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Preface 

The last decade has seen the universal application of personal computers to lighting engineering 
problems on a day-to-day basis. No longer is the power of the computer invoked just for that 
large prestige job, the computer is constantly in use in lighting engineering laboratories and 
lighting design offices. This means that many calculations that were previously impracticable are 
well within the reach of any engineer or, for that matter, any person who has access to an appro- 
priate computer program. However, there can be dangers if the application engineer does not 
have a grasp of the underlying principles used in the calculation processes. 

In this book we set out to give the reader the mathematical background to the calculational 
techniques used in illuminating engineering and link them to the applications in which they are 
used. In addition, we give details of photometric measurements, as a knowledge of these is 
necessary to understand the origin of the basic data used in the calculations and to check that the 
calculated performance requirements are met. We hope, also, the material will be of use to those 
who wish to write their own computer programs, and that it will be of didactic value. 

To keep the treatment as concise as possible we have assumed that the reader has a basic 
knowledge of lighting engineering. 

Some of the material in this book is an update of material used in a book we published in 1968 
entitled Lighting Fittings- Performance and Design (Pergamon Press). That book was well 
received and it was the demand for a new edition from many of our colleagues that provided the 
primary spur for us to produce the present book. Motivation also came from our inner urge to 
write a book encompassing the modem calculation methods and from the encouragement of our 
publishers, in the persons of Eliane Wigzell and Kirsty Stroud. We sincerely hope that we have 
fulfilled our objectives. 

There are many people we would like to thank. Jacques Lecocq of Thorn Europhane entered 
into long correspondence with Mr Simons on such topics as interpolation and the rotation of 
luminaire axes, and helped to put these on a sound mathematical basis. Kit Cuttle and Kevin 
Mansfield read the scripts and made many useful suggestions. Professor Peter Tregenza and 
Dr Paul Littlefair gave valuable advice on the chapter on daylight. Among the other people we 
consulted were Mr R. Lamb of the NPL and Mr J. A. Lynes, who also made valuable contributions. 

Dr Bean is grateful to his wife for her extreme patience in decoding his manuscripts and so 
ably transferring them to the word processor. Both authors are grateful to their wives for provid- 
ing moral support during the long time this book took to write. 

A. R. Bean 
R. H. Simons 

13 December 1999 
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1 
The Light Field of a Luminaire 

1.1 Coordinate system 

All light sources can be thought of as creating a light field, extending from the source in all, or 
some, directions (that is, a region in space filled with electromagnetic radiation within the visi- 
ble range). In general, this characteristic field exists in space until interrupted or modified by a 
medium other than air, e.g. a wall. 

If this light field distribution is to be studied and recorded in some way then a number of 
things must be done. First, a means of describing the position of any point in space relative to 
the light source must be established; second, a system of quantities and units must be devised to 
enable the lighting measurements to be taken in a meaningful way. 

This first section deals with the first requirement, that is, a means of relating the point in 
space at which, say, a measurement is taken with respect to the position of the luminaire or 
lamp. 

When a suitable spatial reference system is set up it would be convenient if the light source 
could be regarded as being small enough relative to the measurement apparatus as to be treated 
as a point lying at the origin of the reference system. The convenience is a mathematical one, 
since it greatly simplifies analysis. 

Clearly, light sources may be of any size and the method adopted must be able to take this 
into account. The most common method is to ensure that the light path from the light source to 
the detector is sufficiently long for the light field to have taken on the form in that region of space 
of a theoretical point source of light of the same output and configuration. 

It has been found that for many light sources this condition is fulfilled to an accuracy of 1% 
if the distance to the detector is five times the major dimension of the light source. 

The implications are that, for large light sources, the measurement distance may need to be 
12 m. For floodlights and luminaires with optical systems, these distances may need increasing 
up to 30 m (or more). This is because the light field distribution depends upon the flashing of the 
optical components more than the size of the luminaire (see Chapter 15). 

Before we turn to the spacial reference systems adopted in practice, it is worth explaining how 
measurements taken at, say, 12 m can be used to calculate the performance of the luminaire at 
interior working distances which might well be 2 or 3 m. 

The assumption is made that a large light source, say a luminaire, can be considered to consist 
of a number of small luminaires, each emitting the appropriate fraction of the total output and 
having the distribution characteristics measured at the correct (long) photometric distance for the 
whole luminaire (see Figure 1.1). 

In this computer age the multiple calculations this entails present little difficulty. 
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Fig. 1.1 The luminaire considered to consist of a number of small luminaires for calculational purposes (in 
this case 24) 

1.2 Practical  coordinate systems 

Once the assumption can be made that the origin of the light distribution is a point, then that 
point can be considered to lie at the centre of a sphere, the size of which can be related to the 
measurement distance, i.e. the distance of the detector from the luminaire reference point. 

Measurements taken in different directions could be marked on a diagram of a sphere with an 
appropriate set of angular coordinates (see Figure 1.2). 

Three such angular reference systems are shown in Figure 1.3(a), (b), (c), (d), (e) and (f). All 
these systems are based on the familiar longitude and latitude system of spherical coordinates, 
but differ in orientation of the polar axis. 

Figure 1.3(a) shows a system similar to that used on terrestrial maps. 
Figure 1.3(b) is, in effect, the same system turned through 90 ~ 
Figure 1.3(c) is Figure 1.3(b) rotated a further 90 ~ so that it is, in effect, Figure 1.3(b) viewed 

'end on'. 
Systems based on these three ways of arranging angular coordinates have been described by 

the CIE (CIE 121-1996) and symbols have been agreed so that, once the symbols are quoted, 
the system referred to is defined. 

The system shown in Figure 1.3(a) is designated the C, y system. 
The system shown in Figure 1.3(b) is designated the A, a system and the one shown in Figure 

1.3(c) is designated the B, fl system. 

Fig. 1.2 A sphere with a possible system of angular coordinates 
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;,~ P o l a r  
' axiS 

y = 1 1 8 0  o (A,a) = 1 8 0  ~ 0 ~ (B,,8) = 1 8 0  ~ 0 ~ 

C-- 00 f 3 
y - 0 ~ P o l a r  ( A , a )  - 0 ~ 0 ~ P o l a r  (B,,8) = 0 ~ 0 ~ 

axis axis 

C a B 

(a)  (b) (c) 

(d) (e)  (f) 

Fig. 1.3 (a) A coordinate system similar to that used on terrestrial globes; (b) the coordinate system 
turned through 90 ~ (note the different origin for 'latitude' measurements); (c) the coordinate system 
rotated a further 90 ~ to give an 'end on' view; (d) as (a) but using the 'book page' method of display; 
(e) as (b) but using the 'book page' method of display; (f) as (c) but using the 'book page' method of 
display 

Since each of these systems relates to points on a sphere, measurements taken using a 
photometer following one system can be related, by appropriate angular conversions, to any of 
the others and expressed in terms of that system (i.e. a computer program that receives the data 
from the photometer could ensure that the data are printed out in the form required by the user, 
although this would introduce the possible inaccuracies of interpolation). 

The first designating letter relates to the plane of measurement, e.g. C planes, B planes, A 
planes, while the Greek letters a, fl and ?' refer to the angles of measurement in the specified 
plane. 

It is sometimes found helpful to think of the planes as though they were pages of a book and 
the CIE document uses this approach. Figure 1.3(d), (e) and (f) show this method of illustra- 
tion. 
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The use of these three coordinate systems is restricted by the following conventions: 

(1) The system of C planes is considered oriented rigidly in space and does not follow any tilt 
of the luminaire. 

(2) The A and B planes systems are considered to be coupled rigidly to the luminaire and so 
would follow any tilt of the luminaire. 

1.3 Transformation of coordinate systems 

It was mentioned in the previous section that the three coordinate systems described so far are, 
of necessity, interrelated and so transformation from one system to another is straightforward. In 
this section, the details of these transformations are given together with the derivation of the 
necessary formulae. 

1.3.1 TO TRANSLATE ANGLES MEASURED ON THE A, a SYSTEM TO THEIR 
EQUIVALENT IN THE C, 7 SYSTEM AND VICE VERSA (see Figure 1.4) 

To translate from A, a to C, 7 from Figure 1.4: 

tan C = RP/RT 

RP QR 
= X 

QR RT 

tan C = tan a/sin A 

COS ~' = 

So, 
Also, 

QT 
QP 

~ - ~  e 

S 
R 

P 

Fig. 1.4 The relationship between the A, a system and the C, 7 system 



So, 

So, 

So, 
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QT RQ 
• 

RQ QP 

cos ?' = cosA x cos ct 
To translate from C, ), to A, a from Figure 1.4: 

tan A = 
RT 

QT 

RT TP 
• 

TP QT 

tan A = c o s  C x tan 7 

Also, 

sin a = 
RP 

QP 

R P  T P  
= • 

TP QP 

s i n a  = s i n C  x s i n 7  

1.3.2 TO TRANSLATE ANGLES MEASURED ON THE A, ct SYSTEM TO THEIR 
EQUIVALENT ON THE B, fl SYSTEM AND VICE VERSA (see Figure 1.5) 

To translate from A, a to B, fl from Figure 1.5" 

P 

R 
$ 

Fig. 1.5 The relationship between the A, a system and the B, fl system 
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tan B = 
QT 

QP 

QT PR 
x 

PR QP 

So, t anB  = t a n a / c o s A  

Also, 

sin 13 = 
ST 

SP 

ST PR 
• 

PR SP 

So,  s i n f l  = s i n A  x c o s a  

To translate from B, fl to A, ct from Figure 1.5" 

tan A = 
QR 

PQ 

QR PT 
- -  X 

PT PQ 

So, tanA = tan f l /cosB 
Also, 

sin a = 
RS 

PS 

So, 

RS PT 
x 

PT PS 

s i n a  = s inB x cosf l  

1.3.3 TO TRANSLATE ANGLES MEASURED ON THE B, fl SYSTEM TO THEIR 
EQUIVALENT ON THE C, ?" SYSTEM AND VICE VERSA (see Figure 1.6) 

To translate from B, fl to C, ?' from Figure 1.6: 

tan C = 
RS 

QR 

QT QT PT 
= X 

ST PT ST 
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~ p 

T 

Fig. 1.6 The relationship between the B, fl system and the C, 7 system 

So, tan C = sin B / t a n  

Also, 

PQ PQ PT 
C O S  ~' = = X 

PS PT PS 

So, cos y = cos B x cos/3 
To translate from C, y to B,/3. 
Using the method employed above and by reference to Figure 1.6 it can be shown that: 

tanB = s inC • tany  

and sinfl = cosC  x s in7 

1.3.4 APPLICATION OF THE TRANSLATION FORMULAE 

Whilst the derivation of the formulae has been straightforward, their application presents three 
major problems. These are: 

(1) the tangent of 90 ~ is infinite, and therefore cannot be processed by a computer; 
(2) division by zero, which occurs in certain instances, is inadmissible for computer calcula- 

tions; 
(3) the conditions for finding the quadrant in which the result lies are difficult to determine, 

especially for computer programming. 

For manual calculations, both these problems can be solved by using the webs for the differ- 
ent systems, as in Figure 1.3(a), (b) and (c). The point to be transformed is plotted on the web 
for the initial coordinate system and then transferred to the web for the required coordinate 
system. This need not be done accurately as its purpose is simply to determine the correct 
quadrant for the result. For computer calculations, the conditions for determining the correct 
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quadrant for translation of C, ?' coordinates to B, fl coordinates, and vice versa are given in 
Section 2.4.3. 

The A, a coordinate system is rarely used and is not given further consideration. 

1.4 Solid angle 

In the previous sections the means of specifying the direction in which the light is travelling rela- 
tive to the light source producing the light rays was considered and the coordinate systems in 
common use described. 

For a practical transfer of energy to take place, a bundle of rays constituting light flux (r 
emanating from the light source must also be considered and this requires a means of defining a 
multidimensional angle (called a solid angle) such as that shown in Figure 1.7. 

When this solid angle is infinitesimally small then a particular direction can be uniquely 
defined. When the solid angle is large then an angular zone is defined. 

Just as a plane angle is defined in terms of a circle and its magnitude taken as a ratio of the 
arc subtended on the circumference of the circle to the radius of the circle (radians), so, in an 
analogous way, the solid angle is defined as the area subtended on the surface of the enclosing 
sphere divided by the radius squared. That is: 

A 
solid angle f~ = m steradians (see Figure 1.8) 

r 2 

(Thus, the total solid angle subtended by the surface of a sphere at the centre of the sphere is 4Jr 
steradians.) 

As can be seen from Figure 1.8, this definition relates simply to the solid angle subtended by 
the area at the centre of the sphere, so that equal areas of quite different shape can subtend the 
same value of solid angle. 

As the range of directions contained within the solid angle becomes more restricted, the nota- 
tion is generally modified so that 

Source 

Fig. 1.7 The meaning of solid angle 



Fig. 1.8 Solid angle in relation to a sphere 

1.4 Solid angle 9 

where df~ refers to an infinitesimally small solid angle and so it can be related to a specific direc- 
tion. 

1.4.1 THE SOLID ANGLE SUBTENDED BYA DISC (ATA POINT ON ITS AXIS) 

The solid angle subtended by a disc of radius R is the same as that subtended by the cap of a 
sphere that has the same radius at its mouth and subtends the same angle from the centre of the 
sphere (see Figure 1.9). 

The area of the spherical cap is given by: 

Fig. 1.9 The solid angle subtended by a disc 
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solid angle 
for the disc 

~ 2 tcr s i n O r d O 

= 2~'r 2 sin 0 dO 

= 2/rr2 [-  cos 01o ~ 

2 ~  2 
= [1 - c o s  7] 

r 

= 2to[l-  cos 7] 

This solid angle depends on the radius of the disc and the distance to the point from which the 
solid angle emanates, measured normal to the centre of the disc. 

1.4.2 THE SOLID ANGLE SUBTENDED BYA RECTANGLE (ATA POINT) 

The integration required to calculate the solid angle subtended by a rectangle is more complex 
than that carried out for a disc, so the result will be obtained by a method suggested by Gershun 
in his book The Light Field published in 1936.1 

The method depends upon the fact that it is a simple matter to calculate the solid angle 
subtended at the centre of a sphere by a lune of the sphere (see Figure 1.10). 

The solid angle of a lune formed by the intersection of two great circles on the surface 
of a sphere, as shown, is given by the ratio of the angle subtended by the lune at the centre 
of the sphere to the angle of the complete circle multiplied by the total solid angle of the 
sphere. 

Lune 

Arc of a great circle 

Fig. 1.10 The solid angle subtended by the lune of a sphere 
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Fig. 1.11 A rectangular solid angle showing one of the enclosing lunes 

So, 

0 
solid angle of lune = • 4x = 20 steradians 

2x 

Now consider Figure 1.11. 
This shows the area cut out by a rectangular solid angle when it intersects the surface of the 

sphere, and also the other area cut out on the other side of the sphere by an equivalent solid 
angle formed by continuing the lines of the first solid angle through to the other side of the 
sphere. 

Also shown is a lune drawn to connect point A on the front cut-out to point B on the rear cut- 
out area located at the other end of the diameter connecting the two areas. 

Similar lunes could be drawn connecting the four comers of each of the cut-out areas together. 
These lunes could then be expanded to fill all the area of the sphere not covered by the areas cut 
out by the rectangular solid angles. An end view of the sphere, showing one of the rectangular 
solid angles and one end of each of the four expanded lunes is given in Figure 1.12. 

The solid angle for the two rectangular solid angles cut out from the sphere 

= 4 n  - ~ 20 

or, since we only require one rectangular solid angle 

f~ = 2 n -  Z O  

For the four lunes of equal angle this becomes 

f~ = 2re - 40 

To obtain the solid angle it is necessary to determine 0. To do this we note that 0 is the angle 
between the two planes that form the great circles and define the adjacent sides of the rectangu- 
lar solid angle. 

To calculate 0 the rectangular solid angle is divided into four equal solid angles, as shown in 
Figure 1.13(a). 
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Fig. 1.12 A rectangular solid angle showing an end view of the expanded lunes 

Since the same angle is repeated at the outer corner of each of the four solid angles only the 
outer angle of one of the solid angles needs to be considered. In Figure 1.13(a) the normals to 
the planes forming the external angle 0 have been drawn so that a plane containing the interior 
angle to the two planes is included. This angle is J r -  O. Since two of the other angles of the 
quadrilateral are each equal to n/2 the fourth angle must be the required angle O. 

To determine 0, apply the cosine rule to the triangle AFC shown in Figure 1.13(b). 

Fig. 1.13(a) The construction for the calculation of the angle between the two planes of the great circles 
(0) 



B 

(3 
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E 

Fig. 1.13(b) The simplified construction for the application of the cosine rule 

Le t  

A F  = FC = 1.0 
AC 2 = A F  2 + FC 2 -  2 A F . F C  cos  0 

= 2 -  2 c o s O  

Also,  

A C 2 =  AB 2 + BC 2 

And  s ince  

AB = E D  
AC 2 = ED 2 + ( B D -  CD)  2 

= cos  2 a 2 + cos  2 a I + (sin 0"2-  sin 0"1 )2, s ince B D  = A E  

= COS2 0'2 + COS2 0"1 + sin2 0"2 - 2 sin 0"2 sin 0"1 + sin2 0"1 
= 1 - sin 2 0"2 + 1 - sin 2 0"1 + sin2 0"2 - 2 sin 0"2 sin 0"1 + sin2 0"1 

= 2 - 2 sin 0"2 sin 0"1 

Giv ing  

2 - 2 c o s 0  = 2 - 2 sin 0"2 sin 0"l 

Hence ,  

cos  0 = sin 0"I sin 0"2 

f~ = 2x - 40  (For the whole  solid angle,  i.e. the four equal  solid angles  added  together)  

03 
= 4 s in - l ( s in  0"1 sin 0"2) s te radians  

or, w h e n  a r ec t ang le  is c o n s i d e r e d  that  has  the apex  of  the p y r a m i d  over  one  comer ,  
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f ~  = sin-l(sin a 1 sin a2) steradians 

or, in terms of linear dimensions for the shaded rectangle in Figure 1.13(a), 

/l/2 
f~ = tan-] d d steradians 

(Note sin - l  and tan -1 are evaluated in radians not degrees.) 

1.5 Light flux, luminous intensity and illuminance 

The light field created by a light source may be considered to consist of light flux emanating 
from the source at the origin of the coordinate system (see Figure 1.14). 

The amount of light flux contained in a given solid angle, f~, indicates the density of the 
light emanating from the source in the range of directions represented by the particular solid 
angle. 

The quotient of flux contained in the solid angle by that solid angle is called the mean lumin- 
ous intensity in that range of directions, i.e. 

f~ 

where �9 = luminous flux and f~ = solid angle. 
Since, at any unobstructed distance from the light source, the light flux contained in the solid 

angle remains constant, the luminous intensity is independent of the distance of measurement 
from the source. Luminous intensity is therefore considered to be a property of the light source 
and can be used to indicate the performance of the light source. 

To indicate the luminous intensity in a specific direction the solid angle must be made infin- 
itesimally small, so 

dO 
I = J 

df~ 

Source 

Fig. 1.14 The light flux contained in a given solid angle 
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The effect of this luminous intensity at different distances from the light source is indicated 
by the area density of the light flux at a particular point in space. This flux density is called the 

Il luminance (E): 

O 
E = u 

A 

where �9 = luminous flux and A = area receiving the flux. 
In the form given above, the i l luminance indicated would be the average i l luminance over 

area A. To indicate the i l luminance at a point, the area is made infinitesimally small so that 

dO 
E =  

dA 

1.5.1 T H E  I N V E R S E - S Q U A R E  L A W  

The relationship between the luminous intensity and the i l luminance it produces can be seen 
from Figure 1.15. In this diagram, two concentric spheres have been drawn with the source at 

the centre. 
Area dA 1 on the inner sphere receives the same amount  of luminous flux as area dA 2 on the 

outer sphere. As the solid angles are the same: 

d ~  = 
dA 1 dA 2 

r12 r22 

and so the luminous intensity producing the il luminance on each area is the same. 

The illuminance at distance r I = dO/dA l = E I. 

The illuminance at distance r 2 = dO/dA 2 = E 2. 

f ~ 
/ ! \ / 

/ I r 2  \ 
/ I k 

/ k 
/ \ 

I I \ \  

' i I 
I 

' 
\ 
\ 

\ / 
\ / 

\ / 
\ / 

\ / 

Fig. 1.15 The inverse-square law 

d~ 
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Now 

dA 2 = 

E2 ~ 

2 r2 
dA 1 2 r 1 

2 d e  r 1 
= ~ E 1 

i_ 1 r2 r22 dA 1 

rl 2 

or 

E2 rl 2 

E 1 r2 2 

This indicates the well-known inverse-square law relationship for point sources of light. It is seen 
that the illuminance varies inversely as the square of the distance of the illuminated point from 
the source. Since large light sources can be considered to consist of a number of point sources, 
this relationship can be applied to all light sources, either directly or (as will be seen later) by 
developing formulae from the inverse-square law for the larger sources. 

1.5.2 THE COSINE LAW 

The surface density of the light flux received by an element of area varies not only with the 
distance from the light source, but also with the angle of the element of area with respect to the 
direction of the light flux. 

The maximum illuminance occurs when the element of area receives the light flux normal to 
its surface (Figure I. 16). 

When the element of area is tilted with respect to the direction of the light flux, the flux 
density on the element is reduced. This can be thought of in two ways. 

_---- - - -  cos 0 

~ ~ . . . ~ . ~ F  _.] v / ~ A ( t i l t e d )  ............ 

Fig. 1.16 The cosine law 
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(i) The tilted area no longer intercepts all the light flux it previously received and so the illum- 
inance falls. 

(ii) If the element is part of a larger surface, the original flux now falls on an element of area 
that is larger than before (~A1). Accordingly, the illuminance falls. 

For case (i) (see Figure 1.16), the intercepted flux is reduced in proportion to the orthogonal area 
receiving it. The amount of flux previously intercepted by fiA was given by 

m •  
~A 

When the element 5A is tilted by angle 0 the amount of flux intercepted by fiA is given by 

~ '  = m ~ A c o s 0  = ~ c o s 0  
fiA 

and the flux received by d~A is reduced by a factor cos 0. 
For case (ii) (see Figure 1.16), if all the flux is intercepted it now falls on a larger element 

d~A': 

~ A  p 

~A 

cos 0 

Applying either of these approaches results in 

E = Ema x cos 0 

In case (i) the reduced flux received by 6A is now �9 cos 0, so 

cos 0 
E =  

~A 

In case (ii) the area receiving the flux �9 is now a larger area 6A': 

dplSA �9 cos 0 
E ~ ~ 

~A' cos 0 ~A 

which is the same result as before. 

1.5.3 THE POINT SOURCE ILLUMINANCE EQUATION 

The illuminance equation for a point source may be written as 

E 

I o cos 0 

aa 

where I o is the luminous intensity of the source in the direction of the illuminated point, 0 is 
the angle between the normal to the plane containing the illuminated point and the line join- 
ing the source to the illuminated point, and d is the distance to the illuminated point (see 
Figure 1.17). 
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Source 

Fig. 1.17 The point source illuminance equation relationships 

To give these concepts a means of practical application, it is necessary to define units in which 
they can be measured. 

1.5.4 LUMINOUS INTENSITY 

The unit of luminous intensity is the candela and the formal definition is: 

Candela 

The candela is the luminous intensity, in a given direction, of a source that emits monochromatic 
radiation of frequency 540 x 1012 Hz and that has a radiant intensity in that direction of 1/683 W 
per steradian: abbreviation cd. 

This definition provides the link between radiant power (measured in watts) and the light that 
is one of the effects of that radiant power. The frequency has to be specified, since the response 
of the human eye to a particular amount of radiant power depends upon its frequency. This value 
is related to the other frequencies (or wavelengths) by an agreed table of values. 

1.5.5 LUMINOUS FLUX 

The unit of luminous flux (lumen) is defined very simply in terms of the candela 

1 lumen = 1 candela x 1 steradian 

So it follows that the luminous intensity in candelas is equal to the luminous flux in lumens 
contained in the solid angle under consideration divided by that solid angle in steradians; that is, 

0 
1 = - -  candelas 

1.5.6 ILLUMINANCE 

The illuminance is the luminous flux falling on a given area divided by that area, 

d~  
E =  

dA 
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The unit of illuminance is the lux, which is equal to one lumen per square metre, abbreviation 
Ix. 

In the USA the footcandle is sometimes used and this is equal to one lumen per square foot. 

1.6 Luminous intensity distribution diagrams 

The performance of luminaires in terms of luminous intensity values related to a coordinate 
system is now frequently held on a computer database, often as part of a wider program for light- 
ing calculations, and this is dealt with in Chapter 2. However, luminous intensity diagrams are 
still common and have a role to play in visually indicating the performance of a luminaire. 

1.6.1 CARTESIAN COORDINATE DIAGRAMS 

Perhaps the simplest form of intensity distribution diagram is one in which a distribution, which 
is symmetrical about the peak intensity, is plotted on Cartesian coordinates with angles from 
the beam axis plotted horizontally and intensity values plotted vertically. This type of diagram 
is particularly appropriate for highly directional projectors, where the rapid change of intensity 
with angle makes the other forms of diagram of less value (Figure 1.18). The limitation is that 
a separate diagram would be required for each plane unless the distribution is rotationally 
symmetrical. 

1.6.2 POLAR COORDINATE DIAGRAMS 

A long-established method of display is to plot the intensity values on polar coordinates. This 
has the advantage of giving a more easily appreciated visual impression of the intensity distrib- 
ution from a luminaire. 

This polar diagram (or polar curve) is produced for a specified plane passing through the 
centre of the luminaire. The intensity at any angle 7 from the downward vertical is indicated by 
the distance from the origin to the curve, as shown. 

5000 

o 

�9 ~ 2500 
._z- 

0 
10 5 0 5 10 

Angles in degrees from beam axis 

Fig. 1.18 The Cartesian coordinate luminous intensity diagram 
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0 

Fig. 1.19 Intensity distribution plotted on polar coordinates 

Circles of equal intensity are usually included to simplify the computation of the intensity in 
particular directions. 

The polar curve shown in Figure 1.19 has been assumed to be measured on one of the C 
planes of the C), coordinate system (see Section 1.2). 

In some cases, the polar curve obtained has the same shape and magnitude on all the C planes 
passing through the luminaire. 

Such a luminaire would be said to have a symmetrical distribution about the vertical axis. 
If the curve shown in Figure 1.19 was for such a symmetrical distribution, it could be rotated 

about the vertical axis to produce a polar solid. Because of the shape of the polar curve chosen, 
the polar solid would be 'apple-shaped' and the polar curve could be likened to the cross-section 
revealed when an apple is cut in half down the centre of the core. 

Polar curves are, in effect, cross-sections of a polar solid and, in many cases, these cross-sections 
have a different shape in different planes. A common example would be the polar curves for the axial 
and transverse planes of a linear fluorescent luminaire (Figure 1.20). Rotating either of the polar 
curves shown about the vertical axis would not produce the true polar solid for the luminaire. 

Figure 1.20 shows the transverse polar curve and the axial polar curve for the vertical plane. 
Representation by transverse and axial polar curves relates to the A, a and B, fl coordinate 
systems: references to Figure 1.3(b), (c) and (e), (f) illustrate these. 

Normally, only one transverse curve is provided, which corresponds to the values for fl = 0 ~ 
or a = 0 ~ on each of the B or A planes. However, each B or A plane has its own axial polar curve. 

It should be noted that in some road lighting literature, a form of polar curve is given for a 
cone through the peak intensity value (that is at constant ?' angle). 

1.6.3 ISOCANDELA DIAGRAMS 

A more comprehensive means of displaying intensity values is to use an isocandela diagram. 
This form of diagram originates from considering the light source to be located at the centre of 
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Axial 

I 

~"  Transverse 

Axial polar curve 

Fig. 1.20 Axial and transverse polar curves 

Transverse polar curve 

a sphere and marking the values of the measured intensity on the surface of the sphere. The 
diagrams are called isocandela diagrams because points of equal intensity are joined to form 
lines similar to map contours. In Figure 1.21(a) and (b) two such plots are shown. 

As long as we consider the sphere and not its projections, the direction of the angular coor- 
dinates has no effect upon the shape of the isocandela curves, but it does alter the way in which 
a particular point on the sphere is specified. 

The advantage of this type of diagram is that it gives intensity information over a much wider 

Isocandela 
lines 

(a) (b) 

Fig. 1.21 (a) An isocandela diagram; (b) the same isocandela diagram but with the coordinate system 
rotated through 90 ~ 
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range of directions than a polar or Cartesian plot of intensity values, which only relate to a single 
plane. 

The disadvantage is the one also faced by map makers; that of adequately representing the 
curved surface of a sphere on a flat plane. 

One of the most useful forms of projection is described below. 

1.6.4 THE AZIMUTHAL PROJECTION 

This form of projection has several advantages from the point of view of the lighting engineer; 
(1) it retains a circular boundary, (2) if the luminaire is tilted relative to the coordinate system 
the isocandela curves retain the same shape (neither of these features is present in the sinusoidal 
projection often used in the past), 2 and (3) areas on the projection are proportional to the solid 
angle. 

The usual C, 7 diagram is obtained in two stages: 

(1) The sphere is viewed down the polar axis so that the parallels appear as circles and the 
meridians as straight lines. The circles are drawn such that the area of the circle is the same 
as that of the cap of the sphere existing on the real sphere between the parallel and the pole. 
Thus, in a simple way, an equal area diagram is produced related to the B, fl system. 

(2) The diagram is now rescaled and the B, fl coordinates for each point are replaced by calcu- 
lating the equivalent C, ?' coordinates using the formulae developed at the beginning of this 
chapter (Section 1.3.1). 

Stage 1 

Consider Figure 1.22(a) and (b). 

Polar axis 

--~- 

(a) (b) 

Fig. 1.22 (a) Side view of the sphere showing the spherical cap of height h and its relationship to angle/3; 
(b) translation of the polar axis view into an equal area projection 
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The area of  the spherical cap is equal to the solid angle subtended by the cap at the centre of  
the sphere multiplied by the radius squared (see Section 1.4.1), Figure 1.22(a): 

area of  cap = 2xR2(1 - sin fl) 

The polar projected view shown in Figure 1.22(b) must  be equal to this area. 
Therefore 

When  

2 trr = 2%R 2 (1 - sin 13) 

r = # 2 R  2 (1 - sin 13) 

= ~2-R~/1 - sin [3 

/3=0 ~ 

r o = ~ R  

Thus, the radius of the projected sphere is ~ times the radius of  the sphere it represents.  This 
is of  little importance since the size of  the projection is chosen to produce conveniently sized 
diagrams. 

At any angle fl the radius of  the circle of  latitude is given by 

r = r 0 V 1 -  sin fl 

where r 0 is the radius of the perimeter  of  the projection. 
Example: 

Let fl = 30 ~ 

r =  r,,~/l - 0.5 

= r o ~ . 5  

= 0.707q) 

Let/3 = 60 ~ 

r = r 0 ~/1 - 0.866 

= ti,-,/()_134 

= 0 .366r  0 

Figure 1.23 shows the completed projection for 30 ~ parallels and 30 ~ meridians. 

Stage 2 

Translate C, y values into B,/3 values (see Section 1.3.3). 
For example: 

L e t C  = 30 ~ , y  = 30 ~ 

t a n B  = sin C x tan 9' 
= 0.5 x 0.577 
= 0.2885 

B = 16.09 ~ 
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Fig. 1.23 The completed polar projection 

s i n / 7 =  c o s C  x s i n 7  
= 0.866 x 0.5 
= 0.433 

17 = 25.65 ~ 

Since, for accurate plotting of the C, 7 meridian and parallels, the relevant B, fl meridians and 
circles would first need to be drawn, it is better to plot the diagram in terms of  the x and y coor- 

dinates shown in Figure 1.23. 
To plot the azimuthal projection on the C, 7 system we note that on the B,/7 system 

x = r s i n B  

and 

Also, 

y = r cos B 

r = r0x/1 - - s i n ] 3  

giving 

x = r 0 s i n B ~ / 1 - s i n ] 7  

and 

-y  - r 0 c o s B ~ / 1 - s i n / 7  

These can be translated into the C, 7 system by substituting sin fl - cos C.sin 7 (see Section 1.3.3) 

and B - tan-l(sin C.tan 7). 
A completed plot is shown in Figure 1.24. 
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Fig. 1.24 The completed Azimuthal projection 

1.7 Ca lcu la t ion  of  luminous f lux 

Since  

d ~  
I =  

df~ 

the f lux re la ted  to the in tens i ty  can be ob t a ined  f r o m  

- I d ~  

1.7.1 THE ZONE FACTOR METHOD 

This  m e t h o d  uses  the m e a n  ver t ica l  po l a r  curve  for  the l umina i r e  and ca l cu la t e s  the sol id  ang les  

for  zones  o f  the sphere  t h rough  w h i c h  in tens i ty  va lues  read  f r o m  the curve  cou ld  be  c o n s i d e r e d  

to be ac t ing (see  F igu re  1.25). 
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Fig. 1.25 Flux calculation from the mean vertical polar curve by the zone factor method 

The zones are chosen to be small enough for the mid-zone intensity to be assumed to be equal 
to the average intensity acting across the zone. Once this is assumed, the equation may be rewrit- 

ten as: 

= I r I  df~ 

A table of values of f~ (called zone factors) related to a series of angles in the vertical plane is 
then calculated and used to multiply the appropriate mid-zone intensities. The summation of the 
products gives the flux value required: 

~ = Y. Irf2 

In Section 1.4.1, the solid angle for the cap of a sphere was calculated as a means of determin- 
ing the solid angle subtended by a disc. Consider Figure 1.26. 

The zone defined by angles ?'1 and Y2 can be considered to be the difference in the solid angle 

for Y2 and that for Yl: 

The solid angle related to ?'2 - 2:r(1 - cos ~'2) 
The solid angle related to ?'l - 2Jr(1 - cos Yl) 

The required solid angle is given by: 

2:r( 1 - cos ?'2) - 2:r(l - cos ?'l) 

f~Yl,r2 = 2Jr(cos Yl - cos Y2) 

o r  

4 sin/ 2 /sin/ + / 2 2 
The angular interval chosen for the zone factors depends upon the type of intensity distribution 
for which the calculation is to be made. If the distribution is changing rapidly in the vertical 
plane then 2 ~ zones will be required, but with other distributions 5 ~ or 10 ~ zones might be used 
with similar accuracy. Zone factors for 2 ~ 5 ~ and 10 ~ intervals are given in Table 1.1. 
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Fig. 1.26 Calculation of the zone factor 

Table 1.1 Zonal factors for 2 ~ 5 ~ and 10 ~ zones 

2 ~ zones 5 ~ zones 10 ~ zones 

Zone limits Zonal Zone limits Zone limits Zonal Zone limits Zone limits Zonal 
(degrees) factors (degrees) (degrees) factors (degrees) (degrees) factors 

0-2 0.0038 0-5 175-180 0.0239 0-10 170-180 0.095 
2-4 0.0115 5-10 170-175 0.0715 10-20 160-170 0.283 
4-6 0.0191 10-15 165-170 0.1186 20-30 150-160 0.463 
6-8 0.0267 15-20 160-165 0.1649 30-40 140-150 0.628 
8-10 0.0343 20-25 155-160 0.2097 40-50 130-140 0.774 

10-12 0.0418 25-30 150-155 0.2531 50-60 120-130 0.897 
12-14 0.0493 30-35 145-150 0.2946 60-70 110-120 0.993 
14-16 0.0568 35-40 140-145 0.3337 70-80 100-110 1.058 
16-18 0.0641 40--45 135-140 0.3703 80-90 90-100 1.091 
1 8 - 2 0  0.0714 45-50 130-135 0.4041 

50-55 125-130 0.4349 
55-60 120-125 0.4623 
60-65 115-120 0.4862 
65-70 11 0-115 0.5064 
70-75 105-110 0.5228 
75-80 100-105 0.5351 
80-85 99-100 0.5434 
85-90 90-95 0.5476 

If  required,  the solid angle  associa ted  with a par t icular  interval of  az imuth  angle  can be 

obta ined  by direct  propor t ion ,  e.g. 

C 2 - C 1 
= x Z F  

~'~'1,?'2,c1,c2 360 ~ Yl,?2 
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Fig. 1.27 Solid angles for A, a or B, fl calculations 

Thus, if C 2 - C l = 10 ~ 

1 

~-)71'72"c1"c2 -" 36 

A or B planes 

• ZF 
71,Y2 

\ 

1.7.2 AN ALTERNATIVE APPROACH 

If the intensity distribution has been measured on the B, fl or A, a system, then the flux could be 
calculated as follows. 

Consider the segment of the sphere outlined in Figure 1.27. It was pointed out in the previ- 
ous section that the solid angle for a particular section of an annular zone (as shaded) can be 
calculated by direct proportion from the zone factor calculated for the whole zone. Thus, a set of 
new solid angle factors could be calculated for each segment of the sphere denoted by two A 
planes or B planes in terms of fl or a increments. Each value would be used, for example, to 
multiply the intensity from the mid-zone A plane at the mid-zone a value (Figure 1.28). Hence 
the total flux in each segment of the whole spherical solid angle can be obtained. The formula is 
an adaptation of that given in Section 1.7.1 and could be in terms of a or ,6. fl is used here. 

28 The light field of a luminaire 

Fig. 1.28 Intensity curves on the A, a system 
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Table 1.2 Solid angles for 10 ~ intervals 

__. o~ o r f l  

angular limits degrees Solid angle steradians 

0-10 30.31 x 10 -3 
10-20 29.39 x 10 -3 
20-30 27.58 x 10 -3 
30-40 24.91 x 10 -3 
40-50 21.50 • 10 -3 
50-60 17.44 • 10 -3 
60-70 12.86 x 10 -3 
70-80 7.86 • 10 -3 
80-90 2.64 X 10 -3 

= C O S  X X IAV 
2 2 360 

where IAV is the average intensity (see Section 2.6). 
Table 1.2 gives the solid angles for 10 ~ intervals of both A and ct or B and/3. 

1.7.3 RUSSELL ANGLES 

If only the total flux from the light source is required then a simplification is obtained if the 
intensities are measured at the centre of equal solid angles. 

The total flux is then calculated from 

4:r 
dO = - -  ~,1), 

n 

where n is the number of equal solid angles into which the enclosing sphere is divided. 
The following treatment assumes that the C, 7 coordinate system is used. 
The Russell angles are the Y values for the mid-points of a series of adjacent equal solid 

angles, where the mid-point divides the solid angle into two equal solid angles. 
Beginning at 0 ~ the first Russell angle occurs after half the first solid angle has been 

traversed. 
So, 

4:r 
- -  = 2:r(1 - cos Yl) 
2n 

n -  1 
C O S  )"1 " -  

n 

This gives the first Russell angle. 
To obtain the second Russell angle it is necessary to traverse a further complete interval of 

solid angle, i.e. 

4Jr 

n 
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So, the next angle is given by 

3 4~r 
= 2x(1 - cos )'2) 

2 n 

The third angle is given by 

n - 5  
c o s  ) '3 = 

n 

and so on, until the last angle in the lower hemisphere is obtained. At 

COS ) '  = 
n - ( n -  1) 1 

n n 

Since the upper hemisphere is simply the reverse of the lower hemisphere,  the Russell angles for 
the upper hemisphere are obtained by subtraction, e.g. 

) '20 = 180~ - )'1 
Y19 = 1 8 0 ~  - ) '2 

and so on. 
For example, 

Let n = 20 

then the first Russell angle occurs at 

2 0 -  1 
COS )'1 = 

20 

So, 

S o ,  

= 0.95 

)'1 = 18"2~ 

) '20  = 180 ~ - 18.2 ~ 

= 161.8 ~ 

COS )'2 = 
2 0 -  3 

20 

= 0.85 

2'2 = 31.8 ~ 

) '19 -- 1 4 8 " 2 ~  

and so on until the ten angles for the lower hemisphere have been calculated and the ten angles 
for the upper hemisphere obtained by subtraction. 

A complete set of 20 Russell angles is given in Table 1.3. 
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18.2 31.8 41.4 49.5 56.6 63.3 69.5 
75.5 81.4 87.1 92.9 98.6 104.5 

110.5 116.7 123.4 130.5 138.6 148.2 161.8 

1.7.4 WOHLAUER'S CONSTRUCTION 

The various methods of computing the flux emitted by a light source already described are 
necessitated by the fact that the intensity distribution curve does not give a direct indication of 
the emitted flux. 

A simple construction due to Wohlauer 3 enables the relative contributions of the different 
zones to be obtained directly from the polar curve. 

Earlier, it was shown that the flux emitted in a zone can be calculated from 

= _[ I r d~ 

If zones of equal angular subtense are chosen then 

4zr sin ( ?'2 - ~'1 ) 2  

is a constant and 

can be obtained from a horizontal line drawn on a polar curve (Figure 1.29). 
Using this construction makes it possible to see immediately the relative contributions to the 

___(\ ",,, ik / .... 

~ 

Fig. 1.29 Wohlauer's construction 
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total flux made by each zone. For example, on the diagram given in Figure 1.29 the relative flux 
contributions are represented by horizontal lines ab and cd. 

Although the luminous intensity represented by distance od is greater than that represented 
by ob, the zonal flux represented by ab is greater than that represented by cd. 

If required, the total flux could be calculated by adding together horizontal lines for each zone 
(measured in units of intensity) and multiplying the answer by 4x sin[(~, 2 - ~ ' 1 ) [ 2 ] .  

1.7.5 ILLUMINANCE GRID AND ISOLUX DIAGRAM 

Two simple methods of determining the amount of light flux received by a surface are: 

(1) the illuminance grid 
(2) the isolux diagram 

(1) The illuminance grid 

This method is often used to compute the flux received by a surface of known area, e.g. a floor, 
wall or ceiling. The whole area is usually divided into a series of equal sized rectangular areas 
and the illuminances are calculated for a grid of points formed by the centre points of these 
rectangular areas. 

The flux received is then 

= Eaverag e x Area of the surface 

With the developments in computing power this direct method has become more popular than 
the one which follows. 

(2) The isolux diagram 

This is a diagram on which contours of equal illuminance are drawn on a plane target surface. 
The area between two contours is determined and multiplied by the average value of the illu- 

minance between the contours to obtain the flux falling on this area. Repeating this procedure 
for each pair of contours, so that the entire area is covered, enables the total flux received to be 
determined by summation. 

This method has sometimes proved useful for calculating the flux emitted by concentrating 
luminaires where all the flux can be intercepted by a surface of relatively small area. 

Prob lems 

1. Convert the following coordinates in the C, ?, system to the B, fl system. 
(a) (30 ~ 40 ~ [Answer (22.8 ~ 33.8~ 
(b) (300 ~ 60 ~ [Answer (-56.3 ~ 25.7~ 
(c) (50 ~ 120 ~ [Answer (127.0 ~ 33.8~ 
(d) (270 ~ 150 ~ [Answer (-150.0 ~ 0~ 

2. Convert the following coordinates in the B, fl system to the C, y system. 
(a) (0 ~ 0 ~ [Answer (0 ~ 0~ 
(b) (30 ~ 90 ~ [Answer (0 ~ 90~ 
(c) (10 ~ 10 ~ [Answer (44.6 ~ 14.4~ 
(d) (50 ~ 30 ~ [Answer (53.0 ~ 56.2~ 
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3. A horizontal surface is illuminated by a source mounted 5 m above it. If the source emits 
100 cd in all directions what is the illuminance on the surface 
(a) directly below the source? [Answer: 4 Ix] 
(b) 5 m from the vertical through the source? [Answer: 1.41 Ix] 
(c) 20 m from the vertical through the source? [Answer: 0.057 Ix] 

4. A point P is vertically above the centre of a horizontal disc of radius 3 m. Calculate the solid 
angle the disc subtends at P if the height of P above the disc is 
(a) 4 m [Answer: 1.26 sr] 
(b) 7 m [Answer: 0.508 sr] 

5. A point P is vertically above one comer of a rectangle of dimensions 3 m by 4 m. Calculate 
the solid angle the rectangle subtends at P if the height P above the rectangle is 
(a) 5 m [Answer: 0.327 sr] 
(b) 10 m [Answer: 0.107 sr] 

6. If, in Question 5, a source emitting 100 cd in all directions is at P, what is the luminous flux 
falling on the rectangle and the average illuminance? 
(a) [Answer: 32.7 lm, 2.73 Ix] 
(b) [Answer: 10.7 lm, 0.891 Ix] 

7. A 5 m wide circular track of outside diameter 100 m is illuminated by a centrally placed 
luminaire emitting 10,000 cd in all directions towards the track. If the mounting height is 
50 m, what is the average illuminance on the track? 
[Answer: 1.53 Ix] 

8. A point P is 5 m vertically above a horizontal rectangle of dimensions 6 m • 3 m. If the 
vertical fron~ P is outside the boundary of the rectangle and 4 m from one narrow edge but 
in line with one wide edge, what solid angle does the rectangle subtend at P and what is its 
average illuminance if a source at P emits 1000 cd in all directions? 
[Answer: 0.1508 sr, 8.38 Ix] 

9. A cylindrical source has a luminous intensity I normal to its axis. By considering 10 ~ zones, 
calculate the luminous flux it emits if its luminous intensity in any direction in any axial 
plane is proportional to the cosine of the angle between the direction and the normal to the 
cylindrical axis. The size of the cylinder can be regarded as infinitesimal. 
[Answer: 9.8571 lm or 0.998x2/] (See page 145, note 1) 

10. A flat source has a luminous intensity I normal to its surface. The luminous intensity in any 
direction is proportional to the cosine of the angle that the direction makes with the normal 
(that is, the source is a uniform diffuser). By considering 10 ~ zones, calculate the luminous 
flux emitted by the source, which can be regarded as infinitesimal. 
[Answer: 3.1541 lm or 0.9987tc/] (See page 73) 
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2 
The Luminous Intensity Table and 

Related Computer Applications 

2.1 Introduction 

In Chapter 1 we showed that the luminous intensity distribution of luminaires is required for 
carrying out lighting calculations. For computer calculations this information is presented in a 
standard layout, the/-table, so that it can be used with any of the computer programs available 
for lighting calculations. The purpose of this chapter is to describe the forms that/-tables take 
and the ancillary data that are included with them. A description is given of how interpolation 
may be used to find luminous intensities between the angular intervals given in the tables, 
together with methods of using the tables when the luminaire is turned about its photometric 
axes. Methods of calculating luminous flux in defined angular zones are given, followed by a 
description of file formats for the electronic transfer of luminaire data. 

2.2 Layout of / - tab les  

Tables 2. l(a) and (b) show the layout of an/-table for a road lighting luminaire. The coordinate 
system is the (C, y), which is typically used for this application. By implication it is assumed that 
the light distribution is symmetrical about the C = 90 ~ - 270 ~ plane, otherwise the light distrib- 
ution for C = 90 ~ through 180 ~ to 270 ~ would have been given (Figure 2.1, page 37). 

In effect, therefore, the table gives the luminous intensity distribution for all directions around 
the luminaire and the boundary of the/-table is presentational. This usually applies to general 
purpose interior luminaires as well (Table 2.9, page 58, is an example). For certain classes of 
luminaire the luminous intensity distribution is only given over a restricted solid angle. This is 
usually the case for floodlights and spotlights, when the boundary of the/-table has a physical 
meaning (Table 2.11, page 60). 

It will be noted that, in Tables 2.1(a) and (b), the angular spacings are uneven - they are 

smaller in the regions where the calculations demand the greatest accuracy. These spacings are 
recommended by CIE 30-2, l which was drafted at a time when computer memory had to be 
conserved and the number of luminous intensity readings had to be limited to allow a luminaire 
to be photometered in a reasonable time. Because of the increased power of computers and 
improvements in the automation of light distribution photometers, these restrictions no longer 
apply, and it is likely that future recommendations will ask for luminous intensity measurements 
to be made at regular and close angular intervals. 

The luminous intensities for ~' = 0 ~ and ~' = 180 ~ are constant as C is varied. This is because 
these luminous intensities lie on the polar axis of the coordinate system so that changing the 
angle C does not change the direction of the luminous intensity. 



Table 2.l(a) I-table for C from 270" to 355" for a road lighting luminaire. Luminous intensities in candelas per 1 0 0  lumens 

Y Azimuth C (deg) 
(deg) 270.0 285.0 300.0 310.0 315.0 320.0 

0.0 
10.0 
20.0 
30.0 
35.0 
40.0 
45.0 
47.5 
50.0 
52.5 
55.0 
57.5 
60.0 
62.5 
65.0 
67.5 
70.0 
72.5 
75.0 
77.5 
80.0 
82.5 
85.0 
87.5 
90.0 
92.5 
95.0 
97.5 

100.0 
102.5 
105.0 
120.0 
135.0 
150.0 
165.0 
180.0 

218 
194 
166 
141 
131 
120 
110 
105 
100 
94 
90 
84 
79 
73 
67 
59 
50 
38 
24 
12 
6 
3 
1 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 

218 
195 
169 
145 
I34 
124 
1 I4 
109 
105 
100 
96 
91 
87 
82 
76 
68 
59 
47 
31 
16 
7 
4 
1 
0 
0 
0 
0 
0 
0 
0 
I 
1 
1 
I 
1 
1 

218 
199 
I76 
156 
147 
137 
126 
121 
117 
113 
109 
I 05 
101 
97 
91 
83 
72 
60 
40 
21 
7 
3 
I 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
I 
1 

218 
202 
185 
169 
160 
148 
134 
129 
124 
121 
1 I8 
114 
1 1 1  
106 
100 
92 
81 
69 
48 
17 
6 
4 
2 
I 
1 
0 
1 
0 
1 
1 
I 
1 
1 
1 
1 
1 

218 
204 
191 
177 
167 
154 
138 
133 
129 
126 
124 
I20 
1 I7 
I l l  
105 
96 
86 
74 
48 
15 
7 
4 
2 
1 
1 
0 
1 
I 
1 
1 
1 
1 
1 
1 
I 
I 

218 
207 
I98 
I86 
I77 
162 
145 
I39 
136 
I33 
131 
I27 
I23 
I18 
I12 
I03 
93 
79 
49 
15 
7 
5 
2 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
I 
1 
1 

~ 

218 
209 
205 
197 
I89 
172 
I53 
I48 
146 
142 
140 
136 
132 
126 
120 
111  
101 
84 
50 
15 
8 
5 
2 
1 
1 
0 
1 
1 
I 
1 
1 
1 
I 
I 
1 
1 

325.0 330.0 335.0 340.0 345.0 350.0 355.0 
- 

218 
211 
213 
210 
203 
185 
165 
161 
158 
155 
152 
148 
143 
137 
131 
121 
110 
91 
51 
16 
9 
6 
2 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
I 
1 

218 
213 
222 
225 
220 
202 
181 
177 
175 
171 
169 
163 
159 
153 
146 
136 
124 
102 
56 
20 
11 
7 
3 
I 
1 
0 
1 
1 
1 
I 
1 
I 
1 
1 
1 
1 

218 
216 
230 
242 
240 
22 1 
199 
197 
194 
191 
189 
182 
178 
172 
166 
156 
I42 
118 
65 
27 
14 
8 
3 
1 
I 
0 
I 
I 
I 
I 
I 
1 
2 
I 
1 
1 

218 
218 
23 8 
25 8 
260 
24 2 
22 1 
220 
216 
214 
212 
205 
20 1 
194 
189 
179 
164 
137 
79 
37 
20 
11 
4 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

218 
22 1 
247 
275 
280 
263 
242 
242 
240 
237 
235 
228 
224 
218 
214 
203 
187 
160 
97 
49 
27 
15 
5 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
I 
1 

218 
223 
253 
289 
297 
282 
26 1 
263 
26 1 
259 
258 
25 1 
247 
242 
238 
227 
210 
183 
117 
63 
38 
21 

h 
I 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
I 
I 



Table 2.l(b) Continuation of Table 2.1 (a) for C from 0" to 90" 
~~ 

Azimuth C (deg) 
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 60.0 75.0 90.0 

Y 
( d - 4  

0.0 
10.0 
20.0 
30.0 
35.0 
40.0 
45.0 
47.5 
50.0 
52.5 
55.0 
57.5 
60.0 
62.5 
65.0 
67.5 
70.0 
72.5 
75.0 
77.5 
80.0 
82.5 
85.0 
87.5 
90.0 
92.5 
95.0 
97.5 

100.0 
102.5 
105.0 
120.0 
135.0 
150.0 
165.0 
180.0 

218 
224 
257 
299 
31 1 
297 
275 
277 
276 
274 
274 
268 
265 
26 1 
257 
247 
229 
204 
I36 
77 
47 
26 

8 
2 
1 
0 
1 
I 
I 
I 
I 
I 
1 
I 
1 
1 

218 
225 
260 
305 
317 
304 
280 
283 
282 
282 
283 
278 
275 
27 1 
268 
257 
240 
218 
153 
87 
54 
31 

9 
2 
I 
0 
1 
1 
1 
1 
1 
I 
1 
1 
1 
1 

218 
226 
26 1 
304 
315 
303 
278 
279 
278 
279 
28 1 
275 
273 
270 
266 
255 
240 
219 
I63 
91 
59 
34 
10 
2 
1 
0 
1 
I 
1 
I 
I 
I 
1 
I 
1 
1 

218 
227 
258 
298 
306 
294 
261 
265 
263 
263 
265 
259 
257 
253 
249 
240 
225 
207 
164 
87 
58 
34 
10 
2 
I 
0 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 

218 
227 
254 
286 
292 
277 
249 
242 
239 
238 
240 
234 
23 I 
228 
225 
216 
202 
187 
156 
77 
51  
30 
9 
2 
I 
0 
1 
0 
I 
1 
I 
I 
1 
1 
1 
1 

218 
226 
249 
272 
273 
256 
227 
217 
213 
21 1 
212 
206 
203 
200 
197 
I89 
I77 
163 
I40 
65 
42 
25 

8 
I 
I 
0 
I 
0 
1 
1 
I 
I 
I 
1 
I 
1 

218 
226 
242 
256 
253 
234 
205 
I94 
I87 
I85 
I84 
179 
176 
I73 
I69 
161 
151 
I38 
121 
53 
32 
19 
6 
1 
I 
0 
0 
0 
0 
1 
1 
1 
1 
I 
I 
1 

218 
225 
235 
238 
234 
214 
185 
173 
I66 
161 
159 
154 
151 
I47 
143 
136 
127 
I I5 
102 
46 
22 
14 
5 
1 
1 
0 
0 
0 
0 
0 
1 
1 
I 
1 
I 
I 

218 
225 
227 
22 I 
215 
196 
169 
158 
149 
143 
140 
135 
131 
127 
122 
1 I4 
106 
95 
83 
42 
16 
10 
4 
1 
1 
0 
0 
0 
0 
0 
1 
1 
1 
1 
I 
I 

218 
224 
22 1 
205 
198 
180 
156 
145 
136 
129 
125 
120 
115 
110 
105 
97 
89 
79 
69 
41 
1 1  
7 
3 
1 
1 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 

218 
223 
213 
191 
181 
166 
146 
136 
127 
1 I9 
114 
109 
103 
98 
92 
85 
76 
68 
59 
38 
10 
6 
3 
1 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
I 
1 

218 
22 1 
20 I 
170 
156 
143 
127 
1 I9 
112 
104 
98 
92 
87 
81 
74 
67 
60 
51 
41 
23 

7 
4 
2 
1 
0 
0 
0 
0 
0 
0 
1 
0 
1 
1 
1 
1 

218 
219 
192 
154 
137 
121 
107 
100 
94 
87 
81 
73 
68 
62 
55 
46 
39 
31 
22 
13 
4 
3 
2 
1 
0 
0 
0 
0 
0 
0 
1 
0 
I 
1 
1 
1 

218 
219 
189 
149 
130 
113 
97 
90 
84 
76 
69 
62 
55 
46 
38 
30 
23 
16 
10 
7 
4 
3 
1 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
I 
1 
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C= 180 ~ 

Polar curve of 
luminous intensity 

Planeofs n 

', / .=-I/ 
', / ~ I/ / "/ 
,, \ ~ , ~  

Table 2 .1(a)-"" ' J~"-- .  ~ " ..-"" 
�9 "- ...... 111 

C = 0  ~ 

C =  90 ~ 

Table 2.1 (b) 

Fig. 2.1 Polar curve showing symmetry of the/-table 

To apply the/-table, certain ancillary data are required by the user. These are: 

�9 luminaire identification; 
�9 identification of coordinate system. For instance, Table 2.11, page 60, is an example of an l- 

table in the B, fl coordinate system 
�9 attitude of the luminaire when photometered. For instance, for the above/-table, which is for 

a road lighting luminaire, the luminaire was photometrically tested with its spigot axis elevated 
by 5~ 

�9 the units of the luminous intensity data. For most applications these are in candelas per kilolumen, 
although for some applications, such as airfield lighting, they may be stated in absolute units. 

Table 2.13, page 62, gives a fuller list of the data needed for computer files of/-tables. 

2 . 3  I n t e r p o l a t i o n  in t h e / - t a b l e  

Interpolation is used when a luminous intensity is required in a direction lying between direc- 
tions given in the/-table. Extrapolation, the procedure by which a luminous intensity is found 
outside the directional limits of the/-table, is not recommended. In the overwhelming majority 
of calculations, interpolation is required in both directions of the chosen coordinate system. It is 
therefore important that the process chosen is as fast as possible so that the overall calculation 
time is not unduly lengthy. 

Two interpolation procedures are used: linear and quadratic. In linear interpolation (Figure 
2.2(a) ), a straight line is fitted between two points lying on either side of the required direction 
and the luminous intensity is calculated from the equation of the line. In quadratic interpolation, 
a second degree curve is fitted between three points in directions straddling the required direc- 
tion, and the required value is calculated from the equation of the line (Figure 2.2(b) ). 

The basic equation used for interpolation is due to Lagrange: 

i / y(x) = Yi 
i=1 j=l,j~i X i Xj 
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A n g l e  = 

(a) Linear interpolation (b) Quadratic interpolation 

Fig. 2.2 Linear and quadratic interpolation: (a) linear interpolation; (b) quadratic interpolation 

where 

y(x )  is the interpolated value of y at the point x; 
n is the number of points between which interpolation is required (2 for linear and 3 for 
quadratic); 
(Xl, Y l), (x2, Y2) - ' '  (xj, y j ) . . .  (x  n, Yn) are the points between which interpolation is 
required; 

signifies the summation of the terms; 

l-'I signifies the product of the terms. 

In the next two sections we describe the application of this equation to linear and quadratic inter- 
polation. 

2.3.1 L I N E A R  I N T E R P O L A T I O N  

Figure 2.3 shows the angles required for linear interpolation in the (C, 7) system of coordinates. 
The m suffixes denote the column number of the/-table and the j suffixes the row number. For 
instance, Gin+ 1 is the value of C in column m+ 1 of the/-table. The luminous intensity is required 
at (C, 7). For linear interpolation, we use (2.1) with n equal to 2. This then becomes" 

y(x )  = Y l + Y2 
x ! x 2 x 2 - x I 

(2.2) 

This equation can be applied to either C or 7 first. When it is first applied to C, C is substituted 
for x: 

x = C  

X 1 = C  m (2.3) 
X2 = Cm+ 1 

From this substitution two constants (K l and K2) can be defined: 

C -  Cm+ 1 
K 1 = 

C m - C m +  1 (2.4) 
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Fig. 2.3 Linear interpolation of luminous intensity 

K 2 = 

C--Cm 

Gin+ 1 - Cm 

It will be noticed that K I + K 2 = 1 so that the notation can be simplified by putting K = K l, and 

K 2 =  I - K .  
It is now necessary to introduce additional notation to specify a luminous intensity in a direc- 

t ion. / (C,  y) means the luminous intensity in the direction (C, y), E C m, yj+l) means the luminous 
intensity in the direction of C in column m of the / - table ,  and of y in row j+  1. 

We can substitute the following values in (2.2): 

y(x) = I(C, yj) 
Yl = I(Cm' ~'j) (2.5) 

Y2 = l( Cm+ l ' ~j) 

After simplification this leads to 

l(C, yj) = l(C m, rj) + K[t(Cm+l, r j ) -  I(Cm, Yj)] (2.6) 

Similarly, 

I(C, ?'j+l) = l(Cm' ~'j+l) + K[l(Cm+l' ~'j+l) - l(Cm' Yj+l)] (2.7) 

For interpolation at a constant azimuth, C, a similar procedure produces the final result: 

I(C, 7) = I(C, 7j) + k[l(C, 7j+1)- I(C, 7j)] (2.8) 
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where 

r - r j  
k = (2.9) 

Yj+I - ~j 

If this procedure is reversed by first carrying out interpolation in the ?' cones followed by inter- 
polation in the C planes, the same result will be obtained. This fact can be used to check that a 
program for linear interpolation is correct. 

For the procedure to be followed at the boundary of the/-table see Section 2.3.4, page 42. 

2.3.2 QUADRATIC INTERPOLATION 

Figure 2.4 shows the angles required for quadratic interpolation of luminous intensity in the 
direction (C, ?9. As mentioned earlier, three angles are required for interpolation at each point. 
Two of the angles will lie on either side of the required point but the third point has to be chosen 
to achieve the best accuracy. This is done by following the empirically derived rules given next. 

(1) The two tabular angles adjacent to the angle for interpolation are selected for insertion in the 
interpolation equations and the average calculated. 

(2) If the angle for interpolation is smaller than this average then the third tabular angle is the next 
lower tabular angle (as shown for C in Figure 2.4); if the average is greater than this average 
then the third tabular angle is the next higher tabular angle (as shown for y in Figure 2.4). 

The formula for quadratic interpolation is obtained by putting n equal to 3 in (2.1), which gives" 

~j+2 

~j+l 

c~ 
I 
I 
I 
I 
I 

I 
I 
I 
I �9 
I 

I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

Cm+ 1 C 

() 

I 

Gin+ 2 
I 
I 
I 
I 
I 
~mm~ 
I 
I 
I 
I 

�9 
I 
[ 

Fig. 2.4 Angles required for quadratic interpolation 
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(- It X-Xl  X-X3 ll X-Xl  X-X2 l_ ( X -  x2) ( x -  x3) + Y2 + Y3 (2.10) y(x) Yl 
(x I - x2) (x I - x3) (x 2 - Xl) (x 2 - x3) (x 3 - Xl) (x 3 - x2) 

where it will be noticed that there is circular permutation of the suffixes. 
This interpolation can be applied to either C or 7'. When it is first applied to C, this parame- 

ter is substituted for x in the above equation: 

x = C  

Xl =Cm (2.11) 
X 2 = Cm+ l 

x 3 = Cm+ 2 

where 

C is the angle at which I is to be found by interpolation; 
m, m+ l, m+2 are integers indicating the number of the columns in the/-table;  
Cm, %+1, and %+ 2 are values of C for the corresponding column numbers. These are 
chosen such that Cm+I<C<Cm+2 unless m is zero in which case C l <C<C 2. 

From this substitution three constants can be defined: 

( c -  Cm+ ~ ) (C -  Cm+ 2) 
K 1 = 

(C  m - Cm+l) (C  m - Cm+2) 

( C -  era) ( C -  Urn+2) 
K 2 = (2.12) 

(Cm+ I -- Gin) (Cm+ 1 -- Cm+2) 

( c -  c m) ( c -  Cm+ ~ ) 
K 3 = 

(Cm+ 2 -- Cm) (Cm+ 2 -- Cm+ l ) 

= 1 - K i - K  2 

Three equations can then be written allowing evaluation of I at the three values of 7': 

I(C, 7'j) = KII(Cm, 7j) + K21(Cm+I, 7'j) + K31(Cm+2, 7'j) 
I(C, 7'j+l) - KII(Cm' Yj+I) + K21(Cm+I' 7'j+l) + K31(Cm+2' 7'j+l) 
I(C, 7'j+2) = KII(Cm'  7'j+2 ) + Kzl(Cm+l'  7'j+2) + K31(Cm+2' 7'j+2) 

For interpolation of the 7' angles, further application of (2.1) gives three new constants: 

k I = 
(7 ' -  7'j+l ) (7 ' -  7'j+2 ) 

(Yj -  Yj+l) (Yj -  7'j+2) 

k 2 = 
( 7 ' -  7'j) (7 ' -  ~j+2) 

(7 ' j+l-  7'j) (Yj+I -- 7'j+2) 

k 3 = 
( r  - rj) ( r  - ~'j+ ~) 

(7'j+2- ~J') (7'j+2- ~j+l ) 

= l - k l - k  2 

(2.13) 

(2.14) 
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Finally, 

l(C, ~) = kll(C, ~) + k21(C, ~'j+l) + k31(C, Yj+2) (2.15) 

which gives the required value of luminous intensity. 
In the mathematical procedure described above, interpolation is first carried out for C and 

then for ?'. As for linear interpolation, this procedure may be reversed after appropriate changes 
have been made to the equations, and the same result obtained. This fact can be used to check 

that a program is correct. 
For the procedure to be followed at the boundary of the/ - table  see Section 2.3.4. 

2.3.3 CHOICE OF LINEAR OR QUADRATIC INTERPOLATION 

CIE lays down that linear interpolation may be used when the angular intervals are 2.5 ~ or less, 
otherwise quadratic interpolation is to be used. However, this choice may be modified at the 
boundary of the/- table  as described in the following section. 

2.3.4 INTERPOLATION AT THE BOUNDARY OF THE I-TABLE 

As pointed out on page 34, we may distinguish between two types of / - table  boundary: presen- 
tational and physical. The type of interpolation differs for each of these. 

Consider a case where the boundary is presentational. The method is best illustrated by means 
of examples. Suppose in Table 2.1(a), page 35, we require the luminous intensity at (C, ?') = 
(358 ~ , 18~ Since the angular intervals are greater than 2.5 ~ , quadratic interpolation has to be 
used, for which three values of luminous intensity are required for each interpolation. We need, 
therefore, to select the appropriate values from Table 2.1 (a) and Table 2.1 (b). A composite table 
can be drawn up as shown in Table 2.2. 

The three values of C used for interpolation will be 355 ~ 0 ~ and 5 ~ since 358 ~ is nearer to 
0 ~ than it is to 355 ~ The same reasoning gives 10 ~ 20 ~ and 30 ~ for ~'. 

The presentational boundary at the nadir (or zenith) of the/-table requires a different treatment. 
Suppose that the luminous intensity is required in the C meridian in Figure 2.5, which shows a 
view of the (C, y) coordinate system as seen in the direction of the nadir. The C meridian illus- 
trated continues along the C + 180 ~ meridian on the 90 ~ - 180 ~ - 270 ~ side of the hemisphere. 
Because of the bilateral symmetry of the luminaire, the luminous intensities on this meridian will 
be the same as those on the 360 ~ - C meridian. This meridian can then be used for interpolation. 

Worked example Find the luminous intensity at (C, y) = (48 ~ 1 ~ from Tables 2. l(a) and 2. l(b), 

pages 35 and 36, by interpolation. 

Answer Since the angular spacing is more than 2.5 ~ , quadratic interpolation has to be used. 
Next, we have to decide the third angle to be selected when interpolation is carried out in C and 

Table 2.2 Luminous intensities (cd/1000 lm) from Table 2.1 

From Table 2.1 (a) 

C = 355 ~ 
~,(o) _- _5 ~ 

From Table 2.1 (b) 

C = 0  ~ C = 5  ~ 

10 223 224 
20 253 257 
30 289 299 

225 
260 
305 



2 7 0  ~ 

C + 180 ~ 

180  ~ 

360  ~  C ~ I _ ~  C 
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90 ~ 

Fig. 2.5 Angles for interpolation viewed towards the nadir of the (C, Z) coordinate system 

7. For C: this angle lies between 45 ~ and 50 ~ the average of which is 47.5 ~ Since C lies be tween 

this value and 50 ~ the third value is 60 ~ For 7 :1  o lies closer to 0 ~ than to 5 ~ so the third value 

of  luminous intensity has to be chosen from the C values on the 90 ~ through 180 ~ to 270 ~ side 

of the hemisphere.  These are: 360 ~ - 4 5  ~ = 315 ~ 360 ~ - 50 ~ = 310", and 360 ~ - 6 0  ~ = 300 ~ 

Table 2.3 is now drawn up. The value of 7j has been made negative so that the differences 

between the values are of the same sign when taken in the same direction. 

We can now substitute these in the interpolation equations: 

g 1 = 

(C- Cm+l) (C- Cm+2) 

( C  m - Cm+l) ( C  m - Urn+2) 

( 4 8 -  50) ( 4 8 -  60) 

(45 - 50) (45 - 6 0 )  

(2.16) 

= 0.32 
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Table 2.3 Intensity table for quadratic interpolation. Luminous intensities in cd/1000 lm 

C m = 45 ~ Cm+ 1 = 5 0  ~ Gin+ 2 = 60 ~ Source 

?,j = - 1 0  ~ 204 (from C=315 ~ 202 (from C=310 ~ 199 (from C=300 ~ Table 2. l(a) 
?'j+l = 0~ 218 218 218 Table 2.1(a) 
Yj+:z = 10 ~ 224 223 221 Table 2.1 (b) 

Now, 

So 

So 

So 

Then,  

K2 ~ 
(C- Cm) (C- Cm+2) 

(Cm+ 1 - Cm) (Cm+l - Cm+2) 

(48 - 45) (48 - 60) 

(50 - 45) (50 - 60) 
= 0.72 

K3= I - K I - K  2 

= -0 .04  

I(C, y j) 
I(48, 5) 

= KII(C m, Yj) + K21(Cm+I, Yj) + K31(Cm+2, Tj) 
= (0.32 x 0.204) + (0.72 x 202) + ( -0 .04 x 199) 

= 202.76 cd/1000 lm 

I(C, Yj+l) = KII(C m, Yj+l) + K21(Cm+l' Yj+I ) + K31(Cm+2' Yj+l) 
1(48, 0) = (0.32 x 0.218) + (0.72 • 218) + ( -0 .04 • 218) 

= 218 cd/1000 lm 

I(C, Yj+2) = KII(Cm' Yj+2) + K21(Cm+l' Yj+2) + K31(Cm+2' Yj+2) 
I ( 4 8 , - 5 )  = (0.32 x 0.224) + (0.72 x 223) + ( -0 .04 x 221) 

= 223.4 cd/1000 lm 

k I = 
(~'-- Yj+I ) ( Y -  Yj+2) 

( Y j -  Y j + I ) ( Y j -  Yj+2) 

(1 - 0 )  (1 - 10) 

( - 1 0 -  0 )  ( - 1 0 -  10) 

= -0 .045  

K2 "" 
(?'- ~/j) (~'- ~'j+2) 

(~zj+ 1 -- )zj) (~'j+l -- Yj+2 ) 

(1 - ( - l o ) )  (1 - lo) 

( o  - ( - l o ) )  ( o  - l o )  

(2.16) 

(2.17) 
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= 0.99 

k 3 = 1 - k 1 - k 2 

= 1 - 0.045 - 0.99 

(2.17) 
continued 

= 0.055 

Finally, 

I(C, r) = kll(C, rj) + k21(C, ~'j+l) + k31(C, ~'j+2) 
So I(48 ~ 1 ~ = ( -0 .045 • 202.76) + (0.99 • 218) + (0.055 • 223.4) 

= 219.0 cd/lO00 lm 

(2.18) 

2.4 Turning the luminaire about the photometr ic  axes in the 
(C, 7) coordinate system 

In many applications, particularly road lighting, the luminaire is tumed about its photometric 
axes when it is used in an application. In principle, there are two ways of allowing for this for 
the calculation of derived data f rom/- tables ;  by matrix multiplication or by use of the coordi- 
nate transformation formulae described in Section 1.3, page 4. 

The matrix multiplication method is easier to develop and apply, especially for turning move- 
ments about the three axes of a coordinate system, and is for this reason preferred. However, the 
input is in terms of distances. Where the tilt of an/- table  has to be changed, the coordinate trans- 
formation method is advantageous as the input is purely in terms of angles. For this reason it will 

also be described. 
First, we need to establish sign conventions with regard to the sense of turning and with 

regard to directions in space. 
The conventions are shown in Figure 2.6. The first axis of the luminaire coincides with the 

poles of the (C, y) coordinate system, and the two other axes are perpendicular to this and to each 
other. Conventionally, the third axis of the luminaire is taken along the long axis for interior fluor- 
escent luminaires and in the vertical plane of the spigot axis for road lighting luminaires. 

The angle through which the luminaire is turned about the first photometric axis is called 
orientation (v), about the second photometric axis tilt (6), and about the third photometric axis 
rotation (q/).a The sense in which the luminaire is turned about the axes is such that the system 
of axes is right-handed, 2 that is the turning of a right-handed screw in the positive direction of 
Ox corresponds to a translation in the sense y~z .  Similarly, the turning of a screw in the positive 
direction of Oy corresponds to a translation in the sense z--~x, and the turning of a screw in the 
positive direction of Oz corresponds to a translation in the sense x~y .  These turning directions 
are indicated by the arrows on the circles for u, 8, and ~. 

Figure 2.7 shows the coordinate system as it is conventionally portrayed in mathematical 
texts. Figure 2.7 shows the situation before and after turning has taken place, yf is the angle that 
P subtends after turning has taken place, and the corresponding azimuth is Cf. The luminous 
intensity directed towards P is I, which after turning (Figure 2.7(b)) becomes If. 

We will assume that an/- table  is available with measurements taken with the third luminaire 
axis horizontal. The correction where there is a tilt in measurement, 8m' will be made later. 

a The fact that the word rotation is used in this specialized sense means that we will avoid using it in 
other senses; the word turning will be used instead. 
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Fig. 2.7 Turning movements of luminaire and coordinate axes: (a) before turning movements; (b) after 
turning movements 
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2.4.1 MATRIX REPRESENTATION OF TURNING M O V E M E N T S  

In the generally available texts on using matrices for representing turning movements, the turning 
of a vector with respect to a fixed coordinate system is considered. We have the inverse problem; 
there is a fixed point P (Figure 2.8) and the coordinate system is turned through an angle 0 so 
that the coordinates of the point P, which are (u, v) referred to Ou and Ov, become (u', v') 
referred to the turned axes, Ou" and Ov'. The problem is to express u" and v" in terms of u, v and 
0. This can be done by means of the following matrix multiplication: 

E u] E:I =Icos0 -sinO 1 =IucosO- sinO] 
v' ksin 0 cos 0 J I u sin + v cos 0 J 

(2.19) 

which leads to 

(u', v') = (u cos 0 -  v sin O, u sin 0 + v cos O) (2.20) 

It should be emphasized that the turning movement of the coordinate system takes place in an 
clockwise direction. In fact, the matrix needed to turn a coordinate system is the transpose of the 
matrix needed to turn a point about the origin through the same angle. 

In applying this to the turning of luminaires, we need three dimensions. If the third axis is 
Ow, (2.19) becomes: 

V t 

I 
I 

v I l V,l. . . . .  

! - 
v I -- 

/ 

/ 
I / ,; 
I / /' 
I / ; 
I / /' 
/ / /' 
/ / ,,' 
/ / /' 
I / /' 
/ / ,; 
I / /' 
I / /' 
! i Y / 
~ r 

~ ~  I U 

V t " ' - ~  

~ U  

Turning direction 

Fig. 2.8 Rotation of axes 
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iul LrCOS0o sin0 !1 I!l I:c~176 vsin:l 
v' = sin cos = s i n 0 + v c o s  

W' 0 W 

(2.21) 

which gives (u', v', w') = (u cos 0 -  v sin 0, u sin 0 + v cos O, w). 
This establishes the algebra for turning the axes. We now can apply it to turning the (C, ~') 

coordinate system about the three axes. This is done in two stages; derivation of  the matrices for 
turning the coordinate system about Ox, Oy and Oz in Figure 2.6, and multiplying them together 
or composing them in the correct order to give the final result. Particular care has to be taken to 
determine the correct signs for the direction of  turning in each case. 

In some texts 3 the order of multiplication of the matrices is reversed and the transpose of the 
transformation matrix is used. This does not change the result as is shown below: iul LrcosOsinOillucosOvsinOlo 

v' =[u  v w] - s i n 0  cos0  = usinO+cosO 

W t 0 W 

(2.22) 

Rotation of  the luminaire 

As already stated, this turning movement  takes place about Ox (Figure 2.6). Figure 2.9(a) views 
the luminaire in the direction of the Ox and Figure 2.9(b) shows how the polar axis moves in 
relation to the direction OP, which is stationary. 

We can now use (2.21) as a pattern for writing the matrix for turning the axes of the coordi- 
nate system through the angle q/. From Figures 2.8 and 2.9(c), we find Ox - Ou, Oz - Ov, simi- 
larly for the primed coordinates, and q / -  0 so 

Ii:l ~ 1 Iil zsin l = 0 1 0 = y (2.23) 

' sin N 0 cos N x sin N - z cos 

Fig. 2.9 Rotation of the luminaire, viewed along the spigot axis 
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Fig. 2.10 Tilt of luminaire, viewed along the C = 180 ~ axis 

Tilt in application 8 

Tilt in application is the angular tilt given to a luminaire from its horizontal inclination. This 
turning movement takes place about Ox in Figure 2.6, page 46. Figure 2.10 shows the angles 
involved. 

OP is the direction in which the luminous intensity is required. Mathematically, the luminaire 
is regarded as being turned about its photometric centre so that its height above the road is unal- 
tered as is its distance from P. Figure 2.10(a) shows the initial position and it is clear from Figure 
2.10(b) that the new angle that OP makes with the downward vertical, or ordinate, is ? ' -  8. Figure 
2.10(c) shows the turning movement of the axes. 

We can now use (2.21) as a pattern for writing the matrix for turning Oy and Oz through an 
angle 8. 

Ix lI:, 0 01i:llx x 1 y' = cost5 sind; = ycos+zs in t~  

z' - sin 6 cos 6 - y  sin t~ + z cos 63 

(2.24) 

Worked example A point has (x, y) coordinates (0, 10) in metres. If a luminaire is mounted at 
a height of 10 m and tilted up by 15 ~ what are the values of 7 and C which have to be looked 
up in the/- table? What is the angle of incidence and azimuth of the light at the point? 

Answer The data given are: 

x = 0  
y =  1 0 m  
z = -10  m 
8 =  15 ~ 

Note that z is negative. 
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From (2.24) 

X p ----X 

= 0 m  

y' = y cos 8 +  z sin 8 

= 10 cos 1 5 -  10 sin 15 

=7 .071  m 

z = - y s i n S + z c o s 6  

= - 1 0  sin 15 - 10 cos 15 

= - 12.247 m 

From Figure 2.7(b), we find: 

P y 
7' = tan-I 

_ Z  p 

7.071 
= tan -1 

12.247 

= 30 ~ 

In Figure 2.7(a) we see that the angle of  incidence ZOPQ is i, so 

-1 - - Z  
i - tan 

2 x + y  

-1 = tan 

= 4 5  ~ 

10 
2 

As a check on the previous result; 

7 = i - 8  
= 45 ~ - 15 ~ 

= 30 ~ 

which is the same as before. 

From Figure 2.7(b): 

p 

y 
C = tan -I 

p 

X 

= tan -! 

= 90 ~ 

7.071 

Orientation of the luminaire v This turning movement  takes place about Oz in Figure 2.6, page 

46. Figure 2.11 shows the angles involved. Note that the luminaire  is viewed from below so that 

the diagram is in conformity with the previous similar diagrams,  where the line of sight is from 

the negative axis towards the positive axis. 

OP is the direction in which the luminous intensity is required. Figure 2.1 l(a)  shows the 

initial posit ion and it is clear from Figure 2.1 l(b) that the new angle that OP makes  with the 

C = 0 axis is C -  v. Figure 2.11 (e) shows the turning movement  of  the axes. 
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Fig. 2.11 Orientation of the luminaire, as seen from below 

Using similar reasoning to that used for the previous turning movements we find: 

ix l LrcO!n  sin  01 Iil Ixc~ ysin l 
y' - - s  v cosy 0 = x s i n v + z c o s v  (2.25) 

z' 0 1 z 

which gives: 

x" = x  cos v - y  sin v 
y" = x sin v + y cos v (2.26) 

Z'--Z 

2.4.2 COMPOSITION OF TURNING MOVEMENTS 

When turning movements about different axes are applied in succession to a luminaire, it is 
important that they are applied in the correct order. Rotation has to be applied first, then tilt, 
followed by orientation. If these are interchanged an incorrect result will be obtained. Rotation 
has to be applied first since, for this turning movement, the luminaire has to be turned about its 
own axis, which would be impossible if one of the other tuming movements were applied first. 
Tilt has to be applied next as the movement is in the vertical plane through the luminaire, which 
would be impossible if orientation were applied first. So the final matrix is: 

Ix l Io l I: c ~t 0 - s i n ~ t  1 0 

y' = 1 0 cos S 

z' Lsin ~t 0 cos ~ - s i n  S 

01 rLCOS o sin  !1 Iil sin - s i n  v cos v 

cos 0 

(2.27) 

This leads to: 
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x' = x(cos v cos V -  sin v sin 5 sin V) + y(sin v cos V + cos v sin ~ sin V) 

-z (cos /~  cos ~) 

y" = - x  sin v cos `5 + y cos v cos `5 + z sin `5 (2.28) 

z" = x(cos v sin V + sin v sin `5 cos V) + y(sin v sin V -  cos v sin `5 cos ~) 

+ z cos & cos 

z is measu red  upwards  f rom the luminaire ,  which  differs f rom the usual  convent ion ,  where  H is 

measu red  upwards  f rom the plane of  interest.  We therefore  substi tute H f o r - z ,  and H" = -z"  

(Figure  2.7), and the equat ions  become:  

x" = x(cos v cos V -  sin v sin ,5 sin V) + y(sin v cos ~ + cos v sin `5 sin V) 

+ H(cos  `5 cos q/) 

y" = - x sin v cos `5 + y cos v cos `5 -  H sin `5 (2.29) 

H ' =  - x(cos v sin V + sin v sin `5 cos q/) - y(sin v sin V -  cos v sin `5 cos q/) 

+ H cos `5 cos 

The reader  should note that when P is in a hor izontal  plane above the pho tomet r i c  centre  of  the 

luminaire ,  H is negative.  

F rom Figure  2.7, page 46 we can de te rmine  C: 

y '  
C = tan -l (2.30) 

X p 

The correct  quadrant  in which to place C is de te rmined  from Figure 2.12. 

C = 1 8 0  ~ 
- -X  

Y'I c=9oo 

tan -1 (y'/-x') ~ I ~ tan-' (y'/x') 

tan -1 (-y ' l -x ' )  

tan -1 (-y' lx') 

C =  0 ~ 

Fig. 2.12 Determination of the magnitude of C 

- y '  C = 270 ~ 
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If x" > 0 and y" > 0 then C" = tan -I 
y 

P 

X p 

If x" < 0 and y" > 0 then C" = tan -l 

If x" < 0 and y" < 0 then C" = tan -I 

y 
P 

X" 

y 
P 

X p 

+ 180 ~ 

+ 180 ~ 

(2.31) 

If x" > 0 and y" < 0 then C" = tan -l 

p 

Y 

X p 
+ 360 ~ 

However ,  i n / - t a b l e s  C has the l imi ted  range  270 ~ < C < 360 ~ and 0 ~ < C < 90 ~ so Table  2.4 is 

used  to br ing C within  these  ranges .  

Also,  

= tan 
-1 ~ / ( X ' )  2 + (y,)2 (2.32) 

H 
P 

As calculated,  this will be in the range - 9 0  ~ < 7' < 90~ To find the correct  quadrant  we use Table 

2.5. 

2.4.3 CORRECTING THE 1-TABLE FOR TILT 

This method  is useful when a luminaire  has been measured  at one tilt and a n / - t a b l e  is required 

at another  tilt. Figure 2.13 is a schemat ic  showing  the principle  involved. As in the t rea tment  

Table 2.4 Values of C to be used in/-table 

Calculated value of C (deg) C to be used in/-table (deg) 

0 < C < 9 0  C 
90 < C <  180 1 8 0 -  C 
180 < C < 270 5 4 0 -  C 
270 < C < 360 C 
360 0 

Table 2.5 Calculation of Z 

H' ), (deg) Range of ?' (deg) 

> 0  

0 

< 0  

tan -l 5f(x,)2 + ( y , ) 2  

H' 

9O 

tan -l ~(x,)2 + (y,)Z 
H'  

+ 180 

0 > ) , < 9 0  

90 

90 > y _< 180 
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Fig. 2.13 Correction for tilt: (a) point in (C, 7) coordinates; (b) point transferred to (B, fl) coordinates; 
(c) web tilted; (d) point transferred to (C, y) coordinates 

using matrices, the point P is stationary and we have to consider the turning of the coordinate 
web. Basically the method consists of expressing the position of  the point P in (B,/3) coordinates 
(Figure 2.13(b)), allowing for the tilt (Figure 2.13(c)), and transferring the point back to (C, y) 
coordinates (Figure 2.13(d)). 

Transferring to (B, fl) coordinates 

For this we use the formulae: 

tan B = sin C O • tan Y0 (2.33) 
sin/3 = cos C O • sin Y0 

In these equations the suffix zero is used to indicate that the value to which it is attached is the 
initial value, before the tilt has been applied. 

A computer will not be able to evaluate the first equation when y is equal to 90 ~ However, 
for this case B is equal to 90 ~ as determined from these formulae will lie in the first quadrant, 
which is correct as we are considering only one half of the coordinate system since bilateral 
symmetry is assumed. 90 ~ < B > 90 ~ has to be assigned to the correct quadrant, which is given 
by B" in Table 2.6. 

Allowing for  tilt 

B6= B" + fi 

where 

6 is the angle of tilt; 
B 6 is the angle of the B plane after tilt has been applied. 

(2.34) 

Table 2.6 Conditions for determining the quadrants for B" 

?'o (deg) C o (deg) B" (deg) 

<90 <90 B 
>90 <90 B + 180 
<90 >270 B 
>90 >270 B - 180 
90 0 Tilt has no effect 
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Table 2.7 Conditions for finding the quadrant of B', 7', and C' 

Conditions to be fulfilled Action 

A B/~ = - 180 ~ 
B B6 = 180 ~ 
C B,~ > 180 ~ and B" _< 180 ~ 
D B ~ < -  180 ~ B" >_- 180 ~ and 8 <  0 
E All other conditions 

r= ~8oo. c=  Co 
r= ro. C= Co 
B',~ = -  360 ~ + B + 8. Go to (2.39) 
B' 6 = 360 + B + 8. Go to (2.39) 
B'~ = B. Go to (2.39) 

Table 2.8 Conditions for finding the quadrant of C and 7' 

B (deg) C (deg) 7' (deg) 

< 0  C " +  180 7'" 
IBI > 90 C" 1 8 0 -  7'" 
All other conditions C" 7" 

Transferring to (C, 7) coordinates 

In Table 2.7, C and ?' are the final values of  these variables.  Lines  A and B cover  the case when  

7' is equal  to 180 ~ Clear ly  no fur ther  ca lcula t ion  is needed  to find C or 7. Lines  C and D cover  

the case of  the B plane mov ing  through the zeni th  when  8 is added to or subtracted f rom B. Line  

E deals with all o ther  cases,  for which it is necessary  to apply the t rans format ion  formulae :  

C " -  tan -l (2.35) 
tan fl 

y " =  cos-I(cos B' 5 x cos r 

It should  be noted that w h e n / 3  = 0 then C" = 90 ~ and w h e n / 3  = 90 ~ then C" = 0. 

Table 2.8 takes account  of  the value of  B for f inding C and 7 f rom C" and 7". 

Worked example A road l ight ing lumina i re  is m o u n t e d  at a height  of  l0  m. The  i l luminance  is 

required  at a point  P si tuated at (x, y) coord ina tes  (3, 4) in metres .  A n / - t a b l e  is avai lable  for the 

lumina i re  tilted at 5 ~ W h a t  are the (C, 7) coord ina tes  of  P if the lumina i re  is used at zero tilt? 

Answer To solve this p rob lem we may  use ei ther  the matr ix  or the coord ina te  t rans format ion  

methods .  For i l lustrat ion purposes  we shall use both methods .  

Matrix method 
For this we need to use (2.29), page 52, in which:  

H =  1 0 m  

x = 3 m  

y = 4 m  

6 = - 5  ~ 

~ = 0  ~ 

v = 0  ~ 

Hence:  

x'  = x(cos v cos q / -  cos v sin 8 sin q/) + y(sin v cos ~ + sin v sin 8 sin ~) 

+ H(cos  v sin ~) 
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= 3(1 + 0)  + 4 ( 0 )  + 10(0) 

= 3 m  

p 

y = - x s i n v c o s S + y c o s v c o s S - H s i n  

= - 3(0) + 4 (cos  0 x cos  - 5 )  - 10 sin - 5  

= 4 . 8 5 6 3 3 6  m 

H' = - x ( c o s  v sin ~ + sin v sin 8 c o s  q~) - y ( s in  v sin q / -  c o s  v sin 8 cos  ~') 

+ H ( c o s  v cos  ~)  

= - 3(0 + 0 ) -  4 ( 0 -  cos  0 x s i n - 5  x cos  0) + 1 0 ( c o s - 5  x cos  0) 

= 9 . 6 1 3 3 2 4  m 

As  x '  > 0 and y '  > 0, C = t a n - I ( y ' / x  ') f r o m  (2.31) ,  so C = t a n - l ( 3 / 4 . 8 5 6 )  or  4 6 . 0 6 1 0  ~ 

Also ,  

Y = t an -  j ~/(xP) 2 -t- (~,p)2 
H '  

= tan 
-I ~J(3) 2 + (4 .856)  2 

10 

= 22 .7493  ~ 

Coordinate transformation method 

To use this m e t h o d  we  need  to f ind C and y. 

C = tan -! y 
X 

-I 4 
= tan - -  

3 

= 53.1301 ~ 

?' = tan 

= tan 

/ 2 2 
_~ x + y  

H 

-1 ~/32 + 42 

10 

= 26.5631 ~ 

The  q u a d r a n t  for  C is c h e c k e d  by  us ing  e q u a t i o n s  s imi l a r  to those  in (2.31).  In this case  it is the 

first  quadran t .  

tan B = sin C x tan ~' 

= sin 53 .1301  x tan 26.5651 

= 0 . 2 9 7 4  

s i n / /  = cos  C x sin ~' 

= cos  53 .1301  x sin 26.5651 

= 0 .2683  
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From these results we find B = 21.8014 ~ and t3 = 15.5648 ~ Also from Table 2.6 it is evident that 
B" lies in the first quadrant and is equal to 21.0814 ~ 

From (2.34): 

B6= B" + g 
= 21.8014 + (-5) 
= 16.8014 ~ 

We now consider Table 2.7 to find which condition applies for the next step in the calculation. 
Line E applies, so that values can now be entered in (2.35), 

C"=tan-1 ( sinB'6 ]tanfl  

tan -1 ( sin 16.8014 ] 

tan 15.5648 J 
= 46.061 o 

! 

7" = cos-l( cos B 6 • cos 13) 
= cos-I(cos 16.8014 • cos 15.5648) 
= 22.7493 ~ 

From Table 2.8, where the last line applies, we find that C = 46.061 ~ and 7 = 22.7493", which 
agree with the results obtained by the matrix method. 

2.5 Turning the luminaire  about  the photomet r i c  axes in the 
(B, fl) coordinate  system 

The (B,/3) coordinate system is used for intensity tables for floodlights. This is convenient for 
calculation purposes because, when the floodlight is tilted about the polar axis for aiming, only 
a change in B is required. In addition, orientation can easily be allowed for because this can be 
directly calculated in terms of/3. More difficult is allowing for inclining the polar axis, which is 
hardly, if ever, required. It may be achieved by using (2.33, page 54), and then using the (x', y', 
z') coordinates to find the (B, fl) coordinates to be looked up in the intensity table. This is dealt 
with in detail in Section 12.5, page 417. 

2.6  Calculat ion of luminous f lux f rom /-tables 

In this section we will consider the calculation of luminous flux f rom/- tables  in the C, 7 and 
B, [3 coordinate systems. This will be done by means of examples worked on spreadsheets, with 
explanations. 

2.6.1 C, 7 COORDINATE SYSTEM 

Spreadsheet Column Explanation 

Table 2.9 1 For general purpose luminaires, readings are usually taken at 5 ~ 
intervals in 7. The zones for the calculation of luminous flux are then 
taken as subtending 10 ~ with the luminous intensity at each mid- 
zone angle being taken as the average for that zone. 
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Table 2.9 Calculation of zonal luminous flux on the C, 7' coordinate system 

1 2 3 4 5 6 7 8 

Angle Azimuth (o) Average Zone Luminous 

go 0 30 60 90 intensity factor flux 

0 t 50.00 t 50.00 t 50.00 t 50.00 t 50.00 
5 149.86 149.71 149.57 149.43 149.69 0.10 14.29 
10 149.43 148.86 148.29 147.73 148.77 
15 148.72 147.44 146.18 144.93 147.24 0.28 41.74 
20 147.72 145.48 143.27 141.09 145.12 
25 146.44 142.97 139.58 136.28 142.44 0.46 65.93 
30 144.89 139.95 135.18 130.58 139.21 
35 143.06 136.44 130.12 124.10 135.48 0.63 85.11 
40 140.95 132.45 124.47 116.96 131.29 
45 138.58 128.03 118.29 109.28 126.67 0.77 98.10 
50 135.95 123.21 111.67 101.20 121.66 
55 133.05 118.02 104.68 92.86 116.33 0.90 104.37 
60 129.90 112.50 97.43 84.38 110.71 
65 126.51 106.70 89.99 75.89 104.86 0.99 104.09 
70 122.87 100.65 82.45 67.54 98.84 
75 119.00 94.41 74.90 59.42 92.68 1.06 98.05 
80 114.91 88.02 67.43 51.65 86.44 
85 I 10.59 8 !.54 60.12 44.32 80.18 1.09 87.48 
90 106.07 75.00 53.03 37.50 73.93 Sum 0o-90 ~ 699.14 
95 101.34 68.46 46.25 31.25 67.74 1.09 73.91 
100 96.42 61.98 39.84 25.61 61.66 
105 91.31 55.59 33.84 20.60 55.71 1.06 58.94 
110 86.04 49.35 28.31 16.24 49.94 
1 ! 5 80.59 43.30 23.27 i 2.50 44.39 0.99 44.06 
120 75.00 37.50 18.75 9.38 39.06 
125 69.26 31.98 14.77 6.82 34.00 0.90 30.50 
130 63.39 26.79 11.32 4.79 29.22 
135 57.40 21.97 8.41 3.22 24.75 0.77 19.17 
140 51.30 17.55 6.00 2.05 20.59 
145 45.11 13.56 4.08 1.23 16.76 0.63 10.53 
150 38.82 10.05 2.60 0.67 13.28 
155 32.47 7.03 1.52 0.33 10.15 0.46 4.70 
160 26.05 4.52 0.79 0.14 7.38 
165 19.58 2.56 0.33 0.04 4.97 0.28 1.4 ! 
170 13.07 1.14 0.10 0.01 2.94 
175 6.54 0.29 0.01 0.00 1.28 0.10 0.12 
180 0.00 0.00 0.00 0.00 0.00 Sum 0~ ~ 912.57 

Spreadsheet  Co lumn Explanat ion  

Table 2.9 2 to 5 For fluorescent luminaires,  readings are conventionally taken in just  

one quadrant as being representative of all four quadrants. 

The luminous intensity readings are in unscaled units unless the 

photometer  has been scaled before the measurement  of the luminaire 

by means of the bare lamp. 

See Section 2.2, page 34 for an / - tab le  for a road lighting luminaire. 
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If readings are taken in all four quadrants an unweighted average can 
be taken, but in the illustration a weighted average is required. The 
luminous intensities at 0 ~ and 90 ~ would be duplicated at 180 ~ and 
270 ~ of azimuth respectively, whereas at the remaining angles the 
luminous intensities would be replicated four times. The weighted 
average IAV is therefore given by 

I0 + 130 + 160 + 190 + 1120 + I150 + ' ' "  + 1330 

AV 
12 

I 0 + 2130 + . . .  + 2160 + 190 

6 

The zone factors (ZF) are calculated from one of the formulae in 
Section 1.7.1, page 25. 

zone factor = 4x sin (~ '2-  ?'l ] sin ( ?'2 + ~1 ] 2  2 

= 4x sin 5 ~ sin ?'AV 

where ~'2 and ?'l are the upper and lower bounds of a zone respec- 
tively, and ?'av is the angle of the mid-zone luminous intensity, that 
is, 5 ~ 15 ~ 25 ~ etc. 
The average luminous intensity for each zone is multiplied by ZF to 
give the luminous flux in arbitrary units. These are summed to give 
the luminous flux for the upper and lower hemispheres. 
The luminous flux values for the upper and lower hemispheres are 
transferred from Table 2.9. Also entered is the bare lamp luminous 
flux that is obtained from a separate set of measurements made on the 
bare lamp without any changes being made to the sensitivity of the 
photometer. 
The total, up, and down light output ratios are found by dividing by 
the bare lamp luminous flux. 
The scaling factor to convert the luminous intensity readings into 
candelas per kilolumen (cd/klm) is found by dividing 1000 by the 
bare lamp luminous flux in unscaled units. This can be used to 
convert the unscaled luminous intensity readings to cd/klm by multi- 
plication. 

Table 2.10 Calculation of light output ratios and scaling factor 

1 2 3 4 

Angular zone Luminous flux 
(o) unscaled units 

Light output 
ratios 

Scale factor 

0-90 699.14 46.13 
90-180 213.43 14.08 
0-180 912.57 60.21 
Bare lamp 1515.66 

0.6598 
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Table 2.11 /-table based on the B, fl coordinate system 

1 2 3 4 5 6 7 8 9 10 11 

B (~ B of mid-zone (deg) 

of mid- 22.5 17.5 12.5 7.5 2.5 -2.5 -7.5 - 12.5 - 17.5 -22.5 

zone Luminous intensity (cd/ktm) 

20 18 25 30 35 39 35 34 25 24 17 
15 20 188 225 336 445 440 330 227 181 21 
10 25 307 806 1888 2566 2560 1893 818 313 23 
5 30 406 1112 2784 3241 3243 2788 1120 412 31 
0 45 665 1886 3960 4603 4607 3956 1895 666 46 

-5 40 500 1605 3602 4300 4308 3609 1605 509 41 
-10 38 445 996 2244 2866 2869 2244 990 444 39 
-15 31 245 556 1554 1886 1880 1547 563 249 30 
-20 26 151 188 218 288 285 220 180 150 25 
-25 18 32 55 111 145 145 111 51 30 18 

2.6.2 B, fl COORDINATE SYSTEM 

Spreadsheet  C o l u m n  Explanat ion  

Table 2.1 1 1 Only the mid-zonal B angles are shown. This is to keep the presenta- 
tion of the table small. Normally,  luminous intensity readings would 
be taken at the boundary of the zones, that is at 0 ~ 5 ~ l0 ~ etc. to 
enable an accurate isocandela diagram to be drawn. B angles below 
the beam are taken as negative. 

Table 2.11 2 to l l Only the mid-zonal fl angles are shown, once again to keep the 
presentation of the table small. Luminous  intensities at the bound- 
aries need to be recorded to enable an accurate isolux diagram to be 
drawn as for the B angles. 

Table 2.12 2 to 6 The luminous intensities from Table 2.11 are averaged in these 
columns for corresponding values of fl at any given B. 

Table 2.12 7 to I I The luminous flux in each of the 'box '  zones is calculated. The 
formula from Section 1.7.2 page 28 is used. 

flux = zone factor x average intensity 

:4 sin(   cos 

= 4~sin ~ cos fl Av x x IAV 
2 360 ~ 

where fll and f12 are the angular bounds of the zone; AB, flAY is the 
average of  ill, and /92, in degrees of arc, is the angular  spacing 
between the B planes; Aft is the angular spacing between the fl cones; 
and IAV is the average luminous intensity in a zone. IAV is taken to be 
equal to the luminous intensity in the centre of  a zone. 
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Table 2.12 Calculation of zonal luminous flux for the B,/3 coordinate system 

1 2 3 4 5 6 7 8 9 10 11 12 

B (o) B (deg) of mid-zone B (deg) of mid-zone 

of mid- 2.5 7.5 12.5 17.5 22.5 2.5 7.5 12.5 17.5 22.5 

zone Average luminous intensity (cd/klm) Luminous flux (lm/klm lamp flux) Sums 

22.5 37 35 28 25 18 0.3 0.3 0.2 0.2 0.1 1.1 
17.5 443 333 226 185 21 3.4 2.5 1.7 1.4 0.2 9.2 
12.5 2563 1891 812 310 24 19.5 14.4 6.2 2.4 0.2 42.6 
7.5 3242 2786 1116 409 31 24.7 21.2 8.5 3.1 0.2 57.7 
2.5 4605 3958 1891 666 46 35.1 30.1 14.4 5.1 0.3 85.0 
-2.5 4304 3606 1605 505 41 32.8 27.4 12.2 3.8 0.3 76.6 
-7.5 2868 2244 993 445 39 21.8 17.1 7.6 3.4 0.3 50.1 
-12.5 1883 1551 560 247 31 14.3 11.8 4.3 1.9 0.2 32.5 
-17.5 287 219 184 151 26 2.2 1.7 1.4 1.1 0.2 6.6 
-22.5 145 111 53 31 18 1.1 0.8 0.4 0.2 0.1 2.7 

Sums 155.2 127.3 56.8 22.6 2.2 364.2 

Table 2.12 The negative B angles, contrary to the usual mathematical conven- 
tion, are shown on the right-hand side to be in conformity with 

Figure 1.6, page 7. 

2.7 File formats for the electronic transfer  of luminaire 
photometr ic  data 

This section deals with the way in which photometric data are stored in an electronic file for use 
in computer programs. The medium on which the data are stored may be any one of those which 
can be used by a computer, such as a disk. There is obviously an advantage to be gained if file 
formats from all sources have the same presentation, since this facilitates interchange of data. 

A number of national and international bodies have published or are in the process of publish- 
ing file formats. These bodies include CIE, CIBSE, CEN and IESNA. Whilst their file formats 
have a strong family resemblance, no doubt as a result of their being based on the IESNA file 
format, 4 which was the first in the field, there are differences that have come about because of 
the different needs in different countries and organizations. The purpose of this section is to 

describe their main features. 
The file format can conveniently be considered in three parts. The first part consists of the 

identification of the luminaire, together with details of its mechanical and electrical features. 
These may include the lamp type, ballast lumen factor, input voltage, as well as the luminous 
areas of the luminaire in directions required for the calculation of discomfort glare together with 
a shape code to indicate the shape of the luminaire, also used in the calculation of discomfort 
glare. The second part gives numerical details required for the interpretation of the luminous 

intensity data that follow and constitute the third part. 
For illustration, the lines in the second and third parts of CIE 1025 are given in Table 2.13. 

Asterisks indicate that a new line must be commenced. Two asterisks indicate a key line, which 
must be included even if no data are given. Letters such as 'APOS' and 'TLME'  identify the line. 
The actual data are included between the signs '<' and '>' .  The explanation column is not part 

of the file format and has been put in to help the reader. 
ASCII format is used with a maximum of 78 characters per line to which must be added a 
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return line feed sequence. Each item of data may be separated by a c o m m a  or one or more  space 

characters. However,  some programs may only accept one or the other  convention,  in which case 

the file will have to be edited. 

