
123

Chiara Francalanci
Markus Helfert (Eds.)

5th International Conference, DATA 2016
Colmar, France, July 24–26, 2016
Revised Selected Papers

Data Management
Technologies
and Applications

Communications in Computer and Information Science 737

Communications
in Computer and Information Science 737

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Chiara Francalanci • Markus Helfert (Eds.)

Data Management
Technologies
and Applications
5th International Conference, DATA 2016
Colmar, France, July 24–26, 2016
Revised Selected Papers

123

Editors
Chiara Francalanci
Department of Electronics and Information
Politecnico di Milano
Milan
Italy

Markus Helfert
School of Computing
Dublin City University
Dublin
Ireland

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-62910-0 ISBN 978-3-319-62911-7 (eBook)
DOI 10.1007/978-3-319-62911-7

Library of Congress Control Number: 2017945731

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The present book includes extended and revised versions of a set of selected papers
from the 5th International Conference on Data Management Technologies and
Applications (DATA 2016), held in Lisbon, Portugal, during July 24–26, 2016.

We received 50 paper submissions from 26 countries, of which 18% are included in
this book. The papers were selected by the event chairs and their selection is based on a
number of criteria that include the classifications and comments provided by the
Program Committee members, the session chairs’ assessment, and also the program
chairs’ global view of all papers included in the technical program. The authors of
selected papers were then invited to submit a revised and extended version of their
papers having at least 30% innovative material.

The 5th International Conference on Data Management Technologies and Appli-
cations (DATA) aims to bring together researchers, engineers and practitioners inter-
ested in databases, data warehousing, data mining, data management, data security and
other aspects of information systems and technology involving advanced applications
of data.

The papers selected to be included in this book contribute to the understanding of
relevant trends of current research on business analytics, data management and quality,
ontologies and the Semantic Web, and databases and data security. They substantially
contribute to the literature by providing interesting use cases, demonstrating the
application of modern big data design and management techniques. The interdisci-
plinary approach of the DATA conference is a fundamental enabler of this scientific
contribution. Particularly, the ability to attract both academics and practitioners and a
focus on technology application represent important drivers of the practical consequence
of the papers published in this book. The papers address a range of specific topics
including: data consistency on agnostic fault-tolerant systems, improving performances
of an embedded relational database management system, visual citation tracing, efficient
multi-domain data processing, pay-as-you-go data quality management, real-time ana-
lytics of streaming data, computation of belief combination rules, identifying conver-
sational message threads, and ETL processes specification using a pattern-based
ontology. Overall, they provide an overview of the state of the art, with a focus on data
and on their impact on business processes. Organizational policies, technical choices,
and economic benefits from the exploitation of modern technologies are largely
addressed by the papers published in this book, with a broad set of references to the most
useful literature on the subject.

We would like to thank all the authors for their contributions and also the reviewers
who helped ensure the quality of this publication.

February 2017 Chiara Francalanci
Markus Helfert

Organization

Conference Chair

Markus Helfert Dublin City University, Ireland

Program Chair

Chiara Francalanci Politecnico di Milano, Italy

Program Committee

Muhammad Abulaish South Asian University, India
Hamideh Afsarmanesh University of Amsterdam, The Netherlands
Markus Aleksy ABB Corporate Research Center, Germany
Christos Anagnostopoulos University of Glasgow, UK
Nicolas Anciaux Inria Paris-Rocquencourt, France
Kenneth Anderson University of Colorado, USA
Keijiro Araki Kyushu University, Japan
Bernhard Bauer University of Augsburg, Germany
Andreas Behrend University of Bonn, Germany
Fevzi Belli Izmir Institute of Technology, Turkey
Karim Benouaret Université Claude Bernard Lyon 1, France
Jorge Bernardino Polytechnic Institute of Coimbra - ISEC, Portugal
Francesco Buccafurri University of Reggio Calabria, Italy
Dumitru Burdescu University of Craiova, Romania
Kung Chen National Chengchi University, Taiwan
Yangjun Chen University of Winnipeg, Canada
Byron Choi Hong Kong Baptist University, Hong Kong,

SAR China
Christine Collet Grenoble Institute of Technology, France
Agostino Cortesi Università Ca’ Foscari di Venezia, Italy
Theodore Dalamagas Athena Research and Innovation Center, Greece
Bruno Defude Institut Mines Telecom, France
Steven Demurjian University of Connecticut, USA
Stefan Dessloch Kaiserslautern University of Technology, Germany
Fabien Duchateau Université Claude Bernard Lyon 1/LIRIS, France
Todd Eavis Concordia University, Canada
Mohamed Y. Eltabakh Worcester Polytechnic Institute, USA
Markus Endres University of Augsburg, Germany
Sergio Firmenich Universidad Nacional de La Plata, Argentina
Kehan Gao Eastern Connecticut State University, USA
Roberto García Universitat de Lleida, Spain

Jérôme Gensel Université Grenoble Alpes, France
Paola Giannini University of Piemonte Orientale, Italy
Giorgos Giannopoulos Athena Research and Innovation Center, Greece
J. Paul Gibson Mines-Telecom, Telecom SudParis, France
Matteo Golfarelli University of Bologna, Italy
Janis Grabis Riga Technical University, Latvia
Jerzy Grzymala-Busse University of Kansas, USA
Mena Habib Maastricht University, The Netherlands
Raju Halder Indian Institute of Technology Patna, India
Waqar Haque University of Northern British Columbia, Canada
Andreas Henrich University of Bamberg, Germany
Jose Luis Arciniegas

Herrera
Universidad del Cauca, Colombia

Jang-Eui Hong Chungbuk National University, Korea, Republic of
Tsan-Sheng Hsu Institute of Information Science, Academia Sinica,

Taiwan
Ivan Ivanov SUNY Empire State College, USA
Wang Jianmin Tsinghua University, China
Konstantinos Kalpakis University of Maryland Baltimore County, USA
Dimitris Karagiannis University of Vienna, Austria
Maurice van Keulen University of Twente, The Netherlands
Benjamin Klöpper ABB Corporate Research, Germany
Mieczyslaw Kokar Northeastern University, USA
Kostas Kolomvatsos University of Thessaly, Greece
John Krogstie NTNU, Norway
Martin Krulis Charles University, Czech Republic
Konstantin Läufer Loyola University Chicago, USA
Dominique Laurent ETIS Laboratory CNRS UMR 8051, Cergy-Pontoise

University, ENSEA, France
Sangkyun Lee TU Dortmund, Germany
Raimondas Lencevicius Nuance Communications, USA
Haikun Liu Huazhong University of Science and Technology,

China
Ricardo J. Machado Universidade do Minho, Portugal
Zaki Malik Wayne State University, USA
Keith Marsolo Cincinnati Children’s Hospital Medical Center, USA
Miguel A. Martínez-Prieto University of Valladolid, Spain
Florent Masseglia Inria, France
Fabio Mercorio University of Milano-Bicocca, Italy
Dimitris Mitrakos Aristotle University of Thessaloniki, Greece
Stefano Montanelli Università degli Studi di Milano, Italy
Bongki Moon Seoul National University, Korea, Republic of
Gianluca Moro Università di Bologna, Italy
Mirella M. Moro Federal University of Minas Gerais (UFMG), Brazil
Mikhail Moshkov KAUST, Saudi Arabia
Josiane Mothe Université de Toulouse, France

VIII Organization

Dariusz Mrozek Silesian University of Technology, Poland
Richi Nayak Queensland University of Technology, Australia
Paulo Novais Universidade do Minho, Portugal
Boris Novikov Saint Petersburg University, Russian Federation
Jisha Jose Panackal Vidya Academy of Science and Technology, India
George Papastefanatos Athena Research and Innovation Center, Greece
Jeffrey Parsons Memorial University of Newfoundland, Canada
Barbara Pernici Politecnico di Milano, Italy
Ilia Petrov Reutlingen University, Germany
Iulian Sandu Popa University of Versailles Saint-Quentin-en-Yvelines

and Inria Saclay, France
Nirvana Popescu University Politehnica of Bucharest, Romania
Philippe Pucheral University of Versailles Saint-Quentin en Yvelines

(UVSQ), France
Elisa Quintarelli Politecnico di Milano, Italy
Christoph Quix RWTH Aachen University, Germany
Praveen Rao University of Missouri-Kansas City, USA
Alexander Rasin DePaul University, USA
Kun Ren Yale University, USA
Colette Rolland Université De Paris1 Panthèon Sorbonne, France
Gustavo Rossi Lifia, Argentina
Gunter Saake Institute of Technical and Business Information

Systems, Germany
Dimitris Sacharidis Technische Universität Wien, Austria
Manuel Filipe Santos Centro ALGORITMI, University of Minho, Portugal
Maria Luisa Sapino Università di Torino, Italy
Ralf Schenkel University of Trier, Germany
Diego Seco University of Concepción, Chile
Vinay Setty Max Planck Institut für Informatik, Germany
lijun shan Inria, France
Nematollaah Shiri Concordia University, Canada
Harvey Siy University of Nebraska at Omaha, USA
Spiros Skiadopoulos University of Peloponnese, Greece
Yeong-Tae Song Towson University, USA
Sergey Stupnikov IPI RAN, Russian Federation
Zbigniew Suraj University of Rzeszow, Poland
Neamat El Tazi Cairo University, Egypt
Maguelonne Teisseire Irstea, National Research Institute of Science and

Technology for Environment and Agriculture,
France

Manolis Terrovitis Institute for the Management of Information Systems,
Greece

Babis Theodoulidis University of Manchester, UK
Frank Tompa University of Waterloo, Canada
Christos Tryfonopoulos University of Peloponnese, Greece

Organization IX

Goran Velinov UKIM, Macedonia, Former Yugoslav Republic of
Thanasis Vergoulis Athena Research and Innovation Center, Greece
Karin Verspoor University of Melbourne, Australia
José Ríos Viqueira Universidade de Santiago de Compostela, Spain
Gianluigi Viscusi EPFL Lausanne, Switzerland
Hannes Voigt TU Dresden, Germany
Florian Wenzel University of Augsburg, Germany
Leandro Krug Wives Universidade Federal do Rio Grande do Sul, Brazil
Robert Wrembel Poznan University of Technology, Poland
Yun Xiong Fudan University, China
Filip Zavoral Charles University Prague, Czech Republic
Jiakui Zhao State Grid Information and Telecommunication Group

of China, China
Jianlong Zhong GRAPHSQL Inc., USA
Yangyong Zhu Fudan University, China

Additional Reviewers

Idir Benouaret Heudiasyc Laboratory, UMR CNRS 7253,
Université de Technologie de Compiègne, France

Dominik Bork University of Vienna, Austria
Michele A. Brandao Universidade Federal de Minas Gerais, Brazil
Estrela Ferreira Cruz Instituto Politécnico de Viana do Castelo, Portugal
Giacomo Domeniconi University of Bologna, Italy
José Fuentes University of Concepción, Chile
Olga Gkountouna Research Center Athena, Greece
Emanuele Rabosio Politecnico di Milano, Italy

Invited Speakers

Panos Vassiliadis University of Ioannina, Greece
Christoph Quix RWTH Aachen University, Germany

X Organization

Contents

A Scalable Platform for Low-Latency Real-Time Analytics
of Streaming Data . 1

Paolo Cappellari, Mark Roantree, and Soon Ae Chun

Identifying Conversational Message Threads by Integrating Classification
and Data Clustering. 25

Giacomo Domeniconi, Konstantinos Semertzidis, Gianluca Moro,
Vanessa Lopez, Spyros Kotoulas, and Elizabeth M. Daly

Towards Efficient Multi-domain Data Processing . 47
Johannes Luong, Dirk Habich, Thomas Kissinger, and Wolfgang Lehner

Approaching ETL Processes Specification Using a Pattern-Based Ontology . . . 65
Bruno Oliveira and Orlando Belo

Topic-Aware Visual Citation Tracing via Enhanced Term Weighting
for Efficient Literature Retrieval . 79

Youbing Zhao, Hui Wei, Shaopeng Wu, Farzad Parvinzamir,
Zhikun Deng, Xia Zhao, Nikolaos Ersotelos, Feng Dong,
Gordon Clapworthy, and Enjie Liu

Maturing Pay-as-you-go Data Quality Management: Towards Decision
Support for Paying the Larger Bills . 102

Jan van Dijk, Mortaza S. Bargh, Sunil Choenni, and Marco Spruit

Generic and Concurrent Computation of Belief Combination Rules 125
Frédéric Dambreville

Log-Based Model to Enforce Data Consistency on Agnostic
Fault-Tolerant Systems . 141

Óscar Mortágua Pereira, David Apolinário Simões, and Rui L. Aguiar

Improving Performances of an Embedded Relational Database
Management System with a Hybrid CPU/GPU Processing Engine. 160

Samuel Cremer, Michel Bagein, Saïd Mahmoudi, and Pierre Manneback

Author Index . 179

http://dx.doi.org/10.1007/978-3-319-62911-7_1
http://dx.doi.org/10.1007/978-3-319-62911-7_1
http://dx.doi.org/10.1007/978-3-319-62911-7_2
http://dx.doi.org/10.1007/978-3-319-62911-7_2
http://dx.doi.org/10.1007/978-3-319-62911-7_3
http://dx.doi.org/10.1007/978-3-319-62911-7_4
http://dx.doi.org/10.1007/978-3-319-62911-7_5
http://dx.doi.org/10.1007/978-3-319-62911-7_5
http://dx.doi.org/10.1007/978-3-319-62911-7_6
http://dx.doi.org/10.1007/978-3-319-62911-7_6
http://dx.doi.org/10.1007/978-3-319-62911-7_7
http://dx.doi.org/10.1007/978-3-319-62911-7_8
http://dx.doi.org/10.1007/978-3-319-62911-7_8
http://dx.doi.org/10.1007/978-3-319-62911-7_9
http://dx.doi.org/10.1007/978-3-319-62911-7_9

A Scalable Platform for Low-Latency Real-Time
Analytics of Streaming Data

Paolo Cappellari1(B), Mark Roantree2, and Soon Ae Chun1

1 City University of New York, New York, USA
{paolo.cappellari,soon.chun}@csi.cuny.edu

2 School of Computing, Insight Centre for Data Analytics,
Dublin City University, Dublin, Ireland

mark.roantree@cs.dcu.ie

Abstract. The ability to process high-volume high-speed streaming
data from different data sources is critical for modern organizations
to gain insights for business decisions. In this research, we present the
streaming analytics platform (SDAP), which provides a set of opera-
tors to specify the process of stream data transformations and analytics.
SDAP adopts a declarative approach to model and design, delivering ana-
lytics capabilities through the combination of a set of primitive operators
in a simple manner. The model includes a topology to design streaming
analytics specifications using a set of atomic data manipulation opera-
tors. Our evaluation demonstrates that SDAP is capable of maintaining
low-latency while scaling to a cloud of distributed computing nodes, and
providing easier process design and execution of streaming analytics.

Keywords: Data stream processing · High-performance computing ·
Low-latency · Distributed systems

1 Introduction

In their quest for competitive advantage, extending data analysis to include
streaming data sources has become a requirement for the majority of organiza-
tions. Driven by the need for more timely results and having to deal with an
increasing availability of real-time data sources, companies are investing in inte-
grating data streaming processing systems in their applications stack. Real-time
data processing can help multiple application domains, such as stock trading,
new product monitoring, fraud detection and regulatory compliance monitor-
ing, supporting situation awareness and decision making with real-time alerts
and real-time analytics. Real-time data processing and analytics requires flexi-
ble integration of live data captured from different sources that would otherwise
be lost, with traditional data from enterprise storage repositories (e. g. data
warehouse).

Existing streaming systems mainly focus on the problems of scalability,
fault-tolerance, flexibility, and performance of individual operations, e.g.

c© Springer International Publishing AG 2017
C. Francalanci and M. Helfert (Eds.): DATA 2016, CCIS 737, pp. 1–24, 2017.
DOI: 10.1007/978-3-319-62911-7 1

2 P. Cappellari et al.

[1,2,26,29]. Our approach to building a high-performance data stream processing
engine was influenced by the growing need of more timely information by organi-
zations and the success of streaming systems such as Yahoo S4 [22], Storm [27],
Sonora [6], and Spark-Streaming [29]. We observed that none of the modern
systems target low-latency and high-performance while also providing an easy
way of developing streaming applications for non-expert users. Unlike these sys-
tems and other related research, we focus on the provision of a complete and
comprehensive solution for the rapid development, execution and management
of scalable high-performance, low-latency, stream analytics applications.

1.1 Motivation and Case Study

To illustrate the complex tasks involved in a stream analytics process, we use
a scenario which seeks to understand the performance of the bike utilization in
multiple locations within a city, trying to monitor the trend of the performance
data and comparing usage with bike usage in other cities. Assume a scenario
where a town planner needs to know various performance indicators, such as
whether bicycles are parked in specific docking stations located across the city
are utilized to an acceptable level. This requires the constant monitoring of data
from the Bike Sharing Systems (BSS). Every 60 s, the BSS reports the status of
each station, which include the number of bikes docked at each station. The goal
is to calculate the performance of the BSS as the number of bikes in utilization
against the total number of bikes available in the system, in order to identify
stations with lower than predicted usage or stations with high usage that require
expansion. In addition, the manager is also interested in the performance of bike
sharing program in other cities, to gain a direct comparison among different
BSS.

1.2 Contribution

In this paper, we improve on our previous work [3] and we present the streaming
data analytics platform (SDAP), which provides a set of operators to specify
the process of stream data transformations and analytics, together with its exe-
cution environment. SDAP adopts a declarative approach to both modeling and
designing a streaming analytics system using combinations of primitive operators
in a straightforward manner.

SDAP is aimed to be a robust platform for flexible design of streaming
analytics applications that addresses the following broad requirements:

– The processing engine can manage high volumes of streaming data even when
the rate at which data generated is extremely high;

– Results of steaming analytics and processing, on which organizations base
decisions, are available as soon as possible;

– It supports designers of analytical processes by abstracting from the under-
lying parallel computation or high-performance programming;

– It is easy to develop, maintain and optimize the analytical applications.

A Scalable Platform for Low-Latency Real-Time Analytics 3

The contribution of this research can be summarized as follows:

– Streaming analytics model. SDAP provides a set of operators to support a
declaration-based analytics development environment.

– Streaming analytics application specification. SDAP provides users without
prior knowledge of parallel computation or high-performance. programming,
the tools to easily specify a ‘topology’, which describes the analytics process.

– High-performance topology execution. SDAP delivers a platform that
exploits the best performing hardware and software to execute a topology,
while also efficiently managing the resource computation underlying data
stores and parallel processing.

A comprehensive evaluation demonstrates the performance of our system,
both in terms of latency and ease of development. SDAP presents the low-
est latency among the compared systems with the same low latency maintained
when scaling to a large number of computational resources. Compared to similar
systems, SDAP is different because it provides each of the following character-
istics: (i) it offers built-in operators optimized for parallel computation; (ii) it
was designed to deliver the best latency performance by exploiting the high-
performance hardware and software libraries; (iii) it is easy to use, since users
are not required to have programming skills; and (iv) it enables rapid devel-
opment, since applications are specified in a declarative way, where users link
built-in operations in a pipeline fashion.

The paper is organized as follows. In Sect. 2, we provide a comparison of
our approach against other works. Section 3 we demonstrate a use case realized
by using SDAP, which is used as a running example throughout the paper. In
Sect. 4, we define the modeling of our platform, including the constructs and
the primitives. Section 5, discusses the platform’s architecture. In Sect. 6, we
discuss the experimental setting, the performance results, and the ease of usage
compared to a popular alternative. Finally, in Sect. 7 we present our conclusions.

2 Related Research

Research projects such as S4 [22], IBM InfoSphere Streams [15], and Storm [27],
are considered event-based streaming systems as they process each tuple as soon
as they become available. While this is a requirement for low-latency system,
these research projects do not address latency or high-performance directly. The
S4 system, for instance, provides a programming model similar to Map-Reduce,
where data is routed from one operation to the next on the basis of key values.
In comparison to SDAP, their approach limits the ability of the designer in
the development of generic streaming applications. Storm [27] offers a set of
primitives to develop topologies. In brief, a set of constructs are provided to
route data between operations, similar to our approach in SDAP. However,
the developer must provide the implementation at each step in the topology and
thus, requiring development effort and expertise in parallel programming. This is
not the case in SDAP, where built-in operations are provided, so that designers

4 P. Cappellari et al.

can focus on the creation of the topology rather than on the implementation of
the operators. IBM InfoSphere Streams [15] follows an approach similar to Storm
but also offers a set of predefined operations. In fact, designers can assemble
operations in workflows, very much like in SDAP. However, the InfoSphere
Streams approach puts the focus on quality of service of the topologies, rather
than on latency performance.

A system that specifically targets low latency stream processing is Google’s
MillWheel [1]. As with the systems described above, MillWheel adopts an event
based design and in this case, data manipulation operations are specified in
a topology fashion. Similarly to S4, the computation paradigm is based on a
key model: data is routed between computation resources on the basis of the
value a key holds in the data. As it is the case for S4, this paradigm facilitates
the evaluation of operations requiring grouping (on the same key), and only
guarantee pure distributed parallelism using different keys. SDAP offers greater
flexibility in this respect as the SDAP designer can choose whether or not to
base the computation on keys. Moreover, as shown in our evaluation, SDAP
delivers superior performance.

In an entirely different approach, the research ideas presented in [7,11,23,
28,29], approach data stream processing by embracing a micro-batch oriented
design. These approaches extend the Map-Reduce paradigm and Hadoop sys-
tems. Limmat [11] and Google Percolator [23] extend Hadoop by introducing a
push-based processing, where data can be pushed into the process and results are
computed computed incrementally on top of the current process state, e.g. aggre-
gates for current windows. The main downside of these approaches is latency,
which can run into minutes.

The Spark-Streaming [29] and Hadoop Online Prototype (HOP) [7] projects
are an attempt to improve the Hadoop process by making it leaner and as a
result, faster. When possible, data manipulation is performed directly in main
memory without using secondary storage, which makes computation faster.
Although these approaches improve performance for real-time analytics sup-
port, the micro-batch design creates an intrinsic limit that prevents these types
of systems from achieving the same low latency as event-based systems.

Also included in the class of micro-batch systems, although not Map-Reduce
oriented, is the Trident [28] system, an extension to Storm that provides higher
level operators and other features. Trident suffers from the latency limitation
mentioned previously for the micro-batch systems, a problem which we do not
have in SDAP. Although both Spark-Streaming and Trident offer a set of prede-
fined operators, developing a topology still requires the development of a program
in Java or Scala, which unlike SDAP is a more challenging task because: users
have to know the language; and users must validate their code before validating
the application itself. SDAP enable designers, not developers, to rapidly develop
topologies neglecting all details related to software code development and thus,
focusing on the business logic. In addition, SDAP supports complex window
definitions which are not available in any of these systems.

A Scalable Platform for Low-Latency Real-Time Analytics 5

There has been much research on developing the performance of individual
operators, e.g. [4,5,9,16–18,20,26]. In [12,13], the authors tackle the problem of
processing XML data streams. They developed a multidimensional metamodel
for constructing XML cubes to perform both direct recursion and indirect recur-
sion analytics. While this approach has similar goals and approach, the SDAP
system is designed to scale, adopts an easier to use scripting approach, and can
facilitate JSON sources unlike their approach which only uses XML. In fact,
none of these research efforts offer a comprehensive solution to maximize perfor-
mance across all aspects of the streaming network. SDAP, on the other hand,
provides a general solution for rapid development of stream analytics for high
performance environments.

3 Streaming Analytics Case Study

Figure 1 illustrates a Bike Sharing stream analytics process design using the
scenario described in Sect. 1. The data is streamed from bike sharing systems
(BSS) in real-time from the cities of New York and Dublin. Here, the rounded
rectangles represent the data manipulation steps. Arrows between steps describe
how the stream flows from one transformation to the next. The operation applied
by each step is depicted with a symbol (see the legend) within the rectangle,
along with its degree of parallelism (within parenthesis). The specific operation
performed by the operator is detailed with bold text just below each step. On
top of each step, an italic text provides a brief explanation of the operation
applied in the node. Note that the Selection operator outputs two streams: the
solid edge denotes the stream of data satisfying the condition; the dashed edges

Fig. 1. Topology for bike sharing system case study in SDAP.

6 P. Cappellari et al.

are the stream of data not satisfying the condition. Where one output stream
from Selection is not used, the edge is not shown in the illustration.

The application in Fig. 1 describes an analysis of the bikes stream by gen-
erating the performance trend of the input BSS systems. Data flows into the
application by the HTTP Connector step that connects to the BSS stream
and delivers a snapshot of the status of all bike stations in each BSS system.
Data is collected on a per minute basis. Station status data is provided in JSON
format and thus, it is passed to the JSON Parser operator that convert data
from JSON into the mapped tuple format. The next step removes attributes
unnecessary for the required analysis at hand. Finally, two constants are added
to the stream: the city the BSS data is from, and the number of bikes the BSS
system has available. Streams from different cities are merged. As part of this
process, there are three calculations.

– Available: the number of bikes currently docked across the city, as an aggrega-
tion of all docked bikes in each station in the incoming data over the interval
of one minute (the data refresh rate);

– InUse: the number of bikes on the road, as the difference between the total
bikes available and those docked;

– System Performance: defined as the ratio between the number of bikes on
road and the total number of bikes (the more bikes on the road, the better
the performance for this topology).

The remaining steps calculate the trend of the performance of each system.
Performance trend is defined as the difference between two consecutive perfor-
mances. In order to have two performances values in the same observation, a
self-join (same city) is made on the performance stream, where one stream has
an expiration time of 30 s (only fresh data being considered), while the second
stream has an expiration time of 90 s. This way, a new performance value for a
city is coupled with the previous performance value from the same city.

Once the trend is available, the result is converted into JSON format and
produced in the output of the application, available to other applications, via a
ZeroMQ end-point.

4 Conceptual Model for Streaming Analytics

In general, streaming applications consist of a sequence of data manipulation
operations, where each operation performs a basic transformation to a data ele-
ment, passing the result to the next operator in the sequence. When multiple
transformations are chained together in a pipeline fashion, they create sophisti-
cated, complex transformations. A complex transformation is a workflow, where
multiple pipelines are combined. These workflows can be represented as direct
acyclic graphs (DAGs) and are also referred to as topologies [4]. The SDAP
model enables the construction of complex topologies using the set of constructs
described below.

A Scalable Platform for Low-Latency Real-Time Analytics 7

Tuple. A tuple is used to model any data element in a stream. It is composed
of a list of values describing the occurrence of an event. For instance, in the
BSS stream described later in Sect. 3, each update reports on the status of
each station, where each station has an identifier, address, status (operative
or not), the number of bikes docked, and geo-location.

Stream. A stream is a sequence of events described by tuples. Tuples in a
stream conform to a (known) schema: each tuple value in the same stream
are instances of a known set of attributes, each having a specific data type.
For instance, tuples generated from bike stations status update on bike shar-
ing system all have the same structure, with potentially different values, as
people take and park bikes during the day.

Operator. An operator is a data processing step that processes each tuple
received from one (or more) input stream(s) by applying a transformation to
the tuple’s data to generate a new tuple in the output stream. The operators
are described in the following section but for now, we discuss two important
parameters that are associated with each operator: parallelism and protocol.

Parallelism. In a topology, each operator decides its degree of parallelism.
Parallelism controls the number of instances of an operator that collab-
orate to complete a process. In order to process large amounts of data,
processing must be distributed across multiple computational resources
(cores, CPUs, machines).

Protocol. The protocol defines how tuples are passed between the instances
of contiguous operators in a topology. For example, a tuple can be passed
to just one instance or to all instances of the next operator in the topol-
ogy. SDAP supports four routing modes for protocol: round-robin, direct,
hash and broadcast. In round-robin mode, tuples from an upstream
node’s output port are distributed to all instances, in an even fashion
across all the downstream resources. Direct mode defines a direct and
exclusive connection between one instance of the upstream node and
one instance of the downstream node. This routing strategy is effective
when pipelined operators require the same degree of parallelism. The
hash mode routes tuples on the basis of a (key) value within the tuple
itself. This permits an application to collect data having the same key
in the same resource. Where this leads to uneven usage of downstream
resources, the broadcast routing strategy, ensures that every tuple from
a single instance of an upstream node, is copied to all instances of the
downstream node.

Topology. A topology describes a stream analytics workflow, i.e. how the data
stream flows from the input source(s) through the combination of primitive
operators and sub-topologies to the output. It is modeled as a DAG, where
nodes represent operators, and edges describes how tuples move between
operators.

8 P. Cappellari et al.

4.1 Primitive Operators in SDAP

This section presents a sample of the more important operators in SDAP, which
are powerful enough to enable designers to construct very complex transforma-
tions. The rationale for providing a set of built-in operators is: (i) application
designers focus on the transformation workflow and not implementation details;
(ii) semantics are guaranteed and consistent across the entire system; (iii) every
operator delivers the best possible performance; and (iv) the system can be
extended with new operators as required. SDAP currently offers the following
operators: Functor, Aggregate, Join, Sort, Interface, Format Converter, Datas-
tore, Control and Utility.

The Functor operator applies a transformation that is confined and local
to the tuple currently being processed. Many transformations can be thought as
specializations of the Functor operator. SDAP provides Projection and Selec-
tion; Function which provides adding constants or a sequence attribute to the
stream; text-to/from-date conversion; math (addition, division, modulo, etc.)
and string functions.

The Aggregate operator groups tuples from the input stream, with an
implementation of SQL-like aggregations: average, sum, max, min and count.
The operator requires a window definition that specifies when and for how long
tuples be included in the aggregation.

The Join operator is similar to the relational join but requires the defini-
tion of a window specifying the tuples from each stream to include in the join
evaluation.

The Sort operator sorts the tuples within a “chunk” of the input stream in
lexicographical order on the specified set of attributes. The number of tuples
that comprise the chunk, is specified in a window definition.

The Datastore operator enables the stream to interact with a repository
to retrieve, lookup, store and update data. The repository can be a database, a
text file or an in-memory cache.

The Interface operator enables SDAP to create streams of data from exter-
nal data sources to generate into topologies and to create end-points where
processed data can be accessed by consumer applications. Consumer applica-
tions can be external or within SDAP (e.g. other topologies). Currently, SDAP
can process streams from Twitter, Salesforce, ZeroMQ and generic HTTP end-
points.

The FormatConverter provides data format conversion between the tuple
and other formats when processing data within a topology.

SDAP is extensible and new operators can be added as necessary. Currently,
SDAP also includes the following additional operators: Look-up, to look-up
values from either databases or files; Geotagging, to convert name of locations
into geo-coordinates; Delay, to hold or slow down the elaboration of each tuple
by some interval of time; Heartbeat, to signal all operators in a topology;
Cache, to provide a fast memory space where to temporarily hold and share data
across the whole topology; and Tokenizer, to transforms a text into multiple
word tokens.

A Scalable Platform for Low-Latency Real-Time Analytics 9

Some operators, e.g. join, cannot operate on an infinite stream of data: they
require the definition of a window that cut the stream in “chunks” of data. Win-
dows [4,5,18] are usually defined by specifying a set of constraints on attributes
such as time, number of observed events (i.e. received tuples), or values in the
stream(s) [16,20]. SDAP supports all of the above and, in addition, allows to
define windows on sophisticated constraints involving conditions on both the
input and output streams. Section 4.3 presents additional information and an
example of a window definition.

4.2 Topology Model

A stream analytics process, called Topology, is modeled as a DAG, a directed
acyclic graph, which is defined as in Definition 1:

Definition 1 (Topology). A topology T = 〈N,R,ΣO, ΣR, ΣP , o, r, p〉 is a five
element tuple where N = {n1, n2, . . .} is a set of Nodes, and R = {r1, r2, . . .}
is a set of Routes, ΣO is the set of operators, ΣR the set of data distribution
protocols, ΣP the degree of parallelism, and o, r and p functions that associates:
o : N → ΣO a node with an operator (and configuration), r : R → ΣR an edge
with a protocol, and p : N → ΣP a node with a degree of parallelism.

Each node in the topology specification follows the expression syntax outlined
in Definition 2 in [3].

Definition 2 (Node)

operator
<node-label>
<operator-executable-path>
<node-configuration-path>

Where: operator declares a node in the DAG; node-label specifies the label
for such node, in order to refer to it in other places in the topology defini-
tion; operator-executable associates the executable with the node; finally,
node-configuration specifies the arguments to pass to the executable and
that configure the behaviour of the operator, e.g. conditions for a filtering
criteria.

With reference to Fig. 1, Listing 1.1 shows an excerpt of the topology
specification to illustrate how nodes in a DAG are declared in SDAP. The
excerpt focuses on the top right part of Fig. 1, specifically on nodes: Keep
Attributes: #bikesDocked, Add Attributes: CityN̄YC, total
Bikes6̄000 and Sum #bikes Docked all Station by City. For con-
venience, above nodes are renamed to keep attributes, add constant,
sum docked, respectively.

Details on how to specify an operator’s configuration are presented in
the Sect. 4.3. In Listing 1.1, line 11 defines a node with label sum docked,
that is associated with operator Aggregation, whose configuration is in file

10 P. Cappellari et al.

sum docked conf. It implements an aggregation operation, calculating a sum
of all docked bikes available at each station, grouping data by city.

1 ## Product stream, nodes
...

3 operator
keep_attributes_dub

5 functor-mpi
${keep_attributes_dub_conf}

7 operator
add_constants_dub

9 functor-mpi
${add_constants_dub_conf}

11 operator
add_constants_nyc

13 functor-mpi
${add_constants_nyc_conf}

15 operator
sum_docked

17 aggregate-mpi
${sum_docked_conf}

19 ...

Listing 1.1. Specification of nodes in a topology: an example.

The flow of tuples from operator to operator in the topology is defined along
with a routing protocol. Its specification follows Definition 3 from [3].

Definition 3 (Route)

route
<upstream-node-label:port>
<protocol>
<downstream-node-label:port>

Where: route declares an edge in the topology; upstream-node-label is the
label of a node acting as data provider (also called upstream node); analogously,
downstream-node-label is the label of the other node participating in the
connection, specifically the label of the node receiving data (also called down-
stream node); protocol specifies how to distribute tuples between the two
nodes (e.g. direct, round-robin, hash or broadcast); port specifies which port
each node will use to send/receive tuples.

The specification in Listing 1.2 shows the part of the topology in Fig. 1
that links the add attributes dub and the sum docked steps (also in Listing 1.1).
Specifically, all tuples from the add attributes dub node are passed to node
sum docked via port number 1. Note that sum docked receives data from two
upstream nodes, namely streams, one for the data from Dublin, the other for

A Scalable Platform for Low-Latency Real-Time Analytics 11

the data form NYC. All edge declarations use the protocol roundrobin to
exchange tuples between the instances of the involved nodes.

1 ## Product stream, connections
...

3 route
add_attributes_dub:1 roundrobin add_constants_dub:1

5 route
add_constants_dub:1 roundrobin sum_docked:1

7 route
add_constants_nyc:1 roundrobin sum_docked:1

9 ...

Listing 1.2. Specification of routes between nodes in a topology: an example.

Lastly, we need to associate each node with a degree of parallelism. The
syntax is the following, from [3]:

Definition 4 (Parallelism)

parallelism <node-label> <degree>

Where: parallelism declares the parallelism for a node; node-label indi-
cates the node in question; and degree specifies the degree of parallelism, that
is how many runtime process instances have to be instantiated for the node in
question.

Listing 1.3 illustrate the final excerpt of the sample topology specification.
From Listing 1.3, we can see that nodes keep attributes, add constants,
and sum docked have parallelism 2, 2, 3, respectively. The rationale in choosing
a degree of parallelism is based on the amount of data to process and on the cost of
the operation. In this example, the first two operations are rather simple, whether
the aggregation is actually performing a calculation, thus a higher degree of par-
allelism. Note that values in Listing 1.3 are for illustration purpose. Real-world
deployments these values have, in general, much higher values.

1 ## Product stream, distribution
...

3 parallelism keep_attributes 2
parallelism add_constants 2

5 parallelism sum_docked 3
...

Listing 1.3. Specification of node parallelism: an example.

12 P. Cappellari et al.

"in": [
2 {"name": "timestamp", "type": "double"}

,{"name": "docked", "type": "int"}
4 ,{"name": "City", "type": "String"}

,{"name": "totalBikes", "type": "int"}
6]

,"out": [
8 {"name": "timestamp", "type": "double"}

,{"name": "City", "type": "String"}
10 ,{"name": "totalBikes", "type": "int"}

,{"name": "sumDockedBikes", "type": "int"}
12]

...

Listing 1.4. Schema of input and output streams of a node.

1 ...
,"groupby": [

3 {"attribute": "City", "attribute": "totalBikes"}
]

5 ,"aggregate": [
{"input_attribute_name": "dockedBikes"

7 ,"operation": "sum"
,"output_attribute_name": "sumDockedBykes"}

9]
...

Listing 1.5. Detail of the aggregation operator configuration.

4.3 Operator Configuration

In a topology, a node is associated with an executable implementing a specific
operator, e.g. Selection. The details of the nature of the input and output
streams, as well as how to filter incoming tuples is provided in the operator con-
figuration specification file. This specification starts with detailing the schemas
of the input and output streams, that is attribute names and types. Then, each
operator has its own signature, thus a different set of configuration parameters.
Since it is not possible to illustrate the configuration of all operators in SDAP,
we focus on just one of them: the Aggregate. Listings 1.4 and 1.5 shows excerpt
of configuration for the aggregate operator in our example in Fig. 1. Listing 1.4
shows the schema of tuples for the input and the output streams. Listing 1.5
shows the details of aggregation, in this case a sum. It can be seen that values
from the input streams are grouped by City (and totalBikes); the aggrega-
tions are defined on attribute dockedBikes; the results are provided in output
attribute sumDockedBikes. An attribute timestamp is also added to the
output stream.

In contrast to the infinite nature of the data stream, the aggregation operator
is required to work on a finite set of data. Finite sets of data are defined by

A Scalable Platform for Low-Latency Real-Time Analytics 13

windows. SDAP supports arbitrarily complex windows, including those based
on: wall-clock intervals, number of observed tuples, the value of a progressing
attribute [19] in the stream (e.g. time), external events (e.g. control messages),
and conditional, that is based on values in the stream.

SDAP allows for the following window types: Interrupt, Attribute, and Tuple.
With Interrupt, the window is defined by an external message: basically, the oper-
ator finalize the calculations and release the results only when requested. This
options suits operations that have to release data at regular interval of (wall-clock)
times. Type Tuple models windows defined on the number of input observations,
e.g. create windows of 50 consecutive observations each, with a new window start-
ing every 20. Type Attribute models window based on a progressing attribute
embedded in the stream. The progressing attribute has the characteristic of being
monotone in value, that is, increase at a standard interval (e.g. time).

When a basic window is not sufficient, developers can define window borders
by condition: the developer can express an arbitrary condition to define when to
close or open a new window. This is useful, for instance, to define landmark [10]
windows or, more generally, windows whose boundaries depend on values in the
data stream. SDAP allows developers to define conditions on attributes from
both the input and output streams. An example of when a conditional window
may be needed is the following: provide aggregate results immediately when the
aggregate value exceeds a specified threshold defined by a literal in a constraint
or by another value embedded in the stream. SDAP does not wait for windows
to close to evaluate results: new partial, temporary, results are evaluated as
new data is received. Thus, temporary results are always current and can be
forwarded as part of a subsequent output.

Listing 1.6 continues the presentation of the configuration for the aggregation
operator by specifying its window. The listing defines a tumbling window [10] on
the progressing attribute timestamp. In fact we can see that: the window is of type
Attribute; that the attribute characterizing the window is the timestamp;
that a window should close (window close) every 60 s; that values should be
forwarded to output (window emit) at the same time the window is closed (i.e.
60 s); that a new window should be created (window advance) 60 s ahead of the
previous open one; and that tuples are considered part of the “current” window if
they arrive up to half a second after the specified window close limit.

...
2 ,"window_type":"Attribute"

,"progressing_attribute":"timestamp"
4 ,"window_close": {"type":"literal","size": 60}

,"window_emit": {"type":"literal","size": 60}
6 ,"window_advance": 60

,"window_delay": 0.5
8 ...

Listing 1.6. Specification of a tumbling window configuration.

14 P. Cappellari et al.

5 SDAP System Architecture

While SDAP runs on a wide range of computational resources, the architec-
ture was designed and implemented as a high performance system. In Fig. 2,
the SDAP architecture is illustrated as having seven major components: the
Resource Manager, Clustering, Data Operators, Monitoring, System Interface,
Application Specification (repository) and the Resource Configuration reposi-
tories. Components such as the Resource Manager, Computation, Clustering
and Monitoring use Slurm [25], MVAPICH2 [21], and Ganglia [8], as they are
established, high performance open source source libraries.

Fig. 2. SDAP architecture: logical view.

5.1 Data Operations

The Clustering component resides at the core of the SDAP architecture and
comprises two sub-components: (i) parallelism and data movement and (ii) data
operations. The first component manages parallel processes and the movement
of data between processes. We adopt an implementation of the Message Pass-
ing Interface (MPI), specifically MVAPICH2, in order to optimize these high-
performance environments. MPI is designed to achieve high performance, scala-
bility, and portability and MVAPICH2 is one of the best performing implemen-
tation. This is mainly due to its support for the most recent and performing
hardware, such as Infiniband [14], a high-performance inter-connector, designed

A Scalable Platform for Low-Latency Real-Time Analytics 15

to be scalable and featuring high throughput and low latency. The Parallelism
and Data Movement component builds on top of Phish [24], that in turns uses
MPI. Phish is library to develop topologies composed of executables, provid-
ing an abstraction on parallelism and message delivery. The Data Operations
component implements the data processing operation and enforces the opera-
tion protocols across the parallel processes. Again using Phish, SDAP has a
Data Operators component which offers a set of built-in operations, including
selection, projection, join, etc.

5.2 Distribution Management

Figure 3 illustrate the physical architecture of SDAP. The cluster is divided
in Compute and Control nodes. Compute nodes provide computation and are
mutually independent while the control node manages and coordinates com-
pute nodes. Specifically, each compute node hosts the operators’ executables,
to perform data manipulation, and is responsible for forwarding data to the
next operator in the topology. The operators’ executable are deployed to every
compute node so that each node can accommodate any operation specified in
a topology. Each compute node also hosts the slave processes of the resource
manager and of the resource monitoring. The Resource Manager process main-
tains the state of available resources and the plan for allocation to each topology
(e.g. a single core allocated exclusively or not to an operator of a topology).
When the resource manager slave receives a request to allocate or to release a
resource, it first checks the state of the resource and then applies requests where
possible. The Resource Monitoring process collects resource usage data, i.e. CPU
time, memory allocation, etc., for the local node. This data is then forwarded
to the master node, where data is aggregated and evaluated. The master node
dispatches resource allocation requests and analyzes the resource usage of all
compute nodes. Topologies are deployed or recalled using the Application Man-
ager component that, in turns, uses the master process of the resource manager
to allocate the nodes as per topology specification, when possible. The resource
manager Master Process collects and analyzes resource usage data sent by all
slave processes residing on compute nodes. Resource usage is provided at both
the individual and collective level: a user can analyze details of CPU, memory,
and network load for each individual node or for the cluster as a whole. Resource
load can be analyzed for any specified time interval.

5.3 Resource Management

As multiple streaming topologies run on a Cluster and since resources are lim-
ited, there is a requirement for managing and monitoring resources. The Compo-
nents Resource Manager and Resource Monitoring components deliver on these
requirements. The Resource Manager is built on top of Slurm [25], a high-
performance, scalable and fault-tolerant cluster resource manager. Slurm pro-
vides functionality to execute, manage and monitor distributed parallel appli-
cations and is used in many of the most powerful computers in the world. It

16 P. Cappellari et al.

Fig. 3. SDAP architecture: physical view.

facilitates computational resource management and the allocation and deploy-
ment of streaming topologies. Among its features are topology relocation (to
other resources) and a fault-tolerance mechanism. We have integrated Ganglia
[8] as our resource monitoring system as it is highly scalable and works in high-
performance environments.

Because the SDAP system was designed for the highest levels of scalabil-
ity and performance, the resource monitoring and manager components can be
deployed in a hierarchical manner, as illustrated in Fig. 4. Such a hierarchical
organization of processes facilitates resource allocation requests and monitoring
to be distributed over a larger number of processes and thus, avoiding bottlenecks
at either the CPU or network level.

For data monitoring and analysis, the processes between the bottom and top
of the hierarchy can perform partial aggregations which further reduces the load
on the control node.

The System Interface component includes tools such as: the development
environment, result visualization and monitoring and administrative tools. The
Application Specification repository maintains all defined topologies, allowing
users to store, retrieve and update topology specifications. Finally, the Resource
Configuration maintains the configuration of the resources available on the com-
putational cluster.

6 Experiments

In this section, we present our evaluation of SDAP, which consists of two parts:
performance, and usability. Performance evaluation focuses on the ability of
SDAP to deliver low latency data processing at scale. The usability evaluation

A Scalable Platform for Low-Latency Real-Time Analytics 17

Fig. 4. SDAP architecture: resource and monitor manager scalability.

focuses on the simplicity of use of the tool, compared to popular alternative
systems.

6.1 Performance

Latency is a crucial metric for streaming data in a high-performance environment
and is defined as the interval of time between the solicitation and the response of
a system. For systems targeting analytics on big data, it is important to maintain
low latency when the inputs, and subsequent resources, grow to a large number.

We compare SDAP with Apache Storm [27] (version 1.0.2, latest version
available at the time of writing) and Google’s MillWheel [1]. These systems have
been chosen because they adopt the event based data processing paradigm, as
with SDAP. In particular, the former explicitly targets low latency performance
at a scale; while the latter focused initially on the provision of event based
processing primitives and scalability, and has now evolved to deliver low latency
in its recent versions.

The common ground on which to compare the systems is a topology com-
posed of the following steps: a data generator, followed by a non blocking stream
operation (e.g. select), and a collector. The data generator step generates random
data tuples of about 100B each. In implementing the non blocking operation,
the stream operation step perform the following tasks: (i) record the timestamp
of when the tuple is received, (ii) scan all attributes in the tuple, to emulate
an operator worst case scenario where the operation needs to access all data,
(iii) attach a timestamp to the tuple, and (iv) forward the tuple in output to the
collector step. The collector records the timestamp of the tuple arrival. The two
timestamp are used to calculate the intrinsic latency of the system. Specifically,
it is the time elapsed between the reception of the input (system solicitation),
and the execution and delivery of the data manipulation to the next step in the
topology (system response).

Experiments were conducted on the CUNY’s High Performance Computing
center. Each node is equipped with 2.2 GHz Intel Sandybridge processors with
12 cores, has 48 GB of RAM and uses the Mellanox FDR interconnect. The
topology is deployed so that contiguous steps in the topology require inter-host

18 P. Cappellari et al.

communication and thus, require the use of the network media to exchange
data (i.e. no communication via shared-memory). We conducted the test by
distributing the topology over 100 CPUs, scaling the parallelism of the steps as
well as the amount of data generated. Results show that SDAP exhibits a median
record latency below 1.2 ms and 95% of tuples are delivered within 2.1 ms. In
contrast: Storm has a median record latency just below 3.2 ms, and delivers 95%
of tuples in just above 3.2 ms; in MillWheel the median tuple latency is 3.6 ms,
while the 95th latency percentile is of 30 ms. Figure 5 illustrate the result of our
experiment, excluding Google’s MillWheel. MillWheel’s platform is not available
so it was not possible to run an empirical test: our comparison and analysis is
based on the author’s evaluation in [1].

Fig. 5. Tuple processing and delivery latency.

It can be seen that SDAP processes data faster that Storm (and MillWheel)
but the latency values are spread close to the median. With respect to Storm,
SDAP performs about 3 times better for both the median and the 95th percentile
latency. In comparison with MillWheel, SDAP performs 3 times better on the
median latency and 10 times better on the 95th percentile latency. Overall,
SDAP performs between 200% and 900% better than the other systems.

We also conducted a test to verify how the latency changes when the same
number of execution processes are distributed over a small number of machines
machines, compared to a large number. We have prepared 4 test scenarios,
namely Set8, Set24, Set48, and Set96, see [3]. Each scenario is run on differ-
ent machine numbers, from the lowest to the highest number of machines that
can accommodate the test. For instance, scenario Set8 requires 8 processes with
processes run as follows: on the same machine with 8 CPUs; on two machines,
using 4 CPUs from each; on four machines, using 2 CPUs from each; and eight
machines, using just one CPU from each. For Set96 we started with 12 machines
using 8 CPU from each, down to 96 machines using 1 CPU only from each.
This was repeated for the remaining configurations. The result of running these
scenarios is illustrated in Fig. 6 from [3].

A Scalable Platform for Low-Latency Real-Time Analytics 19

Fig. 6. Tuple processing and delivery latency time by node usage in SDAP.

It can be seen that: (i) the latency performance is quite stable across all
configurations, with values supporting the results from the previous experiment;
and (ii) the best configuration is when all processes are grouped together on the
same machines or when they are highly distributed across different machines.
The latter can be as follows: latency is low when all processes are grouped on the
same (few) machine(s) because data transfer is (mostly) performed via shared
memory (i.e. not via network); latency is also low when the least amount of
CPUs is used per machine, because not enough data is exchanged via the network
interface which as a result, does not become saturated. Latency is higher when
an intermediate number of CPUs are used per machine because the processes
generate enough data to flood the network interface while not being able to take
advantage of data exchange via shared memory.

6.2 Ease of Development

In this section, we discuss SDAP ease of development, that is, the effort required
to develop and maintain a topology. Since MillWheel is not available, and Storm
does not provide built-in operators, we have decided to compare SDAP with
another popular system: Spark-Streaming. Spark-Streaming provides built-in
operators and allows the designer to specify stream applications in a quite suc-
cinct manner as Scala programs. While Spark-Streaming supports other lan-
guages, Scala has been chosen because it is one of the less verbose and is sup-
ported natively.

