - [ l  - U ( l - ' ) ]x ( 1  - U , ) l / ( n - l + l )and 7'(1)= F- ' [U( , , ;01. 
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2. If T(,)> t,, stop; the sample consists of the failure times T,1,,. . . ,T(j-1)and 
( n  - i + 1 )  censored observations. 

3. If T(i)5 t,., increment i and return to step 1. 

Note that if T( > t,., there are no failures before t , . .  

4.13.4 Pseudorandom Observations for Discrete Distributions 

The same general idea used in Section 4.13.2 can be used to generate data from 
a discrete distribution. The process, however, can be a little more complicated if 
the discrete distribution quantiles cannot be computed directly. The multinomial 
distribution described in Section 2.2.1 is a good example. Starting with the values 
rl,... ,T,?~,compute F ( t , )  using (2.9). Then for each U,,i= 1,. . . , n ,  T, is the 
smallest value o f t  such that F ( t )  2 U, . If m is not too large, it is possible to use a 
look-up table to determine T, as a function of U , .Otherwise, it is necessary to search 
through the possible values of F ( t ) to find the first one exceeding U,.  

BIBLIOGRAPHIC NOTES 

Johnson, Kotz, and Balakrishnan (1994, 1995) provide detailed information on a wide 
range of different continuous probability distribution functions. Evans, Hastings, and 
Peacock (1993) provide a brief description and summary of properties of a large 
number of parametric distributions including most, but not all, of the distributions 
outlined in this chapter. Crow and Shimizu (1988) provide detailed information on the 
lognormal distribution. Galambos ( 1978) is an important reference for the asymptotic 
theory of extreme value distributions, providing extensive theory and background. 
Balakrishnan (199 1 )  gives detailed information on the logistic distribution. Kennedy 
and Gentle (1980) provide detailed information on generation of pseudorandom 
numbers from the uniform distribution and a variety of other special distributions. 
Morgan ( 1984) and Ripley (1987) do the same and also provide useful material on 
how to do stochastic simulations. Kennedy and Gentle (1980, pages 225-227) and 
Castillo (1988, pages 58-63) describe methods for generating pseudorandom order 
statistics. 

EXERCISES 

4.1. Show that for a continuous F(r) ,  h( t )  = 1/0, t > 0 is a constant (i.e., not 
depending on t )  if and only if T - EXP(0). 

4.2. Derive expressions for the mean, variance, and quantile functions of the 
exponential distribution. 

4.3. Derive the expression for asid@)based on the expression for Qae\(:) in 
Section 4.7. 
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4.4. Show that if Y has a SEV(p, a)distribution then -Y has a LEV( -p, U )  

distribution. 

A4.5. Let T - WEIB(p, U ) , q = exp(p), and p = l/a. 
(a) For rn > 0, show that E(T”) = qttlr(1 + r n / P ) ,  where T ( x )is the gamma 

function. 
(b) Use the result in (a) to show that E(T) = qT(1 + 1/p) and Var(T) = 

q2[r(i + 2 / p )  - rz(i + 1/p)1. 

4.6. Consider the Weibull distributions with parameters q = 10 years and p = . S ,  
1, 2, and 4. 
(a) Compute (using a computer if available) and graph the Weibull hf for t 

ranging between 0 and 10. 
(b) Explain the practical interpretation of the hf at t = 1 and t = 10 years. 
(c) Compute and plot the Weibull cdfs over the same range o f t .  For which 

shape parameter value is the probability of failing the largest at 1 year? 
At 10 years? Explain. 

4.7. Consider the Weibull h(t).Note that when p = 1 ,  h(t)  is constant and that 
when p = 2, h(t)increases linearly. Show that i f  
(a) 0 < p < 1, then h( t )is decreasing in t .  

(b) 1 < p < 2, then h( t )is concave increasing. 
(c) p > 2, then h( t ) is convex increasing. 

4.8. Starting with equation (4.6), show that the distribution of Y = log(T) is 
SEV[log(q), 1 /PI. 

4.9. Derive the expression for <D,ij,,(p)based on the expressions for <DloglS(z)given 
in Section 4.10. 

4.10. Even though, theoretically, the SEV, LEV, LOGIS, and NOR distributions can 
take on negative values, the probability of nonpositive outcomes is negligible 
for certain combinations of parameters. 
(a) For the combinations of parameter values for the SEV distribution shown 

in Figure 4.4, compute Pr( Y 5 0). 
(b) For the SEV, LEV, LOGIS, and NOR distributions, derive a general 

expression relating p and U,and guaranteeing that Pr( Y 5 0) 5 E .  

4.11. Show that if T is LOGNOR(p, U ) then 1/T is LOGNOR( - p ,  a). 

4.12. The exponential distribution is said to possess a “memoryless” property. This 
memoryless property implies that a used unit is just as reliable as one that 
is new-that there is no wearout. Probabilistically this memoryless property 
can be stated as Pr(T 5 6) = Pr(T 5 to + S I T > to )  for any to > 0. Show 
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that for a continuous random variable, this memoryless property holds if and 
only if T - EXP(0). 

A4.13. Show that if Y is SEV(p,a)  then E(Y) = p - oy and Var(Y) = a27r’/6, 
where y = S772, in this context, is known as Euler’s constant. Observe that 
from integral tables one gets Joz log(x) exp( - x )  dx = -y and 

A4.14, Assume that T is LOGNOR(p, a )and ni is an arbitrary real number. 
(a) Show that E(T”’) = exp(pm + .502m2). 
(b) Use the result in (a) to show that E(T) = exp(p + So’)and Var(T) = 

exp[2p + 021[exp(a2)- 11. 

4.15, The coefficient of variation, 7 2 ,  is a useful scale-free measure of relative 
variability for a random variable. 
(a) Derive an expression for the coefficient of variation for the Weibull dis- 

tribution. 
(b) Compute y2 for all combinations of p = .5, 1,3,5 and q = 50, 100. 

Also, draw (or use the computer to draw) a graph of the Weibull pdfs for 
the same combinations of parameters. 

( c )  Explain the effect that changes in q and p have on the shape of the 
Weibull density and the effect that they have on 72. 

4.16. The coefficient of skewness, 39,is a useful scale-free measure of skewness in 
the distribution of a random variable. Do Exercise 4.15 for the coefficient of 
skewness. 

+4.17. Generate 500 pseudorandom observations from a “parent” lognormal distri- 
bution with p = 5 and a = .8. 
(a) Compare the histogram of the observations with a plot of the parent 

lognormal density function. 
(b) Compute the sample median of the 500 observations and compare it with 

the median of the parent lognormal distribution. 
(c) Compute the sample mean of the 500 observations and compare it with 

the mean of the parent lognormal distribution. 
(d) Compute the sample standard deviation of the 500 observations and 

compare with the standard deviation of the parent lognormal distribution. 

4.18. Repeat Exercise 4.17 using a Weibull distribution with q = 100 and /3 = .5 .  
Comment on how the results differ from those with the lognormal distribution. 

A4.19. Consider a lognormal distribution with cdf F( t ;p,0). 
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(a) Show that for any values of p and U ,  h(r) always has the following 
characteristics: limr-x h(t) = 0, Iim,,o h(t)  = 0, and h( t )has a unique 
maximum at a point tmax, with 0 < t,nax< x. 

(b) Show that tmar satisfies the relationship 

(c) Use the result in (b) to show that 

and 

(d) Comment on the effect that a has on how “early” or “late” in time the 
lognormal hf reaches its maximum. In particular, show that (i) for large 
values of U ,h( t )is increasing only on an interval of negligible probability; 
and (i i )  for small values of U , h( t )is increasing in an interval that has at 
least a probability of about 50%. 

( e )  Plot the hf when the parameter ( p ,U ) values are (0,5);(0, 1/ 5 ) ;  ( I .  5 ) ;  
( 1 ,  1 / 5 ) .  Comment on the adequacy of the probability bounds given in 
(c). 

A4.20. Show that for any value of the parameters ( p ,U ) , the normal h ( y ) is always 
increasing. 



C H A P T E R  5 

0ther Pararne tric Distributions 

0bjectives 

This chapter explains: 

The properties and importance of various parametric distributions that cannot 
be transformed into a location-scale distribution. 
Threshold-parameter distributions. 
How some statistical distributions can be determined by applying basic ideas 
of probability theory to physical properties of a failure process, system, or 
population of units. 

Overview 

This chapter is a continuation of Chapter 4, describing more advanced parametric 
distributions. This chapter is a prerequisite only for Chapter I 1 and may otherwise be 
omitted. Section 5.2 describes the gamma distribution while Section 5.3 describes the 
generalized gamma and the extended generalized gamma distributions. The general- 
ized gamma distribution contains the lognormal and Weibull distributions as special 
cases and is thus useful for statistical assessment of the best fitting distribution. Sec- 
tions 5.5-5.1 1 describe and compare a variety of other potentially useful parametric 
distributions. Some of these were developed on the basis of physical theory. Sec- 
tion 5.12 describes other methods of deriving useful probability distributions from 
physical or other considerations. 

5.1 INTRODUCTION 

Chapter 4 introduced a number of important probability distributions, all of which 
belong to or could be transformed into a distribution that belongs to the location- 
scale family of distributions. This chapter describes a number of additional probability 
distributions that have also been useful in reliability data analysis. 

97 



98 OTHER PARAMETRIC DISTRIBUTIONS 

It is not necessary to be familiar with all of the formulas and other details in 
this chapter in order to use these distributions in reliability applications. They are 
included to show some of the connections among various probability distributions 
that are commonly used in reliability modeling and to provide background for the 
application of these distributions in Chapters 6 and 1 1. 

5.2 GAMMA DISTRIBUTION 

5.2.1 Gamma cdf, pdf, and Hazard Function 

When T has a gamma distribution, we indicate this by T - GAM(8, K ) .  The gamma 
distribution cdf and pdf are 

(5 .2)  

where 8 > 0 is a scale parameter and K > 0 is a shape parameter. Here rI(u;K )  is 
the incomplete gamma function defined by 
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Figure 5.1. Gamma cdf, pdf, and hf for 0 = 1 and K = .8, 1 ,  and 2. 
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The gamma pdf, cdf, and hazard functions are graphed in Figure 5.1. The gamma 
distribution can be useful for modeling certain life distributions. Letting K = 1 
gives the exponential distribution as a special case. As shown in Figure 5.1, the 
gamma distribution hazard function can be either decreasing (when K < 1 )  or in-
creasing (when K > l ) ,  in either case approaching a constant level late in life [i.e., 
lim,-x h(t;8, K )  = 1/01. Also, the sum of K independent exponential random vari- 
ables with mean 8 has a gamma distribution with parameters 8 and K .  This property 
can be used to motivate the use of the gamma distribution in some applications. 

5.2.2 Gamma Moments and Quantiles 

For any rn 2 0, E(T") = 8" r (rn + K )  / r ' ( K ) .  From this it follows that E ( T )  = OK 
and Var( T )  = O2K .  The gamma p quantile is tp = 8 r, ( p ;K ) ,  where r,-' ( p ;K )  is the 
inverse of the incomplete gamma function defined in (5.3).That is, I-1 [r, I ( p ;K ) ;  K ]  = 

P. 


5.2.3 Gamma Standardized Parameterization 

The gamma cdf and pdf can also be written as follows: 

where p = log(8) and 

are, respectively, the cdf and pdf for the standardized loggamma variable Z = 

log(T/B) = log(T)- p. Unlike the standardized distributions used in Chapter 4, 
these standardized distributions depend on the shape parameter K .  

5.3 GENERALIZED GAMMA DISTRIBUTION 

5.3.1 Generalized Gamma cdf and pdf 

The generalized gamma distribution contains the exponential, gamma, Weibull, and 
lognormal distributions as special cases. When T has a generalized gamma distribu- 
tion we indicate this by T -GENG(8, p, K ) .  As will be demonstrated in Chapter 1 1 ,  
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the GENG distribution is useful for helping to choose among these special-case 
distributions. The cdf and pdf for the generalized gamma distribution are 

where 8 > 0 is a scale parameter, p > 0 and K > 0 are shape parameters, and 
TI(11. K ) is the incomplete gamma function given in (5.3). 

5.3.2 Generalized Gamma Moments and Quantiles 

For 111 2 0, E(Tfrl)= 0”’ ( m / P  + K ) / ~ ( K ) .From this, 

5.3.3 Special Cases of the Generalized Gamma Distribution 

In this section we show the relationship between the GENG(0, P , K )  and the well- 
known distributions that are special cases. 

When p = 1, T - GAM(0, K). 
When K = 1, T - WEIB(0, p). 
When (p ,K )  = ( 1 ,  l ) ,  T - EXP(0). 
As K - x,T LOGNOR[log(B) + log(~) /P ,l /(pfi)] .  

5.3.4 Generalized Gamma Reparameterization for Numerical Stability 

The parameterization in terms of (8,P , K )  is generally numerically unstable for fitting 
the distribution to data. Farewell and Prentice (1977) recommend the alternative 
parame teri zat ion 
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This parameterization is numerically stable if there is little or no censoring. Using 
the cdf in (5.4) and defining w = [log(t) - p ] / a gives 

F ( t ;8, p, K )  = rI[A--’ exp(~w7);A--’] = mIg[ ~ w+ I O ~ ( A - ’ ) ;  A--’] , 

A 
f ( t ;  8, p, K )  = -ot hg[Aw + log(h--’);.A--’] , t > 0, 

where -x < p < x, (T > 0, and h > 0. In this parameterization the quantile 
function is 

5.4 EXTENDED GENERALIZED GAMMA DISTRIBUTION 

Using the alternative stable parameterization and allowing A to become negaiive gen- 
eralizes the GENG to what we will call the extended generalized gamma distribution, 
enlarging the family to include other distributions as special cases. Then T has an 
EGENG(p, U , A )  distribution with pdf and cdf given by 

@lg [Aw + log(A--’);A-’] if A > 0 
@nor(w) i f A = O  (5 .5)  

1 - @lg [hw + log(A--’);A--’] if A < 0, 

where t > 0, w = [log(t) - p ] / ~ ,--oo < p < 00, --oo < A < x,and U > 0. Note 
that if T - EGENG(p, (T, A )  and c > 0 then cT - EGENG[p + log(c),(T,A].  Thus 
exp(p) is a scale parameter and (T and h are shape parameters. For any given fixed 
value of A ,  the EGENG distribution is a log-location-scale distribution. 

5.4.1 Extended Generalized Gamma Moments and Quantiles 

The moments for the EGENG can be obtained using 

r [ A - * ( ~ ( T  + A - ] ) ]  
E(T”) = 

{ 
T(A - 2 )  

if rnho + 1 > 0,A # 0 
if rnha + 1 5 0, A # 0. 

When A = 0, E ( T m )= exp[mp + (1/2)(ma)*]. Using these, i t  is easy to compute 
the mean, variance, and other central moments for the EGENG distribution. 

Inverting (5.5)gives the EGENG p quantile 

t,, = exp[p + U X w(p;A)] ,  
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where w(p;A )  is the p quantile of [log(T) - p ] / a given by 

( l / ~ ) l o g [ ~ ' ~ , ' ( p ; ~ - ' ) ]  i f A  > o 
i f A = O  

(l/A)log[A'T;'(l - P ; A - ~ ) ]  if A < 0. 

5.4.2 Special Cases of the Extended Generalized Gamma Distribution 

The EGENG(p, cr, A )  distribution has the following important special cases: 

If A > 0, then EGENG(1, U , A )  = GENG(p, U ,A).  
If A = 1, T - WEIB(p, a). 
If A = 0, T - LOGNOR(p, 0). 
If A = -1, 1/T - WEIB(-p,a)(i.e., T has a reciprocal Weibull, also known 
as the FrCchet distribution of maxima). 
When A = CT,  T - GAM(8, K ) ,  where 8 = A* exp(p) and K = A - 2 .  
When A = a = 1, T - EXP(B), where 8 = exp(p). 

GENERALIZEDF DISTRIBUTION 

5.5.1 Background 

The generalized F distribution is a four-parameter distribution that includes the GENG 
family and the loglogistic, among other distributions, as special cases. The distribution 
is useful for choosing among the special case distributions. 

5.5.2 Generalized F cdf and pdf Functions 

When T has a generalized F distribution we write T - GENF(p, a,K ,  r ) .The GENF 
cdf and pdf are 

where 

is the pdf of the central log F distribution with 2~ numerator and 2r denominator 
degrees of freedom and @lf is the corresponding cdf (for which there is, in general, 
no closed-form expression). Also, & f ( ~ ;K ,  1')  and @I&; K ,  r )  are the pdf and cdf of 
Z = [log(T) - p ] / u . Note that exp(p) is a scale parameter while U > 0, K > 0, 
and I' > 0 are shape parameters. When K = r ,  hf(z;K,r )  is symmetric about z = 0. 
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5.5.3 Generalized F Moments and Quantiles 

For m 2 0, 

exp(mp) r ( K  + mu)T(r - mu) (!-J‘“(’ if r > muE(Tm)= r ( r )  
otherwise. 

E(T) and Var(T) can be computed directly from this expression. The p quantile of 
the generalized F is t, = exp(p)[F(,(p:2K,2r)]v, where J;,;z~,J,.) is the p quantile of 
an F distribution with ( 2 ~ ,2 r )  degrees of freedom. The expression for the quantile 
follows directly from the fact that if T - GENF(p, (T, K ,  r ) ,then T = exp(p)V” or 
equivalently log(T) = p + CT log(V), where V has an F distribution with ( 2 ~ ,2 r )  
degrees of freedom. Finally, observe that for fixed ( K ,  r ) , the variable T has a log-
location-scale distribution where the “standardized” distribution is the log of an F 
random variable with ( 2 ~ ,2 r ) degrees of freedom. 

5.5.4 Special Cases of the Generalized F Distribution 

The GENF(p, a,K ,  r ) has a number of important special cases: 

0 I/T - GENF(-p, U,I - , K)  (i.e., the reciprocal of T is also GENF). 
0 When ( ~ , a )  (0, I )  then T has an F distribution (sometimes known as = 

“Snedecor’s F distribution”) with 2~ numerator and 21-denominator degrees 
of freedom. 
When ( K ,  r )  = ( 1 , 1 ) ,  GENF(p, U , ~ , r )0 = LOGLOGIS(p, U ) .  

0 As r -+ x , in the limit, T - GENG[exp(p)/K”, l /u ,  K ] .  

0 For K = I and as r -+ x ,  in the limit, T - WEIB(exp(p),I / a ] .  
0 When K = 1,  T has a Burr type XI1 distribution with cdf 

where r > 0 and (T > 0 are shape parameters and exp(p) is a scale parameter. 
0 As K --+ x and r + m, T LOGNOR ( p ,u d w ) ) .  

5.6 INVERSE GAUSSIAN DISTRIBUTION 

5.6.1 Background 

A common parameterization for the cdf of the inverse Gaussian (IGAU) distribution 
is (e.g., Chhikara and Folks, 1989) 
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where 8 > 0 and A > 0 are parameters having the same units as T .  
The inverse Gaussian distribution was originally given by Schrodinger (19 15) as 

the distribution of the first passage time in Brownian motion. The parameters 8 and 
A relate to the Brownian motion parameters as follows. Consider a Brownian process 
B ( t )  = ct + dW(t) ,t > 0, where c and d are constants and W ( t )is a Wiener process. 
Let T be the first passage time of a specified level 60 [i.e., the first time that B ( t )  1601. 
This leads directly to (5.7), where 8 = bo/c and Jh = bo/d.  Tweedie (1945) gives 
more details on this approach to deriving the IGAU distribution. Wald (1947) derived 
the inverse Gaussian as a limiting form for the distribution of the sample size for a 
sequential probability ratio test. 

5.6.2 Inverse Gaussian cdf and pdf 

For life data analysis (and other modeling applications) it is often more convenient to 
reparameterize the distribution so that it has a scale parameter and a shape parameter 
(instead of having two shape parameters that depend on the units in which time 
is measured). If T has an inverse Gaussian distribution, we denote this by T -
IGAU(8, P ) .  The IGAU cdf and pdf are 

where 8 > 0 is a scale parameter and p = A/8 > 0 s a unitless shape parameter 
Here 

are the cdf and pdf, respectively, of log(T/B), the log standardized inverse Gaussian 
distribution. Figure 5.2 shows the IGAU cdf, pdf, and hazard functions. 

5.6.3 Inverse Gaussian Moments and Quantiles 

For integer rn > 0, 

i n - 1 

E(T*) = Om 
(rn - 1 + i)! 

i=O 
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Figure 5.2. Inverse Gaussian cdf, pdf, and hf for p = I ,  2, and 4 and 0 = 1.  

From this E ( T )  = Band Var(T) = 0 * / p .Thepquantile is t,, = 8 exp[QI,gu(p; p) ] .  
There is no simple closed-form equation for p), so it must be computed by 
inverting p = @ligau(i;p )  numerically. 

5.6.4 Inverse Gaussian Distribution Properties 

The inverse Gaussian distribution has the following properties: 

If T - IGAU(0, p ) and c > 0 then cT - IGAU(c0, p). 
The IGAU hazard function h(t;8,p ) is unimodal, h(0;8, p)  = 0, and 

lim h(t;8, p)  = p/ (20 ) .
I-+= 

For large values of p, the IGAU distribution is very similar to a NOR( 0,0/fi).  

5.7 BIRNBAUM-SAUNDERS DISTRIBUTION 

5.7.1 Background 

The Birnbaum-Saunders distribution was derived by Birnbaum and Saunders ( 1969) 
based on a model for the number of cycles necessary to force a fatigue crack to grow 
to a critical size that would cause fracture. 
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Figure 5.3. Birnbaum-Saunders cdf, pdf, and hf for shape parameter p = .5,.6, and 1 and 6, = 1 .  

5.7.2 Birnbaum-Saunders cdf and pdf 

If T has a Birnbaum-Saunders distribution, we denote this by 7' - BISA(0, p).The 
BISA cdf and pdf are 

where c) > 0 is a scale parameter, p > 0 is a shape parameter, and 

Figure 5.3 shows the BISA cdf, pdf, and hazard function. 

5.7.3 Compact Parameterization for Birnbaum-Saunders 

Sometimes it is useful to write the BISA cdf and pdf as follows: 
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I 

and 

v =  


5.7.4 Birnbaum-Saunders Moments and Quantiles 

The mth moment of the Birnbaum-Saunders distribution is 

It follows that 

E(T) = 8 (1 + $> and Var(T) = (8p)2(1 + -

The p quantile can be expressed as 

5.7.5 Properties of the Birnbaum-Saunders Distribution 

The Birnbaum-Saunders distribution has the following properties: 

If T - BISA(8, p)  and c > 0 then cT - BISA(c8, P) .  
If T - BISA(8, p) then l / T  - BISA(B-', p). 
The BISA hazard function h(t;8,p)  is not always increasing. Also, it is easy to 
show that h(0;8,p)  = 0 and limt+% h(t;8, p)  = 1/(2BP2). Through numerical 
experiments with a wide range of parameters it appears that h(t;8, P )  is always 
unimodal. 

There is a close relationship between the BISA and the IGAU distributions. Simply 
stated, the BISA distribution was from a discrete-time degradation process. The 
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IGAU is based on an underlying continuous-time stochastic process. Nevertheless, 
comparison of Figures 5.2 and 5.3 shows that the shapes of the two distributions are 
very similar. Desmond (1986) describes the relationship in more detail. The BISA 
and the IGAU distributions are similar to the lognormal distribution (Section 4.6) in 
shape and behavior. This can be seen by comparing Figures 4.3,5.2, and 5.3. A direct 
comparison fitting the models to data is illustrated in Figure 1 1.6. 

5.8 GOMPERTZ-MAKEHAM DISTRIBUTION 

The Gompertz-Makeham (orGOMA) distribution has an increasing hazard function 
and is used to model human life in middle age and beyond. A common parameteri- 
zation for this distribution is 

Pr(T 5 t ;y, K ,  A )  = 1 - exp 
A K t  + yexp(Kt) - y 

, t > 0 ,
K 1 

where y > 0, K > 0, A 2 0, and all the parameters have units that are the reciprocal 
of the units of t .  

An alternative representation for the cdf is 

where p = - ( l / ~ ) l o g ( y / ~ )and U = 1 / ~ .  When A = 0, (5.10) reduces to the 
Gompertz distribution, corresponding to an SEV distribution truncated at f = 0 (i.e., 
an SEV random variable, conditional on being positive). The GOMA distribution 
satisfies a requirement for a positive random variable and has a hazard function 
similar to that of the SEV. In fact, as indicated in the following section, except for an 
additive constant, the hazard function of the Gompertz-Makeham distribution agrees 
with the hazard function of an SEV truncated at the origin. See Exercise 5.10 for 
another interpretation. 

5.8.1 Gompertz-Makeham Scale/Shape Parameterization and cdf, pdf, and 
Hazard Functions 

In order to separate out the scale parameter from the shape parameters, we parame- 
terize in terms of [8,5,q]= [ 1/ K ,  log(~ / y ) ,A / K ]  and say that T - GOMA(8,( ,  77) 
if 
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h(t;8,<,77) = -'I+ -exp(-5 )  e x p ( i ) ,  t XI.
8 8 

Here 8 is a scale parameter, 5 and q are unitless shape parameters (not depending on 
the time scale), and 

@lgorna(Z; 6, = 1 - exp{exp(-~) - exp[exp(~)- 41 - q exp(~)}7 

hgorna(2; 5, q) = exp(z) { 77 + exp[exp(z) - 51 } [1 - @lgorna(z;5, q)] 
are, respectively, the standardized cdf and pdf of Z = log(T/B). These functions 
are graphed in Figure 5.4. The p quantile is t,,, = 8 exp[@,&,,(p; 5, q)].There is no 
simple closed-form equation for <,q), so it must be computed by inverting 
p = (Dlgoma(Z;5,q)numerically. 

5.8.2 Gompertz-Makeham Distribution Properties 

Some properties of the Gompertz-Makeham distribution are: 

h(0;8,5,q) = (l/8)[q + exp(-()] and h(t;8,(, q) increases with t at an 
exponential rate. 
If T - GOMA(B,(, q)and c > 0 then cT - GOMA(cB,(, 7). 
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Figure 5.4. Gompertz-Makeham cdf, pdf, and hf for 8 = 1,( = .2 and 2, and 77 = .S and 3 
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5.9 COMPARISON OF SPREAD AND SKEWNESS PARAMETERS 

Figure 5.5 is similar to the figure on page 27 of Cox and Oakes (1984). It plots y3, 
the standardized third central moment (a unitless indication of skewness, defined in 
Section 4.2) against 7 2 ,  the coefficient of variation (the standardized second central 
moment, a unitless indication of spread, also defined in Section 4.2). The curves 
in this graph indicate the wide range of shapes that the corresponding distribution 
can take across values of its shape parameter. Any distribution lying above the 
y3 = 0 line will tend to be skewed to the right. Distributions lying below this line 
tend to be skewed to the left (e.g., the Weibull distribution with large p). We can 
also see the similarities and differences among the different distributions that we have 
described. For example, the lines for the Birnbaum-Saunders and the inverse Gaussian 
distributions are not too far apart and the Weibull and gamma distributions cross at 
the exponential distribution point. Note that the generalized F (GENF) distribution 
spans the shapes of the specific distributions (but not all of the specific distributions 
are special cases of the GENF). 

I I I I i 
0.0 0.5 1.o 1.5 2.0 

Coefficient of Variation 
Figure 5.5. Standardized third moment versus coefficient of variation for different values of the shape 
parameters for failure-time distributions. The Burr type XI1 distribution with r = 2 is equivalent to the 
GENF(@,(T, 1,2). The marks the exponential distribution point. 
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5.10 DISTRIBUTIONS WITH A THRESHOLD PARAMETER 

5.10.1 Background 

The exponential, lognormal, Weibull, gamma, and generalized gamma distributions, 
as defined previously, all are defined on the positive real line (0,m). That is, the pdf 
f ( t )  > 0 for all t > 0 and f ( t )  = 0 for t C 0. Correspondingly, the cdf begins 
increasing at t = 0. All of these and other similar distributions can be generalized by 
the addition of a threshold parameter, which we denote by y, to shift the beginning 
of the distribution away from 0. These distributions are particularly useful for fitting 
skewed distributions that are shifted far to the right of 0. 

5.10.2 The cdf and pdf for Distributions with a Threshold 

The cdf and pdf of a log-location-scale distribution with a threshold can be expressed 
as 

where @ is a completely specified cdf and + is the pdf Corresponding to @. For 
a particular log-location-scale distribution, substitute the appropriate @ and 4. For 
example, to obtain the three-parameter lognormal distribution, substitute @nor and 
+,,,,. Figure 5.6 shows the three-parameter lognormal pdfs for p = 0 and (T = .5 
with y = 1,2, and 3. Similarly, for the three-parameter Weibull distribution, substitute 
@sev and 4sev  giving 

where (T = 1/ p  and p = log(r)). Sometimes y is called a “guarantee parameter” 
because with y > 0, failure is impossible before time y. More generally, however, 
there is no mathematical reason to restrict y to be positive. 

The properties of the distributions with nonzero y are closely related to the prop- 
erties of the distributions with y = 0 given in the earlier section in this chapter. In 
general, y is added to the expectation and quantiles of the distribution with threshold 
equal to 0 to obtain the corresponding expectation and quantiles of the distribution 
with a given y.  Because changing y simply shifts the distribution on the time axis, 
there is no effect on the distribution’s spread or shape. Thus Var(T) does not change 
with changes in y and it can be obtained directly from the distribution with y = 0. 
Section 1 1.7 will describe methods of fitting threshold distributions to data. 
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Figure 5.6. Three-parameter lognormal pdfs with CT = .5 ,  p = 0, and y = 1 ,  2, and 3. 

5.10.3 Embedded Distributions 

For some values of the parameters (p ,U ,  y), the threshold distribution is very similar 
to a two-parameter location-scale distribution, as described below. To facilitate the 
description of these embedded distributions, we use the reparameterization 

where 7 = exp(p)). Then the cdf for the threshold log-location-scale distribution 
becomes 

where := ( t  - a)/(; .As CT - 0 from above, then ( 1  + u;)"~--+ exp(z), and the 
limiting distribution or embedded distribution is 

F ( t ;a,O, s )  = @ ( z )  for --=c, < t < m. 

For example, when @ = CP,,, the embedded distribution is the SEV distribution and 
when CP = CPnor the embedded distribution is the normal distribution. It is important 
to observe that the embedded distributions are not members of the original family 
(i.e., the embedded SEV distribution is not a Weibull distribution and the embedded 
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normal distribution is not a lognormal distribution, except in the limit as U - 0 from 
above). In terms of the original parameters, embedded distributions arise when U - ’ ,  

exp(p), and - y  are all approaching +cc at rates such that (T X exp(p) and y + exp(p) 
approach finite values. 

5.11 GENERALIZED THRESHOLD-SCALE DISTRIBUTION 

5.11.1 Background 

After reparameterization of a threshold-scale distribution to ( a ,(T, s),the parameter 
space can be enlarged to include the embedded distributions. This is accomplished 
by including the limiting case U = 0. It is also useful to enlarge the parameter space 
such that the limiting distributions are interior points of the parameter space. This is 
achieved by allowing (T to take any value in (-30, x ) . We call such a distribution a 
generalized threshold-scale (or GETS) distribution. 

5.11.2 Generalized Threshold-Scale cdf and pdf 

The cdf of the GETS distribution is 

where z = ( r  - a)/5, -m  < (T < 00, -m < a < 00, and s > 0. The corresponding 
pdf is 

Note that the restrictions on z in (5.13) define the range of values of t  having positive 
density, as a function of a ,  (T, and s. In particular, for (T > 0, r > a - s / a  and for 
(T < 0, t < a - s / u .  

5.11.3 Generalized Threshold-Scale Quantiles 

Inverting the cdf in (5.13) gives the GETS p quantile 
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where 

5.11.4 Special Cases of the Generalized Threshold-Scale Distribution 

In this section we show the relationship between the GETS(a, U ,  s) and some well- 
known distributions that are special cases. 

The location-scale distributions, including the normal, logistic, SEV, and LEV, 
are obtained by using the appropriate definition of @ along with (T = 0, giving 

The threshold log-location-scale distributions are obtained with (T > 0, giving 
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Figure 5.7. SEV-GETS, NOR-GETS, and LEV-GETS pdfs with a = 0; (T = - .75,0,  .75; and q = . S  
(least disperse), 1 ,  and 2 (most disperse). 
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where y = a - $/U and p = log(s/u). Using Q, = Qnor gives the three- 
parameter lognormal distribution. Using @ = QSe\., gives the three-parameter 
Weibull distribution (also known as Weibull-type distribution for niinima).With 
Q, = @lev one obtains the Frkchet for maxima with a threshold parameter. 
The reflection (negative) of the threshold log-location-scale distributions are 
obtained with v < 0, giving 

where y = -(a - %/a)and p = log(-s/o). With Q, = Qnor this gives the 
negative of a lognormal with a threshold parameter. With Q, = QSe\, this gives 
the negative of a Weibull (also known as a Weibull-type distribution for nins inic i )  
with a threshold. 

Figure 5.7 shows pdfs for the SEV-GETS, NOR-GETS, and LEV-GETS distri-
butions with a = 0; (T = -.75, 0, .75; and s = .5 (least disperse), 1,  and 2 (most 
disperse). 

5.12 OTHER METHODS OF DERIVING FAILURE-TIME 
DISTRIBUTIONS 

There are a number of general methods for deriving other failure-time distributions. 
The basic idea behind these methods is to model the physical system or the physi- 
cal/chemical processes leading to failure. 

5.12.1 Finite (Discrete) Mixture Distributions 

Mixtures of distributions often arise in practice. For example, components may be 
manufactured over a period of time, using two different machines. Physical char- 
acteristics and thus reliability of the components from the two different machines 
may be different, but it may be impossible otherwise to distinguish between the 
components made with the different machines. For example, 40% of all units in a 
population were manufactured at plant A and have a lognormal life distribution with 
exp(pA) = 60 thousand hours and UA = .7. The other 60% of the units are manufac- 
tured at plant B and have a lognormal distribution with exp(pB) = 70 and v~ = .7. 
Then the population cdf is 

Product mixtures also result from different environments. For some products, such as 
toasters, the environment may be assumed to be homogeneous. Other products might 
be subject to widely different operating environments (e.g., automobile batteries used 
in Florida versus those used in Alaska). 

An extreme product mixture situation arises when a failure type can occur only in 
a subset of the population, for example, on those units for which an operator skips a 
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step in an assembly operation or units that are made from a particular batch of raw 
materials or that include a particular optional accessory, such as an air-conditioning 
unit for an automobile. This situation is closely related to the concept of immunity 
from a failure mode discussed in Section 1 1.5. 

More generally, the cdf and pdf of units in a population consisting of a mixture of 
units from k different populations can be expressed as F ( t ;8 )  = E,t , F , ( t ;8 , )and 
f ( r ; 8 )  = E,( , J ( t ;O , ) ,respectively, where 8 = ( O I ,  &,. . . ,tl,&,. . . ) ,O  5 5, 5 1 ,  
and E,6, = 1. There may be some components of the 8, that are common across the 
components (or “subpopulations”) of the mixture. Others will differ from component 
to component. In general, however, such mixtures tend to have a large number of 
parameters and this usually makes estimation difficult. 

In some situations it may be possible to estimate the parameters of the individual 
components of a mixture distribution. This task is facilitated when it is possible to 
identify the individual population from which sample units originated. When iden- 
tification is not possible it may be difficult to separate out the different components 
from the available data unless there is considerable “separation” in the components 
andor enormous amounts of data. In other situations, to answer certain questions 
of interest, it is sufficient to fit a simple single distribution to describe the overall 
mixture. Indeed, it can be said that all populations and processes are mixtures. How- 
ever, because individual components may not be identifiable andor may not be of 
interest, we use a single distribution to describe the mixture. There are, however, 
some potential pitfalls of fitting a simple distribution to what is really data from a 
mixture of different subpopulations. If data collection methods or censoring tends 
to overrepresent certain subpopulations of the mixture, seriously misleading conclu- 
sions are possible. Hahn and Meeker (1982b) describe and illustrate these pitfalls 
with an example. Also see the case study in Section 22.1. 

5.12.2 Compound (Continuous Mixture) Distributions 

An important class of probability models arises from distributions in which one or 
more of the parameters is modeled by a continuous random variable. These distri- 
butions are called compound distributions and can also be viewed as a continuous 
mixture of a family of distributions. 

Suppose that T, for a fixed value of a scalar parameter O1,has a distribution with 
density fTlo,(r; 8 )  but that 8,, an element from the vector 8 = ( O 1 ,  &), is itself 
random from unit to unit, according to a distribution with density fo,(6;83),where 
83 is a parameter vector that has no elements in common with 8.Then the cdf of the 
unconditional distribution of T , a compound distribution, is 
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and the corresponding pdf is 

Extension to a vector of parameters is straightforward. Many important applica- 
tions, however, use only a scalar 81. 

Example 5.2 Pareto Distribution. If the units in a population have an expo- 
nential distribution, but with a failure rate that varies from unit to unit according to 
a GAM(8, K )  distribution, then the unconditional time to failure of a unit selected at 
random from the population has a Pareto distribution of the form 

(5.14) 

The proof of this result is left as an exercise. U 

Of course, it is possible to define and use compound distributions that do not 
have simple closed-form expressions. We will illustrate the use of such distributions 
in Section 22.4. For other examples of compound distributions, see page 163 of 
Johnson, Kotz, and Balakrishnan (1 994). 

5.12.3 Power Distributions 

Distributions of minima and maxima of iid random variables provide a useful method 
for generating distributions of random variables that have a number of important 
applications. 

Minimum- Type Distributions 
If K is a positive constant and W is a random variable with cdf Fw,  we say that Y is 
a minimum-type distribution generated from W if for all y 

Pr(Y 5 y )  = F y ( y )  = 1 - [ I  - F w ( y ) ] "  

or, equivalently, S y ( y )  = [&(y) lK,  where SW = 1 - Fw is the survival or reliability 
function. An important special case is when K is an integer. In this situation FY is the 
cdf of the minimum of K independent observations from F w .  

It can be shown that Y is a minimum-type distribution generated from W if and 
only if the hazard functions of Y and W are proportional, that is, h y ( y )  = K X h w ( y ) .  
Also if W - WEIB(1, a)then Y - WEIB[p - cr log(K), a].But in general (Le., 
when W is not Weibull distributed) Y is not a member of the same family as W .  

Maximum-Type Distributions 
For K and W defined as in minimum-type distributions, we say that Y is a maximum- 
type distribution generated from W if for all y ,  
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An important case is when K is an integer. Then FY is the cdf of the maximum of K 
independent observations from Fw.  

5.12.4 Distributions Based on Stochastic Components of PhysicaVChemical 
Degradation Models 

We saw in Sections 5.6.I and 5.7 how distributions of time to failure can be derived 
from details of randomness in particular physical phenomena. Chapters 13 and 18 
provide other examples. 

BIBLIOGRAPHIC NOTES 

Johnson, Kotz, and Balakrishnan (1994, 1995) provide detailed information on a wide 
range of different continuous probability distribution functions. Evans, Hastings, and 
Peacock (1993) provide a brief description and summary of properties of a large 
number of parametric distributions including most, but not all, of the distributions 
outlined in this chapter. Chhikara and Folks (1989) give detailed information on the 
inverse Gaussian distribution. 

Although the generalized gamma distribution had appeared in the literature earlier, 
Prentice (1974) was the first to provide a parameterization and operational method 
for estimation of the distribution parameters that works well with moderate sample 
sizes, as long as censoring is not too heavy. Liu, Meeker, and Escobar (1998) suggest 
and illustrate the use of a parameterization that is stable even for heavy censoring. 
Farewell and Prentice (1977) showed how to use the generalized gamma distribution 
in problems of parametric distribution discrimination. Prentice ( 1975) extends the 
generalized gamma distribution to the generalized F distribution. 

Cheng and Iles (1990) describe some statistical problems created by embedded 
distributions that arise as limiting cases of the threshold (three-parameter) gamma, 
inverse Gaussian, loglogistic, lognormal, and Weibull distributions, providing moti- 
vation for the GETS family of distributions. See also Nakamura ( 1991 ) for a different 
view of embedded distributions within threshold families. 

Titterington, Smith, and Makov (1985) and Everitt and Hand (1981) provide de- 
tailed information on finite mixture distributions. Nelson and Doganaksoy ( 1995) 
describe the power lognormal distribution, including methods for estimation. Bar- 
low and Proschan (1975) provide a detailed and extensive discussion of classes of 
distributions that are based on different hazard function behaviors like IHR and DHR. 

EXERCISES 

5.1. If the times to failure in a population are adequately described by a distri- 
bution with a decreasing hazard function, one might think that the surviving 
units in the population are getting better with time. In fact, decreasing hazard 
functions are common for certain solid-state electronic components and elec- 
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tronic systems. Weaker units fail early, after which the hazard decreases. For 
a mixture of two exponential distributions with y = 0 but different values of 
8 (say, 81 = 1 and 8 2  = 5 ) , and equal proportions from the two populations, 
do the following: 
(a) Obtain an expression for the cdf of the mixture. 
(b) Obtain an expression for the pdf of the mixture. 
(c) Use the previous two parts to derive an expression for the hazard function 

of the mixture. 
(d) Graph the mixture hazard from t = 0 to t = 10. 
(e) What is the shape of the mixture hazard? What is the intuition for this 

result? 
(f) In what sense is the mixed exponential population “improving” with time 

(as suggested by the decreasing hazard function)? 

5.2. In some applications a sample of failure times comes from a mixture of 
subpopulations. 
(a) Write down the expression for the cdf F ( t ) for a mixture of two exponen- 

tial distributions with means 81 = 1 and 82 = 10 (subpopulations 1 and 
2, respectively) with 6 being the proportion from subpopulation 1.  

(b) For 6 = 0, . l ,  .5, .9, and 1, compute the mixture F ( t )  for a number of 
values of t ranging between 0 and 30. Plot these distributions on one 
graph. 

(c) Plot log(t) versus log{- log[l - F ( t ) J }for each F(r)  computed in part 
(b). Comment on the shapes of the mixtures of exponential distributions, 
relative to a pure exponential distribution or a Weibull distribution. 

(d) Plot the hazard function h(t)of the mixture distributions in part (b). 
(e )  Qualitatively, what do the Weibull plots in part (c) suggest about the 

hazard function of a mixture of two exponential distributions? 

5.3. Show that the exponential distribution is a special case of the gamma distri- 
bution given in Section 5.2. 

A5.4. Refer to Exercise 5.1. Show that a mixture of two exponential distributions 
with different 8 values will always have a decreasing hazard function. 

w . 5 .  Conduct a numerical/graphical comparison of the shapes of the hazard func- 
tion for a population consisting of the mixture of two Weibull distributions. 
Investigate all combinations of the parameters a1 > a2 = 1,2; P I ,P2 = S,2; 
61 = .01, .4. What do you conclude? 

A5.6. Let Ti, i = 1,. . .,K ,  be K independent random variables from the EXP(8) 
distribution. Show that the random variable Ti has a GAM(8, K )  distri-
bution. 
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A5.7. Section 5.3.3 gives important special cases of the generalized gamma distri- 
bution. Use direct substitution to show the relationships to the WEIB, EXP, 
and GAM distributions. Use a limiting agreement to show the relationship to 
the LOGNOR distribution. 

A5.8. As described in Example 5.1, the Pareto distribution can be derived as a 
gamma mixture of exponential distributions. 
(a) Show this by deriving (5.14). 
(b) Take the first derivative of (5.14) with respect to t to obtain the Pareto 

pdf. 
( c )  Plot the Pareto hazard function for several different combinations of 8 

and K .  

A5.9. Derive the expression for the Birnbaum-Saunders p quantile given in (5.9). 

A5.10. As an interpretation of the Gompertz-Makeham distribution, suppose that the 
failure time of a device is determined by which of the following two events 
happens first: 

Wearout at time W, which can be modeled by an SEV(p, a) ,left trun- 
cated at time zero. 
An accident at time R, which can be modeled by an EXP(A). 

In other words, the device failure time is T = min{W, R} .  For this exercise, 
also suppose that W and R are independent. 
(a) Show that the cdf for T is the same as the Gompertz-Makeham cdf, 

having the form 

where 0 = a, 6 = p/u,  and = u / h .  Hint: One can write F7.( t )  = 
1 - [ l  - F w ( t ) ] [ l  - FR(t ) ] .Explain why. 

(b) Show that the hazard function for T is hT(t;p,cr ,h)  = hR(t;A) + 
hw(t ;p,U).Also show that this coincides with the hazard function of 
a GOMA(B,6,q). 

A5.11. Show that the hazard relationship in part (b) of Exercise 5.10 holds in general 
when T = min{W, R},  where W and R are any two independent continuous 
random variables. 
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5.12. Let Tc1 )  denote the minimum of m independent Weibull random variables with 
parameters p,,i = 1 , .  . . ,m, and constant U.Show that T , I )has a Weibull 
distribution. 

A5.13. Use the lognormal base (i.e., use @ = @nor) GETS(q,U ,5) distribution given 
in Section 5.10. I to do the following: 
(a) Plot the cdfs and pdfs for all possible combinations of the parameters 

q =  -.5,.5;a = -1 ,1 ;and(= 1. 
(b) For fixed q = 0 and 6 = 1, draw the cdfs for several small values of 

U,say, U = t . 1 ,  +.01,+.001, and compare with a NOR(0, 1 )  cdf. How 
well do the GETS cdfs approach the normal cdf as U --t O? 

A5.14. Consider the GETS(q, a ,6) distribution as given in Section 5.10.1. 
(a) Show that when U --+ 0 the GETS cdf approaches a(:).Hint: When 

U + 0, ( 1  / a )log( 1 + (Tz) --+ z.  
(b) Show that, in terms of the parameters ( y ,a ,  q)of Section 5.10.1, when 

U approaches 0 from above (below) then the y is approaching +x (-x) 
and (y + a )  --+ q. 
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Probability Plotting 

0bjectives 

This chapter explains: 

Applications of probability plots. 
Basic probability plotting concepts for both complete and censored data. 
How to analytically linearize a cdf on special plotting scales. 
How to plot a modified nonparametric estimate of F ( t )  on probability paper 
and how to use such a plot to judge the adequacy of a particular parametric 
distribution. 
Analytical and simulation methods of separating useful information from “noise” 
when using a probability plot to assess the reasonableness of a particular distri- 
butional model. 
Graphical estimates of important reliability characteristics like failure probabil- 
ities and distribution quantiles. 

Overview 

This chapter presents the important topic of probability plotting. Probability plots are 
used throughout this book to present data, guide modeling, and present the results 
of analyses. Sections 6.1-6.4 explain the basic concepts of probability plotting. 
Section 6.5 describes some useful extensions to the standard probability plots, while 
Section 6.6 explains additional aspects of the practical application of probability 
plots, including the use of simulation to help interpret such plots. 

6.1 INTRODUCTION 

Probability plots are an important tool for analyzing data and have been particularly 
popular in the analysis of life data. 

122 
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6.1.1 Purposes of Probability Plots 

In practical applications, probability plots are used to: 

Assess the adequacy of a particular distributional model. 

Provide nonparametric graphical estimates of probabilities and distribution 
quant ile s. 

Obtain graphical estimates of parametric model parameters (e.g., by fitting a 
straight line through the points on a probability plot). 

Display the results of a parametric maximum likelihood fit along with the data. 

In addition, probability plots often reveal information about a population, a process, 
or data that might otherwise escape detection. 

6.1.2 Probability Plotting Scales: Linearizing a cdf 

The figures in Chapter 4 show that cdfs from different distributions have similar 
shapes. Thus distinguishing, by eye, among cdfs from different distributions is not 
easy. Probability plots use special scales on which a cdf of a particular distribution 
plots as a straight line. 

The plot of { t  versus F ( t ) }can be linearized by finding transformations of F ( t )  
and t such that the relationship between the transformed variables is linear. Then 
the transformed axes can be relabeled in terms of the original probability and time 
variables. The resulting probability scale is generally nonlinear and is called the 
“probability scale.” The data scale is usually a log scale or a linear scale, depending 
on the particular distribution and type of probability plot. 

Probability paper was developed initially to allow data analysts to plot data, obtain 
estimates, and assess fit of a particular model by comparing with a straight line. 
Normal and Weibull probability papers have been widely used in practice. However, 
because there are many different combinations of possible probability and data axes 
that might be needed, it is useful to have a computer implementation of probability 
plotting methods like those described in this chapter. 

6.2 LINEARIZING LOCATION-SCALE-BASED DISTRIBUTIONS 

The quantile function for F ( t )  provides a convenient starting point for finding the 
transformation needed for linearizing a cdf. We illustrate the ideas in this section 
with a subset of the location-scale-based distributions from Chapter 4. The approach, 
however, is similar for other location-scale-based distributions. In Section 6.5, we 
extend the method to non-location-scale distributions. 
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6.2.1 Linearizing the Exponential cdf 

The quantile function for the two-parameter exponential distribution (see Section 4.4) 
is 

t ,  = y - log(1 - p)O, 

This implies that {tl, versus - log(1 - p ) } plots as a straight line, as illustrated in 
Figure 6. I .  Because we plot time on the horizontal axis and p on the vertical axis 
(corresponding to the traditional cdf plots used in Chapters 1-5), y is the intercept 
on the time scale [because - log( 1 - p )  = 0 when p = 01 and the slope on the time 
versus quantile scales is equal to I / O .  In this case, 8 determines the slope of the line 
and y determines the horizontal position of the line. 

The linear scale on the right-hand side of the plot, corresponding to - log( 1 - p ) ,  
is useful for graphically estimating the slope. Because this scale is unnecessary for the 
other applications listed in Section 6.1.1 and because it  is bad style to encumber graphs 
with unnecessary scales, such scales will be displayed only in selected examples in 
this book. 

.99 


.98 4 

a
.--
U 
C 
rp 


3 s 


E 

U
C 

.7 cbzi 

.6 1 

.4 

.2 
.01 0 

0 200 400 

Time 
Figure 6.1. Exponential probability plot (exponential distribution probability scale) showing exponential 
cdfs as straight lines for 8 = SO, 200 and y = 0, 200. 
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Figure 6.2. Normal probability plot (normal distribution probability scale) showing normal cdfs as straight 
lines for p = 40,80 and cr = 5, 10. 

6.2.2 Linearizing the Normal cdf 

As shown in Section 4.5, the quantile function for the normal distribution is 

I’P = p + @,j(p>a, 
where @,f(p) is the p quantile of the standard normal distribution. As illustrated in 
Figure 6.2, this implies that { yp  versus (D,;Ip)} plots as a straight line. The normal 
mean p (location parameter) can be read from the time scale at the point where the 
cdf intersects the an;:( p ) = 0 line [the right-hand scale is ( p )and the horizontal 
dashed line shows that @,:(p) = 0 at p = S].  The slope of the line on the time 
versus quantile scales is l/u. Any normal cdf plots as a straight line with positive 
slope. Correspondingly, any straight line with positive slope corresponds to a normal 
distribution. Note the symmetry of the probability scale above and below .5, following 
from the symmetry of the normal distribution pdf (shown in Figure 4.2). 

6.2.3 Linearizing the Lognormal cdf 

Lognormal probability plots are closely related to normal probability plots. As shown 
in Section 4.6, the quantile function for the lognormal distribution is tp  = exp[p + 

( p ) a ] ,where Qn;; ( p ) is the p quantile of the standard normal distribution. This 
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leads to 

As illustrated in Figure 6.3, this implies that (log(1,) versus (D,f ( p ) }plots as a straight 
line. The lognormal scale parameter (median) t.5 = exp(p) can be read from the time 
scale at the point where the cdf intersects the @&t(p) = 0 line [the horizontal dashed 
line shows that @,:(p) = 0 at p = S]. The slope of the line on the time versus 
quantile scales is 1 /cr. Any lognormal cdf plots as a straight line with positive slope. 
Correspondingly, any straight line with positive slope corresponds to a lognormal 
distribution. 

The lognormal data scale is a logarithmic scale. The lognormal probability scale 
is the same as that on normal probability plots (Figure 6.2). The base-10 log-time 
scale on the top of the graph is preferred by some engineers. This scale, along with 
the linear any):( p )scale on the right-hand side of the plot, facilitates the computation 
of U for the base-10 lognormal distribution (see Section 4.6). 

Example 6.1 Reading Parameter Values from a Probability Plot. To il- 
lustrate the process of reading parameter values from a probability plot, refer t o  
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Figure 6.3. Lognormal probability plot (normal distribution probability scales) showing lognormal cdfs 
as straight lines for exp(p) = SO,  SO0 and CT = 1.2. 
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the exp(p),o = 50,2 line on Figure 6.3. The value of the median exp(p) of 
the lognormal distribution corresponding to this line can be read from the time 
axis where the line crosses the dotted line. Then exp(p) = 50, which corre- 
sponds to p = log,,(50) = 1.69897 for the base-10 lognormal distribution and 
p = log(50) = 3.912023 for the base-e lognormal distribution. To find sigma, one 
needs to find the reciprocal of the slope of the line. Start with the base-10 log-time 
scale and for best resolution, use the extreme endpoints (in this case log,,( 1)  = 0 and 
loglo( lO00) = 3). The corresponding standardized quantile values can be read from 
the right-hand axis as approximately -1.97 and 1.5. Then for the base- 10 lognormal 
distribution 

3 - 0  ) = .865
1.5 - (-1.97) 

and for the base-e lognormal distribution (T = log(l0) X .865 = 1.99, where the 
factor log( 10) = 2.302585 converts logarithms from base- 10 to logarithms in base-e. 

0 


6.2.4 Linearizing the Weibull cdf 

As shown in Section 4.8, the quantile function for the Weibull distribution can 
be expressed (showing both the location-scale and the common parameterization) as 

@;,! 1 -p) ]?  wherelog( @;: +exp[p ( p ) a ]= q[- log[- log( 1 -( p ) = p ) ] .t, = 
This leads to 

1 
W t , )  = P + log[- log(1 - p ) ] a = log(q) + log[- log( 1 - p ) ] - .

P 

As illustrated in Figure 6.4, this implies that {log(tp) versus log[ - log( 1 - p ) ] }plots 
as a straight line. The Weibull scale parameter 7) = exp(p) can be read from the time 
scale at the point where the cdf intersects the log[ - log( 1 - p ) ]  = 0 line (indicated 
by the horizontal dashed line at p = .632). The slope of the line on the log time 
versus quantile scales is p = l / o ,  Any Weibull cdf plots as a straight line with 
positive slope. Correspondingly, any straight line with positive slope corresponds to 
a Weibull distribution. Exponential cdfs plot as straight lines with slopes equal to 1. 
Note the log scale for time (with a linear time scale, this would be a smallest extreme 
value distribution probability plot). 

6.3 GRAPHICAL GOODNESS OF FIT 

Assessment of distributional adequacy is an important application of probability plots. 
As shown in Section 6.4, this is done by plotting the nonparametric estimate p(t)on 
the linearizing probability scales and assessing departures from a straight line. Such 
probability plots can be made even more useful by plotting, in addition, simultaneous 
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Figure 6.4. Weibull probability plot (smallest extreme value distribution probability scale) showing 
Weibull cdfs a s  straight lines for r) = SO, 500 and p = .S, I .  

confidence bands like those presented in Section 3.8. Based on the available data, 
any possible F ( t )  within these bands is, statistically, consistent with the data. On 
probability paper for a particular distribution, if it is possible to draw a straight line 
all the way between the bands, then the distribution is consistent with the data. We 
will use simultaneous confidence bands on all probability plots in this chapter. 

6.4 PROBABILITY PLOTTING POSITIONS 

To construct a probability plot, one must decide how to plot the nonparametric 
estimate of F ( t )on the probability scales described in Section 6.2. With exact times, 
it has been traditional to plot each failure time against an estimate of the probability 
of failing at that time. To follow this tradition, we plot an estimate of F ( t ) at some 
specified points in time-typically the failure times when they are reported and the 
upper endpoints of inspection intervals for inspection data. Then we need to define 
“plotting positions,” consisting of a corresponding estimate of F ( t ) ,at these points in 
time. 
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6.4.1 Criteria for Choosing Plotting Positions 

Criteria for choosing plotting positions should depend on the application or purpose 
for constructing the probability plot. The following are some possible applications 
that will suggest criteria. 

Checking Distributional Assumptions. Probability plotting is used to check if the 
observed data are well approximated by the postulated parametric distribution 
F(t;0). For this purpose, some bias in the slope and location of the fitted line is 
not a serious problem. For this reason, it is generally suggested that, for assessing 
distributional assumptions, the choice of plotting positions, in moderate-to-large 
samples, is not so important. 
Estimation of Parameters. If the purpose of the probability plot is to use a fitted 
line to estimate parameters of a particular distribution (by using the slope and 
intercept of a line drawn through the data points), the “best” plotting positions will 
depend on the assumed underlying model and the functions to be estimated (e.g., 
which quantile or moment is of interest). For complete data, letting i index the 
ordered observations, there is some general agreement that the plotting posit ions 

provide a good choice for general-purpose use in probability plotting. 
Display of Maximum Likelihood Fits with Data. As shown in Chapter 7, maximum 
likelihood (ML) fitting of parametric models is a convenient and general method for 
obtaining estimates and predictions from censored data. One important application 
of a probability plot is to display the ML fit graphically and to compare with the 
corresponding nonparametric estimate. In this case an important criterion is that 
the line “fit” the points well when the assumed model being fit with ML agrees 
with the data. With a poor choice of plotting positions, the ML line may not fit 
the plotted points. Then the probability plot can give the false impression that the 
parametric model and the data disagree, even though any difference between the 
points and the line will generally be small relative to sampling error variability 
that would be observed by repeating the sampling process. Plotting simultaneous 
confidence bands on the probability plot will indicate the amount of sampling 
variability one might expect to see. 

6.4.2 Choice of Plotting Positions 

There are three cases to consider: (1) continuous inspection (or small inspection 
intervals resulting in exact failures), (2) interval-censored data with relatively large 
intervals, and (3) arbitrarily censored data, which could include combinations of left 
censoring, right censoring, and overlapping failure intervals. 

Continuous Inspection Data and Single Censoring 
With continuous inspection and single right censoring (or complete data), the non- -
parametric estimate F(t,,,) = i / n  is a step function increasing by an amount l / t i  



130 PROBABILITY PLOlTlNG 

at each reported failure time. Let q l ) ,  t ( 2 ) ,,.. be the ordered failure times. From a 
plot of the step function (e.g., Figure 6.5), we see that F ( t )  steps up at each reported 
failure time. Plotting at the bottom (top) of the step would lead to bias in the plotted 
points and the ML line would tend to be above (below) the plotted points. Also, in 
situations where the last reported time is a failure, it is not possible to plot a point at 
F^(t)= 1 (the value of the nonparametric estimate at the last failure). A reasonable 
compromise plotting position is the midpoint of the jump 

Another justification for this definition of plotting positions [estimator of F ( t )at t ]  is 
that the median of the ith order statistic (i.e., the ith largest observation) in a sample 
of size n is approximately F - ’ [ ( i  - .5)/n].For complete or singly censored data, this 
plotting position has been useful for a variety of different distributions and purposes 
(e.g., pages 293-294 of Hahn and Shapiro, 1967for discussion of alternative plotting 
positions). 

Example 6.2 Probability Plots of Fatigue Life Data for Alloy T7987. Ta-
ble 6.1 gives the fatigue life (rounded to the nearest thousand cycles) for 67 specimens 
of Alloy T7987 that failed before having accumulated 300 thousand cycles of testing. 
There were, in addition, 5 “runout” specimens that survived until 300 thousand cycles 
without failure. Figure 6.5 shows a plot of F^(t),the nonparametric estimate of the 
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Figure 6.5. Linear-scales plot of nonparametric estimate of F ( t )  for the Alloy T7987 fatigue life and 
\imultaneous approximate 95% confidence bands for F ( r ) .  
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Table 6.1. Number of Cycles (in Thousands) of Fatigue Life for 67 of 72 Alloy T7987 
Specimens that Failed Before 300 Thousand Cycles 

94 96 99 99 104 108 112 114 117 117 
118 121 121 123 129 131 133 135 136 139 
139 140 141 141 143 144 149 149 152 153 
159 159 159 159 162 168 168 169 170 170 
171 172 173 176 177 180 180 184 187 188 
189 190 196 197 203 205 211 213 224 226 
227 256 257 269 271 274 291 

fatigue life cdf. Some of the step increases are integer multiples of l / n  because of 
the ties resulting from rounding. The points in the Weibull probability plot in Fig-
ure 6.6 are, for each reported failure point, plotted at a probability corresponding to 
half the jump-height of each step in Figure 6.5. Figure 6.6 indicates that the Weibull 
distribution does not provide a good fit to the data. Figure 6.7 indicates that the 
lognormal distribution provides a much better fit than the Weibull distribution. Both 
distributions, however, show concave behavior in the lower tail, an indication that a 
threshold parameter for either the Weibull or lognormal distribution would improve 
the fit to the data. This is investigated further in Section 6.5. 
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Figure 6.6. Weibull probability plot of the Alloy T7987 fatigue life data and simultaneous approximate 
95% confidence bands for F(r) .  
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Figure 6.7. Lognormal probability plot for the Alloy T7987 fatigue life and simultaneous approximate 
95% confidence bands for F ( r ) .  

Continuous Inspection Data and Multiple Censoring 
With continuous inspection and multiple right censoring the usual nonparametric 
estimate F ^ ( r )  is again a step function with steps at each reported failure time (but, 
due to censoring between failures, the step increases may be different from l /n) .  
Corresponding to the definition for single censoring in (6.l), we modify ? ( r ( l ) )  to get 
plotting positions for multiple censoring as { t ( , )versus p , }  with 

Example 6.3 Comparison of Weibull and Lognormal Probability Plots for the 
Shock Absorber Data. For the shock absorber data in Example 3.8 and Appendix 
Table C.2, the nonparametric estimate of F ( r )  is given in Figure 3.6. Figures 6.8 and 
6.9 show, respectively, Weibull and lognormal probability plots of these data, along 
with approximate 95%nonparametric simultaneous confidence bands. The Weibull 
distribution appears to provide a better description of these data. With the large 
amount of uncertainty expressed by the simultaneous confidence bands, however, we 
certainly could not rule out the lognormal distribution as an adequate distribution. 

Interval-Censored Inspection Data 
With interval-censored data, if there are failures in each interval, F^(t)is defined at 
the upper endpoint of each interval (see Section 3.7). Let ( ro ,  r l ] ,  . . . ,( r , , - 1 ,  r,,,] be the 

0 
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Figure 6.8. Weibull probability plot of the shock absorber data with simultaneous approximate 958  
confidence bands for F(r) .  
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Figure 6.9. Lognormal probability plot of the shock absorber data with simultaneous approximate 95% 
confidence bands for F ( r ) .  
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intervals preceding the m inspection times. The upper endpoints of the inspection 
intervals t , ,i = 1,2 , .  . . , ar- convenient plotting times. For corresponding plotting 
positions here use p ,  = F(t , ) .  The justification for this choice is that, with no 
censoring, from standard binomial theory, 

E[F^(t;)]= F( t , ) .  (6.3) 

With losses (multiple censoring), (6.3) will be approximately true. When there are 
no censored observations beyond t,,,, F(t,rl)= 1 and this point cannot be plotted on 
probability paper. 

Example 6.4 Exponential Probability Plot for the Heat Exchanger Tube Data. 
Figure 6.10 is an exponential probability plot of the heat exchanger data showing 
the nonparametric estimate of F ( t ) computed in Example 3.6. Also shown are 95% 
nonparametric simultaneous confidence bands for F ( t ) . These bands are very wide 
due to the small number of observed cracks in the combined heat exchanger data. 
The bands are not symmetric because we used the logit transformation (described in 
Section 3.6.3) to improve the large-sample approximation. The points on this plot fall 
roughly along a straight line, indicating that there is no evidence here to contradict 
an exponential distribution assumption. Of course, the width of the simultaneous 
confidence bands for F ( r )  also indicates that i t  is certainly possible that the heat 
exchanger tube life has a distribution far from the exponential distribution. 0 
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Figure 6.10. Exponential probability plot of the heat exchanger tube cracking data with simultaneous 
approximate 95%confidence bands for F ( t ) .  
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Arbitrarily Censored Data 
With mixtures of left censoring, right censoring, and observations reported as ex- 
act failures, p(t) can consist of a mixture of sets of points and horizontal lines 
of increasing height. Such estimates require a compromise between the other two 
cases. 

Example 6.5 Turbine Wheel Data. The turbine wheel data from Example 1.7 
and given in Table 1.5 consist of a set of overlapping left- and right-censored ob- 
servations. Figure 6.11 is an exponential probability plot of the turbine wheel data. 
Figure 6.12 is a lognormal probability plot of the same data. Both plots contain 95% 
simultaneous nonparametric confidence bands. 

It is clear that the lognormal distribution fits these data better than the exponential 
distribution. For these data, the Weibull probability plot (not shown here) was very 
similar to the lognormal probability plot. The great width of the 95% simultaneous 
confidence bands indicates, however, that none of these distributions could be ruled 
out. As a practical matter, however, it is generally more conservative to use the more 
general Weibull or lognormal distributions. Unless the assumption could be based 
on physical experience with related data or other information apart from the data, 
use of the exponential distribution with such sparse data would generally give an 
unrealistically small indication of sampling uncertainty. 0 
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Figure 6.1 1. Exponential probability plot of the turbine wheel inspection data with simultaneous approx- 
imate 95% confidence bands for F(r). 
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Figure 6.12. Lognormal probability plot of the turbine wheel inspection data with simultaneous approxi- 
mate 95% confidence bands for F ( r ) .  

6.5 PROBABILITY PLOTS WITH SPECIFIED SHAPE PARAMETERS 

The methods in Section 6.2 can extend to constructing probability plots for distribu- 
tions that are not members of the log-location-scale family. In addition to the other 
applications described in Section 6.4.I ,  such plots help graphically identify the pos- 
sibility of improving fit by using a nonzero threshold parameter (Sections 5.10.1 and 
1 I .7). 

Some distributions are not in the location-scale or log-location-scale families 
and cannot be transformed into such a distribution (e.g, the gamma and generalized 
gamma distributions and other distributions covered in Chapter 5) . Such distributions 
have one or more unknown shape parameters (if a distribution has a single shape 
parameter whose value is assumed known, the distribution can be considered to be 
a location-scale distribution). It is still possible to construct a probability plot for 
distributions with an unknown shape parameter, but the plotting scales depend on 
the given value or estimate for the shape parameter. There are two approaches to 
specifying an unknown shape parameter for a probability plot: 

Plot the data with different given values of the shape parameter in an attempt to 
find a value that will give a probability plot that is nearly linear. 
Use parametric maximum likelihood methods to estimate the shape parameter 
and use the estimated value to construct probability plotting scales. This is 
discussed starting in Chapter 7 and continuing in Chapters 8 and 1 1. 
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These two approaches generally lead to approximately the same plot, and with modern 
computing software, either is reasonably easy to implement as shown below. 

6.5.1 Linearizing the Gamma cdf 

As shown in Section 5.2.2, the quantile function for the gamma distribution is 
rp  = r ' c ' (p ;K ) O .  The quantile function for the three-parameter gamma distribution, 
allowing the distribution to start at y instead of 0 (Section 5.10.l ) ,  is 

This implies that {t,, versus r ' ; l ( p ; ~ ) }plots as a straight line. In contrast to the 
exponential probability plot, the probability scale for the gamma probability plot 
depends on specification of the shape parameter K .  As with the exponential probability 
plots (described in Section 6.2.1), y is the intercept on the time scale [because 
r ; ' ( p ; K )  = 0 when p = 01. When plotting time is on the horizontal axis, the 
slope of the cdf line equals l / O .  Thus changing 8 changes the slope of the line, and 
changing y changes the horizontal position of the line. 

Example 6.6 Gamma Probability Plots for Fatigue Data for Alloy T7987. 
Here we return to the Alloy T7987 fatigue life data introduced in Example 6.2. 
Figure 6.13 shows gamma probability plots with shape parameter K = .8, 1.2, 2, 
and 5. These plots show the effect that choosing different gamma shape parameters 
will have on the curvature in the probability plot. Among these shape parameters, 
K = 2 seems to give the best fit to the data. Each of these plots also indicates the 
need for a threshold parameter y that is approximately 90 (Table 6.1 shows that the 
smallest observation in the data set was 94). There is, for these data, some physical 
justification for a threshold parameter. For some alloys, the amount of time that 
it takes for a fatigue crack to initiate and grow to failure may be on the order of 
hundreds of thousands of cycles, particularly if deformation caused by loading is 
primarily elastic. 0 

6.5.2 Linearizing the Weibull cdf Using a Linear Time Scale and Specified 
Shape Parameter 

The quantile function for the three-parameter Weibull distribution 

l P  = Y + q[-log(l -p)]l/P 

can be obtained by inverting the cdf given in Section 5.10.2. This expression shows 
that {r,, versus [ - log( 1 - p ) ] ' / B }plots as a straight line. Unlike the standard log-
time-scale Weibull probability plot described in Section 6.2.4, the probability scale 
for the linear-time-scale Weibull probability plot requires a given value of the shape 
parameter p. However, the plots provide instead a graphical estimate of the threshold 
parameter y (which was previously constrained to be 0). As with the gamma and 
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Figure 6.13. Gamma probability plots with K = .8, 1.2, 2, and 5 for the Alloy T7987 fatigue lite data 
with simultaneous approximate 95% confidence bands for F(r) .  

exponential probability plots, y is the intercept on the time scale (because [ - log( 1 -
p ) ] ' / p  = 0 when p = 0). When time is on the horizontal axis, the slope of the cdf 
line is equal to I /q.As with the gamma and exponential probability plots, changing 
q changes the slope of the line, and changing y changes the horizontal position of 
the line. 

Example 6.7 Comparison of Log- and Linear-Time-Scale Weibull Probability 
Plots for Fatigue Life Data for Alloy T7987. Although the standard log-data-scale 
Weibull probability plot in Figure 6.6 (with threshold parameter y = 0, implicitly) 
indicated a poor fit, the linear-data-scale Weibull probability plot with specified 
p = 1.4 (this value was determined by trial to provide the best fit visually) in 
Figure 6.14 indicates that a Weibull distribution with a shape parameter p = 1.4 and 
threshold parameter of approximately y = 90 will provide a good fit to the data. 

6.5.3 Linearizing the Generalized Gamma cdf 

As shown in Section 5.3.2, the quantile function for the generalized gamma distribu- 
tion (GENG) is t,, = O(  l7; ( p ;K ) I ' / P .  This leads to 
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Figure 6.14. Linear-scale Weibull plot with p = 1.4 for the Alloy T7987 fatigue life with simultaneous 
approximate 95% confidence bands for F(r) .  

implying that {log(t,) versus log[r<'@; K ) ] }  plots as a straight line. Unlike the 
standard Weibull probability plot in Section 6.2.4,the probability scale for the GENG 
probability plot requires a given value of the shape parameter K .  The scale parameter 
0 is the intercept on the time scale, corresponding to the time where the cdf crosses 
the horizontal line at log[r','(p; K ) ]  = 0. The slope of the line on the graph with 
time on the horizontal axis is p. 

Example6.8 GENG Probability Pbts for the Ball Bearing Fatigue Data. 
Example 1.1 introduced data on the number of revolutions to failure for 23 ball bear- 
ings. Figure 6.15 shows GENG probability plots with specified values of K = .1, 1,4, 
and 20. The linear right-hand axis shows the gamma standard quantiles corresponding 
to log[r'i'(p; K ) ] .  As explained in Section 5.3.3,the value of K = 1 corresponds to a 
Weibull distribution and K -+00 corresponds to the lognormal distribution. The value 
K = 20 was chosen to correspond, roughly, to the lognormal distribution. None of 
the values of K could be ruled out, but values greater than 1 seem to fit better. The 
value of K = 4 was chosen by trial and error as a compromise between the Weibull 
and lognormal distributions. These examples show that the ranges of the standard 
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quantile scales depend strongly on the specified value of K. Relatedly, the value of p 
corresponding to log[rc ’ ( p ;K)] = 0 depends strongly on K (and for K = 20 it is off 
the scale). This is an indication of the potential problems, alluded to in Section 5.3.4, 
associated with statistically estimating the three traditional GENG parameters. 0 

6.5.4 Summary of Probability Plotting Methods 

Table 6.2 summarizes the linearizing transformations given in Sections 6.2 and 6.5. 
This table also indicates which parameters need to be specified and which can be 
estimated from the slope and time-scale intercept of a fitted line. 

6.6 NOTES ON THE APPLICATION OF PROBABILITY PLOTTING 

6.6.1 Using Simulation to Help Interpret Probability Plots 

When the points on the probability plot follow a curved pattern (as in Figure 6.6), 
a smooth curve drawn through the points will still provide a useful graphical 
nonparametric estimate of the cdf. The curve provides quantile or failure prob- 
ability estimates. For some, this kind of plot is easier to interpret than the cdf 
plot with linear probability axes (compare Figure 6.5 with Figure 6.6). 
As we have illustrated in our examples, analysts should try probability plotting 
with different assumed distributions and compare the results. Of course, finding 
a probability plot that indicates a good fit to the data does not guarantee that the 
model will be adequate for the desired purpose. This is a judgment that must be 
made in the context of the particular application. 
When assessing linearity, one must generally allow for the fact that, for most 
distributions, there will be more variability in the extreme observations. Judg- 
ment about the departure from linearity to expect comes with experience. Even 
experienced data analysts find, however, that it helpful to either (1)  Plot si- 
multaneous nonparametric confidence bands (e.g., the methods described in 
Section 3.8 and Section 6.3) to help assess the sampling uncertainty in the non- 
parametric estimate of F ( t ) or (2) Use simulation methods to assess sampling 
variability directly. For example, one could generate simulated censored data 
from a particular distribution and plot the nonparametric estimates from a series 
of such data sets to get a sense of the deviations from linearity that one would 
expect under specific assumed distributions. 

To illustrate the use of simulation, Figure 6.16shows probability plots of simulated 
normal distribution samples of size n = 10,20, and 40. There are five probability 
plots from each sample size to allow an assessment of the repeatability or consistency 
of such plots. What we see is that there is very little consistency in the I I  = 10 plots. 
Even though the data were normally distributed, the pattern in the plots can devi- 
ate importantly from a straight line. With the larger sample sizes, however, there is 
more consistency across the repeated plots, except for the variability in the tails of the 
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Table 6.2. Summary of Probability Plot Scales to Linearize cdfs 

Linearizing Identified 
Transformation Parameters 

Family cdf 
Time (Data) 

Scale 
Probability

Scale 
Specified
Parameter 

Time-Scale 
Intercept Slope 

Exponential 1 -exp(-
t - Y8) ‘I, 

Smallest extreme value @ W Y  

Weibull (two-parameter) 

(,>
 y - 1  

Weibull (three-parameter) 1p = -
0 

Y 

Normal P = vs 

Lognormal (two-parameter) e@= t S  
1-
U 

Lognormal (three-parameter) U Y 

Gamma (three-parameter) K Y 

Generalized gamma K 8 P 

The functions defined under “cdf” and “Probability Scale” are defined in Chapters 4 and 5. 
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Figure 6.16. Simulated normal data on normal probability plots: tive replications for each sample size 
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distribution. Figure 6.17 has similar normal probability plots, but in that case the 
simulated data were from an exponential distribution. In this case we see that some 
of the plots with n = 10 do not deviate too much from a straight line and, to some 
extent, are similar to the probability plots of the normal data in Figure 6.16. For the 
larger sample sizes, however, there is enough consistency to indicate that samples of 
size 20 to 40 are sufficiently large to distinguish between data from exponential and 
normal distributions. 

Inexperienced analysts tend to expect plots to be straighter than they are. Simula- 
tions of this kind can and should be used to help analysts “calibrate” their interpreta- 
tion of probability plots, particularly in unfamiliar situations. 

6.6.2 Possible Reason for a Bend in a Probability Plot 

Probability plots with a sharp bend or change in slope generally indicate an abrupt 
change in a failure process. Causes for such behavior could include two or more failure 
modes or a mixture of different subpopulations. Such causes should be investigated 
and will often suggest how to improve product reliability. 

Example 6.9 Bleed System Failure. Appendix Table C.7 gives failure and 
running time for 2256 bleed systems. The data were abstracted from Abernethy, 
Breneman, Medlin, and Reinman (1983) who present an analysis similar to the one 
done here. 

The top row of Figure 6.18 shows a plot of the nonparametric estimate and 
a corresponding Weibull probability plot of the data. The different slopes on this 
probability plot before and after 600 hours suggest some kind of change. Closer 
examination of the data showed that 9 of the 19 failures had occurred at Base D. In 
the bottom row of Figure 6.18, separate analyses of the Base D data and the data from 
the other bases indicated different life distributions. The large slope ( p = 5 ) for Base 
D indicated strong wearout behavior. The relatively small slope for the other bases 
( p = 3 5 ) suggested infant mortality or accidental failures. After investigation i t  was 
determined that the early-failure problem at Base D was caused by salt air (Base D 
was near the ocean). A change in maintenance procedures there solved the dominant 
bleed system reliability problem. 0 

6.6.3 Use of Grid Lines and Special Scales on Probability Plots 

In the past, most data were plotted by hand on pre-prepared probability paper that 
contained grid lines. The grid lines make it easier to plot points by hand and allowed 
one to more precisely read numbers from the plot. While grid lines are useful, some 
analysts feel that grid lines can get in the way of interpreting a plot. Computer pro- 
grams should provide an option to include grid lines or not. Because our interest 
is primarily in graphical perception of the information on a plot, we will generally 
not use grid lines on our computer-generated data analysis plots. If we are interested 
in particular numbers that would be read from the graph, the numbers are available 
from tabular computer output. For purposes of illustration, however, the following 
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Figure 6.19. Exponential probability plot o f  the V7 transmitter tube failure data with simultaneous 
approximate 95% confidence bands for F ( t ) .  

example uses probability plots with grid lines. It is also possible to put special scales 
on probability paper to facilitate graphical estimation of the parameter related to the 
slope of a line on the plot. Such scales are on some commercial probability papers 
but can also be put on computer-generated plots. 

Example 6.10 V7 Transmitter Tube Failure Data. Figure 6.19 is an expo- 
nential probability plot of the V7 transmitter tube data from Example 1.6. We see 
some departure from a straight line in the plot, but the width of the confidence bands 
makes it clear that this could be the result of random variability. 

Figures 6.20 and 6.2 1 are, respectively, Weibull and lognormal probability plots of 
the V7 transmitter tube failure data. Comparing Figures 6.19,6.20, and 6.21 suggests 
that none of these distributions can be ruled out but that the lognormal distribution 
provides the best fit among these distributions. Vacuum tubes have parts (filaments 
and cathode coatings) that will deteriorate with use, suggesting that the exponential 
distribution would not be an appropriate model. 

Figures 6.19,6.20, and 6.2 1 also contain special scales that allow one to graphically 
estimate 8, p, and U ,  respectively, without doing any computations. To do this, draw 
a line, as shown, parallel to a line through the data points, going through the mark 
“0”
and read, respectively, the estimates 8 = 32, p = .75, and U = 1.06 from the 
scales on the left-hand side of the graphs. 0 
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95% confidence bands for F ( r ) .  
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BIBLIOGRAPHIC NOTES 

Most of the literature on methods for probability plotting is concerned with complete 
(uncensored) data. Chapter 8 of Hahn and Shapiro (1967) provides a nice summary 
of basic theory and methods and illustrates, with simulated data, the variability that 
one expects to see in the points on a probability plot. Harter (1984) reviews some 
history concerning the choice of plotting positions. Chernoff and Lieberman ( 1954). 
Blom (1958), and Barnett (1976) used good estimation of model parameters as a 
criterion for choosing plotting positions. David ( 1981 ,  page 208) gives an excellent 
review of the results on these last three papers. For multiply censored data Lawless 
(1982, page 88) suggests the use of the half-step correction to the nonparametric 
estimate of F ( r )  defined in (6.2). Nelson and Thompson (1971) provide Weibull 
probability papers that can be copied and used for making probability plots “by 
hand.” Such papers are also available commercially. 

For multiply censored data Nelson (1972, 1982, Chapter 4) proposed the use of 
a hazard plot. A hazard plot can be viewed as a type of probability plot with special 
plotting positions corresponding to the Nelson-Aden nonparametric estimate of the 
cdf (see Exercise 3.23). Nelson (1982, page 135) suggests modified hazard plotting 
positions obtained by averaging the hazard step function at the jumps. These are 
similar to the modified plotting positions in (6.2). Nelson comments: “The modified 
positions agree better with a distribution fitted by maximum likelihood.” An alterna-
tive that would serve the same purpose would average the estimates in the probability 
scale instead, similar to (6.2). Wilk, Gnanadesikan, and Huyett (1962a) show how 
to construct probability plots for the gamma distribution. Nair (1981) describes, in 
more detail, the theory and applications of simultaneous confidence bands as a tool 
for assessing distributional goodness of fit. 

EXERCISES 

6.1. For the LOGLOGIS(p, a)distribution with cdf 

(a) Find the probability scales that will linearize all the cdfs in the logistic 
family. 

(b) Use the scales to generate a properly labeled graph, and display the 
LOGLOGIS( 1 , l )  and the LOGLOGIS( 1,2) cdfs. 

(c) What quantile of this distribution corresponds to the scale parameter 
exp(p)? 

6.2. Starting with an ordinary piece of graph paper with linear divisions, perform 
the following steps to create Weibull probability paper with time ranging 
between 10 and 1000and probability ranging between .OO 1 and .999. Refer to 
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Figure 6.4 for an example. Alternatively, program a spreadsheet or statistical 
package to do the same thing with computer graphics. 
(a) Find values of log[ - log( 1 - p ) ] for p = .001 and p = .999. Use these 

to develop a linear axis on the right-hand side of the graph. 
(b) For selected values of p between .001 and .999 (e.g., .001, .01, . I ,  .3, .5, 

.7, .9, .99, .999) compute log[ - log( 1 - p ) ] .Find this value on the right- 
hand side axis to determine the location of the p label on the left-hand 
side axis. 

( c )  Find values of log(t) for t = 10 and t = 1000. Use these to develop a 
linear axis for log(r) on the top of the page. 

(d) For selected values of t between 10 and loo0 (e.g., 10, 20, 50, 100, 
200, 500, lOOO), compute log(t) and use the location on the top axis to 
determine the corresponding locations for the time labels on the bottom 
axis. 

6.3. Consider the scale parameter q for the Weibull distribution. 
(a) Show that q = exp(p) for the Weibull distribution is approximately equal 

to the .63 quantile. 
(b) Discuss the practical importance of estimating q for a population of 

integrated circuits to be installed in new personal computers. 
( c )  Is it possible to get a good graphical estimate of q from a probability plot 

based on a life test for which only 3.5% of the integrated circuits failed 
by the end of the test? 

(d) For what Weibull “parameters” (i.e., functions of rj and p )  can one get 
good graphical estimates from such data? 

6.4. Use the following 10 simulated observations from a Weibull distribution with 
q = 1 and p = 2 (so that p = 0 and (T = S )  to make a Weibull probability 
plot and use it to obtain graphical estimates of the parameters q and p .  

= .74, 1.21, .22, .37, 1.28, .73, .99, .67, .71, .33. How do the estimates ti  
compare with the “true parameter values”? 

6.5. Consider the ball bearing fatigue data given in Example 1.1  and Table 1 . 1 .  
(a) Compute a nonparametric estimate of F ( t ) ,the proportion of units failing 

as function of time. Plot your estimate on paper with linear scales. 
(b) Make a lognormal probability plot of the data. This is accomplished by 

ordering the failure times in increasing order, t(1)i * * * 5 tp3,.  Then 
plot t ( , )versus ( i  - S ) / n  on lognormal probability paper. 

(c) Do the same as in part (b) but on Weibull probability paper. 
(d) Comment on the adequacy of the lognormal and Weibull models to de-

scribe these data. 

6.6. Use the answers to Exercise 3.6 to do the following: 
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(a) Make a Weibull probability plot displaying the device failure data. 
(b) Use the plotted points to estimate the proportion of devices that will fail 

before 10,000hours of operation. 
(c )  Comment on whether the Weibull distribution fits the data well. 
(d) Use the slope and location of this line to estimate the Weibull distribution 

parameters. 
(e) Use the plotted points to estimate the proportion of devices that will fail 

before 100,000hours. Comment on the usefulness of this estimate. 

6.7. A sample of 100 specimens of a titanium alloy were subjected to a fatigue 
test to determine time to crack initiation. The test was run up to a limit of 
100,000cycles. The observed times of crack initiation (in units of 1000 of 
cycles) were 18,32,39,53,59,68,77,78,93.No crack had initiated in any of 
the other 91 specimens. 
(a) Compute a nonparametric estimate, F(t),of the cdf F ( r )  using both the 

simple binomial method and the Kaplan-Meier method (in this case these 
two methods provide the same answer). 

(b) Plot F(t )on linear axes. 
( c )  Use F^(r)  to compute plotting positions and plot the data on Weibull paper. 

Use the plot to obtain an estimate of the Weibull shape parameter p. 
(d) Comment on the adequacy of the Weibull distribution. 
(e) Comment on the adequacy of the available data if the purpose of the 

experiment was to estimate t .] .  

6.8. For the high-cycle fatigue life data in Exercise 3.4,construct probability plots 
for the exponential, lognormal, Weibull, and gamma distributions (trying 
several values of K for the gamma distribution). Which distributions appear 
suitable for describing the shape of the distribution in the lower tail? 

6.9. Using the life test data on silicon photodiode detectors from Exercise 3.12, 
construct probability plots for the exponential, Weibull, and lognormal distri- 
butions. Which distributions look like they might provide an adequate model 
for photodiode detector life? 

6.10. Figures 6.3 and 6.4 have horizontal lines at the standardized quantile value 
of 0. 
(a) For Figure 6.3, explain why the dotted line crosses the F ( t )  scale at 

F ( t )  = .5.  
(b) For Figure 6.4, compute the value of F ( t ) where F ( t ) crosses the dotted 

line corresponding to 0 on the standardized quantile scale. 

6.11. Using the linear scales on the top and right of Figure 6.7, we can use a 
straight line drawn through the data points to obtain graphical estimates of 
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the lognormal distribution fit to the Alloy T7987 data. Use these estimates to 
compute a parametric estimate of F(200)by substituting them into (4.4). 

6.12. Use Figures 6.5, 6.6, and 6.7 to obtain nonparametric graphical estimates of 
F(200) for the Alloy T7987 data. Are the answers similar? Explain why or 
why not. Compare your answers with those obtained in Exercise 6.1 1 .  Explain 
the reason for observed differences. 

6.13. Use the linear scales on the top and right of Figure 6.8 to compute graphical 
estimates of the Weibull distribution parameters for the shock absorber data. 
Note that the linear axis on top of the plot gives base 10 logarithms. 

A6.14. Consider the family of gamma distributions with scale parameter 8 and shape 
parameter K ,  as in equation (5.1). Show that for a fixed value of K ,  the 
probability plotting scales {t,,, Tc I( p ;K ) }  provide linearizing scales of the 
distribution for all values of the parameter 8. 

A6.15. Consider an uncensored sample (i.e., all observations reported as exact fail- 
ures) q l )  5 * * - 5 of failure times used to make a Weibull probability 
plot. Let ( q , ) ,p l ) ,i = I , .  . . ,n,be the points on the probability plot, where p, 
is defined in (6.2). A simple method for estimating the Weibull (7,p) param-
eters is the following. Use least squares to fit a straight line through the points 

@,;!and( y )using log(t(,,) as the response ( p , )as the explanatory variable (x). 
Then use the intercept and the slope of the line, respectively, to estimate the 
parameters p and U.Denote these estimates by $(,I\ and & I \ .  Then estimates 
for (rl, PI are (exp(Eols), l /&ls).  

(a) Derive the equations for the estimates GC)lsand 
(b) Do the assumptions that assure optimality of the ordinary least squares 

estimators hold in this case? Give details for your answer. 
(c) Is the standard R-squared statistic used in regression a useful measure of 

goodness of fit for this problem? Why or why not? 
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Parametric Likelihood Fitting 
Concepts: Exponential Distribution 

Objectives 

This chapter explains: 

Likelihood for a parametric model using discrete data. 
Likelihood for samples containing right- and left-censored observations. 
Use of parametric likelihood as a tool for data analysis and inference about a 
single population or process. 
The use of likelihood and normal-approximation confidence intervals for model 
parameters and other quantities of interest. 
The density approximation to the likelihood for observations reported as exact 
failures. 

Overview 

This chapter introduces some basic ideas of parametric maximum likelihood (ML) 
methods. The ideas presented here are used throughout the rest of the book. Section 7.2 
shows how to construct the likelihood (probability of the data) function and describes 
the basic ideas behind using this function to estimate a parameter. Sections 73-73 
describe methods for computing confidence intervals for parameters and functions 
of parameters. Section 7.6 describes the commonly used probability density in the 
construction of a likelihood function. Section 7.7 shows how to get a confidence 
bound on the exponential distribution parameter even if there are no failures. 

7.1 INTRODUCTION 

As explained in Chapter 4, parametric distributions, when used appropriately, can 
provide a simple, parsimonious, versatile, visually appealing failure-time model. ML 
is perhaps the most versatile method for fitting statistical models to data. The appeal 
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of ML stems from the fact that it can be applied to a wide variety of statistical models 
and kinds of data (e.g., continuous, discrete, categorical, censored, truncated), where 
other popular methods, like least squares, are not, in general, satisfactory. In typical 
applications, the goal is to use a parametric statistical model to describe a set of data 
or a process or population that generated a set of data. Modern computing hardware 
and software have tremendously expanded the feasible areas of application for ML 
methods. 

Statistical theory (see the bibliographic notes at the end of this chapter and Ap- 
pendix Section B.6. I for some references) shows that, under standard regularity 
conditions, ML estimators are “optimal” in large samples. More specifically, this 
means that ML estimators are consistent and asymptotically (as the sample size in-
creases) efficient. That is, among consistent competitors to ML estimators, none has 
a smaller asymptotic variance. 

Chapter 14 describes and illustrates the use of the closely related Bayesian meth- 
ods that allow one to incorporate prior information into the model fitting and estima- 
tion process. Besides the Bayesian methods (which require specification of a prior 
distribution for the unknown parameters), there is no general theory that suggests al- 
ternatives to ML that will be optimal in finite samples. Comparisons in specific cases 
have shown that, for practical purposes, and without incorporating prior information, 
it is difficult to improve on ML methods. 

This chapter emphasizes methods, concepts, examples, and interpretation of data. 
Appendix Section B.6 outlines the general theory. 

Example 7.1 Time Between a-Particle Emissions of Americium-241. Al-
though not from the area of reliability, this example is analogous to certain special 
reliability applications in which the distribution of time between events can be de- 
scri bed with an exponential distribution. 

Berkson ( 1966) investigates the randomness of a-particle emissions of americium- 
241 (which has a half-life of about 458 years). Physical theory suggests that, over a 
short period of time, the interarrival times of observed particles would be independent 
and come from an exponential distribution 

F ( t ;8) = 1 - exp (-- , (7.1)2 
where 8 is the mean time between arrivals. The corresponding homogeneous Poisson 
process that counts the number of emissions on the real-time line (see Section 4.4 for 
more information on the exponential distribution and Chapter I6 for more information 
on the Poisson process) has arrival rate or intensity A = l/8. For the interarrival 
times of (Y particles, h is proportional to the americium-241 decay rate, size of the 
sample, the counter size and efficiency, and so on. 

The data consisted of 10,220 observed interarrival times of a particles (time unit 
equal to l/SOOO second). The observed interarrival times were put into intervals (or 
bins) running from 0 to 4000 time units with interval lengths ranging from 25 to 100 
time units, with one additional interval for observed times exceeding 4000 time units. 
To save space in our analysis, this example uses a smaller number of larger bins; 
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Table 7.1. Binned a-Particle Interarrival Time Data in 1/5000 Second 

Interarrival Times 
Time Frequency of Occurrence 

Interval Endpoint All Times Random Samples of Times 

Lower Upper 12 = 10220 I? = 2000 I? = 200 I? = 20 

0 1 00 1609 292 41 
1 00 300 2424 494 44 
300 500 I770 332 24 
500 700 1306 236 32 
700 I000 1213 26 I 29 
1 000 2000 1528 308 21 
2000 4000 354 73 9 
4000 m 16 4 0 

reducing the number of bins in this way will not seriously affect the precision of ML 
estimates. These data are shown in Table 7.1. 

To illustrate the effects of sample size on the inferences, simple random samples 
(i.e., each interval-censored interarrival time having equal probability) of sizes 11 = 

2000, 200, and 20 were drawn with replacement from these interarrival times. The 
following examples compare the results that one obtains with these different sample 
sizes. When focusing on just one sample, the sample of size IZ = 200 interarrival 
times is used. 0 

Statistical modeling, in practice, is an iterative procedure of fitting proposed 
models in search of a model that provides an adequate description of the population 
or process of interest, without being unnecessarily complicated. Application of ML 
methods generally starts with a set of data and a tentative statistical model for the data. 
The tentative model is often suggested by the initial graphical analysis (Chapter 6), 
physical theory, previous experience with similar data, or other expert knowledge. 

Example 7.2 Probability Plot for the a-Particle Data. Figure 7.1 shows an 
exponential probability plot of the sample with I I  = 200. The approximate linearity 
of the plot indicates that the exponential distribution provides a good fit to these data. 
This is reinforced by the simultaneous nonparametric confidence bands. 0 

7.2 PARAMETRIC LIKELIHOOD 

7.2.1 Probability of the Data 

Proceeding from the ideas introduced in Section 2.4.2, but now using a parametric 
model (as described in Chapter 4), the likelihood function can be viewed as the 
probability of the observed data, written as a function of the model’s parameters. 
For a parametric model, the number of parameters is usually small relative to the 
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Figure 7.1. Exponential probability plot of the I I  = 200 sample of  a-particle interarrival time data. The 
plot also shows simultaneous nonparametric approximate 95% confidence bands. 

nonparametric models described and used in Chapters 2 and 3. The exponential 
distribution in (7.1) has only one parameter. 

For a set of IZ independent observations, the likelihood function can be written as 
the following joint probability 

n 

L(8) = L(8; DATA) = C L;(8; data;). 
i=  I 

As described in Section 2.4.4, the quantity C in (7.2) is a constant term that does 
not depend on the data or on 8 (in general 8 can be a vector, but in this chapter it 
is a scalar). As in Chapter 3,  for computational purposes, let C = 1 .  The likelihood 
contribution terms Li(6;data,) were explained in detail in Section 2.4.3. For example, 
if a failure time is known to have occurred between times t i - I and t , , the probability 
of this event is 

For a given set of data, L ( 8 )can be viewed as a function of 8. The dependence of 
L(8) on the data will be understood and is usually suppressed in notation. The values 
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of 8 for which L(8) is relatively large are more plausible than values of 8 for which 
the probability of the data is relatively small. There may or may not be a unique value 
of 8 that maximizes L(8).Regions in the space of 8 with relatively large L ( 8 )can be 
used to define confidence regions for 8. One can also use ML to estimate~~firiic.tioi?s 
of 8. The rest of this chapter shows how to make these concepts operational for 
the single-parameter exponential distribution, using simple examples for illustration. 
Subsequent chapters treat models with two or more parameters. 

7.2.2 Likelihood Function and Its Maximum 

Given a sample of FZ independent observations, denoted generically by data,. i = 

1 , .  . . ,n, and a specified model, the total likelihood L ( 8 )  for the sample is given 
by equation (7.2). For some purposes, it is convenient to use the log likelihood 
,Cc,(8)= log[L,(B)].For all practical problems C(8)will be representable in computer 
memory without special scaling [which is not so for L ( 8 )because of possible extreme 
exponent values], and some theory for ML is developed more naturally in terms of 
sums like 

I1 

~ ( 8 )  == ~ o ~ [ L ( B ) I  CL,^ 
I =  I 

rather than in terms of the products in equation (7.2). Note that the maximum of C(8). 
if one exists, occurs at the same value of 8 as the maximum of L( 8). 

Example 7.3 Likelihood for the a-Particle Data. In this example, the un- 
known parameter 8 is a scalar and this makes the analysis particularly simple and 
provides a useful first example to illustrate basic concepts. Substituting equation (7. I ) 
into (7.3) and (7.3) into (7.2) gives the exponential distribution likelihood function 
(joint probability) for interval data (e.g., Table 7.1) as 

(7.4) 

where d j  is the number of interarrival times in interval j .  Note that in the first line of 
(7.4), the product is over the n observed times and in the second line, it is over the 8 
bins into which the data have been grouped. 0 

The ML estimate of 8 is found by maximizing L( 8).When there is a unique global 
maximum, denotes the value of 8 that maximizes L(8) . In general, however, the 
maximum may not be unique. The function L(8)may have multiple local maxima or 
can have flat spots along which L(8)changes slowly, if at all. Such flat spots may or 
may not be at the maximum value of L(8).The shape and magnitude of L ( 8 )relative 
to L(2)over all possible values of 8 describe the information on 8 that is contained 
in data,,i = I , .  . , n .  



158 PARAMETRIC LIKELIHOOD FIITING CONCEPTS 

1.2 

1.o 

U 

0 
0 0.8 0.50r
-
Q, 0.60 
U

A 0.6 0.70 

0.80 


0.90 

0.2 


0.95 

0.99

0.0 


200 400 600 800 1000 

e 
Figure 7.2. Relative likelihood functions R ( 8 )  = L ( O ) / L ( @  for the I I  = 20. 200, and 2OOO samples 
and ML estimate for the I I  = 10,220 sample of the a-particle data. Vertical lines give corresponding 
approximate 9S% likelihood confidence intervals. 

Example 7.4 Relative Likelihood for the a-Particle Data. Figure 7.2 shows 
the relative likelihood functions 

for the samples of size n = 2000, 200, and 20 and a vertical line at the mean of all 
n = 10,220times. These functions allow one to judge the probability of the data for 
values of 8, relative to the probability at the ML estimate. Foz example, R(8o) = . 1 
implies that the probability of the data is 10 times larger at 8 than at 80. The next 
section explains how to use R(8)  to compute confidence intervals for 8. 

Figure 7.2 indicates that the spread of the likelihood function tends to decrease as 
the sample size increases. The relative likelihood functions for the larger samples are 
much tighter than those for the smaller samples, indicating that the larger samples 
contain more information about 8. The 8 value at which the different likelihood 
functions are maximized is random and depends, in this comparison, on the results 
of the sampling described in Example 7.1. The four % values differ, but they are 
consistent with the variability that one would expect from random sampling using 
the corresponding sample sizes. 0 

7.2.3 Comparison of a-Particle Data Analyses 

Figure 7.3 shows another exponential probability plot of  the n = 200 sample. The 
solid line on this graph is the ML estimate of the exponential cdf F ( t ;8). The 
dotted lines are drawn through a set of pointwise parametric normal-approximation 
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Figure 7.3. Exponential probability plot of the n = 200 sample of a-particle interarrival time data. The 
plot also shows the parametric exponential ML estimate and approximate 9S% confidence intervals for 
F ( t ;  %). 

95% confidence intervals for F ( t ;6); these parametric intervals will be explained in 
Section 7.3. Table 7.2 summarizes the results of fitting exponential distributions to 
the four different samples in Table 7.1;it includes ML estimates, standard errors, and 
confidence intervals. Section 7.3 provides results specifically for 8, the mean (which 
is also the .632 quantile, t ,632)of the exponential distribution. Section 7.4.1 shows 
how to obtain similar results for A = 1/6, the arrival intensity rate (per unit of time). 

7.3 CONFIDENCE INTERVALS FOR e 

7.3.1 Likelihood Confidence Intervals for 8 

The likelihood function provides a versatile method for assessing the information that 
the data contains on parameters, or functions of parameters. Specifically, the likeli-
hood function provides a generally useful method for finding approximate confidence 
intervals for parameters and functions of parameters. 

An approximate 100(1 - a)% likelihood-based confidence interval for 6 is the set 
of all values of 6 such that 
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Table 7.2. Comparison of a-Particle ML Results 

All Times Sample of Times 

n = 10,220 I t  = 2000 n = 200 I1 = 20 

ML estimate ii 596.3 612.8 572.3 440.2 

Standard error sli 6.084 14. I3 4 I .72 101.o 

Appro.rimute 95% Conjidence I n t e n ~ ~ l s  for 0 

Based on the likelihood [584,6081 (586,641 1 (498,6621 (289,7 131 

Based on Zlog,~, l̂. NOR(0, I )  [584,608] [586,641] [496,660] [281,690] 

Based on Z ;  A NOR(0, I )  (584,6081 (585,6401 (490,6531 [242.638] 

ML estimate X x 10s 168 163 175 227 

Standard error sli ,(+ 1.7 3.8 13 52 

Approxirncite 9.5% Conjidence Intervals for  A X 1 OS 

Based on the likelihood [164, 1711 (156, 1711 [ 1 5 L  2011 [ 140,3461 

Based on Z,ogc~,.L NOR(0, 1 ) [ 164, 171) [156, 171) [ 152,2021 [ 145.356) 

Based on Z i  A. NOR(0, 1 )  [164, 1711 (156, 1711 (149,2001 (125.3291 

or, equivalently, the set defined by 

The theoretical justification for this interval is given in Appendix Section B.6.5. 

Example 7.5 Likelihood Confidence Intervals for the Mean Time Between 
Arrivals of a Particles. Figure 7.2 illustrates likelihood confidence intervals. The 
horizontal line at exp[ -x&;,)/2] = .147 corresponds to approximate 95% con-
fidence intervals. The vertical lines dropping from the respective curves give the 
endpoints of the confidence intervals for the different samples. Table 7.2 gives nu- 
merical values of likelihood-based approximate 95% confidence intervals (as well as 



CONFIDENCE INTERVALS FOR 8 161 

intervals based on other methods to be explained subsequently). Figure 7.2 shows 
that increasing sample size tends to reduce confidence interval length. Approximate 
(large-sample) theory shows that confidence interval length under standard regularity 
conditions is approximately proportional to 1 /& (see Appendix Section B.6.1 for 
an outline of this theory and Chapter 10 for methods of choosing the sample size to 
control the width of a confidence interval). 0 

A one-sided approximate lOO(1 - a)%confidence bound can be obtained by 
drawing the horizontal line at exp[ -xtl - 2 a ; l,/2] and using the appropriate endpoint 
of the resulting two-sided confidence interval. 

Example 7.6 One-sided Likelihood-Based Conwence Bounds for the Mean 
Time Between Arrivals of cy Particles. Referring to Figure 7.2, the horizontal line 
at exp[ -x , ? ~ ~ ,  = .147 would provide one-sided approximate 97.5% confidence /2] 
bounds for 8. For one-sided approximate 95% confidence bounds the line would be 
drawn at exp[ -x:90,1)/2]= ,259 (corresponding to .90 on the right-hand scale on 
Figure 7.2). 0 

7.3.2 Relationship Between Confidence Intervals and Significance Tests 

Significance testing (sometimes called hypothesis testing) is a statistical technique 
widely used in many areas of science. The basic idea is to assess the reasonableness of 
a claim or hypothesis about a model or parameter value, relative to observed data. One 
can test a hypothesis by first constructing a 100(1 - a%)confidence interval for the 
quantity of interest and then checking to see if the interval encloses the hypothesized 
value or not. If not, then the hypothesis is rejected “at the a level of significance.” 
If the interval encloses the hypothesized value, then the appropriate conclusion is 
that the data are consistent with the hypothesis (it is important, however, to note that 
failing to reject a hypothesis is not the same as saying that the hypothesis is true-see 
the following examples). Most practitioners find confidence intervals much more 
informative than the yes/no result of an significance test. See pages 39-40 of Hahn 
and Meeker (1991) and other references given there for further discussion of this 
subject. 

To be more formal, a likelihood ratio test for a single-parameter model can be 
done by comparing the maximum of the likelihood under the “null hypothesis” to the 
maximum of the likelihood over all possible values for the parameter, A likelihood 
much smaller under the null hypothesis provides evidence to refute the hypothesis. 
Specifically, for the exponential distribution, the single-point null hypothesis 8 = O0 
should be rejected if 

(7.5) 

where is the ML estimate of 8. Rejection implies that the data are not consistent 
with the null hypothesis. Using the definition given in Section 7.3.1, i t  is easy to see 
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that a likelihood-based confidence interval is the set of all values of 8 that would not 
be rejected under the likelihood ratio test defined in (7.5). 

Example 7.7 Likelihood-Ratio Test for the Mean Time Between Arrivals of 
a Particles. Suppose that investigators conducted the a-particle experiment to test 
the hypothesis that the mean time between arrivals of a particles is 8 = 650. Based 
on the confidence intervals for n = 200 in Table 7.2, we would have to conclude that 
there is not enough evidence to reject this hypothesis. Correspondingly, 

-210g [L(650)/L(572.3)] = 2.94 < x ; ~ ~ ; ~ )= 3.84 

again showing that there is not sufficient evidence in the n = 200 sample to reject the 
hypothesis. Using the n = 2000 sample, however, does provide sufficient evidence 
to reject the hypothesis that 8 = 650 at the 5% level of significance, as 650 is not in 
the 95% confidence interval. 0 

7.3.3 Normal-Approximation Confidence Intervals for 8 

A 100(1 - a)%normal-approximation confidence interval for 8 is 
z h 


h 

[@, 81 = 8 ? ~ ( ~ - ~ / ~ ) s e g .  (7.6) 

A one-sided approximate 100(1 -a)%confidence bound can be obtained by replacing 
q I- a / 2 )  with z( 1 - a )  in (7.6) and using the appropriate endpoint of the resulting two- 
sided confidence interval. 

An estimate of the standard error of is typically computed from the “observed 
information” as 

A 

where the second derivative is evaluated at 6.  This computation is a special case of 
(B.10)in Appendix Section B.6.4. The second derivative measures curvature of L(8) 
at 5.If C(8) is approximately quadratic, large curIature implies a narrow likelihood 
and thus a small estimate of the standard error of 8. 

The approximate confidence interval in (7.6) is based on the assumption that the 
distribution of 

h 

8 - 8
2; = 7 (7.8)se-, 

can be approximated by a NOR(0, 1 )  distribution. Then 

(7.9) 

which implies 

(7.10) 
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-because - -z(,12). The approximation is usually better for large samples 
but may be poor for small samples. See Appendix Section B.5 for more information 
on such large-sample approximations. 

Example 7.8 Normal-Approximation Conjklence Intervals for the Mean Time 
Between Arrivals of a Particles. For the n = 200 a-particle data &i = 4 I .72 
and an approximate 95% confidence interval for 8 based on the assumption that 
2; NOR(0,l) is 

[S, G] = 572.3 _+ 1.960(41.72) = [490, 6531. 

Thus we are 95% confident that 8 is in this interval. 0 

An alternative approximate confidence interval for positive quantities like 8 is 
h[e, is1 = [5/w, 8 x U’], (7.11)  

where M/ = exp(z(l-,/2,S^e;/&. This interval is based on the assumption that the 
distribution of 

(7.12) 

can be approximated by a NOR(0, 1) distribution, where s^elog(g)= ŝe;/g is obtained 
by using the delta method in Appendix Section B.2. The confidence interval in (7.1 1 )  
follows because an approximate loo( 1 - a)% confidence interval for log( 0) is 

h 
A

[lOg_W, l0&)1 = log(@ * Z( I -a/2)Selop(@. 
For a parameter, like 8, that must be positive, (7.1 1) is often suggested as providing 

positive interval endpoints and probably a more accurate approximate interval than 
(7.6). Although there is no guarantee that (7.1 1) will be more accurate than (7.6) in 
a particular setting, the sampling distribution of Zlog(;)is usually more symmetric 
than that of 2; and the log transformation ensures that the lower endpoint of the 
confidence interval will be positive [which is not always so for confidence intervals 
based on (7.6)]. 

Example 7.9 Normal-Approximation Conjklence Intervals for the Mean Time 
Between Arrivals of a Particles. For the a-particle data, an approximate 95% 
confidence interval for 8 based on the assumption that Z,og(;) NOR(0, 1) is 

[S, 61 = [572.3/1.1536, 572.3 X 1,15361 = [496, 6601, 

where M, = exp(1.960 X 41.72/572.3} = 1.1536. 0 

7.4 CONFIDENCE INTERVALS FOR FUNCTIONS OF e 

For one-parameter distributions like the exponential, confidence intervals for 8 can 
be translated directly into confidence intervals for monotone functions of 8. 
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7.4.1 Confidence Intervals for the Arrival Rate 

The arrival rate A = l / 8  is a decreasing function of 8. Thus the upper limit is 
substituted for 8 to get a lower limit for h and vice versa. The confidence interval for 
A obtained in this manner will contain A if and only if the corresponding interval for 
8 contains 8. Thus the confidence interval for A has the same confidence level as the 
interval for 8. 

Example 7.I0 Likelihood-Based Conjidence Intervals for the Arrival Rate of 
a Particles. Using the likelihood-based confidence interval for the n = 200 sample 
in Table 7.2, 

[ A _ ,  h ]  = [1/6, 1/81 = [.00151, .00201]. 

Also, the ML estimate of A is obtained as = 1/g = .00175. 0 

7.4.2 Confidence Intervals for F(t; 0) 

Because F ( t ;  8) is a decreasing function of 8, the confidence interval for the expo- 
nential distribution F( t , ;  8) for a particular t, is 

[F( f , ) ,  F(t,)l = [ W e ;  %, w e ;  @)I. 
One can compute a set of pointwise confidence intervals for a range of values o f t .  
In this case (unlike in Section 3.8), the set can also be interpreted as simultaneous 
confidence bands for the entire exponential cdf F ( t ;  8). This is because 8 is the 
only unknown parameter for this model and the bands will contain the unknown 
exponential cdf F ( t ;0) if and only if the corresponding confidence interval for 8 
contains the unknown true 8. 

Example 7.I I Conjidence Intervals for the a-Particle Time Between Arrivals 
cdf. The dotted lines in Figure 7.3 are drawn through a set of pointwise normal- 
approximation 95% confidence intervals for the exponential F ( t ;  6 ) .  0 

In subsequent chapters where models have more than one parameter (as with 
the nonparametric simultaneous confidence bands in Section 3.8), a collection of 
intervals must be handled differently because the confidence level applies only to the 
process of constructing an interval for a single point in time t,. Generally, making a 
simultaneous statement would require either a wider set of bands or a lower level of 
confidence. 

7.5 COMPARISON OF CONFIDENCE INTERVAL PROCEDURES 

For the particle arrival data, Table 7.2 compares approximate 95% confidence intervals 
for 8 based on the likelihood, the normal approximation ZiOgc;) NOR(0, l) ,  and 
the normal approximation Z; -L NOR(0, I ) .  Statistical theory suggests that, in large 
samples, the log likelihood will be approximately quadratic with the approximation 
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improving as the sample size increases and that all of the different procedures for 
computing confidence intervals will give similar answers. This is consistent with the 
results in Table 7.2. For the sample with n = 20, however, there are some rather large 
differences among the procedures. 

Simulation studies have shown that the computationally demanding likelihood 
procedure can be expected to provide better intervals (i.e., an actual coverage proba- 
bility closer to the nominal confidence level). Also, between the other two simple-to- 
compute procedures, the normal-approximation procedure based on log(g) provides 
a better approximation. 

It is possible to improve slightly the normal-approximation procedure in (7.8) by 
using the p quantile of the Student’s t distribution, t(,,”),in place of the standard 
normal quantile, qPlin (7.6) or (7.1 1). For complete data, n - 1 is an obvious choice 
for the degrees of freedom v. This is also a reasonable choice for censored data 
(a correction for censoring might be contemplated, but no generally useful rule is 
known). The improvement afforded by using t (p.v)instead of +,) is negligible in 
samples larger than 30 or so because q,,;”) approaches q,,) for large v. In samples 
with fewer than 30 or even 50 observations, any normal-approximation procedure 
can be rather crude (especially for the single-sided coverage probabilities, which are 
important in the common situation where the cost of being outside the interval differs 
from one side to the other). Usually, however, the normal-approximation procedures 
are quick, useful, and adequate for exploratory work. When more accurate confidence 
interval approximations are required (e.g., for reporting final results), one should use 
likelihood procedures or other procedures based on simulation (to be described in 
Chapter 9). 

7.6 LIKELIHOOD FOR EXACT FAILURE TIMES 

7.6.1 Correct Likelihood for Observations Reported as Exact Failures 

Consider the diesel generator fan data in Appendix Table C.l. Although time is a 
continuous variable and the failure times were initially reported as exact times, these 
data (as with most data) are actually discrete. In this case, the reported failure times 
were rounded to the nearest 10 hours. Thus the “correct likelihood” is one for interval- 
censored data (7.3). For example, with the exponential distribution, the likelihood 
contribution (probability) of the failure recorded at 450 hours is 

7.6.2 Using the Density Approximation for Observations Reported 
as Exact Values 

The traditional and commonly used form of the likelihood for an observation, say, 
the ith, reported as an “exact” failure at time t i ,  is 

(7.13) 
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where f ( t i ;0) = dF(ti;0 ) /d t  is the assumed pdf for the random variable T .  The 
density approximation in (7.13) is convenient, easy-to-use, and, in some simple 
special cases, yields closed-form equations for ML estimates. 

The use of the density approximation (7.13) instead of the correct discrete likeli- 
hood can be justified as follows. For most statistical models, the contribution to the 
likelihood (i.e., probability of the data) of observations reported as exact values can, 
for small A, > 0, be approximated by 

where A; does not depend on 0. Because the right-hand sides of (7.14) and (7.13) 
differ by a factor of Ai, when the density approximation is used, the approximate 
likelihood in (7.13) differs from the probability in (7.14) by a constant scale factor. 
As long as the approximation in (7.14) is adequate and because A; does not depend 
on 6, however, the general character (Le., the shape and the location of the maximum) 
of the likelihood is not affected. 

7.6.3 ML Estimates for the Exponential 8 Based on the 
Density Approximation 

The density approximation to the likelihood generally provides an adequate approxi- 
mation for the exponential distribution. For a sample consisting of only right-censored 
observations and observations reported as exact failure times (and no left-censored 
or interval-censored observations), it is easy to show that the ML estimate of 8 is 
computed as 

- mo = - (7.15)
r 

where TIT = E:=,ti is known as the “total time on test’’ and where t i ,  i = 1, .  . . ,n,  
are the reported failure times for units that failed and the running (or censoring) time 
for the right-censored observations. Note that the sum runs over all of the failures 
and each of the censoring times. In this case, an estimate of standard error of 8 is a 
special case of (7.7) and is computed as 

h h 

62 0 
(7.16) 

where r is the number of failures. 

Example 7.12 Comparison of M L  Estimates for the Fan Data Based on 
the Correct Likelihood and the Density Approximation. Fitting the exponential 
distribution to the diesel generator fan data in Appendix Table C. 1 using the “correct” 
likelihood contribution in (7.3) and the de5sity approximation in (7.13) gives, to seven 
decimal places, the same answers [log(O) = 10.26476 and Glog(i1= .2886757]. 
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Although the agreement is nearly exact in this case, with other distributions, the 
degree of agreement will not be so good unless the A*are small. 0 

7.6.4 Confidence Intervals for the Exponential with Complete Data 
or Failure Censoring 

Suppose that a life test starts at time 0 and that all failures are reported as exact 
failures. If the test continues until all units have failed or if the test is terminated after 
a prespecified number r failures (Type I1 censoring), then the ML estimate of 8 is 
h 

8 = 7TT/r and an exact 100( 1 - a)% confidence interval for 8 can be computed 
from 

This interval is based on the fact that 2 ( K T / O )  - ,y:2r).This confidence interval 
procedure has exactly the specified confidence level 100( 1 - a)%.Lawless (1982, 
page 127) and Bain and Engelhardt (1991, page 122) provide technical details and 
justification for this method. With time (Type I )  censoring, the procedure still provides 
a useful approximation. 