Table 2.14 gives an example  of  how the data in Table 2.1 (a) and Table 2.1 (b) are represented 

in the CIE File Format.  The reader will notice that, in effect, the columns in Tables 2.1 (a) and 

Table 2.13 Presentation of luminous intensity data for CIE File Format 

Status Line name Data to be included Explanation 

** PTYP= <photometric type> 

* APOS= <angle position code> 

* TLME= 

* LUBA= 

<tilt during measurement> 

<lumen basis of photometry> 

* MULT= <multiplier> 

** NCON= 

** NPLA= 

** CONA= 

<number of cone angles> 

<number of half-plane angles> 

<cone angles> 
< 1 st half plane angle followed 
by luminous intensities at all 
angles in half-plane> 
<2nd half plane angle followed 
by luminous intensities at all 
angles in half-plane> 

<last half plane angle followed 
by luminous intensities at all 
angles in half-plane> 

Coordinate system: 
PTYP = C(C, 7) 
PTYP = B(B, fl) 
PTYP = A(A, a) 

Orientation of the coordinate system with 
respect to the luminaire. The C series is used 
for the (C, 7) coordinate system. For example, 
C1 is used for road lighting luminaires, C2 for 
general purpose luminaires, and so on up to 
C7. The B series is used for the (B, fl) coordi- 
nate system. For example B1 is used for flood- 
lights symmetrical about a central axis, B2 for 
floodlights with one plane of symmetry, and so 
on up to B4. Similarly for the A series. 

Angle of tilt during measurement in degrees. 
The default value is zero. 

Normally the luminous intensity data is based 
on candelas per 1000 lamp lumens, which is the 
default value. Other figures may be used for 
convenience in reducing the number of figures 
to be quoted for each luminous intensity. 

A number by which the luminous intensity 
values must be multiplied to obtain the real 
values. A negative number indicates values in 
candelas. The default value is unity. 

The cone angles are the a, fl or y angles, so the 
number of a,/3 or y angles in each half-plane is 
required. 

Number of A, B, or C half-planes. 

The cone 'angles' are the a, fl or 7" angles. 
The number of lines ending in a carriage 
return-line feed sequence is one more than the 
number of half plane angles because of the 
inclusion of the first line giving the cone 
angles. 
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Table  2.14 Luminous  intensity data in CIE File Format  

PTYP = C 
APOS = C1 
TLME = 5 
LUBA = 1000 
MULT = 1 
NCON = 36 
NPLA = 27 
CONA = 0.0 

57.5 60.0 
87.5 90.0 

180.0 

10.0 20.0 30.0 35.0 40.0 45.0 47.5 50.0 52.5 55.0 
62.5, 65.0 67.5 70.0 72.5 75.0 77.5 80.0 82.5 85.0 
92.5 95.0 97.5 100.0 102.5 105.0 120.0 135.0 150.0 165.0 

0.0 218 224 
261 257 247 

1 1 1 
5 . 0  218 225 
271 268 257 

1 1 1 
10.0 218 226 
270 266 255 

1 1 1 
15.0 218 227 
253 249 240 

1 1 1 
20.0 218 227 
228 225 216 

0 1 1 
25.0 218 226 
200 197 189 

0 I 1 
30.0 218 226 
173 169 161 

0 0 1 
35.0 218 225 
147 143 136 

0 0 0 
40.0 218 225 
127 122 114 

0 0 0 
45.0 218 224 
110 105 97 

0 0 0 
5 0 . 0  218 223 
98 92 85 

0 0 0 
6 0 . 0  218 221 
81 74 67 

0 0 0 
75.0 218 219 
62 55 46 

0 0 0 
90.0 218 219 
46 38 30 

0 0 0 
270.0 218 194 
73 67 59 

0 0 0 
285.0 218 195 
82 76 68 

0 0 0 
3tl0.0 218 199 
97 91 83 

0 0 0 

257 299 311 297 275 
229 204 136 77 47 

1 1 1 1 1 
260 305 317 304 280 
240 218 153 87 54 

1 1 1 1 1 
261 304 315 303 278 
240 219 163 91 59 

1 1 1 1 1 
258 298 306 294 267 
225 207 164 87 58 

1 1 1 1 1 
254 286 292 277 249 
202 187 156 77 51 

1 1 1 1 1 
249 272 273 256 227 
177 163 140 65 42 

1 1 1 1 1 
242 256 253 234 205 
151 138 121 53 32 

1 1 1 1 1 
235 238 234 214 185 
127 115 102 46 22 

1 1 1 1 1 
227 221 215 196 169 
106 95 83 42 16 

I 1 1 1 1 
221 205 198 180 156 

89 79 69 41 11 
1 1 1 1 1 

213 191 181 166 146 
76 68 59 38 10 

1 1 1 I 1 
201 170 156 143 127 

60 51 41 23 7 
1 0 1 1 1 

192 154 137 121 107 
39 31 22 13 4 

1 0 1 1 1 
189 149 130 113 97 
23 16 10 7 4 

1 1 1 1 I 
166 141 131 120 110 
50 38 24 12 6 

1 1 1 1 1 
169 145 134 124 114 
59 47 31 16 7 

1 1 1 1 1 
176 156 147 137 126 
72 60 40 21 7 

1 1 1 1 1 

277 
26 

1 
283 

31 
1 

279 
34 

1 
265 

34 
1 

242 
30 

1 
217 

25 
1 

194 
19 

I 
173 

14 
1 

158 
10 

1 
145 

7 
1 

136 
6 
1 

119 
4 
1 

100 
3 
1 

90 
3 
1 

105 
3 
1 

109 
4 
1 

121 
3 
1 

276 
8 

282 
9 

278 
10 

263 
10 

239 
9 

213 
8 

187 
6 

166 
5 

149 
4 

136 
3 

127 
3 

112 
2 

94 
2 

84 
1 

100 
1 

105 
1 

117 
1 

274 
2 

282 
2 

279 
2 

263 
2 

238 
2 

211 
1 

185 
1 

161 
1 

143 
! 

129 
1 

119 
1 

104 
1 

87 
1 

76 
0 

94 
0 

100 
0 

113 
0 

274 
1 

283 
1 

281 
1 

265 
1 

240 
I 

212 
1 

184 
! 

159 
1 

140 
1 

125 
1 

114 
0 

98 
0 

81 
0 

69 
0 

90 
0 

96 
0 

109 
0 

268 
0 

278 
0 

275 
0 

259 
0 

234 
0 

206 
0 

179 
0 

154 
0 

135 
0 

120 
0 

109 
0 

92 
0 

73 
0 

62 
0 

84 
0 

91 
0 

105 
0 

265 
1 

275 
1 

273 
1 

257 
1 

231 
! 

203 
1 

176 
0 

151 
0 

131 
0 

115 
0 

103 
0 

87 
0 

68 
0 

55 
0 

79 
0 

87 
0 

101 
0 
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Table 2.14 (continued) 

310.0 218 202 185 169 160 148 134 129 124 121 118 114 111 
106 100 92 81 69 48 17 6 4 2 1 1 0 1 

0 1 1 1 1 1 1 1 1 
315.0 218 204 191 177 167 154 138 133 129 126 124 120 117 
111 105 96 86 74 48 15 7 4 2 1 1 0 1 

t 1 1 t 1 t 1 1 t 
320.0 218 207 198 186 177 162 145 139 136 133 131 127 123 
118 112 103 93 79 49 15 7 5 2 1 1 0 1 

1 1 1 1 1 1 1 1 1 
325.0 218 209 205 197 189 172 153 148 146 142 140 136 132 
126 120 111 101 84 50 15 8 5 2 1 1 0 1 

1 1 1 1 I 1 1 1 1 
330.0 218 211 213 210 203 185 165 161 158 155 152 148 143 
137 131 121 110 91 51 16 9 6 2 1 1 0 1 

1 1 1 1 1 1 1 1 1 
335.0 218 213 222 225 220 202 181 177 175 171 169 163 159 
153 146 136 124 102 56 20 11 7 3 1 1 0 1 

1 1 1 1 1 1 1 1 1 
340.0 218 216 230 242 240 221 199 197 194 191 189 182 178 
172 166 156 142 118 65 27 14 8 3 I 1 0 1 

1 1 1 1 1 2 1 1 1 
345.0 218 218 238 258 260 242 221 220 216 214 212 205 201 
194 189 179 164 137 79 37 20 11 4 I 1 0 1 

1 1 1 I 1 1 1 ! 1 
350.0 218 221 247 275 280 263 242 242 240 237 235 228 224 
218 214 203 187 160 97 49 27 15 5 I I 0 I 

! I I 1 i ! ! 1 ! 
355.0 218 223 253 289 297 282 261 263 261 259 258 251 247 
242 238 227 210 183 117 63 38 21 6 ! I I i 

! I I I 1 I I 1 ! 

(b) become rows, and each row is preceded by the ?' angle. It should be noted that the full file 
format would include the name of the luminaire, its identification number, information on the 
ballast and circuit, and details about the lamp or lamps, as stated previously. 

The first block of data listed under CONA= constitutes the cone or ?' angles. Each successive 
block of data consists of the C angle followed by the luminous intensities at that angle. To ease 
reading the table, each C angle is printed in this book in bold type; this is not a requirement of 
the file format. 

In the UK, the CIBSE format described in Technical Memorandum No 14 is used. 6 This 
differs from the CIE system in two important respects. Only two coordinate systems are allowed, 
the (C, y) and the (B,/3) systems, the latter being described as the (H, V) system (see page 418). 
The horizontal angles are presented on a separate line from the luminous intensity data, as indi- 
cated in Table 2.15. 

The reader will notice that, unlike the CIE format, the CIBSE format does not name lines. 
This means that the stipulated information must appear on the specified line numbers. The first 
ten lines are concerned with information about the luminaire and then the following lines are as 
indicated in the table. CIBSE provides a second file format in which derived data such as utiliza- 
tion factors and glare indices may be included. 

The draft documents which CEN have produced on file formats indicate that the CEN File 
Format is likely to resemble that of the CIE closely. 7 

If data are to be presented according to the requirements of a particular file format issued by 
a lighting, or other, body the relevant documents should be consulted to obtain full details. 
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Table 2.15 Presentation of luminous intensity data for CIBSE File Format 

Status Line number Data to be included Explanation 

** 11 <design attitude> 

** 12 

** 13 

** 14 

** 15 on 

<number of vertical 
angles><number of 
horizontal angles> 

<vertical angles> 

<horizontal angles> 

<luminous intensities at 
I st C or 13 angle> 
<luminous intensities at 
2nd C or 13 angle> 
< > 

<. .> 

<luminous intensities at 
last C or 13 angle> 

The angle at which the luminaire is designed to 
operate, measured with respect to the horizon- 
tal plane. Typically 0 ~ for indoor luminaires 
and 5 ~ for road lighting luminaires. 

Number of ?' or B angles followed by the 
number of C or fl angles 

The ~' or B angles 

The C or 13 angles 

The number of lines, ending in a carriage 
return-line feed sequence is equal to the 
number of C or/3 angles 

Problems 

1. From the table below, which shows luminous intensities in candelas, use linear interpolation 
to find the luminous intensity at the following angles: (C, y) = (a) (359.0 ~ 11.5~ (b) (3.1 ~ 

11.2), (c) (1.0 ~ 12.5~ 

Answer: [(a) 596.5 cd, (b) 649.28 cd, (c) 633.75 cd] 

y Azimuth C (deg) 
(deg) 358 0 2 4 

10 560 600 621 630 
11 570 615 641 655 
12 581 620 645 657 
13 587 623 647 650 

2. Find the luminous intensity from Table 2. l at the following angles by using quadratic inter- 

polation: (C, D = (a) (8.5 ~ 38.0~ (b) (354.0 ~ 54.0~ (c) (321.0 ~ 2.0~ 

Answer: [(a) 310.506 cd/klm, (b) 255.146 cd/klm, (c) 216.171 cd/klm] 
3. Verify that the calculated data in the table below are correct. 

Given data Calculated data 

x y H v ~5 ~ x '  y" H" C ?' 
(m) (m) (m) (o) (o) (o) (m) (m) (m) (o) (o) 

5 5 10 5 0 0 5.4168 4.5452 10 40 
5 5 10 0 5 0 5 4.1094 10.3977 39.4162 
5 5 10 0 0 5 5.8525 5 9.5262 40.5083 
5 5 10 5 5 5 6.2989 3.6563 9.8466 30.1340 

-5 5 10 5 5 5 -3.6185 4.5246 10.7905 128.6509 

35.2644 
31.9001 
38.9397 
36.4892 
28.2320 



66 Luminous intensity table 

4. A luminaire is photometrically tested with a tilt upwards of 10 ~ but is used with a titlt of 5 ~ 
Find the coordinates that have to be looked up in an/-table to find the luminous intensity 
directed towards points with (C, y) coordinates of (358 ~ 20 ~ and (340 ~ 91~ 

Answer: [(11.5750 ~ 20.4205) and (339.9881 ~ 89.2885~ 
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3 
Direct Illuminance from Point, Line and 

Area Sources 

Illuminance can be treated as a vector quantity, since it has both magnitude and direction and 
obeys the laws of vector addition. However, care must be exercised when interpreting the results 

- see the comments at the end of Section 3.1. 

3.1 I l l u m i n a n c e  as a v e c t o r  q u a n t i t y  

Consider a point source illuminating a surface at an angle 0 to the normal (Figure 3.1). 

I cos 0 
= ~ = Emax .COS 0 Ep d 2 

where Ema x is the maximum illuminance that the source could produce at point P, i.e. when 0 = 

0 ~ 

Ep can therefore be considered to be a component of the vector Ema x acting along the normal 

to P (N). 
For a point source, the direction of this illumination vector Ema x is from the point source to 

the illuminated point, but for an area source the direction of the vector at the illuminated point 
is not always clear. The illumination vector at a point, produced by a particular light source, is 
in the direction of the maximum illuminance that the source can produce at that point and is 
equal in magnitude to that maximum illuminance. 

N S 

d I 

Ep 

Fig. 3.1 A point source illuminating a surface at an angle 0 to the normal 
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If an area source is considered to be an array of point sources, then the illumination vector for 
the area source is the resultant of the illumination vectors produced by this array of point sources 
at the illuminated point. In a similar way, any array of individual sources each producing its own 
illumination vector can produce a resultant vector. 

The use of this vector concept can sometimes simplify a calculation. However, care must be 
taken in a complex situation to ensure that only sources that can illuminate the point are taken 
into account. For example, in the case of a large area source, the plane of the illuminated point 
may intersect the plane of the light source. If this happens the result of including all the source 
in the calculation would be a calculated value representing the difference of the illuminances on 
each side of the plane containing the point (see Chapter 8). 

3.2  I l luminance  on an obl ique plane 

The vector concept is useful in developing expressions for the illuminance on an oblique plane, 
tilted with respect to the horizontal plane. 

When the direction and magnitude of Ema x are known, then the illuminance at the point P on 
any plane can be obtained by multiplying Ema x by the cosine of the angle between the direction 
of Ema x and the normal to that plane at P, i.e. 

E p =  Emax.COS O n 

However, it is often more convenient to work in terms of components of Ema x that are on the 
horizontal and vertical planes and are routinely calculated. 

The right-handed coordinate system commonly adopted for specifying the x, y and z direc- 
tions and senses of the vectors is not particularly convenient for the physical realities of the situ- 
ation, but it is considered wise to conform to this and deal with any difficulties by using 
appropriate notation (Figures 3.2 and 3.3). 

x, y corresponds to the horizontal plane and y, z and x, z to the vertical planes. 
The point P is taken as the origin of the coordinate system, i.e. (x = 0, 0, y = 0, 0, z = 0, 0). 

The z axis is the axis of the horizontal component of illuminance, but since the illuminance 
vector acts downwards it is denoted as E~_z) and similarly the x and y components, which act onto 
vertical planes, are denoted by E~_x) and E(_y). Also shown in Figure 3.3 is the normal to the illu- 
minated plane at P. This normal lies in the plane indicated by angle fl and is at an angle r to the 
horizontal illuminance vector E~_z). 

If the components E~_x), E~_y) and E~_z) are themselves resolved into orthogonal components 

Y 

Fig. 3.2 The right-handed coordinate system 
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P 

q, 

E 

E(-x)  

E(-z)  ~ 

Fig. 3.3 Notation and relationships for illuminance on an oblique plane 

with one of the components coincident with the normal to the plane of P, then the other compo- 
nents of E(_x), E(_y) and E(_z) will be parallel to the plane of P and so contribute zero illuminance. 
For this reason, only the components normal to the oblique plane need be considered. 

Using the notation given in Figure 3.3 gives 

Ep = E(_z) cos ~ + E(_x) cos fl sin ~ + E(_y) sin fl sin 

3.2.1 POINT SOURCES 

Consider Figure 3.4, here for convenience the y axis has been set parallel to the plane contain- 
ing point P as shown. In this case fl = 0 ~ and so, 

Z 

1/ 
~ X  

Sou rce 

Fig. 3.4 A point source illuminating an oblique plane 
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/ 

E( / 

Fig. 3.5 The relationship between E(_x) and E(_z) 

Ep = E(_z) cos q) + E(_x) sin q~ 

Also, since E(_x) = E(_z) tan 6 (Figure 3.5), 

/ x / 
Ep = E(_z) cos q) + -  sin r 

h 

where E(_z)is the horizontal plane illuminance at P. 
This expression has been developed for a plane tilted towards the light source (i.e. the normal 

is moved from the vertical towards the source). If the tilt is away from the light source then 
sin r becomes negative and so the vertical component is subtracted, not added. 

3.2.2 LINE SOURCES 

Consider Figure 3.6. 

z 

T 
x Line source 

Fig. 3.6 A line source illuminating an oblique plane 
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It was shown earlier that 

Ep = E(_z) cos r + E(_x) cos fl sin r + E(_y) sin fl sin 

If the y axis is arranged to coincide with the axis of the line source (Figure 3.6), then E(_x) 
becomes the vertical illuminance at P on a plane parallel to the source and E(_y) becomes the 
vertical illuminance at P on a plane perpendicular to the source axis. 

Since the vertical illuminance on a plane parallel to a line source 

E(_x) = E(_z) tan O 

X 

= E(-z) h 

I I ' 
X 

Ep = E(_z) cos r + - -  cos fl sin 0 + E(_y) sin fl sin 0 
h 

Note: the advantage of this expression is that E(_z) and E(_y) can often be calculated using the 
aspect factor method (see Section 3.7.3) and ~, fl, x and h are easy to determine. 

3.2.3 AREA SOURCES 

The general expression applies to area sources, but since the inclined plane frequently cuts the 
plane of the source and changes not only its size, but also its shape with respect to point P 
(Figure 3.7), the calculation is more difficult and requires careful consideration to ensure a 
correct solution. 

If the change of size and shape is not taken into account the value obtained will be the differ- 
ence in the illuminance on the two sides of the plane at P. 

The vector that represents the difference of the illuminance on opposite sides of a plane has 
its uses and this is developed in Chapter 8, on interior lighting. 

Later in this chapter the vector method is applied to a particular case for a uniformly diffus- 
ing rectangular area source. 

\ \ / \  

\ 
\ 
\ 
\ 

\ 
\ 

\ 

Effect ive 
so u rce 

\ 

\ 
\ 
\ 

\ 
\ 

Plane receiv ing 
\~- - - - - - - -  i l luminat ion at 
\ point  P \ 

\ 
\ \ 

Fig. 3.7 When the plane of the illuminated point cuts through the area source the calculation is more diffi- 
cult 



72 Direct illuminance from point, line and area sources 

6a 

; - -80~ . . . . . .  t(8~176 
I 
I 

' da cos 80 ~ r - ~  I (apparent area) 
Fig. 3.8 A large area may appear small because of the angle of view 

3 . 3  L u m i n a n c e  a n d  l u m i n o u s  e x i t a n c e  

In Chapter 1, the concept of luminous intensity, which relates to the illuminating power of a light 
source, either primary or secondary (i.e. by reflection) was introduced. It was also shown how this 
concept gives rise to the inverse-square law for illuminance produced by point sources of light. 

Luminance extends this concept to consider the illuminating power of an element of a light 
source or surface. It therefore relates the luminous intensity produced to the area responsible for it. 
As seen earlier, when a source has a luminous intensity that varies with direction (the most common 
case) then it is important for this direction to be specified. It is equally important when specifying 
luminance to specify this direction in relation to the normal to the surface element producing the 
luminous intensity, since the intensity will appear to come from the projection of the area in the 
direction concerned. This is important since the luminous intensity may come from a large element 
of area which, when viewed at an extreme angle to the normal (say, 80~ appears very small. 

Luminance is therefore defined as the luminous intensity per unit projected area of the source 
(or surface) in the specified direction (see Figure 3.8). 

Io 
L o = c d m  -2 

6a cos 0 

3 . 4  A s p e c i a l  c a s e -  u n i f o r m  d i f f u s i o n  

When the intensity per unit projected area (L) is the same from all directions of view of the 
element, i.e. 0 ~ to +90 ~ in elevation and over 360 ~ in azimuth, the surface or source is said to 
produce uniform diffusion. This is a very important case, since (a) many surfaces and sources 
approximate to this distribution, a matt painted surface, for example; (b) this assumption can 
greatly simplify many calculations. 

A simple example of (b) is that once this assumption of uniform diffusion is made, the inten- 
sity distribution of the element is also fixed. This distribution can be determined in the follow- 
ing way: 

t 
Io 

Sa cos 0 

but since ~;a is fixed then for L to remain constant I o must equal/max COS 0. 
So it is possible to say that for the condition of uniform diffusion 

I0- /max COS 0 

where/max is the intensity normal to the surface element 5a (Figure 3.9). 
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~a 

/n, 

I m cos 0 

Fig. 3.9 The relationship between the maximum intensity and the intensity at angle 0 for uniform diffusion 

-E lement  of area 

I m COS 0 

Im 

Fig. 3.10 The polar curve for uniform diffusion is a tangential circle 

The polar curve for such a distribution is a circle tangential to the origin (Figure 3.10). 
If we consider all directions this becomes a polar solid, which is spherical. 
Once the intensity distribution has been determined it becomes a simple matter to determine 

the relationship between I m and the total flux emitted by the element. 
From Chapter 1 the solid angle for an elemental zone of a sphere is 

2Jrr sin Or dO 

P 
= 2:r sin 0 dO 

So that 

to/2 

CI)- ~ 2~Ima x cosOsinO dO 
0=0 

E-; 1 = 2~/ma x sin 2 0 
Jo 

= ~[max 

So, for a uniform diffuser, there is a simple relationship between the maximum intensity and the 
flux emitted, and hence between the luminance and the flux emitted per unit area. 

For a uniform diffuser 

/max 
t - ~  

5a 
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]'C/ma X (I) 
xL = ~ = lm m -2 

,Sa &a 

O/6a is given the symbol M and is called the luminous exitance of the surface element. It is the 
luminous flux emitted per unit area. 

Because of the simple relationship between luminous exitance and luminance in the 
common case of the uniform diffuser, luminance is sometimes confused with luminous 
exitance. This is partly because the concept of luminous exitance is often omitted from courses 
(and books). 

For example, when an illuminance of E lux is reflected from a surface, the luminous exitance 
M is given by 

M = p E  

where p is the reflectance of the surface. 
If the surface gives uniformly diffuse reflectance then: 

M 
M =  xL or L = ~  

Jr 

However, if the surface is not a uniform diffuser, then the relationship becomes complex, and 

M 
L ~ m  

/t" 

since L is not constant with angle of view. 

3 . 5  An  i m p o r t a n t  tool :  t h e  p r inc ip le  o f  e q u i v a l e n c e  

Because the assumption of uniform diffusion is often an acceptable approximation, the principle 
of equivalence may be applied to many lighting problems. 

The principle may be demonstrated in the following way (Figure 3.11). 

/i 
area . 

S. /~ IIIIIII 
1 '~'L"/ ~N I ""' \area6a2 / 

" dl 

Fig. 3.11 Illustration of the principle of equivalence 

/ 
P 
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When viewed from point P both light sources S 1 and S 2 appear to have the same boundary. If 
the inverse-square law is applied to each source, then: 

Ups = 
1 

/_,6a I cos 01 cos r 

dl 2 

eps = 
/_,6a 2 cos 02 cos r 

d2 2 

Also, 

~a 1 cos 01 ~a 2 cos 0 2 

dl 2 d2 2 
(the same solid angle) 

so that 

Eps I = Eps 2 

3.6  U n i f o r m l y  d i f fuse  sources 

Although many light sources do not give a uniformly diffuse distribution, before we consider 
non-uniformly diffuse sources the simplification introduced by assuming uniform diffusion will 
be illustrated (1) by introducing the unit hemisphere method, and (2) by applying that method to 
three cases; the disc source, the triangular source and the rectangular source. 

The disc source approximation can be useful for a quick estimate of the illuminance produced 
by a source of similar area but of a more complex shape. The triangular source can be used as a 
component to build up illuminance equations for other shapes of source and, particularly, the 
rectangular source. The rectangular source is used to calculate the reflected illuminance from the 
rectangular room surfaces which can usually be assumed to have uniformly diffuse reflectance. 

3.6.1 UNIT HEMISPHERE METHOD 

Consider an element d;s of a source S, having a uniformly diffuse distribution (Figure 3.12). Let 
the illuminance at P due to this element be d;Ep. By the principle of equivalence the illuminance 
at P would be the same if it was illuminated by the element of the surface area of the hemisphere 
&s', providing it has the same luminance as &s. 

area  6s 

I I ~ 1 

Fig. 3.12 The unit hemisphere method 
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So that 

~Ep ~ 
L~s' cos 0 

12 

Also, 

8s" = ~s' cos 0 

Therefore,  

~Ep=/_~s"  

The same argument  may be extended to each e lement  of  area of  source S and so 

Ep= L T~Ss"= LS" 

3.6.2 THE DISC SOURCE 

Calculation of the i l luminance on the horizontal plane at a point P directly beneath the disc (see 
Figure 3.13). 

Ep = LS" 
= L(/rx 2) 

Ep = ~rL sin 2 

Note: this result could also be expressed as: 

/R2/ 
Ep = :rL or Ep = 

R 2 + h 2 

JrL 
(1 - cos a)  

In the latter form it can be extended to relate to any point on a plane parallel to a uniformly 
diffusing disc source. This is done in three stages. 

Disc source of 
luminance L 

r = l  

Fig. 3.13 The unit hemisphere method applied to a disc source 
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6a 

Fig. 3.14 The first stage in extending the use of the disc source formula 

Stage 1 (Figure 3.14) 
Consider a uniformly diffusing luminous element 6a on the inside of a sphere. 

The illuminance at point P produced by this element ~a on the inside of the sphere is given 
by: 

Ep "- 
L~a cos 0.cos 0 

(2r cos  0) 2 

4r 2 

Since this expression does not contain 0 it means that the element may be located at any point 
on the inside of the sphere and will produce the same value of illuminance at all points on the 
inside of the sphere. 

Stage 2 
Consider Figure 3.15. Let the diffusing disc be placed within the sphere so as to have a bound- 
ary coincident with that of the spherical cap ABC. Because of the principle of equivalence we 
can assume that if the spherical cap ABC had the same luminance as the disc and the disc was 
removed, the illuminance produced at point P would remain the same. Further, from Stage 1 we 
know that each element of the spherical cap would produce the same value of illuminance at each 
point on the inside of the sphere below the disc boundary. This means that the disc itself would 
have the same effect. That is, the illuminance on the inner surface of the enclosing sphere at any 
point P would be equal to that at O. Let this illuminance be Eq. 

In passing, we note that since angles APC and AOC are subtended by the same chord within 
the circle, they must be equal. 

So, the illuminance 

lrL 
= ~ ( 1  - cos a)  Eq 2 where a = angle APC 
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Fig. 3.15 The second stage in extending the use of the disc source formula 

Stage 3 
Consider Figure 3.16. Returning to the principle of equivalence we can now conclude that the 
illuminance at P could be considered to be produced not just by the disc, or the spherical cap, 
but by the base of an elliptical cone of major axis DFG. (This cone will have a different ellipse 
as its base according to the position of P on the circle, but it does not affect the argument given 

,, " . , \ \  - . /  
/ , I 

,' " ' - / I  \ .  "',, 
I I / ~" ~ '  .... " ' /  

i I s.,.,, .~ 'S  

/ , ' , . /  l..-" \ 
i e z! / ...- 

p'/.-"" 'N 

I 
0 

Fig. 3.16 The third stage in extending the use of the disc source formula 



3.6.3 THE TRIANGULAR SOURCE 

below). This generation of an elliptical cone from an oblique circular cone was first demon- 
strated by Appollonius who lived from 260-200 BC. 1 

In Section 3.1, we introduced the concept of the illumination vector. The direction of the illumi- 
nation vector is that in which all illuminance components at right-angles to that direction are equal 
and so cancel. The symmetry of the elliptical source predicates that the illumination vector lies on 
the axis of the elliptical cone, i.e. on line FP and passes through point B (because angles APB and 
BPC are equal, once again subtended by equal chords). We note that BN and NP are radii. 

Finally, since BN is parallel to the direction of the horizontal component  of illuminance E h 
and the angle between E h and the illumination vector E must have the same value as the angle 
BPN (i.e. the angle between the component  Eq, representing the sphere illuminance and the illu- 
minance vector E), we can conclude that 

E h = E  q 

So that 

zrL 
E h = ~ (1 - cos a) 

2 

The outcome of this rather extended section greatly increases the usefulness of the disc formula. 
In addition, it demonstrates the importance of the principle of equivalence. 

Area of  sector M = Jrr 2 x 

The expression for the illuminance on the horizontal plane at a point P directly beneath the apex 
of a right-angled triangle is developed below (Figure 3.17). 

The projection of sector M onto the base of the unit hemisphere gives the same value for S" 
as the projection of S'. 

Bl 

2~ 

r =  

but r - 1, so area of sector M = B 1~2, where B I is the sector angle in radians. 
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Fig. 3.17 The unit hemisphere method applied to a triangular source 
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Therefore, 

B 1 
S" = ~ sin A 

where A is the angle between the normal at P and the plane of sector M and 

L 
Ep = 2 (B1 sin A) 

3.6.4 THE RECTANGULAR SOURCE 

This result can be extended to a rectangular source by considering it to consist of two triangular 
sources (Figure 3.18). 

L 
Ep = -7- (Bl sin A + A 1 sin B) 

2 

Perhaps, surprisingly, the result for a triangular source parallel to the horizontal plane can be 
extended to the case of a rectangular source on a plane perpendicular to that of the illuminated 
point. Once again, we invoke the principle of equivalence (Figure 3.19). 

The illuminated point is located opposite one comer  of the perpendicular or vertical rectan- 
gular area light source (ABCD). 

An observer at point P viewing diffusing panel ABCD would receive the same impression 
(and illuminance) as if they had been looking through a window at a triangular light source of 
infinite extent defined by the directions of lines NA and NB, except that the section of the trian- 
gular source on their side of the window would be missing, i.e. triangle NAB. 

Fig. 3.18 The rectangular source considered as two triangular sources 
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i I ~, 1 I 
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c 

A n g l e  e = 0 ~ 

Fig. 3.19 The principle of equivalence used to develop the formula for a perpendicular area source from 
the triangular source formula for the parallel plane 

So, the illuminance at P produced by area ABCD would be given by the difference of the illu- 
minances produced by these two triangular sources. 

For the triangle NAB 

El = 2 (B! cos e) where e = 2 - A 

For the triangle of infinite extent e = 0 ~ cos e = 1.O. 
So, 

L 
E 2 = ~ B  

2 

and 

E p = ~ ( B - B I  c o s e )  
2 

Important 

A difficulty introduced by developing the formula for the perpendicular plane from that for a trian- 
gular source illuminating a parallel plane is that, as the angles are measured in the diagram, e is the 
complimentary angle to A. For this reason the more usual form of the formula is, therefore, 

Ep = (B - B 1 c o s  A)  
2 

and this is in the form quoted in the use of the formula in Section 8.5.1, and Figure 8.8(b) is 
labelled accordingly. 
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Source 

r = l  

Fig. 3.20 The unit hemisphere method applied to the perpendicular area source 

The real source in Figure 3.20 is, of course, in the vertical plane and so the angle e would 
correspond to angle A if a horizontal rectangular source (Figure 3.18) had been rotated through 
90 ~ to take this position. 

This result could have been obtained by the direct use of the unit hemisphere method (Figure 
3.20). 

The projection of the solid angle intersection with the unit hemisphere S", is equal to the area 
of the sector subtending angle B, minus the projected area of the shaded sector M. 

B 
Area of sector with angle B = 

2 

Projected area of sector M = 
BI 

COS E 

So that 

L 
E p = - - ( B - B  l c o s e )  

2 

as before. 
The results for uniformly diffuse rectangular sources are of particular value since they can be 

used to determine the distribution of reflected flux from walls and ceilings onto the working 
plane assuming uniform wall or ceiling illuminance and reflectance. 

3.6.5 THE METHOD OF COMPONENT SOURCES 

It has been convenient to calculate the illuminance under one comer of a right-angled triangular 
source and, in deriving the illuminance for a uniformly diffusing rectangle perpendicular to the 
plane of the illuminated point, we used the device of subtracting the illuminance that would be 
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produced by one triangular source from that produced by a larger triangular source (Section 
3.6.4). This method can be used in many cases and so we will describe it as the method of 
component sources. It has the great advantage of allowing the equations related to simple cases 
to be used for more complicated cases. 

For example, the equations for a rectangular source where the illuminated point is under one 
comer of the source can be extended to any point on the parallel plane beneath the source by 
considering the source to consist of a number of rectangular sources, see Figures 3.21 and 3.22. 

From Figure 3.21 it will be seen that the illuminance at P from rectangular source ABCD is 
given by summing the contributions from the assumed component sources 1, 2, 3, 4. 

So, 

E p = E  l + E  2 + E  3 + E  4 

D 
I 

I 
I 

1 / /  2 
/ 

/ 
/ 

2 
/ 

/ 
. 3 / 4 

/ 
/ 

/ 
! 

B 

/ 
Fig. 3.21 The method of component sources 

Fig. 3.22 The case where the point is not under the rectangular source 
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From Figure 3.22 it will be seen that the illuminance at P from source A B C D  is given by the illu- 
minance from assumed sources AIFE + BIFG minus the illuminance from the non-existant 
component sources E D H F  + GCHF. 

Ep = E(l+3 ) + E(2+4 ) - ( E  3 + E4) 

3.6.6 GENERAL ILLUMINANCE EQUATION FOR A U N I F O R M L Y  DIFFUSING 

R E C T A N G U L A R  SOURCE TILTED A T  A N Y  A N G L E  F R O M  0 ~ TO 90 ~ TO THE 

ILLUMINATED PLANE, WITH ONE E D G E  PARALLEL TO THE ILLUMINATED 

PLANE 

The two results obtained in Section 3.6.4 for the illuminances (1) at a point on a plane parallel 
to the source (El); (2) at a point on a plane perpendicular to the source (E2) may be used to 
develop a general illuminance equation for a rectangular uniformly diffusing source. 

Such a general equation might be used for a source mounted on a sloping ceiling or for a slop- 
ing roof light, shown shaded (Area R x T) in Figure 3.23. 

The two equations are: 

L 
E1 = S (Bl sinA + A l sin B) (3.1) 

E2 = m ( B -  B 1 cos A) (3.2) 
2 

Applying the method of component sources (see Section 3.6.5) the illuminance at the point 
defined (with respect to one comer of the source) by x, y and z is given by 

Fig. 3.23 The relationships used in deriving a general illuminance equation for a rectangular source 
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Ep = [E(MP) + E(NQ)]- (E(P) + E(Q)] 

or, in terms of the vector components, normal to the illuminated plane: 

Ep = [(EI(MP ) + E~(NQ)) - (El(P) + El(Q))] cos ~ + [(E2(MP) + E2(NQ) ) 
- (E2(P) + E2(Q))] sin 0~ 

For each E 1 term there is an expression in the form of equation (3.1) and for each E 2 term an 
expression in the form of equation (3.2). 

When these expressions are written in terms of the dimensions given in Figure 3.23 and gath- 
ered together, the illuminance Ep is given by: 

Ep - L yc~ ( -' (T + G) G I 
- --  tan + tan -~ 

(T + G)cosO = Hsin q~/tan_ l y + tan_ l 

+ ~/H ~ + ( r  + a~ 2 ~/H ~ + ( r  + c )  ~ 
(R-y)  I = ( T + G )  2 ~/H 2 

( 
( R - y ) c o s O  | -l (T+  G) -1 

L 
tan - tan 

+ ~/H 2 + ( R - y )  2 ~/H 2 + ( R - y )  2 

O / 
~/H 2 + (T + G) 2 

Hsin q~- Gcosq~/tan_ l y + tan_ I 
+ 4 H  2 + G  2 ~/H 2 + ( R - y )  2 (R+y) I 4H 2 + G 2 

Combining the angles using 

IA I ( 
(tan -! A - tan -I B) = tan -I and tan -I A + tan -l B = tan -l 

1 +AB 
A+8 / 
1 +AB 

gives, 

T~/y 2 + H2 I Tcos~0- x Ep=L ycos~0 tan_ l H 2 G 2 + 
2 ~fy2 + H 2 y2 + + + T G  4 x  2 + z 2 + T 2 + 2TG 

xtan_, / R x2+z2+T2+2TO ) 
x 2 + y2 + Z 2 _ yR + T 2 + 2 T G  

T~/(R_y)+H2 I ( R -  y)cos~0 tan_ l H 2 2 
~ / (R-  y)2 + H 2 ( R -  y)2 + + G + TG 

X -!- Z 2 

tan (2R x2+Z2y2 2 I 
x + +z -Ry  
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Dimensions H and G shown in Figure 3.23 relate the position of the illuminated point to the posi- 
tion of light source on the sloping plane, and since 

G = z s i n r 1 6 2  and H = z c o s r 1 6 2  

the illuminated point and the source can be related more easily to the relevant horizontal and 
vertical surfaces in a practical situation. This is particularly useful if this general expression is 
incorporated in a larger computer program. 

Note: as already pointed out in Section 1.3.4, care has to be taken with the inclusion of this type 
of expression in a computer program, since incorrect results can occur when the tan -1 argument 
denominator is zero, or when both the numerator and denominator are zero. 

The equation above is similar to that published by Pierpoint and Hopkins. 2 (Noting that M / x  = 

L for a uniformly diffuse source.) 
However, they derived the expression by employing a double integration, while the above 

derivation has employed the principle of equivalence to obtain the rectangular source formulae, 
the method of component sources, and the concept of illuminance as a vector. This is a further 
illustration of the value of these techniques. 

It should be noted that the x, y and z coordinates used in Figure 3.23, to relate the equation to 
the work of Pierpoint and Hopkins, are not the same as those used in the opening section of this 
chapter. 

In Figure 3.23, the x, y and z coordinates have been related to the illuminated plane, as in the 
Pierpoint and Hopkins' work, in order to make comparison between the two sets of equations 
easier. 

In the opening section of this chapter, the x, y and z coordinates relate simply to the horizon- 
tal and vertical planes and not the illuminated plane (see Section 3.2). The difference occurs 
because, in Section 3.2, the plane of illuminance is tilted with respect to the horizontal plane, 
whereas in the Pierpoint and Hopkins' work the rectangular source is tilted relative to the hori- 
zontal plane. 

3.6.7 U N I F O R M L Y  DIFFUSING S P H E R I C A L  S O U R C E  

To complete the consideration of large uniformly diffusing sources we use the principle of equiv- 
alence to treat the uniformly diffusing sphere as an equivalent uniformly diffusing disc source 
(Figure 3.24). 

The disc source equation gives 

Ep = x L ~  
r 2 

r 2 + h 2 

but 

h 2 
m 

r 2 

d 2 _ a 2 

a 2 
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phere 

a 

Equivalent 
disc 

Fig. 3.24 The illuminance from a spherical source 

So, 

a 2 
Ep = ~rL 

a 2 + d 2 _ a 2 

irZa 2 

d 2 

But, zrLa 2 = I where I = luminous intensity of the sphere in any direction. 
So, 

I 

Ep= d 2 

Thus the spherical uniformly diffuse source obeys the inverse-square law at all distances, 
provided that the distance is measured from the centre of the sphere (i.e. d). 

The above result is a consequence of the fact that the illumination vector always acts from the 
centre of a diffusing sphere. 

The illuminance on a tilted plane for any source is obtained by multiplying by the cosine of 
the angle between the normal to the illuminated plane and the direction of the illumination 
vector, giving 

Ep = Ema x cos 0 

I 
= ~ cos 0 

d 2 
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provided that the illuminated plane does not pass through the source when extended (if so, it 
gives the difference of the illuminance on each side of the plane). 

An alternative and simple proof that a uniformly diffusing spherical source obeys the inverse- 
square law at all distances is indicated below. 

The flux received by a sphere of radius r will be the same whatever the value of r. The illu- 
minance on any point on the inside of an enclosing sphere is, therefore, 

0 
E =  

4xr 2 

From this equation it is clear that the illuminance varies as the square of the distance of the point 
of measurement from the centre of the spherical source. It is interesting to note that this very 
simple proof does not depend upon the sphere being uniformly diffusing, but only upon uniform 
emission per unit area of source. 

3 .7  N o n - u n i f o r m l y  d i f f u s e  a rea  sources  

Many light sources do not have uniformly diffusing properties and the luminance does vary with 
the angle of view. With the advent of powerful computing capacity, any area light source can be 
considered to consist of many elemental point sources and inverse-square law computations 
carried out and summed to give an accurate result, provided that the luminous intensity distrib- 
ution for each element of area is known. 

On the other hand, another approach with, or without, the aid of a computer is to consider the 
light source distribution to be approximated by a cosine power distribution, such as cos 2 0 or cos 3 
0. Such approximations have been used to represent a louvred luminaire distribution (cos 2 0) or 
luminaires with deep louvres (cos 3 0). Also, those distributions that cannot be approximated in 
this simple way can usually be represented by a cosine series, such as" 

I o = A + B cos 0 + C COS 2 0 + D COS 3 0 

It is, therefore, useful to develop formulae for area sources with these various cosine power 
distributions. However, point by point calculations are much more sensitive to errors due to such 
approximations and so they are more useful for flux calculations. An example of a flux calcula- 
tion is given in Section 4.3. 

3. 7.1 THE DISC S O U R C E  

Consider the calculation of the illuminance on the horizontal plane at a point P directly beneath 
the disc (Figure 3.25). 

The intensity of the element of the source dr x dl in the direction of P is given by 

E p  - - -  

L mdl dr cos n 0 cos 0 

D 2 

where L m is the maximum luminance (when 0 = 0~ 
Now r = h tan 0, so, dr = h sec 2 0 dO and D = h sec 0 giving, 

L mdl h sec 2 0 dO COS (n+l) 0 

h 2 sec 2 0 
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Fig. 3.25 A disc source with a cosine power intensity distribution 

t m 
= ~ dl COS (n+l )  0 dO 

h 

The element  of length dl produces the same i l luminance at P as all the other e lements  of length 

dl making up the annular ring 2zrr dr. 

So, 

Lm 2/D'cos (n+l) 0 d 0  d E p =  h 

= 2/r./., m tan 0cos  (n+l) 0 d 0  

= 2/r./., m sin 0 COS n 0 dO 

Ep = 21rL m sin 0 cos n 0 dO 
=0 

Ep - - ~  2/r-Lm [_cos(n+l)0]0~:0 
( n + l )  

2/r-Lm (I_cos(n+I)~ ')  
( n + l )  

when n = 0, Ep = 2~rLm(1 - cos D- 
Note: 2x(1 - c o s  T) is the solid angle. 
When  n = 1 (uniformly diffusing source), 

Ep = x L  (1 - cos 2 ?') 

= x L  sin 2 ~' 

where ?, = a/2  when this expression was deduced for a uniformly diffusing disc. 
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When n = 2, 

xL m 
Ep = 3 (1 - cos 3 ~') 

These solutions only apply to a point directly under the centre of the disc and, except in the case 
of uniform diffusion (n= 1), cannot be extended to relate to any point on the parallel plane. 

3.7.2 THE TRIANGULAR SOURCE 

The solution for the disc source (Figure 3.25) gives a convenient starting point for developing an 
illuminance equation for the triangular source (and hence the rectangular source) (Figures 3.26 
and 3.27). 

In Figure 3.27, the axis of the diagram has been rotated through 90 ~ (compared with Figure 
3.26) to enable the various angles and dimensions to be more clearly indicated. 

Consider Figure 3.27: 

2xL dO 
dEp = ~ (1 - cos 7 (n+ 1)) 

(n+ 1 ) 2x 

Fig. 3.26 The disc source relationships used in developing the triangular source formula 

Fig. 3.27 Illuminance on a parallel plane from a cosine power distribution triangular source 
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Change  the variable f rom 0 to b: 

dO = (sec 2 bcosec  A / s e c  2 0) db 

= [sec 2 bcosec A /  (R2 + h2)tan2 b+ R2 ] 
R2 db 

= (sec 2 b cosec A / cosec 2 A tan 2 b + 1) db 

Let  cosec A = C: 

dO = (Csec  2 b/ (C 2 tan 2 b + 1) db 

h h 
cos ?' = r2 = ( h 2 +  )�89 (h 2 + ( R  2 + h2 ) t an  2 b +  R2) �89 

(1 + ((R/h) 2 + 1)tan 2 b + (R/h) 2)�89 

(sec 2 A tan 2 b + sec 2 A) �89 

Let  sec A = S: 

COS ~ = 
(S 2 tan 2 b + S 2 )�89 

1 

S sec b 

So, 

Lm ( 1 -  
dEp = (n + 1) 

1 ) (  Csec2b ) d  b 
( S s e c b )  (~§ C 2 tan 2 b +  1 

LmC 1 - 
EP = ( n + l )  

1 sec2b 
(Ssecb) (n+l) C 2 tan 2 b + 1 

Solving for n = 0: 

/ Ep = L m C 1 - ~ C2 db 
�9 ~o S sec b 1 + tan2 b 

C S + cos b 

Let t = tan(b/2) so, db = 2dt/(1 + t2): 
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Ep = 
LmS f 2 dt /(1 + t 2 ) 

C Js+(1-t2)/(l+t 2) 

Since, 

cos b = 

b 2 b  
COS 2 - - - s i n  -- 

2 2 _ l - t 2  
m 

c~  2 b 2 b 1 + t 2 - + sin - 
2 2 

then 

Ep ~ ~  2LmS f dt 
C (S+l)+(S-1)t 2 

~ S +  1 dt 
2LmS f S-  1 

C../S+I ( S + I )  t2 
~ / ~ - ( S - l )  S -  1 + 

! tan 2 BI 

- 2 L  m tan-  ( S + 1 

~ '~ )  o 

: Lm tan / ) 

Solving for n = 1" 

E p  ~ ~  
L m C 1 - 1 sec2 b db 

2 ( S s e c b )  2 1 + C 2 tan 2 b 

=LmC f f ' ( S 2 ( l + t a n 2 b ) - l ) ( 1 ) d  b 
2 S 2 1 + C 2 tan2 b 

and since 

s2 /c2 / 
C 2 - 1  



L mC fB! ( 1 + C 2 tan2 b 

2 Jo ~, c2  
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)( 1 )db 
1 + C 2 tan 2 b 

~0 nl Lm db 
2C 

Lm (B 1 sin A) 
2 

Solving for n = 2: 

~m~f0~' / E p =  ~ 1 -  
1 ~~ sec2b )~b 

(S sec b) 3 1 + C 2 tan 2 b 

'mfo / ~sec~ ' / 
3SC sec b(S 2 sec2 b - 1) db 

'mfo ( ~ 3 cos b + db 
3SC S + cos b 

= ~ s i n A c o s A s i n B ~ + 2 t a n  -l t a n - - t a n  
2 

Solving for n = 3: 

Ep = ~  L m C 1 - 
4 

, ~~ sec2b ~db 
(Ssecb)  4 1 + C 2 tan 2 b 

S2 S 4 ) 
2 (1 + C 2 (1 + C 2 L m C fB, U tan 2 b) + ~ -  tan 2 b)2 

4S 4 Jo sec2 b(1 + C 2 tan 2 b) 

( f~' / Lm S2BI + cos 2 b db 
4CS2 ,I o 

Lm s inAcos  2 A( B1 
4 ~ cos 2 A 

21 1 / + -- B 1 + --sin B 1 cos B l 
2 
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Fig. 3.28 The cosine power distribution rectangular source considered as two triangular sources 

As in the section on diffuse sources, the above results can be extended to the case of a rectan- 
gle by considering the rectangle to be two right-angled triangles (Figure 3.28). 

The illuminance expression then becomes: 

n = 0  

n = 1.0 (uniformly diffuse source) 

Lm 
Ep = - - ~  (B l sin A + A l sin B) 

n =  2.0 

Zm[ ((A / (-'~-)) 
Ep = - - 7  sin A cos A sin B l + 2 tan -I tan tan + sin B cos B sin A~ 

+2 tan-l ( t a n I B / t a n ( - ~ ) ) ]  

n = 3 . 0  

Lm[sinAcos2A( B 1 B 1 1 ) = + ~ + --sin B 1 c o s  B 1 
Ep - - ~  COS 2 A 2 2 

+sin Bcos 2 B( AI A 1 1 ) ]  + ~ + -- sin A 1 c o s  A 1 
cos 2 B 2 2 

An alternative derivation of these formulae is given by Bell. 3 
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cl! 

Fig. 3.29 Illuminance at a point opposite one end of a line source 

3. 7.3 LINE SOURCES 

Consider the point P opposite one end of a line source (Figure 3.29). Many sources are long and 
narrow compared with the distance from the source to the illuminated point. 

In this case, solutions may be obtained by the summation of the contributions from each 
element of length dl, to the illuminance at P. To do this we apply the inverse-square law to each 
element of the linear source and integrate. 

Each element of length dl is assumed to have an intensity given by dividing the total intensity 
of the source, at the angle subtended from the element dl to the illuminated point, by the length 
of the source and multiplying this by dl (Figure 3.25). 

This assumes that each element of the source contributes the same amount to the total inten- 
sity of the source. (This is usually an acceptable assumption, but is not always accurate enough 
if the point is close to the source, since the ends of a practical line source usually give a much 
reduced output within 0.15 m of the lamp cathodes.) 

The intensity of element dl in direction/3 is given by 

dl 

Applying the inverse-square law, we obtain 

=I/~ cos fl dl 

ID 2 

Now S = h tan fl so, dl = h sec 2 fl dfl which gives: 

dEp = I#  x h sec 2 fl cos fl dfl 

1 h 2 sec 2 fl 
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I_ l _1 
I- -I 

dl 

/~=0 

Fig. 3,30 The assumption that each equal length element contributes the same amount to the total intensity 
of the source 

f~ 
' I/3 

= - - c o s  fl dfl 
Ep =o lh 

The solution depends upon the variation of Ip, given by the axial polar curve, over the range of 
the integral (Figures 3.31 and 3.32). The method fails if the axial intensity curve changes shape 
significantly with the transverse plane angle B (Figure 3.33). 

(For further information about the B, fl coordinate system see Chapter 1 .) 
If I~ is expressed in terms of I n then 

Ep = -"i- cos fl dfl 

Fig. 3.31 The axial intensity curve 

IB 

Axial polar curve 
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IE 
IB = I~, B=O 

Tranverso polar curve 

Fig. 3.32 The transverse intensity curve 

cos  

is termed the aspect factor and given the symbol AF. 
So, 

gp = IB- (AF) 
lh 

Manufacturers sometimes produce tables of AF values for the practical distribution of their 
luminaires using numerical integration. In the case of a uniformly diffuse line source the aspect 
factor can be calculated from 

e 

A F =  cos 2 fl dfl 
~ 0  

1 
2 (Y + sin ~' cos y) 

If the illuminated point is displaced to one side (Figure 3.33) then 

/B 
Ep = ~ AF cos B 

lh 

(since the cosine law applies at point P). 
With regard to the value of I B, for uniformly diffusing line sources there are two cases: (1) the 

flat strip source, and (2) the cylindrical source (Figures 3.34 and 3.35). 

(1) I B = IB(oo ) cos  B 

(2 )  t 8 - tB(oo ) 
= constant 
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B 

Fig. 3.33 The method fails if the axial intensity curves change shape significantly with the transverse plane 
angle B 

Fig. 3.34 The flat strip line source 

I B = 
IB (0 o) 

= IB (0") 

i.e. I B = constant  
IB (0 o) 

Fig. 3.35 The cylindrical line source 

llluminance on a perpendicular plane parallel to the line source (Figure  3.36) 

Since the normal  at P has moved  through 90 ~ towards  the source 

Ep(vi ) - - ~  A F  cos - B 

-- --IB A F  sin B 
lR 
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Fig. 3.36 Illuminance on a perpendicular plane parallel to the line source 

P 

Fig. 3.37 Illuminance on a perpendicular plane normal to the axis of the line source 

llluminance on a perpendicular plane normal to the axis of the source (Figure 3.37) 

The derivation is similar to that for the parallel plane except that, since the normal to P is now 
parallel to the axis of the line source, cos [7 becomes 

cos(  / or sin  

Ep~v) = ~ -  sin ]7 d/7 

= l--#-.B(af) 
IR 

where (af) is the perpendicular plane aspect factor 

af : ~ro (131sin[3 d[3 
CIsJ 

This time, when the point is displaced from beneath the end of the line source, the cosine law 
does not operate in the transverse direction since, in effect, the plane of P has been rotated about 
its normal. 
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Fig. 3.38 The method of component sources applied to the case where the illuminated point is not oppo- 
site one end (beneath the source) 

,: j J ! r 
I I 
I r 
I l r162 

I r 

' , ~  
i j l l "  ' , r  la i P! 

Fig. 3.39 The method of component sources applied to the case where the illuminated point is not oppo- 
site one end (beyond the end of the source) 

; I 
ii III 

! 1 

! J 
I J 

Fig. 3.40 As in Fig. 3.39, but on the perpendicular plane 

llluminance from a line source when the point is not opposite one end 

The method of component  sources is used to extend the expressions for line sources already 
developed to other cases (Figures 3.38, 3.39 and 3.40). 

IB 
Ep = Erl + Er2 = -~  (AFrl + AFt2) cos B 



3. 7 Non-uniformly diffuse area sources 101 

le 
Ep = Erl - Er2 = --~ (AFrl - AFt2) cos  B 

Ep(v) = E(v)r 1 - E ( v ) r  2 

I8 (af(r~) - at(r2))  gp(v) - ~ -  

3. 7.4 ILLUMINANCE FROM VERY LARGE AREA SOURCES 

If  we  cons ide r  an area  source  that  is very  large  in re la t ion  to the d i s t ance  f rom the source  to a 

po in t  on a para l le l  p lane,  we  can use  the exp re s s ion  for  a cos ine  p o w e r  disc source  to e x a m i n e  

the var ia t ion of  i l l uminance  wi th  d i s tance  (F igure  3.41).  

2r~L m 
E = ~ ( 1 - cos  (n+ 1) 7') 

n + l  

F r o m  Figure  3.41 we  can see that  w h e n  the source  is very  large 7' ---) x /2  and so cos 7' ---) 0. So, 

2~L m I m 
E = ~ whe re  L m = 

n + l  ~A 

The  re la t ionsh ip  b e t w e e n  i l l uminance  E and l u m i n o u s  ex i tance  M is de r ived  as follows" 

rlrl2 
~F = 2 r o l l  o sin 0 dO 

Jo 

/:, /:1 

Fig. 3.41 Angle relationships for a very large area source 

I~ oo 
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~A 

im cosnO 

Im 

Fig. 3.42 The intensity at angle 0 is given by I m cos n 0 

We note from Figure 3.42 that 

I 0 = I m COS n 0 

i-7r/2 
= 2~Im I cosn 0 sin 0 dO 

~0 

2~/m 
n + l  

[_cos("+l) 0]~/2 

2 ~I m [1.0] = 2 ~L m t~A 

n + l  n + l  

or 

d~F 2n'L m 
m ~ ~ - - ~  

~A n + l  

Thus, E = M, i.e. the illuminance, is independent of the distance from the source to the illumi- 
nated plane. 

So, the flux received per unit area equals that emitted by the source per unit area (M) (which 
is, of course, not a startling result). A similar result would be obtained for a rectangular source. 

It is of interest to consider what happens at the boundaries of such a large source. Consider 
Figures 3.43 and 3.44, which relate to a rectangular source. 

At the boundary of the source away from a comer  

E 

Ep(edge) = T 

since the effect is similar to dividing the source in two and removing one half. 
Similarly, at the comer of such a source 

Ep(c~ = T 

since now three quarters of the source has been removed. 
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OO 

T 

Fig. 3.43 The illuminance under the edge of a very large rectangular area source 

\ 
Source L 

Fig. 3.44 The illuminance under the comer of a very large rectangular source 

This means that, although a very large source, such as a luminous ceiling, may provide very 
good uniformity over most of the area, at the edges the illuminance will fall to half and at the 
comers to one quarter of the general illuminance. 

3.7.5 ILLUMINANCE FROM A VERY LONG LINE SOURCE 

Consider Figure 3.45: 

Ep = ~ 2 2 (7' + sin 7 cos 7) 

Let 7 = 7 1  =7'2, 

=/8 
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00.11 '~ 00 

I I 

~/2  *- 1 ~ ,,~/2 

P 

Fig. 3.45 Angle relationships for a very long line source 

The illuminance is now given by ~r/2 multiplied by intensity per unit length of the source divided 
by h the distance. 

The illuminance is, therefore, inversely proportional to the distance. 
Using the same argument as for the boundary of a very large area source, we find the illumi- 

nance at the end of a very long line source would tend to be half that beneath the source away 
from the ends. 

Ep = m 
4h 

3 . 8  N o n - p l a n a r  i l l u m i n a n c e  

3.8.1 SCALAR ILLUMINANCE (MEAN SPHERICAL ILLUMINANCE FROM A POINT 
SOURCE) 

Scalar illuminance is a measure of the average density of the light flux at the point under consid- 
eration. It corresponds to the average illuminance on an infinitesimal sphere located at that point 
(Figures 3.46, 3.47 and 3.48). 

f ~  

Fig. 3.46 Scalar illuminance at a point from a point source 



3.8 Non-planar illuminance 105 

Fig. 3.47 The angular relationships for the calculation of scalar illuminance 

J .11 Elementary annulus 
2nrsin ~ drcos 

Fig. 3.48 The elementary annulus 

The flux received by the illuminated hemisphere 

~/2_~2 2n.rsin r r d $ c o s $  
=0 

E ]i '2 = Ema x sin2 
2 

2~:r 2 

= Emax ~'r 2 

where 

Emax ~ D 2 
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�9 radius r 

N 

Sphere of 
radius r 

Fig. 3.49 The 'disc' method of calculating the scalar illuminance 

Source 
A 
w 

Average illuminance of the sphere 

j r r  2 

E s = Ema x 
�9 4n.r 2 

Emax 

4 

This result could have been obtained in another way, without the necessity of integrating 
(Figure 3.49). 

The flux received by the sphere can be thought of as passing into the sphere where all of it 
would be intercepted by a disc of radius r with its normal towards the point source. 

Flux received by disc = Ema x x nrr a 

/ / Average illuminance of the sphere = Ema x 
4nrr 2 

Emax 
4 

3.8.2 CYLINDRICAL ILLUMINANCE (MEAN VERTICAL ILLUMINANCE AT A POINT 
FROM A POINT SOURCE) 

The cylindrical illuminance is the average illuminance on the curved surface of an infinitesimal 
cylinder placed at the point of interest. The axis of the cylinder is usually taken as vertical 
(Figures 3.50, 3.51 and 3.52). 
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I 

I 

Fig. 3.50 Cylindrical illuminance at a point from a point source 

Fig. 3.51 The angular relationships for the calculation of cylindrical illuminance 

Fig. 3.52 The cylinder is usually considered to be vertical 
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Flux received over the half cylinder is given by: 

~_+(Tr/2)Ema x sin0[cos~0 d~0 rh] 
(tr/2) 

where 

I 
Emax D 2 

~l+[x/2] = EmaxrhsinO[sinvj_[x/21 

= 2Em.xrhsinO 

Average illuminance of the whole cylinder 

2Ema x rh sin 0 

Ecyl = 2xrh 

sin 0 
= Ema x 

As for scalar illuminance, this result could have been obtained in another way, without the neces- 
sity for integration (Figure 3.53). 

The flux received by the cylinder could be thought of as passing into the cylinder and being 
intercepted by a rectangle across the diameter of the cylinder, such that the plane of the normal 
to the rectangle is also the plane of the direction from the source to the cylinder. The flux reach- 
ing the bottom of the cylinder that does not fall on the rectangle is exactly compensated by the 
flux passing into the top of the cylinder and falling on the rectangle. 

Flux received by the rectangle = EmaxSin Oh2r 
r 7 

Average illuminance of cylinder = EmaxSin 0 / h2r I 
L 2rcrh J 

~-~ g m a  X 

sin 0 

-.__.__.---- 

Fig. 3.53 The 'rectangle' method of calculating the cylindrical illuminance 
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Fig. 3.54 The calculation of hemispherical illuminance 

3.8.3 HEMISPHERICAL ILLUMINANCE (FROM A POINT SOURCE) 

The second method used in the previous two cases will now be applied to obtain an expression 
for the hemispherical illuminance at a point. 

The hemispherical illuminance is the average illuminance on the curved surface of an infini- 
tesimal hemisphere, which has its base at the reference point (Figure 3.54). 

The flux incident on the hemisphere would be equal to that intercepted by the half circular 
planes A and B if the flux is passed into the hemisphere. 

Flux received by the hemisphere 

xr 2 xr 2 
=Ema x X ~ + E m a  xcOs0 

2 2 

The average illuminance on the hemisphere 

I xr ## ] 
+ cos 0 ~  

2 2 
Ehe m = Ema x 2xr 2 

Emax 
(1 + cos 0) 

3.8.4 SEMI-CYLINDRICAL ILLUMINANCE (FROM A POINT SOURCE) 

The second method is also used to obtain an expression for the semi-cylindrical illuminance 
from a point source (Figure 3.55). 

As in the previous case the flux received on the curved surface of the half cylinder is equal to 
that which would have been intercepted by the rectangles A and B if the flux passed into the half 
cylinder. Rectangle A is normal to the plane of 0 and rectangle B occupies half of the diameter 
of the half cylinder as shown. 
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h 

Fig. 3.55 The calculation of semi-cylindrical illuminance 

Flux received by the half cylinder = (Emaxr x h + EmaxCOS a rh) sin 0 

Average illuminance of the semi-cylinder = Ema x sin 0 ]hr + cos ct rh] 
L Jrrh J 

sin 0 
Esem_cy I = E m a  x ~ [ 1 + c o s  a ]  

/17 

3.8.5 CONICAL ILLUMINANCE (FROM A POINT SOURCE) 

Another possible measure of the illuminance distribution about a point on a horizontal plane 
would be the conical illuminance, that is, the average illuminance on an infinitesimal cone placed 
at that point. The cone could have any angle, but a 45 ~ slope is probably the most useful. An 
expression for conical illuminance is derived below (Figure 3.56). 

Figure 3.56 shows both a plan view of the cone and a side, or elevation, view. On the plan 
view the projection outline of the top and side of the cone are also shown. The method is to deter- 
mine the area of this projection in terms of the angle of the cone a and the angle of illuminance 
0. The flux received onto this projected area will be the flux received by the cone. 

1 
Area of triangle AOB = ~ AB x AO 

2 
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Plan A 

A 

B L 

B r 

., _1 

Fig. 3.56 The calculation of conical illuminance 

Elevation 

1 / 2 = - ~ r  q 2 - r  

Area A O D C  = r 2~p 

Area A L D O  = zrr2 _ r 2 dp 

Area B A L D  = r ~ q  2 - r 2 + r 2 (zc - ~)  

Flux rece ived  on this projected area = 

Area  of  cone  = ~rra/r2 + h2 

r 
q = h t a n O  c o s O  . . . .  

q 

r 

h tan O 

I c o s O  

d 2 
( r s / q  2 - r 2 + r 2 ( ~  - r  

Econ -- Emax 

Emax 

 cosO(r q2 r2r r2 +r2 *O'l+ h2 
~/tan 2 0 - tan 2 a + tan a[Tr - 

cos  0 ~/1 + tan 2 a 

COS /tan~ 
tan 0 

/ 2 2 [ Emax 
tan 0 - t a n  a + t a n c t  n: cos -  = ~ COS 0 COS a 

tan 0 

For  the case when  a = 45 ~ 
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Econ "-" 
Emax 

0.707 cos 0 [x/tan20-1 + ~r- c o s  -1 (cot 0)] 

When a = 0 ~ 

Emax 
Eco n = ~ sin 0 

which is the expression for cylindrical illuminance. 
When 0 = 0 ~ the light is incident from directly above the cone and the profile is a disc, 

gmax/t ' r2  r 

Econ = =Ema x = Emax sin a 
n'r ( r  2 + h 2 ~/r 2 + h 2 

When 0 < a, 

Eco n = Ema x c o s  0 sin a 

When 0 = 90 ~ the formula given above becomes indeterminate since the projected area becomes 
infinite and the illuminance becomes zero. 

In this case the conical illuminance is obtained from the value of the vertical illuminance 
multiplied by the area of the profile of the cone at this angle (which is a triangle) divided by the 
surface area of the cone" 

i sin 0 r x h 
E c o n  = ~ x 

d 2 trr ~/r 2 +h2- 

Emax 
= ~ COS O' 

3.9 The scalar product 

In certain complex situations, the use of the scalar product from vector analysis allows the equa- 
tions needed for calculating illuminance to be readily determined. 4 Such situations occur in the 
lighting of sports stadia, for instance, where the lighting is provided from a number of towers 
and the illuminance is required on planes facing the camera position, and on the four vertical 
faces of a cube, which are dealt with in Section 12.3.2. The scalar product provides a very 
elegant way of tackling this problem. 

We need to establish the notation. Vectors are shown in bold type face, for instance A B  or 
s. A vector of unit magnitude is called a unit vector and three such vectors are used in the later 
chapters of this book. These are n, which specifies the direction of the normal with respect to 
the facet or plane containing the illuminated point, q, which specifies the direction of the light 
source from the illuminated point, and e, which specifies the direction of the illuminance 
vector. 

To signify the direction of the unit vector it may be given a subscript; for example, the normal 
in the x direction is denoted by nx. 

The scalar product between two vectors is denoted by a dot. Thus the scalar product of a 
and b is shown as a.b. The position of a point in space is expressed by its coordinates relative 
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to the origin in the form (x, y, z), which is sometimes more convenient to use than xn  x + yny 

+ Znz.a 
The modulus or magnitude of a vector is indicated as follows: 

ILMI = L M  

3.9.1 D E T E R M I N A T I O N  O F  T H E  U N I T  V E C T O R  

Consider a plane facet at the point P given by coordinates (Xp, yp, Zp). Let the normal to the facet 
pass through the point S with coordinates (x s, Ys, Zs), then the distance between the two points is 

PS = ~ ( x  s - Xp) 2 + (Ys - yp)2 + (Zs - Zp) 2 (3.3) 

so  

(X s -- Xp, Ys - Yp, Zs - Zp) 

n p -  ~/(x s _ Xp )2 -t- (Ys - yp)2  + (Zs - Zp) 2 

If the plane facet has its normal parallel to the x axis all the y and z terms are zero. So 

Xs--XP = 1 

x/-(X s - Xp 2) 

which gives 

nx = (1, O, O) 

Similarly, 

n y =  (O, 1 , 0 )  

and 

nz = (0, 0, 1) 

For our purpose it is often convenient to express a vector in terms of its components along the 
three major axes, thus a vector d could be expressed as follows: 

d = (d.nx)nx + (d.n y)ny + (d'nx)n x 

3.9.2 A N G L E  B E T W E E N  TWO V E C T O R S  

If 0 is the angle between two vectors L M  and PQ then 

L M . P Q  
COS 0 = 

L M  x PQ 

Let 

L M  = an x + bn y + cn z 

a In some texts i , j  and k are used instead of nx, n y and nz. 

(3.4) 
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and 

PQ = en x + f n y  + gnz 

then 

L M ' P Q  = ae + b f  + cg 

and so from (3.4) 

cos 0 = 
ae + b f  +cg  

x/ (a 2 + b  2 + c  2)(e 2 + J ~ + g 2 )  

If L M  = n x so that a = 1, b = 0 and c = 0 then 

C O S  0 x = 
x/(e 2 + f2 + g2) 

where 0 x denotes the angle between the vector PQ and the x axis. Similarly, 

C O S  Oy = 
~/(e2 + j~ + g2) 

and 

C O S  0 z = 

x/(e 2 + 3,2 + g2) 

cos 0 x, cos Oy and cos 0 z are known as the direction cosines and the relationship cos 20y + cos 2 
Oy + C O S  2 0 z - -  1 is useful. 

3.9.3 ILLUMINANCE A T  A POINT 

Ep~-- 
I cos 0 

pQ2 

= I  PQ'np 

IPQI 2 

where 

Ep is the illuminance at the point P 
I is the luminous intensity directed from the point Q towards P; 
0 is the angle of incidence of the light; 
np is the unit normal to the facet at P. 

If 0 < cos 0 < 1 then the facet is facing the source and receives light. If, on the other hand, -1 < 
cos 0 < 0 then the facet does not receive light. 

When PQ > 0 the sign of PQ.np is sufficient to determine whether the facet sees the 
source: 



3.9 The scalar product  115 

if PQ.np > 0 the facet sees the source, 
if PQ.np < 0 the facet does not see the source, 
in addition if PQ = 0 the source and the facet coincide, which cannot happen in practice. 

3.9.4 (C, y) COORDINATES 

To calculate the illuminance of a facet it is necessary to know the luminous intensity directed 
towards the facet. If the (C, y) system is being used, the values of these two angles have to be 
determined so that the appropriate value of the luminous intensity can be found from the l- 
table. 

Let O be the origin of the (x, y, z) coordinate system shown in Figure 3.57. 
Suppose we want to find the luminous intensity in the direction of a point P with coordinates 

(Xp, yp, Z.p) when the luminaire is at (x L, YL, ZL)" Let the luminaire be aligned with C = 0 ~ along 
the x-ax~s. 

Then from Figure 3.57 

COS ~' = 
(OP - OL) " ( -n  z ) 

PL 

[(Xp - xL)n x + (yp - YL)ny + (Zp - zL)nz]'(-n z) 

PL 

z L - Zp 
m 

PL 

The negative value of n z is taken because ?' is measured from the downward vertical. 
C is found from the equation 

--~z 

L(XL, YL, ZL) 

:2?2, 
--Z 

Z 

x 

= y  

Right-handed Cartesian 
coordinate system 

Fig. 3.57 7' in the x, y, z coordinate system 
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Y 
C = tan -1 

X 

The correct  quadrant  for C is found from the condit ions given in Section 2.41, Equat ion (2.36). 

3.10 Examples 

1. Point source A produces an i l luminance at point P of  200 lux (Fig. 3.58). Calculate  the value 

of  the horizontal  and vertical components  E(_z) and E(_x) at P given that E(_y> = O. 

E(_z) = 200 cos 30 ~ = 200 • 0.866 = 173.2 lux 

E(_x> = 200 sin 30 ~ = 200 • 0.5 = 100 lux 

2. Given that source B (Fig. 3.58) has the same value of intensity as source A in the direction of  

point P and is at the same distance from the point, calculate the i l luminance produced on the 
sloping plane at P by source B. 

I B = EAD2 = 200D 2 since source A is on the normal to the plane of  point P. 

I B cos 30 ~ 200D 2 x 0.866 
E B = D 2 = D 2 = 173.2 lux 

3. If source C (Fig. 3.58) produces components  on the z, y and x axes of  the same magni tude as 

those for source A, calculate the i l luminance at point P produced by source C. 

Since the normal to point P slopes away from source C the vertical component  is reversed 
with respect to point P. 

= 173.2 x 0.866 + 100 x (-0.5)  

= 150 - 50 

= 100 lux 

4. Consider  the line source shown in Figure 3.6, Section 3.2.2. Given that r = 30 ~ and fl = 90 ~ 

E(_z) = 300 lux and E(_y) = 100 lux, calculate the i l luminance on the sloping plane at P if 
x/h = 0.5. 

Fig. 3.58 The angles required for examples 1, 2 and 3 

> X  
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x 
Ep = E(_z)(COS r + - -  cos fl sin r + E(_y) sin fl sin r 

h 

= 300(0.866 + 0.5 x 0 x 0.5) + 100 x 1.0 x 0.5 

=309.8 lux 

5. Consider the uniformly diffusing disc source in Figure 3.13, Section 3.6.2. Given that h = 
2 m, R = 1.5 m and the source luminance is 150 cd/m 2 calculate the i l luminance directly 
beneath the centre of the disc on the plane parallel to the disc. 

E p  = / r L  
R 2 + h 2 

150( 1.52 / 
/t" x 

1.52 + 22 ) 

= 7r x 150 x 0.36" 

= 169.6 lux 

If another point, not beneath the centre, on a parallel plane was to receive the same value of  
i l luminance from this source, what condition would need to be fulfilled? The source would 
have to subtend the same value of the angle a at that point. 

6. Consider the rectangular source shown in Figure 3.21. Given that the source is uniformly 
diffusing and was 3 m wide and 4 m long, calculate the i l luminance at a point 2 m below the 
source on a parallel plane. The point lies on the centre line joining the two 3 m sides and is 
1.5 m along this line from one end. The source luminance is 400 cd/m 2. 

The source can be considered to consist of four component  sources, two of which have 
dimensions 1.5 m x 1.5 m and the other two 1.5 m x 2.5 m. 
(a) The il luminance produced by the 1.5 m x 1.5 m sources, 

L 
Ep(l) = - 7  (Bl sin A + A l sin B) 

2 
(see Figure 3.18) 

t 1.5 ) B 1 = tan -1 --- = 30.96 ~ or 0.54 radians 
~/i152-+ 22 

1 . 5 )  
B = tan -1 = 36.87 ~ 

2.0 

sin B = 0.6 
sin A = 0.6 

A I = B  1 

400 
Ep(1) = (0.54 • 0.6 + 0.54 • 0.6) 
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= 129.6 lux 

There are two such component sources s o  Ep(i)  = 259.2 lux. 
(b) The angles for the 1.5 m x 2.5 m component sources are: 

2.5 ) 
B 1 = t a n  -1 = 45 ~ or 0.785 radians 

x/1.52 + 22 

B = tan -1 2.5 / = 5 1 . 3  ~ 
2 

sin B = 0.78 

A1 
1.5 ) 

= tan -1 = 25.1~ or 0.438 radians 
x/2.52 + 22 

1.5 / 
A = tan -1 = 36.87 ~ 

2 

sin A = 0.6 

Ep(2) = 
400 

(0.785 • 0.6 + 0.438 x 0.78) 

= 200(0.471 + 0.342) 

= 162.5 lux 

There are two component sources so E_(2 ) = 325 lux. 
The total illuminance at the point is 25~.2 + 325 = 584 lux. 

7. For a point opposite one end of the source calculate the aspect factor for the parallel plane for 
a line source 1.8 m long, 1.8 m above the parallel plane, if the axial distribution of the source 

is given by I#/I B = c o s  2 ft. 

A F =  ~ cosfl dfl 

A F  = COS 2 flCOS fl dfl 

= ~0 y COS 3 f l  dfl 

= J (1 - sin 2 fl) cos fl dfl 

= j cos fl - sin2 fl cos fl dfl 
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sin3 fl j "t 

= sin 13 3 0 

[ J 0.354 
= 0.707 - ~ 

3 

= 0.589 

8. Calculate the following for a point source with an intensity of  1000 cd in the horizontal direc- 
tion at a horizontal distance of 3 m. 

(a) The scalar illuminance. 
(b) The cylindrical illuminance. 

(a) Scalar illuminance 

Emax 
Es ~- 

4 

I 

4d 2 

1 0 0 0  

4 x 9  

= 27.8 lux 

(b) Cylindrical illuminance 

Ecy I - Ema x 
sin 0 

1000 
= sin 90 ~ 

9Jr 

= 35.4 lux 

Prob lems 

1. A light source produces three component  illuminances at a particular point; these are E(_x) = 
10 lux, E(_y) = 15 lux and E(_z) = 50 lux. Calculate the maximum illuminance that the source 
can produce at the point in question. 

Answer: [53.2 lux] 

2. Consider the line source shown in Figure 3.6. Given that 0 =45 ~ r = 45 ~ and fl = 30 ~ calcu- 
late the illuminance on the sloping plane at point P. The line source produces the following 
components of illuminance of point P: E(_z) = 400 lux, E(_y) = 100 lux. 

Answer: [563 lux] 
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3. A 2 m diameter uniformly diffusing disc source is mounted 2 m above a parallel plane. If the 
disc has a luminance of 400 cd/m 2, calculate the illuminance on the parallel plane directly 
beneath the centre of the source and also directly beneath the edge of the source. 

Answers: [centre 251.3 lux] 
[edge 184.1 lux J 

4. Use the sizes and angles of Example 6 to calculate the illuminance from a similar source; the 
only difference being that the distribution is cosine cubed. Assume that the maximum lumi- 
nance (Lm) is 400 cd/m 2. 

Answer: [441.8 lux] 

5. Consider the line source in Figure 3.39. Calculate the illuminance at point P given the follow- 
ing information. The source is uniformly diffusing and is 2 m long. The intensity in the down- 
ward direction is 700 cd. The illuminated point lies 1 m beyond the end of the line source, on 
a parallel plane 1 m below the source. 

Answer: [46 lux] 

6. Calculate the semi-cylindrical illuminance and the hemispherical illuminance at a point from 
a very small light source having a luminous intensity of 800 cd in all directions. 

The light source is mounted 2 m above the horizontal plane containing the illuminated 
point and its vertical axis meets the horizontal plane 2 m from the point. 

In the case of the semi-cylindrical illuminance the angle between the vertical plane contain- 
ing the normal to the diameter of the semi-cylinder and the vertical plane containing the light 
source is 30 ~ . 

In the case of the hemisphere, its base coincides with the horizontal plane. 

Answers: [semi-cylindrical illuminance = 42 lux] 
[hemispherical illuminance = 42.7 luxl 
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4 
Flux Transfer 

4.1 Introduction 

In Chapter 3 the illuminance at a point from point, line and area sources was considered. In this 
chapter the luminous flux received by an area from point, line and area sources will be considered 
and the flux transfer functions, which find application in interreflection calculations, derived. 

4.2 Reciprocity 

In calculating the flux transfer from one surface to another, it is often convenient to make use of 
the law of reciprocity. The law states that: if two uniformly diffuse light emitting surfaces illu- 
minate each other, the flux transfer from each surface to the other is the same proportion as their 
luminous exitance values. Thus, if they have the same value of luminous exitance (M), then the 
flux transfer will be the same in each direction. This is General Reciprocity. What is not always 
appreciated is that if two emitting surfaces lie in parallel planes, then the limitation is not to 
uniformly diffuse surfaces but to surfaces emitting light with an intensity distribution that is the 
same function of angle 0 to the intensity at the normal (regardless of the azimuth angle of the 
plane in which 0 lies). This is Parallel Plane Reciprocity. 

PROOF 

1. General Reciprocity (see Figure 4.1) 

When the sources have a uniformly diffuse distribution then, 

M 1 
= cos  01 - - ~ ~ a  I cos  01 I~ Iml x 

and 

M2 
102 = Im2 cos  0 2 = ~ ~a  2 cos  0 2 

/17 

The flux transferred from surface 1 to surface 2 (FI2) is given by: 
J 

FI2  = j E2 d a  2 
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a2 

Fig. 4.1 Flux transfer between two surfaces (General Reciprocity) 

11 I2 MldalC~176 
~r l r 2 

and from surface 2 to surface 1 

F21 = I El dal 

M 2da 2cOS 02 COS 01 da 1 
r 2 

Since the order of integration may be reversed 

F12 F21 

M~ M 2 

for any orientation 

2. Parallel Plane Reciprocity (see Figure 4.2) 

101 = In i .~ O) and I02 = In2 j~(O) 

(Note: since the planes are parallel, 01 = 02) 

where I m = HM 1 da 1 and I m = HM 2 da 2 and H is a constant relating the luminance normal to 
1 . 2 .  

the surface to the lummous ex~tance M. 
The flux transferred from surface 1 to surface 2, F12 is given by: 

I I  H M l d a l f l O )  c~  

F12- 21 r 2 

and 
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al  

Fig. 4.2 Flux transfer between two surfaces (Parallel Plane Reciprocity) 

HM 2 da 2 J( O) cos 0 da 1 

and as before 

F12 F21 

M 1 M 2 

Example 

Chapter 3, Section 3.7.1, gives the equation for the illuminance at a point beneath the centre of 
a disc source having a cosine power distribution 

2~rL m 
Ep = (n + 1) (1 - c o s  (n + 1) )r 

Using this formula, the flux received on a small disc of 0.08 m diameter from a large disc 
source of 4 m diameter, mounted 3.46 m above the centre of the small disc and parallel to it, can 
be calculated (Figure 4.3). The large disc has a cosine squared intensity distribution and the illu- 
minance over the small disc is regarded as uniform. 

r = 2 m  

h =  3.46 m 

= 0.04 m 

Fig. 4.3 Flux transfer from the large disc to the small disc 
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The luminous flux (F) received by the small disc is Ep x a where  a is the area of  the small 
disc. 

2 z x a x L  m 
F = (1 - cos (n + l) $) 

( n +  1) 

f o r n =  2: 

2x 
F =  ~ x a x L m ( 1  - cos 3 ?9 

3 

?' = tan -1 ~ = 30 ~ 
3.46 

So, 

2x 
F = ~ x a x L m ( 1  - 0.125) (4.1) 

3 

Now a can be calculated and, given L m, the calculation could be completed.  
However,  it is of  interest to pause at this point and examine the results of  reversing the roles 

of  the two discs. Let the small disc become the light source and the large disc be the receiving 
target (Figure 4.4). 

The inverse-square law is now used to calculate the i l luminance and hence the flux onto an 
elementary annulus of the large disc and the resulting expression integrated to obtain the total 
flux: 

E = I m cos 2 0 COS 30/h 2 

U __ 

I m cos 2 0 cos 3 0 Drr dr  

h 2 

( l ~ 
Fig. 4.4 Flux transfer from the small disc to the large disc 
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r = h t a n O  and d r = h s e c  2 0 d O  

where F '  is the flux received by the annulus of  radius r and width dr. 

So, 

F'= I n  c~ 0 cos 3 0 2xh tan 0 h sec 2 0 dO 

h 2 

F ' =  I m cos 2 0 2x sin 0 dO 

f 
~ 

F =  2tel m cos 2 0 s i n 0  dO 
#0  

~, = tan -l  ~ = 30 ~ 
3.46 

So, 

F ~ .  

2 /m 30 ~ 
[-- COS3 ~'] 0 

2 /m 
[ 1 - cos 3 30 ~ 

2 /m 
~ ( 1  - 0 . 1 2 5 )  

But 

[rn= Lm X a 

giving, 

2x 
F = ~ x a x Lm(1 - 0 . 1 2 5 )  (4.2) 

3 

Compar ing  equat ions (4.1) and (4.2) we see that these are identical and that provided L m has the 

same value, the flux transfer will be the same regardless of  which disc is the light source. 

To complete  the calculation, let L m = 5 0 0  c d / m  2 

x d  2 x x (0.08) 2 
a = ~ = = 0.005 m 2 

4 4 

F _ -  

2x 
x 0.005 x 500 x 0.875 

= 4.58 lumens 

The average i l luminance of the small disc would be 

4.58/0.005 = 916 lux 
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whereas that of the larger disc would be 

4.58/4nr = 0.364 lux 

This result demonstrates clearly that reciprocity relates to equality of flux transfer and not illu- 
minance. 

4 .3  Flux t r a n s f e r  f r o m  a po in t  source  

In the previous section, the flux transfer was calculated from a point source with a cosine squared 
intensity distribution to a disc directly beneath the source. In this section, the flux transfer from 
a point source with a practical distribution will be calculated to a disc directly beneath the 
source. 

This flux transfer will be calculated in two ways: (1) by means of the Zone Factors introduced 
in Chapter 1 and (2) by first approximating the practical distribution by means of a cosine power 
series (as suggested in Chapter 3, Section 3.7) and then (as in the previous section) applying reci- 
procity to use the formulae for a disc source with a cosine power distribution to each of the terms 
in the cosine power series. 

The purpose of this exercise is to show that, approximating the distribution to a cosine power 
series can give results that compare favourably with the more commonly used Zone Factor 
method, and so can be used for cases where Zone Factors cannot be used. 

Example 

The practical distribution chosen is symmetrical about the vertical axis and is shown in Figure 
4.5, and Table 4.1 gives the intensity values at 5 ~ intervals for this distribution. 

The dimensions are shown in Figure 4.6. 

t l J  

e, 
o m  

0 

Fig. 4.5 Polar curve for the practical distribution given in Table 4.1 

90 ~ 
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Tab le  4.1 Intensi ty values at 5 ~ intervals for the practical  distribu- 

tion used in the example  in Sect ion 4.3 

Angle  from the downward  

vertical in degrees 

Intensi ty  in candelas  

0 ~ 1578 

5 ~ 1584 

10 o 1668 

15 ~ 1674 

20 ~ 1668 

25 ~ 1614 

30 ~ 1464 

35 ~ 1410 

40 ~ 1398 

45 ~ 1308 

50 ~ 978 

55 ~ 426 

60 ~ 270 

65 ~ 204 

70 ~ 186 

75 ~ 144 

80 ~ 120 

85 ~ 108 

90 ~ 96 

3 m  

Fig. 4.6 Flux transfer from a small disc source to a large disc for a practical distr ibution 



128 Flux transfer 

Method 1. Zone Factors 

Angle (deg) ZF Mid Zone 
Intensity (cd) 

Lumens 

0-10 0.095 1584 150.5 
10-20 0.283 1674 473.7 
20-30 0.463 1614 747.3 
30-40 0.628 1410 885.5 
40-50 0.774 1308 1012.4 
50--60 0.897 426 382.1 
60-70 0.993 204 202.6 

3854.1 

From Table 1.1. 

Method 2. Cosine power series approximation 

Assume that I r = A + B cos ?' + C COS 2 ?' + D cos 3 ?' 

It, 1 cosy I c~ Yl c~ Yl A 

Irz = 1 cosY2 cos2 Y2 c~ Y2 x i 

17' 3 11 COSY3 C0S2 Y3 c~ Y3 

It, COSY4 COS2 )'4 cos3 )'4 

where I r is the luminous intensity at angle ?' to the downward vertical. 
So, 

[/] = [cos] [A] 

and 

[A] = [cos] -1 [/] 

Since this is aflux calculation, choose values of ?' to give equal solid angles between 0 ~ and 90 ~ 
These are ?'l = 28-96~ ?'2 = 51.32 ~ ?'3 = 67"98~ ?'4 82"82~ 
Obtain the I values by interpolation from Table 4.1: 

I r l=  1495.2, Ir2=832.27, Ir3=193.27, Ir4 =113.23 

Inserting the cosine values of ?'l, ?'2, ?'3 and ?'4 we find the matrix to be inverted becomes: 

1.000 0.875 0.766 0.670-] -l 
/ 

1.000 0.625 0.391 0.244 / 

1.000 0.375 0.141 0.053 / 

1.000 0.125 0.160 0.002] 

The inverted matrix is 

-0.3008 1.2745 -2.1465 

3.7474 -15.2421 23.2421 

-11.7895 43.3684 -51.3684 

10.5263 -13.5789 31.5789 

2.1728] 

-11.7474[ 

19.7895 / 

-10.5263_] 
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Mul t ip ly ing  this matr ix  by the I r matr ix  gives" 

A = 442 .146  

B = 3919.54  

C = 10776.315 

D = 5629.675 

By the principle  of  reciprocity,  the cos ine  power  disc source  fo rmula  may  be used to ca lcula te  

the flux f rom a point  source  to a disc source  by rep lac ing  aLm in the disc source  fo rmula  by I m. 

So, 

~I ~ - -  
2Xlm (1 - cos (n + 1) y) 

( n +  1) 

For  n = 0, the contr ibut ion to the total flux is given by: 

2Xlm(1 - cos 70 ~ = 4.1341 m 

For  n = 1.0: 

2 /m 
(1 - cos 2 70 ~ = 2.7741 m 

For n = 2.0: 

2 /m 
(1 - cos 3 70 ~ = 2.0101 m 

For n = 3.0: 

2 /m 
(1 - c o s  4 70 ~ = 1.551 m 

where  the I m values are given by A, B, C and D. 

Flux calculation 

n = 0, 4 .134 x 442 .146  = 1827.8 

n = 1.0, 2 .774 x - 3 9 1 9 . 5 4  = - 10872.8 

n = 2.0, 2 .010 x 10776.315 = 21660 .39  

n = 3.0, 1.55 x - 5 6 2 9 . 6 7 5  = - 8 7 2 6  

The  total flux is therefore  3889.4 lumens.  

C o m p a r i n g  this value with that obta ined  in (1) using Zone  Factors  

3889.4  - 3854.1 
= 0 . 0 0 9 1 6  or + 0 . 9 2 %  

3854.1 

This  is a sat isfactory level of  ag reemen t  be tween  the two methods .  



130 Flux transfer 

13 

ll 

rco 

11 

Fig. 4.7(a) Flux transfer from a point source to a rectangle, using cosine powers formulae 

4.3.1 FLUX FROM A POINT SOURCE TO A RECTANGULAR AREA 

(a) Cosine power series method 

The cosine power series approximation demonstrated in the previous section, together with the 
principle of reciprocity, can be applied to rectangular source calculations, see Figure 4.7(a). It 
was shown in Section 4.2 that the illuminance formulae for area sources can be converted to flux 
transfer formulae, from point to area by replacing L m by I m. (The assumption is that the area 
source was illuminating a small area 'a' which, when reciprocity is applied, can be combined 
with L m to give Ira.) 

The illuminance equations for cosine powers applied to rectangular sources, as given in 
Section 3.7.2 relating to Figure 3.28 are restated below, but with L m replaced by Ira. These then 
become flux transfer equations related to Figure 4.7(a). 

The equation for flux transfer from the point source to area l I x 12 are: 

n - - 0 ,  

A tan / tan / / tan 2 + tan-I / tan " tan 

n = 1.0, 

F . : ~ . o = ~  

n = 2.0, 

Im 
(B l sin A + A 1 sin B) 

F . - 2 . 0 = ~  Ira3 s i n A c ~  

+ sin B cos B sin A 1 + 2 tan 1 ( 
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n = 3.0, 

Fn=3. 0 = 
. B 1 B 1 1 ] 

Im sin A COS 2 A + + ~ sin B 1 c o s  B 1 
4 COS 2 A 2 2 

+ sin B cos 2 B + ~ + - - s i n  A 1 cos A 1 
cos 2 B 2 2 

As in the case of the flux transfer from a point source to a disc, the I m values are the A, B, C and 
D values obtained when the I r matrix is used to multiply the inverted cosine matrix. 

So, 

A -0.3008 1.2745 -2.1465 2.1728] It, 

3.7474 -15.2421 23.2421 -11.7474[  Ir 2 

-11.7895 43.3684 -51.3684 19.7895[ It3 

10.5263 -31.5789 3 1 . 5 7 8 9 - 1 0 . 5 2 6 3 J  It, 

where ?'l = 28-96~ ?'2 = 51.32 ~ ?'3 = 67"98~ ?'4 = 82-82~ 

(b) Point by point calculations 

With the advent of high speed, high capacity calculators and computers, it has become possible 
to use point by point methods much more extensively than previously. These methods have the 
great advantage of dealing with practical intensity distributions without approximation of the 
intensity distribution (although some error may be introduced by interpolation). The approxima- 
tion here lies in the number of points for which the calculation is made. 

A simple example will be used as an illustration. Consider Figure 4.7(b) where the source is 

above one comer of the rectangle. 

I Source 

Fig. 4.7(b) Flux transfer from a point source to a rectangle, using inverse-square law calculations 
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Let  

I o=I mcosO and I m=lOOOcd 

also let 

l 1 = 3 m, 12 = 4 m, and h = 2 m 

Calcu la t ing  the i l l uminance  for one  point  

Epl  - 
I OcOS 3 19 I mcOs 4 0 

h 2 4 

~/(1.5) 2 + (2) 2 
0 = tan -1 

2 

= tan -1 1.25 

= 51.34 ~ 

Ep = 250 x cos 4 51.34 ~ 

= 38.1 lux 

First  es t imate  of  flux, 

E p l X l  I x 12 = 38.1 x 3 x 4  
= 457 l umens  

Calcula t ing  the i l luminance  for two points  P2 and P3 gives, 

Ep2 = 250 COS 4 O 

~/(1.5) ~2 + ( 1 ) 2  
O = tan -I = 42 ~ 

2 

rE"2 = 250 x 0 .304 
= 76.1 lux 

Ep3 = 250 x c o s  4 0 

~/(1.5) 2 + (3) 2 
0 = tan -I 

2 
= 59.2 ~ 

,-En3 -- 250 X 0.069 
- 1 7 . 2  lux 

Second  es t imate  of  flux, 

2 
(11 • 12) 

93.3 
= ~ x 1 2  

= 559.8 l umens  
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Calculating the i l luminance for four points P4, Ps, P6, P7 gives, 

Ep4 = 250 x c o s  4 0 

x/(0.75) 2 + (3) 2 
0 = t a n  -l = 5 7 . 1 ~  

2 

E,, a = 250 x 0.087 
I t " "  

21.75 lux 

Ep5 = 250 x c o s  4 19 

4(0.75) 2 + (1)2 
0 = tan -1 

2 
= 32 ~ 

E,, 5 = 250 x 0.517 
I t "  

- 129.3 lux 

Ep6 = 250 x c o s  4 0 

x/(2.25) 2 + (3) 2 
0 = tan -1 

2 
= 61.9 ~ 

Ep6 = 250 x 0.049 
= 12.25 lux 

Ep7 = 250 x cos 4 0 

x/(2.25) 2 + (1)2 
0 = tan -1 

2 
= 50.9 ~ 

Ep7 = 250 x 0.158 
= 39.5 lux 

Third estimate of  flux 

) ( 21.75 + 129.3 + 12.25 + 39.5 Ep4 + Ep5 + Ep6 + Ep7 • l I • 12 = 

4 4 

= 608 lumens  

We can calculate the exact value by using the formula  for I m cos 0. 
So, 

F = (B l sin A + A 1 sin B) 
2 

x 1 2  

4 
B = tan -1 m = 63.4 ~ 

2 

3 
A = tan -1 m = 56.3 ~ 

2 
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B 1 = tan -1 = 4 8  ~ A 1 = tan -1 
~ / 9 + 4  

F = 500(0.838 x 0.832 + 0.591 x 0.894) 
= 500 x 1.226 
= 613 lumens 

Difference: 

~/16 + 4  
= 33.87 ~ 

608 - 613 

613 
=0.008 or 0.8% 

From the foregoing it can be seen that, in many cases, the point by point method is the most 
simple and straightforward approach. However, as in this case, it is useful to be able to calculate 
an exact value when estimating the number of calculation points required to give a particular 

level of accuracy. 

4 . 4  F lux t r a n s f e r  f r o m  a l inear  s o u r c e  

In Chapter 3, Section 3.7.3, the aspect factor method of calculating the illuminance at a point 
from a linear source (such as a fluorescent tubular lamp or luminaire) was introduced. This 
aspect factor method may be extended and developed into the K factor method for calculating 
flux transfer from a linear source. 

Consider Figure 4.8; this shows a sector solid associated with a linear source of length l for a 
radial distance R from the source. Flux from this source passes through the sector window A, B, 
C, D. Although the illuminance produced by this flux will vary along the direction parallel to the 
source, that is in the AB direction, it can be considered constant across the sector window in the 
AD direction (provided that the mean value of the luminous intensity over the angle A0 is used 
in the calculation). 

/:/ 

D 

A 

Fig. 4.8 The Sector Solid associated with the K Factor method 
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A P B 

Fig. 4.9 Two component sources producing the axial illuminance at P 

In Figure 4.9 it can be seen that the variable illuminance in the axial direction can be consid- 
ered to be produced by two component sources. 

The illuminance at point P will vary with its position along the axis of the sector. This illu- 
minance is made up of a component from a source of length s, subtending angle q/1 and a compo- 
nent from a source of length (1 - s), subtending angle q/2" 

The flux through the curved sector window ABCD, in Figure 4.8, is given by: 

~i '=l I RAO[(AF~,, ) + FABCD = "~" (AFt2)1 ds 
=0 

where I is the mean intensity in the transverse direction and 

AFt, = f ( g ) c o s g  d g  (see Section 3.73) 

' Ii rABCD = 7 A0 [(AP~,, ) + (ar~,~)1 ds 

This can be written as: 

FABCD = ? A0 (AFt,,) ds + (AFt, 2 ) ds (4.3) 

Integrating (AFt,)ds by parts gives, 

(AFt,)  ds = [s(AF~, )]~) - sd(AF~, ) 

We note that when 

s = 1, gr = a (Figure 4.8) 
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(AFv,) d s - l ( A F a ) -  s d f (v1)cosV1 d v  

Now s = R tan V1 giving, 

(AFt , )  ds = l(AF a ) -  R tan qtlf(ltt 1 )cos~t 1 dqt 

= I(AF a ) -  R f (g t  1)sin IDr I dgt 

From Section 3.7.3, 

f(I/ / l  )sin I//1 dig = afa 

So, 

(AF~, ) ds = l(AFa ) -  R(af  a) 

By symmetry, 

(AFt ,)  d s =  (AFt,2) ds 

From equation (4.3), 

FABCD = 21AO[(AF a) - cot ct(afa)] 

= IK 

where 

K = 2AO[(AF a ) - c o t a ( a f a ) ]  and o c o t  

So, for a constant sector angle A0 (such as 10~ and a given axial distribution, K can be taken as 
a function of a only. 

When f (v)  is a simple mathematical function such as sin ~, cos ~, cos 2 V etc., K factors can 
easily be calculated. Practical distributions can either be approximated to a cosine function or 
represented by a power series as before, or derived by numerical integration. 

Of particular interest is a line source with a cosine axial distribution. 
In this case 

f 
~t 

AF a = cos 2 I / /dig 
~0 



and 

1 
= - ( a  + sin a cosa )  

2 

afa = sin V cos V d V 
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- - l s i n 2  t2 
2 

Giving 

K a = AO(a + sin a cos a -  cot a sin 2 a) 
= AOa 

K a is proportional to a, Figure 4.10 shows the percentage of the total flux emerging through the 
sector window as a function of aspect angle a. 

The sector flux that does not emerge through the sector window passes through the ends of 
the sector, half through each end. 

When K factors are used to calculate the flux incident on a surface parallel to the source, the 
assumption is made that the value chosen for R for each sector creates errors that cancel out (see 
Figure 4.11). From this figure it will be seen that the errors created by using a curved sector 
window operate in opposite senses, that is, one +ve and the other-ve.  

4.4.1 E X A M P L E  1 

As an example of the use of K factors, the fraction of the flux emitted by a uniformly diffusing 
luminous ceiling, and received by the floor, will be calculated by assuming the ceiling consists 
of three uniformly diffusing strip sources, each located at the centre of a ceiling strip, as shown 
in Figure 4.12. The length, width and height of the room are equal. 

1 0 0 %  

Ka/K90o % 

a 9 0  ~ 

Fig. 4.10 The percentage of total flux emerging through the sector window as a function of aspect angle a 
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\ 

Flux assumed lost to wa l l s -  
strikes floor 

Flux assumed direct to f l oo r -  
lost to walls 

Fig. 4.11 Assumed cancelling errors in the K Factor method 

Assumed sources 

h 

5/6 l 

l 

Fig. 4.12 Flux transfer from a uniformly diffusing luminous ceiling, using the K Factor method 

From assumed source Q, the angle 0 to the floor for the right-hand side of the strip is given 

by /5/ 
O r tan -1 6 l = = 39.8 ~ 

l 
say 40 ~ 

Assume 4 -10  ~ sectors. 
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T h e  va lue s  o f  R n e e d e d  to c a l c u l a t e  the  a v a l u e s  are:  

h h 
R 1 = = 1 . 0 0 4 h ,  R 2 = 

cos  5~ cos  15~ 
= 1 .35h  

h h 
R 3 = = 1 . 1 0 3 h ,  R 4 = 

c o s  25 o cos  35 o 
= 1 .221h  

so, s ince  l = h, 

O' 1 = t a n  - 1  

1 . 0 0 4 h  
= 4 4 . 8 9  ~ 0, 2 = 44  ~ 

a 3 = 4 2 . 2  ~ a 4 = 39 .3  ~ 

R" /t" 

K90o = A 0  x - -  = 0 . 1 7 4 5  x - -  = 0 . 2 7 4  
2 2 

So,  

K =  % x ~  
K90 100 

w h e r e  

0 . 2 7 4  

K a % = l . l l l  x a  ~ 

r90 

( F r o m  F i g u r e  4 . 1 0  w h e r e  the  s l o p e  o f  the  g r a p h  = 100 /90  = 1 .111. )  

G i v i n g  

K 1 = 1.111 x 4 4 . 8 9  x ~  
0 . 2 7 4  

100 

0 . 2 7 4  
= 4 9 . 8 7  x ~ = 0 . 1 3 6 6  

100 

a n d  

0 . 2 7 4  
K 2 = 4 8 . 8 8  x ~ = 0 . 1 3 3 9  

100 

0 . 2 7 4  
K 3 = 4 6 . 8 8  x ~ = 0 . 1 2 8 5  

100 

0 . 2 7 4  
K 4 = 4 3 . 6 6  x ~ = 0 . 1 1 9 6  

100 

T h e  a n g l e  f r o m  Q to the  l e f t - h a n d  s ide  o f  the  f l o o r  is" 
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0 = tan -1 I l l  61 
l 

= 9 .46  ~ ( less  than  10 ~ 

t 1 ) R 5 = 1 . 0 0 3 h  and  a 5 = t a n  -1 = 4 4 . 9  ~ 
1.003 

K5 = 44 .9  x 1.111 x ~  
0 .274  

100 
= 0 . 1 3 6 7  

Bu t  true va lue  K '  5 = 0 .946  • 0 .1367  (on ly  a 9 .46  ~ sec tor )  = 0 .1293 .  

F lux  f r o m  source  Q to the f loor  is the re fore :  

I m cos  5 ~ • K 1 + I m cos  15 ~ • K 2 + I m cos  25 ~ • K 3 + I m cos  35 ~ • K 4 + I  m cos  4 .73  ~ • K '  5 

= Im(0.996 • 0 . 1 3 6 6  + 0 .966  • 0 . 1 3 3 9  + 0 .906  • 0 .1285  + 0 .819  x 0 . 1 1 9 6  + 0 . 9 9 6  • 

0 .1367)  = I m • 0 . 6 1 5 9  l u m e n s  

Note :  4 .73 ~ is the m i d - s e c t o r  ang le  for  the 9 .46  ~ sector.  