Let us compare the two systems using a streaming application that must
detect tuples that match a set of specified keywords keywordSeq. If a tuple

20 P. Cappellari et al.

contains a target keyword, it is then forwarded in JSON format to a Kafka end-
point. Listing 1.7 shows such application for Spark-Streaming. As we can see,
specifying operations such as the cartesian product is rather straightforward.
However, even simple operations require a rather verbose specification. To begin
with, the developer must select the right libraries to use, such as what package
to use for the JSON conversion – omitted in the snippet. Since there are multi-
ple possibilities, the developer is required to study each alternative to determine
which one best fits her needs, which takes time. Then, the developer must com-
pose the application. Let us ignore the details of the streams, i.e. the attributes.
After the cartesian product operation, line 3, and before checking the keyword
match, line 15, the developer must manually open multiple connections to Kafka
for each node of the Spark-Streaming cluster. Specifically, the developer opens
a connection for each partition of data in the resilient distributed dataset (or
RDD, the main data structure in Spark), in an attempt to parallelize the data
exchange between the two systems.

...
2 statuses.foreachRDD(rdd => { // for each RDD

val cartesian = rdd.cartesian(keywordSeq)
4

// for each partition of data, connect to the end-point
6 cartesian.foreachPartition(partitionOfRecords => {

// initialize the Kafka producer
8 val props = new HashMap[String, Object]()

setupKafkaProps(props)
10 val producer = new KafkaProducer[String, String](props)

// for each record in partition, check keyword match
12 partitionOfRecords.foreach{

case (status, keywords) => {
14 // if a keyword matches, forward to end-point

if (keywords.map(l => l.toLowerCase()).toSet
16 subsetOf status.toLowerCase().split(" ").toSet) {

val jsonMessage = ("text" -> record.toString)
18 ˜ ("keywords" -> keywords.toList)

val jsonMessageString = compact(render(jsonMessage))
20 // send message to kafka

val message = new ProducerRecord[String, String]
22 (topicsOutputSet.head, null, jsonMessageString)

producer.send(message)
24 ...

Listing 1.7. Keyword match sample application in spark-streaming.

In contrast, SDAP: (i) has no need to study libraries for inclusion as they
are built-in; (ii) the cartesian operator can also be expressed simply but requires
no knowledge of a programming language, Scala in this case; (iii) the connection
to the end-point is provided by a built-in operator that does not require the

A Scalable Platform for Low-Latency Real-Time Analytics 21

developer to study the inner workings of Scala optimization for Spark-Streaming;
and (iv) the set comparison between the record value and a set of keywords can
be implemented as a sequence of tokenizer + selection operators. In total, the
SDAP would have 4 operators and associated configuration files. Note that the
configuration files would be mostly empty, and the in/out stream attributes
are automatically populated using the designer portal. Listing 1.8 shows the
equivalent topology specification with details of configuration files omitted for
the sake of space.

...
2 operator cross_product join-mpi ${join_conf}

operator tokenize_keyword utility-mpi ${tokenizer_conf}
4 operator keyword_match functor-mpi ${selection_conf}

operator json_encoder_converter-mpi ${json_conf}
6 operator kafka_endpoint interface-mpi ${kafka_conf}

...
8 route cross_product:1 roundrobin tokenize_keyword_set:1

route tokenize_keyword_set:1 roundrobin keyword_match:1
10 route keyword_match:1 roundrobin json_endpoint:1

route keyword_json:1 roundrobin kafka_endpoint:1

Listing 1.8. Keyword match equivalent application in SDAP.

It can be observed that the SDAP implementation is easier to read and does
not require any previous programming knowledge. In our experience with the
SDAP, we have observed that users rapidly familiarize with topology paradigm,
with the options of the operators and become power-users capable of developing
rather complex transformations.

7 Conclusions

The increasing availability of data provided through online channels has led to
an increasing demand to include this form of data in many decision making
processes for growing numbers of organizations. The increasing volumes of this
data means a greater need for high performance streaming processors. Current
systems have been shown to suffer from issues of latency and/or overly complex
design and implementation methods. SDAP provides the capability to design
and deploy topologies which can scale to very high volumes of data while hid-
ing the complexities of these systems from the designer. Its powerful operators
provide a platform for highly complex analytics with SDAP abstracting the
underlying management of data and parallel processing. Our evaluation shows
SDAP to outperform popular streaming systems such as Storm and MillWheel.
Our current research is focused on a few fronts: analysis of application patters,
optimization of resource usage, and performance. On one side, we want to exploit
the declarative nature of the approach to further simplify the design of stream
analytics, and to discover application and resource optimization opportunity.

22 P. Cappellari et al.

The visibility and ease of access to the data transformations operation allows
to analyze stream analytics design patterns and to optimize the resource alloca-
tion. On the other side, we want to further improve performance of the execution
engine by including hardware acceleration, e.g. using graphics processing units
(GPUs), in the logic of the operators in the context of a high-performance and
low-latency environment.

Acknowledgements. This research was supported, in part, from Collective[i] Grant
RF-7M617-00-01, the National Science Foundation Grants CNS-0958379,CNS-0855217,
ACI-1126113 and the City University of New York High Performance Computing Cen-
ter at the College of Staten Island.

References

1. Akidau, T., Balikov, A., Bekiroglu, K., Chernyak, S., Haberman, J., Lax, R.,
McVeety, S., Mills, D., Nordstrom, P., Whittle, S.: Millwheel: fault-tolerant
stream processing at internet scale. PVLDB 6(11), 1033–1044 (2013). http://www.
vldb.org/pvldb/vol6/p1033-akidau.pdf

2. Balazinska, M., Balakrishnan, H., Madden, S., Stonebraker, M.: Fault-tolerance
in the borealis distributed stream processing system. ACM Trans. Database Syst.
33(1), 1–3 (2008). http://doi.acm.org/10.1145/1331904.1331907

3. Cappellari, P., Chun, S.A., Roantree, M.: Ise: a high performance system for
processing data streams. In: Proceedings of 5th International Conference on Data
Science, Technology and Applications, DATA 2016, Lisbon, Portugal, pp. 13–24,
24–26 July 2016

4. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G.,
Stonebraker, M., Tatbul, N., Zdonik, S.B.: Monitoring streams - a new class of
data management applications. In: Proceedings of 28th International Conference
on Very Large Data Bases, VLDB 2002, Hong Kong, China, pp. 215–226, 20–23
August 2002. http://www.vldb.org/conf/2002/S07P02.pdf

5. Chandrasekaran, S., Franklin, M.J.: Streaming queries over streaming data. In:
Proceedings of 28th International Conference on Very Large Data Bases, VLDB
2002, Hong Kong, China, pp. 203–214, 20–23 August 2002. http://www.vldb.org/
conf/2002/S07P01.pdf

6. Chen, X., Beschastnikh, I., Zhuang, L., Yang, F., Qian, Z., Zhou, L., Shen,
G., Shen, J.: Sonora: a platform for continuous mobile-cloud computing.
Technical report (2012). https://www.microsoft.com/en-us/research/publication/
sonora-a-platform-for-continuous-mobile-cloud-computing/

7. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Gerth, J., Talbot, J.,
Elmeleegy, K., Sears, R.: Online aggregation and continuous query support in
mapreduce. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, pp. 1115–1118,
6–10 June 2010. http://doi.acm.org/10.1145/1807167.1807295

8. Ganglia (2015). http://ganglia.sourceforge.net/. Accessed 15 Nov 2016
9. Gedik, B., Yu, P.S., Bordawekar, R.: Executing stream joins on the cell processor.

In: Proceedings of the 33rd International Conference on Very Large Data Bases,
University of Vienna, Austria, pp. 363–374, 23–27 September 2007. http://www.
vldb.org/conf/2007/papers/research/p363-gedik.pdf

http://www.vldb.org/pvldb/vol6/p1033-akidau.pdf
http://www.vldb.org/pvldb/vol6/p1033-akidau.pdf
http://doi.acm.org/10.1145/1331904.1331907
http://www.vldb.org/conf/2002/S07P02.pdf
http://www.vldb.org/conf/2002/S07P01.pdf
http://www.vldb.org/conf/2002/S07P01.pdf
https://www.microsoft.com/en-us/research/publication/sonora-a-platform-for-continuous-mobile-cloud-computing/
https://www.microsoft.com/en-us/research/publication/sonora-a-platform-for-continuous-mobile-cloud-computing/
http://doi.acm.org/10.1145/1807167.1807295
http://ganglia.sourceforge.net/
http://www.vldb.org/conf/2007/papers/research/p363-gedik.pdf
http://www.vldb.org/conf/2007/papers/research/p363-gedik.pdf

A Scalable Platform for Low-Latency Real-Time Analytics 23

10. Gehrke, J., Korn, F., Srivastava, D.: On computing correlated aggregates over
continual data streams. In: Mehrotra, S., Sellis, T.K. (eds.) Proceedings of the 2001
ACM SIGMOD International Conference on Management of Data, Santa Barbara,
CA, USA, pp. 13–24. ACM, 21–24 May 2001. http://doi.acm.org/10.1145/375663.
375665

11. Grinev, M., Grineva, M.P., Hentschel, M., Kossmann, D.: Analytics for the real-
time web. PVLDB 4(12), 1391–1394 (2011). http://www.vldb.org/pvldb/vol4/
p1391-grinev.pdf

12. Gui, H., Roantree, M.: Topological XML data cube construction. Int. J. Web Eng.
Technol. 8(4), 347–368 (2013)

13. Gui, H., Roantree, M.: Using a pipeline approach to build data cube for large XML
data streams. In: Hong, B., Meng, X., Chen, L., Winiwarter, W., Song, W. (eds.)
DASFAA 2013. LNCS, vol. 7827, pp. 59–73. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40270-8 5

14. Infiniband (2015). http://www.infinibandta.org/. Accessed 15 Nov 2016
15. InfoSphere streams (2015). http://www-03.ibm.com/software/products/en/

infosphere-streams. Accessed 15 Nov 2016
16. Kang, J., Naughton, J.F., Viglas, S.: Evaluating window joins over unbounded

streams. In: Proceedings of the 19th International Conference on Data Engineering,
Bangalore, India, pp. 341–352, 5–8 March 2003. doi:10.1109/ICDE.2003.1260804

17. Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: Semantics and evaluation
techniques for window aggregates in data streams. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, Baltimore, Maryland,
USA, pp. 311–322, 14–16 June 2005. http://doi.acm.org/10.1145/1066157.1066193

18. Madden, S., Shah, M.A., Hellerstein, J.M., Raman, V.: Continuously adaptive con-
tinuous queries over streams. In: Proceedings of the 2002 ACM SIGMOD Inter-
national Conference on Management of Data, Madison, Wisconsin, pp. 49–60, 3–6
June 2002. http://doi.acm.org/10.1145/564691.564698

19. Maier, D., Li, J., Tucker, P., Tufte, K., Papadimos, V.: Semantics of data streams
and operators. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp.
37–52. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30570-5 3

20. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku,
G.S., Olston, C., Rosenstein, J., Varma, R.: Query processing, approximation, and
resource management in a data stream management system. In: CIDR (2003).
http://www-db.cs.wisc.edu/cidr/cidr2003/program/p22.pdf

21. MVAPICH2, The Ohio State University (2015). http://mvapich.cse.ohio-state.
edu/. Accessed 15 Nov 2016

22. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: distributed stream computing
platform. In: Proceedings of the 2010 IEEE International Conference on Data
Mining Workshops, ICDMW 2010, Washington, DC, USA, pp. 170–177 (2010).
IEEE Computer Society. doi:10.1109/ICDMW.2010.172

23. Peng, D., Dabek, F.: Large-scale incremental processing using distributed transac-
tions and notifications. In: Proceedings of the 9th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI 2010, Vancouver, BC, Canada,
pp. 251–264, 4–6 October 2010. http://www.usenix.org/events/osdi10/tech/full
papers/Peng.pdf

24. Plimpton, S.J., Shead, T.M.: Streaming data analytics via message passing with
application to graph algorithms. J. Parallel Distrib. Comput. 74(8), 2687–2698
(2014). doi:10.1016/j.jpdc.2014.04.001

25. Slurm (2015). http://slurm.schedmd.com/. Accessed 15 Nov 2016

http://doi.acm.org/10.1145/375663.375665
http://doi.acm.org/10.1145/375663.375665
http://www.vldb.org/pvldb/vol4/p1391-grinev.pdf
http://www.vldb.org/pvldb/vol4/p1391-grinev.pdf
http://dx.doi.org/10.1007/978-3-642-40270-8_5
http://dx.doi.org/10.1007/978-3-642-40270-8_5
http://www.infinibandta.org/
http://www-03.ibm.com/software/products/en/infosphere-streams
http://www-03.ibm.com/software/products/en/infosphere-streams
http://dx.doi.org/10.1109/ICDE.2003.1260804
http://doi.acm.org/10.1145/1066157.1066193
http://doi.acm.org/10.1145/564691.564698
http://dx.doi.org/10.1007/978-3-540-30570-5_3
http://www-db.cs.wisc.edu/cidr/cidr2003/program/p22.pdf
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://dx.doi.org/10.1109/ICDMW.2010.172
http://www.usenix.org/events/osdi10/tech/full_papers/Peng.pdf
http://www.usenix.org/events/osdi10/tech/full_papers/Peng.pdf
http://dx.doi.org/10.1016/j.jpdc.2014.04.001
http://slurm.schedmd.com/

24 P. Cappellari et al.

26. Teubner, J., Müller, R.: How soccer players would do stream joins. In: Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2011, Athens, Greece, pp. 625–636, 12–16 June 2011. http://doi.acm.org/10.1145/
1989323.1989389

27. Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J.M., Kulkarni, S.,
Jackson, J., Gade, K., Fu, M., Donham, J., Bhagat, N., Mittal, S., Ryaboy, D.V.:
Storm@twitter. In: International Conference on Management of Data, SIGMOD
2014, Snowbird, UT, USA, pp. 147–156, 22–27 June 2014. http://doi.acm.org/10.
1145/2588555.2595641

28. Trident (2012). http://storm.apache.org/documentation/Trident-tutorial.html.
Accessed 15 Nov 2016

29. Zaharia, M., Das, T., Li, H., Shenker, S., Stoica, I.: Discretized streams: an effi-
cient and fault-tolerant model for stream processing on large clusters. In: 4th
USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 2012, Boston,
MA, USA, 12–13 June 2012. https://www.usenix.org/conference/hotcloud12/
workshop-program/presentation/zaharia

http://doi.acm.org/10.1145/1989323.1989389
http://doi.acm.org/10.1145/1989323.1989389
http://doi.acm.org/10.1145/2588555.2595641
http://doi.acm.org/10.1145/2588555.2595641
http://storm.apache.org/documentation/Trident-tutorial.html
https://www.usenix.org/conference/hotcloud12/workshop-program/presentation/zaharia
https://www.usenix.org/conference/hotcloud12/workshop-program/presentation/zaharia

Identifying Conversational Message Threads
by Integrating Classification and Data Clustering

Giacomo Domeniconi1(B), Konstantinos Semertzidis2, Gianluca Moro1,
Vanessa Lopez3, Spyros Kotoulas3, and Elizabeth M. Daly3

1 Department of Computer Science and Engineering (DISI),
University of Bologna at Cesena, Cesena, Italy

{giacomo.domeniconi,gianluca.moro}@unibo.it
2 Department of Computer Science and Engineering, University of Ioannina,

Ioannina, Greece
ksemer@cs.uoi.gr

3 IBM Research - Damastown Industrial Estate Mulhuddart, Dublin 15, Ireland
{vanlopez,Spyros.Kotoulas,elizabeth.daly}@ie.ibm.com

Abstract. Conversational message thread identification regards a wide
spectrum of applications, ranging from social network marketing to virus
propagation, digital forensics, etc. Many different approaches have been
proposed in literature for the identification of conversational threads
focusing on features that are strongly dependent on the dataset. In this
paper, we introduce a novel method to identify threads from any type of
conversational texts overcoming the limitation of previously determining
specific features for each dataset. Given a pool of messages, our method
extracts and maps in a three dimensional representation the semantic
content, the social interactions and the timestamp; then it clusters each
message into conversational threads. We extend our previous work by
introducing a deep learning approach and by performing new extensive
experiments and comparisons with classical learning algorithms.

Keywords: Conversational message · Thread identification · Data clus-
tering · Classification

1 Introduction

Nowadays, online conversations have become widespread, such as email, web
chats, online conversations and social groups. Online chatting, is a fast, econom-
ical and efficient way of sharing information and it also provides users the ability
to discuss different topics with different people. Understanding the context of
digital conversations finds a wide spectrum of applications such as marketing,
social network extraction, expert finding, the improvement of email management,
ranking content and others [1–4].

G. Domeniconi—This work was partially supported by the european project “TORE-
ADOR” (grant agreement no. H2020-688797).

c© Springer International Publishing AG 2017
C. Francalanci and M. Helfert (Eds.): DATA 2016, CCIS 737, pp. 25–46, 2017.
DOI: 10.1007/978-3-319-62911-7 2

26 G. Domeniconi et al.

The contiguous increase of digital content leads people being overwhelmed
by information. For example, imagine the case where a user has hundreds of new
unread messages in a chat or a mailbox or in a situation where the same user
needs to track and organise posts in forums or social groups. In order to instantly
have a clear view of different discussions, avoiding expensive and tedious human
efforts, we need to automatically organise this data stream into threads.

Many different approaches have been proposed in the related literature to
extract topics from document sets, mainly through a variety of techniques
derived from Probabilistic Latent Semantic Indexing (pLSI) [5] and Latent
Dirichlet Allocation (LDA) [6]. However, the problem of identifying threads
from conversational messages differs from document topic extraction for sev-
eral aspects [4,7–10]: (i) conversational messages are generally much shorter
than usual documents making the task of topic identification much more dif-
ficult (ii) thread identification strongly depends on social interactions between
the users involved in a message exchange, (iii) as well the time of the discussion.

Time
Social

C
on
te
nt

Fig. 1. Three dimensional representation of threads messages.

In our previous work [11] we addressed the problem of efficiently identifying
conversational threads from pools of online messages - for example from emails,
social groups, chats etc. In other words, we looked for the sets of messages that
are related to each other with respect to text content, time and involved users.

We consider a three dimensional representation [12] which consists of text
content, temporal information, and social relations. In Fig. 1, we depict the three
dimensional representation which illustrates 3 threads with different colours and
shapes, that yields to total of 14 messages. The green circles and red squares
threads have the same social and content dimensions but not time. While the
blue diamonds thread consists of different topics and users, but it occurs in

Identifying Conversational Message Threads 27

the same time frame of the green circles one. The use of the three dimensional
representation leads to emphasis of thread separation.

We propose several measures to exploit the messages features, based on this
three dimensional representation. Then, similarly to the work in [13], the gen-
erated features are embedded into a metric distance in density and hierarchi-
cal clustering algorithms [14,15] which cluster messages in threads. In order
to enhance our approach to efficiently identify threads in any type of dataset,
we train a classification model with a set of messages previously organised in
threads. The classifiers exploit the same features used in the clustering phase and
they return the probability that a pair of messages belong to the same thread. In
other words, a binary supervised model is trained with instances, each referring
to a pair of messages. Each instance uses the same features described previously,
and a label describing whether the two messages belong to the same thread or
not. This model provides a probability of being in the same thread for a pair of
messages, we propose to use this probability as a similarity distance in cluster-
ing methods to identify the threads. We observe that the classifiers’ output can
help the clustering process to achieve higher accuracy by identifying the threads
correctly. In this paper we extend our aforementioned approach by comparing
classical Machine Learning supervised algorithms with a Deep Learning Multi-
Layer Perceptron. Deep learning algorithms are proven to achieve good results
in several mining domains [16], especially in big-data contexts [17]; thus consid-
ering that the identification of conversational thread in social networks could be
a problem with an huge amount of data to analyze, a deep learning approach
could fit well into this task.

We have extensively evaluated our approach with real world datasets includ-
ing emails and social group chats. Our experimental results show that our
method can identify the large majority of the threads in several type of dataset,
such as web conversation including emails, chats and posts.

To summarize, the main contributions of this work are:

– a three dimensional message representation based on textual semantic con-
tent, social interactions and time to generate features for each message;

– clustering algorithms to identify threads, on top of the features generated
from the three dimensional representation;

– combination of the generated features to build classifiers that identify the
membership probability of pair of messages to the same thread and this prob-
ability is used as a distance function for the clustering methods to identify
threads;

– extension of the combined classification techniques with clustering algorithms
that achieves a higher accuracy than using clustering alone;

– comparison of performances obtained by several machine learning algorithms
and the deep learning Multi-Layer Perceptron.

The rest of this paper is structured as follows. In Sect. 4, we present related
work, while in Sect. 3, we formally define the thread identification problem. In
Sect. 2, we introduce our model and our algorithms for thread identification.

28 G. Domeniconi et al.

Section 3.3 presents the experimental results on real datasets and Sect. 5 con-
cludes the paper.

2 Method

In this section, we outline a generic algorithm for identifying messages which
belong to the same thread from a set of messages M, such as emails, social group
posts and chats. As an intermediate step, the algorithm addresses the problem
of computing the similarity measure between pairs of messages. We propose
a suite of features and two methods to combine them (one unsupervised and
one supervised) to compute the similarity measure between two messages. We
also present clustering algorithms which identify threads based on this similarity
measure in Sect. 2.3.

2.1 Data Model

We consider a set of messages M = {m1,m2, ...} that refers to online texts such
as emails, social group chats or forums. Each message is characterized by the
following properties: (1) textual data (content and subject in case of emails), (2)
creation time, and (3) the users involved (authors or sender/recipients in case
of emails). We represent each message as a three-dimensional model [12,18] to
capture all these components. Thus, a message m ∈ M can be denoted as a
triplet m = <cm,Um, tm>, where cm refers to text content, Um = {u1, u2, ...}
refers to the set of users that are involved in m, and tm refers to the creation time.
Some dimensions can be missing, for instance chat, groups and forum messages
provide only the author information, without any recipients.

A conversation thread is defined as a set of messages exchanged on the same
topic among the same group of users during a time interval, more formally,
the set of messages M is partitioned in a set of conversations C. Each message
m ∈ M belongs to one and only one conversation c ∈ C. The goal of the thread
reconstruction task is to automatically identify the conversations within a pool
of messages. To this aim, we propose a clustering-based method that relies on
a similarity measure between a pair of messages, called SIM(mi,mj). In the
following sections, we define different proposed approaches to calculate the simi-
larity measure. In the rest of the paper, we will use the notation Ω = {ω1, ω2, ...}
to refer the predicted extracted conversations.

2.2 Messages Features

Social text messages, like emails or posts, can be summarized by three main
components: text content, temporal information, and social relations [12]. Each
of the three main components can be analyzed under different points of view to
compute the distance between a pair of messages, which involves the creation of
several features. The function SIM(mi,mj) relies on these features and returns a
similarity value for each pair of messages (mi, mj), which is used by the clustering

Identifying Conversational Message Threads 29

algorithm that returns the finding threads. We now present the extracted features
used to measure the similarity between two messages.

The content component relies on the semantics of the messages. There are
two main sources: the messages text and the subject, if present (e.g., social
network posts do not have this information). The first considered feature is the
similarity of the messages text content. We make use of the common Bag of
Words (BoW) representation, that describes a textual message m by means
of a vector W(m) = {w1, w2, ...}, where each entry indicates the presence or
absence of a word wi. Single words occurring in the message text are extracted,
discarding punctuation. A stopwords list is used to filter-out all the words that
are not informative enough. The standard Porter stemming algorithm [19] is
used to group words with a common stems. To estimate the importance to each
word, there exist several different weighting schemes [20], here we make use of
the commonly used tf.idf scheme [21].

Using BoW representation, the similarity between two vectors mi,mj can
be measured by means of the commonly used cosine similarity [22]:

fCT
(mi,mj) =

W(mi) · W(mj)
‖W(mi)‖‖W(mj)‖

Since by definition the BoW vectors have only positive values, the fCT
(mi,mj)

takes values between zero and one, being zero if the two vectors do not share any
word, and one if the two vectors are identical. In scenarios where the subject
is available, the same process is carried out, computing the similarity cosine
fCS

(mi,mj) of words contained in the messages subject.
The cosine similarity allows a lexical comparison between two messages but

does not consider the semantic similarity between two messages. There are two
main shortcomings of this measure: the lack of focus on keywords, or semantic
concepts expressed by messages, and the lack of recognition of lexicographically
different words but with similar meaning (i.e. synonyms), although this is par-
tially computed through the stemming. In order to also handle this aspect, we
extend the text similarity by measuring the correlation between entities, key-
words and concepts extracted using AlchemyAPI1. AlchemyAPI is a web service
that analyzes the unstructured content, exposing the semantic richness in the
data. Among the various information retrieved by AlchemyAPI, we take into
consideration the extracted topic keywords, involved entities (e.g. people, com-
panies, organizations, cities and other types of entities) and concepts which are
the abstractions of the text (for example, “My favorite brands are BMW and
Porsche = Automotive industry”). These three information are extracted by
Alchemy API with a confidence value ranging from 0 to 1. We create three vec-
tors, one for each component of the Alchemy API results for keywords, entities
and concepts for each message and using the related confidence extracted by
AlchemyAPI as weight. Again we compute the cosine similarity of these vectors,
creating three novel features:

1 http://www.alchemyapi.com/.

http://www.alchemyapi.com/

30 G. Domeniconi et al.

– fCK
(mi,mj): computes the cosine similarity of the keywords of mi and mj .

This enables us to quantify the similarity of the message content based purely
on keywords rather than the message as a whole.

– fCE
(mi,mj): computes the cosine similarity of the entities that appear in mi

and mj focusing on the entities shared by the two messages.
– fCC

(mi,mj): computes the cosine similarity of the concepts in mi and mj ,
allowing the comparison of the two messages on a higher level of abstraction:
from words to the expressed concepts.

The second component is related to the social similarity. For each message
m, we create a vector of involved users U(m) = {u1, u2, ...} defined as the union
of the sender and the recipients of m (note that the recipients information is
generally not provided in social network posts). We exploit the social relatedness
of two messages through two different features:

– The similarity of the users involved in the two messages fSU
(mi,mj), defined

as the Jaccard similarity between U(mi) and U(mj):

fSU
(mi,mj) =

|U(mi) ∩ U(mj)|
|U(mi) ∪ U(mj)|

– The neighborhood Jaccard similarity fSN
(mi,mj) of the involved users. The

neighborhood set N (u) of an user u is defined as the set of users that have
received at least one message from u. We also include each user u in its
neighborhood N (u) set. The neighborhood similarity of two messages mi

and mj is defined as follows:

fSN (mi, mj) =
1

|U(mi)||U(mj)|
∑

ui∈U(mi)
uj∈U(mj)

|N (ui) ∩ N (uj)|
|N (ui) ∪ N (uj)|

Finally, the last component relies on the time of two messages. We define the
time similarity as the logarithm of the inverse of the distance between the two
messages, expressed in days, as follows:

fT (mi,mj) = log2(1 +
1

1 + |tmi
− tmj

|)

We use the inverse normalization of the distance in order to give a value between
zero and one, where zero correspond to a high temporal distance and one refers
to messages with low distance.

As a practical example, Fig. 2 shows two messages, with the related proper-
ties, and the values of the features generated from them.

2.3 Clustering

In this section, we present the clustering methods used to identify the
threads. Based on the set of aforementioned features F = {fCT

, fCS
, fCK

,

Identifying Conversational Message Threads 31

Fig. 2. Example of features calculation for a pair of messages. Message components:
Subject, Content, Users (sender → recipients) and creation date. W(mi) refers to the
bag of words of a message obtained after the tokenization, stopwords removal and
stemming. The vectors of keywords (K(mi)), concepts (C(mi)) and entities (E(mi))
extracted from AlchemyAPI are shown. In the bottom the values for each proposed
feature are also shown. For simplicity, we assume binary weight for components.

fCE
, fCC

, fSU
, fSN

, fT }, we define a distance measure that quantifies the sim-
ilarity between two messages:

SIM(mi,mj) = Πf∈F (1 + f(mi,mj)) (1)

We compute a N × N matrix with the similarities between each pair of mes-
sages (mi,mj) and we use density based and hierarchical clustering algorithms,
being the two most common distance-based approaches.

Density-Based Clustering. We use the DBSCAN [14] density-based cluster-
ing algorithm in order to cluster messages to threads because given a set of
points in some space, DBSCAN groups points that are closely packed together
(with many nearby neighbors). DBSCAN requires two run time parameters,
the minimum number min of points per cluster, and a threshold θ that defines
the neighborhood distance between points in a cluster. The algorithm starts by
selecting an arbitrary point, which has not been visited, and by retrieving its
θ-neighborhood it creates a cluster if the number of points in that neighborhood
is equals to or greater than min. In situations where the point resides in a dense
part of an existing cluster, its θ-neighbor points are retrieved and are added to
the cluster. This process stops when the densely-connected cluster is completely

32 G. Domeniconi et al.

found. Then, the algorithm processes new unvisited points in order to discover
any further clusters.

In our study, we use messages as points and we use weighted edges that
connect each message to the other messages. An edge (mi,mj) between two
messages mi and mj is weighted with the similarity measure SIM(mi,mj).
When DBSCAN tries to retrieve the θ-neighborhood of a message m, it gets all
messages that are adjacent to m with a weight in their edge greater or equal
to θ. Greater weight on an edge indicates that the connected messages are more
similar, and thus they are closer to each other.

Hierarchical Clustering. This approach uses the Agglomerative hierarchical
clustering method [15] where each observation starts in its own cluster, and pairs
of clusters are merged as one moves up the hierarchy. Running the agglomerative
method requires the choice of an appropriate linkage criteria, which is used to
determine the distance between sets of observations as a function of pairwise dis-
tances between clusters that should be merged or not. In our study we examined,
in preliminary experiments, three of the most commonly used linkage criteria,
namely the single, complete and average linkage [23]. We observed that average
linkage clustering leads to the best results. The average linkage clustering of two
clusters of messages Ωy and Ωz is defined as follows:

avgLinkCl(Ωy, Ωz) =
1

|Ωy||Ωz|
∑

ωi∈Ωy

ωj∈Ωz

SIM(ωi, ωj)

The agglomerative clustering method is an iterative process that merges the
two clusters with highest average linkage score. After each merge of the clusters,
the algorithm starts by recomputing the new average linkage scores between all
clusters. This process runs until a cluster pair exists with a similarity greater
than a given threshold.

2.4 Classification

The clustering algorithms described above rely on the similarity measure SIM ,
that combines with a simple multiplication several features, to obtain a sin-
gle final score. This similarity measure in Eq. 1 gives the same weight, namely
importance, to each feature. This avoids the requirement to tune the parameters
related to each feature, but could provide an excessively rough evaluation and
thus bad performance. A different possible approach, is to combine the sub com-
ponents of similarity measure SIM as features into a binary supervised model,
in which each instance refers to a pair of messages, the features are the same
described in the Sect. 2.2 and the label is one if the messages belonging to the
same thread and zero otherwise. At runtime, this classifier is used to predict
the probability that two messages belong to the same thread, using this prob-
ability as the distance between the pairs of messages into the same clustering

Identifying Conversational Message Threads 33

Table 1. Characteristics of datasets.

Dataset Messages type #messages #threads #users Peculiarities

BC3 Emails 261 40 159 Threads contain
emails with different
subject

Apache Emails from
mailing list

2945 334 113 Threads always
contain emails with
same subject

Redhat Emails from
mailing list

12981 802 931 Threads always
contain emails with
same subject

WhoWorld Posts from
Facebook page

2464 132 1853 Subject and recipients
not available

Healthy
Choice

Posts from
Facebook page

1115 132 601 Subject and recipients
not available

Healthcare
Advice

Posts from
Facebook group

3436 468 801 Subject and recipients
not available

Ireland S.
Android

Posts from
Facebook group

4831 408 354 Subject and recipients
not available

algorithms. The benefit of such approach is that it automatically finds the appro-
priate features to use for each dataset and it leads to a more complete view of
the importance of each feature. Although it is shown in [24] that decision trees
are faster and more accurate in classifying text data, we experimented with a
variety of classifiers.

The classification requires a labeled dataset to train a supervised model.
The proposed classifier relies on data in which each instance represents a pair
of messages. Given a set of training messages MTr with known conversation
subdivision, we create the training set coupling each training message m ∈ MTr

with ns messages of MTr that belong to the same thread of m and nd messages
belonging to different threads. We label each training instance with one if the
corresponding pair of messages belong to same thread and zero otherwise. Each
of these coupled messages are picked randomly. Theoretically we could create
(|MTr| · |MTr − 1|)/2 instances, coupling each message with the whole training
set. In preliminary tests using Random Forest as the classification model, we
notice that coupling each training message with a few dozen same and different
messages can attain higher performances. All the experiments are conducted
using ns = nd = 20, i.e. each message is coupled with at maximum 20 messages
of the same conversation and 20 of different ones. In the rest of the paper we
refer to the proposed clustering algorithm based on a supervised model, as SVC.

As it will be shown in the Sect. 3.3, the Agglomerative hierarchical clustering
achieves better results with respect to the DBSCAN, thus, we use this clustering
algorithm in the SVC approach.

34 G. Domeniconi et al.

2.5 Multi-layer Perceptron

A Multi-Layer Perceptron (MLP) is a deep learning algorithm [16,25] that can be
viewed as a logistic regression classifier where the input is first transformed using
a learnt non-linear transformation Φ. This transformation maps the input data
into a space where they expect to be better linearly separable. This intermediate
layer is referred to as a hidden layer.

Formally, a one-hidden-layer MLP is a function f : RD → RL, where D is
the size of input vector x and L is the size of the output vector f(x), such that,
in matrix notation:

f(x) = G(b(2) + W (2)(s(b(1) + W (1)x))),

with x that is the input vector, i.e. the set of feature values F computed for
the coupled messages; b(1), b(2) are bias vectors; W (1), W (2) are weight matrices
and G and s activation functions. The vector h(x) = Φ(x) = s(b(1) + W (1)x)
constitutes the hidden layer. W (1) ∈ RD×Dh is the weight matrix connecting the
input vector to the hidden layer. Each column W

(1)
·i represents the weights from

the input units to the i-th hidden unit. After a pre-tuning phase, we chose the
hyperbolic tangent activation function:

s = tanh(a) = (ea − e−a)/(ea + e−a)

for its faster and higher results with respects to other functions, like for
instance the sigmoid. The output vector is then obtained as:

o(x) = G(b(2) + W (2)h(x))

By considering that we need a binary classification, namely either the coupled
messages belong or not to the same thread, the output is a couple of probabil-
ities for each class achieved by choosing G as the softmax function. To run our
experiments, we make use of Yusuke java implementation Sugomori2 [26].

3 Evaluation

In this section, we compare the accuracy of the clustering methods described in
Sect. 2 in terms of identifying the actual threads.

3.1 Datasets

For evaluating our approach we consider the following seven real datasets:

– The BC3 dataset [27], which is a special preparation of a portion W3C corpus
[28] that consists of 40 conversation threads. Each thread has been annotated
by three different annotators, such as extractive summaries, abstractive sum-
maries with linked sentences, and sentences labeled with speech acts, meta
sentences and subjectivity.

2 https://github.com/yusugomori/DeepLearning.

https://github.com/yusugomori/DeepLearning

Identifying Conversational Message Threads 35

– The Apache dataset which is a subset of Apache Tomcat public mailing list3

and it contains the discussions from August 2011 to March 2012.
– The Redhat dataset which is a subset of Fedora Redhat Project public mailing

list4 and it contains the discussions that took place in the first six months of
2009.

– Two Facebook pages datasets, namely Healthy Choice5 and World Health
Organizations6, crawled using the Facebook API7. They consist of real posts
and relative replies between June and August 2015. We considered only the
text content of the posts (discarding links, pictures, videos, etc.) and only
those written in English (AlchemyAPI is used to identify the language).

– Two Facebook public groups datasets, namely Healthcare Advice8 and Ireland
Support Android9, also crawled using the Facebook API. They consist of con-
versations between June and August 2015. Also for this dataset we considered
only the text content of the posts written in english.

We use the first three datasets that consist of emails in order to compare
our approach with existing related work [29–31] on conversation thread recon-
struction in email messages. To our knowledge, there are no publicly available
datasets of social network posts with a gold standard of conversation subdivi-
sion. We use the four Facebook datasets to evaluate our method in a real social
network domain.

The considered datasets have different peculiarities, in order to evaluate our
proposed method under several perspectives. BC3 is a quite small dataset (only
40 threads) of emails, but with the peculiarity of being manually curated. In this
dataset is possible to have emails with different subjects in the same conversa-
tion. However, in Apache and Redhat the messages in the same thread, have also
the same subject.

With regards to Facebook datasets, we decided to use both pages and groups.
Facebook pages are completely open for all users to read and comment in a
conversation. In contrast, only the members of a group are able to view and
comment a group post and this leads to a peculiarity of different social interaction
nets. Furthermore, each message - post - in these datasets has available only the
text content, the sender and the time, without information related to subject
and recipients. Thus, we do not take into account the similarities that use the
recipients or subject. Table 1 provides a summary of the characteristics of each
dataset.

In the experiments requiring a labeled set to train a supervised model, the
datasets are evaluated with 5-fold cross-validation, subdividing each of those in
5 thread folds.

3 http://tomcat.apache.org/mail/dev.
4 http://www.redhat.com/archives/fedora-devel-list.
5 https://www.facebook.com/healthychoice.
6 https://www.facebook.com/WHO.
7 https://developers.facebook.com/docs/graph-api.
8 https://www.facebook.com/groups/533592236741787.
9 https://www.facebook.com/groups/848992498510493.

http://tomcat.apache.org/mail/dev
http://www.redhat.com/archives/fedora-devel-list
https://www.facebook.com/healthychoice
https://www.facebook.com/WHO
https://developers.facebook.com/docs/graph-api
https://www.facebook.com/groups/533592236741787
https://www.facebook.com/groups/848992498510493

36 G. Domeniconi et al.

3.2 Evaluation Metrics

The precision, recall and F1-measure [23] are used to evaluate the effectiveness
of the conversation threads identification. Here, we explain these metrics in the
context of the conversational identification problem. We evaluate each pair of
messages in the test set. A true positive (TP) decision correctly assigns two sim-
ilar messages to the same conversation. Similarly, a true negative (TN) assigns
two dissimilar messages to different threads. A false positive (FP) case would
be when the two messages do not belong to the same thread but are labelled
as co-threads in the extracted conversations. Finally, false negative (FN) case is
when the two messages belong to the same thread but are not co-threads in the
extracted conversations. Precision (p) and recall (r) are defined as follows:

p =
TP

TP + FP r =
TP

TP + FN
The F1-measure is defined by combining the precision and recall together, as

follows:
F1 =

2 · p · r

p + r

We also use the purity metric to evaluate the clustering. The dominant con-
versation, i.e. the conversation with the highest number of messages inside a
cluster, is selected from each extracted thread cluster. Then, purity is measured
by counting the number of correctly assigned messages considering the domi-
nant conversation as cluster label and finally dividing by the number of total
messages. We formally define purity as

purity(Ω, C) =
1

|M|
∑

k

max
j

|ωk ∈ cj |

where Ω = {ω1, ω2, ..., ωk} is the set of extracted conversations and C =
{c1, c2, ..., cj} is the set of real conversations.

Fig. 3. Conversation extraction example. Each ωk refers to an extracted thread and
each cj corresponds to the real conversation of the message.

To better understand the purity metric, we refer to the example of thread
identification depicted in Fig. 3. For each cluster, the dominant conversation
and the number of related messages are: ω1 : c1, 4, ω2 : c2, 4, ω3 : c3, 3. The

Identifying Conversational Message Threads 37

total number of messages is |M| = 17. Thus, the purity value is calculated as
purity = (4 + 4 + 3)/17 = 0.647.

A final measure of the effectiveness of the clustering method, is the sim-
ple comparison between the the number of identified threads (|Ω|) against the
number of real conversations (|C|).

3.3 Results

Tables 2 and 3 report the results obtained with the seven datasets using the
Weka [32] implementation of Random Forest algorithm. We applied a 2 × 2 cost
matrix with a weight of 100 for the instances labelled with one and the Sugomori
Java implementation of the Multi-Layer Perceptron as described above. The
reported results are related to the best tuning of the threshold parameter of the
clustering approaches, both for DBSCAN and Agglomerative. Further analysis
on the parameters of our method are discussed in the next section.

Table 2 shows the results on the email datasets, on which we can compare
our results (SVC) with other existing approaches, such as the studies of Wu and
Oard [31], Erera and Carmel [30] and the lastest one of Dehghani et al. [29]. The
first two approaches [30,31] are unsupervised, as the two clustering baselines,
while the approach in [29] is supervised, like our proposed SVC; both this super-
vised methods are evaluated with the same 5-fold cross-validation, described
above. All of the existing approaches use the information related to the subject
of the emails, we show in the top part of the table a comparison using also the
subject as feature in our proposed approach. We want point out that in Apache
and Redhat dataset, the use of the subject could make the clusterization effort-
less, since all messages of a thread have same subject. It is notable how our
supervised approach obtains really high results, reaching almost perfect predic-
tions and always outperforming the existing approaches, particularly in Redhat
and Apache dataset.

In our view, the middle of Table 2 is of particular interest, where we do not
considered the subject information. The results, especially in Redhat and Apache,
have a little drop, remaining anyhow at high levels, higher than all existing
approaches that take into consideration the subject. Including the subject or not,
the use of a supervised model to evaluate the similarity between two messages,
brings a great improvement to the clustering performances, compared to the use
of a simple combination of each feature as described in Sect. 2.3. In the middle
part of Table 2 is also shown the effectiveness of our SVC predictor without
the three features related to AlchemyAPI information; these features lead to
an improvement of results especially in Redhat, which is the largest and more
challenging dataset.

Table 2 also compares the performances of the SVCmethod using both the
Random Forest algorithm (SVCRF) and the Multi-Layer Perceptron (SVCMLP).
Noteworthy is the drop of precision and recall of the MLP algorithm for the
apache and redhat dataset when the subject are not considered, in this case the
Random Forest clearly outperforms the Deep Learning approach.

38 G. Domeniconi et al.

Table 2. Conversational identification results on email datasets. [30,31], DBSCAN
and Agglom. are unsupervised methods, while [29] and SVC are supervised, both using
the Random Forest (RF) and the Multi-Layer Perceptron (MLP) algorithms. The top
part of the table shows the results obtained by methods using subject information, the
middle part shows those achieved without such feature, finally the bottom part shows
the results obtained with SVC method considering only a single dimension. With + and
− we indicate respectively the use or not of the specified feature (s: subject feature, a:
the three Alchemy features). For clustering and SVC approach we report results with
best threshold tuning.

Methods BC3 Apache Redhat

Precision Recall F1 Precision Recall F1 Precision Recall F1

Wu and
Oard [31]

0.601 0.625 0.613 0.406 0.459 0.430 0.498 0.526 0.512

Erera and
Carmel [30]

0.891 0.903 0.897 0.771 0.705 0.736 0.808 0.832 0.82

Dehghani
et al. [29]

0.992 0.972 0.982 0.854 0.824 0.839 0.880 0.890 0.885

DBSCAN
(+s)

0.871 0.737 0.798 0.359 0.555 0.436 0.666 0.302 0.416

Agglom.
(+s)

1.000 0.954 0.976 0.358 0.918 0.515 0.792 0.873 0.83

SVCRF (+s) 1.000 0.986 0.993 0.998 1.000 0.999 0.995 0.984 0.989

SVCMLP

(+s)
1.000 0.982 0.991 0.969 1.000 0.984 0.99 0.981 0.985

DBSCAN
(−s)

0.696 0.615 0.653 0.569 0.312 0.403 0.072 0.098 0.083

Agglom.
(−s)

1.000 0.954 0.976 0.548 0.355 0.431 0.374 0.427 0.399

SVCRF (−s) 1.000 0.952 0.975 0.916 0.972 0.943 0.966 0.914 0.939

SVCRF

(−s −a)

0.967 0.979 0.973 0.892 0.994 0.940 0.815 0.699 0.753

SVCMLP

(−s)

1.000 0.973 0.986 0.654 0.671 0.663 0.703 0.541 0.612

SVCMLP

(−s −a)
1.000 0.972 0.986 0.633 0.616 0.624 0.469 0.579 0.518

SVCRF

(content)
1.000 0.919 0.958 0.954 0.974 0.964 0.988 0.984 0.986

SVCRF

(content −s)

0.964 0.902 0.932 0.604 0.706 0.651 0.899 0.872 0.885

SVCRF

(content −s
−a)

1.000 0.828 0.905 0.539 0.565 0.552 0.68 0.558 0.613

SVCRF

(social)

0.939 0.717 0.813 0.345 0.361 0.353 0.360 0.045 0.08

SVCRF

(time)

0.971 0.897 0.933 0.656 0.938 0.772 0.376 0.795 0.511

Identifying Conversational Message Threads 39

Table 3. Conversation identification results on Facebook post datasets (subject and
recipient information are not available). The top part of the table shows the results
obtained considering all the dimensions, both using the Random Forest (RF) and the
Multi-Layer Perceptron (MLP) algorithms; the bottom part shows the results obtained
with SVC method considering only a single dimension. For clustering and our approach
we report results with best threshold tuning.

Methods Healthy Choice World Health Org. Healthcare Advice Ireland S. Android

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

DBSCAN 0.027 0.058 0.037 0.159 0.043 0.067 0.206 0.051 0.082 0.201 0.002 0.004

Agglom 0.228 0.351 0.276 0.154 0.399 0.223 0.429 0.498 0.461 0.143 0.141 0.142

SVCRF 0.670 0.712 0.690 0.552 0.714 0.623 0.809 0.721 0.763 0.685 0.655 0.67

SVCRF

(−a)

0.656 0.713 0.683 0.543 0.742 0.627 0.802 0.733 0.766 0.708 0.714 0.711

SVCMLP 0.657 0.722 0.688 0.615 0.698 0.654 0.665 0.762 0.71 0.68 0.739 0.709

SVCMLP

(−a)

0.65 0.726 0.686 0.61 0.696 0.65 0.664 0.764 0.71 0.68 0.737 0.708

SVCRF

(content)

0.308 0.032 0.058 0.406 0.120 0.185 0.443 0.148 0.222 0.127 0.042 0.063

SVCRF

(content

−a)

0.286 0.025 0.046 0.376 0.11 0.171 0.414 0.127 0.195 0.105 0.033 0.050

SVCRF

(social)

0 0 0 0 0 0 0.548 0.188 0.280 0.155 0.234 0.186

SVCRF

(time)

0.689 0.670 0.679 0.531 0.750 0.622 0.638 0.769 0.697 0.667 0.703 0.685

The aforementioned considerations, are valid also for the experiments on
social network posts. To the best of our knowledge, there is not any related
work on such type of datasets. In Table 3, we report the results of our app-
roach on the four Facebook datasets. These data do not provide the subject and
recipients information of messages, thus the reported results are obtained with-
out the features related to the subject and neighborhood similarities, namely
fCS

(mi,mj) and fSN
(mi,mj). We notice that the pure unsupervised clustering

methods, particularly DBSCAN, achieve low precision and recall. This is due to
the real difficulties of these post’s data: single posts are generally short with little
semantic information. For example suppose we have two simultaneous conversa-
tions t1: “How is the battery of your new phone?” - “good!” and t2: “how was
the movie yesterday?” - “awesome!”. By using only the semantic information
of the content, it is not possible to associate the replies to the right question,
thus the time and the social components become crucial. Although there is a
large amount of literature to handle grammatical errors or misspelling, in our
study we have not taken into account these issues. Despite these difficulties, our
method guided by a supervised model achieves quite good results in such data,
with an improvement almost always greater than 100% with respect the pure
unsupervised clustering. Results in Table 3 show the difficulties also for Alche-
myAPI to extract valuable information from short text posts. In fact, results
using the AlchemyAPI related features does not lead to better results.

40 G. Domeniconi et al.

The results achieved by the SVC method for each dimension are reported
at the bottom of the Tables 2 and 3, in particular those regarding the content
dimension have been produced with all features, excepts the subject and the
Alchemy related features. In Table 2 is notable that considering the content
dimension together with the subject feature leads, as expected, to the highest
accuracy. By excluding the subject feature, SVC produces quite good results with
each dimension, however they are lower than those obtained by the complete
method; this shows that the three dimensional representation leads to better
clusterisation.

Table 3 shows the differentiation in the results related to the Facebook
datasets. In particular, the social dimension performs poorly if used alone, in
fact the author of a message is known, whereas not the receiver user; also the
text content dimension behaves badly if considered alone. In these datasets, the
time appears to be the most important feature to discriminate the conversations,
however the results achieved only with this dimension are worse than those of
the SVC complete method.

From these results, achieved using each dimension separately from the others,
we deduce that SVC is robust to different types of data. Moreover the use of a
supervised algorithm allows both to identify the importance of the three dimen-
sions and to achieve a method that can deal with different datasets without
requiring ad-hoc tuning or interventions.

Parameter Tuning. Parameter tuning in machine learning techniques is often
a bottleneck and a crucial task in order to obtain good results. In addition, for
practical applications, it is essential that methods are not overly sensitive to
parameter values. Our proposed method requires the setting of few parameters.
In this section, we show the effect of changing different parameter settings. A
first investigation of our SVC regards the supervised algorithm used to define
the similarity score between a pair of messages.

We conducted a series of experiments on the benchmark datasets varying the
model. Namely, we used decision trees (Random Forest), SVM (LibSVM), Logis-
tic Regression and Deep Learning Multi-Layer Perceptron. For all the standard
Machine Learning algorithms we used the default parameter values provided by
the Weka implementation. For the MLP we done a tuning - we omit for space
reasons - and we defined and fixed in all the experiments the following para-
meters: (i) hyperbolic tangent activation function: s = tanh(a), (ii) number of
training iterations: ne = 500, (iii) number of hidden layers: nh = 50, and (iv)
learning rate: lr = 0.5.

Considering the intrinsic lack of balance of the problem (i.e. each message
has a plenty of pairs with messages that belong to different threads and just few
in the same one) we also experimented with a cost-sensitive version of Random
Forest, setting a ratio of 100 for instances with messages belonging to the same
thread. Table 4 shows the results, it is notable that the cost sensitive Random
Forest always outperforms the standard Random Forest. Logistic regression and

Identifying Conversational Message Threads 41

Table 4. Results varying the supervised model used to compute the distance between
two email.