Example 7.13 Confidence Interval for the Mean Life of a New Insulating 
Material. A life test for a new insulating material used 25 specimens. The specimens 
were tested simultaneously at 30 kV (considerably higher than the rated voltage of 20 
kV).The test was run until 15 of the specimens failed (failure or Type I1 censoring). 
The failure times were recorded as 1.08, 12.20, 17.80, 19.10, 26.00, 27.90, 28.20, 
32.20, 35.90, 43.50, 44.00, 45.20, 45.70, 46.30, and 47.80 hours. The total time on 
test for these data is 1.08 + 12.20 + - - + 47.80 + 10 X 47.80 = 950.88 hours and 
thus the ML estimate of 8 is 950.88/15 = 63.392 hours. A 95% confidence interval 
for 8 is 

= [40.48,113.26).
46.98 ’ 16.79 

An estimate of the standard error of 6 using (7.16) is ŝ ez = d(63.392)’/15 = 16.37. 
0 


7.7 DATA ANALYSIS WITH NO FAILURES 

For data on high-reliability components, it is possible that there will be no failures. 
The ML estimate of the exponential distribution mean is then 6 = x (and sometimes 
it is said that the ML estimate “does not exist”). This is not a useful answer because, 
generally, it is known that there would have been failures if the period of testing 
had been extended. With zero failures and an assumed exponential distribution it is, 
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however, possible to obtain a lower confidence bound for 8. In particular, if there 
are no failures in a life test with total time on test TIT (defined in Section 7.6.3), a 
conservative 100(1 - a)%lower confidence bound on 8 is 

(7.17) 

because x ; , - ~ ; ~ , -2 log(a). This bound is based on the fact that under the ex- = 

ponential failure-time distribution, with immediate replacement of failed units, the 
number of failures observed in a life test with a fixed total time on test has a Poisson 
distribution. 

As in Section 7.4, this confidence bound can be translated into a lower confidence 
bound for functions of 8 like t,7 for specified p or an upper confidence bound for 
F(r , )  for a specified t , .  Unless 77T is large, however, the resulting bound may not be 
very informative. See Nelson (1985) for justification and further discussion of this 
method. 

Example 7.14 Analysis of the Diesel Generator Fan Data Assuming Removal 
After 200 Hours of Service. For this example, suppose that each of the diesel 
generator fans described in Example 1.4 had been removed unfailed after 200 hours 
of service. There was a total of 70 fans in the study. None failed before 200 hours of 
service. Thus TIT = 14,000 hours. A conservative 95% lower confidence bound on 
8 is 

Using the entire data set, the point estimate of @ was 28,701 with a likelihood-based 
approximate 95% lower confidence bound of @ = 18,485 hours. This shows how 
little information comes from a short test with zero or few failures. 

A conservative 95% upper confidence bound on F ( 10000;@),the probability of 
failing before 10,000 hours, is F(10000) = F(1OOOO;S )  = 1 -exp( - 10000/4674) = 

382. Again, due to the limited amount of information from the short test, this upper 
bound is not very useful for making a statement on the fan’s 10,000-hour reliability 
[of course, the only lower bound that can be computed for F( 1oooO;0) is 0, which 
also is not very useful]. 0 

BIBLIOGRAPHIC NOTES 

The ML method dates back to early work by Fisher (1925) and has been used as 
a method for constructing estimators ever since. Statistical theory for ML is briefly 
covered in most textbooks on mathematical statistics. Some particularly useful refer- 
ences for the approach used here are Kulldorff ( 1961), Kempthorne and Folks ( 1971), 
Rao (1973), and Cox and Hinkley (1974), Lehmann (1983), Nelson (1982), Law- 
less ( 1982), Casella and Berger ( 1990), and Lindsey ( 1996). Epstein and Sobel ( 1953) 
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described the fundamental ideas of using the exponential distribution as a model for 
life data. 

Anscombe (1964) and Sprott (1973) suggest using the transformed parameter 
U = 6-’13 for the exponential parameter because it will make the third derivative 
of exponential log likelihood function nearly 0. The important implication is that 
this transformation makes the exponential log likelihood function nearly symmetric 
and approximately quadratic in U .  In this scale, the normal-approximation inferences 
provide an excellent approximation to the likelihood-based inferences. Meeker and 
Escobar (1995) show that the normal-approximation intervals can be viewed as 
approximations to likelihood intervals obtained by using a quadratic approximation 
to the log likelihood function. 

Meeker (1986) uses asymptotic variances to show that binning data will not 
seriously affect the precision of ML estimates as long as there are a reasonable 
number of bins (say, more than 5 or 6) and that the bins are chosen so that the number 
of observations in the different bins is not too uneven. 

For examples of failures of the “density approximation” to the likelihood, see 
Le Cam (1990), Friedman and Gertsbakh (1980), and Meeker and Escobar ( I  994). 
Each of these references describes a model or models for which the “density ap- 
proximation” likelihood has a path or paths in the parameter space along which L(6)  
approaches E. In these cases, using the “correct” likelihood based on discrete data 
eliminates the singularity in L(8). 

EXERCISES 

7.1. Consider the case of n observations reported as “exact” failure times from an 
EXP(8) distribution. 

Show that the ML estimate, $, of 8 is the sample mean, say, 7 = 
I ti/n. 

Show that the relative likelihood has the simple expression 

R(8) = exp(n) (:)“exp(-$). 

Explain how to use R(8)  to obtain an approximate confidence interval 
for 8 based on inverting a likelihood ratio test (i.e., assume that when 
evaluated at the true value of 8,-2 log[R(B)] xt). 
Suppose that n = 4 and t = 37. Obtain the ML estimate and an approx- 
imate 90% confidence interval for 8 using the method in part (c). Plot 
R ( 8 ) to facilitate your work. 

t l , . . . ,t ,  be the failure times in a singly time-censored sample of size IZ 
from an EXP(0) distribution. Suppose that the prespecified censoring time is 
t(,.Then the total time on test is 777’ = E;=,ti + ( n  - r‘)tc. 
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(a) Write an expression for the log likelihood using the density approximation 
for the observations reported as exact failures. 

(b) Show that the ML estimate is = TTT/r-. 

( c )  Use the result of part (a) to show that the ML estimate of 8 is equal to 
(or “does not exist”) when all the observations are censored. 

(d) Derive an expression for the relative likelihood similar to the one given 
in part (b) of Problem 7.1 (note that in this case TTT/r plays the role of 
7 and r the role of n ) .  

7.3. Refer to Exercise 7.2. Show that if there are no failures by time I , . ,  then L ( 8 )  
always increases as a function of 8 and thus L(0) does not have a maximum. 

7.4. A large electronic system contains thousands of copies of a particular compo- 
nent, which we will refer to as Component-A (each system is custom-made 
to order and the actual number of components varies with the size of the par- 
ticular system). The failure rate for Component-A is small, but because there 
are so many of the components in operation, failures are reported from time to 
time. A field-tracking study was conducted to estimate the failure rate of a new 
design for Component-A (which was intended to provide better reliability at 
lower cost), to see if there was any real improvement. A number of systems 
were put into service simultaneously and monitored for 10oO hours. The total 
number of copies of Component-A in all of the systems was 9432. Failures of 
Component-A were observed at 345, 556, 7 12, and 976 hours. Failure mode 
analysis suggested that the failures were due to random shocks rather than 
any kind of quality defects or wearout. This, along with past experience with 
simpler components, suggested that an exponential distribution might be an 
appropriate model for the lifetime of Component-A. 
(a) Compute the ML estimate for the exponential mean 8 for Component-A. 
(b) Compute an approximate 05% confidence interval for 0. 

(c) Explain the interpretation of  the confidence interval obtained in part (b). 
(d) Explain the interpretation of the hazard function A = 1 / O .  In what way 

can this quantity be used to compute failure rates for Component-A or 
for the overall system’! 

(e) Use the results of part (b) to obtain an approximate 95% confidence 
interval for A .  Express this in units of FITs (failures per 10‘‘ hours of 
operation). 

( f )  The hazard for the old part was hold = 8.5 X 10-’ (or 850 FITs). How 
strong is the evidence that reliability has improved with the new design? 
Describe how you would phrase a statement about the relative iniprokre- 
ment. 

( 9 )  Compute and plot the exponential F ( t )  from 100 to 10,000 hours on 
Weibull paper. Comment on the usefulness of this plot. 
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7.5. The manufacturer of computer hard disks reports in its promotional literature 
an “MTBF” figure. This figure is obtained by taking a sample of units from 
each day’s production, putting the units on test for a period t,. (perhaps I 
week), pooling the available data over several months, and computing 

- 7 7 7 -
MTBF = -, 

r 

where TTT is the total time on test of all units that were tested and r is 
the observed number of failures (typically a very small number of drives). 
Reported figures are typically numbers like MTBF = 30 years. Comment 
on the usefulness and validity of the use of this figure for characterizing the 
reliability of disk drives. 

7.6. Nelson (1982, page 105) provides data on minutes to breakdown for an 
insulating fluid. There were 11 tests at 30 kV. After 100minutes, there were 7 
breakdowns (failures) at the following times (in minutes): 7.74, 17.05, 20.46, 
2 1.02, 22.66,43.40,47.30. The other 4 units had not failed. 
(a) Make a Weibull probability plot and an exponential probability plot for 

these data. 
(b) What do you think about the suggestion of using an exponential distribu- 

tion, EXP( O ) ,  to model the data? 
( c )  Assuming an exponential distribution, obtain the ML estimate of 8 and 

give an estimate of se-,. 
(a) Compute an approximate 95% confidence interval for 8. 
( e )  Compute the ML estimate oft,!, the . l  quantile of the time to breakdown 

distribution. 
(f) Compute an approximate 95% confidence interval for ? , I .  

7.7. A life test for a new insulating material used 50 specimens. The specimens 
were tested simultaneously at 40 kV (considerably higher than the rated 
voltage of 20 kV). The test was run until 10 of the specimens failed (this is 
known as “failure” or Type I1 censoring). The failure times were recorded as 
8, 11, 12, 13, 19, 21, 28, 34, 36, and 44 hours. The engineers responsible for 
the reliability believe, based on previous experience with similar materials 
tested under similar conditions, that the failure-time distribution at 40 kV can 
be described by an EXP(8) distribution. 
(a) Construct an exponential probability plot of the data. Does the plot pro- 

vide any evidence that the exponential distribution is inadequate? 
(b) Compute TTT,the total time on test, and G, the ML estimate for 0. 
( c )  Compute an estimate of the standard error of G. 
(d) Compute 95% confidence intervals for 8 based on Z; A- NOR(0, l), 

Z,og(z, NOR(0, I ) ,  and the exact distribution of 2(TTT/8). Which of 
these intervals would you feel comfortable using? Why? 
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(e) For this problem, is there any extrapolation involved in estimating t?? 
Explain. 

(f) Compute 95% confidence intervals for 1.1, h(50;O ) ,  and F(50;0) based 
on the exact distribution of 2(777'/O).  Is there any extrapolation involved 
in these intervals'! Explain. 

7.8. Use the results from Exercise 7.7 to compute and plot (use an exponential 
plot) the ML estimate of F ( t ;0) and 95% simultaneous parametric confidence 
bands for F ( t ;0),based on the exact distribution of 2 ( 7 7 T / O ) .  

7.9. A life test was conducted for the same insulating material described in Exer-
cise 7.7. Again, 50 specimens were tested, but at 25 kV. The test ran for 20 
hours without any failures. The test had to be terminated at this time so that 
the test equipment could be used for other experiments. 
(a) Compute the 77T and show why the ML estimate for 0 is equal to x. 
(b) Compute a conservative 95% lower confidence bound for 0. 

(c) For this problem, is there any extrapolation involved in computing the 
lower confidence bound for O? Explain. 

(d) Use the result in part (b) to compute a conservative 95% lower confidence 
bound for t , I ,and conservative 95% upper confidence bounds for h(50;6 )  
and F ( 5 0 ;0). 

A7.10. Refer to Exercise 7.1 to show that in this case 2n%/O has a x2 distribution with 
2n degrees of freedom and use this to obtain an expression for a 100(1 - a)% 
confidence interval for 8. 

A7.11. Refer to Exercise 7.2. Derive an expression for the bias of [i.e., E(8) - 61, 
conditional on the existence of the estimator (i.e., conditional on r > 0) and 
show that the bias is negligible when t,. is large. 

A7.12. Refer to Exercise 7.2. Derive (7.16). 

A7.13. Consider n observations with inspection data from an EXP( 0) distribution 
with 0 < 8 < W. Show the following: 
(a) The ML estimate of 8 does not exist (i.e., there is no unique maximum 

of the likelihood function) when dl = n or d,,*+1 = n. 
(b) When d; = n ( i  # 1,  m + l) ,  the ML estimator is 



C H A P T E R  8 

Maximum Likelihood for 
Log-Location-Scale Distributions 

Objectives 

This chapter explains: 

Likelihood methods for fitting log-location-scale distributions (especially the 
Weibull and lognormal distributions). 
Likelihood confidence intervalshegions for model parameters and for functions 
of model parameters. 
Normal-approximation confidence intervalshegions. 
Estimation and confidence intervals for log-location-scale distributions with a 
given shape parameter. 

Overview 

This chapter extends the methods in Chapter 7 to two-parameter distributions that 
are based on location-scale distributions. These distributions, including the popular 
lognormal and Weibull distributions, are the workhorses of parametric reliability 
modeling. Section 8.2 shows how to compute the likelihood for these distributions 
and censored data. The distributions and estimation methods used in this chapter 
are also used in the regression and accelerated testing chapters (Chapters 17 and 
19).Sections 8.3 and 8.4 show how to compute confidence regions and intervals for 
parameters and functions of the parameters. Section 8.5 shows the effect of using a 
given value of the scale parameter (T instead of estimating it as if it were unknown. 

8.1 INTRODUCTION 

This chapter describes fitting of and making inferences from the two-parameter 
Weibull and lognormal life distributions (Section 11.7 discusses estimation of the 
parameters of the three-parameter versions of these distributions). The methods also 

173 
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apply to other location-scale distributions or distributions that can be transformed into 
a location-scale form including the normal, smallest extreme value, largest extreme 
value, logistic, and loglogistic distributions. 

For these distributions and exact failure times (i.e., when the amount of roundoff 
is small relative to the variability in the data), the density approximation in (7.13) 
adequately approximates the correct discrete likelihood on the left-hand side of 
(7.14). Thus we will use (7.13) to represent the likelihood for exact observations in 
this chapter. 

8.2 LIKELIHOOD 

8.2.1 Likelihood for Location-Scale Distributions 

The likelihood for a sample y l , .  . . ,y n from a location-scale distribution for a random 
variable --cx) < Y < 30, consisting of exact (i.e., not censored) and right-censored 
observations can be written as 

i =  I i=  I 

where 

1 if yi is an exact observation 
0 if y, is a right-censored observation. 

As defined in Section 4.3, for a particular location-scale distribution, substitute the 
appropriate @ and 4. For the smallest extreme value distribution substitute aSe\, 
and 4sev.Similarly, for the normal distribution, substitute a,,,,and and for the 
logistic distribution substitute <D1.e,s and hog i s  + Left-ce nsored and interval -censored 
observations could be factored in, using these same functions, as described in Sec-
tion 2.4.3. 

When there is no censoring, the normal distribution likelihood simplifies and it 
is possible to solve explicitly to obtain the values of and U that maximize this 
likelihood. This is a standard exercise in most textbooks on mathematical statistics. 

8.2.2 Likelihood for the Lognormal, Weibull, and Other 
Log-Location-Scale Distributions 

Because the logarithm of lognormal, Weibull, and loglogistic random variables follow 
corresponding location-scale distributions, the likelihoods for these distributions can 
also be written in terms of the standardized location-scale distributions. In particular, 
for a sample consisting of exact failure times and right-censored observations, the 
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likelihood can be expressed as 

where 6, again indicates whether observation i is a failure or a right-censored ob- 
servation. Left-censored and interval-censored observations could be factored in as 
described in Section 2.4.3. It is important to note that some computer programs omit 
the 1/ t l  term in the density part of the likelihood. Because this term does not depend 
on the unknown parameters, this has no effect on the location of the ML estimates. It 
does, however, affect the reported value of the likelihood (or more commonly the log 
likelihood) at the maximum, and therefore caution should be used when comparing 
values of log likelihoods computed with different software. 

Again, the particular @ and C#I functions determine the distribution to be used. For 
the Weibull distribution, use and for the lognormal, use anorand and 
for the loglogistic, use @log,s and 

Example 8.1 Shock Absorber Data Likelihood and ML Estimates. This ex- 
ample returns to the shock absorber data in Examples 3.8 and 3.9. The Weibull and 
lognormal probability plots with nonparametric simultaneous confidence bands in 
Figures 6.8 and 6.9 indicated no strong preference for either distribution. Figure 8.1 
is a contour plot of the relative likelihood function R(p,U )  = L ( p ,o ) / L ( & ,(3) for 
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Figure 8.1. Weibull relative likelihood for the shock absorber data. 
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the Weibull distribution model. The surface is well behaved with a unique maximum 
(i.e., = 10.23 and i? = .3164) defining the ML estimates. The orientation of the 
contours indicates some positive correlation between and G .  0 

Fitting a Weibull (lognormal) distribution is equivalent to fitting a straight line 
through the data on a Weibull (lognormal) probability plot, using the ML criterion to 
choose the line. Generally when fitting a distribution with ML, it is convenient to use 
a probability plot that also shows the fitted distribution. 

Example 8.2 Comparison of Weibull and Lognormal Distribution Fits to the 
Shock Absorber Data. Figures 8.2 and 8.3 give Weibull and lognormal probability 
plots, respectively, with the corresponding ML estimates of F ( t )  represented by the 
straight lines in the plots. The dotted lines are drawn through a set of 95% pointwise 
normal-approximation confidence intervals for F ( t )  (computed as described in Sec-
tion 8.4.3). The curved line going through the points on the lognormal probability 
plot is the corresponding ML estimate of the Weibull F(t) .  

Table 8.1 gives ML estimates, standard errors, and confidence intervals for both 
the Weibull and lognormal distributions. The following sections describe methods for 
computing these standard errors and confidence intervals. The parameters p and CT 
are not directly comparable because these parameters have different interpretations 
in the Weibull and lognormal distributions. Comparing Figures 8.2 and 8.3 and the 

5000 loo00 i5000 2oooO 25000 30000 

Kilometers 

Figure 8.2. Weibull probability plot of shock absorber failure times (both failure modes) with maximum 
likelihood estimates and pointwise approximate 95%confidence intervals for F (  1 ) .  
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5000 1OOOO 15000 20000 25000 30000 

Kilometers 
Figure 8.3. Lognormal probability plot of shock absorber failure times (both failure modes) with maxi- 
mum likelihood estimate and pointwise approximate 95% confidence intervals for F ( r ) .  The cuned line 
going through the points is the Weibull maximum likelihood estimate. 

estimates of t , I  and F(  10000) indicates good agreement for inferences from these 
two distributions within the range of the data. Although Figures 8.2 and 8.3 suggest 
a slightly better fit for the Weibull distribution, as methods described in Section 1 1.3 
show, however, these data could reasonably have arisen from either of these two 
distributions. 

In situations like this, one should be cautious about making inferences in the tails 
of the distributions and outside the range of the data. The estimates there can be 
importantly different and the data do not strongly suggest one model over the other. 
In general, it is useful and important to fit different distributions to compare results 
on questions of interest. 0 

8.3 LIKELIHOOD CONFIDENCE REGIONS AND INTERVALS 

8.3.1 Joint Confidence Regions for p and U 

As described in Appendix Section B.6.6,any of the constant-likelihood contour lines 
on Figure 8.1 define an approximate joint confidence region for p and (T that can 
be calibrated accurately, even in moderately small samples (e.g., 15-20 failures), 
by using the large-sample x2 approximation for the distribution of the likelihood- 
ratio statistic. For a two-dimensional relative likelihood (or two-dimensional profile 
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Table 8.1. Comparison of Shock Absorber Estimates and Confidence Intervals 

Distribution 

Weibull Lognormal 

ML estimate @ 10.23 10.14 

Standard error Gc, .I099 .1442 

Approximate 95% Conjdence Inten~ils j b r  p 

Based on the likelihood [10.06, 10.541 [9.91, 10.531 

-L.Based on Z ,  NOR(0, 1 ) [ 10.0I ,  10.451 [9.86, 10.431 

ML estimate Cr .3 164 .5301 

Standard error G?e; .073 I7 . I  127 

Approximate 95% Conjidence 1ntervulsJi)r U 

Based on the likelihood [.210, .527] [.367, ,8581 

Based on Zlo)g(c,-L NOR(0, I )  [ .201, .498] [ .349, ,8041 

Based on Z ,  NOR(0, I  ) [.173, .460] [ 309, .751 ] 

ML estimate 7, 13602 12910 

Standard error s^e;, 1982 1667 

Approximate 95% ConJidenceInter~ulsJbrt I 

Based on the likelihood [ 9400, 17300j [9400, I63001 

Based on Zl,,,,;,) NOR(0, I ) [ 10200, 181001 [ 10000, 166001 -L. 

Based on Z;, A NOR(0, 1 ) (9700, 175001 (9600, I62001 

ML estimate F( 10000) .03908 .(I3896 

Standard error Gp(l(wN, ,02480 .02561 

Approximute 95% Conjidence Intenuls j o r  F (  10000) 

Based on the likelihood [.0092, . I  1361 [.0085, . 1  1591 

Based on ZIoglt,~)NOR(0, 1 )  [.OI 10, .I2921 [.0105, .I3421 

Based on Zp NOR(0, I )  [ -.0095, .0877] [ -.0112, .0892] 
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Figure 8.4. Weibull likelihood joint confidence regions for CL and v for the shock absorber data. 

likelihood), the region R(6,,6 j )  > exp[-$,-a;2,/2]= CY provides an approximate 
100(1 - a)%joint confidence region for 6j and 6,. 

Example 8.3 Joint Confidence Region for Shock Absorber (p,a). In Fig-
ure 8.1, the region R(p ,a )  > e x p ( - ~ % ~ ; ~ ) / 2 )= . l  provides an approximate 90% 
joint likelihood-based confidence region for p and U .  Figure 8.4, similar to Fig-
ure 8.1, plots contours of constant values of lOOPr{Xi 5 -2 log[R(p, a)]}giving 
approximate confidence levels corresponding to joint likelihood-based confidence 
regions for p and U. 0 

8.3.2 Individual Confidence Intervals for p and a 

The profile likelihood for a single parameter summarizes the sample information for 
that parameter and provides likelihood confidence intervals. 

Confdence Interval for p 
The profile likelihood for p is 

The interval over which R(p) > exp[-,ytl-,,,)/2] is an approximate lOO(1 - a)% 
confidence interval for p. The general theory for likelihood confidence intervals is 
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Figure 8.5. Weibull profile likelihood R ( p )for the shock absorber data. 

given in Appendix Section B.6.6. Intuitively, we want to include all values of p that 
have high likelihood. Using (8.2), for every fixed value of p,  find the point of highest 
relative likelihood by maximizing the relative likelihood with respect to U. This gives 
the profile likelihood level for that value of p. Values of p with high profile likelihood 
are more plausible than those with lower values of profile likelihood. 

Example 8.4 Profile Likelihood R(p)for the Shock Absorber Data. Fig-
ure 8.5 shows R(p)  and indicates how to obtain the likelihood-based approximate 
95% confidence interval; the right-hand scale indicates the appropriate position for 
drawing the horizontal line to obtain intervals with other levels of confidence. Nurner- 
ical values of the confidence interval endpoints are given in Table 8.1, for comparison 
with other intervals that are described later in this chapter. 0 

Example 7.6 shows how to use the profile likelihood to obtain one-sided confidence 
bounds. 

ConJidence Interval for U 
The profile likelihood for U is 

The interval over which R(u)> exp[-x~l-,;l,/2] is an approximate 100(1 - a)% 
confidence interval for cr. 

Example 8.5 Profile Likelihood R ( a )  for the Shock Absorber Data. Fig-
ure 8.6 shows R ( a ) and indicates how to obtain the likelihood-based approximate 
95% confidence interval. Table 8.1 gives numerical values. A corresponding interval 
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Figure 8.6. Weibull profile likelihood R ( a )for the shock absorber data. 

for /3 = 1 / a  can be obtained by taking the reciprocal of the endpoints of the interval 
for a. This interval provides strong evidence that U < 1 (or /3 > I ) ,  indicating that 
the shock absorber population has a hazard function that increases with age. This is 
consistent with the suggestion that shock absorbers tend to wear out. 0 

8.3.3 Likelihood Confidence Intervals for Functions of p and cr 

The parameters for a statistical model are often chosen for convenience, by tradition, 
so that the parameters have scientific meaning, or for numerical reasons. This chapter, 
for convenience and consistency, uses the location and scale parameters p and a 
as the basic distribution parameters as these are most commonly used to describe 
location-scale distributions. Interest, however, often centers on functions of these 
parameters like probabilities p = F ( t )  = @[(log(t)-p) /a ]or distribution quantiles 
like rr, = F - ' ( p )  = exp[p + @-'(p)a].In general, the ML estimator of a function 
g(p,a)is ĝ  = g(@, G). Due to this invariance property of ML estimators, likelihood- 
based methods can, in principle, be applied, as described above, to make inferences 
about such functions. For any function of interest, this can be done by defining a 
one-to-one transformation (or reparameterization), g(p,a )  = [ g ,(p ,a),g2(p,U)], 
that contains the function of interest among its elements. Either of the new parameters 
may be identical to the old ones. Using this method to compute confidence intervals 
for the elements of g(p,a)requires that the first partial derivatives of g(p,a ) be 
continuous. Then ML fitting can be carried out and profile plots can be made for this 
new parameterization in a manner that is the same as that described above for ( p ,a). 
This provides a procedure for obtaining ML estimates and likelihood confidence 
intervals for any scalar or vector function of (p ,a).If one can readily computeg(k, a) 
and its inverse, this method is simple to implement. Otherwise, iterative numerical 
methods for obtaining the inverse are needed, requiring more computing time. 
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ConJidence Interval for tp 
The profile likelihood for the p quantile t,, = exp[p + (P-'(p)crlis 

where the likelihood under the reparameterized model, L(t,],U ) , is obtained by sub-
stituting log(?,) - W ' ( p ) ufor p in the expression (8.1) for L(p,U ) .  

Example 8.6 Profile Likelihood for Weibull Quantiles from the Shock Ab- 
sorber Data. Figure 8.7 shows a contour plot for the relative likelihood R(r,1, U ) .  
The plot gives us an immediate sense of the plausible ranges of values for these 
two quantities. In contrast to Figure 8.1, the orientation of the contours indicates a 
negative correlation between?' and i?.Figure 8.8 shows the profile likelihood for t.1 

with an approximate 95% likelihood-based confidence interval indicated. Table 8.1 
gives numerical values. 0 

ConJidence Intervals for F ( f , )  
Likelihood-based confidence intervals for F( t , ) ,  the population failure probability 
at a specified time t,, can be found in a similar manner. In particular, the profile 
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Figure8.7. Contour plot of  Weibull relative likelihood R(t I ,  (T)for the shock absorber data (parameterized 
with f I and U). 
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Figure 8.8. Weibull profile likelihood R ( t , , )for the shock absorber data. 

likelihood for F ( f , )  is 

where L[F(t,),a]for the reparameterized model is obtained by substituting log(t,) -
@ - - ‘ [ F ( t , ) ] afor p in the expression (8.1) for L ( p ,0). 

Example 8.7 Profile Likelihood R[F(t,)]for the Shock Absorber Data. Fig-
ures 8.9 and 8.10 give profile likelihoods for F( 10000)and F(20000),the probabilities 
that a shock absorber will fail by t, = 10,000and t e  =20,0O0kilometers, respectively. 
Note that the profile likelihood for F(20000) is more symmetric than the profile like- 
lihood for F(  10000).One explanation for this is that large-sample approximations 
(which lead to, among other things, approximate symmetry of the likelihood) tend to 
be worse in the tails of the distribution. 0 

8.3.4 Relationship Between Confidence Intervals and Significance Tests 

As described in Section 7.3.2, there is a close relationship between a confidence 
interval and a hypothesis test for a single parameter or other quantity of interest. 
With two or more parameters or other quantities of interest, there is a similar close 
relationship between a confidence region and a joint hypothesis test. This section 
describes the link between confidence intervals, confidence regions, and hypothesis 
tests for simple location-scale distributions. Corresponding general theory is outlined 
in Appendix Sections B.6.5 and B.6.6. Application of these methods to other models is 
usually straightforward and various applications are described in subsequent chapters. 
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Figure 8.9. Weibull profile likelihood R(F(IooOO)]for the shock absorber data. 
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Figure 8.10. Weibull profile likelihood R(F(20000)]for the shock absorber data. 
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Although it can still be argued that confidence regions are more informative than 
the yesho result of a hypothesis test, a joint confidence region for more than two 
quantities of interest can be difficult to display and interpret. 

Formally, a likelihood-ratio test of a hypothesis, for a two-parameter model, can 
be done by comparing the likelihood under the null hypothesis with the maximum of 
the likelihood. The point null hypothesis (po,ao)should be rejected if 

(8.3) 

where ( E , $ )  is the ML estimate of ( p , ~ ) .There are two degrees of freedom for 
this statistic because there are two free parameters in the full model but zero free 
parameters with M and 00 fixed; the difference is two. Then, according to the 
definition given in (8.3), a likelihood-ratio-based confidence region is the set of all 
values of (clg, a")that would not be rejected under the likelihood-ratio test defined 
in (8.3). 

Example 8.8 Likelihood-Ratio Test for the Shock Absorber Weibull Param- 
eters. Suppose that investigators conducted the shock absorber study to test the 
hypothesis that the data from a new design are consistent with a historical Weibull 
distribution (M = 10.1, uo = .35),corresponding to extensive past experience with 
the old design. Substituting into (8.3) gives 

showing that the data are consistent with the hypothesized values at the 5% level of 
=significance. Note also that (m = 1 0 . 1 , ~ ~ o  .35)lies inside the 95% confidence 

region shown in Figure 8.4. If, however, the hypothesized value had been (po = 
10.0,ug = S),the appropriate conclusion would have been that the data do provide 
sufficient evidence to reject the hypothesis at the 1 % (or smaller) level of significance, 
because (M = 10.0,uo = S )does not lie in the 99%confidence region in Figure 8.4. 

0 


For testing just one parameter (or a single function of the two parameters), there is 
also a correspondence between a subset likelihood-ratio test and the profile likelihood 
functions used in Sections 8.3.2 and 8.3.3. For example, we would reject, at the 
1OOa9% level of significance, the hypothesis that a = if 

In this case there is one degree of freedom because there are two free parameters in 
the full model minus the one free parameter p with CT = CT()  constrained, leaving one 
degree of freedom in the optimization. 
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Example 8.9 Likelihood-Ratio Test for U. Suppose that someone has asked 
whether the shock absorber data are consistent with the hypothesis of an exponential 
distribution (i.e., U = 1). This hypothesis should be rejected at the 1% level of 
significance, because (8.4) yields 

-2 log{ m;x [
L( 10.23,.3164) 

Also note that c q )  = 1 is outside the profile likelihood region in Figure 8.6. Thus the 
shock absorber data are not consistent with the exponential distribution. 0 

8.4 NORMAL-APPROXIMATION CONFIDENCE INTERVALS 

Normal-approximation confidence intervals are easy to compute and, at present, are 
used in most commercial statistical packages. Using ML estimates of the model pa- 
rameters and of the variance-covariance matrix of the ML estimates, it is possible 
to compute confidence intervals for parameters and functions of parameters with a 
hand-calculator. The main shortcomings of normal-approximation confidence inter- 
vals are: ( 1 ) they have actual coverage probabilities that can be importantly different 
from the nominal specification, unless the number of Failures is large; and (2) un-
like the likelihood-based intervals, they depend on the transformation used for the 
parameter, as illustrated in the following examples. With moderate-to-large samples 
they are useful for preliminary confidence intervals, where rapid interactive analysis 
is important. 

Normal-approximation confidence regions are based on a yiindmtic cipprarimcrrion 
to the log likelihood and are adequate when the log likelihood is approximately 
quadratic over the confidence region. With large samples, under the usual regularity 
conditions (Appendix Section B.4), the log likelihood is approximately quadratic, 
and thus the normal-approximation and the likelihood-based intervals will be in 
close agreement. The sample size required to have an adequate approximation is not 
easy to characterize because it depends on the model, on the amount of censoring and 
truncation (Section 1 1.6),and on the particular quantity of interest. In some extreme 
examples, with heavy censoring, a sample size I? on the order of thousands is not 
sufficient for a good approximation. With censoring, it is usually better to describe 
the adequacy of large-sample approximations in terms of the number of Failures 
instead of the sample size. When the quadratic approximation to the log likelihood is 
poor, likelihood-based intervals (Section 8.3)or bootstrap-based intervals (Chapter 9) 
should be used instead, especially when reporting final results. 

8.4.1 Parameter Variance-Covariance Matrix 

Appendix Section B.6.7 describes the general theory for computing confidence inter- 
vals based on the large-sample approximate normal distribution of the ML estimators. 
These intervals require an estimate of the variance-covariance matrix for the ML esti- 
mates of the model parameters. For the location-scale distribution, one computes the 
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n 

local estimate 2; of ZGas the inverse of the obsenled information matrix 

where the partial derivatives are evaluated at p = and U = 3. 
The intuitive motivation for this estimator is a generalization of the likelihood 

curvature ideas described in Section 7.3.3. The partial second derivatives describe 
the curvature of the log likelihood at the ML estimate. More curvature in the log 
likelihood surface implies a more concentrated likelihood near E ,  G, and this implies 
more precision. 

Example 8.10 Estimate of Variance-Covariance Matrix for the Shock Ab- 
sorber Data Weibull M L  Estimates. For the shock absorber data and the Weibull 
distribution model, 

h [.O 1208 .00399]
zp,G = .00399 ,00535 

An estimate of the correlation between @and 5 is Fp.6 = &&i,i?)/dGr(@)Gr(i?) 
= .4963.This positive correlation is reflected in the orientation of the likelihood con- 
tours in Figure 8.1. 0 

8.4.2 Confidence Intervals for Model Parameters 

Approximating the distribution of Zp = ( E  - p)/e, by a NOR(0, I )  distribution 
yields an approximate 100(1 - a)%confidence interval for p as 

(8.7) 

A one-sided approximate loo(1 -a)%confidence bound can be obtained by replacing 
q 1- a / 2 )  with Z(I- a )  and using the appropriate endpoint of the two-sided confidence 
interval. 

After constructing a confidence interval for a particular parameter (or other quan- 
tity), it is simple to transform the endpoints of the interval to get a confidence interval 
for the desired monotone function of that parameter. For example, an approximate 
100(1 - a)%confidence interval for 7= exp(p) [still based on the Zp A NOR(0, 1 )--approximation] is [q, q]= [exp(k), exp(F)]. 

Example 8.1I Normal-Approximation Conjidence Interval for the Shock Ab- 
sorber Weibull Scale Parameter. For the shock absorber data, s^e; = d m  = 

.I099 and 
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[p ,  c] = 10.23 t 1.960(.1099)= [ lO .Ol ,  10.451-
is an approximate 95% confidence interval for p. From this, the corresponding 
confidence interval for the Weibull scale parameter 7 = exp(p) is 

Note that, due to round off, exponentiating the rounded answers 10.01 and 10.45 
would give somewhat different answers. Because the Weibull scale parameter 7 is 
approximately the .63 quantile of the distribution, this interval tells us that we are 
(approximately) 95% confident that the interval from 22,350 to 34,386 km encloses 
the point in time where 63% of the population will fail. 0 

Because U is a positive parameter, it is common practice to use the log trans-
formation to obtain a confidence interval. Approximating the sampling distribution 

= [log(s) - Iog(u)]/s^elog(~)of Z l o g ( ~ )  by a NOR(0, 1) distribution, an approximate 
100(I - a)%confidence interval for CT is 

Example 8.12 Normal-Approximation Confidence Intervals for the Shock 
Absorber Weibull Shape Parameter. For the shock absorber example, s ^ e ~ = 

d%6%.= .07316 and an approximate 95% confidence interval for U is 

[Q, G ]  = [.3164/1.5733, 3164 X 1.57331 = [.201, .498], 

where w = exp[ 1.960(.073 16)/.3 1641 = 1.5733. The corresponding approximate 
95% confidence interval for the Weibull shape parameter /3 = I/u is 

[p ,  p ]  = [ l / G ,  l/a] = [1/.498, 1/.201] = [2.01, 4.971.-

Note that because the reciprocal transformation is decreasing the upper endpoint for 
CT translates into the lower endpoint for p and vice versa. Both sets of intervals use 
the approximation Zlog,~) NOR(0, 1). Note that the interval for p provides strong 
evidence that p > 1,  implying an increasing hazard function and suggesting wearout 
behavior for the shock absorbers. 

Comparison in Table 8.1 shows that the confidence interval for (T based on the ap- 
proximation Zlog(~) NOR(0, 1 )  agrees well with the likelihood-based interval but 
differs considerably from the untransformed normal-approximation interval based 
on the approximation of Z;; A NOR(0, 1). This suggests that using the log transfor- 
mation for computing confidence intervals for positive parameters like (T provides a 
better procedure, 0 
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8.4.3 Normal-Approximation Confidence Intervals for Functions of p and U 

Following the general theory in Appendix Section B.6.7, a normal-approximation 
confidence interval for a function of p and a,say, g l  = g1(p,a),can be based on 
the large-sample approximate NOR(0,l) distribution of Z;, = (gl - gl)/s^e;,,. Then 
an approximate 100(1 - a)%confidence interval for gl is 

where, using a special case of (B. IO), 

(8.10) 

The partial derivatives in (8.10) should be evaluated at p = @ and U = i?. 

Con$dence Interval for a Distribution Quantile t,, 
An approximate 100(1 - a)%confidence interval for t, = exp[p + <D-’ @)a]based 
on the large-sample approximate NOR(0, 1) distribution of Zlt>g,;,,,= [log(;,) -

log($dl /G,og(:D)is 

Example 8.13 Normal-Approximation Confidence Intervals for the Shock 
Absorber Weibull . I  Quantile. The ML estimate for the Weibull distribution . 1  
quantile is 

h 

1.1 = exp [@ + @sid(.1)3] = exp[10.23 + (-2.2504).3164] = 13602 

and substituting into (8.12j gives 

ŝ .;-, = 13602 [.01208 + 2(-2.2504)(.00399) + (-2.2504)2(.005353)] = 1982. 

An approximate 95% confidence interval for t , l  based on Ziog(rl NOR(0, 1 )  is 

[t.l,t.11 = [13602/1.3306, 13602 X 1.3306 = [10,223, 18,0981, 

where 1.1’ = exp( 1.960( 1982)/13602] = 1.3306. 
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Comparison in Table 8. I suggests that both of the normal-approximation intervals 
deviate in the same direction from the likelihood-based interval. This is related to the 
left-skewed shape of R(rJ ,  as seen in Figure 8.8. The log transformation on t.] does 
not improve the symmetry of the profile likelihood for this example. 0 

Concfidence Interval for  F( t )  
Let f 4  beha specified time at which %n estimate-of F ( r ) is desired. The ML estimate for 
F(t,)  is F ( f , )  = F(t,; @, c^r) = @([,), where & = [log(t,)- @]/S.An approximate 
confidence interval can be obtained from 

where applying (8.10) gives 

The interval in (8.13) is based on the NOR(0, 1) approximation for 2~ = [ @ r e )  -
F ( r e ) ] / G g .With a small to moderate number of failures, however, the approximation 
could be poor; endpoints of the interval might even fall outside the range 0 5 F(r,) 5 

1. A confidence interval procedure based on a transformation g I = g I ( F )would have 
a confidence level closer to the nominal 100(1 - a)% if 22, = ( g ,  - Sl)/S^ei,has a 
distribution that is closer than 2,: to NOR(0, 1). Usually gl is a function of F chosen 
such that gl ranges from (-x,x),the same range as the normal distribution. For 
estimating probabilities, for example, the logit transformation 

does this. Then we find a confidence interval for logit(F) and transform the endpoints 
of this interval to obtain a confidence interval based on the approximate normal 
distribution of Z,og, t (~) .Using the inverse logit transformation gives the IOO( I - (Y )% 
confidence interval for F(r,) as 

where W’ = exp{(q1-a /2 )G ip ) / [F ( 1 - F)]}.The endpoints of this interval will always 
be between 0 and 1 .  

Example 8.14 Normal-Approximation Confidence Interval for  F(t) for  the 
Weibull Distribution Fit to Shock Absorber Data. Table 8.1 gives normal-approx- 
imation confidence intervals for F ( t , )  for f ,  = 10,000km based on Zlogit(F)and 2~fol-
lowing, approximately, NOR(0, 1) distributions. Comparison shows that the interval 
from (8.15) agrees well with the likelihood-based interval, but the interval from (8.13) 
has a negative lower endpoint, a clear indication of an inadequate approximation. 

0 
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Confidence Interval for the Hazard Function h(t)  
Let t ,  be a specified point in time at which an estimate of the hazard function h is 
desired. The ML estimate for h(te)is 

A 

where & = [log(fy) - @ ] / C .  Following Section 8.4.3, an approximate loO(1 -
a)%confidence interval base_d on the NOR(0, 1) large-sample approximation to the 
distribution of Z,og(i;)= {l~g[h(te)]- l ~ g [ h ( t ~ ) ] ) / ~ , ~ , ~ ~ ~is 

h 

where w = exp[ql--(y/2)Gj$h(te)]and ŝ ei; can be obtained by using (8.10). 

Example 8.15 Weibull Hazard Function Estimate for the Shock Absorber 
Data. Figure 8.1 1 shows the ML estimate and a set of pointwise approximate 
95% confidence intervals for the-Weibull hazard function, computed from the shock 
absorber data. In this example, /3 > 1 (6 < 1 )  so h ( t )  is increasing. Note that the 
Weibull h(t)is always linear on log-log axes. 0 

500 1000 2000 5000 10000 20000 50000 
Kilometers 

Figure 8.1 1. ML estimate and pointwise normal-approximation 95% confidence intervals for the Weibull 
hazard function for the shock absorber data. 
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8.4.4 Improved Normal-Approximation Confidence Intervals 

As mentioned in Section 7.5, the normal-approximation intervals like those in (8.7) 
can be improved slightly by using t (p;v)instead of qP).Corresponding to the well- 
known procedure of constructing a confidence interval for the mean of a normal 
distribution, with complete data (no censoring), confidence intervals with exact cov- 
erage probabilities are available for the mean (median) of a normal (lognormal) 
distribution. Such intervals are obtained by using instead of q,,)and substituting 
( n / ( n- l ) l1/’se~for sec in (8.7). When there is no censoring, exact intervals are also 
available for normal/lognormal distribution quantiles, using the noncentral-t distri- 
bution (e.g., see Chapter 4 of Hahn and Meeker, 1991, or Table 3 in Odeh and Owen, 
1980). It is, in fact, possible to obtain exact confidence intervals for any location- 
scale or log-location-scale distribution parameters or quantiles with complete data or 
Type I1 censoring. General tables for the factors to replace the normal-approximation 
q,,)are not generally available (see Robinson, 1983, for references to limited ta- 
bles that are available). Procedures described in Chapter 9 can, however, be used to 
compute such factors with simulation. 

8.5 ESTIMATION WITH GIVEN U 

When such information is available, one may use a given value for G (or p = I / a  for 
the Weibull distribution) instead of estimating U .The effect is to provide considerably 
more precision from limited data. The danger is the given value of G may be seriously 
incorrect, resulting in misleading conclusions. 

8.5.1 LognormaWormal Distribution with Given cr 

For the lognormahormal distribution with given a and when there is no censoring, 
C ( p )will be quadratic in p [which implies that L ( p )will have the shape of a normal 
density]. This may be approximately so for other distributions under certain regularity 
conditions (see Appendix Section B.4) and large samples. When there is censoring, 
L(k)is no longer exactly quadratic. Also, there is no closed-form solution to find the 
ML estimates for p and iterative methods are required to compute the ML estimate 6. 

8.5.2 WeibulVSmallest Extreme Value Distribution with Given cr 

With a given value of U = 1/p it is possible to transform Weibull random variables 
to exponential random variables and to use the simpler methods for this distribution. 
If T I ,. . . ,T,, have a Weibull distribution with shape parameter p = 1/ a  and scale 
parameter q = exp(p), then T p , . . , ,T f  have an exponential distribution with mean 
0 = I f .  

In simple situations, the available data consist of a sample of n observations 
t l , . . . ,t,, of which r are exact failure times and n - r are the running times of 
unfailed units. From this it follows, as an extension of (7.15) in Section 7.6.3,that the 
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maximum likelihood estimate of the Weibull scale parameter, for fixed (T I/p. is 

(8.17) 

An estimate of the standard error of ?j is 

(8.18) 

It is interesting to note here that the ML estimate and its standard error can be 
computed without knowing which of the ti correspond to failure times and which 
correspond to running times. Data of this kind arise commonly, for example, when the 
service times of individual units that fail are not known, but when there is knowledge, 
generally, of the total service time of all of the units in the field. Without a given value 
for p, such data are of limited value for estimating the failure-time distribution. 

The simple formulas in (8.17) and (8.18) hold only for combinations of right 
censoring and observations reported as exact failures. For other kinds of data, there 
are still useful gains in precision from using a given value of p, but iterative meth- 
ods are, in general, needed to compute the ML estimates and standard errors. See 
Nelson (1985) for justification of these methods and another example. 

Example 8.16 Bearing-Cage Field Data. Appendix Table C.5 gives bearing- 
cage fracture times for 6 failed units as well as running times for 1697 units that 
had accumulated various amounts of service time without failing. The data and an 
analysis appear in Abernethy, Breneman, Medlin, and Reinman ( 1  983). These data 
represent a population of units that had been introduced into service over time. There 
were concerns about the adequacy of the bearing-cage design. Analysts wanted to 
use these initial data to decide if a redesign would be needed to meet the design-life 
specification. This requirement was that 1.1 (referred to as B 10 in some references) be 
at least 8000 hours. Management also wanted to know how many additional failures 
could be expected in the next year from the population of units currently in service. 
This second issue will be explored in Chapter 12. 

Figure 8.12 shows four Weibull probability plots with different superimposed 
fitted Weibull distributions (solid lines) and approximate 95% normal-approximation 
pointwise confidence intervals (dotted lines). In the NW corner is a fitted Weibull 
distribution in which the shape parameter /3 was estimated. In the other three plots, 
the Weibull shape parameter was fixed at a specified value ( P  = 1.5, 2, and 3). The 
ML estimate of P is 2.035 while the ML estimate o f t  1 is 3903 hours (considerably 
below the design life of 8000 hours). A 95% likelihood confidence interval for t I is 
[2093, 22,1441 hours, indicating that the design life rizight be much more than 8000 
hours. The poor precision (wide interval) is due to the small number of failures. 

Using a given value of P provides much more precision. There is, however, some 
risk that the given P is seriously incorrect, which could lead to seriously incorrect 
conclusions. For example, using P = 1.5 results in a much more optimistic estimate 
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a estimated CJ = .667 (or p = 1.5) 

100 500 2000 loo00 

Hours Hours 

cr= .5 ( o r p = 2 )  CJ = .333 (or p = 3) 

100 500 2000 1oOoo 100 500 2000 10000 

Hours Hours 

Figure 8.12. Weibull probability plots of the bearing-cage fracture data with-Weibull ML estimates and 
sets of 95% pointwise confidence intervals for F ( t , )with estimated G = I / p  = .49 I .  and given values 
p= I .S. 2, and 3 .  

of bearing-cage reliability. Using P = 2 or 3, however, gives a strong indication that 
the design-life requirement had not been met. 0 

The most striking conclusion from the previous example, and true in general, is 
the higher degree of precision obtained by using a given Weibull shape parameter 
/3, especially outside the range of the data. Estimation of t I required extrapolating 
from the proportion .055 (the maximum value of the nonparametric estimate) out to 
. I  (not an unreasonable amount of extrapolation for this kind of application). When 
there has been much accumulated experience with a product and its particular failure 
mode (or modes), it may be possible to safely use a particular given value for the 
Weibull shape parameter for analysis and decision making. Generally it is a good idea 
to use a plausible range of values, as shown in Figure 8.12. If the range of plausible p 
values is close to that suggested by the data themselves (as in the example), then the 
combined uncertainties will be approximately the same as reflected in the confidence 
inte_rvals of the P-estimated model. If the given value of p is closer to the true /3 than 
is p, then it  is possible to achieve important increases in precision using the given 
value of p. 
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Chapter 14 describes Bayesian methods of data analysis that will allow a more 
formal method of incorporating prior uncertain knowledge about parameters. such as 
p, into an analysis. 

8.5.3 WeibulVSmallest Extreme Value Distribution with Given p = l/a and 
Zero Failures 

ML estimates for the Weibull distribution cannot be computed unless the available 
data contain one or more failures. Section 7.7, however, showed how to compute 
a l m v r  confidence bound on the exponential distribution mean when there are no 
failures. The resulting precision may be poor but still useful for some practical 
purposes. With a given Weibull shape parameter, the same ideas can be used to obtain 
a lower confidence bound on the Weibull scale parameter 7 [or, correspondingly, the 
SEV location parameter p = log(q)]. 

For a sample of I I  units on test with running times t l ,. . . ,t,, and no failures. a 
conservative 100(1 - a)%lower confidence bound for q is 

because x;, -a ;2 )  = -2 log(a). As in Section 7.7, this bound is based on the fact that, 
under the exponential distribution, with immediate replacement of failed units, the 
number of failures observed in a life test with a fixed total time on test has a Poisson 
distribution. 

As described in Sections 7.4 and 7.7, q can be translated into a lower confidence -
bound for increasing functions of q like t,, for specified p .  Similarly, q can be 
translated into an upper confidence bound for decreasing functions of q 1ik<F'(t6,) for 
a specified t,. Precision is a function of tf . Unless there are many large t;values. 
the resulting confidence bound may largely be uninformative. See Nelson (1985) for 
justification and further discussion of this method. 

Example 8.17 Determination of Component Safe-Life. A metal component 
in a ship's propulsion system (which we will refer to as Component-B) is known to 
fail from fatigue-caused fracture after some period of time in service. To minimize 
the probability of unscheduled downtime, the component is usually replaced during 
certain scheduled (for other purposes) preventive maintenance. Because of persistent 
reliability problems, the component was redesigned to have a longer service life. 
Previous experience with this and other components using the same alloy and similar 
designs suggests that the Weibull shape parameter is near p = 2, and almost certainly 
between 1.5 and 2.5. A number of the newly designed components were put into 
service during the past year. No failures have been reported with the new design. 
The service engineers asked that the data be used to assess whether the replacement 
age might be increased from 2000 hours to 4000 hours. The running times of the in- 
service components are given in Table 8.2. Using a fixed value p = 2, an approximate 
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Table 8.2. Early Production Failure-FreeRunning Times for Component-B 

Hours 500 1OOG 1500 2000 2500 3000 3500 4000 

Number of Units 10 12 8 9 7 9 6 3 

Staggered entry data, with no reported failures 

95% lower confidence bound on q is 

I / 2

.=( X[95:2) ') = (  
2 X (10 X 5002 + * * .  + 3 X 40002))'/'2 E:'=I 1; 

5.99 
z 3 

'/* =-- ( 2  X 3 ~ ~ ~ 0 0 0 0 )  10250. 

As described in Section 7.4.2, because there is only one unknown parameter in 
this problem, 7 and the given p can be substituted into the Weibull cdf to provide 
simultaneous upper confidence bounds on the entire cdf (or quantile function). This 
is illustrated in Figure 8.13. In particular, for p = 2, an upper confidence bound on 
the probability of failure before 4000 hours is obtained by substituting q- into (4.6) 
giving F(4000) = 1 - exp[ -(4000/10250)2] = .141. Also shown in this figure are 

F(t) 
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Figure 8.13. Weibull distribution 95% upper confidence bounds on F ( r ) for Component-B with different 
tixed values for the Weibull shape parameter. 
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similar lines drawn for the upper bounds corresponding to given values of p = 1.5 
and 2.5. This provides sensitivity analysis with respect to the uncertainty in p. 

The conclusion from the confidence bounds is that the redesigned component may 
well have improved the life distribution enough to extend the replacement interval 
to 4000 hours. There is not, however, sufficient evidence to demonstrate this level 
of improvement. The probability o,f failure could be as small as 0 or (using the 
pessimistic p = 2.5) as large as F(4000) = 1 - exp[ -(4000/7925)'.'] = .166 
because 7 = 7925 for p = 2.5. 0-

BIBLIOGRAPHIC NOTES 

Escobar and Meeker (1992) give the partial derivatives of the log likelihood needed 
in (8.5) for location-scale distributions for observations reported as exact failure as 
well as right-, left-, and interval-censored observations. These expressions are useful 
for computing estimates of variance-covariance matrices like that shown in (8.5). 

Ostrouchov and Meeker (1988) compare normal-approximation and likelihood 
confidence intervals for Weibull distribution parameters and percentiles. They show 
that likelihood intervals provide actual coverage probabilities that are closer to nom-
inal confidence levels when there is a small to moderate number of failures in the 
sample. Doganaksoy (1995) and Doganaksoy and Schmee (1993) describe the ad- 
vantages of likelihood confidence intervals and show that certain corrected likelihood 
intervals can provide important improvements in confidence level accuracy when the 
number of failures is small (say, less than 10).Meeker and Escobar (1 995) compare 
likelihood and normal-approximation confidence intervals (also see Exercise 8.17). 

Cheng and Iles (1983, 1988) provide simultaneous confidence bands for F ( t )for 
complete data from a Weibull or lognormal distribution. Escobar and Meeker ( 1998b) 
provide extensions and related technical results. 

EXERCISES 

8.1. Use the ball bearing data from Example 1.1 to do the following: 
(a) Fit a lognormal distribution to the data. To facilitate the computations, 

use the following summary of the data: 

where yi = log(ti) and J y i /23 .  Plot the fitted lognormal distri- 
bution along with the nonparametric estimate on lognormal probability 
plot paper like that used in Exercise 6.5b. 

(b) A computer program gives the following ML estimates for a Weibull 
distribution: = 4.41, 6 = .476. Do the same as in (a) but for the 
Weibull distribution. 
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(c) Comment on the adequacy of the lognormal and Weibull distributions to 
fit these data. 

8.2. Use the heat exchanger tube crack data in Figure 1.7 to do the following: 
(a) Fit an exponential distribution to the data. (Note that this could be done 

by fitting a Weibull distribution with p constrained to be 1 .) 
(b) Fit a Weibull distribution to the data. 
( c )  Compare the values of the log likelihood from the two different distribu- 

tions. How do they compare and what does this suggest? 

8.3. Refer to Exercise 8.2 and use the fitted Weibull and exponential distributions 
to do a likelihood-ratio test to see if the data are consistent with a Weibull 
shape parameter p = 1. What is the implication of this hypothesis and what 
is your conclusion‘? 

8.4. Refer to Exercise 8.2 and use the Weibull distribution to: 
(a) Compute an approximate 95%confidence interval for F ( 2 ) ,the proportion 

of cracked tubes after 2 years of service, based on Z+, .L NOR(0, 1). 

(b) Compute an approximate 95% confidence interval for F(2),based on 
z,og,t,F(Z)]NOR(O*1).A 

( c )  Explain why you might prefer to report one of these intervals over the 
other. 

8.5. Return to the fatigue crack-initiation test in Exercise 6.7. Fit a Weibull distri- 
bution with a given shape parameter p = 2. 
(a) Compute the ML estimate of q.What is the pructiccrl interpretation of 

this estimate? 
(b) Obtain the estimate G?. 
(c) Compute a conservative 95% confidence interval for q. 
(d) Plot the Weibull estimate of F ( t )  along with the nonparametric estimate. 

Comment on the adequacy of the Weibull distribution to describe the 
data. 

(e) What is an estimate of the . I quantile of the time-to-initiation distribution? 
(f)  Compute a conservative 95% confidence interval for the .1 quantile of 

the time-to-initiation distribution. 

8.6. Suppose that is the ML estimate of a quantity g, and that ŝ eg is an estimated 
standard error. Show that a confidence interval for g, based on Z l o E ( ~ ,= 

-[log@) - 10g(g)]/G~~~,~~ NOR(0, l ) ,  has the form [g ,  3 = [Z/N~,X 

hi], where U’ = e ~ p [ q - ~ , ~ , G g / Z ] .  

8.7. A particular type of integrated circuit (IC) is known to have an electro- 
migration-related failure mode. A life test was conducted at a temperature 
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of 120°C in order to learn more about the life distribution and when failures 
might be expected to occur. A total of 20 ICs were tested and 5 failed before 
500 hours, when the test was stopped. Failure times were at 252, 3 15, 369, 
403, and 474 hours. ML estimates of the lognormal parameters are = 6.56 
and l? = S34. The variance-covariance matrix estimate for @ and i?is 

h .0581 .0374 
T-ji,(; = [.0374 .04051 * 

Recall that exp(j2) = exp(6.56) = 706 hours is the ML estimate of the 
lognormal median. 
(a) Make a lognormal probability plot of the failure data. 
(b) Compute ML estimates of the lognormal F ( 2 0 0 )  and F( 1000) and use 

these to draw a line representing the lognormal estimate of F ( r ) .  

(c) Use jl and i? to compute an estimate of the mean of the lognormal dis- 
tribution (equation given in Section 4.6). Compare this with the estimate 
of the lognormal median. Comment on the difference. 

(d) Compute 71, the ML estimate of the . I quantile of the life distribution. 
(e) Compute the standard error for 71. Explain the interpretation of t h i h  

quantity. 
( f )  Compute an approximate 95% confidence interval for t Include this 

interval in the plot in part (a). Explain the interpretation of this interval 
and the justification for the approximate method that you use. 

8.8. A life test was run on 20 prototype high-power RF transmitting tubes. In 
order to obtain tube life information more quickly, the tubes were tested at 
higher than usual levels of voltage. The tubes were tested simultaneously 
until failure or until 1 S O  thousand hours. Failures were observed at .82, .99, 
1.06, 1.08, 1.24, 1.39, 1.40 thousand hours. The other 13 tubes ran until 1.5 
thousand hours without failure. Based on experience with life tests on similar 
products, the engineers believe that the Weibull shape parameter is /3 = 3. 
Do the following with p fixed at at this value. 
(a) Make a Weibull probability plot of these data. Determine if the data are 

consistent with the specified value of p. 
(b) Compute the ML estimate of the Weibull scale parameter q.Compute 

and graph the ML estimate of F ( t ) on the probability plot constructed in 
part (a>. 

(c) Compute a 9S% confidence interval for 7.What is the practical interpre- 
tation of this interval? 

(d) Compute the ML estimate and a 95% confidence interval for F ( r )at 1000 
hours. 

( e )  Explain the interpretation of the confidence interval from part (d). 
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8.9. Redo Exercise 8.8, but use p = 2. Comment on the differences in the results 
and the potential effect of using an incorrect value of p = 3, if the actual 
Weibull shape parameter is p = 2. 

8.10. Refer to Exercise 7.4. Suppose now that failure analysis and previous ex- 
perience suggest that component-A life can be modeled adequately with a 
Weibull failure-time distribution. 
(a) Compute and plot the ML estimate of F ( r )  with a Weibull distribution 

using given p = 3. 
(b) Compute and plot the ML estimate of F ( t )  with a Weibull distribution 

using given /3 = .33.  
(c) Compute and plot the Weibull F^(r)  and pointwise 95% confidence inter- 

vals, estimating p from the data. 
(d) Compare the plots constructed above. Use these plots and describe the 

consequences of using a seriously incorrect value of p. 

8.11. Use the diesel locomotive fan failure data in Appendix Table C.1 to do the 
following: 
(a) Fit an exponential distribution to the fan data. 
(b) Fit a Weibull distribution to the fan data. 
(c) Do a likelihood-ratio test that the Weibull shape parameter is equal to  1. 

How would the conclusion affect fan replacement policy? 
(d) Compute an approximate 95% confidence interval for r , l ,  the time at 

which 10% of the fan population will fail, based on 21, NOR(0, I ). 
( e )  Compute an approximate 957~confidence interval for r , I ,based on ZI,,,,, , 

NOR(0, 1). 

8.12. Nelson (1982, page 529) analyzes failure data to compare two different snub- 
ber designs (a snubber is a component in a toaster). The data are in Appendix 
Table C.4. 
(a) Use probability plots and maximum likelihood fits to assess the adequacy 

of different parametric distributions for the data from the old design. 
(b) Analyze the new-design data in the same way to assess if there is evidence 

that the distributions differ. Section 17.8 describes analytical methods for 
such comparisons. 

8.13. Consider a sample of n observations with tl , . . . , t ,  reported as exact failure 
times (suppose that 2 5 r 5 n )  and n - r observations censored at a 
common time t,.. Provide a simple expression for the Weibull log likelihood 
in the rj = exp(p) and p = 1 / U  parameterization. 

A8.14. Refer to Exercise 8.13. 
(a) Derive an expression for the ML estimate of the Weibull distribution 

parameter rj  with right censoring at time t , . ,  for a given value of p. 
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(b) Explain how Weibull ML methods, when the shape parameter is given, 
are related to inference for the exponential distribution. 

A8.15. Refer to Exercise 8.13. 
(a) Take partial derivatives of the log likelihood with respect to P and 7. 
(b) Show that the Weibull ML estimates can be obtained by solving the 

following two equations: 

Note that the first equation does not contain 77 and is thus easy to solve 
numerically for p. 

(c) Use the equations in part (b) to determine the smallest sample size ( n )and 
the smallest number of failures ( r )that are needed for the ML estimates 
of 7 and P to be unique. Hint: Use of numerical and graphical methods 
can provide insight and suggest an appropriate analytical solution to this 
problem. 

8.16. Write the Weibull likelihood for a sample containing both exact failure times 
and right-censored values, using U and t, as the distribution parameters (for 
some specified fixed 0 < p < 1). Explain how to use this likelihood to 
compute a profile likelihood for t,. 

A8.17. Consider a sample of n failure times, t l ,  . . . , t , , ,  that can be fit to a lognormal 
distribution. 
(a) Write an expression for the likelihood and show that it is a function only 

of 1 log(ti), E;=1 [log(ti)12,n, F,  and U .  

(b) Derive simple expressions for ML estimates of the lognormal parameters. 
(c) Derive an expression for the relative likelihood R(p ,a). 
(d) Derive a simple expression for the profile likelihood R(p) .  

(e)  Derive a simple expression for the profile likelihood R(a). 
(f) Challenge: Derive the profile likelihood R(t,), where t, is the lognormal 

p quantile. 

~A8.18. Use (8.10) to derive an expression for the standard error estimate ŝ e,;c,, needed 
in (8.16). Show how this expression simplifies for the Weibull distribution. 

A8.19. For a location-scale distribution, under certain regularity conditions, in large 
samples, -2 times the logarithm of the relative likelihood function, R(p,( 7 )  = 
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L(p,U)/,!,(@,i?), when evaluated at the true p and U,has approximately a
xl distribution. 
(a) Show how to use this property to test if a specified pair of parameter 

values, say, and uO,are consistent with the data. 
(b) Explain how to use the function R(p,a)to obtain an approximate joint 

confidence region for p, U. 

(c)  Show why, for a particular a ,  the R ( p , a )  = a contour of the two- 
dimensional relative likelihood function (or a two dimensional profile 
likelihood function) provides an approximate 100(1 - a)%joint confi- 
dence region for p,a. 

A8.20. For the shock absorber data, the orientation of the contours in Figure 8.1 
indicates some positive correlation between @ and 6.The orientation of the 
contours in Figure 8.7 indicates a negative correlation between 31 and G. 
(a) Use the numerical results in (8.6)to compute an estimate of the correlation 

between?! and 6. 
(b) For which value of p willTp and 6 be approximately uncorrelated? 

8.21. As explained in Section 8.5.1, data analysis with the Weibull distribution 
is simpler and estimates are more precise if the Weibull shape parameter is 
given. 
(a) Explain the dangers of using a specified Weibull shape parameter value 

when analyzing life data. 
(b) A reliability engineer for a project claims that the Weibull shape parameter 

is known for a population of components. How would you, as an analyst, 
approach the problem of working with the engineer to make a reliability 
prediction based on a limited censored sample? 

8.22. A random sample of five new automobile horns was taken from early produc- 
tion. The horns were tested simultaneously in a simulated use environment 
(with heat, humidity, salt air, and vibration) until each horn had reached a 
total of 600 thousand cycles. There were no failures in the test. The reliability 
specification for the horns says that t o l  for the horn's life distribution should 
be at least 200 thousand cycles. The dominant failure mode for similar horns, 
manufactured in the past, was stress-corrosion-inducedfatigue cracking and 
this failure mode had a Weibull shape parameter of p = 1 / U  = 2.3. 
(a) Using the given value of p, compute a lower 95% confidence bound for 

t o1 of the horn's life distribution. 
(b) Do the results contradict the reliability specification? Do the results 

demonstrate the reliability specification'? What is the difference'? 
( c )  Suggest, based on physical considerations, arguments to convince some- 

one that it is possible that the test might lack validity for testing the 
reliability specification. 
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8.23. Analysis of field data has suggested that a particular engine bearing is an 
important life-limiting component. The responsible engineers believe that 
improving the bearing’s reliability would have an important effect on overall 
engine reliability. A redesigned bearing was tested extensively in a bench 
life test with simulated loads. Ten bearings were tested, each for 500 hours, 
with no reported failures. On the basis of previous field failure data for this 
class of bearing, a Weibull distribution with a shape parameter of p = 2.3 
had provided an adequate description for the life of this bearing. Find a 95% 
lower confidence bound for the .01 quantile of the bearing life distribution. 

8.24. Consider the problem described in Exercise 8.23 but suppose that the pre- 
sumed distribution was lognormal with U = .S. 
(a) Use the nonparametric method in Chapter 3 to obtain an approximate 

95% upper confidence bound for F(500). 
(b) Use the nonparametric upper confidence bound from part (a) and the 

lognormal distribution assumption to obtain a 95% lower confidence 
bound for the .01 quantile of the bearing life distribution. 

(c)  Explain the relationship between the interval given in part (b) and the cor- 
responding method for the Weibull distribution explained in Section 83.3. 
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Bootstrap Confidence Intervals 

Objectives 

This chapter explains: 

The use of computer simulation to obtain confidence intervals. Such intervals 
are known as bootstrap confidence intervals. 
Methods for generating bootstrap samples. 
How to obtain and interpret simulation-based purcimetric pointwtise bootstrap 
confidence intervals. 
How to obtain and interpret simulation-based nonpurumetric pointwise boot-
strap confidence intervals. 

Overview 

This chapter describes and illustrates simulation-based bootstrap methods of finding 
confidence intervals. Especially with limited data, these intervals generally provide 
procedures with coverage probabilities that are closer to the nominal confidence 
level, when compared with the commonly used normal-approximation methods. 
Section 9.2 provides a general overview of bootstrap sampling methods. Sections 9.3 
and 9.4, covering parametric bootstrap methods, build heavily on the confidence 
interval methods presented in Chapters 7 and 8. An understanding of the basic ideas 
in these chapters is important. The methods in this chapter can, however, be applied 
in a straightforward manner to parametric models used in the other chapters of this 
book. Correspondingly, the nonparametric bootstrap methods in Section 9.5 build on 
material from Chapter 3. 

9.1 INTRODUCTION 

The normal-approximation confidence intervals described in earlier chapters are ad- 
equate for most casual or informal analyses, particularly when the sample size is 
large (or, with right-censored data, when the number of failures is large). There 
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are, however, computationally intensive methods that can provide better approximate 
confidence intervals. We have seen (in Chapters 7 and 8) that likelihood-based meth- 
ods can be expected to out-perform the normal-approximation intervals. Simulation 
provides another important method to obtain exact or more accurate approximate 
confidence intervals. This chapter shows how to use bootstrap methods to obtain 
bootstrap confidence intervals for the inferential models used in Chapters 3 ,7 ,  and 8. 

Bootstrap intervals, when used properly, can be expected to be more accurate 
than the normal-approximation methods and competitive with the likelihood-based 
methods. In subsequent chapters we will apply bootstrap methods for models where 
other reasonable alternatives do not exist (e.g., when likelihood-based methods are 
too demanding computationally). 

9.2 BOOTSTRAP SAMPLING 

9.2.1 General Idea 

As explained in Section 3.3.2,a confidence interval procedure is judged on the basis 
of how well the procedure would perform if it were repeated over and over again. 
In particular, a confidence interval should (on the average) not be too wide (for 
a one-sided bound we can say that the bound should not be too far away from a 
point estimate) and the coverage probability (probability that the interval contains 
the quantity of interest) should be equal or close to the nominal coverage probability 
1 - a . The idea of bootstrap sampling is to simulate the repeated sampling process 
and use the information from the distribution of appropriate statistics in the bootstrap 
samples to compute the needed confidence interval (or intervals), reducing the reliance 
on large-sample approximations. 

For example, let 8 be a parameter of interest. When computing a confidence 
interval for 8, instead of assuming that ZIog(;)in (7.12) has a NOR(0, I )  distribution, 
we can use computer simulation to get an approximation to the actual distribution of 
Zlog())(for estimating a positive parameter, the log transformation can also provide an 
important advantage when using this simulation-based method). If the approximation 
is better, the coverage probability will be closer to the nominal 1 -a . For some simple 
situations (complete data or Type I1 censored data from a location-scale or a log-
location-scale distribution) the distribution of statistics like Z,op(;)does not depend 
on the unknown value of 8. Then the resulting confidence intervals are “exact” in the 
sense that the actual coverage probability is the same as the nominal 1 - a ;otherwise 
the coverage probability is approximately equal to 1 - a , but the approximation, in 
most cases, is better than assuming that Zlo4(s)has a NOR(0, 1)  distribution and the 
approximation improves as the sample size increases. 

We would like to obtain the distribution of appropriate statistics like Z,crg(;)by 
simulating from the actual population (or generating data from the actual process). 
Not being able to do this (because we do not know the exact character of the true 
population or process), we generate data based on information in the sample data. 
It is necessary to generate a large number (denoted by B )  of “bootstrap samples” 
that can be used to approximate sampling distributions of interest. Due to the use of 



206 BOOTSTRAP CONFIDENCE INTERVALS 

random (actually pseudorandom) samples, if the bootstrap method is applied twice 
to the same problem, there will be some differences between the answers obtained. 
With B chosen large enough, such differences will be negligible. When the goal 
is to compute confidence intervals, the usual recommendation is to use between 
B = 2000 and B = 5000 bootstrap samples (larger values of B are recommended for 
estimating the more extreme quantiles of the bootstrap distribution that are required 
for higher confidence levels). To reduce possible effects of simulation variability in 
our examples we have used B = lO,O00, but such a large number should not be 
necessary for most practical applications. 

9.2.2 Bootstrap Sampling Methods 

There are several different methods for generating the needed bootstrap samples 
DATA7,j = 1 , .  . . , B .  

Figure 9.1 illustrates the fully “parametric” bootstrap sampling procedure. This 
method simulates each sample of size n from the assumed parametric distri- 
bution, using the ML estimates computed from the a_ctual data to replace the 
unknown parameters. That is, sampling is from F ( t ;  6). Observations are cen- 
sored according to the specified censoring mechanism. The disadvantage of this 
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Figure 9.1. Illustration of parametric bootstrap (simulation) sampling for parametric inference. 
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method is that it requires complete specification of the censoring process. In 
simple problems (when all units will be run to failure or with Type I or Type I1 
censoring) this presents no difficulties. The specification is, however, more 
difficult for complicated systematic or random censoring. Often the needed in- 
formation (like the times that failed units would have been censored or inspected 
had they not failed) may be unknown. 
Figure 9.2 illustrates the simpler “nonparametric” bootstrap sampling scheme. 
In this method, each sample of size n is obtained by sampling, with replacement, 
from the actual data cases in the original data set. Specifically, to obtain DATA:, 
sample with replacement from the data cases in DATA until n (the sample size) 
cases have been selected. In each draw, each data case in DATA has an equal 
probability of being chosen. New “bootstrap estimates” are computed for each 
sample of size n. The entire process is repeated for j = 1, .  . . ,B bootstrap 
samples. This method is simple to use (because the method depends only on 
the censored data and does not require explicit specification of the censoring 
mechanism) and generally, with moderate to large samples, provides results that 
are close to the fully parametric approach. When the number of distinct sample 
observations in DATA is very small (say, less than 7), however, the distribution 
of the bootstrap statistics will be noticeably discrete and the fully parametric 
approach would be preferable. 
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Figure 9.2. Illustration of nonparametric bootstrap sampling for parametric inference. 
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Unless otherwise noted, the nonparametric bootstrap sampling method illustrated in 
Figure 9.2 will be used. 

h 

It is useful to save the bootstrap estimates 0;. j = 1,. . . ,B ,  and the corresponding 
bootstrap standard error estimates (or the variance-covariance matrix when there 
is more than one model parameter) in a computer file so that they can be used 
subsequently in different ways without having to recompute the ML estimates (the 
computationally intensive part of bootstrap methods). In new and unfamiliar situations 
it can be useful to examine graphically the distribution of bootstrap statistics, as we 
will do in the following examples. 

9.3 EXPONENTIAL DISTRIBUTION CONFIDENCE INTERVALS 

This section shows how to apply bootstrap methods to the exponential distribution 
used in Chapter 7. Table 9.1 provides a comparison of the results for the three 
different sample sizes for the a-particle data from Example 7.3. Because there is a 
more interesting contrast among the methods for small sample sizes, the following 
examples give details of the application of the bootstrap methods for the n = 20 
sample. As predicted by theory, with large samples, the different methods result in 
similar intervals. 

For the exponential distribution, instead of assuming Z,clg(i) NOR(0, l ) ,  Monte 
Carlo simulation-based methods can be used to obtain a better approximation to the 
distribution of Z,c,g(;l.For example, the bootstrap approximation for the distribution 

Table 9.1. Comparison of Likelihood and Bootstrap Approximate Confidence Intervals 
for the a-Particle Interarrival Times 

All Times Sample of Times 

n = 10,220 n = 2000 11 = 200 n = 20 

Approximate 958 
Confidence lntenvrls jilt- 0 

Based on the likelihood 1584,6081 [586,641] 1498,6621 1289. 7131 

Based on Zlop(i), Zlo,,,+, [ 584,6081 [ 586,641 ] [496,670] [ 309,694j 

Based on Z,  Zi)* [ 584,6081 [ 586.64 1 ] [496,670] [ 309,6941 

App roximu te 95r/c 
Conjdenc-e IntenuIs 
j b r  A X 1OS 

Based on the likelihood [ 164, 1711 [ 156, 1711 [ 151, 2011 [ 140, 3461 

Based on Z ,  Z,. [ 164, 1711 [ 156, 1711 [ 149,2021 [ 144,3241 

)Based on Zlog,,) Zlog(i. [ 164, 1711 [156, 1711 [ 149, 2021 [ 144. 3241 
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of ZlOp(;)in (7.12) can be obtained by simulating B bootstrap samples of size tz and 
computing ML estimates for each bootstrap sample. Then, foyeach bootstrap sample,h h 

compute Zlogcg;,= [log(6;) - log(6)J/Glog,g;), where log(6;) is the jth bootstrap 
h 

ML estimate of log(6) and G,,,g(~;,is the corresponding standard error estimate. The 

bootstrap ML estimates log(G*)and are computed as in Section 7.3.3, but 
from the bootstrap samples DATA;, j = 1, .  . . ,B. Because such intervals are based 
on the distribution of r-like statistics (Le,, statistics computed in a manner that is 
similar to t-statistics used with normal distribution models with no censoring), the 
method is called the “bootstrap-t” method. 

Example 9.1 Bootstrap Sample for the a-Particle Mean Time Between Ar-
rivals. Following Example 7.3, Figure 9.3 is an exponential probability plot show-
ing F ( t ; e )  from the original n = 20 sample (t? thicker, longer line) and 50 (out 
of B = 10,000)of the bootstrap estimates F ( t ;  6*),each computed from bootstrap 
samples of size n = 20, fit to the exponential distribution. As explained in Sec-
tion 6.2.1, each bootstrap estimate of 2 gives a line on the exponential probability 
plot. Figure 9.3 provides insight into the amount of variability that one would expect 
to see in estimates of various different quantities of interest (e.g., failure probabilities 
at given times), based on repeated samples of size n = 20. 
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Figure 9.3. Exponential plot of F(r;z)from the original sample (shown with the thicker, longer line) and 
50 (out of B = 10,000) F(r;^e*) computed from exponential bootstrap samples for the a-particle data. 
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9.3.1 Bootstrap Confidence Intervals for 8 

An approximate 100(1 - a)% confidence interval for 8 based on the assumption that 
the simulated distribution of Z,. provides a good approximation to the distribution of 
22 is 

(9.1) 

where 7- is the p quantile of the distribution of Z;, and g and s^eg are the estimates 
Q;,,

from the original sample [same as those used in (7.6) and (7.1 l)]. The justification for 
(9.1) is similar to the justification of (7.6) given in Section 7.3.3 except that, unlike 
NOR(0, l ) ,  the distribution of Za. is not symmetric. 

Because 8 is? positive parameter and because the estimated standard error of 5 is 
proportional to 8, a better bootstrap procedure can be expected by basing confidence 
intervals on the assumption that the simulated distribution of Zlog,;,) provides a good 
approximation to the distribution of Z l o g c ~ ~ .In particular, analogous to (7.1I ) ,  

[g, $1 = @/E, 
h 

8 / 4 ,  (9.2) 
6 A 

where E = exp[zlog,-,.),,<,/2,&,/Ol,  M. = exP[z,og(,*,,a,2, is the ps ' e , / O ] ,  and z l o g ~ ~ . ) , p l  
quantile of the distribution of Zlog(;.,. Again, the justification for (9.2) is similar to 
the justification of (7.1 1)  given in Section 7.3.3 except that y # G because, unlike 
the NOR(0, l ) ,  the distribution of Zlog(~ , )is not symmetric. 

Example 9.2 Bootstrap ConJidence Interval for  a-Particle Mean Time Be- 
tween Arrivals. Figure 9.4 gives histograms of the B = 10,000values of G*, 2;., 
and Zlog(;.).Figure 9.4 also shows the cumulative distribution of Zlog,;.) indicating, 
with the dashed lines, the .025 and .975 quantiles of the distribution of ZlOg,;)*). 
Numerically these quantiles are zlog(;. ), ~~~,= - 1.9858 and zlog,~. )( v,~, = 1.5483, re- 
spectively. Substituting these quantiles and the values of 5 and $5 obtained from the 
original n = 20 sample (see Table 7.2) into (9.2) gives 

[g, 31 = [440.2/1.4265, 440.2/.6341] = [309, 6941, 

where 

E = exp( 1.5483(10 1.0)/440.2) = 1.4265 

and 

M: = exp(- 1.9858(101.0)/440.2) = .6341. 

Table 9.1 compares this interval with the interval based on the likelihood-ratio method. 
0 
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Bootstrap Estimates Boots t ra p-t Untransformed 
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Figure 9.4. Histograms of exponential bootstrap samples of 8,Z,-,, and Z,og , ; , )for the a-particle data 
and the empirical cdf of Z,og($ , .  

9.3.2 Bootstrap Confidence Intervals for Functions of 8 

For the exponential distribution (or other distributions with just one unknown pa- 
rameter), the simple method given in Section 7.4 can be used to obtain confidence 
intervals for monotone functions of 8.As with the intervals in Chapter 7, the resulting 
confidence interval(s) inherit the coverage properties of the particular interval that 
was used for 8. 

Example 9.3 Bootstrap ConJidence Intervals for  the Arrival Rate of a Par-
ticles. Using the bootstrap confidence interval for 8 from the n = 20 sample in 
Table 7.2, 

Although this interval is for A ,  the method is based on the assumption that Zlng(;) A 

Zlng(ii*,. 0 
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9.3.3 Comparison of Confidence Interval Methods 

For the a-particle arrival data, Table 9.1 compares 95% approximate confidence 
intervals for 0 based on: 

The li kel ihood-rat io met hod. 
The bootstrap approximation Zlog(;) Z,og(;,i 
The bootstrap approximation Z; A Z;, . 

For this example, there is almost no difference between the bootstrap methods 
based on 2; 2;. and Z,<)@(G)A Zlc)g(;,)(but this will not be true in general). The 
comparison shows that, in this case, the likelihood-ratio method and the bootstrap 
methods are in close agreement for all sample sizes except n = 20. For n = 20, the 
likelihood-based intervals are wider and simulation results (details not shown here) 
indicate that their coverage probability is larger than nominal. 

9.4 WEIBULL, LOGNORMAL, AND LOGLOGISTIC DISTRIBUTION 
CONFIDENCE INTERVALS 

Because of its simple specification, we continue to use the bootstrap resampling 
scheme illustrated in Figure 9.2. For samples with very small numbers failing (say, less 
than 7), it would be better to use the fully parametric method illustrated in Figure 9.1. 
Similar to  the normal-approximation intervals in Section 8.4, it is important to base 
the bootstrap-? confidence intervals on bootstrap evaluations of the distributions of 
r-like statistics employing transformations that transform statistics to an unlimited 

1range: zc;.Zlog(iibZlog(7,) '  ZIo&(,)p and Z@&* 

Example 9.4 Bootstrap Sample for the Shock Absorber Example. Following 
Example 8.1,  for each of B = 10,OOO bootstrap samples, bootstrap estimates @*, 
c'i* were computed. Figure 9.5 shows the first 1000 (@*,c'i*) pairs, as well as the 
most extreme pair (which happened not to be among the first 1000). The correlation 
between E* and i?* is evidence of positive correlation between j2 and c'i (which 

h 

we also saw in Example 8.10). Estimates XG*,G-of the variancexovariance matrix 
also were obtained so that bootstrap standard errors could be computed. All results 
were stored in a computer file to allow rapid computation of the various bootstrap 
confidence intervals to be described in this section. 

Figure 9.6 shows the Weibull cdf ML estimate for the original sample (thick longer 
line) and for the first 50 bootstrap samples. Studying this plot (even with the relatively 
small number of bootstrap samples shown) provides a clear picture of the precision 
with which it will be possible to estimate different quantiles and failure probabilities. 

0 


'Actually what is really needed is il transformation that will make the studentized bootstrap statistic behave 
approximately like a pivotal statistic. 
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Figure 9.5. Scatter plot of loo0 (out of B = l0,OOO)bootstrap Weibull estimates c*and 6*for the shock 
absorber example. 

.1 

,005 

.003 


.001 

.0005 

loo00 15000 2oo00 25000 

Kilometers 
Figure 9.6. Weibull plot of F ( t ;c,G ) from the original sample (shown with the thicker, longer line) and 
50 (out of B = l0,OOO)F(r;p*,3*)bootstrap Weibull estimates computed from bootstrap samples for the 
shock absorber example. 
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9.4.1 Construction of Confidence Intervals for Parameters 

Following the approach used in Section 9.3, the bootstrap approximation for the 
distribution of Zc can be obtained by using the bootstrap samples to compute B 
values of Zi;; = (6;- E)/Gp; where j2; is the j t h  bootstrap estimate of 6 and GG; 
is the corresponding standard error estimate. Generally, B should be between 2000 
and 4000 (but we continue to use B = 10,000 in our examples to further reduce the 
effects of Monte Carlo variability). The needed bootstrap estimates are computed as 
in Section 8.4, but from the bootstrap samples DATA;, j = 1,.  . . ,B .  An approximate 
100( 1 - a)%confidence interval for p based on the assumption that the simulated 
distribution of Zc* provides a good approximation to the distribution of 26 is 

(9.3) 

where zi;;,,, is the p quantile of the distribution of 2 ~ .and @ and ŝ ec are the estimates 
from the original sample [same as those used in (8.7)]. The justification for (9.3) is 
similar to the justification of (3.1 1 )  given in Section 3.6.3. 

Example 9.5 Bootstrap ConJidence Interval for the Shock Absorber Weibull p 
Parameter. Following Example 9.4, Figure 9.7 gives histograms of the B = 10,000 
values of F* and Z c * .Also shown is the cumulative distribution of Zc. indicating, with 
the dashed lines, the ,025 and ,975 quantiles of the distribution of Zc*.Numerically 
these quantiles are z ~ ; , , ~ ~ ,= -2.363 and ZF;,,,, = 1.252, respectively. From this, 
using some previous results from Example 8.1 1 and substitution into (9.3) gives 

[ p ,  P] = [10.23 - 1.252(.1099), 10.23 + 2.363(.1099)] = [10.09, 10.491,-
Table 9.2 shows that these values are consistent with the likelihood-based interval. The 
corresponding confidence interval for the Weibull scale parameter q = exp(p) can be 
computed by exponentiating the endpoints of this interval, as shown in Example 8.1 1 .

cl 

An approximate lOO(1 - a)% confidence interval for U can be computed in 

a manner that is similar to (8.8). In particular [Q, a] = [ i ? / ~ ,  Z/G],where 
M,’ = exp[qog(G=),, and Z ~ ~ ~ ( G * ~ , , , ,-“,,)&j/G] and 61 = e x p [ ~ l ~ ~ , , G . , , ~ , , L , s ~ / G ]  is the p 
quantile of the distribution of Zlog(s*).This interval is based on the assumption that the 
simulated distribution of ZIog(~.)provides a good approximation to the distribution of 
Zlog, G) . 

Example 9.6 Bootstrap ConJidence Interval for the Shock Absorber Weibull U 
Parameter. Following Example 9.4, Figure 9.8 gives histograms of the B = 10,OOO 
values of Gz,Z g - ,  and Zlog(;i*).Figure 9.8 also shows the cumulative distribu- 
tion of Zlog(~*)indicating, with the dashed lines, the .025 and .975 quantiles of 
the distribution of ZlOg(g*). =Numerically these values are zlog(~.) ,u2c,-2.458 and 
z l o g ( ~ * ) ,  = 1 S89, respectively. From this, using some previous results from Ex- y , ~ )  

ample 8.12, [E, 5)= [ . 3 1 6 4 / ~ ,  .3164/G] = [.2191, .5585], where ? = 
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Figure 9.7. Bootstrap distributions of Weibull E* and Z+* based on B = 10,OOO bootatrap samples for 
the shock absorber example. 

exp[1.589(.07316)/.3164] = 1.4440 and M: = exp[-2.458(.07316)/.3164] 
= S6645.Table 9.2 also shows the bootstrap interval based on 23.. Both bootstrap 
methods deviate somewhat from the normal-approximation methods, but agreement 
is best with the likelihood method. The corresponding confidence interval for the 
Weibull shape parameter p = 1/ U  can be computed as shown in Example 8.12. 

0 


9.4.2 Confidence Intervals for Functions of Parameters 

Bootstrap confidence intervals for functions of parameters can be computed by fol-
lowing the general approach used in Section 8.4.3 for normal-approximation inter- 
vals, but using quantiles of the bootstrap estimates of appropriate 2 distributions, 
as illustrated in Section 9.4. I .  The following examples describe and illustrate this 
procedure. 

Example 9.7 Bootstrap Conjidence Intervals for the Shock Absorber Weibull 
F(t). Following Example 9.4, Figure 9.9 gives histograms of the B = 10,000values 
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Table 9.2. Comparison of Likelihood and Parametric Bootstrap Approximate 
Confidence Interval Methods for the Shock Absorbers 

Distribution 

Wei bull Lognormal 

Approximute 95% 
Conjidence In tends  for  p 

Based on the likelihood [ 10.06, 10.54) 19.91, 10.53J 
Basedon Z ,  Z,. [ 10.09, 10.49) [ 9.96, 10.471 

Approximcite 9.5% 
Cot rfidence IntenuIsJi)r (T 

Based on the likelihood 
Based on Zlog,tr) Zlogcu') 

[.2 10. S27) 
[.219, S59)  

.367, .858]  
3 8 3 ,  1 . 0 1  1 

Based on 2, Z,, .  [.220, .560] .387, .999) 

Approsinrute 95Src 
Confidence Interva1sJi)r t I 

Based on the likelihood [9400,17300) [9400, 16300j 
Based o n  Zlog,, I I z,,,,,; [8700, 172001 [8100, 16100)) 

Based on 2;I q, [ 8300. 173001 [ 7800, 16200) 

Approximcite 95% 
Confidence In tends  Jbr F (  10000) 

Based on the likelihood [ .0092, . I  1361 [ .008S, . 1 1591 

Based on z ,ogl t , i )  Zi"glt,i l.0104, .1209] [.0091, .I2921* ) 

Based on 2,- Z+ [ .0044,2229) [.0015, 512x1 

A 

of F*(r,), ZF.,and Zloglt(?*)for t ,  = 10,000km. Figure 9.9 also shows the cumulative 
distribution of Z,og,t(~,)indicating, with the dashed lines, the .025 and .975 quantiles 
of the distribution of Zlopl t (~ . ) .Numerically these values are zloglt(F.),, , 2 5 )  = - 1.845and 

), 975,~log1t(F* = 2.045, respectively. From this, using p( t , )  = .03908 and = .024XO 
(from Table 8.1)and substituting the bootstrap distribution quantiles for the NOR(0, I ) 
quantiles in (8.15) gives the values in Table 9.2. 

Table 9.2 shows that the confidence intervals based on the distribution of Zloglt(I..~ 

are generally close to those obtained with the likelihood-based method. Intervals 
based on the distribution of Zp. are, however, quite different from any of the other 
intervals. The primary reason for this is the extreme lower tail of the Z F , ( ~ ~ )distribu-
tion, shown in Figure 9.9 (the minimum value of Zc.(tr)being approximately -20). 
In particular, z p  = -7.41 1 .  This indicates the importance, particularly for 

(1, O ? T ~  h 

restricted quantities like 0 5 F ( t )  5 1, of using an appropriate transformation that 
will cause the distribution of the Z* bootstrap-t statistics to be less sensitive to the 
unknown actual parameters of the underlying model. 0 
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Figure 9.8. Bootstrap distributions of G * ,Zc*,and ZlOg,+"based on B = 10,000 bootstrap samples for 
the shock absorber example. 

9.4.3 Comparison of Confidence Interval Methods 

Table 9.2 contains numerical values of approximate confidence intervals for p, U ,  

F( lOOOO), and based on the likelihood and bootstrap methods. Relative to the 
width of the intervals, the differences among the methods are not large, except that 
the use of the logit transformation on the interval for F(10000) has a big effect. 
Comparison with the likelihood-based interval makes it clear that the use of the logit 
transformation provides an important improvement in this case. 

9.5 NONPARAMETRIC BOOTSTRAP CONFIDENCE INTERVALS 

9.5.1 Nonparametric Bootstrap Sampling 

As explained in Section 9.2, to use the bootstrap method, it is necessary to generate a 
large number (denoted by B ) of bootstrap samples that can be used to approximate the 



218 BOOTSTRAP CON FI D ENCE INTERVALS 

Bootstrap Estimates Bootstrap-t Untransformed 
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Figure 9.9. Weibull model bootstrap distributions of F * ( f , ) ,Z i , ,  and Z,og,r,i*,for f, = 10,OOOkm based 
on R = 10,000 bootstrap samples fo r  the shock absorber example. 

sampling distributions of interest. Figure 9.10 illustrates the nonparametric bootstrap 
sampling method with nonparametric estimation. 

Example 9.8 Bootstrap Samplesfor  F(t)from the Heat Exchanger Tube Data. 
For this example B = 10,000bootstrap samples were generated. For each of the B 
bootstrap samples, bootstrap estimates F**(t)and s ^ e ~ . were computed. Figure 9.1 1 
shows F^* ( r )  values for the first 50 of the B = 10,000 bootstrap samples. Note the 
discreteness (limited number of outcomes) in the bootstrap estimates, especially at 
the end of the first year of operation. 0 

9.5.2 A Limitation and Warning on the Application of Bootstrap Methods for 
Nonparametric Estimation 

The justification for the bootstrap is based on large-sample theory. Even with large 
samples, however, there can be difficulties in the tails of the sample. For the nonpara-
metric bootstrap, there will be a separate bootstrap distribution at each ti for which 
there was one or more failures in the original sample. These bootstrap distributions 
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Actual Sample From Resample with Replacement from DATA 
Population or  Process Population or Process (Draw B Samples, each of Size n) 
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DATA:@ 
Figure 9.10. Illustration of the nonparametric bootstrap resampling method 
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(small dots) for the pooled-data heat exchanger tube example. 
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Figure 9.12. Nonparametric bootstrap distributions of PO,),Z;.. and ZlOg,,,;.) at t, = 1 year for 
B = 10.000 bootstrap samples from the pooled heat exchanger tube data. There were 167 occurrences of 
p*( 1 ) = 0 that were adjusted t o  . S / t i , ,  where ri1 = 300 is the size of the risk set at the beginning of year I .  

are approximately continuous outside the tails of the sample data (because the number 
of different possible outcomes in the bootstrap sampling process is large). In the 
lower tail of the observed sample (i.e., at smaller t ,  values), however, the bootstrap 
distribution can be far from continuous. As we will see in the examples, the standard 
bootstrap methods are not useful at such points on the distribution; plotting the 
observed bootstrap distribution identities potential problems of this kind. 

Example 9.9 Bootstrap Sampling Distributions from the Heat Exchanger 
Tube Data. After 1 year of operation, there were only 4 failed tubes across the heat 
exchangers. As shown in Figures 9.1 1 and 9.12 the number of different outcomes in 
the bootstrap sampling at 1 year is small. At 2 years, the number of possible outcomes 
is large enough for the distribution to be approximately continuous. 0 

9.5.3 Distribution of Bootstrap Statistics 

The accuracy of bootstrap approximation confidence intervals, like the normal- 
approximation intervals, will, in general, depend on the transformation used in the 
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procedure. To allow use of the logit transformation and plotting of fhe bootstraph 

estimates one can adjust any F*(t;)  = 0 to F^*(ti) = S / n ,  and any F*( t , )  = 1 to 
F*(t j )= (ni - .5)/n,, where n,  is the size of the risk set at the beginning of interval i. 
These adjustments will have no effect on confidence intervals unless the frequency of 
such events exceeds a/2 (in which case, the nonparametric bootstrap method should 
not be used anyway because of the extreme discreteness in the distribution). 

Example 9.10 Distribution of Bootstrap Statistics for  the Heat ExchangerA 

Tube Data. Figure 9.12 gives histograms of the B = 10.000 values of F*(r , ) ,  
h h h h 

F' = [logit(F*) - l ~ g i t ( F ) ] / s ^ e , ( , ~ , ~ ~ ~ , ~z-= (F* - F)/GF*,and Zlopl t (~*)  at t ,  = 1 year 
of operation. Also shown is the cumulative distribution of Zioglt(F.)indicating, with the 
dashed lines, the .025 and .975 quantiles of the distribution of Z,( ,gl l ,~ . ) .Numerically 
these quantiles are zl(,glt(~*), , ~ ? ( )  = -1-394 and "log,[( F- ), = 1.972, respectively. 
Figure 9.13 does the same for t ,  = 2 years of operation. Because of the relatively 
small number of possible outcomes at t ,  = 1, the bootstrap distributions there are fix 
from continuous. At t ,  = 2, however, the distribution has the appearance of being 
approximately continuous. Corresponding plots for r, = 3 were very similar to the 
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Figure 9.13. Nonparametric bootstrap distributions of ? * ( r , ) ,  Z,,, and Z,og,,(+) at r ,  = 7, years for 
B, = 10.000 bootstrap samples from the pooled heat exchanger tube data. There were 3 occurrences of 
F * ( 2 )  = 0 that were adjusted to . 5 / n 2 ,where n2 = 197 is the size of the risk set at the beginning of year 2. 

*) (; 'logit 
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plots for ti = 2. Comparing across the three time points, the bootstrap distribution 
of Zlogit(~.)is much more stable [i.e., has a more consistent shape and spread for 
different values of F ( t , ) ]  than that of ZF.. For this reason, a procedure based on 
the ZIogi t (~,Zlogit(p,can be expected to provide better approximate confidence 
intervals. 0 

9.5.4 Pointwise Nonparametric Bootstrap Confidence Intervals for F(ti) 

To obtain nonparametric bootstrap confidence intervals for F = F ( t ; )at t ,,we modify 
the approach in Section 3.6.3, substituting bootstrap estimates of the quantiles of the 
distribution of Zloglt(~.)in place of the NOR(0, 1)  quantiles. Specifically, a two-sided 
approximate 100(1 - a)%bootstrap confidence interval based on ZIogl t (~)Zloglt(p)
is 

where 

This formula is similar to (3.16), with an important difference. For the bootstrap 
interval, there are separate values of M’for the upper and lower tails of the distribution. 
This is because the distribution of Zlogit(p),unlike the NOR(0, 1)  distribution, is not 
symmetric. 

Example 9.11 Nonparametric Bootstrap ConJidence Interval for the Heat 
Exchanger Tube Time-to-Crack cdf. Consider estimating the fraction of heat 
exchanger tubes that crack after 1 year of operation (i.e., t ,  = 1).  Using the quantiles 
of the distribution of Zloglt(~*) ,previous results from Example 3.7, and substituting 
into (9.4), we find 

.O 133 
= [ .0133 + ( 1  - .0133) X F* .0133 + ( 1  - .0133) X E 

= [.0050, .0266], 

where 

= exp(l.972(.00662)/[.0133(1 - .0133)]} = 2.704, 

\.t* = e x d -  1.394(.00662)/[.0133(1 - .0133)]} = ,4950. 

Nonparametric bootstrap confidence intervals based on Zp rL ZF. are computed sim- 
ilarly. 

Table 9.3 gives the numerical results for bootstrap and normal-approximation 
methods for t ,  = 1,2,3. Comparison shows that the Zlogi t (~)NOR(0, 1) and 
ZIogit(~)L̂. ZIogit+)methods are not too different. Because it is based on a more 
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Table 9.3. Results of Calculations for Nonparametric Approximate Confidence 
Intervals for F and Comparison with Normal-Approximation Intervals for the Heat 
Exchanger Data 

Year t, F(t,j ŝ ep Pointwise Confidence Intervals 

(0-11 I .0133 .00662 

Approximute 95% Confidence Intervuls for F(1 ) 

Based on ZIogl,(,-) NOR(0, 1 ) [.OOSO,.0350] 

Based on 2, A NOR(0, 1)  [.0003, .0263] 

Based On zlogll(F) zlopll(F') [.OO50,.0266] 

Based on 2,- Z;. [.0038, .0332] 

(1-21 2 .0384 .0128 

Approximute 95% Confidence Intends for F(2j 

Based on Z,,,,,~~)A NOR(0, I )  [ .O 198, .0730] 

Based on Z ,  NOR(0, I )  [ .o133, .063S] 

Based On zl"gll(Fl A Z,og,t(F*) [.O 188, .0702] 

Based on Z,I 4 Zp [.0171. .0770] 

(2-31 3 .0582 .O 187 

Approximute 95% Confidence Intends for F(3) 

Based on ZIogll(~,NOR(0, 1 )  [.0307, .1076] 

Based on ZF 4 NOR(0, I )  [.02 16, .0949] 

On z,ogll(F, A zlogl l (P,  [.0302, .I0971 

Based on Z,- -L 2,. [.0282, . I  1681 

precise evaluation, the bootstrap interval procedure based on Z,oe i t (~ )Z I o g , , ~ f ; .~ can 
be expected to have better coverage properties. 

For this example, the observed frequencies of F^* = 0 were much less than a/2 = 
.025 for all values of ti and so the continuity adjustment described in Section 9.5.3 
has no effect on the confidence intervals. 

Example9.12 Bootstrap Conjidence Intervals for F(t)from the Shock Ab-
sorber Data. The application of the bootstrap method for this example is similar 
to the approach used in Section 9.5.1. There are, however, important differences in 
the character of the bootstrap distributions because the shock absorber failure times 
were reported as exact failures (i.e., not grouped into inspection intervals). Thus we 

0 
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could take as t,., any particular time of interest out to 28,100 km, the last time of 
observation. 

Again, B = 10,000bootstrap samples we? generated. For each of the B bootstrap 
samples, nonparametric bootstrap estimates F* and Gk, were computed. Figure 9.14 
shows F( tY)as thick solid lines and @*(t,) for the first 50 of the B = 10,000bootstrap 
samples as thin dashed lines. Note the discreteness in the F*(t,) bootstrap estimates 
at the earlier points in time. This figure alone gives a sense of the sampling variability 
in both F*(t,) and k(t,). 

Figures 9.15, 9.16, and 9.17 show more detail at three particular points in time 
(time of the 1st, 3rd, and 7th failures). In this sequence of figures we see the bootstrap 

h 

distributions of F*( t , ) and Zloglt+,)become progressively closer to continuous as we 
move from t = 6700 to t = 20,100. The distribution of the untransformed ZF. is 
somewhat more erratic, again indicating the importance of using a transformation to 
make the distribution of the Z statistic more stable over the possible values of the 
underlying model. 

Figure 9.18 is similar to Figure 3.6 but also shows the set of approximate 95% 
pointwise bootstrap confidence intervals for F(t,)  as dotted lines. to compare with 
the normal-approximation intervals shown with dashed lines. 0 

Because of the highly discrete distribution for the first two segments, the bootstrap 
contidence intervals there are not credible. Beyond this point, however, the differences 
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Figure 9.14. Nonparametric F(f)(thick solid line) and F*(f)for SO of the B = 10,OOO bootstrap samples 
from the shock absorber data (thin dashed lines). 
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Figure 9.15. Nonparametric bootstrap distributions of F * ( r e ) ,Z,,. ,and Zlog lr (~ . )at t,. = 6700 km (the 1st 
failure time) for B = 10,OOO bootstrap samples from the shock ab\orber data. There nere 3635 occurrence\ 
of F*(t,) = 0 that were adjusted to . 5 /1z , .  
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Figure 9.16. Nonparametric bootstrap distributions of F*( t , ) ,  ZF., and Z l o p l r , ~ . ,at t,, = 12.200 k m  
(the 3rd failure time) for B = 10,000 bootstrap samples from the shock absorber data. There u.ere 336 
occurrences of ? * ( t , )  = 0 that were adjusted to .5/n3. 
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Figure 9.17. Nonparametric bootstrap distributions of ? ( r e ) ,  Z ; . ,  and Z,op,t(/.,,at t ,  = 20, 100 km 
(the 7th failure time) for B = 10,000 bootstrap samples from the shock absorber data. There was one 
occurrence of F * ( t e )  = 0 that was adjusted to . S / n , .  

between the two methods are not large. The bootstrap intervals are, for some time 
points, narrower (this will not be true in general, however) and sometimes shifted 
up somewhat. The important advantage of bootstrap intervals is that, except for the 
first few segments, they provide intervals based on approximations that are generally 
better than the simpler normal-approximation approach. 

9.6 PERCENTILE BOOTSTRAP METHOD 

Sections 9.3-9.5 describe and illustrate the use of the “bootstrap-f’ method. When 
it  is not easy to compute the standard error for an estimate, the percentile bootstrap, 
as described in Efron and Tibshirani (1993),provides a simple useful alternative. In 
its simplest form, the percentile method uses appropriate perc_entiles of the bootstrap 
distribution to define the confidence interval. Suppose that O y ,  j = 1,. . . ,B ,  is the 
bootstrap sample for a parameter 6. Then the lOO(1 - a)’?+percentile bootstrap 
interval for 8 is 
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Figure 9.18. Plot of the nonparametric estimate for the shock absorber data comparing the normal 
approximation Zlogr,(;, .L NOR(0, I )  (dashed lines) from Chapter 3 and the bootstrap Zlogl,(p)A Zloelrci.  
(dotted lines) pointwise 95% approximate confidence intervals for F(r<,).  

h 

where O;,], j = 1,. . . ,B ,  is the bootstrap sample ordered from smallest to largest, 
I = B X (a/2)and U = B X (1 - a/2).Generally I and U would be rounded to the 
next lowest and next highest integer, respectively. Alternatively, B can be chosen so 
that I and U are integers. 

The percentile bootstrap method has the advantage that the interval provided 
by the procedure does not depend on the transformation scale of the parameter (this 
property is called “transformation preserving” in Efron and Tibshirani, 1993). In small 
samples the percentile method is generally not as accurate as the bootstrap-r with an 
appropriate transformation. Efron and Tibshirani (1993) give methods for adjusting 
the percentile method for bias and nonconstant variance, generally providing accuracy 
comparable with the bootstrap-t method. Section 13.7 gives a detailed algorithm for 
the bias-corrected percentile method and an example of its use. In Section 21 .S the 
percentile method is used to obtain confidence intervals for accelerated degradation 
test analysis. 

BIBLIOGRAPHIC NOTES 

With complete data or Type I1 censoring (including progressive censoring) and 
location-scale distributions, the distribution of the t-like statistics, such as Zi;, Z l o g ( ~ ~ ,  
and Z,ogc , l ,depend only on the sample size and the fixed number of failures. This 
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implies that the parametric bootstrap approach, using the bootstrap sampling ap- 
proach illustrated in Figure 9.1, provides confidence intervals that have exactly the 
nominal level of confidence. This approach to computing confidence intervals is de-
scribed, for example, in Robinson (1983). For Type I censoring, in general, “exact” 
methods do not exist. 

Bootstrap methods for obtaining confidence intervals have become extremely 
popular in recent years. The early work of Efron (e.g., Efron, 1982) generated a large 
amount of research activity. The books by Hall ( 1992) and Efron and Tibshirani ( 1993) 
describe and illustrate most of the important theory and methods. Shao and Tu ( 1995) 
is another important reference providing theory on which bootstrap methods are 
based. Nonparametric methods for censored data are described in Efron ( 198I ) and 
Akritas (1986). 

Jeng and Meeker (1998) describe a large simulation that was used to compare var- 
ious methods of constructing confidence bounds for Weibull distribution parameters 
and quantiles based on Type I censored data (with Type I1 censored data, the para- 
metric bootstrap method has exact coverage probabilities). Their conclusions indicate 
that simulation-based methods, for most situations, provide important improvements 
over normal-approximation methods, especially when interest is primarily on one 
side or the other of an interval, as is generally the case in reliability applications. 

An appendix of Efron and Tibshirani ( 1993) provides S-PLUS functions for com- 
puting bootstrap intervals. If S-PLUS is not available or for special problems, the 
needed computations can be programmed by the analyst. Buckland (1985) provides a 
Fortran algorithm. Other programming languages or a high-level programming envi- 
ronment can be used, but efficiency may suffer with simulations programmed largely 
in interpretive languages. 

EXERCISES 

A9.1. Consider the bootstrap sampling distribution described in Example 9.12. Con-
sider the bootstrap distribution of events at the point t ,  = 6700 km (the 1st 
failure time). Refer to Figure 9.15. 
(a) The number of observed failures before t ,  = 6700 km in a bootstrap sample 

has a binomial distribution. What are the parameters of this distribution? 
(b) List all of the possible outcomes in the sample space of part (a) and compute 

the probability associated with each event. This will require the use of a 
computer package for computing binomial probabilities. 

( c )  Use the results in parts (a) and (b) to compute the true distribution of F^*(t,), 

Z,,, and ZlOg,,(j‘,at t ,  = 6700. (As we did in these examples, substitute 
F* = .5/38 for the event of 0 failures.) Compare your answers with the 
histograms in Figure 9.15. 

A9.2. Refer to Exercise 9.1. Do the same things for t, = 9 120 km (the 2nd failure 
time). Note that for this exercise a generalization of the binomial distribution is 
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required. This is because it is important to take into consideration the number 
of censored observations between t ,  = 6700 and t ,  = 9120. 

e9.3. Write a computer program to do the following, using the shock absorber data 
from Example 9.4 to illustrate the program’s use: 

Sample with replacement to obtain a sample of size ii = 38 shock absorbers 
from the 38 rows of Appendix Table C.2. 
Compute the Weibull distribution ML bootstrap estimates ( F ” ,G * )for this 
sample. 

)Compute the bootstrap studentized quantile estimate Z,og(c = [log(? ) -

log(? I >I/s^e,(,& ) 

Repeat steps (a) to (c) 2000 times to get 2000 values of Z,og,.j;).Make a 
histogram of these values to see the bootstrap distribution of Z,(lg(;; Find) .  

the .025 and .975 quantiles of this distribution. 
Use the results in part (d) to compute a bootstrap confidence interval for t 1 .  

Compare with the interval in Table 9.2. Why are they not exactly the same? 
What could be done to assure better agreement in such a comparison‘? 

9.4. Explain the possible advantages and disadvantages of using the bootstrap sam- 
pling methods illustrated in Figures 9.1 and 9.2 when the goal is to obtain a 
confidence interval for the quantile of a Weibull distribution under the following 
conditions with i z  small (say, 10)and n large (say, 100): 
(a) A complete sample of n failure times. 
(b) A Type I1 sample consisting of r = n / 2  failures out of IZ units. 
( c )  A Type I censored sample, starting with n units and censored at a point in 

time close to the median of the distribution. 
(d) A randomly censored sample, starting with n units where units are censored 

at random points in time such that about 50% of the units will be observed 
to fail and the others will be censored. 

A9.5. Let t ( l )  < - - * < t(,) denote the observed failure times from a life test that 
was censored at time t,. Suppose that the underlying failure-time distribution 
is a log-location-scale distribution so that T - @ {[log(t) - p ] / a } ,where @ 
is a standardized location-scale cdf. Suppose that 1 5 r 5 11 (at least one 
failure) and let and i? be the ML estimators of the parameters. Show that the 
distributions of G/u,(c-p ) / u ,and ( E-p)/i? depend only on the cdf @, the 
sample size n, and the proportion of censoring, qc = 1 - CD {[log(t,.)- @ ] / U } .  

This can be accomplished with the following steps (as illustrated for the 
distribution of 3/u). 
(a) Denote by R the random number of failures in the life test. Show that 

conditional on having one or more failures the distribution of R is 
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(b) Show that conditional on having one or more failures the distribution of 
G / u  is 

Pr (: 5 7,) = 2Pr [(E 5 7,) and ( R  = r )1(T
r = l  

( c )  Write the likelihood for the censored sample of r failures and show that 
for each fixed r ( r  = 1,. . . ,n )  and 1 2 ,  the ML estimator is a function of  
f(,), j = 1,. . . ,r ,  and t,, say, 2 = Hn.r[ Iog(f( I ) ) ,  [,.I.. . . ,l o g ( ~ ~ r ) ) ,  

(d) Use the location-scale property of the distribution of T to show that, for 
each fixed r and n, the estimator is “equivariant” in the sense that 

where q,) = [log(t(,,) - p ] / u  is the j t h  order statistic from a random 
variable with cdf, a(:)/( 1 - q ( ) ,z 5 [log(t,J - p ] / u .  

9.6. Refer to Figure 9.6. Using the ideas of the percentile bootstrap discussed in 
Section 9.6, determine, approximately, a 95% confidence interval for r,? of the 
shock absorber failure-time distribution. 

9.7. Refer to Figure 9.6. Using the ideas of the percentile bootstrap discussed in 
Section 9.6, determine, approximately, a 95% confidence interval for F ( 10000) 
of the shock absorber failure-time distribution. 
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Planning Life Tests 

Objectives 

This chapter explains: 

Basic ideas for planning a life test or field-tracking study. 
The use of simulation to get an indication of how the results of a life test or 
other study might look, to see how the data might be analyzed, and to get a 
rough idea of the precision that can be expected for a proposed test plan. 
The use of large-sample approximate methods to assess the precision of the 
results that will be obtained from a future reliability study. 
How to determine an approximate sample size that provides a specified degree 
of precision. 
How to assess the trade-offs involving sample size and study length. 
The use of simulation to check and “calibrate” the easier-to-use large-sample 
approximate met hods. 
Methods for assessing sensitivity of test planning conclusions to unknown inputs 
that must be provided. 

Overview 

This chapter provides tools for evaluating and controlling estimation precision for 
a life test when censored data are expected. For those interested primarily in data 
analysis methods, this chapter can be skipped. Section 10.1 introduces the basic ideas 
of test planning and uses simulation to illustrate and explain the effect that sample 
size has on sampling variability. Simulation is an extremely important tool for test 
planning. Section 10.2 shows how to compute approximate sampling variability di- 
rectly. Sections 10.3 and 10.4 show how to find the sample size needed to control 
sampling variability (or precision) and illustrate the ideas for the normal and expo- 
nential distribution. Section 10.5 applies these methods to problems involving Type 1 
censored data with the Weibull and lognormal distributions. Section 10.6 describes 
methods for planning a test to demonstrate conformance with a specified reliability 
standard. Section 10.7 describes some extensions to other types of censoring and 
related sample size problems. 
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10.1 INTRODUCTION 

10.1.1 Basic Ideas 

Because life tests and reliability field-tracking studies are expensive, i t  is essential 
to plan them carefully. Frequently asked questions include “How many units do I 
need to test in order to estimate the . I  quantile of life’?” or “How long do 1 need 
to run the life test‘?’’ Simply put, more test units and more test time will generate 
more information, which improves the precision of estimates. Precision and other 
test plan properties depend, however, on the actual model and its parameters. In 
order to describe the kind of results that might be expected from a particular test 
plan, i t  is necessary to have some “planning information” about the life distribution 
to be estimated. Having such information makes it possible to assess the effect that 
sample size and test length will have on the outcome of a particular test plan. Such 
planning information is typically obtained from design specifications, expert opinion, 
or previous experience with similar products or materials. Here the superscript 0 is 
used to denote a planning value of a population or process quantity. 

Example 10.1 Engineering “Planning Values ’’ and Assumed Distribution 
for Planning an Insulation Life Test. A manufacturer wants to estimate the . I  
quantile of the life distribution of a newly developed insulation. Tests are run on 
small specimens and at higher than usual electrical stress (specified in kilovolts/mm) 
to cause failures to occur sooner. The amount of time available for the life test is loo0 
hours. Engineering has provided the following information in order to help plan the 
life test. 

They expect that about 12% of the specimens will fail in the first 500  hours of 
the test and about 20% of the specimens will fail by the end of 1000hours (i.e., 
the proportion failing at the censoring time should be in the neighborhood of 
p,T = .2). 

For purposes of test planning, the engineers will use a Weibull distribution to 
describe failure-time variability, but they also want to make an assessment using 
the lognormal distribution (they would be concerned if the answers differ too 
much). 

Substituting the above planning information into the Weibull distribution cdf (4.7) and 
solving for F and CT provides “planning values” po = 8.774 [or qo = exp(8.774) = 

=6464 hours], and CT’ 1.244 (or 6’ = 1/ I  .244 = .8037). A simple way of getting 
these values graphically is to plot the two planning failure probability points (500,.12) 
and (1O00, .2) on probability paper, draw a straight line through the points, and read 
off parameter planning values, as discussed in Section 6.6.3. Figure 10.1 illustrates 
this for the Weibull distribution. Similarly, using the lognormal distribution cdf (4.4) 
gives po = 8.658 and U’ = 2.079. 0 
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Figure 10.1. Weibull probability paper showing the cdf corresponding to the planning values in Exam-
ple 10.1. 

10.1.2 Simulation of a Proposed Test Plan 

Simulation provides a powerful, insightful tool for planning experiments. The fol- 
lowing steps outline a useful simulation method for helping to plan a life test. 

Use the chosen model and planning values of the distribution parameters to 
simulate data from the proposed life test. 
Analyze the data, perhaps fitting more than one distribution. 
Assess precision of estimates. This can be done initially by computing approx- 
imate confidence intervals, as would be done for the real data. 
Simulate and fit distributions to many samples to assess the sample-to-sample 
differences. Such multiple simulations provide an assessment of estimation 
precision. This assessment does not depend on the usual large-sample approxi- 
mations. 
Repeat the simulation-evaluation process with different sample sizes to gauge 
the actual sample size and test length requirements to achieve the desired pre- 
cision. 
Repeat the simulation-evaluation process with different input “planning values” 
over the range of their uncertainty. 



234 PLANNING LIFE TESTS 

Example 10.2 Illustration of Simulations of Insulation Life Tests. Fig-
ures 10.2, 10.3, and 10.4 show plots of ML estimates obtained from 30 simulated 
samples of size n = 5 ,  n = 50, and n = 500, respectively, from a Weibull distribution 
with p = 8.774 and (T = 1.244 (shown with the thicker, longer line). The dashed 
vertical line at t,. = 1000indicates the censoring time (end of the test). The horizontal 
line at p = .1 provides a better visualization of the distribution of estimates of t.1. 
These graphs illustrate a number of interesting and important points about the effect 
that sample size will have on our ability to make inferences. In particular: 

For the n = 5 estimates in Figure 10.2, there is enormous variability in the ML 
estimates. In fact, for 13 of the simulated data sets, there are no ML estimates 
because all units were censored [the probability of all units being censored in 
a sample of n = 5 units is (1 - .2)5 = .328]. This is a strong indication that 
the usual large-sample approximate confidence intervals, in this situation, will 
be seriously inadequate. The standard deviation of the 17 values of log(?[) (for 
those samples that had 1 or more failures) was 1.36. 
The estimates for n = 50 in Figure 10.3 indicate much more accurate estima-
tion. The spread in the ML estimates of t 1 might be small enough for some 
applications. The standard deviation of the 30 values of log(j'1) was ,408. 
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As shown in Figure 10.4, increasing the sample size to n = 500 provides a 
substantial reduction in sampling variability. The standard deviation of the 30 
values of logcl) was .173. 