B y  s y m m e t r y ,  sou rce  T gives  the s a m e  a m o u n t  o f  f lux  to the floor.  S o u r c e  S s u b t e n d s  an ang le  

to the r i gh t -hand  s ide o f  the f loor  of: 

Ill, 0 = tan -~ 2 
l 

= 26.6  ~ 

F r o m  the ca l cu l a t i ons  for  source  Q: 

K I = 0 . 1 3 6 6  1st 10 ~ 

K 2 = 0 . 1 3 3 9  2nd  10 ~ 

For  the r e m a i n i n g  6 .6  ~ 

h 
R = = 1 .089h 

cos  23.3 ~ 

/ 1 / 
a = tan -1 = 42 .6  ~ 

1.089 

0 .274  
K = 4 2 . 6 • 2 1 5  

100 

Bu t  true va lue  

p 

/f3 = 0 .66  • 0 . 1 2 9 6  (on ly  a 6 .6  ~ sector)  = 0 .086  

F lux  f rom source  S to the r i gh t -hand  s ide o f  the f loo r  is g iven  by" 

p 

I m cos  5 ~ • K 1 + I m cos  15 ~ • K 2 + I m cos  23.3 ~ • K 3 

= Im(0.996 • 0 . 1 3 6 6  + 0 .966  • 0 . 1 3 3 9  + 0 .918  • 0 .086)  

= I m • 0 . 3 4 4 2  
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By symmetry, source S contributes the same amount of flux to the left-hand side of the 
floor. 

The total flux to the floor from the three sources Q, S and T is" 

In(2 • 0.6159 + 2 x 0.3442) = I m • 1.920 lumens 

I m for each strip of ceiling = L m • l • m 

_- ~Lm 12 

3 

The total flux emitted from the ceiling is given by: 

F c = XLm 12 

So the fraction of flux emitted from the ceiling and received on the floor is: 

1 
mLml2 • 1.920 

Fcv 3 

F c XLm 12 

0.333 x 1.920 

= 0.2035 

Zijl in his book Large Size Perfect Diffusors has developed a formula for this case (that is, from 
rectangle to rectangle) for a uniformly diffusing source. 

The formula is: 

(I) ABCD--~ KLMN 

I / a / b a2 h 2 2Mjr a~(b2 + h2 ) tan-l ~b 2 +h 2 + + • 

tan'/ b / 
~a 2 + h2 - ah tan '/h/-t, htan'/ / 

_ l l o g  e (a 2 + b  2 + h  2)h 2 ] 
2 (a 2 + h 2 ) (b 2 + h 2 ) 1 

where a, b and h are the length, breadth and height of the room respectively. 
Note: ABCD is the emitting rectangle and KLMN the receiving rectangle. M is the luminous 

exitance. 
L e t a = b = h = l . 0 ,  
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Flux received 

+ ~ - t a n _  ~ 1 
//7 

1 
- t a n  -~ ( ] . o )  - t a n  -~ ( 1 . o )  - -~ l o g  

= M[0.2003] 

Fraction of  emitted flux received 

(1+1+1)  

(] + 1) (1 + l) 

M[0.2003] 

M 

= 0.2003 

Difference 

0.2035 - 0.2003 

0.2003 
=0 .016  or 1.6% 

4.4.2 EXAMPLE 2 

The second example relates to the calculation of ceiling illuminance in a practical lighting 
design. 

A banking hall has a 4 m radius semi-cylindrical ceiling as shown in Figures 4.13(a), (b) and 
(c). 

The ceiling is to be lit by a continuous row of fluorescent tubes mounted on a cornice running 
the 15 m length of the hall. 

Continuous 
row of /~/-/-R'~,. / ] 
fluorescent , f / I l l  r  ,/ I 
t u b e S ~ / m  " ~  ) 

- /,/ 
y,/ 

Fig. 4.13(a) The position of the cornice lighting relative to the curved ceiling 
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@ 
r 
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/'/,z 

r 
# 

/ 
/ 

/ 

/ 

I 
f 

I 

J 

f 
I 

I 
f 

f l 7 ~ 7 3  

~ . ~ X R  s = 7 . 6  m 

R 9 = 7 . 8  m 

Fig. 4.13(b) The radial distances required for the calculation of the K Factors 

In Figure 4.13(b) nine, 10 ~ sectors have been drawn (solid lines) coveting the area lit by one 
row of fluorescent tubes. For the purpose of this example the axial distribution of the lamps is 
taken to be a cosine and the transverse intensity as constant. 

In Table 4.2, the values of R have been scaled from the drawing (Figure 4.13(b)) as they 
would be most conveniently obtained in practice. 

As before, 

K a 0.274 
K =  % x ~  

g90 lO0 

= l . l l l x a ~  ~ 

0.274 

100 

= 3.04 • 10 -3 • a ~ 

The K values are summed because the transverse intensity is assumed constant. 

Table 4.2 Measured R values and the corresponding K values for 
the example in Section 4.5.2 

R(M ) I/R a ~ K 

(1) 1.55 9.677 84.1 
(2) 2.95 5.085 78.9 
(3) 3.7 4.054 76.1 
(4) 4.7 3.191 72.6 
(5) 5.7 2.632 69.2 
(6) 6.5 2.308 66.6 
(7) 7.1 2.113 64.7 
(8) 7.6 1.974 63.1 
(9) 7.8 1.923 62.5 

0.256 
0.240 
0.231 
0.221 
0.210 
0.202 
0.197 
0.192 
0.190 

1.939 
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Consequently, the flux to the ceiling is given by: 

F = 1.9391 lumens or 1.941 lumens 

The average illuminance on the ceiling is, 

1.941 1.94I 
= ~ = = 0.01029I lux 

n'rl :rc x 4 x 15 

The longest hot cathode fluorescent tube available would be 2.4 m and six of these would meet  
the length requirement of 15 m with an acceptable tolerance (14.4 m). 

A typical initial lumen output of a warm white lamp would be 9500. The total output of the 
row of six lamps would be 6 x 9500 lumens. We can use this value to calculate L 

So, 

F = 36 X K9o X l 

F 

36 x A0 x - -  
2 

9500 x 6 

36 x ~  
2Jr 

36 

/l" 
x - -  

2 

= 5775 cd 

This gives 

Ear = 0.01029 x 5775 

= 59 lux 

This is the average illuminance of the curved area of the ceiling. The flux in each sector that 
does not fall on the ceiling in this way is lost to the side walls above the cornice height, Figure 
4.13(c). 

The total flux emitted by the six lamps is 9500 • 6. This is emitted over 36, 10 ~ sectors. Nine 
sectors were used in calculation and so the total amount of useful flux emitted into the ceiling 
cavity was 

9 
9500 x 6 • ~ = 14250 lumens 

36 

The flux reaching the curved surface of the ceiling was 

1.94 x 5775 = 11203 

The flux to each end is, therefore, 

14250 - 11203 
= 1524 lumens 



4.4 Flux transfer from a linear source 145 

Flux to curved / / "  \ 
C 

/ /  ~ ~ Fluxto side 
wall 

Fig. 4.13(e) The flux passing through the ends of the sectors is incident on the side walls of the ceiling 
vault 

The area of each end wall is 

z r x l 6  
or 25 m 2 

The average illuminance of the end walls is, therefore, 

1524 

25 
or 61 lux 

Note: Three practical matters should be kept in mind. 

(1) The assumption has been made that the lamps are uniformly diffusing; that is, the axial polar 
curve is a tangential circle. In practice, fluorescent tubes give a lower intensity at angles 
approaching 90 ~ and this affects the relationship between the lamp output in lumens and the 
maximum intensity in candelas. 

Photometric measurements show that a typical fluorescent lamp gives: 

F=0 .9251  or I =  1.08F 

We have assumed that a 10 ~ sector gives 

which, for 36 sectors, gives 

F=0 .9871  or I =  1.013F 

So the intensities achieved for a given lumen output will be slightly higher than we have 
assumed. 

However, the aspect factor values from which the K values are calculated will be slightly 
lower for the practical distribution and this compensates, so that the overall error is less than 
5%. 
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(2) At this stage, even though we are considering a practical problem, no allowance has been 
made for deterioration of the installation with time. This is dealt with later. 

(3) The illuminance of the ceiling would be very uneven across the vault, with only one row of 
lamps on one of the cornices. In practice, both cornices would probably be used, doubling 
the average illuminance. 

4.4.3 EXTENSION TO THE CASE WHERE THE SECTOR WINDOW IS LONGER THAN THE 
LIGHT SOURCE 

In some practical situations, the light source, although linear, does not span the entire distance 
between the walls. The K factor method can be extended to meet such a case. 

Below, the formula is derived for the case where the line source is shorter than the sector 
window length required to fit the area receiving the flux. 

In the treatment given below, the distances from the walls to the end of the line source are 
assumed to be equal, but the same approach can be used to deal with unequal distances. 
Although, in Figure 4.14, all sections have equal length, it is only opposite sections that must be 

$ 1 1 1 1 1 J  

. i - I " . J  11t / 

,..i I 

/ "  "3 / 11 I I  

j 
, ,  

Fig. 4.14 Extension to the case where the sector window is longer than the light source 
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equal; that is, section 1 equals section 4, section 2 equals section 5 and section 3 equals section 
6. 

In Figure 4.14, section 2 is the real source and section 1 represents an imaginary source. Let 
the imaginary source have an intensity distribution identical to the real source and let the lumi- 
nous exitance of the imaginary source be equal to that of the real source. We wish to find the flux 
from section 2 to sections 4, 5 and 6; that is, F2(4,5,6). 

The flux from the real source (section 2) is found as follows: 

F(1,2)(4,5)- F14 = F2(4,5) + F15 

where F is the flux and the first subscript indicates the sending surface and the second subscript 
the receiving surface. 

Noting that section 1 has the same length as section 6 and section 2 has the same length as 
section 5, and applying the principle of reciprocity and by assuming section 5 to be an imagi- 
nary light source with the same characteristics as those already defined, we can say: 

F15 F51 F26 
= ~ = giving F15 - F26 

M M M 

So, 

F(1,2)(4,5)- F14 = F2(4,5,6) 

Since the sources all have the same value of luminous exitance then the intensity for the length 
of source represented by section (1 + 2) is given by 

I I~ ) x ( x + l ) l  

and the intensity for the length of source represented by section 1 is given by 

( 
Giving 

F2(4,5,6) = 
Io 

[(X + I)K(I,2 ) - xKI] 

where 

K(1,2 ) is the value of K for 

a = tan -1 
x+l ) 

R 

and K 1 is the value of K for 

a = tan -1 
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4.5 Flux transfer between opposite parallel rectangular surfaces 

4.5.1 INTRODUCTION 

Such a surface could be a ceiling reflecting light to the floor or a light emitting ceiling of pris- 
matic or louvred panels illuminating the floor or work plane. 

Although Zijl 1 produced rigorous solutions for the transfer of flux between parallel surfaces 
in the case of uniform diffusion, Croft 2 produced a somewhat simpler and more versatile solu- 
tion by developing zonal multipliers for continuous distributions that could be applied to practi- 
cal distributions as well as to mathematically defined distributions. 

4.5.2 ZONAL MULTIPLIERS FOR AREA SOURCES 

A luminous surface can be considered to be an array of infinitely small sources with each lumi- 
nous element touching the other similar elements. Each of these elements will have the same 
value of luminous flux in a given angular zone (see Chapter 1 for the calculation of zonal flux, 
Section 1.7.1). The zonal multiplier is the fraction of this flux that lies within the boundary of 
the illuminated rectangular surface. The value of this multiplier depends upon the position of the 
element in the area source array; that is, how near it is to the boundary. Consider Figure 4.15(a). 
This shows some of the parameters needed in the calculation. 

Because of symmetry, if the zonal multipliers for one quadrant of a room are determined, the 
zonal multipliers for the other quadrants will have the same value. Thus, we need only consider 
one quadrant in our calculation. The shaded area of the zone represents the flux fraction lost to 
the walls. 

4.5.3 ZONAL MULTIPLIERS FOR RECTANGULAR ROOMS 

Consider Figure 4.15(b). 
Four areas are shown in this figure and these need to be considered in developing the zonal 

multipliers. The areas are as follows. 

N \ N \ \ \  / 

///// 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

Fig. 4.15(a) The zone related to a quadrant 
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1 

r 

I . . . .  �9 I 
I 13 

" l "  - -  - -  

wa 

Fig. 4.15(b) The four areas to be considered for the zonal multiplier calculations 

Area 1, where the zonal multiplier arc for the source falls entirely within the boundary of the 
room. This gives a zonal multiplier of unity. 
Area 2, where the zonal multiplier arc cuts the boundary in one direction only. 
Area 3, here the zonal multiplier arc cuts the boundary in two directions. 
Area 4, this is similar to area 2 but may be of a different length. 

For a given angular zone, the size of each area is determined by the radius of the zonal multi- 
plier arc, that is h tan 0. 

As an example, consider area 3. Here, the sides of the square (w) to which the zonal multi- 
plier applies are equal to the radius (r) of the zonal multiplier arc. 

Thus, when r = w only area 3 exists. 
There is, of course, a fifth area where the zonal multiplier arc lies outside the rectangle and 

the zonal multiplier is zero. 
Therefore, it is possible to obtain general zonal multipliers for each type of area and then 

weight them according to the area of the quadrant to which they apply, for a given value of arc 
radius r. 

Area 1. The zonal multiplier is unity 
Areas 2 and 4. Consider Figure 4.15(c) 

It is convenient to work in units of r, so, r = 1.0. This does not affect the outcome of the calcu- 
lations. 

The zonal multiplier is the fraction of all the quadrant arcs that lie within the area considered. 
The length of each arc is equal to the radius multiplied by the angle in radians, but since the 

radius is 1.0 the arc equals the angle. 

,Y_, of actual arcs 
ZM = 

of all quadrant arcs 
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~ T_. ~." v 
s i n ~ ' , , ,  

r= 1.0 

r= 1.0 

r= 1.0 

Fig. 4.15(c) Zones 2 and 4, where the arc cuts the boundary in one direction only 

fi.O f l . O  
ZM 7r dx=  sin-Ix dx 

2 .,o 

Z M =  2 f  1"0 
- -  sin-Ix dx 
/17,t o 

X 
= - -  x s i n  - l  x - dx 

4 ( 1  --  X 2 ) 

ZM = 2 [ x  sin-' x + 4 ( 1 -  x2)]~ "0 
/17 

2 
--- l m ~  

/17 

= 0.363 

This is the zonal multiplier for areas 2 and 4. 

Area 3. Consider Figure 4.15(d). Here the arc cuts the boundary at two points. 
In this case, flofl fl ..ofL  

ZM 3 It" dx dy= 7r 
2 2 

- - - -  COS -1 X -- COS -1 y)  dx dy 

Then, 

2 of, o ~M~-~ ~ ~  Ix-cos ly) dx ~y 
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r =  1.0 

r 3 / / - , , ,  
Y 1 

COS- X -~ 

X 

r =  1.0 

Fig. 4.15(d) Zone 3, where the arc cuts the boundary in two directions 

Also,  

So 

J sin 1 x dx = xs in  J x - i x -  ~/(1 X 2) 

= x s in - l  x + ~/ (1-  X 2 ) 

j -cos-I  y dx = xcos - I  y 

li~in-I X--COS -I y ) d x  dy 
l-y2 

= [xsin-I  x + 4 ( 1 - x  2 ) - x c o s  -1 yll'Ol~_y 2 

/17 -1 
= - - -  cos y -  y 

2 

•i'0 ( Tc -1 
- -  COS 

2 
y -y )  dy 

1~o(~ = sin -1 y-y)  dy 

I y2 11"0 
= ys in-1Y + 41 _ y2  _ - ' ~ ] o  
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x 3 
m m m  

2 2 

Thus, 

ZM 3 = - -  
x 2 

3) 
2 

3 

= 0.045 

Thus, the zonal multipliers are: 

Area type 1 ZM l = 1.0 
Area types 2 and 4 ZA'/2 = Z M  4 = 0.363 
Area type 3 ZM 3 = 0.045 

The mean zonal multiplier for the whole rectangular area is obtained by weighting each of these 
zonal multipliers according to the part of  the area to which it applies. The results are added 

together and then divided by the total area. 
This formula can then be used to produce a zonal multiplier value for each zone of the area 

light source flux distribution and so the flux transfer between the two parallel surfaces may be 
obtained. This is usually the flux transfer between the ceiling and the working plane within a 

room. 
The weighting value for area 1 is given by (w ! - r)(w 2 - r). 
The weighting value for area 2 is given by r(w 2 - r). 
The weighting value for area 3 is given by r 2. 
The weighting value for area 4 is given by r(w I - r). 
The formula for the required mean zonal multiplier is: 

0 .045r  2 + 0.363[r(w 2 - r) + r(w I - r)] + 1.0[(w 2 - r)(w 1 - r)] 
Z M  = 

w I x w 2 

0.045r  2 + 0.363[r(w I + w 2) - 2r 2] + [ W l W  2 - r ( w  I + w 2) + r 2] 

W 1 • W 2 

Substituting h tan 0 for r, we obtain 

Z M  = 0.045(h tan 0) 2 + 0.363[h tan O(w I + w 2) 

- 2(h t a n  0)  2] + [ w 2 w  I - h t a n  O(w 2 + Wl)  + (h t a n  0)  2] 

W 1 • W 2 

For a rectangular room the ratio of  the horizontal surface area to the vertical surface area is called 
the room index (R/) and this can be used to simplify the above formula  
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2 x w 1 x w 2 w 1 x w 2 
RI = = 

2h(w 1 + w 2) h(w 1 + w 2) 

Substi tuting and simplifying gives: 

Z M = 0 . 3 1 8  t h 
w 1 

h / (tano 
tan 2 0 -  0.637 

w 2 RI 

In the special case of  a square room as w 1 = w 2, 

( t a n 0  /2 ( t a n O )  
ZM = 0.080 - 0.637 + 1 

RI RI 

+ 1  

Example 1 

Calculate 10 ~ zonal multipliers for w l/h = 8 and w2/h = 3.0 and hence determine the fraction of  

flux transferred from a uniformly diffusing luminous  ceiling to the floor 

8 x 3  
RI = ~ = 2.18 

8 + 3  

giving 

l1 1/ ZM=0.318  - - x  - -  tan 2 0 - 0 . 6 3 7  
8 3 

- 0.01325 tan 2 0 -  0.292 tan 0 + 1 

tan 0 

2.18 
+ 1  

Once h tan 0 is greater than ~wi2 4- W22 then the zonal mult iplier  is zero. In the above example,  

this occurs at 85 ~ and so for this angle the zonal mult ipl ier  is zero (Table 4.3). 

Table 4.3 Tabulated calculation of the 10 ~ interval zonal multipliers for Example 1 

Mid-zone 
value 

0 ~ tan 0 tan 2 0 0.01325 tan 2 0 0.292 tan 0 ZM 

5 0.0875 7.65 x 10 -3 1.014 x 10 --4 0.0255 0.974 
15 0.268 0.0718 9.514 x 10 -4 0.0783 0.922 
25 0.466 0.217 2.875 x 10 -3 0.1364 0.864 
35 0.700 0.490 6.49 x 10 -3 0.204 0.802 
45 1.000 1.000 0.01325 0.292 0.721 
55 1.428 2.040 0.0270 0.417 0.610 
65 2.145 4.599 0.0609 0.626 0.435 
75 3.732 13.928 0.1845 1.0897 0.095 
85 11.430 0.000 
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To calculate  the fraction of  flux transferred f rom the ceil ing to the floor, the fraction of  the 

total downward  flux emit ted in each zone mus t  first be determined.  This is easi ly calcula ted for 

distributions of  the form I o = I m cos n 0, 

Zonal  fraction = 
Flux emit ted in the zone  

Total  downward  flux 

f 
Oz 

2to I o sin O dO 
r 

~0 ~2 2to I o sin O dO 

When  I o = I m cos n 0, this becomes  

ZFR = cos (n + 1) 0 -  cos (n + 1) 02 

In all cases the fraction of  flux to the floor or working plane 

t e l 2  

= Z Z M . Z F R  

In Table 4.4 the zonal fractions are calculated for a cosine distribution and mul t ip l ied  by the 

appropriate zonal  mult ipl iers  (Table 4.5) to obtain the required value for the fraction of  flux 

transferred f rom the ceil ing to the floor. 

The fraction of flux transferred f rom the 'cei l ing '  to the ' f loor '  is cal led the Surface 

Distr ibution Factor, D s. In this case, D s = 0.646. 

Zij l 's  fo rmula  for a uniformly diffusing rec tangular  source, can be used to calculate  a precise 

value for D s for a room with W l/h = 8 and wz/h = 3.0. 

Table 4.4 Tabulated calculation of the zonal fractions for a cosine distribution of 10 ~ zones 

Zone angle cos 01 cos 02 cos 2 01 cos 2 02 
in degrees 

ZFR 
= cos 2 01 - cos 2 0 e 

0-10 1 0.985 1 0.9698 = 0.0302 
10-20 0.985 0.9397 0.9698 0.883 = 0.0868 
20-30 0.9397 0.866 0.883 0.75 = 0.133 
30-40 0.866 0.766 0.75 0.587 = 0.163 
40-50 0.766 0.643 0.587 0.413 = 0.174 
50-60 0.643 0.5 0.413 0.25 = 0.163 
60-70 0.5 0.342 0.25 0.117 = 0.133 
70-80 0.342 0.1736 0.117 0.030 = 0.087 
80-90 0.1736 0 0.030 0 = 0.030 

1.000 
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Table 4.5 Tabulated calculation of 2~ ZM.ZF to obtain the surface 
distribution factor in Example 1 

ZM ZFR ZM, ZF 

0-10 0.974 0.0302 0.0294 
10-20 0.922 0.0868 0.0800 
20-30 0.864 0.133 0.1149 
30-40 0.802 0.163 0.1307 
40-50 0.721 0.174 0.1255 
50-60 0.610 0.163 0.0994 
60-70 0.435 0.133 0.0579 
70-80 0.095 0.087 0.0083 
80-90 0 0.030 0.000 

Total 0.646 

o, tan-I / a 
4 b  2 + h 2 I + b4(a 2 + h 2) 

• tan -,l l -ll l 
~[a2 + h2 - ah tan  - bh tan 

_ l l o g  e (a 2 + b  2 + h  2)h 2 ] 
2 (a 2 + h 2 )(b 2 + h 2 ) / 

Let h = 1, a = 8 and b = 3, 

[ (8/3 82+12 (3  / 
2Mtt. 8432 + 12 tan-l 432 + 12 + tan-I 482 + 12 

_ 8 • 1 t a n - l ( 8 ) _  3 • 1 t a n - l ( 3 )  1 ( 8 2 + 3 2 + 1 2 ) ]  
- 2"lOge (8 2 + 12)(32 + 12) . 

2 M  

/17 

1 
[25.3 tan -l (2.53) + 24.187 tan -l (0.372) - 8 tan -l (8) - 3 tan -1 (3) - -~ log e 0.9867] 

2 M  

/17 

! 

[30.22 + 8.61 - 11.572 - 3.747 - - log e 0.9867] 
2 

2 M  
~ [23.511 + 0.0067] 

23.50 • 2 M  
= 14.96M 
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Fraction of  emit ted flux received 

14.96M 
= = 14.96 

M 

14.96 
D s = ~ = 0.624 

8 •  

Difference, 

0.646 - 0.624 

0.624 
= 0 . 0 3 5  or 3.5% 

Thus, the value of 0.646 obtained by zonal multipliers compares  favourably with that obtained 
using Zijl 's formula. 

The next example  shows that the agreement  between the zonal multiplier  value and the value 
calculated using Zijl 's formula is much closer when square rooms are considered. 

Example 2 

Let the room have the same room index as the previous example,  but let it be a square room, then 

( t a n 0  ) 2 l t a n 0  / 
ZM = 0.080 - 0 . 6 3 7  1 

RI ~ , ~ ) +  

RI = 2 . 1 8  

ZM = 0.0168 tan 2 0 -  0.292 tan 0 + 1 

The zonal multiplier is calculated in Table 4.6 and the surface distribution factor (Ds) in Table 
4.7. 

So, D s = 0.655. 

Table 4.6 Tabulated calculation of the zonal multipliers for Example 2 

Mid-zone 
angle (0 ~ tan 0 tan 2 0 0.0168 tan 2 0 0.292 tan 0 ZM 

5 0.0875 7.65 x 10 -3 1.285 x 10 -4 0.0255 0.974 
15 0.268 0.0718 1.206 x 10 -3 0.0786 0.923 
25 0.466 0.217 3.72 • 10 -3 0.1364 0.867 
35 0.700 0.490 8.23 • 10 -3 0.204 0.804 
45 1.000 1.000 0.0168 0.292 0.725 
55 1.428 2.040 0.0343 0.417 0.617 
65 2.145 4.599 0.0773 0.626 0.451 
75 3.732 13.928 0.234 1.089 0.144 
85 11.43 - - - 0.000 

(Arc outside 
rectangle) 
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Table 4.7 Tabulated calculation of the distribution factor 
for Example 2 

Zone ZM ZF ZM.ZF 

0-10 0.974 0.0302 0.0294 
10-20 0.922 0.0865 0.080 
20-30 0.867 0.133 0.115 
30--40 0.804 0.163 0.131 
40-50 0.725 0.174 0.126 
50-60 0.617 0.163 0.101 
60-70 0.451 0.133 0.060 
70-80 0.144 0.087 0.013 

0.655 

Now let us compare this value with that obtained using Zijl's formula: 

RI=2.18= w leth = 1 .0sow = 4.36 = a =  b 
2h 

4.36 / 4"36~/(4"362 2Mjr [4"36~(4"362 + 12) tan-I ~/(4.36 z + 12) + +12 ) 

x tan 

x 

362436 + 12, / 436tan /436  436tan , 

1 (4.362 + 4.362 + 12)12 
---IOge 12 12 2 (4.362+ )(4.362+ ) 

= 12.48M 

12.48 
D~ = =0.656 

' 4.362 M 

This value agrees with that obtained by zonal multipliers. 
O'Brien 3 calculated the illuminance and luminous emittance (exitance) for 35 000 rooms and 

published the results for 160. He points out that square and infinitely long rooms of the same 
room index exhibit differences in luminous characteristics that are generally less than 10%. (See 
also the comment at the end of Section 5.4.5.) 

The advantage of Croft's method of zonal multipliers for continuous distributions is that it 
may be applied to any distribution that can be taken as symmetrical about the vertical axis or 
averaged to an equivalent symmetrical distribution. That is, it can be applied directly to practi- 
cal distributions and not just to the uniformly diffuse case. 

An important advantage compared to a point by point calculation is that, because the mid- 
zone angles are used, the values from I-tables may be used in the calculation of zonal flux with- 
out interpolation. 
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4.5.4 AVERAGE HORIZONTAL SCALAR AND CYLINDRICAL ILLUMINANCE USING THE 
ZONAL MULTIPLIER METHOD 

The zonal multipliers developed in the previous sections enable the direct flux to the horizontal 
plane to be calculated and hence the average horizontal plane illuminance (Eh). In this section it 
is shown how these multipliers may be modified to enable the average direct scalar or cylindri- 
cal illuminances, as well as horizontal illuminance, to be calculated. 

For any rectangular horizontal area A, the average value of 

,7_., z M  x z F  x I e 

A 

where ZM is the zonal multiplier for the zone for which I o is the mid-zone intensity and ZF is 
the zone factor. 

In Section 3.8.1 it was shown that the scalar illuminance from a point source at point is given 
by 

Emax 
E s = ~  

4 

If the light is incident at an angle 0 at a point on the horizontal plane then we may write 

E S 
4 cos 0 

where E h is the horizontal illuminance at that point. 
If the point under consideration is an average point on the horizontal area then the average 

value of 

U S - -  

7_, z_,M x Z F  x I o 

4 x A x cos 0 

where 0 is the mid-zone angle for each zone. 
It is convenient to associate 1/(4 cos 0) with the zonal multiplier ZM and so develop a zonal 

multiplier related to the average scalar illuminance. 
Thus, the average value of E s is given by 

E Z M  s x ZF x l o 
U s = 

A 

where ZM s = ZM/(4 cos 0). 
In a similar way, zonal multipliers for mean vertical or cylindrical illuminance may be devel- 

oped. 
In Section 3.8.2 it was shown that cylindrical illuminance from a point source at a point is 

given by: 

Ecy 1 = Ema x 
sin 0 

Applying the same reasoning as for scalar illuminance gives: 
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ZMcy I • ZF x I o 
Ecyl = A 

where 

tan 0 
ZMcy 1 = ZM 

Example 

Calculate the average horizontal, scalar and cylindrical illuminances for the working plane of a 
room 16 m long by 6 m wide by 2.8 m high. Assume the room has a luminous ceiling with a 
luminous exitance of 500 lumens per square metre and a relative luminous intensity distribution 
given in the tabulated calculation in Table 4.8. 

The zonal fractions calculated in Table 4.8, when multiplied by the zonal multipliers, enable 
a surface distribution factor to be calculated. The surface distribution factor multiplied by the 
total flux emitted from the ceiling gives the flux incident at the working plane, and when divided 
by the area of the working plane gives the average illuminance. 

Assuming a working plane at 0.8 m above the floor gives h = 2 m for the room index calcu- 

lation, 

1 6 x 6  
RI= = 2.18 

2(16 + 6) 

Horizontal plane zonal multipliers have already been calculated for these room proportions and 
this value of room index (see Example 1 of this chapter). The distribution factor for the hori- 
zontal plane illuminance is given by D s = ,Y_, ZM x ZFR (see Table 4.9). 

Average value of 

D s X M X A  
E h = 

A 

= D s X M  
= 0.727 x 500 
= 363.5 lux 

Table 4.8 Tabulated calculation of the zonal fractions for the intensity 
distribution used for the example 

0 ~ Relative Zone Relative Zonal 
Intensity Factor Zonal Flux Fraction 

5 1.000 0.095 0.095 0.036 
15 1.057 0.283 0.299 0.115 
25 1.019 0.463 0.472 0.181 
35 0.890 0.628 0.559 0.215 
45 0.826 0.774 0.639 0.245 
55 0.269 0.897 0.241 0.093 
65 0.129 0.993 0.128 0.049 
75 0.091 1.058 0.096 0.037 
85 0.068 1.091 0.074 0.028 

Total 2.603 
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Table 4.9 Tabulated calculation of the distribution factor for the 
example 

0 ~ ZM ZFR Z M  x ZFR 

5 0.974 0.036 0.035 
15 0.922 0.115 0.106 
25 0.864 0.181 0.156 
35 0.802 0.215 0.172 
45 0.721 0.245 0.177 
55 0.610 0.093 0.057 
65 0.435 0.049 0.021 
75 0.095 0.037 0.003 
85 0.000 0.028 0.000 

D s = 0.727 

Table 4.10 Tabulated calculation of the scalar distribution factor for the 
example 

O~ ( Z M  ~ ZFR ZM s x ZRF 
ZMs ~ = ~  J �9 4 cos 0 

5 0.244 0.036 0.009 
15 0.239 0.115 0.027 
25 0.238 0.181 0.052 
35 0.244 0.215 0.052 
45 0.255 0.245 0.062 
55 0.266 0.093 0.025 
65 0.257 0.049 0.013 
75 0.092 0.037 0.003 
85 0.000 0.028 0.000 

Ds(scalar ) 0.243 

The distribution factor for scalar i l luminance is given by: Ds(scalar ) = Y~ Z M  s • Z F R  (see Table 
4.10). 

Average value of  

E S 
Ds(scalar ) • M • A 

= Ds(scalar ) • M 
= 0.243 x 500 

= 121.5 lux 

The distribution for cylindrical i l luminance is given by: D clS( y indrical) = ~ ZMcyl • Z F R  (see Table 
4.11). 
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Table 4.11 Tabulated calculation of the cylindrical distribution factor for 
the example in section 4.5.4 

0~ ZMcy I ( = ZM n'--tan 0 / ZFR ZMcy I x ZRF 

5 0.027 0.036 0.000 
15 0.079 0.115 0.009 
25 0.128 0.181 0.023 
35 0.179 0.215 0.039 
45 0.229 0.245 0.056 
55 0.227 0.093 0.021 
65 0.297 0.049 0.014 
75 0.113 0.037 0.004 
85 0.000 0.028 0.000 

Ds(cylindrical) 0.166 

Average value of  

Ds(cylindrical) X M x A 
Ecyl - A 

= Ds(cylindrical) X M 
= 0.166 • 500 
= 83 lux 

The required values are therefore" 

E h = 363.5 lux 
E s = 121.51ux 
Ecy I = 83 lux 

4 .6  Flux t rans fe r  to  a ver t ica l  sur face 

4.6.1 FLUX TRANSFER TO VERTICAL SURFACES WITHIN A SQUARE ROOM, WHERE 
w I = w 2 (Figure 4.16) 

The flux transferred from (say) the ceiling to the walls can be obtained by subtracting the flux 
received by the floor from the total flux emitted. 

Fig. 4.16 Flux transfer to vertical surfaces within a square room, that is the walls (Surface 3) 
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So, 

Flux to walls = total f l u x -  flux to floor 

or, in terms of the proportion of flux transferred, 

Fraction of total 
flux received by walls = 1 -(Fract ion of flux received by floor) 

= 1 - D  S 

In the example for a square room calculated earlier, the fraction of total flux received by the floor 
D s was 0.655. 

So, in that case, 

Fraction of flux to walls = 1 -0 .655  
= 0.345 

This is for all four walls. The fraction for an individual wall is 

0.345 + 4 
= 0.0863 

4.7  Flux t ransfer  wi th in  a cyl indrical  enclosure 

Before moving on, it is worthwhile demonstrating how the Principle of Equivalence together 
with the geometrical properties of a sphere enable the flux transfer within a cylindrical enclosure 
to be obtained in a simple way (see Figures 4.17(a) and (b)). 

The flux transfer between the two parallel discs that form the ends of the cylinder can be 
calculated as follows. Consider Figure 4.17(b). Here the cylinder is shown enclosed in a sphere. 

Using the Principle of Equivalence (Chapter 3, Section 3.3) the illuminance at all points on 
the inside of the sphere produced by the disc AB forming the end of the cylinder must be the 
same as that which the spherical cap ABC would produce if it had the same value of luminance. 

It was also shown that the direct illuminance on the inside of a sphere from any luminous 
element of the sphere has the same value at all points within the sphere. It follows that the illu- 
minance on the inside of the spherical cap DEF must have the same value at all points. The flux 
passing through the disc DF (the opposite end of the cylinder), and which is therefore equal to 
the flux received by the disc, must be 

F 2 = E • (Area of spherical cap DEF) 

f l  . . ~  2 

Fig. 4.17(a) Flux transfer within a cylindrical enclosure 
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B 

A 

F 

E 

Fig. 4.17(b) The cylinder enclosed in a sphere 

The il luminance at point F is given by the disc source formula 

E = ~/r'/-" (1 - cos ct) 
2 

h / 
2 ~/h 2 + d 2 

and since E is constant over the inside of the cap DEF 

h 1 = x area of spherical cap DEF Fl2 T 1 -  ~/h2 +d2  

The area of the spherical cap is equal to the solid angle subtended by the cap at the centre of the 
sphere multiplied by the square of the sphere radius (Chapter 1, Section 1.1). 

So, 

Area of cap = 2x(1 - c o s  0) x r 2 

In the case chosen, angle 0 equals angle a,  so that 

( h /2 
Area of  cap = 2zr 1 - ~/h2 -k- d 2 r 

Also, 

h 2 d 2 
r 2 -- + 

4 
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Giving 

h ) h  2 +d  2 
Area of cap = 2zr 1 - ~/h2 + d 2 4 

So, 

h / ( /  h /h2+d2 / 
F12=-~  1 - 4 h  2 + d  2 2zr 1 - 4 h  2 + d  2 4 

 h2h d2 +d2  = ~2L 1 - + 

Although this expression could be further developed, in its present form it is quite convenient for 
calculation. 

The total flux emitted by surface 1 (the top disc of the cylinder) 

~d2xL 
4 

The fraction of flux emitted from surface 1 received by surface 2, 

4 h + 
Ds'=~-T 1 - / h 2 + d  2 4 

h 
= ~ - + 1  1 - [ h 2 + d  ~ 

2 

h (/hi2 / = + 1  1 -  

i/:/~+l 
Example 

Let us calculate the flux received by disc 2 from disc 1, given the following information: 

h = 1 0 m ,  d = 1 0 m  and L=200cd/m 2 

( h )2(h2 2) + d  
F12=~z 2L 1 - ~ / h 2 + d  2 4 

---- 7/7 2 X 200 l1 - 

10 )2(100+100)  

~/100 + 100 4 

= 200//: 2 (1 - 0.707) 2 (50) 

= 8473 lumens 
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Flux emitted by disc 

xd 2 
= • xL = x 2 • 25 • 200 = 49348 lumens 

4 

Fraction of flux emitted from surface 1 received by surface 2 

8473 
D s =  

49348 

=0 .1717  

The flux transferred to the vertical surface or wall (3) of  the cylinder can be obtained by subtrac- 
tion" 

Flux to wall 

Fraction of flux transferred to wall 

= 49348 - 8473 
= 40875 lumens 
= 1 - 0.1717 
= 0.8283 

4. 7.1 FLUX TRANSFER FUNCTION 

A convenient form of notation to represent the fraction of flux transferred from one surface to 
another is the flux transfer function. Consider the cylinder used in the previous section (Figures 
4.17(a) and (b)). 

Denoting the 'ceiling' of the cylinder by 1, the 'floor' by 2 and the 'wall' by 3 enables us to write 

f12 = fraction of flux transferred from surface 1 to surface 2 
fl3 = fraction of flux transferred from surface 1 to surface 3 
fzl = fraction of flux transferred from surface 2 to surface 1 
f33 = fraction of flux transferred from surface 3 to surface 3 (since surface 3 can 'see'  itself) 

4.7.2 TRANSFER FUNCTIONS FOR UNIFORMLY DIFFUSE EMISSION 

The transfer functions, or form factors as they are often called, may be extended to relate to 
rectangular rooms. In the simplest case, the four walls are treated as one surface. This means that 
the room is considered to consist of three surfaces; the ceiling (1), the floor (2) and the walls (3) 
(see Figure 4.18). Also, if the emitting surface is not only emitting with a uniform value of lumin- 
ous exitance over its surface, but also with a uniformly diffuse distribution, then the Principle of 
Reciprocity can be used to produce further transfer functions. 

(1) Denotes the top surface or 'ceiling' 
(2) Denotes the bottom surface or 'floor' 
(3) Denotes the vertical surface area or 'walls' 

fl3 = 1-f12 
by symmetry 

f21 =f12 
and 

f23 =f13 
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1 Ceiling 
2 Floor 
3 Walls 

Fig. 4.18 The three surface room for simple transfer function (form factor) calculations 

Applying the Principle of Reciprocity we may write: 

Flux received by 1 from 3 

Luminous exitance of 3 

Flux received by 3 from 1 

Luminous exitance of 1 

M3S3f31 MISIfI3 
M 3 M1 

So, 

f31 =f13 
S1 

$3 

Also, 

f33 = I-f3~-f32 

= 1 - 2f31 

4.7.3 AN ALTERNATIVE MEANING FOR THE TRANSFER FUNCTION 

By definition: 

fab -" 
Flux received by surface b 

Flux emitted by surface a 

So, 

abE b SaE a 
f a b = ~  and f b a = ~  

SaM a SaM b 

Applying the Principle of Reciprocity, we obtain 

SbEb SaEo 
Ma Mb 
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gwmg, 

Saea 
= fab 

SaMb 

ea 

So, fab can also be defined as the 

Illuminance of surface 'a '  divided 
by the luminous exitance of surface 'b' 

To sum up, when the transfer functions are considered as ratios between illuminance and lumin- 
ous exitance, the first subscript refers to the receiving surface, but when they are taken as the 
ratio of two fluxes the first subscript refers to the emitting surface�9 

A consequence of the above analysis is that the relationship between fab and fba is also estab- 
lished, since 

J~a ~ S Mb 

S a 

= ~ L b  
Sb 

4. 7.4 FLUX TRANSFER BETWEEN INFINITE PLANES 

The fraction of flux emitted from a disc source to a parallel disc with the same axis and the same 
diameter is given by its distribution factor, D s. 

In this case 

2 

/ /:/ 
Ds= +1 1 

+1 

As d is continually increased, h/d tends to zero and, for two parallel infinite surfaces, D s = 1.0. 
The direct illuminance of one surface by the other is therefore equal to the luminous exitance 

of the source surface M (lumens per metre squared). 
Although the above treatment is for a uniformly diffuse source the result holds true for other 

distributions, since if the planes are infinite then distance between them may be neglected; that 
is, all the flux from one is incident on the other. 

4 .8  Cavi t ies 

Consider flux transfer from 'surface' 1 to 'surface' 2 (Figure 4.19). 
The light passing into the aperture 'surface' 1 is all incident upon 'surface' 2, the wall of the 

cavity, so that fl  2 = 1.0. 
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Aperture 1 

Fig. 4.19 Flux transfer within a cavity 

Now consider flux transfer from the interior of the cavity to the aperture; that is, from 
'surface' 2 to 'surface' 1. 

If we apply the Principle of Equivalence - that two uniformly diffuse sources will produce the 
same value of illuminance at a point P, if they are of equal luminance and appear to have the 
same boundary when viewed from P -  then it may be concluded that the result will be the same 
as if the aperture was placed in front of a uniformly diffusing source of infinite size. 

Hence, the illuminance over the aperture would be equal to the luminous exitance of the inte- 
rior of the cavity; that is 'surface' 2. 

So, flux received at the aperture 'surface' 1 

= M2S 1 

Total flux emitted by 'surface' 2 

= M2S 2 

giving 

f21 = ~  

S! 

S 2 

Flux transferred across the cavity; that is from 2 to 2 (since 2 can 'see' itself) is obtained by 
subtracting the aperture transfer function f21 from unity 

So, 

Sl 
f22 = 1 

$2 
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5 
Interreflected Light 

5.1 In t roduct ion  

The previous four chapters have dealt with direct illuminance and flux transfer. This chapter 
deals with interreflected components of illuminance and flux transfer. 

When light is emitted from a lamp or luminaire it produces direct illuminance on the surfaces 
that intercept the light. If the receiving surface is part of an array of surfaces, e.g. the floor, ceil- 
ing and walls of a room, then some of the light will undergo multiple reflections until it is all 
absorbed or transmitted out of the space. 

For many years, this aspect of interreflected light was found difficult to deal with and, until 
the 1950s, most calculations of average illuminance, in practical rooms, were based on tables 
produced from experimental measurements in a large model room carried out by Harrison and 
Anderson in the USA during the 1914-18 War. 

The difficulties encountered had two elements: 

(1) the accurate calculation of the direct illuminances of the room surfaces for the many differ- 
ent types of luminaire; 

(2) the interreflection calculations themselves. 

The earlier chapters have dealt with the calculation of the direct illuminances, which can, if 
necessary, be calculated by dividing all the surfaces into a series of elements and calculating the 
direct illuminance on each element using the inverse-square law. Where necessary, large lumi- 
naires are divided into elements small enough for the inverse-square law to be applied. This 
approach, although fundamental, relies on the advent of powerful computing facilities that have 
become available in recent times. 

Once the direct illuminances are known then the interreflection calculations can be carried out 
in a number of ways. 

(1) By an energy balance approach (based on the Conservation of Energy principle), where the 
equations are written to represent the steady state where all the lamp flux is accounted for 
by absorption or transmission out of the space. The equations are then solved simultaneously 
to give the required illuminance values. This is the radiosity method. 

(2) By an iterative method where the reflected flux is traced through successive reflections until 
further calculations are found to make no significant change to the illuminance values. 

It is the radiosity method that is developed in this chapter. 1 
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Fig. 5.1 Spherical enclosure containing a light source (integrating sphere) 

5.2 Radiosity 

The simplest example of the radiosity method is that of a spherical enclosure containing a light 
source. A practical example of such an enclosure would be an integrating sphere used for 
comparing the light output of light sources, see Figure 5.1. 

A single equation can be written representing the energy balance for this situation. 

Total incident flux (F) 
on the sphere interior 

The direct flux = + 
from the lamp (Ft,) 

The reflected 
f l u x  

F =  FL + F •  

F(1 - p) = F L 

FL 
F - ' ~  

1 - p  

The average illuminance on the inside of the sphere, 

eL 
Ear = 

A(1 - p )  

where A is the interior surface area. 
The interreflected or indirect component is given by: 

Ein d = Eav - Edirect 

FL FL 

A(1 - p )  A 

A 1 - p  
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I 
Example 

(a) Let the direct illuminance within a sphere be 500 lux and let the surface reflectance be 0.8. 
Calculate the final illuminance. 

Eav  ~ 
Edirect 

1 - p  

5OO 

1 - 0 . 8  

= 2500 lux 

Notice that the size of the sphere does not appear in this calculation. That is because it has 
already been taken into account when calculating Edirect. 

(b) What would be the effect of changing the sphere reflectance to 0.5? 

Eav  -" 
500 

1 - 0 .5  

= 1000 lux 

(c) What would be the effect of changing the sphere reflectance to 0.9? 

Eav  -- 
500 

1 - 0 . 9  

= 5000 lux 

Thus, the original 500 lux in direct illuminance is multiplied by 10. 

Comment 

In practice, such high values of reflectance are avoided in integrating spheres, since small 
changes in reflectance over time will have a large effect on the measured illuminance. 

5.3 Luminaires 

The above type of calculations can be used as a basis for estimating the light output ratio of a 
luminaire. 

Consider the simple opal glass spherical luminaire shown in Figure 5.2. 
Let the glass of the sphere have an internal reflectance p a n d a  transmittance r. Then the total 

flux incident on the inside of the sphere is: 
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Fig. 5.2 Opal glass spherical luminaire 

F ~ ,  
FL 

(1 - p )  

where F L is the lamp flux. 
The flux emitted from the sphere surface is: 

F o u t  - -  

TF L 

(1 - p )  

The light output ratio is: 

L O R  = ~ = 
Fout r 

F L (1 - p )  

E x a m p l e  

Let the sphere internal reflectance be 0.4 and the transmittance of the opal glass be 0.5. Calculate 
the L O R :  

L O R  = 
0.5 

1 - 0 . 4  

=0.83 or 83% 

In practice, there would be additional losses at the luminaire support point and some absorption 
by the lamp and its holder, but a value of about 80% may be achieved. 
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A general expression for the LOR of luminaires can be developed providing that the follow- 
ing conditions are observed: 

(1) the flux distribution over each surface is assumed to be uniform; 
(2) the reflectance or transmittance of each surface is assumed to be uniform and to give uniform 

diffusion; 
(3) the surfaces do not have re-entrants that would trap light and hence alter the effective 

reflectance of the surface. 

Consider the luminaire shown in Figure 5.3. 
This general model for a luminaire consists of an aperture (1) which connects two cavities (2) 

and (3). 
In Section 4.4 the flux transfer functions (form factors) were derived for a cavity. 
The fraction of flux transferred from each cavity through the joining aperture is: 

for the top cavity f31 = 
a r e a  S l a r e a  S1 

and for the bottom cavity f21 -" 
area S 3 area S 2 

The flux exchange within a cavity is given by: 

S 1 S 1 
f22 "-1 and f33 = 1 

S 2 S 3 

Since all the flux from 3 passing through aperture 1 reaches surface 2 then 

f32 =f31 = 

Sl 

$3 

and similarly f2a = f21- 

St, 
Lamp 

Z-l= 1. 
,o1=0 

T 3 
P3 

P2 

Fig. 5.3 The general luminaire model 

$2 

$1 
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The energy balance equations for surfaces 2 and 3 are given below: 

F2 = F3 P3f32 + F2 P2f22 + D2FL 

F3 = F2 P2 f23 + F3 P3 f33 + D3FL 

where F 2 and F 3 are the fluxes incident on surfaces 2 and 3 respectively. D 2 and D 3 are the frac- 
tions of the lamp flux received by surfaces 2 and 3 directly. P2 and P3 are the reflectanees of 
surfaces 2 and 3. 

Solving these equations simultaneously gives 

G 
FL 

D2(1 -/93 f33) + D3/93 f32 

(1 - P2 f22 )(1 -/03 f33) -/92/93 f23 f32 

F3 
FL 

D3(1 - P2 f22) + D2 P2 f23 

(1 - p3 f33)(1 -/92 f22) - ,02 P3f23f32 

The upward light output ratio, 

F3 
ULOR = ~ x r 3 

FL 

where r 3 is the transmittance of surface 3, and the downward light output ratio, 

G 
DLOR = ~ • ~2 

rE 

where r 2 is the transmittance of surface 2. 
The LOR = ULOR + DLOR. 

The general expression for LOR is: 

LOR = 
"t'2[D2(l -P3  f33) + D3 P3 f321 + "t'3[D3(1 - P 2  f22) + D2 P2 f23] 

( 1 --/92 f22) ( 1 -- P3 f33 ) -- P2 P3 f23 f32 

Examples  

(1) Calculate the LOR for the luminaire shown in Figure 5.4(a). 

t"3= 0 

P3 = 0.7 

Fig. 5.4(a) Spun metal reflector with uniformly diffusing internal finish 
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This is a spun metal reflector with a uniformly diffusing internal finish of  reflectance 0.7. 
Assume 40% of the lamp flux passes directly through the reflector aperture and that the ratio 

of aperture area to reflector surface area is 0.5. 
The essential data are: 

r 3 = 0  P3 =0"7 r 2 = r  l = l . 0  

S 1 Sl 
P2 = p l  = 0  ~ = 0 . 5 = f 3 1  =f32 f33 = 1 - ~ = 0 . 5  

S 3 $3 

Substituting these values in the general equation gives: 

L O R  = 
0.4(1 - 0 . 7  • 0.5) + 0.6 • 0.7 • 0.5 + 0 

1 - 0 . 7  •  

= 0 . 7 2  or 72% 

(2) Calculate the L O R  for the luminaire shown in Figure 5.4(b). 
Assume the area ratios are 

S 1 S 1 
= 0.5, ~ = 0.4, 

S 3 S 2 

and the lamp flux fractions are D 2 = 0.45, D 3 = 0.55. 
The essential data are: 

r 3 = 0 ,  P3 =0"7 '  r 2 = 0 . 5 ,  P2 =0"4 

S l S l 
f32 : ~ = 0.5, f23 = 

S 3 S2 
=0 .4 ,  ~3  = 1 - 0 - 5 = 0 " 5 ,  f22 = 1 - 0 . 4 = 0 " 6  

t ' 3 = O  

p 2  = 0 . 4  

t" 2 " 0 . 5  

Fig. 5.4(b) Example 2, a reflector as in Fig. 5.4(a) but with a translucent base 
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Substituting in the general equation gives: 

0.510.45(1 - 0 . 7  • 0.5) + 0.55 x 0.7 • 0.5] + 0 
L O R  = 

(1 - 0 . 4  x 0.6)(1 - 0 . 7  x 0.5) - 0 . 4  x 0.7 • 0.4 x 0.5 

0.5(0.293 + 0.193) 

0.76 • 0.65 - 0.056 

=0 .555  or 55.5% 

(3) Calculate the L O R  for the luminaire shown in Figure 5.4(c). 
In this case S 1 and S e are the same area so, 

Sj 
~ =  1.0 =f23 

S; 

assume 

S 1 
 =0.5 =f32 

$3 

and 

D 2 = 0 . 4 ,  D 3 = 0 . 6  

The essential data are: 

r 3 = 0 ,  P3 =0 .7 ,  r 2 =0 .6 ,  Pe =0 .17  

f32 =0-5 ,  f23 = 1.0, f33 = 1 - 0 . 5 = 0 . 5 ,  f22 = 0  

Substituting in the general equation gives: 

0.610.4(1 - 0 . 7  x 0.5) + 0.6 x 0.7 x 0.5] 
L O R  = 

(1 - 0 . 7  x 0 . 5 )  - 0 . 1 7  x 0 . 7  • 1 .0  • 0 . 5  

0.366 

0.65 - 0.06 

= 0 . 6 2  or 62% 

P3 = 0.7 
t ' 3=O  

~ , . , , . . r  
. . . . . . .  _ / 

Diffusing louvre 
t'2 = 0.6 
P2 = 0 .17 

Fig. 5.4(c) Example 3, a reflector as in Fig. 5.4(a) but with a louvred base 



5.4  Louvres 

In example (3) above, the transmittance and reflectance of a diffusing louvre were used. These 
may be calculated by using a similar method to that for luminaires. 

Consider the louvre cell shown in Figure 5.5. 
This consists of the louvre walls (3) and the top and bottom apertures (1) and (2) respectively. 

The assumption is made that aperture (1) is uniformly illuminated from above and is equivalent 
to a uniformly diffuse area source filling the aperture. 

The energy balance equation is: 

Flux received by (2) = Flux received from (1) + Flux received from (3) 

F2 = FI f12 + F3 P3f32 

Flux received by (3)" 

F3 = El fl3 + F3 ,~ f33 

F3 - F3 P3f33 = FI f13 

f 3  ~" 

So, 

F l f l3  

(1 - P3 f33) 

F2 = FI fl2 + 
Flfi3P3f32 

(1 - P3 f33) 

Ill 

W 
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Fig. 5.5 The rectangular louvre cell 
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Transmittance 

F2 f13 f 32 P3 
=f12 + 

F 1 (1 - P3 f33) 

f13 f32 
r = f l 2  + (5.1) 

( 1  t -f33 
P3 

Now fl2 represents the fraction of flux transmitted directly through the louvre without reflection 
and so the other term must represent the fraction of flux transmitted by reflection. For a uniformly 
diffusing louvre the same fraction of the flux received by (3) would be reflected upwards and 
downwards and so the second term represents the equivalent reflectance of the louvre. 

Thus, 

f13 f32 

p =  (1/p3--f33 (5.2) 

This expression holds as long as the assumption of uniform illuminance on surface (3) can be 
justified. Non-uniformity begins to have a serious effect on the value of p when the ratio of the 
area of louvre aperture to louvre wall area is less that 0.5. 

From the results obtained for rectangular enclosures in Section 4.5.2, 

f12 = Ds and f13 = 1 - D s 

S1 
f32 -f3, =f,3 

$3 

where S 1 is the area of aperture (1) and S 3 is the area of the louvre walls. 

f33 = 1 - 2f32 

giving (by substitution in Equation (5.1) above) 

r = D s +  

(1 - Ds) (1 - Ds) 
Si 

$3 

1 / Sl / 
/93 1 - 2(1 - Ds) $3 

and (by substitution in Equation (5.2) above) 

p .._ 

( 1 - Ds) (1 - Ds) 
Sl 

$3 

1 / sl / 
P3 1 - 2(1 - Ds) $3 

by substitution in Equation 5.2 above. 
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S1 
(1 - Ds)2 

S 3 
r = D s + (5.3) ( s ' l  

1 - 2 ( 1  - D s )  

P3 $3 

S1 
(1 - Ds)2 

$3 
p = (5.4) 1 ( s, / 

1 - 2 ( 1  - Ds) 
P3 $3 

where, for a rectangular louvre, S 1 = W 1 X W 2 and S 3 = 2h(W 1 + WE). 
If the thickness of the cell wall is not negligible then an adjustment should be made, 

r = r (louvre cell) x 
total area of louvre apertures 

total horizontal area of louvre 

and 

total area of louvre apertures 
/9 = p (louvre cell) x + 

total horizontal area of louvre 

p (louvre material) x ( 1 - 
total area of louvre apertures 

total horizontal area of louvre 

5.4.1 TRANSLUCENT LO UVRES 

The formulae obtained for opaque rectangular louvres can be used for translucent louvres, if the 
transmittance of the louvre cell wall is added to its reflectance. This can be done because the flux 
emerging from the wall of one louvre cell by transmission from another cell is balanced by a 
similar amount lost by transmission to adjacent cells. The result is the same as an increase in the 
reflectance of all cells except those at the extreme edge of the louvre by the amount of the louvre 
wall transmittance. 

5.4.2 PRACTICAL RESULTS 

The authors have investigated the accuracy with which the performance of practical louvres may 
be predicted using the method developed above. 2 The general conclusion is that the accuracy is 
of the order of 5%. 

As already mentioned, the method relies on the assumption of a uniform distribution of flux 
on the louvre walls. If accurate calculations are required for deep louvres; that is, when the 
height of the louvre exceeds its width, then the wall must be divided into two or more sections 
so that uniform flux distribution may be assumed for each section. 
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Table 5.1 Surface Distribution Factors 

Room Index (R/) 

0.75 1.0 1.25 1.5 2.0 2.5 3.0 4.0 5.0 
D s 0.320 0.415 0.491 0.547 0.632 0.691 0.733 0.788 0.823 

Examples 

(1) Calculate the reflectance and transmittance of a square louvre of width 30 mm and depth 
15 mm. The reflectance of the louvre material is 0.7. The thickness of the louvre material may 
be disregarded. 

The ratio of aperture area to cell wall area 

S 1 30 x 30 
~ =  =0 .5  

S 3 2 x 15(30 + 30) 

Values of D s are tabulated against room index (R/) in Table 5.1, where 

2S 1 
R I = ~ =  1.0 

$3 

in this case, giving, 

D s = 0.415 

r = D s +  

(1 - Ds)2 
Sl 

$3 

1 ( Sl / 
1 - 2 ( 1  - Ds) 

P3 S3 

=0 .415  + 
( 1 - 0.415) 2 x 0.5 

0.7 
[1 - ( 1  - 0 . 4 1 5 )  x 11 

= 0.415 + 0.1687 

(since r = D s + p) 

r = 0 . 5 8  or 58% 
p = 0 . 1 6 9  or 17% 

(2) Calculate the transmittance and reflectance for a louvre of similar size to that in Example 
(1), but where the reflectance of the louvre material is 0.6 and the transmittance of the louvre 
wall is 0.3. In this case the transmittance and reflectance of the louvre material are added 

together to give P3 = 0.6 + 0.3 = 0.9: 

(1 - 0.415) 2 x 0.5 
r = 0.415 + 

1 

[1 - ( 1  - 0 . 4 1 5 )  x 1] 
0.9 
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= 0.415 + 0.246 
=0 .66  or 66% 

p = 0 . 2 4 6  or 25% 

(since r = D s + p). 

5.4.3 CLASSIFICATION OF ROOMS 

Consider a square room where the height is much greater than the width. Let there be a lumin- 
aire with a general downward distribution mounted at the centre of the ceiling, see Figure 
5.6(a). 

Let the angle across the width of the room subtended by the luminaire be a. 
Consider two such identical rooms placed side by side, Figure 5.6(b). 
In each room the angle subtended at the floor by the luminaires will be a. 
Let the dividing wall between the two rooms be removed, Figure 5.6(c). 

Fig. 5.6(a) Cross-section of a tall square room 

Fig. 5.6(b) Two rooms side by side 
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Fig. 5.6(c) The two rooms with the dividing wall removed 

Each luminaire now subtends a much larger angle fl at the floor. The flux per unit area 
released into the two rooms side by side is still the same, but with the partition removed more of 
that flux reaches the floor directly. 

Clearly, when we removed the dividing wall the ratio of ceiling area to wall area in the 
enlarged room was increased and this has been followed by an increase in the average direct illu- 
minance of the floor or working plane. 

This increase of efficiency in the transfer of flux from ceiling-mounted sources to the floor is 
the basis of classifying rooms according to the ratio of horizontal area to vertical area and it has 
been found that, all other things being equal, rooms with similar ratios of horizontal to vertical 
area have similar utilization factors, see Section 4.5.3. 

This ratio is called the Room Index (R/) and it has been introduced in Chapter 4 to simplify 
the zonal multiplier formulae. 

RI  = 
area of ceiling + area of floor 

area of walls 

2 x W l x W  2 

2 • h ( W  1 + W2) 

wlw2 

h(W  + w 2) 

which, for a square room, becomes 

W 
R I  = ~  

2h 
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The Room Index formula is often expressed in terms of the room length (L) and the room width 
(W). This gives, 

RI = 
L x W  

h(L + W) 

Examples 

(1) Calculate the Room Index for a room 6 m long by 4 m wide and 3 m high. 

6 x 4  
RI = = 0.8 

3(6 + 4) 

(2) Calculate the Room Index for a square room 10 m wide and 3 m high. 

10 
RI = ~ = 1.67 

2 x 3  

(3) A square room has a Room Index of 5 and a height of 2.8 m. Calculate its width. 

W 
RI = 

2h 

~ .  

W 

2 x 2 . 8  

W = 5 x 2 x 2 . 8  

= 2 8 m  

5 . 5  I n t e r r e f l e c t i o n s  in r o o m s  

When the direct flux received by each room surface is known, then the total surface flux to each 
surface, including interreflected flux, may be obtained using the same energy balance or flux 
balance methods already used for luminaires and louvres. 

If we consider the room to consist of three surfaces, namely: ceiling (1), floor (2) and walls 
(3) (see Figure 5.7). 

h 

Fig. 5.7 The three surface room for interreflection calculations 
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Pl 
fl2 
Fl 

F2 
F3 
FL 

Then three energy balance equations can be set up to determine the final illuminance, includ- 
ing the interreflected component. 

The following terms are used in setting up the equations: 

etc., the surface reflectances 
etc., the flux transfer functions already introduced 
the total flux received by the ceiling 
the total flux received by the floor 
the total flux received by the walls 
the total lamp flux of the installation 

DF(1) the ratio of the direct flux received by surface (1) to the total lamp flux of the installa- 
tion. (DF is an abbreviation of distribution factor.) 

DF(2) as above, but for the floor 
DF(3) as above, but for the walls 
UF(1) the ratio of the total flux received by surface (1) to the total lamp flux of the installation. 

(UF is an abbreviation of utilization factor.) 
UF(2) as above, but for the floor 
UF(3) as above, but for the walls 

The equations are: 

Flux to ceiling = Direct Flux + Flux received from the floor + Flux received from walls 

F 1 = DF( 1 )F L + F 2 P2 f21 + F3 P3 f3! 

Flux to floor = Direct Flux + Flux received from the ceiling + Flux received from the walls 

F2 = DF(2)FL + FI Pl f12 + F3 P3f32 

Flux to walls = Direct Flux + Flux received from the ceiling + Flux received from the floor 
+ Flux received from the walls 

(As the walls are being treated as single surface that can 'see' itself.) 

F3 = DF(3)FL + F1 P! fl3 + F2 Pzf23 + F3 P3f33 

Dividing through by F L we find that the equations may be written as, 

UF(1) = DF(1) + UF(2)Pzf21 + UF(3)P3f3 ! 

UF(2) = DF(2) + UF(1)p! f!2 + UF(3)P3f32 

UF(3) = DF(3)+ UF(l)Plf l3 + UF(2)Pzf23 + UF(3)P3f33 

or 

DF(1) = UF(1) -  UF(2)P2f21 - UF(3)P3f3 l 

DF(2) = -  UF(1)plfl2 + UF(2) -  UF(3)P3f3 2 

DF(3) = -  UF(1)plfl  3 - VF(2)P2f23 +UF(3)(1 - P3f33) 

Before expressing these equations in matrix form we should note the following relationships: 

Because of symmetry fl 2 = f21 and f13 = f23, also, 

f31 =f13 ( area ~ ceiling ) 

area of walls 
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giving 

(R/) 
f31 = f13 where f13 = (1 -f12) 

2 

and 

f33 = (1 -f31 --f32) = (1 -- 2f31) = (1 -- (R/)f l3)  

giving 

E l DF(2) = - P l f l 2  
DF(3) - P l (  1 -/12) 

So, 

1 - P3f31 UF(2) 
- - P 2 ( 1 - - f 1 2 )  l - P 3  + 2P3f31 UF(3) 

[DF] = [f][UF] 

or  

[ UF] = [f]-I [DF] 

Thus, multiplying the inverted [f] matrix by the [DF] matrix, gives the ratio of the final flux on 
each surface to the total lamp flux for the installation; that is, the utilization factors (UF). 

It is not too difficult to invert the f matrix as it stands; that is, in terms of symbols, but the 
resultant formulae are complex. 

If the calculation is to be done for a specific case it is much simpler to give values to the terms 
in the matrix so that it consists of single numbers and then invert it. 

The surface distribution factors (D s) required for the calculation of the flux transfer factors 
may be derived by the method given in Section 4.5.2 or obtained from Table 5.1. 

Example 

Calculate the utilization factors for an installation given the following data: 

RI= 1.0, P l =0"7, P2 =0"3, P3 =0"5 

DE(I) = 0.2, DE(2) = 0.4, DE(3) = 0.4 

From Table 5.1 we find D s = 0.415 = fl 2 

UF(1) 1 -P2f I2  

UF(2) = 
-PLY12 1 

UF(3) 

- P I (  1 - f 1 2 )  - P 2  (1 - f 1 2 )  

R, '[ 1 - p3  (1 -f12) 2 DF(1) 

RI /DF(2)/  

7 
(1 - P3(1  - (1 - f l z ) R / ) )  

Inserting numerical values into the f matrix to be inverted, gives 

1 - 0.1245 - 0.1463 7 

A 0.2905 1 - 0.1463 
0.4095 - 0.1755 0.7925 

-1 
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The inversion requires the following steps: 

Step 1. Find the determinant of the matrix 13'!. 
Step 2. Transpose the matrix [ft]" 
Step 3. Replace each term of the transposed matrix by its minor. 
Step 4. Divide each term in the new matrix by the determinant of matrix [f]. 
Step 5. Multiply each term by (+ 1) or (-1) according to the following pattern 

+ - +  

+ -  + 

Step 1. The determinant 

A= (1 x 1 x 0.7925) + (-0.1245) (-0.1463)(0.4095) 
+ (-  0.1463)(- 0.2905)(- 0.1755) - (1) x (-  0.1463)(- 0.1755) 
- (0.1245)(- 0.2905)(0.7925) - (-  0.1463)(1)(- 0.4095) 

= 0.663 

Step 2. Transpose of the matrix (exchange rows and columns) 

I -  1 -0 .2905  - 0 . 4 0 9 5 ]  
0.1245 1 - 0.1755 
0.1463 - 0.1463 0.7925 

Step 3. Replace each by its minor (the matrix left when the row and column containing the term 
is removed) 

For example: the minor of the term in the first row and first column, that is 1, 1 is" 

F 1 - 0.1755 ] 
~- - 0.1463 0.7925 

= (1)(0.7925) - (-  0.1755)(- 0.1463) 
=0.767 

Step 4. Divide by the determinant obtained in 1, 

0.767 
= 1.156 

0.663 

Step 5. Multiply by (+ 1) 

(+1)(1.156) = 1.156 

Repeating this process for all terms gives the inverted matrix [f]-l, we find, 

0,8  0 481 1 
UF(2) - 0.437 1.105 0.285 DF(2) 
UF(3) 0.694 0.342 1.453 DE(3) 

So, 

UF(1) = 1.156DF(1) + 0.187DF(2) + 0.248DF(3) 
= 1.156 • 0.2 + 0.187 • 0.4 + 0.248 • 0.4 
= 0.405 
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UF(2) = 0.437 x 0.2 + 1.105 x 0.4 + 0.285 x 0.4 
= 0.643 

UF(3) = 0.694 x 0.2 + 0.342 x 0.4 + 1.453 x 0.4 
=0.857 

The values of UF(2) are sometimes published by manufacturers relating to their indoor lumi- 
naires for a complete range of room index values and a range of reflectances for ceilings, walls 

and floor. 
The numerical values in the above matrix, that is 1.156, etc., are termed Transfer Factors and 

the UF formulae written as: 

UF(1) = T f (1 ,  1)DF( 1 ) + TF(2, 1 )DF(2) + TF(3, 1)DE(3), etc.  

A complete set of Transfer Factors was published by Bean and Bell 3 in 1976. This method was 
subsequently used as the basis for Technical Memoranda TM5 (London: Chartered Institution of 
Building Services Engineers, 1980). 

The CIE produced an alternative method, published in 1982. 4 This method relied on approx- 
imating the flux distribution of the luminaire to a cosine power series, but the interreflection 
calculations were also based on the same energy balance approach. 

5.5.1 TUNNELS 

The utilization factors for tunnels can be considered as a special case of the calculations for 
rooms. The matrix to be inverted is the same, since a tunnel can still be considered as consisting 
of three surfaces; ceiling, floor and walls. The main problem is finding the surface distribution 
factor for a 'room' that can be considered to be infinitely long. 

One approach would be to divide the ceiling into three infinitely long strips and to use the K 
factor method for linear sources that was developed in Section 4.4. The assumption of an infi- 
nitely long tunnel greatly simplifies this method, since the K values are all the same and there- 
fore, since the surface distribution factor is a ratio, cancel out. 

As an example, we will calculate the surface distribution factor for a long tunnel where the 

width is twice the height, see Figure 5.8. 
The ceiling of the tunnel is assumed to give uniformly diffusing reflectance, so that I o = 

I m cos 0. To apply the K factor method we assume that the ceiling is divided into three strips (the 
more strips the greater the accuracy of the approximation). Each strip is treated as a line source 
located at the centre point of the strip. Examining Figure 5.8 we see that the flux to the floor 
from source 3 will have the same value as that from source 1; also that the flux from source 2 
will be given by twice that emitted to the floor over angle 03 . 

Consider source 2. Using the normal K factor method, the fraction of the flux emitted by 
the line source (representing the strip) in the 0 ~ to 90 ~ sector, which reaches the floor, is given 

by: 

03 

I m ~ cos 0 K 
0 

90 ~ 

I m E cos o K 

o 
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Fig. 5.8 Surface distribution factor for a tunnel using the K factor method 

However, since in the case of an infinitely long room or tunnel K is constant  we get 

03 
cos 0 

0 

90 ~ 

cos 0 

0 

When  K varies, small sectors such as 10 ~ are chosen,  but in this case K has cancel led so we can 

assume infinitely small sectors and integrate. 

Consequently,  the fraction of the 0 - 9 0  ~ flux that reaches the floor is given by: 

~ 0 
[ - s i n 0 ] o  ~ 

~~ ~176 [-sin0]9o ~176 
cosO 

= sin 03 

N o w  0 3 = 45 ~ so the fraction of 0 -  90 ~ reaching the floor is sin 45 ~ = 0.707. 

For the two sides of the line source, the total would be 1.5 from an output  of 2 units (e.g. each 

side of the source). 

Now consider  the case of source 1" 

0 l = t a n  -1 ~ x ~  = 5 9  ~ 
6 1 

sin 59 ~ = 0.857 

= fraction of 0 - 90 ~ flux received on floor over angle 01 
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(6 2) 0 2 = t a n  -1 x m = 18.4 ~ 
1 

sin 18.4 ~ = 0.316 
= fraction of 0 - 90 ~ flux received on floor over angle 02 

Total from source 1 is 0.857 + 0.316 = 1.173 (from two units of output). 
Source 3 gives a similar result. 
Considering each side of the three line sources the total units of output are 6. 
Adding the results for the three line sources we arrive at 

1.5 + 1.173 + 1.173 
= 0.641 

6 

So, D s = 0.641. 
If we use Zijl's formula (Chapter 4) to calculate D s for a tunnel h = 1.0, w = 2.0, l = 100 we 

arrive at a value of 0.614 - a difference of 4%. 
The difference is because the K factor method assumes that the ceiling strips can be repre- 

sented by line sources located at the centre of each strip and this reduces the flux lost to the walls, 
hence the higher value of D s. 

It is worth noting that if we calculate the Room Index for those values used above in Zijl's 
formula and consult Table 5.1 we obtain an interesting result. 

Wl W 2 2 •  100 
RI = = = 1.96 

h(W I + W2) 1(2 + 100) 

taking RI = 2.0 gives a value of D s = 0.632 - a difference of 3%. 
If we have taken the Room Index for the tunnel as simply W/h then we would have a value of 

2.0 and D s = 0.632 as before. Examination of the Room Index formula shows that for very long 
tunnels 

W 
RI _ _ . ~  m 

h 

Thus, if the RI value is taken as the ratio of W/h then the D s value for a square room of similar 
room index applies to a good approximation (e.g. 2% for narrow tunnels to 5% for wide tunnels). 

5.5.2 CHANGE OF REFLECTANCE 

In Section 5.5 the matrix used to obtain utilization factors was given. An example was also given 
of the matrix inversion required, but for simplicity this was for a specific case. If the process is 
carried out using only symbols, an interesting fact is noticed. When the minors for surface 2 (the 
floor) are obtained it is found that they do not contain P2, e.g. minor 2, 1 is, 

P3f31 l - -P3  + 2P3 f31 
(see Step 3 in the example in Section 5.4.4). 

Minors 2, 2 and 2, 3 also do not contain P2- The determinant by which the minors have to be 
divided to obtain the transfer factors of necessity contains all the reflectances. 
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Thus, in changing the reflectance of the floor, only the determinant is changed. This means 
that for a given room index with fixed wall and ceiling reflectances the effect on the utilization 
factor of varying the floor reflectance will be the same for generally diffusing lighting as for any 
light distribution. Thus, a single table of correction factors can be produced, in terms of room 
reflectances and room index, to allow for different values of floor reflectance for use with the 
utilization factor tables for all the different types of lighting unit. 

5.5.3 CAVITIES 

When light enters a cavity, the amount of that light reflected back out of the cavity depends not 
only upon the surface reflectance of the cavity but also upon its shape, see Figure 5.9. 

The equivalent reflectance of the cavity is given by Fz/Fo 1 where F 2 is the flux from surface 
1 passing through aperture 2 and Fo 1 is the initial flux entering the cavity and falling on surface 
1. 

F1 = F~ + F1Pl f l l  or F 1 = 
Fo 1 

1 -Pl  fll 

F2 = FI Pl f12 

giving 

F 2 = 
Fol P f l2 

1 - P l f l l  

P e q  "- 
Plfl2 

1 -Pl  fll 

where Pe is the equivalent reflectance of the cavity. 
fl2 an~fl l  have been determined in Section 4.9.1. (Note: the surfaces have been numbered 

differently because only two surfaces are considered, not three, and here surface 1 combines 1 
and 3 in that previous treatment.) 

Interior surfac 
reflectance p 1 

Opening 

Fig. 5.9 Equivalent reflectance of a cavity 
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f12 = 

Peq = 

$2 

S1 
f l l  =1  

S 2 
Pl 

$1 

I s21 l - P 1  1 -  S1 

PlS2 

PlS2 + SI(1 - P l )  

$2 

S1 

Example 

Calculate the reflectance of a hemispherical cavity of uniformly diffuse surface reflectance 0.7. 

S 1 = 2xr 2 S 2 = xr 2 

So, 

S 2 1 

S I 2 

Peq -" 

0.7 •  

1 -0.7(1 -0 .5 )  

= 0.54 

5.5.4 THE CAVITY METHOD FOR UTILIZATION FACTORS 

In the preceding sections the calculations have generally assumed that the luminaires are 
mounted on the ceiling. In practice, the luminaires are often suspended from the ceiling and the 
illuminances required at desk or bench level. This, and not the floor, is called the working plane. 
The utilization factor calculations for suspended luminaires and for a working plane above the 
floor may be simplified by adopting the cavity method. The cavity method of utilization factors 
is illustrated in Figure 5.10. 

The room is divided horizontally into three sections (1) the ceiling cavity, (2) the floor cavity 
and (3) the room cavity. 

The methods previously described can be applied to obtain the utilization factors for the room 
cavity provided that reflectances are ascribed to the ceiling and floor cavities. 

Since the floor cavity may contain furniture that may have any reflectance and may be moved 
about or changed at any time it is usual to estimate the floor cavity reflectance and to ascribe 
what is considered to be an appropriate value, taking into account the actual floor reflectances. 
The value is usually chosen from 10%, 20% or 30%. 

The ceiling cavity reflectance can be calculated by using the simplified formula developed in 
Section 5.5.3 or by the more accurate method where the ceiling cavity is treated as a room of 
height hswhich has a 'floor' reflectance of zero. 
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Luminaires 

Room cavity 

h m for the  cavity 
method 

Working plane 

Floor cavity 

Fig. 5.1t) The cavity method for utilization factors 

Example 1 

Peq -- 

S 2 
Pl 

S 1 

1 - p l  ( 1 S2 ,l/ 
Let the suspension distance of the luminaires from the ceiling be h s = 1.0 m and let the room be 
8 m • 8 m. Assume ceiling reflectance 0.7 and upper wall reflectance 0.3. 

S 2 = 8 •  

S l = 6 4 + 4 x 8 •  1 = 9 6  

S 2 64 

S l 96 
=0 .67  

P l = average reflectance of S 

0.7 x 64 + 0.3 • 32 

96 

= 0.57 

Peq ---- 

0.57 x 0.67 

1 -0 .57 (1  - 0 . 6 7 )  

= 0.468 

Example 20Cor the same ceiling cavity as above) 

In this second example the 'floor' of the cavity is the aperture of the cavity and the aperture is 
assumed to have a uniform distribution of incoming flux, which is then evenly distributed over 
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the ceiling and upper walls above the level of the luminaires. In this example the reflectances are 
not averaged. UF(2) is the ratio of flux received by the surface to the lamp or input flux which, 
in this case, is the flux entering the cavity. UF(2) is, therefore, the equivalent reflectance of the 

cavity (Peq)" 
The required surface distribution factor for this example can be obtained from Table 5.1 by 

calculating a cavity index and treating it as a room index when entering the table. The cavity 
index formula is the room index formula with the luminaire mounting height (hm) replaced by 
the suspension distance from the ceiling (hs). 

CI 
Wl x W 2 

hs(W 1 + W 2) 

which for a square room becomes 

W 
C / = ~  

2h s 

Obviously, if a table for CI values above 5.0 is required the additional values of D s would have 
to be calculated, using the zonal multiplier method or the Zijl formula. 

Example 

For this calculation, we will assume the same dimensions as for Example 1. 

8 
Cavity Index (Room Index) = ~ = 4 

2 •  

Pl =0.7 and P3 =0.3, P2 = 0  

The surface distribution factor D s for CI(RI) = 4.0 is 0.788, that is fl2 = 0.788. 
Inserting the above values into the matrix given on page 185 gives, 

1 0 -0 .127  
-0 .552  1 -0 .127  
- 0.148 0 0.894 

The procedure is then that described on page 186 for inverting the matrix. 
However, since we are only interested in UF(2) only the minors for column/row 2,1 2,2 and 

2,3 need to be considered. Also, since DF(2) = 0, 2, 2 is not required. It is, therefore, only neces- 
sary to calculate the determinant and two transfer factors. 

1. The determinant 

A = 0.894 + 0 + 0 - 0 - 0 - 0.0188 
=0.875 

2. Minor 2, 1 

-0.552 -0.148 I 
-0.127 0.894 
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= - 0.493 - 0.0188 = - 0.512 
multiply b y - 1  

= 0.512 

Transfer factor from cavity 'ceiling'  to cavity aperture ( ' f loor ' )  = 0.512/0.875 = 0.585. 

3. Minor 2, 3 

1 - 0.552 [ 
I - 0 . 1 2 7  - 0 . 1 2 7  

= - 0.127 - 0.701 = - 0.197 
multiply b y - 1  

= 0 . 1 9 7  

Transfer factor from cavity 'walls '  to cavity aperture 

0.197 
= ~ = 0.225 

0.875 

UF(2) = Peq = 0.585DF(1) + 0.225DF(2) 

Because the aperture is the source of light and is treated as a uniformly diffusing area source, 

DF(1) =f l2  = 0.788 and DF(3)  =f13 = (1 - 0 . 7 8 8 )  = 0.212. 
So, 

Peq = 0.585 • 0.788 + 0.225 • 0.212 
= 0.461 + 0.0477 
= 0.509 

Comparing the two examples we find 

Example 1. Peq = 0.468 
Example 2. Peq = 0.509 

Taking the percentage of the more accurate calculation (that is, three surfaces instead of two) 

0.468 - 0.509 
= - 0 . 0 8  or 8% 

0.509 

Consider again the formula used in Example 1 above, that is 

$2 

Peq = Pl  
S1 / s2/ 

1 - P l  S1 

Multiply by S 1 top and bottom, 

Peq = 
PlS2 

S 1 - P l ( S  1 - $2)  

Expand by adding +S 2 a n d - S  2 to the denominator  
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Peq ~ 
PlS2 

S 1 - 8  2 + 8 2 -PlS1 +PlS2 

PlS2 

$2 + (S1 - $2)(1 - P l )  

Multiply top and bottom by 

2 

(S 1 - $2) 

Since CI, the Cavity Index for a rectangular cavity 

2S 2 
m 

S 1 - S 2 

then 

Peq ~ 

Clp I 

CI + 2(1 - P l )  

which is the formula given in CIBSE Memorandum TM5. 

5.5.5 REFLECTED COMPONENT OF SCALAR AND CYLINDRICAL ILLUMINANCE 

In Section 4.5.3 the zonal multipliers for continuous distributions such as luminous ceilings, or 
for calculating distribution factors from rectangular area sources such as a ceiling reflecting 
light, were further developed to allow for the calculation of average scalar or cylindrical illumi- 
nance from such sources onto the floor or working plane (introduced in Sections 3.8.1 and 3.8.2). 

If the interreflection method introduced in Section 5.5 is used, the final luminances of the 
ceiling, floor and walls may be calculated and the zonal multipliers for scalar or cylindrical illu- 
minance used to calculate the reflected components of these illuminances on the working plane 
from the ceiling. It is then possible also to calculate the contributions to these illuminances from 
the working plane cavity and from the walls. 

Because the modified zonal multipliers developed in Section 4.5.3 related to illuminance 
rather than simply to flux transfer Croft 5 used the term inter-illumination factor for the distrib- 
ution factor for scalar and cylindrical illuminances. In keeping with present practice, we will use 
the term inter-illuminance factor. 

In Section 4.5.3 it will be seen that the scalar illuminance is given by: 

E s = Ds(scalar  ) • M 

where M is the luminous exitance in lumens per square metre. 
It is convenient at this point to designate Ds(scalar ) as one of the inter-illuminance factors (llf). 

Thus, 

l/fs(c) = Ds(scalar ) (ceiling to floor or working plane) 

So, the reflected component of scalar illuminance from the ceiling onto the working plane is 
given by: 
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E s = llfs(c ) x M 

where M is the luminous exitance of the ceiling. 
The inter-illuminance factor for the working plane or floor cavity, where h = 0, is obtained in 

a simple manner. Since the scalar illuminance is the average illuminance on an infinitesimal 
sphere at the point under consideration, the working plane is considered to be covered in such 
spheres. To each of these spheres the working plane becomes a light source of infinite extent 
(provided its reflectance is not zero). 

If we use the principle of equivalence introduced in Section 3.5 the infinite plane can be 
replaced by a hemisphere of similar luminance (Figure 5.11). This hemisphere produces the 
same illuminance on the surface of the sphere as the infinite plane. 

We know that if the infinitesimal sphere was completely enclosed in a sphere of similar 
luminance to that of the infinite plane, then the infinitesimal sphere illuminance would be given 
by: 

es I 
=My 

where f indicates the floor cavity or working plane value. 
However, in our case, the top half of the sphere is missing, so 

E s = ~  
2 

This gives llf~q) = 0.5. 
Two of the three inter-illuminance factors have now been determined. The third factor is that 

for the walls, which is llfs(w ). 
This is obtained by considering the situation where the ceiling, floors or working plane and 

the walls are all of unit luminous exitance. The inter-illuminance factors required in this case 

. ~ ~  Missing hemisphere 

, '  
,' 

,' 

i 
\ 
\ 
\ 
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/ 

Fig. 5.11 Reflected component of scalar illuminance due to the floor cavity 
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will be those for any other set of  i l luminances and we already know that, by the principle of  
equivalence,  the result for this case is the same as surrounding the infinitesimal sphere with an 
enclosing sphere of  unit luminous exitance, that is: 

So, 

Thus, 

Or ,  

E s =  1 

E s = l l fs(c ) x 1 + llfsq) x 1 + l l f s (w ) x 1 = 1 

llfs(w ) : 1 - llfs(c ) - llfs(l ) 

l/fs(w) = 0.5 - llfs(c ) = 0.5 - Ds(scalar ) 

giving 

llfs(c) = Ds(scalar ) 
llfsq ) = 0.5 

llfs(w ) = 0.5 - Ds(scalar ) 

Thus, 

es = Ilfs(c)gc + Ilfs( g I + Itfs(w)gw 

A similar argument  can be used in the case of cylindrical i l luminance, so that, 

E c = llfe(c ) • M e + llfcq) x My + llfe(w ) • M w 

where 

llfc(c ) = Ds(cylindrical) 
llfcq) = 0.5 

llfc(w ) = 0 .5  - Os(cylindrical) 

E x a m p l e  

Calculate the reflected components  of  scalar and cylindrical i l luminances using the data given 
and calculated in the example of  utilization factor calculations in Section 5.5. 

The data given are RI  = 1.0, Pl = 0.7, P2 = 0.3, P3 = 0.5, and the calculated UF values are: 

UF(1) = 0.405, UF(2) = 0.643, UF(3) = 0.857 

Assume h m = 1.6 m and that the room is square, 

W 
R I = I . O =  then W = 3 . 2 m  

2 x l . 6  

Area of working plane 

= 3.22 

= 10.24 m 2 
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Assume lamp output in the room is 7400 lumens and ignore depreciation allowances 

7400 x 0.643 
E 2 = = 465 lux 

10.24 

So, M 2 = 465 x 0.3 = 139.4 lumens per square metre 

7400 • 0.805 
Ej = = 292.7 lux 

10.24 

So, M 1 = 292.7 • 0.7 = 204.9 lumens per square metre 

7400 • 0.857 
E 3 = = 309.7 lux 

20.48 

So, M 3 = 309.7 • 0.5 = 154.8 lumens per square metre. 
The inter-illuminance factors 

l/fs(c) = Ds(scalar) and llfc(c ) = Ds(cylindrical) 

To calculate Ds(scalar ) or Ds(cylindrical) we use zonal multipliers for RI  = 1.0. 
The zonal multipliers for horizontal illuminance are given by: 

/tan~ /t e/ 
Z M  = 0.080 - 0.637 + 1 

RI RI 

(see Section 4.5.2). 
To convert from horizontal illuminance to scalar illuminance we divide each multiplier by 

4 cos 0. 
To convert from horizontal illuminance to cylindrical illuminance we divide each multiplier 

by x and multiply by tan 0 (see Chapter 3). 
Much of the work has already been done in Chapter 4 (Example 2 of Section 4.5.3) where 

zonal multipliers for a square room of RI  = 2.18 were calculated. 
In that example, values of 

/ Ctan0 
0.080 2.18 and 0.637 k, 2.18 ) 

were calculated. In this example the RI  = 1.0. 
Therefore, if we multiply one set of values by 2.182 and the other by 2.18 we will have the 

values required for our example, see Table 5.2. 
We now multiply each zonal multiplier by the appropriate factor to convert to Z M  s or ZMcy 1 

and then multiply by the zonal fractions. Summation produces the required values of Ds(scalar ) 

a n d  D s(cylindrical), see Table 5.3. 
The reflected component of 

E s = 0.234 • 204.9 + 0.5 • 139.4 + (1 - 0 . 2 3 4 )  • 154.8 
= 47.95 + 69.7 + 118.57 
= 236 lux 
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Table 5.2 Adaptation of the zonal multiplier calculation from Table 4.6 
to a new room index value of 1.0 for the example 

Z M  = 0.080 
(tan20)i (tan"/ 

R - 0.637 + 1 
RI 

Mid-zone 0.08 tan 2 0 
angle 0 

0.637 tan 0 Z M  

5 6.106 x 10 .4 0.0556 0.944 
15 5.731 x 10 -3 0.1713 0.835 
25 0.0177 0.2973 0.720 
35 0.0391 0.4447 0.593 
45 0.0798 0.6366 0.443 
55 0.1630 0.9091 0.253 
65 0.3673 1.3647 0.020 
75 1.1120 2.3740 0.000 
85 0 

T a b l e  5 . 3  Tabulated calculation of scalar and cylindrical distribution factors for the example 

ZM ZM tan  0 
0 Z M  s = ~ ZMcy I = ~ Z F R  Z M  s x Z F R  

�9 4 cos 0 ~r " 
ZMcy I x Z F R  

5 0.237 0.026 0.036 0.085 
15 0.216 0.071 0.115 0.025 
25 0.199 0.107 0.181 0.036 
35 0.181 0.132 0.215 0.039 
45 0.157 0.141 0.245 0.038 
55 0.110 0.115 0.093 0.010 
65 0.012 0.014 0.049 0.001 
75 0.000 0.000 0.037 0.000 
85 0.028 0 

Total 0.234 

= Ds(scalar ) 

0.001 
0.008 
0.019 
0.028 
0.035 
0.011 
0.001 
0.000 
0 
0.103 

- O s - , (cylindrical) 

The  ref lected c o m p o n e n t  of  

Ecyl = 0.103 x 204.9 + 0 . 5  • 139.4 + (1 - 0 . 1 0 3 )  x 154.8 

= 21.1 + 69.7 + 138.9 

= 230 lux 

These  are only  the interref lected componen t s  of  E s and E c. 

The direct  componen t s  f rom the luminaires  must  also be calculated.  The fo rmulae  for  point  

source ca lcula t ion  of  E s and Ecy I were given in Sect ion 3.9.3. 
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6 
Optical Design 

6.1 Introduction 

In this chapter the various methods by which light from a source can be controlled are described 
and discussed. The challenge is to produce a design that is the cheapest possible, has the best 
possible light distribution, involves the least possible loss of light, is of pleasing appearance, and 
does not involve complicated manufacturing processes. Some of these requirements are nearly 
always conflicting, some-  for example the best possible light distribution or good appearance- 
may be matters of opinion, but they do provide the questions the designer has to keep asking. 

6.2 Approaches to optical design 

Although, in this chapter, the theoretical aspects of optical design will be described, optical 
design as applied to luminaires is a subject with a large practical element. This is because, even 
with the comprehensive and powerful computer programs available today, it is still not possible 
to predict fully the optical performance of the manufactured luminaire. There are many reasons 
for this. One is manufacturing tolerances, which vary according to the process used. For 
instance, extrusion of plastics cannot be expected to give good accuracy for prism banks. 
Injection moulding is much better but even here there will be some rounding of prism edges and 
there may be some shrinking of the material after cooling so that surfaces are not exactly fiat. 
Small inaccuracies in specular surfaces will produce large discrepancies in light distribution. The 
reflection properties of semi-specular surfaces are difficult to control over the life of the manu- 
facturing tools, or from batch to batch. The light source itself may be subject to luminance vari- 
ation over its surface, as will be described in the next section. 

All these matters, and there are others, mean tha t -  as far as is possible-  a mock-up of the 
final design should be photometrically tested to ensure that the design meets the requirements. 
Judgement may have to be exercised at this stage to assess whether the performance has suffi- 
cient margin to allow for manufacturing tolerances and other imponderables. 

Optical design, then, is not just a matter of sitting down and calculating the layout and 
profile of light control elements, it includes the assessment of the design to meet the require- 
ments when it is manufactured. This is a significant responsibility for the designer because, if 
the design is not satisfactory, tools may have to be altered, which can be expensive, and time 
will be lost, which may be even more expensive, since it may delay the launch of a product. 
Making mock-ups that will truly represent the performance of the finished product is then an 
important aspect of the optical design process. Making these has been helped in recent years by 
the use of three-dimensional CAD drafting. 1 The data file available from this can be used to 
make a mould from which a reflector can be produced by hydro-forming or vacuum forming a 
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suitable plastics material, which is subsequently aluminized. Linear prisms can be cut directly 
by purpose-made cutters, but mock-ups of prismatic refractor bowls with asymmetrical double 
curvature are difficult to make. If possible, the design should be tested before the moulding tools 
are hardened. 

Even when the required light distribution is known it is rarely possible to work back to a 
unique solution. The designer has to rely on background knowledge and experience to decide on 
the general form of the light control system to be used, and then design the control elements. 
This may involve using parts of previous designs whose performance is known, which may be 
quicker and more certain than starting from scratch. He or she can then use the calculation meth- 
ods outlined in this chapter to predict the performance of the proposed design. Modifications 
may have to be made to optimize the design. In fact the process is often iterative. 

6 .3  The l ight  source  

The starting point of optical control is the light source. In this section, we will briefly review 
various types of light source from the point of view of their suitability for optical control. 

The fluorescent lamp- In its commonest manifestation this is a diffusing cylinder. The distribu- 
tion of luminance over its surface can be regarded as even except towards the ends where there 
is a fall off. Its size is usually substantial with respect to the optical control system so that it may 
obstruct and absorb some of the light redirected by reflectors. In multi-lamp luminaires the 
lamps may obstruct each other. This also applies to the limbs of compact fluorescent lamps 
(CFLs). One property that may have a large effect on the efficacy of the lamp is the variation of 
light output with temperature. It is a physical property of fluorescent lamps that their light output 
varies with temperature (Figure 6.1). Usually, the maximum light output occurs at 25~ This 
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Fig. 6.2 HID discharge lamps with cylindrical and elliptical envelopes: (a) cylindrical envelope; (b) ellip- 
tical envelope 

means that when the lamp is enclosed in a luminaire, its light output will drop. This becomes 
more pronounced in enclosed or multi-lamp luminaires. 

The high intensity discharge lamp (HID lamp) - Figure 6.2 shows the main elements of the HID 
lamp in so far as they affect optical behaviour. The arc tube, which contains the arc, may be clear, 
as in the high pressure mercury vapour lamp, or diffuse, as in the high pressure sodium lamp. The 
arc has a central core of very high luminance and, owing to convection currents, has an upwards 
curvature. In some discharge lamps different parts of the arc, from top to bottom, have different 
colours, which become apparent when the arc tube is focused to form an image on a surface. The 
support and conductor wire for the arc tube, even though it is thin, may throw a shadow on the 
optical control system producing some asymmetry in the light distribution. Most lamps have ellip- 
tical glass envelopes although some are tubular. In some elliptical types the glass envelope may 
be coated with a diffusing or fluorescent powder. In the clear glass types the envelope has little 
effect on the light distribution, except in one case. This occurs in reflector systems in directions 
where the edge of the envelope is in line with the image of the arc tube in the reflector. This causes 
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a dark line that reduces the luminous intensity. In the coated types the envelope is usually large 
with respect to the optical system, which may cause considerable obstruction to the reflected 
light. Also, the arc tube will usually be visible through the coating, which means that the lamp 
cannot be regarded as a source of even luminance. Sometimes there is a variation in the thick- 
ness of the coating on a lamp and between lamps, nominally of the same type, giving cause for 
variation in performance. 

The tungsten filament tamp-  In this category we include the tungsten halogen lamp. In the or- 
dinary GLS lamp the filament is usually too loosely coiled for precise optical control to be 
achieved. With low voltage lamps the filament is thicker and more closely coiled so allowing 
good optical control to be achieved, as in car headlights. Tungsten halogen lamps generally have 
compact filaments making them good for optical control. The filament may be a linear coil that 
has to be used horizontally. This is ideal for floodlights, where control is generally required in 
vertical planes. The configuration of the filament can often be suited to the application. 

A full description of the various lamp types is given in the book Lamps and Lighting listed in 
the Bibliography at the end of this chapter. 

6.4 General principles 

The approach to an optical design problem will depend on the form in which it is stated. Usually 
a certain illuminance has to be achieved on a specified surface. From this it is possible to work 
back and find the required luminous intensity distribution. However, the answer might not be 
unique, particularly when a number of luminaires provide the illuminance at any given point. 
Moreover, the demand may be for a light control system that gives the optimum performance in 
a range of situations, such as rooms of differing reflectances and sizes. In main road lighting, the 
requirements are in terms of road luminance, which makes working back to an optical design 
very difficult indeed. 

There may be additional requirements to be met. These may be for the control of discomfort 
or disability glare, or they may be related to appearance. 

Once the photometric requirements have been decided it is possible to start on the design of 
the optical system. There are a number of approaches available that enable the feasibility of a 
project to be assessed and which give an insight into the kind of optical control that will be 
needed. These will now be described. 

6.4.1 LUMINOUS FLUX AVAILABILITY 

In this technique, the luminous flux required is estimated and a source of suitable output chosen. 
It can also be used to find which zones have an excess of flux and which zones are deficient in 
luminous flux with a view to deciding how the luminous flux is to be redistributed. It is useful 
in the design of reflector contours and an example will be worked out when we deal with them. 

6.4.2 LUMINANCE OF LIGHT SOURCE AND LUMINAIRE 

There are two ways in which the consideration of luminance can be invoked in optical design, 
namely 

(a) The luminous intensity in any direction of a light control system is equal to the projected 
area of its flashed or bright parts multiplied by their luminances. If the light control system 
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is divided into m parts, each substantially of even luminance, the resultant luminous inten- 
sity can be expressed mathematically as: 

m 

I = ~ AkL k (6.1) 
k = l  

where 
A k is the area of a part (numbered k) of the optical system of substantially uniform lumi- 

nance, 
L k is the luminance of that part, 
]~ signifies the sum of the products. 

(b) If a reflector is specular, the luminance of any part of the reflector is equal to the luminance 
of the source of light reflected in that part multiplied by the reflectance of the reflector. 
Similarly, the luminance of any part of a flashed lens or any refractor system is the lumin- 
ance of the source facing that part multiplied by the transmittance of the materials of the 

i 

optical system. 

These two facts often enable the feasibility of a problem to be assessed quickly. For example, 
consider the kind of problem where the opening through which the light can emerge is limited 
in size. This occurs in airfield lighting. The projection of the runway lights above the surface of 
the runway is limited so that they do not cause damage to the tyres of landing aircraft. Suppose 
the maximum window size allowed is 625 mm 2 and we have to produce a peak luminous inten- 
sity of 15 000 candelas with a source of luminance 13 cd/mm 2. If the transmittance of the refrac- 
tor system is 0.70 and we assume that it can be completely flashed, then the luminous intensity 
obtainable will be 625 x 13 x 0.70 = 5688 candelas, which is well below the required peak. 
Another example occurs with fibre optics. The luminance of the light emitting ends of the fibres 
cannot exceed the luminance of the source, which provides a very quick way of calculating the 
maximum luminous flux that can be transmitted by the fibres or bundle of fibres. 

The uninitiated often put forward arguments for trying batteries of lenses and reflectors to 
concentrate the light and so increase the luminance. As stated above this is erroneous. Such argu- 
ments are commonly founded on considering a point source of light, which does not exist in 
nature and would have infinite luminance. However, what supplementary reflectors behind a lens 
system, for instance, can do is increase the spread of light and help to increase the flashed area 
if there are unflashed areas. 

6.4.3 MAGNIFICATION OF SOURCE 

In this method, the magnification of the area of the source in a direction is calculated. The lumin- 
ous intensity in that direction will then be the luminous intensity of the source in the direction 
of the optical system multiplied by the magnification and the losses in the system. This method 
is only applicable when the source is small compared with the size of the control system so the 
image or images are complete. 

6.4.4 RAY TRACING 

Ray tracing is used for locating the images in lens and prism systems. Until recently it has not 
commonly been used for predicting the luminous intensity distribution of optical systems, 
because it is tedious to apply. However, computers make this a feasible process. 
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6.5 Reflector systems 

In this section we will describe how use can be made of specular or highly polished metallic 
surfaces in the control of light. Such surfaces are used when precise or fairly precise control of 
light is required as in floodlights, spotlights and road lighting luminaires. 

Light reflected from a specular surface obeys the following laws (Figure 6.3). 

(1) The incident ray of light, the normal to the reflecting surface at the point of incidence, and 
the reflected ray are all in the same plane. 

(2) The angle of reflection (r) is equal to the angle of incidence (i). 

The position of an image can be determined by using these laws. In Figure 6.4, P is an object, 
the image of which is P'. Two rays are shown reflected at the points L and M. 

Since i = r, Z P L T  = Z P ' L T  = 90 ~ - r. Similarly, Z P M T  = ZP'MT.  Therefore, the triangles 
PLM and P'LM are congruent, and PT is equal to P'T. Hence the rays of light appear to emanate 
from an image that is on the normal produced (that is, at P') and is as far behind the mirror as 
the object is in front of it. This is referred to as a virtual image as it only appears to exist and 
cannot be formed on a screen. 

It can also be shown that if a plane mirror is rotated through an angle, the reflected rays will 
be rotated twice that angle. This has the effect of magnifying inaccuracies in mirrors whether 
they be plane or contoured, since contoured mirrors can be regarded as being made up of infin- 
itesimal plane mirrors. 

Figure 6.5 shows what happens when a mirror is rotated through an angle 0. The angle of in- 
cidence i is increased to i + 0, so the angle of reflection is likewise increased to r § 0. Whereas 
before the mirror was rotated, the angle between the incident and reflected rays was i + r, after 
rotation it is i + r + 20. So the reflected ray is tumed through an extra 20. 

Fig. 6.3 Reflection at a surface 
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Fig. 6.5 Rotation of a mirror 
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Fig. 6.6 Luminance of image 

6.5.1 LUMINANCE OF IMAGE 

The luminance of the image has to be known in order to calculate the luminous intensity to be 
expected from the flashed area of a mirror. As previously stated, this is equal to the luminance 
of the source multiplied by the reflectance. It is not obvious that this law is true, particularly for 
a curved surface, so we now give a proof of it. 

In Figure 6.6, PQ is a curved specular mirror. S is the source. O is the eye of the observer, 
who is looking at the light rays reflected from M. NMN' is the normal at M. The axes of the cones 
of light which are incident and reflected at M make an angle 0 with MN'. 

Consider a small element 6S located at R. Let it have a projected area 6S and a luminance L 
in the direction RM. 

Then the luminous intensity of ,5S is/_,6S. 
Therefore, the illuminance on M is L6S/d 2 cos 0, where d = RM. 
The luminous flux falling on an area d;A at M is l_~S/d 2 cos O~A. 
The reflectance p is defined as the reflected luminous flux divided by the incident luminous 

flux. Hence, the luminous flux leaving element 6,4 is I_~S/d 2 cos OptSA. 
Now, the solid angle of the incident cone of light is equal to 6S/d 2, and this is equal to the 

solid angle of the reflected cone, since all angles of incidence and reflection are equal. 
Therefore 

luminous intensity of 6A = L cos Op6A (6.2) 

since luminous intensity equals luminous flux divided by solid angle. 
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The apparent or projected area of element 6A in the direction of the eye is cos O6A, and since 
luminance equals luminous intensity divided by projected area 

luminance of t~A = pL (6.3) 

Thus, the proof hinges on the fact that the solid angle contained by the reflected cone of light 
equals the solid angle contained by the incident cone. This proof can be repeated for every part 
of a large source and every part on a mirror from which the source is visible. 

Using this relation we can now derive an expression for the luminous intensity of the image 
in terms of its magnification. 

Let the projected area of the object in the direction of view be A 1 and that of the image be 
A 2, also let the corresponding luminous intensities be I 1 and 12, and the luminances be L 1 and 

L 2 �9 
From (6.3), the luminance L 2 of the image is pL 2, and since 

I 1 I 2 
L l = ~  and L 2 = ~  (6.4) 

A 1 A 2 

it follows that 

/2 A2 
= p ~  (6.5) 

I l A ! 

If the whole of the image is visible, A2/A i is the area magnification of the optical system, so we 
can say in this special case that the luminous intensity is proportional to the magnification of the 
optical system. 

6.5.2 LUMINOUS INTENSITY DISTRIBUTION FROM A PLANE MIRROR 

Figure 6.7 shows schematically how the luminous intensity distribution from a plane mirror can 
be derived. For simplicity, the source is assumed to be a fiat uniform diffuser. Its image is posi- 
tioned as shown and the mirror is large enough for the whole of the image to be seen in the direc- 
tion of the normal to the mirror. 

