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Preface 

Many major companies spend millions of dollars each year on product 
reliability. Much management and engineering effort goes into evaluating 
risks and liabilities, predicting warranty costs, evaluating replacement poli- 
cies, assessing design changes, identifying causes of failure, and comparing 
alternate designs, vendors, materials, manufacturing methods, and the like. 
Major decisions are based on product life data, often from a few units. This 
book presents modern methods for extracting from life test and field data 
the information needed to make sound decisions. Such methods are success- 
fully used in industry on a great variety of products by many who have 
modest statistical backgrounds. 

This book is directed to engineers and industrial statisticians working on 
product life data. It will also aid workers in other fields where survival is 
studied, for example, in medicine, biology, actuarial science, economics, 
business, and criminology. Also, this book may supplement texts for many 
statistics and engineering courses, since it gives a wealth of practical 
examples with real data, emphasizes applied data analysis, employs com- 
puter programs, and systematically presents graphical methods, the method 
of maximum likelihood, censored data analysis, prediction methods, and 
linear estimation. 

Life data generally contain running times on unfailed units, which require 
special statistical methods. In  the past, these rapidly developing methods 
were associated with aerospace applications, but they are more widely used 
for consumer and industrial products. This book presents many applications 
to diverse products ranging from simple dielectrics and small appliances to 
locomotives and nuclear reactors. 

T h s  book draws from my experience teaching courses on life data 
analysis throughout the General Electric Company and at Rensselaer Poly- 
technic Institute and Union College. These courses have been popular with 
practicing engineers and graduate students in engineering, statistics, and 
operations research. 

vii 



viii PREFACE 

This book is organized to serve practitioners. The simplest and most 
widely useful material appears first. The book starts with basic models and 
simple graphxal analyses of data, and it progresses through advanced 
analytic methods. All preliminary material for a topic is stated, and each 
topic is self-contained for easy reference, although this results in sonlc 
repetition. Thus t h s  book serves as a reference as well as a textbook. 
Derivations are generally omitted unless they help one understand the 
material. Such derivations appear in advanced sections for those who seek a 
fundamental understanding and wish to develop new statistical models and 
data analyses. 

Readers of this book need a previous course in statistics and, for some 
advanced material, facility in calculus or matrix algebra. While many 
methods employ new and advanced statistical theory, the book emphasizes 
how to apply them. Certain methods (particularly those in Chapters 8 and 
12), while important, are difficult to use unless one has special computer 
programs, which are now available. 

There is much literature on life data analysis. So I have selected topics 
useful in my consulting. However, I briefly survey other topics in the final 
chapter. 

Chapter 1 describes life data analysis, provides background material, and 
gives an overview of the book in detail. Chapter 2 presents basic concepts 
and statistical distributions for product life. Chapters 3 and 4 present 
graphical methods for estimating a life distribution from complete and 
censored life data. Chapter 5 explains statistical models and analyses for 
data on competing failure modes and on series systems. Chapters 6, 7, and 8 
provide analytic methods, mainly linear and maximum likelihood methods, 
for estimating life distributions from complete and censored data. Chapter 9 
provides methods for analyzing inspection data (quantal-response and inter- 
val data). Chapters 10, 1 1 ,  and 12 provide methods for comparing samples 
(hypothesis tests) and for pooling estimates from a number of samples. 
Chapter 13 surveys other topics. 

The real data in all examples come mostly from my consulting for the 
General Electric Company and other companies. Many of these real data 
sets are messy. Proprietary data were protected by vaguely naming a 
product and by multiplying the data by a factor. So engineers are advised 
not to use examples as typical of any product. 

For help on this book I am overwhelmed with a great feeling of gratitude 
to many. Dr. Gerald J .  Hahn, my co-worker, above all others, encouraged 
me, helped me to obtain support from General Electric, geircrously contri- 
buted much personal time reading the manuscript, and offered many useful 
suggestions. Gerry is the godfather of this book. I am much indebted for 
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support from management at General Electric Corporate Research and 
Development-Dr. Art Bueche. Mr. Stu Miller, Mr. Virg Lucke, Dr. Dick 
Shuey, Mr. E. Lloyd &vest, Dr. Dave Oliver, Dr. Hal Chestnut, and Mr. 
Bill Chu. Professor Al Thimm, encouraged by Professor Josef Schmee, both 
of Union College, lundly provided me with an office, where I worked on 
this book, and a class that I taught from my manuscript during a leave from 
GE. Professor John Wilkinson of Rensselaer Polytechnic Institute gave me 
the original opportunity to teach courses and develop preliminary material 
for this book. 

Colleagues have generously given much time reading the manuscript and 
offering their suggestions. I am particularly grateful to Paul Feder, Gerry 
Hahn, Joseph Kuzawinski, Bill Meeker, John McCool, Ron Regal, Josef 
Schmee, Bob Miller, Bill MacFarland. Leo Aroian. Jim King, Bill Tucker, 
and Carolyn Morgan. 

Many clients generously let me use their data. They also inspired methods 
(such as hazard plotting) that I developed for their problems. Many students 
contributed suggestions. There are too many to name, unfortunately. 

The illustrations are mostly the superb work of Mr. Dave Miller. The 
manuscript benefited much from the skillful technical typing of Jean 
Badalucco, Ceil Crandall, Edith Whte,  and Ruth Dodd. 

WAYNE NELSON 
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1 
Overview 
And Background 

1. INTRODUCTlON 

This chapter presents (1) an overview of this book's contents and (2) 
background information for the rest of the book. To read this chapter and 
the rest of the book, one needs a basic statistics course. Although addressed 
mostly to engineering applications, this book applies to many other fields. A 
key characteristic of life data analysis distinguishes it from other areas in 
statistics: namely, data are usually censored or incomplete in some way. 
Like other areas, i t  is concerned with estimates and confidence limits for 
population parameters and with predictions and prediction limits for future 
samples. The following paragraphs describe applications and the history of 
life data analysis. 

Applications. This book presents methods for analysis of product life 
data and gives many engineering applications. In this book, examples of 
applications to products include diesel engine fans, transformers, locomotive 
controls, generator field windings, material strength, generator retaining 
rings, locomotive reliability, electrical insulating fluids and oils, the strength 
of electrical connections, Class-B and Class-H motor insulations, appliance 
cords, fuses, turbine disks, shave dies, alarm clocks, batteries, toasters, 
capacitors, cryogenic cables, motor coils, engine cylinders and pistons, 
power lines, large motor warranty costs, turbine wheels, and distribution 
transformers. 



2 OVERVIEW AND BACKGROUND 

The methods apply to other fields and types of data as the following 
examples show. Economists and demographers study the length of time 
people are in the work force (Kpedekpo, 1969). Employers are concerned 
with the length of time employees work before changing jobs. Mental health 
officials use tables of length of stay in facilities to predict patient load. 
Businessmen wish to know the shelf life of goods and the time it takes 
inventory to turn over; for example, one manufacturer wanted to know the 
distribution of time from manufacture to installation of a major appliance. 
Wildlife managers use mortality tables to predict wildlife population sizes 
and determine hunting seasons. Hoadley (1970) studied the length of time 
telephones remain disconnected in vacant quarters in order to determine 
which telephones to remove for use elsewhere and which to leave in for the 
next customer. Kosambi (1966) proposed that knowledge of the distribution 
of the time that coins remain in circulation can help the mint plan 
production. The success of medical treatments for certain diseases is mea- 
sured by the length of patient survival (Gross and Clark, 1975). The 
distribution of time from prison release to committing a crime measures the 
success of prison programs. A trading stamp company estimated the pro- 
portion of stamps that would be redeemed; this was used to determine 
needed cash reserves to cover outstanding stamps. Potency of some pesti- 
cides (and chemicals) is bioassayed by observing the times to death (or other 
reaction) of a sample of insects or animals. Life insurance companies 
determine premiums from mortality tables. The life of TV programs has 
been evaluated (Prince, 1967). Jaeger and Pennock (1957) estimated service 
life of household goods. The Association for the Advancement of Medical 
Instrumentation (1975) has a proposed standard with methods for estimat- 
ing the life of heart pacemakers. Zahn (1975) described a psychological 
experiment on the time a (planted) “stranded” motorist must wait for aid 
from a passerby. The durability of garments is studied by manufacturers 
(Goldsmith. 1968). Wagner and Altman (1973) studied the time in the 
morning when baboons come down from the trees. 

This book presents engineering applications and uses mostly engineering 
and reliability terminology. Biomedical, actuarial, and other fields have their 
own terminology for many concepts; some of their terminology is men- 
tioned. Differences in terminology may cause initial difficulties to those who 
read publications in other fields. 

Todhunter (1949) describes the early human life table of Halley 
(Chapter 2) and Bernoulli’s work on the effect of smallpox innoculation on 
the distribution of life. Insurance companies have long used actuarial 
methods for constructing human life tables. Early in this century, actuarial 
methods were used to estimate survivorship of ( I )  medical patients under 

History. 
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different treatments and of ( 2 )  equipment, particularly on railroads. In the 
1950s and 1960s, reliability engineering blossomed; this resulted from 
demands for more reliable equipment from military and space programs. In 
this period, engineering design methods for reliable equipment made great 
strides. However, reliability data analysis mostly employed the oversimple 
exponential and Poisson distributions. In the 1950s and 1960s. most ad- 
vances in life data analysis came from biomedical applications. Now meth- 
ods are widely being developed for engineering applications to many 
consumer and industrial products. This book brings together recent methods 
for life data analysis. This field continues to grow, although many important 
problems remain unsolved, as tlus book shows. 

2. OVERVIEW OF THE BOOK 

This section describes this book’s contents, organization, and how to use the 
book. The types of data mentioned here are described in Section 3. 

Chapter 1 gives an overview of the book and presents needed back- 
ground. Chapter 2 describes distributions for life and failure data. Chapter 3 
presents simple probability plots for analyzing complete and singly censored 
data. Chapter 4 presents hazard plots for multiply censored data. Chapter 5 
describes models for and graphical analyses of data with a mix of failure 
modes. Chapters 6 through 9 give analytic methods for ( 1 )  estimates and 
confidence limits for distribution parameters, percentiles. reliabilities, and 
other quantities and for ( 2 )  predictions and prediction limits for future 
samples. Chapter 6 treats analysis of complete data. Chapter 7 gives linear 
methods for singly censored data. Chapter 8 gives maximum likelihood 
methods for multiply censored data. Chapter 9 gives maximum likelihood 
methods for quantal-response and interval data. Chapter 10 presents various 
methods for comparing samples of complete data by confidence intervals 
and hypothesis tests; such methods include I - .  2 - ,  and K-sample compari- 
sons and estimation by pooling a number of samples. Chapter 11  presents 
such comparisons based on linear estimates from singly censored samples. 
Chapter 12 presents such comparisons based on maximum likelihood meth- 
ods for multiply censored and other types of data. Chapter 13 surveys topics 
in reliability and life data analysis that are not presented in the book. 

Figure 2.1 shows this book’s chapters. They are organized by type of data 
(complete, singly censored, multiply censored, etc.) and by statistical method 
(elementary, linear, and maximum likelihood). The chapters are in order of 
difficulty. Early chapters present simple graphical methods. and later ones 
present advanced analytic methods. The arrows in Figure 2.1 show which 
chapters are background for later chapters. Also. each chapter introduction 
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1'  OVERVIEW AND BACKGROUND 

13 SURVEY OF OTHER TOPICS 

2' BASIC CONCEPTS A N 0  DISTRIBUTIONS FOR PRODUCT LIFE 

c 
G 
3' PROBABILITY PLOTTING FOR COMPLETE AND SINGLY CENSORED DATA 

4" GRAPHICAL ANALYSIS OF MULTIPLY CENSORED DATA 

5 SERIESSYSTEMS AND COMPETING RISKS 

6' ANALYSIS OF COMPLETE DATA 

10 COMPARISONS (HYPOTHESIS TESTS) FOR COMPLETE DATA 

I\ 
P I  I 

i\' I 
7 LINEAR METHODS FOR SINGLY CENSORED DATA 

1 1  COMPARISONS WITH LINEAR ESTIMATORS (SINGLY CENSORED A N 0  COMPLETE DATA1 

LIKELIHOOD ANALYSIS OF MULTIPLY CENSORED DATA 

12 MAXIMUM LIKELIHOOD COMPARISONS FOR MULTIPLY CENSORED AND OTHER DATA 

OF INSPECTION DATA (QUANTAL-RESPONSE AND INTERVAL DATA) 

Figure 2.1. Book organization (asterisk denotes basic material) 

refers to needed background and describes the difficulty of the chapter. 
Some section introductions do the same, and they state if a section is 
theoretical and can be slupped. Most sections are written for those who just 
wish to apply the methods. The first four chapters are simple and basic 
reading for all. The more advanced Chapters 5 through 9 are in order of 
difficulty. Chapters 10, 11, and 12 can be read after the corresponding 
Chapters 6 through 9. 

Maximum likelihood methods (Chapters 8, 9, and 12) are versatile and 
apply to most distributions and types of data. Also, they have good 
statistical properties. If time is limited, one might skip the linear methods 
(Chapter 7) in favor of maximum likelihood methods. 

The book employs the following scheme for numbering sections, equa- 
tions, figures, and tables. Within each chapter, the sections are numbered 
simply 1, 2 ,  3, etc.; subsections are numbered 4.1, 4.2, etc. Equation 
numbers give the (sub)section number and equation number; for example, 
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(2.3) is the third numbered equation in Section 2. Figure and table numbers 
include the section number; Figure 2.3 is the third figure in Section 2. 
Unless another chapter is stated, any reference to an equation, figure, or 
table is to one in the same chapter. 

There are two types of problems at the end of a chapter. One  type 
involves an analysis of data with the methods in that chapter; the other 
involves extending the results of the chapter to other problems. An asterisk 
( * )  marks more laborious or difficult problems. 

The book cites references by means of the Harvard system. A citation 
includes the author’s name, year of publication, and his publications in that 
year. For example, “Nelson (1 972b)” refers to Nelson’s second referenced 
publication in 1972. All references are listed near the end of the book. 

Basic statistical tables are in an  appendix near the end of the book. Other 
tables must be obtained from the literature and are referenced. 

The index of the book is detailed. I t  will be an aid to those who wish to 
use the book as a reference for selected methods. Also, to aid users, each 
section is written to be self-contained, thus repeating some material. 

The book omits many derivations. Reasons for this are the following: ( I )  
users can properly apply most methods. not knowing derivations, (2) many 
derivations are easy for a reader or  instructor to supply, and (3) more time 
can be spent on methods useful in practice. Many derivations appear in 
Mann, Schafer, and Singpurwalla (1974). Gross and Clark (1975), Bain 
(l978), and Lawless (1982). 

3. BACKGROUND MATERIAL 

Background material useful for the rest of this book is briefly presented 
here. The topics are ( I )  statistical models. (2) population and sample, (3 )  
valid data. (4) failure and exposure. ( 5 )  types of data. (6) nature of data 
analysis. (7) estimates and confidence intervals, (8) hypothesis tests. (9) 
predictions, (10) practical and statistical significance, ( 1  1 )  numerical calcu- 
lations, (12) notation. 

Statistical models. Supposedly identical units made and used under the 
same conditions usually have different values of performance. dimensions, 
life, etc. Variability of such a performance variable is inherent in all 
products, and i t  is described by a statistical niodel or distribution. 

A statistical model describes some population. A 
manufacturer of fluorescent lamps is concerned with the future production 
of a certain lamp-an essentially infinite population. A manufacturer of 

Population and sample. 
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locomotives is concerned with a small population of locomotives. A metal- 
lurgist is concerned with the future production of a new alloy-an essen- 
tially infinite population. A generator manufacturer is concerned with the 
performance of a small population of units to be manufactured next year. 
To obtain information, we use a sample (a set of units) from the population. 
We analyze the sample data to get information on the underlying popula- 
tion distribution or to predict future data from the population. 

Valid data. There are many practical aspects to the collection of valid 
and meaningful data. Some are described below. Throughout, this book 
assumes that such aspects are properly handled. 

Most statistical work assumes that the sample is from the population of 
interest. A sample from another population or a subset of the population 
can give misleading information. For example, failure data from appliances 
on a service contract may overestimate failure rates for appliances not on 
contract. Also, laboratory test data may differ greatly from field data. Data 
on units made last year may not adequately predict this year’s units. In 
practice, it is often necessary to use such data. Then engineering judgment 
must determine how well such data represent the population of interest and 
how much one can rely on the information. 

Most statistical work assumes that the data are obtained by simple 
random sampling from the population of interest. Such sampling gives each 
possible set of n units the same chance of being the chosen sample; random 
numbers should be used to ensure random selection. In practice. other 
statistical sampling methods are sometimes used, the most common meth- 
ods being stratified sampling and two-stage sampling. Data analyses must 
take into account the sampling method. This book assumes throughout that 
simple random sampling is used. Some samples are taken haphazardly, that 
is, without probability sampling. Such samples may be quite misleading. 

In practice, measurements must be meaningful and correct. Also. one 
needs to avoid blunders in handling data. Bad data can be unknowingly 
processed by computers and by hand. 

Failure and exposure. Failure must be precisely defined in practice. For 
dealings between producers and consumers, i t  is essential that the definition 
of a failure be agreed upon in advance to minimize disputes. For many 
products, failure is catastrophic, and i t  is clear when failure occurs. For 
some products, performance slowly degrades, and there is no clear end of 
life. One can then define that a failure occurs when performance degrades 
below a specified value. Of course, one can analyze data according to each 
of a number of definitions of failure. One must decide whether time is 
calendar time or operating hours or some other measure of exposure, for 
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example, the number of start-ups, miles traveled, energy output. cycles of 
operation, etc. Also, one must decide whether to measure time of exposure 
starting at time of manufacture, time of installation. or whatever. Engineers 
define failure and exposure. 

Types of data. The proper analysis of data depends on the type of data. 
The following paragraphs describe the common types of life data from life 
tests and actual service. 

Most nonlife data are complete; that is, the value of each sample unit is 
observed. Such life data consist of the time t o  failure of each sample unit. 
Figure 3.lu depicts a complete sample. Chapters 3, 6, and 10 treat such 
data. Much life data are incomplete. That is. the exact failure times of some 
units are unknown, and there is only partial information on their failure 
times. Examples follow. 

Sometimes when life data are analyzed, some units are unfailed. and their 
failure times are known only to be beyond their present running times. Such 
data are said t o  be censored on the right. Unfailed units are called run-outs. 
survivors, removals, and suspended units. Similarly, a failure time known 
only to be before a certain time is said t o  be censored on the left. I f  all 
unfailed units have a common running time and all failure times are earlier. 
the data are said to be singly censored on the right. Singly censored data 
arise when units are started on test together and the data are analyzed 
before all units fail. Such data are singly time censored i f  the censoring time 
is fixed; then the number of failures in that fixed time is random. Figure 
3 . lh  depicts such a sample. Time censored data are also called Type I 
censored. Data are singly failure censored i f  the test is stopped when a 
specified number of failures occurs. the time to that fixed number of failures 
being random. Figure 3 . 1 ~  depicts such ii sample. Time censoring is more 
common in practice: failure censoring is more common in the literature, as 
i t  is mathematically more tractable. Chapters 3, 7. and 1 1  treat singly 
censored data. 

Much data censored on the right have differing running times intermixed 
with the failure times. Such data are called multiply censored (also progres- 
sively. hyper-. and arbitrarily censored). Figure 3. Id depicts such a sample. 
Multiply censored data usually come from the field, because units go into 
service at different times and have different running times when the data are 
recorded. Such data may he time censored (running times differ from failure 
times. as shown in Figure 3 . l d )  or failure censored (running times equal 
failure times. as shown in Figure 3 . 1 ~ ) .  Chapters 4. 8. and 12 treat such 
data. 

A mix of competing failure modes occurs when sample units fail from 
different causes. Figure 3.lf depicts such a sample. Data on a particular 
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failure mode consist of the failure times of units failing by that mode. Such 
data for a mode are multiply censored. Chapter 5 treats such data in detail; 
Chapter 8 does so briefly. 

Sometimes one knows only whether the failure time of a unit is before or 
after a certain time. Each observation is either censored on the right or else 
on the left. Such life data arise if each unit is inspected once to see if it has 
already failed or not. These data are quantal-response data. also called 
sensitivity, probit, and all-or-nothing response data. Figure 3.113 depicts 
such a sample. Chapter 9 treats such data. 

When units are inspected for failure more than once, one knows only that 
a unit failed in an interval between inspections. So-called interval or 
grouped data are depicted in Figure 3. lh .  Such data can also contain right 
and left censored observations. Chapter 9 treats such data. 

Data may also consist of a mixture of the above types of data. 
Analyses of such censored and interval data have much the same pur- 

poses as analyses of complete data, for example, estimation of model 
parameters and prediction of future observations. 

Nature of data analysis. This section briefly describes the nature of data 
analysis. I t  advises how to define a statistical problem, select a mathematical 
model, f i t  the model to data, and interpret the results. 

The solution of a real problem involving data analysis has seven basic 
steps. 

1. Clearly state the real problem and the purpose of the data analysis. In 
particular, specify the numerical information needed in order to draw 
conclusions and make decisions. 

2. Formulate the problem in terms of a model. 
3. Plan both collection and analyses of data that will yield the desired 

4. Obtain appropriate data for estimating the parameters of the model. 
5. Fit the model to the data, and obtain the needed information from 

the fitted model. 
6. Check the validity of the model and data. As needed, change the 

model, omit or add data, and redo steps 5 and 6. 
7. Interpret the information provided by the fitted model to provide a 

basis for drawing conclusions and making decisions for the real problem. 

This book gives methods for steps 5 and 6. The other steps involve the 
judgment of engineers. managers. scientists. etc. Each of the steps is 
discussed below, but full understanding of these steps comes only with 
experience. Data analysis is an iterative process. and one usually subjects a 

numerical information. 
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data set to many analyses to gain insight. Thus, many examples in this book 
involve different analyses of the same set of data. 

1. A clear statement of a real problem and the purpose of a data 
analysis is half of the solution. Having that, one can usually specify the 
numerical information needed to draw practical conclusions and make 
decisions. Of course, an analysis provides no decisions- only numerical 
information for people who make them. If one has difficulty specifying the 
numerical information needed, the following may help. Imagine that any 
desired amount of data is available (say, the entire population), and then 
decide what values calculated from the data would be useful. Statistical 
analysis estimates such values from limited sample data. If  such thinking 
does not clarify the problem, one does not understand the problem. Some- 
times there is a place for exploratory data analyses that d o  not have clear 
purposes but that may reveal useful information. Data plots are particularly 
useful for such analyses. 

To state a problem in terms of a model, one chooses a statistical 
distribution for performance. Often the model is a simple and obvious one. 
widely used in practice: for example. a lognormal distribution for time to 
insulation failure. When a suitable model is not obvious, display the data 
various ways, say. on  different probability papers. Such plots often suggest a 
suitable model. Indeed, a plot often reveals needed information and can 
serve as a model itself. Another approach is to use a very general model that 
is likely to include a suitable one as a special case. After fitting the general 
model to the data, one often sees which special case is suitable. Still another 
approach is to try various models and select the one that best fits the data. 
The chosen model should, of course, provide the desired information. 
Examples of these approaches appear in later chapters.. 

Ideally a tentative model is chosen before the data are collected, and 
the data are collected so that the model parameters can be estimated from 
the data. Sometimes when data are collected before a model and data 
analyses are determined. i t  may not be possible to f i t  a desired model, and a 
less realistic model must be used. 

Practical aspects of data collection and handling need much fore- 
thought and care. For instance. data may not be collected from the 
population of interest; for example, data may be from appliances on service 
contract (self-selection) rather than from the entire population. Many 
companies go to great expense collecting test and field data but end up with 
inadequate data owing to lack of forethought. 

To f i t  a chosen model to the data, one has a variety of methods. This 
step is straightforward; i t  involves using methods described in this book. 

2. 

3. 

4. 

5. 
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Much of the labor can (and often must) be performed by computer 
programs. 

6. Of course, one can mechanically f i t  an unsuitable model just as 
readily as a suitable one. An unsuitable model may yield information 
leading to wrong conclusions and decisions. Before using information from 
a fitted model, one should check the validity of the model and the data. 
Such checks usually employ graphical displays that allow one to examine 
the model and the data for consistency with each other. The model may also 
be checked against new data. Often different models fit a set of data within 
the range of the data. However, they can give very different results outside 
that range. 

Interpretation of results from the fitted model is easy when the above 
steps are done properly, as practical conclusions and decisions are usually 
apparent. A possible difficulty is that the information may not be accurate 
or conclusive enough for practical purposes. Then more data for the analysis 
is needed or one must be content with less reliable information. Also. most 
models and data are inaccurate to some degree. So the uncertainty in any 
estimate or prediction is greater than is indicated by the corresponding 
confidence or prediction interval. 

7. 

Data analysis methods. Some specific data analysis methods are dis- 
cussed below-estimates, confidence intervals, hypothesis tests, and predic- 
tions. These methods are treated in detail in later chapters. 

Estimates and confidence intervals. Using sample data, the book pro- 
vides estimates and confidence intervals for the parameters of a model. The 
estimates approximate the true parameter values. By their width, confidence 
intervals for parameters indicate the uncertainty in estimates. I f  an interval 
is too wide for practical purposes, a larger sample may yield one with the 
desired width. Chapters 6 through 9 provide such analytical estimates and 
confidence limits and examples. 

Hypothesis tests. Chapters 10, 1 1 ,  and 12 provide statistical tests of 
hypotheses about model parameters. A statistical test compares sample data 
with a hypothesis about the model. A common hypothesis is that a parame- 
ter equals a specified value; for example, the hypothesis that a Weibull 
shape parameter equals unity implies that the distribution is exponential. 
Another common hypothesis is that corresponding parameters of two or 
more populations are equal; for example, the standard two-sample r-test 
compares two population means for equality. I f  there is a statistically 
significant difference between the data and the hypothesized model, then 
there is convincing evidence that the hypothesis is false. Otherwise, the 
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hypothesis is a satisfactory working assumption. Also, it test of f i t  or a test 
for outliers may result in rejection of the model or data. 

Predictions. Most statistical methods are concerned with population 
parameters (including percentiles and reliabilities) when a population is so 
large that it can be regarded as infinite. One then uses estimates, confidence 
intervals. and hypothesis tests for parameters (or constants). However, in 
many business and engineering problems, the data can be regarded as a 
sample from a theoretical distribution. Then one usually wishes to predict 
the random values in a future sample from the same distribution. For 
example, one may wish to predict the random warranty costs for the coming 
year or the random number of product failures in the coming quarter, using 
past data. Then one wants a prediction for the future random value and a 
prediction interval that encloses that future random value with high proba- 
bility. Many prediction problems go unrecognized and are incorrectly 
treated with methods for population parameters. Methods for such prob- 
lems are now being developed, and this book brings together many of them. 
Chapters 6 through 8 include prediction methods and examples. 

Confidence intervals indicate how 
(im)precise estimates are and reflect the inherent scatter in the data. 
Hypothesis tests indicate whether observed differences are statistically sig- 
nificant; that is, whether a difference between a sample of data and a 
hypothesized model (or whether the difference between a number of sam- 
ples) is large relative to the inherent random scatter in the data. Statistical 
significance means that the observed differences are large enough to be 
convincing. In contrast, practical significance depends on the true dif- 
ferences in the actual populations; they must be big enough to be important 
in practice. Although results of an analysis may be important in practice, 
one should not rely on them unless they are also statistically significant. 
Statistical significance assures that results are real rather than mere random 
sampling variation. 

A confidence interval for such differences is often easier to interpret than 
a statistical hypothesis test. The interval width allows one to judge whether 
the results are accurate enough to identify true differences that are im- 
portant in practice. Chapters 10, 11, and 12 give examples of such confi- 
dence intervals and their application to comparisons. 

Numerical calculations. Numerical examples are generally calculated 
with care. That is, extra figures are used in intermediate calculations. This 
good practice helps assure that answers are accurate to the final number of 
figures shown. For most practical purposes, two or three significant final 
figures suffice. A reasonable practice is to give estimates and confidence 

Practical and statistical significance. 
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limits to enough figures so that they differ in just the last two places, for 
example, p*=2.76 and i i=2.92. Tabulated values used in examples d o  not 
always have the same number of significant figures as the tables in this 
book. 

Many calculations for examples and problems can easily be done with an  
electronic pocket calculator. However, some calculations. particularly maxi- 
mum likelihood calculations, will require computer programs. Readers can 
develop their own programs from the descriptions given here or use stan- 
dard programs. 

Notation. This book mostly follows modern statistical notation. Ran- 
dom variables are usually denoted by capital letters such as Y ,  Y,, . . . , Y,,. T ,  
etc. Observed outcomes or possible values of random variables are usually 
denoted by lower-case letters such as y ,  y , ,  . . . , y,,, r ,  etc. Population or 
distribution parameters, also called true values, are usually denoted by 
Greek letters such as p, u, a, P.8,  etc. However, Latin letters denote some 
parameters. Estimates for parameters are usually denoted by the corre- 
sponding Latin letter ( a  estimates a )  or by the parameter with "*" or " " 
(a* or 6). Notation often does not distinguish between estimators (random 
variables) and estimates (the value from a particular sample). 

Commonly used symbols and their meanings follow. 

F( P; u ,  h )  

K ,  

IOOPth F percentile with u degrees of freedom in the numera- 
tor and h in the denominator (Section 7 of Chapter 2). 
[loo( 1 +y)/2]th standard normal percentile two-sided (Section 
2 of Chapter 2 ) .  

U r  = In[ - In( 1 - P)], the standard extreme value 
centile (Section 5 of Chapter 2).  

i lOOy th standard normal percentile. one-sided 
Chapter 2 ) .  
Weibull scale parameter (Section 4 of Chapter 
hypothesis test (Chapter 10). 

a 

IOOPth per- 

Section 2 of 

!): level of a 

P 
6 
e 

e 
e* 
e 
0 

Weibull shape parameter (Section 4 of Chapter 2). 
Extreme value scale parameter (Section 5 of Chapter 2). 
Exponential mean (Section I o f  Chapter 2): general notation 
for a parameter. 
Maximum likelihood estimator for 6 (Chapter 8). 
Best linear unbiased estimator for B (Chapter 7). 
Lower confidence limit for B. 
Upper confidence limit for 8. 
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Exponential failure rate (Section 1 of Chapter 2 ) ;  Poisson 
occurrence rate (Section 12 of Chapter 2 ) ;  extreme value 
location parameter (Section 5 of Chapter 2 ) .  
Mean; normal distribution mean (Section 2 of Chapter 2 ) ;  
lognormal parameter (Section 3 of Chapter 2 ) .  
Standard deviation; normal distribution standard deviation 
(Section 2 of Chapter 2 ) ;  lognormal parameter (Section 3 of 
Chapter 2 ) .  
Standard normal probability density (Section 2 of Chapter 2 ) .  1 

@( ) 

x 2 ( P ;  u )  

Standard normal cumulative distribution lunction (Section 2 of 
Chapter 2 ) .  
lOOPth x 2  percentile with u degrees of freedom (Section 6 of 
Chapter 2 ) .  



2 
Basic Concepts and 
Distributions for 
Product Life 

This chapter presents basic concepts and distributions for analyzing life and 
failure data. I t  covers continuous and discrete distributions and their 
properties. This chapter is essential background for all work with product 
life data. To use this chapter, read the general theory, and then go to 
specific distributions of interest. 

Background. While this chapter is self-contained, readers may find 
further background on basic probability theory helpful. For example, see 
Hahn and Shapiro ( 1967), Parzen ( 1960), or Hoe1 ( 1960). 

Continuous distributions. Section 1 on continuous distributions begins 
with general theory and basic concepts. These are illustrated by a human 
mortality table and the exponential distribution. The theory is then applied 
to the other most commonly used life distributions- the normal (Section 2 ) .  
lognormal (Section 3), Weibull (Section 4), and extreme value (Section 5 )  
distributions. In addition, there is advanced material on the gamma and 
chi-square distributions (Section 6). other selected distributions (Section 7). 
shifted distributions (Section 8), conditional and truncated distributions 
(Section 9). and joint distributions (Section 10). The advanced Sections 6 
through 10 may be skipped on a first reading. 

Section 1 1 on discrete distributions begins with 
general theory and basic concepts, illustrated by the geometric distribution. 

15 

Discrete distributions. 
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The theory is then applied to other commonly used discrete distributions- 
the Poisson (Section 12), binomial (Section 13), hypergeometric (Section 14), 
and multinomial (Section 15) distributions. 

1. GENERAL THEORY ON CONTINUOUS DISTRIBUTIONS 
(ILLUSTRATED BY THE EXPONENTIAL DISTRIBUTION) 

This essential section presents basic concepts and theory for continuous 
statistical distributions. Such distributions are used as models for the life of 
products, materials, people, television programs, and nrany other thngs. 
Also, they are used for representing tensile strength, impact resistance, 
voltage breakdown, and many other properties. Such distributions include 
the commonly used exponential, normal, lognormal, Weibull, and extreme 
value distributions. These and other distributions are presented below and 
are used to analyze data. The basic concepts include: 

the probability density 
events and their probabilities 
the cumulative distribution function 
the reliability function 
percentiles 
the mode, mean, variance, and standard deviation 
the hazard function (instantaneous failure rate) 

After reading the basic concepts in this section, one may proceed to any 
distribution of interest. 

A continuous distribution with a probability density is a probability 
model, denoted by Y ,  that consists of 

1. of the line 
( -  w. 00)  and 
2. 

(a) f( y ) 2 0  for a l ly  in and 

(b) 

The probability density f( y )  is the mathematical model for the population 
histogram (e.g., Figure 1. l u )  containing relative frequencies, which (a) must 
be greater than or equal to zero and (b) must sum up to unity. Any subset ‘?j 

of the line (~ x, m) and function with properties (a) and (b) is a continuous 
distribution with a probability density. The capital letter Y denotes the 
distribution, which is also loosely called a random variable. Of course. Y is 

the possible numerical outcomes y that are a subset 

a probability density f (  y ) .  a function of y with the properties 

(,.if( y)dv = I ;  where the integral runs over the range 9 
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Figure 1.10. Mortality table histogram Figure 1.1 h .  Exponential probability 
densitv 

neither random nor a variable; i t  is a probability model consisting of 
outcomes and their corresponding probabilities. Y can also be loosely 
thought of as the potential random value of a randomly selected unit from 
the population. Lower-case letters y ,  y,,  J!?.. . . denote particular outcomes. 

Mortality table example. The basic concepts are illustrated with an early 
human mortality table published by Halley in 1693 and discussed by 
Todhunter (1949). This table appears in Table 1.1 and is given in steps of 
five years. The histogram f(.v) appears in Figure 1 . 1 ~ ;  it roughly corre- 
sponds to a probability density. Table 1.1 and the histogram of Figure 1 . 1 0  
show, for example, that 0.057 (5.7%) of this population died between the 

Table 1.1. Halley’s Mortality Table 

y. L m  rn m 
0 

0- 5 
5-10 

10-15 
15-20 
20-25 
25-30 
30-35 
35-40 
40-45 
45- 50 
50-55 
55-60 
60-65 
65-70 
70- 75 
75-80 
ao- 85 

- 
.290 
.057 
.031 
.030 
.032 
.037 
.042 
.045 
.049 
.052 
.053 
.050 
.050 
.051 
.053 
,044 
.034 

0 
.290 
.347 
.378 
.408 
.440 
.477 
.519 
.564 
.613 
.665 
.718 
.768 
.818 
.869 
.922 
.966 

1 .ooo 

1.000 
.710 
.653 
.622 
.5Y2 
.560 
.523 
.481 
.436 
.387 
. 335  
.282 
.232 
.182 
.131 
.078 
.034 

0 

,058 
.016 
.010 
.010 
.011 
.013 
.016 
.019 
.022 
.027 
.032 
.035 
.043 
.056 
.081 
.113 
.200 
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ages of 5 and 10. In what follows, it is useful to regard Table 1.1 as the life 
distribution for either (1) a large population or (2) for 1000 people from 
birth. Then, for example, 57 people died between the ages of 5 and 10. This 
“discrete” life distribution is used as a simple means of motivating the 
concepts below, and it  is treated as if i t  were a continuous distribution. 

The exponential distribution consists of outcomes y 2 0  and the probabil- 
ity density 

where the parameter 6 is called the “distribution mean” and must be 
positive. 6 is expressed in the same units as y ,  for example, hours, months, 
cycles, etc. Figure I .  16 depicts this probability density. The exponential 
distribution is a continuous distribution, since ( I )  f( y)>O for y 2 0  and (2) 
j;( 1 / 6  )exp( -v /6)  4 = 1. 

The exponential density is also written as 

where the parameter X = 1 / 6  is called the failure rate. The standard exponen- 
tial distribution has 8 = 1 or, equivalently, X = 1. 

The simple exponential life distribution has been widely used (and 
misused) as a model for the life of many products. As explained later, i t  
describes products subject to “chance failures”; that is, the failure rate is the 
same at each point in time. This distribution may describe the time between 
failures for repairable products (Section 12). It is also used to describe 
product life after units have gone through a burn-in up to the time they start 
to wear out. As the exponential distribution is easy to f i t  to data, i t  has 
often been misapplied to situations that require a more complex distribu- 
tion. 

An event is any subset of outcomes of L!!4, and the probability of an event E 
is defined by 

where the integral runs over the outcomes in the event E .  That is, the 
probability is the area under the probability density function for the points 
of the event. P{ YGy,) denotes the probability of the event consisting of all 
outcomes of the model Y that satisfy the relationship, that is, are less than 
or equal to the value yo. More generally, the notation for the probability of 
an event is P(  ), where the relationship in the braces indicates that the 
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event consists of the outcomes of the model Y that satisfy the relationship, 
for example P{  Y 2  >yo} and P ( y ,  < YGy;} ;  also, see (1.6). The probability 
of an event has two interpretations: ( 1 )  it is the proportion of population 
units that have values in the event, and (2) i t  is the chance that a random 
observation is a value from the event. 

For example, for Halley’s table, the probability of death by age 20 is the 
sum (corresponding to an integral) of the probabilities up to age 20, namely 
0.290+0.057+0.031+0.030=0.408 (40.8% or 408 people out of 1000). 
Also, for example, the probability of death between the ages of 20 and 50 is 
the sum of the probabilities between those ages. namely, 0.032+ 0.037 + 
0.042 + 0.045 + 0.049 + 0.052 = 0.257 (25.7% or 257 people). These sums ap- 
proximate the integral ( 1.3). 

Engine fan example. The exponential distribution with a mean of B =  
28,700 hours was used to describe the hours to failure of a fan on diesel 
engines. The failure rate is X = 1 /28,700 = 34.8 failures per million hours. 
The probability of a fan failing on an 8.000 hour warranty is 

P {  Y<SOOO} =+/*OO‘&exp( -~1/28,700) d11=0.24. 
0 

That is, 24% of such fans fail on warranty. This information helped 
management decide to replace all such fans with an improved design. 

The cumulative distribution function (cdf) F( y )  for a continuous distribu- 
tion with a probability density f( y )  is 

where the integral runs over all outcomes less than or equal to y. The cdf 
F( .v)  is defined for all y values. 

F( y )  and f( ?;) are alternative ways of representing a distribution. They 
are related as shown in (1.4) and by 

Any such cumulative distribution function F( . I , )  has the following proper- 
ties: 

1. i t  is a continuous function for all .v. 
2. lim, ~. ~a F( J , )  = 0 and lim ,, . 7)  F( J , )  = 1,  and 
3. F( - \ , ) G F (  y’) for all J,<J+’. 
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Conversely, any function F( ) that has properties 1,  2, and 3 is a continuous 
cumulative distribution function. For product life, F( y )  is interpreted as the 
population fraction failing by age y .  

The relationships below express probabilities of common events in terms 
of F( k t ) ,  which is conveniently tabled for many distributions: 

F( y )  for Halley’s table appears in Table 1.1 and Figure 1 . 2 ~ .  These show. 
for example, that the probability of death by age 20 is F(20)=0.408: that is, 
40.8% of the population died by age 20. Similarly, the probability of death 
by age 50 is F(50)  = 0.665. 

The exponential cumulative distribution function is 

~( .v)=J’ (1 /8)exp(- -y /8)h ,=  0 1 -exp(-y/d).  

Figure 1.2b shows this cumulative distribution function. 
failure rate X = 1 / e ,  

F(  y ) =  1 -exp( - X y ) .  y 2 0 .  

For the engine fans, the probability of failure on an 8000 
F(800O) = c- exp( - 8000/28,700) = 0.24 

I .ooo.. 

.aoo.- 

.600-. 

y i y e a r s )  . 
0 20 40 60 80 

Figure 1 . 2 ~ .  Cumulative di\tnbution function 

j . 2 0 .  (1.7) 

In terms of the 

(1 .8)  

hour  warranty is 
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When y is small compared to O =  l / h .  a useful approximation for the 
exponential cdf is 

F (y )? j> /d  or F ( j . ) - h j . .  (1.9) 

In practice this usually is satisfactory for j~/O=hy<O.Ol or even GO.10. 
For example, for the diesel engine fans, the probability of failure in the first 
100 hours is F( 100)- 100/28,700=0.003484. The exact probability is 
F( loo)= 1 -exp( - 100/28,700)=0.003478. 

The reliability function R (  y ) for a life distribution is 

‘13 

R (  y ) = P {  Y>.Y} = / f (  .v ) dv = 1 - F( j, ) .  ( 1  . lo )  
I 

This is the probability of (or population fraction) surviving beyond agey. I t  
is also called the survivorship function. Statisticians and actuaries have long 
worked with cumulative distributions for the fraction failing. but public- 
relations-minded engineers turned them around and called them “reliability 
functions.” 

The survivorship (or reliability) function R (  y ) for Halley’s mortality table 
appears in Table 1.1 and in Figure 1 . 3 ~ .  These show, for example, that the 
survivorship for 20 years is R(20)=0.592. That is, o f  1000 newborn. 592 
survive to 20. Similarly, the survivorship for 50 years is R(50)=0.335. 

The exponential reliability function is 

R (  y)=exp(  - . \ ) / O ) .  j - 2 0 .  ( 1 . 1 1 )  

Figure 1.3h shows this reliability function. For the engine fans. reliability 

.600 ! \  
“I 

,400 t I \  
Ky ’ 

Figure 1 . 3 ~ .  Sun i \o r \h ip  function Figure 1.3h. txponent ia l  reliahilit\ function 
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for 8000 hours is R(8000)=exp( -8000/28,700)=0.76. That is, 76% of such 
fans survive at least 8000 hours, the warranty period. 

When y is small compared to 8= 1 / X ,  a useful approximation is 

(1.12) 

(1.12) often suffices fory/8=AyG0.01 or even CO.10. For the diesel engine 
fans, the reliability for the first 100 hours is R( loo)-- 1 -(100/28,700)= 
0.9965 or 99.65%. 

The lOOPth percentiley, of a continuous distribution is the age by which 
a proportion P of the population has failed. It is the solution of 

(1.13) 

I t  is also called the “10OP percent point” or ‘ ‘P  fractile.” In life data work, 
one often wants to know low percentiles such as the 1 and 10% points. The 
50% point is called the median and is commonly used as a “typical” life. I t  is 
the middle of a distribution in the sense that 50% of the popuLtion fail 
before that age and 50% survive it. 

Percentiles of Halley’s human life distribution may be obtained from the 
cumulative distribution function in Table 1.1 or in Figure 1 . 2 ~ .  To get, say, 
the 50th percentile, enter the figure on the scale for the fraction failing at 
50%, go horizontally to the cumulative distribution function, and then go 
down to the age scale to read the median life as 33 years. This can be 
regarded as a typical life. In a recent table for the United States, the median 
life is 72 years. The median life could also be obtained by backwards 
interpolation in Table I .  1. The 90th percentile is about 73 years in Halley’s 
table. 

The lOOPth exponential percentile is the solution of P = 1 - exp( - j s P / O ) ,  

namely, 

y p =  -Oh( 1 -P). (1.14) 

For example, the mean 8 is roughly the 63rd percentile of the exponential 
distribution, an often used fact. For the diesel engine fans, median life is 
y = -- 28,700 In( 1 - 0.5) = 19,900 hours. The first percentile is j) ,), = 
-28,700In( 1 -0.01)=288 hours. 

is the value where the probability density is a maximum. 
Thus it is the “most likely” time to failure. and i t  may be regarded as 
another “typical” life for many distributions. This age may usually be found 
by the usual calculus method for locating the maximum of a function; 

The mode 
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namely, by finding the age where the derivative of the probability density 
with respect to time equals zero. 

The mode of Halley’s human life distribution is in the first five years of 
life (actually peaks at birth). This shows up in the histogram in Figure 1.10. 
There is a second mode between the ages of 50 and 75. In a recent table for 
the United States, the mode is 76 years, and there is a smaller peak in the 
first year. Medical science has increased human life mainly by reducing 
infant mortality. 

The mode of the exponential distribution is y,,, = O  for any value of the 
mean 8. This may be seen in Figure 1.Ib. So the mode is not a useful typical 
life for the exponential distribution. 

The following presents the mean, variance, and standard deviation of a 
distribution. These values are often used to summarize a distribution. Also, 
they are used later to obtain certain theoretical results. 

The mean E ( Y )  of a variable Y with a continuous distribution with a 
probability density f( y )  is 

(1.15) 

The integral runs over all possible outcomes y and must exist mathemati- 
cally. For a theoretical life distribution. the mean is also called the average 
or expected life. I t  corresponds to the arithmetic average of the lives of all 
units in a population, and i t  is used as still another “typical” life. An 
alternative equation for the mean, i f  the range of Y is positive, is 

(1.16) 

where R ( y )  is the reliability function (1.10). (1.16) is obtained by integrat- 
ing (1.15) by parts. 

The mean life for Halley’s table is approximated by the sum 2.5(0.290)+ 
7.5(0.057)+ . . . +82.5(0.034)=33.7 years. Here the midpoint of each five- 
year interval is used as the age at death. This is somewhat crude for the 
interval from zero to five years, since the deaths are concentrated in the first 
year. I f  those deaths are regarded as occuring at birth (an extreme), the 
mean life is 33.0 years. In a recent table for the United States, the mean life 
is 70 years. 

The mean of the exponential distribution is 

( I  .17) 
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This shows why the parameter 8 is called the “mean time to failure” 
(MTTF). In terms of the failure rate A ,  E( Y)= l / h .  For the diesel engine 
fans, the expected life is E( Y )  = 28,700 hours. Some repairable equipment 
with many components has exponentially distributed times between failures, 
particularly i f  most components have been replaced a number of times. 
Then 8 is called the “mean time between failures” (MTBF). 

The variance Var( Y )  of a variable Y with a continuous distribution with a 
probability density f (  y )  is 

(1.18) 

The integral runs over all possible outcomes y .  This is a measure of the 
spread of the distribution. An alternative formula is 

J - X  

(1.19) 

Var( Y )  has the dimensions of Y squared, for example, hours squared. 
The variance of life for Halley’s table is approximated bq the sum 

(2.5 - 33.7)’0.290 + (7.5 - 33.7)*0.057 + . . . f (82 .5  - 33.7)’0.034 = 75.5 
years squared. 

The variance of the exponential distribution is 

This I S  the square of the mean. For the diesel engine fans. the barlance of 
the time of failure IS Var(Y)=(28,700)*=8,24X 10’ hours’ 

The standard deviation a( Y )  of a variable Y is 

(1 .21 )  

the positive square root. This has the dimensions of Y, for example. hours. 
The standard deviation is a more commonly used measure of distribution 
spread than is the variance. 

The standard deviation of life for Halley’s table is (75.5)”’=8.7 years. 

The standard deviation of the exponential distribution is 

a (  Y ) = (  8 y 2 = 8 .  ( 1.22) 

For the exponential distribution. the standard deviation equals the mean. 
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For the diesel engine fans, the standard deviation of life is u(Y)=28,700 
hours. 

The hazard function h ( y )  of a continuous distribution of life Y with a 
probability density is defined for all possible outcomes y as 

h ( Y )  =/( Y I /  [ 1 - F( Y )] =f( Y ) / N  Y ) .  (1.23) 

I t  is the (instantaneous) failure rate at age p. That is, in the short time A 
from y to y+A, a pioportion A - h ( y )  of the population that reached age y 
fails. Thus the hazard function is a measure of proneness to failure as a 
function of age. The hazard function is also called the hazard rate, the 
mortality rate, and the force of mortality. In many applications, one wants 
to know whether the failure rate of a product increases or decreases with 
product age. 

Any function h( y ) satisfying 

1. h(y)>O for -m<y<w and 
2. lim ~ - - m / E  ,h( y ) dy = 0 ( 1.24) 

is a hazard function of a distribution. A hazard function is another way to 
represent a distribution. Properties ( I )  and (2) are equivalent to those for 
cumulative distribution functions and probability densities. 

The hazard function (mortality rate) for Halley’s mortality table appears 
in Table 1.1 and in Figure 1 . 4 ~ .  The yearly mortality rate for 20-year-olds 
(who die before the age of 25) is calculated from the fraction 0.592 surviving 
to age 20 and the fraction 0.032 that die between the ages of 20 and 25 as 
(0.032/0.592)/5=0.011 or 1.1% per year. A useful point of view is that 592 
people per 1000 reach age 20, and 32 of them die before age 25. Thus the 

and lim , - cc,/ Y ,h( y ) dy = w 

Figure 1.40. Hazard function 

‘ I  u 

Y 
0 c 

Figure 1.4h. Exponential hazard func- 
tion. 
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yearly mortality rates for those reachng 20 is (32/592)/5. Thls is an 
average value over the five years, and it is tabulated and plotted against the 
age of 20 years. In a recent table for the United States, the rate is 0.2% per 
year for those ages. 

The exponential hazard function is 

Figures 1.46 shows this hazard function. In terms of the failure rate 
parameter A ,  

h ( y ) = A ,  y 2 0 .  ( 1.26) 

This instantaneous failure rate is constant over time, a key characteristic of 
the exponential distribution. This means that the chance of failure for an 
unfailed old unit over a specified short length of time is the same as that for 
an unfailed new unit over the same length of time. For example, engine fans 
will continue to fail at a constant rate of h(y)=34.8 failures per million 
hours. 

A decreasing hazard function during the early life of a product is said to 
correspond to infant mortality. Such a hazard function appears in Figure 
1 . 4 ~ .  Such a failure rate often indicates that the product is poorly designed 
or suffers from manufacturing defects. On the other hand, some products, 
such as some semiconductor devices, have a decreasing failure rate over the 
observed time period. 

An increasing hazard function during later life of a product is said to 
correspond to wear-out failure. The hazard function in Figure 1 . 4 ~  has this 
feature. Such failure rate behavior often indicates that failures are due to the 
product wearing out. Many products have an increasing failure rate over 
the entire range of life. 

The bathtub curve. A few products show a decreasing failure rate in the 
early life and an increasing failure rate in  later life. Figure 1.5 shows such a 
hazard function. Reliability engineers call such a hazard function a “bath- 
tub curve.” In most products, the infant mortality corresponds to a small 
percentage of the population, and i t  may go undetected unless there is much 
data. Some products, such as high-reliability capacitors and semiconductor 
devices, are subjected to a burn-in to weed out infant mortality before they 
are put into service, and they are removed from service before wear out 
starts. Thus they are in service only in the low failure rate portion of their 
life. This increases their reliability in service. While in service, such products 
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BURN-IN REPLACE Figure 1.5. “Bathtub curve.” 

may have an essentially constant failure rate, and the exponential distribu- 
tion may adequately describe their lives. Jensen and Petersen (1982) com- 
prehensively treat planning and analysis of burn-in procedures, including 
the economics. 

Theoretical distributions with a bathtub hazard function have been 
presented by many, including Hjorth (1980) and Kao (1959), who present a 
mixture of two Weibull distributions and a composite Weibull distribution. 
Section 5 describes distributions with polynomial hazard functions of time, 
which may have a bathtub shape. Also, a competing failure modes model 
(Chapter 5) can have a bathtub hazard function. Such distributions typically 
have three, four, or five parameters. Hence fitting such distributions to data 
is complicated and requires large samples. Few products require such a 
complicated distribution. 

The cumulative hazard function of a distribution is 

where the integral runs over all possible outcomes less than or equal to y. 
For example, the cumulative hazard function for the exponential distribu- 
tion is 

N ( y ) = J I (  l/B)dy=y/B, y a o .  (1.28) 
0 

This is a linear function of time. Of course, for y C 0 ,  H( j ! ) = O .  
Integration of (1.23) yields the basic relationship 
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Equivalently, 

~ ( y ) = ~ - e x p [ - ~ ( y ) ]  ( 1.30) 

and 

Any continuous function H( y ) satisfying 

1. H (  y ) G H (  y ' )  if y<y' (an increasing function), 
2. l im,-  m H ( y ) = O  and l im, , ,H(y)=co,  and ( 1.32) 

3. H ( y )  is continuous on the right 

is a cumulative hazard function of a continuous distribution. Properties 1, 2 ,  
and 3 are like those of a cumulative distribution function as a result of the 
basic relationship ( 1.29). 

For certain purposes, i t  is more convenient to work with the cumulative 
hazard function of a distribution than with the cumulative distribution 
function. For example, for hazard plotting of multiply censored life data, i t  
IS easier to work with cumulative hazard paper than with (cumulative) 
probability paper; see Chapter 4. 

2. NORMAL DISTRIBUTION 

This basic section presents the normal distribution, which empirically fits 
many types of data. It often describes dimensions of parts made by 
automatic equipment, natural physical and biological phenomena, and 
certain types of life data. The Central Limit Theorem appears in most 
statistics texts. According to it, the normal distribution may be applicable 
when each data value is the sum of a (large) number of random contribu- 
tions. Because its hazard function is strictly increasing, the normal distribu- 
tion may be appropriate for the life of products with wear-out types of 
failure. For this reason, the normal (or Gaussian) distribution is only 
occasionally used for life data. 

Many books provide further information on the normal distribution, for 
example, Hahn and Shapiro (1967) and Johnson and Kotz ( 1  970). 

The normal probability density is 

The parameter p is the mean and may have any value. The parameter u is 
the standard deviation and must be positive. p and u are in the same units as 
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Figure 2.1. Normal probability density. Figure 2.2. Standard normal density 

y ,  for example, hours, months, cycles, etc. Figure 2.1 depicts this probability 
density, which is symmetric about the mean p ,  which is also the median. 
This symmetry should be considered when one decides whether the distribu- 
tion is appropriate for a problem. Figure 2.1 shows that p is the distribution 
median and u determines the spread. 

The standard normal probability density is 

'p ( z ) ~ ( 2 7 7  ','*exp( - z * / 2 ) ,  - cc < z < 00. (2.2) 

This corresponds to a normal distribution with p=O and u =  1. Figure 2.2 
depicts this standard density, which is symmetric about zero. Any normal 
probability density may be written in terms of the standard one as 

The range of possible outcomes y is from - 00 to + 00. Life must, of 
course, be positive. Thus the fraction of the distribution below zero must be 
small for the normal distribution to be a satisfactory approximation in 
practice. For many practical purposes, i t  may be satisfactory if  the mean p is 
at least two or three times as great as the standard deviation u. This rule of 
thumb is based on the fact that about 2.5% of the distribution is below 
p - 2 0  and 0.14% is below p-3u. 

The normal cumulative distribution function for the population fraction 
below y is 

-00<y<00. (2.4) 
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T h s  integral cannot be expressed in a simple closed form. Figure 2.3 depicts 
t h s  function. 

The standard normal cumulative distribution function is 

@ ( z ) = / ’  ( 2 ~ ) - ” ~ e x p ( - u ~ / 2 ) d u ,  --co<z<co. (2.5) 
- m  

@( ) is tabulated in Appendix A l .  More extensive and accurate tables are 
referenced by Greenwood and Hartley (1962). F( y ) of any normal distribu- 
tion can then be calculated from 

Many tables of @ ( z )  give values only for za0. One then uses 

@( - z ) =  1 - @ ( z ) .  (2.7) 

This comes from the symmetry of the probability density. 

A normal life distribution with a mean of ~ ~ 6 2 5 0  
hours and a standard deviation of u = 2600 hours was used to represent the 
life of a transformer in service. The fraction of the distribution with negative 
life times is F(0)=@[(0-6250)/2600]=cP( - 2 . 5 2 ) ~  1 -@(2.52)=0.0059. 
This small fraction is ignored hereafter. 

The normal reliability function gives the proportion surviving an age of at 
least y and is 

Transformer example. 

R ( y ) = P { Y > y ) = l - @ [ ( y - ~ 1 ) / ~ ] ,  - o o < ~ < o c .  (2.8) 

For example, the reliability function for the transformers is R ( y ) =  1 - 
@[( y-6250)/2600]. Their reliability for y=4000 hours is R(4000)= 1 - 
@[(4000-6250)/2600]= 1 -@[-0.865]=0.81 or 81%. 

The lOOPth normal percentile is obtained from (2.6) as 

yp ‘ P + Z p J ,  (2.9) 

where z p = @ - ‘ (  P) is the IOOYth percentile of the standard normal distribu- 
tion. That is, z p  satisfies P=@(z , )  and is tabulated in Appendix A2. The 
median (50th percentile) of the normal distribution is 

y 50=p, (2.10) 

since z 50 =O.  Thus the median and mean are equal for a normal distribu- 
tion. The 16th percentile is y 16 = p - u. The relationship y 50 - y ,6 = u is 
often used to estimate u. The standard normal distribution is symmetric 
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Figure 2.3. Normal cumulative distribution. Figure 2.4. Normal hazard function 

about the mean. Thus 
Z P  = - Z l P P .  (2.1 1) 

For example, z R4 5 1, so z ,6 = - 1. Some standard percentiles are: 

loop% 0.1 1 2.5 5 10 50 90 97.5 99 
Z P  -3.090 -2.326 - 1.960 - 1.645 - 1.282 0 1.282 1.960 2.326 

For example, the median of transformer life is y 5o = 6250 hours, and the 
10th percentile is y =6250+( - 1.282)2600=2920 hours. 

The normal mode, the most likely value, equals the mean p,  which is also 
the median. For the normal distribution, these three “typical” values are 
equal. 

For the transformers, the most likely time to failure is 6250 hours. 
The mean, variance, and standard deviation are 

E ( Y ) = p ,  

Var( Y ) = o ’ .  

o (  Y ) = a .  

(2.12) 

(2.13) 

(2.14) 

For the transformers, E( Y)=6250 hours, Var( Y )=(2600)’ =6.76 X lo6 
hours2, o( Y )  = 2600 hours. 

The normal hazard function at age y is 

h ( Y  )= ( I / o  ) cp[ ( l ’ -d /o] /  { 1 -@[(,W)/.] >. - m<)?<=. 

(2.15) 

Figure 2.4 shows that the normal distribution has an increasing failure rate 
(wear-out) behavior with age. 
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A key engineering question on the transformers was, “Will their failure 
rate increase as they age?” If so, a preventative replacement program should 
replace older units first. The increasing failure rate of the normal distribu- 
tion assures that older units are more failure prone. 

Readers interested in normal data analysis may wish to go directly to 
Chapter 3 on probability plotting. 

3. LOGNORMAL DISTRIBUTION 

This basic section presents the lognormal distribution. This distribution 
empirically fits many types of data adequately, because it has a great variety 
of shapes. This distribution is often useful i f  the range of the data is several 
powers of 10, It is often used for economic data, data on response of 
biological material to stimulus, and certain types of life data, for example, 
metal fatigue and electrical insulation life. It  is also used for the distribution 
of repair times of equipment. The lognormal and normal distributions are 
related as shown below. This fact is used later to analyze data from a 
lognormal distribution with methods for data from a normal distribution. 

Aitchison and Brown (1957), Hahn and Shapiro (1967), and Johnson and 
Kotz ( 1970) provide further information on the lognormal distribution. 

The lognormal probability density is 

f( y ) = { 0.4343/ [ (257 yu] } exp ( - [log( y ) - p12/(2u ) 1 ,  y >o; 
(3.1) 

the parameter p is called the log mean and may have any value: i t  is the 
mean of the log of life-not of life. The parameter u is called the log 
standard deviation and must be positive: it is the standard deviation of the 
log of life-not of life. p and u are not “times” like y; instead they are 
dimensionless pure numbers. In (3. l ) ,  0.4343 = l/ln( 10). Note that log( ) is 
used throughout for the common (base 10) logarithm. Some authors define 
the distribution in terms of the natural (base e )  logarithm, which is denoted 
by In( ) throughout. 

Figure 3.1 shows probability densities. I t  shows that the value of (I 

determines the shape of the distribution, and the value of p determines the 
50% point and the spread. This variety of shapes makes the lognornial 
distribution flexible for describing product life. The distribution is defined 
only for positivey values: so i t  is suitable as a life distribution. 

The lognormal cumulative distribution function for the population fraction 
below y is 
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Figure 3.1. Lognormal probability densities. Figure 3.2. Lognormal cumulative 
distributions. 

Here @( ) is the standard normal cumulative distribution function defined 
in (2.5) and tabulated in Appendix Al .  Figure 3.2 shows lognormal cumula- 
tive distribution functions. 

Locomotive control example. The life (in thousands of miles) of a certain 
type of electronic control for locomotives was approximated by a lognormal 
distribution where p= 2.236 and a=0.320. The fraction of such controls 
that would fail on an 80-thousand-mile warranty is F(80)=@([log(80)- 
2.236]/0.320} =@( - 1.04)=0.15 from Appendix Al .  This percentage was 
too high, and the control was redesigned. 

The lognormal reliability function for life Y gives the proportion surviving 
an age of at least y and is 

R(y)=l-@{[log(.t :)-I-l] /a}.  y>o.  (3.3) 

For the locomotive control, the reliability for the 80-thousand-mile war- 
ranty is R(80)= 1 -cP([log(80)-2.236]/0.320) ~ 0 . 8 5  or 85%. 

The IOOPth lognormal percentile is obtained from (3.2) as 

y p  =antilog( p+z,a). (3.4) 

where z p  is the IOOPth standard normal percentile; z P  is abulated in 
Appendix A2. For example, the median (50th percentile) is y 5o =antilog( p); 
this fact is used to estimate p= log( y 50)  from data. 

For the locomotive control, y 50 = antilog(2.236)= 172 thousand miles; 
this can be regarded as a typical life. The 1 %  life is j’,), =antilog[2.236+ 
( - 2.326)0.320] = 31 thousand miles. 
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The lognormal mode, the most likely value, is 

y, =antilog(p-2.303 u’). (3.5) 

Here 2.303 =In( 10). 
For the locomotive control, y,  = antilogI2.236 - 2.303(0.320)2] = 100 

thousand miles. 
The lognormal mean is 

E(Y)=antilog(p+ 1.151 a’), (3.6) 

where 1.151=0.5.ln(lO). This is the mean life for a population of units. 
For the locomotive control, E( Y)=antilog[2.236+ 1.151(0.320)’]=226 

thousand miles. The mode is 100 thousand miles, and the median is 172 
thousand miles. 

For a lognormal distribution, mode< median< mean always holds. 
The lognormal variance is 

Var( Y ) = [ E (  Y )l2[antilog(2 303 u2 - I ] .  (3.7) 

For the locomotive control, Var( Y)=(226)’ X {antilog[2.303(0.320)’]- 1 )  

The lognormal standard deviation is 
= 3.68 X lo4 (1000 miles)*. 

u ( ~ ) = ~ ( ~ ) [ a n t i l o g ( 2 . 3 0 3  u * ) - ~ ] ” ” .  (3.8) 

For the locomotive control, the standard deviation of life is a( Y)=(3.68 

The lognormal hazard function at age y is 
X 104)’/2 = 192 thousand miles. 

h ( Y ) = [ 0 . 4 3 4 3 / b  11 q,[(log( Y )  - P  >/.I/ { 1 -@[(log( Y 1 - P  )/.I 1 7  

y>o.  (3.9) 

Figure 3.3 shows lognormal hazard functions. For all lognormal distribu- 
tions, h( y )  is zero at time zero, increases with age to a maximum, and then 
decreases back down to zero with increasing age. For many products, the 
failure rate does not go to zero with increasing age. Even so, the lognormal 
distribution may adequately describe most of the range of life, particularly 
early life. 

For u--0.5, h( y )  is essentially constant over much of the distribution. For 
uGO.2, h( y )  increases over most of the distribution and is much like that of 
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Figure 3.3. Lognormal hazard functions 

a normal distribution. For ~ 2 0 . 8 ,  h ( y )  decreases over most of the distribu- 
tion. Thus, the lognormal can describe an increasing, decreasing, or rela- 
tively constant failure rate. This flexibility makes the lognormal distribution 
popular and suitable for many products. Nelson ( 19726) describes hazard 
functions further. 

For the locomotive control, u=0.320. So the behavior of h( y )  is midway 
between the increasing and roughly constant hazard functions in Figure 3.3. 

Readers interested in lognormal data analysis may wish to go directly to 
Chapter 3 on probability plotting. 

The relationship between the lognormal and normal distributions helps one 
understand the lognormal distribution in terms of the simpler normal 
distribution. The (base 10) log of a variable with a lognormal distribution 
with parameters p and u has a normal distribution with mean p and 
standard deviation U. This relationship implies that a lognormal cumulative 
distribution function plotted against a logarithmic scale for life is identical 
to the distribution function for the corresponding normal distribution. 

The relationship means that the same data analysis methods can be used 
for both the normal and lognormal distributions. To do this, one takes the 
logarithms of lognormal data and analyzes them as if  they came from a 
normal distribution. 

The relationship comes from the following. Suppose that the variable Y 
has a lognormal distribution with a log mean p and a log standard deviation 
u. The distribution of the (base 10) log value V=log(Y) can be seen from 

F( u ) = P( VGu ) = P{ log( Y ) Q u  } = P (  Y f 10' 1. (3.10) 

The final probability is the cumulative distribution function of Y evaluated 
at 10"; that is, 

F( 0 )  = ( {log[ 10' ] - p} /I7 ) = cp [ ( t' - p ,/.I. (3.1 1) 
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Thus the log value V=log( Y )  has a normal distribution with a mean p and 
a standard deviation u. 

For small u values (say, less than 0.2), the lognormal distribution is close 
to a normal distribution, and either may then provide an adequate descrip- 
tion of product life. For example, Figure 3.1 shows a lognormal probability 
density that is close to a normal one. 

4. WEIBULL DISTRIBUTION 

This basic section presents the Weibull distribution. The Weibull distribu- 
tion is useful in a great variety of applications, particularly as a model for 
product life. It has also been used as the distribution of strength of certain 
materials. It is named after Waloddi Weibull(1951), who popularized its use 
among engineers. One reason for its popularity is that i t  has a great variety 
of shapes. T h s  makes it extremely flexible in fitting data, and it empirically 
fits many kinds of data. 

It may be suitable for a “weakest link” type of product. In other words, i f  
a unit consists of many parts, each with a failure time from the same 
distribution (bounded from below), and if the unit fails with the first part 
failure, then the Weibull distribution may be suitable for such units. For 
example, the life of a capacitor is thought to be determined by the weakest 
(shortest lived) portion of dielectric in it. 

If Y has a Weibull distribution, then In(Y) has an extreme value distri- 
bution, described in Section 5. This fact is used to analyze Weibull data 
with the simpler extreme value distribution. 

Further details on the Weibull distribution are given by Hahn and 
Shapiro (1967), Johnson and Kotz (1970), and Gumbel (1958). Harter’s 
(1978) bibliography on extreme-value theory gives many references on the 
Weibull distribution. 

The Weibull probability density function is 

The parameter P is called the shape parameter and is positive. The parame- 
ter a is called the scale parameter and is also positive; a is called the 
“characteristic life,” since i t  is always the 100 X ( 1 - e - ’ 1 63.2th percentile. 
a has the same units as y ,  for example, hours, mont‘ cles, etc. p is a 
dimensionless pure number. Figure 4.1 with Weibull probability densities 
shows that f l  determines the shape of the distribution and a determines the 
spread. The distribution is defined only for positive y ;  so it is suitable as a 
life distribution. 
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Figure 4.1. Wribull probability denvties Figure 4.2. Weibull cumulative distnhutions 

For the special case /3= I ,  the Weibull distribution is the simple exponen- 
tial distribution, which was once widely used as a product life distribution 
but later found to be inadequate for many products. The more flexible 
Weibull distribution is now widely used, partly because i t  includes the 
familiar exponential distribution. For /3= 2, the Weibull distribution is the 
Rayleigh distribution. For a large value of the shape parameter, say /3> 10. 
the shape of the Weibull distribution is close to that of the smallest extreme 
value distribution, shown later in Figure 5.1. 

Also, for shape parameter values in the range 3 G p G 4 ,  the shape of the 
Weibull distribution is close to that of the normal distribution (see Figure 
4.1). For much life data, the Weibull distribution is more suitable than the 
exponential, normal, and extreme value distributions. Try i t  first. 

The Weibull cumulative distribution function is 

Figure 4.2 shows Weibull cumulative distribution functions. The Weibull 
distribution parameters are sometimes expressed differently. For example, 

~ ( y ) =  1 -exp( -Xy”), (4.3) 

F ( Y  )=  I-exp( - y p / 8 ) ,  (4.4) 

where h = 1 /aD.  Also. 

where 8= 1 /A  = aa. 

Winding example. The life in years of a type of generator field winding 
was approximated by a Weibull distribution where a= 13 years and P = 2 .  
Thus the fraction of such windings that would fail on a two-year warranty is 
F(2.0)= 1 -exp[-(2.0/13)’]=0.023. or 2.3%. 
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The Weibull reliability function for the proportion surviving an age of at 
least y is 

R ( Y ) = exp[ - ( y / a ) 8 ]  9 
Y’O. (4.5) 

For the windings, the reliability for two years (the fraction surviving 

The lOOPth Weibull percentile is obtained from (4.2) as 
warranty) is ~(2 .0)=exp[  -(2.0/13)’]=0.977, or 97.7%. 

y ,  =a[  -In( 1 - 

where In( ) is the natural logarithm. For example, the 100(1-e-’)-63rd 
percentile is y, ,  “a for any Weibull distribution. This may be seen in 
Figure 4.2. 

For the windings, the 63rd percentile is y 63  = 13[ - In( 1 - 0.63)]’/2 = 13 
years, the characteristic life. The 10th percentile is y = 13[ - In( 1 -0.10)]‘/2 
-4.2 years. 

The Weibull mode, the most likely value, is 

(4.7) 

That is, the probability density (4.1) is a maximum at y,,,. 
For the windings, y,,, = 13( 1 - (1 /2))’i2 = 9.2 years. 
The Weibull mean is 

where I‘( D)= /cz”-’exp( - z )  dz is the gamma function, which is tabulated, 
for example, by Abramowitz and Stegun (1964). For integer u, T(o)= 
( u - l ) !  =( u - 1)( 1) - 2) . . . 2.1. 

For the windings, E ( Y ) =  13I‘(1+(1/2))= 13(0.886)= 11.5 years. 
The Weibull variance is 

(4.9) 

For the windings, Var( Y )  = 132( r( 1 + (2/2)) - { r[ 1 + ( 1/2)]}2} = 36 
years2. 
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Figure 4.3. Weibull hazard functions 

(4.10) 

For the windings, a(Y)= 13(r(1+(2/2))-[r( l+(  1/2))]*}’’* =6.0 years. 
The Weibull hazard function is 

Figure 4.3 shows Weibull hazard functions. A power function of time, h( y )  
increases with time for p> 1 and decreases with time for P< I .  For p= 1 
(the exponential distribution), the failure rate is constant. The ability to 
describe increasing or decreasing failure rates contributed to making the 
Weibull distribution popular for life data analysis. 

For the windings, the shape parameter is P=2.  Since P is greater than 
unity, the failure rate for such windings increases with their age, a wear-out 
type of behavior. This tells utilities who own such generators that windings 
get more prone to failure with age. Thus preventive replacement of old 
windings will avoid costly failures in service. 

Readers interested in Weibull life data analysis may wish to go directly to 
Chapter 3 on probability plotting. 

5. SMALLEST EXTREME VALUE DlSTRlBUTlON 

This section presents the smallest extreme value distribution and is essential 
background for analytic methods (Chapters 6 through 12) for Weibull data. 
The distribution adequately describes certain extreme phenomena such as 
temperature minima, rainfall during droughts, electrical strength of materi- 
als, and certain types of life data, for example, human mortality of the aged. 
The distribution is mainly of interest because i t  is related to the Weibull 
distribution, and Weibull data are conveniently analyzed in terms of the 
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simpler extreme value distribution. In this book, the extreme value distribu- 
tion is the smallest extreme value distribution. The largest extreme value 
distribution (Section 7) is seldom used in life and failure data analysis. The 
extreme value distribution is also closely related to th. Gompertz-Makeham 
distribution, which has been used to describe human iife (Gross and Clark, 
1975, Sec. 6.5). 

Like the Weibull distribution, the smallest extreme value distribution may 
be suitable for a “weakest link” product. In other wt . - I s ,  i f  a unit consists of 
identical parts from the same life distribution (unbounded below) and the 
unit fails with the first part failure, then the smallest extreme value distri- 
bution may describe the life of units. 

Gumbel (1958), Hahn and Shapiro (1967), and Johnson and Kotz (1970) 
provide further information on the extreme value distribution. Harter’s 
( 1978) bibliography on extreme-value theory gives many references. 

The extreme value probability density is 

j ( y )  = ( I  / S  )exp[ ( y - A  )/s] .exp { - exp[ ( y - x  )/a] } . - m <y< co . 

(5.1) 

The parameter h is called the location parameter and may have any value. 
The parameter S is called the scale parameter and must be positive. The 
parameter X is a characteristic value of the distribution, since i t  is always the 
loo( 1 -e-’)=63.2% point of the distribution. A and S are in the same units 
as J’, for example, hours, months, cycles, etc. Figure 5.1 shows the proba- 
bility density, which is asymmetric. 

The range of possible outcomesy is from - co to + 00. Lifetimes must. of 
course, be positive. Thus the distribution fraction below zero must be small 
for the extreme value distribution to be satisfactory for life in practice. For 
most practical purposes, i t  is satisfactory if the location parameter h is at 
least four times as great as the scale parameter 6. 

The extreme value cumulative distribution function is 

Figure 5.2 depicts this function. The standard extreme value cumulative 
distribution function ( A  = 0 and 6 = 1) is 

*( z )= I - exp[ - exp( z )] , - 00 <z< rx), ( 5 . 3 )  

where z = (  y - h ) / S  is called the “standard deviate.” * ( z )  is tabulated by 
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Figure 5.1. Extreme value density. Figure 5.2. Extreme value cumulative 
distribution. 

Meeker and Nelson (1974). Then any extreme value cumulative distribution 
is given by 

Material strength example. Weibull (195 1 )  resported that the ultimate 
strength of a certain material can be described by an  extreme value 
distribution with X = 108 kg/cm2 and S = 9.27 kg/cm2. The proportion of 
such specimens with a strength below 80 kg/cm’ is F ( 8 0 ) = 9 [ ( 8 0 -  
108)/9.27] = 9( - 3.02) =0.048 or 4.8%. 

The extreme value reliability function is 

R (  y ) = exp { - exp[( y - x )/s] } , - m <y < 30 (5.5) 

For the material, the reliability for a stress of 80 kg/cm2 is R(80)=  I - 
F(80)=0.952, or 95.2%. That is, 95.2% of such specimens withstand a stress 
of 80 kg/cm2. 

The lOOPth extreme value percentile is obtained from (5.2) as 

y ,  = A +  u p s .  (5.6) 

where u,=ln[ -In( 1 - P ) ]  is the l0OPth standard extreme value percentile 
(X=0 and 6 =  I ) .  Values of u p  are tabulated by Meeker and Nelson (1974). 
For example, . L ’ ~ ~ ~ = X ,  the location parameter. since u h 7 Z  -0. Some standard 
percentiles are 

loop% 0.1 1 5 10 50 63.2 90 99 
U P  -6.907 -4.600 -2.970 -2.250 -0.367 0 0.834 1.527 
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For the material, the median strength is y s o  = l08+( -0.367)9.27= 104.6 
kg/cm2. 

The extreme value mode, the most likely value, equals A,  which is also the 
63.2nd percentile. 

The most likely strength for the material is A =  108 kg/cm2. 
The extreme value mean is 

E (  Y )=X-0.57728, (5.7) 

where 0.5772 ... is Euler’s constant. The mean is the 42.8% point of the 
distribution. For any extreme value distribution, mean<median<A. 

For the material, E( Y )  = 108 - 0.5772(9.27) = 102.6 kg/cm2. 
The extreme value variance is 

Var( Y ) = 1.645 li2 ~ ( 5 . 8 )  

where 1.645 = 7 ’/6. 
For the material, Var( Y ) =  1.645(9.27)2 = 141.4 kg2/cm4. 
The extreme value standard deviation is 

u (  Y ) = 1.283 8 .  (5.9) 

For the material, u( Y ) =  1.283(9.27)= 11.9 kg/cm2. 
The extreme value hazard function (instantaneous failure rate) is 

( J ) = ( 1 /S )exp[ ( y - A  )/s], - 50 <y< co . (5.10) 

Figure 5.3 shows that h( . y )  is an increasing failure rate with age (wear out). 
The extreme value distribution adequately describes human mortality in old 
age. That is, people wear out with an exponentially increasing failure rate. 

Figure 5.3. Extreme value hazard function 
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The relationship between extreme value and Weibull distributions is used 
in analyzing data. Suppose a Weibull distribution has shape and scale 
parameters /3 and a. The distribution of the base e log of a Weibull variable 
has an extreme value distribution with location and scale parameters 

h=ln(  a ) ,  (5.11) 

s= 1 / p .  (5.12) 

The Weibull parameters expressed in terms of the extreme value parameters 
are 

a= exp( x ), (5.13) 

p= 1/6. (5.14) 

Similarly, the Weibull parameters can be expressed in terms of the standard 
deviation u( Y )  and mean E( Y )  of the corresponding extreme value distribu- 
tion as 

p= 1.283/a( Y )  (5.15) 

and 

a = exp[ E (  Y ) + 0.4501u( Y ) I .  (5.16) 

The relationship is derived as follows. Suppose that the variable Y has a 
Weibull distribution with a scale parameter a and shape parameter p. The 
distribution of the (base e )  log value W=ln( Y )  can be seen from 

F ( w ) = P {  WGw}=P( ln(  Y ) < w } = P {  YGexp(u’)}. (5.17) 

The final probability is the cumulative distribution function of Y evaluated 
at exp(w); that is, 

= 1 -exp { - exp[ ( w- In( a))/( I /P ) ]  } . (5.18) 

Thus the log value W=In( Y )  has an extreme value distribution with a 
location parameter A =  In( a )  and a scale parameter 6 =  1 / p .  This relation- 
ship between the Weibull and extreme value distributions is similar to that 
between the lognormal and normal distributions. 
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The preceding relationships are used in the analysis of Weibull data. Data 
analyses are carried out on the base e logs of Weibull data. The resulting 
extreme value data are simpler to handle, as that distribution has a single 
shape and simple location and scale parameters, similar to the normal 
distribution. 

Readers interested in life data analysis may wish to go directly to Chapter 
3 on probability plotting. 

6. GAMMA AND CHI-SQUARE DISTRIBUTIONS 

This specialized section presents the gamma and chi-square distributions. 
Gross and Clark ( 1975) apply the gamma distribution to biomedical survival 
data. The gamma hazard function has a behavior that makes i t  unsuitable 
for most products. The chi-square distribution is a special case of the 
gamma distribution and has many uses in data analysis and statistical 
theory. For example, it arises in queuing theory. 

Hahn and Shapiro (1967), Johnson and Kotz (1970), Lancaster (1969), 
Lawless ( 1982), and Mann, Schafer, and Singpurwalla (1974) provide fur- 
ther information on the gamma and chi-square distributions. 

The gamma probability density is 

The parameter a! is a scale parameter and must be positive: the parameter p 
is a shape parameter and must be positive. Also, r ( p ) = ~ ~ u p  -'exp( - u ) d u  
is the gamma function; i t  is tabulated, for example, by Abramowitz and 
Stegun (1964). For integer p, I'( p)=(  p- 1)( p-2) . . . 2 . 1 = (  p- l ) !  Figure 
6.1 shows gamma probability densities. Figure 6.1 shows that the distribu- 
tion has a variety of shapes; thus it flexibly describes product life. For the 
special case p= 1,  the gamma distribution is the exponential distribution. 

The chi-square distribution is a special case of the gamma distribution 
with a-2  and ,!3=v/2, where v is an integer. v is the number of degrees of 
freedom of the distribution. For example, the chi-square distribution with 
u = 2  degrees of freedom is the exponential distribution with a mean equal 
to 2. 

The gamma cumulative distribution function is 
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Figure 6.1. (;amma probability densities 

where 

r( U ,  p ) =  [ l/r( ~ ) ] J " u " -  'exp( - U )  du (6.3) 

is the incomplete gamma function ratio; i t  is tabulated by Harter (1964). 
Figure 6.2 shows gamma cumulative distribution functions. For /? an 
integer, the gamma cumulative distribution function can be expressed as 

0 

F(.v)=r( .+ ,p)= I - P ( ~ -  1 .  ~ / a ) ,  (6.4) 

where P ( p -  1,  . v /a )  is the cumulative distribution function for p-- 1 o r  

0 10 a 2 0 a  

Figure 6.2. Ciainnid curnulati\e di\tribution\ 
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fewer occurrences for a Poisson distribution (Section 12) with a mean equal 
to ( y / a ) .  Similarly, if the degrees of freedom v is an even integer, the 
chi-square cumulative distribution function can be expressed as 

The IOOPth gamma percentile is the solution y p  of 

Percentiles of the chi-square distributions are tabulated in Appendix A3. 
For a x 2  distribution with v degrees of freedom, the Wilson-Hilferty 
approximation to the IOOP th percentile x2( P ;  v )  is 

x 2 ( P ;  v)=v[l  -2(9v)-’+(z,/3)(2/v)”2]3, (6.7) 

where t p  is the IOOPth standard normal percentile. The approximation (6.7) 
improves as v increases, but it is remarkably accurate for v as small as unity 
when 0.20GPGQ.99. 

The mode of the gamma distribution is a(P- 1 )  for /3>1, and 0 for 

The mean, variance, and standard deviation of the gamma distribution are 
o<p<1. 

0 
0 IOa 20a  

Figure 6.3. Gamma hazard functions 
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The hazard function of the gamma distribution is 

Figure 6.3 shows gamma hazard functions. For P< 1. h( y )  decreases to a 
constant value l/a. For P>1, h ( y )  starts at zero and increases to a 
constant value I /&.  Few products have such a failure rate behavior. 

The following property of the chi-square distribution is used in the 
analysis of data from an exponential distribution. Suppose that Y, ,  . . . , Yk 
are independent observations from an exponential distribution with a mean 
of 8. Then the sum Y = 2 (  Y, + . . . + Y k ) / 8  has a chi-square distribution 
with 2 k  degrees of freedom. 

7. OTHER DISTRIBUTlONS 

This specialized section briefly presents a variety of distributions. A general 
reference for these and many other distributions is Johnson and Kotz 
(1970). Only the material on sampling distributions of statistics is useful for 
later chapters, particularly, Chapter 6. 

Sampling Distributions of Statistics 

Certain distributions from statistical theory are the sampling distributions 
of statistics (functions of the sample observations) and are not used as life 
distributions. They include the chi-square distribution of Section 6 and the t 
and F distributions below. They are used in data analyses later. 

The t distribution has a variety of important uses in statistical theory. I t  is 
also called Student's distribution. The following paragraphs present its basic 
properties. Johnson and Kotz ( 1970) give more detail. 

The probability density of the t distribution is 

where - m < t < m ,  and the positive integer paramete: v is called the 
degrees of freedom. r( ) is the gamma function. 

The distribution is symmetric about the origin. Thus odd moments are all 
zero. In particular, the mean (which equals the median) is zero and exists for 
v >  1. Even moments of order 2m exist for 2 m < v ;  namely. 

ET2"'= 1 . 3  . . .  ( 2 m -  I ) v " ' / [ (  v - 2 ) (  V - 4 )  . . .  ( ~ - 2 m ) I .  (7.2) 

In particular. for m = 1 and v > 2 ,  Var( T ) = ET' = v/( v - 2 ) .  
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For large v ,  the cumulative t distribution is close to a standard normal 
distribution. Then standard normal percentiles and probabilities approxi- 
mate those of the t distribution. Exact percentiles of the t distribution are 
tabulated in most statistics texts and in Appendix A4. 

The t distribution is often used in data analysis. Its basis follows. Suppose 
that Z has a standard normal distribution and is statistically independent of 
Q, which has a chi-square distribution with v degrees of freedom. The 
statistic 

T= Z / [  Q/v]” ’  (7.3) 

has a I distribution with v degrees of freedom. For example, suppose that a 
random sample of n observations comes from a normal distribution with 
mean p and standard deviation 6. Let YAnd S2 der te the sample mean 
and variance. Z =  n‘/’( Y-p)/u has a standard normdl uiatribution, and 
Q = ( n -  l )SZ/aZ has a chi-square distribution with v = n -  1 degrees of 
freedom. So 

T=rt’/’(  Y-p)/S (7.4) 

has a t distribution with n- 1 degrees of freedom. 
The noncentral t distribution is used to obtain confidence limits for 

normal distribution percentiles and reliabilities (Chapter 6) and has many 
other applications. Suppose that Z’ has a normal distribution with mean 6 
and variance 1 and is statistically independent of Q. which has a chi-square 
distribution with v degrees of freedom. Then T’= Z‘/(  Q / v ) ’ / ’  has a non- 
central t distribution with v degrees of freedom. Owen (1968) describes this 
distribution, its uses, and its tabulations. 

The F distribution has a number of important uses in statistical theory. 
The following paragraphs present its basic properties. For more detail, see 
Johnson and Kotz (1970) and most statistics texts. 

The probability density of the F distribution is 

where O <  F< 00, the parameter a( P )  is called the numerator (denominator) 
degrees of freedom and is positive, and r( ) is the gamma function. 

The mean exists for P>2 and is 

E (  F ) = P / (  P - 2 1. (7.6) 
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The variance exists for P>4 and is 

~ a r (  F ) = ~ P * ( ~ + P - ~ ) / [ . ( P - ~ ) * ( P - ~ ) ] .  (7.7) 

F percentiles are tabulated in most statistics texts and in Appendix A5. 
The tables give only upper percentiles F( P ;  a.  P )  for P20.50. Lower 
percentiles are obtained from 

F( P ;  a . P ) =  l/F( 1 - P ;  p.  a ) ;  (7.8) 

the degrees of freedom are reversed on the two sides of this equation. 

normal one. Then 
For large a and f19 the cumulative distribution of In( F )  is close to a 

(7.9) 

where z p  is the IOOPth standard normal percentile. 
The basis of the F statistic follows. Suppose that U and V respectively 

have chi-square distributions with a and /3 degrees of freedom and that I/ 
and V are statistically independent. Then the statistic 

F = ( U / a ) / ( V / P )  (7.10) 

has an F distribution with a degrees of freedom in the numerator and P in 
the denominator. For example, the ratio of the variances of two indepen- 
dent samples from normal distributions with a common true variance has an 
F distribution. This fact is used in Chapter 10 to compare variances of 
normal distributions and u parameters of lognormal distributions. Also. the 
ratio of the means of two independent samples from exponential distri- 
butions with a common true mean has an F distribution. This fact is used in 
Chapters 10 and 11 to compare means of exponential distributions. 

Logistic Distribution 

The cumulative distribution function of a logistic distribution is 

~ ( y ) =  I / {  I +exp[ - (  y - p ) / u ]  } ,  - m<.vcm.  (7 .1  I )  

The parameter p is called the location parameter and may have any value; i t  
is the mean and median of the distribution. The parameter u is called the 
scale parameter and must be positive. The range of possible outcomes ~3 is 
from - rx) to + x ) .  Thus the proportion of the distribution below zero must 
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be small i f  it is to be a satisfactory life distribution in practice. Like the 
normal distribution, i t  is symmetric, but it has more probability in its tails. 

Further information on this distribution is provided by Johnson and Kotz 
( 1970). 

If Y has a logistic distribution, then the distribution of U=exp( Y )  is 
called a log logistic distribution. The range of possible outcomes of ths  
distribution is from 0 to + 00, and it is thus suitable as a life distribution. 

Largest Extreme Value Distribution 

The largest extreme value distribution has been used as a model for some 
types of largest observations, for example, flood heights, extreme wind 
velocities, and the age of the oldest person dying each year in a community. 
It is briefly presented here for completeness and comparison with the 
smallest extreme value distribution. 

The cumulative distribution function of a largest extreme value distri- 
bution is 

F( y ) = exp { - exp[ - ( y - X )/S] } , - 00 <y< 00. (7.12) 

The parameter A is called the location parameter and may have any value. 
The parameter S is called the scale parameter and must be positive. The 
parameter X is always the 100e-' -36.8th percentile of the distribution. 

The smallest and largest extreme value distributions have a simple rela- 
tionship. I f  Y has a largest extreme value distribution with parameters A and 
6, then Y'= - Y has a smallest extreme value distribution with a location 
parameter equal to -A and a scale parameter equal to 6. Data analysis 
methods for the smallest extreme value distribution can be used on data 
from a largest extreme value distribution after changing the signs of the data 
values. 

Distributions with Linear and Polynomial Hazard Rates 

The following paragraphs show how to obtain a distribution from a hazard 
function. Any function h ( y )  that has the properties of a hazard function 
can be used to obtain the corresponding distribution. The following is a 
simple and natural hazard function to use; it consists of the first two terms 
in a power series expansion of a general hazard function. 

A linear hazard function has the form 

h ( y ) = a + b y ,  y a o .  (7.13) 

The parameters a and b must be positive. This distribution has an increasing 
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failure rate with age, a wear-out behavior. For any distribution, the cumula- 
tive hazard function satisfies 

(7.14) 

For the linear hazard function 

H ( y ) = J ”h ( y ) dy = U.” + ( b / 2 )  y 2 ,  y 3 0. (7.15) 
0 

Hence, by (7.14), 

~ ( y ) = l - e x p [ - u ~ - ( b / 2 ) p ~ ] ,  y 2 0 .  (7.16) 

Other properties of this distribution can be derived from F(p), for 
example, the density, mean, variance, percentiles, etc. Kodlin (1967) pre- 
sents this distribution and maximum likelihood methods (Chapter 8) for 
estimating its parameters from data. Krane (1963) presents general poly- 
nomial hazard functions and methods for estimating their parameters; he 
applies them to estimating survival of vehicles of a public utility. Such a 
hazard function can have a bathtub shape. Such many-parameter hazard 
functions are generally useful only i f  there is much data. 

Uniform Distribution 

The uniform distribution is used as a theoretical distribution in some data 
analyses. Also, i f  a Poisson process (see Section 12) is observed from time 0 
to time t ,  then the times of the occurrences are a random sample from a 
uniform distribution on the interval from 0 to t .  Selected properties of this 
distribution are presented below. 

The probability density of a uniform distribution from 0 to 6 is 

for 0 ~ p ~ 6 .  
elsewhere. 

(7.17) 

For 6= I ,  the distribution is called the standard uniform distribution; i t  is 
defined on the unit interval from 0 to I .  

The cumulative distribution function of a uniform distribution is 
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The lOOPth percentile of a uniform distribution is 

y p = 6 P .  (7.19) 

The mean, variance, and standard deviation of the uniform distribution 

E (  Y)=6/2, Var( Y)=6'/12. Q (  Y ) = 6 / v z .  (7.20) 

are 

Distributions for Special Situations 

Distributions with failure at time zero. A fraction of a population may 
already be failed at time zero. Many consumers encounter items that do not 
work when purchased. The model for this consists of the proportion p that 
fail at time zero and a continuous probability distribution for the rest. Such 
a cumulative distribution function is depicted in Figure 7.1. The sample 
proportion failing at time zero is used to estimate p,  and the failure times in 
the remainder of the sample are used to estimate the continuous distri- 
bution. Estimation methods are explained in later chapters. 

Distributions with eternal survivors. Some units may never fail. This 
applies to (1) the time to contracting a disease (or dying from i t )  when some 
individuals are immune, (2) the time until released prisoners commit a crime 
where some are completely rehabilitated, (3) the time to redemption of 
trading stamps, since some stamps are lost and never redeemed, and (4) the 
time to failure of a product from a particular defect when some units lack 
that defect. Regal and Larntz (1978) use t h s  model for the time i t  takes a 
person to solve a problem when a proportion 1 - p  of the population never 
solves the problem. 

The cumulative distribution function is 

(7.21) 

" 1  

0 TIME y 0 EP 0 

Figure 7.1. A cumulative diatribution with Figure 7.2. A c u i ~ ~ u l a t i ~ c  distrihutiiln dtgcn- 
a fraction failing at time zero. crate 31 infinity. 
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where p is the proportion failing and F( y )  is a cumulative distribution. A 
proportion (1 - p )  survive forever. Such a cumulative distribution is de- 
picted in Figure 7.2. Such a distribution is said to be degenerate at infinity. 

Mixtures of distributions. A population may consist of two or more 
subpopulations. Units manufactured in different production periods may 
have different life distributions due to differences in design, raw materials, 
handling, etc. It is often important to identify such a situation and the 
production period, customer, environment, etc., that has poor units. Then 
suitable action may be taken on that portion of the population. The model 
consists of the proportions p , ,  ..., pK of the population in each of the K 
subpopulations and the corresponding probability densitiesf,( y ) ,  . . . , f K (  ~ 1 ) .  

The probability density for the entire population is then 

(7.22) 

Figure 7.3 depicts this situation. A mixture of distributions should be 
distinguished from competing failure modes, described in Chapter 5. 

Cox (1959) presents mixtures of exponential distributions and gives 
maximum likelihood methods for estimating their parameters when the 
population a failure comes from is (1) identified or else (2) not identified. 
Proschan (1963) shows that a mixture of exponential distributions has an 
increasing hazard function. Everett and Hand (1981) survey mixtures. 

Barlow and Proschan (1965, 1975) present 
theory for increasing failure rate (IFR) and increasing failure rate average 
(IFRA) distributions. The theory assumes little about the mathematical 
form of the distribution (nonparametric), and the exponential distribution is 

IFR and IFRA distributions. 

TIME y 

I,--..-\ TIME y Figure 7.3. A mivturc of distributions 
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a limiting case of such distributions. They also present statistical methods 
for analysis of data from such distributions. 

More general distributions. At times i t  is useful to work with a general 
distribution that includes others as special cases. For example, the Weibull 
distribution includes the exponential distribution. Farewell and Prentice 
(1979) present the log gamma distribution: it has three parameters and 
includes the normal (lognormal) and extreme value (Weibull) distributions 
as special cases. Lawless (1982) presents the generalized gamma distribu- 
tion. 

8. SHIFTED DISTRIBUTIONS 

This highly specialized section presents shifted distributions, which are 
sometimes used in life and failure data analysis. Such a distribution is 
obtained by shifting a distribution that is defined for outcomes between 0 
and + 30 so that the distribution starts at a value different from 0. The 
shifted exponential, lognormal, and Weibull distributions are briefly pre- 
sented below. Also, authors have proposed using a shifted gamma distribu- 
tion, and one could shift other distributions, such as the log-logistic distri- 
bution, that range from 0 to m. 

This section is not essential background for later material in this book. 
The shifted exponential distribution has the cumulative distribution func- 

tion 

The parameter y is called the shift or threshold parameter and may have any 
value, and 0 is then called the “scale parameter.” The time y is sometimes 
called a minimum life or guarantee time, since all units survive it. Figure 8.1 
shows the probability density for such a distribution. This distribution is the 
exponential distribution shifted by an amount y .  The difference (Y-y) has 
an exponential distribution with a mean B .  Thus the properties of this 
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b 
f ( Y )  

Y 

distribution are like those of the exponential distribution (Section 1). This 
distribution is also called the two-parameter exponential distribution. For 
y=O, it reduces to the exponential distribution of Section 1. Mann, Schafer, 
and Singpurwalla (1974) and Lawless (1982) describe the distribution in 
more detail. 

The shifted lognormal distribution has the cumulative distribution func- 
tion 

here @( ) is the standard normal cumulative distribution function. The 
parameter y is called the shift or location parameter; i t  may have any value. 
Figure 8.2 shows probability densities of this distribution. This distribution 
is also called the three-parameter lognormal distribution. The difference 
( Y - y )  has a lognormal distribution with a log mean p and log standard 
deviation u. The properties of this distribution are like those of the lognormal 
distribution described in Section 3. For y=O, it reduces to the lognormal 
distribution. Aitchison and Brown ( 1957) provide further information on 
this distribution. 