In general, simulation is an easy, useful method of assessing variability. 0 

To control the standard deviation of an estimator to a specified degree of precision, 
it is possible to interpolate among simulated values at different sample sizes. Statis- 
tical theory (e.g., Section 10.2.2) tells us that the sampling variance of estimators is 
approximately proportional to 1/ n ,  where n is the sample size. This suggests a linear 
relationship between l / f i  and the standard deviation. Section 10.2 suggests a more 
direct approach to controlling precision. 

10.1.3 Uncertainty in Planning Values 

Life test planning requires specification of a model and “planning values” for the 
model parameters. Of course, these model parameters are generally unknown and, 
indeed, this is usually the reason for conducting the life test. Typically, however, 
planning values can be obtained from some combination of experience with similar 
products, design specifications, and engineering judgment. As suggested in Sec-
tion 10.1.2, one could evaluate plans over a range of planning values. An alternative 
would be to use a Bayesian approach by specifying a prior probability distribution to 
describe the uncertainty in the unknown model parameters, in effect, averaging over 
the plans suggested by the prior distribution. 

10.2 APPROXIMATE VARIANCE OF ML ESTIMATORS 

10.2.1 Motivation for Use of Large-Sample Approximations of 
Test Plan Properties 

In contrast to the use of simulation for assessing properties of proposed test plans, 
large-sample approximations provide: 

Simple expressions that allow one to compute directly the approximate precision 
of a specified estimator as a function of sample size. 
Simple approximate expressions for the needed sample size as a function of the 
specified precision of an estimator. 
Simple tables or graphs of variance factors that provide insight and allow easy 
assessments of trade-offs in test planning decisions (e.g., sample size and test 
length). 

The remainder of this chapter describes the basic ideas behind the approximate large- 
sample formulas, illustrates their use in the development of simple-to-use figures for 
test planning, and shows how to fine-tune test plans by using simulation methods. 
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10.2.2 Basic Large-Sample Approximations 

This section summarizes some important ideas given in more detail in Appendix Sec- 
tion B.6.1. Under standard regularity conditions (see Appendix Section B.4), for a 
model with parameters 8 = (@,. . . ,&), the following results hold approximately 
for large samples: 

ML estimators follow a multivariate n_ormal distribution with mean vector 8 
and covariance matrix x g  [abbreviated 8 MVN(0, Xg)]. 
The large-sample approximate covariance matrix can be computed from x; = 

I& I ,  where 

(10.1) 

is the Fisher information matrix. Recall from Section 7.3.3 that more curvature 
in the log likelihood implies more precision for estimation. The actual amount 
of curvature at the maximum of a likelihood function is, in general, random, 
depending on the sample data. The matrix 10 can be viewed as the expected 
amount of curvature in the sample log likelihood function at its maximum. 
The inverse of this curvature matrix provides the approximate large-sample 
covariance matrix that, given the model and “planning values” for 8, can be 
used for test planning. 

In most practical problems, interest will center on one or more scalar functions of 
the parameters, say, g = g ( 0 ) . Then, in large samples, the distribution of 2 = g ( 8 )  
can be approximated by a normal distribution, g NOR [ g ( e ) ,Ase(g)], where, from 
the delta method (see Appendix Sections B.2 and B.6.3) 

(10.2) 

When the function g(0) is positive for all 8,  then it is generally better to use an 
alternate form of the delta method approximation in which 

where 
2 

Avar[log(g)] = (-!) Avar(g). 

The approximate standard errors for 2and log@ are, respectively, 

1
Ase(2) = -fi and Ase[log(g)] = -

1 d G
fi J;E 



238 PLANNING LIFE TESTS 

where the variance factors V, = nAvar(2) and Vlog(g) = nAvar[log(g)J may (and 
usually do) depend on the actual value of 8 but they do not depend on n.  Thus i t  
is easy to choose n to control Ase(-). To compute VKand Vlog(i),one uses planning 
values On, as described in Example 10.1. 

10.3 SAMPLE SIZE FOR UNRESTRICTED FUNCTIONS 

When --r30 < g ( 8 )  < a,an approximate 100(1 - a)% confidence interval for g(8) ,  
using a reexpression of (8.9), is 

(10.3) 
h 

where q,,)is the p quantile of the standard normal distribution and V, is V i  evaluated 
at 5.The actual confidence interval half-width D = ( g  - g ) / 2  is a convenient 
measure of confidence interval precision. To compute the sample size needed for a 
specified degree of precision, let DT denote a specified target value for D, replace vi 
by V%?in (10.3), and solve for n,  giving 

( 10.4) 

where VF is V i  evaluated at 8'. To obtain n ,  one needs to specify 1 - a ,  D T ,t,.,and 
the planning values 8" needed to compute VF. 

Test plans with this sample size provide confidence intervals for g ( 0 )  with the 
following characteristics: 

In repeated samples, approximately loo(1 - a)%of the intervals will contain 
g ( W .  
In repeated samples, ?i is random because it depends on ^e (which depends on 
the sample data). If T i  > VF, then confidence interval width 2 0  is greater than 
the target 207.  
The probability that the realized interval width 2 0  is greater than the target 
width 207- is near .5. 

Example 10.3 Sample Size Needed to Estimate the Mean of Light Bulb Life. 
The life of some types of incandescent light bulbs can be modeled adequately with 
a normal distribution. Depending on the particular design, mean life might be on the 
order of 1000hours with a standard deviation under 200 hours. To satisfy a request 
from marketing, it was desired to plan a life test that would estimate mean life of light 
bulbs so that a 95% confidence interval has a half-width that is approximately 30 
hours. The product engineers are willing to assume that life is adequately described 
by a normal distribution with a standard deviation no larger than U' = 200 hours 
and there is enough time to let all of the bulbs fail before analyzing the data. 

From elementary statistics, = ;i- so VF = nVar(i) = a2and VF = (U')' = 

(200)2. Substituting this and DT = 30 into (10.4) shows that the number of bulbs 
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needed is 

171. 0 

10.4 SAMPLE SIZE FOR POSITIVE FUNCTIONS 

When g ( 8 )  > 0 for all 8, using a reexpression of (7.1 I )  and (8.1 l), an approximate 
100(1 - a)% confidence interval for log[g(8)] is 

= log@ 2 log(R). 

Exponentiation yields a confidence interval [g, 81 = [F/R, Z R ]  for g. Here-

is a convenient measure of confidence interval precision. Let RT denote a target value 
for the precision factor R. Typical values for R are numbers like 1.2 and 1.5, indicating 
approximate expected deviation of 20% or 50%, respectively, between the estimate 
and the upper (or lower) confidence bound. Replacing v log(g )  with V&(gj in (10.5) 
and solving for sample size n gives 

( 10.6) 

Similar to the sample size formula for unrestricted functions of parameters, this 
sample size provides confidence intervals for g(0) with the following characteristics: 

In repeated samples, approximately 100(1 - a)%of the intervals will contain 
d o ) .  

h h 

In repeated samples, Vlog(g)is random because it depends on 8 (which depends 
on the sample data). If vlog(i)> V&,,,-, then R = fiwill be greater than 
R T .  
The realized precision factor R will be greater than the target RT with a proba-
bility that is near .5. 

Example 10.4 Sample Size Needed to Estimate the Mean of an Exponential 
Distribution for Insulation Life. A newly developed electrical insulation requires a 
life test to estimate the mean life of specimens at highly accelerated conditions. That 
is, the test will be run at higher than usual voltage to get failure information quickly. 
It is possible to use simultaneous testing of all units but the test must be completed 
in only 500 hours. Insulation engineers have been able to suggest a planning value 
of 8' = 1000 hours. The experimenters need to choose the sample size to be large 
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enough so that a 95% confidence interval will have endpoints that are approximately 
50% away from the estimated mean (so RT = 1.5). 

From Section 7.6.3, the ML estimate for the exponential mean will be computed 
as = 7 7 T / r ,  where TIT is the total time on test and I' is the number of failures. It 
follows, as a special case of h( 10.1) and ( 10.2), that the scaled asymptotic (large-sample 
approximate) variance of 8 is 

Then using the delta method, 

Thus the number of needed specimens for the test is 

10.5 SAMPLE SIZES FOR LOG-LOCATION-SCALE DISTRIBUTIONS 
WITH CENSORING 

10.5.1 Large-Sample Approximate Variance-Covariance Matrix for 
Location-Scale Parameters 

This section specializes the computation of sample sizes to situations in which: 

T has a log-location-scale distribution with parameters (p ,a). 
The life test is to be Type I right-censored at time t,.. 

In this case, the large-sample approximate covariance matrix can be computed as 

where is the Fisher information matrix for ( p ,a).Appendix Table C.20 pro-
vides, for the lognormalhormal distributions, the following as a function of the 
standardized censoring time & = [log(t(.)- ,u]/a: 

loo@([(.),the population percentage failing by the standardized censoring time 
L . 
The scaled large-sample approximate variancexovariance factors ( 1 /a ' )Vp ,  
( 1/cr2)VG, and ( 1/ ~ ) V ( G , G , .  
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~ ( G , G )= V ( c , ~ , / , , / m - ,the large-sample approximate correlation between 
the ML estimators 6 and 6. 
The scaled Fisher information matrix elements f i t ,  f 2 2 ,  and f i 2 .  The scaled 
Fisher information matrix for a single observation from the corresponding 
location-scale distribution is 

For a given, the large-sample approximate variance factor for i;:is (1  /a2)V;-lcT= 

(n/a2)Avar(6)u) = 1/ f l  I .  For p given, the factor for i? is ( 1 /u2)V31F = 

(n/a*)Avar(slp) = l/f22. 

10.5.2 Sample Size to Estimate Parameters when T is Log-Location-Scale 

To compute needed sample sizes for estimating p and a under Type I censoring 
for the lognormal distribution, the variance factors in Appendix Table C.20 can 
be used directly in the sample size formulas (10.4) and (10.6). Algorithm LSINF 
by Escobar and Meeker (1994) provides the fij elements for the smallest extreme 
value (Weibull), normal (lognormal), and logistic (loglogistic) distributions. These 
elements facilitate computation of quantities like those in Appendix Table C.20 and 
allow easy programming of the computations in this chapter. Section 10.5.3 shows 
how to use the variance factors from Appendix Table C.20 or Algorithm LSINF to 
compute variance factors for ML estimates of functions of p and U .  Sections 10.7.1 
and 10.7.2 show how to use the scaled Fisher information matrix elements to compute 
variance factors for Type I1 censoring and multiple censoring. 

Example 10.5 Sample Size Needed to Estimate the Shape Parameter of a 
Weibull Distribution for Insulation Life. Recall the test situation described in 
Example 10.1, where it was expected that about 20% of the insulation specimens 
would fail in the 1000-hour test and that 12% would fail in the first 500 hours, 
giving the Weibull parameter planning values p' = 8.774 and an = 1.244 [or 
q' = exp(8.774) = 6464 and p" = 1/1.244 = .8037]. Suppose that the engineers 
need a test plan that estimates the Weibull shape parameter p = l/a such that 
a 95% confidence interval has endpoints that are approximately 50% away from 
the ML estimate (so RT = 1.5). From Table 1 of Meeker and Nelson (1977) or 
using Algorithm LSINF from Escobar and Meeker (1994), using as input 5' = 
[log(1000)- 8.774]/1.244 = - 1.5 or a,,,,(- 1.5) = .20 (the proportion failing by 
the end of the test), gives VE,,p, = V&,, = [1/ (a0)2]Vg = 4.74. Thus 

is the number of specimens that should be tested. 
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Example 10.6 Sample Size Needed to Estimate U of a Lognormal Distribution 
for Insulation fife.  We use the same inputs as in Example 10.5 but assume that 
the underlying distribution is lognormal. Using the lognormal planning values from 
Example 10.1 gives n = 83. Note that this sample size is not directly comparable to 
that from Example 10.5 because the a parameters have different meanings. 0 

10.5.3 Large-Sample Approximate Variance for Estimators of Functions of 
Location-Scale Parameters 

A special case of the Taylor-series approximation in Appendix equation (B.9) can be 
used to compute variance factors for ML estimates of functions of p and a ;namely, 

Here the large-sample approximate variance factors Vc and V, and the large-sample 
approximate covariance factor V,,,,) depend on the assumed location-scale distribu- 
tion and the standardized censoring time cc = [log(r,.)- p ] /a .  

10.5.4 Sample Size to Estimate a Quantile when T is Log-Location-Scale 
(P ,U) 

To find the sample size needed to estimate til > 0 with a specified degree of precision. 
it is convenient to work with g ( 0 )  = log(r,) = p + @-'(p)u,the logarithm of the 
p quantile of T .  Here @ ( p ) is the p quantile of the standardized random variable 
2 = [log(T)- p]/cr. The sample size IZ is obtained as a special case of (10.6) and 
it is given by 

72 v o  
" ( I  -a/2)  log(Qn =  


Ilog(R7-)12 * 

V&+ is obtained by evaluating 

vlog(Q= vji + [@-'(p,]?vc + 2@-'(P)v(c,G, ( 10.8) 

[a special case of (10.7)] at the planning values 6; = [log(t(.)- pO] /aOand a'. 
To obtain n one also needs to specify @ and a target value RT for R = g/g = g / g .  

For the Weibull distribution, Figure 10.5 gives a plot of the large-sample ap- 
proximate variance factor ( 1/u2 )V10g~ , lversus the quantile of interest p .  The lines 
correspond to different values of the expected proportion failing in the life test, 
pc = Pr(T It(.) = Pr(2 5 &). Figure 10.6 is a similar plot for the lognormal 
distribution. 



Figure 10.5. Large-sample approximate variance factor ( 1 /U~)V,( ,~, ; ,>,for ML estimation of Weibull 
quantiles as a function of p c  (the population proportion failing by censoring time 1, ) and p (the quantilr of 
interest). 

Quantile of Interest p 
Figure 10.6. Large-sample approximate variance factor ( 1 /v')V,"~,;,, for ML estimation of lognormal 
quantiles as a function of pc  (the population proportion failing by censoring time 1, ) and p (the quantile of 
interest). 
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Close inspection of Figures 10.5 and 10.6 indicates the following: 

Although the factor values differ, the behavior of these plots is similar across 
distributions. 
Looking vertically, using any particular quantile of interest p ,  shows that in- 
creasing the test length (increasing the expected proportion of failures) always 
reduces the variance. After a point, however, the returns diminish (indicated by 
p( . lines that are closer together). 
The point of diminishing returns for a longer test is somewhat beyond the 
quantile being estimated. For example, if the goal of the test is to estimate the . 1  
quantile, then important gains in precision can be obtained by running the test 
until 15% or so of the units fail. There is, however, little additional improvement 
in precision from running the test much longer. Also, running the test far beyond 
107~failing could introduce bias into the estimate of the . I  quantile. 

Example 10.7 Sample Size Needed to Estimate t.1 of a Weibull Distribution 
for Insulation Life. Refer to the insulation evaluation problem described in Exam- 
ples 10.1 and 10.5. Suppose now that the engineers want to obtain a test plan that 
will estimate the Weibull t.1 such that a 95% confidence interval will have endpoints 
that are approximately 507~away from the ML estimate of t , l  (so RT = 1.5). By 
taking variance factors from Table I of Meeker and Nelson ( 1977) or using Algorithm 
LSINF from Escobar and Meeker ( 1994), and using (10.8) or by taking the quantile 
variance factor directly from Figure 10.5 (entering with p r  = .2 and p = . I )  gives 
[ l/(~r")?]V:'~~/,~= 7.28 so V:'(i,,l = 7.28 X (1.244)' = 11.266. Thus 

is the number of specimens that should be tested. I3 

Example 10.8 Sample Size Needed to Estimate t.1 of a Lognormal Distribution 
Used to Describe Insulation Life. Using the same inputs as in Example 10.7, but 
assuming that the underlying distribution is lognormal, using the lognormal planning 
values from Example 10.1, and using Figure 10.6 to obtain [ 1 / ( U ~ ) * ] V , ~ ~ ~ ~ ? , , ~gives 
rz = 208. Figure 10.7 is a lognormal probability plot showing ML estimates from 30 
replications of this proposed test plan. The range of estimates of t,I indicates that the 
proposed plan will provide the desired degree of precision. cl 

10.5.5 Sample Sizes to Estimate the Hazard Function When T has a 
Log-Location-Scale Distribution 

When T has a log-location-scale distribution, the hazard function of T evaluated at 
t ,  can be expressed as 
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Here & = [log(t,) - p ] / o  and is the cdf of 2 = [ log(T)- p ] / a . Because 
h(tc;0) > 0, the sample size is obtained using the confidence interval for log(/?).In 
this case 

( 10.9) 

and n is determined from 

V041-a /2)  log(;)n =  

[log(&-) I2  ' 

where, as before, Vo is obtained by evaluating Vlog(i;)at po and U".  
log61

Figures 10.8 and 10.9 give plots of variance factors VlOg(j;)as a function of p(. = 

Pr(T 5 t,.) = Pr(2 5 &.) and p ,  = Pr(T It,) = Pr(Z 5 &). The plots are similar 
to variance factor plots for the quantile estimates. 

Example 10.9 Sample Size Needed to Estimate h(1000)for a WeibullDistribu-
tion Used to Describe Insulation Life. Refer to the insulation evaluation problem 
described in Examples 10.1, 10.5,and 10.7. Suppose that the engineers need to obtain 



Figure 10.8. Large-sample approximate variance factor V,og(h,for ML estimation of the Weibull dis- 
tribution hazard rate at t ,  as a function of pc (the population proportion failing by time t ,  ) and pCr(the 
population proportion failing by time t,. ). 

Figure 10.9. Large-sample approximate variance factor Vlog(h,for ML estimation of the lognormal hazard 
rate at t ,  as a function ofp ,  (the population proportion failing by time r, ) and pr (the population proportion 
failing by time r e ) .  
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a test plan that will estimate h( lOOO), the Weibull hazard at 1000 hours, such that a 
95% confidence interval will have endpoints that are approximately 50% away from 
the ML estimate of h(1000) (so RT = 1.5). Using p: = .2 and p c  = .2 to enter 
Figure 10.8 gives V~gii(loM))l 10.3.Thus= 

Example 10.10 Sample Size Needed to Estimate h(1000) for a Lognormal 
Distribution Used to Describe Insulation Life. We use the same inputs as in 
Example 10.9 but assume that the underlying distribution is lognormal. Using the 
lognormal planning values from Example 10.1 gives n = 191. 0 

10.6 TEST PLANS TO DEMONSTRATE CONFORMANCE WITH A 
RELIABILITY STANDARD 

10.6.1 Reliability Demonstration Plans 

It is often necessary to specify the sample size and test length for a life test that is 
to be used to demonstrate, with some level of confidence, that reliability exceeds a 
given standard. Often the reliability standard is specified in terms of a quantile, say, 
t,,. For example, a customer purchasing a product may require demonstration. by the 
vendor, that t ,  > tlf,where t: is a specified value. In general, the demonstration that 
t ,  > tlf will be successful at the lOO(1 - a)%level of confidence if t,, > t,:, where-
tl, is a lower lOO(1 - a)%confidence bound for t,,. 
5 

Example 10.11 Reliability Demonstration Test for a Life-Limiting Compo- 
nent. A relatively expensive life-limiting component is to be installed in a product 
with a 1-year warranty. The manufacturer of the product will purchase the com- 
ponent from a vendor. The vendor has been asked to demonstrate that t.ol exceeds 
24 X 365 = 8760 hours. Equivalently, in terms of failure probabilities the reliability 
requirement could be specified as 

which would be demonstrated if F ( t e )  < pt. For this example, t, = 8760 and 
p t  = .01. 0 

10.6.2 Weibull Minimum Sample Size Reliability Demonstration Plans with 
Given p 

Suppose that failure times have a Weibull distribution with a given shape parameter 
p. A minimum sample size test plan is one that tests n units until time t,. and the 
demonstration is successful if there are no failures. The particular sample size n 
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depends on the confidence level 1 - a ,  the quantile of interest p ,  the amount of time 
available for testing t,, and the given Weibull shape parameter p. The needed sample 
size n is the smallest integer greater than 

and k = f ( . / t d .This minimum sample size reliability demonstration plan (also known 
as a “zero-failure demonstration plan”) can be justified as follows. Suppose that 
failure times are Weibull with a given p and there are zero failures during a test in 
which n units are tested until r,.. Using the results in Section 8.5.3,lower 100( 1 -a)% 
confidence bounds for q and t, are 

Then using the inequality t,, 2 rlf and solving for n gives-

(10.10) 

where k = t c / t j .  Thus the needed minimum sample size is the smallest integer 
greater than or equal to the right-hand side of (10.10). 

The inequality in ( 10.10) can also be solved for k ,  p, or a .  For example, 

(10.11 )  

Example 10.12 Life Test to Demonstrate the Reliability of a Bearing. The 
manufacturer of a home food processor requires that a bearing to be used in the 
product have no more than 10% failing at 5 million revolutions (a conservatively 
high number of revolutions expected in a typical 10-year life). Thus r,: = 5 million 
revolutions. A new long-life, low-cost bearing is available from a vendor. The vendor 
will, however, be asked to demonstrate the specified level of reliability. Similar 
bearings in this kind of application have had lifetimes that could be described by 
a Weibull distribution with a shape parameter of p = 2 or more (a= .S or less). 
Figure 10.10 gives the needed sample size for a 99% demonstration (so a = .01) 
on (sometimes known, in the bearing industry and elsewhere, as B10 for 10% 
bearing life), as a function of the test-length factor k = tc/fL and the Weibull shape 
parameter p. This figure indicates that a zero-failure test on n = 5 units will provide 
the desired demonstration if there are no failures up to 3 X 5 = 15 million revolutions. 
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Test Length as a Factor of Life-Length Specification 

Figure 10.10. Minimum sample size for a 99% reliability demonstration for t I as a function of the 
test-length factor k .  

More precisely, substituting into (10.11) gives k = 2.96, which implies that the test 
should be run until t,. = 2.96 X 5 = 14.6 million revolutions. 

For tests with k > 1, having a specified value of p less than the true value 
is conservative (in the sense that the demonstration is still valid). If, however, the 
specified value of p is larger than the true value, the demonstration would not be 
valid. The biggest danger of using such a minimum sample size zero-failure test is 
that defect-related failures (which might occur in only a small proportion of units) 
might not show up in the sample. 

It is also possible to conduct minimum sample size zero-failure tests with k < 1 .  
In this case having a specified value of p greater than the true value is conservative. 
Such tests give information quickly but require correspondingly large sample sizes. 
The most serious difficulty with such demonstrations is that they are based on large 
amounts of data early in life and if there is an unknown wearout failure mode occurring 
later in life that is not reflected in the given Weibull shape parameter, the results of 
the test could be seriously misleading. 

10.6.3 Extensions for Other Reliability Demonstration Test Plans 

Zero-failure test plans can be obtained for other failure-time distributions with only 
one unknown parameter. The ideas in this section can also be extended to test plans 

0 
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with one or more failures. Such test plans require more units but provide a higher prob- 
ability of successful demonstration for a given t; > t,,. General reliability demonstra- 
tion test plans can be obtained for any distribujion, with or without specified parameter 
values, although, in general, it may be necessary to base the test on a large-sample 
approximation, corresponding to the methods used in Chapter 8. Chapter 9 of Hahn 
and Meeker (1991) give tables and charts for demonstration plans for k = 1 plans 
not requiring any distributional assumption or for normal/lognormal demonstration 
tests with no censoring. For more information on reliability demonstration tests, see 
Wang ( 1991)  and Chapter 6 of Abernethy ( 1996). 

10.7 SOME EXTENSIONS 

10.7.1 Failure (Type 11) Censoring 

Most of this chapter has focused on planning reliability tests with time (Type I) 
censoring. This is because Type I censoring is most common in practice. Most 
reliability studies are conducted with tight time constraints. With failure (Type 11) 
censoring, a test is stopped after a specified number (say, r 5 1 2 )  of units have failed. 
The methods and figures in Section 10.5 also apply to failure censoring. In this case, 
p( .  = r / n  is specified and &. = 

Although less common in practice, failure-censored tests can be useful. In partic-
ular, if one is interested in estimating the . 1  quantile, then, as shown in Figures 10.5 
and 10.6, there is little to be gained by continuing testing beyond the time at which 
about 15% of the units have failed. If  there is a limited number of test positions and 
one needs to plan a test to estimate a specific quantile of the distribution, failure 
censoring provides a convenient mechanism for deciding when to replace unfailed 
units with new ones. In particular, if one is interested in estimating the .1 quantile 
of a failure-time distribution and only five test positions are available for testing. a 
reasonable test plan would test five units at a time, replacing the test units with a new 
set after the first failure in each group. Such tests are known as sudden death tests. 
Pascual and Meeker (1998b) describe such tests and extensions. 

10.7.2 Variance Factors for Location-Scale Parameters and 
Multiple Censoring 

Section 10.5 provides methods and easy-to-use graphs for planning life tests in 
which all units will be censored at the same time (single censoring). The scaled 
Fisher matrix elements f 1 1 ,  f12, and f22  (for the normal/lognormal distribution) in 
Appendix Table C.20 or from Algorithm LSINF from Escobar and Meeker (1994) 
(also for the SEVNeibull and logistic/loglogistic distributions) can, however, also 
be used to compute variance factors for more complicated censoring patterns. For 
example, in some applications, a life test may run in groups, each group having a 
different censoring time (e.g., testing at two different locations or beginning times as 
lots of units to be tested are received). In this case i t  is necessary to generalize the 
single-censoring formula. 



EXERCISES 251 

For a life test that is to be run in k groups, let 6,, i = 1,. . . ,k (where E:=I 6, = I ) ,  
denote the proportion of units that will be run until standardized right-censoring time 
c( lor failure (whichever comes first). In this case, 

kwhere J I I  = C,=l6,.fll(C(,),J22= E:=,6 / f 2 2 K I L  J I ?  = E;=,6 , . f d L , L and 
&, = [ log(t , l )- p ] / ( ~ ,and the values of fl1, f 2 2 ,  and f 1 2  are the Fisher information 
matrix elements given by Algorithm LSINF in Escobar and Meeker ( 1994). Appendix 
Table C.20 provides these values for the lognormal distribution. Factors for the 
approximate variance-covariance matrix (1 /a2)V,, ( 1/ a 2 ) V ~ ,and ( 1/ a ’ ) V ( p )  
depend on @, the standardized censoring times eel, and the proportions 6,. i = 

1 ,  . . . ,k .  

10.7.3 Test Planning for Distributions that Are Not Log-Location-Scale 

The methods in Sections 10.1-10.4 can be applied to a much wider class of models 
than that treated in detail in Section 10.5. For distributions that are not log-location- 
scale, however, variance factors may depend on an additional shape parameter and 
separate graphs like those in Figures 10.5, 10.6, 10.8, and 10.9 would have to be 
made for each representative set of values of such shape parameters. In such cases i t  
may be necessary to rely on a computer program to compute the Fisher information 
matrix or to do a simulation. 

BIBLIOGRAPHIC NOTES 

Escobar and Meeker ( 1994) describe algorithm LSINF that provides the .f;, values for 
the smallest extreme value (Weibull), normal (lognormal), and logistic (loglogistic) 
distributions. Meeker and Nelson ( 1976) present asymptotic theory, tables, and figures 
that can be used to plan a life test to estimate a Weibull quantile with a specified 
degree of precision. Figures 10.5 and 10.6 were patterned after their figure for the 
Weibull distribution. Meeker and Nelson (1977) present general theory and tables 
that can be used to choose the needed sample size for other functions of Weibull 
parameters. Meeker, Escobar, and Hill (1992) present asymptotic theory and figures 
that can be used to plan a life test to estimate a Weibull hazard function with a 
specified degree of precision. Figures 10.8 and 10.9 were patterned after their figure 
for the Weibull distribution. Escobar and Meeker (1997) show how to compute the 
Fisher information matrix and asymptotic variances for truncated distributions and 
the LFP model (Chapter 1 1 )  and regression models (Chapter 17). 

EXERCISES 

10.1. Use the input information in Example 10.1 to compute the planning val- 
ues pDand an for both the lognormal and the Weibull distributions. Plot 
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these cdfs on appropriate probability paper. Also, compute the standardized 
censoring times &.. 

10.2. Refer to the information for Example 10.3. Use (10.4) to compute the sug- 
gested rz for additional values of DT = 20, 10,5. Describe the effect that 
changing the target precision has on the needed sample size. 

A10.3. Derive an expression for the large-sample approximate variance of the ML 
estimate of the logarithm of the Weibull hazard function. Start by taking 
the partial derivatives indicated in ( 10.9).This expression should depend on 
Avar(@), Avar(i?), and Acov(& 6). 

10.4. Refer to Example 10.7. Use the given inputs and interpolation in Appendix 
Table C.20 to compute the needed sample size assuming that the distribution 
is lognormal instead of Weibull. 

10.5. Refer to Example 10.9.Use the given inputs to compute the needed sample 
size assuming that the distribution is lognormal instead of Weibull. 

10.6. A reliability engineer wants to run a life test to estimate the .05 quantile 
of the fatigue life distribution of a metal component used in a switch. The 
engineer has to choose a sample size that will allow estimation to be precise 
enough so that the lower endpoint of a 95% confidence interval for the 
quantile will be about one-half of the ML estimate. It will be possible to 
test each specimen until about 100 thousand cycles, when it is expected that 
about 15% of the specimens will have failed. It is expected that about 5% 
will have failed after about 40 thousand cycles. 
(a) Use the information above on Weibull probability paper to obtain “plan- 

ning values” for the Weibull parameters. 
(b) Determine the sample size needed to achieve the desired precision. 

10.7. Consider the sample size problem in Example 10.7. Solve the same problem 
assuming that there is need to estimate t,()?with RT = 2. 

10.8. Do the calculations for Example 10.6. 

A10.9. Section 10.5.1 shows how to use the elements of the Fisher information 
matrix to compute variance factors for test planning in a life test with a 
single censoring time. In Appendix Table C.20, use the values of f l l ,  ,f??, 

and J i z  in the row corresponding to Lc = 1,  and show how to compute the 
following quantities in that row: 



EXERCISES 253 

AlO.10. For Example 10.3, compute Pr(D > DT),  the probability that the actual 
half-width will be greater than the target half-width DT = 10 for samples 
of size n = 200,300, and 400, and sketch a graph of Pr(D > D T )versus 1 2 .  

A10.11. For Example 10.4, derive an approximate expression for Pr(R > R T ) , the 
probability that the actual confidence interval factor is greater than the target 
factor RT = 1.5. Evaluate this expression for samples sizes ranging between 
n = 30 and 100. Make a plot of Pr(R > R T )versus 11. 

A10.12. Refer to Example 10.7. Derive an approximate expression for Pr(R > R r ) .  
based on a large-sample approximate distribution for the random variable 
h 


Vlog&,. 

A10.13. Refer to Example 10.4.Show that, for the exponential distribution, 

A10.14. Refer to Section 10.5. Show how to compute the no-censoring (&. - x) 
asymptotic values of f i  1 = 1, f i 2  = 0, and f22 = 2 for the normal distribu- 
tion. 

A10.15. Show that, for the Weibull distribution, (10.9)reduces to 

10.16. Verify equation (10.12). 

10.17. In some cases (e.g., for the lognormal distribution), planning values will be 
specified in terms of the shape parameter (T and a particular quantile, say, 
t,], for a specified p1 . Given these values, derive an expression for p and for 
t,, for a given p2. 

10.18. Refer to Appendix Table C.20. What can you say about the effect that 
censoring has on the correlation between ML estimators and G ?  
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Parametric Maximum Likelihood: 
Other Models 

Objectives 

This chapter explains: 

ML estimation for the gamma and the extended generalized gamma (EGENG) 
distributions. 
ML estimation for the Birnbaum-Saunders (BISA) and the inverse Gaussian 
(IGAU) distributions. 
ML estimation for the limited failure population (LFP) model. 
How truncation arises in reliability data applications and ML estimation for 
truncated data (or data from truncated distributions). 
ML estimation for distributions with a threshold parameter like the three- 
parameter lognormal and the three-parameter Weibull distributions [using the 
generalized threshold-scale (GETS) distribution]. 
Potential difficulties involved in using distributions with threshold parameters 
and how to avoid them. 

Overview 

This is an advanced chapter that can be skipped without loss of continuity. Section 1 1 .1  
describes the extension of ML methods, introduced in Chapter 8, to distributions that 
are not location-scale or log-location-scale. Chapter 5 provides background and tech- 
nical details for the non-location-scale distributions used in this chapter. Section 1 1.2 
illustrates ML methods for the gamma distribution and Section 1 1.3 shows how to fit  
the extended generalized gamma distribution. Section 11.4 uses ML methods to fit  
and compare the Birnbaum-Saunders and inverse Gaussian distributions. Section 1 1.5 
shows how to fit and interpret the limited failure population (LFP) distribution, a kind 
of mixture model. Section 1 1.6 describes various applications where truncated data 
arise and illustrates methods for analyzing such data. Section 1 1.7 illustrates methods 
for fitting distributions with threshold parameters, showing how to avoid potential 
di fticul ties. 
254 
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11.1 INTRODUCTION 

The methods presented in Chapter 8 were based on fitting log-location-scale distri- 
butions. This chapter describes the fitting of some important distributions that are not 
log-location-scale. For such distributions, things may be nearly as simple, but they 
can also be considerably more complicated. 

11.1.1 Likelihood for Other Distributions and Models 

General likelihood principles for fitting distributions and models are as described 
in Chapters 2 and 7. For most distributions, with data consisting of independent 
observations with exact failures and right-censored observations, the standard density- 
approximation form of the likelihood 

I 1  n 

i =  1 i= 1 

works well. Here, as in previous chapters, datai = ( r j , S,), 

1 if ti is an exact failure 
Sj = c 0 if ti is a right-censored observation, 

and F ( t ;8 )and f ( r ;8 ) are the cdf and pdf, respectively, of the specified distribution. 
The likelihood can be adapted easily to accommodate left-censored and interval- 

censored observations, as described in Chapter 2. As mentioned in Section 7.2.2, 
operationally, it is usually the log likelihood that is computed as the sum of log 
likelihoods for individual independent observations. As illustrated in Section I I .7.3, 
for some non-location-scale distributions (e.g., GETS) the density approximation 
breaks down and one should use instead the actual interval probability or “correct 
likelihood” given in (7.2). 

In some cases, the likelihood function can be poorly behaved and, particularly 
in unfamiliar datdmodel situations, it is important to investigate L(6 ) graphically. 
Graphical exploration of L ( 8 )  [or R ( 8 )  = L ( O ) / L ( e ) ]is simple to do when 8 has 
length 1 or 2. When the length of 8 is 3 or more it is useful to view one- (and two-) 
dimensional “profiles” of L(8).The needed computations can, however, become quite 
demanding. 

11.1.2 Confidence Intervals for Other Distributions and Models 

Methods for computing confidence intervals and confidence regions can be used in a 
manner that is similar to that used for log-location-scale distributions in Chapters 8. 
Normal-approximation confidence intervals (using the delta method and appropriate 
transformations) are simple and are adequate in large samples. In other situations 
these easy-to-compute intervals provide quick analyses, but approximations can be 
a bit rough. Profile likelihoods provide useful insight into the information available 
about a particular parameter or function of a distribution’s parameters. Confidence 
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limits based on the profile likelihood, as well as bootstrap and simulation-based inter- 
vals described in Chapter 9, generally provide confidence intervals with reasonably 
good approximations to nominal coverage probabilities. The approximations will be 
adequate even with moderately small samples (say, samples large enough to yield at 
least 10-15 failures). Such intervals will, however, require more computer time (and 
may not be available in commercial software). 

11.2 FITTING THE GAMMA DISTRIBUTION 

The gamma distribution, introduced in Section 5.2, is a commonly used failure-time 
distribution. The gamma distribution likelihood is obtained by substituting (5.2) and 
(5.1) into ( 1  1.1).For given DATA, the likelihood is a function of the scale parameter 
8 and the shape parameter K .  

Example 11.1 Gamma Distribution Fit to the Ball Bearing Fatigue Data. 
This example uses the ball bearing data from Example 1.1. Figure 11.1 shows a 
lognormal probability plot of the bearing failure data, comparing ML estimates of 
the gamma, lognormal, and Weibull distributions. The gamma ML estimates are = 

10 20 50 100 200 
Millions of Cycles 

Figure 11.1. Lognormal probability plot of the ball bearing failure data, comparing gamma, lognormal, 
and Weibull ML estimates. Approximate 95% pointwise confidence intervals for the gamma F ( r )are also 
shown. 
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17.94and 2 = 4.025. Figure 1 1.1 also shows approximate 95% pointwise confidence 
intervals for F(r) ,  based on the gamma ML estimates. The gamma distribution fits 
well. Within the range of the data, however, there is very little difference among these 
three different distributions. U 

11.3 FITTING THE EXTENDED GENERALIZED 
GAMMA DISTRIBUTION 

The extended generalized gamma (EGENG) distribution, introduced in Section 5.3, 
includes the gamma, generalized gamma, Weibull, exponential, and lognormal dis- 
tributions as special cases. As such, it provides a flexible distribution structure for 
modeling data and comparing among these widely used distributions. The EGENG 
distribution likelihood is obtained by substituting (5.6) and (5.5) into ( I  1 . 1  ). For 
given DATA, the likelihood is a function of the parameters p, U ,  and A .  

Example 11.2 EGENG Distribution Fit to the Ball Bearing Futigue Data. 
This example uses the ball bearing data from Examples 1.1 and 1 1.1.  Figure 1 1.2 is 
a Weibull probability plot of the bearing failure data showing exponential, Weibull, 
lognormal, and EGENG ML estimates of E'(?). The EGENG ML estimates are j2 = 

-
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Figure 11.2. Weibull probability plot of  the bearing failure data showing the exponential, Weibull. log-
normal, and EGENG ML estimates of  F ( r ) .  
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Figure 11.3. Protile likelihood plot for the EGENG shape parameter A for the bearing failure data. The 
Weibull and lognornial distributions are shown as special cases. 

4.23, i? = .5 1, and h  ̂ = .3076. Figure 1 1.2 illustrates that the EGENG distribution 
provides a compromise between the lognormal and Weibull distributions. Figure 1 1.3 
is a profile likelihood plot for the EGENG shape parameter h for the bearing failure 
data. The Weibull and lognormal distributions are shown as special cases. This figure 
shows that the lognormal relative likelihood is slightly higher than the Weibull. The 
data, however, do not indicate a strong preference for one or the other of these 
distributions. 

The previous example illustrated the fitting of the EGENG distribution to a 
moderate-size sample with n o  censoring. The EGENG distribution can also be fit  
to censored data, but the fitting can be more delicate because of difficulty statisti- 
cally separating the three different parameters in (5.5). Using a robust optimization 
algorithm andor a reparameterization to stable parameters will, however, allow this 
distribution to be fit to censored data, even with very heavy censoring (see the com- 
ments in the bibliographic notes at the end of this chapter). 

Example 11.3 EGENG Distribution Fit to the Fan Data. This example fits 
the EGENG distribution to the fan data from Example 1.4. During the period of 
observation there were 12 failures out of 70units. Due to multiple censoring, however, 
the nonparametric estimate extends to .29. Figure 1 I .4 shows a lognormal probability 
plot of the fan failure data showing EGENG ML estimates and corresponding 95% 
pointwise confidence intervals for F ( r ) .  The EGENG ML estimates are j2 = 9.332, 
c'i = 2.375, and = - 1.764.The pointwise confidence intervals for the EGENG 

0 
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Figure 11.4. Lognormal probability plot of the fan failure data showing EGENG ML estimates and 
corresponding 95% pointwise confidence intervals for F ( r ) . Exponential, Weibull, and lognormal ML 
estimates of F ( r )are also shown. 

F ( t )become extremely wide outside the range of the data. Exponential, Weibull, and 
lognormal ML estimates of F ( t ) are also shown. These distributions, and especially 
the lognormal distribution, also fit the data reasonably well. Note that the EGENG 
departs quite strongly from the other distributions outside the range of the data. 
Except for missing the first point, the EGENG estimate also goes well with the 
nonparametric estimate. To assess the strength of the evidence in the data for choosing 
among these distributions, consider the profile likelihood plot for EGENG A for the 
fan failure data in Figure 11.5. The EGENG has a larger likelihood than the other 
distributions, but the difference is statistically unimportant (the approximate 95% 
likelihood-based confidence interval endpoints for A ranges from something less 
than -8 to something greater than 2, as shown in Figure 11 S).  Because of the 
small number of failures, fitting a three-parameter distribution to these data could 
be considered to be “overfitting.” Generally one should use the simplest model that 
provides an adequate fit to the data. Overfitting such as this, however, is helpful in 
demonstrating uncertainty in distribution choice when the decision is to be based on 
data alone. 0 
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Figure 11.5. Protile likelihood plot for the EGENG shape parameter h for the fan failure data showing 
the Weibull and lognormal distributions as special cases. 

11.4 FITTING THE BISA AND IGAU DISTRIBUTIONS 

Fitting the Birnbaum-Saunders (BISA) or the inverse Gaussian (IGAU) distributions 
is very similar to fitting the gamma distribution (all of these distributions have one 
scale and one shape parameter). The likelihood function for the BISA and IGAU 
distributions can be obtained by substituting the corresponding pdf and cdf from 
Sections 5.6.2 or 5.7.2 into ( 1  1 . 1 ) .  As described in Section 5.7.5, the BISA and 
IGAU distributions were motivated by particular degradation models. 

Example 11.4 BISA and IGAU Distributions Fit to Fatigue-Fracture Data. 
Yokobori ( 1951 ) describes a fatigue-fracture test on .4 1% carbon steel cylindrical 
specimens, tested at 237.1 kg/mm2 stress amplitude. The data are given on pages 
224-225 of Bogdanoff and Kozin ( 1985). Figure 1 1.6 is a lognormal probability plot 
of Yokobori’s fatigue failure data. The plot also shows ML estimates of F ( t )  for the 
lognormal, BISA, and IGA-U distributions. The ML estimates for the BISA distribu- 
tion are 5 = 109.24 and p = 1.129. The ML estimates for the IGAU distribution 
are = 179.9 and = ,595. The ML estimates for the lognormal distribution are 
@ = 4.72 and 5 = 1.026. The closeness of the F ( t )  estimates from these three 
different distributions in Figure 1 1.6 is striking. This is not too surprising, given the 
correspondence between the hazard shapes that can be seen in Figures 4.3, 5.2, and 
5.3. 0 

Figure 11.7 is a plot of cdfs of the BISA distribution with 8 = 1 and differ- 
ent shape parameters on lognormal probability paper. The approximate linearity of 
the cdfs, especially for small /3 (small coefficient of variation), suggests that the log- 
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Figure 11.6. Lognormal probability plot of Yokobori's fatigue failure data showing lognormal, BISA, 
and IGAU distribution ML estimates. 
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Figure 11.7. Comparison of BISA cdfs on lognormal probability paper. 
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normal and BISA distributions will often give very similar results in the center of 
the distribution. It was noted in Section 4.6 that the lognormal distribution is widely 
used to describe time to fracture from fatigue crack growth in metals. The similarity 
of the lognormal and BISA distributions and the fatigue-fracture justification for the 
BISA distribution (see Section 5.7) suggest why the lognormal distribution has been 
found to be a useful model for fatigue-fracture data. Figure 11.7 indicates that the 
lognormal distribution, when used to extrapolate into the lower tail of a distribution, 
will give more conservative (i.e., smaller) estimates of distribution quantiles. Such 
extrapolation is common, for example, when i t  is desired to estimate t,(K)Ion the basis 
of tests on 300 specimens. 

11.5 FITTING A LIMITED FAILURE POPULATION MODEL 

11.5.1 Example and Data 

Example 11.5 The IC Failure Time Data. We now return to the IC failure-
time data from Example 1.2, given in Table 1.2. Figure I 1.8 is a Weibull probability 
plot of the right-censored failure data. The last failure occurred at 593 hours and 
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Figure 11.8. A Weibull probability plot of integrated circuit failure time data with ML estimates of the 
WeibulVLFP model after 1370 hours and after 100 hours of testing. The asymptotes for the ML fits in the 
plot correspond to the ML estimates for p .  the proportion in the process susceptible to failure. 
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the test was stopped at 1370 hours. We see that the points on the probability plot 
are leveling off, apparently to something less than 1% failing. The failures were 
caused by manufacturing defects that could not be detected without a life test. The 
reliability engineers responsible for this product wanted to estimate p , the proportion 
of defects being manufactured by the process, in its current state. Moreover, they 
were attempting to make improvements to the process and wondered if informative 
life tests could, in the future, be run without waiting so long. 0 

11.5.2 The Limited Failure Population Model 

The limited failure population (LFP) model has a proportion p of units from a popu- 
lation or process that is defective and will fail according to a distribution F ( t ;p,a); 
the remaining proportion (1 - p )  will never fail. This model has been found to be 
useful for modeling the reliability of integrated circuit infant mortality. Its use will 
be illustrated with the IC life test data from Example 11.5. If F ( t ;p, a)is Weibull, 
then the LFP failure-time model is 

( 1  1.2) 

Note that as t - a,G ( t )-+ p .  The lognormal LFP model is obtained by using Qnor 
instead of aSebin (1  1.2). 

11.5.3 The Likelihood Function and Its Maximum 

The likelihood function for the Weibull LFP model is 

( 1  1.3) 

where the notation is similar to that used in Section 8.2.1. In some situations it will 
be difficult to estimate the parameters of this model. In particular, if the censoring 
time is before the nonparametric estimate of G(t;p,U ,p )  begins to level off, one 
cannot tell the difference between a population with p = 1 in which defective units 
fail slowly and a population with small p in which defective units fail rapidly. 

Example 11.6 Comparison of IC Failure-Time Data Analyzed at 100 and at 
1370 Hours. Table 11.1 summarizes and compares the results of the analyses for 
the data that were available at 1370 hours and the data that would have been avail- 
able after only 100 hours. Figure 11.8 shows the ML estimates and 95% pointwise 
normal-approximation confidence intervals for G(t) .As might be expected, there 
is close agreement until approximately 100 hours, when the estimates of G(r)be-
gin to differ importantly. The upper bounds of the pointwise normal-approximation 
confidence intervals for G ( t )are larger for t > 100. As suggested below, however, 
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Table 11.1. Comparison of LFP Model Integrated Circuit Failure Data Analyses 
~~ ~~ 

Analysis with Test Run Until 

I370 Hours 100 Hours 

ML estimate @ 3.34 4.05 

Standard error Gc .41 1.70 

Approximate 95% Confidence Intends 
jb r  p 

Based on the likelihood [2.50,4.20] [2.43, 24.991 
Based on Z, NOR(0, 1 ) [2.55,4.12] [ .72, 7.38) 

ML estimate 3 2.02 2.12 

Standard error G;, .31 .55 

Appro.rimcite 955% Conjdence Int e n d s  

j b r  U 

Based on the likelihood 
Based on Zlop(~,NOR(0, 1 ) 

[ 1.53,2.821 
[ 1 S O ,  2.7 1 1  

[ I  .40, 3.961 
[ 1.28, 3.5I I 

Based on ZG L̂ NOR(0, 1 )  [ 1.42, 2.621 [ 1.05, 3.191 

ML estimate .00674 .00827 

Standard error S êb .oOI 27 .00380 

Approximcite 95% Conjidence Interrds 
jb r  p 

Based on the likelihood [.00455, .00955] [ .oO463, 1 .0000] 
Based on ZIoglt(b)L̂ NOR(0, I )  [ .00466, .00975] [.0033, .0203] 
Based on Z,  NOR(0, 1 )  [ ,00426, .00923] [ .0008I ,  .01571 

similar confidence intervals for the 100-hour data, computed with the likelihood- 
based method, would be much wider. 

The nonparametric estimate of G(t;p, U ,p )  in Figure 1 1.8 (i.e., the plotted points) 
portends the LFP model estimation difficulties with the 100-hour data. Note that the 
curvature in the Weibull probability plot becomes much more pronounced after 100 
hours. 0 

1 1.5.4 Profile Likelihood Functions and Likelihood-Based Confidence 
Intervals for p, 0,and p 

Example 11.7 Likelihood-Based Conjdence Intervals for the IC Data. Table 
1 1 . 1  gives numerical values for the likelihood-based confidence intervals for p, U ,and 
p based on these and other profiles (not shown here). The table also gives confidence 
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Figure 11.9. Approximate joint confidence regions for the LFP parameters p and U based on a two-
dimensional profile likelihood after 100 hours of testing. 

intervals based on the normal approximation. Figure I 1.9 shows approximate joint 
confidence regions for p and (T based on a two-dimensional profile likelihood for 
p and U for the 100-hour data. Figure 11.10 provides a comparison of the one- 
dimensional profiles for p for the 1370- and the 100-hour data. The results of this 
comparison show that for the 1370-hour data, the log likelihood is approximately 
quadratic and the different methods of computing confidence intervals give similar 
results. For the 100-hour data, however, the situation is quite different. In particular, 
the leveling off of the 100-hour profile likelihood for p tells us that the data available 
after 100 hours could reasonably have come from a population with p = 1. That is, 
the 100-hour data do not allow us to clearly distinguish between a situation where 
there are many defectives failing slowly and a situation with just a few defectives 
failing rapidly. The 1370-hour data, however, allow us to say with a high degree of 
confidence that p is small. 

For the 100-hour data, the likelihood and normal-approximation confidence in- 
tervals for p are vastly different. This is because the log likelihood is not well 
approximated by a quadratic function over the range of the confidence interval. The 
approximate confidence intervals based on the likelihood can be expected to provide 
coverage probabilities closer to the nominal values. U 
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Figure 11.10. Comparison of profile likelihoods for p, the LFP proportion defective after I370 and 100 
hours of testing. 

11.6 TRUNCATED DATA AND TRUNCATED DISTRIBUTIONS 

It is important to distinguish between truncated data and censored data. They are 
sometimes confused. Censoring occurs when there is a bound on an observation 
(lower bound for observations censored on the right, upper bound for observations 
censored on the left, and both upper and lower bounds for observations that are 
interval censored). Truncation, however, arises when even the existence of a potential 
observation would be unknown if its value were to lie in a certain range. Usually, 
truncation occurs to the left of a specified point @ or to the right of a specified 
point 7’. 

11.6.1 Examples of Left Truncation 

Example 11.8 Ultrasonic Inspection of Material. Ultrasonic inspection is 
used to detect flaws in titanium alloys during several stages of manufacturing of jet 
engine turbine disks. Undetected flaws in such parts could cause early initiation of a 
fatigue crack and thus increase the risk of failure. Ultrasonic signal amplitude is gen- 
erally positively correlated with flaw size. Thus the distribution of signal amplitudes 
reflected from flaws provides information on the distribution of flaw sizes. Titanium 
is a “noisy” material. Titanium grain boundaries reflect about as well as small flaws. 
Thus below a specified threshold $A, it  is impossible to be sure whether a signal is 
from a flaw or a grain boundary. Suppose that interest centers on the distribution of 
signal strengths (including signals below r’, that would be observed in the absence 
of material noise). Consider the following two possibilities. 
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In a laboratory test of the inspection process, specimens with seeded flaws of 
known size are inspected. In this case when a reading is taken, it is known that 
a flaw is present. The signal’s amplitude, however, is measured only when the 
amplitude is above the threshold fi.In some applications, 7L will change from 
time to time (depending on the local material noise level), but generally the 
value fi can be recorded. Then the number of signals that were below 7‘- is 
known, and these are left-censored observations. 
In an operating inspection process, a flaw is not detected when the signal’s 
amplitude lies below the threshold #.Then we observe only the signals that are 
greater than in amplitude. The number of flaws that were present with signals 
below # is unknown. The observations recorded as being above 7L are known 
as left-truncated observations, or observations from a left-truncated distribution 
(in the case where # is the same for all readings). 0 

If all units below # in a population or process are screened out before observa- 
tion, the remaining data are from a “left-truncated” distribution. Depending on the 
application, interest could center on either the original untruncated distribution or 
on the truncated distribution. For most problems the additional information provided 
by the proportion of observations truncated (either in the population or the sample) 
would lead to censoring instead of truncation and importantly improve estimation 
precision of the original (unconditional) distribution’s parameters. 

Example 11.9 Life Data with Pretest Screening. Table 1.3, described in Ex-
ample 1.3,gives the number of observed failures from a field-tracking study of circuit 
packs. The Vendor 2 units had already seen 1000hours of burn-in testing at the man- 
ufacturing plant, but no information was available on the number of units that had 
failed in that test. Thus the Vendor 2 circuit packs are left-truncated. If the number 
of circuit packs that failed in the burn-in period were known, then the data could be 
treated as censored. 0 

Example 11.10 Distribution of Brake Pad Life from Observational Data. 
Kalbfleisch and Lawless (1992) give data on brake pad life from a study of auto- 
mobiles. For each automobile in the study (where i is used to index the individual 
automobiles), the number of kilometers (ui)driven and a wear measurement (,ttl) were 
taken at a point in time when the automobiles were being serviced (for something 
other than brake problems). The wear measurement is such that M’, = 0 represents 
no wear and cv;  = 1 is the level of brake wear that requires replacement of the pads. 
Suppose, for a given automobile, that wear is proportional to accumulated driven 
kilometers, which suggests a brake pad life estimate of ti = Vi /w l ; .  The important 
assumption being used here is that the main source of variability in brake pad life is 
the automobile-to-automobile variability in the t j  values and that failure time could 
be predicted accurately from these observed ratios. Automobiles that had previously 
had brake pads replaced were not included in the study. For this reason, high-wear- 
rate automobiles are under represented in the study. To correct for this, Kalbfleisch 
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and Lawless treat the life prediction t; as left-truncated at T ~ A= vj, the number of 
kilometers of service at the time of the prediction. The idea is that if the wear rate 
had been high enough to cause failure before the regularly scheduled service call at 
7f.,the automobile would not have been included in the study. 0 

11.6.2 Likelihood with Left Truncation 

Following the general development in Section 2.4.5, if a random variable T, is 
truncated on the left at 7f', then the likelihood (probability) of an observation in 
the interval ( t f - ,t ; ] is the conditional probability 

For an observation reported as an exact failure at time t ; , the corresponding density- 
approximation form of the likelihood is 

( I  1.4) 

It is possible to have either right or left censoring when sampling from a left-truncated 
distribution. The recorded censoring time will exceed 7f..As in Table 2.3, to obtain 
L,(0 )  for a censored observation, one simply replaces the numerator in ( I 1.4) by 
F(t ,;8 )-F( 7f.;8 )for an observation that is left-censored at t, > and by 1 -F(t ,;8 )  
for an observation that is right-censored at t; > f .  

11.6.3 Nonparametric Estimation with Left Truncation 

Section 3.10 presents a general method, due to Turnbull (1976)' for nonparametric 
estimation that can be extended to the analysis of arbitrarily censored and truncated 
data. When there is left truncation, Turnbull's method provides a nonparametric 
estimate of the conditional distribution 

( 1  1.5) 

where 7Lmln is the smallest left-truncation time in the sample. Without a parametric 
assumption, the data contain no information about F ( t ) below &,,. 

For purposes of probability plotting to assess the adequacy of a parametric assump- 
tion for F ( t ;O ) ,  one must have, instead, an estimate of the unconditional distribution 
of T .  In this case we use a parametric model to estimate Pr(T > T&,) and then com- 
pute a parametrically adjusted nonparametric estimate of F ( t ) .Let FNPC( t )denote the 
nonparametric estimate of the conditional distribution Fc(t).Then a parametrically 
adjusted unconditional nonparametric estimate of F ( t )  will be denoted by F^NPLf( t ) .  

This estimate is obtained by substituting FNPC(r )for Fc(r)and F (  ^e) for F( ~ , l n )  
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in (1 1.5) and solving for F ( t ) .  This gives 

( 1  1.6) 

where 0 is a parametric estimate of the parameters in F ( t ;0). 

11.6.4 ML Estimation with Left-TruncatedData 

Example 11.11 Analysis of Life Data with Pretest Screening. As described 
in Example 11.9, because they had already seen 1000 hours of burn-in testing, the 
Vendor 2 data in Table 1.3are left-truncated at 10oOhours. Figure 1 1.  I 1 is a lognormal 
probability plot of the Vendor 2 failure data, parametrically adjusted with a lognormal 
ML fit to the data. The plot also shows the lognormal (straight line) and Weibull 
(curved line) ML estimates, and approximate 95% pointwise lognormal confidence 
intervals. In this example, the estimated proportion truncated on the left of 1000hours 
appears to be (through parametric estimation) very small [F^( 1000) = .95 X 10-' 
for the lognormal and .38 X 10-4 for the Weibull distribution] and so the parametric 
adjustment to the nonparametric estimate used in making the probability plot was 
extremely small. If the failure mode before 1000 hours was different from that after 
1000 hours, however, this kind of extrapolation into the lower tail of the distribution 
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Figure 11.11. Parametrically adjusted lognormal probability plot of Vendor 2 circuit pack data comparing 
Weibull and lognormal ML estimates. 
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would give a misleading view of what happened up to 10oO hours (analysis of the 
Vendor 1 data described in Exercise 1 1.10and Section 22.3 suggests that there well 
might have been such a change). In any case, the available data can be used to estimate 
failure probabilities beyond 1000hours, conditional on the burn-in test results. 

For extrapolation beyond the range of the data, the lognormal distribution gives 
much more optimistic (i.e., lower) estimates of failure probabilities than the Weibull 
distribution. This lognormal/Weibull contrast is common and leads to the question: 
“Which distribution is most appropriate for extrapolation?,’ The data have little to 
say about differentiating between these two distributions. If there is an answer to 
the question it would be in knowledge about the physics of failure for the observed 
failure mode(s). In the absence of such knowledge, reported uncertainty would have 
to encompass not only the sampling variability quantified in the confidence intervals, 
but also the distribution uncertainty. As illustrated in Section 1 1.3, fitting the extended 
generalized gamma distribution will help to quantify and illustrate such distributional 
uncertainty. U 

11.6.5 Examples of Right Truncation 

Right truncation is similar to left truncation and occurs when the values in the upper 
tail of the distribution are removed. 

Example 11.12 Screening Out Units with Large Flaws. Degree of porosity 
is an important quality metric in casting processes. The distribution of pore sizes 
is closely related to the failure time of a component in a particular application. If 
large pores or other voids occur inside a casting, fatigue cracks will initiate more 
rapidly, leading to premature failure. In a particular manufacturing process, castings 
for automobile engine mounts are inspected by x-ray to make sure that there are no 
large internal voids or pores. Pores larger than 10 microns can be detected with high 
probability. The casting process output has a distribution of pore sizes. The inspection 
process truncates off the upper tail of the pore-size distribution (i.e., units containing 
pores greater than 10 microns are eliminated). Thus the distribution of pore size in 
units passing inspection could be described by a right-truncated distribution. U 

Example 11.13 Warranty Data with Limited Information for  Unfailed Units. 
A particular home appliance, after purchase, is either used regularly or not at all. 
The percentage of units actually put into regular use is unknown. During a particular 
production period, an incorrect component (Le., one that did not have the specified 
power rating) was installed in all of the units that were produced. When failures 
occur among these regularly used units, the units are returned to the manufacturer for 
repair or replacement under a long-term warranty program. The manufacturer learns 
about failures from this group of units only if the unit is actually put into service 
and if the unit fails before the analysis time. In this case, the observed failure times 
can be viewed as a sample from a distribution right-truncated at a time equal to the 
difference between the time of analysis and the time at which the unit was put into 
service. 0 
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Example ZI.14 Limited Failure Population Data. Similar to the situation 
in Example 11.13, the 28 IC failure times in Example 11.5 can be viewed as a 
sample from a distribution right-truncated at ru = t,. = 1370 hours. Intuitively 
this is because, although 4156 ICs were tested, the number of potential susceptible 
units in the population was unknown. Susceptible units become known as such only 
if they failed within the 1370-hour-long life test. Exercise 1 1.4 provides technical 
justification for this. 0 

As shown in the analysis of the LFP data in Section 1 1.5 it will be impossible to 
estimate the unconditional failure-time distribution from right-truncated data unless 
a parametric form is specified for the distribution. Even with a specified failure- 
time distribution, there are serious estimability problems (leading to wide confidence 
intervals on quantities of interest) unless the proportion truncated is very small (say, 
less than 5%). This problem is also described in Kalbfleisch and Lawless (1988). 

11.6.6 Likelihood with Right (and Left) Truncation 

If the random variable T, is truncated when it lies above ry then the likelihood 
(probability) of an interval observation is 

For an observation reported as an exact failure at time t ; ,  the corresponding density- 
approximation form of the likelihood is 

As with left truncation, it is possible to have either left or right censoring when 
sampling from the right-truncated distribution. With both left and right truncation, 
the appropriate likelihood for an interval-censored observation is 

The likelihood for censored observations is obtained in a manner similar to that 
described in Section 1 1.6.2. 

11.6.7 Nonparametric Estimation with Right (and Left) Truncation 

Section 1 1.6.3 showed how to parametrically adjust a truncated-data nonparametric 
estimator so that it could be used for making a probability plot. This approach can 
be extended to work in situations with right or both left and right truncation. In 
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particular, the nonparametric estimate is for the conditional probability 

(11.7) 

where T& is the largest right-truncation time in the sample. Then, as in ( 1  I h ) ,  
a parametrically adjusted unconditional nonparametric estimate of F ( r )  is obtained 
from 

( 1  1.8) 

Example I I .  15 Using Right Truncation to Estimate the Failure-Time Distri- 
bution from Limited Failure Population Data. Following Example 1 1.14, Fig-
ure 1 1.  I2  is a lognormal probability plot of the 25 pre- 100-hour IC failure times from 
Table 1.2. In contrast to the probability plot in Figure 1 1.8, the 4 131 units that were 
unfailed (censored) at 100 hours are ignored. The plotted estimate in Figure 1 1.12, 
as described in Section 1 1  6 7 ,  is really an estimate of Pr(T 5 t IT 5 100).Treat-
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time distribution, conditional on failure in the first 100 hours. 
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Figure 11.13. Lognormal probability plot of the lognormal-adjusted (unconditional) nonparametric esti- 
mate of the IC failure-time distribution with pointwise 95% normal-approximation confidence intervals 
for the lognormal F ( r ) .  

ing the 25 failures as right-truncated at 100 hours (or estimating the parameters of 
a lognormal distribution truncated at 100 hours) gives = 4.44 and 6 = 3.44. 
From this, F(100;@,3)= Pr(T 5 100) = @[(log(100) - 4.44)/3.44] = .5191. 
This can be used in (1 1.8) to parametrically adjust the nonparametric estimate of 
Pr(T 5 t I T 5 100)for purposes of probability plotting. The parametrically adjusted 
probability plot is shown in Figure 11.13 along with the ML estimate F ( t ;@, i?) based 
on the truncated data. The pointwise confidence intervals are very wide because of 
the important amount of information lost by not having direct information about 
Pr(T 5 100). If we knew the actual number of defectives in the sample of 4156 
ICs, and used this to determine the number of censored susceptible ICs, the intervals 
would be much tighter (see Exercise 11.2). 0 

11.7 FITTING DISTRIBUTIONS THAT HAVE 
A THRESHOLD PARAMETER 

In many areas of application, analysts wish to fit distributions with a "threshold 
parameter" y that shifts the distribution of a positive random variable (usually to the 
right) by an amount y. Recall from Section 5.10.1that the three-parameter lognormal 
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cdf and pdf can be written as 

Threshold versions of any other distribution with support on [0,CO) (e.g., exponential, 
Weibull, loglogistic, gamma, inverse Gaussian, and Birnbaum-Saunders) can be 
defined in this manner. Although the discussions in the following sections use the 
three-parameter lognormal and Weibull distributions, the basic ideas hold also for 
the other threshold distributions. In some physical applications it makes sense to 
constrain y > 0, but there is no theoretical need to do this. 

11.7.1 Estimation with a Given Threshold Parameter 

If the threshold parameter y is given, one can subtract y from all reported failure, 
inspection, and censoring times and then use the simpler methods for the base distri- 
bution without the threshold parameter (e.g., the one-parameter exponential distribu- 
tion methods in Chapter 7 and the two-parameter Weibull and lognormal distribution 
methods in Chapter 8). Of course one needs to adjust inferences accordingly. For 
example, the given value of y must be added back into estimates of quantiles and 
one must subtract y from times before computing failure probabilities, hazard func- 
tion values, or other functions of time. Using a specified value of y that is seriously 
incorrect can lead to seriously incorrect conclusions. 

11.7.2 Probability Plotting Methods 

With three-parameter log-location-scale distributions, log( T - y) has a location- 
scale distribution with parameters p and U .  For such distributions, there are two 
different methods of probability plotting. These methods do not compete, but rather 
complement each other. 

One can make log-location-scale distribution probability plots (e.g., standard 
Weibull or lognormal probability plots) using T - y over a range of different 
y values. Choosing a value that linearizes the probability plot (as discussed in 
Section 6.2.4)provides a graphical estimate of y. Then, conditional on the fixed 
value of y, one can obtain graphical estimates of p and U .  

As illustrated in Section 6.5, with a specified value for the shape parameter (T, 

a log-location-scale distribution with a threshold parameter can be treated as 
a location-scale distribution with a location parameter y and scale parameter 
exp(p). One can either use ML toestimate the shape parameter <T or try different 
values of U to find one that provides a reasonably straight probability plot. 
Conditional on the fixed value of U , one can obtain graphical estimates of y and 
exp(p). 

Both of these approaches are easy to implement with flexible computer programs. 
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11.7.3 Likelihood Methods 

The likelihood for a three-parameter log-location-scale distribution using the “density 
approximation” for exact failures, and allowing for right-censored observations, has 
the form 

where data; = (t i ,6;) is defined as in (1 1.1). This is a classic example for which 
density approximation defined in equation (7.13) can cause serious numerical and 
statistical problems in the application of ML estimation. The problem is that when 
this approximation is used, there can be, for some model/data combinations, a path in 
the parameter space for which the likelihood goes to W. In  particular, when y -, t, 
(the smallest observation) and U -+ 0, the likelihood L(p,U , y )  approaches E. The 
likelihood approaches not necessarily because the probability of the data is large in 
that region of the parameter space, but rather because of a breakdown in the density 
approximation in (7.13). For some (but not all) data sets there is a local maximum 
for L(p ,U , y), corresponding to the maximum of the correct likelihood (probability 
of the data). Although it has been suggested that one could ignore the part of the 
likelihood surface where L(p ,U,y) -+ x and use the local maximum to provide the 
ML estimates, this practice can lead to numerical difficulties and it  is possible for 
the local maximum to be masked by the breakdown of the density approximation. A 
better solution is to use the correct likelihood contributions, 

L,(p ,U ,y; datai) = [F(ti + A;; 0) - F(r; - A;; 0)] ( 1 1.9) 

(based on small intervals implied by the data’s precision) instead of the density 
approximation. The correct likelihood will always be bounded (because probabilities 
can be no larger than 1). Using the correct likelihood eliminates the problem of an 
unbounded likelihood and helps simplify the process of finding the ML estimates. 
The values of A; should be chosen to reflect the round-off in the data (which often 
depends on the magnitude of the observations within a data set). Generally the shape 
and position of the likelihood (and thus the ML estimates) are not very sensitive to 
the value of A; used here. 

Numerical problems with fitting threshold parameter distributions can also arise 
from the embedded distributions problem described in Section 5.10.3. In order to 
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Table 11.2. Alloy-C Strength Data 

Strength (ksi) 

Interval Endpoint Number 
of 

Lower Upper Fai I u res 

79 80 1 
80 81 0 
81 82 4 
82 83 4 
83 84 9 
84 85 25 
85 86 21 
86 87 18 
87 88 2 

circumvent this problem, one can fit, instead, the generalized threshold-scale (GETS) 
distribution introduced in Section 5.1 1. When G > 0, the ML estimates for this model 
are equivalent to what one would get with the corresponding threshold parameter dis- 
tribution. When G < 0, it is an indication that the ML estimates for the corresponding 
threshold-parameter distribution would be on the boundary of the parameter space 
(i.e., the limiting embedded distribution) and careful consideration should be given to 
using the GETS or some other alternative to the corresponding threshold-parameter 
distribution. 

Example 11.16 Fitting the Three-Parameter Weibull Distributions to the 
Alloy-C Strength Data. Table 11.2 gives interval data for tensile strength (in ksi) 
from a sample of 84 specimens of Alloy-C. The test was run to obtain information 
on the strength of the alloy when produced with a modified process. Figure I I .  14 
gives a histogram of the data. The distribution is skewed to the left and the lowest 
values of strength seem far from the origin, relative to the spread in the data. This 

.A 

O J  
I 1 

80 82 84 86 88 
ksi 

Figure 11.14. Histogram for binned strength readings on 84 specimens of Alloy-C. 
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figure indicates that a threshold-parameter distribution could provide an adequate 
description for the data. 

Figure 1 1.15 shows a sequence of fitted three-parameter Weibull distributions in 
which y was fixed at a set of values between -20 and 79. The probability plot in 
which y = 0 illustrates the fitting of a two-parameter Weibull distribution. As y 
gets larger than 70, the likelihood drops off rapidly and, simultaneously, the f i t  in the 
probability plots becomes poorer. We see, however, that as y gets smaller, the profile 
levels off and the fit remains good. This is an example in which the three-parameter 
Weibull is approaching the embedded SEV distribution. The scales on the probability 
plot suggest an intuitive explanation for the embedding behavior. As y becomes 
smaller and smaller, we are adding a larger and larger number to the original strength 
values. With the plot running over a range of strength values that is relatively small, 
the log axis on the strength scale is approximately linear and further shifting will act 
as a location shift and thus have little effect on the fit  of the distribution to the data. 

Figure 11.16 shows a SEV probability plot of the Alloy-C strength data non- 
parametric estimate of F ( t )  along with straight lines depicting ML estimates of 
the three-parameter Weibull (SEV-GETS with CT > 0) and the SEV distributions 
(corresponding to the limiting embedded SEV distribution with y = -x,where 
@ = 85.5 I2 and G = 1.159). Either distribution fits the data very well. The SEV-
GETS ML estimates are i? = 85.503, i? = .015, and ? = 1.166. Then using the 
relationships in Section 5.11.4, with G > 0, yields the three-parameter Weibull dis- 
tribution ML estimates as = 6 - </6 = 7.77 and j2 = log(</G) = 4.35. This 
plot confirms that the embedded SEV distribution fits well, but there may be an ob- 
jection to the use of such a distribution because there is a positive probability (albeit 
extremely small) of a negative strength. In this example, the two-parameter Weibull 
fit, illustrated in the y = 0 plot in Figure 1 1.15, is indistinguishable over the range of 
the data from the three-parameter Weibull fit in Figure 1 I .  16. Thus the two-parameter 
Weibull fi t  provides a physically reasonable, parsimonious description of the data. 

0 


Example 11.17 Fan Data and the Three-Parameter Lognormal Distribution. 
This example fits the three-parameter lognormal distribution to the fan data that 
were introduced in Example 1.4 and are given in Appendix Table C. 1 .  The profile 
plot in Figure 11.17 shows the breakdown in the density approximation for the 
likelihood. As y -+ X(I )  (the smallest observation), the profile likelihood for y blows 
up. To eliminate this problem, use the correct likelihood. For these data we use the 
likelihood based on recognizing that data were recorded to a precision of ?5 hours 
and choose A, = 5 in (1  1.9). Figure 11. I8 shows that, with the correct likelihood, 
the profile plot is well behaved with a clear maximum at a value of y that is a little 
less than 400. Figure I 1.19 is a lognormal probability plot of the fan data comparing 
the three-parameter lognormal and the three-parameter Weibull distributions with 
the two-parameter lognormal distribution. The NOR-GETS ML estimates in this 
example are & = 41261.2588, 6 = 2.27164389, and < = 92853.2782, which, 
because i? > 0, yields the three-parameter lognormal distribution ML estimates as 
h 

y = i? - ?/G = 386.33 and E = log(?/6) = 10.618 and G as above. 
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Figure 11.15. Protile and Weibull probability plots of the Alloy-C strength data with y varying between -20 and 79. Also 
shown are approximate 95% pointwise confidence intervals for F ( r )for the given value of y. 
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These analyses give a strong indication that fitting a threshold-parameter distribu- 
tion to these data would be overfitting, unless there were strong physical reasons to 
suggest that such a threshold exists. Visually, the two-parameter lognormal distribu- 
tion ( p  = 10.14, U = 1.68) provides a reasonably adequate and parsimonious fit to 
the data. 0 

Example I I .  I8 Fitting the Threshold-Parameter Distributions to the Al-
loy T7987 Data. Example 6.7 suggested that a threshold-parameter distribution 
might be appropriate for the Alloy T7987 data given in Table 6.1. Figure 11.20 
is a Weibull probability plot comparing the three-parameter lognormal and three- 
parameter Weibull distributions for the Alloy T7987 data. The SEV-GETS ML es-
timates are 6 = 186.3, i? = .76, and 2 = 70.64, which, because 3 > 0, yields 
the three-parameter Weibull distribution ML estimates as 7 = 6 - ?/6 = 92.99 
and = log(?/G) = 4.54. The NORMAL-GETS ML estimates are i2 = 162.25, 
3 = .613, and ? = 55.28. Using the relationships in Section 5.1 1.4, with GT > 0, 
yields the three-parameter lognormal distribution ML estimates as = 6 - $ / 3  = 

72.03 and p = log(?/i?) = 4.50. In this case there is strong evidence that the thresh- 
old parameter is important for describing the failure-time distribution. The data do not 
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suggest a preference for either the three-parameter lognormal or three-parameter 
Weibull distribution. 0 

11.7.4 Summary of Results of Fitting Models to Skewed Distributions 

The results in this section indicate some general guidelines for fitting parametric dis- 
tributions to skewed data. We have seen that as y -, --x and U -, 0, the shape of the 
three-parameter threshold distribution approaches that of the underlying embedded 
distribution. The Weibull approaches the form of a smallest extreme value (which is 
left-skewed) and the lognormal approaches the form of a normal distribution (sym- 
metric). These results indicate that, for purposes of fitting parametric distributions to 
data: 

If data are left-skewed, even if far from the origin, it is generally possible to fit  a 
three-parameter Weibull distribution and achieve a good fit to the data. In many 
cases, however, it will be possible to fit the simpler two-parameter Weibull or 
smallest extreme value distributions and get, effectively, the same results. The 
typical profile likelihood shape for such data is shown in Figure 1 1.15. 
If data are approximately symmetric, one can generally fit a three-parameter 
Weibull, a three-parameter lognormal model, or two-parameter versions of the 
distribution and get a reasonably good fit to the data. In many cases, however, i t  
will be possible to fit the simpler two-parameter normal or logistic distributions 
(depending on the heaviness of the tails) and get, effectively, the same results. 
Often, unless there is a large amount of data (hundreds of observations), it will 
be difficult to distinguish among these alternative distributions. 
If the data are right-skewed, it is often possible to fit either the three-parameter 
Weibull or the three-parameter lognormal distribution and get a good fit  to the 
data. 
The use of a threshold parameter can be viewed from two different directions. 
Sometimes it might be viewed as a physical parameter-a time before which 
probability of failure is zero or a threshold strength. In such cases it may be 
important to constrain y > 0 or some other number. In other cases, y is one of 
several parameters of a curve being fit to data. In such cases, the ML estimate 
of y may be negative, yielding a positive probability of negative failure time or 
strength. Generally, however, the estimated probability of such small events is 
small enough to ignore. 

When one of the simpler distributions (e.g., two-parameter lognormal or two- 
parameter Weibull) fits one’s data well, the simpler description will be preferred to a 
threshold distribution, especially when the amount of data available is limited. When 
one of the simpler distributions does not fit, however, using a threshold parameter 
may provide an important improvement in data description. As usual, however, it 
is important to be especially cautious when making inferences outside the range of 
one’s data, especially when the fitted distribution is chosen purely on the basis of its 
fit to the data. 
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BIBLIOGRAPHIC NOTES 

Farewell and Prentice ( 1977) show that a judicious choice of parameters for the GENG 
model can make an important difference in one’s ability to apply ML methods. They 
suggest the parameterization given in Section 5.4. Lawless (1982, Chapter 5 ) shows 
how to use likelihood-based methods with the generalized gamma distributior? to 
assess and comp-are results from the special case distributions Liu, Meeker, and 
Escobx (1998) suggest and illustrate the use of an EGENG parameterization that is 
stable even for heavy censoring. 

Engelhardt, Bain, and Wright (1981) describe methods for ML estimation far 
the Birnbaum-Saunders distribution. Cohen and Whitten ( i 988) describe estimation 
methods, including ML, for a wide variety of life distributions including the Weibdl, 
lognormal, inverse Gaussian, gamma, and generalized gamma distributions. 

Meeker (1987) provides a more compiete analysis and more technical details for 
the LFP model described in Section 1 1.5. Also, Monte Carlo simulation showed that 
the likelihood-based confidence intervals provide a much better approximation to [he 
nominal confidence leveis over a wide range of parameter values for the LFP model. 
Trindade (1991) also uses this model in a similar application. 

In general, fitting mixture distributions with maximum likelihood presents some 
difficult and challenging issues. See, for example, Day ( 1969), Falls (1 970), Hos-
mer (1973), Titterington, Smith, and Makov (1985), and Gelman, Car!in, Stern, and 
Rubin ( 1995, Chapter 16). Also Everitt and Hand ( !98 1 ) review the pertinent litera- 
ture. 

Turnbull ( 1976) presents a generalization of the Kaplan-Meier estimate for ar- 
bitrarily censored and truncated data. Kalbfleisch and Lawless (1988) describe ex-
amples-of field reliability data that can be analyzed using truncated data methods. 
Nelson (1990b) describes examples of truncated reliability data and show how to 
adapt the method of hazard plotting to such data. Kalbfleisch and Lawless (1992) 
provide further examples and methods. Woodroofe ( 1972, 1974), Schneider ( 1986), 
and Cohen ( 1991 ) are useful references for the theoretica! aspects of truncated data 
and estimating the parameters of truncated distributions. Escobar and Meeker ( 1998d) 
show how to compute the Fisher information matrix and asymptotic variances for 
truncated distributions and the LFP mode!. 

Serious numerical and statistical problems can arise when estimating the parame- 
ters of threshold-parameter distributions, especially when using the density approx- 
imation for the likelihood contributions of observations reported as exact failures 
(see Kempthorne and Folks, 197 I ;Giesbrecht and Kempthorne 1976; and Cheng and 
Iles, 1987, for more details and other references). Griffiihs (1980) and Smith and 
Nay1c.r ( 1987) describe likelihood-based inferences for the three-parameter lognor- 
mal and Weibull distrihtions. respectively. Also, the asymptotic ML theory for this 
approach is complicated (e.g., see Smith, 1985) and, arguably, inappropriate for data 
with finite precision. Cheng and Iles (1990) noted that the smallest extreme value 
(normal) distribution is a limiting case of the three-parameter Weibull (lognormd) 
distribution when the threshold parameter -x.Hirose and Lai (1997) use an --+ 

exampie to ijlustrate the problems in inference created by embedded models when 
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fitting a threshold Weibull model with binned data. They propose a solution to those 
problems by embedding the Weibull model in SEV-GETS family and using ML 
methods. 

EXERCISES 

11.1. Wilk, Gnanadesikan, and Huyett (1962b) give the number of weeks until 
failure for a sample of 34 transistors subjected to accelerated conditions. The 
reported times, with the number of ties shown in parentheses, were 3,  4, 5.  
6(2), 7, 8(2), 9(3), 10(2), 11(3), 13(5), 17(2), 19(2), 25, 29, 33, 42(2), 52. 
The other 3 transistors had not failed at the end of 52 weeks. 
(a) Use ML to estimate the parameters of the BISA, IGAU, gamma, and 

lognormal distributions to these data using a discrete-data likelihood. 
Plot all of these estimates on lognormal probability paper and compare 
the different estimates. Describe any important differences that you see 
in the estimates. 

(b) Redo the gamma distribution analyses assuming that the failures occurred 
at exactly the reported time. Are the differences of practical importance 
in this example? 

11.2. The engineers who collected the IC data from Example 1 1.14 felt that if the 
life test had been extended for another 50,000 hours (corresponding to the 
technological life of the application system), only another 2 or 3 failures might 
have been observed. Use this information to construct several Weibull and 
lognormal probability plots for the failure-time distribution for the defective 
subpopulation. 

11.3. For the Weibull LFP (limited failure population) model witn cdf given in 
(1  1.2), a proportion p of the units in the population is defective and will 
eventually fail (according to a Weibull distribution) and all other units are 
immune to failure. 
(a) What is the practical interpretation of the parameter p in this model‘? 
(b) Generally in a life test of a limited failure population, if the test is stopped 

far before all of the units in the population have failed, the parameters p 
and p will be highly correlated. Give an intuitive explanation for this. 

(c) The expected proportion of units failing in a life test of length t ,  might 
be a more “stable” parameter to estimate. Explain why. Write down the 
reparameterized model, and describe the steps that you would use to find 
the ML estimates of this new parameter as well as p and (T. 

11.4. Refer to Exercise 11.3. Show that the likelihood for the LFP model with a 
single censoring time can be factored into two components, one a binomial 
with parameter T = p X @{[log(?,) - p ] / ( ~ }and another consisting of a 
right-truncated failure-time distribution with truncation time T? = I(.. 
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A l l S .  Comment on the statistical implications of the factoring in Exercise 1 1.4. 

11.6. Suppose that T has a WEIB(pu, a)distribution. Show the following: 
(a) The cdf of the left-truncated Weibull distribution is 

where q = exp(u) and p = 1 / U .  

(b) The cdf of the right-truncated Weibull distribution is 

( c )  The cdf of the left-truncated and right-truncated Weibull distribution is 

11.7. Refer to Exercise 11.6, part (a). What is the cdf of the truncated distribution 
whena = l?  

A11.8. Derive the expressions given in parts (a) and (b) of Exercise 11.6 as limiting 
cases of the expression in part (c) when & + 0 and r“ + x,respectively. 

A11.9. Consider ML estimation from a random sample of size n from an EXP(8) 
h h  

distribution. Denote by 8,, 8,., and 3f the ML estimates of 8 from complete, 
right-censored, and right-truncated sameles, respectively. Define the asEmp- 
totic relative efficieccy of the estimator 0, with respect to the estimator 01,as 

h h  

RE(8,, 8 b )  = AVZ( Bb)/Avar( Oa). 
(a) Write the Fisher information matrix for the estimators and show that 

where pc = exp( - t c / 8 )  is the proportion of right censoring and p t  = 
exp( -7’/8) is the proportion of right truncation. 

(b) Use the results in part (a) with p f  = pc.to show that 
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When p r  = pc  = .1 evaluate the relative efficiencies and show that 
RE(gr, gn)= .31 and RE(gc, zn)= .90. Comment on these efficiencies. 

( c )  Again suppose that = pc .  In the same plot draw RE(&,&) and 
RE(gr,gn)as a function of P t .  Comment on the effect of right censoring 
a proportion p of units when compared with right truncating the same 
proportion of units. 

11.10, Consider the data in Examples 1.3, 11.9, and 11.1 1, Truncate the Vendor 1 
data at 1000 hours and compare the resulting fit with that for Vendor 2. Can 
you detect any difference that might be considered to be important? 

11.11. Consider the results from either Exercise 1 1.9 or from Exercise 1 1.14. Pro- 
vide an intuitive explanation for the reason that precision from the censored 
distribution is much better than from the truncated distribution. 

11.12. During a single month a company sold 2341 modems. These modems have a 
36-month warranty. During the first 24 months, 75 of these modems had been 
returned for warranty service. Suppose that it is reasonable to assume that this 
is the number failing out of the 2341 modems that were sold. From previous 
experience with similar products, it is known that a Weibull distribution 
with a shape parameter of /3 = .85 provides an adequate description of the 
failure-time distribution. 
(a) Show that the conditional probability of failing in the third year of life, 

given survival up to 2 years, can be expressed as a truncated distribution. 
(b) Although the times to failure for the returned modems were not available, 

it is still possible to compute an estimate of the Weibull cdf using the 
given value of /3 = 3 5 .  Show how to do this. 

( c )  Use the estimate from part (b) to compute an estimate for the number of 
units that will fail in the third year of operation. 

(d) Suppose that you had learned that 2 years after being sold, between 57~ 
and 10% of the purchased modems had never been put into service. How 
would you do part (b)? 

A11.13. Consider the discrete-data likelihood 

where F ( t ;q,(T, 6 ) is the GETS cdf in (5.13). 
(a) Suppose that the GETS cdf is Weibull based (i.e., = a,,,,)and that 

a > 0. Show that the derivatives of the log likelihood with respect to the 
parameters are discontinuous at to when to = ('I/( - 1 / a )and (T > 1 .  
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(b) Suppose that the GETS cdf is Weibull based with (T < 0. Show that 
the derivatives of the log likelihood with respect to the parameters are 
discontinuous at t,,, when t,, = (q/( - l/a)and 101 > 1. 

(c) Show that if the GETS cdf is lognormal based, then the derivatives of the 
log likelihood with respect to the parameters are continuous everywhere. 

+11.14. Conduct the following simulation to compare the effects of censoring and 
truncation on estimation precision. 
(a) Generate a sample from a Weibull distribution with q = 100 hours and 

p = 2 .  
(b) Find the ML estimates of the parameters and t.1,treating any observations 

beyond 150 hours as right-censored. 
(c) Find the ML estimates of the parameters and r , 1, truncating observations 

beyond 150 hours. 
(d) Repeat the simulation 500 times. Make appropriate plots of the sample 

estimates (including scatter plots to see correlation). Compute and use 
histograms or other graphical displays to compare the estimates from the 
censored and the truncated samples. Also compute the sample variances 
for the parameter estimates and for the estimates of t , l .  

( e )  What can you conclude from this simulation experiment? 
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Prediction of Future 
Random Quantities 

Objectives 

This chapter explains: 

Important reliability-related applications of prediction. 
The difference between probability prediction and statistical prediction. 
Methods for computing predictions and prediction bounds for future failure 
times. 
Methods for computing predictions and prediction bounds for the number of 
failures in a future time interval. 

Overview 

This chapter describes methods to construct prediction bounds or intervals for future 
random quantities. Both new-sample prediction (using data from a previous sample 
to make predictions on a future unit or sample of units) and within-sample prediction 
problems (predicting future events in a sample based on early data from the sam- 
ple) are considered. To illustrate new-sample prediction we show how to construct a 
prediction interval for a single future observation from a previously sampled popula- 
tiordprocess (motivated by a customer’s request for an interval to contain the life of a 
purchased product). To illustrate within-sample prediction, we show how to compute 
a prediction interval for the number of future failures in a specified period beyond the 
observation period (motivated by a warranty prediction problem). A third example 
requires more general methods to deal with complicated censoring arising because 
units enter service at different points in time (staggered entry), Section 12.2 describes 
“probability predict ion intervals” for a completely specified distribution. Probabi 1i ty 
prediction intervals, when computed on the basis of estimates from limited data, are 
sometimes called “naive prediction intervals,” and they can serve as a basis for devel- 
oping more commonly needed statistical prediction intervals. Section 1 2.3 describes 
coverage probability concepts and other basic ideas pertaining to statistical prediction 

289 



290 PREDICTION OF FUTURE RANDOM QUANTITIES 

intervals. Section 12.4 introduces the basic ideas of pivotal methods for complete and 
Type I1 censored data from log-location-scale distributions and shows how they can 
be extended to obtain approximate prediction intervals for the more commonly used 
Type I censoring. Section 12.5 describes some simple special case prediction interval 
procedures that can be implemented with simple hand computations. Section 12.6 
presents a more general approach of calibrating naive statistical prediction intervals 
and shows how these methods are related to the pivotal-like methods. Section 12.7 
shows how to apply the calibration method to a commonly occurring problem of pre- 
dicting future field failures on the basis of early field failures. Section 12.8 extends 
the field prediction problem to situations where units enter the field over a longer 
period of time. 

12.1 INTRODUCTION 

12.1.1 Motivation and Prediction Problems 

Practical problems often require the computation of predictions and prediction bounds 
for future values of random quantities. For example: 

A consumer purchasing a refrigerator would like to have a lower bound for the 
failure time of the unit to be purchased (with less interest in distribution of the 
population of units purchased by other consumers). 
Financial managers in manufacturing companies need upper prediction bounds 
on future warranty costs. 
When planning life tests, engineers may need to predict the number of failures 
that will occur by the end of the test or the amount of time that i t  will take for a 
specified number of units to fail. 

Some applications require a two-sided prediction interval [z, 71 that will, with 
a specified high degree of confidence, contain the future random variable of interest, 
say, T . In many applications, however, interest is focused on either an upper predic- 
tion bound or a lower prediction bound (e.g., the maximum warranty cost is more 
important than the minimum and the time of the early failures in a product population 
is more important than the last ones). 

Conceptually, it is useful to distinguish between “new-sample” prediction (Fig- 
ure 12.1 ) and “within-sample” prediction (Figure 12.2). For new-sample prediction, 
data from a past sample is used to make predictions on a future unit or sample of 
units from the same process or population. For example, based on previous (possibly 
censored) life test data, one could be interested in predicting the following: 

Time to failure of a new item. 
Time until k failures in a future sample of m units. 
Number of failures by time r,,, in a future sample of 172 units. 
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-r Failures > 

n Units 
at Start 

Future Unit(s) 
? 

+ 

0 

Figure 12.1. New-sample prediction. 

For within-sample prediction, the problem is to predict future events in a sample 
or process based on early data from that sample or process. For example, if n units are 
followed until t ,  and there are r observed failures, t ( l ) ,. . . ,t ( r ) ,one could be interested 
in predicting the following: 

Time of the next failure. 
Time until k additional failures. 
Number of additional failures in a future interval ( I ( . ,  I ~ , . ) ,  

12.1.2 Model 

In general, to predict a future realization of a random quantity one needs: 

A statistical model to describe the population or process of interest. This model 
usually consists of a distribution depending on a vector of parameters 8 . Non-
parametric new-sample prediction is also possible (Chapter 5 of Hahn and 
Meeker, 1991, gives examples and references). 
Information on the values of the parameters 8.  This information could come 
from either a laboratory life test or field data. 

We will assume that the failure times have a continuous distribution with cdf F ( r )  = 
F ( t ;8 )  and pdf f ( t )  = f ( t ;O ) ,  where 8 is a vector of parameters. Generally, 8 is 
unknown and will be estimated from available sample data. In such cases we will 
make the standard assumptions of statistical independence of failure times and that 

-r Failures * 

n Units ? > -_ _ _ _ _ - - _ - _ _  
at Start 

0 t C  t W  

Figure 12.2. Within-sample prediction. 
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censoring times are independent of any future failure time that would be observed if 
a unit were not to be censored (as described in Section 2.3.2). 

12.1.3 Data 

The beginning of this chapter considers situations in which n units begin operation 
at time 0 and are observed until a time t,., where the available data are to be analyzed. 
Failure times are recorded for the r units that fail in the interval (0,I(.).Then the data 
consist of the r smallest order statistics t ( l )  < - * < t ( , )  5 t,. and the information 
that the other n - r units will have failed after t , . .  Section 12.8 shows how to compute 
prediction bounds for more complicated kinds of censored data that are frequently 
encountered in the analysis of field reliability data. 

12.2 PROBABILITY PREDICTION INTERVALS (8 GIVEN) 

With a completely specified continuous probability distribution, an exact loo( 1 -U ) %  

“probability prediction interval’’ for a future observation from F(r;8 ) is (ignoring any 
data) 

where t ,  is the p quantile of F ( t ;  8) .The probability of coverage of the interval in 
(12.1) is 

-
Pr[T E PI(1 - a ) ]= Pr(T 5 T 5 T )  = Pr(t,/, 5 T 5 = 1 - a 

by the definition of quantiles of continuous distributions. 

Example 12.1 Prediction Interval for a Completely Specijed Probability Dis- 
tribution. A potential customer plans to purchase a system. The system contains 
a bearing known to be a life-limiting component that has failed in some existing 
systems. The potential customer needs a lower prediction bound on T , the number of 
use-cycles to failure for one of these systems that is to be placed into service. Based 
on previous experience, the manufacturer believes that the number of cycles to failure 
for the bearing can be described by a lognormal cdf 

Pr(T 5 t )  = F ( t ;p,a )= Qnor 
[log(:- ” I  

with specified parameters /L = 4.0 and U = .5. From (12. I ) ,  a two-sided 90% 
probability prediction interval is 

IT, 71 = kxp(p + @;);(.05)x d, exp(p + @;);(.95) x a>l 
= lexp(4.0 + (- 1.645) X S ) ,  exp(4.0 + 1.645 X S ) ]  

= (23.93, 124.591. 
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Then Pr(T 5 T IT )  = Pr(23.93 5 T 5 124.59) = .90. With misspecified 
parameters, coverage probability may not be .90. cl 

12.3 STATISTICALPREDICTION INTERVAL ( e ESTIMATED) 

12.3.1 Coverage Probability Concepts 

Before describing methods for constructing &estimated prediction intervals, let us 
first consider methods for evaluating the properties of prediction intervals. In par-
ticular, “coverage probability” is an important property. We describe these concepts 
in terms of a “new-sample” prediction interval for a future observation but the ideas 
also hold for other new-sample prediction problems and within-sample prediction 
problems. 

In statistical prediction, the objective is to predict the random quantity T based 
on “learning” sample information (denoted by DATA). Generally, with only sample 
data, there is uncertainty in the distribution parameters. The random DATA leads 
to a parameter estimate 0 and then to a nominal 100(1 - a)%prediction interval 
PI( 1 - a )  = [ T ,  F].Thus [ E ,  ?;] and the future random variable T have a joint 
distribution that depends on a parameter vector 8.  

There are two kinds of coverage probabilities: 

For fixed DATA (and thus fixed 6 and [ T ,  T ] )the conditional coverage 
probability of a particular interval [ T ,  T ]is 

This conditional probability is unknown because F ( t ;  8 )  depends on the un-
known 8. 

From sample to sample, the conditional coverage probability is random be-
cause [T ,  F]depends on $. The unconditional coverage probability for the 
prediction interval procedure is 

CP[PZ(1 - a);81 = Pr(z 5 T 5 T ;8 )  = E-,{CP[PI(1 - a ) I 0;01) (12.3) 

where the expectation is with respect to the random 6. Because it can be 
computed (at least approximately) and can be controlled, it is this unconditional 
probability that is generally used to describe a prediction interval procedure. 
When CP[PI(1 - a);01 = 1 - a does not depend on 8, the procedure is said to 
be “exact.” In general, CP[PI( 1 - a);81 = 1 - a because of dependency on the 
unknown 8. In such cases only an approximate prediction interval procedure is 
available. 
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12.3.2 Relationship Between One-sided and Two-sided Prediction Intervals 

Combining a one-sided lower lOO(1 - a/2)% prediction bound and a one-sided 
upper loo( 1 - a/2)%prediction bound gives an equal-tail two-sided 100(1 - a)% 
probability prediction interval. In particular, if Pr(T 5 T < m )  = 1 - a/2 and-
Pr(0 < T 5 ?) = 1 - a/2, then Pr(r  5 T 5 T )  = 1 - a .  It may be possible 
to find a narrower interval with unequal probabilities in the upper and lower tails, 
still summing to a .  Use of equal-probability intervals, however, has the important 
advantage of providing an interval that has endpoints that can be correctly interpreted 
as one-sided prediction bounds (with the appropriate adjustment in the confidence 
level). This is important because in most applications the cost of predicting too high 
is different from the cost of predicting too low and two-sided prediction intervals are 
often reported even though primary interest is on one side or the other. 

12.3.3 Naive Method for Computing a Statistical Prediction Interval 

A "naive" prediction interval for continuous T is obtained by substituting the maxi- 
mum likelihood (ML) estimate for 8 into ( 12.l ) ,  giving 

h

where t,, = t , ( 6 )is the ML estimate of the p quantile of T .  To predict a future 
independent observation from a log-location-scale distribution, a naive prediction 
interval is 

= [exp(E + @ - ' ( a / 2 )X C) ,  exp(@+ W'(1- a/2) X @ ) I .  (12.4) 

The unconditional coverage probability for this naive procedure is approximately 
equal to the nominal 1 - a with large samples sizes. For small to moderate number 
of units failing, however, the coverage probability may befur. from 1 - a .  

Example 12.2 Naive Prediction Interval for Predicting the f i fe  of a Ball 
Bearing (Lognormal Distribution). Refer to the problem of predicting bearing 
life in Example 12.1, but suppose that only limited data are available to make the 
prediction. Figure 12.3 is a lognormal probability plot of the first 15 of 23 failures 
in a bearing life test described in Lawless (1982, page 228) when the data are right- 
censored at 80 million cycles. Failures occurred at 17.88, 28.92,33.00,4 1.52,32.12, 
45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, and 68.88 million 
revolutions. The other eight bearings were treated as if they had been censored at 
80 million cycles. The lognormal ML estimates are @ = 4.160 and i'i = .545 1 .  
From ( 12.4),the naive two-sided 90% prediction interval is 

( 12.5) 

= [exp(4.160 + ( - 1.645) X .5451), exp(4.160 + 1.645 X .5451)] 

= [26.1, 157.11, 
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Figure 12.3. Lognormal probability plot of bearing life test data cenwred after 80 inillion cycle\ (with 
IS of 23 units failed) with lognormal ML estimates and pointwise 95% confidence intenals. 

Intervals constructed in this manner are generally too narrow and their coverage 
probability is below the nominal value of 1 - a because they ignore the uncertainty 
in 6 and t? relative to p and cr. 0 

For the Weibull distribution, the prediction interval can be computed analogously 
by recognizing that log(T)  has a smallest extreme value (SEV) distribution. In par-
ticular, 

where p = log(7) and p = I/a 

Example 12.3 Naive Prediction Interval for Predicting the Life of a Ball 
Bearing (WeibullDistribution). The Weibull distribution also provides an adequate 
description of the censored ball bearing data. Following the approach in Example 12.2, 
the Weibull ML estimates are E = 4.334 and t? = .4013. From (12.4), the naive 
two-sided 90% prediction interval is 

[ T ,  T ] = [exp(c + a5i:(.05)X i?), exp(@+ @,,’(.95) X i?)] ( 12.6) 

= [exp(4.334 + (-2.970) X .4013), exp(4.334 + 1.097 X .4013)] 

= [23.2, 118.41. 
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Note that, in comparison with the prediction interval for the lognormal distribution 
in Example 12.2, the Weibull prediction interval has a much smaller upper endpoint. 
It  is typical that the lognormal distribution, when compared with the Weibull, will 
provide a more optimistic extrapolation into the upper tail of a fitted distribution. 
This is because the lognormal distribution has a much “longer” upper tail. U 

12.4 THE (APPROXIMATE) PIVOTAL METHOD FOR 
PREDICTION INTERVALS 

12.4.1 v p e  I1 (Failure) Censoring 

With Type I1 (failure) censoring, a life test is run until a specified number of r failures, 
where 1 5 r 5 n. When T has a log-location-scale distribution and the data are 
complete or Type I1 (failure) censored, the random variable Z I O g ( ~ )= [log(T)-G]/G 
is pivotal. That is, the distribution of Zlog(T)depends only on n and r but it does not 
depend on p or (T.Then 

which suggests the prediction interval 

The quantiles :log(T),,/,, and log(^),, ~ , / ~ ~can be obtained from the distribution of Zlop(~) ,  
which can be obtained approximately (the approximation due only to Monte Carlo 
error) by simulating B realizations of 

( 12.7) 

The procedure is as follows: 

1. Draw a sample of size n from a log-location-scale distribution with parameters 
(G,
$), censored at the r t h  failure. 

2. Use the censored sample to compute ML estimates E* and G*. 
3. Draw an additional single observation T * from the log-location-scale distribu- 

tion with parameters (@, i?). 
4. Compute Zlog(T*)= [log(T*)- @*]/i?*. 
5. Repeat steps 1 to 4 B times. Obtain the approximations for the quantiles 

: I ~ , ~ ( T ) ~ ~ , / , ~  ~ , / ? ~from the empirical distribution of Z l o g ( ~ *and : I ~ ) ~ ( T ) , ,  ) .  
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Because the quantiles of Zlo,,(7-)depend only on n and r the procedure to predict T 
will, except for Monte Carlo error, have exactly the nominal coverage probability. 

12.4.2 Q p e  I (Time) Censoring 

For single time censoring (test run until a specified censoring time t c ) ,the simulation 
procedure is modified by censoring the samples at the specified censoring time t,. In 
this case, the Z l o g ( ~ )  depend on is only approximately pivotal and quantiles of Z I ~ , , ( ~ )  
F(t,.,  0) (the unknown expected proportion failing by time t c )  and the sample size 11. 

Thus, with Type I censoring, the prediction interval to predict T is approximate. 

Example 12.4 Approximate Prediction Interval for  Predicting the Life of 
a Ball Bearing Based on an Approximate Pivotal (Lognormal Distribution). 
Figure 12.4 shows the simulated distribution of the lognormal predictive pivotal-like 
statistic in (12.7). The simulated values were obtained by doing 100,OOOsimulations 
of the censored life test, using the lognormal distribution and the ML estimates for 
bearing life from Example 12.2. The needed quantiles of the simulated distribution 
are qog(~*) ,  yj), ) 5 )  = -1.802 and qog(~-) ,= 1.837. Thus a two-sided approximate 90% 

I I I I I I I 1 

-6 -4 -2 0 2 4 6 8 

%!A+) 
Figure 12.4. Histogram of 100,000 simulated Z,og(f . ,  values, based on the bearing life test data censored 
after 80 million cycles. 
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prediction interval for lognormal T is 

[ T ,  TI = [exp(@+ :log(T*),,,,, x a, exp(@+ Zlog(T'),, , ,  x a1 
= Iexp(4.160 + (-1.802) X .5451), exp(4.160 + 1.837 X .5451)] 

= 124.0, 174.41. 

It is important to note that the upper prediction bound requires some extrapolation 
given that there were only 15 failures in the sample of 23 of the bearings. This upper 
bound does not account for possible model error in the unobserved upper tail of the 
failure-time distribution. U 

Example 12.5 Approximate Prediction Interval for  Predicting the Life of a 
Ball Bearing Based on an Approximate Pivotal (Weibull Distribution). Following 
the approach used in Example 12.4, a simulation for the Weibull distribution to -resulted in Z ~ ~ ~ ( T * ) , , , ~ ,  u s Iestimate the distribution of Z 1 o g ( ~ * )  == -3.263 and z l o g ( ~ * ) ,-
1.260. Thus a two-sided approximate 90%prediction interval for Weibull T is 

[ T *  77 = [exp(G + :log(T"),,, , ,  x a- exp(@+ :lo&(T'),,,, x a1 
= Iexp(4.334 + (-3.263) X .4013), exp(4.334 + 1.260 X .4013)] 

= [20.6, 126.4). 

Note that, as we observed with the naive prediction intervals (Examples 12.2 and 
I2.3), in comparison with the prediction interval for the lognormal distribution in 
Example 12.4, the Weibull prediction interval has a much smaller upper endpoint. 

0 


The (approximate) pivotal method can be extended directly to compute prediction 
intervals for random variables from other log-location-scale distributions. I t  can also 
be extended to other non-location-scale distributions by using a location estimate, 
such as a central quantile of the distribution of log(T) in place of @ and an estimate 
of  the standard deviation of [log(T) - F ]  in place of 6. 

12.5 PREDICTION IN SIMPLE CASES 

This section describes some simple special case prediction interval procedures. The 
methods are based on pivotal quantities that are related to the pivotal quantity methods 
described in Section 12.4.1. For the simple cases presented here, the distribution of 
the pivotal quantities have well-known distributions (Student's t and the Snedecor F 
distributions) for which tables of quantiles are readily available. 
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12.5.1 Complete Samples from a Lognormal Distribution 

Suppose that t l ,. . . ,t,, is a complete sample from a LOGNOR(p, U )  distribution and 
T is an inde endent new observation from the same distribution. Then it can be shown 
that d& X Zlag(~)has a Student's t distribution with I I  - 1 degrees of 
freedom. From this it follows that 

where s = d m X G is the sample standard deviation of the logarithms of 
the observed failure times and qPiv )is the p quantile of the Student's t distribution 
with U degrees of freedom. This leads to an exact 100(1 - a)%prediction interval 
for a new independent observation given by 

where o = f(l-a/2; , ,- l)  X d m .This prediction interval is equivalent to the 
prediction interval for a new independent observation for complete data given in other 
books (e.g., Hahn and Meeker, 1991, page 61). 

The exact prediction interval [r,  T ] is wider than the naive prediction interval 
obtained from using the ML estimates of the quantiles of T 

When n is large (say, n > 30), however, the differences are negligible because for 
O < p < l ,  

f ( p ; n - l )  x 1 + - x s == @,f(p) x 5.J t  
Example 12.6 Prediction Interval for a New Observation from a Lognormal 

Distribution. Refer to Examples 11.4. Suppose that the analysts wanted a 95% 
prediction interval to contain the time to fracture of a specimen of the same type to 
be tested in the future. Based on a sample of size n = 63 specimens, the ML estimate 
of the parameters for the lognormal distribution are @ = 4.722, 3 = 1.0255, and 
s = d m X 1.0255 = 1.034. Then, an exact 90% prediction interval for a new 
observation is 

-
[ E ,  T ] = [exp(@- o X s), exp(6 + o X s)] 

= [exp(4.722 - 1.683 X 1.034), exp(4.722 + 1.683 X 1.034)) 

= [19.72, 640.01, 
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where o = d m X 1.669804 = 1.683.Thus we are 90% confident that this 
interval will contain the fatigue life of the specimen. U 

12.5.2 Complete or Type I1 Censored Samples from an 
Exponential Distribution 

If t l , .  . . ,tr is a Type I1 ( r  < z)censored sample or a complete sample ( r  = n )  
from an EXP(8) distribution, 8 is the ML estimator from these data, and if T is 
another, future independent observation from the same distribution, then T / $  has an 
F distribution with (2,2r) degrees of freedom. From this, it follows that 

where F&, ,"?) is the p quantile of the F distribution with (v1, v2)degrees of freedom. 
This leads to an exact loo( 1 - a)% prediction interval for a new observation given 
by 

where the F distribution p quantile with 2 numerator degrees of freedom can be 
obtained from q p ; 2 ; 2 r ,  = r X {exp[-( 1/ r )  log( 1 - p ) ]  - 1). This prediction interval 
is wider than the naive prediction interval computed as ML estimates of quantiles of  
the distribution of T ,  

but when r is large the differences between the two intervals are negligible because 
for 0 < p < I and large r ,  F(,];2,2r) - log( 1 - p ) .  

Example 12.7 Prediction Interval for  the Lifetime of an Insulation Specimen. 
Refer to Example 7.13, where n = 25 insulation specimens were tested until r = 15 
failures had been observed. The ML estimate of the exponential mean 8 is ê  = 63.392 
hours. Another specimen is to be tested. An exact 90% prediction interval for the new 
observations is 

Thus we are 90%confident that this interval will contain the lifetime of the specimen 
to be tested. 0 

12.6 CALIBRATING NAIVE STATISTICAL PREDICTION BOUNDS 

Cox (1975) suggested a large-sample approximate method, based on maximum like- 
lihood estimates, that can be used to calibrate or correct a naive prediction interval. 
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The basic idea of this approach is to calibrate the naive one-sided prediction bound 
by evaluating CP[fZ( 1 - a ) ;01 at G and finding a calibration value 1 - a,./such that 
for a one-sided lower prediction bound for T ,  

Calibration for a one-sided upper prediction bound on T (described at the end of 
Section 12.6.1) is similar. For a two-sided prediction interval, the calibration is 
done separately such that the probability is a /2  in each tail. In problems where 
CP[f/( 1 - a ) ;81 does not depend on 8, the calibrated f / (  1 - a,,) provides an exact 
prediction bound. 

Although it is sometimes possible to do analytical calibration, operationally, the 
analytical approach is intractable except in the simplest of situations, where alterna- 
tive, simpler methods exist (e.g., the methods in Section 12.5). 

12.6.1 Calibration by Simulation of the Sampling/Prediction Process 

Modern computing capabilities make it easy to use Monte Carlo methods to eval- 
uate, numerically, quantities like (12.8), even for complicated statistical models. In 
particular, under the assumed model we can use ML estimates to simulate both the 
sampling and prediction process a large number B (e.g., B = 50,000 or B = 100,000) 
times. Although B = 2000 or so is often suggested for simulation-based confidence 
intervals, larger values of B are usually required for prediction problems due to the 
added variability of the single future observation. 

Conceptually, ( I  2.8) can be evaluated as follows: 

1. Choose a value of 1 - a ,  say, 1 - ao. 
2. Simulate DATA; from the assumed model with parameter values equal to the 

ML estimates 6 [i.e., from F(t ;6)].Use the sampling procedures and censoring 
that mimics the original experiment. 

3. Compute simulation ML estimates 6; from DATA:. 
4. Compute the naive 100( 1 -ao)%lower prediction bound Tf from the simulated 

DATA;. Compare TT with an independent T; simulated from F(r;%) to see if 
T; > ET. 

5. Repeat steps 2 to 4 for j = 1,2,. . . ,B. The proportion of the B trials having 
T;” > T ;  gives the Monte Carlo evaluation of CP [ f Z (  1 - ao);01 at 6, which 
we denote by CP*[fI( 1 - ao);61. 

6. Repeat steps 2 to 5 for different values of 1 - ao. 
h

7. Find 1 - a,/ such that CP*[f/(l - a,,); 01 = 1 - a.  

The difference between CP[fZ( 1 - ao);%]and CP*[fZ( 1 - ao);61 is due to Monte 
Carlo error and can be made arbitrarily small by choosing a sufficiently large value 



302 PREDICTION OF FUTURE RANDOM QUANTITIES 

of B .  To avoid cumbersome notation we will use CP[PI(1 - ao);̂ e] even when the 
evaluation is done with simulation. 

Operationally, fora log-location-scale distribution where 8 = (k ,a),the CP[PI( 1 -
a ) ;61 function can be evaluated more directly by using the following procedure: 

1. Use simulation to compute B realizations of the pivotal-like statistic Zlog(T'), as 
described in Section 12.4. 

2. The empirical distribution of the observed values of the random variable P = 
1 - @[Zlog(7.-~]provides a Monte Carlo evaluation of lower prediction bound 
CP[PI(1 - a ) ;̂ e] used in (12.8). In particular, for a lower prediction bound, 
1 - a,./ is the 1 - a quantile of the distribution of the random variable P = 

1 - @(ZI,,(T*,). 

The naive one-sided upper prediction bound for T is calibrated by finding 1 - a(.L, 
such that 

h Z h  h 

CP[PI( 1 - e ]  = Pr(O 5 T 5 T ;e)  = Pr(O 5 T 5 -a, , ,;e )  = I - a .  (12.9) 

For a log-location-scale distribution a Monte Carlo evaluation of the upper prediction 
bound CP[PI( 1 - a) ;8 1  can be obtained from the empirical distribution of the 
observed values of the random variable P = @[Zlo8(~gj].In particular, for an upper 
prediction bound, 1 - a,.,,is the 1 - a quantile of the distribution of the random 
variable P = @(Zlog,~*)). 

Escobar and Meeker (1998a) provide justification for this procedure and demon- 
strate the equivalence of the calibration method and the approximate pivotal method 
from Section 12.4. For predicting random variables with distributions that are not 
log-location-scale, the approach is similar, as will be illustrated in Sections 12.7 and 
12.8. 

12.6.2 Calibration by Averaging Conditional Coverage Probabilities 

As suggested by Mee and Kushary (1994), it can be much more efficient, computa- 
tionally, to obtain the needed calibration curves for ( 1  2.8) and ( 12.9) by simulating 
conditional coverage probabilities like those in (12.2) and averaging these to esti- 
mate the expectation in (12.3). The procedure is similar to the one in Section 12.6.I ,  
replacing steps 4 and 5 with the following: 

4. For each simulated sample, compute the naive 100(1 - ao)% upper and lower 
prediction bounds and F,respectively. For a log-location-scale distribution, 

= exp[ji* + @-'(ao)X i?*]and = exp[F* + @ - ' ( l  - ao) X i?*]. 
5. A Monte Carlo evaluation of the unconditional coverage probability is obtained 

from the average of the simulated conditional coverage probabilities CP[PI( 1 -
ao);61 = I P , / B ,  where: 
(a) For the upper prediction bound calibration P, = Pr(T 5 ?). For a log--

location-scale distribution, P, = @[(log(T)- F) /3 ] .  
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(b) For the lower prediction bound calibration, compute the conditional cov- 
erage probability Pi = Pr(T 2 r).For a log-location-scale distribution, 
Pj  = I - @[(log(T)- j i ) / C ] .  

To obtain the entire calibration curves, one would need to compute CP[PZ( 1 -
ao);61 for a large number of different values of 1 -a0between 0 and 1. Operationally, 
to compute a one-sided prediction bound one needs only to find the appropriate 1 -a,/ 
value. The CP[PI( 1 - a,,);61 function is continuous and monotone increasing in 
1 - a,/, so the appropriate calibration value can be found by using a simple root- 
finding method. 

The procedure for Monte Carlo evaluation of the coverage probability in Sec-
tion 12.6. I utilized the observed proportion of correct prediction intervals. The ad- 
vantage of the probability-averaging procedure is that it does not include a simulation 
of the future random variable in the evaluation. Thus the procedure requires fewer 
Monte Carlo samples to get the same level of accuracy. 

For either evaluation method, it is a simple matter to use standard sampling 
methods to quantify Monte Carlo error. For example, the standard error of the Monte 

h 

Carlo evaluation of CP[PI( 1 - a0);01 for any particular 1 - a0 is 

For the probability-averaging procedure, the variability in the P, values is related 
A* 

to the variability in 8 . The probability-averaging procedure can provide substantial 
savings in computing time. 

Example 12.8 Calibration of the Naive Prediction Interval for a Future Log-
normal Bearing Life. Returning to Example 12.4, Figure 12.4 is a histogram of 
the 100,000simulated values of ZIog(~*). Figure 12.5 is a corresponding histogram of 
the B = 100,000simulated values of @nor[Zlog(~*)]. Although the lower and upper 
CP[PZ(1 - a ) ;e] calibration functions in Figure 12.6 could have been computed 
from the empirical cdfs of the simulated 1 - @nor[Z~og(~*)]and @nor(Zlog(~*)]val-
ues, respectively, the conditional probability averaging methods with B = 100,000 
was used instead. The simulation sample size of B = 100,000 was chosen to be 
large enough to assure that the printed calibration values are correct to the num- 
ber of digits shown. Because B is so large, the differences between the calibration 
methods were small. With B = lO,OOO, the differences were more pronounced, 
but B = 10,000would, for practical purposes, be large enough for the conditional 
probability-averaging method. Using the calibration method, a naive 96.4% lower 
prediction bound for T provides a calibrated approximate 95% lower prediction 
bound for T .  Also, a naive 96.7% upper prediction bound for T provides a 95% 
calibrated upper prediction bound for T .  Comparing to the results in Example 12.4, 
numerically 1 - = .964 = 1 - a,,,,( - 1.802) for an approximate 95% lower 
prediction bound and 1 - a,/ = .967 = Qnor(l.837) for an approximate 95% upper 
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Figurw 12.5. Histogram of 100,oOO simulated @n,jr[Z,,,p,T.)]values, hased on the bearing life test data 
censored after 80 million cycles. 

prediction bound. Differences are due to Monte Carlo error in the pivotal method. 
Thus substituting Qn;:(l - .964) for Qni:(.OS) and Qni:(.967)for Qn;:(.9S) in the 
naive interval formula ( 12.5) will result in a calibrated interval from a procedure that 
is equivalent to  the pivotal method, but with somewhat less Monte Carlo error for the 
same R. U 

12.7 PREDICTION OF FUTURE FAILURES FROM A SINGLE GROUP 
OF UNITS IN THE FIELD 

Consider the situation where n units are placed into service at approximately one 
point in time. Failures are reported until t ,  , another point in time where the available 
data are to be analyzed. Suppose that F ( r ;0) is used to describe the failure-time 
distribution and that r > 0 units have failed in the interval (0,r, ). Thus there are IZ - r 
unfailed units at t c .  

A common problem (e.g., in warranty exposure prediction) is the need to predict 
the number of additional failures K that will be reported between t, and t,. where 
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Figure 12.6. Calibration functions for predicting the failure time of a future bearing based on a lognormal 
distribution and life test data censored after 80 million cycles. 

frc. > 1,. In addition, i t  is sometimes necessary to quantify the uncertainty in such a 
prediction. The upper prediction bound for K is usually of particular interest. 

Conditional on the number of failures r , K follows a BINOMIAL(n - r , p )  distri-
bution, where 

is the conditional probability of failing in the interval (r,, t , .), given that a unit survived 
until t , .  The corresponding binomial cdf is Pr(K 5 k )  = BINCDF(k; IZ - r ,p).  