In Figure 6.7(a) the luminous intensity is that of the source multiplied by the reflectance of 
the mirror. In Figure 6.7(b) the edge of the image coincides with edge of the mirror and to this 
point the luminous intensity decreases as cos 0. Past this point the decrease is much more rapid 
because only part of the source is visible, as in Figure 6.7(c). In Figure 6.7(d) the luminous inten- 
sity is zero. The actual rate of run-back of the luminous intensity can be calculated from the size 
of the mirror and the position of the image. The mirror acts as a pupil through which the image 
can be seen. This is the exit pupil which is a useful concept for calculating the luminous inten- 
sity distribution for more complicated problems. 

6.5.3 INCLINED PLANE MIRRORS 

When two or more mirrors are inclined towards each other, multiple images are formed and, in 
certain designs, such as faceted reflectors, it is useful to be able to predict how the light is 
reflected between them. 
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Fig. 6.7 Light distribution from a plane mirror 

In Figure 6.8, AO and BO are two inclined mirrors. An object is situated at S and the observer 
is at T. The problem is to locate the images of S when these are viewed in a plane at fight angles 
to the line of intersection of the mirrors. The first image in the figure is produced by AO at I 1 
located so that SU equals UI l and such that SI l is perpendicular to AO. To locate the second 
image, BO is extended back as shown. The second image is then located at 12 such that IIX is 
equal to XI 2 and that 1112 is perpendicular to BX. No image of 12 by AO extended is formed 
because this image would lie behind both mirrors. An image of S is formed in BO at 13, and in 
AO extended at 14. For clarity the construction lines are not shown. All these images are formed 
on a circle centre O passing through S. This is because the construction for the formation of the 
images makes OS equal to Ol 1, Ol 1 equal to 012, and so on. SVT and SWZT are the traces of the 
rays reaching the observer's eye from the first two images. 

The number of images formed depends on the angle between the mirrors, the smaller this is 
the greater the number of images. 

6.5.4 CIRCULAR SECTION MIRRORS 

Mirrors of circular section may be developed as parts of cylinders or parts of spheres. Part cylin- 
ders or troughs are typically used for linear sources, with the axis of the lamp lying in the axis 
of the part cylinder, whereas part spheres are typically used for light sources which approximate 
to a point. 

Figure 6.9 shows two possibilities for using a circular or concave mirror. In both of these O 
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"~ Observer 

Fig. 6.8 Formation of images by inclined mirrors 

is the centre of curvature of the mirror. In Figure 6.9(a) the light source is placed at O. Rays are 
reflected back through O. To minimize obstruction to the emerging rays, the lamp filament or arc 
tube would, in practice, have to be placed to one side of O. This also reduces the heating effect 
of the light energy on the lamp, which may have a deleterious effect. 

More useful is the arrangement in Figure 6.9(b). Here the light source is placed at F, the 
focus, one half the distance between O and the back of the reflector. Rays from F which do not 
deviate by more than about 10 ~ from the axis are reflected in a direction substantially parallel to 
the axis. 

The parabola (Section 6.5.5) and ellipse (Section 6.5.10, page 219) to be described next 
provide a more efficient means of directing the light forwards, in that they control more of the 
luminous flux from the lamp. 

6.5.5 PARABOLIC SECTION MIRRORS 

The parabola is useful for producing a near parallel beam of light from a source, from a wide 
collection angle. 

The equation of the parabola is y2 = 4ax. Its shape can be generated by plotting this equation 
or by cutting a right circular cone in a plane parallel to its surface, which is sometimes used for 
cutting accurate templates. 
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Axis 
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Fig. 6.9 Light reflected from a concave mirror 

= } Substantially 
7 parallel rays 

(a) Lamp at centre of 
curvature 

(b) Lamp at focus 

Figure 6.10 shows the form of the parabola. O is the origin, and F is the focal point, at which 
the light source is situated to produce near parallel light. The vertical line at a horizontal distance 
2a from F is called the directrix. The distance (x + a) from F to any point P on the reflector 
equals the horizontal distance from P to the directrix. 

The parabola as a reflector can take a number of forms. It can be rotated about its axis to 
give a surface of revolution, the paraboloid, or it can be rotated about an inclined axis through 
the focus, to give a homed quartic, dealt with in Section 6.5.12, or it can be produced as a 
trough. 

6.5.6 LIGHT DISTRIBUTION FROM A PARABOLIC TROUGH REFLECTOR 

Figure 6.11 shows how the light distribution in the principal plane (perpendicular to the reflec- 
tor axis) from a parabolic trough reflector can be developed. Figure 6.12 is the light distribution 
shown schematically. It is assumed that the light source is a cylinder with an even luminance 
over its surface. 

Figure 6.11 (a) shows the extent of the flashing of the reflector at 0 ~ which is complete. As 0, 
the angle between the centre-line and the direction being considered, is increased, the flashing 
will remain complete until the situation illustrated in Figure 6.11 (b) is reached. Here the direction 
of view is parallel to the rays of light originating from tangents to the lamp and reflected by the 
edges of the reflector. This determines 0 l, and between this angle and 0 ~ the luminous intensity 
will decrease very nearly as cosine 0. The decrease is not exactly proportional to the cosine of the 
angle because the contribution directly from the lamp stays constant, while the contribution from 
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Fig. 6.10 Reflection from a parabola 
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Fig. 6.11 Reflection of light in a parabolic reflector 
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Fig. 6.12 Light distribution in the principal plane from a trough parabolic reflector 
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the reflector does decrease as the cosine of the angle of view, as it is proportional to the projected 
area. Past 01 , the luminous intensity will decrease more rapidly since the reflector will show 
progressively less flashing (Figure 6.11 (c)) until, at Figure 6.11 (d), only the lamp appears bright. 
The luminous intensity will then stay constant and be equal to that of the lamp until the lamp 
starts to be occluded by the edge of the reflector (Figure 6.11 (e)) when the luminous intensity 
will rapidly diminish until it is completely occluded, as in Figure 6.11 (f). 

The results obtained in this discussion are based on the assumption that the measurements are 
taken from a sufficiently great distance that the cones of light from the reflector cross over each 
other. Figure 6.13 will make this clear. 

The cross-over point occurs at A, where the tangential ray, GH, from the lamp is reflected 
from the edge of the reflector and crosses over the axis of the parabola, at A. It would meet a 
similar ray from the other side of the reflector at this point, if the reflector is symmetrical about 
the centre-line. We can now find the distance of A from the mouth of the reflector in terms of W, 
the mouth width of the reflector, r the radius of the lamp, and a the focal length of the parabola. 

The origin of the coordinate system is O. 
First we make use of the property of the parabola that F H  is equal to HS, the distance from 

the directrix, that is x + a. 
Now the triangles H G F  and H A K  are similar since they are fight-angled and 

Z F H G  = Z THA 

= Z H A K  

( = O) 
(6.6) 
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Fig. 6.13 Crossover point for a parabola 

hence 

FG H K  

GH A K  
(6.7) 

S O ,  

A K =  H K x ~  
GH 

FG 
(6.8) 

in which 

A K = d  

H K =  y 

F G = r  
GH = ~v/ (x + a) 2 -  r 2 

(6.9) 

S O  

d = - -  y M' (x - a) 2 - r2 (6.10) 
F 

Now we need to express x in terms of  a and W, for which we use the equation of the parabola 

y2 

X ~ - ~ ~  

4a 

(W/2) 2 (6.11) 

4a 

This can be substituted in (6.10) to give 

d = ~ r  + a  - r  2 (6.12) 
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Fig. 6.14 Light distribution curves of 200 W tungsten halogen lamp in parabolic glass trough reflector of 
focal length 29 mm 

6.5.7 PRACTICAL PERFORMANCE 

The practical performance to be expected from a parabolic reflector depends on the accuracy of 
the reflector, the specularity and reflectance of its finish, and the configuration and position of 
the light source. In addition, the front glass, if present, may modify the beam. In a parabolic 
trough reflector the side reflectors, if angled correctly, may make an important contribution to 
the peak luminous intensity. 

Very often, a specular finish is used but the reflector is dimpled or faceted to soften the beam. 
This is preferable to using a matt finish as it is difficult to control the quality of the finish from 
batch to batch. Defocusing the lamp in an attempt to widen the beam will not produce the desired 
effect as a trouser leg distribution results, as is shown in Figure 6.14. 

Often, the uncontrolled direct light from the lamp is undesirable because it causes glare and 
light pollution, especially in floodlighting where parabolic trough reflectors are used. This can be 
overcome to a large extent by positioning a baffle to mask the lamp in the directions in which light 
emission is not wanted. The baffle itself will mask part of the main reflector so reducing the lumin- 
ous intensity in some directions. However, it is usually specular so it can reflect light back onto 
the reflector. If the reflector is fully flashed in the important directions this will not increase the 
luminous intensity (because the luminance of the reflector cannot be increased) but it will increase 
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the beam width. In particular it can be used to increase the luminous intensity at or near the nadir 
where, in many cases, the luminous intensity is insufficient for floodlighting purposes. 

6.5.8 TESTING PARABOLIC REFLECTORS 

It is often difficult to establish the reasons for the performance of a parabolic reflector not 
coming up to expectations. 

Provided that the source is positioned accurately in the focus, the finish of the reflector is as 
specified, the side reflectors, if present, are accurately angled, and the front glass, if any, is as 
required, any lack of performance may be due to inaccuracies in the contour. The parts in error 
can be seen by viewing the lighted mirror on axis from a distance and noting where it is not 
flashed. It is quite useful to photograph the flashing of the mirror at various angles. However, if 
the photograph is taken, as it should be, from a great distance, the image may be too small to be 
of any use unless a powerful telephoto lens is used. 

Using a template to fit into the contour is of little value since small local high spots may hold 
it off the main contour. A plaster or fibre-glass cast can be made and sections taken. Care has to 
be taken with this method that shrinking does not take place as the material solidifies. A number 
of thin layers as opposed to one thick layer may obviate this problem. 

Determination of the inaccuracy of manufacture in terms of light measurements has to be 
done on a photometric bench. The set-up for the test on a bench is shown in Figure 6.15. O is a 
small source on the axis of the mirror MM, the rays from which are brought to a focus found on 
a movable screen S. Interposed between O and MM is a mask that allows only a ring of light to 
reach MM in the case of a paraboloid, and two lines of light in the case of a trough reflector. The 
mask can be made by blacking out appropriate areas on a transparent medium such as glass. By 
using a series of masks the mirror is divided up into concentric rings or parallel lines, which are 

Fig. 6.15 Testing a parabolic mirror 
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tested one at a time. If the mirror is truly parabolic then all the rings will have their foci in the 
same position. Allowance is made for the fact that O is not infinitely far away by using a correc- 
tion derived in the following manner. 

In Figure 6.15 the ray of light OP is reflected off a point on the mirror having coordinates 
(x, y). PR represents a ray of light, parallel to the axis, passing through F, the focal point. 

Now 

Z F P S  = Z Q P R  
= Z P O S  (6.13) 

Triangles FPS and P O F  are similar since , / F P S  = L P O S ,  and L F P S  is common. 
Therefore, 

PE 

FO 

so, FS = 

FS 

PF  

p F  2 

FO 

(6.14) 

By reference to Figure 6.10, page 213, we find that PF = x + a so that 

(x + a) 2 
z = 

d - a  
(6.15) 

where z is the correction FS, and d is the distance of the source from the mirror on its axis. 

6.5.9 A P P L I C A T I O N  IN L O U V R E S  

Figure 6.16(a) shows how specular louvres with a parabolic cross-section can be used to obtain 
a specified shielding angle. A is the focal point of the parabolic surface of the adjacent wedge so 

Fig. 6.16 Parabolic louvres 



(a) 

Fig. 6.17 The ellipse 
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b 

b 

(b) 

there is no interreflection of the light between the wedges. This undoubtedly improves the light 
output ratio but the gain is more than offset by the obstruction caused by the top of the wedge- 
shaped cross-section. To overcome this the curve can be stepped as in Figure 6.16(b). 

6.5.10 THE ELLIPSE 

The ellipse (Figure 6.17(a)) has two foci, F l and F 2, such that if a point source of light is placed 
at one focus all the light rays pass through the other focus. The parabola may be regarded as a 
special case of the ellipse in which one focus is at infinity. As with the parabola, the mirror may 
take the form of a surface of revolution, the ellipsoid, or of a trough. 

The equation of the ellipse is (Figure 6.17(b)) 

x 2 y2 
m + m = l  
a 2 b 2 

(6.16) 

where a and b are the half lengths of the major (PR) and minor (QS) axes. The distances on the 
abscissa of the foci from the centre of the mirror, O, are _+ ~/a 2 - b 2. 

The ellipse has the property that the sum of FIP and F2P is a constant as P is moved around 
the contour. Whilst this can be used for drawing an ellipse, in practice it does not give a very 
accurate result. The most accurate way of obtaining an ellipse is by cutting a cylinder or a cone 
at a suitable angle. 

This curve is useful where light has to be directed on to a narrow slit, or in a floodlight where 
a specific beam divergence is required. 

Holmes has shown how a reflector that combines ellipsoidal and parabolic curvatures may be 
used to produce a fan-shaped beam. 2 

6.5.11 THEHYPERBOLA 

Like the ellipse the hyperbola (Figure 6.18(a)) has a second focus but this is behind the mirror 
and the rays diverge from this point. It is sometimes used in place of the ellipse to obtain a 
specific divergence. The disadvantage of the hyperbola is that some of the rays may strike the 
enclosing housing with a resultant loss in light. 



220 Optical design 

Rays striking t , , , .  

j !;;"" 
n=: "<'-?;. 

F2 O 
A 
w 

A 
w 

(a) (b) 

Fig. 6.18 The hyperbola 
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Like the other curves so far described it can take the form of a surface of revolution about the 
major axis, the hyperboloid, or of a trough. 

The equation of the hyperbola (Figure 6.18(b)) is 

x 2 y2  

a 2 b 2 
. . . .  1 ( 6 . 1 7 )  

where a is the distance of the foci from the origin O, and b is a constant. The distance of F 1 from 
the back of the mirror is ~/a 2 + b 2. 

The contour of a hyperbola can be produced by cutting a cone in a plane parallel to its axis. 

6.5.12 HORNED AND PEAKED QUARTICS 

To obtain a beam of greater divergence than that given by a parabola, Spencer 3 developed a 
family of curves known as homed and peaked quartics. These are obtained by rotating a parabola 
about a secondary inclined axis passing through the focus. 

In Figure 6.19(a) O is the apex of the parabola MOM', OX its axis, and F its focus. The 
inclined axis about which it is rotated is O'X'. The surfaces so generated are shown in Figure 
6.19(b). The outer limbs of the parabola form the homed quartic (Figure 6.19(c)), the inner limbs 
the peaked quartic. Spencer showed that the equation of these surfaces involves the fourth power 
of the distance along the rotation axis. For this reason and because of the shape of the resultant 
curves they are called homed and peaked quartics. 

The optical properties of these surfaces are shown in Figure 6.20. The homed quartic, Figure 
6.20(a), reflects the rays of light away from the optical axis of the reflector and is, in this respect, 
similar to the hyperbola. The peaked quartic reflects the light so that it crosses over the axis as 
in Figure 6.20(b). The spread of the rays of light from the direction of the centre of the lamp is 
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Fig. 6.19 Generation of homed and peaked quartics 
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(d) Peaked quartic 
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Fig. 6.20 Reflection of light from homed and peacked quartics: (a) homed quartic; (b) peaked quartic 

---0 but there is additional spread of the light depending on the size of the light source in relation 
to its distance from the reflector. O should not be made too great otherwise a dip will be produced 
in the beam. 

Owing to the reflector forming images of the coils of the filament when a tungsten halogen 
lamp is used, the beam will show striations, a fault not confined to homed and peaked quartics. 
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Spencer suggested eliminating these by 'modulating the contour'. This amounts to rotating small 
elements of the contour about vertical axes. The angle must be sufficient to fill in the dips 
between the striations. This procedure is preferable to matting the reflector for the reasons 
already stated (Section 6.2, page 201). 

Surfaces generated by rotating a parabola about a secondary axis parallel to the true axis have 
been used in motor-car headlights. 4 

6.5.13 SHARP CUT-OFF REFLECTORS 

In some applications, particularly road lighting, it is essential to have a sharp cut-off of the lu- 
minous intensity above a certain angle to control glare. If the source can be regarded as point or 
linear in comparison to the focal length, a parabola can be used with the source itself shielded to 
stop direct light. A good quality reflector is required otherwise it is necessary to use louvres, 
which have the drawback of reducing the light output ratio. With tubular lamps, such as the fluor- 
escent type, it is possible to achieve a cut-off by putting a suitable point on the circumference of 
the lamp at the focus. However, only a part of the parabola can be used without rays being 
reflected above the cut-off. 

To cope with the problem of achieving a sharp cut-off from a tubular source, Stevens devel- 
oped a family of curves having the property, shown in Figure 6.21 (a), that the upper bounding 
rays of the reflected beams are parallel. 5 

They are defined by the parametric equations ((Figure 6.21(b)): 

y = - ~ -  x - - -  - r  p + - -  (6.18) 
P P 

X 

r 

dY/dx-O/ ~r l 

d 

X' 

(a) (b) 

y, 

Fig. 6.21 Sharp cut-off reflector 
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x = p ( c -  2 r O ) -  r (6.19) 

where r is the radius of the tube; p = tan ~ = dy/dx; c = -2y  when x = - r .  
As c is a constant for any curve, a family of curves passing further and further from the tube 

can be obtained by increasing its value. 
It is interesting to note that when r = 0 the curves become parabolas of  focal length c/2. 

To make a curve go through a specific point (x, y), the values are substituted in the equation 

y + ~/x 2 + y2  _ a 2 

p = (6.20) 
x - a  

r can then be found from r = tan-1 P, and both p and r substituted in (6.19) to give c. Equations 
(6.18) and (6.19) can then be used to find values of (x, y). 

Whilst the light from the reflector gives the desired sharp cut-off, direct light from the lamp 
will be uncontrolled. A baffle can be used to block this. 

6.5.14 I N V O L U T E  OF C I R C L E  

The involute of  the circle (Figure 6.22) has the useful property that no light is reflected back on 
to the source, when this is circular. This property ensures a high light output ratio for minimum 
width of reflector. 

An involute is produced by the trace of the end of a length of thread as it is unwound from a 
cylinder. A graphical construction is shown in Figure 6.23. 

The circumference of the circle is divided into a number of equal parts, marked P~, P2, P3, 
etc. Tangents are drawn at these points and distances equal to the circumferential distances of 

PoPI , PoP2 , PoP3 , PoP4 , PoP5 , etc. (6.21) 

are marked off them to give the points R l, R 2, R 3, etc. These are then joined to give the involute. 
A more accurate method is to use the parametric equations 

I I 

I I 

Fig. 6.22 The involute of the circle showing how reflected rays miss the source 
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Fig. 6.23 Construction of involute of circle 
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x = r(cos 0 + 0 sin 0) 
y = r(sin 0 + 0 cos 0) 

where the equation of  the circle is x 2 + y2 = r 2. 

(6.22) 

6.5.15 FA CETED REFLECTORS 

Faceted reflectors, made up of plane elements, have the advantage over curved reflectors that 
they give a light distribution that is largely free of striations. 6 This is because the images formed 
by plane elements are virtual. However, if the elements are small in relation to the size of the 
source, the reflector as a whole may be considered as approximating to a curve and images of 
the source may be formed. 

Faceted reflectors are not easy to form accurately in manufacturing processes when they are 
large, as is the case for floodlights. Extrusion can be used but care has to be taken that any polish- 
ing processes applied do not reduce the definition of  the facets. 

The construction for one type of reflector for obtaining a flat topped beam from a linear 
source, such as a tungsten halogen lamp is shown in Figure 6.24. The method of developing the 
shape can be followed by means of an example. Suppose we require a beam spread of 20 ~ 

O is the source and the centre line OX is drawn. The reflector will be symmetrical about this 
line so for clarity, only the upper limb of the reflector is shown in the figure. Radial lines emanat- 
ing from O are drawn. The first one is at 10 ~ (�89 • 20 ~ to OX and the remaining ones are at 20 ~ 
to each other. It should be noted that angles below the horizontal are marked negative. 

At A, a line is drawn at a convenient distance from O, perpendicular to OX, to meet the first 
radial line in B. This gives the position of the half-facet AB. AI 1 is made equal to OA and marks 
the position of the image of O in AB. I1Q is drawn perpendicular to OX. liB is the position of the 
most widely diverging ray from facet AB. 12B is then drawn a t - 1 0  ~ to the normal to IIQ to locate 
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Fig. 6.24 Construction of faceted reflector 

the second image 12. (OBI 2 is a straight line, but this property does not hold for the subsequent 
facets.) I2C' is drawn at 10 ~ to the normal to llQ to meet the second radial line in C to give the 
position of the second facet BA. This procedure is then continued to give the positions of the 
other facets, CD and DE. 

In this treatment of faceted reflectors we have considered the source as a line. Providing the 
reflector is accurately made and the material has no diffuse element this should give a fiat-topped 
beam distribution. In practice, the source will be of finite size and there will be some rounding 
of the light distribution as indicated in Figure 6.25. This effect can be calculated by regarding 
each facet as a plane mirror and using the method given in Section 6.5.2. 

It is worth noting some of the geometrical properties of this type of faceted reflector. Each 
facet is tilted at �89 x 20 ~ = 10 ~ with respect to the adjacent facets. This is because, at the junction 
of two facets, the upper facet has to tum the light ray from O through 20 ~ more than the lower 
facet, which is accomplished by turning the facet through half this angle as indicated in Figure 
6.5, page 207. 

With this information, we can show that triangles such as 13G2C and OCG 2 are congruent. 
This is because the angle G2CI 3 equals the angle OCG 2 (100~ the angle I3G2C equals the angle 
CG20 (60~ and the side G2C is common. Hence OG 2 equals G2I 3. Similarly it can be shown 
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Fig. 6.25 Tranverse distribution curves from parabolic and faceted reflectors using a 1500 W tungsten 
halogen lamp 

that 

OG 1 = GII  2 
OG 3 = G114 (6.23) 

as well as which 

OA = A I  1 (6.24) 

Figure 6.10, page 213, indicates that we can regard O as the focus of a parabola, having 11Q as its 
directrix, with the points A, G l, G 2, G 3 and G 4 lying on its surface. The facets are tangential to the 
parabola at these points so that light rays from O reflected at these points are parallel to the axis. 

6.5.16 N O N - M A T H E M A T I C A L L Y  D E F I N E D  C O N T O U R S  

When the required light distribution cannot be obtained by one of the contours already described, 
the following method in which the contour is tailored to the requirements can be used. It only 
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applies to sources of light that may be regarded as being small in relation to the size of the 
contour. When the sources are large, good accuracy cannot be expected. 

The reflector will be a surface of revolution, that is, it will be symmetrical about the main 
axis, which is a further requirement for the method's use. Similarly, for linear sources the reflec- 
tor will be trough shaped. 

In outline, the method consists of determining the luminous flux available in convenient (for 
calculation) angular zones from the lamp. Similarly, the zonal luminous flux required in each 
angular zone is calculated from the required luminous intensity distribution. The luminous flux 
in each zone from the lamp is then directed into the zones where there is a deficit between the 
lamp luminous flux and the required luminous flux. The procedure can be split into four parts. 

(1) Selection of reflector system 
Jolley et al. 7 have described four possible reflector systems from which the most suitable can be 
selected (Figure 6.26). In (a) and (d) the reflected light rays diverge whereas in (b) and (c) they 
crossover. In (b) and (d), light rays reflected from the top zones of the reflector are reflected near- 
est the vertical, and vice versa for (a) and (d). (b) and (c) give the most compact reflectors. (a) 
and (d) have the disadvantage, besides their large size, that the light rays from the top of the 
reflector pass through the lamp envelope and may be obstructed by the internal structure of the 
lamp or by the lamp envelope itself if it is coated. This may also be true of (b) and (c) if the lamp 
envelope is large in relation to the reflector. (b) and (c) are the most used types: (b) where a fairly 
concentrated distribution is required and (c) where a flat surface, such as a chalk board, has to 
be illuminated as evenly as possible from one side by a linear source. For an example of how the 
reflector is generated we will select reflector (b). 

I 

(a) (b) 

I 

I 

(c) (d) 

Fig. 6.26 Reflector configurations 
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Table 6.1 Redistribution of luminous flux from lamp 

A B C D E F G H I J K 

O " "  

0 .~ ~ 0 

. , .  . , -  ~ , . ~  

~ ~ ~ ~ 0 0 

0-10 5 720 69 69 
10-20 15 720 204 204 
20-30 25 746 345 345 
30-40 35 720 452 452 
40-50 45 656 508 508 
50-60 55 566 508 325 
60-70 65 488 484 310 
70-80 75 411 435 278 
80-90 85 411 448 287 
90-100 95 360 393 251 

100-110 105 373 395 253 
110-120 115 386 383 245 
120-130 125 386 346 222 
130-140 135 386 299 191 
140-150 145 373 234 150 
150-160 155 360 167 107 
160-170 165 347 98 63 
170-180 175 334 32 

Totals 5800 4260 

34 3.25 245 177 177 
33 9.35 708 503 680 
32 14.81 1120 775 1455 
30 18.85 1425 973 2428 
13 10.07 762 253 2682 

56.33 4260 2681 

2682 
2357 
2047 
1769 
1482 
1230 
978 
733 
511 
320 
170 
63 

0 

(2) Redistribution of the reflected luminous flux 
The work can be conveniently laid out in a spreadsheet (see Table 6.1), which is best described 
column by column. 

Column 

A 
B 
C 
D 

Description 

In this example 10 ~ zones are chosen. 
This is self-explanatory. 

The bare lamp luminous intensity has to be found by measurement. 

The zonal luminous flux is most 6onveniently calculated from the luminous intensity 
by means of the formula (see Section 1.7.1, page 26) 

~2rl-r2=4Mrsin( 72-7' Isin(72+71 2 (6.25) 

where 

?'1 is the lower bound of the zone; 

72 is the upper bound of the zone; 

~ is luminous intensity at the mid-zone angle 7; 

r l -r2 is the zonal luminous flux between 71 and 72- 
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G 

H 

I 
J 
K 

In this example it is assumed that the material of the reflector has a reflectance of 0.8. 
Also, it is assumed that there is a further fractional loss of 0.2 owing to obstruction 
by the lamp. This means that the reflected luminous flux has to be multiplied by 0.8 
x (1 - 0.2) or 0.64. In addition, it is assumed that all the luminous flux in the 170 ~ to 
180 ~ zone is lost because of the provision made for fixing the lamp. 
The required luminous intensity may be arrived at from the illuminance requirements. 
In this example, the values are unscaled. 
The luminous flux in unscaled units is obtained by the same formula as is used in 
column D on the figures in column E 
The luminous flux from the lamp is scaled by multiplying by the total in column E 
divided by the total in column G, or 4260/56.33 = 75.63. Note there is a 2 lumen 
rounding error in the total. 
From column H the direct flux in column E, up to 50 ~ is subtracted. 
Cumulative totals are formed. 
Cumulative totals starting from the bottom of the column are formed from column E. 
The totals are made from the bottom of the column because luminous flux from the 
highest angles has to be directed into the lowest angles for the reflector in Figure 
6.26(b). It will be noticed that the cumulative total in this column equals the totals in 
column J and column I disregarding rounding errors. 

(3) Determination of the inclination of the contour elements 
The inclination of the reflector elements to the vertical can now be found by making use of the 
geometry in Figure 6.27. A is the centre of the light source and XX'. an element of the reflector 

X ~ 

X f 

Fig. 6.27 Determination of the inclination of a reflector element 
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surface. NP is the normal to the mirror at P, and AP and PB are the incident and reflected rays. 
AB and PD are verticals. The angles are as marked. 

Since LNPX" = 90 ~ 

fl + 6 + 0 = 90~ (6.26) 

In the triangle APB, 

SO, 
), + 5 + 2fl = 180 ~ 

7'+ 6 +  2 (90 ~ - 6 - 0 )  = 180 ~ 
(6.27) 

giving 

r = ~ ? , -  6) (6.28) 

In the forms of the reflector where the reflected ray goes to the right of  PD, 6 will be positive 
in the formula. 

To use this formula it is necessary to find 7' and 6. This is done by plotting a cumulative flux 
diagram, as in Figure 6.28. In this, the cumulative luminous flux as calculated in column K of 
Table 6.1 is plotted against the angle from the downward vertical. As the light from the upper 
part of  the reflector has to be redirected towards the vertical, the angles on the abscissa start with 
the high angles. By using the cumulative totals in column J, the angular zones into which the 
luminous flux has to be redirected can be plotted and are shown as dashed lines. The procedure 
can be clarified by considering the first two zones. From column I it is evident that 177 lumens 
are to be directed into the 0 ~ to 10 ~ zone. Therefore, the dotted line is drawn on the graph at a 
cumulative luminous flux of 177 lumens. This is obtained from two zones of the reflector; the 
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Fig. 6.28 Cumulative luminous flux distribution 
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Table 6.2 Determination of the inclination of the contour elements 

Limits of zone Mid-zone angle Angle into which Inclination 
of reflector light must be of element 

redirected to vertical 
r a o = ~ r - a )  

(deg) (deg) (deg) (deg) 

50-60 55 45 5 
60-70 65 35 15 
70-80 75 35 20 
80-90 85 35 25 
90-100 95 25 35 

100-110 105 25 40 
110-120 115 25 45 
120-130 125 15 55 
130-140 135 15 60 
140-150 145 15 65 
150-160 155 5 75 
160-170 165 5 80 

170 ~ to 160 ~ zone and the 160 ~ to 150 ~ zone in column K. These values are entered in Table 6.2. 
Hence 6 is 5 ~ and the values for ?, are 165 ~ and 155 ~ The next zone for reflected light is that up 
to 20 ~ for which it is evident from column J that 680 lumens are required. The horizontal line 
in the graph is drawn at this figure and it can be read that cumulative luminous flux from 180 ~ 
to nearly 120 ~ is required to satisfy this requirement. ~ is 15 ~ and ?' has three values; 145 ~ 135 ~ 
and 125 ~ , which are entered in Table 6.2. This procedure is continued until all the reflected lumi- 
nous flux is accounted for. 

Table 6.2 enables us to generate the reflector contour as we now know the inclination of all 
the reflector elements to the vertical. 

(4) Generation of  the reflector contour 
Starting at 50 ~ to the downward vertical, we draw radial lines at 10 ~ intervals (Figure 6.29). The 
first element is drawn at 5 ~ to the vertical between the 50 ~ and 60 ~ radial lines at a convenient 
distance from the source. The other elements are then put in as indicated. A curved contour can 
be drawn tangentially to all the elements. Finally, the contour can be scaled to give the reflector 
a convenient size in relation to the lamp. 

Adequate ventilation and easy relamping must be allowed for. 

Linear sources 

Where a trough reflector is to be designed for a linear light source, the procedure is similar to 
that for the axially symmetric reflector. The important difference is that the zones become sectors 
(Section 4.4, page 134), and the luminous flux in a sector is proportional to the luminous inten- 
sity in the vertical plane perpendicular to the axis of the reflector. 

Additional comments on the method 

This method gives a systematic approach to achieving a given luminous intensity distribution. It 
is a powerful method and it can be more useful than many optical ray tracing programs, which 
simply enable the performance of an existing reflector to be checked. 
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Lamp position 

J 

80 ~ 
75 ~ 
65 ~ 

60 ~ 

55 ~ 

45 ~ 

40 ~ 

3 5  ~ 

2 5  ~ 

2 0  ~ 

5 0  ~ 

1 5  ~ 

0 

Fig. 6.29 Generation of the reflector contour 

Its greatest drawback is that the lamp is regarded as a point or linear source of light. This 
assumption can lead to serious errors where the assumption is not justified. The effect of the 
lamp, not only in obstructing light but in redirecting it, can also lead to serious errors. 

In the example reflector described above, it was assumed that the light distribution required 
was to be symmetrical about the vertical axis. Where this is not the case, the method can be 
extended by dividing each zone into a number of sections by means of vertical planes. Once a 
computer program or spreadsheet is set up to do this, the process becomes very quick. 

If required, smaller angular zones than the 10 ~ used in the example can be taken. 

6 . 6  M e t a l l i c  l i g h t  g u i d e s  u s i n g  s p e c u l a r  r e f l e c t i o n  

Light guides are used for transporting and distributing light over distances. 8 In this section, we 
will describe light guides that depend for their main functioning on specular reflection from 
metallic surfaces; however later (Section 6.8.12, page 265) we will describe light guides where 
the main light control is by refractive elements. The light losses in metallic light guides are 
greater than in the refractive types and their main application is in transporting daylight, where 
the losses are not so critical. 

Basically, metallic light guides consist of hollow pipes with specular interior reflecting 
surfaces, with a collector at one end for directing the light into the pipe and a distributor at the 
other end. Where light from the sun is to be collected, what is called a dynamic collector (as 
opposed to a passive collector) is needed to follow the sun to obtain the most effective means of 
collection. Such a mechanism is expensive and some thought has been given to using other 
means of collecting the light. One example is illustrated in Figure 6.30 where a prismatic panel 
is used to increase the angle of incidence of the light on the pipe, so reducing the number of 
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Clear dome 

Laser cut 
prismatic panel 
refracts light to 
produce fewer 
reflections 

Specular 
metallic pipe 

Fig. 6.30 Use of a prismatic panel to reduce the number of reflections in a light pipe (after Edmonds et al.) 

reflections needed for it to reach the exit. 9 At the other end of the guide relatively conventional 
means, such as reflectors and refractors, are used to distribute the light. 

6 . 7  D i f f u s e  r e f l e c t i o n  a n d  t r a n s m i s s i o n  

Diffuse reflection and diffuse transmission are achieved by means of white paint, white enamel 
finishes, or opal plastics. The distribution of light from such surfaces approximately obeys the 
cosine law for uniform diffusers, with a small specular component superimposed on this. The 
magnitude of this component will depend on how glossy the surface is. The specular component 
usually has a negligible effect on the light distribution from luminaires; the purpose of the glossy 
finish is to make it more durable and to make cleaning easier rather than to control the light 
distribution. It is worth noting that even the most matt finish will reflect light specularly at graz- 
ing angles of incidence. 

Except for opal diffusers, the reflectance of the finish should be as high as possible to achieve 
a high light output ratio. Opal diffusers should have a sufficiently high reflectance to hide the 
lamp (if this is a requirement). 

The light distribution of luminaires with diffusing finishes can be predicted by adopting the 
following procedure. The light output ratio is found by using the interreflection theory in Chapter 
5, page 169. The shape of the polar curve due to reflected light, and transmitted light in the case 
of opal diffusers, is found by determining the projected areas of the flashed surfaces at appropri- 
ate angles of elevation. This curve is scaled so that it represents the luminous flux output of the 
luminaire less the bare lamp luminous flux emerging directly from the luminaire. The polar 
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curve representing the directly emerging luminous flux is added to the polar curve of the 
reflected and transmitted light to give the final polar curve. The opposite process of deducing the 
reflector or diffuser shape to give a required light distribution is not usually undertaken as a 
mathematical procedure. Reflectors are usually designed to give a certain shielding angle from 
the lamp, and the size made large enough to give a good light output ratio and to obviate over- 
heating. 

6.8 Refractor systems 

6.8.1 THE LAWS OF REFRACTION 

When a ray of light passes through a boundary between two media of different optical density, 
such as air and glass, it changes its direction of travel, or is refracted. We can make use of this 
refraction of the light in designing optical systems for controlling the distribution of luminous 
flux from a light source. 

The following two laws enable the new direction of the light to be found (Figure 6.31). 

(a) The refracted ray lies in the same plane as the normal to the boundary and the incident ray, 
and is on the opposite side of the normal to the incident ray. 

(b) The sine of the angle of incidence (i) bears a constant ratio to the sine of the angle of refrac- 
tion (r) for light of a given wavelength (Figure 6.31 (a)), that is, 

sin i = 121,2 sin r (6.29) 

where/11,2 is a constant of proportionality known as the refractive index of medium 1 with 
respect to medium 2. 

This is known as Snell's law. For the applications described in this book medium 1 is invari- 
ably air. Since the refractive index of a medium measured in air differs by only 0.03% from the 
absolute refractive measured in a vacuum we can use the absolute refractive index without incur- 
ring any significant error. For convenience, we can then write the equation as 

sin i =/1 sin r (6.30) 

where 

i is the angle the ray travelling in air makes with the normal; 
/1, without any subscripts, is the refractive index of the medium in air. Refractive indices of 
some common transparent materials are shown in Table 6.3; 
r is the angle the ray travelling in the optical medium makes with the normal. 

Fig. 6.31 Refraction and total internal reflection of a ray at a boundary 
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Table 6.3 Refractive indices and critical angles of some transparent 
media 

Optical medium Refractive index Critical angle 
(deg) 

Water 1.33 49 
Acrylic 1.49 42 
Soda glass 1.52 41 
Polystyrene 1.59 39 
Flint glass 1.62 38 

For refraction at curved surfaces, i and r are measured from the normal to the surface at the 
point of entry of the ray at the boundary, as in Figure 6.53, page 263. 

If the direction of a ray is reversed it will follow the same path as before. In other words, in 
Figure 6.31, the direction of the arrows can be reversed. This is known as the principle of 
reversibility, which can be used to simplify some problems. 

Internal reflection and the critical angle 

A consequence of Snell's law is that a ray of light is bent towards the normal when passing into 
an optically dense medium, but when emerging it is bent away from the normal. If the angle of 
refraction is increased until the emergent ray is parallel to the boundary, the angle of refraction 
becomes the critical angle (Figure 6.31 (b)). In this case the angle of emergence (i) is 90 ~ so that 

1 
critical angle = sin - l m  (6.31) 

/1 

Values of the critical angle for some common optical media are tabulated in Table 6.3. 
When the angle of refraction is increased to values greater than the critical angle, total inter- 

nal reflection takes place (Figure 6.31 (c)) and the normal laws of reflection are obeyed, that is 

r I = r 2 (6.32) 

where r I and r 2 are angles of reflection. 

Reflection at boundaries 

We have stated that reflection occurs when the critical angle is exceeded, but in fact a certain 
proportion of the light is always reflected when passing through a boundary between two media. 
The proportion depends on the plane of polarization of the light (that is, the plane at right angles 
to the plane in which the light is vibrating) with regard to the plane of incidence (the plane of 
the normal and the incident ray), and on the angles of reflection and refraction. 

For the plane of polarization at right-angles to the plane of incidence, Fresnel was able to 
show that the reflectance P l is given by 

Pl = tan2 ( i -  r)/tan 2 (i + r) (6.33) 

He was also able to show that when the plane of polarization is parallel to the plane of inci- 
dence, the reflectance P2 is given by 

Pe = sin2 ( i -  r)/sin 2 (i + r) (6.34) 
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Table 6.4 Reflectance at boundaries 

Angle to normal 
(deg) 

Refractive index = 1.5 Refractive index = 1.6 

Reflectance Reflectance Reflectance Reflectance 
for external for internal for extemal for internal 
angles angles angles angles 

0 0.000 0.000 0.000 0.000 
5 0.040 0.040 0.053 0.053 

10 0.040 0.040 0.053 0.053 
15 0.040 0.040 0.053 0.054 
20 0.040 0.042 0.054 0.056 
25 0.041 0.045 0.054 0.062 
30 0.042 0.055 0.055 0.080 
35 0.043 0.086 0.057 0.151 
40 0.046 0.245 0.060 (I.0 at 38 ~ 
45 0.050 ( 1.0 at 42 ~ 0.064 1.000 
50 0.058 1.000 0.072 1.000 
55 0.070 1.000 0.085 1.000 
60 0.089 1.000 0.105 1.000 
65 0.121 1.000 0.137 1.000 
70 0.171 1.000 0.188 1.000 
75 0.253 1.000 0.270 1.000 
80 0.388 1.000 0.402 1.000 
85 0.613 1.000 0.622 1.000 
90 1.000 1.000 1.000 1.000 

When the light is unpolarized the light vibrates equally in all planes so the reflectance is given 
by 

P = ~-(Pl + P2) (6.35) 

Table 6.4 shows how reflectance (expressed as a fraction of unity) varies according to the 
angle the ray makes with the normal. 

The reflection of light at boundaries is important to the designer, who must be careful not to 
make the angles of incidence so great that the losses and the scattering of light into directions 
where it is not wanted become significant. 

Worked example A source of luminance 500 cd/m 2 is viewed through a parallel sided sheet of 
glass having a refractive index of 1.5. If the angle of view to the normal is 30 ~ and the absorp- 
tion in the glass can be ignored, find the luminance of the source through the glass. 

Solution Since the light paths are reversible we may take the angle of incidence to be 30 ~ . 
Hence 

(' / r = sin -l sin i 
# 

sin -1 ( 1 
1.5 

X sin 30 / 

= 19.5 ~ 
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From Table 6.4 we find that, for a medium of refractive index 1.5, the reflectance is approx- 
imately 0.042 when the external angle is 30 ~ . For an internal angle of 19.5 ~ the reflectance is 
also approximately 0.042. Hence, the combined losses at the boundaries, expressed as decimal 
fractions are given by 

fractional light loss = Pe + Pi(1 - pe)r 
= 0.042 + 0.042(1 - 0.42) 
= 0.082 

where 

Pe is the reflectance of the optical material for external surfaces; 
Pi is the reflectance of the optical material for internal surfaces; 
r is the transmittance of the optical material. 

The luminance L as seen through the sheet of glass is, therefore, 

L = transmittance of glass sheet • luminance of source 
= (1 - 0 . 0 8 2 )  x 500 
= 459 cd/m 2 

Comments Very often glass has a green tint due to the presence of iron salts. This coloration 
can be seen when the glass is viewed through its edge. This will give a further reduction in the 
light transmitted, the amount depending on the depth of its coloration and the spectral power 
distribution of the lamp. It is possible to obtain glass that is 'white'  but, in the United Kingdom, 
this is expensive. Plastics free of tinting are readily available. 

Some of the reflected light may travel back into the optical control compartment of a system 
and have a second chance of being emitted, but this is not usually in useful directions. 

Polarization by reflection and transmission 

As has already been indicated in quoting Fresnel's formulae, reflectance and polarization are 
linked. If light is incident at an angle, known as Brewster's angle, such that 

i + r = 90 ~ (6.36) 

then 

sin i =/1 sin (90 ~ - i) (6.37) 

so that 

tan i =/1 (6.38) 

and by inserting i + r = 90 ~ in (6.33), page 235, we also obtain 

p~ = 0  (6.39) 

This means that all the light that is reflected is completely polarized in the plane parallel to 
the plane of incidence when the angle of incidence is at Brewster's angle, which is approximately 
56 ~ for a refractive index of 1.5. The refracted light is partially polarized in a plane perpendicu- 
lar to the plane of incidence, and the degree of polarization can be increased by using a stack of 
plates. Diffusers for luminaires which produce a significant amount of polarized light at 
Brewster's angle, have been made by embedding glass flakes in a resin. These polarizing mater- 
ials are known as multilayer polarizers, l~ They are claimed to reduce significantly veiling glare 
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caused by light reflected from non-electrically conducting materials (for example paper and 
plastics but not metals) and so improve visibility. Light emitted from fluorescent tubes in axial 
planes is polarized as a result of travelling through the glass envelope at and near Brewster's 
angle, and the same effect may be increased by a clear enclosure. 

Luminance of an image formed by a refractor system 

The luminance of an image formed by a refractor system is 

L = xL o (6.40) 

where L is the luminance of the image; r is the transmittance of the refractor system; L o is the 
luminance of the object. 

The transmittance is defined as the ratio of the luminous flux transmitted by a material to the 
incident luminous flux. 

We will now show that (6.40) is true for a lens. 
In Figure 6.32 the object is at a distance u from the lens. An image is formed at a distance v 

from the lens and viewed from beyond it, that is from the fight-hand side in the diagram. 
Let the area of the lens be A. If this is small in relation to u then the solid angle subtended by 

a point on the object is A/u 2. If a is the area of the object, a small area of it, 6a, will have a lumin- 
ous intensity of Lo6a, since luminance is measured in luminous intensity per unit area. 

The luminous flux reaching the lens is given by the luminous intensity multiplied by a solid 
angle, that is 

Lo6a x ~ (6.4 l) 
u 2 

It should be noted that this could also have been arrived at by using the inverse square law of 
illuminance. 

If r is the transmittance of the lens then the luminous flux emerging from the lens will be 

Fig. 6.32 Formation of the image by lens 



6.8 R e f r a c t o r  s y s t e m s  239 

L o rt~a (6.42) 
u 2 

From the diagram it is apparent that this is concentrated into a solid angle equal to A / v  2. 

Hence the luminous intensity of the image is 

A A v 2 

L o ~ r6a + ~ = L o ~ r6a (6.43) 
u 2 v 2 u 2 

Now the area of the image of d;a is 

2 V 
6a 

u 2 
(6.44) 

So the luminance L of the aerial image (luminous intensity + area of image) is given by 

v 2 v 2 

L = L  o u 2 r t ~ a + ~ d ; a  
u 2 

= rL o (6.45) 

which proves the proposition. 
This is true for an aerial image but does not apply to the illuminance of an image formed on 

a screen, as will be shown next. 
Equation (6.42) gives us the flux falling on the image and, to find the illuminance of the 

image, we have to divide this by the area of the image, which is given in (6.44). Hence the illu- 
minance E i of the image is given by 

A v 2 

E i = L  o u 2 r ~ a + ~ u  2 ~a 

= L o ~ r (6.46) 
v 2 

In a camera the image is usually formed near the focal plane, so that v is approximately equal 
to f the focal length, and the formula becomes L o ( A / f  2)r. The f - n u m b e r  of the aperture of the 
lens is the diameter of the aperture divided by the focal length, that is, it is proportional to the 
reciprocal of ~/(A/f 2). 

From (6.46) it is obvious that the illuminance of the image can be increased by increasing the 
lens aperture. However, in the case of the aerial image the effect of the larger aperture is simply 
to increase the divergence of the cones of light leaving the image. The additional luminous flux 
collected would not enter the eye providing the original cone of light was sufficiently large to 
cover the pupil. Hence, there is no increase of image luminance with lens size. 

Dev ia t ion  o f  a ray at  a b o u n d a r y  

In the calculation of prism angles, the deviation ( i -  r) at one of the faces is often known and the 
angle of incidence (i) has to be found. A formula for this purpose can be derived as follows" 
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sin i = ~t sin r 
=/1 sin [ i -  ( i -  r)] 
=/t[sin i cos ( i -  r ) -  sin ( i -  r) cos i] 

so, tan i =/1[tan i cos ( i -  r ) -  sin ( i -  r)] 

and by rearranging the terms we obtain 

~t sin ( i -  r) 
tan i = 

/1 cos ( i -  r ) -  1 

(6.47) 

(6.48) 

Parallel sided block Figure 6.33(a) shows that a ray travelling through a parallel sided block is 
not deviated in angle. This is because the angles of refraction, r and r', are alternate and are 
equal. However, the ray is displaced sideways and we can find the amount of displacement from 
Figure 6.33(b). The ray emerging from the block at C is extended back to meet in B the perpen- 
dicular at A on the incident ray. Then AB is the displacement. 

Now AB = AC sin ( i -  r), but AC = d/cos r, where d is the thickness of the block, therefore, 

d sin ( i -  r) 
AB = (6.49) 

COS r 

Linear displacement combined with angular deviation can give rise to sharp changes in lumin- 
ous intensity with angle when the bend in a bowl of a luminaire is aligned with a relatively small 
source such as the arc tube of a high pressure sodium lamp. This unwanted effect becomes more 
pronounced as the thickness of the material is increased and is present even if the bowl is of 
uniform thickness. It can be reduced by angling the axis of the arc tube with respect to the bend 
and by making the radius of the bend as large as possible. It can be eliminated by placing the arc 
tube at the centre of curvature, but this is seldom possible as it results in a substantially semicir- 
cular bowl, which may not be acceptable for aesthetic reasons. 

Fig. 6.33 Displacement of a ray in a parallel sided block 
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Fig. 6.34 Projection of a ray on an inclined plane 

Projection o f  ray on an inclined plane through the normal 

If a trace of a ray through a block is projected on an inclined plane through the normal, a result 
is obtained that is useful in tracing rays through prisms in planes other than the principal plane 

- the plane at right angles to the surfaces of the prism. Figure 6.34 will make clear how this is 
done. 

The ray COE is travelling in the plane ACX'FEX. XX" represents the boundary between the 
air and lower optical medium of refractive index ~. AOF is a normal to the boundary. The 
inclined plane ABFD passes through AOF. BOD is the projection of the ray on the inclined plane 
ABFD, so that angles ABC and EDF are right-angles. 

Let L B O C  = 77, L E O D  = ~', LBOA = ~ and L D O F  = 0". 
By construction, make 

pCO = OE (6.50) 

so sin L COA =/1 sin LEOF.  
Therefore, using (6.50) we find 
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AC EF 
= l U ~  

CO OE 

EF 

CO 

which gives A C = EF. 

In the triangles ABC and EFD, 

Z C A B  = Z E F D  

,ZABC = Z E D G  (= 90 ~ 
AC = E F  

(6.51) 

(6.52) 

Therefore, the triangles are equal in all respects, so AB = DF and BC = ED: 

sin 7/= 
BC 

CO 

ED 
=tl 

OE 

= p s in r/' (6.53) 

Hence, the sine of the angle between the ray and its projection before refraction is equal to/1 
times that after refraction. 

Also, 

AB BO 
sin r cos 7/= ~ x 

B O  C O  

=It 
AB 

OE 
(as pCO = OE) 

= p  
DF OD 

~ x ~  ( a s A B = D F )  
OD OE 

= p sin 0' cos r/' 

The angle BAC between the two planes in Figure 6.34 can be derived as follows" 

(6.54) 

tan Z B A C  = 
BC 

AB 

BC OB 

OB AB 

tan 7/ 

sin r 
(6.55) 
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Fig. 6.35 Some common prism forms 

6.8.2 PRISM SYSTEMS 

Prisms are classed as refracting or reflecting according to whether they make use solely of 
refraction or make use of total internal reflection as well as refraction. 

Figure 6.35 shows some common forms but the angles employed have to be calculated to suit 
the application. Figure 6.35(a) is a refracting prism and it is this which is commonly used in 
prism banks in luminaires. Figure 6.35(b) is a reflecting prism, which is also used in luminaire 
prism banks, and is capable of deviating the light through a greater angle than (a). Figure 6.35(c) 
is a right-angled reflecting prism that has its principal use in optical instruments, as does Figure 
6.35(d). Figure 6.35(e) inverts an image. Finally, Figure 6.35(f) is a pentaprism which turns the 
light rays through three right-angles and is capable of producing an erect image in cameras. In 
this the reflecting surfaces may have to be silvered. 

Refracting prisms 

Figure 6.36 shows the path of a ray through a refracting prism. XX' and the Y ordinates are put in 
for reference. The ray of light is shown leaving the source at an angle P to Yl Yl" The most 
commonly occurring problem is to find the prism angle A to achieve a specific deviation, D. 
Usually either the angle B or the angle C is fixed so that the prism can follow the contour of a lumi- 
naire. The slope of the base in relation XX' does not affect the deviation of the ray, but it does affect 
how much of the prism is flashed. This consideration is dealt with in Section 6.8.6, page 252. 

For tracing the path of a ray through a refracting prism the following equations may be used: 

(1) D = ( i -  r) + ( i ' -  r') 
(2) D = P -  Q 
(3) A = B + C 
(4) A = r + r' 
(5) i' = 9 0  ~  
(6) i = B + P - 9 0  ~ 

(6.56) 
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Fig. 6.36 Trace of a ray through a refracting prism 

If the angle of incidence, and therefore the angle of refraction, lies on the other side of the normal 
to that shown on the diagram, then it and the angle of refraction are taken to be negative. D can 
never be negative since light is always deviated towards the base of the prism. 

Maximum deviation 

The maximum deviation D is an important consideration when a prism bank is being designed. 
This is obtained when i and i" each have their maximum practical value, which - by reference to 
Table 6 . 4 -  can be seen to be approximately 70 ~ before the reflection losses become too great. 
From this 

D = ( i -  r) + ( i ' -  r') 

sin 0~ 
= 70 ~ - sin -I x 2 (6.57) 

1.5 

=62 ~ 

Reflecting prisms 

We now turn to the calculation of reflecting prisms. As has already been mentioned these have 
the advantage over refracting prisms that they can deviate the light through a greater angle. They 
suffer from the drawback that they are liable to give inaccurate control since their functioning 
depends on the accuracy of all three faces, and not just two and, moreover, since one face oper- 
ates by reflection, any angular inaccuracy in this face is doubled (see Figure 6.5, page 207). 

Figure 6.37 shows the trace of a ray through a reflecting prism UVW. XX' and the Y ordinates 
are marked for reference in a similar way to that used for the refracting prism. The ray GLSMH 
leaves the light source at G at an angle P to the downward vertical Yl Yl and enters the face UV 
at the point L. It is reflected from the face UW at the point S at an angle 0 to the normal and 
leaves the prism through the face WV at the point M, making an angle Q with the downward 
vertical Y5 Y5 and passes through the point H. 

Making use of the fact that the angles LSU and WSM are equal, we can find the following 
relations between the various marked angles: 
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Fig. 6.37 Trace of a ray through a reflecting prism 

(1) i = A - P +  180 ~ 
(2) i' = C - Q + 9 0  ~ 
(3) B = ~ ( 9 0  ~  
(4) O = P -  Q 
(5) fl = 9 0  ~  
(6) 0 = 9 0  ~  

(6.58) 

where D is the angle of deviation produced by the prism and is equal to the angle between GL 
and MH. 

Relation (3) above follows from the fact that Z S U L  + Z S L U  = Z S W M  + , /SMW,  acute angle 
S W Y  3 = B, and acute angle VWY 3 = C. 

These relations enable B to be found once C and A have been set. 
Usually the face UV is sloped below XX' to avoid under-cutting the prisms and to make manu- 

facture easier. The formulae given still apply but A is negative. 

Worked example Given in Figure 6.37 that P = 140.0 ~ i = 20.0 ~ and C = 10.0 ~ find the 
remaining prism angles and 0. 

Answer  The work can be set out in a spreadsheet as in Table 6.5. 
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Table 6.5 Spreadsheet for calculating the angles of a reflecting prism 

Refractive Index p = 1.50 

+ 
k .  

~ ~ "~ + 

~ , .  ~ I I 

i 

140.0 70.0 20.0 13.2 10.0 30.0 19.5 -20.0 66.4 56.8 43.6 70.0 
140.0 70.0 30.5 19.8 10.0 30.0 19.5 -9.5 64.4 54.9 35.1 70.0 

The refractive index is put in a separate cell so that it can be changed easily, without having 
to change the formulae in the body of the table. 

The first line of calculation gives the values of the required angles and these have been drawn 
in Figure 6.38. To make sure that the ray does not pass through the face UV, it is essential to 
check that 0 is greater than the critical angle, which is true in this case. 

A ray entering at the apex U of the prism will travel parallel to SM and leave the prism at D. 
This means that the part DV will be unflashed. To overcome this we can alter the slope of the 
face UV so that it is parallel to SM or it converges towards SM. 

The condition for UV to be parallel to SM can be found as follows: 

/ M S W  = 90 ~ - B -  A, since UV is to be made parallel to SM. 

In the triangle SMW, 

ZMSW + ZSMW + / S W M  = 180 ~ (6.59) 

W 
0 = 5 6 . 8  ~ ( 

r'  = 1 9 . 5  ~ 

i '  = - 2 0 . 0  ~ 

f l = 4 3 . 6  o . ~  ~ / . . /g ~ ~ - - - 0 = 7 0  ~ 

- -  " - -  , 

r =  1 o C =  1 0  ~ 

3 2 j  V 
i = 2 0 . 0  ~ U n f l a s h e d  

p a r t  

A = - 2 0 . 0  ~ 

Fig. 6.38 Trace of a ray through a reflecting prism 
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Therefore, 

(90 ~  A - B )  + (90 ~  r') + (B + C) = 180 ~ 

giving 

(7) A = C -  r' 

For our problem 

A = C - r "  
= 10 o - 19.5 ~ 

= -  9.5 ~ (6.62) 

Now from Relation (1) 

i = A - P +  180.0 ~ 
= _9.5 ~ _ 140.0 ~ + 180.0 ~ 

= 30.5 ~ (6.63) 

This new value of i has been inserted in the second line of calculation in Table 6.5 and the 
prism angles reworked. Figure 6.39 shows the paths of the rays through the prism. 

It will be seen that SM in the ray GLSMH is now parallel to the base of the prism. The figure 
also shows the trace of a ray glsmh, which just misses the apex of a lower prism of the same 
dimensions as triangle UVW. The masking effect of this lower prism is such that m W is not 
flashed. Moreover, it should be noticed that there is the possibility that rays entering the prism 

(6.60) 

(6.61) 

Fig. 6.39 Paths of rays through reworked prisms 
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at a less steep angle than shown can be refracted upwards, since the prism then acts as a refract- 
ing prism. This can have undesirable consequences, especially in street lighting, where the 
upwardly directed light could cause light pollution. 

6.8.3 TRACING RAYS THROUGH A PRISM IN PLANES OTHER THAN THE PRINCIPAL 
PLANE 

So far we have traced rays in a plane that is at right angles to the surfaces of the prism, which 
we will designate the principal plane. We will now consider the path of rays in other planes. 

Figure 6.40(a) shows a ray of light ABDC entering and emerging from the prism. 77 and rf are 
the angles the entering ray AB makes with its projection on the principal plane (refer to Figure 
6.34, page ??? for further clarification of these symbols) and r is the angle the projection makes 
with the normal BN to the top face of the prism. Similarly, ~, ~', and ~ are the corresponding 
angles for the emerging ray. 

rf and ~' are equal since these are the angles that the ray in the prism makes with the princi- 
pal plane. Hence, from (6.53), 77 and ~ are equal. Thus, the incident and emergent rays make the 
same angle with the principal plane. The equations are: 

sin q = p sin q' 

sin ~ = p sin 77 (6.64) 
r/' =~ '  and r/= ~ 

Fig. 6.40 Oblique ray passing through prism 
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Figure 6.40(b) shows the rays of light projected onto a principal plane. The points in A, B, 
D and C in Figure 6.40(a) project as points a, b, d and c in Figure 6.40(b). ~ and r are the 
angles the projections make with the normal before and after refraction. In addition, ~ and ~ '  
are the angles the projections of the emergent ray make with the normal before and after 
refraction. 

Then, from (6.54), 

sin r cos 77 =/1 sin ~' cos ~:' (6.65) 

and 

sin ~ cos 77 = Ft sin ~ '  cos ~' (6.66) 

Also, from Figure 6.40(b), 

a = qr + ~ (6.67) 

These equations enable a ray to be traced through a prism, and we can use them to investigate 
how, in a luminaire equipped with a linear light source, such as a fluorescent lamp, linear prisms 
running parallel to the lamp can control the light in the vertical axial plane. 

6.8.4 CONTROL IN THE AXIAL PLANE B Y LINEAR PRISMS 

By an axial plane we mean a vertical plane that is at right angles to the transverse plane. In 
Figure 6.40(a), DCC' lies in an axial plane when it is vertical and parallel to the long edges of 
the prism. In this figure, as before, AB is the incident ray. It makes an angle 77 with its projection 
A'B on the principal plane. 

CD is the emergent ray, which is in the axial plane, so that the triangle DCC" is vertical and 
DC' is directly downwards. CD makes an angle ~ with its projection, C'D, on the principal plane. 
C'D makes an angle ~ with the normal. 

77 will be at its maximum when AB is parallel to the top of the prism. 0 will then be a right- 
angle. 

In Figure 6.40(b) (which shows the rays projected on to the principal plane) cd will be directly 
downwards in this instance, since CD is in the vertical axial plane. 

Therefore 

and 

but 

= 90 ~ - /3  (6.68) 

90~ - P = 0' + q;' (6.69) 

Now 

sin 0 cos 77 =/1 sin 0' cos 77' (6.70) 

= 90 ~ (6.71) 

Therefore, 

cos 17 =/1 sin ~' cos 77' (6.72) 

which by squaring each side, dividing through by/12 sin 2 r and subtracting each side from 
unity gives 
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E 

But 

COS 2 l 7 

, u2 sin2 0' 
= 1 - COS 2 /7' 

= sin 2 r/' (6.73) 

sin 7/= p sin r/' (6.74) 

SO, 

COS2 1"/ sin 2 1"/ 
l -  = 

f12 sin 2 ~, f12 
(6.75) 

Therefore, by multiplying by ,t/2 sin 2 r and rearranging the terms so those containing cos 7/ 
are on the left-hand side, we obtain 

COS 2 7"/= (,//2 _ 1) tan 2 qr (6.76) 

We now relate 0' to ft. Equation (6.72) states 

cos r/= p sin ~' cos 7/' 

moreover 

sin q/cos 7"/= p sin V' cos r/' 

Therefore, by division and rearrangement of the terms, we find 

sin V sin r = sin ~ '  

Now, by substituting (6.68) and (6.69) in (6.78), we obtain 

cos fl sin r  cos (/3 + ~') 
= cos fl cos 0 ' -  sin fl sin ~' 

hence by dividing by cos r and rearrangement of the terms we obtain 

(6.77) 

(6.78) 

(6.79) 

tan ~' = 
cos fl 

cos fl + sin/3 

1 

1 + tanfl  (6.80) 

which by substitution in (6.76) gives 

COS 2 7"/= (12 2 -- 1) i" 
1 + tan/3 

(6.81) 

SO 

COS 77 = ~/(/j2 _ 1) ('1 
+ tan fl 

(6.82) 

We will now investigate the control of light in the transverse plane. 
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Fig. 6.41 Transverse section of base prism 

6.8.5 CONTROL IN THE TRANSVERSE PLANE BY LINEAR PRISMS 

In the previous section we have shown how control of the light distribution in the axial plane may 
be obtained by linear prisms. In this section we will show how to obtain control in the transverse 
plane. 

Figure 6.41 shows the action of a base prism. Rays entering from all directions are concen- 
trated into a cone having an angle at the apex equal to twice the critical angle. The rays are 
numbered for reference purposes. Ray 9 travels in a direction parallel to the critical angle. The 
angle of the prism is made such that this ray is reflected off the second face at the critical angle. 
If the apical angle were made any larger it would pass through this face. If it were made any 
smaller, ray 1 would leave the first face at a higher angle than is necessary. 

Figure 6.42 shows the trace of ray 9, PQRS. We are required to find x, the half apical angle 
of the prism, whose faces are LM and MN. The ray is reflected at Q and R at the critical angle c. 
TM is a vertical construction line. 

. /UQP = c 
now Z U Q L  = Z T M Q  

- - X  

.'. Z R Q M =  Z P Q L  
= x - c  (6.83) 

In the triangle RQM, 

Z R Q M  + Z QMR + Z QRM = 180 o (6.84) 

SO, 

( x -  c) + (2x) + (90 ~ - c) = 180 ~ (6.85) 
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Fig. 6.42 Trace of ray 9 through prism 

Hence 

2 
x = 30 ~ + - -  c (6.86) 

3 

If/1 is 1.5, then c is approximately 42 ~ and x is 58 ~ Thus, the longitudinal prisms give a cut- 
off of 58 ~ in the transverse plane. To find the cut-off in the axial plane we use (6.82). 

( 1 ) 
cos r /= ~/~:/_ i-) 1 + tan fl 

( 1 / 
= 4(i152-_-i) I + tan 58 ~ 

= 0.43 (6.87) 

From this we obtain 
o 

, = 65 (6.88) 

So we obtain a cut-off of 65 ~ in the transverse plane and 58 ~ in the vertical axial plane. At 
these angles the luminous intensity will be zero but at angles just smaller than these there will 
not be an abrupt increase of luminous intensity, for two reasons. First, because of the high 
percentage of the incident light which is reflected at large angles of incidence, as is apparent 
from Table 6.4. Second, because of the limited size of the lamp or lamps and their spacing from 
the top surface of the prism panel the cone angle of the incident light will be less than 180 ~ 

6.8.6 DESIGN OF LINEAR PRISM BANKS 

Linear prism banks are used on the sides of indoor and road lighting luminaires. In the former case 
they are used to obscure a direct view of the lamps by directing light upwards or downwards, thereby 
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controlling discomfort glare. For road lighting luminaires, prism banks are used to direct a light 
beam on to the road at an angle that provides a long tail to the T-shaped light patch (see Section 9.5, 
page 350). 

For a linear prism bank to be effective, the light source itself also needs to be linear, usually 
fluorescent or low pressure sodium. 

The design process can be split into a number of steps which we will consider separately. 

(1) Choice of lamp and its attitude 
The choice of lamp will mainly depend on its luminous flux in relation to the luminous flux 
required and the number of luminaires to be used. Other considerations will be its size and possi- 
bly the heat generated. 

For the great majority of applications the lamp is used horizontally and the lines of the prisms 
will also run in this direction. 

(2) Width of luminaire 
Normally, the objective is to make the luminaire as narrow as possible. The controlling factor is 
that if the prism bank is too close to the lamp the acceptance angle of the light reaching each 
prism will be too great for the prism to provide effective control. 

In the design of a road lighting luminaire, the angle of the peak luminous intensity is the 
controlling factor. This can be understood from Figure 6.43. 

Suppose that we want the peak luminous intensity to occur at 65 ~ , which is the angle 
commonly used for road lighting luminaires. At the same time we want the lamp to be obscured 
by the prism bank at 80 ~ to give good glare control. BC is drawn tangentially to the lamp at 80 ~ 
to meet AC, which is drawn at 65 ~ to the vertical and tangentially to the lamp. The prism bank 
is designed on the line CD so that it provides a peak luminous intensity at 65 ~ and obscures the 
lamp at 80 ~ . The bare lamp will be visible below 65 ~ . 

(3) Attitude of prisms 
We now have to decide whether to form the prisms so that their apices face inwards, towards the 
lamp, or outwards. 

Fig. 6.43 Determining the width of a luminaire 
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Fig. 6.44 Dark areas caused by the non-working prism faces 

The outward facing prisms have two disadvantages. First, they are likely to get dirtier quicker, 
especially in outdoor luminaires. Second, it is impossible to flash the whole of the prism surface. 
This can be seen from Figure 6.44, which compares the action of outwardly and inwardly facing 
prisms. 

In Figure 6.44(a) and (b) the flashed area in the direction of the beam is the same, but in (a) 
this area is broken up by the dark areas of the non-working faces. To achieve flashing of all three 
prisms in (b) a wider incident beam of light is required than in (a), moreover the incident light 
striking the non-working faces is directed upwards, which for outdoor applications is usually 
undesirable as it causes light pollution (see Section 9.1, page 346). 

With regard to the overall shape of the prismatic diffuser, (a) will tend to narrow towards the 
bottom, whereas the opposite is true for (b). However, it is possible to counteract these trends by 
suitable prism design. 

For road lighting applications, prism panels are sometimes designed as separate items for 
cementing on to the inside of clear bowls. The prisms are outwardly facing so are sealed to 
prevent the deposition of dirt in the prism angles. This construction has the additional advantages 
that the bowl narrows towards the bottom, which makes its manufacture easier as it can be easily 
withdrawn from the forming tool, and the panels can be used for different lengths of lamp. 
Sealing the panel to the bowl may be a problem because the solvent vapour from the cement is 
trapped in the space between the panel and the bowl, and may cause crazing of the prisms. This 
problem can be overcome in manufacture by passing a stream of air through the space until the 
cement is dry. However, this is labour intensive. 

In the example to be calculated we will consider outwardly facing prisms. 

(4) Calculation of prism angles of working faces 
The work is done by making use of (6.56) page 243, (6.58) page 245 and (6.48) page 240, and 
setting out the work in a spreadsheet. 
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The angles of each prism in a bank of prisms can be calculated separately so that they all 
differ from each other. However, to save tool costs they can be repeated so as to form groups each 
comprising prisms having the same angles. 

The effect of the first approach is to form repeated images of one part of the lamp in the direc- 
tion of the peak luminous intensity. Brighter flashing results if this part of the lamp is of higher 
luminance than the rest of the lamp, as it often is with high intensity discharge lamps. The second 
method produces an image of the source or part of the source, depending on the width of the 
prism bank. For the purposes of illustration, we will use this method for a fluorescent lamp, the 
luminance of which across a diameter is substantially even. 

Table 6.6 shows how the work may be set out on the spreadsheet. As in Table 6.5, the refrac- 
tive index of the optical medium is entered in a separate cell so that it can be referred to in the 
formulae where the angle of refraction is calculated from the angle of incidence or vice versa. 
This is better than entering the value directly in the formulae as only one figure needs to be 
changed when the refractive index is changed. P, Q and B (Figure 6.36, page 244) are entered in 
the appropriate cells and the values in the remaining cells in the row are automatically calculated. 
i' is calculated from i ' -  r' by means of (6.48), page 240. 

The first step is to enter values for P, Q and B. From Figure 6.43, page 253, it is evident that 
P is 80 ~ B is the slope of the side of the bowl, which we will make 15 ~ from aesthetic consid- 
erations, and because the greater the slope the greater will be the refraction at the surface facing 
the lamp. This leaves less work for the other prism face to do, thereby making a greater devia- 
tion D possible. Q is 70 ~ These values give a prism angle A of 19.2 ~ Angles i and r' must be 
examined in relation to Table 6.4, page 236, to find if the reflection losses are acceptable. At 
15.8 ~ r' will give a loss of about 0.05, which is acceptable, as is the loss of about 0.04 for i at 
5.0 ~ . Later we will consider the angle of the non-working face, which forms the base of the 
prism. 

We now have to decide how far upwards Prism Group l can be extended upwards before it 
directs light into the 80 ~ to 90 ~ zone. For this we use Table 6.7, which determines the value of P 
for a ray to be emitted at 80 ~ 

P works out to be 89.6 ~ In Figure 6.45 we draw a line E l C l at this angle to the vertical and 
tangentially to the lamp to meet the prism bank in C I. C~C o is the length of Prism Group 1 
which, by measurement or calculation, is found to be less than the diameter of the lamp. 
Therefore, the whole of the Prism Group 1 will be flashed at the beam angle and no adjustment 
need be made to the angle of E l C 1, which would be the case if CoC l were greater than the diam- 
eter of the lamp. 

For Prism Group 2, we enter Table 6.6, again, with a value of P equal to 89.6 ~ A is now 
calculated as 35.1 ~ Examination of the losses at the two refracting surfaces shows they are 

Table 6.6 Determination of prism angles A and C. Angles in degrees 

Refractive index of optical medium (~) = 1.5 

Prism P Q B i r i - r  D i ' - r '  i' r' 
Group B+P-90 ~ P-Q 

A C 
r" + r" A - B 

1 80.0 70.0 15.0 5.0 3.3 1.7 10.0 8.3 24.2 
2 89.6 70.0 15 .0  14.6 9.7 4.9 19.6 14.7 40.1 
3 98.4 70.0 15 .0  23.4 15.4 8.0 28.4 20.4 52.1 
4 106.2 70.0 15.0  31.2 20.2 1 1 . 0  36.2 25.2 60.8 

15.8 
25.4 
31.7 
35.6 

19.2 
35.1 
47.1 
55.8 

4.2 
20.1 
32.1 
40.8 
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Table 6.7 Determination of extent of prism groups. Angles in degrees 

Refractive index of optical medium (/1) = 1.5 

Prism Q A C i' r' i ' -  r' r i i -  r 
Group 90~ A-r' 

D P 
( i-r)+( i'-r') D + C 

1 80.0 19.2 4.2 14.2 9.5 4.7 9.7 14.6 4.9 9.6 89.6 
2 80.0 3 5 . 1  2 0 . 1  30.1 19.7 10.4 15.4 23.4 7.9 18.4 98.4 
3 80.0 4 7 . 1  3 2 . 1  42.1 26.7 15.4 20.4 31.2 10.9 26.2 106.2 

Fig. 6.45 Positioning of the prism groups 

acceptable. In Table 6.7 we enter 35.1 o for A and 20.1 o for C, which give 98.4 ~ for A. Adopting 
the same procedure as for Prism Group 1 we draw E2C 2 at 98.4 ~ to the vertical (Figure 6.45) to 
find the extent of Prism Group 2. ClC 2 is less than the diameter of the lamp so no adjustment 

need be made to the angle of E2C 2. 
For Prism Group 3 we retum to Table 6.6 with a value of A of 98.4 ~ After checking that the 

angles of incidence and refraction do not give unduly high values of reflection, we enter the new 
values of 47.1 o for A and 32.1 o for C in Table 6.7. 

For Prism Group 4 we return to Table 6.6, this time with a value of A of 106.2 ~ r' is 35.6 ~ 
which gives a reflectance greater than 0.086 and is on a part of the reflectance table where the 
reflectance is rising rapidly with angle. We decide to reject this, although it may be worth making 
a prism bank with the angles of Prism Group 4 and assessing it experimentally. 

(9) Angle of non-working faces 
We now have to decide the angle of the non-working face or base of the prism. Ideally, this 
should be parallel to the ray of light that forms the beam to achieve the maximum projected area 
of flashing in the beam direction. 
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Fig. 6.46 Emergence of ray at beam angle 

Figure 6.46 shows a prism from each of the prism groups. The ray shown emerges at the beam 
angle, 70 ~ to the downward vertical. The face MN is made parallel to the path of this ray as it 
travels in the prism by using the equation 

ZLMN = 90 ~ - r (6.89) 

At this point, consideration has to be given as to whether it is possible to withdraw the manu- 
facturing tool. This is usually possible providing the ZLMN is one or two degrees less than a 
right-angle, which is the case in this illustration. 

(1 O) Luminous intensity of the prism bank in the direction of beam 
The ratio of the orthogonally projected height of the prism bank in the direction of the beam 
to the diameter of the lamp can be found from Figure 6.45 to be 3.1. This means that its lumi- 
nous intensity will be 3.1 times the luminous intensity of the lamp (in the direction of the 
prism bank) not corrected for the reflection losses and absorption losses in the optical mater- 
ial, which are taken to be zero. On the surface facing the lamp, the reflection losses are 0.04 
approximately, and on the internal surface they vary from 0.04 to 0.09 approximately, for 
which we can take an average of about 0.06, to be conservative. There will also be losses of 
about 0.04 at each of the bowl's surfaces. This means the transmission will be 
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(1 - 0.04)(1 - 0.06)(1 - 0.04)(1 - 0.04) = 0.85 

So the effective luminous intensity of the prism bank will be 0.85 x 3.1 which is 2.6. To calcu- 
late the total luminous intensity of the beam, account has to be taken of the fact that an image of 
the lamp will be visible below the prism bank. The luminous intensity of this will be reduced by 
the reflection losses of the bowl, about 0.08. 

(7) Upward light 
If the control of upward light is an important consideration, then an investigation needs to be 
made of the light that may be reflected off the non-working faces of the prisms. 

(8) Increasing the beam luminous intensity 
This may be done in a number of ways. 

The prism bank may be extended upward by using reflecting prisms. A specular reflector 
above the lamp can be used to reflect light above the prism bank. A clear window can be left 
beneath the prism bank so that the whole of the lamp is visible through it, and beneath this, 
further prisms can be added to refract light into the beam. This may produce a dip in the polar 
curve and it may be necessary to leave spaces between the prisms to make this less pronounced. 

6.8.7 LENSES 

We will not give proofs of the various lens formulae, but, for reference, give a summary of them 
as they apply to thin lenses. These formulae are only accurately applicable to rays that do not devi- 
ate more than about 10 ~ from the axis. More complicated formulae have to be used in other cases. 

Figure 6.47 shows how images are formed by biconvex and biconcave lenses. Each lens has 
two foci, F l and F 2, which are equally spaced in front of and behind the lens. Rays parallel to 
the longitudinal axis pass through the focus. In addition, rays passing through the centre of the 
lens are not deviated. The use of these two rules enables the image to be located. There are two 
sorts of image. A real image, which can be focused on a screen, and a virtual image, which 
cannot be formed on a screen, because the rays are diverging from the lens. 

The formulae for locating the image are: 

1 1 1 

u v f 
(_~l 1 )  1 (6.90) 

( u - l )  + - -  = 

7- 
where 

u is the distance from the object, O, to the centre of the lens; 
v is the distance of the image, I, to the centre of the lens; 
f is the focal length of the lens; 
r 1 and r 2 are the radii of curvature of the surfaces of the lens, which are taken as positive for 
a converging (convex) lens and negative for a diverging lens; 
/1 is the refractive index of the material of the lens. 

To make these formulae applicable to all cases the following sign convention can be used. 

All distances to real points are reckoned as positive, and all distances to virtual points as 
negative. 
The focal length of a converging lens is positive, that of a diverging lens negative. 
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Fig. 6.47 Formation of images by thin lenses for rays near the axis 

Where two thin lenses are placed together, their combined focal length fc is given by 

1 1 1 

fc fl 
(6.91) 

where fi and f2 are the focal lengths of the two lenses. The focal length of a converging lens is 
taken as positive whilst that of a diverging lens is taken as negative. This formula may be 
extended to the combination of any number of lenses, 

1 1 1 1 
m = - - + m + . . . + - -  

fc fl f2 fn 
(6.92) 

where fn is the focal length of the nth lens. 
Linear magnification of the image = v/u. 
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6. 8. 8 FLASHING OF LENSES 

When a lens produces an image of a light source, the area of the lens which appears flashed 
depends on the distance of the eye from the lens. Therefore, to calculate the luminous intensity 
provided by the lens, it is necessary to calculate this area. In this section we will describe how 
this is done for points on the axis of the lens. 

(1) Image of source smaller than lens 
Four cases are considered in Figure 6.48, in which all the images are indicated by/ .  In (a) D 1 is 
the point on the axis where the rays of light from the rim of the lens cross over each other and 
the axis. If the eye is placed at this point the whole of the lens, from A 1 to A 2, would appear 
flashed. In (b) the distance of the eye from the lens is increased by moving it to D 2 so the image 
subtends a smaller angle at the eye than the lens. The result is that the lens is only flashed from 
A 3 to A 4. If we now return to (a) and move the eye nearer the lens, the whole of it will appear 
flashed until D 3 in (c) is reached where the inner rays from the cones of light from the rim (A 5 
and A6) of the lens cross over. When the eye is brought nearer to the lens than this, progressively 
less and less of it, A 7 to A 8, will appear flashed as in (d). 

For points beyond the image, the same effect as described above can be obtained by replac- 
ing the image with a diaphragm having an aperture the same size as the image, and regarding the 
lens as being fully flashed. This aperture is known as the exit pupil. 

(2) Image of source greater than or equal in size to that of the lens 
In Figure 6.49 the inner rays in the cones of light from the rim of the lens cross over at D. At any 
point on the axis beyond D the lens will appear fully flashed. Closer to the lens the flashing will 
diminish in area in a similar way to that shown in Figure 6.48(d). 

Fig. 6.48 Flashing of lens when the image is smaller than the lens 
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Fig. 6.49 Size of image greater or equal to that of lens 

Fig. 6.50 Spherical aberration 

6.8.9 SPHERICAL ABERRATION 

Parallel rays of light passing through a lens near its rim will meet the axis nearer to the lens than 
more central rays, as illustrated in Figure 6.50 for rays travelling from left to right. This is known 
as spherical aberration. 

This means that if we consider light travelling from right to left and want the whole of the 
lens to appear flashed when viewed on axis, we require a light source at least as large as AA. This 
may be impossible to attain for very bright light sources or for lenses with diameters large in 
comparison to their focal length; that is, for lenses with large f-numbers. In these cases it is 
necessary to reduce the diameter of AA by using special lens designs. Photographic lenses reduce 
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spherical aberration to negligible proportions but are normally too expensive for lighting engin- 
eering purposes. The two solutions commonly used are lenses with parabolic surfaces and 
stepped lenses. 

6.8.10 LENSES WITH PARABOLIC SURFACES 

Figure 6.51 shows two arrangements of lenses employing parabolic surfaces. 

6.8.11 STEPPED LENSES 

In certain applications, such as signal lights, including lighthouses and theatre spotlights, large 
diameter lenses (over about 50 mm) are required. Biconvex or parabolic lenses would be very 
thick. It was suggested by Buffon that they could be considerably reduced in thickness by step- 
ping them in concentric zones, as shown in Figure 6.52. However, because of their large diam- 
eter in comparison to their focal length they suffer considerably from spherical aberration. 
Fresnel overcame this by calculating the curvature on each of the separate steps to make the 

Fig. 6.51 Lenses with a parabolic surface 

Fig. 6.52 Buffon lens 
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Fig. 6.53 Fresnel lens 

rays emerging from the top and the bottom of the step face parallel to the lens axis. Modem 
developments include sheets of fine stepped lenses for use in overhead projectors. 

The method by which the curvature of the steps in a Fresnel lens is derived can be followed 

by reference to Figure 6.53. 
In the diagram, the stepped element is AFKZB. The source is at S. We will consider two rays 

SLFG and SBKH from the source. The radius (DF and DK) and centre of curvature (D) of the 
face FZ have to be such that the extreme rays FG and KH emerge parallel to SX. 

Let DF and DK make angles of e F and e K with SX. 
In addition, let the angles of incidence and refraction be respectively i a and r a at B, and i L 

and r L at L. 
Therefore, 

sin i L =/1 sin r L (6.93) 

and 

sin i B = j / s in  r a 

Let the angles of emergence at F and K be e F and e K respectively, so that 

sin e F = p sin (e F - r E) 

and 

sin e K = / / s i n  (e K - rB) 

(6.94) 

(6.95) 

(6.96) 
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Therefore ,  f rom (6.48), (page 240) 

and 

tan e F = 
p sin r E 

p cos r E -  1 
(6.97) 

tan e K = 
p sin r B 

p cos r a - 1 

f rom which  e F and e K can be determined.  

Let  A B  = b, S O  = f and A F  = t, then 

b = f  (tan i A - tan i B) + t tan r E 

Draw F E  parallel  to A O  to mee t  B K  in E. 

Cons ide r  the tr iangle F E K :  

Z F E K  = 90 ~ - r B 

Z F K E  = Z F K D -  Z B K D  

= 90 ~ _ ~(e F - eK) - (e K - ra)  

= 90 ~  ~ e  F + e K) + r B 

s i n / F K E  s i n / F E K  

F E  chord  F K  

(6.98) 

(6.99) 

(6.100) 

by the sine rule for tr iangles.  

Therefore ,  

and 

chord  F K  = 
F E  cos r B 

cos [�89 F + e K ) -  r B] 

(b - t tan rB) cos r B 

cos [�89 F + eK) - rB] (6.101 ) 

If r is the radius of  curvature  of  F K  then 

r = D F  (6.102) 
= D K  

F K  = 2r  sin ~ e  F - eK) (6.103) 

In addit ion,  the coordina tes  of  D with respect  to O are 

D C  = r cos e F - t (6.104) 
O C  = r sin e F - f  tan i L - t tan r B 

This comple tes  the de te rmina t ion  of  the radius and centre  of  curvature  of  FKL.  

The  Fresne l  lens m a y  be g e n e r a t e d  in three  ways .  The  prof i le  m a y  be ro ta ted  abou t  the axis  

SX.  This  p roduces  a b e a m  of  l ight  in one  d i rec t ion  w h e n  the source  is loca ted  at S. Second ,  

it m ay  be ro ta ted  abou t  an axis  th rough  S and para l le l  to A C ,  which  p r o d u c e s  a b e a m  in all 
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directions of azimuth, providing the source emits light in all the relevant directions. This is 
useful for beacons. Third, it can be generated as a linear prism panel in a plane through AC and 
perpendicular to SX, which is useful for controlling the light from linear sources. 

6. 8.12 LIGHT GUIDES USING REFRACTION 

One fascinating phenomenon occurring in optics is the way that light can be guided or 'piped' 
along a rod, block or sheet of transparent material by making use of total internal reflection. This 
is a very much more efficient method of conduction or transport than is provided by conventional 
mirror surfaces (see Section 6.6, page 232). At best, these have a reflectance of about 95% so 
that there is a considerable loss of light after comparatively few reflections. On the other hand, 
total internal reflection gives a reflectance approaching 100% and, provided the material of the 
light guide has a good transparency, light loss is considerably less. 

Figure 6.54 shows how light is transported in a sheet or rod RSTU of optically clear material. 
Light enters the face RU from all directions and, at each point, is concentrated into a cone having 
a total apical angle equal to twice the critical angle c. An extreme ray VW is shown reaching the 
face RS at W. It makes an angle 90 ~ - c with the normal NW. If the material has a refractive index 
of 1.5, c will be 43 ~ so that the angle of incidence at W will be 90 ~ - 4 3  ~ or 47 ~ which is greater 
than the critical angle for the material. The ray will then be reflected and will zigzag down the 
sheet and leave parallel to ST. Rays incident on RU at less extreme angles will either be reflected 
in a similar manner or travel straight through. 

The material can be bent (Figure 6.55) provided that the bend is not so sharp that the rays are 
incident at less than the critical angle. To facilitate bending, fibres, typically 50 lam to 150 lam in 
diameter, are used bundled together in a 'cable' about 10 mm in diameter. These are encased in 
a protective sheath. Each fibre is coated by a material with a lower refractive index than the fibre 
itself to prevent the leakage of light due to surface imperfections and contact with other fibres. 
Low voltage tungsten halogen lamps are the sources commonly used but high intensity discharge 
lamps may be used for large applications. The emitting end of the fibre-optic cable may be 
shaped or have an optical device to distribute the light in the required fashion. Light attenuation 
may vary from 2% to 12% per metre. As well as for producing decorative effects, fibre optics 
have found applications in situations where having a remote light source is beneficial. Instances 
include the lighting of the contents of museum cabinets, which can be kept sealed for lamp 
changing, the lighting of hazardous areas where there is a danger of an explosive vapour being 
ignited by a spark and, in rare instances, general lighting. II 

Light guides in the form of sheets have been used in a number of applications. A decorative 
pattern can be engraved on the surface of the sheet and the sheet edge lit. The engraving will 

u 

Fig. 6.54 Light transport by total internal refraction 
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Fig. 6.55 Ray travelling through curved sheet or rod 

allow light to escape, so producing a bright image. Alternatively, if the sheet is written on with 
a wax crayon light escapes through the wax, once again producing a bright image. In both these 
instances a black background enhances the effect. 

Sheet light guides have also been used in aircraft instrument panels. 12 Figure 6.56(a) shows 
a section through such a panel. Light is provided by the midget lamp and its light is transmitted 
through the clear plastic after passing through the red filter. It is overlaid with a layer of white 
plastic, and finished with a layer of black plastic. This final layer is machined away to give the 
desired legend, which is seen as red by transmitted light and white by reflected light. Figure 
6.56(b) shows how the edge of the sheet can be finished at an angle to direct light onto an instru- 
ment face. 

Hollow light guides consisting of prismatic surfaces are used to conduct light and provide 
self-luminous surfaces. Typically these consist of right-angle prisms facing outwards (Figure 
6.57) and running longitudinally. In the original design by Whitehead 13 the prisms were made in 
6.35 mm thick plastic sheet, but to save material and weight the prisms have subsequently been 
made in very thin sheet by using precision methods of manufacture. 14 The result is a film only 
0.5 mm in thickness with a prism depth of 0.18 mm. Since the film is so thin, it can be rolled to 
form a hollow cylinder if required. 

There is some light leakage due to irregularities in the prisms and it is this that makes the 
hollow light pipe glow. Alternatively, an opal diffuser can be inserted into the pipe or holes 
can be cut into it to allow the light to escape in a controlled fashion. High intensity discharge 
sources in parabolic reflectors at one end provide the light, the other end having either a plane 
mirror or another light source, which can be of a different colour to provide directional 
guidance. For correct functioning, these reflectors should concentrate the light within a 
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Fig. 6.56 Sheet light guides for instrument panels 

Fig. 6.57 A hollow refractive light guide 

cone angle of 55.2 ~ (that is, 2 x 27.6~ the axis of the cone being parallel to that of the light 
guide. 

These pipes can give an appearance of even brightness over several metres. Suggested appli- 
cations are mainly in road lighting; for lighting tunnels, for providing low mounting height guid- 
ance in the form of lines of light, and lighting overhead signs. 
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Problems 

1. Light is incident on one face of a refracting prism at an angle of 35 ~ What prism angle will 
produce an angle of deviation of 20 ~ if the refractive index of the optical material is 1.5? 

Answer: [36.8 ~ ] 

2. If in problem 1 a ray is incident at 20 ~ (in Fig. 6.36, page 244) what will be the deviation? 

Answer: [20.1 o] 

3. A ray passes through a parallel-sided block of thickness 20 mm and of refractive index 1.5. 
There is no absorption in the optical material of the block. What is its linear displacement and 
the approximate transmission factor when the angle of incidence is (1) 0 ~ (2) 45 ~ (3) 60~ 

Answers: [(1) 0, 0; (2) 6.6 mm, 0.90; (3) 10.3 mm, 0.83] 

4. A specular paraboloid reflector of reflectance p has a radius of r (m). What, approximately, 
is the apparent peak luminous intensity in candelas if a source of luminance L (cd/m 2) is 
placed at the focus? 

Answer: [xpr 2 (cd)] 

5. An object is placed between two vertical mirrors inclined towards each other at angles of (a) 
90 ~ and (b) 75 ~ How many images are visible when the mirrors are viewed in the plane at 
fight angles to their line of intersection? 

Answers: [(a) 3, (b)4] 

6. A parabolic trough reflector has a width in cross-section of 200 mm and a focal length of 25 
mm. Find the distance of the cross-over point on the axis of the reflector from the plane of 
the mouth of the reflector if the centre of a cylindrical source of diameter 3 mm is placed at 
its focus. 

Answer: [8333 mm] 

7. A ray at 150 ~ to the downward vertical is incident on one refracting face of a reflecting prism 
at 25 ~ and emerges from the prism at 35 ~ to the normal to the other refracting face, which is 
tilted at 15 ~ to the downward vertical (angle C in Figure 6.37). Find the prism angles, the 
deviation, and the angle of incidence of the ray on the reflecting face if the refractive index 
of the optical material is 1.5. 

Answers: [Prism angles: 35 ~ , 75 ~ and 70 ~ . Deviation: 80 ~ . Angle of incidence: 52 ~ ] 
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7 
Colour 

7.1 In t roduct ion  

In the foregoing chapters, the calculations have been devoted, in the main, to problems associ- 
ated with luminous flux distribution. The nature of that luminous flux has not been addressed 
other than to describe the light field as a region of space filled with electro-magnetic radiation 
within the visible range. 

The feature that determines whether this electro-magnetic radiation is within the visible range 
(that is, being capable of stimulating the eye to vision), is the frequency of the radiation or, alter- 
natively, the wavelength; since C = 32, where C is the velocity of light in a vacuum, f the 
frequency and 2 the wavelength. 

The visible range, in terms of wavelength, lies between about 380 nm and 780 nm (1 nm = 
10 -9 m). The relative stimulation of vision varies with the wavelength and, for daytime or 
photopic vision, the maximum value is at about 555 nm. Night-time or scotopic vision has a 
similar response curve, but the maximum is at about 500 nm. Scotopic and photopic vision are 
a consequence of the eye containing two basic receptor systems; the rods, which are very sensi- 
tive to light, but give no sensation of colour (scotopic vision) and cones, which are less sensitive 
to light but which give the sensation of colour (photopic vision). The initial mechanism of vision 
is photochemical and at high levels of illuminance the rods become saturated and play little part 
in daytime vision. Under night-time or low light conditions the lack of sensitivity of the cones 
means that they play much less of a role in the seeing process and the rods then become the main 
active visual receptors. As the light level falls the balance between the two sets of receptors 
changes and a series of intermediate responses occur in what is termed the mesopic region 
(Figure 7.1). 

In this chapter, we will assume that the cone receptors are fully operative and are producing 
colour vision. 

The frequency (or wavelength) response of the eye in this condition not only determines the 
magnitude of the sensation of vision, but also the sensation of colour produced. A continuous 
change of colour with wavelength occurs as the wavelength progresses from 380 nm through to 
780 nm; with the colour stimulated by the different frequencies changing from violet/blue, 
through greens to yellows, then orange and reds, as classically seen in the rainbow where white 
light has been split up by refraction. 

Experimentally, a remarkable discovery was made. This was that, within certain limitations, 
particular colours of light can be exactly imitated by combining three suitable primary colours 
or sets of radiations. It was also found that additivity held in this colour mixture over a wide 
range of visual conditions. 

This means that two colours can appear visually identical while a spectral analysis would 
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Fig. 7.1 Relative sensitivity curves for the eye 

reveal that they are not identical in spectral distribution. This also means that a system of colour 
measurement, based on the amounts of the three primary colours - or radiations - that are 
required to match the test colour, is possible. This metamerism is the basis of trichromatic 
colorimetry. 

This property of the eye of accepting matched colours as identical when their spectral distri- 
butions are different has led to the hypothesis that the cone receptors have three different forms 
or sensitivities; some responding mainly to red light, some to green and some to blue. In fact, 
there is evidence that there are three different types of cone receptors but that their spectral 
responses, in terms of maximum response, are yellow-orange, green and blue-violet. The spec- 
tral sensitivity curves for these cones, given symbols p, 7 and fl respectively, are shown in Figure 

7.2. 
The number of cones is not divided equally between these three responses and one estimate 

suggests ratios of 40 to 20 to 1 for p, ?' and fl respectively. 
An important feature of the eye is that almost all the cones are concentrated on the optical 

axis of the eye at one small spot on the retina (the light sensitive layer at the back of the eye). 
The rods are distributed over the rest of the retina. There are about 6 million cones and 120 
million rods in the eye. The fovea, or yellow spot, where the cones are situated is about 0.25 mm 
in diameter. This means that the angular extent of the measuring system becomes a factor in the 
specification. Thus, the CIE standard data produced in 1931 is based on the angle being between 
1 o and 4 ~ usually taken as 2 ~ but in 1964 data for a l0 ~ field was also adopted by the CIE for 

applications that exceed the 4 ~ field size. 
It is necessary to make certain assumptions for a measurement system to have a wide appli- 

cation. We must assume that all eyes have the same colour response and also that any match will 

hold for a wide range of luminance and observer adaptation. 
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Fig. 7.2 Relative spectral sensitivity curves for the three types of cones 

The psycho-physical aspects of colour are both fascinating and complex and are beyond the 
scope of this chapter which, of necessity, concerns itself mainly with calculations. It is sufficient 
for our purposes to note that a colour specification merely expresses equivalence between two 
sets of physical stimuli and their capacity to produce a particular colour sensation. The primaries 
commonly chosen are red, green and blue. 

7.2 The R, G, B system 

The basic concept is expressed in the following way. Let a colour to be matched be denoted by 
(C) and the reference stimuli by [R], [G] and [B]. Then after the match is achieved 

c(C) = R[R] + G[G] + B[B] (7.1) 

where R, G and B are the amounts of [R], [G] and [B] required for the match. The (C), [R], [G] 
and [B] terms are, in effect, 'labels' and C, R, G and B the quantities. 

So, 

c = R + G + B (7.2) 

R, G and B are called the tristimulus values. 
Dividing through equation (7.1) by equation (7.2) gives: 

where 

and 

1.O(C) = r[R] + g[G] + b[B] 

R G B 
r= g =  b =  

R + G + B  R + G + B  R + G + B  

r + g + b =  1.0 

r, g and b are the chromaticity coordinates of (C). 
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Fig. 7.3 The simple R, G chromaticity diagram 

This equation is called a unit trichromatic equation and the amount of (C) represented is one 
trichromatic unit. 

The advantage of this unit equation is that once two of the coordinates are known, the other 
coordinate is also fixed. Thus, a chromaticity diagram could be produced as shown in Figure 
7.3. 

As a simple example, let us consider two colours C I and C 2 combined to produce a third 
colour C 3. Let us assume that each colour contributes one trichromatic unit to the mixture. 
Then 

c3(C3) = (CI) + (C 2) 
= (ri + r2)[R] + (gl + g2 )[G] + (bl + b2)[B] 

c 3 represents, in this case, the two trichromatic units present in the mixture. To obtain the unit 
equation values for r, g and b we must divide the sum of the coordinates by 2, that is: 

(C3) = r3[R ] + g3[G] + b3[B] 

where 

r 3 = ~(r 1 + r 2) 

g3 = ~g l  + g2) 

b 3 = ~ b  I + b 2) 
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The equivalent sign (=) used above can be used to indicate that a match exists between (C) and 
the [R], [G ], [B] mixture in respect of colour appearance only and not of spectral distribution. 

Experimentally, it is found that the pure spectral colours cannot be matched by adding other 
spectral colours in this way. This is because they are fully saturated colours and adding spectral 
colours together desaturates them; that is, it moves them towards the white position on the 
diagram. 

However, it is possible to obtain a match that will enable the coordinates of the spectral 
colours to be obtained if the spectral colour to be matched is itself desaturated by adding an 
amount of the appropriate primary to it and matching this mixture against the mixture of the 
other two primaries. Algebraically, this is expressed as: 

r + c = g + b  

So, 

c = g + b - r  

Here we encounter the concept of a negative amount of colour. Thus, a new chromaticity 
diagram can be produced which shows the locus of all the spectral colours, as long as we allow 
for negative values (see Figure 7.4). 
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IX] 
1.o 

7 . 3  T h e  C I E  s y s t e m  

In 1931, the CIE adopted a colorimetric system that was designed for practical use in colour 
specification and measurement. It took the system described above and modified it to make it 
more convenient to use in practice. 

The main changes were 

1. A new set of theoretical primaries were adopted (X, Y and Z) that eliminated the need for 
negative quantities in the chromaticity calculations. 

2. By a theoretical device, the Y primary was made the measure of the luminance and, conse- 
quently, the X and Z primaries have zero luminance. 

3. Units for X, Y and Z were chosen that placed equal energy white at the centre of the [XYZ] 
triangle. This theoretical illuminant has a distribution of constant power per unit wavelength 
interval throughout the visible spectrum. 

4. X, Y and Z values were selected that gave the most convenient shape for the spectral locus on 
the [XYZ] triangle. 

The resulting CIE 1931 (x, y)chromaticity diagram is shown in Figure 7.5. 
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Fig. 7.6 A simplified illustration of locating a zero luminance point 

It is perhaps easy to see that, in terms of a diagram, moving the reference points to positions 
outside the spectral locus means that all measurements to real colours must be positive. It is 
certainly not immediately obvious how two of these new primaries can have zero luminance. A 
very simple illustration as to how it is possible to arrange this will now be attempted. Consider 
Figure 7.6. 

A colour C lies on the GB axis of the RGB chromaticity diagram and so consists of  a mixture 
of G and B primaries. If the amount of the G primary is steadily reduced, C will eventually be 
located at B and contain no G primary. If point C is moved even further down the diagram the 
amount of the G primary in the mixture becomes theoretically negative. Of necessity, each colour 
carries with it not simply the attribute of colour but also luminance (although the diagram is not 
designed to indicate this directly). 

Once the contribution of the G primary to the mixture becomes negative so, theoretically, 
does its luminance. In terms of luminance it is possible to see that a position will be reached 
where the negative luminance of the G primary component exactly equals the positive luminance 
of the B primary component. Thus, in algebraic terms, a point of zero luminance has been 
reached, relative to the G and B primaries. 

This means that, on a diagram, and algebraically, zero luminance points can be specified 
(although this theoretical mixture cannot be realized in practice) and related to the real primaries 
G and B for calculation purposes. 

It is by similar considerations to those of the simplified example given above that both the X 
and Z reference stimuli points are placed at positions of zero luminance relative to the real 
primaries used to set up the system. 

Results obtained by using real RGB primaries can, therefore, be transformed algebraically 
into terms of the CIE XYZ primaries. 
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There is a very real advantage in employing two reference stimuli that have zero luminance, 
since the amount of light represented by a colour equation can then be computed directly from 
the third tristimulus value, in this case Y. 

The locus of spectral colours was determined experimentally using a number of observers in 
terms of RGB and then translated into XYZ coordinates, as shown in Figures 7.4 and 7.5. 

The assumption was made that equal quantities of the XYZ primaries would produce an equal 
energy white. This is a theoretical illuminant that has a distribution of constant power per unit 
wavelength interval throughout the visible spectrum. 

Since the Y value is an exclusive measure of luminance, the CIE spectral tristimulus curve 
(colour matching function) for Y is identical with the V(/~) response curve for the standard 
observer (assumed to represent the average observer's visual response), see Figure 7.1. 

Thus, the colour matching function denoted 

y(z) = v(~) 

The ~ and 2 functions for the spectral locus are adjusted accordingly. If the 2, y and 2 values 
are separately totalled they will be found to give three equal totals (see Table 7.1). 

This will be seen to be necessary once the assumption was made of equal energy white giving 
equal tristimulus values of X, Y and Z. 

Since, 

X = k j" V(2)~(;t) d2 and 
Y = k J" v(2)y(2) d2 or 
Z = k j" V(2)2(;t) d2 or 

v = p ( Z ) s ( z )  

= # ( z ) s ( z )  

= T(Z)S(2 )  

where 

k _.. 

100 

f s(z)y(z) dZ 

Table 7.1 The Tristimulus values of spectral colours 

Wavelength 
(nm) s )5 s 

Wavelength 
(nm) 

400 0.0143 0.0004 0.0679 
410 0.0435 0.0012 0.2074 
420 0.1344 0.0040 0.6456 
430 0.2839 0.0116 1.3856 
440 0.3483 0.0230 1.7471 
450 0.3362 0.0380 1.7721 
460 0.2908 0.0600 1.6692 
470 0.1954 0.0910 1.2876 
480 0.0956 0.1390 0.8130 
490 0.0320 0.2080 0.4562 
500 0.0049 0.3230 02720 
510 0.0093 0.5030 0.1582 
520 0.0633 0.7100 0.0782 
530 0.1655 0.8620 0.0422 
540 0.2904 0.9540 0.0203 
550 0.4334 0.9950 0.0087 

56O 
570 
580 
59O 
600 
610 
62O 
63O 
64O 
65O 
66O 
670 
68O 
69O 
700 
710 

0.5945 
0.7621 
0.9163 
1.0263 
1.0622 
1.0026 
0.8544 
0.6424 
0.4479 
0.2835 
0.1649 
0.0874 
0.0468 
0.0227 
0.0114 
0.0058 

0.9950 
0.9520 
0.8700 
0.7570 
0.6310 
0.5030 
0.3810 
0.2650 
0.1750 
0.1070 
0.0610 
0.0320 
0.0170 
0.0082 
0.0041 
0.0021 

0.0039 
0.0021 
0.0017 
0.0011 
0.0008 
0.0003 
0.0002 
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p(,~) is the spectral reflectance 
//(2) is the spectral luminance factor 
T(2) is the spectral transmittance 
Sift) is the relative spectral power distribution 

k is a normalizing factor that cancels when the chromaticity coordinates are calculated, k is 
chosen such that Y = 100 for the perfect diffuser with a reflectance factor p(2) equal to 1.0 for 
all wavelengths. If k is put equal to 683 and S(2) is replaced by P(2) in watts per steradian per 
square metre, then Y is the luminance in candelas per square metre (cd/m2). The chromaticity 
coordinates are the ratio of each of the tristimulus values to their sum. 