The shifted Weibull distribution has the cumulative distribution function 

The shift parameter y may have any value. ci and /3 are the scale and shape 
parameters. Figure 8.3 shows the probability densities of this distribution. 
This distribution is the Weibull distribution shfted by an amount y; that is, 
the difference ( Y -  y )  has a Weibull distribution. Thus the properties of this 
distribution are like those of the Weibull distribution described in Section 4. 
This distribution is also called the three-parameter Weibull distribution. For 
y =0,  i t  reduces to the two-parameter Weibull distribution. 
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9. CONDITIONAL AND TRUNCATED DISTRlBUTlONS 

This highly specialized section presents conditional and truncated life 
distributions. It is not essential background for later material in this book. 
The method of Table 9.2 for predicting a coming number of failures is very 
useful in practice. 

One may be interested in the life distribution of units that have reached a 
specific age. For example, an insurance company that insures lives of 
40-year-olds is interested in the distribution of their ages at death rather 
than the distribution for newborns. Similarly, an owner of equipment in 
service will base a replacement policy on the distribution of remaining life 
for equipment of each age. Conditional distributions represent such situa- 
tions. Properties of such conditional distributions are presented here. 

A distribution that has a range from - 0 0  to +00 is not strictly ap- 
propriate as a life distribution, since lifetimes must be positive. The corre- 
sponding conditional distribution for units that fail above an age of zero has 
a range from 0 to 00; so it is suitable as a life distribution. Such distribu- 
tions are called truncated distributions; and they can be viewed as condi- 
tional distributions. 

General Theory 

Motivation. ‘The following example motivates conditional life distribu- 
tions. It concerns the life distribution of living 40-year-olds in Halley’s life 
table (Table 1.1). Table 1.1 gives the population fractions dying in five-year 
intervals beyond the age of 40. I t  is helpful to think of the reliability of 
0.436 at age 40 as if 436 people reached age 40; other fractions can be 
interpreted similarly. Of the “436” people that reached age 40, “49” died 
between ages 40 and 45. Thus the fraction f(45140) of 40-year-olds dying 
between 40 and 45 is /(45~40)=0.049/0.436=0.112 ( 1  1.2%). In contrast, 
4.9% of newborns die between the ages 40 and 45. Similarly, the fraction 
f(50140) of 40-year-olds that die between ages 45 and 50 is f(50(40)= 
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Table 9.1. Conditional Human Life Table 
Age y f(v140) F(y1401 R(y140) h(y140) 

40 
40-45 
45-50 
50-55 
55-60 
60-65 
65-70 
70-75 
75-80 
80-85 

- 
.112 
.120 
.121 
.115 
.115 
.117 
.121 
. lo1  
.078 

0 
. 1 1 2  
.232 
.353 
.468 
.583 
.700 
.a21 
.922 

1.000 

1.000 
.888 
.768 
.647 
,532 
,417 
.300 
.179 
.078 

0 .  

* 022 
.027 
.032 
.035 
.043 
,056 
,081 
.113 
,200 

0.052/0.436 =O. 120. Such calculations yield the conditional probability 
density of the distribution of age at death of those that reach age 40. This 
histogram or probability density f(y140) is tabulated in Table 9.1 and is 
depicted in Figure 9 . 1 ~ .  This example motivates the definition below. 
The conditional probability density of age Y at failure for units that reach 

age .v‘ is 

f ( Y  IY’)  =f( Y ) / R (  Y ’ ) ,  Y”Y’. (9.1) 

where!( ) is the probability density and R( ) is the reliability function of 
the original distribution. The divisor R( y’) “rescales” the density so that the 
probability under it from y‘ to 00 is I .  That is, 

Figure 9 . lh  depicts this rescaling. j (  yly‘) has all the properties of a 
probability density. 

.060 

.040 

.020 

20 1 60 8’0 0 Y ’  Y 

Figure 9.10. Mortalitv table histogram for 40-year- Figure 9 . lh .  Original and cop 
olds. ditional probability densities. 
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0 20 40 60 80 
Figure 9 . 2 ~ .  Cumulative distribution function for Figure 9.26. Original and condi- 
40-year-olds. tional cumulative distributions. 

The conditional cumulative distribution function for age Y at failure for 
units that reach age y’ is 

where F( ) is the cumulative distribution function of the original distribu- 
tion and R(y’)= 1 -F(y’). F(y1y’) has all the properties of a cumulative 
distribution function (Section 1). 

For the mortality table, the cumulative fraction of 40-year-olds that die 
before they reach 60 is F(60140) = [ F(60) - F(40)]/R(40) = (0.768 - 
0.564)/0.436 =0.468. In  contrast, the proportion of newborns that die 
before they reach 60 is F(60)=0.768. Figure 9 . 2 ~  shows the conditional 
cumulative distribution function for 40-year-olds, and Table 9.1 tabulates it .  
Figure 9.2b shows the relationship between F( y ( y’) and F( y ) .  
The conditional reliability for failure at age Y among units that reach age 

y‘ is 

R ( y 1 y ’ ) = 1 - F( y I y ‘ ) = R ( y ) / R  ( y ’ ) 3 y a)?’. (9.3) 

Ths simple ratio of the reliabilities is easy to remember. 
For Halley’s life table (Table 1. l), the reliability of 40-year-olds to survive 

age 60 is R(60140) =R(60)/(40) =0.232/0.436 = 0.532. In contrast, the pro- 
portion of newborns that survive age 60 is R(60)=0.232. So one improves 
one’s chances of living to 60 by first living to 40. Figure 9 . 3 ~  shows the 
reliability function for 40-year-olds, and Table 9.1 tabulates it. Figure 9 . 2 ~  
shows the relationship between R( y I 1)’) and R( 1)). 
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The lOOPth percentile y ,  of the conditional distribution of age y at failure 
for units that reach an age y' is the solution of 

p = fl Y, I Y ' )  = [ F(  Y, ) - F( Y ' ) ]  / R  ( Y ' )  . (9.4) 

Then y ,  is the 100P'th percentile of the original distribution, where P ' =  

In the mortality table, the median age at death for 40-year-olds is about 
61 years. This is obtained graphically from the conditional cumulative 
distribution function in Figure 9.20. Enter the figure on the vertical axis at 
0.50, go horizontally to the cumulative distribution function, and then go 
down to the time scale to read the median life of 61 years. 

The conditional mean (or expectation of) age Y at failure among units that 
reach age y' is 

( 1 - P )F( y ') + P .  

Equivalently, 

For the mortality table, the conditional mean age at death among those 
who reach 40 is the following sum, which approximates (9.5): E(Y140)= 
(42.5)0.112+(47.5)0.120+ . . . +(82.5)0.078=61.5 years. Here the midpoint 
of a five-year interval is used as the age at death; for example, 42.5 is used 
for the interval 40 to 45. In comparison, the mean life for newborns is 33.0 
years. 
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The conditional variance of age Y at failure among units that reach age y’ 
is 

Equivalently, 

(9.7) 

(9.8) 

The conditional standard deviation of age Y at failure among units that 
reach an age y’ is 

(9.9) 

For the mortality table, Var( y140)-(42.5-61.5)20.1 12+(47.2-61.5)’ 
0.120+ . . . +(82.5-61.5)20.078= 154.8 years2, and u(y140)=(154.8)’/’= 
12.4 years. 

The conditional hazard function for age Y at failure among units that 
reach age y’ is 

Thus the conditional failure rate at age y is the same as the unconditional 
failure rate. This fact indicates why burn-in and preventive replacement can 
reduce the failure rate in service. If units initially have a hgh  failure rate, 
they can be run in a factory burn-in; then survivors that are put into service 
have a lower failure rate. Also, such units can be replaced at an age when 
their failure rate begins to increase appreciably. Units are then used only 
over the low failure rate portion of their distribution. 

For the mortality table, the yearly conditional hazard rate for 40-year-olds 
in the five-year period between the ages 40 and 45 is h(45(40)= 
[ f(45140)/R(40(40)]/5 =O. 1 12/1.000)/5 =0.22, or 2.2% pt7r year. Similarly, 
h(50140) = [ f(50)40)/R(45140)]/5 = (0.120/0.888)/5 = 0.U27. h( y140) is 
tabulated in ‘Table 9.1 and graphed in Figure 9 . 4 ~ .  Figure 9.46 shows the 
relationship between h( y 1 y’) and h( y ) .  

Remaining life for units reaching an age y’ is 

z= Y-y’ (9.1 1 )  
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I 
.I00 + I 

T 

Figure 9.40. Hazard function for 40-year-olds. Figure 9.4h. Original and cow 
ditional hazard functions. 

and is often convenient to use. This is equivalent to moving the origin of the 
Y time axis to the valuey’. All quantities may be expressed in terms of Z as 
follows. The conditional probability density is 

g(z  I y’) =/( z + y ’ ) / [  1 - F( . Y ‘ , ]  1 z a o .  (9.12) 

The conditional cumulative distribution is 

G ( z I Y ‘ ) = [ F ( z + y ’ ) - F ( y ’ ) ] / [ l  -F(y’)], z 2 0 .  (9.13) 

The conditional reliability is 

C ( z l y ’ ) = l - G ( z l y ’ ) ,  z a o .  

The IOOP t h  percentile of the conditional distribution is 

z p  =yP’  -y ’ ,  

where 

P ’ = ( I - P ) F ( y ’ ) t P  

The conditional mean or expectation is 

E ( z I y ’ ) = E ( Y 1 .y ’ ) - .Y ’ . 

The conditional variance of the remaining life is 

Var( Z 1 y ’ )  = Var( Y I y’) : 

(9.14) 

(9.15) 

(9.16) 

(9.17) 

(9.18) 
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this is the same as the conditional variance of age at death. The conditional 
standard deviation of remaining life is 

this is the same as the conditional standard deviation of age at death. The 
conditional hazard function is 

h(  z I y’) = h  (z-ty’), 2 2 0 .  (9.20) 

For the mortality table, the preceding quantities for the remaining life of 
40-year-olds may readily be calculated from the equations above. 

Conditional Exponential Distribution 
The cumulative distribution function of a conditional (or truncated) ex- 

ponential distribution of time Y to failure among units that reach age y’ is 

Here 8 is the mean of the original exponential distribution described in 
Section 1. For the remaining life Z= Y-y’,  the cumulative distribution 
function is 

G(zIy’)=l-exp(-z/B), Z ~ O .  (9.22) 

That is, for units of any age, the distribution of remaining life is exponential 
with a mean 8. Thus i t  is convenient to work with the remaining life. This 
“lack of memory” is frequently used in the analysis of exponential data. 

An example on fans on diesel engines appeared in Section 1. Such fans 
have an exponential life distribution with a mean of B =28,700 hours. For 
such fans in service for 3200 hours, the chance of failure in the next z = 3300 
hours is G(3300(3200)= 1 -exp( -3300/28,700)= 11%. For fans in service 
for 6400 hours, the chance of failure in the next 3300 hours is G(330016400) 
= 1 I % ,  which is the same as the previous value. This is so for any given age. 
This illustrates that such fans do not become more or less prone to failure as 
they age. 

The reliability of a conditional (or truncated) exponential distribution of 
time Y to failure among units that reach an age y’ is 

(9.23) 
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For the remaining life Z= Y-y’, the reliability function is 

G( z 1 y ! )  =exp( - Z / e  ), z 20. (9.24) 

For diesel engine fans 3200 hours old, the conditional reliability for an 

The lOOPth percentile of the conditional exponential distribution of the 
additional 3300 hours is G(3300)3200)=exp( -3300/28,700)=89%. 

life Y of units that reach an agey’ is 

y p  =y’ + e In [ I /( I - P ) I .  (9.25) 

The IOOPth percentile of the conditional distribution of remaining life 
Z =  Y-y’ of units that reach an age y’ is 

z p  = 61n[ I / (  I - P )] ; (9.26) 

this is independent of y’ for the exponential distribution. 
The median age at failure for fans reaching an age of 3200 hours is 

y;o = 3200 + 28,70OIn[ 1 /( 1 - O S O ) ]  = 23,100 hours. The median remaining 
life for such fans is z 

The conditional probability density for the life Y of units that reach an age 
y‘ is 

= 28,700 In[ 1 /( 1 - 0.50) = 19,900 hours. 

/( k>Iy’)=(~/B)exp[  - ( . v - y ’ ) / d ] .  y3.v’. (9.27) 

The conditional probability density for the remaining life Z =  Y-j,’ of units 
that reach an age y‘ is 

g( z 1 y’) = ( I  /O)exp( - z / o ) ,  2 2 0 .  (9.28) 

For the fans, the conditional probability density of remaining life for fans 
with 3200 hours in service is 

g( z13200)=( 1/28,70O)exp( -z/28,700). z 2 0 .  

The conditional mean life Y of units that reach an agey’ is 

E (  Y lXy( i / e  )exp[- ( j ~ - v ~ ) / e ]  dv=y’+e. (9.29) 
I ’  

This is just the current age y’ plus the remaining expected life. The 
conditional mean of the remaining life Z =  Y-.L“ of units that reach an age 
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y’ is 

E ( 2 I y ’) = 0 = E Y .  (9.30) 

For fans that are 3200 hours old, E( yl3200) = 3200 + 28,700 = 3 1,900 
hours and E( 213200) = 28,700 hours. 

The total expected remaining life of a group of units is useful for 
determining their current value and a replacement policy. The total ex- 
pected remaining life for a group of units is the sum of the expected 
remaining lives of the units. For example, the expected remaining life for 
any fan is 28,700 hours, and the total expected remaining life for 58 such 
fans in service is 58 X 28,700 = 1.6 million hours. 

The conditional variances of the life Y and of the remaining life Z = Y -y‘ 
of units that reach an age y’ are 

Var( Y I  v’) = Var( Z I  y ’ )  =8* .  (9.31) 

The corresponding conditional standard deviations are 

For fans that are 3200 hours old, a( Y (3200) =a( Z (3200) = 28,700 hours. 

Conditional Normal Distribution 

The following paragraphs present the properties of the conditional normal 
distribution. Also, a method for predicting the number of failures among a 
population with a mix of ages is given. The method applies to any life 
distribution. 

The cumulative distribution function of a conditional (or truncated) nor- 
mal distribution of the time Y to failure among units that reach an age y’ is 

This completes the discussion of the conditional exponential distribution. 

y a y ’ ,  (9.33) 

where cD( ) is the standard normal cumulative distribution function that is 
tabulated in Appendix Al .  Here p and (I are the mean and standard 
deviation of the original normal distribution. 

Section 2 presents an example on transformer life. The life of such 
transformers is approximated by a distribution with a me’ 26250 hours 
and a standard deviation a=2500 hours. The chance of failure in the next 
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month (500 hours of service) for units 2000 hours old is F(2500(2000)= 

25001) =0.023, or 2.3%. 

time Y to failure among units that reach an age y’ is 

{@[(2500-6250)/2500]-@[(2000-6250)/2500]} / { 1 -@[(2000-6250) / 

The reliability of a conditional (or truncated) normal distribution of the 

y>y‘. (9.34) 

For the transformers, R(250012000) = 1 - 0.023 = 0.977. 
The lOOPth percentile of the conditional normal distribution of the life Y 

of units that reach an agey’ is 

y;. = p + Z P ? U ,  (9.35) 

where z p .  is the 100P‘th standard normal percentile (tabulated in Appendix 
A2), and P’=(l  - P ) @ [ ( y ’ - p ) / a ] + P .  

The median age at failure for transformers y’ = 2000 hours old is given by 
P’=(l  -O.S)@[(ZOOO-6250)/2500]+0.5=0.5223, z ,,,,=0.0557, and y,= 
6250+0.0557(2500)=6390 hours. For new units, the median life is 6250 
hours. 

The probability density of the conditional or truncated normal distribu- 
tion of the time Y to failure among units that reach an agey’ is 

where cp( ) is the standard normal probability density. 
The conditional mean life Y of units that reach an age y’ is 

(9.37) 

where u = ( y ’ - p ) / a .  
For transformers that are 2000 hours old, the mean age at failure is 

E (  Y 12000) = 6250 + 2500q[(2000 - 6 2 5 0 ) / 2 5 0 0 ] {  1 - @[(2000 - 
6250)/2500]}- =6870 hours. The expected remaining life of such units is 
E( 212000) = 6870 - 2000 = 4870 hours. 

The conditional variance of the life Y of units that reach an age y ’  is 

Var( Y l y ’ )  = u 2 (  l+ucp(u) [ l -0(u) ]~’ -cp’ (  u ) [ l - @ (  u ) ] - ’ ) ,  (9.38) 

where u = ( , v - p ) / a .  



66 BASIC CONCEPTS AND DISTRIBUTIONS FOR PRODUCT LIFE 

The conditional standard deviation o( Y I y ' )  is the square root of this 
variance. 

For transformers that are 2000 hours old, the standard deviation of age 
at failure comes from u ~(2000-6250)/2500= - 1.700 and u( Y 12000)= 
2500{1 + ( -  1.700)~p(-1.700)[1-cP(-1.700)]~ ' -~p~(-  1.700)[1- 
a( - 1.700)]- 2)''2 ~ 2 2 3 0  hours. 

Prediction of numbers of failures. The following method predicts the 
expected number of units in service that will fail between the current time 
and a specified future time- an important practical problem. The predict- 
ion is used to plan manufacture of replacements. It uses the conditional 
failure probabilities for the units that will be in service for that period of 
time. For each running unit, calculate the condjtional probability of failure 
based on the current age of the unit and the length of the specified period. 
The sum of these conditional probabilities, expressed as proportions, is an 
estimate of the expected number of failures in the specified period. I f  the 
conditional failure probabilities are all small, then, the coming number of 
failures has a probability distribution that is approximately Poisson (see 
Section 12), and the Poisson mean is estimated by the sum of the condi- 
tional probabilities of failure. This distribution allows one to make probabil- 
i ty statements about the coming number of failures in the specified period. 

Table 9.2 shows a calculation of an estimate of the expected number of 
transformer failures over the next 500 service hours. The calculation in- 
volves the current ages of the 158 unfailed transformers. To reduce the labor 
in calculating the 158 conditional failure probabilities, the transformers are 
grouped by age. Then, for each group, a nominal conditional probability of 
failure is calculated for a nominal unit age, as shown in Table 9.2. The sum 
of the conditional probabilities for a group is approximated by the nominal 
probability for the group times the number of transformers in the group. 
The expected number of transformer failures over the next 500 hours is 
obtained by the calculations shown in Table 9.2, and it is 7.8 failures. Using 
a table of Poisson probabilities, one finds that the number of failures in 500 

Table 9.2. 
Age Range Nominal Conditional Number of Expected No. of 
of Group Age Probability Trans formers Failures 

Calculation of Expected Number of Failures in 500 Hours 

- 17 51-2250 2000 0.023 x 17 - 0.39 
22 5 1 -27 50 2 500 0.034 x 54 - 1.84 
27 51 - 3250 3000 0.044 x 27 - 1.19 

17 - 0.95 3251-3750 3500 0.056 x 
3751-4250 4000 0.070 x 19 - 1.33 
4251-4750 4500 0.086 x 24 - 2.06 

- 
- 
- 
- 
- 

Total Expected 7.8 
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hours will be 12 or fewer, with 95% probability. Tlus probability statement 
does not take into account the statistical uncertainty in the estimate of the 
life distribution of transformers. 

For steel specimens taken from generator re- 
taining rings, the distribution of 0.2% yield strength is assumed to be normal 
with a mean p=150.23 ksi and a standard deviation o=4.73 ksi. The ring 
manufacturer shps  only those rings testing above the specification of 145 
ksi. The strength distribution of rings received by the customer is a 
truncated normal distribution, given that the strengths are above 145 ksi. 
Before knowing the distribution of yield strength, the customer wanted to 
raise the specification to 150 ksi in order to increase generator efficiency. 
The proportion of rings scrapped under the old specification is F( 145)= 
Ca((145- 150.23)/4.73]=0.13, or 13%, and the proportion scrapped under 
the new specification would be F(150)=Ca{(150- 150.23)/4.73]=0.48, or 
48%. Upon learning that the new specification would result in rejection of 
about 48% of production, the customer decided that it would be better to 
work on developing a stronger alloy. 

Conditional Lognormal Distribution 

The following paragraphs present the properties of the conditional lognormal 
distribution. 

The cumulative distribution function of a conditional (or truncated) 
lognormal distribution of the time Y to failure among units that reach an 
age y’ is 

Retaining ring example. 

m y ’ ) =  (@{[ log(Y)-P] /~)  - @ {  [log(Y’)-P]/o} )/ 

y 2.v’ (9.39) 

The standard normal cumulative distribution function @( ) is tabulated in 
Appendix Al .  Also, p is the log mean and u is the log standard deviation of 
the original lognormal distribution described in Section 3. 

For the locomotive controls described in Section 3, the distribution of 
miles (in thousands) to failure is taken to be lognormal with p=2.236 and 
a=0.320. For controls with 240 thousand miles on them, the conditional 
probability of failure in the next 20 thousand miles is 

F(2601240)~ ( C a {  [10g(260)-2.236]/0.320} - @ {  [log(240)-2.236]/ 

0.320) ) / (  1 - @  ( [log(240) -2.236]/0.320} ) = O .  1 18 

Similarly, F(1401120)=0.112 and F(2010)=0.0018. 
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The reliability of a conditional lognormal distribution of the time Y to 
failure among units that reach an age y’ is 

R (  Y l  y ’ ) = N y  ) / R ( Y ’ )  

= ( I - ” {  [ log(L’)-~]/u})/(1-~{[log(yr)-I”1/a}) ,  

y>4”. (9.40) 

For such controls, R(2601240)=0.882, R( 1401120)=0.888, and R ( 2 0 ) =  

The lOOPth percentile of the conditional lognormal distribution of the 
0.9982. 

life Y of units that reach an age y’ is 

y ,  =antilog(p+z,.u), (9.41) 

where tp. is the 100P’th standard normal percentile, tabulated in Appendix 
A2, and 

The median mileage at failure for controls with 240 thousand miles is 
given by P‘ -= ( 1  - @{[log(240) - 2.236]/0.320))0.50 + @{[log(240) - 
2.236]/0.320} = 0.837, z x37 =0.982, y =antilog[2.236 +0.982(0.320)] = 355 
thousand miles. For comparison, v 5o = 172 thousand miles for new controls. 

The probability density of the conditional lognormal distribution of time 
Y to failure among units that reach an age y’ is 

ya.V‘ ,  (9.42) 

where Q;( ) is the standard normal probability density. 
The conditional mean life Y of units that reach an age y’ is 

E (  Y I y ’) = E (  Y ) ( 1 - cp { [log( y ? )  - (I”+ 2 . 3 0 3 ~  * )] /u)  ) / 

where E( Y)=antilog(p+ 1 . 1 5 1 ~ ~ )  is the mean of the (unconditional) 
lognormal distribution. 
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For controls with 240 thousand miles, the conditional expected mileage at  
failure is 

E (  y)240) =antiIog[2.236+2.303(0.320)’] 

X [ 1 - @ ( { log(240) - [2.236 + 2.303(0.320)*] } /0.320)] / 

( 1  - @ {  [log(240) -2.236]/0.320}) =423 thousand miles. 

For comparison, E( Y)=225 thousand miles for new controls. 
Aitchison and Brown (1957) provide further details on the conditional 

lognormal distribution, which they call the truncated distribution. For 
example, they provide an expression for the moments of the distribution, 
and the second moment can be used to obtain the conditional variance and 
standard deviation. 

Conditional Weibull Distribution 

The following paragraphs present the properties of the conditional Weibull 
distribution. 

The cumulative distribution function of a conditional (or truncated) 
Weibull distribution of the time Y to failure among units that reach an  age 
y’ is 

F( y ~ y ’ )  = 1 -exp[ ( .vf/a)’- ( .v/a)’ ] .  .v>.v’, (9.44) 

where a and p are the scale and shape parameters of the original Weibull 
distribution described in Section 4. 

For the generator field windings described in Section 4, time to failure is 
described with a Weibull distribution with a characteristic life a = I3 years 
and a shape parameter P z 2 . 0 .  For windings 6.5 years old the chance of 
failure in the next two years (by age 8.5 years) is R(8.516.5)= 1 - 
exp[(6.5/ 1 3)20 - (8 .5/  1 3)20] =0.163. Electric utilities use such information 
in determining when to replace such windings. 

The reliability of a conditional Weibull distribution of the time Y to 
failure among units that reach an  age y’ is 

(9.45) 

For the windings. R(8.516.5)= 1-0.163 =0.837. 
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The lOOPth percentile of the conditional Weibull distribution of the time 
Y to failure among units that reach an age y’ is 

where P ’ =  1 - ( 1 - P)exp[ - ( y ’ / ( ~ ) ~ ] .  
For such windings at an age of 6.5 years. the conditional median age at 

failure is given by P’ = 1 - ( 1 - OSO)exp[ - (6.5,’ 1 3)2 ‘1 = 0.6 1 1 ~ y 5o = 
13{In[ 1/( 1-0.61 I)]}’/*’= 12.6 years. In comparison, the median for new 
windings is 10.8 years. 

The probability density of the conditional Weibull distribution of the time 
Y to failure among units that reach an age y’ is 

The conditional mean life Y of units that reach an age y’ is 

where I-*( u; v ) z  ~ ~ z ” - ’ e - ’ d z  is the incomplete gamma function. Note that 
r*( m, v)= 1’( v), the gamma function. The incomplete gamma function ratio 
is I>( u ;  u ) ”  I-*( u;  v ) / r (  u ) ;  this is a gamma cumulative distribution. The 
incomplete gamma function ratio is tabulated by Harter (1964). In terms of 
the incomplete gamma function ratio, the conditional Weibull mean is 

For windings at an age of 6.5 years, the conditional mean age at failure is 

13.6 years. The remaining expected life of 6.5-year-old windings is 13.6 - 6.5 
= 7.1 years. For comparison, E( Y ) =  11.5 years for new windings. 

The expected remaining life E( Z 1 y’ )  = E( Y 1 y‘)-y’ increases with age y’ 
for p< 1 and decreases with age for ,8> 1.  For p= 1, the distribution is 
exponential, and the expected remaining life is constant and equal to u. 

~ ( Y / 6 . 5 ) =  i 3 r [ i  +(1 /2) ]e~p[(6 .5 /13)~~](1  - r [ ( 6 ~ / 1 3 ) ~ ~ ;  I +(1/2)]} = 
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The conditional variance and standard deviation can be expressed in 
terms of the incomplete gamma function ratio. They are seldom needed and 
are not given here. 

Conditional or Truncated Extreme Value Distribution 

The cumulative distribution function of a conditional distribution (or trun- 
cated) smallest extreme value distribution of time Y to failure among units 
that reach an age y' is 

y a y ' .  (9.50) 

This truncated distribution is also known as the Gompertz- Makeham 
distribution. It has been used as a model for human life in old age. Its 
properties are given by Gross and Clark (1975, Sec. 6.5). Bailey, Homer, and 
Summe ( 1977) present the related modified Makeham distribution. 

10. JOINT DISTRIBUTIONS AND THE JOINT NORMAL 
DISTRIBUTION 

This highly specialized section is advanced; i t  is useful (but not essential) 
background for applications using Chapters 6, 7, 8, and 9 on analytic 
estimates, which approximately have a joint normal distribution for large 
samples. Some material involves matrix notation, but this can be skipped. 
For more information on multivariate distributions, particularly the multi- 
variate normal distribution, see Morrison ( 1976). 

Often one works with K numerical variables Y ,  ,.... Y K .  They can be K 
observations in a sample, K statistics or estimates calculated from a sample, 
K order statistics of a sample (Chapter 7). K properties of a sample unit, 
times to a unit's failure from K possible causes (Chapter 5 ) .  etc. This section 
presents theory for models for K variables. that is, for their joint (multi- 
variate) distributions. The theory here is for continuous joint distributions, 
but i t  applies to discrete distributions after obvious modifications. The 
multinomial distribution (Section 15) is a joint discrete distribution. The 
joint normal distribution appears here as an example of a joint continuous 
distribution. 

The contents of this section are 

Joint Probability Density, 
Events and Their Probabilities, 
Joint Cumulative Distribution, 
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Marginal Distributions, 
Independent Random Variables, 
Moments, 
Linear Sums of Variables, and 
Other Joint Distributions. 

Joint Probability Density 

General. A joint continuous distribution with a probability density is a 
probability model for K variables Y,, . . . , Y,. The model consists of ( 1 )  the 
possible joint numerical outcomes ( y , ,  ..., y K )  that are points in K- 
dimensional Euclidean space E ,  and (2) a joint probability density 
f( y , ,  . . . , y ,  ) that is a function with the properties 

As before, capital letters Y,, I . .  , Y, denote the probability model or distribu- 
tion, and small letters ( y , ? . .  . , y,) denote a particular outcome or point in 
E,. Figure 10.1 depicts a joint (bivariate) probability density for two 
variables. 

YI Figure 10.1. Bivariate probability demity. 
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Joint normal density. A bivariate normal probability density for two 
variables is 

f ( y , ,  Y Z ) ’  (2n[uilu2,(l -P2)]i’2] ~ exp( - 4 0  - p T  I {  [ ( Y I  -PI )? / c . , , ]  

- 2 p [ ( v ,  -PI .v2 - P *  I / (  U I I U Z ?  ) I i 2 ]  + [( Y z  -pz ) z i c . z z ]  } 1. 
(10.2) 

where the parameter p k  is the mean, u k k  is the variance of variable k = 1.2, 
u I2 = q1 is their covariance, p = u 12 /( u I I q2 ) ‘ I 2  is the correlation coefficient 
of Y, and Y,, -m<y,<co, and -m<yZ<m. Figure 10.1 shows such a 
“bell-shaped’’ density. Such a probability density has a constant value on 
ellipses centered on ( p l ,  p z ) ,  as shown in Figure 10.2. This figure also shows 
how the shape of the ellipses depends on p ,  which must be in the range 
( -  1, I). When p is positive (negative), the contours slope positively (nega- 
tively), as in Figure 10.2. Data from such a bivariate distribution could be 
plotted in the figure; the points tend to cluster near (pl.p2). thin o u t  with 
distance from ( p l ,  pz), and have an elliptical pattern like the contours. 

A K-variate normal probability density for K variables is most simply 
expressed in matrix notation as 

f( ? . ‘ I , .  . . , y, ) = (2n ) ~ ,’, ( V (  ~ I’%xp[ - ; ( y  - p )’V ~ I(y - p ) I ,  ( 10.3) 

P2 

I Y I  

Pi  
Figure 10.2. Rivariate normal contours of constant ]( I ,. I : )  
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where ' denotes a transpose, y = ( y , , .  .., y,)' is the column vector for the 
observation, p =( p i , .  . . , p,)' is the column vector of means, V is the K-by-K 
covariance matrix of variances v k k  and covariances vkk'. k ,  k '=  1 , .  . . , K ,  and 
IV(#O is the determinant of V. V is symmetric and positive definite. The 
correlation coefficient for Yk and Yk. is 

i t  is always in the range - 1 to 1. For K = 3 ,  the probability density is 
constant on ellipsoids centered on (p,, p 2 ,  p 3 ) .  Data from such a trivariate 
distribution could be plotted in three dimensions; the points tend to cluster 
near ( p I , p z , p 3 ) ,  thin out with distance from ( p 1 , p 2 , p 3 ) ,  and have an 
ellipsoidal pattern like the contours. 

Events and Their Probabilities 

General. 
event E is 

An event is any subset of points of E,. The probability of an 

(10.5) 

where the multiple integral runs over the points of E .  For example, for 
K = 2 ,  the probability of an event is the volume between the event E and the 
probability density as shown in Figure 10.1. As before, notation such as 
P{ Y ,  ~6 and Y: > 3 }  denotes the probability of the event that consists of 
the outcomes satisfying the relationships inside the braces. For example, 
P( Y ,  G y ;  and . . . and Y, S y;) consists of all points ( yI. .  . . , y K ) ,  where 
y ,  y; and . . . and y K  G v;C. 

Joint normal. There are tables of probabilities of various shaped regions 
for joint normal distributions. Greenwood and Hartley (1962) list such 
tables. 

Cumulative Distribution Function 

General. The joint cumulative distribution function for Y,, . . . , YK,  which 
have a joint densityf(y,, ..., y,), is 
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Such a F( y,,  . . . , y, ) has the following properties: 

1. It is a continuous function for all ( y ,  ...., I,), 
2. limany ,A - -kF (y i , . . . .  y,)=O and limdl , A - m  F( y , ,  . . . , y K  )= 1, and 
3. F( yl,. . . , y,)<F( y ; , .  . . , .Y;) for all y l  G y ; , .  . . , .v,<Y;. 

Any function that has properties I ,  2 ,  and 3 is a continuous joint cumulative 
distribution function. The cumulative distribution function and the proba- 
bility density also have the relationship 

ftyl ,..., y K ) = a ~ ~ ( . y ,  ,..., y,)/a.v, -+,. (10.7) 

Joint normal. Greenwood and Hartley (1962) list tables of joint normal 
cumulative distribution functions. 

Marginal Distributions 

has probability density 
Single variable. The marginal distribution of a single variable, say Y, ,  

The marginal cumulative distribution of Y ,  is 

The marginal distribution of Y, is the distribution of just Y ,  when the values 
of all other variables are ignored. 

The marginal distribution of a variable Y, of a joint 
normal distribution is a normal distribution with mean p k  and variance LI,,,, 
k =  l , . . . ,  K .  

say Y,. . . . . YA I ,  has joint probability density 

Joint normal. 

A number of variables. The marginal joint distribution of K'  variables. 

(10.10) 
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Their joint cumulative distribution function is 

F, K'(yI ,..., ,Y,.)=F(yl ,..., v,,,x ,... 1 so) .  (10.1 1) 

Joint normal. The marginal joint distribution of K '  variables, say 
Y , ,  . . . , Y K , ,  of a joint normal distribution is a joint normal distribution with 
corresponding means p h ,  variances o a h ,  and covariances c h h ! ,  k ,  k ' =  
I ,  ..., K ' .  

Independent Random Variables 

their joint density satisfies 
General. Variables Y l ,  . . . , Y,. are statistically independent if and only i f  

f ,  K ' b I  ..... I ' , .)=fl(.vI)X . . ' X f K ' ( Y , ' ) .  (10.12) 

For example, the bivariate normal density for independent variables is 

fl A > I * Y2 1 = ( 2 r o  I ) -  "2exP[ - ( Y ,  -PI I2 / (2u  I ,] 
x ( 2 7 7 ~ ~  ~ ' I2exp[ - ( y2 - p 2  )2/(2c2 )] . 

Equivalently, they are statistically independent if and only i f  

F, . . ,, ( J,l 3 . . . , I', ) = F,  ( I' ) x . . . x F K  I ( y,, ) . (10.13) 

If Y , .  . . . , Y,. are independent and all have the same marginal distribution, 
then Y l , . . . ,  Y,. is said to be a random sample from that distribution. The 
preceding formulas allow one to construct a joint distribution from separate 
distributions of the individual variables. provided that the variables are 
statistically independent. Joint distributions of dependent variables can be 
obtained by other ways; for example, Chapter 7 gives the joint distribution 
of dependent order statistics of a random sample. 

Joint normal. Joint normal variables are statistically independent if and 
only i f  their covariances are zero or, equivalently, if their correlation 
coefficients are zero. Variables with other joint distributions with zero 
covariances need not be statistically independent. However. any statistically 
independent variables always have zero covariances and correlations. 

Moments 

Mean. The mean (or expected value) of a variable, say Y , ,  is 

(10.14) 
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Joint normal mean. 
parameter p,. k =  1, ..., K .  

The mean of a joint normal variable Y, i s  the 

Variance and standard deviation, The variance of a variable, say Y,. is 

X 

v a r ( Y , > =  jm . . .  j- ( v , - ~ ~ , ) * f ( , .  l....,,’,)(ji,l . . . d v ,  
- x  X 

(10.15) 

The corresponding standard deviation is the square root of the variance. 

Joint normal variance and standard deviation. The variance of a joint 
normal variable Y, is the parameter u, , ,  and the standard deviation is o L < ~ ,  
k =  I , . . . .  K. 

The covariance of two variables, say Y ,  and Covariance and correlation. 
Y,, is 

73 

C o v ( Y , . Y , ) ~ /  . . . lX ( ~ 9 ,  - E Y I ) ( ~ , - E Y ~ ) f ( ) ’ , . . . . , ~ , ) d ~ ,  . . . d i ’ K  

( 10.16 

- m  m 

= 1“, lm ( y ,  - E Y, yl - E Y, ~ ~ 1 ,  .I%? ) dvI dv,. 
3c 

Always Cov( Y , ,  Y2) = Cov( Y, ,  Y, ). The corresponding correlation coefficient 
i s  

Joint normal covariance. The covariance of joint normal variables Y, 
and Y,. is the parameter oh, , ,  and their correlation is p h h ,  = u r h . / (  t j h h O A . h , ) ” ’ 2 .  

Linear Sums 

A linear sum of joint variables Y, ..... YA has the form 

Z=c , ,+c ,Y ,+  ’ . .+C,,YA, (10.18) 

where the coefficients are constants. A sample average of K observations is 
such a sum where c(,  = 0  and c ,  = l / K ,  k =  I . .  . . , K. Such sums occur 
frequently in data analysis, and they are important. In  particular. they occur 
in large-sample theory for maximum likelihood estimation. linear estima- 
tion, and estimation by the method of moments. Basic properties of such 
sums are presented below. 
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The mean and variance of such a sum are 

EZ=c,+c,EY,+ . . . +c,EY,, (10.19) 

(10.20j 
K 

Var( Z )  = 2 c:~ar(  Y,) + 2  xz C,C,,COV( Y,, Y , , ) .  
k =  I k<k '  

The covariance of Z with another sum Z'=cA+c;Y, + * . . +ck Y, is 

K 

COV(Z, z')= 2 c,c;Var(Yk)+ ~ ~ c ~ c ~ . c o v ( Y , , Y , , ) .  (10.21) 
k =  I k f k '  

The joint distribution of such sums of joint normal variables is joint 
normal. The joint distribution of the sums has the means, variances, and 
covariances given by the formulas above. In fact, a distribution is joint 
normal if  and only if any linear sum of the variables has a normal 
distribution. 

Other Joint Distributions 

The joint normal distribution is the most widely known and used joint 
distribution. Others used in life data analysis are surveyed by Block and 
Savits (1981) and include 

The joint lognormal distribution. The logs of the variables have a joint 
normal distribution. 
Joint exponential distributions. There are various joint exponential distri- 
butions; for example, Barlow and Proschan (1975) present a shock model, 
and Block (1975) presents others. 
Joint Weibull distributions. Such distributions are given by Lee and 
Thompson (1974) and by Moeschberger and David (1971). 

Consult the bibliographies and journal indices (Chapter 13) for other joint 
distributions. 

11. GENERAL, THEORY ON DISCRETE DISTRIBUTIONS 
(GEOMETRIC DISTRIBUTION) 

This essential section presents basic concepts and theory for discrete statisti- 
cal distributions. Such distributions are models for counts of the number of 
failures of a product or other occurrences. Such distributions include the 
geometric, Poisson, binomial, hypergeometric, and multinomial distri bu- 
tions. These distributions and their uses are illustrated with examples on a 
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variety of products. Chapter 6 gives methods for analysis of data from such 
distributions. Readers interested in analyses of such data may go directly to 
Chapter 6 after these sections. 

The basic concepts include: 

the probability function and outcomes of a discrete distribution, 
events ahd their probabilities, and 
the mean, variance, and standard deviation of a discrete distribution. 

These concepts are explained below with the geometric distribution. 
A discrete distribution is a probability model Y that consists of a list of 

distinct possible outcomes y , ,  y,, y,, etc., each with a corresponding proba- 
bility f( y ,  ), f( y 2 ) ,  f( y 3 ) .  etc., Here f(  ) is called the probability function. The 
probabilities f( y , )  must ( I )  be zero or greater and (2) their sum must equal 
1. Any list of outcomes and corresponding probabilities that satisfy ( I )  and 
(2) is a discrete distribution. The capital Y denotes the probability model, 
which is also loosely called a discrete random variable if it has numerical 
outcomes. Small letters y ,  y , ,  y 2 ,  etc., denote particular outcomes. 

The outcomes may be numerical (for example, 0.1,2,3, etc.) or categories 
(for example, dead, alive, undecided). For a population, f( y , )  is the popula- 
tion fraction with the valuey,. I t  is also the chance that a randomly taken 
observation has the value y,; that is, f ( y , )  is the fraction of the time that y, 
would be observed in an infinitely large number of observations. 

The geometric distribution, for example, consists of the outcomes y =  
I ,  2,3,. . . and corresponding probabilities 

f ( . Y ) ' P ( I  7)' - ' ,  ( 1 1 . 1 )  

where O<p<l. Clearly, (1) all f ( v )  are positive and (2) their sum equals 
unity. Figure 11.1 depicts this distribution. The geometric probability func- 
tion is tabulated by Williamson and Bretherton (1963). 

Assumptions. ( 1 1 . 1 )  is the distribution of the number 1' of trials (years, 
months, etc.) to "failure." where each trial is statistically independent of all 
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other trials and each trial has the same chance p of failure. Such a trial with 
two outcomes (failure or survival here) is called a Bernoulli trial. This 
distribution with p =  4 is a model for the number of flips of a coin until the 
first heads occurs. Product failure in the yth year of service for a certain 
type of distribution transformer is described with a geometric distribution 
with p=0.00459. 

An event is any set of outcomes of a probability model Y. The probability 
of an event is the sum of the probabilities of the outcomes in the event. 
Notation for the probability of an event is P{ ). where the relationship in 
the braces indicates that the event consists of the outcomes of Y that satisfy 
the relationship. For example, P(  Y = y }  =/( y ) ,  and P{ Y “1.) = XI . ,  ,.f( .r; ) 
denotes the probability of all Y outcomes that are less than or equal to the 
value y .  For the geometric distribution for transformer life, P{ YGy} would 
be interpreted as the probability of failure by age .Y, and P{Y>):} is the 
probability of surviving beyond the age y.  An event is said to occur i f  the 
observed outcome is in the event. The probability of an event has two 
possible interpretations: ( 1 )  i t  is the proportion of population units that 
have values in the event, and (2) i t  is the chance of an observation being an 
outcome in the event. 

The cumulative distribution function F( y )  of a discrete distribution with 
numerical outcomes is 

where the sum runs over all outcomesy, that are less than or equal to)’. For 
a population, F( y )  is the fraction of the population with a value of J, or less. 
This function is defined for all y values between - 00 and + so, not just for 
the values j*,. F(.y) for a discrete distribution is a staircase function, as in 
Figure 11.2, and the jump in the function at an outcome j; equals the 
probability /( y , ) .  Thus, F( y )  and f( y )  may be obtained from each other. 
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The function F( y )  has the properties 

1. l im,__,F(y)=O, 
2. lim,,- +,F(y)= 1, and 
3. F( y ) c F (  y ’ )  for all y<y’. 

The geometric cumulative distribution function is 

I F ( y ) = p + p ( l  - p ) + p (  1 - p ) 2 +  . . . + p (  1 - p ) ‘  

= l - ( ~ - p ) ’ ,  for y = 1 , 2 , 3  ,.... (11.3) 

For noninteger values of y, this F ( y )  is defined as depicted in Figure 11.2. 
This function satisfies I ,  2, and 3 and is therefore a cumulative distribution 
function. 

Many discrete distributions have only integer outcomes, for example, the 
geometric distribution. Then the following relationships express probabili- 
ties of some common events in terms of F( y ), which is tabulated for many 
distributions: 

P {  Y < y } = P {  Y < y - I } = F ( y - l ) ,  

P {  Y=y } = P{ Y r y  } - P {  YGy- 1 } = F( y ) - F( y -  1). 

P (  Y > y }  = 1 - P {  Y G y )  = 1 - F ( y ) ,  (11.4) 

P( Y > y }  = 1-P( YCy} = 1 - F (  y -  1). 

It is important to note when inequalities are strict and when they include 
equality. 

For example, the probability of a distribution 
transformer failure after a five-year warranty is P{ Y> 5)  = 1 - F ( 5 )  = 1 - [ 1 
-( 1 -0.00459)5) =0.977, or 97.7%. This is the expected proportion of a 
manufacturer’s production surviving warranty. Similarly, the probability of 

Transformer example. 
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failure in the 6th through 10th years in service is 

P( 6 d Y G lo} = F( 10) - F( 5 )  

=1-(1-0.00459)10-[l-(1-0.00459)5] 

=O.O22, or 2.2%. 

The mean, variance, and standard deviation are used (1) to summarize a 
discrete distribution and (2) to calculate approximate probabilities with the 
normal distribution. They are defined next. 

The mean of a discrete random variable Y is 

provided that the sum exists. The sum runs over all outcomesy,. The mean 
can be loosely regarded as a middle value of a distribution. I t  corresponds 
to a population average, and the average of a large sample tends to be close 
to the distribution mean. It is also called the expected value of Y ,  and it 
need not equal a possible y, value. 

The mean of the geometric distribution is 

E (  Y ) = l p + Z p (  1 - p ) + 3 p ( l  -p)’+ . . . = l / p .  (11.6) 

For the distribution transformers, the mean life is E( Y )= 1/0.00459=218 
years. This assumes (probably incorrectly) that the geometric distribution 
adequately describes the entire range of transformer life, whereas i t  is 
satisfactory for just the lower tail. 

The variance of a discrete random variable Y is 

where the sum runs over all possible outcomes y,. Equivalently, 

The variance is a measure of the spread of a distribution about its mean. It 
has the dimensions of Y2;  for example, if Y is in years, Var( Y )  is in years 
squared. 
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The variance of the geometric distribution, for example, is 

For the distribution transformers, the variance of life is Var( Y )  = 
(1  -0.00459)/(0.00459)2 =47,247 years2. 
The standard deviation of a discrete random variable Y is 

u (  Y )= [var( Y )I”’. ( 1  1 . lo)  

This is another measure of the spread of a distribution about its mean. I t  
has the dimensions of Y; for example, if Y is in years, a( Y )  is in years. 

The standard deviation of the geometric distribution. for example, is 

a( Y ) =  [ (  1 - P)/P’]”’. ( 1  1.11) 

For the distribution transformers, the standard deviation of life is a( Y )= 
(47,247)’/2 = 2 17 years. 

Approximate probabilities for many discrete 
distributions may be calculated using a normal distribution. This reduces 
computing labor and is often useful outside the range of existing tables of 
discrete distributions. Suppose that a discrete random variable Y has integer 
outcomes, mean E( Y ) ,  and standard deviation a( Y ). The basic approxima- 
tion is then 

Normal approximation. 

P { Y ~ y } = F ( ? : ) ~ @ { [ j ~ + o . 5 - E ( Y ) ] / a ( Z ’ ) } ,  (11.12) 

where @( ) is the standard normal cumulative distribution tabulated in 
Appendix A 1. Related approximations include: 

P {  Y > v }  =I 1 - F( . v )  2 1 - @  { [ . ~ + 0 . 5 - E (  Y ) ] /a(  Y ) ) . 

P{ )>’ < Y<y } = F(  ) - F( y’ ) @ ( [ ) ,  + O .5 -- E ( Y )] / ( I 1 . I3 ) 

a ( Y ) } - Q , ( [ ~ ~ ~ + O . s - E ( Y ) ] / a ( Y  ) }  

In using such formulas. note which inequalities are strict and which are not. 
These formulas apply to the discrete distributions below. The “0.5” in the 
equations is called the continuity correction; i t  is intended to bring the 
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continuous approximate cumulative distribution closer to the leading edge 
of the steps of the exact discrete cumulative distribution (see Figures 12.4 
and 13.2). 

If a unit from a geometric life 
distribution has survived y trials, then its chance of failing on the next trial 
is p for any value of .v. Thus, such a unit does not become more or less 
prone to failure as i t  ages. For example, no matter how many times tails has 
turned up in flips of a fair coin, the probability of heads turning up on the 
next flip is p =  i .  Such a life distribution is suitable for drinking glasses, 
atomic particles, coins in circulation, and other items that fail from a chance 
event. This discrete distribution is analogous to the continuous exponential 
distribution. 

Following sections use the basic concepts above to present commonly 
used discrete distributions for life and failure data. These distributions 
include the Poisson, binomial, multinomial. and other distributions. John- 
son and Kotz (1969) and Patil and Joshi (1968) describe these and other 
discrete distributions in detail. 

A property of the geometric distribution. 

12. POISSON DISTRIBUTION 

This basic section presents the Poisson distribution. I t  is a widely used 
model for the number of occurrences of some event within some observed 
time. area, volume, etc. For example, i t  has been used to describe the 
number of soldiers of a Prussian regiment kicked to death yearly by horses, 
the number of flaws in a length of wire or computer tape, the number of 
defects in a sheet of material, the number of failures of a repairable product 
over a certain period. the number of atomic particles emitted by a sample in 
;f specified time. and many other phenomena. This model describes situa- 
tions where ( 1 )  the occurrences occur independently of each other over time 
(area. volume, etc.), (2) the chance of an occurrence is the same for each 
point in time (area, volume, etc.), and  (3) the potential number of occur- 
rences is essentially unlimited. 

The Poisson probability function is 

(12 .1)  

where the number of occurrences is ~ * = 0 ,  1.2 ,... . Here the quantity r is the 
“length” or exposure of the observation; i t  may be a time, length, area. 
volume, etc. For example. for failures of a power line. the length of 
observation includes the length of the line and the length of time; so 
exposure t is their product in 1000 ft-years. Also, the parameter X must 
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be positive and is the occurrence rate; it  is expressed as the number of 
occurrences per unit “length.” For example, for power line failures, h would 
be a failure rate and expressed in failures per 1000 f t  per year. Many 
authors present the Poisson distribution in terms of the single parameter 
p= hr. Figure 12.1 depicts the distribution probability function. Poisson 
probabilities f( y )  are conveniently tabulated by Molina (1949) and General 
Electric (1962). 

For a particular power line wire, the yearly number 
of failures is assumed to have a Poisson distribution with X=0.0256 failures 
per year per 1000 ft. For r=515.8 1000 feet of such wire in service, the 
probability of no failures in a year is f ( 0 ) = (  1/0!)(0.256X515.8)”exp 
( - 0.0256 X 5 15.8) = exp( - 13.20) = 1.8 X 10 -6 ,  about two in a million. 

The Poisson cumulative distribution function for the probability of ~1 or 
fewer occurrences is 

Power line example. 

I’ 

F ( ~ ) = P ( Y G J ) =  C ( I / i ! ) (ht)’exp(-Ar) .  (12.2) 
, :: 0 

Figure 12.2 shows cumulative Poisson distribution functions. The chart in 
Figure 12.3 provides a Poisson probability F( y )  as follows. Enter the chart 
on the horizontal axis at the value of p = h r .  Go up to the curve labeled .v. 
Then go horizontally to the vertical scale to read F( ~ 1 ) .  For example, for the 

p = 10 
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power line wire, ht=0.0256X515.8= 13.2, and the probability of 15 or 
fewer failures is F(15)=0.75, or 75%, from the chart. F( P )  is tabulated by 
Molina ( 1  949), General Electric (1962), and briefly in Appendix A6. 

F( y ) can also be expressed as 

F( y )=  1 - G(2p; 2 y + 2 ) ,  (12.3) 

where 

G (  2p; 2 y + 2) = ( l/y!)2-’ JZPc -‘/’z dz 
0 

is the chi-square cumulative distribution function with ( 2 ~  + 2 )  degrees of 
freedom evaluated at 2p. Thus the chi-square distributions are used to 
analyze Poisson data, and their percentiles appear in Appendix A3. 

The Poisson mean of the number Y of occurrences is 

This is simply the occurrence rate A (occurrences per unit “length”) times 
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the “length” r of observation. E( Y )  is also called the “expected number of 
occurrences.” For the power line, the expected number of failures in a year 
is At=0.0256(515.8)= 13.2 failures; this number is useful in maintenance 
planning. Equation (12.4) can be written as 

A=E( Y ) / r .  (12.5) 

This shows why A is called the occurrence rate; i t  is the expected number of 
occurrences per unit time or “length.” 

The Poisson variance of the number Y of occurrences is 

Var( Y = [ 02(  1 / O  !) ( A t  lo exp( - At ) + l 2  ( 1 / 1 !) ( A t  ’ exp( - ~t ) 

+ 22( 1/2!)( At  )*exp( - A t  ) + . . . ] - ( A t  )2  

= A t .  (12.6) 

The Poisson variance and mean both equal A t .  For the power line, the 
variance of the number of failures in a year is Var( Y )  = 0.0256(5 15.8) = 13.2. 

The Poisson standard deviation of the number Y of occurrences is 

For the power line, a( Y )  = (1 3.2)’/’ = 3.63 failures per year. 
A normal approximation to the Poisson F( y )  is 

~ ( y )  =Q { ~ ~ f 0 . 5  - E (  Y )I/.( Y ) 1 =a[ (y+0.5 - A t  ) / ( A t  )”’I, 
(12.8) 

where a( ) is the standard normal cumulative distribution function; it is 
tabulated in Appendix Al .  This approximation is more exact the larger At 
and the closer y to At.  It is satisfactory for many practical purposes if 
At> 10. Figure 12.4 shows the normal approximation as a straight line on 
normal probability paper. Each exact Poisson cumulative distribution is a 
staircase function. The normal approximation should be close to the exact 
function at integery values. 

For example, for the power line ( A t =  13.2), the approximate probability 
of 15 or fewer failures in a year is F(15)=@[(15+0.5- 13.2)/3.63]=@(0.63) 
=0.74, or 74%. The exact probability is 75%. 

Sum of Poisson counts. In some applications, Poisson counts are 
summed. The following result is useful for such sums of K counts. Suppose 
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Figure 12.4. Normal apprournation to the Poisson distribution 

that the k th  count is Yk, the corresponding occurrence rate is A,, and the 
length of observation is t , ,  k =  l . . . . ,  K .  If  the counts are statistically 
independent, then the sum Y= Y ,  + . . . + Y, has a Poisson distribution with 
a mean of p = A , t ,  + . . . +A,t,. 

For example, the numbers of failures of the power line in two successive 
years may be regarded as statistically independent. Then the total number 
of failures in the two years has a Poisson distribution with a mean of 
p=0.0256(515.8) +0.0256(5 15.8) = 26.4 failures. 

However, the expected numbers of failures on a power line in two 
different years may not be statistically independent. since the line sees 
different weather, which affects the mean number of failures. Thus the total 
number of failures for the two years may not have a Poisson distribution, 
but the distribution may serve as a first approximation to the true one. 
. Demonstration testing commonly involves the Poisson distribution. Often 

a manufacturer of military hardware must demonstrate its reliability. This 
entails testing a number of units for a specified combined time 1. Units that 
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fail are repaired and kept on test. For example, an electronic system was to 
be tested for t -  10,000 hours. I t  was agreed that the hardware would pass 
the test i f  there were no more than a specified number y of failures. For the 
electronic system y = 2 failures were allowed. 

A manufacturer needs to know the desired A value to design into the 
hardware to assure that it pass the test with a desired high probability 
100( 1 -a)% (90% chosen for the electronic system). The hardware will then 
fail the test with 100aW probability, which is called the producer’s risk. For 
the electronic system, the producer’s risk was chosen as 10%. Suppose that 
the observed number Y of failures has a Poisson distribution with a mean 
p=At .  Then, to obtain the desired design failure rate, one must find the 
value of p=At such that the Poisson probability F, (y )=  I -a. To do this, 
enter Figure 12.3 on the vertical axis at 1 -a, go horizontally to the curve 
for y or fewer failures, and then go down to the horizontal axis to read the 
appropriate p value. Then the desired design failure rate is A=pL/f. For the 
electronic system, A =  1.15/10,000=0.115 failures per 1000 hours. 

Poisson process. In some applications, occurrences are observed at 
random points in time. The Poisson process model describes many such 
situations. These include, for example, (1)  failures in a stable fleet of 
repairable items, (2) phone calls coming into an exchange, (3) atomic 
particles registering on a counter, and (4) power line failures. The model is 
defined by the following properties: (1) the number of occurrences in any 
period of length t has a Poisson distribution with mean p=At,  where A is the 
(positive) occurrence rate, and ( 2 )  the numbers of occurrences in any 
number of separate intervals are all statistically independent. More formal 
definitions are given by Parzen (1962) and by Cox and Miller (1965). 

In particular, the number Y of occurrences from time 0 to time I has a 
Poisson distribution with mean A t ,  the expected number of occurrences by 
time t .  

A consequence of the definition is that the times between successive 
occurrences are statistically independent and have an exponential distribu- 
tion with failure rate A. That is, if the first, second, third, etc., occurrences 
occur at times OG T, S T2S T3G . . . , then the differences D ,  = TI -0, D,= T, 
- T, ,  D, = T, - T,, . . . have an exponential distribution with failure rate A 
and are statistically independent. That is, P { D , ~ z )  = 1 -exp( - A t ) ,  120, 
i =  1,2,3 ,... . 

In certain reliability demonstration tests of units from an exponential life 
distribution, failed units are replaced immediately. This is called testing with 
replacement. Then the number of failures in a fixed total test time has a 
Poisson distribution. Its failure rate is the same as that of the exponential 
distribution and the exposure is the total test time summed over all units. 
Section 1 of Chapter 10 gives an example of this. 
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The Poisson process is often used as a model for failures in a fleet of 
repairable units that have a stable mix of part ages. Consequently, for a 
population that is aging, a “nonhomogeneous” Poisson process may be 
appropriate. For such a process, the failure rate is a function of time A( 1 ) .  

Such nonhomogenous processes are described by Parzen (1962) and Cox 
and Miller (1965). 

The numbers of occurrences in independent Poisson processes may be 
summed, and the sum is a Poisson process. The occurrence rate of the sum 
is the sum of the occurrence rates. For example, if the number of failures on 
each of a number of power lines is a Poisson process, then the total number 
of failures on all lines is a Poisson process. Also, for example, i f  the number 
of failures on each of a number of parts in a product is a Poisson process, 
then the total number of failures of the product is a Poisson process. This is 
also true for nonhomogeneous Poisson processes. 

Analyses of Poisson data are presented in Chapters 6 and 10. Readers 
may wish to go directly to the Poisson analyses there. 

13. BINOMIAL DISTRIBUTION 

This basic section presents the binomial distribution. I t  is widely used as a 
model for the number of sample units that are in a given category. The 
distribution is used if each unit is classified as in the category or else not in 
the category, a dichotomy. For example, it is used for the number of 
defective units in samples from shipments and production, the number of 
units that fail on warranty, the number of one-shot devices (used once) that 
work properly, the number of sample items that fall outside of specifica- 
tions, the number of sample people that respond affirmatively to a question, 
the number of heads in a number of coin tosses, and many other situations. 

Chapters 6 and 10 present methods for analysis of binomial data. After 
reading this section, one may go directly to that material. 

Assumptions of the model are (1) each of n sample items has the same 
chance p of being in the category and (2) the outcomes of the n sample items 
are statistically independent. Of course, the number o f  sample items in the 
category can range from zero to n. The binomial distribution is suitable for 
small samples taken from large populations. When the sample is a large 
fraction of the population (say, 10% or greater), the hypergeometric distri- 
bution is appropriate (Section 14), since the sample outcomes are not 
independent. 

The binomial probability function for a sample of II units is 

(13.1) 
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where the possible number of units in the category is y=O, l ,2 ,  ..., n,  and p 
is the population proportion in the category (0GpG I ) .  As required, the/(y) 
are positive and sum to unity. Figure 13.1 depicts binomial probability 
functions. 

In reliability work, i f  the category is "failure" of a device. the proportion 
p is also called a failure rate and is often expressed as a percentage. Note 
that this failure rate differs from the Poisson failure rate A ,  which has the 
dimensions of failures per unit time. If the category is "successful operation" 
of a device, the proportion p is called the reliability of the device. 

A locomotive control under development was assumed to fail on warranty 
with probabilityp=0.156. A sample of n=96 such controls were field tested 
on different locomotives so that their failures should be statistically inde- 
pendent. There occurred 15 failures on warranty. The binomial probability 
of J'== 15 failures is f(15)=96![15!(96-15)!]~'(0.156)'5(1 -0.156)96 1 5 =  

0.111. 
The Poisson approximation to binomial probabilities simplifies their 

calculation; namely, 

f (  Y ) = ( I  /Y !I( np )"exp( -v ). (13.2)  

n :9 n = 20 

.,;i, 1 1 ,  I . j,, I ,  I 0 
0 2 4 6 8 Y  0 2 4 6 8 Y  

0 2 4 6 8 ~  12 14 16 18 20 Y 

Figure 13.1. Binomial probability functions 
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This is the Poisson probability function where the mean is p = n p .  Such 
probabilities may be calculated or taken from a Poisson table. This ap- 
proximation is more exact the larger n and the small ( n p ) ,  and it suffices for 
most purposes if  n 2 5 0  and (np)<lO. For example, for the locomotive 
control,f( 15)=(1/15!)(96X0.156)exp( -96 XO.156)=0.102 (0.1 11 exact). 

The binomial cumulative distribution function for the probability of y or 
fewer sample items being in the category is 

F( y ) is laborious to calculate, but it is tabulated by the Harvard Computa- 
tion Laboratory (l955), the National Bureau of Standards (l950), Romig 
(1953). Weintraub (1963) for small p values, and briefly in Appendix A7. 
There are computer routines and personal calculators that calculate F( y ). 

For example, the probability of 15 or fewer warranty failures of the 96 
locomotive controls occurring is F( 15) = 0.57 1. This was found by interpo- 
lation in a binomial table. 

A normal approximation to the binomial F( y ) is 

= @ ( ( . Y + 0 . 5 - n p ) / [ n p ( l - p ) ] L ' * ) ,  (13.4) 

where @( ) is the standard normal cumulative distribution function and is 
tabulated in Appendix Al.  This approximation is more exact the larger the 
sample size n and the closerp to and the closery to ( n p ) .  I t  is satisfactory 
for many practical purposes if ( n p ) 2 1 0  and n ( l - p ) 2 l O .  Figure 13.2 
shows the normal approximation to the binomial cumulative distribution as 
a straight line on normal probability paper. Each exact binomial cumulative 
distribution is a staircase function. The approximation should be close to 
the exact function at the integer y values. 

For example, for the sample of locomotive controls, the approximate 
probability of 15 or fewer failures occurring is F( 15) 2 @( ( 15 + 0.5 - 96 X 
0.156)/[96X0.156( 1 -0.156)]'/2} 10.556. Similarly, the approximate proba- 
bility of 15 failures occurring is P ( Y =  15)  =F(15)-F(14)-0.556-@(( 1 4 t  
0.5-96X0.156)/[96XO.156(1 -0.156)]L'2}=0.1 12 (0.1 11 exact). 

The binomial mean of the number Y of sample items in the category is 

E (  Y ) = n p .  (13.5) 
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Figure 13.2. Normal approximation to the binomial distribution 

This is simply the number n in the sample times the population proportion p 
in the category. For example, the expected number of failures in a sample of 
96 locomotive controls is E(Y)=96X0.156= 15.0 failures. 

The binomial variance is 

Var( Y ) = n p ( l  - p ) .  (13.6) 

For a sample of 96 locomotive controls, the variance of the number of failed 
controls is Var( Y ) =  96 XO. 156 X (1 -0.156)= 12.7. 

The binomial standard deviation is 

(J ( Y ) = [ np ( 1 - p  )] I / * .  (13.7) 

For a sample of 96 locomotive controls, a( Y )  = [96 X 0.156 X ( 1 - 0.1 56)]’12 
= 3.56 failures. 
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Acceptance sampling. The following material briefly describes another 
binomial example. Acceptance sampling plans are treated in detail in many 
quality control books, for example, ' Grant and Leavenworth (1980), 
Schilling (1982), and Dodge and Romig (1959). Also, Chapter 10 provides 
more detail on sampling plans. 

The binoniial distribution is commonly used for the number of defective 
units in a random sample from a large lot. An acceptance sampling plan 
specifies the number n of units in the sample and the acceptable number y 
of defectives in the sample. If there are more than y defectives in a sample, 
the consumer is entitled to reject the shipment. Such a plan should accept 
most good lots and reject most poor ones. A plan had n = 20 and y = 1. If a 
shipment has a proportion defective of p=O.Ol, the chance of it  passing 
inspection is 

20! 
0 .O 1'0.99'9 = 0.983, 

20! 
F( 1) = O! (20 - 0) ! 0.01°0.9920+ 1!(20- I ) !  

which could also be read from a binomial table. The chance of passing as a 
function of p is called the operating characteristic (OC) curve of the plan 
( n ,  y ) .  The OC curve for the sampling plan above appears in Figure 13.3. 
Plans with different n and y have different OC curves. 

Train example. A certain freight train requires three locomotives that 
must all complete the run without breakdown to avoid a costly delay. 
Experience shows that each locomotive successfully completes the run with 
probability p =0.9. Then a train with three randomly chosen locomotives 
successfully completes a run with binomial probability P (  Y = 3) = 
(3!/(3!0!)](0.9)3(0. 1)' =0.729. A fourth locomotive increases the chance of 
at least three completing the run to 

P( Y>3)=P( Y=4) + P (  Y=3) = [4!/(4!0!)](0.9)4(0. I ) "  

+ [ 4! /( 3 ! 1 ! )] (0 .9)3(0. 1 ) ' = 0.945. 

n 20 

Figure 13.3. OC curve of acceptance 
0 0.10 0 20 0.30 p hainphng plan 
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This probability is called the reliability of the train. The extra locomotive 
improves the reliability of the train. Such redundancy through extra compo- 
nents is commonly used for designing reliable systems with less reliable 
parts; redundancy is described in many reliability texts, for example, 
Shooman ( 1968). 

Analyses of binomial data appear in Chapters 6 and 10. Readers may wish 
to go directly to the binomial analyses there. 

14. HY PERGEOMETRIC DISTRIBUTION 

This specialized section presents the hypergeometric distribution. I t  is used 
as a model for the number of sample units that are in a given category 
where the sampled population has a finite number of units. The distribution 
is used if each unit is classified as in the category or else not in the category, 
a dichotomy. For example, i t  used to describe the number of defective items 
in samples from shipments and production lots, the number of people that 
respond affirmatively to a question, etc. 

This model describes the number Y of sample items in a given category 
when samples of n items are randomly taken from a population of N items 
where D of the population items are in the category. The population 
proportion in the category is p =  D / N .  The binomial distribution describes 
the same type of situation, but with an infinite population; the simpler 
binomial distribution is usually accurate enough if n/NGO.10. 

The probability function of the hypergeometric distribution for the num- 
ber Y of sample items in the category is 

(14.1) 

where (E)=u! / [b ! (  a - b ) ! ]  is the binomial coefficient, and the possible 
numbers y are the integers from max(0, D -  N S n )  through min( D,  t i ) .  

Hypergeometric probabilities f (  y ) are tabulated by Lieberman and Owen 
(1961). 

required a random sample of n=20 from each lot. The lot is accepted I: i :  

contains y =  1 or fewer defectives. If a lot contains D=50 defectives, the 
probability of no defectives in the sample is f(0)=[50!(500-50)!20!(500- 
20)!]/[0!(50 - 0)!(20 - 0)!(500 - 50 - 20 + 0)!500!] = 0.1 15. Similarly, the 
probability of 1 defective is f (  l)=[50!(500-50)!,20!(500- 3J) ! ] / [  1!(50- 
1)!(20- 1)!(500--50-20+ 1)!500!]=0.270. The probability of j ' =  1 or fewer 
defectives is f(0) +f( 1) = 0.385; the corresponding binomial probability was 

An acceptance sampling plan for lots of N=500 units of a pr.4 l,. , . - I  
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found in Section 13 to be 0.392. The values of factorials are tabulated, for 
example, by Lieberman and Owen (1961). 

The binomial approximation to a hypergeometric probability is 

(14.2) 

where p = D / N  is the population proportion in the category. This is the 
binomial probability for samples of n items where is p =  D / N .  Such proba- 
bilities may be calculated or taken from a binomial table, which is more 
widely available. This approximation is more exact the smaller the sampling 
fraction n/N. It is often adequate if the sample contains less than 10 or even 
20% of the population. The approximation for the preceding example is 
f (0 )  = 20![0!(20-O)!] ‘0. lo( 1 - 0. 1)20--‘) = 0.122, where p = 50/500=0.1. 

Other approximations come from the Poisson and normal approximations 
to the binomial distribution. The Poisson approximation ( p = n D / N )  is 

f ( y ) = ( l / y ! ) ( n D / N ) ” e x p (  -nD/N ). (14.3) 

This is the Poisson distribution with a mean p=nD/N. Such probabilities 
may be taken from a Poisson table. As before, this approximation is more 
exact the larger n and the smaller p =  D/N, and i t  is usually satisfactory if 
n250,  ( n p ) G  10, and n/N=zO.IO. For example. the approximate Poisson 
probability for the example above is f(O)-( 1 /0!)(20 X 50/500)exp( - 20 X 
50/500) = 0.135, 

The hypergeometric cumulative distribution function for the probability of 
y or fewer sample items in the category is 

(14.4) 

where the sum runs over all possible numbers i that are less than or equal to 
y. This function is laborious to calculate. but i t  is tabulated by Lieberman 
and Owen (1961). The hypergeometric F( y )  can be approximated by the 
binomial one with p = D / N  if n is less than, say, 0.10N. 

A normal approximation to the hypergeometric cumulative distribution 
function F( y )  is 

F ( y ) - c p { [ y + 0 . 5 - E ( Y ) ] / a ( Y ) }  

= @ ( [ y + 0 . 5 - n (  D / N ) ] / { n ( D / N ) [ I - ( D / N ) ]  

x ( N - r ~ ) / ( N - l ) } ” ~ ) .  (14.5) 
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where @( ) is the standard normal cumulative distribution function and is 
tabulated in Appendix Al .  This approximation has the same properties as 
the normal approximation to the binomial distribution where p =  D / N .  

Thy hypergeometric mean of the number Y of sample items in the 
category is 

E (  Y) = n D / N .  (14.6) 

This expected number is simply the number n in the sample times the 
population proportion p =  D / N  in the category. For the example above, the 
expected number of defectives in such a sample is E(Y)=20X50/500=2. 

The hypergeometric variance of the number Y of sample items in the 
category is 

Var( Y )  = [ ( N -  n ) / (  N -  l ) ]  n ( D / N  ) [ 1 - ( D / N  )] . ( 14.7) 

This is like the binomial variance (13.6) where p =  D / N .  The quantity in the 
first pair of square brackets is called the finite population correction. It is 1 
if N is “infinitely large” compared to n ;  then (14.7) is the same as the 
binomial variance. For the example above, the variance of the number of 
defectives in such a sample is Var( Y )  = [(500 - 20)/(500 - l)]  X 20 X 
(50/500)[ 1 - (50/500)] = 1.73 1. The corresponding binomial variance is 
Var( Y)=20(50/’500)[ 1 -(50/500)]= 1.800. 

The hypergeometric standard deviation of the number Y of sample items 
with the characteristic is 

o (  Y ) = { [ ( N -  n ) / (  N -  l ) ]  ( D / N ) [  I - ( D / N ) ]  ) ”*. (14.8) 

This is similar to the binomial standard deviation where p =  D / N .  The 
comments above on the hypergeometric variance also apply to the standard 
deviation. For the example above, a( Y)=( 1.731)’12= 1.32 defectives. 

15. MULTINOMIAL DISTRIBUTION 

This specialized section presents the multinomial distribution. It is a model 
for the numbers of n sample observations that fall into each of M categories. 
The binomial distribution is a special case where M=2.  The multinomial 
distribution is a model, for example, for ( I )  the numbers of sample units 
below specification, in specification, and above specification, (2) the num- 
bers of sample people who give each of the M responses to a certain 
question, and (3) the numbers of units failing from each of M possible 
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causes. Its assumptions are ( I )  each sample unit has the same chance of 
being in a particular category and (2) the outcomes of the sample units are 
statistically independent. The number of sample items falling in a particular 
category may range from zero to the entire number n of items in the sample. 

The multinomial probability function for the numbers Y,, Y,, . . . , Y, of 
sample items in categories I ,  2 , .  . . , M ,  respectively, is 

Here the possible numbers y, .  y 2 , .  . . , y ,  each have integer values from 0 to 
n and must satisfy y ,  +y,+ . . . + y , = n ;  T,,, is the population proportion in 
category m ,  m= I ,  ..., M .  The 7rm must be between 0 and 1 and satisfy 
TI +7rr,+ . . . +7rMM= 1. 

The mean of the number Y,,, of sample items from category rn is 

E (  Y,,,)=nnm. m= 1 ,..., M .  (15.2) 

This is the same as the binomial mean (13.5) for just category nr when all 
other categories are regarded as a single category. 

The variance of the number Y,,, of sample items from category n7. 
m= 1 ,  ..., M ,  is 

(15.3) Var( Y,,, ) =tq,,,,1( 1 - r,,, ) .  

This is the same as the binomial variance ( I  3.6) for just category m where all 
other categories are combined and called "not category m." 

The standard deviation of the number Y,,, of sample items from category 
m ,  m = l  ,..., M ,  is 

.( y,, ) = [ n.,,,( 1 - =,,, ,] (15.4) 

This is the same as the binomial standard deviation (13.7) for just category 
m. 

The covariance of the numbers Y,, and Y,,,, of sample items from the 
categories rn and rn' is 

Cov( Y,,,, Y,,,.)= -nr"17r",,. (15 .5 )  

A multivariate normal distribution (Section 10) with the means, variances, 
and covariances above can be used to calculate approximate multinomial 
probabilities of events for large n. 
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PROBLEMS 

2.1. Mortality table. The following American experience mortality ta- 
ble gives the proportion living as a function of age, starting from age 10 in 
increments of 10 years. 

Age 10 20 30 40 50 60 70 80 YO 1(H) 

I.r\ing I O(H) 926 X54 781 69X 579 386 145 008 000 

(a) Calculate the percentage dying in each 10-year interval and plot 
the histogram. 

(b) Calculate the average lifespan of 10-year-olds. Use the midpoints 
of the intervals as the age at death. 

(c) Calculate the hazard function for each 10-year interval (as a 
percent per year) and plot i t .  

(d) Draw the survivorship curve for 10-year-olds and obtain the 10, 
50, and 90% points of the distribution of their lifespans. What proportion 
of 10-year-olds reach age 65? 

(e) Calculate and draw the survivorship curve for 30-year-olds and 
obtain the 10, 50, and 90% points of the distribution of their lifespans and 
their expected lifespan. 

( f )  Repeat (e) for 50-year-olds. What proportion of 50-year-olds 
reach age 65? 

(9) Calculate and plot the hazard function for 50-year-olds and 
compare i t  with that for 10-year-olds. What general conclusion does this 
indicate? 

2.2. Weibull. For the Weibull cumulative distribution function, F( y ) =  
1 - exp[ - ( ~ / c u ) ~ ’ ] ,  y>O, derive the following. 

(a) Probability density. 
(b) Hazard function. 
(c) Cumulative hazard function. 
(d) 100Fth percentile. 
(e) Mean. 
( f )  Standard deviation. 

A Weibull distribution for engine fan life has ~ ~ ~ 2 6 , 7 1 0  hours and 
,8= 1.053. Calculate the following. 

(g) Median life. 
(h) Mean life. 
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(i) Most likely (modal) life. 
G) Standard deviation of life. 

( k )  Fraction failing on an 8000-hour warranty 

2.3. Log,, normal. For the lognormal cumulative distribution function, 

A lognormal life distribution for a Class B electrical insulation at  170°C 

2.4. Log, normal. The lognormal distribution with base e logs has the 

F( y ) = a ( [ l o g , , , ( y ) - p ] / u } ,  y>O, derive (a) through (f) in Problem 2.2. 

has p=3.6381 and u=0.2265. Calculate (8) through (j) in Problem 2.2. 

cumulative distribution function 

F( y ) = a { [In( y ) - p r ]  /u’ } , o <r; < cc, 

where p’ is the mean and u ’  is the standard deviation of log, life. Obtain the 
formula for the following. 

(a) 100Pth percentile. 

(b) 
density v( ). 

(c) Mode. 
(d)  Mean. 
(e) Variance. 
( f )  Hazard function. 

(8) 

Probability density in terms of the standard normal probability 

Relationship between p’ and u ’  and the p and u of the same 
lognormal distribution expressed with base 10 logs. 

2.5. Logistic. The logistic cumulative distribution function is 

F( y ) = I /  { I +exp[ - ( y - p ) / u ]  } , - co <y< 00. 

(a) Determine the range of allowable values of the location and scale 

(b )  Verify that the function is a cumulative distribution function. 
(c) Plot the cumulative distribution function as a function of the 

(d) Give the formula for the probability density. 
(e) Plot the probability density as a function of the standardized 

parameters p and (I. 

standardized variable z=( -v -p) /u .  

variable z .  

, ( f )  Give the formula for the hazard function. 

(g) 
able z .  

Plot the hazard function as a function of the standardized vari- 
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(h) Give the expression for the IOOFth percentile of this distribution. 
(i) Give an expression for the distribution median in terms of p and 

(j) - Give the probability of a unit with age equal to p surviving an age 
pS(7. 

(k)* Calculate the distribution mean. 
(1)* Calculate the distribution variance. 
(m)* Calculate the distribution standard deviation. 

(n) Find the cumulative distribution of w=exp(y), the log-logistic 

(0) Find the probability density of w .  

(7. 

distribution. 

2.6.' Mixture of exponentials. Suppose that a population contains a 
proportion p of units from an exponential life distribution with mean 0, and 
the remaining proportion 1 - p  from an exponential life distribution with 
mean 0,. Proschan (1963) treats such a problem. 

(a) Derive the hazard function of the mixture distribution. 
(b) Show that the failure rate of the mixture distribution decreases 

with age. 

2.7. Exponential and Poisson prediction. Fifty-eight fans in service 

Predict the number of such fans that will fail in the next 2000 
hours of service on each fan; assume that failed fans are replaced by a fan 
with a new design that does not fail. 

Do (a), but assume that each failed fan is immediately replaced by 
a fan of the old design. 

For (a), calculate a limit that is above the observed number of 
failures with 90% probability. 

come from an exponential distribution with a mean of 28,700 hours. 

(a) 

(b) 

(c) 

(d) For (b), do  (c). 

2.8. Binomial acceptance sampling. For a binomial acceptance sam- 
pling plan with sample size n = 20 and acceptance number y =  0, calculate 
and plot the OC function. Do the same for ti-10 and y=O. Which OC 
curve is preferable from the viewpoint of (1) the supplier and (2) the 
customer? 

*A\rerisk denotes laborious or difficult 



3 
Probability Plotting of 
Complete and 
Singly Censored Data 

Those who analyze data know that probability plots are very useful for 
getting information from data. This chapter explains how to make and use 
such plots for complete data (all units failed) and singly censored data (a 
common running time for unfailed units). To read this chapter. one needs t o  
know the basic concepts and distributions in Sections 1 through 5 of 
Chapter 2. This introduction briefly states the advantages and disad- 
vantages of probability plots and outlines this chapter. 

Advantages 

Probability plots are often preferred over the nurnerical analyses in later 
chapters because plots serve many purposes, which no single numerical 
method can. A plot has many advantages. 

1. I t  is fast and simple to use. In contrast, numerical methods may be 
tedious to compute and may require analytic know-how or  an expensive 
statistical consultant. Moreover, the added accuracy of numerical methods 
over plots often does not warrant the effort. 
2. I t  presents data in an easy-to-grasp form. This helps one draw conclu- 
sions from data and also to present data to others. 
3. I t  provides simple estimates for a distribution-its percentiles, parame- 
ters, nominal life, percentage failing on warranty. failure rate. and many 
other quantities. 
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4. It  helps one assess how well a given theoretical distribution fits the data. 
5. It applies to both complete and censored data. 
6. It helps one spot unusual data. The peculiar appearance of a data plot 
or certain plotted points may reveal bad data or yield important insight 
when the cause is determined. 
7. It lets one assess the assumptions of analytic methods applied to the 
data. 

Limitations 

Some limitations of a data plot in comparison to analytic methods are the 
following. 

1. I t  is not objective. Two people using the same plot may obtain some- 
what different estimates. But they usually come to the same conclusion, of 
course. 
2. I t  does not provide confidence intervals (Chapter 6) or a statistical 
hypothesis test (Chapter 10). However, a plot is often conclusive, and leaves 
little need for such analytic results. 

Usually a thorough analysis combines graphical and analytical methods. 

Chapter Overview 

Section 1 motivates probability plots. Sections 2 and 3 explain how to make 
and interpret such plots for complete data (each sample unit has a failure 
time). Sections 4, 5 ,  6, 7, and 8 explain plots for the exponential, normal, 
lognormal, Weibull, and extreme value distributions. Section 9 gives practi- 
cal aids for all such plots. Section 10 presents such plots for singly censored 
data. Section 1 1 briefly discusses theory for constructing probability papers. 

King (1971) comprehensively presents probability plotting for many 
distributions. 

1. MOTIVATION 

Data can usually be regarded as a sample from a population, as described in 
Chapter 1. For example, times to breakdown of an insulating fluid in a test 
are regarded as a random sample from the entire production of units 
containing the fluid. Similarly, breaking strengths of a sample of wire 
connections are regarded as a random sample from the entire production of 
wire connections. As described here, the sample cumulative distribution 
function is used to estimate the population cumulative distribution function. 
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Insulating fluid example. The motivation uses the data in Table 1 .1 ,  
which contains times to breakdown of an insulating fluid between electrodes 
recorded at seven different voltages. The plotting positions in Table 1.1 are 
explained later. A test purpose was to assess whether time to breakdown at 
each voltage has an exponential distribution as predicted by theory. I f  
appropriate, the distribution can be used to estimate the probability of fluid 
breakdown in actual use. 

Table 1.1. Times to Breakdown of an Insulating Fluid 
26 kV 28 kV 30 kV 32 kV 

Min- Plotting Min- Plotting Min- Plotting Min- Plotting 
utes Position u t e s  Position Utes Position utes Position 

5.79 16.3 68.85 10.0 7.74 4.5 0.27 3.3 

1579.52 50.0 108.29 30.0 17.05 13.6 0.40 10.0 

2323.70 83.3 110.29 50.0 20.46 22.7 0.69 16.7 

426.07 70.0 21.02 31.8 0.79 23.3 

--- ---- 

1067.60 90.0 22.66 40.9 2.75 30.0 34 kV 
Min- Plotting 43.40 50.0 3.91 36.7 

47.30 59. 1 9.88 43.3 
Utes Position 

139.07 68.2 13.95 50.0 
0.19 2.6 
-- 

0.78 7.9 

0.96 13.2 

1.31 18.4 

2.78 23.7 

3.16 28.9 

4.15 34.2 

4.67 39.5 

4.85 44.7 

6.50 50.0 

7.35 55.3 

8.01  60.5 

8.27 65.8 

12.06 71.1 

31.75 76.3 

32.52 81.6 

144.12 77. 3 15.93 56.7 

Min- Plotting 175.88 86.4 27.80 63.3 

194.90 95.5 53.24 70.0 
utes Position 

0.35 3.3 

0.59 10.0 

0.96 16.7 

0.99 2 3 . 3  

1.69 30.0 

1.97 36’7 Min- Plotting 
2.07 43.3 utes Posit ion 

2. 58 50.0 0.09 6.2 

2.71 56.7 0.39 18.7 

2.90 63.3 0.47 31.2 

3.67 70.0 0.73 43.7 

36 kV 

-- 
8 2 . 8 5  76.7 

89.29 83.3 

100.58 90.0 

215.10 96.7 

38 kV 

3.99 76.7 0.74 56.2 

33.91 86.8 5.35 83.3 1.13 68.7 

36.71 92.1 13.77 90.0 1.40 81.2 

72.89 97.4 25.50 96.7 2.38 93.7 
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Figure 1.1. Histogram of the 34-kV data. 

Histogram. Data are commonly plotted in a histogram, as shown in 
Figure 1 . 1  with the insulating fluid data at 34 kV. To make a histogram, 
divide a data axis into intervals (usually of equal length), and tally the 
number of observations in each interval with squares, X ’ s ,  I’s, etc. A sample 
histogram corresponds to the probability density of a theoretical distribu- 
tion. A histogram is satisfactory for moderate- to large-size samples of 
complete data. I t  is not as informative as a probability plot and does not 
apply to censored data. So probability plots are used here. 

Cumulative distributions. The value of the population cumulative distri- 
bution function (cdf) at a given time is the population fraction failing by 
that time. Similarly, the value of the sample cdf at a time is the sample 
fraction failing by that time. That is, i f  a sample has i of n observations 
below a particular time, then the sample cdf at that time is i / n ,  or 
100(i/n)%. Figure 1.2 shows this sample staircase function for the 34-kV 
data. The sample cdf is an estimate of the population cdf. 

Sample cdf. Construct the sample cdf as follows, 

1. Order the n data values from smallest t o  largest, as in Table 1.1. The 
smallest has rank 1 ,  the next larger has rank 2 . .  .., and the largest has rank 
n. 

2. For the ith ranked data value, calculate its sample cdf as l O O ( i / n ) % ~ ,  
i = I , .  . . , n .  This percentage is used to plot the sample cdf. Better plotting 
percentages for probability paper are given later. 
3. Plot each observation against its cdf plotting percentage. as shown in 
Figure 1.2, with a dot. 
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4. Draw in the staircase for the sample cdf. i f  desired. as in Figure 1.2. For 
example. Figure 1.2 shows the 10th time (6.50 minutes) plotted against 
IOOX 10/19=53%. 

For most large populations. the population cdf 
contains many closely spaced steps, and i t  can be well approximated by a 
smooth curve. In contrast. a sample cdf usually has few points and a 
somewhat ragged appearance, as in Figure 1.2. To approximate the popula- 
tion cdf. one can draw a smooth curve through the sample cdf points by eye. 
This curve estimates the population cdf and provides information on the 
population. 

Estimate of the cdf. 

Fit a theoretical distribution. Instead of a smooth curve. one can f i t  a 
particular theoretical cdf to a sample cdf. Then the theoretical curve 
estimates the population cdf. Chapter 2 describes such distributions and 
their properties. Such fitting is easy to do with a plot of a sample cdf on 
probability paper as described i n  this chapter. Chapters 6. 7. 8. and 9 
present analytic methods for fitting a theoretical distribution to data. 

Use of probability paper. On probability paper,* the data and cumula- 
tive probability scales are constructed so that any such theoretical cdf plots 
as a straight line as shown in Figure 2.1. One plots the sample cdf on  the 
probability paper for a distribution, and draws a straight line through the 

'Manv prohahilit!. hazard. and other data analh\is papc'rs arc' offcrc'd hv TE.AM (Tc'c1inic;il 
mid Enginwring Aid\ for Managcmcnt). Box 2 5 .  Tarn\%orth. N f i  03XX6 Sonic prohahilit\ 
paper5 arc offcred h\ rhc CODEX I3ook ('(1.. Nonvood. M A  02062 and Kc'uffc'l & Ehwr C ' o ,  
Hohokc'n. NJ .  
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data. Like a smooth curve, the line estimates the population cdf. In addition 
to estimates of percentiles and percentages failed, a probability plot pro- 
vides estimates of the parameters of the theoretical distribution fitted to the 
data. Details of how to make and interpret such plots follow. 

2. HOW TO MAKE A PROBABILITY PLOT OF COMPLETE DATA 

A probability plot of a complete sample of life data provides a variety of 
information. In particular, i t  provides graphical estimates of distribution 
parameters, percentiles, etc. Also, it provides a check on the validity of the 
data and an assumed distribution. To make a probability plot, do the 
following seven steps. 

Order the n failure times from smallest to largest. Table 1.1 shows 
this for the 34-kV data. 

Assign a rank to each failure. Give the earliest failure rank 1, the 
second failure rank 2 ,  etc., and the last failure rank.n. 

Calculate probability plotting positions F, .  For the failure with rank 
i ,  the “midpoint” plotting position (corresponding sample cumulative per- 
centage failed) is 

1. 

2. 

3. 

Table 1 . 1  shows these for the 34-kV data. Appendix ‘49 is a table of these 
plotting positions. Section 9 motivates these plotting positions and describes 
other commonly used plotting positions. 

There are probability 
papers for many distributions, including the exponential, normal, lognormal. 

Weibull, extreme value, and chi-square distributions. The distribution 
should be chosen from experience or an understanding of the physical 
phenomena. For example, The Weibull distribution often describes the life 
and breakdown voltage of capacitors and cables, and the lognormal distri- 
bution often describes the life of electrical insulation. Label the data scale 
(vertical scale in Figure 2.1) to include the range of the data. Then plot each 
failure against its time on the data scale and against its plotting position on 
the cumulative probability scale (horizontal scale in Figur., 2.1). Figure 2.1 
shows the 34-kV data on exponential probability pal ,a. The probability 
scale appears on the vertical axis on some papers. and on the horizontal axis 
on other papers. 

I f  the plotted points tend 
to follow a straight line, then the chosen distribution appears to be ade- 
quate. For the data in Figure 2.1. the exponential distribution might be 

4. Plot the failure times on probability paper. 

5. Assess the data and assumed distribution. 
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0 20 40 60 80 90 95 97 98 
CUMULATIVE PERCENTAGE 

Figure 2.1. Exponential probab~lity plot of the 34-kV data 

questioned. Such an assessment is subjective, and two people analyzing the 
same data may get somewhat different results. Moreover, an adequate fit for 
one application may not be adequate for another. Analytic tests of fit  for 
adequacy of distribution may be useful. Moderate deviations from linearity 
occur because of random sampling. A valid plot with many observations 
tends to follow a straight line. A curved plot indicates that the distribution 
does not fit the data; one should then try plotting the data on other paper. 

An outlier point extremely out of line with the rest is suspect and might 
be discarded. But its cause should be sought, since that information may 
help improve the product or the data collection. Often plots with and 
without suspect points yield the same results for practical purposes. If not, 
one must make a difficult choice and may choose the more conservative 
results. 

If the sample is small, the plot may be erratic and not follow a straight 
line very well, particularly in the tails. Only pronounced peculiarities should 
be interpreted as inadequate fit or data. Inexperienced analysts expect plots 
to be too orderly and straight. 

Determine the line by 
eye to minimize the deviations between the line and the plotted points. For 
exponential paper, the fitted line must pass through the origin, as in Figure 
2.1. The line estimates the cumulative distribution function- the relation- 
ship between the percentage failing and time. Sometimes a straight line does 
not f i t  the data well enough on any probability paper. Then one might f i t  a 
curve and use it as explained later. Depending on how the line will be used, 
it can be fitted to the whole sample, the center of the data, the lower tail, or 

6. Draw a straight line through the plotted data. 
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whatever is appropriate, ignoring or taking into account outliers. Also, the 
line can be fitted to yield conservative results. 

7. Obtain the desired information. Methods for obtaining information 
from such plots follow. Section 3 below explains how to estimate percentiles 
and probabilities of failure. Methods for estimating distribution parameters 
depend on the distribution; Sections 4 through 8 give such methods for each 
basic distribution. Section 9 gives aids for making and interpreting plots. 
The examples give insights on how to use and interpret such plots. 

3. PERCENTILES AND PROBABILITIES 

The following estimates of percentiles and percentages failing apply whether 
a straight line or a curve is fitted to a plot. 

Percentiles. A graphical estimate of a percentile is obtained as follows. 
Enter the probability scale at the desired percentage. Go (vertically i n  
Figure 2.1) to the fitted line, and then go (horizontally in Figure 2.1 ) to the 
corresponding point on the data scale to read the percentile estimate. For 
example, from Figure 2.1, this estimate of the 50th percentile is 10 minutes. 

Percentage failing. An estimate of the percentage failing by a given time 
is obtained as follows. Enter the plot on the data scale at that time. Go 
(horizontally in Figure 2.1) to the fitted line, and then go (vertically in  
Figure 2.1) to the corresponding point on the probability scale to read the 
estimate. For example, from Figure 2.1, 20% fail by five minutes. 

4. EXPONENTIAL PROBABILITY PLOT 

This section explains exponential probability plots and, particularly, how to 
estimate the distribution parameters. The insulating fluid data are the 
example. 

The mean of an exponential distribution is the 63rd percentile. For 
example. the graphical estimate of the mean (63rd percentile) from Figure 
2.1 is 14 minutes. 

The failure rate of an exponential distribution is the reciprocal of the 
mean. For example, this estimate from Figure 2.1 is 1/14=0.07 failures per 
minute. 

The plotted points do not follow a straight line very well. So the 
exponential f i t  is crude. The sample is small (19 observations). so  i t  reveals 
only large departures from an exponential distribution. A more sensitive 
evaluation of an exponential f i t  is obtained from a Weibull plot. ah 
described in Section 7. A Weibull plot generally shows more than an 
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exponential plot, particularly in the lower tail of the distribution, which is 
usually of greatest interest. 

5. NORMAL PROBABILITY PLOT 

Thls section describes normal probability plots. It presents an example and 
methods for estimating the distribution mean and standard deviation. 

Connection strength example. Table 5.1 shows breaking strengths of 23 
wire connections from k n g  (1971). The wires are bonded at one end to a 
semiconductor wafer and at the other end to a terminal post. Table 5.1 
shows whether the wire or a bond failed. Engineering wanted to know if 
such connections meet the specification that no more than 1% of the 
strengths be below 500 mg. 

Figure 5.1 is a normal probability plot of the data made by a computer. 
The computer program uses hazard plotting positions, described in Chapter 
4. The plot suggests that over 10% of the strengths are below 500 mg-much 
over 1%. 

The plot shows that the 3150 value and the two 0 values are out of line 
with the others and are therefore suspect. The suspect 3 150 value was 
discussed in detail by Nelson (1972b). The 0 values are bond failures, 
presumably from bonds that were not made. This information suggested 
that engineering should find the reason for such bonds and eliminate them. 

Table 5.1. 
Breaking 
St rength  

0 

0 

550 

750 

950 

950 

1150 

1150 

1150 

1150 

1150 

1250 

Connection Strength Data 
Type of Erezking Type o f  

Braak S t r e n n t h  Break 

Bond 1250 Bond 

Bond 1350 Wire 

Bond 1450 Bond 

Wire 1450 Bond 

Bond 1450 Wire 

Wire 1550 Bond 

Wire 1550 Wire 

Bond 1550 Wire 

Bond 1850 Wire 

Wire 2050 Bond 

Wire 3150 Bond 

Bond 



CUMULATIVE PROBABILITY 
1 2 5 10 20 3 0  50  7 0  80 90 9 5  98 99 . .  . . . .  . .  . .  . . . . . .  . .  . .  

0.340E 0 4 .  . . . . . . 
0.320E 0 4  i t  

0.300E 04.  . 
0.280E 0 4  

. . 
0.260E 0 4 -  . . 
0.240E 0 4  

0.220E 04. . . 
O . 2 O O E  0 4  

O.18OE 04.  . 0 

O.16OE 0 4  

0.140E 0 4 .  . . 
0.120E 0 4  

0.100E 04.  

800. 

600.  

400.  

200. 

0.  

-200. . . . . . . 

. 

. . 

. . 
. 
. 

-400. 

Figure 5.1. Normal probability plot of the connection strengths. 
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A new plot without the two 0 values indicates that the specification is still 
not met, even when the no-bonding problem is eliminated. So one must 
separately look at the wire and bond strength distributions to determine 
which needs improvement. Chapter 5 describes such analyses. A plot 
without the 3150 value would also be useful. Because the sample is small, 
excluding two or three values changes the plot appreciably for practical 
purposes. 

Although the range of the normal distribution includes negative values, 
normal paper usefully displays the strength data. The distribution fits the 
data well enough for practical purposes. 

The mean p of a normal distribution equals the median 
(50th percentile). From Figure 5.1, this estimate is 1250 mg. 

Normal standard deviation. The slope of the fitted line in a normal plot 
corresponds to the standard deviation u. To estimate u. estimate the mean 
and the 16th percentile. The estimate of u is the difference between the 
mean and the 16th percentile. From Figure 5.1, the estimate of the 16th 
percentile is 610 mg. The estimate of u is 1250-610=640 mg. 

Normal mean. 

6. LOGNORMAL PROBABILITY PLOT 

This section describes lognormal probability plots. I t  presents an example 
and estimates of distribution parameters. 