The naive 100(1 - a)%upper prediction bound for K is k(1 - a )  = kl This 
upper prediction bound is computed as the smallest integer k such that BINCDF(k; 
12 - r , c )  2 1 - a .  The ML estimate 6 is obtained by evaluating (12.10) at ML 
estimate 6. This upper prediction bound can be calibrated by finding 1 - a,, such 
that 

Then the 100( 1 - a)%calibrated upper prediction bound would be E( 1 - a,.,) = 
h 

K1-a<y. 
The naive lOO(1 - a)%lower prediction bound for K is K(1 - a )  = ka.This 

lower prediction bound is computed as the largest integer k such that BINCDF(k; 
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n - r ,  c) < a .  This naive lower prediction bound can be calibrated by finding 1 - a,/ 
such that 

h 

-CP[PI(~- a,,); e] = Pr [ K  2 ~ ( 1  a,./)]= 1 - a ( 12.12) 

and the calibrated lower prediction bound would be iY( 1 - a,/) = kac,. 
The needed calibration curves for (12.1 1)  and (12.12) can be found by averaging 

conditional coverage probabilities obtained from Monte Carlo simulation by using 
the following procedure that is similar to the one in Section 12.6.2. 

1. Choose a value of 1 - a ,  say, 1 - a". 
2. Generate simulated samples of size n, say, DATA; for j = 1,. . . ,B from 

h 

the assumed model with parameter values equal to 8 and the same censoring 
scheme as in the original sample (leading to the same censoring pattern, except 
for the variability in n - r ) .  

n* 

3. The j t h  simulated sample DATA; provides n - r;, O,, and p;. 
4. Use the cdf BINCDF(k; n - r;, c;) to compute the upper and lower nuiile -

prediction bounds K (  1 - ao); and K(1 - a");. 
5. For the upper prediction bound calibration, compute the conditional coverage 

probability P, = BINCDF[K( 1 - a");;n - r;, 61. A Monte Carlo evaluation 
of the unconditional coverage probability is CP[PZ( 1 - a");51 = I P,/B. 

6. For the lower prediction bound calibration, compute the conditional coverage 
probability P, = 1 - BINCDF[K(1 - ao); - 1 ; n  - r ; , p ] .  A Monte Carlo 

h 

evaluation of the unconditional coverage probability is CP[PZ( 1 - a");e] = x;=pJ/B.I 

The justification for this procedure is given in the Appendix of Escobar and Meeker 
( I998a). 

Example 12.9 Prediction Interval to Contain the Number of Future Product- 
A Failures. During one month, n = 10,000 units of Product-A (the actual name 
of the product is not being used to protect proprietary information) were put into 
service. After 48 months, 80 failures had been reported. Management requested a 
point prediction and an upper prediction bound on the number of the remaining 
n - r = 10000 - 80 = 9920 units that will fail during the next 12 months (i.e., 
between 48 and 60 months of age). The available data mggested a Weibull failure-time 
distribution and the ML estimates are 6 = 1 152 and p = 1.518. From these, 

Figure 12.7 shows the point prediction, the naive 95% upper prediction bound, and 
the calibrated approximate 95% upper prediction bound. The point prediction for the 
number failing between 48 and 60 months is k = (n - r )  X $ = 9920 X .003233 = 

32.07. The naive 95% upper prediction bound on K is K(.95) = k.9~= 42, the 
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Figure 12.7. Prediction of the future number failing in the Product-A population. 

smallest integer k such that BINCDF(k; 9920, .003233) 2 .95. The calibration curve 
shown in Figure 12.8 gives, for the upper prediction bound, CP[PZ(.986); 51 = .95. 
Thus the calibrated approximate 95% upper prediction bound on K is 2(.986) =h 

K.986 = 45, the smallest integer k such that BINCDF(k; 9920, .003233) 2 .986. 
The naive 95% lower prediction bound on K is K(.95) = k.05 = 22, the largest 
integer k such that BINCDF(k; 9920, .003233) < .05. The calibration curve shown in 

hFigure 12.8 gives, for the lower prediction bound, CP[PZ(.981); e] = .95. Thus the 
calibrated approximate 95% lower prediction bound on K is K(.981) = K.019 = 20, 
the largest integer k such that BINCDF(k; 9920, .003233) < 1 - .981 = .019. 0 

0
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"i Number of simulated samples= 1OoooO 
l -a=0.952 

1-a,[=0.981 
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Figure 12.8. Calibration functions for upper and lower prediction bounds on the number of field failures 
in the next year for the Product-A population. 
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12.8 PREDICTION OF FUTURE FAILURES FROM MULTIPLE GROUPS 
OF UNITS WITH STAGGERED ENTRY INTO THE FIELD 

This section describes a generalization of the prediction problem in Section 12.7. In 
many applications the units in the population of interest entered service over a period 
of time. This is called staggered entry. As in Section 12.7, the need is to use early 
field-failure data to construct a prediction interval for the number of future failures in 
some interval of calendar time, where the amount of previous operating time differs 
from group to group. This prediction problem is illustrated in Figure 12.9. Staggered 
entry failure-time data are multiply censored because of the differences in operating 
time. The prediction problem can be viewed as predicting the number of additional 
failures across the s groups during a specified period of real time. The problem is 
more complicated than the prediction procedure given in Section 12.7 because the 
age of the units, the failure probabilities, and number of units at risk to failure differ 
from group to group. For group i, n, units are followed for a period of length t , ,  and 
the first r, failures were observed at times t ( ,1 ) < - - - < i = 1 , .  . . ,s. 

Conditional on n, - r,, the number of additional failures K, from group i during 
interval ( t ( , ,r , , , )  (where t,, = t , ,  + A t )  is distributed BINOMIAL(n, - r , ,p , ) with 

Pr(t,., < T 5 t,,.,)- F(t,j; 0) - F(t,.,; 0) 
( 12.13 )P I  = -

Pr(T > t ( . , )  1 - F ( t , . , ; 0 )  * 

= ,Let K = ~ ~Ki be the total number of additional failures over A t . Conditional on 
the DATA (and the fixed censoring times) K has a distribution that can be described by 

Failures Observed in the Field Future 

Number of Failures: '1 K , ?  
I . . > -"I I 1 

I t 
[ C l  : I w 10 
 I I 

I I 

Total Number of Future Failures: K ?  
Figure 12.9. Illustration of staggered entry prediction. 
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the sum of s independent but nonidentically distributed binomial random variables 
with cdf denoted by Pr(K 5 k )  = SBINCDF(k; n - r,p),  where n - r = (nl -
rl,. . . ,n,  - rs)and p = ( P I , , . . ,ps).The Appendix of Escobar and Meeker (1998a) 
describes methods for evaluating SBINCDF(k; n --r,p).  

h 

A naive loo( 1 - a)% upper prediction bound K (  1 - a )  = Kj is computed 
as the smallest integer k such that SBINCDF(k; n - r*,6*) 1 1 - a.  This upper 
prediction bound can be calibrated by finding 1 - a,., such that 

h -
CP[PZ(1 - aC,);01 = Pr[K 5 K (  1 - a,.[,)]= 1 - a .  

A naive 100( 1 - a)% lower prediction bound K ( 1 - a )  = ka is computed as the 
largest integerk such that SBINCDF(k; n - r*,G * ) < a.This lower prediction bound 
can be calibrated by finding 1 - a,, such that 

To calibrate these one-sided prediction bounds, one can use the same procedure 
outlined in Section 12.7, replacing BINCDF(k; n - r ,6)with SBINCDF(k; n - r ,6). 

200 

Hours 
Figure 12.10. Weibull probability plot of the bearing-cage data showing the ML estimate of F ( r ) (solid 
line) and a set of 95% pointwise confidence intervals (dotted lines). 
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Example 12.10 Prediction Interval to Contain the Number of Future Bearing- 
Cage Failures Abernethy, Breneman, Medlin, and Reinman (1983, pages 43- 
47) describe the analysis of bearing-cage failure data. Groups of bearing cages, 
installed in a larger system, were introduced into service at different points in time 
(staggered entry). Failures had occurred at 230,334,423,990, 1009,and 15 10 hours 
of service. There were 1697 other units that had accumulated various service times 
without failing. Figure 12.10 is a Weibull probability plot for the data. Because of 
an unexpectedly large number of failures in early life, the bearing cage was to be 
redesigned. It would, however, be some time before the design could be completed, 
manufacturing started, and the existing units replaced. The analysts wanted to use 
the initial data to predict the number of additional failures that could be expected 
from the population of units currently in service, during the next year, assuming that 
each unit will see A = 300 hours of service during the year. Abernethy et al. (1983) 
computed point predictions. We will extend their results to compute a prediction 
interval to quantify uncertainty. 

Table 12.1 is a future-failure risk analysis. This table gives, for each of the groups 
of units that had been put into service, the number of units installed, accumulated 

Table 12.1. Bearing-Cage Data and Future-Failure Risk Analysis for the Next Year 
(300 Hours of Service per Unit) 

Group Hours in Failed At Risk 
i Service nl rl n, - rr 

A 

P I  (4- r,>x P I  

I 50 288 0 288 .0007 6 3 .2196 
2 150 I48 0 148 .OOl I58 .1714 
3 250 125 I 124 .OO 1558 .I932 
4 350 112 I 1 1 1  .OO 1962 .2 I78 
5 450 107 1 106 .002369 .2511 
6 550 99 0 99 .002778 .2750 
7 650 110 0 110 .003 189 .3508 
8 750 I14 0 114 .003602 .4 106 
9 850 1 I9 0 119 .004016 .4779 

10 950 128 0 128 .004432 S673 
I I  I050 124 2 122 .004848 .5915 
12 1 I50 93 0 93 .005266 .4898 
13 1250 47 0 47 .005685 ,2672 
14 1350 41 0 41 .006I05 .2503 
15 1450 27 0 27 .006525 .I762 
16 1550 12 1 1 1  .006946 .0764 
17 1650 6 0 6 .007368 .OM2 
18 1750 0 0 0 .007791 0 
19 1850 1 0 1 .0082 14 .0082 
20 1950 0 0 0 .008638 0 
21 2050 2 0 2 .009062 .0181 

Total 1703 6 5.057 

Data from Abernethy, Breneman, Medlin, and Reinman ( I983), pages 4 3 4 7  
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Figure 12.11. Prediction of the future number failing in the bearing-cage population. 

service times, number of observed failures, estimated conditional probability of fail- 
ure, and the estimated expected number failing in the 300-hour period. The sum 
of the estimated expected numbers failing is 5.057, providing a point prediction 
for the number of failures in the 300-hour period. The Poisson distribution will, 
in this example, provide a good approximation for the SBIN distribution of K .  
Figure 12.11 shows the point prediction, naive upper prediction bound, and cali- 
brated upper prediction bound for the bearing-cage population. The naive 95% upper 
prediction bound on K is K(.95) = k.95 = 9, the smallest integer k such that 

0

9 1  
 I 

Ij Number of simulated samples= 100000 
1-a= 0.95 

i
/ 

l-acu= 0.991 
/' 

<o 1-acl= 0.959 
/*

o! /'
0 /' 

0.88 0.90 0.92 0.94 0.96 0.98 1.oo 
1-ac 

Figure 12.12. Calibration curve for a prediction interval for the number of bearing-cage failures in the 
next 12 months. 
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SBINCDF(k; n - r ,p )  2 .95. The upper calibration curve shown in Figure 12.12 
gives, for the upper prediction bound, CP[PZ(.991);6] = .95. Thus the calibrated 
95%- upper prediction bound on K is K(.991) = 2.991 = 12, the smallest integer k 
such that SBINCDF(k; n - r ,p)  2 .991. The naive 95% lower prediction bound on 
K is K(.95) = k.05= 1, the largest integer k such that SBINCDF(k; n - r ,p )  < .OS. 
The lower calibration curve shown in Figure 12.12 gives CP[PZ(.959); 61 = .9S. 
Thus the calibrated 95% lower prediction bound on K is &.959) = Z,(W,= I ,  the 
largest integer k such that SBINCDF(k; n - r,p )  < I - .959 = .041. Note that, in 
this particular case, the naive and the calibrated prediction bounds are the same. 0 

BIBLIOGRAPHIC NOTES 

This chapter is based largely on Escobar and Meeker (1998a). There is a considerable 
amount of literature on statistical prediction. Hahn and Nelson (1973), Pate1 ( 1989), 
and Chapter 5 of Hahn and Meeker (1991) provide surveys of methods for statistical 
prediction for a variety of situations. Lawless (1973), Nelson and Schmee (1981). 
Engelhardt and Bain (1979), and Mee and Kushary (1994) describe exact simulation- 
based methods to obtain prediction intervals for Type I1 censored data. These methods 
are for log-location-scale distributions, based on the distribution of pivotal statistics. 
Type I1 censoring, however, is rare in practical application. Nelson (1995~) gives a 
simple procedure for computing prediction limits for the number of failures that will 
be observed in a future inspection, based on the number of failures in a previous 
inspection when the units have a Weibull failure-time distribution with a given shape 
parameter. 

Faulkenberry (1973) suggests a method that can be applied when there is a suf- 
ficient statistic that can be used as a predictor. Cox (1975) presents a general ap- 
proximate analytical approach to prediction based on the asymptotic distribution of 
ML estimators. Atwood (1984) used a similar approach. Beran (1990) presents the 
bootstrdp calibration method for obtaining prediction intervals and gives theoreti- 
cal results on the properties of prediction statements obtained with such calibration 
methods. An approximate pivotal-based approach is described in Efron and Tibshi- 
rani (1993, page 390-391). Kalbfleisch (1971) describes a likelihood-based method. 
Thatcher ( 1964) describes the relationship between Bayesian and frequentist pre- 
diction for the binomial distribution, while Geisser (1993) presents a more general 
overview of the Bayesian approach (see also Chapter 14). 

EXERCISES 

12.1. A sample of 20 aluminum specimens was tested until fatigue failure. A prob-
ability plot showed that the lognormal distribution provides an adequate de- 
scription of the spread in the data. The sample mean and standard deviation 
of the logarithms of cycles to failure were 5.13 and .I61 ,  respectively. 
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(a) Compute a 95% confidence interval for the median of the cycles to failure 
distribution. 

(b) Compute a 95% prediction interval for the number of cycles to failure for 
a future specimen tested in the same way. Compare this with the “naive” 
prediction interval computed as if the estimates are the parameters. 

( c )  Redo parts (a) and (b) supposing, instead, that the sample size had been 
100 units. Comment on the results. 

(d) Explain why there is so much difference between the confidence interval 
in part (a) and the prediction interval in part (b). 

12.2. Show that putting together a one-sided lower and a one-sided upper 100(1 -
a / 2 ) %  prediction bound for a future observation results in a two-sided loo(1 -
a)%prediction interval for that observation. 

A 12.3. Let t l , .  . .,t,, denote the r failure times and the n - r censored times of a 
failure-censored test with EXP(8) data. As indicated in Chapter 7, the ML 
estimator of 8 is 6 = 777’/r and 2 ( r 6 / 8 )  - x:2r).If T is a new independent 
observation then 2T/O - x&. Thus it follows that T/e^ -q ~ , ? ~ ) .  
(a) Show that PI(1 - a )  = (0, T ) ,where T = 3 ; I - a ; 2 T ~ , . )  X $ = r [ a ( - ’ j r ’-

11 X $ is an exact 100(1 - a)%prediction interval for T .  

(b) Show that the conditional coverage probability, conditional on g,is 

( c )  Show that limr-,w CP[PI( 1 - a )  I 6;81 = 1 -a .  Comment on the practical 
interpretation of this result. 

(d) Compute the unconditional coverage probability using 

and verify that it is equal to lOO(1 - a)%for any n. 

A 12.4. Suppose 11, .  . . ,t,, is a random sample of size n from an EXP( 0).Denote the ML 
of 8 by e ,̂ (GIl = 7). Consider the naive prediction interval PI( 1 - a )  = (0, T ) ,  
where T = [- log(a)] X 6,,and [ - log(a)]is the 100(1 - a)%quantile of 
the EXP( 1)  distribution. 
(a) Show that the conditional coverage probability is 

CP[P/(l - a ) I 6; 81 = 1 - a ( V  
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(b) Show that lim,,-, CP[PI(1 - a ) I 6;01 = 1 - a . (Here you might want 
to use the fact that 6,, -+ 8 in probability when n -+00.) Explain the 
practical implications of this result. 

(c) Show that CP[PI(l - a ) ]  = E,-(CP[PI(I - a )  I 6 ; 0 ] }= 1 - [ I  -
( V n )log(a)l-". 

(d) Show that CP[PI( 1 - a ) ]< 1 - a , for all 1 - a and n. 
( e )  For n = 2 draw a graph of CP[PI( 1 - a ) ]for values of 1 - a over the 

interval [.9, 11 and compare the CP[PI( I -a ) ]with the nominal coverage 
of 100(1 - a)%.Repeat this for n = 4, 10, 100. Comment on the behavior 
of the coverage probability and the length of the naive prediction interval 
in large samples. 

(f)  Show that lim,,,, CP[PI( 1 - a ) ]= 1 - a and comment on the practical 
implications of this result. 

A12.5. Refer to Exercise 12.4 but now suppose that the data are failure-censored 
with r observed failures. Generalize all the results in that exercise to this new 
situation. 

12.6. Suppose that t l ,  . , . ,t,, is a random sample from a LOGNOR(p, (T)distribution. 
Suppose that (T is known and let Gn = j = E:=,y i / n ,  where yi = log(?,). 
Consider the prediction of a new time to failure observation T . In this case, 
[log(T)-G n 1 / & F - 7 3  = [log(T)- P,,I/[a J r n I - N O W ,  1 ), 
which suggests the prediction interval 

(a) Show that CP[PI(l - a ) ]= 1 - a for any n. 
(b) Show that 

(c) Show that lirn,,,, CP[PI( 1 - a ) I Gn;p ]  = 1 - a .  

(d) Show that CP[PI( 1 - a ) ]= Ei;, {CP[PI( 1 - a ) I F,,;p ] }= 1 - a . Note 
the complexity of this computation when compared with the computation 
in part (a). 

(e )  Derive an expression for a two-sided lOO(1 - a)% prediction interval 
for T .  

(f)  A naive prediction interval is PI( 1 -a ) = [0,exp(G + anif.(1 - a )X a ) ] .  
Show that CP[P/( I -a ) ]  = a,,,[d m ( 1  -a ) ] .Draw a graph 
of this coverage probability for values of n = 2,4, 10 over values of 1 - a 
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in the interval [.9, 13. Comment on the coverage probabilities and their 
behavior as a function of the sample size. 

A12.7. Refer to Exercise 12.6 but suppose that (T is unknown. Define 

In this case, [log(T) - jirJ]/[%,jd(ni-l)/(n - I)] has a Student's t distribu-
tion with ( n - 1) degrees of freedom, which suggests the prediction interval 

where r ( ~ - ~ ; , , - l )is the lOO(1 - a)%quantile of the Student's r distribution 
with ( n- 1)  degrees of freedom. 
(a) Show that CP[PI( 1 - a ) ]= 1 - a for any 1 2 .  

(b) Show that 

(c)  Show that limn-x CP[PI( 1 - a ) I p ]  = 1 - a.  
(d) Derive the expression fo; a two-sided 100(1 - a)%prediction interval 

for T. 
(e )  A naive upper prediction interval is PI( 1 - a )  = [0,exp(@ + @,:( 1 -

a )X G) ] .Show that CP[PI( 1 -a ) ]= Pr[X 5 d ma;:( 1 - a ) ] ,  
where X has a Student's t distribution with ( n  - 1)  degrees of freedom. 
Draw a graph of this coverage probability for values of n = 2,4, 10 over 
values of 1 - a in the interval [.9, 11. 

A12.8. Consider the prediction of a new observation from a log-location-scale family 
n

with cdf @[(log(r) - p ) / a ] . Let [r,  T ]  = Fa/*, be the naive 
prediction interval computed based on a set of available data. 
(a) Show that the coverage probability of the prediction interval, conditional 

on the ML estimates 5= (@,G ) ,  is given by 
n 

CP[PI(l - a ) I 5;0]= a[-" + a x W I ( 1  - ./2,] 
(T (T 

h 

-a i?IE + a x @-'(a /2) , 
[ U  (7 I 


h 

where 8 = (@,G).  
(b) Show that when the sample size increases to +m the conditional coverage 

probability converges in probability to 1 - a .  
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Degradation Data, Models, 
and Data Analysis 

0bjec tives 

This chapter explains: 

Some useful degradation models. 
9 The connection between degradation models and failure-time models. 
9 How degradation measures, when available, can be used to advantage in esti-

mating reliability. 
Methods for data analysis and reliability inference with degradation data. 
The differences between degradation data analysis and traditional failure-time 
data analysis. 
A simple method for degradation analysis that can be useful in certain situations. 

Overview 

This chapter introduces the concepts of degradation analysis as they relate to prod- 
uct reliability. Many failure mechanisms can be traced to an underlying degradation 
process. Degradation eventually leads to a weakness that can cause failure. When it 
is possible to measure degradation, such measures often provide more information 
than failure-time data for purposes of assessing and improving product reliability. For 
some products direct observation of degradation level is impossible, but it may be 
that product performance data will be a useful substitute. This chapter, Chapter 18, 
and Chapter 21 provide a brief introduction to this important subject (a complete 
treatment would require a separate book). This chapter should be read before Chap- 
ter 2 1. Readers may skip this chapter if their primary interest is in failure-time data, 
although Section 13.2 does give an introduction to some physics-of-failure concepts 
that provide useful motivation for failure-time models. Section 13.3 extends ML 
methods from earlier chapters to deal with the more complicated degradation mod- 
els. Sections 13.4, 13.5, 13.6, and 13.7 relate degradation and failure time and show 
how to estimate F ( t )from degradation data. Section 13.8 uses an example to compare 

316 
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degradation analysis with traditional failure-time analysis. Section 13.9 presents a 
simple approximate method for degradation analysis that might be appropriate in 
some applications. 

13.1 INTRODUCTION 

Design of high-reliability systems generally requires that the individual system com- 
ponents have extremely high reliability, even after long periods of time. With short 
product development times, reliability tests must be conducted with severe time 
constraints. Frequently no failures occur during such tests. Thus it is difficult to 
assess reliability with traditional life tests that record only failure time. For some 
components degradation measures can be taken over time. A relationship between 
component failure and amount of degradation makes it possible to use degradation 
models and data to make inferences and predictions about failure time. 

13.2 MODELS FOR DEGRADATION DATA 

13.2.1 Degradation Data 

In some reliability studies, it is possible to measure physical degradation as a function 
of time (e.g., tire wear). In other applications actual physical degradation cannot 
be observed directly, but measures of product performance degradation (e.g., power 
output) may be available. Both kinds of data are generically referred to as “degradation 
data” and we will follow this convention. Modeling performance degradation may be 
useful but could be complicated because performance may be affected‘by more than 
one underlying degradation process. Depending on the application, degradation data 
may be available continuously or at specific points in time where measurements are 
taken. 

In most reliability testing applications, degradation data, if available, will have 
important practical advantages. In particular: 

Degradation data can, especially in applications with few or no failures, provide 
considerably more reliability information than traditional censored fai I ure-ti me 
data. 
Accelerated tests are commonly used to obtain reliability test information more 
quickly. Direct observation of the physical degradation process (e.g., tire wear) 
or some closely related surrogate may allow direct modeling of the failure- 
causing mechanism, providing more credible and precise reliability estimates 
and a firmer basis for often-needed extrapolation. 

Example 13.1 Fatigue Crack-Size Data. Recall the Alloy-A fatigue crack- 
size data in Example 1.10. Figure 13.1 is similar to Figure 1.10 but includes the 
actual data points on crack size given in Appendix Table C.14. The initial crack 
size (i.e., at time 0) for each path was .9 inch, the size of the notch cut into each 
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Figure 13.1. Alloy-A fatigue crack data. 

specimen. Suppose that investigators wanted to estimate the material’s crack growth 
parameters and the time (measured in number of cycles) at which 50% of the cracks 
would reach 1.6 inches (a size considered to be dangerous). For purposes of our 
degradation analysis the fatigue experiment for each specimen was terminated at the 
first inspection after a unit’s cracks reached 1.6 inches or censored after . I2  million 
cycles, whichever came first. U 

13.2.2 Degradation Leading to Failure 

Most failures can be traced to an underlying degradation process. Figure 13.2 shows 
examples of three general shapes for degradation curves in arbitrary units of degra- 
dation and time: linear, convex, and concave. The horizontal line at degradation level 
.6 represents the level or approximate level at which failure would occur. In some 
applications there may be more than one degradation variable or more than one un-
derlying degradation process. The following examples, however, use only a single 
degradation variable. 

The following examples describe some specific models for degradation curves. 
Engineers and physical scientists must find such models in their literature or develop 
them from basic principles relating to the underlying degradation process. Usually 
such models start with a deterministic description of the degradation process--often 
in the form of a differential equation or system of differential equations. Then ran- 
domness can be introduced, as appropriate, using probability distributions to describe 
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Figure 13.2. Possible shapes for univariate degradation curves. 

variability in initial conditions and model parameters like rate constants or material 
properties. 

Example 13.2 Linear Degradation. Linear degradation arises in some simple 
wear processes (e.g., automobile tire wear). For example, if D(t)  is the amount 
of automobile tire tread wear at time t and wear rate is d D ( t ) / d r  = C, then 
D(t)= D(0) + c x t .  0 

The parameters D(0)and C could be taken as constant for individual units, but 
random from unit-to-unit. 

Example 13.3 Convex Degradation. Models for which the degradation rate 
increases with the level of degradation are, for example, used in modeling the growth 
of fatigue cracks. Let a(t)denote the size of a crack at time t .  A simple version of the 
deterministic Paris-rule model (e.g., Dowling, 1993), 

(13.1) 

provides a useful model for cracks within a certain size range. Here C and m are 
material properties and A K ( a )  (known as the “stress intensity range function”) is a 
function of crack size a, the range of applied stress, part dimensions, and geometry. 
For example, to model a two-dimensional edge-crack in a plate with a crack that is 
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small relative to the width of the plate (say, less than 3%), A K ( n )  = Stress&;. The 
deterministic solution to the resulting differential equation is 

[{LI(O)}I -nr’2 + (1  - m / 2 )  x c x (StressJ.rr)nl x t ]  
2 / (  2 -nt ) 

, m f 2  
n( t )  = 

a ( ~ >x exp [C x x 11 , tn = 2. 
( 13.2) 

This solution is illustrated for tn = 2.05 with the convex curve in Figure 13.2. 0 

Example 13.4 Concave Degradation. Meeker and LuValle ( 1995) describe 
models for growth of failure-causing conducting filaments of chlorinexopper com- 
pounds in printed-circuit boards. These filaments cause failure when they reach from 
one copper-plated through-hole to another. In their model, A 1 ( t ) is the amount of chlo- 
rine available for reaction and Az(t) is proportional to the amount of failure-causing 
chlorine-copper compounds at time c.  Under appropriate conditions of temperature, 
humidity, and electrical charge, copper combines with chlorine AI to produce the 
chlorine-copper compound A? with rate constant kl . Diagrammatically, 

The rate equations for this process are 

d A 1  - - k l A l  and -d A2 
= k l A l .  ( 13.3)

cif  dt 

The solution of this system of differential equations gives 

where A I (0)and Ai (0 ) are initial amounts. To simplify notation, let A 2 ( a )  = A ~ ( 0 )+ 
Az(0) .Then if Az(0)  = 0, the solution for A ? ( [ )(the quantity of primary interest) can 
be expressed as 

Az(t)  = A ~ ( w )X [ 1 - exp(-klt)]. ( 1  3.6) 

This function is illustrated by the concave curve in Figure 13.2. The asymptote at 
A2(m) reflects the finite amount of chlorine available for the reaction producing the 
harmful compounds. 0 

Meeker and LuValle (1995) also suggest other more elaborate models for this 
failure process. Carey and Koenig (1991) use similar models to describe degradation 
of electronic components. Chapter I8 describes the ideas behind acceleration of 
failure-causing processes like these. 
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13.2.3 Models for Variation in Degradation and Failure Times 

If all manufactured units were identical, operated under exactly the same conditions 
and in exactly the same environment, and if every unit failed as it reached a particular 
“critical” level of degradation, then, according to the simple deterministic models 
above, all units would fail at exactly the same time. Of course, there is some degree 
of variability in all of these model factors as well as in factors that are not in the 
model. These factors combine to cause variability in the degradation curves and in 
the failure times. 

Unit-to- Unit Variability 
The following are examples of sources of unit-to-unit variability: 

Initial conditions. Individual units will vary with respect to the amount of 
material available to wear, initial level of degradation, amount of harmful 
degradation-causing material, and so on. Figure 13.3 shows the Paris model 
for growth of fatigue cracks, with simulated variability in the size of the ini- 
tial crack, but with all other of the unit’s Paris model characteristics and other 
factors held constant. 
Material properties. Figure 13.4 shows the Paris model for growth of fatigue 
cracks, allowing for unit-to-unit variability in the material properties parameters 
C and m and the size of the initial crack. In this case, as shown in the Paris model 
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Figure 13.3. Plot of Paris model for growth of fatigue cracks with unit-to-unit variability in the initial 
crack size a()but with constant material parameters (C and m)and constant stress. 
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Figure 13.4. Plot of Paris model for growth of fatigue cracks with unit-to-unit variability in the initial 
crack size and in material parameters C and m, but with constant stress. 

in ( 13.I),  the rate of growth depends on C and m,which differ from unit to unit. 
This yields crossing of the crack-growth curves (typical of what is observed in 
actual fatigue testing). 
Component geometry or dimensions. Unit-to-unit variability in component 
geometry or dimensions can cause additional unit-to-unit variability, for exam- 
ple, in degradation rates [e.g., through the A K ( a )  function in (13.1)]. 

Within-unit variability.Often there will be spatial variability in material prop- 
erties within a unit (e.g., defects). 

Variability Due to Operating and Environmental Conditions 
Besides the material properties described above, the rate of degradation will depend 
on operating and environmental conditions. For example, K ( a )  in the Paris model 
(13.1) depends on the amount of applied stress and the Paris parameters can depend 
on temperature. In laboratory fatigue tests, the stress is either fixed or changing 
in a systematic manner [e.g., to keep K(a) nearly constant as a increases]. In actual 
operation of most components, stress would generally be a complicated function over 
time. Such variations can be described by a stochastic process model. Figure 13.5 
shows the Paris model with degradation rate varying due to variations in stress that 
might have been caused, for example, by variation in driving conditions encountered, 
over time, by an automobile. In some applications, shocks or changes in environmental 
conditions that occur randomly in time can dominate other sources of variability in a 
failure-causing process. 
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Figure 13.5. Plot of Paris model for growth of fatigue cracks with unit-to-unit variability in the initial 
crack size and material parameters C and m, and with a stochastic process model for the changes in  stress 
over the life of the unit. 

The models described here are simple relative to the more exact theory of failure- 
causing processes that almost certainly exist (but may not be known or understood). 
For some purposes, however, such simple first-order descriptions are useful. 

13.2.4 Limitationsof Degradation Data 

Physical degradation or performance degradation are natural properties to measure 
for many testing processes (e.g., monitoring crack size of a specimen subjected to 
stress cycling or power output of an electronic device). Often, however, degradation 
measurement of a unit requires destructive inspection (e.g., destructive strength tests) 
or disruptive measurement (e.g., disassembly and reassembly of a motor) that has the 
potential to change the degradation process. In such situations one can obtain only a 
single measurement on each unit tested. It is possible to extract useful information 
from such data if a large number of units can be tested (for an example, see Nelson, 
1990a, Chapter 1 1). 

The advantages of degradation data can also be compromised when the degra- 
dation measurements are contaminated with large amounts of measurement error or 
when the degradation measure is not closely related to failure. For example, when the 
degradation measurement is on performance degradation, rather than physical degra-
dation, failures may occur for physical reasons that are not or cannot be observed 
directly. 
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Figure 13.6. Plot of percent increase in operating current for GaAs lasers tested at 80°C. 

Example 13.5 Laser Degradation and Defective Lasers. Over the life of 
some laser devices, degradation causes a decrease in light output. Some lasers, 
however, contain a feedback mechanism that will maintain nearly constant light 
output by increasing operating current as the laser degrades. When operating current 
gets too high, the device is considered to have failed. Figure 13.6 shows the increase 
in operating current over time for a sample of GaAs lasers tested at 80°C (this 
temperature, much higher than the use temperature, was used to accelerate the failure 
mechanism so that degradation information would be obtained more rapidly-see 
Chapter 21). Some of the units degrade gracefully; others fail suddenly. Sudden 
failures, like those in Figure 13.6, usually indicate manufacturing or other quality 
problems in an immature product. Such behavior is common, especially in outputs 
of electronic devices. Possible reasons for sudden failures include the following: 

An unobserved sudden change in the physical state of the unit that would lead 
to a subsequent increase in the degradation rate (e.g., growth of a conducting 
path that suddenly causes a short circuit). 
Manufacturing defects (often observed in early development of a new product). 
A different failure mode actuated only at high temperatures. 
Inadvertent shocks to units. 

As a product's design, manufacturing, and testing processes mature, such problems 
are usually eliminated. 0 
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When there is not a strong correlation between failure times and degradation, 
there may be little to be gained by using degradation data instead of traditional 
censored failure-time data. The limited amount of information in such degradation 
measurements can be the result of monitoring a perjiormunce variable (e.g., output 
voltage) rather than the actual physical degradation (e.g., amount of material displaced 
by electromigration). An important but difficult engineering challenge of degradation 
analysis is to find variables that are closely related to failure time and develop methods 
for accurately measuring these variables. 

13.2.5 General Degradation Path Model 

The actual degradation path of a particular unit over time is denoted by D(t) ,t > 0. 
In applications, values of D(r)are sampled at discrete points in time t l ,  t 2 , . . . . The 
observed sample degradation yj j  of unit i at time r j  is 

Y i j  = V;;+ E;;, i = 1,. . . , n ,  j = I , .  . . ,m,, ( 13.7) 

where 2>,, = V(?,J,P i 1 , .. . ,P k , )  is the actual path of the unit i at time t , ,  (the times 
need not be the same for all units) and E,, - NOR (0,a,)is a residual deviation for 
unit i at time t J . The total number of inspections on unit i is denoted by ni l .  Time 
t could be real-time, operating time, or some other appropriate measure of use like 
miles for automobile tires or cycles in fatigue tests. For the ith unit, P I / .. . . ,P h I  is 
a vector of k unknown parameters. Typically, sample paths have k = 1 ,  2, 3,  or 4 
parameters. As described in Section 13.2.3,some of the P I , .. . , parameters will be 
random from unit to unit. One or more of the P I , . . . ,& parameters could, however, 
be modeled as common across all units. 

The scales of y and t can be chosen, as suggested by physical theory and the data, 
to simplify the form of V(t,P I , .. . ,P k ) .  For example, the relationship between the 
logarithm of degradation and the logarithm of time might be modeled by the additive 
relationship in (1 3.7). Degradation model choice requires not only specification of the 
form of the D(r,P i , .. . ,P k )function, but also specification of which of the P I , .. . ,Pk 
are random (differing from unit to unit) and which are fixed (common to all units). 
Because of the flexibility in specifying the form of D(t,P I , .. . ,P k ) ,  and of the way in 
which the P I , .. . ,& come into this form, we can, for simplicity, model the unit-to- 
unit variability in P I , .. . ,P k  with a multivariate normal distribution with mean vector 
pp and covariance matrix Cp. 

It is generally assumed that the random P I , ... ,P k  are independent of the E , ~de-
viations. Another common assumption is that ueis constant. The adequacy of this 
assumption can be affected by transforming D(t).Because the y,, are taken serially 
on a unit, however, there is potential for autocorrelation among the q,, j = I , .  . . , m ,  
values, especially if there are many closely spaced readings. In many practical ap- 
plications involving inference on the degradation of units from a population or pro- 
cess, however, the correlation is weak and, moreover, dominated by the unit-to-unit 
variability in the P I , .. . , values and thus can be ignored. In situations where auto- 
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correlation cannot be ignored, one can use a time series model for the residual term 
along with appropriate estimation methods. 

13.2.6 Degradation Model Parameters 

Although the values of P I , .. . ,P k  for the individual units may be of interest in some 
applications (e.g., to predict the future degradation of a particular unit, based on a few 
early readings), subsequent development in this chapter will concentrate on the use 
of degradation data to make inferences about the population or process or predictions 
about future units. In this case, the underlying model parameters are pp and c p .  as 
well as the residual standard deviation oE.For shorthand, we will use 8p = (pp,X p )  
to denote the overall population/process parameters. 

13.3 ESTIMATION OF DEGRADATION MODEL PARAMETERS 

The likelihood for the random-parameter degradation model in Section 13.2.5 can be 
expressed as 

r 1 

( 1  3.8) 

where cl, = [yl, -D(rl,,P l I , .. . ,Pkl ) ] /uEand f p ( P ~ ~ ,. . . ,P k l ;  0,) is the multivariate 
normal distribution density function. Each evaluation of ( 13.8) will, in general, re- 
quire numerical approximation of n integrals of dimension k (where iz is the number 
of sample paths and k is the number of random parameters in each path). Maxi- 
mizing (13.8) with respect to (pp,x p , U € )directly, even with today’s computational 
capabilities, is extremely difficult unless D(t)  is a linear function. Pinheiro and 
Bates ( 199%) describe and compare estimation schemes that provide approximate 
ML estimates of O p  = ( p p , Z p )  and uE,as well as the unit-specific components 
in P I l , .. . ,&,, i = I , .  . . , iz. Pinheiro and Bates (1995b) implement a modification 
of the method of Lindstrom and Bates (1990).The examples in this chapter were 
computed with the Pinheiro and Bates (199Sb) program implemented in S-PLUS as 
function nlme. 

Example 13.6 Estimates of Fatigue Data Model Parameters for Alloy-A. 
Continuing with Example 13.1, we fit the model in ( I  3.7) with Vi,= u(t)in ( 13.2), 
L I ( O )  = .9, Stress = 1 ,  P I  = m, and p2 = C, rnodeling ( P I ,P 2 )  with a bivariate 
normal distribution. The program of Pinheiro and Bates (199Sb) gives the following 
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Figure 13.7. Alloy-A fatigue crack-size observations and titted Paris-rule model. 

approximate ML estimates: 

and S E  = .0034. Figure 13.7 shows the fitted Paris relationship for each of the 
sample paths (indicated by the points on the plot) for the Alloy-A fatigue-crack data. 
Figure 13.8 is a scatter plot of the estimates of the Paris relationship parameters for 
each of the 21 sample paths, indicating the reasonableness of the bivariate normal 
distribution model for this random-coefficients model. 

13.4 MODELS RELATING DEGRADATION AND FAILURE 

13.4.1 Soft Failures: Specified Degradation Level 

For some products there is a gradual loss of performance (e.g., decreasing light 
output from a fluorescent light bulb). Then failure would be defined (in a somewhat 
arbitrary, but purposeful, manner) at a specified level of degradation (e.g., 60% of 
initial output). We call this a “soft failure” definition. 

A fixed value of D, will be used to denote the critical level for the degradation path 
above (or below) which failure is assumed to have occurred. The failure time T is 
defined as the time when the actual path D(r)crosses the critical degradation level Df. 
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Figure 13.8. Plot of f i l l  versus f i 2 ,  for the i = I , .  . . ,21 sample paths from the Alloy-A fatigue crack-size 
data. The contour lines represent the fitted bivariate normal distribution for P I  and &. 

We use I,. to denote the planned stopping time in the experiment (as illustrated in 
Figure 13.1 ). Inferences are desired on the failure-time distribution of a particular 
product or material. For soft failures it may be possible to continue observation 
beyond Vf. 

13.4.2 Hard Failures: Joint Distribution of Degradation and Failure Level 

For some products, the definition of the failure event is clear-the product stops 
working (e.g., when the resistance of a resistor deviates too much from its nominal 
value, causing the oscillator in an electronic circuit to stop oscillating or when 
an incandescent light bulb burns out). These are called “hard failures.” With hard 
failures, failure times will not, in general, correspond exactly with a particular level 
of degradation (like the horizontal line shown in Figures 13.2-13.6). Instead, the 
level of degradation at which failure (i.e., loss of functionality) occurs will be random 
from unit to unit and even over time. This could be modeled by using a distribution 
to describe unit-to-unit variability in Vfor, more generally, the joint distribution of 
p and the stochastic behavior in V D ~ .  

13.5 EVALUATION OF F(t )  

A specified model for V(r)and Df defines a failure-time distribution. In general, 
this distribution can be written as a function of the degradation model parameters. 
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Suppose that a unit fails at time t if the degradation level first reaches Z?fat time t .  
Then 

Pr(T It )  = F(t) = F(t; 6,) = Pr[D(t, P I , .. . ,&) 2 Df].  (13.9) 

For a fixed D,,  the distribution of T depends on the distribution of the P I , .. . ,Pi, 
which, in turn, depends on the basic path parameters in 8,. In some simple cases it is 
possible to write down a closed-form expression for F(r) .  In general, however, such 
a closed-form expression will not exist. For most practical path models, especially 
when D(t) is nonlinear and more than one of the P I , .. . ,P,, is random, it is necessary 
to evaluate F ( t ) with numerical methods. 

13.5.1 Analytical Solution for F(t) 

For some particularly simple path models, F ( t )  can be expressed as a function of the 
basic path parameters in a closed form. Consider the following example. 

Example 13.7 Linear Degradation with Lognormal Rate. Suppose the actual 
degradation path of a particular unit is given by 

where PI is fixed and & varies from unit to unit according to a LOGNOR(p,a) 
distribution; that is, 

The parameter PI represents the common initial amount of degradation of all the test 
units at time 0 and P 2  represents the degradation rate, random from unit to unit. Then 

los(t) - [ log(n - P I )  - p] 
= @'nor , t > 0 .  

(T 

This shows that T has a lognormal distribution with parameters that depend on the 
basic path parameters 8 p  = (PI ,p,a)and D f .That is, exp[log(Df - P I )- p]  is the 
lognormal median and U is the lognormal shape parameter. 17 

13.5.2 Numerical Evaluation of F(t) 

Algorithm 13.2 Evaluation of F(t) by Direct Integration. If (PI ,&) have a 
bivariate normal distribution with parameters pp,,pP,,U;, ,U;?,and pp,,p:,  then 
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where g ( Q ,t , P I )is the value of P2 that gives D(t) = D D ~for specified P I  and where 

In principle, this approach can be extended in a straightforward manner when there 
are more than two continuous random variables. The amount of computational time 
needed to evaluate the multidimensional integral will, however, increase exponen- 
tially with the dimension of the integral. 0 

13.5.3 Monte Carlo Evaluation of F(t)  

Monte Carlo simulation, as illustrated in Figures 13.3, 13.4,and 13.5,is a particularly 
versatile method for evaluating F ( t ) . Evaluation is done in the following algorithm 
by generating a large number of random sample paths from the assumed path model, 
using the proportion of path crossing D D ~by time t as an evaluation of F(r ) .  

Algorithm 13.2 Monte Carlo Evaluation of F(t) from Degradation Model 
Parameters 

1. Generate N simulated realizations P I , .. . ,P k  of P I , .. . ,P k  from a multivariate 
h 

normal distribution with mean 6, and variance-covariance matrix ZB, where 
N is a large number (e.g., N = 100,000). 

2. Compute the N simulated failure times corresponding to the N realizations of 
P I , .. . ,&. Conceptually this can be done by substituting the realizations of 
P I , .. . ,p k  into V(t ,P I , .. . ,P k ) ,  finding the crossing time for each (often the 
crossing time can be expressed conveniently as a function of the P I , .. . ,P x ;  
otherwise the crossing time can be found by using a numerical root-finding 
algorithm). 

3. For any desired values of t ,  use 

Number of Simulated First Crossing Times 5 t 
F ( t )  = 

N 

as an evaluation of F(t).  0 

The potential error in this Monte Carlo approximation is easy to evaluate by using the 
binomial distribution. The error can be made arbitrarily small by choosing N large 
enough. In particular, the standard deviation of the Monte Carlo error in F ( r ) at a 
given point is J F ( r ) (  1 - F ( r ) ) / N .  For example, if F ( t )  = .01 and N = 100,000,the 
standard deviation of the Monte Carlo error is .0003. 
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13.6 ESTIMATION OF F(t) 

h 

One can estimate the failure-time distribution F ( t ) by substituting the estimates 8, 
into (13.9) giving @ ( I )  = F ( t ;G p ) .  This is straightforward for the case when F ( r )  
can be expressed in a closed form. When there is no closed-form expression for 
F ( t ) ,  and when numerical transformation methods are too complicated. one can use 
Algorithm 13.1or 13.2 to evaluate (1 3.9) at G p .  

hExample 13.8 Degradation Data Estimate of F(t). Figure 13.9 shows p(t)for 
h 

the Alloy-A data, estimated with Algorithm 13.1, using the estimates 8p = (GP.x p )  
obtained in Example 13.6. The plotted points from Table 13.1 (computed as described 
in Chapter 6) provide a nonparametric estimate based on the complete crossing time 
data (i.e., including the eventual crossing times beyond .12 million cycles, where 
we assume that the test has ended). This nonparametric estimate provides a useful 
comparison with the parametric degradation and failure-time models based on the 
data available up to t,. = .12. The confidence intervals in this figure will be explained 
in the next section. 0 
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Figure 13.9. Degradation model estimate of F ( r )  with pointwise two-sided approximate 90% and 80% 
bootstrap bias-corrected percentile confidence intervals, based on the Alloy-A crack-siz,e data cenwrrci at 

t ,  = . I 2  The dots track the nonparametric estimate of F( t ) .  
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Table 13.1. Crossing Times and Plotting Positions for 
the Alloy-A Data 

Crossing Time Plotting Positions 
Path (Million Cycles) ( i  - .5)/21 

I .088 .024 
2 .loo .07 I 

3 . I 0 1  . I  19 

4 .I03 .167 
5 .I03 .2 14 

6 .I06 .262 
7 .I06 .310 

8 .I09 .357 
9 . I 13 .405 

10 . I 15 .452 
1 1  . I 18 500 

12 . I 18 .548 
13 .129' .595 
14 fI33" .643 
15 .138" .690 
16 .144* .738 
17 .146* .786 
18 .151' 3 3 3  

19 .160* .881 

20 .167' .929 
21 .170* .976 

Observations marked with an asterisk would have been censored for 
a test that ended at .12 million cycles. 

13.7 BOOTSTRAP CONFIDENCE INTERVALS 

Because there is no simple method of computing standard errors for F ( r ) ,  we use the 
bias-corrected percentile bootstrap method in this chapter. This method is described 
briefly in Section 9.6 and more fully in Efron (1985) and Efron and Tibshirani (1993). 
The method is implemented with the following algorithm. 

Algorithm 13.3 Bootstrap Confidence Intervals from Degradation Data 

Use the observed data from the n sample paths to compute the estimates ^ep 
and i?:. 
Use Algorithm 13.1 or 13.2 with 3, as input to compute the estimate ?(t )  at 
desired values of t .  
Generate a large number B (e.g., B = 4000) of bootstrap samples that mimic 
the original sample and compute the corresponding bootstrap estimates F*( t )  
according to the following steps. 
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(a) Generate, from e p ,  n simulated realizations of the random path parameters 
p;;,. . .,p;;,i = 1,. . . ,n .  

(b) Using the same sampling scheme as in the original experiment, compute 
n simulated observed paths from 

-y*. = q t ; j ;p;;,. . . ,p;;) + E ;' J  

up to the planned stopping time tc,  where the E:J values are independent 
simulated residual values generated from NOR(0, GC). 

(c) Use the n simulated paths to estimate parameters of the path model, giving 
-* 

the bootstrap estimates 8,. 

(d) Use Algorithm 13.1 or 13.2 with ei as input to compute the bootstrap 
estimates c*(t)at desired values of t .  

4. For each desired value of t ,  the bootstrap confidence interval for F ( r )  is com- 
puted using the following steps. 

h 

(a) Sort the B bootstrap estimates F^*(t),,.. . ,F * ( ~ ) Bin increasing order giving 
F * ( t ) ( b ) ,b = I , .  . . ,B .  

(b) Following Efron and Tibshirani (1993), the lower and upper bounds of 
pointwise approximate 100( 1 - a)%confidence intervals for the distribu- 
tion function F ( t )  are 

where 

and q is the proportion of the B values of p*( t )that are less than p ( t )(using 
q = .5 is equivalent to the percentile bootstrap method). U 

Example 13.9 Degradation Data Bootstrap Conmence Intervals for the 
Alloy-A F(t). Continuing with Example 13.8, Figure 13.9 shows pointwise two- 
sided approximate 90%and 80%bootstrap bias-corrected percentile confidence inter- 
vals for F ( t ) ,based on the crack-size data censored at t ,  = .12. Figure 13.10 shows 
a subset of the bootstrap estimates that were used to compute the bias-corrected 
percentile confidence intervals for F ( t ) .  0 

13.8 COMPARISON WITH TRADITIONAL 
FAILURE-TIME ANALYSES 

This section compares the degradation and failure-time data analyses for the Alloy-A 
data. Based on the degradation data and the failure-time data censored at t,. = .12, 



334 DEGRADATION DATA, MODELS, A N D  DATA ANALYSIS 

7 

1.0 -

0.8-

0.6 -

0.4 -

0.2 -

0.0-
i 

0.08 0.10 0.12 0.14 0.16 0.18 0.20 

Millions of Cycles 

Figure 13.10. Bootstrap estimates of F ( t )for Alloy-A. 

Figure 13.1 1 shows a lognormal probability plot of the nonparametric estimate of 
F ( r )  (the dots) and the lognormal distribution ML estimate of F ( t )  based on the 
failure-time data available at time t, = . I2  million cycles (the line). Figure 13.12 
shows the nonparametric estimate of F ( t ) , the lognormal distribution ML estimate 
of F ( t ) ,  and the corresponding approximate 90% pointwise confidence intervals. 
Figure 13.13 compares the degradation datdmodel estimates with the ML estimates of 
the lognormal, normal, and Weibull failure-time distributions, based on the censored 
failure-time data. Figures 13.12 and 13.13 also show the nonparametric estimate 
of the failure-time distribution using the actual crossing times that occurred after 
t,. = , I2.  Some observations from these figures are as follows: 

1. Figures 13.11 and 13.12 show that the lognormal distribution provides a good 
fit to the failure-time data up to t,. = .I2, but not beyond. 

2. Figure 13.13 shows that the other commonly used parametric models, which 
fit almost as well before t,. = .12, do not do any better beyond t,. = .12. 
The degradation analysis, however, does provide a reasonable extrapolation 
beyond t,. = .12. This is because the degradation analysis method directly 
models the relationship between degradation and time and takes account of 
the amount of degradation in the censored observations when estimating F ( t ) .  
See the distribution of crack lengths for the Alloy-A units that had not failed 
before t,. = .12, shown in Figure 13.1.The traditional failure-time data analysis 
ignores this important information. 
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Figure 13.11. Lognormal probability plot of the nonparametric estimate (dots) and the lognormal distri- 
bution ML fit (line) based on the failure-time Alloy-A data censored at 1, = .12. 

1.o 

0.8 

0) 


.-t-.-
2 0.6 
C 
.-0 r 


0.4 
2 a 


0.2 


0.0. 

0.08 0.10 0.12 0.14 0.16 0.18 
Millions of Cycles 

Figure 13.12. Lognormal distribution ML estimate and pointwise approximate 90%confidence intervals. 
The dots indicate the nonparametric estimate based on the Alloy-A unc.rnsorrdfailure-tiniedata (i.e., based 
on failure times beyond the artificial censoring time used in the parametric degradation and failure-time 
analyses). 
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3. Comparing Figures 13.9 and 13.12 shows that the confidence intervals based 
on the degradation and failure-time data have similar widths for .10 < t < .12. 
Outside this range, however, the confidence intervals are narrower for the 
degradation method. 

13.9 APPROXIMATE DEGRADATION ANALYSIS 

This section describes an alternative (but only approximately correct) method of 
analyzing degradation data. Consider the general degradation model given in Sec-
tion 13.2.5. There are two steps in the approximate method. The first step consists of a 
separate analysis for each unit to predict the time at which the unit will reach the criti- 
cal degradation level corresponding to failure. These times are called “pseudo failure 
times.” In the second step, the IZ pseudo failure times are analyzed as a complete 
sample of failure times to estimate F ( t ) .Formally, the method is as follows. 

For the unit i, use the path model y,, = Df,  + E, ,  and the sample path 
data ( f j l , y j l ) ,. . . , ( t rm, ,yjm,)to find the (conditional) ML estimate of p, = 

h

( P I , , .. . ,Px,), say, p,. This can be done using nonlinear least squares. 
h 

Solve the equation D(t ,p,)= 23,for t and call the solution x. 
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Repeat the procedure for each sample path to obtain the pseudo failure times 
h h 

t l , .. . J,,. 
.-.Do a single distribution analysis of the data 71,. . . ,t,, to estimate F ( r ) .  

13.9.1 Simple Linear Path 

For simple linear degradation processes the degradation path for a unit can be written 
as D(t)  = /31 + PZt. In some cases log transformations on the sample degradation 
values or on the time scale or both will result in a simple linear-path model. In this 
case the pseudo failure times are obtained from 

h Vf- PIi 
t; = h, 

P 2 i  

where 

and and -Tj are the means oft,^, . . . ,t;,, and Y i I , .  . . ,yI,,?,,respectively. 

13.9.2 Simple Linear Path Through the Origin 

For some degradation, all paths start at the origin (t,I = 0,yrl = 0). If, in addition, 
the degradation rate is constant, then the degradation path has the form D(t) = /3Zi. 
Then the pseudo failure times are obtained from 

where 

13.9.3 Comments on the Approximate Degradation Analysis 

For simple problems the approximate degradation analysis is attractive because the 
computations are relatively simple. The approximate method is less appealing when 
the degradation paths are nonlinear. 

The approximate method may give adequate analysis if: 

The degradation paths are relatively simple. 
The fitted path model is approximately correct. 
There are enough data for precise estimation of the p, values. 
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The amount of measurement error is small. 
There is not too much extrapolation in predicting the "failure times." 

There are, however, potential problems with the approximate degradation analysis 
because of the following: 

The method ignores the prediction error in ?and does not account for measure- 
ment error in the observed sample paths. 
The distributions fitted to the pseudo failure times will not, in general, corre- 
spond to the distribution induced by the degradation model. 
For some applications, there may be sample paths that do not contain enough 
information to estimate all of the path parameters (e.g., when the path model 
has an asymptote but the sample path has not begun to level off). This might 
necessitate fitting different models for different sample paths in order to predict 
the crossing time. 

Overall, extrapolation into the tails of the failure-time distribution may be more valid 
with the actual crossing distribution implied by the degradation model (as used in 
Sections 13.4-13.6) than with the empirically predicted failure times. 

Example 13.10 Laser Lije Analysis. The data in Figure 13.14 and Appendix 
Table C. 17 are from a laser life test similar to the one described in Example 13.5, 
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Figure 13.14. Plot of laser operating current as a function of time. 
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Figure 13.15. Weibull probability plot of the laser pseudo failure times showing the ML estimate of F ( t )  
and approximate 95% pointwise confidence intervals. 

except that there were no early failures. For this device and the corresponding appli- 
cation, a Df= 10% increase in current was the specified failure level. The failure 
times (for paths exceeding D f  = 10%increase in current before 4000 hours) and the 
pseudo failure times were obtained by fitting straight lines through the data for each 
path. These pseudo failure times are 3702,4194,5847,6172,5301,3592,605 1,6538, 
5 1 10,3306,5326,4995,472 1,5689, and 6102 hours. Using methods from Chapter 8, 
Figure 13.15 is a Weibull probability plot of the laser pseudo failure times showing 
the ML estimate for F ( t )and approximate 95% pointwise confidence intervals. 0 

BIBLIOGRAPHIC NOTES 

Gertsbakh and Kordonsky (1969) discuss the degradation approach from an engi- 
neering point of view. They point out the value of analyzing degradation measures 
in terms of sample paths to assess product reliability. They present the Bernstein 
distribution, which describes the failure-time distribution for a simple linear model 
with random intercept and random slope. Knezevic (1993) presents similar probabil- 
ity models based on what he calls a "condition parameter." Nelson (1 990a, Chapter 
1 1) discusses a special situation in which the degradation measurement is destructive 
(only one measurement could be made on each item). Tomsky (1982) uses a multivari- 
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ate normal regression model to evaluate component degradation. Linear degradation 
models were used in Suzuki, Maki, and Yokogawa (1993) to model the increase in 
a resistance measurement over time and in Tseng, Hamada, and Chiao (1995) to 
model the lumen output from fluorescent light bulbs over time. Yanagisawa (1997) 
fits models to degradation data for silicon solar cells where the accelerating factors 
were light intensity and temperature. 

Murray (1993, 1994) and Murray and Maekawa (1996) describe degradation data 
for disk storage media (e.g., compact disk) error rates in accelerated testing. These 

’ papers and Tseng et al. (1995) and Tobias and Trindade (1995) use the approximate 
analysis method described in Section 13.9 to analyze their degradation data. Tseng 
and Yu (1997) and Yu and Tseng (1998) propose methods for choosing the time to 
terminate a degradation test. 

Much of the material in this chapter is based on methods presented in Lu 
and Meeker (1993), Lu, Meeker, and Escobar (1996), and ideas in Meeker rind 
Hamada ( 1995). Nelson ( 1995b) describes models and analysis methods for problems 
with random nonzero degradation initiation times. His methods assume destructive 
inspection so that each sample unit will provide a single (possibly censored) degrada- 
tion response. It would be useful to extend this work to allow for multiple readings on 
individual test units. Crowder ( 1997) describes methods for developing component- 
based preventive maintenance plans. One of these methods used degradation-type 
data. Davidian and Giltinan (1995) provide an excellent description and development 
of methods for fitting statistical models to nonlinear degradation-type models (also 
known as “growth curves”) and estimating random parameters. 

EXERCISES 

13.1. Show that ( 1  3 . 2 ) is the solution to (1 3.1). 

13.2. Use the degradation equation ( 13.2) to obtain an expression for the time that 
D ( t )crosses a specified V D ~ .  

13.3. Show that ( 1  3.4) is the solution to ( 13.3). 

13.4. Use the degradation equation (1 3.6) to obtain an expression for the time that 
A?( t )crosses a specified A2f. 

13.5. Determine the value of N needed in Algorithm 13.2 to evaluate F ( t ) at the 
point where F ( r )  = .01 so that the probability that Monte Carlo error in 
evaluation is less than .0001, with probability approximately -95. Use the 
normal distribution approximation to the binomial probability. 

13.6. Discuss the advantages and disadvantages of using Algorithm 13.1 versus 
13.2when estimating F ( t ) from degradation data. 
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13.7. Consider the analysis of the laser degradation data in Example 13.10. 
(a) Repeat the analysis using the time at which current has increased by 5% 

to define failure. 
(b) Repeat the analysis using the time at which current has increased by 15% 

to define failure. 
(c) Compare the results in parts (a) and (b). Comment on the differences in 

assumptions needed to estimate these two different distributions. 

A13.8. Example 13.10 illustrates the simple analysis of the data in Appendix 
Table C. 17. Do the analysis of these data using the random-coefficient degra- 
dation model. 
(a) Identify and estimate a parametric distribution for the slopes. 
(b) Derive an expression for the failure-time distribution based on the degra- 

dation model, where failure is defined as the time at which current has 
increased by 10%. 

( c )  Plot the estimate of the failure-time distribution. Compare it with the 
simple estimate obtained in Example 13.10. 

13.9. Appendix Table C.18 gives degradation data on block error rates (the ra- 
tio of number of bytes with errors to the total number of bytes tested) of 
magneto-optic data storage disks tested for 2000 hours at 80°C and 85% 
relative humidity. Use the simple analysis method described in Section 13.9 
to estimate the failure-time distribution of these disks at 80°C and 85% rel-
ative humidity, where failure is defined as the time that it takes to reach an 
error rate of 50 X 10-s (a safe level at which error-correcting codes can be 
expected to correct errors). 

13.10. As an electronic device ages, its power output decreases. Because the degra- 
dation results from a simple one-step chemical reaction with a limited amount 
of harmful material available for reaction, the decrease in power can be de- 
scribed by the degradation model D(t)= p2[ l - exp( -PI l ) ] ,where D(t)is 
the power output at time t ,  p2 < 0 is nearly the same for all units, and PI  
comes from a lognormal distribution. System performance degrades notice- 
ably when V(t )falls below D f .Thus we define a failure as the point in time 
when D(t) < Df. 
(a) Describe some possible physical reasons for the asymptotic behavior of 
m>. 


(b) What happens, in the long run, if p2 > Vf? 
(c) Assuming that Vfis a fixed constant and that p? < Df,derive an 

expression for F ( t ) ,the failure-time cdf. 

13.11. Suppose the actual degradation path of a particular unit is given by D(r) = 

P [ t ,  where - log(PI) varies from unit to unit according to a SEV(p. a )  
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distribution. If failure occurs when D(r)> D f ,where Df is a fixed constant, 
show that the failure-time distribution is Weibull. 

A13.12. Suppose the actual degradation path of a particular unit is given by D(t)  = 

Pit, where P I  varies from unit to unit according to a LOGNOR(p1,crl) 
distribution. Also suppose that failure occurs when D(t) > D f ,and Vthas 
a LOGNOR(p.2,(1.2)distribution. Derive an expression for F ( t ) , the failure- 
time cdf. 

A13.13. Suppose the actual degradation path of a particular unit is given by V(t)= 
p1 + pzr, where ( P I ,p2)vary from unit to unit according to a bivariate normal 
distribution with parameters p p I,pp,,u p , ,  up,,and ppIp2. 

(a) Assuming that failure occurs when D(t) > D f ,derive an expression for 
the failure-time distribution F ( t )  = Pr(T 5 t )  = Pr[D(t) > Df]. 

(b) Explain why Iim,-= F ( t ) < 1. 



C H A P T E R  1 4  


Introduction to the Use of Bayesian 
Methods for Reliability Data 

Objectives 

This chapter explains: 

The use of Bayesian statistical methods to combine “prior” information with 
data to make inferences. 
The relationship between Bayesian methods and the likelihood methods used 
in earlier chapters. 
Sources of prior information. 
Useful statistical and numerical methods for Bayesian analysis. 
Bayesian methods for estimating reliability. 
Bayesian methods for prediction. 
The dangers of using “wishful thinking” or expectations as prior information. 

Overview 

This chapter explains basic Bayesian methods and illustrates them with some simple 
applications in reliability analysis. This chapter builds on material from Chapter 8. 
Section 14.2 shows how Bayes’s rule can be used to combine prior information with 
data. Section 14.3 explains the different kinds of prior distributions and how they are 
obtained. Section 14.4 describes numerical methods for combining prior information 
with a likelihood and for computing marginal posterior distributions. Section 14.5 
describes and gives methods for using the posterior distribution to obtain point 
estimates and compute Bayesian confidence and prediction intervals. Section 14.7.2 
describes some of the dangers involved in using prior information in a statistical 
analysis. 

343 
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14.1 INTRODUCTION 

Bayesian methods are closely related to likelihood methods. Bayesian methods, 
however, allow data to be combined with “prior” information to produce a posterior 
distribution for a parameter or parameters. This posterior is used to quantify uncer- 
tainty about the parameters and functions of parameters, much as the likelihood was 
used in earlier chapters. 

Combinations of extensive past experience and physicalkhemical theory can pro- 
vide prior information to form a framework for inference and decision making. In 
many applications it is necessary to combine prior information with limited addi- 
tional observational or experimental data. For example, reliability engineers may 
know, with a high degree of certainty, that products made out of a certain alloy 
will eventually fail from fracture caused by repeated fatigue loading. The lognormal 
(base e )  distribution with shape parameter U in the interval of .5 to .7 has always 
provided an adequate model. To estimate the cycles-to-failure distribution of a new 
product made from the same alloy with needed precision might require hundreds of 
sample units. By incorporating the prior information about U into the analysis, an 
adequate estimate of reliability might be obtained with 20 or 30 units. There are, of 
course, dangers involved in making strong assumptions about knowledge of model 
parameters. These will be described in more detail in Section 14.7.2. 

14.2 USING BAYES’S RULE TO UPDATE PRIOR INFORMATION 

14.2.1 Notation 

To keep the presentation of the basic ideas simple, in this chapter we follow the 
usual convention in the Bayesian statistics literature and let the argument of pdfs and 
cdfs indicate the parameter for which uncertainty is being described. For example, 
f ( 8 ) denotes the prior pdf of 8 and f[log(8)] denotes the prior pdf of log(8). Also 
f (  8 I DATA) and f[log( 8 )  I DATA] will represent the posterior pdfs of 8 (distribution 
of 8 given the available data) and log(@, respectively. 

In some cases it will be necessary to start with the prior pdf of one parameter and 
then use it to obtain the prior pdf for a function of that parameter. For example, for 
a scalar parameter 8, f(0)= f[log(8)]/8. See Appendix Section B. 1 for details on 
deriving the pdf of a function of a parameter vector 8.  

14.2.2 Bayes’s Rule 

Bayes’s rule provides a mechanism for combining prior information with sample 
data to make inferences on model parameters. This is illustrated in Figure 14.I .  
Analytically, for a vector parameter 8 the procedure is as follows. Prior knowledge 
about 8 is expressed in terms of a pdf denoted by f(8). The likelihood for the 
available data and specified model is given by L(DATA I 8 )  = L ( 8 ;DATA). Then, 
using Bayes’s rule, the conditional distribution of 8 given the data provides the 
posteriorpdf of 8,representing the updated state of knowledge about 8.This posterior 
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3.
L (DATA ie) 

DATA 

Posterior 

f(e1DATA) 

distribution can be expressed as 

Here R ( 8 )  = L ( O ) / L ( g )is the relative likelihood (introduced in Chapters 7 and 8) 
and the integral is computed over the region f(8 )  > 0. 

In general, it is impossible to compute the integral in (14.1) in closed form. Nu-
merical methods are needed and these methods can be computationally intensive 
when the length of 8 is more than two or three. In the past this has been an impedi- 
ment to the use of Bayesian methods. Today, however, new statistical and numerical 
methods that take advantage of modern computing power are making it feasible to 
apply Bayesian methods to a much wider range of real problems. 

14.3 PRIOR INFORMATION AND DISTRIBUTIONS 

It is convenient to divide available prior information about a parameter into three 
different categories: 
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1. Parameters that are given as known, leading to a degenerate prior distribution. 
2. Parameters with a diffuse or approximately noninformative prior distribution. 
3. An informative, nondegenerate prior distribution. 

In general, there are two possible sources of prior information: (1) expert or other 
subjective opinion or (2) past data. The prior pdf f(8) may be either informative or 
not. Loosely speaking, a noninformative’ prior distribution is one that provides little 
or no information about any of the parameters in 8.Such a prior distribution is useful 
when it is desired to let the data speak for themselves without being influenced by 
previous data, expert opinion, or other available prior information. 

The most important motivation for using prior information is to combine it with 
data to provide more and better information about model parameters of interest. 
An informative prior distribution is expressed in the form of a (joint) pdf for the 
parameter(s) for which information is available. A “proper” prior pdf f(8) is a 
nonnegative function that is defined for all values of the parameters and that integrates 
to one. Some examples of proper prior distributions for scalar parameters include: 

Normal prior distribution with mean CI and a standard deviation b so that f(8)= 

(l/6)+n0,[(8- a) /b ]  for --rx) < 0 < -rx). 

Uniform prior distribution between a and 6 [denoted by UNIF(a,b)] so that 
f(8) = l / (h  - a )  for a 5 8 5 h. This prior distribution does not express 
strong preference for specific values of 8 in the interval. 
Beta prior distribution between specified n and b with specified shape parameters 
(allows for a more general shape). 
Isosceles triangle prior distribution with base (range) between CI and b. 

For a prior pdf with a finite endpoint on one or both sides of its range, f(8) = 0 
outside the specified range. For a positive parameter 8 it is often more natural or 
convenient to specify the prior pdf in terms of log( 8). 

14.3.1 Noninformative (Diffuse) Prior Distributions 

Noninformative (or approximately noninformative) prior pdfs are constant (or ap-
proximately constant) over the range(s) of the model parameter(s). Other names for 
noninformative prior distributions are “vague prior” and “diffuse prior” distributions. 

Some noninformative prior pdfs are “improper” because they do not integrate 
to a finite quantity [i.e., f(8 )d 8 = XI.For example, with an unrestricted scalar 
8, a uniform distribution f(0) = c for all --x < 8 < does not have a finite 
integral. For a positive scalar parameter 8 the corresponding choice is f[log(0)] = c 
or f(8)= c / 8 ,  0 < 8 < x,and this prior pdf is also improper. Improper prior pdfs 
cause no difficulties as long as the resulting posterior pdf is “proper” (integrates to 
one). Whether this is so or not depends on the form of the model and the available 
data. 
‘There is a particular technical definition for a noninformative prior distribution, but we use the term loosely 
to indicate a prior distribution that carries little or no weight in estimation relative to the information in 
the available data. 
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The effect of using a noninformative prior distribution for 8 can be seen as follows. 
For a uniform prior pdf f ( 8 )(possibly improper) across all possible values of 8,  

This indicates that the posterior pdf f ( 8 I DATA) is proportional to the likelihood. 
It is possible, for example, to replace an improper uniform prior with a proper 

uniform prior by limiting the range of the pdf to a finite interval. As long as the range 
of the uniform prior pdf includes all values of the parameters with substantially large 
relative likelihood, the prior distribution will remain (approximately) uninformative. 
That is, with a finite-range uniform prior pdf, the posterior pdf is approximately 
proportional to the likelihood if the range of the uniform prior distribution is large 
enough so that R ( 8 ) = 0, where f ( 8 )= 0. 

14.3.2 Using Past Data to Specify a Prior Distribution 

Prior distributions can also be based on available data. Combining past data with 
a noninformative prior distribution gives a posterior pdf that is proportional to the 
likelihood. This posterior pdf can then serve as a prior pdf for further updating with 
new data. 

14.3.3 Expert Opinion and Eliciting Prior Information 

The elicitation of a prior distribution for a single parameter may be straightforward 
if there has been considerable experience in estimating or observing estimates of that 
parameter in similar situations. For a vector of parameters, however, the elicitation 
and specification of a meaningful joint prior distribution is more difficult. In general, 
marginal distributions for individual parameters do not completely determine the joint 
distribution. Also, it is difficult to elicit opinion on dependences among parameters 
and then express these as a joint distribution. For example, if previous experience 
with integrated circuit devices is always obtained from studies with just a few percent 
failing, then past estimates of the lognormal parameters p and (T would be highly 
correlated, implying that the prior distribution for these parameters should reflect this 
dependency. Also, it may not be reasonable to elicit opinion about parameters from 
a standard parameterization when those parameters have no physical or practical 
meaning. Again, for the integrated circuit devices, if only a few percent fail in 
studies, it might be better to elicit information about a quantile at which a few percent 
fail, rather than about p, which, for the lognormal distribution, corresponds to the 
logarithm of the time at which 50%of the units in a population will fail. 

A general approach is to elicit information about particular quantities (or param- 
eters) that, from past experience (or data), can be specified approximately indepen- 
dently. For example, for a high-reliability integrated circuit, a good choice would be 
a quantile in the lower tail of the failure-time distribution and the lognormal shape 
parameter U.Then the corresponding prior distributions for these quantities can be 
described as being approximately independent. 
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When there is useful informative prior information for a parameter, one elicits a 
general shape or form of the distribution and the range (or approximate range) of 
the distribution. For example, the uncertainty in the .01 quantile of a failure-time 
distribution (a positive quantity) might be described by lognormal prior distribution 
with 99.7% content between two specified time points (expressing the approximate 
range). 

When specifying the prior distribution for quantities for which there is no prior 
information, no detailed elicitation is necessary, but one does have to specify the 
form and range of the vague prior distribution (e.g., a uniform distribution over a 
sufficiently wide interval, as described in Section 14.3.1, is generally satisfactory). 

Example 14.1 Prior Distributions for Estimating the Bearing-Cage Life Dis- 
tribution. This example revisits the bearing-cage field data that were fit to a Weibull 
distribution in Example 8.16. Suppose that with appropriate questioning, engineers 
provided the following information based on experience with previous products of 
the same material and knowledge of the failure mechanism. Life can be described 
adequately with a Weibull distribution and the Weibull shape parameter p would al- 
most certainly be between 2 and 5 ( a  between .2 and 3.Using a normal distribution 
to express the uncertainty in log(a) gives log(cr) - NOR(a0, bo), where a() and ho 
are obtained from the specification of two extreme quantiles (T(,,/~, and (T(~-, , /~,  of 
the prior distribution for U . Then 

The prior (normal) pdf for log( a)is 

The corresponding prior pdf for U is f (cr)  = (l /a)f[log(a)].  Figure 14.2 shows 
the marginal prior pdfs for log(o) and a when ( T . ~ ) S  = .2, (r.yg5 = .5 and y = .01 
(corresponding to 1% probability outside the limits ( T , ( w ) ~= .2, ( T , Y Y ~  = .5 and giving 
(10 = - 1.151 and bo = ,178). 

In previous studies for similar products, censoring was heavy, and there was a 
much better sense of expected time for 1% failing than for 50% or more failing. 
Thus for small p (near the proportion failing in previous studies), t ,  and (T are 
approximately independent (which allows for specification of independent priors). 
Actually, however, little was known about the Weibull .01 quantile for this particular 
product and, in this application, it was decided to describe the uncertainty in log(t,,) 
with a UNIF[log(al), log(bl)] distribution, where a1 = 100 and bl = 5000. This is a 
wide range and thus this part of the prior distribution is not very informative. Then 
the prior pdf for log(t,) is uniform: 
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0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 

o [log axis] 0 

Figure 14.2. Prior pdfs for log(a) and a when the prior for U is a lognorinal distribution hpecitird by 
a 005 = 2,(7 99.5 = .5 .  

The corresponding prior pdf for t,, is f ( t p )= ( I  /t,,)f[log(r,,)].Figure 14.3 shows the 
marginal prior pdfs for log(?,,) and t,,. This figure shows why a prior that is noninfor- 
mative (uniform) for a parameter is informative (nonuniform) for a nonlinear function 
of that parameter. The distribution for t.01 is, however, approximately noninformative 
over the range 1000 < t .O1  < 5000. 

Using the (approximate) independence of t,, and U,the joint prior pdf for (I,,, a) 
is 

The transformation p = log(t,,) - QS;:(p)~, = CT yields 

( 14.2) 

as the joint prior pdf for ( p , ~ ) ,where log(a1) - @,;(p)a 5 f i  5 log(hl) -
Qs:; ( p ) a ,U > 0 (see Appendix Section B. 1). 0 
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100 500 5000 0 1000 3000 5000 

.01 quantile [log axis] .01 quantile 

Figure 14.3. Prior pdfs for log(f,ol) and f o l  with u I  = 100. hl = 5000. 

14.4 NUMERICAL METHODS FOR COMBINING PRIOR 
INFORMATION WITH A LIKELIHOOD 

Given a specified prior pdf and likelihood function, it is easy to write an expression 
for the posterior pdf using ( 14.1). 

Example 14.2 Posterior for the Bearing-Cage Life Distribution. Following 
Section 8.2.2, the likelihood for the bearing-cage life distribution is 

where 8, = 1 (Si = 0) if observation i is a failure (right-censored observation). 
Substituting the prior pdf in (14.2) and the likelihood in (14.3) into (14.1) provides 
an expression for the posterior pdf for the bearing-cage life distribution. In general, 
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this posterior pdf cannot be evaluated analytically. Numerical methods must be used 
ins tead. 0 

14.4.1 Numerical Integration Methods for Computing the Posterior pdf of 8 

For problems with one or two parameters it is reasonably easy to compute, nu- 
merically, the posterior distribution by using numerical integration. It is difficult, 
however, to provide general-purpose software that will work on all problems, espe- 
cially with two or more parameters. Although numerical integration is generally a 
reasonably stable numerical procedure and there are many algorithms available for 
one-dimensional integration, it is possible for numerical problems to arise. To guar-
antee accurate results, it is generally necessary to have an idea of the shape of the 
function being integrated and to make sure that the algorithm performed satisfactorily 
over the entire relevant range of integration. Such checking becomes difficult when 
there is more than one variable of integration. It is relatively difficult to find good 
algorithms for integration over two or more variables. 

14.4.2 Simulation-Based Methods for Computing the Posterior 
Distribution of 8 

Simulation can be used to generate a sample from the posterior distribution of 8. 
Then this sample can be used to approximate the posterior distribution. Using a 
larger number of simulated points provides a better approximation and the number 
of points used is limited only by computing equipment and time constraints. The 
procedure is general and easy to apply, requiring only computable expressions of the 
relative likelihood and the inverse cdf of the independent marginal prior distributions. 
The procedure is as follows. 

Algorithm 14.1 Computation of a Sample from the Posterior Distribution with 
Monte Carlo Simulation 

1. Generate a random sample 8,, i = 1, .  . . ,M,from the prior f(8) (as described 
in Section 4.13). 

2. Retain the ith sample value, 8i, with probability R ( 8 i ) .  Do this by generating 
U;,a random quantity from a uniform (0, l ) ,  and retain 8; if U; 5 I?(@;). 0 

It can be shown that the retained sample values, say, Or,.. . ,8;* (M* 5 M ) , are a 
random sample from the posterior pdf f(8 I DATA). 

Example 14.3 Computation of a Sample from the Prior Distribution of the 
Parameters of the Bearing-Cage Life Distribution. Continuing with Example 14.2, 
the joint prior for 8 = (p ,a)is generated as follows. First use the inverse cdf method 
(see Section 4.13) to obtain a loguniform random sample for t,, from 
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where U1I , .. . ,U I M  is a random sample from a UNIF(0, 1 )  distribution. For this 
example we use p = .01 because it was thought that t.01 and U could be described as 
being approximately independent. Similarly, obtain a lognormal random sample for 
U,say, 

where U21,. . . ,U ~ Mis another independent random sample from a UNIF(0, 1). Fig-
ure 14.4 shows simulated points from the joint prior distribution for 1.01 and U. 
Then 8, = (p , ,U , ) with pi = log[(t,)i] - @ s ; J ( p ) ~ jis a random sample from the 
( p ,U )  prior. Figure 14.5 shows the simulated prior, transformed from the points in 
Figure 14.4. Histograms of the individual (marginal) samples for p and U are also 
shown. Consider the sample from the joint distribution; the histogram of the sample 
from the distribution of p. shows why the prior for p is not uniform. 0 

The size of the random sample M* from the posterior is random with an expected 
value of 

When the prior distribution and the data (i.e., relative likelihood contours) do not agree 
well, M* can be much less than M .  In such cases it may be necessary to use a very 
large sample from the prior distribution. Operationally, one can add to the posterior 
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b 0.35 -
-l 

0.30 -

0.25 -
. . . 0 .0.20-

! 
1 I ' " ' 1  ' " ' 1  1 

100 200 500 1000 2000 5000 

t.01 

Figure 14.4. Simulated points from the joint prior for t.01 and U. 
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5 7 9 11 0.2 0.4 0.6 

6 7 8 9 1 0  

P 
Figure 14.5. Simulated points from the joint prior and the corresponding marginal prior distributions for 
p and U .  

by sequentially filtering groups of prior points until a sufficient number of random 
values are available in the posterior. Generally 20004000 points in the posterior 
provide sufficient accuracy to get a smooth estimate of a marginal distribution for a 
scalar quantity. 

Example 14.4 Computation of a Sample from the Posterior Distribution of the 
Parameters of the Bearing-Cage Life Distribution. Continuing with Example 14.3, 
the joint posterior for 8 = ( p ,a)is generated by using Algorithm 14.1. Figure 14.6 
shows the same (p,a)prior given in Figure 14.5 with the bearing-cage data relative 
likelihood contours superimposed. Figure 14.7 shows a sample of 500 points from 
the ( p ,a)posterior, showing the effect of the filtering illustrated in Figure 14.6.Over 
4000 points were actually computed to provide the Monte Carlo approximation to 
the posterior distribution. 

14.4.3 Marginal Posterior Distributions 

Inferences on individual parameters are obtained by using the marginal posterior 
distribution of the parameter of interest. Mathematically, the marginal posterior pdf 
of a scalar 8, is 

where 81jI is the vector 8 with 8j omitted. Using the general resampling method 
described above, one gets a sample from the posterior distribution for 8, say. 8: = 

0 
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Figure 14.6. Simulated points from the joint prior distribution for p and U with the bearing-cage data 
Weibull relative likelihood contours. 
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Figure 14.7. Simulated points from the joint posterior distribution for p and (T for the bearing-cage data. 
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Figure 14.8. Simulated points from the joint po5tenor and correqponding mdrgindl posterior d i w b u t i o m  
for p and U for the bearing-cage life distribution 

(p:, a:), i = 1,. . . ,M*, and uses this to approximate f [ O j  I DATA]. Then, for 
example, inferences for p or U alone are based on the corresponding “marginal” 
distributions of p: and a:, respectively. 

Example 14.5 Marginal Distribution for p and ufor the Bearing-Cage Life 
Distribution. Figure 14.8shows the same simulated points from the joint posterior 
distribution given in Figure 14.7, but it also provides histograms of the samples from 
the corresponding marginal distributions for p and U .  0 

Estimates and confidence intervals for a scalar function of the parameters g(0) are 
obtained by using the marginal posterior pdf f [ g ( O )  I DATA] and the corresponding 
posterior cdf F [ g ( O ) I DATA] of the functions. Using the simulation method, f [ g ( O )  I 
DATA] and F [ g ( 8 ) I DATA] are approximated by using the empirical pdf and cdf of 
g(e*), respectively. 

Example 14.6 Joint Posterior and Marginal Distributions for Functions of p 
and ufor the Bearing-Cage Life Distribution. The marginal posterior distribution 
of tPis used to estimate distribution quantiles. This marginal posterior is obtained from 
the empirical distribution of p? + CpGj @)a*.The marginal posterior distribution 
of F(t,) is used to estimate the population fraction failing at t,. This distribution is 
obtained from the empirical distribution of Qsev(C:), where [: = [ log(t, 1 - p : ] / ( ~ : .  

0 
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14.5 USING THE POSTERIOR DISTRIBUTION FOR ESTIMATION 

14.5.1 Bayesian Point Estimation 

Bayesian inference for 8 and functions of the parameters g(8) are entirely based, 
respectively, on the posterior pdfs f(8 I DATA) and f [ g ( 8 ) I DATA]. If g ( 8 )  is a 
scalar, a common Bayesian estimate of g(8 ) is the mean of the posterior distribution, 
which is given by 

g(8)= E[g(8) I DATA] = g(8) f (8 I DATA)dB..I 
This estimate of g(8) is the Bayesian estimate that minimizes the square error loss. 
Other possible choices to estimate g(8)include the mode of the posterior pdf (which 
is very similar to the ML estimate) and the median of the posterior distribution. Such 
estimates are easy to compute from a simulated sample from a posterior. In particular, 

is the sample mean, the posterior median is the sample median of the g ( 8 * )  values, 
and the mode can be obtained by finding the maximum of a smooth density estimate 
of the distribution of g ( 8 * )  values. 

14.5.2 Bayesian Interval Estimation 

A 100(I - a)%Bayesian lower confidence bound (or credible bound) for a scalar 
function g(8 )is value g satisfying .fx f [ g (  8 ) I DATA] dg(8 )  = I -a .A loo(I -a)%-
Bayesian upper confidence bound ?or credible bound) for a scalar function ,g( 0) is 
value satisfying f ! x  f [ g ( 8 )  I DATA] dg(8 )  = I - a .  A lOO(1 - a)% Bayesian 
confidence interval (or credible interval) for a scalar function g(8) is any interval 
[ g ,  g]  satisfying 

[. f”g(8)  I DATA] c f g ( 8 )= 1 - a .  ( 14.4) 

The two-sided interval [ g ,  g] can be chosen in different ways: 
z 


Combining two 100(1 - a/2)% intervals puts equal probability in each tail 
(preferable when there is more concern for being incorrect in one direction than 
the other). 
A 100( 1 - a)%highest posterior density (HPD) confidence interval chooses 
[g, 8 )  to consist of all values of g with f(g I DATA) > c, where c is 
chosen such that (14.4) holds. HPD intervals are similar to likelihood-based 
approximate confidence intervals, calibrated with a x 2 quantile. 
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/ I I I 

Figure 14.9. Marginal posterior distributions for f and t (quantiles) of bearing-cage life. 

Example 14.7 Marginal Posterior Distributions for the t.05 and t.10 Quantiles 
of Bearing-Cage Life. Figure 14.9 shows the marginal posterior distributions for 
the t,05and 1.10 quantiles of the bearing-cage life distribution. The figure also shows 
95% two-sided Bayesian confidence intervals for the quantiles. These confidence 
intervals were obtained by combining lower and upper one-sided 97.5% confidence 
bounds for each quantile. Numerically, the interval for t,Osis [ 1613, 32361 hours 
and fort.]^, the interval is [2018, 44001 hours. U 

Example 14.8 Marginal Posterior Distributions for F(t) of the Bearing-Cage 
Life Distribution. Similar to Example 14.7and Figure 14.9, Figure 14.10shows the 
marginal posterior distributions for the F(2000) and F(5000) points on the bearing- 
cage life distribution, along with 95%Bayesian confidence intervals. Numerically, the 
interval for F(2000) is [.015, .097],and for F(5000) the interval is [.132, .905]. 

U 

The procedure for constructing a confidence interval for a scalar generalizes to 
the computation of confidence regions for vector functions g ( 8 )  of 8. In particular, 
a 100(1 - a)%Bayesian confidence region (or credible region) for a vector-valued 

I 
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Figure 14.10. Marginal posterior distributions for F (2000) and F ( S 0 0 0 ) for bearing-cage life. 

function g ( 8 ) is defined as 

where L' is chosen such that 

The presentation of the confidence region is difficult when 8 has more than two 
components. 

14.6 BAYESIAN PREDICTION 

Bayesian methods are also useful for predicting a future event like the failure of a 
unit from a specified population or ;I process. Future events can be predicted by using 
the Bayesian posterior predictive distribution. 
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14.6.1 Bayesian Posterior Predictive Distribution 

If X [with pdf f ( x  I 8) ] represents a future random variable, then the posterior 
predictive pdf of X is 

(14.5)f ( x  I DATA) = 1f ( x  I e) f (e  I DATA)d o  = ~0 I DATA[f(x I 811. 

The corresponding posterior predictive cdf of X is 

f ( u  I DATA) du = F(.r I 8) f (8  I DATA)d 8 ( 14.6) 

Both posterior predictive distributions are expectations computed with respect to the 
posterior distribution of 8. 

14.6.2 Approximating Posterior Predictive Distributions 

Using the simulation approach described in Section 14.4.2, the Bayesian posterior 
predictive pdf can be approximated by the average of the posterior pdfs f(.u I 8;) 
using 

. M* 
(14.7) 

Similarly, the Bayesian posterior predictive cdf can be approximated by the average 
of the posterior cdfs F ( x  I 8;). In particular, 

. M* 

( 14.8) 

A two-sided loo( 1 -a)%Bayesian prediction interval for a new observation is given 
by the a/2 and ( 1  - a/2)quantiles of F ( x  I DATA). A one-sided 100(1 - a ) %lower 
(upper) Bayesian prediction bound for a new observation is given by the a quantile 
[or the ( 1  - a )quantile] of F(x I DATA). 

14.6.3 Prediction of an Observation from a Log-Location-Scale Distribution 

This section describes prediction of a future observation T that has a log-location- 
scale distribution (extension to other distributions with shape parameters is straight- 
forward, but the notation becomes more complicated). Using X = T and x = t ,  the 
pdf and cdf of the observation to be predicted (conditional on the parameters in 0) 
are 
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where 5 = [log(r) - p ] / o . These functions are then averaged over the posterior 
distribution of 8 using (14.5) and (14.6), giving the posterior predictive pdf and cdf. 
To implement with the simulation method, substitute instead into (14.7) and (14.8). 

Example 14.9 Predictive Distributions for a Bearing-Cage Failure. Contin-
uing with the bearing-cage fracture example, the Weibull distribution Monte Carlo 
approximations for the posterior predictive pdf and cdf are 

The posterior predictive pdf f ( t  I DATA) for the failure time of a bearing-cage is 
shown in Figure 14.11, along with a 95% prediction interval. Numerically, the interval 
is [ 16 18, 13,500]hours. U 

, /  
5000 10000 15000 

Hours 
Figure 14.11. Posterior predictive pdf and Bayesian 95% prediction interval for a future observation from 
the bearing-cage population. 
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14.6.4 Posterior Predictive Distribution for the kth Failure from a Future 
Sample of Size m 

It is often of interest to predict the kth failure (or more generally the kth order statistic) 
in a future sample of size m.We will illustrate how to do this when the distribution 
of time T has a log-location-scale distribution. We let T(A)denote the kth largest 
observation for a sample of size m from the distribution of T .  In this case, X = T(k) 
and x = t ( k ) .  Then the pdf for T(k),conditional on 8, is 

m! 1 
f " ( k )  I 81 = (k - l)!(rn - k ) !  

X [@(5)]"-' X -+(() X [ 1 - @(()]'"-', (14.10) 
q k )  

where 5 = [log(t(k,)- p ] /a .The corresponding cdf of T(k),conditional on 8, is 

m! 

[@(5)] 'X[l  -@(() I" - ' .  (14.11)

j = k  j ! (rn - j ) !  

Substituting (14.10) and (14.11) into (14.7) and (14.8) provides the following expres- 
sions for the posterior predictive pdf and cdf of T(k),respectively: 

Example 14.I 0  Posterior Predictive Distributions for the First Failure from a 
Group of 50Bearing-Cages. Fifty bearings have been put into service. A prediction 
interval is needed for the time (measured in hours of operation) of the first failure from 
this group. Using rn = 50 and the simulated p: and a: values from Example 14.4, 
the posterior predictive pdf for the first-order statistic is obtained as follows. First, 
with k = 1 the pdf of T(k)in (14.10) simplifies to 

1
j",
I 81 = rn x -4 ( 6 )  x [ l  - @ ,

at(1 1 

where 5 = [log(t(I))- p ] / a .  The corresponding cdf for T,,) ,the first-order statistic, 
is 
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I I I 1 

1000 2000 3000 4000 
Hours 

Figure 14.12. Posterior predictive pdf and Bayesian 95% prediction interval for the first failure from a 
future sample of 50 bearing cages. 

Thus the posterior predictive pdf for 7‘(1 )  is 

where [,? = [log(r(l,)- pT]/u,?.The corresponding posterior predictive cdf for T,1 )  

is 
1 M* 


Pr[TiI, 5 t I DATA] = F[ril,I DATA] = 1 { 1 - [ 1  - ((T)]”’}.M* 
i =  I 

The posterior predictive pdf f”t( l , I DATA] for the first failure time out of a sample 
of size m = 50 bearing cages is shown in Figure 14.12, along with a 95% prediction 
interval. Numerically, the interval is [401, 277 1 ] hours. 0 

14.7 PRACTICAL ISSUES IN THE APPLICATION OF 
BAYESIAN METHODS 

14.7.1 Comparison Between Bayesian and LikelihoodAi’requentist 
Statistical Methods 

One of the most important differences between Bayesian methods and the likelihood 
method of making inferences is the manner in which nuisance parameters are handled. 
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Bayesian interval inference methods are based on a marginal distribution in which 
nuisance parameters have been integrated out and parameter uncertainty can be 
interpreted in terms of probabilities from the marginal posterior distribution. In the 
profile likelihood method, on the other hand, nuisance parameters can be maximized 
out, as suggested by large-sample theory. Confidence intervals based on likelihood and 
profile likelihood functions can be calibrated and interpreted in terms of repeated-
sampling coverage probabilities (as described in Section 3.3.2). In large samples 
(where the likelihood and posterior are approximately symmetric), Bayesian and 
likelihood/frequentist confidence interval methods give very similar answers when 
prior information is approximately uninformative. 

14.7.2 Cautions on the Use of Prior Information 

In many applications, engineers really have useful, indisputable prior information 
(e.g., information from physical theory or past experience deemed relevant through 
engineering or scientific knowledge). In such cases, the information should be inte- 
grated into the analysis. Analysts and decision makers must, however, beware of and 
avoid the use of “wishful thinking” as prior information, The potential for generating 
seriously misleading conclusions is especially high when experimental data will be 
limited and the prior distribution will dominate in the final answers (common in en-
gineering applications). Evans (1 989) describes such concerns from an engineering 
point of view. 

As with other analytical methods, when using Bayesian statistics, it is impor- 
tant to do sensitivity analyses with respect to uncertain inputs to one’s model. For 
some model/data combinations, Bayes’s estimates and confidence bounds can de- 
pend entirely on prior assumptions. This possibility can be explored by changing 
prior distribution assumptions and checking the effect that the changes have on final 
answers of interest. 

BIBLIOGRAPHIC NOTES 

Lindley ( 1972) describes the basic ideas and philosophy of Bayesian inference. 
Singpurwalla (1 988b) explains reasons for using Bayesian methods in reliability 
and risk analysis applications. Box and Tiao (1973) present procedures for applying 
Bayesian methods to a wide range of commonly used statistical models, including 
analysis of variance and regression analysis. Martz and Waller ( 1982) apply Bayesian 
methods to numerous applications in reliability and risk assessment. Gelman, Carlin, 
Stern, and Rubin (1995) provide a comprehensive treatment of modern methods of 
Bayesian modeling and computation and illustrate how to apply the methods in an 
impressive array of applications. Singpurwalla (1988a) presents methods and a com- 
puter program for eliciting prior information from experts. Smith and Gelfand ( 1992) 
describe simple Monte Carlo methods for doing Bayesian computations, including 
the method used in this chapter. Gelfand and Smith (1990) describe and compare 
three more sophisticated Monte Carlo methods (data augmentation, Gibbs sampling, 
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and importance sampling) that can be used to compute marginal posterior distribu- 
tions. Gelfand and Smith (1992) apply the Gibbs sampling methods to constrained 
parameter and censored data problems. Severini (199 1 )  describes the relationship 
between Bayesian and non-Bayesian confidence intervals. Smith and Naylor ( 1987) 
compare maximum likelihood and Bayesian methods for estimating the parameters 
of a three-parameter Weibull (see Section 11.7), providing a convincing example 
of the potential difference between Bayesian and likelihood methods. Hamada and 
Wu (1995) show how to use Bayesian methods to analyze data from fractional fac-
torials experiments when faced with censored data. Such experiments are sometimes 
used in reliability improvement efforts. Geisser ( 1993) describes Bayesian methods 
for predict ion. 

EXERCISES 

14.1. Starting with the traditional formof Bayes’s rule, show that it can be expressed 
in terms of relative likelihoods. 

A14.2. The Monte Carlo approach to making Bayesian inferences is convenient, 
intuitive, and easy to explain. 
(a) Show that the expected number of retained units using the Monte Carlo 

technique is given by 

Hint:  The number of ret.ained units has a binomial distribution with 
parameters M and success probability equal to Pr(U 5 R(8)) ,where 
U and R(8) are independent. Then the proof consists of showing that 
Pr(U 5 R ( 8 ) )= S f ( @ ) R ( O ) d e ,which is the expected relative likeli- 
hood under the prior. 

(b) Use the result in part (a) to argue that if there is agreement between the 
prior pdf and the likelihood then the ratio M*/M tends to be large and 
the prior pdf and the posterior pdf are similar. 

(c) Discuss the case in which the prior pdf and the likelihood do not agree 
and indicate when the prior and the posterior pdfs tend to agree (or 
disagree) in this case. 

14.3. Explain why doing a Bayesian analysis with a specified prior distribution 
to estimate an unknown exponential distribution mean 8 is not a model that 
implies that 8 varies from unit to unit in the population or process being 
studied. Hint: Consider what happens to the posterior pdf when the sample 
size approaches infinity. 

14.4. Explain how one would compute f[g(@) I DATA], the marginal posterior 
pdf of the function of the parameters of interest, using numerical integration. 
Contrast this with the simulation-based method. 
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14.5. Discuss the advantages and disadvantages of the Monte Carlo method of 
computing the posterior distribution, relative to the use of numerical integra- 
tion. 

14.6. A total of 100 new units have been introduced into service. It is believed 
that the underlying time-to-failure distribution is Weibull. The analysts have 
available prior information and censored data on a sample of n similar units. 

Given a Monte Carlo sample of 2000 pairs of p * , a *  values from the 
posterior pdf f(p,CT I DATA), show how to compute the marginal pos- 
terior predictive distribution for T(1),the time of the first failure out of 
the 100 units. Also show how to get a 95% lower Bayesian prediction 
bound for 7'(I ). 
Suppose that you can compute (but perhaps not write in closed form) 
the joint posterior pdf f(p,U I DATA). Explain how you could, using 
numerical integration and other numerical (but not simulation) methods, 
compute the marginal posterior predictive pdf and a 95% lower Bayesian 
prediction bound for T(1 ). 

A14.7. The model for failure time T of an electronic component is LOGNOR(p,U )  

with p unknown and U known. The uncertainty in p can be described by a 
NOR(a I ,  bl) distribution, where the prior distribution parameters a I and b, 
are also known. Suppose that a sample of size n will be used, along with 
the prior information, to make inferences on p (and thus other quantities of 
interest like quantiles of the distribution of T ) . The sample will provide a 
realization of DATA = ( T I ,. . . , T,). 

Find the conditional pdf of = (1/ n )  I Y; = ( 1  / n )  log(T , )  
for a specified fixed value of p (which, when viewed as a function of p 
for fixed DATA, is also the likelihood). 
Combining the variability in with the uncertainty in p, find the joint 
pdf of p and F.  
Show that the marginal distribution of is NOR(a1, d q ) .
What is the practical interpretation of this distribution, relative to this 
application? 
Show that, for a given DATA realization, the posterior distribution of p 
is normal with mean and variance 

Consider what happens to the expressions in part (d) as n --+ x. 
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(f) Consider the expression for Var(p I DATA) in part (d). Use this expres- 
sion to explain how prior information might be related quantitatively 
to information from a previous sample of a certain size (note that this 
pseudosample size does not have to be an integer). 

14.8. Refer to Exercise 14.7. Derive a simple expression for the posterior predictive 
pdf of T given DATA. 

14.9. Consider the following quantities used in Exercise 14.7: f‘, p, a1,and hl . 
Use the setting of Exercise 14.7 and these quantities to explain the 
important differences between variability and uncertainty in physical 
processes and statistical inference. 
Explain how one could generalize the model in Exercise 14.7 to allow 
for batch-to-batch variability in the reliability of the electronic compo- 
nent and describe a sampling plan that could be used to combine prior 
information with data to estimate the parameters of this more general 
model. 

A 14.10. When the prior pdf for log([,,) is uniform, 

1
f [log(r,,)l = 

log(h /a1 ) ’  
~ ( 15 t,, 5 h i .  

When the prior pdf for log(o) is triangular, 

Under these specifications: 
(a) Show that the prior pdf for o is f ( o )= ( l /o)f[ log(o)] .  
(b) Show that the joint pdf for (t,,, U )  is 

( c )  Use the transformation p = log(t,) - as,&! (p)cr,(T = o to show that 
the joint prior pdf for(@,cr) is 
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(a Show that the region in which f (p ,a )  > 0 is southwest to northeast 
oriented. 

A14.11. For the prior pdf for (t,, (T)given in Exercise 14.10, show the following: 
(a) The prior cdf for t, is 

The prior cdf for (T is 

Invert these cdfs to verify that the the following formulas provide random 
numbers from the prior (t,, a): 

( t p ) j  = a1 X (bl /ul)ul i ,  i = 1,. . . ,M ,  

where U1 I , .  . . ,U I Mis a random sample from a UNIF(0, 1). 
For a, 

where UZ,,. . . ,U ~ Mis another independent random sample from a 
UNIF(0,l). 
Then 0i = (pi,U ; )with pi = log[(tp)i] - as..; (p)Oi is a random sample 
from the ( p ,a)prior distribution. 

A14.12. Consider the prior pdfs f[log(o)] and f(a). 
Plot the pdf f[log(a)] in a log-scale for the following choices of the 
parameters: [a2,b2] = [ 1,7], [ 1, 101. 
For the same choices of [a2,62] plot the pdf f (o )in an arithmetic scale. 
Show analytically that the mode of f[log(a)] occurs at (T = Ju;.hz. 
Show, however, that the mode of f[log(a)] occurs at U = aif 
exp( 1 )  1 Jb2xand at a = a2 exp( 1) < u//alhzotherwise. 
Indicate the modes for the graphs in parts (a) and (b) above. Explain 
what you observe on the plots. 

A14.13. Consider the pdf f [ t , k )  I 01 and cdf F [ q k )I 01 for the kth largest observation 
given in Section 14.6.4. 
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(a) Integrate the pdf f[ t (L,  I 01 to obtain the cdf F [ t ( k )I 81. Hint: Use 
integration by parts. 

(b) Use the general formula given in Section 14.6.4 for F [ q k )I 01 to derive 
the predictive cdf when k = 1. Hint: The general formula is a sum of 
binomial probabilities. 

14.14. Show that for the special case k = rn = 1 ,  (14.10) and (14.1 1) reduce to the 
pdf and cdf given in (14.9). 
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System Reliability Concepts 
and Methods 

Objectives 

This chapter explains: 

Important system reliability concepts like system structure, redundancy, nonre- 
pairable and repairable systems, and maintainability and availability. 
Basic concepts of system reliability modeling. 
The distribution of system failure time as a function of individual component 
failure-time distributions. 
Simple methods for using component test data to estimate system reliability. 
Analysis of data with more than one failure mode. 

Overview 

This chapter describes and illustrates some basic ideas behind system reliability 
analysis. Section 15.2 describes some simple system structures and shows how to 
compute system reliability as a function of component reliability. These simple 
structures can be used as building blocks to compute system reliability for more 
complicated systems. Section 15.3 shows how to estimate and compute confidence 
intervals for system reliability from limited component data. Section 15.4 explains 
methods of analyzing failure-time data with more than one cause of failure and how 
to use such data to estimate the distribution corresponding to the individual failure 
modes or the overall system. Section 15.5 provides a brief overview of other topics 
and references related to system reliability. 

15.1 INTRODUCTION 

A system is a collection of components interconnected to perform a given task. Com- 
ponent state (e.g., working or not working) and system structure determine whether 
a system is working or not. System structure is described by a logic diagram illus- 

369 
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trating the relationship between components and satisfactory system performance. 
Ultimately, interest centers on the reliability of specific systems. Assessing and im- 
proving system reliability generally requires consideration of system structure and 
component reliability. Some systems are replaced upon failure. Many systems, how- 
ever, are maintained (e.g., replacing worn components before they fail) andor re- 
paired after failure. For repairable systems, availability (the fraction of time that a 
system is available for use) may be the appropriate metric. This leads to consider- 
ation of maintainability (e.g., improvement of reliability through inspection andor 
preventive maintenance) and repairability (characterized by the distribution of time 
to do a repair). In general, availability can be increased by increasing reliability or by 
improving maintainability and repairability. 

15.2 SYSTEM STRUCTURES AND SYSTEM FAILURE PROBABILITY 

System failure probability, FT(t ;0) , is the probability that the system fails before t .  
The failure probability of the system is a function of time in operation t (or other mea- 
sure of use), the system structure, reliability of system components, interconnections. 
and interfaces (including, e.g., human operators). 

This section describes several simple system structures. Not all systems fall into 
one of these categories, but the examples provide a collection of building blocks to 
illustrate the basics of system structure. Complicated system structures can generally 
be decomposed into collections of the simpler structures presented here. The methods 
for evaluation of system reliability can be adapted to more complicated structures. 

15.2.1 Time Dependency of System Reliability 

For a new system (i.e., all components starting a time 0) with s independent com- 
ponents, the cdf for component i is denoted by Fi = Fi(r;0i). The corresponding 
survival probability (reliability) for component i is S, = Si(r ;0,) = 1 - F i ( t ;0,). 
The 8 ,  vectors may have some elements in common. We let 8 denote the unique 
elements in (01,.. .,OS). The cdf for the system is denoted by FT = F T ( ~ ;0).This 
cdf is determined by the component Fi functions and the system structure. Then 

0) = g[FI( t ;OI),. . . ,F S ( t ;8.7)].F T ( ~ ;  To simplify the presentation, time (and pa- 
rameter) dependency will usually be suppressed in this chapter. Then this function 
can also be expressed in one of the simpler forms F T ( O )  = g [ F l ( O , ) ,. . . ,Fs(O,y)lor 
FT = g(F1, K ) .* * 7 

15.2.2 Systems with Components in Series 

A series structure with s components works if and only if all the components work. 
Examples of systems with components in series include chains, high-voltage multi- 
cell batteries, inexpensive computer systems, and inexpensive decorative tree lights 
using low-voltage bulbs. For a system with two independent components in series, 
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0 431 2 

illustrated in Figure 15.1,the cdf is 

F T ( ~ )= Pr(T 5 t )  = 1 - Pr(T > t ) = 1 - Pr(T, > t fl T2 > t )  (15.1) 

For s independent components Fr( t )  = 1 -n;=I (1 - F i ) and for s iid components 
( F  = F;,  i = 1,. , . ,s), F T ( ~ )= 1 - (1  - F ) S .This is the same as the minimum- 
type distributions discussed in Section 5.12.3. For a series system of independent 
components, the system hazard function is the sum of the component hazard functions 

(15.2) 

Figure 15.2 shows the relationship between system reliability 1 - F T ( t )  and indi- 
vidual component reliability 1 - F ( t ) for different numbers of identical independent 
components in series. This figure shows that extremely high component reliability 
is needed to maintain high system reliability, particularly if the system has many 

1 
1 1 I 

0.980 0.985 0.990 0.995 1.ooo 
Individual Component Reliability 

Figure 15.2. Reliability of a system with s identical independent components in series. 
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Importance of Part Count in Product Design 
An important rule of thumb in reliability engineering design practice is “keep the 
part count small,” meaning keep the number of individual parts (or components) in 
a system to a minimum. Besides the cost of purchase and handling of additional 
individual parts, there is also an important reliability motivation for having a smaller 
number of parts at risk of failure in a product. Of course, this rule of thumb holds 
when the reliability of the individual parts in the design with a smaller number of 
parts is the same or similar to the reliability of the parts in the design with a larger 
number of parts. 

Example 15.1 Effect of Part-Count Reduction on Modem Reliability. The 
design for a new computer modem uses a higher level of microelectronic integration 
and requires only 20 discrete parts instead of the 40 parts required in the previous 
generation. For a series system of parts with independent failure times, the hazard 
function of the system can be obtained by summing the hazards for the individual 
parts. This is particularly simple if a constant hazard rate (or, equivalently, an ex- 
ponential time-to-failure distribution) provides an adequate model for part life. As a 
rough approximation, suppose that all failures are due to part failures, and that all of 
the parts have the same hazard function. Then the population of modems produced 
with the new design with only 20 parts will experience only half the failures when 
compared to the old design. Allowing that failures can occur at interfaces and inter- 
connections between parts with the same frequency in the new and old designs would 
widen the reliability gap because of the larger number of such interfaces with a higher 
number of parts. With a nonconstant hazard function (more common in practice) the 
idea is similar. n 
Series System of Independent Components Having Weibull Distributions 
with the Same Shape Parameter 
Recall from Section 4.8 that the Weibull hazard function can be written as 

P - I 
h(t)= ( I )  , t > 0. 

r l r l  

For a series system of s independent components having a Weibull distribution with 
the same shape parameter /3 but possibly differing q values, the system failure-time 
distribution is also Weibull. The system hazard function is 

where 

If all of the s components have the same q,then this simplifies to q~ = q/s ’ ’P .  
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Example 15.2 Reliability of a Chain. A particular kind of chain link can 
fail from growth of fatigue cracks and eventual fracture. The life distribution of a 
single link has a Weibull distribution with 7 = 100thousand use-cycles and a shape 
parameters /3 = 2.3. A chain of 75 links can be viewed as a series system. When the 
first link breaks, the chain fails and has to be replaced. In the application, all links in 
the chain are subject to the same level of stress. If the cycles to failure for the individual 
links are independent, then the chain has a Weibull time-to-failure distribution with 
7~ = 100/(75)'/2.3 = 15.30 thousand cycles and a shape parameter /3 = 2.3. 0 

Effect of Positive Dependency in a Two-Component Series System 
If a series system contains two components with dependent failure times, then the first 
line of (15.1) still gives F T ( t ) ,  but the evaluation has to be done with respect to the 
bivariate distribution of Tl and T2. More generally, for a system with s components 
in series, the system FT( t ) would have to be computed with respect to the underlying 
s-variate distribution. Such computations are, in general, difficult. If the correlation 
among the s series components is positive, then the assumption of independence 
is conservative in the sense that the actual FT( t )  is smaller than that predicted by 
the independent-component model. For a simple two-component series system, Fig- 
ure 15.3 shows the reliability 1 -F T ( t ) of a two-component series system as a function 
of the reliability 1 - F ( t )of the individual components that have positive correlation. 
For this example, the distributions of log failure times for the individual components 
is bivariate normal with the same (arbitrary) mean and standard deviation for both 
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Figure 15.3. Reliability of a system with two dependent components in series. 



374 SYSTEM RELIABILITY CONCEPTS AND METHODS 

components and correlation p. When p = 1 (so the two components are perfectly 
dependent and will fail at exactly the same time), the curve is the same as the s = 1 
(single-component) system shown in Figure 15.2. When p = 0 (so the two compo- 
nents are independent), the curve would correspond to an s = 2 curve in Figure 15.2. 
Figure 15.3 shows that when there is positive correlation between the failure times of 
the individual components, the actual reliability of the system exceeds that predicted 
by the independent-component series system. The multivariate generalization of this 
result is important in reliability modeling applications. 

Example 15.3 Reliability of a Jet Engine Turbine Disk. The primary threat 
for a jet engine turbine disk failure is the initiation and growth of a fatigue crack. 
Generally it is not economically desirable to test more than one or two jet engine 
turbine disks. Additionally, even with realistic continuous accelerated testing, no 
failures would be expected for years. Instead, disk reliability is predicted by using a 
model. The reliability model for the disk is obtained by dividing the disk into a large 
number of small “elements” that are first modeled individually. Accelerated tests on 
material specimens provide information to predict the life of an element as a function 
of temperature and stress. The overall reliability of the system can then be modeled 
as a series system of independent components. Modeling the individual elements’ 
failure-time distribution as a function of temperature and stress (which depend on 
position within the disk) improves the adequacy of the independence assumption. 
Still, however, one would expect the initiation and growth of cracks to be positively 
correlated from element to element within a disk, especially among elements that are 
close together. When the failure times of a series system’s components have positive 
association (nonnegative correlation between all pairs), the independence model 
provides a conservative prediction of the system’s overall reliability. Theoretical 
justification for this result is given in Chapter 2 of Barlow and Proschan (1975). 0 

Of course, if the lifetimes of components in a series system have negative associ- 
ation, then the reliability predicted with the independence model will be anticonser- 
vative. We do not give details for this situation because i t  is not common in physical 
systems. 

15.2.3 Systems with Components in Parallel 

A parallel structure with s components works if at least one of the components 
works. Examples of systems with components in parallel include automobile head- 
lights, RAID computer disk array systems, stairwells with emergency lighting, over- 
head projectors with backup bulb, and multiple light banks in classrooms. For two 
independent parallel components, illustrated in Figure 15.4, 

FT(t) = Pr(T 5 t ) = Pr(T1 It f7 T2 5 t )  (15.3) 

= Pr(T1 5 t )Pr(T2 5 t ) = F I F ~ .  
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Figure 15.4. A system with two components in parallel. 

For s independent components Fr(t)  = nlZlF ,  and for s iid components ( F ,  = 
F ,  i = 1,. . . ,s), F T ( ~ )= F S .  

Figure 15.5 shows the relationship between system reliability 1 - F T ( ~ )and indi-
vidual component reliability 1 - F ( t )for different numbers of identical independent 
components in parallel. The figure shows the dramatic effect that parallel redundancy 
can have on the reliability of the system or subsystem. If the components are not 
independent, then the first line of (15.3) still gives F r ( t ) ,but the evaluation has to be 
done with respect to the bivariate distribution of T1 and T2. 

Effect of Positive Dependency in a Two-Component Parallel-Redundant System 
For a simple two-component parallel system, Figure 15.6 shows the effect that pos-
itive dependency between the failure times of the two components has on system 
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Figure 15.5. Reliability of a system with s iid components in parallel. 
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Figure 15.6. Reliability of a system with two dependent components in parallel. 

reliability 1 - F T ( ~ ) .For this example, the distributions of log failure times for the in-
dividual components is bivariate normal with the same (arbitrary) mean and standard 
deviation for both components and correlation p. With p = 0 (so the components 
are independent), the curve is the same as the s = 2 curve shown in Figure 15.5. 
When p = 1 (so the components are perfectly dependent and will fail at exactly 
the same time), the curve is the same as the s = 1 (single-component) curve shown 
in Figure 15.5. The advantages of redundancy can be degraded seriously when the 
failure times of the individual components have positive dependence. 

15.2.4 Systems with Components in Series-Parallel 

Methods for evaluating the reliability of structures with components in both series 
and parallel provide the basis for evaluating more complicated structures that use 
redundancy to increase system reliability. There are two types of simple (i.e., rect- 
angular) series-parallel structures: series-parallel with system-level redundancy and 
series-parallel with component-level redundancy. 

Series-Parallel System Structure with System- Level Redundancy 
In some applications it is more cost effective to achieve higher reliability by using 
two or more copies of a series system rather than having to improve the reliability of 
the single system itself. Series-parallel system structures with system-level redun- 
dancy are used in applications like parallel central processors for a system-critical 
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communications switching system, spacecraft or aircraft fly-by-wire computer con- 
trol systems, automobile brake system (hydraulic and mechanical), and multiple 
trans-Atlantic transmission cables. 

A I‘ X k series-parallel system-level redundancy structure has I’ parallel sets, 
each of k components in series. For a 2 X 2 structure with independent components, 
illustrated in Figure 15.7, 

F T ( r ) = Pr(T 5 t )  = Pr [“series 1 failed” “series 2 failed”] ( 1  5.4) 

where Fi j ,  j = 1,2, are the cdfs for the series subsystem i. For a I’ X k structure 
with independent components F T ( c )= nr=I [ I  - n;=,- Fij)]  and for a I’ X k( I  
parallel-series structure with iid components F T ( ~ )= [ 1 - ( I - F)’]]‘.If the system 
components are not independent, then the first line of (15.4) still gives F T ( ~ ) ,but 
the evaluation has to be done with respect to the multivariate distribution of the 
component failure times. 

Series- Parallel System Structure with Component-Level Redundancy 
Component redundancy is an important method for improving system reliability. 
Series-parallel system structures with component-level redundancy are found in 
numerous applications, including parallel dual repeaters in undersea fiber-optic data 
transmission systems, and the human body (lungs, kidneys). A k X r component-level 
redundant structure has k series structures, each one made of I‘ components in parallel. 
If it is necessary to have only one path through the system, such a structure is, for a 
given number of identical components, more reliable than the series-parallel system- 
level redundancy. For a 2 X 2 series-parallel system with independent components, 
illustrated in Figure 15.8, 

F T ( ~ )= 1 - Pr(T > t )  = 1 - Pr[“parallel 1 works” f7 “parallel 2 works”] 

= 1 - (1 - FllF21)(1 - F12F22) 

Figure 15.7. A series-parallel system structure with system-level redundancy. 
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Figure 15.8. A simple series-parallel system structure with component-level redundancy. 

where F,,,  i = 1,2, are the cdfs for parallel subsystem j . For a k X r series-parallel 
sy stem with independent components, 

When all of the system's components are iid F T ( t )  = 1 - ( I  - F r ) k .If the system 
components are not independent, then the first line of (15.5) still gives F T ( ~ ) ,but 
the evaluation has to be done with respect to the multivariate distribution of the 
component failure times. 

15.2.5 Bridge-System Structure 

Bridge-structure systems provide another useful structure for improving the reliability 
of certain systems. Bridge structures are common in computer and electric power- 
distribution networks. Figure 15.9 illustrates a simple bridge-structure system. Note 
that if component 3 is not working, the bridge system has the same structure as 
Figure 15.7. If component 3 is working, the bridge system has the same structure 
as Figure 15.8. In many practical situations a bridge such as the one at component 3 
in Figure 15.9 can be installed at little extra cost but provides a potentially important 
improvement in reliability when compared to a simple series-parallel system (see 
Exercise 15.1). 