Model Purity Precision Recall F1 |Ω|
BC3 (|C| = 40)

LibSVM 0.980 0.962 0.984 0.973 40

Logistic 1.000 1.000 0.965 0.982 45

RF 1.000 1.000 0.961 0.980 45

RF:100 1.000 1.000 0.952 0.975 46

MLP 1.000 1.000 0.973 0.986 44

Apache (|C| = 334)

LibSVM 0.785 0.584 0.583 0.584 500

Logistic 0.883 0.904 0.883 0.893 275

RF 0.862 0.885 0.979 0.930 255

RF:100 0.920 0.916 0.972 0.943 286

MLP 0.821 0.654 0.671 0.663 431

Redhat (|C| = 802)

LibSVM 0.575 0.473 0.674 0.556 450

Logistic 0.709 0.619 0.697 0.656 572

RF 0.89 0.888 0.900 0.894 762

RF:100 0.954 0.966 0.914 0.939 818

MLP 0.773 0.703 0.541 0.612 820

Facebook page: Healty Choice |C| = 132)

LibSVM 0.766 0.657 0.694 0.675 187

Logistic 0.788 0.676 0.724 0.699 211

RF 0.771 0.682 0.656 0.668 218

RF:100 0.787 0.670 0.712 0.690 214

MLP 0.792 0.657 0.722 0.688 220

Facebook page: World Health Organization (nc = 132)

LibSVM 0.628 0.444 0.805 0.573 118

Logistic 0.755 0.566 0.702 0.627 198

RF 0.731 0.536 0.718 0.614 186

RF:100 0.747 0.552 0.714 0.623 222

MLP 0.784 0.615 0.698 0.654 220

Facebook group: Healthcare Advice (|C| = 468)

LibSVM 0.692 0.502 0.768 0.607 383

Logistic 0.840 0.699 0.761 0.729 548

RF 0.766 0.596 0.773 0.673 467

RF:100 0.909 0.809 0.721 0.763 714

MLP 0.822 0.665 0.762 0.71 531

Facebook page: Ireland Support Android (|C| = 408)

LibSVM 0.655 0.460 0.744 0.568 356

Logistic 0.814 0.654 0.723 0.687 573

RF 0.786 0.646 0.641 0.644 627

RF:100 0.821 0.685 0.655 0.670 663

MLP 0.837 0.68 0.739 0.709 583

42 G. Domeniconi et al.

cost sensitive Random Forest achieve better results, with a little predominance
of the latter.

An interesting outcome deduced by analysing Table 4 is that, as already
reported in [33], the Random Forest algorithm obtains really good results, par-
ticularly when one is able to dive it into the right space of features opportunely
weighted with respect to the classes. The deep learning method should overcome
this problem, in fact MLP obtains higher performance in 6 out 7 datasets with
respect to the simple unweighted Random Forest, but only in 1 out of 7 datasets
are instead better of the cost-sensitive RF. For this reason, the choice of one or
other algorithm highly depends on the previous knowledge available about the
dataset.

The main parameter of our proposed method regards the threshold value used
in the clustering algorithms. We experimented with the use of a supervised model
in the DBSCAN clustering algorithm, but we noticed the results were not good.
This is not surprising if we consider how DBSCAN works: it groups messages
in a cluster iteratively adding the neighbors of the messages belonging to the
cluster itself. This leads to the erroneous merge of two different conversations,
if just one pair of messages is misclassified as similar, bringing a sharp decline
to the clustering precision. The previous issue, however, does not affect the
agglomerative clustering, because of the use of average link of two messages inside
two clusters, to decide whether to merge them or not. In this approach the choice
of the threshold parameter is crucial, namely the stop merge criterion. Figure 4
shows the F1 trend varying the agglomerative threshold, using the weighted
Random Forest as the supervised model. Is notable that all the trends have only
one peak that corresponds to a global maximum, thus with a simple gradient
descent is possible to find the best threshold value. Furthermore, our method is
generally highly effective for threshold values ranging from 0.1 to 0.3, as shown

Fig. 4. F1 measure for varying number of threshold, using (A) the MLP-based super-
vised algorithm and (B) the Random Forest algorithm.

Identifying Conversational Message Threads 43

in Fig. 4. This is also confirmed by the average trend, that has a peak with a
threshold equal to 0.1.

4 Related Work

In last years, thread identification has received a lot of attention, including
content and metadata based approaches. Metadata based approaches refers to
header fields that are contained in emails or forum posts (e.g. send-to, reply-to).
Content based approaches focus on text analysis on subject and content text. In
this paper, we differentiate from the existing works by generalizing the problem
of identifying threads in different types of datasets, not only in email sets like
the most of related work [10,30,31,34,35]. The authors of [31] focus on identify-
ing conversational threads from emails using only the subject. They cluster all
messages with the same subject and at least one participant in common. Here,
we also handle cases where messages belong to the same thread but have dif-
ferent subject. Similarly, in [34] the authors identify threads in emails using the
extracted header information. They first try to identify the parent/child rela-
tionships using Zawinski algorithm10 and then they use a topic-based heuristic
to merge or decompose threads to conversations. Another approach for identify-
ing threads in emails is proposed in [30], where clustering into threads exploits a
similarity function that considers all relevant email attributes, such as subject,
participants, text content and date of creation. Quotations are taken into account
in [10] where combined with several heuristics such as subject, sender/recipient
relationships among email and time, and as a result can construct email threads
with high precision. Emails relationships are also considered in [35] where the
authors use a segmentation and identification of duplicate emails and they group
them together based on reply and forwarding relationships.

The work most closely related to ours is that of [29], that studies the conver-
sation tree reconstruction, by first identifying the threads from a set of emails.
Specifically, they map the thread identification problem to a graph clustering
task. They create a semantic network of a set of emails where the nodes denote
emails and the weighted edges represent co-thread relationships between emails.
Then, they use a clustering method to extract the conversation threads. How-
ever, their approach is focus only on email datasets and their results are strongly
bound with the used features, since when they do not take into account all fea-
tures they have a high reduction in their accuracy. In contrast here, we consider
general datasets and by using our classification model we are able to identify
threads even when there are missing features. Although, it is not clear which
graph clustering algorithm is used and how it identifies the clusters. We conduct
an extensive comparison between our approach and the study of [29] in Sect. 5.

Another line of research addresses mining threads from online chats [4,7–9].
Specifically, the study of [4] focuses on identifying threads of conversation by
using pattern recognition techniques in multi-topic and multi-person chat-rooms.
In [9] they focus on conversation topic thread identification and extraction in a
10 https://www.jwz.org/doc/threading.html.

https://www.jwz.org/doc/threading.html

44 G. Domeniconi et al.

chat session. They use an augmented tf.idf to compute weights between mes-
sages’ texts as a distance metric exploiting the use of Princeton WordNet11

ontology, since related messages may not include identical terms, they may in
fact include terms that are in the same semantic category. In combination with
the computed distance between messages they use the creation time in order to
group messages with high similarity in a short time interval. In [7], they propose
three variations of a single-pass clustering algorithm for exploiting the tempo-
ral information in the streams. They also use an algorithm based on linguistic
features in order to exploit the discourse structure information. A single-pass
clustering algorithm is also used in [8] which employs the contextual correlation
between short text streams. Similar to [9], they use the concept of correlative
degree, which describes the probability of the contextual correlation between
two messages, and the concept of neighboring co-occurrence, which shows the
number features co-existing in both messages.

Finally, there also exists a line of research on reconstructing the discussion
tree structure of a thread conversation. In [36], a probabilistic model in condi-
tional random fields framework is used to predict the replying structure for online
forum discussions. The study in [24] employs conversation threads to improve
forum retrieval. Specifically, they use a classification model based on decision
trees and given a variety of features, including creation time, name of authors,
quoted text content and thread length, which allows them to recover the reply
structures in forum threads in an accurate and efficient way. The aforementioned
works achieve really high performance (more than 90% of accuracy) in the con-
versation tree reconstruction, while the state of the art in threads identification
obtains lower performance, about 80% for emails data and 60% for chats and
short messages data. To this end, in this study we focus on improving thread
identification performance.

5 Conclusions

This paper has studied the problem of identifying threads from a pool of messages
that may correspond to social network chats, mailing list, email boxes, chats,
forums etc. We have addressed the problem by introducing a novel method which
given a pool of messages, it leverages the textual semantic content, the social
interactions and the creation time in order to group the messages into threads.
The work contains an analysis of features extracted from messages and it presents
a similarity measure between messages, which is used in clustering algorithms
that map messages to threads. Moreover the paper introduces a supervised model
that combines the extracted features together with the probability of couples
of messages to belong to the same thread, which is interpreted as a distance
measure between two messages. Experiments show that this method leads to
higher accuracy in thread identification, outperforming all earlier approaches.

Furthermore we investigated two differents main supervised approaches to
create the classification model: standard machine learning algorithms, such as
11 http://wordnet.princeton.edu/.

http://wordnet.princeton.edu/

Identifying Conversational Message Threads 45

Random Forest, SVM and Logistic regression, and the deep learning Multi-
Layer Perceptron. The results highlight that the cost-sensitive Random Forest
approach achieves higher accuracy, whereas the Multi-Layer Perceptron seems a
good choice with huge amount of data or when features are unknown and hidden
relationships need to be found. Hence with cases with a good and thoughtful
features set, a standard machine learning approach can provide better results.

There are many directions for future works. An interesting variation is the
reconstruction of conversational trees, where the issue is to identify the reply
structure of the conversations inside a thread. Another more general development
is studying the streaming version of the problem where identifying temporal
thread discussions from a stream of messages rather than from a static pool of
texts.

References

1. Jurczyk, P., Agichtein, E.: Discovering authorities in question answer communities
by using link analysis. In: CIKM, Lisbon, Portugal, 6–10 November 2007, pp. 919–
922 (2007)

2. Coussement, K., den Poel, D.V.: Improving customer complaint management by
automatic email classification using linguistic style features as predictors. Decis.
Support Syst. 44, 870–882 (2008)

3. Glass, K., Colbaugh, R.: Toward emerging topic detection for business intelligence:
Predictive analysis of meme’ dynamics. CoRR abs/1012.5994 (2010)

4. Khan, F.M., Fisher, T.A., Shuler, L., Wu, T., Pottenger, W.M.: Mining chatroom
conversations for social and semantic interactions. In: Technical report LU-CSE-
02-011, Lehigh University (2002)

5. Hofmann, T.: Probabilistic latent semantic indexing. In: ACM SIGIR, pp. 50–57.
ACM (1999)

6. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

7. Shen, D., Yang, Q., Sun, J., Chen, Z.: Thread detection in dynamic text message
streams. In: SIGIR, Washington, USA, 6–11 August 2006, pp. 35–42 (2006)

8. Huang, J., Zhou, B., Wu, Q., Wang, X., Jia, Y.: Contextual correlation based
thread detection in short text message streams. J. Intell. Inf. Syst. 38, 449–464
(2012)

9. Adams, P.H., Martell, C.H.: Topic detection and extraction in chat. In: ICSC 2008,
pp. 581–588 (2008)

10. Yeh, J.: Email thread reassembly using similarity matching. In: CEAS, 27–28 July
2006, Mountain View, California, USA (2006)

11. Domeniconi, G., Semertzidis, K., Lopez, V., Daly, E.M., Kotoulas, S., Moro, G.:
A novel method for unsupervised and supervised conversational message thread
detection. In: Proceedings of the 5th International Conference on Data Manage-
ment Technologies and Applications, vol. 1, DATA, pp. 43–54 (2016)

12. Zhao, Q., Mitra, P.: Event detection and visualization for social text streams. In:
ICWSM, Boulder, Colorado, USA, 26–28 March 2007

13. Lena, P., Domeniconi, G., Margara, L., Moro, G.: Gota: go term annotation of
biomedical literature. BMC Bioinform. 16, 346 (2015)

46 G. Domeniconi et al.

14. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering
clusters in large spatial databases with noise. In: KDD 1996, Portland, Oregon,
USA, pp. 226–231 (1996)

15. Bouguettaya, A., Yu, Q., Liu, X., Zhou, X., Song, A.: Efficient agglomerative hier-
archical clustering. Expert Syst. Appl. 42, 2785–2797 (2015)

16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
17. Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R.,

Muharemagic, E.: Deep learning applications and challenges in big data analytics.
J. Big Data 2, 1 (2015)

18. Zhao, Q., Mitra, P., Chen, B.: Temporal and information flow based event detection
from social text streams. In: AAAI, 22–26 July 2007, Vancouver, British Columbia,
Canada, pp. 1501–1506 (2007)

19. Porter, M.F.: An algorithm for suffix stripping. Program 14, 130–137 (1980)
20. Domeniconi, G., Moro, G., Pasolini, R., Sartori, C.: A comparison of term weighting

schemes for text classification and sentiment analysis with a supervised variant of
tf.idf. In: Data Management Technologies and Applications (DATA 2015), Revised
Selected Papers, pp. 39–58, vol. 553. Springer, Heidelberg (2016)

21. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Inf. Process. Manage. 24, 513–523 (1988)

22. Singhal, A.: Modern information retrieval: a brief overview. IEEE Data Eng. Bull.
24, 35–43 (2001)

23. Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information
Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)

24. Aumayr, E., Chan, J., Hayes, C.: Reconstruction of threaded conversations in
online discussion forums. In: Weblogs and Social Media (2011)

25. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. Book in preparation for
MIT Press (2016)

26. Sugomori, Y.: Java Deep Learning Essentials. Packt Publishing Ltd., Birmingham
(2016)

27. Ulrich, J., Murray, G., Carenini, G.: A publicly available annotated corpus for
supervised email summarization. In: AAAI08 EMAIL Workshop (2008)

28. Soboroff, I., de Vries, A.P., Craswell, N.: Overview of the TREC 2006 enterprise
track. In: TREC, Gaithersburg, Maryland, USA, 14–17 November 2006 (2006)

29. Dehghani, M., Shakery, A., Asadpour, M., Koushkestani, A.: A learning approach
for email conversation thread reconstruction. J. Inf. Sci. 39, 846–863 (2013)

30. Erera, S., Carmel, D.: Conversation detection in email systems. In: Macdonald, C.,
Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol.
4956, pp. 498–505. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78646-7 48

31. Wu, Y., Oard, D.W.: Indexing emails and email threads for retrieval. In: SIGIR,
pp. 665–666 (2005)

32. Hall, M.A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The WEKA data mining software: an update. SIGKDD Explor. 11, 10–18 (2009)

33. Raschka, S.: Python Machine Learning. Packt Publishing, Birmingham (2015)
34. Wang, X., Xu, M., Zheng, N., Chen, M.: Email conversations reconstruction based

on messages threading for multi-person. In: ETTANDGRS 2008, vol. 1, pp. 676–
680 (2008)

35. Joshi, S., Contractor, D., Ng, K., Deshpande, P.M., Hampp, T.: Auto-grouping
emails for faster e-discovery. PVLDB 4, 1284–1294 (2011)

36. Wang, H., Wang, C., Zhai, C., Han, J.: Learning online discussion structures by
conditional random fields. In: SIGIR 2011, Beijing, China, 25–29 July 2011, pp.
435–444 (2011)

http://dx.doi.org/10.1007/978-3-540-78646-7_48

Towards Efficient Multi-domain Data Processing

Johannes Luong(B), Dirk Habich, Thomas Kissinger, and Wolfgang Lehner

Database Technology Group, Technische Universität Dresden,
01062 Dresden, Germany

{johannes.luong,dirk.habich,thomas.kissinger,
wolfgang.Lehner}@tu-dresden.de

Abstract. Economy and research increasingly depend on the timely
analysis of large datasets to guide decision making. Complex analysis
often involve a rich variety of data types and special purpose processing
models. We believe, the database system of the future will use compi-
lation techniques to translate specialized and abstract high level pro-
gramming models into scalable low level operations on efficient physical
data formats. We currently envision optimized relational and linear alge-
bra languages, a flexible data flow language(A language inspired by the
programming models of popular data flow engines like Apache Spark
(spark.apache.org) or Apache Flink (flink.apache.org).) and scaleable
physical operators and formats for relational and array data types. In
this article, we propose a database system architecture that is designed
around these ideas and we introduce our prototypical implementation of
that architecture.

1 Introduction

Due to increased processing power and improved analytical methods, corpora-
tions, government, and other organizations increasingly depend on large amounts
of primary data to discover new information and to guide decision making. A
growing variety of domain experts want to employ advanced data processing
techniques as a flexible standard tool in their applications. This desire is in
conflict with todays available processing systems which often rely on a program-
ming interface that reflects low level systems requirements rather than high level
domain specific abstractions. To use these systems, experts have to map high
level application concepts onto domain independent operators and data formats
that usually require in depth understanding to be used and composed efficiently.

We believe that the database community is in an excellent position to solve
this problem. The requirements on modern processing systems are in many ways
straightforward extensions to the ideas that have made classical relational data-
bases widely successful. SQL and the relational algebra provide an established
example for the decoupling of a high level application domain from its phys-
ical implementation. Users of relational databases formulate queries that are
devoid of any low level system information. Database implementations auto-
matically map these queries on adequate physical operators and data formats.

c© Springer International Publishing AG 2017
C. Francalanci and M. Helfert (Eds.): DATA 2016, CCIS 737, pp. 47–64, 2017.
DOI: 10.1007/978-3-319-62911-7 3

https://spark.apache.org/
https://flink.apache.org/

48 J. Luong et al.

Algebraic properties of the relational algebra introduce flexibility into the trans-
lation of queries that enables powerful optimization. In this way, relational data-
bases have managed to marry an abstract high level programming model with
excellent physical performance.

Modern relational databases form the backbone of a wide swath data inten-
sive applications. Data warehouses and OLAP extensions make them an excellent
match even for processing heavy analytical workloads. Nevertheless, it has been
shown that there are important application domains, that are not served ade-
quately by the classical relational model. On the one hand, the strict requirement
for a static relational schema has turned out to be problematic in applications
with a very dynamic development. On the other hand, an increasing number of
important algorithms and domain concepts can not be mapped efficiently to the
relational model. Advanced statistical and machine learning methods depend on
iterative linear algebra processing and many internet related applications natu-
rally match a rich graph model. Both models are not served well by the standard
relational model.

In the first part of this article (Sect. 2) we introduce our vision of a data
processing system that generalizes the idea of decoupled logical and physical
representations to bring the ease of use and efficiency of relational databases
to new important application domains. The core of this vision is an extensible
domain specific compilation framework that can compile a set of domain specific
high level languages into efficient physical workloads. Similar to the relational
approach, the compilation framework exploits known algebraic properties of sup-
ported data types to efficiently map high level concepts to physical operators and
formats. Besides algebraic languages, the compilation framework also supports
a more traditional data processing model that depends on user defined functions
and data parallel processing operators. This model is not as abstract and can
not be optimized as well, but it provides additional flexibility that can be used
to process unstructured data or to define custom operators that deviate from
the algebraic language models. To emphasize our models support for multiple
application domains, we call it the multi-domain architecture throughout the
article.

The second part of the article (Sect. 3) is dedicated to the introduction of
the Eos data processing environment. We develop Eos as a prototypical imple-
mentation of the multi domain architecture. The current version of Eos contains
two low-level data formats, a set of corresponding physical processing opera-
tors, and a basic compilation framework. In the discussion of Eos we highlight
the physical aspects of the system and provide a real world application scenario
to motivate the selection of supported components. Subsequently, we introduce
the Eos compilation framework and show how it can be used to cross compile
domain specific languages into physical operator code.

In Sect. 4, we discuss our vision of domain specific optimization in some
more detail and propose physical format transformations as a first inter domain
optimization goal. In Sect. 5, we provide a brief review of related work on the
topics of multi-domain processing and generative programming. Section 6 closes

Towards Efficient Multi-domain Data Processing 49

the article with a short discussion of our main findings. A short version of this
article has been previously published in DATA 2016 [1].

2 The Multi Domain Architecture

We propose the multi-domain architecture as an architectural model for data
processing engines. The goal of the architecture is to integrate efficient and easy
to use processing of multiple data types in a single unified system. It uses a
compilation framework to bridge the gap between high-level data processing
languages and optimized physical data structures. The architecture comprises
three layers: the language layer, the translation layer, and the physical layer
(Fig. 1).

Fig. 1. Layers of the multi-domain architecture [1].

Language Layer. The language layer at the top of the architecture defines
a multi-domain programming language for user defined processing tasks. The
multi-domain language contains a set of embedded domain specific languages
such as a SQL and a linear algebra dialect. It also provides a low-level operator
language that closely mirrors the programming model of the physical layer and
a slim procedural language that enables flexible program composition.

Users define their processing workloads using the language layer’s core and
embedded languages. They can use compiler optimized domain specific languages
where possible and fall back to the full flexibility of lower level constructs when
necessary. Additional languages and language elements can be added by extend-
ing the translation layer with additional compiler components.

Translation Layer. The translation layer’s extensible compiler framework is
the key to efficient processing in the multi-domain architecture. The compila-
tion framework accepts language layer programs as input and translates them

50 J. Luong et al.

into optimized physical workloads. Where possible, the compilation framework
uses algebraic laws of the input languages to facilitate code optimizations. The
translation layer has access to statistical data that is collected by the physi-
cal layer. Algebraic laws and statistical data enable strong logical and physical
optimization similar to query optimization in traditional DBMS.

Physical Layer. The physical layer at the bottom of the architecture provides
efficient and scaleable data processing primitives. All higher-level constructs are
mapped onto physical data structures eventually. Physical data formats such as
tables or 2D arrays and their corresponding operators make different tradeoffs
in flexibility and performance. This allows the architecture to achieve the best
possible performance for each supported data type. The physical layer also has
an orchestration language that is used to compose individual operator calls into
larger workloads.

The multi-domain architecture is an attempt to carry the performance and
ease of use of classical relational database systems into the world of flexible
programming models and multiple data types. It tries to transfer the ideas of
logical and physical relational optimization to new structures such as the linear
algebra or graph processing. At the same time it celebrates low-level flexibility
and expert intervention by providing direct access to the physical data structures
and operators.

3 The Eos Data Processing Environment

The Eos data processing environment is a prototypical implementation of the
multi domain architecture. We develop Eos in an ongoing effort, to explore and
validate the architecture’s practical implications and tradeoffs. Eos consists of
two main components: Eos Engine and Eos Script. Eos Engine implements the
physical layer and Eos Script implements both the translation and the language
layers.

In the next section, we introduce the application scenario that guided the
development of Eos up to the current version. The scenario will help us moti-
vate the current selection of data formats and processing operators and it will
provide a real-world background for code examples. Following, we will discuss
Eos Engine in detail to gain a clear understanding of the low-level details of Eos
data processing applications. The final section of part Sect. 3.3 is dedicated to
the discussion of Eos Script, the compilation and language component of Eos.

3.1 An Eos Application Scenario

The development of the Eos data processing environment is guided by the goal to
support domain experts in the analysis of a dataset in the size range of multiple
tens of gigabyte [2]. The dataset encompasses high-frequency sensor data, that
has been sampled from physical vibration sensors in wind mill installations, and
low-frequency context information such as ambient temperature or wind speeds.

Towards Efficient Multi-domain Data Processing 51

The sensor data is stored in the form of a large number of vibration frequency
spectrums. Each spectrum corresponds to a measurement cycle that has been
conducted in a wind mill at some point.

The wind mill domain experts have discovered that dangerous ice buildup
on rotor blades correlates with certain high peaks in the vibration spectrums.
Using their dataset of previously collected spectra and context information, the
engineers try to build a regression model that predicts vibration peaks from
context information. They hope to use the model to guide predictive counter
measures such as shutting down the wind mill in certain weather conditions. In
the current setup, the domain experts run a sequence of four octave scripts1 to
analyze the dataset.

1. Data Selection: The first script loads all spectra from csv files, matches the
spectra with corresponding context information, and discards the spectra
whose context data violates certain boundary conditions. The remaining spec-
tra are saved to a file, using a format that can be efficiently loaded by subse-
quent scripts.

2. Feature Extraction: The second script loads the spectra that passed the envi-
ronment filter of step one and searches the peak elements in each spectrum.
The peak elements remain unmodified in the dataset but all non-peak ele-
ments are set to zero. The result of that transformation is stored on disk as
well.

3. Feature Reduction: The third script loads the peak dataset and selects a single
peak from each spectrum. The selection can be configured to return maximum
peak value or to return the peak closest to a defined vibration frequency. The
result of the feature selection is stored as a single column vector in a third
dataset.

4. Model Building: The final script loads the previously selected peak frequencies
and the context dataset. It builds a linear regression model on the selected
peaks and their corresponding environment data. The result is a regression
model that maps from environment variables to an expected peak frequency.

The domain experts choose octave because of its high level programming
interface that facilitates the codification of domain logic. Unfortunately, the use
of octave limits the performance of the workflow. Limited performance leads to
long model development cycles that hinder the improvement of the modelling
approach and its parameters. With the development of the Eos data processing
environment we strive to replace octave in the spectra analysis workflow. Eventu-
ally, we hope to drastically improve performance, without reducing programmer
productivity.

3.2 Eos Engine

Eos Engine is an in-memory data processing engine for multi-core shared-
memory systems. Currently, it provides a table and a two dimensional array data
1 https://www.gnu.org/software/octave/.

https://www.gnu.org/software/octave/

52 J. Luong et al.

format as well as six customizable data processing operators. Besides, the engine
also supports the linear algebra interfaces BLAS and LAPACK. Eos Engine is
written in C++ and it relies on the parallelism primitives of the Intel R© Thread-
ing Building Blocks2 library. BLAS and LAPACK support is provided by the
Intel R© Math Kernel Library3.

Eos Engine operates in batch processing mode. It maintains a job queue
which is cleared in a first in first out manner. At any time, there is at most one
active job in the system. Once started, a job runs from start to finish without
interruption. Jobs are arbitrary C++ functions that execute in the engine’s
address space. An Eos job queries the system catalog to find data objects, uses
special parallelized operators to process those objects, and eventually inserts
result objects back into the catalog to make them available for inspection or
subsequent jobs.

The goal of Eos Engine is to provide efficient, scaleable data processing to a
single user. The user starts the engine, loads datasets from disk, runs analytical
workloads in-memory, and eventually exports results back to disk. Eos Engine
can be controlled with JSON encoded commands via HTTP or a Unix pipe. This
flexible control mechanism makes it easy to integrate Eos as a component of a
larger system or workflow.

Data Formats. Users can store data in the form of tables or two dimensional
arrays. A table is defined as a sequence of columns of potentially varying types.
For example, a table of type table<uint62 t, string, double> can store
triples such as (0,"pi", 3.1415). Tables offer an index based access inter-
face, where users read and write table elements via (row, column) ∈ N × N

indices. Internally, tables store data by column4 to increase the efficiency of
analytical workloads. These workloads often involve complete in-order col-
umn traversals and therefore benefit from fast column wise data access. Due
to technical issues related to the static typing of tables and the C++ tem-
plate mechanism, table columns have to be accessed using the free function
get<ColNr>(table<...>&). The table format is a natural fit for the context
data of the wind mill use case. The context data contains signed and unsigned
integers, floats, and even strings in one case. The table format allows to store
the complete context in a single data object.

The two dimensional array format stores (height × width) values of a single
data type. Similar to tables, matrix elements are accessed via (row, column) ∈
N × N indices. Behind the scenes, Eos Engine stores arrays in a contiguous
chunk of memory in row-major order. In the current version, the major differ-
ence between the table and the array format is that the array format integrates
seamlessly with the Intel R© Math Kernel Library, which expects matrices defined
in row- or column-major order. Besides that, the array format is essentially a
(row, column) index based interface to a single column table. 2D arrays offer

2 https://software.intel.com/en-us/intel-tbb.
3 https://software.intel.com/en-us/intel-mkl.
4 In contrast to by record.

https://software.intel.com/en-us/intel-tbb
https://software.intel.com/en-us/intel-mkl

Towards Efficient Multi-domain Data Processing 53

1 using TableT = table<double>;
2 TableT in = catalog->get<TableT>("sample_table");
3
4 table_map_rows<TableT,TableT> select_positive;
5 TableT positive = select_positive(in,
6 [](const TableT& in, size_t start, size_t end, TableT& out) {
7 for (size_t row_idx = start; row_idx < end; ++row_idx) {
8 double row_val = get<0>(in)[row_idx];
9

10 if (row_val >= 0.0) {
11 out.insert(row_val);
12 }
13 }
14 });

Listing 1.1. Row filter with table map rows.

themselves as storage format for the spectra of the wind mill application. Spec-
tra consist exclusively of double precision floating point values. All spectra can
be stored row-wise in a single array object where they can be processed without
further transformation by LAPACK’s linear least square solvers to implement
the final step of the wind mill scenario.

Processing Operators. Eos Engine encompasses six processing operators.
Each of these operators implements an abstract, reusable data processing pat-
tern. The abstract operators have to be parametrized with user defined functions
(UDFs) to implement concrete application logic. Eos’ operators are designed
to enable implicit data parallelism, a form of parallel processing that is well
adjusted to many of todays data analysis applications. The data parallel opera-
tors allow Eos to efficiently exploit hardware resources of common state of the
art multi-core processors.

The most straightforward operator is table map rows<InT, OutT>. The
operator divides its input table horizontally into segments of rows and processes
each segment in parallel using a UDF. The UDF takes an input table of type InT,
a begin and an end index, and an output table of type OutT as arguments. The
begin and end arguments define the range of rows of the input table that the
UDF is supposed to process. The UDF can insert an arbitrary number of result
rows into the output table. Once all UDFs have returned, table map rows
unions all output tables, which all have the same type OutT, into a single result
table which is then returned as the result of the operator.

Listing 1.1 shows how table map rows can be used to filter negative num-
bers from a table. On line 4, the operator is constructed with input and output
type and on line 5 it is invoked with the input table as first argument and the
UDF as second argument. The UDF uses a for loop to iterate over each row
of its table segment. Inside the loop, get<ColNr>(table<...>&) is used to
retrieve the relevant column and operator[] to retrieve the current element
of that column. If the value at that position is greater or equal zero (line 10) it is

54 J. Luong et al.

1 using ArT = array2d<double>;
2 using TblT = table<double, double>;
3
4 ArT ar_in = catalog->get<ArT>("sample_array");
5 TblT tbl_in = catalog->get<TblT>("sample_table");
6
7 array_table_match_rows<ArT, TblT, ArT> select_rows;
8 ArT selected = select(ar_in, tbl_in,
9 [](ArT& ar, TblT& tbl, size_t begin, size_t end, ArT& out) {

10 for (auto row = begin; row < end; ++row) {
11 double mat_val = ar.at(row, 0);
12 double low_val = get<0>(tbl)[row];
13 double high_val = get<1>(tbl)[row];
14
15 if (low_val <= mat_val && mat_val < high_val) {
16 out.append(mat.row(row));
17 }
18 }
19 });

Listing 1.2. Array filter with array table match rows.

inserted as new row into out. The table map rows operator is not used in the
wind mill application scenario. It has been included here because it offers the
most straightforward processing model of all operators. A prominent use case
for the operator would be the implementation of a SQL select clause.

The operator array table match rows<AInT, TInT, AOutT> pro-
cesses row segments using a UDF as well. In contrast to table map rows,
it accepts an array and a table as inputs and provides segments of both inputs
to its UDF simultaneously. The operator divides both inputs into row segments
of same height, pairs segments based on their segment index, and processes
each segment pair in parallel using a UDF. When all UDFs have returned, their
result arrays are concatenated in segment id order and the concatenated array is
returned as the result of the operator. array table match rows can only be
applied, if both inputs have the same height. The UDF takes an input array of
type AInT, an input table of type TInT, segment begin and end indices, and an
output array of type AOutT as arguments. It can append an arbitrary number
of rows to the output array.

In Listing 1.2 array table match rows is used to select rows of an array
whose values lie in a range defined by the input table. This use case matches the
first step of the wind mill application scenario where spectra are selected based
on conditions on context information. The UDF (starting at line 9) accepts only
those array rows, whose first element is greater or equal to the value in column 0
of the input table but smaller than the value in column 1 (line 15). In some sense,
array table match rows is similar to a relational join operation because it
combines data from different inputs. On the other hand, joins use data depen-
dent comparisons to find matching rows whereas array table match rows
operates purely on row indices.

Towards Efficient Multi-domain Data Processing 55

1 using ArrayT = array2d<double>;
2 ArrayT in = catalog->get<ArrayT>("sample_array");
3
4 array_stencil<0, 1, ArrayT, ArrayT> peak_finder;
5 ArrayT peaks = peak_finder(in,
6 [](ArrayT& in, vector<size_t>& rows, vector<size_t>& cols) {
7 double candidate = in.at(rows[1], cols[1]);
8 for (size_t c = cols[0]; c < cols[2]; ++c) {
9 double col_val = in.at(rows[1], c);

10 if (c != cols[1] && col_val >= candidate) {
11 return 0.0; // minimum value of the domain
12 }
13 }
14
15 return candidate;
16 });

Listing 1.3. Peak finder with array stencil.

Both table map rows and array table match rows apply their UDFs
to completely independent input segments. In theory, this property allows
them to scale nicely with the available hardware resources because suffi-
ciently large data sets can always be split into enough segments to keep all
processors busy.5 The final operator who shares this beneficial property is
array stencil<Height, Width, InT, OutT>. It applies a UDF to each
element of the input array in parallel and inserts the result at the same posi-
tion into the output array. In addition to the element itself, the UDF can also
access a rectangular neighbourhood around the element. The dimensions of the
neighbourhood are defined by the operator’s statically defined height and width
parameters. The parameters define the thickness of the neighbourhood in hori-
zontal and vertical direction. For example, a width of 1 signifies one neighbour
to the left and to the right of the current element.

array stencil’s UDF accepts an input array of type InT, a row coordinate
vector, and a column coordinate vector as arguments. Both coordinate vectors
contain three elements: the minimum index, the index of the current element,
and the maximum index of the respective direction. The UDF returns a single
value that has to be compatible with the array type OutT as result. In Listing
1.3, array stencil is used to find the peak row elements of an array dataset. A
peak element is an element whose neighbouring elements have a strictly smaller
value than the element itself. The stencil is configured to include a one element
horizontal neighbourhood and zero vertical neighbours (line 4). The UDF simply
iterates over each horizontal neighbour and checks if it is larger than the center
element. If a larger element is found, the UDF returns zero, otherwise it returns
the value of the center element to mark it as a peak value of the row. The sample
code exactly matches the peak finding step of the application scenario.

5 In practice, scaleability of data intensive workloads is often limited by memory band-
width.

56 J. Luong et al.

The final operator we are going to discuss is array reduce rows<InT,
OutT>. This operator reduces the elements of each row of an array into a sin-
gle element. The operator splits the input array by row and reduces the rows
in parallel. A row is reduced by repeatedly replacing two consecutive row ele-
ments with their reduction value, until only a single value remains. The reduction
operation is implemented by the UDF. The UDF accepts two row values as argu-
ments and returns a single value as result. In contrast to the previous operators,
the UDF calls can not all be applied in parallel. The results of a UDF call may
need to be reduced again, enforcing partially sequential execution. In Listing 1.4,
array reduce rows is used to compute the maximum element of each row of
the input array. The simple UDF consists of a single return statement, which
returns the larger of the two input values (line 7). The sample implements one
possible peak selection strategy of step three of the application scenario. Alter-
native strategies such as selecting a peak that is closest to a given frequency can
be accomplished with array reduce rows in a very similar fashion.

Eos Engine offers two additional operators: table reduce rows<InT,
OutT> and table segmented reduce rows<PartitionCol, InT,
OuT>. The first reduces all rows of a table into a single result row. The second
partitions the table on one of its columns and reduces each partition individually.
They have been included to support a future SQL extension to Eos which would
rely in these operators to implement aggregation functions and group by clauses.
We do not give a detailed explanation of these operators because they closely
resemble the previously discussed operators and because they are not used in
the wind mill application scenario. The current set of operators is not meant to
be complete in any capacity and we expect it to grow in the future to support
additional requirements. The array format also supports BLAS and LAPACK
operations. LAPACK least linear squares solvers are used in the final step of
the application scenario, to compute the actual regression model. BLAS and
LAPACK are well known packages that are reused unmodified by Eos Engine.
For additional information on these libraries we refer to their respective docu-
mentations.

Jobs. Eos Engine is a job processing system, where jobs are processed in first
in first out order. The engine uses the abstract C++ class workload to define the
interface of a job. Subclasses of workload have to override the methods run()

1 using ArrayT = array2d<double_t>;
2 ArrayT arr = catalog->get<ArrayT>("sample_array");
3
4 array_reduce_cols<ArrayT, ArrayT> find_max;
5 ArrayT maxima = find_max(arr, 0,
6 [](double& a, double& b){
7 return a >= b ? a : b;
8 });

Listing 1.4. Reduction to maximum with array reduce cols.

Towards Efficient Multi-domain Data Processing 57

and getResult(). When a job object reaches the front of the job queue, the
engine removes it from the queue and calls its run() method. A job’s run()
method can use arbitrary C++ code to achieve its goals. On the other hand, ordi-
nary processing jobs will usually just query the system catalog and call process-
ing operators. A job is considered to have finished when its run() method
returns. Some time after the completion of an operator, the engine might call
its getResult() method to retrieve an arbitrary JSON object that describes
the result of the job in some meaningful way. The result of getResult() is
not used by the system, but simply returned to the user as the result of the
operation.

New jobs can be loaded at runtime of the engine. To support this, the
job has to be compiled as a shared library and provide an
extern "C" workload* makeWorkload() hook function. The engine uses
dlopen() and related linux functions to load shared library jobs into the Eos
engine’s address space and calls makeWorkload() to retrieve a job instance
which is then appended to the job queue.

Eos Engine is the storage and processing layer of the Eos data processing
environment. It provides physical data formats, data processing operators, and a
job execution system. In the following sections we will discuss Eos Script, which
imlpements the programming interface and the translation and optimization lay-
ers of the multi domain architecture.

3.3 Eos Script

The data formats, processing operators, and the job system of Eos Engine are
sufficient to implement any Eos application. Unfortunately, they are also low-
level and require system programming skills to be used correctly and efficiently.
The Eos Script component provides the tools to divorce application program-
ming from system programming and to allow data analysts to work with domain
specific concepts.

In the following sections we are going to discuss the Eos Script source to
source compilation framework and show how it can be used to create data
processing languages for the Eos environment. In this article, we lay out the
fundamentals of the compilation process and develop a language that is still very
close to the definition of Eos Engine jobs. Higher level languages and abstrac-
tions that depend on an advanced compilation process will remain future work.
In Sect. 4 we provide a detailed discussion of our vision for optimized high-level
data processing languages.

Operator Language. The operator language is the only currently available
data processing language of Eos Script. The language closely reflects job defini-
tions of the Eos Engine, introducing only minor abstractions. Despite its limited
ambitions, the language touches most of the compilation framework’s compo-
nents. It will therefore provide a good basis to understand the details of the
source to source compilation process.

58 J. Luong et al.

1 val data = Array2D(DoubleT).from("filtered-spectra")
2 val peak_finder = Stencil(0, 1, DoubleT, DoubleT)
3 val peaks = peak_finder(data) {
4 (data, rows, cols) =>
5 val candidate = data(rows(1), cols(1))
6 for (col <- cols(0) to cols(2)) {
7 if (col != cols(1) && data(rows(1), col) >= candidate) {
8 return 0.0
9 }

10 }
11
12 return candidate
13 }
14 log("Saving peaks")
15 peaks.saveAs("peaks")

Listing 1.5. Peak finder with the operator language.

Listings 1.5 and 1.6 show peak detection and peak selection in the operator
language. Despite some differences in syntax and naming, the code looks very
similar to the previously discussed C++ implementations. However, instead of
C++, the code is written in Scala. All data processing languages of Eos Script
are in fact embedded domain specific languages (DSLs) for Scala. In contrast to
other embedded DSLs, Eos Script DSLs have to be source to source compiled
into C++. Because of this compilation, users can only use a carefully constructed
subset of the complete Scala language. Only the language elements that provide
a C++ translation rule can be used in Eos Script.

Source to Source Compilation. The core of Eos Script is its source to
source compilation framework for embedded Scala DSLs. The basic components
of the compilation are provided by the lightweight modular staging framework
[3]. Lightweight modular staging (LMS) is an easily extensible framework that
can transform Scala programs into a tree shaped compiler intermediate represen-
tation (IR). The framework defines IR traversal algorithms that can be extended
to implement optimizations and code generation rules.

A Scala program that uses LMS is compiled into a code generator instead of
a regular program. A LMS code generator is a standard java classfile that can be
executed to generate the actual source code for the original input program. In the
case of Eos Script, code generation creates a single C++ file that contains an Eos

1 val peaks = Array2D(DoubleT).from("peaks")
2 val peak_selection = ReduceColumn(DoubleT, DoubleT)
3 val selected_peaks = peak_selection(peaks) {
4 (a, b) => if (a >= b) a else b
5 }
6 log("Saving selected-peaks")
7 selected_peaks.saveAs("selected-peaks")

Listing 1.6. Peak selection with the operator language.

Towards Efficient Multi-domain Data Processing 59

1 case class Log(x: Exp[Any]) extends Def[Unit]
2
3 def log(x: Exp[Any]): Exp[Unit] =
4 reflectEffect(Log(x))
5
6 override def emitNode(sym: Sym[Any], rhs: Def[Any]) =
7 rhs match {
8 case Log(x) => gen"""std::cout << $x << std::endl""";
9 case _ => super.emitNode(sym, rhs)

10 }

Listing 1.7. LMS IR element creation.

Engine job definition. Subsequently, the generated C++ has to be compiled into
a shared library using a standard C++ compiler. The resulting shared library
can be loaded and run by Eos Engine.

LMS does not rely on any kind of “magic” to transform a program into its
intermediate representation. Instead, it provides methods to create and insert
tree nodes that have to be called by DSL statements. Listing 1.7 shows how a
DSL can implement a log(value) function that is compiled into a C++ cout
<< value << endl statement. The first line of the listing defines the type of
the IR element that is created for each log call. All IR elements have to inherit
from Def[T] where T is the type of the expression that is represented by the
IR node.

The log(x: Exp[Any]) method definition on line 3 defines the syntax
of the log DSL operation. log accepts the object that should be logged to
the console as argument. Instead of a value of type Any it expects an IR
node reference of type Exp[Any]. The implementation of log simply creates
a Log IR tree node that stores the reference as a member variable. The call
to reflectEffect(Log(x)) appends the Log IR node of type Def[Unit]
to the list of children of the currently active block IR node and returns a node
reference of type Exp[Unit]. Block IR nodes correspond to code blocks and
LMS ensures that there is always an active block IR node.

The override def emitNode(...) definition on line 6 specifies the
code generation rule for the Log IR node. emitNode is invoked by LMS’ code
generation IR traversal. The interface is not specific to any particular IR node so
the implementation has to pattern match against the rhs to find out the type
of the node. If the node is a Log, the method uses the gen string interpolator
to emit some C++ code. gen resolves symbol references such as $x and then
writes the code string to the currently open .cpp file.

Every language element of any data processing DSL has to be defined similar
to the log method. The frameworks facilitates the creation of arbitrary complex
compiled Scala DSLs by incrementally adding syntax definitions, node types, and
code generation rules.

60 J. Luong et al.

4 Optimization in a Multi-domain Environment

Compilers of general purpose languages usually can not reason about applica-
tion specific properties of the applications that they translate. Therefore, they
are also unable to perform application specific optimizations. In contrast, rela-
tional databases use a lot of domain specific knowledge and even dataset specific
statistical information to optimize database queries. The optimizer knows that
the order of selection predicates can be changed because the selection is com-
mutative or that multiway joins can be parenthesized arbitrarily because of the
associativity of joins.

The same principles can be applied to other data structures as well. Figure 2
shows two semantically equivalent tree representations of the linear algebra
expression M1 ∗ M2 ∗ v. Tree 2(a) is the result of the default left to right eval-
uation of the matrix multiplication operator. Code generation based on that
tree schedules the matrix-matrix multiplication (res0 ← M1 ∗ M2) before the
matrix-vector multiplication (res1 ← res0∗v). On the other hand, linear-algebra
domain knowledge tells us (a) that vector-matrix multiplications are cheaper
than matrix-matrix multiplications, (b) that the result of a matrix-vector mul-
tiplication is another vector, and (c) that matrix multiplications are associative.
Based on this knowledge, the optimizer should decide to perform the matrix-
vector multiplication first, in order to replace the expensive matrix-matrix mul-
tiplication with a cheaper matrix-vector multiplication.

Fig. 2. Simple Tree IR optimization [1].

The compiler framework of the multi-domain architecture is designed to com-
pile an extensible but limited set of domain specific languages. Each domain
extension can add its own specific compilation rules and thereby achieve results
similar to classical relational optimization.

Besides optimizations that operate in a single isolated domain, such as the
relational or the linear algebra, there is also potential for optimizations that
cross the boundaries of domains. The topic of physical format transformations
looks especially promising in that regard. Processing operators are data format
specific and can only be applied to data objects of the correct type. It is easy to
imagine a scenario where it would be convenient to apply an operator to a data

Towards Efficient Multi-domain Data Processing 61

object that has the wrong format. For example one might want to use a table
column in a linear algebra expression that requires the use of the array format.

In general there are two ways to make this possible. One can either intro-
duce a format conversion operator that takes a table column and returns an
array or one provides a version of the relevant linear algebra operations that
operates on tables. The first approach implies a small set of transformation
operations that can be reused whenever a format mismatch occurs. The trans-
formation operations can be targeted in optimization rules and, depending on
the implementation, can be potentially merged into other operators. The conver-
sion approach has the drawback that possibly expensive format transformations
are applied independent of the cost of subsequent operations. In some cases, the
performance penalty of an operation that is overloaded for a non optimal format
might be much smaller than the added overhead of a transformation.

The second approach is based on the observation that many domain spe-
cific operations can be implemented on different formats, although with varying
performance. This approach is beneficial in cases where the cost of a format
transformation outweighs its benefit. The largest disadvantage of this approach
is the necessity to provide multiple operator implementations.

We expect the ideal solution to be a combination of both approaches. For
example, the compiler could use a cost model to decide whether to use a format
transformation or an overloaded version of an operator. In general, the topic of
format transformations is still an open research question of the architecture and
we count on future work to find the best and most practical approach.

5 Related Work

In the following, we provide a brief discussion of related work on multi-domain
processing and generative programming.

5.1 Multi-domain Processing

The need for multi-domain data management systems has been widely recog-
nized. In this article, we propose to tightly integrate multiple storage formats
and programing models into a single system. An alternative approach that has
been discussed lately is the integration of several DBMS behind a data manage-
ment middleware layer.

The BigDAWG polystore system [4] provides an example for this approach.
The authors hide multiple “of the shelf ” DBMS behind a central management
layer, which defines a unified querying interface for all attached systems. The
management layer accepts multi domain queries, splits these queries into parts
that can be processed by one of the attached DBMS and sends the partial queries
to the respective engines. The management layer also handles cases, where one
DBMS depends on data that is currently stored in another DBMS and initiates
the necessary data transfers.

62 J. Luong et al.

In contrast to the multi-domain architecture, BigDAWG does not need to
reimplement data management functionality and can instead reuse proven solu-
tions. What is more, BigDAWG can incorporate DBMS that vary widely in
important systems characteristics. BigDAWG could for example attach a rela-
tional in-memory DBMS and a classical file based DBMS at the same time and
trade off processing speed versus durability guarantees on a per table basis.

On the other hand, data exchange between DBMS is a rather expensive
operation as it depends on network communication. Frequent format changes
are therefore much more feasible in the integrated single system approach, pro-
posed by the multi-domain architecture. Furthermore, BigDAWG implies the
administration of multiple separate DBMS, which increases the management
cost compared to our integrated approach.

To summarize, the middleware approach provides greater flexibility with
regard to non-functional properties but incurs a higher price for format trans-
formations. In addition, administration of the system is more complex.

5.2 Generative Programming

Many big data applications repeatedly execute the same lines of code for millions
or billions of data elements. Even expensive optimization becomes viable in that
environment as their cost is amortized over time. This realization has sparked
interest in runtime code compilation and compiler based optimizations. These
two techniques trade additional one time compilation overhead for very efficient
code that saves a couple of instructions for every data element.

Beckmann et al. introduce an embedded DSL for C++ that can be compiled,
optimized, and executed at runtime of a host program [5]. They use the DSL to
write image manipulation kernels that get optimized for specific transformation
matrices and generate code that significantly outperforms standard solutions,
given large enough image sizes. The primary efficiency gains of the generated
code are based on removed indirections and runtime checks that are unavoidable
in more general solutions. Newburn et al. follow a very similar approach and
provide an embedded C++ DSL that is specifically targetted at data parallelism
in multi-core systems [6]. They use code generation to specialize performance
critical code passages to the specific runtime environment of their programs.

Another group [7] uses code generation, domain specific languages, and spe-
cific data access patterns to derive implicit parallelism in an approach that is
very similar to the one described in this article. On the other hand they are not
concerned with multi-domain integration and do not optimize for specialized
data formats.

6 Discussion

This article introduces our vision for an easy to use data processing system that
can map a variety of domain specific high level languages onto efficient physical
operators. To increase flexibility and enable processing of unstructured data the

Towards Efficient Multi-domain Data Processing 63

system also supports lower level data flow processing. The system is based on
the principle of decoupled logical and physical representations that has allowed
relational databases to marry a high level domain specific programming model
with an efficient physical implementation.

In the first part of the article, we have proposed the multi domain archi-
tecture as an abstract model for data processing engines that support our app-
roach. At the top of the architecture, the language layer defines an extensible
data processing language that contains both specialized high level as well as
flexible lower level constructs. In the translation layer, we use a compiler frame-
work to translate language layer programs into efficient physical workloads. The
compiler incorporates domain knowledge which enables powerful domain specific
optimization. At the bottom of the architecture, we propose to use a storage and
processing engine that supports multiple optimized physical data formats.

In the second part we introduce Eos, our prototypical implementation of
the multi domain architecture. Using a real world application scenario, we have
discussed data formats and processing operators of the Eos Engine as well as the
programming language and compilation model of Eos Script. Eos is still in early
development and does not yet support many of the envisioned compiler features.
Nevertheless we have touched all layers of the multi domain architecture and the
successful implementation of the ice detection use case provides early validation
of the approach.