Class H insulation example. The data in Table 6.1 consist of the times to 
failure of specimens of a new Class H electrical insulation at temperatures 

Table 6.1. Class-H Insulation Life Data 

~ Plotting 
190' 220' 240' 260' Position 

Hours to Failure 

- - - -  
7228 1764 1175 600 5% 

7228 2436 1175 744 15 

8448 2436 1569 744 35 

9167 2436 1665 1228 55 

7228 2436 1521 744 25 

9167 2436 1617 912 45 

9167 3108 1665 1320 65 

9167 3108 1713 1464 75 

10511 3108 1761 1608 85 

10511 3108 1953 1896 95 
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of 190, 220, 240, and 260°C. Some failure times are equal, because speci- 
mens were inspected periodically and a given time is the midpoint of the 
period when the failure occurred. The purpose of the experiment was to 
estimate insulation life at 180°C where a nominal life of 20,000 hours was 
desired. The distribution line for 180°C in Figure 6.1 was eaiimated as 
described by Nelson (1971). The purpose of plotting the data is to assess the 
lognormal fi t  to the data and to check for odd data. 

The plotting positions appear in Table 6.1. The data for each temperature 
are plotted on lognormal paper in Figure 6.1. Experience has shown that 
this distribution usually fits such data. The plotted points for each temper- 
ature tend to follow a straight line, so the lognormal distribution appears 
adequate. For small samples, such plots may appear erratic. 

Lognormal and normal probability paper 
have the same cumulative probability scale. However, lognormal paper has a 
log data scale, whereas normal paper has a linear one. Thus a normal 
probability plot of the logs of lognormal data has the same appearance as a 
log normal plot of the original data. In t h s  way, one can make a lognormal 
plot when lognormal paper is not available. 

Parameter p. The parameter p is the log of the median (50th percentile). 
From Figure 6.1, the estimate of median insulation life at 180°C is 11,500 
hours, well below the desired 20,000 hours. The estimate of p is log( 1 1,500) 
=4.061. One usually uses the median, a typical life, rather than p. 

The slope of the fitted line in a lognormal plot corre- 
sponds to the log standard deviation u. Estimate it as follows. After 

Relation to normal paper. 

Parameter u. 

PERCENTAGE 
5 10 20 3020 50 60 70 80 90 95 98 

Figure 6.1. Lognormal plot of Class-H data 
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estimating the log mean, estimate the 16th percentile. The estimate of (I 
equals the difference between the p estimate and the log of the 16th 
percentile. From Figure 6.1, the estimate of the 16th percentile at 180°C is 
9000 hours. The estimate of u is 4.061 - log(9000)=0.11. This small value 
indicates that the distribution is close to normal; so the insulation failure 
rate increases with age (wear-out behavior). 

Arrhenius model. The Arrhenius model (Nelson, 1971) for such insula- 
tion data assumes that (1)  life has a lognormal distributions at each 
temperature, and ( 2 )  each distribution has the same u, i.e., the true distribu- 
tion lines should be parallel in a lognormal plot. The fitted lines in Figure 
6.1 are not parallel, owing to random variation or unequal true u’s.  In 
particular, the slope of the 260°C data is greater than the other slopes. This 
suggests that the failure mode at 260°C may differ from that at the other 
test temperatures. See problem 5.2 of Chapter 5 .  

7. WEIBULL PROBABILITY PLOT 

This section describes Weibull probability plots- how to estimate the 
Weibull parameters and how to f i t  an exponential distribution to a Weibull 
plot. Nelson and Thompson (1971) describe many available Weibull proba- 
bility papers. 

Insulating fluid example. Table 1 . 1  shows data o n  time to breakdown of 
an insulating fluid. Such data from selected voltages are plotted on Weibull 
paper in Figure 7. I .  

Scale parameter. The scale parameter (Y of a Weibull distribution is the 
63rd percentile. For example, from Figure 7.1. this estimate for 34 k V  is 
eight minutes. 

Shape parameter. The slope of the fitted line in a Weibull plot corre- 
sponds to the shape parameter p. To estimate p, use the point labeled 
“origin” and the shape parameter scale. Draw a line passing through the 
origin and parallel to the fitted line, as in Figure 7.1. The value where this 
line intersects the shape parameter scale is the estimate of p. For the 34-kV 
data, the estimate is 0.88. Some Weibull papers require that the line through 
the origin be drawn perpendicular to the fitted line. 

Exponential fit. The Weibull distribution with a shape parameter of I is 
the exponential distribution. Weibull paper displays data in the lower tail 
better than exponential paper does. Interest usually focuses on this tail 
(early failures). If the exponential distribution does not f i t  early data. a 
Weibull plot shows this better than does an exponential plot. I n  Figure 7.1, 
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01 10 10 100 1000 l0,OOO 
MINUTES TO BREAKDOWN 

Figure 7.1. Weibull probability plot of the insulating fluid data 

each plot is relatively straight and has a shape parameter near unity. Thus 
the exponential distribution appears to describe the data at each voltage. 
There is one suspect data point-the smallest value at 26 kV. 

Theory for such fluid assumes that the shape parameter has the same 
value at each voltage, and thus the slopes of the plots should be equal. The 
slopes look about equal when random variation in the data is taken into 
account. Parallel lines were fitted to the data in Figure 7.1. This can be done 
by eye or by the analytic methods of Chapters 1 1  and 12. 

An exponential distribution can be fitted to data on a Weibull plot )s 
follows. Draw a line from the origin to pass through the shape parameter 
scale at unity. Then fit through the data a line that is parallel to the first 
line. This fitted line is an exponential distribution. The estimate of the 
exponential mean is the 63rd percentile from the fitted line. 

8. EXTREME VALUE PROBABILITY PLOT 

This section describes extreme value probability plots. It presents an exam- 
ple and estimates of the distribution parameters. 

After fitting a statistical model to data, one can 
assess the validity of the model and data by examining the log residuals. For 
the insulating fluid data, theory assumes that such residuals come from an 
extreme value distribution as described by Nelson (1970). As a check on 
this, the residuals are plotted on extreme value paper in Figure 8.1. The 

Residuals example. 
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Figure 8.1. Extreme value probability plot of the insulating fluid residuals 

points follow a straight line well, and there are no peculiar points. So the 
distribution and data look satisfactory. 

Location parameter. The location parameter X of an  extreme value 
distribution is the 63rd percentile. For the example, this estimate from 
Figure 8.1 is 0.7. 

Scale parameter. The slope of the fitted line in an extreme value plot 
corresponds to the scale parameter, 6. The estimate of 6 is the difference 
between the estimates of the location parameter and the 31st percentile. For 
the residuals. the estimate of the 31st percentile is -0.5, and the estimate o f  
6 is 0.7-( - 0 . 5 ) ~  1.2. 

9. AIDS FOR DATA PLOTTING 

The following discussion of data plotting aids includes references. plotting 
positions, computer plots, choice of distribution. a shortcut, nonparametric 
f i t ,  fitting the line, failure rate behavior. coarse data, plotting of selected 
points, and extended data scales. 

Probability plotting appears in few statistical texts. Many 
texts emphasize mathematical theory and overlook plotting, a simple and 
valuable tool for data analysis. King (1971) explains a great variety o f  
plotting methods for practical applications. 

References. 
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Plotting positions. The F, are motivated as follows. The smallest of n 
observations represents the first (100/n)% of the population, that is, the 
population between 0 and (100/n)%. The midpoint of this interval is the 
first plotting position [loo( 1 - OS) /n]%.  Similarly, the second smallest of n 
observations represents the second (lOO/n)% of the population, that is, the 
population between (100/n)% and [ 100(2/n)]%. The midpoint of this 
interval is the second plotting position [ lOO(2 - 0.5)/11]%. This pattern 
continues through the n th (the largest) observation, which represents the 
last (100/n)% of the population, that is, that between [loo( n - l) /n]% and 
[100(n/n)]%. The midpoint of this interval is the nth plotting position 
[ 100( n -OS) /n]%.  

Different plotting positions have been zealously advanced. In general, the 
I th plotting position is a “typical” population percentage near to which the 
I t h  ordered observation falls. The “mean” plotting position is popular and is 

I.;‘= I O O i / (  n+ I ) ,  i =  1 ,.... n .  

King (1971) tabulates 6’; they are the expected (mean) percentage of the 
sample below the i th ordered observation. Johnson ( 1964) advocates and 
tabulates median plotting positions, well approximated by 

iF;I’= 100(i-0.3)/(n+0.4), 

as shown by Benard and Bos-Levenbach (1953). Also, some authors advoc- 
ate the expected values of the order statistics of the standardized distribu- 
tion as plotting positions. Some advocate plotting positions that yield “best” 
estimates of the distribution parameters when a straight line is fitted to the 
plotted data by least squares, for example, Chernoff and Lieberman (1954); 
however, in life data analysis, one is usually more interested in estimating 
low percentiles rather than parameters. Section 5 of Chapter 7 provides 
theory for plotting positions. 

In practice, plotting positions differ little compared with the randomness 
of the data. One could use < or c‘, depending on which is easier t o  calculate 
mentally. One should consistently use one kind in comparing different 
samples. 

Computer plots. Most computer packages now offer probability plots 
for complete data (STATSYSTEM, BMDP, SAS, and OMNITAB). Some 
plot singly and multiply censored data, for example, STATPAC. Such 
packages reduce the labor of plotting. Hahn, Nelson, and Cillay (1975) 
describe STATSYSTEM. Nelson and others ( 1978) describe STATPAC. 
Dixon and Brown (1977) describe BMDP. 
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Choice of distribution. If experience does not suggest a distribution for a 
set of data, try different plotting papers and determine the one that gives 
the straightest plot, particularly in the region of interest (usually the lower 
tail). 

If a probability plot of data significantly bows up or down from a straight 
line, replot the data on other paper. Curvature can best be judged by laying 
a transparent straight edge along the points. In an exponential plot, a failure 
rate that increases and then decreases suggests the use of lognormal paper. 
If that lognormal plot is not straight, the units may have two or more failure 
modes (Chapter 5). Further interpretation of curved plots is given by King 
(1971) and Nelson (1979). 

A smooth curve through an exponential plot may clearly pass through the 
time axis above zero. A possible explanation is that the distribution may 
have no failures before a minimum time. For example, time to product 
failure is figured from the data of manufacture, and there may be a 
minimum time to get a unit into service. An estimate of this time is the 
point where the smooth curve passes through the time axis. Subtract the 
minimum time from each time to failure, and plot the differences on 
probability paper. The distribution is a shifted one (Section 8 of Chapter 2). 

Shortcut. Ordering the data from smallest to largest consumes time, 
particularly for large samples. A shortcut avoids this. In any order, read 
each observation and put a tick mark on the data scale as shown in Figure 
2.1. When done, move over from the tick mark for the smallest observation 
and plot i t  as a dot at its plotting position (read from Appendix A9). Do 
this for the second smallest observation, third smallest, etc., whle working 
through the table of plotting positions. 

Nonparametric fit. A set of data may not plot as a straight line on 
available papers. Then one may draw a smooth curve through a plot and use 
the curve to estimate distribution percentiles and probabilities of failure. 
Such a curve is usually adequate within the data. Extrapolation of the curve 
beyond the data is subject to (possibly much) error. For such a f i t  that 
emphasizes early times to failure, plot the data on Weibull paper and draw a 
smooth curve through the data. Such a f i t  is called nonparametric because 
no particular mathematical form of the fitted distribution is assumed. 

Fitting the line. To estimate distribution parameters, fit the straight line 
to the data points near the center of the sample. Ths improves estimates if 
there are peculiar extreme smallest or largest sample values. Such peculiar 
values fall far from the true distribution line, and the middle values tend to 
lie close to it. 
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On the other hand, if interested in the lower tail of a distribution, fit a 
straight line to the data in the lower tail, particularly if that line differs from 
one through the rest of the data. 

Failure rate behavior. Whether the failure rate increases or decreases 
with age is often a key concern. For an exponential plot, the reciprocal of 
the slope of a curve through the plotted data is the instantaneous failure 
rate. Chapter 4 gives the basis for this. 

Coarse data. Failure times are typically recorded to the nearest hour, 
day, month, 100 miles, etc. That is, the data are rounded. For example, if a 
unit is inspected periodically, then one knows only the period in which the 
unit failed. For plotting such data, the intervals should be small, say, less 
than one-fifth of the standard deviation. If some observations have the same 
value, the data are coarse; a plot has a flat spot as in Figure 6.1. Then 
estimates of parameters, percentiles, and failure probabilities can be some- 
what crude. 

One can plot equal failure times at equally spaced times over the 
corresponding time interval. For example, suppose there are five failures at 
1000 hours, all between 950 and 1050 hours. The equally spaced plotting 
times for the five failures are 960, 980, 1000, 1020, and 1040 hours. This 
smooths the steps out of the plot and tends to make the plot and estimates 
more accurate. 

Chapter 9 gives numerical analyses for such coarse (or interval) data. 

Plot selected points. When a data set has many failure times, one need 
not plot them all. This reduces the work and the clutter of data points on 
the plot. One might plot every k th ordered point, all points in a tail of the 
sample, or only some points near the center of the sample. Choose the 
points to be plotted according to how the plot will be used. For example, if 
interested in the lower tail of the distribution, plot all the early failures. 
Often there are so few failures that all should be plotted. When plotting 
selected points, use the entire sample to calculate plotting positions. 

Extended data scales. For some data, the ranges of the scales of the 
available papers are not large enough. To extend the data scale of any 
paper, join two or more pages together. 

10. PROBABILITY PLOTS OF SINGLY CENSORED DATA 

Introduction. Often life data are censored, because life data are analyzed 
before all sample units run to failure. Data are singly censored if all failure 
times are before a single censoring time. 
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The method. The method for probability plotting singly censored life 
data is like that for complete data. In particular, plot the ith ordered 
observation against the plotting position F, = 100( i - O . S ) / n  or F,' = lOOi/(  n 
+ 1). Here n is the total sample size including the nonfailures. Nonfailures 
are not plotted, since their failure times are unknown. Only the early failure 
times are observed, and they estimate the lower part of the life distribution, 
usually of greatest interest. 

Sometimes one estimates the lower or upper tail of a distribution from a 
singly censored sample by extending a straight line beyond the plotted 
points. The accuracy of such extrapolation depends on how well the 
theoretical distribution describes the true one into the extrapolated tail. 

The following examples illustrate how to plot and interpret singly censored 
samples. Plotting and interpreting are the same as for complete samples. 

Appliance cord example. Electric cords for a small appliance are flexed 
by a test machine until failure. The test simulates actual use, but highly 
accelerated. Each week, 12 cords go on the machine and run a week. After a 
week, the unfailed cords come off test to make room for a new sample of 
cords. Table 10.1 shows data on (1 )  the standard cord and ( 2 )  a new cheaper 

Table 10.1. Appliance Cord Data 

TYPE B6 TYPE B7 
Hours Rank i lOOi/(n+l) Hours Rank i lOOi/(n+l) -- 

57.5 1 4 72.4 1 7.7  
77.8 2 a 78.6 2 1 5 . 4  
88.0 3 1 2  81.2 3 23.4 
96.9 4 1 6  94.0 4 30.8 
98.4 5 20 120 .1  5 38.4 

100.3 6 24 126.3 6 46.1 
100.8 7 2a 127.2 7 53.8 
102.1 a 32 128.7 a 61.5 
103.3 9 36 141.9 9 69.2 
103.4 10 40 164.1+ 10 X 
105.3 11 44 164.1+ 11 X 
105.4 12  48 164.1+ 1 2  X 
122.6 1 3  52 
139.3 14 56 
143.9 1 5  60 
148.0 16  64 
151.3 1 7  68 
m.i+ i a  X 
161.2+ 19  X 
161.2+ 20 X 
162.4+ 2 1  X 
162.7+ 22 X 
163.1+ 23 X 
176.8+ 2 4  X 

X REMOVED FROM TEST BEFORE FAILURE. 
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cord. A “+” marks the running time on each unfailed cord. The basic 
question is, “How do the lives of the two types of cords compare on test?” 
For cord type B6, 17 of the 24 cords failed. Plotting positions appear in 
Table 10.1. The two samples are plotted on normal paper in Figure 10.1. 
Normal paper was chosen after the data were plotted on several papers. I t  
yields a reasonably straight plot, and the distribution was familiar to the 
engineers. Plots for the two cords roughly coincide, whatever the paper 
used; thus the life of new cord is comparable to that of standard cord for 
engineering purposes. The B6 data show a gap between 105 and 140 hours, 
roughly over the weekend. No reason for this gap was found, but it does not 
affect the conclusion. Straight lines through the two samples would estimate 
the distributions, but they are not needed to answer the basic question. 

Class B insulation example. To test a new Class B electrical insulation 
for electric motors, 10 motorettes were run at each of four temperatures 
(150, 170, 190, and 220°C). The main purpose of the test was to estimate the 
median life at the design temperature of 130°C. When the data were 
analyzed, there were seven failures at 170”C, five each at 190 and 220°C. 
and none at 150°C. Such motorettes are periodically inspected for failure, 
and Table 10.2 records the midpoint of the period in which a failure 
occurred (Crawford, 1970). 

Experience indicates that the lognormal distribution describes such insu- 
lation life. The plots provide (1) a check on the assumption of a lognormal 

- _ _  
Figure 10.1. Apphance cord data 
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Table 10.2. Class-B Insulation Life Data 

& all 10 motorettes still on  test without failure at 8064 hours 

& Plotting 
Hours  to Position 
Failure 100(1-0.5)/n 

1764 5 

2772 15 

3444 25 

3542 35 

3780 45 

4860 55 

5196 65 

5448 + 
5448 + 
5448 + 

& Plotting 
Hours  to Position 
Failure 100(1-0.5)/n 

408 5 

408 15 

1344 25 

1344 35 

1440 45 
1680 + - 
1680 + 
1680 + 
1680 + 
1680 + - 

- 
- 
- 

Plotting 
Hours  to Position 
Failure 100(1-0.5)/n 

408 5 

408 15 

504 25 

504 35 

504 45 

528 + 
528 + - 
528 + 
528 + - 
528 + - 

- 

- 

distribution, (2) a check for suspect data, and (3) estimates of the median 
lives at the test temperatures. The medians are used as explained by Hahn 
and Nelson (1971) to estimate the line for 130°C the design temperature. 

Table 10.2 shows the plotting positions, and Figure 10.2 shows lognormal 
plots with lines fitted to the data at each temperature. The two earliest 
failures at 190°C appear early compared to the other data. Otherwise the 
plots are reasonably straight; so the lognormal distribution appears satisfac- 
tory. The experiment was reviewed to seek a cause of the early failures, but 
none was found. Analyses yield the same conclusions whether or not those 
failures are included. The estimates of the medians are X ' s  in the plots. 

Left censored data. Table 10.3 shows data on time to breakdown of an 
insulating fluid tested at constant voltage stresses. These data are similar to 
those in Section I .  The test purpose was to estimate the relationship 
between time to breakdown and voltage. A probability plot of the data 
checks the assumed Weibull distribution and the validity of the data. Some 
times to breakdown at 45 kV occurred too early to be recorded- before the 
times labeled "-"; such data are said to be singly censored on the left. 

Include the left censored data in determining the sample size and the 
ranks of the failures and their plotting positions. For 45 kV there are three 
times censored on the left among the sample of 12. For example, the 
three-second time has rank 6 and its plotting position is lOO(6-0.5)/12= 
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Figure 10.2. Lognormal plots of the Class-B data. 

Table 10.3. Insulating Fluid Times to Breakdown with Censoring 

TIME TO BREAKDOWN (SECONDS) 
P l o t t i n g  

45 kV 40 kV 35 kV - 25 kV P o s i t i o n  

1- 1 30 50 521 4 .2  
1- 1 33 134 2,517 12.5 
1- 2 4 1  187 4,056 20.8 
2 3 87 882 12,553 29.1 

3 25 98 1 , 4 6 8  50,560+ 45.7 
9 46 116 2 , 2 9 0  52,900+ 54.3 

1 3  56 258 2,932 67,270+ 62.6 
47 6 8  4 6 1  4 ,138 83,990 * 70.9 
50 109 1182 15 ,750 85,500+ 79.2 
55 323 1350 29,180+ 85,700+ 87.5 
71 417 1495 86,100+ 86,420+ 95 

- d e n o t e s  l e f t  c e n s o r e d  ( f a i l u r e  occur red  e a r l i e r ) .  

+ d e n o t e s  r i g h t  censo red  ( u n f a i l e d ) .  

* u n p l o t t e d  f a i l u r e .  

--- 

2 12  93 1 , 4 4 8  40,290 37.4 
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1 

SECONDS 
100 

Figure 10.3. Weibull probability plot of the insulating fluid data with censoring 

45.7%. The data are plotted on Weibull paper in Figure 10.3. One can 
examine the plots to check the data and the f i t  of the Weibull distribution, 
using the methods for complete samples. The censored times are not plotted, 
since the failure times are not known, but the censored times are used to 
determine the plotting positions of the failures. Also, samples may contain 
data censored on the left and data censored on the right. Then only the 
observed failures in the middle of the sample are plotted. For 25 kV. the 
failure at 83,990 seconds requires a special plotting position, as described in 
Section 2 of Chapter 4. 

11. THEORY FOR PROBABILITY PAPERS 

This advanced section presents theory for probability papers for the ex- 
ponential, normal, lognormal, Weibull, and smallest extreme value distribu- 
tions. This section explains how to determine the probability and data scales 
so that a theoretical cumulative distribution function (cdf) is a straight line 
on the paper. Such theory is useful only to those who desire a deeper 
understanding or want to develop new probability papers. 

Exponential distribution. The exponential cdf is 

(11.1) 
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where 8 is the mean. Exponential paper is based on (1 1.1) rewritten as 

y,  = -Oh( 1 - F ) .  (11.2) 

This is a linear relationship between the lOOFth percentile y,  and the 
function -In( 1 - F ) .  Therefore the data scale is linear, and the probability 
scale has the value F located at -ln(l - F ) .  For example. F=O is at 
-ln(l -O)=O, F=O.lO at -ln(l-O.10)=0.105, F=0.632 at -ln(l-0.632) 
= 1, and F=0.99 at - In( 1 -0.99)=4.60. The probability scale for F is a 
reversed log scale. Also, (1 1.2) shows that 8 determines the slope of that 
linear relationship and B is the F= lOO(1 - e -  ‘)=63rd percentile. Exponen- 
tial paper appears in Figure 2.1. 

Normal distribution. The normal cdf is 

where @( ) is the standard normal cdf, p is the mean, and u is the standard 
deviation. Normal paper is based on ( 1  1.3) rewritten as 

y,= p + u@ - ’ ( F ) , ( 1  1.4) 

where @ - ’ ( F )  is the inverse of the standard normal cdf and is its IOOFth 
percentile z,. This is a linear relationship between the lOOFth percentile y, 
and the function z,=@-’(F).  Thus the data scale is linear, and the 
probability scale has the value F located at z,=@-’(F). For example, the 
50% point is at Z ~ ~ = O ,  the 84% point at and the 97.5% point at 
z975=2. Also, (11.4) shows that u determines the slope of that linear 
relationship. Normal paper appears in Figure 5.1. Some normal papers have 
a linear scale labeled “normal deviates” or “probits” (top of Figure 10.1). 
The lOOFth percentage point is located at z ,=@-’ (F)  on the probit scale. 

When normal paper is not available, one can plot the ith ordered 
observation against @-’(t) on a linear scale where 1006 is its plotting 
position. Employed by computer programs, this method also applies to 
many other distributions when probability paper is not available. 

Lognormal distribution. The lognormal cdf is 

where @( ) is the standard normal cdf, p is the log mean, u is the log 
standard deviation, and log ( ) is a base 10 log. Lognormal paper is based 
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on (1 1.5) rewritten as 

where W 1 ( F )  is the inverse of the standard normal cdf and is its lOOFth 
percentile z F .  This is a linear relationship between the log( y F )  of the lOOFth 
percentile and the function z F  = @ - I (  F ) .  The data scale is logarithmic, and 
the probability scale has the value F located at iF = CP - I (  F ) .  Also, (1 1.6) 
shows that u determines the slope of that linear relationship. Lognormal 
paper appears in Figure 6. I .  

Normal and lognormal probability papers have the same probability 
scale. However, normal paper has a linear data scale, and lognormal paper 
has a log data scale. This means that the logs of lognormal data can be 
plotted on normal paper. 

Weibull distribution. The Weibull cdf is 

where f l  is the shape parameter and (Y the scale parameter. Weibull paper is 
based on ( 1  1.7) rewritten as 

(11.8) 

This is a linear relationship between log(yF) of the IOOFth percentile and 
the function log[ - In( 1 - F ) ] .  Therefore, the data scale is logarithmic, and 
the probability scale has the value F located at log[-ln(1 - F ) ] .  For 
example, F=0.01 is at log[-ln(l-0.01)]--2, F=0.632 at log[-ln(l - 

0.632)]-0, and F=0.99 at log[ -In( 1 -0.99)]=0.66. Also (1 1.8) shows that 
f l  determines the slope of that linear relationship. Weibull paper appears in 
Figure 7.1. 

Extreme value distribution. The smallest extreme value cdf is 

F( y ) = 1 - exp { - exp[ ( y - X ) / 6 ]  } , - m <y< a, (11.9) 

where h is the location parameter and 6 the scale parameter. Extreme value 
paper is based on (1 1.9) rewritten as 

y , = ~ t ~ ~ n [ - ~ n ( l - ~ ) ] .  (1 1 . lo )  

This is a linear relationship between the lOOFth percentile yF and the 
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function In[ - In( 1 - F ) ] .  Thus, on extreme value paper, the data scale is 
linear, and the probability scale has the value F located at In[ -In( 1 - F ) ] .  
Also ( 1  1.10) shows that 6 determines the slope of that linear relationship. 
Extreme value paper appears in Figure 8.1. 

Extreme value and Weibull papers have the same probability scale aside 
from a multiplicative factor that converts from natural to common logs. 
Extreme value paper has a linear data scale, and Weibull paper has a log 
data scale. Thus, the Weibull distribution could be called the log extreme 
value distribution. 

PROBLEMS 

3.1. insulations. Specimen lives (in hours) of three electrical insulations 

(a) On separate lognormal probability paper for each insulation, plot 

(b) Are there any pronounced peculiarities in the data? 
(c) How do the three insulations compare at 200”C, the usual operat- 

(d) How do the three compare at 225 and 250°C occasional operating 

(e) How do the three compare overall, and are any differences con- 

at three test temperatures appear below. 

the data from the three test temperatures. 

ing temperature, with respect to the median and spread in life? 

temperatures? 

vincing to you? 

Insulation 1 Insulation 2 Insulation 3 

200°C 225°C 250°C 200°C 225°C 250°C 200°C 225°C 250°C 

1176 624 204 2520 816 300 3528 720 252 
1512 624 228 2856 912 324 3528 1296 300 
1512 624 252 3192 1296 372 3528 1488 324 
1512 816 300 3192 1392 372 
3528 1296 324 3528 1488 444 

(f)  On a lognormal probability paper make three plots of the data for 
insulation 2 at 225”C, using the (1) “midpoint”, (2) “mean”, and (3) 
median plotting positions. ( I )  How do the graphical estimates of the 
distribution median, 1% point, and u compare for the three plotting 
positions? (2) Which yields the most conservative (pessimistic) and opti- 
mistic estimates for reliability purposes? (3) Do the differences in the 
estimates look large compared to the uncertainties in the estimates? 
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3.2. Alarm clock. 12 alarm clocks yielded 11 failure times (in months), 
30.5, 33, 33, 36, 42, 55,  55.5, 76, 76, 106, 106, and one survival time 107.5. 
Make a Weibull probability plot. 

(a) Does the Weibull distribution adequately fi t  the data? 
(b) Fit a line to the data and obtain estimates of the shape and scale 

parameters. 

(c) Comment on the nature of the failure rate (increasing or decreas- 
ing with age). 

(d) Estimate the median life. Is this estimate sensitive to the Weibull 
assumption? 

3.3. Insulating fluid. Table 2.1 of Chapter 7 shows samples of times to 
breakdown of an insulating fluid at five test conditions. According to 
engineering theory, these distributions are exponential. 

(a) Separately plot each of the five samples on the same sheet of 

(b) Graphically estimate the five shape parameters. 
(c) Do the shape parameters appear comparable, subjectively taking 

(d) Do exponential distributions adequately f i t  the data? 
(e) Are there any peculiarities or other noteworthy features of the 

data? 

3.4. Circuit breaker. 

Weibull probability paper. 

into account the randomness in the data? 

A mechanical life test of 18 circuit breakers of a 
new design was run to estimate the percentage failed by 10,000 cycles of 
operation. Breakers were inspected on a schedule, and it  is known only that 
a failure occurred between certain inspections as shown. 

1000 cycles 10-15 15-17.5 17.5-20 20-25 25-30 30-t 
Number of failures 2 3 1 1 2 9 survive 

(a) Make a Weibull plot with each failure as a separate point. 
(b) How well does the Weibull distribution appear to fit the data? 
(c) Graphically estimate the percentage failing by 10,000 cycles. 
(d) What is your subjective estimate of the uncertainty in the esti- 

mate? 

(e) Graphically estimate the Weibull shape parameter. Does the plot 
convince you that the true shape parameter differs from unity? 
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(f) The old breaker design had about 50% failure by 10,000 cycles. Is 
the new design clearly better? 

(8) Another sample of 18 breakers of the new design was assembled 
under different conditions. These breakers were run on test for 15,000 
cycles without failure and removed from test. Do you subjectively judge 
the two samples consistent? 

3.S.* The logistic cumulative distribution function is 

(a) Give the expression for its lOOFth percentile. 
(b) Make probability paper for this distribution. Show lines on the 

probability scale for 1, 2, 5, 10, 20, 50, 80, 90, 95, 98, and 99% and show 
the calculations. 

(c) Explain how to estimate the parameters p,and u from a plot. 
(d) Plot the data from Problem 3.2 on the paper. 

*Asterisk denotes laborious or difficult. 



4 
Graphcal Analysis of 
Multiply Censored Data 

Data plots are used for display and interpretation of data because they are 
simple and effective. Such plots are widely used to analyze field and life test 
data on products consisting of electronic and mechanical parts, ranging 
from small electrical appliances through heavy industrial equipment. This 
chapter presents hazard and probability plotting for analysis of multiply 
censored life data. The methods of Chapter 3 do not apply to such data. 

Multiply censored data consist of failure times intermixed with running 
times, called censoring times, as depicted in Figure 1.1. Such life data are 
common and can result from ( I )  removal of units from use before failure, 
(2) loss or failure of units due to extraneous causes, and (3) collection of 
data while units are still running (common for field data and much test 
data). Note that this chapter does not apply to failures found on inspection 
where it is known only that the failure actually occurred earlier; methods of 
Chapter 9 apply to such inspection data. 

Section 1 shows step by step how to make a hazard plot of such data. 
Hazard plots look like probability plots and are interpreted in the same 
way. They can also be used for complete and singly censored data, but 
hazard plotting positions are slightly different from probability plotting 
positions. Section 2 shows how to make a probability plot of such data. 
Hazard plots give the same information as the probability plots, but with 
less labor. Section 3 presents the theory for hazard plotting papers. Chapter 
3 is useful background for this chapter. 
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Figure 1.1. Field winding life data. 

1. HAZARD PLOTTING 

This section gives step-by-step instructions for making a hazard plot to 
estimate a life distribution from multiply censored data. 

Data that illustrate the hazard plotting method appear 
in Table 1.1. These data are the hours to fan failure on 12 diesel generators 
and the running hours on 58 generators without a fan failure. Each running 
time is marked with a "+" to indicate that the failure time for such a unit is 
beyond the running time. Failure times are unmarked. One problem was to 
estimate the percentage failing on warranty. Another was to determine i f  the 
failure rate of the fans decreased or  increased with age; that is, would the 
problem get better or worse as the remaining fans aged? This information 
helped management decide whether to replace the unfailed fans with a 
better fan. 

Steps to Make a Hazard Plot 

The data on  n units (70 fans here) consist of the failure times and the 
running (censoring) times. Order the n times from smallest to largest as 
shown in Table 1.1 without regard as to which are censoring or failure 
times. Label the times with reverse ranks; that is, label the first time with n ,  
the second with n- 1 ,  ..., and the n th  with 1. Running times are marked 
with a "+ ." and failure times are unmarked. 

Fan failure data. 

1. 



Table 1.1. Fan Data and Hazard Calculations 

Hours 

450 
4 6 W  

1150 
1150 
156W 
1600 
166W 
185W 
185W 
185C-t 
1850+ 
185W 
203C-t 
203W 
203C-t 
2070 
2070 
2080 
220W 
300W 
3000+ 
300W 
300W 
3100 
3200+ 
3450 
3750+ 
375C-t 
415Oe 
4150+ 
415W 
415W 
4 3 0 W  
430C-t 
430C-t 
4300+ 
4600 
485W 
485C-t 
485W 
4850+ 
500W 
500W 
500ot 
6100+ 
6 100 

Reverse 
Rank k 

70 
69 
68 
67 
66 
65 
6 4  
63 
6 2  
61 
60 
59 
58 
57 
56 
55 
54 
53 
52 
51 
50 
49 
48 
47 
46 
45 
4 4  
4 3  
4 2  
4 1  
40 
39 
38 
37 
36 
35 
34 
33 
32 
31 
30 
29 
28 
27 
26 
25 

Hazard 
100/k 

1 . 4  

1 .5  
1 . 5  

1 . 5  

1.8 
1.9 
1 .9  

2.1 

2 . 2  

Cum. 
H a z a r d  

1 . 4  

2.9 
4 . 4  

5.9 

7.7 
9 . 6  

1 1 . 5  

13.6 

15.8 

2.9 18 .7  

4 . 0  22.7 

Reverse Hazard C u m .  
Hours Rank k 100/k Hazard -- 
6100+ 
6100+ 
6300+ 
6450+ 
6 4 5 W  
6700+ 
745C-t 
7800+ 
780W 
8100+ 
810C-t 
8200+ 
8500+ 
8500+ 
850W 
8750+ 
8750 
875W 
940W 
99oC-t 

10100+ 
10100+ 
10100+ 
1150W 

24 
23 
22 
21 
20 
19  
18 
17 
16 
1 5  
14 
1 3  
12 
11 
10 

9 
8 12.5 35.2 
7 
6 
5 
4 
3 
2 
1 

+Denotes r u n n i n g  t i m e .  
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2. Calculate a hazard value for each failure as 100/k, where k is its 
reverse rank, as shown in Table 1.1. For example, the fan failure at 1600 
hours has reverse rank 65, and its hazard value is 100/65= 1.5%. This 
hazard value is the observed instantaneous failure rate at the age of 1600 
hours, since 1 out of the 65 units that reached that age failed at that age. 

Calculate the cumulative hazard value for each failure as the sum of 
its hazard value and the cumulative hazard value of the preceding failure. 
For example, for the failure at 1600 hours, the cumulative hazard value of 
5.9 is the hazard value 1.5 plus the cumulative hazard value 4.4 of the 
preceding failure. The cumulative hazard values (for the fan failures) appear 
in Table 1.1. Cumulative hazard values may exceed 100% and have no 
physical meaning 

4. Choose the hazard paper of a theoretical distribution. There are 
hazard papers* for the exponential, Weibull, extreme value, normal, and 
lognormal distributions. These distributions are described in Chapter 2. The 
distribution should be chosen on the basis of engineering knowledge of the 
product life distribution. Otherwise, different distributions can be tried, and 
one that fits the data well (a straight plot) could be used. 

On the vertical axis of the hazard paper, mark a time scale that 
brackets the data. For the fan data, exponential hazard paper was chosen, 
and the vertical scale was marked off from 0 to 10,000 hours. as shown in 
Figure 1.2. The time scale must start with zero on exponential paper. 

On the hazard paper, plot each failure time vertically against its 
cumulative hazard value on the horizontal axis, as shown in Figure 1.2. 
Running times are not plotted; hazard and cumulative hazard values are not 
calculated for them. However, the running times do determine the plotting 
positions of the failure times through the reverse ranks. 

If the plot of failure times is roughly straight, one may conclude that 
the distribution adequately fits the data. Then, by eye, f i t  a straight line 
through the data points, as shown in Figure 1.2. 

The line estimates the cumulative percentage failing, read from the 
horizontal probability scale as a function of age. The straight line, as 
explained below, yields information on the life distribution. If the data do 
not follow a straight line, then plot the data on another hazard paper. If no 
theoretical distribution fits adequately, draw a smooth curve through the 
plotted data. Then use the curve in the same way as a straight line to get 
information on the distribution. The sample cumulative hazard function is a 
nonparametric (distribution-free) estimate of the true cumulative hazard 

3. 

5. 

6. 

7. 

*Exclusively offered in the catalog of TEAM (Technical and Engineering Aids for Manage- 
ment), Box 25, Tamworth, NH 03886. 
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Figure 1.2. Exponential hazard plot of fan data. 

function. By virtue of the basic relationship (3.3), i t  also provides a 
nonparametric estimate of the cumulative distribution function. 

Modified positions. The above hazard plotting positions for a complete 
sample are close to the probability plotting positions lOOi/( n + 1). Hazard 
plotting positions can be modified to be closer to the probability plotting 
positions lOO(i-OS)/n. Such a modified position for a failure is the 
average of its regular cumulative hazard value and that of the preceding 
failure. The modified position of the earliest failure is half its regular 
cumulative hazard value. The modified positions agree better with a distri- 
bution fitted by maximum likelihood (Chapter 8).  

An assumption must be satisfied if the hazard 
plotting method is to be reliable. I t  is assumed that the life distribution of 
units censored at a given age must be the same as the life distribution of 
units that run beyond that age. For example, this assumption is not satisfied 
if  units are removed from service when they look like they are about to fail. 
Lagakos (1979) discusses this and alternate assumptions in  detail. 

Hazard plotting can also be used for some types of data that are multiply 
censored on the right and on the left. Nelson (1972b) describes this. 

How to Use a’Hazard Plot 

A hazard plot provides information on 

The percentage of units failing by a given age, 
Percentiles of the distribution, 
The failure rate as a function of age, 

The basic assumption. 
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Distribution parameters, 
Conditional failure probabilities for units of any age, 
Expected number of failures in a future period, 
Life distributions of individual failure modes (Chapter 9, and 
The life distribution that would result if certain failure modes were eliminated 
(Chapter 5). 

The probability and data scales on a hazard paper for a distribution are 
exactly the same as those on the probability paper. Thus, a hazard plot is 
interpreted in the same way as is a probability plot, and the scales on hazard 
paper are used like those on probability paper. The cumulative hazard scale 
is only a convenience for plotting multiply censored data. The discussions in 
Chapter 3 on how to use and interpret probability plots apply to hazard 
plots. 

Estimates of the percentage failing and percentiles. The population 
percentage failing by a given age is estimated from the fitted line with the 
method for probability paper. Enter the plot on the time scale at the given 
age, go to the fitted line, and then go to the corresponding point on the 
probability scale to read the percentage. For example, the estimate of 
the percentage of fans failing by 8000 hours (generator warranty) is 24%; 
t h s  answers a basic question. Similarly, a percentile is estimated with the 
method for probability paper. Enter the plot on the probability scale at 
the given percentage, go to the fitted line, and then go to the corresponding 
point on the time scale to read the percentile. For example, the estimate of 
the 50th percentile, nominal fan life, is 14,000 hours (off scale). 

Nature of the failure rate. The curvature of the plot of a sample on 
exponential hazard paper indicates the nature of the failure rate. Figure 1.3 
shows curves for increasing, decreasing, and constant failure rates on 
exponential hazard paper or square grid paper. Figure 1.2 shows an essen- 
tially constant failure rate. This indicates that the fans will continue to fail 
at the same rate. Management decided to replace the unfailed fans with a 
better fan. 

Exponential Hazard Plot 

The following explains how to estimate the parameters of the exponential 
distribution from a hazard plot. Tlus distribution is described in Chapter 2. 
Other information on how to interpret an exponential plot is in Chapter 3. 

Exponential parameter estimates. The mean 8 of an exponential distri- 
bution is the 63rd percentile, which has a cumulative hazard value of 100%. 
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CUMULATIVE H A f A R D  H 

Figure 1.3. Cumulative hazard functions 

To estimate the mean graphically, enter the hazard plot at 100% on the 
cumulative hazard scale. Go to the fitted line and then to the corresponding 
point on the data scale to read the estimate. For the fan data in Figure 1.2, 
the estimate of the mean is 29,000 hours, off the paper. Exponential hazard 
paper has a square grid. 

The failure rate X of an exponential distribution equals the reciprocal of 
the mean. For fans, the estimate is 1/29,000=0.000035, or 35 fan failures 
per million hours. 

Normal Hazard Plot 

The following explains how to estimate the parameters of a normal distribu- 
tion from a hazard plot. Also, i t  shows how to estimate the conditional 
failure probability of a unit in service and the expected number of failures 
among units in service. The normal distribution is described in Chapter 2. 

Transformer. Table 1.2 shows operating hours to failure on 22 trans- 
formers. Hours on 158 unfailed transformers are not shown, but the reverse 
ranks of the failures take them into account. As in this example, sometimes 
running times are not known, and they must be estimated from manufactur- 
ing or installation dates. Engineering wanted to know if  the transformer 
failure rate increased or decreased with age; this might help identify the 
cause of failure. Also, management wanted a prediction of the number of 
failures in the coming 500 operating hours; this would aid in planning 
manufacture of replacements. The failures are plotted on normal hazard 
paper in Figure 1.4. 



Table 1.2. Transformer Failures and Hazard Calculations 
Reverse Cum. 

Hours Rank k Hazard Hazard - ~ - -  
10 1 8 0  

314 1 7 9  
730 178 
740 177 
990 1 7 6  

1046 175 
1 5 7 0  1 7 4  
1870 1 6 9  
2020 1 6 4  
2040 1 6 1  
2096 157 
2110 156 
2177 155 
2306 146 
2690 1 0 3  
3200 67 
3360 66 
3444 63  
3508 62 
3770 46 
4042 32 
4186 26 

0 . 5 6  0.56 
0 . 5 6  1 .12  
0.56 1 . 6 8  
0 . 5 6  2.24 
0 .57  2 .81  
0 .57  3.38 
0 .57  3.95 
0 . 5 9  4.54 
0 .61  5.15 
0 .62  5.77 
0 . 6 4  6 . 4 1  
0.64 7.05 
0 . 6 5  7.70 
0.68 8.38 
0.97 9.35 
1 . 4 9  10.84 
1 .52  12.36 
1 . 5 9  13.95 
1 . 6 1  15 .56  
2.17 17 .73  
3.13 20.86 
3.85 24.71 

Figure 1.4. Normal hazard plot of transformer data. 
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Normal parameter estimates. The following method provides graphical 
estimates of the normal mean and standard deviation from a hazard plot. I t  
is the same as the method for a probability plot. To estimate the mean, enter 
the plot at the 50% point on the probability scale. Go to the fitted line and 
then to the corresponding point on the time scale to read the estimate (6250 
hours here). To estimate the standard deviation enter the plot at the 16% 
point on the probability scale. Go directly to the fitted line and then to the 
corresponding point on the time scale to read the time as 3650 hours from 
Figure 1.4. The difference between the estimates of the mean and the 16% 
point, 6250- 3 6 5 0 ~ 2 6 0 0  hours, is the estimate of the standard deviation. 

Failure rate. The data give a straight plot on normal paper, shown in 
Figure 1.4. This indicates that such transformers have an increasing failure 
rate-a wear-out behavior. The plot of the data on a square grid in Figure 
1.5 shows the curvature characteristic of an increasing failure rate. 

Conditional failure probabilities. The prediction of the coming number 
of failures involves conditional failure probabilities. To estimate the condi- 
tional probability of a unit of a given current age failing by a certain future 
age, use the following. Suppose one wants to estimate the probability of a 
transformer 2000 hours old failing before i t  has 2500 hours in service. Enter 
the hazard plot on the time scale at the current age, 2000 hours. Go to the 
fitted line and then to the cumulative hazard scale to read the corresponding 

" 0  10.0 20.0 
CUMULATIVE HAZARD % 

Figure 1.5. Exponential hazard plot of transformer data 



140 GRAPHICAL ANALYSIS OF MULTIPLY CXNSORED DATA 

value as a percentage; it is 5.7% here. Similarly, get the cumulative h a m d  
value, 8.0%, for the future age, 2500 hours. Take the difference, 8.0-5.7= 
2.3%, between the two values. Then enter the plot on the cumulative hazard 
scale at the value of the difference, 2.3'33, and go up to the probability scale 
to read the estimate of the conditional failure probability as 2.3%. This is 
0.023, expressed as a fraction in Table 1.3. 

Prediction of the number of failures. An important practical problem is 
to predict the number of units that will fail between the current time and a 
specified future time. Do this as follows. Calculate the conditional failure 
probability for each unit in or going into service for that period. The sum of 
these conditional probabilities, expressed as proportions, is a prediction of 
the number of failures. If the conditional failure probabilities are all small, 
then the random future number of failures has a probability distribution 
that is approximately Poisson with a mean equal to the expected number of 
failures. This distribution allows one to make probability statements about 
the number of future failures. 

A calculation of an estimate of the expected number of transformer 
failures in a future 500 hours of service appears in Table 1.3. The estimate 
for the next 500 hours in service is based on the current hours of use of the 
158 unfailed transformers. To reduce the calculation, the 158 transformers 
are grouped by age, and, for each group, a conditional probability of failure 
is obtained, as explained above. Then the sum of the conditional probabil- 
ities for a group is approximated by the nominal probability for the group 
times the number of transformers in the group as shown in the table. The 
estimate of the expected number of transformer failures over the next 500 
hours is calculated as shown in Table 1.3 and is 7.8 failr 'es. A Poisson table 
shows that the number of failures will be 12 or fewer with 95% probability. 

Table 1.3. 
Failures in 500 Hours 

Calculation of Expected Number of 

Group Nom'l Cond ' l  Trans- Exp'd No. 
Ages Age Prob.  formers F a i l e d  

1750-2250 2000 0 .023 x 17 = 0 .39  

2250-2750 2500 0 .034 x 54 = 1 . 8 4  

2750-3250 3000 0.044 x 27 = 1.19  

3250-3750 3500 0.056 x 17 = 0.95 

3750-4250 4000 0.070 19 = 1 . 3 3  

4250-4750 4500 0.086 x 24 = 2.06 - 
T o t a l  Expected: = 7.8  
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This probability statement does not take into account the statistical uncer- 
tainty in the, estimate 7.8 failures. The calculation could also include the 
unconditional failure probabilities of new or replacement units going into 
service during a period. 

The calculation in Table 1.3 assumes that all units receive the same 
amount of use over the period. When the units will receive different 
amounts of use, a conditional failure probability must be calculated for each 
unit and be based on its age and projected use. As before, the expected 
number of failures is the sum of the conditional failure probabilities of all 
units. 

Lognormal Hazard Plot 

The following explains how to estimate the parameters of the lognormal 
distribution from a hazard plot. The lognormal distribution is described in 
Chapter 2. 

Turn failures. Table 1.4 shows data for turn failures of a Class H 
insulation for electric motors. The insulation was run in 10 motorettes at 
each test temperature (190, 220, 240, and 260°C) and periodically tested for 
electrical failure of the insulation. A time to turn failure in Table 1.4 is 
assigned midway between the test time when the failure was found and the 

Table 1.4. 

- 190' c Reverse 
Haios Rank 

7228 10 
7228 9 
7228 8 
8448 7 
9167 6 
9167 5 
9167 4 
9157 3 
10511 2 
10511 I 

2 c c  Reverse 

1764 10 
2436 9 
2436 8 
2436 + 7 
2436 6 
2436 5 
3108 4 
3108 3 
3108 2 
3 108 1 

Rank __ 

Turn Failure Data and Hazard Calculations 

Hazard 

10.0 
11. 1 
12. 5 
14 3 
16 7 
20.0 
25.0 
33.3 
50.0 
loo. o 

Cum. 
Hazard 
10.0 
21. 1 
33.6 
47.9 
646 
846 
109.6 
142.9 
192.9 
292.9 

Cum. 
Hazard w d  

10.0 10.0 
11. 1 21. 1 
12.5 33.6 

16.7 50.3 
20.0 70.3 
25.0 95.3 
33.3 1286 
50.0 178 6 
100. 0 278 6 

2 4 o ' c  Reverse 
Hours RanL 
1175 10 
1521 9 
1569 8 
1617 7 
1665 6 
1665 5 
1713 4 
1761 3 
181+ 2 
1953 1 

- Hazard 

10.0 
11.1 
12.5 
14 3 
16 7 
20.0 
25.0 
33.3 

lw.o 

cum. 
Hazard 

10.0 
21. 1 
33. 6 
47.9 
64.6 
84.6 
109.6 
142.9 

242.9 

z0o"C 
Hours 

1U8 
1oM 
1512 
1108 
1632 + 
1632 + 
1632 + 
1632 + 
1632 + 
1896 

Reverse Cum. 
Rank Hazard Hazard 

10 10.0 10.0 
9 11.1 21.1 
8 12.5 33.6 
7 14.3 47.9 
6 
5 
4 
3 
2 
1 1M.O 147.9 

_ _ _ ~ _ _ _  
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time of the previous electrical test. In Table 1.4, each unit without a turn 
failure has its censoring time marked with a "+ ." Standard practice uses 
shorter periods between electrical tests at the higher temperatures. This 
makes the nominal number of inspections to failure roughly the same for all 
test temperatures. For the Class H test temperatures, the times between 
inspections were 28, 7, 2, and 2 days, respectively. 

These data are analyzed to verify theory for the Arrhenius model. The 
theory says that time to such failure has a lognormal distribution at each 
test temperature and that the log standard deviation has the same value for 
all temperatures. Nelson (1975) shows further analyses of these data to 
estimate the distribution of time to turn failure at the design temperature of 
180°C. 

Figure 1.6 shows a lognormal plot of the turn failures for each test 
temperature. The plot shows some interesting features. 

The plots for the four test temperatures are parallel. This indicates that 
the log standard deviation for turn failures has the same value at all test 
temperatures. This is consistent with the Arrhenius model. In contrast, the 
lognormal plots of the Class H data in Section 6 of Chapter 3 are not 
parallel. 

The 260°C data coincide with the 240°C data. Clearly, insulation life 
should be less at 260°C than at 240°C, and the spacing between the 260" 
and 240°C distributions should be about the same as the spacing between 
the 240" and 220' distributions. This shows the value of a plot for spotting 

P E RC E NTAG E 
I 10 30 50 70 90 99 

I .o 10 100 300 500 
CUMULATIVE H A Z A R D  

Figure 1.6. Lognormal hazard plot of turn failure data 
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the unusual. There are two possible reasons for this. First, the 260°C 
motorettes were not made when the other 30 motorettes were; so they may 
differ with respect to materials and handling and thus life. Second, the 
inspection period at 260°C is two days (less severe handling), whereas i t  
should be one day (more severe) to agree with the periods at the other test 
temperatures. 

Lognormal parameters. Graphcal estimates of the log mean and the log 
standard deviation are obtained from a fitted distribution line as follows. 
The log mean for a distribution is just the (base 10) logarithm of the 
median. For example, the median time to turn failure at 220°C is estimated 
from Figure 1.6 as 2600 hours. The log mean is log (2600)= 3.462. The log 
standard deviation corresponds to the slope of the plotted data. One can fit  
the distribution lines for the data from the test temperatures so as to be 
parallel and have a compromise slope. The estimate of the log standard 
deviation is the difference between the logarithm of the 84th percentile and 
the log mean. For 220"C, the estimate of the 84th percentile is 3200 hours 
from Figure 1.6. The estimate of the log standard deviation is log(3200)- 
log(2600)=0.09. Such a small log standard deviation indicates that turn 
failures have an increasing failure rate, that is, wear-out behavior. 

Weibull Hazard Plot 

The following explains how to estimate the Weibull parameters from a 
hazard plot. It also shows how to use the Weibull distribution to assess 
whether the failure rate of a product increases or decreases with age. The 
Weibull distribution is described in Chapter 2. 

Figure 1.1 and Table 1.5 show data on field windings of 
16 generators: months in service on failed windings and months on wind- 
ings still running. The running and failure times are intermixed because the 
units were put into service at different times. There were two engineering 
questions. First, does the failure rate increase with winding age? If so, 
preventive replacement of old windings is called for. Second, what is the 
failure probability of a generator's windings before its next scheduled 
maintenance? This information helps a utility assess the risk of failure if 
replacement is deferred. 

Shape parameter. For data on Weibull hazard paper, the following 
assesses whether the failure rate increases or decreases with age. A Weibull 
distribution has failure rate that increases (decreases) if the shape parameter 
is greater (less) than 1, and a value of 1 corresponds to a constant failure 
rate. Draw a straight line parallel to the fitted line so that i t  passes both 
through the circled dot in the upper left of the Weibull hazard paper and 

Field windings. 
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Table 1.5. Winding Data 
and Cumulative Hazards 
T h e  Cum. Hazard 

31.7 6.2 

39.2 12.9 

57.5 20.1 

65.0+ 

65.8 28.4 

70.0 37.5 

75.0 + 
75.0+ 

87.5+ 

88.3+ 

94.2 + 
101.7 + 
105.8 62.5 

109.2 + 
110.0 112.5 

130.0+ 

+ runn ing  time. 

through the shape parameter scale, as in Figure 1.7. The value on the shape 
scale is the estimate; it is 1.94 for the winding data. The value 1.94 indicates 
that such windings have a failure rate that increases with age; that is, they 
wear out and should be replaced at some age. Note that Weibull hazard 
paper is log-log paper. 

Scale parameter. To estimate the Weibull scale parameter, enter the 
hazard plot on the cumulative hazard scale at 100% (63% on the probability 
scale). Go up to the fitted line and then sideways to the time scale to read 
the estimate of the scale parameter; this is 116 months in Figure 1.7. 

An exponential distribution can be fitted to data plotted 
on Weibull paper; see Section 7 of Chapter 3. Force the fitted line to have a 
slope corresponding to a shape parameter of I .  T h s  line helps one assess 
whether the simpler exponential distribution adequately fits the data. 

Exponential fit. 
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Figure 1.7. Weihull hazard plot of winding life data. 

Extreme Value Hazard Plot 

The following shows how to estimate the parameters of an extreme value 
distribution from a hazard plot. The extreme value distribution is described 
in Chapter 2. 

Fuse residuals. After fitting a statistical model to data, one can assess 
the validity of the model and data by examining (log) residuals calculated 
from the data as described by Nelson (1973). Such residuals were obtained 
from fuse life data. According to the model, these multiply censored 
residuals come from an extreme value distribution. The validity of the 
assumed distribution and the data can be assessed from the computer plot 
of the residuals on extreme value paper in Figure 1.8. The plotted points 
follow a straight line fairly well, and there are no peculiar points. Thus the 
distribution and data seem satisfactory. The program uses hazard calcula- 
tions for plotting positions. 

The location parameter X of an extreme 
value distribution is the 63rd percentile. For the residuals, the estimate of h 
from Figure 1.8 is 0.0. The slope of the fitted line in an extreme value plot 

Extreme value parameters. 
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Figure 1.8. Extreme value hazard plot of fuse residuals 

corresponds to the scale parameter 6. 6 is estimated as follows. After 
estimating the location parameter, estimate the 3 1st percentile. From Figure 
1.8, t h s  estimate is - 1.0. The estimate of the scale parameter is the 
difference between the 63rd and 31st percentiles. So the estimate of 6 is 
0.0-( - I .O)= 1.0. 

2. PROBABILITY PLOTTING OF MULTIPLY CENSORED DATA 

Probability plots of multiply censored data can be used in place of hazard 
plots. Hazard plots are less work but require special plotting papers. 
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Probability and hazard plots of the same data are the same for practical 
purposes. Probability plotting involves calculating the sample reliability 
function. This function or the distribution function (the cumulative fraction 
failing) is plotted against age on probability paper. The Herd- Johnson, 
Kaplan- Meier (product-limit), and actuarial methods are presented. Each 
provides a different nonparametric estimate of the reliability function. 

Assumption. A basic assumption of each plotting method must be 
satisfied if it is to yield reliable results. Namely, units censored at a given 
age must have the same life distribution as units that run beyond that age. 
For example, this assumption fails to hold if units are removed from service 
when they look like they are about to fail. 

Herd- Johnson Method 

Herd (1960) suggested the following probability plotting method, which was 
popularized by Johnson (1964), who presents i t  more complexly. 

This section first presents an example that illustrates the plotting method. 
Then it explains how to make a probability plot. 

Field winding example. Life data on 16 generators illustrate this method. 
These data in Table 2.1 and Figure 1.1  are the months in service on failed 
windings and on windings still running. The running and failure times are 
intermixed, because the units were put into service at different times. A 
basic engineering question was, “Does the failure rate increase with winding 
age?” If so, preventive replacement of old windings is called for. These data 
were previously analyzed with a hazard plot. 

Suppose that there are 17 times in a multi- 
ply censored sample. Order them from smallest to largest, as shown in Table 
2.1, and mark each running time “+.” Number the times backwards with 
reverse ranks- the smallest time is labeled n ,  the second smallest is labeled 
( n -  l), etc., and the largest is labeled 1. For the I th failure with reverse rank 
r , ,  recursively calculate the reliability 

Plotting position calculations. 

where R , ,  = 1 is the reliability at time 0. The corresponding failure probabil- 
ity is the plotting position F, = 100( 1 - R l ) .  The F; are calculated only for 
failure times, but the running times determine the plotting positions of the 
failures. These calculations for the field winding data appear in Table 2 .  I ; 
such calculations are easy to carry out with a pocket calculator. For a 
complete sample (all units failed), F, = 1001/( n + 1). the mean plotting 
position. Johnson (1964) gives the plotting positions (2.1) in terms of 
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Table 2.1. Winding Data and Herd-Johnson Calculations 

REVERSE RELIABILITY FAILURE 
RANK COND'L PREVIOUS CURRENT PROB. 

TIME ri ri/(ri+l) x Ri-l - Ri 100(l-Ri)% 
-- 
31.7 16 (16/17) x 1.000 = 0.941 5.9 

39.2 15 (15/16) x 0.941 = 0.883 11.7 

57.5 14 (14/15) x 0.883 = 0.824 17.6 

65.0+ 13 

65.8 12 (i2/13) 0.824 = 0.761 2 3 . 9  

70.0 11 (11/12) x 0.761 = 0.697 30.3 

75.0+ 10 

75.0+ 9 

87.5+ 8 

m . 3 +  7 

9 4 . 2 +  6 

101.7+ 5 

105.8 4 (4/5) x 0.691 0.557 44.3 

109.2+ 3 

110.0 2 (2/3) x 0.557 = 0.372 62.8 

130.0+ 1 

+ Running 

expected ranks. and he shows how to convert them to median plotting 
positions. a small and laborious refinement. 

Plot each failure time against its plotting position 4 ,  
as shown in Figure 2.1. Only failure times are plotted. This plot is essen- 
tially identical to the hazard plot in Figure 1.7. Use the probability plot as 
described in Chapter 3 to obtain information. 

From Figure 2.1. the shape parameter estimate for the winding data is 
1.85. T h s  value suggests that the winding failure rate increases with age, 

Plot and interpret. 
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10 20 50 100 200 Figure 2.1. Weibull probability plot of 
AGE AT FAILURE winding data. 

that is, a wear-out pattern. So windings should be replaced at some age 
when they are too prone to failure. 

Kaplan-Meier Method 

Kaplan and Meier (1958) give the product-limit estimate, much the same as 
the Herd-Johnson one. In place of (2.1). Kaplan and Meier use the 
recursion formula for reliability after failure i :  

where R; = 1 is the reliability at time 0. For a complete sample, F,' = 1 - 
Ri = i / n ,  the sample fraction failing; this is the usual nonparametric esti- 
mate. If the largest time in a sample is a failure, the corresponding is 
unity and the failure cannot be plotted on most probability papers. 

The BMDP routine PLI of Dixon and Brown (1977) and SURVREG of 
Preston and Clarkson (1980) calculate the product-limit estimate of survi- 
vorship (reliability) and failure rate. Also, they calculate the standard errors 
of the reliability estimates at each failure time. For moderate-size samples, a 
survivorship calculation is easily performed with a pocket calculator. Also, 
most statistical computer packages for biomedical applications do all calcu- 
lations. 
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The Kaplan- Meier method is widely used in biomedical applications to 
obtain a nonparametric estimate of the survivorshp function. Tutorial 
presentations of the method appear in Gross and Clark (1975) and 
Kalbfleisch and Prentice (1980). 

Actuarial Method 

Various actuarial methods for estimating life distributions have been used 
for 200 years. They were developed and used to construct human life tables. 
Chiang ( 1968) describes such methods and biomedical applications of them. 
The simplest such method is presented here. Such methods are suited to 
large samples; the Herd-Johnson and Kaplan-Meier methods are better for 
small samples, since they plot individual failures times. 

This section first presents an example that illustrates the actuarial method. 
Then i t  explains how to do the actuarial calculations and make a probability 
plot. Finally, i t  explains further how to use and interpret a probability plot. 

Turbine disk example. Table 2.2 shows life data.on 206 turbine disks of 
which 13 had failed. The 100-hour intervals with failures are shown. A 
replacement disk had been designed so it  would not fail. 

Management needed to decide among three policies: (1 )  replace disks 
only when they fail (suitable if most disks last the life of the turbine), ( 2 )  
replace disks at the scheduled overhaul at 5000 hours, or (3) replace all disks 

Table 2.2. Turbine Disk Data and Actuarial Calculations 

To Failure In Fail Censor O u t  Reliabilit 

- Y Hours ; 45 ry+ l  My(= -0.5~ Y )-'I = R*(y) IOO[ l -R*(y )  J 

162 0- 200 206 0 4 202 1.000 0. 

3 200- 300 202 1 2 199 l.OOO[l-(202-0.5~2)-~] = 0.9950 0.50 

4 300- 400 199 1 11 187 0.9950[l-(199-0.5~ll)-~]= 0.9898 1.02 

5 400- 500 187 3 10 174 0.9898[1-3(187-0.5~10)-~]=0.9735 2.65 

8 700- 800 142 1 10 131 0.9735[1-(142-0.5~10)-~]= 0.9b64 3.36 

10 900-1.000 120 1 9 110 0.9664[1-(12O-0.5~9)-~] = 0.9580 4.20 

13 1200-1300 92 2 5 85 0.9580[1-2(92-0.5~5)-~] = 0.9366 6.34 

14 1300-1400 85 1 13 71 0.9366[1-(85-0.5~13)-~] = 0.9248 7.52 

16 1500-1600 57 1 14 42 0.9248[1-(57-0.5~14)-~] = 0.9063 9.37 

17 1600-1700 42 1 14 27 0.9063[l-(42-0.5x14)-11 = 0.8804 11.96 

21 2000-2100 9 1 2 6 0.8804[1-(9-0.5~2)-~] = 0.7704 22.96 
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immediately, Replacement of each unfailed disk would cost $3000; replace- 
ment of each failed disk would cost $6000 owing to related damage to the 
turbine. 

Interval data. The actuarial method estimates the reliability or survivor- 
ship function from multiply censored data. The method is usually used for 
large samples where the data are grouped into time intervals. For example, 
human mortality data are usually grouped into one-year intervals. The 
method uses the number of units that enter, r,,, fail, jv ,  are censored, c,, and 
survive, r, + I ,  in interval y ,  as shown in Table 2.2.  Of course, r,,+ I =rb - f ,  - 
c,. The intervals need not have the same length, and intervals with no 
failures need not be tabulated. In contrast, preceding methods use and plot 
individual failure times. 

Let R( y )  denote the product reliability (survival probability) 
at the end of interval y ;  t h s  is the probability of a new unit surviving 
through interval y .  The estimate of R( y )  uses the chain rule for conditional 
probabilities 

Chain rule. 

R ( y ) = R ( y I y - 1)R ( Y - 1 I I' - 2 )  . . .R ( 2 )  1 ) R  ( 1 ), (2 .3)  

where R ( i l i -  1)  denotes the conditional reliability that units that have 
survived interval ( i -  1)  also survive interval i .  It is convenient to work with 
the recursion relationship 

R ( y ) = R ( y -  1 ) N y l y -  1). (2.4) 

That is, the fraction R ( y )  surviving interval y is the fraction R ( y -  1 )  
surviving interval ( y -  1.) times the fraction R( y I y - 1) of those that reach 
interval y and survive it. The probability of a new unit failing by the end of 
interval y is F ( y ) =  1 - R (  y ) .  

Reliability estimates. The actuarial estimate of R (  y ) employs estimates 
of the conditional reliabilities R( i 1 i -  1) and the preceding relationships. A 
simple estimate of R( i 1 i -  1) is 

R*( i I i- 1); 1 - [ 1; /( rI - o h ,  )] . 
The - 0 . 5 ~ ~  adjusts for the censored units, which run about half the interval. 
Other censoring adjustments appear in the literature (Chiang, 1968). Then 
the estimate of R( y )  is 

where R*(O) = 1. 
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The recursive calculations of the R * ( y )  described above can readily be 
carried out in the tabular form in Table 2.2 This method provides an 
estimate R*( y )  of the reliability at the end of each period. 

These R * ( y )  may be plotted against the interval upper end points on 
square grid paper. Also, the sample (cdf) fraction failing F*( y )  = 1 - R*( y j 
can be plotted against the interval upper end points on probability paper. 

Turbine disk. Table 2.2 shows turbine disk data and the actuarial 
calculations; the calculations are easy to carry with a pocket calculator. The 
given times are end points of 100-hour intervals. Only intervals with failures 
are tabulated, since the sample reliability function decreases only at the 
ends of such intervals. The sample reliability function is often plotted on 
square grid paper, as in Figure 2.2;  i t  is difficult to use such a plot to 
extrapolate and estimate the upper tail of the distribution. The sample 
cumulative distribution function is plotted on normal probability paper in 
Figure 2.3; a straight line through this plot easily estimates the upper tail of 
the distribution if the normal distribution fits there. 

Advantages and disadvantages. The actuarial method gives a plot that 
does not show individual failure times, which help one to assess how 
accurate the sample cdf is. Kaplan and Meier (1958) extend the method to 
get the “product-limit” estimate of the cumulative distribution function, 

Figure 2.2. Actuarial estimate for the turbine disk data 
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Figure 2.3. Normal probability plot of the actuanal e\timate for the turbine disk data  

which shows the individual failure times. Chiang ( 1968) gives approximate 
confidence limits for the cumulative distribution, based on the actuarial 
estimate. 

Interpret plot. Interpret such a plot like any other probability plot as 
described in Chapter 3. The following paragraphs answer the question on 
disk life. 

Figure 2.3 shows that almost all disks would fail 
by overhaul at 5000 hours. Thus the replacement cost would be about 
193X$6000=$1,158,000 with policies ( 1 )  and ( 2 ) ,  and i t  would be about 
193X$3000=$579,000 with policy (3). The savings of about $579,000 with 
policy (3) had to be weighed against the value of the remaining life of the 
disks and the business implications of 193 more such failures with policies 
( I )  and ( 2 ) .  Plots on other probability papers also indicate policy (3). 

Managements’ choice of policy (3) raised another question: which disks 
are most prone to failure and should be replaced first? 

Disk replacement cost. 

Nature of the failure rate. The question was answered by plotting the 
data on various papers. The straightest plot was on normal paper. The 
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normal distribution has an increasing failure rate with age. Thus the oldest 
disks are most prone to failure and should be replaced first. 

Computer routines. The BMDP routine PL 1 of Dixon and Brown ( 1977) 
calculates the actuarial estimate of survivorship (reliability) and failure rate. 
Also, i t  calculates the standard error of the survivorship estimate for each 
interval. Most statistical computer packages for biomedical applications do 
such calculations. 

3. THEORY FOR HAZARD PAPERS 

This advanced section presents theory for hazard papers. I t  first presents 
general theory on hazard and cumulative hazard functions. Then i t  applies 
the theory to various theoretical distributions to obtain their hazard papers. 
Readers interested only in applications may wish to skip this section. 

Hazard and Cumulative Hazard Functions 

Hazard plotting is based on the hazard function of a distribution. The basic 
properties of hazard functions are briefly presented here and then used as a 
theoretical basis for hazard papers. 

The hazard function h( y) for a distribution of time y to failure is defined 
in terms of the cumulative distribution function F( y ) and the probability 
density f (  y )  as 

This is also called the instantaneous failure rate and force of mortality. I t  is 
a measure of proneness to failure as a function of the age of units in the 
sense that A h( y )  is the expected proportion of units of age ,v that fail in a 
short time A. For t h s  reason, i t  plays a central role in life data analysis. 
More information on it  is in Chapter 2. 

The cumulative hazard function H( y )  of a distribution is 

As explained below, the scales on the paper for a theoretical distribution are 
constructed so the relationship between H( v )  and time y is linear. (3.2) can 
be rewritten as 

F( ,v ) = 1 - exp[ - H (  y >] . (3.3) 
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This “basic relationship” between the cumulative probability F and the 
cumulative hazard H is in all hazard papers. The probability scale on a 
hazard paper is exactly the same as that on the corresponding probability 
paper. The cumulative hazard scale is equivalent to the cumulative probabil- 
ity scale and is a convenient alternative scale in the plotting of multiply 
censored data. 

The heuristic basis for hazard plotting is essentially that for plotting on 
probability paper. For a complete sample of n failures plotted on probabil- 
ity paper, the increase in the sample cumulative distribution function (cdf) 
at a failure time is l/n, the probability for the failure. Then the sample cdf, 
which is the sum of the failure probabilities, approximates the theoretical 
cdf, which is the integral of the probability density. The sample cdf is then 
plotted on probability paper on which the theoretical cdf is a straight line. 
Similarly, for a sample plotted on hazard paper, the increase in the sample 
cumulative hazard function at a failure time is equal to its conditional 
failure probability 1 / k ,  where k is its reverse rank. The number k of units in 
operation at the time of the failure includes the failed unit. Then the sample 
cumulative hazard function, based on the sum of the conditional probabil- 
ities of failure, approximates the theoretical cumulative hazard function, 
which is the integral of the conditional probability of failure. The sample 
cumulative hazard function is then plotted on hazard paper, on which the 
theoretical cumulative hazard function is a straight line. Nelson (1972b) 
gives a more formal justification for the hazard plotting positions in terms 
of the properties of order statistics of multiply censored samples. 

Hazard Papers 

Hazard papers have been developed for the basic theoretical distributions: 
the exponential, normal, lognormal, Weibull, and extreme value distribu- 
tions. Their hazard plotting papers are obtained from the general theory 
above. The data and cumulative hazard scales on hazard paper for a 
theoretical distribution are chosen so that such a cumulative hazard func- 
tion is a straight line on the paper. 

tion is 
Exponential distribution. The exponential cumulative distribution func- 

F( y ) = 1 - exp( - y / 8 ) ,  y 2 0 ,  (3.4) 

where 0 is the mean time to failure. The cumulative hazard function is 
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i t  is a linear function of time. Then timey to failure as a function of tf is 

y (  H )  =BH. (3.6) 

Thus time to failure y is a linear function of H that passes through the 
origin. So exponential hazard paper has a square grid. Its probability scale 
is given by the-basic relationship (3.3). Exponential hazard paper appears in 
Figure 1.2. The value of B is the time for which H =  1 (Le., 100%); this is 
used to estimate 19 from an exponential hazard plot. 

Normal distribution. The normal cumulative distribution function is 

where p is the mean, u is the standard deviation, and @( ) is the standard 
normal cumulative distribution function. The cumulative hazard function is 

Then time y as a function of H is 

where CP- I( P) is the inverse of @( ) and z p  is the lOOP th standard normal 
percentile. By (3.9), time y is a linear function of 4- I( 1 - e-  "). Thus, on 
normal hazard paper, a cumulative hazard value H is located on the 
cumulative hazard scale at the position @ - I (  1 - e P H ) ,  and the time scale is 
linear. Normal hazard paper appears in Figure 1.4. The probability scale is 
used to estimate p and u by the methods for normal probability paper. 

The lognormal cumulative distribution function 
is 

Lognormal distribution. 

F(  Y ) =@[(log( Y 1 - c1 )/.I 3 Y'O,  (3.10) 

where log( y )  is the base 10 logarithm, @( ) is the standard normal cumula- 
tive distribution function, p is the log mean, and u is the log standard 
deviation. The cumulative hazard function is 

Then time 1' as a function of H is 

log[y( H ) ]  = p + u @  I (  1 -e-" ). (3.12) 
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where CP- I (  ) is the inverse of the standard normal distribution function. By 
(3.12), log(y) is a linear function of @-‘(I  - e C H ) .  Lognormal hazard paper 
appears in Figure 1.6. Lognormal and normal hazard papers have the same 
cumulative hazard and probability scales. On lognormal paper the time 
scale is logarithmic, whereas it is linear on normal paper. The probability 
scale is used to estimate p and u by the methods for lognormal probability 
paper. 

Weibull distribution. The Weibull cumulative distribution function is 

~ ( . ~ ) = ~ - e x p [ - ( y / a ) ’ ] ,  Y > O ,  (3.13) 

where /? is the shape parameter and a is the scale parameter. The cumulative 
hazard function is 

this is a power function of time y .  Then time y as a function of H is 

log( Y 1 = ( I / / ?  )log( H 1 +log( a ) .  (3.15) 

This shows that log( y )  is a linear function of log( H ). Thus, Weibull hazard 
paper is log-log graph paper. The probability scale is given by the basic 
relationship (3.3). Weibull hazard paper appears in Figure 1.7. The slope of 
the straight line equals I / /? ;  this is used to estimate 0 with the aid of the 
shape parameter scale. For H =  I (  loo%), the corresponding time y equals a; 
this is used to estimate a graphically. 

The cumulative distribution function of the 
smallest extreme value distribution is 

Extreme value distribution. 

F( y = 1 -exp ( - exp[ ( y -  )/a] } , - M <Y< (3.16) 

where X is the location parameter and 6 is the scale parameter. The 
cumulative hazard function is 

H( y ) =exp[( y - A  )/a], - M <y< M ; (3.17) 

it is an exponential function of time. Then timey as a function of H is 

y ( H ) = h + 6 In( H ) . (3 .18)  

This shows that timey is a linear function of In( H ) .  Thus, the extreme value 
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hazard paper is semilog paper. The probability scale is given by the basic 
relationship (3.3). Extreme value hazard paper appears in Figure 1.8. For 
H = 1 (i.e., loo%), the corresponding timey equals A; this is used to estimate 
A from an extreme value plot. The probability scale is used to estimate S by 
the method for extreme value probability paper. Weibull and extreme value 
hazard papers have the same cumulative hazard and probability scales. On 
Weibull paper the time scale is logarithmic, and on extreme value paper i t  is 
linear. 

PROBLEMS 

4.1. Shave die. The following are life data (in hours) on a shave die 
used in a manufacturing process. Operating hours for shave dies that wore 
out: 13.2 67.8 76 59 30 26.7 26 68 30.1 76.3 43.5. Operating 
hours on shave dies that were replaced when the production process was 
stopped for other reasons: 45.1 27 49.5 62.8 75.3 13 58 34 48 
49 31.5 18.1 34 41.5 62 66.5 52 60.1 31.3 39 28.6 7.3 
40.3 22.1 66.3 55.1 

(a) Calculate hazard (or probability) plotting positions for dies that 

(b) Plot the data on Weibull hazard (or probability) paper. 
(c) Assess the validity of the data and the fit of the Weibull distribu- 

tion. 
(d) Graphically estimate the Weibull shape parameter. Does it suggest 

that the instantaneous failure rate increases or decreases with die life? An 
increasing one indicates that dies over a certain age should be replaced 
when the production process is stopped for other reasons, as die wear out 
stops production and is therefore costly. 

4.2. Table 2.2 shows turbine disk data (rounded to 100 
hours). 

(a) Do the hazard calculations. 

(b) Plot the data on lognormal hazard paper. 
(c) How does the lognormal fit compare with the normal fit in Figure 

(d) Estimate the median life. Compare it with the estimate from 

(e) Make a Weibull hazard plot and determine whether the failure 

wore out. 

Turbine disk. 

2.3? 

Figure 2.3. 

rate increases or decreases with age. 
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(f) Compare the normal, lognormal, and Weibull fits with respect to 
the upper tails; that is, which is most pessimistic and which is most 
optimistic? 

4.3.* Hazard plotting also applies to data 
censored on the left. Just multiply all data values by - 1 to get reversed data 
censored on the right, and plot that data. Data below from Sampford and 
Taylor (1959) are multiply censored on the right and the left. Mice were 
paired, and one of each pair got injection A and the other got injection B. 
For each pair, the difference of their log days of survival appears below. 
However, observation terminated after 16 days. When one mouse of a pair 
survives, one knows only that the difference is greater (less) than that 
observed. There are three such differences in the data: -0.25- and 
-0.18- censored on the left and 0 .30 t  censored on the right. The 
differences for the 17 pairs are -0.83, -0.57, -0.49, -0.25-, -0.18-, 

0.45. 

Censored on right and left. 

-0.12, -0.11, -0.05, -0.04, -0.03, 0.11, 0.14. 0.30, 0.30+, 0.33, 0.43, 

(a) Calculate hazard plotting positions for all observed differences 
above -0.18 - . Note that the sample size is 17, not 12. Convert these 
cumulative hazard values to cumulative probabilities by means of the 
basic relationship (3.3). 

(b) Reverse the data and calculate hazard plotting positions for all 
reversed observed differences above - 0.30 - . 

(c) Reversing the data reverses the probability scale. Convert the two 
sets of hazard plotting positions to consistent probability plotting posi- 
tions. 

(d) Plot all observed differences on normal probability paper. Normal 
paper is used because the distribution of log differences is symmetric 
about zero if injections A and B have the same effect. 

Does the mean difference differ significantly from zero, corre- 
sponding to no difference between the injections? Assess this subjectively. 

Graphically estimate the mean and standard deviation of the 
distribution of differences. 

4.4. Table 10.3 of Chapter 3 shows a time to breakdown of 83,990 in the 
25-kV data. 

(a) Use the Herd- Johnson method to calculate probability plotting 

(e) 

(f) 

positions for the 25-kV data including 83,990. 

*Asterisk denote5 laborious or diff~cult 
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(b) Plot the data and those from the other voltages on Weibull 

(c) Is the 83,990 point consistent with the others? 
(d) Do (a), (b). and (c) using the Kaplan-Meier method. 

probability paper. 

4.5. Battery. Service data on the life of a type of battery appear below. 

(a) Do the actuarial calculations for the fraction surviving each month. 
(b) Plot the sample cumulative distribution function on Weibull prob- 

(c) Estimate the Weibull shape parameter and comment on the nature 

(d) Estimate the proportion failing by 24 months, design life. 

ability paper. Does the Weibull distribution adequately f i t  the data? 

of the failure rate (increasing or decreasing?). 

Interval Units Failures in Censored in 
(Month) Entering Interval Interval 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

I926 
1700 
1518 
I340 
1 I65 
1037 
898 
796 
716 
617 
53 1 
429 
340 
28 1 
218 
148 
112 
87 
60 
44 
28 
18 
13 
3 

9 
2 
0 
3 
3 
5 
5 
2 
7 
2 
3 
5 
0 
3 
1 
1 
1 
2 
0 
0 
1 
0 
0 
0 

217 
180 
I78 
172 
125 
134 
97 
81 
92 
84 
99 
84 
59 
60 
69 
35 
24 
25 
16 
16 
9 
5 

10 
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4.6.* The logistic cumulative distribution function is 

where the scale parameter u is positive and the location parameter p has any 
value. 

(a) Find the relationship between life y and cumulative hazard H .  
(b) To make hazard paper, calculate the positions corresponding to 

cumulative hazards of 1, 2 ,  5 ,  10, 20, 50, 100, 200, and 500% on the 
cumulative hazard scale. 

(c) Calculate the positions corresponding to cumulative probabilities 
of 1 ,  2 ,  5, 10, 20, 50, 80, 90, 95, 98, and 99% on the probability scale. 

(d) Carefully draw the logistic hazard plotting paper and include the 
probability scale. 

(e) Explain how to use the hazard scale to estimate p and u. 



5 
Series Systems and 
Competing Risks 

Overview. Many products fail from more than one cause. For example, 
any part in a household appliance may fail and cause the appliance to fail. 
Also, humans may die from accidents, various diseases, etc. Sections 1 and 2 
present the series-system model for such products, and Section 3 presents 
graphcal analyses of such data. The models give the relationship between 
the product life distribution and those of its parts. The theory also provides 
models for the life of a product as a function of its size, for example, for the 
life of cable as a function of length. The data analyses in Section 3 provide 
estimates of the life distribution of the product and of its parts or causes of 
failure. Needed background includes Chapters 2 and 4. Section 4 of Chapter 
8 gives maximum likelihood methods for analysis of such data. 

Literature on competing failure modes began two hundred 
years ago with Daniel Bernoulli and d’Alembert. They developed theory 
(models and data analyses) to evaluate the effect of smallpox inoculation on 
human mortality (Todhunter, 1949). Much literature is motivated by medi- 
cal studies, actuarial applications, and bioassay. In these applications, 
authors refer to competing risks, irrelevant causes of death, and multiple 
decrement analyses. An early bibliography is given by Chiang (1968). More 
recently David and Moeschberger (1979), Kalbfleisch and Prentice (1980), 
and Birnbaum (1979) surveyed the history, models, and statistical methods 
for such competing risks, emphasizing nonparametric methods and biomedi- 
cal applications. Such theory applies to product life and other phenomena. 
For example, Harter (1977a) reviews the use of such theory for the effect of 

Background. 
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size on material strength. Regal and Larntz (1978) apply such theory to data 
on the time that individuals and groups take to solve problems. Mayer 
(1970) studies life of ball bearing assemblies. 

1. 

T h s  section presents series systems, the product rule for reliability, the 
addition law for failure rates, and the resulting distribution when some 
failure modes are eliminated. These are the basic ideas for series systems 
and products with a number of failure modes. 

Series systems and the product rule. Suppose that a product has a 
potential time to failure from each of M causes (also called competing risks 
or failure modes). Such a product is called a series system if its life is the 
smallest of those M potential times to failure; that is, the system fails with 
the first “part” failure. In other words, if Y,, . . . , Y, are the potential times 
to failure for the M causes (or parts), then the system time Y to failure is 

SERIES SYSTEMS OF DIFFERENT COMPONENTS 

Y=min( Y,, . . . , Y M ) .  (1.1) 

Let R(y)  denote the reliability function of the system, and let 
R,( y ) ,  . . . , R M( y ) denote the reliability functions of the M causes (each in 
the absence of all other causes). Suppose that the times to failure for the 
different causes (components or risks) are statistically independent. Such 
units are said to have independent competing risks or to be series systems 
with independent components. For such systems, 

since Y,, . . . , Y, are statistically independent. Thus 

This key result is the product rule for reliability of series systems (with 
independent components). In contrast. for a mixture of distributions (Sec- 
tion 7 of Chapter 2), each unit has only one possible mode of failure 
corresponding to the subpopulation to which the unit belongs. Cox (1959) 
makes this distinction. 

Lamp assembly example. Two incandescent lamps (light bulbs) are in an 
assembly that fails if either lamp fails. The first type of lamp is taken to 
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Figure 1.1. Reliability function of a series system of two lamps 

have a normal life distribution with a mean of 1500 hours and a standard 
deviation of 300 hours. The second type is taken to have a normal life 
distribution with a mean of 1200 hours and a standard deviation of 240 
hours. Reliability functions of these distributions are depicted as straight 
lines on normal probability paper in Figure 1. I .  The life distribution of such 
assemblies was needed, in particular, the median life. The lamp lives are 
assumed to be independent; so the assembly reliability is 

where @( ) is the standard normal cumulative distribution. For example, 
R(1200)={ 1 -@[(1200- 1500)/300]}X{ I -@[(1200- 1200)/240]}=0.421. 
R ( y )  is plotted in Figure 1.1 and is not a straight line. So the life 
distribution of such assemblies is not normal. The median life is obtained by 
solving R(y)=0.50 to get y s o =  1160 hours; this also can be obtained from 
the plot. 

For series systems, it is useful to look at 
the hazard function (failure rate) and cumulative hazard functions. The 
product rule (1.2) in terms of the cumulative hazard functions H ( y )  of the 
system and N,( J,), . . . , HM( y )  of each of the M causes is 

Addition law for failure rates. 
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t 

AGE y 

Figure 1.2. Hazard functions of a sene5 system and its components 

or 

Differentiate this to get the hazard function 

this is called the addition law for failure rates for independent failure modes 
(or competing risks). So for series systems, failure rates add. This law is 
depicted in Figure 1.2. which shows the hazard functions of the two 
components of a series system and the system hazard function. 

A great increase in the failure rate of a product may occur at some age. 
This may indicate that a new failure cause with an increasing failure rate is 
becoming dominant at that age. This shows up in hazard or probability 
plots as depicted in Figure 1.3. There the lower tail of the distribution is 
spread over a wide age range, and the upper portion of the distribution 

DOMINANT EARLY 

OBSERVE0 DISTRIBUTION 
WITH COMPETING MODES 

/ 'DISTRIBUTION OF MODE 
DOMINANT LATER . 

CUMULATIVE PROBABILITY OR HAZARD 

Figure 1.3. Curnulatibe distribution of data with  competing failure modes 
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is confined to a much narrower age range. Such an appearance of a data 
plot may indicate two or more competing failure modes. Figure 3.3 in 
Section 3 shows such a plot. 

Galambos (1978) presents (asymptotic) theory for systems with many 
components that may differ and be statistically dependent. 

Exponential components. Suppose that M independent components have 
exponential life distributions with failure rates A , ,  . . . , A,. Then series 
systems consisting of such components have an exponential life distribution 
with a constant failure rate 

A = A ,  + . . . +A,. (1.5) 

Ths simple relationship is used for reliability analysis of many systems. 
Often misused, (1.5) is correct only if all component life distributions are 
exponential. Similarly, the mean time to failure for such series systems is 

where the component mean lives are 8, = l / A , , .  . ., O M =  l/A,. (1.5) comes 
from the addition law for failure rates, namely, 

which is a constant. Thus the distribution of time to system failure is 
exponential. 

Freight train example. A high-priority freight train required three 
locomotives for a one-day run. If such a train arrived late, the railroad had 
to pay a large penalty. To assess its risks, the railroad needed to know the 
reliability of such trains. Experience indicated that times to failure for such 
locomotives could be approximated with an exponential distribution with a 
mean of 8,=43.3 days. It  was assumed that the three locomotives in a train 
fail independently. So such a train is a series system, and time to train delay 
has an exponential distribution with a mean of 8=[(1/43.3)+(1/43.3)+ 
(1/43.3)]-'= 14.4 days. The reliability of the train on a one-day run is 
R(I)=exp( - 1/14.4)=0.933. The unreliability is 1-0.933~0.067; that is, 1 
out of 1/0.067= 15 such trains is delayed. 

To  reduce the chance of delay, the railroad used trains with four locomo- 
tives. Then the train was delayed only i f  two or more locoimtives failed. 
The reliability of such a train on a one-day run is the binomial probability 
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of one or fewer failures, namely, 

where p =  1 - exp( - 1/43.3)=0.0234 is the daily probability of locomotive 
failure. So the reliability for one day is 

R( 1 )  = ( 1 -0.0234)4+ 4.0.0234( 1 -0.0234)3 =0.9968. 

The unreliability is 1 - 0.9968 = 0.0032; that is, 1 out of 1 /0.0032 = 3 13 such 
trains is delayed. The extra locomotive provides what is called parallel 
redundancy and increases the reliability. 

Design methods for evaluating the reliability of systems with more 
complex redundancy are described by Shooman (1968). who calls systems 
such as the four-locomotive train an “r-out-of-n structure” (3 out of 4 here). 
Such design analyses were developed in the 1950s and 1960s for aerospace 
and military hardware. They are now used for many consumer and in- 
dustrial products ranging from heart pacemakers through nuclear reactors. 

Suppose that M independent components have 
Weibull life distributions with scale parameters a , ,  . . . , a,,, and the same 
shape parameter p. Then series systems consisting of M such components 
have a Weibull distribution with a scale parameter 

Weibull components. 

a = [ ( l / a f ) +  . . .  +(I/a5)]-”P 

and the same shape parameter p. This can be seen from the system hazard 
function 

which is the hazard function for a Weibull distribution. Section 2 presents 
an example of such a system-a four-slice toaster. 

For a system whose component distribu- 
tions are all normal, the system distribution is not normal. This is true of the 
lognormal and most other distributions. Similarly, (1.8) does not hold for 
Weibull distributions with different shape parameters. 

Often it is important to know how elimina- 
tion of causes of failure will affect the life distribution of a product. As 

Other component distributions. 

Elimination of failure modes. 



168 SERIES SYSTEMS AND COMPETING RISKS 

Suppose that cause 1 is eliminated. (This may be a collection of causes.) 
Then R , ( y ) =  I ,  h,(y)=O, H , ( y ) = O ,  and F,(y)=O,  and the life distribution 
for failure by all other causes is 

R*( . Y )  = R , (  . Y )  . . . R,( y ), 

H * ( y ) = H , ( y ) +  . . .  + H , ( Y L  

F * ( y ) =  1 - [ 1 -F*( y ) ]  . . . [ 1 -Fh,( y)] .  

h*( , Y )  =hz(  y ) + . . . +h,O 1, 

(1.11) 

Lamp assembly example. If the 1500-hour lamp were replaced by one 
with essentially unlimited life, the assembly of two lamps would have the 
life distribution of the 1200-hour lamp. 

2. 

Some series systems consist of identical parts, each from the same life 
distribution. For example, tandem specimens are sometimes used in creep- 
rupture studies of an alloy. Pairs of specimens are linked end to end and 
stressed until one ruptures. Use of pairs hastens the test and provides more 
information on the lower tail of the distribution of time to rupture. Also, for 
example, a power cable might be regarded as a series connection of a large 
number of small segments of cable. The cable life is the life of its first 
segment to fail. Similarly, the life of a battery is the life of its first cell to 
fail. An assembly of ball bearings fails when the first ball fails. Tests of such 
systems are called “sudden death tests.” The following theory for such 
systems is a special case of the general theory in Section 1. 

Failure Rate Proportional to the Number of Components 

Suppose that a series system consists of M 
statistically independent, identical components with a component reliability 
function R,( y ) ,  a cumulative distribution function F,( y ) ,  a hazard function 
h,(.v), and a cumulative hazard function H,(y) .  For a series system of M 
such independent, identical components, let R( y )  denote the system reliabil- 
ity function, F( y )  the system cumulative distribution function, h( ) I )  the 

SERIES SYSTEMS OF IDENTICAL PARTS 

System life distribution. 
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system hazard function, and H( y ) the system cumulative hazard function. 
Then 

These are special cases of (1.2), (1.3), and (1.4). The life of such a system is 
the smallest of M (component) lives from the same distribution. 

Toaster example. A proposed four-slice toaster has the same compo- 
nents as standard (two-slice) toasters. However. there are twice as many of 
most parts in the four-slice toaster. So its failure rate is roughly twice as 
great as that of the two-slice toaster and its small percentage failing on 
warranty is about twice as great. More details are in a following paragraph. 

Exponential components. Suppose independent components have the 
same exponential life distribution with failure rate A,. Then series systems 
of M such components have an exponential life distribution with a failure 
rate 

A = MA,,  . (2.2) 

This is a special case of ( 1  S) .  Similarly, the mean time to failure 8 for such 
series systems is 

8 = 8,/ M .  (2.3) 

where do= l / A o  is the mean time to failure of the component. The freight 
train of Section 1 is such a system. 

Suppose a type of component has a Weibull life 
distribution with shape parameter p and scale parameter a,). Then series 
systems of M such independent components have a Weibull distribution 
with the same shape parameter /3 and a scale parameter 

Weibull components. 

a = a,/ M "8. (2.4) 

This is a special case of (1.8). 

Toaster example. Life of two-slice toasters is approximated with a 
Weibull distribution with /3=4/3 and ao= 15 years. A proposed four- 
slice toaster would have essentially M = 2  of each component in the two-slice 
toaster: so i t  would have twice as great a failure rate. Thus four-slice 
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toasters have a Weibull life distribution with p=4/3 and a =  15/2'/(4/3)=9 
years. 

Extreme value components. Suppose independent components have a 
smallest extreme value distribution with a scale parameter 6, and a location 
parameter A,. Then series systems of M such components have an extreme 
value distribution with a scale parameter 6, and a location parameter 

A = A, - Soh(  M ) . ( 2 . 5 )  

For example, this distribution describes the yearly minimum temperature. 
The lowest temperature in the design life of M years of a heating system 
comes from a smallest extreme value distribution with the same scale 
parameter and a smaller location parameter, A ,  given by (2.5). This is used 
to design system capacity. 

A similar result holds for the maximum observation in a sample from a 
largest extreme value distribution. 

Extreme value residuals example. Nelson and Hendrickson ( 1972) give 
an example of M = 360 standardized residuals from a smallest extreme value 
distribution with A, = O  and So= 1. The smallest residual is -8.90 and 
seems too small. The smallest observation comes from a smallest extreme 
value distribution with h =0- 1 .ln(360)= -5.886 and S = 1. The probabil- 
ity that the smallest sample value is -8.90 or less is F(-8.90)= 1-  
exp( -exp{ [ - 8.90- ( -  5.886)]/ 1])=0.049. This probability is small enough 
for the observation to be slightly suspect and possibly regarded as an outlier 
and investigated. 

For (log) normal component life, the life 
distribution of series systems of M such components is not (log) normal and 
depends on M. However, for large samples from any distribution (satisfying 
mild restrictions), the distribution of the smallest observation is approxi- 
mately Weibull or extreme value, according to whether the original distribu- 
tion is respectively bounded below or not. This is an important limit 
theorem for extreme values (Gumbel, 1958). The result indicates that life of 
some large series systems may be adequately described by the Weibull or 
extreme value distribution. 

Failure Rate Proportional to Size 

Some products that come in various sizes have failure rates 
that are proportional to product size. For example, the failure rate of a 
capacitor dielectric is often assumed to be proportional to the area of the 

Other component distributions. 

The model. 
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dielectric. Also, for example, the failure rate of cable insulation is often 
assumed to be proportional to cable length. 

In general, if h o ( y )  is the failure rate for an amount A, of such product, 
then the failure rate h ( y )  of an amount A of the product is 

( Y >  = ( A / ’ %  )h,( . Y ) .  (2.6) 

That is, such products are regarded as series systems of M = ( A / A , )  
identical components from the same life distribution. A / A ,  need not be an 
integer. (2.6) is based on the assumption that adjoining portions of the 
product have statistically independent lifetimes. 

Formulas for an amount A of product are 

(2.7) 

where the zero subscript denotes the distribution for an amount A,. 

If an amount A ,  of product has an exponential life 
distribution with failure rate A,, then an amount A has an exponential life 
distribution with failure rate 

Exponential life. 

The product mean time to failure is 

where do= l / X o  is the mean time to failure for an amount A ,  of product. 
These results follow from (2.2) and (2.3). 

Test specimens of motor insulation were 
assumed to have an exponential life distribution with a failure rate of 
A,= 3.0 failures per million hours. The insulation area of specimens is A,=6 
in.’, and the area of motors is A=500 in.’. The life distribution of motor 
insulation is exponential, with a failure rate of X = (500/6)3.0= 250 failures 
per million hours. 

Weibull life. Suppose an amount A,, of product has a Weibull life 
distribution with shape parameter j3 and scale parameter ao. Then an 

Motor insulation example. 
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amount A has a Weibull distribution with the same shape patcllltLter 0 and 
scale parameter 

a = a"/(  A / A " )  (2.10) 

This follows from (2.4) and (2.6). 

Capacitor example. Time to dielectric breakdown of a type of 100-pf 
capacitor is taken to have a Weibull distribution with ,8 =0.5 and a. = 
100,000 hours. The 500-pf capacitor has the same design but A / A ,  = 5 times 
the dielectric area. The dielectric life of 500-pf capacitors is Weibull with 
/3 =0.5 and a = 100,000/5'/05 =4000 hours. 

Some series-system products contain 
identical parts with statistically dependent lifetimes. For example, adjoining 
segments o f  a cable may have positively correlated lives, that is, have similar 
lives. Figure 10.2 of Chapter 2 depicts positively correlated lives (p-0.5.0.9) 
for a series system with two parts. Models for dependent part lives are 
complicated; see Galambos (1978), David and Moeschberger (1979). Harter 
(1977a), and Moeschberger (1974). There is work on multivariate exponen- 
tial distributions for such systems; Proschan and Sullo (1976) give some 
data analyses and references on a fatal shock model. Barlow and Proschan 
(1975. Chap. 5) present some previous work on multivariate life distribu- 
tions. Harter (197721) comprehensively surveys models for the effect of size. 
Block and Savits ( 198 1) comprehensively survey multivariate distributions. 