The relationship between the bridge structure and the two different series-parallel 
structures provides a method to compute the bridge-structure system reliability. We 

Figure 15.9. A bridge-system structure. 
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use A3 (AS) to denote the event that component 3 is working (is not working). Then 
similar to (15.5) Pr(T 5 t I A 3 )  = FlF4 + F2Fs - FIF2F4Fs,and similar to (15.4) 
Pr(T 5 r IA:)  = [FI+ F2 - F1F2][F4+ Fs - F 4 F s J ;thus 

15.2.6 k-Out-of-s System Structure 

Some systems work if at least k out of s components work, but not otherwise. Special 
cases include the 1 of s parallel structure and the sof s series structure. Other examples 
of k-out-of-s system structures include a satellite battery system in which the system 
will continue to operate as long as 6 of 10 batteries continue to operate correctly, or 
computer storage disks that continue to provide service by blocking out bad sectors 
up to a certain limit, and heat exchangers that continue to operate even when a certain 
small proportion of their tubes have been plugged (see Example 1.5). 

Figure 15.10 illustrates a logic diagram for a system requiring that at least two out 
of three components work. Note that the system structure diagram does not reflect 
physical layout, but rather paths through the system that will allow operation of the 
system. Computationally, for a two-out-of-three system of independent components, 

F T ( t )  = Pr(T 6 t )  

= Pr("exact1y two fail") + Pr("exact1y three fail") 

= [FiF2(1 - F3) + F1F3( 1 - F2) + F2F3( I - F1 )] + F1 FzF3 

= F IF2 + F1 F3 + F2F3 - 2F1 F2F3. 

For k-out-of-s independent components, 

( 15.6) 

1 '-7 


Figure 15.10. A k-out-of-ssystem structure. 
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where S = (a,,.. . , a , )  with 6, = 1 indicating failure of component i by time t and 
6, = 0 otherwise and A, is the set of all S such that E:=,6, = j . For identically 
distributed components ( F  = F,, i = 1 , .  . . ,s) F T ( ~ )= xi=,(j)FJ(l- F ) ' - J ,  a 
binomial distribution. 

Example 15.4 Spacecraft Power System. A spacecraft power system uses 10 
rechargable batteries in parallel. The capacity of the power system is equal to the sum 
of  the power provided by each of the batteries. The system can continue to operate at 
design specifications as long as at least 7 of the 10 batteries are functional. U 

15.3 ESTIMATING SYSTEM RELIABILITY FROM 
COMPONENT DATA 

15.3.1 Computing System Reliability from Component Reliability 

To compute the system cdf, one can use FT = g(F1,. . . ,F,\) when g is known from 
the system structure. If g cannot be expressed in closed form or is otherwise difficult 
to compute, one can use a computer simulation of the system based on the Fi and 
the system structure. When the F, are unknown, an estimate of the system FT can be 
obtained by evaluating FT at the ML estimates of the needed F; values. 

15.3.2 Sources of Reliability Data 

Laboratory tests are used widely, especially to test new materials and components 
where there is little past experience. Such testing is generally expensive and may 
have limited ability to predict product field reliability. Special care must be taken 
to assure that test conditions can be related accurately to actual field conditions (as 
described in Chapters 18-21, laboratory tests are often accelerated with the goal of 
getting component reliability information more quickly). Carefully collected field 
data, when available, provide the most accurate information about how components 
and systems behave in the field. Field data collection, however, is also expensive. 
Warranty data often have serious deficiencies. For example, warranty data often 
contain no information on units that do not fail (see Robinson and McDonald, 1991, 
for further discussion of this and other related issues). Ireson ( 1996) describes some 
general issues relating to the collection and storage of reliability data. Reliability 
handbooks and data banks can be useful (e.g., Klinger, Nakada, and Menendez, 
1990,and MIL-HDBK 2 17E, 1986). One common complaint about such handbooks, 
however, is that data become obsolete by the time they are published and that reported 
hazard rates and failure probabilities may be off by an order of magnitude or more. 
Technology, in many areas, is moving faster than accurate traditional reliability data 
can be obtained. Expert knowledge is often used when no other source of information 
is available. Unless data are collected from carefully conducted statistical studies, 
quantifying uncertainty may be impossible. 
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15.3.3 Maximum Likelihood Estimation of System Reliability 

Suppose that sample data are available to estimate the failure-time distributions of 
the system’s individual components. For example, data on componentj for i 
1 , .  . . ,s can be used to estimate 8;,i = 1 , .  . . ,s, providing estimates F I , .. . ,F,, 
respectively. These cdf estimates are functions of time, as described in Section 15.2. I .  
Then the-system cdf (or other related functions) can be estimated as functions of 
F I , .  . . ,F,, the function being determined from the system’s structure, as described 
in Sections 15.2.2-15.2.6. Let 8be the ML estimate of 8 (the unique parameters 

h 

describing the components’ cdfs) and 2; the ML estimate of 2; obtained from 
h 

the component data. Then using the same methods as in previous chapters, F T  = 

F r ( 8 )  = ~ [ F I( ^ e l ) ,  . . . ,F\(g,)]. The variance of PT can be computed by using the 
h h  

delta method (Appendix Section B.2) as Var(Fr) = (dF7 / ( 3 8 ) ’ 5 ; ( d F T / a 8 ) ,where 
h 

the derivatives are evaluated at 8. 

Example 15.5 Maximum Likelihood Estimation for a Simple Parallel-Structure 
System. For a parallel structure with s iid components 

Then s ^ e ~ , = 4 g r ( F T ) .  

15.3.4 Normal-Approximation Confidence Intervals for System Reliability 

A normal approximation 100(1 - a)% confidence interval for F T ( t ;  8 )  based on 
. q O g i t ( F r )  NOR(0, 1) is 

15.3.5 Bootstrap Approximate Confidence Intervals for System Reliability 

Bootstrap confidence intervals can be used to improve upon the simple normal- 
approximation method in Section 15.3.4. One iteration of the bootstrap procedure 

h

requires the computation of bootstrap estimates FT, i = 1, .  . . ,s (as in Chap-
ter 9), for each of the s components. These lead to the system bootstrap estimate 
h h 

F ;  = g ( F ; ,  . . . ,p;).The procedure is repeated B times and, as in Section 9.4.2, an 

0 
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based on Z,ogit(~rapproximate 100( 1 -a)%confidence interval for F T ( ~ )  ) A Zloglt(~;~ 

and the B bootstrap samples is 

15.4 ESTIMATING RELIABILITY WITH TWO OR MORE 
CAUSES OF FAILURE 

15.4.1 Products with Two or More Causes of Failure 

Many systems, subsystems, and components (which we generically refer to as “units”) 
have more than one cause of failure. In some applications and for some purposes it is 
important to distinguish between the different failure causes (sometimes referred to 
as “failure modes”). For purposes of improving reliability, it is essential to identify 
the cause of failure down to the component level and, in many applications, down to 
the actual physical cause of failure. 

Multiple failure modes should be distinguished from population mixtures (e.g., 
Section 5.12.1). Population mixtures divide a population into different mutually 
exclusive groupings of units. Such subpopulations result from differences in the 
manufacture or use of the product. Multiple failure modes, on the other hand, are the 
different ways in which a particular unit might fail. 

Failure time of a system with two or more failure modes can be modeled with 
a series-system or competing risk model. Each risk is like a component in a series 
system. When one component fails, the system (i.e.* product) fails. Each unit has a 
potential failure time associated with each failure mode. The observed failure time is 
the minimum of these individual potential failure times. 

15.4.2 Estimation with Two or More Causes of Failure 

This section explores applications in which failed units are replaced rather than 
repaired after failure (repairable system data analysis is described in Chapter 16). 
Some life tests result in failure-time data that have more than one cause of failure. 
Most field data could have both failure-time and failure-cause information reported 
for each failure (although failure-cause information is often expensive or otherwise 
difficult to obtain and is therefore often not reported). Warranty data have potential 
problems of bias and limited information about surviving units. As described in 
Example 1 1.13, it may be necessary to conduct a survey to get information about 
the status of units that have not been reported as failing (e.g., if and when units have 
been retired and the number of use-cycles for units still in service). Typically, many 
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units reported as failing in the warranty period are units that have been subjected to 
the harshest use conditions. 

Field-tracking studies will follow, more carefully, a group of units in service (or 
simulated service). Such studies are more expensive but provide better information 
about field reliability. See Amster, Brush, and Saperstein ( 1982)for more information 
on planning field-tracking studies. For some applications it is possible to test in an 
“accelerated” field environment where failures could be expected to occur more 
rapidly than in typical service applications (providing time to make corrections in 
customer units before serious problems might arise). 

Example 15.6 Estimation of Device-G FT(t) Using Failure Mode Information. 
Table 15.1 gives times of failure and running times for a sample of devices from a field- 
tracking study of a larger system. At a certain point in time, 30 units were installed 
in typical service environments, Cause of failure information was determined for 
each unit that failed. Mode S failures were caused by an accumulation of randomly 
occurring damage from power-line voltage spikes during electric storms, resulting in 
failure of a particular unprotected electronic component. These failures predominated 
early in life. Mode W failures, caused by normal product wear, began to appear after 
100 thousand cycles of use. The NW corner of Figure 15.11 displays the results of a 
Weibull analysis of the Mode S failures only (failures due to Mode W were treated 
as censored at the time of the Mode W failure-all we know is that the unobserved 
Mode S failure time would have been sometime after the observed Mode W failure). 
Similarly, the NE corner of Figure 15.11 displays the results of a Weibull analysis of 
the Mode W failures only. The results for these two analyses are also summarized 
in Table 15.2. In both cases, the Weibull distribution provides a good fit to the data. 
The SW corner shows the results of a Weibull analysis ignoring the cause of failure 
information. Looking carefully we note evidence of a change in the slope of the plotted 

Table 15.1. Device-G Failure Times and Cause of Failure for Devices that Failed and 
Running Times for Units that Did Not Fail 

Thousands Failure Thousands Failure Thousands Fai1ure 
of Cycles Mode of Cycles Mode of Cycles Mode 

275 W 106 S 88 S 
13 S 300 - 247 S 

147 W 300 - 28 S 
23 S 212 W 143 S 

-181 w 300 - 300 
30 S 300 - 23 S 
65 S 300 - 300 -
10 S 2 S 80 S 

300 - 26 1 S 245 W 
173 S 293 w 266 W 

W indicates a wearout failure, S indicates an electrical surge failure, and -indicates a unit still operating 
after 300 thousand cycles. 



384 SYSIEM RELIABILITY CONCEPTS A N D  METHODS 

Mode S Only Made W Only
.98 1 

.oo1 r . - :, . -
1 5 20 100 500 1 5 20 loo 500 

Thousands of Cycles Thousands of Cvcles-

Ignoring Mode Information 

1 5 20 100 500 

Thousands of Cycles 

Figure 15.11. Weibull analyses of Device-G data estimating time to failure Mode S only, failure Mode 
W only. and ignoring the cause of failure. 

Table 15.2. Device-G Field-Tracking Data Weibull ML Estimation Results for the 
Electric Surge (S)and Wearout (W) Failure Modes 

Approximate 95% 
Confidence Interval 

ML Standard 
Mode Parameter Estimate Error Lower Upper 

s PS 6.1 1 .427 5.27 6.95 
US 1.49 .35 .94 2.36 

w P W  5.83 0.1 1 5.62 6.04 
o w  .23 .08 . I2  .44 

S and W Psw 5.49 0.23 5.04 5.94 
U S W  1.08 .2 1 .74 1.57 

For Mode S alone, fs = - 101.36; for Mode W alone, fw = -47.16; and for both modes together. 
Ls iy  -142.62. 
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Figure 15.12. Weibull analyses of Device-G data estimating time to failure Mode S only, failure Mode 
W only, and distribution to the minimum of Mode S and Mode W. 

points, indicating a gradual shift from one failure mode to another. The dotted lines 
in Figure 15.12 show the estimated ML lines for the two individual failure modes. 
The thin, straight, solid line is the ML line estimating the Weibull F T ( t )  obtained 
from ignoring the cause of failure information (i.e., using both failure modes together 
in the analysis). The curved line is the series-system estimate of F T ( t ) for the two 
failure modes acting together. This estimate was computed, under the assumption 
of independence of T1 and T2, as F^,(t) = 1 - [ l  - & ( t ) ]  X [ I  - p2(r) ] .The two 
estimates diverge rapidly afterLO0 thousand cxcles. Estimates of the mean time to 
failure were computed from MTTF = Jam[ 1 - F T ( t ) ]dt in (4.3)and were 25 1.3 and 
196.0 thousand cycles, respectively, for the models ignoring and using the failure 
mode information. The difference between these estimates would have been greater 
if the censoring had been heavier (implying more extrapolation in time). U 

15.4.3 Estimation of Multiple Failure Mode Distributions when Only Some 
Failure Modes are Identified in the Data 

When the failure modes are not identified or are only partially identified, it is some-
times possible to estimate the individual Fi(t)  distributions by using maximum like-
lihood. This may, however, be difficult because the analyses are no longer separable, 
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and failure-time distributions must be estimated simultaneously even if the modes 
act independently. Also, the parameter estimates for the distribution for one mode 
will be correlated with those of the other modes (Friedman and Gertsbakh, 1980). 
In practice, one is likely to analyze the data as if there were only a single mode. 
This can result in the pitfalls described earlier, especially when the shapes of the 
distributions of the individual failure modes are not similar or if censoring is some- 
how linked to one or more of the failure modes. Guess, Usher, and Hodgson (1991), 
for example, describe maximum likelihood methods. Determining the appropriate 
likelihood is straightforward. Determining if there is enough information in the data 
to estimate all of the model parameters can be problematic. Also see the example in 
Section 22.3. 

15.5 OTHER TOPICS IN SYSTEM RELIABILITY 

15.5.1 Other System Structures 

For standby redundancy (also known as passive redundancy), a redundant unit is 
activated only when another unit fails and the redundant unit is needed to keep 
the system working. There are many variations of this including cold standby and 
partially loaded redundancy. Also it is necessary, in some systems, to consider the 
reliability of component and subsystem interfaces as well as the switching mechanism 
that activates the standby units. This can be done by including such interfaces and 
the switching mechanism into the overall system structure. 

15.5.2 Dependency Among Components 

The common assumption of components with independent failures is sometimes 
unrealistic. For example, it is possible that failure of one component either improves 
or degrades the reliability of other system components (leading to either negative or 
positive correlation between failure times in different components). Another common 
source of dependency is “common cause of failure,” which occurs when an external 
force causes failure of more than one component. Figure 15.3 (Figure 15.6) showed 
the effect of dependency on a simple two-component series (parallel) system. The 
same effect would be amplified in a multicomponent redundant system. 

15.5.3 Systems with Repair 

Many systems are repaired after failure. Questions of repairability, maintainability, 
and availability generally depend on knowledge of a repair time distribution. The 
methods used in this book can also be used to estimate such distributions. 

Analyses involving time dependence of system failurehepair cycles generally use 
models different from those used in the previous chapters in this book. Chapter 16 
describes simple methods for analyzing system repair-history and other recurrence- 
type data. 
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15.5.4 FMEA/FMECA 

Products and systems often have complicated designs that are the result of efforts 
of one or more design teams. Management for system reliability requires a global 
process to assure that the productlsystem reliability will meet customer requirements. 

Failure modes and effect analysis (FMEA) is a systematic, structured method for 
identifying system failure modes and assessing the effects or consequences of the 
identified failure modes. Failure modes and effect criticality analysis (FMECA) con- 
siders, in addition, the criticality (or importance) of identified failure modes, with 
respect to safety, successful completion of system mission, or other criteria. The 
goal of FMEAFMECA is to identify all possible failure modes at a specified level 
of system architecture. These methods are used typically in productlsystem design 
review processes. The use of FMEAFMECA typically begins in the early stages of 
productlsystem conceptualization and design. Then the FMEAFMECA evolves over 
time along with changes in the productlsystem design and accumulation of informa-
tion about productlsystem performance in preproduction testing and field experience. 
FMEAFMECA is used during the productlsystem design phase to help guide deci- 
sion making. FMEAFMECA is also used to develop productlsystem guidelines for 
system repair and maintenance procedures, to make statements about system safety, 
and to provide direction for reliability improvement efforts. 

Operationally, FMEAFMECA begins by defining the scope of the analysis, spec- 
ified by the system level at which failures are to be considered. FMEAFMECA can 
be conducted at various different levels in a product or a system. FMEAFMECA 
might be done initially for individual subsystems. Then the results can be integrated 
to provide an FMEAFMECA for an entire system comprised of many subsystems. 
For example, an FMEA to study the reliability of a telecommunications relay re- 
peater might consider, as basic components, each discrete device in the electronic 
circuit (e.g., ICs, capacitors, resistors, diodes). At another level, an FMEA for a large 
telecommunications network might consider as components all of the network nodes 
and node interconnections (ignoring the electronic detail within each node). 

The next step in the FMEA/FMECA process is the identification of all compo- 
nents that are subject to failure. This is followed by identification of all component 
interfaces or connections between components that might fail. In many applications, 
environmental and human-factor-related failures are considered in defining failure 
modes. Finally, the effects of the identified failure modes are delineated. Determin- 
ing the effect of failure modes and combinations of failure modes uses the detailed 
specification of the relationship among the productlsystem components (system struc- 
ture). Special worksheets andor computer software can be used to organize all of the 
information. 

15.5.5 Fault Trees 

The FMEAFMECA process described above is sometimes referred to as the “bottom- 
up” approach to reliability modeling. Fault tree analysis, on the other hand, quantifies 
system failure using a “top-down” approach. First, one or more critical “top-events” 
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(such as loss of system functionality) are defined. Then in a systematic manner, 
the combination (or combinations) of conditions required for that event to occur 
is delineated. Generally this is done by identifying how failure-related events at a 
higher level are caused by lower level “primary events” (e.g., failure of an individual 
component) and “intermediate events” (e.g., failure of a subsystem). Information 
from an FMEA analysis might be used as input to this step. The information is 
organized in the form of a “fault-tree diagram” with the top event at the top of the 
diagram. Events at different levels of the tree are connected by logic gates defined on 
a system of Boolean logic (e.g., AND, OR, Exclusive OR gates). 

A complete fault tree can be used to model the probability of critical system 
events. Additional inputs required for this analysis include probability or conditional 
probabilities of the primary events. With this information and the detailed system 
structure specification provided by the fault tree, it  is possible to compute critical 
event probabilities. 

Fault tree diagrams are, in one sense, similar to the reliability block diagrams 
presented earlier in this section. It is generally possible to translate from one to the 
other. Fault tree analysis differs in its basic approach to system reliability. Reliability 
block diagrams are structured around the event that the system does not fail. Fault 
tree analysis, however, provides focus on the critical failure-causing top-events like 
loss of system functionality or other safety-critical events. The tree shows, directly, 
the root causes of these top-events, and other contributing events, at all levels within 
the scope of the analysis. The structure and logic of the fault tree itself provide not 
only a mechanism for quantitative reliability assessment but also clearer insight into 
possible approaches for reliability improvement. 

15.5.6 Component Importance 

A component’s importance to overall system reliability depends on the reliability of 
the component and the component’s position in the system structure. Measures of 
component importance with respect to reliability provide information that is needed to 
develop effective strategies to improve system reliability. In particular, such measures 
suggest which components should get attention in reliability improvement efforts. 
For example, one particularly simple measure of component reliability, motivated by 
traditional sensitivity analysis, is the partial derivative of overall system reliability 
with respect to the individual component’s reliability. Chapter 5 of Hoyland and 
Rausand (1994)provides details on a number of other useful measures of component 
importance. 

15.5.7 Markov and Other State-Space Reliability Models 

System models described up to this point have had only two states of interest: failed 
or not failed. A state-space model can be used to allow for a richer formulation of sys- 
tem behavior. For example, in a parallel system, the system state might describe the 
number of failed components. A state-space model would describe the different sys- 
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tem states, possible transitions from one state to another, and probability distributions 
describing how the system goes from one state to another (transition probabilities). 

A Markov model is a special case of a state-space model requiring ( 1 ) a memoryless 
property that future events depend only on the current state and not on the manner 
in which the system arrived at that state and (2) a stationarity property that transition 
probability distributions do not change with time. Although somewhat restrictive, it 
is possible to use Markov models to describe many kinds of practical systems with 
useful approximations. If a model with a limited number of states does not have the 
memoryless property, it might be possible to reformulate the state definition, add 
some more states, and find a structure that does meet (at least approximately) the 
required conditions. 

Markov models are useful for handling dependencies among system components, 
complicated repair policies, common-cause failures, and other system complexities. 
With large, complicated systems, however, the number of states can be large, leading 
to computational difficulties. Also, because of the memoryless property, Markov 
models are limited to exponential distributions for life and repair distributions. 

Non-Markovian generalizations of state-space models are possible, but there are 
few analytical results available and numerical computations become exceedingly 
difficult when dealing with nontrivial system structures. Analyses of such models are 
generally done by using simulation methods. 

BIBLIOGRAPHIC NOTES 

Barlow and Proschan (1975) is the classic reference outlining the mathematical theory 
of system reliability. Kozlov and Ushakov ( 1970), Hoyland and Rausand ( 1994). 
Ushakov (1994), and Gnedenko and Ushakov (1995) provide detailed coverage of 
many different kinds of system reliability models. O’Connor ( 1985) and Lewis ( 1  996) 
provide engineering-oriented descriptions of system reliability concepts. Gertsbakh 
(1989) also describes a number of important system reliability concepts and methods. 

Chapter 5 of Nelson (1982) provides theory and applications of multiple failure 
mode (competing risk) methods for series systems of independent components. David 
and Moeschberger ( 1978) and Birnbaum ( 1979) provide theory, some applications, 
and numerous important references for such models (for a single subpopulation). 

O’Connor (1985), Sundararajan (1991), Hoyland and Rausand ( 1  994), and Lewis 
(1996) provide more details, examples, and references for fault tree methods. MIL- 
STD-1629A (1980) and books like Hoyland and Rausand (1994), Klion (1992), and 
Sundararajan (1991) outline in more detail and provide examples for the procedures 
for performing FMEAEMECA analyses. Hoyland and Rausand ( 1994) also list 
several computer programs designed to facilitate FMENFMECA analyses. 

EXERCISES 

15.1. Consider the bridge-system structure in Figure 15.9. Assume that components 
1 ,  2,4, and 5 all have the same cdf F ( t ) . Plot F T ( t ) versus 0 < F ( r ) < 1 with 
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a separate line for each value of Pr(A3) = 0, .25, S, .75, and 1. Comment 
on the results relative to the reliability of the two different series-parallel 
structures in Section 15.2.4. 

15.2. Revisit the shock absorber data introduced in Example 3.8 and given in 
Appendix Table C.2. There were actually two different causes of failure for 
this product. The analyses in Chapters 3 and 8 ignored the different “failure 
modes” in the analysis. An alternative analysis (important for some purposes) 
would take into consideration the different failure modes. Such an analysis 
is straightforward when the failure times to the two different failure modes 
are statistically independent. 
(a) Assuming that the failure modes are independent, fit Weibull distribu- 

tions separately to estimate the time to failure for each failure mode. 
Also fit other parametric distributions to the individual failure modes to 
see if there are other distributions that fit  better than the Weibull. 

(b) Suppose that the shock absorber is a series system that fails as soon 
as there is a failure due to one mode or the other. Combine the results 
from part (a) to obtain an estimate of the cdf for the shock absorbers 
with both modes acting together. Plot these on Weibull probability paper 
and compare the results with the analysis that ignores the differences 
between the two different failure modes. 

( c )  Provide an intuitive explanation for the result from part (b). 
(d) Explain why the agreement between the two methods of analysis is so 

good in this case (as compared with Example 15.6). In general, when 
would you expect to see more important differences between the analysis 
that accounts for the different failure modes and the analysis that does 
not account for the different failure modes‘? 

15.3. Consider the following system diagram. Derive an expression for the cdf 
of the system as a function of F1, Fz,  and F3 under the assumption that 
component failure times are statistically independent. 

*-

15.4. Consider the following system diagram. Derive an expression for the cdf of 
the system as a function of F1,. . . ,F6 under the assumption that component 
failure times are statistically independent. 
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15.5. Consider the following system diagram. Derive an expression for the cdf of 
the system as a function of F 1 , ,. . ,F6 under the assumption that component 
failure times are statistically independent. 

A15.6. Show that for a series system of s independent components, the system hazard 
function is the sum of the component hazard functions: that is, h T ( t )  = 

CI=Ihi(?). 
15.7. A new computer-based home entertainment system will require 16megabytes 

of RAM to run the operating system, store needed information for quick 
access, and perform other tasks. The product designers can use a single 16-
megabyte chip or four 4-megabyte chips, the latter option being 30% less 
expensive. The manufacturers of the memory claim that the average fit rate 
for 2 years at normal operating conditions is 10 fits/per chip for all of their 
memory chips. Compare the reliability of the memory system for the two 
different design options. 

e15.8. Consider the model used in Example 15.6, with the generalization that only a 
proportion 6 of the units in the population are susceptible to failure Mode S. 
(a) Write down expressions for the cdf and pdf of the overall failure-time 

distribution. 
(b) Write a computer program to compute and plot the hazard function for 

this model. Find combinations of the five parameters that give a bathtub-
shaped hazard function. 

See Section 22.3 for an example using this model. 
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A15.9. Consider a parallel system with s independent components. Show the fol-
lowi ng. 
(a) The pdf for the system is 

(b) The hazard function is 

A15.10. Suppose that a series system has s iid components. If the life of each compo- 
nent is modeled with a WEIB(p, a )then: 
(a) Show that the cdf for the system is WEIB[p - (z log(s), a] .  
(b) Using the cdf obtained in part (a) compute the hazard function for the 

system. Verify that the same answer can be obtained using the formula 
for the hazard function given in Section 15.2. 

( c )  Compute the reliability and hazard of the components at t = I month 
when a = .5 and = 2.3. 

(d) Use the information in part (c) to compute the reliability and hazard of 
the system when s = 10. 

A15.11. For a series system with s iid components each having a failure-time cdf 
F = F(r),show that 

A15.12. Beginning with the general formula given in (15.6) for FT in a k-out-of-s 
system: 
(a) Show that with identically distributed components, 

F T ( t )  = 2 ('I)F'( 1 - F)"-'. 
j = k  

(b) Use the result in part (a) to obtain F T ( t )  when k = 2 and s = 3. 
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Analysis of Repairable System and 
Other Recurrence Data 

Objectives 

This chapter explains: 

Typical data from repairable systems and other applications that have recurrence 
data. 
Simple nonparametric graphical methods for presenting recurrence data. 
Simple parametric models for recurrence data. 
The combined use of simple parametric and nonparametric graphical methods 
for drawing conclusions from recurrence data. 
A method of simulating recurrence data. 
Some basic ideas of software reliability modeling. 

Overview 

This chapter describes methods for analyzing recurrence data where the recurrence 
times may not be statistically independent. A primary application for such methods 
is in the analysis of system repair data. The methods are useful for empirically quan- 
tifying overall system reliability, for monitoring and predicting repair cost, and for 
checking to see if the times between repairs of individual components in a system can 
be treated as being independent or not. Section 16.2 describes nonparametric graph- 
ical methods to estimate mean cumulative recurrence rates and, when appropriate, 
confidence intervals to quantify sampling uncertainty. Section 16.3 gives nonpara- 
metric two-sample comparison methods. These nonparametric methods require few 
assumptions. Section 16.4 describes some simple point-process models that are use- 
ful for describing repairable system data for a single system. Section 16.5 gives 
methods for checking point-process model adequacy and Section 16.6shows how to 
use ML to fit parametric models to recurrence data for a single system. Section 16.7 
gives methods for simulating data from a nonhomogeneous Poison process while 
Section 16.8 explains some of the basic ideas of software reliability. 

393 
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16.1 INTRODUCTION 

16.1.1 Repairable System Reliability Data and Other Recurrence Data 

Recurrence data arise frequently in reliability applications. The stochastic model for 
recurrence data is called a “point-process” model. An important application is system 
repair data. A repair process for a single system can be viewed as a sequence of repair 
times T I,T2,. . . . In the following discussion of system reliability, the term “system 
repair” describes a general event of interest. In particular applications, however, the 
event may be a failure, replacement, adjustment, and so on. 

Generally, repair times are measured in terms of system age or time since some 
well-defined specific event in the system’s history. Repairs are typically observed 
over a fixed observation interval ( t o , t , ) ,  where, typically, to = 0. In some cases 
the number of repairs in each of a set of smaller intervals is reported (e.g., because 
problems are detected and repairs are initiated at fixed times of inspection) and in 
other cases, exact times of repairs are recorded. 

Some applications have data on only one system. In other applications there may 
be data from a sample or other collection of systems. When data from such a collection 
are combined into data to form a single process, the resulting process is known as the 
superposition of several point-processes or a superimposed point-process. For some 
applications, cause of failure andor cost of repair may also be recorded. For some 
purposes, it is necessary to consider that the population contains a mixture of systems 
operating in different environments. 

Repairable system data are collected to estimate or predict quantities like: 

The distribution of the times between repairs, T~ = Tj - TJ-1 ( j  = 1,2,. , .), 
where To = 0. 
The cumulative number of repairs in the interval (0,t ]  as a function of system 
age t .  
The expected time between failures (also known as mean time between failures 
or MTBF). 
The expected number of repairs in the interval (0,r ]  as a function of t .  
The repair rate as a function of t .  
Average repair cost as a function of t 

Example 16.1 Unscheduled Maintenance Actions for  the U.S.S. Grampus 
Number 4 Diesel Engine. Table 16.1 gives the times (in thousands of operating 
hours) of unscheduled maintenance actions for the number 4 diesel engine of the 
U.S.S. Grumpus, up to 16 thousand hours of operation. This is an example of data 
on a single system. The unscheduled maintenance actions were caused by system 
failure or imminent failure. Such maintenance actions are inconvenient and expensive. 
We will use the data to assess if the system was deteriorating (Le., maintenance 
actions occurring more frequently as the system ages) and whether the occurrence 
of unscheduled maintenance actions could be modeled by a homogeneous Poisson 
process (discussed in Section 16.4.2). 0 
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Table 16.1. Times (in Thousands of Operating Hours) of Unscheduled Maintenance 
Actions for the U.S.S. Grampus Number 4 Main Propulsion Diesel Engine 

.860 I .258 1.317 1.442 1.897 2.01 1 2.122 2.439 
3.203 3.298 3.902 3.910 4.000 4.247 4.41 1 4.456 
4.5 17 4.899 4.910 5.676 5.755 6.137 6.22 1 6.31 I 
6.613 6.975 7.335 8.158 8.498 8.690 9.042 9.330 
9.394 9.426 9.872 10.191 11.511 11.575 12.100 12.126 

12.368 12.681 12.795 13.399 13.668 13.780 13.877 14.007 
14.028 14.035 14.173 14.173 14.449 14.587 14.610 15.070 
16.000 

Data from Lee ( 1980). 

Example 16.2 Times of Replacement of Diesel Engine Valve Seats. For a 
fleet of 41 diesel engines, Appendix Table C.8 gives engine age (in days) at the time 
of a valve seat replacement. These data on a sample of systems appeared in Nelson 
and Doganaksoy (1989) and also in Nelson (1995a). Questions to be answered by 
these data include: 

Does the replacement rate increase with age? 
How many replacement valves will be needed in a future period of time? 
Can valve life in these systems be modeled as a superimposed renewal process? 
(If so, the methods in Chapters 3-15 can be used to model the data.) 

Figure 16.1 is an event plot of the valve seat repair data showing the observation 
period and the reported repair times for a subset of 22 diesels. 

16.1.2 A Nonparametric Model for Recurrence Data 

For a single system, recurrence data can be expressed as N ( s , t ) ,  the cumulative 
number of recurrences in the system age interval (s,t ] .To simplify notation, N ( t )  is 
used to represent N(0 , t ) .  The corresponding model, used to describe a population 
of systems, is based on the mean cumulative function (MCF) at system age t .  The 
population MCF is defined as p(t) = E [ N ( t ) ] ,where the expectation is over the 
variability of each system and the unit-to-unit variability in the population. Assuming 
that p(t) is differentiable, 

defines the recurrence rate per system for the population. 
Although data on the number of repairs (or other recurrent events related to 

reliability) are common in practice, the methods in this chapter can be used to model 
other quantities accumulating in time, including continuous variables like cost. Then, 

0 
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Figure 16.1. Valve seat event plot showing engine age at time of replacement and period of observation 
for a subset of 22 observed engines. 

for example, p(t)  = E[C(t)] is the mean cumulative cost per system in the time 
interval (0,t ] .  

16.2 NONPARAMETRIC ESTIMATION OF THE MCF 

This section describes a simple method for estimating the MCF. 

16.2.1 Nonparametric Model Assumptions 

Suppose that an observed collection of n 2 1 systems is an entire population of 
interest or a sample from a larger population of systems. Then the method described 
here can be used to estimate the population MCF. The method is nonparametric 
in the sense that it does not use a parametric model for the population MCF. The 
method requires minimal assumptions. The basic assumption is that there exists a 
population of cumulative functions (one for each system in the population) from 
which a sample has been observed. Randomness in the sample is due to the random 
sampling of cumulative functions from the population. The method also assumes 
that the time that observation of a system is terminated does not depend on the 
system’s history. Biased MCF estimators will result, for example, if units follow a 
staggered scheme of entry into service (e.g., some units put into service each month) 
and the recurrence rate v ( t )is increasing in real time due to external events affecting 
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all systems simultaneously. Then newer systems that have a more stressful life will 
be censored earlier, causing an overly optimistic estimate of the recurrence rate. 
The nonparametric estimate, however, does not require that the sampled systems be 
statistically independent. 

16.2.2 Point Estimate of the MCF 

Let N, ( t ) denote the cumulative number of system recurrences for system i before 
time t ,  and let t , ] ,j = 1,. . .,m;,be the recurrence times for system i. A simple naive 
estimator of the population MCF at time t would be the sample mean of the available 
Ni(r)  values for the systems still operating at time t .  This estimator is simple, but 
appropriate only if all systems are still operating at time t .  Nelson ( 1988) provided an 
appropriate unbiased estimator, allowing for different lengths of observation among 
systems. Nelson’s estimate of the population MCF can be computed by using the 
following algorithm. 

Algorithm 16.1 Computationof the MCF Estimate 

1, Order the unique recurrence times t i j  among all of the n systems. Let m 
denote the number of unique times. These ordered unique times are denoted 

0 * *by tl < < tm. 

2. Compute di(tk),the total number of recurrences for system i at tk. 

3. Let & ( t k )  = 1 if system i is still being observed at time t k  and 6 , ( t k )  = 0 
otherwise. 

4. Compute 

for j = 1,. . . ,rn, where d.(tk)= 6;(tk)di(tk),6 . ( t k )  = S ; ( t k ) ,  and 
d( tk )  = d.(t/o/S.(tk). 

Note that d.( tk)  is the total number of system recurrences at time f h ,  8.(t,) is the 
size of the risk set at t k ,  and J ( t k )  is the average number of recurrences per system 
at t k  (or proportion of systems with recurrences if individual systems have no more 
than one recurrence at a point time). Thus the estimator of the MCF is obtained by 
accumulating the mean number (across systems) of recurrences per system in each 
time interval. U 

Like the nonparametric estimate of a cdf (see Chapter 3), the estimate @ ( I )  is a step 
function, with jumps at recurrence times, but constant between the recurrence times. 
To provide better visual perceptions of shape, one might plot @ ( t )  as a piecewise 
linear function. 
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Figure 16.2. Estimate of the mean cumulative number of valve seat replacements for all 3 1 engines and 
a set of pointwise approximate 95% confidence intervals. 

Example 16.3 MCF Estimate for the Valve Seat Replacements. Figure 16.2 
shows the estimate of the valve seat MCF as a function of engine age in days. The 
estimate increases sharply between 620 and 650 days, but it is important to recognize 
that this part of the estimate is based on only a small number of systems (i.e., 10 
operating at 650 hours). The estimate is flat after 653 hours, but this is largely because 
there were only two systems being observed between 667 and 759 hours and neither 
failed during this period. The uncertainty in the estimate for longer times, due to the 
small number of systems, is reflected in the width of the confidence intervals (to be 
explained in Section 16.2.3). U 

16.2.3 Standard Errors and Nonparametric Confidence Intervals for 
the MCF 

For a random sample of n 2 2 cumulative functions (from a finite or infinite popu- 
lation of systems), there is a simple formula for the true V a [ @ ( t j ) ] .A corresponding 
estimate of this variance can be computed from the sample data. 

Let d(tk)denote the random number of recurrences at t k  for a cumulative function 
drawn at random from the population of cumulative functions. Then, as shown in 
Nelson (1995a), the true variance of @ ( t j )  for a large population of cumulative 
functions can be expressed as 
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j-l j 

k =  I k = l  , , = k + l  

To estimate Var[d(tk)], we use the assumption that d,(tk), i = 1,. . . ,17, is a random 
sample from the population of d ( t k )values. Moment estimators for the variances and 
covariances on the right-hand side of (16.2) are 

G r [ d( t k ) ]  ( 16.3) 

( 16.4) 

for t,, > t k . Substituting these into (16.2) and simplifying gives 

( 16.5) 

Nelson (1995a) presented an unbiased estimator of Var(G(t,)]. We use the estimator 
in (16.3, suggested by Lawless and Nadeau (1995), because it is always greater than 
or equal to zero. 

Example 16.4 Computation of the MCF Estimate and + Variancefor Sim-
ulated Data. To illustrate the computations of @(tj) and V ~ [ c ( t j ) ] ,  we use the 
simple 3-system simulated data shown in Table 16.2. Suppose that the three cumula- 
tive functions are a random sample from a large population of cumulative functions. 
The unique system repair times are tl = 1, t 2  = 5 ,  c j  = 8, and t4 = 16 days. 
Table 16.3 summarizes the computations for @(I,). Substituting results of Table 16.3 

Table 16.2. Simulated System Repair Times 

System System Age at System Age at 
Number Time of Repair End of Obsenration 

1 5 ,  8 12 
2 16 
3 1,8, 16 20 
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Table 16.3. Sample MCF Computations for Simulated System Repair Times 

2 

into (16.5) gives 

%r[ c(tl)]= [( 1/3)X (0- I /3)]* +[( 1 /3)X (0- 1/3)]* +[(1/3)X ( 1 -1/3)]' = 6/8 1. 

Similar coEputations yield c r [@(t*) ]  = 6/81 = .0741, Gr[@(t3)] = 24/81 = 
.296, and Var[G(tj)] = 163/216 = .755. 

Pointwise normal-approximation confidence intervals for the population MCF at 
a specified time t can be computed following the general approach used in Chapters 7 
and 8. In particular, a normal-approximation 100(1 - a)%confidence interval based 
on Zp,,, = [ @ ( r )  - p(t)] /&c(, )̂L. NOR(0, 1) is 

( 16.6) 

where Gp(()= JGr[@(r)]. When p(t)is positive (which is common in applications), 
an alternative interval based on Z,ogl~(,)l NOR(0, 1) is 

hwhere kt '  = exp[z,I -a/2)sec(,l/@(t)]. Intervals constructed using (16.7) will always 
have positive endpoints and, for some positive processes, can be expected to have 
coverage probabilities closer to the nominal confidence level. 

Example 16.5 MCF Estimate for  the Cylinder Replacements. Cylinders in 
a type of diesel engine can develop leaks or have low compression for some other 
reason. Each engine has 16 cylinders. Cylinders are inspected at times of convenience, 
along with other usual engine maintenance operations. Faulty cylinders are replaced 
by a rebuilt cylinder. More than one cylinder could be replaced at an inspection. 
Nelson and Doganaksoy (1989) present data on replacement times for 120 engines. 
We take these engines to be a sample from a larger population of engines. Management 
needed to know if the company should perform preventive replacement of cylinders 
before they develop low compression. 

Figure 16.3 displays cylinder replacement times for a subset of 3 1 of the engines. 
Except for one outlying replacement at 568 days of service, no replacements occurred 
until after 847 days. Figure 16.4 shows the MCF plot for the cylinder replacements 
for all 120 engines. The estimate is close to 0 until about 800 days, after which the 

0 
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Figure 16.3. Cylinder replacement event plot showing replacement times and period of observation for a 
subset of 3 1 observed engines. 
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Figure 16.4. MCF estimate for the cylinder replacements for the 120 engines and a set of pointwise 
approximate 95%confidence intervals. 
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MCF estimate increases rapidly. Interestingly, the sample MCF is nearly linear after 
about 1200 days. A possible explanation for this behavior in the sample MCF will be 
given in Section 16.4.5. 0 

Finite Population Correction 
When the number of cumulative functions sampled is more than 5% or 10% of the 
population, finite population methods should be used for estimating standard errors. 
In this case, the following should be substituted into (16.2): 

where N is the total number of cumulative functions in the population of interest. The 
factors [ 1 - a . ( t , , ) / N ]are known as finite population correction factors. 

Nonparametric Estimation with a Single System 
When there is a single system the point estimate c(t)is the number of system 
recurrences up to t .  Due to the limited information (a sample of size one at each 
recurrence time), the quantities (16.2) and (16.3) cannot be computed for single 
systems. 

16.2.4 Adequacy of Normal-Approximation Confidence Intervals 

The adequacy of the normal-approximation confidence interval procedures in ( 16.6) 
and ( 16.7) depends on the number of sample cumulative functions (or sample systems) 
at risk to failure and on the shape of the distribution of the cumulative function levels 
at the point in time where the interval is to be constructed. 

As mentioned in Sections 7.5 and 8.4.4, the normal-approximation intervals like 
those in (16.6) can be improved by using t(,,”)instead of q,>).When the number of 
sample systems at risk is small (say, less than 30),using t(,);”)instead of q,,)can provide 
important improvements in confidence interval accuracy. If the cumulative function 
at a point in time has a normal distribution and if all units are still under observation 
at that point, then using t(,,;”)instead of z(,,) and substituting [ n / ( n- I)]I/’se, for sec 
in (16.6) provides an exact interval for two or more systems. For a counting process 
like the Poisson processes described in Section 16.4, the distribution of the level of 
a sample cumulative function at a point in time can be described adequately by a 
normal distribution when the expected level of the cumulative function is 30 or more 
at that point in time. 

Example 16.6 Maintenance Costs for an Earth-Moving Machine. A con-
struction company owns 23 large earth-moving machines that were put into service 
over a period of time. At intervals of approximately 300-400 hours of operation, these 
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Figure 16.5. Earth-moving machine maintenance event plot showing machine age at time of the mainte- 
nance action for the 23 machines. 

machines receive scheduled preventive maintenance. Unscheduled maintenance ac- 
tions are also needed from time to time. Additionally, these machines require major 
(and costly) overhaul, usually every 2000-3000 hours of operation. The event plot in 
Figure 16.5 shows times of the maintenance actions for the 23 machines. Here time 
is taken to be the machine’s age in hours operated. The cost of each maintenance 
action was also recorded in terms of the number of hours of labor that were required 
for the maintenance work. Figure 16.6 gives the estimate of the mean cumulative 
number of hours of labor for the earth movers as a function of hours of operation and 
corresponding pointwise normal-approximation confidence intervals. The periodic- 
ity of the early scheduled maintenance actions can be seen in the first 1500 hours or 
so. After that, the randomness in the intervals averages out over time, reducing the 
amplitude of the periodicity. The slope of the MCF is a bit larger over some intervals 
of time. These are intervals in which more of the machines were required to have 
major overhauls (after 3000 and 5000 hours). The confidence intervals have no real 
meaning relative to the 23 machines owned by the company. If, on the other hand, the 
23 machines were being viewed as a random sample from a much larger population 
(e.g., of other similar machines in other parts of the company or of similar machines 
to be purchased in the future), the confidence intervals would quantify the uncertainty 
in the mean of that larger population. The intervals are wider later in time because 
there are fewer machines with that much exposure time. U 
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Figure 16.6. Mean cumulative number of hours required for maintenance for earth-moving machines and 
approximate 95% confidence intervals, as a function of machine age. 

16.3 NONPARAMETRIC COMPARISON OF TWO SAMPLES OF 
RECURRENCE DATA 

Decisions often need to be made on the basis of a comparison between two manu- 
facturers, product designs, environments, and so on. This section describes methods 
for comparing recurrence-data samples from two different groups of systems. 

Example 16.7 Replacement Times of Locomotive Braking Grids. A partic-
ular type of locomotive has six braking grids. Appendix Table C.9 shows data on 
locomotive ages when braking grids were replaced and the largest observed age for 
each locomotive. The data are from Doganaksoy and Nelson (1991). A comparison 
between two different production batches of the braking grids is desired. 0 

Suppose that there are two populations or processes with mean cumulative func- 
tions pl ( t )  and pZ(t),respectively. Let A,(t) = pl ( t )- p2(t)represent the difference 
in the mean cumulative functions at time t .  Based on independent samples from the 
two populations, a nonparametric estimator of A,(t) is 
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If j& (r) and @Z(t)are independent, an estimate of Var[&(r)] is 

A -

Var[A,(r)] = %[jil(t)] + cr [&( t ) ]  

- A  

and s^e- = t/Var[A,(t)]. An approximate lOO(1 - a)% confidence interval for 
A P  


A,(?) based on 2- = [ & ( I )  - Ar(t)]/s^eic A NOR(0, 1) is 
*P 


Example 16.8 Comparison of Two Production Batches of the Locomotive 
Braking Grids. Figure 16.7 shows the sample MCFs for the braking grids from 
production Batches 1 and 2. This figure shows that the sample MCF for Batch 2 
is greater than that for Batch 1. Figure 16.8 plots the nonparametric estimate and 
confidence intervals for the population A,(t). This figure indicates that there is a 
statistically significant difference between the MCFs over almost the entire span of 
locomotive age. 0 

I 
1.5 

1.o 
Batch 2 -I -

-- Batch 1 

0 200 400 600 
Locomotive Age in Days 

Figure 16.7. Comparison of MCFs for the braking grids from production Batches I and 2. 
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Figure 16.8. Difference 6, - jl? between \ample MCFs for production Batches I and 2 and a \et of  
pointwise approximate 95% confidence intervals for the population difference. 

16.4 PARAMETRIC MODELS FOR RECURRENCE DATA 

Parametric point-process models are also useful for recurrence data. The most com- 
monly used models for recurrence data are Poisson processes (homogeneous and 
nonhomogeneous), renewal processes, and superimposed versions of these processes. 
The most common application is for monitoring and modeling recurrences, such as 
repairs, from a single system. 

16.4.1 Poisson Process 

The Poisson process is a simple parametric model that is commonly used for the 
analysis of certain kinds of recurrence data. An integer-valued point process on [ 0, m) 

is said to be a Poisson process if it satisfies the following three conditions: 

N ( 0 )  = 0. 

The numbers of recurrences in disjoint time intervals are statistically indepen- 
dent. A process with this property is said to have “independent increments.” 
The process recurrence rate v( t )  is positive and p(a,b)  = E[N(n ,h ) ]  = 

h 
Ja v(u)du< x,when0 5 a < 6 < m. 
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It follows, for a Poisson process, that N ( a ,b),has a Poisson distribution with pdf 

16.4.2 Homogeneous Poisson Process 

A homogeneous Poisson process (HPP) is a Poisson process with a constant recur-
rence rate, say, v( t )= l/8. In this case: 

N(a,b)has a Poisson distribution with parameter p(a,b) = (b- a) /8.  
The expected number of recurrences in (a,b] is p(a,b).Equivalently, the ex- 
pected number of recurrences per unit time over (a ,b] is constant and equal to 
1/8. This property is called “stationary increments.” 
The interrecurrence times (the times between recurrences), 7 j  = Tj - Tj- 1 ,  are 
independent and identically distributed (iid), each with an EXP( 8) distribution. 
This follows directly from the relationship 

Pr(q > t )  = Pr [ N ( 7 ‘ , - I , T j - I+ r )  = 03 = exp(-r/8). 

Thus the steady-state mean time between recurrences for an HPP is equal to 8. 
For a failure process one would say that the mean time between failures is 
MTBF = 8. 
The time Tk = 71 + * * * + ~k to the kth recurrence has a GAM(B, k )  distribution. 

16.4.3 Nonhomogeneous Poisson Process 

A nonhomogeneous Poisson process (NHPP) model is a Poisson process model with 
a nonconstant recurrence rate v(t).In this case the interrecurrence times are neither 
independent nor identically distributed. The expected number of recurrences per unit 
time over (a,b] is 

An NHPP model is often specified in terms of the recurrence rate v(t) .To specify an 
NHPP model we use v( t )  = v(t;8),a function of an unknown vector of parameters 8. 
For example, the power-model recurrence rate is 

The corresponding mean cumulative number of recurrences over (0,t ]is p(r;p, q) = 
( r / q ) p .  When p = 1, this model reduces to the HPP model. The loglinear model 
recurrence rate is v( t ;yo, yl) = exp(y0 + yl t ) .The corresponding mean cumulative 
number of recurrences over (0,t ] is p(t;70,yl )  = [exp(yo)][exp(ylr)- l ] / y ~ .When 
71= 0, v( t ;y0,O) = exp(yo), which is an HPP. 
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16.4.4 Renewal Processes 

A sequence of system recurrences at system ages T I ,T2,. . . is a renewal process 
if the interrecurrence times rJ = Tj - T J - l ,  j = 1,2, .  . . (To = 0) ,are iid. The 
MCF for a renewal process is also known as the “renewal function.” If a renewal 
process provides an adequate model for interrecurrence times, one can use the single 
distribution statistical techniques, as described in Chapters 3-1 1,  to display, model, 
and draw conclusions from the data. Note that an HPP is a renewal process [and that 
interrecurrence times rJ - EXP(8) with 8 = l / v ]  but the NHPP is not. 

Before using a renewal process model, it is important to check for departures from 
the model such as trend and nonindependence of interrecurrence times (note that, 
in general, independent increments, as defined in Section 16.4.2, and independent 
interrecurrence times are not the same). The methods in Section 16.5can be used for 
this purpose. If trend and nonindependence tests suggest a renewal process, then one 
might use methods in the earlier chapters of this book to describe the distribution of 
interrecurrence times (e.g., times between repairs, failures). 

Renewal process characteristics that are typically of interest include: 

The distribution of the T j  values. 

Thus the steady-state mean time between recurrences for a renewal process is 
E(7). Again, for a failure renewal process one would say that MTBF = E(7). 

The distribution of the time until the kth recurrence for a system, k = 1,2,. . . . 

The recurrence (or renewal) rate. 

The number of recurrences that will be observed in a given future time interval. 

16.4.5 Superimposed Renewal Processes 

The point process arising from the aggregation of renewals from a group of in-
dependent renewal processes operating simultaneously is known as a superimposed 
renewal process (SRP). Unless the individual renewal processes are HPP, an SRP is 
not a renewal process. Drenick’s theorem (Drenick, 1960)says, however, that when 
the number of systems n is large and the systems have run long enough to eliminate 
transients, an SRP behaves as an HPP. This result is rather like a central limit theorem 
for renewal processes. This result is sometimes used to justify the use of the expo- 
nential distribution to model interrecurrence times in a large population of systems. 
This result, for example, provides a possible explanation for why the MCF for the 
cylinder replacement data in Example 16.5 is nearly linear after about I200 days. 

Depending on the shape of the underlying distributions in the individual superim- 
posed renewal processes, large samples and long times may be needed for the HPP 
approximation to be adequate (see Blumenthal, Greenwood, Herbach 1973, 1976). 
In practice, it is straightforward to check the adequacy of the approximation by using 
simulation. 
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16.5 TOOLS FOR CHECKING POINT-PROCESS ASSUMPTIONS 

This section describes graphical and analytical tools for checking point-process model 
assumptions. 

16.5.1 Tests for Recurrence Rate Trend 

The simplest plot for recurrence data of a single system shows the cumulative number 
of system recurrences versus time (a special case of an MCF used with multiple 
systems). Nonlinearity in this plot indicates that the interrecurrence times are not 
identically distributed. For Poisson processes, this implies a nonconstant recurrence 
rate. An HPP should have an MCF plot that is approximately linear (but a linear 
MCF alone does not imply an HPP). A plot of interrecurrence times versus system 
age or a “time series plot” showing interrecurrence times versus recurrence number 
will allow discovery of trends or cycles that would suggest that the interrecurrence 
times are not identically distributed. 

Several formal tests for trend are available. The “Military Handbook” test (so 
known because it appears in MIL-HDBK-189) tests for /3 = 1 (implying HPP and 
thus no trend) in the power NHPP model. The statistic 

approximately has a x&.) distribution under the HPP model. Thus values of XLHB 
greater than provide evidence of a nonconstant recurrence rate v(r)at the 
1OOa% level of significance. This is a powerful tool for testing HPP versus NHPP 
with a power-model v( t ) .  

The well-known Laplace test has a similar basis for testing for trend in the loglinear 
NHPP model. In this case if the underlying process is HPP (71 = 0), the test statistic 

has, approximately, a NOR(0, 1) distribution. Thus values of ZLPin excess of 4 I - a / 2 )  

provide evidence of a nonconstant v(r)at the 100a% level of significance. This is a 
powerful tool for testing HPP versus NHPP with a loglinear v(r), 

Both the Military Handbook test and the Laplace test can give misleading conclu- 
sions for situations where there is no trend but the underlying process is a renewal 
process other than HPP. The Lewis-Robinson test for trend uses 

( 16.8) 

where ;i and S ,  are, respectively, the sample mean and standard deviation of the inter- 
recurrence times. The fraction on the right-hand side of ( 16.8) is the reciprocal of the 
sample coefficient of variation (the population coefficient of variation is defined in 
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Figure 16.9. Cumulative number of unscheduled maintenance actions versus age in operating hours for a 
U.S.S.Gmnrpus diesel engine. 

Section 4.2). In large samples, ZLRfollows approximately a NOR(0, 1) distribution if 
the underlying process is a renewal process (renewal processes, in general, have no 
trend). The statistic ZLRwas derived from heuristic arguments to allow for nonexpo-
nential interrecurrence times by adjusting for a different coefficient of variation (the 
exponential distribution has a coefficient of variation equal to 1). Results in Lawless 
and Thiagarajah ( 1996) indicate that ZLRis preferable to ZLPas a general test of trend 
in point-process data. 

Example 16.9 Initial Graphical Analysis of the Grampus Diesel Engine Data. 
Continuing from Example 16.1, Figure 16.9 shows the cumulative number of un- 
scheduled maintenance actions for a U.S.S. Grampirs diesel engine versus operating 
hours. The plot is nearly linear, indicating that the recurrence rate v ( t )  is nearly 
constant (as in the HPP model). Figure 16.10 shows the times between unscheduled 
maintenance actions plotted against maintenance action number. This plot indicates 
that there has not been a discernible trend over time (again consistent with the HPP 
model) but there is one large outlier (which might, e.g., have been caused by failing 
to report a single maintenance action). 

16.5.2 Test for Independent Interrecurrence Times 

When assessing the adequacy of a renewal process model, it is also necessary to check 
if the model assumption of independent interrecurrence times is consistent with the 

0 
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Figure 16.10. Times between unscheduled maintenance actions \'ersus maintenance action number for :i 
U.S.S.Grcrrrtpits diesel engine. 

data. To do this we consider the serial correlation in the sequence of interrecurrence 
times. Plotting interrecurrence times versus lagged interrecurrence times (T, versus 
~ ; + k )provides a graphical representation of serial correlation (the correlation between 
adjacent interrecurrence times). The serial correlation coefficient of lag-k is 

First-order serial correlation ( k  = 1 )  is typically the most important lag to consider. 
If 71,. . . ,T~ are observed interrecurrence times, then the sample serial correlation 

coefficient is 

where ? = C>=,Tj/r. When pk = 0 and r is large, Jr-k X & -L NOR(0, 1 ) .  
This approximate distribution can be used to assess if pk is different from zero. 

Example 16.10 Checking for  Independent Times Between Maintenance Ac-
tions in the U.S.S. Grampus Diesel Engine Data. Continuing from Examples 16.1 
and 16.9, Figure 16.1 1 plots the times between unscheduled maintenance actions ver- 
sus lagged times between unscheduled maintenance actions for the U.S.S. G ~ - m z p i ~ s  
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Figure 16.11. Plot of T,+ I versus 7,for the U.S.S. Grumpus diesel engine. 

diesel engine. Although at first glance there might seem to be some negative correla- 
tion, ignoring the one outlying large time between unscheduled maintenance actions 
(which appears twice in Figure 16.11)  suggests that there is no discernible serial cor- 
relation. Numerically, including the outlier, 61 = -.094 and &? X 61 = -.70 
(with an approximate p-value of .48). 0 

16.6 MAXIMUM LIKELIHOOD FITTING OF POISSON PROCESS 

16.6.1 Poisson Process Likelihood 

For a system that has been observed for a period (0,f a ] ,  the data are the number of 
recurrences ( 1 1 , .  . . ,d,,, in the nonoverlapping intervals ( to , t l ] ,( t l ,t 2 j ,  . . . , ( t,,,- t,,,] 
(with to = 0, t,,, = I ( , ) .  The likelihood for the NHPP model is 

n1 


= d,,]u e )  = Pr[N(ro,tl) = dl, . . . ,  ZV(~,,,-~,~,,J = n p r [ ~ ( t , + t , )  = d,l 
j =  I 
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As the number of intervals rn increases and the size of the intervals approaches zero, 
there are exact reported recurrence times at tl 5 * * * 5 t r  (here I' = cl'=I d,, 
to 5 t l , t r  F t,,), then using a limiting argument it follows that the likelihood in terms 
of the density approximation is 

16.6.2 Superimposed Poisson Process Likelihood 

Suppose that data are available from n independent systems with the same intensity 
function v( t ) and system i is observed in the interval (0,t,, 1, i = 1,. . . ,n, and the 
system i recurrence times are denoted by t i l , .  . . ,f i r , .  Then the NHPP likelihood is 
simply the product of the individual system likelihoods 

r 1 

The assumption that all systems have the same v( t )is a strong assumption that was not 
required for the nonparametric estimation method in Section 16.2. This assumption 
will often be inappropriate in practical applications. Generalizations (e.g., use of 
explanatory variables to account for system-to-system differences) are possible but 
are beyond the scope of this book. 

16.6.3 ML Estimation for the Power NHPP 

For the NHPP model with a power v( t ) , the single-system likelihood for exact 
recurrence times is 

IThe ML estimates of the parameters are p̂  = r /  E;.=log ( t c i / t j )  and ?j = i(,/r ''6. 
The relative likelihood is 

16.6.4 ML Estimation for the Loglinear NHPP 

With a loglinear v( t )and exact recurrence times, the single-system likelihood is 
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The ML estimates 70 and 71 are obtained by solving 

The relative likelihood is 

Example 16.11 U.S.S. Grampus Diesel Engine Data. Figure 16.12 shows 
the fitted p(t)  for both the power and loglinear NHPP models. There is very little 
difference between the two NHPP models and both seem to fit the data very well. 
For the power NHPP model, p = 1.22 and $ = S53. For the loglinear NHPP 
model, To = 1.01 and = .0377. The Lewis-Robinson test gave ZLR= 1.02 with 
p-value = .2 1. The MIL-HDBK- 189 test gave X L , ,  = 92 with p-value = .08.These 
results are consistent with a renewal process. Exponential and Weibull probability 
plots (details requested in Exercise 16.7) strongly suggested that the times between 
unscheduled maintenance actions could be described by an exponential distribution. 
Thus these data seem to be consistent with the HPP model. U 
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Figure 16.12. Cumulative number of unscheduled maintenance actions for a U.S.S. Grumpus diesel 
engine versus operating hours with fitted power and loglinear NHPP models. 



MAXIMUM LIKELIHOOD FITTING OF POISSON PROCESS 415 

Table 16.4. Engine Age at Time of Unscheduled Maintenance Actions (in Thousands of 
Hours of Operation) for the U.S.S. Halfleak Number 4 Main Propulsion Diesel Engine 

1.382 2.990 4. I24 6.827 7.472 7.567 8.845 9.450 
9.794 10.848 11.993 12.300 15.413 16.497 17.352 17.632 

18.122 19.067 19.172 19.299 19.360 19.686 19.940 19.944 
20.121 20.132 20.431 20.525 2 1.057 21.061 2 1.309 21.310 
2 1.378 21.391 2 I .456 21.461 2 I .603 2 1.658 2 1.688 2 1.750 
21.815 2 1.820 21.822 2 1.888 2 1.930 2 1.943 2 1.946 22.181 
22.31 1 22.634 22.635 22.669 22.691 22.846 22.947 23. I49 
23.305 23.49 1 23.526 23.774 23.79 1 23.822 24.006 24.286 
25.000 25.010 25.048 25.268 25.400 25.500 25.5 18 

Data from Ascher and Feingold (1984, page 75). Reprinted with permission, copyright Marcel Dekker. 

Example 16.12 U.S.S. Halfbeak Diesel Engine Data. Table 16.4 gives times 
of unscheduled maintenance actions for the U.S.S. Haljbeak number 4 main propul- 
sion diesel engine over 25,5 18 operating hours. As with the Grarnpiis data, questions 
to be answered were: (1) Was the system deteriorating (i.e., are unscheduled mainte- 
nance actions occurring more rapidly as the system ages)? and (2) Can unscheduled 
maintenance actions be modeled by an HPP? Figure 16.13 shows the cumulative 
number of unscheduled maintenance actions versus operating hours with fitted p(t)  
for both the power and loglinear NHPP models. Both NHPP models roughly follow 
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Figure 16.13. Cumulative number of unscheduled maintenance actions for a U.S.S. HrilJheak diesel 
engine versus operating hours with fitted power and loglinear NHPP models. 
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Figure 16.14. Times between unscheduled maintenance actions for a U.S.S.Huljbeak diesel engine versus 
maintenance action number. 

the pattern in the data (nonparametric estimate), but th5loglinear v(t>seems to fit a 
little better than the power v(t>.For the power model, /3 = 2.76 and ?j = 5.45. For 
the loglinear model, To = - 1.43 and = .149. Figure 16.14 shows a strong down- 
ward shift in the times between unscheduled maintenance actions after maintenance 
action number 17, suggesting a change in the distribution of times between main- 
tenance actions. Confirming this, the Lewis-Robinson test gave ZLR = 4.70 with 
p-value = 2.5 X 1Op6. The MIL-HDBK- I89 test gave X i H B= 5 1 with p-value ==: 0. 
Figure 16.15 plots the times between unscheduled maintenance actions versus lagged 
times between unscheduled maintenance actions. This plot indicates a strong positive 
correlation. Numerically, = .43 and d? X = 3.58. In contrast to the 
Grctrrzpus data, there is strong evidence against the HPP model for these data. 0 

16.6.5 Confidence Intervals for Parameters and Functions of Parameters 

Confidence intervals for NHPP parameters or functions of the parameters can be 
computed using the general ideas developed in Chapters 7 and 8. 

16.6.6 Prediction of Future Recurrences with a Poisson Process 

The expected number of recurrences in an interval [ U , h] is Jab v(u,0)du. The cor- 
responding ML point prediction is L: v(u,6)du. A point prediction for the future 
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Figure 16.15. Times between unscheduled maintenance actions versus lagged times between unscheduled 
maintenance actions for U.S.S. Huljheuk diesel engine. 

number of recurrences using the power NHPP model is 

Similarly, a point prediction for the future number of recurrences using the loglinear 
NHPP model is 

Prediction intervals could be computed using bootstrap/simulation methods like those 
used in Chapter 12. 

16.7 GENERATING PSEUDORANDOM REALIZATIONS 
FROM AN NHPP PROCESS 

This section shows how to generate a pseudorandom realization T1, T?, . . . from an 
NHPP process. Such realizations are useful for checking the adequacy of large- 
sample approximations and for implementing bootstrap methods like those described 
in Chapter 9. 
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16.7.1 General Approach 

Using the properties of the NHPP model, it is easy to show (see Exercise 16.14) 
that for a monotone increasing p(t),the random variables p(Tj -1 ,  Tj), i = 1,. . . , 
are iid, each with an EXP(1) (where 7'0= 0). Suppose that U,, i = 1, .  . . ,r ,  is a 
pseudorandom sample from a UNIF(0, 1). Then using ~(7'-I ,  Ti)= p(Ti)- p(T,- ) 
and solving sequentially for TI,T 2 , .. . gives the equations 

Then solving for T I ,. . . ,T, gives r recurrence times from the NHPP with recurrence 
rate v ( t )  [or MCF ~ ( t ) ] .If one wants a realization in an interval (O,t ,] ,  then r is 
random and the sequential process is stopped when T,  > tCl,which implies that the 
number of recurrences is r = i - 1. 

The general solution can be expressed as 

Sometimes it is more convenient to express the general solution recursively as 

where To = 0. The following subsections give explicit formulas for two cases of 
interest. 

16.7.2 NHPP with a Power Recurrence Rate 

In this case p(t ) = ( r / q ) P  and p-I (s)  = q X s ( ' / P ) .Then using the general solution, 
one gets 

16.7.3 NHPP with a Loglinear Recurrence Rate 

In this case p(t)  = [exp(yo)j[exp(ylt)- l] /yl  and 
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Again using the general solution, one gets 

- 1- - X log[exp(yl 7’-I)  - yl x exp(-yo) x log(U,)], j = I , .  . . . 
YI 

16.8 SOFTWARE RELIABILITY 

State-of-the-art reservation, banking, billing, accounting, and other financial and 
business systems depend on complicated software systems. Additionally, modern 
hardware systems of all kinds, from automobiles and televisions to communications 
networks and spacecraft, contain complicated electronic circuitry. Most of these elec- 
tronic systems depend heavily on software for important functionality and flexibility. 
For many systems, software reliability has become an important limiting factor in sys-
tem reliability. The Institute of Electrical and Electronic Engineers defines software 
reliability as “the probability that software will not cause a system failure for a spec-
ified time under specified conditions.” This is very similar to the general definition 
of reliability given in Section 1.1.1. 

Software reliability differs from hardware reliability in at least one important way. 
Hardware failures can generally be traced to some combination of a physical fault 
and a physicalkhemical degradation that progresses over time, perhaps accelerated 
by stress, shocks, or other environmental or operating conditions. Software failures, 
on the other hand, are generally caused by inherent faults (or “bugs”) in the software 
that are usually present all along (although a new fault can be introduced during the 
process of fixing an existing fault). Actual failure may not occur until a particular set 
of inputs is used or until a particular system state or level of system load is reached. 
The state of the software itself does not change without intervention. 

Software errors differ in their criticality. Those who work with personal computers 
know that from time to time the system will stop functioning for reasons that are 
unknown. The cause is often software related (i.e., would not have occurred if the 
software had been designed to anticipate the conditions that caused the problem). 
Restarting the computer and the application will seem to make the problem disappear. 
Important data in the application being used at the time of the failure may or may not 
have been lost. Future versions of the operating system or the application software may 
reduce the probability of such problems. In safety-critical systems (e.g., medical, air- 
traffic control, or military weapons-control systems) software failures can, of course, 
have much more serious (e.g., life-threatening) consequences. 

For some purposes, statistical methods for software reliability are similar to those 
used in monitoring a repairable system or another sequence of recurrences. Software 
reliability data often consist of a sequence of times of failures (or some other specific 
event of interest) in the operation of the software system. Software reliability data 
are collected for various reasons, including assessment of the distribution of times 
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between failures, tracking the effect of continuing efforts to find and correct software 
errors, making decisions on when to release a software product, and assessing the 
effect of changes to improve the software development process. 

Numerous special models have been suggested and developed to mode1 software 
reliability data. The simplest of these describe the software failure rate as a smooth 
function of time of the service and other factors, such as system load and amount of 
testing or use to which the system has been exposed. The models and data analysis 
methods presented in this chapter are useful for software data analysis. In an attempt to 
be more mechanistic and to incorporate information from the fix process directly into 
the software reliability model, many of these models have a parameter corresponding 
to the number of faults remaining in the system. In some models, the failure rate 
would be proportional to the number of faults. When a “repair” is made, there is 
some probability that the fault is fixed and, perhaps, a probability that a new fault 
is introduced. For more information on software reliability and software reliability 
models, see Musa, Iannino, and Okumoto (1987), Shooman (1983), Neufelder ( 1993), 
Chapter 6 of Pecht (1995), or Azem (1995). 

BIBLIOGRAPHIC NOTES 

Ascher and Feingold (1984) provide a comprehensive review of the important ideas 
for modeling a single repairable system. Thompson ( 1981) outlines and explains 
important aspects of probabilistic models and metrics relating to reliability of re- 
placeable units and repairable systems. Snyder (1975), Cox and Isham (1980), and 
Thompson (1988) present theory and methods for general point-process models. Nel- 
son (1988) describes simple graphical methods for the analysis of system repair data. 
Nelson (1995a) extends these results, showing how to compute confidence limits for 
the MCF, and references available computer programs. Our presentation of methods 
for nonparametric estimation depends heavily on the results in these papers, but the 
formulas given in this chapter are closer to those in Lawless and Nadeau (1995).Law-
less and Nadeau ( 1995) also present models and methods for covariate adjustment and 
for comparing point processes. Robinson ( 1995) derived the finite-sample variances 
given in Section 16.2.3. Doganaksoy and Nelson (1991) explain how to compare 
two samples of repair data and provide a computer program. Cox and Lewis (1966) 
provide an outline of methods for analyzing point-process data. Cox (1962) gives spe- 
cial attention to renewal processes. Crowder, Kimber, Smith, and Sweeting (199 I ) ,  
Ansell and Phillips (1994), and Hgyland and Rausand (1994) contain useful chapters 
on counting processes, including Poisson process models, and corresponding meth- 
ods for data analysis. Lee (1980) presents methods for testing between HPP with 
NHPP alternative models. Lawless and Thiagarajah (1996) present a general mode1 
that connects NHPP and renewal processes and allows for adjustment for covariates. 
Crow (1982) uses the power NHPP model to describe reliability growth of a prod- 
uct. Kuo and Yang (1996) describe Bayesian computations for NHPP models with 
applications to software reliability. 
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EXERCISES 

16.1. A small unmonitored computer laboratory contains 10networked microcom- 
puters. Users who notice a hardware or software problem with a computer 
are supposed to report the problem to a technician who will fix the problem. 
The following table gives, for each computer, the days in which trouble calls 
were received. Most of the trouble reports were easy to address (replace a de- 
fective mouse, reboot the computer, remake the computer's file system from 
the server, remove stuck floppy disk, tighten loose connector, etc.). Calls 
reporting network problems or problems in the remote file server (which 
would affect all of the computers in the laboratory) were eliminated from the 
database. All of the computers were in operation for the entire semester (day 
1 through 105). 

Unit Number Day Trouble Reported 

40 1 18, 22,45, 52, 74, 76, 91, 98, 100, 103 
402 1 1 ,  17, 19, 26, 27, 38,47,48, 53, 86, 88 
403 2,9, 18,43,69,79, 87, 87,95, 103, 105 
404 3, 23,47,61, 80,90 
50 1 19,43, 51,62, 72, 73, 91, 93, 104, 104. 105 
502 7, 36,40,51, 64, 70, 73, 88, 93, 99, 100, 102 
503 28,40, 82, 85, 89, 89, 95, 97, 104 
504 4, 20,31,45, 55,68,69,99, 101, 104 
601 7, 34, 34,79, 82, 85, 101 
602 9,47, 78, 84 

Plot the trouble reports on a time-event chart. 
Compute an estimate of the mean cumulative number of trouble reports. 
as a function of days. 
What do you notice about the pattern of trouble reports over the semester? 
What could explain this pattern? 
What information could be added to the table above to make the data on 
computer trouble reports more informative and more useful? 
Could these data be used to predict the number of trouble reports next 
semester for the same lab? 
Could these data be used to predict the number of trouble reports next 
semester for a different computer lab in the same building? Explain. 

A16.2. Consider the NHPP model with a power v( t )given in Section 16.6.3. 
(a) Verify the formulas given there for the ML estimates of the parameters 

p and q. 
(b) Verify the expression given for the relative likelihood R(P,q). 
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( c )  Show that the profile likelihood for /3 has the form 

A16.3. Consider the NHPP model with a loglinear v ( t )given in Section 16.6.4. 
(a) Do parts (a) and (b) as in Exercise 16.2, but using the loglinear NHPP 

model. 
(b) Show that the profile likelihood for yI is 

r 1 


A16.4. A repair process has been observed for a period (tO,t(J]and the data are the 
number of repairs d l ,  . . . ,d,,, in the nonoverlapping intervals ( to , tl 1, (t l  ,t ? ] ,  

. . . , (t,,,- 1, t,,,] (with t,,, = t,,). Suppose that the process can be described with 
the loglinear v ( t )NHPP model. 
(a) Show that the ML estimates To and 71 are the solution to the equations 

where r = I d j .  

(b) Show that when the length of the intervals t i+l  - t ,  approaches zero 
(exact recurrence times reported), then the formulas in part (a) simplify 
to the formulas given in Section 16.6.4. 

16.5. Show that substituting (16.3) and (16.4) into (16.2) and simplifying 
gives (16.5). 

16.6. Consider the power-loglinear recurrence rate given by 

(a) Show that this model includes as special cases the power and loglinear 
models. 



EXERCISES 423 

(b) Show that under the NHPP model, the mean cumulative number of 
system events over (0,t ]  is 

( c )  Derive expressions for p(t)for the power and loglinear models from the 
general expression given above. 

16.7. Example 16.1 1 showed that the times between unscheduled maintenance 
actions were consistent with a renewal process. Use exponential and Weibull 
probability plots to explore the form of the distribution of the times between 
unscheduled maintenance actions. 

16.8. Verify the computation of cr[@(t2)]  and cr [@(t j ) ]  given in Example 16.4. 

A 16.9. A company manufactures systems. The number of faults in a new system, 
say, X ,  has a Poisson distribution with mean y. Each fault has associated with 
it a time of occurrence. These times can be modeled as being independent 
and distributed with a pdf f ( t ;  0).Consider the counting process N ( r )  giving 
the number of failures at time t (see Kuo and Yang, 1996, for a more detailed 
description and applications for this model). 

Show that, conditional on fixed number of faults X > 0, the distribution 
of N ( t ) is binomial with probability of success equal to F ( t ) .  

Show that N ( t ) is an NHPP with v( t )= y f ( t ;0). 
Derive an expression for the MCF p(t) .  

Show that lim,+x p(t) = y < m, and give an intuitive explanation for 
this result. 
Derive an expression for the probability of zero failures in the inter- 
val ( O , t ] .  Use this expression to show that there is always a positive 
probability of zero failures even for large t .  

Suppose that f ( t ;  0) is an exponential density with mean 8. 

(i) Show that in this case the recurrence rate v ( t )is a loglinear function 
and express and as a function of 8 and y. 

(ii) Show that there is a restriction on the sign of PI imposed by the 
model. 

Derive expressions for v( t )and p(t)when f ( r ;  0) is a Weibull density. 

16.10. A company that runs a fleet of passenger automobiles would like to do a 
retrospective study to compare two different brands of automobile batter- 
ies. The fleet contains 55 automobiles. All of the automobiles started with 
Brand B, but during the life of the automobiles, when a battery failed. i t  was 
replaced with either Brand A or Brand B. The available data show the date 
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of purchase of the original automobile and the date and brand of replacement 
for batteries that were replaced. 
(a) How would you organize the data for analysis? What kind of questions 

could you answer from an analysis focusing on the mean cumulative 
number of failures? 

(b) Describe some of the potential pitfalls involved in drawing inferences 
from a retrospective study like this. What advantages would there be 
for doing a prospective study where the failure times of future batteries 
would be studied? 

( c )  What assumptions would you have to make about the battery failures 
in order to be able to use the times between battery failures to estimate 
a failure-time distribution for the batteries? How could you use the 
available data to check the assumptions? 

16.11. Suppose that n repairable systems were put into service at the same time and 
that, up to time t j ,  all systems are still being monitored. 
(a) Show that, in this case, the estimator of the MCF at r j  in (16.1) reduces 

to the sample mean of the N;(tj) values: 

(b) Show that the estimator of Var[E(tj)] in (16.3) reduces to 

(c) Show why Cr[F(t j ) ]  = 0 when N I ( t j )  = N 2 ( t j )  = * - * = Nn(tj). 
(d) Give the formula for the unbiased estimator of Var[G(,)]. 

A16.12. As in Exercise 16.11 suppose that n repairable systems are being observed 
but that at time t ,  some of the systems have been censored. 
(a) Show the result in Exercise 16.1 1 part (a) does not hold. 
(b) Show that the result in Exercise 16.11 part (c) is still true. 

A16.13. Consider a sequence of recurrence times 7'1 ,T2,. . . from an NHPP with 
recurrence rate v( t ) .  
(a) Show that the cdf of T, conditional on T,-l is 

l,'
F ( t  I T, - , )  = Pr(T, 5 t 1 Tl - l ) = 1 - erp[- , u(u)du] . 

Hint: Note that Pr(T, > t I 7',-1)= Pr " ( t )  - N ( T , - l )  = 01 and use the 
properties of the NHPP. 

(b) Using the method given in Section 4.13, show that 

F(T,  I T,- 1 )  UNIF(0, 1). 
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( c )  Suppose that To = 0. Show that pseudorandom observations of Ti are ob-
tained from the sequence T I  = F-'  ( U l ) ,T2 = F- '  (U2 I T I ),. . . ,T; = 

F-I (U ,  I Tj-1) where U' , . . . ,U; is a pseudorandom sample from a 
UNIF(0,l). 

(d) For the power model, show that simulated values of the NHPP can be 
obtained from the sequence, 

Also show that the recursive formula can be expressed as 

TI = q[-log(l - UI)]I@, 

j =  1 

1 / P  

U;)] * 

;= 1 

(e)  Show why and how one can replace 1 - Uj with U;,j = I , .  . . , in 
part (d), and still the expressions will provide the desired sequence of 
NHPP recurrence times. 

(f) Derive the corresponding recursive formulas for the NHPP model with 
loglinear recurrence rate function. 

16.14. Consider an NHPP model with a strictly positive recurrence rate v( t ) [i.e., 
v( t )  > 0 for all t in [0,m)]. Let T1, T1,., . be the random times at which 
the recurrent events occur in the stochastic process. Let W I  = ~ ( T I ) ,  =W ,  
p(T2)denote transformed times, where p(r) is the process MCF. 
(a) Show that the time transformation ~ t '= p(t) is monotone increasing. 

This implies that the inverse transformation t = p- ' (w~)is well defined. 
(b) Let N w ( a )  be the number of events in the interval [O,a)in the W time 

scale. Show that events in nonoverlapping intervals are independent and 
that 
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N w ( 0 )  = 0 

Pr [Nw(a,6) = d ]  = Pr{N[p-l(a), p- ' (b ) ]= d }  

- (6 - a)d-____exp[-(6 - a ) ] ,d = 0, 1,2,. . . .
d !  

This implies that in the W time scale, the point-process is HPP with a 
constant recurrence rate equal to 1. 

(c )  Using the result in part (b), show that the interrecurrence transformed 
times Wj - W;-1 = p(Ti-1, Ti), i = 1,2,. . . (where WO = 0), are iid 
with an EXP( I ) distribution. 

e16.15. The first confidence interval procedure given in Section 16.2.3 is based on the 
large-sample approximation that Z@( , ,= [ G ( t )- p(t ) ] /kp( , )-L NOR(0, 1).  
The adequacy of this approximation depends on the number of system in the 
sample, and the distribution of the cumulative function levels at the point in 
time of interest. The adequacy of the approximation can be checked by doing 
a Monte Carlo simulation. 
(a) Show that if the underlying processes generating repairs for refrigerators 

can be described by an NHPP (with possibly different recurrence rate 
functions from refrigerator to refrigerator), the cumulative number of 
repairs for a sample of such refrigerators at a particular point in time 
(assuming no censoring) has a Poisson distribution. 

(b) Simulate 1000 samples, each giving the total number of repairs from 
n = 5 systems. Suppose, as suggested in part (a), that iV,(t), the 
cumulative number of repairs at time t for all n systems, has a Poisson 
distribution with mean E [E;=,N j ( t ) ] = 30. For each sample, compute 
(again, assuming no censoring) @(r), &,(,,, and Z G ( ~ ) .Make a normal 
probability plot of the Zjj(t, .What do you conclude? 

( c )  Repeat part (a), but use samples of size IZ = 10, 25, SO, and 100. What 
do you conclude? 

(d) Explain how you could use the bootstrap methods in Chapter 9 to obtain 
better approximate confidence intervals for p(t). 

e16.16. Redo Exercise 16.15 with E [Er=,N , ( t ) ] = 5, 10,20,SO,  and 100. Comment 
on the results. 
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Failure-Time Regression Analysis 

Objectives 

This chapter explains: 

Modeling life as a function of explanatory variables. 
Graphical methods for displaying censored regression data. 
Time-scaling transformation functions and other forms of relationships between 
life and explanatory variables. 
Simple regression models to relate life to explanatory variables. 
Likelihood methods to draw conclusions from censored regression data. 
How to detect departures from an assumed regression model. 
Extensions to more elaborate nonstandard regression models that can be used 
to relate life to explanatory variables, including quadratic regression, models in 
which U depends on explanatory variables, and proportional hazards models. 

Overview 

This chapter builds on the material in Chapter 8 and other earlier chapters. It shows 
how to model time as a function of explanatory variables. Section 17.2 introduces 
the idea of time acceleration and related failure-time regression models and contrasts 
them with other regression models. Section 17.3 uses a simple regression example to 
explain and illustrate the most important concepts in this chapter. Section 17.4 shows 
how to extend methods from Chapter 8 to compute confidence intervals for model 
parameters and functions of parameters (e.g., quantiles and failure probabilities). Sec- 
tions 17.5, 17.7, and 17.8 describe applications requiring other, more complicated, 
regression models. Section 17.6 shows how to adapt traditional regression diagnos- 
tics to nonnormal distributions and problems involving censored data. Section 17.9 
describes the Cox proportional hazard model, which has been used occasionally for 
analyzing field-failure data. 

427 
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17.1 INTRODUCTION 

Chapters 3- I 1 presented and illustrated the use of models to describe a single failure- 
time distribution. In this chapter we present and illustrate methods for including 
explanatory variables in failure-time models. Some of the material in this chapter 
will be familiar to those who have previously studied traditional statistical regression 
analysis. There the mean of a normal distribution is modeled as a linear function of one 
or more (possibly transformed) explanatory variables. The more general regression 
methods presented here were needed to solve practical problems in reliability testing 
and data analysis. 

Example 17.1 Computer Program Execution Time Data. Appendix Table 
C. 1 1 and Figure 17.1 give the amount of time it took to execute a particular computer 
program, on a multiuser computer system, as a function of the system load (obtained 
with the Unix u p t  i m e  command) at the point in time when execution was beginning. 
The figure shows that, as one might expect, it takes longer to execute a program when 
the system is more heavily loaded. The figure also indicates that there is more 
variability at higher levels of system load. Execution-time predictions are useful for 
scheduling subsequent steps in a multistep series-parallel computing problem. 0 

Example 17.2 Low-Cycle Fatigue Data on a Nickel-Base Superalloy. Ap-
pendix Table C.12 and Figure 17.2 give low-cycle fatigue life data for a strain- 
controlled test on 26 cylindrical specimens of a nickel-base superalloy. The data were 
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Figure 17.1. Scatter plot of computer program execution time versus system load. 
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Figure 17.2. Scatter plot of low-cycle superalloy fatigue life versus pseudostress for specimens of a 
nickel-base superalloy. Points marked with A are right-censored observations; others are failures. 

originally described and analyzed in Nelson (1984; 1990a, page 272). Four of the 
specimens were removed from test before failure. These censored observations are 
indicated by a A in Figure 17.2. In addition to number of cycles, each specimen 
has a level of pseudostress (Young's modulus times strain). The purpose of Nelson's 
analysis was to estimate the curve giving the number of cycles at which . I %  of the 
population of such specimens would fail, as a function of the pseudostress. Figure 17.2 
shows that (as expected) failures occur sooner at high pseudostress. Also, at lower 
stress there is more spread in the failure times. The following sections will explore 
several models for the relationship between cycles to failure and pseudostress. 0 

17.2 FAILURE-TIME REGRESSION MODELS 

A model with explanatory variables sometimes explains or predicts why some units 
fail quickly and other units survive a long time. Also, if important explanatory vari- 
ables are ignored in an analysis, it is possible that resulting estimates of quantities of 
interest (e.g., distribution quantiles or failure probabilities) could be biased seriously. 
In reliability studies possible explanatory variables include: 

Continuous variables like stress, temperature, voltage, and pressure. 
Discrete variables like number of hardening treatments or number of simulta-
neous users of a system. 
Categorical variables like manufacturer, design, and location. 
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The general idea of a regression model is to express the failure-time distribution as a 
function of k explanatory variables denoted by x = (XI ,. . . ,x k ) .  For example, 

Pr(T 5 r ; x ) = F ( r ; x )= F(r ) .  

In some cases, to simplify notation, we will suppress the dependency of F ( r ) on x. 
Regression models can come from physicalkhemical theory, curve fitting to empir- 
ical observations, or some combination of theory and empiricism. In science and 
engineering, new knowledge and theory are often developed and refined through 
iterative experimentation. 

17.2.1 Parameters as Functions of Explanatory Variables 

An important class of regression models allows one or more of the elements of the 
model parameter vector 8 = (01,... , O r )  to be a function of the explanatory variables, 
Generally, one employs a function with a specified form with one or more unknown 
parameters that need to be estimated from data. This is a generalization of statistical 
regression analysis in which the most commonly used models have the mean of the 
normal distribution depending linearly on a vector x of explanatory variables. For 
example, if xi is a scalar explanatory variable for observation i, then the normal 
distribution mean is 

In this case we think of xi as being a fixed part of datai. When the x, values are 
themselves random, standard statistical methods and models provide inferences that 
are conditional on the fixed, observed values of these explanatory variables. Then 
the unknown regression model coefficients (POand P I )replace the model parameter 
pi in a new definition of 8.  In some situations, there may be more than one model 
parameter that will depend on one or more explanatory variables. 

17.2.2 The Scale- Accelerated Failure-Time Model 

The scale-accelerated failure-time (SAFI‘) model is commonly used to describe the 
effect that explanatory variables x have on time. This model has a simple time-scaling 
acceleration factor that is a function of x and is defined by 

(17.1) 

where T ( x ) is the time at conditions x and T(x0) is the corresponding time at some 
“baseline” conditions xg. Some commonly used forms for the time-scale factor AF(x) 
include the following log linear relationships [assuring that AF(x)> 01: 

For a scalar x, AF(x)= l / exp(P~x)  with xo = 0. 
For a vector x = (X I , .  . . ,xk) ,  dF(x)= 1 / exp(Plx1 + - - - +Pkxk)with xo = 0. 
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Figure 17.3. SAFT models illustrating acceleration and deceleration. 

When AF(x) > 1, the model accelerates time in the sense that time moves more 
quickly at x than at xo so that T ( x )< T(x0).When 0 < AF(x)< 1 ,  T ( x )> T(xo) ,  
and time at x is decelerated relative to time at xo, but we still refer to the model 
as SAFT. Figure 17.3 illustrates that scale failure-time transformation functions are 
straight lines starting at the origin: 

Lines below the diagonal accelerate time relative to time at XO. 

Lines above the diagonal decelerate time relative to time at xg. 

Figure 17.3 and equation (17.1) describe the effect that M ( x ) has on time. In 
terms of cdfs, with baseline cdf F ( t ; x o ) ,F ( t ; x ) = F [ d F ( x )  X t ;xo] . This shows 
that if AF(x)f 1, the cdfs F ( t ;x) and F ( t ;xo)do not cross each other. In terms of 
distribution quantiles, t&) = rp (xo) /dF(x) .Then taking logarithms, and isolating 
the term log[A.F(x)], gives 

( 1  7.2) 

Thus, as shown in Figure 17.4, in a cdf plot or a probability plot with a log data scale, 
F ( t ,x) is a translation of F(r,xo) along the log(r) axis. 

SAFT models are relatively simple to interpret. Also they are often suggested by 
the physical theory of some simple failure mechanisms (as shown in Chapter 18). 
They do nor, however, hold universally (as shown in Sections 17.5.2 and 18.3.5). 
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Figure 17.4. Weibull probability plot showing that two lognormal cdfs with a scale-accelerated failure- 
time (SAFT) regression relationship are equidistant along the log-time axis. 

17.3 SIMPLE LINEAR REGRESSION MODELS 

This section describes and illustrates the use of simple linear regression models 
(i.e., models with a single explanatory variable) based on location-scale distribu- 
tions, including the normal, logistic, and smallest extreme value. These models are 
closely related with the traditional linear regression model. Maximum likelihood 
(ML) estimation is used instead of least squares, however, to handle censored data 
and nonnormal distributions. Because of the relationships described in Sections 4.6, 
4.8, and 4.1 I ,  location-scale models can be used also to fit log-location-scale distri- 
butions (e.g., Weibull, lognormal, and loglogistic) regression models. The methods 
developed in this and some of the following sections in this chapter can be viewed 
as a generalization of the material in Chapter 8, allowing p (and later a )to depend 
on explanatory variables. Although i t  would be possible to use notation like p(.t-)to 
make this dependency explicit, we will keep the notation simple, as the dependency 
will be clear from the context of the problem. 

We will first illustrate the methods for the lognormal distribution. The methods 
apply, however, directly to other log-location-scale distributions or other distribu- 
tions that can be transformed into the location-scale form. Sections 17.5-17.10 il-
lustrate various extensions of the simple regression model. These extensions include 
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quadratic relationships, models with more than one explanatory variable, a model for 
product comparison, and relationships based on more general time-transformation 
functions. 

17.3.1 Location-Scale Regression Model and Likelihood 

With only one explanatory variable, the location-scale simple regression model (in- 
cluding the normal, logistic, and smallest extreme value distributions as special cases) 
is 

Pr(Y 5 y )  = F ( y ;p, a)= F ( y ;PO,PI ,a)= @ ( 17.3) 

where p = PO + Plx and a does not depend on the explanatory variable x .  The 
quantile function for this model 

is linear in x. As with the Chapter 8 models, choosing @ determines the shape 
of the distribution for a particular value of x. One uses Qnor for normal, @,"gib for 
logistic, and OS,== for the smallest extreme value distribution. In this model POcan 
be interpreted as the value of p when x = 0 (when this has meaning) and PI is the 
change in p [or y p ( x ) ]for a one-unit increase in x. 

The likelihood for a sample of n independent observational units with right- 
censored and exact-failure observations has the form 

where p, = PO+P l x , ,  Si = 1 for an exact failure time, and 6, = 0 for a right-censored 
observation. Similar terms could be added for left-censored or interval-censored 
data, as described in Section 2.4.3. As in Chapter 8, ML estimates are obtained 
by finding the values of PO,P I ,  and U that maximize (17.5) or, equivalently, the 
corresponding log likelihood (preferred for numerical reasons). With an underlying 
normal distribution and complete data, there are simple closed-form equations to 
compute the ML estimates. Generally, it is necessary to use numerical optimization 
methods to maximize the log likelihood. 

17.3.2 Log-Location-Scale Regression Model and Likelihood 

Following the development in Section 17.3.1, the log-location-scale distribution sim- 
ple regression model (including the lognormal, Weibull, and loglogistic distributions 
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as special cases) is 

where p = P O  + Plx and cr does not depend on x. The quantile function for this 
model 

log[t,(x)] = y p ( x )  = " + @-I(p)cr = P O  + p1x + W 1 ( p ) a  (17.7) 

is linear in x. Such a relationship between t p (x>and x is sometimes known as a 
"loglinear relationship." Choosing @ determines the shape of the distribution for a 
particular value of x. One uses anorfor lognormal, @logis for loglogistic, and 
for the Weibull distribution. Again, PI can be interpreted as the change in p (or in 
log[t,(x)]) for a one-unit increase in x. Relatedly, because the response is on the log 
scale, lOOP1 can be interpreted as the approximate percent increase in t, ,(x) for a 
one-unit increase in x. Reexpressing the quantile function as 

shows that this regression model is a SAFT model with AF(x)= l/exp(Plx). 
The likelihood for a combination of n independent exact-failure and right-censored 

observations is 

where p, = PO+P Ixi, 6; = 1 for an exact failure time, and 6; = 0 for a right-censored 
observation. Similar terms could be added for left-censored or interval-censored data, 
as described in Section 2.4.3.As in Chapter 8, ML estimates are obtained by finding 
the values of PO,P ,,and cr that maximize (17.8) or the corresponding log likelihood. 
Also, as described in Section 8.2.2, some computer programs omit the I/t, factor 
in the density part of the likelihood and therefore caution should be used when 
comparing values of log likelihoods computed with different software. 

Example 17.3 Loglinear Lognormal Regression Model for the Computer 
Program Execution Times. Continuing with Example 17.1, Figure 17.5 shows the 
lognormal simple regression model fit to the computer program execution-time data. 
Table 17.1 summarizes the numerical results. Fitting this model is equivalent to fitting 
a simple linear relationship to the logarithms of the times. The estimated densities in 
Figure 17.5 are normal distribution densities because they are plotted on a log-time 
scale. This loglinear model provides a useful description of the data. 0 
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Figure 17.5. Computer program execution time versus system load with fitted lognormal regression 
model. The lines show ML estimates of the . I ,  .5, and .9 lognormal distribution quantiles as a function of 
system load. 

Table 17.1. ML Estimates for the Computer Execution-Time Example 

Approximate 95% 
Confidence Interval 

ML Standard 
Parameter Estimate Error Lower Upper 

P O  4.49 . 1 1  4.28 4.7 I 
P1 ,290 .05 .20 .38 
U .312 .05 .22 .44 

The log likelihood is L = -89.50. The confidence intervals for PO,P I ,  and log(a) are based on the 
normal-approximation method. 

17.4 STANDARD ERRORS AND CONFIDENCE INTERVALS FOR 
REGRESSION MODELS 

This section shows how to compute estimates of standard errors and confidence 
intervals for parameters and functions of parameters. We use the computer execution- 
time data and the simple regression model in Section 17.3 as an example. The general 
theory is in Appendix Section B.6.7. Other examples in this chapter, in the exercises, 
and in subsequent chapters illustrate how the general ideas apply directly to more 
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complicated models. We will focus primarily on normal-approximation confidence 
intervals. Likelihood and bootstrap confidence intervals described in Chapters 8 and 
9 can also be used for these models. 

Standard errors are provided by most computer software packages. Normal- 
approximation confidence intervals may or may not be provided but are easy to 
compute given the ML estimates and standard errors. Although they are superior, 
likelihood and simulation (bootstrap) intervals typically require specialized proce- 
dures not commonly available in today’s commercial software. 

17.4.1 Standard Errors and Confidence Intervals for Parameters 

Appendix Section B.6.7 describes the general theory for computing normal-approx- 
imation confidence intervals that can be applied to regression models. These con- 
fidence intervals are based on the large-sample approximate normal distribution of 
the ML estimators. These intervals employ an estimate of the variance-covariance 
matrix for the ML estimates of the model parameters 6 = (& f i l  i?). Extending the 

h 

ideas presented in Section 8.4.1 * the “local” estimate ZGof ZGis the inverse of the 
“observed” information matrix, namely, 

where the partial derivatives are evaluated at PO,PI,3. 

Example 17.4 Parameter Variance-Covariunce Matrix Estimate for the Com-
puter Execution-Time Example. For the fitted computer execution-time model, the 

h A A 

estimate of the variance-covariance matrix for the ML estimates 8 = (PO,P I ,G ) is 

.012 -.0037 q .C^S = [ -.0037 .0021 (17.10) 
0 0 .0029 

These quantities will be used in subsequent numerical examples. 

Normal-approximation confidence intervals for regression model parameters can 
be computed using the methods described in Section 8.4.2. 

0 
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Example 17.5 Normal-Approximation Confidence Interval for the Regression 
Slope in the Computer Execution-Time Example. For the computer time data, 
s^e- = d x = .046 [see (17.10) and Table 17.11 and PI 

N 


[@I, Pi] = .2907 2 1.960 X .0459 = [.20, .38] 

provides an approximat_e 95% confidence interval for P I . This interval is based on the 
approximation 26, = ( P I  - Pl) / i%~,  NOR(0, 1). This interval implies that we are 
95% confident that a one-unit increase in load will increase quantiles of the running 
time distribution by an amount between 20% and 38%. 0 

As described in Section 8.4.2, the log transformation generally improves normal- 
approximation confidence intervals for positive parameters like U .  In particular, using 
(8.8) provides an approximate 100( 1 - a)%confidence interval for CT based on the 
assumption that Ziog(s)= [log(S) - log(c~)]/&~,~) can be approximated by a 
NOR(0, 1) distribution. 

Example 17.6 Normal-Approximation Confidence Intervals for U in the 
Computer Execution-Time Example. For the computer execution-time example 
s^el; = d E  = .054. An approximate 95% confidence interval for U is 

[a ,  51 = [.3125/1.400, ,3125 X 1.4001 = [.22, .44], 

where w = exp[ 1.96(.05359)/.3 1251 = 1.400. cl 

17.4.2 Standard Errors and Confidence Intervals for Distribution Quantities 
at Specific Explanatory Variable Conditions 

Appendix Section B.6.7 describes the general theory for computing standard errors 
and normal-approximation confidence intervals for functions of model parameters. 
This general theory can be used to estimate distribution quantities (such as quantiles, 
failure probabilities, or hazard function values) at specified levels of the explanatory 
variables. This section illustrates an equivalent two-stage approach that will simplify 
the presentation of the method (and computations). The presentation and examples 
are for simple regression models with log-location-scale distributions, but the ideas 
apply more generally. 

As expressed in (17.6) and (17.7), there are unknown values of p and (T at each 
level of x (or combination of levels of x in the case of multiple explanatory variables). 
For specified values of the explanatory variables, one can compute the ML estimates 
( E ,G )  of these parameters and an estimate of the corresponding variance-covariance 
matrix. Then the methods given in Sections 8.4.2 and 8.4.3 can be applied directly to 
compute standard errors and confidence intervals for quantities of interest at specified 
values of the explanatory variable(s). 

The general formulas needed to compute an estimate of the variance-covariance 
matrix of (@,i?) are (B.3) and (B.4) in Appendix Section B.2. For the simple linear 
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h h 

regression model, at a particular value of x, G = P O  + P l x ,  (T does not depend on x, 
and using a special case of (B. 10), 

(17.11) 

I Z h  h - A  

is obtained from %(@) = Var(&) + 2xCov(/31,PO)+ x2Var(pl)and C O ~ ( @ ,  
A - - - G )  = 

Cov(pO,$) + xC0v(/3~,$). Then standard errors for functions of (@, $) can be 
computed by using the delta method, as in (8.10). The following examples show 
how the the general approach, given in Section 8.4.3, can be used to find confidence 
intervals for a function of regression model parameters. 

Example 17.7 Confidence Interval for  tp  (x) in the Computer Execution- Time 
Example. Refer to Figure 17.5 and the results from Example 17.3. For scheduling 
purposes, it was necessary to estimate and obtain a 95% confidence interval for t ,9(5),  
the time at which 90% of jobs running at a system load of 5 will have finished. From 
Table 17.1. 

=@ = 60+ 6 1 ~4.494 + .2907 X 5 = 5.947, 
h 

1.45) = exp(G + (Dnij(p>$)= exp(5.947 + 1.2816 X .3125) = 571.2. 

From (17.10) computing the elements in (17.1 1) gives 

Substituting into (8.12) gives 

<q4(s)= 571.221.0277 + 2 X (1.2816) X 0 + (1.2816)2 X .00287]1/2= 102.9. 

Then an approximate 95% confidence interval for t.9(5) based on Zlc~gfi9(s)IA 

NOR(0, 1)  is obtained by substituting into (8.1 l ) ,  giving 
-

[Q, t.93 = [571.2/1.423, 571.2 X 1.4231 = [401, 8131, 

where w = exp( 1.96 X 102.9/57 1.2) = 1.423. Thus we are 95% confident that when 
the system load is 5 , t.9 lies between 401 and 8 13 seconds. 0 

Normal-approximation confidence intervals for other quantities (like failure prob- 
abilities or hazard values) at this or other levels of system load can be found similarly 
using the methods of Section 8.4.3. More accurate confidence intervals for regression 
models can be based on the likelihood ratio approach used in Chapter 8 or on the 
bootstrap methods described in Chapter 9. Implementation here is a straightforward 
extension of the methods presented there and is not described in detail here. 
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17.5 REGRESSION MODEL WITH QUADRATIC p AND 
NONCONSTANT cr 

This section describes and illustrates the use of regression models that extend the 
simple linear model in Section 17.3. 

17.5.1 Quadratic Regression Relationship for p and a Constant 
Spread Parameter 

Consider the log-quadratic relationship that uses (17.6) with p = PO+ P1-r + p2x2 
and (T does not depend on x. Then 

is quadratic in x. The quantile function can be written as 

Thus this is a SAFT model with d.F(x) = l/exp(PIx + p2x2) .  Substituting p, = 

PO+ p l x ;  + P2.x; into (17.8) gives a likelihood having the form L(pO,P I ,&,a).In 
the Weibull model p = l/a is the Weibull shape parameter. On the log-time scale 
(corresponding to the smallest extreme value distribution), U is a scale parameter. 
Generally we will refer to (T as a “spread” parameter. 

Example 17.8 Model 1: Log-Quadratic Weibull Regression Model for Su-
peralloy Fatigue Data. Continuing from Example 17.2, we will fi t  a curvilinear 
regression model to the superalloy fatigue data. Figure 17.6 shows the log-quadratic 
Weibull regression model with constant U,  fit to the superalloy fatigue data with 
x = log(pseudostress). This model provides a reasonable fit to the data, but there is, 
even on the log scale, some evidence that the spread in the data is greater at lower 
levels of stress. The estimated densities in Figure 17.6 are smallest extreme value 
densities because they are plotted on a log-cycles scale. Table 17.2 summarizes the 
numerical results of this and another model. The quadratic model has to be used with 
caution. As can be visualized in Figure 17.6, extrapolation to levels of pseudostress 
beyond 160 ksi would lead to nonsensical estimates of longer life. Section 22.4 
suggests an alternative model for these data. 0 

17.5.2 Quadratic Regression Model with Nonconstant Spread Parameter (a) 

This section illustrates the fitting of a regression model in which both p and 0 depend 
on an explanatory variable. The model is given by (1  7.6) with p = /3p1+ pIF1-r+ 
p p ’ x 2  and log(a) = pF1+ p\alx.The log-quantile function for this model is 
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Figure 17.6. Superalloy fatigue data with fitted log-quadratic Weibull regression model with constant c, 
plotted on log-log axes. 

Table 17.2. ML Estimates for Life Versus Stress Weibull Regression Relationships for 
Nickel-Base Superalloy Specimens 

Approximate 95% 
Confidence Intervals 

M L  Standard 
Parameter Estimate Error Lower Upper 

Model 1 P O  217.61 62.1 95.9 339.3 
PI -85.52 26.53 - 137.5 -33.53 
P 2  8.48 2.83 2.93 13.03 
(T .375 .067 .26 .53 

Model 2 Pii"' 243.2 58.12 129.3 357.1 
plwl

I -96.54 24.73 - 145.0 -48.07 
P:"' 9.67 2.63 4.52 14.8 
P P  4.47 4.17 -3.7 I 12.6 
plul

I -1.18 .89 -2.93 .58 
The log likelihoods for Model 1 and Model 2 are. respectively, f I = -03.38 and f 2  = -92.58. 
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which is not quadratic in x. Also, because rp(x)/rp(0) = exp[y,,(x) - y,,(O)] de-
pends on p ,  this model is not a SAFT model. Substituting p, = /3k1+ p:".x, + 
pplx? and (T; = exp (pF1+ p lu l x j ) into (17.8) gives a likelihood having the form 

Example 17.9 Model 2: Weibull Log-Quadratic Regression Model with Non-
constant ufor the Superalloy Fatigue Data. Continuing from Examples 17.2 and 
17.8, Figure 17.7 shows the log-quadratic Weibull regression model with noncon- 
stant U fit to the superalloy fatigue data. The numerical results are summarized in 
Table 17.2. This model seems to provide a reasonably good fit to these data. At first 
sight, the failure at 13,949 cycles with pseudostress equal to 85.2 ksi appears to be an 
outlier. Relative to the long lower tail of the smallest extreme distribution, however, 
the observation is not surprisingly extreme (see Exercise 17.8). Comparing Model 1 
and Model 2 [e.g., -2(C1 - C,) = 1.6 < ,yt90;1)= 2.71J indicates that the evidence 
for nonconstant U in the data is not strong. On the other hand, having U decrease 
with stress or strain is typical in fatigue data and this is what we see in data points 
plotted in Figure 17.6. Thus it would be reasonable to use a model with decreasing 
(T in this case, even in the absence of "statistical significance." U 
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Figure 17.7. Superalloy fatigue data with fitted log-quadratic Weibull regression model with noncon-
stant U. 
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17.5.3 Further Comments on the Use of Empirical Regression Models 

As described in Example 17.8, the quadratic relationship should not be used for 
extrapolation. The fatigue-data models used in Examples 17.8 and 17.9 are purely 
empirical, without any physical basis. In general this is true of other quadratic and 
higher order polynomial relationships. Such relationships can be useful, providing a 
smooth curve to describe a population or a process within the range of the data, but 
should not be used to extrapolate outside the range of one’s data. 

The nonconstant-o model also has a potential extrapolation pitfall (even if the 
relationship for p is linear). Refer to Figure 17.7. Because of the potentially longer 
lower tail of the distribution at low levels of stress, depending on the values of 
the parameters of the model, it is possible to have the lower-tail quantile of the 
cycles to failure distribution decrease as one moves to lower levels of pseudostress, 
predicting shorter life at lower stress, leading physically nonsensical extrapolations 
(see Exercise 17.9). Section 22.4 suggests an alternative model for these data. 

17.5.4 Comment on Numerical Methods 

For certain modelldata combinations, the shape of the likelihood can be such that the 
commonly used optimization software will find it difficult or impossible to find the 
maximum of the function. This is a problem that is analogous to the numerical problem 
of finding regression coefficients when there is a strong degree of linear dependence 
(multicollinearity) among the explanatory variables. High-quality software for least 
squares regression does not use the standard textbook formulas based on matrix 
inversion. Similarly, software developers for ML iterations need to consider carefully 
the numerical analysis aspects of the calculations to be programmed. Good software 
will deal with these numerical issues in a manner that is transparent to the user. That 
is, when a reparameterization or reformulation is used, this need not be brought to 
the user’s attention (but such information should, perhaps, be available as an option). 

The superalloy regression models are a case in point. Nelson (1984) centers the 
x variables, which alleviates the collinearity problem in polynomial regression. If, 
however, the different explanatory variables are close to being linearly dependent 
(multicollinear) or if a model without an intercept term is required, then a different 
approach is needed. Escobar and Meeker (1998c) describe an appropriate reparame- 
terization for multiple linear regression with censored data. In general, having robust 
ML iterations (i.e., having a high probability of finding the maximum, given that one 
exists) requires the following: 

A parameterization that makes the likelihood have a shape that is not too different 
from a quadratic with major axes corresponding to the transformed model 
parameters (resulting in transformed parameter estimates that are approximately 
uncorrelated), and 
Starting values that are not too far from the maximum. 

For further discussion of numerical methods for ML, see Section 8.6of Nelson ( 1982), 
Ross ( 1990),and Escobar and Meeker (1998~).  
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17.6 CHECKING MODEL ASSUMPTIONS 

An important part of any statistical analysis is diagnostic checking for departures from 
model assumptions. In conducting a failure-time regression analysis we recommend 
the use of graphical methods, using generalizations of usual regression diagnostics 
(including residual analysis). These diagnostic methods can be used in a manner 
that is similar to their use in ordinary regression analysis, except that interpretation 
is often complicated by the censoring. The analysis can also be complicated when 
fitting underlying nonnormal distributions. 

17.6.1 Definition of Residuals 

Consider a set of independent (possibly censored) observations y,, i = 1,. . . ,1 2 ,  

from location-scale distributions with cdfs @[(y - p; ) /c~ ; ] ,where p; and U,may be 
functions of regression parameters and explanatory variables xi. This would include 
data from normal, logistic, or smallest extreme value regression models. A natural 
and commonly used definition of standardized residuals for this model is 

(17.13) 

where Gi and i?; are the ML estimates of piand U;.Then, under the assumed regression 
model, these residuals should look like a (possibly censored) random sample from 
a standardized (i.e., p = 0 and (T = 1)  location-scale distribution (e.g., standard 
normal, smallest extreme value, or logistic). When y, is a censored observation, 
the corresponding residual is also censored. For example, if y, is a right-censored 
observation, the corresponding z; is also right-censored (we only know that the actual 
residual would have been larger than the censored residual). 

For regression data from log-location-scale distributions with cdfs @{[log([) -
p;] /a;}(e.g., regression with the lognormal, loglogistic, or Weibull data) a natural 
extension of the definition of standardized residuals is 

(17.14) 

Again, when tl is a censored observation, the corresponding residual is also censored. 
Under the assumed regression model, these residuals should look like they came from 
a standardized (i.e., p = 0 and (T = 1) log-location-scale distribution. Adequacy of 
the fitted distribution can be assessed by making a probability plot of the (possibly 
censored) residuals using the methods in Chapter 6. We will refer to (1 7.13) and 
( 17.14) as “censored Cox-Snell” residuals because they are special cases of general 
Cox-Snell (Cox and Snell, 1968) residuals as applied to censored data. Nelson (1973) 
shows how to use such residuals to detect departures from distributional assumptions 
and check for other kinds of model inadequacies. These ideas are illustrated in 
Section 17.6.2. 

Cox-Snell residuals can also be used for checking model assumptions for non- 
location-scale distributions. The general definition of Cox-Snell residuals is as 
follows. Consider observed failure times ti corresponding to random variables T, 
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( i  = 1,. . . ,n ) .  Suppose that the T, are functions of explanatory variables x,, model 
parameters 8 ,and a set of iid random deviations E, ( i  = 1 , .  . . ,n ) having a distribution 
with no unknown parameters. This function defines the assumed model for T .  Then 
if there is a function rs*;(T;x, 0 )such that 

the Cox-SnelI residuals are defined as and can be computed from 
h 

h 

E,  = cv(t,;x,, e).  
Here ^e is the ML estimate of 8 obtained using the assumed model, the data ( t , ,x,) (i = 

1 , .  . . ,n), and the censoring information. For example, for the lognormal loglinear 
regression a choice is tv , ( t ; x I ,0) = exp {[log(t)- pI]/cr,},which yields the residuals 
in (17.14). 

For a given model and data set, Cox-Snell residuals are not uniquely defined be- 
h 

cause any parameter-free one-to-one transformations of the w,(t;x,;6 )values would 
also satisfy the Cox-Snell definition [with a corresponding change in the definition 
of the deviations E, ( i  = 1,. . . ,n )  in the assumed model]. For example, for the 
lognormal regression above, one can choose ri-,(t;x,,0 )  = [log(t)- p , ] / ( ~ , ,which 
provides Cox-Snell residuals that are unrestricted in sign in contrast with the residuals 
in ( 17.14), which are all positive. 

In general, when the observations are independent (possibly censored) and the T, 
have strictly increasing cdfs F ( t ;x,, e) ,a natural choice is w*,(t;x,, 0 )  = F ( r ;x,, O ) ,  
which provides Cox-Snell residuals on (0, 1 )  given by 

h 
h 

U ,  = F ( t , ; x , ,e ) .  (17.15) 

Because F(T;;xi, 0)has a UNIF(0, 1)  distribution (see Exercise 2.16), these residuals 
should look like a (possibly censored) random sample from a UNIF(0, 1) distribution. 
For example, with the log-location-scale regression model above with F ( t ;x,, 0 )  = 

<D{(log(t)- ~ , ] / u , } ,a set of Cox-Snell residuals in (0, 1) are 

These residuals are related to the residuals in (17.14) through the transformation 
2, = exp[<D-I(;,)]. Thus the information in the 12, residuals is equivalent to that in 
the 2,residuals. 

To assess the adequacy of the distributional assumption, one can use a P-P plot 
(e.g., page 66 of Crowder et al., 1991) of the residuals defined in (17.15). To do this, 
obtain the nonparametric estimate of the cdf of the residuals using the methods in 
Chapter 3. Then obtain probability plotting positions fi at each point 12 at which the 
nonparametric estimate jumps (see Section 6.4). The P-P plot is obtained by plotting 
{G versus E }on linear axes. Strong departures from linearity in this plot indicate 
a departure from the assumed model. Note that the P-P plot can be viewed as a 
probability plot corresponding to a UNIF(0, 1 ) distribution. 
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Alternatively, one can transform the (possibly censored) C values to - log( 1 -G), 
which, under the assumed model, should look like a (possibly censored) sample from 
an EXP( 1) distribution. In this case, the adequacy of the distributional assumption can 
be checked by making an exponential or a Weibull probability plot of the - log( 1 -G) 
values, using the methods in Chapter 6. The Weibull probability plot provides much 
better resolution in the lower tail of the distribution. 

Lawless (1982, pages 280-28 1 )  describes the use of probability plots for Cox- 
Snell residual analysis and Collett (1994, page 158) describes closely related Weibull 
Q-Q plots for Cox-Snell residuals. 

17.6.2 Regression Diagnostics 

Some suggested regression model diagnostics include: 

Plot of standardized residuals versus fitted values. As mentioned in Sec-
tion 17.6.1, fitted values can be defined in several different ways. For any of 
the suggested definitions, plotting the residuals versus fitted values can help 
detect nonlinearity not modeled in the underlying relationship or nonconstant 
variability in life. Heavy censoring can, however, make such plots difficult to 
interpret. 
Probability plot of standardized residuals. When the data at different levels 
of the explanatory variables are censored at a common censoring time, i t  is 
possible that the computed residuals will be multiply censored. In such cases, 
one can use the methods in Chapters 3 and 6 to produce the probability plot. 
Other residual plots. Residuals can be plotted in a variety of other ways. For 
example, one might plot residuals against other potential explanatory variables 
not in the model to see if they provide any explanatory power. If data were 
collected sequentially over time, then plotting residuals versus observation order 
can help to detect process trends and cycles. 
Influence (or sensitivity) analysis. It is important to assess the degree to 
which estimates depend on model assumptions and other uncertain inputs to the 
data analysis process. In some cases, simple reanalysis under alternative model 
assumptions will suffice. It is, however, possible to systematize the process by. 
for example, dropping out one observation at a time and refitting the model to 
detect highly influential observations. 

Additionally, most analytical tests commonly used to detect departures from an 
assumed model can be suitably generalized, at least approximately, for censored data 
(especially using likelihood ratio tests). 

Example 17.10 Residual Plots for Model I and the Superalloy Fatigue Data. 
Figure 17.8 shows the standardized residuals from ( 1  7.14) versus the fitted values for 
Model 1. This figure gives a strong indication that there is more variability among 
the observations with larger fitted values. Figure 17.9 is a Weibull probability plot 
of the standardized residuals, revealing the early outlying observation. Similar plots 
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for Model 2 (not shown here) are better behaved, but still show the early outlying 
observation. 0 

17.7 MODELS WITH TWO OR MORE EXPLANATORY VARIABLES 

This section illustrates the use of regression models having two different explanatory 
variables. The approach generalizes to problems involving more than two explanatory 
variables. 

17.7.1 Model-Free Graphical Analysis of Two-Variable Regression Data 

As in simple regression, it is useful to view two-variable regression data graphically 
before making assumptions about the relationship between life and the explanatory 
variables. Probability plots and scatter plots are useful tools for doing this. 

Example 17.11 Effect of Voltage and Temperature on Glass Capacitor Life. 
Table 17.3 gives data from a factorial experiment on the life of glass capacitors as a 
function of voltage and operating temperature. The data were originally analyzed in 

Table 17.3. Glass Capacitor Life Test Failure Times and Weibull ML Estimates for 
Each TemperatureNoltage Combination 

Applied Voltage 

Temperature 200 250 300 350 

439 572 315 258 
Hours 904 690 315 258 

to Failure 1092 904 439 347 
170"C 1 I05 1090 628 588 

h 

P 7.13 7.10 6.57 6.54 
h 

se; 
h 

U .26 
.I5 

.28 

.I6 
3 7  
.21 

.46 
2 6  

ses 
max +,U )  

h 

. I3  
-31.8 

.I3 
-31.7 

.I7 
-30.2 

.2 1 
-30.3 

959 216 24 I 24 1 
Hours I065 315 315 24 1 

to Failure I065 455 332 435 
180°C 1087 473 3 80 455 

h 

I-c 7.01 6.28 6.00 6.24 
sec h 

.21 .I6 .09 . I7  
h 

U .04 .28 .I7 .30 
se, h 

max L(p,d 
.02 

-24.8 
. I3  

-28.4 
.08 

-26.0 
.14 

-28.4 

There were eight capacitors tested at each combination of temperature and voltage. Testing at each 
combination was terminated after the fourth failure, yielding failure-censored (Type 11) data. The data are 
from Zelen ( 1959). 
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Figure 17.10. Scatter plot of glass capacitor life test data. 