So, 

X Y Z 
x =  , y =  and z = 

X + Y + Z  X + Y + Z  X + Y + Z  

Example 1 Below, in spreadsheet form, Table 7.2 is the calculation of the X, Y and Z values 
for a particular light source and, hence, the chromaticity coordinates. In practice, the integra- 
tion is replaced by a summation. To avoid lengthy repetition the wavelength bands are chosen 
as 20 nm; in practice 5 nm and 10 nm bands are usual. The range has also been limited to 400 
to 700 nm: 

Table 7.2 Spreadsheet calculation of the XYZ values for Example 1 

i (z)  yC~) ~(2) s(~) s(z) x y(2) p(z) x/k y/k z/k 

400 0.0143 0.0004 0.0679 63.3 0.02532 0.10 0.1 0 
420 0.1344 0.0040 0.6456 98.1 0.3924 0.10 1.32 0.04 
440 0.3483 0.0230 1.7471 122 2.7945 0.10 4.23 0.279 
460 0.2908 0.0600 1.6692 123 7.386 0.10 3.58 0.739 
480 0.0956 0.1390 0.8130 124 17.2221 0.10 1.18 1.722 
500 0.0049 0.3230 0.2720 112 36.2083 0.10 0.1 3.621 
520 0.0633 0.7100 0.0782 96.9 68.799 0.10 0.61 6.88 
540 0.2904 0.9540 0.0203 102 97.4034 0.10 2.97 9.74 
560 0.5945 0.9950 0.0039 105 104.7735 0.10 6.26 10.48 
580 0.9163 0.8700 0.0017 97.8 85.086 0.10 8.96 8.509 
600 1.0622 0.6310 0.0008 89.7 56.6007 0.10 9.53 5.66 
620 0.8544 0.3810 0.0002 88 .1  33.5661 0.10 7.53 3.357 
640 0.4479 0.1750 0.0000 87.8 15.365 0.10 3.93 1.537 
660 0.1649 0.0610 0.0000 87.9 5.3619 0.10 1.45 0.536 
680 0.0468 0.0170 0.0000 84 1.428 0.10 0.39 0.143 
700 0.0114 0.0041 0.0000 76.3 0.31283 0.10 0.1 0.03 

Totals 532.72505 52.2 53.27 

100 
k = 

532.7 
X = 9.79439244 
Y = I 0  
Z = 11.7681911 

0.43 
6.333 

21.23 
20.55 
10.07 
3.049 
0.758 
0.207 
0.04 
0.02 
0 
0 
0 
0 
0 
0 

62.69 



700 
x = k E S(x)~(~) 

400 

700 
r = k E s(x)y(z) 

400 

700 
z = k Z s(~)~(~) 

400 

X 9 7 . 9 4  
x =  = = 0 . 3 1 0  

X + Y + Z  9 7 . 9 4  + 100 + 117 .7  

Y 100  
y =  = ~ = 0 . 3 1 6  

X +  Y + Z  3 1 5 . 6  

z = 1 - x - y = 1 - 0 . 3 1 0  - 0 3 1 6  = 0 . 3 7 4  ( s ee  F i g u r e  7 . 7 ( a ) )  

7.3 The CIE system 2 7 9  

1.0 

0.8 

0.6 

500 

0.4 ~\/ 0.310 T" Source 

0.2 0.316 

1~r 0.2 0.4 0.6 

Fig. 7.7(a) The  x, y values for the source in Example  1 of  Sect ion 7.3 

0.8 1.0 
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Example 2 Below, in spreadsheet  form, Table 7.3 is the calculation for the X, Y and Z values 

for the light reflected from a test sample. The light source is the same as that used in Example  1 

and the reflectance values p(2) are given in the table. 

700 
x = k E s(;t)p(;t)~(;t) 

400 

700 
r = k E s(;t)p(;t)y(;t) 

400 

700 
z = k E s(;t)p(;t)2(;t) 

400 

X 44.73 
x = = = 0.266 

X + Y + Z 44.73 + 39.2 + 84.4 

Y 39.2 
y = = ~ = 0.233 

X + Y + Z 168.3 

Z = 1 - x -  y = 0.501 (see Figure 7.7(b)) 

Table 7.3 Spreadsheet calculation of the XYZ values for Example 2 

~ (~) ~ (~) ~ (~) s(x) s(x) • ~ (~) p(x) X/k Y/k Z/k 

400 0.0143 0.0004 0.0679 63.3 0.02532 0.40 0.36 0.01 1.719 
420 0.1344 0.0040 0.6456 98.1 0.3924 0.60 7.91 0.235 38 
440 0.3483 0.0230 1.7471 122 2.7945 0.70 29.6 1.956 148.6 
460 0.2908 0.0600 1.6692 123 7.386 0.75 26.8 5.54 154.1 
480 0.0956 0.1390 0.8130 124 17.2221 0.80 9.48 13.78 80.58 
500 0.0049 0.3230 0.2720 112 36.2083 0.70 0.38 25.35 21.34 
520 0.0633 0.7100 0.0782 96.9 68.799 0.60 3.68 41.28 4.547 
540 0.2904 0.9540 0.0203 102 97.4034 0.30 8.9 29.22 0.622 
560 0.5945 0.9950 0.0039 105 104.7735 0.10 6.26 10.48 0.04 
580 0.9163 0.8700 0.0017 97.8 85.086 0.30 26.9 25.53 0.05 
600 1.0622 0.6310 0.0008 89.7 56.6007 0.40 38.1 22.64 0.03 
620 0.8544 0.3810 0.0002 88.1 33.5661 0.50 37.6 16.78 0 
640 0.4479 0.1750 0.0000 87.8 15.365 0.70 27.5 10.76 0 
660 0.1649 0.0610 0.0000 87.9 5.3619 0.75 10.9 4.021 0 
680 0.0468 0.0170 0.0000 84 1.428 0.80 3.15 1.142 0 
700 0.0114 0.0041 0.0000 76.3 0.31283 0.80 0.7 0.25 0 

Totals 532.72505 238.2 209 449.6 

100 
k=  

532.7 
X=  44.73 
Y = 39.23 
Z = 84.40 
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Fig. 7.7(b) The x, y values for the reflected light in Example 2 of Section 7.3 

Example 3 Below, in spreadsheet form, Table 7.4 is the calculation for X, Y and Z values for 
the light reflected from a test sample. The test sample is the same as that in Example 2, but the 

light source has been changed. 

700  

x = k E s(;t)p(;t)~(;t) 
400  

7OO 

r = k E s(;t)p(;t)y(;t) 
400  

700 

z = k Z s(,~)p(~)~ (,~) 
400 

X 
X = =- 

49.0 
= 0.434 

X + Y + Z 49.0 + 38.29 + 25.6 
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Y 38.29 
y =  = ~ = 0.339 

X +  Y + Z  112.9 

z = 1 - x - y = 1 - 0.434 - 0.339 = 0.227 

It will be noted how the change of light source in this example compared with Example 2 has 
resulted in the colour moving on the CIE chromaticity diagram towards the red-yellow area of 

the diagram (see Figure 7.7(c)). 

7.3.1 CHROMATIC ADAPTATION 

The objective assessment of colour shifts due to changes in illuminant is complicated by chro- 
matic adaptation. When the eye is exposed to a saturated colour, the colour receptors most highly 
stimulated become fatigued and the visual sensation moves towards the complementary colour 
to the stimulating colour. In addition, the eye/brain combination also appears to adjust when 
different light sources are experienced successively, so that what are seen as large changes when 
seen simultaneously are readily accepted when viewed successively. This is called the colour 

constancy effect. 
Von Kries (1902) suggested that a correction could be made for chromatic adaptation, if the 

assumption was made that the shape of the sensitivity curves for the three types of receptor did 
not change due to adaptation, but the relative magnitude of the responses of the receptors to 

Table 7.4 Spreadsheet calculation of the XYZ values for Example 3 

A, .~ (2) 35 (2) ~, (2) S(;t ) S(2 ) • 35 (2) P(2 ) X/k Y/k Z/k 

400 0.0143 0.0004 0.0679 15 0.006 0.40 0.1 0 
420 0.1344 0.0040 0.6456 21 0.084 0.60 1.69 0.05 
440 0.3483 0.0230 1.7471 29 0.667 0.70 7.07 0.467 
460 0.2908 0.0600 1.6692 38 2.28 0.75 8.29 1.71 
480 0.0956 0.1390 0.8130 48 6.672 0.80 3.67 5.338 
500 0.0049 0.3230 0.2720 60 19.38 0.70 0.21 13.57 
520 0.0633 0.7100 0.0782 72 51.12 0.60 2.73 30.67 
540 0.2904 0.9540 0.0203 86 82.044 0.30 7.49 24.61 
560 0.5945 0.9950 0.0039 100 99.5 0.10 5.95 9.95 
580 0.9163 0.8700 0.0017 114 99.18 0.30 31.3 29.75 
600 1 . 0 6 2 2  0.6310 0.0008 129 81.399 0.40 54.8 32.56 
620 0.8544 0.3810 0.0002 144 54.864 0.50 61.5 27.43 
640 0.4479 0.1750 0.0000 158 27.65 0.70 49.5 19.36 
660 0.1649 0.0610 0.0000 172 10.492 0.75 21.3 7.869 
680 0.0468 0.0170 0.0000 185 3.145 0.80 6.93 2.516 
700 0.0114 0.0041 0.0000 198 0.8118 0.80 1.81 0.649 

Totals 539.2948 264 206.5 

k 
100 

539.7 
X = 49.02 
Y = 38.29 
Z = 25.64 

0.407 
8.135 

35.47 
47.57 
31.22 
11.42 
3.378 
0.524 
0.04 
0.06 
0.04 
0.01 
0 
0 
0 
0 

138.3 
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Fig. 7.7(c) The x, y values for the reflected light in Example 3 of Section 7.3 

each other did change. The Von Kries method of correction still finds use in the CIE method of 
calculating the General Colour Rendering Index of light sources (see Section 7.9.2), even 
though experimental evidence suggests that predictions using this type of correction do not give 
very satisfactory results. Work is still continuing on the production of a more satisfactory 

method. 

7.3.2 COLOUR MIXTURE ON THE CHROMATICITY DIAGRAM 

In the chromaticity diagram of Figure 7.8, three colours are indicated, C l, C 2 and C 3. C 3 is 
produced by a mixture of C l and C 2 and is, therefore, on the line joining them. 

Let us choose an amount of C l such that X = x l, Y = Y l and Z = z I. The luminance of this 
amount of C 1 will be proportional to Y. Let this luminance be LyY (where Ly is a constant) and 

from above Y = Y l so it is equal to Ly, Y l" 
Thus, for 1 luminance unit of C 1 we may write 

Xl Yl Zl 
X = ~ ,  Y = ~ ,  Z = ~  
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Fig. 7.8 The two colour mixture indicated on the CIE chromaticity diagram 
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and for m I luminance units of C l we may write 

mix  I mlY 1 mlZl 
X = ~ ,  Y =  , Z = ~  

L~l L~l Cyl 

Similarly for C2, 

m2x 2 m2Y 2 m2z2 
X = ~ ,  Y =  , Z = ~  

Let the amounts of these two colours be additively mixed together: 

mix  1 m2x 2 
X = ~ 4 - ~ ,  Y = ~  

Lyy, Lyy 2 

mlYl m222 mlZl m2z 2 
- t - ~ ,  Z = ~ +  

LyYl LyY2 LyYl LyY2 

and so 
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X + Y + Z =  
m l x  1 m 2 x  2 m l Y  1 m2Y2 
~ + ~ + ~ + ~  

L,y, L,y . L, Yl L,y  

m l ( x l  + Yl + Zl) 

LyYl 

m2(x2  + Y2 + z2) 

LyY2 

m 1 m 2 

Yl Y2 
since (x + y + z) = 1.0. 

This gives 

X 3 = 

m i x  1 

Yl 

m2x2 

Y2 

m I m 2 
+ ~  

Yl Y2 

Y3 = 
m I + m  2 

m I m 2 
+ ~  

Yl Y2 

and 

Z 3 = 1 - X 3 -- Y3 

m l z  1 m2z  2 
+ ~ +  

L, yl 

Example Let three luminance  units of  a colour  of  chromatic i ty  coordinates  x = 0.2, y = 0.5 be 

mixed with two luminance  units of  a colour  of  chromat ic i ty  coordinates  x = 0.50, y = 0.20. 

The new chromat ic i ty  coordinates  are given by 

X ---- 

3 x 0 .2  2 • 0.5 

0.5 0.2 

3 2 

0.5 0.2 

= 0 . 3 8 8  

y ~. 
3 + 2  

3 2 

0.5 0.2 

= 0 . 3 1 3  

Z = 1 - 0.388 - 0.313 

= 0.299 
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Note To complete the specification of a surface colour under a particular illuminant, it is neces- 
sary to quote both the chromaticity coordinates and the luminance factor Y. The luminance factor 
is defined as follows: 

The ratio of the luminance of the body to that of a perfectly reflecting or transmitting 
diffuser identically illuminated, symbol ft. 

7.3.3 DOMINANT WAVELENGTH AND PURITY 

If a line is drawn from a chosen white point on the chromaticity diagram, such that it passes 
through the colour to be specified and intersects the spectral locus (Figure 7.9), the wavelength 
at the point of interception is called the dominant wavelength. This is because the colour can be 
matched by adding appropriate amounts of this dominant wavelength and the white. When a 
colour is on the purple side of the white, where there is a gap in the spectrum locus, the conven- 
tion is to take the complementary wavelength as the dominant wavelength. 

The purity is the measure of the saturation of the colour and is determined by the proportions 
of the monochromatic source and the white that are needed to match the test colour additively. 

1.0 
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0.6 
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0.4~/ " ~  N ~  co ~ 
W 

0.2 

0 I , ~ "  I I I ",~ 
I><O~ 0.2 0.4 0.6 0.8 1.0 

Fig. 7.9 Illustration of the meaning of dominant wavelength 
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Fig. 7.10 The calculation of dominant wavelength and purity 

The excitation purity (Pe) can be calculated from the ratio of the distance from the chosen 
white point to the colour, to the distance from the white point to the dominant wavelength 
WC/WD in Figure 7.9. 

There are a number of ways that the purity can be calculated, and so the appropriate CIE 
document should be consulted for full information (CIE 1986a: Colorimetry, 2nd edition, 
Publication No. 15.2). 

A simple example is given below of the calculation of this means of specification. 

Example Given that the chromaticity coordinates of a test colour are x = 0.2, y = 0.273 and 
assuming a reference white with chromaticity coordinates of x = 0.48, y = 0.408, find the domi- 
nant wavelength and the excitation purity. 

From Figure 7.10 it will be seen that a line from the reference white point through the test 
colour intersects with the spectral locus at x = 0.069, y = 0.201 which are the coordinates for 2 
= 485 nm. 
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The dominant wavelength is therefore 485 nm. 
The excitation purity Pe is given by Pe = W C / W D .  

So, 

W C  x w - x c 0.448 - 0.2 
P e = ~ = ~ +  

W D  x w - x d 0.448 - 0.069 

= 0.65 

Obviously, the closer to 1.0 the value of Pe' the more saturated the colour. 

7 . 4  N o n - u n i f o r m i t y  of  t h e  CIE ( 1 9 3 1 )  d i a g r a m  

In the 1940s, researchers discovered serious weaknesses in the 1931 CIE diagram, in that the 
'noticeable difference' in colour terms of x and y varied across the diagram. Various attempts 
have been made to produce a more uniform chromaticity scale diagram. The one that we shall 
use in the next section is the CIE 1960 uniform chromaticity scale (UCS) diagram. This diagram 
exchanges x and y for u and v. This scale gives improved uniformity in the centre of the diagram 
near the full radiator locus - see Figures 7.11 and 7.12. The MacAdam ellipses shown in these 
diagrams relate to the minimum perceptible colour differences across the diagrams. 
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Fig. 7.11 CIE diagram (1931) with MacAdam ellipses (enlarged ten times) 
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Fig. 7.12 CIE UCS diagram (1960) with MacAdam ellipses (enlarged ten times) 

The transformation from the 1931 system to the 1960 diagram is achieved as follows: 

4 X  4 x  
U ~ = 

X + 15Y+ 3Z -2x + 12y + 3 

6Y 6y 

X+  15Y+3Z - 2 x +  12y+3  

At the time of writing, attempts are still being made to construct a fully acceptable uniform 
colour diagram. A footnote to CIE document 13-3 (1995) states: 

The 1960 UCS diagram and 1964 Uniform Space are declared obsolete recommendation 
in CIE 15-2 (1986), but have been retained for the time being for calculating colour render- 
ing indices and correlated colour temperature. 

7.5  Cor re la ted  co lour  t e m p e r a t u r e  

This is a method of relating the colour appearance of a light source to that of the Planckian (Full) 
Radiator. The Planckian Radiator is a thermal radiator with a spectral distribution defined 
uniquely by the temperature. 

The defining equation is: 

M th _ 
e~ 

Cl 

25 
(e(C2/2T)- 1) -1 x 10 .9 (Wm -2 nm -1) 

where 



1.0 

C 1 = 3.7418 x 10 -16  (Wm -2) 
C 2 = 1.4388 x 10 -2 (mK) 
2 is in metres 

The result is expressed in Wm -2 per nm band to bring it in line with the general use of nm for 
spectral distributions (hence the 10 - 9  multiplier). 

From the calculated spectral distribution the x and y coordinates at each temperature may be 
obtained and this gives rise to the Full Radiator locus shown in Figure 7.13. For the purpose of 
calculating the correlated colour temperature, the 1931 CIE (x, y) chromaticity coordinates are 
converted into the 1960 CIE UCS (u, v) coordinates. The appropriate part of the chromaticity 
diagram isshown in Figure 7.14. 

If the test source has u, v values that lie on the Planckian locus then its colour temperature is 
that of the Full Radiator at that temperature. However, such exact coincidence is unlikely and so 
if the u, v values lie close to the Full Radiator locus it can be referred to by its correlated colour 
temperature. 
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Fig. 7.13 The Full Radiator locus (1931 diagram) 
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The correlated colour temperature is found by drawing a normal from the Full Radiator locus 
that passes through the u, v plot for the test source. (This is called an isotemperature line.) 
Obviously, correlated colour temperatures have most significance when they lie close to the Full 
Radiator locus. 

Example A lamp has chromaticity coordinates in the CIE (1931) system of x = 0.439 and y = 
0.412. Determine its correlated colour temperature. 

First the x, y values must be converted into the u, v values of the CIE (1960) UCS system. 

U " -  

4x 

-2x  + 12y + 3 

4 x 0.439 

-2  x 0.439 + 12 x 0.412 + 3 

= 0.249 

k '  - -  

6y 

-2x  + 12y + 3 

6 x 0.412 

-2  x 0.439 + 12 x 0.412 + 3 

= 0.350 
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When these u, v values are plotted on the chromaticity diagram in Figure 7.14 it gives a corre- 
lated colour temperature of 3000 K. 

7.6 Colour sample systems 

7.6.1 THE MUNSELL SYSTEM 

The Munsell System is a well-known logical means of ordering colour samples according to three 
attributes; namely, hue, value and chroma. 

Hue Hue is defined as an attribute of visual sensation that gives rise to colour names, such as 
blue, green, yellow, red, purple, etc. 

In the Munsell System, hues are indicated by initials, so that BG is a hue lying between B and 
G, where B represents blue and G green. The system has 10 basic hues, each of which have 10 
steps, as the colour balance changes between one colour and the next. 

The 10 basic hues of the Munsell System are: 

B, BG, G, GY, Y, YR, R, RP, P and PB 

Value This is a specific Munsell term related to luminance factor and so indicates the increas- 
ing lightness on a scale from 0 to 10; 0 being black and 10 white; the greys within this range 
having values from 1 to 9. This attribute of lightness or value is extended to the non-achromatic 
colours. 

Chroma In the Munsell System, this represents numerically the increasing intensity or vivid- 
ness of the colour. 

The arrangement of the Munsell samples The arrangement of the colour samples in this system 
is indicated in Figures 7.15(a) and (b). The numerical scale of hue changes is clockwise and, for 
each of the basic hue segments, there are 10 steps as the colour changes towards the next basic 
hue and then beyond it. When the number reaches 5 the centre of the hue segment is reached and 
that hue is a maximum. As the number increases above 5 the influence of that hue diminishes. 
The colour samples for each hue are placed in rows according to their value (lightness); 0 being 
at the bottom and 10 at the top. (In practice, 0 and 10 are omitted being simply black and white. 
The samples would then be in value rows 1 to 9.) The intensity or chroma of the colour increases 
from left to fight from 0 to 12. 

The Munsell order code is sometimes termed the HVC system, because it gives a specifica- 
tion in the order Hue, Value and Chroma. Thus, a colour is specified in terms of three numbers 
such as 10R5/8. In this case the specification calls for the saturated red hue 10R of a lightness 
half-way between black and white and the / indicates that the following number represents 
chroma which, in this case, is becoming quite strong at 8. If a sample was given the specifica- 
tion 2.5GY, it would mean that it was intended to lie mid-way between the samples of Munsell 
hues 2GY and 3GY. 

The Munsell System is based on an attempt to make the changes in steps that are perceptu- 
ally equal (obviously, such perceptual equality is not necessarily perfect). The Munsell System 
has the advantage that it is widely known and used. 
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7.6.2 THE NCS SYSTEM (NATURAL COLOUR SYSTEM) 

This system is based on six basic chromatic colours. Four of these are red, yellow, green and 
blue. They are chosen because no trace of any other chromatic colour can be seen in them. Black 
and white, which contain no trace of the chromatic colours, are then included on a constant hue 
triangle to indicate the degree of desaturation of the hue. 

In atlas form, the hues represent the pages and the constant hue triangle the arrangement of 
the samples on the pages. Figures 7.16(a) and (b) show the form of the hue circle and the 
constant hue triangle. (Note that on the triangle black is represented by S.) 

The hue specification R3OB indicates a hue where there is a 70% resemblance to red and a 
30% resemblance to blue; the sum of the resemblances always adding to 100. 

On the constant hue triangle, S + W + C = 100. Arrays of constant blackness and whiteness 
lie parallel to the WC and SC sides of the triangle, while arrays of constant chromaticness lie 
parallel to the WS side of the triangle. 

This system differs from the Munsell System in that the spacings do not coincide with visual 
equality. However, the system is being used in practice. 

7.7 Standard  i l luminants  

The colour appearance of a reflective sample or filter will depend, in part, on the spectral power 
distribution of the light source used. In 1931, the CIE laid down spectral distributions for three 
standard illuminants designated S A, S B and S C. In fact, the spectral distribution used for 
Examples 1 and 3 in Section 7.3 was an abbreviated version of Sc; while that for Example 2 was 
S A. The use of S B is no longer recommended. 

S A is produced by a non-halogen gas-filled tungsten lamp operating at a colour temperature 
of 2856 K, which is produced by running the lamp at about 2790 K. The difference between the 
colour temperature and the actual temperature is a consequence of the practical lamp having a 
spectral distribution close to the theoretical Planckian Radiator distribution at this lower temper- 
ature. The S c distribution is obtained by using the source S A in conjunction with a liquid filter. 
The colour temperature of S c is 6774 K. 

In 1967, the CIE introduced a recommendation for a standard illuminant to represent daylight 
at 6500 K, designated D65. In addition, a method for obtaining spectral power distribution in the 
range 4000 to 25 000 K was given (Figure 7.14). 

7.8  Subt ract ive  colour mix ture  

This is the name given to changing colours by removing wavelengths from the original spectral 
distribution. Consider a simple example. 

If an equal energy white spectrum is passed through a yellow filter that absorbs mainly blue 
wavelengths then the transmitted light will contain mainly green, yellow and red wavelengths 
and, when reflected from a white surface, the light will appear a weak yellow. 

If this light is then reflected from a surface that reflects mainly blue-green wavelengths, so that 
under a complete white spectrum it would appear as cyan, it actually appears a weak green; this is 
because the blue wavelengths have already been effectively removed from the white spectrum by 
the yellow filter and the red wavelengths have mainly been removed by absorption at reflection. 

Tables 7.5 and 7.6 indicate the process; Table 7.5 shows the result of combining the light 
source with the yellow filter and Table 7.6 the result of also reflecting this light from the blue- 
green surface. 
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Table 7.5 Spread calculation of the XYZ values for the result of  passing an equal energy white spectrum 

through a yellow filter 

;r (;t) ~ (X) ~ (;t) S(X) Sf2) x ~ (~) r(2) X/k Y/k Z/k 

400 0.0143 0.0004 0.0679 1 0.0004 0.40 0 0 0.03 
420 0.1344 0.0040 0.6456 1 0.004 0.30 0 0 0.194 

440 0.3483 0.0230 1.7471 1 0.023 0.40 0.14 0 0.699 

460 0.2908 0.0600 1.6692 1 0.06 0.50 0.15 0.03 0.835 

480 0.0956 0.1390 0.8130 1 0.139 0.70 0.1 0.1 0.569 
500 0.0049 0.3230 0.2720 1 0.323 0.80 0 0.258 0.218 

520 0.0633 0.7100 0.0782 1 0.71 0.80 0.1 0.568 0.06 
540 0.2904 0.9540 0.0203 1 0.954 0.80 0.23 0.763 0.02 

560 0.5945 0.9950 0.0039 1 0.995 0.80 0.48 0.796 0 

580 0.9163 0.8700 0.0017 1 0.87 0.80 0.73 0.696 0 
600 1.0622 0.6310 0.0008 1 0.631 0.80 0.85 0.505 0 
620 0.8544 0.3810 0.0002 1 0.381 0.80 0.68 0.305 0 

640 0.4479 0.1750 0.0000 1 0.175 0.80 0.36 0.14 0 

660 0.1649 0.0610 0.0000 1 5.3619 0.80 0.13 0.05 0 

680 0.0468 0.0170 0.0000 1 0.017 0.80 0 0.01 0 

700 0.0114 0.0041 0.0000 1 0.0041 0.80 0 0 0 

Totals 10.6484 3.96 4.235 2.625 

100 
k = ~  

10.65 
X = 37.22 

Y = 39.77 

Z = 24.65 

F r o m  Table  7.5 

X 37.2 37.2 
x = = = ~ = 0 .366  

X + Y + Z 37.2 + 39.8 + 24 .6  101.6 

y 

Y 39.8 
= ~ = 0 .392  

X + Y + Z 101.6 

z = 1 - 0 .366  - 0 .392  = 0 .242  

F r o m  Table  7.6 

X 10.28 
X ~  -- 

X + Y + Z  1 0 . 2 8 +  1 5 . 5 4 + 1 1 . 4 8  

10.28 
= ~ = 0 .276  

37.3 

y 

Y 15.54 
= ~ = 0 .417  

X + Y + Z 37.3 

z = 1 - x - y = 1 - 0 .276  - 0 .417  = 0 .307  

T h e  c o l o u r  shif ts  f r o m  the equa l  e n e r g y  whi te ,  to the whi t e  p lus  y e l l o w  filter, and  to the c o l o u r  

af ter  r e f l ec t ion  as ind ica ted  in F igu re  7.17.  
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Table 7.6 Spreadsheet calculation of the XYZ values obtained when the equal energy white spectrum is first 
passed through the yellow filter and then reflected from a blue-green surface 

x ~(x) ~(x) ~(x) s(x) s(x) x ~(x) ~(x) p(x) X/k Y/k Z/k 

400 0.0143 0.0004 0.0679 1 0.0004 0.40 0.20 0 0 0.01 
420 0.1344 0.0040 0.6456 1 0.004 0.30 0.30 0 0 0.058 
440 0.3483 0.0230 1.7471 1 0.023 0.40 0.40 0 0 0.2795 
460 0.2908 0.0600 1.6692 1 0.06 0.50 0.50 0.1 0.02 0.4173 
480 0.0956 0.1390 0.8130 1 0.139 0.70 0.50 0 0.05 0.2846 
500 0.0049 0.3230 0.2720 1 0.323 0.80 0.60 0 0.155 0.1306 
520 0.0633 0.7100 0.0782 1 0.71 0.80 0.60 0 0.341 0.038 
540 0.2904 0.9540 0.0203 1 0.954 0.80 0.50 0.12 0.382 0.01 
560 0.5945 0.9950 0.0039 1 0.995 0.80 0.40 0.19 0.318 0 
580 0.9163 0.8700 0.0017 1 0.87 0.80 0.30 0.22 0.209 0 
600 1.0622 0.6310 0.0008 1 0.631 0.80 0.20 0.17 0.101 0 
620 0.8544 0.3810 0.0002 1 0.381 0.80 0.20 0.14 0.06 0 
640 0.4479 0.1750 0.0000 1 0.175 0.80 0.10 0 0.01 0 
660 0.1649 0.0610 0.0000 1 5.3619 0.80 0.10 0 0 0 
680 0.0468 0.0170 0.0000 1 0.017 0.80 0.10 0 0 0 
700 0.0114 0.0041 0.0000 1 0.0041 0.80 0.10 0 0 0 

Totals 10.6484 1.09 1.655 1.223 

100 
k = 

10.65 
X = 10.28 
Y = 15.54 
Z = 11.48 

1.0 

0.8 

0.6 

500 - 

Y 0.4 

0.2 

1~r 0.2 0.4 0.6 0.8 1.0 
x 

Fig. 7.17 The colour shift from equal energy white to white plus yellow filter and to the colour after reflec- 
tion (Section 7.7) 
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A similar effect occurs with the mixture of paints or dyes where the different colours mixed 
together progressively absorb more wavelengths until, if the process is continued, eventually the 
light will all be absorbed and the perceived colour will be black. 

It will be obvious from the above that, since the process is one of absorption, the luminance 
of the colour is reduced at each stage. 

From this it will be seen that the perceived colour of an object or surface depends both on the 
spectral reflectance of the object or the surface and also the spectral emission from the source or 
the source-filter combination. 

7.9 Colour rendering and the CIE colour rendering index 

7. 9.1 COLO UR RENDERING 

In the previous section it was pointed out that the colour appearance of an object depends 
both upon its spectral reflectance and the spectral distribution of the light source. It is 
common to think of daylight as giving the 'correct' appearance of a colour or the correct 
rendering of the object's natural colour. The distortion of a colour that can be produced by 
other light sources is, therefore, a matter of importance for lighting engineers and architects, 
among others. 

In Section 7.3, Examples 2 and 3 taken together illustrated the change in colour that different 
light source spectral distributions could produce in terms of x and y chromaticity values. 

7.9.2 THE CIE COLOUR RENDERING INDEX 

The CIE have produced a method for evaluating the colour rendering properties of light sources 
that enables a single colour Rendering Index (Ra) to be calculated for a particular lamp. 

This General Colour Rendering Index is based on combining the results of calculations of the 
Special Colour Rendering Index (Ri) for a set of sample surface colours. The CIE General Colour 
Rendering Index is the mean of the Special Colour Rendering indices for a specified set of eight 
samples. 

The procedure for determining the Special Colour Rendering Index for each sample is given 
in detail in the CIE document, CIE 13.3 (1995). The steps involved are: 

Step 1. Determine the CIE 1931 tristimulus values for each of the test colours for the source to 
be tested and for the reference source. 

Step 2. Transform these tristimulus values into coordinates of the 1960 UCS diagram. 
Step 3. Account for adaptive colour shift due to the different state of chromatic adaptation under 

the test lamp compared with the reference illuminant. This is done by means of avon 
Kries type adjustment for chromatic adaptation (see Section 7.3.1). The somewhat 
complex formula for this adjustment of the u, v values is given in the CIE document 13.3 
(1995) Section 5.7. 

Step 4. Transform this modified colorimetric data into 1964 Uniform Space coordinates. 
Step 5. Determine the resultant colour shift using the colour difference equation for the 1964 

colour space. 

Note The 1964 modification of the 1960 UCS system introduced a third dimension related to 
luminance called lightness. The u, v 1960's values are converted into the 1964 system using the 
following formulae, which include the luminance factor Y. 
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W* = 25Y 1/3- 17 where Y lies between 1 and 100 

U* = 13 W * ( u  - Un)  

V* = 13W*(v- v n) 

where u n and v n are usually those of the illuminant. 
The colour difference equation is 

AE = [(AU*) 2 + (AV*) 2 + (AW*)2] % 

Step 6. Calculate the special Colour Rendering Index R i from 

R i = 100 - 4.6AE 

Step 7. Repeat for the eight CIE samples and calculate the general Colour Rendering Index from 

1 8 
R a = m ~ , R  i 

8 i=1 

The CIE have produced a program on disk for the calculation of Colour Rendering Indices. 

It will be seen from the equation for R i in Step 6 above that R i or R a of 100 represents no 
colour shift between the test source and the reference illuminant. An R a value above 80 means 
good to excellent colour rendering; a value between 60 and 80 moderate colour rendering; while 
with a value below 60 the colour rendering becomes progressively poor and below 40 there is 
marked colour distortion. 

7 .10  Visual izat ion and colour  

In Section 8.8 there is a brief discussion of the problems of visualization, which is the genera- 
tion of an image on a computer display screen of an interior where changes in the lighting can 
be simulated. That discussion does not dwell on colour matters. It is, of course, perfectly possi- 
ble to divide up the light output of lamps into colour bands such as R, G and B bands. If this is 
done and the surface reflectances are also specified in the same bands, then the radiosity method 
of Chapter 5 can be applied separately for the R band, the G band and the B band. The result 
would be for each surface a set of R, G, B values from which the final colours could be deter- 
mined. However, when it is necessary to display these colours by means of the R G B  primaries 
of the CRT screen, the bands covered by these primaries have to be accommodated in the calcu- 
lations and hence the computer program. 

For the purposes of colour display a very simple model of colour space will usually suffice, 
based on the primaries that the CRT monitor can produce (see Figure 7.18). 

In this colour space, black is the coordinate origin (0, 0, 0) and white is (1, 1, 1); the primaries 
being given by R(1, 0,0) ,  G(0, 1, 0) and B(0, 0, 1). Clearly, all the colours within the scope of 
the three primaries mixture can be represented on this scale. 

The developed programs vary in their sophistication in dealing with colour. A common 
simplification is to display the colour produced by the first reflection of the light fux  (that is, 
ignore interreflection). A full radiosity program would be capable of taking interreflection into 
account. 

Another simplification, where the interest is in the room rather than the lighting as such, is 
to use a particular white light source specification rather than to analyse the actual light 
source. It has been found that the eye/brain combination is not very discriminating where 
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= R  

scenes are viewed successively, whilst being very discriminating when scenes are viewed 
simultaneously. 
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8 
Interior Lighting 

8.1 General  

Interior lighting has a number of aspects: 

(1) the lighting required for the tasks that have to be performed in the space, 
(2) the visual comfort of the occupants of the space, 
(3) the satisfaction of the occupants with appearance of surfaces and the other people occu- 

pying the space. 

8.1.1 TASK LIGHTING 

The lighting level required to perform a particular task depends upon the visual capability of the 
person seeking to perform the task. Obviously, this varies from individual to individual both with 
age and the condition of their eyes. The CIBSE Lighting Code gives detailed guidance for the 
specification of lighting levels for particular tasks, including adjustments for some of the above 
factors. 

The level of lighting specified in the CIBSE Schedule is the maintained illuminance level, 
which is the level at which the maintenance procedure is carried out to ensure that the illumin- 
ance does not fall below this level. 

The Design Maintained illuminance level is the level specified for designing the installation. 
It takes into account any variation from the assumed task conditions, such as the task details 
being more difficult than normal in this type of interior or whether errors pose a serious risk. 

The design calculations then include allowances for reduction in lamp output with burning 
hours, lamp failure with burning hours, dust and dirt collected on the luminaires with the passage 
of time and dust and dirt collected on the room surfaces with the passage of time. Guidance on 
all these factors is given in the CIBSE Code for Interior Lighting. l 

8.1.2 VISUAL COMFORT 

Although the requirement is to ensure visual comfort, it is usual to approach this problem by 
eliminating visual discomfort. The main method used is to establish a Glare Index or Glare 
Rating for an installation which, if not exceeded, will make it unlikely that serious glare will be 
experienced. For example, the Glare Index recommended in the CIBSE Code for general offices 
is 19 and that for a warehouse 25. 

These values are related to the Glare Index system developed in the UK and described in the 
CIBSE Technical Memorandum TM 10. 

The basic research upon which this is based was carried out by Petherbridge and Hopkinson 
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of the, then, Building Research Station (BRS), now the Building Research Establishment 
(BRE). 2 The formula for obtaining the Glare Index for a lighting installation is: 

Glare Index = 10 lOgl0 0.45 ~ (Ls)l6 (r176176 
LbP1.6 

where L s and co s are the luminance and solid angular size of each luminaire, L b is the background 
luminance and P relates to the position of each source relative to the observer's direction of view. 

The CIBSE is likely to adopt the CIE unified glare rating to replace the UK Glare Index, the 
formula for which is: 

0.25 Ls2~ 
Unified Glare Rating, UGR = 8 log ~ p2 

q, 

This gives Glare Rating numbers very close to the UK Glare Index numbers. 

8.1.3 VISUAL SATISFACTION 

For a long time, it has been appreciated that it is not just the surfaces within a room that need 
illuminating, but also the space enclosed within the room envelope. It is this space that is occu- 
pied by the people using the room, and it is the quality and quantity of the light density in this 
space that determines the appearance of those people to each other. This is a very important 
factor relative to that of the satisfaction of the occupants with their visual environment. 

Vector scalar ratio 

A recent pioneer in this field is Lynes who took the mathematical work of Gershun 3 and related 
it to practical lighting design. The quantity that Gershun called 'Space Illumination' Lynes re- 
christened Scalar llluminance, and Gershun's 'Light Vector' became the Illumination Vector (or 
Vector Illumination). 

These are two elegant concepts that are mathematically attractive and have met with some 
success in promoting consideration of the quality of the lighting of the space within the room 
envelope. They are discussed in detail in the paper 'The flow of light into buildings '4 and in the 
book Principles of Natural Lighting. 5 

The calculation of scalar illuminance has already been considered in Chapters 3, 4 and 5 and 
the concept of illuminance as a vector quantity has also been introduced in Chapter 3, and it will 
be considered further in this chapter. 

The Scalar Illuminance (E s) at a point is defined as the average illuminance on the surface of 
an infinitesimally small sphere at that point, due to light reaching the point from all directions. 

The Illumination Vector (E) at a point can be defined as the maximum difference of the illu- 
minance across diameters of an infinitesimally small sphere at that point. 

There will be illuminance differences in other directions across the sphere, which are vector 
quantities resulting from considering the individual illuminances on either side of each diameter 
as vectors and then combining them, but the Illumination Vector is the resultant of all these indi- 
vidual vectors, which are therefore components of it. 

The value of this approach is that the vector/scalar ratio can be related to the appearance of 
people's faces within the room envelope. For example, when the vector/scalar ratio is 0.5, the 
modelling due to illuminance variation is weak and the appearance can be dull, while if the value 
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is about 1.5 the modelling is usually considered to be pleasant. If the vector/scalar ratio 
approaches 4 then the modelling will be harsh and unacceptable. 

The ratio of cylindrical to horizontal illuminance 

The cylindrical illuminance is the mean vertical illuminance at a point, taking into account all 
azimuth directions (see Chapters 3, 4 and 5). 

It has been found that the ratio of cylindrical to horizontal illuminance can also be used to 
indicate the modelling properties of a general lighting installation, where the lighting is mounted 
on or suspended from the ceiling. 

W h e n  Ecyl/E h - 0.1 the modelling is very harsh; when Ecyl/E h = 0.6 the modelling is good; 
when Ecyl/E h = 0.9 the modelling is very weak. 

Although in, say, an office, the height for considering facial features is between 1 m and 
1.4 m above the floor, the vector/scalar and cylindrical/horizontal calculations are often done at 
0.8 m, since the horizontal illuminance is routinely calculated at this height. This is taken as the 
working plane height (for example, desk height). 

Detailed calculations coveting each of the three aspects of interior lighting described above 
will be carried out for a simple example to illustrate the procedure. 

8.2 Example 

Design the lighting for a general office given the following information. 
Size 4 m long by 4 m wide, floor to ceiling height 2.8 m. Reflectances: ceiling 0.7, walls 0.5, 

floor cavity 0.3 (working plane). 
The CIBSE Code specifies 500 lux for a general office and a Glare Index of 19. The 

vector/scalar ratio and the cylindrical horizontal ratio will also be calculated to check on the 
degree of modelling obtained in the installation. 

The first step is to select the luminaire, because without knowing the luminous intensity 
distribution of the luminaire the calculations cannot be carried out. 

The luminaire chosen is a recessed ceiling luminaire with a prismatic panel fitted flush with 
the ceiling. The luminaire measures 600 mm by 600 mm. The intensity distribution is symmet- 
rical about a vertical axis and is given in Table 8.1 and the polar curve is illustrated in Figure 8.1. 

The second step is to calculate the direct flux to the room surfaces. This cannot be done until 
we specify the number of luminaires and their spacing. The manufacturer has specified that, for 
acceptable uniformity, the luminaires should not be spaced apart further than 1.33 times the 
mounting height above the working plane. 

The working plane is generally assumed to be at 0.8 m above the floor (desk height) and so 
the mounting height for spacing purposes is given by h m = 2.8 - 0.8 = 2 m. 

So, 2 x 1.33 = 2.66 m is the maximum distance between luminaires for acceptable uniformity. 
The office is 4 m square and so two rows of luminaires are required in each direction; that is, 4 
luminaires. It is usual to locate the luminaires a distance from the wall that is half the distance 
between adjacent luminaires; consequently the spacing is chosen as 2 m and this is shown in 
Figure 8.2. The spacing is measured from the centre of the luminaire. 

Now that the position of the luminaires within the room is fixed and the intensity distribution 
per 1000 lumens is also known, we can calculate the flux to each of the room surfaces (treating 
the working plane as a surface). 

Because there are four luminaires placed symmetrically within the room, only one luminaire 
needs to be considered, as the result will apply to each of the luminaires. 
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T a b l e  8 .1  

Angle 
(deg) 

Mean luminaire 
intensity in 
vertical plane 
cd/1000 lumens 

0 218 
5 218 

10 215 
15 211 
20 205 
25 197 
30 186 
35 167 
40 139 
45 107 
50 82 
55 70 
60 44 
65 31 
70 23 
75 17 
80 13 
85 8 
90 0 

1 0 0  - 

cd /k lm 

2 0 0  - 

P o l a r  c u r v e  

9 0  ~ 

0 

Fig. 8.1 Polar curve for the intensity data given in Table 8.1 
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Fig. 8.2 The general office to be lit in the example given in Section 8.2 

Working 
plane 

The direct flux could be calculated by approximating the practical distribution to a cosine 
power distribution as shown in Chapter 4, or calculated directly using the inverse-square law. 
In this case we will use the inverse-square law. The working plane area will be divided into 16 
areas and the illuminance at the centre of each area calculated. These values will be summed 
and divided by 16 to give an average value. Multiplying this average value by the working 
plane area will give the direct flux to the working plane per 1000 lumens of installation lamp 
flux. Thus, to obtain the total direct flux to the working plane it will be necessary to multiply 
by 4 times the lamp flux of one luminaire in kilolumens. Figure 8.3(a) shows the working 
plane divided into 16 areas and Figure 8.3(b) shows the dimensions for the inverse-square law 
calculations. 

In Figure 8.3(a) the position of the centre of the luminaire is shown as a large dot. Because 
of the relative positions of the target squares and the luminaire, only six values of illuminance 
need to be calculated to determine the 16 point values. 

Consider square 3, the coordinates of its centre point (x c, Yc) are given by (2.5, 2.5) and the 
luminaire is at (x l, Yl) = (1-0, 1.0). So the horizontal distance on the working plane from beneath 
the source of the working plane to the centre of square 3 is given by 

~/(x c _ xl )2 + (Yc - Yl )2 = #(2.5 - 1) 2 + (2.5 - 1) 2 = 2.12 m 

2.12 
0 = tan -l ~ = 46.7 ~ 

2 

From Table 8.1, by linear interpolation (see Chapter 2, Section 2.3.1)" 

I o = 98.5 
cos 3 0 = 0.3228 

I o cos 3 0 98.5 • 0.3228 
E 3 = = = 7.95 lux 

hm 2 22 
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4 m  

4 m  

Fig. 8.3(a) The working plane of the general office divided into 16 areas for the calculation 
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Fig. 8.3(b) The dimensions required for the inverse-square law calculations 
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Similar calculations for the other squares give 

4.58 4.56 2.72 1.28 
18.97 18.97 7.95 2.72 
43.14 43.14 18.97 4.56 
43.14 43.14 18.97 4.56 

~, Eh/klm = 109.83 +109.81 + 48.61 + 13.12 = 281.4 

Since we have chosen 16 squares, dividing by 16 to obtain the average and multiplying by 16 
to obtain the flux cancels, and so the answer is 281.4 lumens (per 1000 lamps lumens). 

The fraction of lamp flux received by the working plane is therefore 281.4/1000 = 0.281. 
0.281 is the distribution factor (DF(F)) required to calculate the utilization factor (UF(F)) for 

the working plane (see Section 5.4.4). 
The distribution factor for the ceiling (DF(c)) is zero, since there is no upward light from the 

luminaires. 
The distribution factor for the walls (DF(W)) is given by 

DF(W) = DLOR - DF(F) 

where DLOR is the downward light output ratio of the luminaire (see Chapter 16) and is given 
by the manufacturer for this type of luminaire as 0.47. 

So, DF(W) = 0.47 - 0.281 = 0.189. 
The next step is to calculate the utilization factors for the working plane, ceiling and walls 

(see Section 5.4.4). 
The expression for utilization factors is of the form 

UF(F) = TF(C, F)DF(C) + TF(F, F)DF(F) + TF(W, F)DF(W) 

where TF(C,F) is the transfer factor from ceiling to floor, as in this case, or floor to floor etc., 
which takes into account interreflection (see Section 5.4.5). 

Transfer factors for a room index of 1.0 and reflectances of Pc = 0.7, Pw = 0.5 and PF = 0.3 
have been calculated in the example given in Section 5.4.4. These are: 

TF(C, C) = 1.156, TF(F, C) = 0.187, 
TF(C, F) = 0.437, TF(F, F) = 1.105, 
TF(C, W) = 0.694, TF(F, W) = 0.342, 

TF(W, C) = 0.248 
TF(W, F) = 0.285 
TF(W, W)= 1.453 

(The notation used in Chapter 5 for developing the basic interreflection theory employed 
numbers, but here C for ceiling, F for floor (cavity) and W for walls are used to identify more 
directly the room surfaces.) 

Using these transfer factors the utilization factors are calculated as follows: 

UF(C) = TF(C, C) x DF(C) + TF(F, C) x DF(F) + TF(W, C) x DF(W) 
= (1.156 • 0) + (0.187 x 0.281) + (0.248 x 0.189) 
= 0.099 

UF(F) = TF(C, F) x DF(C) + TF(F, F) • DF(F) + TF(W, F) • DF(W) 
= (0.437 • O) + (1.105 • 0.281) + (0.285 • O. 189) 
= 0.364 

UF(W) - TF(C, W) x DF(C) + TF(F, W) • DF(F) + TF(W, W) x DF(W) 
= (0.649 x O) + (0.342 x 0.281) + (1.453 x 0.189) 
= 0.371 
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The average surface illuminances are calculated from the following equations 

EC -" 

N x F L x UF(C)  x M F  

A C 

EF ~" 

N x F L X UF(F)  x M F  

AF 

E W  -- 

N x F L x U F ( W )  x M F  

Aw 

where N is the number of luminaires 
F L is the total lamp flux of a luminaire 
M F  is the maintenance factor 

A C, A F and A w are the areas of the ceiling, working plane and walls respectively. 
The lamp flux is taken initially as 1000 lumens and later adjusted to obtain the required work- 

ing plane illuminance. 
Only the maintenance factor (MF) is unknown on the fight-hand side of the equation. 

M F  = L L M F  x L S F  x L M F  x R S M F  

where L L M F  is the lamp lumen maintenance factor 
L S F  is the lamp survival factor 
L M F  is the luminaire maintenance factor 
R S M F  is the room surface maintenance factor 

Each of these factors may be defined as below. 

(Xn) the proportion of the initial light output remaining after a specified period of time, taking 
into account (y) but not including other losses. 
And where x I = L L M F  and Yl = fall in lamp lumens output with time 

x 2 = L S F  and Y2 = lamp survival after a specified time 
x 3 = L M F  and Y3 = accumulation of dust and dirt on the luminaires after a specified 

time 
x 4 = R S M F  and Y4 = accumulation of dust and dirt on the room surfaces after a spec- 

ified time. 

The data required to determine these factors can be obtained from the manufacturer's data 
and from data given in the CIBSE Code. For our example, we will obtain data from the CIBSE 
Code. 

Let us assume a two-year period for cleaning and relamping. 

L L M F  = 0.91 
L S F =  1.0 
L M F  = 0.77 
R S M F  = 0.82 

where M F  = L L M F  x L S F  x L M F  x R S M F .  

This gives a value for M F  = 0.91 x 1.00 • 0.77 • 0.82 = 0.57. 
The room surface illuminances can now be calculated (per 1000 lumens): 



Ec/klm = 
N x F L x UF(C) x MF 

A c 

4 x 1000 x 0.099 x 0.57 

4 x 4  

= 14.1 lux/klm 

EF/klm = 
N x Ft. x UF(F) x MF 

AF 

4 x 1000 x 0.364 x 0.57 

4 x 4  

= 51.9 lux/klm 
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Ew/klm = 
N x F L x UF(W) x MF 

A w  

4 x 1000 x 0.371 x 0.57 

2 x 4 x 4  

= 26.4 lux/klm 

The specified i l luminance for the working plane is 500 lux so the lamp flux in ki lolumens 
required from each luminaire is" 

500 
= 9.63 

51.6 

Two 55 W warm white compact  f luorescent lamps would give 9.60 ki lolumens and so this 
solution is chosen. 

The design i l luminances are therefore" 

E C = E f / k l m  x klm 
= 14.1 x 9.6 

= 135.4 lux 

E F = EF/klm x klm 
= 51.9 x 9.6 

= 498.2 lux 

E w = Ew/klm x klm 
= 26.4 x 9.6 

= 253.4 lux 

At this stage it is convenient  to calculate the values of scalar i l luminance and cylindrical illu- 
minance on the working plane. 
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For each of these we require (1) the average direct illuminance value and (2) the contribution 
made by interreflection from ceiling, walls and working plane (floor cavity). 

In Section 3.8.1 the formula for scalar illuminance from a point source is given, namely, 

Emax 
E S = ~  

4 

where Ema x is the maximum illuminance produced by the light source at the specified point 

E h 

4 cos 0 

where E h is the horizontal plane illuminance and where 0 is the angle between the normal to the 
plane containing the point and the line joining the light source to the point. 

In addition, in Section 3.8.2, the formula for cylindrical illuminance from a point source is 
given, 

Ecy I = Ema x 
sin 0 

tan 0 
= E i a ~  

The values for E h at 16 points have already been calculated and so by multiplying by 
1/(4 cos 0) or by (tan 0)/x we can obtain the values of scalar illuminance and cylindrical illumi- 
nance respectively. 

First, for scalar illuminance, this procedure gives, 

1.86 1.86 1.20 0.76 
6.04 6.04 2.89 1.20 

11.44 11.44 6.04 1.86 
11.44 11.44 6.04 1.86 

Es/klm = 30.78 + 30.78 + 16.17 + 5.68 = 83.41 

Thus, the average direct scalar illuminance per 1000 lumens for one luminaire 

83.41 
= ~ = 5.21 lux/klm 

16 

Each luminaire gives 9.6 kilolumens and there are four luminaires, so, 

E s = Es/klm x klm 
= 5.21 x 9.6 x 4 
= 200 lux (direct scalar illuminance) 

Secondly, for cylindrical illuminance, we get, 
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1.86 1.86 1.26 0.72 
4.77 4.77 2.68 1.26 
4.86 4.86 4.77 1.86 

4.86 4.86 4.77 1.86 

Ecyl/klm = 16.35 + 16.35 + 13.48 + 5.7 = 51.88 

Thus, the average direct cylindrical i l luminance for 1000 lumens for one luminaire is 

51.88 
= ~ = 3.2 lux/klm 

16 

S o ,  

Ecy  ! = E c Jklm • klm 
3.~ • 9.6 • 4 

- 122.8 lux 
(direct cylindrical illuminance) 

The interreflected components  of scalar i l luminance and cylindrical i l luminance are obtained 

by using the inter-illuminance factors (llJ) introduced in Section 5.4.9, together with the results 
of the scalar and cylindrical zonal multiplier calculations obtained in the example given in the 
same section. 

From that example, 

RI = 1.0 D s ( s c a l a r )  = 0.234 

for Os (cylindrical) = 0 . 1 0 3  

E s = (llJs~c) • M C) + (llfstf~ • M F) + (llfstw) • M w) 

where M E etc. are the luminous exitances of the ceiling, floor and walls respectively. 

llfstc) = Ds tsca la r  ) 
l l f  s(l ) = 0.5 

llfs(w ) = 0.5 - Ds(scalar ) 

So, the reflected component  of E s is given by, 

E s = 0.24 x M E + 0.5 x M v + (0.5 - 0.234)M w 
= (0.234 x 135.4 x 0.7) + (0.5 x 498.2 x 0.3) + (0.266 • 253.4 x 0.5) 
= 130.6 lux (interreflected component)  

The total value of E s is given by adding to this the direct scalar il luminance already calcu- 
lated, so, 

E s = 200 + 130.6 = 330.6 lux 

Similarly, the reflected component  of 

Ecy I = (0.103 • 135.4 • 0.7) + (0.5 x 498.2 x 0.3) + (0.397 x 253.4 x 0.5) 
= 9.76 + 74.3 + 50.6 
= 134.8 lux 

So, Ecy ! = 122.8 + 134.8 = 257.6 lux. 

To calculate the vector/scalar ratio, the value of the illumination vector (E) for the installation 
is required. 



312 Interior lighting 

Since the predominant direction of the light is downward, a good estimate of the average 
vector can be obtained by calculating the difference of the working plane illuminance and the 
upward illuminance produced by reflection from the floor cavity (see Chapter 3, Section 3.1). 

E =EF-PFEF 
= F'F~I - PF)  

= 498.2(1 - 0.3) 
= 348.7 lux 

E 348.7 
= ~ =  1.05 

E s 330.6 

The CIBSE Code suggests that this ratio should lie between 1.2 and 1.8 ('where perception 
of faces is important'). 

If the working plane cavity reflectance had been 0.2 instead of 0.3 the vector/scalar ratio 
would have been above 1.2. 

The ratio of cylindrical to horizontal plane illuminance is more directly obtained 

Ecy I 257 .6  
~ = ~ = 0 . 5 2  

E F 498.2 

The work of Hewitt, Bridgers and Simons 6 shows that this value of the ratio indicates accept- 
able modelling, but modelling that is subtle rather than strong. 

It should be noted that this ratio gives less prominence to the effect of the floor cavity than is 
the case in the vector/scalar ratio. 

It is of particular interest to note that our calculations give a value for mean wall illuminance 
of 

E w = 253.4 lux 

and for cylindrical illuminance of 

Ecy i = 257.6 lux 

The values are very close. In practice, it has been found that in general lighting installations 
this is a common outcome. This means that for a practical check on the cylindrical to horizontal 
illuminance ratio, that value of mean wall illuminance can be used as a good estimate of Ecy l. 

To complete the example, it is now necessary to calculate the Glare Index. The procedure is 
given in CIBSE Technical Memoranda TM 10 (The Calculation of Glare Indices 1985). (The CIE 
has proposed a unified glare rating formula (UGR) which, in practice, gives values very close to 
those of the UK system.) 

The first step is to calculate the glare constant g for each of the four luminaires see Figures 
8.4(a) and (b). The position of the observer is at the centre of the wall as shown in Figure 8.4(a). 

From considerations of symmetry it will be seen that only two calculations are required. 
The glare constant 

Ls1.60)0.8 
g = 0 . 9  

/_,bp 1.6 

L s and L o are source luminance and background luminance respectively (cd/m2). 0) is the solid 
angle subtended at the eye by the source (steradians). P is the position index (see later). 
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Fig. 8.4(a) Horizontal plane parameters required to enter the glare table 

H 

Q . ~  Observer 

Fig. 8.4(b) Vertical plane parameters required to enter the glare table 
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L S = 
/0 

A S cos 0 

Q 
where 0 tan -I 

H 

First, Sources (1) and (2), 

Q = ~ 1 2  + 3 2 

= 3 . 1 6  

3.16 
0 = tan -1 

1.6 

= 6 3 . 1 5  ~ 

Note: H = 1.6 since TM 10 specifies 1.2 m as the observer ' s  eye level. So, in this case 2.8 - 1.2 

= 1.6 m. 

As 

cos 0 = 0.6 x 0.6 x 0.452 

= 0 . 1 6 3  

by interpolation, I o at 63.15 ~ is 35.4 cd/1000 lumens (see Chapter  2). 

34.5 x 9.6 
L S = 

0.163 

= 2087 cd/m 2 

The solid angle: 

A s cos 0 
O) = 

D 2 

D = ,'JQ2 + H 2 

(TM 10 approximation):  

D 2 = 3 . 1 6 2 +  1.62 

= 12.55 

O) "- 
A s cos 0 

D 2 

0.163 
= ~ = 0.013 steradians 

12.55 

TM10 defines L b as the reflected component  of wall i l luminance at the observer  posit ion 

divided by Jr. This is because the reflected component  of wall i l luminance is proportional  to the 

average luminance of the room surfaces that it faces and, when this i l luminance value is divided 

by x (assuming uniform diffusion), it is equal to it, that is L b (see Chapter  3). 

So, 

E w - d i r e c t  wall i l luminance 
q,= 

7g" 
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where E w = 253.4 lux. 

Direct  wall i l luminance  EW(D) = DF(w ) x F L x M F  + A w 

0.189 x 9600 x 4 x 0.57 

2 x 4 x 4  

= 129.3 lux 

giving 

Zb ~ 
E w - EW(D) 

253.4 - 129.3 

= 39.5 cd/m 2 

The posit ion index P is the ratio of the actual source luminance  to the luminance  of  a source 

on the line of  sight of  the same angular  size and having the same degree of d iscomfor t  glare. It 

is obtained from a table in T M  10 in terms of  H/R and T/R. 

The values required for our example  are as given in Table 8.2. 

From Figure 8.4(a), R = 3.0 and T = 1.0: 

T 1.0 H 1.6 
. . . .  0.33 and m = 
R 3.0 R 3.0 

~ = 0.53 

By interpolation P = 2.88. 

Thus,  for luminaires  (1) and (2), 

gl = 

0.9 x L~'6o9 0"8 

LbPI.6 

0.9 x (2087) !6 x (0.013) o.8 

39.5 x (2.88) 16 

0.9 x 204,756 x 0.031 

= 26.6 

39.5 x 5.43 

Table 8.2 

T/R H/R 

0.00 
0.30 
0.40 
1.00 

0.000 0.50 

2.70 
2.80 

0.60 

3.25 
3.30 

1.60 

12.95 
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The two other luminaires (3) and (4) are closer to the observer  and give a different value of  
glare constant  g. 

For this new position 

Q = 412 + 13 

=1.41 

So, 

tan- 
Q 1.41 

1 m 

H 1.6 

and 

0 = 4 1 . 4  ~ c o s 0 = 0 . 7 5  
A s cos 0 = 0.6 x 0.6 x 0.75 

= 0 . 2 7  

f 0  = 

0.27 0.27 

1.62 + 1.412 4.56 
= 0.05936 

By interpolation 

I o = 130 cd/klm 

So, 

L S - -  

130 x 9.6 

0.27 

= 4622 cd/m 2 

Position index P is again obtained from Table 8.2: 

T 1.0 H 1.6 
m =  - 1 . 0 ,  = 

R 1.0 R 1.0 
= 1.6 

The value of P is obtained directly as 12.95. 
The second value for g is: 

g 2  "-  

0.9L~.6co 0.8 

LbP! .6 

0.9 x (4622) 16 x (0.05936) 0.8 

39.6 x (12.95) 16 

= 28.7 



Then, 

100 u )  
(1) 
t -  

t -  

. c -  

t - -  

e ~  

< lO 

Glare Index = 10 lOgl0[0.5(2g I + 2g2)] 
= 10 1og10[0.5(2 • 26.6 + 2 • 28.7)] 
= 10 1og10[0.5(53.2 + 57.4)] 
= 17.4 

This is below the CIBSE Code limit of 19 and is therefore satisfactory. 

8.3 Designed appearance lighting 

At this point it is convenient to discuss the concept of apparent brightness. In a given room, the 
illuminances and the reflectances of the individual surfaces will result in a luminance pattern. 
This overall luminance pattern will determine the adaptation level of the observer's eye and this 
adaptation level will dictate the apparent brightness of each surface. Without taking the adapta- 
tion level into account, the effects on the observer of the individual luminances cannot be judged 
in advance (see Figure 8.5(a)). If the adaptation level is known then the relative effects of the 
different surface luminances can be estimated. In other words, the apparent brightnesses of the 
various surfaces can be estimated in relative terms. However, in a well lighted interior with a 
fairly uniform distribution of light and particularly where the light sources can be seen, the 
eye-brain combination can easily differentiate between two surfaces that have the same appar- 
ent brightness but different illuminances and reflectances. 

Thus, apparent brightness as a lighting design tool has serious limitations but, nevertheless, it 
can be used with success provided that these limitations are kept in mind. 

The relationship between apparent brightness and luminance has to be taken into account in 
visualization computer programs and this is discussed further later in this chapter (Section 8.8). 

0.1 1 10 100 1000 10000 
Field luminance, asb 
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Fig. 8.5(a) The apparent brightness curves used by the Waldram Method 
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A prominent UK lighting engineer, J.M. Waldram 7 proposed a more logical approach 
to lighting design which began with a specification of the preconceived appearance of the 
interior. 

The idea is to state the apparent brightness that is required for each room surface and, work- 
ing from this specification, work back to the lighting equipment and its disposition needed to 
achieve the desired effect. 

The most important step in this procedure relies on having (a) some idea of a scale of appar- 
ent brightness that can be used to specify the designer's requirements and (b) some link between 
this apparent brightness scale and the surface luminances needed to produce these values. Once 
the surface luminances are known the required illuminances can be calculated. 

The next step is to separate from the total illuminance on each surface the direct illuminance 
required. Once the required direct illuminance is known the problem is to select the lighting 
equipment and its layout. This is quite difficult, since the direct illuminances depend both on the 
luminaire distributions and their positions within the lighted space. 

This is the reason that Waldram applied the method mainly to the lighting of buildings such 
as cathedrals, where the positions of the luminaires could be individually chosen and a variety 
of luminaires could be used - most of them in concealed positions. Using concealed luminaires 
also eliminated the problem of the effect of luminaire brightness on observer adaptation, which 
is ignored in the basic method. 

To illustrate the steps required in using this design method, the detailed example already 
introduced will be used. The design is for a general office 2.8 m high, 4 m square and with 
reflectances of: ceiling 0.7, walls 0.5, workplane 0.3. 

To guide the choice of apparent brightness values we will use a scale provided by Waldram 7 
based upon experience (Table 8.3). 

Choosing the values to relate to both room decoration and the importance of each surface to 
the room function, we choose 60 units for the working plane, 55 units for the walls and 45 units 
for the ceiling. Taking a simple average to obtain the adaptation level gives 51.6 units. To 
convert the apparent brightness units into luminance values we use the curves given in Figure 
8.5(a). We determine which curve to use for the conversion by first tracing the apparent bright- 
ness value for adaptation across the diagram until it intersects with the dotted line. This inter- 
section occurs at the average value of luminance in the field of view that would result in this 
adaptation level. 

The curve corresponding to this intersection is the one to be used for translating the 
apparent brightness values into luminance values. Commensurate with the accuracy of the 
diagram we will use an apparent brightness of 50 as the adaptation level. Tracing across the 
diagram gives a value of about 100 asb for the adaptation luminance and so we use the 100 
asb curve. 

Note: 'asb' is an abbreviation for 'apostilb' where 

1 a s b = l r x  1 cd/m 2 

Table 8.3 

10 20 30 40 50 60 70 80 90 100 

Non critical work Critical work 

Shadows General level High lights Lighting 
equipment 
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Reading from that curve we have: 

Apparent  brightness 
Corresponding luminance 
Apparent  brightness 
Corresponding luminance 
Apparent  brightness 
Corresponding luminance 

45 units 
85 asb 
55 units 

120 asb 
60 units 

150 asb 

We now have the surface luminance values which are: 

85 
Ceiling 85 asb or ~ = 27 cd/m 2 

120 
Walls 120 asb or ~ = 38 cd/m 2 

150 
Workplane 150 asb or ~ = 48 cd/m 2 

The required total i l luminances are: 

85 
E C = ~ =  1211ux 

0.7 

120 
E w = ~ = 240 lux 

0.5 

150 
E F = ~ = 500 lux (see Figure 8 . 5 ( b ) )  

0.3 

Each of these surfaces can now be treated as area sources and the contribution to the light 
reflected onto the other surfaces calculated. Subtracting the reflected flux from the total surface 
flux gives the required direct flux. 

For these calculations we require the surface distribution factors (or form factors) used in the 
calculation of utilization factors in the example  in Section 5.4.4. 

These are: 

f c f  -" f f c  -- 0 . 4 1 5  (from Table 5.1 ) 

few = few = ( 1 - 0.415) = 0.585 

fwf =fwc =fcw I - ~ f ]  =0"585 • 0"5 = 0 . 2 9 3  

fww = (1 - (R/)fcw) = ( 1 - 0.585) = 0.415 

Flux reflected from the ceiling = E c x A c x Pc 
= 121 x 4 x 4 x 0.7 = 1355.2 lumens 
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45-,. 85 asb-,  27 cd/m 2 
Ec = 121 lux 

55 -,.120 asb-,  38cd/m 2 
E w = 240 lux 

P 

60 -,. 150 asb- ,48cd /m 2 
E F = 500 lux 

p w  = 0.5 

Fig. 8.5(b) The calculational steps for the Waldram Method 

Received by the floor cavity from the ceiling = 1355.2 x 0.415 = 562.4 lumens 

Received by the walls from the ceiling - 1355.2 x 0.585 = 792.8 lumens 

Flux reflected from the floor cavity = E F x A F x PF 

= 500 x 4 x 4 x 0.3 - 2400 lumens 

Received by the ceiling from the floor cavity - 2400 x 0.415 - 996 lumens 

Received by the walls from the floor cavity - 2400 x 0.585 - 1404 lumens 

Flux reflected from the walls = E w x A w x Pw 

- 240 x 2 x 4 x 4 x 0.5 = 3840 lumens 

Received by the ceiling from the walls - 3840 x 0.293 = 1125 lumens 

Received by the floor cavity from the walls - 3840 x 0.293 - 1125 lumens 

(since with uniformly diffuse reflection the same amount  of flux is reflected downwards  as 

upwards) 

Received by the walls from the walls = 3840 x 0.415 = 1593.6 lumens 

Subtracting the reflected components  on a surface from the total flux incident on the surface 

gives the required direct flux 

Total flux received by ceiling = E C x A C 

= 1 2 1 x  1 6 =  1 9 3 6 l u m e n s  
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Reflected flux received by ceiling = reflected flux from the floor cavity + reflected flux from 
the walls 

= 996 + 1125 = 2121 lumens 

Direct flux required on ceiling = 1936-  2121 - - 1 8 5  lumens o r -  12 lux 
(this result will be commented on later) 

Total flux received by floor cavity = E F x A F 
= 500 x 16 = 8000 lumens 

Reflected flux received by floor cavity = reflected flux from the ceiling + reflected flux from 
the walls 

= 562.4 + 1125 = 1687 lumens 

Direct flux required on floor cavity = 8 0 0 0 -  1687 = 6313 lumens 

Total flux received by the walls = 240 x 32 = 7680 lumens 

Reflected flux received by the walls = reflected flux from the ceiling + reflected flux from the 
floor cavity + reflected flux from walls = 792.8 + 1404 + 1593.6 = 3790 lumens 

Note: When treated as one surface the walls 'see' each other 

Direct flux required on the walls = 7 6 8 0 -  3790 - 3890 lumens 

Before proceeding any further, it is necessary to comment on the negative value obtained for 
the required direct flux for the ceiling. This means that we have chosen apparent brightness 
values that cannot exist together in this three-surface enclosure; that is, ceiling, walls and floor 
with these reflectance values. The apparent brightness values chosen for the walls and floor 
cavity (working plane) are such that the reflected light from these surfaces to the ceiling exceeds 
that required by our specified apparent brightness value for the ceiling. 

Since we cannot provide negative illuminance on the ceiling and the difference is not large 
for a non-working surface, in practice we would assume that we required no direct ceiling illu- 
minance. The rather strange outcome is that the ceiling luminance would be higher than speci- 
fied and this would slightly increase the reflected light onto both the walls and the floor cavity. 

If we ignore these slight increases we can calculate the increase in ceiling luminance obtained 
in practice and see how it affects the value for apparent brightness of the ceiling. 

The flux received by the ceiling from the walls and the floor is 2121 lumens and that required 
by the original apparent brightness value was 1936 lumens. 

The increase in percentage luminous flux and hence luminance is 

2 1 2 1 -  1936 
=9.6% 

1936 

If we increase the original luminance of the ceiling by this percentage we can determine the 
apparent brightness that would actually be achieved" 

85 x 1.096 = 93 ash 

From Figure 8.5(a) we obtain a new value of apparent brightness of 50 units. 
This compares with the 45 units originally specified, but since we chose this value from 

Waldram's table, which was based on experience, the difference is unlikely to be significant, 
particularly for a non-working surface such as the ceiling. In fact, the ceiling will be slightly 
brighter than originally planned, but still less bright than the walls. 

Thus, apparent brightness values depend upon surface reflectances as well as the direct 
fluxes received, and so sometimes what is required is not a change in direct flux but in surface 
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reflectance. This is one of the weaknesses of this method when there is significant reflected 
light. 

Returning to the example, we now know the direct luminous flux required on each surface 
and we must choose a luminaire and a layout that will achieve this result. Here again we have a 
problem, since it is unlikely that a luminaire exists that will exactly fit our requirements. In fact, 
this example was chosen so that we would know of a luminaire and an arrangement that would 
be acceptable; that is, the luminaire used in the previous example. Let us compare our require- 
ments with the performance of the luminaire used for that example. 

The luminaire had a distribution factor (DFF) for the working plane (floor cavity) of 0.279 
and a distribution factor (DFw) for the walls of 0.191. The ceiling distribution factor (DFc) was 
zero. 

Our requirement is 

direct flux 
DF(F) = 

lamp flux x MF 

6313 
D 

9600 x 4 • 0.57 

DE(C) = 0 

3890 
OF(W) = 

9600 x 4 x 0.57 

= 0.288 

=0.164 

Comparing this with the values for the luminaire used in the previous example, we find 

DF(F) our requirement 0.288 
DF(F) the previous value 0.281 

DF(W) our requirement 0.164 
DF(W) the previous value 0.189 

DF(C) our requirement 0 
DF(C) the previous value 0 

Light output ratio 

(LOR) our requirement 0.288 + 0.164 - 0.45 
(LOR) the previous va lue -  0.47 

In practice, this luminaire would be acceptable as meeting the requirements, and the wall illu- 
minance of 255 lux instead of 240 lux would be accepted. 

The argument for accepting the lack of precision in the Waldram method is that, because the 
visual system operates on a logarithmic or power scale, such changes are acceptable and of little 
visual consequence. 

8.4 Accuracy in calculations 

This brings us to a very important issue with regard to lighting calculations. This is the argument 
that accuracy is of little importance because the eye is tolerant of quite large differences, say 
10-20%, and so calculations need not be precise. There are two main points here; the first being 
that cumulative errors rapidly become serious errors. An acceptable error at each stage can 
become an unacceptable one, say 50%, even in visual terms. 
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An important point is that someone has to pay for the lighting installation. If the calculations 
are in error so that 20% more luminaires and lighting points are required and 20% more elec- 
tricity is consumed, both the initial and the running costs will be increased by a similar order. 

Perhaps even more important is the comparison of competitive lighting tenders, where the 
cheaper tender may be cheaper because the scheme will provide less light, even though it claims 
to give the same lighting level. In the absence of accurate calculations, no satisfactory judgement 
can be made. 

Let the final words go to the writer of the introduction to IES Technical Report No.2 which 
introduced more accurate methods for calculating coefficients of utilization (utilization factors) 
in 1961. 

The opinion is often expressed that there are so many other sources of error in practice . . .  
that errors in the basic data are of little account. This is akin to arguing that because the aim 
of a rifle is affected by wind, there is no point in making the barrel straight and true. 

8.5  Cubic i l luminance 

8.5.1 CALCULATION OF CUBIC ILLUMINANCE 

It has been suggested by Cuttle 8 that a useful way to describe the illuminance conditions at a 
point is in terms of 'cubic illuminance'. The cubic illuminance specifies six illuminance values 
that would be present on the six faces of a small cube centred at that point. The methods needed 
to calculate these illuminances have been developed in earlier chapters. 

Certainly, a lighting engineer or designer would find such information very useful in 
analysing the performance of a lighting installation. In a rectangular room, the sides of the cube 
would most conveniently be arranged to be parallel with the adjacent walls, the ceiling and the 
floor. However, in its simplest form, cubic illuminance could be related to average values. 

If this was so then the illuminance on the top of the cube would be the average horizontal 
illuminance; the illuminance on the bottom face of the cube would be the average horizontal illu- 
minance multiplied by the floor cavity reflectance, and the illuminance on each of the vertical 
faces would be equal to the value of cylindrical illuminance. This assumes that the cube is not 
only moved to every possible position on the working plane, but also orientated in every possi- 
ble azimuth direction. 

If we use the values obtained in the example of Section 8.2 the cubic illuminances would be: 

On the top of the cube 498.2 lux 
On the bottom of the cube 149.5 lux (that is 498.2 x 0.3) 
On each of the four sides 257.6 lux 

Perhaps the most important use of cubic illuminance is in studying the distribution of illumi- 
nance throughout the lighted space. This means identifying points of interest in the room envel- 
ope and calculating the cubic illuminance at those points. 

Clearly, a three-dimensional system of specification is needed. The x, y, z coordinate system 
in common use for three-dimensional mathematical problems is an obvious choice and was the 
one adopted in the original paper. 

The previous example of Section 8.2 will now be further developed to illustrate the calcula- 
tion of cubic illuminance. Consider Figure 8.6(a). 

Here, we have assumed that no planes or surfaces beneath the working plane need be consid- 
ered. Accordingly, our room is now considered to be 2 m high and the working plane is treated 
as the 'floor'. The fight-handed coordinate system used in Section 3.1 is used here, but instead 
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Fig. 8.6(a) The position of point a relative to the coordinate system and the luminaires 

of making the origin the illuminated point, the comer of the room is now the origin, as shown, 
so that all the values measured from the origin are positive. Vector notation will be used in this 
section. 

The intention is to calculate the cubic illuminance at point a from all four luminaires. 
Let the position vector of  the point a be Pa and that of  source S be S l, then the distance from 

S 1 to Pa is IS 1 - Pa I and the direction of S l at Pa is defined by the unit vector q(x, y, z). 

Distance SIP a = IS ! - P a  I =  [ ( S l ( x ) -  Pa(x)) 2 + (Sl~v)- Pa(y)) 2 + (Sl (z) -  Pa(z))2] 0"5 

= [(1.0 - 0.5) 2 + ( 1 . 0  -- 0.5) 2 + (2.0 - 0 ) 2 ]  0.5 

= 2.121 m 

See Figure 8.6(b)" 

(05 / / 0 5 /  / 2 / 
= , 0 , 0  = O, ~ , 0  q(z) = 0 , 0 ,  

q(x) 2.121 qcy) 2.121 2.121 

= (0.2357, O, O) = (0, 0.2357, O) = (0, O, 0.94295) 

So, q = qx + qy + qz 

= (0.2357, 0.2357, 0.94295) 

Now q.n = qx.nx + qy.ny + qz.nz. Consider first the horizontal plane illuminance E(_z). n is the 
vector direction of the normal to the illuminated point, that is Pa' and in this case is the normal 
to the horizontal plane. 
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qx 

Fig. 8.6(b) The unit vector q 

So, I nxl = 0, I ny I = 0, In z I = 1.0 or in vector  notat ion n = (0, 0, 1). 

Thus ,  

q.n = 0.2357 x 0 + 0 .2357 x 0 + 0 .94295 x 1.0 = 0 .94295 = cos 0 

and 0 =  19.45 ~ 

It is convenien t  for cubic i l luminance  ca lcula t ions  to conver t  the inverse square law equa t ion  

I o cos 0 
E =  

d 2 

to 

10 
E = q . n  

IS I - pa 12 

F rom the intensi ty dis t r ibut ion table (Table 8.1) and using l inear  in terpolat ion,  the intensi ty  at 
19.45 ~ is found  to be 205.8 cd. 

Giv ing  

205.8 
E(_z) = 0.94295 • 

(2.121) 2 

= 0 .94295 • (45.746)  

= 43.1 lux 

(this value is per  1000 lumens) .  

Also,  for the vertical  p lane i l luminance ,  

E(_x) the normal  n = (1, 0, 0) 

So, 

E(_x) = 0.2357 x (45.745)  
= 10.78 lux 
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E(x ) = 0 since this face of  the cube  cannot  be i l luminated  by the source  until  its x coord-  

inate is greater  than that  for the source. 

E(_y) = 0.2357 x (45.745) 

= 10.78 lux 

Also,  

E(y) = zero 

and 

E(z ) = zero 

These  are the direct i l luminances  on the cube  f rom source S 1 (per 1000 lumens) .  

Let  us now find the direct  i l luminances  on the cube f rom source  S 2. 

Dis tance  S2P a = IS  2 - e a  I=  [(S2(x)- Pa(x)) 2 + (S2(y) - Pa(y)) 2 + (S2(z)-  Pa(z))2] 0"5 

= [(1.0 - 0.5) 2 + (3.0 - 0.5) 2 + (2.0 - 0 ) 2 ]  0 . 5  

= 3.24 m 

and 

0.5 2.5 2 
= I = I q(z)l = 

I q(x)l 3.24 q~y)l 3.24 3.24 

= 0.1543 = 0.7715 = 0.6173 

For  the horizontal  plane n = (0, 0, 1). 

So, 

cos 0 = 0.6173 0 = 51.88 ~ 

I o = 77.5 cd 

E(_z) = 0.6173 x 
(3.24) 2 

= 0 .6173(7.38)  
- 4 . 5 6  lux (per 1000 lumens)  (direct  i l luminance  source 2) 

E(_x) = q(x)(7.38) 
= 0.1543 x 7.38 

= 1.14 lux 

E(_y) = q~y)(7.38) 

= O. 7715 x 7.38 

= 5.69 lux 

By symmetry ,  the same value of  i l luminance  is p roduced  on the cube f rom source 4, but the 

x and y values are in terchanged.  

E(_z) = 4.56 lux (per 1000 lumens)  

E(_x) = 5.69 lux (per 1000 lumens)  

E(_y) = 1.14 lux (per 1000 lumens)  

To comple te  the direct  i l luminance  total we calcula te  the values for source 3. 
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Distance S3P a = I S 3 - ea  I = [(S3(x) - Pa(x)) 2 + (S3(y) - Pa(y)) 2 + (S3(z) - Pa(z))2] 0"5 

= [(3 - 0.5) 2 + (3 - 0.5) 2 + (2.0 - 0 ) 2 ]  0 . 5  

= 4 . 0 6  m 

2.5 2.5 

Iq(x)l = 4.06 Iq~y)l = 4.06 Iq(z)l = 4.06 

= 0 . 6 1 6  = 0 . 6 1 6  = 0 . 4 9 3  

cos 0 = 0.493 0 = 60.46 ~ 

I o = 43 cd 

E(_z) = 0.493 
4.062 

= 0.493 x 2.60 

= 1.28 lux (per 1000 lumens) (direct i l luminance source 3) 

E(_x) = 0.616 x 2.60 
= 1.60 lux 

E(_y) = 1.60 lux 

E(x ) = 0 
ECv ) = 0 

Total direct il luminances for point P a  (per 1000 lumens) 

E(_z) = 43.14 + 4.56 + 4.56 + 1.28 
= 53.54 lux (per 1000 lumens) 

E(_x) = 10.78 + 1.14 + 5.69 + 1.60 
= 19.21 lux (per 1000 lumens) 

E(_y) = 10.78 + 5.69 + 1.14 + 1.60 

= 19.21 lux (per 1000 lumens) 

To complete the calculation of cubic il luminance it is necessary to add the reflected components  
on each of the six surfaces of  the cube. 

Since the lengthy calculations carried out so far to illustrate the methods of calculation would 
normally be executed using a computer  program, the best way of proceeding would be to divide 
the room surfaces into discrete areas and apply the inverse square law to each area. Each area is 
treated as a light source having a uniformly diffuse intensity distribution. The intensity is calcu- 

lated from the known mean surface luminance and the projected area of the surface element 
being considered. The procedure would be the same as that used above in calculating the direct 
illuminances. 

An alternative method, which will be illustrated here, would be to treat each of the room 

surfaces as an area source and to use the formulae developed in Chapter 3 for area sources (see 
Figure 8.7). 
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Fig. 8.7 The four ceiling areas providing reflected illuminance at point 'a' (Pa) 

The formulae are 

L 
E = - -  (B 1 sin A + A l sin B) for surfaces parallel to the area source and 

2 

E ~ ( B -  B 1 cos A) for surfaces at right angles to the area source (see Figures 3.18 and 

3.20). 

The ceiling is divided into four component  rectangular  sources. Each of the formulae will 
now be applied to area 3 in Figure 8.7 to illustrate the procedure.  Consider  Figures 8.8(a) and 

8.8(b). 

Fig. 8.8(a) The area source configuration for calculating the horizontal component of reflected illuminance 
at P~, 
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Fig. 8.8(b) The area source configuration for calculating the vertical component of reflected illuminance 
at Pa 

In this case,  the i l l u m i n a n c e  on the para l le l  sur face  is E~_z) and  is g iven  by the f o r m u l a  

L 
E~_z) = --2- (B ! sin A + A I sin B) 

2 

Ang le  B 1 is the angle  b e t w e e n  the l ines R P  and TP. 

Dis tance  R P  = I R - P I=  [(R<x ) - P<x)) 2 + ( R ( y ) -  p(y))2 + (R(z) _ p~z))210.5 

= [(0.5 - 0.5)  2 + (4.0 - 0.5) 2 + (2.0 - 0.0)210.5 

= 4 .03 m 

3.5 2 
I q~x) I = 0 ,  I q r  I = ~ = 0.868 I q~z) I = ~ = 0 .496  

4.03 4.03 

Dis tance  TP = I T -  P I = [(T~x ) - P~x)) e + (T~y)-  p~y))e + (T~z) _ p(z))21o.5 

= [(4.0 - 0.5) 2 + (4.0 - 0.5) 2 + (2.0 - 0)2] 0.5 

= 5 .34 m 

3.5 
l a<x ) _  1=~5 .34  = 0 " 6 5 6  Iq(v) l =  0 .656  Iq<z) l = 0 . 3 7 4 5  

cos  B l = qRe'qTe = 0 • 0 .656  + 0 .868  • 0 .656  + 0 .496  • 0 .3745  

= 0 . 7 5 5  

B l = 40 .96~  = 0 .715 rad 

A n g l e  A is the angle  b e t w e e n  the l ines Q P  and  RP.  R P  has a l r eady  been  evalua ted .  

D i s t ance  Q P  = 2.0 m and s ince  Q P  is the no r ma l  at P 

qQe.n = (0, O, 1) 
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So, 

cos A = qRp'n = 0.496 

A = 60.26 ~ 

s i n A  = 0.868 

Angle  A 1 = B 1 = 40.96 ~ = 0.715 rad 

Angle  B = A = 60.26 ~ sin B = 0.868 

So, 

L 
= m (0.715 x 0.868 + 0.715 • 0.868) 

E(-z) 2 

L 
= - -  (1.241) 

2 

L is the cei l ing luminance  in cd /m 2 and applies  to all the cei l ing areas. It will be inserted after 

all the cei l ing componen t s  have been  summed .  

Area  3 also produces  vertical i l luminance  on the cube  in direct ions - x  and -y.  For  these calcu- 

lat ions the fo rmula  

L 
= ~ ( B -  B l cos A) is used E() 2 

The required angles  have already been  evaluated  in using the other  formula.  

L 
= m ( B -  B ! cos A) E(-x) 2 

L 
= m (1.05 - 0.715 X 0.496)  

2 

L 
= - -  (O.695) 

2 

L 
= - -  (0.695) and E(_y) 2 

Similar  calculat ions  for all the cei l ing areas produces  the fo l lowing results  for the bracketed  

terms: 

Area x y -x -y -z 

1 0.014 0.014 0.115 
2 0.412 0.183 0.359 
3 0.695 0.695 1.241 
4 0.412 0.183 0.359 
Total for the ceiling 0.434 0.434 0.878 0.878 2.074 
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The ceiling luminance L is given by" 

L 
E c xP c 

where E c is obtained from Section 8.1 

So, 

135.4 x 0.7 

/Z" 

= 30.17 cd/m 2 

L 
= 15.09 

2 

Multiplying each result by the ceiling luminance divided by 2 gives the reflected illuminance 
components on the cube for each direction produced by the whole ceiling. 

E(x ) = 6.55 lux, E(y) = 6.55 lux, E(_x) = 13.25 lux 
E(_y) = 13.25 lux, E(_z) = 31.31 lux 

To these results must be added the illuminance components due to light reflected from the 
walls. The wall areas are divided in a similar manner to the ceiling so that the two formulae can 
be applied to calculate these components (see Figure 8.9). 

Symmetry greatly reduces the number of calculations required, but care must be exercised to 
ensure that each component is allocated to its correct surface and also that the correct formula is 
used. 

Consider the calculations for area 12. Each area produces illuminance on three sides of the 
cube and in the case of area 12 these are directions +y, -x  and -z. The formulae to be used for 
this particular case are: 

9 

~L 

x 

Fig. 8.9 The eight wall areas providing reflected illuminance at Pa 
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L 
= (B - B 1 cos A) E(-z) 2 

L 
E~y) = --2- (Bl sin A + A 1 sin B) 

2 

L 
= - -  (B - B 1 cos A) E(-x) 2 

where  B, B 1, and A, A 1 are in radians.  

It should  be noted that, a l though the fo rmulae  for E(_z) and E(_x) are the same,  the a l locat ion 

of  angle values  are not, since the surfaces are at 90 ~ to each other. 

App ly ing  the me thod  already e m p l o y e d  for the ceil ing,  the values  of  the c o m p o n e n t s  on the 

cube for l ight ref lected f rom area 12 are: 

E(-z) = 2 
L 

m ( B -  B l cos A) 

B = 81.87 ~ or 1.43 rad 

B l = 59.5 ~ or 1.038 rad 

A = 7 5 . 9 6  ~ or c o s A = 0 . 2 4 2 5  

L 

E(-z) = 2 (1.43 - 1.04 x 0.2426)  

L 
= - -  (1.178) lux 

2 

L 
E(_x ) = m ( 1.25 3) lux 

2 

= ( 1 . 5 2 )  l u x  E~y) 2 

If we apply these me thods  to all the vertical surfaces numbered  5 to 12 in Figure  8.9, we 

achieve the fo l lowing results for the bracketed  terms: 

Area x y -x -y -z 

5 0.456 1.100 0.727 
6 1.100 0.456 0.727 
7 1.520 1.253 1.178 
8 0.009 0.133 0.035 
9 0.247 0.680 0.164 

10 0.680 0.247 0.164 
11 0.133 0.009 0.035 
12 1.520 1.253 1.178 
Total for the walls 3.085 3.085 1.185 1.185 4.208 
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The wall luminance L is given by, 

E w X P  w 
L = 

So, 

255.4 x 0.5 

7g 

= 40.65 cd/m 2 

L 40.65 
= ~ = 20.3 

2 2 

Multiplying each result by the wall luminance divided by 2 gives the reflected illuminance 
components on the cube produced by the walls for each direction. 

E(x ) = 62.6 lux, E~y) = 62.6 lux, E(_x) = 24.1 lux 
E(_y) = 24.1 lux, E(_z) = 85.4 lux 

This completes the calculation of the direct and reflected components on the cube from the 
cavity above the working plane. The components from below the working plane now have to be 
considered. 

In a practical office situation, the cavity below the working plane will be complex and liable 
to change because of the disposition of desks, etc. This is why it is usual to specify an assumed 
working plane reflectance (although it could be calculated). 

In this example, a relatively high value of 0.3 has been assumed. A more common value is 0.2 
when the furnishing is unknown. We have assumed light finishes for the floor, furniture and 
lower walls. 

The light reflected from the working plane will produce illuminance on the bottom of the 
cube E(z ) and on the sides of the cube E(x ), E(y), E(_x) and E(_v). 

If the cube is assumed to be very small then the local value of reflected illuminance can be 
considered as coming from an infinite plane (as far as the cube is concerned). The illuminance 
on the underside of the cube would be equal to the value of the local value of horizontal illumin- 
ance multiplied by the working plane reflectance, and the illuminance on the vertical sides of the 
cube would be half that value (that is, the infinite plane illuminance, when only half the plane 
can illuminate the surface). 

This gives, 

E(z ) = E(_z) x PF 
= E(_z) x 0.3 

and 

E(x ) = E~v ) = E(_x) = E(_y) = 0.5 x E(_z) x 0.3 

The values of these components cannot be calculated until a final value for E(_z) has been 

determined. 
Final value E(_z) = direct component + reflected component from the ceiling + reflected 

component from the walls. 
The direct component is given by direct illuminances from light sources 1 to 4 scaled up to 

9.6 kilolumens and multiplied by the maintenance factor 0.57. The reflected illuminances have 
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been calculated from the average i l luminance values of  the ceil ing and wall i l luminances,  

obtained in Section 8.1, and have already been reduced by the maintenance  factor. 

So, 

E(_z) = 53.54 x 9.6 x 0.57 + 31.3 + 85.4 

= 409.7 lux 

and 

E(z ) = 409.7 x 0.3 

= 122.9 lux 

E(x ) = E(y) = E(_x) = E(_y) = 0.5 x 122.9 

= 61.5 lux 

The total i l luminance on each of the six surfaces of  the cube can now be determined.  

E(x ) = Direct i l luminance + i l luminance produced by reflections from the ceil ing + illumi- 

nance produced by reflections from the walls + i l luminance produced by reflections 

from the working plane 

= 0 + 6.55 + 62.6 + 61.5 

= 130.6 lux 

Similarly, 

E~y) = 0 + 6.55 + 62.6 + 61.5 

= 130.6 lux 

E(z ) = 122.9 lux 

E(_x) = 19.21 x 9.6 x 0.57 + 13.25 + 61.5 

= 105.1 + 13.25 + 61.5 

= 179.9 lux 

E(_y) = 105.1 + 13.25 + 61.5 

= 179.9 lux 

E(_z) = 409.7 lux 

For practical purposes these values are: 

E(x ) = 131 lux, E(y) = 131 lux, E(z ) = 123 lux 

E(_x) = 180 lux, E(_y) = 180 lux, E(_z) = 410 lux 

It is of interest to see if the uniformity criteria for horizontal  i l luminance (E(_z)) has been met. 

The CIBSE Code specifies that the uniformity should be such that the ratio of min imum illu- 

minance to the average i l luminance should not fall below 0.8 for the main areas, excluding areas 

closer than 0.5 m to the walls. 

In our example  the value of this ratio at our point of calculat ion is 

410 

498 
= 0.82, which is quite satisfactory. 
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The steps required in obtaining the cubic illuminance for one point in a simple situation have 
been followed through in detail to illustrate what calculations have to be carried out. Obviously, 
once these or similar steps have been included in a computer program these calculations can be 
routinely carried out quickly and accurately. 

The most laborious part of the calculations was the determination of the reflected compo- 
nents, and Cuttle has suggested that a useful estimate of the average reflected component  could 
be used instead of these detailed calculations. This estimate method is based on the integrating 
sphere theory given in Section 5.2. 

The indirect component  of mean room surface illuminance could be taken as the mean room 
surface exitance: 

M = FRF/A ( 1 - R) 

where FRF is the first reflected flux 
A is the total room surface area 
R is the weighted mean of the room reflectances 

The total lamp flux is 4 x 9600 lumens. 
The direct flux to the working plane is 38400 x 0.279 = 10714 lumens. 
The direct flux to the walls is 38400 x 0.191 = 7334 lumens. 
There is no direct flux to the ceiling: 

FRF = (10714 x 0.3 + 7334 x 0.5 + 0) x M F  
= (3214 + 3667)0.57 
= 3992.17 

Taking a weighted average of room reflectance, we find 

16(0.7 + 0.3) + 32 x 0.5 
R =  =0 .5  

64 

A = 2 x 4 x 4 + 4 x 2 x 4  

= 6 4  m 2 

M _,_ 

3922 

64(1 - 0.5) 
= 122 lumens per square metre 

which in terms of incident illuminance on the cube becomes 122 lux. 
If we compare this value with the individual values of reflected illuminance for each side of 

the cube, we can see how appropriate this estimate would be in the case of our example. 

Values of reflected illuminance 

E(x ) = 131 l u x ( 1 2 2 1 u x ) - 7 %  
E(y) = 131 l u x ( 1 2 2 1 u x ) - 7 %  
E(z ) = 123 lux (122 lux) - 0.8% 

E(_x) = 75 lux (122 lux) + 63% 
E(_y) = 75 lux (122 lux) + 63% 
E(_z) = 117 lux (122 lux) + 4% 

The large errors are in the vertical illuminances where it swings f r o m - 7  ~ to +63 ~ This is a 
consequence of the cube being close to one comer  of the room. If the point was nearer to the 
centre of the room these errors would be reduced. 
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f I l l um ina t i on  
so l id  

Fig. 8.10 The illumination solid 

8.6  The i l luminat ion solid 

The illumination solid is a polar solid of the illuminances surrounding a point. It is constructed 
from the planar illuminances normal to each direction from the point. The distances from the 
illuminated point to the surface of the solid represent these planar illuminances. The solid is, 
therefore, an indication of the illumination condition at the point in question in a three-dimen- 
sional form 3 (see Figure 8.10). 

To construct the solid accurately the illuminances in every direction from the point must be 
calculated or measured. Cuttle uses the values obtained from cubic illuminance to give an 
approximate illumination solid and develops a series of equations for determining planar illu- 
minance, scalar illuminance, hemispherical illuminance, cylindrical illuminance and semi- 
cylindrical illuminance. 8 

In the analysis of the illumination solid the tbllowing important aspect of the illuminance 
vector is found to be useful. 

Consider two cosine waves of different magnitude, but the same frequencies, displaced by 
180 ~ and added together algebraically. This is equivalent to small size light sources illuminating 
opposite sides of a plane containing the point of interest (Figure 8.11). 

As the plane containing the point is rotated, the resultant is A cos 0 + B cos (0 + :r) = 
(A - B) cos 0, since cos(0 + :r) = -cos 0. 

Fig. 8.11 Two small light sources illuminating opposite sides of a plane 
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This is obviously another cosine wave of the same frequency, but different magnitude; the 
change in magnitude being the difference of the illuminances on each side of the plane. 

It can be shown that this is true for all angles of displacement of the point light sources about 
the illuminated point. 4 Thus, the illumination vector obtained is the difference between the illu- 
minances on opposite sides of the rotated plane. This is true in general because any large source 
can be considered to consist of many point sources. The polar curve of the illuminance vector 
about the point of interest is therefore the tangent sphere associated with the cosine law of illu- 
mination. It must be noted that, because treating illuminance as a vector quantity gives the differ- 
ence of the illuminances when the sources are on different sides of the illuminated plane, care is 
needed in the calculation. That is why, in using the vector concept in Chapter 3, Sections 3.1 and 
3.2, care was taken to keep the light sources on one side of the plane and not allow the illumin- 
ated plane to separate the sources or cut through an area source. 

The fact that the vector component of the illumination solid is always a tangent sphere to the 
illuminated point means that this component has the same distribution as that which would be 
produced by a point source located in the direction of the diameter of the sphere that passes 
through the point (Figure 8.12). Since this sphere represents the magnitude and direction of the 
differences in illuminance in each direction at the illuminated point, subtracting this vector 
component from the illumination solid would leave another solid that would be symmetrical in 
the sense that all opposing illuminance values would be equal (Figures 8.13(a) and (b)). That is 

E i = E 2 and E 3 = E 4, etc. 
This property of the illumination solid can be used to calculate the scalar illuminance at the 

point. The vector component can be treated as though it was due to a point source and, in Section 
3.8.1, we showed that 

Ema x I EI 
E S = ~ = ~  

4 4 

To this must be added the contribution of the symmetrical component. The symmetrical 
component is equal to 

1 
Z ESM 

N 

where N is the number of values of illuminance measured or calculated to produce ]~ ESM. 
This mean value of ESM is added to the result for the vector component to give the total value 

for E s. 
If the values of illuminance measured or calculated are those of cubic illuminance (that is 6) 

then the resulting value for E s will be an approximation. 

Fig. 8.12 The tangent sphere distribution of the vector component 
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Vector 
component 

E1 

Fig. 8.13(a) The tangent sphere component within the illumination solid 

Symmetrical 
component 

Fig. 8.13(b) The symmetrical component left once the vector component has been removed 

Let us calculate the value for average E s for our previous example and compare it with the 
more rigorously calculated value obtained using zonal multipliers and inter-illuminance factors 
(see Section 8.2). 

The average illuminance vector would act in a downward direction and would be given by 

E F - PFEF . 

So, 

I E I = E F (  1 - PF) 
= 498(1 - 0.3) 
= 349 lUX 

The vector component of E s is therefore 349/4 = 87.3 lux. 
The symmetrical component is obtained from each of the pairs of values: 

E(x ), E(_x), E(y), E(_y), E(z ), E(_z) 
258, 258, 258, 258, 149, 498 

taking rounded values from Section 8.5.1. 
In the cases of the x and y axes, the differences to be subtracted are zero, so that the magni- 

tude of the symmetrical component is 258 lux. 
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In the case of the z axis, once the difference in the two values has been subtracted the symmet- 
rical component values will be 149 lux. 

The contribution to the scalar illuminance of the symmetrical component is therefore the 
mean of these three values. 

ES(SM ) = 
258 + 258 + 149 

= 222 lux 

The total value for E s 

= 87 + 222 

= 309 lux 

The value obtained in our earlier example (Section 8.2) was 330 lux, a difference of 6% in 
this case. 

Cuttle 8 lists five approximate illuminance equations based upon the vector and symmetrical 
components of the illumination solid derived from cubic illuminance. In these equations n is the 
Normal unit vector, defining the direction relative to the plane specified by the suffix, and e is 
the Illumination unit vector, defining the direction of the illumination vector, specified by 
components on the x, y and z axes. 

For planar illuminance 

Epr = I E I e 'n  + EsM(x}n(x ) + EsM(y)nC~,) + EsM(z)n(z ) 

where e = E(x,y,z)/ I E I. 
If e'n<0, then set e'n = O. 
For scalar illuminance 

E s = I E l ~ 4  + (ESM(x) + ESM(y ) + ESM(z))/3 

For hemispherical illuminance 

Ehe m = I EI (1 + e 'n ) /4  + (ESM(x) + ESM(y ) + ESM(z))/3 

For cylindrical illuminance 

Ecy I = I E le'e(x,y)hr + (EsM(x) + ESM(y))/2 

For semi-cylindrical illuminance 

Esemcy ! = I EI (e.e(x,y)) (1 + e(x,y))hr + (ESM{x) + ESM(y))/2 

8.7 CSP 

So far this chapter has been devoted to a simple example of office lighting in order to illustrate 
thoroughly the steps required to calculate the various physical parameters by which to judge the 
quality of the lighting. 

From these calculations we have determined that the working plane illuminance should be 
satisfactory; that the glare should be well controlled and that the brightness of the walls and ceil- 
ing should be acceptable. In addition, we have established that the modelling of the features of 
the occupants should be acceptable. However, the question still remains 'Will the users of the 
office be satisfied?' 
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An attempt has been made to answer this question in the case of office lighting by developing 
an empirical formula, based on experimentation, which seeks to combine the physical parameters 
to produce a simple number index to indicate whether occupants of an office would be satisfied. 9 

The weakness of this work is that it is based on testing 650 people in 44 offices and combin- 
ing the results in a histogram. This means that, for a small office with only a few occupants, the 
sample would be small and therefore biased. The value of this index is that it indicates that people 
using that office should or should not be satisfied. The index is called the CSP Index because it is 
based on considering Visual Comfort (absence of glare), Visual Satisfaction (relative illuminance 
of vertical and horizontal surfaces) and Visual Performance (lighting conditions at the task). 

Another issue is that combining these three elements of visual quality in a single number suggests 
that there is a trade-off between them; that more visual comfort can offset less visual performance 
or satisfaction. However, the index has been designed to restrict the degree of this trade-off. The 
histogram produced from the experiments suggests that there is, within limits, some such effect. 

The CSP formulation has been designed to deal with offices that do not employ VDUs, offices 
that do and offices where there is only a percentage of VDU use. Most offices today employ 
VDUs and so only one of the formulae would be needed. 

Table 8.4 gives the formulae for the method of assessment and Figure 8.14 gives the curve of 
the percentage of occupants likely to be satisfied plotted against the CSP Index, which was 
derived from the histogram obtained from applying the Index to the observer responses. It is 
interesting to see how the office lighting employed in the example used in this chapter would be 
rated by this Index. 

We will assume 100% VDU use. 

(1) The Comfort Index (C) (derived from the Glare Index) 

GI = 17.4 (see Section 8.1) 
C = 10 - 0 . 3 (GI -  14) 

= 1 0 - 0 . 3 ( 1 7 . 4 -  14) 
= 8.98 

Table 8.4 VDU Lighting 

Condition Formula 

GI> 14- 
GI<I4: 
Ecyl/Eh<2/3: 
Ecyl/Eh>2/3: 

KU + K R ) 
P = 0.075KEvdKDR 1 + 

60 

If P>I 0, then assume P = 10 

C = 10-0.3(G/= 14) 
C = 1 0  
S = 15Ecyi/E h 
S=10  

E h<500" 
Eh>500" 
DR at RI = 0.75<0.5: 
DR at RI = 0.75>0.5: 

Ra<90: 
Ra>90: 
Qiv = 3csP/(C + s + P) 

KEv d = Eh/50 
rEv d = 5 0 0 0 / E  h 

KDR = 20DR 
KDR = 10 
K U = 10Emin[Eav 
where Eav = E h 
K R = 0.111R a 
KR=IO 
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Fig. 8.14 The experimentally obtained curve of satisfaction against CSP Index 

(2) The Satisfaction Index (S) (derived from the cylindrical to horizontal illuminance ratio) 

S = 15 Ecyl 

Eh 

Ecyl = 0.52 

Eh 

S = 15 • 0.52 
=7 .8  

(3) The Performance Index (P) (derived from the illuminance level, the uniformity, the direct 
ratio and the colour rendering index) 

F + KR 
P = 0.075KEvdKDR | 1 + 

L 60 
Eav = E h = 498 lux 

Emin 
Uniformity = ~ = 0.82 

Eav 
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DR = Distribution factor divided by LOR 
= 0.24/0.47 (DF from manufacturer) 

= 0.51 

R a has not been specified so far. We will choose a moderate value of 70 (see CIBSE Code). 

gEvd = Eh/50 

498 
= ~  = 9.96 

50 

K u = 1 0 ~  

= 1 0 x  

Emin 
Eav 

410 

498 

= 8.2 

KDR = 10 
K R = 0.111R a 

= 0.111 x 70 
= 7.77 

r 

P = 0 . 0 7 5 x 9 . 9 6 x  1 0 ( l  + 
x .  