However. there are simple upper and lower limits for the system life 
distribution when component lives are positively correlated. The lower limit 
is the life distribution for a series system of independent parts, and the 
upper limit is the life distribution for a single part. These crude limits may 
bracket the true distribution accurately enough for practical purposes. 

Cryogenic cable example. Accelerated tests of cryogenic cable specimens 
indicated that specimen life can be approximated with a Weibull life 
distribution with a"= 1.05X 10" years and /3=0.95 at design conditions. 
The volume of dielectric of such specimens is 0.12 i n 3 ,  and the volume of 
dielectric of a particular cable is 1.984X lo7 in.3. Suppose that the cable can 
be regarded as a series system of independent specimens. Then its (ap- 
proximate) life distribution is Weibull, with a= 1.05 X lo"/( 1.984X 
107/0.12)1/')'5=234 years and P=O.Y5. The cable engineers wanted to 
know the I%, point of this distribution; i t  =234.[-ln(l -0.01)]'/''''5= 
1.8 years. I f  adjoining "specimen lengths" of the cable have positively 
correlated lives, the true life distribution of such cable cannot exceed the 

Series systems with dependence. 
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distribution for the life of a single specimen. These two distributions differ 
appreciably because ( A / A , )  is large, but even the pessimistic distribution 
showed that the design was adequate. 

3. HAZARD PLOTS FOR DATA WITH COMPETING FAILURE 
MODES 

T h s  section presents hazard plotting methods for analyzing data with a 
number of different failure modes: 

1. A method for estimating the life distribution that would result if certain 
failure modes were eliminated from a product. This method uses available 
data to estimate how product design changes would affect the life distribu- 
tion. 
2. A method for estimating the distribution of time to failure for a given 
failure mode. This method can reveal the nature of the failure mode and the 
effect of design changes on the failure mode. 
3. A method for combining different sets of data to estimate a life 
distribution. 

The methods apply to field data and life test data. Also, they apply to 
certain strength and failure data, for example, King (1971, p. 196). 

The methods employ either hazard or probability plotting, described in 
Chapter 4. The methods assume that the product is a series system with 
independent competing failure modes. All analyses below require that the 
cause of each failure be identified. 

The Appliance Data 

The methods are illustrated with life test data on a small electrical appli- 
ance. These data in Table 3.1 come from the life testing of 407 units at 
various stages in a development program. For each unit, the data consist of 
the number of cycles it ran to failure or to removal from test and its failure 
code (one of 18 causes). Units with the code 0 were removed from test 
before failure. Interest centered mostly on early failures. Replacement of 
unfailed units with new ones allowed more testing of the early life. Notes 
indicate when design changes were made and the failure modes they were to 
eliminate. 

Two life tests were used: the automatic test (units cycled by automatic 
test equipment) and the manual test (units cycled manually). For analyses, 
the units are divided by date of manufacture into five groups. The units in a 
group have roughly the same design. Figure 3.1 depicts part of the data. The 



Table 3.1. Appliance Data Tabulation 

CROUP 1 CROUP 2 GROW 3 

A u t o n u t i c  T e s t  Manna1 T e i t  , A u t - t i c   cat WnuaI T c 8 t  uanual T e s t  

_ C y c l e r - -  

927 1 
2084 2 
241 2 

8 3  
71 4 
97 2 

1529 5 
482 6 

2330 I 
121 6 

1488 6 
1834 7 
10175 0 
49 6 

2397 7 
197 6 
91 6 

10011 0 
11110 0 
10008 0 
I W P R B V E  MgDE 2 
5234 
5212 0 46 
5974 0 46 
5320 0 2145 
4328 0 2145 
4860 0 270 

19 8 98 
89 6 1467 
65 6 495 
7 6  2145 

604 8 16 
4 8  16 

244 8 2145 
250 0 692 

2494 0 2145 
2140 0 52 
4428 0 98 

2145 
2145 
495 
1961 
1 I07 
I937 

I2 
1961 
1461 
616 
I453 
1453 
I453 

413 
1056 
I453 
1453 
14S3 
557 
1193 

6 
3 
0 
0 
6 
6 

1 1  
1 1  
0 

10 
12 
0 

I 1  
0 
6 

I I  
0 
0 
6 
0 
12 
I I  
13 
0 
I2 
6 
0 
0 
0 

1 1  
I I  
0 
0 
0 

14 
I I  

Cyclc. C& 

IMPRBVL H0DE 

I t  1 
2223 9 
4329 9 
3112 9 
13403 0 
6367 0 
2451 5 
381 6 
1062 5 
1594 2 
329 6 
2327 6 
958 10 
7846 9 
170 6 

3059 6 
3504 9 
2568 9 
2471 9 
3214 9 
3034 9 
2694 9 

49 15 
6976 9 

35 15 
2400 9 
1167 9 
2831 2 
2702 10 
708 6 
1925 9 
1990 9 
2551 9 
2761 6 
2565 0 
3478 9 

_ C y c l c r B  

: 6  

311 I I  
571 0 
73 I I  

571 I I  
136 0 
136 6 
136 0 
136 0 
136 0 
1300 0 
1300 0 
I198 9 
670 I I  
575 I I  
1300 0 
1198 I I  
569 1 
417 I2 
1164 0 
1164 0 
1164 0 
1164 0 
1164 0 
608 0 
608 0 
608 0 
608 0 
490 1 1  
608 I 1  
608 0 
608 0 
608 0 
47 I I  
608 0 
608 0 
608 0 
608 I I  
45 I 

608 0 
608 0 
964 1 1  
281 12 
964 1 1  
670 I I  
1164 0 
1164 0 
838 1 1  
731 0 
630 I I  
485 0 
485 0 
145 1 1  
190 0 
190 0 

Cvc1e.a Code 

658 8 
90 1 
190 I 
241 1 
349 6 
410 12 
90 I I  
90 I I  
268 I I  
410 1 1  
410 I I  
485 I I  
508 I 1  
631 I 1  
631 1 1  
631 I 1  
635 I 1  
658 I 1  
731 I 1  
739 I I  
790 I I  
855 I I  
980 I I  
980 I I  
218 0 
218 0 
378 0 
378 0 
739 0 
739 0 
739 0 
739 0 
790 0 
790 0 
790 0 
790 0 
790 0 
190 0 
790 0 
790 0 
790 0 
790 0 
790 0 
980 0 
980 0 
980 0 
980 0 
980 0 
600 0 
600 0 
600 0 
600 0 
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Table 3.1 (Continued) 

15277 0 
9042 11 
11687 0 
8519 10 
13146 0 
3720 2 
8421 17 
4105 2 
3165 9 
2029 10 
3133 0 
4294 0 
5760 0 
5613 0 
5535 0 
5585 18 
137 8 

5733 16 
1945 10 
5070 0 
5324 0 
4894 0 
2191 5 
1307 5 
738 5 
4734 0 
2832 0 
364 I 0  

2748 0 
515 5 
2622 0 
872 0 

Failure Coder 

2 8  
1 1  8 
21 8 
303 8 
162 10 
984 12 
1126 1 
1128 12 
657 0 
681 0 
1012 0 
1096 0 
I098 0 
1098 0 
1098 0 
1098 0 
1098 0 
1098 0 
1096 0 
1098 0 
1098 0 
1098 0 
1098 0 
1098 0 
1098 0 
1098 0 
1098 0 
1098 0 
1098 0 
1330 0 
1446 0 
1447 0 
1449 0 
1449 0 
1449 0 
1449 0 
1449 0 
1449 0 
1449 0 
1449 0 
1451 0 
1451 0 
14.51 0 
1451 0 
1451 0 
1451 0 
1451 0 
1451 0 
1462 0 
1462 0 

4395 0 470 0 
881 5 4011 5 
3412 5 3985 0 
I117 5 4056 0 
l7s9 N L U  PART D C S l W  
4137 AND LUBRlCANT 

1585 6 
4129 8 r m  maw 5. 

4368 0 
3901 0 
2432 5 
4006 0 
4816 0 
2070 0 
1588 5 
546 5 
2157 5 
3008 2 
3164 5 
3688 0 
1312 2 
687 17 
1312 2 
1103 0 
535 5 
1342 5 
496 5 

2433 0 
3 3 1 9  17 
4319 0 
2203 17 
2899 5 
713 5 
1321 5 
816 5 

2762 5 
1489 5 
4413 0 
649 5 
1238 5 
378 0 
1738 0 
148 17 
703 5 
481 5 
437 17 
3892 0 
3937 0 
2113 5 
3552 0 
3484 0 
3855 0 
2757 8 
5448 0 
4693 0 

2615 0 
4596 0 
4275 0 
3334 0 
4300 0 
4436 0 
4132 0 
3597 0 
1680 5 
3508 0 
3009 5 
4112 0 
4323 0 
3462 5 
3550 0 
4441 0 
3244 5 
4317 0 
2974 5 
3264 0 
4349 0 
2961 5 
4103 0 
4246 5 
3075 10 
1493 5 
3978 0 
1624 1 
1430 0 
1877 6 
3174 0 
4254 0 
4252 0 
3904 0 
4398 0 
3719 0 
3424 0 
3532 0 
3995 0 
4384 0 
4161 0 
3773 0 
3876 0 
1015 5 
3727 0 
4318 0 

0 denote8 removal from teat  before f a i l u r e .  412 5 
4004 5 
3830 5 1 - 18 denote varioum fa i lure  modem. 
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10 CYCLES too I 

I 10 I00 

0 FAILURE TIME AND MODE 

1000 

1000 

to, 

--I REMOVAL TIME 

Figure 3.1. Automatic test data from Group I 

objective of the development program was to improve the early- and 
long-life portions of the life distribution. This reflects concern over warranty 
costs and long-term customer satisfaction. 

Life Distributions When Failure Modes Will be Eliminated 

Hazard plots can be used to estimate product life distributions when certain 
failure modes are eliminated. The appliance example illustrates the method. 
Table 3.2 shows hazard calculations for the Group 1 automatic test data 
with all modes acting, and Figure 3.2 shows a Weibull hazard plot. 

Product life may be improved through engineering changes in design or 
operation to eliminate one or more failure modes. Often i t  is costly or time 
consuming to make changes and to then collect and analyze data to 
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Table 3.2. Hazard Calculations for 
matic Test Data from Group 1 

CYCLES FAILURE 
CODE 

4 
7 
8 
19 
49 
65 
71 
89 
91 
97 
I2 I 
I91 
24 I 
244 
250+ 
482 
604 
92 7 
1488 
1529 
I834 
2084 
2140t 
2330 
2397 
2494+ 
4328 t 
4428 + 
4860 t 
5212+ 
5234 
5320t 
5974 t 
10008 + 
10011 + 
10175 + 
1 1 1 1 0 +  

8 
6 
3 
8 
6 
6 
4 
6 
6 
2 
6 
6 
2 
8 
0 
6 
8 
I 
6 
5 
7 
a 
0 
I 
7 
0 
0 
0 
0 
0 
7 
0 
0 
0 
0 
0 
0 

REV E R 5 E 
RANK 

37 
36 
35 
34 
33 
32 
31 
30 
29 
ev 
e7 
26 
25 
24 
e3 
22 
21 
*O 
19 
I 8  
I1 
16 
I5 
14 
I3 
12 
I 1  
10 
9 
8 
7 
6 
5 
4 
3 
2 
I 

HAZARD 

2.10 
2.78 
2 -86 
2 -94 
3 -03  
3.13 
3.21 
3.33 
3.45 
3 -51 
3.70 
3 - 6 5  
4.00 
4.11 

4.55 
4.76 
5 .00  
5 .25  
5.56 
5 - 8 6  
5 ~ 2 5  

1.14 
1.69 

A u t e  

CUM. 
HAZARD 

2.10 
5.48 
8.34 

I I .28 
14.31 
17.44 
20.61 
94-00 
21.45 
31 -02 
34.72 
38.57 
42 - 5 1  
46-74 

51 -29 
56.05 
61 *05 
66.31 
71.87 
77.75 
84 -00 

91 - 1 4  
38.83 

14.29 113.12 

determine the effect of the changes. The following method estimates the life 
distribution that would result i f  selected failure modes are completely 
eliminated. Such an estimate allows one to assess whether the elimination of 
specific failure modes would be worthwhile. This method employs past data 
with a mixture of all failure modes. 

Major design changes were made on the appliance in Group 4 to 
eliminate failure modes 1, 6, 9, 1 1 ,  and 12, which affect early and long life. 
The Group 2 automatic test data were collected before the design changes 
were made. They are used to predict the life distribution that would result i f  
those failure modes were eliminated. Cumulative hazard values for the 
predicted life distribution are shown in Table 3.3. These calculations assume 
that failure modes 1, 6, 9, 1 I ,  and 12 are completely eliminated. Each failure 
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Figure 3.2. Plots of automatic test data for Groups I ,  2, 4, and 5 .  

time for mode 1, 6,  9, 11, or 12 is treated as a censoring time, that is, as if 
the appliance were removed from test at the time of such a failure. These are 
censoring times, since “redesigned” appliances would not run to failure by 
one of the removed failure modes. The failure times for the remaining 
modes are plotted against their cumulative hazard values in Figure 3.3 as 
triangles. 

For comparison, Figure 3.3 also shows the plot of all the automatic test 
failures for Group 2 and the plot for Group 4. The design changes to 
eliminate these modes are in Group 4. So, the three plots in Figure 3.3 
correspond to (1 )  an estimate of the life distribution before the design 
changes, (2) a prediction of the life distribution with the changes, and (3) an 
estimate of the life distribution actually achieved with the ch zs. Plots (2) 
and (3) agree well. 
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Table 3.3. Hazard Calculations for 
the Predicted Life Distribution 
CYCLES FAILURE 

C O M  

I !  + 
35 
49 
110 + 
399 + 
381 + 
708 + 
958 
I062 
1161 + 
1594 
1925 + 
1990 + 
2223 + 
2321 + 
2400 + 
2451 
2411 + 
25Sl + 
9565 + 
2568 + 
2694 t 
21 02 
2161 i 
283 I 
3034 + 
3059 t 
3112 + 
3214 + 
3478 t 
3504 + 
4329 + 
6976 i 
7846 + 
I3403 + 

6367 + 

I5 
I5 

10 
5 

2 

5 

10 

2 

REVERSE 
RANK 

36 
35 
34 
33 
32 
31 
30 
29 
28 
27 
26 
25 
24 
23 
22 
21 
20 
19 
18 
11 
16 
15 
14 
13 
12 
1 1  
10 

9 
8 
7 
6 
5 
4 
3 
2 
I 

CUM- 
n m u o  

2.06 
5.00 

9 -25 
12.82 

16.61 

21 -61 

28.81 

31-14 

If a design change does not completely eliminate a failure mode, then the 
resulting life distribution is between the distribution before the change and 
the prediction. An example of t h s  appears later. Also, a design change may 
affect failure modes other than intended ones, and it  may even introduce 
new failure modes. 

Life Distribution of a Single Failure Mode 

Sometimes one desires information on the distribution of time to failure of a 
particular mode, that is, the life distribution if there were only a single 
mode. An estimate of t h s  distribution indicates the nature of the failure 
mode and the effect of design changes on the failure mode. The estimate 
employs the previous method carried to the extreme, where all modes but 
one are eliminated. That is, failure times for all other modes are treated as 
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Figure 3.3. Predicted and observed life distributions. 

censoring times, since such units were not run long enough to fail by that 
mode. 

The following example illustrates the method. A new design of a part was 
tried to overcome mode 1 1  failures. Units on the manual test in Group 2 
contained the old design of the part. Units on the manual test in Group 3 
contained the new design. 

Table 3 . 4 ~  shows hazard calculations for mode 1 1  with !he old design. 
Each failure time for all modes except 1 1  is treated as a censoring time, 
since such units did not run to failure by mode 11. The failure times for 
mode 1 1  with the old part are plotted in Figure 3.4. Table 3.46 shows 
hazard calculations for mode 1 1  with the new part, and the hazard plot is 
shown in Figure 3.4. The normal distribution empirically provides the best 
f i t .  

Figure 3.4 indicates that the two designs have the same distribution of 
time to failure. Mode 11 was later eliminated by another design change. The 
straight data plot on normal paper indicates that the part has an increasing 
failure rate-wear-out behavior, confirming engineering expectation. 



Table 3.4~1. Cumulative 
Hazard for Mode 11, 
Group 2 
CYCLES FAILURE 

CODE 

73 
136+ 
I36 + 
136 t 
136 + 
136 +- 
145 + 
190+ 
190+ 
281 + 
3 1 1  
417 + 
485 + 
485 + 
490 
569 + 
571 + 
57 I 
575 
608 + 
608 + 
608 + 
608 + 
608 + 
608 + 
608 + 
608 + 
608 + 
608 + 
6 08 
608 + 
608 + 
630 
670 
670 
731 + 
838 
964 
964 
I164 + 
1164+ 
I I64 + 
I164 + 
1164+ 
I164 + 
1164 + 
1198 + 
1198 
I300 + 
1300 + 
1300 + 

608 + 

I 1  
I t  

I I  

I 1  

I 1  

11 

I I  

1 1  

I 1  
I 1  
I 1  

I 1  
I 1  
1 1  

I t  

CUM- 
HAZARD 

I .89 
3.81 

5.98 

8.36 

10.99 

13.85 

20.24 

24.79 

30.05 
33-61 
41.49 

48.16 
55.30 
62.99 

87.99 

Table 3.4h. Cumulative 
Hazard for Mode 11. 
Group 3 
CYCLES FAILURE 

CODE 

90 + 
90 
90 
190 + 
218 + 
218 + 
e41 + 
P60 
349 + 
378 + 
378 + 
410 + 
410 
410 
485 
5 08 
600 + 
600 + 
600 + 
600 + 
63 I 
63 I 
63 \ 
635 
658 + 
658 
73 I 
739 
739 + 
739 t 
739 + 
739 + 
7 90 
790 + 
790 t 
190 + 
790 t 
790 + 
790 + 
790 + 
790t 
790 t 
790 + 
790 t 
855 
980 
980 
980 + 
980 + 
980 + 
980 t 
980 + 

l l  
I 1  

1 1  

I 1  
I 1  
I 1  
I 1  

I 1  
I 1  
11 
I I  

I I  
I 1  
I 1  

I 1  

1 1  
I 1  
I 1  

CUM. 
HAZARD 

1-96 
3.96 

6-10 

8.68 
1 1-24 
13-81 
16.57 

19.70 
22.93 
26.26 
29.71 

33.41 
37.26 
41 -26 

46 .E6 

58.76 
73.05 
89.72 

181 
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Figure 3.4. Normal hazard plot of old and new designs. 

Life Distributions for a Combination of Failure Modes 

Sometimes it is useful to combine data on different failure modes to 
estimate the distribution of time to failure when all of these modes act. The 
following method utilizes all data to estimate the life distribution and 
employs the previous two methods. This method is highly specialized. 

A design modification for mode 5 was made partway through Group 5, 
producing an increase in time to failure for mode 5 .  So only the subsequent 
data represent the distribution of time to failure for all causes. This small 
sample does not accurately estimate the life distribution. The following 
method uses the mode 5 data (after the modification) to estimate the 
distribution for mode 5 and all data from Group 5 to estimate the 
distribution for all other modes. These two distributions are then combined 
to estimate the distribution of time to failure for all modes. This method 
assumes that the distribution for all modes other than 5 is the same 
throughout Group 5 .  Engineering thought that no design changes should 
affect other failure modes. 

Table 3 . 5 ~  shows hazard values for the estimate of the life distribution for 
mode 5; they are based on the automatic test data after the modification. 
Each time for a failure mode other than mode 5 is treated as a censoring 
time. The failure times for mode 5 are plotted against their cumulative 
hazard values in Figure 3.5. This plot merely displays the data and is not 
part of the method being presented here. 
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Table 3.5~. Hazard Values for Mode 5 in Group 
5 after Design Change 

CYCLES CODE RANK HAZARD 

1015 5 4 6  2. 17 
14 93 5 44  2. 27 

2 9 6 1  5 3 9  2. 56  
2974 5 3 8  2. 63 
3009 5 3 7  2 . 7 0  
3244 5 34 2 .94  
34  62 5 3 1  3. 23 
4246 5 14  7. 14 

FAILURE R E V E R S E  

1680 5 4 2  2.38 

Table 3.5b shows hazard values for the estimate of the life distribution for 
all modes other than 5; they are based on all automatic test data from 
Group 5. Each time for mode 5 is treated as a censoring time. The failure 
times for all other modes are plotted against their cumulative hazard values 
in Figure 3.5. This plot merely displays the data and is not part of the 
method being presented here. The plot estimates the life distribution if 
failure mode 5 were eliminated. 

The cumulative hazard function of a series system is the sum of the 
cumulative hazard functions of the different modes. So, the remaining 
calculation consists of summing the cumulative liazard function for mode 5 

Figure 3.5. 
modes from Group 5 .  

Distribution based on Mode 5 data after Design Change and data on all other 
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Table 3.56. Hazard Values for Group 5 with 
Mode 5 Eliminated 

CYCLES 

4 5  
1 4 8  
4 3 7  
687 

1312  
1312 

1624 
1877  
2203 
27 57 
3008  
3075  
3 3 1 9  
4 1 2 9  

1 5 8 5  

FAILURE 
CODE 

8 
17 
17  
17 

2 
2 
6 
1 
6 

17  
8 
2 

10  
17 

8 

REVERSE 
RANK 

110  
109  
106 

99 
90 
89 
83 
8 1  
77 
73 
69 
64 
62 
57 
25  

HAZARD 

0 . 9 1  
0. 92 
0. 94 
1 .01  
1.11 
1.12 
1 . 2 0  
1. 23 
1. 3 0  
1 . 3 7  
1 . 4 5  
1. 5 6  
1. 61  
1 .75  
4 . 0 0  

and the cumulative hazard function of all other modes. This provides an 
estimate of the cumulative hazard function of the distribution of time to 
failure for all causes. A method for doing this follows. 

The failure times in Table 3 . 5 ~  for mode 5 and the failure times in Table 
3.56 for all other modes are arranged from smallest to largest, as shown in 
Table 3Sc,  with their hazard values (not in increasing order). The cumuia- 
tive hazard value for a failure time is the sum of its hazard value and hazard 
values for all previous failure times. The failure times are then plotted 
against their cumulative hazard values, as shown in Figure 3.5. This plot 
estimates the distribution of time to failure for all causes. 

Life Distributions for Systems of Identical Components 

Sometimes one must analyze life data from series systems of identical 
components or  from systems with failure rate proportional to size. One may 
wish to estimate the life distribution of (1) the individual components or (2) 
the system or (3) systems of different sizes. An example of (1 )  involves turn 
failure of electrical insulation, which can occur in either of two coils in a 
motorette, and failure of one coil terminates the test on the other coil. One 
can estimate the distribution of time to failure of individual coils from such 
data. McCool (1970b) called this situation “sudden death” testing in ball 
bearing life tests. An example of (2) involves a proposed design of a 
four-slice toaster, which is equivalent to a series system of two two-slice 



3. HAZARD PLOTS FOR DATA WITH COMPETING FAILURE MODES 185 

Table 3.5~. 
Change and All Other Modes in Group 5 

Combination of Mode 5 after Design 

CYCLES 

4 5  
14 8 
437 
687 

1015 
1312 
1312 
14 93 
1585 
1624 
1680 

2203 
2757 
2961 
2974 
3008 
3009 
3075 
3244 
3319 
3462 
4129 
4246 

1877 

FAILURE 
CODE 

8 
17  
17 
17 

5 
2 
2 
5 
6 
1 
5 
6 

17 

5 
5 
2 
5 

1 0  
5 

17 
5 
8 
5 

a 

HAZARD 
CUM. 

HAZARD 

0 . 9 1  
0. 92 
0 .94  
1 . 0 1  
2. 17 
1.11 
1 . 1 2  
2. 27 
1 . 2 0  
1. 23 
2. 38  
1. 3 0  
1 . 3 7  
1 . 4 5  
2. 56 
2. 63 
1. 56 
2. 7 0  
1. 6 1  
2. 94 
1 . 7 5  
3.  23 
4 . 0 0  
7. 14 

0. 91  
1. 83 
2 . 7 7  
3 . 7 8  
5 . 9 5  
7 .06  
8. 1 8  

1 0 . 4 5  
11. 6 5  
12. 8 8  
1 5 . 2 6  
16.  56 
17. 93 
1 9 . 3 8  
21 .94  
24. 57 
26. 1 3  
2 8 . 8 3  
3 0 . 4 4  
3 3 . 3 8  
3 5 . 1 3  
3 8 . 3 6  
4 2 . 3 6  
49.  50 

toasters. Existing data on two-slice toasters can be used to estimate the life 
distribution of four-slice toasters. An example of (3) involves failures of 
power cables of different lengths. The data on cables of various lengths can 
be used to estimate the life distribution of cables of any given length. 

Component life may be estimated from system data, as illustrated with the 
turn failure data on the 20 coils in 10 motorettes in Table 3.6. If a motorette 
has a turn failure, the coil data consist of the failure time of one coil 
followed by an equal running time for the other coil. If a motorette is 
removed from test without a turn failure, the data consist of a running time 
for each coil. In Table 3.6, running times are labeled "+." The table also 
shows the hazard calculations for the 20 coils. Figure 3.6 shows a normal 
hazard plot of the coil failure times. The earliest failure looks inconsistent 
with the others. 



Table 3.6. Hazard Calculations for Individual Coils 

Hours Rank Hazard Hazard 

1175 20 5.0 5.0 
1 1 7  5+ 1 9  
1521 18 5.6 10 .6  
1521+ 1 7  
1569 16  6.2 16.8 

Reverse Cumulative 

1569+ 
1617 
1617+ 
1665 
1665+ 
1665 
1665+ 
1713 
1713+ 
1 7  6 1  
1761+ 
1881+ 
1881+ 
1953 
1953+ 

1 5  
14 7 . 1  23.9 
1 3  
1 2  8.3 32.2 
11 
1 0  10.0 42.2 

9 
8 12.5  54.7 
I 
6 16.7 71.4 
5 
4 
3 
2 50.0 121.4 
1 

PERCENTAGE 

CUMULATIVE HAZARD 
Figure 3.6. Normal hazard plot of coil failures 
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System life may be estimated from component data by the following 
method. Suppose such systems consist of M identical, independent compo- 
nents. One must first carry out the hazard calculations for the component 
data, then multiply the cumulative hazard value of each failure by M .  and 
plot the component failure times against the new cumulative hazard value 
on hazard paper. This plot provides an estimate of the system life distribu- 
tion. This was done for the four-slice toaster. 

Lives of systems of a given size may be estimated from systems of various 
sizes (for example, cables of different lengths) by the following method. The 
running and failure times in the data are tabulated from smallest to largest, 
as usual for hazard calculations. The size of each system is then expressed as 
a multiple of the given system size. The multiple need not be an integer and 
may be less than or greater than unity. The reverse rank of each system is 
then obtained by summing the value of its multiple and those of all older 
units- failed and censored. The hazard calculations and plotting are then 
carried out with these “reverse ranks” of the failures. 

PROBLEMS 

5.1. Shave die. Use the shave die data of Problem 4.1. Other events 
that stop the process are thought to occur at random and independently. If 
so, the times to when the process is stopped for other reasons have an 
exponential distribution. 

(a) Calculate hazard (or probability) plotting positions for times to 
stopping production for other reasons, treating times to die wear out as 
censoring times. 

(b) Plot the data on Weibull hazard (or probability) paper. 
(c) Assess the validity of the data and a Weibull fit to the data. 
(d) Graphically estimate the Weibull shape parameter and assess 

(e) Make a separate Weibull hazard plot of time to replacement from 

Below are times to failure on 10 motors with a 
new Class H insulation at 220°C. Motors were periodically inspected for 
failure. A failure time is midway between the time when the failure was 

’ found and the previous inspection time. Rounding to the midpoint affects 
the data little. The table shows a failure or running time for each cause 
(turn, phase, or ground, each a separate part of the insulation). Each failed 
part was isolated electrically and could not fail again, and most motors 

whether the exponential distribution fits adequately. 

any cause (wear out or process stopped). 

5.2. Class H insulation. 
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stayed on test to a second or third failure cause. Most other data contain 
only one failure cause per unit. In use, the first failure from any cause 
determines the motor life. 

Hours to Failure 

Motor Turn Phase Ground 

1 
2 
3 
4 
5 
6 
I 
8 
9 

10 

1764 
2436 
2436 
2436 + 
2436 
2436 
3108 
3108 
3 I08 
3108 

2436 
2436 
2436 
2772 + 
2436 t 
41 l 6 t  
41 16+ 
41 16-1- 
3108 
41 16+ 

2436 
2490 
2436 
2772 
2436 
41 16+ 
41 16-t 
4116+ 
3108-t 
4116+ 

t denotes tinw without failure 

(a) Use the first failure on each motor. Do hazard calculations and 
plot the failures on lognormal hazard paper. This estimates motor life 
with all modes acting. 

(b) Do the hazard calculations for the turn failures. Plot the data on 
lognormal hazard paper. 

(c) Do (b) for phase failures. 
(d) Do (b) for ground failures. 
(e) Which failures should be eliminated to improve life most? 
( f )  Combine the hazard calculations for separate modes to get an 

estimate of the cumulative hazard function when all modes act. Plot each 
failure against its cumulative hazard on lognormal hazard paper. 

How do  the estimates from (a) and ( f )  compare? 
Why do  (a)  and ( f )  differ in the upper tail? Which is a better 

For certain engines, each piston failure causes its 
cylinder t o  fail. Also, there are cylinder failures due to other causes. The 
table below shows an actuarial estimate of the reliability function of current 
pistons and a separate actuarial estimate of the reliability function of 
cylinders. A proposed new piston design would eliminate cylinder damage 

(8) 
(h)  

estimate in the upper tail? 

5.3. Cylinder life. 
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from piston failure. The following shows how much cylinder life (mileage) 
would be improved with the new piston. 

Thousand Reliability Estimate 

Miles Cylinders Pistons 

0 
25 
50 
75 

100 
125 
150 
I75 
200 
225 
250 
275 

I .m 
0.99582 
0.99 195 
0.99 195 
0.96544 
0.9406 8 
0.9073 1 
0.84526 
0.80437 
0.77076 
0.71639 
0.66887 

~ ~~~~~ 

1 .m 
0.99907 
0.99907 
0.99761 
0.99528 
0.99372 
0.99082 
0.98738 
0.98 186 
0.972 16 
0.96290 
0.95554 

(a) Make a Weibull probability plot of the estimate of the reliability 
function of current pistons. Relabel the probability scale with reliability 
percentages. 

(b) On the same paper, plot the cylinder reliability function estimate. 
(c) Use the reliability function estimates to calculate an estimate of 

the reliability function for cylinders with the new piston design. This 
estimate of reliability increases at some mileages. 

(d) Plot the estimate from part (c) on the same Weibull paper. 
(e) Compare the failure rates of the three distributions-increasing or 

decreasing with mileage? 

( f )  Discuss whether you think customers could be induced to pay a 
premium price for the new piston design. What important economic 
considerations determine whether cylinder life has been improved signifi- 
cantly? 

5.4. Oil breakdown voltage. An insulating oil was tested between a pair 
of parallel disk electrodes under a voltage that increased linearly with time. 
The oil breakdown voltage was measured 60 times each, with two sizes of 
electrodes. According to theory, a pair of 3-in.-diameter electrodes act like a 
series system of nine independent pairs of 1 -in.-diameter electrodes. The 
following analyses check this. 
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I-in. Diameter 

57 59 56 56 58 64 58 55 58 54 
65 61 64 65 65 52 53 60 58 63 
60 62 54 63 60 52 62 50 60 57 
68 57 57 58 52 67 52 62 56 59 
55 65 63 57 67 64 62 58 66 60 
57 64 66 52 65 57 58 62 60 59 

3-in. Diameter 

57 49 49 41 52 40 48 48 43 45 
57 54 49 49 52 53 51 46 55 54 
49 51 50 49 51 49 47 55 49 51 
51 50 50 55 46 55 57 53 54 54 
54 41 60 50 55 54 53 54 53 46 
55 50 59 58 60 55 55 56 59 51 

(a) Make a Weibull hazard plot of the voltage data from the I-in.- 
diameter electrodes. 

(b) Carry out the hazard calculations for the data from the 3-in.- 
diameter electrodes, treating each failure as the first among nine 1-in. 
electrodes. The eight survivor times immediately follow their correspond- 
ing failure time. 

(c) Plot the results of (b) on the paper with the 1-in. data. 
(d) Are the two sets of data comparable? 

5.5. Metal fatigue. A low-cycle fatigue test of 384 specimens of a 
superalloy at a particular strain range and high temperature yielded the 
following data. Data are grouped by the log (base 10) of the number of 
cycles to failure into intervals of 0.05. The data show the number of 
specimens failing from each cause. S denotes failure due to surface defect, I 
denotes failure due to interior defect. The following analyses indicate the 
potential improvement in life that would result i f  a research program yields 
a new manufacturing method that eliminates surface defects. 

(a) On normal paper (for log cycles), make a hazard or probability 
plot of the distribution when both failure modes act. Take the grouping of 
the data into account. 

(b) Is the usual assumption of lognormal fatigue life of metal speci- 
mens adequate? 



PROBLEMS 191 

(c) Estimate u and the 50 and 1 %  points of this fatigue life distribu- 
tion. Usually one is interested only in low percentage points of a fatigue 
life distribution. Do you recommend fitting a line to the entire sample to 
estimate the 1% point? Why? 

(d) On normal paper, make a plot of the distribution of log cycles to 
failure from interior defect, assuming that failure due to surface defect is 
eliminated. 

(e) Are failures due to interior defect adequately described by a 
lognormal fatigue distribution? 

(f) Estimate u and the 50 and 1 %  points of this “potential” fatigue 
life distribution. 

(g) Do (d), (e), and (f) for surface defects. 
(h) Some specimens may not have surface defects and would be prone 

only to failure from interior defects. How would this affect preceding 
results? 

(i) The assumption of independent competing failure modes may not 
hold. How does dependence affect the preceding results? 

Defect 
Log 

Lower 
Endpoint 1 S 

3.55 
3.60 
3.65 
3.10 
3.15 
3.80 
3.85 
3.90 
3.95 
4.00 
4.05 
4.10 
4.15 
4.20 

3 
6 

I8 
1 23 
3 47 
1 44 

5 1  
1 31 

20 
16 

3 12 
3 4 
2 3 
5 10 

Defect 
Log 

Lower 
Endpoint I S 

4.25 2 3 
4.30 3 4 
4.35 1 7 
4.40 12 4 
4.45 7 2 
4.50 4 3 
4.55 2 1 
4.60 1 
4.65 1 
4.10 
4.15 1 
4.80 
4.85 I 

Total 60 3 24 
- __ 

(j) A common mistake in estimating the distribution for a particular 
mode is to treat the failures from that mode as i f  they were a complete 
sample, ignoring failures from any other modes. Plot the interior failures 
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as if they were a complete sample of 60 failure times. Compare this plot 
with the correct plot, especially the 1 %  and 50% points. 

(k) Repeat 0 )  for the 324 surface failures. 

5.6.* Probability of failure from a particular cause. Suppose that a 
series system can fail from one of K independent competing causes with 
cumulative life distributions F , ( y ) ,  . . . , F,( y j. 

(a) Derive an expression for the proportion PA( v )  of the population 
that fail from cause k by age y .  

(b) Show P , (y j+  . . .  +P,(y)=F(y) ,  the cumulative distribution of 
time to failure when all causes act. 

(c) Give the special result from (a) when the distributions are all 
exponential with means O,, k =  I , .  . ., K .  

(d) For (c), what proportion of the failures by age y have come from 
cause k? 

(e) Give the special result from (a) when all distributions are Weibull 
distributions with differing scale parameters and a common shape param- 
eter. 

( f )  For (ej, what proportion of the failures by agey have come from 
cause k ?  

*Asterisk denotes laborious or difficult 



6 
Analysis of Complete Data 

This chapter presents standard analytic methods for complete data. Such 
life data consist of the failure times of all units in the sample. Chapter 3 
presents simple graphical methods for analyzing such data. Before using 
analytic methods, i t  is important to check with a probability plot that a 
chosen distribution fits the data (Chapter 3). A combination of graphical 
and analytic methods is often most informative. Later chapters present 
methods for analysis of censored data having running times on unfailed 
units; those methods also apply to complete data. 

Section 1 explains the basic ideas for data analysis. Subsequent sections 
present data analyses for the basic distributions: ( I )  Poisson, ( 2 )  binomial, 
(3) exponential, (4) normal and lognormal, and (5) Weibull and extreme 
value distributions. To use these methods, one needs to know the distribu- 
tion (Chapter 2) .  Section 7 presents distribution-free (nonparametric) meth- 
ods. The nonparametric methods apply to data from any distribution, and 
they may be used even if the distribution is a known parametric one such as 
those in Sections 2 through 6. 

For each basic distribution, this chapter presents estimates and confi- 
dence limits for parameters, percentiles, and reliabilities. Such estimates and 
confidence limits are covered in a first course. Thus they are presented here 
as handbook formulas, with little space devoted to motivation and deriva- 
tion. Many statistical computer programs calculate such estimates and 
confidence limits. Readers lacking previous acquaintance with such basics 
can refer to Section 1 for a brief general technical introduction to such 
ideas. 
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For each basic distribution, this chapter also presents predictions and 
prediction limits for a random value of a future sample. For example, one 
may wish to use past data to obtain a prediction for and limits that enclose 
the total warranty cost for the coming year or the number of product 
failures in the coming quarter. In  contrast, estimates and confidence limits 
are for constant values of a population, which is generally assumed large 
compared to the sample. Relatively new, prediction problems often go 
unrecognized and are incorrectly treated with estimates and confidence 
intervals for population values. Nevertheless, prediction methods are pre- 
sented here with little motivation and no derivation. Readers can refer to 
Section 1 for a brief general technical introduction to prediction. 

Other distributions are sometimes used to analyze life data. These include 
the negative binomial, logistic, gamma, and shifted exponential, Weibull, 
and lognormal distributions. Books that survey methods for these and other 
distributions have been written by Johnson and Kotz (1970), Patil and Joshi 
( 1968), Bain ( 1978), Mann, Schafer, and Singpurwalla (1974), and Lawless 
(1982). Also, journal articles on specific distributions are listed in indexes of 
journals and in Joiner, et al. (1970) and Joiner ( 1  975). 

1. 

This section briefly presents basic ideas for data analysis. These ideas 
include a statistic and its sampling distribution, estimator, confidence 
intervals, sample size, and prediction (predictors and limits). Later sections 
apply these ideas to analyses of complete data from the basic distributions. 
As this section is advanced, readers may first wish to read later sections. 

In this chapter, the n observations in a sample are denoted by Y, ,  . . . , y,. 
Generally, the population is assumed to be infinite and random sampling is 
used; that is, the observations are statistically independent and from the 
same distribution. 

A Statistic and Its Sampling Distribution 

A statistic is a numerical value determined from a sample by some proce- 
dure and denoted by O * (  Y , ,  . . . , Yn), a function of the data values. Sample 
statistics include the sample average, standard deviation, smallest observa- 
tion, largest observation, median, etc. Suppose one could repeatedly take 
random samples of given size n from a distribution and determine the 
sample value of a particular statistic. The values of the statistic would differ 
from sample to sample and would have a distribution, which is called the 
sampling distribution of the statistic. The form of a sampling distribution 
depends on the statistic, the sample size, and the parent distribution. For 
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example, for samples from a normal distribution, the sample average has a 
sampling distribution that is normal. The term statistic can refer to (1) the 
procedure used to determine the statistic value, ( 2 )  the value determined for 
a given sample, or (3) the sampling distribution. 

Estimator 

A statistic 8*( Y , ,  . . . , Y,,) that approximates an unknown population value 8 
is called an estimate when one refers to its value for a particular sample; i t  
is called an estimator when one refers to the procedure or the sampling 
distribution. In practice, one does not know how close a sample estimate is 
to the population value (called the true value). Instead one judges an 
estimation method by the sampling distribution. Ideally 'the distribution 
should be centered on the true value and have a small spread. 

An estimator 8* for 8 is called unbiased if the mean E8* of its sampling 
distribution equals 8. If different from zero, E8* -8 is called the bias of 8*. 
Unbiasedness is a reasonable property, but not an essential one. Unbiased 
estimators receive much attention in the mathematical literature, partly 
because they are mathematically tractable. Figure 1.1 shows two sampling 
distributions where the biased one tends to yield estimates closer to the 
population value and so is better. Both biased and unbiased estimators are 
presented later. 

The spread in the sampling distribution of an estimator 8* should be 
small. The usual measure of spread is the distribution variance Var(B*) or, 
equivalently, its positive square root, the standard deviation a( 8*), called 
the standard error of the estimator. One usually wants estimators that are 
(almost) unbiased and have small standard errors. A useful biased estimator 
has a small bias compared to its standard error. If an estimator 8* for 8 is 
biased, then the mean square error (MSE) is a measure of the uncertainty in 
the estimator: 

where/( ) is the probability density of 8*. The mean square error, variance, 
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and bias of an estimator are related by 

MSE( a * )  =Var(B*) + ( E d *  -q2. 

The MSE combines the spread and miscentering of the sampling distribu- 
tion. 

The sampling distributions of most statistics are complex. However, for 
large sample sizes, many have a cumulative distribution that is close to a 
normal one. The statistic’s mean and standard error completely specify the 
approximating normal distributions. For example, for large samples of size 
n from a parent distribution with a mean p and standard deviation u,  the 
sample average has a cumulative distribution that is approximately normal 
with a mean p and a standard error a/,/n. This well-known result comes 
from the central limit theorem for independent, identically distributed 
random variables. The normal distribution often yields useful approximate 
results when exact results are unknown or too difficult to obtain. If one 
selects among unbiased estimators that are approximately normally distrib- 
uted, the one with the smallest variance is best. Also, then an estimate falls 
withm two standard errors of the true value with about 95% probability, 
and it  is within three standard errors of the true value, with about 99.7% 
probability. 

Confidence Intervals 

Estimation provides a single estimate of a population value. The uncertainty 
in such an estimate may be judged from its standard error. A confidence 
interval also indicates the uncertainty in an estimate. Calculated from 
sample data, i t  encloses the population value with a specified high probabil- 
ity. The length of such an interval indicates i f  the corresponding estimate is 
accurate enough for practical purposes. Confidence intervals are generally 
wider than inexperienced data analysts expect; so confidence intervals help 
one avoid thmking that estimates are closer to the true value than they 
really are. Also, the real uncertainty is usually greater than a confidence 
interval indicates because the interval is based on certain assumptions about 
the data and model; for example, ( I )  the sample is a random one ( 2 )  from 
the population of interest, and ( 3 )  the assumed theoretical distribution is 
close enough to the true one for practical purposes. Departures from the 
assumptions add to the uncertainties in the results. 

The following defines a confidence interval for a population value 19. 
Suppose (?=(?( Y , ,  . . . , Y,) and 8=8( Y,, . . . , Y,) are functions of the sam- 
ple data Y,, . . . , Y,, such that 
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no matter what the value of 8 or any distribution parameter. Then the 
interval [6 ,6 ]  is called a two-sided loOyW confidence interval for 8. e and 8 
are the lower and upper confidence limits, or bounds. The random limits e,  
and 6 enclose 8 with probability y. 

Similarly, suppose that e= e( Y , ,  . . . , Y,,) satisfies 

no matter what the value of 8 or any distribution parameter. Then the 
interval ( -  00, e )  is called a “one-sided loOy% upper confidence interval for 
8,” and is called a “one-sided 1Wy% upper confidence limit for 8.” 
One-sided lower confidence intervals and limits are defined similarly. In 
most applications, it is clear whether to use a one-sided or a two-sided 
interval. For example, one usually wants a one-sided upper limit for a 
fraction failing on warranty or a one-sided lower limit for reliability, but 
two-sided limits for a Weibull shape parameter. 

One- and two-sided confidence intervals are related. The upper (lower) 
limit of a two-sided 1007% confidence interval for a value 8 is a one-sided 
upper (lower) [ 100( 1 + y)/2]% confidence limit for 8. For example, the 
upper limit of a two-sided 90% interval is the upper limit of a one-sided 95% 
confidence interval. 

Most people would like an interval with high confidence. However. the 
width of a confidence interval increases with the confidence level, and a 
99.9% confidence interval, for example, may be so wide that i t  has little 
value in an application. Most data analysts use 90, 95, and 99% confidence 
intervals. Physicists often use short 50% confidence intervals (for the “prob- 
able error”), as they flatter the data. One can calculate and present a 
number of intervals for different confidence levels. 

Approximate confidence limits for a population value 8 can be obtained 
from an (almost) unbiased estimator 8* that is approximately normally 
distributed. For example, then 

P ( ( 8 * - 8 ) / 0 ( 8 * ) < ‘ 7 , }  - y ,  ( 1.3)  

n o  matter what the value of 8. where z y  is the IOOyth standard normal 
percentile. (1.3) becomes 

q e a *  y y  

This means that 
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is a one-sided approximate 1OOy% upper confidence limit for 8. Often o(B*) 
is not known and must be estimated from the data. Similarly, a one-sided 
approximate IOOy% lower confidence limit for 8 is 

and two-sided approximate IOOy% confidence limits for 8 are 

8 = e* - K , ~ (  e*) , 6= 8* + K , ~ (  e * )  , (1.7) 

where K ,  is the [ 100( 1 +y)/2]th standard normal percentile. Such ap- 
proximate intervals tend to be narrower than exact ones. Also, a two-sided 
interval tends to have a confidence closer to 1OOy% than does a one-sided 
interval if the sampling distribution of 8* is unsymmetrical. 

Sample Size 

Often one must determine a suitable sample size. To do this, one specifies 
how precise the chosen estimator 8* for 8 must be. Usually one wants the 
estimate to be within a specified i w  of 8, with lOOy% probability. The 
following is an approximate sample size IZ when 8* is approximately 
normally distributed with variance V * / n ;  V* may depend on 8 and other 
distribution parameters. Then 

(1.8) 
2 

n -  V*( K , / W )  . 

In practice, the value of V* is usually unknown, and one must estimate it  
from experience, a preliminary sample, or similar data. Mace ( 1  964) gives 
similar but more refined methods for determining sample size to achieve 
specified expected length of confidence intervals. Gross and Clark (1975, 
Chap. 8)  give guidance on the choice of sample size. 

I f  8 is positive, one may specify that 8* be within a factor f of 8 with 
probability lOOy%. That is, 8* is between 8/fand Of, with lOOyW, probabil- 
ity. Suppose that Var(B*)= V / n ,  where n is the sample size and I/ is a 
known factor. The appropriate sample size n is 

where K ,  is the [ 100( 1 +y)/2]th standard normal percentile. V / d 2  usually 
depends on unknown distribution parameters that must be estimated from 
experience, a preliminary sample, or similar data. The formula assumes that 
II is large enough that the distribution of In(B*) is approximately normal. 
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Prediction 

The statistical methods above use data from a sample to get information on 
a distribution, usually its parameters, percentiles, and reliabilities. However, 
in business and engineering, one is often concerned about a future sample 
from the same distribution. In particular, one usually wants to use a past 
sample to predict the future sample value of some statistic and to enclose it 
with prediction limits. The following presents such two-sample prediction 
theory. 

Predictor. Suppose that Y ,,..., Y,, and XI ,..., X,, are all independent 
observations in a past and future sample from the same distribution F,, 
where 6 denotes one or more unknown distribution parameters. Suppose 
one wishes to predict the random value U= u( X I , .  . . , X,) of some statistic 
of the future sample. To do this, one uses a predictor U* = u*( Y , ,  . . . , q,) 
that is a function of the past sample. 

The difference U* - U is the prediction error; its sampling distribution 
depends on the one or more parameters 6. If its mean is 0 for all values of 6, 
U* is called an unbiased predictor for U .  The variance Var,( U* - U )  of the 
prediction error or its square root, the standard prediction error, ue( U* - U )  
should be small. 

Prediction interval. Often one wants an interval that encloses a single 
future statistic U with high probability. The interval width indicates the 
statistical uncertainty in the prediction. Statistics r/= y( Y,. . . . , Y,,)  and 
o= fi( Y, ,  . . . , Y,,) of the past sample that satisfy 

P s { r / < u c c 7 ) = y  ( 1  .lo) 

for any value of 6 are called “two-sided 1OOy% prediction limits for U.” 
One-sided prediction limits are defined in the obvious way. One can think 
about such an interval in terms of a large number of pairs of past and future 
samples. An expected proportion y of such intervals will enclose U in the 
corresponding future sample. Prediction limits for a random sample value 
(say, a future sample mean) are wider than confidence limits for the 
corresponding constant population value (say, a population mean). 

Suppose that the sampling distribution of the prediction error is ap- 
proximately normal. Then a two-sided approximate lOOy% prediction inter- 
val for U has limits 

U= U* - K,u,( U* - U ) ,  V =  U* + K , u ~ (  U* - U ) ,  ( 1 . 1 1 )  

where K ,  is the [ 100( 1 +y)/2]th standard normal percentile. One-sided 
approximate prediction limits use the IOOyth percentile z y  in place of K , .  In  
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practice, the standard prediction error a@( U* - (I ) is usually unknown and 
is estimated from the data. 

There are also prediction intervals to enclose simultaneously a number of 
future statistics, for example, to enclose all observations in a future sample. 

Tests for Outliers 

An outlier is a data value that is far from the rest of the sample. An 
explanation for i t  should be sought to reveal faulty or improved products or 
poor test methods. Such outliers stand out in probability plots. This chapter 
does not give formal methods for identifying outliers. Such methods are 
surveyed by Grubbs (1969), David (1970). Hawkins (1980), and Barnett and 
Lewis (1978). 

2. POISSON DATA 

The Poisson distribution is a model for the number of occurrences in a given 
length of observation. This distribution is described in detail in Chapter 2. 
Poisson data consist of the number Y of occurrences in a ‘‘length’’ t of 
observation. 

This section gives estimates and confidence intervals for the Poisson 
occurrence rate A and guidance on sample size. Also, it gives predictions and 
prediction limits for the number of occurrences in a future sample. Haight 
(1967) gives justification for the results below. 

Estimate of X 
Estimate. The estimate for the true occurrence rate h is the sample 

occurrence rate 

X= Y/r .  (2.1) 

Var( X )  = A / / .  ( 2 . 2 )  

I t  is unbiased, and 

The sampling distribution of Y=At is the Poisson distribution with mean 
A t .  Suppose the expected number of occurrences hf is large, say, greater 
than 10. Then the distribution of f i  is approximately normal with a mean of 
h and variance (2.2). 

Power line example. Two types of power wire were used in a region. A 
new tree wire had Y ,  = 12 failures in t ,  =467.9 1000 ft.years of exposure, 
and the standard bare wire had Yz =69 and t , =  1079.6. For tree wire, 
f i ,  = 12/467.9=0.0256 failures per 1000 f t  .years; for bare wire, f i ,  = 
69 / 1079.6 = 0.0639. 
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Confidence Interval for X 
Poisson limits. Conservative two-sided lOOy % confidence limits for h 

are 

where x2(6: v )  is the 1006th percentile of the chi-square distribution with v 
degrees of freedom. Such a one-sided lower (upper) limit is 

h=0.5x2(1 -y;ZY)/r,  (2.4) 

is often used in reliability work. The limits above are conservative in that 
the confidence level is at least 100~5%; exact confidence levels cannot be 
achieved conveniently for discrete distributions. Nelson ( 1972a) gives simple 
charts for the limits (2.3), (2.4), and (2.5). 

For tree wire, two-sided 95% confidence limits are X, =0.5x2[( 1 - 
0.95)/2; 2.12]/467.9=0.0133 and A,  =0.5x2[( 1 +0.95)/2; 2.12+2]/467.9 
=0.0444 failures per 1000 ft.years. Each limit is a one-sided 97.5% confi- 
dence limit. 

Normal approximation. When Y is large, two-sided approximate 1 OOy % 
confidence limits for X are 

where K ,  is the [ 100( 1 +y)/2]th standard normal percentile. Such a one-sided 
lower (upper) limit is 

where z ,  is the IOOyth standard normal percentile. These limits employ the 
approximate normal distribution of A; so Y should exceed. say, 10 for most 
practical purposes. 

For bare wire, the two-sided approximate 95% confidence limits are 
!I2 = 0.0639 - 1.960(0.0639/1079.6)’/’ = 0.0488 and X ,  = 0.0639 + 
1.960(0.0639/1079.6)’/* =0.0790 failures per 1000 f t  .years. Each limit is a 
one-sided approximate 97.5% confidence limit. 
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Choice of t for Estimating A 

The estimate is within F w  of A with approximate probability IOOy% if  

r = A (  ~ . , / w ) ~ ,  ( 2 . 8 )  

where K ,  is the [loo( 1 + y)/2]th standard normal percentile. In (2.8), one 
must approximate the unknown A. This formula employs the normal 
approximation for the distribution of and is more accurate the larger A t  is 
(say A r  > 10 for most practical purposes). 

Suppose that A ,  of tree wire is to be estimated within -0.0050 failures 
per 1000 ft.years with 95% probability. One needs approximately t = 
0.0256( 1.960/0.0050)2 =3,940 1000 f t  .years. A , /  =0.0256(3940)= 100.9> 
10; so the normal approximation is satisfactory. 

Estimate and Confidence Limits for a Function of X 
Suppose h = h ( A )  is a function of A.  For example, the Poisson probability 
of or fewer failures is the function F h ( Y ) = C : = o e x p ( - X r ) ( ~ t ) ‘ / i ! .  The 
usual estimate of h is h^= h ( i ) .  h  ̂ may be a biased estimator for h ,  but its 
bias decreases as t increases. The approximate variance of ĥ  is 

where the partial derivative is evaluated at the true A value. 
Confidence limits for h are simple when h is a monotone function of A .  

For example, FA(y) decreases with increasing A .  Suppose that A and i are 
two-sided lOOy% confidence limits for A. Then h = h ( A )  anh f i = h ( i )  
are such limits for an increasing function of A ,  and-h = h i ) ; )  and f i =  h ( A )  
are such limits for a decreasing function. This method also yields one-sided 
limits for h. 

Prediction 

Often one seeks information on the random number of occurrences in a 
future sample. For example, those who maintain power lines need to predict 
the number of line failures in order to plan the number of repair crews. 

The following gives a prediction and prediction limits for the number X 
of occurrences in a future observation of length s with true rate A. Suppose 
the past data consist of Y occurrences in an observation of length r with the 
same true rate A .  The random variations in X and Y are assumed to be 
statistically independent. Nelson (1970) justifies the results below. 
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Prediction. The observed rate of occurrence is A =  Y/t. So the prediction 
of the future number is 

X=is=(Y/ t ) s .  (2.10) 

This is unbiased, and the prediction error ( 2- X )  has variance 

Var( X -  X )  =As(t+s ) / r .  (2.1 1) 

If At  and As are large (say, both exceed lo), the distribution of (2- X )  is 
approximately normal with mean 0 and variance (2.1 1). 

If all the power line in the region were tree wire, there would be ~ ~ 5 1 5 . 8  
1000-ft. Then the prediction of the number of failures in the coming year 
would be X=(12/467.9)515.8= 13.2 failures, better rounded to the nearest 
integer, 13. 

Prediction limits. Two-sided 100y% prediction limits for the future 
number X of occurrences are the closest integer solutions and of 

/?/s = [ ( Y +  I)/f]F[(l +y)/2;2Y+2,2/?] ,  

s/(  x + 1) = ( f / Y ) F [ (  1 + y)/2; 2 x  +2,2Y], 
(2.12) 

where F ( 6 ;  a ,  b )  is the 1006 th F percentile with a degrees of freedom in the 
numerator and b in the denominator. Such a one-sided lower (upper) limit 
for X is the closest integer solution x ( 2 )  of 

( 2 / s )  = [ ( Y + 1 ) / 2 ]  F( y ; 2 Y + 2,2 X), (2.13) 

(2.14) s/( x+ 1 ) =  ( t /Y)F(  y;2?+2,2Y). 

Nelson (1970) gives simple charts for 5 and 2. Prediction limits for the 
random X / s  are wider than confidence limits (2.3) for the constant A.  

Two-sided 95% prediction limits for the number of tree wire failures next 
year are X z 4 . 0  and 2=26.0. Each limit is a one-sided approximate 97.5% 
prediction limit. 

Normal approximation. When Y and X are large, two-sided approximate 
100% prediction limits for X are 

X-.&K,[ i s (  r + s ) / r ] l i 2 ,  2-2+ K Y [  i s (  f + ~ ) / i ] ’ ’ ~ ,  (2.15) 
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where K ,  is the [ lOO(1 +y)/2]th standard normal percentile. These limits 
employ the approximate normal distribution of ( 2 - X ) ;  so Y (or A t )  and 
As should be large, say, both exceeding 10. For such a one-sided limit, 
replace K ,  by I?, the lOOyth standard normal percentile. 

Two-sided approximate 95% prediction limits for the number of tree wire 
failures next year are X = 13.2 - 1.960[(0.0256)515.8(467.9 + 515.8)/ 
467.9]’/* = 2.9 failures and 2 = 13.2 + 1.960[(0.0256)515.8(467.9 + 
515.8)/467.9]’/’=23.5 failures, that is, 3 to 24 failures. Here Y =  12> 10 
and ~s=O.O256(515.8)= 13.2> 10; and the approximation is adequate. 

3. BINOMIAL DATA 

This section presents estimates and confidence intervals for the binomial 
probability p and guidance on sample size. Also, it presents prediction and 
prediction limits for the number of failures in a future sample. Binomial 
data consist of the number Y of “category” units among n statistically 
independent sample units, which each have the same probability p of being 
a category unit. 

Estimate of p 

The estimate of the population proportion p is the sample proportion 

This is unbiased, and 

The sampling distribution of np is the binomial distribution of Y.  If ~p and 
n( 1 - p )  are large (say, exceed lo), the distribution of is approximately 
normal, with a mean of p and variance (3.2). 

Locomotive control example, Of n=96 locomotive controls on test, 
Y= 15 failed on warranty. The estimate of the population proportion failing 
on warranty isp= 15/96=0.156 or 15.6%. 

Confidence Interval for p 

Standard limits. Two-sided 1OOy% confidence limits for p are 

p { 1 + ( n  - Y +  I ) Y P F [ ( l +  y) /2;2n -2Y+2,2Y]} - I .  

p = ( 1 + ( n - Y ) { ( Y + I ) F [ (  I + y)/2;  2 Y + 2,2n - 2 Y] } ’ ) - ’, 
(3.3) 
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where F( 6; a, b )  is the 1006 th F percentile with a degrees of freedom in the 
numerator and h in the denominator. Such a lower (upper) one-sided limit 
for p is 

p =  [ 1 + ( n -  Y +  1) Y - IF( y; 2n-2Y +2,2Y )] - I ,  (3.4) 

p = (  I+(n-Y)[(Y+I)F(y;2Y+2.2tr-2Y)]-')-1. (3.5) 

Obtaining such limits is easier with the Clopper-Pearson charts in 
Appendix A8. Enter the appropriate chart on the horizontal axis at ,4= Y / n :  
go vertically to the curve labeled with the sample size n (separate curves for 
the lower and upper limits); and go horizontally to the vertical scale to read 
the confidence limit. Also, there are tables of such limits in, for example, 
Owen (1962) and Natrella (1963). 

Such limits are conservative in that the confidence level is at least IOOy%; 
exact confidence levels cannot conveniently be achieved for discrete distri- 
butions. 

For a 95% confidence interval for the locomotive control. enter the 95% 
chart in Appendix A8 on the horizontal axis at p=  15/96=0.156; go 
vertically to a curve for n=96 (interpolate); and go horizontally to the 
vertical scale to read p = 9 %  and p=24%. Each limit is a one-sided 97.5% 
confidence limit for p -  

Normal approximation. If Y and n-  Y are large, two-sided approximate 
100~5% confidence limits for p are 

where K ,  is the [loo( I +y)/2]th standard normal percentile. Such a one-sided 
lower (upper) IOOy% confidence limit is 

where i, is the IOOyth standard normal percentile. These limits employ the 
approximate normal distribution of p :  so ! I F =  Y and ! I (  1 - i ) )  =!I - z' should 
exceed, say, 10 for most purposes. 
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For the locomotive control, such 95% limits are 

p 20.156- 1.960[0.156( 1 -0.156)/96]'/2 =0.083, 

j3 = O M +  I .960[0.156( 1 -0.156)/96]'/2 ~ 0 . 2 2 9 ,  

that is, 8.3 to 22.9%. Y=15>10 and n -  Y=81>10 are large enough. Each 
limit is a one-sided 97.5% confidence limit for p. 

For n large and Y small, two-sided approximate 
lOOy% confidence limits for p are 

Poisson approximation. 

p -0 .5x2[  ( 1 -y)/2;  2Y] / n  , j3=osx2[( 1 +y)/2;  2Y +2]/n, (3.9) 

where x 2 ( 6 ;  v )  is the 1008th percentile of the chi-square distribution with v 
degrees of freedom. Such a one-sided lower (upper) limit is 

p=O.5x2(1 -y;2Y)/n,  (3.10) 

p ~ 0 . 5 ~ 2 (  y ;  2Y+2)/n. (3.1 1 )  

These limits employ the Poisson approximation to the distribution of Y; so 
Y should be small, say, under n/10. 

For the locomotive control, two-sided approximate 95% confidence limits 
are 

p 0 .5x2(  0.025 ; 30)/96 =0.5( 16.8)/96 = 0.087, 

p=0.5x2(0.975; 32)/96=0.5(49.5)/96=0.258, 

that is, 8.7% to 25.8%. Each limit is a one-sided 97.5% confidence limit. 
Here Y =  15>n/lO=9.6; so the approximate limits are a bit crude. 

Sample Size n to Estimate p 

The estimate jj is within fw of p with approximately 1OOy% probability i f  

n=p( l  - p ) ( K , / w ) 2 ,  (3.12) 

where K ,  is the [ 100( 1 +y)/2]th standard normal percentile. To use (3.12), 
one must approximate the unknown p. If one does not want to approximate 
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p ,  the largest sample size results from p = 1 /2. Then 

(3.13) 2 
n-0.25( K , / w )  

is sure to be large enough. For 0.3 < p  (0.7, (3.12) is close to (3.13), which is 
conservative and thus often preferable. The formulas employ the normal 
approximation for the distribution of jj and are usually adequate if  np> 10 
and n ( l  - p ) >  10. 

Suppose that the percentage of locomotive controls failing on warranty is 
to be estimated within ? 5% with 95% probability. Then n-0.156( 1 - 
0.156)( 1 .960/0.05)2 = 202 controls; was used in place of the unknown p .  
The upper limit is n-0.25(1.960/0.05)*=384 controls in all. Here np= 
202(0.156)=31.5>10, and n ( l  -p)=202(1-0.156)= 170.5>10. So the ap- 
proximation is satisfactory. 

Prediction 

The following provides a prediction and prediction limits for the number X 
of category units in a future sample of m units. Suppose the past sample 
consists of Y category units in a sample of n units from the same popu- 
lation. 

The previously observed proportion is p =  Y / n .  So the prediction of the 
number X of future category units is 

i= rnp= rn( Y / n  ). (3.14) 

This is unbiased. Its prediction error variance is 

Var(X-X)=rnp(l - p ) ( r n + n ) / n ,  (3.15) 

where p is the true unknown population proportion. If np ,  n( 1 - p ) ,  mp, and 
m(1 - p )  are all large (say, all exceed lo), then the distribution of the 
prediction error (X-X) is approximately normal, with mean zero and 
variance (3.15). 

Locomotive control example. Suppose that the proposed production is 
rn = 900 controls. The previous sample consisted of Y = 15 failures among a 
sample of n=96 controls; thus, p =  15/96=0.156. The prediction of the 
number of failures in the proposed production is 2=900( 15/96)= 141 
controls. 
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Prediction Limits 

Exact limits. Exact prediction limits involve the hypergeometric distri- 
bution and are laborious to calculate (Lieberman and Owen, 1961). The 
following approximate limits will serve for most applications. 

For Y, n - Y ,  X ,  and m - X all large (say, greater 
than lo), two-sided approximate lOOy% prediction limits for the future 
number X of category units are 

Normal approximation. 

$ d - K , [ m p (  1 -$) (m+n) /n]”*,  

(3.16) 
X- i+ K Y [  mp( 1 - b ) (  m + n )/n] 

where K ,  is the [ 100( 1 +y)/2]th standard normal percentile. Such a one-sided 
lower (upper) limit for X is 

$- i -z , [mp(  1 - p ) ( m + n ) / n y 2 ,  (3.17) 

XZ 2 + z [ mp ( 1 - p  )( m + n )/HI ” * >  (3.18) 

where z y  is the lOOyth standard normal percentile. These limits employ the 
approximate normal distribution of 2- X ;  so Y ,  n - Y ,  k, and m - 2 should 
all be large, say, over 10. 

For the locomotive control, such two-sided 95% prediction limits are 

z z  141 - 1.960[(900)0.156( 1 -0.156)(900+96)/96]”2=72, 

X -  141 + 1.960[(900)0.156( 1 -0.156)(900+96)/96]1’2=210 

Each limit is a one-sided 97.5% prediction limit. Y =  15, n- Y = 8 1 ,  j =  141, 
and rn-k=759 exceed 10; so the approximate limits are accurate enough 
for practical purposes. 

For n large and Y small (say Y/n<0.1), two- 
sided approximate lOOy% prediction limits for X are the solutions X and J? 
of 

Poisson approximation. 

( j / m )  = [( Y + I ) / n ]  F [ (  1 +Y )/2; 2Y+ 2 . 2 4 .  

VI/( x+I)=(n/Y)F[(l+y)/2;2$+2,2Y]. (3.19) 
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where F( 6; a,  h )  is the 1006 th F percentile with a degrees of freedom in the 
numerator and h in the denominator. Such a one-sided lower (upper) 
prediction limit for X is the solution of the corresponding equation above, 
where (1 + y)/2 is replaced by y. Nelson (1970) provides simple charts for X 
and 2. The limits (3.19) employ the Poisson approximation of the distribu- 
tions of Y and X ;  so Y should be small (say, Y c n / l O )  and n large. 

For the locomotive control, Y =  15. n=96, and m=900. Two-sided ap- 
proximate 95% “Poisson” prediction limits are X=76 and ,?=237. Here 
Y = 15 > n /  10 =9.6, and the approximate limits are a bit crude. Each limit is 
a one-sided approximate 97.5% limit. 

4. EXPONENTIAL DATA 

The exponential distribution of Chapter 2 is a model for the life of products 
with a constant failure rate X and mean time to failure 8= l / X .  Complete 
exponential data consist of n observations Y , ,  . . . , y,. 

This section provides estimates and confidence intervals for 8, A ,  distribu- 
tion percentiles, and reliabilities. Also, i t  provides predictions and predic- 
tion intervals for a future observation, sample average (or total), and 
smallest sample observation. Bain (1978) and Mann. Schafer, and Singpur- 
walla (1974) give justification for the following results. Chapter 3 gives 
graphical methods to check how well the exponential distribution fits data. 
Check this before using the analytic methods below, as the exponential 
distribution is often inappropriate. 

ESTIMATES AND CONFIDENCE LIMITS 

Mean 8 

Estimate. The usual estimate of the mean 8 is the sample mean 

Y = (  Y ,  + . . . + Y,,)/’l. 

I t  is unbiased, and 

Var( 7 ) = B  */ti. 

The sampling distribution of 2 n Y / 8  is chi square with 2 n  degrees of 
freedom. I f  n is large (say, over 15). then the distributions of and In( r) 
are approximately normal. 

Insulating fluid example. Table 1 . 1  of Chapter 3 shows times to break- 
down of an insulating fluid at a number of voltages. The 34-kV data are 
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Figure 4.1 

MINUTES 

Weibull plot with exponential flt and confidence limits 

plotted on Weibull probability paper in Figure 4.1. For 34 kV, the estimate 
of the mean time to failure is Y=(0.19+0.78+ . . -  +72.89)/19=14.3 
minutes. The exponential distribution with this mean is drawn as a straight 
line in Figure 4.1. Such a plot is a useful way of displaying data and a fitted 
distribution. Contrary to engineering theory, the exponential distribution 
does not pass through the data well; the Weibull distribution (Section 6) is 
an alternative. 

Exact confidence limits for 8. Two-sided lOOy% confidence limits for 0 
are 

where x2(6 ;2n)  is the 1006th chi-square percentile with 2n degrees of 
freedom and is tabulated in Appendix A3. Lower and upper one-sided 
lOOy% confidence limits for B are 

6 = 2 n F/X’( y ; 2 n ) , (4.4) 
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For 34 kV, two-sided 95% confidence limits for the mean time to 
breakdown are 

~=2(19)14.3/x2[(1+0.95)/2;2X 191 =9.6 minutes, 

8=2(19)14.3/x2[(1 -0.95)/2;2X 191 =23.7 minutes. 

In Figure 4.1, these values are the limits for the 63rd percentile. 

for B are 
Approximate limits. Two-sided approximate lOOy % confidence limits 

(4.6) 

where K ,  is the [100(1 +y)/2]th standard normal percentile. Lower and 
upper one-sided approximate lOOy% confidence limits for 8 are 

e=  Y/exp( z r /n1 /2 ) ,  (4.7) 

where z, is the lOOy th standard normal percentile. 

should exceed, say, 15. 
These limits employ the approximate normal distribution of In( Y ) ;  so n 

For 34 kV, the two-sided approximate 95% confidence limits for 8 are 

8 =14.3/e~p(1.960/19'/~)=9.1 minutes, 

$-14.3/exp(I .960/19'/*)=22.4 minutes. 

Sample Size for Estimating the Mean 8 

Suppose the estimate 
ity. The approximate sample size that does this is 

is to be between O/f and Of. with 100~4% probabil- 

where K ,  is the [ 100( 1 + y)/2]th standard normal percentile. This formula 
employs the normal approximation to the distribution of In( y) .  So n should 
be large, say, n >  15. 
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Suppose the mean time to breakdown of insulating fluid at 34 kV is to be 
estimated within 2056, with 95% probability. Then f= 1.20, and the sample 
size is n -[ 1.960/ln( 1.2)12= 116. When the required sample is prohibitively 
large, then one may have to be content with less precision. 

Failure Rate X 
The following results come directly from the relationship A =  1/8 and the 
corresponding results for 8 .  

Estimate. The usual estimate of the failure rate A =  1 / B  is 

A =  I / F = n / (  Y , +  . . ' + Y n ) .  (4.10) 

This is the number n of failures divided by the total running time, that is. 
the observed failure rate. This estimator is biased; the bias decreases with 
increasing sample size. The sampling distribution of 2nh/A is chi square 
with 2 n  degrees of freedom. 

For example. for 34 kV, A =  1/14.3 =0.070 failures per minute. 

Limits. Two-sided 100~5% confidence limits for h are 

x= l / B = x Z [ ( l - u ) / 2 ; 2 n ] / ( 2 n Y ) ,  

x= l /e=x"(l  +y) /2 ;2n] / (2nY) ,  
(4.1 1 )  

where x Z ( 6 ; 2 n )  is the 1006th chi-square percentile with 2n degrees of 
freedom. One-sided limits for h employ (4.4) and (4.5). In practice. only a n  
upper limit is usually of interest. 

For 34 kV, two-sided 95% confidence limits are x= 1/23.7=0.042 and x = 1 /9.6 = 0.104 failures per minute. 

Percentile 

Estimate. The usual estimate of the IOOPth percentile > v P =  -Oh( 1 - P )  

Y,,= - Yln(1-P) .  (4.12) 

1s 

This is unbiased, and 

v a r ( ~ , ) = [ l n ( l  - P ) ] ~ B ~ / , ~ .  (4.13) 

For 34 kV, the estimate of the 10th percentile is Y ,(,= - 14.31n( 1-0.10) 
= 1.5 minutes. This estimate can also be obtained from the fitted distribu- 
tion line in Figure 4.1. 
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Limits. Two-sided lOOy% confidence limits for the IOOP th percentile 
are 

y p  = -!In( 1 - P ) = - 2 n Y[ In( I - P )] /x2 [ ( 1 + y)/2;  2 n ]  , 

yp= -&In( 1 - P) = - 2n Y[ln( 1 - P>]/x'[ ( I - y ) /2 ;  2n] , 

where x2(6;2n) is the 1006th chi-square percentile with 2n degrees of 
freedom. One-sided limits for y p  employ the one-sided limits for 8 in (4.4) 
and (4.5). 

For 34 kV, two-sided 95% confidence limits for y ,o are y ,"= - 9.6 In( 1 - 
O.lO)= 1.0 andg,,= -23.7ln(l -0.10)=2.5 minutes. Theselimitsareplotted 
in Figure 4.1. On Weibull paper, the limits for exponential percentiles are 
straight lines that are parallel to the distribution line. Such lines show the 
statistical uncertainty in the fitted distribution. 

Reliability 

age y is 

(4.14) 

Estimate. The usual estimate of the reliability R( .v)=exp( - y / 8 )  for 

R*( y )  =exp( - y /  Y ). (4.15) 

This estimator is biased, but the bias decreases with increasing sample size. 
Pugh (1963) gives the minimum variance unbiased estimator, which is not 
used in practice. 

For 34 kV, the estimate of reliability R(2.0) at y=2.0 minutes, is 
R*(2.0)=exp( - 2.0/14.3)=0.869. 

Limits, Two-sided lOOy% confidence limits for R( y )  are 

where x2(6;2n)  is the 1006th chi-square percentile with 2n degrees of 
freedom. One-sided limits for R( y )  employ the one-sided limits (4.4) and 
(4.5) for 8 .  In practice, one is usually interested in just a lower limit. 

For 34 kV, two-sided 95% confidence limits for R(2.0)  are @(2.0)= 
exp( - 2.0/9.6) = 0.8 12 and d (  2.0) = exp( - 2.0/23.7) = 0.91 9. The lines for 
percentile confidence limits in Figure 4.1 are also confidence limits for the 
fraction failing or for the reliability. 
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Choice of Sample Size n 

One can determine a necessary sample size to estimate a function of 8 with a 
desired precision. To do  this, convert the statement of the precision of the 
estimate of the function to a statement of the precision of the estimate of 8. 
Then use the sample size formula (4.9) for estimating 8. For example, 
suppose y p  is to be estimated within a factor f with 1OOy% probability, that 
is, within 0[-In(] - P ) ] / f  to 8[-In(l - P ) ] f .  This is equivalent to estimat- 
ing O within a factor off with 1OOy% probability. 

PREDICTION 

Suppose that the wz observations of a future sample are X , ,  ..., Xnt.  The 
following presents predictors and prediction limits for the sample mean 
X= ( X ,  + . . - + X,)/rn and any ordered observation A',,,< . . . G Sup- 
pose that the previous sample has n observations Y , , .  .., Y, and a mean 
and is statistically independent of the future sample. Hahn and Nelson 
( 1973) survey prediction methods for the exponential distribution, and they 
give references that justify the following results. 

Future Mean, Total, or Observation 

Predictor. The predictor for the future mean x i s  

(4.17) 

the previous average. This predictor is unbiased, and the variance of the 
prediction error 2- x i s  

where 8 is the true exponential mean. If m and n are large (say, both exceed 
15), then the distribution of (X-x) is approximately normal with mean 0 
and variance (4.18). The predictor for the total X=mXof the future sam- 
ple is 

ri=mF=nzY. 

This is an unbiased predictor for the total. and the variance of the 
prediction error ( .%- X )  is 

The prediction of the total test time for m= 77 more breakdowns at 34 k V  
is .%=77(14.3)= I 101 minutes. 
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Limits. Two-sided IOOy% prediction limits for x from m observations 
are 

X= Y / F [  ( 1 + y)/2; 2 n ,2  m] , k= y. F[  ( 1 + y )/2 ; 2 m ,  2n], (4.19) 

where F(6;  a, 6) is the 1006th F percentile with a degrees of freedom in the 
numerator and b in the denominator. F percentiles are tabulated in Appen- 
dix A5. One-sided IOOy% prediction limits for y a r e  given by (4.19), where 
( 1  +y)/2 is replaced by y. Such prediction limits for the total X of a future 
sample of m observations are ?.=my and X=mn. 

The 90% prediction limits for the total test time of another m=77 
breakdowns at 34 kV are X =  77( 14.3)/F[( 1 + 0.90)/2; 2( 19), 2(77)] = 744, 
and X=77(14.3)F[(I +0.90)j2;2(77),2(19)]= 1750 minutes. 

Smallest Observation of a Future Sample 

Predictor. The predictor for the smallest XCl, of m future observations is 

(4.20) 

X(l, would be the life of a series system of m independent components from 
the same exponential distribution. This predictor is unbiased, and 

Var( 2( I ,  - X, I ,  ) = 0 ’( n + 1 I / (  m 2n ) . 

The prediction of Xcl, for m=77 future breakdowns at 34 kV is k(l)= 
14.3/77 = 0.19 minute. 

Limits. Two-sided IOOy% prediction limits for XCl, of m future observa- 
tions are 

z( I ,  = ( F/m ) / F [  ( 1 + Y )/2: 2 n . 21, 

X( ,) = ( Y / m  ) . F [  ( I + y ) / 2  ; 2,2n] 1 

(4.21) 

where F(6;  a, b )  is the 1006th F percentile with a degrees of freedom in the 
numerator and b in the denominator. One-sided IOOy% prediction limits for 
X(l, are given by (4.21), where y replaces ( 1  +y)/2.  A lower limit $(,) for the 
first failure in a fleet is called a “safe warranty life” or “assurance limit” 
for the fleet. Also, a one-sided lower limit X(,) can be used as a lower limit 
for the life of a single series system of m identical components. A producer 
of such systems can “guarantee” a customer that his one system will survive 
at least a time with IOOy% probability. 
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For 34 kV, the 90% prediction limits for the smallest of m=77 future 
observations are $(,) = (14.3/77)/F[( 1 +0.90)/2; 2.19,2] =0.0095 minute 
and ,f(I,=( 14.3/77)F[(1+0.90)/2;2,2~19]=0.60 minute. 

jth Observation Xci, of a Future Sample 

Lawless (1972a) describes a predictor and prediction limits for the ~ t h  
observation X(,) of a future sample from an exponential distribution. He 
tabulates factors for the prediction limits. 

jth Observation v j ,  of the Same Sample 

Lawless ( 1  971) describes one-sample predictors and prediction limits for the 
j t h  observation q,, of the same sample, using the first r observations ( r < j ) .  

Other Exponential Methods 

Chapter 3 describes graphical methods for analysis of complete exponential 
data. Chapter 7 (8) gives methods for singly (multiply) censored data. 
Chapters 10, 1 1 ,  and 12 present methods for comparing a number of 
exponential populations for equality of their means. 

5. NORMAL AND LOGNORMAL DATA 

Introduction 

The normal and lognormal distributions are widely used models for the life, 
strength, and other properties of products. These distributions have two 
parameters-the (log) mean p and the (log) standard deviation a-and are 
described in Chapter 2. A complete sample of normal data consists of n 
observations Yl, .  . ., Y,; for lognormal data, Yl , . .  ., y, are the base 10 logs of 
the observations. 

The following methods provide estimates and confidence intervals for p, 
u, percentiles, and reliabilities. These estimates and limits can be displdyed 
in a (log) normal probability plot similar to Figure 6.1 of Chapter 3. Also, 
this section provides predictions and prediction intervals for a future 
observation, sample mean (or total), and smallest or largest sample observa- 
tion. I t  is important to use graphical methods of Chapter 3 to check how 
well the (log) normal distribution fits the data before using the analytic 
methods below. 

ESTIMATES AND CONFIDENCE LIMITS 

The following standard estimates and confidence limits appear and are 
derived in most statistics books. 
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The (Log) Standard Deviation u (Variance a’) 

sample variance 
Variance estimate. The estimate for the variance a’ of (log) life is the 

sz= [( Y,  - Y)’+ . ’ (5.1) 

where Y=( Y ,  + . . . + Y,,) /n is the sample (log) mean. By computer, 

+ Y,z ) - ; 1 ( Y,  + . . . 

is convenient, but it causes greater numerical round-off error than (5.1). 
since it may involve a small difference of two large numbers. S’ is an 
unbiased estimator for u2,  and 

Var( s’) = 2a4/(  n - 1). (5.3) 

The sampling distribution of ( n  - 1)S2/u2 is chi square with n - 1 degrees of 
freedom. I f  n is large (say, greater than 30). then the distribution of Sz is 
approximately normal with a mean u 2  and a variance (5.3). 

Estimate of u. The estimate of the (log) standard deviation is the sample 
standard deviation 

s= ( s’)”2. (5.4) 

This is a biased estimator for u, but the bias decreases with increasing 
sample size n .  Its variance is approximately 

~ a r (  S )  = u2/[2( n - I ) ] .  ( 5 . 5 )  

The sampling distribution of (n- 1)’/2S/u is a chi distribution, with n - 1 
degrees of freedom, that is, the distribution of the square root of a 
chi-square variable. I f  n is large (say, greater than 30), then the distribution 
of S is approximately normal with a mean of u and a variance (5.5). 
Johnson and Kotz (1970) give the minimum variance unbiased estimator for 
a; it has the form C,S, where C,, depends on n. 

Class H insulation example. Table 5.1 shows accelerated test data on log 
time to failure of a Class H electrical insulation for motors. Life of such 
insulation is assumed to have a lognormal distribution at each temperature. 
There is a sample of 10 specimens for each of four test temperatures. The 
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Table 5.1. Log Life of Class-H Specimens 

190°C 220°C 240°C 260°C ---- 
3.8590 

3.8590 

3.8590 

3.9268 

3.9622 

3.9622 

3.9622 

3.9622 

4.0216 

4.0216 

Total : 39,3958 

3.2465 

3.3867 

3.3867 

3.3867 

3.3867 

3.3867 

3.4925 

3.4925 

3.4925 

3.4925 

3.0700 

3.0700 

3.1821 

3.1956 

3.2087 

3,2214 

3.2214 

3.2338 

3.2458 

3.2907 

2.7782 

2.8716 

2.8716 

2.8716 

2.9600 

3.0892 

3.1206 

3.1655 

3.2063 

3.2778 

34.1500 31.9395 30.1755 
- 
Y1 = 3.93958, f2 = 3.41500, = 3.19395, = 3.01755. 

Antilog: 8,701 2,600 1,563 1,041 

3 4 

2 2 S1 = { [  (3.8590-3.93958) +. . .+(4.0216-3.93958) ]/(10-1)11’2 = 0.0624891. 
2 2 S2 = I [  (3.2465-3.41500) +. . .+(3.4925-3.41500) ]/(10-1)11’2 = 0.0791775. 
2 2 S3 = { [  (3.0700-3.19395) +. . .+(3.2907-3.19395) ]/(10-1)11’2= 0.0716720. 

S4 = { [  (2.7782-3.01755)2+. . .+(3.2778-3.01755) 2 ]/(10-1)11’2 = 0.170482. 

specimens were periodically inspected for failure, and a failure time is the 
midpoint of the interval where the failure occurred. This slight coarseness of 
the data can be neglected. Figure 6.1 of Chapter 3 displays the data in a 
lognormal plot. The plotted data tend to follow straight lines, indicating 
that the lognormal distribution is a reasonable model. 

The sample variance of log life at 190°C is S2=[(3.85902+ . . .  + 
4.02162)- h(39.3958)*]/( 10- l)=0.00390489. The sample standard devia- 
tion is S = (0.00390489)’/2 = 0.0624891. T h s  small value indicates that the 
lognormal distribution is close to normal and that the failure rate increases 
with age. 

Two-sided lOOy% confidence limits for the (log) 
standard deviation u are 

Confidence limits for u. 

a = S (  (n- I)/$[( 1 +y)/2; n- I]} 

d = s{ ( n  - 1)/x2[( 1 - u p ;  n - I ]}  



5. NORMAL AND LOGNORMAL DATA 219 

where xz( 
with n- 1 
lower and 

6; n- 1) is the 1006th percentile of the chi-square distribution 
degrees of freedom and is tabulated in Appendix A3. One-sided 
upper lOOy% confidence limits for u are 

~ = S [ ( n - 1 ) / X 2 ( Y ; n - - 1 ) ] ” 2 ,  6=s[ ( ,? - l ) /x2( l -y ;  n - I ) y 2  

(5 .7)  

I f  the parent distribution is not (log) normal, (5.6) and (5.7) are poor 
approximations, even for large n .  

For 190°C two-sided 90% confidence limits for u Insulation example. 
are 

?=0.0624891((10- 1)/x2[(1+0.90)/2; 10- 

=0.062489 1 (9/ 16 .92)”2 = 0.0456, 

6=0.0624891((10- l)/x’[(1-0.90)/2; 10- 11)”’ 

= 0.0624891 (9/3 .325)”2 = 0.1028. 

Sample size to estimate (I. The estimate S is between u// and of. with 
about 1OOy% probability i f  the sample size is 

~ - ~ + o . s [ K ~ / I ~ ( / ) ] ’ .  ( 5 . 8 )  

where K ,  is the [loo( 1 +y)2]th standard normal percentile. The accuracy of 
(5.8) increases with the sample size: (5.8) usually satisfies practical purposes 
if n> 15. Mace (1964) gives a sample size formula in terms of the width of 
the confidence interval for u. 

Insulation example. For 190”C, suppose that (I is to be estimated within 
a factor f =  1.20 [roughly within 100( 1.20 - 1) = 20%] with 90% probability. 
The estimate of the needed sample size is 

n 1 1  +0.5[ 1.645/ln( 1 .20)12 -42. 

42> 15 and the approximation is satisfactory. 

The (Log) Mean p 

Estimate for p. The estimate for the (log) mean p is the sample mean 

Y = (  Y , +  . ’ . + Y , , ) / n .  (5.9) 
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Yis an unbiased estimate for p.  Its variance is 

Var( F ) = u ’ / n .  (5.10) 

The sampling distribution of r is normal, with a mean of p and a variance 
of D 2 / n .  

Insulation example. For the 190°C data in Table 5.1, the estimate of p,  
the mean log life, is Y=(3.8590+ . . . +4.0216)/10=3.93958. The estimate 
of lognormal median life is antilog (3.93958)=8701 hours. 

Confidence limits for p. Two-sided IOOy% confidence limits for p are 

p = Y - t [ ( l  +y) /2 :  n - ~ ] ( ~ / n ’ / ’ ) ,  

ii= Y + ~ [ ( I  +y)/2;  n-  I](s/~’/’), 
(5.11) 

where I [ (  1 + y ) / 2 ;  n - 11 is the [ lOO(1 +y)/2]th percentile of the 1- 

distribution with n - 1 degrees of freedom and is tabulated in Appendix A4. 
One-sided lower and upper lOOyS confidence limits for are 

p=Y-t(y;n-I)(S/n’ / ’ ) ,  ~ = Y + l ( y ; n - l I ) ( S / n ’ / ’ ) .  (5.12) 

These are approximate intervals for the mean of a distribution that is not 
normal. The “closer” the distribution is to normal and the larger n, the 
closer the confidence is to lOOy%. This comes from the central limit 
theorem for sample averages. 

Insulation example. For 190”C, two-sided 90% confidence limits for p 
are 

- P = 3.93958 - f[(l + 0.90) f2; 10 - I ]  (0.0624891/10”*) = 3.90336, 

= 3.93958 + 1.833 (0.0624891 /lo”*) = 3.97580. 

The antilogs of these limits are 90% confidence limits for the lognormal 
median, namely, antilog(3.90336) = 8005 hours and antilog(3.97580) = 9458 
hours. 

of a normal mean will be 
within *MI of the true value p with lOOy% probability if the sample size is 

Sample size to estimate p.  The estimate 

n = U y  K , / w ) 2 ,  (5.13) 
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where K ,  is the [loo( 1 +y)/2]th standard normal percentile. To use (5.13), 
one must approximate the unknown a*. Mace (1964) gives a sample size 
formula in terms of a desired expected width of the confidence interval for 
p. If u 2  is estimated from previous data, then one can use an upper 
confidence limit for u 2  to get an upper confidence limit for the desired 
sample size. 

For 190°C, suppose that p is to be estimated within 
20.02 with 90% probability. The estimate of the needed sample size is 

Insulation example. 

n=0.003905( 1 .645/0.02)2=26. 

Percentile y p  

+z,u is 
Percentile estimate. The estimate of the I O O P  th normal percentilejip=p 

Yp= Y+Z,S, (5.14) 

where z p  is the IOOPth standard normal percentile. This commonly used 
estimator is biased, since S is a biased estimator for u. The bias decreases 
with increasing sample size. The estimate of the IOOPth percentile t ,=  
antilog( p+ z p u )  of the corresponding lognormal distribution is 

T,=antiIog( Y,,). (5.15) 

For example, the estimate of the lognormal median is T,,=antilog(Y), 
since z = 0. 

For 190°C, the estimate of the fifth percentile is 
Yo,=3.93958+( - 1.645)0.0624891=3.83679. The estimate for the fifth per- 
centile of the lognormal distribution is antilog(3.83679) = 6867 hours. The 
estimate of the lognormal median is antilog(3.93958)= 8701 hours. 

IOOPth percentile (Pc0 .5) .  is 

Insulation example. 

Confidence limits. A lower one-sided 100y% confidence limit for y p ,  the 

the factors K ( n ,  y, P )  are tabulated by Natrella (l963), Lieberman (1958). 
Owen (1962), and Odeh and Owen ( 1980). Approximate factors are given by 

K (  n ,  y ,  P , = [  -z,+ ( z ; - o h ) i ’ 2 ] / U ;  (5.17) 

z p  is the IOOPth standard normal percentile. 
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The approximate limit is more accurate the larger n and the closer P and 
y to 0.5. y ,  is also called a “lower tolerance limit for [loo( 1 -P)]% of the 
populatioh.” It may be regarded as a guaranteed life that at least [ 100( 1 - 
P)]% of the population will survive with lOOy% confidence. This interval is 
correct only if the parent distribution is (log) normal. 

Insulation example. For 190°C the calculations for a lower 90% confi- 
dence limit for y o ,  are 

a=  1 - [( 1.282*/2)/( 10- I ) ]  =0.9087, 

b=( - 1 .645)2-( 1 .2822/10)=2.542, 

K (  10,0.90,0.05) I[ 1.645 + ( 1 .6452 -0.9087 X 2.542)”2] /0.9087 = 2.503. 

The exact value of this factor is K(10,0.90,0.05)=2.568. Then 

y o5 13.93958 - (2.503)0.0624891=3.78317. 

The lower 90% confidence limit for the fifth lognormal percentile is f o 5 =  

antilog(3.783 17) = 6070 hours. 

Reliability R(y) 

Estimate. The estimate of the fraction failing F ( y ) = @ [ ( y - p ) / a ]  by 
(log) agey is 

F*( y ) = @ (  Z ) ,  (5.18) 

where a( ) is the standard normal cumulative distribution, 

z = ( y -  Y) / s ,  (5.19) 

and Yand S are the sample mean and standard deviation. F*( y )  is a biased 
estimator for F( y ) .  The estimate of reliability R( y )  at (log) age is 

R * ( y ) =  1 - @ ( Z ) .  (5.20) 

ffirkpatrick (1970) tabulates unbiased estimators for F( y )  and R( J,) in 
terms of Z.  His estimates differ little from (5.18). 

For 190°C, the estimate of the reliability at 10,000 Insulation example. 
hours [log( 10,000)= 4.000001 is obtained as 

Z =  (4.00000- 3.93958)/0.0624891=0.9969, 

F*( 10,000)=@(0.9969)=0.841, R*(10,000)= 1 -0.841=0.159. 
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Confidence limits. Two-sided approximate lOOy % confidence limits for 
the fraction failing F( y )  by (log) age y are 

F ( y ) = @ ( : )  and F ( y ) = @ ( Z ) ,  (5.21) 

where Z = ( y - Y ) / S ,  

f = z - (  K J p )  { 1 + [Z ' (  n / 2 ) / (  n - l)]} !I2, 
(5.22) 

,?z z+ ( K , / p ) {  1 + [ Z2( n / 2 ) / (  n - I ) ] }  

The approximate limits are more accurate the larger n is, and n should be at 
least 20. Kirkpatrick (1970) tabulates exact limits and unbiased estimates 
for the proportion in one or two tails of a normal distribution. Exact limits 
involve the noncentral t-distribution, which is tabulated by Resnikoff and 
Liebermann (1957) and Locks, Alexander, and Byars (1963). The limits for 
reliability are 

e ( y ) =  1 - p ( y )  and d ( y ) =  1 - F ( y ) .  (5.23) 

These limits are correct only i f  the parent distribution is (log) normal. 

Insulation example. For 190°C, the approximate 90% confidence limits 
for the fraction failing and reliability at 10,000 hours [log( l0,OOO) = 4.0000] 
are obtained as 

Z=(4.0000- 3.93958)/0.0624891=0.9969, 

;=0.9969-( 1.645/Vi6){ 1 + [0.99692(10/2)/(10- 1)]}"2=0.3488, 

i=0.9969+( 1.645//?6){ 1 + [0.99692.5/9]}"2= 1.6450, 

F( 10,000) =@(0.3488)=0.636, F( l0,OOO) = @( 1.6450) =0.950, 

R( lO,OOO)= 1 -0.950=0.050, d (  lO,OOO)= I -0 .636~0.364.  

The exact limits from Kirkpatrick (1970) are 

e( 10,000) =0.052 and ri'( l0,OOO) =0.369. 
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PREDICTION 

Suppose the rn (log) observations of a future sample are XI, ..., X,. The 
following presents predictors and prediction limits for the sample total 
X =  XI + . . . + X,,, and mean %=X/m and for the smallest observation X c , ,  
and largest observation X(9.  Suppose that the previous sample of n 

observations has an average Y and a standard deviation S .  Hahn (1970) and 
Hahn and Nelson (1973) survey prediction methods for the normal and 
lognormal distributions, and their references give derivations of the follow- 
ing results. 

Future Observation, Mean, or Total 

future observation ( m =  1) from a normal distribution, the predictor is 
Predictor. For the future mean 2 of rn (log) observations or a single 

x’= F, (5.24) 

This is an unbiasqd predictor; that is, E( x-%)=O. The variance of the 
prediction error (2-x) is 

~ a r (  2- x =o“( l /m) + ( ~ / n  > I .  (5.25) 

The distribution of the prediction error (x- 2) is normal, with a mean of 
zero and a variance (5.25). The prediction for the total is X=rnF, and 
Var( i- X )  = rno2[1 +(rn/n) l .  

Insulationexample. For another specimen at 190°C, the prediction of its 
log life is x=3.93958, the average log life of the previous sample. The 
prediction of its life is antilog (3.93958)= 8701 hours. 

Limits. Two-sided lOOy% prediction limits for the future mean %are 

where t[(  1 + y)/2; n - I ]  is the [ 100( 1 +y)/2]th percentile of the 1- 

distribution with n - 1 degrees of freedom and is tabulated in Appendix A4. 
A one-sided 100~5% prediction limit is obtained from (5.26) >y replacing 
( 1  + y ) j 2  by y. The limits for the total are X=mXand *=rn%. 
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Insulation example. 
limits for its log life are 

For another specimen at 190°C 90% prediction 

<= 3.93958 - t [  (1 +0.90)/2; 10 T 1]0.0624891[( 1/ 1) + ( 1/  lo)]”* 

= 3.79133, 

,f= 3.93958 + (2.262)0.0624891( 1.1)”* =4.08783. 

90% prediction limits for the specimen life are antilog(3.79133)=6185 hours 
and antilog(4.08783)= 12,241 hours. That is, such limits enclose the speci- 
men life with 90% probability. 

Smallest or Largest Future Observation 

normal sample of size rn, the predictors are 
Predictors. For the smallest X ( ! ,  and largest X ( m ,  future observation in a 

&,= Y-z[( m - 0 . 5 ) / m ] ~ ,  (5.27) 

i(m)= r+Z[(m-0.5)/m]S, (5.28) 

where z(6) is the 1006th standard normal percentile. These predictors are 
biased. X,,, would be the life of a series system of m such components. X ( m ,  
would be the time to complete a test of m units that start running 
simultaneously. Also, X ( m ,  would be the life of a parallel system of m such 
components. 

Insulation example. A sample of m= 10 new specimens is to be tested at 
190°C. The prediction of the log life X( ,o ,  of the longest running specimen is 

2(,,,=3.93958 +z[( 10-0.5)/10]0.0624891=4.04237. 

Then antilog(4.04237)= 11,024 hours is a prediction of the time required to 
run all 10 specimens to failure when they are put on test at the same time. 