Zelen ( 1959),using a two-parameter exponential distribution. Figure 17.10 is a scatter 
plot of life in hours versus voltage, with different symbols for different temperatures. 
A small amount of “jitter” was introduced into the voltage variable before plotting 
so that the graph would separate the tied values. Figure 17.1 1, using methods from 
Chapters 6 and 8, contains Weibull probability plots for each of the eight individual 
test conditions. The straight lines on these plots are the ML estimates of Weibull cdfs. 
Table 17.3 summarizes numerical results. 0 

17.7.2 Two-Variable Regression Model Without Interaction 

The log-location-scale two-variable regression model uses (17.6) with p = PO + 
PI.rl  + P 2 . r ~ .When U does not depend on x = (.rl,.r2), the p quantile of the life 
distribution at a specified x is 

(17.16) 

Re-expressing the quantile function gives tp (x)  = exp[y,(x)] = exp(Pl.ul+ 
P 2 - r ~ )t , ( O ) ,  showing that this is a SAFT model with A.F(x) = I / exp(Plx1 + P 2 x 2 ) .  

Substituting Fi = PO + P I X I ,+ &x2, into (17.8) gives a likelihood having the form 
L(P0, P I ,P2, U).The model generalizes easily when there are more than two explana- 
tory variables. In the model, PO is the value of p when xI = x2 = 0 (if this makes 
sense physically), P I  is the change in p for a one-unit change in x1 (holding x_con-7 

stant), and P. is the change in p for a one-unit change in .rz (holding x1 constant). In 
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Figure 17.11. Weibull probability plots of glass capacitor life data at each temperature and \‘oltape 
condition, each with its Weibull ML estimate of F ( r )  plotted as a straight line. 

particular, the effect of changing XI does not depend on the level of s 2  and vice versa. 
This model is known as the “additive” or “no-interaction” two-variable regression 
model. 

17.7.3 Two-Variable Regression Model with Interaction 

The log-location-scale two-variable regression model with interaction uses ( I 7.6) 
with p = PO+ P1xl + P2x2 + P ~ x I x ~ .If (T does not depend on x, the log-quantile 
function is 

The distribution quantile can be reexpressed as t p (x )  = exp[g,(x)] = exp(Plsl  + 
P2x2 + p3x1x2)tP(O). Thus this is a SAFT’ model with AF(x) = l /exp(Pls l  + 
P2x2 + PBXIX~).  into (17.8) gives aSubstituting pl  = PO+ Plx l ;  + P2x2; + P ~ X I J ~ ~  
likelihood having the form L(P0,Pl, p2, P3, U ) .  In this model PI + P 3 x 2  is the change 
in p for a one-unit change in XI.  Similarly, p2 + &XI is the change in p for a one-unit 
change in x2. 

Example 17.12 Regression Models for Glass Capacitor Life. The top half 
of Table 17.4 provides information on the ML fit of Model I ,  the two-variable 
no-interaction regression model with XI = temperature in “C and .r? = voltage. The 
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Table 17.4. Glass Capacitor Life Test ML Estimates for the Weibull Regression Model 

Approximate 95% 
Confidence Interval 

ML Standard 
Parameter Estimate Error Lower Upper 

Model 1 P O  13.41 2.30 8.90 17.91 
PI -.02 .o1 -.05 - .OM 
P 2  -.006 .00I -.008 -.004 
U 0.36 .055 .27 .49 

Model 2 P O  9.41 10.5 -11.2 30.1 
PI -.OO62 .060 - . I2  .ll 
P2 .0086 .037 -,065 .082 
P3 .000082 .00021 -.00050 .00034 
U .362 .055 .27 .49 

The log likelihoods for Models 1 and 2 are, respectively, LI= -244.24 and Lz = -244.17. 

bottom half of Table 17.4 provides information on the ML estimates for Model 2. This 
model includes the interaction term x j  = ~ 1 x 2 .Comparing the log-likelihood values 
for the two models indicates that the interaction term has not improved the model’s 
ability to explain variability in the failure times. In particular, the log-likelihood ratio 
statistic -2  X (C,- C2) = .14 is small relative to x ; , ~ : ~ ,  1.32 (from standard = 
chi-square quantile tables). Figure 17.12 is similar to Figure 17.1 1, but in this case, 
the parallel lines are the Model 2 ML estimates for each of the eight test conditions. 
The lines are parallel because CT in the model does not depend on x = (XI, x2). 

The plotted points in Figure 17.13 are the individual estimates of t,5 for each of 
the eight combinations of the glass capacitor test conditions (computed from the ML 
estimates in Table 17.3). The lines in Figure 17.13 give the Model 2 fitted relationship 
between life and voltage for temperatures of 170°C and 180°C. The Model 1 plot 
(not shown here) was similar, but the 170°C and 180°C lines were exactly parallel. 
Figure 17.14 is a plot of the Model 2 regression residuals. There does not seem to be 
any serious departure from the fitted model or the Weibull distribution assumptions 
in the model. 0 

17.8 PRODUCT COMPARISON: AN INDICATOR-VARIABLE 
REGRESSION MODEL 

This section illustrates methods for comparing samples from two different populations 
or processes, which we generically call “groups.” In the first analysis (Examples 17.13 
and 17.14) the samples are simply analyzed separately to make a comparison. The 
second analysis (Example 17.15) uses an indicator-variable regression model to 
compare the samples under the assumption that the spread parameter (T is the same 
for both groups. 
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Figure 17.14. Weibull probability plots of the residuals from Model 2 f i t  to the glass capacitor data. 

17.8.1 Comparison of Groups Using Separate Analyses 

The simplest method for comparing two groups is to analyze the groups separately. 

Example 17.13 Comparison of Snubber Designs-Separate Analyses. Ap-
pendix Table C.4 gives data from Nelson ( 1982,page 529), from a life test to compare 
two different snubber designs. A snubber is a component in an electric toaster. Fol-
lowing the analysis used by Nelson, Figure 17.15 shows the results of fitting separate 
normal distributions to the data from each snubber design. The different slopes reflect 
the different standard deviation estimates. The numerical results are summarized in 
Table 17.5, under Model 1. 

As illustrated in Figure 17.15, comparing distributions may not be straightforward 
in applications where the cdfs from the two groups cross. If we took the lines in 
Figure 17.15 to be true cdfs, the implication would be that the old design is better 
up until about 550 cycles, after which the new design is better. The ambiguity arises 
because the estimate for U from the new design is larger. It is, however, possible to 
compare particular points on the cdfs. 

Example 17.14 Comparison of Snubber Designs-Comparing Quantiles. To 
make a quantitative comparison between the two designs, we will estimate the differ- 
ence between the values of y,S(new) and y,s(old) (we use y instead of t  here because 

0 
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Figure 17.15. Normal probability plot showing separate analyses comparing the old and new snubber 
designs (old design ‘ ‘0” and the new design “+”). The solid (dotted) line is the ML estimate of the normal 
distribution cdf for the old (new) design. 

Table 17.5. ML Estimates for the Snubber Life Test Data 

Approximate 95% 
Confidence Interval 

ML Standard 
Parameter Estimate Error Lower Upper 

Model 1 /&Id 908 76.2 759 1057 
uold 362 63.4 238 487 
h e w  1126 123 885 1368 
c n e w  546 100 35 1 731 

Model 2 P O  975 89.1 800 11.49 
PI 86.7 I14 -137 31 I 
u 459 57.7 346 572 

For Model 1 ,  fold = -138.6 for the old design and fnew = -146.8 for the new design (totaling 
f l= Lold + f,,,,, = -285.4). For Model 2, f2 = -286.7. 
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we are fitting a normal distribution, which has a theoretical range extending to nega- 
tive numbers). For the normal distribution, this is the same as comparing the means 
of the two groups. Using the results for Model 1 in Table 17.5, 

= J(76.2)2 + (123j2 = 144.7, 

and an approximate 95% confidence interval for 8 = pnewpOld- is 

Because this interval contains 0, we conclude that there is not a convincing difference 
between the mean cycles to failure for the two designs. 

17.8.2 Comparison of Groups Using Combined Analyses 

In some situations it might be reasonable to use a model in which CT is the same 
across the groups, with differences only in the values of p. The analysis can be made 
with a simple regression relationship using p = PO+ Plx,  where x = 0 for one 
group and x = 1 for the other. Then substituting x into the model gives p(0) = PO 
and p( 1 )  = PO+ P I .Furthermore 6 = r,( 1 )  - r,(O) = p( 1)  - p(0) = P I ,making 
comparisons with a common U less ambiguous because, in this model, 6 does not 
depend on which quantile is compared. 

Example 17.I S  Comparisonof Snubber Designs-Common aAnalysis. Fig-
ure 17.16 displays estimates of the cdfs for the new and old designs. Because in this 
model U is the same for both designs, the fitted lines are parallel. Table 17.5 gives 
corresponding numerical results. The dotted curves on Figure 17.16 are pointwise 
approximate 95% confidence intervals for F ( ? ) for the old design. Although these 
intervals do not answer precisely the question of interest, they do indicate that there is 
considerable variability in the estimates, relative to the difference between the point 
estimates of the distributions for the old and the new designs. An approximate 95% 
confidence interval for 6 = [,,(new) - ?,(old) = pnew- pold = is 

Because this interval contains zero, we conclude, as before, that there is not a con- 
vincing difference between the new and old designs. 

CI 

0 
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Figure 17.16. Normal probability plot summarizing the fitted common-rr models for the old and new 
snubber designs. Observations from the old design are indicated by a “ 0 ”  and observations from the new 
design are indicated by a “+.” The solid (dotted) line is the ML estimate of the normal distribution cdf 
for the old (new) design. The dashed lines are approximate 95% pointwise confidence intervals for the old 
design. 

17.9 THE PROPORTIONAL HAZARDS FAILURE-TIME MODEL 

17.9.1 Proportional Hazards Relationships 

The proportional hazards (PH) model relates the hazard functions at conditions x and 
baseline conditions xo by 

h(t ;x) = V(x )h ( t ;X g )  (17.17) 

for all t > 0, where @(x), like AF(x)in Section 17.2.2, is a positive function with 
@(A-()) = I .  The proportional hazards model can also be written as 

S ( t ;x) = [ S ( t ;X ( ) ) p )  (17.18) 

or 

F ( r ; x )= 1 - [ I  - F(t;x())]VI‘X’. (17.19) 



456 FAI LU KE-‘11 M E KEGR ESSlON AN A LY SIS 

Again, if q(x)  f 1, then F ( t ; x )and F(r;xo)do not cross. When q(x)  > 1, the 
model accelerates time in the sense that F ( t ;x) > F ( t ;xo)for all t .  When T(x) < 1 ,  
the model decelerates time in the sense that F ( t ; x )< F ( t ; x o )for all t .  

Reexpressing (17.19) leads to 1 - F ( t ; x )  = [ 1 - F ( t ; x ( ~ ) ] q ‘ X )and taking logs 
(twice) gives 

Thus when F(t ;x) and F(r ;x ~ )are related by a PH model, they are vertically equidis- 
tant at any given t on Weibull probability paper, as shown in Figure 17.17. This 
graphical relationship is useful for assessing the reasonableness of a PH regression 
mode1. 

A proportional hazards model can also be expressed as a failure time transforma- 
tion model. In particular, if T ( q )- F ( t ;xg) and if T ( x )and T ( x o )are related by the 
time transformation function 

T ( x )= F - ’  (1  - { 1 - F [T(x( ) ) ;xo]}”q(x);xo) (17.21) 
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Figure 17.17. Weibull probability plot showing a proportional hazards accelerated failure time regression 
relationship with a lognormal baseline distribution (lowerline). The upper line corresponds to a cdf from 
the power-lognormal distribution. 
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Figure 17.18. Proportional hazards model with a lognormal baseline hazard function expressed as a time 
transformation function. 

then it can be shown that T ( x )and T(x0)have the PH relationship in ( 17.17). This time 
transformation function is illustrated in Figure 17.18. In this example, the amount of 
acceleration (or deceleration), T ( x o ) / T ( x ) ,depends on the position in time. 

17.9.2 The Weibull Proportional Hazards Model 

For the Weibull distribution (and only the Weibull distribution), a PH regression 
model is also a SAFT regression model. This can be seen by noting that the Weibull 
distribution is the only distribution in which both (17.2) and (17.20) hold. Relatedly, 
Weibull probability plots of Weibull cdfs with the same U are translations of each 
other in both the probability and the log(?) scale. Thus the Weibull cdfs at x and xo 
are parallel straight lines on Weibull probability paper, as shown in Figure 17.19. 

17.9.3 Other Proportional Hazards Models 

Except in the case of the Weibull distribution, the PH regression relationship changes 
the shape of the underlying distribution as a function of the explanatory variables x. 
That is, in general, the PH model does not preserve the form of baseline distribution. 
For example, if T(x0)has a lognormal distribution then T ( x )has a power-lognormal 
distribution (Section 5.12.3). 
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Figure 17.19. Weibull probability plot of two Weibull distributions. The parallel straight lines here come 
from ;iregression relationship that is both accelerated failure time and proportional hazards. 

17.9.4 The Semiparametric (Cox) Proportional Hazards Model 

In its semiparametric form, the PH model in ( 17.17) is known as the Cox proportional 
hazards model. In this model, the form of the hazard function h(r;xg)is unspecified. 
One can estimate the regression coefficients [the parametric part of the model !P(x)]  
and obtain nonparametric estimates of the hazard (or cdf or survival) functions at any 
specified values of the explanatory variable(s). The Cox PH model is widely used in 
biomedical applications and especially in the analysis of clinical-trial data. 

17.9.5 PH Model Applications in Reliability 

Because models of failure based on physics and chemistry (see Chapter 18) gener-
ally suggest a SAFT model (or other non-PH models), the main area for potential 
application of PH models would appear to be in the analysis of field reliability data 
for which it is necessary to adjust for covariates like operating environment, use-rate, 
and so on. Bendell (1985) and Dale (1985) describe applications of semiparametric 
proportional hazards modeling to the analysis of reliability data. 

Landers and Kolarik ( 1987) describe an application where a parametric PH model 
was used in the analysis of field reliability data. They, however, used a Weibull 
baseline distribution and so their model was really the same as the SAFT Weibull 
regression model used in Sections 17.2-17.5. 
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17.10 GENERAL TIME TRANSFORMATION FUNCTIONS 

In Sections 17.2 and 17.9 we expressed both SAFT and PH models as special time 
transformation functions. Time transformation functions provide a general model for 
relating time at one level of x with time at another level of x. This can be expressed 
as 

where xo are again baseline conditions. To be a time transformation, the function 
Y ( t ,x) must have the following properties: 

For any x, Y(0, x) = 0, as in Figure 17.20. 
Y(t,x) is nonnegative, that is, Y(r, x) 2 0 for all t and x. 

For fixed x, Y(t,x) is monotone increasing in t .  

When evaluated at xo, the transformation is the identity transformation [i.e., 
Y(r,xo)= t for all t ] .  

A quantile of the distribution of T ( x )can be determined as a function of the corre- 
sponding quantile of the distribution of T(xo)and x. In particular, r,,(x) = Y [ t,,(xo),x] 
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Figure 17.20. General time transformation model. 
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for 0 5 p 5 1. As shown in Figure 17.20, a plot of T(x0)versus T ( x )can imply a 
particular class of transformation functions. In particular: 

T ( x )entirely below the diagonal line implies acceleration. 
T ( x )entirely above the diagonal line implies deceleration. 
T ( x ) can cross the diagonal, in which case the transformation is accelerating 
over some times and decelerating over other times. In this case the cdfs of T ( x )  
and T(x0)cross. 
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references on linear regression analysis for complete (uncensored) data. Seber and 
Wild ( 1989) describe methods for nonlinear regression. Lawless (1982), Cox and 
Oakes ( 1984), and Nelson ( 1990a) describe applications of failure-time regression 
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non-SAFT model. Martin (1982) describes the use of general time transformation 
functions used in life testing. General time transformation functions are discussed, in 
the context of accelerated testing, in Chapter 17 of Ushakov (1994). 

Nelson (1973) describes methods for residual analysis with censored data. Schmee 
and Hahn (1979) present an iterative least squares method of finding estimates for 
regression parameters with censored data. The method is useful for finding starting 
values for ML estimation. 

Kalbfleisch and Prentice (1980), Lawless ( 1982), and Cox and Oakes ( 1984) pro- 
vide detailed treatments of the important facets of the Cox proportional hazards 
model. Bagdonavicius and Nikulin ( 1995, 1997) describe general classes of semi- 
parametric failure-time regression methods, methods of estimation, and asymptotic 
theory for the estimators. 

EXERCISES 

17.1. The confidence intervals for Example 17.3 given in Table 17.1 were com- 
puted by using the normal-approximation method that is commonly used for 
censored data problems. For this data set, with the lognormal model, it is 
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possible to use standard “exact” methods to compute confidence intervals for 
these parameters, based on a simple ordinary least squares regression relat- 
ing the logarithms of execution time to system load. Formulas for these exact 
methods are available in almost any elementary statistics text covering re- 
gression analysis. Use a computer program to do the necessary least squares 
computations and compute, by hand, the “exact” confidence intervals. Com- 
pare the estimates and confidence intervals. What is your conclusion? 

17.2. Refer to the loglinear model in (17.7). Show why loop, can be interpreted 
as the approximate percent increase in t p ( x ) for a one-unit increase in .r. 

17.3. McCool (1980) gives the results of a life test on rolling contact fatigue of 
ceramic ball bearings. Ten specimens were tested at each of four levels of 
stress. The ordered failure times are given in the following table. McCool 
indicates that it is customary to model such data with the two-parameter 
Weibull distribution with a shape parameter that does not depend on stress. 

Stress 
(106psi) Ordered Lifetimes (106revolutions) 

.87 1.67, 2.20, 2.51, 3.00, 3.90,4.70, 7.53, 14.70, 27.80, 37.40 

.99 .80, 1.00, 1.37, 2.25, 2.95, 3.70,6.07,6.65, 7.05, 7.37 
1.09 .O 12, .I8, .20, .24, .26, .32, .32, .42, .44,.88 
1.18 .073, .098, .117, .135, .175, .262, .270, 350, .386, .456 

(a) Plot the failure times versus stress on log-log axes (or, alternatively, 
take logs and plot on linear axes). 

(b) It is often suggested that median failure time is proportional to a power 
transformation of stress: that is, t .5  = e8) X (stressfl or log(t,s) = 

PO+ p1log(stress). Is the suggestion reasonable in this case? Plot the 
sample medians on the graph in part (a) to help answer this question. 

( c )  Use a hand-drawn line through sample medians versus stress points to 
obtain a graphical estimate of the exponent (or slope) PI .  

(d) Make separate Weibull probability plots for the data at each level of 
stress, plotting them all on the same graph. What does this plot suggest 
about the customary assumption that the Weibull shape parameter is 
the same for all levels of stress? Provide possible explanations for the 
observed differences in the estimates of the Weibull shape parameter at 
each level of stress. 

17.4. Figure 17.2 shows that there is more spread (variability) in the observed log 
failure times at low stress, as compared with high stress. Provide a simple, 
nontechnical, intuitive explanation for this common behavior of fatigue data. 
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A17.5. Refer to Exercise 17.3. Suppose that log life can be described adequately by a 
normal distribution. Consider the regression model p = PO+ log(stress) 
with constant U ,  where U is the standard deviation of log life, the same for 
any fixed levels of stress. 
(a) Use ordinary least squares to fit this model to the rolling contact fatigue 

data. Compare your answer to the graphical estimate from part (c) of 
Exercise 17.3. 

(b) Use a computer program that does maximum likelihood estimation and 
fit the lognormal regression model ( 1  7.7) to the rolling contact fatigue 
data. 

(c) Compute and compare estimates from these two different methods of 
estimation for the median time to failure at 1.05 X 106psi, the .01 quantile 
at 1.05 X 106psi, and the .01 quantile at .85 X 106psi. Comment on the 
results of this comparison. 

17.6. Use the results in Table 17.2 for Example 17.8 to compute an 80% normal-
approximation confidence interval for U .  Explain the interpretation of this 
interval. 

17.7. Use the results in Table 17.2 for Example 17.9 to do the following: 
(a) Compute a 90% normal-approximation confidence interval for PI" ' .  
(b) Explain how this confidence interval can be used to judge whether U 

depends on the level of pseudostress or not. 
(c) Do a likelihood ratio test to determine whether or not there exists strong 

evidence that U depends on the level of pseudostress. 
(d) Explain the steps you would follow to compute a likelihood-ratio-based 

confidence interval for p;"'. 

A17.8. Refer to Example 17.9 and Figure 17.7. It has been suggested that the failure 
at 13,949 cycles with pseudostress equal to 85.2 ksi appears to be an outlier. 
(a) Use the ML estimates for Model 2 in Table 17.2 as if they were the 

actual parameter values and compute the probability that one would 
have a failure before 13,949 cycles when running at a pseudostress 
equal to 85.2 ksi. 

(b) Following the approach in part (a), if 26 units were to be tested at a 
pseudostress equal to 85.2 ksi, what is the probability that the earliest 
failure would occur before 13,949 cycles? 

(c) There were 26 observations in the superalloy fatigue example. Explain 
why the probability in part (b) is the relevant probability to consider 
when judging whether the single observation in the example departs 
importantly from the assumed model or not. 

17.9. Consider the model used in Example 17.9 and the corresponding ML esti-
mates for Model 2 in Table 17.2. 
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(a) Show that it is possible to have t p ( x l )< rP(x2)when XI < x2. 
(b) Explain why the relationship in part (a) is physically unreasonable. 

A17.10. Follow the general approach outlined in Section 17.4.2 and Example 17.7 to 
do the following for Model 2 used in Example 17.9: 
(a) Using the results in Table 17.2, compute estimates (G,s) for pseu- 

dostress 100 ksi. 
(b) Derive the expressions needed to compute % c , ~as a function of the 

elements of the variance-covariance matrix of the regression parameters 
in Model 2. 

A17.11. Refer to Exercise 17.3. There is some evidence that the Weibull shape param- 
eter depends on stress, but it might be argued that the observed differences 
are due to random variation in the data. 
(a) Fit separate two-parameter Weibull distributions to the data at each level 

of stress. 
(b) Fit a regression model with an indicator variable allowing for a different 

Weibull scale parameter r )  = exp(p) at each level of stress. Hold U = 
1/ p  (the reciprocal of the Weibull shape parameter p ) constant over all 
levels of stress. 

(c)  Use (a) and (b) to do a likelihood ratio test to see if there is evidence 
that the values of (T differ with stress. 

17.12. Return to the capacitor life test data in Example 17.1 1. Physical theory sug- 
gests that the Weibull shape parameter p = 1/U will depend on temperature 
if there is unit-to-unit variability in both the initial level of dielectric degrada- 
tion and in dielectric degradation rate. Insulation engineers were interested 
in using these data to see if there was evidence for a temperature or voltage 
effect on p = l/a. 
(a) Use the fitted model in Table 17.3 giving the Weibull distribution es- 

timates at each combination of the individual experimental conditions. 
Compute the sum of the log likelihoods for all of the conditions. 

(b) Plot, on Weibull probability paper, the estimates of the Weibull cdfs for 
each test condition, as done in Figure 17.1 1. 

(c )  Fit an indicator-variable regression model to the capacitor life test data 
such that there is a constant value of U but that a separate value of p is 
estimated at each test condition. 

(d) Compare the sum of the likelihoods from part (a) with the likelihood 
obtained from the model in part (c). Use these results to assess the 
evidence for nonconstant (T in these data. What do you conclude? 

A17.13. Write a time transformation function corresponding to model (17.12). 

A17.14, Show that ( 17.17) implies ( I  7.18). 
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17.15. Refer to Example 17.12 and Figure 17.13. The two points corresponding 
to the subexperiments at 250 and 300 volts and 180°C seem to be out of 
line from the other points. Use the individual subexperiment results given in 
Table 17.3 to compute a confidence interval for t.5 at 300 volts and 180°C. 
What does this suggest about the two outlying points? 

17.16. Refer to Example 17.12 and the numerical results in Table 17.4. For both 
models, compute the ML estimates of t .5  for the eight factor-level combi- 
nations and plot these on a graph like that in Figure 17.13. What do you 
conclude? 

17.17. Consider the two-variable regression model with interaction given in Sec-
tion 17.7.3. Show that P I  + P3x2 is the change in p for a one-unit change 
in x I .  

17.18. In some reliability applications it is common to use transformations of 
explanatory variables in regression modeling (models involving such trans- 
formations are described in Chapter 18). Also, it might be possible to find 
a distribution other than the Weibull that will provide a better fit  to the 
data. Use the glass capacitor data in Examples 17.1 1 and 17.12, and fit  the 
following alternative models. 
(a) In the two-variable regression model, use the transformations xI = 

l/(temp”C + 273.15) (known as the Arrhenius relationship) and sz = 

log(vo1tage) (known as the inverse power relationship). Compare esti- 
mates of t . 5  at the different levels of temperature and voltage used in the 
life test. Is there evidence that these factors affect life? Explain. 

(b) Repeat the analysis in part (a), using the normal distribution instead of 
the Weibull distribution. Again, compare estimates of 1.5 at the different 
levels of temperature and voltage used in the life test. 

17.19. The Weibull SAFT regression model is also a PH model. Thus fitting a 
parametric PH model with a Weibull baseline distribution is equivalent to 
fitting a Weibull regression model in which p = log(q) is a function of 
explanatory variables and (T = 1/ p is constant. 
(a) Why is the Cox PH model called “semiparametric”? 
(b) What are some advantages of using the semiparametric Cox PH model, 

when compared to using the parametric Weibull model? 
( c )  What are some advantages of using the parametric Weibull model, when 

compared to using the semiparametric Cox PH model? 

A17.20. Show that a parametric SAFT model is also a parametric PH model if and 
only if the underlying distribution is a Weibull. Hirzt: Divide the proof in the 
following steps: 
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(a) (Sufficient Condition). Assume that T ( x o )has a Weibull distribution. 
Then show that T ( x )= T ( x o ) / A F ( x )has Weibull distribution and that 
h(t;x) = V ( x ) h ( t ;xg). 

(b) (Necessary Condition). Assume that T ( x )  = T(xo) /A.F(x)and that 
h( t ;x) = q ( x ) h ( t ;xg). First show that S[dF(x)t;xg] = [ S ( t ;~ g ) ] ~ ( ~ ’ .  

Then argue that this can only be true if a Weibull probability plot of 
F ( t ;xg) is a straight line. 
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Accelerated Test Models 

Objectives 

This chapter explains: 

Motivation and applications of accelerated testing. 
Connections between degradation and physical failure. 
Models for temperature acceleration. 
Models for voltage and pressure acceleration. 
How to compute time-acceleration factors. 
Other accelerated test models and their assumptions. 

Overview 

This chapter describes models used for accelerated tests and introduces concepts 
of physics of failure. Some aspects of the models introduced here follow from the 
degradation models introduced in Chapter 13.The acceleration models described here 
are fitted to data in Chapter 19 (accelerated life tests) and Chapter 21 (accelerated 
degradation tests). Section 18.1 motivates and describes the general methods for 
accelerating reliability tests. Sections 18.2, 18.3, and 18.4describe, respectively, use- 
rate, temperature, and voltage acceleration. Section 18.5describes some models with 
a combination of accelerating variables. 

18.1 INTRODUCTION 

18.1.1 Motivation 

Today’s manufacturers face strong pressure to develop new, higher technology prod- 
ucts in record time, while improving productivity, product field reliability, and overall 
quality. This has motivated the development of methods like concurrent engineering 
and encouraged wider use of designed experiments for product and process im- 
provement. The requirements for higher reliability have increased the need for more 

466 
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up-front testing of materials, components, and systems. This is in line with the modern 
quality philosophy for producing high-reliability products: achieve high reliability 
by improving the design and manufacturing processes; move away from reliance on 
inspection (or screening) to achieve high reliability. 

Estimating the failure-time distribution or long-term performance of components 
of high-reliability products is particularly difficult. Most modern products are de- 
signed to operate without failure for years, decades, or longer. Thus few units will 
fail or degrade appreciably in a test of practical length at normal use conditions. 
For example, the design and construction of a communications satellite may allow 
only 8 months to test components that are expected to be in service for 10 or 15 
years. For such applications, Accelerated Tests (ATs) are used widely in manufactur-
ing industries, particularly to obtain timely information on the reliability of simple 
components and materials. There are difficult practical and statistical issues involved 
in accelerating the life of a complicated product that can fail in different ways. 
Generally, information from tests at high levels of one or more accelerating variables 
(e.g., use-rate, temperature, voltage, or pressure) is extrapolated, through a physically 
reasonable statistical model, to obtain estimates of life or long-term performance at 
lower, normal levels of the accelerating variable(s). In some cases, stress is increased 
or otherwise changed during the course of a test (step-stress and progressive-stress 
ATs). AT results are used in the reliability-design process to assess or demonstrate 
component and subsystem reliability, to certify components, to detect failure modes 
so that they can be corrected, to compare different manufacturers, and so forth. ATs 
have become increasingly important because of rapidly changing technologies, more 
complicated products with more components, higher customer expectations for better 
reliability, and the need for rapid product development. 

18.1.2 Different Types of Acceleration 

The term “acceleration” has many different meanings within the field of reliability, but 
the term generally implies making “time” (on whatever scale is used to measure device 
or component life) go more quickly, so that reliability information can be obtained 
more rapidly. Different types of reliability tests and screens are used in different 
phases of the product developmentlproduction processes. Table 18.1 outlines the 
kinds of reliability tests done at different stages of product design and production. 

Table 18.1. Reliability Tests at Different Product Stages 

Product Design Product Production 

Production and 
Qualification Testing of Prototype Testing of Postproduction Screens for 

Materials and Components Systems and Subsystems Systems and Subsystems 

Accelerated Degradation Tests Robust Design Test Component Certification 
Accelerated Life Tests STRIFE Tests Burn-in 

Test-and-Fix Environmental 
for Reliability Growth Stress Screening 
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Generally, there is a need to do all of these tests as quickly as possible, and methods 
have been developed to accelerate all of these different types of tests and screens. 
The main focus of this chapter and Chapters 19, 20, and 21, and Section 22.5 will 
be Accelerated Life Tests and Accelerated Degradation Tests that are done during 
product design to assess reliability and qualify the use of proposed materials and 
components. A section at the end of Chapter 19 provides definitions and further 
discussion of the statistical aspects of the other types of acceleration as well as 
references to sources of further information. 

18.1.3 Qpes of Responses 

It is useful to distinguish between ATs on the basis of what is observed. 

Accelerated Life Tests (ALTs). One obtains information on the failure time 
(actual failure time or an interval containing the failure time) for units that fail 
and lower bounds for the failure time (also known as the running time or runout 
time) for units that do not fail. 
Accelerated Degradation Tests (ADTs). As described in Chapter 13, one 
observes, at one or more points in time, the amount of degradation for a unit  
(perhaps with measurement error). 

Many of the underlying physical model assumptions, concepts, and practices are 
the same for ALTs and ADTs. In some cases, analysts use degradation-level data to 
define failure times, turning ADT data into ALT data (generally simplifying analysis, 
but often sacrificing useful information). There are close relationships between ALT 
and ADT models. Because of the different types of response, however, the actual 
models fitted to the data and methods of analysis differ. Analyses of ALT and ADT 
data are covered in Chapters 19 and 2 1, respectively. An important characteristic of 
both types of ATs is the need to extrapolate outside the range of available data: tests 
are done at accelerated conditions, but estimates are needed at use conditions. Such 
extrapolation requires strong model assumptions. 

18.1.4 Methods of Acceleration 

There are three different methods of accelerating a reliability test: 

Increase the use-rate of the product. Consider the reliability of a toaster, which 
is designed for a median lifetime of 20 years, assuming a usage rate of twice 
each day. If, instead, we test the toaster 365 times each day, we could reduce 
the median lifetime to about 40 days. Also, because it is not necessary to have 
all units fail in a life test, useful reliability information could be obtained in a 
matter of days instead of months. 
Increase the aging-rate of the product. For example, increasing the level of 
experimental variables like temperature or humidity can accelerate the chemical 
processes of certain failure mechanisms, such as chemical degradation (resulting 
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in eventual weakening and failure) of an adhesive mechanical bond or the growth 
of a conducting filament across an insulator (eventually causing a short circuit). 
Increase the level of stress (e.g., temperature cycling, voltage, or pressure) under 
which test units operate. A unit will fail when its strength drops below applied 
stress. Thus a unit at a high stress will generally fail more rapidly than i t  would 
have failed at low stress. 

Combinations of these methods of acceleration are also employed. Variables like 
voltage and temperature cycling can both increase the rate of an electrochemical 
reaction (thus accelerating the aging-rate) and increase stress relative to strength. 
In such situations, when the effect of an accelerating variable is complicated, there 
may not be enough physical knowledge to provide an adequate physical model for 
acceleration (and extrapolation). Empirical models may or may not be useful for 
extrapolation to use conditions. 

18.1.5 Acceleration Models 

Interpretation of accelerated test data requires models that relate accelerating variables 
like temperature, voltage, pressure, and size to time acceleration. For testing over 
some range of accelerating variables, one can fit a model to the data to describe the 
effect that the variables have on the failure-causing processes. The general idea is to 
test at high levels of the accelerating variable(s) to speed up failure processes and 
then to extrapolate to lower levels of the accelerating variable(s). For some situations, 
a physically reasonable statistical model may allow such extrapolation. 

Physical Acceleration Models 
For well-understood failure mechanisms, one may have a model based on physi- 
cakhemical theory that describes the failure-causing process over the range of the 
data and provides extrapolation to use conditions. The relationship between acceler- 
ating variables and the actual failure mechanism is usually extremely complicated. 
Often, however, one has a simple model that adequately describes the process. For 
example, failure may result from a complicated chemical process with many steps, 
but there may be one rate-limiting (or dominant) step and a good understanding of 
this part of the process may provide a model that is adequate for extrapolation. 

Empirical Acceleration Models 
When there is little understanding of the chemical or physical processes leading 
to failure, it may be impossible to develop a model based on physical/chemical 
theory. An empirical model may be the only alternative. An empirical model may 
provide an excellent fit to the available data but may provide nonsense extrapolations 
(e.g., the quadratic models used in Section 17.5). In some situations there may 
be extensive empirical experience with particular combinations of variables and 
failure mechanisms and this experience may provide the needed justification for 
extrapolation to use conditions. 
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18.2 USE-RATE ACCELERATION 

Increasing use-rate will, for some components, accelerate failure-causing wear and 
degradation. Examples include: 

Running automobile engines, appliances, and similar products continuously or 
with higher than usual use-rates. 
Higher than usual cycling rates for relays and switches. 
Increasing the cycling rate (frequency) in fatigue testing. 

There is a basic assumption underlying simple use-rate acceleration models. Use- 
ful life must be adequately modeled by cycles of operation and cycling rate (or 
frequency) should not affect the cycles-to-failure distribution. This is reasonable if 
cycling simulates actual use and if the cycling frequency is low enough that test units 
return to steady state after each cycle (e.g., cool down). 

Example 18.I Increased Cycling Rate for Low-Cycle Fatigue Tests. Fatigue 
life is typically measured in cycles to failure. To estimate low-cycle fatigue life of 
metal specimens, testing is done using cycling rates typically ranging between 10 and 
50 H z  (where 1 H z  is one stress cycle per second), depending on material type and 
available test equipment. At 50 Hz, accumulation of 106 cycles would require about 
5 hours of testing. Accumulation of 10’ cycles would require about 2 days and 108 
about 20 days. Higher frequencies are used in the study of high-cycle fatigue. 0 

Testing at higher frequencies could shorten test times but could also affect the 
cycles-to-failure distribution due to specimen heating or other effects. In some com- 
plicated situations, wear rate or degradation rate depends on cycling frequency. Also, 
a product may deteriorate in stand-by as well as during actual use. 

For a certain type of fatigue test, notched test specimens are subjected to cyclic 
loading, as shown in Figure 18.I .  Because the notch is a point of highest stress, a crack 
will initiate and grow out of it. Cycling rates in such tests are generally increased to 
a point where crack growth or cycles to failure (two common responses) can still be 
measured without distortion. There is a danger, however, that increased temperature 

t 

Figure 18.1. Fatigue test notched “compact” specimen to which cyclic stress will be applied. 
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due to cycling rate will affect crack growth. This is especially true if there are effects 
like creepfatigue interaction (see Dowling, 1993, page 706, for further discussion). 
In another example, there was concern that changes in cycling rate would affect the 
distribution of lubricant on a rolling bearing surface. 

18.3 TEMPERATURE ACCELERATION 

It is sometimes said that high temperature is the enemy of reliability. Increasing 
temperature is one of the most commonly used methods to accelerate a failure 
mechanism. 

Example 18.2 Resistance Change of Carbon-Film Resistors. Appendix 
Table C.3 and Figure 18.2 show the percent increase in resistance over time for 
a sample of carbon-film resistors. These data were previously analyzed by Shiomi 
and Yanagisawa (1979) and Suzuki, Maki, and Yokogawa (1  993). Samples of resistors 
were tested at each of three levels of temperature. At standard operating tempera- 
ture (e.g., 50" C), carbon-film resistors will degrade slowly. Changes in resistance 
can cause reduced product performance or even system failures. The test was run at 
high levels of temperature to accelerate the chemical degradation process and obtain 
degradation data more quickly. Figure 18.2 shows that the resistors degrade more 
rapidly at high temperature. 0 
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Figure 18.2. Percent increase in resistance over time for a sample of carbon-film resistors. 
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18.3.1 Arrhenius Relationship Time- Acceleration Factor 

The Arrhenius relationship is a widely used model describing the effect that temper- 
ature has on the rate of a simple chemical reaction. This relationship can be written 
as 

-E, X 11605 
R ( t e m p )  = Yo exp ) = YoexP( t e m p  K 

where 72 is the reaction rate and t e m p  K = t e m p  “C + 273.15 is temperature in 
the absolute Kelvin scale, kB = 8.617 1 X 10-5 = 1/11605 is Boltzmann’s constant 
in electron volts per “C, and E, is the activation energy in electron volts (eV). 
The parameters E,, and y(y~ are product or material characteristics. The Arrhenius 
acceleration factor is 

AT(t e m p ,  t empu,E,,) = W t e m P )  =exp [E, ( ‘“05 - , (18.2)
W t e m P u )  t e m p u K  t e m p K  

When t e m p  > t e m p u ,  A . F ( t e m p ,  t e m p u ,  E,) > 1. When t e m p u  and E, are 
understood to be, respectively, product use temperature and reaction-specific ac- 
tivation energy, A T ( t e m p )  = A F ( t e m p ,  t e m p u , & )  will be used to denote a 
time-acceleration factor. Figure 18.3 gives the acceleration factor 

as a function of E, and the temperature differential factor (TDF) values 

TDF = 

given in Table 18.2. 
The Arrhenius relationship does not apply to all temperature-acceleration prob- 

lems and will be adequate over only a limited temperature range (depending on the 
particular application). Yet it is satisfactorily and widely used in many applications. 
Nelson (1990a, page 76) comments that “in certain applications (e.g., motor insula- 
tion), if the Arrhenius relationship.. . does not fit the data, the data are suspect rather 
than the relationship.” 

Example 18.3 Arrhenius Time-Acceleration Factor for a Metallization Fail- 
ure Mode. An accelerated life test will be used to study a metallization failure 
mechanism for a transistor. Experience with this type of failure mechanism suggests 
that the activation energy should be in the neighborhood of E, = 1.2. The usual op- 
erating junction temperature for the transistor is 90°C. To determine the acceleration 
factor for testing at 160°C, enter Table 18.2 with these temperatures and read TDF 
= 5.16. Then enter Figure 18.3 with this figure on the bottom and read up to the 
line with E, = 1.2 eV, giving an acceleration factor of approximately 4.9 X 10’ [or 
computed more precisely using (1  8.2) as 49 I ] .  0 
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Figure 18.3. Time-acceleration factor as a function of temperature differential factor from Table 18.2 and 
activation energy E,,. 

18.3.2 Eyring Relationship Time-Acceleration Factor 

The Arrhenius relationship (1 8.1) was obtained through empirical observation. Eyring 
(e.g., Eyring, Gladstones, and Laidler, 1941, or Eyring, 1980) gives physical theory 
describing the effect that temperature has on a reaction rate. Written in terms of a 
reaction rate, 

R(temp) = 70X A(temp) X exp 

where A(temp) is a function of temperature depending on the specifics of the reac- 
tion dynamics and 70and E, are again constants (e.g., Weston and Schwarz, 1972, 
provide more detail). Applications in the literature have typically used A(temp) = 
(tempK)" with a fixed value of rn ranging between nz = 0 (Boccaletti et al., 1989, 
page 379), rn = .5 (Klinger, 1991a), to rn = 1 (Nelson, 1990a, page 100; Mann, 
Schafer, and Singpurwalla, 1974, page 436). 
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Table 18.2. Temperature Differential Factors (TDFs) from the Arrhenius 
Time-Accelera tion Model 

Higher 
Temperature Lower Temperature ( O  C) 

("C) 30 40 50 60 70 80 90 100 

80 5.42 4.20 3.05 1.97 0.96 0.00 
85 5.88 4.66 3.5 1 2.43 1.42 0.46 
90 6.32 5.10 3.96 2.88 1.86 0.90 0.00 
95 6.76 5.54 4.39 3.31 2.30 1.34 0.43 

100 7.18 5.96 4.8 1 3.73 2.72 1.76 0.86 0.00 
I05 7.59 6.37 5.22 4.14 3.13 2.17 1.27 0.4 1 
110 7.99 6.77 5.62 4.55 3.53 2.57 I .67 0.8 1 
115 8.38 7.16 6.0 1 4.94 3.92 2.96 2.06 1.20 
120 8.76 7.54 6.39 5.32 4.30 3.34 2.44 1.58 
125 9.13 7.9 1 6.76 5.69 4.67 3.7 I 2.8 1 1.95 
I30 9.49 8.27 7.13 6.05 5.03 4.08 3.17 2.3 1 
135 9.85 8.63 7.48 6.40 5.39 4.43 3.52 2.67 
140 10.19 8.97 7.82 6.74 5.73 4.77 3.87 3.0 1 
145 10.53 9.3 1 8.16 7.08 6.07 5.1 1 4.20 3.35 
150 10.86 9.63 8.49 7.4 1 6.39 5.44 4.53 3.67 
155 11.18 9.95 8.8 1 7.73 6.7 1 5.76 4.85 3.99 
I60 11.49 10.27 9.12 8.04 7.03 6.07 5.16 4.3 1 
165 11.79 10.57 9.43 8.35 7.33 6.37 5.47 4.6 1 
170 12.09 10.87 9.72 8.65 7.63 6.67 5.77 4.9 1 
175 12.39 11.16 10.02 8.94 7.92 6.97 6.06 5.20 
I80 12.67 I I .45 10.30 9.22 8.2 1 7.25 6.35 5.49 
185 12.95 11.73 10.58 9.50 8.49 7.53 6.63 5.77 
190 13.22 12.00 10.85 9.78 8.76 7.80 6.90 6.04 
I95 13.49 12.27 11.12 10.04 9.03 8.07 7.17 6.3 1 
200 13.75 12.53 1 I .38 10.3I 9.29 8.33 7.43 6.57 
205 14.01 12.79 11.64 10.56 9.55 8.59 7.69 6.83 
210 14.26 13.04 11.89 10.81 9.80 8.84 7.94 7.08 
215 14.51 13.28 12.14 11.06 10.04 9.09 8.18 7.33 
220 14.75 13.53 12.38 11.30 10.29 9.33 8.42 7.57 
225 14.98 13.76 12.62 11.54 10.52 9.56 8.66 7.80 
230 15.22 13.99 12.85 11.77 10.75 9.80 8.89 8.03 
235 15.44 14.22 13.07 12.00 10.98 10.02 9.12 8.26 
240 15.67 14.44 13.30 12.22 11.20 10.25 9.34 8.48 
245 15.88 14.66 13.5 1 12.44 11.42 10.46 9.56 8.70 
250 16.10 14.88 13.73 12.65 11.64 10.68 9.77 8.92 

TDF = ( I  1605/templ,, K )  - ( 1  l605/temphlghK) used as input to Figure 18.3. 
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The Eyring relationship temperature-acceleration factor is 

where A.7=Ar(temp,tempu,EfJ)is the Arrhenius acceleration factor from ( 1  8.2). For 
use over practical ranges of temperature acceleration, and when m is close to 0, the 
factor outside the exponential has relatively little effect on the acceleration factor and 
the additional term is often dropped in favor of the simpler Arrhenius relationship. 

Example 18.4 Eyring Acceleration Factor for a Metallization Failure Mode. 
Returning to Example 18.3, the Eyring acceleration factor, using m = 1. is 

= 1.1935 X 491 = 586, 

where AFAr(160,90, 1.2) = 49 1 from Example 18.3.We see that, for a$xed value of 
E,, the Eyring relationship predicts, in this case, an acceleration that is 19% greater 
than the Arrhenius relationship. As explained below, however, this figure exaggerates 
the practical difference between these models. U 

When fitting models to limited data, the estimate of E,, depends strongly on the 
assumed value form (e.g., 0 or 1). This dependency will compensate for and reduce the 
effect of changing the assumed value of rn. Only with extremely large amounts of data 
would it be possible to adequately separate the effects of m and E, using data alone. 
If m can be determined accurately on the basis of physical considerations, the Eyring 
relationship could lead to better low-stress extrapolations. With rn > 0 the Eyring 
acceleration factor is larger than the Arrhenius acceleration factor. One argument 
in favor of the Arrhenius relationship (and perhaps a reason for its more common 
use) is that extrapolation to use-levels of temperature will be more conservative (i.e., 
predicting shorter life) than with the Eyring relationship with rn > 0. 

18.3.3 Reaction-Rate Acceleration for a Nonlinear Degradation Path Model 

Some simple chemical degradation processes might be described by the following 
path model (previously used in Section 13.2.2): 

V(t;temp)= V xx { 1 - exp[-Ru x A.F(temp) x r ] } ,  (1 8.3) 

where RI/is the reaction rate at use temperature tempu,Ru X .4F(temp)is the re- 
action rate at a general temperature temp,and for temp > tempu,dF(t emp) > 1. 
Figure 18.4 shows this function for fixed Ru,E,, and V,,but at different tempera- 
tures, Note from ( 1  8.3) that when D, > 0, D(t)is increasing and failure occurs when 
V(r)> Vf.For the example in Figure 18.4, however, V x< 0, D(r) is decreasing, 
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Figure 18.4. Nonlinear degradation paths at different temperatures with a S A W  relationship. 

and failure occurs when V(t)< V,. andIn either case, equating V(T; t e m p )  to VD~ 
solving for failure time gives 

7-(t emP(,/ 1 
( 18.4)T(temp) = dF(t e m p )  ' 

where T (tempu) = -( 1/Ru)log( I - V,/Do,)is failure time at use conditions. 
Faster degradation shortens time to any particular definition of failure (e.g., crossing 
Df or some other specified level) by a scde  factor that depends on temperature. 
Thus changing temperature is similar to changing the units of time. Consequently, 
the fdilure-time distributions at tempu and t e m p  are related by 

Pr [T( temp, )5 t ]  = Pr[T(temp) 5 t /dF( temp)] .  ( 18.5) 

Equations ( 18.4) 2nd ( 18.5) are forms of the scale-accelerated failure-time (SAFT) 
model introduced in Section 17.2.2. 

With a SAFT model, for example, if T (tempu)(time at use or some other baseline 
temperature) has a log-location-scale distribution with parameters and (T, then 
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At any other temperature, 

Pr[T 5 t ;  temp] = @ 
[log':',- '"I 

where 

x = 11605/(temp K), xu = 1 1605/(tempu K), P I  = E,, and 00 = p~r- P1-qi. 

This is the same regression model used in Section 17.3.2 (e.g., for the lognormal, 
Weibull, and loglogistic distributions). LuValle, Welsher, and Svoboda ( 1988) and 
Klinger (1 992) describe more general degradation model characteristics needed to 
assure that the SAFT property holds. Figure 18.5 shows a typical example of an 
Arrhenius relationship between life and temperature. Using an Arrhenius temperature 
axis and a log-life axis, the relationship plots as a family of straight lines. Because 
of the SAFT relationship, the logarithms of different lognormal distribution quantile 
lines all have the same slope. 

40 60 80 100 120 140 
Degrees C 

Figure 18.5. Example of the Arrhenius-lognormal life model. 
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18.3.4 Acceleration for a Linear Degradation Path Model 

If 72" X A . F ( t e m p )  X t in (18.3) is small so that V( t )is small relative to V,,then 

V(t;t e m p )  = V xX { 1 - exp [-R"X d . F ( t e m p )  X t ] }  

=r VzX Ru X A . F ( t e m p )  X t = RE, X A . F ( t e m p )  X t (18.7) 

is approximately linear in t . This is apparent when comparing the early-time behavior 
in Figure 18.4 with Figure 18.6. Also some degradation processes (e.g., automobile 
tire wear) are approximately linear in time. In this case, if V(0;t e m p )  = 0, 

Again, R; is the degradation rate at use conditions and 72; X A F ( t e m p )  is the 
degradation rate at general temperature t e m p .  Failure occurs when V(t )crosses D f .  
Equating V(T ; t e m p )  to VD~.and solving for the failure time gives 

T ( t e m p )  = 
T (t e m P U )  
A F (  t e m p )  ' 

where T ( t e m p U )  = Vf /Rbis the failure time at use conditions. This is also a 
S A R  model. If T (t e m p )  has a log-location-scale distribution, the parameters of the 
distribution can, as in Section 18.3.3,be expressed as p = PO+ P Ix and a constant U .  

0.0 
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m
U -0.5 
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!!
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Figure 18.6. Linear degradation model shown at different temperatures with a SAFT relationship. 
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18.3.5 Acceleration of Parallel Chemical Reactions 

Consider the more complicated chemical degradation path model having two separate 
reactions contributing to failure and described by 

V(t;t e m p )  = DIz X { 1 - exp [ - R I U  X d F I ( t e m p )  X t ] )  

+ V2xX { 1 - exp [ - R z ~X d F z ( t e m p )  X t ] } .  

Here RIUand R ~ uare the use-condition rates of the two parallel reactions con- 
tributing to failure. Suppose that the Arrhenius relationship can be used to describe 
temperature dependence for these rates, providing acceleration functions d.Fl( t e m p )  
and dF2(te m p ) .  Then, unless dFI( t e m p )  = dF2(t e m p )  for all t e m p ,  this degra- 
dation model does not lead to a SAFT model. Intuitively, this is because temperature 
affects the two degradation processes differently, inducing a nonlinearity into the 
acceleration function relating times at two different temperatures. To obtain useful 
extrapolation models it is, in general, necessary to have adequate models for the 
important individual degradation processes. 

In some situations (e.g., when the individual processes can be observed) i t  may 
be possible to use such a model by estimating the effect that temperature (or other 
accelerating variable) has on both RIUand RzU. 

18.4 VOLTAGE AND VOLTAGE-STRESS ACCELERATION 

Increasing voltage or voltage stress (electric field) is another commonly used method 
to accelerate failure of electrical materials and components like light bulbs, capacitors, 
transformers, heaters, and insulation. Voltage is defined as the difference in electrical 
potential between two points. Physically it can be thought of as the amount of pressure 
behind an electrical current. Voltage stress across a dielectric is measured in units of 
volts/thickness (e.g., V/mm or kV/mm). 

Example 18.5 Accelerated Life Test of a Mylur-Polyurethane Insulation. 
Appendix Table C. 13 and Figure 18.7 show data from an ALT on a special type of 
mylar-polyurethane insulation used in high-performance electromagnets. The data, 
from Kalkanis and Rosso (1989), give time to dielectric breakdown of units tested at 
100.3, 122.4, 157.1,2 19.0, and 361.4 kV/mm. The purpose of the experiment was to 
evaluate the reliability of the insulating structure and to estimate the life distribution 
at system design voltages. The figure shows that failures occur much sooner at high 
voltage stress. Except for the data at 361.4 kV/mm, the relationship between log life 
and log voltage appears to be approximately linear. 0 
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Figure 18.7. Times to dielectric breakdown of mylar-polyurethane insulation tested at 100.3, 122.4. 
157. I ,  2 19.0, and 36 I .4 kV/mm. 

18.4.1 Voltage-Acceleration Mechanisms 

Depending on the failure mode, raising voltage can: 

Increase the voltage-stress level relative to dielectric strength of a specimen. 
The dielectric strength of certain types of insulation will decline over time from 
chemical degradation. 
Increase the strength of the electric field, thereby accelerating some failure- 
causing electrochemical reactions or accelerating the growth of failure-causing 
discontinuities in the dielectric material. 

Sometimes one or the other of these effects will be the primary cause of failure. In 
other cases, both effects will be important. 

18.4.2 The Inverse Power Relationship 

The most commonly used model for voltage acceleration is the "inverse power 
relationship" (also known as the "inverse power rule" and the 'inverse power law"). 
Let T ( v o 1 t )  and T ( v o 1 t u )  be the failure times that would result for a particular 
unit tested at increased voltage and use-voltage conditions, respectively. Then the 
inverse power relationship is 

v o l t
T ( v 0 l t )  = T(voltu) = (=) T ( v o l t u ) ,  ( 18.8)

AF(vo1t) 
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which is a SAFT model. The relationship in (1  8.8) is known as the inverse power 
relationship because, generally, P I  < 0. 

The inverse power relationship voltage-acceleration factor can be expressed as 

When v o l t  > volt",  and p1 < 0, A.F(volt ,voltu,pl)> 1 .  When vol tu  
and are understood to be, respectively, product use (or other baseline) voltage 
and the material-specific exponent, M ( v o 1t) = dF(vo1t,vol  tLr,P I )denotes 
the acceleration factor. Figure 18.8 gives AF as a function of the stress ratio (e.g., 
vo 1tHigh/VO 1tLow) and pi.  

If the model for T(vo1t)is a log-location-scale distribution, its parameters can 
be expressed as = + p l x  with constant U ,  where .r = log(vo1t)and is the 

-p,-20 10 a 6 4 3 2.5 2 1.6 

1 10 1o2 
Stress Ratio 

Figure 18.8. Time-acceleration factor as a function of stress ratio and exponent - P I  for the inverse pou'er 
relationship. 
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Figure 18.9. Example of the inverse power relationship/Weibull life model. 

value of p at volt = 1. Then log([,) = PO + P l x  + @ - l ( p ) a .  The parameters PO, 
01,and U are product or material characteristics. Figure 18.9shows a typical example 
of an inverse-power relationship between quantiles of a Weibull life distribution and 
voltage. Using log axes for time and voltage, the relationship plots as a family of 
straight lines. Because of the SAFT relationship, the quantile lines all have the same 
slope. 

Example 18.6 Time-Acceleration Factor for Glass Capacitors. From ex ten- 
sive experience with glass capacitors, it is known that the power parameter in the 
inverse power relationship model is in the neighborhood of PI = -2. For capac- 
itors rated at 100 volts, testing at 300 volts should provide an acceleration fac- 
tor of (300/100)2 = 9. This can be seen directly from Figure 18.8 entering with 
300/100 = 3 and reading AF = 9 from the = -2 line. U 

18.4.3 Physical Motivation for the Inverse Power Relationship for 
Voltage-Stress Acceleration 

The inverse power relationship is generally considered to be an empirical model for 
the relationship between life and the level of certain accelerating variables and es- 
pecially those that are pressure-like stresses. This section presents a simple physical 
motivation for the inverse power relationship for voltage-stress acceleration under 
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constant-temperature situations. Section 18.5.2 describes a more general model for 
voltage acceleration involving a combination of temperature and voltage accelera- 
tion. 

This discussion is for insulation. The ideas extend, however, to other dielectric 
materials, products, and devices like insulating fluids, transformers, and capacitors. 
In applications, an insulation should not conduct an electrical current. An insulation 
has a characteristic dielectric strength which can be expected to be random from 
unit to unit. The dielectric strength of an insulation specimen operating in a specific 
environment at a specific voltage may degrade with time. Figure 18.10 shows a family 
of simple curves to model unit-to-unit variability and degradation in dielectric strength 
over time. The unit-to-unit variability could be caused, for example, by materials or 
manufacturing variability. The horizontal lines represent voltage-stress levels that 
might be present in actual operation or in an accelerated test. When a specimen's 
dielectric strength falls below the applied voltage stress, there will be flash-over, a 
short circuit, or other failure-causing damage to the insulation. Analytically, suppose 
that degrading dielectric strength at age t can be expressed as 

Here, as in Section 18.3.3, failure occurs when D(t)crosses V D ~ ,the applied voltage 
stress, denoted by vo l t .  In Figure 18.10, the unit-to-unit variability is in the 4) 
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Figure 18.10. Dielectric strength degrading over time, relative to voltage-stress levels (horizontal lines). 



484 ACCELERATED IEST MODELS 

parameter. Equating D ( T )to volt and solving for failure time T gives 

Then the acceleration factor for volt versus voltu is 

which is an inverse power relationship, as in (18.9). 
To extend this model, suppose that higher voltage also leads to an increase in the 

degradation rate and that this increase is described with the degradation model 

D(r)= 60 [R(volt)x t p , 

where 

R(vo1t) = yoexp[y? log(vo1t)]. 

Suppose failure occurs when D(r)crosses VD~,the applied voltage stress, denoted by 
volt.Then equating D ( T )to volt and solving for failure time T gives the failure 
time 

1 volt y I  

* 

T(vo1t) = R(v0lt)  (T) 
Then the ratio of failure times at volt versus volt is the acceleration factor 

which is again an inverse power relationship with PI = y1- y2. 

18.4.4 Other Inverse Power Relationships 

The inverse power relationship is also commonly used for other accelerating variables 
including pressure, cycling rate, electric current, stress, and humidity. Some examples 
are given in the next section. 

18.5 ACCELERATION MODELS WITH MORE THAN ONE 
ACCELERATING VARIABLE 

Some accelerated tests use more than one accelerating variable. Such tests might 
be suggested when it is known that two or more potential accelerating variables 
contribute to degradation and failure. Using two or more variables may provide needed 
time acceleration without requiring levels of the individual accelerating variables 
to be too high. Some accelerated tests include engineering variables that are not 
accelerating variables. Examples include material type, design, and operation. 
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18.5.1 Generalized Eyring Relationship 

The generalized Eyring relationship extends the Eyring relationship in Section 18.3.2, 
allowing for one or more nonthermal accelerating variables (such as humidity or 
voltage). For one additional nonthermal accelerating variable X,the model, in terms 
of reaction rate, can be written as 

R(temp,X) = yo X (tempK)’”X exp 
k~ X temp K 

( 18.10) 

where X is a function of the nonthermal stress. The parameters yl  = E, (activation 
energy) and yo, y2, y3 are characteristics of the particular physical/chemical pro- 
cess. Additional factors like the one on the right of ( 1  8.10) can be added for other 
nonthermal accelerating variables. 

The following sections, following common practice, set (tempK)nl= 1, using 
what is essentially the Arrhenius temperature-acceleration relationship. They de- 
scribe some important special-case applications of this more general model. If the 
underlying model relating the degradation process to failure is a SAFT model, then, 
as in Section 18.3.I ,  the generalized Eyring relationship can be used to describe the 
relationship between times at different sets of conditions temp and X.In particular, 
the acceleration factor relative to use conditions tempu and Xu is 

The same approach used in Section 18.3.3 shows the effect of accelerating variables 
on time to failure. For example, suppose that T(tempu) (time at use or some other 
baseline temperature) has a log-location-scale distribution with parameters p~rand U .  

Then T (t e m p )  has the same log-location-scale distribution with 

18.5.2 Temperature-Voltage Acceleration 

Example 17.11 describes an analysis of the Zelen (1959) data from a life test of 
glass capacitors at higher than usual levels of temperature and voltage. That example 
used only simple linear relationships between log-life and the accelerating variables. 
McPherson and Baglee (1985) used accelerated life test data to model the joint 
effect of thermal and electrical accelerating variables for failure of thin-gate 100-A 
oxides. Boyko and Gerlach (1989) investigate the effect of temperature and strength 
of electrical field on the time to the generalized Eyring relationship. 
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To put the Eyring/Arrhenius temperature-voltage acceleration model in the form 
of (18.1 l ) ,  let XI = 11605/temp K, x2 = log(vol t ) ,  and x j  = ~ 1 x 2 .The terms 
with X I  and x2 correspond, respectively, to the Arrhenius and the power relationship 
acceleration models. The term with x3, a function of both temperature and voltage, is 
an interaction suggesting that the temperature-acceleration factor depends on the level 
of voltage. Similarly, a voltage-temperature interaction suggests that the voltage- 
acceleration factor depends on the level of temperature. Klinger (199la) suggests an 
alternative physically motivated model for the Boyko-Gerlach data with second-order 
terms involving both temperature and voltage stress. 

The dynamic voltage-stress/dielectric-strengthmodel introduced in Section 18.4.3 
can be generalized to provide motivation for the generalized Eyring relationship in 
( 18. lO), where X = log(vo1t).In particular, for the degradation path model 

Then, from (18.10), 

R(temp,volt) = x (temp K)"' x exp 
kB X t e m p K  

Failure occurs when V(t)crosses Vf= applied voltage stress, denoted by vo 1t .  
Equating V(T)to v o l t  and solving for failure time T gives 

1 v o l t  y'
T ( t e m p , v o l t )  = 

R(temp,volt)  (T)* 

Then the ratio of failure times at ( tempu,vol tu)  versus ( temp,vol t )  is the 
acceleration factor 

AF(temp,voIt)= 
T ( t e m p u , v o l t u )  

T (te m p,vo 1t ) 

x {exp[xl log(vo1 t)- x I U  log(vo1 tU)]}Y', 

where XI^ = 11605/(temp, K) and XI = 11605/(temp K). For the special case 
when y3 = 0 (no interaction), d F ( t e m p ,  v o l t )  is composed of separate factors 
for temperature and voltage acceleration. In this case the voltage-acceleration factor 
(holding temperature constant) does not depend on the temperature level used in the 
acceleration. 
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18.5.3 Temperature-Current Density Acceleration 

Accelerated tests for electromigration typically use temperature and current den- 
sity as the accelerating variables. To put the Eyring/Arrhenius temperature-current 
density acceleration model in the form of (18.1 I ) ,  let x1 = 11605/temp K, s 2  = 
log(cur ren t ) ,  and x3 = xIx2.The terms with x1 and x2 correspond to Arrhenius 
and the power relationship acceleration models. When the interaction term is omitted 
(i.e., p3 assumed to be 0), this is known as “Black’s equation” (described in Black, 
1969). 

18.5.4 Temperature-Humidity Acceleration 

Humidity is another commonly used accelerating variable, particularly for failure 
mechanisms involving corrosion and certain kinds of chemical degradation. 

Example 18.7 Accelerated Life Test of a Printed Wiring Board. Example 1.8 
introduced data, shown in Figure 1.9, from an ALT of printed circuit boards. I t  
illustrates the use of humidity as an accelerating variable. This is a subset of the 
larger experiment described by LuValle, Welsher, and Mitchell (1 986), involving 
acceleration with temperature, humidity, and voltage. The figure shows clearly that 
failures occur earlier at higher levels of humidity. Cl 

A variety of different humidity models (mostly empirical but a few with some 
physical basis) have been suggested for different kinds of failure mechanisms. Much 
of this work has been motivated by concerns about the effect of environmental 
humidity on plastic-packaged electronic devices. Humidity is also an important factor 
in the service-life distribution of paints and coatings. In most test applications where 
humidity is used as an accelerating variable, it is used in conjunction with temperature. 
For example, Peck (1986) presents data and models relating life of semiconductor 
electronic components to humidity and temperature. Gillen and Mead ( 1  980) describe 
kinetic models for accelerated aging that include humidity terms. See also Peck and 
Zierdt (1974) and Joyce et al. (1985). LuValle, Welsher, and Mitchell(l986) describe 
the analysis of time-to-failure data on printed circuit boards that have been tested 
at higher than usual temperature, humidity, and voltage. They suggest ALT models 
based on the physics of failure. Chapter 2 of Nelson (1990a) and Boccaletti et al. 
(1989) review and compare a number of different humidity models. 

The Eyring/Arrhenius temperature-humidity acceleration relationship in the form 
of (18.11 )  uses XI = 11605/tempK, x2 = log(RH), and x3 = ~ 1 x 2 ,where RH is 
relative humidity, expressed as a proportion. An alternative humidity relationship 
suggested by Klinger ( 199I b), on the basis of a simple kinetic model for corrosion, 
uses the term .xz = log[RH/( 1 - RH)] (a logistic transformation) instead. 

18.6 GUIDELINES FOR THE USE OF ACCELERATION MODELS 

Because most applications of accelerated testing involve extrapolation, users must 
exercise caution in planning tests (accelerated test planning is described in Chap-



488 ACCELERATED TEST MODELS 

ter 20 and Section 22.5) and interpreting the results of data analyses (accelerated test 
data analysis is described in Chapters 19 and 21). Some guidelines for the use of 
acceleration models include: 

Accelerating variables should be chosen to correspond with variables that cause 
actual failures. 
It is useful to investigate previous attempts to accelerate failure mechanisms 
similar to the ones of interest. There are many research reports and papers that 
have been published in the physics of failure literature. 
Accelerated tests should be designed, as much as possible, to minimize the 
amount of extrapolation required (see Chapter 20 and Section 22.5). High 
levels of accelerating variables can cause extraneous failure modes that would 
never occur at use-levels of the accelerating variables. If extraneous failures 
are not recognized and properly handled, they can lead to seriously incorrect 
conclusions. Also, the relationship may not be accurate enough over a wide 
range of acceleration. 
Generally, accelerated tests are used to obtain information about one particular, 
relatively simple failure mechanism (or corresponding degradation measure). 
If there is more than one failure mode, it is possible that the different failure 
mechanisms will be accelerated at different rates. Then, unless this is accounted 
for in the modeling and analysis, estimates could be seriously incorrect when 
extrapolating to lower use-levels of the accelerating variables. 
In practice, it is difficult or impractical to verify acceleration relationships over 
the entire range of interest. Of course, accelerated test data should be used to 
look for departures from the assumed acceleration model. It is important to 
recognize, however, that the available data will generally provide very little 
power to detect anything but the most serious model inadequacies. Typically, 
there is no useful diagnostic information about possible model inadequacies at 
accelerating variable levels close to use conditions. 
Simple models with the right shape have generally proved to be more useful 
than elaborate multiparameter models. 
Sensitivity analysis should be used to assess the effect of perturbing uncertain 
inputs (e.g., inputs related to model assumptions). 
Accelerated test programs should be planned and conducted by teams including 
individuals knowledgeable about the product and its use environment, the phys- 
ical/chemical/mechanical aspects of the failure mode, and the statistical aspects 
of the design and analysis of reliability experiments. 

BIBLIOGRAPHIC NOTES 

Nelson (1990a) provides an extensive and comprehensive source for background 
material, practical methodology, basic theory, and examples for accelerated testing 
models. See Smith (1996), Chapter 7 of Tobias and Trindade (1995), Chapters 2 and 
9 of Jensen (1995), and Klinger, Nakada, and Menendez (1990) for additional discus- 
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sion of these topics. Thomas (1964) describes some practical aspects of accelerated 
testing and describes what we have called SAW as “true acceleration.” Harter ( 1977) 
provides a detailed review of the literature on the effect that size has on reliability. 
Starke et al. (1996) describe the use of long-term elevated temperature exposure and 
the prospects for the use of accelerated aging of materials and structures. Feinberg 
and Windom (1995) describe the reliability physics of thermodynamic aging and 
its relationship to device reliability. Fukuda (199 1) describes degradation models 
for lasers and LEDs. Howes and Morgan (1981), Hakim (1989), Pollino (1989), 
and Christou (1992, 1994a,b) describe degradation models for microelectronic de- 
vices. Gillen and Clough (1985) describe a kinetic model for predicting oxidative 
degradation rates in combined radiation-thermal environments. 

LuValle (1990) and LuValle and Hines (1992) show how to use step-stress meth- 
ods to extract information about the kinetics of failure processes. Drapella (1992) 
provides a mathematical model illustrating how a failure process with a kinetic model 
more complicated than first order can lead to a breakdown of the commonly used 
Arrhenius relationship. Costa and Mercer (1993) describe degradation models for 
corrosion. Cragnolino and Sridhar (1994) present a collection of papers describing 
the use of accelerated corrosion tests for the prediction of service life. Bro and 
Levy (1990) describe kinetic models for degradation of batteries. Starke et al. ( 1996) 
describe issues relating to aging of materials and structures. Bayer (1994) describes 
models for prediction and prevention of wear. Castillo and Galambos (1987) derive 
a regression model for fatigue failure, based on established physical models. The 
annual Proceedings of the International Reliability Physics Symposium, sponsored 
by the IEEE Electron Devices Society and the IEEE Reliability Society, contain 
numerous articles describing physical models for acceleration and failure. 

Often accelerated test models are derived or specified through a system of dif- 
ferential equations. When, as is often the case, no closed-form solution is available, 
it becomes necessary to use numerical solutions. Nash and Quon (1996) describe 
software for fitting differential equation models to data. 

Evans (1977) makes the important point that the need to make rapid reliability 
assessments and the fact that accelerated tests may be “the only game in town’’ are 
not sufficient tojustifj, the use of the method. Justification must be based on physical 
models or empirical evidence. Evans (1991) describes difficulties with accelerated 
testing and suggests the use of sensitivity analysis. He also comments that acceleration 
factors of 10 “are not unreasonable” but that “factors much larger than that tend to 
be figments of the imagination and lots of correct but irrelevant arithmetic.” 

EXERCISES 

18.1. For the toaster example in Section 18.1.4, toasters were cycled 365 times 
per day to get reliability information more quickly. Discuss the practical 
limitations of increasing the cycling frequency to get information even more 
qU ic kl y. 



490 ACCELERATED TEST MODELS 

18.2. Based on previous experience with similar products, the failure time of a 
particular field effect transistor on a monolithic microwave GaAs integrated 
circuit, operating at 100°C (channel temperature), is expected to have a 
lognormal distribution with a median time to failure of 30 years. The primary 
failure mode is caused by a chemical reaction that has an activation energy 
of E, = .6 eV. The value of the lognormal scale parameter for this failure 
mode is expected to be o = .7. 
(a) What are the lognormal parameters p and U if time is recorded in hours? 
(b) For operation at 100°Cchannel temperature, what is the time at which 

5% of the units would fail? 10%? 90%? 
(c) Calculate the time-acceleration factor for testing at 250"C, 200"C, and 

150°Cchannel temperature. Use Table 18.2 and Figure 18.3 and check 
with equation (1 8.2). 

(d) Obtain an expression for the temperature at which loop%of tested units 
would be expected to fail in a 6000-hour test. Use this expression to 
compute the temperatures at which 90% and 10%would be expected to 
fail. 

18.3. Refer to Exercise 18.2. Obtain an expression for the (average) FIT rate (in 
standard units of failures per hour in parts per billion) for the first 10years of 
operation at IOO"C? How much would this improve if the operating channel 
temperature is changed to only 90"C? 

18.4. A mechanical adhesive has been designed for 10-year life at 60°C ambient 
temperature. Over time, the bond will degrade chemically and will eventually 
fail. The rate of the chemical reaction can be increased by testing at higher 
levels of temperature. Using an activation energy of E ,  = 1.2 eV and the 
Arrhenius relationship, calculate the time-acceleration factors for testing at 
120°C. 90°C. and 80°C. 

18.5. Time to failure of incandescent light bulbs can be described accurately with a 
lognormal distribution. A test engineer claims that a 10% increase in voltage 
decreases life by approximately 50%. A particular brand of 100-watt bulb 
has a median life of 1200 hours at 110 volts. 
(a) Give an inverse power relationship expression for the life of such light 

bulbs as a function of voltage. 
(b) Calculate the time-acceleration factors for operating the light bulb at 

120 volts and 130 volts? 

18.6. Refer to Exercise 8.7. 
(a) Assume that the activation energy of the observed failure mode is 

E,, = 1.2 eV and that the Arrhenius relationship provides an adequate 
description of the effect of temperature on the reaction rate. Compute 
estimates of the lognormal distribution parameters at 5 0 ° C  80°C, and 
120"c. 
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(b) On lognormal probability paper, plot the estimate of the life distributions 
at 50"C, 80"C, and 120°C. 

(c)  Repeat part (a), using an activation energy of E, = .7 eV and also plot 
these results. 

(d) Explain the effect that an incorrect assumption about activation energy 
could have on estimates of life at low temperature. 

18.7. A certain kind of capacitor has an exponential life distribution with a median 
life of 10 thousand hours at operating voltage of 400 volts. The relationship 
between life and voltage can be described by the inverse power relationship 
with an exponent p = -10. Determine the time-acceleration factors for 
accelerated testing of these capacitors at 500 volts, 600 volts, and 800 volts. 

18.8. A particular type of integrated circuit is thought to have a dominant failure 
mode with an activation energy of E, = 1.2 eV. This circuit is designed to 
operate at 50°C. If a 1000-hour life test is conducted at 120"C, under the 
Arrhenius relationship, what is the equivalent amount of operating time for 
this failure mode? 

18.9. Consider a failure mechanism modeled with an underlying degradation path 
model in (1  8.3). Suppose that the reaction activation energy is E, = 1.8 eV. 
For RU= .2 and V, = .6, compute the crossing times for all combinations 
o f t  = 1000, 2000 hours and 2)f = .5, 1. Use these results to verify that the 
SAFT property holds in this case. 

18.10. Table 18.2 and Figure 18.3 can be used together to determine time-accelera- 
tion factors for different levels of use and test temperatures. Create a similar 
table and figure that can be used to obtain time-acceleration factors for the 
logit-transformation relative humidity model described in Section 18.5.4. 

18.11. Equation ( I  8.6) gives the Arrhenius relationship between the location pa- 
rameter of the log-life distribution and temperature. When needed, suppose 
that PO= - 17, = 36,  and (T = 1.2. Using this model: 
(a) Give an expression for t,,, the p quantile as a function of temperature 

in "C. 
(b) Show that the relationship between log(r,) versus 1/(temp K) is linear. 
(c) Starting with linear graph paper, make an "Arrhenius plot" for this 

model, similar to Figure 18.5. Start by plotting the linear relationship 
in part (b) on linear paper over the range of interest. Use a range of 
temperatures running from 50°Cto 140°C.Note that in order to have the 
slope of the plotted line decreasing with temperature, it will be necessary 
to have the 1/(temp K) axis running left to right from largest to smallest 
values of 1/(temp K) (instead of the customary increasing axis). Then, 
finally, add in new (nonlinear) axes for Time and "C. Generally, it is 
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most convenient to do this on the axis opposite to the corresponding 
linear axis. On these axes, use tick and tick labels at major points 
on the scale (e.g., for temperature at 50,60,. . . , 140, corresponding t o  
1 /(temp K) = .003094538,.003001651 , .  . . , .002420428). 

18.12. Show why the relationships between the TDF and A F  in Figure 18.3 plot 
as straight lines. 

18.13. Show why the relationships between the voltage ratio and AF in Figure 18.8 
plot as straight lines. 
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Accelerated Life Tests 

0bjectives 

This chapter explains: 

Nonparametric and graphical methods for presenting and analyzing accelerated 
life test (ALTs) data. 
Likelihood methods for analyzing right-censored data from an ALT with a single 
accelerating factor. 
Analysis of other kinds of ALT experiments including experiments yielding 
interval data and experiments with two accelerating variables. 
Some other common forms of accelerated testing. 
Some potential pitfalls of accelerated testing. 

Overview 

This chapter describes and illustrates some basic data analysis methods for acceler- 
ated life tests (ALTs). These tests are used to characterize durability properties or 
the life distribution of materials or simple components. The presentation employs 
the ALT models described in Chapter 18. Section 19.2 explains and illustrates basic 
important ideas for a single-variable ALT with right-censored data and exact failure 
times. Section 19.3 presents several other important examples with special models or 
data features. Section 19.4 gives some suggestions and cautions for drawing conclu- 
sions from AT data. Section 19.5 briefly describes other kinds of “accelerated tests.” 
Section 19.6 outlines a number of potential pitfalls that can arise in the application 
of accelerated testing. 

19.1 INTRODUCTION 

This chapter shows how to apply regression methods from Chapter 17 to the analysis 
of accelerated life test (ALT) data. 

Example 19.1 Temperature-Accelerated Life Test on Device-A. Hooper and 
Amster (1990) analyze the temperature-accelerated life test data on a particular kind 

493 
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Figure 19.1. Scatter plot of temperature-accelerated life test data for Device-A. Censored observations 
are indicated by A ,  The number of censoredtested units were 30/30,90/ 100, 1 1 /20, 1 / 15 at 10,JO. 60, 
and 80°C. respectively. 

of device. Because they do not identify the particular device, we will refer to i t  as 
Device-A. The data are given in Appendix Table C. 10 and Figure 19.1. The purpose 
of the experiment was to determine if Device-A would meet its failure rate objective 
through 10,OOO hours and 30,000hours at its operating ambient temperature of 10°C. 
In this context, failure rate is usually taken to mean the proportion failing over the 
specified time interval [see (2.4) in Section 2.1.11. In the following sections we will 
show how to fit an accelerated life regression model to these data to answer this and 
other questions. cl 

19.1.1 Accelerated Life Test Models 

Most parametric ALT models have the following two components: 

1. A parametric distribution for the life of a population of units at a particu- 
lar level(s) of an experimental variable or variables. It might be possible to 
avoid this parametric assumption for some applications, but when appropriate, 
parametric models (e.g., Weibull and lognormal) provide important practical 
advantages for most applications. 

2. A relationship between one (or more) of the distribution parameters and the 
acceleration or other experimental variables. Such a relationship models the 
effect that variables like temperature, voltage, humidity, and specimen or unit 
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size will have on the failure-time distribution. As described in Chapter 18, this 
part of the accelerated life model should be based on a physical model such 
as one relating the accelerating variable to degradation, on a well-established 
empirical relationship, or some combination. 

The examples in this section use the log-location-scale regression models de- 
scribed in Section 17.3.2 and illustrated with other examples in Chapter 17. The 
relationships between parameters and accelerating variables come from considera- 
tions like those described in Chapter 18. 

19.1.2 Strategy for Analyzing ALT Data 

This section outlines and illustrates a strategy that is useful for analyzing ALT 
data consisting of a number of groups of specimens, each having been run at a 
particular set of conditions. The basic idea is to start by examining the data graphically. 
Use probability plots to analyze each group separately and explore the adequacy of 
candidate distributions. Then fit a model that describes the relationship between life 
and the accelerating variable(s). Briefly, the strategy is to: 

1. Examine a scatter plot of failure time versus the accelerating variable. 
2. Fit distributions individually to the data at separate levels of the accelerating 

variable. Plot the fitted ML lines on a multiple probability plot along with the 
individual nonparametric estimates at each level of the accelerating variable. 
Use the plotted points and fitted lines to assess the reasonableness of the 
corresponding life distribution and the constant-a assumption. Repeat with 
probability plots for different assumed failure-time distributions. 

3. Fit an overall model with the proposed relationship between life and the accel- 
erating variable. 

4. Compare the combined model from Step 3 with the individual analyses in 
Step 2 to check for evidence of lack of fit for the overall model. 

5. Perform residual analyses and other diagnostic checks of the model assump- 
tions. 

6. Assess the reasonableness of the ALT data to make the desired inferences. 

The first examples in this chapter have just one accelerating variable (the simplest 
and most common type of ALT). Section 19.3.3 shows how to apply the same general 
strategy to an ALT with two or more accelerating variables. 

19.2 ANALYSIS OF SINGLE-VARIABLE ALT DATA 

This section describes methods for analyzing ALT data with a single accelerating 
variable. The subsections illustrate, in sequence, the steps in the strategy described 
in Section 19.1.2. 
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19.2.1 Scatter Plot of ALT Data 

Start by examining a scatter plot of failure-time data versus the accelerating-variable 
data. A different symbol should be used to indicate censored observations. 

Example 19.2 Scatter Plot of the Device-A Data. Figure 19.1 is a scatter plot 
of the Device-A ALT data introduced in Example 19.1. As expected, units fail sooner 
at higher levels of temperature. The heavy censoring (e.g., note that there were no 
failures at 10°C) makes it difficult to see the form of the life/accelerating variable 
relationship from this plot. 0 

19.2.2 Multiple Probability Plot of Nonparametriccdf Estimates at 
Individual Levels of the Accelerating Variable 

To make a multiple probability plot, first compute nonparametric estimates of the 
failure-time distribution for each group of specimens tested at the same level of 
the accelerating variable. Then plot these on probability paper. Use the plot to as-
sess the distributional model for the different levels of the accelerating variable (or 
variable-level combinations). 

Example 19.3 Multiple Probability Plotof the Device-A Data. Figure 19.2is a 
Weibull multiple probability plot of the Device-A data. Figure 19.3is a corresponding 
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Figure 19.2. Weibull Multiple probability plot with individual Weibull ML fits for each temperature for 
the Device-A data. 
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Figure 19.3. Lognonnal multiple probability plot with lognormal ML fits for each temperature for the 
Device-A data. 

lognormal probability plot. Comparison of these plots indicates that both the Weibull 
and the lognormal distributions provide a reasonable fit to the failure data at the 
different levels of temperature, but that the lognormal distribution provides a better 
fit to the individual temperature groups. 0 

19.2.3 Adding ML Estimates at Each Level of the Accelerating Variable(s) to 
a Multiple Probability Plot 

If a suitable parametric distribution can be found, then ML estimates of the cdf at 
each level of the accelerating variable should be computed and put on the probability 
plot along with the corresponding nonparametric cdf estimates. This plot is useful for 
assessing the commonly used assumptions that distribution shape does not depend on 
the level of the accelerating variable and that the accelerating variable only affects the 
distribution scale parameter. The slopes of the lines are related to the distribution shape 
parameter values. Thus we can assess graphically the assumption that temperature 
has no effect on distribution shape. 

Example 19.4 ML Estimates of Device-A Life at 40, 60, and 80°C. The 
straight lines on Figures 19.2 and 19.3 depict, respectively, individual Weibull and 
lognormal ML estimates of the cdfs at the different levels of temperature. Table 19.1 
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Table 19.1. Device-A ALT Lognormal ML Estimation Results at Individual 
Temperatures 

95% Approximate 
Confidence Intervals ML Standard 

Parameter Estimate Error Lower Upper 

40°C P 9.81 .42 8.9 10.6 
U 1 .o .27 .59 1.72 

60"C P 8.64 .35 8.0 9.3 
U 1.19 .32 .70 2 .O 

80"c P 7.08 .2 I 6.7 7.5 
U .80 .I6 .55 1.17 

The individual log likelihoods were Lm = - I 15.46,f, = -89.72, and fso = - 1 15.58.The confidence 
intervals are based on the normal-approximation method. 

summarizes the lognormal ML estimation results. In Figure 19.3, there are small 
differences among the slopes, but this could be due to sampling error. This can be 
seen, informally, from the overlapping confidence intervals for U (this issue is ad- 
dressed more formally in Example 19.6). Although both distributions fit reasonably 
well, tradition and physical theory (see Section 4.6) suggest the lognormal distribu- 
tion to describe the failure-time distribution for such devices. Subsequent Device-A 
examples will also use the lognormal distribution. 

19.2.4 Multiple Probability Plot of ML Estimates with a Fitted 
Acceleration Relationship 

In order to draw conclusions about life at low levels of accelerating variables, one 
needs to use a life/accelerating variable relationship to tie together results at the 
different levels of the accelerating variable. The cdfs estimated from the model fit 
can also be plotted on a probability plot along with the data to assess how well the 
life/accelerating variable model fits the data. Extrapolations to other levels of the 
accelerating variable can also be plotted. 

Example 19.5 ML Estimates of Device-A Data for the Arrhenius-lognormal 
Model. The Arrhenius-lognormal regression model, described in Section 18.3.3, is 

Pr[T 5 r ;  temp] = QnOr 

[log(?- '"1 
where p = PO + Plx, x = I1605/(temp K), and P I  = Ea is the activation energy. 
Table 19.2 contains ML estimates and other information. The estimate of the variance- 

0 
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Table 19.2. ML Estimates for the Device-A Data and the Arrhenius-Lognormal 
Regression Model 

95% Approximate 
Confidence Intervals ML Standard 

Parameter Estimate Error Lower Upper 

P O  
-13.5 2.9 - 19.1 -7.8 

.63 .08 .47 .79PI 

U .98 .13 75 1.28 

The log likelihood is L = -321.7. The confidence intervals are based on the normal-approximation 
method. 

A A 

covariance matrix for the ML estimates 6 = (PO,P I ,G )  is 

8.336 -.239 -.195 
-.239 .0069 .0059 (19.1) 
-.195 .0059 .0176 

These quantities will be used in subsequent numerical examples. Figure 19.4is a log-
normal probability plot showing the Arrhenius-lognormal model fit to the Device-A 
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Figure 19.4. Lognormal multiple probability plot depicting the Arrhenius-lognormal regression model 
ML fit to the Device-A ALT data. 
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ALT data. The solid line at the bottom of the graph is the ML estimate of the cdf at 
10°C, extrapolated from the ML fit. 

The dotted curves are a set of pointwise 95% normal-approximation confidence 
intervals. They reflect the random “sampling uncertainty” arising from the limited 
sample data. The necessary computations are illustrated in Example 19.8. It is im- 
portant to note that these intervals do not reflect model-specification and other errors 
(and we know that the model is only an approximation for the exact relationship). 
Figure 19.5 shows directly the fitted life/accelerating variable relationship and the 
estimated densities at each level of temperature, and lines indicating ML estimates 
of percent failing as a function of temperature. The density estimates are normal 
densities because time is plotted on a log scale. 0 

It is useful to compare individual analyses with model analyses. This can be done 
both graphically and analytically. A likelihood-ratio test provides an analytical as- 
sessment about whether observed deviations between the individual model fit and the 
overall life/accelerating variable relationship can be explained by random variability 
or not. 

Example 19.6 Analytical Comparison of Individual Lognormal Fits and 
Arrhenius-Lognormal Model Fit to the Device-A Data. Fitting individual log-
normal distributions (Table 19.1 and Figure 19.3) estimates p and U at each level 
of temperature without any constraints. Fitting the Arrhenius-lognormal model 
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Figure 19.5. Scatter plot showing hours to failure versus “ C  (on an Arrhenius scale) and the Arrhenius- 
lognormal regression model fitted to the Device-A data. Censored observations are indicated by A .  
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(Table 19.2 and Figure 19.4) estimates p and CT at each level of temperature with p 
constrained to be a linear function of x = 11605/(temp K) and U constrained to be 
the same for all temperatures. The total likelihood for the unconstrained Arrhenius- 
lognormal model will always be larger than the likelihood for the constrained model. 
If the total likelihood for the unconstrained model is much larger than the total 
likelihood for the constrained model, there is evidence of lack of fit for the con- 
strained Arrhenius-lognormal model. These two approaches for fitting the data can 
be compared with an “omnibus” likelihood-ratio test. From Table 19.1, for the un- 
constrained model, Lunconst = L ~ o+ L60 + Ego = -320.76 and from Table 19.2, 
for the constrained model, Econst = -321.7. If the constrained model is “correct” 
then the test statistic Q = -2(Cconst - Cunconst) has a xf distribution (see Appendix 
Section B.6.5). In this case the 3 degrees of freedom is the difference between the 6 
parameters in the unconstrained model and the 3 parameters in the constrained model. 
Thus Q = -2(-321.7 + 320.76) = 1.88 < x&5;3)= 4.1, indicating that there is 
no evidence of inadequacy of the constrained model, relative to the unconstrained 
model. cl 

19.2.5 Checking Other Model Assumptions 

Before drawing conclusions from a set of data, it is important to check, as carefully as 
possible, model assumptions by using residual analysis and other model diagnostics, 
as explained in Section 17.6.1. A probability plot of residuals is useful for assessing 
the overall adequacy of a fitted distribution. A standard plot of residuals versus fitted 
values (e.g., 6 )can also be useful for identifying other departures from the fitted 
model. Heavy censoring, however, makes such plots difficult to interpret. Without 
censoring, the residuals should not show any structure that might have been explained 
by a more elaborate model. In interpreting such a plot with censoring, one has to 
make allowances for the predictable patterns that censoring will induce. 

Example 19.7 Residual Analysis for the Arrhenius-Lognormal Model Fit to 
the Device-A Data. Figure 19.6 is a lognormal probability plot of the (censored) 
standardized residuals from the lifehemperature model. In this case the deviation 
from linearity is not strong and can be attributed to randomness in the data. Thus the 
lognormal distribution appears to be adequate. 

Figure 19.7 is a plot of the (censored) standardized residuals (as defined in Sec-
tion 17.6) versus the Arrhenius-lognormal model fitted values (as in other plots of 
failure times, A represents right-censored residuals). The heavy censoring makes this 
plot more difficult to interpret. All that we know about the residuals marked with a A 
is that they are larger than the plotted points. The appearance of a downward sloping 
trend is mostly due to the right-censored observations. The smallest observations 
also appear to slope downward, but there are only a few observations involved in this 
trend. Although this might, at first, suggest that there are outliers or some kind of 
other model departure, there is no evidence of outliers in Figure 19.6 and the observed 
pattern could be a result of randomness from the Arrhenius-lognormal model. Cl 
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Figure 19.6. Lognormal probability plot of the standardized residuals from the Arrhenius-lognormal 
model f i t  to the Device-A data. 
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19.2.6 Estimation at Use Conditions 

The methods presented in Section 17.4.2 can also be used to compute estimates 
and confidence intervals for quantities of interest at use conditions. The following 
example gives details on how to compute an estimate of F ( t )  but, as explained in 
Section 17.4.2, the same ideas can be applied to compute estimates of other quantities 
of interest such as distribution quantiles or hazard function values. 

Example 19.8 ConJidence Interval for the Device-A Lognormal Distribution 
F(30000)and F( loo00)at 10"C. As mentioned in Example 19.1, the purpose of the 
ALT was to estimate the proportion failing at 30,000 and 10,OOOhours. To illustrate 
the methods we use t, = 30,000 hours. Using methods described in Sections 8.4.3 
and 17.4.2, and the numerical results in Table 19.2, simple computations give, at 
10"c, 

* 
ji = po + 6,. 

= -13.469 + ,6279 X 11605/(10 + 273.15) = 12.2641, 

& = [log(t,) - G]/?  = [10g(30000) - 12.2641]/.9778 -2.000, 

F(30000)= QnOr(&) = @D,0,(-2.000)= .02281. 

The estimated covariance matrix for @ and i? at 10°C can be computed as shown in 
equation (17.1 l), using (19.1). The result is 

The off-diagonal elements are zero for complete data but are nonzero here because of 
the right censoring. Then, following the general approach in Section 8.4.3, equation 
(8.14) gives 

-- 4(-2.000) [.287 + 2 X (-2,000) X ,048 + (-2.000)' X .0176] I/'
.9778 

= .0225. 

From this, the 95% normal-approximation confidence interval for F(30000), using 
(8.15), is 

.0228 1 .02281 
= [ .02281 + (1 - .02281) X w '  .02281 + (1  - .02281)/w 1 
= [.0032, .14], 
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where 

= exp{ 1.96 X .0225/[.0228 1( 1 - ,0228 l)]} = 7.232. 

This interval is based on the assumption that Z,ogit(~) NOR(0, 1). The interval is 
wide (also see Figure 19.4) but properly reflects the sampling uncertainty when the 
activation energy is unknown. Additionally, it is important to note that the interval does 
not reflect model uncertainty. On the other hand, if one assumed that the activation 
energy is known, this and other confidence intervals would be much narrower. A 
similar approximate 95% confidence interval for F(  10000)(computations left as an 
exercise) is [.00006, .O 131. 0 

Conclusions based on unverified assumptions are subject to error. Although con- 
fidence intervals provide an assessment of sampling uncertainty, they do not reflect 
possible model deviations. When model assumptions are uncertain, repeating com-
putations with alternative assumptions provides informative sensitivity analyses. The 
following example illustrates this by changing the fitted distribution for the Device-A 
data. 

Example 19.9 ConJidence Interval for the Weibull Distribution F(30000) 
and F(10000)for Device-A at 10°C. For the Weibull distribution model (with 
other details omitted to save space), an approximate 95% confidence interval for 
F(30000) is [.0092, .126]. An approximate 95% confidence interval for F(  loo00) 
is [.002I ,  .027]. The differences between the lognormal and Weibull confidence 
intervals is not that large, relative to width of these intervals. Without some physical 
basis for a choice between these two distributions, both sets of intervals would have 
to be taken into consideration. In this case, however, the lognormal was favored on 
physical grounds, and the lognormal distribution also provided a better fit. 0 

19.3 FURTHER EXAMPLES 

19.3.1 Voltage Acceleration 

This section illustrates statistical methods for fitting a model to and making infer- 
ences from voltage-accelerated life data. Section 18.4 describes the inverse power 
relationship for voltage acceleration used here. 

Example 19.10 Accelerated Life Test of a Mylar-Polyurethane Insulating 
Structure. Returning to the data introduced in Example 18.5, it was clear from the 
scatter plot in Figure 18.7 that the linear relationship for log life versus log voltage 
relationship implied by the inverse power relationship Section 18.4.2) did not hold for 
the data at 361.4 kV/mm. This suggests that the failure mechanism might be different 
at 36 1.4 kV/mm. In this kind of situation, particularly when primary interest is in 
extrapolating to lower ranges of voltage, it is appropriate to drop the data at 36 1.4 
kV/mm and analyze the remaining data. 
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Figure 19.8 is a lognormal probability plot of the data at each of the five different 
levels of voltage stress along with individual lognormal ML estimates. Although 
the (T estimates differ across voltage-stress levels, the differences are small and 
consistent with ordinary random variability. A similar Weibull plot (not shown here) 
also provided a reasonable fit to the data at the different levels of voltage stress 
but, overall, the lognormal seemed to fit better. Figure 19.9shows the inverse power 
relationshiplognormal model fitted to the mylar-polyurethane data. The model is 

Pr(T 5 r ; v o I t ]  = anor["'P- "I ' 

where p = PO + P l x ,  x = log(volt) ,  and v o l t  is voltage stress in kV/mm. 
Numerical estimates are summarized in Table 19.3. The solid line in the SE part of 
Figure 19.9 is the ML estimate of the cdf at 50 kV/mm, extrapolated from the ML 
fit. As in Example 19.5, the dotted lines are pointwise 95% normal-approximation 
confidence intervals, reflecting sampling uncertainty. Figure 19.10 is a lognormal 
probability plot of the residuals from the inverse power relationship-lognormal model 
(Section 18.4.2)fitted to the mylar-polyurethane data. This plot does not suggest any 
important departure from the assumed lognormal distribution and is closer to linear 
than the corresponding plot for the inverse power relationship-Weibull model (not 
shown here). Figure 19.1I shows the fitted model and the original data (showing the 
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Figure 19.8. Lognormal multiple probability plot and ML f i t  for each voltage in the mylar-polyurethane 
ALT. 
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Figure 19.9. Lognormal multiple probability plot and ML fit of the inverse power relationshiplognorrnal 
model to the mylar-polyurethane data with the 36 1 .J-kV/rnm data omitted. 

data at 36 1.4 kV/mm even though these data were not used in the model fitting). This 
plot indicates that there is a substantial probability of failure before 10,OOO hours 
[F(10000) = .076] for this insulating structure at 50 kV/mm. A 95% confidence 
interval for F (  10000)is [.0058, .54]. Incorrectly including the 361.4-kV/mm data 
in the analysis (details not shown here, but see Exercise 19.17) changes the confidence 
interval to [.00012, .064],resulting in a very optimistic and misleading impression. 

0 


Table 19.3. Inverse Power RelationshipLognormaI Model ML Estimates for the 
Mylar-PolyurethaneData 

95% Approximate 
Confidence IntervalsML Standard 

Parameter Estimate Error Lower Upper 
27.5 3.0 21.6 33.4 
4.29 .60 -5.46 -3.1 1 
1.05 .12 .83 I .32 

The log likelihood is f = -27 1.4. The confidence intervals are based on the normal-approximation 
method. 
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Figure 19.10. Lognormal probability plot of the residuals from the inverse power relationship-lognormal 
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Figure 19.11. Plot of the inverse power relationship-lognormal model fitted to the mylar-polyurethane 
data (also showing 361.4-kV/mm data omitted from the ML estimation). 
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19.3.2 Analysis of Interval ALT Data 

Previous examples have shown that interval (or read-out) data occur frequently in 
reliability studies. Such data also arise in accelerated tests. With a complicated eval- 
uation process and limited resources, it is often possible to do only a few inspections 
on each unit. 

Example 19.11 Analysis of ALT Data on a New-Technology IC Device. 
Appendix Table C. 15 gives data from an accelerated life test on a new-technology 
integrated circuit (IC) device. The device inspection involved an expensive electrical 
diagnostic test. Thus only a few inspections could be conducted on each device. 
One common method of planning the times for such inspections is to choose a first 
inspection time and then space the inspections such that they are equally spaced 
on a log axis. In this case, the first inspection was after one day with subsequent 
inspections at two days, four days, and so on (except for one day when the person 
doing the inspection had to leave early). Tests were run at 150, 175, 200, 250, and 
300°C. Failures had been found only at the two higher temperatures. After an initial 
analysis based on early failures at 250°C and 300"C, there was concern that no 
failures would be observed at 175°C before the time at which decisions would have 
to be made. Thus the 200°C test was started later than the others to assure some 
failures and only limited running time on these units had been accumulated by the 
time of the analysis. 

The developers were interested in estimating the activation energy of the failure 
mode and the long-life reliability of the ICs. Initially engineers asked about "MTTF' 
at use conditions of 100"C junction temperature. After recognizing that the estimate 
of the mean would be on the order of 6 million hours (more than 700 years), it was 
decided that this would not be a useful reliability metric. Subsequently they decided 
that the average hazard rate or the proportion that would fail by 100 thousand hours 
(about 1 1 years) would be more useful for decision-making purposes. 

Figure 19.12 is a lognormal probability plot of the failures at 250" C and 300°C 
along with the ML estimates of the individual lognormal cdfs. Table 19.4 summarizes 
the individual lognormal ML estimates. The different slopes in the plot suggest 
that the lognormal shape parameter U changes from 250 to 300°C. Such a change 
could be caused by the occurrence of a different failure mode at high temperatures, 
casting doubt on the simple first-order Arrhenius model. Failure modes with a higher 
activation energy, that might never be seen at low levels of temperature, can appear 
at higher temperatures (or other accelerating variables). A 95% confidence interval 
for the ratio ( T ~ ~ o / u ~ wis [ 1.01, 3.531 (calculations requested in Exercise 19.18), 
suggesting that there could be a real difference. These results also suggested that 
detailed physical failure mode analysis should be done for at least some of the failed 
units and that the accelerated test should be extended until some failures are observed 
at lower levels of temperature. Even if the Arrhenius model is questionable at 300"C, 
i t  could be adequate below 250°C. 

Table 19.5 gives Arrhenius-lognormal model ML estimates for the new-technology 
IC device. Figure 19.13 is a lognormal probability plot showing the Arrhenius- 
lognormal model fit to the new-technology IC device ALT data. This figure shows 
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Figure 19.12. Lognormal probability plot of the failures at 250°C and 300°C for the neu-technology 
integrated circuit device ALT experiment. 

lognormal cdf estimates for all of the test levels of temperature as well as the use 
condition of 100°C. 

Following the approach employed in Example 19.6, we use the "omnibus" test 
to compare the constrained and unconstrained models for estimating the lognormal 
distributions at the different levels of temperature. From Table 19.4, for the uncon- 

=strained model, CuncOnht Cz50+ L c 3 ~= -86.01 and from Table 19.5, for the 
constrained model, Cconst= -88.36. In this case the comparison has just 1 degree of 

Table 19.4. Individual Lognormal ML Estimation Results for the 
New-Technology IC Device 

9S%-Approximate 
Confidence Intervals

ML Standard 

Parameter Estimate Error Lower Upper 

250" C P 8.54 .33 7.9 9.2 
U 7.87 .26 .48 1.57 

300"c P 6.56 .07 6.4 6.7 
(r .46 .05 .36 5 8  

The log-likelihood values were L250 = -32.16 and 1300= -53.85. The confidence intervals are based 
on the normal-approximation method. 
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Table 19.5. Arrhenius-Lognormal Model ML Estimation Results for the 
New-Technology IC Device 

95% Approximate 
Confidence Intervals 

ML Standard 
Parameter Estimate Error Lower Upper 

Pu - 10.2 1.5 - 13.2 -7.2 
.83 .07 .68 .97PI 

U .52 .06 .42 .64 

The log likelihood is ,C = -88.36. The confidence intervals are based on the normal-approximation 
met hod. 

freedom (i.e., dof = 4 - 3 = 1 )  and the test statistic is Q = -2(-88.36 + 86.01) = 
4.7 > X ~ L ) ~ ~ ; , ,= 3.84. This indicates that there is some lack of fit in the constant-a 
Arrhenius-lognormal model. Note that there were no failures at 150, 175, or 200°C. 
These results were implicit in the likelihood. Because the result of 0 failures at these 
temperatures is consistent with the model and the other data, the computed likelihood 
at these three temperatures would be very close to 1 and the computed values of C 
are therefore very close to 0. Thus the results have no direct effect on the ML fit. A 
result of 0 failures at any temperature greater than 250°C combined with the rest of 
these data would, however, have had a strong effect on the fit. 
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Figure 19.13. Lognormal probability plot showing the ML f i t  o f  the Arrhenius-lognormal model for the 
new-technology IC device. 
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Figure 19.14. Arrhenius plot showing the new-technology IC device data and the Arrhenius-lognormal 
model ML estimates. Censored observations are indicated by A .  

Figure 19.14 is an Arrhenius plot of the Arrhenius-lognormal model fit to the 
IC new-technology device data. This plot shows the rather extreme extrapolation 
needed to estimate the failure-time distribution at the use condition of 100°C. If the 
projections are close to the truth, it appears unlikely that there will be any failures 
below 200°C during the remaining 3000hours of testing and, as mentioned before, 
this was the reason for starting some units at 200°C. 0 

In some applications, temperature-accelerated life tests are run with only one 
level of temperature. Then a given value of activation energy is used to compute an 
acceleration factor to estimate life at use temperature. Resulting confidence intervals 
are generally unreasonably precise because activation energy is generally not known 
exactly. For example, MIL-STD-883 provides reliability demonstration tests based 
on a given value of E,. 

Example 19.12 Analysis of New-Technology ICDevice ALT Data with Given 
Activation Energy. Figure 19.15, similar to Figure 19.12, shows the effect of 
assuming that E, = .8eV and having to estimate only POand CT from the limited data. 
Using a given E, results in a set of approximate 95% confidence intervals for F ( t )  
at 100°C that are unrealistically narrow. See Section 22.2 for alternative analyses of 
these data. 0 
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Figure 19.15. Lognormal probability plot showing the Arrhenius-lognormal model ML estimates and 
95% confidence intervals fo r  F ( r )at I00"C for the new-technology IC device with given E,, = .8.  

19.3.3 Analysis of a Two-VariableALT 

This section shows how to analyze ALT data with two experimental variables. In this 
case, both variables were thought to be accelerating. The methods illustrated apply 
to experiments with any number of variables. 

Appendix Table C. I6 contains temperature/voltage ALT data on tantalum elec-
trolytic capacitors. These data come from Singpurwalla, Castellino, and Goldschen 
( 1975). Tests were conducted at temperature/voltage combinations that were non-
rectangular and with unequal allocations of units. Figure 19.16 is a scatter plot of 
hours to failure versus voltage with temperature indicated by different symbols in the 
plot (with some jitter used in voltage to help in viewing ties in the data). The amount 
of censoring is indicated in the top margin. There were various censoring times that 
are given in Table C .16. 

Figure 19.17 is a multiple Weibull probability plot for the individual combina-
tions of voltage and temperature for the tantalum capacitor data. The plot also shows 
individual ML estimates of Weibull cdfs for those combinations having more than 
one failure. The line for 85°C and 46.5 volts is much steeper than the others, but 
this line results from only 2 out of 50 capacitors failing. Thus this deviation in the 
slopes could be due to random variability. The Weibull distribution seems to provide 
a reasonable model for the failure-time distribution at those conditions with enough 
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Figure 19.17. Weibull probability plot for the individual combinations of voltage and temperature for the 
tantalum capacitor data, along with ML estimates of Weibull cdfs. 
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failures to make a judgment. Figure 19.6 shows that units fail more rapidly at high 
voltage. Any possible temperature effect is not as strong. 

The Arrhenius-inverse power relationshipWeibul1 model (Section 18.5.2), both 
without the interaction term (Model 1)  and with the interaction term (Model 2), was 
fitted to these data. In particular, the fitted relationships were 

where X I  = 11605/(temp K), x2 = log(vo1t),and P I  = Ea. The results for 
Model 1 are depicted in Figure 19.18 and the results for Models 1 and 2 are summa- 
rized numerically in Table 19.6. Comparing the log-likelihood values in Table 19.6 
indicates that the interaction term in Model 2 is not helpful in explaining variability 
in these data (correspondingly, the confidence interval for p3 contains zero). There is 
strong evidence for an important voltage effect on life. There is also some evidence 
for a temperature effect, but the evidence is not strong. Physical theory, however, 
predicts the positive coefficient PI ; the lack of strong evidence could be the result of 
a small number of failures at most variable-level combinations and the odd-shaped 
experimental region. 
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Figure 19.18. Weibull niultiple probability plot showing the fitted Arrhenius-inverse power relationship 
Weibull model (with no interaction) for the tantalum capacitor data. The dotted lines are 9571, confidence 
limits for F ( t )at use conditions. 
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Table 19.6. Tantalum Capacitor Weibull-Inverse Power Relationship Regression ML 
Estimation Results 

95% Approximate 
Confidence IntervalsML Standard 

Parameter Estimate Error Lower Upper 

Model 1 P O  84.4 13.6 57.8 1 1  I .  
PI .33 .I9 - .04 .69 
P 2  -20. I 4.4 -28.8 - 11.4 
U 2.33 .36 1.72 3.16 

Model 2 P O  -78.6 109.0 -292.3 135.1 
PI 5.13 3.3 -1.35 11.6 
P2 19.9 26.7 -32.5 72.35 
P3 - 1.17 .80 -2.8 .40 
U 2.33 .36 1.72 3.16 

The log likelihoods for Models 1 and 2 are, respectively, f I  = -539.63 and L? = -538.40.The 
confidence intervals are based on the normal-approximation method. 

In Table 19.6,it is interesting that the coefficient estimates of the regression model 
are highly sensitive to whether the interaction term is included in the model or not. 
This is due, in part, to the highly unbalanced allocation in the experiment. Figure 19.19 
is a Weibull probability plot of the regression residuals for Model 1. The Weibull 
distribution appears to provide a reasonable description of the variability in these 
data. Figure 19.20shows Model 1 estimates of the .01 quantile of the life distribution 
of the tantalum capacitors as a function of voltage, for the three temperatures in the 
data (5, 45, and 85°C). The plotted points give the individual ML estimates of the 
.01 quantile at the temperatureholtage combinations that had more than one failure. 
This figure shows the relatively strong effect of voltage, relative to the effect of 
temperature. The lines in this plot are parallel because there is no interaction term in 
Model 1 .  

19.4 SOME PRACTICAL SUGGESTIONS FOR DRAWING 
CONCLUSIONS FROM ALT DATA 

Due to their extrapolative nature, drawing conclusions from ALT data can be difficult. 
This section describes some cautions. 

19.4.1 Predicting Product Performance 

It is particularly difficult to use AT data to predict actual product performance. 
Because most products tend to be complicated combinations of materials and com-
ponents, AT data are mostly successful for estimating life distributions of simple 
components and materials. Extrapolation is needed to make predictions on the life 
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Figure 19.19. Weibull probability plot of the residuals from the Arrhenius-inverse power relationship 
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distribution of a product in the field environment (which, itself, may be difficult to 
predict). Extrapolation is difficult or impossible to justify completely. 

ALT experiments should be planned and executed with a great deal of care. Infer- 
ences and predictions should be made with a great deal of caution. Some particular 
suggestions for doing this are as follows: 

Use previous experience with similar products and materials. 
Conduct initial studies (pilot experiments) to evaluate the effect that the ac- 
celerating variable or variables will have on degradation and the effect that 
degradation will have on life or performance. Information from preliminary 
tests provides useful input for planning ALTs (as described in Chapter 20). 
Use failure mode analysis and physicalkhemical theory to improve or develop 
physical understanding to provide a better physical basis for ALT models. 
Limit, as much as possible, the amount of extrapolation (in time and in the 
accelerating variable). Methods for doing this are described in Chapter 20. 

19.4.2 Drawing Conclusions from Accelerated Test Experiments 

A typical AT is an extreme example of what Deming ( 1975) calls an “analytic study.” 
As such, when making predictions from an AT, one has to question the reasonableness 
of using the AT manufacturinghesting process to represent the actual manufactur- 
inghse process and the adequacy of the life-acceleration model. Typically, confidence 
intervals based on analytic studies provide, at best, only a lower bound on the total 
variability and uncertainty; see Hahn and Meeker ( 1991, Chapter 1)  for more detail. 
For example, such intervals do not account for model inadequacy. Extrapolation will 
amplify model errors, often dominating other sources of uncertainty. 

19.5 OTHER KINDS OF ACCELERATED TESTS 

The first parts of this chapter have discussed traditional ATs that are used to obtain 
timely information on a product life distribution at use conditions by testing units 
at one or more higher levels of accelerating variables. Usually such tests are done 
on materials, devices, other components, or relatively simple subsystems or systems 
where the focus is one or a small number of known failure modes. The primary 
purpose of these tests has been to assess the failure-time distribution of the failure 
mode(s) of interest. Such information is then used to characterize product life at use 
conditions and to make product design, warranty coverage, and other decisions. 

There are several other important types of accelerated reliability testing, par- 
ticularly in the electronics industry. These additional types have also been called 
“accelerated tests.” Their purpose is generally other than direct estimation of reliabil-
ity. Nevertheless, these other tests do generate data that can, in some cases, provide 
useful information for reliability estimation. 
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19.5.1 Continuous Operation Product Accelerated Testing 

Assuring the reliability of individual components is generally not sufficient to assure 
the reliability of the larger product or other system within which the components 
are installed. In particular, it is necessary to assure that components, subsystems, 
and various interfaces work together. Acceleration is more difficult when testing 
a complete system and acceleration factors will generally be small (i.e., 2-10). 
During a system test, there are more potential failure modes. Relative to materials or 
component tests, there generally has to be more stringent limitations on how much 
accelerating variables can be increased. One must be careful not to cause damage 
to the system (e.g., melting of components, overheating causing a rapid change in 
material properties, or other damage that would not accurately simulate degradation 
at use conditions). Usually acceleration is achieved by running the system more or 
less continuously. For example, a refrigerator might be tested, with focus on the 
compressor, by running the cooling system continuously. Similar tests are used for 
systems like washing machines and automobile engines (where the purpose of the 
test might be to accelerate the life of either the engine itself or the engine’s lubricant). 

Usually accelerated system tests are started on prototype uni’ts or early-production 
units, before the product is introduced into the field. For some products, however, 
tests will continue for some period of time after units have been introduced into the 
field (to protect against failure modes that will not show up until later in life). If  a 
design change is being contemplated new tests may be needed. 

Sometimes a manufacturer will design an accelerated system test to be run on an 
audit basis to check the output of the production process over time. For example, two 
units might be selected from production at the beginning and end of each week. These 
units would be run at stressful conditions for some period of time (e.g., 1 month) to 
see if any early failures occur (which might indicate that there is a problem in the 
manufacturing process). 

Manufacturers have developed a number of strategies for accelerated testing of 
complete systems. The characteristics of system accelerated tests are often product 
and failure mode specific. In addition to testing units at higher than usual use-rates, 
systems might be placed in a more stressful environment (e.g., high temperature and 
humidity, or higher or lower voltage). A manufacturer of electric garbage disposals 
tests units by having them “chew” on hard plastic cubes to provide a more stressful 
kind of “garbage.” If the motor withstands an equivalent amount of service with the 
more stressful garbage, then, in this case, the reliability engineers believe that the 
product will not experience motor or bearing wearout problems in actual use. 

To test the starting system of an automobile, the engine could be started and 
stopped with high frequency. Such a start-stop test would also tend to put special 
stresses on the engine (or lubricant) itself and might be used to study different failure 
modes than the continuous test. The manufacturer of laser printers has the printer 
print a ream of paper, rest 2 minutes, and then continue printing. A sump pump needs 
to be tested in humid environments. Continuous tests will track some kinds of failure 
modes quite well. One does, however, run the risk that continuous operation can 
actually inhibit some failure-causing processes. 
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19.5.2 Highly Accelerated Life Tests 

When planning ALTs to make projections about life at use conditions, Meeker and 
Hahn (1 98s) suggest that tests should be planned to minimize the amount of extrap- 
olation in both the accelerating variable and in time. In other applications, where life 
information at use conditions is not needed, Highly Accelerated Life Tests (HALTS) 
may be useful. Confer, Canner, and Trostle (1991) discuss the use of extremely high 
temperature (up to 1SO”C) and voltage (8 times rating) to achieve acceleration fac- 
tors of up to 2555 times. They suggest that such tests can be used as (1) a means of 
sampling inspection for incoming component lots and (2) as bum-in screening test 
(in this application there is danger that high levels of the accelerating variable will 
damage units that are to be put into service). Other applications include (3) pilot tests 
to get information needed for planning a more extensive ALT at lower levels of the 
accelerating variable and (4) experiments to obtain information on the relevance of 
failure modes discovered in STRIFE testing (see next section). When using very high 
levels of the accelerating variable(s), one must watch for failure modes that would 
never occur at use conditions and have concern for the adequacy of the model (Chap- 
ter 7 of Nelson, 1990a, shows how modeling might be used to deal with multiple 
failure modes in ALTs). 

19.5.3 Environmental Stress Testing 

The pressure to quickly develop new, high-reliability products has motivated the 
development of new product testing methods. The purpose of these testing methods 
is to quickly identify and eliminate potential reliability problems early in product 
development. One such testing method is known as STRIFE (STRESS-LIFE) testing. 
The basic idea of STRIFE testing is to aggressively stress and test prototype or 
early-production units to force failures. It is common to test only one or two units, 
but more test units can provide important additional information, for example, on 
unit-to-unit variation. Typical STRIFE tests use combinations of temperature and 
vibration cycling. The amplitude of the cycling is increased continuously until the 
end of the test. When possible, use-rate may also be increased. Such a test could be 
run for days, provided appropriate fixes for detected failure modes can be effected 
without long delays that might be needed for a complicated redesign (as opposed 
to a simple part substitution). Bailey and Gilbert (198 1 )  report an example in which 
the complete STRIFE test and improvement program was successfully completed 
in 3 weeks. Nelson (1 990a, pages 37-39) describes environmental stress tests as 
“elephant tests” and describes some important issues. The Proceedings of the Institute 
of Environmental Sciences often contain papers on this subject, as do various journals 
on reliability of electronics systems. 

Generally, failures in STRIFE testing can be due to product or process design flaws. 
When there is a failure in a STRIFE test it is necessary to find and carefully study the 
failure’s root cause. First it is necessary to assess whether the failure could occur in 
actual use or not. Knowledge and physicalkhemical modeling of the particular failure 
mode are useful in making this assessment. Nelson (1990a, page 38) describes an 
example where a costly effort was made to remove a high-stress-induced failure mode 
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that never would have occurred in actual use. The occurrence of such failures might 
indicate that the test is using some combinations of accelerating variables that are too 
high to be useful. When it is determined that a failure could occur in actual use, it 
is necessary to change the product design or manufacturing process to eliminate that 
cause of failure. In some cases, the fix is obvious. In other cases additional focused 
research and experimentation at the component level or at component interfaces may 
be required. 

Because the results of STRIFE testing are used to make changes on the product 
design and manufacturing process, it is difficult, or at the very least very risky, to use 
the test data to predict what will happen in normal use. Even so, ideas from statistical 
experimental design and models relating stress to life could be useful in choosing 
stresses, stress ramp speed, and other aspects of the test. 

In other testing programs, the goal is to test prototype or early-production units 
at somewhat accelerated conditions to obtain information on field performance of a 
product. For example, a newly designed automobile engine may be run continuously 
at high rpm to simulate rapidly 50,000 miles of service. The danger in interpreting 
the results of such tests is that the assumed acceleration factors can be seriously 
inaccurate. Different failure modes have different acceleration factors. For example, 
such an accelerated test may accurately predict a wear mechanism, but not even 
discover a corrosion mechanism. In another accelerated test application, humidity 
was used to accelerate a corrosion mechanism, but had the unexpected effect of 
reducing wear rate. For these reasons, it is important to have a good understanding 
of the physics andor chemistry of possible failure mechanisms. 