= 7.47 x 1.30 
=9 .7  

3 x C x S x P  

C + S + P  

3 x 8.98 x 7.8 x 9.7 

CSP Index = 

8.98 + 7.8 + 9.7 

2038 

26.48 

= 77 

8.2+1060 / 

This value is at the top of the practical CSP range and suggests that over 90% of occupants 

should be satisfied. 
It has been suggested that the CSP Index could be used as a 'go' ,  'no go' gauge. If the calcu- 

lated CSP Index value is 40 or above, the installation should be rated reliable and if it is below 
that value it should be rated unreliable since a low value of CSP implies that occupants' satis- 
faction or dissatisfaction would be governed mainly by their visual capacity. 

For example, if the client required the designer to produce an installation that was rated above 
40 on the CSP Index scale and with a power consumption no greater than 4 w/m2/100 lux, they 
would be controlling the visual quality of the installation as well as its energy efficiency, with- 
out interfering with its detailed design. 
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8 .8  Visual izat ion 

In Section 8.3 we dealt with Waldram's 'designed appearance' method of lighting design and 
pointed out that the first step was to have some idea of a scale of apparent brightness to enable 
the designer to specify his or her requirements. This aspect of the method relied on being able 
to imagine the required brightness relationships within the room and then translate these into 
numerical values, a very sophisticated task. 

Visualization is an attempt to enable both the designer and the client to have a visual image 
of the final result and to vary that image until the requirements are met. The technique relies on 
the ability to produce a satisfactory image of the room and its surface brightnesses and then 
relate the image to a practical lighting installation. Needless to say, visualization had to await the 
advent of very powerful computers working at high speed to produce such images in real time. 

Bodman 1~ has pointed out the following differences between a real scene and computer 
generated images on a TV monitor: 

1. The screen picture is much smaller than the real room. 
2. A three-dimensional room appears in perspective on a two-dimensional screen. 
3. The viewing distances are different. 
4. The screen is self-radiating, whereas most real surfaces reflect light. 
5. The observer views the screen in a room, whereas in the real room he experiences it. 
6. The light levels (luminances) on the screen are generally less than in reality. 

Bodman makes the following two important points: 

I. The linear transformation of the calculated high luminances on to the lower luminances of the 
display screen produces a too dark overall impression. 

2. Tranformations involving the apparent brightness/luminance relationships derived by such 
people as Adams/Cobb or Stevens gives a good or very good impression of the real room. 

He states these apparent brightness/luminance relationships as follows: 

Stevens: H ,-, ( L -  Ls )n 

L 
Adams/Cobb: H -  

L + L  A 

where H = apparent brightness of the object 
L - Luminance of the object 
L s - Threshold luminance 
L A - Adaptation luminance 
n = Exponent 

Since most people are used to viewing television screens and to interpreting the display in 
relation to reality, this method of generating lighting designs has much to commend it. It is, of 
course, of particular value for major design projects where the work involved in producing the 
image is justified. 

The current VDUs cannot display the full range of luminances or colours in the scene, nor do 
they fill the entire visual field. This has important consequences: 

1. Glare from bright sources such as windows and luminaires cannot be adequately represented; 
a bright patch on a VDU might have a luminance of 120 cd/m 2 compared with a luminaire 
brightness of 3000 cd/m 2. 
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2. The luminance range of the scene must be compressed on to the luminance range of the 
VDU. 

Realistic images demand vast numbers of calculations to determine the detailed luminance 
patterns that would exist in the true installation. Practical visualization programs, therefore, 
contain many approximations and optimizations to reduce the number of equations to be solved 
or the geometric calculations needed. 

Much of this work depends upon programming skills concerned with substructuring and 
establishing sophisticated hierarchical algorithms. All this is beyond the scope of this book. The 
radiosity method described in Chapter 5 and applied to calculating the average illuminance of 
three surfaces can be extended to any number of surfaces. A room could be divided into hundreds 
or thousands of elementary areas and solutions obtained. However, the problem would be the 
size of the matrix, since this increases as the square of the number of individual areas consid- 
ered. 

One simple technique is to use the radiosity method to determine the average luminance of 
each major surface produced by secondary reflections and to add to this the detailed luminance 
pattern produced by the first reflected flux. 

To do this a calculation is carried out using the average direct illuminance on the surface to 
calculate an average luminance value. The first reflected element of the average luminance value 
is then subtracted and replaced by a detailed luminance pattern generated by point by point 
values of direct illuminance. This, of course, greatly reduces the amount of computation 
required. 

In addition, to give more realism, ray tracing can be undertaken to determine where the high- 
lights occur due to the semispecular nature of many room surfaces. 

Because visualization depends not upon the development of lighting theory but upon 
computer technique, it is part of an enormous effort being made continually in the computer 
field. Obviously, visualization techniques will be continuously refined and their use in lighting 
design will become common for the most important designs. 

8.9 Detailed requirements for interior lighting 

Since 1936, in the United Kingdom, a Lighting Code has been published that contains recom- 
mendations for the lighting levels to be used in specific situations. This Code has been developed 
over the years into a valuable guide to the design of interior lighting for different situations. The 
1994 Code I gave an outline of the many different aspects to be considered in interior lighting 
design, both in general and for specific applications and this is a valuable aid to the lighting 
designer. 

This book is mainly devoted to the fundamentals of lighting calculations and to their appli- 
cation. It cannot include all the detailed recommendations for the dozens of applications listed 
in the Code. That Code, together with such books as Lamps and Lighting II is an important 
source of reference for designers. This present book provides the fundamental lighting calcula- 
tional techniques for meeting the design requirements outlined in the Code and in other design 
guides. 
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Main Road and 

9 
Motorway Lighting 

9.1 Introduction 

The principal purpose of main road and motorway lighting is to improve visibility for the driver, 
in contrast to residential road lighting (Chapter 10), which is installed for the benefit of the 
pedestrian. Main road lighting is installed in the hope that it will reduce accidents. In fact, the 
economic justification for installing it rests mainly on costing exercises to evaluate the savings 
from the estimated reduction in accidents. An added benefit is that road lighting makes the task 
of driving easier. This is particularly the case for the older driver, for whom the glare from 
oncoming traffic can result in a marked impairment of the capacity to discern objects. Some light 
from main road lighting will fall onto adjacent footways, which is of help to the pedestrian, and 
in many instances installation designs are made with the intention of providing sufficient light 
for pedestrians as well as for drivers. 

The lighting can improve the appearance of the environment at night, but care has to be taken 
to limit severely upward light from the luminaires, which can form a bright aurora. This consti- 
tutes 'light pollution'; it is not only unsightly but is the bane of astronomers because it makes 
observation of objects in the sky difficult or impossible, i Light pollution, or perhaps more aptly, 
light trespass, may also be caused when the installation is close to housing where even the useful 
light from the installation may be regarded as a nuisance by some residents. 

9.2 Lighting and accidents 

In the UK, the accident rate at night, weighted for distance travelled, is about 80% higher than 
by day. For fatal accidents the risk is about three times greater at night than that by day. Whilst 
it is tempting to ascribe this to the greater difficulty of seeing by night, other factors such as tired- 
ness and the greater intake of alcohol at night are at least partly responsible. Because of these 
uncertainties, many studies have been carried out to find whether road lighting does reduce acci- 
dents. Other studies have tried to discover which lighting parameters (average illuminance, aver- 
age luminance, uniformity of luminance, etc.) are important and how levels are related to 
accident rate. Accounts of these studies have been collated in CIE 93, 2 Road Lighting as an 
Accident Countermeasure. Generally, these studies suggest that installing some lighting will 
reduce the ratio of accidents at night to those during the day by 30%. This ratio, the night-day 
accident ratio, is often used as a measure of the effectiveness of road lighting because any non- 
lighting change to the installation should affect the accidents during both periods equally, 
whereas a change to the lighting will affect only the night accident rate. 

Three of the studies may be singled out as being on a large scale and providing significant 
data. In the UK, a study of 100 30 mph roads was carried out. 3 Various lighting parameters were 
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measured. It was found that the parameter that most strongly correlated with the night-day acci- 
dent ratio of fatal accidents was the average luminance of the road surface. A steady decrease in 
the night-day accident ratio was produced as the luminance was increased from 0.5 to 2.0 cande- 
las per square metre. However, not all the studies cited in CIE 93 gave results as straightforward 
as this. Box, in the USA, in two studies, one on 22 freeway sites the other on 329 urban sites, 
found a U-shaped relation between horizontal illuminance and the night-day accident ratio, the 
minimum of the U occurring at about 5,5 lux. 4,5 Janoff et al. found the night-day accident ratio 
increased with illuminance but decreased with an index of visibility which took into account 
disability glare as well as other lighting criteria. 6 On the basis of this they conjectured that the 
increased disability glare at the higher illuminances was responsible for the increased night-day 
accident ratio. These findings of the work done in the USA have provided the impetus for work 
on Small Target Visibility, which will be discussed later (Section 9.13, page 373). 

The need to install road lighting is often decided on the basis of cost benefit. The projected 
savings as a result of reduction in accidents are set against the capital and running costs, includ- 
ing maintenance, of the installation. 

9.3 Visibi l i ty of objects on the road 

In road lighting, the economic upper limit for average illuminance on the road surface is about 
20 lux, but for most roads half this value is used. This compares with the CIBSE recommended 
horizontal illuminance for offices of 500 lux. 7 The question immediately arises; how can road 
lighting, where decisions affecting life and death are being taken, often very quickly, be effec- 
tive in revealing objects on the road when it operates, as it does, at low illuminances? 

The answer is provided by Waldram's principle of silhouette vision, enunciated in the early 
1930s. Waldram was the first to realize that there was not sufficient light available to illuminate 
effectively the objects of interest, as is done with most artificial lighting, but use had to be made 
of the reflection properties of the road to provide a bright background against which objects 
would be seen in silhouette. This implies that the illuminance on vertical surfaces should be as 
low as possible to produce a silhouette and achieve the maximum contrast between the object 
and the road surface. It is, however, not possible to produce this condition for all objects wher- 
ever they may be positioned on the road. The luminance of objects on the road will vary accord- 
ing to their reflectances as well as the illuminance falling on them. It is, therefore, possible for 
an object to be brighter than the road surface (reversed silhouette), and there will be positions 
where the luminance of the object will match that of the background, and therefore become very 
difficult or impossible to see. Direct light from the road lighting luminaires may cause disabil- 
ity glare, which - as the name implies - decreases the ability to discern objects. This effect can 
be calculated, but there is no satisfactory method of calculating discomfort glare. It is possible 
that for short spells of driving, discomfort glare is not of much importance, but over longer peri- 
ods it has been argued that it could have a fatiguing effect which may lead to accidents. 

There are other factors which should be taken into consideration in considering the conspicu- 
ity of objects on the road: 

�9 density of traffic. Roads have become so crowded with traffic that the backs of cars provide 
the foreground more often than not, 

�9 scattering of light by the windscreen, which may be dirty or wet, 
�9 light loss by absorption by a tinted windscreen, 
�9 lighting of the surrounds, which may enhance visual conditions, 
�9 optical guidance provided by direct light from the luminaires. This gives the driver forewarn- 

ing of the run of the road far ahead, and may be particularly useful in fog, 
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�9 age of the road user. Vision becomes less effective with age. For instance, at 60 years of age 
three times the luminance is needed for the same retinal illuminance as is needed at 20 years 
of age. 8 In addition, there is more scattering of the light in the older eye, which increases 
disability glare, and reaction times are slower. There are sufficient data available to allow for 
these effects, but if we designed for the oldest person likely to be using the road the increase 
in lighting levels would have to be manifold. 

9.4 Some road lighting terminology 

Before discussing the silhouette principle, we need to become familiar with some road lighting 
terms relating to the layout of the luminaires and the light distribution from them. 

Figure 9.1 shows the commonly used layouts or arrangements for the luminaires. Which 

Fig. 9.1 Commonly used arrangements in road lighting. (a) Single side arrangement; (b) staggered arrange- 
ment; (c) opposite arrangement; (d) twin central arrangement; (e) opposite arrangement on dual carriage- 
way 
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Fig. 9.2 Vertical polar curves through the peak of cut-off and semi-cut-off light distributions. (a) Polar 
curve of cut-off light distribution; (b) polar curve of semi-cut-off light distribution 

arrangement is selected will depend on the light distribution of the luminaires, the width of the 
carriageway, accessibility for maintenance and economic factors. For instance, as regards factors 
that are not directly related to the lighting, the single side arrangement is popular outside the UK 
because of the cheaper cable costs compared with the other arrangements. In addition, mainten- 
ance procedures can be carried out more easily. Although the twin central arrangement gives the 
better lighting effect on dual carriageways, an opposite arrangement may be chosen because of 
easier accessibility for maintenance, although offset against this is the fact that two cabling runs 
are needed, on either side of the road. 

There are several terms used to describe the general shape of the light distribution from a 
luminaire. The highest luminous intensity is referred to as the peak luminous intensity or, more 
simply, as the peak (Figure 9.2). 

The part of the light distribution surrounding the peak is known as the beam, and the part 
of the distribution from the beam to the horizontal is the run-back. Figure 9.2 illustrates the 
two most common light distributions; cut-off and semi-cut-off. The curves are in the vertical 
plane through the peak. The cut-off distribution has a peak at 65 ~ or lower and a fast run-back, 
with a low or zero luminous intensity at 90 ~ The semi-cut-off distribution has a peak at 75 ~ 
or lower with a slower run-back and a greater luminous intensity at 90 ~ than the cut-off distri- 
bution. A third term, non-cut-off, is sometimes used to describe a distribution where there is 
no or little pronounced peak and there is little diminution of the luminous intensity in the run- 
back. 

In azimuth, the peak is usually designed to fall between 0 ~ and 15 ~ of azimuth towards the 
centre of the road. This angle is referred to as the toe-in (Figure 9.3). As indicated in this 
diagram, the light distribution is symmetrical, at least nominally, about the transverse vertical 
plane (C - 90 ~ and 270 ~ (see Section 2.2, page 34) through the photometric centre of the lumi- 
naire. For situations where the road is wet for a high proportion of the time, it is useful to have 
a toe-in as great as 25 ~ but for most general purposes it does not exceed 10 ~ 

Although many of these terms lack precision, and are used in somewhat different ways in 
different countries, they are useful for descriptive purposes. 
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Fig. 9.3 Relation of toe-in to the run of the road 

9.5 Lighting the road surface 

Each luminaire in the installation produces a bright patch of light on the road and we need to 
consider the shape and extent of this patch to the approaching driver, and how a number of 
patches can be fitted together to cover the whole road surface. In practice, this process is carried 
out by calculation but the following qualitative description gives an understanding of the under- 
lying principles. 

As is shown in Figure 9.4(a), schematically, the individual patch of light is T-shaped. The 
head of the T is produced by mainly diffuse reflection (although the road surface is far from 
being a uniform diffuser) and the tail of the T is produced by mainly specular or, more precisely, 
preferential reflection. The maximum extent, away from the observer, of the T is just beyond the 
transverse line at the nadir of the luminaire. This occurs partly because of the reflection proper- 
ties of the road surface and partly because of the foreshortening of the head of the T due to the 
perspective view of the road, which is taken from an eye height of only 1.5 m. The tail of the T 
is on a line in the vertical plane through the luminaire and the eye of the observer. Its length will 



9.5 Lighting the road surface 351 

Fig. 9.4 Light patterns produced on the road by different light distributions, road surfaces, and arrange- 

ments 
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depend on the specularity of the road surface and the beam angle of the luminaire. The more 
specular the road surface the longer the tail, providing the beam angle of the luminaire is high 
enough to take advantage of the specularity. Anti-skid road surfaces tend to be rough and hence 
shorten the tail. In this case there is no benefit in having a high beam angle, particularly as it can 
cause glare. A specular road surface tends to narrow the head of the T. The extreme case occurs 
in practice when the road is wet. In this condition the T degenerates to a streak of light not much 
wider than the luminaire. This will extend nearly to the observer. 

The remaining diagrams in Figure 9.4 show how the individual patches of light from the lumi- 
naires in an installation combine to light the road surface. Figure 9.4(b) shows how the patches 
in a staggered arrangements are fitted together to cover the road surface. When the lumin-aires 
have a low beam angle or the surface is very rough, Figure 9.4(c), the tails to the T-shaped 
patches are shortened. The resultant poor coverage has to be remedied by closing up the spacing 
between the luminaires, or selecting a luminaire with a more suitable light distribution. In a 
wider road, Figure 9.4(d), the centre of the road tends to lack coverage, which can be remedied 
by using an opposite arrangement. When the road is wet, Figure 9.4(e), the T-shaped patches 
degenerate into streaks, as already stated. As already stated, this can be remedied to a limited 
extent by having a large toe-in, exceeding 25 ~ On a bend, Figure 9.4(0, the T-shaped patches 
are combined by locating the luminaires on the outside of the bend, although it may be neces- 
sary to supplement these by luminaires on the inside of the bend on wide roads. 

It should be restated that Figure 9.4 is schematic and, in practice, the T-shaped patch consists 
of graduated luminances, and the parts of the road outside the indicated patches do have some 
luminance, albeit low. It does not show the effect of increasing the mounting height. This tends 
to increase the size of the patch but a point is reached where the luminance will be too low for 
the patch to be recognized as such. 

9.6 Quality criteria 

Quality criteria, sometimes called the light technical parameters, govern the level and uniformity 
of road luminance, control of glare, and light falling on the surrounds to the road. They are: 

Lay, the average road luminancea; 
U o, the overall uniformity, defined as the minimum to the average luminance; 
U L, the longitudinal uniformity, defined as the minimum luminance to the maximum lumin- 
ance along a specified line parallel to the direction of the road; 
TI, the threshold increment, which is a measure of the disability glare; 
G, the glare control mark, which is a measure of discomfort glare; 
SR, the surround ratio, which is a measure of the amount of light falling on the surrounds as 
a proportion of that falling on the road. 

9.7 Conventions for installation geometry 

CIE and national standardizing bodies have drawn up conventions for positioning the observer, 
the calculation points, and the position of the luminaires. The national bodies have mostly based 
their recommendations on CIE 30.2 but there are departures. The following is a summary of the 
recommendations. 

m 

a For many years L was used as the symbol for average road luminance, but n o w  Lav is favoured, perhaps 
because it is consistent with E av, the symbol for average illuminance. 
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Fig. 9.5 Positions of calculation points for two-lane road 

Field of calculation: the field of calculation is the area on the road where points are chosen for 
the calculation of luminance. It should commence at a luminaire position 60 m ahead of the 
observer, as shown in Figure 9.5, and it should stretch no further than 180 m from the observer, 
as this is the limit of applicability of the r-table. Within this the field of calculation should cover 
a section between two luminaires in the same row. Transversely it should be bounded by the 
edges of the carriageway 
Eye height of observer: 1.5 m. 
Transverse position of observer: one quarter of the carriageway width across the road for the 
calculation of Lav, U o, and TI. For U L the observer is on the centre line of each lane. For stag- 
gered installations the observer is on the opposite side of the road from the first luminaire. 
Number of calculation points longitudinally, N: N takes on the following values (Figure 9.5): 

for S < 50 m, N is 10; 
for S > 50 m, N is the smallest integer giving D < 5 m, where D is the distance between 

points. 

Number of points transversely: CIE recommends five points in each lane but allows three points if 
the uniformity is good. The number of points must be an odd number as the middle row of points is 
used to calculate longitudinal uniformity. The half spacing at the edge of the lane should be noted. 

UK practice is to use ten points for all roads except motorways, where five points are used in 
each lane. 

In some countries the first row of transverse calculation points is located at a half spacing 
beyond the first luminaire so that all calculation points can be regarded as being in the centre of 
rectangles in the calculation field; the usual practice for calculating illuminance both for indoor 
and outdoor practice. 

9.8 Calculat ion of road surface luminance 

Figure 9.6 shows the geometry for the calculation of the luminance at the point P. The 
observer's eye, at O, is taken to be 1.5 m above the road surface, by convention. Reflection data 
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Fig. 9.6 Geometry for the calculation of luminance at P 

are available in the form of r-tables, described in detail later. These are applicable to a viewing 
angle, a, lying between 0.5 ~ and 1.5 ~ For an observer height of 1.5 m this means that the area 
of the road on which calculations can be performed lies between 57 m (= 1.5/tan 1.5 ~ and 172 m 
(= 1.5/tan 0.5 ~ ahead of the observer. It should be noted as a matter of interest that this area 
occupies only a small part of the visual field (see Figure 9.18, page 386). The luminaire is at S 
and the light ray SP emerges from the luminaire at an angle i to the downward vertical, which 
is also equal to the angle of  incidence at P. At the luminaire, i is equal to the angle 7' in the 
(C, 7') system of coordinates when the luminaire is mounted at the attitude at which it was 
photometrically tested; that is, no rotations have been applied. Correcting for these will be 
discussed later. 

To calculate the luminance of P on the road surface (Figure 9.6) as seen by the observer at O, 
the following equation is used: 

L = q E  

ql c o s  2 i 

H 2 

- (q cos 3 i) 

= r ~  
H 2 (9.1) 

where 
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L is the luminance at the point P in candelas per square metre; 
q is the luminance coefficient, defined as the ratio of the luminance of an element of surface 
to the illuminance on it for given angles of viewing and angles of incident light. Methods of 
measuring it are given in Chapter 15, section 15.10, page 499; 
E is the illuminance; 
H is the mounting height in metres; 
i is the angle of the emergent ray to the downward vertical from the luminaire, which is equal 
to ?' when the luminaire is mounted at the attitude at which it was tested photometrically; 
r is the reduced luminance coefficient. 

In Equation (9.1), r replaces q cos 3 i to save having to calculate cos 3 i each time the equation is 
used. To enable the correct reduced luminance coefficient to be selected r-tables have been 
measured for a great variety of road surfaces. In the next section we will examine r-tables in 
detail before returning to the evaluation of Equation (9.1). 

9.8.1 r-TABLES AND THE CLASSIFICATION OF ROAD SURFACES 

Table 9.1 shows the format of a typical r-table. The angles fl and i are as marked in Figure 9.6. 
In most published r-tables the left-hand column is labelled ~' but, as has already been mentioned, 
i does not equal ?' if the luminaire is rotated in the installation, so i is used in this book to avoid 
confusion. For convenience, r is multiplied by 104 to eliminate decimal points from the figures 
in the table. The reader will notice that all the values of r in the row for tan y = 0 are the same. 
This would be expected as the sample is being lit from directly overhead. 

Figure 9.7(a) shows the extent of the r-table mapped out on a horizontal surface. The dimen- 
sions are in terms of the mounting height H. Figure 9.7(b) shows how this may be used to deter- 
mine which luminaires should be considered when the luminance at P is being determined. This 
figure is purely a graphical demonstration for didactic purposes and generally the process is 
carried out by calculation. 

For ease of reference, for calculation purposes, and for classification, it is useful to define four 
parameters: 

�9 r(tanfl, i), 
�9 average luminance coefficient, 
�9 specular factor 1 

�9 specular factor 2 

Qo is found from the equation: 

Q" = ~-0-o q d ~  
o 

the luminance coefficient at tan fl and i, 
qo, Q0, or Qo, which we will use in this book, 
S l, used for classifying surfaces according to their 
specularity, 
$2, originally devised for classifying surfaces according to 
their specularity, but now mainly used simply for reference. 

where f~o is the solid angle subtended by the area of integration at the measurement point. This 
is a rectangle 4H towards the observer, 12H away from the observer and 3H on either side. 

In practice, this equation has to be evaluated by numerical integration. This is carried out 
by multiplying each value in the r-table by the corresponding weighting factor given in Table 
9.2, and by tan ?'. The results are summed and divided by 9.936 x 107. 9,10 ao is used as a scal- 
ing factor that can be applied to values in an r-table to allow for a change or difference in the 



Table 9.1 r-table for C2 road surface (values are r x lo4), Q, = 0.07 

tan i P(deg) 

0 2 5  10 15 20 25 30 35 40 45 60 75 90 105 120 135 150 165 180 

0.00 329 329 329 329 329 329 329 329 329 329 329 329 329 329 329 329 329 329 329 329 
0.25 362 358 371 364 371 369 362 357 351 349 348 340 328 312 299 294 298 288 292 281 
0.50 379 368 375 373 367 359 350 340 328 317 306 280 266 249 237 237 231 231 227 235 
0.75 380 375 378 365 351 334 315 295 275 256 239 218 198 178 175 176 176 169 175 176 
1.00 372 375 372 354 315 277 243 221 205 192 181 152 134 130 125 124 125 129 128 128 
1.25 375 373 352 318 265 221 189 166 150 136 125 107 91 93 91 91 88 94 97 97 
1.5 354 352 336 271 213 170 140 121 109 97 87 76 67 65 66 66 67 68 71 71 
1.75 333 327 302 222 166 129 104 90 75 68 63 53 51 49 49 47 52 51 53 54 
2.00 318 310 266 180 121 90 75 62 54 50 48 40 40 38 38 38 41 41 43 45 
2.50 268 262 205 119 72 50 41 36 33 29 26 25 23 24 25 24 26 27 29 28 
3.00 227 217 147 74 42 29 25 23 21 19 18 16 16 17 18 17 19 21 21 23 
3.50 194 168 106 47 30 22 17 14 13 12 12 11  10 11 12 13 15 14 15 14 
4.00 168 136 76 34 19 14 13 1 1  10 10 10 8 8 9 10 9 11 12 11 13 
4.50 141 111 54 21 14 11 9 8 8 8 8 7 7 8 8 8 8 10 10 11 
5 . 0 0 1 2 6 9 0 4 3  17 10 8 8 7 6 6 7 6 7 6 6 7 8 8 8 9 
5.50 107 79 32 12 8 7 7 7 6 5 
6.00 94 65 26 10 7 6 6 6 5 
6.50 86 56 21 8 7 6 5 5 
7.00 78 50 17 7 5 5 5 5 
7.50 70 41 14 7 4 3 4 
8.00 63 37 11 5 4 4 4 
8.50 60 37 10 5 4 4 4 
9.00 56 32 9 5 4 3 
9.50 53 28 9 4 4 4 

10.00 52 27 7 5 4 3 
10.50 45 23 7 4 3 3 
11.00 43 22 7 3 3 3 
11.50 44 22 7 3 3 
12.00 42 20 7 4 3 
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Fig. 9.7 Extent of r-table mapped on the road 

overall reflectance of a surface when the specularity as characterized by S I and $2, defined 
below, shows little change. 

S1 = ~  
r(O, 2) 

r(O, O) 

$ 2  "-- 
a o  

r(0, o) 

Worked example 1 Find SI and $2 for the road surface given in Table 9.1. 

Solution From Table 9.1, r(0, 0) = 329, r(0, 2) = 318, and Qo = 0.07. Hence: 

S I =  
318 x 10 -4 

329 x 10 -4 

= 0.97 

$2 = 
0.08 

329 x 10 -4 

= 2.43 



Table 9.2 Weighting factors used in the calculation of Q, 

tan i P(deg) 

0 2 5  10 15 20 25 30 35 40 45 60 75 90 105 120 135 150 165 180 

0.00 
0.25 
0.50 
0.75 
1 .oo 
1.25 
1 S O  
1.75 
2.00 
2.50 
3.00 
3.50 
4.00 
4.50 
5.00 
5.50 
6.00 
6.50 
7.00 
7.50 
8.00 
8.50 
9.00 
9.50 

10.00 
10.50 
1 1 .oo 
11.50 
12.00 

8 
32 
16 
32 
16 
32 
16 
32 
24 
64 
32 
64 
32 
64 
32 
64 
32 
64 
32 
64 
32 
64 
32 
64 
32 
64 
32 
64 
16 

8 
32 
16 
32 
16 
32 
16 
32 
24 
64 
32 
64 
32 
64 
32 
64 
32 
64 
32 
64 
32 
64 
32 
64 
32 
64 
32 
64 
16 

32 22 40 20 40 20 40 25 45 
I28 88 160 80 160 80 160 100 180 
64 44 80 40 80 40 80 50 90 

128 88 160 80 160 80 160 100 180 
64 44 80 40 80 40 80 50 90 

128 88 160 80 160 80 160 100 180 
64 44 80 40 80 40 80 50 90 

128 88 160 80 160 80 160 I 0 0  180 
96 66 120 60 120 60 120 75 135 

256 176 320 160 320 160 320 200 360 
128 88 160 80 160 80 160 I 0 0  120 
256 176 320 160 320 160 320 200 120 
I28 88 160 80 160 80 160 100 60 
256 176 320 160 320 160 320 155 75 

256 176 320 160 320 170 90 0 
128 88 160 80 160 40 0 
256 176 320 160 275 35 

256 176 320 170 90 
128 88 160 85 45 
256 176 320 80 0 
128 88 160 40 
256 176 320 80 

256 176 230 -10 
128 113 80 -25 
256 186 90 
64 69 45 

128 88 160 80 160 105 125 5 -15 

128 88 160 105 80 -25 

I28 88 115 -5 

120 
480 
240 
480 
240 
480 
240 
480 
360 
960 
510 
270 

0 
0 
0 

60 120 60 
240 480 240 
120 240 120 
240 480 240 
120 240 120 
240 480 240 
120 240 120 
240 480 240 
180 360 180 
480 960 480 
222 240 180 
33 0 -30 
0 0 -75 
0 0 0  
0 0 0  

120 
480 
240 
480 
240 
480 
240 
480 
360 
960 
480 
690 
-30 

0 
0 

60 
240 
120 
240 
120 
240 
120 
240 
180 
480 
240 
480 
255 
135 

0 

120 
480 
240 
480 
240 
480 
240 
480 
360 
960 
480 
960 
510 
372 

33 

60 
240 
120 
240 
120 
240 
120 
240 
180 
480 
240 
480 
222 

33 
0 

60 
240 
120 
240 
120 
240 
120 
240 
I80 
480 
240 
480 
120 

0 
0 
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Worked example 2 By using Table 9.1 it was found that the luminance at a point in an instal- 
lation is 1.43 cd/m 2. What is the luminance at an equivalent point in an installation with the same 
geometry having a road surface with Qo = 0.05, and r(0, 0) = 225, r(0, 2) = 227. 

Solution For the unknown road surface: 

r(0, 2) 227 x 10 -4 
S1 = = 

r(0, 0) 225 • 10 -4 

= 1.01 

$2 = 
ao 

r(O, O) 

0.05 

225 x 10 -4 

= 2.22 

These values are similar to those obtained in the previous example for the C2 surface, and it may 
be assumed that the surfaces have similar light distribution properties. Qo may then be used as a 

scaling factor: 

luminance at point = 1.43 • 
0.05 

0.07 

= 1.02 cd/m 2 

SI is used for the classification of road surfaces (Table 9.3). For dry surfaces three systems 
are in use, the N, R and C. The N-system is generally used for the lighter surfaces, which 
are commonly used in the Scandinavian countries, where additives are incorporated into the 
road surfaces to increase the reflectances. The R-system is used in other countries but has to 
some extent been superseded by the C-system devised by Burghout, Ii who showed that there 
was little increase in inaccuracy by having two classes in this system as opposed to four 
in the other systems. C2 is the class of the representative UK road surface recommended 
BS 5489.12 

Table 9.3 R, N and C classification of dry road surfaces 

System Class SI limits Qo of 
standard table 

RI S1<0.42 0.10 
R2 0.42<S1 <0.85 0.07 
R3 0.85<_S1 <0.35 0.07 
R4 0.35<S1 0.08 

N1 S1<0.28 0.10 
N2 0.28<__S1 <0.60 0.07 
N3 0.60<_S 1 < 1.30 0.07 
N4 1.30<S1 0.08 

C1 S1<0.40 0.10 
C2 S 1 >0.40 0.07 
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For wet road surfaces, a modified parameter, SI', is used in place of S1 for classification 
purposes: 13 

SI" = 0.147 x antilog 

log{  Sl-wet ) 

0.147 

i f  ~176 t 
0.687 

where Sl-wet and Qo-wet signify that S1 and Qo are measured when the road surface is wet. The 
reader will note that if Sl-wet is less than unity the expression in the square brackets becomes 
negative. S1 cannot then be evaluated. CIE 4714 suggests that, in these cases, Sl-wet is used in 
place of SI" 

The classes for wet road surfaces are shown in Table 9.4. 

Worked example 3 An r-table for a road surface is measured in the wet condition. It is found 
that Sl-wet is 6.50 and Qo-wet is 0.155. Find the W class of the road surface and the scaling 
factor to enable the standard r-table to be used for calculating luminance in the wet. 

Solution 

S1" = 0.147 x antilog 

log{ Sl-wet } 
0.147 

, t o~ } 
0.687 

= 0.147 x antilog 

log t 6"50 t 
0.147 

, {0 ,55}  
0.687 

= 19.60 

The road surface is in class W2 for which Qo-wet is 0.150, from Table 9.4. The scale factor is, 
therefore, 0.150/0.155 or 0.97. 

Table 9.4 W classes for wet roads 

Class Limits Qo-wet for Qo-dry 
standard r-table 

WI S1<9.6 0.114 0.088 
W2 9.6<S1 <26.5 0.150 0.091 
W3 26.5<S 1 <73 0.196 0.097 
W4 73<S1 <200 0.247 0.104 
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9.8.2 EVALUATION OF i AND fl 

To be able to select the appropriate value of  r f rom the r-table and apply Equat ion (9.1), we have 

to evaluate the angles i and ft. From Figure 9.6 we see: 

i = tan 
-1 PQ 

as 

-1 = tan _ )2 
~/(X 1 X2 )2 + (Yl -- Y2 

/3 = 180 ~ - cos 
O,p 2 _O'Q 2 -1 + pQ2 

2 • 2 1 5  

= 180 ~ - cos 
)2 )2 )2 

-1 ( X 3 - - X 2 )  2 + ( Y 3 - - Y 2 )  2 "k ' (X2- -Xl )  2 + ( Y 2 - Y l  - ( x l - x 3  - ( Y l - Y 3  

2 • ~ / (x  3 - x 2 )2 + (Y3 - Y2 )2 x ~ / (x  2 - x I )2 + ( y 2  - Yl )2 

since, 

O'p2 = (x3 - x2 )2 + (73 - Y2 )2 

pQ2 _ (x 2 _ x i)2 + (Y2 - Y l )2 

O'Q 2= (Xl - x3)2 + (Yl - Y3 )2 

Worked example 4 In a road lighting installation, the (x, y) coordinates of the observer, lumin- 
aire and point of interest are respectively (2, 0), (2, 160), and (8, 149.6077), in metres. The lumin- 
aire mounting height is 12 m, and the luminous intensity directed towards the point of  interest is 
200 cd per klm. If the road surface classification is C, Qo is 0.07, and the luminous flux of  the 
lamp is 15.5 klm is 0.06, what is the luminance of  the point of interest in the direction of the 

observer, eye height 1.5 m? 

Solution Referring to Figure 9.6, page 354, we find: 

O'p2 = (x3 - x2 )2 + (Y3 - Y2 )2 
= ( 0 -  149.6077) 2 + ( 2 -  8) 2 = 22418.4639 

_ )2 + (Y2 y )2 pQ2 = (x 2 Xl - 1 
= (149.6077 - 160) 2 + (8 - 2) 2 = 144.0000 

O'Q 2= (Xl - x3 )2 + (Yl - Y3 )2 
= ( 1 6 0 -  0) 2 + ( 2 -  2) 2 = 25604 

To confirm that the r-table can be used we have to check that the angle a lies be tween 0.5 ~ and 

1.5 ~ 

tan a = 
0 ' 0  

O'P 

1.5 

422418 .4  

= 0.010 
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SO, 

a = 0.57 ~ 

As a lies within the specified limits we can proceed with the calculation. 

tan i = 
H 

#(Xl  _ X2 )2 + (Yl -- Y2 )2 

12 

# ( 1 6 0 - 1 4 9 . 6 0 7 7 )  2 + ( 2 - 8 )  2 

=1 

and 

fl = 180 ~ - c o s  - 1  

O.p2 + pQ2_ O.Q2 

2 x O'P x PQ 

= 180 ~ _ cos -1 
25600 + 144 - 22418.4404 

2 x 160 x 12 

= 150 ~ 

r for (150, 1) is 129 x 10 -4 for Qo equal to 0.07. Hence, for Qo equal to 0.06, r is 

0.06 

0.07 
x 129 x 10--4= 110.6 x 10 --4 

We can now evaluate the luminance L at P from Equation (9.1). 

I 
L = r  

n 2 

110.6 • 1 0 - 4 •  600 x 15.5 / 

144 ) 

= 0.71 cd/m 2 

This result has been obtained for a single luminaire only. In an installation this procedure has to 
be repeated for every contributing luminaire (see Figure 9.7, page 357). In addition, the mainten- 
ance factor, as will be explained in Section 9.14, page 374, has also to be taken into account. The 
example has been devised so that it has not been necessary to interpolate when entering the r- 
table, which, in practice it is necessary to do in nearly every case. Interpolation in the/- table  has 
been described in Chapter 2, but it is now necessary to describe interpolation in the r-table. 

9.8.3 INTERPOLATION IN THE r-TABLE 

In Chapter 2 we discussed interpolation in the/- table  using Lagrange's formula. We use similar 
procedures in the r-table. Since there are rapid changes of value with tan i and fl, particularly for 
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Fig. 9.8 Values required for linear interpolation in the r-table 
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wet surfaces, it is necessary to use quadratic interpolation. At the edges of the table, however, 
linear interpolation is used as, in certain instances, quadratic interpolation can give rise to nega- 
tive values. It should be noted that fl = 0 is not at the edge of the table, but in the middle, as the 
table can be regarded as being symmetrical about fl = 0. We will first describe linear interpola- 
tion. 

For linear interpolation, the Lagrange formula, put at degree 1, becomes: 

X - X 2 X - -  X l 

Y= Yl + Y2 
x I - x 2 x 2 - x I 

Figure 9.8 indicates the values needed for linear interpolation, which can be applied to either fl 
or tan i first. When it is first applied to fl, fl is substituted for x in the above equation" 

x =fl 
X] - ' t i m  

X2 = t i m +  l 

From this substitution two constants (K ! and K2) can be defined: 

K l =  
f l m - f l m + l  

K 2  - .  

~--~m 
flm+ l - t im 

Since K 1 + g 2 = 1 the notation can be simplified by putting K = K 1 SO K 2 = 1 - K. 
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Substitution of these constants and appropriate values of I for y in Lagrange's equation gives, 
after simplification: 

/(/7, tan ij) = l(fl  m, tan ij) + K x [l(fl m + 1, tan i m) - l~rn,  tan ij)] 

Similarly, 

/(17, tan ij + l) = l(flm, tan ij + 1) + K x [1(/3 m + l, tan ij + l) - l(/3m' tan ij + l)] 

For interpolation for tan i a similar procedure produces: 

/(/7, tan i) =/(/7, tan ij) + k x [1(/3, tan ij + 1) - I(~, tan ij)] 

where 

k 

tan i -  tan ij 

tan ij + 1 - t a n  ij 

In these equations interpolation has been first carried out for fl, and then for tan i. If desired, this 
procedure can be reversed (that is, the interpolation can be first carried out for tan i, followed by 
/7) and the same result obtained. 

Figure 9.9 shows the values needed for quadratic interpolation. The suffixes, j and m, refer to 
the rows and columns of the r-table. 

Three values of/7 and tan i are required for insertion in the interpolation equations. Two values 
are selected on either side of the value to be interpolated and the third value is selected accord- 
ing to the rules given for interpolation in the/-table.  

tim tim+ 1 ~ tim+ 2 

tan ij+ 2 

tan i - ~ (  

tan ij+ 1 - - -~  

tan ij 

I i 

I 
i 
I 
I 

Fig. 9.9 Parameters required for quadratic interpolation in the r-table 
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This interpolation can be applied to e i ther /3  or tan i. When  it is first applied to/3, this para- 

meter  is substi tuted for x in the Lagrange  equation: 

x = f l  

X1 - ' ~ m  

X2 = ~ m +  1 

X3 -- ~m + 2 

where 13 is the angle at which I is to be found by interpolation; 
m, m+ 1, m+2 are integers indicating the number  of  the co lumns  in the r-table; 
tim' flm+l and tim+2 are values of  C for the corresponding co lumn numbers .  These  are 

chosen such that flm+l<fl<flm+2 unless m is zero in which case/3  l<fl<fl2. 

From this substitution three constants can be defined: 

g I - 
( f l - -  & + l ) ( f l - -  & + 2) 

(tim -- tim + l)(flm -- tim + 2) 

( f l -  & ) ( f l -  & + 2 ) 
K 2 = (9.2) 

(tim + ! -- &)( l~rn  + 1 -- & + 2) 

g 3 = 
(,tim+ 2 -- & ) ( t i m  + 2 - - & +  I) 

The reader will notice that K I + K 2 + K 3 = 1. These  constants can be used to set up three more  

equations" 

r(fl, tan ij) = Klrq3 m, tan ij) + K 2 r ~  m + I, tan ij) + 
K3rfflm + 2' tan ij) 

r(fl, tan ij + l) = K lr(flm' tan ij + l) + K2r(/3m + I' tan ij + l) + 
K3r~m + 2' tan ij + l) (9.3) 

r(fl, tan ij + 2) = K l r(flm' tan ij + 2) + K2r(/3m + l' tan ij + 2) + 

K 3 r ~ m  + 2' tan ij + 2) 

Now, 

k I = 
(tan i - tan ij + I)(tan i - tan ij + 2) 

(tan i j -  tan ij + l > ( t a n / j -  tan ij + 2) 

(tan i -  tan ij)(tan i -  tan ij + 2) 
k 2 = (9.4) 

(tan ij + I - t a n  ij)(tan ij + , - t a n  ij + 2) 

k 3 = 
(tan i -  tan ij)(tan i -  tan ij + l) 

(tan ij + 2 - t a n  ij)(tan ij + 2 - t a n  ij + I) 

Once again the reader will notice that k I + k 2 + k 3 = 1. The required value of  r is then given by" 

r(fl, tan i) = klr(/3, tan ij) + k2r ~ ,  tan ij + 1) + k3r~,  tan ij + 2) (9.5) 
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Worked example 5 Find r for a C2  road surface with a Qo of  0.06 when fl is 17 ~ and tan i is 
1.15. 

Solution An extract of  the relevant part of  Table 9.1, page 356, is: 

As the required values do not lie on the borderl ine of  the table, quadratic interpolation is used. 
The third value of  fl is 25 ~ and the third value of tan i is 1.5, as these are the higher values. So, 

fl = 1 7  
/~m - 1 5  
/~m+l = 20 

r = 25 

Substitution of these values in Equations (9.2) gives: 

K l = 0.48 
K 2 = 0.64 
K 3 = -0 .12  

These are substituted in Equations (9.4) to give" 

k I = 0.280000 
k e = 0.839999 

k 3 = -0 .12  

Substitution in Equations (9.3) gives: 

r(fl, tan ij) = 299.32 x 10-4 
r(fl, tan ij + l) = 295.72 x 10-4 
r(p, tan ij + 2) = 246 x 10-4 

Substitution in Equation (9.5) gives: 

r(17, 1.15) = 302.6944 x 10 -4 for a Qo of 0.07 

and for a Qo of  0.06: 

r(17, 1.15) - 302.6944 • 

= 259.5 

0.06 

0.07 

9.9 Calculat ion of threshold increment  

In Section 9.6, page 352, it was ment ioned that threshold increment is used as a measure  of 
disability glare. It is now necessary to explain this concept.  
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Disability glare is caused by light being scattered in the eye. This produces a veil of light over 
the image of the scene being viewed, which reduces contrasts. Mathematically, this can be shown 
as follows from the definition of contrast: 

CI ~-- 
L o - L  b 

q, 
where 

C I is the initial contrast, without veiling luminance, 
L o is the luminance of the object, 
L b is the luminance of the background. 

The equation for C is stated in its usually quoted form; that is, with modulus signs which imply 
that whether L o is larger or smaller than L b is immaterial. However, as Adrian 15 discusses, there 
is evidence that for the same value of C a target in negative contrast (L o - Lb) < 0 is better seen 
than one in positive contrast (L o - Lb) > 0. 

The equation can then be stated as 

C I --- 
L o - L  b 

If there is veiling luminance, L v, present this will be added on to both L o and L b, so the contrast, 
C v, will now be: 

CV -- 
L o - L  b 

L b + L  v 

It is obvious that Ifvl is less than ICrl. The threshold increment is the percentage by which the 
luminance of the object has to be increased to achieve a contrast equal to that obtained without 
any veiling luminance. 

The veiling luminance can be evaluated from the Stiles-Holladay formula: 16, 17 

L v = K  ~ 
E v e r t  

o 2 

where 

Evert is the total illuminance (in lux per 1000 initial lamp lumens) produced by new luminaires 
on a plane at the observer's eye, normal to the line of sight. The observer's eye is taken by 
convention to be at a height of 1.5 m above road level. In UK practice, it is positioned trans- 
versely one quarter the carriageway width from the carriageway edge and longitudinally at a 
distance in metres of 2 .75 (H-  1.5), where H is the mounting height (in metres), in front of 
the field of calculation. The line of sight is 1 ~ below the horizontal and in a vertical plane in 
the longitudinal direction passing through the observer's eye; 
0 is the angle in degrees between the line of sight and the centre of each luminaire, where the 
line of sight is taken to be 1 ~ below the horizontal and directly ahead of the observer. The 
exponent 2 of 0 is only valid for angles from 1.5 ~ to 60 ~ above the horizontal; 
K (degrees 2 per steradian) is a constant depending on the age of the observer. For road light- 
ing calculations its value is taken as 10, which is applicable to observers between the ages of 
20 and 30 years. 
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Crawford showed that L v can be summed for all the contributing sources. 18 
It now remains to relate veiling luminance to threshold increment. This can be done by means 

of  a standard curve of human contrast sensitivity published by the CIE, 19 which enables a rela- 
tionship between veiling luminance, adaptation luminance Lav, and threshold increment to be 
developed: 2~ 

TI= 65 
L v x MF ~ 

L0 8 

= 650 
Evert • MF 0.8 

c0 8• o2 

The adaptation luminance is taken to be equal to the road luminance. During the aging of an 
installation, the threshold increment is at its greatest when the lamps are giving their greatest 
output; that is, when the installation is new. It is for this reason that the maintenance factor raised 
to the power of 0.8 is introduced into the formula. In effect it brings Lav to the initial condition. 

The set-up for selecting the first luminaire is illustrated in Figure 9.10. The eye height is taken 
to be 1.5 m and the first luminaire is situated in the screening plane provided by the car roof. 
This is taken to have an elevation of 20 ~ . The observer is situated one quarter of the road width 
from the nearside edge of the carriageway. This results in the observer being positioned 
(cotan -l 2 0 ) ( H -  1.5) or 2 . 7 5 ( H -  1.5) from the first luminaire. The veiling luminance is summed 
for the first luminaire and the luminaires beyond, up to a distance of 500 m. The summation is 
stopped when a luminaire gives a contribution that is less than 2% of the total veiling luminance 

Fig. 9.10 Relationship of the first luminaire included in the calculation of threshold increment to the 
observer 
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of the preceding luminaires in the row. Whilst, in present UK practice, the observer is kept 
stationary, in the practice adopted in many other countries the observer is moved along a longi- 
tudinal line and the highest value of threshold increment chosen. 

9 .10  Glare control  mark  

Values of the glare control mark, G, range from 1 to 9. 1 implies that the glare is 'unbearable', 
3 is 'disturbing', 7 is 'satisfactory', and 9 is 'unnoticeable'. The formula for evaluating glare 
control mark was developed by de Boer: 

G = 13.84-  3.31 log 180 + 1.3 (log/80/188 ) - 0 . 0 8  log/80//88 + 
1.29 log F + 0.97Lay + 4.41H" + -1.46 log p 

where 

G is Glare Control Mark; 
180 is the absolute initial intensity (cd) at an angle of 80 ~ to the downward vertical, in a verti- 
cal plane parallel to the road axis; 
180/188 is ratio of the luminous intensities at 80 ~ and 88 ~ to the downward vertical, in the verti- 
cal plane parallel to the road axis; 
F is the orthogonally projected flashed area of the luminaire in a direction 76 ~ to the down- 
ward vertical, in a plane parallel to the road; E is the average road surface luminance (cd/m2); 
Lay is the initial average road surface luminance (cd/m2); 
H' is the vertical distance (m) between eye level and the luminaire" 
p is the number of luminaires per kilometre. 

The formula for G is valid for the following ranges of values: 

50 < 180 < 7000 (cd) 
1 < 180/188 < 50 
0.007 < F < 0.4 (m 2) 
0.3 < Lav< 7 (cd/m 2) 
5 < H" < 20 (m) 
2 0 < p <  100 
number of luminaire rows = 1 or 2 

The glare control mark has tended to be little used in recent times. This is because there has been 
a feeling among users that it does not rate installations in the correct order of discomfort glare. 
The original work to derive the formula was carried out in the laboratory and this was subse- 
quently validated by field appraisals. However, the fact that the design of luminaires has changed 
since the work was originally done and there is now more use of high pressure discharge sources 
rather than low pressure sodium lamps may account for the dissatisfaction with the glare control 
mark as a glare rating system. In addition, there is a greatly increased use of cut-off luminaires, 
which provide very good control of both discomfort and disability glare. Field evidence suggests 
that installations designed according to the threshold increment requirements in Table 9.6, page 
372, will have satisfactory control of discomfort glare. 

9.11 Surround ratio 

The function of the surround ratio (abbreviation SR) is to ensure that sufficient light falls on the 
surrounds to provide a bright background for objects towards the edge of the carriageway to be 
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revealed. It also helps the driver to anticipate the movements  of  pedestrians about to cross the 
road. It is important in curved roads, where the surrounds form the greater part of the background 
against which objects are seen. 

The surround ratio is formally defined as: the ratio of the average illuminance on strips, 5 m 
wide, or less if space does not permit, which are adjacent to the edges of both sides of the 
carriageway to the average illuminance on the adjacent strips, 5 m wide or half the width of the 
carriageway, whichever is the smaller, in the carriageway. For dual carriageways, both carriage- 
ways together are treated as a single carriageway unless they are separated by less than 10 m. 

The surround ratio is usually determined by calculating the illuminance on a regular array of 
points on the strips and finding the average. 

In situations where the surround ratio is applicable, a value of 0.5 is recommended (see Table 
9.6, page 372). 

9.12 Lighting classification of roads, and associated quality 
criteria 

To be able to assign quality criteria to roads it is useful to have a system of classifying roads for 
lighting purposes. This is done in CIE 115, Recommendations for the Lighting of Roads for 
Motor and Pedestrian Traffic. A simplified version of this is shown in Table 9.5. 

Some of the terms used in the table need explanation. At grade means at the same level as the 
road, in other words, traffic crossing the road under consideration must be carried by a bridge or 

Table 9.5 CIE classification of motor traffic routes for lighting purposes 

Description of road Lighting class 

High speed roads with separate carriageways, free of crossings at grade and with 
complete access control; motorways, express roads. 

Traffic density and complexity of road layout: 
High 
Medium 
Low 

MI 
M2 
M3 

High speed roads, dual carriageway roads. 

Traffic control, such as the presence of signals, and separation of different types of 
road user into lanes: 

Poor 
Good 

MI 
M2 

Important urban traffic routes, radial roads, district distributor roads. 

Traffic control and separation of different types of road user: 
Poor 
Good 

M2 
M3 

Connecting less important roads, local distributor roads, residential major access 
roads. Roads which provide direct access to property and lead to 
connecting roads. 

Traffic control and separation of different types of road user: 
Poor 
Good 

M4 
M5 
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in a tunnel. Complexity of layout refers to the number of roads entering and leaving the road 
under consideration. 

CIE 115 has not been in existence long enough to judge whether this classification will be 
adopted by national and international organizations responsible for drafting recommendations. 
The draft CEN recommendations are loosely based on it but have been adapted to take account 
of the existing practice in participating European countries. 

Table 9.6, page 372, compares CIE and CEN requirements for the various classes. Whilst 
there are similarities it is evident that CEN has split many of the CIE classes into subclasses. This 
was done to take account of existing practice in European countries. 

CIE 115 has adopted a class of road, or more strictly, a class of situation, from North 
American practice. This is the conflict area, which is an area where there is an increased poten- 
tial for collision between road users. Such an area might occur where there is a reduced number 
of lanes, where the road width is reduced, where the road runs into areas frequented by pedes- 
trians, and so on. A roundabout would be regarded as a conflict area. 

For these areas CIE 115 recommends that the lighting standard of the conflict area should be 
one class higher than that of the roads running into the area (for instance, M3 instead of M4). If 
the roads running into the conflict area are lit to the highest standard, M 1, then the conflict area 
should also be lit to M 1. 

In some conflict areas, luminance is not an appropriate criterion since this is calculated for a 
viewing distance of over 80 m and the operative viewing distance is shorter than this. In these 
areas illuminance should be used in place of luminance and CIE 115 makes recommendations 
as to which levels should be used. Since road luminance is not calculated, and in any case the 
changing viewpoint of the driver makes the adaptation luminance uncertain, it is not possible to 
calculate TI. Instead, disability glare is controlled by limiting the intensity in the run-back zone 
to 30 cd/klm at 80 ~ and 10 cd/klm at 90 ~ at the azimuth of the directions at which the luminaires 
are likely to be viewed by the motorist. 

It will be noted that the recommended luminances are maintained values, which means that 
they must not be allowed to drop below these values for the life of the installation. When the 
installation is new, the values will be greater. As the installation ages the light output of the lamps 
decreases and dirt accumulates on the luminaires so decreasing the light output. When cleaning 
the luminaires no longer raises the measured values of luminance sufficiently, it will be neces- 
sary to change the lamps. The threshold increment will be at its highest value when the installa- 
tion is new and it is at this stage that the recommended values must not be exceeded. 

9.13 Measures of visibility 

As has been stated, most design systems for main road lighting are based on road luminance. 
However, road luminance is only one factor in determining the visibility of an object on the road. 
Clearly, it is possible to calculate the luminance of an object on the road surface and to calculate 
the immediate background luminance, and thereby determine the contrast between the object and 
the background. From this it is possible to determine whether the object will be seen. 

Waldram was the first worker to do this. 21 In his concept of revealing power, he supposed that 
a square object of 450 mm side was positioned vertically on a transverse line across the road. 
From a survey, data were available of the frequency distribution of reflectances of pedestrian 
clothing in the late 1930s, at the time the work was done. 22 At any given point on the road surface 
this enabled the frequency distribution of luminance of objects to be determined, by multiplying 
the vertical illuminance at the point by the frequency distribution of reflectances. From this, and 
a knowledge of the luminance of the road visible immediately above the object, the frequency 



Table 9.6 Comparison of requirements for CEN and CIE road lighting standards for motor traffic 

CIE Requirements (Maintained values) 

CIE Luminance attributes TI(%) SR CEN Luminance attributes n(%) SR 
Class max Class max 

CEN Requirements (Maintained values) 

La, Lromin ULmin La, U,min ULmin 
(cd/m2) (cd/m2) 
min min 

MI 2.0 0.4 0.7 10 0.5 ME 1 2.0 0.4 0.7 10 0.5 
M2 1.5 0.4 0.7 10 0.5 ME2 1.5 0.4 0.7 10 0.5 

M3 1 .o 0.4 0.5 10 0.5 ME3b 1 .o 0.4 0.6 15 0.5 
ME3a 0.7 

ME3c 0.5 

M4 0.75 0.4 NR 15 15 
0.6 
0.5 

0.4 ME4a 0.75 
ME4b 

NR 0.5 

M5 0.5 0.4 0.4 15 NR ME5 0.5 0.35 0.4 15 0.5 
- - - - - - ME6 0.3 0.35 0.4 15 - 

NR: No requirement 



9.13 Measures of visibility 373 

distribution of contrasts was determined. Work by Dunbar 23 was used to find whether the 
contrast was sufficient for an object to be visible. At any given point on the road, this enabled 
the percentage of objects that are visible to be determined. Waldram 24 called this the Revealing 
Power. 

Following this procedure meant that the revealing power of a grid of points covering the road 
surface could be determined. To characterize the performance of a road lighting installation it is 
very useful to have a single figure of merit. This can be used to compare installations. It was, 
therefore, very tempting to average the revealing powers found on a stretch of road to produce a 
single figure. Waldram warned against this. His main argument was that an area of low reveal- 
ing power could not be compensated for by an area of high revealing power. The area of low 
revealing power would always present a potential danger for the driver. As can be imagined, the 
calculation of revealing power is very labour intensive and little work was done on this and 
kindred concepts until the 1960s, when computers were becoming more generally available. 

van Bomme125 in 1979 developed the concept of Revealing Power one stage further by intro- 
ducing the effect of threshold increment into the calculation. He used this to investigate the trade- 
off between overall uniformity, the threshold increment, and average luminance of the road 
surface. For the purpose of this calculation he took the Revealing Power at the darkest part of the 
road as the operative value for an installation. 

A related concept, that of Small Target Visibility or STV, has been developed and investigated 
in the US in recent years. 26 Straightaway, it has to be pointed out that it differs from Revealing 
Power in that the reflectance of the target is fixed, at 20%. Moreover, it is the weighted average 
of the Visibility Level, VL, of the target over a specified area of the road surface. The Visibility 
Level is calculated from the formula: 

ALactual 
VL = 

ALthreshold 

where 

VL is visibility level; 
ALactual is the luminance difference between the target and the background; 
ALthreshol d is the minimum luminance difference needed between a target and its background 
to make the target visible. 

The basis for evaluating STV is a method due to Adrian. This allowed the following variables to 
be taken into account: 

�9 the age of the observer, for the calculation of STV this is taken to be 23 years; 
�9 reaction time of the motorist, taken to be 0.2 s; 
�9 size of target, taken to be a square of side 0.18 m; 
�9 luminance of target, evaluated by multiplying the reflectance of the target by its illuminance. 

The target is assumed to be a uniform diffuser of luminance 0.2 cd/m 2, 83 m ahead of the 
motorist, vertical, and with its normal parallel to the road axis. 

The effect of disability glare is not included, although the Adrian model permits this. A VL of 
7.5 is recommended for M 1 roads grading down to 5.0 for M5 roads. 

The visibility concepts discussed indicate that if the overall uniformity of luminance of the 
road surface is too great, the probability of detecting an object can be decreased. This can be read- 
ily understood by considering the extreme case, when the road luminance is perfectly uniform. 
Here, there is a likelihood of some objects having the same or nearly the same luminance as that 
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of the road, and therefore being invisible. Hence, it appears that a lack of uniformity may be 
beneficial in making objects on the road conspicuous. Certainly, this has been demonstrated in 
trial installations. But this is only true for flat targets, which are of necessity of uniform lumin- 
ance. Lecocq 27 has demonstrated by calculation and in trial installations that solid objects will 
not become invisible, because of the variation of luminance over their surface. 

STV is still being developed. There are many aspects of its determination which need to be re- 
considered. As mentioned above, a flat target does not seem to relate well to live situations; a 
solid target is better in this respect. This suggests that it would seem to be more realistic to take 
into account a range of reflectances of objects as is done in Revealing Power. In the calculation 
of contrast in STV, the mean luminance of the parts of the road seen by the observer as being just 
above and below the target are taken as the background luminance. Work by M6nard and 
Cariou 28 suggests that it may be better to consider the luminance on either side of the target. 
Alternatively, consideration should be given to the dynamic situation, where the background to 
the target is changing as the driver drives along the road. There are other aspects of determina- 
tion of STV open to question. These are the low age of the observer, size of target, and no account 
being taken of light being reflected from the road surface onto the target. 

The future for STV and related concepts is uncertain. Work in the US in which an attempt was 
made to correlate accident rate with STV in 50 installations did not produce a positive result. 29 
However, road design based on visibility takes into account more variables than road luminance, 
and may provide the future basis for road lighting design. This would be particularly so if it 
results in both more effective lighting and a more efficient use of energy. 

9 .14  Ma in tenance  factors  

Maintenance factors are used to allow for the depreciation in the light output of the luminaire 
and lamp. In general road lighting design practice, no allowance is made for the change in reflec- 
tion properties of the road surface with time. In the British Standard on road lighting, there are 
a number of definitions used in connection with maintenance. 

Initial luminous flux of lamp: The luminous flux of a lamp in lumens after an initial aging period 
under stated running conditions. (The lamp is run for the aging period to allow its light output 
to stabilize, as many discharge lamp types are unstable when freshly off the production line.) 

Lamp flux maintenance factor: The proportion of the initial luminous flux of a lamp that is 
produced after a set time. The data for lamps should be available from lamp manufacturers. 
Abbreviation: LLMF (Lamp lumen maintenance factor). 

Luminaire maintenance factor: The light output ratio of a luminaire after a set time in service 
divided by its initial light output ratio. (Reduction in the light output ratio of a luminaire can be 
caused by a variety of factors. Perhaps the main one is the deposition of dirt on the light control- 
ling surfaces, but the surfaces themselves may degrade and this may be permanent, or they may 
move out of alignment owing to continual vibration.) Abbreviation: LMF. 

Maintenance factor: The product of the lamp flux maintenance factor and the luminaire mainte- 
nance factor. The abbreviation used for this is MF. Hence MF = LLMF • LMF. 

Maintained average light level: The average light level below which the performance of an 
installation is not allowed to fall. (By average in this definition is meant spatial average and not 
time average. The implication of the definition is that as soon as, or ideally before, the main- 
tained level is reached, maintenance operations are carried out on the installation.) 
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Cleaning 
interval 

Ingress protection number of lamp housing 

(months) 
IP5 minimum 

High Medium 

18 0.87 0.88 
24 0.84 0.86 
36 0.76 0.82 

IP6 minimum 

Pollution category 

Low High Medium Low 

0.91 0.90 0.91 0.92 
0.90 0.88 0.89 0.91 
0.88 0.83 0.87 0.90 

Table 9.7 is an abbreviated form of the maintenance factor table from BS 5489. The ingress 
number refers to the efficacy of the sealing of the lamp compartment of the luminaire. For IP5 
the ingress of dust is not totally prevented, but it does not enter in sufficient quantity to interfere 
with the satisfactory operation of the luminaire. For IP6 there must be no ingress of dust. Full 
details of IP ratings are given in BS 5490: 1977. 

The definitions of the pollution categories are: 

�9 High pollution occurs in the centre of large urban areas and in heavy industrial areas. 
�9 Medium pollution occurs in semi-urban, residential, and light industrial areas. 
�9 Low pollution occurs in rural areas. 

In the US, a different system is used. Graphs (Figure 9.11) are given for what is termed the 
luminaire dirt depreciation factor plotted against exposure time in years for different pollution 
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Fig. 9.11 Maintenance factor curves in use in the USA 
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Table 9.8 Comparison of IESNA and BS maintenance factors for a cleaning interval of three years 

IESNA maintenance factor BS maintenance factor 

LMF Pollution category LMF for IP5 LMF for IP6 

Very clean 0.96 / Low 0.88 0.90 

J Clean 0.91 
Moderate 0.87 Medium 0.82 0.87 

Dirty 0.77 / High 0.76 0.83 

J Very dirty 0.56 

categories. Readers should note that the term 'depreciation' in this context has the same mean- 
ing as 'maintenance'. No account is taken in these curves of the efficacy of the sealing of the 
lamp compartment, so it is interesting to compare the results given by the two systems. This is 
done in Table 9.8 for a three-year maintenance period. 

This table would seem to indicate that clean, moderate, and dirty in the IESNA curves corre- 
spond roughly to low, medium, and high in the BS table for a three-year maintenance period. 

9.15 Tabular and graphical methods of calculation 

The adoption of the luminance concept for the regular design of road lighting installations has 
been made possible by the easy access for designers to powerful computers and easy-to-use 
programs. However, in the 1960s when the possibility of using luminance design on a day-to- 
day basis was mooted computers were not generally available and certainly personal computers 
were a thing of the future. For this reason, tabular and graphical methods were devised to enable 
luminance and threshold increment calculations to be carried out without the benefit of a 
computer (although these aids themselves had to be produced by computer). This contrasts with 
the present situation when computers are universally available, together with very good 
programs, which has rendered these methods largely obsolete. However, we will make a short 
review of these methods as they form useful background knowledge for the practising engineer 
and are referred to in various documents. In addition, they are sometimes useful for assessing the 
relative performance of a number of luminaires. 

9.15.1 TABULAR METHODS 

In essence, these methods present the results of calculating the lighting parameters for many 
commonly used lighting situations. In using them the designer will have to interpolate between 
results if the exact geometry of the situation of interest does not appear in the table. 

In the Design Table method of BS 5489: Part 2, the results of calculations on over 400 instal- 
lations are given. In the standard presentation the road surface used is C2 (Table 9.1, page 356) 
and a table has to be produced for each mounting height. Table 9.9 shows an extract from such 
a table. 

In the complete table there would be data for opposite, single sided, and twin central geome- 
tries, as well as the staggered geometry shown. In addition, data would be shown for wider spac- 
ings (S), and more effective widths (WE). 

Effective width W E is the transverse distance between luminaires, and is sometimes abbre- 
viated as EW. For each W E a value for the spacing index (S l or S/) is quoted. This enables the 



Table 9.9 Extract from a road lighting luminaire design table (by courtesy of Thorn Lighting Limited) 

Description: Luminaire with aluminium reflector and flat glass 
Lamp: 150 W SON-T 
Luminaire maintenance category: IP6 
Mounting height: 10 m 
Design attitude of luminaire: Spigot elevated 0" 

~~ 

W E 8 m  
S(m) S, 3.15 

S, 0.63 

WE 9 m 
S, 3.02 
S, 0.61 

WE lOm 
S, 2.88 
S, 0.59 

"0 UL VF VF 

W, 1 1  m 
S, 2.75 
S, 0.59 

UO u, . "F 

20 0.64 0.76 9 
22 0.64 0.73 9 
24 0.63 0.69 9 
26 0.61 0.64 9 

0.62 0.74 9 
0.6 1 0.72 8 
0.60 0.66 8 
0.57 0.62 8 

0.60 0.76 8 
0.59 0.72 7 
0.58 0.66 I 
0.54 0.62 7 

0.59 0.76 7 
0.58 0.72 6 
0.56 0.67 6 
0.53 0.62 6 

28 0.59 0.63 8 0.55 0.60 8 0.52 0.60 7 0.48 0.60 6 
30 0.57 0.63 8 0.53 0.60 7 0.49 0.60 6 0.45 0.58 6 
32 0.55 0.62 8 0.5 1 0.58 7 0.46 0.56 6 0.4 1 0.53 6 
34 0.54 0.60 8 0.48 0.56 7 0.43 0.54 6 0.39 0.52 5 

36 0.53 0.58 8 0.47 0.54 7 0.42 0.5 1 6 0.39 0.49 5 
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spacing S between luminaires to be found for a required luminance. The equation that enables 
this to be done is: 

S I x r X M F  
S = (9.6) 

Lav 

Under S I in each column is the surround ratio S R (or SR), which was explained in Section 
9.11, page 369. For each spacing, S, U 0 and U L are quoted together with the veil factor V F (or 
VF), which enables TI to be calculated from the formula: 

VF• O 
TI = (9.7) 

10 (Lav/MF)0"8 

This formula calculates the threshold increment for the initial condition of the installation, at 
which time the threshold increment has its maximum value. This explains why Lav is divided by 
MF. 

Worked example 6 What spacing is required to light a road to M2 requirements (Table 9.6, page 
372) with a staggered arrangement and a mounting height of 10 m? The design attitude is 0 ~ the 
road surface is C2, and the lamp to be used is 150 W SON-T, with an initial luminous flux of 17 
klm, and a maintenance factor 0.92 for a projected lamp life of 12 000 h (equivalent to three 
years' burning). The luminaire is IP6, and the pollution category is medium. The effective width 
W E is 9m. The cleaning interval is 36 months. 

Solution The solution can be broken down into several steps. 

(a) Check that SR is greater than 0.5. As it is 0.61, it meets this requirement. 
(b) Calculate MF. The luminaire MF for an IP6 luminaire, in a medium pollution environment, 

with a cleaning interval of 36 months, is 0.87. The MF lamp is 0.92, obtained from the 
manufacturer. Hence the overall MF is 0.87 x 0.92 or 0.80. 

(c) Calculate the spacing to meet the Lav requirement of 1.5 cd/m 2. Using Equation (9.6), we 
obtain" 

S ... 

S I x ~ x MF 

Lav 

3.02 x 17 x 0.80 

1.5 

= 2 7 m  

(d) Check U o > 0.4 and U 1 _> 0.5. They meet these requirements easily. If they had not it would 
have been necessary to use a closer spacing. 

(e) Check the TI is less than 15%. For this we use Equation (9.7): 

T/ - -  

vF• 

10(Lav/MF)08 
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8 x 1 7  

10(1.5/0 .80)  ~  

= 8.2% 

This is well within the upper limit of 15%. 

(f) All the lighting requirements have been met and hence a spacing of 27 m is satisfactory. 

A variety of what are termed performance sheets have been devised by various manufacturers 

and users working in Europe. These performance sheets differ from the Design Tables already 

described in that the values of the lighting parameters are stated for a variety of situations, osten- 

sibly without the need for any calculation. In practice, some calculation will be needed to take 

account of the maintenance factor. Table 9.10 is an example of a performance sheet for a lumi- 

naire. The complete set of performance sheets for a luminaire would contain data for a variety 

of effective road widths and arrangements. The reader will notice that values of G are given, 

Table 9.10 Example performance sheet 
Description: Luminaire with aluminium reflector and flat glass 
Lamp: 150 W SON-T Lamp flux: 17 klm 
Luminaire maintenance category: IP6 
Design attitude of luminaire: Spigot elevated 5 ~ 

Staggered arrangement 

WE 
(m) 

Mounting height 10 m 

Spacing S (m) 
Lighting Road 
Parameter surface 28 32 36 40 

Mounting height 12 m 

Spacing S (m) 

44 48 28 32 36 40 44 48 

tav 
(cd m -2) 

U0 

U! 

T1(%) 

RI 
R2 
R3 
R4 

RI 
R2 
R3 
R4 

RI 
R2 
R3 
R4 

1.99 1 .74  1.55 1 .39  1.26 1 .16  !.75 
1.47 1 .29  1 .14  1.02 0.93 0.85 1.31 
1.41 1 .23  1 .10 0.98 0.90 0.82 1.27 
1.53 1 .34  1 .19  1.07 0.97 0.89 1.38 

1.54 1 .37 1 .23 1 .12  1.02 
1.15 1 .02 0.92 0.84 0.77 
1.11 0.99 0.89 0.81 0.74 
1.21 1 .07 0.96 0.88 0.80 

0.69 0.64 0.59 0.55 0 .51  0.46 0.76 0.76 0.72 0.65 0.61 0.56 
0.64 0.58 0.54 0.51 0.48 0.44 0.74 0 .71 0.67 0 .61 0.58 0.53 
0.62 0.54 0.50 0.48 0.44 0.39 0 .71 0.66 0 .61 0.55 0.52 0.50 
0.58 0.50 0.47 0.45 0.43 0.38 0.64 0.60 0.56 0.52 0.50 0.48 

0.74 0.62 0.52 0.44 0.38 0 .31 0.83 0.80 0.70 0.56 0.52 0.46 
0.62 0.58 0.53 0.43 0.37 0 .31 0.73 0.70 0.66 0.58 0.54 0.53 
0.65 0.55 0.46 0.42 0.36 0.30 0.74 0.70 0.62 0.57 0.50 0.44 
0.70 0.57 0.46 0.44 0.38 0.38 0.78 0.75 0.62 0.57 0.52 0.51 

RI 3.6 5.1 5.2 5.7 5.8 6.3 3.1 3.3 4.0 4.3 4.4 4.9 
R2 4.6 6.5 6.7 7.3 7.4 8.0 4.0 4.3 5.0 5.4 5.5 6.2 
R3 4.8 6.7 6.9 7.5 7.7 8.3 4.1 4.4 5.2 5.4 5.7 6.4 
R4 4.5 6.3 6.5 7.1 7.2 7.8 3.8 4.1 4.8 5.2 5.3 6.0 

RI 5.2 5.2 5.3 5.3 5.3 5.3 5.5 5.5 5.6 5.6 5.6 5.6 
R2 5.1 5.1 5.1 5.1 5.2 5.2 5.4 5.4 5.4 5.5 5.5 5.5 
R3 5.1 5.1 5.1 5.1 5.2 5.2 5.4 5.4 5.4 5.4 5.5 5.5 
R4 5.1 5.1 5.2 5.2 5.2 5.2 5.4 5.4 5.4 5.5 5.5 5.5 
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which are absent from the Design Table, as this parameter is not required for the British 
Standard. On the other hand, values of Surround Ratio are not given as this parameter is not used, 
or rarely used, on the continent of Europe. 

9.15.2 GRAPHICAL METHODS 

There are several graphical methods available for calculation of road luminance. Although these 
are seldom used, no account of road lighting calculations would be complete without a descrip- 
tion of them as they are often found in the literature. 

Luminance yield curves are used for determining average luminance. Luminance yield factor, 
qL, is defined by: 

rlL = 
Lav x S x  W 

@ x Q  o 

where 

Lav is the average road luminance, 
S is the spacing between luminaires in a row, 
W is the road width, 

is the lamp flux in lumens, 
Qo is the luminance coefficient. 

The curves are obtained by calculating the average luminance for a single luminaire for various 
road widths. Figure 9.12 shows this function plotted for an example luminaire. The reader will 
note that there are three curves, which correspond to different positions of the observer. In addi- 
tion, to comply with the definition of luminance yield factor, the average luminance coefficient 
is unity. To use the luminance yield curves to find the spacing required to achieve a given lumin- 
ance, S has to be made the subject of the above equation and maintenance factor MF has to be 
introduced, giving: 

rlL x Qo x ~ x MF 
S = (9.8) 

LavX W 

Worked example 7 A road 12 m wide is to be lighted with the example road lighting luminaire 
for which the luminance yield curves in Figure 9.12 have been prepared. A staggered arrange- 
ment is to be used with a mounting height of 12 m and an overhang of 1 m. The observer is posi- 
tioned 2.5 m from the kerb. The lamp is a 150 W SON-T with an initial output of 15 000 lm. If 
the maintenance factor for the lamp and the luminaire is 0.75, Qo is 0.75, and the average lumi- 
nance is to be 1.0 cd/m 2, what spacing must be used? 

Solution For the kerb side B/H = 2.5/12 = 0.21 
For the road side B/H = 7.5/12 = 0.63 

Observer position relative to rows of luminaires: 

Left-hand row of luminaires: 1.5/12 = 0.13 to road side. 
Right-hand row of luminaires: 6.5/12 = 0.54 to road side. 
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Fig. 9.12 Luminance yield curves for an example road lighing luminaire. Angle of tilt: 0 ~ Road surface 
R2 with Qo = 0 

The luminance yield factors can now be read from the figure. These are" 

Kerb side, left-hand row of luminaires: 0.09 
Kerb side, right-hand row of luminaires: 0.10 
Road side, left-hand row of luminaires: 0.22 
Road side, right-hand row of luminaires" 0.23 

This gives a total luminance yield factor of 0.64, which can now be substituted in Equation 

(9.8): 

qL • Qo • ~ x M F  
S =  

Lav• W 

0.64 • 0.075 x 15 000 • 0.75 

1 .0•  12 

- 4 5 m  

For parts of the curves which are steep, a small change in B/H makes a large difference in the 
luminance yield factor, so when these parts are used, which is generally the case for most instal- 
lations, it is difficult to obtain an accurate answer. It should also be noticed that S is the spacing 
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Fig. 9.13 Insoluminance diagram for Newlight luminaire for C2 road surface with Qo = 1 

between luminaires in a row, which is different to normal UK practice, where the longitudinal 
spacing is between luminaires. 

9.15.3 ISOLUMINANCE DIAGRAMS 

These can be used to find the luminance at a point so that overall and longitudinal uniformity 
can be determined. 

Figure 9.13 shows a typical isoluminance diagram. Distances are expressed in terms of the 
mounting height H. The observer is located to the left of the diagram at a distance of 10 h from 
the luminaire, which is at (0, 0). Luminances are expressed as percentages of the maximum lumin- 
ance, the formula for which is given on the diagram. The position of the maximum luminance is 
indicated by the cross in the centre of the diagram. 

Two details should be noted about the shape of the contours. First, the contours are asym- 
metrical about the longitudinal h = 0 line. This is because the luminaire directs more light 
towards the road than the kerb side. Second, when the diagram is viewed at a low angle from the 
left-hand side it has the T-shape indicated in Figure 9.4, page 351. 

The isoluminance diagram is prepared from a luminance grid where the observer is placed in 
line with the row of luminaires. If in the application for which the diagram is used the observer 
is outside this line, some inaccuracy will result. However, if it is not necessary to rotate the 
diagram more than about 5 ~ from the axis of the road the inaccuracy should be acceptable. 
Otherwise it will be necessary to have isoluminance diagrams for different observer positions. 

To use the diagram a drawing of the road to be lit should be prepared scaled in terms of h. 
The isoluminance diagram, on tracing paper, is then placed over the road drawing so that the 
origin (0, 0) coincides with the position of the luminaire and the longitudinal h = 0 line is 
directed towards the observer. Alternatively, and this may be easier, the road plan can be trans- 
ferred to tracing paper. The value of the contour which passes through the point at which the 
luminance is required is noted. Interpolation may be necessary. This is repeated for each lumin- 
aire and the total found. To find the luminance this is multiplied by Lmax/100 found from the 
formula given on the diagram. 

Worked example 8 Find the contribution to the luminance of the road surface made by a single 
Newlight luminaire located at a mounting height of 10 m, 150 m ahead of the observer, who is 
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0 5H 

Observer 
2 position 

h 
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2h- I ~ ] point P 

[ ] ~ Luminaire 
L =position 3 h 5h 0 

Fig. 9.14 Use of isoluminance diagram for determining luminance at a point 

2.5 m from the kerb, on the road side. The point at which the luminance is required is 160 m 
ahead of the observer and 10 m from the kerb, on the road side. The road surface is C2 and Q0 
is 0.07. The lamp flux is 15 000 lumens, and the maintenance factor for the lamp and the lumin- 
aire together is 0.75. 

Solution The locations of the kerb, observer, luminaire, and calculation point are drawn in plan 
to the same scale as the isoluminance diagram, as in Figure 9.14. The (0, 0) coordinates of the 
isoluminance diagram are placed over the position of the luminaire and the diagram rotated 
so the h = 0 longitudinal line passes through the observer. The angle of the rotation is 
tan -l (2.5/150) = 0.95 ~ which is small enough for any inaccuracy due to rotation to be ignored. 
For clarity, some of the contours have been omitted. 

Now, 

tma x 
K • �9 • Qo • MF 

H 2 

0.095 • 15 000 • 0.75 • 0.75 

100 

= 8.02 cd/m 2 

The calculation point P lies between the 20% and 30% contours at 23%. 
So the luminance at P is 0.23 • 8.02 - 1.84 cd/m 2. 

9.15.4 ISOLUMINANCE TEMPLATES 

This is the name given to the isoluminance diagrams used in BS 5489: Part 2 for deciding the 
spacing of luminaires on bends. Their use ensures that the overall uniformity is 0.4. Longitudinal 
uniformity is not catered for as this parameter has not been defined for curved roads. 

The basis of using isoluminance templates relies on the strong correlation between 

Lminimum/Lmaximu m and overall uniformity. 3~ It was found that when Lminimum/Lmaximu m is 25% 
then overall uniformity is 40%. This means that two overlapping isoluminance contours each of 
12.5% can be used to find the luminaire spacing to achieve an overall uniformity of 40%. 

Figure 9.15 shows such a template. It is recommended that this is drawn to a scale of 1:500 
so that it can be used on the maps commonly in use. The reader will notice that there is a circle 
enclosing the observer position. This circle is placed tangentially to the kerb line so that the 
observer is in the standard viewing position. Figure 9.16 indicates how the templates are used. 
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Fig. 9.15 Isoluminance template 
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Fig. 9.16 Use of isoluminance templates to find spacing on bends 

For a twin central arrangement a second contour is needed (not shown) produced by combining 
two/-tables, one being rotated through 180 ~ of azimuth. Should it be necessary to introduce 
extra single luminaires into this twin central arrangement, a third contour at 25% of the maxi- 
mum luminance produced by a single luminaire is required. 

Because the isoluminance template is scaled in absolute distances a template is required for 
each mounting height. 

9 . 1 6  P e r s p e c t i v e  v i e w  of  t h e  road  

The lighted view of the road should be represented in perspective view, which is as we see it, 
rather than in plan, which is the convention for luminance calculations, at least at present. It is 
not difficult to convert a plan drawing to a perspective one. 31 Figure 9.17 shows how it can be 
done. MVU is the plane of the road and we wish to produce a perspective image of this on the 
plane RST, which is called the picture plane. The road is being viewed from O, and all rays of 
light from the object pass through this point onto the picture plane. The picture plane is vertical, 
and is perpendicular to MV, the longitudinal axis of the road. f is the distance of the origin, O, 
from the picture plane, and is equivalent to the focal length in a camera. 

From the similar triangles SOT and OVM, 
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/~/Picture plane 

Fig. 9.17 Perspective projection 

z 
H = ~ f  

Y 

and from the similar triangles SRO and OVU, 

W = x y2 + z 2 

From these two equations any point on the road can be mapped onto the picture plane. To 
simplify drawing it should be noted that straight lines map as straight lines, all longitudinal lines 
map as lines converging to a point obtained by dropping a perpendicular from O onto the picture 
plane. This is the vanishing point. 

Figure 9.18(a) shows a perspective view of the calculation field for a 12 m wide road, and 
Figure 9.18(b) is an enlarged view of the points in the calculation field. To obtain the correct 
subjective impression of these views Figure 9.18(a) should be held vertically at 540 mm from 
the eyes and Figure 9.18(b) should be held vertically at 1860 mm from the eyes. The reader will 
notice the small proportion of the field of view of the road that the calculation field comprises. 
In addition, the spacing of the calculation becomes closer as distance increases but is even trans- 
versely. There is a case for choosing the position of calculation points so that they are in the 
centres of equal areas as seen in perspective. This has been tried by some workers and they found 
that there is very little difference in the values of the luminance measures when this is done, so 
the present procedure has been retained. 

9 .17  Nat iona l  var ia t ions  

There are national variations on nearly every aspect of the design process. We propose here to 
give a indication of those not already mentioned. 
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Fig. 9.18 Perspective view of road 

In South Africa and Australia, the value of overall uniformity of luminance is 0.33 for all 
roads, including motorways. 32 Although this seems a small reduction from 0.4 which is used for 
the great majority of lighting classes in Table 9.6, it usually allows a much greater spacing of 
luminaires. In countries where there are large distances between towns, this effects considerable 
economies in running and capital costs, albeit to the detriment of lighting performance. 

Reference has been made to the use of a large toe-in to achieve better coverage of the road in 
wet conditions. This is often used in Nordic countries where the road is wet for a high propor- 
tion of the time. An overall uniformity of 0.15 is permitted when the road is wet but when dry 
the performance of the installation must meet the requirements for the appropriate class of road. 

In North American practice, luminance design is the preferred method of design but illumi- 
nance criteria can be used if good design judgement is used in their application. 33 For this reason, 
lighting requirements are given in terms of both illuminance and luminance. However, as the 
choice of illuminance depends on the reflection properties of the road surface, luminance is indi- 
rectly taken into account. The ratio of the veiling luminance to the average luminance is used as 
a criterion for controlling disability glare in place of threshold increment. The limiting values of 
this are 0.3 for the more important roads and 0.4 for the other roads. Recommended values of 
illuminance and uniformity are somewhat lower than those recommended by the CIE. 

To help the designer narrow down the selection of luminaires suitable for an application there 
is a classification system for the light distributions from the luminaires. This uses the spread of 
light across the road and the throw of light up and down the road, which mainly depend on the 
angular beam position and the angular width of the beam. The run-back is used to control 
discomfort and disability glare. 

One difference in the calculation of road surface luminance in North American practice to that 
described here is that the luminance for each longitudinal row of calculation points is calculated 
for the observer positioned in the line of the row. 

9.18 Critique of luminance design 

Luminance design for road lighting has been implemented in many countries but there are a 
number of aspects in which it could be improved. 

The perspective area for which the calculation is done is very small and it would be benefi- 
cial if the calculation could be extended to parts of the road closer to the driver. This would entail 
extending the r-table so that it embraces a range of viewing angles. 
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As has already been mentioned, the concept only deals with empty roads, whereas for a 
significant proportion of the time the view of the road is blocked by traffic. 34 The road surface 
itself is very often not uniform in its reflection properties. Particularly on light coloured surfaces, 
a dark coloured longitudinal streak is deposited from exhaust emissions, and the tyre tracks may 
be of a noticeably different reflectance. 

Much of the experimental work that forms the basis of the lighting recommendation was carried 
out with comparatively young observers. It has already been mentioned that at 60 years of age three 
times the luminance is needed for same retinal illuminance as is needed at 20 years of age (page 348). 
Over the same age range threshold increment increases by about 60 per cent, and doubles at 70 years 
of age. 34 Older drivers are now forming a higher and higher proportion of the driving population. 

Road lighting calculations are based on the V;t photopic spectral response of the eye. This only 
operates accurately down to a luminance of 2 cd/m 2, below which the mesopic response of the eye 
operates (see Section 7.1, page 270). This means that the relative efficacy of light sources changes 
according to the adaptation luminance. For example, whereas the efficacy of metal halide lamps 
remains fairly stable with decreasing luminance, that of low pressure lamps decreases substan- 
tially. 36 At present, no account is taken of this change of efficacy with adaptation luminance. 

Modern cars have tinted windscreens, which have a transmission factor of less than 80%. It 
would be expected that this reduces the effectiveness of the road lighting. In addition, a raster 
pattern of fine heater wires is incorporated into some windscreens which, it may be conjectured, 
may produce some scattering of the light and, in effect, increase the threshold increment. 

These shortcomings do not mean that designing road lighting by the luminance concept gives 
bad or misleading results. The system may be regarded as self-regulating since levels and limits 
are modified from time to time as a result of experience. There is no doubt it is a great improve- 
ment on the previous ad hoc practices. In the UK, the full luminance design method was intro- 
duced in about 1980 and has had a number of beneficial effects. It has enabled the lighting 
quantity and quality to be suited to the application in a better way than was previously possible. 
It has resulted in improvements in the design of luminaires both as regards light distribution and 
maintenance, thereby effecting economies. An obvious benefit for the driver has been that most 
present day luminaires have much better glare control, both disability and discomfort, than the 
luminaires they have replaced. This has been achieved because there has been an incentive for 
manufacturers to produce luminaires with efficient light distributions and good maintenance 
characteristics where no incentive existed before. 
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10 
Road Lighting 

10.1 Introduction 

In Chapter 9 on main road lighting, we stated that the lighting is installed chiefly for the benefit 
of the vehicle driver. In residential road lighting the situation is different; it is installed chiefly 
for the benefit of the pedestrian, who is mainly interested in seeing objects that are close by, 
within 5 m, say. These may include the surface of the footway, the surface of the road (in order 
that it can be crossed safely), and the delineation of the road. In addition, facial recognition of 
other road users may be important. Speed of reaction is generally not as important as for drivers. 
It is assumed that motor traffic and pedal cyclists will be using lighting fixed to their vehicles of 
sufficient quantity and quality to reveal the lie of the road and make their presence known to 
other road users. 

The principle of silhouette vision, as used for main road lighting, which is concerned with 
seeing objects against a background between some 60 rn and 180 m away is, therefore, not 
applicable to residential road lighting. Adequate lighting of the surfaces of objects close to the 
observer has to be achieved. The measure mostly used for this is horizontal illuminance at 
ground level, but in some countries semicylindrical illuminance 1.5 m above ground level, illu- 
minance on a vertical plane 1.8 m above ground level, or hemispherical illuminance at ground 
level is used as well as, or in place of, horizontal illuminance. The rationale for using these two 
measures will be discussed in Section 10.3, page 390. 

10.2 Lighting and crime 

Historically, the lighting of streets and roads was introduced to combat crime. 1 In more recent 
times the lighting of residential roads has been mainly thought of as an amenity for pedestrians, 
but since the 1960s there has been a general increase in street crime, which has prompted a 
number of investigations into crime and lighting. The object of these has been to investigate 
whether introducing lighting or improving the existing lighting can be shown scientifically to 
reduce crime. A positive outcome would justify the extra expenditure entailed on equipment, 
maintenance and power consumption. 

The first major investigation was undertaken by Tien et  al. ,  2 in the United States. 103 projects 
were investigated. The results were disappointing in that the authors found an increase or no 
change in crime for as many projects as showed a decrease in crime. 

Many investigations have been carried out in the UK since the 1980s. These have concen- 
trated more on residents' fear of crime and their perception of the reduction of crime than the 
actual reduction of crime. There seems to be positive evidence that good road lighting (which 
we will define later) does reduce fear of crime. This helps to improve morale and civic pride, 
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which leads to the greater use of the area by pedestrians. This in its turn is said to be beneficial 
because it deters the activities of criminals, who feel that the chance of their being detected is 
increased. 

However, there is evidence from the UK studies that as well as reducing the fear of crime, 
good lighting does reduce the actual crime rate. 3,4 

It is often argued that reduction of crime in an area merely displaces it to an adjacent area. 
This was found by Lloyd and Wilson, 5 but they concluded that the combined crime rate for the 
lit and adjacent areas was reduced. The contrary thesis is being promoted by Painter and 
Farfington. 6 They suggest that new evidence points to diffusion taking place; that is, the benefits 
achieved in the relit area diffuse to the adjacent areas. 

So far, no studies have been carried out to find the relationship between the quantity and qual- 
ity of lighting and fear of crime or crime risk. 

10.3 Lighting measures 

In Section 10.1, horizontal illuminance, semicylindrical illuminance, vertical illuminance, and 
hemispherical illuminance were enumerated as measures of the quantity of light in residential 
road lighting. The rationale for the choice of these is not hard to discover. Horizontal illuminance 
at ground level is an indicator of whether the principal surface with which the pedestrian is 
concerned is sufficiently lit. However, pedestrians are also concerned with identifying vertical 
surfaces, and this is presumably why vertical illuminance is used. Semicylindrical illuminance 
at 1.5 m above ground level would seem to be an appropriate measure of the lighting of these 
surfaces. 1.5 m was chosen because work by van Bommel and Caminada 7 suggested that recog- 
nition of faces is important for pedestrians, both as an amenity and for security. Hemispherical 
illuminance is mainly used in Denmark, where low mounted lighting is common. This form of 
lighting gives low horizontal illuminance mid-way between luminaire positions, but nevertheless 
is judged subjectively to be satisfactory. Hemispherical illuminance gives higher values than 
horizontal illuminance at these positions. Semicylindrical illuminance does too but was rejected 
because it gives low or zero values beneath the luminaires. 

Investigations by Simons et al. 8 into these three measures as indicators of the adequacy of 
residential lighting showed that horizontal illuminance gives a slightly better correlation with 
appraisals than the other two measures; that is, for the geometry of installations used in the UK. 

10.4 Lighting levels 

Table l 0.1 summarizes the CIE recommendations. 9 These apply to the whole of the used surface, 
that is the road and the footways. 

The reader will note that the recommended illuminances are maintained values, which means 
that they must not be allowed to drop below these values for the life of the installation. When the 
installation is new the values will be greater. As the installation ages the light output of the lamps 
decreases and dirt accumulates on the luminaires, so decreasing the light output. When cleaning 
the luminaires no longer raises the measured values of illuminance sufficiently it will be neces- 
sary to change the lamps or refurbish the luminaires. 

The illuminances relate to situations where the crime risk is negligible. Where the crime risk 
is high, consideration should be given to using a class one step h igher -  or where it is severe two 
steps higher-  than would be normally used. Moving a class one step higher in this context means 
going to a lower class number, for example from P4 to P3. The last three classes in the table 
should only be used when the crime risk is negligible. 
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Lighting 
class 

Description of road or situation Maintained 
horizontal 
illuminance (Ix) 

Average Minimum 

P1 
P2 
P3 
P4 
P5 
P6 
P7 

High prestige roads 
Heavy night-time use by pedestrians and pedal cyclists 
Moderate night-time use by pedestrians and pedal cyclists 
Minor night-time use by pedestrians and pedal cyclists 
As P4 but important to preserve village character 
As P5 but very minor night-time use 
Solely visual guidance from the direct light from the luminaires 

20 7.5 
10 3 
7.5 1.5 
5 1 
3 0.6 
1.5 0.2 

Not applicable 

Table 10.2 Summary of lighting requirements in BS 5489 Part 3 

Category Description of road or situation Maintained 
Horizontal 
Illuminance (Ix) 

Average Minimum 

3/1 

3/2 

3/3 

Use by public high, or crime risk high, or traffic usage high 10 5 

Use by public moderate, or crime risk average to low, or traffic 
usage is of a level equivalent to that of a housing estate access road 6 2.5 

Use by public minor and solely associated with adjacent 
properties, and crime risk very low, and traffic usage equivalent 
to that of a residential road 3.5 I 

As can be seen from Table 10.2, the UK recommendations in Part 3 of BS 5489 (which were 
promulgated before the CIE recommendations) correspond very roughly with CIE classes P2, 
P3, and P4. The degree of crime risk is built into the definition of the class or category. It is worth 
noting that the prefix 3 used in the designation of the lighting category refers to Part 3 of BS 
5489. 

As well as giving recommendations in terms of horizontal illuminance, CIE 92, Guide to the 
Lighting of Urban Areas, I~ gives recommendations in terms of semicylindrical illuminance. 
Generally, for residential areas, the values recommended are roughly equal, numerically, to the 
horizontal illuminance. The recommendations for semicylindrical illuminance are in terms of the 
minimum value only and apply in both directions along the run of  the road and, as stated previ- 
ously, 1.5 m above ground level. Table 10.3 is an example of the recommendations for special- 
ized residential areas, which are residential areas with restricted access and may be of high 
building density. 

Because the calculated semicylindrical illuminance under a luminaire is zero (unless its size 
is taken into account) illuminances within 1 m of the downward vertical through the photomet- 
ric centre of the luminaire are ignored. 

Table 10.4 is condensed from the IES Lighting Handbook. II It will be seen that the minimum 
average horizontal illuminances are in the same order of magnitude as those recommended by 
CIE but the vertical illuminances, which are taken 1.8 m above ground level, are much higher. 
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Table 10.3 Horizontal and semicylindrical illuminance requirements compared for 
specialized residential areas (CIE 92) 

Situation Maintained horizontal Maintained 
illuminance semicylindrical 

illuminance 

Average ( I x )  Minimum (Ix) Minimum (Ix) 

High usage 8 4 3 

Medium usage 5 2 2 
Low usage 3 1 1 

Table 10.4 Average maintained illuminances for pedestrian ways (IESNA) 

Situation Minimum average 
horizontal 
illuminance (Ix) 

Average vertical 
illuminance for 
pedestrian security (Ix) 

Roadside sidewalks: 
Commercial 10 
Intermediate areas 6 
Residential areas 2 

Walkways and 5 
bikeways distant 
from roadways 

22 
11 
5 
5 

10.5 Colour  of  l ight source 

In the UK, the low pressure sodium lamp is commonly used for residential lighting, because of 
its high efficacy. However, because this source is monochromatic, colours are not rendered. For 
this reason it is not suitable for those areas where pedestrian activities predominate or where 
provision for crime risk is a consideration. Instead, in Part 3 of BS 5489,12 a source emitting 
substantially 'white' light is recommended. The high pressure sodium lamp would come into this 
category. CIE 115 makes a similar recommendation. 

10.6  Glare 

The control of either discomfort or disability glare has not been given the same prominence in 
residential lighting as it has in main road lighting. This is probably because the visual tasks are 
not so onerous and, in many cases, direct light from the luminaires is welcomed as providing a 
cheerful atmosphere and providing optical guidance. 

However, there are glare control systems in use that are worthy of description even if their 
experimental foundations are shaky or non-existent. 

In the UK, glare control is achieved by limiting the luminous intensities at 80 ~ and 90 ~ to the 
downward vertical. The actual restrictions are given in Figure 10.1, page 394. It will be noticed 
that if the luminaires emit less than 3.5 klm in the lower hemisphere, the luminous intensity 
limits do not apply. This allows the use of luminaires to provide sparkle. 

In the Nordic countries, a formula for Discomfort Glare Rating (DGR) is used: 
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DGR = maximum value of 
I 

(cd m -l) 
(h 

where: I is the luminous intensity of the luminaire in candelas; and A is the light emitting part of 
the luminaire in square metres. 

All surfaces are included in the evaluation of A provided that no parts of the light source are 
visible directly or as broken images. The maximum DGR is found for angles between 80 ~ and 
90 ~ to the downward vertical, for a clean luminaire with a lamp emitting its initial luminous flux. 

The limiting values are 500 and 1000 for dark and light surrounds respectively. Classes of 
glare control with higher values of DGR, up to 7000 are proposed by CIE 92. 

It is worth recording that the formula LA ~ has been recommended until quite recently by 
CIE 92. Here, L is the greatest average luminance in the zone between 80 ~ and 90 ~ to the down- 
ward vertical from the luminaire. Recommended limiting values vary according to mounting 
height. One of the problems with the application of this formula is finding the direction of the 
maximum average luminance. 

10.7 Calculation grid 

The requirements of Part 3 of BS 5489 apply to the whole of the used surface, which includes 
the outer edges of the footways as well as the road surface. Points on these outer edges, there- 
fore, have to be included in the search for the minimum illuminance. If the same calculation grid 
is used for calculating the average and minimum illuminance, points on the edge of the grid have 
to be given a different weighting from the other points according to the following equation" 

�88 l + �89 2 + E 3 
Eav = 

I + � 8 9  

where 

E l is the sum of the illuminances at the comer of the grid (Ix)" 
E 2 is the sum of the illuminances at the boundaries of the grid, excluding the comers (Ix); 
E 3 is the sum of the illuminances inside the grid (Ix); 
C is the number of points at the boundaries, excluding the comers; 
D is the number of points inside the grid. 

The rationale for this equation follows from the fact that if the inside rectangles each have an 
area of one unit, the comer rectangles will each have an area of one quarter of a unit, and the 
remaining edge rectangles will each have an area of half a unit. 

10.8 Design data 

Part 3 of BS 5489 recommends that manufacturers produce a data sheet for the design of instal- 
lations. This should have the recommended layout (Figure 10.1) to make the comparison of 
installations easier. Its use for design purposes is tending to be superseded by computer 
programs, but data sheets are still included in manufacturers' catalogues and are for that reason, 
described here. 

There are three basic elements in the data sheet, which we need to consider in detail. These 
are the isolux diagram, the utilization factors, and the glare control data. 
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Luminaire: Resilight 
Lamp: 70 W SON-T 
Design attitude: Spigot entry elevated 5 ~ 

Glare control data 

Downward light 
output ratio 

0.85 

Angle of elevation 
degrees 

80 

90 

Maximum intensity 

Permitted 1 
cd/klm 

160 

80 

Measured 
cd/klm 

145 

69 

1No restriction for luminaires emitting less than 3.5 klm in the lower hemisphere 

Illuminance is given by 
contour valve x lamp flux in klm x MF 

(mounting height H in m) 2 

Fig. 10.1 Design data sheet for residential road luminaire 
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The isolux diagram. This shows contours joining points of equal illuminance for a horizontal 
plane under the luminaire (see Section 1.7.5, page 32). Distances are expressed in terms of the 
mounting height, H. To use it, a plan of the road and the adjacent footpath, if any, drawn to the 
same scale as the design sheet, is needed. The isolux diagram is placed with its centre (0, 0) over 
the luminaire from which the illuminance is required. It is then orientated correctly, with the road 
side on the road. The value of the contour passing through the point is then read or estimated if 
the point lies between two contours. The illuminance can be calculated by using the formula 
given at the bottom of Figure 10.1. In relation to BS 5489 the isolux diagram is used to find the 
minimum illuminance to check the design for compliance with the requirements in Table 10.2, 
page 391. For this purpose the contributions of all the luminaires to the illuminance at a point 
have to be considered. 

The utilization factors (U). These give the fraction of bare lamp luminous flux which reaches 
infinitely long longitudinal strips. The width of this is expressed in terms of the mounting height. 
Utilization factors allow the maintained average illuminance over an area to be calculated by use 
of the following formula: 

1000(U l + U 2 )dpMF 
Eav = 

(w~ + w2)s 

where 

S is the design spacing (m); 
U l is the road side utilization factor. This is the fraction of bare lamp flux which reaches the 

part of the horizontal plane lying between two lines parallel to the road axis, one line being 
directly under the luminaire, the other being a distance W 1 from it towards the road side; 

U 2 is the house side utilization factor. This is the fraction of bare lamp flux which reaches 
the part of the horizontal plane lying between two lines parallel to the road axis, one line 
being directly under the luminaire, the other being a distance W 2 from it towards the 
house side; 
is the initial luminous flux of the lamp as quoted by the manufacturer (klm); 

MF is the maintenance factor obtained by multiplying the luminaire maintenance factor 
(LMF) by the lamp lumen maintenance factor (LLMF); 

W I is the distance between the luminaire and the rear of the far footway (m); 
W 2 is the distance between the luminaire and the rear of the near footway (m). 

This equation can be transposed to find the spacing when a specified illuminance is required: 

1000(U i + U2)OMF 
S = (10.1) 

(W! + W2)Eav 

The glare control data. These allow a check to be made that the light distribution of the lumi- 
naire complies with glare control requirements. 

The way this data sheet is used is best understood by means of an example. 

Worked example A residential road is to be lit to category 3/2 of BS 5489 with the Resilight 
luminaire (data in Figure 10.1). The width of the road surface is 6 m with a 1 m wide footway 
on either side and the mounting height is 6 m. The environment can be regarded as medium 
pollution, and the lamp housing of the luminaire has an ingress protection number of IP6. The 
initial luminous flux of the lamp is 6.3 klm with a lamp lumen maintenance factor (LLMF) of 
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0.92. What spacing is required between luminaires if the arrangement is to be staggered (Section 
9.4, page 348). 

Solution The solution can be reached in six steps" 

Step 1. From Table 10.2, find the relevant requirements. These are an average horizontal illumi- 
nance (Eav) of 6.0 lx and a minimum (Emin) of 2.5 lx. 

Step 2. Check that the luminaire meets the glare control requirements. From the data sheet it is 
obvious that the luminaire meets the requirements. (If there is doubt as to whether a luminaire 
emits 3.5 klm in the lower hemisphere, this can be found approximately from the utilization 
factors. The downward light output ratio is approximately equal to the sum of the utilization 
factors for W1/H and W2/H when these are equal to 4, as these nearly represent an infinitely large 
plane under the luminaire. The sum multiplied by the luminous flux of the lamp is then the flux 
in the lower hemisphere. However, a caveat should be made. The utilization factors account for 
the luminous flux falling on an infinitely long plane in the longitudinal direction but only go up 
to tan -l 4 (or 76 ~ transversely, so it is possible for some luminous flux not to be included. On 
the design data sheet shown, the utilization factors appear to converge to limiting values so the 
assumption made above is probably safe.) 