Limits. One-sided approximate 1OOy% prediction limits for the smallest 
XCl,  and largest X ( m ,  future observations in a normal sample of size m are 

~ ~ l , z ~ - r [ ( m - 1 + y ) / m : n - I ] S [ 1 + ( l / r t ) ] ” 2 ,  

~ ( m ) = F + t [ ( m - l + y ) / m ;  n-  1]S[ l+( l /n) ]”2 .  

(5.29) 
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where t ( 6 ;  n -  1) is the 1006th percentile of the t-distribution with n- 1 
degrees of freedom. These limits are conservative, since the corresponding 
probability is at least y. 

Hahn (1970) gives tables for exact one-sided prediction limits. Hahn and 
Nelson (1973) reference tables for two-sided prediction limits. 

For a nonnormal parent distribution, such intervals may be crude, 
particularly for large m and y .  $(,) can be used as a “guaranteed” or 
warranty life for a fleet of m units; that is, all m units will survive that age 
with probability y. Also, Xcl, is a lower limit for the life of a single series 
system of m units. 

m= 10 new insulation specimens are tested together 
at 190°C. The upper 90% prediction limit for the log time to complete the 
test is 

insulation example. 

J?~,,,r3.93958+r[(IO- 1+0.90)/10; 10- 1].0.0624891(1 +(1/10))”2 

~ 4 . 1 5 2 5 8 .  

The corresponding actual time is antilog(4.15258)= 14,2 10 hours. 

OTHER METHODS FOR NORMAL AND LOGNORMAL DATA 

Most statistics books present a variety of methods for analysis of complete 
normal data. Aitchison and Brown (1957) present a variety of data analysis 
methods for the lognormal distribution. Hahn ( 1970) surveys statistical 
intervals for a normal distribution; he provides brief tables of the necessary 
factors. Ellison (1964) gives a detailed encyclopedic presentation of the 
mathematical theory of statistical methods for the normal distribution. 
Johnson and Kotz (1970) survey statistical methods for the normal distribu- 
tion. Chapter 7 presents one-sample prediction for later observations in the 
same sample. Chapters 10, 11, and 12 present methods for comparing a 
number of samples. 

6. 

The Weibull and the related smallest extreme value distributions are widely 
used as models for the life, strength, and other properties of products. These 
distributions and their relationship are described in detail in Chapter 2 .  

This section provides estimates and confidence limits for distribution 
parameters, percentiles, and reliabilities. Also, i t  provides predictions and 
prediction limits for a future observation or smallest observation in a future 
sample. Unlike the normal and lognormal distributions, the Weibull and 

WEIBULL AND EXTREME VALUE DATA 
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extreme value distributions have no obviously “best” methods for data 
analysis. This section presents simple but crude methods. Chapters 7 and 8 
present more accurate but more laborious methods. Chapter 3 provides 
graphical checks for how well the Weibull (or extreme value) distribution 
fits data. Check this before using the analytic methods below. Many of the 
proposed methods are surveyed by Mann (1968). 

Complete data from an extreme value distribution consist of n observa- 
tions Yl, ..., Y,; these are the (base e )  logs of Weibull data. The same 
methods apply to extreme value and Weibull data, but one works with the 
log values of Weibull data. The Weibull shape parameter /3 in terms of the 
corresponding extreme value scale parameter 6 is p= 1/6, and the Weibull 
scale parameter a! in terms of the corresponding extreme value location 
parameter X is a! = exp( A). 

ESTIMATES AND CONFIDENCE LIMITS 

Distribution parameters 

Extreme value scale parameter 6. A simple estimate of 6 is 

D = 0.7797s. (6.1) 

where 0.7797.. . =6Ii2/a, S is the sample standard deviation 

S = ( [ ( Y 1 - Y ) 2 +  . . .  

and 

F = ( Y , +  . . .  +Y,) /n  (6.3) 
is the sample average. 

shape parameter /3 is 
Weibull shape parameter p. An estimate of the corresponding Weibull 

B =  1/D= 1.283/S. (6.4) 

D and B are biased estimators, and their sampling distributions have not 
been derived. Lieblein (1954) and Thoman, Bain, and Antle (1969) give 
Monte Carlo approximations of the distributions. Menon (1963) shows that 
the large-sample distribution of D is approximately normal, with a mean of 
6 and a variance of 1.10062/n. More accurate and more laborious estima- 
tors for 6 and p appear in Chapters 7 and 8. 

Table 6.1 shows In times to breakdown of an 
insulating fluid in an accelerated test. Suppose that time to breakdown has a 
Weibull distribution at each test voltage. A purpose of the test is to assess 

Insulating fluid example. 



Table 6.1. Ln Times and Summary Statistics for Insulating Fluid 

26 k V  28 k V  30 k V  

1 .7561  4.2319 2.0464 

7.3648 4.6848 2.8361 

7.7509 4.7031 3.0184 

6.0.516 2 .0154  

6.9731 3.1206 

3.7704 

3.8565 

4.9349 

4.9706 

5.1698 

5.2724 

--- 32 kV 

-1.3094 

-0.9163 

-0.3711 

-0 .2358 

1.0116 

1.3635 

2.2905 

2.6354 

2.7682 

3.3250 

3.9748 

4.4170 

4.4918 

4.6109 

5.3711 

34 k V  

-1.6608 

-0.2485 

-0.0409 

0.2700 

1.0224 

1 .1505  

1 .4231  

1.5411 

1.5789 

1 .8718  

1.9947 

2.0806 

2.1126 

2.4898 

3.4578 

3.4818 

3.5237 

3.6030 

36 kV 38 kV -~ 
-1.0499 -2.4080 

-0.5277 -0.9417 

-0.0409 -0.7551 

-0.0101 -0.3148 

0.5247 -0.3012 

0.6780 0.1222 

0.7275 0.3364 

0.9477 0.8671 

0.9969 

1.0647 

1.3001 

1.3837 

1.6770 

2.6224 

3.2386 

4.2889 ------- 
T o t a l :  16.8718 26.6475 42.0415 33.4272 33.9405 13.5327 -3.3951 

Average 7 , :  5 .62393  5.32950 3.82195 2.22848 1.78634 0.90218 -0.424388 

Antilog : 276.977 206.335 45.6934 9.28574 5.96758 2.46497 0.65417 

No. i n  sample:  n =3 n =5 n =11 n =15 n =19 n =15 n =8 

I 

1 2 3 4 5 6 7 

2 2 
S1 ={[(1.7561-5.62393)  +. . .+(7.7509-5.62393) ]/(3-1)]1”= 3.35520 

2 
S2 = { [  (4.2319-5.32950)’+. . .+(6.9731-5.32950) ] /  (5-1))’” = 1.14455 

2 2 
S3 = [ [  ( 2 . 0 4 6 ~ - 3 . 8 2 1 9 5 )  +.. .+(5.2724-3.82195) ]/(1.1-1)}1’2= 1.11119 

S4 ={[(-1.3094-2.22848) +. . .+(5.3711-2.22848)  ] / (15-1)11/2= q.19809 

S = { [  (-1.6608-1.78634)2+.. .+(4.2889-1.78634) ]/(19-1))1’2= 1.52521 

S6 = ([ (-1.0499-0.90218) +. . .+( 3.2386-0 . ~ 0 2 1 8 ) 2 ] / ( 1 5 - 1 ) } 1 ’ 2 =  1.10989 

S7 = { [  (-2.4080+0.424388) +. . .+(0.8671+0.424388) 1/(8-1)11/2= 0.991707 

2 2 

2 

2 5 

2 2 
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whether the distribution is exponential; that is, p= 1. Then the fluid has a 
constant failure rate, consistent with engineering opinion that such fluids d o  
not age. The table shows that the mean of the 19 log observations at 34 kV 
is Y =  [( - 1.6608) + ( -0.2485) + . . . + 4.2889]/19 = 1.78634, and their 
standard deviation is S = {[( - 1.6608 - 1.78634)2 + . . . +(4.2889 - 
1 .78634)2]/( 19 - 1))’/*= 1.52521. The estimate of the corresponding ex- 
treme value scale parameter is D = 0.7797( 1.5252 1) = 1.1892, and the esti- 
mate of the Weibull shape parameter is B = 1 / 1.1892 = 0.8409, slightly less 
than unity. 

A simple estimate for h = E Y +  
0.57726 is 

Extreme value location parameter A. 

L =  Y+0.5772D, ( 6 . 5 )  

4 
ORIGIN 

99.9 
99 
95 
90 

50 
- I -  - z  

_(r w 
- n  
- i  
a10 

- 5  

0 

where 0.5772.. . is Euler’s constant. 

Weibull scale parameter a. An estimate of a=exp( A )  is 

A=exp( L ) .  (6.6) 

L and A are biased, and their sampling distributions have not been 
derived. Lieblein (1954) gives Monte Carlo results on the distribution of L. 
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Menon (1963) shows that the large-sample distribution of L is approxi- 
mately normal, with a mean of h and a variance of 1.1686*/n. More 
accurate (smaller variance) and more laborious estimators for h and a 
appear in Chapters 7 and 8. 

Insulating fluid example. For the extreme value location parameter at 34 
kV, L= 1.78634 + (0.5772) 1.1892 = 2.4727. The corresponding estimate of 
the Weibull scale parameter is A =exp(2.4727)= 11.85 minutes. 

Figure 6.1 shows a Weibull probability plot of the 34-kV data. The fitted 
distribution with the parameter estimates above is the straight line. The 
confidence limits for percentiles (and reliabilities) are curves and are nar- 
rowest near the center of the data. Compare this with the exponential f i t  in 
Figure 4. I ,  which has straight lines for confidence limits. 

Confidence Limits for the Distribution Parameters 

Extreme value scale parameter 6. Two-sided approximate lOOy% confi- 
dence limits for S are 

S-D/exp( K,l.O49/n’.’’), 8-D.exp( K,1.049/11”’), (6.7) 

where K ,  is the [ 100( 1 +y)/2]th standard normal percentile. One-sided 
approximate IOOy% confidence limits are obtained from (6.7). where K ,  is 
replaced by i,, the l0Oyth standard normal percentile. Here ln(D) is 
treated as approximately normally distributed for large n.  Here I I  must be 
fairly large for a good approximation. 

For the related Weibull shape parameter, 
corresponding limits are 

Weibull shape parameter p. 

p= l / &  B= 1 / s .  

Insulating fluid example. For 34 kV, approximate 90% confidence limits 
for 6 are 

S = l.I892/exp[ 1.645( 1.049)/ 19’/*] = 0.8004, 

8- 1.1892.exp(0.3959)= 1.767. 

Corresponding limits for the Weibull shape parameter are = 1 / 1.767 : 
0.566 and f i=  1/0.8004= 1.249. This interval encloses 1. the ihape parame- 
ter value for an exponential distribution. Thus, the 34-kV data are con- 
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sistent with an exponential distribution and a constant failure rate. The 
great width of the interval shows that one cannot claim that the true shape 
parameter value is close to unity. 

Extreme value location parameter A. Two-sided approximate lOOy ’% 
confidence limits for X are 

A~L-K,1.081(D/n1/2) ,  X ~ l , + K , l . 0 8 1 (  D / n ’ / ’ ) ,  (6.8) 

where K ,  is the [ 100( 1 + y)/2]th standard normal percentile. One-sided 
approximate IOOy% confidence limits are obtained from (6.8), where K ,  is 
replaced by z,, the lOOy th standard normal percentile. 

For the related Weibull scale parameter 
a=exp( A) ,  corresponding limits are 

a = exp( ? ), 

Weibull scale parameter a. 

ii = exp( i ). 

Insulating fluid example. For 34 kV, approximate 90% confidence limits 
for X are 

k 2 . 4 7 2 7  - ( 1.645) 1.08 1 ( 1.1892/ 19’12) = 1.9876. 

k 2 . 4 7 2 7  + (1.645)1.081(1.1892/l9’/’) = 2.9578. 

Corresponding limits for the Weibull scale parameter are a = exp( 1.9876) = 
7.3 minutes and 6=exp(2.9578)= 19.3 minutes. Each of these limits is a 
one-sided approximate 95% confidence limit. 

The approximate limits (6.7) and (6.8) are often good enough in practice, 
but are crude unless n is quite large, say, greater than 100. More accurate 
but more laborious approximations appear in Chapters 7 and 8. Lawless 
(1972b, 1978) gives a method for exact conditional fiducial limits for the 
distribution parameters; the laborious calculation of his limits requires a 
special computer program. 

Sample Size to Estimate a Weibull Shape Parameter 

The estimate B of a Weibull shape parameter 0 is between f p  and p/ f ,  with 
about 1OOy% probability, i f  the sample size is 

n = 1 .loo[ K,/ln( f ) I 2 ’  (6.9) 

where K ,  is the [loo( 1 +y)/2]th standard normal percentile. The accuracy 
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of this formula increases with the sample size. It is based on the approxi- 
mate normal distribution of In( B )  for large n. 

For 34 kV, suppose the /3 is to be estimated within a factor of 1.25 
[roughly within loo( 1.25 - l)=25%] with 90% probability. The estimate of 
the needed sample size is 

n = I .  loo[ 1.645/1n( 1.25)]’=60. 

Percentiles 

Percentile estimate. The estimate of the IOOPth extreme value percentile 
y,=X-tu,li is 

Y, = L + u p  D = r+ (0.5 772 + u ,, )O. 7797S, (6.10) 

where u,=ln( -In(] -P)] is the IOOPth percentile of the standard extreme 
value distribution. The estimate of the IOOPth percentile of the correspond- 
ing Weibull distribution is 

Tp=exp( Y p ) .  (6.1 1) 

Insulating fluid example. For 34 kV, the estimate of the 10th extreme 
value percentile is Y ,,, = 2.4727 + ( - 2.2504)l. 1892 = - 0.2034, where u ,o = 
In[ - In( 1 - O . l O ) ]  = - 2.2504. For the Weibull distribution, TI,,  = 
exp( -0.2034)=0.82 minute. 

Two-sided approximate IOOy% confidence limits for 
the extreme value percentile .vp are 

Percentile limits. 

.rp= Yp-  K ,  D[ ( 1.1680+ u;l.lOOO- ~,0.1913)/n] ”’, 

.I;,= Yp+ K ,  D [  ( 1  .l680+ u;l .I000 - ~~0 .1913) / t1 ]  ”?, 

where K ,  is the [loo( 1 +y)/2]th standard normal percentile, and u p =  
In( -In( 1 - P)]. One-sided approximate 10Oy% confidence limits are ob- 
tained from (6.12). where K ,  is replaced by zy9 the IOOyth standard normal 
percentile. Based on the normal approximation for Y,, (6.12) is rough unless 
I I  i s  large, say, greater than 100. More accurate but more laborious confi- 
dence limits are given in Chapters 7 and 8. Also, Lawless (1974. 1978) gives 
a method for exact conditional confidence limits for percentiles; the labori- 
ous calculation requires a special computer program. Corresponding limits 

(6.12) 
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for the Weibull IOOPth percentile t,=exp( y p )  are 

Insulating fluid example. For 34 kV, such 90% confidence limits for the 
extreme value y are 

y -0.2034- 1.645( I .  1892) { [ 1.1680+ ( ~ 2.2504)‘l. 1000 

I / 2  
- (  -2.2504)0.1913]/19} = - 1.4050. 

L; ,o= -0.2034+ 1.2016=0.9982. 

Corresponding limits for the Weibull 10th percentile are I ,o=exp( - 1.4050) 
=0.25 minute and rl,=exp(0.9982)=2.7 minutes. Each of these limits is a 
one-sided 95% confidence limit. 

Reliability 

R(y)=exp{ -exp[(y-h)/6]} at agey is 
Estimate. For an extreme value distribution, the estimate of reliability 

The same estimate applies to the Weibull distribution, but ~3 is then the 
natural log of age. Equivalently, the estimate of the Weibull reliability at age 
t is 

R*(l)=exp[-(rjA)’].  (6.15) 

Insulating fluid example. For 34 kV, the estimate of the fluid reliability 
at 2.0 minutes is 

0 8409 R*(2.0)=exp[ -(2.0/11.85) ] ~ 0 . 7 9 9 .  

Limits. Two-sided approximate 100~5% confidence limits for the extreme 
value reliability R (  y )  at age y are 

fj( y ) =exp[ -exp( 17)] and R (  J,) =exp[ -exp( !)I. (6.16) 
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where U = ( y - L ) / D ,  

!= U -  K ,  [ ( I . I680 + U I .lo00 - UO. I9 13)/n] 'I2, 

G =  U +  K Y [  ( 1 .1680 + U 2  1 .I000 - UO. 19 13)/n] ' I2, 

and K ,  is the [100(1 +y)/2]th standard normal percentile. One-sided ap- 
proximate 100~5% confidence limits are obtained from (6.16), where K ,  is 
replaced by 2 , .  the IOOyth standard normal percentile. The approximation 
is crude unless n is large, say, greater than 100. More accurate but more 
laborious limits appear in Chapters 7 and 8. Also, Lawless (1974) gives a 
method for exact conditional confidence limits for reliability; the laborious 
calculation requires a special computer program. Corresponding limits for 
the Weibull reliability at age t are the same, but y=In(l). 

For 34 kV, two-sided approximate 90% confidence limits for the fluid 
reliability at 2.0 minutes areobtained as 

U =  [ln(2.0)-2.4727]/1.1892= - 1.4964, 

p= - 1.4964 - 1.645 { [ 1. I680 + ( - 1 .4964)21 

- ( -  I .4964)0.1913]/ 

li= - 1.4964+0.7469= -0.7495, 

R(2.0)=exp[ -exp( -0.74991 =0.623, 

a( 2 .O) = exp[ - exp( - 2.2433)] = 0.899. 

PREDICTION 

1000 

9}"*= -2.2433, 

Suppose that a future sample from an extreme value distribution has m 
observations X,,,, . . . , X(,,,,, ordered from smallest to largest. Suppose the 
previous sample of n observations yields the estimates D for 6 and L for A .  
Chapters 7 and 8 give further prediction methods. 

Predictor. For the smallest future observation X('), the predictor is 

f( I ,  = L - D In( ni ) . (6.17) 

This predictor estimates the mode (most likely value) of the distribution of 
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Xcl,. I t  is a biased predictor. This predicts the life of a series system of m 
components from the same extreme value life distribution (see Chapter 5). 

Lawless (1973) gives a method for conditional prediction limits 
for X ( , ) ;  the laborious calculation requires a special computer program. 
Gumbel (1958, pp. 234-235) presents material on prediction of X,, , .  

KNOWN SHAPE PARAMETER 

At times one may wish to assume that the shape parameter value p is known 
and the scale parameter (Y is unknown. The j? value may come from previous 
or related data or may be a widely accepted value for the product or even an 
engineering guess. The transformed data values U,= come from an 
exponential distribution with a mean B = aP. Then methods for exponential 
data can be used to obtain estimates, confidence limits, predictions, etc. Of 
course. the accuracy of this approach depends on the accuracy of the j? 
value. Different p values may be tried to assess their effects on the results. 

OTHER METHODS 

The methods above are the simplest ones for Weibull and extreme value 
data. Exact, more efficient (and more laborious) methods appear in Chapters 
7 and 8. Mann (1968) surveys older methods for analysis o f  Weibull (and 
extreme value) data. Chapters 10, 11, and 12 present methods for comparing 
a number of Weibull or extreme value populations. 

Limits. 

7. DISTRIBUTION-FREE METHODS 

Sometimes one does not wish to use a parametric distribution as a model for 
a population. This section describes analytic methods that apply to com- 
plete data from any distribution. These so-called distribution-free or non- 
parametric methods are usually not as efficient as previous parametric ones 
designed for particular distributions; that is, most nonparametric confi- 
dence and prediction intervals are much wider than the parametric ones. 
However, parametric methods may be inaccurate if  the true population 
distribution differs from the assumed parametric distribution. Even if  a 
parametric distribution is correct, it is often easier to use a nonparametric 
method. Nonparametric methods for life data have primarily been devel- 
oped and used for biomedical applications; see Gross and Clark (1975). 
Parametric methods are usually used in engineering applications, as they ( i f  
correct) yield more precise information than nonparametric methods and 
permit extrapolation outside the range of data. 

A complete sample consists of the II observations Y , ,  . . . , Y,,, which may be 
arranged as the ordered values r( , ,G y2,d . . . G r( ,,,. 



236 ANALYSIS OF COMPLETE DATA 

The methods below provide estimates and confidence intervals for the 
distribution mean, standard deviation, percentiles, and reliabilities. Also, 
they provide predictions and prediction limits for a future sample observa- 
tion, average (or total), and smallest or largest observation. These methods 
are exact for continuous distributions, but they can also be used for discrete 
distributions. Then the true probability for an interval is the same as or 
higher than that given here for a continuous distribution. Justifications for 
these methods appear in books on nonparametric methods, for example, in 
Gibbons (1976), Hollander and Wolfe (1973), and Lehmann (1975). 

Mean 

Estimate. The estimate for the mean p of a distribution is the sample 
average 

L=(Y,+  . . .  + ~ , # ) / n .  ( 7 . 1 )  

This is unbiased, and 

where u’ is the distribution variance, assumed to be finite. For large sample 
size n ,  the sampling distribution of r is approximately normal with a mean 
of p and a variance of u2/n. 

Warranty cost example. The manufacturer of a type of large motor must 
pay warranty costs. Management wanted the average warranty cost per 
motor and a prediction of the total warranty cost for the coming year. 
Management also wanted to know the uncertainty in this information. Data 
on n= 184 motors had an average warranty cost per motor per year of 
Y=$751 (desired information) and a standard deviation of ’ :44. The 
standard deviation is larger than the average; the distributioii is very 
skewed, since most motors have zero warranty cost and a few have a very 
high cost. 

Two-sided approximate 1 OOy o/o confidence limits for 
a distribution mean p are 

Confidence limits. 

where r[(1 +y) /2 ;  n -  11 is the [100(1 +y)/2]th percentile of the I- 
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distribution with n-  1 degrees of freedom. One-sided approximate 1OOy% 
confidence limits are obtained from (7.3), where ( 1  + y ) / 2  is replaced by y. 
These limits are satisfactory if the sample size n is large enough for the 
sampling distribution of ? t o  be approximately normal. I f  the population is 
close to normal, then the approximation is often satisfactory for small n .  

Warranty cost example. A two-sided approximate 90% confidence inter- 
val for the true mean yearly warranty cost of such motors is 

p=751-[[( 1 +0.90)/2;184- 1](944/184"')=$637, 

p=75 1 + (1.645)(944/184'/*) = $866. 

Each of these limits is a one-sided approximate 95% confidence limit. These 
limits do not take into account yearly inflation of costs. 

Variance and Standard Deviation 

Variance. The estimate for the population variance u 2  is the sample 
variance 

s'= [( Y ,  - ? ) 2 +  . . . 

where is the sample mean. Equivalently, 

u )?I.( n -  

, , Y ? ] / (  n-  (7.5) 

This is an unbiased estimator for u 2  for any distribution. The distribution of 
( I I -  1)S2/u' does not approach a chi-square distribution for large n. but i t  
does approach a normal distribution i f  the fourth moment of the population 
distribution is finite. 

The estimate for u is the sample standard deviation Standard deviation. 

This is a biased estimator for u. However, the bias decreases as sample size 
increases. The warranty cost example above employs this estimate. 

There are no standard nonparametric confidence limits for the variance 
and standard deviation of any continuous distribution. One can use some 
other measure of distribution spread, such as the interquartile range ( j ~ , ~ -  

j' 2 5 )  or interdecile range ( js9(, -.v ,(, ); there are nonparametric confidence 
limits for them. However, they are not used for life data. 
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Reliability 

Estimate. A distribution-free estimate of the reliability R( y )  at age y is 
the sample fraction that survive an age y .  That is, if X of the n times to 
failure are beyond age y ,  then the estimate of the reliability at age y is 

R*( y ) = X / n  

This is unbiased. and 
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(7.7) 

The sampling distribution of X is binomial, with sample size n and probabil- 
ity R( y )  of “success.” Estimation of such a binomial proportion is described 
in Section 3 .  The entire sample reliability function is obtained by estimating 
R( J )  for all y values. The sample reliability function R * ( y )  is a decreasing 
staircase function that decreases by l / n  at each data value and is constant 
between data values. So i t  needs to be calculated only at each data value. 
The sample cumulative distribution function is the increasing staircase 
function 

F* ( v ) = 1 - R*( v )  = ( n - X ) / n .  (7.8) 

Such a function appears in Figure 7.1. 
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Confidence limits. Binomial limits apply to reliability R ( y )  at age y 
(Section 3). Usually one wants a one-sided lower limit R( y )  for reliability. 
A lower (and upper) limit R( y )  for the reliability function at all y values is 
also a decreasing staircase function that decreases at each data value and is 
constant between data values. Thus i t  needs to be calculated only at each of 
the n data values. 

Figure 7.1 depicts the nonparametric estimate 
of the cumulative distribution function at 34 kV. It also shows 90% 
confidence limits for the fraction failing as a function of age. Compare this 
plot with Figures 4.1 and 6.1. The nonparametric limits are wider. 

Percentile 

Insulating fluid example. 

Estimate. Suppose the ordered observations are ?,)< q2)G . . . G y n ) .  
Also, suppose one wishes to estimate the IOOPth percentile of a continuous 
distribution where i G ( n +  1)PGi+ 1 for some i =  I ,  ..., n-  1. Then an esti- 
mate is 

Y,= [ i + I - ( n  + I)P] y , )  + [( n + I ) P -  i] y,  + ,). (7.9) 

I f  P=0.50, the estimate of the population median is the sample median 
~ ( n + , , , z ,  when n is odd, and it  is the average of the two middle observa- 
tions when n is even. 

For 34 kV, a nonparametric estimate of the 
63.21st percentile is obtained as follows. First, ( n +  1)P=(19+ 1)0.6321= 
12.642. Thus the 12th and 13th ordered observations (8.01 and 8.27) are 
used. Then Y,,,, =(12+ 1 - 12.642)8.01+(12.642- 12)8.27=8.18 minutes. 
In Section 6, the parametric estimate of the Weibull scale parameter (63.21st 
percentile) is 11.85 minutes. 

For the IOOPth percentile of a continuous 
distribution, use the r th  and s th  order statistics y r , G  y r )  as the limits. The 
confidence level is the binomial probability 

Insulating fluid example. 

Two-sided confidence limits. 

T I  

P ' ( I - P ) "  '. n !  
y =  c x ! ( n - x ) !  

\=-I 

(7.10) 

The basis for (7.10) is that the interval encloses the IOOPth percentile i f  
anywhere from r to s- 1 observations fall below the percentile, and each 
observation is a binomial trial that falls below the percentile with probabil- 
ity P. Using a binomial table, one chooses r and s to make y close to the 
desired confidence level. 
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For large n,  approximate r and s are 

r=nP - 0.5 - K Y [  nP( 1 - P ) ]  s =nP - 0.5 + K Y [  nP( 1 - P )] ”’. 
(7.1 1 )  

where K ,  is the [loo( 1 +y)/2]th standard normal percentile. These values 
come from a normal approximation to (7.10). 

For 34 kV, the ranks of order statistics for 
approximate 90% confidence limits for the 63.21st percentile are 

Insulating fluid example. 

r =  19( 0.6321 ) - 0.5 - 1.645[ 19 X 0.632 1 ( 1  -0.6321 )] I”  2 8.05, 

s 2 19(0.632 1 )  - 0.5 + 3.46 1 14.97. 

The corresponding 8th and 15th order statistics are 4.67 and 31.75 minutes; 
they are the confidence limits for .v6321. The exact binomial probability 
(7.10) for these order statistics is y=0.866 instead of 0.900. In Section 6, the 
parametric approximate 90% confidence limits for the Weibull scale parani- 
eter (63.2nd percentile) are 7.3 and 19.3. a narrower interval than 4.67 to 
3 1.75. 

For the lOOPth percentile of a con- 
tinuous distribution, use the r th  order statistic y r . , .  The confidence level is 
the binomial probability. 

One-sided lower confidence limit. 

t l  

n !  P ‘ ( 1 - P ) “  -‘ 
y’ 2 x ! ( n - x ) !  

8 = r  
(7.12) 

For example, if  vl)  is used as a lower limit for the IOOPth percentile, the 
confidence is 

y =  1 -P”. (7.13) 

For large n ,  an approximate r is 

r n P  - 0.5 - z [ nP ( 1 - P ) ] I”, 

where zy  is the lOOyth standard normal percentile. 

PREDICTION 

Suppose a future sample has m observations XI , .  . . , X,,. There are predic- 
tors and prediction limits for the sample total X =  X ,  + . . . + X,, and mean 
x= X / m  and for any ordered observation x( I )  X, ,,I ,. Suppose X C z ,  . . . 
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the past sample of n observations has an average r and a standard deviation 
S and the ordered observations are y , ) G  y“)G . . . G y,,,. The references of 
Hahn and Nelson (1973) justify the following results. 

Prediction and Limits for the Mean or Total 

Prediction. The prediction of the future mean x is 

the mean of the previous sample. This is unbiased, and 

(7.14) 

(7.15) 

where u 2  is the distribution variance. For m and n large, the distribution of 
the prediction error ( x- x) is approximately normal with a mean of 0 and 
variance (7.15). 

The prediction of the total X of m future observations is 

2=rnu. 
This is unbiased, and 

(7.16) 

~ a r (  i- X )  = m2u2[ ( 1 /m) + ( ~ / n  I]. (7.17) 

For m and n large, the distribution of ( 2 - X )  is approximately normal, 
with a mean of 0 and variance (7.17) 

For the coming year, there would be m=70 
new motors on warranty. The prediction of the total warranty cost of those 
motors is 2=70X$751=$52,570. 

Prediction limits. Two-sided approximate 1OOy% prediction limits for a 
future mean F a r e  

Motor warranty example. 

X- F-t[(I +y) /2 ;  n- ~ ] ~ [ ( ~ / m ) + ( l / n ) ] ” * ,  
(7.18) 

G Y+r[(  I + y ) / 2 ;  n -  1]s[( I / m )  + ( l / n ) ]  ”*, 

where t [ (  1 +y)/2; n -- 11 is the [ 100( 1 + y)/2]th percentile of the t -  
distribution with n - 1 degrees of freedom and S is the past sample standard 
deviation. One-sided approximate lOOy% prediction limits are obtained 
from (7.18), where ( l + y ) / 2  is replaced by y. This approximation is more 
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accurate the larger m and n are; so the sampling distributions of r and x 
are close to normal. Two-sided approximate lOOy% prediction limits for a 
total X of m future observations are 

x-m? and f z m x .  (7.19) 

Warranty cost example. For the total warranty cost of the motors in the 
coming year, 90% prediction limits are 

$-70{ 751 - t [ (  1 +0.90)/2; 184- 1]944(1/70+ 1/184)”2} =$37,310, 

f=70[751+ 1.645(944)( 1/70+ 1/184)”2] =$67,830. 

Each of these is a one-sided approximate 95% prediction limit. 
The prediction limits divided by the predicted cost are 37,310/52,570= 
0.71 and 67,830/52,570= 1.29. So the uncertainty in the warranty costs is 
229% and is large. Management was able to plan the warranty budget 
accordingly. 

Prediction and Limits for Ordered Observations 

Prediction. To predict the r th largest future observation X(,, .  suppose 
i < ( ~ ~ I ) r / ( m + l ) < i + l  for some i = l ,  ..., n-1.  Then a predictor for 
4,) is 

j ( , )=  p+ 1 - ( n +  l ) [ r / ( m +  I ) ] }  y,,+ {[b+ l b / ( m +  1 , ] - 4  r ( , + l ) .  

(7.20) 

That is, the predictor is the (100r/m)th percentile of the past sample. 
perhaps, interpolating between two past observations. 

For 34 kV, suppose one wants a prediction of 
the smallest observation ( r =  1) in a future sample of m= 10 observations. 
First calculate ( n + l ) r / ( m + l ) = ( 1 9 +  l ) l / ( lO+l)=  1.818. This indicates 
that the first and second order statistics (0.19 and 0.78 minute) are used. 
Then 41)=(1 + 1 - 1.818)0.l9+(l.818- 1)0.78=0.67 minute. 

One-sided lower prediction limit. For the smallest futir kervat ion 
Xtl,,  use the smallest observation q,)  of the past sample. ThL , q,bability of 
r ( , )  being below XIl,  is 

Insulating fluid example. 

y = n / (  n1+ n ) .  (7.21) 
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Similarly, y,,, is an upper prediction limit for X(,, , , ,  and the probability of it 
being above X(,,,, is y. 

Insulating fluid example. For 34 kV, the probability of the smallest, 0.19 
minute, of n= 19 observations being below the smallest of m= 10 observa- 
tions is y= 19/(10+ 19)=0.66, not a high probability. 

More general prediction limits are given by Lieberman and Owen (1961). 
Their hypergeometric tables can be used to obtain the distribution of the 
number of exceedances, that is, to obtain the probability of the r th largest 
among rn future observations exceeding the s th largest among n previous 
observations. 

OTHER DISTRIBUTION-FREE METHODS 

Chapter 3 describes graphical methods that can be used for nonparametric 
analysis of data. Most statistics books present some nonparametric meth- 
ods. Books on nonparametric methods include those by Gibbons (1976), 
Hollander and Wolfe (1973), and Lehmann (1975). 

For some work it may be possible to make a stronger but nonparametric 
assumption that the distribution has ( 1 )  an increasing (or else decreasing) 
failure rate or (2) an increasing (or else decreasing) failure rate on the 
average. Methods for such distributions have been developed by Barlow and 
Proschan (1965). Hanson and Kooprnans (1964) give simple (conservative) 
nonparametric lower confidence limits for any percentile when -In[ F( y )], 
minus log cdf, is a convex function. 

PROBLEMS 

6.1. Battery failures. In five years, 500.000 batteries were put into 
service at a uniform rate. In that period, 5000 of them failed and were 
promptly replaced. 

(a) How many battery-years of exposure were accumulated by the 

(b) Assuming Poisson data, estimate the failure rate of such batteries. 
(c) Give an upper 95% confidence limit for the true failure rate. 
(d) Is the Poisson distribution appropriate? State your reasons. 
(e) 100.000 more units will be manufactured and go into service over 

the coming year. Give a prediction of the number of failures in the entire 
population in service in the coming year. 

( f )  Give the formula for the variance of the prediction error for (e) i n  
terms of the failure rate A ,  previous exposure 1 .  and future exposure s. 

(8) Calculate approximate 95% prediction limits for (e). 

end of the five-year period? 
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6.2. Power line outages. Seven power lines of different lengths had 
outages as shown below. The exposure of a line equals its length times the 
years observed. Assume that the number of outages has a Poisson distribu- 
tion. 

(a)  Estimate the outage rates (failures per year per mile) for lines 1 
and 5.  

(b )  Calculate exact two-sided 95% confidence limits for the outage 
rate of line 1. 

(c) Calculate approximate two-sided confidence limits for the outage 
rate of line 5 .  

(d) Calculate a prediction and exact 90% prediction limits for the 
number of outages on line 1 in the coming year. 

(e) Calculate a prediction and approximate 90% prediction limits for 
the number of outages on line 5 in the coming year. 

( f )  Criticize all assumptions in (a) through (e). 

Line Length Years Exposure Outages 
k L ,  Miles Nh t , = N , L ,  ' h  

50 I 10 x 5 - 

2 13 1 13 
3 17 5 85 
4 24 9 216 
5 42 6 252 
6 61 2 122 

I 69 2 I38 

- 

1 ~ 8 7 6  

10 
13 
17 

102 
I24 
53 
44 - 

363= Y 

6.3. Insulating fluid (exponential). For the 38-kV data in Table 1 .1  of 
Chapter 3 ,  d o  the following, assuming that time to breakdown has an 
exponential distribution. 

(a) Estimate the mean time to failure. 
(h) Calculate two-sided exact 95% confidence limits for the mean. 
(c) Use the normal approximation to calculate such limits. 
(d)  Calculate the corresponding estimate and limits for the failure 

rate. 
( e )  Estimate the 10th percentile. and calculate two-sided exact 95% 

confidence limits for i t .  
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(f) Calculate a prediction for a single future observation. 
(g) Calculate an upper 90% prediction limit for a single future ob- 

(h) Calculate the sample size needed so that the estimate is wi thn  a 

( i )  Repeat (a) through (h) for data from other voltages in Table 1.1. 
(j) Plot the data on Weibull probability paper, plot the fitted ex- 

ponential distribution, and assess the assumption of an exponential 
distribution. 

servation. 

factor f= I .5 of the true mean. 

6.4. Use the life data on insulation system 3 in Problem 3.1. Assume life 
has a lognormal distribution and use base 10 logarithms. 

(a) For each temperature, estimate p and u. 

(b) For each temperature, calculate two-sided 95% confidence limits 

(c) Estimate the 1% point for each temperature. 
(d) How large a sample is needed to estimate u at 225°C within a 

(e) Calculate a prediction and 90% prediction limits for a single unit 

for p and u. 

factor of 2 with 90% confidence? Is the approximation satisfactory? 

at 225°C. 

6.5. Insulating fluid (Weibull). For the 38-kV data in Table 4.1, do  the 
following, assuming that time to breakdown has a Weibull distribution. 

(a)  Estimate the Weibull parameters. 

(b) Calculate twoLsided approximate 90% confidence limits for the 

(c) Estimate the 10th percentile. 

(d) Calculate two-sided approximate 90% confidence limits for the 
10th percentile. 

(e) Plot the data and the estimate of the distribution on Weibull 
paper. 

( f )  Calculate two-sided approximate 90% confidence limits for other 
percentiles and draw smooth curves for the limits on the Weibull plot. 

shape parameter. 

6.6. Oil breakdown voltage. The following summary statistics were 
calculated from the base e logs of data like that of Problem 5.3, but all eight 
sample sizes are 25 here. 
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1000 V/second 100 V/second 

1 in. 3 in. 1 in. 3 in. 

Average 4.0296 2.4563 3.8996 3.7942 
Standard Deviation 0.104 0.0900 0.1057 0.0745 

10 V/second 1 V/second 

1 in. 3 in. 1 in. 3 in. 

3.7268 3.6046 3.5914 3.4873 
0.0946 0.1168 0.1019 0.2279 

(a) Choose a test condition and estimate the Weibull parameters. 
(b) Calculate two-sided approximate 90% confidence limits for each 

(c) Estimate all shape parameters. 

(d) Calculate two-sided approximate 90% confidence limits for all 
shape parameters. 

(e) Plot all shape parameter estimates and confidence limits on semi- 
log paper. Are the estimates consistent with theory, which says that all 
eight distributions have the same shape parameter value? 

6.7. For the 38-kV data in Table 4. I ,  

parameter at your test condition. 

Insulating fluid (nonparametric). 
do the following using nonparametric methods. 

(a) Estimate the mean time to failure. 
(b) Calculate two-sided approximate 95% confidence limits for the 

mean. 
(c) Estimate the distribution median. 

(d)  I f  the smallest and largest observations are used as confidence 

(e) Plot the nonparametric estimate of the cumulative distribution 

( f )  Plot nonparametric two-sided 95% confidence limits for the 

(8) Calculate a prediction for a single future observation. 
(h)  I f  the smallest and largest observations are used as prediction 

limits for a single future observation. what is the probability of them 
enclosing the observation? 

( i" )  Repeat (a) through (h) for data from other voltages in Table 4.1. 

limits for the distribution median, what is the confidence level? 

function on Weibull paper. 

cumulative distribution function. 

*Abtcrisk denotes laborious or difficult 



Linear Methods for 
Singly Censored Data 

This chapter presents linear methods, which employ linear combinations of 
the ordered observations. Such numerical analyses apply to singly censored 
and complete life data. Singly censored data consist of the earliest r failure 
times in a sample of n units. Such data come from life tests where units are 
put on test together and the data analyzed before all units fail. Then the 
unfailed units all have the same running time, called the censoring time. Of 
course, a complete sample (all units run to failure) yields more precise 
estimates than a censored sample of the same size. However, the reduced 
precision from a censored sample is often compensated for by the time 
saved from analyzing the data before all units fail. Moreover, the reduction 
in precision is usually small for estimates of low percentiles and high 
reliabilities-usually of greatest interest. Also, one may have a complete 
sample and wish to use only the early observations to estimate the lower tail 
(percentiles and reliabilities), especially i f  the theoretical distribution does 
not adequately describe the upper part of the true distribution. Then the 
estimates and confidence limits for the lower tail. although approximate, are 
not badly biased by data from the upper tail. 

Chapter 3 presents simple graphical methods for analyzing such data;  a 
combination of graphical and numerical methods is often informative. 
Chapter 1 I presents methods for combining or comparing estimates from a 
number of such samples. Chapter 8 presents maximum likelihood analyses 
of multiply censored data. that is, data with differing running times on  some 
units; those methods also apply to singly censored data. However, the linear 

241 
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methods presented in this chapter are easier to use (usually hand calcula- 
tions) than are maximum likelihood methods, which usually require special 
computer programs. In general, linear and maximum likelihood methods 
involve an assumed parametric distribution. However, the nonparametric 
methods of Chapter 6 apply to singly censored data, provided that the 
needed order statistics are observed. Linear methods also apply to complete 
data ( r = n )  and are alternatives to the methods for complete data in 
Chapter 6. To use linear methods, one should be acquainted with the basic 
concepts of estimation and prediction in Chapter 6. This chapter is more 
difficult than earlier ones, 

This chapter first explains basic concepts for linear estimation from singly 
censored data. I t  then presents methods for obtaining estimates, confidence 
intervals, predictions, and prediction limits for the exponential (Section 2) ,  
normal and lognormal (Section 3), and Weibull and extreme value (Section 
4) distributions. Section 5 presents theory for order statistics and linear 
estimates and is advanced. 

1. BASIC CONCEPTS 

This section presents basic concepts for singly censored data, order statis- 
tics, and linear methods for data analysis. Later sections apply these 
concepts to various distributions. Readers interested only in applying the 
methods can skip this technical section and proceed directly to sections on 
particular distributions. 

Singly Censored Data 

A sample is singly censored on the right if only its r smallest failure times 
are observed, and the unobserved times are known only to be above their 
common running time, called the “censoring time.” Such data arise when 
units start on test together and the data are analyzed before all units fail. 
Such a test can save time. Epstein and Sobel (1953) investigate the expected 
time savings o f  a censored test over one running all units to failure for an 
exponential distribution. 

Such data have Type I censoring (or time censoring) if the censoring time 
is prespecified. For example, time constraints may require that a test be 
stopped at 1000 hours. Such censoring is common in practice. Then the 
censoring time is fixed, and the number of failures is random. Data singly 
censored on the right have Type 11 censoring (or failure censoring) if the test 
is stopped at the time of the r t h  failure. Then the number of failures is 
fixed, and the length of the test is random. Such censoring is common in the 
literature, since i t  is mathematically simpler than Type I censoring. The 
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methods of this chapter are exact for Type I1 data. Many people analyze 
Type I data as i f  i t  were Type I1 data: this is often satisfactory in practice 
and is done in this chapter. Chapter 8 gives maximum likelihood methods 
for Type I data. 

Order Statistics 

When n units start a test together, the shortest sample life is observed first, 
the second shortest is observed second, etc. The smallest sample value is the 
first order statistic, the second smallest value is the second order statistic, 
etc.. and the largest value is the nth order statistic. These are denoted by 
TI,. 5 2 )  ,..., q,,,. For example, i f  n is odd, the sample median y(,r+l),2, is 
such an order statistic. If a sample is singly right censored, only the first r 
order statistics ql , ,  

Suppose that random samples of size n are taken from the same distribu- 
tion. Then the ith order statistic has different values in the different 
samples. That is, it has a sampling distribution, which depends on the 
population distribution, i .  and n.  Order statistics can be used to estimate the 
parameters and other characteristics of the population. This chapter ex- 
plains how to do this. The sampling distributions and other properties of 
order statistics appear in Section 5. 

Linear Methods 

A linear combination of K order statistics of a sample with Type I 1  
censoring is called a systematic statistic. I t  has the form 

,..., y r )  are observed. 

this contains any selected order statistics and known coefficients u , ~ .  For 
example, if  the sample is singly right censored, a linear combination of the r 
smallest order statistics has the form 

The coefficients are chosen so the linear combination is a good estimator for 
some parameter of the parent distribution. The coefficients depend on the 
parent distribution (exponential, normal, etc.). the quantity being estimated 
(mean, standard deviation, percentile, etc.), the size of the sample, the order 
statistics being used, and the properties of the estimator (unbiased, in- 
variant, etc.). 

A linear estimator 8* is called a best linear unbiased estimator ( B L U E )  for 
a parameter 8 if i t  is unbiased (its mean EB* = 8 )  and has minimum variance 
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among linear unbiased estimators. A linear estimator 8** is called a best 
linear invariant estimator (BLIE) for a parameter 8 if it has a minimum 
mean squared error, E( 8** -8)', among linear estimators. There are tables 
of coefficients for both types of estimators, and one type may be obtained 
from the other (Section 5.5). The two estimators differ little for practical 
purposes, compared to the scatter in the data. The choice of either estimator 
is mostly a matter of taste. The BLUEs are presented below. The BLlEs are 
used the same way, only the coefficients differ. BLIEs are briefly described 
in Section 5.5 and used in Section 4, as tables for confidence limits for 
the Weibull distribution are in terms of BLIEs. Mann, Schafer, and 
Singpurwalla (1974) and Bain (1978) present these and other linear estima- 
tors. 

The linear methods below are exact only for data with Type I1 (failure) 
censoring. However, they are often used for data with Type I (time) 
censoring. Then they usually provide a satisfactory approximation for 
practical purposes. 

BLIJEs have good properties compared to other estimators, such as 
maximum likelihood ones. For small samples, their variances and mean 
squared errors are comparable to those of other estimators. For large 
samples, their asymptotic variances and mean squared errors usually equal 
the theoretical minimum variance (Cramer-Rao lower bound) for any 
estimators. 

Linear estimators can readily be derived for two-parameter distributions 
that have a scale parameter u and a location parameter p .  'Ihat is, the 
cumulative distribution function F( y ;  p,  a )  can be written as F( J ;  p, a ) =  
G[( .v - -p ) /u ] ,  where G( ) is a function that does not depend on or a. The 
normal and smallest extreme value distributions are such distributions. 
Linear estimators are used with the logs of lognormal a i d  Weibull data, 
since the log data come from a normal and extreme value distribution, 
respectively. Then the true variances and covariance of the BLUEs p* and 
u* for the location and scale parameters have the form 

Var(p*)=A a', Var( u * ) = B o ' ,  Cov(p*, u * ) = C  u ' ,  

where A,  B, and C depend on r and n and the distribution, but not on p and 
u .  This is sometimes indicated with subscripts on the factors A , , ~ , ,  B , l , r .  and 
I'Z,~, r .  Such factors for pooled estimates (Section 5.5) lack subscripts. Linear 
estimators can readily be derived for one-parameter distributions that have 
a scale parameter or else a location parameter. The exponential distribution 
is such a distribution. This chapter applies only to distributions whose 
parameters are only a location and/or a scale parameter. 



2. EXPONENTIAL DATA 251 

Other Distributions 

This chapter presents linear methods only for the exponential, normal, 
lognormal, Weibull, and extreme value distributions. Such methods for 
other distributions are surveyed by Sarhan and Greenberg (1962) and David 
(1970). Current literature (Chapter 13) gives further information. Gupta and 
others (1967) and Engelhardt (1975) give linear methods for the logistic 
distribution. Nonparametric methods of Chapter 6 apply to singly censored 
data when the method employs the early order statistics; for example, see 
Barlow and Proschan (1965), Hanson and Koopmans (1964) and Lawless 
(1982, Chap. 8) .  

2. EXPONENTIAL DATA 

The exponential distribution is a model for the life of products with a true 
constant failure rate X and a mean time to failure 8= l / X .  This distribution 
is described in detail in Chapter 2. A singly censored sample of n units 
consists of the r smallest ordered observations y , , ,  . . . , y r ) .  

The following methods provide best linear unbiased estimates (BLUES) 
and confidence intervals for 8, A, percentiles. and reliabilities. Also, they 
provide predictions and prediction intervals for a future observation, sample 
average (or total), and smallest observation. 

ESTIMATES AND CONFIDENCE INTERVALS 

The Mean 

Estimate. For failure censoring, the best linear unbiased estimator 
(BLUE) for the exponential mean 8 is 

This is the total running time divided by the number of failures. For time 
censoring, 8* is biased. 8* is also the maximum likelihood estimator for 8; 
this is discussed further in Chapter 8. Its variance for failure censoring is 

Var( 8 * ) = O 2 / r .  (2.2) 

For failure censoring. the sampling distribution of 2 r t l * / 8  is chi square with 
2r  degrees of freedom. If r is large (say. greater than 15). then the 
distribution of 8* is approximately normal. Section 5.5 shows how to pool 
such estimates. 
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Table 2.1. Seconds to Insulating Fluid Breakdown 

25 kV 30 kV 35 kV 4 0  kV 45  kV ~ - - - -  
5 2 1  

2520 

4060 

12600 

40300 

50600+ 

5290Oe 

6 7 300+ 

84000 

85500+ 

85700+ 

8 6 4 0 W  

50 

134 

187 

882 

1450 

1470 

2290 

2930 

4180 

15800 

2920O-k 

8610Ot 

30 

33 

41  

87 

93 

98 

116 

258 

461 

1180 

1350 

1500 

1 1- 

1 1- 

2 1- 

3 2 

12 2 

25 3 

46 9 

56 13  

68 47 

109 50 

323 55 

417 7 1  

+ running time without  breakdown. 

- breakdown occurred e a r l i e r .  

Insulating fluid example. Table 2.1 shows data on time to breakdown of 
an insulating fluid at five voltages. Such a distribution of time to breakdown 
is usually assumed to be exponential in engineering theory. For 30 kV, the 
data are singly time censored on the right. The estimate of the mean time to 
failure, based on the 10 failure times, is 6'*=[50+ . . .  + 15,800+(12- 
10) 15,800]/ 10 = 6097.3 seconds (two- or three-figure accuracy would do). 
Var( 0*)-0'/10 approximately, since the data are time censored. 

Exact confidence limits. Two-sided 10Oy% confidence limits for the 
exponential mean 0 are 

e= 2 r e * / x 2 [  ( 1 + y ) / 2 ;  2 4 ,  6= 2r6 '* /X2[(  I - y) /2 ;  2 r ] ,  (2.3) 

where x 2 ( 6 ; 2 r )  is the 1006th chi-square percentile for 2r degrees of 
freedom. (2.3) yields a one-sided 100y% confidence limit when y replaces 
( 1 + y ) / 2  or 1 - y replaces ( 1 - y ) / 2 .  The limits are exact (approximate) for 
failure (time) censoring. 

Insulating fluid example. At 30 kV, the one-sided lower 90% confidence 
limit for 6' is 0=2( 10)6097.3/xz[0.90; 2( 10)]=2( 10)6097.3/28.412=4092. I 
seconds. This limit is approximate, since the sample is time censored. 
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Samples with no failures. For some samples, there are no failures when 
the data must be analyzed (time censored). Then (2.1) does not yield an 
estimate, and (2.3) does not yield confidence limits. A commonly used 
one-sided lower lOOy % confidence limii for 8 is 

where Y, ,..., Y,, are the sample running times. For an estimate, some use a 
50% confidence limit; this method of estimation has no theoretical basis and 
can be seriously misleading. The confidence limit has a difficulty. As stated, 
i t  applies only when there are no failures. The limit must also be defined 
when there is one failure or two or three, etc. 

Approximate confidence limits. Suppose r is large (say, greater than 15). 
Then two-sided approximate IOOy% confidence limits for 8 are 

f-d*/exp( ~ ~ / r [ / 2 ) ,  B-e*.exp( ~ ~ / r ‘ / ~ ) ,  (2.4) 

where K ,  is the [ lOO(1 +y)/2]th standard normal percentile. (2.4) yields a 
one-sided IOOy% confidence limit when K ,  is replaced by z y .  the IOOyth 
standard normal percentile. 

Sample size. The estimate 8* will be within a factor f of 8 with 
approximate probability 10Oy% if the observed number r (assumed large, 
say, over 15) of failures is 

where K ,  is the [loo( 1 +y)/2]th standard normal percentile. That is, 8* will 
be between d/fand Ofwith IOOy% probability. This result for the exponen- 
tial mean does not depend on the sample size n.  However, the larger n is, the 
shorter the waiting time to the r th  failure. Epstein and Sobel (1953) 
compare the test times of complete and censored tests in detail. 

Suppose the mean time to breakdown o f  the 
insulating fluid at 30 k V  is to be estimated within 20% with 90% probability. 
Thenf- 1.20, and the needed number of failures is r-[1.645/ln(1.20)]’-81. 

The Failure Rate 

insulating fluid example. 

Estimate. The usual estimate of the exponential failure rate X is 

X*=l /8*=r / [y , ,+  . .  . + y r , + ( n - r ) Y i r , ] .  

This is the number of failures r divided by the total running time, that is, the 
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observed failure rate. A* is not a linear function of the order statistics; it is a 
transformed linear estimator. A* is biased. The bias decreases with increas- 
ing r .  For large r ,  the cumulative distribution of A* is close to a normal one 
with mean h and variance h2/ r .  Equation (2.6) is often used incorrectly to 
estimate a failure rate for life distributions that are not exponential. 

Insulating fluid example. At 30 kV, A* = 1 /6097.3 = 0.16 X 10 

Confidence limits. Two-sided lOOy% confidence limits for the failure 

failures 
per second. 

rate h are 

&= 1/8=A*x*[(I -y)/2;2r]/(2r),  
(2.7) 

x= 1/6=A*x2[( 1 +y)/2;2r] / (2r) ,  

where x2 (6 ;2 r )  is the 1006th chi-square percentile for 2 r  degrees of 
freedom. One-sided limits for h are the reciprocals of the one-sided limits 
for 8. These limits are exact (approximate) for failure (time) censoring. 

At 30 kV, the one-sided upper 90% confidence 
limit for h is x= 1/4092.1=0.24X 10 - 3  failures per second. This limit is 
approximate, since the sample is time censored. 

Percentile 

Insulating fluid example. 

Estimate. The BLUE for the IOOPth percentile.y,= -8ln(l -P)  of an 
exponential distribution is 

J$= -f?*ln(l-P).  (2.8) 

(2.9) 

Its variance is 

Var( yp*) = [8ln( 1 - P )I2/. .  
Insulating fluid example. At 30 kV. the estimate of the 10th percentile is 

v ; ~ =  -6097.3ln(l-0.10)=642 seconds. Var(y;,)-[8ln(l -0.10)]2/10= 

Two-sided 1OOy% confidence limits for the IOOP th  

0.001 182. 

Confidence limits. 
exponential percentile are 
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where x2(6 ;2r )  is the 1006th chi-square percentile with 2 r  degrees of 
freedom. One-sided limits for y ,  employ the one-sided limits for 8. These 
limits are exact (approximate) for failure (time) censoring. 

Insulating fluid example. At 30 kV, the one-sided 90% confidence limit 
for the 10th percentile isy.,o= -4092.1 In( 1 -0.10)=431 seconds. This limit 
is approximate, since thesample is time censored. 

Reliability 

exp( - y / 8 )  for age y is 
Estimate. The transformed linear estimate of the reliability R( y ) =  

R*( y)=exp( -y/O*)=exp( -X*y ) .  (2 .11)  

This estimator is biased, but the bias decreases with increasing sample size. 

Insulating fluid example. At 30 kV, the estimate of the reliability at 
y=60 seconds is R*(60)=exp( -60/6097.3)=0.990. 

Confidence limits. Two-sided lOOy % confidence limits for reliability at 
age y are 

( y ) = exp( - y / e  ) = exp( - X y ) = exp { - y x [ ( 1 + y ) /2 ; 2 r ]  / ( 2 r 8  * ) } . 

(2.12) 

where x2(6 ;2r )  is the 1006th chi-square percentile for 2 r  degrees of 
freedom. One-sided limits for R( y )  employ the one-sided limits for 8. 

Insulating fluid example. At 30 kV, the one-sided lower 90% confidence 
limit for reliability at 60 seconds is 1_((60) = exp( - 60/4092.1) =0.985. This 
limit is approximate, since the sample is time censored. 

Estimates of the Mean from Selected Order Statistics 

Previous linear methods for a singly censored sample from an exponential 
distribution employ all r observed order statistics. Linear estimates for 8 
based on selected order statistics are sometimes useful. These estimates and 
confidence limits for 8 can be used to obtain estimates and limits for the 
failure rate, percentiles, reliabilities, and other functions of 0 as described 
above. These estimates are easy to calculate, particularly for large samples 
outside the tables for BLUES. 



256 LINEAR METHODS FOR SINGLY CENSORED DATA 

EItimates from a single order statistic. The BLUE for 0 based on the j  th 
order statistics y,) IS 

4:,= W E , .  (2.13) 

where E,=(n ' + ( n - I ) - l +  . . .  + ( n - j + I ) - ' ] .  Its varianceis 

Var( 0,;)) = 0 2 [  n ~ * + ( n - 1) ~ ' + . . . + ( n -J + 1) -'] / E f .  (2.14) 

These results are derived in Sarhan and Greenberg (1962). For j  and ( I? - j )  
large, 

The distribution of 0,;) is approximately normal. Var(0,;)) is a minimum 
(for large samples) if  j=(0.80n) .  The notation (x)  indicates that ZL is 
rounded up to the nearest integer. That is, the 80th sample percentile (more 
precisely, 79.68%) provides the best large-sample linear estimator based on a 
single order statistic. Then 

and 

Var( 8,*,,,,,) = 1.544$'/n. (2.16) 

For comparison, the variance of r, the BLUE based on the entire sample, is 
Var(Y)=B'/n. If less than 80% of the sample is observed, the estimate 
should use the largest order statistic. 

The estimate based on one order statistic is useful in graphical displays of 
data. An order statistic can then be marked and used as an estimate of 8. 
This helps one graphically compare a number of samples. as described in 
Chapter 10. 

Insulating fluid example. At 30 kV, n = 12 and the estimate is based on 
the j := (0.80( 12)) = 10th order statistic. y,,, = 15,800 and 8,To, -0.6275 
( 15,800)= 9914.5 seconds. Then Var( 8,to,) = 8'1 .S44/12 -0. 12878*. 

Exact confidence intervals for 8 from 6,;) can be 
derived from the sampling distribution of I;,). Such sampling distributions 

Confidence limits. 
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are presented in Sarhan and Greenberg (1962). Two-sided approximate 
IOOy% confidence limits for 8 from the normal approximation for 8(;) are 

(2.17) !( , ) = 0,: ,/exp ( K ,c, ) . 4, ) = 0,: ) . exp ( K,C, ) 3 

where C,=(Var(fl(;,)/8*]'/* from (2.14) and K ,  is the [100(1 +y)/2]th 
standard normal percentile. (2.17) yields one-sided limits when K ,  is re- 
placed by z,, the lO0yth standard normal percentile. 

At 30 kV, the one-sided lower approximate 
90% confidence limit for 8 is /$,,)=9914.5/exp[ 1.282(0.1287)]=8406.5 sec- 
onds. 

For large n ,  Sarhan and 
Greenberg (1962, Sec. 1 ID) give the asymptotically BLUES 8; for 8 that are 
based on the best K = 1, ..., 10 order statistics that minimize the asymptotic 
variance of 0;. The estimator for K = 1 was given above. For K =2,  the 
asymptotically BLUE is 

Insulating fluid example. 

Estimates based on the best K order statistics. 

=0'5232q( 63~,r))+0.'790Y(( Y266,t))' 

and 

Var( 8:) = 1 .2I9O2/n. (2.18) 

These estimators generally employ high sample percentiles. So they are 
usually useful only for complete samples. For large n .  these estimators are 
approximately normally distributed. 

PREDICTION 

Suppose the earliest r of n failure times from a past sample from an 
exponential distribution are 5 , ) .  .. ., y r ) .  The following presents predictors 
and prediction limits for the later order statistics V,,+ I ) .  . . , , q , f )  of the same 
sample and, for an independent future sample of size P I ,  the average (or 
total) and the -order statistics X ( , , ? .  . . , X (,,, ). 8* denotes the BLUE (2.1) for 
the exponential mean 8. The methods are exact for failure censoring. 

jth Observation of the Same Sample 

observation of the same sample is 
Predictor. The predictor f ,  ,) for how long a test will run until the J th 

f, ,)= k'(,,+ 8* [( n - r ) -  ' + ( 11 - r -  I )  ~ f . . . + ( I I  -./+ 1 )  '1. (2.19) 
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This predictor is unbiased, and the prediction error variance is 

+ . . . + ( n - j +  1) -  ' ] 2 + [ ( n - r ) - 2 + ( , 1 - r -  I ) - ?  

+ . "  + ( n - j + l ) - - * ] ] .  (2.20) 

<,,)- y r )  is usually of greatest interest, as it is the remaining time required 
for all sample units to fail. 

Prediction limits for the ( r +  I)th observation. Two-sided 100y% predic- 
tion limits for the ( r +  I)th observation of the same sample are 

where F( 6; u,  h )  is the 1006 th F percentile with a degrees of freedom in the 
numerator and h in the denominator. Note that the degrees of freedom in 
the two limits differ. (2.21) gives a one-sided 100y% prediction limit for 
j : r  + 

Insulating fluid example. At 30 kV, the one-sided 90% upper prediction 
limit for the waiting time to the next failure is~,,,=15,800+{[6O97.3/( 12- 
lo)] F[0.90; 2,2( lo)]} = 15,800+[(6097.3/2)(2.589)]=23693 seconds. 

Prediction limits for the jth observation. Lawless (1971) provides exact 
prediction limits for the j t h  observation of the same sample. The limits for 
the ( r - t  1)th observation are a special case of his results. An upper predic- 
tion limit for the nth observation is related to an outlier test. I f  the nth 
observation is above a 100y% limit, it is a statistically significant outlier at 
the [ 100( 1 - y ) ] %  level. 

An Observation, Mean, or Total of a Future Sample 

when y replaces ( I  +y) /2 .  

Predictor. The predictor for the mean x of an independent future 
sample of size m is 

- x= 8* = [ y ' )  + . . . + y,, i- ( I7 - r ) q ,)I / r ,  (2.27) 

where O* is the BLUE for the exponential mean 6. I f  171= 1. this is the 
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predictor for a single future observation. This predictor is unbiased, and 

If r and rn are larg? (say, both greater than 15). then the distribution of the 
prediction error ( x- x) is approximately normal. 

The prediction of the total X =  X ,  + . . . + X ,  of rn future observations is 
,?=mf=rnB* and V a r ( ~ - X ) = m 2 B 2 [ ( 1 / r ) + ( l / r n ) ] .  

Insulating fluid example. At 30 kV, the prediction of the time to run 
m = I  more breakdown is X=6097.3 seconds, the estimate of the mean 
based on the past sample. 

Prediction limits. Two-sided IOOy% prediction limits for the average x 
of a future sample of m observations are 

where F ( 6 ;  a, b )  is the 1008th F percentile with a degrees of freedom above 
and b below. The degrees of freedom in the two limits differ. (2.24) gives a 
one-sided prediction limit for 2 when y replaces ( 1  +y)/2. Such prediction 
limits for the total X=rnXof a future sample of rn observations are 

X = m x  and x = m x .  (2.25) 

The formulas apply to a single observation; then rn= 1. 

At 30 kV, two-sided 90% prediction limits for a 
single future observation are X =  6097.3/F[( 1 + 0.90)/2; 2( 10). 2( I ) ]  = 
6097.3/19.446= 314 and ,f= 6067.3 * F [ (  1 +0.90)/2; 2( I ) ,  2( lo)] = 6097.3. 
3.4928 = 21,297 seconds. 

jth Observation of a Future Sample 

independent future sample is 

Insulating fluid example. 

Predictor. The predictor of the j t h  ordered observation X ( , )  of an 

i ( , , = B * [ m - ' + ( m -  I ) - ' +  . . .  +(  m-j+ 1 ) -  'I. (2.26) 

This linear predictor is unbiased, and its prediction error variance is 
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minimum (but can be large) and equals 

+ [ H : - ~ + (  m -  1 ) - 2 +  . . + ( m - j +  I ) - - * ] ] .  (2.27) 

Insulating fluid example. At 30 kV, the prediction of the first failure 
time in a future sample of size m =  12 is 2(,,=6097.3(12- ’)=508 seconds. 

Prediction limits for the smallest observation. Two-sided lOOy % predic- 
tion limits for the smallest observation Xf l ,  in an independent future sample 
of tn observations are 

(2.28) 

where F( 6;  a, h )  is the 1006 th F percentile with a degrees of freedom above 
and h below. (2.28) gives a one-sided 100~5% prediction limit when y 
replaces ( 1  +y)/2.  A lower limit ?(,) for a fleet of m units is called a safe 
warranty life or an assurance limit for the fleet. Also, T,,, is a lower limit for 
the life of a series system of m identical components. That is, a producer of 
such systems can “guarantee” that a customer’s one system will survive at 
least a time ?(,, with 10Oy% probability. 

At 30 kV, the one-sided lower 90% prediction 
limit for the smallest of m = 12 future observations is =(6097.3/12) 
/ F [ (  1 -+0.90)/2; 2( 10),2]=(6097.3/12)/19.446=26.1 seconds. 

Prediction limits for the j th  observation. Lawless (1971) presents tables 
for prediction limits for X ( , ,  of an independent future sample from an 
exponential distribution. These limits are related to those for a future 
ordered observation of the same sample. 

OTHER EXPONENTIAL METHODS 

Chapter 3 describes probability plotting methods for graphical analysis of 
singly censored exponential data. Chapter I 1  presents linear methods for 
comparing a number of exponential populations for equality of their means 
with such data. Chapters 8 and 12 presents maximum likelihood methods. 

Insulating fluid example. 
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3. NORMAL AND LOGNORMAL DATA 

The normal and lognormal distributions serve as models for the life, 
strength, and other properties of many products and materials. These 
distributions have two parameters-the (log) mean p and the (log) standard 
deviation u-and are described in Chapter 2. A singly censored sample of ti 

units consists of the r smallest ordered (log) observations y( , ) .  . . . . y r ) .  
’This section presents best linear unbiased estimates (BLUES) and confi- 

dence intervals for the population p. u, percentiles, and reliabilities. The 
methods are exact (approximate) f o r  failure (time) censoring. Also, this 
section presents predictors and prediction limits for future ordered observa- 
tions from the same or another sample. The methods apply to both normal 
and lognormal data, but one works with the (base 10) log values of 
lognormal data. Chapter 3 provides graphical methods for checking how 
well the (log) normal distribution fits such singly censored data. This should 
be checked before one uses the analytic methods below. 

ESTIMATES 

Estimate of p 

Estimate. The B L U E  for p is 

the coefficients u( i ;  ti, r )  are in Appendix A 1 1 for I I  = 2( I ) 12 and r =  2( 1 ) ) I .  

The variance of p* is 

Var(p*)-a’ A , , , , ;  ( 3  2 )  

the variance factors A, , , ,  are in Appendix A1 I .  Sarhan and Greenberg 
(1962) give larger tables for n=2(1)20 and r = 2 ( l ) n .  For r large. p* is 
approximately normally distributed, with mean p and variance (3.2). Section 
5.5 shows how to pool such estimates of the same p. 

Table 3.1 shows singly censored data from 
an accelerated life test of a Class-B electrical insulation for motors. Such 
insulation is assumed to have a lognormal life distributions at each teniper- 
ature. The table gives the base 10 logs of the hours to failure. For 170°C. 7 
of 10 failed. The estimate of the log mean is p* =(0.0244)3.2465 
+ . . . +(0.5045)3.7157=3.6381. Here Var(p*)=0.1167 u 2 .  The estimate of 
the lognormal median is antilog (3.638 1 ) = 4346 hours. 

Class-B insulation example. 
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Table 3.1. Class-B Insulation Log Failure Times 

150°C 17OoC 190°C 220°C 

3.9066+ 3.2465 2.6107 2.6107 

3.9066+ 3.4428 2.6107 2.6107 

3.9066+ 3.5371 3.1284 2.7024 

3.9066+ 3.5492 3.1284 2.7024 

3.9066+ 3.5775 3.1584 2.7024 

3.9066+ 3.6866 3.2253+ 2.7226+ 

3.9066+ 3.7157 3.2253+ 2.7226+ 

3.9066+ 3.7362+ 3.2253+ 2.7226+ 

3.9066+ 3.7362+ 3.2253+ 2.7226+ 

3.9066+ 3.7362+ 3.2253+ 2.7226+ 

~ ~ _ _ _ _ _ _  

+ denotes running time without failure. 

Estimate of (I 

Estimate. The BLUE for u is 

u*= b(1; n ,  r ) ? , )  + . . . + b ( r ;  n ,  r ) y r l ;  (3.3) 

the coefficients b(i;  n ,  r )  are in Appendix A l l  for n=2(1)12 and r=2(l)n.  
The variance of u* is 

(3.4) Var ( u * ) = u *BII,  ~ ; 

the variance factors B,,., are in Appendix A l l .  Sarhan and Greenberg 
(1962) give larger tables for n=2(1)20 and r=2(l)n.  For large r , u *  is 
approximately normally distributed, with mean u and variance (3.4). Section 
5.5 shows how to pool such estimates of the same u. 

For 17OoC, the estimate of the log standard 
deviation is u* =( -0.3252)3.2465 + . . . +(0.6107)3.7157=0.2265. Here 
Var(u*)=0.0989 u 2 .  

Estimate of a Percentile 

Class-B insulation example. 

Estimate. The BLUE for the lOOPth  normal percentiley,=p+zr,u is 

)..; = p *  + Z P U * ,  ( 3 . 5 )  
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where z ,  is the IOOP th standard normal percentile. The variance of -yp* is 

where 

where Clf, is defined by Cov( p*. a*) = C,,. p ’. The C,,, are in Appendix A 1 1 
for n=2(1)12 and r = 2 ( l ) n .  Sarhan and Greenberg (1962)  give a larger table 
of CR.r for n=2( 1)2O and r = 2 (  1)n .  For large r ,  J$ is approximately nor- 
mally distributed, with mean y ,  and variance (3.6). The transformed linear 
estimate for the IOOP th lognormal percentile t , =  antilog( y p )  is 

t ;  = an tilog( j%p* ) . (3.8) 

This estimator is biased. For r large, 1; is approximately normally distrib- 
uted, with approximate mean t ,  and approximate variance 

Var( t ;  ) = [ t ,  In( I O ) ] ’ V ~ ~ (  j,: ) 

= [ t p  In( IO)]  ’( A ,,, + 2 ;  B,, , + 22pc1,, ,. ) 0’. (3.9) 

Class-B insulation example. For 170°C, the estimate of the 10th per- 
centile of the log data is 3.638 1 + ( - 1.282N.2265 = 3.3477. The esti- 
mate of the lognormal 10th percentile is antilog(3.3477)= 2227 hours. Here 
Var(y:o)=u’[O.I 167+( - 1.282)’0.0989+2( - 1.282)O.0260]-0.2126 u 2 .  

Estimate of Reliability 

@[( y-p)/u] failing by (log) age y is 
Estimate. The transformed linear estimate of the fraction F( J’ )=  

F * ( y ) = c P (  :*). (3.10) 

where @( ) is the standard normal cumulative distribution function. 

z * = (  .).‘-p*)/a* (3.1 1 )  

estimates the standardized normal deviate :=( , \ ‘ - p ) / u ,  and p* and u* are 
the BLUES. This estimator is biased. For r large, the cumulative distribution 
of z* is close to a normal one, with mean z=( . r -p) /u  and approximate 
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variance 

(3.12) 

where Var(p*)=A,,., u2,Var(o*)=B,,,,  u 2 ,  and Cov(p*, u*)=C,,., u', which 
are tabulated in Appendix A1 1. The corresponding (biased) estimator for 
reliability at (log) age .v is 

R*( y ) = 1 - @( z * )  = @( - z * ) .  (3.13) 

Class-B insulation example. At 170°C, the estimate of the reliability for 
3000 hours [ J- = log( 3000) = 3.477 I ]  is obtained from :* = (3.477 1 - 
3.638 ly0.2265 = - 0.7 108 and R*(3000) = @(0.7108)= 0.761. 

Estimates Based on Selected Order Statistics 

Previous linear methods for a singly censored sample from a (log) normal 
distribution employ all r observed order statistics in a sample of size t7. 

Linear estimates of p and u based on selected order statistics are sometime5 
useful, particularly for sample sizes outside the tables. Selected order 
statistics provide estimates and confidence limits for percentiles, reliahilities. 
and other functions of p and u as described above. Such estimates arc 
convenient, particularly for large samples and data plots. 

sample median; that is, 
Estimates for p. The BLUE for p based on one order statistic is the 

The median is easy to mark in a plot of a sample for easy comparison with 
other sample medians. Its variance is 

Var(pL;)=D,, a'. (3.15) 

where D,, is tabled by Sarhan and Greenberg (1962). For tl large (say. 
t i >  20), pL; is approximately normally distributed and 

V a r ( p ~ ) = ( n / 2 ) u ' / n =  1.571 a'/n. (3.16) 

based on a complete sample For comparison, the variance of the BLUE 
of size n is Var(Y)=u'/n. 
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Class-B insulation example. For 170°C. the sample median estimates 
p:p;=(3.5775 +3.6866)/2=3.6321. The approximate variance is Var( pT)= 
a’1.571/10=a20.1571. The estimate based on the seven observed values 
has Var(p*)=0.1167 u2 .  The estimate of the lognormal median is antilog 
(3.6321)=4286 hours. The estimate based on the seven observed values is 
4346 hours. 

For large n ,  the asymptotically BLUE for p based on two order statistics 
1s 

where (x )  denotes x rounded up to the nearest integer. For n large. this 
estimator is approximately normally distributed with a variance 

Var( p; ) 2 1.235 a’/n. (3.18) 

Estimates for u. The BLUE for u based on the j t h  and k th  order 
statistics ( j < k )  is 

where EZ( , ,  and E Z , , !  are the expectations of the standard normal order 
statistics. The expectations are tabulated by Sarhan and Greenberg ( 1962) 
and Owen (1962). The variance of this estimator is 

this is in terms of the variances and covariances of the standard normal 
order statistics. which are tabulated by Sarhan and Greenberg (1962) and 
Owen (1962). 

When samples of the same size are plotted. their standard deviations can 
easily be graphically compared. Mark the se1ected.j th  and k th observations 

For 17 large, the estimator is approximately normally distributed and 
of each sample, and visually compare the differences - !/,. 

approximated by 

(3.21) - -  
a2* - . ( } ; , , , - r , , , ) / ( , -L ,~ , , , ,  I )  -, ( , 2 A l ) ) *  

where z6 is the 1008th standard normal percentile. The approximation is 
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valid for large j and n - k .  The approximate large-sample variance is 

where +( ) is the standard normal probability density. 

asymptotically BLUE for u based on two order statistics is 
This variance is minimized f o r j =  (0.0694n) and k =  (0.9306n). Then the 

0.338y( ( 9106n) ) -  0.338y ( 0694n) ).  (3.23) 

Its approximate large-sample variance is 

Var(u$)-0.767 a*/n.  (3.24) 

This estimator works only for nearly complete samples. This estimator 
suggests that the largest available order statistic be used for y a ,  when the 
sample is censored below the 93rd percentile. For comparison, the “best” 
estimator of u is S ,  the standard deviation of a complete sample of size n. Its 
large-sample variance is 

Var(S)-0.500 u*/n .  (3.25) 

Class-B insulation example. For 170”C, the approximate estimate based 
on the first and seventh order statistics (smallest and largest available) is 
a: ~ ( 3 . 7 1 5 7 -  3.2465)/[0.3758-( - 1.5388)]=0.2453. Its variance is Var(a;) 
=u2[0.1579+0.3433 - 2(0.0489)]/[0.3758-( - 1.5388)]*=0.1103 u*.  For the 
BLUE based on all seven order statistics, Var(u*)=0.0989 a’, about 12% 
smaller. 

Sarhan and Greenberg (1962. Sec. 10E) give the asymptotically BLUEs 
for p and u and their variances for the two, three, ..., and ten best order 
statistics. 

CONFIDENCE LIMITS 

The following paragraphs present exact and approximate confidence limits, 
based on BLUEs, for (log) normal distribution parameters, percentiles. and 
reliabilities. The exact intervals were developed by Nelson and Schmee 



3. NORMAL AND LOGNORMAL DATA 267 

(1979). The approximate limits will do  for many practical problems outside 
the ranges of the tables of Nelson and Schmee (1979). Also, the approxi- 
mate limits can be used with pooled estimates described in Section 5.5. 

Confidence Limits for u 

Exact limits. Two-sided exact 1OOy% confidence limits for u are 

?=a*/w*[( i+y)/2;  n , r ] ,  ~?=a*/w*[( l -y) /2;  n , r ] .  (3.26) 

where w*(6; n ,  r )  is the 1008th percentile of the distribution of w * = u * / u .  
These percentiles appear in Table 3.2 for n=2(  1)10, r=2(  I)n, and 1-6 and 
6=.005,.01..025,.05,.1,.5. (3.26) yields a one-sided IOOy% confidence limit 
when y replaces ( I  + y ) / 2  or 1 - y  replaces ( 1  -y)/2.  These limits are exact 
(approximate) for failure (time) censored samples. 

Class-B insulation example. Two-sided 90% confidence limits for u at 
170°C are 0=0.2265/~*(0.95; 10,7)=0.2265/1.559=0.1453 and 6 =  
0.2265/0.52150.4347. The sample is time censored; so the limits are 
approximate. 

Approximate limits. Suppose that u* is any linear unbiased estimator for 
u and Var( u * ) = B u 2 .  Then two-sided approximate lOOy’% confidence limits 
for a are 

(3.27) 

where K ,  i s  the [loo( 1 +y)/2]th standard normal percentile. Mann. Schafer, 
and Singpurwalla ( 1974) give this (Wilson- Hilferty chi-square) approxirna- 
tion. 

Class-B insulation example. For 170°C. o* =0.2265, and Var( u * ) =  
0.0989 u 2 .  Two-sided approximate 90% confidence limits for u are u =  
0.2265/[ 1 -(0.0989/9)+ 1.645(0.0989/9)’/’]3 =O.I45 and 6=0.2265/[i - 
(0.0989/9)- 1.645(0.0989/9)’/’]3=0.416. The pooled B L U E  (Section 5 . 5 )  
o l  u for all test temperatures is 0*=0.2336. and Var(a*)=0.04442 u 2 .  
Corresponding two-sided 90% confidence limits f o r  u are ?=0.2336/( I - 
(0.04442/9) + 1.645(0.04442/9)’”’]’ = 0.171 and 6 = 0.2336/[1 - 
(0.04442/9)- 1 .645(0.04442/9)’”’]7=0.343. 



- n 1, 6: .005 .01 ,025 .05 

2 2  .0065 .012 .036 .072 

3 2  .0075 .015 .035 .069 
3 3  .067 .lo6 .174 .246 

4 2  .0069 .013 .031 .067 
4 3  .069 .099 .161 .227 
4 4  .158 .210 .289 .373 

5 2  .0063 .013 .032 .065 
5 3  .079 .lo2 .164 .237 
5 4  .149 .201 .283 .368 
5 5  .234 .282 .366 .451 

6 2  .0050 .012 .030 .062 
6 3  .067 .093 .152 .216 

.10 .50 .go 

.156 .852 2.057 

.136 .788 2.105 

.354 .916 1.697 

.133 .794 2.180 

.340 .934 1.763 

.481 .976 1.568 

.140 .803 2.212 

.340 .933 1.799 

.471 .976 1.617 

.553 .983 1.508 

.128 .784 2.168 

.321 .907 1.769 
6 4  .153 .181 .259 .343 
6 5  .223 .265 .354 .433 
6 6  .291 .347 ,427 -504 

-: .0056 .011 .030 .067 1 .130 .779 2.219 
.067 .097 .156 .231 .326 .917 1.815 
.138 .196 .271 .345 .449 .958 1.641 
.221 .267 .351 .428 .529 .968 1.528 

8 6  .286 .343 .420 .493 .584 .979 1.462 
8 .335 .385 .470 .534 .623 .989 1.409 
8 8  .395 .445 .511 .578 .660 .Y89 1.357 

- .. 

.444 .943 1.601 

.527 .961 1.510 

.594 .972 1.422 

7 2  .0068 .011 .032 .061 
7 3  .061 .087 .144 .216 
7 4  .138 .183 .267 .336 
7 5  .218 .263 .340 .418 
7 6  .298 .343 .415 .489 
7 7  .349 .401 .470 .537 

.95 .975 .99 .995 

2.450 2.803 3.233 3.488 

2.544 2.938 3.388 3.697 
1.926 2.150 2.412 2.571 

2.669 3.119 3.622 3.961 
2.025 2.260 2.536 2.740 
1.767 1.936 2.128 2.283 

2.682 3.140 3.658 3.909 
2.060 2.305 2.605 2.844 
1.810 1.993 2.205 2.355 
1.671 1.808 1.984 2.094 

2.681 3.153 3.722 4.229 
2.071 2.301 2.589 2.815 
1.813 2.003- 2.213 2.386 
1.671 1.810 1.992 2.106 
1.571 1.689 1.842 1.930 

2.696 3.167 3.728 4.188 
2.074 2.321 2.643 2.846 
1.841 2.024 2.262 -2.446 
1.714 1.857 2.052 2.165 
1.617 1.744 1.885 1.990 
1.536 1.637 1.741 1.839 

2.697 3.17 3.791 4.189 
2.121 2.385 ,.677 2.965 
1.859 2.053 2.290 2.440 
1.700 1.852 2.043 2.174 
1.609 1.724 1.872 1.958 
1.534 1.644 1.764 3 x 8  
1.472 1.574 1.687 1.757 

2.731 3.257 3.801 4.134 
2.096 2.365 2.669 2.852 
L851 2.035 2.273 2.486 
1.706 1.872 2.046 2.181 
1.617 1.742 1.897 2.006 

.126 .778 2.213 

.320 .914 1.803 

.444 .948 1.628 

.517 .966 1.526 

.582 .976 1.461 

.628 .986 1.406 

1.539 1.647 1.776 1.692 
1.482 1.573 1.693 1.801 
1.434 1.535 1.650 1.733 

9 2  .0061 .014 .032 .064 
9 3  .061 .089 ,141 .213 
9 4  .137 .184 .259 .338 
9 5  .213 .260 .338 .412 
9 6  .273 .319 .404 .473 
9 7  .324 .375 .452 “520 
9 8  ,382 .421 .498 .563 
9 9  .425 .469 .535 .598 

10 2 .0068 .013 .032 .060 
10 3 .066 .092 .147 .205 
10 4 .147 .184 -253 .328 
10 5 .214 .257 .333 .408 
10 6 .282 .318 .402 .478 
10 7 .328 ,367 .452 .521 
10 8 .375 .427 .494 .564 
10 9 .426 .473 .535 .598 
10 10 .450 .499 .566 .624 
-- 
n f 6: .005 .01 .025 .05 

2.728 3.208 3.743 4.285 

.131 .757 2.176 

.318 .902 1.803 

.433 .944 1.628 
-514 .963 1.529 
.566 .971 1.466 
.609 .974 1.911 
.641 -978 1.370 
.671 .981 1.337 

.124 .792 2.191 

.311 .YO5 1.813 

.429 .940 1.639 
-509 .966 1.542 
.571 ,977 1.475 
.610 .981 1.420 
.644 .983 1.377 
.674 .987 1.342 
.699 .988 1.312 

.lo -50 .90 

2.108 2.388 2.741 3.024 
1.872 2.066 2.323 2.498 
1.717 1.878 2.074 2.230 
1.616 1.767 1.943 2.041 
1.559 1.672 1.816 1.908 
1.494 1.606 1.724 1.791 
1.457 1.559 1.659 1.735 
1.415 1.508 1.607 1.663 

.95 .975 .99 .Y95 

Froiii Nelwn  and Schmse ( 1Y79) with pcrinission of the Amcrican Statistlcal A s b t ~  
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Confidence Limits for p 

Exact limits. Two-sided exact 100~5% confidence limits for p are 

p = p *  - t *  [ ( I  + y ) / 2 ;  n ,  r ] o * ,  

~ = p * - r * [ ( 1 - y ) / 2 ;  n ,  r ] o * .  
(3.28) 

where t * ( 6 ;  n ,  r )  is the 1006th percentile of the distribution of the “t-like” 
statistic t * = ( p * - p ) / o * .  These percentiles appear in Table 3.3 for the same 
n ,  r ,  and S as in Table 3.2. A r*-distribution for r < n  is not symmetric: that 
is, t* (6;  n ,  r ) #  - t * (1-6;  n ,  r ) .  (3.28) yields a one-sided IOOy% confidence 
limit when y replaces ( 1  +y)/2 or 1 - y  replaces ( 1  --y)/2. 

These limits are exact (approximate) for failure (time) censored samples. 
If limits (3.28) are calculated from the logs of lognormal data, the antilogs 
of the limits are confidence limits for the lognormal median. 

Two-sided 90% confidence limits for p at 
170°C are p=3.6381 -r*(O.95; 10,7)0.2265=3.6381-(0.565)0.2265 =3.5101 
and p = 3.538 1 - t*(0.05; 10,7)0.2265 = 3.638 1 - ( - 0.739)0.2265 = 3.8055. 
The limits for lognormal median life are antilog(3.5101)= 3237 and antilog 
(3.8055)=6390 hours. The sample is time censored; so the limits are 
approximate. 

for p are 

Class-B insulation example. 

Approximate limits. Two-sided approximate 1OOy% confidence limits 

where o* estimates o, K ,  is the [loo( 1 +y)/2]th standard normal percentile, 
and Var(p*)=Ao*. Although sometimes much narrower than the corre- 
sponding exact interval, the approximate one may be wide enough to warn 
when an estimate is too uncertain. The limits are more exact the larger r is. 
(3.29) yields a one-sided confidence limit when K ,  is replaced by z y ,  the 
standard normal IOOyth percentile. 

For 1 70°C, p* = 3.638 1 ,  o* =0.2265, Var( p * )  
=0.1167 02,  and Var(o*)=0.0989 02.  Two-sided approximate 90% confi- 
dence limits for p are ~ 1 3 . 6 3 8 1 -  1.645(0.1 167)’/20.2265=3.5108 and P= 
3.6381 +O.  1273=3.7654. The limits for the lognormal median life are anti- 
log(3.5108)= 3242 and antilog(3.7654)= 5826 hours. A pooled estimate (Sec- 
tion 5.5)  of o could he used, assuming that u has the same value at all test 
temperatures. 

Class-B insulation example. 



Table 3.3. Percentiles f*( 6; n, r )  for Limits for p 

n r 6: .005  .01  .025 .05  _ -  
2 2  -40.68 -20.52 -7.864 -3.486 

3 2  -59.52 -30.09 -12.15 -5.996 
3 3  -4.965 -3.406 -2.328 -1.543 

4 2  -94.47 -46.01 -17.38 -8.244 
4 3  -6.868 -5.079 -3.091 -1.876 
4 4  -2.650 - 2 . 0 2 3  -1.412 -1.061 

5 2  -99.43 -53.21 -21.28 -9.928 
5 3  -7.629 -5 .583  -3.289 -2.164 
5 4  -3.237 -2 .343  -1.578 -1.119 
5 5  -1.892 -1.613 -1.168 -.863 

6 2  -164.75 -68.57 -25.60 -11.90 
6 3  -10.27 -6 .801  -4.077 -2.541 
6 4  -3.642 -2.847 -1.933 -1.361 
6 5  -2.174 -1.774 -1.228 - .972 
6 6  -1.682 -1.360 -1.034 -.786 

7 2  -136.32 -76.22 -28.50 -13.44 
7 3  -11.78 -7.840 -4.645 -2.845 
7 4  -4.237 -3.124 -2.053 -1.440 
7 5  -2 .308  -1.849 -1.343 -1.014 
7 6  -1.614 -1.357 -1.018 -.797 
7 7  -1.316 -1.105 -.872 -.696 

8 2  -193.49 -88.26 -30.88 -14.60 
8 3  -11.22 -7.710 -4.528 -2.986 
8 4  -4.475 -3.338 -2.123 -1.460 
8 5  -2.509 -1.966 -1.380 -1.013 
8 6  -1 .661  -1.381 -1.032 -.798 
8 7  -1.462 -1.206 - .891 -.689 
8 8  -1.212 -1.021 - .806 - .644 

9 2  -166.51 -79.57 -31.64 -15.40 
9 3  -13.03 -9.483 -5.288 -3.139 
9 4  -5.161 -3.667 -2.279 -1.635 
9 5  -2.896 -2.159 -1.494 -1.094 
9 6  -1.868 -1.518 -1.149 -.871 
, ! 3 7  -1.462 -1.231 -.924 -.725 
9 8  -1.247 -1.019 -.827 -.660 
9 9  -1.044 - .974 -.746 -.612 

10 2 -176.92 -95.69 -34.88 -17.22 
1 0  3 -14.20 -9.493 -5.638 -3.596 
1 0  4 -5.044 -3.555 -2.568 -1.77h 
1 0  5 -2.852 -2.228 -1.652 -1.189 
10 6 -1.932 -1.590 -1.173 -.BE9 
# l o  7 -1.524 -1.245 -.954 -.73q 
10 8 -1.231 -1.069 - . E l 7  - .652 
1 0  9 -1.075 -.958 -.738 -.597 
10 10 -.977 -.848 -.704 -.566 
- _  
n r 6: .005  . 0 1  .025 .-5 

.10 .50 2 

-1.752 .007 1.749 

-2.952 -.026 1.037 
-.993 -.009 .967 

-3.946 -.049 .740 
-1.120 -.012 .742 

-.750 -.006 .739 

-4.354 -.066 .669 
-1.284 .002 -626 

-.630 .006 .620 

-5.394 - . lo6  .664 
-1.535 -.008 .592 

-.a65 .002 ,578  
-.660 -.004 .577 
-.579 -.003 .579 

-6.063 -.162 .656 
-1.672 -.024 .546 

- .953 -.002 ,517 
- .695 -.003 .512 
-.576 -.004 .SO9 
-.512 -.005 .508 

-6.495 -.169 .678 
-1.758 -.021 .541 

-.939 -.OOO .500 
-.684 .001 .487 

-.502 - 0 0 2  .481 

-.752 .DO6 .625 

- .558 .003 .480 

-.475 .OOO .481  

-6.837 -.226 .709 
-1.873 -.034 .557 
-1.056 .008 .502 

-.738 .005 .479 
-.598 .008 .470 

-.480 .007 .462 
-.522 .006 .465 

-.462 .007 .461 

-7.497 -.243 .725 
-2.077 -.044 .552 
s 7 1  -.016 .481 

- ,a07 ,000 .445 
-.615 .OOO .429 
- 4 .001 .429 
-.476 - .003 .424 
-.440 -.003 .424 
-.428 .001 .423 

1 0  .50 .90 

.95 .975 .99 .995 

3.523 7.107 17 .32  35.65 

1.990 3.499 7.613 1 4 . 5 3  
1.489 2.127 3.497 5.279 

1.156 1 . 9 8 0  4.339 8 .478  
1 .098  1 .579  2.615 3.851 
1.039 1 .421  2.016 2.561 

.879 1 .226  2.326 3.966 

.874 1.194 1 .739  2.318 

.865 1.164 1.614 1 .953  
,866  1.134 1.589 1.915 

.821 1 .081  1.744 2.519 

.801 1.076 1 . 5 7 0  2.128 

.802 1.059 1 .555  1 .961  

.796 1 . 0 4 5  1 .442  1 .778  

.788 1.009 1 .336  1.592 

, 7 7 7  .909 1 .145  1 .462  
.705 .891 1.145 1 .410  
.697 .887 1.149_-1.372; 
.689 .889 1 .123  1 .412  
.690 .890 1.100 1.324 
.688 .875 1 .097  1.259 

.798 .892 1.032 1.232 

.671 .795 1.007 1.236 

.6't3 .794 1.006 1.196 

.637 .795 1.005 1 .206  

.635 .793 1.008 1.199 
,635 ,794 1.010 1.186 
.635 .796 1.005 1.146 

.822 .907 1.028 1 .138  

.686 .805 .983 1.154 

.639 , 7 8 1  .989 1 .151  

.627 .774 .990 1.139 

.622 .772 .980 1.139 

.621 .772 .973 1.139 

.621 . 7 7 1  .981 1 .116  

.619 .769 .985 1 .107  

.835 .915 1 .037  1.104 

.662 .773 .937 1.059 

.607 .724 .894 1.041 

.591 .706 .884 1.040 

.578  .704 .884 1 .04i  

.565 .702 .887 1.035 

.566 .701 .888 1.024 

.567 .701 .896 1.027 

.566 .700 .884 1.010 

.95 .975 .99  .995 

From Ne lwn  and Schniee ( 1979) with permishion o f  the American Statistical Assoc. 

270 
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Confidence Limits for Percentiles 

Exact limits. Two-sided exact lOOy% confidence limits for the 100Pth 
normal percentile y p = p + z p  a are 

(3.30) 

where t* (6;  P, n ,  r )  is the 1006th percentile of the distribution of t* = 
(y,-p*) /u*.  These percentiles appear in Table 3.4 for P=O.lO, n= 
2(1)10, r=2(l)n,  and 6 and 1 -6=.005,.01,.025,.05,.10,.50. Further tables 
for P= 10-6,.001,.01,.05 are in Nelson and Schmee (1976,1979). The 
confidence limits for p are confidence limits forp 50. (3.30) yields a one-sided 
IOOy% confidence limit i f  y replaces (1 +y)/2 or 1 - y  replaces ( I  -y)/2. 
(3.30) is exact (approximate) for failure (time) censored samples. If limits 
(3.30) are calculated from the logs of lognormal data, the antilogs of the 
limits are confidence limits for the lognormal percentile. 

For 170°C, two-sided 90% confidence limits 
for y are y ,o = 3.6381 + t*(0.05; 0.10, 10,7)0.2265 = 3.6381 +( -2.497) 
0.2265 = 3.0725 and y’ = 3.638 1 + t*(0.95; 0.10. 10,7)0.2265 = 3.638 1 + 
( -0.689)0.2265 = 3.4820. The limits for the lognormal percentile are antilog 
(3.0725)= 1182 and antilog(3.4820) = 3034 hours. 

Approximate limits for low percentiles. Suppose that p* and u* are the 
BLUES for p and u. Also, Var(p*)=Aa*,Var(u*)=Bu’, and Cov(p*, a * ) =  
Ca’. Then a one-sided lower approximate 100~5% confidence limit for the 
IOOPth percentile yp=p+zpu is 

Class-B insulation example. 

(3.31) 

where i p  is the IOOPth standard normal percentile and F(y:  a ,  h )  is the 
IOOyth F percentile with u=2[zP+(C/B)]’/[A - ( C * / B ) ]  degrees of free- 
dom above and b=2/B below. Mann, Schafer. and Singpurwalla (1974) 
state that this approximation is satisfactory for r large (say, greater than 10) 
and P<O.IO. P must be small to insure that [ ( C / B ) + z p ]  is negative. The 
lower limit for the lOOPth lognormal percentile is antilog( yp) .  

For percentiles that are not low, approximate limits like (3.29) can be 
used. Then yp* replaces p* and D of (3.7) replaces A in (3.29). 