In part three we have discussed some promises of domain specific compilation
in greater detail. We have seen that strong logical optimization is not limited
to the relational algebra and we hope to find interesting and beneficial domain
specific optimizations for additional data structures in future work. We have
also touched the topic of cross domain optimization and identified data format
transformations as a promising are of research.

We close the article with a short discussion of related works in the fields
of multi-domain processing and generative programming. The necessity to inte-
grate different data processing models into an easy to use processing solution
has received increasing attention lately and we believe to have found a very
worthwhile research opportunity.

References

1. Luong, J., Habich, D., Kissinger, T., Lehner, W.: Architecture of a multi-domain
processing and storage engine. In: Proceedings of the 5th International Conference
on Data Management Technologies and Applications, DATA, vol. 1, pp. 189–194
(2016)

2. Aguilera, A., Grunzke, R., Habich, D., Luong, J., Schollbach, D., Markwardt, U.,
Garcke, J.: Advancing a gateway infrastructure for wind turbine data analysis. J
Grid Comput. 14(4), 499–514 (2016)

3. Rompf, T., Odersky, M.: Lightweight modular staging: a pragmatic approach to
runtime code generation and compiled DSLS. ACM Sigplan Not. 46, 127–136 (2010).
ACM

64 J. Luong et al.

4. Duggan, J., Elmore, A.J., Stonebraker, M., Balazinska, M., Howe, B., Kepner, J.,
Madden, S., Maier, D., Mattson, T., Zdonik, S.: The bigdawg polystore system.
ACM SIGMOD Rec. 44, 11–16 (2015)

5. Beckmann, O., Houghton, A., Mellor, M., Kelly, P.H.J.: Runtime code generation
in C++ as a foundation for domain-specific optimisation. In: Lengauer, C., Batory,
D., Consel, C., Odersky, M. (eds.) Domain-Specific Program Generation. LNCS, vol.
3016, pp. 291–306. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25935-0 17

6. Newburn, C.J., So, B., Liu, Z., McCool, M., Ghuloum, A., Toit, S.D., Wang, Z.G.,
Du, Z.H., Chen, Y., Wu, G., et al.: Intel’s array building blocks: a retargetable,
dynamic compiler and embedded language. In: 2011 9th annual IEEE/ACM inter-
national symposium on Code generation and optimization (CGO), pp. 224–235.
IEEE (2011)

7. Alexandrov, A., Kunft, A., Katsifodimos, A., Schüler, F., Thamsen, L., Kao, O.,
Herb, T., Markl, V.: Implicit parallelism through deep language embedding. In:
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, pp. 47–61. ACM (2015)

http://dx.doi.org/10.1007/978-3-540-25935-0_17

Approaching ETL Processes Specification
Using a Pattern-Based Ontology

Bruno Oliveira1 and Orlando Belo2(&)

1 CIICESI, School of Management and Technology, Porto Polytechnic,
Felgueiras, Portugal

bmo@estgf.ipp.pt
2 ALGORITMI Centre, University of Minho, Braga, Portugal

obelo@di.uminho.pt

Abstract. The development of software projects is often based on the com-
position of components for creating new products and components through the
promotion of reusable techniques. These pre-configured components are
sometimes based on well-known and validated design-patterns describing
abstract solutions for solving recurring problems. The data warehouse ETL
development life cycle shares the main steps of most typical phases of any
software process development. Considering that patterns have been broadly used
in many software areas as a way to increase reliability, reduce development risks
and enhance standards compliance, a pattern-oriented approach for the devel-
opment of ETL systems can be achieve, providing a more flexible approach for
ETL implementation. Appealing to an ontology specification, in this paper we
present and discuss contextual data for describing ETL patterns based on their
structural properties. The use of an ontology allows for the interpretation of ETL
patterns by a computer and used posteriorly to rule its instantiation to physical
models that can be executed using existing commercial tools.

Keywords: Data warehousing systems � ETL conceptual modelling � ETL
patterns � Domain specific language and ontologies

1 Introduction

Ontologies are being used by many organizations to encode and share information
across multiple systems, providing a way to electronic agents understand and use the
information based on a solid formalism that can be shared. The need to reuse a
particular domain knowledge is growing since it enhances better solutions and provides
a better picture of a specific domain [1]. The struggle imposed by the global market
affects business requirements in an unexpected way. Therefore, software design tech-
niques should guaranty the quality and robustness of the software piece. The use of
software patterns is a well-known reuse-based technique often applied in software
developing on a lot of different domains [2]. The need to reuse components and share
acquired knowledge across applications is crucial for reducing time and costs in
software design and development, contributing to improve its final quality [3].

In the field of Data Warehouse Systems (DWS), ETL (Extract, Transform, and
Load) processes represent the most important piece that supports a Business

© Springer International Publishing AG 2017
C. Francalanci and M. Helfert (Eds.): DATA 2016, CCIS 737, pp. 65–78, 2017.
DOI: 10.1007/978-3-319-62911-7_4

Intelligence system, consuming a large portion of the time and resources needed to its
development. These processes are very particular and specific to each scenario where
they are applied, since its main purpose is to integrate data from different data sources
to target repositories, specifically built to support decision-making processes. The
amount of data that is typically transformed associated to the specific data requirements
and technology limitations that should be considered in its development places these
systems in a special software domain [4]. All this contributes to increase the complexity
of software development and maintenance. Additionally, there is still a lack of pro-
posals and methodologies to support its development based on a conception phase that
can successfully represents all operational stages with a simple notation, providing at
the same time the necessary bridges for allowing its mapping to a physical model.

We propose a pattern-based approach designed to map typical operations - e.g.
Surrogate Key Pipelining - SKP, Slowly Changing Dimensions - SCD and Change
Data Capture - CDC techniques - to configurable components that can be adapted to
specific scenarios. Based on previous works [5–7], and using the Web Ontology
Language (OWL) [8], an ETL pattern based ontology is presented to support the
necessary requirements and to describe each pattern configuration, enabling its map-
ping to physical models that can be posteriorly executed [9]. Basically, an intermediate
layer is provided to separate technical knowledge typically used in commercial tools
from the domain knowledge used by decision-makers [10]. Users should be capable to
describe what to do without describing how it will be done. At the same time, users
should be capable to extend and change patterns behaviour without affecting the whole
system and by consequence, the remaining patterns.

Due the complexity of the knowledge involved, and the application of each pattern
to specific contexts [11, 12], ETL processes can suffer from inconsistencies and
misunderstandings related to communication problems that result in different meanings
or architectural contradictions. Ontologies can be used to provide the contextual data to
describe each pattern based on its structural properties [12]. The Web Ontology Lan-
guage (OWL) [13] has been used to support ontologies development, describing a
domain, its concepts and properties. Thus, after a brief exposure of some related work
(Sect. 2), we describe our ontology approach to support ETL patterns, providing a
specific taxonomy of the most used ETL techniques and the main components that
support the configuration of each pattern (Sect. 3). Next, a set of necessary formalisms
to create a pattern-based language and how to use them to generate physical models is
presented (Sect. 4). Finally, we discuss the experiments done so far, analyzing results
and presenting some conclusions and future work (Sect. 5).

2 Related Work

The development of more abstract models to support ETL processes development and
their mapping to execution primitives is not new. Vassiliadis and Simitsis covered
several aspects of ETL development in their research [14]. They cover the ETL con-
ceptual modelling [15], its representation using logical views [16, 17], and its imple-
mentation using a specific ETL tool [18]. They based their approach on a specific
notation that was used to support the specification of ETL activities. Skoutas [19] also

66 B. Oliveira and O. Belo

explored the use of ontologies for ETL conceptual modelling, using a set of specific
conceptual transformations based on ontology graphs. This approach is very interesting,
however it is based in very specific constructs that are not integrated in a full framework
that supports all the stages of an ETL development process using well-known tech-
nologies and tools. Thus, its implementation is still hard to accomplish using specific
commercial tools.

More recently, Akkaoui [20] proposed a conceptual approach for ETL development
based on known technologies such as BPMN (Business Process Model and Notation)
and BPEL (Business Process Execution Language). Several mappings efforts were
presented to support the mapping of BPMN models to BPEL executable models. This
type of mappings is not easy and this approach suffers from very traditional problems
already debated by research community [21]. Later, Akkaoui presents the BPMN4ETL
metamodel [22], showing how conceptual primitives in BPMN can be mapped to
physical models for commercial tools using specific templates.

In the field of ETL patterns, there is not much to refer. However, Köppen [23]
presented a pattern-oriented approach to support ETL development, providing a general
description for a set of patterns - e.g. aggregator, history and duplicate elimination
patterns. This work focuses on important aspects defining patterns internal composition
properties and the relationship between them. Patterns were presented only at con-
ceptual level, lacking to support patterns instantiation for execution primitives. Some
works also explored the use of UML (Unified Modeling Language) to develop ETL
conceptual models [24, 25]. Later, Munoz [26] went further and presented the con-
version of UML models to execution primitives. However, being a very strong lan-
guage to describe system requirements, the UML is not so good to support execution of
data based workflows such as the ETL processes. Our work distinguishes from the
approaches presented so far since we followed a pattern approach based on well
documented components that can be configured and used in different ETL development
phases. Fine-grained tasks are encapsulated inside these components, resulting in a new
ETL development level defined by the use of an upper abstraction layer that simplifies
and carries the acquired knowledge between projects.

3 ETL Meta Model for Patterns Definition

Nowadays, sharing and reusing knowledge it is a crucial activity for software devel-
opment. Several specific frameworks emerged to define a new kind of software pro-
gramming that takes advantage of previous expertise and allow its reuse for new
applications in different scenarios and domains. These frameworks are composed by
collections of software patterns that represent a set of instructions or activities that can
be configured and applied to more specific needs. In Web development, these frame-
works are very used since they provide pre-established components that facilitate the
creation of boring and error-prone tasks like website registration or login mechanisms.
The use of software patterns allows for the identification of solutions for specific
problems that can occur within a certain context. Thus a pattern catalogue that can be
used in another projects in similar situations, can be used to develop and maintain

Approaching ETL Processes Specification Using a Pattern-Based Ontology 67

software systems, contributing not only to higher software quality, but also to reduce
time and costs required for its development can be reduced.

Concerning the specificities of the ETL environment, patterns can be characterized
using a set of pre-established tasks that are grouped together based on a specific con-
figuration related to the context in which they are used. Creating these reconfigurable
components avoids the need to rewrite some of the most repetitive tasks typically used in
these processes. Tasks such as surrogate key generation, lookup operations, data
aggregation, data quality filters or slowly changing dimensions policies, are just some
examples of some of the most usual procedures used in a DWS. Thus, instead of using
repetitive tasks to solve the same problems, over and over again, conceptual models can
be used to simplify ETL representation. Thus, ETL designers focus on more general
requirements, leaving the complexity of its implementation to further steps. They only
need to provide the configuration metadata to the conversion engine that will be
responsible to generate the physical model. The ETL conceptual models can be created
and used in posterior steps, enforcing the use of well-proven techniques, contributing to
system quality and consistency. Despite the use of software patterns facilitate software
development, some problems can emerge even with its use for ETL development. For
example, the redundancy and different interpretations of the same concept can occur
[11] for this design approach. Even under the same domain, different communities can
have similar versions of same concept with slightly differences, leading to inconsis-
tencies about how patterns can be used in different contexts. In an ETL environment
different interpretations can occur using very traditional ETL procedures.

OWL, a language based on Web semantic technology, is often used to describe
domain specific meta-models to represent properties and relationships between domain
concepts (i.e. patterns). OWL is a W3C standard [27] that was developed to provide a
simpler way to process and use semantic data across applications in the web.
With OWL, classes or concepts can be described and arranged to form taxonomic
hierarchies, properties describing the composition in terms of attributes of each concept
and restrictions over the relationship between the concepts presented. The W3C
specification document [28] describes OWL2 ontologies in three different syntactic
categories: 1 – Entities such as classes, properties and individuals (class instances);
2 – Expressions that represent restrictions over the individuals; 3 – Axioms repre-
senting statements that can be asserted based on the domain description. Thus, the ETL
patterns can be syntactically expressed using classes, data properties and object
properties, providing the basic structure to support the development of a specific lan-
guage to pattern instantiation. Figure 1 shows an excerpt of the breakdown among the
different levels of the ETL patterns taxonomy proposed.

Fig. 1. The ETL patterns taxonomy.

68 B. Oliveira and O. Belo

The pattern concept is composed by a core that hides all structure to support each
pattern operational requirements and the logic behind it, and the Throwable and Log
components. These components encapsulate all logic related to exception and error
handling for each pattern. The Throwable pattern uses the input configuration to handle
error or exception scenarios through the application of specific recovery strategies for
each pattern. For example, process errors that cause critical failure scenarios can be
handled and rollback procedures can be used to preserve data in a consistent state. The
Log pattern is responsible to store ETL events and its timeline to identify data lineage,
bottlenecks and errors. Thus, the ETL process can be analysed and specific error trends
can be found, revelling a need to handle and minimize them in source systems and
eventually reduce ETL resources needed for subsequent loads. Log structures can differ
in granularity level and scope. Its entries are triggered by conditions associated to each
pattern or by more general conditions (such as process checkpoints). The following
classes and slots are describe to support the ontology presented:

• Classes: The Pattern class contains the basic data properties for each pattern, e.g.,
the identification number (Id), Name and Description. The PatternCore encapsu-
lates all logic behind each pattern operational requirements; The Throwable
describes the exception/error handling processes and the Log describe the logging
processes to track all pattern events.

• Object Properties: HasCoreComponent, HasThrowableComponent and HasLog
Component, each one describing the relationship between individuals of each class
involved and the main relationships between classes to support basic pattern
structure. Each pattern can only has one PatternCore instance and zero or more
Throwable and Log instances. This means that several Throwable and Log instances
can be configured for the same pattern, allowing the description of several
scenarios.

While Pattern class represents the most general concept used, the Extraction,
Transform and Load classes represent the three types of patterns that are intrinsically
associated to each typical phase of an ETL process. The Extraction class instances are
used to extract data from data sources using a specific data object (e.g. a table or file),
representing typical extraction data processes and algorithms applied over specific data
structures. The Extraction class can be specialized in three more specific data
extractors:

• Full extraction patterns that are used to extract all data from a specific data source
without any criteria, i.e. all data currently available;

• Differential extraction patterns that are used to identify new data since the last
successful extraction. For this data extraction type, all data from source and target
repository is compared to identify new data.

• Incremental extraction patterns that are used to extract data from data sources since
the last successful extraction but based on specific criteria and using specific CDC
(Change Data Capture) techniques to identify and track the changed data in all the
data warehouse data sources.

Due the much smaller data volume extracted, the incremental data extraction
provides better performance when compared to differential extraction. However,

Approaching ETL Processes Specification Using a Pattern-Based Ontology 69

sometimes is difficult to identify modified data due source systems access limitations.
The trigger-based is one of the most used CDC techniques. This approach consists in
the implementation of some triggering mechanisms inside the sources to capture insert,
update and delete events. Triggers usually store the data they gather in specific audit
tables that preserve a track of all the changes occurred in the source’s tables, tagging all
the records with some temporal and monitoring data. The log-based techniques are
another example of incremental extraction that use the DBMS transaction log to
identify new/modified records. Thus, analysing transaction log, it is possible to identify
changes that occurred during some period in the operational system databases.

The Transformation class represents patterns that are used in ETL transformation
phase for the application of a set of cleaning or conforming tasks [29] to align source
data structures to the requirements of the target schema of a data warehouse. This class
represents a large variety of procedures that are often applied in DWS, such as patterns
responsible to apply the well-known policies related to SCD techniques, patterns for
surrogate key generation, or patterns to support the conciliation and integration of data
from many data sources. For example, a DQE pattern can be specialized to a Nor-
malization class that represents the set of tasks needed whenever it is necessary to
standardize or correct data according to a given set of mapping rules stored in mapping
tables; and the Decomposition class that represents the set of tasks that support the
decomposition of fields to extract meaning from all of its parts. These are just two
examples of common DQE specializations typically used. With these classes, all the
most frequent ETL patterns can be represented along with all its operational stages.
Thus and using the ontology hierarchy to support ETL patterns meta-model, patterns
can be changed or even new patterns can be added without compromising the whole
pattern structure.

Finally, the Load class represents patterns that are used to load data to the target
DW repository, representing efficient algorithms for data loading or index creation and
maintenance for loading procedures. The Intensive Data Loading (IDL) subclass
should load data to a target DW schema considering the model restrictions used. For
example, based on multidimensional model approach [30], the dimension tables should
be firstly loaded and only after the population of all dimensions, the fact table can be
loaded.

After the taxonomy definition, the meta-model should be enriched to support the
basic rules for the development of well-formed ETL patterns. For that, each class
should be defined through the use of properties. For example, the Extraction class that
represents all Extraction patterns is composed by some Datatype Properties such as
PatternId and PatternName (inherited from Pattern class), and Object Properties such
as PeriodLiterals that refers to extraction interval used (Hour, Daily, Month) (oneOf
property) and the metadata related to the repository connection (input object: Data
repository description class and associated fields: Data and Field class). The Throw-
able and Log components are not mandatory and multiple instances can be defined for
the same pattern to represent different scenarios. Each subclass can also include
additional or override properties. Pattern subclasses can override constraints using
specific cardinality restrictions based on their own requirements. Sub properties are
used for that, specializing their super properties. For example, the Incremental class
uses a date type property to identify new or changed records. Each property should be

70 B. Oliveira and O. Belo

described based on its cardinality, value, domain and range. The domain links a
property to a class, while the range links a property to a class or data range. This allows
the association between classes and data types, and provides a way to establish
restrictions. The number of data repositories used for each pattern (both for input and
output mapping configuration) should be ruled by each pattern specialization. For
example, the DCI (Data Conciliation and Integration) pattern can use more than one
data repository as input (using subPropertyOf axiom) due being responsible to integrate
data extracted from several data sources related to the same data object and only one
data repository as output.

The Fig. 2 shows a graph ontology summary of the main concepts that support
pattern structure and configuration. The round corner rectangles are used to identify
classes and rectangles used to identify object properties with domain and range prop-
erties. The three pattern components are identified along with the object properties to
provide its configuration. The SourceToLog, SourceToThrowable and SourceToTarget
object properties relate each pattern component configuration to specific mappings
(Mapping class). The Mapping class describes the relationship between the input
(HasDataRepositoryInput object property) and output (HasDataRepositoryOutput
object property) DataObject instances representing data repositories that hold the data
used for pattern configuration. This way, it is possible to establish relationships between
data repositories attributes to enable data migration processes between them. These data
repositories can have physical representation, e.g. databases and files, requiring a
specific connection protocol or passed as stream of records.

4 Pattern Language Specification

ETL systems are a very complex type of software that requires adjusting data with
specific operational requirements in order to align their schema to new specific decision
requirements, which makes ETL systems hard to develop and maintain. As mentioned
before, several authors tried to simplify and minimize ETL systems development
through the use of conceptual models that are used in early development phases.
Currently, there is still a lack of semantics to support to express ETL systems and
more importantly to provide the necessary mappings to execution properties, taking
advantage of the work done previously in design phases. The majority of works
presented till now supports ETL processes representation using very detailed tasks.

Fig. 2. Ontology graph representation

Approaching ETL Processes Specification Using a Pattern-Based Ontology 71

Thus, the generated models are composed by dozens of tasks without an automatic
mapping to commercial tools. The use of detailed tasks such as joins or projections
detail level affects process interpretation and are not very useful unless there is a
specific tool to support their implementation.

With the pattern-based approach proposed, a new abstraction layer is proposed,
simplifying and helping the ETL development process from conceptual phases to
physical models that can be executed. For this particular task, we believe that com-
mercial tools should be preferentially used, since they provide powerful and
well-known frameworks that many IT professionals use. Therefore, we propose a
specific configuration language that can be applied to each pattern presented by the
ontology, covering its operational stages and providing a solid framework to enable its
conversion to equivalent semantics used by ETL commercial tools. Using the Protégé-
OWL API [31, 32], an ontology specification can be used and manipulated. Based on
the concepts and properties presented, a specific generator was built to automatically
generate a specific pattern configuration language, allowing for the configuration of
each pattern using the ontology definition. The engine uses two important layers: the
language construction rules (syntax) and the ontology data model. For the language
specification, a set of specific statements and keywords were used to describe each
language component.

The USE keyword is applied to identify the pattern path that should be followed
based of the taxonomy presented (Fig. 1), followed by the pattern name. Top levels
(Pattern class is the higher level) should be firstly defined and the character: . (dot) is
used to traverse each hierarchy level from the middle levels to bottom levels. Next, and
based on each Pattern class object properties, a set of blocks delimited by {} (braces) are
defined. Inside each block, simple or composite assignments can be performed. For the
general blocks (generated from Pattern class), simple assignments are formed based on
data properties associated to Pattern class, while composite statements are generated
based on the object properties. Each block can contain more than one occurrence based
on the cardinality of the object properties associated to Pattern class. For example, the
DCI pattern have several input blocks, each one related to the data repositories used
(SourceToTarget object property) for data integration. The OPTIONS block is used to
map the properties associated to the pattern class used and can be composed by single or
composite statements (based on ontology definition). Table 1 resumes the main syntax
used for the DSL (Domain-Specific language) proposed for pattern configuration.

Based on the ontology and the syntax rules presented, the configuration language
can be automatically generated for each pattern, providing language flexibility. This
approach guarantees that if the ontology is change, then the correspondent grammar
rules will be consistent with the ontology definition. Figure 3 shows an example of the
syntax rules applied to the language constructs and a correspondent example of its
instantiation using a specific Aggregator pattern that applies a sum operation to the
duration of telephone calls made by each customer. The sum_duration aggregator
pattern (Transform.Aggregator) presents three main blocks derived from the object
properties applied to the Pattern class. The Source describes input metadata, Target
describes output metadata and Fields block describes the fields will be used as output to
the target repository. These three blocks correspond to hasInput, hasOutput and has-
Fields object properties, respectively. For input block, a CSV file was used for data

72 B. Oliveira and O. Belo

extraction based on delimiter ‘:’ (a composite statement is used due the existence of a
data property describing the delimiter rule for the CSV class), and the pattern output
will store correspondent data into a specific relational table. Details such as database
name or server were omitted since they can be configured in further steps. After fields
identification (separated by comma), the keyword OPTIONS is used to specify each
configuration parameter (derived from properties applied to Aggregator class) associ-
ated to Aggregator class: Function to identify the aggregation function applied,
FunctionField to specify the field that should be used by the function, RenameField to
apply the alias to the new field generated and the GroupFields used to specify the
group by clause.

With the pattern-based approach presented in this paper, a new abstraction layer to
develop ETL process is proposed. Patterns can be used to create conceptual model
without focusing in very detailed tasks. However, to produce physical models based on
conceptual primitives, two independent components should be provided: patterns
configuration Meta data that is supported by the domain language provided, and
workflow coordination data that describes the process flow. For demonstration pur-
poses, the BPMN language was used to create ETL conceptual models. BPMN has
proven in several works that is suitable to represent several workflow operational
components of ETL systems both at conceptual and physical primitives [33, 34].

Table 1. Basic DSL constructs.

Language
elements

Keywords Ontology property Example

Pattern se-
lection

PatternHierarchyPath.pattern_name ETL patterns hier-
archy

Transformation.DQE

Atomic
statements

Statement_name = expression Class data property Type = relational

Composite
statements

[
statement_name_1 = expres-

sion_1
statement_name_n = expression_n

]

minCardinality
value constraint

[
data=PickingSp
type=relational
]

Main blocks Block_name_1{}
Block_name_n{}

Object properties
with Pattern class

source{}

Multiple
main blocks

Block_name{
 [block_content],[(…)]
}

maxCardinality
value constraint

source{
[
data=PickingSp
type=relational

]
},[]

Options OPTIONS{
 Atom-
ic_Statement_name_1
 Atom-
ic_Statement_name_n
}

Pattern data/object
properties
(functionalProperty
or with
maxCardinality =
1)

OPTIONS{
 Function=SUM
 Field=price
 (…)
}

Approaching ETL Processes Specification Using a Pattern-Based Ontology 73

In recent works [9, 35] we proposed the use of BPMN as visual layer to support ETL
conceptual models, representing patterns using BPMN elements. The experimental tool
developed is responsible to interpret the configuration language and provide the gen-
eration of the physical model making it possible to be executed by commercial tools
such as Kettle Pentaho [36]. Based on the ontology presented, a specific Meta model
can be generated and used to support pattern instantiation and configuration. This
feature allows for manipulating the ontology and, at the same time, provides the
necessary contracts to control and implement the models that support pattern inter-
pretation and manipulation.

The final step covers the generation of physical models using the architecture and
philosophy followed by each commercial tool. A set of standard transformation
skeletons was built to encapsulate the logic of the conversion process, providing the
meanings to transform each pattern internal structure to a specific serialization format.
To guarantee system flexibility and avoid the commercial tools proprietary formats, the
Apache Velocity [37] template generator language was used to describe each com-
ponent skeleton and build a specific and standard transformation template.

Fig. 3. Basic pattern configuration syntax and language example through the instantiation of an
Aggregator pattern [7].

74 B. Oliveira and O. Belo

Figure 4 summarizes all development process phases needed to support the
physical representation of the ETL processes using patterns, from the ontology defi-
nition to the generation of physical model.

5 Conclusions and Future Work

Nowadays, companies need to adjust their business processes to meet new business
demands, which implies the readjustment of their strategy and by consequence the
processes used to store and process their data. The operational systems reflect these
changes since operational data are stored in data schemas especially designed and built
to serve particular business needs. The integration of new requirements in existing data
schemas can lead to inconsistencies, because original schemas could not be prepared to
support appropriately new business requirements. Due these reasons, the development
of ETL processes is a sophisticated process that consumes a large amount of human
and financial resources. ETL processes diverge from traditional data migration pro-
cesses since they are used in a very specific domain area with specific architectural
requirements that are already known.

The specificities of ETL systems have been studied and applied to several areas,
contributing to the identification of common tasks and solutions in order to solve them.
The documented SCD and data conciliation and integration policies are just two
examples of already discussed techniques applied in the majority of ETL projects.
However, this knowledge is carry on between projects as technical documentation,
describing guidelines and good practices that should be applied. Instead, we believe
that this knowledge can be parametrized and encapsulated using container of tasks,
grouped together according to a specific purpose. Thus, we believe that the ETL
early development stages can be simplified, replacing the traditional large number
of tasks and operators by simpler composite tasks that encapsulate pattern logic.

Fig. 4. ETL process development stages using a pattern-oriented approach [7].

Approaching ETL Processes Specification Using a Pattern-Based Ontology 75

Additionally, the knowledge and best practices can be put in practice using a set of
software patterns that can be applied to the entire ETL development life cycle: from
conceptual phase to its physical implementation primitives. To support all this process,
an ontology specification describing and categorizing all the ETL patterns and their
rules is proposed. Thus, the main operational components of each pattern can be used
to support the definition of a specific DSL to configure all necessary operational
requirements to enable its posterior generation to physical models that can be executed
using an existing commercial tool. Between logical and physical models, a
template-oriented framework is used to encapsulate all the conversion logic needed to
map logical and conceptual primitives to target executable model.

As future work, a set of tests will be conducted to study the feasibility of our
approach as well as to extend it, improving and enriching the ontology, covering more
coordination and communication aspects. Additionally, a validation method for
checking model consistency using Alloy [38] is currently under development. With
this, an ETL logical model can be checked in order to guarantee a higher level of
consistency and correctness before the generation of their physical representation.

References

1. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5,
199–220 (1993)

2. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design patterns: elements of reusable
object-oriented software. Design. 206, 395 (1995)

3. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings,
Construction. Oxford University Press, Oxford (1977)

4. Weske, M., van der Aalst, W., Verbeek, H.: Advances in business process management.
Data Knowl. Eng. 50, 1–8 (2004)

5. Oliveira, B., Belo, O.: BPMN Patterns for ETL conceptual modelling and validation. In:
20th International Symposium on Methodologies for Intelligent Systems (ISMIS 2012),
Macau, 4–7 December 2012

6. Oliveira, B., Santos, V., Belo, O.: Pattern-based ETL conceptual modelling. In: Cuzzocrea,
A., Maabout, S. (eds.) MEDI 2013. LNCS, vol. 8216, pp. 237–248. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-41366-7_20

7. Oliveira, B., Belo, O.: An ontology for describing ETL patterns behavior. In: Proceedings of
5th International Conference on Data Management Technologies and Applications (DATA
2016), Lisboa, Portugal, 24–26 July 2016

8. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview (2004)
9. Oliveira, B., Belo, O.: A domain-specific language for ETL patterns specification in data

warehousing systems. In: Pereira, F., Machado, P., Costa, E., Cardoso, A. (eds.) EPIA 2015.
LNCS (LNAI), vol. 9273, pp. 597–602. Springer, Cham (2015). doi:10.1007/978-3-319-
23485-4_60

10. McGuinness, D.L., Wright, J.R.: Conceptual modelling for configuration: a description
logic-based approach. Artif. Intell. Eng. Des. Anal. Manuf. 12, 333–344 (1998)

11. Dietrich, J., Elgar, C.: Towards a web of patterns. Web Semant. Sci. Serv. Agents World
Wide Web 5, 108–116 (2007)

76 B. Oliveira and O. Belo

http://dx.doi.org/10.1007/978-3-642-41366-7_20
http://dx.doi.org/10.1007/978-3-319-23485-4_60
http://dx.doi.org/10.1007/978-3-319-23485-4_60

12. Noy, N., McGuinness, D.: Ontology development 101, A guide to creating your first
ontology. Development. 32, 1–25 (2001)

13. Antoniou, G., Van Harmelen, F.: OWL web ontology language. Handb. Ontol. Inf. Syst.
2007, 157–160 (2004)

14. Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M.: A framework for the design of
ETL scenarios. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 520–
535. Springer, Heidelberg (2003). doi:10.1007/3-540-45017-3_35

15. Vassiliadis, P., Simitsis, A., Skiadopoulos, S., Conceptual modeling for ETL processes. In:
Proceedings of the 5th ACM International Workshop on Data Warehousing and OLAP,
DOLAP 2002, pp. 1–25 (2002)

16. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: On the logical modeling of ETL processes.
Science 80, 782–786 (2002)

17. Simitsis, A., Vassiliadis, P.: A method for the mapping of conceptual designs to logical
blueprints for ETL processes. Decis. Support Syst. 45, 22–40 (2008)

18. Vassiliadis, P., Vagena, Z., Skiadopoulos, S., Karayannidis, N., Sellis, T.: ARKTOS: a tool
for data cleaning and transformation in data warehouse environments. Bull. IEEE Comput.
Soc. Tech. Comm. Data Eng. 1–7 (2000)

19. Skoutas, D., Simitsis, A.: Ontology-based conceptual design of ETL processes for both
structured and semi-structured data. Int. J. Semant. Web Inf. Syst. 3, 1–24 (2000)

20. El Akkaoui, Z., Zimanyi, E.: Defining ETL worfklows using BPMN and BPEL. In:
Proceedings of the ACM Twelfth International Workshop on Data Warehousing and OLAP,
DOLAP 2009, pp. 41–48 (2009)

21. White, S.A., Corp, I.B.M.: Using BPMN to model a BPEL process. Business 3, 1–18 (2005)
22. El Akkaoui, Z., Zimànyi, E., Mazón, J.-N., Trujillo, J.: A model-driven framework for ETL

process development. In: Proceedings of the ACM 14th International Workshop on Data
Warehousing and OLAP, DOLAP, pp. 45–52 (2011)

23. Köppen, V., Brüggemann, B., Berendt, B.: Designing data integration: the ETL pattern
approach. Eur. J. Inform. Prof. XII, 49–55 (2011)

24. Luján-Mora, S., Trujillo, J., Song, I.-Y.: A UML profile for multidimensional modeling in
data warehouses. Data Knowl. Eng. 59, 725–769 (2006)

25. Muñoz, L., Mazón, J.-N., Pardillo, J., Trujillo, J.: Modelling ETL processes of data
warehouses with UML activity diagrams. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM
2008. LNCS, vol. 5333, pp. 44–53. Springer, Heidelberg (2008). doi:10.1007/978-3-540-
88875-8_21

26. Muñoz, L., Mazón, J.-N., Trujillo, J.: Automatic generation of ETL processes from
conceptual models. In: Proceedings of the ACM Twelfth International Workshop on Data
Warehousing and OLAP, pp. 33–40. ACM, New York (2009)

27. W3.org, Semantic Web - W3C. http://www.w3.org/standards/semanticweb/
28. Motik, B., Patel-Schneider, P.F., Parsia, B., Bock, C., Fokoue, A., Haase, P., Hoekstra, R.,

Horrocks, I., Ruttenberg, A., Sattler, U., Smith, M.: OWL 2 Web Ontology Language -
Structural Specification and Functional-Style Syntax, 2nd edn. Online, pp. 1–133 (2012)

29. Rahm, E., Do, H.: Data cleaning: Problems and current approaches. IEEE Data Eng. Bull.
23, 3–13 (2000)

30. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional
Modeling. Wiley, Hoboken (2002)

31. Protégé, The Protégé Ontology Editor (2011)
32. Horridge, M.: protégé-owl api. http://protege.stanford.edu/plugins/owl/api/
33. Akkaoui, Z., Mazón, J.-N., Vaisman, A., Zimányi, E.: BPMN-based conceptual modeling of

ETL processes. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS, vol. 7448, pp. 1–14.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32584-7_1

Approaching ETL Processes Specification Using a Pattern-Based Ontology 77

http://dx.doi.org/10.1007/3-540-45017-3_35
http://dx.doi.org/10.1007/978-3-540-88875-8_21
http://dx.doi.org/10.1007/978-3-540-88875-8_21
http://www.w3.org/standards/semanticweb/
http://protege.stanford.edu/plugins/owl/api/
http://dx.doi.org/10.1007/978-3-642-32584-7_1

34. Oliveira, B., Santos, V., Gomes, C., Marques, R., Belo, O.: Conceptual-physical bridging -
from BPMN models to physical implementations on Kettle. In: CEUR Workshop
Proceedings, pp. 55–59 (2015)

35. Oliveira, B., Belo, O., Cuzzocrea, A.: A pattern-oriented approach for supporting ETL
conceptual modelling and its YAWL-based implementation. In: 3rd International Confer-
ence on Data Management Technologies and Applications, DATA 2014, pp. 408–415
(2014)

36. Bouman, R., Van Dongen, J.: Pentaho® Solutions: Business Intelligence and Data
Warehousing with Pentaho and MySQL® (2009)

37. Gradecki, J.D., Cole, J.: Mastering Apache Velocity - Java Open Source library (2003)
38. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge

(2012)

78 B. Oliveira and O. Belo

Topic-Aware Visual Citation Tracing
via Enhanced Term Weighting for Efficient

Literature Retrieval

Youbing Zhao, Hui Wei(&), Shaopeng Wu, Farzad Parvinzamir,
Zhikun Deng, Xia Zhao, Nikolaos Ersotelos, Feng Dong,

Gordon Clapworthy, and Enjie Liu

University of Bedfordshire, Luton LU1 3JU, UK
{youbing.zhao,hui.wei,shaopeng.wu,farzad.parvinzamir,

zhikun.deng,xia.zhao,nikolaos.ersotelos,feng.dong,

gordon.clapworthy,enjie.liu}@beds.ac.uk

Abstract. Efficient retrieval of scientific literature related to a certain topic
plays a key role in research work. While little has been done on topic-enabled
citation filtering in traditional citation tracing, this paper presents visual citation
tracing of scientific papers with document topics taken into consideration.
Improved term selection and weighting are employed for mining the most rel-
evant citations. A variation of the TF-IDF scheme, which uses external domain
resources as references is proposed to calculate the term weighting in a par-
ticular domain. Moreover document weight is also incorporated in the calcu-
lation of term weight from a group of citations. A simple hierarchical word
weighting method is also presented to handle keyword phrases. A visual
interface is designed and implemented to interactively present the citation tracks
in chord diagram and Sankey diagram.

Keywords: Text mining � Citation tracing � Data management � Ontology �
Term weighting � TF-IDF � Visualization

1 Introduction

Topic based retrieval of scientific and research documents can offer significant assis-
tance to researchers by providing them the most relevant documents within their
research interest. While citation analysis has attracted much attention in research
communities, little has been done to incorporate topic-based document analysis with
citation tracing.

Effective citation analysis of large corpuses of scientific and research documents
involves a wide spectrum of techniques, including document indexing for the creation
of numeric representations of documents; ranking of key scientific terms; and weighted
representations of the documents, etc. Term selection and weighting are used to
identify the most relevant terms and assign a numeric value to each term to indicate the
contribution of the term to its document. Citation relationships captured in time can not
only facilitate literature retrieval but also indicate the evolution of research topics over
years.

© Springer International Publishing AG 2017
C. Francalanci and M. Helfert (Eds.): DATA 2016, CCIS 737, pp. 79–101, 2017.
DOI: 10.1007/978-3-319-62911-7_5

This paper presents a detailed work on topic-enhanced visual citation tracing of
large corpuses of scientific literature based on our previous work [1, 2].

At the pre-processing stage, text mining is used to extract citation relations (namely
the reference list) and metadata (title, year, authors, etc.) obtained from raw PDF files.
The extracted information is then stored in the document repository. Standard terms
from a document are collected with their occurrence after lemmatization and Stop
Words removal.

The data management is implemented by following a NoSQL scheme in order to
address scalability. We have studied characters of different types of NoSQL data
repositories which are employed for retrieving information. CouchDB was selected
because of its on-the-fly document transformation. A semantic repository, the
Sesame RDF, was used to describe key scientific terms and their synonyms in the CG
field. An external resource MAS keyword API (MAS API) is used as the input data to
create the ontologies.

The citation relationships between the documents in the repository are analysed and
stored using a graph repository, enabling quick citation path retrieval. From a pair or a
group of related citations, an improved term-weighting scheme, which selects impor-
tant terms according to their relevance to the cited documents, is employed. It takes into
account the popularity of the scientific terms in the relevant year, as well as their
occurrence in the entire SIGGRAPH corpus. Terms appearing in higher ranked doc-
uments should be given higher weights.

The citation relationships are finally visualized using a directed graph controlled by
a user-specified citation track length. The graph shows all paths that satisfy the
restriction imposed by the path length. The weighted terms are shown in the graph in
descending order.

In summary, our contributions are as follows:

• an approach for the management of large scale corpuses of scientific documents that
work seamlessly with the underlying text mining framework to support efficient
document retrieval based on topics and citation relationships

• a term weighting scheme allowing for the ranking of key scientific terms over years
at both the document level and corpus level

• a visualization method to display citation relationships between the scientific doc-
uments together with weighted scientific terms.

The rest of the paper is organized as follows. Section 2 provides an overview of related
works, Sect. 3 describes the design requirements and Sect. 4 describes our term
weighting method. Section 5 presents our approach to visualization. Section 6 dis-
cusses the implementation and Sect. 7 concludes our work.

2 Related Work

Organizing, management, analyzing, and exploring massive text information has been
a highly interested research area for decades. Researchers from a variety of domains
have devised methods to categorize and mine the large corpuses of available scientific
literature. Information science is a field particularly devoted to developing data analysis

80 Y. Zhao et al.

methods for this goal. Text mining, document analysis and document visualization are
closely related to the research work in this direction. And database technologies are
very helpful for the implementation of a concrete document mining system. Conse-
quently, the related work is organized in three sections: data management, text mining
and document visualization.

2.1 Data Management

NoSQL databases are increasingly used in big data and real-time web applications and
it has also been concluded that graph databases are more efficient in traversing rela-
tionships [3]. Kivikangas & Ishizuka introduced a semantic representation format
Concept Description Language (CDL) [4]. They store semantic data presented by CDL
in Neo4j [5] graph database and utilize semantic relationships to improve query
performance.

Compared to only one or two data repositories used in the data layer support of
most applications, four NoSQL repositories are designed and employed in our work to
facilitate high efficient indexing and queries.

2.2 Text Mining

Term selection and term weighting (TW) are important processing phases in text
mining and have been investigated for many years.

A term-weighting scheme can affect not only text classification, but also other text
mining tasks, such as sentiment analysis, cross-domain classification and novelty
mining [6]. A classic term-weighting scheme introduced in [7] is based on three
assumptions: 1. the multiple occurrence of a term in a document is related to the
content of the document itself; 2. terms uncommon throughout a collection better
discriminate the content of the document; 3. long documents are not more important
than short ones, so normalize the length of documents.

By applying sorted term-weighting at a document level important terms can be
revealed from repeated or redundant terms, thus enabling quick extraction of the most
useful information [8].

TF-IDF has long been proposed for text mining and document topic analysis [9]. It
is the product of two statistics, term frequency (TF) and inverse document frequency
(IDF). With TF-IDF, the topics of a document can be calculated based on term
weighting. There are many variants for determining the exact values of term frequency
and inverse document frequency.

Supervised term weighting and a number of “supervised variants” of TF-IDF
weighting are proposed in [7] for image recognition applications that involve super-
vised leaning, such as text filtering and text categorization.

Domeniconi et al. [10] proposed a supervised variant of the TF-IDF scheme, based
on computing the usual IDF factor without taking documents of the category to be
recognized into account. The idea is to avoid decreasing the weight of terms included in
documents of the same category, so that words appearing in several documents of the
same category are not undercounted. Another variant they proposed is based on rele-
vance frequency, considering occurrences of words within the category itself.

Topic-Aware Visual Citation Tracing via Enhanced Term Weighting 81

Li et al. [11] proposed a cross-domain method extracting sentiment and topic
lexicons without counting labelled data in the interested domain but counting labelled
data in another related domain.

Another cross-domain approach [12] creates explicit representations of topic cat-
egories, which can be used for comparison of document similarity. The category
representations are iteratively refined by selecting the most similar target documents.
Further, [6] compared and discussed the impact of TW on the evaluation measures, and
recommended the best TW function for both document and sentence-level novelty
mining.

None of these works uses citing relations as a factor in term weighting.

2.3 Text and Document Visualization

Text and document visualization and visual analysis has been a field of high interest in
the visualization community for decades. [13–15] present very good surveys on text
and document visualization and visual analysis. As our work is on citation analysis and
visualization, we focus specially on visualization and visual analysis of document
relationships. A systematic review of citation analysis and visualization has been
presented in [16].

CiteSpace II [17] uses node-link diagrams to visualize co-citation with a focus on
the interplay between research fronts and their intellectual bases. They apply time
slicing, thresholding, modelling, pruning, merging and mapping methods to prune a
dense network. Zhang et al. [18] organize paper references in a tree structure and
Citevis [19] presents citation links in a matrix-based visualization. Jigsaw [20] correlate
documents and other entities based on metadata and content in visualisation and
PivotPaths [21] visually integrates citation data with other document metadata to form
an explorable network. CitNetExplorer [22] delineates research fields and help litera-
ture reviewing based on analysis of a very large citation network with node-link
diagram visualisation. CiteRiver [23] facilitates user-steered aggregation of citations
and supports the exploration of the dataset over time and enable users to analyze
citation patterns and trends.

Our work enhances citation analysis with topic analysis based on an improved term
weighting model. Interactive visualisation of citations in chord diagrams and Sankey
diagrams offers seamless integration of document topic information.

3 Design Goals and Requirements

3.1 Design Requirements

The motivation of our work is to assist scientific literature search by professionals with
more efficient citation tracing which incorporates topic analysis. Based on the moti-
vation we have the following design goals:

82 Y. Zhao et al.

1. List citing and cited papers of a given publication

Citations are bi-directional and document management should support retrieval and
tracing of citing papers as well as cited papers. This retrieval should return a list of
citing or cited papers of a given document.

2. Retrieve and trace citations from a given publication

The goal requires retrieval and tracing of all direct and indirect cited papers of a given
document. With this function, all literature related to a given document can be found.
This retrieval or tracing should return all direct and indirect citing or cited papers of a
given document.

3. Topic analysis of citing papers and cited references

The citing papers of a given document may have different topics and some may be
more related to the user’s interests. This function evaluates the topics of the citations,
categorizes them into different groups and evaluate the relevance to the given
document.

The cited references of a given document may also come from different domains
and have different topics. It is also beneficial to researcher’s work if those references
can be grouped in topics and evaluated against the user’s interests. This function
evaluates the topics of the references and categorizes them into different groups.

4. Detect the longest citation track

From the citations within the dataset, the longest citation track can be identified, which
helps to retrieve the early work and all the related work pertaining to a given publi-
cation. It is also crucial in studying the provenance and trend of a research work.

5. Effective interactive visualisation

Visualisation is indispensable for presenting complex and big data sets to facilitate
human understanding. Document contents and relationships are targets of visualisation
applications. In our work, we are interested in visualizing the citation tracks as well as
document topics. Well-designed visualisation improves the efficiency and effectiveness
of citation retrieval and topic analysis.

3.2 The Dataset

The work proposed in this paper is a generalized method for topic based scientific
literature retrieval and analysis. However, to evaluate the method effectively we need
domain experts. The dataset used in this paper are papers from ACM SIGGRAPH [24]
conference proceedings. ACM SIGGRAPH is a large research community on computer
graphics and it is the top conference on computer graphics. The annual ACM
SIGGRAPH conference has a track of more than 30 years to provide a large number of
documents for time-varying analysis. In this paper we use papers of ACM SIGGRAPH
conference proceedings from year 2002 to 2014 as the data source for document and
citation analysis.

Topic-Aware Visual Citation Tracing via Enhanced Term Weighting 83

4 Data Management

In the implementation we define 4 logical data entities: Citation, Corpus, Reference and
Keyword. A Citation is a published paper that is stored in our system in full text and
PDF. A set of Citations published in the same year form a Corpus. A Reference is a
cited paper in the reference list of a Citation (a paper). A Keyword of a citation is a CG
keyword that appears at least once in a paper.

As mentioned earlier, we use ACM SIGGRAPH conference proceedings from
2002–2014, which include 1228 publications during 13 years. Corpuses are organised
by years, which naturally introduces a time factor for topics. This natural corpus is used
as the logic corpus.

The raw resource of a Citation (a paper) is a semi-structured PDF file generated
from a domain specific template, ACM Proceedings Template in our work, which
facilitates the implementation of text mining to extract META data of each citation.

For a Reference in the reference list of a Citation, we extract the title, year and
authors as its identity. This reference could either be a citation that already exists in the
system, or it could be a publication outside of the SIGGRAPH scope. In this paper, we
assume that SIGGRAPH has already covered a history of major topics in CG and only
references that can be matched to citations within our system are considered for text
mining. The outgoing references are stored but not processed.

Although the keyword list section in an academic paper represents the author’s
selection of keywords, it alone can hardly reflect topics effectively in most cases as
authors may use different phrases to represent the same concept, such as “3D”/“three
dimensional”, “level of detail”/“LOD”, and so on. To resolve this ambiguity, an
ontology is introduced to represent explicit specification of the shared concept.

To handle the complexity that resides in the data, four types of data storage are
employed for efficient data management and information retrieval including a semantic
repository, an index and search repository, a document repository, and a graph
repository. These repositories are designed to work in coordination to effectively store
and index data with reliability and efficiency for scientific text mining. The imple-
mentation of these repositories are introduced in the following subsections.

4.1 Semantic Repository

The standard keyword list we use for the shared concept is fetched from the MAS API
which provides a keyword function to return keyword objects in a variety of fields. For
the “computer” area, it covers 24 fields in total, including “computer graphics”,
“computer vision”, “machine learning”, “artificial intelligence” etc. For the “computer
graphics” field which is the interest of this paper, a collection of 13670 keywords are
provided by the MAS API [25].

Each CG keyword in the CG field is denoted by an ontology graph model with
nodes and edges, represented in RDF (Resource Description Framework) as an instance
with “rdf:type” of CG. The synonyms are described by the “owl:sameAs” predicate.
The outcome of this work is that each keyword in a citation can be mapped to a node
with type CG in the semantic repository. We choose Sesame [26] as our RDF

84 Y. Zhao et al.

repository as it provides APIs for RDF creation, parse, storing, inferencing and query.
It can also be connected to the Semantic annotation tool GATE [27] used for META
data extraction. The frequency of each keyword can be calculated from the “GATE
ontology, Gazzetter producer” output.

4.2 Document Repository

The implementation of data management takes advantage of NoSQL in order to address
scalability. The performance and characteristic of different types of NoSQL data
repositories have been investigated before CouchDB [28] was selected due to its
on-the-fly document transformation.

As a NoSQL document repository designed for web application, CouchDB allows
files be treated as attachments of a document. By passing the document id, attachments
of a document can be accessed easily. Since CouchDB treats each record as a document
without considering its properties, the database can accommodate a large number of
documents. Each document in the database is assigned a docType value which is used
to distinguish document types from corpus, citation, keyword frequency and doc ref-
erences. The docType property plays the role of a table in relational databases that
holds a structured format with collection of related data. For documents, a virtual table
of data structures is created for this schema-less repository.

Some benefits of a CouchDB document repository are:

• It provides a design document “View” to sort documents by the key of a view as in
any relational database. Furthermore, values emitted from the view can not only be
fetched from the database directly but also be calculated from functions written in
Javascript.

• It provides validation functions in design documents with the property name vali-
date_doc_update. To be valid, each document has to satisfy all these functions for
creation and update. Consequently, the data structure of documents in this
schema-less database can be guaranteed.

• It provides the Reduce function to reduce a list to a single value, which is useful for
creating a summary of a data group by data aggregation.

4.3 Graph Repository

The citation relationship can be obtained from the document repository by querying
citing documents and cited documents. However, detecting similar citing or cited
documents of two given papers requires massive deep queries that are not optimised.
To favor efficient relationship query the graph database which is tailored to traverse of
relationships is used in our system. In a graph repository, a relation is described by a
path and it is much more efficient and convenient to perform path queries in a dedicated
graph repository. In our work, the graph repository Neo4j [29] is selected as the
graph database to store citation relationships as well as relationships between citation
and keywords. In Neo4j, each entity is represented as a node identified by a LABEL.

Topic-Aware Visual Citation Tracing via Enhanced Term Weighting 85

We define a document as a node entity and “cite” as a relationship that directs from one
citation source node to the target node. The graph repository loads data from the
document repository to create relationships of reference (citation) and usage (key-
words) at the data processing stage. The following are representative tasks the graph
repository undertakes (Fig. 2):
A. Navigate and retrieve cited citations from a given citation.
B. Citing/cited papers from a given paper.
C. Detect similar citing citations.
D. Detect similar cited citations.
E. Detect the longest path.