Step 3. Calculate maintenance factor, MF. The luminaire MF (LMF) for an IP6 luminaire, in a 
medium pollution environment, with a cleaning interval of 18 months is 0.91, from Table 9.7, 
page 375. The LMF is 0.92, obtained from the manufacturer. Hence, the overall MF is 0.91 • 
0.92 or 0.837. 

Step 4. Calculate the spacing which gives Eav equal to 6.0 Ix. For this we use the utilization 
factors. 

W ! = 6 +  1 
= 7  

W2=l 

SO, 

W l 7 

H 6 

= 1.167 

W 2 1 
m 

H 6 

= 0.167 

By interpolation in the design data sheet (Figure 10.1), we find: 

U 1 = 0.43 
v2= 0.07 

We can now find the spacing to provide an average illuminance of 6 Ix: 

S . - , .  

1000(U l + U 2 )r 

(W 1 + W2)Eav 
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1000 • (0.43 + 0.07) • 6.3 • 0.837 

(7 + 1 ) •  

= 54 .9m 

Step 5. Find the maximum spacing at which the minimum illuminance of 2.5 Ix is obtained. For 
this we use the isolux diagram. Since only two luminaires contribute significantly to a point 
between luminaires, we need to find the value of the contour that represents half the minimum 
illuminance, that is 1.25 Ix. To do this we rearrange the formula given at the bottom of the design 
data sheet and substitute in values: 

contour value = 
illuminance • H e 

lamp flux in klm • MF 

1.25 • 62 

6.3 • 0.837 

= 8.5 Ix per klm 

As shown in Figure 10.2, a plan of the road with the footways is now drawn to the same scale 
as that of the isolux diagram, which is scaled in terms of H. Two drawings of the interpolated 
8.5 lx/klm contour are made on tracing paper on which the position of the luminaire is marked. 
These are positioned on the plan of the road so that the whole of the road lies within the 
8.5 lx/klm contour. When this is done it is found that the spacing is 6. I H, which, since H = 6 m, 
is equivalent to 36.6 m. 

It is possible, although unlikely, that there are points near the intersection of the two contours 
where the illuminance is less than the required minimum. It is well to check a few points within, 
say, 0.2H of the intersection of the contours to confirm that this does not occur, which is the case 
in this example. If the minimum illuminance had fallen below the required minimum it would 
have been necessary to close up the spacing by 0.2H and repeat the process. 

Cross-over point of contours 8.5 Ix per klm contour 

Footway 

SCALE 

Fig. 10.2 Isolux contours used to find minimum illuminance 
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Step 6. Determine the final spacing to meet average and minimum illuminance requirements. 
This is 36 m to meet the requirement for minimum illuminance. 

10.9 Der ivat ion of ut i l izat ion factors 

At first sight it might seem possible to calculate the utilization factors by using an illuminance 
grid. This would, however, have to be infinitely long to collect all the luminous flux for an infi- 
nitely long road. To overcome this problem, we consider longitudinal strips provided by the 
(B, fl) system, where the B half-planes intersect the road surface in longitudinal lines, shown in 
Figure 10.3. 

Figure 10.4 shows the angles concerned in more detail. Each longitudinal strip has a width of 
0.1H and is divided into 2 x 18 elements, each subtending 5 ~ in the fl planes. In the figure these 
are shown as being rectangular. This is only approximately true: the longitudinal lines are paral- 
lel and straight but the transverse lines are parts of parabolas because they are formed by the 13 
angle cones cutting the horizontal plane, which is parallel to their common axis. The fact that the 
elements are not rectangular does not affect the accuracy of the calculation. 

Figure 10.5 shows how the longitudinal strips and elements are portrayed on a web for the 
(B,/9) coordinate system. This is Figure 1.3(c), page 3, viewed along the (B, ,6) = (90 ~ 0 ~ axis. 

The luminous flux falling on each element is calculated by multiplying the solid angle 

Fig. 10.3 Intersection of B-plane with longitudinal road line 
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Fig. 10.4 Longitudinal strips of road for calculating utilization factors 

Fig. 10.5 (B, fl) coordinate system for the calculation of utilization factors 
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subtended by each element by the average luminous intensity in the element. This latter is taken 
as the luminous intensity falling on a point lying on the longitudinal centre-line of the longitu- 
dinal strip, and 2.5 ~ from the edge of the strip measured in the fl plane, as shown in Figures 10.4 
and 10.5. The calculation process can be split down into the following steps. 

Step 1. Solid angle subtended by an element 
For this we can use the formula given in Section 1.7.1, page 25, for the (B, r )  system. If to is the 
solid angle in steradians between the cones whose half-apex angles are ( t im-  5) and (tim) in 
degrees of arc, then 

to = 4zr sin �89 - ill) cos ~(f12 + ill) x 8B/360 
= 4zr sin (2.5) cos (tim - 2.5) x 5Bn/360 
= 2n: [sin tim - sin (tim - 5)] x 8Bn/360 

where ~n  n is the angle in radians subtended by the edges of the nth longitudinal strip. It is calcu- 
lated from 

8 n  n = tan -l (n/10) - tan -1 [(n - 1)/10] 

The full equation for the solid angle subtended by an element is then 

tomn= 8Bn[sin tim - sin (tim - 5~ 

Step 2. Angle subtended by the centre of  an element 
The B coordinate of the centre of the nth longitudinal strip is B n, and the fl coordinate of the 
centre of the mth element is (5m - 2.5), since the width of each element is 5 ~ 

Step 3. Luminous intensity directed to the centre of  an element 
Since angles in the standard/-table are in (C, y) coordinates, the coordinates found in Step 2 have 
to be converted to (C, ?9 coordinates by using the formulae given in Section 1.3.3, page 6. These 
give: 

Cmn = Sin -l ( s inB n I 
tan tim (10.2) 

rm,, = cos-l { cos B. cos/~m } 

Inn can now be found from the/-table by using the interpolation procedures given in Section 2.2, 
page 34. 

Step 4. Luminous flux falling on an element 
The luminous flux di~mn falling on the mth element in the nth longitudinal strip is given by 

di)mn -- I mn to mn 

Step 5. Luminous flux falling on a longitudinal strip 
The luminous flux ( I )  n falling on the nth longitudinal strip is given by 

f~  n = 2 ~_~ di)mn 
m = l  

The symbol ~ signifies summation; in this case, over 18 elements. The factor two is introduced 
here to account for the luminous flux falling down the road as well as up the road. 
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Step 6. The luminous flux falling on all the longitudinal strips up to the kth 
This luminous flux denoted by f2 k is given by: 

k 

~k = E l~n 
n = 0  

Step 7. Utilization factor 
The utilization factor U k for all the longitudinal strips up to and including the kth is then: 

f~k 
uk= 

where �9 is the bare lamp luminous flux on which the/-table is based, usually 1000 lumens. 

Problem 

1. The Resilight luminaire (data in Figure 10.1, page 394) is mounted at 6 m over the kerb of an 
8 m wide road with 1 m wide footways. The light output of the lamp is 6.3 klm, LLMF is 0.92, 
and LMF is 0.91. What is the maintained illuminance directly under a single luminaire; directly 
opposite the luminaire, on the edge of the road; and 10 m along the kerb from the vertical line 
through the luminaire? What spacing is needed between the luminaires in a staggered arrange- 
ment for an average maintained illuminance of 6.1 Ix to be achieved on the road and footways 
together? 

Answers: [15.4 Ix, 3.1 Ix, 1.0 Ix, 46 m] 
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11 
Tu n nel Lig hti ng 

11.1 Introduct ion 

Unlike most other applications, tunnel lighting presents the greatest problems to the designer, not 
during the hours of night, but during the hours of daylight, and the brighter the daylight is the 
greater the problem. This is because of what is known as the black hole effect, which exists at 
the entrance to the tunnel. When the driver approaches the entrance to an unlit tunnel in daylight, 
he or she sees the opening as a black hole. This is because the eye is adapted to the high lumi- 
nance of the surrounds of the tunnel entrance (which may include the sky). To make the inside 
visible the luminance of the first part of the tunnel, known as the threshold zone, has to be a 
certain fraction of the luminance of the surrounds to the entrance. Based on the work of 
Schreuder I this fraction is given by CIE recommendations the value of 0.1, which means that if 
the outside luminance is 8000 cd/m 2, as it may well be on a bright day, 800 cd/m 2 will be 
required in the threshold zone, a which is a very high value and costly to achieve. Moreover, when 
the driver reaches the entrance the eye will take some time to adapt to lower luminances. Hence 
the high luminances will need to be maintained for some way into the tunnel. The length will 
depend on the time the eye takes to adapt to low luminances and the speed of the traffic. For this 
reason, high speed tunnels pose greater lighting problems than low speed tunnels. 

At the exit to the tunnel, when the driver emerges into daylight, the problem is ameliorated 
because the eye adapts much faster from low to high luminances than vice versa. 

The outcome of this is that tunnels, particularly those on motorways, may need vast 
amounts of energy to light them effectively and so the design of the lighting needs careful 
consideration. 

11.2 A diversion: the black hole e f fect  and adaptat ion level 

The black hole effect is important and deserves further explanation. 
First, we must introduce the concept of adaptation. It is a fact that when we shine a torch onto 

a surface at night the surface appears brightly lit (if the torch is working correctly). However, if 
we do the same thing in sunlight, or for that matter on an overcast day, the extra luminance is 
not discernible. 

To explain this we need to refer once again to the concept of contrast (see Section 9.9, page 
366). It was stated that the contrast C of an object of luminance L o against a uniformly bright 

a In Japan, a much lower fraction is used; from about 0.02 for 100 krn/hr traffic to about 0.008 for 40 
km/hr traffic. See Narisada, K. and Yoshikawa, K. (1974) Tunnel entrance lighting- effect of fixation point 
and other factors on the determination of requirements, Lighting Research and Technology, 8, 9. 
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background of L b is given by 

L o - L  b 
C =  

We now invoke the Weber-Fechner law, which states that the change in a stimulus that will be 
just noticeable is a constant ratio of the original stimulus. This 'law' does not hold for the 
extremes of stimulation and is only approximately true for the stimuli between the extremes, but 
is, nevertheless, sufficiently accurate for application to tunnel lighting. To apply it to our prob- 
lem we can regard L o - L b as the change in stimulus and L b as the original stimulus. 

For an object to be visible, the contrast C has to be greater than the minimum detectable value 
or threshold value, which will be constant within the accuracy with which the Weber-Fechner 
law holds. 

In the application of this to tunnel lighting, L o can be regarded as the luminance of the thresh- 
old zone whilst L b can be regarded as the luminance of the background, also called the adapta- 
tion luminance. In addition, we can say that from the equation for contrast, 

Lo 
= C + I  

= k  

where k is a new constant. 
Hence, for objects to be just visible in the threshold zone they must have a luminance that is 

higher than a certain proportion k of the adaptation or background luminance. In tunnel lighting, 
k is chosen so that there is a reasonable certainty of the object being visible. 

11.3 Zones of the tunnel 

For ease of reference and for design purposes, the tunnel is divided into the four zones illustrated 
schematically in Figure 11.1. The lighting of these four zones will be discussed separately later 
in this chapter. In addition to these four internal zones, outside the tunnel there is the access zone, 
which the driver sees before entering the tunnel. 

11.4 Types of lighting 

Two types of lighting are u s e d -  symmetrical and counterbeam (Figure 11.2). 
In symmetrical lighting, beams of light are directed with and against the traffic flow, whereas in 

counterbeam lighting there is only one beam, which is directed against the traffic flow. It follows 
that symmetrical lighting lights both sides of an object, whereas with counterbeam lighting the side 
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Fig. 11.2 Symmetrical and counterbeam lighting. (a) symmetrical lighting; (b) counterbeam lighting 

facing the driver is unlit so the object is seen in silhouette. This increases the contrast between the 
object and the road, so that less light is needed for an object to be discriminated. However, the 
objection is often raised that a small vehicle behind a high vehicle may be rendered invisible. 
Nevertheless, counterbeam lighting, which originated in Switzerland, 2 has been used successfully 
in a number of countries. The degree to which the light is concentrated in one direction varies 
between designs. 

1 1.5 C lass i f ica t ion  of tunnels  

Tunnels are classified into two broad groups: long and short. In general, a tunnel is regarded as 
short if the approaching driver can see through to the end of the tunnel. The lighting require- 
ments for these two types are different. 

Long tunnels are further divided into seven classes depending on traffic flow rate, traffic type, 
optical guidance, and degree of driving comfort. It should be noted that the higher the class 
number the more onerous are the lighting requirements, which is the reverse of the numbering 
system adopted for traffic routes (Section 9.12, page 370) and for residential lighting (Section 
10.4, page 390). 

11 .6  L ight ing of  the  en t rance  to the  th resho ld  zone 

The starting point for determining the threshold zone luminance is the need to know the adaptation 
luminance of the driver approaching the tunnel portal. This depends on the luminances in a 20 ~ cone 
of vision (2 • 10 ~ angle measured from the axis of the cone), the axis of which is aimed at the centre 
of the entrance portal. The average of these luminances, weighted in a way to be discussed, gives the 
threshold zone luminance, symbol L20. To determine L20 the concept of stopping distance (SD) has 
to be introduced. This is the distance required to bring a vehicle to a halt when it is being driven at 
the design speed for the tunnel. The values are available in national regulations. For instance, the 
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Fig. 11.3 Schematic of the various zones used for determining L20 

British Standard BS 5489: Part 7:19923 recommends, for design speeds of 120 km/h and 50 km/h, 
the most extreme values given, that the SD should be 215 m and 50 m. e In most circumstances this 
means that more of the sky will be visible at higher design speeds, which will increase L2o so that a 
higher lighting level will be needed in the threshold zone. 

Having determined the stopping distance SD, we now need to determine L2o. There are three 
methods available. 

(1) This is the most accurate method and assumes that a photograph or drawing is available of 
the view of the tunnel entrance taken from a distance from the portal that is equal to the stop- 
ping distance. The photograph is used to determine the relative projected areas of sky, road, 
surrounds and entrance portal, as seen in the 20 ~ cone (Figure 11.3). Then 

L2o = yL C + pL R + eL E + rLth 

where 

L20 is the access zone luminance (cd/m2), 
L c is the sky luminance (cd/m2), 
L R is the road luminance (cd/m2), 
L E is the surrounding luminance (cd/m2), 
Lth is the threshold luminance (cd/m2), 
7, p, e and r are the fractions of the circular area being considered occupied by the sky, road, 
surroundings, and portal respectively. 

b In fact these figures are for the stopping sight distance (SSD), which includes the time for the driver 
to perceive and to react to an object. They are quoted here because BS 5489: Part 7:1992 does not give SD, 
as it is based on CIE 61 (1984) and not CIE 88 (1990). SD would be shorter than SSD. 



406 Tunnel lighting 

At this stage Lth is not known. Let it be a fraction k of L20, then 

L20 = ~L C + pL  R + eL  E + r[kL20] 

and by rearrangement of the terms, we obtain 

L20 -- 
?,L c + pL~ + ~L~ 

1 - k r  

Also, it will be noted that 

~ , + p + e + r = l  

so only three of the four fractions need be known. A further simplification can be made since k, 
in practice, never exceeds 0.1. This means that the denominator can be taken as unity for practi- 
cal purposes. 

Although the above mathematical procedures may seem straightforward there are difficulties 
in their application. Maximum values of L c,/_~ and L E are required for insertion into the formula 
so that the maximum value of L20 can be found. These may not occur at the same time of the 
year. Often the absolute maximum is not used but the maximum that covers 80% of the service 
time of the tunnel is used instead. 

(2) As an alternative to the above, the CEN draft gives a tabular method which, however, is 
only approximate. The operative value of L20 is selected from the table on the basis of the 
percentage sky visible, whether snow is likely to be present, the stopping distance, and tunnel 
orientation. 

(3) A second approximate method is to compare the access zone geometry with that of a situa- 
tion for which L20 is known. The CEN draft and CIE 88 give a number of sketches that can be 
used for this purpose. 

11.7  L ight ing w i th in  the thresho ld  zone 

As already intimated 

Lth = k • L20 

L20 has been determined in the previous section so it remains to find k. The value of this constant 
depends on the lighting class of the tunnel, whether counterbeam or symmetrical lighting is used, 
and the stopping distance. Table 11.1 shows some typical values for k taking into account these 
variables. 

Table 11.1 k values 

Lighting Class Counterbeam lighting Symmetrical lighting 

Stopping distance SD (m) Stopping distance SD (m) 
60 160 60 160 

7 0.040 0.070 0.050 0.100 
5 0.030 0.055 0.035 0.065 
3 0.020 0.040 0.025 0.045 
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Table 11.2 Average road surface luminance for the interior 
of long tunnels (cd/m 2) 

Lighting class Stopping distance (m) 

60 160 

7 3 10 
5 2 6 
3 1.5 4 

The reader will note the advantage that counterbeam lighting gives. However, which system 
is more economical has to be assessed on the basis of system efficiency, not solely on the basis 
of k values, since the counterbeam luminaires may not make as effective use of the available light 
energy as the symmetrical luminaires. 

The threshold zone continues into the tunnel for at least the stopping distance, and for the first 
half of the zone the threshold Lth should be maintained for at least half its length. Thereafter, it 
is decreased to 0.4 Lth in such a way that the luminance of the road does not fall below the value 
that would be obtained by linear interpolation from Lth to 0.4 Lth over the second half of the 
threshold zone. This means that the luminance may be decreased in steps, which would occur in 
practice since the lighting is provided in stepped packages of luminous flux. 

The luminance of the walls of the tunnel should be high enough to reveal objects seen against 
them. For the most important tunnel lighting classes the luminance of the walls should be simi- 
lar to that of the road. 

11.8  Light ing of the inter ior  zone 

The lighting of the transition zone depends on the luminance used in the interior zone, so we 
have to consider this zone first. Table 11.2 gives an indication of the road luminances used for a 
variety of lighting classes and stopping distances. The values are minimum maintained. 

In UK practice, as stipulated in BS 5489: Part 7, there are only three lighting classes, which 
are mainly determined by the speed limit. For motorways, where the speed limit is more than 
110 km/hr the average maintained road luminance is 10 cd/m 2, for speed limits between 80 and 
100 km/hr it is 5 cd/m 2, and for speed limits between 50 to 70 cd/m 2, it is 3 cd/m 2. 

11.9  Light ing of the t ransi t ion zone 

We are now in a position to reduce the light level from the end of the threshold zone to the inte- 
rior zone. This has to be graded so that the adaptation of the eye can keep pace with the reduc- 
tion of luminance. To enable this to be done CIE 88 and the CEN draft 4 recommend use of the 
formula: 

Ltr = Lth (1.9 + t) -1"423 

where 

Ltr is the luminance in the transition zone at a position after the vehicle has travelled for t 
seconds (cd/m2); 
Lth is the luminance at the end of the threshold zone (cd/m2); 
t is in seconds for a vehicle to travel a given distance from the end of the threshold zone. 
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Fig. 11.4 Maximum permissible reduction of road luminance with distance in the transition zone for a 
vehicle speed of 1 1 0  km/hr 

This equation is formulated in such a way that when t is zero Ltr is 40% of Lth, as is required in 
Section 11.7. Moreover, since t is raised to a negative power, higher speeds require higher values 
of Ltr, as would be expected. 

Figure 11.4 is a plot of this equation for a speed of 110 km per hour. In practice it is not possi- 
ble to grade the lighting to obtain a smooth reduction of the luminance of the road. Instead, the 
lighting is reduced in steps, but these must be smaller than 3:1. 

1 1 . 1 0  L i g h t i n g  o f  t h e  e x i t  z o n e  

The adaptation of the eye to increasing luminance takes place so quickly that an increase in lu- 
minance is not required for good seeing capability outside the tunnel as the driver approaches 
the exit in daylight. However, in the highest lighting classes, some increase-  maybe as much as 
five t i m e s -  in luminance is helpful for revealing small vehicles behind large ones, which may 
otherwise be rendered inconspicuous because of the glaring effect of the exit in daylight. It also 
helps with vision in the rear mirror. Another consideration is that if there is the likelihood that 
the tunnel will be used for traffic travelling in the reverse direction, during periods of mainte- 
nance for instance, provision should be made for obtaining the high levels of luminance needed 
for threshold zone and transition zone lighting. 
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At night it is recommended that there is a gradual grading off of the lighting if the open road 
is unlit. 

1 1.11 Other  requ i rements  

It is important that the walls are well lighted up to a certain height, 2 m usually being recom- 
mended, to help with discrimination of objects in the tunnel. Most recommendations state that 
the average luminance of the walls should be equal to or greater than the luminance of the road. 

The uniformity of luminance of the road is controlled by overall uniformity U o and longitu- 
dinal uniformity U l as for traffic routes (see Section 9.6, page 352). 

Disability glare is controlled in terms of threshold increment TI described in Section 9.9, page 
366. A variation of the formula quoted in that section is used, 

t V 
TI=95 if L > 5  cd/m 2 

L0.8 

where L v is the veiling luminance produced by the initial output of the luminaires visible in a 
2 • 20 ~ conical field of view. This is equal to the illuminance produced by these luminaires on 
an infinitesimal plane, at the driver's eye, which has its normal directed 1 o down from the hori- 
zontal and parallel to the road axis; and L is the luminance of the road for a new installation. 

Where discontinuous lines of luminaires are used, unpleasant flicker may result. To avoid this 
flicker frequencies between 2.5 per second and 15 per second should be avoided except over 
short lengths. 

11 .12  Reduct ion of access zone luminance  by screens 

If the maximum access zone luminance can be reduced then there can be a reduction in thresh- 
old luminance, which can produce a worthwhile economic saving. 

Obviously, if the tunnel can be made to run in an east-west direction rather than north-south, 
the entrance portals will be spared the sun at the brightest part of the day. But this is probably an 
impracticable suggestion as geographical and other factors dictate the direction in which the 
tunnel should run. 

In some tunnels, daylight screens have been used. These take the form of translucent materi- 
als and form a canopy over what would otherwise be the access zone. On the face of it this seems 
an attractive idea to reduce the lighting needed. However, they are difficult to maintain in terms 
of their light transmission. They may also drip water onto the road, which may constitute a 
hazard. When snow falls the transmission of daylight may be reduced, and when it melts it may 
drip onto the road, and possibly freeze. 

Screens, such as louvres, which allow some sunlight to fall on the road are definitely not 
recommended. This is because they may produce disturbing patterns of light on the road and 
uncomfortable flicker, as well as having the drawbacks stated for the daylight screens. 

Dark walls leading into the access zone and the planting of trees to raise the skyline are help- 
ful. 

11 .13  Var iat ion of l ight ing levels w i th  dayl ight  levels 

There is a need to vary the lighting levels in the tunnel in accordance with the daylight levels. 
To do this the average luminance of the access zone is monitored with luminance meters, and 
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variation of the lighting levels in the tunnel is effected either by dimming the lamps, if they are 
fluorescent, or turning some out. In the latter case, care has to be taken that undue flicker effects 
do not result. 

11.14 Short tunnels 

For lighting purposes a tunnel is regarded as short if it is less than 100 m in length and the exit 
is visible from some distance before the entrance. In these circumstances it may be unnecessary 
to light the tunnel, providing the daylight penetration is sufficient for the silhouette effect to 
operate. However, it is possible that the tunnel produces, in effect, a dark frame against which 
vehicles, cyclists, or pedestrians may be difficult to see. White finishes on the walls are a help in 
diminishing this effect and some authorities advocate a light-well half-way along the length of 
the tunnel. 

Where lighting is required, the road is lit to a uniform level equal to three times the luminance 
that would be used in the interior zone of a long tunnel (see Table 11.2, page 407) or to 15 cd/m 2, 
whichever is the greater. 
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Floodlighting 

12.1 Introduction 

By floodlighting is meant the lighting of large areas by one or a number of luminaires, the flood- 
lights, which may all have to be individually aimed. The areas so lit may be sports fields, faqades 
of buildings, interiors such as hangers or sports halls, and so on. The luminaires themselves may 
have beams of very narrow angle, of no more than 5 ~ from the aiming direction, or beams of 
wide angle, as large as 60 ~ A number of different calculation methods are employed to meet the 
illuminance and other requirements. To illustrate these we have chosen two common applica- 
tions: floodlighting for sports and floodlighting for buildings. 

12.2 Floodlighting for sports 

The first step in the design of a floodlighting scheme for sports lighting is to decide on the appro- 
priate lighting criteria. Then it is necessary to decide on the general design philosophy for meet- 
ing these - height and position of towers or whether a stand roof can be used - choice of light 
source and luminaire or luminaires, amongst other factors. Conventional photometric data in the 
form of the floodlighting diagram can be of assistance at this stage, especially in making the 
right choice of luminaire. The next stage is to work out a training scheme for aiming the flood- 
lights. The detailed lighting performance can then be calculated by computer and, if necessary, 
alterations made to improve the performance. These steps may have to be repeated until a satis- 
factory result is obtained. Usually, human intervention is needed to judge at the end of every iter- 
ation whether the result is an improvement on the last iteration and whether it is acceptable. In 
practice, the process is not usually as daunting as it might first appear because the designer can 
draw on previous experience with similar schemes to provide a good starting point. Automatic 
optimization programs have been written I and are in use by some manufacturers. 

12.3 Design criteria 

The main criteria are horizontal illuminance level and uniformity, vertical illuminance level and 
uniformity, and glare restriction. 

12.3.1 HORIZONTAL ILLUMINANCE 

This is generally calculated for ground level. It varies from about 50 lux to 2000 lux depending 
on the sport and the level of competition; that is, whether it is international, national, regional, 
local, training, or school sport. Similar criteria are used to decide the illuminance uniformity in 
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terms of minimum to average illuminance, which varies from 0.5 to 0.8. Detailed recommenda- 
tions are given in CIE 2-6 and CEN 7 publications. 

12.3.2 VERTICAL ILLUMINANCE 

Where the sport is concerned with vertical surfaces, the illuminance on these surfaces is speci- 
fied. For instance, for archery, the vertical illuminance specified is 1000 lux for a range of 25 
metres and 2000 lux for 50 metres. The recommended uniformity over the target is 0.8. 

In addition, vertical illuminance is an important consideration for colour television and film- 
ing. 8 Here, levels depend on speed of action and shooting distance - the distance of the camera 
from the action. For the fastest action and the longest shooting distances, illuminances as high 
as 1500 lux may be required. Where slow motion recordings are to be made, higher levels than 
this will be required. 

To ensure that the spectators are visible, the vertical illuminance on them should be at least 
one quarter of the average vertical illuminance on the playing area. 

The requirements for uniformity are somewhat complex. 

�9 For vertical planes facing a side-line bordering the main camera area 

N 

where E v min  is the minimum vertical illuminance, and E v m a x  is the maximum vertical illu- 
minance. 

�9 For vertical planes at a calculation grid point (see Section 12.6.2, page 431), these being on 
the vertical sides of a cube with one side facing a side-line bordering the main camera area 
(Figure 12.1 (a)) 

!-i 

!-I 

i - i  I_.. Camera 
I -  position 

1-1 
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r-i 
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(a) (b) 

Fig. 12.1 Orientation of vertical planes for calculation and measurement of vertical illuminance 
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Ev min --> 0.3 

Ev max 

where the symbols have the same meaning as before. 
The above requirements apply when the camera may be positioned anywhere outside the 

border of the playing area. When there is just one camera position, from the centre of one side 
of the playing area in Figure 12.1 (b), only the vertical plane facing the camera need be consid- 
ered. 

�9 The balance between the average horizontal illuminance E hav and the average vertical illu- 
minance E v av on planes facing a side-line bordering the main camera area should be such that 

Eh min 
0 .5<  < 2  

Ev av 

�9 The uniformity of horizontal illuminance should be such that 

Eh min _> 0.5 

Eh max 

where E h min is the minimum horizontal illuminance, and E h max is the maximum horizontal 
illuminance. 

Whilst we are detailing the requirements for colour television we should mention that the 
colour temperature of the sources should lie between 4000 K and 6500 K when there is a 
significant daylight contribution. Otherwise the lower limit can be reduced to 3000 K. 

12.3.3 CONTROL OF GLARE 

Control of glare in sports lighting has presented a number of problems, not least because of the 
almost unlimited viewing directions that have to be taken into account, mainly for the players 
but also for the spectators. Computers have come to the rescue here because they make the calcu- 
lation of glare ratings in any number of desired directions and at any number of points a practi- 
cable possibility. The glare rating method now generally accepted is the CIE GR method, 9 which 
is applicable to floodlighting generally as well as to sports lighting. This is based on the work of 
van Bommel, Tekelenburg and Fischer, l~ but their formula has been modified so that the higher 
the rating the more the glare sensation to bring it into harmony with other glare systems. It makes 
no distinction between discomfort and disability glare. 

The CIE formula is 

( Lvi 
GR=27+241og  | | 

Lve 0"9 ) 

where 

Lvi is the veiling luminance (cd/m 2) produced by the luminaires and is given by 

n 

Lvi = 10 s geye  i 
i=1 02 
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Lve is the veiling luminance (cd/m 2) produced by the environment or background and is given by 

Lve = 
0.035 • Eho rav • P 

or more simply 

where 

Lve= 0.01114 • Eho r av • P 

Eeye i is the illuminance (lux) in a plane at the observer's eye, normal to the line of sight, given 
by the ith luminaire; 
0 i is the angle between the line of sight and the direction of the ith luminaire (degrees); 
n is the number of luminaires; 
Ehor av is the average illuminance on the horizontal (Ix); 
p is the reflectance of the horizontal surface, which is regarded as a uniform diffuser 

We should pause for a moment and note the family resemblance of this formula to that used for 
calculation of Threshold Increment in road lighting given in Section 9.9, page 366. 

The part used for veiling luminance is the same, based as it is on the Stiles-Holladay formula. 
In both formulae this is divided by a term for the background luminance, which for road light- 
ing is 

Lav 0"8 

where Lav is the luminance of the road surface. For floodlighting it is 

(0.035 • Lav )0"9 

where, in this formula, Lav is the luminance of the horizontal playing surface. The expression for 
Lve follows from the formula 

Ehor av • P 
tav = 

//- 

in which it is assumed that the horizontal playing surface is a uniform diffuser of reflectance p. 
The subjective impression of the glare produced by the installation can be graded on the five- 

point scale as shown in Table 12.1. 
To apply the formula, directions of view have to be decided on as well as observer positions. 

The application of the formula is restricted to angles of elevation at or below the horizontal, 
usually at the horizontal because, at this elevation, the maximum GR will occur. In azimuth, the 

Table 12.1 GR assessment scale 

Subject Impression of glare GR limits 

Unbearable Greater than 80 
Disturbing Less than 80 
Just admissible Less than 60 
Noticeable Less than 40 
Unnoticeable Less than 20 
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Fig. 12.2 Schematic showing viewing directions for calculating GR for a tennis court 

GR is evaluated for a range of directions relevant to the lighting application being considered. 
Figure 12.2 shows a schematic indicating viewing directions for a tennis court. In practice, the 
observer positions would be taken over a grid covering the tennis court. 

In sports lighting, the upper limits for GR are 50 for National and International competitions, 
and 55 for other sports activities, including coaching. 

12.4 Training plan 

A systematic approach to working out a training plan has been provided by Dovey et al. ]l and 
is illustrated in Figure 12.3. The playing area is lit by four towers P, Q, R and S on each of which 
there are a number of floodlights. Consider the floodlights on tower S. Floodlights with narrow 
beams are directed in an arc furthest from the tower, then come the floodlights with medium 
spread beams directed further in, with the wide beam flood directed in an arc nearest to the 
tower. 

The angle of aim of the floodlights with narrow beam spread will depend, amongst other 
things, on the level of glare that can be tolerated by the spectators and also the goal keeper. The 
spacing of the beams along the arc is determined by superimposing plots of the light distribution 
of the floodlights, and displacing them sideways until the desired luminous intensity is achieved 
by trial and error as indicated in Figure 12.4. Care has to be taken that uniformity of illuminance 
requirements are met. A similar procedure can be adopted for finding the spacing between arcs, 
but the graphs have to be plotted in terms of illuminance rather than luminous intensity since the 
aiming angle is being varied. 

Allowance has to be made for overlapping of the beams from the four towers. For instance, 
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in Figure 12.3 all four towers light the central area (P, Q, R and S), whereas only one tower lights 
each of the comer rectangles (P, Q, R or S), and two towers light each of the remaining rectan- 
gles (P and Q, Q and R, S and R or P and S). 

A computer method of aiming optimization using a linear programming optimization has 
been described by Brackett. 12 

12.5 Floodlighting diagram 

Figure 12.5 shows the data needed for the manual calculation of schemes. Although a computer 
program is invariably used for calculating the full photometric data needed for assessing the 
performance of a scheme, the floodlighting diagram is useful - or even indispensable - for 
selecting the floodlighting luminaires and determining the training plan. 

The data sheet consists of two main elements, the beam data and the floodlighting diagram. 

BEAM DATA 

Peak luminous intensity: 940 cd/klm 
Beam factor to 10% peak: 0.68 
Beam angle to 10% peak 

Horizontal: 2 x 51 ~ 
Vertical: 43 ~ above & 66 ~ below peak 

Beam angle to 50% peak 
Horizontal: 2 x 36 ~ 
Vertical: 11 ~ above & 14 ~ below peak 

Beam angle to 1% peak 
Horizontal: 2 x 67 ~ 
Vertical: 50 ~ above & 79 ~ below peak 

Peak luminous 
i n t e n s i t y ~  I ' 

ISOCANDELA AND ZONAL FLUX DIAGRAM 

75 

.-~ 60 1:: 
(I) 
>,~ 45 
(1) 
~ 30 

-o 15 
e- o~ 
._m 0 

E 15 

.o 30 
E 
~ 4s 

~ 60 
e- 

< 75 

cd per 1000 lamp Im 

j ~  
2 0  r 

/ f 
/ lO6 

/ f - - - - - - - -  

1 

Im per 1000 lamp Im 

7 "  " 6,, 3 

12 12 ~, 

43 35 18 \3 
k,~ 940"" (~, '5oo..~ 48 37 20 14 

] 1  

17 15 9 ; 3  I 

11 9 6 /  
I / 

9 8 /5 4 

5 4 2 

16 

33 
m 

O 99 

104 t- 
O N �9 r- 44 
O 

"I" 
29 

24 

12 

Vertical totals . . . . .  10% peak contour 
15311271 70 ] 18 [ ] ] 

90 75 60 45 30 15 0 15 30 45 60 75 90 
Angle from beam axis in degrees (horizontal) 

368 
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The beam data help in the selection of the floodlight. The peak luminous intensity will indi- 
cate whether the desired illuminance can be achieved at the salient points. The beam factor 
enables the luminous flux in the beam to be determined by multiplying by the light output of the 
bare lamp. The beam widths to various percentages of the peak luminous intensity are also useful 
indicators of the suitability of the floodlight. In practice, the beam angle to 1% of the peak lumin- 
ous intensity gives the useful angular extent of the floodlight, as light outside this will not add 
significantly to the illuminance, but may cause glare or atmospheric pollution. 

The coordinate system used for the floodlighting diagram itself is generally the (B, 13) and not 
the (C, ?') used in most other applications (see Section 1.2, page 2). To remind the reader of this, 
a thumbnail sketch is shown of this coordinate system on the figure. The choice eases the calcu- 
lations as will be apparent later, but a word of caution is needed. In at least one country, a flood- 
lighting diagram similar to that shown in the figure, but on the (C, ?') system of coordinates, is 
used. It is conventional to label the B angles as vertical angles (V) and the fl angles as horizontal 
angles (H), which is more descriptive, and the system is sometimes referred to as the (V, H) 
system, especially in IESNA practice (see Section 2.6.2, page 60). The direction of the peak lumi- 
nous intensity is taken as the origin (0 ~ 0 ~ of the system. The direction of the peak luminous 
intensity with respect to a mechanical feature of the floodlight, such as its mouth or the front glass, 
is shown on a diagram to permit the floodlight to be aimed when the scheme is set up in the field. 

The left-hand side of the figure is an isocandela plot, which enables the illuminance to be 
found at any point, although the accuracy with which this can be done depends on the closeness 
of the contours and how large the diagram is. 

The right-hand side of the diagram gives the luminous flux enclosed by B planes and fl cones. 
The reader should notice that the total luminous flux emitted by the floodlight is 2 x 368 or 736 
lumens per 1000 lamp lumens. In practice, as will be apparent when we come to the worked 
example, the fraction of bare lamp luminous flux that is utilized on the lit area is much less than 
this figure would seem to indicate. It is usually of the order of 30%. 

It is assumed that the light distribution from the floodlight is symmetrical about the H = 0 ~ 
vertical plane. 

Suppose we know the (x, y) coordinates of a point on an area to be floodlit and we want to 
find this point on the diagram. We need to find the corresponding (V, H) coordinates, for which 
purpose Figure 12.6 can be used. In this, L is the luminaire mounted at a height of h over F, with 
its peak luminous intensity directed at P. R is the point whose (V, H) coordinates we wish to find 
in terms of x, y, h and FP. 0 is the angle of incidence and will be used later in the determination 
of the illuminance. 

From the diagram it is apparent that 

V = Z F L S  - Z F L P  

FS  FP  
- tan-I ~ _ tan-I 

FL FL  

and 

y FP  
= t a n -  1 t a n -  1 

h h 

H = tan -1 
~/y2 + h 2 
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Fig. 12.6 Relationship of angles and distances used in floodlighting 

The illuminance at R is given by 

[ ] x LLMF x LMF 
E = (I x cos 3 0 x r) x h 2 

where 

I is the luminous intensity (cd/klm); 
/9 is the angle of incidence given by 

COS/9 = 
LF 

LR 

(12.1) 

L 
n 

r is the attenuation due to atmospheric losses. This can be surprisingly high. It is of course very 
variable, depending as it does on weather conditions, and the length of the light path. 13 It 
certainly becomes important when the mounting towers are over 30 m high, when it may be as 
much as 15% on what might appear to the uninitiated to be a clear night. It can be calculated 
from Bouguer 's  law, namely 
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"t" = e --aR 

where 

(12.2) 

e is the base of natural logarithms, 2.7183 approximately; 
a is the extinction coefficient (m-l); 
R is the length of the light path (m). 

LLMF is the maintenance factor for the lamp, usually obtainable from the manufacturer; LMF is 
the maintenance factor for the luminaire. 

In the equation for E, the part in the round brackets varies with the position of the illuminated 
point, whereas the part in the square brackets remains constant if h does not vary. It may, there- 
fore, be convenient to evaluate these separately when a number of floodlights are used to light a 
given area. 

To find the average illuminance Eav on an area, the boundary of the area is marked out on the 
floodlighting diagram and the luminous flux on the enclosed area totalled. Then 

luminous flux within boundary = (I)boundary • (I) X MFlamp • MFluminair e x z" 

is determined for each floodlight. The luminous flux for all the floodlights is summed and 
divided by the area to give the average illuminance. 

We can now consider how the floodlighting diagram may be used in a calculation. 

Worked example 1 The area ABCD shown in Figure 12.7 is to be lit by four floodlights L l, 
L 2, L 3 and L 4 (not shown) positioned over F l, F e, F 3 and F 4 at a mounting height of 10 m and 
aimed with their peak luminous intensity directed towards Pl, P2, P3 and P4 respectively. 
Their photometric performance is given in Figure 12.5, page 417. Find the average horizon- 
tal illuminance and the horizontal illuminance at each corner and in the centre of the area. 
Take the lamp luminous flux as 28.5 klm, the lamp lumen maintenance factor (LLMF) as 
0.9, the luminaire maintenance factor (LMF) as 0.85, and the atmospheric transmission as 
0.95. 

Answer As all the floodlights are symmetrically placed with respect to ABCD we need only 
consider one floodlight L l initially. The first task is to find the (V, H) coordinates of the points 
A, S, B, E, C, R, D and P. These can then be marked on Figure 12.8 to find the boundary of the 
lit area on the isocandela diagram. 

V and H are calculated in the spreadsheets in Tables 12.2 and 12.3. The short time spent in 
preparing spreadsheets as opposed to using a hand calculator is well justified as, inevitably, some 
re-aiming is necessary and spreadsheets enable this to be done quickly and with less risk of error. 
At the same time, 0 is calculated as it will be needed for the calculation of point illuminances. It 
should be noted that AGB and DJC lie on curves but an accuracy commensurate with that to 
which the diagram can be read is obtained by using straight lines. 

Negative values of V arise when V is below the peak luminous intensity and negative values 
of H arise when x is negative. From Figure 12.8 it is apparent that 292 lm per 1000 lamp lumens 
falls within the boundary. Hence 

luminous flux within boundary = (I)boundary X (I) • MFlamp • MFluminair e x ~" 
= 292 x 28.5 x 0.90 x 0.85 x 0.95 
= 6050 lm 
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Table 12.2 Calculation of V for luminaire L 1 

Line F1P 1 y h F1P1 y 
t a n - l ~  tan -1 

h h 

(m) (m) (m) (deg) (deg) 

Y FP 
V = tan- 1__ _ tan-1 _ _  

h h 

(deg) 

CTB 25 5 10 68.2 26.6 
JP1G 25 25 10 68.2 68.2 
DWA 25 35 10 68.2 74.1 

-41 .6  
0.0 
5.9 

Table 12.3 Calculation of H and 0 for luminaire L 1 

Point x y h x 
H = tan -1 cos 0 = 

(m) (m) (m) (deg) 

V' y2+h2 ~/ x2 + y2+h 2 

B 5 5 10 24.1 0.816 
C -30 5 10 -69.6 0.312 
G 5 25 10 10.5 0.365 
J -30 25 10 -48.1 0.248 
A 5 35 10 7.8 0.272 
D -30 35 10 -39.5 0.212 

Since the floodlights are symmetrically placed with respect to the boundary, this result can be 
multiplied by four to find the total luminous flux incident within the boundary, and divided by 

the area to give the average illuminance. 

average illuminance - 
(I)boundary X number of floodlights 

area within boundary 

6050 x 4 

40 • 30 

= 20 lx 

The second part of the question is to find the illuminances at the corners of the area. We can 
do this by finding the illuminances at A, B, C and D from floodlight L n and adding the result. 
This is justified because of the symmetrical layout; the illuminance at B from L 2 is the same as 
the illuminance at C from L l, and so on for the other points. First we need to find the luminous 
intensity in these directions for which we return to the isocandela part of the floodlighting 
diagram (Figure 12.9) and plot these points on it making use of the (V, H) angles previously 

determined. 
The values of luminous intensity are read and inserted in the spreadsheet, Table 12.4. Since 

we are taking the atmospheric attenuation as constant at 0.95, we can modify Equation (12.1), to 

read 

MF l ~ ] CI~ X M F l a m p  x um'naire x z" 
E = ( I •  cos 3 0) • h 2 (12.3) 
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In this, for ease of calculation, we replace the part in square brackets by a constant K such 

that 

g ~ 
x L L M F  x L M F  x r 

h 2 

28.5 x 0.90 x 0.85 x 0.95 

102 

= 0.207 lrrdm 2 

Usually the minimum illuminance is obtained at or near the comer of the illuminated area so 
the indications are that excellent uniformity is achieved (minimum illuminance + average illu- 

minance). 
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Table 12.4 Calculation of the illuminance at the comers of the lit area 

Point I cos 0 K 
(cd/klm) (lm m -2) 

E=l• OxK 
(Ix) 

A 700 0.272 0.207 2.92 
B 130 0.816 0.207 14.63 
C 0 0.312 0.207 0.00 
D 400 0.209 0.207 0.76 

Total 18.30 

Comments on Worked example 1 
1. To demonstrate the use of the method, the reduction of illuminance due to attenuation was 

taken as a constant. If the extinction coefficient is known, a more accurate allowance can be 
made using Equation (12.2), as will be demonstrated in Worked example 2. 

2. Interpolation between the isocandela lines tends to be inaccurate especially where there are 
large steps in luminous intensity between them and they are widely spaced on the diagram. 
Similarly, estimation of the luminous flux in the angular boxes may also be inaccurate 
when they are cut by the boundary, as the luminous flux is not spread evenly in each of the 
boxes. 

3. It is interesting to work out the fraction of bare lamp luminous flux utilized. 

Total bare lamp luminous flux" 4 • 28.5 = 114 klm. 

Total luminous flux falling on area: 6.048 • 4 = 24 klm. 

Utilization: 24/114 = 0.21 with maintenance factor and attenuation losses, or 0.21/(0.90 • 
0.85 • 0.95) = 0.29 when these losses are discounted. This agrees well with the 0.3 figure 
quoted earlier in this chapter. 

4. The floodlights are aimed at two-thirds of the distance along the lit area. Experience shows 
that this is a good starting point for meeting photometric requirements. In addition, the flood- 
lights are set back 5 m from the lit area. By reducing the horizontal angle H this helps to 
increase the luminous.intensity and therefore the illuminance at the comers. 

Worked example 2 Calculate the attenuation of luminous intensity for distances of 50 m and 
100 m when the extinction coefficient is 1.1 • 10 -3 m -l, which represents the figure for a clear 

day. 

Answer We use Equation (12.2), page 420, 

for R = 50 m, 

z" = e --aR 
= 2.7183 -11 • 1~ • 50 

= 0.95 

and for R = 100 m, 

-t" = e --aR 
= 2.7183 -l ' l  x 10-3x 100 

= 0.90 
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Fig. 12.10 x, y, z coordinate system for floodlighting 

12.6 I l luminance in complex situations 

Whilst the floodlighting diagram is useful for situations where there are few floodlights and the 
illuminances at only a few points on a single surface are required, it is not suitable for more 
detailed calculations. For this, an/-table has to be used and a computer program will be required. 

To tackle the calculation in a systematic way, a coordinate system in three dimensions (x, y 
and z) is used. 

Figure 12.10 displays the coordinate system. L is the luminaire, A its aiming point, and P the 
point at which calculations are required. C is the camera position. 

Let n x, ny, n z be the unit vectors parallel to the x, y and z axes (see Section 3.9, page 112). 
Then 

L A  = (x A - xL)n x + (YA - YL)ny + (ZA - ZL)nz 

L P  = (Xp - xL)n x + (yp - YL)ny + (Zp -- ZL)n z 

Squaring and taking the square root of these give 

)2 )2 
LA = ~ / ( X A - - X L )  2 + ( Y A - - Y L  + ( Z A - - E L  

)2 )2 
LA "- ~/(XP - XL) 2 + (YP  -- YL + ( Z P  -- ZL 

(12.4) 

(12.5) 



426 Floodlighting 

V 

s 

X A -  X L , . , , . " ' " '~  
�9 , ~ ~  coordinateTurning directiOnaxes of 

�9 ~ U  s..~F 
~ s  S ~  A 

s s s s s s 
s 

~ s s  S S S  

YA-  YL~" 

- y  

Fig. 12.11 Turning of coordinate system to make the abscissa coincide with A 

To find B and fl we have to relate the x, y, z coordinates to a new coordinate system in which the 
x, z plane passes through A and L. This is illustrated in Figure 12.12 and is designated the u, v, 
w coordinate system. To effect the translation we first have to move the x, y, z system linearly so 
that the z axis passes through L, and then rotate it so that A (the aiming point) lies in the x, z plane 
or in the u, w plane in the new coordinate system. 

The linear movement of the coordinate system is effected by subtracting the coordinates for 
L from the coordinates for A and P. The rotation is effected by using a matrix similar to that in 
Equation (2.21), page 48, but we first have to find the angle of  rotation. Let this be ~" as indicated 
in Figure 12.11. 

From the figure it is apparent that 

COS ~" = X A -- X L 

4(XA--XL) 2 + ( Y A - - Y L )  2 

sin~" = YA - Y L  

_ )2 
~ / ( X A  X L )  2 +(YA--YL 

Matrix multiplication then gives the transformed coordinates 

(u, v, w) = (x cos ~" + y sin ~', x sin ~"- y cos ~', z) 

(12.6) 

(12.7) 
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Fig. 12.12 Transformed coordinate system 

Figure 12.12 shows the floodlight L on the u, v, w coordinate system with the angles B and fl 
inserted. To find these the coordinates of T have to be determined, where T is the orthogonal 
projection of P on the u, w plane. They are (Up, 0, Wp). 

Let nu, nv, nw be the unit vectors parallel to the u, v and w axes. Then 

L Tuv w = urn u + wvn  w 
= upn u + wpn w 

t A u v  w = uAn  u + WAn w 

LPuv w = upn u + vpn v + wpn w 

(12.8) 

where the suffix uvw indicates that the vector relates to the uvw coordinate system and the 
suffices on u, v and w indicate the point to which the coordinate refers. Squaring the equation for 
LTuv w and taking the square root gives 

L T = ~ u 2 + w Z p  (12.9) 

B can be found from the scalar product of L T  and LA but this gives no indication of whether B 
is positive or negative. For this reason it is better to use the equation 
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COS -1  B = cos -1ZTLS - cos -1ZALS (W,) 
- -  COS-1  _ COS - 1  

LT LA 

l ' t  l 't --  COS-1  _ COS -1  

LT LA 

since Wp = w x. 
Alternatively, an equation based on that for V in Table 12.2 could be used. 
In addition 

TP 
sin/3 = 

LP 

(12.10) 

Vp 

+ v2 + wa 

Vp 

~/u 2 + v 2 + w 2 

Alternatively we could use 

C O S / ~  = 

LT 

LP 

,,.p , , ,p 

(12.11) 

...... 2 - - + - 2  .... Up Vp + W 2 (12.12) 

the sign of which does not change depending on which side of the u, w plane P lies. Since most 
/-tables do not distinguish between positive and negative values of/3, this may be the more 
convenient formula. 

12.6.1 CALCULATION OF ILLUMINANCE 

In the calculation of illuminance three quantities have to be determined, the luminous intensity, 
the distance between the luminaire and the illuminated point, and the angle of incidence. 

1. Luminous intensity 

The determination of the B,/3 coordinates, in Equation (12.10) and (12.11) or (12.12), enables 
the luminous intensity to be found from the/-table, with interpolation if necessary. 

2. Distance between luminaire and calculation point 

In Figure 12.12 this is LP, which has already been found in Equation (12.5), page 425. 

3. Angle of  incidence 

This is the angle, 0, between PL and the normal to an illuminated facet at the calculation point. 
To use the scalar product to determine 0 it is essential we adopt a consistent sign convention for 
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the direction of the two vectors. We will consider the vectors as emanating outwards from the 
illuminated facet. LP has already been determined in Equation (12.5), and we require PL, which 
is the negative value of this. 

We have to consider a number of cases for representing the normal to the illuminated facet as 
a vector. 

(a) Normal to facet  aligned with the x axis 
The vector for a facet facing towards the positive direction of the x axis is n x. 
The vector for a facet facing towards the negative direction of the x axis is - nx. 

(b) Normal to facet  aligned with the y axis 
The vector for a facet facing towards the positive direction of the y-axis is ny. 
The vector for a facet facing towards the negative direction of the y-axis is - n y. 

(c) Normal to facet  aligned with the z axis 
The vector for a facet facing towards the positive direction of the z-axis is nz. 
The vector for a facet facing towards the negative direction of the z-axis is - nz. 

(d) Normal to facet  directed towards camera 
Let the coordinates of the camera position C be (x C, Yc, Zc), then the vector PC is given by 

PC = (x C - xp)n x + (Yc - yp)n y + (Z C --  Zp)n z (12.13) 

The angle of incidence is found by scalar multiplication of the normal to the facet with PL. For 
instance, for the facet normal to the camera, 

PC.  PL 
cos0 c =  P L x P L  

[ ( X  C --  Xp )n x + (Yc - YP )ny + ( z  C - Zp )n= 1. [(x L - x p ) n  x + (YL --  YP )ny + ( z  L - Zp )n z ] 

)2 )2 5f(XL -- Xp)2 )2 )2 ~/(x c - Xp)Z + (Yc - YP + (Zc - Zp + (YL -- YP (ZL -- Zp 

(X C -- Xp ) (X L -- Xp ) -t- (Yc - YP ) (YL -- YP ) + (Zc -- Zp ) (Z L -- Zp ) 

f(X C -- Xp )2 + (Yc - YP)2 + (z C _ Zp + (YL -- YP (ZL -- Zp ) 
)2 ~(XL _ X p ) 2  )2 2 (12.14) 

To find the horizontal illuminance on a surface facing upwards we take the normal as nz, then 

COS 0H+ = 
n z �9 P L  

PL 

n z �9 [ (x  L - x p ) n  x + (YL -- YP )ny + (Z L - Zp)n  z I 

PL 

Z L -- Zp 

~f(XL -- XP) 2 + ( Y L - - Y P  + ( Z  L --Zp 
)2 )2 (12.15) 

where the H+ suffix on 0 indicates that the normal to the facet faces upwards. 
If cos 0 is negative then the facet does not receive light, as explained in more detail in Section 

3.9, page 112. 
All the elements have now been found that enable the illuminance to be determined at a point. 
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Worked example 3 A floodlight is positioned at L = (60, 0, 30) and aimed at A = (120, -45 ,  0). 
For P at (90, -135,  0) calculate B,/3, the angle of incidence 0 C of the light on a plane normal to 
the camera direction, and the angle of incidence OH+ on the upper surface of the horizontal plane. 
All dimensions are in metres. 

Answer The work is set out in two spreadsheets. These are connected so that the data in one 
are automatically transferred to the other when needed. The work could be done in one spread- 
sheet with a considerable gain in speed of calculation but presentation in this book would be 
difficult. An explanation of  the mathematics involved is given after each spreadsheet. 

Table 12.5 Spreadsheet for the calculation of (, B and ft. All linear dimensions in metres 

1 2 3 4 5 6 7 8 9 10 

X A Xp X L XA-X L Xp-X L LA cos ~" U A Up LT 
120.0 90.0 60.0 60.0 30.0 80.78 0.800 75.00 105.00 109.2 

YA Yp Yc YA-Yc YP-YL LP sin ~" V A Vp B(~ 
-45.0 -135.0 0.0 -45.0 -135.0 141.51 -0.600 0.0 90.0 -5.9 

m A Zp Z L ZA-Z L Zp-Z L W A Wp fl(o) 
0.0 0.0 30.0 -30.0 -30.0 -30.00 -30.00 39.5 

Spreadsheet  Co lumn 
number  

Table 12.5 1-3 
4 & 5  

8 & 9  

10 

Explanat ion and reference to equat ions  

The coordinates for A, P and L are entered. 
The coordinates for L are subtracted from those for A 
and P. In effect this moves the origin to L so that the 
coordinate system can be rotated about the Z axis. 
LA and LP are calculated from Equation (12.5), page 425. 
cos ( and sin ( are calculated from Equation (12.6), page 426. 
When the aiming point A is in the x, z plane the denominator of the 
expressions for cos ~" and sin ~" is zero. To make provision for this an 
IF statement is needed to force the result cos ~" = 1 and sin ~" = 0. 
Equation (12.7), page 426 is applied to the coordinates in columns 
4 and 5. Note that Y A = 0.0, which is the desired result of turning 
the coordinate system through ~'. 
LT is found from Equation (12.9), page 427. 
B and 13 are found from Equations (12.10) and (12.12), page 428. 

Table 12.6 Spreadsheet for calculating cos 0c and cos OH+, All linear dimensions in metres 

1 2 3 4 5 6 7 8 9 

XA Xp X L X C XA-XL Xc-X  P XL-X P cos 0 C 
120.0 90.0 60.0 3.0 60.0 -87.0 -30.0 0.0072 

Y A YP V, Yc Y A- YL Yc- YP YL- YP Od ~ 
-45.0 -135.0 0.0 6.0 -45.0 141.0 135.0 89.6 

z A zp z~ z c zA-z~ zc -z  P z~-zp 
0.0 0.0 30.0 9.0 -30.0 9.0 30.0 

COS OH+ 
0.212 

OH+(~ 
77.8 
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Spreadsheet 

Table 12.6 

Column 
number  

1-3 
4 
8 
9 

Explanation and reference to equations 

These values are transferred from the first spreadsheet. 
The camera coordinates are entered. 
cos 0 c is calculated from Equation (12.14), page 429. 
cos 0H+ is calculated from Equation (12.15), page 429. 

12.6.2 GRID SIZE 

The number of points taken for calculation and measurement has to be tailored to the size of 
the lit area. CIE and CEN recommend the use of the following formula to determine the grid 
size 

p = 0.2 x 51~ d 

where p is the grid size (m), and d is the longer dimension of the area (m). 
The number of points along the longer dimension is given by the odd number that is closest 

to d/p. From this, the distance between grid points along the longer dimension is determined and 
in the shorter dimension the spacing between grid points should be chosen to give grids that are 
as square as possible, with the proviso that there should be an odd number of points. Odd 
numbers of points are recommended to allow values both for calculation and measurement to be 
taken along the centre-lines of the enclosing rectangles. This means that the spacing from the 
boundary is half that between points. For measurements, the number of points may be reduced 
to keep the measurement effort within practicable limits but the points should be evenly distrib- 
uted throughout the area. The average illuminance is simply obtained by summing the values and 
dividing by the number of points. Where an area is used for a particular activity a sub-grid may 
be used. 

The formula has been constructed in such a way that a reasonable number of points is taken 
where large distances are involved, as indicated in Table 12.7. 

The draft CEN recommendations for sports lighting include, in tabular form, the number of 
recommended grid points, based on the above formula. However, the formula is useful where a 
number of activities take place in the same area and in general floodlighting. 

12.7 The floodlighting of buildings 

The term 'floodlighting' is less appropriate when it is applied to buildings than it is to sports 
fields or to car parks; for 'Flooding' a building with light is not the main aim. The main aim of 

Table 12.7 Grid spacing versus size of playing area 

(m) 

p Calculated Number of points 
number of adjusted to be odd 

(m) points 

1 0.2 5 5 
10 1.0 10 11 

100 5.0 20 21 
1000 25.0 40 41 
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lighting a building is to display that building after dark. Only attractive or notable buildings 
usually merit being lit up after dark. There are, of course, other reasons for lighting the exterior 
of a building after dark, such as for security reasons, and, perhaps most commonly, for publicity 
- to attract the public to the building for commercial reasons. 

It is relatively easy to flood the exterior of a building with light and examples of overlit build- 
ings are common. The main reason for this ovedighting is probably the installer's fear that the 
client might otherwise consider the building underlit and be dissatisfied. This is especially true 
of buildings lit for commercial reasons. 

12.8 Revealing the building after dark 

When the purpose of the exterior lighting is to reveal the architectural excellence of the build- 
ing, then the shadows produced by the lighting are as important as the illumination produced on 
the building's surfaces. 

It is the arrangement of the light sources to produce appropriate light and shade that is the 
essence of most design. The disposition of the light sources, the intensity distribution of the 
floodlights, the light output of the lamps and the colour of the light all have an important part to 
play in a successful design. 

The designer's choice of these aspects of the design will depend upon the architectural form 
of the building, the materials from which the exterior is constructed, in terms of colour and 
texture, and the brightness of the locality in which the building is situated. 

Although calculations have a part to play in the design, in this instance they are not as criti- 
cal as they would be in the design of the lighting for a sports stadium or a general office interior. 

12.9 Lighting levels and design calculations 

Many notable buildings, such as ancient churches, are often best floodlit with just a few flood- 
lights aimed in such a way as to allow the variation of the orientation of the surfaces and their 
varying distances from the floodlights to produce the light and shadow patterns that best reveal 
the architectural features of the building. Detailed calculations, in such a case, would be diffi- 
cult. Even with the aid of a computer, the inputting of the structural information would be time- 
consuming. 

Two types of calculation usually provide sufficient information for a competent designer: 

(1) an average illuminance calculation over a 'window' outlining the area to be lit at an appro- 
priate distance from the floodlight. 

(2) sufficient point by point calculations to ensure that the designer's lighting level and distrib- 
ution objectives are being met by the design. 

It is necessary to decide on the appropriate average lighting levels to be provided before such 
calculations can be undertaken in a meaningful way. 

Since the effect required is aesthetic and not performance-related, the lighting level is not 
as critical as in other types of design, for example as in an office. It is also not so cost-related, 
since it is often possible to change the size of a floodlight without greatly increasing the 
cost of the installation. To these factors must be added the fact that floodlight outputs are 
the product of the lamp wattage and these have relatively large steps; for example 70 W, 150 W, 
250 W and, say, 400 W. However, since the inverse-square law applies to floodlighting 
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Table 12.8 Approximate average illuminance (lux) for preliminary 
design 

p L M H 
Rural Suburban Town centre 

0.8 15 25 40 
0.6 20 35 60 
0.4 30 50 85 
0.3 40 65 110 
0.2 60 100 170 

calculations, the effects of moving a floodlight a relatively short distance can double or halve 

illuminances. 
Table 12.8 gives a set of illuminances, as a design guide, to enable the approximate number 

and size of floodlights required to be determined. The values are based upon experience and are 
related to building reflectance. An estimate of the surface reflectance can be obtained on site by 
measuring the illuminance on an unobstructed part of the building under overcast daylight and 
then measuring the reflected illuminance from that surface at a distance close enough for the 
surface to be considered as an approximation to an infinite area source without the photocell 
casting a shadow. 

Then, 

p 
E(reflected) 

E(direct) 

Worked example 4 A small church is to be floodlit. The elevation and plan of the church are 
shown in Figure 12.13(a) and (b). The church lies on open ground in the centre of a village and 
can be seen from all directions. 

Answer The proposal is to emphasize the tower and to light the whole church so that the build- 
ing preserves its unity. The intention is to light the south and north sides of the aisle-nave areas 
each with two floodlights and to light the top of the tower with narrow angle floodlights from 
the ground, and the bottom of the tower and the adjacent part of the aisles with wide-angle low 
wattage floodlights. The chancel will also be lit with a wide-angle low wattage floodlight. The 
different distances of the aisle and clerestory areas from the large floodlights will provide differ- 
ent illuminance levels and so avoid a flat appearance. 

The design is supported by the following calculations. 
The side of the church, excluding the tower, fills a 'window' 22 m x 12 m. The main body of 

the building is constructed from brick with a 50% reflectance. From Table 12.8 an average illu- 
minance value of 25 lux was selected. 

For the initial calculation, a utilization of 0.3 is assumed and in this clean area a maintenance 
factor of 0.8 is also assumed. 

Ear = 
F L x UF x MF 
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A 

0 
(a) 

0 

Fig. 12.13 Church to be floodlit 

(b) 

E L - 

Eav x A  

UF x MF 

25 x 22 x 12 

0.3 x 0.8 

= 27 500 lm 

Two 150 W high pressure sodium lamps would give 2 x 14000 = 28000 lumens. The floodlights 
chosen had a total vertical beam angle of 44 ~ (to 50% of maximum luminous intensity) and a 
total horizontal beam angle of 61 o. 

For calculation purposes these floodlights were placed symmetrically on a line 11 m from 
the aisle wall and parallel to it. The main beam of each floodlight was directed at 9 m above the 
ground level; that is, aimed at the clerestory. The computer program was designed to treat 
the building as a box and so to deal with the fact that the clerestory window walls, which are 
above the aisles, lie 4 m further away from the floodlights than the aisle walls, two rectangular 
plots were employed at different distances from the floodlights. 

Two illuminance grids were obtained; one at 9 m, which was the distance of the aisle walls 
from the floodlights and the other at 13 m, which was the horizontal distance of the plane of the 
clerestory from the floodlights. These are shown in Figure 12.14(a) and (b). 
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(c) 

Fig. 12.14 continued 
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In Figure 12.14(b) it is the clerestory and the chancel walls and roof that are the relevant 
areas. On this plot, the aisle area is crossed through. Comparing the clerestory plot with the aisle 
plot shows the difference in illuminance produced by the set back (that is, the different distances 
of the upper and lower walls from the floodlight positions) and the consequent emphasis of the 
building shape. 

The top of the tower is lit on three sides by 150 W narrow angle floodlights. These have a 
horizontal beam angle of 12 ~ (to 50% of maximum intensity) and a vertical beam angle of 10 ~ 
The bottom of the tower is lit by a 70 W wide angle floodlight, having a horizontal beam angle 
of 60 ~ and a vertical beam angle of 40 ~ Figure 12.14(c) shows an illuminance grid for these two 
floodlights. 

The back of the tower (east side) would be lit from the roof on the nave by a 150 W flood- 
light similar to those described above, but with a specially specified diffuse finish to the reflec- 
tor to double the beam angle, since it will be mounted to illuminate the tower more squarely and 
so a wider spread of light is required to avoid a very high and patchy illuminance. 

The calculations have simply ensured that the lighting level will be adequate and that the 
tower has been emphasized as intended. However, all such installations should be preceded by a 
trial to determine the best position for each floodlight, since small movements of the floodlights 
can greatly affect the shadows produced. 

The lighting levels vary considerably, but a variation of 20:1 is not uncommon or unaccept- 
able as long as it is not too sudden. 

For simplicity, the computer calculations for the nave and chancel areas have been carried out 
assuming that the floodlights are aimed directly at the building, at fight angles to the walls. 
However, in practice, during a trial it is usually found that moving the floodlights a short distance 
to one side (in our example, probably towards the chancel end of the church) and then angling the 
floodlights towards the walls gives a better rendering of the building texture and features because 
of the shadowing that this produces. Figure 12.15 gives the final position of all the floodlights. 
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Fig. 12.15 Final position of floodlights 

12.10 Public buildings and statues 

In Section 12.9 our example featured the floodlighting of a church. There, the different distances 
of parts of the structure from the floodlights produced the variation in illuminance that preserves 
an interesting appearance. It is a tribute to the designers of our ancient churches that they look 
so pleasing when lit from below, when the builders so long ago expected their buildings to be lit 
only from above. 

Other public buildings present different problems. For example, many have pillared porticos. 
The problem with pillars is that it is almost always best to light them at an angle to the direction 
of view and never, if possible, from the direction of view. Therefore, when a portico has multi- 
ple pillars it presents a real problem as to where the floodlights should be sited. This is especially 
true of, say, a public building in the centre of a major city, where there are severe restrictions on 
the positions of the floodlights. 

One very successful solution is to floodlight the part of the building behind the pillars, so that 
the pillars themselves are seen in silhouette. The floodlights can then be mounted behind the 
pillars. 

It is often commented that lighting is an art as well as a science, and nowhere is this more true 
than in the floodlighting of notable buildings, monuments and, particularly, statues. 

It is always wise to carry out a trial when designing a floodlighting scheme, but it is essential 
when lighting a statue or similar monument or sculpture. 

The lighting level will depend on the ambient brightness of the surroundings, which may be 
high or low. In addition, the viewing distance must be taken into account. The further the view- 
ing distance, the higher the illuminance level required. The size of the object or statue being lit 
must also be taken into account; for the smaller the statue the more brightly it will need to be lit. 
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Fig. 12.16 Cone diagram 

Distance 

To this fact must be added the special features of the statue or monument itself; the material from 
which it is constructed and its surface finish. 

The starting point is to assume that whatever the recommended average illuminance for flood- 
lighting a building, the illuminance on the statue will need to be considerably higher than that, 
if it is to be seen as a special feature in its own right. Therefore, calculations have only a part to 
play in this type of lighting. One important feature is the location of the floodlight or floodlights; 
and another is the floodlight distribution, since glare and stray light becomes very important. The 
calculational device that is often most useful is the 'cone' diagram, in which the average illumi- 
nance is specified at different distances from the apex of the cone, where the floodlight is 
assumed to be located. Such a diagram is shown in Figure 12.16. 

These diagrams enable the appropriate floodlight to be chosen to give the required illumi- 
nance at the mounting distance of the floodlight from the statue or the mounting distance 
required using that floodlight to achieve the desired illuminance. An illuminance level of three 
times, or more, than that for floodlighting a building, in the same area, could easily be required. 

In some cases, lighting the statue from two opposing directions and using lamps of a similar 
type, but different colour temperatures, can give a very pleasing effect on a statue. As would be 
expected, modelling is a major consideration with statues and, just as with the lighting of pillars, 
it is important not to light the statue from the main direction of view because this gives a flat 
appearance. 

P r o b l e m s  

1. Recalculate Worked example 2 (page 424) for an extinction coefficient of 1.3 x 10 -3 m -1. 
Answer: [0.94 at 50 m, and 0.88 at 100 m.] 

2. In Worked example 1 (page 420) find the illuminance at Pl, P2, P3 and P4 from floodlight F 1 
and the average illuminance in the rectangle enclosed by the four points. 

Answer: [10 Ix at P1, 21 lx at P2, 3 lx at P3 and 0.8 lx at P4" Average illuminance in rectan- 
gle from the one floodlight is 7.4 Ix. Note, because of the uncertainty of interpolation these 
are approximate answers.] 
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3. In a floodlighting scheme, the coordinates of a floodlight are (20, 10, 20), and it is aimed 
at (35, 8, 0). What are the (B, fl) coordinates of a point P with coordinates (30, 15, 0)? What 
is the angle of incidence and the illuminance of the light on a horizontal surface at P if the 
luminous intensity from the floodlight is 60 000 cd? What is the illuminance at P on a 
surface normal to the direction of the camera, which is positioned at (32, 17, 3)? All dimen- 
sions are in metres. 

Answers: [(B, ,8) = (12.3 ~ 15.9~ OH+ = 29.2 ~ EH+ = 99.8 Ix, 0 c = 77.5 ~ E c = 24.8 Ix.] 
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13 
Specific Applications: Airfield Lighting 

and Emergency Lighting 

13.1 Airfield Lighting 

13.1.1 INTRODUCTION 

Airfield lighting differs from the other lighting systems described in this book in that, typically, the 
lights are not used to illuminate surfaces but are used as signals; that is, the luminaires are viewed 
directly. Perhaps the nearest case to this so far described is in road lighting where the road lighting 
luminaires are used to give visual guidance, but even here their main function is to provide a bright 
road surface. The main reason for not lighting the surface of the runway is that no part of the lumin- 
aires is allowed to protrude more than 150 mm from the runway, so as not to obstruct the aircraft. 
As a consequence of this low mounting height, the light would be incident at grazing angles. This 
would tend to exaggerate the appearance of small irregularities in the runway and, in any case, 
would give a very patchy appearance. Moreover, the lit surface would not have the high luminance 
needed for the airfield to stand out at a distance from other lit surfaces, such as roads. 

The most critical functions of airfield lighting are to enable the pilot to identify the airfield 
and to provide a lighting pattern to help in landing the aeroplane safely. It should then guide the 
pilot to the apron for unloading. The lighting also has the converse task of guiding the pilot from 
the apron to the runway, giving a signal to indicate whether the runway is clear for take-off, and 
finally providing guidance for the take-off. 

Whilst a number of airports have provision for blind landing of aircraft there is still a place 
for visual landing aids even at these airports; visual monitoring gives the pilot confidence that 
the landing is proceeding safely. 

For the provision of visual aids, airports are classified according to the visibility conditions 
in which they can be used. These conditions are measured in terms of runway visual range 
(RVR) and are used to create four categories. 

(1) Unrestricted visibility. 
(2) Category I: RVR down to 800 m. 
(3) Category II: RVR down to 400 m. 
(4) Category III: RVR down to 200 m for Category IliA, RVR down to 50 m for Category IIIB, 

and zero for Category IIIC. 

In the UK, an airport would have to be lit to Category III to enable landings to take place in all 
the weather conditions that are likely to occur. The situations in other parts of the world might 
well be different. 
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Fig. 13.1 Perspective of approach lighting pattern (after Bridgers and Richards l) 

13.1.2 THE APPROACH LANDING LIGHTS 

Figure 13.1 shows a typical configuration of landing lights in the approach zone. !,2 These are 
usually 200 W or 300 W tungsten halogen lamps in paraboloidal reflectors. Although ideally 
mounted at ground level, they are usually mounted on poles to take account of the ground 
contours. They all give white light signals. 

Apart from the angle of approach indicators, which will be discussed separately, there are two 
essential elements in the pattem. These are the centre-line lights and the cross bar lights. 
Calvert, 3 of the Royal Aircraft Establishment, produced the theory, the parafoveal streamer 
theory, on which this pattern is based. This makes use of the fact that if an observer is moving 
in a straight line towards a point, the point of origin in Figure 13.1, all other points appear to 
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stream from that point even if the origin is not visible to the pilot. The point of origin, the reader 
should note, does not mark the end of the runway. It is produced by the progressive narrowing 
of the cross bars as indicated on the figure. 

The pilot, then, maintains a symmetrical streamer position. The rate at which the radial 
streamers in the field of view varies with the height and the rate of descent are two essential items 
of information. In addition the centre-line lights enable the pilot to line up the aircraft with the 
runway, and the cross-bar lights enable the pilot to keep the aircraft horizontal from wing tip to 
wing tip; that is, to keep the roll at zero. To do this the cross-bar lights are kept level with the 
horizontal edges of the windscreen. They must also be at right angles to the centre-line other- 
wise the aircraft is displaced to one side of the runway. 

The cross-bars give some indication of the angle of descent. They should disappear below the 
windscreen at a constant rate. If they disappear above the windscreen the rate of descent is too 
steep. However, as already mentioned, more precise information is given by the angle of 
approach indicators. 

The supplementary approach lights each consist of four lighting units grouped together. They 
are coloured red to provide contrast with the threshold lights, which are green, and serve as an 
additional warning to the pilot not to land short. 

13.1.3 THE RUNWAY LIGHTING 

The runway touchdown starts at the threshold lights. All the luminaires (Figure 13.2) are 
recessed except for those at the edge, which may protrude. The centre-line lights are colour 

Fig. 13.2 Runway lighting 
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coded to provide distance-to-run information. Nearest the threshold they are white, they then 
alternate with stretches of red and white lights and end with red lights towards the end of the 
runway. 

The requirements for the runway lights are onerous optically, thermally and mechanically and 
their design is described in Section 13.1.5. 

13.1.4 ANGLE OF APPROACH INDICATORS AND THEIR EVOLUTION 

The evolution of the design of angle of approach indicators makes an interesting story because 
it illustrates how their performance has been improved in the course of time and the method of 
indication simplified. 

The first indicators were, in effect, projectors with three sectors: the top being yellow, the 
middle green, and the bottom red. An indicator was located to one side of the touchdown point 
and the pilot had to follow the yellow sector down. There were two main drawbacks. First, as the 
pilot approached touchdown the yellow sector became too narrow to follow and he or she had to 
ignore it. Second, it was not sufficiently bright to distinguish it easily from the other airfield 
lights at night and, in any case, could not be used during daytime. 

In about 1957 this was replaced by the VASI (Visual Approach Slope Indicator) developed by 
Calvert 4 and Sparke. 5 Basically, this provides a parallel corridor down which the pilot flies the 
plane as illustrated in Figure 13.3. 

The corridor is formed by two lines of units, six on either side of the runway as in Figure 13.4. 
Each unit or indicator gives a sector of white light and a sector of red light separated by a 

narrow zone of pink light subtending an angle of only �89 When the pilot is in the landing corri- 
dor he or she sees the red sector from the rear line of units and the white sector from the front 
line of units. If the pilot is too low, both lines of units appear red, if too high both appear white. 

The original design of the units is shown in Figure 13.5. The size of the filter in relation to the 
size of the slot and their separation would indicate that the pink zone should extend over 
tan -i (50/1500) or 2 ~ However, owing to the white sector being much brighter than the red sector, 
the pink zone is only visible as such over �89176 Three or four 200 W lamps are used in each indicator. 

Y 

I.. 2 1 0  m _I_ 150  m _I I.'-- "r 

r -I- -1 
Fig. 13.3 Landing corridor formed by VASI units 
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Fig. 13.4 Pilot's view of VASI when at the correct glide slope 

Fig. 13.5 Optical construction of VASI unit 

The manufacture of this type of unit is straightforward in that alignment of the principal 
components, the slot, the filter, and the lamp, can be simply achieved. However, it is large (1500 mm 
by 1500 mm by 500 mm high) and, as a consequence, is susceptible to movement by wind and 
jet-blast. Moreover, it is cumbersome to transport. As a result, it was replaced by a projector 
system. 6 This allows the unit to be much smaller (typically 400 mm by 300 mm by 230 mm high) 
and to provide a sharper transition from red to white, which is required in the PAPI (Precision 
Approach Path Indicator) system to be described next. 

Figure 13.6 shows the view the pilot has of the PAPI system according to the angle of approach. 
There are four separate PAPI units on the left of the runway, set at slightly different angles to each 
other in the way to be described. The angles on the diagrams refer to the angle of the aircraft's 
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approach path in relation to the correct approach path, which is normally at an elevation of 3 ~ . When 
the aircraft is on the correct approach path two red and two white signals are visible. If the approach 
path is too high, progressively three and then four white signals come into view. Conversely, if the 
approach path is too low, progressively three then four red signals come into view. The two main 
advantages of this system are that it gives the rate information to the pilot, that is it tells him or her 
by how much the aircraft is straying from the correct approach path, and, because there is only a 
single line of units, it can be lined up exactly with the ILS (the instrument landing system). In addi- 
tion, only four units are needed in contrast to the 12 needed for the VASI system. 

Figure 13.7 shows a cross-section through the projection system. The 200 W tungsten halo- 
gen lamp is housed in an ellipsoidal reflector that focuses light onto the red filter. An image of 
this is formed at infinity by the front lenses. 

Fig. 13.6 Pilot's view of the PAPI. (a) Much too high; (b) too high; (c) correct glide path; (d) too low; 
(e) much too low 

Fig. 13.7 Optical system of a PAPI unit 
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The angular width of the transition from red to white needs to be as sharp as possible, about 
three minutes of arc, which can be obtained by a good quality optical system. Two components 
in particular are crucial; the filter and the front lens. 

The filter should be as thin as possible. Normally red filters are made from through-coloured 
borosilicate glass, the colouring agent being selenium. The glass has to be borosilicate to with- 
stand the heat generated by the radiation focused on it. This type of filter is generally made from 
a blown cylinder and tends to be slightly curved and somewhat variable in thickness. Moreover, 
the colouring agent may not be homogeneously dispersed in the glass. It is also worth mention- 
ing that the glass tends to become less red as it heats up, although not to the extent that it no 
longer complies with the relevant colour signal specification. A dichroic interference filter, 
which is a thin layer vacuum-deposited on a substrate of only 0.5 mm thick borosilicate glass for 
this application overcomes these problems, but brings one difficulty in its train. 7 Light that is 
reflected by the filter is green, and tends to dilute the signal if it is misdirected. This is the reason 
for the filter being tilted (exaggerated in the figure). 

To obtain the required luminous intensity the front lens has to work at an aperture off2, a and 
be fully flashed at this aperture. Because of spherical aberration, a single lens is incapable of 
giving the desired performance and a doublet lens is needed. 

The front glass is tilted down to direct reflected light from the sky and elsewhere onto the 
ground. 

13.1.5 INSET LUMINAIRES 

As the name implies, inset luminaires are set into the pavement and are used for both the 
runways and taxiways. Typically they should be no more than 300 mm in diameter and protrude 
no more than 17 mm above the pavement. The restriction in diameter is to keep civil engineer- 
ing costs to a minimum, and the restriction in height is to obviate damage to aircraft tyres, and 
to allow snow ploughs to run over them (in countries where this is applicable), as well as the use 
of arrester hooks. For runway inset luminaires they must be able to withstand the impact and 
vibration caused by aircraft landing on them. Moreover, the heat generated must be limited to 
obviate damage to aircraft tyres. All these requirements are in addition to those for photometric 
performance and are indeed onerous, but are possible to meet. 

Figure 13.8 shows the outside appearance of a typical unit. This is a bidirectional unit and 
therefore has two windows facing in opposite directions, although not necessarily diametrically 
opposite since the beams may need to be displaced in azimuth to one side of the centre-line. 
Omnidirectional luminaires have a complete glass ring to allow the light to emerge in all 
azimuths. The body casting is sunk into the pavement and bolted onto a permanent base. To 
allow for easy servicing, which has to be done quickly so as to keep the runways and taxiways 
in use, the body casting can easily be released by undoing the bolts to allow the optical unit to 
be removed and replaced by a serviced unit. The removed unit, which is typically only 100 mm 
in diameter and 30 mm deep, can then be serviced in a workshop at leisure. Besides allowing 
fast maintenance, this type of design saves having to transport heavy and bulky parts. As part of 
the lens lies below the surface of the pavement, drainage has to be provided to prevent the gully 
in front of the lens from filling with water. 

Figure 13.9 shows a section through the optical system for a bi-directional unit. The lamp is 
a 24 V tungsten halogen with its filament configured to give the maximum luminous intensity 
towards the lenses. Whilst a discharge lamp would be more efficacious in terms of lumens per 

a The ratio of the focal length of the lens to its diameter. See page 239. 
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Fig. 13.8 Typical inset unit 

Fig. 13.9 Optical system of a bi-directional runway inset luminaire 

watt, the need for instant restriking presents a problem as does dimming. The maximum power 
consumption by the lamp is limited to 200 W because of restrictions on the temperature of the 
top plate, as already mentioned. 

The outer surface of the lens is paraboloidal to correct for spherical aberration, which would 
otherwise occur as the lens is required to work at a high f number. This allows the maximum 
possible luminous intensity to be achieved. Where a coloured signal is required, a suitable filter 
is inserted in the system. 

Photometric requirements for these luminaires are laid down by the International Civil 
Aviation Authority. 8 The bi-directional inset runway luminaire requires two beams at 180 ~ in 
azimuth, each with a peak luminous intensity of 7500 candelas above the horizontal. From the 
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complete specification for the light distribution it is possible to calculate that 400 lumens are 
required in each beam. These data allow the size of the window to be estimated. 

The forward luminous intensity of the lamp is 420 candelas. Its luminance is 18 cd/mm 2, 
hence the required area of the lens is 7500 + 18 = 417 mm 2. This is the minimum figure because 
an allowance has to be made for transmission losses and incomplete flashing of the lens. If these 
losses are 20% then the area of the lens has to be increased to 500 m 2 approximately. From the 
height limitation of the unit and the fact that the maximum luminous intensity is required at 3 ~ 
above the horizontal it can be determined that the effective height of the lens will be 10 mm, 
giving a width of 50 mm. 

The distance of the filament from the back of the lens can be calculated by taking into account 
the fact that the lens must emit 400 lm in the beam. A loss of 20% in the lens has already been 
used but an extra allowance has to be made for the light falling outside the beam, probably rais- 
ing the losses to 30%. From this we find that 400 + (1 - 0.30) = 570 lm will have to be collected. 

Now 

O = I x t o  

A 
= I x m  

d 2 

where 

�9 is the luminous flux collected by the lens (lm); 
I is the luminous intensity of the lamp directed towards the lens (cd); 
A is the area of the lens (mm); 
d is the distance of the filament to the back of the lens (mm); 
to is the solid angle subtended by the lens at the filament (sr). 

From this, we have 

d = x / ( I x a ) + o  

= ~/(420 x 500) + 570 

= 1 9 m m  

This is very approximate for the reasons we have stated, and because the filament is regarded as 
a point source of light in order to calculate the solid angle to and because the luminous intensity 
is regarded as constant in the direction of the lens. However, these calculations enable the feasi- 
bility of achieving the required light distribution to be assessed and give a good starting point for 
the detailed design work. 

For an actual inset luminaire, the achieved utilization of luminous flux in each beam has been 
measured and found to be of the order of 12%. 9 

13.1.6 OTHER AIRFIELD LUMINAIRES 

Lights are provided to light the taxiways between the runway and the apron where the aircraft 
are loaded and unloaded. These are either green centre-line lights or blue edge luminaires, which 
may be elevated. 

The apron may be equipped with visual aids to enable the pilot to dock his or her plane accu- 
rately in position. These consist of luminaires where two light sources have to be lined up with 
each other. 
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Amongst the assortment of other lights the wig-wags must be mentioned, if only because of 
their appealing name. These are used at holding areas leading to and from the runway. They 
consist of two lights that are alternately switched on and off. They give a signal that cannot be 
missed because of an apparent three-dimensional effect. There are three colours: red, amber, or 
clear, which signal respectively: do not pass (on entrance to runway), hold until cleared (on 
entrance to runway), and exit runway to apron. 

13.2 Emergency lighting 

13.2.1 THE NEED 

The function of emergency lighting is to provide sufficient light for the occupants of a building 
to escape when the normal lighting fails. The reason for failure may be that the mains supply has 
been interrupted by an outside agency or, in the worst case, it may be due to fire. The lighting 
should be designed to prevent 'panic', which is the word most used when a disaster is being 
investigated. 1~ 

The emergency lighting is used in conjunction with emergency lighting signs that guide 
people along the designated escape route and constitute an essential part of the escape system. 

In Europe, a CEN Standard has been prepared on this subject. 11 

13.2.2 PROVISION OF EMERGENCY LIGHTING 

There are three ways of making provision for emergency lighting. 

(1) Stand-by generators. These provide an almost immediate return to power and duration is 
almost limitless. They may be the only solution when power is needed for running other 
essential services, as may be the case in a hospital. They need good maintenance and, of 
course, space. 

(2) Central battery systems. These have the same advantages as stand-by generators and, simi- 
larly, they need dedicated space, but with special ventilation. They need constant attention 
to ensure that they are kept in working order. 

(3) Self-contained emergency lighting luminaires. These are luminaires with their own battery 
packs which come into operation when the mains fails, and are therefore independent of a 
central distribution system. There are different types of such luminaires: 

�9 non-maintained luminaire. This has a lamp that only comes into operation when triggered; 
�9 maintained luminaire. This has a lamp that is in operation when required for normal 

purposes and when the mains fail; 
�9 sustained luminaire. This contains two or more lamps, at least one of which is used for 

normal operation and one for emergency conditions. 

13.2.3 TYPES OF EMERGENCY LIGHTING AND THEIR REQUIREMENTS 

(1) Escape route lighting. As the name implies, this is lighting along the escape route. The aver- 
age level recommended in the UK is 0.2 lux, 12 based on the work of Simmons. 13 However 
Boyce's 14 investigations suggest that this should be treated as a minimum and 1 lux allows 
faster and surer movement. In fact, other European countries feel that 0.2 lux is inadequate 
and want it raised to 1 lux. The central band of the escape route should be illuminated to at 
least half this value. 0.2 lux may be retained for escape routes without hazards. 
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(2) Anti-panic area lighting. This applies in large open areas such as halls and offices without 
defined escape routes. The lighting should enable occupants to move safely towards the 
escape routes. The proposed minimum illuminance is 0.5 lux, with a ratio of the maximum 
to the minimum illuminance not greater than 40:1. 

(3) High risk task area lighting. This applies to areas where hazardous activities are taking place 
and the aim is to allow those people engaged in these to close down the operations safely 
and then escape. The lighting level proposed is 15 lux or 10% of the normal lighting level, 
whichever is the greater. As for anti-panic lighting, the ratio of the maximum to the mini- 
mum illuminance should not be greater than 40:1. 

There are other lighting requirements besides the ones stated above. Disability glare is controlled 
by limiting the maximum luminous intensity of the luminaire in directions from 60 ~ to 90 ~ to the 
downward vertical. The limit increases with mounting height. The illuminance must reach 50% 
of the required illuminance within 0.5 seconds and its full value within 60 seconds for escape 
route lighting and anti-panic lighting. For high risk task area lighting the required illuminance 
must be reached within 0.5 seconds. The colour rendering index of the lamps R a should be at 
least 40 to allow colours to be identified reasonably well. 

The CEN draft Standard states that the lighting should be from above. However, there are 
low-mounted way-guidance systems, which have a mounting height of no more than about one 
metre. These can take a number of forms; a track of miniature tungsten filament lamps, a track 
of electroluminescent lamps, or a strip of photoluminescent material, and may consist of the 
following: ~5 

�9 escape route marking; 
�9 exit door frame marking; 
�9 exit door signs; 
�9 immediate direction signs; 
�9 low mounted lighting. 

Investigation of way-finding systems appears to show that they are at least as effective as the 
conventional forms of emergency lighting, and may have some advantages in smoke condi- 
tions. 16 They are at present used in specialized situations such as aircraft. 
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14 
Daylight Calculations 

14.1 Introduct ion 

'Daylighting' presents what might seem at first glance to be a set of impossible problems; one 
of which is that daylight is continuously variable and another is that, when the sky is clear, the 
position of the sun is the major determining factor, which itself changes both throughout the day 
and the year. When the sky is overcast it has a variable luminance, both in distribution and 
magnitude. 

Much study and thought has been given to these factors and appropriate assumptions and 
approximations have been adopted, so that daylighting of buildings can be quantified. 

In countries such as the UK, where completely overcast skies are a common feature, the crite- 
ria are based upon the relative illuminance inside a room to that under the unobstructed overcast 
sky at the same moment in time. The ratio of these illuminances is called the daylight factor (dJ) 
and is expressed as a percentage. The daylight factor includes interreflected light and can be for 
a point, a surface or the average for the room. 

In this chapter, we will consider first the completely overcast sky, since this is the basis of 
most UK daylight design. 

14.2 The overcast  sky 

The CIE have published an agreed empirical formula, which is in general use for an overcast sky. 
This is: 

1 
L o = --:- Lz(1 + 2 sin 0) 

3 

where L o is the luminance of the sky at an angle 0 to the horizontal and where L z is the lumin- 
ance at the zenith, in cd/m 2. 

Figure 14.1(a) shows a representation of a sky dome of radius r. The illuminance at P due to 
an element of the sky is given by: 

&E= 
LoargOrga cos 0 sin 0 

r 2 

= Log sin 0 cos 0 505a 

where Loa is the luminance at an angle 0 to the horizontal and at the azimuth angle a, measured 
from a specified direction. 
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i 

i . . . . . . . . . . . . .  

Fig. 14.1(a) Calculation of illuminance from an overcast sky 

If the luminance of the overcast sky is assumed to be given by the CIE formula, then 

E = l L z ( l  + 2s in0)s in0cos0  dO d a  
I I 

I•2 I~2 1L = -~ z(sinOcosO+ 2sin 2 0cos0)  dO d a  
I I 

1 1 2 3 
=-~L. - - s i n20+  sin 0 x dct 

2 3 J0, , 

_ 1 Lz ( sin 2 0 2  _ sin20l m 
3 2 

2 sin 3 0 2 --2 sin 3 01 ) 
+ 3 (a2  - - a  I ) 

for the whole sky 02 = x/2, 01 = 0 and a 2 = 2x, a I = 0 

giving, 

7n: 
Esky = ~ L z lux 

and the sky component of the daylight factor due to any element at 60, 6a at O, a 
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1 7Jr 
= m Lz(1 + 2 sin 0) sin 0 cos 0 &O&a + 

3 9 

3 
= m (1 + 2 sin O) sin O cos O &O&a 

7~r 

Lz 

Note It is sometimes considered difficult to conceive of the sky as having a radius (r in the 
earlier equation) and so it is necessary to translate the problem into one where the distance in 
question is simple to determine. 

If we consider how the sky luminance is measured we have, in the simple case, an aperture 
through which the sky is illuminating a photocell at a known distance, see Figure 14.1(b). The 
aperture and the photocell are separated by a distance d such that the inverse square law can be 
applied, and are opposite and parallel. 

Then 

I 
E = m  

d 2 

where I is the intensity at the aperture produced by the patch of sky seen through the aperture 
and a is the area of the aperture. 

Then 

L x a  
E= 

d ~ 

/ 
Ao 

/ 
/ 

/ 
/ 

/ /  / / /  /~///'/'~",/'~----T'~ Aperture of area a 
f/ \ \  / 

> ,/,: .j/ 
/ / , "  . 'X  

//x ",,/~/" \ Solid angle (~ //,'.-/ 

~Photocell 
Fig. 14.1(b) Relation of sky luminance to illuminance 
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If the aperture is small enough a / d  2 may be taken as equal to to, the solid angle subtended at 

the photocell by the element of sky considered. 
So, E = Lto or L = E/to. 

If we consider the hemisphere not as a sky dome but as a means of calculating to and make 
r = 1.0 we arrive at to = a/r  2 = a or to = cos 0 6Oga and continue as before. 

1 4 . 3  W i n d o w  a r e a  

At an early stage in the design, it is very useful to have an estimate of the window area that will 
be required for a given daylight factor. This estimate can be based on a simple calculation of the 
average daylight factor for all the room surfaces, using a modification of the formula for an inte- 

grating sphere (see Section 5.2, Chapter 5). 
From Chapter 5, 

FL 
Eav = lux 

A(1 - p )  

where F L in the input luminous flux (lumens), A is the internal surface area (m e) and p 
the reflectance of the inside of the sphere, and Eav the average i l luminance on the inside of 
the sphere. In the case of a room lit by a window, F L would be the flux that enters via the 

window. 
In a room where the room surfaces had different reflectances, it would be necessary to use the 

average reflectance of all room surfaces in place of p. Let this average reflectance be R then the 

formula becomes 

E a v  "-" 

where 

F L 

A(I - R) 

g 
PcAc + + PwAw 

A C + A F + A w 

and where Pc, PF, PW are the ceiling, floor, wall reflectances, etc., A C, A F, A w are the ceiling, 
floor, wall areas, etc. 

The term F L now requires consideration. 
If F L is replaced by TW(0/2) where T is the transmittance of the glazing, W is the area of the 

glazing and 0 is the vertical angle in degrees of unobstructed sky measured from the middle of 
the window (see Figure 14.2) the formula becomes 

TWO 
d f  = % (14.1) 

2A(1 -g)  

where d f  is the average daylight factor for the room. 
This expression depends upon the fact that the value 0/2 has been found to be a reasonable 

approximation to the ratio of the illuminance on the vertical face of the window to that on the 
horizontal from an unobstructed overcast sky, as a percentage. 
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Fig. 14.2 The vertical angle 0 of unobstructed sky measured from the middle of the window 

Thus, 

T W  m 
0 gsky 
2 lO0 

is equal to the luminous flux passing through the window into the room. 
This gives 

0 TWIn  
Eav 2 

~ x  100% = 
Esky A ( 1 - R) 

= average daylight factor within the room 

The relationship between the illuminance on the vertical window surface and the angle of 
unobstructed sky was pointed out by Lynes. l 

The illuminance ratios (C) used in the Lynes comparison were those obtained by measure- 
ments from Waldram Diagrams for glazed windows (see Section 14.5.3), assuming that the 
obstructions were horizontal bands of luminance one-tenth of the mean sky illuminance. 2 These 
ratios do not include light incident from below the horizontal. If the average luminance of the 
ground is assumed to be one-tenth of the mean sky luminance then, also assuming the ground to 
form a half-infinite plane, the increase in this vertical illuminance will be 5%. The total illumi- 
nance ratio on the vertical plane is then C + 5. 

Table 14.1 shows the good agreement between this value and 0/2 in degrees, apart from 0 = 
10 ~ 

The simple expression in Equation (14.1) gives the average daylight factor for all the room 
surfaces. The formula could be transposed to give a value for W, the window area, needed to 
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Table 14.1 Comparison between the C + 5% and the 0/2 values 

Angle of 
0 obstruction C (%) C + 5 (%) 0/2 

90 ~ 0 o 39 44 45 
80 ~ 10 ~ 35 40 40 
70 ~ 20 ~ 31 36 35 
60 ~ 30 ~ 25 30 30 
50 ~ 40 ~ 20 25 25 
40 ~ 50 ~ 14 19 20 
30 ~ 60 ~ 10 15 15 
20 ~ 70 ~ 7 12 10 
10 o 80 ~ 5 10 5 

achieve a specified value of  daylight  factor. However,  recommendat ions  for daylight  factors are 
usually given in terms of  the average daylight  factor required on the working plane; that is, at 
desk or work bench height  above the floor. Crisp and Littlefair have produced a modif ied version 
of  the Lynes formula to give a better est imate of  the daylight  factor for the working plane. 3 This 
was done by considering the relationship between the average i l luminance for all the room 
surfaces and that for the working plane. Selecting a square room, half as high as it is wide and 
considering a range of reflectance values, it indicates that an approximate  relationship is given 

by 

/ Ear = Ewp 2 

where Ewp is the average working plane illuminance. If this relationship is accepted then we may 

write 

TWO =dfwp( I+R I 
2A(1 - R )  2 

where dfw P is the average daylight factor on the working plane giving 

TWO 
d fwp=  % 

A(I - R 2) 

Transposing this formula to give the required window area, 

dfw P x a ( l  - R 2) 
W =  m 2 

TO 

As a simple example,  let us estimate the window area required to give a 2% daylight factor at 
the working plane. Let us assume that the vertical angle of  unobstructed sky is 45 ~ T is 0.8, R is 
0.5 and the room area 64 m 2. 

W = dfwp x A ( 1 - R 2) m 2 

TO 
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2 x 64(1 - 0 . 2 5 )  
m 

0.8 x 45 

= 2.7 m 2 

(Note: in this example no allowance has been made for dirt on the windows.) 
From the above, it can be seen how easy this formula is to use as a first step in window design 

and it has found much favour. Figure 14.3 shows the results obtained when this formula is used 
to estimate the average working plane daylight factor for a model room. 

Also shown in Figure 14.3 are the results obtained when using the Longmore development 
from the BRS split-flux formula for the working plane daylight factor. 4 The method is termed 
'split-flux' beause it is based on the assumption that the light arriving at the window from above 
the horizontal is assumed to be incident upon the lower part of the room surfaces and flux arriv- 
ing from below the horizontal on the upper surfaces of the room. 
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The Longmore formula is 

C CRpv v + 5Rcw ) 
dfw P = 0.85W + % 

AFW A(1 - R) 

If the assumptions regarding the glass transmittance and the ground luminance are removed, 
this expression may be written: 

dfwp= TW ~ +  % 
A~v A(1 - R )  

Here, C is the illuminance ratio component on the vertical surface of the window due to flux 
incident from above the horizontal, including that reflected from obstructions and D G • R G is the 
illuminance ratio component on the vertical surface of the window due to flux reflected from the 
ground and the parts of the obstructions below the horizontal. D G is the ratio of half the ground 
illuminance to the sky illuminance. 

Ap, v is the area of the floor and lower parts of the walls below the mid-height of the window (not 
including the window wall). 

RFW is the average reflectance of AFW. 
Rcw is the average reflectance of the ceiling and upper walls above the mid-height of the 

window (not including the window wall). 
A is the total area of all the interior surfaces. 
R, as before, is the average reflectance of all the interior surfaces. 
R G is the average reflectance of the ground. 
The Longmore formula used the values for C obtained by measurement from a Waldram 

diagram, as mentioned earlier. It is of interest now to seek to develop an analytical expression 
for the terms C and D G in the expanded Longmore-type formula given above. The approach used 
is that of Tregenza. 5 

14 .4  D e v e l o p m e n t  of the coe f f i c ien ts  C and D G 

The coefficient C has two components: 

(1) that due to the direct illuminance from the unobstructed part of the sky, and 
(2) the light reflected onto the window from the obstructing building. 

(1) Direct illuminance from the sky 
Consider Figure 14.4(a), a vertical window placed at P will be illuminated by half the sky dome, 
unless it is obstructed. Two types of obstruction are common. 

First, there is obstruction by buildings in front of the window plus obstruction from any canopy 
over the window. This type of horizontal obstruction can be denoted by two angles: 0 L the angle 
from the horizontal at the mid-height of the window subtended by obstructing buildings, and O H 
the angle also measured from the horizontal denoting the upper extent of the unobstructed sky. 

The second type of obstruction is due to tall vertical obstructions, or deep window reveals. 
The extent of the obstructions in the azimuth plane are denoted by a L and a R. Then 

E w = Loa cos 2 0 c o s a  d a  dO 
L L 

where E w is the window illuminance and, as before, 
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Elevation 

Window 

Fig. 14.4(a) The angles relating to horizontal obstructions 

Window 

Plan 

Fig. 14.4(b) The angles relating to vertical obstructions 
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1 
L~ = 3 Lz(1 + 2 sin 0) 

So, 

E w = (COS 2 0 
L L 3 z 

N o w ,  

+ 2sin0cos 2 0 ) c o s a  dO d a  

1 
COS 2 0 -" ~ (COS 20 + 1) 

2 

giving 

fCOS20 dO= 1 1  if -- cos 20 d 0 + -  dO 
2 2 

sin20 0 

4 2 

also, 

f 2sinOcos 0 dO= 
-2  cos 3 0 

3 

and 

f cosa  d a  = s ina  

Thus, 

1 ( O H - 0 L 
Ew = 3 Lz(sin O~L + sin O'R) X 2 

sin 20 H - sin 20 L 2 cos 3 O H - 2 cos 3 0 L ) 

4 3 

(14.2) 

Note that the two terms in the first bracket are both positive, since the angles are measured in 
opposite senses (Figure 14.4(b)). 

(2) Reflected illuminance 
It is now necessary to allow for the light reflected onto the windows from the obstructing build- 
ings. 

If we assume that the illuminance on the obstructing building has the same value as the illu- 
minance on the window itself we should not overestimate the reflected contribution to the final 
window illuminance. 

In addition if the building luminance is EwRB/rr, (for uniform diffusion), then we can calcu- 
late the contribution to the window illuminance of reflection from the building. This is done, in 
the first instance, by subtracting the illuminance that would be produced on the obstructed 
window by a sky of uniform luminance from the illuminance that would be produced on an 
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unobstructed window by a sky of uniform luminance. In this calculation, we use the luminance 
of the obstructing building 

EwRB L~B 
L B = ~  = 

The illuminance on the window from an obstructed sky of luminance L B is given by 

I;"f R cos 0coso do a0 
L ~ a L  

( - s i n 2 0 H - s i n 2 0 L ) 0 1 4  0L+ 
= La(sin a' L + sin a, R) - - - - - -7  4 

So, the illuminance on the window by reflection from an obstructing building of luminance 
is 

I / '"  sin " sin "/1 = m _  (sin a L + sin aR) ~ + (14.3) EWB LB 2 L 4 

To conclude the calculation of coefficient C, it is necessary to consider interreflection in the 
cavity between the building and the ground. If we treat it as a simple cavity we may write 

Total incident flux on window = direct flux + reflected flux within the cavity 

Assuming the flux to be distributed uniformly we may divide by the area of the window and 
the result may be expressed as 

EWT = EWB + EwTR o 

So, 

EWB 
EWT = ~ (14.4) 

1 - R  o 

where Eww is the total component of reflected illuminance on the window, EWB is the compo- 
nent reflected from the obstructing building and R o is the effective reflectance of the cavity. 

R o is given by 

R B + R G 
Ro=m 

2 

where m is the fraction of reflected flux not lost out of the cavity; for example, to the sky. 
Since we are dealing with low reflectances and a second-order effect, a simple mean of R B 

and R G has been taken, assuming equal areas of building faqade and the ground. If we continue 
this simplifying assumption, we arrive at m = 1 - 0.5 as the fraction of flux that remains after 
each reflection (see Section 4.9.1). 

If it is assumed that half the reflected flux remains within the cavity then 

R B + R G 
m = 0 . 5  and R o =  

4 

In Section 14.2 the value of illuminance at a point on the horizontal plane from the whole sky 
was calculated as 
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Esky = 
7x 

L z lux 

So, 

where 

and 

Ew+EwT 

Esky 
x 100% 

9( 
~ f  1+  

7x 

RBg 
/ • 100% (see Equations (14.2), (14.3) and (14.4)) 

x( 1 - R O) ) 

1 [ OH-OL sin2OH--sin20L 2COS3OH--2COS3OL) 
= m (sin a L + sin a R) + - 

f 3 2 4 3 

X [ O H - 0 L sin 20 H - sin 20 L ] ] 
g = 2 (sin a L + sin aR) ~ 2  + 4 

This completes the calculation of the coefficient C. 
Although the ground reflectance was included in the above calculation, the fact that the flux 

that was reflected had first struck the buildings above the horizontal, before being reflected, 
places it correctly in the evaluation of coefficient C. 