Class-B insulation example. For 170°C. p* = 3.6381, u* =0.2265. A = 
0.1 167. B=0.0989, C=0.0260, and y’;()=3.3477. A lower approximate 95% 
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10  2 -60.81 -27.39 -10.07 -5.683 
10 3 -9.675 -6 .990  -4.618 -3.420 
1 0  4 -6 .389  -5.028 -3.792 -2.993 
10 5 -5.258 -4.324 -3 .357  -2.749 
1 0  6 -4.559 - 3 . 7 0 1  -3 .029  -2.569 
10  7 -3.838 -3 .430  -2.853 -2.497 

Table 3.4. Percentiles f *( S: 10, n,  r )  for Limits for jj , , , ,  

-3.326 -1.299 - . 3 4 0  .770 2.744 7 .973  15.67 
-2.572 -1.301 -.758 - .532 -.255 .306 1.018 
- 2 . 3 5 3  -1.297 - .798 -.657 -.528 - .332 - .134 
-2.237 -1.297 - .a01 - .684  - .581  - .426 - .315 
- 2 . 1 8 2  -1.294 -.a02 -.689 - .590  -.488 -.405 
-2.121 -1.293 -.a03 -.689 -.593 - .497 -.428 

n I 3 :  .005 

2 2  -183.9 

3 2  -117.6 
3 2  -17.60 

4 2  -113.5 
4 3  -15.58 
4 4  -9.617 

5 2  -112.9 
5 3  -13.33 
5 4  -7 ,956  
5 5  -5.565 

6 2  -76.15 
6 3  -14 .20  
6 4  -7.414 
6 5  -5.450 
6 6  -/+. 66 3 

7 2  -b8.12 
7 3  -12.82 
7 4  -7 .571  
7 5  - 5 . 5 2 3  
7 6  -4.636 
7 7  -4.282 

8 2  -b3 .58  
8 3  -10.54 
8 4  -6.590 
8 5  -5 .363  
8 6  -4.5 15 
8 7  -4.086 
8 8  -3 .781  

9 2  -56.28 
9 3  -11.84 
9 4  -6.562 
9 5  - 5 . 0 3 4  
9 6  -4.437 
9 7  -4 .103  
9 8  -3.813 
9 9  -3 .624  

- -  .01 

-88.09 

- 5 9 . 4 1  
-12.28 

-56.59 
-11.52 
-7.008 

-48.61 
-9 .911  
-6.415 
-4.871 

-37 .64  
-10 .33  
-5 .870 
- 4 . 6 8 1  
-4 .102  

- 3 2 . 4 1  
-9.162 
- 5 . 8 1 2  
-4 .604  
-4.112 
-3.693 

-29.95 
-7 .628  
-5.172 
-4 .296  
-3.855 
-3.583 
-3 .413  

-30.29 
-8.048 
-5.165 
-4.316 
-3.901 
-3.651 
-3 .408  
-3.228 

.025 

-36.30 

-26.14 
-7.761 

-21.50 
-7.112 
-4.985 

-18.13 
-6.294 
-4.652 
-3.892 

-17.14 
-6.289 
-4.386 
-3.746 
-3.336 

-15.19 
-5 .602  
-4.171 
-3.705 
-3.351 
-3.041 

-13.34 
-4.967 
-3.937 
-3 .443  
-3.220 
-3.019 
-2.851 

-11.44 
-5.062 
-3.775 
-3.446 
-3.210 
-3.080 
-2 .878  
-2.752 

.05 

-16.40 

-13.45 
-5.497 

-11.55 
-5.071 
-3.792 

-9.490 
-4.598 
-3.636 
-3.184 

-8.573 
-4.393 
-3.487 
-3.083 
-2.826 

-8,208 
-4.099 
-3.346 
-3.034 
-2.791 
- 2 . 6 4 1  

-6 .948  
-3.637 
-3.119 
-2  .885 
-2.756 
-2.602 
-2.485 

-6.353 
-3.693 
-3 .043  
-2  .851 
-2.714 
-2.605 
-2 .490  
-2.413 

.10 .50 .90 

-7.869 -1.405 - . 3 2 7  

-6 .786  -1.380 -.475 
-3.691 -1.326 - .473 

-5.934 -1.348 -.537 
-3 .503  -1.313 -.558 
-2 .921  -1.290 - .559  

-4.988 -1.322 - .567 
-3.208 -1.306 -.622 
-2.778 -1.292 - .624 
-2.585 -1.287 -.622 

-4 .669  -1 .313  -.570 
-3.107 -1.303 -.667 
-2 .721  -1.302 - .673 
-2.498 -1.297 - .673  
- 2 . 3 7 1  -1.300 - .678  

-4.340 -1.303 - .561 
-3 .005  -1 .301  - .710  
- 2 . 6 2 2  -1.298 - .722 
-2.417 -1.295 - .723 
-2 .320  -1.288 - .722 
-2.228 -1 .285  - .725 

-3.728 -1.293 - .472 
-2.756 -1.297 -.732 
-2.484 -1.286 -.752 

2.361 -1.287 -.757 1 12.282 -1.287 -.758 
-2.205 -1.284 - .755  
-2.162 -1.290 -.757 

-3.550 -1.314 - .465  
-2.704 -1.312 -.739 
-2.457 -1.310 - . 7 7 2  
-2.318 -1.307 - .777 
-2.232 -1.305 -.779 
-2.177 -1.303 - .780 
-2 .135  -1.300 -.776 
-2.087 -1.298 -.780 

- .118  

-.256 i -. 305 

-.280 
- ,399 - .409 

-.182 
- .463 
-.475 
-.472 

- ,0928 
- ,503 -. 546 
-.547 
- .54b 

- .0160 -. 529 
-.587 
- .595 
-.597 
-.595 

,226 
-.549 
- .609  
- .b29 
-.633 
-.632 
- .630  

.353 
- ,551 
-.640 
- .660 
- .663 
-.665 
-.665 
-.666 

.975 .99 

.0830 .464 

-.0715 .898 
-.154 .0471 

,236 1 .864  
- .252 - .0573 
-.265 - . I24  

,519 2.436 
-.285 - .00405 
-.335 - .173 
-.344 - . 202  

.779 3.427 
- . 3 2 3  - .033? 
- .427 - .28b 
- .440  -.309 
-.438 - . 3 2 2  

.989 4.067 
- . 3 3 0  - .0654 
-.464 - . 289  
- .495 - .361  
- .501 - .381  
-.501 - .376 

1 .645  6.157 
- .309 ,130 
- .468 - .266 
-.507 - .358 
- .514  - .386 
- .514 - .399  
- .514  - .404  

2.089 6 .581  
- .304 ,209 
- .505 - .300 
- .548  - .427 
- .566 - .444 
- , 5 7 0  - .457 
- .572 - . 459  
-.571 -.458 

.888 

.2.072 
.172 

4.305 
.107 

-.0141 

5.585 
,271 

- ,0587 
-. 109 

6.336 
,375 

- .197 
- .219 
- .246 

9.640 
,292 

-.  120 
- .243  
-.294 
- . 2 8 7  

14.50 
.540 -.  110 

-.242 
- .306 
-.336 
- .338  

11.57 
,744 

- .167 
-.326 
- .365 
- .373  - .  381 
-.396 

1 0  8 -3.706 -3.173 -2.752 -2 .401  -2 .091  -1.292 -.a03 - .688  -.598 - . S O 2  - .431  
10  9 -3 .458  -3.118 -2.636 - 2 . 3 5 3  -2.046 -1.288 -.a04 - .689  - .598  - .502 -.O 3 

1 0  10 -3.297 -2.996 -2.561 -2.284 -2.020 -1.290 - .a04 - .693  - .598  - .501  - . 4 ~ i  

Froin Nelson and Schmee ( 1970) with permision of the American Statistical Assoc. 

confidence limit for y ,” is calculated as follows: 

a = 2 [ (  - 1.282)+(0.0260/’0.0989)]’,”0.1 167-(0.02602/0.0989)] 18.9, 

h i  2/O.0989= 20.2, F(0.95; 18.9.20.2) =2.136, 

,i’ 3.3477 + 0.2265(2. I36 - 1 )  [ (0.0260/0.0989) + ( - 1.282)] = 3.0855. 

The lower limit for the 10th lognormal percentile is antilog(3.0855)= 1216 
hours. 
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Confidence Limits for Reliability 

A one-sided lower 95% confidence limit  R( y )  for reliability 
R( y )= 1 -a[( v - p)/u] by (log) age y is obtained as follows. First calculate 
the estimate z*=(  y - p * ) / u *  of the standard deviate. Choose the chart for 
the r and desired confidence. Nelson and Schmee (1977a, 1979) give charts 
for lower 99, 95, 90, and 50% confidence limits for n=2(1)10 and r=2(l)n.  
Figure 3.1 shows the chart for r = 7  and 95% confidence. Enter the chart on 
the axis at z* ,  go to the curve for n, and then go to the probability axis to 
read the lower limit R( y ) .  The corresponding one-sided upper limit for the 
fraction failing F( y ) =  1 - R( y )  is F( y )  = 1 -R(  y ) .  These limits are exact 
(approximate) for failure (time) censored samples. 

Class-B insulation example. The lower 95% confidence limit for the 
reliability at 3000 hours is desired. Then ~~=log(3000)=3.4771 and z* = 
(3.4771 - 3.6381)/0.2265= -0.7108. From the chart for 95% confidence, we 
find the lower limit R(3.4771)=0.56. 

Approximate limits. Two-sided approximate lOOy % confidence limits 
for reliability R ( y )  at (log) age y are calculated as follows. Estimate the 
standardized deviate z = ( y  - p ) / u  with 

Exact limits. 

z* = ( y - p * ) / u  * , (3.32) 

where Var(p*)=Aa2,Var(o*)=Ba2, and cov(p*, o*)=C'a2. Calculate 

Figure 3.1. 
(1979) with permission of the American Statistical Assoc. 

Chart for the lower confidence limit for reliability. From Nelson and Schrnee 
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where K ,  is the standard normal [ 100( 1 +y)/2]th percentile. The two-sided 
limits for R ( y )  are 

R ( y ) =  1 -@(Z),  l t ( y ) =  1 -(a(<). (3.35) 

These limits are more accurate the larger r is. The interval tends to be short. 
For a one-sided IOOy% confidence limit, replace K ,  in (3.34) by z y ,  the 
standard normal lOOy th percentile. 

Class-B insulation example. For 1 70°C, two-sided 90% confidence limits 
for insulation reliability at 3000 hours are calculated as follows: 

?,=log( 3000) = 3.4771, Z*  = (3.4771 - 3.638 1)/0.2265 = -0.7108, 

D* = 0.1 167 + ( - 0.7108)20.0989 + 2( - 0.7108)0.0260 = 0.1297, 

z = - 0.7 108 - 1.645(0.1 297)"2 = - 1.3032, 

Z ,= - 0.7108+0.5924= -0.1 184, 

R(3.4771)= 1 - @( -0.1 184)=0.55, R(3 .4771)~  1 - a( - 1.3032)=0.90. 

PREDICTION 

jth Observation of the Same Sample 

statistic y,, of the same sample is 
Predictor. A simple linear unbiased predictor for the j t h  (log) order 

(3.36) 

where E Z ( , ,  and EZ, , ,  are the expectations of the j t h  and rth standard 
normal order statistics, and (I* is the BLUE for u. This predictor is 
unbiased, and prediction error variance is comparable to that of the best 
linear unbiased predictor given by Schmee and Nelson (1979). Owen (1962) 
and Sarhan and Greenberg (1962) tabulate the expectations, and David 
(1970) lists other tables. 

For 17OoC, the prediction of the log of the 
10th order statistic is ?,,, =3.7157+( 1.5388-0.3758)0.2265=3.9791. Con- 
verted to hours, the prediction is antilog(3.9791) = 9530 hours, the time 
when the test will end. 

Class-B insulation example. 
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Prediction limits. Two-sided approximate 100y% prediction limits for 

? , I  are 

$ j ) = =  ? r ) +  { I / F [ ( ~ + Y ) / ~ ;  h , u ] } ( ~ ~ ( , , - ~ ~ ( r ) ) o * .  

r , , ,+F[( l+y) /2 ,  a , h ] ( E Z , , ) - E Z ( r , ) o * ,  
(3.37) 

where F ( 6 ;  a ,  h )  is the l00yth F percentile with a = 2 (  EZ,,,-EZ,,,)’ 
/[Var(Z,,,)+Var(Z(,,)-2Cov( Z(,), Z( , ) ) ]  degrees of freedom above and 
b=2/B below, where Var(a*)=Bo2. Prediction limits for thejth lognormal 
order statistic are antilog( 3,)) and antilog( $,)). Owen (1962) and Sarhan 
and Greenberg (1962) tabulate the variances and covariances, and David 
(1970) lists other tables. 

Exact prediction limits for y,?) from a singly censored sample from a (log) 
normal distribution are given by Nelson and Schmee (1977b). ytI)  is usually 
of greatest interest, as it is the time required for all sample units to fail. The 
approximate limits (3.37) are based on Mann, Schafer, and Singpurwalla 
( 1974, Section 5.2.4). 

An upper prediction limit for the nth observation is related to an outlier 
test. I f  the nth observation is above a 100y% limit, it is a statistically 
significant outlier at the [loo( 1 - y ) ] %  level. 

For 170°C. calculations of two-sided ap- 
proximate 90% prediction limits for the log of the 10th order statistic are 
u = 2( 1.5388 - 0.3758)*/[0.3443 + 0.1579 - 2(0.0882)] = 3.99 and h = 
2/0.0989 = 20.22, F(0.95: 20.22. 3.99) = 5.830 and F(0.95: 3.99. 20.22) = 
2.863, ~,,,-3.7157+(1/5.830)( 1.5388-0.3758)0.2265=3.7609. and 
3.7 157 + 2.863( 1.5388 -0.3758)0.2265 = 4.4699. Converted to hours. the pre- 
diction limits are antilog(3.7609)=5766 hours and antilog(4.4699)= 29,500 
hours. 

First Observation of a Future Sample 

Class-B insulation example. 

Predictor. For the first (log) order statistic X,,, of an independent future 
sample of size m. the best linear unbiased predictor is 

X( , ) = p * + EZ, ) 0 * , ( 3  3 8 )  

where p* and u* are the BLUES for p and o, and E Z , , ,  is the expectation of 
the first standard normal order statistic of a sample of size nz. This predictor 
is unbiased, and the variance of its prediction error ( i , , ) - X ( , ) )  is 

var( X, 1 )  -- x( 1,)  = (J ’[ A t i ,  r + ’ti, r (  EZ, 1 )  1’ + 2c,, . r E Z ,  i ) + Z,  1 )  ) ] * 

(3.39) 
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where Var(p*) = A, , , ,u2 ,  Var(u*) = B,,,u’, Cov(p*. u*)  = C,,,,u2, and 
Var(Z(,,) is the variance of the first standard normal order statistic of a 
sample of size m .  The prediction of the first lognormal order statistic is 
antilog( i( ). 

For 170°C, the prediction of the first log 
time to failure of a second sample of m =  10 motorettes is 2(,,=3.6381+ 
( -  1.5388)0.2265 = 3.2896. The prediction is then antilog(3.2896)= 1948 
hours. 

Prediction limits. A one-sided lower approximate lOOy % prediction 
limit for XCl, is 

Class-B insulation example. 

$( 1 )  = i( 1 )  - u *  [ F( Y ; a 3 b )  - 11 [ - E Z ~  1 )  - ( cn. r / B n .  r I] 3 
(3.40) 

where F(y; a ,  h )  is the lOOyth F percentile with a = 2 [ E Z ( , ,  + 
(C,,,  r/B,,, , > I 2 / [  A r I .  r -  (C,: r / B , I ,  r )  +Var(Z,,!)] degrees of freedom above and 
b=2/Bn3, below. A lower prediction limit for thi  first lognormal order 
statistic is antilog( .1(,,,). Mann, Schafer, and Singpurwalla (1974) present 
this approximate limit, which they call a 1OOy% warranty period for a future 
lot of size m. 

For 170°C, the calculation of an approxi- 
mate 90% prediction limit is u=2[ - l.5388+(0.0260/0.0989)]2/[0.1 167 - 
(0.02602/0.0989) + 0.34431 = 7.17, b = 2/0.0989 = 20.2, F(0.90; 7.17, 20.2) = 
2.5648, a n d  X ( I )  = 3.2896 - 0.2265(2.5648 - I ) [ -  ( -  1.5388) - 
(0.0260/0.0989)] = 2.8374. Converted to hours, the prediction limit is anti- 
log(2.8374) = 688 hours. 

Class-B insulation example. 

4. 

The Weibull and extreme value distributions serve as models for the life, 
strength, and other properties of many products and materials. The Weibull 
distribution parameters are the shape parameter p and the scale parameter 
a. The corresponding parameters of the extreme value distribution are the 
location parameter h and the scale parameter 6. A singly censored sample of 
n units consists of the r smallest ordered (In) observations 

The methods below provide best linear unbiased estimates (BLUES) and 
confidence intervals for the distribution parameters, percentiles, and relia- 
bilities. The methods are exact (approximate) for failure (time) censoring. 
The methods apply to both the Weibull and extreme value distributions, but 

WEIBULL AND EXTREME VALUE DATA 

. . . , q r ) .  



4. WEIBULL A N D  EXTREME VALUE DATA 277 

one works with the base e log values of Weibull data. Chapter 3 provides 
graphical methods for checking how well a Weibull o r  extreme value 
distribution fits such singly censored data. 

ESTIMATION 

Extreme Value Location A and Weibull Scale a Parameters 

Estimate A .  The BLUE for the extreme value location parameter A is 

A*=a(I;  n ,  r ) y , , +  . . . + a ( r ;  t i ,  r ) y r ) ;  (4.1) 

the coefficients a ( / ;  n ,  r )  are in Appendix A12 for n=2(1)12 and r = 2 ( l ) n .  
The variance of A* is 

Var(A*)=6’ A , ~ , , :  (4.2) 

the variance factors A , , , ,  are in Appendix A12. White (1964) gives a larger 
table of the coefficients and variance factors for n=2(1)20 and r=2(1) t i .  
Lieblein and Zelen (1956) gave the first such table with n=2(1)6 and 
r = 2 ( l ) n .  Section 5.5 shows how to pool such estimates of the same A .  
Mann. Schafer, and Singpurwalla (1974) give a table of the coefficients and 
factors for mean squared error for the best linear invariant estimators for A .  
For r large. A* is approximately normally distributed, with mean X and 
variance (4.2). 

Estimate a. The transformed linear estimator for the Weibull scale 
parameter a IS 

a* = exp( A * ) .  (4 .3 )  

This estimator is biased. For r large, the distribution o f  a* is close to a 
normal one. with mean a and variance 

Insulating fluid example. Table 4.1 shows the base e logs of times to 
breakdown of an insulting fluid at five voltages. The data are to be analyzed 
with the Weibull distribution. For 30 kV. the estimate of the extreme 
value location parameter for the log data is A*  = 0.00660(3.912) 
+ . . . +0.50224(9.668)=8.583, and Var(A*)=0.I0574S2. The estimate of 
the Weihull scale parameter is a* = exp(8.583)= 5340 seconds. 
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Table 4.1. Ln Seconds to Insulating Fluid Breakdown 

25 kV 

6.256 

7.832 

8.309 

9.441 

10.604 

10.83 2+ 

10.876+ 

11.117+ 

11.339 

11.356+ 

11.359+ 

11.367+ 

30 kV 

3.912 

4.898 

5.231 

6.782 

7.279 

7.293 

7.736 

7.983 

8.338 

9.668 

10.282+ 

11.363+ 

35 kV 

3.401 

3.497 

3.715 

4.466 

4.533 

4.585 

4.754 

5.553 

6.133 

7.073 

7.208 

7.313 

- 40 kV 

0.000 

0 .ooo 
0.693 

1.099 

2.485 

3.219 

3.829 

4.025 

4.220 

4.691 

5.778 

6.033 

45 kV 

0.000- 

0 .ooo- 
0.000- 

0.693 

0.693 

1.099 

2.197 

2.565 

3.850 

3.912 

4.007 

4.263 

+ running time without breakdown. 

- breakdown occurred earlier. 

Extreme Value Scale 6 and Weibull Shape /3 Parameters 

Estimate 6. The BLUE for the extreme value scale parameter 6 is 

the coefficients h( i ;  n,  r )  are in Appendix A12 for n=2(1)12 and r=2( l )n .  
The variance of the estimator is 

Var( S * ) = B,. S ; (4.6) 

the variance factors B,,., are tabulated in Appendix A12. White (1964) gives 
a larger table of the coefficients and variance factors for n=2(1)20 and 
r=2(  1)n. Section 5.5 shows how to pool such estimates of the same 6. For 
large r ,  a* is approximately normally distributed, with mean 6 and variance 
(4.6). Mann, Schafer, and Singpurwalla (1974) tabulate the coefficients and 
mean squared errors for the best linear invariant estimators for 6. 
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Estimate 8. The transformed linear estimator for the Weibull shape 
parameter f l  is 

p * = 1 / s * .  (4.7) 

This estimator is biased. For large r, the cumulative distribution of f l*  is 
close to a normal one, with mean P and variance 

Insulating fluid example. For 30 kV, the estimate of the extreme value 
location parameter for the log data is S* = -0.08749(3.912) 
+ . . . +0.52092(9.668)= 1.984. Then Var(S*)=0.08175S2. The estimate of 
the Weibull shape parameter is P* = 1 / 1.984= 0.504. 

Covariance. The covariance of A* and 6* is 

Cov(h*.S*)=C,,,S2; (4.9) 

the covariance factors C,,,,  are tabulated in Appendix A12. White (1964) 
gives a larger table for n=2(1)20 and r=2(  1)n. For large r ,  A* and 6* are 
approximately jointly normally distributed, with the means, variances, and 
covariance given above. Also. for large r ,  a* and p* are approximately 
jointly normally distributed. with approximate means and variances above 
and approximate covariance 

Cov(a*,P*)= -aC,, r .  (4.10) 

Insulating fluid example. For 30 kV, Cov( h*, S*) = - 0.00228S2 from 
Appendix A 12. 

Percentile 

Estimate. The BLUE for the IOOPth extreme value percentiley,=A+u, 
S is 

v; = A *  + u p  6'. (4.11) 

where u,=ln[ -In(l -P)] is the IOOPth standard extreme value percentile. 
The variance of yp* is 

Var ( yp* ) = D,, , S ' . (4.12) 
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where 

For large r ,  yp* is approximately normally distributed, with mean yp and 
variance (4.12). 

The transformed linear estimator for the Weibull IOOPth percentile is 

t f  = exp( y; ) .  (4.14) 

For large r ,  the distribution off: is close to a normal one, with mean r p  and 
variance 

Insulating fluid example. For 30 kV, the estimate of the 10th percentile 
for the log data is y:,=8.583+In[-ln(l -0.10)]1.984=4.118. Here 
Var(yf,,) = 6*[0.10574 + (-2.2504)’0.08175 + 2(-2.2504)( -0.00228)] = 
0.53006’. The estimate of the 10th Weibull percentile is tf0=exp(4.l18)=61 
seconds. 

Reliability 

Estimate. The transformed linear estimate of reliability at (In) age y is 

(4.16) R * ( y ) = exp [ - exp( U* )] , 

where 

U* = ( y -h* ) /6* .  (4.17) 

u* estimates the standardized extreme value deviate u = ( ~ ) - h ) / 6 ,  and A*  
and 6” are the BLUES. This estimator is biased. The corresponding estimate 
of the fraction failing by (log) age y is 

F*( v )  = I -exp[ - exp( .*>I. (4.18) 

For large r ,  u* has a cumulative distribution close to a normal one, with 
mean u = ( y - h )/6 and approximate variance 
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where Var(X*)=A,,, S2,Var(S*)=B,,,. S 2 ,  and Cov(A*,S*)=C,,, S 2 ,  which 
are tabulated in Appendix A12. 

For 30 kV, the estimate of reliability at five 
seconds is R*(5)=exp{ -exp[(ln(5)-8.583)/1.984]} =0.971. 

Estimates from Selected Order Statistics 

Linear estimates based on selected order statistics are sometimes useful. 
They are easy to calculate, they are easy to use with data plots, and they are 
useful for sample sizes outside of the tables for BLUES. Such estimates of 
the extreme value parameters X and S (or the Weibull (Y and p )  can be used 
to obtain estimates and confidence limits for percentiles, reliabilities, and 
other functions of the parameters as described above. Large-sample theory 
for such estimates was given by Dubey (1967). 

For large sample size n ,  the asymptotically BLUE 
for X based on two order statistics is 

Insulating fluid example. 

Estimates for X and a. 

(x)  is x rounded up to the nearest integer. For large n ,  A$ is approximately 
normally distributed, with mean X and 

Var( A;) = I 359  d 2 / n .  (4.21) 

For comparison, the asymptotic variance of the BLUE for A based on a 
complete sample of size n is Var(X*)-1.109 6 ' / n .  The estimate of the 
Weibull scale parameter is a; =exp(h;). 

Insulating fluid example. For 30 kV. the order statistics are (0.3978X 
12)=7 and (0.8211 X 12)= 10. The estimate of X is X:=0.44431(7.736)+ 
0.55569(9.668)=8.810. Its approximate variance is Var( A $ ) -  1.359 6'/12= 
0.1132 S2. The estimate of the Weibull scale parameter is a:=exp(8.810)= 
6700 seconds. 

The B L U E  for 6 based on thej th  and k th order Estimates for 6 and p. 
statistics ( j c k )  is 

where EY,,  and EU,,, are the expectations of the standard extreme value 
order statistics, which are tabulated by White (1967) for I T =  I (  1)5O(5)100. 
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The variance of 62 is 

Var( 6;) = 62( EL&) - E q , ) )  - " V( n ; k ,  k ) + V( n ; j ,  j )  - 2V( n;  j ,  k ) I .  
(4.23) 

where V( n;  k ,  k ) ,  V( n;  j ,  j ) ,  and V( n;  j, k )  are the variances and covariance 
of t h e j t h  and k th  standard order statistics. These variances are tabulated 
by W h t e  (1967) for n =  1(1)50(5)100 and by Mann (1968), who gives the 
second moments for n = 1( 1)25. 

For large sample size n, the asymptotically BLUE for 6 based on two 
order statistics is 

(4.24) 

For large n ,  6; is approximately normally distributed, and 

Var( 62)=0.9163 6 ' / n .  (4.25) 

For comparison, the asymptotic variance of the BLUE for 6 based on a 
complete sample of size n is Var(6*)=0.6079 6 2 / n .  The asymptotic ef- 
ficiency of the ST relative to 6' is 100(0.6079/0.9163)=66%. The estimate of 
the Weibull shape parameter is ,L?r= I/&;. 6,. is suitable only for nearly 
complete samples. This estimators suggests that the largest available order 
statistic be used in place of 1; 9737n)i when the sample is censored below the 
97.37th percentile. 

Insulating fluid example. The needed order statistics are (0.9737 X 12) = 
12 and (0.1673X 12)=3. At 30 kV, the 12th order statistics was not 
observed, and 6; cannot be used. For 35 kV, 6; = 0.33457( 7.3 13 - 3.7 15) = 
1.204. Its approximate variance is Var(6;)=0.9163 S2/12=0.07638 6'. The 
estimate of the Weibull shape parameter is p; = 1 / 1.204 = 0.83 1. 

CONFIDENCE LIMITS 

The following paragraphs present exact and approximate confidence limits, 
based on BLUES, for Weibull and extreme value distribution parameters, 
percentiles, and reliabilities. The exact limits were developed by Mann and 
Fertig (1973) and are expressed in terms of the best linear invariant 
estimates (BLIEs) A** and 6** for the extreme value parameters A and 6. 
The BLIEs are described in Section 5.5. The approximate limits will do for 
many practical problems outside the range of their tables. Also. the ap- 
proximate limits can be used with pooled estimates (Section 5.5). 
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Confidence Limits for the Extreme Value Scale 6 and Weibull Shape /3 
Parameters 

Exact limits. Two-sided exact lOOy% confidence limits for 6 based on 
the BLIE 6** are 

where w * * ( E ;  n ,  r )  is the IOOEth percentile of the distribution of w** =6**/6. 
These percentiles appear in Table 4.2 for n=3( 1)12, r = 3 ( l ) n ,  and 1 - E  and 
~=0.02,0.05,0.10,0.25,0.40,0.50. Tables are given by Mann and Fertig 
(1973) for up to n=16 and by Mann, Fertig. and Scheuer (1971) up to 
n = 25. 

Such limits in terms of the BLUE 6* are 

!=a*/{ ( I + B ) w * * [ (  1 + y ) / 2 ;  n ,  r ] } ,  

&=ti* / {  ( I  + B ) w * * [ (  I -y) /2;  n ,  r ]  } , 
(4.27) 

where Var(6*)=Ba2. 
Corresponding limits for the Weibull shape parameter p are 

p= 1/6=(1 +B)w**[(l -y) /2;  n ,  r ] P * ,  

(4.28) 
f i = l / S = ( l + S ) w * * [ ( l + y ) / 2 ;  n . r ] p * .  

The limits above yield one-sided lOOy% confidence limits when y replaces 
( 1  +y)/2 or 1 - y  replaces ( I  -y)/2. The limits are exact (approximate) for 
failure (time) censored data. 

Insulating fluid example. For 30 kV, 6* = 1.984 and B = 0.08 175. For a 
two-sided 90% confidence interval. S = 1.984/{(1 + 0.08175)~~**[(1 + 
0.90)/2; 12, lo]} = 1.984/[(1.08175)1.40] = 1.310 and 8 = 1.984/ 
[( 1.08 175)0.53] = 3.460. Corresponding limits for the Weibull shape parame- 
ter are f i=  1/1.310=0.763 and /3=1/3.460=0.289. The interval does not 
enclose I ,  a statistically significint indication that the distribution is not 
exponential. 

Suppose that S* is any linear unbiased estimator for 
the extreme value scale parameter 6, and suppose that its variance is 

Approximate limits. 



n 

3 

4 

- 

5 

6 

7 

8 

9 

10 

I 1  

12 

Table 4.2. Percentiles of the Distribution of 
I - 
3 

3 
4 

3 
4 
5 

3 
4 
5 
6 

3 
4 
5 
6 
7 

3 
4 
5 
6 
7 
8 

3 
6 
5 
6 

8 
9 

r 

3 
4 
5 
6 
7 
n 
9 

i n  

3 
4 
5 
6 
7 
8 
9 
10 
1 1  

3 
4 
5 
6 
7 
8 
9 
10 
I 1  
12 

0.02 

0.11 

0.10 
n. 70 

- 

0.09 
0.18 
0.28  

0.09 
0.18 
0.25 
0.33 

o.nn 
0.17 
0.25  
0.32 
0.38 

0.OR 
0.16 

0.30 
0.23 

n. 36 
0.42 

0 . 0 8  
0.16 
17.23 
0.30 
n, 3s  
0.40 
0.45 

0.08 
0.16 
0.23 
0.29 
0.34 
0.39 
0.43 
0 . 4 ~  

0.08 
0.15 
0.22 
0 .28  
0033 
n.38 
0.42 
0.46 
0 .30  

0,on 
0.16 
0.23 
0.29 
0.34 
0.38 
0.42 
0.45 
0.49 
0.53 

0.05 - 
n.ir 

n.15 
n. 28 

0.14 
0.26 
0.36 

n. 14 
0.25 
0.33 
0.41 

0.14 

0.32 
0.39 

0.24 

0.46 

0.13 

0.31 
0.23 

0.38 
0.44  
0.50 

0.13 

0.38 

0.23 
0.31 

0.43 
0.  b8 
0.53 

0.13 
n, 23 

0.37 
0.42  

0.51 

0.30 

0.47 

0.55 

1-1.13 
0.22 
0.30 
0.36 
0.41 
0.46 
0.50 
0.54 
0.57 

0.13 
0.22 
0.30 
0.36 
0.41 
0.46 
n. 50 
0.53 
0.56 
0.60 

0.10 

0 . 2 5  

0.22 
0.37 

- 

0.71 
0.34 
0.44 

0.21 
0.32 
0.42 
0.50 

0.20 
0.31 
0.40 
0.41 
0.54 

0.19 
0. 31 
0.39 
0.46 
0.52 
0.58  

0.19 
0.31 
0.39 
0.45 
0.50 
0.55 
0.60 

0.19 
0.30  
0 . 3 8  
0 .45  
0.50 
0 . 5 4  
0.59 
0.62 

0.19 
O o  30 
0.38 
0.44 
0.49 
0.54 

0.61 
0.64 

0.19 

0.38 
0.44 
0.50 
0.54 
0.57 
0.61 
0.6b 
0.66 

0.5r 

0.30 

0.25 

0.47  

0.39 
0.54 

- 

0.37 
0.50 
0.60 

0.36 
0.49 

0.65 
0. 5n 

0.35 
0 .48  
0 .56  
0.63 
0.69 

0.35 
0.47 
0.55 
0.62 

0.71 
0.61 

13.34 

0.60 

O14? 
0.54 

0.66 
0 .10  
0.74 

0.34 
0.46 
0.54 

0.65 
0.69 
0.13 
0.76 

0.60 

n.34 
0.46 
0.54 
0.60 
0.65 

0.71 
0.74 

0 . 6 ~  

0.11 

0.34 
0.46 
0.54 
0.60 
0.65 
0. bA 
0.11 
0.74 
0.16 
0 .78  

0.40 - 
0.5r 

0 . 5 3  
0.6R 

0.51 
0.64 
0.73 

0.50 

0.71 
0.67 

0.77 

0.49 
0.62 
0. ro 
0 . 7 5  
0.80 

0.49 
0.61 
0 .68  
0.74 
o.rn 
0.82 

0.49 
0.60 
0.6A 
0.73 
0.77 
n.ni 
0 .84  

0.48 

O.6R 
0.61) 

0 .73  
n . r i  
o.no 
0.~3 
0.R) 

O.4R 
0.60 
9 - 6 1  
0.73 
o.r6 
0.80 
0.82 
0.d5 
0.87 

0.60 
O . 4 R  

0.67 
0.72 
0.76 
0.79 
0.82 
0.84 
0 .86  
n.87 

0.50 - 
n.67 

0.64 
0.71 

noic 
0 . 8 2  

0.61 

0.61 
0.72 
0.19 
0.8s 

13.59 
n,ri 
n. rn 
0. A4 
0.R7 

n. 59 
n, ro  
0.77 
0.87 
0.86 
0.A9 

0.59 
0.70 
0.77 
n.ni 
0.85 
n,ue 
17.90 

n, 59 
n. 7n 
0.77 
0.81 
0.84 
17.87 
0.~9 
n.91 

0,59 
0.10 
0.76 
0.81 
0.~4 
near 
0.89 
0.91 

n05n 
0.10 
0.76 
0.81 
0.~4 
n.87 
1-1.89 
n.90 
n.97 
0.93 

0.93 

0 .60  - 
0.78 

0.75 
O.Rh 

n.  73 
n.84 
0.91 

n. r 2  
n.n2 
O,R9 
0.93 

o.rI 
o.ni 
o.nn 
0.92  
0.95 

0.70  
n.ni 
o.nr 
0.91 
n.94 
0.96 

0.10 
0 ,  no 
0.86 
n.9n 
0.93 
0.95 
0.97 

0.71 
0.80 
O.Rb 
0.90 
0.92 
0.93  
0.96 
n.9R 

0.71 
n.80 

11.90 
0.92 
n. 95 
0.96 
0.98 
0.99 

0.86 

0.70 
O.RO 
0.86 
0.90 
0.93 
0.95 
0.96 
0.97 
0.98 
0.99 

0 . 7 5  - 
0.99 

0.96 
1.05 

n. 94 
1 .n3 
1 .01 

0.93 
1.01 
1.05 
1.07 

0.92 
I .01 
1.05 
1.07 
1.m 

0.92 
1.00 

I .on 
i .nn 

1-05 

1.09 

0.92 

1.04 
1.06 

1 .OR 

1 ,on 

I .n7 

1 .ne 

0.93 
],no 

i.nr 
1.08 
i.nn 
1.09 

1.04 
1 .n6 

0.97 
1.00 
I .04 
1.07 
i.nn 
1.m 
1.09 
1.09 
1.09 

0.92 
1.00 
1.04 
I .Oh 
l t O R  
1.0R 
i .n9 
1.09 
1.09 
1.09 

0.90 

1 .33  

1.37 
1 I33 

1.37 
1.35 
1.33 

- 

1.37 
1.33 
1.33 
1.31 

I .30 
1.37 
1.33 
1.32 
1.30 

1.31 
1.33 
1.33 
1.32 

1.2d 
I .  I n  

1.31 
1.33 
1.33 
1.31 
1.30 

1.27 
1.m 

1.31 
1.73 
I033 
1.32 
1.31 
1.79 
I . Z R  
1.26 

1031 
1.34 
1.34 
1.33 
1.32 
1.31 
l.29 

1.25 
I . z r  

1.30 
1.33 
1.33 
1.33 
1.31 

1.29 

1 *27 
1.74 

1.30 

\.zn 

0.95 

1.56 

1.56 
1.53 

1.59 
1 * 5 5  
1.50 

1.59 
1.55 
1.51 
1.46 

1.56 
1.54 
1.32 
I.4H 
1.43 

1.58 
1.55 
1.52 
1.49 
1 .45 
1.41 

- 

I.5H 
1.55 
1.52 
1.48 
1.46 
1.42 
1.39 

1.59 

1.53 
1.49 
1.46 
1.43 
1.40 
1.38 

1.57 

1.64 
I .58 
1.54 
1.51 
1 . 4 8  
1.45 
1.42 

1.36 

1.56 
1.55 
1.53 
1.49 
1.47 
1.45 
1.43 
1.40 

1.35 

I . 3n  

1.31 

0.98 

\ .Hh  

1.90 
1 . 1 7  

1.93 
1.87 
1.70 

1.97 
1 .R4 
1.73 
1.64 

I .97 
1.87 
1.75 
1.67 
1.60 

- 

1.95 
1.83 
I .  76 
1.69 
1 * 6 7  
1.56 

1.92 

1.76 
1.70 
1.65 
1.59 
1.53 

1.~4 

1 .Y7 

1.77 
1. I 1  
1.66 
I . A O  
1 .55 
1.51 

I .ns 

1.97 
1.87 
1 .82 

1.67 
1.6) 
1.58 
1 .b3 
1.49 

1.87 
1.82 
I I 8  
1.11 
1 .66 
1 .6l 
1.58 
1055 
1.51 
1 .46 

1.73 

~ 

From N R Mann, R E Schafer, and N D Singpumalla, Method, for Stuiisrltul 
Atiul, VJ of Rrliuhiht~ utid Life Dam,  Wiley. New York, 1974, pp 222-225 
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Var(S*)=BS2. For example, 6* may be a pooled estimate (Section 5.5). 
Then two-sided approximate lOOy% confidence limits for 6 are 

(r =a*/ [  1 - ( B/9) + KY(  I I / ~ ) ” ~ ] ~ ,  8 =S*/[ 1 - ( B/9) - K Y (  B/!J)”~]’ ,  

(4.29) 

where K ,  is the [ 100( 1 +y)/2]th standard normal percentile. Mann, Schafer. 
and Singpurwalla ( 1974) justify this (Wilson-Hilferty chi-square) approxi- 
mation. The limits for the Weibull shape parameter p are 

(4.30) 

Insulating fluid example. For 30 kV, S* = 1.984, and Var( 6*)=0.08175 S2. 
The two-sided approximate 90% confidence limits for S are 6- 1.984/[ 1 - 
(0.08175/9)+ 1.645(0.08175/9)’’2]3= 1.312 and 8 -  1.984/[1--(0.08175/9) 
- 1.645(0.08 175/9)’/2]’ = 3.41 8. The limits for the Weibull shape parameter 
are 0- 1/3.418=0.293 and p= 1/1.312=0.762, not consistent with p= 1, 
stated by engineering theory. 

Confidence Limits for the Extreme Value Location X and Weibull Scale a 
Parameters 

Exact limits. Two-sided exact lOOy% confidence limits for A based on 
the BLIEs A** and S** are 

x=x**- t ** [ ( l + y ) / 2 ;  n , r ] S * * ,  A=h**- t **  [( 1 - y ) / 2 ;  IZ, r]S.**. 

(4.31) 

where [ * * ( E ;  n ,  r )  is the IOOEth  percentile of the distribution of t**  =( A** - 
X)/S**. These percentiles appear in Table 4.3 for n=3(  1)12, r=3(  I ) n ,  and 
1 - E  and ~=.02,.05,.10..25,.40,.50. Tables are given by Mann and Fertig 
(1973) up to n = 16 and by Mann, Fertig, and Scheuer ( 197 1 ) up to n = 25. 

Such limits in terms of the BLUES A* and S* are 

h=A*-{C+t**[( l+y) /2 ;  n , r ] } ( l + B ) - ’ S * ,  

(4.32) 
r;=X*-{C+t**[(l-y)/2;n.r]}(l+B)-’S*, 

where Var(G*)=BS2 and Cov(A*,6*)=CS2 



Table 4.3. Percentiles of the Distribution of t * *  = ( A * *  - A)/6** 
n - 

3 

4 

5 

6 

1 

8 

9 

10 

1 1  

12 

3 -9.35 -5.22 -3.04 -1.22 -0.50 -0.19 0.06 0.40 0.N6 1.70 1.16 

5 -1.63 -1.08 -0.13 -0.31 -0.06 0.08 0.22 0.47 0.89 1.20 1.64 
4 -3.13 -1.94 -1.24 -0.50 -0.16 0.03 n.in 0.45 0.88 1.72 1.74 

3 -10.54 -6.12 -3.12 -1.36 -0.69 -0.32 -0.04 0.33 0.15  1.02 1.39 
4 -3.69 -2.39 -1.59 -0.61 -0.25 -0.05 0.12 0.3A 0.76 1.03 1.47 
5 -2.05 -1.36 -0.91 -0.38 -0.11 0.04 0.11 0.40 0.77 1.04 1.41 
6 -1.29 -0.91 -0.64 -0.28 -0.06 0.01 0.19 0.41 0.17 1.04 1.39 

3 -13.00 -1.39 -4.45 -1.87 -0.89 -0.48 *0.16 0,Zh 0.68 0.90 1.70 
4 -4.61 -2.95 -1.94 -0.84 -0.36 -0.13 0.05 0.37 0.66 0.89 1.20 
5 -2.48 -1.59 -1.10 -0.48 -0.11 -0.02 0.12 0.34  0.66 0.89 1.71 
6 -1.54 -1.04 -0.13 -0.32 -0.10 0.03 0.15 0.35 0.67 0.90 1.20 
? -1.09 -0.19 -0.56 -0.26 -0.Ob 0.05 0.11 0.36 0.68 0.90 l.lI) 

3 - ~ 4 . 3 6  -8.15 -5.01 -2.14 -1.04 -0.51) -0.21 . 0.21 0.61 0.08 1.12 
4 -5.36 -3.30 -2.111 -0.99 -0 .43  *o,t9 0.02 0.30 0.64 0.133 1.07 
5 -0.18 -1.86 -1.25 -0.56 -0.22 -0.05 0.10 0.32 0.62 0.87 1.01 
6 -1.80 -1.20 -0 .83 -0.36 -0.12 0.01 0.13 0.33  0.63 0.82  1.08 
1 -1.28 -0.88 -0.61 -0.27 -0.01 0.04 0.15 0.33 0.63 0.82 1.08 
8 -0.9~ -0.10 -0.50 r 0 . 2 ~  -0.05 0.06 0.16 0.34 0.63 0.132 1.01 

3 -15.61) -9.12 -5.66 -2138 -l*ll -0.66 -0.78 0.20 0.66 0.86 1.06 
6 -6.31 -3.78 92.41 -1.08 * 0 * 5 0  ~0.24 -0e01 0.28 0.61 0.19 1.00 

6 -2.01 -1.38 -0.94 -0.41 -0.15 -0qOl 0.11 0.30 0.51 0.16 0.99 
5 -3.19 -2.10 -1.40 -0.63 -0.26 -0.08 0.08 0.30 0.58 0.16 0.98 

1 -1.43 -0.99 -0.10 -0.31 -0.10 0.02 0.13 0.31 0.57 0.16 0.99 
8 -1.08 -0.16 -0.55 -0.25 -0.01 0.04 0.14 0.31 0.58 0.16 0.99 
9 -0.81 -0.64 -0.47 -0.21 -0.05 0.05 0.15 0.32 0.58 0.16 0.98 

3 -17.45 
4 - 6 . 5 4  
5 -3.56 
6 -2.21 
1 -1.56 
8 -1.20 
9 -0.9? 
LO -0 .80 

3 -18.52 
4 -7.26 
5 -4 .00  
h - 7 . 4 5  
1 -1.10 
8 -1.30 
9 -1.06 

11 -0.75 
10 -0.~7 

3 -19.08 
4 -1.44 
5 -4.17 
6 -2.63 
1 -1.91 
8 -1.41 
9 -1.15 
10 -0.91 
1 1  -0.78 
12 -0.69 

-9.98 
-4.17 
-2.31 
-1.51 
-1.m 

-0.10 
-0.60 

-0.86 

-10.68 
-4.51 
-2.58 
-1.67 
-1.21 
-0.92 
-0.16 
-0.63 
-0.55 

-11.23 
-4.81 
- 2 . 1 2  
-1.83 
-1.32 
-1.00 
-0 ,  no 
-0.67 
-0.58 
-0.53 

-6.05 

-1.56 
-2.70 

-1.03 
-0.17 
-0.62 
-0.50 
-0.44 

-6 .42 
-2.95 
-1.15 
-1.16 

-0.66 
-0.54 
-0.46 
-0 .42  

-0.135 

-6.92 
-3.17 
-1.8R 
-1.27 
-0.92 
-0.71 
-0.58 
-0.48 
-0.43 
-0.39 

-2 .51 )  
-1.22 
-0.73 
-0.48 
-0.15 

-0.23 
-0.20 

-2.76 
-1.37 
-0.81 
-0.53 
-0.40 
-0.30 
-0 .25  
-0.21 
-0.19 

- 0 . 2 1  

-3.03 
-1.47 
-0.89 

-0.42 
-0.33 

-0 .60  

-0.27 
-0123 
-0.20 
90.19 

-1.29 
-0.w 
-0.31 
-0.19 
- 0 .  l? 
-Ch,O8 
-0 .  06 
-0.04 

-1.41 
-0.66 
-0 .31  
-0.22 
-0.15 
-0.11 
-0.08 
-0.06 
-0.0s 

-1.98 
-0.?4 
-0.42 
-0.26 
-0.17 
-0.17 
-0.09 
-0.07 
-0.06 
- 0 ,  0s 

-0.76 
-0.28 
-0.12 
-0.04 
-0.00 
0.02 
0.04 
0.04 

-n.es 
-0.36 
-0.16 
-0.07 
-0.02 

0 .00  
0.02 
0.03  
0.03 

- 0 . 3 4  

0.05 
0.09 

-0.04 

0.11 
0.12 
0.13 
0.14 

-0.42 
-0.10 
o,ni 
0.06 
0.09 
0.10 
0.11 
0.12 
0.12 

-0.97 -0.49 
-0.40 -0.1~ 
- 0 . m  -0.01 
-0.10 0.05 
-n.oi 0.08 
-0.01 0.09 
0.01 0.10 
0.02 0.11 
0.03. 0.11 
0.03 n.11 

0.11 
0.77 
0.28 
0.28 

0.28 

0.29 

0.13 
0.24 
0.76 
0.76 
0.7h 
0.70 
0 . 7 h  

0.21 

0.21) 

0.29 

0.71 

0.10 

0 . 2 4  
0 , ? 5  
0.25  
0.75 
0.25  
0.75 
0 . 2 5  
0.75 

n , z i  

0.66 
0.00 
0.56 
0.54 
0.54 
0.53 
0.54 
0.54 

0.h5 
O.5R 
0 . 5 4  
0.57 
0.50 
0.50 
0.50 
0.50 
0.50 

0.64 
0.58 
0.53 
0 .  5n 
n. 48 
0.48 

0.47 
0 .41  

0.47 

0.47 

0.87 
0.17 
0.72 
0.71 
0.70 
0.71 
0.71 
0.71 

0.87 
0.15 
0.69 
0.66 
0 . h 5  
0 .h5 
0.65 
0 . h 5  
0.65 

0 . m  
0.75 
0.68 
0 . 6 4  
0.62 
0.62 
0.62 
0.02  
0.62 
0.62 

From N.  R. Mann, R. E. Schafer, and N. D. Singpurawalla, Methodsfor Siaiisticul 

1.07 
0.96 
0.93 
0.97 
0.93 
0.91 
0.93 
0.92 

1.07 
0.93 
0.88 
0.89 
0 . 8 h  
0.86 
0.86 
0.86 
0.85 

1.10 
0.97 
0.84 
0.81 
0.80 
0.19 
0.80 
0.80 
0.80 
0.79 

Atiulr.sis of Reliuhility and Lrfe Data, Wiley, New York, 1974, pp. 226-229 
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Corresponding limits for the Weibull scale parameter are 

c=exp(X),  i i=exp( i )  

The limits above yield one-sided IOOy% confidence limits when y replaces 
( 1  +y)/2 or 1 - y  replaces (1 - y ) / 2 .  The limits are exact (approximate) for 
failure (time) censored data. 

Insulating fluid example. For 30 kV, A* =8.583, S* = 1.984, B=0.08175, 
and C =  -0.00228. For a two-sided 90% confidence interval, 5 ~ 8 . 5 8 3  - 

(-0.00228 + 0.62)(1.08175)~'1.984 = 7.405 and = 8.583 - (-0.00228 - 
0.67)( l.08l75)-'1.984=9.816. Corresponding limits for the Weibull scale 
parameter are c=exp(7.405)= 1640 and 6=exp(9.816)= 18,300 seconds. 

Approximate limits. Two-sided approximate lOOy % confidence limits 
for X are 

{ -0.00228 + t**[( l  + 0.90)/2; 12.101) ( 1  + 0.08175)-'1.984 = 8.583- 

where Var(A*)=Aa2 and K ,  is the [100(1 +y)/2]th standard normal per- 
centile. The limits are more exact the larger r is, and the approximate 
interval tends to be too narrow. S* may be a pooled estimate (Section 5.5) 
for 6. 

For 30 kV, A *  = 8.583, 8* = 1.984. and A = 
0.10574. Two-sided approximate 90% confidence limits for A are = 8.583 - 
1.645(0.10574)'/* 1.984=7.522 and i= 8.583 + 1.061 = 9.644. Corresponding 
limits for the Weibull scale parameter are e=exp(7.522)= 1850 and ii= 
exp(9.644) = 15,400 seconds. 

Confidence Limits for Percentiles 

Insulating fluid example. 

Exact limits. Two-sided exact IOOy% confidence limits for the l00Pth 
extreme value percentile y p =  A + u,S are 

y p = h * * - r * * [ ( 1 + y ) / 2 ;  P, n , r ]  a**,  
(4.34) 

yp=x**-1**[ (  I -y) /2;  P ,  1 1 ,  r] a**.  

where A * *  and 8** are the BLIEs and t**(  E ;  P ,  1 1 ,  r )  is the lOOeth percentile 
of the distribution of t * * = (  A * *  - yp ) /S* * .  These percentiles appear in 
Table 4.4 for P=O.lO, n=3(1)12, r=3(1)n, and I - E  and ~ = . 0 2 ,  .05. . lo, 



n - 

3 

4 

5 

6 

1 

8 

9 

10 

1 1  

I - 

3 

3 
4 

3 
4 
5 

3 
4 
5 
6 

3 
4 
5 
6 
1 

3 
4 
5 
6 
1 
8 

3 
4 
I, 
6 
1 
8 
9 

3 
4 
5 
6 
1 
8 
9 
10 

3 
4 
5 
6 
1 
8 
9 
10 
1 1  

12 3 
4 
5 
6 
1 
A 
9 
10 
11 
12 

0.02 - 

0.15 

0.78 
0 .m 

0.78 
0.91 
0.91 

0 . 1 3  
1.00 
1.02 
1 .D2 

0.64 
1.04 
1 .nn 
1.08 
1.08 

0.49 
1.04 
1.11 
1.13 
1.12 
1.12 

0.42 
1 .oh 
1.17 
1.19 
1.19 

1.19 
1.19 

0.09 
0.99 
1.17 
1.20 
1.71 
1.21 
1.21 
1.21 

-0.09 
0.97 
1.18 
1.24 
I .25 
1.25 
1.75 

1.25 
1.25 

-0.38 
0.95 

1.26 
1.28 

1.21 
1.27 
1.21 
1.28 

1.20 

1.28 

0.05 0.10 0.25 0.40 0.50 0.60 0.75 0.90 0.95 0.98 - - - - - - - - _ _ _ _ -  

1 . 1 0  1.43 2.18 7.88 3.40 4.06 5.50 8.99 13.16 20.93 

1.16 1.49 2.18 2 . 8 2  3.33 3.9h 3.38 9-03 13.07 70.21 
1.16 1.46 7.06 2.60 7.99 3.41, 4.40 6 - 4 7  8.39 Il.h6 

1.18 1.51 2.17 2.79 3.27 3 . 8 1  5.74 8.78 12.58 '70.38 
1.23 1.51 2.09 7.61 7.99 3.44 4.40 6.49 8.48 1 1 . 1 1  
1.23 1.49 7.02 2.49 2.82  3.20 3.93 5 1 4 8  6.73 8.66  

1.18 1.5- 2.15 2.73 3.18 3.74 4.9~ 8 . 7 4  11.74 1 8 . 6 5  
1.28 1.51, 2.10 1.60 7.98 3.41 4.30 h.33 H.18 11.39 
1129 1.54 7.05 2.50 7.82 3.71 3.94 5.47 he73 8.89 
1.27 1.53 2001 2.42 7.10 3.04 3.61 4.8h 5.83 7.31 

1.18 1.53 2.13 2.66 3.08 3rhO 4.79 7 .80  11.12 17.54 
1.31 1.58 2.10 2.91  2.91 3.33 4.71 hmlh 1.89 10.90 
1.33 1.51 Z i O h  7.49 2 . 8 0  3.15 3187 5.36 h e 6 8  8.44 
1.32 1.56 2.03 2.42 7.70  3.01 3.63 6 - 8 6  S.82  7.23 
1.37 1.55 2.03 2 . 3 1  2.62 7.90 3.44 4.46 5.25 6.31 

1.13 1.52 2.11 2.67 3.01 3.48 4.62 7.51 10.67 16.36 

1.36 1.60 7.08  2.49 2.78 3.12 3.82 5.28 6.50 8.62 
1.36 1.59 7.05 2 . 4 3  7.11 3.02 3.62 4.83 5.83 7.1H 
1.36 1.58 2.03 2 .38  2.64 2.93 3.46 4.49 5.31 6.40 

1.33 1-60 2.10 2.56  7.88 3.77 4.10 5.96 7.79 10.75 

1.36 1.58 2.01 2 . 3 4  7.57 3.32 4.21 4.90 5.134 

1.17 1.51 2.09 2.57 2.95 3.40  4.43 7114 10.21 15.61 

1.41 1.63 7.08 2 . 4 1  7.76 3.08 3.76 5.13 6 . 3 4  8.13 
1.41 1.62 2.06 2.43 7.70 7r99 3.59 4.74 5.67 7.0h 
1.41 1.62 2104 2.39 2.64 2.91 3.45 4148 5.78 6.46 
1.40 1.61 2.02 2.36  2.59 2.84  3 . 3 4  4.26 4.95 5 . 9 4  
1.40 1.60 2.00  2 - 3 3  2.55 2178 3.27 4.04 4.66 5.51) 

1.36 1.61 2.10 2.52 7.81 3.71 4.00 s.rr 7.39 10.26 

0.99 1.46 7.05 2.51 7.84 3.21 4.75 6.75 9.36 14.88 
1.34 1.62 7.08 2 . 4 ~  7 . 1 7  3.13 3.90 5.56 7.17 9 - 6 0  
1.42 1.66 2.07 2 . 4 5  7.71 3.02 3.67 5.00 6.13 13.07 
1.43 1.64 7-05 2.41 7 .66  7.94 3.53 4.67 5.59 6-99 
1.43 1.64 2.04 2.38 7.67 2 .88  3.41 4 .41  5.18 h.79 
1 . 4 3  1.63 2.02 7.35 7.58 7.83 3.31 4.27  4.91 5 - 0 3  
1.42 1.63 2.61 2.37 7.54 2.11 3 . 2 7  4.03 4.63 5.51 
1.42  1.62 1.99 2 ; 3 0  2 . 5 0  7.72 3.13 3.86 4.41 5.16 

0.90 1 . 4 2  2.01 7.45 2.77 3.17 4.07 6.41 9.11 14.47 

1.43 1.64 2.05 7.41 2.68 2.98 3.60 4.90 6.07 7 . 8 3  
1.35 1.61 2.06 2.44 7.73 3.06 3.19 5.46  7 . 0 4  9.98 

1.45 1.64 2.04 2.38 7.63  7.91 3.4h 4 .5R 5.52 6.96 
1.45 1.64 2.03 2.35  2.59 7.86 '4.36 4.36 5.16 6.34 
1.45 1.64 2.01 2.33 7.56 7.80 3 . 7 8  4.15 4 . 8 7  5 - 8 7  
1.44 1.64 2.00 2.31 2.53 2.76 3.21 4.01 4.h3 5.54 

1.45 1.63 1.98 7.78 7.46 7.hl 3.06  3.76 4.76 4.94 
1.44 1.64 1.99 7.79 2.49 7.71 3.14 3.87 4.44 5.23  

0.15  1.37 1.98 2 .41  7.71 3.08 3.89 h.nn 8.40 12.96 
1.34 1.60 2.05 2 . 4 2  7.69 3.00 3,h7 S.11 h.60 9.111 
1.44 1.66 2.05 2.40 7.65 7.93 3.57 4.72 5.79 7.35 
1.46 1.61 2.04 7.38 2.hZ 7.88  3.39 4.41 5.31 h.61 

1.41 1.66 2.02 2.34 7.54 2.18  3.72 4.06 4 . 1 5  5.71 
1.47 i.6~ 2.03 2 . 3 6  2.58 2.82 3.30 4.21 4.98 5.09 

1.46 1.66 2.01 2.31 7.52 7.74 3.16 3.94 4.53 5.40 
1.41 1.65 2.00 2 . 3 0  7.49 2.70 3.11 3.87 4.37  5.11 
1.46 1.64 2.00 7.28 2 .41  7.61 3.05 3 . 1 2  4.23 4 . R R  
1.47 1.64 1.99 2 . 2 1  7.44 2.h3 3.00 3.67  4.07 4.68 

From N. R. Mann, R. E. Schafer, and N. D. Singpurawalla, Methods for Statistical 
Analysis of Reliability and Life Data, Wiley, New York, 1974, pp. 230-233. 
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.25, .40. S O .  Further tables for P=O.OI  and 0.05 are given by Mann and 
Fertig (1973) for n up to 16 and by Mann, Fertig, and Scheuer (197 1 )  for n 
up to 25 and the same r and F values. The confidence limits (4.31) for X are 
confidence limits for .v 632. 

Such limits in terms of the BLUEs A* and 6* are 

yp=h*-{C+l**[( I+y) /2 ;  P , n , r ] ) ( l + B )  - 'a * ,  
(4.35) 

j P = A * -  { C + Z * * [ ( I - ~ ) / ~ ;  P . ~ . ~ ] } ( I + B ) - ' ~ I * ,  

where Var(A*)=Ba2 and C O V ( X * , ~ * ) = C ~ ~ .  
Corresponding limits for the IOOP th Weibull percentile f,=exp( y p )  are 

(4.36) 

The limits above yield one-sided lOOy% confidence limits when y replaces 
( 1  +y)/2 or 1 - y  replaces (1  -y)/2. The limits are exact (approximate) for 
failure (time) censored data. 

Insulating fluid example. For 30 kV, A* =8.583, 6*= 1.984, B =0.08175. 
C = -0.00228, and y:,, =4.118. For a two-sided 90% confidence interval, 
.y.10 = 8.583 - { -0.00228 + [**[(I + 0.90)/2; 0.10,12.10])(1 + 0.08175) - '  
j.984=8.583-( -0.00228+4.37)(1.08175)-'1.984=0.572 and = 8.583 - 
( - 0.00228 + 1.47)( 1.08 175) ~ '1.984 = 5.89 I .  The corresponding limits for the 
Weibull percentile are =exp(0.572)= 1.8 and r l o  =exp(5.891)=362 sec- 
onds. 

Approximate limits for low percentiles. Suppose that A *  and 6* are the 
BLUEs for X and 6, and Var(X*)=AS2, Var(G*)=B6*, and Cov(X*,6*)= 
C8*. Then a one-sided lower approximate IOOy'% confidence limit for the 
IOOP th extreme value percentile is 

(4.37) 

where u p  =In[ -In(l- P ) ]  and F ( y ;  a ,  h )  is the IOOyth F percentile with 
a = 2[ u p  +( C / B ) I 2 / [  A - (  C ' / B ) ]  degrees of freedom above and h = 2/B 
below. Mann, Schafer, and Singpunvalla (1974) state that this approxima- 
tion is satisfactory for large r (say, greater than 10) and P <O.IO.  P must be 
small to insure that [ ( C / B ) +  u p ]  is negative. The lower limit for the IOOPth 
Weibull percentile is ! p  =exp( y,). 
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For percentiles that are not low or high, approximate limits like (4.33) can 
be used. Then yp* replaces A*, and D of (4.13) replaces A in (4.33). 

Insulating fluid example. For 30 kV, A* = 8.583, 6* = 1.984, A =O. 10574, 
B=0.08175, and C =  -0.00228. The estimate of the 10th percentile is 
y:,=4.118. A lower approximate 95% confidence limit for y is calculated 
as follows: 

a = 2[ - 2.2504t ( - 0.00228/0.08 1 75)12/ 

[O. 10574 - (( - 0.00228)2/(0.08 175))] = 98.2, 

b= 2/0.08 175 = 24.46, F(0.95 ; 98.2,24.46) = 1.792, 

y ,,,~4.118+1.984(1.792-1)[(-0.00228/0.08175)+( -2.2504)]=0.538. 

The lower limit for the 10th Weibull percentile is t ,,-exp(0.538)= 1.7 
seconds. 

Confidence Limits for Reliability 

Exact limits. Tables for exact limits for reliability based on BLUES or 
BLIEs have not been developed. The following method could be used in 
principle to obtain limits for the proportion F ( y )  below y for an extreme 
value distribution. Two-sided lOOy% confidence limits I: and for F( y )  are 
the solutions of 

the t** percentiles are tabulated for a few values F=.01,.05,.10,.632. In 
practice, these F values are too widely spaced for accurate inverse interpola- 
tion to obtain F and F; moreover, limits outside the range .01 to .632 
require extrapolation in F and would be inaccurate. Direct tables are 
needed. 

Corresponding limits for the proportion below t for a Weibull distribu- 
tion are those above where y = In( t ). 

The limits above yield one-sided 100~5% confidence limits whcn y replaces 
( 1  +y) /2  or 1 - y  replaces (1 -y)/2. The limits are exact (approximate) for 
failure (time) censored data. 
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Approximate limits. Two-sided approximate 1 OOy % confidence limits 
for reliability R ( y )  at (In) age y are calculated as follows. Estimate the 
standardized deviate u = (  y -A) /& with 

u* =( y - A*) /&*.  (4.39) 

where Var(h*) = Aa2, Var(S*)= B&*, and Cov(h*,&*)=C6*. A* and 6* 
may be pooled estimates (Section 5.5). Calculate 

D* = A  + u*‘Bt 2u*C, (4.40) 

where K ,  is the standard normal [loo( 1 +y)/2]th percentile. The two-sided 
limits for R( y )  are 

I-( ( y ) = exp[ - exp( 6 )] , R (  y ) = exp [ - exp( )] . (4.42) 

These limits are more accurate the larger r is. The interval is shorter than an 
exact one. For a one-sided IOOy% confidence limit, replace K ,  above by zy, 
the standard normal lOOy th percentile. Corresponding limits for the frac- 
tion failed F( y ) are r( y ) =  1 - d( y ) and F( . v )  = 1 - R( y ). Mann, Schafer, 
and Singpurwalla ( 1974) present more accurate approximations. 

For 30 kV, A* = 8.583, 6* = 1.984. A =0.10574, 
B=0.08175, and C =  -0.00228. A lower one-sided 95% confidence limit for 
reliability at five seconds is calculated as follows: 

Insulating fluid example. 

y =  In(5) = 1.609, u* = (1.609 - 8.583)/ 1.9841 - 3.5 15, 

D* = O .  10574-f ( - 3.5 15)20.08 I75 + 2( - 3.5 15)( -0.00228) = 1.132. 

G= - 3.5 I5 + 1.645( 1.132)”*= .- 1.765. 

1_((5)=exp[-exp( - 1.765)]=0.843. 

PREDICTION 

Exact prediction limits based on a singly censored sample from a Weibull or 
extreme value distribution have been developed for the smallest observation 
of an independent future sample by Mann and Saunders (1969). Mann 
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(1970b), and Lawless (1973). The following approximate limits for the j t h  
observation of the same sample come from Mann, Schafer, and Singpur- 
walla (1974). 

jth Observation of the Same Sample 

statistic q,) of the same sample of size n is 
Predictor. A simple linear unbiased predictor for the j t h  (In) order 

$ I ) =  I;,)+ ( E q j , - E q r ) ) 6 * *  (4.43) 

where E q , ,  and E q , ,  are the expectations of the j t h  and rth standard 
extreme value order statistics in a sample of size n ,  and S*  is the BLUE for 
6. Tables of these expectations are given by White (1967) for n= I (  1)50(5)100, 
and David (1970) lists other tables. The predictor for thejth Weibull order 
statistic is q , ,=exp(  8,)) .  I;,,, is usually of greatest interest, as i t  is the time 
required for all sample units to fail. 

For 30 kV, the simple unbiased predictor for 
the last (In) observation y , * ,  is ?,2)=9.668+( 1.057-0.41 l)l.984= 10.950. 
The corresponding prediction of the last Weibull order statistic is tlz)= 
exp( 10.950) = 56,900 seconds. 

Two-sided approximate lOOy % prediction limits for 

Insulating fluid example. 

Prediction limits. 

T , )  are 

where F(r;  a, 6)  is the IOOrth F percentile with a = 2 ( E q , ,  - EO;,,)'/ 
[Var(q/,)+Var(L(,,)-2Co~(~,,,L(~,)] degrees of freedom above and h = 
2/B,,, below, where Var( 6") = B,,, r6z . David (1970) lists tables of EL:,,.  
Var(q,)) ,  and Cov(u(,,, qr, ) .  Prediction limits for the j t h  Weibull order 
statistic are exp( 3,)) and exp( I;,,). The limits above yield one-sided 1OOy% 
prediction limits when y replaces ( 1  + y)/2. The limits should be a better 
approximation for failure censored data than for time censored data. In the 
limits, a and b are reversed. 

An upper prediction limit for the nth observation is relalcd to an outlier 
test. If the n t h  observation is above a 1OOy% limit, it is a statistically 
significant outlier at the [loo( 1 -y) ]% level. 



4. WEIRLRL AND EXTREME VALUE DATA 293 

Insulating fluid example. For 30 kV, a one-sided upper approximate 90% 
prediction limit for y12) is calculated as follows: 

a=2(  1.057 -0.41 1)2/(0. 1525 + 0.1249 - 2 X0.0687) = 5.96, 

b = 2/0.08 175 = 24.5, F(0.90; 5.96,24.5) = 2.022, 

Y;,,,=9.668+2.022(1.057-0.41 l)l .984= 12.260, 

i;iz,=exp( 12.260)=211,000 seconds. 

Under the assumption of a Weibull distribution, the largest censored (In) 
value, 11.363+, does not exceed the prediction limit and is not an outlier, 
but it would be one if observed and greater than 12.260. 

First Observation of a Future Sample 

statistic X ( , ,  of an independent future sample of size m is 
Predictor. The best linear unbiased predictor for the first (In) order 

i( I, = A *  - s*u,, , (4.45) 

where A* and S* are the BLUES for A and S. u,,=ln(m)+0.5772. and 
0.5772 . . . is Euler's constant. The variance of its prediction error ( itl)- 
X(l,> is 

Var( X( I )  - X ,  = a 2 (  A,,. + ui,B,,, - 2 u,,,C,, , r +  1.6449), (4.46) 

where Var(h*) = An.,S2,  Var(S*) = B,,, ,S2, Cov(A*, a * ) =  Cn4,S2, and 
1.6449.. . =a2/6.  The predictor for the first Weibull order statistic is 

For 30 kV, the prediction of the first In order 
statistic in a future sample of m =  12 is k,,,=8.583- 1.984[1n( 12)+0.5772]= 
2.508. The prediction of the Weibull observation is exp(2.508) = 12.3 sec- 
onds. 

Prediction limits. A one-sided lower approximate lOOy%, prediction 

exp( j( I ) ). 

Insulating fluid example. 

limit for X,,, is 

i ( i , - ~ *  [ F( Y; 0 7  b )  - '3 [urn,- ( cn, r / ~ n .  r )] 7 (4.47) 
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where F ( y ;  a, 6 )  is the IOOyth F percentile with a=2[In(m)+0.5772- 
( ~ , , , r / B , , . r ) ] 2 / [ ~ , ~ , ~ - ( C ~ , r / B ~ , r ) +  1.64491 degrees of freedom above and 
b=2/B,,, ,  below. A lower prediction limit for the first Weibull order 
statistic is exp( T(,,). Mann, Schafer, and Singpurwalla (1974) present this 
approximate limit, which they call a “lOOy% warranty period” for a future 
lot of size m. Fertig, Meyer, and Mann (1980) table exact prediction limits 
for m =  1, n=5(5)25, r=3,5(5)n,  based on BLIEs. 

For 30 kV, the calculation of the lower ap- 
proximate 90% prediction limit is a = 2[ln( 12) + 0.5772 - (-0.00228/ 
0.08175)]2/(0.10574 - [(-0.00228)’/0.08175] + 1.6449) = 181, h = 
2/0.01875=24.46, F(0.90; 181,24.46)= 1.552, =2.508- 1.984( 1.552- 
I)[ln( 12)+0.5772-( -0.00228/0.08175)]= -0.876. The lower limit for the 
first Weibull observation is exp( - 0.876) = 0.42 second. 

METHODS FOR THE WEIBULL DISTRIBUTION WITH A KNOWN 
SHAPE PARAMETER 

Sometimes data come from a Weibull distribution with a shape parameter f i  
whose value is assumed to be known. For example, the distribution may be 
exponential ( f i =  1) or Rayleigh (p=2) .  Then one needs to estimate the 
Weibull scale parameter a. Methods for the exponential distribution can be 
applied to such data. Transform each Weibull observation Y to U= YP, 
which comes from an exponential distribution with mean 8=ap. Estimates 
and confidence limits for 6 and functions of it can then be transformed into 
ones for the Weibull distribution. The same approach can be applied to data 
from an extreme value distribution with a known scale parameter; however, 
that situation seldom occurs in practice. The p value may come from 
previous or related data or may be a widely accepted value for the product, 
or even an engineering guess. Of course, the accuracy of this approach 
depends on the accuracy of the p value. Different /3 values may be tried to 
assess their effects on the results. 

Insulating fluid example. 

5. ORDER STATISTICS 

This advanced section derives theory for order statistics from a continuous 
parent distribution. I t  includes (1) the distribution and moments of an order 
statistic, (2) the joint distribution and moments of pairs or any number of 
order statistics, (3) the distribution of the random fraction of the population 
below an order statistic, (4) a theoretical basis for probability and hazard 
plotting, and ( 5 )  the theory for best linear unbiased estimators. 

Suppose that the 11 independent observations come from a continuous 
cumulative distribution F( ). Denote the ordered observations by Y ,  4 Y, 
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SG . . . G T I .  Although stated in terms of complete samples, the following 
theory applies to samples singly failure censored on the right or left or both 
sides. Theory for multiply censored samples is more complicated and is not 
well developed; an exception, Mann (l970a) presents theory and tables for 
the Weibull distribution and all multiple censorings for samples up through 
size n=9. Further information on order statistics is given by David (1970), 
Sarhan and Greenberg (1962), and Harter (1977b). 

5.1. 

Suppose random samples of size n are repeatedly taken from a continuous 
cumulative distribution F( y ) .  In each sample, the I th order statistic r, has a 
different value. So has a distribution. This distribution depends on F( y )  
and n and i; it is given below. Later i t  is used to justify probability and 
hazard plotting and best linear unbiased estimates. 

Cumulative distribution. This paragraph derives G,( y )= P{ Y,Gy},  the 
cumulative distribution of y. The event { Y G y )  is equivalent to the event 
that at least i observations fail below y .  There are n independent observa- 
tions and each has a probability F( y )  of failing below y .  So P( Y , G ~ }  is the 
binomial probability of i or more observations below .v9 namely, 

Distribution of an Order Statistic 

Probability density. Suppose the parent distribution has a probability 
is density f( y ) .  Then the probability density of 

This comes from differentiating G , ( y ) .  Figure 5.1 motivates (5.2) as follows. 
The event that Y, is in the infinitesimal interval y to .y + d ) ~  corresponds to 
the event that i -  1 observations fall below y ,  one falls between y and y + d y ,  

and n - i  fall above y + d v .  Each of the n independent observations can fall 
into one of those three intervals with approximate probabilities F( j,). 
f ( y ) d y ,  and 1 - F ( y ) .  The trinomial probability of the above event is 
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1-1 HERE 

Figure 5.1. Motivation for thc densit) 
Y i  of order atatistic )’, 

approximately 

This motivates (5.2). 

order statistics of a sample of size 4. 
Figure 5.2 depicts the density of a parent distribution and those of the 

Exponential. from an exponential distribution with failure rate X has 

The first-order statistic has an exponential distribution 

Its failure rate is nh;  that is. the failure rales of the I I  sample units add. 

Figure 5.2. Pirrent / and order {tatistic denstics g, 
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Normal. from a normal distribution with mean p and standard 
deviation u has 

where @( ) and @( ) are the standard normal cumulative distribution and 
probability density. 

Extreme value. Y, from an extreme value distribution with location and 
scale parameters h and 6 has 

Moments. Moments of an order statistic are defined like any other 
moments. For example, the expectation (or mean) of Y, is 

E y = I r n  yg,(  v ) d v  
'x 

The variance of Y, is 

Suppose a distribution has location and scale parameters p and u. Let 
U , = (  y - p ) / u  denote the standardized ith order statistic; i t  comes from the 
standardized parent distribution with p=O and u =  1.  Then 

E Y , = ~ + (  E U , ) ~ .  V a r ( ~ ) = o ' V a r ( I / , ) .  ( 5 . 8 )  
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The relationshps are useful, since there are tables of moments of the V ,  for 
various distributions; such tables are listed by David (1970). These stan- 
dardized moments depend on just i, n ,  and the parent distribution. For a 
symmetric parent distribution, such as the normal distribution, 

So only half of the expectations and variances need to be tabulated. 

sample of n = 2  from a standard normal distribution. For U , ,  
Example. T h s  example derives the moments of the order statistics of a 

= 2 !  M 

+(u) [ l -@(u) ]  du= -2/  u$(u)@(u)du, 
E L ’ , = / - _ u m  -0c 

since /Ymu$(u) du=O, the population mean. Integrate by parts to get 

= - ( l , / ~ ) ” ~ =  -0.564, 

where TI / ’ [$ (  u)]’ is the normal density for a mean of 0 and a variance of 2. 
By symmetry, ELI2= - EU, =( 1,’~)’’’. Similarly, 

u 2 2 $ ( u ) [ l - @ ( u ) ]  du 

~ ~ + ( u ) d u + 2 / ~ ~  u 2 $ ( u ) [ i - @ ( u ) ]  d u = l ,  

00 

00 

since the first integral is 1 (the population variance) and the second integral 
is zero (the integrand is an odd function). Then 

Var ( U ,  ) = E U: - ( E U ,  )2 = 1 - ( 1 / V  ) 0.682. 

By symmetry, Var( U z )  = Var( U ,  ). 

Exponential. For an exponential distribution with mean B ,  

Var(Y)=B* ?+-----+ 1 + ) .  (5.10) ( n1 ( n -  1) ( n - i +  
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Each sum has i terms. Sarhan and Greenberg (1962) tabulate these mo- 
ments. 

Normal. For a normal distribution with mean p and standard deviation 
u, (5.8) gives the mean and variance of r, in terms of those of the 
standardized U,. David (1970) lists tables of EU, and Var(U,). 

Extreme value. For an extreme value distribution with location and 
scale parameters X and 6, (5.8) gives the mean and variance of in terms of 
those of the standardized U,. David (1970) lists tables of ECr, and Var(U,). 

Other distributions. David (1970) and Sarhan and Greenberg (1962) give 
distributions and moments of order statistics from a number of other 
distributions, including the logistic, gamma, rectangular, and right triangu- 
lar distributions. 

Suppose that r, is the i th order statistic of a 
sample of size n from a continuous cumulative distribution F ( y ) .  The 
distribution of PI=  F( y), the random proportion of the distribution below 
y, is used for probability plotting positions and nonpararnetric statistical 
methods. The cumulative distribution of PI is 

Distribution of e : . = F ( y i ) .  

(5 .1 1) 

This binomial probability comes from the fact that there are n independent 
observations, each of which falls below the lOOpth percentile F - ' (  p )  with 
probability p .  Then y falls below F- ' (  p )  if I or more observations fall 
below F - ' (  p ) .  (5.1 1) is the binomial probability of this event. 

For n =  I ,  P = F ( Y )  has a standard (0,l)  uniform distribution, and 
V( p ) = p , O < p <  I .  Thus, for any n ,  the PI are the order statisticsof a sample 
from a uniform distribution. Suppose that 1; is used as a one-sided lower 
confidence limit for the IOOpth percentile of the parent distribution. Then 
(5.1 1) gives the confidence level of the interval. 

The probability density of PI is 

a beta distribution. This comes from differentiating (5.1 I )  with respect to p 
or from (5.2) evaluated for a uniform parent distribution with density 
o( p ) =  I ,OapGl .  
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The mean and variance of PI are 

E P , = I / ( ~ +  I ) ,  Var( P, )=i (n - i+  I)/[(.+ I ) ' ( n+2) ] .  (5.13) 

The covariance of P, and P, ( i c j )  is 

cov( PI , PJ ) = I ( I7 -.; + 1 )/ [ ( n + 1 ) 2 (  n + 2 ) ]  . (5.14) 

The joint distribution of PI and P, is given by (5.17), where the parent 
distribution is uniform. Suppose .d confidence 
limits for the IOOpth percentile of the parent distribution. rhen the joint 
distribution of PI and P, can be used to obtain the confidence level of the 
interval, given by (7.10) of Chapter 6. 

a commonly 
used plotting position for r, on probability paper. A : l r rcx  one is the 
distribution median P ; .  that is, the solution of y (  P,)=0.50. Johnson (1964) 
tabulates such jT,. 

Certain properties of order statistics from 
an exponential distribution are useful. Suppose Y , S  . . . Y,, are the order 
statistics from an exponential distribution with mean 8. The differences 
D, = Y, - Y, , ( i- I . .  . . . n and Y,=O) are all statistically independent. Also, 
D, has an exponential distribution with mean 8 / ( n -  i+ 1) .  A motivation for 
this follows. At the time Y, _ ,  of the (i- 1)th failure, the ( n - i +  1)  running 
units each have a conditional exponential distribution of further time to 
failure with mean 8. I t  follows that the earliest further time to failure, 
D, = 1; - Y, ~ I ,  has an exponential distribution with mean @/( t i - ; +  1). Each 
D, is independent of Dl , . . . ,  D ,_  ,. since the distribution of D, does not 
depend on them. So all the D, are independent of each other. 

Hazard plotting positions. The properties of exponential order statistics 
provide a basis for hazard plotting positions. The following proof for 
complete samples extends to multiply censored samples (Nelson, 1972b). 
The distribution of P= F( Y )  for a single observation is uniform on [0,1]. 
Then one can show that the distribution of H = -In[ 1 - F( Y )] is standard 
exponential (with mean 1). So the corresponding cumulative hazard values 
HI= -In[ 1 -F( Y,)] are order statistics from a standard exponential distribu- 
tion. By (5.10), EH,=( l /n )+ [ l / (n - l ) ]+  . . .  + [ l / ( n - i +  I ) ] ;  this ex- 
pected value is the cumulative hazard plotting position for y .  

The following material presents simple ap- 
proximations to the distributions and moments of order statistics from large 

and 5 are used as two 

Probability plotting positions. The mean EP, = i/( n + 1 ) 

Exponential order statistics. 

Asymptotic distributions. 
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samples. These approximations are useful for obtaining approximate confi- 
dence intervals and approximate best linear unbiased estimators. Suppose a 
large sample of size n comes from a continuous cumulative distribution 
Q Y ) .  

The cumulative distribution function G,( y )  of the i th order statistic Y, is 
close to a normal one with mean EY, and variance Var( Y,) when i and n-r 
are both large. Also, then approximations for the mean and variance by 
propagation of error (Hahn and Shapiro, 1967. Chap. 7) are 

E Y , = F - ' [ r / ( n f l ) ] ,  Var(Y,)-[f(EY,)] ' i ( n - i ) / n 3 ,  (5.15) 

where f (  y ) is the probability density of the parent distribution. 
For example, consider the ith order statistic from an exponential cumula- 

tive distribution F( y ) =  1 -exp( - y / B ) .  Here F - I( P ) =  -Bln( 1 - P )  and 
f (  y ) = (1 /B)exp( - y /B ) .  So, using n = n + 1,  

EY,= -8In[(n-i+ I ) / ( ~ + I ) ] ,  (5.16) 

When i and n - i  are large, the differences D,= Y,- Y,. , of adjoining 
order statistics are approximately statistically independent. Also, then the 
distribution of 0, is approximately exponential with mean E Y, - E Y, ~ , = 
1 / f (  E Y, ~. , ). For example, consider order statistics from an exponential 
distribution with mean 0. Then 0, has an approximate exponential distribu- 
tion with mean l/((I/B)exp[B1n[(n-i)/(11+ I)]/S]} = B ( n +  l ) / ( n - i ) .  The 
properties of the D, provide approximate confidence limits (Chapter 7) for a 
distribution scale parameter as shown by Mann, Schafer, and Singpurwalla 
( 1974, Sec. 5 .2 .3~ 1 ). 

When n is large. the extreme order statistics Y ,  and y, have one of the 
three types of extreme value distributions: ( I )  the smallest (largest) extreme 
value distribution for certain parent distributions with an infinitely long tail 
on the left (right), (2) the Weibull (or exponential) distribution when the 
parent distribution is bounded on the left (right), and (3)  the Cauchy-type 
extreme value distribution for certain parent distributions with an infinitely 
long tail on the left (right). Gumbel (1958) and Galambos (1978) describe 
these distributions and asymptotic theory in detail. 

5.2. 

Suppose that random samples of size I I  are repeatedly taken from a 
continuous cumulative distribution F( j,). From sample to sample. the i th 

Joint Distribution of a Pair of Order Statistics 
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a n d j t h  order statistics have a 
joint distribution. This distribution depends on F ( y )  and n ,  i ,  and;; i t  is 
given below. Later, joint moments are used to justify best linear unbiased 
estimates of location and scale parameters. 

Joint density. This paragraph derives the joint density of Y, and I;, 
ya 5. Suppose the parent distribution has a probability density f (  j,). Then 
the joint density is 

and 5 have different values. So i; and 

Figure 5.3 motivates (5.17). The event that Y, and Y, are in the infinitesimal 
intervals from j’, tor; +dy, and from .’.; to.v,+<r; has approximate probability 
g,,(j;, j;)~$)*,di;. Figure 5.3 shows that this event is equivalent to the event 
that i - 1 observations fall below j’, , one falls between js, and I; + d}tl, j - i - 1 
fall between j ; + d ~ ,  and y ) ,  one falls between J, and y,+di-,;, and t7-J fall 
above j ;+d~; .  Each of the tz independent observations can fall into one of 
those five intervals. with approximate probabilities F( yI),[( I;) LO;, F( J;)- 

F( . .  b;), f(  ~ ; ) 4 ) ; *  and I -F( J;). The multinomial probability of the event is 
approximately 

This motivates (5.17). 

i-1 1 j-1-1 1 n - j  
I 

li ‘j 

Figure 5.3. Moti \a l ion  f o r  the p i n t  density of Y,, ); 
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Joint moments. Joint moments of order statistics are defined like any 
is other joint moments. In particular, for icj, the covariance of Y, and 

These covariances are used to obtain best linear unbiased estimates. Sup- 
pose that the parent distribution has location and scale parameters p and u. 
Let U,=(Y , -p ) /u  denote the standardized ith order statistic; i t  comes from 
the standardized parent distribution with p=O and u =  1. Then 

cov(Y,, r , )=u’cov(u, ,u , ) .  (5.19) 

This gives any covariance in terms of a standardized one. For a symmetric 
distribution, such as the normal and logistic distributions, 

cov(  u, -, + I  ,U, , + 1 )  = -cov(  U, 3 q) .  (5.20) 

The standardized covariances depend on n ,  i. j ,  and the parent distribution. 
They are tabulated for various distributions as described below. 

Example. This example shows the calculation of the covariance of the 
order statistics of a sample of n=2  from a standard normal distribution. 
First, 

,.x 
= - 2 1  U 2 [ @ (  u 2 ) ] ’ d u 2 = 0 .  

X 

since the last integrand is an odd function. Then 

Cov( u,, y ) = E (  V,U,)- ( E U , ) (  ELI,) =o- [ - ( l/n)’/’]( 1/np2= 1/77 

Exponential. For an exponential distribution with mean 8 ,  

Sarhan and Greenberg (1962) tabulate the standardized covariances ( 8  = 1). 
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Normal. For a normal distribution with mean p and standard deviation 
IJ, (5.19) gives the covariance of y and Y, in terms of those of the 
standardized U, and V,. David (1970) lists tables of Cov(U,, 

Extreme value. For an extreme value distribution with location and 
scale parameters h and 6, (5.19) gives the covariance of Y, and rJ in terms of 
those of the standardized Cr, and q. David (1970) lists tables of Cov( V,,  V J ) .  

Other distributions. David ( 1970) and Sarhan and Greenberg ( 1962) give 
covariances of order statistics from a number of other distributions, includ- 
ing the logistic, gamma, rectangular, and right triangular distributions. 

5.3. Joint Distribution of Any Order Statistics 

Suppose that random samples of size n are repeatedly taken from a 
continuous cumulative distribution F( y ) .  From sample to sample, K chosen 
order statistics . . . d have different values. So the chosen 
order statistics have a joint distribution. 

Joint density. The joint probability density of K chosen order statistics, 
y l l<  . . . G.vlA is 

). 

(5 .22 )  

for y , ,< . . . <-v lA ,  and 0 elsewhere, In particular, the joint density of all ti 

order statistics is 

where .v, =G . . . Gy,,, and the density is 0 elsewhere. 

The following material presents a simple ap- 
proximation to the joint distribution and moments of any number of order 
statistics from large samples. The approximation is useful for obtaining 
approximate confidence intervals and approximate best linear unbiased 
estimators. Suppose a large sample of size n comes from a continuous 
cumulative distribution F( y). The joint distribution of K order statistics 
y ,  < . . . < YA is approximately K-variate normal with means E Y l h ,  vari- 
ances Var( Y,), and covariances Cov( y h ,  Y h  ). This approximation holds if 
all i h - i k -  I are large; that is, the order statistics are well separated. 

Asymptotic distribution. 
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Approximate means and variances are given by (5.15). An approximate 
covariance is 

Cov( Y,,, Y,, )=[  /( ,FYI)/( EY,, )] ~ ’: ( 1  - :. (5.24) 

where /( ) is the probability density. 

5.4. Best Linear Unbiased Estimators 

The following presentation gives the best (minimum variance) linear unbi- 
ased estimators (BLUES) from order statistics. The derivation involves a 
linear regression model for a distribution location parameter p. and scale 
parameter u. Regression theory (the Gauss-Markov Theorem) then provides 
the best linear unbiased estimators for p and u.  

Y,, G . . G Y,, are K selected order statistics of a sample of 
size n from a distribution with location and scale parameters p and u. In this 
chapter, they are usually the first r order statistics Y , ,  Y2, . . . ,  Yr, and the 
corresponding theory for their moments is simple and a special case of that 
in Section 5.3. They may be order statistics of a multiply (progressively) 
failure censored sample; the corresponding theory for moments of such 
order statistics is more complex and is not a special case of that in Section 
5.3. Then, by (5.8). 

The model. 

EY,, = p +  a l p .  (5.25) 

where a,, = E [ (  yA -p))/u] is the expectation of the r,th standardized order 
statistic (p=O and u =  1). Similarly, for I\, k ‘ =  1 ...., K ,  by (5.8) and (5.19) 

Var( y A ) =  I/,,,u’, COV( y,. Y,, )=  V , ~ , ~ U ’ ,  (5.26) 

where V , A l , = E [ ( Y , , - E Y , A ) 2 / 0 2 ]  and V,,,A = E [ ( Y , - E K A ) ( Y , ,  -EY, ,  ) /u2]  
are the variance and covariance of the standardized order statistics (p=O 
and u =  I ) .  

The estimators. The preceding equations can be expressed in matrix 
form as a linear regression model. Let Y =( y,, . . . , Y,, )’, e,, = Y,, - E y‘,.e= 
( e l , ,  . . . , e , ,  )’, and 

(5.27) 
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Throughout prime ( ' ) denotes transpose. Then the linear regression model 
based on (5.25) is 

Y =  X( p a)'+ e,  ( 5 . 2 8 )  

where thecovariancematrixofeisZ=Vu2; a n d V = { V 1 l , l ) , k , k ' = l , . . . ,  K ,  
is given by (5.7) and (5.18). The Gauss-Markov Theorem (Rao, 1973) gives 
the best (minimum variance) linear unbiased estimators p* and (I* for p and 
a; namely, 

where the uk and b, are the coefficients for p* and u*, respectively. The 
covariance matrix of [p *  a*]' is 

Cov( p * ,  u*)  =a2(X'V -'x)- ' 2[: El.  (5.30) 1 Var( p * )  

Cov( p * ,  a*) Var( u*) 

David (1970) references tables of the coefficients a, ,  . . ., a K  and b , ,  . . . , b, 
and the variance factors A and B and the covariance factor C for various 
distributions, sample sizes, and selected order statistics. The coefficients 
satisfya,+ . . .  +a,=l a n d b , +  . . .  +b,=O. 

For samples with a large number of observed order statistics, p* and u* 
are approximately normally distributed, with means p and u and covariance 
matrix (5.30). 

Example. This example presents the BLUES for the mean p and stan- 
dard deviation u of a normal distribution from a complete sample of size 2. 
As shown above, 

First 
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That is, Var(p*)=02/2,  Var (o*)=u2(a -2 ) /2~0 .571  a2,  and Cov(p*, a*) 
=O.  Then 

That is, p*=( Y, + Y2)/2, the sample average (as expected), and o* =( Yz- 
Y I ) 7 7 ” * / 2 ~ (  Y2- Y,)0.886. 

Kaminsky and Nelson (1975) and Goldberger (1962) give 
general theory for linear prediction of order statistics in a sample from 
earlier order statistics. 

Prediction. 

5.5. Other Linear Estimators 

Many linear estimators have been proposed for various distributions, partic- 
ularly the Weibull distribution. For example, Mann, Schafer, and Singpur- 
walla (1974, Chap. 4) and Bain (1978) present a number of such estimators 
for parameters of the Weibull distribution. Also, various authors have 
presented linear estimators based on least squares fitting of a straight line to 
a (possibly censored) sample plotted on paper of a distribution. For 
example, STATPAC of Nelson and others ( 1  978) does this for exponential. 
Weibull, normal, lognormal. and extreme value hazard plots; Thomas and 
Wilson (1972) studied such estimates for the Weibull distribution and found 
that they compare favorably with BLUEs. BLIEs and pooled estimates are 
presented below. 

BLlEs. Best linear invariant estimators (BLIEs) are presented here 
because available confidence limits for the Weibull distribution are given in 
terms of BLIEs. An estimator is called invariant i f  its mean square error 
does not depend on the location parameter p .  Such an estimator is “best” i f  
i t  has the minimum mean squared error. Most best linear invariant estima- 
tors are biased. They are related to the best linear unbiased estimators as 
follows. Suppose that p* and u* are the BLUEs for (I and u, where 
Var(p*)= Ao’ ,  Var(o*)= Bo’, and Cov(p*, u * ) =  Co‘. where A ,  B .  and C 
depend on 11 and r but not on p or o .  Then the BLlEs for p and o are 

P** = P* - a*[  C / (  1 + B ) ]  . o** = a*/ (  1 + B ) ,  (5.31) 



308 LINEAR METHODS FOR SINGLY CENSORED DATA 

The mean squared errors of these estimators are 

E (  p** - p )z = a" A - P( 1 + B )  '1, €(  u** - u )' =&/(  1 t B ) ,  

E ( p * *  - p ) (  a** -u)=uZC/(  1 + B ) .  (5 .32)  

Mann, Schafer, and  Singpurwalla (1974) tabulate coefficients of BLIEs for 
the extreme value distribution; so these estimates can be calculated directly 
from the order statistics. For practical purposes, the BLUEs and BLIEs are 
almost the same unless the observed number Y of order statistics is small. 
Moreover, for large r (and H), BLUEs and BLIEs and their mean squared 
errors are asymptotically equal. There is no compelling reason to choose 
either minimum mean squared error or unbiasedness as essential for a good 
estimator. 

Pooled estimates. Tables for linear estimators cover samples up to size 
25. Larger samples can be handled as follows, and the same method is used 
to combine independent linear estimates. Randomly divide the sample into 
K smaller subsamples that can be handled with available tables. The 
subsamples should be as large as possible and nearly equal in size. Obtain 
the linear estimates of the distribution parameters from each subsample. 
Suppose the BLUEs are p z  and u:, with respective variances A , a 2  and B,u2 
and covariance C,u' for k =  1, ..., K .  Then the best (minimum variance 
unbiased) pooled linear estimates are 

( 5 . 3 3 )  

where 

A = I / [ (  1 / A ,  ) + ' . ' + ( ] / A ,  )]. B= l / [ (  1/B, )+ . . ' t ( l , /f?,  ,]. 

(5.34) 

The variances and covariance of these estimates are 

Var( p* ) = AU ', Var( a* ) = ~ a ' ,  Cov( p * ,  u*  ) = Cu ' . ( 5  3 5 )  

where 

C' = A B [ c', ( A ,  B , ) I + . . + C', ( A , B ,  ) I ]  . ( 5 . 3 6 )  
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The same formulas are used to pool BLUEs from independent samples from 
different populations with common parameter values. 

Formulas for combining BLIEs are more complex and are not given here. 

Class B insulation example. Section 3 presents life data in Table 3.1 on 
insulation assumed to have a lognormal life distribution at any temperature. 
The log standard deviation u is assumed to be the same at all temperatures. 
The BLUEs of u are u;L=0.2265 for 170"C, u:=0.4110 for 190°C. and 
u: =0.0677 for 220°C. Their variances are Var( u~)=0.0989 u 2  and Var( u:)  
=Var(u;)=0.1613 u2 .  The pooled estimate of u is obtained from 

B = I /  [ (1 /0.0989) + ( 1 /O. 1613) + ( 1 /O. 161 3)] = 0.04442, 

u* = [ (0.2265/0.0989) + (0.41 10/0.16 13) + (0.0677/0.16 1 ql0.04442 

=0.2336. 

Then Var(u*)=0.04442 a* .  

The pooled estimates differ slightly when different subsamples are ran- 
domly chosen. Different people get slightly different estimates from the 
same data. McCool ( 1965) suggests appropriately averaging the estimates 
over all possible subsamples when the sample is complete. Attractive in 
principle, his method is unfortunately laborious in practice. 

PROBLEMS 

7.1. Fluid breakdown. Use the complete data on seconds (In seconds) 
to insulating fluid breakdown at 35 kV in Tables 2.1 and 4.1. 

best linear unbiased estimate o f  the mean time to f ,  '11 ' 1  ure. 
(a) Assuming that the life distribution is exponential, calculate the 

(b)  Calculate two-sided 95% confidence limits for the true mean. 
(c) Calculate the linear estimate of the 10% point of the exponential 

(d) Calculate two-sided 95% confidence limits for the 10% point. 
(e) Assuming that the life distribution is Weibull, calculate the best 

linear unbiased estimates of the parameters of the corresponding extreme 
value distribution. 

Calculate two-sided exact 90% confidence limits for the extreme 
value location parameter A. 

Calculate two-sided exact 90% confidence limits for the extreme 
value scale parameter 6. Also, use the (Wilson -Hilferty) approximation. 

distribution. 

( f )  

( 9 )  



310 LINEAR METHODS FOR SINGLY CENSORED DATA 

(h) Calculate the corresponding estimates of the Weibull parameters. 
( i )  Calculate the corresponding confidence limits for the Weibull 

(j) Calculate the linear estimate of the 10% point of the extreme value 

(k) Calculate the theoretical standard error of the estimate of the 10% 

(1) Calculate two-sided exact 90% confidence limits for the 10% point 

(m) Calculate two-sided approximate 90% confidence limits for (1). 

(n) Calculate the estimate and confidence limits for the corresponding 

(0) Plot the data on Weibull probability paper. 

parameters. 

distribution. 

point in terms of 6 .  

of the extreme value distribution. 

Weibull 10% point. 

7.2. Pooled fluid breakdown. Use the 30- and 35-kV samples in Table 
4.1 and the results of Problem 7.1. Assume the true Weibull shape parame- 
ter ,f3 is the same at both voltages. 

( a )  Using the two estimates of the extreme value scale parameter, 

(b)  Give the theoretical variance of this estimate in terms of the 

(c) Calculate the corresponding estimate of the common Weibull 

(d) Calculate two-sided approximate 90% confidence limits for 6, 

(e) Calculate the corresponding limits for the common Weibull shape 

calculate a pooled estimate of the common true value. 

unknown true value 13. 

shape parameter. 

using the (Wilson-Hilferty) approximation. 

parameter. 