As mentioned earlier, when processing the reference list of a paper, an outgoing
reference which is not managed by our system it will be left unchanged. Alternatively
for a reference points to an existing document in the document repository, the two
objects are merged into one object in the graph repository. From the citing and cited
documents in the document repository, citation tracks which reflect the evolution of
interest in the context of CG can be built. With the 1228 citations from SIGGRAPH,
the citation tracks are too complex to be presented in a node-link diagram. Figure 1
only presents a simplified directed graph of the data model in the graph repository with
only the documents and their cited documents where the longest citation track has a
length of 8 and covers the whole 13 year span, as shown in Fig. 3.

4.4 Search Repository

Views in a document repository are the primary tool for querying the CouchDB
documents. A View function accepts parameters and returns emit [key, value] pairs as a
result. Query by user defined keywords is a main method to search for related papers.
However, if user-defined keywords are used as parameters to query a view in
CouchDB, they need to be included by a key emitted from this view. Unfortunately
from a predefined virtual table structure, it is not possible to predict the properties that
will be searched by the user. Based on this observation, the Elasticsearch engine [30] is
employed to provide a document-oriented, full-text search via a RESTful API.

Fig. 1. NoSql data repositories employed.

86 Y. Zhao et al.

The CouchDB document repository stores brief description of the corpus infor-
mation, title, author, year and the full text part of a paper as an attachment. The search
function is provided by an Elasticsearch plugin called Mapper Attachments Type [31].
With the brief description, the searched papers returned from the search engine contain
all necessary information for a list presentation and no further information retrieval
from the document repository is needed.

5 Text and Document Analysis

5.1 Data Collection

As most of the conference papers are in PDF format, the meta information of docu-
ments has to be extracted from the original PDF documents. With the aid of Apache
PDFBox [32], an open source Java tool for working with PDF documents, the original

Fig. 2. Relations of citing & cited publications.

Fig. 3. Citation tracks in the graph repository.

Topic-Aware Visual Citation Tracing via Enhanced Term Weighting 87

PDF files are first converted into plain text files and then organized into corpuses based
on properties from the extracted meta information such as organization, conference,
year, etc.

The data collection phase has three stages listed as follows:

• extraction of meta information such as authors, title, abstract sentences, doi, which
can be used to provide the brief information as well as the unique ID for each paper.

• extraction of references and citations to build citation chains for each paper among
the publications.

• extraction of standard key terms from each paper and calculation of their frequency
to estimate the topics of the paper.

The data collection method is general for many text analysis systems and is also
employed by the EC project CARRE [33] for medical literature analysis.

5.1.1 Metadata Extraction
The Metadata extraction is achieved by using a text processing pipeline supported by
the GATE Text Engineering Framework. A text file is first sliced into sentences, then
tokenized and POS (part-of-speech) tagged with the ANNIE system [34], followed by
recognizing person names and numbers with gazetteers. With all this information, a
series of grammar rules (JAPE: Java Annotation Pattern Engine [35] rules) is then
applied for the extraction of meaningful information as follows:

1. Define “Macro”s from ACM format to find important markers, such as “ACM
Reference Format” at the start of a converted text file; “Abstract” tag, “Keywords”
tag, “Introduction” tag, “DOI” tag, “year” tag, “Author” tag, “CR Categories” tag,
etc. Make JAPE rules to output “author”, “year”, “title” tags.

2. References are extracted by searching for two consecutive occurrence of {au-
thorTag}{yearTag} or {authorsTag}{yearTag} from which reference title, year and
authors can be extracted.

3. CR categories are extracted by searching for abstract sentences, located between the
“Abstract” tag and the “CR Categories” tag.

4. Keywords are extracted by searching for keywords list sentences starting from “the
Keywords” tag, ending at the “Introduction” tag.

The above are general rules applying to ACM publications. However, modifica-
tions are needed for publications over different periods. If applying these rules suc-
cessfully, each paper is mapped to one metadata and is stored in the document
repository.

Figure 4 shows an example of metadata extraction, including titleTag, authorTag,
yearTag doiTag etc. extracted with multi tags. Citations are extracted with citing title,
author and year tags. Keywords in cgTag are also extracted from the text to help
keyword frequency calculation.

5.1.2 Keyword Extraction
The Microsoft Academic Search (MAS) API [36] allows developers to build appli-
cations by leveraging the data and functions of MAS. They supply a keyword function
that represents keyword objects in a number of fields including Biology, Chemistry,

88 Y. Zhao et al.

Engineering Mathematics, Physics, Computer Science, etc. In the computer science
category, domains like “Algorithms & Theory, Artificial Intelligence, Computer
Vision, Data Mining, Databases, Graphics” are described separately. We target our
research in the “Computer>Graphics” domain, from which we collected 13,670 key-
words. In a scientific publication, the usage of a group of keywords may reflect its
topic. These 13K keywords are employed as standard terms to match phrases used in a
computer graphics paper. In citation topic analysis, these 13K keywords are used for
every citation to calculate the keyword frequencies. These keywords need to be stored
it in a suitable repository that can be easily mapped with standard words in the
Computer Graphics (CG) citation context.

Fig. 4. Metadata extracted and highlighted.

Topic-Aware Visual Citation Tracing via Enhanced Term Weighting 89

The keywords fetched from MAS API contain a variety of terms for the same
concept, such as “three dimensional”, “3D” and “three-dimensional”, which will be
treated as different terms with naive machine processing. To fix this problem, an
ontology is introduced into our system to share this conceptualization [8, 9]. These
“3D” synonyms should be treated as same “type” in the ontology with multiple “same
as” links. We specially define predicate “rdf:type” and “owl:sameAs” for this purpose
in Sesame [10] RDF repository and convert all these standard terms into Resource
Description Framework (RDF) triples. By building up this “OWLIM-LITE” repository
with “Owl-max” ruleset, this repository is connected to the GATE Gazetteer as the
ontology source.

5.2 Term Weighting

As mentioned earlier a standard keyword list which contains more than 13K key words
is used for topic analysis of each citation. However, most citations in CG field use less
than 100 standard keywords out of 13,670. Term weighting is used to evaluate the
topics of the each citation, where the occurrence or frequency of each citation related
keywords is calculated. Frequent appearance indicates more importance of the corre-
sponding keyword. Term weighting helps a variety of text mining tasks including text
classification, topics extraction and sentence analysis. In this paper it is used to further
help topic analysis of the citations in a large corpus.

The keyword part in MAS API supplies the name of the keyword along with two
other important properties: publication count, which indicates the number of publica-
tions of each keyword, and citation count, which presents the total number of citations
among all publications using this keyword.

Table 1 shows the top 10 keywords in CG, sorted by citation numbers. There are
13670 keywords in this field in total. One may notice that, some of the top keywords
used in the field of computer graphics also appear in the top 10 keyword list of other
fields. For example the keyword “real time” appears in Computer Vision (12839
keywords) as well, as some domains have similar research topics to others (Xinyi
2015). The more documents a term appears in, the less effectiveness it is in distin-
guishing document topics. In text mining, the Inverse Document Frequency (IDF) is
used with the term frequency to reflect the importance of a word to a document in a
collection or corpus. Equation 1 shows one common definition of IDF. With the
introduction of IDF, terms appearing frequently in the corpus are expected to have less
importance. This can help to filter out the more common terms.

idf ¼ log 1þ N
nt

� �
ð1Þ

We use 4 different levels of characteristic terms to calculate the term frequencies
and inverse document frequencies: field level, citation level in CG, year level in CG,
and hierarchical topic names as described in the following sections.

90 Y. Zhao et al.

5.2.1 Field Term Weighting
The field term weighting is dedicated term weighting of characteristic terms for each
field. Keywords from MAS API in 24 fields of the computer domain are retrieved and
treated as 24 documents. In the keyword corpus of a domain, D ¼ d1; d2; ::f
dj; . . . d Dj jg, each file contains the keywords with occurrence of publication count or
citation count as shown in Table 1. In the CG domain, the document contains 13670
keywords. A document dj thus can be represented as an n-dimensional word vector
wi ¼ w1j; w2j; . . .; wnj

� �
with each word mapped to a weight factor wi in the

document.
We assume the data fetched from MAS API is counted from a large corpus of

related field citations. Hence the citation count property of each keyword in a field
document can be regarded as the occurrence value of this keyword in a field of this
corpus.

The weight factor of keywords in each field document is calculated based on
TF-IDF, the combination of the raw frequency and inverse document frequency (IDF),
as shown in Eq. 1:

Fwj di;wj
� � ¼ Tf � log 1þ N

nt

� �
ð2Þ

where N is the number of the total fields (here 24), and nt is the occurrence of a
keyword in other fields. Tf is the citation count of each keyword in Table 1.

The outcome of this is that in CG, each keyword is assigned a weight indicating its
importance in CG compared to other fields. This result is used as a global weighting
value and mapped to a local weighting result such as Citation Term Weighting and
Year Term Weighting.

5.2.2 Citation Term Weighting
For citations of different fields, each citation emphasizes different topics even if they
have similar frequent terms. Occurrence of a term is highly dependent on the context.
Field term weighting introduced in Sect. 5.2.1 also indicates the relevance of a term to

Table 1. Top 10 keywords sorted by citation counts.

Keywords #Publication #Citation

Computer graphics 4729 99608
Real time 4208 68950
Three dimensional 2131 46419
Text mapping 1010 34038
Geometric model 1028 30263
Volume rendering 1418 29171
Ray tracing 1195 29061
Virtual environment 1904 28844
Virtual reality 2342 27932
Level of detail 1146 27846

Topic-Aware Visual Citation Tracing via Enhanced Term Weighting 91

a field compared to other fields. In this section, citation terms that are different from
other citations in the same corpus are identified by calculation of the local IDF Lidf for
each citation keyword with the following equation:

Lidf ¼ Tf � log 1þ N
nt

� �
ð3Þ

where N is the citation number of our corpus (1228) and nt is occurrence of this
keyword in other citations.

By using the MapReduce function provided by the document repository, a sum-
mary of occurrence of keywords in citations can be obtained as each keyword is
associated to a citation id. For each citation, a keyword only has one frequency value. If
this value is mapped to 1, the reduced result will be the occurrence ntð Þ of the keyword
in all citation documents, as calculated by the following equation.

Cwj dj;wj
� � ¼ Tf � Fwj dj;wj

� � � Lidf ð4Þ

where Tf is the citation related term frequency in the document repository, which
identifies important keywords for this citation in the field of CG.

5.2.3 Year Term Weighting
Research topics change with time. When studying the trend and changing of research
topics, a year-based topic model is commonly used, which in turn requires keyword
weighting of citations calculated at a yearly basis. Moreover keyword weight and
citation weight interact with each other. A citation with a higher weight implies that the
keywords in this citation should be weighted higher than those in citations with lower
weights. In other words, document weighting contributes to term weighting when
calculating term weighting in a group of citations.

A straightforward way to assign a score to a citation is to find the citation counts.
As the citation relationship A ! B for each citation has been stored in the graph
repository, querying the number of A will give the citation counts of B, which is
referred as “Score(dj)” in the paper. Finally the term weight which considers the
influence of a citation is calculated as follows:

Rank dj;wj
� � ¼ ScoreðdjÞ � Cwj dj;wj

� � ð5Þ

Assuming the number of documents in a year is nyear, the term rank over a year can
be calculated by Eq. 6.

Rank wj; year
� � ¼

Xnyear

j¼1
Rank dj;wj

� � ð6Þ

5.2.4 Hierarchical Word Weighting
It is not rare that keywords are phrases in which the occurrences of certain component
words are more meaningful to the keyword. Examples in the rendering topic of the CG

92 Y. Zhao et al.

field are “image based rendering”, “real time rendering”, “non-photorealistic render-
ing”, etc. In this paper these keywords are named as “hierarchical words”. To calculate
the importance of a hierarchical word more accurately in its field, we designed an
alternative to the TF-IDF.

Our method of hierarchical word weight calculation comprises three steps. In the
first step, a phrase keyword is treated as a group of individual words which contributes
to its own keyword equally with the score of the citation count of that keyword. The
score of a word which appears in multiple keywords is calculated as the sum of the
corresponding keyword weight in all related citations. The hierarchical word weight is
calculated for each field of the 24 keyword fields of MAS API. For each field, the score
represents the term frequency (TF) in one document.

In the second step the occurrence of the hierarchical words in all the 24 fields are
calculated by summing the TF value over all 24 fields, which is named as TotalTF in
this paper.

Finally the importance of each hierarchical word is calculated based on improved
TF-IDF with the focus of improving term weight over document weight as shown in
Eq. 7. The method is based observations that words occurring less in a field should be
less important than those occurring more.

Rwi ¼
ffiffiffiffiffiffi
TF

p
� idf 2 ð7Þ

where

idf ¼ logð1þ TF
aþ TotalTF � TFð ÞÞ ð8Þ

This improvement increases the global factor and reduces the local factor, and leads
to higher accuracy in this context. The constant a is added to the denominator to avoid
a zero TotalTF – TF which means the term appears in no fields but the CG, and has
therefore an important indicative to the CG field.

5.2.5 Citation Distance
Citation relationships are strong connections between documents. In the citation dia-
gram, the width of a citation link can represent the strength. As mentioned earlier, each
citation is associated with a keyword frequency list acquired from the document
repository. Percentile weighting of each keyword in a citation indicates the importance
of a keyword relative to the citation. Citations share more common keywords in higher
percentile values have higher cosine similarity, i.e. smaller citation distance.

5.3 Longest Citation Track Query

By querying the graph repository the longest citation track in the graph database can be
found. However, the data size of a graph may be large as each link are described by
URIs of the start node, end node and the relationships. Direct returning a graph via the
Restful API may result in low performance. Therefore, to obtain further properties from
the URIs, more sophisticated query designs are needed.

Topic-Aware Visual Citation Tracing via Enhanced Term Weighting 93

Our solution to this problem is divide-and-conquer and progressive retrieval which
transforms the graph query task into a series of sub-queries: retrieve the start node ID
list first, followed by search paths starting from those start nodes. As the longest path is
8 in our database, the start node ID, all the relationships can be represented in a directed
node-link graph data structure, as shown in Fig. 5. Traversal of a citation track can then
be converted to a series of directed node pairs.

In Fig. 6, the Cypher query language in Neo4j provides a variety of functions that
help to query data at low cost, such as multi-match, filter, id, etc. For two tracks at
length 8, 14 pairs of id list are returned from the graph database, which can be used to
generate the citation tracks directly.

6 Visualisation

We design an interactive tool to represent citation relations as a direction graph. A node
represents one citation, and a link represents the relationship between two citations. An
in-direction link of a node means it is cited by another citation; an out-direction link
means it is citing other citation.

6.1 Visualisation of Citations

Based on reference information extracted from the PDF files, a large number of cita-
tions are generated from the SIGGRAPH proceedings of 13 years. Citations within
SIGGRAPH can be tracked, analysed and visualized. As the initial attempt, we visu-
alize the citations with in D3.js [37] chord diagrams where documents are placed on the
circle and the chords represent citations. Citations of all visible documents can be
presented in a single chord diagram. The citation graph can be treated as many trees if

Fig. 5. Node-link data structure for citation track query.

Fig. 6. Convert a track to a list in Cypher.

94 Y. Zhao et al.

we treat the start nodes as root nodes of their reference trees. In the chord diagram,
filtering is applied to visualize trees within the specified depth. The specific citation can
be highlighted when the user hovers the mouse over it.

Figure 7 presents a visualization of citations across 13 years with filtering of the
trace path greater than 6. Papers linked with short arcs are normally published in recent
years and papers with longer arcs are published normally in earlier years. The graph
database provides much more efficient query of these citation tracings than other types
of database. The longer the arc is, the more citation traces with a length greater than 6
are associated to the paper. Due to limited screen space, all paper titles are truncated to
20 characters. Figure 8 presents the highlighting of citations of the given document by
mouse hovering on a paper title and the hiding of other citations. Figure 9 presents
citations of papers published in a single year 2013. Those papers which cite the papers
in 2013 must be published in year 2014 and later. From Fig. 9 it can be easily rec-
ognized that a paper in brown named “Globally optimal dir” has the highest citation
count.

6.2 Visualisation of Citation Tracks

The disadvantage of the chord diagram is that it can only show pairwise relationships
but cannot show citation tracks effectively. A Sankey diagram [38] is a better choice for
visualising relationship routes. The advantage of the Sankey diagram is that it shows

Fig. 7. Chord diagram visualization of cited tracks at length 6 from year 2002 to 2014.

Topic-Aware Visual Citation Tracing via Enhanced Term Weighting 95

the citation tracks in a much more clear and understandable way than the chord
diagram.

Therefore, Sankey diagram is used to visualise the citation tracks, as shown in
Fig. 10. The node height is proportional to the weight sum of its outgoing links. Nodes
with same colour are documents published in the same year. The weights of the links
are presented by link width.

When a mouse hovers on a node, a semi-transparent tooltip appears showing details
of the citation. Only the citation ID, year and title of META data are shown to reduce
overlaps. The information is acquired by querying the citation ID of the node in the
document database. Further calculations including the year’s keywords list, citation
keywords list and root keywords list are all based on the document database queries.

From Fig. 8, it can be seen that paper 8 with a title of “Keyframe control of smoke
simulation” from year 2003 is an important paper which is cited by other papers from
year 2004 (paper 9 in yellow) to year 2014 (paper 7 in pink). If one path and one
reference node are selected, the top rank terms will be displayed as shown in Fig. 11
where it can be found that these terms are highly relevant to the paper content.

Fig. 8. Mouse hovering to highlight citations between 2002 and 2014 of a given document.
(Color figure online)

96 Y. Zhao et al.

6.3 Visualisation of Topic Trends

In the document analysis for citation tracing, topics of documents can be estimated
by keywords. Keywords data linked with the publication year can be used to build
topic trends. The topics were retrieved by the Latent Dirichlet Allocation (LDA)

Fig. 9. Chord diagram visualization of citations of documents published in 2013.

Fig. 10. Citation diagram with the maximum track depth of 8.

Topic-Aware Visual Citation Tracing via Enhanced Term Weighting 97

algorithm [39]. The algorithm assumes the documents were produced in a probabilistic
generative model, which discovers the topics in every document or a corpus. Figure 12
shows a river-like trend visualisation [40] of six selected topics from year 2005 to
2014. The probabilities of topics are shown according to their proportion and repre-
sented by vertical length for each year. The six topics are represented by different
colours. The visualisation is user interactive: mouse hovering on a topic at a certain
year gives the topic name, year and probability value in that year in a tooltip.

Fig. 11. Top 5 ranking keywords in each citation with the track length 8.

Fig. 12. Topic river visualization.

98 Y. Zhao et al.

As far as ACM SIGGRAPH proceedings are concerned in this project, from the
visualisation a decreasing number publication number can be seen in the topic of
“image compression” while a chopping pattern shows in the topic of “real time”. From
these trends, the users can evaluate research topic trends.

7 Conclusions

In this paper, we present our work on text mining and data management on large scale
scientific publications for collecting, tracking and presenting citations in a
topic-enhanced way to facilitate scientific literature retrieval and research. Four data
storages including a semantic repository, an index and search repository, a document
repository and a graph repository are employed for efficient data management and fast
information and graph retrieval. The keywords function of MAS API is used to collect
keywords in 24 computer fields and to extract standard keywords frequency for each of
the fields. Four levels of improved term weighting methods are designed to exploit term
and topic characteristics in different aspects. The result citation network is stored in the
graph database, accessed by efficient tailored queries and visualized in interactive chord
diagrams and Sankey diagrams with enhanced topic information. The experiment
results show that the combination of these techniques can efficiently store and index the
publication data reliably to supply valuable information to support scientific research,
which further helps researchers to derive meaningful insights of the published scientific
resources more conveniently, enabling them to grasp technological change more
quickly and hence assists new scientific discovery.

Acknowledgments. The research is supported by the FP7 Programme of the European Com-
mission within projects Dr Inventor [FP7-ICT-611383] and CARRE [FP7-ICT-611140]. We
would like to thank the European Commission for the funding and thank the project officers and
reviewers for their indispensable support for both of the projects.

References

1. Wei, H., Zhao, Y., Liu, E., Wu, S., Deng, Z., Parvinzamir, F., Dong, F.: Management of
scientific documents and visualization of citation relationships using weighted key scientific
terms. In: DATA 2016, pp. 135–143 (2016)

2. Wei, H., Wu, S., Zhao, Y., Deng, Z., Ersotelos, N., Parvinzamir, F., Liu, B., Liu, E., Dong,
F.: Data mining, management and visualization in large scientific corpuses. Edutainment
2016, 371–379 (2016)

3. Grolinger, K., HigashinoEmail, W., Tiwari, A., Capretz, M.: Data management in cloud
environments: NoSQL and NewSQL data stores. J. Cloud Comput. Adv. Syst. Appl. Adv.
Syst. Appl. 2(1), 2–22 (2013)

4. Kivikangas, P., Ishizuka, M.: Improving semantic queries by utilizing UNL ontology and a
graph database. In: Proceedings of the 6th IEEE International Conference on Semantic
Computing, pp. 83–86 (2012)

5. Neo4j. https://neo4j.com/

Topic-Aware Visual Citation Tracing via Enhanced Term Weighting 99

https://neo4j.com/

6. Tsai, F.S., Kwee, A.T.: Experiments in term weighting for novelty mining. Expert Syst.
Appl. 38(11), 14094–14101 (2011)

7. Debole, F., Sebastiani, F.: Supervised term weighting for automated text categorization. In:
Proceedings of the 2003 ACM Symposium on Applied Computing, pp. 784–788. ACM
Press (2003)

8. Zhang, Y., Tsai, F.S.: Combining named entities and tags for novel sentence detection. In:
Proceedings of the WSDM Workshop on Exploiting Semantic Annotations in Information
Retrieval (ESAIR 2009), pp. 30–34 (2009)

9. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York (2008)

10. Domeniconi, G., Moro, G., Pasolini, R., Sartori, C.: A study on term weighting for text
categorization: a novel supervised variant of tf.idf. In: Proceedings of the 4th International
Conference on Data Management Technologies and Applications, pp. 26–37 (2015)

11. Li, F., Pan, S.J., Jin, O., Yang, Q., Zhu, X.: Cross-domain co-extraction of sentiment and
topic lexicons. In: Proceedings of the 50th Annual Meeting Association for Computational
Linguistics: Long Papers (ACL 2012), vol. 1, pp. 410–419 (2012)

12. Domeniconi, G., Moro, G., Pasolini, R., Sartori, C.: Cross-domain text classification through
iterative refining of target categories representations. In: Proceedings of the 6th International
Conference on Knowledge Discovery & Information Retrieval (KDIR) (2014)

13. Alencar, A.B., Oliveira, M.C., Paulovich, F.V.: Seeing beyond reading: a survey on visual
text analytics. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 2(6), 476–492 (2012)

14. Fu, S.: A survey on visual text analytics (2015). http://www.cse.ust.hk/*sfuaa/data/pqe.pdf
15. Federico, P., Heimerl, F., Koch, S., Miksch, S.: A survey on visual approaches for analyzing

scientific literature and patents. TVCG (2016)
16. Zhao, D., Strotmann, A.: Analysis and Visualization of Citation Networks. Synthesis

Lectures on Information Concepts Retrieval and Services, vol. 7(1) (2015)
17. Chen, C.: CiteSpace II: Detecting and visualizing emerging trends and transient patterns in

scientific literature. J. Am. Soc. Inf. Sci. Technol. 57(3), 359–377 (2006)
18. Zhang, J., Chen, C., Li, J.: Visualizing the intellectual structure with paper-reference

matrices. IEEE TVCG 15(6), 1153–1160 (2009)
19. Stasko, J., Choo, J., Han, Y., Hu, M., Pileggi, H., Sadana, R., Stolper, C.: Citevis: exploring

conference paper citation data visually. Poster IEEE Vis. (2013)
20. Gorg, C., Liu, Z., Kihm, J., Choo, J., Park, H., Stasko, J.: Combining computational analyses

and interactive visualization for document exploration and sense making in jigsaw.
IEEE TVCG 19(10), 1646–1663 (2013)

21. Doerk, M., Riche, N., Ramos, G., Dumais, S.: Pivotpaths: strolling through faceted
information spaces. IEEE TVCG 18(12), 2709–2718 (2012)

22. van Eck, N., Waltman, L.: CitNetExplorer: a new software tool for analyzing and visualizing
citation network. J. Inf. 8(4), 802–823 (2014)

23. Heimerl, F., Han, Q., Koch, S., Ertl, T.: CiteRivers: visual analytics of citation patterns.
IEEE TVCG 22(1), 190–199 (2016)

24. ACM SIGGRAPH. www.siggraph.org
25. MAS API. http://academic.research.microsoft.com/about/
26. Fensel, D., Hendler, J., Lieberman, H., Wahlster, W., Berners-Lee, T.: Sesame: An

Architecture for Storing and Querying RDF Data and Schema Information. In: MIT Press
eBook Chapters: Spinning the Semantic Web: Bringing the World Wide Web to Its Full
Potential, pp. 197–222 (2005)

100 Y. Zhao et al.

http://www.cse.ust.hk/%7esfuaa/data/pqe.pdf
http://www.siggraph.org
http://academic.research.microsoft.com/about/

27. Cunningham, H., Maynard, D., Bontcheva, K., Tablan., V.: GATE: a framework and
graphical development environment for robust NLP tools and applications. In: Proceedings
of the 40th Anniversary Meeting of the Association for Computational Linguistics (ACL
2002), Philadelphia (2002)

28. Apach CouchDB. http://couchdb.apache.org/
29. Huang, H., Dong, Z.: Research on architecture and query performance based on distributed

graph database Neo4j. In: Proceedings of the 3rd International Conference Consumer
Electronics, Communications and Networks (CECNet), pp. 533–536 (2013)

30. Elasticsearch. https://www.elastic.co/products/elasticsearch
31. Elasticsearch attachment plugin. https://github.com/elastic/elasticsearch-mapper-attachments
32. pdfbox. https://pdfbox.apache.org/
33. CARRE. https://www.carre-project.eu/
34. ANNIE. https://gate.ac.uk/sale/tao/splitch6.html#chap:annie
35. Thakker, D., Sman, T., Lakin, P.: GATE Jape Grammar Tutorial, Version 1.0, A, Pictures,

UK (2009)
36. Microsoft Academic Search (MAS) API. http://academic.research.microsoft.com/
37. D3. http://d3js.org/
38. Riehmann, P., Hanfler, M., Froehlich, B.: Interactive sankey diagrams. In: Proceedings of

the IEEE Symposium on Information Visualization, pp. 233–240 (2005)
39. Blei, M., Ng, Y., Jordan, I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(4–5), 993–

1022 (2003)
40. Havre, S., Hetzler, E., Whitney, P., Nowell, L.: Themeriver: visualizing thematic changes in

large document collections. IEEE Trans. Vis. Comput. Graph. 8(1), 9–20 (2002)

Topic-Aware Visual Citation Tracing via Enhanced Term Weighting 101

http://couchdb.apache.org/
https://www.elastic.co/products/elasticsearch
https://github.com/elastic/elasticsearch-mapper-attachments
https://pdfbox.apache.org/
https://www.carre-project.eu/
https://gate.ac.uk/sale/tao/splitch6.html#chap:annie
http://academic.research.microsoft.com/
http://d3js.org/

Maturing Pay-as-you-go Data Quality
Management: Towards Decision Support

for Paying the Larger Bills

Jan van Dijk1(&), Mortaza S. Bargh1, Sunil Choenni1,2,
and Marco Spruit3

1 Research and Documentation Centre, Ministry of Security and Justice,
The Hague, The Netherlands

{j.j.van.dijk,m.shoe.bargh,r.choenni}@minvenj.nl
2 Research Centre Creating 010, Rotterdam University of Technology,

Rotterdam, The Netherlands
r.choenni@hr.nl

3 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands
m.r.spruit@uu.nl

Abstract. Data quality management is a great challenge in today’s world due to
increasing proliferation of abundant and heterogeneous datasets. All organiza-
tions that realize and maintain data intensive advanced applications should deal
with data quality related problems on a daily basis. In these organization data
quality related problems are registered in natural languages and subsequently the
organizations rely on ad-hoc, non-systematic, and expensive solutions to cate-
gorize and resolve registered problems. In this contribution we present a formal
description of an innovative data quality resolving architecture to semantically
and dynamically map the descriptions of data quality related problems to data
quality attributes. Through this mapping, we reduce complexity – as the
dimensionality of data quality attributes is far smaller than that of the natural
language space – and enable data analysts to directly use the methods and tools
proposed in literature. Another challenge in data quality management is to
choose appropriate solutions for addressing data quality problems due to lack of
insight in the long-term or broader effects of candidate solutions. This difficulty
becomes particularly prominent in flexible architectures where loosely linked
data are integrated (e.g., data spaces or in open data settings). We present also a
decision support framework for the solution choosing process to evaluate
cost-benefit values of candidate solutions. The paper reports on a proof of
concept tool of the proposed architecture and its evaluation.

Keywords: Data quality issues � Data quality management � Knowledge
mapping � User generated inputs � Solution management

1 Introduction
Organizations and enterprises that realize and operationalize data intensive applications
spend a lot of efforts and resources to deal with imperfections flaws, and problems in the
(large and heterogeneous) datasets that they use as raw materials. For example, in our

© Springer International Publishing AG 2017
C. Francalanci and M. Helfert (Eds.): DATA 2016, CCIS 737, pp. 102–124, 2017.
DOI: 10.1007/978-3-319-62911-7_6

research center of the Dutch Ministry of Security and Justice, advanced applications are
designed and deployed to produce insightful reports on judicial processes and crime
trends for legislators, policymakers and the public. Example applications include Public
Safety Mashups [1] and Elapsed Time Monitoring System of Criminal Cases [2]. These
applications rely on various datasets – as collected and shared by our partner organi-
zations – that are integrated by using data warehouse and data space architectures [3, 4].
Often such datasets contain inconsistent, imprecise, uncertain, missing, incomplete, …
data values and attributes. Such problems in datasets may cause inaccurate and invalid
data analysis outcomes, which can mislead data consumers eventually.

Upon detecting these problems in datasets, data analysts often report them in Issue
Tracking Systems (ITSs) in order to address them later on categorically and collec-
tively. There is no standard format for registering these problems and data analysts
often describe them in natural languages in a quite freestyle form. For example, in a
dedicated ITS, the data analysts in our organization have registered the following
observed dataset problems: Not being able to process criminal datasets at a regional
scale because the datasets were delivered at a national scale, not being able to carry out
trend analysis due to lack of historical criminal data records, or not being able to run
concurrent queries due to temporary datasets being distributed across various locations,
a problem also reported in [5].

Because data analysts register observed dataset problems in natural languages,
categorization of the registered problems based on their freestyle descriptions becomes
tedious and challenging. On the one hand, problem descriptions belong to a “natural
language space” of high dimensionality and complexity. On the other hand, finding
some meaningful categories for these problem descriptions becomes another concern
for data analysts. Having meaningful categories means that the problems in every
category have similar solutions and can be resolved collectively. In practice, currently
data analysts come up with ad-hoc, non-systematic, and expensive solutions to cate-
gorize and resolve registered problems.

Problems observed in datasets are generally related to Data Quality (DQ) issues.
For instance, the problems in our datasets mentioned above are related to the DQ
attributes of completeness and consistency. DQ is a field that is extensively studied in
recent years, having a sound theoretical foundation and a rich set of solutions proposed
in literature. It seems, therefore, promising to map the registered dataset problems to
DQ issues. Hereby one can reduce complexity – as the DQ space dimensionality is far
smaller than that of the natural language space – and make use of the DQ methods and
tools proposed in literature directly. Mapping the registered problems to DQ issues,
nevertheless, is not straightforward.

In this contribution, we aim at managing and resolving the dataset problems
detected by data analysts through mapping them to DQ issues and making use of DQ
management tools. (Note that we shall use terms “DQ related problems” and “DQ
issues” to refer to dataset problems as described in natural language space and to refer
to DQ issues as described in the DQ space, respectively.) To this end, we propose a
functional architecture for

(a) Semantically mapping the linguistic descriptions of such problems to DQ issues,
(b) Automatically prioritizing the severity levels of DQ issues,

Maturing Pay-as-you-go Data Quality Management 103

(c) Automatically categorizing DQ related problems according to the priority levels
of the corresponding DQ issues, and

(d) Resolving DQ related problems based on their categories, which depend on the
severity levels of the corresponding DQ issues.

When data analysts resolve these DQ related problems, they also carry out DQ
management. As a by-product, therefore, the proposed architecture provides organi-
zations with insight into their DQ issues in a dynamic (i.e., real-time) way, relying on
user-generated inputs (i.e., the problem descriptions inserted by data analysts). From
this perspective, our proposed architecture to map high-dimensional DQ related
problems into low-dimensional DQ issues is inspired by [6] that aims “to bake spe-
cialized knowledge into the jobs of highly skilled workers” in order to take advantage
of the rich body of knowledge in a field. By mapping the DQ related problems to DQ
issues, we can look up the literature and tools that pertain to resolving the mapped DQ
issues. Subsequently, the DQ related problems are solved according to the latest
insights and tools. In [7–9] we presented a formal description and system architecture
for an integrated system for resolving the problems observed in datasets based on DQ
management principles. We evaluated the proposed architecture functionally and
practically, the latter by design and realization of a proof-of-concept. The current work
extends [9] with an additional framework for DQ solution management.

The paper starts with providing some background about DQ management and the
related work in Sect. 2. Subsequently the motivations for and principles of our problem
solving architecture are presented in Sect. 3 formally. The proposed architecture is
validated by a proof-of-concept, as described in Sect. 4, where also some performance
aspects are evaluated. Our conclusions are drawn and the future research is sketched in
Sect. 5.

2 Background

This section gives some background information on the functional components of DQ
management, outlines the motivations of the work, and provides an overview of the
related work. For an overview of DQ management methodologies the interested reader
is referred to [10].

2.1 Data Quality Management

DQ can be characterized by DQ attributes, which correspond to DQ issues in our
notation mentioned above. DQ attributes are defined as those properties that are related
to the state of DQ [11]. DQ Management (DQM) is concerned with a number of
business processes that ensure the integrity of an organization’s data during its col-
lection, aggregation, application, warehousing and analysis [12]. As mentioned in [13]:
“DQM is the management of people, processes, technology, and data within an
enterprise, with the objective of improving the measures of Data Quality most
important to the organization. The ultimate goal of DQM is not to improve Data
Quality for the sake of having high-quality data, but to achieve the desired business

104 J. van Dijk et al.

outcomes that rely upon high-quality data.” DQM can be decomposed into DQ
assessment and DQ improvement functional components, as described below.

Flexible architectures and dynamic environments, e.g. data space architectures and
open or linked data environments, are strongly user-oriented and are characterized by a
pay-as-you-go data management approach [14]. Hence, DQ management in these sit-
uations is often performed from a local viewpoint. The “enterprise” as mentioned in
[13] can in these architectures/environments be seen as a collaboration of organizations
or data customers (e.g. data scientists), where the composition of the collaboration can
vary, depending on the stakeholders of specific DQ related problems.

DQ Assessment. This component deals with determining which DQ attributes are
relevant and the degree of their relevancy for an organization. As shown in Fig. 1
(i.e., the top half) DQ assessment encompasses identification, measurement, ranking,
and categorization of the DQ attributes that are relevant for an organization’s data, see
[15, 16], where the latter reference provides a systematic approach to define DQ
attributes. ‘DQ attribute identification’ is concerned with collecting possible DQ
attributes from various sources like literature, data experts and data analysts. ‘DQ
measurement’ and ‘DQ attribute ranking’ cover those processes that are for measuring
and rating the importance of the identified attributes for the organization. ‘DQ attribute
categorization’ deals with structuring the ranked attributes into a hierarchical repre-
sentation so that the needs and requirements of the stakeholders like data managers,
data experts, data analysts, and data consumers can be satisfied [15].

DQ Improvement. This component deals with continuously examining the data
processing in an organization and enriching its DQ, given the relevant DQ attributes
obtained from the DQ assessment. As shown Fig. 1 (i.e., the bottom half), the func-
tional components of DQ improvement include ‘reference DQ attribute determination’,

Fig. 1. Functional components of DQ management.

Maturing Pay-as-you-go Data Quality Management 105

‘activity planning and execution’, and ‘DQ attribute reviewing’ (partly adopted from
[15]). ‘Reference DQ attribute determination’ identifies the organization’s requirements
related to the related DQ attributes, i.e., the desired DQ levels. ‘Activity planning and
execution’ plans and carries out the activities required for improving the relevant DQ
attributes to the desired level through, for example, executing a ‘data cleansing’
activity. Subsequently, one should also do ‘DQ attribute reviewing’ to validate these
activities based on their dependency and measure the improved DQ attribute levels.
The latter aspect of measurement can be seen as part of DQ assessment, see also [15].

2.2 Motivation

There are software products called Issue Tracking Systems (ITSs) to manage and
maintain the lists of issues relevant for an organization; issues like software bugs,
customer issues, and assets. Also in our organization, i.e., the Research and Docu-
mentation Centre (abbreviated as WODC in Dutch) of the Dutch Ministry of Security
and Justice, we use such an ITS to keep track of the existing DQ related problems
(Table 1). The WODC systematically collects, stores and enhances the Dutch judicial
information directly or via its partner organizations [18]. Considering the diversity and
distribution of our data sources, we often receive the corresponding datasets containing
inconsistent, imprecise, uncertain, missing, incomplete, etc. data records and attributes.
Our objective for registering DQ related problems is to keep track of how and whether
(other) data analysts resolve these problems based on their severity and urgency.

Data analysts write down an encountered problem Pn by a number of parameters
denoted by PnðXn;DSn;MSn;PUnÞ; n : 1. . .N. Here Xn is a text describing the problem,
DSn is the desired problem severity level, MSn is momentary problem severity level,
and PUn represents problem urgency. The momentary problem severity level MSn can
be determined subjectively as perceived by the data analyst or objectively as measured
based on some data specific parameters, by using for example the approach proposed in
[19]. The data analyst determines the desired problem severity level DSn subjectively.
Both DSn and MSn are expressed in a real number between 0 and 1, where 1 means the
problem severity is the highest. We assume that 0�DSn �MSn � 1 and the problem is
resolved when MSn ¼ DSn or MSn ¼ 0, which in this case the problem can be removed

Table 1. Seven typical problems registered in our ITS and their descriptions.

Problem Description

1 The column with community codes is missing in the table
2 The columns with community codes are missing in all tables
3 The column with community codes must be added
4 The column with community codes cannot be found in the table
5 The column with community codes is not filled
6 The columns with community codes are not filled
7 The community codes have been deleted

106 J. van Dijk et al.

from the ITS. Problems can have various impacts comparatively. Therefore the weigh
factor PUn – a real value between 0 and 1 where 1 means the highest urgency – is
inserted by data analysis subjectively. Variable PUn conveys the level of the problem’s
urgency compared with other reported problems. Let’s denote the set of problems
registered at the ITS by:

Pn Xn;DSn;MSn;PUnð Þ 0�DSn �MSn � 1jf gwhere n : 1. . .N ð1Þ

Figure 2 shows the functional components of a typical problem resolving system,
status of which can be maintained in an ITS. Technical staffs - data quality managers or
data analysts themselves, analyze the causes of a problem and its candidate solutions in
order to choose a solution based on some trade-offs. Before, during and after the
realization of a solution some Key Performance Indicators (KPIs) are used to measure
the momentary problem severity levels so that the impact of devised solutions can be
determined via the feedback loop. Although registered problems are related to DQ
attributes, the textual definitions of problems are not specified in terms of DQ attributes
due to lack of knowledge or interest about DQ concepts by data analysts.

Furthermore, data analysts solve problems within certain boundaries (i.e. based on
a certain priority or organizational limitations). Often, problems arise when data cus-
tomers are working with the data. In these cases, a urgent solution is required for the
dataset that is relevant for these data customers. Depending on how DQmanagement is
organized, it is foreseeable that the budget for implementing the solution may come
from the data customers that face the problem. This is especially the case in envi-
ronments in which data management is not centrally organized, like data space
architectures [3] and open data based applications/systems. We observe that, as a result
of more user-oriented or pay-as-you-go data management, it becomes likely that
problems are solved in a more local manner. Local KPIs ensure that the problem is
solved in this particular context, but when the same problem occurs in a different
context, it will be registered and handled as a new problem.

Fig. 2. A framework for resolving the DQ related problems registered at the ITS.

Maturing Pay-as-you-go Data Quality Management 107

2.3 Related Work

As mentioned in Subsect. 2.2, ITSs are widely used for tracking and managing various
issues relevant for an organization. The tracked issues range from software bugs in
software development houses like Bugzilla [20] and JIRA [21], customer issues in
customer support callcenters/helpdesks like H2desk [22], and assets in asset manage-
ment companies like TOPdesk [23]. Software developers, customers, and employees of
organizations use ITSs to report on the issues they face. These issues are reported in
terms of the (detailed) description of the problem being experienced, urgency values
(i.e., the overall importance of issues), who is experiencing the problem (e.g., external
or internal customers), date of submission, attempted solutions or workarounds, a
history of relevant changes, etc. Sometimes an issue report is called ticket due to being
a running report on a particular problem, its status, and other relevant data with a
unique reference number (as ITSs were originated as small cards within a traditional
wall mounted work planning). Based on these reports, organizations take appropriate
actions to resolve the corresponding problems. While there are many applications of
ITSs for collaborative software development, including also management of
announcements, documentation and project website, there are no applications of such
systems for DQ management as we present in this contribution.

A possible feature that can be registered in ITSs is a user assigned label/tag in order
to facilitate identifying and managing observed issues. In [24], for example, a visual-
ization tool is devised for facilitating the analysis and categorization of issues in open
source software development projects, based on such registered labels. Labelling, when
it is done appropriately, can reduce the semantic space of registered issues and facilitate
mapping these issues to DQ attributes. This means that labels and tags can be used
complementary to our approach for an improved mapping of DQ problems to DQ issues.

DQ management approaches proposed in literature, on the other hand, often rely on
offline estimation of DQ issues and/or offline inquiries of DQ requirements. Wang and
Strong [15] propose a two-stage survey and a two-phase sorting method for identifying,
ranking, and categorizing of DQ attributes in a given context. The authors developed a
survey to produce a list of potential DQ attributes by a group of the participants of a
workshop. Using another survey, the authors asked another group of the participants to
rate the potential DQ attributes. In most organizations (including ours) gathering such a
number of participants, i.e., data analysts, for surveying and sorting of DQ attributes is
almost impossible due to being time consuming or having too few participants to
produce valid results.

Woodall et al. [17] propose a so-called hybrid approach for DQ management. For a
set of relevant DQ attributes, the approach assesses the required level of DQ
improvement by comparing the current state to a reference state. The DQ management
and improvement according to the hybrid approach remains very abstract because DQ
diagnostics are based on some high level strategic concepts. Similarly to the hybrid
approach, our DQ management is intertwined with operational level practices of data
analysts who observe and resolve (DQ related) problems. Establishing this link in our
proposal, however, delivers a pragmatically dynamic DQ management, which is not the
case in the hybrid approach.

108 J. van Dijk et al.

All researches related to DQ assessment depend on some DQ objectives, based on
which a set of relevant DQ attributes are sought. For example, the Environmental
Protection Agency (EPA) approach [25] relies on, among others, a review of DQ
objectives, a preliminary review of potential anomalies in datasets, and a statistical
method to draw quantitative DQ related conclusions from the data. Our study uses the
idea of translating DQ problems into the DQ issues and objectives, but by considering
‘all reported’ problems in the datasets and not just a few reported anomalies as [25]
does. Moreover, unlike [25] we don’t rely on statistical methods exclusively and
incorporate also the domain knowledge of data analysts. Pipino et al. [26] use the EPA
methods and additionally incorporate a subjective DQ assessment. To this end, the
authors use a questionnaire to measure the perceptions of the stakeholders (e.g.,
database administrators) on DQ attributes. Subsequently, the approach of [26] deter-
mines the root causes of data discrepancies and tries to improve DQ by solving these
discrepancies. Also our proposal combines both subjective and objective perceptions of
the stakeholders on DQ related problems, but we combine these perceptions at an
operational level by using a problem solving system, and not on a DQ attribute or
strategic level as [26] does. Eppler and Witting [27] use the EPA methods and adds
some extra attributes to evaluate how pragmatic every DQ attribute can be realized.
Unlike [27] we do not use any additional attribute to determine how pragmatic the DQ
attributes are.

Possible ways of resolving data quality related problems are bound by several
aspects. In the process of defining the data quality objectives, developed by EPA [25],
every step describes some sort of boundary. Which solution method is applied depends
on the organizational scope, budget, planning, etc. For instance, when a project
experiences some problems with the timeliness of a specific dataset – i.e. the project
needs up-to-date data – and no other project in the organization has the need or
resources to invest in this problem, the problem might be fixed within project scope.
From a strict data quality management perspective, in which high data quality is
achieved when the data fit its intended use [15], the problem is solved. But in long term
other projects might experience the same problem, and then it is inefficient to continue
fixing the problem within project scope. Data quality managers must have the
knowledge that this problem occurred before and at strategic level managers have to
decide if this problem has to be dealt with in a more centralized way. This exceeds the
scope of a single data quality problem or cluster of current problems, because it also
involves those already solved problems. Lee et al. [28] mentioned in 2003 already that
it is essential for improving data quality problem resolving to register how problems in
the past were solved. However, to determine which problems are most urgent and
which solutions are most appropriate, a lot of knowledge and expertise are required.
The more this knowledge is put into operational use, the more the maturity of data
quality management in an organization grows [29]. Mostly, this is done by imple-
menting a data quality division or team [28] that can combine technical as well as
organizational insights into solving data quality related problems. For instance, such a
team shall remember those imperfect solutions that lead to recurring similar problems
later on, so eventually a more sustainable solution can be sought. We extend our DQ
management architecture in [9] with a knowledge-based framework that helps evalu-
ating chosen solution methods and eventually assisting the choice of the (best) solution

Maturing Pay-as-you-go Data Quality Management 109

method for new problems. This way, also more flexible architectures like those for data
spaces and open data communities can mature in their DQ management.

3 Proposed Approach

Figure 3 shows our proposed system architecture for resolving data quality related
problems, which is described formally in [9]. We describe the key functional building
blocks of this architecture, those marked with a *, in the following subsections.

In the last subsection we elaborate more on the solution choosing and propose a
separate framework for solution management, mainly to support the Problem Clus-
tering and Problem Resolving components. This framework allows us to guide the
process of solution choosing, which in turn can lead to decision support on how to
solve DQ related problems.

3.1 Data Quality Assessment

DQ assessment starts with a literature study by data specialists to enlist potential DQ
attributes and ends up with categorizing the selected and ranked DQ attributes. The
ranking of DQ attributes, which we innovatively base on the set of problems registered
in the ITS, will be described in the following.

Fig. 3. Functional architecture of the proposed system for resolving DQ related problems based
on DQ management.

110 J. van Dijk et al.

Semantic Field Processing. A semantic-field is a set of conceptually related terms
[30]. Every semantic-field, which corresponds to only one DQ attribute in our setting,
comprises a number of ‘related terms’. Every related term, in turn, corresponds to a
number of ‘phrase sets’. Every phrase set comprises a number of phrases that appear in
problem descriptions. The set of semantic-fields, related terms and phrase sets are
summarized in a so-called ‘Semantic-Field Processing Table (SFPT)’ (Table 2). For-
mally, every DQ attribute DQm (where m : 1. . .M) can be described by a distinct
semantic field Sm that consists of some semantic field attributes called related terms
RTm;i. In other words,

DQm � Sm ¼ RTm;i i : 1. . .Mmj� � ð2Þ
where m : 1. . .M. In turn, every related term RTm;i can be described by some phrase

sets PSm;i;j as

RTm;i ¼ PSm;i;j j : 1. . .Mm;i

��� � ð3Þ

where m : 1. . .M; i : 1. . .Mm. Every phrase set PSm;i;j comprises some set
members/short phrases PHm;i;j;k as

PSm;i;j ¼ PHm;i;j;k k : 1. . .Mm;i;j

��� � ð4Þ

Domain experts define these semantic-fields, related terms, phrase sets, and short
phrases in a way that the short phrases can be found in problem descriptions of data
analysts; any related term can be related to only one semantic-field/DQ attribute; and
any phrase set can be related to only one related term. Thus, as illustrated in Fig. 4, we
assume that there is a tree structure among ‘semantic fields’, ‘related terms’, and
‘phrase sets’. Due to the tree structure depicted above, there are no related terms that

Fig. 4. An illustration of the hierarchical structure of semantic fields, related terms and phrase
sets; and their relation to problems (the texts in grey blocks are intentionally abbreviated).

Maturing Pay-as-you-go Data Quality Management 111

are common among semantic-fields/DQ attributes, and there are no phrase sets that are
common among related terms.

RTm;i 6¼ RTm0;i0 8m 6¼ m0 or i 6¼ i0

PSm;i;j 6¼ PSm0;i0;j0 8m 6¼ m0 or i 6¼ i0 or j 6¼ j0 ð5Þ

Note that short phrases in phrase sets may appear in multiple phrase sets.

Problem to DQ Attribute Mapping. When a problem description contains all short
phrases of a phrase set, one can map the problem to the corresponding related term and,
in turn, to the corresponding DQ attribute uniquely. Based on Condition (5), phrase sets
are unequal (see also the illustration in Fig. 4). This property and the hierarchical
relation among phrase sets, related terms and semantic fields guarantee that every
phrase set can identify only one related term, thus one semantic field/DQ attribute. As a
problem description Xn may include more than one phrase sets, however, the corre-
sponding problem Pn can be associated with more than one related term and thus to
more than one DQ attribute.

Assume that the semantic fields identified for problem Pn are denoted by set

S Pnð Þ� S1; S2; � � � ; SMf g; n : 1. . .N ð6Þ

Then, problem Pn can be mapped to DQ attributes DQm if Sm 2 SðPnÞ, where
m : 1. . .M. For problems Pn and DQ attributes DQm where n : 1. . .N and m : 1. . .M,
one can define the problem to DQ attribute mapping in terms of a association matrix as

A ¼ an;m
� �

N�Mwhere an;m ¼ 1 ifSm 2 S Pnð Þ
0 otherwise

�
ð7Þ

Note that if an;m ¼ 0 for all m : 1. . .M, i.e., when S Pnð Þ ¼ ;, then problems Pn

cannot be mapped to any DQ attribute. In this case we say that the mapping for this
problem has resulted in a miss. The number of such miss outputs should be zero
ideally.