Schinner ( 1996)describes and gives examples of system-level and subsystem-level 
accelerated tests such as STRIFE. 

19.5.4 Burn-in 

The most common reliability problem for manufacturers and consumers of electronic 
equipment has been early (infant mortality) failures. Such failures are typically caused 
by manufacturing defects, which often appear in only a small proportion of the 
manufactured units. In electronic manufacturing such defective components are called 
“freaks.” The problem of early failure also arises in other kinds of products. Such 
problems are sometimes referred to as a “quality problem.’’ Often such problems are 
cured as a product’s design and manufacturing process matures. Manufacturers would 
prefer to “build in” reliability by eliminating all manufacturing defects from the start 
of production. With rapidly changing technology, however, it has been difficult to 
achieve a goal of zero defects, particularly early in the product development cycle. 
To achieve sufficiently high reliability, particularly in critical applications (e.g., space 
and undersea systems), it has been common practice to use burn-in of components and 
systems to screen out the units that would otherwise fail early in life. For components 
like integrated circuits it is common to do burn-in at high humidity and temperature. 
For system burn-in, it is generally necessary to avoid the use of high levels of the 
accelerating variables to avoid damaging sensitive components. In either case, burn-in 
may also involve continuous operational exercising and monitoring of the units. Such 
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burn-in is useful for detecting intermittent failure modes that have a low probability 
of being detected in ordinary testing. 

Burn-in can be viewed as a type of 100% inspection or screening of the product 
population to eliminate or reduce the number of defective items going to customers. 
Burn-in may be necessary if the output of production does not meet reliability spec- 
ifications. It is important that the burn-in stress or temperature not be so high as to 
damage the good units. Burn-in is expensive and thus the length of the burn-in is typ- 
ically limited. The decision on how long to run a burn-in can be based on the desired 
level of reliability and the distribution of the observed failures during the screening. 
For a stable production process, which has been characterized adequately, this can 
be set in advance. Otherwise a sequential or dynamic stopping rule may be needed. 
Kuo ( 1984) provides and applies a cost-optimization model for important burn-in 
decisions. He also reviews previous literature on this subject. Most of the literature 
deals with burn-in at use conditions. Kuo, Chien, and Kim (1998) describe methods 
for implementing and optimizing the use of burn-in for electronic components and 
systems. 

Jensen and Petersen (1982) provide an engineering approach to this subject. Also 
see Nelson (1990a, page 43). Statistical methods can and have been useful for helping 
to choose stress levels, length of burn-in, and in using burn-in data to assess the state 
of the production process and the likely field reliability of a product going into service. 

19.5.5 Environmental Stress Screening 

Environmental Stress Screening (ESS) was developed as an improvement over tradi- 
tional burn-in methods. ESS provides a more economical and more effective means 
of removing defective units from a product population when testing units at the sys- 
tem or subsystem (e.g., circuit board) level. Because systems and subsystems cannot 
tolerate high levels of stress for long periods of time, ESS uses mild, but more com- 
plicated, stressing. High levels of temperature and humidity at the component level 
are replaced by more moderate temperature cycling, physical vibration, and perhaps 
stressful operational regimes (e.g., running computer CPU chips at higher than usual 
clock speeds and lower than usual voltages) to help identify the defective units. These 
tests can be viewed as generalizations of step-stress tests (but their purposes are much 
different). The tests are sometimes called “shake and bake” tests. Again, the goal is 
to screen out, as effectively and as quickly as possible, the defective items without 
otherwise doing harm to the product. 

Numerous articles on ESS testing appear each year in the Proceedings of the I n -
stitute of Environmental Sciences. Tustin (1990) provides a motivational description 
of the methodology and several references. Nelson (1990a, page 39) gives additional 
references, including military standards. Kececioglu and Sun (1995) provide a com- 
prehensive description of ESS methods, including optimization and management of 
ESS programs. MIL-STD-2 164 describes standard procedures for ESS of electronic 
equipment. 

Statisticians have had little impact in the development of ESS methods because 
they are mostly based on engineering knowledge. There are, however, some areas 
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where statistical methods could have an impact on ESS. Some of these will require 
the development of better models to relate the effect that complicated stressing has 
on the life distribution of both the defective and the nondefective units. For example, 
advanced application of the statistical principles of experimental design, modeling, 
and data analysis can be used to help: 

Choose stress conditions that are best for weeding out manufacturing defects 
but minimize the chance of doing damage to good units. 

Design screens to provide feedback that can be used to improve product design or 
the manufacturing process by reducing the frequency of manufacturing defects 
or eliminating them. 

Assess information that would allow prediction of field reliability. The typically 
complicated stress patterns make it difficult or impossible to use ESS data 
directly to make predictions about field performance. However, with enough 
screening data, correlated with field data, one could find relationships that 
would allow such predictions. 

The development of physicaUstatistical models to describe the effect of ESS stress 
patterns on product life would be useful. This task, however, will not be easy. LuValle 
and Hines ( 1992) report experimental evidence indicating that varying several accel- 
erating variables in typical ESS procedures leads to complicated effects on life. There 
can be interactions among the variables and there may be “memory” of past stress 
patterns in that, from a particular point in time, future degradation may depend not 
only on the current amount of degradation but also on how (i.e., under which stress 
patterns) that degradation has accrued. This is in contrast to traditional step-stress 
failure models (e.g., Chapter 10 of Nelson, 1990a). 

Like burn-in, ESS is an inspectiodscreening scheme. In line with the modem 
quality precept of eliminating reliance on mass inspection, most manufacturers would 
prefer not to use bum-in or ESS. They are expensive and may not be totally effective. 
By improving the reliability through continuous improvement of the product design 
and the manufacturing process, i t  is often possible to reduce or eliminate reliance on 
screening tests except, perhaps, in the most critical applications. Some companies 
apply ESS only on an audit basis to monitor production quality on an ongoing 
basis. 

19.6 POTENTIAL PITFALLS OF ACCELERATED LIFE TESTING 

As described earlier in this chapter, accelerated life testing can be a useful tool for 
obtaining timely information about materials and products. There are, however, a 
number of important potential pitfalls that could cause an ALT to lead to seriously 
incorrect conclusions. Users of ALTs should be careful to avoid these pitfalls. 
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19.6.1 Pitfall 1: Multiple (Unrecognized) Failure Modes 

High levels of accelerating variables like temperature or voltage can induce failure 
modes that would not be observed at normal operating conditions. In some cases 
new failure modes result from a fundamental change in the way that the material 
or component degrades or fails at high levels of the accelerating variable(s). For 
example, instead of simply accelerating a failure-causing chemical process, increased 
temperature may actually change certain material properties (e.g., cause melting). In 
less extreme cases, high levels of an accelerating variable will change the relationship 
between life and the accelerating variable (e.g., life at high temperatures may not be 
linear in inverse absolute temperature, as predicted by the Arrhenius relationship). 

If other failure modes are caused at high levels of the accelerating variables and 
this is recognized, it can be accounted for in the data analysis by treating the failure 
for the new failure modes as a censored observation (as long as the new failure 
mode does not completely dominate the failure mode(s) of interest). Chapter 7 of 
Nelson (1990a) gives several examples. In this case, however, such censoring can 
severely limit the information available on the failure mode of interest. If other failure 
modes are present but not recognized in data analysis, seriously incorrect conclusions 
are likely. 

19.6.2 Pitfall 2: Failure to Properly Quantify Uncertainty 

It is important to recognize that there is uncertainty in statistical estimates. Basing 
decisions on point estimates alone can, in many applications, be seriously mislead- 
ing. Standard statistical confidence bounds quantify uncertainty arising from limited 
data. For example, Figure 19.13 shows an enormous amount of uncertainty in life 
at lOO"C, due to the small number of failures and the large amount of extrapolation 
in temperature. The corresponding analysis depicted in Figure 19.15 uses a given 
value of activation energy for the life-temperature relationship. Because the activa- 
tion energy is not known exactly, the precision exhibited in this plot is too small 
and potentially misleading. For many applications, neither of these extremes would 
provide a proper quantification of uncertainty. Section 22.2 describes an appropriate 
compromise for situations where there is useful information about activation energy. 

It is also important to remember that statistical confidence bounds do not account 
for model uncertainty (which can be tremendously amplified by extrapolation in 
accelerated testing). In general, performing sensitivity analysis is an important step in 
any quantitative analysis involving uncertainty and is particularly useful for assessing 
the effects of model uncertainty. For example, one can rerun analyses under different 
assumed models to see the effect that different model assumptions have on important 
conclusions. 

19.6.3 Pitfall 3: Multiple Time Scales and Degradation Affected by More 
than One Accelerating Variable 

Section 1.3.4 described issues relating to time scales. These issues become even 
more important with accelerated testing, and particularly when there is more than one 
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failure-causing mechanism that might be accelerated. Standard acceleration methods 
generally will not accelerate all time scales in the same manner. A serious pitfall of 
accelerated testing is to assume a simple relationship between life and the acceler- 
ating variables when the actual relationship if really very complicated. Consider the 
following examples. 

In an accelerated test to estimate the lifetime characteristics of a composite 
material, chemical degradation over time changes material ductility. Failures, 
however, are actually caused by stress cycles during use, leading to initiation and 
growth of cracks, and eventually to fracture. Thus there are two failure-causing 
mechanisms. The acceleration model would be complicated because the effect 
of cycling depends on the material ductility and because increasing temperature 
would affect the time scales of both mechanisms. 
An incandescent light bulb usually fails when its filament breaks. During burn 
time the bulb’s filament will go through an evaporation process, eventually 
leading to failure. There are, however, other variables that can shorten a bulb’s 
life. In particular, on-off cycles can induce both thermal and mechanical shocks 
that can, over time, lead to the growth of fatigue cracks in the filament. Thus 
the on-off frequency can have an effect on bulb life. Accelerating only the burn 
time (e.g., by testing at higher voltage) may give misleading predictions of life 
in an environment with many on-off cycles. Relatedly, light bulbs operated in 
an environment with physical vibration (e.g., in automobiles, on large ships, or 
in a motorized appliance) will often exhibit shorter lifetimes, depending on the 
frequency and amplitude of the vibrations as well as the bulb’s design. 
The degradation of coatings like paint depends on a number of different vari- 
ables relating to time scales. Most coatings degrade chemically over time. UV 
light accelerates the degradation process of many kinds of coatings, as does 
high temperature and humidity. The number of wet-dry and thermal cycles is 
also important to coating life, but generally relates to a separation or peeling 
failure mechanism that is different from (but perhaps related to) the chemical 
degradation mechanism. Each of these variables and each failure mode has its 
own underlying time scale. 

Generally, there will be a distribution of product-use conditions in the field: for 
example, the number of fatigue cycles as a function of the changing ductility of the 
composite material over time or the ratio giving the number of on-off cycles per hour 
of bum time for an incandescent light bulb. Similarly, some automobiles are driven 
in the North and some in the South; some spend substantial time in direct sunlight, 
while others do not. In these situations, product-use environment plays an important, 
but complicated, role in planning and making life predictions from accelerated tests. 

In simple situations where the ratio of the time scales for different mechanisms is 
known and reasonably constant in the product population, an accelerated test could 
be conducted to simulate life in that ratio. When the ratio has a known distribution 
in the product population, tests can be conducted over an appropriate range of the 
ratio. In other applications, it will be necessary to use an accelerated test in which 
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accelerating variables (e.g., temperature, humidity, and UV exposure simultaneously) 
are varied simultaneously, To predict life at specified use conditions, one needs an 
adequate physical model to describe the relationship among these variables, the 
different degradation scales, and the definition of failure. 

19.6.4 Pitfall 4: Masked Failure Mode 

Figure 19.21 shows a graph of what might illustrate the results of a typical accelerated 
life test if there were just a single failure mode and if increased temperature accelerated 
that failure mode in a simple manner, described by the Arrhenius relationship. It is 
possible that such an accelerated test, while focusing on one known failure mode, may 
mask another! This is illustrated in Figure 19.22. Moreover, as shown in Figure 19.22, 
it is often the masked failure mode that is the first one to show up in the field. In such 
cases, the masked failure modes often dominate among reported field failures. 

19.6.5 Pitfall 5: Faulty Comparison 

It is sometimes claimed that accelerated testing is not really useful for predicting 
reliability but is useful for comparing alternatives (e.g., alternative designs, vendors). 
Consider comparing similar products from two different vendors. The thought be- 
hind this claim is that laboratory accelerated tests generally cannot be expected to 
adequately approximate actual use conditions, but that if Vendor I is better than Ven- 
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Figure 19.22. Failure Mode 2 with lower activation energy, masked at high temperature and unmasked at 
low temperature. 

dor 2 in an accelerated test, then the same would be true in field use, as illustrated in 
Figure 19.23.Comparisons based on ALTs, however, are subject to some of the same 
difficulties as other ALTs. In particular, consider the results depicted in Figure 19.24. 
In this case, Vendor 1 had longer life at both of the accelerated test conditions, but the 
prediction at use conditions suggested that Vendor 2 would have higher reliability. 
An important decision on the basis of limited results in this ALT would be, at best, 
difficult to justify. It would be most important to find out why the slopes are different 
and to understand the life-limiting failure modes at use conditions. If the failures at 
the use conditions are not the same as those at the accelerated conditions, then the 
ALT results would be wrong. Also, it might be possible that the early failures for 
Vendor 2 are masking the failure mode that we see in Vendor 1’s test results. One 
cannot use an ALT to compare products that have different kinds of failure modes. 

19.6.6 Pitfall 6: Accelerating Variables Can Cause Deceleration! 

In some cases it is possible that increasing what is thought to be an accelerating 
variable will actually cause deceleration! For example, increased temperature in an 
“accelerated” circuit-pack reliability audit predicted few field failures. The number 
of failures in the field was much higher than predicted because the increased tempera- 
ture resulted in lower humidity in the “accelerated” test and the primary failure mode 
in the field was caused by corrosion that did not occur at high temperature and low 
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Figure 19.24. Comparison with evidence of different failure modes. 
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humidity. It is for this reason that in most accelerated tests of electronic equipment, 
both temperature and humidity need to be controlled. 

In another similar application, a higher than usual use-rate for a mechanical 
device in an accelerated test inhibited a corrosion failure mechanism. That corrosion 
mechanism eventually caused a serious field problem that was not predicted by the 
accelerated test. 

In an accelerated test of a newly designed automobile air conditioner, reliability, 
based on a series of constant-run accelerated life tests, was predicted to be very high 
over a 5-year period. However, after 2 years, a substantial number of the in-service 
air conditioners failed due to a “drying out” material degradation. These failures were 
caused by lack of use in winter and had never been seen in the continuous accelerated 
testing. 

19.6.7 Pitfall 7: Untested Desigflroduction Changes 

A new electromechanical device was to be used in a system designed for 20 years of 
service in a protected environment. An accelerated test of the device was conducted 
and this test “demonstrated” 20-year life (no more than 10% failing) under normal 
operating conditions (typical use-rate). After the accelerated test, and as the product 
was going to production, a material change was made by the device vendor. The 
change led to a material-degradation failure mode that caused (or would have caused) 
all in-service units to fail within 10 years. Eventually, all installed devices had to be 
replaced. 

19.6.8 Pitfall 8: Drawing Conclusions on the Basis of Specially Built 
Prototype Test Units 

Seriously incorrect conclusions can result from an accelerated life test if test units will 
differ importantly from actual production units. For example, factory manufacturing 
conditions are different from those in a laboratory. Cleanliness and care in building 
prototype versus production units may differ substantially. Material and parts in 
prototype units might differ from those that will be used in production. Highly trained 
technicians may build prototype units that are importantly different from units that 
would be made in the factory. 

As much as possible, test units for an accelerated test should be manufactured 
under actual production conditions, using raw materials and parts that are the same 
as or as close as possible to those that will be used in actual manufacturing of units. 
As much as possible, the test units should reflect variabilities that will be present in 
actual production. 

In one situation, an accelerated test was conducted on 12 prototype units. The 
units contained epoxy that had to be cured in an oven for a specified amount of time. 
The product passed its accelerated test with a safe margin. In actual manufacturing 
operations, however, the curing process was not well controlled. Uncured epoxy 
can be highly reactive. For this product, a substantial proportion of installed units 
eventually failed due to corrosion caused by the improperly controlled curing. 
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BIBLIOGRAPHIC NOTES 

Nelson (1990a) is an extensive and comprehensive source for further material, prac- 
tical methodology, basic theory, and examples for accelerated testing. Viertl ( 1988) 
provides a briefer (and more academic) overview of the available statistical methods 
for ALTs, with more focus than Nelson (1990a) on a large class of statistical meth- 
ods that, for a variety of practical reasons, seem not to have been used widely in 
practice. These methods include nonparametric and semiparametric statistical meth- 
ods. Viertl (1988) also discusses Bayesian methods for ALT planning and analysis. 
Nelson (1 990a) contains 43 1 references; Viertl(l988) contains 208. The intersection 
is only 55 references. Mann, Schafer, and Singpurwalla (1974, Chapter 9) overview 
ALT methods available at the time. Derringer (1982) describes some important prac- 
tical considerations in the planning and analysis of ALTs. Meeker and Escobar ( 1993) 
survey important areas of research in accelerated testing. LuValle (1993) illustrates 
the use of graphical methods that can be used to detect departures from the SAFT 
model. 

Nelson (1975a; 1975b; 1990a, Chapter 7) describes graphical and ML methods 
for analyzing ALT data with competing failure modes. 

EXERCISES 

19.1. Explain the importance of having understanding of the physics or chemistry 
of failure mechanisms when one is doing accelerated life testing. 

19.2. The following table contains data from an accelerated life test on Device-C, 
an integrated circuit. Failures were caused by a chemical reaction inside the 
circuit package. Reliability engineers tested 10 circuits at each temperature 
over a period of 3000 hours. The purpose of the experiment was to estimate 
the activation energy of the failure-causing reaction and to obtain an estimate 
of the integrated circuit life distribution at 80"C junction temperature. 

Junction # of Units 
Temperature Tested Recorded Failure Times in Thousands of Hours 

80" C 10 None by 3000 hours 
125°C 10 None by 3000 hours 
150°C 10 2.35, 2.56, 2.98 
175°C 10 30,1.13, 1.21, 1.31, 1.35, 1.35, 1.37, 1.42, 1.77, 1.96 
200°C 10 .22, .25, .28, .33, .37, .38, .46, .46, .51, .61 

(a) For each temperature with failures, plot the ordered failure time T(,) versus 
(i - .5)/10 on lognormal probability paper. 

(b) Repeat part (a), but use Weibull probability paper. 
(c) Make a judgment as to whether the lognormal or the Weibull distribution 

is a more adequate distribution for these data. 



530 ACCELERATED LIFE TESTS 

(d) Using the lognormal probability plot, draw a set of parallel straight lines 
through the plotted points, one line for each temperature having failures. 

(e)  Use each line on the probability plot to obtain graphical estimates of the 
.5 quantiles at the corresponding temperatures. 

(f) Use each line on the probability plot to obtain graphical estimates of the 
.01 quantiles at the corresponding temperatures. Describe the nature of 
the extrapolation in these estimates. 

(g) Plot the estimates of the .5 quantile versus temperature on Arrhenius 
paper. Draw a straight line to estimate the relationship between life and 
temperature. Do the same with the graphical estimates of the .01 quantile. 

(h) Graphically estimate the slope of the lines drawn in part (g), and use these 
to obtain a graphical estimate of the failure mode's activation energy. 

(i) Use the lines drawn in part (8) to obtain estimates of the .01 and .5 
quantiles of the life distribution of Device-C at 80°C. Describe the nature 
of the extrapolation in these estimates. 

U) Predict the effect on the estimates of the Arrhenius relationship if the data 
at 80°C and 125°C were to be omitted from the analysis. Explain. 

19.3. Provide a list of the different things that one can learn from plotting in- 
dividual nonparametric estimates and parametric ML estimates on Weibull 
probability paper (such as Figure 19.8). 

19.4. Suppose that failure time T - LOGNOR(p, a)at a given level of tempera-
ture and that the Arrhenius model can be used to get a temperaturehime ac- 
celeration factor as in ( 18.2). Then show that the logarithm of quantiles of the 
failure-time distribution will be a linear function of l/(temp "C + 273.15). 

19.5. Suppose that failure time T - WEIB(p,a) at a given level of voltage 
and that the inverse power relationship can be used to get a voltage/time 
acceleration factor as in ( 18.9). Then show that the logarithm of quantiles of 
the failure-time distribution will be a linear function of log(Vo1tage). 

19.6. An analyst has fit the Arrhenius-lognormal model 

Pr[T 5 t ;temp]= @)nor 

[log(:- *"I 

where " = PO+ PIX,a is constant, and x = l / ( t e m p  K). Show how PI in 
this model is related to activation energy E, in the Arrhenius relationship. 

19.7. An analyst has fit the Arrhenius-lognormal model 

Pr[T 5 t ;temp] = anor[logl0y - "1 , 

where p = P O  + P l x ,CT is constant, and x = 11605/(temp K).This differs 
from the model presented in Example 19.5because base-10 logarithms have 
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been used (something done quite commonly, and usefully, in engineering 
and other nonmathematical disciplines). Show how estimates of P O ,  P I , U ,  

and tp in this model relate to estimates in the traditional base-e lognormal 
distribution. 

19.8. Refer to Example 19.8. Write down expressions that could be used to com- 
pute a normal-approximation confidence interval for the p quantile of the 
life distribution at a specified level of temperature. 

19.9. A particular type of IC has two different failure modes, both of which can be 
accelerated by increasing temperature. The random failure time of Mode 1 
is T M ,and the random failure time due to Mode 2 is TM,.In a unit, suppose 
that the IC fails at T = min(TM,,T M ~ ) .Failure mode M1 has an activation 
energy of E, = 1.4 electron volts and failure mode M2 has an activation 
energy of E, = .7. The physical nature of the failure mechanisms suggests 
that T M ,and T M ~are independent. The engineers involved believe that both 
TM,and T M ~have a lognormal distribution. At the proposed highest test 
temperature of 120"C, with failure time measured in hours, assume that 

= 6.9, ul= .6, 4 4  = 9.0, and 0 2  = .8. 
Assuming an Arrhenius ALT model, plot the median of the failure-time 
distribution versus temperature for failure mode M I  and also for failure 
mode M2. Plot using temperatures between the use temperature of 40°C 
and 120°C. 
Plot the . l  and .9 quantiles of the mode M1 failure-time distribution and 
of the mode M2 failure-time distribution, as a function of temperature. 
Use the plots to help describe potential dangers of using a temperature- 
accelerated life test on a component, ignoring failure mode differences, 
when the different failure modes have vastly different activation ener- 
gies. 

A19.10. Refer to Exercise 19.9. Compute and plot the median, as well as the . I  
and .9 quantiles, of the failure-time distribution for the IC, as a function of 
temperature, when both failure modes are active. That is, use the distribution 
of T = min(TM,,T M ~ ) .What do these results suggest about appropriate 
methods for dealing with test acceleration when there are two or more 
failure modes? That is, suggest how a useful ALT can be conducted and how 
the data could be analyzed when there are two or more failure modes. 

A19.11. To describe the failure-time distribution of specimens of an insulating ma- 
terial at use operating conditions temp", use a Weibull distribution with 
cdf F ( t )  = 1 - exp[-(t/q")@]. Suppose that the Arrhenius model ap- 
plies. Then the model is SAW and at some high temperature tempH, 
rlu = A - m e m P H ) r l H .  
(a) Show that log(t,), the logarithm of the Weibull quantile, is a linear 

function of 1/(temp "C + 273.15). 
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Derive an expression for the pdf at t emp , ,  
Derive an expression for the hazard function at temp,. 
Show that the ratio of the hazard function at tempu and at tempH 
does not depend on time. This implies that the Weibull SAIT is also a 
proportional hazards model. 

19.12. For a particular kind of insulating material, life can be described by the 
inverse power model 

Pr[T 5 t ; vo l t ]  = asev"""'%- "1 ' 

where cr is constant, p = PO+ Plx, and x = log(vo1t). 
(a) Show that log(t,), the logarithm of the Weibull quantile, is a linear 

function of log(v01 t). 
(b) If it is known that 100~1%would fail by time t,. at voltage voltl 

and 100p*% would fail by the same time at voltage volt?,derive an 
expression for the proportion failing at vol tj. 

(c) Derive expressions for the inverse power relationship parameters POand 
61 as functions of P I ,p2, and g. 

19.13. Example 19.6showed how to use an omnibus likelihood-ratio test tocompare 
fitting individual lognormal distributions at each level of temperature and 
fitting the Arrhenius-lognormal ALT model. This provides an overall test 
for model adequacy. 

Explain, precisely, the hypothesis or hypotheses being tested in Exam-
ple 19.6. 
Explain which constrained and unconstrained models you would fit in 
order to test the assumption of a common U at all levels of temperature. 
Do not assume anything about the temperature-life relationship. 
Explain possible likelihood-ratio tests on whether cr is constant, under 
the assumption that p is linearly related to 11605/temp K. 
Explain how to do a likelihood-ratio test to check the assumption that 1.1 
is related linearly to 11605/temp K versus an alternative relationship 
with curvature, assuming that cr does not depend on temperature. 

19.14. Refer to Example 19.8for the Device-A data. Compute a confidence interval 
for the lognormal distribution F( lOO00)at 10°C. 

19.15. The ALT data on the mylar-polyurethane insulating structure in Appendix 
Table C. I3 are complete data (no censored observations). Thus it is possible 
to fit a lognormal distribution to these data using the standard least squares 
regression analysis procedure in a standard statistical package. Use these 
data, dropping the 36 1.4-kV/mm observations, to do the following. 
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(a) Use such a statistical package to compute the least squares estimates for 
the inverse power relationship-lognormal model. 

(b) Plot the regression estimates of median of the failure-time distribution 
on log-log axes. Also plot the sample median at each level of voltage. 
What conclusions can you draw from this? 

(c) Compare the least squares estimates with estimates obtained by using 
ML estimation with the inverse power relationship-lognormal model. 
What differences do you notice in the parameter estimates? 

19.16. Refer to Exercise 19.15. Use a maximum likelihood program to fit  the 
inverse power relationship-Weibull model to these data. Compare Weibull 
and lognormal estimates of the .1 quantile of failure at 50 kV/mm. What do 
you conclude about the importance of the distribution used for this estimate? 

19.17. Redo the analyses in Exercise 19.15 but include the 361.4-kVlmm observa- 
tions. What do you conclude? 

19.18, For Example 19.1 1 ,  using the results in Table 19.4,compute a 95% normal- 
approximation confidence interval for the ratio ( T ~ ~ o / c T ~ ~ ~ .Base the interval 
on the large-sample distribution of Ziog~~25,,/~3,x,). 

19.19. In Example 19.11, there is evidence that cr differs from one level of temper-
ature to the other. 
(a) Suppose that (T is really changing (as suggested by the point estimates). 

Describe the effect that using a constant-a model would have on es-
timates of the life distribution at 100°C. You do not need to do any 
numerical computations; answer using intuition or analytical arguments. 

(b) With reference to the simple Arrhenius-lognormal failure-time model 
described in Sections 18.3.1 and 18.3.3, suggest possible physical rea- 
sons (i.e., deviations from the simple model) that might cause (T to 
change as a function of temperature. 

A19.20. In Example 19.11, the likelihood-ratio test for comparing the constrained 
and unconstrained models has only 1 degree of freedom. In Example 19.6, 
however, the comparison test has 3 degrees of freedom. 
(a) Explain why there is a difference. 
(b) If the 200°C subexperiment had run to 105hours without failure, would 

the number of degrees of freedom in the test change? Why or why not? 
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Planning Accelerated Life Tests 

Objectives 

This chapter explains: 

Criteria for planning accelerated life tests (ALTs). 
Simulation and analytical methods for evaluating proposed ALT plans. 
The value and limitations of theoretically optimum ALT plans. 

Compromise accelerated test plans that have good statistical properties and, at 
the same time, meet practical constraints. 
How to extend methods for planning single-variable ALT plans to planning 
ALTs with more than one variable. 

Overview 

Chapter 10 described methods for evaluating proposed test plans for estimating a 
single failure-time distribution. These methods led to some simple formulas that pro- 
vide a means of choosing test length and sample size to control estimation precision. 
This chapter describes methods for planning ALTs and for evaluating the precision 
of estimates illustrated in Chapter 19. Familiarity with the ideas from Sections 10.1 
and 10.2 is important for understanding the underlying technical methods. A good 
understanding of the basic data analysis material in Chapter 19 is also helpful. 

Section 20.1 uses a test-planning example to introduce some of the concepts 
involved in planning an ALT. Section 20.2 describes how to evaluate the properties 
of a specified ALT plan. The ability to evaluate the properties of these plans allows 
one to choose a plan that will optimize according to particular criteria. Section 20.3 
provides details and examples on how to plan a single-variable ALT. Section 20.4 
extends these methods to two-variable ALTs. Section 20.5 describes how to extend 
the concepts to ALTs with more than two variables. 
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20.1 INTRODUCTION 

Usually ALTs need to be conducted within stringent cost and time constraints. Careful 
planning is essential. Resources need to be used efficiently and the amount of extrap- 
olation should be kept to a minimum. During the test-planning phase, experimenters 
should be able to explore the kind of results that they might obtain as a function of 
the specified model and proposed test plan. 

Example 20.1 Reliability Estimation of an Adhesive Bond. The following 
example comes from Meeker and Hahn (1985). The engineers responsible for the 
adhesive bond reliability needed to estimate the . l  quantile of the failure-time distri- 
bution at the usual operating temperature of 50°C. The . I  quantile was expected to 
be more than 10 years, but this needed to be demonstrated. There were 300 units, but 
only 6 months ( 1  83 days) available for testing. If testing had been done at 50"C, no 
failures would be expected. But no failures in 6 months would not provide the needed 
degree of assurance that the .1 quantile is at least 10 years. An ALT was proposed to 
make the required demonstration. U 

20.1.1 Planning Information 

The properties of ALT plans depend on the underlying model and the parameters of 
that model. The form of the underlying model and at least some of the parameters 
are generally unknown. To evaluate and compare alternative test plans, it is neces-
sary to have some planning information about the model. Sources of such planning 
information include previous experience with similar products and failure modes, 
expert opinion, and other engineering information or judgment. There are a number 
of different questions that one could ask to get the required information. 

Example20.2 Planning Values for the Adhesive Bond ALT. Failure is 
thought to be caused by an unobservable simple chemical degradation process, lead- 
ing to weakening and eventual failure of the bond. The engineers feel that the rate 
of the chemical reaction can be modeled with the Arrhenius relationship over some 
reasonable range of higher temperatures. This would suggest a SAFT model (see 
Section 18.3), implying that the form and shape of the failure-time distributions are 
the same at all levels of temperature. The engineers felt that something like . I %  of 
the bonds might fail in 6 months at 50°C, but that something like 90% would fail 
in 6 months at 120°C. Additionally, the Weibull distribution had been used success- 
fully in the past to model data from similar adhesive bonds. This information, alone, 
allows one to obtain algebraically the failure probability in 6 months at any level 
of temperature (deriving such a formula is left as an exercise). The Weibull shape 
parameter was thought to be near p" = 1.667 (or a' = I/p" = .6). With this 
additional information, the other Weibull regression model parameters are defined. 
In particular, for time measured in days, = -16.733 and pp = .7265. U 

As in Chapter 10 the superscript 0 is used to denote a planning value of a 
population or process quantity needed to plan the ALT. Functions of the planning 
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values (e.g., failure probabilities and, indeed, the plan and characteristics of the plan), 
will not be encumbered with this symbol. 

In applications, it is important to assess the sensitivity of ALT plans to misspec- 
ifications of the unknown inputs. Generally this is done by developing a test plan 
with the given planning values and then, at the end, doing some sensitivity analysis 
to assess the effect that changes have on the suggested plan. 

20.1.2 Model Assumptions 

The model assumptions used in this chapter parallel those introduced and used in 
Chapters 17, 18, and 19. The presentation in this chapter continues to use log- 
location-scale distributions. Most of the general ideas however, can be applied (with 
a higher level of technical difficulty) to other parametric distributions like the ones 
in Chapter 5.  

As described in Chapters 18 and 19, most common parametric ALT models use a 
log-location-scale distribution to describe the variability in failure times. The cdf for 
failure time T is 

Pr(T 5 t )  = F ( t ; p , c )= CD (20.1)[log(:- "I ' 

where p = p(x),the location parameter for log(T), is a function of the accelerating 
variable and (T is constant. For the Arrhenius relationship between life and tempera- 
ture, p(x) = & + P1-u and .Y = I1605/(temp "C + 273.15). Here units are tested 
simultaneously until censoring time t,.. Care in testing must be taken to assure that 
failure times are independent from unit to unit. 

Again, most of the important ideas in this chapter can be applied, with appro- 
priate modifications, to other testing situations (e.g., other failure-time distributions, 
acceleration relationships, types of censoring). 

20.1.3 Traditional Test Plans 

Traditional test plans use equally spaced levels of the accelerating variable(s) and 
equal allocation of test units to those levels. 

Example 20.3 Engineers' Originally Proposed Test Plan for  the Adhesive 
Bond ALT. The engineers responsible for the adhesive-bonded power element 
reliability had developed a preliminary ALT plan, given in Table 20.1 and shown 
graphically in Figure 20.1. This traditional plan used equal spacing and equal allo- 
cation of units to the different levels of temperature but had some deficiencies. In 
particular, there was concern about the large amount of extrapolation in temperature 
(to 50°C) and the Arrhenius relationship was in doubt at temperatures above 120°C. 
The engineers had proposed testing at the very high levels of temperature under the 
mistaken belief that it would be necessary to have all or almost all of the test units 
fail before the end of the test. As shown in Chapter 19, however, ML methods can 
be used to estimate the parameters of the ALT model, even if data are censored. 
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Table 20.1. Engineers' Preliminary ALT Plan with a Maximum Test 
Temperature of 150"C 

AllocationFai1ure Expected 
Level Probability Proportion Number Number Failing 

TEMPC PI T I  ' 1 I E(r.1) 

50 .oo1 
110 .59 1 /3 100 59 
130 1 .oo 1 /3 100 100 
150 1 .oo 1 /3 100 100 

Moreover, because interest centered on the lower tail of the distribution at 50°C, data 
in the upper tail of the distribution would be of limited value (and could even be a 
source of bias if the fitted distribution were not adequate there). It would be more 
appropriate to test at lower more realistic temperatures (even if only a small fraction 
of units will fail) and to allocate more units to lower temperatures. Intuitively, this is 
because such units would be closer to the use conditions and because, with smaller 
failure probability at low temperature, more units need to be tested to have assurance 
that at least a few units will fail. Such a test plan is shown in Table 20.2. 

40 60 80 100 120 140 160 
Degrees C 

Figure 20.1. Illustration of the engineers' preliminary ALT plan and the planning model for adhesive- 
bonded power elements on Arrhenius paper. 

0 
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Table 20.2. Engineers’ Modified Traditional ALT Plan with a Maximum Test 
Temperature of 120°C 

AI locationFailure Expected 
Level Probability Proportion Number Number Failing 

TEMPC PI n; n1 Rr1) 

50 .001 
80 .04 1 /3 100 4 

100 .29 I /3 100 29 
I20 .90 1 /3 100 90 

For this plan, Ase[log(?I (50))]= ,4167 for the Weibull-Arrhenius model. 

20.2 EVALUATION OF TEST PLANS 

20.2.1 Evaluation Using Monte Carlo Simulation 

As described in Section 10.1.2, simulation provides a powerful, insightful tool for 
planning experiments. For a specified model and planning values for the model 
parameters, it is possible to use a computer to simulate ALT experiments to see the 
kind of data that will be obtained and to visualize the variability from trial to trial. 
Such simulations provide an assessment of sampling uncertainty that will result from 
using a limited number of test specimens. 

Example 20.4 Simulation Evaluation of the Modified Traditional Test Planfor 
the Adhesive Bond. The planning values from Example 20.2 define the complete 
ALT model for adhesive bond failure. Based on the engineers’ modified test plan in 
Table 20.2, Figure 20.2 shows 50 ML estimate lines for the . I  quantile, simulated 
from 50 ALTs. This figure illustrates the amount of variability expected if the ALT 
experiment were to be repeated over and over, assuming the Arrhenius relationship 
to be correct over the entire range of temperature. The figure also clearly shows the 
deteriorating effect that extrapolating to 50°C has on precision, even assuming that the 
Arrhenius relationship is correct. Approximate precision is also reflected in the sample 
standard deviations given directly in Figure 20.2 (the approximation here is due to 
using only 500 simulations). The sample standard deviation SD[log(?l)] = .427 
agrees well with the large-sample approximate standard error Ase[log(rI (50))]= 
.4 167 from Table 20.2. Relative to the plan from Example 20.3, the engineers felt more 
comfortable with the degree of extrapolation in this plan even though this modified 
plan would provide less precision, due to the smaller range of test temperatures and 
the larger proportion of units that would be censored. 0 

20.2.2 Evaluation Using Large-Sample Approximations 

Section 10.2 provides motivation for and shows how to compute approximate standard 
errors of sample estimates for a given model and test plan. The general formulas 
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Temp = 80,100,120 n = 100,100,100 
centime = 183,183,183 parameters = -16.7330, 0.7265, 0.6000 

Log time quanliles a1 50 Degrees C 
Averege(O.1 qoantile)= 8.056 SD(O.1 quantk) = 0.427 
Averege(O.5 quantile) = 9.186 SD(0.5 quantb) = 0.4684 1 
Average(E,) = 0.7352 SD(Ea) = 0.0799 

ResuHs based on 500 simulatbns 
tines shown for 50 sirnuletions 

1oo 

40 60 80 100 120 140 160 
Degrees C 

Figure20.2. Simulations of the engineers' modified traditional test plan in Table 20.2 on Arrhenius paper. 

given there and in Section 10.5.1and Appendix Section B.6. I can be used to compute 
approximate standard errors and other properties for ALT plans and these can be used 
as an aid in comparing and designing ALT plans. The references in the bibliographic 
notes at the end of this chapter give references for particular models considered here. 
For a specified model, planning values for the model parameters, and test plan, these 
methods allow one to compute the large-sample approximate variance-covariance 
matrix of the ML estimators of the model parameters 8. Using this matrix it is easy to 
compute large-sample approximate standard errors of ML estimates and these easy- 
to-compute quantities are useful for comparing different test plans. For example, with 
the simple linear regression model used in Sections 19.2.4, 19.3.1,0. A - and 19.3.2, the 
large-sample approximate variance-covariance matrix for 6 = (&,P I ,  3 )is 

The following is similar to the development for (10.8). The ML estimator okthe p 
quantile of log(T) at transformed accelerating variable x is log(%>) = PO + p l x  + 
@ - ' ( p ) 3 = @ + CD-](p)i?.As a special case of (B.9) from Appendix Section B.6.3, 

Avar[log(TP)]= AV=(@)+ [@- '@)I2  Avar(i?) + 2@-'(p)Acov(@, 3), (20.2) 
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A A 

where Avar(c) = Avar(&) +2 Xx  X Acov(Po,P I )+x2 X Avar(pl) and Acov(ji, i?) = 

Acov(&, G )+ x  X Acov(P1,G). Then Ase[log(T,)] = 4 7 -var[log( c )]. Large-sample 
approximate standard deviations of other quantities of interest can be computed in a 
similar manner. Appendix Section B.2 gives more details. 

20.3 PLANNING SINGLE-VARIABLE ALT EXPERIMENTS 

This section develops some further concepts relating to planning ALTs. 

20.3.1 Specifying the ALT Plan 

To plan an ALT one needs to: 

Specify the experimental range(s) of the accelerating (or experimental) vari- 
able(s). 
Choose levels of the accelerating variable(s). 
Choose the number of test units to allocate to each level of the accelerating 
variable. 

This section describes analytical methods for making these decisions. 
Examples 20.3 and 20.4 illustrated traditional ALT plans with equal allocation of 

units to equally spaced levels of temperature. Because of censoring and extrapolation, 
traditional test plans may not be the best alternative. It is possible to choose levels of 
accelerating variables and the corresponding allocation of test units to minimize the 
large-sample approximate variance of the ML estimator of a quantity of interest. Plans 
developed in this way are called “optimum plans.” Although optimum plans may be 
best in terms of estimation precision, they generally have practical deficiencies. This 
leads to compromise plans that are optimized subject to practical constraints. This 
section will show how to construct and compare such plans. 

The Experimental Region. In theory, testing over a wider range of an accelerating 
variable provides higher degrees of precision. The highest level of the accelerating 
variable, however, has to be constrained to prevent testing beyond the range where 
the acceleration model is adequate (the problem with the plan in Example 20.3). 
On the other hand, testing at levels of the accelerating variable that are too low 
result in few or no failures during the time available for testing. These and perhaps 
other constraints define the range(s) of the accelerating variable(s). 
Le~~elsojthr Accelrrcrting Vuriable. The ALT plans developed here use either two 
or three levels of the accelerating variable. Let x~ denote the highest allowable 
level of transformed experimental variable and let xu denote the use-condition. 
For a three-level test plan, xL and XM will denote the low and middle levels of 
the (transformed) accelerating variable, respectively. To describe the ALT plan 
accelerating variable levels independent of specific test situations and units, it is 
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convenient to use a standardized acceleration level 6, = (x, - xu) / ( s~- q r ) 
so that = 0, & = 1,  and other values of 0 < 6, < 1 represent the fraction 
of the distance between XH and xu. A negative value of tfimplies a level of an 
experimental variable that is less than the use condition xu. If there is a specified 
lower limit for an accelerating variable, it will be denoted by X A  and ( A  for the 
corresponding standardized level. 
Allocation of Test Units. To describe ALT plan allocations of test units or speci- 
mens independent of the total number of units to be tested, we will allocate units 
by proportion, using T,as the allocation to x, (or standardized level 6,). 
Standardized Censoring Times. The standardized censoring time at the ith set 
of experimental conditions x, is defined as 5; = [log(tc)- p ( x , ) ] / u= W ’ ( p f ) ,  
where p(x,)is the location parameter at x,  and p ,  is the expected proportion failing 
at x f .  Because p ,  = @(&), cf can be used as a surrogate for p f .In situations where 
p ,  is very close to 0 or 1, it  is more convenient to specify cf .  
Testing Units at Use Conditions. Some experimenters, when conducting an ALT, 
choose to test a small number of units at use conditions. These “insurance” units are 
typically tested to watch for evidence of other potential modes, especially when i t  
is possible to take degradation measurements (or other parametric measurements) 
over time. Such units would not be expected to fail in the accelerated test and 
therefore will have no noticeable effect on estimates. For this reason, decisions 
about allocation of the other units in the test can be made independently of 
decisions on the insurance units. 

20.3.2 Planning Criteria 

The appropriate criteria for choosing a test plan depend on the purpose of the exper- 
iment. In some cases, optimizing under one criterion will result in a plan with poor 
properties under other criteria and it is useful to evaluate the trade-offs to obtain a 
satisfactory practical plan. In developing test plans, the following figures of merit are 
useful: 

A common purpose of an ALT experiment is to estimate a particular quantile, t,,, 
in the lower tail of the failure-time distribution at use conditions. Thus a natural 
criterion is to minimize Ase[log(TP)], the large-sample approximate standard 
error of log(?p), the ML estimator of the target quantile at use conditions . rU .  
Some experiments have more general purposes with corresponding overall in-
terest in estimation precision for the parameters in 8.  Let I6 denote the Fisher 
information matrix for the model parameters. A useful secondary criterion is to 
maximize 1101, the determinant of 10.This criterion is motivated because the vol- 
ume of an approximate joint confidence region for all of the model parameters 
in 8 is inversely proportional to an estimate of m. 
To assess robustness to departures from the fitted model it is useful to evaluate 
test properties under alternative, typically more general, models. For example, 
if one is planning a single-variable experiment under a linear model, it is useful 
to evaluate test plan properties under a quadratic model. Also, when planning 
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a two-variable experiment under the assumption of a linear model with no 
interaction, it is useful to evaluate test plan properties under a linear model with 
an interaction term. 
To have a useful amount of precision in one's estimates, it is necessary to have 
more than the minimum number of failures needed for the ML estimates to 
exist (e.g., at least four or five or more, depending on the desired precision) at 
two and, preferably, three or four levels of the accelerating variable. Thus it is 
important to evaluate the expected number of failures at each test condition. 

These first three figures of merit depend on X(g)s~,,-) ,the large-sample approximate 
covariance matrix of the ML estimators of the model parameters. All of these figures 
of merit are easy to evaluate with a computer program. It is important to recognize 
that, generally, all of the evaluation criteria depend on unknown parameter values. 
Because these parameters are unknown, we use the planning values in their place. I t  
is important to do sensitivity analysis over the plausible range of parameter values. 

20.3.3 Statistically Optimum Test Plans 

For a specified model and planning values for the model parameters, it is possible to 
find an optimum test plan that will, for example, minimize Ase(i',) (or, equivalently, 
Ase[log(TP)]) at a specified value of ..U, the transformed accelerating variable. With 
a linear relationship between log life and x for a log-location-scale distribution, a 
statistically optimum plan will: 

Test units at only two levels of x (denoted by x~ and X H ) .  

Choose the highest level of x to be as high as possible. Using a larger value of 
SH increases precision and statistical efficiency. The highest level of x should 
not, however, be chosen to be so high that it actuates new failure modes or that 
i t  otherwise causes the relationship between the accelerating variable and life 
to be inadequate. 
Optimize the location of XI, (the lowest level of ..U)and q,(the allocation to XI,). 

Example 20.5 Optimum Test Plan for the Adhesive Bond ALT. Continuing 
with Examples 20.1-20.4, it will be interesting to consider a statistically optimum 
plan with XH = 120°C. The optimization criterion is to minimize the large-sample 
approximate standard error of log(T,), the ML estimator of the logarithm of the . 1  
quantile of the adhesive bond log-life distribution at the use conditions of 50°C. 
The large-sample approximate variance Avar[log(?l)] is a function of & and ~ 1 , .  

Figure 20.3 is a contour plot of log base 10of the variance Avar[log(Tl )I, relative to the 
minimum variance. Thus points on the contour marked 1 (marked 2) have a variance 
that is 10 ( 100)times that at the minimum. The actual optimum plan is indicated by 
the "+" at the minimum of the variance surface in Figure 20.3 and given numerically 
in Table 20.3. Figure 20.4 indicates the temperature levels for the optimum plan 
and shows ML estimate lines from 50 simulated ALTs from this test plan. As with 
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Figure 20.3. Contour plot showing log,o{Avar[log(~l)]/min Atw[ log( 7 I )I} as a function of er. and ~ T L  

being varied to find the optimum ALT plan. 

Figure 20.2 from Example 20.5, Figure 20.4 illustrates the kind of variability expected 
if the ALT experiment were to be repeated over and over, assuming the Arrhenius 
relationship to be correct over the entire range of temperature. The plot and the 
corresponding sample standard deviations given directly in the figure show that 
precision is somewhat better than that with the traditional plan in Example 20.4 
and Figure 20.2. The sample standard deviation SD[log(t,)] = .3848 agrees well 
with the large-sample approximate standard error Ase[log(?l(50))] = 3794 from 
Table 20.3. 

The optimum plan, however, has some serious deficiencies. In particular, the plan 
caused an uncomfortable feeling that, for estimating life at 50°C there was (relative 

Table 20.3. Statistically Optimum ALT Plan to Estimate t.1 

Standardized Fai1u re Allocation Expected 
Condition Level Level Time Probability Proportion Number Number Failing 

i TEMPC 4-i PI Vf n I E(r l  

Use 50 .OOO -6.91 .001 
Low 95 .687 -1.59 .18 .7 1 212 38 
High 120 1.000 .83 .90 .29 88 79 

For this plan, Ase[log(j', (50))j = ,3794 for the Weibull-Arrhenius model. 
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:*o51 Log time quanties at 50 Degrees C 
Average(O.1 quanlile)= 8.023 SD(O.1quantile)= 0.3848 
Average(O.5 guanlite) = 9.155 SD(0.5 quantite) = 0.4301 
Average(Ea) = 0.7294 SD(Ea) = 0.07314 

Resuls besedon 5M)dmulatians 
Lines shown for 50 simulations 

1oo 
1 " " 1 " " I " " ~ ' " ' ] ' ' ' ' ] 

40 60 80 100 120 140 160 

Degrees C 
Figure 20.4. Simulations of the statistically optimum ALT plan on Arrhenius paper for the Weibull- 
Arrhenius model. 

to the plan in Figure 20.2) too much temperature extrapolation. Also, the optimum 
plan uses only two levels of temperature, providing no ability to detect departures 
from the Arrhenius relationship and no insurance in case something goes wrong at 
one of the temperature levels (e.g., no failures at the lower level). Also, the optimum 
Weibull and lognormal plans were quite different (95°C and 120°C for Weibull 
versus 70°C and 120" C for lognormal). This was disconcerting because there were 
no strong feelings about which model would be used in the end and both models 
had, in the past, provided reasonable descriptions of adhesive bond failure times. 
In general, optimum plans tend not to be robust to model departures and deviations 
between the planning values and the actual model parameters. 

The main reason for consideration of the optimum plan is to provide a "best case" 
bench mark (Le., the best that one could do if model assumptions were known to be 
correct), insight into possible good design practices (e.g., the optimum plan suggests 
testing more units at lower levels of the accelerating variable and that we have to 
constrain the highest level of the accelerating variable), and a starting point leading 
to a compromise plan that has good statistical properties and that meets necessary 
practical constraints (including robustness to departures to unknown inputs). 

0 
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20.3.4 Compromise Test Plans 

Real applications require a test plan that meets practical constraints, has intuitive ap- 
peal, is robust to deviations from specified inputs, and has reasonably good statistical 
properties. Compromise test plans that use three or four levels of the accelerating 
variable have somewhat reduced statistical efficiency but provide important practical 
advantages. They tend to be more robust to misspecification of unknown inputs and 
they allow one to estimate model parameters even if there are no failures at one level 
of the accelerating variable. The traditional plans address some of these concerns. 

There are two basic issues in finding a good compromise test plan: 

Basic Issue I :  Choose Levels of the Accelerating variable. In choosing levels of 
the accelerating variable it  is necessary to balance extrapolation in the accelerating 
variable (e.g., the fitted temperature-time relationship) with extrapolation in time 
(fitted failure-time distribution). Consider the distribution at 78°C in Figure 20.5. 
Moving the 78°C test to a higher temperature would provide a higher proportion 
of failures. But this would also increase the degree of extrapolation down to 50°C 
and reduce the resolution needed to estimate the slope precisely. Moving the 78°C 
test to a lower temperature would reduce extrapolation in temperature and increase 
the resolution to estimate the slope, except that it  would also increase extrapolation 
in time (with the expected number of failures becoming smaller). 

Temp = 78,98,120 n = 155,60,84 
centime = 183,183,183 parameters = -16.7330, 0.7265, 0.6000 

1o4 

1o3 
v)
h 


d 
1o2 

Results basedon 500 sirnuletions 
tines shown for 50 simulatkms 

1oo 

40 60 80 100 120 140 160 

Degrees C 
Figure 20.5. Simulations of the 20% compromise ALT plan and the Weibull-Arrhenius model for the 
adhesive-bonded power elements on Arrhenius paper. 
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Generally, at the middle and high levels of the accelerating variable we would 
have enough failures to interpolate in time in order to estimate quantiles in the 
lower tail of the distribution. For example, if interest is in the . l  quantile, we would 
try to test at conditions where more than 10% would be expected to fail. At the 
lower level of the accelerating variable we would often expect to extrapolate in 
time. That is, if interest is in the .1 quantile, we might have to test at conditions 
where somewhat less than 5% of the test units would be expected to fail. 
Basic Issite 2: Allocation of Units to the Accelerating Variable Levels. As sug- 
gested by optimum test plans, one should allocate more test units to the lower 
accelerating variable level than to the high accelerating variable levels. This com- 
pensates for the small proportion failing at low levels of the accelerating variable. 
Also, testing more units near the use conditions is intuitively appealing because 
more testing is being done closer to the use conditions. In trying to optimize allo- 
cation, it is necessary to constrain a certain percentage of units to the middle level 
of the accelerating variable. Otherwise optimizing a three-level plan will result in 
the three-level plan degenerating to a two-level plan. 

Generally, it is sufficient to use three or four levels of an accelerating variable. 
It is always necessary to limit the highest level of an accelerating variable to the 
maximum reasonable condition. Optimization of the position of the lowest level 
of the accelerating variable (constraining the middle level to be halfway between) 
often leads to an intolerable degree of extrapolation. In this case, reduce the 
lowest level of the accelerating variable (to minimize extrapolation)-subject to 
the expectation of seeing a minimum four or five failures. After deciding on some 
candidate plans, they can be evaluated using either large-sample approximations 
or simulation methods. 

Example20.6 Evaluation of a Compromise Plan for the Adhesive Bond 
ALT. Table 20.4 shows a compromise plan in which tests are run at 78, 98, and 
120°C. Relative to optimum plans, this compromise plan increases the large-sample 
approximate standard deviation of the ML estimator of the . l  quantile at 50°C by 
15% (if  assumptions are correct). However, it reduces the low test temperature to 
78°C (from 95°C) and uses three levels of the accelerating variable, instead of two 
levels. It is also more robust to departures from assumptions and uncertain inputs. 

Table 20.4. Compromise ALT Plan for the Adhesive Bond 

Standardized A I 1ocati onFai 1ure Expected 
Condition Level Level Time Probability Proportion Number Number Failing 

PI T Ii TEMPC el Ll n1 E(r,1 
Use 50 .000 -6.91 .OOl 
Low 78 .448 -3.44 .03 .52 I56 5 
Mid 98 .726 - 1.28 .24 .20 60 14 
High 120 1.000 .83 .90 .28 84 76 

~~ 

For t h l \  plan, Ase[ log(: (SO))]= ,3375 for the Weibull-Arrhenius model. 
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Figure 20.5 shows the results obtained by simulating from this proposed compromise 
test plan. The sample standard deviation SD[l~g(?~) l  = .4632 agrees well with the 
large-sample approximate standard error Ase[log(T, (50))]= .4375 from Table 20.4. 

0 


20.4 PLANNING TWO-VARIABLE ALT EXPERIMENTS 

This section describes some of the basic ideas for planning ALTs with two vari- 
ables. The discussion extends the material in Sections 20.1-20.3 and uses the same 
general setting and model assumptions, except that the regression model allows for 
two experimental variables affecting the scale parameter of the log-location-scale 
distribution (location parameter of the location-scale distribution). Most of the ideas 
can be extended to ALTs with more than two experimental variables. 

20.4.1 Two-Variable ALT Model 

For a log-location-scale distribution, the two-variable ALT model is similar to the 
model in (20.1) except that p is a linear function of two experimental variables. 
Specifically, 

where XI and x2 are the (possibly transformed) levels of the accelerating or other 
experimental variables. For some underlying failure processes, it is possible for the 
underlying accelerating variables to “interact.” For example, in the model 

the transformed variables XI and x2 interact in the sense that the effect of changing 
x1depends on the level of x2 and vice versa. As before, the simple ALT models (i.e., 
SAFT models) assume that (T does not depend on the experimental variables. /3 and 
CT are unknown parameters that are characteristics of the material or product being 
tested and they are to be estimated from the available ALT data. 

20.4.2 Examples 

Example 20.7 Voltage-StressIThickness ALT for an Insulation. Nelson 
(1990a, page 349) describes the design of a complicated ALT with several experimen- 
tal variables. To provide input for the design of a product, reliability engineers needed 
a rapid assessment of insulation life at use conditions. They also wanted to estimate 
the effect of insulation thickness on life, and to compare different conductors in the 
insulation. For purposes of test planning, Nelson (1990a) used the standard Weibull 
regression model in which log hours has a smallest extreme value distribution with 
location 
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and a U that does not depend on the accelerating or other experimental variables. Here 
v p m  is voltage stress in volts/mm of insulation thickness and t h i c k  is insulation 
thickness in cm. Nelson (1990a, page 352) gives “planning” values = 67.887, 
pp = - 12.28, &’ = - 1.296, and a” = .6734. Nelson considered test plans with 
v p m  ranging between vpm,  = 120 volts/mm and v p m H  = 200 volts/mm and t h i c k  
between t h i c k ,  = ,163 cm and thickH = 3 5 5  cm. The variable levels at use 
conditions were vpmU= 80 voltdmm for voltage stress and t h i c k u  = .266 cm for 
thickness. Voltage stress was the accelerating variable in the experiment. Thickness 
was an ordinary experimental variable; its levels were chosen because they were 
of interest to the engineers. For purposes of illustration, we follow Nelson (1990a) 
and plan 1000-hour ALTs using n = 170 insulation specimens. The traditional 
plan in Figure 20.6 was obtained by choosing the lowest level of v p m  to minimize 
Ase[log(’<,)]with the middle v p m  constrained to lie halfway between the high and 
the lower levels. The slanted lines in Figure 20.6 are lines of experimental variable 
combinations that yield equal probability of failing during the 1000-hour life test 
(these probabilities are indicated by a Ibp =” in the neighborhood of the lines). The 
slope of these lines show that the effect of changing v p m  is much stronger than that 
of changing t h i c k .  As with the one-variable ALT, testing at combinations of the 
accelerating variables with small p will result in few failures and little information. 
On the other hand, we have a need to spread out the test conditions to get a better 
estimate of p over the experimental region. 0 

In contrast to the previous example, the following example uses two different 
accelerating experimental variables. 

r 

0.4 - -6 
p = 3.2~10 p=.Ol p = . l  p = . 5 p = . Q Q  

= 1 .8~10~  

0.2 

0.1 

I I 1 I I 1 I 

80 100 120 140 160 180 200 

ElectricalStress (vdts per mm) 

Figure 20.6. Insulation 3 X 3 (vpmX t h i c k )  factorial ALT plan. 
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Example 20.8 Voltage-StredTemperatureALT for an Insulation. This ex- 
ample is a modification of Example 20.7 in which t h i c k  will be held constant at 
its use conditions of thicku = .266 cm and insulation life will be accelerated by 
using levels of voltage stress and temperature that are higher than use conditions. The 
Weibull regression model will again be used for purposes of test planning, with 

p = PO + P I  log(vpm) + /32[11605/(temp “ C  + 273.15)] 

and constant U .  Again vpm is voltage stress in volts/mm of insulation thickness 
and t e m p  is temperature in “C. The primary purpose of the test is to estimate t , ( ~ ) 1  
at the use conditions of vpm,  = 80 volts/mm and tempu = 120°C. Both vpm 
and t e m p  are accelerating variables in this experiment. The highest level of the 
variables should be no more than vpm, = 200 voltdmm and t e m p H  = 260°C. 
Lower limits on testing are vpm, = 80 volts/mm and t e m p A  = 120°C. The lower 
limit on temperature was chosen as the use temperature because it is generally not 
economical to lower temperatures for reliability testing. 

The “planning values” pp = -12.28 and an = .6734 carry over from the 
previous example. The value Pp = .3878 was chosen, by reviewing examples in 
Nelson ( 1990a), as a typical activation energy for temperature-accelerated insulation 
ALTs. Then p,“ = 58.173 was chosen to give the probability p u ~ != 1.82 X 10-6 
(as in the previous example) at use conditions v p m ,  = 80, thicker = .266, and 
t e m p u  = 120°C. Then 5,  = -13.216. For purposes of illustration we will again 
plan a 1000-hour ALT using a total of n = 170 insulation specimens. 

The slanted lines in Figure 20.7 are also lines of equal probability failing during 
the 1000-hour life test. The slopes of these lines show that both vpm and t e m p  will 
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Figure 20.7, Insulation 3 X 3 (vpmX temp) factorial ALT plan. 
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have a strong effect on life. The circles in Figure 20.7 correspond to a traditional test 
plan using equally spaced levels of the accelerating variables temperature and voltage 
stress and equal allocation of specimens to the nine different test conditions. 0 

20.4.3 Two-Variable ALT Plans 

As with the one-variable ALT plans, it is convenient to use standardized units for the 
accelerating (or other experimental) variables. The standardized variable for level i 
of variable j is defined as ( j i  = ( X j i  - X j ( J ) / ( X j H  - X j u ) .  Then e j u  = 0 and ( j H  = 1 ,  
( j  = 1,2). This implies that, at use conditions, gu = (0 ,O) and at the highest levels 
of the experimental variables, SH = (1 ,  1). 

In the two-variable setup, there are several distinctly different kinds of test plans 
that provide estimates of any specified quantile t, at t u .  

Test all units at &. This is a degenerate test plan (because it  does not allow 
the estimation of all of the regression model parameters) that is capable of 
estimating the failure-time distribution at & U .  When the quantile of interest p 
and puu are not too small (e.g., p = -01and puu > .l ) ,  concentrating all test 
units at t u  can actually minimize Avar[log(&)] (see the figures in Meeker and 
Nelson, 1975). 
Test at any two (or more) combinations of variable levels on a line that passes 
through t u .  See, for example, the circles on the dashed lines in Figures 20.8 

Standardized Factor 1 
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Figure 20.8. Insulation v p m  X t e m p  optimum degenerate and optimum split ALT plans. 
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Standardized Factor 1 

N 


Electrkal Stress (volts per mm) 

Figure 20.9. Insulation vpm X temp 20%compromise ALT plans with 5’ constraint. 

and 20.9. Such plans are also degenerate but allow estimation of t , at 5~ (or 
any other point on the line). 
Test at three (or more) noncollinear combinations of the experimental variables 
in the plane. This is the type of plan that one would use in practice. 

Degenerate plans would be an unlikely choice in practice. They are, however, 
useful for developing more reasonable optimum and compromise test plans. In the 
next section we show how to obtain an optimum (or compromise) two-variable 
ALT plan by first finding a degenerate optimum (or compromise) plan that yields a 
particular Avar[l~g(:~)]. Then we show how to “split” this degenerate plan into an 
optimum (or compromise) two-variable plan that gives the same Avar[log(x,)) and 
that has other desirable properties. The choice among possible split plans allows us 
to also optimize with respect to secondary criteria and to evaluate trade-offs among 
these criteria. 

20.4.4 Optimum Two-VariableALT Plans 

When testing is allowed anywhere in the square defined by the limits on the individual 
variables, an optimum degenerate plan is on the line 4? going through ( ( 1  and ( H .  

This optimum plan corresponds to the optimum test plan for a one-variable testing 
situation specified by & = (standardized censoring time at use conditions tC)
and & = ~ H H(standardized censoring time at conditions 5 ~ ) .The single-variable 
optimum plan provides the optimum 5~ (standardized censoring time at the optimum 
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lowest test variable level) and q,(allocation to this variable level). The optimum 
degenerate two-variable plan allocates n~ to the diagonal point g f 2= (511A, on 
the line e having &-f. = 51, (or, equivalently, so that p1-f-= PI.) and nH= 1 - nf.to 
the point e ~ .This diagonal point has components 

(20.3) 

Figure 20.8 shows the degenerate optimum plan along the dashed line from &H to 6”. 
The centers of the circles on this line indicate the variable-level combination and the 
areas of the circles are proportional to the allocations to the different variable-level 
combinations. 

Although a degenerate ALT plan may not be directly useful in practice, i t  does 
provide a means for finding nondegenerate optimum two-variable ALT plans. In 
particular, it is possible to “split” a degenerate plan into a nondegenerate optimum test 
plan (maintaining optimum Avar[log(&)]). Thus i t  is possible to use some secondary 
criteria to chose a “best” split plan. A reasonable strategy for many testing situations 
is to split the degenerate plan points into two points that extend along the equal- 
probability line to reach the boundary of the experimental region. As shown in 
Escobar and Meeker (1995), a two-variable degenerate optimum test plan having 
61, = (51fd,521,) with allocation ~1~ can be split into two points on the same equal- 
probability line 

where q,= vLl + ~ T L , .To maintain the optimality, the split allocations are chosen 
such that 

VL1 51LI + 7TL2 51L2 = * L  51L7 (20.4) 

Depending on the value of “,, the point SLIwill be either on the North boundary or 
the West boundary of the experimental region. Similarly, the point tL2will be either 
on the South boundary or the East boundary of the experimental region. 

When 2 < f 2 ” ,  l j f . 1  = (51~1,1 )  will be on the North boundary of the experimental 
region, with 

(20.5) 

~ IWhen CL < ~ L H ,  L = ( & A ,  (XI)  will be on the West boundary of the experimental 
region, with 

(20.6) 
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= ( 5 1 ~ 2 ,& A )  will be on the South boundary of the experimental When CL 5 C L H ,  5 ~ 2  
region, with 

Finally, when (L > { H L ,  6 ~ 2= ( & ~ , & , 2 )  will be on the East boundary of the 
experimental region, with 

(20.8) 

Example 20.9 Voltage-StressLTemperatureOptimum ALT for an Insulation. 
Figure 20.8 shows the optimum plan for the voltage-stresshemperature-accelerated 
test on the insulation. Using (20.3), the diagonal point l j r ,  has components 

.6734 X [- 13.216 - (-0.71)] 
51L = 5 2 L  = .9163 X (- 12.28) + (-7.751 I )  X .3878 

= S91. 

Thus the degenerate optimum is 6~ = (1, 1) with allocation n~ = .386, and tl,= 
(S91, S91) with allocation TL = .614, which are the entries for the optimum 
degenerate plan given in Table 20.5. 

To split the degenerate optimum plan, use (20.5) and (20.7) with 6lA= 0, giving 

.6734 X [-13.216 - (-0.71)] - (-7.751 1 )  X .3878 
51L1 = .9163 X (- 12.28) 

= .481, 

.6734 X [- 13.216 - (-0.71)] 
51L2 = = .748.

.9163 X (- 12.28) 

Table 20.5. Accelerating Variable Levels and Allocations for the Optimum Degenerate 
and Optimum Split Test Plans to Estimate t.w1 at Use Conditions 

Standardized 

Levels Levels AllocationPoint Time 
i VPM TEMPC ( I 1  6, PI .rr, 4 E(r!) 

Optimum Degenerate 

Use 80 120 .WO .OOO -13.22 1.8 X 10-6 
Low 137 192 .591 .591 -.71 .387 .614 104 40 
High 200 260 1.000 1.000 7.95 1.000 .386 66 66 

Optimum Split 

Use 80 120 .OOO .000 -13.22 1.8 X 10-6 
Low1 124 260 .481 1.000 -.71 .387 .363 62 24 
Low2 159 120 .748 .OOO -.71 .387 .251 42 16 
High 200 260 1.000 1.000 7.95 1.000 .386 66 66 
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Table 20.6. Comparison of v p m  X tempALT Plans to Estimate teuor 

No Interaction Interaction 
Mode1 Model 

?I - -U
Figure 5" IAvar[log(?/ ,)]  ---IF1 TAvar[log(~~,)l -IF1
Plan 

U ?  0 2  

3 x 3  20.7 - 77.3 1.7 x 10-j 349 2.7 X 10 .'' 
Factorial adapted 
from Nelson 
( 1990a) 