7.3. Insulating fluid. 
30-kV data of Table 2.1. 

Use the first nine times to breakdown of the 

(a )  Calculate an upper 90% prediction limit for the 10th failure time, 
assuming that time to breakdown has an exponential distribution. 

(b) Do (a) assuming that time to breakdown has a Weibull distribu- 
tion. 

(c) Plot the 10 times to breakdown on Weibull or exponential proba- 
bility paper. 

(d)  Comment on an appropriate analysis of the 30-kV data. 
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7.4. Class B insulation. Use Table 3.1 and do the corresponding calcu- 
lations of all estimates and confidence limits appearing in Section 3 for the 
following. 

(a) The 190°C data. 
(b) The 220°C data. 

Do corresponding calculations of all predictions and prediction limits 
appearing in Section 3 for the following. 

(c) The 190°C data. 
(d) The 220°C data. 

7.5. Class B insulation. Use the data in Table 3.1, but f i t  Weibull 
distributions. 

(a) Plot samples from each temperature on the same Weibull proba- 
bility paper. 

(b) Use natural logs of the data and calculate the BLUEs of the 
corresponding extreme value parameters X and 6 for a temperature. 

(c) Calculate the estimate of the 50th Weibull percentile for that 
temperature. 

(d) Use the chi-square approximation to get approximate 95% confi- 
dence limits for the Weibull shape parameter at that temperature. 

(e) Calculate a pooled estimate of the shape parameter using the 
BLUEs from the four temperatures. 

(f) Use the chi-square approximation to get approximate 95% confi- 
dence limits for the common shape parameter. Is the failure rate signifi- 
cantly increasing or decreasing? 

(g) From the Weibull plot, assess whether the true Weibull shape 
parameter has the same value at all temperatures. 

7.6.* The two-parameter exponential. The cumulative distribution of 
the two-parameter exponential distribution can be written as 

where p is a location parameter and u is a scale parameter. Derive the best 
linear estimates of p and u using the first r order statistics Y , ,  ..., Y, from a 
sample of size n as follows. 

'Asterisk denotes laborious or difficult 
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(a) Give a formula for the expectation of k: in terms of that for a 

(b) Give a formula for the variance of I: in terms of that for a 

(c) Give a formula for the covariance of and in terms of that for 

standard exponential distribution. 

standard exponential distribution. 

a standard exponential distribution. 
For 11-3 and r = 2 :  

(d) Numerically calculate the coefficients for the BLUES p* and u*. 
(e) Numerically calculate the factors for Var(p*), Var( u*), and 

7.7. Insulating fluid. The time to breakdown data in Table 6.1 of 
Chapter 6 yield the seven sets of linear estimates and variance and covari- 
ance factors below for parameters of an extreme value distribution for the In 
data. According to theory for such data, time to breakdown has an 
exponential distribution at any test voltage (kV). Assess this with the 
following, assuming that the seven distributions are Weibull with a common 
shape parameter. 

Cov( p*. a*). I 

kV n A* 6*  A B C 

26 3 7.125 2.345 0.40286 0.34471 -0.02477 
28 5 5.851 1.224 0.23140 0.16665 -0.03399 
30 11 4.373 0.987 0.10251 0.06417 -0.02033 
32 15 3.310 1.898 0.07481 0.04534 -0.01556 
34 19 2.531 1.353 0.05890 0.03502 -0.01256 
36 15 1.473 1.154 0.07481 0.04534 -0.01556 
38 8 0.0542 0.836 0.14198 0.09292 -0.02608 

(a) Calculate the variance factor B for the pooled linear estimate 6* 
for the extreme value scale parameter. 

(b) Calculate the pooled linear estimate 6* and the corresponding 
estimate of the common Weibull shape parameter p. 

(c) Calculate two-sided 95% confidence limits for 6 and f l ,  using the 
normal approximation. 

(d)  Do (c), using the Wilson-Hilferty chi-square approximation. 
Compare with (c). 

(e)  Are the data (the pooled estimate) consistent with p= 1 (exponen- 
tial distribution)? If  test conditions at a test voltage are not consistent, the 
p estimate tends to be lower. Are the data consistent with this possibility? 



8 
Maximum Likelihood Analyses 
of Multiply Censored Data 

Introduction 

Purpose. This advanced chapter shows how to use maximum likelihood 
(ML) methods to estimate distributions from multiply censored data. Such 
data consist of intermixed failure and running times and are also called 
“progressively,” “hyper-,” and “arbitrarily censored.” The methods apply to 
multiply time censored data (Type I); such data are common in practice and 
are treated in detail here. The methods also apply to multiply failure 
censored data (Type II), to Types I and I1 singly censored data, and to 
complete data. This chapter is applied, but it is not easy. 

While difficult without sophisticated com- 
puter programs, ML methods are very important in life data analysis and 
elsewhere because they are very versatile. That is, they apply to most 
theoretical distributions and kinds of censored data. Also, there are com- 
puter programs that do ML calculations. Moreover, most ML estimators 
have good statistical properties. For example, under certain conditions 
(usually met in practice) on the distribution and data and for “large” sample 
sizes, the cumulative distribution function of a ML estimator is close to a 
normal one whose mean equals the quantity being estimated and whose 
variance is no greater than that of any other estimator. A ML estimator also 
usually has good properties for small samples. 

In principle, the ML method is simple. One first writes the 
sample likelihood (or its logarithm, the log likelihood). I t  is a function of the 

313 

Properties of ML methods. 

The method. 
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assumed distribution, the distribution parameters, and the data (including 
the censoring or other form of the data). The ML estimates of the parame- 
ters are the parameter values that maximize the sample likelihood or, 
equivalently, the log likelihood. The exact distributions of many ML estima- 
tors and confidence limits are not known. However, they are given ap- 
proximately by the asymptotic (large-sample) theory, which involves the 
asymptotic covariance and Fisher information matrices of the ML esti- 
mates. The asymptotic theory is mathematically and conceptually advanced. 

Asymptotic theory. This chapter presents the asymptotic (large-sample) 
theory for ML estimators and confidence limits. For small samples, such 
intervals tend to be narrower than exact ones. Exact intervals from small 
samples are referenced; they have been developed for few distributions and 
only single Type I1 (failure) censoring. For the asymptotic theory to be a 
good approximation, the number of failures in the sample should be large. 
How large depends on the distribution, what is being estimated, the confi- 
dence level of limits. etc. For practical purposes, the asymptotic methods are 
applied to small samples, since crude theory is better than no theory. 
Shenton and Bowman (1977) give theory for higher-order terms for greater 
accuracy of the asymptotic theory. The theory distinguishes between three 
values of a parameter: the true population value B,, its ML estimate 4, and 
an arbitrary value 8 .  

Overview. Chapter sections present ML methods for estimating distribu- 
tions: exponential (Section l), normal and lognormal (Section 2 ) ,  and 
Weibull and extreme value (Section 3). The section for each distribution 
explains how to calculate the sample likelihood, the likelihood equations, 
the ML estimates of distribution parameters, their Fisher information and 
covariance matrices and confidence limits, and ML estimates and confi- 
dence limits for percentiles and reliabilities. Section 1 is much easier than 
the rest. Section 4 presents ML methods for data with competing failure 
modes. Section 5 presents general theory for ML methods, which apply to 
estimating other quantities and to other distributions. Section 6 describes 
numerical methods for ML calculations. Readers may need to write their 
own programs that do such calculations. 

Those who have computer programs for the ML calculations may wish to 
read only Sections 1 through 3 or 4. Those who wish to understand the 
theory need to read Section 5, whde reading earlier sections. Those who 
wish to write computer programs need to read Section 6. Such computer 
programs are essential for data analysis, as the computations are com- 
plicated and laborious. 
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Needed background. Needed background for this chapter includes (1) 
basic knowledge of the life distributions described in Chapter 2, (2) basic 
statistical concepts on estimates and confidence limits in Chapter 6, and for 
advanced material (3) partial differentiation and simple matrix algebra. 
Those who wish only to use computer programs for ML estimation do not 
need item (3). 

Further methods. The bibliographies of Buckland ( 1964), Mendenhall 
(1958), and Govindarajulu (1964) list many references on ML theory for 
such data and various distributions. Cohen (1963,1965,1966), for example, 
presents the basic ML methods for the distributions in t h s  chapter. Also, 
Gross and Clark (1975) and Mann, Schafer, and Singpurwalla (1974) 
present ML fitting of the gamma distribution to censored data. Prentice 
(1974) presents ML fitting of a three-parameter log gamma distribution that 
includes the Weibull (and extreme value) and lognormal (and normal) 
distributions as special cases; it can help one decide between those distribu- 
tions. The CENSOR program of Meeker and Duke (1979) does ML fitting 
of the logistic and log-logistic distributions to multiply censored data. 
Kaplan and Meier (1958) give a nonparametric ML estimate (product-limit 
estimate) of the reliability function from multiply censored data; Kalbfleisch 
and Prentice (1980) and Gross and Clark (1975) present it  in detail and give 
other nonparametric methods for such data. The BMDP routine PLI of 
Dixon and Brown (1977) calculates the product-limit estimate and its 
standard error at each failure time. 

Multiply censored data can also be graphically analyzed with probability 
or hazard plots (Chapter 4). In  practice, both graphical and ML methods 
can be employed to extract maximum information from such data. Each 
method yields information not provided by the other. For example, a plot 
helps one to assess the validity of the assumed distribution and of the data, 
and ML analysis provides confidence limits and objective estimates. Chapters 
9 and 12 present further ML methods. 

Basic assumption. Like other methods (e.g.. Chapter 4) for analysis of 
multiply censored data, ML methods depend on a basic assumption. I t  is 
assumed that units censored at any specific time come from the same life 
distribution as the units that run beyond that time. This assumption does 
not hold. for example, i f  units are removed from service unfailed when they 
look like they are about to fail. Lagakos (1979) discusses in detail this 
assumption, which he calls noninformative censoring, and alternative as- 
sumptions about the censoring. 
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Notation. The following notation is used throughout this chapter. In 
particular, note that this chapter does not use capital letters for random 
variables, following the custom for ML notation. 

lOOy th standard normal percentile. 
[ 100( 1 + y)/2]th standard normal percentile. 
Base 10 logarithm. 
Base e logarithm. 
Sample size. 
Number of failure times in a sample. 
Sums that run over all, failed, and unfailed units, respectively. 
True asymptotic variance. 
ML estimate of Var( ). 

Local estimate of Var( ). 
True, arbitrary, and ML values of a parameter, particularly the 
exponential mean. 
True, arbitrary, and ML values of the normal mean or 
lognormal p parameter. 
True, arbitrary, and ML values of the normal standard devia- 
tion or lognormal u parameter. 
True, arbitrary, and ML values of the Weibull scale parameter. 
True, arbitrary, and ML values of the Weibull shape parame- 
ter. 
Failure and running times, usually taken to be fixed given d?ta 
values rather than random variables (which are denotecr ~ ) y  
capital letters in other chapters). 

1. EXPONENTIAL DISTRIBUTION 

This section presents maximum likelihood (ML) methods for fitting an 
exponential distribution to multiply censored data. These methods also 
apply to multiply time and failure censored data, to singly censored data of 
both types, and to complete data. The section presents 

1. Log likelihood. 
2. 
3. Asymptotic variance of e. 
4. Confidence limits for 0,. 

ML estimate 8 of the true mean 0,. 
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5. Estimates and confidence limits for the failure rate A,) = l/80, per- 
centiles, and reliability. 
6. Computer programs for ML fitting. 

Cohen (1963). Mann, Schafer, and Singpurwalla (1974), Bain (1978), 
Lawless (1982), and others give such results. General ML theory and 
motivation appear in Sections 5.1 and 5.2. 

Herey, denotes the failure or running time on sample unit i ,  n denotes the 
number of units in the sample, and r denotes the number of failures. Below, 
8,) denotes the true population mean, 8 its ML estimate, and 8 an arbitrary 
value. The exponential distribution is described in Chapter 2. 

Exponential Mean 0, 

Log likelihood. The sample log likelihood for multiply censored data 
from an exponential distribution is (as shown in Sections 5.1 and 5.2) 

where the first sum runs over the failure times, and the second sum runs 
over the running times. For a given set of sample times, P(8) is regarded as 
a function of 8, an arbitrary value of the parameter over the allowed range 
O <  B<oO. The 8 value that maximizes f (8 )  for a sample is the sample ML 
estimate d of the true O0. The following results are derived in Sections 5.1 
and 5.2. 

ML estimate. For both time and failure censored samples, the ML 
estimate d for 8, is 

8=  C y l / r .  
I 

This is the total time on all n units divided by the number r of failures. For 
a failure censored sample, d equals the BLUE 8* of Chapter 7; thus, results 
of Chapter 7 apply to d. For a time censored sample, Bartholomew (1963) 
derives the exact distribution of 8. For large r (say, over 15). the asymptotic 
cumulative distribution function of d is close to a normal one with mean 8, 
and variance (1.2) for time censoring and variance (1.5) for failure censor- 
ing. 

Table 1.1 shows life data on n = 70 diesel engine 
fans that accumulated 344,440 hours in service while r = 12 failed. Manage- 
ment wanted an estimate and confidence limits (given later) for the fraction 

Engine fan example. 
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Table 
450 
460 ?- 

1150 
1150 
1560 + 
1600 
1660 + 
1850 + 
1850 + 

1.1. Fan Failure Data (Hours) 
1 8 5 0 +  2200+ 3 7 5 0 +  4300+ 6100+  
1 8 5 0 +  3 0 0 0 +  4 1 5 0 +  4600 6100 
1 8 5 0 +  3000+ 4 1 5 0 +  4850+ 6100+  
2030+ 3000+  4 1 5 0 +  4850+  6100+  
2 0 3 0 +  3000+ 4 1 5 0 +  4850+ 6300+  
2030+ 3100 4 3 0 0 +  4850+  6450+  
2070 3200+  4 3 0 0 +  5000+  6450+  
2070 3450 4 3 0 0 +  5000+  6700+  
2080 3750+  5000+ 7450+ 

7800+ 8750 
7800+ 8750+  
8100+  9400+ 
8100+  9900+ 
8200+ i o i o o +  
8500 + 10100 + 
8500+  10100+  
8500 + 11500 + 
8750 + 

+ Denotes running  time. 

of such fans failing on an 8000-hour warranty. T h s  information was to be 
used to determine whether unfailed fans should be replaced with a new 
design. The ML estimate of do is 8 = 344,440/ 12= 28,700 hours. Figure 1.1 
is a Weibull hazard plot of the data. The ML fit of the exponential 
distribution is the center straight line on the plot. The other two straight 
lines are 95% confidence limits for percentiles (and reliabilities), as de- 
scribed later. This plot conveniently presents the data, fitted distribution, 
and confidence limits. 

Variance. The (asymptotic) variance of 8 is needed later to obtain 
approximate confidence limits for Oo, A, = l/Oo, percentiles, and reliabili- 
ties. For a time censored sample, the true theoretical asymptotic variance of 
8 is 

where ql is the planned censoring time for unit i .  The ML estimate of 
Var(8) is 

that is, 8 replaces Oo in (1.2). This estimate requires a planned censoring time 
7, for each sample unit. These times may not be known. However. they are 
not needed for the local estimate, which is 

Where available, Viir(8) is generally thought to be more accurate than 
var(8). Var, Viir, and var respectively denote the true value, ML estimate, 
and local estimate of the asymptotic variance. 



1. EXPONENTLAL DISTRIBUTION 319 

Figure 1.1. Weibull hazard plot of fan data and exponential f i t .  

For a failure censored sample, the true asymptotic variance of 6 is 

T h s  is also the exact variance for any sample size. Its ML (and local) 
estimate is 

var(6) = ~ i i r ( 6 )  = B2/r. (1 4 

The square robt of (1.2) or (1.5) is the true asymptotic standard error of 6, 
that is, the standard deviation of the asymptotic distribution of 6. 
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Approximate limits. Approximate two-sided l00y % confidence limits 
for 0, are 

e = 8/exp( K,[Var( 4 )]i’2/d 1, e =  4 . exp( K,[Var( 8 )]”’/8 1,  (1.7) 

where Var(6) is estimated with (l.3), (l.4), or (1.6). For a one-sided 100y% 
confidence limit replace K ,  in (1.7) with z y .  The limits are more accurate the 
larger r is. The approximate limits (1.7) apply to time and failure censored 
data. For singly time censored data, Bartholomew (1963) gives complex 
exact limits. 

Engine fan example. For the fans, the local estimate is var(6)= 
8’/12. Approximate 95% confidence limits for 8, are 0 -28,700/ 
exp[ l.960(82/12)i/2/8]= 16,300 hours and 6 -28,700(1.761)= 56,500 hours. 
Each limit is a one-sided 97.5% confidence limit. 

For multiply failure censored data, exact two-sided 100y% x’ limits. 
confidence limits for 8, are 

where x2(6 ;2r )  is the 1006th chi-square percentile with 2r degrees of 
freedom. For time censoring, one can use (1.8) as an approximation, which 
may be more accurate than (1.7), particularly for small r (say, less than 15). 
For a one-sided l0Oy% confidence limit, replace ( 1  + y)/2 by y or ( 1  - y ) / 2  
by 1 - y in (1.8). 

Engine fan. Approximate two-sided 95% confidence limits (1.8) for the 
time censored fan data are 

e -28.700[2X 12/x2(0.975; 2X 12)] =28,700(24/39.36)= 17,500, 

6 =28,700[ 2 x 1 2 /x2 (0.025 : 2 X 12)] = 28,700( 24/ 12.40) = 55,500. 

Samples with no failures. For some samples, there are no failures when 
the data must be analyzed (time censored). Then (2.1) does not yield an 
estimate, and (2.3) does not yield confidence limits. A commonly used 
incorrect one-sided lower 10Oy% confidence limit for 0, is 

e = 2( y ,  + . . . + y,, ) /x2(  y ; 2) = - ( y ,  + . . . + y,, )/h( 1 - y ). 
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This is incorrectly used to obtain one-sided limits for the failure rate, 
percentiles, and reliabilities. For an estimate, some use a 50% confidence 
limit; this method of estimation has no theoretical basis and can be 
seriously misleading. The confidence limit has a difficulty. As stated, it 
applies only when there are no failures. The limit must also be defined when 
there is one failure or two or three, etc. 

Sample size. One may wish to choose a sample size to achieve a 
confidence interval of a desired length for 0,. One measure of length is the 
ratio &/6 ,  which is a function [(1.7) or (1.8)] only of the number of failures 
r ,  not the sample size n. The ratio can be calculated for a number of r values 
and a suitable r chosen. 

Exponential Failure Rate A, 

ML estimate is 
Estimate and confidence limits. The true failure rate is A, = 1/0,, and its 

A = 1 / e = r / 2 y, . 
I 

Ths is the number r of failures divided by the total accumulated time, the 
“sample failure rate.” One- or two-sided lOOy% confidence limits for A, are 

5 = 1/8, /i = I/!, (1.10) 

where 8 and # are the one- or two-sided limits in (1.7) or (1.8). 

For the fans, A = 12/344,440 = 34.8 failures per million 
hours. Approximate 95% confidence limits from (1.7) are 5 = 106/50,500 = 
19.8 and x 106//16,300=61.3 failures per million hours. Each limit is a 
one-sided 97.5% confidence limit. 

Exponential Percentile 

y p  = - 8,In(l- P), and its ML estimate is 

Engine fan. 

Estimate and confidence limits. The IOOP th  exponential percentile is 

where ( 1 . 1 )  gives 8. One- or two-sided 1OOy% confidence limits for yp are 

where 0 and 8 are the one- or two-sided limits in ( 1.7) or (1.8). 
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Engine fan. The ML estimate of the 10th percentile of the engine fan life 
is p ,o = -28,700ln(l-0.10)=3020 hours. Approximate 95% confidence 
limits from (1.7) are y ,o  5 - 16,300 ln(1 - 0.10) = 1720 and y,,o = 
- 50,5001n( 1 -O.lO)= 5326 hours. The ML line in Figure 1.1 gives the ML 
estimates of the exponential percentiles. On Weibull paper, the two-sided 
confidence limits for the exponential percentiles are given by straight lines 
parallel to the ML line. 

Exponential Reliability 

is R(y)=exp( - y/e,) ,  and its ML estimate is 
Estimate and confidence limits. The exponential reliability for an age y 

k ( y ) = e x p ( - y / 8 ) ,  (1.13) 

where (1.1) gives 8. One- or two-sided 1OOy% confidence limits for R ( y )  are 

R(y)=exp(-  Y / e ) ,  m = e x P ( -  r/@ 1, (1.14) 

where @ and e are the one- or two-sided limits in (1.7) or (1.8). 

R( Y ), are 
The corresponding estimate and limits for the fraction failing, F( y ) =  1 - 

F ( y ) =  1 - d (  y ) ,  F( y ) = l -  d (  y ) ,  F ( y ) = l -  &( y ) .  (1.15) 

Engine fan. The ML estimate of the fan reliability on an 8000-hour 
warranty is k(8000)= exp( - 8000/28,700)= 0.76. Approximate 95% confi- 
dence limits from (1.7) are R(8000)= exp( - SOOO/ 16,300) = 0.61 and 
I?( 8000) 2 exp( - 8000/50,500) = 6.85. The estimate and limits for the frac- 
tion failing are p(8000)=0.24, F(8000)-0.15, and ~(8000)-0.39. Manage- 
ment used this information to dkcide whether to replace unfailed fans with 
an improved fan. In the Weibull plot in Figure 1.1, the straight-line 
confidence limits for the exponential percentiles are also the confidence 
limits for failure probabilities. 

Exponential Prediction 

Exponential prediction methods surveyed by Hahn and Nelson (1973) apply 
to predictions and prediction limits for a future sample. The formulas there 
are exact if the past sample is multiply failure censored. Then the observed 
number r of failures must be used in place of the sample size in formulas of 
their paper. For a time censored past sample, those formulas are approxi- 
mate. 
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Computer Programs 

Computer programs that ML fit an exponential distribution to multiply 
censored data are not necessary; the calculations are easy to do by hand. 
Programs that do the calculations are STATPAC by Nelson and others 
(1978) and SURVREG by Preston and Clarkson (1980). Each gives the ML 
estimates of the exponential mean, percentiles, and probabilities (including 
reliabilities) plus quantities programmed by the user. STATPAC gives 
approximate asymptotic confidence limits for these quantities based on the 
local estimate of the variance (1.4) and the normal approximation for In( 8). 
Two-Parameter Exponential 

ML fitting of the two-parameter exponential distribution is presented by 
Mann, Schafer, and Singpurwalla (1974, Secs. 5.1.2. and 5.1.3) and Bain 
(1978). This distribution is used much less frequently than the (one- 
parameter) exponential distribution, since most products do not have an 
initial period that is failure free. 

2. NORMAL AND LOGNORMAL DISTRIBUTIONS 

This section presents maximum likelihood (ML) methods for fitting normal 
and lognormal distributions to multiply time censored data (Type I).  These 
methods also apply to multiply failure censored data (Type II ) ,  to singly 
censored data of both types, and to complete data. 

This section first presents an example based on computer output, as most 
readers will simply use a computer program for such analyses. Then the 
section surveys some computer programs for such analyses. Next the section 
summarizes special (simpler) ML methods for complete and singly censored 
data. Lastly the section presents ML methods for fitting a (log) normal 
distribution to multiply censored data; these methods are difficult and will 
interest only advanced readers. Results include normal and lognormal 
parameter estimates, their information and covariance matrices and ap- 
proximate confidence limits, and estimates and approximate confidence 
limits for percentiles and reliabilities. Cohen (1963) gives such results. Exact 
confidence limits have not been tabulated for multiply censored data. 
General ML theory and motivation appear in Sections 5.3 and 5.4. 

Here t ,  denotes the failure or running time on sample unit  i from a 
lognormal distribution. Similarly, y, denotes the failure or running time on 
sample unit i from a normal distribution. Below, po and u, denote true 
population parameter values, and p and u denote arbitrary values. 

Analyses of lognormal data t ,  are done in terms of base 10 logs y, = log(!,); 
such y ,  come from a normal distribution with po and u,, equal to the 
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Table 2.1. 
Controls 

Thousands of Miles to Failure for Locomotive 

2 2 . 5  57.5 78.5 91.5 113.5 122.5 

37.5 66.5 80.0 93.5 116.0 123.0 

46.0 68.0 81.5 102.5 117.0 127.5 

48.5 69.5 8 2  .O  107.0 118.5 131.0 

51.5 76.5 83.0 108.5 119.0 132.5 

53.0 77.0 84.0 112.5 120.0 134 .O 

54.5 

59 controls r a n  135,000 miles without failure. 

lognormal parameters p0 and o,,. The normal and lognormal distributions 
and their relationship are described in Chapter 2. 

b o m o t i v e  Control Example 

Table 2.1 shows singly time censored life data on 96 locomotive controls. 
Management wanted an estimate and confidence limits (given later) for the 
fraction of controls failing on an 80-thousand-mile warranty. Figure 2.1 is a 
lognormal probability plot (Chapter 3) of the data. The ML f i t  of the 
lognormal distribution is the straight line on the plot; the curved lines are 
95% confidence limits for the distribution percentiles (and reliabilities). 

Figure 2.2 shows computer output from STATPAC of Nelson and others 
(1978). The output gives ML estimates and approximate confidences limits 
for the parameters, selected percentiles, and the fraction failing on warranty. 
Also, the output gives the local estimate of the covariance matrix of the 
parameter estimates. The ML estimates of the lognormal parameters are 
ji =2.2223 and 6 =0.3064 (base 10 logs). The corresponding estimate of the 

CUMULATIVE PERCENTAGE 

Figure 2.1. Lognormal probability plot of locomotive control failures 



* M A X I M U M  L I K E L I H O O D  E S T I M A T E S  FOR D I S T .  P A R A M E T E R S  
W I T H  A P P R O X I M A T E  95% C O N F I D E N C E  L I M I T S  

PARAMETERS E S T I M A T E  LOWER L I M I T  U P P E R  L I M I T  

C E N T E R P  2.222269 2.133593 2.3 10946 
SPREAD 0 0.3064140 0.2 365 178 0.3969661 

* C O V A R I A N C E  M A T R I X  

P A R A M E T E R S  CENTER S P R E A D  

CENTER 6 002046921E-02 
S P R E A D 6  0.1080997E-02 0.1638384E-02 

h ; 0 

P C T I L E S  

it M A X I M U M  L I K E L I H O O D  E S T I M A T E S  FOR D I S T .  P C T I L E S  
W I T H  A P P R O X I M A T E  95% C O N F I D E N C E  L I M I T S  

P C T  E S T I M A T E  LOWER L I M I T  U P P E R  L I M I T  

0.1 
0.5 
1 
5 
10 
20 
50 
80  
90 
95 
99 

18.84908 
27 e094 10 
32 30799 
52.2581 1 
67,535 15 
92.13728 
lh6.8282 
302.0672 
412.1062 
532.5805 
861.4479 

11.73800 
18.4004 1 
22.85237 
40.94096 

77.87900 
5 5  283 16 

136.0 171 
219.3552 
278.7152 

487.2066 
338.8504 

30.26819 
39.89532 
45.67604 
66.70360 

109.0060 
8 2  50246 

204.6188 
415.9673 
609.3370 
837.0715 
1523.157 

P E R C E N T ( L 1 M I T  80.) F(8O)  

it M A X I M U M  L I K E L I H O O D  E S T I M A T E S  FOR % W I T H I N  L I M I T S  
W I T H  A P P R O X I M A T E  95% C O N F I D E N C E  L I M I T S  

E S T I M A T E  LOWER L I M I T  U P P E R  L I M I T  

P C T  14.87503 9 0895509 21.75530 
STATPAC output on lognormal f i t  to thc loconlotl\e control dd td  Figure 2.2. 

325 
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median of the lognormal distribution is antilog(2.2223) = 167 thousand 
miles; this is a “typical” life. 

Figure 2.2 shows that the ML estimate of the percentage failing on 
warranty is fi(80) = 15%. Approximate 95% confidence limits are F(80)= 10% 
and i(80) = 22%. Management decided that the control must be ;edesigned, 
as warranty costs would be too high. 

Computer programs 

Some computer programs that ML fit the normal and lognormal distribu- 
tions to multiply censored data are the following. 

1. STATPAC by Nelson and others (1978). It gives the ML estimates of 
normal and lognormal parameters ( po,  uo), percentiles, and probabilities 
(including reliabilities) plus quantities programmed by users. It also gives 
approximate asymptotic confidence limits for these quantities. To do this it 
estimates the covariance matrix of the parameter estimatw from the local 
Fisher information matrix. Figure 2.2 shows STATPAC output. 
2. CENSOR by Meeker and Duke (1979). It is similar to STATPAC, costs 
much less, but is less easy to learn. 
3. CENS by Hahn and Miller (1968) on General Electric 1 me-Sharing. It 
gives the ML estimates of the parameters and of their covariance matrix for 
Type I and I1 censoring. 
4. Glasser’s (1965) program. It is similar to that of Hahn and Miller 
(1968). 
5. IMSL (1975) OTMLNR Program. 
6. 

Programs for ML fitting of a normal distribution are used to fit a lognormal 
distribution to data. Then one transforms each lognormal data value r to a 
normal one y =log(t) and fits a normal distribution to the transformed 
values. Estimates and confidence limits for lognormal quantities are ob- 
tained in the obvious way from the normal results. 

Complete Data 

For a complete sample of n observations, the ML estimates ..ie 

SURVREG by Preston and Clarkson (1980). 

p = j ,  8 = s [ ( n  - 1)/n]”2,  

where j and s are the sample mean and standard deviation. The large-sample 
covariance matrix of p and 8 has 

Var ( p ) = u,’/n, Var( 8 ) = ui / (  2 n ) , Cov( fi  , 6 ) 0. 
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The sampling distribution of fi  is exactly normal, with a mean of p,, and 
variance of u,"/n. has a chi-square sampling distribution with 
( n  - 1) degrees of freedom. Chapter 6 provides exact statistical methods 
based on the statistics j = fi  and s = 6 [ n /( n - 1)]'12; these methods can be 
expressed in terms of fi  and 6 with the obvious substitutions. 

Singly Censored Data 

The large-sample methods below apply to singly censored samples and 
provide ML estimates and approximate confidence limits. 

For a singly Type I or 11 censored sample, the ML estimates fi  and 6 are 
easily calculated with tables of Cohen (1961) and Schmee and Nelson 
(1977). The tables circumvent iterative solution of the likelihood equations 
and directly yield the ML estimates. Cohen (1961) and Harter and Moore 
(1966) tabulate the asymptotic covariance matrix, which is the same for 
Types I and I1 single censoring; for censoring at (log) time 11, the matrix is a 
function of {=(q-po)/ao.  Evaluation of the matrix at f=(q- f i ) /6  with 
the Cohen table (also given by Schmee and Nelson) yields the ML estimate 
of the covariance matrix. Harter and Moore (1966) give Monte Carlo 
estimates of the exact means and variances of fi  and 6 for small samples. 

For a singly Type I1 censored sample, Schmee and Nelson (1976) tabulate 
factors for exact confidence limits for po and uo, using ML estimates for 
n =2(1)10, r =2( I )n .  Bain (1978, p. 399) tabulates confidence limits for po 
and uo for n =20, 50, 100, 200, 00, r / n  =.3(.2).9, and 1 - 6 and 6 =.02, .05, 
.lo, .20. The approximate limits below can be used for such data, too. For 
exact confidence limits for percentiles and reliabilities, only the linear 
methods of Chapter 7 are available. 

One can use exact or approximate limits to choose IZ  and r to get 
confidence intervals of desired length. 

Other Methods 

Prediction methods have not been developed for multiply censored (log) 
normal samples. For multiple failure censoring, exact prediction limits could 
be obtained by simulation methods like those of Thoman, Bain, and Antle 
(1970). Tabulations of such limits would be large, because a sample of size n 
can be Type I1 multiply censored in 2"-' ways, a large number. In general, 
tests of fit and other methods have not been developed for multiply 
censored data. 

Approximate best linear unbiased estimators for the parameters from 
multiply failure censored data can be derived with the methods of Thomas 
and Wilson (1972). Their simple methods also give approximate variances 
and covariances of the estimates. 
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Three-Parameter Lognormal 

M L  fitting of the three-parameter lognormal distribution is presented by 
Cohen (1976), who treats multiply censored data, by Mann, Schafer, and 
Singpurwalla (1974, Sec. 5.4.3), who treat singly censored data, and by their 
references. 

Normal and Lognormal Parameters 

The following advanced material presents ML methods for fitting a (log) 
normal distribution to multiply (right) censored data. It is intended for 
those who desire a deeper understanding or for those who wish to write a 
computer program for such calculations. Section 5 presents detailed theory 
underlying the methods. 

ML estimates. The log likelihood for a sample of n units with r failures 
is 

where +( ) and @( ) are the standard normal probability density and 
cumulative distribution. The sum 2: runs over the r failures times and the 
sum 2;’ runs over 11 - r running times. The ML estimates fi  and 6 for p o  and 
uo are unique and are the p and u values that maximize (2.1); they are also 
the solutions of the likelihood equations 

+ ( r / u  ) [ .r J 2  + ( .? - p )’I 
where h( z )  = @( z ) / [  1 - @( z ) ]  is the standard normal hazard function, j is 
the average of the r failures, and s ’=[I ; (y ,  - j ) ’ / r ] ’ / ’  is their standard 
deviation. The nonlinear equations (2.2) must be iteratively solved by 
computer to obtain @ and 6 ,  or (2.1) must be numerically maximized to 
obtain them. Section 6 describes such iterative methods. Computer pro- 
grams that do the calculations are listed above. Readers may wish to write 
their own such programs. 

For samples with many failures, the joint cumulative distribution function 
of fi  and 6 is close to a joint normal one with means pLo and uo and the 
covariance matrix (2.5). 
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Information matrix. Needed for confidence limits, the negative second 
partial derivatives of the log likellhood are 

where z ,  =( y,  - p)/u is the standard deviate. The expectations of (2.3) for 
p = po and u = uo are the elements of the true Fisher information matrix F,; 
that is, 

For a time censored sample, 

These are functions of the true standard deviates {, =( TJ ,  - po)/ao of the 
planned censoring times T J ~  of all sample units; 2, runs over all n units. For 
the locomotive control, all TJ ,  =log( 135), the common log censoring time. 

Locomotive control. The ML estimate of the Fisher information matrix 
for the locomotive control data has Eo{ - 8’ f/ap2),, = 753, 
Eo( - a 2  I? /aa2),  = 939, and Eo{ - a 2  e / a p  aa}, = - 504, where po = fi and 
uo = 6 ,  from the CENS program of Hahn and Miller (1968). 
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Covariance matrix. The inverse of the true Fisher matrix (2.4) is the true 
large-sample covariance matrix of fi  and 6; namely, 

It is in terms of standardized planned censoring times {, for all sample units. 
When the (, are all known, one can obtain the ML estimate of the 
covariance matrix for a time censored sample. Replace {, in (2.4) by 
f, = (q,  - f i ) / 6  to estimate the Fisher information matrix. Invert this esti- 
mate to get the ML estimate of the covariance matrix. 

Also, one can obtain the sample local estimate of the covariance matrix, 
even when censoring times for all sample units are not known. Replace p 
and u in (2.3) by fi  and 6 to get elements of the local Fisher information 
matrix. Invert that matrix to get the local estimate of the covariance matrix. 
Ths estimate applies to both time and failure censored samples. 

Locomotive control. The ML estimate of the covariance matrix has 
Vir(fi)-2.07X 10-3,Vb(6)-  l.66X and Cav(fi, 6 ) =  1.11 X lo-’; 
this was obtained with the CENS program of Hahn and Miller (1968) by 
inverting the ML estimate of the Fisher information matrix (2.5), namely, 

Vir( fi  ) C 6 ~ ( f i , 6 ) ] = [  753 -5O4]-’ 

C6v(f i ,6)  Viir(6) -504 939 

l . l lXlO-’  l.66X1Op3 ’ 

2.07 x 10 - 3  I 1 . 1  1 x 10 - 3 = i  
Figure 2.2 shows the local estimate, which differs. 

po and uo are 
Confidence limits. Two-sided approximate lOOy % confidence limits for 

here Var(ji) and Var( 6) must be estimated as described above. For one-sided 
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l0OyQ confidence limits, replace K ,  by z,. Exact limits for singly censored 
data are referenced above. 

Locomotive control. Two-sided approximate 95% confidence limits are 

p -2.2223-1.960(2.07X 10p3)’ /2  ~ 2 . 1 3 3 ,  

p-2.2223+1.960(2.07X 10-3 )1 /2  =2.311, 

-0.3064/exp[1.960(1.66X 10-3)’:2/0.3064] =0.236, 

6 -0.3064X 1.298=0.398. 

Corresponding limits for the median of the lognormal distribution are 
antilog(2.133)= 136 and antilog(2.311)-205 thousand miles. Each limit is a 
one-sided 97.5% confidence limit. 

Percentiles 

ML estimates. The lOOP th percentile of a normal distribution is yp = pclo 
+ zpu,, where z ,  is the IOOPth standard normal percentile. Its M L  likeli- 
hood estimate is 

For large samples, the cumulative distribution function of 3, is close to a 
normal one, with a mean equal to y ,  and a variance 

The terms of (2.8) are estimated from (2.3) or (2.4). as described above. 

Confidence limits. Two-sided approximate lOOy% confidence limits for 
v p  are 

~ , ~ ~ , - K , [ V B ~ ( ~ , ) ] ~ ’ ~ .  j ,  - y p +  K,[Var(f,)]”’, (2.9) 

where Var(j,) is estimated from (2.8). For a one-sided 100~5% confidence 
limit, replace K ,  by z,. 

The estimate and limits for the corresponding lognormal percentile t p  = 
antilog( y p )  are t p  =antilog( 3,). 1, -antilog( yp ), and t ,  =antilog( .i;F ). 
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Locomotive control. The ML estimate of the first percentile of log life is 
3 o1 = 2.2223 + ( - 2.326)0.3064= 1.5 185. The ML estimate of the first per- 
centile of the lognormal life distribution is antilog( 1.5185)= 33.0 thousand 
miles. The ML estimate of Var(Pol)  is V2r($,,) = 10-3[2.07 + 
( -2.326)21.66+2( -2.326)l.l l]=5.887X Two-sided approximate95% 
confidence limits are 

y = 1.5 185 - 1.960(5.887 X 10-3)1’2 = 1.3681, 

j o ,  =1.5185+0.1504=1.6689. 

Limits for the corresponding lognormal percentile are f =antilog( 1.3681) 
= 23.3 and rol =antilog( 1.6689) = 47.7 thousand miles. Each limit is a 
one-sided 97.5% confidence limit. The ML line in Figure 2.1 gives the ML 
estimates of the lognormal percentiles. The curves on the plot give the 
two-sided confidence limits for the percentiles. The limits are narrowest 
near the “center” of the data. 

Reliability 

(log) age y is F( y ) =  @{( y - po)/uo]. Its ML estimate is 
MI, estimate. The fraction of a (log) normal distribution failing by a 

For large samples. the cumulative distribution function of i =( J - f i ) / 6  is 
close to a normal one, with a mean equal to z = ( y - po)/uo and a variance 

var( 2 )  =( l /u i  [var (p  ) + z’var( 6 + 2zcov(f i ,  6 )] . (2.1 I 

The terms of (2.1 1 )  are estimated from (2.3) or (2.4), as described above. 

for F( y ) ,  calculate 
Confidence limits. For two-sided approximate lOOy % confidence limits 

f -i - ~ , , [ ~ a r ( f ) ] ’ / ’ * ,  iz-i + ~ , [ ~ a r ( i ) ] ” * ,  (2.12) 

where Var( 2 )  is estimated from (2.1 1). Then 

(2.13) 

For a one-sided 100~74 confidence limit, replace K ,  by zy.  
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The corresponding reliability estimate and limits are 

d (  , ~ ) = l -  P( ,v), c( y ) -  1-  ~ ( J J ) ,  E ( y ) z  1 - c(y). (2.14) 

Locomotive control. The ML estimate of the fraction failing on an 80 
thousand mile warranty is calculated as i =[log( 80) - 2.2223]/0.3064 = 
- 1.0418 and $(SO)= @( - 1.0418)=0.149. Two-sided approximate 95% 
confidence limits are calculated as 

Vir( 2 )  =( l/0.3064)210 - ’[ 2.07 + ( - 1.041 8)*1.66 

+2(-  1.0418)1.11] =0.01660, 

< = -  1.0418-1.960(0.01660)”2=-1.2943, 

i - I .04l8+ 1 .960(0.01660)”2 = -0.7893, 

F(80) @( - 1.2943) ~ 0 . 0 9 8 ,  F( 80) 1 a( - 0.7893) =0.2 15. 

Each limit is a one-sided approximate 97.5% confidence limit. In Figure 2.1, 
the ML line gives the ML estimates of failure probabilities. The curves for 
the confidence limits for the percentiles are also approximately the confi- 
dence limits for failure probabilities. 

3. 

This section presents maximum likelihood (ML) methods for fitting Weibull 
and extreme value distributions to multiply time censored data (Type I ) .  
The methods also apply to multiply failure censored data (Type II) ,  to 
singly censored data of both types, and to complete data. 

Most readers will use a standard computer program for ML fitting of a 
Weibull (or extreme value) distribution to data. For this reason, this section 
first presents an example with such a computer analysis. Then the section 
surveys some available computer programs. Next i t  presents special results 
for complete and singly censored data. Finally. i t  presents the advanced 
computational methods for ML fitting of a Weibull (or extreme value) 
distribution to multiply censored data. The last topic will interest only those 
who desire a deeper understanding of ML methods or wish to write their 
own programs for ML fitting. The computational methods cover Weibull 
and extreme value parameter estimates, their information and covariance 

WEIBULL AND EXTREME VALUE DISTRIBUTIONS 
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matrices and approximate confidence limits, and estimates and approximate 
confidence limits for percentiles and reliability. Exact confidence limits have 
not been tabulated for multiply censored data, only for complete and singly 
censored data. General ML theory and motivation appear in Sections 5.3 
and 5.4. 

Figure 3.1 is a Weibull hazard plot (Chapter 4) of the fan data. The ML 
fit of the Weibull distribution is the straight line in the plot, and the curves 
are approximate 95% confidence limits. In Figure 1.1 for the exponential fit, 
the confidence limits are closer together and are straight lines. Such plots 
are convenient and informative presentations of the data, the fitted distribu- 
tion. and the confidence limits. 

Figure 3.1. Weibull hazard plot and ML f i t  for fan data. 
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Figure 3.2 shows ML output of the WEIB program of the General 
Electric Information Services Company (1979) 

The ML estimates of the parameters are 6 = 2 6 . 3  thousand hours and 
B =  1.06. The shape parameter estimate is close to unity; this indicates that 
the failure rate is essentially constant. That is, new and old fans are about 
equally prone to failure. The approximate 95% confidence limits are /3 = 0.64 
and /? = 1.74. This interval encloses 1. Thus the data are consistent with 
Po = 1, corresponding to the exponential distribution and a constant failure 
rate. So management had no convincing indication that i t  was necessary to 
replace high-mileage fans before low-mileage ones. Replacements could be 
made in the most convenient and economical way. 

The estimate of the fraction failing on an 8-thousand-hour warranty is 
p(8)= 1 -0.75=0.25. Approximate 95% confidence limits are [(8)= 1-0.86 
=0.14 and F(8)= 1-0.61 =0.39. This helped management to decide to 
replace unfailed fans with a more durable fan. In Figure 3.1, the ML line 
gives the ML estimates of the failure probabilities. The curves for the 
confidence limits for the percentiles are also approximately the confidence 
limits for failure probabilities. 

Computer Programs 

Some computer programs that ML f i t  the Weibull and extreme value 
distributions to multiply censored data are the following. 

1. STATPAC by Nelson and others (1978). I t  gives the ML estimates of 
Weibull (a, 0) and extreme value ( A ,  8 )  parameters, percentiles, probabili- 
ties (including reliabilities), plus quantities programmed by users. I t  also 
gives approximate asymptotic confidence limits for these quantities. For 
limits i t  uses the local estimate of the covariance matrix of the parameter 
estimates. 
2. CENSOR by Meeker and Duke (1979) is similar to STATPAC, costs 
much less, but is less easy to learn. 
3. SURVREG by Preston and Clarkson (1980) is similar to STATPAC. 
4. WEIB of the General Electric Information Service Company (1979) 
gives the same results as STATPAC, but only for the Weibull distribution. 
Figure 3.2 shows output from WEIB. 
5. Many organizations have simple computer programs that merely calcu- 
late the ML estimates of the Weibull parameters but not confidence 
intervals. 

Programs for ML fitting of a Weibull distribution are widely available and 
can be used to f i t  an extreme value distribution to data. Then one first 
transforms each extreme value data value y to a Weibull one t =exp( . v )  and 



ESTIMATES FOR THE CUMULATIVE WEIBULL DISTRIBUTION: 
F,(T) = 1-EXP [ -  (T/A) ̂ B] 

ESTIMATE AND TWO-SIDED 9 5 . 0 0 %  CONFIDENCE 
INTERVALS FOR DISTRIBUTION PARAMETERS 

SHAPE (BETA) PARAMETER: 
LOWER LIMIT: 
UPPER LIMIT: 

1 . 0 5 8 4  
0 . 6 4 4 0 8  

1 . 7 3 9 4  

SCALE ( 6 3 . 2  PCTILE) PARAMETER: 2 6 . 2 9 7  
LOWER LIMIT: 1 0 . 5 5 2  
UPPER LIMIT: 6 5 . 5 3 5  

ESTIMATED COVARIANCE MATRIX OF PARAMETER ESTIMATES: 

SCALE SHAPE 
SCALE 1 5 0 . 1 0  - 2 . 6 6 4 5  
SHAPE - 2 . 6 6 4 5  0 . 7 1 9 5 8 E - 0 1  

PERCEN 
TAG E 

ESTIMATE AND TWO-SIDED 9 5 . 0 0 %  CONFIDENCE 
INTERVALS FOR DISTRIBUTION PERCENTILES 

PERCENTILE LOWER 
ESTIMATE LIMIT 

UPPER 
LIMIT 

0 . 1 0  0 . 3 8 5 2 6 E - 0 1  0 .29849E-02  0 . 4 9 7 2 6  
0 . 5 0  0 . 1 7 6 5 9  0 . 2 8 4 6 7 E - 0 1  1 . 0 9 5 4  
1 .00  0 . 3 4 0 7 2  0 . 7 4 8 2 3 E - 0 1  1 . 5 5 1 5  
5 . 0 0  1 . 5 8 9 2  0 . 6 8 3 1 0  3 .6974  

1 0 . 0 0  3 . 1 3 7 2  1 . 6 8 6 2  5 . 8 3 6 9  

2 0 . 0 0  
5 0 . 0 0  
7 0 . 0 0  
9 0 . 0 0  
9 5 . 0 0  

9 9 . 0 0  
9 9 . 5 0  
9 9 . 9 0  

6 . 3 7 4 7  3 . 7 3 0 5  1 0 . 8 9 3  
18 .600  8 . 5 2 4 8  4 0 . 5 8 4  
3 1 . 3 3 8  1 1 . 7 0 2  8 3 . 9 2 4  
5 7 . 8 2 6  1 6 . 5 4 1  2 0 2 . 1 6  
7 4 . 1 4 8  1 8 . 9 4 9  2 9 0 . 1 4  

1 1 1 . 3 1  23 .578  5 2 5 . 4 7  
1 2 7 . 0 8  2 5 . 3 0 1  6 3 8 . 2 3  
1 6 3 . 2 7  2 8 . 8 9 1  9 2 2 . 6 6  

WANT AN ESTIMATE OF PROBABILITY OF SURVIVAL BEYOND A SPECIFIC TIME? 
IF SO, TYPE A DESIRED TIME; OTHERWISE, TYPE 0 --?* 

ESTIMATE AND TWO-SIDED 9 5 . 0 0 %  CONFIDENCE 
INTERVAL FOR THE DISTRIBUTION PERCENTAGE ABOVE 8 . 0 0 0  

ESTIMATE: 
LOWER LIMIT: 
UPPER LIMIT: 

0 . 7 5 2 9 3  
0 . 6 0 8 1 7  
0 . 8 5 6 8 1  

Figure 3.2. WEIB output for fan failure data. 
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fits a Weibull distribution to the transformed values. The ML estimates & 
and b of the Weibull distribution fitted to the t values are then converted to 
A =In(;) and 8 =  l/b. Estimates and confidence limits for these and other 
quantities come in the obvious way from the Weibull results. 

Complete Data 

The ML methods below apply to complete samples and provide ML 
estimates and approximate and exact confidence limits for complete data. 

For a complete sample of n observations, the ML estimates of the extreme 
value or Weibull percentiles still entail an iterative solution of the likelihood 
equations. The asymptotic covariance matrix for the extreme value parame- 
ter estimates has (Harter and Moore, 1968) 

Var( A )  = 8021.1087/n, Var( 8 ) = S,”O.6079/n1 

COV( A ,  8 ) - SiO.2570/n. 

Similarly, for the Weibull parameter estimates (Bain, 1978, p. 215), 

These can be used to obtain approximate confidence limits for the pararne- 
ters and functions of them as described below. These asymptotic variances 
are smaller than those for other estimates. That is, ML estimates are 
asymptotically at least as good as any others, for example, the moment 
estimators of Chapter 6. 

There are tabulations of factors for exact lOOy% confidence limits based 
on ML estimates for the following: 

1. Distribution parameters. One- or two-sided limits for n = 
5(1)20(2)80(5)lOO( 10)120 and y =.02, .05, .25, .40(.10).70(.05).95, .98 by 
Thoman, Bain, and Antle (1969). Lemon and Wattier (1976) tabulate lower 
limits for n =2(1)30 and y =.80,.90,.95. Bain (1978) gives tables for n = 
5(1)16(2)24(4)40(5)60,70,80,100,120 and 1 - y and y = .02,.05, .lo, S O .  

2. Reliabilities, R( y ) .  One-sided lower limits for n =8, 10, 12, 15, 
18, 20, 25, 30, 40, 50, 75, 100, y =.75, .90, .95, .98, and R(y)=.50(.02).98 by 
Thoman, Bain, and Antle (1970) and Bain (1978). 

Percentiles, yp. One-sided lower limits can be obtained from the 
above table of limits for reliabilities as described by Thoman. Bain, and 
Antle (1970). Lemon and Wattier (1976) tabulate lower limits for the 1st 

3. 
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and 10th percentiles for n =2( 1)30 and y = .80, .90, .95. Bain (1978) gives 
tables for his n and y above and 1 - P = .02, .05, . lo, ,135, .25, 
.333, .368, .407, S O ,  .60, .80, .90, .95, .98. 

Lawless (1972b, 1975,1978) gives a method for exact conditional confi- 
dence limits for parameters, percentiles, and reliabilities from complete 
data. His limits require a special computer program for the laborious 
calculations. 

Sample size can be chosen to yield confidence intervals of desired length. 

Singly Censored Data 

The large-sample methods below apply to singly censored samples and 
provide ML estimates and approximate confidence limits. 

For a singly Type I or I1 censored sample, the ML estimates of extreme 
value or Weibull parameters still entail an iterative solution of the likelihood 
equations. Meeker and Nelson (1974,1977) tabulate the asymptotic covari- 
ance matrices of the ML estimates of the distribution parameters. The 
matrix is the same for censoring Types I and 11; it is a function of the 
standardized censoring time { =( q - h,)/69, where q is the (In) censoring 
time. Evaluation of the matrix at f = ( q  - X) /8  with the aid of the table 
yields the ML estimate of the covariance matrix. Harter and Moore (1968) 
briefly tabulate the asymptotic Fisher information and covariance matrices 
and give Monte Carlo means and variances of ML parameter estimates for 
selected sample sizes and censorings. 

For Type I1 single censoring, there are Monte Carlo tabulations of exact 
factors for confidence limits, whch are used for approximate limits for Type 
I single censoring, namely, 

1. Distribution parameters. Both parameters for n =40(20)120, r = 
S o n ,  .75n, y =.01,.05,.10,.90,.95,.99 by Billman, Antle, and Bain (1972). 
McCool (1970a) gives limits for the Weibull shape parameter for y =  
. lo, .50, .90, .95 and for n and r values in (3) below. Bain (1978) gives tables 
for both Weibull parameters for n =5,10,20,40,120,oo, r / n  =.5, .75, and 
1 - y and y = .01, .05,. 10. McCool (1974) tabulates limits for both parame- 
ters for y and 1 - y =.01,.02,.025,.05(.05).30,.40,.50, where n - 5 ( r  =3,5), 
n = 10( r = 3,  5 ,  lo), n = 15( r = 5 ,  10, 15), n =20[ r =5(5)20], n = 30( r = 5 ,  10, 
15, 20, 30). 

One-sided lower limits for n =40(20)120, y = .90. 
.95. .98, .99. and k( y ) =  .70(.02).94(.01).99(.0025).995(.001).998, .9985, .999 
by Billman, Antle, and Bain (1972). Bain (1978) gives one-sided limits for 
R = .70(.02).94(.01).99, .9925, .995(.001).998, .9985, .999, n =40(20)100, r / n  
= S O ,  .75, and y = .90, .95, .98, .99. 

2. Reliabilities R (  y ) .  
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3. Percentiles J?. One-sided lower limits can be obtained from the 
above table of limits for reliabilities as described by Thoman, Bain, and 
Antle (1970). McCool (1970b) gives limits for t ,o for y = .05, .lo, S O ,  .90, .95 
and for n = 10[r =2(1)5,7, lo], n =20[r =3(1)7,10,15,20], and n =30[r = 
3(1)10,15,30]. McCool (1974) gives limits for t o , ,  t ,o ,  t , ,  for they, n, and r 
in ( I )  above. 

Lawless (l972b, 1975,1978) gives a method for exact conditional confi- 
dence limits for parameters, percentiles, and reliabilities from singly failure 
censored data. Also, Lawless (1973) gives a method for exact conditional 
prediction limits for the smallest order statistic of a future sample. His limits 
require a special computer program for the laborious calculations. 

Sample size n and the number r of failures can be chosen to yield 
confidence intervals of desired length. 

Other Methods 

Predictions methods based on ML estimates have not been developed for 
multiply censored Weibull (or extreme value) samples. For multiple failure 
censoring, exact prediction limits could be obtained by simulation methods 
like those of Billman, Antle, and Bain (1972). Tabulations of such limits 
would be large, because a sample of size n can be multiply Type I1  censored 
in 2"-1 - 1 ways, a large number. In  general, tests of f i t  and other methods 
have not been developed for multiply censored data. 

Mann (1971) tabulates coefficients for best linear invariant estimators of 
the extreme value parameters from all multiply failure censored samples up 
to size 6. She also tables the exact variances and covariances of these 
parameter estimates. She references tables for 908 confidence limits for the 
10th percentile from multiply failure censored samples up to size 9. These 
results apply to the Weibull distribution in the usual way. Thomas and 
Wilson (1972) give simple approximately best linear unbiased estimators for 
the parameters from such data and their approximate variances and covari- 
ances. 

The method of Lawless (1972b, 1975,1978) can be extended to yield exact 
conditional confidence limits for parameters, percentiles, reliabilities, and 
other quantities from multiply failure censored data. His method requires a 
special computer program for the laborious calculations. 

Three-Parameter Weibull 

ML fitting of the three-parameter Weibull distribution is presented by 
Cohen (1975) and Wingo (1973) for multiply censored data, by Mann, 
Schafer, and Singpurwalla (1974,Sec. 5.2.1), by Bain (1978,Sec. 4.4) for 
singly censored data, and by their references. 
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Computational Methods 

The rest of this section presents advanced computations for ML methods 
for Weibull and extreme value data. Section 5 provides more detail and 
theory. The following material will interest only those who will write 
computer programs for the computations or who seek a deeper understand- 
ing. 

Distribution Parameters 

Weibull parameter estimates. The Weibull log likelihood for a sample of 
n units with r failures is 

The sums Zl,Z:, and 2;‘ respectively run over all, failed, and unfailed units. 
The ML estimates & and f l  for a. and Po are the a and p values that 

maximize (3.1); ti and f l  are unique and are also the solutions of the 
likelihood equations 

(3.2) 

These nonlinear equations must be iteratively solved by computer to obtain 
& and 8. Otherwise, (3.1) must be numerically maximized to get them. 
Section 6 describes how to solve such equations iteratively. Alternatively, 
the likelihood equations (3.2) can be combined to eliminate a. This yields a 
single equation in p that is easier to solve, namely, 

The left-hand sum runs over just the failure times. It is easy to iteratively 
solve (3.3) to get 6, since the right-hand side is a monotone function of P. 
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Then calculate 

Computer programs that d o  these calculations are listed above. 
is 

close to a joint normal one with means a, and Po and the covariance matrix 
given below. 

The ML estimates for the parameters of the corresponding extreme value 
distribution are 

For large samples, the joint cumulative distribution function of & and 

f i= ln(c i ) ,  8 = 1 / j .  (3.5) 

Extreme value parameter estimates. The extreme value log likelihood for 
a sample of n units with r failures is 

f =x'{ -I~(~)-~X~[()?,-X)/S]+[(~,-A)/S]}- ~ " e x p [ ( y 1 - A ) / S ] .  

(3.6) 

I I 

The ML estimates f i  and 8 for A, and 6,) are the A and 6 values that 
maximize (3.6); f i  and 8 are also the solutions of the likelihood equations 

o = a f / a x = ( i / s )  exp( ( j ; -A) / a ) - r  (3.7) 

'l'hese nonlinear equations in A and 6 must be iteratively solved by computer 
to obtain f i  and 8, or (3.6) must be numerically maximized to get them. 
Alternatively, the likelihood equations can be combined to eliminate 
exp( - A/6) and yield 

The right-hand side is a monotone function of 6, so it is easy to solve 
iteratively for 8. Then calculate 
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For large r ,  the joint cumulative distribution function of f i  and 8 is close 
to a joint normal one with means A, and 6, and the covariance matrix given 
below. 

The ML estimates for the parameters of the corresponding Weibull 
distribution are 

s = e x p ( f i ) ,  f i  = 1/8. (3.10) 

Information matrix. The local Fisher information matrix for the extreme 
value distribution is 

These derivatives are 

(3.1 1) 

-a211‘/aha8= - a 2 f / a 6 a h = ( 1 / 6 ’ )  6(d1?/dh)+ x i f e x p ( z , )  , [ I I 
where z ,  = ( v ,  - A ) / &  Evaluated at h = f i  and 6 = 8, aP/ah = af/dp = O  
according to (3.7). The expectations of (3.1 1) for X = A, and 6 = 6, are the 
terms of the true Fisher information matrix; namely, for a time censored 
sample, the terms are 
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Meeker and Nelson (1974) tabulate the terms in curly brackets as a function 
of the standard deviates {, =(q, - X,)/6, of the planned censoring times 9, 
of all sample units. 

The Weibull Fisher information matrix is not given here. It is more 
convenient to work in terms of the related extreme value Fisher information 
matrix (3.12) as described below. 

The inverse of the Fisher information matrix (3.12) 
is the true large-sample covariance matrix of and 6; it is in terms of the 
planned censoring times 1, for all sample units. When planned censoring 
times of all sample units are known, one can obtain the ML estimate of the 
covariance matrix. Replace A, and 6, in (3.12) by and 8, and invert this 
estimate of the Fisher matrix to get the ML estimate of the covariance 
matrix for a time censored sample. 

Also, one can obtain the estimate based on the sample local Fisher 
information matrix, even when planned censoring times for all sample units 
are not known. Replace X and 6 in (3.1 1) by f i  and 8, and invert the resulting 
estimate of the local Fisher information matrix to get the local estimate of 
the covariance matrix. This local estimate applies to both time and failure 
censored samples. Written out, the local estimate is 

Covariance matrix. 

var( i )  

C O V ( A , ~ )  var(8)  - a 2  e / a6  ah  - a 2  ?/as2 
cov(A,6*) = ( - a 2 r / a x 2  -a:i/ahjs)-' 

Relation between Weibull and extreme value covariance matrices. The 
asymptotic variances and covariances of the Weibull parameter estimates 
can be expressed in terms of those for the corresponding extreme value 
parameter estimates as 

cov(h,  f i  ) = - ( 1 /a:) exp( A, )cov( A ,  6 ). (3.13) 

Similarly, 

These formulas come from (5.3.16) and (5.3.17). 

Engine fan. The local estimate of the Weibull covariance matrix is 
var(&)= 150.1,var(fi)=0.07196 and cov(&, f i ) =  -2.664. This was obtained 
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with the WEIB routine of the General Electric Information Service Com- 
pany (1979); see Figure 3.2. The parameter estimates for the corresponding 
extreme value distribution of In life are =ln(26.39)=3.270 and s^= 
1/  1.058 =0.9452. The local estimates of their variances and covariance are 

var( A )  = ( 1/26.3)’1 50.1 = 0.2 17, 

var(8 )=( 1/1  .058)40.07196=0.0574, 

COV( A ,  8 )= - (1.058) ~ ’26.3-’( -2.664)=0.0905. 

Confidence limits for extreme value parameters. Two-sided approximate 
lOOy% confidence limits for the true extreme value parameters A, and 6, are 
obtained from (5.1.18) and (5.1.19) as 

h=i -K, [Var( i ) ]” ’ ,  i=f i+K,[Var( i ) ]” ’ ,  (3.15) 

S = 8/exp ( K Y [  Var( 8 )] I” /8 ] , 6= 8 . exp (K,[Var( 8 )] ”’/8 1,  (3.16) 

where Var(A) and Var(8) must be estimated as described above. For 
one-sided lOOy% confidence limits, replace K ,  by 2,.  The limits for the 
corresponding Weibull parameters are 

= exp( h ) , c i  = exp( i ), (3.17) 

p = 1 6 ,  @ = 1/s. (3.18) 

Confidence limits for Weibull parameters. Two-sided approximate 
1OOy% confidence limits for the true Weibull parameters a0 and Po are 

(3.19) 

(3.20) 
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For one-sided approximate IOOy% limits, replace K ,  by 2, .  The limits for 
the corresponding extreme value parameters are 

=In( cx), ji =ln(ci) ,  (3.21) 

(3.22) 

Engine fan. Two-sided approximate 95% confidence limits are 

5 = 26.30/exp[ 1.960( 150. /26.30] = 10.6, ci = 26.30.2.492 = 65.5, 

/3=1.058/exp[l.960(0.07196)”2/1.058]=0.64, B = 1.058.1.644= 1.74. 

The confidence limits appear in Figure 3.2. 

Percentiles 

ML estimates. The IOOPth percentile of a smallest extreme value distri- 
bution is y P  = A, + upSo,  where u p  =In[ - In( 1 - P ) ] .  Its ML estimate is 

j p  = r; + up& (3.23) 

For large samples, the cumulative distribution function of .fip is close to a 
normal one, with a mean equal to yp and a variance 

The variances and covariance are estimated from (3.11) or (3.12). The M L  
estimate for the corresponding Weibull percentile t p  = exp( >I,,) = a,, 
[-In(I-P)]”flO is 

Confidence limits. Two-sided approximate IOOy% confidence limits for 
v,, are 

y p r , P p  -K,[Var(,P,)] 1’2 , y P = F p  +K,[Var(.P,)]’”, (3.26) 

where Vat-(.$,) is estimated from (3.24). For a one-sided approximate 
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lOOy% confidence limit, replace K ,  by 2, .  The limits for the corresponding 
Weibull percentile t ,  = exp( y,) are 

Engine fan. The ML estimate of the 10th percentile of the In life is 
p,,, =3.270+(-2.2504)0.9452= 1.143. The ML estimate of the 10th per- 
centile of the Weibull life distribution is t,, =exp(1.143)=3.14 thousand 
hours. The local estimate of Var(P,,,) is var();,,,)=0.217+(-2.2504)2 
0.0574+ 2( - 2.2504)0.0905 = 0.100. Two-sided approximate 95% confidence 
limits are 

y ,,~1.143--1.960(0.100)”2=0.523, ~ ~ , , o ~ l . 1 4 3 + 0 . 6 2 0 =  1.763. 

Limits for the corresponding Weibull percentile are ,, =exp(0.523)= 1.69 
and i,, =exp( 1.763)=5.83 thousand hours. Each limit is a one-sided ap- 
proximate 97.5% confidence limit. The ML line in Figure 3.1 gives the ML 
estimates of the Weibull percentiles. The curves on the plot give the 
confidence limits for the true percentiles. The limits are narrowest near the 
“center” of the data. The Weibull limits in Figure 3.1 are wider than 
the exponential limits in Figure 1.1 for the same data. This should be 
expected, since the Weibull distribution has an additional unknown shape 
parameter, resulting in greater uncertainty in estimates. 

Reliability 

age y is R( y )  = exp{ - exp[( y - h , ) / 6 , ] } .  Its ML estimate is 
ML estimate. The fraction of an extreme value distribution surviving an 

(3.28) 

For large samples, the cumulative distribution function of fi =( y - A)/s^ is 
close to a normal one, with a mean of u = ( y  - A, ) / 8 ,  and a variance 

Var( 2) =( 1 /a:) [Var( A )  + u2Var( 8 ) + 2uCov( A ,  s^ )] . (3.29) 

The fraction of a Weibull distribution surviving age r is R ( r ) =  
exp[ - ( r /a , )Ba] .  Its ML estimate is 

a( t = exp[ - ( t / b  )’I. (3.30) 
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Confidence limits. Two-sided approximate lOOy ’25 confidence limits for 
R( v )  are calculated as 

= li - K,[Var( l i ) ]  I ”  11 = li + K,[Var( l i ) ]  ”’ (3.31) 

where Var(li) is estimated from (3.29) and (3.11) or (3.12), and 

!?( )I) = exp[ - exp( C)], I?( )I) = exp[ - exp( .)I. (3.32) 

For a one-sided approximate IOOy% limit, replace K ,  by z,. The corre- 
sponding estimate and confidence limits for the fraction failing are 

F ( ) I ) =  1 - d ( y ) ,  [ (y)=  1 - z q y ) ,  F ( y ) =  1 - & ( y ) .  (3.33) 

Confidence limits for a Weibull reliability at age t are the same as those 
for the corresponding extreme value reliability R( y ) ,  where y = In(t). 

Engine fan. The ML estimate of the fraction failing on an 8 thousand- 
hour warranty is calculated as li = [ln(8) - 3.270]/0.945 = - 1.260 and F(8)  
= 1 - exp[ - exp( - 1.260)] = 0.25. A one-sided upper approximate 95% con- 
fidence limit is calculated as 

Var( C)-(1/0.9452)[0.217+( - l.260)20.0574+2( - 1.260)0.0905] 

=0.0897, 

11 = - 1.260+ 1 .645(0.0897)”2 = -0.767, 

F(8)= 1 -exp[ -exp( -0.767)] =0.37. 

4. DATA WITH COMPETING FAILURE MODES-MAXIMUM 
LIKELIHOOD ANALYSIS 

4.1 Introduction 

Life data with a mix of failure modes requires special methods. I t  is clearly 
wrong to use data on one failure mode to estimate the life distribution of 
another failure mode. This section describes maximum likelihood (ML) 
methods for analyzing such data where the mode (cause) of each failure is 



348 MAXIMUM LIKELIHOOD ANALYSES OF MULTIPLY CENSORED DATA 

known. Section 5.5 gives the theoretical basis of these ML methods. Chapter 
5 presents graphical methods for such data. 

This section presents ML methods for estimating ( 1 )  a separate life 
distribution for each failure mode, ( 2 )  the life distribution when all modes 
act, and (3) the life distribution that would result i f  certain modes were 
eliminated. The topics of this section are the following. 

Illustrative data (Section 4.2). 
The model (Section 4.3). 
Analysis of data on a failure mode (Section 4.4). 
The life distribution when all failure modes act (Section 4.5). 
The life distribution with certain failure modes eliminated (Section 4.6). 
Other methods (Section 4.7). 

Theory for these analyses is in Section 5.5. The models are applied to an 
example where each sample unit fails from just one cause. However, the 
methods extend to data where each unit can keep running and accumulate 
failures from more than one cause; Nelson (1974b) presents this. 

McCool (1974, 1976, 1978a) gives ML estimates and confidence limits for 
independent competing failure modes with Weibull distributions with a 
common (unknown) shape parameter value. Cox (1959) gives ML estimates 
for exponential distributions for (1)  competing failure modes and (2)  a 
mixture-both for data with the failure cause (a)  identified and (b) not 
identified. Boardman and Kendell (1970) provide ML estimates for ex- 
ponential distributions from time censored data with competing failure 
modes that are identified. Birnbaum (1979), David and Moeschberger 
(1979), and Kalbfleisch and Prentice (1980) present ML methods for such 
data; they emphasize biomedical applications and nonparametric methods. 

4.2. Illustrative Data 

The data of King (1971) in Table 4.1 illustrate the methods given here. The 
data are the breaking strengths of 20 wire connections. Such wires are 
bonded at one end to a semiconductor wafer and at the other end to a 
terminal post. Each failure results from breaking of the wire or a bond 
(whichever is weaker), as shown in Table 4.1. The main problem is to 
estimate the strength distributions of ( I )  wires, (2)  bonds, and (3) connec- 
tions. The specification for the connections requires that less than 1 % have 
strength below 500 mg. Another problem is to estimate the strength distri- 
bution that would result from a redesign that eliminates ( I )  wire failures or 
else (2) bond failures. Strength takes the place of time to failure in this 
example. 
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Table 4.1. Connection Strength Data 
S t r e n g t h  mg. Break o f  S t r e n g t h  mg. 

550 
750 
950 
950 

1150 
1150 
1150 
1150 
1150 
1250 

B 
W 
B 
W 
W 
B 
B 
W 
w 
B 

1250 
1350 
1450 
1450 
1450 
1550 
1550 
1550 
1850 
2050 

Break of 

B 
w 
B 
B 
w 
B 
w 
W 
w 
B 

Figure 4.1 shows a normal hazard plot of the 20 strengths-ignoring 
cause of failure. Figure 4.2 is such a plot for the wire failures, and Figure 4.3 
is such a plot for the bond failures. One  makes and uses such plots to assess 
the validity of the data and the normal distribution as described in Chapter 
5 .  Also, the plot is a convenient means of presenting the fitted distribution 
and confidence limits. 

4.3. The Model 

The model for data with competing failure modes is that of Chapter 5.  I t  is 
briefly presented here. I t  consists of 

1. A separate life distribution for each failure mode. 
2. The relationship between the failure times for each failure mode and the 
failure time for a test unit-the series-system model for independent 
competing failure modes here. 

PERCENTAGE 
I .o 10 30 50 70 90 99 
r - v ~ ~ ~ I ~ ~  1 

I .o 10 100 200 300 500 
CUMULATIVE HAZARD 

Figure 4.1. Normal hazard plot of connection htrengthh 
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1.0 10 100 200 300 500 
CUMULATIVE HAZARD 

Figure 4.2. Normal hazard plot of wire strengths. 

The series-system model. The series-system model for the life of units 
with independent competing failure modes assumes 

1. Each unit has M potential times to failure, one from each mode, and the 
times are statistically independent. 
2. The time to failure of a unit is the smallest of its M potential times. 

Let Rnt( y )  denote the reliability [probability that failure mode rn does not 
occur by (log) time y ]  if only mode rn were acting. The reliability function 

PERCENTAGE 

I .o 10 100 200 300 500 
CUMULATIVE HAZARD 

Figure 4.3. Normal hazard plot of bond strengths 
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R( y )  of units with M statistically independent failure modes is given by the 
product rule: 

(4.1) 

This is used in Sections 4.5 and 4.6 to estimate life distributions from data 
with competing failure modes. Chapter 5 describes this model further. 

4.4. Analysis of Data on a Single Failure Mode 

Point of view. The following point of view simplifies analysis of data on 
a failure mode, say, mode 1. Each unit has a time to failure with mode 1 or 
else a time without failure mode 1. A time when a unit fails by another 
mode or when the unit has not failed is treated as a censoring time for mode 
1, since the failure time for mode 1 is beyond the censoring time. Then the 
running and censoring times for mode 1 are a multiply censored sample, 
and the parameters of the distribution for mode 1 can be estimated with ML 
methods from that multiply censored sample. This is valid ( 1 )  i f  and only if  
a unit's failure time for mode 1 is statistically independent of its times for 
all other modes and (2) i f  a parameter value of the distribution of another 
mode has the same value, that fact not being used to estimate the parameter 
for mode 1. Restriction (1) holds if the series-system model applies (all 
failure modes are mutually independent). Then the ML estimates of the 
distribution parameters for different modes are close to statistically inde- 
pendent for large samples when the distributions d o  not have the same 
values of any parameters. 

Maximum likelihood .estimation. The following explains M L  methods 
for estimating a separate life distribution for each failure mode. The 
methods also provide approximate confidence limits. Theory for these 
methods is in Section 5.5. 

For ML analysis of a particular mode, failure and censoring times for 
that mode must be extracted from the data as explained above. Such data 
on the wire and bond failures are shown in Tables 4.2 and 4.3. Then a 
distribution is fitted to such multiply censored data on a mode by the ML 
method. The laborious M L  calculations for such data must be done with 
computer programs such as STATPAC by Nelson and Hendrickson (1972) 
and Nelson and others (1978). 

The ML fi t  of the normal distribution to the data for each failure mode 
was calculated by the STATPAC program of Nelson and others (1978). The 
fitted distributions for wire and bond failures appear in Figures 4.2 and 4.3. 
Figures 4.4 and 4.5 for wire and bond failures show the ML estimates and 



Table 4.2. Wire Failure Data 
550+ 1150+ 1250+ 1550+ 

750 1150+ 1350 1550 

950+ 1150 145W 1550 

95 0 1150 145W 1850 

1150 1250+ 1450 2050+ 

c M A X I M U M  L I K E L I H O O D  E S T I M A T E S  FOR D I S T .  PARAMETERS 

P A R A M E T E R S  E S T I M A T E  LOWER L I M I T  UPPER LIMIT 

W I T H  A P P R O X I Y A T E  95% C O N F I D E N C E  L I M I T S  

CENTER iw= 1517.384 !!w= 1298.909 
S P R E A D  $,=398.8265 n o w =  256.3974 

* C O V A R I A N C E  M A T R I X  

P A R A M E T E R S  CENTER SPREAD 

8081.704 

P C T I L E S  

c M A X I M U M  L I K E L I H O O D  E S T I M A T E S  FOR D I S T .  P C T I L E S  
W I T H  A P P R O X I M A T E  95% C O N F I D E N C E  L I M I T S  

PCT.@ E S T I M A T E  LOWER Ibl L I M I T  UPPER L I M I T  

0.1 
0.5 
1 
5 
10 
2 0  
50 
8 0  
90 
95 
99 

284.80 18 
489.9117 
589.4003 
86 1.7300 
1006.197 
118 1.789 
1517.384 
1852.979 
2028.57 1 
2173.538 
2445.367 

-223.7595 
62.82445 
200.3698 
567.6657 
754.7586 
966.3855 
129R 909 
1547.97 1 
1662.169 
1752.405 
191 5.946 

793.3631 

91 8.4307 
1154.794 
1257.634 
1.397.192 
1735.859 
2 157.988 
2 394.973 
2 594.670 
2974.789 

9 17.0010 

P E R C E N T ( 5 0 0 .  L I M I T )  

* M A X I M U Y  L I K E L I H O O D  E S T I M A T E S  FOR % W I T H I N  L I M I T S  
WITH APPROXIMATE 9596 CONFIDENCF L I M I T S  

E 5 T  I M A T E  LOWER L I M I T  UPPFR L I M I T  

-1 -1 [=I 
P C T  99.46284% 89.66245 99.97471 

Figure 4.4. STATPAC output on normal ML f i t  to wire strength 
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Table 4.3. Bond Failure Data 
550 1150 1250 1550 

750+ 1150 1350+ 1550+ 

950 115W 1450 155W 

9 5 M  1150+ 1450 1850+ 

115M 1250 145W 2050 

* MAXIMU',l L I K E L I H O O D  E S T I M A T E S  FOR D I S T .  PARAMFTERS 
W I T H  A P P R O X I F A T E  9 5 %  C O N F I D E N C E  L I M I T S  

PARAMETERS E S T I V A T E  LOWER L I M I T  UPPER L I M I T  

CENTER Pa= 1 5 2 2 . 3 1 4  1 2 8 3 . 9 7 5  z a =  1760 .654  
SPREAD %= 434 .9267  U S =  6 7 6 . 1 9 7 3  

* C O V A R I A N C E  M A T R I X  

PARAMETERS C E N T E h  @SPREAD 

CENTER & 14787 .01  
SPREAD 4 4 6 6 . 1 4 3  9 5 8 9  - 6 4  1 0 
P C T I L E S  

* MAXIMU' I  L I K E L I H O O D  E S T I M A T E S  FOR D I S T .  P C T I L E S  
W I T H  A P P R O X I M A T E  9 5 %  C0NFIDL"ICF L I E I T S  

IKJ pJ m 
p c 1 . a  E S T I N A T E  LONER L I M I T  UPPER L I M I T  

0.1 
0.5 
1 
5 
1 0  
2 0  
5 0  
8 0  
9 0  
9 5  
9 9  

178 .1635  
4 0 1  - 8 4 0 3  
510.3331 
8 0 6 . 7 6 7 8  
964 .8561  
1156 .342  
1 5 2 2 . 3 1 4  
1 8 8 8 . 2 8 6  
2 0 7 9 . 7 7 2  
2237 .R61  
2534 .295  

- 3 7 1 . 9 4 8 9  
- 5 9 . 5 7 9 3 0  

9 0 . 3 2 0 5 1  
4 9 0 . 4 3 5 5  
6 9 4 . 0 3 2 9  
9 2 3 . 9 2 8 5  

1 5 5  3 - 9 7 5  
1678 .140  

1 9 5 4 . 5 6 0  

1 2 8 3 . 9 7 5  

1 7 7 6 . 3 6 7  

7 2 8 - 2 7 5 9  
8 6 3 - 2 5 9 9  
9 3 0 - 3 4 5 6  
1 1 2 3 . 1 0 0  
1 2 3 5 . 6 7 9  
1388 .756  
1 7 6 0 . 6 5 4  
2 2 2 2 . 5 9 8  
2481 .405  
2 6 9 9 . 3 5 4  
3114 .030  

P E R C E N T ( 5 0 0 .  L I M I T )  

* MAXIMUM L I K E L I H O O D  E S T I M A T E S  FOR 36 W I T H I N  L I M I T S  
W I T H  A P P R O X I M A T E  9 5 %  C O N F I D E N C E  L I M I T S  

E S T I M A T E  LOWER L I M I T  UPPER L I M I T  

IR(500jl -1 -1 
PCT 9 9 . 0 6 2 7 0  0 8 . 2 5 4 0  1 9 9 . 9 3 2 7 7  

Figure 4.5. STATPAC output  on normal ML f i t  to hond strength 
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confidence intervals for parameters and percentiles. The wire and bond 
strength distributions are very similar (see Figures 4.2 and 4.3). 

4.5. The Life Distribution When All Failure Modes Act 

When a product is in actual use, any mode can cause failure. This section 
presents the ML method for estimating the life distribution when all failure 
modes act. 

ML estimate of the life distribution. Suppose that the product reliability 
at a given age is to be estimated. First obtain the ML estimate of the 
reliability for that age for each failure mode as described in Section 4.4. 
Then the ML estimate of reliability when all failure modes act is the product 
(4.1) of the reliability estimates for each failure mode. Confidence limits for 
such a reliability are described in Section 5.5. The estimate and confidence 
limits can be calculated for any number of ages, as needed. 

For example, for the connections, suppose that the reliability for a 
strength of 500 nig is to be estimated. The ML estimate of reliability at 500 
mg is obtained as described above and is 0.995 for wires and 0.991 for 
bonds. So the ML estimate of reliability when all failure I odes act is 
0.995 X0.991=0.986. 

The estimate of the fraction failing from any cause below 500 mg is 
1 -0.986=0.014. This point is on the curve in Figure 4.1. That curve is the 
ML estimate of the strength distribution of connections when all failure 
modes act. It was obtained by the above calculations for various strengths. 
Such calculations yield a distribution curve, not a straight line, since the 
calculated distribution of connection strength is not normal. The ML 
estimate of any percentile can be obtained from the plot or by numerical 
calculation. 

Rough estimate. A rough analysis of such data may do. This involves (1)  
using all failure times (ignoring cause) and running times of all unfailed 
units, and (2) ML fitting a single distribution to that data. T h s  may be 
satisfactory in the range of the data. It may mislead in extrapolating into the 
tail above or below the data; then this approach is generally not recom- 
mended. 

Hazard plot of the data with all failure modes. Chapter 5 explains hazard 
plotting of a distribution of time to failure when all modes act. The hazard 
plot (Figure 4.1 for all modes) provides a check on the data and the fit of 
the model. The connection data and fitted curve appear valid. 

4.6. The Life Distribution with Some Failure Modes Eliminated 

For some products, some failure modes can be eliminated by design 
changes. This section shows how to estimate the resulting life distribution 
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from the data on the remaining failure modes. The worth of a redesign can 
thus be assessed in advance. 

Suppose that the reliability of 
redesigned units at a given age is to be estimated. First obtain the ML 
estimate of the reliability at that age for each remaining failure mode, as 
described in Section 4.4. Then the ML estimate of the redesign reliability for 
that age is the product (4.1) of those reliability estimates. This method 
assumes that the reliability for an eliminated failure mode is 1. In practice, a 
failure mode may not be completely eliminated; Section 3 of Chapter 5 
describes how to handle such a situation. 

For the connections, bond failures have a greater percentage below the 
500-mg specification. Bond failures could be eliminated through a redesign. 
Suppose that the redesign reliability for 500 mg is to be estimated. The 
500-mg reliability estimated for wire failure is 0.995. So the ML estimate of 
the redesign reliability is 0.955 X I =0.995. 

The estimate of the fraction below 500 mg is 1 -0.995=0.005. This point 
is off scale on normal hazard paper in Figure 4.2. There the line is the ML 
estimate of the life distribution of the redesign. Such a distribution curve is 
obtained through repeated calculation of the fraction failing by various 
strengths (ages). The estimate of the percentage below the 500-mg specifica- 
tion is 0.5%; this is marginal. So the connections need further improvement 
(particularly the wire). Confidence limits may be obtained as described in 
Section 5.3. 

Rough estimate. A rough analysis of such data may do. This involves (1) 
using all failure times of the remaining failure modes, ignoring causes and 
treating all other times as running times, and (2) fitting a single distribution 
to that data. This approach is generally not recommended for extrapolating. 

Sometimes a mode is not completely eliminated. An estimate of the new 
distribution for that mode can be combined with the estimates for the other 
remaining modes with (4.l), as shown by Nelson (1974b); see also Section 3 
of Chapter 5. 

Chapter 5 explains hazard plotting 
of a life distribution when certain failure modes are eliminated. The hazard 
plot (Figure 4.2 without bond failures) provides a check on the data and on 
the ML fit of the model. The connection data and the fitted model appear 
satisfactory. 

4.7. Other Methods 

Other analyses of such life data include checks on the life distribution, the 
data, and the independence of the failure modes. The series-system model 
assumes that the failure modes are statistically independent. Nelson ( 1974b) 

ML estimate of the life distribution. 

Hazard plot with modes eliminated. 



356 MAXIMUM LIKELIHOOD ANALYSES OF MULTIPLY CENSORED DATA 

describes how to check independence (units must have a failure from each 
mode) and the validity of the distribution and the data. 

Correlations between the failure times for dependent modes are usually 
positive. This means that long (short) failure times of one mode tend to go 
with long (short) failure times of the other mode. That is, a unit is generally 
strong or generally weak. The failure time of the mode of interest soon 
follows the failure (censoring time) from another mode when the modes are 
dependent. Thus, assuming independence, the ML estimate (Section 4.4) for 
the life distribution of, say, failure mode 1 is biased toward long life; so this 
estimate for the distribution of mode 1 tends to be on the high side. To 
obtain one on the low side, treat the failure times for the correlated failure 
modes as if they were from mode 1. If close, the two estimated bounds may 
serve practical purposes. 

A graphical check for independence is given by Nadas (1969). It  applies 
to normal and lognormal life distributions. Moeschberger and David (1971) 
and David and Moeschberger (1979) give ML estimates for the joint 
distribution of correlated failure modes. 

In some applications, the cause of failure is not identified. Then the data 
are treated as coming from the many-parameter distribution (4.1). For 
example, Friednian and Gertsbakh (1980) present ML estimates for a 
three-parameter model based on two competing failure modes-one ex- 
ponential and the other Weibull. See also David and Moeschberger (1979). 

5. GENERAL MAXIMUM LIKELIHOOD METHODS AND THEORY 

This advanced technical section presents general maximum likelihood !ML) 
methods for fitting a distribution to data multiply censored on the right. 
These methods provide estimates and approximate confidence intervals. 
Results and methods are presented without regularity conditions and proofs, 
which are given by Wilks (1962), Rao (1973), and Hoadley (1971). 

Section 5.1 presents general ML theory for a distribution with one 
unknown parameter and complete data; the theory is illustrated with the 
exponential distribution, and i t  also applies to the binomial, Poisson. and 
other one-parameter distributions. Section 5.2 presents general ML theory 
for such a distribution and multiply time censored data (on the right); the 
theory is illustrated with the exponential distribution. Section 5.3 presents 
general ML theory for a distribution with two (or more) unknown parame- 
ters and complete data; the theory is illustrated with the normal distribution 
and also applies to the Weibull, extreme value, and other distributions. 
Section 5.4 presents general ML theory for such a distribution and multiply 
time censored data (on the right). Section 5.5 presents ML theory for 
competing failure modes. Section 5.6 motivates the ML theory. 
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Each section covers ( I )  the (log) likelihood. ( 2 )  ML estimates of distribu- 
tion parameters, (3) their Fisher information matrix, (4) their covariance 
matrix, (5) estimates of functions of the parameters, and (6) approximate 
confidence limits. Although the asymptotic ML theory applies to large 
samples, M L  estimates and methods are usually good with small samples. 

5.1 One-Parameter Distribution and Complete Data (Exponential Example) 

1. LIKELIHOOD 

For a continuous distribution, the likelihood L( 8 )  for a complete sample of 
n observations y I , .  . . ~ )i is defined as the joint probability density 
g(y l ,  ..., Y , ~ ;  0). The likelihood L ( e )  is viewed as a function of 6 ,  an 
arbitrary value of the distribution parameter. The (unknown) true value is 
denoted by 0,. Usually the n observations are a random sample of indepen- 
dent observations from the same distribution with probability density 
f( y ;  0).  Then the sample likelihood is 

For a discrete distribution, the probability mass function is used in place 

The sample log likelihood is the natural log of the likelihood; namely, 
of the probability density. 

!2( 0 ) = l n [ L (  0) ]  =In[/( y I ;  0) ]  + . . . +In[ / ( ~ ; ~ ; 0 ) ]  (5.1.2) 

for independent observations from the same distribution. This function o f  B 
has different shapes for different sets of sample y , ,  . . . ~ yf,. The log likelihood 
for just observation i is 

(5.1.3) 

S o  the sample log likelihood is the sum of the 17 log likelihoods of the 
independent observations. 

Exponential likelihood. For a complete sample of n independent ob- 
servations y I , .  . . , yfl  from an exponential distribution with mean 8 ,  the 
sample likelihood is 

L (  e ) = (  1/8)exp( - J J ~ / O ) X  . . . X (I/O)exp( - V , ~ / O )  

= e ~ ,lexp[ - (?,  + . . . + ,;,)/el 
The sample log likelihood is 

L' ( B ) = - n In( 8 )  - [ ( .rl + . . . + J;, ) /el .  (5.1.4) 
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The log likelihood for just observation yl is 

L", ( 0 ) = - In( 0 ) - ( yl / 6 ) .  

2. ML ESTIMATE 

The ML estimate d is the 6 value that maximizes the sample likelihood L( 8 ) .  
Equivalently, d maximizes the sample log likelihood f ( e ) ,  since i t  is a 
monotone function of L ( 0 ) .  The ML estimate is a function of the sample 
values y , ,  . . . , y,,; this function could theoretically be written as 4 = 
d(y , ,  ..., In practice, however, one may not be able to write d as an 
explicit function of y , ,  . . . , y,. 

The value 6 that maximizes e ( 6 )  can be found by the usual calculus 
method of setting the derivative of C ( 0 )  with respect to 6 equal to zero and 
solving for 6; namely, solve the likelihood equation: 

at (e) /ae  =o.  (5.1.5) 

After finding a solution d of (5.1.5). one should confirm that d maximizes 
f (8) .  I f  a'f(O)/M' evaluated at t9 = d is negative, then d corresponds to a 
local optimum (not necessarily a global one, which is desired). 

For n large, the cumulative distribution of the ML estimator 4 is close to 
a normal one, with mean and asymptotic variance given by (5. l . l2) ,  
provided that the life distribution satisfies regularity conditions (Wilks. 
1962; Rao. 1973; Hoadley, 1971). Also, under regularity conditions on the 
life distribution, no other estimator with an asymptotic normal distribution 
has smaller asymptotic variance. 

The partial derivative aP,(e)/ae is called the score for observation I .  

Evaluated at 8 = 4, its expectation when the observation is from /( ~ ' ~ ; d ~ )  
satisfies 

The subscript zero on { ),, indicates that the quantity inside is evaluated at 
6 = do. The subscript zero on E,  indicates that the expectation is taken with 
respect to the true distribution with 8,. Consequently, for independent 
observations, the sample score d t  (d ) /de  satisfies 

These relationships can aid in the calculation of theoretical expectations, for 
example, for the Fisher information below. 
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ML estimate of exponential mean. The likelihood equation for a com- 
is the derivative of plete sample of n independent observations y I , .  . . , 

(5.1.4): 

The solution of this equation is the ML estimate 

8 = ( y , +  . . .  + y f l ) / n = F ,  (5.1.7) 

the sample average. As seen in Chapter 6, the distribution of 8 is approxi- 
mately normal, with mean 8, and variance (5.1.14). 

3. FISHER INFORMATION 

One must calculate the Fisher information to obtain the asymptotic variance 
of the ML estimator of the distribution parameter. The variance is used to 
obtain approximate confidence limits for the parameter and functions of i t .  
The Fisher information is the expectation of the negative of the second 
partial derivative of the log likelihood with respect to the parameter; that is, 

The notation ( ), denotes that the second derivative is evaluated at 0 = 0,, 
and the expectation E, is calculated assuming that the observations come 
from the joint distribution g( y , ,  . . . , . Y , ~ ;  d , , ) ,  where the parameter has the 
true value 0,. The second derivative is an implicit function of the observa- 
tions, which are regarded as random quantities for the purposes of 
calculating the expectation. For n independent observations from the same 
distribution, the Fisher information (5.1.8) becomes 

If one knows the expectation of the quantity in braces { }, one need not 
evaluate the integral. Also, one can use the properties of expectation to 
evaluate the Fisher information. An equivalent formula (under regularity 



360 MAXIMUM LIKELIHOOD ANALYSES OF MULTIPLY CENSORED DATA 

conditions) is 

E,){ - a 2 q e ) / a e 2 } , =  ~ , ( ( a e ( e ) / a e ) ~ ) ~ ) = ~ ~ , , ( ( i ) l l ' ~ ( e ) / a e ) ~ ) , ,  

= n/-:m(a~n[~(.v: s ) l i a e ) ~ j ( ~ ;  e~ 4,'. (s.1.10) 

For a discrete distribution. the expectations above are obtained by 
replacing the integrals by sums running over all possible discrete outcomes. 

For a complete sample of n indepen- 
dent observations from an exponential distribution with mean e,, the Fisher 
information is calculated as follows. First, for an arbitrary observation i, 

Exponential Fisher information. 

a2e , (8 ) / ae '= ( l / e2 ) -2 ( .v1 /83 ) .  

Then 

E(){ - a 2 q e ) / a e 2 } , =  - n ~ , , { ( i / e ~ ) - 2 ( ? : / e ~ ) }  

since E,,!, = e,,, the mean. Then 

Eo{ - a 2 f (  e ) / a P } ,  = n/e,:. (5.1.11) 

By the equivalent formula (5.1.10) and (5.1.6). one also obtains (5.1.11) as 

4 4S\ MPrOTlC VARIAltCE 

The true asymptotic (for large n )  variance Var(8) of the M L  estimdtor e is 
the inverse of the true Fisher information, namely. 

(5 .  I .  12) 
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This variance is generally a function of 8,. To obtain confidence limits, one 
must calculate one of the following two estimates of this variance. The ML 
estimate V i r ( 8 )  is (5.1.12), with 8,, replaced by 8. The local estimate is 

( 5 .  I .  13) 

this is the reciprocal of the local Fisher information, that is, the negative of 
the second partial derivative of the log likelihood evaluated at 8 = 8. Here 
f (  8)  is calculated for the actual sample values y , ,  . . . , y, of the observations. 
The local estimate is generally easier to calculate. 

Exponential asymptotic variance. By (5.1.12) and (5.1.1 l) ,  the true 
asymptotic variance of the ML estimator 8 for the mean 8,) of an exponen- 
tial distribution is 

The ML estimate of this variance is 

vir(8 = S 2 / n  = j 2 / n .  (5.1.15) 

The local estimate of the variance is 

[ ( 1 / ~ 9 ~ ) - 2 ( y , / d ' ) ] ~  ê  = d 2 / n = j 2 / n .  (5.1.16) 

For complete exponential data, the ML and local estimates of the asymp- 
totic variance are equal. For most distributions and censored data, these 
estimates differ. 

5. ML ESTIMATE OF A FUNCTION OF THE PARAMETER 

Suppose that h = h( 8) is a continuous function of 8. For the exponential 
distribution, the failure rate h = 1/8 and reliability R( .v)=exp( - y / 8 )  are 
such functions. The ML estimate for the true value h, = h( 8") is 6 = h( d) ;  
this is called the invariance property of ML estimators. For large sample size 
n. the cumulative distribution function of 6 is close to a normal one, with a 
mean equal to h ,  and a (true asymptotic) variance 

var( 6)  = (ah/ae):var( S ) ?  (5.1.17) 

where the notation ( ), denotes that the partial derivative is evaluated at 
d = 8,. The partial derivative ah /a8  must be a continuous function of 8 in a 
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neighborhood of the true value 6,. The ML and local estimates of (5.1.17) 
are obtained by using respectively V2r( 6 )  and var( 6 )  for Var( 6 )  and using 6 
for 6, in the partial derivative. 

For an exponential distribution, the 
failure rate A, = I/6, is a continuous function of 6,. Its ML estimate is 

ML estimate of the failure rate. 

f i  = 1/6 = l / j .  

The calculation of its asymptotic variance is 

For complete data, the ML and local estimates of this variance are equal 
and are 

6. CONFIDENCE LIMITS 

Two-sided approximate lOOy% confidence limits for the true value ho  of a 
function are 

5 = h  ̂- K,[var( h ^ ) ]  ' I 2 ,  h = 6 + K,[var( h ^ ) ]  ''?, (5.1.18) 

where K ,  is the [ 100( 1 + y)/2]th standard normal percentile. Either the ML 
or local estimate of variance can be used in (5.1.18) and (5.1.19). This 
interval employs the large-sample normal distribution of h^. Of course, 
(5.1.18) is an interval for the parameter 6,) itself; then 

I f  h  ̂ must be positive, one treats ln(h^) as normally distributed. Then 
positive two-sided approximate lOOy% confidence limits for h ,  are 

h = h^/exp [ K,[var( h ^ ) ]  ' I 2  /6] h = h^.exp (K,[var( 6 ) ]  ' / ' / h ' ) .  (5.1.19) 

A one-sided approximate IOOy% confidence limit is obtained from a 
preceding limit when K ,  is replaced by z y ,  the l0Oyth standard normal 
percentile. 
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It may be possible to find a function such that the distribution of 6 is 
closer to normal than that of 4, yielding more accurate confidence limits. 

Confidence limits for an exponential mean. The mean 8, of an exponen- 
tial distribution must be positive. By (5.1.19), positive two-sided approxi- 
mate 1OOy% confidence for 0, are 

6 =  j -exp(  ~ ~ / n l / ’ ) .  (5.1.20) 

5.2. One-Parameter Distribution and Multiply Censored Data 
(Exponential Example) 

ML theory for a one-parameter distribution and multiply time censored 
data is the same as that for complete data; however, the (log) likelihood 
functions differ to take censoring into account. This section uses the 
assumption that the lives y , ,  . . . , y, of the n sample units are statistically 
independent and come from the same distribution with probability density 
f (  y ;  0).  Throughout B denotes an arbitrary value of the distribution parame- 
ter and 0, denotes the true (unknown) value. 