For improving DQ attributes, as we will see in the following sections, we need to
take into account the momentary and desired severity levels of problems, i.e., the DSn

Table 2. Example of a semantic field-processing table (over the DQ attribute “completeness”)

Phrase_1a Phrase_2a Related terms DQ attribute (semantic field)

Is Missed Missing data Completeness
Are Missed Missing data Completeness
Be Added Adding data Completeness
Is Deleted Lost data Completeness
Are Deleted Lost data Completeness
aDerived from problem description. {Phrase_1, Phrase_2} is called a
Phrase Set

112 J. van Dijk et al.

and MSn parameters of problem Pn registered in the ITS. Therefore, we define the
weighed association matrix as

Aw ¼ awn;m
� �

N�Mwhere awn;m ¼ an;m � MSn � DSnð Þ ð8Þ

The problems registered in the ITS, furthermore, can have various urgency and
importance levels, denoted by weight PUn for problem Pn with a real value between 0
and 1 (remember that low or zero urgency issues are minor and should be resolved as
time permits). Such a factor can be applied to Relation (8) by replacing MSn�DSn with
PUn: MSn�DSnð Þ to obtain the extended weighed association matrix as

Aew ¼ aewn;m
� �

N�Mwhere aewn;m ¼ an;m � PUn � MSn�DSnð Þ ð9Þ

Note that the problems in the ITS are registered by data analysts, and therefore PUn

denotes the urgency of the problems from the viewpoint of the data analyst. This is a
local worldview, because it is perceived from the viewpoint of a specific problem as
observed by a specific data analyst in the field.

DQ Attribute Ranking. This functionality determines the priority values of DQ
attributes based on the (extended weighted) association matrix, which is in turn derived
from the problem descriptions, problem desired and actual severity levels, and/or
problem urgencies. Given the (extended) weighted association matrix in Relation (8) or
(9), the dynamic DQ rank of attribute DQm for m : 1. . .M is defined as:

Rd
m ¼

PN
n¼1 awn;mPN

n¼1

PM
m¼1 awn;m

or
PN

n¼1 aewn;mPN
n¼1

PM
m¼1 aewn;m

ð10Þ

As the elements of the (extended) weighted association matrix (i.e., awn;m or
aewn;m) are dependent of the momentary problem severity level MSn, which changes as
problems are resolved by data analysts, the DQ rank in Relation (10) is a dynamic
value depending on the problem resolving process. As a special case of DQ ranking in
Relation (10), we define the static DQ rank based on the association matrix in Relation
(7) for m : 1. . .M by:

Rs
m ¼

PN
n¼1 an;mPN

n¼1

PM
m¼1 an;m

ð11Þ

The static DQ rank defined in Relation (11) is just dependent of having a problem
in the ITS or not. The underlying assumption is that a problem is removed from the ITS
as soon as it is resolved. This static DQ rank is called static because it does not change
as the resolving of a problem progresses unless it is removed from the ITS.

Maturing Pay-as-you-go Data Quality Management 113

3.2 Data Quality Improvement

Our DQ improvement largely corresponds to the problem-resolving system, as shown
in Fig. 3. By solving the registered problems, data analysts also improve the corre-
sponding DQ attributes and therefore carry out DQ management. DQ improvement
comprises a number of functions, as shown in Fig. 3, which are elaborated upon in the
following.

Problem Clustering. Registered problems can be clustered according to some criteria
in order to reuse those solutions that address similar problems and, consequently, to
yield efficiency and optimization. Our proposal for problem clustering is to use the
associations among problems and DQ attributes because the resulting clusters can
benefit from those DQ specific knowledge and solutions proposed in the literature. Data
consistency problems for instance can be resolved by adopting a centralized archi-
tecture. Both data consistency and data completeness problems can be resolved by
improving registration protocols or by implementing constraints at the physical data-
base level (i.e. integrity and value-required (“not null”) constraints for data consistency
and data completeness problems, respectively).

As defined in Relations (7–9), the problem to DQ attribute mapping results in some
(weighed) association values between pairs of (problem Pn, DQ attribute DQm) as
follows:

Pn;DQmð Þ ¼
an;m see ð7Þ

awn;m ¼ an;m � MSn � DSnð Þ see ð8Þ
aewn;m ¼ an;m � PUn � MSn � DSnð Þ see ð9Þ

8<
: ð12Þ

We specify every problem Pn by the vector Pn;DQ1ð Þ; Pn;DQ2ð Þ; � � � ; Pn;DQMð Þð Þ
in M dimensional DQ attribute space, where its elements are defined in Relation (12)
for m : 1. . .M. We call these vectors as ‘association vector’, ‘weighed association
vector’, or ‘extended weighed association vector’ of problem Pn, respectively.

The ((extended) weighed) association vectors are fed as inputs to the component
‘problem clustering’ as shown in Fig. 3. In order to find similarity between problems
one can calculate the distance between every pair of such vectors, using for example
the hamming distance or Euclidian distance. The pairwise distances can be used to
cluster the corresponding problems. The resulting clusters encompass those problems
that share similar behaviors in terms of DQ attributes. In order to address registered
problems one can prioritize problem clusters, for example based on their sizes and
weighs, and apply (and/or develop new) solutions that address these problem clusters
according to the priority of the problem clusters.

Alternatively, one can classify problems in terms of existing solutions, instead of
clustering them based on some behavioral similarity in the DQ attribute spaces. For
example, assume a software tool resolves/addresses a specific subset of DQ attributes.
Availability of such tools that are specific to a subset of DQ attributes inspires us to
consider classifying the registered problems in terms of the DQ attributes that are
addressed by some powerful software tools.

114 J. van Dijk et al.

A solution may address multiple registered problems all together. When this occurs,
applying the solution affects all corresponding MSn and even the DSn. In practice
applying a solution may change the DSn, which was initially inserted by a data analyst.
For example, when implementing the solution it may turn out that the problem is
(partial) infeasible to fix. In the following, we propose a method for choosing appro-
priate solutions, which resembles such a classification case.

Problem Resolving. Resolving of problems requires applying solutions, each of
which encompasses a number of activities. Previously we specified problems in the DQ
attribute space, i.e., by mapping problems to DQ attributes using the ((extended)
weighed) association vectors and Relation (12). On the other hand, most solutions –

including software tools and DQ improvement processes – can be characterized in
terms of those DQ attribute issues that they address/resolve. Therefore, we propose to
specify such solutions based on the DQ attributes that they address. To this end, assume
every solution Sk is represented by a solution association vector Sk ¼ sk;1; � � � ;

�
sk;m; � � � ; sk;MÞ where for m : 1. . .;M we have

sk;m ¼ 1 if Sk addressesDQ attribute DQm

0 otherwise

�
ð13Þ

Here we assume solution Sk either addresses DQ attribute DQm or not, i.e., sk;m
takes a binary value. One can alternatively assume a real value for parameter sk;m in
interval 0� sk;m � 1, denoting the fraction that solution Sk can (potentially) resolve the
DQ attribute issue DQm in the organization. Hereto, for example, the approach of [19]
can be used. Considering the dynamic or static rank of every DQ attribute, see Rela-
tions (10) and (11) respectively, one can define the normalized benefit of solution Sk for
the organization as:

BFk ¼ 1
M

Sk � Rd ¼ PM
m¼1 sk;m � Rd

m if dynamic
Sk � Rs ¼ PM

m¼1 sk;m � Rs
m if static

�
ð14Þ

where upper scripts d and s demote dynamic and static DQ management, respectively.
On the other hand, one must balance the benefits of a solution, as characterized in

Relation (14), against its costs. Various solutions inflict various costs on an organi-
zation. Let weight SCk denote the normalized cost of solution Sk for the organization,
by normalised we mean taking a real value between 0 and 1, where low or zero values
represent those low or zero cost solutions. The cost-benefit value of a solution can be
defined as

CBk ¼ SCk � BFk for k : 1. . .K ð15Þ

Ideally one should prioritize solutions based on Relation (15) and apply those
solutions that yield the lowest cost-benefit values as defined in Relation (15). We
elaborate further on choosing the best solution in Subsect. 3.3.

Maturing Pay-as-you-go Data Quality Management 115

Problem Severity Measurement. KPIs can be defined and used to measure the
momentary severity of problems. As shown in Fig. 3, this functional block closes the
loop of our current problem-resolving system and provides a feedback about the
momentary status of registered problems, i.e., enables our dynamic DQ management.

In order to create objective KPIs we observe that often in practice DQ related
problems are detected because some phenomena, for example the number of crimes
committed per a time interval, are quantified differently from two (or more) data
sources. Assume Xt ¼ � � � ; xt�1; xt; xtþ 1; � � � and Yt ¼ � � � ; yt�1; yt; ytþ 1; � � � are time
series that denote the measures of the same phenomenon using two different
sources/datasets at consequent time intervals (yearly, monthly, daily etc.). Ideally,
xt ¼ yt for all t, but due to DQ issues the data analyst observe discrepancies between
these readings and reports the problem in the ITS. The difference time series Zt ¼
Xt � Yt ¼ � � � ; xt�1 � yt�1; xt � yt; xtþ 1 � ytþ 1; � � � can be a KPI in time intervals, as
shown in Fig. 5. For our DQ management one can normalize the difference time series
to derive problem severity level at a given moment t by

zt;norm ¼ xt � ytj j
max xt; ytð Þ ;max xt; ytð Þ[0 ð16Þ

Sometimes it is more realistic to base problem severity level on the last l differences
observed, i.e., on a history of measurements. Therefore, a smoothed problem severity
level at a given moment t can be defined by

�zt;norm ¼
Pt

i¼t�lþ 1 xi � yij jPt
i¼t�lþ 1 max xi; yið Þ � thð Þ ð17Þ

where th is an appropriate threshold value – for example, it can be set as the possible
minimum value for amount max xi; yið Þover i (for example, when counting objects, this
could be zero; for financial variables, the minimum could be negative).

The momentary or smoothed problem severity levels defined in Relations (16) and
(17) can be visualized by a Gauge or Dial chart as shown in Fig. 6. Subjective mea-
surements, where data analysts assign a problem severity level according to their
insight at a given moment, can be another method for determining KPIs. Such a

Fig. 5. Visualizations of two time series.

116 J. van Dijk et al.

subjective measurement can be useful when, for example, combining multiple and
heterogeneous measures as defined in Relations (16) and (17).

3.3 A Framework for Data Quality Solutions Management

The data quality management architecture as described in [9] and in the previous
subsections is sound for resolving DQ related problems. In this subsection we will
elaborate more on the solution choosing, and propose a separate framework for solution
management, mainly to support the Problem Clustering and Problem Resolving
components. This framework allows us to formalize the process of solution choosing,
which in turn can lead to decision support on how to solve DQ related problems.First,
we will discuss for every step in the DQ improvement layerof our DQ management
architecturethe impact on solution choosing.

• During Problem Registration a specific problem is registered in the ITS. In this
stage only the local scope and urgency is known. Maybe solutions are proposed, but
this will be also be done from a local perspective. For example, when data contain
impossible values (i.e. outside the domain) the user might suggest setting these
values to “unknown” as a temporary (local) solution.

• During Problem Clustering DQ analystsanalyze registered problems in order to
cluster similar problems or classify them in terms of existing solutions. Due to the
relation with DQ attributes (see Relation (13)), each problem is related to candidate
solutions, i.e. the solution space. Problem Clustering defines the theoretical solution
space, where the boundaries of the space are defined by the solutions that are
applicable.

• During Problem Resolving, the boundaries of the solution space are narrowed down
by the context of the problem. This is achieved by determining those solutions that
are feasible given the current circumstances and by choosing the solution that has
the best cost-benefit value.

• During Problem Severity Management some KPIs are developed to measure the
momentary severity levels of resolved problems and compare them to the desired
severity levels if possible. Note that these KPIs measure the effect of a chosen
solution to a specific problem, and they do not take in account the possible effect of
other solutions, nor the effect of the solution to other (not measured) problems.

Fig. 6. Visualizations of the resulting-ratio dashboard.

Maturing Pay-as-you-go Data Quality Management 117

Determining the cost-benefit valueof a solution requires a lot of knowledge about
the domain and the context in which the solution has to be applied. This knowledge is
often implicit and is hard to describe in a quantified cost-benefit value. In this paper, we
propose an approach that gives an insight in the boundaries that influence chosen
solutions, i.e. constrain the solution space. We distinguish the following boundaries,
each of which cover several dimensions of the solution space:

1. Operational boundaries, such as resources (budget, people, software) and time
frame. For instance, when you have a problem that should be solved by an expert,
but there is no expert available and it is too costly or it takes too long to hire one,
then this restriction forces to choose another – less optimal – solution.

2. Strategical boundaries, such as long-term business priorities. For instance, an
organization has a certain budget for information management. It is a strategical
choice how this budget is spent, e.g. focusing more on documentation or improving
the data itself.

3. Organizational boundaries. An organization always has a certain role or scope
regarding the data that are processed. For instance, an organization that is not
involved in the registration of the data (e.g. a external research organization) will
not be able to perform solutions that improve the registration process.

4. Domain-specific boundaries. Sometimes the domain in which data quality problems
occur invoke limitations on the possibilities to improve data quality. For instance, in
the criminal justice domain comparing police statistics to prosecution statistics
(which is the next phase in the criminal justice chain) is challenging because exact
matching of datasets is impossible due to a lack of common keys among datasets.
This excludes several solutions for improving data quality at a record level.

Data analysts working in a specific domain and for a specific organization will have
a good feeling for these boundaries when exploring the solution space for candidate
solutions. However, a lot of these boundaries are flexible and should also be evaluated
in a cost-benefit analysis. When the organization changes its strategy on information
management, this can have immediate effect on the solutions. More interestingly, when
the management of the organization has enough insight in the consequences of their
strategical choices, they might change their strategy.

Data quality problems and their solutions, which are determined by the boundaries
of the current solution space, can be seen as a solution model. Different solution models
can be obtained by changing the boundaries of the solution space. The solution model
with the best cost-benefit value might differ from the current one. In this way, i.e. by
choosing an appropriate solution model, changing the DQ improvement strategy
becomes part of the general information management strategy, which eventually leads
to a more mature organization.

4 Proof of Concept

In this section we describe a proof of concept prototype for the proposed DQ man-
agement that is realized in our organization. Moreover, we shall elaborate on perfor-
mance evaluation of its problem to DQ attribute mapping.

118 J. van Dijk et al.

4.1 Implementation

Our realization of the proposed architecture includes problem registration, semantic
field processing, problem to DQ attribute mapping, DQ attribute ranking, problem
clustering, problem resolving, and problem severity measuring.

We used the Team Development environment of Oracle APEX as our ITS to enable
data analysts to register the arising DQ related problems. The data log is stored in an
Oracle DBMS (Database Management System). Currently, there are 334 problems
registered together with their desired and momentary problem severity levels.

In order to determine the ‘semantic-field processing table’ for the registered
problems, we use a heuristic as described below. Given a DQ attribute, the current
implementation carries out two steps of (a) determining a list of the related terms for the
semantic-field corresponding to the DQ attribute, and (b) syntactical decomposing of
every related term to some phrases of smaller sizes that appear in problem descriptions.
We assume that every phrase set PSm;i;j comprises at most two short phrases, i.e.,
Mm;i;j � 2 in Relation (4). Therefore, we shall sometimes use the term ‘phrase pair’
instead of ‘phrase set’.

Assume that we have some potential DQ attributes derived from literature and that
we have the actual problems descriptions registered in the ITS. In the first step of the
heuristic we analyze every pair of (problem description, potential DQ attribute). When
a problem description is conceptually related to a DQ attribute, then the conceptual
formulation of the problem description is recorded as a related term. This related term
has a smaller size than the corresponding problem description size. Iteration of this step
results in two columns of the ‘related terms’ and the corresponding ‘DQ attributes’ in a
semantic-field processing table. Lines (5) and (7) in the pseudo code below refer to this
process. In the second step, every related term is decomposed into sets of smaller
phrases that syntactically appear in problem descriptions. This results in another col-
umn ‘phrase pair’ in the semantic-field processing table. Lines (6) and (7) in the pseudo
code below refer to this process.

Note that here some problems cannot be readily mapped to a DQ attribute.
Moreover, the related terms obtained from the first stage are natural language terms.
The syntactical decomposition of such natural language terms into phrase pairs can
have more than one parsing tree [31]. For example, related term ‘missing data’ can be
decomposed to phrase pairs {Is, Missed}, {Are, Missed} or {Are, Missing}.

Maturing Pay-as-you-go Data Quality Management 119

Due to a prototype character of the current implementation, the clustering of
problems and resolving problems according to their impacts/costs are currently based
on a manual process. The measuring of the momentary severity level of problems is
based on the described KPIs. The KPIs of complementary measurements, as defined in
Relations (16) and (17), are defined in SQL terms and visualized by a dynamic PHP
website. Currently, the ITS is deployed in another server and it is loosely coupled to the
other components (as problem logs are downloaded as files). This slows down the
communication between these two systems. In the future we intend to mitigate the
communication speed of the current implementation.

4.2 Evaluation

Generic DQ management functionalities, which are identified in [17], are also repre-
sented in the proposed DQ management in this contribution. The proof of concept
system has been realized, deployed, and used in our organization since early 2014. All
functionalities of the realized system work as described in this contribution.

For performance evaluation here we report on the performance of our heuristic for the
problem to DQ attribute mapping as the key system component in our problem solving
system. Our heuristic cannot target all problems in the ITS because we start with DQ
attributes and look at the problem descriptions in the ITS to identify the semantic-field of
every DQ attribute (i.e., the related terms). Based on related terms our proof of concept
seeks out the phrase pairs in a problem statement. As a result, this process may overlook
some problems if for them no related term can be identified, thus failing to map such
problems to DQ attributes. This overlooking could be due to not exhaustively searching
the space of registered problems and DQ attributes or not describing problems expres-
sively. Our search of related terms and phrases stops at a certain point due to practical
reasons, for example, after finding a certain number of phrase-pairs.

Those problems that are (not) mapped to DQ attributes are called (un)targeted
problems. In order to reduce the number of untargeted problems we iterated the
heuristic described above to come up with the (new) related terms corresponding to
some (potential) DQ attributes. These iterations reduced the number of untargeted
problems sharply, as shown in Fig. 7. After a certain number of iterations, however, the
number of untargeted problems did not decrease much. We suspect this is because the
descriptions of the remaining problems are poorly written, which makes it difficult to
associate them with any related term based on the syntax of these problem descriptions.

4.3 Discussion and Limitations

In this contribution we proposed to measure the severity level of the reported problems
and map them to the corresponding DQ attribute levels. A way to measure the severity
level of registered problems is to measure KPIs, which faces some challenges like
defining effective, valid, and standardized performance indicators. For instance, a KPI
based on measuring the hamming distance of 2 words can be ineffective. For instance,
the words “Netherlands” and “Holland” are semantically closer than their Hamming

120 J. van Dijk et al.

distances when considering the cultural background of both words. Measuring semantic
distances, on the other hand, is more challenging than measuring hamming distances.

An underlying assumption in our proposal is that data analysts of an organization
register encountered problems in an ITS. In practice, users are not eager to register
problems effectively and expressively. Organizations should encourage and train their
employees to fill in such logging system so that the benefits of the proposed system can
be harvested. Using tags and labels to mark DQ problems, [24] can further be explored
to this end.

We proposed a data quality management approach to utilize user-generated inputs
about DQ problems to carry out DQ management. For each functional component,
furthermore, we proposed some simple (and heuristic) methods to realize the compo-
nent’s functionality. Due to modular property of the proposed DQ management
approach, one can replace these methods by defining customized methods suitable for
own organization and problem domain.

5 Conclusion and Further Research

In this contribution we presented the formal description and the system architecture of
an integrated system for resolving the problems observed in datasets based on DQ
management. The proposed architecture, moreover, results in a dynamic DQ man-
agement system, which relies on user generated data (i.e., data users/analysts who
describe the DQ related problems they encounter in their daily practice). By managing
DQ related problems encountered in an organization at an operational level, our pro-
posal manages also the organization’s DQ issues (i.e., realizes DQ management).

Fig. 7. Number of untargeted problems (vertical) in terms of the number of related terms.

Maturing Pay-as-you-go Data Quality Management 121

To this end, we semantically and dynamically map the descriptions of DQ related
problems to DQ attributes. The mapping provides a quantitative and dynamic means to
determine the relevant DQ attributes and the level of their relevancy, given the oper-
ational setting (i.e., the desired and momentary problem severity levels).

The realization of the proposed DQ management in our organization has given us
insightful feedback on its advantages and limitations. As we envisioned, the solution
bridged successfully the gap between the operational level (e.g., data analysts) and
strategic level (e.g., managers) DQ stakeholders within our organization. To fully
benefit from the potentials of the proposed architecture, however, it is necessary to
encourage the users of datasets (i.e., data analysts) to provide their inputs about the DQ
related problems that they encounter proactively and expressively. Through improving
the problem registration process one can reduce the number of untargeted problems and
guarantee their influence on dataset problem resolution and DQ management processes.
It is for our future research to explore, for example, user awareness and training
solutions, and to develop objective KPIs.

An important aspect of problem resolving in DQ management is to determine the
capabilities and costs of candidate solutions. In this contribution we presented a
framework for decision support in the solution choosing process by guiding the choice
of the cost-benefit values of candidate solutions. In the future, we intend to formalize
the proposed framework for DQ solution management and to develop a proof of
concept in order to research how the framework can contribute to maturing DQ
management in organizations with data intensive applications, and in collaboration
with our system architecture for resolving DQ related problems.

Acknowledgements. Partial results of this work were presented earlier in [9]. Tables, figures
and equations have their origin in this paper, unless stated otherwise.

References

1. Choenni, S., Leertouwer, E.: Public safety mashups to support policy makers. In: Andersen,
K.N., Francesconi, E., Grönlund, Å., Engers, T.M. (eds.) EGOVIS 2010. LNCS, vol. 6267,
pp. 234–248. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15172-9_22

2. Netten, N., van den Braak, S., Choenni, S., Leertouwer, E.: Elapsed times in criminal justice
systems. In: Proceedings of the 8th International Conference on Theory and Practice of
Electronic Governance (ICEGOV), pp. 99–108. ACM (2014)

3. van Dijk, J., Kalidien, S., Choenni, S.: Smart monitoring of the criminal justice system.
Government Information Quarterly. Elsevier (2016). doi:10.1016/j.giq.2015.11.005

4. Christoulakis, M., Spruit, M., van Dijk, J.: Data quality management in the public domain: a
case study within the Dutch justice system. Int. J. Inf. Qual. 4(1), 1–17 (2015)

5. Birman, K.P.: Consistency in distributed systems. In: Guide to Reliable Distributed Systems,
pp. 457–470. Springer, Heidelberg (2012)

6. Davenport, T.H., Glaser, J.: Just-in-time delivery comes to knowledge management. Harvard
Bus. Rev. 80(7), 107–111 (2002)

122 J. van Dijk et al.

http://dx.doi.org/10.1007/978-3-642-15172-9_22
http://dx.doi.org/10.1016/j.giq.2015.11.005

7. Bargh, M.S., van Dijk, J., Choenni, S.: Dynamic data quality management using issue
tracking systems. IADIS Int. J. Comput. Sci. Inf. Syst. 10(2), 32–51 (2015). Isaias, P.,
Paprzycki, M. (eds.)

8. Bargh, M.S., Mbgong, F., Dijk, J. van, Choenni, S.: A framework for dynamic data quality
management. In: Proceedings of the IADIS International Conference Information Systems
Post-Implementation and Change Management, pp. 134–142 (2015)

9. Bargh, M., van Dijk, J., Choenni, S.: Management of data quality related problems -
exploiting operational knowledge. In: Proceedings of the 5th International Conference on
Data Management Technologies and Applications (DATA), pp. 31–42. SciTePress (2016)

10. Batini, C., Cappiello, C., Francalanci, C., Maurino, A.: Methodologies for data quality
assessment and improvement. ACM Comput. Surv. 41(3), 16–52 (2009). Article no. 16

11. Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological foundations.
Commun. ACM 39(11), 86–95 (1996). ACM

12. Davoudi, S., Dooling, J.A., Glondys, B., Jones, T.D., Kadlec, L., Overgaard, S.M., Ruben,
K., Wendicke, A.: Data quality management model (2015 Update). J. AHIMA 86(10), 62–
65 (2015). expanded web version

13. Knowledgent: White Paper Series: Building a Successful Data Quality Management
Program. http://knowledgent.com/whitepaper/building-successful-data-quality-management-
program/. Accessed 31 Oct 2015

14. Halevy, A., Rajaraman, A., Ordille, J.: Data integration: the teenage years. In: Proceedings of
the 32nd International Conference on Very Large Data Bases, pp. 9–16. VLDB Endowment
(2006)

15. Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers.
J. Manage. Inf. Syst. 12(4), 5–33 (1996)

16. Price, R., Shanks, G.: A semiotic information quality framework. In: Proceedings of
International Conference on Decision Support Systems (DSS), pp. 658–672 (2004)

17. Woodall, P., Borek, A., Parlikad, A.K.: Data quality assessment: the hybrid approach. Inf.
Manage. 50, 369–382 (2013)

18. Bargh, M.S., Choenni, S., Meijer, R.: Privacy and information sharing in a judicial setting: a
wicked problem. In: Proceedings of the 16th Annual International Conference on Digital
Government Research, pp. 97–106. ACM, New York (2015)

19. Jiang, L., Barone, D., Borgida, A., Mylopoulos, J.: Measuring and comparing effectiveness
of data quality techniques. In: Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS,
vol. 5565, pp. 171–185. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02144-2_17

20. Bugzilla Website. https://www.bugzilla.org. Accessed 31 Oct 2015
21. JIRA Software Website. https://www.atlassian.com/software/jira. Accessed 31 Oct 2015
22. H2desk Website, https://www.h2desk.com. Accessed 31 Oct 2015
23. TOPdesk Website. http://www.topdesk.nl. Accessed 31 Oct 2015
24. Canovas Izquierdo, J.L., Cosentino, V., Rolandi, B., Bergel, A., Cabot, J.: GiLA: GitHub

label analyzer. In: IEEE 22nd International Conference on Software Analysis, Evolution and
Reengineering, pp. 479–483, Montreal, Canada (2015)

25. Environmental protection agency: data quality assessment: a reviewer’s guide, Technical
report EPA/240/B-06/002, EPA QA/G-9R (2006)

26. Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Commun. ACM 45(4),
211–218 (2012). ACM

27. Eppler, M.J., Wittig, D.: Conceptualizing information quality: a review of information
quality frameworks from the last ten years. In: Proceedings of the Conference on Info
Quality, pp. 83–96 (2000)

28. Lee, Y.: Crafting rules: context-reflective data quality problem solving. J. Manage. Inf. Syst.
20(3), 93–119 (2003)

Maturing Pay-as-you-go Data Quality Management 123

http://knowledgent.com/whitepaper/building-successful-data-quality-management-program/
http://knowledgent.com/whitepaper/building-successful-data-quality-management-program/
http://dx.doi.org/10.1007/978-3-642-02144-2_17
https://www.bugzilla.org
https://www.atlassian.com/software/jira
https://www.h2desk.com
http://www.topdesk.nl

29. Ryu, K.S., Park, J.S., Park, J.H.: A data quality management maturity model. ETRI J. 28(2),
191–204 (2006)

30. Kornai, A.: The algebra of lexical semantics. In: Mathematics of Language, pp. 174–199.
Springer, Heidelberg (2010)

31. Mooney, R.J.: Learning for semantic parsing. In: Gelbukh, A. (ed.) CICLing 2007. LNCS,
vol. 4394, pp. 311–324. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70939-8_28

124 J. van Dijk et al.

http://dx.doi.org/10.1007/978-3-540-70939-8_28

Generic and Concurrent Computation
of Belief Combination Rules

Frédéric Dambreville(B)

DGA MI/Lab-STICC, UMR CNRS 6285, Ensta Bretagne,
2 rue François Verny, Brest, France
submit@fredericdambreville.com

http://www.fredericdambreville.com

Abstract. As a form of random set, belief functions come with specific
semantic and combination rule able to perform the representation and
the fusion of uncertain and imprecise informations. The development of
new combination rules able to manage conflict between data now offers a
variety of tools for robust combination of piece of data from a database.
The computation of multiple combinations from many querying cases
in a database make necessary the development of efficient approach for
concurrent belief computation. The approach should be generic in order
to handle a variety of fusion rules. We present a generic implementation
based on a map-reduce paradigm. An enhancement of this implementa-
tion is then proposed by means of a Markovian decomposition of the rule
definition. At last, comparative results are presented for these implemen-
tations within the frameworks Apache Spark and Apache Flink.

Keywords: Map-reduce · Distributed data processing · Belief func-
tions · Combination rules · Statistics

1 Introduction

Our hypothesis in this paper, in the perspective of a planned application, is that
we have to request a database of partial information, which are registered and
evaluated with a likelihood. An important point here, is that one single piece of
information will not be sufficiently rich in general, in order to meet the requested
criterion. However, some combinations of pieces of information may answer the
request, and we want to process these information in order to alert the requester
about some or several interesting combinations. The following picture is a rough
sketch of what such request may be. In this example, an answer is requested
with a minimal precision bound by the ellipsoid in the event space and with
a minimal likelihood of 0.5. Then, three pieces of information are found which
meet such requirement.

c© Springer International Publishing AG 2017
C. Francalanci and M. Helfert (Eds.): DATA 2016, CCIS 737, pp. 125–140, 2017.
DOI: 10.1007/978-3-319-62911-7 7

126 F. Dambreville

In real requests, the belief structure is much more complex than single propo-
sitions associated with likelihood. And while it is purposed that the sources of
information are ideally independent, this requirement is generally only approxi-
mated.

Typical examples of such databases may be used in various Intelligence
processes, where selected and filtered informations are collected and sourced. In
general, such applications offer a rather good level of control, and the valuation
of the information, in regards to the likelihood or to the sources independence,
is much reliable. Other applicative contexts are provided by networked commu-
nity of agents (e.g. especially opinion leaders in a social networks) or sensored
sources (e.g. surveillance camera). But on such application cases, the control on
the information sources is less reliable, and will need more robustness in the
combination approach. In regards to some existing related works, we considered
a formalism and combination processes based on belief functions. As a form of
random set, belief functions come with specific semantic and combination rule
able to perform the representation and the fusion of uncertain and imprecise
informations. Moreover, the development of new combination rules able to man-
age conflict between data now offers a variety of tools for robust combination of
piece of data from a database.

Belief Function Approaches from Related Works. Emerging works [1] have been
done on the application of belief function to the analysis of interaction between
agents of a social network on the basis of shared semantic content. These works
are especially based [2] on evidential clustering of agents resulting in a fuzzy
identification of communities. These clustering algorithms optimize the eviden-
tial similarities/dissimilarities between agents, but do not deeply involve combi-
nations of beliefs and the semantic it could extract.

In the domain of surveillance, [3] have underlined eight challenge of a video
network. Among them are the uncertainty of events, inconsistency or conflict
between multiple sources, the composition of elemental events, and the scalabil-
ity of the system. [4] have applied evidential networks to the problem of video
surveillance in a controlled application (Smart transport). The structure implied
by the networks makes possible an efficient reduction of the computational com-
plexity.

Generic Rule Computation. In this paper, we assume that our information are
preprocessed under the form of belief functions assigned to representative propo-
sitions. The produced information then takes the form of a large collection of
belief functions, which are representative of agent/sensors viewpoints on a com-
mon topic. The combination of belief functions of a cluster by means of dedicated

Generic and Concurrent Computation of Belief Combination Rules 127

combination rules infers a refined analysis of the relative viewpoints, including
agreement and disagreement on concomitant topics. Massive computation of
such rules may be typically applied to the search of sets of complementary infor-
mation in regards to an objective of fused answer with sufficient joint likelihood
and precision requirement.

Beside, in order to deal with the information conflict and with relaxed
hypotheses on the sources independence, the combination rules should be cho-
sen amongst robust combinations and take into account the context and the
structure of the information. The issue of the generated conflict has been chal-
lenged by many evolutions of the historical conjunctive and Dempster-Shafer
rules [5–9], and the domain now offers a variety of solutions. For these reason
our implementations should be generic in order to allow the use of dedicated
combinations rules, and should be concurrent for addressing a large collection of
cases.

The development of generic implementation [10] of combination rules is
a challenge in itself. Our work consider both issues by extending a previous
work [10] dedicated to the generic implementation of rules. In the continuation
of this work and of our recent contribution, [11], this paper considers the problem
of parallel and pooling computation by factoring the combination process, and a
Map-Reduce [12] approach is proposed within the two computation framework:
Apache Spark [13] and Apache Flink [14]. In order to factor some combination
rules, new algebraic structures (e.g. multisets in the case of Dubois & Prade
rule) are used as a processing space instead of the propositional framework of
belief functions.

Section 2 introduces basic concept on belief functions. Section 3 presents our
new contribution for a parallel and pooling implementation of combination rules;
previous work [10] is also introduced. Section 4 presents some limited tests.

2 Belief Functions

As a form of random set, belief functions come with specific semantic and com-
bination rule able to perform the representation and the fusion of uncertain
and imprecise informations. Belief functions are representations of imprecise and
uncertain information over an algebraic framework, a lattice in its most general
form. Most authors consider belief functions over powersets, as a Boolean alge-
bra, and this is our hypothesis here. From now is given the finite set Ω, the
universe or frame of discernment.

2.1 Belief Assignments

The imprecise and uncertain information are characterized by basic belief assign-
ment (bba), m, over propositions of the framework. Thus, a bba is defined as
the attribution of pieces of belief to subsets of Ω:

m ≥ 0 and
∑

X⊆Ω

m(X) = 1. (1)

128 F. Dambreville

In case of closed world hypothesis, it is assumed that the belief put on empty set is
zeroed, i.e. m(∅) = 0 . This paper does not discuss further about such hypothesis,
but its involvement does not imply a difficult generalization. However, we refer
subsequently to m(∅) as the conflict related to m, and consider rules which
redistribute the conflict.

Given M sources providing information by means of bba m1:M , the fusion of
these information are computed by combinations rules. In the case of a closed
world, the reference combination rule of Dempster-Shafer [15,16] is derived from
the conjunctive rule by means of a normalization based on the conflict. Without
lost of generality [17], Dempster-Shafer rules could be rewritten as a conjunctive
rule without normalization in the case of open world.

2.2 Combination Rules

Given two bbas, m1,m2, from two sources of information, the conjunctive com-
bination of m1 and m2 is defined by:

m1 � m2(X) =
∑

Y1,Y2:Y1∩Y2=X

m1(Y1)m2(Y2). (2)

This rule only works for open world hypothesis, since it is possible to have
m1 � m2(∅) > 0 while m1 (∅) = m2 (∅) = 0 .

By interpreting m1 � m2(∅) as a measure of conflict and redistributing it,
many alternative rules have been proposed. The development of new combination
rules able to manage conflict between data now offers a variety of tools for
robust combination. For example, Dubois & Prade rule [5], PCR5 rule and PCR6
rule [7,9] implement different redistribution schemes:

– Dubois & Prade Rule. This rule extends the conjunctive rule by redistrib-
uting disjunctively the conflict. Appendix A.1 presents its original definition,

– PCR Rules. The PCR combination rules, pioneered by Dezert and Smaran-
dache [7], are based on a local proportional redistribution of the conflict.
Appendix A.2 presents the original definition of PCR6 rule proposed by Mar-
tin and Osswald.

As an example of concurrent implementation, we consider Dubois & Prade rule,
generalized to many sources, but the approach is generic and addresses a poten-
tially large scope of rules. Although we do not investigate implementations for
PCR rules here, we present some theoretical elements about PCR6 for such a
concurrent implementation.

3 Implementations

The bba m1:M , to be fused, are taken amongst a set of bba m̃1:N , where 2 ≤
M � N . Typically, mi = m̃j[i] , where the selection map j ∈ {1 : N}{1:M} is
injective in general. The combination of m1:M is done for selection j. The number

Generic and Concurrent Computation of Belief Combination Rules 129

of concerned selections could be very large. Our main concern and challenge is to
implement the computation of combination rules for all selections as a distributed
process. A Map-Reduce approach [12] is considered for this computation. A first
approach is based on a previous work.

Section 3.1 introduces the generic formalism of referee functions [10] for defin-
ing combination rules. On this basis, Sect. 3.2 presents a Map-Reduce implemen-
tation of the combination rules. Section 3.3 enhances the formalism of referee
functions with Markov properties, and improves the definition of the combi-
nation rules, with recursive computational properties. On this basis, Sect. 3.4
presents a Map-Reduce and recursive implementation.

Notation: Indicator functions are defined by:

I [P] =

{
0 if P is false ,

1 if P is true .
(3)

3.1 Formulation Based on Indicators

[10] introduced a generic formulation of combination rules by means of con-
ditional functions (referee functions), which have a computational meaning as
indicator functions.

Common Principle. Combinations of bba m1:M is expressed under the form:

⊕ [m1:M |F] (X) =
∑

Y1:M⊆Ω

F (X|Y1:M ;m1:M)
M∏

i=1

mi(Yi). (4)

In this formulation, a distinction is made between the rule processing expressed
by the summation, and the rule definition which is expressed by the conditional
indicator F . It is easy, then, to imply a generic distributed implementation of
this summation, and we propose an implementation within both frameworks,
Apache Spark [13] and Apache Flink [14]. This generic definition by means of
indicator function is quite general however, as shown in [10], and typically, there
are referee functions defined for conjunctive or disjunctive rules, D&P rules,
PCR6 rule, and more. For the concern of this paper, we present the referee
functions related to D&P rules and to PCR6, but only implement D&P.

Alternative Definition of D&P Rrule. The rule of Dubois and Prade [5] is
defined by redistributing the conflict on the disjunction of the best consensuses:

m1 ⊕DP · · · ⊕DP mM = ⊕ [m1:M |FDP] , (5)

where:

FDP (X|Y1:M ;m1:M) = I

[
X = arg max

ω∈Ω

M∑

i=1

I [ω ∈ Yi]

]
. (6)

Subset arg maxω∈Ω

∑M
i=1 I [ω ∈ Yi] matches the best vote derived from the

belonging to propositions Y1:M .

130 F. Dambreville

Alternative Definition of PCR6 Rule. PCR6 rule, in its general form,
will test the full consensus, i.e. whether

⋂n
i=1 Yi �= ∅ or not. If the full con-

sensus works, it is returned, otherwise PCR6 will chose randomly amongst the
hypotheses Y1:n in proportion to their individual bba.

m1 ⊕PCR6 · · · ⊕PCR6 mM = ⊕ [m1:M |FPCR6] , (7)

where:
FPCR6(X|Y1:M ;m1:M) =

I

[
⋂

i=1:M

Yi �= ∅
]

I

[
X =

⋂

i=1:M

Yi

]

+ I

[
⋂

i=1:M

Yi = ∅
]

∑

i=1:M

mi(Yi)I [X = Yi]

∑

i=1:M

mi(Yi)

(8)

Computational Issues. There are actually two aspects to be considered, since
the computation may be computing-intensive as well as data-intensive. On the
one hand, it may be computing intensive, since a belief assignment is a vector
of dimension 2card(Ω); without approximation, the complexity of any belief com-
putation increases dramatically with the size of the frame of discernment, and
this issue is worsened with the number of bba to be combined. As a perspective
of a distributed intensive computation of the rules, is the possibility to handle
complex belief representations and their combinations for specific applicative
use or conceptual studies. On the other hand, the computation may be data
intensive, in the case of multiple combinations among a large collection of bba,
typically issuing from local processing of a collection of sources of information.
In this kind of application, the many sources of information produce pieces of
data, from which knowledges are extracted by the local process in the form of
bba in the context of a given logical frame. Then, the extracted bba are com-
bined according to a combination plan, characterized by a selection function,
in order to evaluate the compatibility of the sources or evaluate a confirmed
knowledge. The combination plan generally implies a large amount of combina-
tion cases. Although our approach may be applied to both case, our preliminary
tests focus on the second scenario. Now, we do not address here the question of
the extraction, but only the question of the combination.

3.2 Map-Reduce Implementation

We implemented the generic fusion process (4) by means of a Map-reduce prin-
ciple [12]. This implementation has been made respectively by means of frame-
works Apache Spark [13] and Apache Flink [14].

Generic and Concurrent Computation of Belief Combination Rules 131

Outline of the Implementation. We present the implementation on the
basis of Spark formalism, where the computation flow is formalized by means
of Resilient Distributed Dataset (RDD). The small difference with Flink imple-
mentation is immaterial in terms of scala commands. The computation follows
two steps.

Mapping Steps. In these steps, the inner computations are done, that is the joint
belief assignments,

∏M
i=1 mi(Yi), and the definition maps, F (X|Y1:M ;m1:M).

These computations are derived for all considered selection maps j and all possi-
ble non-zero propositional combinations, Y1:M . The amount of data is potentially
exponential with M .

– Define the set of selection maps j ∈ {1 : N}{1:M} to be computed as a RDD of
list, that is J: RDD[List[Int]]. For this purpose, method flatMap is applied
to an iterator describing j,

– From selection map j and the definition of bba m̃1:N , map to the collection
of tuples: (

j,
(
Yj(i), m̃j(i)

)
i=1:M

)
.

Only cases, with non zero values for m̃j(i)(Yj(i)), are considered. Methods
join and flatMap are thoroughly used in this process, resulting in:

M: RDD[(List[Int], List[(U,U=>Double)])],
where generic type U is used for encoding subsets,

– Referee function is applied through method flatMap, and yields the collection
of tuples:

(
(j,X), F

(
X

∣∣∣Yj(1:M), m̃j(1:M)

) ∏

i=1:M

m̃j(i)

(
Yj(i)

)
)

,

as the RDD, FM: RDD[((List[Int], U),Double)],

Reducing Step. In this step, all inner computations are summed up according to
summation,

∑
Y1:M⊆Ω .

– At last RDD FM is reduced by key (j,X) with the addition operator. As a
result, the combined bba are obtained as the collection of tuples:

(j, (X,⊕ [m̃1:M |F] (X))) .

Method reduceByKey is used with +, then yielding:
FusedM: RDD[(List[Int], (U,Double))].

At this time, the caching strategy is not monitored, and only RDD J, defining
the selection, and RDD FM, defining the final result, are persistent.

132 F. Dambreville

Computational Issues. While this approach makes possible a fully distributed
computation of the inner elements of the combination during the mapping steps,
the amount of cases kept in memory increases exponentially with the number of
sources to be combined. Even with a triple combination, the approach consumes
a lot of memory, especially when the set of selected combinations is densely
connected. In order to address this issue, we propose in next section to bring out
and to implement a Markovian property of the rule definition.

3.3 Recursive Formulation

In general, the logical propositions do not contain sufficient information for a
recursive definition of the rule. The main principle of our Markovian approach
is to project the proposition on a computation space, which will indeed vehicle
sufficient information for a recursive definition.

Common Principle. Sets Ψ and Λ are defined for intermediate computations.
The rule is defined from three finite conditional functions:

(λi, Yi,mi) 	→ σ(λi|Yi;mi), (9)
(ψn, λ1:n) 	→ R(ψn|λ1:n), (10)
(X,ψM) 	→ π(X|ψM), (11)

for X,Yi ⊆ Ω, ψn ∈ Ψ , λi ∈ Λ and 1 ≤ i, n ≤ M . Functions σ and π are
respectively forward and backward projectors from the space of proposition 2Ω

to the spaces of computation, Λ and Ψ . Function R is a referee function within
the spaces of computation. In σ, parameter mi is the bba related to source i, but
any other contextual knowledge could be considered. Based on triplet [σ,R, π],
rule ⊕[σ,R, π] is defined as a composition of conditional inferences:

⊕ [m1:M |σ,R, π] (X) =
∑

ψM∈Ψ

π(X|ψM)

∑

Y1:M⊆Ω
λ1:M∈Λ

R(ψM |λ1:M)
M∏

i=1

(mi(Yi)σ(λi|Yi;mi)) , (12)

for all X ⊆ Ω. Owing to definition (12), it is noticed that, although Ψ and Λ
may be infinite sets, the summations are actually finite: the values are zeroed
except for a finite number of them. On such definition, the main computation
burden comes from the conditional inference R(ψn|λ1:n), while other inferences
are more or less easily factorized. In order to reduce the computational burden,
a Markov hypothesis is made on R by introducing conditional function ρ:

R(ψn+1|λ1:n+1) =
∑

ψn∈Ψ

ρ(ψn+1|ψn, λn+1)R(ψn|λ1:n), (13)

for ψ1:M ∈ Ψ , λ1:M ∈ Λ and 1 ≤ n < M . Under this hypothesis, ⊕ [m1:M |σ,R, π]
is computed recursively:

Generic and Concurrent Computation of Belief Combination Rules 133

1. For λ1:M ∈ Λ and i = 1 : M , compute projection:

μi(λi) =
∑

Yi⊆Ω

mi(Yi)σ(λi|Yi;mi), (14)

2. Compute ⊕ [m1:M |R] recursively within space Ψ :

⊕ [m1|R] (ψ1) =
∑

λ1∈Λ

μ1(λ1)R(ψ1|λ1), (15)

⊕ [m1:n+1|R] (ψn+1) =
∑

λn+1∈Λ

μn+1(λn+1)

∑

ψn∈Ψ

ρ(ψn+1|ψn, λn+1) ⊕ [m1:n|R] (ψn), (16)

for ψ1:M ∈ Ψ , λ1:M ∈ Λ and 1 ≤ n < M ,
3. Compute backward projection for all X ⊆ Ω :

⊕ [m1:M |σ,R, π] (X) =
∑

ψM∈Ψ

π(X|ψM) ⊕ [m1:M |σ,R] (ψM). (17)

Combined with Map-Reduce, the recursion improves the efficiency of the distrib-
uted implementation.

Recursive Definition of D&P Rule. Unprojected definition (6) is not directly
compatible with a recursive decomposition. In order to compute the sources
consensuses in a Markov decomposition, multisets, mapping from within Ω, are
used as intermediate parameters.

m1 ⊕DP · · · ⊕DP mM = ⊕ [m1:M |σDP , RDP , πDP] , (18)

where σDP is canonical map from sets to multisets, πDP maps backward from
multisets to top sets, and RDP evaluates the vote by adding on the multisets:

– ΛDP = ΨDP = N
Ω ,

– σDP (λi|Yi;mi) = I
[
λi = [I [ω ∈ Yi]]ω∈Ω

]
,

– πDP (X|ψM) = I

[
X = arg max

ω∈Ω
ψM (ω)

]
,

– RDP (ψn|λ1:n) = I

[
ψn =

n∑

i=1

λi

]
.

Markov decomposition of RDP comes easily:

ρDP (ψn+1|ψn, λn+1) = I [ψn+1 = ψn + λn+1] . (19)

134 F. Dambreville

Recursive Definition of PCR6 Rule. The definition by unprojected referee
functions, (8), is not directly compatible with a Markov decomposition of the
referee function. A Markov decomposition is however possible, but complex, by
projecting to the space of computation, [0,M]×2Ω ×2Ω , thus allowing the mem-
orization of the normalization term

∑
j=1:M mj(Yj) as well as the propagation

of both the full consensus and the individual propositions. However, this decom-
position needs a quantized approximation of interval [0,M] in order to handle
the computation. This complex process is still investigated.

3.4 Recursive Implementation

Recursive Map-Reduce implementations of the rules are similar to the non-
recursive approach described in Sect. 3.2. But in this case, each recursive step is
computed by means of a Map-Reduce sequence.

Projection Steps. Each bba of (m̃k)k=1:N is computed and mapped into its pro-
jection (μ̃k)k=1:N , by a map step and a reduce step:

– All bba are computed as a collection of tuples:

(k, (Yk, m̃k(Yk))) ,

as Bba: RDD[(Int, (U,Double))]. Generic type U is used for encoding subsets.
For this purpose, flatMap is applied to an iterator of the bba,

– From Bba, the projected weights are then computed as a collection of tuples:

(k, (λ, σ(λ|Yk; m̃k)m̃k(Yk))) .

RDD, MapBba: RDD[(Int, (L,Double))], is obtained by applying flatMap to
Bba. Generic type L is used for encoding Λ-parameters,

– MapBba is reduced by key (k, λ) with the addition operator. As a result, the
projected bba, μ̃1:N , are obtained as the collection of tuples:

(k, (λ, μ̃k(λ))) .

Method reduceByKey is used with +, yielding:
ProjBba: RDD[(Int, (L,Double))],

Recursive Steps. First stage (15) is computed:

– For all prefixes, j(1), of a selection map j, ProjBba is mapped to the collection
of tuples: (

j(1),
(
ψ, μ̃j(1)(λ)R(ψ|λ)

))
.

FusMapBba: RDD[(List[Int], (P,Double))], is obtained by applying flatMap
to ProjBba. Generic type P is used for encoding Ψ -parameters,

Generic and Concurrent Computation of Belief Combination Rules 135

– FusMapBba is reduced by key (j(1), ψ) with the addition operator. As a result,
values ⊕ [

m̃j(1)

∣∣ R
]
, are obtained as the collection of tuples:

(
j(1),

(
ψ,⊕ [

m̃j(1)

∣∣ R
]
(ψ)

))
.

Method reduceByKey is used with +, yielding:
FusProjBba: RDD[(List[Int], (P,Double))],

– Set n ← 1,

and subsequent stages (16) are computed until n = M :

– Set n ← n + 1,
– For all prefixes, j(1 : n), of a selection map j, FusProjBba is mapped to the

collection of tuples:
(
j(1 : n),

(
ψ′, μ̃j(n)(λ)ρ(ψ′|ψ, λ) ⊕ [

m̃j(1:n−1)

∣∣ R
]
(ψ)

))
.

FusMapBba: RDD[(List[Int], (P,Double))], is obtained by applying flatMap
to ProjBba.