Optimum split 20.8 - 50.5 1.3 X X 0.0 
~~~~ 

20%-Compromise - - 54.7 2.0 x ] o r3  430 3.ox 10 
with no j' 
const rain t 

20% Compromise 20.9 5.0 77.7 1.2 x 10-' 324 1.7 x 10 
split with 
j *  = 5.0 constraint 

Consequently, the standardized levels for the split optimum plan are 6" = ( 1 ,  1 ), 
61.1 = (.481, l ) ,  and t [ 2 z  = (.748,0).The allocation at 6" is rr" = 386. From the 
second equation in (20.4), it follows that the allocation at 6/.1is 7 q I  = q,X 391 = 

.614 X .591 = .363. Similarly, rrl,? = .251. 
'hble 20.6 compares this optimum plan with the traditional plan shown in Fig-

ure 20.6. The variance of the optimum plan is about 35% smaller. The two-variable 
optimum plan, however, like the one-variable optimum plan, has some deficiencies. 
Tests are run at only three combinations of temperature and voltage stress and the 
degree of extrapolation is, perhaps, rather large. The optimum plan has no ability to 
estimate the parameters of the model with interaction. 0 

20.4.5 Splitting Degenerate Compromise Plans 

A degenerate compromise plan can also be split to develop a nondegenerate compro- 
mise plan. Thus one can find a one-variable degenerate compromise plan using the 
methods in Section 20.3.4 and then split the plan in a manner that is analogou\ to 
that used in Section 20.4.4. For example, a two-variable degenerate compromise test 
plan having a middle accelerating variable level = ( k1 &)  with allocation n,~, 
can be split into two points, 
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on the same equal-probability line, where n~ = n ~ 1+ n~2.To maintain the opti- 
mality, the split allocations are chosen such that 

To obtain tMl one uses (20.5)-(20.8) with [ L  replaced by &.and 5 ~ 2 ,  

When there is a c* constraint [or a p* probability constraint where p* = @(5*>]on 
the NE corner of the experimental region, there are multiple degenerate compromise 
plans with the same Avar[l~g(?~)]. To specify a degenerate plan one chooses a line 
t! passing through 6" and intersecting the c* constraint line at any point within the 
experimental region. Then & L , & ,  and &H are determined by the intersection of 
t! and the failure probability lines defined by &, &, and & . Such c* constraint 
compromise plans can also be split in the same way [i.e., 5 H  is split in a manner that 
is analogous to that used for g~ in (20.9)].The freedom of choosing the slope o f t  
allows optimization on another criterion. A desirable property of the split compromise 

1 be equal if possible or nearly equal otherwise. plan is that 7 ~ and ~7 ~ 2 ~  

Example 20.10 Voltage-StressLTemperature20% Compromise A LT Plans for  
an Insulation. The circles on the dashed lines in Figure 20.9 show a degenerate 
20% compromise test plan with a (* = 5.0 constraint. Figure 20.9 also shows the split 
plan that maintains the Avar[l~g(?~)] while splitting all three points to the boundaries 
of the experimental region. Table 20.7 shows the numerical values of the standardized 

Table 20.7. Accelerating Variable Levels and Allocations for 20%Compromise 
Degenerate and 20% Compromise Split Plans with a 5' = 5.0 NE Corner Constraint 

Standardized 

Levels Levels AllocationPoint Time 
i VPM TEMPC 61, 52 5, PI .rr, 11, E(r,) 

20% Compromise Degenerute 

Use 80 120 .OOO .OOO - 13.22 
Low 140 179 .610 SO0 - .79 .364 .535 91 33 
Mid I59 I96 .752 .617 2.10 1.000 .200 34 34 
High 182 214 .895 .733 5.00 1.OOO .265 45 45 

20% Compromise Split 

Use 80 120 .000 .OoO - 13.22 
Low, 124 260 .477 1.OOO - .79 .364 .268 46 17 
Mid I 145 260 .650 1.000 2.10 1.000 .I23 21 21 
High, 170 260 323 1.000 5.00 1.000 .158 27 27 
Low2 158 120 .744 .OOO - .79 .364 .268 46 17 
Mid, I85 120 .917 .000 2.10 1.000 .077 13 13 
High, 200 158 1.000 .339 5.00 1.000 .I07 18 18 
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and actual levels of the experimental variables and the corresponding allocations. The 
starting point for obtaining the two-variable plan in this table is the computation of 
the standardized one-variable compromise test plan specified (for a three-level plan) 
in terms of the standardized censoring times C L , ~ , + , , ~ H= C* and corresponding 
allocations TL,  TM, T H .  

2 ~The criterion n1~= 7 ~ was used to determine the slope of the dashed line in 
Figure 20.9. Using (20.5) and (20.7) with 61, = -.79, and the other inputs as before, 
gives 5 ~ 1= (.477, 1) and d j ~ 2= (.744,0). To obtain d j ~observe that when 7 ~ 1 . ~= 

(20.4) implies &L = (6~1+ 5~2)/2.In this case, ( d j ~ ~7 ~ ~ 2 ,  + 5 ~ 2 ) / 2= (.610,.5) 
and the line i? through 6~ and (.610,.5) crosses the 6* constraint line within the 
experimental region. Then we can choose t j L  = (.610, .5)  and the corresponding 
line i? with slope equal to .5/.610. The intersections of 4! with the failure probability 
lines with 5 ; ~= 2.10 and CH = 5.00 determine the points 5 , ~  (.752, .617) and = 

&H = (395, .733). To obtain ~ M Iand 6 ~ 2 ,we use formulas analogous to (20.5) 
= (.650, l) ,  whereand (20.7), respectively. In particular, l j ~ ~  

.6734 X (- 13.216 - 2.10) - (-7.751 1)  X .3878 
= ,650.-9163 X (- 12.28) 

Once the design points have been determined, it is simple to find the allocations. In 
this case, by choice T L I  = T L ~= .535/2 = .268. The allocations 7 ~ ~ 1  areand 7r,+,2 

~obtained using (20.9) and the allocations 7 ~ and T H 21 are obtained using an equation 
similar to (20.9) in which the index M is replaced by an H .  

As shown in Table 20.6 the 20% split compromise plan with no constraint on 
the NE corner of the experimental region provides considerably more precision for 
estimating r .  than the traditional factorial plan. Introducing the constraint allocates 
more experimental resources to lower levels of the accelerating variables, reducing 
precision somewhat, but also reducing extrapolation to use conditions. The variance 
under the interaction model is smaller for the constrained compromise plan, indicating 
a useful degree of robustness. The constrained compromise plan has properties that 
are comparable to the traditional factorial plan, but the compromise plan requires less 
extrapolation. 0 

20.4.6 Another Example 

Example 20.11 Test Plansfor a Voltage-StresslThicknessALT for an Insu-
lation. This example returns to the setting described in Example 20.7, where there 
is one accelerating variable and another experimental variable that is not expected 
to be accelerating. For this experimental setting, the 3 X 3 factorial with unequal 
allocations (illustrated in Figure 20.6) provides a test plan with Avar[l~g(?~)J = 144 
and good statistical properties across all of the evaluated criteria (see Table 20.8). 

In Figure 20.10, the circles on the dashed lines show a degenerate 20% compromise 
test plan for which the experimental region was extended slightly from a maximum 
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Table 20.8. Comparison of vpm X thickALT Plans to Estimate t.ml 

No Interaction Interaction 
Model Model 

Plan 

3 x 3  20.6 - 144 2.4 X 10-' 145 1.2 x 10-5 
Fac tori a1 
from Nelson 
( 1990a) 

Optimum split - - 80.1 7.3 x 10-3 rn 0.0 

Optimum split - 2.5454 131 1.6 X 1OP3 138 1.7 X lop' 
with (* = 2.55 
constraint 

20% Compromise 20.10 4.04 96.1 7.0 X 10-3 102 1.2 x 10-3 
with J* = 4.04 
constraint 

Standardized Factor 1 

0.4 -
p=.33 p=.w 

0.15-

Etectrica) Stress (vab per mm) 

Figure 20.10. Insulation vpm X t h i c k  20%compromise ALT plan with a constraint on the NE corner 
of the experimental region. 
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of 200 to 217 VPM, but wing a standardized censoring time constraint (* = 4.04 
(the highest value of ( in the originai experimental region used by Neison, 1990a) 
on the NE corner of the experimental region. Figure 20.10 a!so shows the split plan 
that maintains the Avar[log(yp)] whiie splitting all points to the boundaries of the 
experimental region. As in Example 20.10 (where there was a {* constraint), the 
slope s cif the degenerate plan was chosen to equalize the allocations at conditions 
corresponding to the censoring standardized time { L .  0 

20.5 PLANNING ALT EXPERIMENTS WITH MORE THAN TWO 
EXPERIMENTAL VARIABLES 

In some applications it is necessary or useful to conduct an accelerated test with more 
than two experimental variables. In such situations the ideas presented in this chapter 
can be extended and combined with traditional experimentai design concepts. Some 
general ideas along these lines are as follows: 

Consider planning an experiment with just a single accelerating variable but 
with one or more other nonaccelerating experimentai variables for which the 
effect oi-r life is expected to be small or for which the direction of possib!e 
effects is unknown (i.e., the best guess of the regression coefficients for these 
variables is 0).Such a plan was illustrated in the vpmX t h i c k  example. In such 
situations, a reasonable pian would replicate a single-variabk ALT experiment 
at various combinations of the nonaccelerating variables (see Figure 20.13). 
The move away from equal al!ocation can be viewed as a generalization of the 
traditional factorial plan. 
When the number of nonaccelerating variables is more than two or three, 
complete factorial designs may lead to an unreasonably large number of variable- 
level combinations. In this case, a reasonable strategy would be to use a standard 
fraction of a-factorial design for the nonacceierating variables and to run a 
single-variable ALT compromise p!an (providing appropriate variable levels 
and allocations for the accelerating variable) at each c?f the combinations in the 
fraction. 

In such situations, as with the examples in this chapter, the ideas of evaluation of 
test plan properties before running the experiment are extremely important. As with 
the simpler ALTs, evaluation of test plan properties is recommended and cafi be done 
using either large-sampie approximations or simulation methods. 

BIBLIOGRAPHIC NOTES 

Chapter 6 of Nelson ( 1990a) reviews much of the literature and provides an overview 
and illustration of the most important methods for planning ALTs. Nelson ( 1998) 
provides an extensive list of references on acce!erated test plans. Nelson and Kielpln- 
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ski (1976) and Nelson and Meeker (1978) develop theory for optimum ALTs. 
Meeker (1984) compares optimum and compromise ALT plans. Meeker and Hahn 
(1985) describe practical aspects of ALT planning and provide tables that allow 
those planning tests to develop and compare alternative test plans. Jensen and 
Meeker ( 1990) describe corresponding software. Escobar and Meeker ( 1995) give 
technical details and examples of planning ALTs with two variables. They describe 
statistically optimum plans and show how these can be used to develop more practical 
compromise plans. Meeter and Meeker (1994) give references and develop methods 
for planning one-variable ALTs when life has a log-location-scale distribution and 
both p and log(a) can be written as linear functions of (transformed) accelerating 
variables. Escobar and Meeker (1998d) provide the extension to regression models 
with more than one variable. Chaloner and Larntz ( 1992) show how to use a prior dis- 
tribution in place of particular planning values for model parameters when planning 
an ALT. 

EXERCISES 

20.1. Consider the ALT described in Exercise 19.2. The reliability engineers who 
ran that accelerated test want to run another accelerated test on a similar 
device. They have asked you to help them evaluate the properties of some 
alternative test plans. 
(a) Relative to the plan used in Exercise 19.2, what modifications would 

you suggest for evaluation? 
(b) List the criteria that you would use to compare the plans and make a 

recommendation on how to conduct the accelerated test. 

20.2. In general, planning values are needed to do test planning and to determine 
the sample size needed to provide a specified degree of precision. 
(a) Explain why such planning values are needed. 
(b) Product or reliability engineers may be able to provide some useful 

information, but they cannot be expected to provide accurate planning 
values (otherwise they would have no reason to run the test!). What can 
be done to protect against the use of potentially misspecified planning 
values? 

20.3. In planning an ALT, the large-sample approximate variance of the ML esti-
mator of a particular quantile of the failure-time distribution at use conditions 
is often used to judge the precision that one could expect from a proposed test 
plan. Suppose that the Arrhenius/lognormal model will provide an adequate 
description of the relationship between life and temperature. As described 
in Appendix Section B.6.2, there are computer algorithms that can be used 
to compute the large-sample approximate covariance matrix 26 of the ML 
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h h  

estimates P O ,  P I ,  and i?. In this case, Zg will be a function of the proposed 
test plan and the parameters PO,P I ,and U .  

(a) Given the individual elements of 26,provide an expression for the large- 
sample approximate variance of the ML estimator of the p quantile at 
use temperature temp,. Do not use matrix algebra. 

(b) Approximate standard errors of ML estimators from a proposed test 
plan can also be obtained by using Monte Carlo simulation. Explain 
the advantages and disadvantages of this approach relative to using the 
large-sample approximate variance. 

20.4. An ALT is going to be conducted to investigate the effect of size on the life 
of an insulating material. The accelerating variable will be voltage. Based 
on previous experience, for purposes of planning the experiment, use the 
model 

Pr[T 5 t ;  thick,vpm] = QSe, 
log(t) - p( th ick ,vpm) 

U 

where p = PO+ Pi t h i c k  + /32vpm, t h i c k  is the specimen size in cm, 
v p m  is voltage stress in volts/mm, and U is constant. 
(a) What would be the model relating to t h i c k  and voltage (instead of 

volts/mm)? 
(b) What is an important advantage of modeling and experimenting in terms 

of v p m  and t h i c k  rather than voltage and t h i ck?  

20.5. Consider the planning values given in Example 20.2. 
(a) Compute the proportion failing after 6 months at 80°C. 

(b) Suppose that there is a simple chemical degradation process that causes 
the adhesive to degrade over time. Compute the implied activation energy 
for this degradation process assuming that the Weibull shape parameter 
is /3 = l/a = 2, and 3. 

+20.6. Refer to Exercise 19.9. At use conditions, Failure Mode 2 will be dominant. 
We would not expect to see Failure Mode 1,  except at higher levels of stress. 
Using the parameter values given in Exercise 19.9 as planning values, and 
assuming that 4000 hours of test time will be available, suggest an appropri- 
ate test plan that could be used to estimate F (  lOOO0)at a use temperature of 
40°C. 

(a) Write a simulation program to evaluate alternative test plans and to 
answer the following questions. Use the simulation to evaluate quantities 
like Var(TI)at 40°C and the expected number of failures at the different 
levels of temperature. 

(b) What is an appropriate highest level of temperature for such a test? 
( c )  What other levels of temperature would you recommend? 
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(d) Suppose that 100units are available for an ALT. How would you allocate 
these units to the different levels of temperature? 

A20.7. Refer to Exercise 20.6. Develop formulas that would allow easy evaluation 
of the large-sample approximate variance of F^(looOO) and the expected 
number of failures at the different levels of temperature, as a function of the 
test plan and the planning values. 

A20.8. Use the ML estimates for Device-A given in Table 19.1 as planning values 
to design an ALT for a similar device with a similar failure mode. All of 
the large-sample approximate variances in this problem will depend on the 
values of these planning values. As in the original test plan, 80°C will be 
the highest temperature. 
(a) For a test plan having three levels of temperature, write down an ex- 

pression for the large-sample approximate variance of log(Tp) at the 
use temperature of 10°C as a function of the standardized levels of 
test temperature and the proportion of units allocated to the different 
temperatures. 

(b) An optimum test plan for this problem will have only two levels of 
temperature. For this plan, write the large-sample approximate variance 
of log(;,) as a function of tL,the standardized location of the lowest 
temperature, and q,the allocation to this temperature. 

+20.9. Refer to Exercise 20.8. 
(a) Write a computer program to compute the large-sample approximate 

variance in part (a) of Exercise 20.8. To do this you will need access to 
the LSINF algorithm in Escobar and Meeker (1994) (which is available 
from Statlib at FTP site l i b .  stat.cmu .edu). 

(b) Use the computer program requested in part (a) to compute the large- 
sample approximate variance of log(T1) for a grid (say, 11 by 1 1 ) of 
values with & and TL ranging between 0 and 1. Plot these with a 
contour plot. What does this plot suggest for an "optimum" test plan? 

(c) Redo the computation in part (b), now allowing the highest temperature 
to be at 90°C. What effect does this have on the test plan and the variance 
of log(31)? 

A20.10. Here we consider planning of an ALT with a single accelerating variable 6, 
right-censored at t ,  for which failure time T - EXP(0) distribution with 
0 = exp(P0 + P I ( ) . The testing will be at two levels of the accelerating 
variable &. and 6 ~ .The use condition is 5" = 0. 
(a) Show that the total Fisher information matrix, 20,for 8 = ( P O ,  P I )  is 

To = n~ = n [ T L ~ J L  + T H p H Z H ] , where .rrL is the proportion of units 
allocated at (L, 7 q j  = 1 - n ~ ,pi = 1 - exp(-t,/0,) is the expected 
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proportion of failure at &, and 

Show that if the goal is to minimize the large-sample approximate vari- 
ance of the ML estimators of the logarithm of a particular quantile of 
the life distribution at use conditions, then it suffices io find a plan that 
minimizes the large-sample approximate variance of PO. 
Show that 

(d) Suppose that the probabilities of failing at & = 0 and ( H  = 1 are p ~ l  

and p ~ ,respectively. Then show that the proportion of failures at any 
value of 5 is 

(e) For fix_ed values of pu < p ~ ,0 < n~< 1 ,  0 5 61. < 1 ,  draw plots of 
Avar(p0) as a function of &., . Observe that the large-sample approximate 
variance is a decreasing function of ( H .  

(f) In practice it is necessary to bound the highest level of stress, say, at 
5~ = 1. Then 

Use the particular fixecvalues of p u = .0oO1, PH = .9 and construct 
a contour plot of Avar(Po) as a function of TL and 5 ~ .Do this for other 
practical choices of p u and p ~ .  

(g) For pu = .Owl and P H  = .9, verify that the optimum test plan is 
TL = .795, & = .71 1, T H  = .205, and ( H  = 1. 
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Accelerated Degradation Tests 

Objectives 

This chapter explains: 

How accelerated degradation tests can be used to assess and improve product 
reliability. 

Models for accelerated degradation tests. 
How to analyze accelerated degradation data. 

How accelerated degradation test methods compare with traditional accelerated 
life test methods. 
A simple approximate method that can be used for some accelerated degradation 
data analyses. 

Overview 

This chapter explains and illustrates the use of acceleration models from Chapter 18 
with the degradation analysis methods in Chapter 13. Both of these chapters are 
important in the understanding of the material in this chapter. The comparison of 
accelerated degradation tests with accelerated life tests also depends on the material 
in Chapter 19. Section 2 1.2 introduces an example and describes a model for accel- 
erated degradation data. Section 21.3 shows how to estimate the parameters of this 
model. Section 21.4 applies methods from Section 13.6 to estimate the failure-time 
distribution corresponding to the degradation model. Section 21.5 shows how to apply 
the methods in Section 13.7 to obtain bootstrap confidence intervals for a failure- 
time distribution. Section 2 1.6compares the accelerated degradation analysis for the 
example with a corresponding accelerated life test analysis. Section 2 1.7 describes 
and illustrates the use of a simpler approximate method for accelerated degradation 
analysis. 

563 
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21.1 INTRODUCTION 

The degradation analysis methods described in Chapter 13 can provide useful infor- 
mation for reliability studies, even when failures are not observed. For some products, 
however, degradation rates at use conditions are so low that appreciable degradation 
will not be observed during usual tests. In such cases, it might be possible to accel-
erate the degradation process. For example, raising temperature will often accelerate 
the rate of a chemical degradation process. 

Example 21.1 Device-B Power Output Degradation. Figure 2 1.1 shows the 
decrease in power, over time, for a sample of integrated circuit devices called 
“Device-B.” Samples of devices were tested at each of three levels of junction tem- 
perature. Based on a life test lasting about 6 months, design engineers needed an 
assessment of the proportion of these devices that would “fail” before 15 years 
(about 130 thousand hours) of operation at 80°C. This assessment would be used 
to determine the amount of redundancy required in the full system. Failure for an 
individual device was defined as power output more than .5 decibels (dB) below 
initial output, At standard operating temperatures (e.g., 80”C), the devices will de- 
grade too slowly to provide useful information in 6 months. Because units at low 
temperature degrade more slowly, they had to be run for longer periods of time to 
accumulate appreciable degradation. Because of severe limitations in the number of 
test positions, fewer units were run at lower temperatures. The original data from this 
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Figure 21.1. Accelerated degradation test results giving power drop in Device-B output for a sample of 
units tested at three levels of junction temperature. 
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experiment are proprietary. The data shown in Figure 2 I .  1 were actually simulated 
from a model suggested by physical theory and limited real data available at the time 
the more complete experiment was being planned. 0 

21.2 MODELS FOR ACCELERATED DEGRADATION TEST DATA 

Section 13.2 presents models for degradation data. Generally these models describe 
the behavior, over time, of a particular degradation or product performance measure 
(such as crack size, resistance, or power output) as well as the unit-to-unit variability 
in degradation paths. For accelerated degradation data, the model also describes the 
relationship between degradation or performance and the accelerating variable or 
variables (e.g., voltage or temperature). 

As in Chapter 13, the observed sample degradation )'ij  of unit i at time t i j  is a 
unit's actual degradation plus measurement error and is given by 

Y i j  = V i j  + E i j ,  i = I , .  . . ,n, j = 1 , .  . . , t n ; ,  (21.1) 

where Vij = V ( t , j ,  P I , , .. . ,P k i )  is the actual path of the unit i at time t,, (the times 
need not be the same for all units) and E i j  - NOR (0,a,) is a residual deviation 
for unit i at time t , .  The total number of inspections on unit i is denoted by r n , .  
Typically, a path model will have k = 1 ,  2, 3, or 4 parameters. As described in 
Section 13.2.3, some of the P I , .. . ,f l k  parameters will be random from unit to unit. 
One or more of the P I , .. . ,P k  parameters could, however, be modeled as common 
across all units. 

The simple chemical degradation path model from Example 13.4, rewritten in the 
generic notation and with a temperature acceleration variable affecting the rate of the 
reaction, is 

V(t;temp)= V, X {1 - exp[-Ru X dF(temp)x I ] } .  (21.2) 

Here R u is the rate reaction at use temperature tempu,Ru X dF(temp) is the rate 
reaction at temperature temp,and V, is the asymptote. For V, < 0, we specify that 
failure occurs at the smallest t such that D(t )< Vf. 

Following from (1  8.2)' the Arrhenius acceleration factor 

11605 -dF(temp, tempu,&) = exp 
tempu + 273.15 temp + 273.15 

(21.3) 

depends only on the two temperature levels and the activation energy Eel. If temp > 
tempu,then dF(temp, tempu, E,) > 1 .  For simplicity, we use the notation 
dF(temp) = AF(temp, tempu,&) when temp,and E, are understood to be, 
respectively, product use (or other specified baseline) temperature and a reaction- 
specific activation energy. 
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21.2.1 Accelerated Degradation Model Parameters 

In general, rate-acceleration parameters are unknown fixed-effect parameters (e.g., 
the Arrhenius model suggests no unit-to-unit variability in activation energy). As 
described in Section 13.2.5, fixed-effect parameters are included, notationally, in the 
parameter vector p introduced in Section 13.2.5. Thus for the single-step chemical 
reaction models in Sections 18.3.3 and 18.3.4, we have one additional parameter to 
estimate. The total number of parameters in p is still denoted by k .  

The values of p corresponding to an individual unit may be of interest in some 
applications (e.g., predict the future degradation of a particular unit, based on a few 
early readings). Subsequent development in this chapter, however, will concentrate 
on the use of degradation data to make inferences about the population or process 
from which the sample units were obtained or predictions about the life distribution of 
a population of units at specific levels of the accelerating variable (e.g., temperature). 
In this case, the underlying model parameters are pp and z p ,  as well as the residual 
standard deviation 0,.Again, the appropriate rows and columns in z p ,  corresponding 
to the fixed parameters in p,contain zeros. For shorthand, we will use 8, = (pp,X p )  
to denote the parameters of the overall degradation population or process. 

Example 21.2 Device-B Power Output Degradation Model Parameterization. 
For the Device-B power-drop data in Example 2 1.1, the scientists responsible for the 
product were confident that degradation was caused by a simple one-step chemical 
reaction that could be described by the model in Example 13.4. Thus for the data in 
Figure 2 1.1, we will use the accelerated degradation model in (2 1.2), assuming that 
Ru and Vzare random from unit to unit. Then a possible parameterization would be 
( P I ,P2, P 3 )  = [log(RU), log( -%), E,] ,  where the first two parameters are random 
effects and the activation energy Eu is a fixed effect. That is, E, is regarded as a 
material property that does not depend on temperature and that is constant from unit 
to unit. 0 

21.3 ESTIMATING ACCELERATED DEGRADATION TEST 
MODEL PARAMETERS 

The likelihood for the random-parameter degradation model is the same as that given 
in ( 13.8)and the methods of estimation described there can be applied directly to the 
accelerated degradation model. 

Example 21.3 Estimates of the Device-B Model Parameters. Continuing with 
Example 21.2, we fit  the mixed-effect model (21.2) to the Device-B data. In order to 
improve the stability and robustness of the approximate ML algorithm, it is important 
to keep the correlation between the estimates of E, and the parameters relating 
to reaction rate R small. This can be done by estimating the distribution of R at 
some stress that is central to the experimental temperatures, rather than the use- 
temperature. Thus we parameterize with PI = log[R( 1991, & = log(-DZ),and 
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Figure 21.2. Device-B power-drop observations and fitted degradation model for the 34 sample paths. 

p3 = E,, where R(195) = RUX AF( 195) is the reaction rate at 195°C. Our model 
uses a bivariate normal distribution to describe unit-to-unit variability in (PI, pz). 
Also, activation energy p3 = E, is a constant, but unknown, material property. The 
nonlinear mixed-effects computer program of Pinheiro and Bates ( 1995b) gives the 
following approximate ML estimates of the model parameters: 

-7.572 .I5021 -.02918 0 
Fa= ( .3510), ĉ , = (-.02918 .01809 0 (21.4) 

.6670 0 0 0  

and = .0233. The lines in Figure 21.2 show the fitted model (2 1.2) for each of the 
sample paths (indicated by the points on the plot) for the Device-B degradation data. 
Figure 2 1.3 plots the estimates of the P I  and P 2  parameters for each of the 34 sample 
paths, indicating the reasonableness of the bivariate normal distribution model for 
this random-coefficient model. 0 

21.4 ESTIMATION OF FAILURE PROBABILITIES, DISTRIBUTION 
QUANTILES, AND OTHER FUNCTIONS 
OF MODEL PARAMETERS 

One can estimate the failure-time distribution F(r)  by substituting the estimates h 

88 into (13.9), giving F ( t )  = F ( t ;58). This is straightforward when F ( t )  can be 
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Figure 21.3. Plot of P I ,  versus 62 ,  for the i = 1 , .  . . ,34 sample paths from Device-B, also showing 
contours corresponding to the titted bivariate normal distribution. The + marks the estimates of the means 
P.8, and 1 1 . 8 2 .  

expressed in closed form. When there is no closed-form expression for F ( t ) , and 
when numerical transformation methods are too complicated, one can use either 
Algorithm 13.1 or 13.2, to evaluate (13.9) at 3,. 

Example 21.4 Dev ice4  Degradation Data Estimate of F(t). Figure 2 1.4 
shows F ( t )  for Device-B based on the power-drop data with failure defined as a 
power drop of 'DD~ -.5 dB. Estimates are shown for 195, 150, 100, and 80°C.= 
These estimates were computed with Algorithm 13.1, using the estimates of the 

h 

model parameters 8p = (Gp,Z p )  from Example 2 1.3. 0 

21.5 CONFIDENCE INTERVALS BASED ON BOOTSTRAP SAMPLES 

Because there is no simple method of computing standard errors for F^(t),we use 
a simulation of the sampling/degradation process and the bias-corrected percentile 
bootstrap method to obtain parametric bootstrap confidence intervals for quantities 
of interest. This method is described in Section 9.6 and more fully in Efron (1985) 
and Efron and Tibshirani (1993). The method is a straightforward implementation of 
Algorithm 13.3, described in Section 13.7. 

For a SAFT model, once F*( t )has been computed in step 4 of Algorithm 13.3 
for one set of accelerating variable conditions, it is possible to obtain g*( t )for other 
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Figure 21.4. Estimates o! the Device-B failure-time distributions at 80, 100, 150, and 19S°C, based on 
the degradation data. 

accelerating variable conditions by simply scaling times. Otherwise the bootstrap 
estimates from step 3 need to be reused in step 4 to recompute the F*( t )values for 
each new set of conditions. 

Example 21.5 Degradation-Data Bootstrap Conjidence Intervals for the 
Device-B F(t)  at 80°C. Continuing with Example 21.4, Figure 21.5 shows the 
point estimate and a set of pointwise two-sided approximate 90% and 80% boot-
strap bias-corrected percentile confidence intervals for F ( t )  at 80"C, based on the IC 
power-drop data with failure defined as a power drop of Vf= -.5 dB. The bootstrap 
confidence intervals were computed by using Algorithm 13.1 and Algorithm 13.3 to 
evaluate g*(tj.Specifically, the point estimate for F(t j  at 130 thousand hours is .I4 
and the approximate 90% confidence interval is [.005, .64]. The extremely wide 
interval is due to the small number of units tested a 150°C and the large amount of 
extrapolation required to estimate to F ( t )  at 80°C. It is important to recognize that 
this interval does not reflect possible deviations from the assumed model. U 

21.6 COMPARISON WITH TRADITIONAL ACCELERATED 
LIFE TEST METHODS 

This section compares accelerated degradation and accelerated life test analyses. 
With failure defined as power drop below -.5 dB, there were no failures at 150°C. 
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Figure 21.5. Estimates of the Device-B failure-time distribution at 80°C with approximate 80%and 90%-
pointwise two-sided bootstrap confidence intervals based on the power-drop data with failure defined as a 
power drop of E+ = -3 dB. 

Although it is possible to fit a model to the resulting failure-time data, the degree 
of extrapolation with no failures at 150°C would be, from a practical point of view, 
unacceptable. The comparison will be useful for showing one of the main advantages 
of degradation analysis-the ability to use degradation data for units that have not 
failed. Degradation data provide important information at lower levels of stress where 
few, if any, failures will be observed, thus reducing the degree of extrapolation. 

Figure 21.6 shows a scatter plot of the failure-time data. These failure-time data 
were obtained from the degradation data in Figure 21.1. All seven units tested at 
150°C were right-censored. Figure 21.7 is a lognormal multiple probability plot with 
the straight lines showing individual lognormal distributions fitted to the samples 
at 237°C and 195°C. This figure shows that the lognormal distributions provide a 
good fit at both temperatures. Figure 21.8 is also a lognormal multiple probability 
plot for the individual samples at 237°C and 195°C. In this case, however, the 
superimposed lines show the fitted lognormal-Arrhenius model relating the failure- 
time distributions to temperature. This is a commonly used accelerated life test model 
for electronic components, as described in Chapters 18 and 19. The lognonnal- 
Arrhenius model assumes that log failure time has a normal distribution with mean 
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Figure 21.6. Scatter plot of Device-B failure-time data with failure defined as power drop below - .S dB. 
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Figure 21.8. The lognormal-Arrhenius model tit to the Device-B failure-time data with failure defined 
as power drop below - .5 dB. 

and constant standard deviation a. In relation to the lognormal-Arrhenius failure- 
time model described in Section 18.3.3, the slope & = E,, is the activation energy 
and the intercept is 

PO = Pu - P3 tempu + 273.15 

The estimated failure-time lognormal cdfs in Figure 2 1.8 are parallel because of the 
constant-a assumption. This plot shows some deviations from the assumed model. 
These deviations, however, are within what could be expected from random variability 
alone (a likelihood-ratio test comparing the model depicted in Figure 2 1.8 with 
independent ML fits at each level of temperature, shown on Figure 21.7, had a 
p-value of .052). 

Figure 21.9 shows the same lognormal-Arrhenius model fit given in Figure 21.8 
with an extrapolated estimate of the cdf at 80°C. The dotted lines on this figure 
are the degradation-model-based estimates of the failure-time distributions shown in 
Figure 2 1.4. There are small differences between the lognormal and the degradation 
models at 237O C and 195O C. The differences at 150"C and 80"C have been amplified 
by extrapolation. The degradation estimate would have more credibility because it 
makes full use of the information available at 150°C. 
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Figure 21.9. Lognormal-Arrhenius model fit to the Device-B failure-time data with failure detined as 
power drop below -.5 dB (solid lines) compared with the corresponding degradation model estimates 
(dotted lines). Also shown is the set of pointwise approximate 90% confidence interlds for F ( t )at 80°C 
(dashed lines), based on a bootstrap of the degradation analysis. 

The overall close agreement between the degradation model and the lognormal 
failure-time model can be explained by referring to the models introduced in Sec-
tion 18.3.3. There we showed that failure time will have a lognormal distribution 
if T(tempu) = - ( I  /Ru)log (1 - Vf/V=) has a lognormal distribution. In our 
degradation model, log(Ru) and 1og(--Dm) [and thus log(Vf/Dx)] are assumed to 
have a joint normal distribution. If Q/V,is small relative to 1 (as in this example), 
then log( 1 - Q/VK) = -Vf/DD, and thus T(tempu)is approximately the ratio of 
two lognormal random variables, and the ratio of two lognormal random variables 
also has a lognormal distribution. 

Figure 21.10 is similar to Figure 21.9 with a fitted Weibull distribution for fail-
ure time. Comparing Figures 2 1.9 and 21.10, the lognormal ALT and degradation 
models provide a somewhat better fit to the data. As explained above and in Sec-
tion 4.6, experience and physical theory also favor the lognormal distribution in this 
application. 
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Figure 21.10. The Weibull-Arrhenius model fit to the Device-B failure-time data (solid lines) compared 
with the degradation-model estimates (dotted lines). 

21.7 APPROXIMATE ACCELERATED DEGRADATION ANALYSIS 

The simple method for degradation data analysis explained in Section 13.9 extends 
directly to accelerated degradation analysis. In particular, one can use the algorithm 
described there to predict the failure time for each sample path. Then these data can 
be analyzed using the methods from Chapter 19, as shown in the following example. 
It is important to remember, however, that such an analysis has the same limitations 
described in Section 13.9. 

Example 21.6 Sliding Metal Wear Data Analysis. An experiment was con- 
ducted to test the wear resistance of a particular metal alloy. The sliding test was 
conducted over a range of different applied weights in order to study the effect of 
weight and to gain a better understanding of the wear mechanism. The data are given 
in Appendix Table C. 19. Figure 2 1.11 shows the resulting degradation data. The same 
data are given in Figure 2 1.12, plotted on log-log axes. The predicted pseudo failure 
times were obtained by using ordinary least squares to fit a line through each sample 
path on the log-log scale (Figure 2 1.12) and extrapolating to the time at which the 
scar width would be 50 microns. These predicted pseudo failure times are given in 
Table 2 1.1. Figure 2 1.13 plots the pseudo failure times (on a log axis) versus applied 
weight. This plot also shows a fitted linear relationship between log cycles to 50 
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Figure 21.11. Scar width resulting from a metal-to-metal sliding test for different applied weights. 
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Figure 21.12. Scar width resulting from a metal-to-metal sliding test for different applied weights (using 
log-log axes). 
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Table 21.1. Metal-Wear “Failure” Times in Cycles 

Grams Pseudo Failure Times 

100 724 718 659 677 
SO 3216 1729 2234 1689 
1 0 3981 -1600 5718 4487 

microns and applied weight. The variability at 100 grams is much smaller than at 
the other two weights, but with the small sample sizes involved, it is possible that 
this could be due to variability in the data. Figure 2 1.14 is a lognormal probability 
plot for the data at the three different levels of weight. The plot shows the smaller 
amount of variability at 100 grams (indicated by the steeper slope in the fitted line). 
The lognormal distribution fits quite well at all levels of weight (the normal and 
Weibull distributions did not fit  as well as the lognormal distribution). Figure 2 1.15 
is a lognormal probability plot depicting the lognormal regression model. Looking 
at the points relative to the fitted model suggests that this is a plausible model for the 
data. However, because the model is purely empirical, i t  would be risky to extrapolate 
to lower levels of weight. U 
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BIBLIOGRAPHIC NOTES 

Much of the material in this chapter has been taken from Meeker, Escobar, and 
Lu ( 1998). Overall, the literature describing the application of accelerated degradation 
methods is limited. The following is a brief summary of some available references. 
Beckwith ( 1979, 1980) describes methods of evaluating the decrease in strength of an 
adhesive over time. Amster and Hooper (1983) propose a simple degradation model 
for single-, multiple-, and step-stress life tests. They show how to use this model to es- 
timate the central tendency of the failure-time distribution. Lu and Pantula (1989) use 
a repeated-measures model to analyze accelerated test degradation data from silicon 
devices. Nelson ( 1981; 1990a, Chapter 1 1 )  reviews the degradation literature, surveys 
applications, describes basic ideas on accelerated test degradation models, and, using 
a specific example, shows how to analyze degradation data with only one degradation 
reading per unit. Carey and Tortorella (1988) describe a Markov process model for 
degradation data and give methods of estimating parameters and testing goodness of 
tit. Similar results are given in Carey (1989). Carey and Koenig (1991) describe an 
application of the Carey and Tortorella (1988) methods of accelerated degradation 
analysis in the assessment of the reliability of a logic devices that are components 
in a new generation of submarine cables. Chan, Boulanger, and Tortorella (1994) 
illustrate the use of the simple approximate linear regression methods in Section 2 I .7 
for analyzing degradation data. Tobias and Trindade (1995) use similar methods. 

Murray ( 1993, 1994) and Murray and Maekawa ( 1996) describe accelerated degra- 
dation test data for data-storage disk error rates. These papers, the papers by Carey 
and Tortorella ( 1988). and Tobias and Trindade ( 1995) use the approximate analy- 
sis method described in Section 2 1.7 to analyze their degradation data. Tseng and 
Wen (1997) describe the use of step-stress ADTs for assessing the reliability of 
light-emitting diodes (LEDs). Chang (1992) analyzes ADT data from a test on power 
supplies. 

Boulanger and Escobar ( 1994) describe methods for planning accelerated degra- 
dation tests for an important class of degradation models. Chow and Liu (1995, 
Chapter 9)  describe applications of accelerated degradation testing for estimating the 
shelf life of pharmaceuticals. 

EXERCISES 

21.1. Appendix Table C.3 gives ADT data on the increase in resistance over time of 
carbon-film resistors tested at three different levels of temperature. Suppose 
that failure is defined as the time at which the resistance has increased by 
5%.  Use the approximate method of analysis described in Sections 13.9 and 
2 I .7 to analyze these data. In particular: 
(a) Make a plot of the degradation versus time for each of the sample paths. 

Use both log and linear axes. 
(b) Choose an appropriate transformation scale for the data to make the 

paths approximately linear. Fit a separate linear regression model to the 
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appropriate subset of the data in each sample path. Plot the estimated 
regression estimates in various ways. 

(c) Explain the interpretation of the parameters of the regression model 
for the individual paths. In what sense are these regression parameters 
random? 

(d) Compute the average of the slope estimates within each temperature 
group. Plot these averages versus 1 1605/( t e m p  O C +273.15) (or, equiv- 
alently, plot on Arrhenius scales, as described in Exercise 18.1 1 ). Assess 
the adequacy of a linear relationship. What measure could you use, in 
an informal way, to help in this assessment? 

(e)  Write down the temperature/degradation model implied by the relation- 
ship graphed in part (d). Obtain a graphical estimate of the activation 
energy for this degradation process. 

(f) Compute the pseudo failure time for each of the sample paths and use 
these to do a life data analysis and to estimate the failure-time distribution 
at 50°C. 

21.2. Refer to Example 2 1.6. 
(a) Repeat the analysis using 30 microns as the definition of failure. 
(b) Repeat the analysis using 100 microns as the definition of failure. 
(c) Compare the results in parts (a) and (b). Comment on the differences in 

assumptions needed to estimate these two different distributions. 

+21.3. Refer to Example 21.6. Repeat the analysis using the approximate ML 
method like that used in Examples 21.2-21.5. Explain the reason(s) for any 
differences in the analyses. 

21.4. When iterative techniques are used for maximum likelihood estimation, 
there is always some chance that the iterations will not converge to the actual 
maximum. As described in Section 17.5.4, two precautions that will improve 
the probability of success are to use a parameterization that does not result 
in highly correlated parameter estimates and to have good starting values for 
the iterations. In most cases, the best way to get good starting values is to find 
simple graphical or moment-based estimates (e.g., estimates based on sample 
means and variances). For the accelerated degradation model described by 
(21.2) and (2 1.3), and the corresponding data from Example 2 1.1, suggest 
expressions that can be used to obtain starting values for the approximate 
ML estimation algorithm. 

21.5. The relationship graphed in Exercise 2 1.1 (d) seems to provide an adequate 
description of the available data. Describe the risks of using these data to 
predict life at lower levels of temperature. 
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21.6. Extend the analysis done in Exercise 13.9. The block error rate data were 
obtained by testing at higher than usual conditions. Suppose that the acti- 
vation energy for the degradation process in E, = .9. Use this to obtain an 
estimate of disk life at 50°C and 85% relative humidity. 

21.7. An alternative to the simple graphical/ordinary least squares estimation 
method described in Exercise 2 1.1 is to do “full maximum likelihood” (or 
a close approximation to full ML), as described in Section 13.3 and illus- 
trated in Examples 21.2-21.5. Explain the reason(s) for any differences in 
the analyses. Explain the trade-offs between these two different approaches. 

21.8. Refer to the sliding metal wear data in Appendix Table C.19, also used 
in Example 21.6. Data were collected by testing four specimens at three 
different levels of applied weight (10, 50, and 100 grams). Scar depth was 
measured at 2, 5, 10, 20, 50, 100, 200, and 500 cycles. Comment on the 
practical value and the potential cost of the additional information that 
would be obtained by: 
(a) Sampling wear at 2.5, 10, 15,20,25,. . . ,495,500 cycles. 
(b) Sampling wear at 2,5, 10,20,50, 100,200,500, 1000,2000,5000 cy- 

cles. 
( c )  Testing eight units each at 10, 50, and 100 grams, using the original 

sampling rate in time. 
(d) Testing three units each at 10, 30,60, and 100 grams, using the original 

sampling rate in time. 
( e )  Testing three units each at 5 ,  20, 40, and 50 grams, using the original 

sampling rate in time. 
(f) Testing three units each at 20,60,200, and 400 grams, using the original 

sampling rate in time. 

21.9. Refer to Figure 21.1. Comment on the possible loss of information that 
would result from using the censored time to failure data instead of the 
degradation data to make inferences on the failure-time distribution. 

21.10. It has sometimes been suggested that one can (or even should) use degrada- 
tion data to obtain failure-time (or crossing time) data to be used in analysis. 
Is this a good thing to do? What are the trade-offs? How should one handle 
observations that have not yet crossed the boundary, but are close? Refer to 
the data in Figure 2 I ,  1 to help formulate your answer. 

21.11. Design a computer program that can be used to simulate the results of an 
ADT experiment, using the model defined by (2 1. I) ,  (21.2), and (21 2).Write 
down all of the needed inputs. Then outline each step of the process, including 
the formulas that you would use to generate the needed random numbers, 
assuming that you have access to a uniform random number generator. Note 
that there are two stages of randomness in this “mixed-effect” model. 
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+21.12. Use a programming language to implement the algorithm described in Ex-
ercise 2 1 .1  1. This will be much simpler if you use a high-level language 
like S-PLUS, Matlab, or Gauss rather than a low-level language like Fortran 
or C. Test the program by using the ML estimates in (2 1.4) to replace the 
model parameters. Plot the set of sample paths for simulated experiment. 
Compare with the sample paths in Figure 2 1.1. Comment on the results. 

+21.13. If your simulation program for Exercise 2 1.12 is written in S-PLUS (version 
3.4 or later) you can use the nlme ( ) function to compute approximate ML 
estimates of the parameters of your simulated ADT experiments. Implement 
this along with your data-simulation program. Again, test the program by 
using the ML estimates in (2 1.4) to replace the model parameters. Repeat the 
simulation 100 times. Plot the resulting estimates of the model parameters 
in various ways. Comment on the results of this simulation. 

21.14. Refer to Exercise 21.1 1. Explain how you could use such a simulation 
program to help plan an ADT like the one in Example 2 1 . 1 .  

A21.15. Give a detailed justification of the claim made in Section 21.6 about the 
approximate lognormal distribution of the random variable T (t emp,,) = 

- ( l / R U ) log ( 1  - Df/D5:). 
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Case Studies and 
Further Applications 

Objectives 

This chapter: 

Describes additional applications of the reliability data analysis methods in this 
book. 
Shows how to extend the general methods covered in the earlier chapters to 
handle other special models and applications. 
Provides additional discussion of some important practical aspects of reliability 
data analysis applications. 

Overview 

This chapter presents several case studies that illustrate some additional important 
concepts and pitfalls of reliability data analysis, shows how to integrate ideas taken 
from several different places in the book, and presents some important additional 
examples. 

Section 22.1 describes a serious problem that can arise when different cohorts of 
units are censored unequally, having the potential to lead to misleading conclusions 
about product life. Section 22.2 applies Bayesian methods from Chapter 14 to an ac- 
celerated testing example that was first introduced in Chapter 19.This example shows 
how the introduction of prior information can importantly improve the precision with 
which one can estimate a failure-time distribution with an accelerated life test. Sec- 
tion 22.3 illustrates the use of a model that can be used to describe the failure-time 
distribution of a product that has both infant mortality and wearout failure causes. 
Section 22.4 suggests a physically motivated model that nicely describes the features 
and complicated relationship between fatigue life and applied stress or strain. Finally, 
Section 22.5 shows how to use simulation methods to plan an accelerated degradation 
test. 

582 
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22.1 DANGERS OF CENSORING IN A MIXED POPULATION 

The life distribution of a product can change from one production period to the next. 
Changes in the design or method of manufacture may improve product reliability. 
This is especially likely for new products undergoing reliability improvement efforts. 
In other cases, reliability may deteriorate due to the adverse consequences of a cost 
reduction, change in raw materials, or a relaxation of process monitoring standards. 
Thus field-tracking life data usually involve a mixture of failure-time distributions. 

22.1.1 A Conceptual Example 

Suppose that a product had been manufactured in equal quantities in each of two 
short production periods, one year apart. Units from the two periods had exponential 
life distributions (constant hazard rate) with mean times to failure of 8, = 1 year 
(constant hazard rate A ,  = 1/81 = 1) and 81 = 5 years ( A ?  = .2), respectively. 
Due to their earlier availability, the units made in period 1 were put into service 
approximately one year earlier than those from period 2. An analysis of the failure- 
time data is performed two years after the first group (or, equivalently. one year after 
the second group) was put into service. 

For the first year of operation, based on combining the units from both production 
periods, the average failure rate would be approximately .6 [i.e., ( A l  + A ? ) / ?  = 

( 1  + .2)/2]. For the second year of operation, based on the units only from production 
period 1, the failure rate would be approximately I .  Thus because the production 
period 2 units with the lower failure rate are mixed with production period 1 units 
with the higher failure rate for the first year of operation (but not the second). there 
is an incorrect indication of an increasing failure rate. This is so despite the fact that 
a population consisting of a mixture of two different exponential distributions has a 
decreasing failure rate (see Exercises 5.1 and 5.4). 

22.1.2 A Numerical Example 

To illustrate the dangers of censoring in this simple setting, we simulated data from 
two populations with known characteristics. We used samples of 1000 units each 
from exponential distributions with $1 = I year (production period 1 )  and 02 = 5 
years (production period 2), respectively. The interval data are given in Table 22.1. 
The data available after two years from the start of production (one year in service 
for the second group) are plotted on Weibull paper in Figure 22.1 both separately and 
combined for the two groups. Weibull probability plots of the data after two years 
of operation for both groups are given in Figure 22.2. This is the plot that would 
have been obtained after two years if both groups had been put into service at the 
same time. Curvature in the combined-sample plots in Figures 22. I and 22.2 suggests 
some deviation from a Weibull distribution. Because the data were generated from a 
mixture of exponentials, a single Weibull distribution is not strictly correct in either 
case. 
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Table 22.1. Simulated Data from Two Different Production Periods 

Production Period 2Production Period 1 
8 = I year 8 = 5 years 

Data After Data After 
Time to Failure 2 Years of 1 Year of 2 Years of 

(years) Operation Operation Operation 

0.0-0.2 185 33 33 
0.2-0.4 163 33 33 
0.4-0.6 134 35 35 
0.6-0.8 90 39 39 
0.8-1.0 83 45 45 
1 .o-1.2 58 34 
1.2-1.4 42 33 
1.4-1.6 44 31 
1 .&I .8 36 24 
1.8-2 .o 35 31 

>1.0 815 
>2.0 130 662 

The total sample siLe for each production period was loo0 units. Data from Hahn and Meeker { 1982b). 
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Figure 22.1. Weibull probability plot of failure data for units from different production periods after two 
years since production startup (but only one year of operation for the second production period). 
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Figure 22.2. Weibull probability plot of  failure data for units from different production periods after two 
years operating time for both production periods. 

Analysis 1 is based on the combined data after two years since production startup 
(one year of operation for units from production period 2), that is, the crosses in 
Figure 22.1. Analysis 2 is based on the combined data after two years of operation 
for the units from both production periods, that is, the crosses in Figure 22.2. 

Analysis 1. A Weibull distribution is fit to the data with unequal right censoring 
for the two production periods. A 95% confidence interval for the Weibull dis- 
tribution shape parameter is [1.02, 1.151, incorrectly indicating an increasing 
hazard rate with time (as expected from the conceptual example). 
Analysis 2. A Weibull distribution is fit to the data with equal right censoring 
at two years for both production periods. A 95% confidence interval for the 
Weibull distribution shape parameter is [.82, .92].This indicates a decreasing 
hazard rate with time, as expected from theory (see Proschan, 1963). 

An appropriate analysis of the unequally censored data would fit  separate expo- 
nential distributions for the two production periods. This analysis (left as an exercise) 
gives estimates of failure probabilities and quantiles that agree well with the true 
model from which the data were simulated. 
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22.1.3 Analyzing Data from Different Production Periods 

Because reliability can change over time, it is advisable, when possible, to conduct 
separate analyses for each production period, to compare the results, and to combine 
them only if this seems appropriate. Separate analyses, however, are not possible in 
the following circumstances. 

A unit’s production period is not known. 
Production periods are not well defined. For example, when production is con- 
tinuous, there may not be well-defined points in time where the process has 
changed. 
The data are too scanty for reasonable dissection. 

In most practical data analysis problems, available data could be viewed as having 
come from two or more populations. Analyses are most often done with the pooled 
data. This is appropriate when interest centers on failure-time distribution of the 
mixture and either (1) there are only small differences among the populations or 
(2) the amount of censoring is approximately the same over the different populations. 

The effect of fitting a simple distribution to mixtures of two (or more) populations 
with unequal censoring depends on the degree of dissimilarity between or among the 
subpopulations and on the relative number of units produced in the two periods. The 
example in this section illustrates the desirability of doing separate analyses for units 
from different production periods, especially when field exposure periods differ for 
the different groups. If separate analyses are not possible because of the sparsity of 
the data or limitations in identifying the production period, one needs to recognize 
that a seriously incorrect model can give misleading results. 

22.2 USING PRIOR INFORMATION IN ACCELERATED TESTING 

This section uses an extension of the Bayesian methods presented in Chapter 14, to 
reanalyze the data from Example 19.1 1. Lerch and Meeker (1998) present similar 
examples. The computational methods used here, like those used in Chapter 14, 
follow Smith and Gelfand ( 1992). 

Example 19.1 1 illustrated the analysis of accelerated life test data on a new- 
technology IC device. As a contrast, Example 19.12 showed how much smaller the 
confidence intervals on F ( t )would be if the Arrhenius activation energy were known. 
Generally it is unreasonable to assume that a parameter like activation energy is 
known exactly. For some applications, however, it may be useful or even important 
to bring outside knowledge into the analysis. Otherwise it would be necessary to 
spend scarce resources to conduct experiments to learn what is already known. In 
some applications, knowledgeable I eliability engineers can, for example, specify the 
approximate activation energy for different expected failure modes. Translating the 
information about activation energy into a prior distribution will allow the use of 
Bayesian methods like those introduced in Chapter 14. This section shows how to 
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incorporate prior information on the activation energy for a failure mode into an 
analysis of the new-technology IC device data. 

22.2.1 Prior Distributions 

Section 14.3 describes different kinds of prior information. This section reanalyzes 
the new-technology IC device ALT data in order to compare: 

A diffuse (wide uniform) prior distribution for activation energy E,. 

A given value (degenerate prior distribution) for &. 
The engineers’ prior information, converted into an informative prior distribu- 
tion for E,. 

On the basis of previous experience with a similar failure mode, the engineers 
responsible for this device felt that it would be safe to presume that, with a “high 
degree of certainty,” the activation energy E, is somewhere in the interval .80 to .95. 
They also felt that a normal distribution could be used to describe the uncertainty in 
E,. We use normal distribution 3-SD limits (i.e., mean 2 three standard deviations) 
to correspond to an interval with a high degree of certainty, corresponding to about 
99.7% probability. This is an informative prior distribution for E,. The engineers did 
not have any firm information about the other parameters of the model. To specify 
prior distributions for the other parameters, it is then appropriate to choose a diffuse 
prior. A convenient choice is a UNIF distribution that extends far beyond the range 
of the data and physical possibility. As described in Chapter 14,the parameters used 
to specify the joint posterior distributions should be given in terms of parameters that 
can be specified somewhat independently and conveniently. For this example, the 
prior distribution for U was specified as UNIF(.2, .9) and the prior distribution for 
1 . 1  at 250°C was specified to be UNIF(SOO,7000) hours. Comparison with the ML 
estimates from Example 19.I 1 shows that the corresponding joint uniform distribution 
is relatively diffuse. 

Figure 22.3 compares a NOR prior distribution with a 3-SD range of (.SO, .95) 
and a UNIF(.4, 1.4) (diffuse) prior for E,. The corresponding marginal posterior 
distributions for E, are also shown. The center of the marginal posterior distribution 
for E, corresponding to the informative NOR prior is very close to that of the prior 
itself. This is mostly because the prior is strong relative to the information in the 
data. Figure 22.3 also shows a posterior distribution corresponding to the uniform 
(diffuse) prior. The corresponding joint posterior is approximately proportional to the 
profile likelihood for E,. The uniform prior has had little effect on the posterior and 
therefore is approximately noninformative. 

In addition to activation energy E,, the reliability engineers also wanted to estimate 
life at 100°C. Figure 22.4 shows different posterior distributions for t,olat 100°C. 
The plots on the top row of Figure 22.4 compare posteriors computed under the 
informative and diffuse prior distributions for E,. This comparison shows the strong 
effect of using the prior information in this application. 
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Recall from Example 19.11 that there was some concern (because of the different 
slopes in Figure 19.12)about the possibility of a new failure mode occurring at 300°C. 
Sometimes physical failure mode analysis is useful for assessing such uncertainties. 
In this application the information was inconclusive. 

When using ML estimation or when using Bayesian methods with a diffuse prior 
for E,, it is necessary to have failures at two or more levels of temperature in order 
to be able to extrapolate to 100°C. With a given value of E, or an informative prior 
distribution on E,, however, it is possible to use Bayesian methods to estimate t.01 at 
100°C with failures at only one level of temperature. The posterior distributions in 
the bottom row of Figure 22.4 assess the effect of dropping the 300°C data, leaving 
failures only at 250°C. Comparing the graphs in the NW and SW corners, the effect 
of dropping the 300°C data results in a small leftward shift in the posterior. Relative 
to the confidence intervals, however, the shift is small. Comparing the two plots in 
the bottom row suggests that using a given value of E, = .8 results in an interval 
that is probably unreasonably narrow and potentially misleading. If the engineering 
information and previous experience used to specify the informative prior on E ,  is 
credible for the new device, then the SW analysis provides an appropriate compromise 
between the commonly used extremes of assuming nothing about E, and assuming 
that E, is known. 

If one tried to compute the posterior after dropping the 300°C, using a uniform 
prior distribution on E,, the posterior distribution would be strongly dependent on 
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Figure 22.4. Plot of the marginal posterior distribution of t,ol at 100°C for the new-technology device, 
based on different assumptions. NW corner: all data and an informative prior for E,. NE corner: all data 
and a diffuse prior for E,. SW corner: drop 300°C data and an informative prior for E,. SE corner: drop 
300°C data and given Eu = .8. The vertical lines are two-sided 95% Bayesian confidence intervals fort 
at 100°C. 

the range of the uniform distribution. This is because with failures only at 250°C, 
there is no information on how large Ea might be. In this case there would be no 
approximately uninformative prior distribution. 

To put the meaning of the results in perspective, the analysis based on the infor- 
mative prior distribution for E, after dropping the suspect data at 300°C would be 
more credible than the alternatives. The 95% Bayesian confidence intervals for 1.0~ 
at 100°C for this analysis are [.6913, 2.1921 million hours or [79, 2501 years. 
This does not imply that the devices will last this long (we are quite sure that they 
will not!). Instead, the results of the analysis suggest that, if the Arrhenius model is 
correct, this particular failure mode is unlikely to occur until far beyond the tech- 
nological life of the system into which the IC would be used. It is likely, however, 
that there are other failure modes (perhaps with smaller E,) that will be observed, 
particularly at lower levels of temperature (see also the discussion of failure mode 
masking in Section 19.6.4). 
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22.3 AN LFP/COMPETING RISK MODEL 

Chan and Meeker (1998) describe a model that combines components from the 
LFP model (for infant mortality, as described in Section 11.5.2) with a competing 
risk model (for longer-term wearout, as described in Section 15.4.2). This model is 
called the Generalized Limited Failure Population (GLFP) model. This section briefly 
describes the GLFP model and results of using maximum likelihood to estimate the 
parameters of the model. 

22.3.1 Background 

Consider the Vendor 1 data in Examples 1.3, 1 I .9, and 1 1.1 1. Most of the early failures 
were known to have been caused by defective integrated circuits (Mode 1). Only a 
small proportion of the circuit packs would contain an integrated circuit (IC) with 
such a defect (something like 1% or 2% was expected for this particular technology). 
After about 2000-4000 hours, however, the failure rate began to increase and there 
was some evidence (both in the data and some limited physical failure analysis) that 
the latter failures were being caused by a combination of a corrosion and another 
chemical degradation failure mode to which all units would eventually succumb 
(Mode 2). This can be seen in the Weibull probability plot shown in Figure 22.5, 
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competing risk F(r; 8)ML estimates for the Vendor 1 circuit pack failure data. 
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where the plotted points change direction after 2000 hours. Although something 
like this secondary failure mode had been expected, the managers responsible for 
the operation of the system in which the circuit packs were to be deployed were 
concerned at how early such failures were beginning to appear. They were interested 
in obtaining a prediction for the proportion of units that would fail in the first 5 years 
(43,800 hours) of operation (approximate technological life of the system). 

22.3.2 The GLFP Model 

Let T I  denote the “infant mortality” failure time for a unit. If a unit is not defective, 
then T1 = m. As with the LFP model described in Section 11.5.2, the cdf for 
T1, conditional on the unit being defective, is F l ( t ;01),where O 1  is a vector of 
unknown parameters. The unconditional cdf of T1  is pFl ( t ; @ I ) ,  where p is the 
proportion of defective units in the population. Similarly, let T2 denote the unit’s 
wearout failure time and let F2(t;0,) denote the cdf of T2. The unit’s actual failure 
time is T = min(T1, T . ) .As in (1  5. l), if TI and T2 are independent, the cdf of failure 
time T is 

where 8 = (81,&).The pdf of T is then given by 

where f i ( t ;@ I )and f 2 ( t ;  0,) are the pdfs of T I  and T2, respectively. Chan and 
Meeker (1998)used Weibull and lognormal distributions for FI(t;  0 , )and F?(f;0 2 ) .  

Other distributions could, however, be substituted without difficulty. 

22.3.3 Likelihood Contributions 

The likelihood for the circuit pack data can be written using the general form for 
independent right-censored and interval-censored observations given in (7.2). The 
contributions for the individual observations for the GLFP model depend, however, 
on whether the cause of failure is known or not and, if so, on which type of failure 
occurred. 

If the cause of failure is known, then either TI or T2 is also known. Otherwise 
if failure cause is unknown, then only T is known. If T1 < T2 the unit fails from 
a defective IC and T2 is not observed. Similarly, if T2 < T1, the unit fails from a 
wearout mode and T1 is not observed. 

If unit i is known to have failed between times t,- and t ,  from failure Mode 1, the 
probability of the observation is 
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where, as before, T = min(Ti, T2). Similarly, if the cause of failure is Mode 2, 

If the cause of failure is not known, then 

For a right-censored observation at time t ,  (i.e., the failure time is after t , ) ,  

L i ( 8 )= Pr(T > t , )  

Chan and Meeker (1998) also give expressions for left-censored and exact failure-time 
observations. 

22.3.4 ML Estimates 

To develop predictions for the proportion failing in 5 years, we fit the WeibullNeibull 
and Weibull/lognormal models to the available data. We did this by supposing, on the 
basis of engineering judgment, that the failures before 200 hours were due to defective 
components and that failures after 5000 hours were due to a wearout mechanism. No 
assumption was used for the failures between 200 and 5000 hours. Figure 22.5 shows 
a Weibull probability plot comparing the Weibull/Weibull and the Weibull/lognormal 
GLFP competing risk models for the Vendor 1 circuit pack failure data. Although 
the two different distributions provide excellent agreement within the range of the 
data, they differ importantly in extrapolation. It is interesting to note that, as we 
have seen in other similar examples, the lognormal extrapolation provides a much 
more optimistic (smaller) prediction of the future proportion of units that will fail. 
Figure 22.6 shows the ML estimate of the WeibullPlognormal GLFP competing risk 
cdf along with pointwise approximate 95% confidence intervals for the Vendor 1 
circuit pack failure data. At 10' hours, the confidence interval is narrow because of 
the large sample size ( n  = 4993). At 10' hours, the confidence interval is wide, 
ranging from about .3 to .85. This is due to the large amount of extrapolation. I t  is 
important to note, however, that the width of this confidence interval does nor reflect 
the deviation (which almost certainly exists) from the assumed Weibull/lognormal 
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Figure 22.6. Weibull probability plot showing the ML estimate of the Weibull/lognormal GLFP competing 
risk cdf with pointwise approximate 95% confidence intervals for the Vendor 1 circuit pack failure data. 

GLFP distribution. Indeed, as seen in Figure 22.5, the Weibull/Weibull ML estimate 
at 105hours is almost 1. 

Figure 22.7 shows a plot of the corresponding Weibull/Weibull and the Weibull/ 
lognormal GLFP competing risk hazard function ML estimates. The hazard function 
was computed as h T ( t )  = f T ( t ;8 ) / [1 - FT(t ; O ) ] , where F T ( t ;8 ) and f ~ ( r ;  8 ) are 
defined in (22.1) and (22.2), respectively. The plot shows the hazard decreasing until 
the corrosioddegradation failure mode becomes active, at which time the hazard 
increases markedly. We also fit lognormal/Weibull and the 1ognormalAognormal 
GLFP models, but the estimates of the cdf and hazard function estimates were, for all 
practical purposes, the same as the WeibullNeibull and WeibullAognormal models, 
respectively. The shape of hr(t ) results from adding the decreasing hazard of T1 to 
the increasing hazard for T2. 

22.4 FATIGUE-LIMIT REGRESSION MODEL 

Section 17.5 illustrated the fitting of a quadratic regression model to nickel-base 
superalloy fatigue data from Nelson (1984). Fitting a quadratic function is relatively 
easy to do and may be satisfactory for some purposes. Alternative functional forms, 
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however, may provide a better description of the data. Pascual and Meeker (1998a) 
use ML methods to fit an alternative regression model that contains a fatigue-limit 
parameter. The material in this section has been adapted from this paper. 

Under the fatigue-limit model, specimens operated at levels of stress below the 
fatigue limit will never fail. The fatigue-limit model also allows the standard deviation 
of fatigue life to be a function of stress. The purpose of the analysis is to obtain an 
estimate of the small quantiles of the fatigue-life distribution. 

22.4.1 The Fatigue-Limit Model 

Let XI, .  . . ,xn denote pseudostress levels of n specimens and let t l , . . ., t n  be actual 
failure times or censoring times. Censoring times may vary from specimen to speci- 
men. Let y be the fatigue limit. At each pseudostress level with xi > y, fatigue life 
t ,  is modeled with a lognormal distribution; that is, the cumulative proportion failing 
function and its derivative are given by 

(22.3) 
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For example, using @no, and $nor implies that log(T) is modeled with a normal 
distribution with mean ~ ( x )and standard deviation a ( x ) . These parameters are related 
to stress according to 

(22.4) 

@lpJ, /3r1,where @$'I, PI"], and y are unknown parameters to be estimated from 
data. If xminfis the smallest observed stress level that yields a failure, then y must be 
in the interval [0,Xminf). 

Note that when PlV1= 0, the model has a constant standard deviation. In most 
fatigue data, the standard deviation decreases as stress increases, which corresponds to 
PIu1 < 0. The scatter plot of the superalloy data (and the fitted model) in Figure 22.8 
has cycles to failure on the horizontal axis, as is commonly done in the fatigue 
literature. This scatter plot indicates more scatter at the lower stress levels and less at 
the higher stress levels. 

The value of y determines the amount of curvature present in the plotted S-N 
curve for values of stress that are not far from Xminf. When y is close to zero, the 
S-N curve is close to linear. Larger values of y result in more curvature in the plot. 
When y = 0, the model is equivalent to the simple linear regression model used 
in Section 17.3. Curvature in Figure 22.8 suggests the inclusion of a fatigue limit 
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y in the model. Although a fixed fatigue limit may be unrealistic for describing a 
population of specimens, the fatigue limit provides a physically appealing alternative 
to the quadratic term in the p(.x-)relationship used in Section 17.5 for describing S-N 
curvature. 

The maximum likelihood methods described in the next section use the following 
assumptions: (1) specimens are tested independently and (2) for .Y > y the times at 
which observations were censored are independent of actual failure times that would 
be observed if the experiment were to be run until failure. 

22.4.2 Maximum Likelihood Estimation 

The parameters of the fatigue-limit model can be estimated by using the method of 
maximum likelihood in a manner that is very similar to that described in Chapter 17. 
As before, we use 8 = (@:I, Pt;", /.31'T1, y) to denote the vector of model 
parameters. The log likelihood function is 

i =  1 

where 

where 6, = 1 (6, = 0) if observation i is a failure (right-censored observation) and 
: I  = [log(r,) - P(&)I/W,). 

The ML estimate 8 is the set of parameter values that maximize C(8) .Table 22.2 
gives the ML estimates of all model parameters resulting from fitting the fatigue- 
limit model to the data. This table also shows normal-approximation and likelihood 
confidence intervals for the parameters. Figure 22.8 shows curves of the ML estimates 
of the .05, .5, and .95 quantiles of fatigue life. 

Nelson (1984, pages 72-73) comments that the quadratic fatigue life models 
produce quantiles larger at an intermediate stress than at a lower stress. Such a 
relationship is physically implausible. Although such behavior is also theoretically 
possible for the fatigue-limit model, it seems to be less of a problem and does not 
occur within the range of interest for these data. 

Table 22.2. Maximum Likelihood Results for the Superalloy Data 

Approximate 95% Confidence Interval 

Parameter Estimate Normal-Theory Likelihood-Ratio 

P;? 
1

pbl 
14.75 

- 1.39 

( 12.06, 

(-2.02, 

17.44) 

- .76) 

( 12.90, 
(-2.81, 

2 I .3S) 

-.92) 
0;;'I 10.97 (3.82, 18.12) (3.22, 17.90) 
ppl -2.50 (-4.04, -.96) (-3.98. - 3 1 )  

Y 75.7 I (67.35, 84.06) (49.98, 79.79) 
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Figure 22.9. Profile likelihood plot for the fatigue limit y for the superalloy data. 

22.4.3 Profile Likelihoods and Likelihood-Ratio-Based Confidence Regions 

The profile likelihood for y is defined by 

and is shown, for the superalloy data, in Figure 22.9. Here 81yj is the vector 8 with 
y removed. The likelihood confidence interval for y in Table 22.2 is indicated by the 
vertical lines where R ( y ) intersects the horizontal critical level. Note that the upper 
bound of the normal-approximation interval exceeds s,,,,,f= 80.3. This will never 
happen with the likelihood interval. 

The confidence intervals in Table 22.2 indicate that the parameters pl"', p!" ' ,  and 
y are different from zero. The confidence intervals for pi"' indicate that the standard 
deviation of fatigue life depends on the stress level and, moreover, that the standard 
deviation decreases as stress increases, a commonly observed phenomenon in metal 
fatigue data. The confidence intervals for y support the inclusion of a fatigue limit 
as suggested by the curvature in Figure 22.8. Similar confidence intervals could also 
be computed for functions of the parameters, following the methods described in 
Chapter 8. 

22.5 PLANNING ACCELERATED DEGRADATION TESTS 

Morse and Meeker (1998) describe the use of simulation methods to help plan 
accelerated degradation tests. This section has been adapted from their work. 
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The motivating problem arose from an extension of the accelerated degradation 
analysis described in Example 2 1.1. The Device-B accelerated test had been designed 
as an accelerated life test. The engineers were going to define failure time to be the 
time at which power output first dropped .5 decibels (dB) below initial output. After 
learning about the accelerated degradation analysis methods, the engineers wanted to 
know how to design an accelerated test with degradation analysis in mind and how to 
assess the potential advantage of using degradation methods. In particular, they were 
interested in seeing whether, with a different test plan, they could expect to obtain 
better precision for estimating F( 130000),the proportion failing at 130 thousand 
hours at 80°C junction temperature. 

22.5.1 Experimental Design Parameters and Test Constraints 

The evaluation of alternative test plans will be based on the information obtained in 
the initial study (see Examples 2 1.1-2 1.3).The test plans will be evaluated under the 
following constraints: 

The test will use three levels of accelerated temperature. 

The highest test temperature will be 237°C. 
The middle temperature will be halfway between 237°C and the low tem- 
perature (on the Arrhenius scale). 

Twenty percent of the units on test will be allocated to the middle level of 
temperature. 
There is a constraint on the overall number of test positions and the length of the 
test. To get useful information, it is necessary to test units at lower temperatures 
for longer periods of time. The time to leave a unit on test at a particular level 
of temperature (censoring time) will be found through a censoring function: 

Censoring time = - I562 1 + 730 X 1 1605/(273.15 + temp "C) hours. This 
was the approximate censoring function used in the original study. 
A total of 67,000 test position-hours will be available for testing, as in the 
original study (an average of about 22 test positions over 3000 hours). 

The parameters of the study that will be varied are: 

The low level of test-plan temperature, denoted by temp,. 
The proportion of units allocated to temp,, denoted by q. 

Because the highest accelerated temperature is tempH = 237°C and the middle 
temperature is halfway between the low and the high, specifying the low level fixes 
all three accelerated temperatures. Likewise, because 20% of the units will always be 
allocated to the middle temperature ( n ~.2), specifying the proportion allocated = 

to the low temperature fixes the allocations to all temperatures. 
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22.5.2 Evaluation of Test Plan Properties 

Chapters 10 and 20 showed how to evaluate the properties of proposed test plans by: 

Using large-sample approximations (easy to compute for simple problems but 
depend on an approximation that might not be adequate with small samples). 
Using Monte Carlo simulation (requires much more computing time but does 
not rely on large-sample approximations). 

For the nonlinear accelerated degradation models, easy-to-compute large-sample 
approximations have not been derived. To answer the engineers' questions quickly, 
Monte Carlo simulation was used. 

22.5.3 Simulation Procedure 

This section shows how to simulate the accelerated degradation experiment. Model 
parameter estimates from the original study were used as planning values (see Exam- 
ple 2 1.3). Test plan properties can be computed for test plans specified by different 
combinations of t e m p L  and TL. These evaluations can be used to determine if a 
different test plan would yield more precise estimates of the failure-time distribution. 
The procedure for doing this is as follows: 

1. Fix the test plan by specifying t e m p ,  and T L  from a candidate list of combi- 
nations. 

2. Randomly generate sample degradation paths for each of the n units according 
to the specified test plan, using parameter estimates from the original study as 
planning values. Add simulated measurement error. 

3. Fit the degradation model to the n simulated paths and compute approximate 
ML estimates of the model parameters. 

4. Compute F(130000) at 80°C as a function of the parameter estimates. 
5. Repeat steps 2 to 4 N times, obtaining @ I , .  ..,FN. 
6. Compute some statistic quantifying the variation in these point estimates (e.g., 

a sample standard deviation). 
7. Return to step 1 until the list of tempLand TL combinations has been exhausted. 

For example, Figure 22.10 shows F(t)curves computed from 20 simulated degrada- 
tion analysis experiments, using a 10,w accelerated temperature of temp, = 130"C 
and allocation VL = .1. Overall the F estimates in Figure 22.10 show a considerable 
amount of variability. At 130 thousand hours, however, most of the simulated F^ 
estimates are close to 0. Of course, if the specified planning values are optimistic [in 
terms of having F^( 130000)be much less than the true F( 130000)], these calculations 
could be misleading. Thus one should use sensitivity analysis to investigate the effect 
that deviations from the assumed (uncertain) inputs will have on conclusions, 
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Figure 22.10. An example of variation in failure-time distributions for (tempL,~ 1 . )= ( 130"C, . I  ) test 
parameter combination. 

22.5.4 Evaluation of Test Plans Over a Grid of (temp,, n ~ )Values 

Test plan simulations were run at each combination of (temp,, T,) values for 
tempL = 130(5)160 and n-f, = .05(.05).30.At each point in the grid, 2000 tests 
were simulated. For 32 out of the 42 combinations of (templ, ~ T L )values, all 2000 
samples converged. For the combination (tempL,q)= (135, .25), about 6% of 
the simulated tests resulted in samples that did not converge and about 1% failed 
to converge at (tempL,q)= (130, .20) and (130, 30). In the other 7 cells with 
some convergence difficulties, the percentage was on the order of .5% or less. The 
nonconverging samples were omitted from summarizing-computations. 

At each point the sample standard deviation of the F( 13oooO)values was com- 
puted. Figure 22.1 1 is a contour plot of the results. The original test plan used 
temp, = 150°C and q,= .2. The orientation of the contour lines suggests that 
higher precision can be obtained for estimating F( 130000) by using tests having 
lower levels of tempf,.At lower ranges of temperature, precision seems not to 
be highly dependent on q,.The final recommendation was to choose a plan with 
(temp[,,T,) = (130, .15). In comparison with the original test plan, this would 
reduce the amount of extrapolation in temperature, provide a test plan with somewhat 
more precision, and be safely away from the points that had convergence difficul- 
ties. 
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Figure 22.1 1. Contour plot of sample standard deviations of the simulated degradation p( 13OOOO)values 
for different proposed compromise accelerated degradation plans. 

BIBLIOGRAPHIC NOTES 

The example in Section 22.1 was adapted from Hahn and Meeker ( 1982b). In addition 
to the unequal censoring example presented in Section 22.1, Hahn and Meeker ( 1982a, 
b) describe several other potential pitfalls that arise in the analysis of life data. The 
material in Section 22.2 builds on work done in Lerch and Meeker (1998). The exam- 
ple in Section 22.3 was extracted from Chan and Meeker (1998), who also describe in 
detail a Monte-Carlo-based method for finding likelihood-based confidence intervals 
for functions of model parameters when one is faced with a model with many param- 
eters. The material in Section 22.4 was adapted from Pascual and Meeker (1997). In 
addition to analyzing the superalloy data, Pascual and Meeker ( 1997) also investigate 
the effect that censoring has on the ability to estimate the fatigue-limit parameter. 
Pascual and Meeker (1998a) describe a related regression model for fatigue data, 
suggested in Nelson (1990a, page 93). In this model, the fatigue-limit parameter 
is allowed to vary from unit to unit. Morse and Meeker (1998) provide more in- 
formation on the use of simulation methods to help plan accelerated degradation 
tests. Boulanger and Escobar (1994) also describe methods for planning accelerated 
degradation tests. 



Epilogue 

The material in this book is only part of a much larger picture. Our examples, like 
the particular applications from which they originated, focused on the reliability or 
durability of materials, components, and relatively simple systems. Each of these 
applications, however, was associated with larger reliability, economic, and business 
questions like: 

Is Bearing-A durable enough to use in a new automobile transmission or do the 
designers need to switch to the more durable (but somewhat more expensive) 
Bearing-B? With the prospect of selling millions of transmissions over several 
years, the decision has huge economic consequences. 
How much redundancy is required for a critical device in the repeater-transmitter 
subsystems for an undersea telecommunications system? Adding redundancy 
will add cost but also improve system reliability and affect life-cycle cost. 
Promised life-cycle cost is an extremely important part of contract negotiations. 
A critical input to the analysis is the life distribution of the device. An accelerated 
life test will be used to obtain needed information. 

Numerous decisions like these are made in typical product design processes. The 
methods presented in this book are essential for providing some of the information 
needed for making such decisions in the face of uncertainty. We close with some 
commentary on the changing role of statistical methods in a Design for Reliability 
program and as part of an overall Reliability Assurance process. 

THE CHALLENGES OF ACHIEVING HIGH RELIABILITY 

In a conversation with one of us, an engineer commented that “reliability is much 
more difficult today thar, it used to be.” He went on to explain that his company was 
facing real competition for the first time. They were hEving to reduce engineering 
safety factors and cut other corners to reduce cost. As a result, they were beginning 
to see many more field fdures.  New technology, new materials, higher customer 
expectations, more competition, and the need to get competitively priced products 
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to the market quickly complicate decision making. Indeed, reliability engineering is 
more difficult today due to stringent cost constraints and enormous time pressures 
caused by increased competition. 

The engineer’s comment might suggest that there is a costheliability trade-off 
curve for product design and all one needs to do is to find the right place on the 
design curve. What is really needed, however, is to move off the old curve, find a 
better curve, and then optimize it. The “best curve” in this case depends on product 
design, manufacturing process design, the collection and use of appropriate reliability 
data, and other factors. There will always be costheliability trade-off issues. To be 
successful, products in competitive markets must provide high reliability at low cost. 
The best curves (i.e., designs or products) will be determined by good engineers who 
can properly use modern statistical and other analytical engineering methods. 

Achieving high reliability is complicated by the fact that the impact of many 
reliability improvements will appear some time in the future (often some years). 
Thus it is extremely difficult to quantify the effect on the current year’s bottom line. 
For most companies, this will require a change in metrics and mind-sets. 

In spite of the difficult challenges involved, the leading companies in a number of 
industries have continued to improve performance and reliability while keeping cost 
low enough to maintain competitive prices. Examples include computer hardware, 
telecommunications systems, and automobiles. 

HIGH RELIABILITY AT COMPETITIVE COST 

The necessary constant pressure on product and process designs to reduce costs andor 
improve performance has the potential to cause reliability problems. For example, 
reducing traditional safety factors mandates more careful engineering and statistical 
practice. Having large safety factors to protect against one failure mode may well 
have prevented other un-thought-of failure modes. A proposed design change for cost 
reduction may be analyzed for the known risks (or failure modes), but the unknown 
risks may not surface until product is in the field. There are also numerous instances 
where all available energy was devoted to addressing one failure mode; no resources 
or energy remained to address other failure modes that turned out to be the most 
troublesome in the field. 

How can design engineers deal with failure modes that might otherwise be in the 
un-thought-of category? Three suggested ways are: 

Use careful, informed engineering (including knowledge of the product’s use 
environment). Identify and prevent most potential failure modes before they 
have a chance to occur. See the discussion of FMEA, FMECA, design reviews, 
and related reliability management tools described in Section 15.5.4. 
Increase up-front experimentation and life testing to discover and eliminate 
other potential failure modes before they get into a final design. It might be 
necessary to do such testing at the component level, the subsystem level, or the 
system level. 
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Collect and carefully scrutinize early information from the field. Compare with 
previous test results. Detect and fix product weaknesses before they cause 
serious problems. 

As with the product design itself, the key is to find efficient implementation of 
these activities and to balance costs against potential risks. The biggest payoff is 
in building high reliability into the design before product introduction. The cost 
of detecting and eliminating failure modes increases as the product moves from 
conceptualization through design, development, testing, and production, and into the 
field. It is inevitable that there will be some product reliability problems. Reliability 
assurance processes should reduce risk by reducing the probability and severity of 
field-failure problems. 

ADVANCING ENGINEERING PRACTICE TO ACHIEVE 
HIGH RELIABILITY 

Today’s engineers need to rely more heavily on modem tools like probabilistic 
design and risk analysis and less on the traditional easy-to-apply rules of thumb. This 
modern approach to engineering leads to a new set of concerns and costs. Issues of 
model adequacy and uncertainty in model inputs can be critical. More measurement, 
experimentation, systems analysis, and sensitivity analysis will be needed. Protection 
must still be provided where unacceptable uncertainty exists. To address these issues, 
some or many engineers need a command of basic experimental design and statistical 
concepts. 

Although reliability practice is primarily an engineering discipline, statistics and 
other scientific disciplines (material science, physical chemistry, etc.) play crucial 
supporting roles. Engineers need specialized training to analyze reliability data (deal- 
ing with censored data, pitfalls of accelerated testing, difficulties of interpreting 
warranty data, multiple failure modes, physics of failure, etc.). 

USEFUL TOOLS AND SOME SPECIFIC SUGGESTIONS 

There is no simple solution or magic for the challenge of achieving high reliability at 
low cost. The process involves hard work. Some suggestions, related to the technical 
material in this book, include the following. 

1. Electronic design engineers use databases containing up-to-date reliability- 
related information (component reliability, derating functions, materials prop- 
erties, etc.) linked with reliability modeling software, embedded within CAD 
systems. More widespread development of such systems would lead to better 
design practices. 

2. Computationally based models of physical phenomena and increased use of 
computer simulation have the potential to save time and money by reducing 
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reliance on expensive physical experimentation. Electronics and fracture me- 
chanics are the important success stories here. Up-front investment in research 
and development is needed, but there are important potential payoffs. 

3. Up-front testing of materials and components, as well as subsystems and sys- 
tems, is needed to reduce uncertainty about product reliability. Such tests are 
an important part of any reliability assurance program. Deciding what to test 
and how much testing to do (number of units, test duration, and at what level of 
system integration) requires careful consideration to balance risks with costs. 
It is important to take into consideration the way in which the product is used 
by customers. 

4. Efficiency in up-front testing (e.g., use of existing information, properly de- 
signed experiments) is important. Experimental effort should be focused where 
engineering uncertainty implies reliability uncertainty. For materials and com- 
ponents, the goal should be to assess the failure-time distribution andor to 
determine allowable levels of stress. For subsystem and system tests in the 
product development stage, the goal should be to apply appropriate amounts 
of stresses in the right combinations to discover (and then fix) potential failure 
modes. Being able to identify failure modes that would not be expected to occur 
in actual operation is important and requires good engineering knowledge. 

5. Experiments, in general, and robust-design experiments, in particular, have 
potential for leading to important improvements in product and process de- 
sign and resulting better reliability. The robust-design methods of Taguchi 
(e.g., Phadke, 1989) are important here. Multifactor robust-design experiments 
(RDE) provide methods for systematic and efficient reliability improvement. 
These are often conducted on prototype units and subsystems and focus on 
failure modes involving interfaces and interactions among components and 
subsystems. Among many possible product-design factors that may affect a 
system’s reliability, RDEs empirically identify the important ones and find lev-
els of the product-design factors that yield consistent high quality and reliability. 
Graves and Menten (1  996) provide an excellent description of experimental 
strategies that can be used to help design products with higher reliability. Other 
important references relating to RDEs are Condra (1993) and Harnada ( 1993, 
1995a,b). Byrne and Quinlan ( I  993) present an interesting example to illustrate 
the concepts. 

6. Product engineers, scientists, and statisticians can work more effectively to- 
gether to develop experimental strategies for robust-design experiments for 
improving product performance and reliability. Those who follow the Taguchi 
approach seem to advocate running a larger number of different simple ex- 
periments (and the necessary confirmatory experiments) to obtain first-order 
improvements. Improvement is the goal. Traditional statistical/engineering ap- 
proaches might recommend a more extensive sequential program of experimen- 
tation (perhaps requiring higher cost and more time) to gain more fundamental 
scientific understanding. The best approach depends on the potential for itn- 
provement, available resources, and long-term goals. 
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7. Field data are a vital resource. There will always be risk of failures with any 
product design. Field tracking is expensive and not always used. Warranty 
data usually have serious deficiencies and often come too late. Nevertheless, 
it is necessary to develop processes for the collection and appropriate use of 
field feedback to quickly discover and correct potential problems before they 
become widespread, thereby reducing overall risk. Field-data feedback should 
also be used to improve future designs. Important references describing the 
analysis of warranty and other field data include Amster, Brush, and Saper- 
stein (1982), Suzuki (1985), Kalbfleisch and Lawless (1988), Robinson and Mc- 
Donald (1991), Lawless and Kalbfleisch (1992), Lawless and Nadeau (1995), 
Lawless, Hu, and Cao (1995), Blischke and Murthy (1996), and Lawless ( 1998). 

8. For field data, one general idea is to carefully monitor some number of units 
conveniently located in the field. To be most effective, the units should be 
operated in a reasonably use-intensive manner and failures should be reported 
promptly. All early failures should be analyzed carefully to determine cause, 
whether the same failure mode could be expected in the rest of the product 
population, and relevant actions that might be taken to eliminate the failure 
mode. Rather than just tracking failures, it is often useful, when practicable, to 
go out periodically and inspect and take measurements on field units (e.g., to 
assess degradation). 

9. In some circumstances there is need to use limited reliability audit testing of 
ongoing production to catch the possible impact of changes in raw materials, 
supposedly innocuous design changes, and so on. This is especially important 
in today's manufacturing environment where many producers are often just 
assemblers, who rely heavily on components provided by vendors. 

STATISTICS IS MUCH MORE THAN A 
COLLECTION OF FORMULAS 

Those who have had one or two courses in statistics are often left with the impression 
that statistics is primarily a collection of analytical techniques and formulas. Choose 
the correct technique and formula and the problem is solved. 

Viewed properly, statistics is the science of collecting and extracting useful in- 
formation from raw data and of dealing with variability in quantitative information. 
Statistical tools provide the means for fitting and assessing the adequacy of mod- 
els (physical or empirical). Statistical models are used to describe the relationships 
among variables as well as variability and uncertainty. 

STATISTICS IS NOT MAGIC 

The statistical methods described in this book are useful for planning reliability 
studies and extracting useful information from reliability data. Statistical methods 
also provide quantification of sampling uncertainty and allow planning statistical 
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studies so that estimates and predictions can be obtained with a specified degree of 
statistical uncertainty. 

There is, however, no magic in statistics. For example, we have heard more 
than once a question that asks something like this: “What kind of test can I run to 
demonstrate, with 95% confidence, that my system will have .99 reliability for its 
first year of operation when I only have, at most, three systems to test and the test 
has to be completed in two months?” The answer is that such a demonstration is 
impossible. Even if there were a given acceleration method providing an acceleration 
factor of six (which would be unlikely because for a complete system there are many 
failure modes with different acceleration factors and typically one cannot increase 
stress enough on a complete system to achieve an acceleration factor as large as six), 
one would need to test approximately 300 units for the two months with no failures 
to have a successful demonstration. 

When demonstration of desired reliability is impossible, there is an inclination to 
take action on the basis of the best estimate. Then a minimal requirement would be 
that there be no failures. It is for this reason that it is easier to prove lack of reliability 
when you don’t have it than it is to prove adequate reliability when you do have it. 

Reliability demonstration for systems, once popular in the military and some 
other places, is difficult or impossible with today’s higher reliability standards and 
cost sensitivity. In new industrial markets, “Reliability Assurance” processes are 
needed instead. The statistical methods in this book provide important tools for such 
Reliability Assurance processes. For more discussion of this topic, see Meeker and 
Hamada (1995). 
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Notation and Acronyms 

In this book random variables are denoted by capital letters T ,  Y ,  and so on. A 
positive random variable is usually denoted by T and an unrestricted random variable 
is usually denoted by Y ,Observed or realized values and dummy variables are denoted 
by lowercase letters r, y ,  and so on. Parameters are denoted by Greek letterssuch as 
p, 8, and y. Estimates of these parameters are indicated by a hat as in p, 8, and 5. 
We do not use different notation to distinguish between estimators, which are random 
variables, and estimates, which are the observed values of the esgmators. Bootstrap- 
related quantities are denoted with an asterisk *; for example, 8* is an estimate of 
8 obtained from a bootstrap sample. Posterior related quantities are denoted with a 
star *; for example, $* is an observation from the posterior density f (  8 I DATA). In 
an effort to use the same notation that is widely used and accepted in the statistical 
literature, there are a few symbols for which the use of a subscript or not indicates 
a difference in the meaning of the symbol (e.g., r versus Y, and p versus p,).Also, 
notation defined and used locally, just in one section of the book, is not included in 
this appendix. 

Some common symbols and their definitions follow. 

intersection of two sets [e.g., A f l  B consists of elements that are in 
both A and B] 
union of two sets [e.g., A U B consists of the elements that are in A 
or in B or both] 
matrix transpose operator 
indicates a planning value used in choosing a test plan [e.g., 8' is a 
planning value for 01 
indicates an estimator [e.g., ê  is an estimator of 81 

-* 
indicates a bootstrap characteristic [e.g., O j  is the ML estimate of 8 
computed from bootstrap sample j, DATA;] 

indicates a posterior characteristic [e.g., 8" is an observation from 
the posterior f ( 8 I DATA)] 
indicates the j t h  order statistic [e.g., t ( I ) ,. . . , are the first r failure 
times from a sample of n units] 

609 
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1 indicates a vector with the single element j deleted [e.g., 01 1 1  is the 
vector 0 with the first element deleted] 
indicates distributed as [e.g., 2 - NOR(0, l)]; but [ p , F ] is confi- -
dence interval for p and [T ,F]is prediction interval for T 

indicates approximately distributed [e.g., 2,- A NOR(0, l)]  
indicates approximately equal to [e.g., Pr(Z,, IZ(I= Q n o r ( q I  - , , )I  
significance level for a significance or hypothesis test; also 1 - a is a 
confidence level for a statistical interval (e.g., a confidence interval) 
Weibull distribution shape parameter (used on a limited basis) 
parameters in a linear or nonlinear regression model relating another 
parameter or response to explanatory variables 
vector of parameters; p = ( P I , . . . ,P k )  

gamma function; r ( K )  = Jr x K - l e - X d x  

incomplete gamma probability function; 
rr(z; = JixK-le-, '  d X / r ( K )K )  

inverse incomplete gamma probability function; I-1 [I-,- I (p; K ) ;  K ]  = p 
threshold parameter of the distribution of T [i.e., y is the largest value 
such that Pr(T 5 y )  = 01 

Y? coefficient of variation of a random variable; y2 = Var(T)/E(T) 
Y3 coefficient of skewness of a random variable; 

y3 = - E(T)>21/iwT)13'2 
regression parameters in certain physical models 
small positive quantity [e.g., tAi represents roundoff error for obser- 
vation i ]  
difference of mean cumulative functions at t ; A F ( t )= pl(t)- p?(t) 

size of the risk set at time f k  in a sample of systems having recurrent 
events (such as repairs) 
residual of observation j on unit i 
standardized log time; 5 = [log(t) - p ] / u  

standardized log censoring time; cc = [log(tc)- p ] / a  

standardized log estimation time; 6, = [log([,) - p ] / u  

Weibull scale parameter or characteristic life 
parameter space [i.e., the set of all possible values of 01 
vector parameter; 0 = (01,. . . , O r )  
parameter vector subset [e.g., 61 is a subset of the elements of 6 = 

(01, @,)I
oi parameters for the cdf of component i in a system 

07 sample element i from the posterior, f(0 I DATA), for 0 
8 mean of the exponential distribution or a scale parameter for some 

other distributions 
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gamma distribution shape parameter 
location parameter of a location-scale distribution [e.g., mean of a 
normal distribution] 
mean cumulative function at time t ;  p(t) = E[N(t)] 
system recurrence rate; v( t )= dp(t) /dt  

Ivector of unconditional failure probabilities; m = (7~1,.. . ,7 ~ , ~ , +) 

multinomial probability (Chapters 2, 3); proportion allocated to ex-
perimental variable level or combination i (Chapter 20) 
correlation between two random variables [e.g., 

Pi$,& -- Cov($1 ,$2)/4iGGii&l 
serial correlation (or autocorrelation) coefficient of lag-k 
asymptotic covariance matrix [e.g., Xg is the asymptotic covariance 
matrix for ij] 
scale parameter for a location-scale distribution [e.g., standard devi-
ation of a normal distribution] 
time elapsed between the ( j- 1) and j t h  recurrence; T/ = Tl - T / - I 

cdf for a standardized location-scale distribution [i.e., Pr(2 5 c )  = 
@(z) , where Z = ( Y  - p ) / a ]  
p quantile of random variable with cdf @ 
pdf for a standardized location-scale distribution 
p quantile for a chi-square random variable with v degrees of freedom 
acceleration factor [e.g., d.F(temp, tempu,E,) is the Arrhenius 
temperature acceleration factor and -A-TE~(temp,tempu,E,) is the 
Eyring temperature acceleration factor] 

h h -

asymptotic covariance [e.g., Acov(8I ,  82)] 
accelerated degradation test 
accelerated life test 
asymptotic standard error [e.g., Ase($) = d a ]
accelerated test 
asymptotic variance [e.g., Avar(g)] 
number of bootstrap samples 
Birnbaum-Saunders distribution 
parameter-free likelihood constant of proportionality 
random censoring time 
cumulative distribution function 

h A 

covariance [e.g., Cov(B*,&)is the covariance between $1 and &] 
level of degradation at time t 
level of degradation defining failure [i.e., when Vf > 0, failure is 
defined to be the first time such that D(t)> Vf;when Df< 0, failure 
is the first time for which D(t)  < Df];Dfcould be either fixed or 
random 
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asymptotic degradation level; 27, = lim,-, D ( t )  
confidence interval half-width; D = @ - g)/2-
specified target value for the confidence interval half-width 
number of failures or deaths in observation interval i 
total number of recurrences for system i at time 
total number of recurrences for all systems at time tk 
average number of recurrences (across a population of systems) at 
time tk 
data for a complete sample of observational units 
bootstrap sample j 
data for the observational unit i in sample DATA 
expected value or mean [e.g., E(T) is the expected value of T ]  
activation energy in units of electron volts (eV) 
extended generalized gamma distribution 
p quantile of an F distribution with ( K ,  v) degrees of freedom 
cdf of random variable [e.g., for T, F ( t )  = Pr(T 5 t ) ] ;when nec- 
essary, to distinguish among cdfs for different random variables we 
write, for example, F T ( t )= Pr(T 5 t )  

cdf of unit i in a system 
cdf for a system 
pdf of random variable [e.g., for T , f ( t )  = d F ( t ) / d t ]  
posterior pdf of 8 given the available data 
posterior predictive pdf for T 
real-valued function of 8 [e.g., g(O)]  

vector-valued function of 8 [e.g., g ( 8 ) = [gl(8),g 2 ( O ) ] ]  

gamma distribution 
generalized gamma distribution 
generalized F distribution 
generalized thres hold-scale distribution 
Gompertz-Makeham distribution 
highest posterior density 
homogeneous Poisson process 
hazard function of a random variable; h(t) = f ( t ) / [1 - F(r)j  

cumulative hazard function; H ( t )  = $ h ( x )dx 
hazard function 
Fisher information matrix [e.g., Zo is the Fisher information matrix 
for 81 

IC integrated circuit 
IGAU inverse Gaussian distribution 

iid independent and identically distributed 



613 

L 

NOTATION A N D  ACRONYMS 

k B  Boltzmann constant in units of electron volts per "C; k B  = 8.6171 X 

l O P 5  = 1/11605 

k number of explanatory variables [e.g., k is length of p]  
log likelihood; C = C@) = C@; DATA) = log[L@)], or L ( 8 ) = 

c(e;DATA) = iOg[~(e)i 
contribution of observation i to the log likelihood 
likelihood [i.e., L@) = L(p;DATA)] 
number of observations left-censored at the upper endpoint of obser- 
vation interval i 

LEV largest extreme value distribution 
lev indicates a standardized largest extreme value distribution [e.g., @le\ 

is the standardized largest extreme value cdfl 
LFP limited failure population 

LOGIS logistic distribution 
logis indicates a standardized logistic distribution [e.g., @loels is the stan- 

dardized logistic cdfl 
logit logistic transformation; logit(p) = Iog[p/( 1 - p ) ]  

LOGLOGIS loglogistic distribution 
LOGNOR lognormal distribution 

M number of observations from prior f(0) 
M* number of observations from the posterior f (0  I DATA) 

MCF mean cumulative function 
ML maximum likelihood 

MTBF mean time between failures in a repairable system 
MTTF mean time to failure for a replaceable unit 

rn number of observation intervals; also, in Chapters I2  and 14 indicates 
the number of iid observations in a future sample 

N simulation size when using Monte Carlo to evaluate a complicated 
cdf 
cumulative number of recurrences in the interval (s, r )  
cumulative number of recurrences in the interval (0,t )  [i.e., N ( r )  = 

M O ,  01 
NHPP nonhomogeneous Poisson process 
NOR normal distribution [e.g., NOR(p, U)indicates a normal distribution 

with mean p and standard deviation U ]  

nor indicates a normal distribution [e.g., anoris the standardized normal 
cdfl 

n sample size 
ni size of the risk set at the beginning of interval i 

PH proportional hazards 
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Pr probability 
P conditional probability of failure in an interval (Chapters 2, 3) [e.g., 

p; = Pr(t,-1 < T 5 t; I T > ? , - I ) ] ;  more generally a probability or 
a proportion 

P vector of conditional failure probabilities; p = ( P I , .. . ,p , )  

Pdf probability density function [i.e., the derivative of the cdfl 
Q log-likelihood-ratio statistic; Q = -2 ( L c O n s t  - Lunconst) 

(3 q = 1 - p is conditional probability of survival in an interval 
Ri rate of chemical reaction i 

R measure of precision for a confidence interval of a positive parameter; 
R = i/5?= 5?/g 
target value for R 
profile likelihood for parameter vector subset 81 
number of failures out of n observations; also, number of parameters 
[e.g., r is the length of 01 
length of parameter vector subset 81 
number of observations right-censored at the upper endpoint of the 
observation interval i 

S number of components in a multiple-component system 
SAFT scale-accelerated failure time 

SD standard deviation [e.g., SD(T) = JVar(T)]  

se standard error of an estimator [e.g., se,- is the standard error of $1 
h se estimated standard error 

SEV smallest extreme value distribution 
sev indicates a standardized smallest extreme value distribution [e.g., 

is the standardized smallest extreme value cdfl 
survival function; S ( t )  = 1 - F ( t )  
survival function for component i in a system; Si(t) = 1 - F , ( t )  
positive random variable (usually time) 
total time on test 
a reported time (e.g., realization of T ) ;also a dummy variable 
specified censoring time 
specified estimation time [e.g., time at which F ( t )  or h ( t )  is to be 
estimated] 
upper endpoint of observation interval i or an exact observation 
lower endpoint of observation interval i 
ith order statistics [i.e., ith largest failure time in a sample] 
recurrence (e.g., failure, repair, or other event) time j for system i 
p quantile of the random variable T ; F ( t P )= p 

median of the random variable T ; F(t.5) = .5 
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p quantile for a random variable with Student's t cdf and U degrees 
of freedom 
temperature in degrees Celsius 
absolute temperature, Kelvin scale; temp K = temp "C + 273.15 
temperature at use conditions in degrees Celsius 
uniform distribution [e.g., Y - UNIF(a, b)]  

h h  

asymptotic variance or covariance factor [e.g., V6, + g 2  = nAcov(61,6,) 
and V,- = nAvar(@] 
variance [e.g., Var(T)is the variance of T ]  
Weibull distribution 
Military Handbook test statistic for trend in times between failures in 
a repairable system 
vector of explanatory variables; x = ( ~ 1 , .  . . ,.q) 
unrestricted random variable, --Tx) < Y < -TX) [e.g., Y = log(T)J 
a realization of Y ;also a dummy variable 
observation j on unit i 

p quantile of Y 
standard random variable [e.g., Z = ( Y  - p ) / u ]  

studentized random variable for some parameter of function g of the 
parameters [e.g., Zg = (2 - g)/s;'ei]; used to derive approximate 
confidence intervals for g = g(0) 
studentized bootstrap statistic; Zj;+ = (F - ~ ) / s ^ e ~ ~ . .where ?* = 

-* 
g( 0 ); used to approximate the distribution of Zg 

Laplace test statistic for trend in times between failures in a repairable 
system 
Lewis-Robinson test for trend in times between failures in a repairable 
system 
p quantile of a standard normal; @nor(z(p))= p 

p quantile of the bootstrap distribution of 23 
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Some Results from Statistical Theory 

This appendix provides some useful tools and results from statistical theory. These 
tools facilitate the justification and extension of much of the methodology in the book. 
Section B. 1 gives the basic theory on transformation of random variables that is used 
mainly in Chapters 4, 5, and 14. Section B.2 describes the "delta method," a useful 
method to obtain expressions for approximate variances of a function of random 
quantities as a function of the variances and covariances of the function arguments. 
Section B.3 gives a precise definition of expected and observed information matrices. 
Section B.4 lists general regularity conditions assumed in most of the book. Sec- 
tion B.5 provides the definition of convergence in distribution for random variables 
and gives examples of its use in this book. Section B.6 outlines general theory for 
ML estimation. 

B.l cdfs AND pdfs OF FUNCTIONS OF RANDOM VARIABLES 

This section shows how to obtain expressions for the pdf and cdf of functions of 
random variables. Let U be a k-dimensional continuous random vector with pdf 
f"(u). We consider a k-dimensional transformation V = g(U)  with the following 
properties: 

1. The function v = g(u) = [gl(U),.. . ,g k ( ~ ) ]is a one-to-one transformation. 
2. The inverse function U = g- ' (v)  = [gF1(v),. .. , g ; I ( v )J  has continuous first 

partial derivatives with respect to v. 
3. The Jacobian J ( v )of g-I ( v )  is nonzero, where 

J(v )  = det 

617 



618 SOME RESULTS FROM STATISTICAL THEORY 

Then the pdf and cdf of V are 

fv(v) = fu k-I(v)lIJ(v)l* 

= lS"Fv(v) f" k%I lJ(x)ld x .  

For the scalar case (i.e., k = I )  the formulas simplify to 

U g ' ( U ) ]  if g is increasing 
= {r J F i  [ g - ' ( u ) ]  if g is decreasing. 

For illustration, consider the following special cases: 

1. A one-dimensional transformation (i.e., k = 1). Let U - NOR(p, U )  and 
consider the transformation V = exp(U ) .Then 

and g(u)  = exp(u), which implies that g - ' ( v )  = log(u). Consequently, J ( u )  = 
I / u  and 

Note that V has a LOGNOR(p, a)distribution and in the notation of Chapter 14, 
f(d = (l/v)f[log(v)l. 

2. A bivariate transformation (i.e., k = 2). Let U = (Ul,U2) ,where U1 and U2 are 
independent, U1 - UNIF[log(aI), log(bl)], and U2 - NOR(ao, bo). Consider 
finding the distribution of V = (V I,V2) = [U1 - ( p )exp(UZ), exp(U?)] .

In view of the independence of UI and U*, 

where log(a1) 5 u1 5 log(b1) and -m < u2 < =. Using Y = ( u I , u 2 ) ,  
direct computations give g ; ' ( v )  = ul + @s<d(p)uz,g ; l ( v )  = log(7,2), and 
J ( v )  = 1 / ~ 2 .Thus 

where log(a1) - @s&'(p)u2 5 U I  5 log(b1) - @sid(p)u2,v2 > 0. This is the 
same result as (14.2) with U1 = log(t,,), U2 = log(a), Vl = p, and V? = cr. 



STATISTICAL ERROR PROPAGATION -THE DELTA METHOD 619 

B.2 STATISTICAL ERROR PROPAGATION- 
THE DELTA METHOD 

This section shows how to compute approximate expected values, variances, and 
covariances of functions of parameter estimators. Let g(8) be a real-valued function 

h 

of the parameters 8 = (61,. . . , O r ) ’  and let = ($1,. . . ,gr)’ and g(8) be estimates 
of 8 and g ( 8 ) , respectively. The objective is to obtain expressions or approximate 
expressions for E[g(6)]and Var[g(6)] as a function of E($,), Var(6;), and Cov(c,, 6,). 

h h 

The simplest case is when g ( 8 )  is a linear function of the G,, say, g ( 8 )  = a0 + 
h 

a, g;,where the ai are constants. To facilitate the development express g( 8 )as 

r r 

i= I i= I 

h 

where bo = a0 + aiE(Oi)and bi = ai,i = 1,. . . ,r .  In this case, simple 
computations with expectations and variances give 

r r r 

i =  1 

When g ( e )  is a smooth nonlinear function of the g, values and g(6) can be ap-
proximated by a linear function of the e?. values in the region with nonnegligible 
likelihood, it is still possible to apply the methodology above. The general procedure 
is known as the “delta method” or “statistical error propagation” and here we describe 
a simplified version of the methodology. For a more detailed account, see Hahn and 
Shapiro ( 1  967, page 228) or Stuart and Ord (1994, page 350). 

When g ( 8 )  has continuous second partial derivatives with respect to 8, a first- 
h 

ord%r (i.e., keying linear terms only) Taylor series expansion of g(8) about p = 
[E(61),. . . ,E(6,)l is given by 

where the partial derivatives of g ( 0 )  with respect to the Oj values are evaluated at p. 
Observe that equation (B.2) looks like equation (B. 1) with 

aguvbo = g(p)  and bi = -, i = l , . . . ,r .  
d0i 
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Consequently, 

(B.3)  

When the $, values are uncorrelated or when the covariances Cov(@,, 6,),i # j ,  

are small when compared with the variances Var(6i), the last term on the right of 
equation (B.3) is usually omitted from the approximation. 

The same ideas apply to vector-valued functions. For example, if gl(6)and gz(0) 
are two real-valued functions then 

;+i 


In general, for a vector-valued functiong(6) of the parameters such that all the second 
partial derivatives with respect to the elements of 6 are continuous 

where d g ( O ) / d 6  = [ d g l ( @ ) / d O ,dg,(0)/d6,. . .] is the matrix of gradient vectors of 
first partial derivatives of g(6) with respect to 6 and 

both evaluated at 6. 
The delta method can provide good approximations for E[g(^e)]and Var[g(@]. 

However, as indicated in more advanced textbooks, one needs to exercise caution in 
applying this method because the adequacy of the approximation depends on the va- 
lidity of the Taylor approximation and the size of the remainder in the approximation. 
Simulation can be used to check the adequacy of the approximation. 
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B.3 LIKELIHOOD AND FISHER INFORMATION MATRICES 

Let L(8)  = E:’=,Li(8)denote the total log likelihood for a specified model and 
data that will consist of n independent but not necessarily identically distributed 
observations. Here it is understozd that L,(8)is the contribution of the ith observation 
to the total log likelihood. Let 8 be the ML estimator of 8 with a sample of size n. 
This 6, when it exists, is the value of 8 that maximizes L ( 8 ) .Let Z(8) denote the 
large-sample (or limiting) average amount of information per observation. Then, in 
general, 

where the expectation is with respect to the as of yet unobserved data. For large 
samples, the matrix 10 = nI(8)approximately quantifies the amount of information 
that we “expect” to get from our future data. Intuitively, this can be seen because 
larger second derivatives of L(8) indicate more curvature in the likelihood, imply- 
ing that the likelihood is more concentrated about its maximum. For a large class 
of model situations, including models with independent and identically distributed 
observations, 10 simplifies to the well-known Fisher information matrix for 8,  

I0 is often known as the Fisher information or “expected information” matrix for 8. 
When data are available, one can compute the “local” (or “observed information”) 
matrix for 8 as 

where the derivatives are evaluated at 8 = G .  
In Section B.6.1, we explain that, under the standard regularity conditions, tzz~= 

t z ( lo) - ’  is the covariance matrix for the asymptotic distribution of f i (5 - 8 ) and 
h 

an estimate of 10 can be used to estimate sampling variability in 8.  

B.4 REGULARITY CONDITIONS 

Each technical asymptotic result, such as the asymptotic distribution of an estimator, 
or a specific asymptotic property of an estimator, requires its own set of conditions 
on the model. For example, under a certain set of conditions it is possible to show 
that ML estimators are asymptotically normal. With additional conditions, i t  can 
be shown that ML estimators are also asymptotically efficient. The model, in this 
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case, includes the underlying probability model for the process (e.g., a failure-time 
process) and for the observations process, such as inspections (when there is not 
continuous inspection) and characteristics of the censoring process. Lehmann ( 1983, 
Chapter 6) ,for example, gives precise regularity conditions in the context of “con- 
tinuous inspection.” Rao (1973, Section 5e) does the same assuming an underlying 
discrete multinomial observation scheme, like that outlined in Chapter 2. Although 
censoring is not explicitly treated in either of these references, the same asymptotic 
results hold under the standard kinds of noninformative censoring mechanisms as 
long as the average amount of information per sample [elements of Z(0)] does not 
decrease substantially as the sample size increases. For a modern and rigorous treat- 
ment of the asymptotic properties of ML estimators based on Type I1 censored data 
see Bhattacharyya (1985). 

For a large set of cases known as “regular” cases, there are useful asymptotic 
results (see Appendix Section B.6) that apply when the pdf of T , f ( r ;0 ) (or the pdf 
of a monotone transformation of T ) ,satisfies certain conditions discussed below. 

B.4.1 Regularity Conditions for Location-Scale Distributions 

When Y [or a transformation of T such as Y = log(T)] is location-scale with pdf, 
f Y ( y ;e ) = ( i / m ~ y- ,4/01, e = (p,01,-m < )’ < m, --x < I-L < x ,  > 0, 
the “regularity” conditions can be expressed as follows: 

+ ( z )  > 0 for all - x < 2 < CO. 

The following limits hold: 

The second derivative a24(z ) / k2is continuous. 
The matrix 

is positive definite and all its elements are finite. 

These conditions are satisfied by the normal (lognormal), SEV (Weibull), and logistic 
(loglogistic) distributions. But they are not satisfied by distributions with a threshold 
parameter (see Section 5.10.1) because in these cases the points at which f v ( y ;  0) > 0 
depend on the values of 8. 

B.4.2 General Regularity Conditions 

When T (or a monotone transformation of T ) is not location-scale, an alternative set 
of regularity conditions are: 



CONVERGENCE IN DISTRIBUTION 623 

The points t at which f ( t ;8 )  > 0 do not depend on 8. 
The parameters are identifiable in the sense that 81 f 82 implies that the 
probability functions defined by f ( t ;8 , )and f ( t ; 82)are not identically equal. 
The true parameter value 8 is in the interior of the parameter space 0. 
The density f ( t ;8 ) has third mixed partial derivatives with respect to the ele- 
ments of 8 in a neighborhood of the true 8. Each one of these derivatives is 
bounded by a function that has finite expectations with respect to f ( r ;8) .  
For all 8 in a neighborhood of the true 8,  

where the expectations are with respect to the data from f ( r ; 8).  
The elements of Z(8) defined in (B.5) are finite and Z(8) is positive definite. 

These conditions are satisfied, for example, by the GAM, GENG, and BISA distri-
butions of Chapter 5. 

B.4.3 Asymptotic Theory for Nonregular Models 

The standard regularity conditions hold for most of the models used in this book. 
One model for which the regularity conditions do not hold (such models are called 
“nonregular”) is the threshold parameter distributions for which the range over which 
f ( t ;8 )  > 0 depends on 8 (see Section 5.10.1). Having 8 on the boundary of 0 also 
leads to “nonregular” estimation. ML methods are still very useful for “nonregular” 
situations, but the statistical properties and asymptotic behavior in these cases are 
more complicated (e.g., limiting distributions may depend on 8).For such situations, 
it is still possible to find useful large-sample asymptotic results; see, for example, 
Smith (1985) and Woodroofe (1972, 1974). 

B.5 CONVERGENCE IN DISTRIBUTION 

In this section we use a subscript n to identify explicitly an estimator or quantity with 
properties that depend on the sample size n. Considering the sequence for increasing 
n facilitates the description of these properties when n gets large (i.e., when n -+ m). 

Convergence in distribution is an important concept for describing the behavior 
of estimators in large samples. For example, one is often interested in the statistical 
properties of the ML estimates e?, of the scalar 8 when the sample size n increases. 
In this case a common approach is to consider the studentized ratios 

h 

6 ,  - 6 
2, = Z,(O) = h,n = 2,. . . , 
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where $; l l  is a consistent estimator of seGl,.In general, the exact distribution of Z,, is 
complicated, depending on the model, actual parameter values, and sample size. B u t  
under the regularity conditions of Section B.4, if Zt,(8)is evaluated at the true 8, then 

The adequacy of this approximation has to be studied (e.g., by simulation) for each 
individual problem but in general it works well for a large class of problems and 
moderate-to-large sample sizes. 

More generally, we say that the sequence of scalars .Z,l converges in distribution 
to the continuous random variable V if 

lim Fz,,(;) = F v ( z )  for all z ,  
t1-x 

where F\,(:) is the cdf of V. Thus one can use the limiting distribution Fv to approx- 
imate the probabilities for finite n as follows: 

where a and b are specified constants. This approximation can be made as close 
as desired by taking large values of n. These ideas of convergence in distribution 
generalize to vector random variables; see, for example, Billingsley (1986,page 390).

h 

For other examples, let 8, = (^e l , ,&, , )  be the ML estimate of a vector 8 = 
(eI,(I2)with a sample of size n and suppose that the appropriate regularity conditions 
(Appendix Section B .4) hold. 

The profile likelihood of O 1  is 

The corresponding parameter subset log-likelihood-ratio statistic is LLR,( 8 I ) = 
-2  log[R,(BI)].This statistic, when evaluated at the true 81, converges in dis-
tribution to a chi-square distribution with rl degrees of freedom, where Y I  is the 
number of parameters in 81. 
The parameter subset “Wald statistic” is 

Wt,(tIl), evaluated at the true O1,converges in distribution to achi-square random 
variable with rl degrees of freedom. 
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B.6 OUTLINE OF GENERAL ML THEORY 

B.6.1 Asymptotic Distribution of ML Estimators 
h 

In this section, we assume that 8 is the ML estimate of 8 based on U observations 
and that the regularity conditions given in Section B.4 hold. Then it can be shown 
that f i (e - 8 ) converges in distribution to a multivariate normal with mean zero 
and covariance rnatrix-Z-’(O) where Z(8) is defined in (B.5). In a convenient casual 
wording, we say that 8 is approximately normal with mean 8 and covariance matrix 
2~ = l i ’ ,where 10 = nT(8).Asymptotic (large-sample) statistical theory shows 
that, under the standard regularity conditions, the elements of ZGare of the order of 
n-I. This can be seen by noting that nCg does not depend on n,  following from the 
definition of Z(8 ) in (B.5). 

B.6.2 Asymptotic Covariance Matrix for Test Planning 

For an assumed model if there is to be no censoring or truncation, and if the density 
approximation [equation (7.13)] is used for L ; ( 8 ) ,then ZG = I,’ is a function of 
the sample size n,  the unknown parameters 8,  and the levels of the explanatory 
variables (if any). Otherwise, 18 also depends on the type of censoring, truncation, 
rounding, and so on that will be encountered in the data. If any of these limitations 
on measurement or observation are random, then I0 depends on the distribution(s) 
of these limitations. Generally, the effect of roundoff or binning on the “correct 
likelihood” is not large (e.g., Meeker, 1986). The effect of censoring or truncation, 
however, can be substantial. The asymptotic covariance matrix depends on the 
underlying model, including its parameters (but does not depend on data). Thus, for 
a specified model, if one has “planning values” for 8, it  is generally straightforward 

h 

to evaluate CGnumerically to compute the asymptotic variances of 8 and of smooth 
functions of 0 (see the details below) and these asymptotic variances are useful for 
planning experiments; see, for example, Escobar and Meeker ( 1994, 1995, 1998d) 
and Nelson (1990a, Chapter 6). 

B.6.3 Asymptotic Distribution of Functions of ML Estimators 

In general, one is interested in inferences on functions of 8. For example, consider 
a vector function g(8) of the parameters such that all the second derivatives with 
respect to the elements of 8 are continuous. The ML estimator of g(8) is 2 = g(@. 

6 


In large samples, g ( 8 )  is approximately normally distributed with mean g ( 8 ) and 
covariance matrix 

The approximation is based on the assumption that g ( 5 )is approximately linear in 
in the region near to 8.The approximation is better in large samples because then the 
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variation in is smaller and thus the region over which 8 varies is correspondingly 
smaller. If this region is small enough, the linear approximation will be adequate. See 
Section B.2 for more details. 

For scalar g and 8 the formula simplifies to 

where Avar is the asymptotic variance function. For example,jf 8 is positiv: and 
g(0) is-the logarithmic function, the asymptotic variance of log(8) is Avar[log( 8)] = 
Avar(8)/8*. 

B.6.4 Estimating the Variance-Covariance Matrix of ML Estimates 
h 

Under mild regularity conditions (see Section B.4), x~ = Go)- ’  is a consistent 
estimator of ZG,where 70is defined in (B.7). This “local” estimate of 2, is obtained 
by estimating the “expected” curvature in (BA) by the “observed” curvature in (B.7).

h 

It is possible to estimate xi  directly by evaluating (B.6) at 8 = 6, but this approach 
is rarely used because it is more complicated and has no clear advantage. 

The “local” estimate of the covariance matrix of g  ̂ = g ( 6 ) can be obtained by 
h 

substituting ZGfor x~in (B.9) giving 

(B.10) 

where the derivatives are again evaluated at 8 = 6. For scalar g and 8 the formula 
simplifies to 

For example, if 8 is po_sitiveand g(%)is thGogdrithmic function, the 1ocaLesgmate 
of the variance of log(8 ) is Var[log( 8)] = Var(8)/e””and &[log( 8) ]  = g(8) /8 .  

B.6.5 Likelihood Ratios and Profile Likelihoods 

Assume that we want to estimate 81, from the partition 8 = (81,&). Let r I denote 
the length of 61, The profile likelihood for 81 is 

(B.11) 

When the length of 8 2  is 0 (as in the exponential distribution in Chapter 7 or in 
Example 8.3), (B.11) is a relative likelihood for 8 = O I .  Otherwise we have a 
“maximized relative likelihood” for 8 1 .  In  either case, R( 8 1 ) is commonly known 
as a “profile likelihood” because it provides a view of the profile of L ( 8 ) as viewed 
along a line that is perpendicular to the axes of 81. 
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When 81 is of length 1, R(81) is a curve projected onto a plane. 
When is of length 2 or more, R(81)  is a surface projected onto a three- 
dimensional hyperplane. 

In either case the projection is in a direction perpendicular to the coordinate axes for 
O 1 .When 81 is of length 1 or 2, it is useful to display R(O1) graphically. 

Asymptotically, LLR,(Bl) = -2 log[R(O*)] when evaluated at the true 01,has 
a chi-square distribution with rl degrees of freedom. To do a likelihood-ratio sig- 
nificance test, we would reject the null hypothesis that 8 = Oo, at the (Y level of 
significance, if 

B.6.6 Approximate Likelihood-Ratio-Based Confidence Regions or 
Confidence Intervals for the Model Parameters 

An approximate loO(1 - a)% likelihood-ratio-based confidence region for O 1  is 
the set of all values of O 1  such that LLR,(Bl) = -2log[R(81)] < or, 
equivalently,R(O1) > exp[-x;l-a;r,,/2]. Here 81 could be the full parameter vector, 
a single element of 8,or some other subset of 8. If one is interested in a scalar function 
g(O),  these same ideas can be applied after a reparameterization such that g ( 8 )  is 
one of the parameters. Simulation studies for different applications and models (e.g., 
Ostrouchov and Meeker, 1988; Meeker, 1987; Vander Wiel and Meeker, 1990; Jeng 
and Meeker, 1998) have shown that in terms of closeness to the nominal confidence 
level, the likelihood-based intervals have important advantages over the standard 
normal-approximation intervals (discussed in Section B.6.7), especially when there 
is only a small number of failures in the data. Specifically, in repeated sampling, 
normal-approximation intervals tend to have actual confidence levels that are smaller 
than the nominal levels. Likelihood-ratio-based intervals tend to have confidence 
levels that are much closer to the nominal. Also see Meeker and Escobar (1995). 

B.6.7 Approximate Confidence Regions and Intervals Based on Simple 
Asymptotic Approximations 

The large-sample normal approximation for the distribution of ML estimators can 
be used to compute approximate confidence intervals (regions) for scalar (vector) 
functions of 8.  In particular, an approximate 100(1 - a)% confidence region for 8 
is the set of all values of 8 in the ellipsoid 

where r is the length of 8. This is sometimes known as “Wald’s method,” but we 
will refer to it as the “normal-approximation” method. This confidence region (or 
interval) is based on the distributional result that, asymptotically, when evaluated at 
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the true 6,the “Wald statistic” 

has a chi-square distribution with r degrees of freedom. 
More generally, let g(6)be a vector function of 8. An approximate 100(1 - a)% 

normal-approximation confidence region for a rl -dimensional subset gl = gl (0), 
from the partitiong(8) = [gl( 6 ) , g 2 ( 6 ) ] ,is the set of all the gl values in the ellipsoid 

h 

where Zl = gl(8)is the ML estimator of gl(6)and xil is the local estimate of the 
h 

covariance matrix ofEl. The estimate Xi,can be obtained from the local estimate of 
in equation (B. 10). This confidence region (or interval) is based on the distributional 
result that the “Wald subset statistic,” when evaluated at the true gl, 

has, asymptotically, a chi-square distribution with r~degrees of freedom. As shown 
in Meeker and Escobar (1995), this normal-approximation confidence region (or 
interval) can be viewed as a quadratic approximation for the log profile likelihood of 
gl(6)at 21. 

When rl = 1, gl  = gl(6)is a scalar function of 8, an approximate 100( 1 - a)% 
normal-approximation confidence interval is obtained from the familiar formula 

(B.13)  

where s^ezl = \/%[g~(e)] is the local estimate for the standard error of z1and 
q - a / 2 )  is the 1 - a/2 quantile of the standard normal distribution. 
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Table C.1. Failure and Censoring Times of Diesel Generator Fans 

Number Number 
Hours Status of Fans Hours Status of Fans 

~ 

450 Failed 1 4850 Censored 4 
460 Censored 1 5000 Censored 3 

1150 Failed 2 6100 Censored 3 
1560 Censored 1 6100 Failed 1 
1600 Failed 1 6300 Censored 1 
1660 Censored 1 6450 Censored 2 
I850 Censored 5 6700 Censored 1 
2030 Censored 3 7450 Censored 1 
2070 Failed 2 7800 Censored 2 
2080 Failed 1 8 100 Censored 2 
2200 Censored 1 8200 Censored 1 
3000 Censored 4 8500 Censored 3 
3100 Failed I 8750 Censored 2 
3200 Censored 1 8750 Failed 1 
3450 Failed 1 9400 Censored I 
3750 Censored 2 9900 Censored I 
4150 Censored 4 10100 Censored 3 
4300 Censored 4 11500 Censored 1 
4600 Failed 1 

Data from Nelson ( 1982), page 133. 

Table C.2. Distance to Failure for 38 Vehicle Shock Absorbers 

Distance (km) Failure Mode Distance (km) Failure Mode 

6700 M1 17520 MI 
6950 None 17540 None 
7820 None 17890 None 
8790 None 18450 None 
9120 M2 18960 None 
9660 None 18980 None 
9820 None 19410 None 

11310 None 20100 M2 
1 I690 None 20100 None 
1 I850 None 20 150 None 
I1880 None 20320 None 
12140 None 20900 M2 
I2200 M1 22700 MI 
12870 None 23490 None 
13150 M2 265 10 M1 
13330 None 274 10 None 
13470 None 27490 M1 
14040 None 27890 None 
14300 MI 28 100 None 

Data from O’Connor ( 1  9 8 3 ,  page 85. 
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Table C.3. Percent Increase in Resistance Over Time of Carbon-Film Resistors 

Unit Temperature Initial Hours 

Number ("C) Resistance 452 1030 434 1 8084 

1 83 21 7.97 .28 .32 .38 .62 
2 2 17.88 .22 .24 .26 .38 
3 224.67 .41 .46 .54 .81 
4 2 15.92 .25 .29 .32 .48 
5 219.88 .25 .26 .42 .57 
6 2 19.63 .32 .36 .45 .58 
7 21 8.27 .36 .41 .52 .70 
8 2 17.27 .24 .28 .34 .55 
9 2 19.98 .33 .40 .44 .85 

1 1  133 2 18.05 .40 .47 .72 1.05 
12 2 19.38 .88 1.19 2.06 3.15 
13 2 18.35 .53 .64 .99 1.60 
14 2 17.78 .47 .62 1 .oo 1 S O  
15 2 18.28 .57 .75 1.26 2.03 
16 216.38 .55 .67 1.09 1.79 
17 217.65 .78 .96 1.48 2.27 
18 221.91 .83 1.12 1.96 3.29 
19 2 18.47 .64 .80 1.23 1.84 
20 217.59 .55 .74 1.29 2.03 
21 173 216.31 .87 1.29 2.62 4.44 
22 2 16.62 I .25 1.88 3.54 5.23 
23 22 1.98 2.64 3.78 7.01 11.12 
24 2 17.83 .98 1.36 2.66 4.42 
25 2 17.30 1.62 2.34 3.82 6.14 
26 21 6.75 1.59 2.41 3.46 6.75 
27 220.39 2.29 2.24 6.30 8.34 
28 2 16.26 .98 1.37 2.47 3.74 
29 2 17.86 1.04 1.54 2.77 4.16 
30 2 17.49 1.19 1.59 3.03 4.52 

Data from Shiomi and Yanagisawa ( 1979). 
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Table C.4. Life Test Comparison of Two Different Snubber Designs 

Old Design New Design 

Hours Status Units Hours Status Units 
~~~ 

90 Failed 2 45 Censored 1 
90 Censored 1 47 Failed 1 

I90 Censored 1 73 Failed 1 
218 Censored 2 136 Censored 5 
24 1 Censored I I45 Failed 1 
268 Failed 1 190 Censored 2 
349 Censored 1 28 I Censored 1 
378 Censored 2 31 1 Failed 1 
410 Failed 2 417 Censored 1 
310 Censored 1 485 Censored 2 
485 Failed 1 490 Failed 1 
508 Failed 1 569 Censored 1 
600 Censored 4 57 1 Failed 1 
63 1 Failed 3 57 1 Censored 1 
635 Failed 1 575 Failed 1 

365 8 Failed 1 608 Failed 1 

658 Censored 1 608 Censored 12 
73 1 Failed 1 630 Failed 1 

3739 Failed 1 670 Failed -
739 Censored 4 73 1 Censored 1 
790 Failed 1 838 Failed 1 

3790 Censored I I  964 Failed .-
855 Failed 1 1164 Censored 7 
980 Failed 2 1198 Failed 1 
980 Censored 5 1198 Censored 1 

1300 Censored 3 
~~ 

Data from Nelson (1982),page 529. 



Table C.5. Bearing-Cage Fracture Data 

Number Number 
Hours Status of Units Hours Status of Units 

50 Censored 288 990 Failed 1 
150 Censored 148 1009 Failed 1 
230 Failed 1 1050 Censored 123 
250 Censored 124 1 I50 Censored 93 
334 Failed 1 I250 Censored 47 
350 Censored 1 1 1  1350 Censored 41 
423 Failed I 1450 Censored 27 
450 Censored 106 1510 Failed 1 
550 Censored 99 I550 Censored 1 1  
650 Censored 110 I650 Censored 6 
750 Censored 1 I4 1850 Censored 1 
850 Censored 119 2050 Censored 2 
950 Censored 127 

Data from Abernethy, Breneman, Medlin, and Reinman ( I983), pages 43 and 47. 

Table C.6. Battery Life Test Data 

Ampere-Hours Failure Mode Number Number 
Lower Upper 1 2 3 6 Failing Censored 

0 50 0 0 0 1 1 5 
50 100 0 0 0 0 0 6 

100 150 1 0 0 0 1 1 
150 200 0 3 0 1 4 6 
200 250 0 0 1 0 1 2 
250 300 1 0 0 0 1 1 
300 350 0 0 0 1 1 2 
350 400 1 2 0 1 4 2 
450 500 0 3 1 0 4 3 
500 550 0 1 0 1 2 1 
550 600 1 0 0 1 2 0 
600 650 0 0 1 0 1 0 
650 700 1 1 0 0 2 1 
700 750 0 0 1 0 1 0 
800 850 2 0 1 0 3 0 
850 900 0 0 0 0 0 1 
950 1000 0 0 0 0 0 1 

1000 1050 0 0 1 0 1 0 
1050 1100 0 0 0 0 0 1 
1100 1150 0 0 0 0 0 2 
1 I50 1200 0 0 1 0 1 0 
1300 1350 0 0 I 0 1 0 
1500 1550 0 0 I 0 1 0 
I650 1700 1 0 0 0 1 0 

Total 8 10 9 5 33 35 

Data from Morgan (1980). 
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Table C.7. Bleed System Failure Data 

Number of Systems 

Hours Status Base D Other Bases All Bases 

12 Censored 0 39 39 
20 Censored 0 52 52 
30 Censored 0 46 46 
32 Failed 0 1 1 
50 Censored 0 31 31 
64 Failed 0 1 1 
85 Censored 0 48 48 

I50 Censored 0 102 102 
153 Failed 0 1 1 
212 Failed 0 1 1 
250 Censored 2 158 1 60 
400 Censored 0 312 312 
550 Censored 2 101 103 
650 Censored 2 101 I03 
708 Failed 1 0 1 
750 Censored 9 100 109 
808 Failed 0 1 1 
828 Failed 1 0 I 
850 Censored 23 100 123 
872 Failed 0 1 1 
884 Failed 2 0 2 
950 Censored 27 56 83 

1013 Failed 1 0 1 
1050 Censored 20 55 75 
1082 Failed I 0 1 
1105 Failed 1 0 1 
I150 Censored 22 56 78 
1198 Failed 1 0 1 
1249 Failed 1 0 1 
I250 Censored 22 55 77 
1251 Failed 1 0 I 
1350 Censored 1 1  56 67 
I405 Failed 0 1 1 
I428 Failed 0 1 1 
1450 Censored 1 1  53 64 
1550 Censored 20 55 75 
1568 Failed 0 1 1 
I650 Censored 8 55 63 
1750 Censored 4 55 59 
1850 Censored 2 55 57 
1950 Censored 3 152 155 
2050 Censored 3 152 155 
2150 Censored I 0 1 

Data adapted from a histogram and description in Abernethy, Breneman, Medlin, and Reinman (1983), 
pages 29-5 I .  
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Table C.8. Diesel Engine Age at Time of Replacement of Valve Seats 

Engine Age at Engine Age at 
System Days Replacement Time System Days Replacement Time 

ID Observed (Days) ID Observed (Days) 

25 I 76 1 403 593 
252 759 404 589 573 
327 667 98 405 606 165 408 604 
328 667 326 653 653 406 594 249 
329 665 407 613 344 497 
330 667 84 408 595 265 586 
331 663 87 409 3 89 166 206 348 
389 653 646 410 60 1 
390 653 92 41 1 601 410 581 
39 1 65 I 412 61 1 
392 650 258 328 377 62I 413 608 
393 648 61 539 414 587 
394 644 254 276 298 640 415 603 367 
395 642 76 538 416 585 202 563 570 
396 641 635 417 587 
397 649 349 404 561 418 578 
398 631 419 578 
399 596 420 586 
400 614 120 479 42 1 585 
40 1 582 323 449 422 582 
402 589 139 139 

Data from Nelson and Doganaksoy (1989). 
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Table C.9. Locomotive Age at Time of Replacement of Braking Grids 

Batch I Batch 2 

Locomotive Age Locomotive Age 
Locomotive Days at Replacement Locomotive Days at Replacement 

ID Observed (Days) ID Observed (Days) 

9100 730 462 9176 511 203 211 277 373 
9102 724 364 391 548 9182 503 293 
9103 . 730 302 444 500 9190 470 173 
9106 730 250 9197 464 242 
9108 724 500 9199 464 39 
91 10 724 88 9200 462 91 
91 17 719 272 421 552 625 920 1 461 119 148 306 
9124 710 48 I 9203 460 382 
9125 710 43 1 9207 434 250 
9126 7 10 367 9209 448 192 
9128 708 635 650 9212 448 369 
9134 700 402 9213 447 22 
9136 687 33 9216 441 54 
9138 687 287 9226 432 194 
9156 657 317 498 9235 419 61 

9236 419 19 185 
9238 416 187 
9239 415 93 205 264 

Data from Doganaksoy and Nelson ( 1991 ). 
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Table C.10. Temperature-Accelerated Life Test Data for Device-A 

Number of Temperature 
Hours Status Devices ("Cl 

5000 Censored 30 10 
1298 Failed 1 40 
1390 Failed 1 40 
3187 Failed 1 40 
324 1 Failed 1 40 
326 1 Failed 1 40 
3313 Failed 1 40 
450 1 Failed 1 40 
4568 Failed 1 40 
484 1 Failed 1 40 
4982 Failed 1 40 
5000 Censored 90 40 
581 Failed I 60 
925 Failed 1 60 

1432 Failed 1 60 
I586 Failed 1 60 
2452 Failed I 60 
2734 Failed 1 60 
2772 Failed 1 60 
4106 Failed I 60 
4674 Failed 1 60 
5000 Censored 1 1  60 
283 Failed 1 80 
361 Failed 1 80 
515 Failed 1 80 
638 Failed 1 80 
854 Failed 1 80 

1024 Failed 1 80 
I030 Failed 1 80 
1045 Failed I 80 
1767 Failed I 80 
1777 Failed 1 80 
I856 Failed I 80 
1951 Failed 1 80 
1964 Failed I 80 
2884 Failed 1 80 
5000 Censored 1 80 

Data from Hooper and Amster ( 1  990).Reprinted with permission. Copyright McGraw-Hill. 
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Table C.ll .  Computer Program Execution Time Versus System Load 
~ ~~~~ 

Seconds Load Seconds Load 

123 2.74 110 .60 
704 5.47 213 2.10 
184 2.13 284 3.10 
1 I3 1 .oo 317 5.86 
94 .32 142 1.18 
76 .31 127 .57 
78 .51 96 1.10 
98 .29 1 1 1  1.89 

240 .96 

Table C.12. Low-Cycle Fatigue Life of Nickel-Base Superalloy Specimens (in units of 
thousands of cycles to failure) 

Pseudostress k-Cycles Status Pseudostress k-Cycles Status 

80.3 2 1 1.629 F 99.8 43.331 F 
80.6 200.027 F loo.1 12,076 F 
80.8 57.923 C 100.5 13.181 F 
84.3 155.000 F 113.0 18.067 F 
85.2 13.949 F 114.8 2 1.300 F 
85.6 112.968 C 116.4 15.616 F 
85.8 152.680 F 118.0 13.030 F 
86.4 156.725 F 118.4 8.489 F 
86.7 138.1 14 C 118.6 12.434 F 
87.2 56.723 F 120.4 9.750 F 
87.3 121.075 F 142.5 1 1.865 F 
89.7 122.372 C 144.5 6.705 F 
91.3 112.002 F 145.9 5.733 F 

Cases marked with “F’are failures and cases marked with “C” are censored (unfailed). Data from Nelson 
( 19901,page 272. 
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Table C.13. Minutes to Failure of Mylar-Polyurethane Laminated DC HV Insulating 
Structure 

361.4 kV/mm 2 19.0 kV/mm 157.1 kV/mm 122.4 kV/mm 100.3 kV/mm 

.I0 15 49 188 606 

.33 16 99 297 1012 
S O  36 154.5 405 2520 
S O  50 180 744 2610 
.90 55 291 1218 3988 

1 .oo 95 447 1340 4100 
1.55 122 510 1715 5025 
1.65 129 600 3382 6842 
2.10 625 1656 
4.00 700 1721 

Data from Kalkanis and Rosso (1989). Reprinted with permission. Copyright Elsevier Science Ltd. 

Table C.14. Fatigue Crack Size as a Function of Number of Cycles 

Millions of Cycles 

Unit .OO .01 .02 .03 .04 .05 .06 .07 .08 .09 .I0 , I  I . I 2  

1 .90 .95 1 .oo 1.05 1.12 1.19 1.27 1.35 1.48 1.64 
2 .90 .94 .98 1.03 1.08 1.14 1.21 1.28 1.37 1.47 1.60 
3 .90 .94 .98 1.03 1.08 1.13 1.19 1.26 1.35 1.46 1.58 1.77 
4 .90 .94 .98 1.03 1.07 1.12 1.19 1.25 1.34 1.43 1.55 1.73 
5 .90 .94 .98 1.03 1.07 1.12 1.19 1.24 1.34 1.43 1.55 1.71 
6 .90 .94 .98 1.03 1.07 1.12 1.18 1.23 1.33 1.41 1.51 1.68 
7 .90 .94 .98 1.02 1.07 1.11 1.17 1.23 1.32 1.41 1.52 1.66 
8 .90 .93 .97 1.00 1.06 1.11 1.17 1.23 1.30 1.39 1.49 1.62 
9 .90 .92 .97 1.01 1.05 1.09 1.15 1.21 1.28 1.36 1.44 1.55 1.72 

10 .90 .92 .96 1.00 1.04 1.08 1.13 1.19 1.26 1.34 1.42 1.52 1.67 
I 1  .90 .93 .96 1.00 1.04 1.08 1.13 1.18 1.24 1.31 1.39 1.49 1.65 
12 .90 .93 .97 1.00 1.03 1.07 1.10 1.16 1.22 1.29 1.37 1.48 1.64 
13 .90 .92 .97 .99 1.03 1.06 1.10 1.14 1.20 1.26 1.31 1.40 1.52 
14 .90 .93 .96 1.00 1.03 1.07 1.12 1.16 1.20 1.26 1.30 1.37 1.45 
15 .90 .92 .96 .99 1.03 1.06 1.10 1.16 1.21 1.27 1.33 1.40 1.49 
16 .90 .92 .95 .97 1.00 1.03 1.07 1.1 I 1.16 1.22 1.26 1.33 1.40 
17 .90 .93 .96 .97 1.00 1.05 1.08 1.11 1.16 1.20 1.24 1.32 1.38 
18 .90 .92 .94 .97 1.01 1.04 1.07 1.09 1.14 1.19 1.23 1.28 1.35 
19 .90 .92 .94 .97 .99 1.02 1.05 1.08 1.12 1.16 1.20 1.25 1.31 
20 .90 .92 .94 .97 .99 1.02 1.05 1.08 1.12 1.16 1.19 1.24 1.29 
21 .90 .92 .94 .97 .99 1.02 1.04 1.07 1 .1  1 1.14 1.18 1.22 1.27 

Data reported in Lu and Meeker (19931, read from Figure 4.52 in Bogdanoff and Kozin (1985), page 242. 
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Table C.15. Accelerated Life Test Data on a New-Technology Integrated Circuit Device 

Hours Number of Temperature 
Lower Upper Status Devices ( " C )  

I536 Right Censored 50 150 

1536 Right Censored 50 175 


96 Right Censored 50 200 

384 788 Failed 1 250 

788 1536 Failed 3 250 


1536 2304 Failed 5 250 

2304 Right Censored 41 250 


192 384 Failed 4 300 

3 84 788 Failed 27 300 

788 1536 Failed 16 300 


1536 Right Censored 3 300 




Table C.16. Temperature- and Voltage-Accelerated Life Test Data for Tantalum 
Electrolytic Capacitors 

Number of Temperature 
Hours Status Devices Volts ("C) 

8520 Failure I 35.0 
8590 Failure 1 35.0 
85700 Failure 1 35.0 
8537000 Failure 1 35.0 
8537000 Censored 996 35.0 
8520 Failure I 40.6 
853600 Failure I 40.6 

9500 Failure 1 40.6 85 
27000 Fai 1ure 1 40.6 85 
27000 Censored 196 40.6 85 

800 Failure I 46.5 85 
2800 Failure 1 46.5 85 
2800 Censored 48 46.5 85 
500 Failure 1 51.5 85 
800 Fai1u re 1 51.5 85 

2400 FaiI ure 1 51.5 85 
10700 Failure 1 51.5 85 
10700 Censored 49 51.5 85 

100 Failure 1 46.5 45 
1200 Fai 1ure 1 46.5 45 
7500 Fai I u re I 46.5 45 

20000 Failure I 46.5 45 
26000 Failure 1 46.5 45 
27300 Failure 1 46.5 45 
27300 Censored 496 46.5 45 

1000 Failure 1 46.5 5 
1 000 Censored 174 46.5 5 

25 Failure I 62.5 5 
50 Failure 1 62.5 5 

165 Failure 1 62.5 5 
500 Failure 1 62.5 5 
620 Fai1ure 1 62.5 5 
720 Failure I 62.5 5 
820 Failure 1 62.5 5 
910 Failure 1 62.5 5 
980 Failure 1 62.5 5 

1270 Failure 1 62.5 5 
1600 Failure 1 62.5 5 
2270 Failure 1 62.5 5 
2370 Failure 1 62.5 5 
4590 Failure 1 62.5 5 
4880 Failure 1 62.5 5 
7560 Failure 1 62.5 5 
8730 Failure 1 62.5 5 

12500. Failure 1 62.5 5 
12500 Censored 156 62.5 5 
8900 Fai1u re 1 57.0 45 
8900 Censored 49 57.0 45 

Data from Singpurwalla, Castellino, and Goldschen (1975). 
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Table C.17. Percent Increase in Operating Current for GaAs Lasers Tested at 80"C 

Time Unit Number 

(hours) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

250 .47 .71 .71 .36 .27 .36 .36 .46 .51 .41 .44 .39 .30 .44 .5I 
500 .93 1.22 1.17 .62 6 1  1.39 .92 1.07 .93 1.49 1.00 .80 .74 .70 .83 
750 2.11 1.90 1.73 1.36 1 .11  1.95 1.21 1.42 1.57 2.38 1.57 1.35 1.52 1.05 1.29 

1000 2.72 2.30 1.99 1.95 1.77 2.86 1.46 1.77 1.96 3.00 1.96 1.74 1.85 1.35 1.52 
1250 3.51 2.87 2.53 2.30 2.06 3.46 1.93 2.1 1 2.59 3.84 2.51 2.98 2.39 1.80 1.91 
1500 4.34 3.75 2.97 2.95 2.58 3.81 2.39 2.40 3.29 4.50 2.84 3.59 2.95 2.55 2.27 
1750 4.91 4.42 3.30 3.39 2.99 4.53 2.68 2.78 3.61 5.25 3.47 4.03 3.51 2.83 2.78 
2000 5.48 4.99 3.94 3.79 3.38 5.35 2.94 3.02 4.11 6.26 4.01 4.44 3.92 3.39 3.42 
2250 5.99 5.51 4.16 4.11 4.05 5.92 3.42 3.29 4.60 7.05 4.51 4.79 5.03 3.72 3.78 
2500 6.72 6.07 4.45 4.50 4.63 6.71 4.09 3.75 4.91 7.80 4.80 5.22 5.47 4.09 4.1 1 
2750 7.13 6.64 4.89 4.72 5.24 7.70 4.58 4.16 5.34 8.32 5.20 5.48 5.84 4.83 4.38 
3000 8.00 7.16 5.27 4.98 5.62 8.61 4.84 4.76 5.84 8.93 5.66 5.96 6.50 5.41 4.63 
3250 8.92 7.78 5.69 5.28 6.04 9.15 5.1 1 5.16 6.40 9.55 6.20 6.23 6.94 5.76 5.38 
3500 9.49 8.42 6.02 5.61 6.32 9.95 5.57 5.46 6.84 10.45 6.54 6.99 7.39 6.14 5.84 
3750 9.87 8.91 6.45 5.95 7.10 10.49 6.1 1 5.81 7.20 11.28 6.96 7.37 7.85 6.51 6.16 
4000 10.94 9.28 6.88 6.14 7.59 11.01 7.17 6.24 7.88 12.21 7.42 7.88 8.09 6.88 6.62 

All percent increase values at time 0 are equal to 0. 



TABLES 643 

Table C.18. Block Error Rates for Magneto-Optical Data Storage Disks Tested at 80"C 
and 85% Relative Humidity 

Hours 

Disk 0 500 1000 1500 2000 

1 .621 .663 1.200 1.260 1.210 
2 .624 ,660 .733 1.010 I .840 
3 .526 ,562 .630 341 .862 
4 .444 ,542 .573 .815 .903 
5 1.330 1.430 1.430 1.590 1.750 
6 .414 ,456 .446 .606 .759 
7 .435 .483 .54 1 .525 .615 
8 .313 .382 .45 1 .515 .695 
9 .824 ,637 .806 1.220 1.450 

10 .499 .642 .669 1.220 1.080 
1 1  .467 .568 .690 .716 .844 
12 .536 .626 .658 .759 370 
13 .865 .934 I .050 1.130 1.250 
14 .398 .462 3 7  .615 .737 
15 .430 .499 .546 .610 .669 
16 .308 .324 .37 1 .493 .658 

Rates given are bytes with errors divided by the total number of bytes, times 10'. Data from Murray ( 1993). 
Reprinted with permission. Copyright, Magnetics Society of Japan. 

Table C.19. Scar Width (in microns) Caused by Sliding Metal Wear for Different 
Applied Weights 

Weight Cycles (hundreds) 

(grams) Unit 2 5 10 20 50 100 200 500 
~ ~ ~~~~~ 

10 1 3.2 4.1 4.5 4.7 5.8 6.8 7.7 9.6 
2 2.7 3.4 3.8 3.9 5.4 5.7 6.3 8.4 
3 2.1 2.7 3.1 3.3 4.0 4.6 5.7 6.6 
4 2.6 3.5 4.0 4.0 5.2 6.1 6.7 8.5 

50 5 7.5 7.8 8.2 10.6 12.6 13.3 12.9 14.8 
6 7.5 8.1 9.8 10.9 14.8 16.1 17.3 20.2 
7 7.0 8.9 9.4 11.1 12.4 13.5 16.7 17.3 
8 7.8 8.9 10.0 11.5 13.7 16.2 16.2 21.0 

100 9 12.5 15.4 17.2 20.5 24.1 27.0 29.4 37.9 
10 11.0 13.9 16.1 18.6 22.2 27.8 31.0 36.6 
1 1  13.0 15.1 18.6 20.2 23.9 29.7 31.5 39.6 
12 11.7 13.7 16.7 17.5 22.3 25.3 32.0 38.2 
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Table C.20. Normal Distribution Fisher Information, Large-Sample Approximate Variance-Covariance Matrix Entries, 
and Other Factors for Planning NormaYLognonnal Distribution Life Testswith Censored Data 

1 
5‘ fl1 f 2 2  fi2 i 

U -
v, 

-3.0 .I3 .O 1467 .I3583 - .04438 6001.31 647.931 1960.68 .99430 68.1891 7.36202 
-2.8 .26 .02478 .20153 - .07015 275 1.23 338.3 13 957.667 ,99264 40.3532 4.962 14 
-2.6 .47 .040 16 ,28463 -.I0589 1297.27 183.052 482.607 .99036 24.8990 3.5 1339 
-2.4 .82 .06245 3 8 2 6 4  -.I5260 628.580 102.590 250.686 .987 18 16.0128 2.6 1345 
-2.2 1.39 ,09322 .48976 - .20998 3 12.728 59.5263 134.078 .98270 10.7269 2.04181 
-2.0 2.28 ,13371 .59734 - .27592 159.661 35.7402 73.7498 .97630 7.47860 I A7408 
- 1.8 3.59 .18451 .69536 - ,34639 83.6383 22.1926 41.6638 .96706 5.41988 1.43811 
-1.6 5.48 .24529 .77473 -.41570 44.9858 14.2432 24.1386 .9536 1 4.07682 1.29078 
-1.4 8.08 ,31476 .82978 - .47734 24.8920 9.4423I 14.3192 ,93401 3.17699 1.20513 
- 1.2 11.51 39070 .86008 - ,52495 14.2242 6.46160 8.68176 .90557 2.55948 1.16269 
-1.0 15.87 .47022 .87084 - ,55353 8.44766 4.56136 5.36957 36502 2.12668 1.14831 
-.8 21.19 . 5 5 m  .87193 - .S6028 5.26120 3.3 1921 3.38069 30899 1.8 1789 3.14688 
-.6 27.43 ,627 19 .87S50 - .54498 3.47293 2.48793 2.161 85 .73546 1S9442 1.1422I 
-.4 34.46 .6988 I 39314 - ,50996 2.453 18 1.91942 I .40071 .64550 1.43100 1.1 1964 
- .2 42.07 .76293 .93338 - ,45948 1.86310 1.52288 .91716 54450 1.31073 1.07138 

.o 50.00 .I31831 1.00000 -39894 1 .5 1705) 1.24145 .60523 .44101 1.22203 1.00000 
7 57.93 .86449 1.09172 -.33400 1.31180 1.03877 ,40133 ,34380 1 .  15675 .91599.L 

.4 65.54 .90 170 1.20294 - .26976 1. I8876 .89108 .26658 .2590 1 1.10901 .83130 

.6 72.57 .93069 1.32534 -.21026 1.11442 ,78257 .I7680 .I8932 1.07447 .75452 

.8 78.81 ,95252 1 . a973  -. 15819 1.06923 ,70251 . I  1667 .I3462 1.04985 .68978 
1.O 84.13 .9684 1 1.56779 - . I  1490 1.04168 .64344 .07634 .09325 1.03262 .63784 
1.2 88.49 .97961 1.673 17 - .(I8058 I .02488 .6oO04 .04936 .06294 I .02082 ,59767 
1.4 91.92 .98723 I .762 12 - .OS455 1.01467 56847 .03141 .04136 1 .O 1294 56750 
1.6 04.52 ,99225 1.83336 -.03565 1.00852 54583 .O 1961 .02643 1.00782 .54545 
I .8 96.4I .99s44 1 .88766 -.02249 1.00485 32990 .O 1 197 .01641 1.00458 52976 
2.0 97.72 .99740 1.92712 - .O 1369 1.00270 .5 1896 ,00712 ,00987 1 .W261 .5 189I 
2.2 98.61 .99857 1.95450 -.00804 1.00147 .5 1 I66 ,00412 .00576 I .00144 .51164 
2.4 99.18 ,99923 1.97267 - .00456 1.00078 ,50693 .00231 .00325 1.00077 50693 
2.6 99.53 .99960 1.98420 - .00249 1 .o0040 ,50398 .00126 .OO1 77 1.o0040 50398 
2.8 99.74 .99980 1.99121 -.00131 I .00020 5022 1 .OOO66 .oO093 1.00020 50221 
3 .O 99.87 .99990 1.99530 - ,00067 1 .00010 50118 .o0033 .ooo47 1.OOolO .so118 

x 100.00 1 .o(KHH) 2.00000 .m 1 .m . 5 m  -.m .m 1 .m . 5 m  
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exponential distribution, 253 

function of roundoff, binning, censoring, and 

truncation, 625 

LFP model, 251 

location-scale and log-location-scale 

distributions, 24 I ,  250 

observed, 62 1,626 
regression models, 25 I ,  436 

test planning, 625 

truncated distributions, 25 I 


FITS, 30 

FMEA, 389 

FMECA, 389 

Frechet distribution, 102, 115 

Functions of random variables, distribution of, 
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Gamma distribution, 98 

comparison between lognormal and Weibull, 

256 

ML fitting, 256 


Gamma function, 85 

incomplete, 99 

inverse incomplete, 99 


Generalized gamma (GENG) distribution, see 
Extended generalized gamma 
distribution 

Generalized threshold-scale (GETS) distribution, 
113, 1 I8 


Gompertz-Makeham (GOM A) distribution, 85,  

108 


Goodness of fit, 127. See also Simultaneous 
confidence bands for F ( r )  

Graphical estimation, 147 

Greenwood’s formula, 55 

Guarantee parameter, see Threshold 
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HALT, 5 I9 location-scale distribution, I74 
Hazard non log-location-scale distributions, 255 

average, 30 nonregular models, 36,623 
constant, 79 poorly behaved, 255,265-266,280 
cumulative, 29, 45, 67 profile 
estimation of, 191 function of parameters, 182-1 84 
function, 7, 28, 77 parameters, 180-1 82,  265, 597 

decreasing, 80, I 18 ratios, 626 
increasing, 80, 85, 1 I8 ratio test, 185, 627 

plot, 149 regularity conditions, 62 1-623 
rate in FITS,30 regular models, 36, 622 

HPP, 407 relationship to sample size, I58 
relationship to exponential, 80,154, 407 specification, 3 6 4 1  
test for NHPP alternatives, 409-4 I 1 ,  420 Limited failure population (LFP), 263. 27 I ,  284, 

59 1 
Independent Logarithms base- 10,82, I27 

increments, 406 Logistic 
times between recurrences, 408 distribution, 88 

Inference, basic ideas, 48 likelihood, 174 
Influence analysis, 460. See cilso Sensitivity transformation, 56 

analysis Log likelihood 
Inspection data, see Censoring, interval contribution, 157. See also Likelihood 
Inspection interval, choosing, 10, 169 large-sample approximation, 186 
Interaction, 449 ,485486.5  14, 547 partial derivatives, 197 
Inverse-Gaussian (IGAU) distribution, 103 quadratic approximation, 186,628 

ML fitting, 260 Loglogistic distribution, 88 
Inverse power relationship, 4801184 . Lognormal (LOGNOR) distribution, 82 

comparison with Weibull, 176, 257. 259, 169, 
Jacobian. 619 282 

estimation with given U ,  192 
Kaplan-Meier estimator, 67 induced failure time in ADT analysis, 573 

likelihood function, 174 
Laplace trend test, 409 quantiles ML variance factors, 243 
Largest extreme value (LEV) distribution. special case of EGENG, 258 

86 three-parameter, I 1 1 ,  273-274, 277. 279-283 
Lewis-Robinson trend test, 409 LSINF, 25 1 
Life table estimate, 64 
LikeI ihood Maintainability, 370 

constant of proportionality, 37, 39 Markov model, 388-389,578 
contribution Maximum likelihood, see ML estimation 

general data, 40 MCF, 395-405 
interval-censored, 37 comparison, 404-406 
left-censored, 38 confidence intervals, 398 
randomly censored, 4 I adequacy of, 402 
right-censored, 38, 174 NHPP, 406 
total, 39 nonparametric estimate, 397 

correct, 165, 169,275,277 parametric estimate, 4 1 4 415 
curvature, 162. 237.62 1 Mean cumulative function, see MCF 
density approximation. inadequacy of, Mean time between failures (MTBF), 394,408 

169,277,284 Mean time to failure (MITF),  77 
empirical, 68 Military Handbook test statistic, 409 
graphical display, 158, 255 Mixture distributions, 115-1 19, 284, 583 
grouped data. 42 ML estimation 
inference, R6,42 asymptotic normality, 237, 625 
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basic concepts, 153-1 59 multiply censored, 5 2 , 5 7  
covariance matrix right truncated, 270 

functions of location-scale parameters, 242 singly censored, 47 
log-location-scale distributions, 240 Nonrepairable units, 19 
relationship to Fisher information, 237 Normal (NOR) distribution, 80,452 
relationship to log likelihood curvature, 237, applications, 8 1 

62 1 likelihood function. I74 
given parameter, 192-1 97 Numerical methods, 442 
large-sample approximations, 237 
mixture distributions, 284 Observational data, 267,606 
nonparametric, 53 
standard error, approximate, 237 P-P plot, 444 
standard error, estimate of, 50, 55, 166, 187, Parallel system 

189, 193,43&438 cdf, 374 
theory, 168,621,622628 component dependency, 375 
variance, approximate, 236 ML estimation, 381 
variance, factors for reliability as function of component reliability, 

complicated censoring, 25 I 375 
functions of location-scale parameters, 242 Parameter 
hazard, 246 function of explanatory variables, 429. Scv cr l so  
multiple censoring, 250 Regression 
quantiles, 243 guarantee, se'c Threshold 

zero failures, 167, 195 location, 78 
Model adequacy, 50 I ,  604 scale, 78 
Multinomial shape, 82,85,89, I 10, 136 

cdf, 33 threshold, 1 1  1 
failure-time model, 32 Parameterization, 3 ,  77,90, I8 1 ,  285 

Multiple causes of failure, 35,59,382,523,630, Paris-rule. 3 19 
634 Part count, 372 

ALT, 523 ,53 1 Performance degradation, 323, 325. Sro d . s o  
incomplete information, 385,525, 591 Degradation 
series model, 385 Peto-Turnbull estimator, 65, 68 

PH model, 455458,460 
Nelson-Aalen estimator applications in reliability, 458 

cumulative hazard, 67 not Weibull baseline, 457 
relation to hazard plot, 149 relationship to SAFT, 457 
theory, 67 semiparametric, 458 

NHPP, 407 time transformation, 456 
Bayesian methods, 420 Weibull baseline, 457 
confidence intervals, 416 Pitfalls 
generating pseudorandom realizations, 4 17 ALT data analysis, 522-528 
loglinear model, 407 life data analysis, 22, 601 
ML estimation, 4 12 Planning accelerated life test, see ALT planning 
power-model, 407 Planning life tests, see Test planning 
prediction, 4 16 Planning values. 232,535,548 

Nonhomogeneous Poisson process, see NHPP on probability paper, 233 
Nonparametric bootstrap, see Bootstrap, Point process model, 394,420 

non parametric Poisson distribution, 195,407 
Nonparametric estimation Poisson process, 406 

confidence interval, see cilso Confidence homogeneous, see HPP 
intervals nonhomogeneous, .set' NHPP 

cumulative hazard, 67 Posterior, ser Bayesian methods 
failure probabilities Prediction intervals 

left truncated, 268 approximate, analytical, 3 12 
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Prediction intervals (conrinued) 
calibration, 300, 3 12 

complete lognormal data, 299 

coverage probability, 293 

exact simulation methods, 3 12 

exponential Type I1 censored data, 300 

information needed for, 29 1 

likelihood based, 3 I2 
motivation, 290 

multiple samples, 304 

naive intervals, 293 

new sample, 290 

number of recurrences (NHPP), 4 16 

one-sided, 290 

pivotal method, 296 

probability prediction, 292 

simple cases, 298 

statistical prediction, 293 

two-sided, 290 

Type I censoring, 297 

Type I1 censoring, 296 

within sample, 290 


Prior, see Bayesian methods 
Probabilistic design, 604 

Probability paper. see Probability plots 
Probability plots 

applications, 141 

bend or curvature, 141, 144,385,585 
compare distributions, 132 

complete data, 149 

display planning values, 232 

estimates. graphical, 126, 144 

exponential, 124 

gamma, 137 

generalized gamma, 138 

given shape parameter, 136,274 
given threshold parameter, 274 

goodness of fit, graphical, 127 

grid lines, 144 

linearizing a cdf. 123-127, 137-139 

location-scale-based distributions, I23 
lognormal, 125 

non log-location-scale distributions, 136-14 1 

normal, 125 

plotting positions, 128-129 


censored data, 132, 135 

reading parameter values from, 126 

simulation to assess variability, 141, 149 

simultaneous confidence bands, 127 

summary of plot scales, 142 

three-parameter Weibull, 137,274 
unknown shape parameter, 136 

Weibull, 127 
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Product comparison, 450, see also Comparison 
combined analysis, 454 

separate analysis, 452 


Product design processes, 602 

Product limit estimator, see Nonparametric 

estimation 
Profile likelihood, see Likelihood 
Propagation of error, see Delta method 
Proportional hazards model, see PH 
Pseudo failure times, 337, 574 

Pseudorandom samples 

continuous distribution, 9 I 

discrete distribution, 93 

efficient generation, 9 1 

exponential, 7 1 

failure-censored, 92 

generation, 93 

NHPP, 4 17 

of order statistics, 93 

time-censored, 92 

uniform, 9 1 


Q-Q plots, 445 

Quantile, 3 I ,  77. See also Distribution 


Random sample generation, see Pseudorandom 
samples 

Recurrence, see also MCF 
comparison of two samples, 404 

data, 394,400,402,42 I ,  63 1 

nonparametric model, 395 

parametric models, 406408 

rate, 395 

trend tests 

Laplace. 409 

Lewis-Robinson, 409 

MIL-HDBK- 189,409 

Redundancy, 602 

Regression, see also ADT ALT 

checking assumptions, 443-447 

confidence intervals, 436 

Cox-Snell residuals, 443 

diagnostics, 445 

empirical models, 442 

examples, 13-1 5 ,428429 
indicator-variables. 450 

likelihood, 433 

models, failure-time, 429435,447-450, 

455460.469 
multiple, 447 

nonconstant spread, 439 

product comparison, 450 

quadratic, 439 
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residual analysis, 443,460, 501-502, 

507 


simple linear, 432 

standard errors, 436 


Regularity conditions, 621-623 

Relative likelihood, 158, 175. See also 


Likelihood, profile 
Reliability. 2, 28 


assurance, 602 

data 

components, 19 

distinguishing features, 3 

examples, 4 

nonrepairable units, 19 

reasons for collecting, 2 

sources, 380 

synonyms, 3 


environmental effects, 17 

function, 28 

growth, 420 

improvement, 388,601,602-606 
quality, relationship to, 2 

quantities of interest, 76 

study planning, 20,231 
test, see also ALT 

audit, 606 

demonstration, 247 

prototype, 467.5 I9 
qualification, 467 

screening, 467, 519. See also 


Screening 
Reliability data, sources of, 22 

Reliability practice 

modem approach, 604 

useful tools, 604 


Renewal processes, 408 

Repairability, 370 

Repairable system, 19. See also Recurrence 

data, 20, 394 

models and analysis, 420 


Residual analysis, see Regression, residual 
analysis 

Risk set, 53 

Robust-design, 605 


S-N curves, 595 

Safety factors, engineering, 602 

S A R ,  430-43 1 ,476479 
Sample size 

effect on 
inferences, 234 

interval size, 158 

likelihood shape, 158 


needed to estimate 
functions, positive, 239 

functions, unrestricted, 238 

hazard, 245-247,25 1 

log-location-scale parameters, 24 1 

mean, 238-239 

quantile, 242, 244, 25 1 

shape parameter, 24 1 

U ,  241 


Sampling distribution, 49 

Sampling error, 49 

Screening, 270,467,519,520-52 1 

Sensitivity analysis, 445,489,604 
Serial correlation, test for, 4 1 1 

Series system structure 

cdf, 37 1,385 
component dependency, 37 1 

hazard function, 37 1 

reliability, 37 1 

Weibull components, 372 


Series-parallel system structure 
component-level redundancy, 377 

system-level redundancy, 377 


Signal-to-noise ratio, 78 

Significance level, I6 1 

Simultaneous confidence bands for F ( r ) .60,67, 

127, 197 

goodness of fit,  relation to, 127, 149 

logit transformation based, 67 


Skewed distribution, I 1  1 

ML fitting, 283 


Smallest extreme value (SEV) distribution, 83-84, 

279 


Software 
package capabilities, 22 

to use with this book, xviii,  3 


Software reliability, 4 I9 
Spread and skewness, parameter comparison, 

110 

Staggered entry, 8,35, 193.3 I0 
Standard deviation, 77 

Standardized 

log censoring time, 240 

log estimation time, 245 


Stationary increments, 407 

Stress corrosion, 7 

STRIFE, 5 19 

Sudden death tests, 250 

Superimposed renewal processes, 408 

Survival function, 28 

System 

basic concepts, 370 

cdf, 370 
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System (continued) 
structure 

bridge-system, 378 

k out  of s,379 

other, 386 

parallel system, 374-376 

series system, 370-374 

series-parallel, 3 76-3 78 


System reliability, 369, 389 

component dependency, 386 

component importance, 388 

confidence intervals, 38 1 

estimation from component data, 380-386 

Markov models. 388 

state-space models, 388 

systems with repair, 386 


System repair data, see Recurrence data 

Target population, I5 
Target process. 15 

Taylor series. .see Delta method 
Temperature acceleration. see Acceleration, 

Arrhenius 
differential factor (TDF). 472 


Test planning, 17. SPPril.co ADT planning; ALT 
planning 

approximate properties, 236-238 

demonstrate conformance, 247 

failure (Type 11) censoring, 250 

non log-location-scale distributions, 25 I 

planning values, 232, 535, 548 


sources for. 236 

uncertainty in, 236 


simulation for, 233 

Three parameter distributions, see Threshold 

distributions 
Threshold distributions, 1 1 1 1 18, 273. Set crl.so
~ 

Generalized threshold-scale 
correct likelihood, 275 

density approximation inadequacy for ML 

fitting, 284 

ernbttcided models, I 12-1 13, 277, 284 

ML fitting, 276, 284 

probability plotting. 284 


Time acceleration, see Acceleration 
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Time scales, 18, 22, 523 

Time transformations, 460. See o l s o  Acceleration 

general, 459 

PH, 456 

S A R ,  430 


Total time on test, 166, 240 

Trend tests, 409 

Truncated data, 4 I ,  68, 266, 284 


distributions, 266 

examples, 266,270 
Fisher information matrix, 284 

left, 266 

likelihood, 268, 27 1 

ML fitting, 269 

nonparametric estimation, 268. 270, 284 

right, 270 


Two-sample comparison, .see Comparison. two 
samples 

Use-rate acceleration, 17, 468, 470 


Variance, 77 

factors for ML estimates, 240, 243, 246 


algorithm to compute, 24 I 

Variance-covariance matrix, .we Covariance matrix 
Voltage acceleration, 4 7 9 4 8 5  


mechanism. 480 


Wald statistic, see Confidence intervals, 
normal-approximation 

Warranty data, 270, 287, 380, 606 

Wear, 489. See crlso Examples, wear 
Weibull distribution, 85 


alternative parameteriration, 86 

applications, 86 

comparison with lognormal, 177. 257. 259, 269, 


282 

likelihood function, 174 

maximum likelihood equations, 201 

special case of EGENG, 257 

three parameter, I I 1 ,  276-277. 282 


Zero- fai lure 
confidence bounds, 147, 195 

demonstration plans. 247 
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