The coefficient D G can be evaluated as follows. 
Assume that the ground outside the building containing the window has a luminance given by 

RGEG/X and that this may be considered to be a semi-infinite plane. 
Then 

RGE6 
EWG = ~ X ~ "  

2x 

where E G is the ground illuminance and EWG is the illuminance on the window due to light 
reflected from the ground. Within a built-up area, the ratio of EG/Esky can be assumed to be of 
the order of 0.5 giving 

Ew G RGEG 

Esky 2Esky 

or 

where 

EWG 

Esky 
% = RGD G % 

D G = 2Esky 
x 100% (14.5) 
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0.5 

2 

= 25 

x 100% 

I f  the g round  re f lec tance  is a s sumed  to be 0.2 then this gives rise to the t e rm 5 R c w  in the 

L o n g m o r e  formula .  

Table  14.2 gives values  of  C/2 for  0 H = 90 ~ taking the re f lec tance  o f  the g r o u n d  and the 

obs t ruc t ing  bui ld ings  as 0.2. 

Table 14.2 Calculated values of C/2 for 0 H = 90 ~ taking the reflectance of the ground and obstructing 

buildings as 0.2 

0L ~L or ~R, half-sky angle in azimuth 

10 ~ 20 ~ 30 ~ 40 ~ 50 ~ 60 ~ 70 ~ 80 ~ 90 ~ 

0 ~ 3.8 7.3 10.5 13.2 15.6 17.4 18.7 19.5 19.8 
10 ~ 3.2 6.3 9.1 11.6 13.6 15.3 16.5 17.2 17.5 
20 ~ 2.6 5.1 7.4 9.4 11.1 12.5 13.5 14.1 14.3 
30 ~ 1.9 3.8 5.5 7.0 8.3 9.4 10.2 10.6 10.8 
40 ~ 1.3 2.5 3.7 4.7 5.6 6.3 6.8 7.1 7.2 
50 ~ 0.7 1.4 2.1 2.7 3.2 3.6 3.9 4.1 4.2 
60 ~ 0.3 0.7 1.0 1.2 1.5 1.7 1.8 1.9 1.9 
70 ~ 0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.6 0.6 
80 ~ 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 

Example Cons ide r  F igure  14.5. This  shows  a w i n d o w  5 m wide  by 2.5 m high. T h e  w i n d o w  is 

set in the side wall  o f  a 6 m wide  square  room,  3 m high. The  w i n d o w  is obs t ruc ted  by a cont in-  

uous row of  bui ldings  to 20 ~ above the hor izon.  The  r o o m  ref lec tances  are P c  = 0.7, PF = 0.2 and 

P w  = 0.5. A s s u m e  the obs t ruct ing  bui ld ings  and the g round  have a re f lec tance  o f  0.2. Ca lcu la te  

the average  dayl ight  factor. 

I 20 

Fig. 14.5 The obstructed window related to the example in Section 14.4 
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The average reflectance of the walls below the centre height of the window (assuming it termin- 
ates at the ceiling height and excluding the window wall) and the floor is given by 

Pr,AF + PwALw 0.2 x 6 x 6 + 0.5 x 1.75 x 6 • 3 
RFW = = 

A F +ALw 6 • 6 + 1.75 • 6 • 3 

= 0.34 

where ALW is the area of the lower walls. 
The average reflectances of the walls (excluding the window wall) and the ceiling above the 

centre height of the window is given by 

Rcw = 
PcAc + PwAuw 

A C + Auw 

0.7 x 6 x 6 + 0 .5  x 1.25 x 6 x 3 

6 x 6 +  1 . 2 5 x 6 x 3  

=0.62 

where Auw is the area of the upper walls 

R B + R G 0.2 + 0.2 
R o =  = =0.1 

4 4 

The average reflectance of all surfaces 

e 
PcAc + ppA F + PwAw 

A C + A F + A w 

0 . 7 x 6 x 6 + O . 2 x 6 x 6 + O . 5 x 3 x 6 x 4  

6 x 6 + 6 x 6 + 3 x 6 x 4  

= 0.475 

) C = ~ f  x 100% 
7tr x( 1 - Ro) 

1 ( O H -- 0 L 
= - -  (sin a L + sin aR) • 

f 3 2 

sin 208 - sin 20 L 
+ 

4 

2 COS 3 O H - 2 COS 3 0 L / 

) 3 

In  t h i s  c a s e  or L = or R, O H = 90 ~ 0 L = 2 0  ~ 

1 2o 
x/t" + 

/ = 3  (21 2 2 180 

0 - 0 . 6 4 3  0 - 1 . 6 5 9  

] m 

4 3 

= 0.669 

I /t" 
g =  

2 l 0 H - 0 L 
- (sin a L + sin aR) 2 

+sin 20H 4 - sin 20 L / ] 

= 2 (2)(0.785 - 0 .174-  0.161) 

=0.671 
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If we take D G = 25 as assumed previously (Equation 14.5). 
Total area of all room surfaces 

A = 2 • 2 1 5 2 1 5 2 1 5  = 1 4 4 m  2 

Let us assume the glass has a transmittance of 0.85 and an allowance for dirt is made at 0.8 
then the effective value of T = 0.85 x 0.8 = 0.68. 

Let us also assume that the window frame reduces the net area of glazing by 20%, giving 
W = 5 •  2. 

Then 

. C CRFw + DGRcwR G ) % 
dfwp= TW - -  + 

AFW A(1 - R) 

= 0.68 x 10 ~.76.5 

= 4.0% 

28.7 x 0.34 + 25 • 0.62 x 0.2 

144(1 - 0.475) 
% 

In the above example, a L and a R were each taken as 90 ~ If the window had deep reveals or 
if there were vertical obstructions to one or both sides, these angles would be less and the term 
(sin a L + sin aR) would be reduced in value, which would reduce the value of C. 

Let us calculate the value for the daylight factor that would have been obtained using the 
modified Lynes formula. 

TWO 
dfw P = % 

A(1 - R 2) 

0.68 x 10 x 70 
= % 

144( 1 - 0.4752) 

476 
= % 

144 x 0.774 

= 4.3% 

14.5 Dayl ight  factor  at a point  

The previous section dealt with the calculation of the average daylight factor for the working 
plane or area below the working plane and this is of considerable value in the early stages of the 
daylight design. 

Once the project has reached a more detailed stage, more detailed information about the 
distribution of the daylight within the space is often required. This information can be obtained 
from point by point daylight factor calculations and could be displayed in terms of daylight 
factor contours. 

There are manual and graphical methods that can be used to calculate the daylight factor at a 
point, but such detailed calculations are most appropriately carried out by computer. 

The most popular method of calculating arrays of daylight factors for the working plane is to 
use daylight coefficients. 6 The concept is based on dividing the sky up into a large number of 
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small elements and calculating the effect of each element separately, hence the appropriateness 
of using a computer. 

In Section 14.2, the following expression relating to Figure 14.1 was introduced: 

LoargO rga cos 0 sin 0 
8E = 

r 2 

where gE is the illuminance at P due to an element of sky. In this equation (rSOr6a cos 0)/r 2 
represents the solid angle subtended by the element of the sky at point P. This simplifies 

to 

8f~ = 808a cos 0 

So that 6E = LoaSf~ sin O. 
If the transmittance of the glazing is Toa, then 

8E = LoaSf~ sin 0 Toa 
= LoaSf'ZDoa 

where Doa = Toa sin O, which is the daylight coefficient for direct light at point P for this element 

of sky. 
Since Doa is independent of Loa the daylight coefficients do not need to be re-evaluated if the 

luminance distribution is changed. 
The daylight coefficient can be developed to include an interreflection calculation for each 

element and so a general definition of the daylight coefficient is 

gEo a 
Doa = 

Loag~oa 

From the above, 

I2Zl z12 
E = DoaLoa cos0 dO da  

} } 

It is sometimes convenient to split this equation into two sections by separating the direct and 
reflected components of Doa: 6 

Doa = Ddo a + Dio a 

where d notes the direct daylight coefficient and i the interreflected daylight coefficient 

E = E d + E  i 

where E d is the direct illuminance at the point and E i is the interreflected component. 
So, 

i i: '2 E = I I D d o a L o a c o s O d O d o t +  DioaLoa c O s O d O d a  

w i n d o w  a r e a  

The first part of the equation deals with the direct light at the point which must be received from 
the direction of the window. The second part of the equation deals with the interreflected light 
and this can enter the room from an entire half of the sky and be interreflected. 
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The double integrals generated by this type of daylighting calculation can usually only be 
evaluated by numerical integration. 

There are a number of ways to calculate the detailed interreflected components, such as Ray 
Tracing, 7 the Monte Carlo Method 8 or the radiosity method used in this book (Chapter 5). 

14. 5.1 TRANSMHT"ANCE Toa 

The transmittance of clear glass can be taken as 0.8 to 0.85 for diffuse transmittance in, for 
example, the formulae for average daylight factor (double glazing would be 0.70 to 0.75). 

For daylight coefficient calculations, the value of transmittance varies with the angle of inci- 
dence and values of Toa are required. 

Littlefair has developed the following equation for this purpose 9 

Toa = 0.623 + 0.3 cos a - 0.137 cos 2 a + 0.51 cos 0 
- 0.66 cos 0 cos a + 0.346 cos 0 cos 2 a 
- 0.285 cos 2 0 + 0.427 cos 2 0 cos a -  0.246 cos 2 0 cos 2 a 

A useful document relating to Daylight Algorithms is published by the DTI-sponsored Energy 
Technology Support Unit (ETSU). 1~ 

14.5.2 DIRECT SUNLIGHT 

The daylight coefficient method introduced in Section 14.5 can be easily adapted to the calcula- 
tion of the direct sunlight illuminance at a point within a room. 6 Since, in this method, the sky 
is treated as an array of point sources, the daylight coefficient formula for a single point source 
may be modified as follows: 

E s = DoaJ_,oa cos 0 dO da 

ENS 
= Dog ~ cos 0 dO da 

co 

= DoaENs 

where ENS is the direct normal solar illuminance outdoors and Doa is the daylight coefficient for 
the element at the solar attitude and azimuth. ENS may be calculated from the formula given 
below. 11 

ENS = 128e-0.5 cosec 7 klx  

where 

y = sin-l(sin r sin 8 -  cos ~ cos 8 cos 15t) 

and 

= geographical latitude (positive in the northern hemisphere); 
8 = solar declination (see Table 14.3 - north is positive, south negative); 
t = hours since midnight (the term 15t is in degrees). 

14.5.3 THE WALDRAM DIAGRAM 

The Waldram Diagram was mentioned in Section 14.3 and this is a graphical method for solv- 
ing the double integrals encountered in evaluating daylight factors. 
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Table 14.3 Solar declination 5 at different times in 
the year 

Date t~ 

June 22 23 ~ 27'N 
May 21/Jul 24 20 ~ N 
Apr 16/Aug 28 10 ~ N 
March 21/Sept 23 0 ~ 
Feb 23/Oct 20 10 ~ S 
Jan 21/Nov 22 20 ~ S 
Dec 22 23 ~ 27'S 

In its simplest form, using the results of Section 14.2, it consists of a network with the abscis- 
sae proportional to a and the ordinates proportional to 

/' 2 ) 
m sin 2 0 + m  sin 30  
2 3 

This gives 6x proportional to 5a and 5y proportional to (sin 0 cos 0 + 2 sin e 0 cos 0)50. The 
whole diagram represents half the sky. Areas on this diagram are proportional to the sky compo- 
nent of the daylight factor (see Figure 14.6). If the angles from the point, for which the daylight 
factor is required, to the window boundaries are calculated, the outline of the window can be 
plotted on the diagram as shown. The area of this plot, divided by twice the total area of the 
diagram, gives the value of the sky component of the daylight factor when expressed as a 
percentage. The diagram shown in the figure is for an unglazed window. 

Notice how, on this diagram, horizontal lines on the window become curved because, as the 
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Fig. 14.6 The simplest form of Waldram Diagram 
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point on the horizontal line moves away from the centre of the diagram, it subtends a smaller and 
smaller angle at the illuminated point and therefore moves down the diagram. In addition, a 
glazed window will have a transmittance that falls with the angle of incidence and Waldram 
Diagrams are sometimes constructed to take both of these effects into account. The diagrams 
consist of 'droop' lines superimposed on the basic diagram so that horizontal obstructions can 
be plotted easily and window transmission taken into account. 12 

Obviously, another form of the diagram could be produced from the equations developed in 
Section 14.4 and related to the illuminance on vertical surfaces. 

An alternative method is to use the BRS Sky Component Tables published by BRE. 12 These 
tables give values of the sky component in terms of window size and position relative to the illu- 
minated point on the working plane. 

A worked example using these tables is given in the 1994 CIBSE Code (see also Window 
Design Applications Manual, AMI (London) CIBSE (1987)). 
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15 
Measurements 

15.1 General  

Basically two types of measurement are required, laboratory and field. Generally, laboratory 
measurements are required to provide data for the prediction of the performance of a material 
in a luminaire, or a luminaire in an installation. In the field, measurements are required to 
establish whether the required or predicted performance has been achieved. The object of this 
chapter is to describe and discuss the various methods of carrying out these lighting measure- 
ments. 

15.2 Photoe lect r ic  cells 

The photoelectric cell is used in all modem photometric apparatus. This produces an electric 
current that varies according to the illuminance falling on it. Before the advent of the photocell, 
measurements had to be made by visual comparison, which was not only time consuming but 
produced results that depended on the skill of the observer. The photocells used in most appara- 
tus are silicon diode cells. These have tended to displace the selenium photocell because of their 
better performance as regards aging, stability, fatigue and linearity. For some applications, such 
as luminance meters and the collimating photometer, photomultipliers are used. These have 
greater sensitivity than the silicon diode but need a high voltage for their operation. The charac- 
teristics that are important in the selection of photocells are as follows. 

�9 Spectral response to radiation. The spectral sensitivity of the photocell should closely match 
that of the eye. As shown in Figure 15.1, the selenium photocell has an advantage here in that 
its spectral sensitivity curve peaks at approximately the same wavelength as that of the eye, 
so that correction can be obtained by a commercially available filter. The spectral sensitivity 
of the silicon diode, on the other hand, is very different from that of the eye and needs a 
specially computed filter. Two types of filter are available. One is made from a mosaic of 
different colour filters fitted together side by side. The other is a matrix consisting of differ- 
ent colour filters of the same size as the photocell and used in parallel. By measuring the 
response of the individual photocell before correction, a very close approximation to the 
sensitivity of the eye can be obtained by varying the sizes of the components in the case of 
the mosaic filter and the thickness of the components in the case of the matrix filter. As can 
be imagined, these are expensive processes. Correction for the various mesopic sensitivity 
functions can also be obtained. Care has to be taken that the response of the photocell to infra- 
red and ultra-violet radiation is minimal. The matrix filter has the advantage over the mosaic 
filter that the whole of the cell surface is uniformly corrected, which for some applications is 
essential. 
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Fig. 15.1 Relative response to radiation of the selenium photocell and the silicon diode 

In the relative method of photometry, where the light distribution of a luminaire is 
compared with that of the bare lamp, spectral sensitivity correction need not be as stringent 
as with other forms of photometry, provided the luminaire does not alter the spectral light 
distribution of the lamp or lamps significantly. When photometry has to be performed on 
lights where the radiation is concentrated over a relatively narrow band, such as signal lights, 
it is prudent to obtain a correction factor for that particular source. 

�9 Cosine response. Illuminance varies as the cosine of the angle of incidence of the light. 
However, the illuminance measured with a bare photocell falls away faster than this because 
its surface reflects an increasingly higher proportion of the incident light as the angle of inci- 
dence is increased (see Section 6.8.12, page 265). As explained in Section 15.11.1, page 501, 
correction generally needs to be made for this, although in distribution photometers, where 
the angle of incidence is not greater than 20 ~ , correction is not necessary. 

�9 Linearity of response. The output from the photocell and its associated circuit must be propor- 
tional to the illuminance on the photocell. This can be checked on a photometric bench but it 
is more convenient to use a specially constructed linearity tester (see page 490). 

�9 Fatigue. By this is meant the reduction of output of the photocell when it is exposed to light 
for a fairly long period, 30 minutes say. It may only be manifest when the photocell is exposed 
for a period, covered and re-exposed. In addition it may be more pronounced at higher illu- 
minances. During the dark periods it should be checked that the reading returns to, and 
remains at, zero. 

�9 Response time. The photocell and its associated circuit will take a finite time to produce the 
final reading. If the photocell or light source is moved while readings are being taken, as is 
often the case in goniophotometry (to be described in the next section), a trial run should be 
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made to check that substantially the same readings are obtained for a moving photocell or 
light source as are obtained when both the photocell and light source are stationary at each 
measurement point. 

�9 Temperature dependence. The output of the photocell and its associated circuit will be 
affected by the ambient temperature. In relative photometry, this should not affect the final 
result provided that the temperatures at the photometer head, when measurements are taken 
on the bare lamp, and the luminaire agree within close limits. How close the limits need to be 
can be determined by varying the temperature when a steady illuminance is falling on the 
photocell and recording the variation in the signal. In absolute photometry, keeping the 
temperature constant is more important. Photocells with thermostatic control are commer- 
cially available. 

�9 Non-uniform sensitivity over surface of a photocell. Usually there is some variation of sensi- 
tivity over the surface of a photocell. This is because current generated near the centre of the 
photocell has further to travel to the collection ring at the periphery of the photocell than 
current generated elsewhere. For small photocells the effect is slight, but for large photocells 
it may be significant. Colour correction by means of a mosaic filter will produce non-uniform 
sensitivity. In certain applications, such as goniophotometry, non-uniform sensitivity may not 
be important but, in other applications, such as luminance measurement, it may well be of 
paramount importance. 

�9 Sensitivity to polarized light. At angles near Brewster's angle (see Section 6.8, page 237) light 
polarized in certain planes will be reflected from the surface of the photocell. 

�9 Evaluation of modulated light. All light sources that run on alternating current produce a 
modulated waveform. This is more pronounced with light sources where the emission is 
directly from an arc tube than when the emission is from the intermediary of a phosphor (fluo- 
rescent lamp) or from a filament (tungsten lamp). Photocells obey Talbot's law so that the 
current generated is equal to the average illuminance, provided that the characteristics of the 
circuit are such that the indication is steady. There is a departure from this at high values of 
circuit resistance and also at a low frequency of interruption. 

The allowable variation of these characteristics is given in CIE 121. I In addition it is wise to 
check that the sensitivity of the photocell and its associated circuit in terms of the electrical 
signal generated is sufficient for the application for which it will be used. 

15.3 Light distribution photometry 

A more exact, if more ponderous, term for this is luminous intensity distribution photometry. It 
describes how the luminous intensity of a luminaire is distributed in space according to one of 
the coordinate systems described in Chapter 1. The apparatus is often dignified by the name 
goniophotometer, but more usually referred to as a polar curve apparatus, polar curve photome- 
ter, or simply photometer. In its simplest form, the goniophotometer consists of a photocell that 
can be moved relative to the luminaire so that the luminous intensity can be measured in any 
direction in space. There is a great variety of configurations for the apparatus, as will be seen. 
The main considerations governing these are as follows. 

�9 Length of the optical path in relation to the space available. For the inverse square law to 
apply to an accuracy acceptable in practice, it is usually reckoned that the length of the opti- 
cal path should be at least five times that of the largest dimension of the largest luminaire to 
be measured. This is the ratio recommended by the CIE 121, with two provisos. First, the light 
distribution should be approximately cosine in planes passing through the lamp axis. Second, 
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the ratio of the path length to the largest dimension of the luminaire normal to the lamp axis 
should be at least 15. For certain types of luminaire, such as floodlights, where the light is 
focused into a beam, this distance may have to be much longer. This will be discussed in 
Section 15.6, page 487. However, for general purpose luminaires, the five times rule can be 
held to apply. This means that to measure a luminaire of length 2400 mm (the longest lumi- 
naire generally encountered) an optical path of 12 m is required. Accommodating this 
distance obviously has problems, particularly in a building that is not purpose built. However, 
as will be seen, there are ways of reducing or eliminating these problems. 

These stipulations as regards test distance apply when the requirement is to measure lumi- 
nous intensity. To measure the total light output ratio, much shorter distances can be used. 
This can best be understood by regarding the readings as illuminance measurements taken 
over the surface of a sphere. If these illuminance values are multiplied by their respective 
areas the total flux will be found, since illuminance times area equals luminous flux. 

The same is true of the luminous flux above and below the horizontal, provided that the 
depth of the luminaire is not great compared with the test distance. The fact that the light 
output ratio can be measured at a short distance can be used to advantage where a family of 
luminaires has to be measured and the different members of the family differ only in length. 
This means that accurate luminous intensities can be measured on one of the luminaires of 
relatively short length. The light output ratios of the other members of the family can then be 
measured and used as scaling factors to be applied to the luminous intensity data measured 
on the short luminaire. 

However, it should be noted that even though the total, up, and down LOR may be 
measured accurately at short distances, the luminous flux in zones is not. In Figure 15.2 it is 
evident that the light will fall onto different zones as the sphere size is increased. 

Dunlop and Finch 2 carried out experimental work in which they analysed photometric data 
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derived from measurements taken at 3000 mm and 12 000 mm on 2400 mm and 1200 mm 
luminaires. In the worst case, the 2400 mm luminaire tested at 3000 mm, the utilization 
factors did not differ by more than one unit in the second figure from those derived from the 
12 000 mm data. However, there were quite considerable differences in zonal luminous flux, 
as would be expected. In an extension of this work, Riggs and Lampert, 3 who also compared 
measurements taken at 3000 mm and 12 000 mm on 2400 mm luminaires, showed that the 
accuracy of the transverse polar curve was good in most cases. Exceptions occurred at angles 
above 75 ~ . The axial polar curve was invariably markedly inaccurate, sometimes by as much 
as 30%. Their conclusion was that 3000 mm photometry gives light output ratios and utiliza- 
tion factors that are accurate enough for practical purposes. More recently these findings have 
been confirmed by Frost. 4 

An argument sometimes put forward as a justification of short distance photometry is that 
since we are usually concerned with short lengths in actual installations, short distance 
photometry is the more meaningful. 5 This is erroneous, for all calculations depend on the use 
of true luminous intensity. Thus, data derived by short distance photometry cannot be used to 
calculate accurate values of illuminance. 

�9 Movement of the luminaire. In some luminaires, parts, such as louvres, are held in place by 
gravity. Obviously if these luminaires have to be rotated about their own axis during a test 
then these parts will have to be secured, which can be time consuming. A more serious prob- 
lem to overcome is that the light output of some lamps changes with the temperature of the 
air surrounding them. This means that if an open luminaire, for instance, is turned upside 
down, the lamp may well operate at a lower temperate and increase its light output. 
Fluorescent lamps behave in this way, so that it is desirable that the luminaire be operated in 
its working attitude or position. It may still be necessary to rotate the luminaire about its verti- 
cal (first) axis. If this is done too rapidly it is possible that the layers of warm air surrounding 
the lamp are disturbed, thereby changing the light output. Rotation of certain high pressure 
discharge lamps may alter their light output. There may not be a marked change if the rota- 
tion is about the axis of the arc tube but otherwise the change may be very marked. 

�9 Reduction of stray light. By stray light is meant light that may reach the photocell other than 
directly from the source under test. Ideally, stray light should be entirely eliminated but this 
is impossible in practice. There are many places from which the stray light may come. 
Inevitably, the photocell sees the background to the luminaire (Figure 15.3). This background 
will change if the angle of view of the photocell changes. It is, therefore, necessary that all 
these surfaces, and they may be extensive in area, are painted matt black. Matt black paints 
vary in their reflectivity and one should be chosen that has a low reflectance. Matt black 
carpet can be a good material for absorbing light as the light is interreflected and absorbed in 
the tufts. It is essential that these surfaces are kept free of dust, which has a surprisingly high 
reflectance. Other surfaces that may reflect light are the bevelled edges of mirrors, and 
supporting structures of the photometer. These latter may be troublesome if the photocell 
'views' them at glancing angles of reflection and the light is incident at the same angles. 

15.4 Basic components for a l ight distr ibution photometer  

(1) Light measuring head. This takes the form of a photocell or photomultiplier in a housing. The 
housing narrows the field of view of the photocell to reduce the amount of stray light arriving 
at the photocell as already noted; however, the photocell can still see the background to the 
luminaire (Figure 15.3). Figure 15.25, page 506, shows how the baffles may be located. It is 
essential that the photocell, together with its associated circuit, has linearity of response 
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Fig. 15.3 Baffled photocell housing to reduce the amount of stray light reaching the photocell 

(Section 15.2, page 472). If the photometer is calibrated each time a test is performed, in 
terms of the bare lamp (that is, relative photometry is used), then it need not be calibrated in 
lux, but for absolute photometry it must be calibrated in lux. Correction to the V~t photopic 
spectral response of the eye, or any other appropriate response (scotopic or mesopic) is 
essential. Correction for oblique light incidence, the cosine correction (page 472) is usually 
not important as the maximum angle of the light incidence is small. In fact, cosine correc- 
tion may be undesirable as it may decrease the effective sensitivity of the photocell. 

(2) Mount for luminaire. This usually takes the form of a bar from which the luminaire can be 
suspended or a spigot for mounting road lighting luminaires. Provision should be made for 
mounting the luminaire securely so there is no untoward movement during a test. For road 
lighting luminaires, it is helpful if the angle of the mounting spigot can be adjusted easily. A 
gantry may be necessary where the luminaire has to be lifted to a height that cannot be 
reached easily. If one is used it should be checked that the luminaire maintains its test atti- 
tude when in its test position. Attention to ease of mounting is repaid in time saved. 

(3) Means of rotation and angular indication. Sturdy and vibration-free means of rotation is 
required. Indication is usually remote by electronic means, typically shaft encoders, espe- 
cially if any degree of automation is required. 

(4) Temperature control. The light output of some lamps, notably fluorescent ones, as has 
already been mentioned, is sensitive to temperature. When luminaires using these lamps are 
being measured, it is essential that the temperature is kept constant. CIE 121 and various 
national standards recommend an ambient temperature of 25 _ I~ This is difficult to 
achieve in the large space that a goniophotometer may occupy. Air conditioning has to be 
used with caution because it can cause draughts, which will waft away the warm air 
surrounding the luminaire or bare lamp. The room housing the goniophotometer should 
preferably be in the bowels of the building. 
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15.5 Light distribution goniophotometers for the (C, 7) 
coordinate system 

The (C, 7) is the coordinate system that is generally used for interior luminaires and there is pres- 
sure by some lighting organizations, national and international, to have it adopted as the univer- 
sal system applicable to all luminaire types. The designs of goniophotometer using the (C, 7) 
coordinate system are best considered in order of complexity. A great variety of designs is possi- 
ble and, whilst the following descriptions are not exhaustive, they should provide sufficient back- 
ground for solving particular problems. 

15.5.1 SINGLE MOVING PHOTOCELL, NO MIRRORS 

Figure 15.4 shows a simple photometer with a moving photocell on the end of a rotating arm. 
For convenience of mounting the luminaire, a gantry is used. If the arm is mounted on the gantry, 
only half the head room is needed. Luminous intensity measurements below the horizontal can 
be taken with the gantry in its upper position, and measurements above the horizontal can be 
taken with the gantry in its lower position. This saves head room but is inconvenient, and there 
may be a temperature difference at the two heights. 

Fig. 15.4 Revolving arm photometer 
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The photometer illustrated in Figure 15.5 employs a track along which the photocell can be 
moved by a cable. Whilst this overcomes the problem of sagging and torsion in the arm, a large 
diameter track is difficult to construct and advantage cannot be taken of being able to test the 
luminaire at two different heights. 

Figure 15.6 shows a revolving beam photometer. The photocell housing and luminaire are 
mounted at either end of a revolving beam. By means of the pulley arrangement shown, the lu- 
minaire is kept in its correct working position as the beam rotates; the central pulleys are kept 
stationary, but the end pulleys are free to rotate about their own axes. Sometimes gear wheels are 
used instead of pulleys, but over the long distances used in luminaire photometry (as opposed to 
lamp photometry) many or large wheels would be needed to span the distance. This apparatus 
has the advantage that it is possible to have an optical path nearly equal to the height of the labor- 
atory and to make an uninterrupted sweep around the luminaire. The luminaire can be mounted 
on the apparatus when the beam is at its nadir of rotation. 

There are two problems that have to be overcome with this apparatus. First, the top of the 
laboratory is usually warmer than the bottom so care has to be taken that the difference is not so 

Fig. 15.5 Track photometer 
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Fig. 15.6 Revolving beam photometer 

great as to affect the measurements significantly. Second, air is wafted through the luminaire as 
the beam is rotated, so its speed of rotation has to be restricted to minimize any cooling effect. 

Figure 15.7 shows a photometer suitable for use when headroom is very limited. Its use 
involves turning the luminaire out of its normal working position by means of the elbow joint 
shown in the figure. The apparatus is calibrated with the bare lamp in its normal position, a 
photocell at the nadir being used. The luminaire, also in its normal position, is then mounted on 
the apparatus and another reading taken at the nadir. The ratio of these two readings provides a 
correction factor for when the luminaire is turned so that its axis is in the vertical plane. At any 
given azimuth the measurement at the nadir of the luminaire provides a monitoring reading for 
correction of all the readings at that azimuth. When the azimuth is changed, an adequate time 
should be given for the luminaire to stabilize. 

Very often with the designs so far described, the optical path cannot be made long enough for 
measurements on the full range of luminaires. Mirrors can be used to overcome this problem by 
folding the optical path onto itself and so make the apparatus more compact. Photometers 
employing these will be described next followed by photometers employing other ingenious 
solutions. 

15.5.2 MIRROR PHOTOMETERS 

When mirrors are rotated, flexing takes place so that the surface may become cylindrical. This 
will alter the area of the image of the luminaire, and, therefore, the measured luminous intensity. 
The rule used for astronomical telescopes to reduce flexing is that the thickness of the mirror 
should be one sixth of its diameter. Following this rule would be very expensive, moreover, the 
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Fig. 15.7 Photometer for measuring luminaire out of its normal working attitude 

supporting structure would have to be correspondingly increased in strength. In practice, it has 
been found that mirrors with a thickness of only 6 mm for 700 mm diameter are satisfactory, 
although small errors, albeit of no practical consequence, are incurred. Flexing of the mirror can 
be overcome by cementing it to a lightweight supporting structure. A good quality coating is 
required, which must be evenly reflective over the surface of the mirror. If the mirror is coated 
on the back surface, the use of white glass, and not tinted glass, tinted perhaps because of the 
presence of iron or other salts, is to be preferred. 

Figure 15.8 shows a single mirror distribution photometer. In this, both the mirror and the 
photocell housing are fixed to the ann and rotate round the luminaire. As with the apparatus 
shown in Figure 15.4, the movement of the gantry can be used to halve the headroom needed. If 
this facility is not required, then in the interests of mechanical stability it is probably better to 
have the pivot of the arm held to a structure that does not move with the gantry. 

To save headroom, the mirror can be brought nearer to the luminaire and the optical path 
brought out sideways, as in Figure 15.9, but the mirror must not reflect light onto the luminaire. 

Figure 15.10 shows various other configurations for mirrors. If, as in Figure 15.10(a), the 
photocell is placed in the axis of rotation and at right angles to this axis, it need not move with 
the arm since the angle of incidence stays constant. However, the light is incident from different 
directions as the arm rotates, and care has to be taken that the photocell is equally sensitive to 
light incident in those different directions. Alternatively, two (Figure 15.10(b)) or three (Figure 
15.10(c)) mirrors can be used to direct into the axis of rotation of the arm, so that the light is 
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Fig. 15.8 Single mirror photometer 

Fig. 15.9 Single mirror photometer- light path brought out sideways 
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Fig. 15.10 Various configurations for mirror photometers 
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Fig. 15.11 Single mirror arrangement with fixed photocell" rotating light source 

always normal to the surface of the photocell. These arrangements also have the advantage that 
the photocell can be taken as far back from the goniophotometer as the available space will 
allow, provided the mirrors are large enough to allow a complete image of the luminaire as seen 
from the photocell. 

In an adaptation of the beam goniophotometer, the luminaire rotates around a centrally placed 
rotating mirror, which reflects the light into the axis of rotation. This is shown in Figure 15.11. 
It effects an economy in the number of mirrors required, but suffers from the same drawbacks as 
the beam goniophotometer. 

15.5.3 COLLIMATING PHOTOMETERS 

In this method, a lens, a parabolic mirror, or a mechanical means is used to select those rays of 
light that can be considered as contributing to the luminous intensity in a given direction. The 
advantage of this method is that the length of the optical path is considerably shortened. Some 
authors refer to this method as 'inverse collimation' but since the elements used are referred to 
as 'collimators' the term collimation has been adopted here. The method may be most readily 
understood by reference to some examples. 

In Figure 15.12(a) light from the source is focused at the aperture in the screen by the colli- 
mating lens, so that only a narrow beam of light is accepted. The aperture, which is set at the focus 
of the collimating lens, is imaged by the second lens onto the surface of the photocell. The collec- 
tion angle of the system is determined by the diameter of the aperture in relation to the focal 
length of the collimating lens; it is made narrower by decreasing the aperture and increasing the 



484 Measurements 

Fig. 15.12 Collimation by means of (a) a lens; (b) a mirror; (c) a perforated plate 
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focal length. Errors due to aberrations in the collimating lens can be reduced by making the focal 
length of the lens much greater (at least six times) than its diameter. This also reduces the error 
due to the light from the lens being incident obliquely on the photocell. It is essential that the 
collimating lens has a diameter somewhat greater than that of the source so that all the light in 
the direction of measurement is collected. To reduce interreflections the spacing between the lens 
and the source should be as great as possible. A system using a parabolic mirror, instead of a 
lens, can also be used (Figure 15.12(b)). This allows a greater source diameter to be measured 
(because it is easier to make a large diameter mirror than a lens) but it should be noted that an 
error is introduced by the obstruction of the pick-up elements that direct light on to the photo- 
cell. 

Even a parabolic mirror would be too expensive for measurements on a 1500 mm or 2400 mm 
luminaire. To overcome this, an ingenious system devised by Frederiksen 6 uses perforated plates 
placed one behind the other to restrict the collection angle to 4 ~ (Figure 15.12(c)). Behind these 
a matt white surface integrates the light, the illuminance from which is measured by a photo- 
multiplier. The sensitivity of a photomultiplier is required because the collimator allows very 
little light to pass. It has to be baffled in such a way that it produces a reasonably equal response 
to a given quantity light no matter where this enters the collimator. Complete equality of 
response, or nearly complete equality, is then obtained by blocking some of the holes. 

The collimator itself is made of injection-moulded plastic plates 1000 mm by 1000 mm by 
10 mm thick. Six of these plates are stacked behind each other to form an element of the colli- 
mator (only two plates are shown in Figure 15.12(c)). Since the collimator is about 1800 mm in 
diameter, support may be necessary to prevent it from sagging. 

As for the other collimating photometers, the diameter of the collimator, d, has to be some- 
what greater than the largest linear dimension, D, of the luminaire to be tested (Figure 15.13): 

d = D + 2r tan e 

where r is the distance between the luminaire and the surface of the collimator, and e is the 
collection angle. 

Fig. 15.13 Size of collimator in relation to luminaire 
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Fig. 15.14 Multiple photocell photometer 

15.5.4 MULTIPLE PHOTOCELL PHOTOMETER 

In this method, a separate photocell is used to receive the light at each of the required angles. 
The advantages are that the measurements can be taken very rapidly, the number of moving 
parts is minimized, and the photocell at the nadir can be used as a monitoring photocell. The 
disadvantage is the great number of photocells needed, which are costly and need to be kept in 
calibration. For measurements at 2.5 ~ intervals in the vertical plane at least 73 photocells are 
needed. 

Such a photometer has been described by Pritchard and Simons. 7 The layout of the photocells 
is shown in Figure 15.14. There are two sets of photocells: one for the measurements in the lower 
hemisphere, used when the luminaire is in its upper position; and another for measurements in 
the upper hemisphere, used when the luminaire is in its lower position. To ensure that the scal- 
ing of the luminous intensities is the same in both hemispheres, a, extra photocell is positioned 
to take readings at 75 ~ when the luminaire is in its lower position on the gantry. The photocells 
at 90 ~ for both the hemispheres could be used but very often the luminous intensity at this angle 
is nearly zero, or is zero. 

The photocells are calibrated relative to one another by means of a fluorescent tube, which is 
rotated about its own axis so that each photocell 'sees' the same part of the tube. During a test, 
all luminous intensity measurements are related to the measurement at the nadir. This monitor- 
ing eliminates fluctuations due to voltage and temperature variations. In addition, where only the 
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shape of the light distribution is required, as in some development work, the warming up time 
for the lamp can be eliminated. 

For reliability all switching is by electronic means and not by mechanical means, which can 
be unreliable. 

15.6 Goniophotometers for floodlights and projectors 

Floodlights and projectors have to be tested at much greater distances than luminaires for indoors 
and road lighting. This is because the receptor should be beyond the cross-over point (see Figure 
6.13, page 215) so that it 'sees' the whole of the projector flashed. The test distance may be miles 
in length for very parallel beams, as from searchlights, but with floodlights used for sports stadia, 
30 m is generally sufficient. 

A goniophotometer is required for aiming the luminaire in the desired direction. The gonio- 
photometer in Figure 15.15(a) uses the (B, fl) coordinate system, whereas the goniophotometer 
in Figure 15.15(b) uses the (C, ~') coordinate system. If desired, both coordinate systems can be 
combined in the same apparatus. The apparatus needs to be robust as floodlights can be very 
heavy. Moreover, a worm drive should be provided so that degrees of arc can be divided into 
parts, say tenths, accurately. 

Both these photometers suffer from the drawback that the luminaire is moved out of its work- 
ing position as the test proceeds, which may affect the light output from the lamp. It may be 
possible to overcome this problem by means of a monitoring photocell which has to be arranged 
so that it always 'looks' at the luminaire in the same direction. This photocell needs to 'look' at 
the whole luminaire, and not just part of the arc tube of the lamp, as the distribution of luminance 
of the arc tube may vary as it is rotated. This may rule out the use of fibre optics which, other- 
wise, would provide a very convenient solution to the problem as they cause little obstruction to 

Fig. 15.15 Two forms of goniophotometer for testing floodlights 
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the light and enable the monitoring photocell to be housed away from the heat of the lamp. 
Another solution is to keep the luminaire at its correct aiming angle during the test and to rotate 
mirrors about the luminaire, as in Figure 15.10, page 482. Strictly, a different set of data is 
required for each aiming angle. 

Because, as already stated, the test may need to be conducted with the photocell at a large 
distance from the luminaire, readings taken on the bare lamp for calibration purposes may be too 
small to achieve good accuracy. Provided the photocell is sensitive enough, it may be possible to 
overcome this problem by the use of different ranges on the photocell current measuring or indi- 
cating device. Alternatively, provision can be made for bringing the photocell closer to the gonio- 
photometer. If a large receptor is used, a check should be made that its angle of subtense at the 
luminaire is not too great. 

An alternative approach is to use an accurate illuminance meter. The luminous flux of the test 
lamp should be measured so that all readings can be multiplied by a factor to correct for any 
deviation from the nominal light output of the lamp. 

15.7 Checking the alignment of a goniophotometer 

The procedures described here apply to a goniophotometer using the (C, ?') system of coordin- 
ates, but they can be adapted for goniophotometers using the other coordinate systems. They can 
also be used in setting up a new photometer. A laser, which throws a bright spot of light at a 
distance, eases the task considerably. 

1. The first check should be for the verticality of the polar axis. If the goniophotometer uses a 
gantry the test should be done with the gantry at the height at which the luminaire is tested. 
If it is used at more than one height then the test has to be repeated at each height. 

A plumb bob is dropped from the centre of the spindle used for turning the luminaire 
through C angles and its position marked on the floor (Figure 15.16(a)). If the gantry is used 
at more than one height, all the nadirs should be coincident. Moreover, when the gantry is 
loaded with the heaviest luminaire to be tested, there should be no significant deviation from 
the position marked on the floor when the gantry is unloaded. 

A laser is then fixed to the spindle and directed to the nadir. The laser does not have to be 
in line with the spindle for this test, it can be to one side. When the spindle is rotated, the spot 
should remain stationary. If it does not it will describe an ellipse, which will be very nearly a 
circle. The centre of this should be marked and the laser directed towards it (Figure 15.16(b)). 
The spot should remain stationary. The distance between the nadir found with the plumb bob 
and this spot indicates the amount that the spindle is out of vertical. An adjustment should be 
made accordingly. 

2. The next step is to ensure that the vertical plane in which the measurements are taken is truly 
vertical and passes through the polar axis. For goniophotometers with rotating arms, this 
means checking that the axis of rotation is horizontal and passes through the polar axis. 

This can be done by attaching the laser to the arm used for rotation and using it to find the 
extended axis of rotation on a suitable surface, in a similar way to that which was used for the 
vertical spindle. A string is then tightly stretched between this point and the centre of the spin- 
dle used for rotating the arm. This should be horizontal - one way to check this is with a water 
level (basically water in a transparent flexible tube). In addition it should pass through the 
polar axis of the goniophotometer. If it does not then the necessary adjustments have to be 
made. 

The point where the two axes cross is the centre of the goniophotometer and some means 
should be provided for marking this position. Since this is in mid-air it is convenient to use 
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Fig. 15.16 Testing verticality of polar axis 

Laser 

an optical device such as a laser fixed to a wall, at the same height as the centre. Then, when 
it is switched on, its spot of light can be seen shining on the luminaire. It is also a good idea 
to mark permanently on a wall or other convenient surface the nadir and the point indicating 
the extended horizontal axis. These can then be used for future reference. 

3. It is now necessary to find the position of the C = 0 ~ vertical plane. This can be done most 
conveniently by using a device that allows the laser to be mounted coaxially on the vertical 
goniophotometer spindle and permits movement of the laser through measured angles in the 
vertical plane. This device is turned so the laser beam is coaxial with the horizontal axis of 
the goniophotometer. The laser is then turned through a right-angle in the horizontal plane. 
Its beam will now lie at C = 0 ~ 7 = 90~ allowing the angle indicators on the goniophotome- 
ter to be set. If the device for holding the laser is suitably calibrated, it permits the accuracy 
of 7 indication to be checked at a number of angles. 

4. The last step is to set the photocell box so that the laser beam is directed to the centre of it. If 
there are mirrors, these will have to be tilted to achieve this. A check should be made that 
when the laser beam is directed downwards and the goniophotometer arm is moved into the 
nadir position, the laser spot still lies in the centre of the photocell. Any straying indicates that 
there is bending in the arm or mirror. CIE 121 and most national standards allow an error of 
0.5 ~ in measurement. 

15. 7.1 OTHER CHECKS ON THE GONIOPHOTOMETER 

CIE 121 lists a number of performance checks which should be carried out. 

1. Stray light. An observer should view the luminaire mounted on the goniophotometer from the 
position of the photocell. A careful search for light reflected from the supporting structure and 
the bevelled edges of mirrors should be made. In addition, the background to the luminaire 
should be examined. Ideally this should be done from a number of angular positions; that is, 
at different values of 7. 
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2. Reflectance of mirrors. For this test a lamp is selected that exhibits little change of luminous 
intensity over a reasonably large angular zone of _ 10 ~ say. An opal tungsten lamp is suitable. 
The goniophotometer arm is positioned at the nadir and the light source is positioned on a 
horizontal bar attached to the azimuth spindle. When the bar is rotated, the luminous inten- 
sity should stay constant for any position of the lamp on the bar. In addition, when the light 
source is moved along the bar, the reading should remain constant. Care should be taken that 
the voltage is kept constant as the output of tungsten lamps varies as the power 3.3 of the volt- 
age. This means that a 1% variation in voltage produces a 3.3% variation in light output. If 
this source of error is made insignificant, variations in measured luminous intensity are most 
likely due to variations in the reflectance of the mirror or mirrors. Other possibilities that 
should be eliminated are stray light, the photocell not being at the nadir, and flexing in the 
luminaire mounting during its rotation. 

3. Linearity of response of photocells. This can be checked on a photometric bench but it is 
more convenient to use a specially constructed linearity testing box. As shown in Figure 
15.17 this consists of a box housing a number of light sources, usually GLS lamps run at a 
slightly lower voltage than the nominal voltage to increase life. These should be of different 
outputs, roughly proportional to the numbers marked on the diagram, so that a range from 1 
to 20 in nearly equal steps of illuminance can be obtained by exposing different combina- 
tions of lamps. The range can be extended by adding lamps of higher power or bringing the 
box nearer to the photocell. The different combinations of lamps for exposing to the photo- 
cell are obtained either by operating shutters or by switching. Shutters are probably prefer- 
able as repeated switching of the lamps might affect their output, and the switches 
themselves might introduce inaccuracies due to resistance at the contacts. It is used by 
exposing a number of lamps to the photocell at once, and then checking that the reading so 
obtained is equal to the sum of the readings when the lamps are exposed separately. The 
discrepancy is a measure of lack of linearity plus any experimental error due to voltage fluc- 
tuations. 

An advantage of this method over using a photometric bench is that photocells can be 
tested in situ, which is important when they are incorporated into the apparatus. 

4. Constancy of nadir reading. During a test when measurements are taken in a number of C 
half-planes, the nadir reading should stay constant. If there is variation, it can be due to the 
causes mentioned in point 2. This is a check that can be carried out every time a full test is 
done. The print-out of the/-table can, with advantage, be programmed to warn of any undue 
variation. 

Fig. 15.17 Linearity of response testing box 
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Fig. 15.18 Buck-boost fine voltage adjustment 

15.7.2 ANCILLARY EQUIPMENT 

Many hundreds of readings are needed to produce an/-table and some degree of automation is 
required to save time and overcome the tedium of doing the work manually. For this, a remote 
indication of angle is required, which is generally achieved by means of shaft encoders. These 
are capable of measuring to the nearest 0.1 ~ of arc without having to resort to gearing, which is 
necessary with magslips. Also, they can be used to feed the signal to a computer. 

A good voltage stabilizer is required, preferably one that does not give generous harmonics. 
It should be remembered, as already mentioned, that the output of filament lamps varies as the 
power 3.3 of the voltage. Hence, it is imperative that the voltage is monitored during a test, 
unless the light output itself is monitored. The task of doing this is eased if the measurements 
can be completed quickly. 

A method of fine adjustment of the voltage will be required. A variable auto-transformer used 
by itself will not permit fine enough control. The buck-boost circuit shown in Figure 15.18 can 
be used for this purpose. 

AB is a variable auto-transformer capable of taking the full load current. CD provides the fine 
adjustment through the fixed transformer. It need only be capable of taking one tenth of the full 
load current. 

Where low voltages are required, a step down transformer fed from a variable auto-trans- 
former can be used as an alternative to the buck-boost circuit. 

15.8 De te rmina t ion  of l ight output  ratios by integrators 

An integrator is a device such as a sphere with a white internal finish that collects all the lumin- 
ous flux from a light source placed in it. Provided that certain conditions, to be described, are 
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fulfilled, the illuminance on the integrator wall is proportional to the total luminous flux emit- 
ted. The devices are used in some laboratories for two reasons. They provide an easy method of 
measuring light output ratios because there are fewer readings needed than with distribution 
photometry, as few as four for a single lamp luminaire. This cuts down on the work required, but 
distribution photometry may still needed. Another advantage is that an integrator needs less room 
(or volume) than a light distribution photometer so it is easier to control the temperature, which 
is an important consideration with temperature sensitive lamps. There is no doubt that they are 
useful for development work where maximizing the light output ratio is an important consider- 
ation. However, it has to be said that, because of automation, distribution photometry is becom- 
ing so fast and reliable that the case for using integrators is less strong than it used to be. 

15.8.1 THE INTEGRATING SPHERE 

As will be explained, various shapes of integrator are used, but only the sphere has the funda- 
mentally correct shape. The validity of its use depends on the principle that the illuminance 
received on one area of a sphere from another part is independent of the relative positions of the 
two parts. This fact has already been proved in Section 3.6.2, page 76, in connection with deter- 
mining the total luminous flux emitted by a uniform diffuser. Making use of it, we can relate the 
illuminance received by a window to the total luminous flux emitted by a source, provided that 
the window is shaded from direct light by a baffle. A typical arrangement is shown in Figure 
15.19. The luminaire or lamp to be tested is suspended at or near the centre of the sphere, and 
measurements of light output are made by the photocell, which is baffled so that no light from 
the source can reach it directly. The auxiliary lamp with its baffle is used to compensate for 
absorption of interreflected light by the method explained later. The inside of the sphere is coated 

Fig. 15.19 Integrating sphere 
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with paint of reflectance p, and is assumed to behave as a uniform diffuser. In general, the direct 
illuminance will vary over the surface of the sphere. 

If A is the area of the sphere, the total luminous flux F from the source is given by: 

7g 

F = m  I L dA (15.1) 
p .  

where L is the initial luminance of an element dA of the sphere wall. 
The light reflected after the first reflection will illuminate all parts of the sphere, including the 

photocell, evenly. 
Hence, the illuminance due to the reflected light from dA received by all parts of the sphere, 

including the photocell, will be ffr/A)L dA, and the illuminance due to light reflected from all 
parts of the sphere will be fir~A) ~ L dA. 

From (15.1) this equals (p/A)F. 
Similarly, the illuminance due to the second reflection is (p2/A)F. This process can be carried 

out indefinitely so that the final illuminance E is given by: 

p p2 p3 
F = m F + ~ F + ~ F + . . .  

A A A 

A l - p  

Hence, E is independent of the distribution of light from the source or luminaire. 
Theoretically, if the reflectance of the sphere surface is known, it is possible to calculate F by 

measuring E. In practice, however, the assumptions made in the theory cannot be satisfied and 
so the sphere is only used for comparing sources; that is, for substitution photometry. The bare 
lamp is placed in the integrator and the reading R B obtained, this is replaced by the luminaire and 
the reading R E obtained. The light output ratio is then RLIR B. This has to be multiplied by a 
correction factor to allow for obstruction, as given. 

There are three main departures from the ideal sphere which must be considered. 

Effect of baffle 

Luminous flux falling on the baffle will produce less illuminance on the photocell than if it fell 
on part of the sphere wall 'visible' by the photocell. In addition, if direct light falls on the part 
of the sphere wall shaded by the baffle (PQ) it will also be less effective in producing illumi- 
nance on the photocell. Hence, the source should be positioned, if possible, in such a way that 
the minimum luminous flux falls on the baffle or shaded part of the sphere wall. In addition, the 
baffle should be made as small as possible, consistent with all light emitting parts of the bare 
lamp and luminaire being shaded from view. 

To reduce the error due to shading by the baffle, some authorities advocate the use of one that 
is translucent, the degree of translucency being determined by experiment. Other authorities 
argue that such a correction will only apply to one particular position of the source and screen, 
and if these are materially altered, a greater error than before may result. Another suggestion for 
reducing the error is to paint the baffle with paint of the highest reflectance available, so reduc- 
ing the amount of luminous flux absorbed. 

It can be shown by experiment that the position of the screen is not critical. Obviously it 
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should not be too close to the photocell, since in this position it would reduce the view of the 
photocell. On the other hand, the closer it is placed to the source the more luminous flux it will 
absorb. For a small source, Walsh 8 recommends placing it at a third of the sphere radius from the 
source. Since a range of sizes of luminaire may have to be catered for, a good compromise is to 
place it half-way between the end of the luminaire and the photocell. 

Diffusion properties of paint 

Errors will arise because the paint does not behave as a uniform diffuser, but these have not been 
investigated, and all that can be done is to ensure that the finish is as matt as possible. BS 3549 
makes recommendations for paint formulation, as does CIE 84.1~ 

Obstruction 

The luminaire and baffle interfere with the interreflection of the light in the sphere. Large lumin- 
aires may absorb a considerable amount of luminous flux, so introducing a large error. This may 
be minimized by making the sphere as large as possible, by not using paint of the highest 
refectance (less than 80%), and by using the auxiliary lamp method. 

In the latter, an incandescent lamp is fixed on part of the sphere wall that is not visible from 
the photocell position, that is PQ in Figure 15.19. Considerations of symmetry suggest the best 
position for this is on the line that passes through the photocell and the centre of the sphere. As 
shown, the auxiliary lamp is screened to prevent direct light from it reaching the source or lu- 
minaire, since its function is to correct for absorption of the interreflected light. To correct for 
absorption by the lamp to be used in the luminaire, the following three readings are taken with 
the auxiliary lamp on: 

(1) R l with the sphere empty, 
(2) R 2 with the unlit lamp in the sphere. 
(3) R 3 with the unlit luminaire in the sphere. 

The measured output of the lamp should, therefore, be increased by RI/R 2. Similarly, the 
output of the luminaire should be increased by Rl/R 3. The overall correction factor to be applied 
to the light output ratio is then equal to: 

R 1 R 2 R 2 

R 3 R 1 R 3 

So only the two readings R 2 and R 3 are required. 

Other shapes of integrator 

Owing to the expense of constructing a sphere, the difficulty of access inside it, and perhaps lack 
of headroom, other shapes of integrator are often used. If the integrator is used for comparing 
sources with a similar light distribution, then probably the shape is not critical. In luminaire 
photometry the light distribution from the lamp and the luminaire are, with very few exceptions, 
quite different. Keitz ll investigated various types of integrator by finding how the photocell read- 
ing changed when a spotlight was directed onto various parts of the integrator wall. Even with 
the sphere, the reading fell by as much as 15% when the spotlight was directed onto the baffle 
or the part of the wall masked by the baffle. As would be expected, the greatest readings were 
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registered when the spotlight was directed onto the parts of the wall the photocell could 'see' 
without obstruction. With two polyhedra, one 14 sided the other 19 sided, the maximum error 
increased to 20%, the error occurring over a greater proportion of the wall area than in the 
sphere. 

These figures confirm one practical detail we have mentioned already; that is, the luminaire 
or lamp should be positioned so that as little of the luminous flux falls on the baffle and masked 
wall area as possible. They also indicate it is important that before integrator measurements of 
light output ratio are accepted as reliable, they should be compared with those obtained by using 
light distribution photometry, which, as stated previously, is a more fundamental method. It has 
been found in practice that it is possible to obtain better agreement between the two methods 
than the figures quoted above might indicate. Possibly this is due to the errors obtained with the 
bare lamp and luminaire tending to cancel each other out, particularly in the case of linear fluo- 
rescent luminaires, where the shape of the axial light distribution is usually little modified, 
except where louvres are used. 

Construction of the integrator 

The materials that have most often been used in the construction of the integrator are wood, 
aluminium, mild steel, and fibre-glass. 12 

Access to integrators for painting and suspending the luminaire presents a problem for inte- 
grators with a height greater than about 2 m. A common solution is to use a travelling platform 
which goes through a trap-door half-way up the integrator. 

To provide platforms for the task of repainting the integrator when it is higher than about 
3.5 m scaffolding may need to be erected. Provision, such as sockets in the wall of the integra- 
tor, should be made for this. An alternative approach (Figure 15.20) is to have the integrator in 
two halves that can be drawn apart horizontally. Part of the top of the integrator can be left 

Fig. 15.20 Rectangular parallelepiped integrator which is split in half 
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stationary for suspension of the luminaire or lamp. This has a number of advantages. Besides 
making access to the integrator relatively easy for repainting, it allows the two halves to be 
moved well clear of operations when a luminaire is being suspended. This not only makes the 
process easier but reduces the risk of soiling the bottom. As most luminaires direct the greater 
proportion of their light downwards, even a small amount of soiling can affect the measurement 
of light output ratio appreciably. In addition, the two halves arrangement allows the luminaire to 
stabilize thermally in a less confined space, which is an important consideration with lamps 
having a luminous output sensitive to temperature. 

15.9 Practical procedures for testing luminaires 

The practical procedures for testing luminaires are described in detail in CIE 121 and various 
national documents such as BS 522513 and the US Lighting Handbook, 14 so there would be no 
point in our repeating these. Instead we will discuss some of the basic problems involved. 

15.9.1 CALIBRATION OF LUMINOUS INTENSITY DATA 

Luminous intensity data may be calibrated in one of two ways, by the absolute method or the 
relative method. 

In the absolute method, the light distribution photometer is calibrated by means of a standard 
lamp of known luminous intensity in a known direction, or by means of an accurately calibrated 
illuminance meter and application of the inverse square law. After this is done, the luminaire to 
be tested is mounted on the photometer and readings converted into candelas. This method is 
sometimes used in the testing of floodlights, but the data so produced are of limited use for 
design data. This is because the designer requires data based on the nominal or notional output 
of the lamp used in the luminaire and not the output of the particular lamp used for the test. In 
other words, the designer requires data that can be scaled to be representative of the actual light 
output of the lamp to be used in the lighting installation. 

The relative method of photometry enables this to be done. The usual base adopted for the 
light output of the lamp is 1000 lumens. To apply the method, the photometrist has first of all to 
choose lamps that have the correct nominal dimensions and electrical characteristics. These are 
then aged for the periods recommended in the various standards. The next step is to determine 
on the photometer the ratio of the luminous intensity in a convenient direction to the luminous 
flux of the lamp (cd/lm). Since this is a ratio, its value depends only on the shape of the light 
distribution of the lamp and not on its absolute light output in lumens. This means that absolute 
measurements are only taken once, when the nominal output of the lamp type is determined, 
usually by the lamp manufacturer. 

As this ratio depends only on the shape of the light distribution from the lamp, tungsten lamps 
can be run at a reduced voltage to prolong their life. Fluorescent lamps maintain a very constant 
shape of light distribution from one lamp to the next and Baumgartner 15 determined that the ratio 
of the luminous flux output to the luminous intensity at right angles to the axis is 9.25. 
Theoretically, if the tube were a uniform diffuser the figure would be n: 2. However, tempting as 
it may be to save time by using a readily available figure, better practice is to determine the ratio 
for each lamp. This is because the ratio varies with the length of the tube and the thickness of 
the fluorescent powder coating, which may not be constant circumferentially. 

To illustrate the relative method, consider the following example. We photometer the lamp 
and determine that it gives 10 candelas per 1000 lumens in a particular direction. So with the 
photometer head in this direction, we set the luminous intensity recording instrument to 10 
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candelas. We then put this same lamp in the test luminaire, and the recording instrument will be 
indicating candelas per 1000 lumens. 

If an integrator is used to determine the light output ratio (LOR), the procedure is slightly 
different. The luminous flux of the luminaire is determined in arbitrary units (A) by using one of 
the methods in Section 1.7, then; 

A 
Scale factor = 

LOR x 1000 x number of lamps 

This is applied to the luminous intensity values as a multiplier so that they represent can- 
delas per 1000 lumens. 

15.9.2 PHOTOMETRIC CENTRE OF LUMINAIRE 

The photometric centre of the luminaire is the point at which the inverse square law applies most 
closely. The position of this point may change according to direction. This may be understood 
by considering a box-shaped diffuser. In the direction of the nadir, the inverse square law would 
apply most closely from the centre of the bottom panel, whereas normal to one of the side panels, 
it would apply from the centre of that side panel. Hence, we have to make a compromise that 
gives the least overall error. It would be impracticable to determine this for each luminaire; 
instead certain conventions are adopted in CIE 121 and national standards. Some of these are 
indicated in Figure 15.21. 

15.9.3 TEMPERATURE CONTROL 

CIE 121 states that the ambient temperature should be 25_+1~ during a test, which is a very 
close tolerance for the large volume that a distribution photometer occupies. The lamps that are 
most sensitive to temperature change are fluorescent, and when these -  or luminaires incorpo- 
rating t h e m -  are being tested it is important to keep the temperature within the specified limits. 
Moveover, as has already been mentioned, there should be no draughts as these will alter the 
temperature of the air surrounding the lamp or luminaire. Most other lamps are relatively insen- 
sitive to temperature fluctuations. However, it is possible that temperature fluctuations will affect 
the output from the photocell or photocells, or their associated amplifiers, unless these have 
provision for thermostatic control (see Section 15.2, page 471). 

Opaque side I sT~lanspa~lent I 
] | I b~176 I 

o o / \ o o\_ 
. . . . . . . . . . . . . . . . .  . . . . . . . . . . .  _ . . . .  . . . . . . .  . . . .  . . . . . . . . . . .  . . . . . . . . . .  

of luminaire 

Fig. 15.21 Examples of photometric centres of luminaires 
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If a luminaire is to be used at a temperature significantly different from 25~ then its output 
should be measured at this temperature. Alternatively, temperature measurements that will 
enable a correction to be made must be taken in the luminaire. The bare lamps should still be 
measured at the same temperature (usually 25~ as that at which the nominal light output is 
measured. 

15.9. 4 ELECTRICAL MEASUREMENTS 

The lamp, in the case of filament lamps, or the control gear, in the case of discharge lamps, 
should be run at rated voltage. To do this accurately, leads - which are separate from the power 
supply l eads -  should be taken back to the voltmeter. This eliminates the error arising from the 
volt drop in the power leads and is particularly important with distribution photometers where 
the leads may be of considerable length. 

15.9.5 MULTI-LAMP LUMINAIRES 

Multi-lamp luminaires use more than one lamp of the same type. This is distinct from blended 
lamp luminaires (Section 15.9.7), which use different lamp types in the same luminaire. 

The lamps for multi-lamp luminaires should be photometrically matched to within 5% when 
used on the same ballast. This can conveniently be done in an integrator. Ballasts should also be 
matched to within 5% of the corresponding reference ballast. 

15.9.6 ANGULAR SPACING OF LUMINOUS INTENSITY MEASUREMENTS 

The angular spacing of the luminous intensity readings has to be such that interpolation proce- 
dures can be carried out to give the accuracy required for the practical application of the data. 

For general purpose luminaires, measurements are generally taken at 5 ~ in the vertical (C) 
planes and at 45 ~ or 30 ~ in azimuth. However, as automation of photometry is now commonly 
used, measurements closer than these, particularly in azimuth, may be taken to provide greater 
accuracy in calculation of illuminance and glare. 

For road lighting luminaires, the spacing of the measurements is graded in CIE 30.2 accord- 
ing to the likely rate of change of luminous intensity with angle and the importance of the lumi- 
nous intensity in affecting the road surface luminance. For instance, the angular steps are closer 
together in the direction of the main light beam than in regions under the luminaire. However, 
new standards being prepared recommend even angular spacing, certainly in the lower hemi- 
sphere. 

In conclusion, it can be said that with the advent of automation a high proportion of the time 
spent in testing a luminaire is in preparation and warming up. It is well, therefore, to make the 
angular spacings as close as is practicable so that full data are on hand for any demanding calcu- 
lation that may arise in the future. 

15.9.7 BLENDED LAMP LUMINAIRES 

In these luminaires, two different types of lamp are used. For instance, in some industrial flood- 
lights for high-bay lighting, a high intensity discharge lamp and a tungsten lamp are used in the 
same luminaire. If we want to test the luminaire with both lamps on at the same time we would 
have to make sure that the outputs of the lamps are in proportion to their nominal outputs, which 
may be difficult to achieve. However, this problem can be overcome by testing the luminaire with 



15.10 Measurement o f  r-tables 499 

only one lamp alight at a time, but with the other lamp in position. In the relative method of 
photometry this yields two/-tables, each based on 1000 lumens. 

Let �9 A and �9 B be the nominal luminous flux outputs, in kilolumens, of the lamps A and B. 
In a given direction, let the corresponding luminous intensity measurements be I a and 18, per 
kilolumen. Then the luminous intensity in the chosen direction is IA~ a + 180 B. 

When an integrator is used, the light output ratios LOR A and LOR B, determined separately for the 
two lamps A and B, are combined in the following formula to give the LOR for the combination: 

LOR = 
(LOR A x OA) + (LOR B x OB) 

O a + O  8 

This method is valid only if the heat generated by one lamp does not affect the light output 
from the other lamp. 

1 5 . 1 0  M e a s u r e m e n t  of r~tables 

The reflection properties of road surfaces need to be measured to enable the road surface luminance 
to be calculated for design purposes, as described in Section 9.8, page 353. Figure 15.22 shows the 
general layout of the apparatus used for these measurements. There are three main elements: 

(1) a turntable on which the sample is mounted and can be rotated about a vertical axis, 
(2) luminance meter, which views the sample along the reference axis (usually road axis) of the 

sample, at an angle (90 - a) ~ to the axis of rotation of the sample, 

Fig. 15.22 Apparatus for measuring an r-table 
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(3) a light source, which illuminates the sample and can be moved to vary the angle y, the angle 
of incidence. 

The turntable should be sufficiently sturdy to turn the sample without vibration or deflection. 
Adjustments should be provided to enable the top surface of the sample to be brought to the hori- 
zontal. Since the surface is often rough, achieving this is problematical. CIE 30-216 recommends 
placing a 5 mm to 10 mm foam pad on the sample and surmounting this with a flat mirror, which 
can be checked for horizontality with a suitable optical device. 

The luminance meter is rigidly fixed to the turntable so that it rotates with the sample and 
always views it in the reference axis of the road. The luminance meter should have a field of view 
of five minutes of arc in the vertical plane and ten minutes in the horizontal plane. The distance 
between the luminance meter and the sample should be sufficiently great for the whole of the 
lens to be above the level of the plane of measurement of the sample. 

The angle T can be varied either by moving the light source along a horizontal rail, as illus- 
trated, or at the end of an arm. The former method is preferred in CIE 30-2 because, it is argued, 
this is more in accord with what happens in practice - the angle subtended by the source at a 
point on the road sample diminishes the further the source is from the sample. In addition, it is 
very difficult to achieve the required angular accuracy with an arm, especially for parts of the r- 
table (Section 9.8.1, page 355) where values of tan T are high. For instance, r values are required 
for tan T equal to 11.5 and 12, which correspond to angles of 85.03 ~ and 85.23 ~ However, the 
lamp rail requires a long laboratory - more than 12 times the height of the rail above the sample 

- which may not be available. 
The sample is usually cut with a diameter of about 200 mm and a thickness of 100 mm. Since 

many road surfaces may flex and flow with the passage of time, the samples should be mounted 
on an inflexible base. The road axis should be marked on the sample, although it is generally 
assumed that road surface samples are isotropic. The reflection properties of a road surface may 
change with time, even in the laboratory. It is, therefore, important to take measurements as soon 
as possible after cutting the sample. 

In some instances, r-tables for wet surfaces are required, especially in the Nordic countries, 
where the road surface may be wet for a significant proportion of the time. 17 For the purpose of 
obtaining the standard wet condition, the sample is sprayed under the defined conditions in CIE 
30-2, and measurements are taken 30 minutes after turning off the spray. Distilled water should 
be used otherwise there may be a deposit of salts left on the surface of the sample. 

15 .11  I l l u m i n a n c e  m e a s u r e m e n t s  

Basically, an illuminance meter consists of a photometric head connected to a meter for indicating 
the current generated. The photometric head incorporates a photocell together with a means of 
correcting its spectral sensitivity to that required, and a means of correcting the directional response. 

For convenience, it is better to have the photometric head on a lead connected to the meter 
than have the head connected directly to the meter. The remote indication allows the operator to 
take readings without obstructing the incident light. Generally, the instrument has a number of 
scales that enable a wide range of illuminances to be measured accurately. Provision for connec- 
tion to a recorder is helpful where many readings have to be taken. A tripod may be necessary 
to achieve the correct height, although its use may be rendered impossible by the presence of 
furniture and other impedimenta. Gimbals for correcting the levelling of the photometric head 
may be helpful in dealing with uneven surfaces such as may occur in sports stadia. 

Photometric heads for measuring different types of illuminance are now described. 
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Fig. 15.23 Correction device for oblique light incidence 

15.11.1 PLANAR ILLUMINANCE 

Planar illuminance is illuminance on a plane that is coincident with the surface of the photocell. 
The surface of the photocell, whether selenium or silicon diode, tends to be glossy. The result is 
that a high proportion of the light impinging at angles of incidence of over about 60 ~ tends to be 
reflected and, consequently, does not reach the sensitive surface of the photocell. At 60 ~ to the 
normal, the error is about 10%, which increases to 40% at 85 ~ For a hemispherical sky the error 
is from 8% to 10% for a cell calibrated with normally incident light. 16 A matt finish provides 
only partial correction. 

Figure 15.23 shows an accurate method of correction. 18 The sides of the matt finish opal 
disc overcompensate for the light incident at high angles, and this is corrected by the screen- 
ing ring. The top surface of this must be level with the top surface of the opal disc so that light 
incident at 90 ~ does not reach the opal disc. It is imperative that the top of the disc is kept 
clean. 

When only one light source is being measured, as is usually the case in a laboratory, the effect 
of the reflection loss can be eliminated by tilting the photocell so that the light is incident 
normally to its surface. The readings are then multiplied by the cosine of the angle of tilt. 
However, this method is only valid if the source can be regarded as a point. 

15.11.2 OTHER MEASURES OF ILLUMINANCE 

Figure 15.24(a) shows the head for measuring cylindrical illuminance. Basically, it consists of a 
matt opal cylinder placed over a horizontal photocell. Owing to the preferential reflection of 
nearly vertical light rays, this head may be subject to error. An elaborate design to achieve greater 
accuracy has been developed by Gooding et al. 19 in which light travelling in a nearly vertical 
direction is directed onto the photocells by reflectors. The design for measuring semicylindrical 
illuminance (Figure 15.24(b)) is similar but half the cylinder is masked. The hemispherical 
photometer head (Figure 15.24(c)) is simply an opal hemisphere placed over a horizontal photo- 
cell. 

The photometer head for measuring scalar illuminance is illustrated in Figure 15.24(d). e~ This 
consists of a table-tennis ball cemented to a photocell at its base. To compensate for the reduced 
sensitivity in the direction of the back of the photocell, areas of the ball are masked. These areas 
are selected in such a way that the sensitivity of the device is independent of direction. 
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Fig. 15.24 Photometer heads for measuring (a) cylindrical; (b) semicylindrical; (c) hemispherical; and (d) 
scalar illuminance 

15.11.3 VECTOR ILLUMINANCE 

The component of the illuminance vector in a particular direction can be measured with a cali- 
brated cosine corrected photometer head. The normal to this is aimed first in the desired direc- 
tion and the reading recorded. It is then aimed in the opposite direction and the new reading 
subtracted from the first. When many readings have to be taken, it may be more convenient to 
use two cells back-to-back and connected electrically in opposition. Care has to be taken that 
they are matched in sensitivity, by suitable masking, if necessary, or the circuit compensates for 
any mismatch. The vector direction and magnitude can be calculated by taking six measurements 
on the faces of a cube 21 and calculating these quantities as explained in Section 8.5. 

15.11.4 TESTS ON ILLUMINANCE METERS 

The essential tests are as follows. 

(1) When the photometer head is covered so that no light reaches it, the reading should be zero. 
(2) In a multi-range instrument there should be agreement between the ranges. 
(3) The absolute values of the readings should be correct. To test for this, luminous intensity 

standards will be needed or comparisons can be made with an illuminance meter known to 
be accurate. 

(4) When the illuminated photometer head is covered and uncovered, the reading should recover 
in a reasonable time. 

(5) The spectral response should be as near as possible to that of the V;t curve or any other spec- 
tral response curve that is desired. 

(6) The directional response should accord with that for the photometer head being used. 
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More specific requirements are laid down in national and international 22 documents. These relate 
to fatigue, temperature dependence, evaluation of modulated light, peak overload capability, and 
evaluation of modulated light. 

15.11.5 ON-SITE ILLUMINANCE MEASUREMENTS 

Before measurements are taken on-site, the light output from the luminaires should be checked 
for stability. This can be done by taking measurements at a few points, at time intervals, say, of 
ten minutes and checking that reasonable stability has been reached. No hard and fast rules can 
be laid down for a definition of stability since, overlaid on the settling down of the lamps, there 
will be fluctuations due to supply voltage variation. 

Instruments brought indoors from the cold may suffer from condensation, so care should be 
taken to keep them warm if this is likely to happen. 

The weak point of many illuminance meters is the plug and socket for the photocell, if this is 
not directly wired to the meter. To avoid embarrassment, and loss of time, on arrival on site the 
functioning of the meter should be checked. In addition, there should be evidence of recent cali- 
bration. 

To find the average illuminance, the area is typically divided into a number of rectangles and 
the illuminance recorded in the centre of each rectangle. The readings are then averaged. To 
minimize the labour involved in a survey, the object is to take as few as possible readings consis- 
tent with achieving a stated accuracy. 

For average illuminance in interiors, Bean and Esterson 23 related the number of readings to 
the room index. This work has been updated by Carter et al. 24 who found thatthe number of 
measurement points for 10% accuracy should be nine times the room index (Table 15.1), whilst 
for 5% accuracy the multiplier should be 30, which represents a large increase in the labour 
required. Table 15.1 has been adopted in the CIBSE Code for interior lighting (1994). 25 The 
rectangles should be as close in shape to squares as possible. Presumably, this work only applies 
to regular layouts of luminaires, although this is not stated. Large errors result if the measure- 
ment points fall directly below the luminaires. To avoid this, extra lines of measurement may 
have to be taken. Measurements are generally taken at the height of the working plane, 0.8 m. 

The recommendations issued by other countries show wide differences. In the IESNA 
method 14 detailed samples are taken in a number of sub-grids in the area to be surveyed. 
Averages are found for each of these sub-grids and, from these, an overall average is calculated. 
Variations of this method have been adopted by other countries, for instance France, Australia 
and South Africa. 

Of interest, and detailed in the CIBSE Code for Interior Lighting, is a method devised by 
Einhorn. 26 It is applicable to rooms with 'a reasonably regular layout of luminaires, but not 
necessarily symmetrical or dissymmetrical, for instance the spacing from opposite walls or their 

Table 15.1 Relationship between number of points and room 
index for 10% accuracy 

Room index Number of points 

Below 1 9 
1 and below 2 16 
2 and below 3 24 
3 and above 36 
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colours need not be the same'. Measurements are taken along two perpendicular lines parallel to 
the walls. In each line, these measurements are evenly spaced with a half spacing for the read- 

m 

ings adjacent to the walls. Call the average readings so obtained E x and Ey. Let the illuminance 
at the intersection of the two lines be Eis, then the average illuminance is given by 

E x X E y  
Eav = (15.2) 

eis 

The result is inversely proportional to Eis so the point of intersection should therefore be 
chosen with care. It should not be directly below a luminaire or below a point midway between 
two luminaires. This dependence on a single reading may be regarded as a weakness of the 
method in that, if the reading is near luminaires that are not performing correctly, the result may 
be distorted. 

In daylight studies, readings from two illuminance meters taken simultaneously are often 
required. For instance, to measure the reduction of transmittance of glass due to deposition of 
dirt, a small area of the glass is cleaned and a photocell placed on this area and on a dirty area. 
Readings are then taken at the same time to ensure that the sky conditions are the same. The ratio 
of the two readings gives the reduction of transmittance due to the layer of dirt, provided that the 
calibration of the meters is the same. In a method devised by Tregenza 27 and to be described 
here, the effect of any difference in calibration between the two meters is eliminated by inter- 
changing the two meters and taking two more readings. 

For the method to work satisfactorily, it has to be assumed that the response of the meters is 
linear, there is no zero error, and the cosine correction of the two cells is the same. 

Let: 

A and B denote the illuminance meters; 
C A and C B be their calibration factors. These are the factors the readings have to be multiplied 
by to give calibrated readings; 
X a and X 8 be the readings taken by the meters; 
E l and E 2 be illuminances; 
T c and T d be the overall transmittances of clean and dirty glazing; 
rg and r d be the transmittances of the glazing material and the dirt layer. 

If Xal is the reading taken behind the clean glass when the outside illuminance is E 1 then 

XA1-E1TcCA 

Similarly, 

xB, = ElrdC8 
XA2 "- E2TdC A 
xB: = e2rcCB 

from which we obtain 

XA,X82 E, rcCA • E2rcC  

XA2XB, E2rdCa • E, rdC B ,/2 
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N o w  T a = rgrcl and T c = rg so, 

~ XA2XB1 
~d "- XAIXB2 

Where the photocell is held close to or on the glass, there will be interreflection between it 
and the glass. Tregenza estimates that the error is just less than 10% of the difference in 
reflectance between clean and dirty glass, for large photocells and photocells held close to the 
glass. 

This two-photocell method is also useful in the measurement of daylight factor, where simul- 
taneous readings have to be taken inside and outside a building. 

1 5 . 1 2  L u m i n a n c e  m e a s u r e m e n t s  

Luminance can be calculated from luminous intensity measurements or measured directly. 

15.12.1 CALCULATION FROM LUMINOUS INTENSITY MEASUREMENTS 

I 
t = m  

A 

where 

L is the luminance in the specified direction (cd/m2), 
I is the luminous intensity in the specified direction (cd), 
A is the orthogonally projected area in the specified direction (m2). 

This method is useful when the average luminance of a luminaire is required and the lumin- 
ous intensity distribution is available. In many cases the orthogonally projected area of the bright 
or flashed area can be calculated, otherwise it has to be measured by an imaging device such as 
a camera. The method is most suitable for diffuser luminaires, where the surface is reasonably 
evenly bright and the lamp is not visible. It is used in the calculation of discomfort glare (see 
Section 8.1, page 301). For this purpose, the file format (Section 2.7, page 61) contains infor- 
mation that enables the projected area to be calculated. This is not necessarily accurate but is a 
convention adopted for the purposes of glare calculations. 

15.12.2 USE OF A PHOTOCELL DIRECTLY 

In this method, a calibrated photocell is applied directly to the surface to be measured. It is, 
therefore, only of use for measuring the luminance of self-luminance surfaces or surfaces lit 
from behind. It does not measure the absolute value of luminance correctly since the photocell 
collects light from all directions, whereas luminance is directional, and light is interreflected 
between the photocell and the surface to be measured. However, if the photocell and meter 
combination is calibrated in lux, an approximate value of luminance can be obtained by divid- 
ing this by n: to give an answer in candelas per square metre. A better method is to calibrate the 
photocell and meter by using a surface of known luminance. This method is useful for exploring 
the variation of luminance over a surface. 
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Fig. 15.25 Baffled tube for measuring luminance 

15.12.3 USE OF A PHOTOCELL IN A TUBE 

The drawbacks of the previous method can be overcome by using a photocell mounted in a 
baffled tube (Figure 15.25), or one lined with black flock, which is placed on the surface to be 
measured. The diameter of the baffles should be the same as the diameter of the photocell, and 
the tube should be long in proportion to its diameter so that the device is selective as regards 
direction. This method is accurate if the tube is placed on the surface to be measured, which is 
not always possible because this may obstruct the light. If the tube is not placed on the surface 
an error may be incurred because different parts of the cell will 'see' different parts of the 
surface. If the surface is of substantially even luminance, the error incurred will be small. Most 
of these problems are overcome by an imaging device, which is described next. 

15.12.4 IMAGING DEVICES 

Basically, these devices produce an image as in a camera, a photocell in the focal plane being 
used to measure the luminance. 

Figure 15.26 shows how a single lens reflex camera might be used as a luminance meter. 
When the mirror is in the down position, the test surface can be viewed and the camera aimed. 
The function of the pentaprism is to present to the eye an upright image that is not laterally 
reversed, as it is on the ground glass screen. The mirror is then lifted to allow the light to fall on 
the photocell and measure the luminance. Care has to be taken when the camera is modified for 
its new use that the area seen corresponds to that measured. This can be done by replacing the 
photocell with a ground glass screen and viewing the image falling on it. It will then be neces- 
sary to adjust the mask under the ground glass screen accordingly. Since the illuminance on the 
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Fig. 15.26 Single lens reflex camera used as a luminance meter 

photocell depends on the distance of the lens from it, a correction has to be applied if the lens is 
moved for focusing. This is a usable instrument but it does suffer from the drawback that, at the 
moment a measurement is taken, the image disappears because the mirror is lifted. 

Some care should be taken in selecting a lens. There is inevitably some scattering of light in 
the lens, even with modem anti-reflecting coatings. In addition, some lenses produce ghost 
images. These may become apparent in road lighting photography, where a ghost image of a 
luminaire may be produced on the image of the road. Similarly, zoom lenses are to be avoided 
as they may consist of as many as 15 elements and certainly degrade the image. 

Commercially available instruments use the general principal of the reflex camera but with 
arrangements for overcoming the problem of the image disappearing at the moment of measure- 
ment. Figure 15.27 shows the arrangement used for the Spectra-Pritchard meter. The objective 
forms an image of the test surface in the vertical plane passing through the aperture of the mirror 
and normal to the axis of the optical system. Light that passes through the aperture is directed onto 
the photomultiplier by the field lens. The remainder of the image is viewed through the eyepiece. 
The angle of view can be varied by using mirrors with different apertures. In addition, lenses of 
different focal lengths can be used. The main disadvantage of this type of instrument is that the 
part of the image that is being measured is not visible. In practice, this causes little inconvenience. 

The illuminance on the focal plane is not uniform even if the object portrayed is of uniform 
luminance. It decreases according to the distance of the point on the image from the centre of 
the image. It is, therefore, necessary to calibrate the camera so that a correction can be made, 
which can be carried out by using the luminance box described in Section 15.12.6. It will be 
necessary to do this for each lens, because the rate of fall-off of illuminance depends on the 
distance of the lens from the focal plane, and also for a number of focusing distances of the lens. 
The aperture used will also affect the calibration. 
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Fig. 15.27 Optical system of Spectra-Pritchard photometer 

In some luminance meters the opposite arrangement is used; that is, the light is directed onto 
the photocell by the mirror and the direct light goes to the eyepiece. This has the disadvantage 
when measuring polarized light that the amount of light reflected by the mirror varies according 
to the plane of polarization. In another arrangement an optical fibre is used to collect light for 
the photocell. The light collected by this may also be susceptible to polarization. 

For many purposes, an instrument is required that has a very small field of view, perhaps only 
2 minutes of arc, and is capable of measuring low luminances. Such an application would be in 
road lighting, where luminances as low as 0.1 cd/m 2 have to be measured reliably. An instrument 
capable of doing this would use a photomultiplier. For these applications a stout tripod is essen- 
tial. This should have a geared pan and tilt head so that fine angular movements can be made. 

15.12.5 INSTRUMENTS DEPENDING ON VISUAL JUDGEMENT 

In the past, a number of luminance meters were available that depended on the user making a 
visual judgement to measure the luminance. This judgement consisted of matching a spot of vari- 
able luminance against the luminance of the test surface, both seen side by side in a viewfinder. 
This matching is difficult to do, especially as the test surface is invariably a different colour from 
that of the matching surface. There could be a significant variation in the readings obtained by 
different observers, this in some cases is due to defective colour vision. These instruments have 
been superseded by the photocell or photomultiplier instruments described previously. 

15.12.6 CALIBRATION OF LUMINANCE METERS 

There are two methods of calibrating luminance meters: 

(1) with an illuminated surface of known reflectance. The surface has to be evenly illuminated 
by a source of known luminous intensity so that the illuminance can be calculated, or can be 
measured directly. 

(2) with an opal surface illuminated from behind. Here the transmittance of the surface has to 
be known, or the luminance can be calculated from a measurement of the illuminance it 
produces. The evenness of the luminance can be measured by the baffled cylinder described 
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in Section 15.12, page 505. This method has the advantage that a sealed unit can be made, 
which is convenient to use at any time. By having two compartments, one housing the light 
source, the other with the opal diffuser, separated by a plate with a variable aperture, it is 
possible to vary the luminance conveniently and in a reproducible manner. 

15.12. 7 TESTS ON LUMINANCE METERS 

Many of the tests enumerated in Section 15.11.4 for illuminance meters also apply to luminance 
meters. Some additional ones, however, are worthy of mention. 

(1) The effect of the surrounding field. The luminance of the surrounding field should not affect 
the reading of the luminance of the patch to be measured. Light scattering in the lens is the 
most likely source of error. 

(2) Directional response. A bright patch within the field of measurement of the meter should 
give the same reading of luminance independently of position. 

(3) Polarized light. The light reflected off or transmitted by some surfaces (Section 6.8, page 
235) can have a high component of polarized light. In these situations, therefore, it is impor- 
tant that the reading takes into account polarized light. 

15.12.8 LUMINANCE PATTERN OF A SCENE 

Whilst the luminance of individual points in a scene can be measured by a luminance meter, this 
process is tedious and lengthy where the whole luminance pattern needs to be recorded. The 
photocell in a tube described previously (Section 15.12.3) can be used to scan a scene, 28 but for 
precision an imaging system is needed. Computer processing of the image is an essential adjunct 
to this and enables correction of most of the lens errors to be made in the final result, with the 
exception of light scattering or the formation of ghost images. 

A photograph on film is able to provide an image where the optical density is a function of 
the luminance, but the inaccuracies are likely to be large. These arise for a number of reasons: 

�9 the illuminance on the focal plane is not uniform even if the object portrayed is of uniform 
luminance. It decreases according to the distance of the point on the image from the centre of 
the image. It is, therefore, necessary to calibrate the camera so that a correction can be made, 
which can be carried out by using the luminance box described in Section 15.12.6. It will be 
necessary to do this for each lens because the rate of fall-off of illuminance depends on the 
distance of the lens from the focal plane, and also for a number of focusing distances of the 
lens. The aperture used will also affect the calibration. Computer processing of the image eases 
the application of these corrections in the final result 

�9 the optical density of the image varies according to the evenness of development of the image 
and the evenness of the photographic emulsion. 

However, in spite of these inaccuracies, Hopkinson 29 showed that, provided that the exposure 
both in taking the photograph and printing it are carefully controlled, good representational 
photographs can be obtained. 

Charge-coupled devices (CCD) have been used successfully for recording the luminance of 
scenes. 3~ These enable the scene to be analysed by computer, giving the research worker a 
very powerful tool, especially for road lighting, since there is no need to close the road. However, 
up to the present time, human intervention is needed for selection of the part of the scene that is 
of interest. 
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LIGHTING BODIES AND ASSOCIATED STANDARDIZING ORGANIZATIONS 

Initials Name Comments 

AFE Association Franqaise 
de l'Eclairage 

AFNOR Association Franqaise 
de Normalisation 

ANSI American National 
Standards Institute 

BSI The British Standards 
Institute 

CEN Comit6 Europ6en de 
Normalisation 

CENELEC 

CIBSE 

CIE 

DIN 

IALD 

IEC 

Comit6 Europ6en de 
Normalisation 
Electrotechnique 

The Chartered 
Institute of Building 
Services Engineers 

Commission 
Internationale 
de l'Eclairage 

Deutsches Institut 
ftir Normung 

The International 
Association of 
Lighting Designers 

The International 
Electrotechnical 
Commission 

The French lighting society. Produces recognized 
recommendations. Linked to the lighting magazine 
Lux. 

The French standardizing body. 

The American standardizing body. 

The British standardizing body. 

The European standardizing body, which deals with all 
matters not dealt with by CENELEC. 

European body parallel to IEC. 

The UK body concerned with building services. 
The Society of Light and Lighting formed from the 
The Lighting Division of CIBSE in June 2000 is 
responsible for lighting matters, principally as they 
relate to buildings. Formerly the IES - The Illuminating 
Society (London). Produces LR&T-  The International 
Journal of Lighting Research and Technology. 
Linked to the lighting magazine, Light and Lighting. 

International body devoted to cooperation on matters 
related to the art and science of lighting. Produces 
recommendations, reports, and standards. 

The German standardizing body. 

Promotes the lighting design profession and advances 
lighting design excellence in the built environment 
internationally. 

The authority for intemational standards for electrical 
and electronic engineering. 
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Initials Name Comments 

IESNA 

ILE 

ISO 

SANCI 

The Illuminating 
Engineering Society 
of North America 

The Institution of 
Lighting Engineers 

The International 
Organization for 
Standardization 

South African 
Committee on 
Illumination 

The lighting society of North America. Produces ANSI 
recognized standards and practices. Publishes Journal of 
the IES (JIES) for scientific papers, and the magazine 
Lighting Design + Application (LD+A). 

UK lighting body formerly mainly concerned with the 
lighting of roads but now involved with all branches of 
lighting. Produces recommendations. 

Originally APLE - The Association of Public Lighting 
Engineers. 

Produces The Lighting Journal, a lighting magazine. 

The international federation of institutes for national 
standards. 

The South African illuminating engineering body. 
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A, a system 2 
solid angles 28 

Access zone 403 
Accidents in road lighting 346 
Accuracy 

calculation for louvres 179 
in lighting calculations 322 
light path length 1 
zone factors 26 

Adaptation level 402 
AFE 511 
AFNOR 511 
Age effects in vision 348, 387 
Airfield lighting 440 

approach lighting 441 
centre-line 44 1 
cross bar 441 
edge lights 448 
inset luminaires 446 
PAPI 441 
threshold 441 
VASI 443 
wig-wag 449 

Alternative meaning for the transfer function 166 
Angle of approach indicators 443 
Angle between two vectors 113 
ANSI 511 
Anti-panic area lighting 450 
Apparent brightness 

dependence on adaptation level 317 
in visualization 343 
Waldram method 318 

Area sources 
direction of vector 67 
flux transfer 148 
intersecting planes 71 

Aspect factor 
derivation 97 
extension to K factor 134 

Average cylindrical illuminance 
zonal multipliers 158 

Average scalar illuminance 
zonal multipliers 158 

Axial intensity curve 
effect on aspect factor 96 

Axial polar curve 96 
fluorescent luminaire 20 

Azimuthal projection 22 

B, fl system 2 
solid angle 28 

Beam angle 
floodlighting 417 
road lighting 350 

Black hole effect 402 
BS 5489 Part 2 359 
BS 5489 Part 3 391,395 
BS 5489 Part 7 405 
BSI 511 

C classification, of road surface 359 
C, y system 2 
CAD drafting 201 
Calculation of cubic illuminance 323 
Calculation of luminous flux 25 
Candela 18 
Cartesian coordinate diagrams 19 
Cavities 

equivalent reflectance 190 
flux transfer 167 

Cavity index 193 
Cavity method for utilization factors 191 
CEN 511 
CENELEC 511 
Central battery systems 449 
Change of reflectance 

correction of UF 189 
Chroma 292 
Chromatic adaptation 282 

Colour Rendering Index 298 
Chromaticity diagram 273 

colour mixture 283 
Chromaticity coordinates 

RGB system 272 
XYZ system 278 

CIBSE 511 
CIBSE Code 

for interior lighting 344 
CIE 511 
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CIE 61 (1984) 405 
CIE 93 346 
CIE 115 370 
CIE Colour rendering index 298 
CIE system 

colorimetric 275 
Classification of rooms 

basis of Room Index 181 
Colour difference equation 299 
Colour matching function 277 
Colour mixture 270 
Colour rendering 298 
Colour sample systems 292 
Colour appearance 

colour rendering 298 
of a light source 289 

Colour mixture 
on chromaticity diagram 283 

Colour of light source 
residential lighting 392 

Colour space 298 
visualization 299 

Colour temperature 
of standard illuminants 294 

Comfort index 340 
Component sources 

method of 82 
Computer calculations 7 
Cone diagram 

for floodlights 438 
Cones 

in the retina 270 
three types in retina 271 

Conical illuminance 
calculation 110 

Contrast 367, 403 
Coordinate systems 

practical 2 
Correlated colour temperature 289 
Cosine law 16 
Cosine power series approximation 128 
Crime 

in residential lighting 389 
Critical angle 235 
CSP 339 
Cubic illuminance 323 
Cut-off light distribution 349 
Cylindrical illuminance 

approximate formula 339 
calculation 106 
reflected component 195 

Daylight 
calculations 453 
coefficients 466 
factor 455 
factor at a point 466 

Depreciation factor 375 
Design tables 

main road lighting 376 
Designed appearance lighting 317 
Deviation 

of ray at boundary 239 
DIN 511 
Direct sunlight 468 
Disc source 

non-uniformly diffusing 88 
uniformly diffusing 76 

Distribution factor 184 
DLOR 174 
Dominant wavelength 286 

Emergency lighting 449 
Escape route lighting 449 
Exit zone 403, 408 
Eye 270 

f-number 239 
File formats 61 
Floodlighting 411 

buildings 431 
diagram 417 
sports 411 
training plan 415 

Flux calculations from intensity distribution 25 
Flux transfer 121 

between opposite parallel rectangular surfaces 148 
from a linear source 134 
from a point source 126 
function 165 
to a vertical surface 161 
within a cylindrical enclosure 162 

Flux calculation from/-table 
B, fl coordinates 60 

Fresnel 
lens 263 
reflection 235, 237 

Flux 
C, ?' coordinates 57 

Full radiator 289 

G (Glare Control Mark) 352, 369 
General colour rendering index 298 
Glare Control Mark 352, 369 
Glare 

control in sports 413 
Glare index 301 

calculation 312 
formula 302 

Glare rating 301 
GR 413 
Graphical methods 

main road lighting 380 
residential road lighting 395 



Index 515 

Hemispherical illuminance 
approximate formula 339 
calculation 109 
residential lighting 390 

High risk task area lighting 450 
Horizontal illuminance 

residential lighting 390 
Hue 292 
Hue circle 294 
Hue triangle 294 

/-table 
correcting for tilt 53 
example for C, 7 coordinates 35 
interpolation at boundary 42 
layout 34 
linear interpolation in 38 
luminous flux from 57, 60 
quadratic interpolation in 40 

IALD 511 
IEC 511 
IESNA 376, 512 
ILE 512 
llluminance 15 

area sources 71 
as a vector quantity 67 
calculation, in sports 417 
definition 18 
grid 32 
horizontal uniformity, in sports 413 
horizontal, in sports 411 
line source 95 
measurement 500 
on oblique plane 68 
point source equation 17 
the illumination vector 337 
tilted rectangular source 84 
vector quantity 67 
vertical in sports 412 

Illumination solid 336 
Inset luminaires 446 
Integrators 491 
Intensity table 34, see/-table 
Interior lighting 301,344 
Intermediate zone 403, 407 
Interpolation 

/-table 37 
r-table 362 

Interreflected light 169 
Interreflections in rooms 183 
Inverse-square law 15 
IP 375 
ISO 512 
Isocandela diagram 20 

in sports lighting 417 
Isoluminance diagram 382 

Isoluminance template 383 
Isolux diagram 32, 393 

K factor 134 

L20 401 
Lagrange interpolation 37, 362 
Lamp lumen maintenance factor 308 
Lamp survival factor 308 
Lamps 

fluorescent 202 
high intensity discharge 203 
luminance of 204 
tungsten filament 204 

Large area sources 101 
Lav 352 
Lenses 

Buffon 262 
flashing of 260 
formulae 258 
Fresnel 263 
image formation 259 
parabolic surface 262 
spherical aberration 261 
stepped 262 

Light trespass 346 
Light field I 
Light flux 14 
Light guides 

metallic 232 
using refraction 265 

Lighting levels 
floodlighting 432 

Lighting design 
visualization 343 
Waldram method 318 

Line sources 
aspect factors 95 
long 103 
oblique plane 70 

Linearity tester 490 
LLMF 374, 395, 419 
LMF 374, 395, 419 
Long line source 103 
Longmore formula 459 
LOR 

measurement 474 
opal sphere 172 
see DLOR 

Louvres 177 
parabolic section 218 

LR&T 511 
Lumen 18 
Luminaire maintenance factor 308 
Luminaires 171 

inset 446 
self-contained emergency lighting 449 
photometric centre 497 



516  Index  

Luminance coefficient 355 
Luminance 72 

factor 286 
in optical design 204 
measurement 505 
of image 238 
yield 380 

Luminous intensity table 34, see/- table 
Luminous exitance 72 
Luminous flux 14, see flux 

unit of 18 
Luminous flux calculation 

from intensity 25 
from/-table, B, fl coordinates 60 
from/-table, C, ~' coordinates 57 

Luminous intensity 14 
distribution diagrams 19 
unit of 18 

Lune 10 
Lux 18 

Macadam ellipses 288 
Main road lighting 

see road lighting, main and motorway 
Maintained illuminance 301 
Maintenance factor 

in floodlighting 419 
in interior lighting 308 
in road lighting 374, 395,419 

Matrices 
for illuminance calculations 184 
for turning luminaire coordinates 47,426 

Mesopic eye response 270 
in road lighting 387 

Metamerism colorimetry 271 
M F  374, 395,419 
Mirrors 

circular section 210 
ellipse 219 
faceted 224 
horned & peaked quartics 220 
hyperbola 219 
in photometers 479 
involute of circle 223 
non-mathematically defined 226 
parabolic louvres 218 
parabolic section 211 
plane 206 
sharp cut-off 222 

Modelling 302 
Modified Lynes formula 

daylight design 457 
Motorway lighting 
see road lighting, main and motorway 

Munsell system 292 

N classification 359 
Natural colour system 294 

NCS system 294 
non-cut-off light distribution 349 
Non-planar illuminance 104 
Non-uniformity of CIE (1931) diagram 288 
Non-uniformly diffuse area sources 88 

Office lighting 339 
Optical design 201 
Orientation of luminaire 50 
Overcast sky 452 

PAPI 444 
Parabolic mirrors 211 
Peak luminous intensity 349 
Performance Index 341 
Performance sheets 

main road lighting 379 
Perspective in road lighting 385 
Photo electric cells 

cosine response 472 
fatigue 472 
linearity of response 472 
modulated light 473 
polarized light 473 
response time 472 
sensitivity over surface 473 
spectral response 471 
temperature dependence 473 

Photocells, see photoelectric cells 
Photometers, light distribution 

(B, fl) system 487 
(C, ~') system 477 
(H, V) system 487 
alignment 488 
basic components 475 
checks on 488 
collimating 483 
linearity tester 490 
mirror 479 
multiple photocell 486 
no mirror testing procedures 496 

Photopic vision 270 
Point source illumination equation 17 
Polar coordinate diagrams 19 
Polar curves 19 
Polar solid 

illuminance 336 
intensity 20 

Polarization 237 
Precision approach path indicator 444 
Principle of equivalence 74 
Prisms 

axial plane control 249 
design of banks 252 
rays not in principal plane 248 
reflecting 244 
refracting 243 
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systems 243 
transverse plane control 251 

Public buildings 437 
Purity 

colour 286 

q0 355 
Q0 355 

r 355 
R classification 359 
r-table 355, 358 

interpolation 362 
measurement 499 

Radiosity 170 
Ratio of cylindrical to horizontal illuminance 303 
Ray tracing 

in optical design 205 
Reciprocity 121 
Rectangular source 80 

general equation 84 
Reduced luminance coefficient 355 
Reflection, in optical design 

at boundaries 235 
diffuse 233 

Reflection 
internal 235 

Reflector systems 206 
Reflectors 

see mirrors 
Refraction 

laws of 234 
Refractive index 234 
Refractor 

systems 234 
Residential road lighting 

see road lighting, residential 
Revealing power 373 
RGB system 272 
Road surfaces 355 
Road lighting, main and motorway 

accidents 346 
age effect 348, 387 
arrangement of luminaires 348 
average road luminance 352 
beam angle 350 
contrast 367 
design tables 379 
disability glare 352 
glare control mark 352 
light patterns on road 351 
longitudinal uniformity 352 
luminance yield 380 
luminance 353 
main road classes 370 
maintenance factors 374 
observer position 354, 383 

overall uniformity 352 
performance sheets 376 
pollution 346, 375 
quality criteria 352 
road surfaces 355 
silhouette vision 347 
small target visibility 347 
STV 347 
surround ratio 352, 369 
threshold increment 352, 366 
visibility 371 
visibility level 373 

Road lighting, residential 
calculation grid 393 
colour of light source 392 
crime 389 
design data sheet 394 
glare 392, 395 
isolux diagram 395 
lighting measures 390 
recommendations 391 

Rods 
in the retina 270 

Room index 182 
Room surface maintenance factor 308 
Rotation of luminaire 

C, ), coordinates 45, 48 
Run-back 349 
Runway lighting 

centre-line 442 
edge lights 442 
pattern 442 

Russell angles 29 
RVR 440 

SI, $2 355, 357 
SANCI 512 
Satisfaction index 341 
Scalar product 112 
Scalar illuminance 

approximate formula 339 
average value 158 
calculation 104 
practical lighting design 302 
reflected component 195 

Scotopic vision 270 
Screens in tunnels 409 
Self-contained emergency lighting luminaires 449 
Semi-cut-off light distribution 349 
Semicylindrical illuminance 

approximate formula 339 
calculation 109 
residential lighting 390 

Small Target Visibility 347 
Solar declination 468 
Solid angle 8 

glare calculation 314 
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subtended by a rectangle 10 
subtended by a disc 9 

Spacing to mounting height 303 
Spectral luminance factor 278 
Spectral reflectance 278 
Spectral response of photocells 471 
Spectral sensitivity 271 
Spectral transmittance 278 
Specular factor 355 
SR 352, 369 
Stand-by generators 449 
Standard illuminants 294 
Standardising bodies 511 
Statues 437 
Steradians 8 
Stopping distance 404 
Stopping sight distance 405 
STV 347 
Subtractive colour mixture 294 
Surface distribution factor 154 
Surround ratio 352, 369 

Task lighting 301 
Test samples 

Colour rendering index 298 
Threshold zone 403, 406 
Threshold increment 

main roads 352, 366 
tunnels 409 

TI 352 
Tilting the luminaire 49 
Toe-in angle 349 
Transfer factor 187 
Transfer function 

alternative meaning 166 
Transformation of coordinate systems 

Aa to B/3 5 
Aa to C~' 4 
B/3 to Aa 5 
B]3 to C~' 6 
C?' to Aa 6 
C?' to B/3 7 

Transition zone 403, 407 
Transmission 

diffuse, in optical design 233 
Transmittance 177 

of clear glass 468 
Transverse polar curve 20 
Triangular source 

non-uniformly diffuse 90 
uniformly diffuse 79 

Trichromatic colorimetry 271 
Tristimulus values 272 
Tunnel lighting 402 

counterbeam 403, 406 
symmetrical 403, 406 

Tunnels 
access zone 403 
exit zone 403, 408 
interior zone 403, 407 
screens 409 
threshold zone 404, 406 
transition zone 404, 407 
utilization factor 187 
zones 403, 405 

Turning the luminaire 
B,/3 coordinates 57 
C, ?, coordinates 45 

UCS diagram 289 
u,~ 352 
ULOR 174 
Unified glare rating 

formula 302 
Uniform chromaticity scale diagram 288 
Uniform diffuser 73 
Uniform diffusion 72 
Unit hemisphere method 75 
Utilization factor 184 

residential lighting 398 

V;t response curve 277 
VASI 443 
Vector scalar ratio 302 
Vertical illuminance 71 

mean value at a point 106 
residential lighting 390 

Visibility in road lighting 347, 371 
Visual approach slope indicator 443 
Visual Comfort index 340 
Visual Performance index 341 
Visual Satisfaction index 341 
Visualization 

colour 299 
on tv monitor 343 

VL 373 
Voltage adjustment, fine 491 
Von Kries 283 

W classification 360 
Waldram 318 

silhouette principle 347 
Waldram diagram 468 
Weber-Fechner Law 403 
Wig-wag 449 
Window area 455 
Wohlauer's construction 31 

Zonal flux 32 
Zonal fractions 154 
Zonal multipliers 148 
Zone factor method 25 
Zone factors 26 
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