– FusMapBba is reduced by key (j(1 : n), ψ) with the addition operator. Values
⊕ [

m̃j(1:n)

∣∣ R
]
, are obtained as the collection of tuples:

(
j(1 : n),

(
ψ,⊕ [

m̃j(1:n)

∣∣ R
]
(ψ)

))
.

Method reduceByKey is used with +, yielding:
FusProjBba: RDD[(List[Int], (P,Double))],

Backward Projection Steps. At last, the combined bba are obtained from
FusProjBba:

– For all selection maps j, FusProjBba is mapped to the collection of tuples:
(
j,

(
X,π(X|ψ) ⊕ [

m̃j(1:M)

∣∣ σ,R
]
(ψ)

))
.

Then, FM: RDD[(List[Int], (U,Double))], is obtained by applying flatMap
to FusProjBba,

– FM is reduced by key (j,X) with the addition operator. Combined bba are
obtained as the collection of tuples:

(j, (X,⊕ [m1:M |σ,R, π] (X))) .

Method reduceByKey is used with +, then yielding:
FusedM: RDD[(List[Int], (U,Double))].

136 F. Dambreville

4 Testing Cases

All tests have been made for the rule of Dubois & Prade.

4.1 Tests Presentation and Results

The tests have been done on a virtual machine processed on a bi-processor
computer:

Memory Processor Frequency

23 Gio Xeon X5690 3.67 GHz

The virtual machine is defined with 20 threads and 20 Gio. The tests have been
processed with different threading:

Threads Memory

1, 2, 4, 8, 12, 16 18 Gio

A collection of N bba is first generated randomly on set Ω = {a, b, c, d}. The
sampling method, based on uniform particles generation over 2Ω \ {∅}, tends
to favor positive bba over 2Ω \ {∅}. As a consequence, the complexities of the
combinations are maximal for most cases. Then, each triplet combination of these
bba are intended for the computation of Dubois & Prade rule. In particular, the
entire triplet set are tested with different sizes, K = N(N − 1)(N − 2)/6:

N 20 40 60 80 100 120

K 1140 9880 34220 82160 161700 280840

and different computation approaches:

– Non recursive implementation with Spark,
– Recursive implementation with Spark,
– Non recursive implementation with Flink,
– Recursive implementation with Flink.

4.2 Results

Spark - Non recursive. The following table compiles the execution time for the
non recursive implementation with Spark, for different numbers of threads and
different triplet sets:

Generic and Concurrent Computation of Belief Combination Rules 137

Spark - Non recursive

Threads K 1140 9880 34220 (∗) 82160 (∗) 161700 (∗) 280840 (∗)

1 Time 6.4 56 235 740 2500 Failed

2 7.2 60 235 630 1500 3150

4 7.6 62 225 575 1350 2600

8 8.5 63 235 595 1260 2400

12 9.8 67 245 600 1270 2390

16 9.8 70 240 620 1300 2300

Postfix (∗) indicates memory overflow and disk usage.

Spark - Recursive. The following table compiles the execution time for the recur-
sive implementation with Spark, for different numbers of threads and different
triplet sets:

Spark - Recursive

Threads K 1140 9880 34220 (∗) 82160 (∗) 161700 (∗) 280840 (∗)

1 Time 5.1 42 161 550 1500 3400

2 5.4 44 155 430 1050 2280

4 5.8 45 160 385 940 1900

8 6.6 47 175 450 920 1800

12 7.2 51 180 480 980 1720

16 8 52 175 450 990 1800

Flink - Non recursive. The following table compiles the execution time for the
non recursive implementation with Flink, for different numbers of threads and
different triplet sets:

Flink - Non recursive
Threads K 1140 9880 34220 82160 (∗) 161700 (∗) 280840 (∗)

1 Time 17.5 128 415 980 1900 3490

2 12.8 83 240 630 1100 1970

4 10 49.7 145 440 775 1350

8 8.4 41.2 118 278 560 880

12 8.9 38 112 268 520 860

16 8.3 43 118 260 480 760

Flink - Recursive. The following table compiles the execution time for the recur-
sive implementation with Flink, for different numbers of threads and different
triplet sets:

138 F. Dambreville

Flink - Recursive
Threads K 1140 9880 34220 82160 (∗) 161700 (∗) 280840 (∗)

1 Time 9.1 46 159 360 640 1220

2 7 31 93 249 430 750

4 6.1 19 55 173 310 500

8 6.2 16.8 45.8 115 230 400

12 6 16 44 133 270 380

16 5.8 18 41 120 240 340

4.3 Benefits and Limitations

The results confirm the efficiency of the recursive approach for large concomitant
combination sequences. The recursive approach is however a burden for small
sequences. Whatever, Flink outperforms Spark on sufficiently large cases, and
shows especially good performances on recursive approach.

On this preliminary work, the code has not been optimized. For this reason,
the table is not significant at this time in comparison with other existing opti-
mized libraries. However, we compared the multithread implementations with
the monothread implementations. The monothread recursive implementation is
particularly efficient on sufficiently small processings. Whatever, it seems that
for such small combination, a monothread implementation of the individual com-
bination is better. This aspect is particularly visible with Spark implementation.
In our example, Flink seems to behave better in the usage of the parallelism.

Moreover, these tests only considered the performance of simultaneous com-
putation of large set of combinations, and especially, a full set of triple combi-
nations. This implies important intermediate results caching. This case of use is
then favorable to our recursive algorithm, since this approach reduces the caching
by definition. But many other aspects of this implementation have to be investi-
gated, in term of performance. The structure of the set of combinations may be
used for optimizing the strategies of the computation flow. In that perspective,
the capacity of Flink to implement computation streams and iterated processes
will be particularly useful. The reactivity of this parallel computation on possi-
bly complex single combinations is also a piece of performance to be evaluated
precisely or optimized in the future, in regards to non-parallel approaches.

5 Conclusions

We proposed a generic distributed processing approach for computing belief
combinations. The approach is based on a Map-Reduce paradigm, and has been
implemented in Apache Spark and in Apache Flink. It is derived from the concept
of referee function, introduced in a previous work with the aim of separating the
definition of the combination rule from its actual implementation. This work has
been completed by the proposal of a new recursive formalism for the definition
of the rules, and of an improved Map-Reduce generic implementation. Some

Generic and Concurrent Computation of Belief Combination Rules 139

tests have been made for the rule of Dubois & Prade, which illustrated this
computation improvement. This promising work will be extended in order to
better take into account the computation flow structure. The reactivity of the
computation and a better tuning of the parallelism level will be enhanced in the
future for the purpose of an optimized library.

A Rules Definitions

A.1 Dubois & Prade Rule

The rule proposed by Dubois and Prade extends the conjunctive rule by redis-
tributing disjunctively the conflict:

m1 ⊕DP m2(X) =
∑

Y1,Y2:
{

Y1∩Y2 �=∅
Y1∩Y2=X

m1(Y1)m2(Y2) (20)

+
∑

Y1,Y2:
{

Y1∩Y2=∅
Y1∪Y2=X

m1(Y1)m2(Y2).

A.2 PCR6 Rule

The rule proposed by Martin and Osswald extends the conjunctive rule by a
local proportional redistribution of the conflict:

m1 ⊕PCR6 m2(X) =
∑

Y1,Y2:
{

Y1∩Y2 �=∅
Y1∩Y2=X

m1(Y1)m2(Y2) (21)

+
∑

Y :X∩Y =∅

[
m1(X)2m2(Y)

m1(X) + m2(Y)
+

m2(X)2m1(Y)
m2(X) + m1(Y)

]
.

References

1. Zhou, K., Martin, A., Pan, Q.: A similarity-based community detection method
with multiple prototype representation. Physica A Stat. Mech. Appl. 438, 519–531
(2015)

2. Zhou, K., Martin, A., Pan, Q., Liu, Z.: Median evidential c-means algorithm and
its application to community detection. Knowl. Based Syst. 74, 69–88 (2015)

3. Liu, W., Miller, P., Ma, J., Yan, W.: Challenges of distributed intelligent surveil-
lance system with heterogenous information. In: Workshop on Quantitative Risk
Analysis for Security Applications, Pasadena, California (2009)

4. Hong, X., Ma, W., Huang, Y., Miller, P., Liu, W., Zhou, H.: Evidence reasoning
for event inference in smart transport video surveillance for video surveillance. In:
8th ACM/IEEE International Conference on Distributed Smart Cameras, Prague,
Czech Republic (2014)

5. Dubois, D., Prade, H.: On the unicity of dempster rule of combination. Int. J.
Intell. Syst. 1, 133–142 (1986)

140 F. Dambreville

6. Lefevre, E., Colot, O., Vannoorenberghe, P.: Belief functions combination and con-
flict management. Inf. Fusion J. 3, 149–162 (2002)

7. Smarandache, F., Dezert, J.: Information fusion based on new proportional con-
flict redistribution rules. In: International Conference on Information Fusion,
Philadelphia, USA (2005)

8. Florea, M., Dezert, J., Valin, P., Smarandache, F., Jousselme, A.: Adaptative com-
bination rule and proportional conflict redistribution rule for information fusion.
In: COGnitive Systems with Interactive Sensors, Paris, France (2006)

9. Martin, A., Osswald, C.: Toward a combination rule to deal with partial conflict
and specificity in belief functions theory. In: International Conference on Informa-
tion Fusion, Qébec, Canada (2007)

10. Dambreville, F.: Definition of Evidence Fusion Rules Based on Referee Functions,
vol. 3. American Research Press (2009)

11. Dambreville, F.: Map-reduce implementation of belief function rules. In: Proceed-
ings of 5th International Conference on Data Management Technologies and Appli-
cations, Lisbon, Portugal (2016)

12. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51, 107–113 (2008)

13. Zaharia, M., Chowdhury, M., Franklin, M., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of 2nd USENIX Conference on Hot
Topics in Cloud Computing, Berkeley, CA USA (2010)

14. Apache: Apache flink: scalable batch and stream data processing. https://flink.
apache.org/

15. Dempster, A.P.: A generalization of bayesian inference. J. Roy. Stat. Soc. B30,
205–247 (1968)

16. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

17. Smets, P.: The combination of evidences in the transferable belief model. IEEE
Trans. Pattern Anal. Mach. Intell. 12, 447–458 (1990)

https://flink.apache.org/
https://flink.apache.org/

Log-Based Model to Enforce Data Consistency
on Agnostic Fault-Tolerant Systems

Óscar Mortágua Pereira(&), David Apolinário Simões,
and Rui L. Aguiar

DETI, Instituto de Telecomunicações, University of Aveiro,
3810-193 Aveiro, Portugal

{omp,david.simoes,ruilaa}@ua.pt

Abstract. Agnostic fault-tolerant systems cannot recover to a consistent state if
a failure/crash occurs during a transaction. By their nature, inconsistent states
are very difficult to be treated and recovered into the previous consistent state.
One of the most common fault tolerance mechanisms consists in logging the
system state whenever a modification takes place, and recovering the system to
the system previous consistent state in the event of a failure. This principle was
used to design a general recovering log-based model capable of providing data
consistency on agnostic fault-tolerant systems. Our proposal describes how a
logging mechanism can recover a system to a consistent state, even if a set of
actions of a transaction were interrupted mid-way, due to a server crash. Two
approaches of implementing the logging system are presented: on local files and
on memory in a remote fault-tolerant cluster. The implementation of a proof of
concept resorted to a previous proposed framework, which provides common
relational features to NoSQL database management systems. Among the miss-
ing features, the previous proposed framework used in the proof of concept, was
not fault-tolerant.

Keywords: Fault tolerance � Logging mechanism � Software architecture �
Transactional system

1 Introduction

Fault tolerance enables a system to keep its data consistent in the event of failure of
some of its components [1]. A fault tolerant system either maintains its operating
quality in case of failure or decreases it proportionally to the severity of the failure. On
the other hand, a fault intolerant system completely breaks down with a small failure.
Fault tolerance is particularly sought after in high-availability or life-critical systems.

Relational Database Management Systems (DBMS) are systems that usually
enforce information consistency and provide atomic, consistent, isolated and durable
(ACID) properties in transactions [2]. However, without any sort of fault-tolerance
mechanism, both atomicity and consistency are not guaranteed in case of failure [3].
These ACID properties can be assured by a recovery system using a log-based model.
Nevertheless, some critical aspects need to be addressed, such as: (1) logging processes
are not simultaneous with the actions being executed, this way requiring a controlled

© Springer International Publishing AG 2017
C. Francalanci and M. Helfert (Eds.): DATA 2016, CCIS 737, pp. 141–159, 2017.
DOI: 10.1007/978-3-319-62911-7_8

supervision process on both the actions and the logging process; (2) the logging process
must be fault-tolerant in order to be able to manage crashes during the logging process;
(3) the recovery process must also be fault-tolerant in order to be able to manage
crashes during the recovery process; (4) when cascading actions are implemented in the
system, similar to the ones implemented by relational DBMS, those actions need also
to be supervised.

We have proposed in a previous article a framework, hereafter referred to as
Database Abstraction Framework (DFAF) [4], based in Call Level Interfaces (CLI) [5],
that acts as an external layer and provides common relational features to NoSQL DBMS
[5]. These features were ACID transactions, the execution of database functions (like
stored procedures) and interactions with local memory structures, such as a ResultSet in
JDBC [6] and a RecordSet in ODBC [7]. However, our framework lacked
fault-tolerance mechanisms and, in case of failure, did not guarantee atomicity or
consistency of information.

This paper presents a model that can be used to provide fault-tolerance to agnostic
fault-tolerant systems through external layers. We describe how to log the system state,
so that it is possible to recover and restore it when the system crashes; possible ways to
store the state, either remotely or in the file system; and how to revert the state after a
crash. As a proof of concept, the model was applied to our previous researches [8–12]
and providing fault-tolerance to DFAF, which in turn provides ACID transactions to
NoSQL DBMS. All the four aforementioned critical aspects are addressed by our model.

In other words, DFAF acts as an external layer over a DBMS, a deterministic
system. A deterministic system is any process whose operations behave deterministi-
cally, and provide the same output with the same input. Non-deterministic events can
happen in these systems and are either expected (e.g.: receiving a message), triggering
deterministic behavior, or unexpected (e.g.: crashing), leading to undefined behavior.

The remainder of this paper is organized as follows. Section 2 describes common
fault tolerance techniques and Sect. 3 presents the state of the art. Section 4 provides
some context about the DFAF and Sect. 5 formalizes the proposed fault tolerance
model, describing what information is stored and how to store it. Section 6 describes a
fault-tolerant implementation. Section 7 presents the proof of concept. and, Sect. 8
evaluates our results and, finally, Sect. 9 presents our conclusions.

This paper is an extended version of a previous published paper in a conference
proceedings [13].

2 Background

As previously stated, fault tolerance is a property of systems that do not stop as a whole
due to hardware or software problems. A fault tolerant system remains operational, with
an increased response time or a reduced throughput for example, in the event of a failure.

Fault tolerance is usually achieved by anticipating exceptional conditions and
designing the system to cope with them. In [1], Randell et al. define an erroneous state
as a state in which further processing, by the normal algorithms of the system, will lead
to a failure [1]. When failures leave the system in an erroneous state, a roll-back
mechanism must be used to set the system back in a safe state.

142 Ó.M. Pereira et al.

Techniques for handling failures can be classified into three categories [14]:

• Hardware Resilience: This category includes techniques implemented in processor,
memory, storage and network hardware;

• Resilient Systems Software: This category includes software-based resilience
techniques that are handled within systems software and programming
infrastructure;

• Application-Based Resilience: The third category involves domain-specific models
for fault tolerance that rely on information about the characteristics of the appli-
cation (or the domain) to design specific algorithms that minimize the performance
loss or system cost.

Hardware resilience is fully transparent to the user, but also beyond the scope of
this paper. Application-based resilience, on the other hand, is a highly specialized
category, and also falls beyond our scope. We will, as such, focus on Resilient Sys-
tems. In resilient systems, failures can be handled, depending on their severity, in three
different levels [15]:

• Failure Masking: some failures can be hidden or their effect can be lessened (e.g.:
lost messages can be retransmitted, resources can be replicated);

• Failure Recovery: software is designed in a way that the process state is periodically
logged. When a failure occurs, processing is resumed from the last logged stated;

• Failure Tolerance: failures simply cannot be handled in an efficient manner, and the
best choice is to inform a user or to abort the task (e.g.: informing a user that a
server cannot be reached).

Regarding failure recovery, resilient systems rely on techniques like
check-pointing, which is related to failure recovery, and process-, data- and task-driven
techniques, which are specific to programming models and cannot be generalized.
Check-pointing, however, is a popular and general technique that records the state of
the system and, in the event of a fault, the system can be rolled-back and proceed from
that point, instead of restarting completely.

Check-pointing in distributed systems encompasses uncoordinated, coordinated,
communication-induced and log-based protocols [16]. In uncoordinated check-pointing
[17], processes within a system take checkpoints independently, and in the event of
failure, a consistent global state is found using dependency information from each
checkpoint. In coordinated check-pointing [18], on the other hand, all individual
checkpoints are part of a global consistent checkpoint. Communication-induced pro-
tocols force processes to take checkpoints based on messages from other processes.
Log-based protocols require deterministic systems [19]. Non-deterministic events, such
as the contents and order of incoming messages, are recorded and used to replay events
that occurred since the previous checkpoint. Other non-deterministic events, such as
hardware failures, are meant to be recovered from. Indirectly, they are recorded as lack
of information.

Check-pointing can also be done with complete or incremental checkpoints.
A complete system-level checkpoint saves the entire address space of a process. On the
other hand, incremental checkpoints only save modified parts of the address space, in
order to reduce the size of a checkpoint.

Log-Based Model to Enforce Data Consistency 143

3 Related Work

There are many logging system proposals from the scientific community [20–23]
whose purpose is not to provide fault tolerance, but simply to store information which
is later used in data analytics or statistical analysis. In the fault tolerance context, there
are proposals like Ralph et al.’s system [24], which scans a large number of variables
and arranges the data to be reviewed by an operator, so that abnormal process is
detected; or popular write-ahead logging approaches [25], commonly used by DBMS
to guarantee both atomicity and durability in ACID transactions.

There are also other approaches which do not rely on logging systems to provide
fault tolerance, like Huang et al.’s method and schemes for error detection and cor-
rection in matrix operations [26]; Rabin et al.’s algorithm to efficiently and reliable
transmit information in a network [27]; or Hadoop’s data replication approach for
reliability in highly distributed file systems [28]. Some relational DBMS use shadow
paging techniques [29] to provide the ACID properties. However, all of the above
described fault tolerance mechanisms are specific to a given system. While they follow
a broader model (for example, Hadoop’s approach is based in data replication), most
proposals are adapted to a particular context and integrated with existing solutions, and
therefore not suitable to be used in an external fault-tolerance layer.

In the category of data replication, the scientific community has also proposed
several algorithms and mechanisms, such as [30], which is based on a primary copy
technique; [31], an LDAP-based replication mechanism; or [32], which provides an
adaptive algorithm that replicates information based on its access pattern. Recently,
proposals have also taken into account byzantine failure tolerance [33–38]. Byzantine
fault-tolerant algorithms have been considered increasingly important because mali-
cious attacks and software errors can cause faulty nodes to exhibit arbitrary behavior.
However, the byzantine assumption requires a much more complex protocol with
cryptographic authentication, an extra pre-prepare phase, and a different set of tech-
niques to reach consensus.

To the best of our knowledge, there has not been work done with the goal of defining
a general logging model that provides fault tolerance as an external layer to an under-
lying deterministic system. Some solutions provide fault tolerance, but are adapted to a
specific context. Others are overly-abstract general models, like data replication, and do
not cover how to generate the necessary said data from an external layer to provide
fault-tolerance to the underlying system. Not only that, but many data replication sys-
tems also assume conditions we do not, such as the possibility of byzantine failures, or
overly complex data access patterns. While byzantine failures are of enormous impor-
tance in distributed unsafe systems, such as in the BitCoin [39] environment, we con-
sider their countermeasures to be complex and performance-hindering in the scope of
our research. Not only that, but byzantine assumptions have been proven to allow only
up to 1/3 of the nodes to be faulty.

We intend to focus on fault-tolerance for underlying deterministic systems
through a logging system, and while distributed data replication is used for reliability,
expected DFAF use cases do not assume malicious attacks to tamper with the network.

144 Ó.M. Pereira et al.

However, our model is general enough that it supports the use of any data replication
techniques to replicate logging information across several machines.

4 Context

We have previously mentioned the DFAF, which allows a system architect to simulate
non-existent features on the underlying DBMS for client applications to use, trans-
parently to them. Our framework acts as a layer that interacts with the underlying
DBMS and with clients, which do not access the DBMS directly. It allowed ACID
transactions, among other features, on NoSQL DBMS, but was not fault tolerant.

Typically, NoSQL DBMS provide no support to ACID transactions. NoSQL data
stores are sometimes referred as Basically Available, Soft state, and Eventually con-
sistent (BASE) systems [40]. In this acronym, Basically Available means that the data
store is available all the time whenever it is accessed, even if parts of it are unavailable;
Soft-state highlights that it does not need to be consistent always and can tolerate
inconsistency for a certain time period; and Eventually consistent emphasizes that after
a certain time period, the data store comes to a consistent state.

An ACID transaction allows a database system user to arrange a sequence of
interactions with the database which will be treated as atomic, in order to maintain the
desired consistency constraints. For reasons of performance, transactions are usually
executed concurrently, so atomicity, consistency and isolation can be provided by file-
or record-locking strategies.

Transactions are also a way to prevent hardware failures from putting a database in
an inconsistent state. DBMS usually have mechanisms for single-statement transac-
tions, but our framework must be adjusted to take hardware failures into account with
multi-statement transactions. In a failure free execution, our framework registers which
actions are being executed in the DBMS and how to reverse them. Actions are executed
in the DBMS immediately and are undone if the transaction is rolled-back.

However, during a DFAF server crash, the ACID properties are not enforced. As an
example, consider a transaction with two insert statements. If the DFAF server crashed
after the first insert, even though the client had not committed the transaction, that value
would remain in the database, which would mean the atomic aspect of the transaction
was not being enforced.

To enforce it, we designed a logging mechanism, whose records are stored
somewhere deemed safe from hardware crashes. That logging system will keep track of
the transactions occurring at all times and what actions have been performed so far.
When a hardware crash occurs, the logging system is verified and interrupted trans-
actions are rolled-back before the system comes back on-line and new transactions are
executed.

Our logging system is a log-based protocol where the underlying DBMS acts as the
deterministic system mentioned previously. Each action in a transaction represents a
non-deterministic event and is, as such, recorded, so that the chain of events can be
recreated and undone when the system is recovering from failure, as if the transaction
had simply been rolled-back and had never crashed.

Log-Based Model to Enforce Data Consistency 145

5 Local Architectural Model

In this chapter, the local conceptual model is presented. It is based on a mechanism
responsible for ensuring that the last consistent system state is reached if a crash occurs
during a transaction. Two implementations will be provided of the conceptual model:
one local and other remote

Logging systems for fault-tolerance mechanisms have several different aspects that
need to be defined. The main key issue, is that the logging process must itself be
fault-tolerant. The situations to be addressed are:

First of all: the logging system must be designed in a way that the logging is not
affected by hardware or software failures, particularly during the logging process. In
other words, if the server crashes while a database state is being logged, the system
must be able to handle an incomplete log and must be able to recover its previous state.

Second of all: logging actions is not done at the same time as the actions are
executed. Taking an insertion in a database as an example, the system logs that a value
is going to be inserted, the value is inserted and the system logs that the insertion is
over. However, if the system crashes between both log commands, there is no record of
whether the insert took place or not. To solve this, the underlying system must be
analyzed to check if it matches the state prior to the insertion or not.

Thirdly: while recovering from a failure, the server can crash again, which means
the recovery system must also be fault tolerant.

Finally: cascading actions imply multiple states of the underlying system, all of
which must be logged so that they can all be rolled-back. In other words, if an insert in
a database triggers automatically an update, then the database has three states to be
logged: the initial state, the state with the insertion and the state with the insertion and
the update. Because the server can crash at any of these states, they all need to be
logged so that the recovery process rolls-back all the states and nothing more than those
states.

If all of these aspects are taken into account, our logging mechanism provides fault
tolerance to underlying deterministic systems.

5.1 Key Concepts

The logging process is aimed at dealing with the transactional concept. Basically, there
is a trigger responsible for starting the execution of a set of operations and also a trigger
to end the process. If the system crashes between both, there is the need to roll-back the
system’s state to the previous consistent state. The logging process is based on logging
information whenever the state of the deterministic system is changed.

The logging information stored will inherently have the actions being performed in
the underlying system. In order to provide fault tolerance, some actions will undoubt-
edly need to be reversed during a recovery process, to avoid leaving the system in an
inconsistent state. As such, along with the actions performed, the system must also log
how to undo them. In other words, when a client issues an action, the action to revert it,
hereafter referred to as the reverser, is automatically calculated. For example, in a

146 Ó.M. Pereira et al.

database, an insert statement’s reverser is a delete statement. Reversers are executed
backwards in a recovery process to keep the underlying system in a consistent state.

However, logging actions and performing them cannot be done at the same time. It
is also not adequate to log an action after it has already been performed, since the server
could crash between both stages (executing and logging the action), and there would be
no record that the system state had changed. Therefore, actions (and their reversers)
must be logged before they are executed on the underlying system. This, however, can
still lead to problems, if the server crashes between the log and the execution, since the
recovery process would try to reverse an action that had not been executed.

To solve this problem, the logging system can also record that an action has been
completed, but the problem remains if the server crashes between the execution and the
logging. Because we have no assumptions regarding when the system can crash, the
only way to solve this problem is to directly assess the underlying system’s state to
figure out whether the action has been performed or not. Since we have access to the
underlying system’s state prior to the action being executed, we can find a condition
that describes whether the action has been executed or not. This condition is hereafter
referred to as the verifier. It must be here emphasized that the logging process is
independent from the system being protected. Additionally, it is our intention to design
a model that does not depend on any property of the system being protected. For
example, the logging system could resort to SQL triggers in case they were supported.
Unfortunately, these are only supported by a small cluster of databases based on the
SQL standard. In spite the possibility of being used with a great success (triggers), a
general model, as the one herein presented, cannot rely on such an approach.

Consider the insertion of a row with value ‘A’ in a DBMS. The insertion of this
value can be verified by the amount of rows with value ‘A’ that existed prior to the
insertion. If there were two ‘A’s and the transaction crashed during the insertion of a
third, by counting how many exist in the database, the necessity of reverting this action
can be inferred. It would be necessary if there are now three ‘A’s and unnecessary if
there are still two ‘A’s.

The concept is extended to cascading actions. A reverser is computed for each
cascading action, as well as a verifier to determine whether this effect happened and
needs to be rolled-back or not. Consider that, in the previous example, each insertion
triggered an update on another table that counted how many ‘A’s existed in the table.
The logging information will contain the action desired by the user (insertion of ‘A’),
the reversers (deletion of ‘A’ and update of the count number) and the verifiers (there
were two ‘A’s in the database and the count value showed the number 2). If the server
crashes during these triggered actions or during a rollback, each condition must be
checked before applying each reverser, to make sure the same action is not reverted
twice or that an action that was not executed is not reverted.

During the recovery process, all reversers are executed backwards, but only if the
reverser’s corresponding verifier shows the need to execute it. If it does not, it is simply
removed from the log file. After an action has been reversed, its record (along with the
reverser and verifier) is removed from the log. If the server crashes during a recovery,
due the verifier system, there is no risk of reverting actions that need not be reverted or
that have not yet been executed.

Log-Based Model to Enforce Data Consistency 147

5.2 Logging Model

The logging model can be based on files where the relevant information is stored:
performed database actions, underlying database system state and reversers. These files
need to be judiciously observed, regarding its state and its contents. Three files are used
to this end: Log file is used to keep the performed actions, the underlying system state
and the reversers; the Copy file is used to keep the contents of the Log file while the
Log file is being updated for the next action; the Temp file is used as a flag in order to
know if the Copy file has been created successfully. A more detailed description is
provided below, including a step by step description of the critical aspects to be
addressed. Figure 1 presents the state diagram for the logging system model. Each state
is identified by a code that comprises two letters shown between curved brackets.

A new empty Log file is created for each new transaction occurring in the system
(LC). The file is created before the first action of every new transaction and it is deleted
just after the transaction is completed (DD). If the system crashes when the transaction
is starting and creating the Log file, the file can either exist and be empty or not exist. In
case it exists, it contains no actions to be rolled-back, thus the Log file is deleted. If the
server crashes when deleting the file and closing the transaction, the file can either exist
with its contents still intact or not exist. If it does not exist, the transaction was already
over. If it still exists, then it is possible to read it and rollback until the previous stable
database state and, finally delete the Log file.

The logging process must be done in a way that the logging system’s last state must
be recoverable. As such, to prevent state corruption, we must always keep a copy of the
old state (Log file) until the new one is completely defined. To achieve this result, as
previously mentioned, two additional files are used: Temp and Copy.While the Log file
is used to keep track of the history (actions, states and reversers) of all actions already
performed and also the one under execution (if it is the case), the Temp file is used to
indicate that a copy of the Log file is in process, which means that the contents of the
Copy file cannot be trusted. Thus, for each new action, a new empty Temp is created
(TC), and the Log file’s content is copied to a new Copy file (CC). After copying the
Log file, the Temp file will be deleted (TD). If the system crashes before deleting the
Temp file, it means that the content of the Copy file cannot be trusted but the content of

Log Created (LC) Temp Created (TC) Copy of LC is Created (CC)

Temp Deleted (TD)

Log Updated (LU)System Update (SU)

Log and Copy Deleted (DD)

Fig. 1. State diagram for the logging system model.

148 Ó.M. Pereira et al.

the Log file can be trusted and used to roll-back the transaction. As previously men-
tioned, if the content of Log file is successfully copied to the Copy file then the Temp
file is deleted (TD), meaning that the content of Copy file can be trusted and the content
of Log file cannot be trusted anymore. The content of Log file cannot be trusted
because after deleting the Temp file, the updating process of the Log file (LU) will be in
process. During this process, the system can crash leading to an uncertainty about the
validity of the content of the Log file. Thus, in this situation, to recover the system’s
previous state, the content of the Copy file is used.

Table 1 shows the several phases described above, the phase of each of the files,
and what file is chosen on each phase. The meaning of each symbol is: ‘o’ – file exists
and its content is reliable; ‘x’ – file does not exist; ‘?’ – the file exists but its content is
not reliable. The table content is now described. On phase A, there is no action being
performed. Two situations can trigger this: (1) a new transaction has started and the
Log file is created as an empty file; (2) a transaction is taking place but no action is
being processed. In the latter situation, an action has just been executed but the next
one (if it exists) did not start yet. Phase B is triggered when a new action is required to
be executed: Temp file is created. During phase C, the Copy file is created and the
content of the Log file is copied. If the server crashes on phases A, B or C, the chosen
recovery file is the original one – the Log file. Despite a new action has been triggered,
the content of the Log file is reliable because it has not been updated during these
phases. On phase C, Temp file is deleted, meaning that the content of the Log file has
been successfully copied to the Copy file and, consequently, the content of the Copy
file is now reliable. Phase D, derives immediately from phase C. After having deleted
the Temp file, it is not possible to know if the content of the Log file is reliable, since
the system will start the update process of the Log file, so that it includes the required
information to roll back the action being processed. If the server crashes on phases C or
D, the chosen file is the Copy file. Finally, on phase E, the action being processed has
been successfully executed, the Log file successfully updated and, therefore, the Copy
file can be deleted. In case the system crashes, the chosen recovery file is the Log file.

The model just presented is used in the local storage mechanism. All actions in the
transaction trigger this update, and all reverts during the recovery process do so as well.
Even if the server crashed during multiple concurrent transactions or during a recovery
process, all uncommitted transactions will be logged and this allows the system to roll
them back and to leave the database on a consistent state.

As shown in Sect. 8, the local architectural model relies on writing the logging
information to disk: fault tolerance is supported even in a complete system crash, but

Table 1. A log-update cycle.

Phases
A B C D E

Log o o o ? o
Temp x o o x x
Copy x x ? o x
Valid file Log Log Copy Copy Log

Log-Based Model to Enforce Data Consistency 149

with heavy performance costs when transactions have many operations. The perfor-
mance costs are basically justified by I/O disk operations. The Log, Temp and Copy
files need to be persistent in order to ensure that, if the system crashes, the log
information is not lost.

We assume that the hardware crashes will not be so severe that they render the hard
drive contents unrecoverable or that a back-up system is deployed to allow the recovery
of a defective file system. Most file systems do not provide fault-tolerant atomic file
creation, removal, copy, movement, appending or writing operations, which is the
reason behind the protocol shown in Fig. 1.

6 Remote Architectural Model

The remote architectural model tries to leverage both performance and fault tolerance and
relies on a remote machine to keep the logging information in memory. I/O operations are
not as heavy on performance as writing to disk, but fault tolerance is only guaranteed if
the logging server does not crash. In order to overcome this fragility, a fault-tolerant
master-slave architecture was designed, hereafter referred to as a Cluster Network (CN).
CN allows several machines to coordinate and replicate information among them. This
system can be used to store the logs from the remote mechanism, which allows some
machines to crash without loss of information. In the designed algorithm, the only case
where the logs would be lost would be a scenario where all machines crashed, which is
unlikely if the machines are geographically spread. We expect the performance of this
mechanism to be superior against the local architectural model.

The remote architectural model uses TCP sockets to exchange information between
the servers. Because TCP provides reliability and error control, both machines know
when a message has been properly delivered and the system server can perform the
requested actions while the logging server keeps the information in memory. Both
servers can detect if the network failed or the remaining server has crashed. In these
cases, the recovery process can be initiated until connectivity is re-established. When
using a CN to store the needed information, the remote mechanism allows for fast
interactions (faster than, for example, writing information to the file system), reliability
(information is replicated through the nodes in the cluster to avoid losses if some of the
machines crash) and consistency (the nodes all have the same information). Data
replication techniques such as the byzantine tolerant approaches mentioned previously
are a valid option, but have an associated performance decay due to the byzantine
assumption and a low threshold for the amount of faulty machines. As such, the CN
was designed as a fault-tolerance master-slave network that replicates information
across all the slaves and better fits our requirements.

We require our CN to be able to scale as needed, without having to interrupt service
or without having maintenance downtime. We considered that nodes should be sym-
metrical to avoid the human error factor present in id-based systems. We also want a
stable algorithm (a master node remains a master node until it crashes) to avoid
unnecessary operations when a former master node is turned back on. Finally, we
consider that an IP network is not perfect and that network elements (switches, routers)
and well as network links can crash at any time.

150 Ó.M. Pereira et al.

We therefore define our CN as a set of at least one node that communicates through
IP, where any of the nodes can crash and be restarted at any given time. The master
node is contacted by clients and it forwards the information to the slave nodes. Clients
can find the master node through any number of methods, like DNS requests, manual
configuration, broadcast inquiries, etc. If the master crashes, one of the slaves is
nominated to be master and, because all the information was replicated among the
slaves, it can resume the master’s process.

Our leader-election algorithm is inspired by Gusella et al.’s election algorithm [41].
While many other leader election algorithms would be supported, this one suits the
DFAF requirements the best. The authors have developed a Leader Election algorithm
that is dynamic (nodes can crash and restart at any time), symmetric (randomization is
used to differ between nodes), stable (no leader is elected unless there is no leader in the
cluster) and that uses User Datagram Protocol (UDP) communication (non-reliable,
non-ordered). It supports dynamic topology changes to some degree, but it is not
self-stabilizing (nodes start in a defined state, not in an arbitrary one).

When a master is defined, the master is the one receiving requests from clients. In
order to guarantee consistency among all the nodes, the master forwards any incoming
requests to the slaves before answering the client with the corresponding response. This
guarantees that all the slaves will have the same information as the master. If the master
crashes during this process, because the client still has not been answered, he will retry
the request to the new master, which will store it (while avoiding request duplication)
and forward it to the slaves.

When a slave joins the network, he contacts the master and requests the current
system information (in this case, the current log). A mutual exclusion mechanism is
necessary to avoid information inconsistency when information is being relayed to a
new slave (if new information reaches the master while a new slave is not fully
updated). To avoid request duplication from clients when the master node crashes, a
request identification number is used.

Using this approach means that up to N − 1 nodes in a CN with N nodes can crash
without information being lost or corrupted. Using other approaches for data replica-
tion, such as [33], only allows up to N/3 nodes to be faulty and is expected to have
worse performance. However, byzantine-tolerant approaches are more robust and our
logging model is general enough that any data replication mechanism can be used to
safe-keep the logging information.

7 Proof of Concept
In this chapter, two proofs of concept are presented, each one for one of the two
architectural models. The logging mechanism was adapted to the previously mentioned
DFAF, in order to guarantee the atomic and consistent properties of transactions. This
way, even if the DFAF server crashed during multiple concurrent transactions, those
transactions will all be rolled-back and the underlying database will be on a consistent
state when the recovery process has finished.

That recovery process may activate manually or automatically, either after the crash
or after a server restart. If the recovering process is based on the local architectural
model (information stored on the local hard drive), it can only start after the server has

Log-Based Model to Enforce Data Consistency 151

been restarted. If the recovering process is based on the remote architectural model
(information is stored remotely), the recovery process can start when a system
administrator notices that the server has crashed. If a remote server is being used to
store the information, it can detect automatically that the server has crashed (through a
time-out system, for example) and it can start the process automatically.

The reverser and verifier system in DFAF depends on the underlying DBMS
schema and query language. Different schemas can imply different cascading actions,
if, for example, different triggers are defined in each schema. Different query languages
also imply different reversers and verifiers, since an insert in SQL has a very different
syntax from a NoSQL DBMS with a custom query language.

Having multiple transactions occurring at the same time implies having either
multiple log files or a single log file with information from all transactions. This could
lead to problems during the recovery process, if the order of actions in separate
transaction was not being logged. However, the fact that transactions guarantee the
isolation property means that each of their actions will not affect other transactions.
Therefore, the order in which each transaction is rolled-back is irrelevant, as long as the
statements in each transaction are executed backwards.

To prove our concept, the local logging mechanism using DFAF was tested with a
single client connecting to the database. The client starts a transaction, inserts a value
and updates that value, finishing the transaction. During this process, the logging
information is stored in a local file, as can be seen in Listing 1.

Start DFAF transaction
Connect to database
Create empty ‘log’ file

Insert value "A"
Create ‘temp’ file
Back-up ‘log’ file as ‘copy’ file
Delete ‘temp’ file
Update ‘log’ with action, reverser and verifier
for ‘insert A’
Delete ‘copy’ file
Execute action in database

Update value "A" for "B"
Create ‘temp’ file
Back-up ‘log’ file as ‘copy’ file
Delete ‘temp’ file
Update ‘log’ with action, reverser and verifier
for ‘update A to B’
Delete ‘copy’ file
Execute action in database

Close DFAF transaction
Delete ‘log’ file
Close connection

List. 1. Pseudo-code example of a transaction.

152 Ó.M. Pereira et al.

We crashed the transaction on several stages of each action’s execution and verified
that the recovery process could correctly interpret the correct log file and set the
database in a correct state, the one previous to the transaction. In order to interrupt the
process on particular stages, exceptions were purposely induced in the code, which
were thrown at the appropriate moments. The recovery process was then started and
tested as to whether it could successfully recover and interpret logged information and,
if needed, rollback the database to a previous state. An example of a recovery process is
shown in Listing 2.

If ‘log’ files exist
For each ‘log’ file

Pick appropriate file to read according to
Table 1
Remove additional files
Set valid file as ‘log’ file

For each action in the log (backwards)
If verifier shows action was performed

Execute reverser
Create ‘temp’ file
Back-up ‘log’ file as ‘copy’ file
Delete ‘temp’ file
Remove action, reverser and verifier from
‘log’ file
Delete ‘copy’ file

Delete ‘log’ file
Accept incoming clients/transactions

List. 2. Pseudo-code example of a recovery process.

Results showed that the system was able to recover from a failed transaction and
returned the database to a safe state in all cases.

To prove our concept with a CN, or in other words, with the remote mechanism, we
deployed a network with a client connected to a DBMS and to a CN, as shown in Fig. 2.

We used the same transaction used to test the local mechanism. In our first test, we
checked whether the CN could detect and roll-back failed transactions. We crashed the
client after thefirst insertion and theCNdetected the crash and rolled-back the transaction.
An example of this process, from the master-node’s perspective, is shown in Listing 3.

If client timed-out
For each logged action (backwards)
Inform slaves that action is about to be reverted

If verifier shows action was performed
Execute reverser

Remove action, reverser and verifier from log
Confirm to slaves that action was reverted

Clear client information
List. 3. Pseudo-code example of a master node in a recovery process.

Log-Based Model to Enforce Data Consistency 153

In our second test, we checked if a correct rollback was ensued with crashes on
different stages of the transaction (before logging the action, after logging but before
performing the action, after performing but before logging that it has been performed
and after logging that the action had been done), and monitored the roll-back procedure
to guarantee the database was in the correct state after the recovery process had
finished.

Finally, we checked whether several concurrent transactions occurring in a DFAF
server could all be rolled-back without concurrency issues. We used a DFAF server to
handle several clients while connected to a CN, as can be seen in Fig. 3, and crashed
the server during the client’s transactions. The CN detected the crash and rolled-back
all transactions, leaving the database once more in a consistent state.

8 Evaluation

To demonstrate the soundness of the presented approach in a practical environment, the
performance of our logging mechanism’s implementation was examined. The test-bed
used a 64-bit Linux Mint 17.1 with an Intel i5-4210U @ 1.70 GHz, 8 GB of RAM and
a Solid State Drive. For tests involving a CN, a second machine was used, running
64-bit Windows 7 with an Intel i7 Q720 @ 1.60 GHz, 8 GB of RAM and a Hard Disk
Drive. A 100 Mbit direct and dedicated cable network was used as an underlying
communication system between both nodes.

Figure 4 shows how the local (green) and remote (red) logging mechanisms
compare with each other, using as a basis for comparison a transaction with up to one
to one thousand (1,000) statements on a SQLite table. This number of statements was
based on previous DFAF evaluations. Tests were repeated at least 20 times to get an
average of the values. The 95% confidence interval was calculated, and the base time
for operations was removed to allow for a more intuitive graph analysis. The CN used

Fig. 2. The deployed network for test with the remote mechanism and single client, from [13].

Fig. 3. The deployed network for tests with the remote mechanism and multiple clients, from
[13].

154 Ó.M. Pereira et al.

for the remote mechanism was a local single-node, which removed most of the network
interference with the tests.

In a first view, the graphic shows that the behavior of the local and the remote
architectures diverge as the number of actions increases in a transaction. Although, it is
also noticeable that until 250 actions both architectures present similar response times.
If a closer look is taken, the local architecture presents a better response time for small
numbers of actions (around 100). The reason for this result, is that the overhead
induced by the network clearly overrides the I/O operations for the Log, Temp and
Copy files. As expected, for transactions with more actions, the most performant
mechanism is the remote mechanism, where a sub-second performance decay is noticed
(around 321 ± 209 ms for 1000 operations). The baseline time for 1,000 operations
was 10,295 ± 1,142 ms, which means remote mechanism has a performance decay of
approximately 3.1%. The local mechanism is the least performant, due to the high
amount of disk operations, with around 2,047 ± 237 ms for 1,000 operations, a 19.8%
performance decay. The performance difference of an order of magnitude between both
mechanisms is due to the fact that, as the logging file gets bigger, it takes longer to
read, copy and write it. This means that, with a transaction of 1.000 insertions, for
example, the last insertion will take a lot longer than the first insertion, while the remote
mechanism takes a constant amount of time for any insertion.

We tested Cluster Networks to find how long it takes to find a master and make the
information consistent among them. These values have a direct correlation to the
defined time-outs on each state of the network, as defined by Gusella et al.’s algorithm.
We created two-node networks (1 master, 1 slave) and measured the times taken for

Fig. 4. Performance (in milliseconds) of the different logging mechanisms, from [13] (Color
figure online).

Log-Based Model to Enforce Data Consistency 155

each node to become a master/slave (with a confidence interval of 95%) and to
guarantee the consistency of information among them. Tests with more nodes were not
feasible, due to hardware restraints.

Tests show an average of 5 ± 1 ms to get a node from any given phase of the
election algorithm to the next, excluding the defined time-outs. The time taken to
exchange all the information from a master to a slave depends on the current infor-
mation state, but in our tests, any new slave took approximately 8 ± 1 ms to check
whether information was consistent with the master. Transferring the log with 1,000
records from the first test took approximately 20 ± 4 ms.

9 Conclusion

In this paper, a recovering log-base model was presented to enforce data consistency on
agnostic fault-tolerant systems. Every modification to the system is logged and this
logged information is used to recover the previous consistent state in case the system
fails or crashes. Two architectural models were presented: one local based on files and
another based on memory in a remote cluster. To prove the feasibility of our proposal,
it was tested in an environment based on a previous work, the DFAF. The DFAF is a
CLI-based framework that implements common relational features on any underlying
DBMS that do not support them. These features can be very useful on situations where
NoSQL are being used. Some of the features include ACID transactions, local memory
structure operations and database-stored functions, like Stored Procedures. However,
the proposal lacked a fault tolerance mechanism to ensure the atomic property of
transactions in case of failure. We now propose a fault tolerance model, general enough
to work with underlying deterministic systems, and, in this paper, adapted to DFAF.
Our model is a logging mechanism which requires the performed action, its verifier
(that checks whether it has been executed or not) and its reverser (to undo it, in case of
failure). Two ways of storing the information were presented: either locally in the file
system, or remotely in memory in a dedicated cluster. Because operating systems do
not usually provide atomic operations, to prevent the logging information from
becoming corrupted, a description was made of how to update the information in the
logging model. In order to guarantee that the model is also fault tolerant and the
information is not lost in case of failure, a description of a master-slave network was
also presented that can be used to replicate the information. Clients contact the master,
which replicates the information to slaves without consistency issues.

Our performance results show that the use of our logging mechanism can be
suitable for a real-life scenario. There is an expected performance degradation, but a
fault tolerant systems provide several advantages over a slightly more performant not
fault-tolerant systems. The performance of both architectures clearly diverges
depending on the context (number of actions). If the number of actions is under 100,
the local architecture presents a better performance. But if the number of actions is
higher than 100, then the remote architecture presents a better performance. While the
performance of the local architecture decays are the number of actions increase, the
performance of the remote architecture is mostly only very slightly depends on the
number of actions However, if a closed look it taken to the collected results, the

156 Ó.M. Pereira et al.

overhead on transactions with tenths of actions is almost negligible, in either imple-
mentations: local and remote depending on the number of actions. By empirical evi-
dence, we emphasize that these are most common situations.

In the future, the local and remote mechanisms will be improved. Regarding the file
system, a highly performant algorithm will be developed, that does not rely on copying
the previous log on each update. Regarding the remote mechanism, the CN will be
adapted for other requirements, in order to improve performance. This can be done by
allowing priority nodes and removing the symmetry factor. This way, servers can
preferentially become masters, if they have better hardware or conditions. The CN can
also be improved by changing the underlying communication protocol, which at the
moment is assumed to be unreliable. A master look-up mechanism will also be
developed, like DNS registration. At the moment, there is no such mechanism, and
clients resort to finding masters manually. Using DNS registration, clients can simply
use the DNS look-up system to find masters when there is a crash.

Summarizing, a logging-based model with DFAF was implemented, this way
guaranteeing the atomic property of transactions on an underlying DBMS, even in
cases of failure. Two ways of storing the information were provided, to leverage
performance and reliability. A master-slave fault tolerant network was also proposed,
which can be used as a remote server to keep information replicated and consistent.
Both the logging model and the CN can be used for other applications; we have for
example adapted the CN to act as a concurrency handler in another module of DFAF.
In real scenarios, there is the need to choose which of the architectures better fits the
necessary requirements.

Acknowledgements. This work is funded by National Funds through FCT – Fundação para a
Ciência e a Tecnologia under the project UID/EEA/50008/2013.

References

1. Randell, B., Lee, P., Treleaven, P.C.: Reliability issues in computing system design. ACM
Comput. Surv. 10, 123–165 (1978). doi:10.1145/356725.356729

2. Sumathi, S., Esakkirajan, S.: Fundamentals of Relational Database Management Systems.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-48399-1

3. Gray, J.: The transaction concept: virtues and limitations. In: Proceedings of 7th
International Conference on Very Large Data Bases, pp. 144–154 (1981). doi:10.1.1.59.
5051

4. Pereira, Ó.M., Simões, D., Aguiar, R.L.: Endowing NoSQL DBMS with SQL features
through standard call level interfaces. In: SEKE 2015 - International Conference on Software
Engineering Knowledge Engineering, pp. 201–207 (2015)

5. ISO: ISO/IEC 9075-3:2003 (2003). http://www.iso.org/iso/catalogue_detail.htm?csnumber=
34134

6. Parsian, M.: JDBC Recipes: A Problem-Solution Approach. Apress, New York (2005)
7. Microsoft RecordSet (ODBC): Microsoft. http://msdn.microsoft.com/en-us/library/5sbfs6f1.

aspx. Accessed 16 Nov 2016

Log-Based Model to Enforce Data Consistency 157

http://dx.doi.org/10.1145/356725.356729
http://dx.doi.org/10.1007/978-3-540-48399-1
http://dx.doi.org/10.1.1.59.5051
http://dx.doi.org/10.1.1.59.5051
http://www.iso.org/iso/catalogue_detail.htm%3fcsnumber%3d34134
http://www.iso.org/iso/catalogue_detail.htm%3fcsnumber%3d34134
http://msdn.microsoft.com/en-us/library/5sbfs6f1.aspx
http://msdn.microsoft.com/en-us/library/5sbfs6f1.aspx

8. Pereira, Ó.M., Aguiar, R.L., Santos, M.Y.: CRUD-DOM: a model for bridging the gap
between the object-oriented and the relational paradigms. In: ICSEA 2010 - International
Conference on Software Engineering Applications, Nice, France, pp. 114–122 (2010)

9. Pereira, Ó.M., Aguiar, R.L., Santos, M.Y.: An adaptable business component based on
pre-defined business interfaces. In: 6th ENASE Evaluation of Novel Approaches to Software
Engineering, Beijing, China, pp. 92–103 (2011)

10. Pereira, O.M., Aguiar, R.L., Santos, M.Y.: ABC architecture: a new approach to build
reusable and adaptable business tier components based on static business interfaces. In:
Maciaszek, L.A., Zhang, K. (eds.) ENASE 2011. CCIS, vol. 275, pp. 114–129. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-32341-6_8

11. Pereira, Ó.M., Regateiro, D.D., Aguiar, R.L.: Secure, dynamic and distributed access control
stack for database applications. In: SEKE 2015 - International Conference Software
Engineering Knowledge Engineering, pp. 365–369 (2015)

12. Pereira, Ó.M., Regateiro, D.D., Aguiar, R.L.: Secure, dynamic and distributed access control
stack for database applications. Int. J. Softw. Eng. Knowl. Eng. 25, 1703–1708 (2015).
doi:10.1142/S0218194015710035

13. Pereira, Ó.M., Simões, D.A., Aguiar, R.L.: Fault tolerance logging-based model for
deterministic systems. In: DATA 2016 - 5th International Conference on Data Science
Technology Application, Lisbon, Portugal, pp. 119–126. SCITEPRESS (2016)

14. Balaji, P., Buntinas, D., Kimpe, D.: Fault Tolerance Techniques for Scalable Computing. In:
McsAnlGov, pp. 1–33 (2012)

15. Borges, A.R.: Introductory concepts. Lecture on Distributed Systems (2015)
16. Elnozahy, E.N.(M)., Alvisi, L., Wang, Y.-M., Johnson, D.B.: A survey of rollback-recovery

protocols in message-passing systems. ACM Comput. Surv. 34, 375–408 (2002). doi:10.
1145/568522.568525

17. Bhargava, B., Lian, S.-R.: Independent checkpointing and concurrent rollback for recovery
in distributed systems - an optimistic approach. In: Proceedings of Seventh Symposium
Reliable Distributed Systems, pp. 3–12 (1988). doi:10.1109/RELDIS.1988.25775

18. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of distributed
systems. ACM Trans. Comput. Syst. 3, 63–75 (1985). doi:10.1145/214451.214456

19. Johnson, D.B.: Distributed system fault tolerance using message logging and checkpointing.
Ph.D. Dissertation. Rice University, Houston, TX, USA. AAI9110983 (1990)

20. Brown, M.: Event logging system and method for logging events in a network system (1999)
21. Heemels, J.P., Carlson, G.M., Spinelli, J.C.: Data logging system for implantable cardiac

device (1997)
22. Fraker, W.F., Storm, J.M.: Position and time-at-position logging system (1999)
23. Salmassy, O.E., Sullivan, R.E.: Statistical and environmental data logging system for data

processing storage subsystem (1972)
24. Anderson, R.A.: Automatic process logging system (1959)
25. Mohan, C., Haderle, D., Lindsay, B., et al.: ARIES: a transaction recovery method

supporting fine-granularity locking and partial rollbacks using write-ahead logging. ACM
Trans. Database Syst. 17, 94–162 (1992). doi:10.1145/128765.128770

26. Huang, K.H., Abraham, J.A.: Algorithm-based fault tolerance for matrix operations. IEEE
Trans. Comput. 33, 518–528 (1984). doi:10.1109/TC.1984.1676475

27. Rabin, M.O.: Efficient dispersal of information for security, load balancing, and fault
tolerance. J. ACM 36, 335–348 (1989). doi:10.1145/62044.62050

28. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop distributed file system. In:
2010 IEEE 26th Symposium on Mass Storage Systems and Technologies MSST2010
(2010). doi:10.1109/MSST.2010.5496972

29. Ylönen, T.: Concurrent shadow paging: a new direction for database research (1992)

158 Ó.M. Pereira et al.

http://dx.doi.org/10.1007/978-3-642-32341-6_8
http://dx.doi.org/10.1142/S0218194015710035
http://dx.doi.org/10.1145/568522.568525
http://dx.doi.org/10.1145/568522.568525
http://dx.doi.org/10.1109/RELDIS.1988.25775
http://dx.doi.org/10.1145/214451.214456
http://dx.doi.org/10.1145/128765.128770
http://dx.doi.org/10.1109/TC.1984.1676475
http://dx.doi.org/10.1145/62044.62050
http://dx.doi.org/10.1109/MSST.2010.5496972

30. Oki, B.M., Liskov, B.H.: Viewstamped replication: a new primary copy method to support
highly-available distributed systems. In: PODC 1988 Proceedings of Seventh Annual ACM
Symposium on Principles of Distributed Computing, vol. 62, pp. 8–17 (1988). doi:10.1145/
62546.62549

31. Shih, K.-Y., Srinivasan, U.: Method and system for data replication (2003)
32. Wolfson, O., Jajodia, S., Huang, Y.: An adaptive data replication algorithm. ACM Trans.

Database Syst. 22, 255 (1997)
33. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Proceedings of Symposium

on Operating Systems Design and Implementation, pp. 1–14 (1999). doi:10.1145/571637.
571640

34. Bershad, B., ACM Digital Library, ACM Special Interest Group in Operating Systems, et al.:
HQ replication: a hybrid quorum protocol for Byzantine fault tolerance. In: Proceedings of
7th Symposium on Operating System Design and Implementation, p. 407 (2006)

35. Castro, M.: Practical Byzantine fault tolerance and proactive recovery. ToCS 20, 398–461
(2002). doi:10.1145/571637.571640

36. Merideth, M.G., Iyengar, A., Mikalsen, T., et al.: Thema: Byzantine-fault-tolerant
middleware for web-service applications. In: Proceedings of IEEE Symposium on Reliable
Distributed Systems, pp. 131–140 (2005)

37. Chun, B., Maniatis, P., Shenker, S.: Diverse replication for single-machine Byzantine-fault
tolerance. In: USENIX Annual Technical Conference, pp. 287–292 (2008)

38. Kotla, R., Dahlin, M.: High throughput Byzantine fault tolerance. In: Proceedings of 2004
International Conference on Dependable System Networks, p. 575 (2004). doi:10.1109/
DSN.2004.1311928

39. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, p. 9 (2008). doi:10.1007/
s10838-008-9062-0, www.bitcoin.org

40. Pritchett, D.: Base: an acid alternative. Queue 6, 48–55 (2008)
41. Gusella, R., Zatti, S.: An election algorithm for a distributed clock synchronization program

(1985)

Log-Based Model to Enforce Data Consistency 159

http://dx.doi.org/10.1145/62546.62549
http://dx.doi.org/10.1145/62546.62549
http://dx.doi.org/10.1145/571637.571640
http://dx.doi.org/10.1145/571637.571640
http://dx.doi.org/10.1145/571637.571640
http://dx.doi.org/10.1109/DSN.2004.1311928
http://dx.doi.org/10.1109/DSN.2004.1311928
http://dx.doi.org/10.1007/s10838-008-9062-0
http://dx.doi.org/10.1007/s10838-008-9062-0
http://www.bitcoin.org

Improving Performances of an Embedded
Relational Database Management System

with a Hybrid CPU/GPU Processing Engine

Samuel Cremer1,2(B), Michel Bagein2, Säıd Mahmoudi2,
and Pierre Manneback2

1 Computer Engineering Department, Haute Ecole en Hainaut,
Avenue Maistriau 8A, 7000 Mons, Belgium

samuel.cremer@heh.be
2 Computer Science Department, University of Mons,

Rue de Houdain 9, 7000 Mons, Belgium
{michel.bagein,said.mahmoudi,pierre.manneback}@umons.ac.be

Abstract. End-user systems are increasingly impacted by the expo-
nential growth of data volumes and their processing. Moreover, post-
processing operations, essentially dedicated to ergonomic features,
require more and more resources. Improving overall performances of
embedded relational database management systems (RDBMS) can con-
tribute to deliver better responsiveness of end-user systems while increas-
ing the energy efficiency. In this paper, it is proposed to upgrade
SQLite, the most-spreaded embedded RDBMS, with a hybrid CPU/GPU
processing engine combined with appropriate data management. With
the proposed solution, named CuDB, massively parallel processing is
combined with strategic data placement, closer to computing units.
Experimental results revealed, in all cases, better performances and
power efficiency compared to SQLite with an in-memory database.

Keywords: In-memory database systems · Embedded databases · Rela-
tional database management systems · GPU

1 Introduction

Current systems have to deal with an exponential growth of data volumes they
have to store, process and distribute. In recent years, numerous data manage-
ment paradigms have appeared. Major improvements have been accomplished,
especially in the area of Big Data systems and numerous NoSQL solutions have
emerged. The different issues involved in current data growth concern as well
data centers as end-user applications. Even if the current trend is in favor of
lightweight applications, end-user systems must deal with more and more data.
Whether with desktop platforms or mobile devices, numerous end-user appli-
cations embed an RDBMS (such as SQLite, MySQL embedded or MS SQL
Server Compact). Such embedded RDBMSs usually serve as storage systems,
c© Springer International Publishing AG 2017
C. Francalanci and M. Helfert (Eds.): DATA 2016, CCIS 737, pp. 160–177, 2017.
DOI: 10.1007/978-3-319-62911-7 9

Improving Performances of an Embedded RDBM 161

as well as cache systems to reduce the number of interactions between clients
and servers, and hence preserve the responsiveness of user interfaces. Low laten-
cies of end-user applications are regularly difficult to maintain because, in cur-
rent systems, many CPU cycles are dedicated to graphical user interface func-
tionalities which consume more and more resources. Offloading the CPU from
most of database processing’s permits precisely to dedicate more resources for
those greedy ergonomic features and hence to improve the reactivity of applica-
tions. Increasing client-side computing capacities enables the processing of larger
data volumes and hence to reduce the number of client-server communications.
Moreover, autonomy of mobile devices can potentially be increased by moving
database operations towards GPU cores. Compared to CPUs, GPUs of smart-
phones are more efficient architectures while they are often under-exploited by
non-multimedia applications.

In this paper a hybrid implementation over CPU and GPU is suggested in
order to improve SQLite performances. It was decided to focus this research on
SQLite because it is the most widely deployed database engine throughout the
world1 (it is part of the majority of smartphone operating systems, browsers,
Dropbox clients, etc.). The processing engine of SQLite runs, like other RDBMS
engines, in a purely sequential manner. Its performances can be improved by
using all processing units of CPUs and GPUs. For numerous applications, GPU
architectures are currently more efficient than CPUs [1] and have become essen-
tial in modern systems, even in small devices like smartphones. Table 1 shows
that, compared to CPUs and for the same order of fee and power consumption,
GPUs have overall higher amount of cores, better computing power and a higher
memory bandwidth.

Table 1. CPU vs. GPU architecture.

CPU GPU

Reference Core i7 6850K GeForce GTX 1080

Number of cores 6 (12 threads) 2560

Frequency 3.6–4 GHz 1.733 GHz

Cache 15 MB (L3) 2 MB (L2)

Computing power (FP32) 768 Gflops 8,873 Gflops

Memory bandwidth 4× 19.2 GB/s 298 GB/s

TDP 140 W 180 W

Performances of In-Memory DBs are closely related to available memory
bandwidth. With their higher memory bandwidths, GPUs can potentially deliver
better performances than CPU architectures for database processing. To bene-
fit from this high bandwidth, global memory access latencies must be masked
1 SQLite: Most Widely Deployed and Used Database Engine, http://www.sqlite.org/

mostdeployed.html.

http://www.sqlite.org/mostdeployed.html
http://www.sqlite.org/mostdeployed.html

162 S. Cremer et al.

through a massive parallelism. This is one of the reasons why GPUs are designed
for massive workloads and CPUs always outperform them for little jobs. The
major contribution of this paper is to propose a data placement strategy allow-
ing the exploitation of a clever parallelism offered by multicore CPU and GPU
architectures. The benefit provided by the proposition here is the improvement
of the responsiveness and the energy efficiency of applications.

The remainder of this paper is structured as follows: Sect. 2 presents the
state of the art and the CuDB’s position. Section 3 describes the internal archi-
tecture of the system, its processing and storage engines and how join queries
are processed. Evaluation results are presented in Sect. 4, and this paper ends
with outlooks and conclusion.

2 State of the Art

The idea of using hybrid CPU/GPU architectures to accelerate the data process-
ing of relational database engines emerged in 2004 [2], some years before the
arrival of GPUs with unified shaders and the release of general-purpose process-
ing on GPU (GPGPU) frameworks. To the best of our knowledge, two main
approaches have been proposed in the literature.

The first one emerged in 2007 with GPUQP [3]. This approach divides query
plans into different action patterns which could be processed with different levels
of parallelism, either on CPU or GPU platforms. The authors focused on the
processing of single join-queries and contributed to provide base design archi-
tecture for most following works. So far, large majority of research in this field
focused on very specific aspects of RDBMS, without providing a complete data-
base engine. For example, OmniDB [4], is a system in which the authors paid
more attention to the maintainability properties of source code. GPUDB [5],
was created to demonstrate the potential performances of GPUs with the Star
Schema Benchmark [6]. CoGaDB [7] which is mainly designed to study the gen-
eration of execution plans, and Ocelot [8], an extension of MonetDB, can also
be mentioned. With Ocelot, the researchers have proposed a “kernel-adapter”
approach to make a portable database engine across different hardware archi-
tectures. From what is known, the latest project which is closest to a DBMS
is Galactica [9], but with a partial support of SQL, it is rather intended to be
used in Big Data environments. With the exception of GPUTx [10], where the
authors were focused on transaction management and their locking mechanisms,
previous works were dedicated to online analytical processing (OLAP).

The second approach, initiated by Sphyraena [11], forces full query plan
processing on the GPU side. With Sphyraena, single table queries can be
processed by GPU cores with a single kernel call what produces a marginal
overhead compared to GPUQP’s principle (with GPUQP, each query requires
multiple kernel launches). Given that a GPU-enabled replacement solution for
SQLite must be fast with all sizes of datasets and also with simple queries; this
concept seems to be more promising in terms of speed and efficiency improve-
ments for embedded databases. The implementation of Sphyraena mainly suffers

Improving Performances of an Embedded RDBM 163

from numerous data exchange penalties through PCI Express bus, does not
exploit CPU’s parallelism, and a suboptimal join queries processing.

Most previous solutions are partial DBMS dedicated to OLAP, working with
“read-only” databases. These different researches are more targeted to Big Data
systems and do not encounter many of the issues of an embedded full relational
database managements system. Most of previous solutions are not able to com-
pute queries on little datasets faster than conventional systems, what makes
them not suited to be embedded inside end-user applications. GPUs suffer from
size limitation and the lack of extensibility of their memories what complexify
processing of large datasets (>16 GB). OLAP databases are often significantly
bigger than available GPU device memory what makes difficult to process them
without performance degradation due to the PCI-Express bottleneck. The pro-
posed solution, named CuD, targets to boost embedded RDBMS thanks GPUs,
which is fully justified by the fact that embedded databases are generally smaller
than available GPU memory. The aim is to improve the performances at the
RDBMS engine level, which implicitly increases the responsiveness of applica-
tions, while leveraging capabilities of available hardware architectures. CuDB is
a hybrid CPU/GPU fully “read-write” embedded RDBMS engine. The proposal
targets a high performance solution for either personal computers (workstations
and laptops), small devices (embedded systems) or even server clusters. The ver-
sion of CuDB described in this paper was first briefly presented during DATA
2016 [12].

To the best of our knowledge, it can also be noted that only four commer-
cial products, Kinetica [13] (previously known as GPUdb), MapD [14], Sqream
DB [15] and BlazingDB [16], are database engines accelerated by GPUs. To
be complete, note also there is a fifth system, Parstream, a precursor in GPU
accelerated databases. Parstream is a big data oriented system where multiple
GPUs have as task to manage the indexes of very large datasets. Parstream has
been acquired recently by Cisco Systems [17]. Cisco Systems aims to provide
a solution for analyzing high IoT data flows. Current commercial products are
mainly oriented for geographic information systems (GIS) and OLAP what is
far to meet the same constraints as an embedded RDBMS.

3 Design of Proposed System

3.1 Internal Architecture

Before understanding how the solution works, the architecture of SQLite will
be presented briefly. As shown by Fig. 1, SQLite can be subdivided into four
logical units. The first unit is the interface where the incoming SQL queries are
received and results are sent back to user application. The second logical unit is
the “SQL Command Processor” which produces query execution plans (opcode
list). These opcode lists are comparable to an assembly style instruction list and
are interpreted by the third unit of SQLite named “Virtual Database Engine”
(VDE). This virtual machine is in charge of executing those opcodes on data
stored and managed into the last unit of SQLite, the “Storage Engine” (SE).

164 S. Cremer et al.

Fig. 1. Internal architecture of SQLite.

The properly subdivided architecture of SQLite makes it well-suited for an imple-
mentation of a new hybrid processing engine without changing anything at its
API and SQL Command Processor.

With CuDB, the two first stages of SQLite are preserved in order to maintain
SQL language support and to remain compatible with existing applications.
VDE and SE units are the two components that intensely require the most
resources. As shown by Fig. 2, CuDB embeds its own redesigned VDE and SE in
order to exploit hybrid specificities of modern hardware architectures. The VDE
of CuDB is designed as a Hybrid Virtual Machine (HVM) which incorporates
two distinctive processing engines. One is dedicated to the GPU, and the other
to the CPU, but both are based on the same parallel paradigm: each thread
processes the query plan on its own data rows. By analogy with the SIMD (Single
Instruction, Multiple Data) paradigm, the implemented approach follows what
we called a SQPMD (Single Query Plan, Multiple Data) paradigm. The workflow
through the two first stages does not differ from the SQLite implementation.
Given that the query plans received by the HVM are initially intended to be
processed by a single thread, they must be adapted in order to launch them for
parallel processing. With the hybrid virtual machine, a unique produced query
plan can be processed either by CPU or by GPU thread on a different dataset. It
was deliberately chosen to not implement a simultaneous execution mechanism
on CPU and GPU of a same execution plan for these reasons: (1) mainly avoiding
the overhead due to synchronizations and data transfers between CPU and GPU,

Fig. 2. Internal architecture of CuDB.

Improving Performances of an Embedded RDBM 165

and (2) avoiding of using both architectures simultaneously to preserve some
responsiveness of the graphical interface and other running applications.

To get some benefit from the high memory bandwidth between the graphic
memory and GPU, the entire database is hosted directly by the GPU global
memory (In-Memory-DB). The main advantage of this design is to prevent most
of the data transfers between the CPU and GPU, avoiding unnecessary transfer
latencies. This design is suited for most of end-user applications in which embed-
ded databases are often smaller than available memory of GPUs. With the “in-
memory” database and with the majority of the extraction queries, experiments
have confirmed that performances depend primarily on the available memory
bandwidth rather than computation power. As mentioned previously in Sect. 1,
bandwidth between the GPU and its dedicated memory is often higher than that
of CPU and its central RAM. This fully justifies the usage of GPU architectures
for query processing, and especially when databases are able to fully reside in
GPU device memory.

3.2 Processing Engine

A single data is processed faster by a CPU core than with a GPU core. This is
one of the reasons why majority of GPGPU systems require a minimal amount
of data for processing before becoming more efficient than CPUs. GPU systems
must support the penalty of kernel launching, which is always accompanied
by a data transfer through the PCI-Express. For small datasets this penalty
produces a prohibitive overhead. This is why, in order to minimize the amount
of kernel launches, the processing engine of CuDB is implemented following the
SQPMD paradigm. Thanks to this paradigm, the efficiency threshold of the GPU
processing engine gets lowered to only one thousand records. In order to deliver
best performances independently of the size of datasets, a CPU processing engine
is required for the processing of queries on tables of less than one thousand
records. That is why, to make an efficient use of hybrid architectures, HVM
chooses to execute processing, either on CPU or GPU resources according to the
data volume they have to process.

With the GPU processing engine, once a result row is calculated by a thread,
it is sent to the main memory through an asynchronous memory (pinned-
memory). This technique allows threads to start processing next rows without
waiting for the end of the transfers of the previous results, which increases the
overall system performances. This transfer mechanism is obviously unnecessary
with the CPU processing engine.

The implementation of the multicore CPU engine is based on the same design
as the GPU version, but using POSIX threads instead of the CUDA framework.
To ensure maximum performance with the CPU, several duplications of tables
are also kept in the main memory. It is not necessary to duplicate the entire data-
base in the central RAM memory, but only tables which are processed faster on
CPU (tables with less than 1000 rows). With the first implementation of CuDB,
a separate memory management was used, with RAM and GPU memory. The
“unified memory” method provided by CUDA (from version 6) was tested to

166 S. Cremer et al.

avoid keeping explicitly a permanent copy of some tables. With the “unified
memory”, CPUs and GPUs use a same pointer to access the data. This facili-
tates code writing with implicit management of memory transfers achieved by
the driver. Experiments shows that severe slowdowns (between 2x to 9x) are
introduced by the “overhead” of automatic memory management: the idea of
using “unified memory” on the engine was abandoned. In the light of the high
memory intensive workload of a database engine, the usage of unified memory
did not permit to save memory space. The work presented in [18] also concludes
that using “unified memory” can usually cause performance degradations.

3.3 Storage Engine

SQLite is one of the rare RDBMS which features a dynamic typing system for
each value: this is called the “Affinity” mechanism. In order to preserve com-
patibility with existing applications, CuDB supports also dynamic data typing.
However, such functionality entails a fairly high increase in complexity of treat-
ments. Before reading a column value, the processing engine needs to read a
typing header to know how to decode it. In case of a column value is used in a
function or a predicate, a dynamic cast may also be required. Dynamic typing
produces defacto a noticeable overhead which is strengthened by less consis-
tent memory accesses due to custom size of each data. Performances of GPGPU
solutions are very sensitive to coherency of memory accesses [19], which makes
CuDB efficiency and performance suboptimal when it handles dynamically typed
columns. As the majority of developers are mainly trained on statically typed
database management systems like SQL Server, Oracle or MySQL, they are able
to deal without “affinity” mechanism. This is why to reach the best performance;
a selector for three different storage engine configurations is implemented. Like
MySQL and MariaDB, each table of the database can use distinguished stor-
age configurations. With these different storage engines, the database can be
adjusted to its context while boosting the performances of applications with
static data typing.

With CuDB, database insertions do not block the entire table and are
processed asynchronously by the CPU. On each database update, data per-
sistency is provided by a “write-only” mirror database saved on the hard drive.
In the remainder of this subsection follows the description of the three storage
engines.

Affinity Storage. This is the default storage configuration. It supports only
dynamic typing similar to SQLite. Assumed that most of the records stored
in a table do not occupy the same storage space, we have chosen to design this
storage engine as a row-oriented structure in order to maximize data compactness
of tables. A table is composed of two parts, table-header and records and a
table-header is just a collection of records-pointers. As shown by Fig. 3, each
tuple is always preceded by a header, which is required to support the “Affinity”
mechanism. Depending upon the column number of the record, the record-header

Improving Performances of an Embedded RDBM 167

Fig. 3. Design of the record structure with “Affinity” storage configuration. On this
example, Col5 of Row1 is not present because its value is Null.

does not always occupy the same number of bytes. To favor data compactness,
Null and NaN values do not occupy memory space inside the record-value zone.
They only consume four bits into the record-headers. This is the slowest storage
configuration but, as counterpart, it promises to be compliant with the “Affinity”
mechanism required by existing applications.

Strict Storage. Like the previously described storage setup, this configura-
tion is a row-oriented data structure. The storage structure is similar to the
“Affinity” engine configuration without the support of the “Affinity” mecha-
nism. This fact implies that the table columns are statically typed like other
database management systems. The suppression of the “Affinity” mechanisms
allows the suppression of record-headers processing which procures a substan-
tial performance boost. This storage mode is more intended for experimental
purpose and is of minimal interest for the scope of this article.

Boost Storage. Like the “Strict” storage configuration, all data are statically
typed without any support of the “Affinity” mechanism. The particularity of this
storage configuration is that tables are stored as column-oriented data structures.
As shown by Fig. 4, a table structure is split into three parts: (1) the table header
which principally contains the column pointers, (2) the column-oriented data of
the stored records, and (3) the variable length data in a row-oriented form.

Given that each CUDA thread works on its own record and on the same
column, a column-oriented data structure is able to provide coalesced memory
accesses which drastically reduce memory latencies (400 to 4 waiting cycles).
Coalesced memory accesses can be obtained only with fixed-size columns. Fixed-
size columns may pose some problems for variable-length strings and blob values.
For those datatypes, we store only data pointers into the column-oriented storage
zone. Those pointers point to associated values stored inside the row-oriented
storage zone of the table structure to avoid waste of storage space. Fixed-length
strings are entirely stored into the column-oriented storage region.

The main drawback of this storage engine is the higher data occupancy
induced by fixed size columns. To avoid runtime errors with insertion queries,
a datatype conversion mechanism can be activated. This mechanism converts
values from the insertion queries to the datatypes imposed by table structure.
As example, if a query tries to insert a string into an integer column, the string
will be parsed and if a numerical value is found it will be converted and stored

168 S. Cremer et al.

Fig. 4. Data structure of the “Boost” storage configuration. For each record there is
a corresponding bit in the “Deleted Rows” bit vector that shows whether it is up to
date or not.

otherwise the system stores a NULL value. This conversion mechanism can also
be disabled to gain in performance with write intensive applications. With this
storage mode, it is also possible to store single precision floats and fixed length
strings which are not supported by SQLite which systematically uses double
precision floats and variable length strings.

3.4 JOIN Queries

The SQL JOIN clause is one of the most used clauses with relational databases.
With CuDB, the processing time of join queries highly depends on the selected
storage engine. Note that the current version of CuDB does not yet support
persistent indexes and consequently, what follows describe how joins with non-
indexed columns are processed.

The query plan generated by SQLite for a join query with non-indexed
columns, like in query (1), proposes the creation of a temporary indexation
structure (B+ tree) for inserting records of table t2. For each record of t1, cor-
responding records of t2 are searched inside the transient indexed structure.

SELECT ∗ FROM t1 JOIN t2 ON t1.col2 = t2.col3 (1)

This query plan has a complexity of O(m.log(m)) for creation and filling,
plus O(n.log(m)) for parsing the data. Given that CuDB conserves the query
compiler from SQLite, the generated query plans aim to be processed by a single
thread. The challenge is to find the best way to automatically parallelize the
proposed plan. To benefit from the massively parallel architecture of a GPU,
a temporary indexation structure that can be filled concurrently by numerous
threads is required. The classical B+ tree data structure used by the SQLite
virtual machine is suboptimal regarding the GPU architecture because insertions
cannot be accomplished concurrently.

Another constraint is that each thread makes its own search then; the struc-
ture exploration must be adapted to independent searches. Several existing GPU

Improving Performances of an Embedded RDBM 169

B+tree structures were investigated, for example, T-trees and CSS-tree struc-
tures. However, it was found that these structures cannot efficiently be filled in a
parallel way what makes them not suitable for transient indexation with GPUs.
Moreover, with the GPU B++ tree [20], because each node of the tree counts
more than one thousand values, a sequential pass through is slower than with
a conventional binary tree. As temporary indexation structure, the approach is
to use a simple vector of records, which is filled in a parallel way by all the
GPU threads. As the order of insertions processed by GPU threads is apriori
unknown, it is assumed that the filled record-vector is unsorted. After filling, a
parallel sorting algorithm is launched in order to finalize the transient indexation
structure. In this way, a sorted vector is obtained where each thread can make
a dichotomic search in O(log(n)) operations.

Fig. 5. Implementation of the bitonic sorter algorithm on GPU. Each thread sorts 4
rows, and thread synchronizations are required after every 4 comparisons. The bold
comparisons are processed by thread 0. Reprinted from [12].

To find an appropriate way to sort the record-vector, several GPU sorting
algorithms were investigated and one of the fastest algorithms was the radix
sort, with a time complexity of O(n.w), in most cases, where n is the number of
keys of word length w. If all keys are distinct, w is at least equal to log(n), but
the size of w can greatly increase with complex keys like strings. In a context
of database processing, the performances of a radix-sort can be very variable
depending on the key complexity, and the preference was to select an algorithm
which is independent of the key complexity. This is the main reason why a bitonic
sorting algorithm was implemented. Figure 5 shows the behaviour of such sorting
algorithm.

The bitonic sorter is a sorting network with a worst case complexity of
O(n.log(n)2). The complexity of the bitonic sorter is slightly worse than with a

170 S. Cremer et al.

radix sort, but the performances are stable regardless of the complexity of the
keys. To reduce the overhead due to the number of synchronizations required by
the bitonic sorter, some optimization techniques were carried out following [21].
Compared to most of other sorting algorithms, a bitonic sort does not require
an additional data structure. Sorting is applied directly on the record-vector.
Another significant advantage of bitonic sort is that it can be adapted to sort
multiple columns, what makes it pertinent in a join mechanism implementation.

4 Evaluation

This section starts with a description of how the performances of CuDB where
evaluated for selection queries. As current version of CuDB is mainly focused
for delivering high performances for database reads, next subsections present
speedups delivered for single table SELECT queries and JOIN queries. This
section ends with a brief evaluation of the energy efficiency obtained with such
a solution.

For the performance evaluations, the time required to process queries was
measured with tables of varying sizes (between one hundred and one million
rows). The tables consisted of four numerical columns followed by an 80 character
string column. The columns were not indexed and the selectivity of queries was
decreased starting from 10% for tables of one hundred records down to 0.1%
for tables of one million records. This was motivated by the fact that with
an embedded database and in an end-user application context, the amount of
returned results is usually limited by the size of the user interface. The execution
time of prepared statements was measured so that the compilation time of queries
was not taken into account. The transfer times required to send the query plans
to the GPU were considered, as well as the times needed by the GPU to send
the results to the CPU. Different configurations of CuDB were compared with
SQLite 3.8.10.2 and MySQL Embedded 5.7.11, both using in-memory databases.
As performances can slightly fluctuate, each test was done a hundred times. The
behaviour of the system was quite constant, and for better readability of this
document, the average values are presented here. Due to limited resources, the
experiments were run on a desktop with specifications shown by Table 2.

Given that CuDB is intended to be embedded inside end-user systems and
not the majority of users dispose of a high end GPU, experiments were also
conducted with an entry level GPU like the GT 740. The used system is a bit
outdated but it is coherent and it can still deliver decent performances. In many
areas, a GTX 770 can compete with a more up to date GTX 1060 GPU. To
conform to an end-user context, GPUs where always installed as main graphic
adapter and had to manage the graphical user-interface. This task causes a little
overhead, which is mainly perceptible for queries on tiny datasets. Note that the
maximal theoretical computing power of current CPUs is reached by using their
SIMD instruction sets like SSE 4.2, AVX or AVX2. As example, to fully benefit
from the power of AVX instructions, 8 additions and 8 multiplications must be
processed concurrently within each CPU core. This is why, compared to GPUs,
reaching the full potential of CPUs is often more complex.

Improving Performances of an Embedded RDBM 171

Table 2. Hardware specifications.

CPU GPU1 GPU2

Reference Core i7 2600K GeFroce GTX 770 GeForce GT 740

Number of cores 4 (8 threads) 1536 384

Frequency 3.4–3.8 GHz 1 GHz 1 GHz

Cache (L2) 8 MB (L3) 512 KB (L2) 256 KB

Computing power (FP32) 243 Gflops 3,213 Gflops 762 Gflops

Memory bandwidth 2× 10.6 GB/s 220 GB/s 80 GB/s

TDP 95 W 230 W 64 W

4.1 SELECT WHERE Queries

The different queries of this evaluation were applied to non-indexed tables with
columns of various data types (numerical and strings). The search conditions
used with the tested selection queries were principally comparison operators and
substring searches. Figure 6 shows the average speedups obtained by the different
test configurations with a standard implementation of SQLite as reference engine
with an in-memory database. The performances of the three storage engines were
measured, but in order to not overload this paper, only the slowest “Affinity”
and the fastest “Boost” storage mode are shown. With the hybrid engine of
CuDB, queries applied to tiny tables were processed by CPU cores and when
the table size exceeded one thousand records, CuDB switched from CPU to GPU
processing engine. Note that the CPU engine is directly able to deliver speedups
compared to SQLite and is also faster than MySQL 5.7.

Fig. 6. Average speedups with SELECT queries.

172 S. Cremer et al.

For tables of one million records, and with the GTX770 GPU, speedups of
117x in Boost mode, 101x in Strict mode and 85x with the “Affinity” storage
engine were obtained. As shown by the speedup of 6x delivered by the multi-
threaded CPU processing engine, CuDB is also able to procure valuable speedups
with systems that do not have a GPU. As the boosting of the client-side embed-
ded RDBMS system was investigated, the system was evaluated with an entry
level GPU. A “modest” GT740 procured already substantial speedups of 37x,
31x and 30x with the three different storage setups. Note that during the exper-
iments, the highest speedups were obtained (411x with the GTX770, 107x with
the GT740 and 15x with the CPU engine) for queries applied on fixed size string
columns, and with a “WHERE col LIKE %susbstring%” search criterion. For
the same query, MySQL 5.7 is 5,8 times faster than SQLite. These impressive
speedups need to be put into perspective; since SQLite is not the fastest in-
memory RDBMS when scanning single tables. The “memory” storage engine of
MySQL 5.7 is in average more than 3 times faster than SQLite for large table
scans. Compared to MySQL, CuDB running on a GTX770 is still 33 times faster.

4.2 SELECT JOIN Queries

In the previous subsection, it was shown that GPUs are very fast at processing
full table scans thanks to their high memory bandwidth. In this subsection the
results for JOIN queries will be presented. The tables were not indexed and
the join conditions were applied on numerical data. The subset of join queries
used for this evaluation includes “self-join” queries and join queries with two,
three, four and five tables. All those queries are inner joins. The average results
are shown in Fig. 7. Like the previous evaluations, and for better readability,
the results of the “Strict” storage engine are not shown. The join queries were
always done with tables with the same number of records. Values shown by the
X-axis are the amount of records per table.

CuDB with a GTX770 GPU achieved average speedups of 44x in Boost
mode, 21x in Strict mode and 8x in “Affinity” mode with tables of one million
records each. With the same conditions, the GT740 GPU obtained speedups of
17x, 8x and 4x. In CPU only mode, CuDB is twice faster than SQLite with
the smallest dataset and this speedup rises up to 4x for the biggest dataset.
The CPU-GPU engine switch was still configured at one thousand records, but
with join queries, the GT740 becomes faster than the CPU when involved tables
count a minimum of ten thousand records. This explains the slight performance
drop at five thousand rows (shown by region A in Fig. 7). Note that this little
performance drop disappears if the GPU has no graphical interface to manage
but this kind of hardware setup is rarely employed by an end-user.

The results with MySQL are not shown because MySQL was always much
slower than SQLite with the set of join queries. As was explained in Subsect. 3.4,
to reduce the time complexity for processing big datasets, SQLite uses transient
indexes to compute join queries. MySQL does not, and implements such opera-
tions as nested loops. This results in multiple days of computing time for join-
ing multiple tables of a million records, while CuDB needs less than a second.

Improving Performances of an Embedded RDBM 173

Fig. 7. Average speedups with JOIN queries.

Note that the peak speedups were obtained with “self-join” queries (66x with
the GTX770, 28x with the GT740 and 4,4x with the CPU engine).

Unlike single table scans, the performance gaps between the different storage
configurations were significant. For large datasets, switching from “Affinity” to
“Strict” makes join queries more than 2 times faster, and switching from “Strict”
to “Boost” produces again a 2x gain. As was explained in Subsect. 3.4, for each
table join, the GPU has to perform a parallel sort. During the sorting opera-
tions, each GPU thread has to access and compare multiple tuples several times,
unlike single table scans where each thread accesses only one record at a time.
With “Strict” tables, GPU threads do not have to check each type of each data
and with “Boost” tables, in addition to the static typing, the memory accesses
are coalesced. That is one of the reasons why the performances of join queries
are impacted by the choice of an appropriate storage engine. The other reason
is that with the need to access multiple records inside a single thread, the sort-
ing algorithm needs global synchronizations. With pre-Pascal GPU architectures
(GTX770 and GT740 are Kepler GPUs) there is no robust way to implement
global synchronization without using the CPU while maintaining a high degree
of performances. With CuDB, most synchronizations imply a save and restore
of the GPU execution context. This is also the reason why general speedups
obtained with join queries are lower than with single table scans and that more
data is required before the GPUs perform better than the CPU. New Pascal GPU
architectures introduce a form of preemption mechanism what potentially could
help to implement global device synchronization, but complementary investiga-
tions are required.

174 S. Cremer et al.

4.3 Energy Efficiency

Based on energy consumption measurements of all the queries with every plat-
form configuration, for the following short report, an average of all energy effi-
ciency ratios is proposed. Energy consumptions were acquired with an external
device and energy efficiency is defined as a ratio of energy consumed by SQLite
over energy consumed by tested platform. To ensure that heaviest queries do not
dominate these results, Fig. 8 shows the average calculated energy efficiencies.

Fig. 8. Average energy efficiency (higher is better).

For a better readability, and like previous experiments, only results obtained
with CuDB in “Boost” and “Affinity” storage configuration are shown. During
the different experiments, and with the fastest storage engine configuration, the
GTX770 consumed nearly 54 times less energy than SQLite for the same job
with the biggest datasets. The much cheaper GT740 was also able to produce an
interesting energy saving of about 33 times and the CPU engine has consumed
nearly 4 times less energy than SQLite. Switching to the “Affinity” storage
engine configuration reduces overall performances what implies energy efficiency
degradation but the proposed system remains still more efficient than SQLite.

Faster memory accesses do not only impact performances but also the over-
all energy efficiency. Switching from the “Affinity” storage to the “Boost” con-
figuration improves greatly memory accesses what has a significant impact on
energy consumption. These results confirm that the energy efficiency of embed-
ded RDBMS can be significantly boosted by using a hybrid CPU/GPU query
processing engine.

Improving Performances of an Embedded RDBM 175

5 Future Works

An important challenge is to overcome the limitations of the GPU memory
capacity which is currently limited to 16GB for high end GPUs. The overhead
of transient memory requirements involved in complex/nested join queries could
also be larger than the physical GPU memory size. To overcome this size limi-
tation, it is necessary to find an efficient mechanism to detect potential memory
overflows, and optimal strategies to select, save and retrieve temporary data.
The results of this investigation will also enable large database processing over
multi-GPU.

A particularity of proposed solution is that the query plans generated by the
SQLite Command Processor are preserved. Those query plans are designed to be
processed on sequential CPUs and are not natively suited for parallel process-
ing on GPU architecture, what potentially can slow down query processing.
Redesign such query compiler could be an improvement of proposed system but
it was deliberately chosen to conserve the SQLite query compiler for two main
reasons: (1) to focus researches on parallel database processing engine and stor-
age engines, and (2) to maintain a full compatibility with existing applications
embedding SQLite.

Some implementation aspects of CuDB can be improved. For example, with
the HVM, the CPU to GPU switching threshold is currently a static parameter.
It could be interesting to design a self-calibration system that dynamically eval-
uates the best settings depending on the database features and system hardware
specificities. Another improvement track is to improve the join engine. When the
affinity mechanisms is turned off, and when the keys in the join conditions are
only short values, switching from a bitonic sorter to a radix sorting algorithm
could improve the general performances. When the join-queries are made on very
small datasets, a trivial exhaustive search would be able to procure less over-
head and improve the responsiveness of the engine. For these reasons, it should
be interesting to add an indexation mechanism selector that, according to table
sizes and data types, is able to switch to the most appropriated sort/search
algorithm.

CuDB is still under development and as perspectives, the support of some
additional clauses SQL and full indexation mechanisms will also be considered in
order to be fully compliant with TPC-H and SSB benchmarks. When all previous
improvements will be implemented, a port of the GPU processing engine on
OpenCL can be considered to target other GPU manufacturers.

6 Conclusion

In this paper, CuDB, an embedded relational database engine that boosts the
performance of SQLite by using multicore CPUs and GPUs, has been presented.
To stay compatible with existing applications, CuDB preserves the SQLite API
and the affinity mechanism can be enabled for existing applications. Weaknesses
of GPGPU solutions for processing small amounts of data were also tackled

176 S. Cremer et al.

by reducing the number of GPU kernel launches and by using a hybrid engine
where lightest treatments remained on the CPU. It has been shown that GPU
architectures can be exploited to speed up processing of RDBMS. Compared to
SQLite with an in-memory database, peak speedups of more than 400x were
achieved for substring searches on unindexed tables. The performances and the
power efficiency of the presented solution were in all case better than SQLite.
Energy measures have shown that faster data processing and memory accesses
improvements reduce the overall consumption. The presented experiments have
also confirmed that an entry level GPU is already able to provide noticeable
accelerations.

References

1. Huang, S., Xiao, S., Feng, W.: On the energy efficiency of graphics processing units
for scientific computing. In: IPDPS 2009, Sichaun (2009)

2. Govindaraju, N., Lloyd, B., Wang, W., Lin, M., Manochad, D.: Fast computation
of database operations using graphics processors. In: SIGMOD/PODS 2004, Paris,
pp. 215–216 (2004)

3. Fang, R., He, B., Lu, M., Yang, K., Govindaraju, N., Luo, Q., Sander, P.: GPUQP:
query co-processing using graphics processors. In: SIGMOD/PODS 2007, Beijing,
pp. 1061–1063 (2007)

4. Zhang, S., He, J., He, B., Lu, M.: Omnidb: towards portable and efficient query
processing on parallel CPU/GPU architectures. VLDB Endow. 4(5), 1374–1377
(2013)

5. Yuan, Y., Lee, R., Zhang, X.: The Yin and Yang of processing data warehousing
queries on GPU devices. VLDB Endow. 6(10), 817–828 (2013)

6. O’Neil, P., O’Neil, B., Chen, X.: Star Schema Benchmark (Revision 3, June 5,
2009). Technical report, UMass/Boston (2009)

7. Breß, S., Siegmund, N., Bellatreche, L., Saake, G.: An operator-stream-based
scheduling engine for effective GPU coprocessing. In: Catania, B., Guerrini,
G., Pokorný, J. (eds.) ADBIS 2013. LNCS, vol. 8133, pp. 288–301. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40683-6 22

8. Heimel, M., Saecker, M., Pirk, H., Manegold, S., Markl, V.: Hardware-oblivious
parallelism for in-memory column-stores. PVLDB 6(9), 709–720 (2013)

9. Yong, K., Karuppiah, E., Chong-Wee See, S.: Galactica: a GPU parallelized data-
base accelerator. In: Third ASE International Conference on Big Data Science and
Computing, Beijing (2014)

10. He, B.X., Yu, J.: High-throughput transaction executions on graphics processors.
VLDB Endow. 8(5), 314–325 (2011)

11. Bakkum, P., Skadron, K.: Accelerating SQL database operations on a GPU with
CUDA. In: 3rd Workshop on GPGPU, Pittsburgh, pp. 94–103 (2010)

12. Cremer, S., Bagein, M., Mahmoudi, S., Manneback, P.: Boosting an embedded
relational database management system with graphics processing units. In: DATA
2016, Lisbon, pp. 170–175 (2016)

13. Kinetica: GPU-accelerated database for real-time analysis of large and streaming
datasets. http://www.kinetica.com/

14. MapD: The World’s Fastest Data Exploration Platform. http://www.mapd.com/
15. SQream DB. http://sqream.com/solutions/products/sqream-db/

http://dx.doi.org/10.1007/978-3-642-40683-6_22
http://www.kinetica.com/
http://www.mapd.com/
http://sqream.com/solutions/products/sqream-db/

Improving Performances of an Embedded RDBM 177

16. BlazingDB: Blazing GPU Database. http://blazingdb.com/
17. Cisco has Completed the Acquisition of Parstream. https://lc.cx/orfA
18. Landaverde, R., Zhang, T., Coskun, A., Herbordt, M.: An investigation of unified

memory access performance in CUDA. In: HPEC 2014, Waltham (2014)
19. van den Braak, G., Mersman, B., Corporaal, H.: Compiletime GPU memory access

optimizations. In: ICSAMOS 2010, Samos (2010)
20. Kaczmarski, K.: Experimental B+-tree for GPU. In: ADBIS 2011, Vienna (2011)
21. Peters, H., Schulz-Hildebrandt, O., Luttenberger, N.: Fast in-place sorting with

CUDA based on Bitonic sort. In: Wyrzykowski, R., Dongarra, J., Karczewski,
K., Wasniewski, J. (eds.) PPAM 2009. LNCS, vol. 6067, pp. 403–410. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14390-8 42

http://blazingdb.com/
https://lc.cx/orfA
http://dx.doi.org/10.1007/978-3-642-14390-8_42

Author Index

Aguiar, Rui L. 141

Bagein, Michel 160
Bargh, Mortaza S. 102
Belo, Orlando 65

Cappellari, Paolo 1
Choenni, Sunil 102
Chun, Soon Ae 1
Clapworthy, Gordon 79
Cremer, Samuel 160

Daly, Elizabeth M. 25
Dambreville, Frédéric 125
Deng, Zhikun 79
Domeniconi, Giacomo 25
Dong, Feng 79

Ersotelos, Nikolaos 79

Habich, Dirk 47

Kissinger, Thomas 47
Kotoulas, Spyros 25

Lehner, Wolfgang 47
Liu, Enjie 79

Lopez, Vanessa 25
Luong, Johannes 47

Mahmoudi, Saïd 160
Manneback, Pierre 160
Moro, Gianluca 25

Oliveira, Bruno 65

Parvinzamir, Farzad 79
Pereira, Óscar Mortágua 141

Roantree, Mark 1

Semertzidis, Konstantinos 25
Simões, David Apolinário 141
Spruit, Marco 102

van Dijk, Jan 102

Wei, Hui 79
Wu, Shaopeng 79

Zhao, Xia 79
Zhao, Youbing 79

	Preface
	Organization
	Contents
	A Scalable Platform for Low-Latency Real-Time Analytics of Streaming Data
	1 Introduction
	1.1 Motivation and Case Study
	1.2 Contribution

	2 Related Research
	3 Streaming Analytics Case Study
	4 Conceptual Model for Streaming Analytics
	4.1 Primitive Operators in SDAP
	4.2 Topology Model
	4.3 Operator Configuration

	5 SDAP System Architecture
	5.1 Data Operations
	5.2 Distribution Management
	5.3 Resource Management

	6 Experiments
	6.1 Performance
	6.2 Ease of Development

	7 Conclusions
	References

	Identifying Conversational Message Threads by Integrating Classification and Data Clustering
	1 Introduction
	2 Method
	2.1 Data Model
	2.2 Messages Features
	2.3 Clustering
	2.4 Classification
	2.5 Multi-layer Perceptron

	3 Evaluation
	3.1 Datasets
	3.2 Evaluation Metrics
	3.3 Results

	4 Related Work
	5 Conclusions
	References

	Towards Efficient Multi-domain Data Processing
	1 Introduction
	2 The Multi Domain Architecture
	3 The Eos Data Processing Environment
	3.1 An Eos Application Scenario
	3.2 Eos Engine
	3.3 Eos Script

	4 Optimization in a Multi-domain Environment
	5 Related Work
	5.1 Multi-domain Processing
	5.2 Generative Programming

	6 Discussion
	References

	Approaching ETL Processes Specification Using a Pattern-Based Ontology
	Abstract
	1 Introduction
	2 Related Work
	3 ETL Meta Model for Patterns Definition
	4 Pattern Language Specification
	5 Conclusions and Future Work
	References

	Topic-Aware Visual Citation Tracing via Enhanced Term Weighting for Efficient Literature Retrieval
	Abstract
	1 Introduction
	2 Related Work
	2.1 Data Management
	2.2 Text Mining
	2.3 Text and Document Visualization

	3 Design Goals and Requirements
	3.1 Design Requirements
	3.2 The Dataset

	4 Data Management
	4.1 Semantic Repository
	4.2 Document Repository
	4.3 Graph Repository
	4.4 Search Repository

	5 Text and Document Analysis
	5.1 Data Collection
	5.1.1 Metadata Extraction
	5.1.2 Keyword Extraction

	5.2 Term Weighting
	5.2.1 Field Term Weighting
	5.2.2 Citation Term Weighting
	5.2.3 Year Term Weighting
	5.2.4 Hierarchical Word Weighting
	5.2.5 Citation Distance

	5.3 Longest Citation Track Query

	6 Visualisation
	6.1 Visualisation of Citations
	6.2 Visualisation of Citation Tracks
	6.3 Visualisation of Topic Trends

	7 Conclusions
	Acknowledgments
	References

	Maturing Pay-as-you-go Data Quality Management: Towards Decision Support for Paying the Larger Bills
	Abstract
	1 Introduction
	2 Background
	2.1 Data Quality Management
	2.2 Motivation
	2.3 Related Work

	3 Proposed Approach
	3.1 Data Quality Assessment
	3.2 Data Quality Improvement
	3.3 A Framework for Data Quality Solutions Management

	4 Proof of Concept
	4.1 Implementation
	4.2 Evaluation
	4.3 Discussion and Limitations

	5 Conclusion and Further Research
	Acknowledgements
	References

	Generic and Concurrent Computation of Belief Combination Rules
	1 Introduction
	2 Belief Functions
	2.1 Belief Assignments
	2.2 Combination Rules

	3 Implementations
	3.1 Formulation Based on Indicators
	3.2 Map-Reduce Implementation
	3.3 Recursive Formulation
	3.4 Recursive Implementation

	4 Testing Cases
	4.1 Tests Presentation and Results
	4.2 Results
	4.3 Benefits and Limitations

	5 Conclusions
	A Rules Definitions
	A.1 Dubois & Prade Rule
	A.2 PCR6 Rule

	References

	Log-Based Model to Enforce Data Consistency on Agnostic Fault-Tolerant Systems
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Context
	5 Local Architectural Model
	5.1 Key Concepts
	5.2 Logging Model

	6 Remote Architectural Model
	7 Proof of Concept
	8 Evaluation
	9 Conclusion
	Acknowledgements
	References

	Improving Performances of an Embedded Relational Database Management System with a Hybrid CPU/GPU Processing Engine
	1 Introduction
	2 State of the Art
	3 Design of Proposed System
	3.1 Internal Architecture
	3.2 Processing Engine
	3.3 Storage Engine
	3.4 JOIN Queries

	4 Evaluation
	4.1 SELECT WHERE Queries
	4.2 SELECT JOIN Queries
	4.3 Energy Efficiency

	5 Future Works
	6 Conclusion
	References

	Author Index