1. LIKELIHOOD 

For a continuous distribution, the likelihood for unit i with an observed 
failure at time y, is the probability density 

L,(B)=f( .v , ;  0 ) .  (5.2.1) 

The corresponding log likelihood is 

( 5 . 2 . 2 )  

For unit i with a (Type I) censoring time y, (censored on the right), the 
likelihood is the survival probability 

L,W= RL~,; 0 ) .  (5 .2 .3)  

The corresponding log likelihood is 

(5.2.4) 

Because the sample units are statistically independent, the sample log 
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likelihood is the product of the likelihoods of the ti sample units; namely, 

(5.2.5) 

where the first product runs over the r failure times, and the second product 
runs over the IZ - r censoring times. The corresponding sample log likeli- 
hood is the sum of the log likelihoods of the n independent units; namely, 

where the first sum runs over the r failure times, and the second sum runs 
over the n - r censoring times. 

For a multiply censored sample of independent 
units, suppose that the r failure times are y l , .  . . , y, and the n - r censoring 
times are j r -  ,, . . . , j,,. For an exponential life distribution, the sample 
likelihood is 

Exponential likelihood. 

The corresponding log likelihood is 

(5.2.7) 
I -- I 

2. ML ESTIMATE 

As in Section 5.1, the ML estimate 6 is the 0 value that maximizes the 
sample likelihood L ( 0 )  or log likelihood f ( 0 ) .  8 also is a solution of the 
likelihood equation 

a t (e) /as  =o.  (5.2.8) 

One should confirm that a solution of (5.2.8) maximizes f( 0) .  
As in Section 5.1, for large r, the cumulative distribution of 8 is close to a 

normal one, with mean Otr, the true value, and (asymptotic) variance given 
by (5.2.16). This is so, provided that the life distribution and censoring tinies 
satisfy various regularity conditions given by Wilks (1962), Rao (1973). 
Hoadley (1971), and especially Basu and Ghosh (1980). Also, under such 
regularity conditions, no  other estimator with an asymptotic normal distri- 
bution has smaller asymptotic variance. 
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ML estimate of the exponential mean. From (5.2.7). the likelihood 
equation for the exponential mean is 

I 1  

o = a r ( e ) / a e =  - ( r / e ) + ( 1 / d 2 )  2 .y,. 
1 -  I 

Its solution is the ML estimate 

(5.2.9) 

This is the total running time on failed and censored units, divided by the 
number of failures. 

3. FISHER INFORMATION 

As before, one needs the Fisher information to obtain the asymptotic 
variance of the ML estimator. For Type I (time) censoring, we assume that 
y, is the random failure time of unit i and 9, is the (known) planned 
censoring time. Often the q ,  of the failed units are not known; this situation 
is discussed below. For unit i ,  we use the indicator function 

1 i f  y, < q,  (failure observed), 
(5.2.10) 

0 if y, 2 q,(censored). 

For purposes of calculating expectations, y,  and I l ( y l )  are regarded as 
random variables. For unit i ,  the log likelihood can be written 

The Fisher information for unit i is 

where the subscript 0 indicates that the quantity is evaluated at 8 = 0,. the 
true value. For a discrete distribution, sums replace the integrals above. For 
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independent y,, the true sample Fisher information is 

The sample local Fisher information is the negative second partial deriva- 
tive of the sample log likelihood 

- a 2 f ( e ) / a e 2  = - x’a’In[f(y,; e)]/ae2 - 2”a21n[R(Yl; e)]/ae2, 
I I 

(5.2.14) 

evaluated at 0 = 8, the ML estimate, where the first (second) sum runs over 
the failed (censored) units. 

For a Type I (time) censored unit i 
from an exponential distribution with mean e,, 

Exponential Fisher information. 

For a Type I (time) censored sample of independent units, the true sample 
Fisher information is 

E,{ -a2L‘(O)/at?’},=(l/f3;) 2 [l-exp(-q,/B(,)]. (5.2.15) 
I1 

r = l  

The local estimate of the Fisher information is [from (5.2.14)J 



5. GENERAL MAXIMUM LIKELIHOOD METHODS AND THEORY 367 

4. ASYMPTOTIC VARIANCE 

For a large number r of failures, the true asymptotic variance Var( 6 )  of the 
ML estimator d is the inverse of the true Fisher information; namely, 

Var(d )= I /E,{  -a2f(e)/ae2},.  (5.2.16) 

To obtain confidence limits, one must use one of the following two 
estimates of this variance. The ML estimate VAr(d) is (5.2.16), where 0, is 
replaced by d. The local estimate is the inverse of the sample local Fisher 
information, namely, 

(5.2.17) 

Exponential asymptotic variance. By (5.2.16) and (5.2.15), the true 
asymptotic variance of the ML estimate of an exponential mean (Type I 
censoring) is 

?,/a,]).  (5.2.18) 

The ML estimate of this variance is (5.2.18), with d,  replaced by 6. This 
variance estimate contains a planned censoring time ql for each unit. In 
many applications, such times are unknown for units that have failed. Then 
one can use the local estimate of this variance, namely, 

var(6 ) = d 2 / r .  (5.2.19) 

This estimate does not involve planned censoring times. For Type I (time) 
censored data, the ML and local estimates differ but are numerically close. 

5. 

Theory for estimating a function of the parameter is exactly the same as that 
in Section 5.1. 

6. CONFIDENCE LIMITS 

Theory for approximate confidence limits is exactly the same as that in 
Section 5.1. 

5.3. Multiparameter Distribution and Complete Data (Normal Example) 

ML theory for a multiparameter distribution is given here in terms of a 
continuous distribution with two parameters p and u and probability 

ML ESTIMATE OF A FUNCTION OF THE PARAMETER 
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density f(y; p ,  a). As before, p and u denote arbitrary parameter values, 
and po and a, denote the (unknown) true values. The ML theory is much 
like that for a one-parameter distribution, but calculation of the variances 
and covariances of the ML estimates must be generalized to any number of 
parameters. The theory involves some basic matrix algebra. The following 
theory readily extends to distributions with more than two parameters and 
to discrete distributions. 

1. LIKELIHOOD 

For a complete sample of n independent observations yl ,  . . . , y,, each from a 
continuous distribution with probability density f (  y ;  p ,  u), the sample 
likelihood is 

this is the “probability” of obtaining the sample observations if p and u are 
the parameter values. Here L ( p ,  a) is viewed as a function of p and u, but it 
is also a function of y I , .  . . , y,,. 

The sample log likelihood is 

~ ( p , u ) = ~ n [ ~ ( p , u ) ] = ~ n [ f ( r , ;  p , u ) ] +  . . .  + l n [ j I ~ , ;  p , ~ ) ] ,  (5.3.2) 

where the observations are independent and from the same probability 
density. The log likelihood for just observation i is 

C,(pL, d = l n [ f ( r , ;  P ,  43. (5.3.3) 

Normal likelihood. For a complete sample of n independent observa- 
tions y I ,  . . . , y,, from a normal distribution; with mean po and standard 
deviation uo, the sample likelihood is 

L ( p , u ) = (2nu2 - exp[ - ( y ,  - p l2 /(2u )] x . . . x ( 2 m  )- I ”  

x ~ X P [  - (yn - ~1 >’ /(’a2 11 

The sample log likelihood is 
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The log likelihood for just observation y, is 

~ , ( p , u ) =  -+[1n(2.rr)+1n(o~)]- [ ( Y ,  - 

2. MLESTIMATES 

The ML estimates fi and 6 are the p and a values that maximize the sample 
likelihood L ( p ,  a )  or, equivalently, maximize the sample log likelihood. The 
values fi and 6 may be found with the usual calculus method. Namely, the p 
and a values that satisfy the likelihood equations 

a q p ,  o)/ap=o, a q p ,  o ) / a a  =o  (5.3.5) 

are the ML estimates fi  and 6. For most distributions and sample data, the 
solution of these equations is unique. These estimates are functions of the 
observations y , ,  . . . , y,,, say, fi  = fi( y , ,  . . . , y,) and 6 = I?( y,. . . . , y,, ); however, 
for many distributions it is not possible to solve for explicit functions. 
Instead one must obtain fi and 6 by numerical methods from the observed 
y , ,  .. ., y,,, as described in Section 6. 

For large n, the joint cumulative distribution of fi and 6 is close to a joint 
normal one with means po and a,, and covariance matrix given by (5.3.14). 
This is so provided that the life distribution satisfies regularity conditions 
given by Wilks (1962), Rao (1973), and Hoadley (1971). Also, under 
regularity conditions on the life distribution, no other asymptotically joint 
normal estimators have smaller asymptotic variances. 

The partial derivatives ae,(p., a)/+ and N , ( p ,  a)/aa are called the 
scores for observation i. Evaluated at p = po and u = a,, their expectations 
when the observation is from f (  yl: po. a,) satisfy 

the subscript 0 on ( ) indicates that the quantity (partial derivative) inside is 
evaluated at p = p,, and a = a", and the 0 on the expectation E,  indicates 
that the observation y, comes from f (  y,; p o ,  uo). Consequently, the sample 
scores ae(p., a)/+ and X ( p ,  a)/aa satisfy 

since f ( p ,  a)=C:= , f , ( p ,  a). These relationships can aid in the calculation 
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of theoretical expectations, for example, for the Fislicr information ma' :ix 
below. 

ML estimates-normal. The likelihood equations for a complete sample 
are 

(5 .3 .6)  

o = a r ( p , u ) / a u = - ( n / U ) + ( l / u ~ )  

Their solution is 

Here 6 differs slightly from the usual estimate S of the standard deviation, 
which has ( n  - 1 )  in the denominator rather than n. 

3. FISHER INFORMATION MATRIX 

One must calculate the Fisher information matrix to obtain the asymptotic 
variances and covariances of the ML estimates of the distribution parame- 
ters. This matrix is used later to obtain approximate confidence limits for 
the parameters and functions of them. One uses the matrix of negative 
second partial derivatives of the sample log likelihood, namely, 

. (5.3.8) I - a 2 f  ( p ,  u)/ap* - a 2 f ( p ,  u)/apau 
F =  1 

- a2e ( p ,  u ) / a o a p  - a 2 e ( p ,  u ) / a o z  

This matrix is symmetric, since a2f/dpau = a2f/auap. Evaluated at p = fi  
and u = 6, (5.3.8) is the local Fisher information matrix. The true theoretical 
Fisher information matrix F, is the expectation of F evaluated for p = po and 
u = uo. namely, 
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as before the subscript 0 on { } indicates that the partial derivative is 
evaluated at p = po and u = uo, and that on the expectation E denotes that 
the independent random observations y , ,  . . ., y, come fromf( y;po,uo) .  That 
is, for observation i, 

Such an expectation for the sample is the sum of the corresponding 
expectations for the n units, since f (p ,  a ) = ~ ~ = , ! ? , ( p ,  a).  

Equivalent formulas for the expectations (5.3. lo) are 

These are the expections of the squares and product of the scores. 

integrals in the formulas above. 
For a discrete distribution, sums over all possible outcomes replace the 
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Fisher information-normal. For a normal distribution, terms of the 
Fisher information matrix are calculated as follows. For observation i. 

E,{ - aTf (p ,  O ) / a p * } ( ]  = E0{ 1/02) = l/o,f, 

Then, for the sample, 
I 1  

E,){ - a 2 q p , 0 ) / a p 2 } , =  2 (i/u;)=fl /u; .  
r = l  

It 

Eo{ - a 2 f ( p ,  o ) / ~ o ~ } ) , =  2 ( 2 / 0 ( ; ) = 2 ~ / 0 2 ,  (5.3.12) 
f = 1  

I 1  

Eo{ - a>f (p ,  O ) / a p a O } ( )  = 2 0-0. 
, = I  

The true theoretical Fisher information matrix is 

(5.3.13) 

4. ASYMPTOTIC COVARIANCE MATRIX 

The true asymptotic (for large n )  covariance matrix $ of the M L  estimators 
fi  and 6 is the inverse of the true Fisher information matrix; namely. 

The variances and covariance in this matrix are generally functions of p(, 
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and a,. The variances and covariances of the parameter estimates appear in 
the same positions in the covariance matrix where the corresponding partial 
derivatives with respect to those parameters appear in the Fisher matrix. 
For example, Var($) is in the upper left corner of $, since E,( - a’c/ap2), 
is in the upper left comer of F,. The variances all appear on the main 
diagonal of $. 

To obtain confidence limits, one uses one of the following two estimates 
of the covariance matrix. The ML estimate $! is obtained by substituting $ 
for po and 6 for uo in (5.3.14); the corresponding terms of the matrix are 
denoted by Vir(fi), Vir(6), and Cdv(fi, 6 ) .  The local estimate V is obtained 
by inverting the local Fisher information matrix F in (5.3.8); that is, 

-F--t V 4 r ;  1 cov(fi, 6 ) 

V = [  cov(@, 6 )  var(6) 1- ’ 

where $ and 6 are used in place of p and u. In general, the local and ML 
estimates of $ are not equal. 

For a complete sample from a 
normal distribution, the true asymptotic covariance matrix of the ML 

Asymptotic covariance matrix-normal. 

(5.3.15) 

The ML estimate of this is 

Cav( f i ,  6 ) 

The local estimate is 

1 var($) cov($, 6 )  



374 MAXIMUM LIKELIHOOD ANALYSES OF MULTIPLY CENSORED DATA 

since 8’ = 2:= ,( y,  - f i ) ’ /n .  Here the local and ML estimates of the asymp- 
totic covariance matrix are equal. 

5. 

Suppose that h =  h ( p ,  a) is a continuous function of p and u. For the 
normal distribution, such a function is the lOOP th percentile y p  = p + zpu 
( z p  is the standard normal lOOPth percentile), and so is the reliability 
R ( y ) =  1 - @ [ ( y  - p ) / a ] .  The ML estimate for the true value h ,  = h ( p , ,  uo) 
is ĥ  = h ( $ ,  6 ) ;  this is called the invariance property of ML estimators. For 
large sample size n, the cumulative distribution function of h  ̂ is close to a 
normal one, with mean h ,  and a (true asymptotic) variance 

var(  6 )  = (ah  /ap ) ivar (p  + ( a h  /au  1: Var( ci 

ML ESTIMATES OF FUNCTIONS OF THE PARAMETERS 

+ 2(ah/ap I,( a h / a u  ),cov(fi, ci ; (5.3.16) 

as before, the 0 subscript on ( ) denotes that the partial derivative is 
evaluated at p = p, and u = 0,. The partial derivatives must be continuous 
functions in the neighborhood of ( p , ,  a,). The ML and local estimates for 
Var( h ^ )  are obtained by using respectively the ML and local estimates of the 
variances and covariance in (5.3.16) and using the estimates $ and 6 for p o  
and a, in the partial derivatives. (5.3.16) and (5.3.17) are based on propaga- 
tion of error (Taylor expansions); see Hahn and Shapiro (1967) and Rao 
( 1973). 

Suppose that g = g ( p , o )  is another function of p and u. Then the 
asymptotic covariance of g = g($ ,  8)  and ĥ  is 

(5.3.17) 

where the partial derivatives are evaluated at po and u,). For large samples, 
the joint cumulative distribution of S and ĥ  is approximately a joint normal 
one with means g,=g(pLo,u , )  and h ,  and variances from (5.3.16) and 
covariance (5.3.17). The preceding applies to the joint distribution of any 
number of such ML estimates. 

The Weibull shape parameter is /3 = 1/6 in  terms of 
the extreme value parameters 6 and A.  The variance of ,d=l/S^ involves 
ap/aA = O  and ap/aS = - l / S 2 .  By (5.3.16), Var(b)=O’ Var ( f i )+  
( -  l/ .Si)’ Var(S^)+2(0)( - I/S,:)Cov(r;,Ŝ )=(l/s,;‘)Var(8). This is (3.13). 

Weibull parameters. 
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In  addition, the Weibull scale parameter is a=exp(A)  in terms of the 
extreme value location parameter A.  Cov( & , B )  involves the derivatives 

(5.3.1 7), 
=exp(A), a q a S  =o, a,B/aA =0, and ap/ai3 = - 1/S2.  Then, by 

~ o v ( 6 ,  B )-exp(A,,)(O)Var(~)+O( - l/i3,2)Var(6^ ) 

+ [ e x p ( h , ) ( - l / S , Z ) + 0 ( 0 ) ] ~ o v ( ~ , 6 ^ )  

= -exp(A,)( l/S,:)Cov(A. 6  ̂ ). 

This is (3.13). 

ML estimate of a normal percentile. The M L  estimate of the lOOP th 
normal percentile y p  = po + zpuo is j r  = fi + z p 6 .  The calculation of its 
asymptotic variance is 

a Y p / a p =  I ,  ay,/aU = z p ,  

Var( P,)= ( 1  )'(ooZ/n) + ( Z d 2 [  0,2/(2n I ]  + 2( 1 H z P Y o  

= [ 1 + ( z ;  / 2 ) ]  u;/n . 

For complete data, the ML and local estimates are equal and are 

6. CONFlDENCE LIMITS 

Theory for approximate confidence limits is exactly the same as that in 
Section 5.1. 

5.4. 

This advanced section presents general methods and theory for M L  analysis 
of multiply censored data. The methods and theory are the same as those of 
Section 5.3. but the log likelihood and covariance matrix differ to take the 
censoring into account. Section 5.3 is necessary background. 

As before, a distribution's probability density is denoted by f( j'; p. a). 
and its reliability function is denoted by R ( y ;  p. 0). Here p and u denote 
arbitrary values of the distribution parameters, and pLo and uo denote the 
true values. The following methods are given for a two-parameter distri- 
bution, but they extend to distributions with any number of parameters, 
with suitable changes in formulas. 

Multiparameter Distribution and Multiply Censored Data 
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1.  LIKE1,IHOOD 

I f  a unit fails at  age y l ,  its log likelihood 15, is the natural log of the 
probability density at );, namely, 

l ~ l = I n [ f ( . v l ;  p . ( I ) ] .  (5.4.1) 

If a unit is running at  agey, (it is censored on the right and its failure time is 
above then its log likelihood is the natural log of tlie distribution 
probability above J ’ ~  (i.e., of the reliability at age?;). namelq, 

(5.4.2) 

In general. the log likelihood of an  observation is the log of its probability 
model. 

Suppose the sample contains n statistically independent units. The sample 
log likelihood is 

The sum 2 runs over all I Z  units, 2’ runs over the failures, and 2” runs over 
the censored units. l? is a function of the failure and running times!; and of 
the distribution parameters p and u. 

The ML methods apply to discrete distributions. Then the discrete 
probability mass function takes the place of the probability density in 
(5.4.3). 

2. ML ESTIMATES 

The ML estimates of po and uO are the values @ and 6 that maximize the 
sample log likelihood (5.4.3). Under certain conditions usually satisfied in 
practice (Wilks, 1962; Rao 1973; and Hoadley, 1971), the ML estimates are 
unique. Also. for samples with large numbers of failures, the cumulative 
sampling distribution of @ and 6 is close to a joint normal cumulative 
distribution with means p g  and a,, and covariance matrix (5.4.14). That is. 
the cumulative sampling distribution of @ and ‘6 converges “in law” (“in 
distribution”) to a joint normal cumulative distribution. This does not 
necessarily mean that the means, variances. and covariance of f i  and 6 
converge to those of the asymptotic distribution. However, the asymptotic 
normal distribution is valid for calculating the approximate confidence 
limits for p,, and a(,. since the limits employ the (normal) probability that a 
ML estimate is within a specified multiple of the standard error from the 
true value. 
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One can numerically obtain the ML estimates by iteratively optimizing 
the log likelihood (5.4.3) with respect to p and u.  Alternatively, one can 
calculate the partial derivatives of i" with respect to p and u and set them 
equal to zero to get the likelihood equations: 

The solution of these simultaneous nonlinear equations in p and u are the 
ML estimates. These must usually be iteratively solved by numerical meth- 
ods described in Section 6. 

3. FISHER INFORMATION MATRIX 

One needs the Fisher information matrix to obtain the asymptotic (large- 
sample) covariance matrix of the ML estimates and approximate confidence 
intervals. One uses the matrix of negative second partial derivatives, 

(5.4.5) 

This is the local Fisher information matrix when fi  and 6 are used in place of 
p and (I. 

The theoretical Fisher information matrix F,, is the expectation of (5.4.5). 
where the subscript 0 denotes that pn and uO are used for p and u and the 
observations j; are treated as random variables. That is, 

The expectations are calculated as follows. In general. such an expecta- 
tion of any function g ( y , ;  p,  u )  of an observation is 

0 

E,,{d.t;; P . u ) } , ) = /  gb,;  P o .  un)/(>,,i P o . % ) d Y , .  (5.4.7) 
a. 

For a discrete distribution, 

~ o {  R (  Y, ; P 9 0 f 0 = 2 R(  J', ; I* o - On I/( .v, ; P 0, un ) .  (5.4.8) 

An evaluation of (5.4.6) follows. The log likelihood for the i th sample 

1 

unit  is reexpressed as 

t,=I,(.v,)In[f(.v,; p . u ) ] + [ ~ -  ~ , ( j . , ) ] l n [ ~ ( q , ;  p , u ) ] .  (5.4.9) 
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where I , (  y , )  is an indicator variable such that I,( y,)= 1 if y, < q, (a failure is 
observed), and I , (  y,)=O i f  y, 2 qI (the observation is censored). Here I ,  and 
y, are regarded as random variables, and the censoring time 9, may differ 
from unit to unit. Then, for unit i ,  

For a discrete distribution, these integrals are replaced by sums over the 
outcomes. 

Since r_‘ = Z,C,, then, for the sample log likelihood, 

Eo{ - a’r_‘/aa2}o = 2 Eo( - a2f,/aa2},, (5.4.1 1 )  
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The expectations of the second derivatives can also be expressed as 

(5.4.12) can be easier to evaluate than (5.4.10). The expectations of the first 
derivatives satisfy 

which are similar to the likelihood equations (5.4.4). Relations (5.4.12) and 
(5.4.13) often simplify the calculation of theoretical results. 

4. COVARIANCE MATRE 

As before, the true asymptotic (large-sample) covariance matrix of p and 6 
is the inverse of (5.4.6), namely, 

=F&'. (5.4.14) 1 COV(k, 6 ) 
Var( 6 ) 

The square roots of the variances in (5.4.14) are the asymptotic standard 
errors of the ML estimates.The ML and local estimates of $ are obtained as 
described in Section 5.3. 

5. ESTIMATES OF FUNCTIONS OF THE PARAMETERS 

Theory for estimating functions of the parameters is exactly the same as that 
in Section 5.3. 

6. CONFIDENCE LIMITS 

Theory for approximate confidence limits is exactly the same as that in 
Section 5.1. 
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5.5. 

This advanced section presents ML theory for fitting distributions to data 
with a mix of independent failure modes. The methods provide ML esti- 
mates and approximate confidence intervals. ML results are given without 
proof; for more details, see David and Moeschberger (1979). Moeschberger 
(1974). Moeschberger and David (1971), and Herman and Patell (1971). ‘The 
descriptions cover the model, likelihood, ML estimates, Fisher and covari- 
ance matrices, estimation of a function, and approximate confidence inter- 
vals. 

ML Theory for Competing Failure Modes 

The model. The model employed here is the series-system model for 
independent competing failure modes, as described in Chapter 5. Suppose 
there are M independent failure modes. For the time to failure by the mth 
mode acting alone, denote the reliability function by R,,Jy;  P , ~ ,  anI) and the 
probability density by f,,,( y ;  p,,,, unl), where p n l  and a,,, are the distribution 
parameters, m = I . .  . . , M .  For concreteness, two parameters are used here. 
but any distribution may have any number. Also, the distributions for 
different modes may be different kinds, for example, exponential and 
lognormal. In addition, i t  is assumed that no distributions have the same 
value of some parameters. For example, distributions do not have a com- 
mon standard deviation. David and Moeschberger (1979) discuss more 
complex models, including ones with common parameter values and depen- 
dent failure modes. The zero subscript does not appear on true parameter 
values in this section. 

1. LIKELIH001) 

Suppose there are I statistically independent units in the sample. For test 
unit I .  j;,,, denotes the failure or running time for the mth mode. The 
likelihood I ,  for sample unit i includes the failure times of failure modes that 
occurred and the running times of ones that did not occur. namely, 

(5.5.1) 

where the first (cecond) product runs over modes that were (not) observed. 
This likelihood is the product of factors for the failure modes, because the 
modes are statistically independent. This likelihood extends that of Herman 
and Patell (1971) to data with more than one observed failure mode per test 
unit. This likelihood applies to both Type 1 and Type I1 censored data. The 
ML theory o f  Moeschberger and David (1971) and David and Moesch- 
herger (1979) for dependent modes applies to such data. The likelihood I ,  
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for the sample of I statistically independent units is 

I , , = / , X  . "  x i , .  (5  .5 . 2 )  

This is a function of the model parameters P,,~,  a,,,, 171 = 1 ,.... M. 
2. ML ESTIMATES 

/.I,,,, &,,, are the parameter values that maximize lo. Under certain conditions 
on the model and data that usually hold. these estimates are unique. Also. 
for asymptotic (large) sample sizes, they are approximately jointly normally 
distributed, with means equal to the true p,,,, a,,, and a covariance matrix 
given later. Moreover, their asymptotic variances are smaller than those for 
any other asymptotically normally distributed estimates. I n  particular, it is 
assumed that parameters of different modes d o  not have the same value. 

The /.I,,,, Gnf can be iteratively calculated by numerically maximizing I,, 
with respect to all the p,,,, on,. Also, for many models, I,, can be maximized 
by the usual calculus method. Namely, the partial derivatives of I,, with 
respect to each p,,, and u,,, are set equal to zero: 

ai0/dp,,,  =o.  ar,,/a~,,, =o.  111 7 I . . . . .  M .  (5.5.3) 

These are the likelihood equations. f i n , ,  &,,, are the solutions of these 
simultaneous nonlinear equations. 

I f  M is not small, the iterative calculations are laborious and may not 
easily converge. The following splits the problem i n t o  simpler ones. which 
can be easily solved with existing computer programs. 

The sample likelihood I,, can be rewritten as 

I 0 = I  ( I ,  x . . .  x I, M 1 ' ( 5  S.4) 

where I,,, contains only the parameters p,, a I  for mode 1 ..... and I,,t,, 
contains only the parameters pb,, uh, for mode M. For example, 

where the first product n ,  runs over units with rnode 1 failure times J , , .  and 
the second product n', runs over running times));, on units without a mode 1 
failure. 

are 
the values that maximize /(). Moreover, I(,,,) is the likelihood for the multiply 
censored sample data on mode m. So the ML estimates ii,,,, 6,,, can be 

The ML values of the mode m parameters P,,~,  a,,, that maximize 
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r 7 

E,,( - i12L'/ap;),, E,,{ - a * t / a p , i i u , } , ,  0 
L,,{ - o ? ~ ' j a ~ , a ~ , ) , ,  - a 2 f / a o : ) o  

F,, = 

E ( ~ {  - a2e/ap$),,  t .(,{ ~ aLe/ap , ,aor , )o  0 E(,( - a2P/apMao,, - a2i l ' / aO: , ) , ,  
. - 

obtained for one mode at a time by maximizing one I(,,]) at a time. Thus 
data on each failure mode can be separately analyzed with a computer 
program for multiply censored data. 

3. FISHER MATRIX 

The Fisher information matrix is needed to obtain approximate confidence 
limits for the p m I ,  awl and functions of them, for example, a percentile of the 
life distribution. Below, f =In(/,) denotes the sample log likelihood. 

First one needs the matrix of negative second partial derivatives 

0 

(5 .5 .6)  

(5.5.7) 

Such an expected value depends on the type of censoring (Type I, Type 11, 
etc.) and on all of the models for the different failure modes. Moeschberger 
and David (1971) and David and Moeschberger (1979) give the complex 
formulas for (5.5.7). 

4. COVARIANCE MATRIX 

The inverse $ = F; is the true asymptotic covariance matrix of the fi,,,, en,. 
$ is block diagonal, since F, is block diagonal. Thus the fi,,, 6,,, for different 
failure modes are asymptotically uncorrelated. Moreover, since the (in, 
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are asymptotically jointly normally distributed, the $,,, en, are asymptoti- 
cally independent of c,., em,, but c,,, and c?,,, for the same failure mode 
generally are correlated. 

The ML estimate of $ comes from using the $,,, cin1 for the p,,,, a, in 
(5.5.7). Usually one estimates $ with the simpler method next. The matrix 
(5.5.6) evaluated for p,  = p, and a, = c?,,, is called the local Fisher informa- 
tion matrix. Its inverse is another estimate of $. This local estimate is easier 
to calculate than the ML estimate, since it does not require the complicated 
expectations (5.5.7). 

An estimate of $ is used as explained below to obtain approximate 
confidence intervals. Below, the P model parameters are relabeled cl,  
cz, ..., cp. 

5. ESTIMATE OF A FUNCTION 

Suppose that an estimate is desired for a function h = h( c I , .  . . , c p )  of 
c , ,  . . . , cp. Distribution parameters, percentiles, and reliabilities are such 
functions. The ML estimate of the function is h^= h ( t l , . .  . , tp). Under 
certain conditions and for large samples, the cumulative distribution of 6 is 
approximately normal, with mean h and variance (5.5.8). 

The following estimate of Var(h^) is used to obtain approximate confi- 
dence intervals for h.  Evaluate the column vector of partial derivatives 
H=(ah/ac , ,  ..., a h / a c P ) '  at cp = tp; the ' denotes transpose. By propaga- 
tion of error (Wilks, 1962). the variance estimate is 

var( 6 )  = H$H, (5.5.8) 

where $ is an estimate of g. The estimate s( 6) of the standard error of h  ̂ is 

(5.5.9) 

6. APPROXIMATE CONFIDENCE INTERVALS 

As before, an approximate 100~5% confidence interval for h has lower and 
upper limits 

h = h ^ - K , s ( & ) ,  k=h^+ K , s ( ~ ) ,  (5.5.10) 

where K ,  is the [ 100( 1 + y)/2]th standard normal percentile. This interval is 
appropriate if the range of h is from --oo to +a. The limits assume that 
the sample size is large enough that ĥ  is approximately normally distributed. 
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If 6 must be positive, approximate positive limits are 

$=h^exp[-K,s(h^)/h^]. h=h'exp[K,s(h^)/h^]. (S.5.11) 

The limits assume that the sample size is large enough that In(h^) is 
approximately normally distributed. 

5.6. Motivation for ML Theory 

The following advanced discussion motivates ML theory for complete data. 
I t  is a heuristic proof of theoretical results, and it  will interest those who 
want motivation for ML theory. Moreover, the necessary regularity condi- 
tions on the sampled distribution are not stated. The key result is the 
following. Suppose the data are a complete sample of independent observa- 
tions y , ,  . . . , y,l from a one-parameter distribution with a probability 
density,f( y; 8). Then the ML estimator 6( y , ,  . . . , y,,) for 8,) has an asymp- 
totic cumulative distribution that is close to a normal one with mean 8,, the 
true value, and variance I/€,{ - a2C/d82}, .  The subscript denotes that 
8 = 8,. The heuristic proof extends to censored data and multiparameter 
distributions. 

We first need to know the properties of the sample score defined as 

where PI =In[/( v l ;  O ) ]  is the log likelihood of observation I and II' = C , f l  is 
the sample log likelihood. The score is a function of the random observa- 
tions y,. The mean score of observation I when 8 = 8, is 

since the last integral has the value I .  Thus the mean of the sample score is 
0. The variance of the sample score for 8 = 8, is 

since the (i3f,/38}o are statistically independent and E 0 ( ~ f , / ~ 8 } , ,  =O.  
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Another relation for the variance of the sample score is 

Var(af /ae},  = n ~ , {  -a2e, /ae2}, , .  (5.6.4) 

This comes from 

(5.6.6) 

it follows that 

For large sample size n ,  the sample score is approximately normally 
distributed with a mean of 0 and the variance derived above. This follows 
from the standard central limit theorem, since the score is the sum of 
independent identically distributed quantities (a f ,  /ad},. 

The above properties of the sample score are the basis for the properties 
of the ML estimator, which are motivated below. 

The ML estimate d ( y ,  ,..., J, , )  for the observations J ~ ~ , .  .., y,l is the solu- 
tion of 

0=  aE ( .Yl 3 . .  . 9 y,, . , e ) / ae .  (5.6.8) 

Expand al2/a/3 in a power series in 8 about 8, to get an approximate 
likelihood equation 

O = ( a ~ / a B ) , + ( a ' e / a e ' ) , ( B -  8,,)+smaller terms. (5.6.9) 
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The numerator is ( I / n )  times the sample score, and i t  has a mean of zero 
and a variance that decreases with increasing n. The denominator is 
the average ( l / n ) C , [ -  a z P , / a e 2 ] o ;  its expectation is ( l / n ) Z ,  
E,{ - a2P,(y,;0)/a82),>0. For n large, the distribution of ( 4 -  0,) is 
determined by the distribution of the numerator of (5.6.10) since the 
numerator distribution is centered on zero, and the denominator of (5.6.10) 
is close to its expected value. Thus the denominator’s variation hardly 
affects the near-zero value of ( 6  - do) .  So the denominator can be regarded 
as a constant equal to its expected value. Then 

( e -  e,,)=(ar,m),/( “E{ -a2r,,w2},) (5.6.1 I )  

is a multiple of the score (at/afl) , .  So ( d  - 0,) has an asymptotic normal 
distribution, since the score does. Asymptotically, ( 8  - 8,) has a mean of 
zero like the score. Also, 

= I / (  nE,{ - a2el/as2},). (5.6.12) 

So d has an asymptotic normal distribution with mean 0, and Var(6)= 
Var(8-0,) in (5.6.12). 

This completes the motivation for the asymptotic normal distribution of 
ML estimators from a complete sample. The theory generalizes to multi- 
parameter distributions, censored data, dependent observations, and not 
identically distributed observations. For generalizations, see Hoadley (1971). 

6. NUMERICAL METHODS 

Often ML estimates cannot be explicitly expressed as functions of the data. 
Instead they must be iteratively calculated by numerically maximizing the 
log likelihood f or solving the likelihood equations. This section describes 
numerical methods for ML problems. The section (1) surveys some methods 
for calculating the ML estimates, ( 2 )  presents the Newton-Raphson method 
in detail, and (3) describes effective ways of handling computations. This 
section will especially aid those who wish to write ML programs, and it may 
aid those who encounter difficulties with existing programs. 
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t' 

Figure 6.1. Sample log likelihood function 

Figure 6.1 depicts a sample log likelihood '?(a, p )  that is a function of 
two parameters a and p. The maximum of '? is at the ML estimates (6, 8). 
The log likelihood differs from sample to sample with respect to its shape 
and location of its optimum. A numerical method iteratively calculates a 
series of trial estimates (&,, 8,) that approach (&, B ) .  The method finds (&,, 
8,) so that the C(h,, 8,) increase and approach C(6, B ) .  Such a method 
climbs up the likelihood function to its maximum. Alternatively, Figure 6.2 

0 

a 

Figure 6.2. Depiction of likelihood equations. 
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depicts the likelihood partial derivatives af /aa  and aL?/a/3 as functions of 
(Y and /3. The ML estimates (6,  8) are located at the point where the 
derivatives both equal zero. A numerical method iteratively calculates a 
series of trial estimates (h , ,  b,) that approach (h ,  b ) .  The method finds (h , ,  
8,) so that both partial derivatives decrease and approach zero. These 
pictures of iterative methods extend to any number of parameters. For large 
samples and for ( a ,  /3) near (4  S), l? is approximately a quadratic function 
of a and f i ,  and all‘/aa and al?/ap are approximately linear functions of (Y 

and p. 
6.1. Survey of Numerical Methods 

This section surveys some methods for calculating ML estimates. I t  de- 
scribes whether a method (1) maximizes the sample log likelihood or solves 
the likelihood equations, (2) requires derivatives of the log likelihood with 
respect to parameters, and ( 3 )  converges quickly and surely. A method that 
requires analytic expressions for the partial derivatives burdens the uscr 
with their calculation. Choice of the starting values for the estimates is 
described in Section 6.3. Jacoby and others (1972), Kennedy and Gentle 
( 1  980), and Wilde and Beightler (1967) describe these methods in detail. 
They apply to models with any number of parameters. 

Direct search (trial and error) involves calculating C for new trial ML 
estimates near the ones that yield large E values. This method does not use 
derivatives of f . It converges slowly but surely. The differences between the 
latest trial estimates indicate how accurately the ML estimates are known. 
One search scheme involves maximizing Ir‘ with respect to a parameter while 
holding all others at their current trial estimates. T h s  is done for each 
parameter in turn and may require any number of passes through all 
parameters. The method generally converges, even with crude starting 
values for the parameters. 

The Powell method without derivatives directly maximizes L‘ I t  usually 
converges rapidly and relatively surely, even with crude starting values for 
the parameters. It does not use partial derivatives. Nelson, Morgan, and 
Caporal (1978) use this method in STATPAC. 

The Fletcher-Powell-Davidon method requires the first derivatives of f . 
I t  usually converges more rapidly and accurately than the Powell method, 
even with crude starting values for the parameters. 

The method of steepest ascent involves the following steps: (1) at the 
latest (&,, &), determine the direction of steepest ascent (where I? increases 
fastest). ( 2 )  Search along the straight line in that direction to find the (&,+ ,, 
8, + , )  that maximize L?; they are the new trial estimates. Repeat ( I )  and ( 2 )  
until the trial estimates are “close enough” to the ML estimates. The search 
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in a direction can be done by trial and error or  other schemes. The method 
requires first partial derivatives of I?. The method usually converges surely 
and faster than direct search, even with crude starting values for the 
parameters. 

The Newton-Raphson method is described in detail in Section 6.2. The 
method uses the first and second partial derivatives of f to approximate the 
likelihood equations with linear equations and solves them. The method 
may fail to converge if the starting values are not close to the ML estimates; 
a modified method given below may avoid such difficulties. When i t  
converges, i t  is faster than most methods. 

The secant method uses the first derivatives of II‘ and approximates the 
likelihood equations with linear equations and solves them. Like the New- 
ton-Raphson method, it may fail to converge if the starting values are not 
close to the ML estimates. It is slower than the Newton-Raphson method. 
It does not require the second partial derivatives of f ;  instead i t  approxi- 
mates them with perturbation calculations. 

6.2. Newton-Raphson Method (Method of Scoring) 

Statisticians often use the Newton-Raphson method for solving likelihood 
equations. Often recommended in its simplest form. the method may fail to 
converge. The method works well i f  the starting parameter values are 
“close” to the ML estimates. Improvements below help the method con- 
verge. 

The following presents the method. an example, improvements. and the 
theory. 

Suppose the sample log likelihood is f ( a ,  p ) .  I t  is a 
function of parameters a and ,B and the data. Although explained with two 
parameters, the method works with any number of parameters. The data 
values are constant throughout the calculation. Suppose that 6, and b, are 
the approximate ML estimates after the i th  iteration. ( I )  Evaluate the first 
partial derivatives af /aa  and d f / d p  at a =  ci, and ,B = 0,. (2) Evaluate the 
second partial derivatives a211‘/acu’. d ? f / d , B ? .  and a’f/dcua,B at a =  &, and 
p =S,. (3) Solve the linear equations for the adjustments u,  and h,: 

The method. 

here the derivatives come from steps ( 1 )  and (2). Statisticians call the matrix 
of negative second partial derivatives the (local) Fisher information matrix; 
numerical analysts call the matrix of positive second partial derivates the 
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Hessian. (4) Calculate the new estimates 

+a , ,  f i , + , = f i , + b , .  (6.2) 

(5) Continue steps (1) through (4) until the estimates meet a convergence 
criterion. For example, stop when a, +, and b,, , are small, say, each a small 
fraction of the standard errors of &,+, and &+,. Alternatively, stop when 
C(6,+,, f i , + , ) -  f (6 , ,  b,) is statistically small, say, less than 0.01. 

Instead of using the second partial derivatives of the sample likelihood in 
(5.1), one can use their expected values, the terms of the true theoretical 
Fisher information matrix, where the true a. and p,, are replaced by 6, and 
8,. Then the iterative method is called the method of scoring. Also, it is not 
necessary to calculate these terms anew in each iteration; only the first 
derivatives must be calculated on each iteration. 

Suppose a complete sample of n - I 0  observations from a 
normal distribution has a mean j =4  and standard deviation s’=X:, ,( y, - 
y ) 2 / n )  = 3. Then the sample log likelihood from (2.1) is 

Example. 

~ ( p ,  a)= - 101n(a ) - (5 / a~) [9+(4 -p )~ ] .  

Of course, $ = 4  and 8 = 3  maximize this. Suppose that the current ap- 
proximations are P I  = 3  and 6, =2. 

1. The first partial derivatives at p = $, = 3  and a = 8, = 2  are 

a f! / ap = - ( 5 / ~  ) ( - 2) (4 - p ) = 2.5, 

ar /aa = - ( lO/a) + ( 1 0 d )  [ 9  + (4 - p ) 2 ]  = 7.5.  

2. The second partial derivatives at p = P I  1 3  and a = 8, = 2  are 

3. The solution of 

2.5=2.5aI +2.5b,, 

7.5=2.5aI + 16.25b, 

is a ,  =0.6363 and b ,  =0.3636, repeating decimals. 
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4. The new approximations are 

f i 2  = 3 +0.6363 = 3.6363, 8, = 2 + 0.3636 = 2.3636. 

These are closer to the correct ML estimates $ = 4  and 8 = 3 than the 
previous approximations f i I  = 3 and = 2. Repeated iterations would bring 
the approximations closer to f i  and 8. 

Improvements. The method may fail to converge. Then the successive 
approximate estimates may march off to infinity. To avoid this, check 
whether i r ' ( & l + l ,  a,A+l)>ir '(6,, a , ) .  I f  so, is better than (&,, a,) .  
Otherwise, ( G I ,  I ,  is poorer; then directly search along the line through 
the old and new values to find fl,',,) such that f ( ~ ? : + ~ ,  fl,'+1)>C(61, 
a,) .  Continue the iteration with the new b;+,). 

In the example above, C(3, 2)" - 19.4< - 16.8- ir'(3.6363. 2.3636). So 
the new values increase the likelihood. 

In practice, perturbation calculations can approximate the needed partial 
derivatives. This helps when analytic calculation of the derivatives is dif- 
ficult. One may save labor by using the same values of the second partial 
derivatives for a number of iterations, rather than recalculate them for each 
iteration. The method may then take more iterations, but each iteration is 
easier . 

Theory. The following motivates the Newton-Raphson method. The 
method assumes that a quadratic function adequately approximates the log 
likelihood. The quadratic function is the Taylor series about the latest ( a i l ?  
B , ) .  That is, 

+ ( a 2 f / a a a P ) ( a -  & , ) ( p  --,)+neglected terms, (6.3) 

where the derivatives are evaluated at a= &, and j3 = a,. The a and P values 
that maximize this quadratic are the new &, + = &, + u,  and fi, + I = 8, + 6,. 
The maximizing a and p values come from the usual calculus method; 
namely, set the partial derivatives of (6.3) equal to zero and solve the 
resulting linearized likelihood equations (6. I). The method works well if 
(6.3) approximates C (  a, p )  well between (&,, f i , )  and (ti, + I ,  B, + I ) .  
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6.3. Effective Computations 

The following describes a number of ways of making numerical computa- 
tions more effective. Ross (1970) describes a number of other methods that 
help maximum likelihood iterations converge more quickly and surely. 

Checks to assure convergence. Methods like Newton-Raphson that 
solve the likelihood equations sometimes fail to converge when L‘ (6, + I ,  

b, + I ) <  f(&,,  b,), that is, when the log likelihood decreases for successive 
trial estimates. Then the trial estimates often shoot off to infinity. To avoid 
this, check that the latest trial estimates have increased c .  If not, discard 
them and find new ones by some other means, such as direct search along 
the line through (G,, 8,) and ( 6 , + , ,  P I + , ) .  

The log likelihood should have an optimum at the final values of the ML 
estimates. Equivalently, at  those values, the local negative Fisher matrix 
should be positive definite. The Cholesky square root method automatically 
checks for this, as it inverts the matrix to obtain the “local” estimate of the 
covariance matrix of the ML estimates. 

Enough data. A k-parameter distribution can be fitted only i f  the 
sample contains at  least k distinct failure times. Otherwise, the estimates do  
not exist, and an  iteration will fail to converge. For example. for an 
exponential distribution there must be at least one failure time. For an 
extreme value, Weibull, normal, or lognormal distribution, there must be at 
least two different failure times. 

Starting values. The parameter values for the first iterative step de- 
termine whether an iteration converges. The starting values should be as 
close to the ML estimates as possible. This makes the convergence surer and 
faster. Often the sample data can be plotted, and graphical estimates of 
parameters can be used as starting values. Some iteration methods work 
with almost any reasonable starting values, and others are quite sensitive to 
the starting values. 

Stopping criteria. Two criteria for stopping an iteration are often used. 
(1) Stop when an iteration increases the log likelihood less than some small 
amount, say, 0.001 or 0.0001. (2) Stop when an iteration changes each trial 
estimate by less than its prescribed stopping value. Each such stopping 
value should be a small fraction (say, 0.001) of the standard error of the 
corresponding estimate. The standard errors can be guessed before one 
starts the iteration, o r  they can be calculated during the iteration for the 
latest trial estimates. 
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Approximate derivatives of e. Certain methods require the first or 
second derivatives of C. Sometimes i t  is difficult to derive analytic expres- 
sions for such derivatives. Then it may be easier to approximate such 
derivatives by perturbation calculations. A perturbation should be small. In 
practice, this means one that changes II' by about 0.1. A direct search for 
such perturbations is effective. Too small a perturbation produces apprecia- 
ble round off in the calculation. Too large a one introduces appreciable 
nonquadratic behavior of f .  

Multiple ML estimates. The likelihood equations may have more than 
one set of solutions, perhaps at saddle points of the log likelihood. Also, the 
log likelihood may have local maximums. In either case, use the parameter 
estimates at the global maximum. 

Number of iterations. Speed of convergence depends on a number of 
factors: 

Fitted distribution. 
Data. 
Starting values. 
Stopping criterion. 

Of course, more iterations are required for larger numbers of parameters. 
poorer starting values, and more precise stopping criteria. 

Constraints may cause numerical difficulties. 
Some distribution parameters cannot take on all values from - rxj to + 00. 

For example, the standard deviation of a normal distribution must be 
positive. When parameters are constrained, computer maximization of a 
sample likelihood is difficult. An iterative method usually fails i f  it uses a 
forbidden value for a trial parameter estimate. To avoid this, express the 
parameter as a function of a new parameter that can take on all values from 
- cc to + 00. For example u =exp( a') is always positive where - x, < u'< 
w. Then maximize the sample likelihood in terms of the new parameter, 
and the optimization is unconstrained. Nelson and others (1978) use such 
transformed parameters in the STATPAC program. To transform a parame- 
t e r p  w h e r e O < p < l ,  u s e p = l / ( c  - P ' + l ) ,  where - r x : < p ' < x .  

Constraints on parameters. 

Numerical overflow. An iteration scheme often fails when calculating a 
log likelihood value that is too large (overflow) or too small (underflow) for 
the computer. For example, the trial estimates of a normal fif and 6, may be 
off enough so that i, =( .v, - GI ) / 6 ,  for a censored value .v, may exceed 10 
standard deviates. Then the calculation of I?, =In{ 1 - a[( J*, - fi,)/6f]} may 
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underflow the computer when { 
through the use of a transformed standardized deviate. 

} is calculated. This can be avoided 

K ,  + { ( z, - K ,  I/[ 1 + ( z, - K ,  ) / K ; ]  ) 3 
for z, > K ,  

z; = 2,. for - K K , G r , G K , ,  1 - K ,  - { ( 2 +  K , ) / [  - 1 + ( z ,  + K Z ) / K ; ] } ,  fo rz ,< -  K z ,  

where K ,  and K,‘ are constants around 5. Then the z,’ are in the range 
-( K 2  + K ; )  to K ,  + K ; .  The scheme uses the z; in place of the z, until the 
iteration is close to converging. Then the iteration switches to using the z, 
and completes the iteration. The transformed standardized deviates help an 
iteration converge even when the starting values of the parameters are bad. 
This method applies to a distribution with standardized deviates: 

Normal: z = ( y -- p ) / u  

Lognormal: z =[log(r)-p]/a 

Extreme value: z =( y - h ) / 6  
Weibuil: z =[ln(r)-ln(a)]/3 
Exponential: z = y / 8  

The choice of K ,  and Kf’ depends on the distribution. Nelson and others 
(1978) use such a z’ in the STATPAC program. 

There is a simpler method of avoiding such numerical problems. Use 
starting values of u, 6, and 8 that are several times larger than the ML 
estimate. Similarly, use a starting /3 value that is several times too small. 

Another covariance matrix estimate. Local and M L  estimates of the 
covariance matrix of the M L  estimators of distribution parameters were 
given in previous sections. These estimates involve the second partial 
derivatives of the sample log likelihood with respect to the parameters. 
These derivatives (and their expectations) may be difficult to derive analyti- 
cally or to approximate accurately by numerical perturbation. The following 
estimate involves only the first partial derivatives. For concreteness, assume 
that the distribution has two parameters p and u and that the log likelihood 
for sample unit i is f , ,  i = 1, 2,.  .., n. The estimates of the terms of the 
Fisher information matrix are 

where the first partial derivatives are evaluated at p = fi and u = 6 .  These 
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estimates are motivated by equations (5.4.1 1) and (5.4.12). The inverse of 
this estimate of the Fisher information matrix is the estimate of the 
covariance matrix, namely, 

Ths “first-derivative” estimate and the 
not been studied for small samples. For 

F:b F,*b 1 --’ 
local and ML estimates of $ have 
large samples (many failures), they 

are nearly equal. This first-derivative estimate extends to distributions with 
three or more parameters in the obvious way. 

PROBLEMS 

8.1. Insulating fluid (exponential). Analyze the 25-kV data on time to 
breakdown of an insulating fluid in Table 2.1 of Chapter 7. Assume that the 
distribution is exponential 

(a) Make a Weibull plot of the data, graphically fit an exponential 
distribution to the plotted data, and estimate the distribution mean. Does 
the plot look satisfactory? 

(b) Calculate the ML estimate of the mean. 
(c) Calculate two-sided 95% confidence limits for the mean based on 

(d) Do (c), based on the chi-square approximation. 
(e) Calculate the ML estimate of the 10th percentile and two-sided 

95% confidence limits bases on the chi-square approximation. 

( f )  Using (d) and (e), plot the ML estimate of the cumulative distribu- 
tion function and its 95% confidence limits on the Weibull plot from (a). 

(g) Repeat (a) through ( f )  for data from other test voltages. 

the normal approximation. 

8.2. Class B insulation. Use the 220°C data on (log) time to failure of 

Make a lognormal plot of the data, and graphically estimate the 
lognormal parameters. Using the estimate of u .  describe whether the 
failure rate increases o r  decreases with age. 

(b)  Calculate the ML estimates of the parameters and the lognormal 
median. The referenced tables for singly censored samples may help 
reduce the effort. as would a computer program. 

(c) Calculate the sample local Fisher information matrix for the 
parameter estimates. 

insulation specimens in Table 3.1 of Chapter 7 .  

(a) 
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(d)  Calculate the local estimate of the asymptotic covariance matrix of 

(e) Calculate two-sided approximate 95% confidence limits for the 

( f )  Calculate the M L  estimate for the 10th percentile o f  the lognormal 

(g) Calculate the local estimate of the asymptotic variance of the log 

(h) Calculate two-sided approximate 95% confidence limits for the 

( i )  Using (b )  and (f), plot the M L  fitted distribution on the lognormal 

( j*)  Calculate limits for the parameters and lognormal median using 

( k )  Repeat (c) through (h)  using the first-derivative estimate of Sec- 

the parameter estimates. 

parameters and lognormal median. 

distribution. 

of the M L  estimator (f) of the 10th percentile. 

10th (lognormal) percentile. 

plot from (a). Also, plot the confidence limits from (e) and (h).  

exact tables referenced in Section 2 .  

tion 6.3 for the Fisher information matrix. 

8.3. Insulating fluid (Weibull). Use the 26-kV data on time to break- 
down of an insulating fluid in Table 1.1 of Chapter 3. Use a computer 
program i f  you have one. 

( a )  Make a Weibull plot of the data, and graphically estimate the 
Weibull parameters. 

(b )  Iteratively solve (3.3) to get the ML estimate of the shape paranie- 
ter accurate t o  two decimal places; use the estimate from (a) to start the 
iteration. 

(c) 
(d)  

(e )  

Use (3.4) to get the ML estimate of the scale parameter. 
Use (3.1 I )  to calculate the sample local Fisher information matrix 

f o r  the corresponding extreme value parameter estimates. 
Calculate the local estimate of the asymptotic covariance matrix 

for the ML estimates of the parameters of the corresponding extreme 
value distribution. 

Calculate two-sided approximate 95% confidence limits for ihe 
extreme value scale parameter and corresponding limits f o r  the Weibull 
shape parameter. Are the data consistent with a true shape parameter of 
I ?  

Calculate the ML estimate fur the 10th percentile of the Weibull 
distribution. 

( f )  

(8) 
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(h) Calculate the local estimate of the asymptotic variance of the ML 
estimator for the 10th percentile of the corresponding extreme value 
distribution. 

Calculate two-sided approximate 95% confidence limits for the 
extreme value 10th percentile and corresponding limits for the Weibull 
10th percentile. 

(j*) Calculate exact limits for the parameters and 10th percentile using 
tables referenced in Section 3. 

8.4. Shave die. This problem uses the data on time to wear out of 

Plot the product-limit estimate of the cumulative distribution 
function on Weibull paper and assess the validity of the data and the f i t  
of the Weibull distribution. 

Use the following STATPAC output. CENTER denotes the Weibull (Y 

and SPREAD denotes p. 

(i) 

shave dies in Problem 4.1 of Chapter 4. 

(a) 

it M A X I M U M  L I K E L I H O O D  E S T I M A T E S  FOR D I S T .  P A R A M E T E R S  
W I T H  A P P R O X I M A T E  9 5 %  C O N F I D E N C F  L I M I T S  

PARAMETERS E S T I M A T E  L O k E R  L I M I T  U P P E R  L I M I T  

CENTER 7 8 . 3 5 2 2 9  6 0 . 8 3 1 1 9  1 0 0  e 9 2 0 0  
SPREAD 2 . 7 5 5 6 0 4  1 .710175  4 . 4 4 0 1 0 4  

it C O V A R I A N C E  M A T R I X  

P A R A M E T E R 5  CENTER S P R E A D  

CENTER 102 . 3808  
SPREAD -3 .605433  0 . 4 4 9 8  1 4 2  

t M A X I M U M  L I K E L I H O O D  E S T I M A T E S  FOR D I S T .  P C T I L F S  
W I T H  A P P R O X I M A T E  9 5 %  C O N F I D E N C E  L I M I T S  

P C T .  

0.1 
0.5 
1 
5 
1 0  
20  
5 0  
8 0  
90 
9 5  
9 9  

ESTIMATE 
6.389 1 0 4  

14 .75874  
26 .66470  
34.62458 
45 .46268  
68 .59425  

1 1  e46595  

93 .12218  
106.047 1 
116.6737 
136.377 1 

LOWER L I M I T  

2 . 1 6 3 7 9 1  
5 e 0 9 4 7 2 2  
7 .3601  55  
1 7 . 2 4 0 4 9  
24 .81156  
35 .46651  
54 .72485  
68 .64407  
7 4 . 5 9 7 5 7  
7 9 . 0 8 3 1 9  
86 .71072  

U P P E R  L I M I T  

1 8 . 8 6 5 3 4  
2 5 . 8 0 4 7 4  

41 .24048  

5 6 . 2 7 6 2 5  
8 5 . 9 7 8 7 0  

2 9 . 5 9 4 5 4  

48.3 1 8 6 8  

1 2 6 . 3 2 9 0  
1 5 0 . 7 5 5 3  
1 7 2 . 1 3 2 2  
214 .4915  
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(b) Does the ML estimate of the shape parametel 3uggest that the 
failure rate of the dies increases or decreases with die age? 

(c) Do the confidence limits for the shape parameter provide convinc- 
ing evidence that the failure rate increases or decreases with die age? 

(d) On the Weibull plot from (a), plot the fitted distribution and 
confidence limits for the percentiles. 

8.5. Locomotive control (Weibull). The following STATPAC output 
shows the ML fit  of a Weibull distribution to the locomotive control data of 
Section 2 .  CENTER: a and SPREAD = /3. 

t M A X I M U M  L I K E L I H O O D  E S T I M A T E S  FOR D I S T .  P A R A M E T E R S  
W I T H  A P P R O X I M A T E  95% C O N F I D E N C E  L I M I T S  

P A R A M E T E R S  E S T I M A T E  LOWER L I M I T  U P P E R  L I M I T  

C E N T E R  183 84091 153.7765 218.7519 
S P R E A D  2.331076 1 72096 1 30157489 

it C O V A R I A N C E  M A T R I X  

P A R A M E T E R S  C E N T E R  S P R E A D  

C E N T E R  271.9164 
S P R E A D  -3.691133 0.1302468 

* M A X I M U M  L I K E L I H O O D  E S T I M A T E S  FOR D I S T .  P C T I L E S  
W I T H  A P P R O X I M A T E  95% C O N F I D E N C E  L I M I T S  

PCT.  

0.1 
0.5 
1 
5 
10 
20 
50 
80 
90 
95 
99 

E S T  I F A T E  

9.474467 

25.49080 

69.84944 
96.37678 

18.9 1372 

51 829256 

156.7246 
224.9476 
262 3050 
293.6528 
353.1379 

LOWER L I M I T  

4.249243 
10.41828 
15.32750 
37.62473 
55.50577 
8 1.89924 
134.7152 
180.51 17 
202.6526 
220.2723 
251.9352 

U P P E R  L I M I T  

2 1 12506 
34.33667 
42 39314 
69092547 
87.89977 
113.4136 
182.3299 
280.3222 
339.5 165 
39 1.479 1 
494.9937 

P E R C E N T ( L I M 1 T  80.) 

it M A X I M U M  L I K E L I H O O D  E S T I M A T E S  FOR % W I T H I N  L I M I T S  
W I T H  A P P R O X I M A T E  95% C O N F I D E N C E  L I M I T S  

E S T I M A T E  LOWER L I M I T  U P P E R  L I M I T  

P C T  13.45950 8.643893 20.36003 
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(a) Make a Weibull plot of the data, and assess how well the Weibull 
distribution fits the data (both on an absolute basis and in comparison 
with the lognormal fit). 

(b) Does the shape parameter estimate suggest that the failure rate 
increases or decreases with age? Do the confidence limits for the shape 
parameter provide convincing evidence that the failure rate increases (or 
decreases)? 

What are the ML estimate and the two-sided approximate 95% 
confidence limits of the percentage failing on an 80-thousand mile 
warranty? How do they compare with those from the lognormal fit? 

(d) Plot the fitted Weibull distribution and the confidence limits for 
the percentiles on the Weibull plot from (a). Also, plot the fitted lognormal 
distribution (a curve) and the lognormal confidence limits for the per- 
centiles on the same plot. How do the estimates and confidence limits 
compare (for practical purposes) in (1) the range of the data (particularly 
the middle), in (2) the lower tail beyond the data, and in (3) the upper tail 
beyond the data. 

(e) Would the key conclusions concerning the failure rate and the 
percentage failing or warranty depend on which distribution is used? 

(c) 

8.6. Known Weibull shape. For a complete sample of size n from a 
Weibull distribution with a known shape parameter value Po and an 
unknown scale parameter aO, the scale parameter is to be estimated. 

(a) Give the sample likelihood function and the log likelihood. 
(b) Obtain and solve the likelihood equation for the maximum likeli- 

hood estimate & of the scale parameter. 

(c) Derive the expression for the sample local Fisher information both 
in terms of the true value a. of the scale parameter and in terms of the 
sample estimate h. 

Derive the expression for the asymptotic Fisher information both 
in terms of the true value a. of the scale parameter and in terms of the 
sample estimate &. 

Derive the expressions for the asymptotic variance and standard 
error for the maximum likelihood estimate h both in terms of the true 
value a, and the estimate &. 

(f) Give expressions for the approximate confidence limits for the 
true value of the scale parameter-this must be in terms of the estimate ir. 

(8) Use the results from (b) through (f) and obtain the corresponding 
sample quantities for the 35-kV data of Table 2.1 of Chapter 7. assuming 

(d) 

(e) 

p --I 
0 - 2 .  
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8.7. Poisson A. Suppose Y, has a Poisson distribution with mean A o t , ,  
where the exposure t h  is known, k = I , . .  ., K ,  and the Y, are statistically 
independent. 

(a) Write the likelihood function for Y, ,  . . . , Y,. 
(b) Set the derivative of the log likelihood with respect to h equal to 

(c) Calculate the true Fisher information for A .  
(d) Calculate the true asymptotic variance and standard error of i. 
(e) Give the expression for the large-sample two-sided approximate 

1OOy% confidence limits for A, (positive limits). 

( f )  Calculate such two-sided 95% confidence limits for the yearly 
failure rate of a power line that had Y ,  = 2 ,  Y2 =6, Y, -4. and Y, =4 
failures over four years. 

8.8.* Binomial p, 

zero and solve for the ML estimate A .  

Suppose Y, has a binomial distribution with proba- 
bility p, and sample size n,, k = 1, ..., K ,  and the Y, are statistically 
independent. 

(a) Write the likelihood function for Y , ,  . . . , Y,. 
(b) Derive the ML estimatefi for p,,. 
(c) Calculate the Fisher information for jj. 
(d) Calculate the true asymptotic variance and standard error of d .  
(e) Give the expression for large-sample two-sided approximate 1OOy% 

confidence limits for po .  

(f) Calculate such two-sided 95% confidence limits for the percentage 
of locomotive controls failing on warranty (Chapter 3). Y =  15 of n =96 
sample controls failed on warranty. 

(g) Compare ( f )  with exact binomial limits and the limits from 
Problem 8 . 5 ~ .  

8.9.* Mixture. A distribution with a "bathtub" hazard function is a 
mixture of two Weibull distributions with parameters a , ,  /I,: and proportion 

(a) Give the log likelihood function of the mixture distribution for a 
singly time censored sample. 

(b) Comment on the theoretical and numerical labor to obtain the 
ML estimates and asymptotic covariance matrix. 

8.10.* Trading stamps. A trading stamp company wished to estimate 
the proportion p,) of stamps that will eventually be redeemed. Specially 

* = 1 9 2, p I < 1 < p2, p $- pz = 1. 
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marked stamps were simultaneously released and their times to redemption 
were observed until a time yo after release. Suppose that the cumulative 
distribution of time to redemption of redeemed stamps is F ( y ) .  The 
cumulative distribution of time to redemption for all stamps is p,F( y ) ;  it is 
degenerate at infinity, since a proportion 1 -  po of the stamps are not 
redeemed. Assume (wrongly) that stamps are statistically independent and 
that F( y )  is an exponential distribution with mean “failure” rate A,. 

(a) Give the expression for the probability a stamp is not redeemed 

(b) Give the likelihood for r observed stamps (redemption time y , )  in 

(c) Assume that yo is much greater than 8 and simplify the likelihood 

(d) Calculate the likelihood equations for p and A .  
(e) Calculate the local estimate of asymptotic covariance matrix of the 

ML estimatesp and A. Leave in terms of j? and A .  
8.11.* Trading stamps. Repeat the preceding problem with a Weibull 

8.12.* Unidentified competing causes. Consider a series system with 
two independent competing failure causes. Suppose that cause k has a 
Weibull distribution with parameters ak and f l A ,  k = 1, 2.  Also, suppose that 
the cause of any failure is not identified. 

(a) Give the log likelihood for a sample multiply censored on the 
right. 

(b) Comment on the theoretical and numerical labor to obtain the 
ML estimates and asymptotic covariance matrix. 

(c) Under the assumption f l I  = f lz  = 1 (exponential distributions), can 
aI and a2 be estimated separately? Explain. 

(d) Under the assumption PI  =&, can a I  and a z  be estimated sep- 
arately? Explain. 

8.13.* 

by time yo. 

a sample of n stamps where n - r times are singly censored at time yo. 

so that it lacks yo. Give the log likelihood. 

distribution. 

Exponential left censored. Suppose that a type of unit has an 
exponential life distribution with mean O0. Suppose that unit i is not 
observed until time T, (left censored) but a failure time T, after T, is observed 
exactly, i = 1,. . . , n. 

(a) Write the sample log likelihood f ,  distinguishing between left 

(b) Derive arr‘/aO, and give the likelihood equation for 0. 
censored and observed units. 
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(c) Use the insulating fluid data at 45 kV in Table 10.3 of Chapter 3, 
and iteratively calculate the ML estimate 8 accurate to two figures. 

(d) Derive the formula for a2f /a02  and evaluate it for the 45-kV 
data. 

( e )  Give the formula for the local estimate of Var(8). 
(f) Calculate the local estimate of Var(8) for the 45-kV data. 
(g) Calculate positive approximate 95% confidence limits for O,, using 

(h) Express the sample log likelihood in terms of indicator functions, 

(i) Evaluate the ML estimate of Var(8) for the 45-kV data. 
('j) Calculate positive approximate 95% confidence limits for O,, using 

(k) On Weibull paper, plot the data, the fitted exponential distribu- 

(0. 

and derive the formula for the true asymptotic variance of 8. 

(1). 

tion, and approximate 95% confidence limits for percentiles. 

8.14. Newton-Raphson method. Continue the Newton-Raphson iter- 
ation through two more iterations on the example in Section 6.2. Check that 
the log likelihood increases with each iteration. 

8.15.* Unidentified competing failure modes. A certain product con- 
tains many components which can fail, including a motor. The motor 
manufacturer reimburses the product manufacturer for each motor failure 
on warranty. In a particular production period, the method of motor 
manufacture was changed, resulting in a defective motor with a high failure 
rate. The following model and analyses were used to predict the motor 
manufacturer's liability. The cause of product failure was not identified. 

(a) Prior to any motor problem, experience with all other failure 
modes indicated that (1 )  the product had a small proportion n that were 
found failed when installed and (2) the remaining proportion ( 1  - n )  
followed a Weibull distribution for time t to failure with scale parameter 
a and shape parameter p near 1 .  Write this cumulative distribution 
function for the product, assuming no motor failures. 

(b) The defective motor was assumed to have a Weibull life distribu- 
tion with scale parameter a' and shape parameter p'. Assuming these 
motors are not failed on installation (not in the proportion a), write the 
combined cumulative distribution function for time t to failure due to 
both motors and all other causes, assuming motor failures are indepen- 
dent of all others. 
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(c) Ordinarily the Weibull distribution is written in terms of the scale 
parameter. Rewrite the distributions from (a) and (b) in terms of small 
percentiles fp  = a - [ ln(1 - P ) ] ” B  and frP, = a‘ - [In( 1 - P’)]”B‘;  eliminat- 
ing a and a’. Ths reparametrization makes the ML calculations converge 
more easily, when P and P‘ are chosen near the corresponding sample 
fractions failed. 

(d) The accompanying figure shows maximum likelihood estimates 
and the local estimate of their covariance matrix for the coefficients 
C1, ..., C5 where 

= =sin2(C1), t ,O,  = e x p ( ~ 2 ) ,  p = e x p ( ~ 3 ) ,  

1 6 ,  =exp(C4), P’=exp(CS). 

Here t o ,  and f0, are expressed in months and C1 in radians. Calculate 
two-sided (approximate) 95% confidence limits for T, p and p’. Is p near 
1 as expected? Is B’ significantly different from 1, and what does i t  
indicate regarding future numbers of motor failures in service? Is 7i 
significantly different from zero, suggesting T in the model improves the 
fit? 

(e) Write the algebraic formula for the fraction failing from all causes 
on a warranty of t* months. Calculate the numerical ML estimate of this 
fraction for t *  =60 months. 

* M A X I M U M  LIKELIHOOD ESTIMATES FOR MODEL COEFFICIENTS 
WITH APPROXIMATE 95% CONFIDENCE LIMITS 

COEFFICIENTS ESTIMATE. LOWER LIMIT 

C 1 -0.3746865E-01 -0.4319699E-01 
C 2 3.234415 3.058929 
C 3 -0.2541079 -0.4578389 
c 4 3.358588 3.312264 
C 5 1.384372 1.158305 

COVARIANCE M A T R I X  

COEFFICIENTS c 1 c 2  

C 1 0.8541726E-05 
C 2 0.1161638E-03 0.8016321E-02 
C 3 -0.2363367E-03 -0.6771157E-02 
C 4 -0.4079892E-04 -0.1715020E-02 
C 5 -0.1697718E-03 -0.8399796E-02 

COEFFICIENTS c 5 

C 5 0.1330337E-01 

UPPER LIMIT 

-0.3174031E-01 

-0.5037680E-01 
3.409902 

3.40491 3 
1.610439 

c 3  

0.1080444E-01 
0.2035757E-02 
0.8862306E-02 

STANDARD ERROR 

0.2922123E-02 
0.8953391E-01 
0.1039444 
0.2363509E-01 
0.1153402 

c 4  
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( f )  Write the algebraic formula for the fraction failing from all other 
causes (except motor) on a warranty of t* months. Calculate the numeri- 
cal ML estimate of this fraction for z *  =60 months. 

(g) The fraction from (e) minus the fraction from (f) is the increase in 
failures due to motors and is paid by the motor manufacturer. Write the 
algebraic formula for this difference, and calculate its numerical ML 
estimate for t* =60 months. 

(h) Numerically calculate two-sided approximate 95% confidence 
limits for the difference in (8). 

( i )  Explain why one-sample prediction limits are preferable to the 
confidence limits in (h), and discuss how much the two types of limits 
differ in this application. 

( j )  Criticize the model in (b). 



9 
Analyses of Inspection Data 
( Quantal-Response 
and Interval Data) 

Introduction 

For some products, a failure is found only on inspection, for example, a 
cracked component inside a turbine. Two types of such inspection data are 
treated here: (1 )  quantal-response data (there is exactly one inspection on 
each unit to determine whether it  is failed or not) and ( 2 )  interval data 
(there is any number of inspections on a unit). This chapter describes 
graphical and maximum likelihood (ML) methods for estimating the life 
distribution of units that are inspected and found to be either failed or else 
running. Most analyses of life data assume that each failure time is known 
exactly. Such analyses are incorrect for inspection data, since only the 
interval in which a failure occurred is known. 

Needed background for this chapter includes the basic distributions in 
Chapter 2 ,  the basics of probability plotting from Chapter 3, and, for ML 
methods, acquaintance with Chapter 8. 

Quantal-Response Data 

Definition. Suppose each unit is inspected only once. I f  a unit is found 
failed, one knows only that its failure time was before its inspection time. 
Similarly, if a unit is found unfailed, one knows only that its failure time is 
beyond its inspection time. Such inspection data are called quantal-response 
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data, sensitivity data, probit data, binary data, logit data, and all-or-none 
response data. Such life data are often wrongly analyzed as multiply 
censored data; then the inspection time when a failure is found is wrongly 
treated as the failure time. The failure occurs before the inspection, anc. this 
must be properly taken into account as described here. 

Other applications. Quantal-response data arise in many other applica- 
tions besides product life. For example, fan blades of jet engines are tested 
under bird impact (Nelson and Hendrickson, 1972). A bird is “fired” with a 
known velocity at a blade, The impact cracks the blade if the bird’s velocity 
is above the blade’s cracking velocity; otherwise, the bird does not crack the 
blade. Each blade (and bird) is impacted only once. The data are used to 
estimate the distribution of cracking velocities of such blades. Other appli- 
cations include the distribution of 

1. 
2. 
1975, Chap. 10). 
3. 
4. 
and Grubbs, 1956). 
5. 
6. 

In such applications, each test unit is subjected to a value of some “stress” 
and is a failure or success. A unit is not retested at another stress. The 
relationship between the probability of failure and “stress” can be expressed 
in terms of a cumulative distribution function. For example, the probability 
F( y )  of bomb explosion as a function of drop height y is assumed to have 
the form 

Drop height that causes bombs to explode (Golub and Grubbs, 1956). 
Endurance limit of metal specimens in a fatigue test (Little and Jebe, 

Insecticide dose that kills insects (Finney, 1968; Berkson, 1953). 
Penetrating velocity of shells fired at a given thickness of armor (Golub 

Voltage that blows a fuse (Sheesley, 1975). 
Cyclamate dose that causes cancer in rats. 

where @( ) is the standard normal cumulative distribution function, and p 
and u are to be estimated from data. 

Overview. Analysis of quantal-response data involves fitting a distribu- 
tion to the data. Then the fitted distribution provides information on 
product performance or life. Section 1 explains simple graphical analyses of 
such data. Section 2 explains ML methods, which require special computer 
programs. Section 5 briefly presents advanced ML theory for quantal- 
response data. 



I .  GRAPHICAL ANALYSES OF QUANTAL-RESPONSE DATA 407 

Interval Data 

Definition. For some products, a failure is found only on inspection. for 
example, a cracked part inside a machne. This chapter presents methods for 
estimating the distribution of time to failure when each unit is inspected 
periodically. If a unit is found failed, one knows only that the failure 
occurred between that inspection and the previous one. Also, i f  a unit is 
unfailed on its latest inspection, one knows only that its failure time is 
beyond the inspection time. Such periodic inspection data are called interval 
data, grouped data, and coarse data. 

If the intervals are small, then each failure time can be approximated by 
the midpoint of its interval, and these times can be analyzed like complete 
or censored data. The approximate results are useful for practical purposes 
if the interval widths are less than, say, one-fifth of the distribution standard 
deviation. This chapter describes exact methods that apply to any interval 
widths. 

Other applications. Interval data arise in many applications. Indeed 
most data values are recorded to a finite number of significant figures. For 
example, a data value of 9.6 usually means that the true value is in the 
interval from 9.55 to 9.65. However, in most applications, the interval width 
is small enough to neglect. 

Overview. Analysis of interval data involves fitting a distribution to the 
data and using the fitted distribution to obtain desired information. Section 
3 describes simple graphical analyses of such data with probability plots. 
Section 4 explains maximum likelihood analyses. which require special 
computer programs. Section 5 briefly presents the underlying (advanced) 
maximum likelihood theory and surveys literature on analysis of interval 
data. 

1. GRAPHICAL ANALYSES OF QUANTAL-RESPONSE DATA 

Plots of quantal-response data serve several purposes. They estimate the life 
distribution; i.e., the relationship between the cumulative percentage failing 
and age. Also, they assess the validity of the assumed distribution and data. 
The following explains how to make and interpret a probability plot of such 
data. Ordinary probability plotting of Chapter 3 and hazard plotting of 
Chapter 4 must be modified as described here. 

Turbine Wheel Data 

The methods are illustrated with data on turbine wheels. Each wheel was 
inspected once to determine if  i t  had started to crack or not. Some of the 
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Table 1.1. Wheel Crack initiation Data (Hours) 
3322+ 
4009+ 
1975- 
1967- 
1892- 
2155+ 
2 0 5 9 t  
4144+ 
1992+ 
1676+ 
4079+ 

1366+ 
e t c .  

2278- 

+ u n f a i l e d  on  i n s p e c t i o n  
- found f a i l e d  on i n s p e c t i o n  

data are shown in Table 1.1, which contains the wheel’s age at inspection (in 
hours) and condition (“-” denotes cracked and “+” denotes not cracked). 

The purpose of the analysis is to estimate the distribution of time to crack 
initiation. This information was needed to schedule regular inspections. 
Also, engineering wanted to know if  the failure rate increases or decreases 
with wheel age. An increasing failure rate requires replacement of wheels by 
some age when the risk of cracking gets too high. 

How to Make a Probability Plot 

First, divide the range of the data into intervals that each contain inspect- 
ions of at least 10 units. The plot will be crude unless the data set is 
moderately large. say, over 100 units. Figure 1.1 shows this for the entire set 
of wheel data. For the units inspected in an interval, calculate the per- 
centage that are failed. For example, for the 30 wheels inspected between 
2000 and 2400 hours, the cumulative percentage failed is 100(5/30)= 16.7%. 
On probability paper for an assumed distribution, plot each percentage 
failed against the midpoint of its interval. For example, 16.7% is plotted 
against 2200 hours in the Weibull probability plot in Figure 1.2. I f  such a 
percentage is 0 or loo%, the plotting position is off scale; the intervals might 
be chosen to avoid this. 

If  the plotted points follow a straight line reasonably well, the distribution 
adequately fits the data. Then draw a line through the plotted points to 
estimate the life distribution. In fitting the line, try to weight each point 
according to its number of units, or (better) try to weight each point 
according to its confidence interval described below. If the plotted points do 
not follow a straight line, plot the data on probability paper for another 
distribution o r  draw a curve through the points (nonparametric f i t ) .  



FAILED % B I N O M .  95% 
HOURS /OBS'D FAILED CONF. LIMITS 

4400+ 2 1 / 3 6  = 58.4 40.8 74.5 

4000-4400 

3600-4000 

3200-3600 

2800-3200 

2400-2800 

2000-2400 

1600-2 000 

1200-1600 

800-1200 

0- 800 

Figure 1.1. 

2 1 / 4 0  = 52.5 3 6 . 1  68.5  

2 2 / 3 4  = 64.8 46 .5  80 .3  

6 / 1 3  = 46.2 1 5 . 9  14 .9  

9 / 4 2  = 21.4 10.3 36.8 

9 / 3 9  = 23.1  11.1 39.3 

5 / 3 0  = 16.7  5 .6  34.7 

. 7 / 7 3  = 9.59 4.9 18 .8  

2 / 3 3  - 6.06 0.7 20.2 

4 / 5 3  = 7.55  2 . 1  1 8 . 2  

0139 = 0 0 .0  9 . 0  

Wheel data and plotting positions. 

HOURS TO C R A C K I N G  

Figure 1.2. Wcibull plot of wheel data. 
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The basis for the plotting method. The units inspected in an interval are 
all regarded as having the interval midpoint as their age. Then the fraction 
failed among those units estimates the population cumulative fraction 
failing by that age. 

Such plots may be peculiar in that the observed cumulative fraction 
failing (an increasing function) may decrease from one interval to the next. 
When this happens one may wish to combine the data in two such intervals 
if that eliminates the decrease in the sample cumulative distribution. For 
example, in Figure 1.2 the points 7.55% at 1000 hours and 6.06% at 1400 
hours could be replaced by the point 100(4+2)/(53+33)-6.98% at 1200 
hours. This simple subjective method gives an increasing cumulative distri- 
bution function; Peto’s (1 973) complex method does this objectively and 
does not group the data into intervals. 

Confidence limits. Limits for the sample cumulative distribution are 
obtained as follows. Each unit in an interval is a binomial trial that is either 
a failure or a success. The value of the cumulative distribution function for 
the interval midpoint is (roughly) the binomial probability of failure. So 
binomial confidence limits apply. Section 3 of Chapter 6 and Hahn and 
Shapiro (1967) give binomial confidence limits. For the wheel example, the 
interval from 2000 to 2400 hours has five failures among 30 wheels. The 
binomial 95% confidence limits are 5.6 and 34.7%. Such two-sided 95% 
limits are given in Figure 1.1. Also, the bars in Figure 1.2 show these limits. 
These binomial limits involve no assumption about the form of the product 
life distribution; that is, they are nonparametric. 

Pet0 (1973) gives approximate limits for the cumulative distribution. His 
limits have the advantage of using all data, not just that in a particular 
interval. However, his limits require a special computer program. 

A sample of quantal-response data is less informative than one where the 
exact failure times are observed. In other words, for samples with the same 
number of units from the same population, confidence limits from exact 
failure times tend to be narrower than ones from quantal-response data. 

How to Interpret a Probability Plot 

The plot is interpreted like any other probability plot and provides 

1. A check on the validity of the data and the fitted distribution. 
2. Estimates of the distribution parameters. 
3. The failure probability by any given age. 
4. Distribution percentiles. 
5. The behavior of the failure rate as a function of age. 
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These are explained below. Further discussions and practical details on how 
to use and interpret probability plots are given in Chapter 3. 

Check validity of the data and distribution. Departure of a probability 
plot from a straight line can indicate peculiar data or lack of fit of the 
assumed distribution. The plotting method uses a crude estimate of the 
cumulative fraction failing for each interval. So only extreme peculiarities in 
such a plot should be interpreted as an incorrect distribution or faulty data. 
Pet0 (1973) gives a more refined sample cumulative distribution. 

Estimates of probabilities and percentiles. Probabilities and percentiles 
are estimated from a plot as described in Chapter 3. For example, the 
estimate of the proportion of wheels failing by 1000 hours is 4.0% from 
Figure 1.2. Also, for example, the estimate of the 50th percentile, a nominal 

,life, is 4000 hours from Figure 1.2. Such estimates can be obtained from a 
curve fitted to a plot, if the plot is not straight. 

Parameter estimates. Distribution parameters are estimated from a plot 
as described in Chapter 3. The estimate of the Weibull scale parameter for 
the wheel data is 4800 hours from Figure 1.2. The estimate of the Weibull 
shape parameter on the shape scale is 2.09. 

Nature of the failure rate. The following method assesses the nature of 
the failure rate, a basic question on the wheels. A Weibull failure rate 
increases (decreases) if the shape parameter is greater (less) than 1. The 
shape parameter estimate is 2.09 for the wheel data. This value indicates 
that the wheel failure rate increases with age, that is, a wear-out pattern. So 
wheels should be replaced at some age when they are too prone to failure. 
An appropriate replacement age can be determined from the relative costs 
of failure, of replacement before failure, and the remaining expected life of a 
wheel. 

2. MAXIMUM LIKELIHOOD FIITING FOR QUANTALRESPONSE 
DATA 

This section presents fitting of a distribution to quantal-response data by 
maximum likelihood (ML). Analyses yield estimates and confidence limits 
for parameters, percentiles. probabilities, and other quantities. The section 
describes the ML fitting, other analyses, and available computer programs. 
Chapter 8 and Section 5 provide background for the ML method for those 
who wish to write their own programs or to acquire a deeper understanding 
of ML fitting. 
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Maximum Likelihood Fitting 

The following presents the ML fit of the Weibull distribution to the wheel 
data. The method applies to other distributions. The ML analysis yields 
estimates of the Weibull parameters a and /3 for the wheels. ML calculations 
are laborious; they require special computer programs, which are referenced 
later. The example employs output from STATPAC of Nelson and others 
( 1978). 

STATPAC output from the Weibull fi t  to the wheel data appears in 
Figure 2.1. There the parameters a and /3 are denoted by “CENTER” and 

MAXIMUM L I K E L I H O O D  ESTIMATES FOR D I S T .  PARAMETERS 
WITH APPROXIMATE 95% CONFIDENCE L I M I T S  

PARAMETERS ESTIMATE 

CENTER scale 4809.557 
SPREAD L] 2.091212 
I) COVARIANCE MATRIX 

PARAMETERS 

CENTER f 104048.0 SPRE ADM-58.57977 
* CORRELATION MATRIX 

PARAMETERS CENTER 

CENTER 1.00000UO 
SPREAD -0.7102457 

LOWER L I M I T  UPPER L I M I T  

4217.121 5485.219 
1 645579 2.657525 

SPREAD m 
0.65379926-01 

SPREAD 

1 . 000000 
P C T I L E S  

I) MAXIMUM L I K E L I H O O D  ESTIMATES FOR D I S T .  P C T I L E S  
WITH APPROXIMATE 95% CONFIDENCE L I M I T S  

PCT . 
0.1 
0.5 
1 
5 
10 
20 
50 
80 
90 
95 
99 

ESTIMATE 

176.8618 
382.2012 
533.0458 
1 1  62.162 
1639.675 
2347 . 489 
4036.353 
6038.581 

8 127.646 
9983.057 

7 166.606 

Figure 2.1. STATPAC 

LOWER L I M I T  

87.44939 
226.8173 
342.0775 
892.7043 
1357.619 

3631.013 
5071 -816 
5806.924 
6407.249 
7515.869 

2079.196 

UPPER L I M I T  

357.6937 
644.0320 
830.6241 
1512.955 
1980.331 

4486.942 
7189.627 
8844.656 
10309.98 
13260.13 

2650.402 

output on Weibull fit to wheel data 
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“SPREAD,” respectively. The estimate of 0 is 2.09, and the approximate 
95% confidence limits for the true p value are 1.65 and 2.66. The 0 estimate 
greater than 1 indicates that the wheels have an increasing failure rate. So 
wheels should be replaced at some age. The limits do not enclose 1, which 
corresponds to a constant failure rate. T h s  is statistically significant evi- 
dence that the wheel failure rate increases with age. 

STATPAC also gives the ML estimates of distribution percentiles. These 
percentile estimates plot as a straight line in Figure 2.2. The two-sided 
approximate 95% confidence limits plot as curves. Note that each confi- 
dence interval encloses the true distribution line with high probability at the 
corresponding age, but it does not necessarily enclose the data point. These 
limits are narrower than the binomial ones, since they use all of the data 
(not just the data in an interval) and employ a specified (Weibull) life 
distribution. Peto’s (1973) confidence limits do not employ a specified 
distribution. The ML and Peto’s intervals are approximate and tend to be 
too short for small samples. 

The output shows seven-figure results. They are accurate and useful to 
about three figures. 

The ML fitting is iterative and may fail to converge. This happens i f  the 
sample cumulative distribution does not increase with age. For example, if 
there were just two intervals, there is a chance that the observed fraction 

HOURS TO C R A C K I N G  

Figure 2.2. Plot of Weibull f i t  to the wheel data 
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failed in the second interval is less than that in the first interval. This is 
more possible with small samples than with large ones. 

Analytic Checks 

The ML method can be used to check whether a distribution adequately fits 
the data. Then a likelihood ratio test (Chapter 12) is used to compare the 
chosen distribution with a more general one. The method for doing this is 
described by Prentice (1974), by Nelson and Hendrickson (1972), and in 
Chapter 12. 

Other Analyses 

Almost any analysis of complete data extends to quantal-response data. For 
example, two samples can be compared with a hypothesis test (Chapter 12) 
to assess whether they differ significantly. Nelson and Hendrickson ( 1972) 
give such an example. They compare the distributions of breaking velocity 
of two designs o f  jet engine fan blades in a bird impact test. Also, for 
example, a parametric fitted distribution like the Weibull distribution can 
be compared with Peto’s ( 1973) nonparametric estimate to assess how well 
the parametric distribution fits the data. 

Computer Programs 

Some computer programs for fitting distributions to quantal-response data 
are listed here. The STATPAC program of Nelson and others (1978) fits by 
ML the normal, lognormal, Weibull, extreme value, and exponential distri- 
butions; it provides approximate confidence limits for parameters and 
functions of them. The CENSOR program of Meeker and Duke (1979) and 
SURVREG of Preston and Clarkson (1980) do the same and include the 
logistic and log-logistic distributions. The BMD03S program of Dixon 
(1974) and the program of Hahn and Miller (1968) do  the same for the 
normal and lognormal distributions. The program of Sheesley (1975) fits the 
normal and lognormal distributions; i t  fits with iterative weighted least 
squares and does not provide confidence limits. Finney ( 1  968) references 
programs for analyses. Some of these programs use minimum chi-square 
fitting, which applies to dosage-mortality data; such programs apply only 
to data with a small number of inspections (dosages). Peto’s (1973) program 
does ML fitting without assuming a form for the distribution (nonparamet- 
ric fitting). Theory for such programs appears in Section 5.  

3. 

Plots of interval data are simple and serve several purposes. They estimate 
the life distribution, i.e., the relationship between the cumulative percentage 

GRAPHICAL ANALYSES OF INTERVAL DATA 
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failing and age. Also, they assess the validity of the assumed distribution 
and of the data. The following explains how to make and interpret a 
probability plot of interval data for the special case where all units have the 
same inspection intervals. The plotting methods of Chapter 3 must be 
modified for interval data as described here. 

If inspection intervals differ, it may suffice to treat each failure as if it 
occurred at the middle of its interval. Such failure times may then be plotted 
as described in Chapters 3 and 4. This method is crude if the intervals are 
wide compared to the distribution width, say, if any interval contains more 
than 20% of the sample. 

Part Data 

The methods are illustrated with data on 167 identical parts in a machine. 
At certain ages the parts were inspected to determine which had cracked 
since the previous inspection. The data appear in Table 3.1; it shows the 
months in service at the start and end of each inspection period and the 
number of cracked parts found in each period. For example, between 19.92 
and 29.64 months, 12 parts cracked. 73 parts survived the latest inspection 
at 63.48 months. The data are simple in that all parts were inspected at the 
same ages; this is not so for many sets of interval data. 

The purpose of the analysis is to estimate the distribution of time to crack 
initiation. This information is needed to schedule manufacture of replace- 
ment parts. Also, engineering wanted to know if the failure rate increases or 
decreases with part age. An increasing failure rate implies that parts should 
be replaced by some age when the risk of cracking gets too high. 

Table 3.1. Part Cracking Data 
Inspection (Months) Number 

End Cracked Cumulative - -  Start 

0 6.12 5 
6.12 19.92 16 21 

19.92 29.64 12 33 

29.64 35.40 18 51 

35.40 39.72 18 69 

39.72 45.24 2 71 
45.24 52.32 6 77 

52.32 63.48 17 94 
6 3.48+ Survived 73 167 

Total 167 
- 

Cumulative Percentage 
Estimate L o w e r  Upper 

2.99 .98 6.85 

12.6 7.95 i a  .6 
19.8 14 .O 26.6 

30.5 23.7 38.1 

41.3 33.8 49.2 

42.5 34.9 50.4 

46.1 38.4 54.0 

56.3 48.4 63.9 
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How to Make a Probability Plot 

The following probability plotting method applies to data where units have 
a common inspection schedule. The data on 167 parts in Table 3.1 illustrate 
the method. Chapter 3 describes probability plotting in detail. 

The steps. The steps in making the plot follow. 

1. For each inspection time, calculate the cumulative number of failures 
by that time. For example, for the inspection at 29.64 months, the cumula- 
tive number of cracked parts is 33=5+ 16+ 12. Table 3.1 shows the 
cumulative number of cracked parts for each inspection time. 

For each inspection time, calculate the sample cumulative percentage 
failed. For example. for the inspection at 29.64 months, this is 100(33/167) 
= 19.8%. Table 3.1 shows this percentage for each inspection time. 

Choose a probability plotting paper. The Weibull paper in Figure 3.1 
was chosen for the part data. Engineering experience may suggest a specific 
distribution; otherwise, try papers for different distributions. Label the data 
scale on the paper to cover the range of the data as in Figure 3.1. 

2. 

3. 

I 2 3 4 5  7 10 20 30 40 50 70 100 
MONTHS 

Figure 3.1. Weibull plot of part data 
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4. Plot each sample cumulative percentage against its inspection time. 
Figure 3.1 shows this for the part data. A cumulative percentage of 100% 
cannot be plotted on the paper; for this reason, some people use the sample 
size plus one (168) to calculate the sample cumulative percentages. Chapter 
3 discusses alternate plotting positions. 

5. Draw a straight line through the plotted points. This line is an 
estimate of the cumulative life distribution. 

The method above applies only when the units have a common inspection 
schedule and all unfailed units have run beyond all failed units. Peto (1973) 
gives a complex general method that applies when units have different 
inspection schedules. His method employs the nonparametric maximum 
likelihood estimate; the calculations require a special computer program. 

Confidence limits. The following method provides simple confidence 
limits for the cumulative distribution function at each inspection time. Each 
sample unit fails either before or else after a particular inspection time. Each 
unit can be regarded as a binomial trial, and its binomial probability of 
failure is the value of the cumulative distribution function at the inspection 
time. So confidence limits for a binomial probability apply; see Chapter 6 
or Hahn and Shapiro (1967). For the part example, at 29.64 months there 
are 33 cracked parts out of 167. Two-sided binomial 95% confidence limits 
at that age are 14.0 and 26.6%. Table 3.1 gives such confidence limits. Also, 
the bars in Figure 3.1 show these binomial limits, which can be put on any 
plotting paper. 

The limits above apply only when the units have a common inspection 
schedule and all unfailed units have run beyond all failed units. Pet0 (1973) 
gives approximate confidence limits for the general situation where units 
have different inspection schedules; their calculation requires a special 
computer program. 

How to Interpret a Probability Plot 

The plot is interpreted like any other probability plot, as described in 
Chapter 3. 

Check validity of the data and distribution. Departure of a probability 
plot from a straight line can indicate peculiar data or lack of fit of the 
assumed distribution. Only extreme peculiarities should be interpreted as an 
incorrect distribution or faulty data, since the sample cumulative distribu- 
tion function for interval data is usually coarse. The points in Figure 3.1 
follow a reasonably straight line. 
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Estimates of probabilities and percentiles. Probabilities and percentiles 
are estimated from a plot as described in Chapter 3. For example, the 
estimate of the percentage of parts cracking by 12 months is 6.8% from 
Figure 3.1. Also, for example, the estimate of the 50th percentile, a nominal 
life, is 56 months from Figure 3.1. Such estimates can also be obtained from 
a curve fitted to a curved plot. 

Distribution parameters are estimated from a plot 
as described in Chapter 3. The estimate of the Weibull scale parameter is 72 
months in Figure 3.1. The Weibull shape parameter estimate on the shape 
scale is 1.49 for the part data. 

Nature of the failure rate. For a Weibull plot, the following method 
assesses the nature of the failure rate, a basic question on the parts. A 
Weibull failure rate increases (decreases) if the shape parameter is greater 
(less) than 1. The shape parameter estimate of 1.49 indicates that the part 
failure rate increases with age, a wear-out pattern. So parts should be 
replaced at some age when they are too prone to cracking. 

Parameter estimates. 

4. MAXIMUM LIKELIHOOD ANALYSIS FOR INTERVAL DATA 

This section presents an example of a distribution fitted to interval data by 
maximum likelihood (ML). The analyses yield estimates and confidence 
limits for parameters, percentiles, probabilities, and other quantities. This 
section describes the ML model fitting, other analyses, and available com- 
puter programs. Chapter 8 and Section 5 provide background on the ML 
method for those who wish to write their own programs or to acquire a 
deeper understanding of ML fitting. 

Model Fitting 

The following presents the ML f i t  of the Weibull distribution to the part 
data. The method extends to other distributions. The fitting yields estimates 
of the Weibull parameters (Y and /3 for the parts. Laborious ML calculations 
require a computer program such as STATPAC of Nelson and others 
( 1978). 

STATPAC output from the Weibull fi t  to the part data appears in Figure 
4.1. There the parameters a and /3 are denoted by “CENTER” and 
“SPREAD,” respectively. The estimate of /? is 1.49. This p estimate greater 
than 1 indicates that the parts have an increasing failure rate. So parts 
should be replaced at some age. In Figure 4.1, the approximate 95% 
confidence limits for the true /3 value are 1.22 and 1.80. This interval does 
not enclose I ,  which corresponds to a constant failure rate. So there is 
statistically significant evidence that the part failure rate increases with age. 
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it M A X I M U M  L I K E L I H U O D  E S T I M A T E S  F O R  D I S T .  P A R A M E T E R S  
W I T H  A P P R O X I M A T E  9 5 %  C O N F I D E N C E  L I M I T S  

P A R A M E T E R S  E S T I M A T E  LOWER L I M I T  U P P E R  L I M I T  

61.96245 82.93873 

S P R E A D  7 ‘ e 6 8 7 4 2  1.485506 El 1.224347 1.802371 
C E N T E R  
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Figure 4.1. STATPAC output on Weibull f i t  to part data. 

T S  

L I M I T  

1 

STATPAC also gives the ML estimates of the distribution percentiles. 
These percentile estimates plot as a straight line on Weibull paper in Figure 
4.2. The corresponding two-sided approximate 95% confidence limits plot as 
curves. These limits are narrower than the binomial ones, since ( I )  they use 
all of the data (not just the data for an inspection time) and ( 2 )  they employ 
a parametric (Weibull) life distribution. Pet0 ( 1973) gives nonparametric 
limits that apply to any mix of inspection schedules. The ML and Peto’s 
limits are approximate and tend to be too short for small samples. 
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I 2 3 4 5  7 10 20 30 40 50 70 100 
MONTHS 

Figure 4.2. Plot of Weibull fit to the part data. 

The output shows seven-figure results. They are accurate and useful to 
about three figures. 

Analytic Checks 

The ML method can be used to check whether a distribution adequately fits 
the data. Then a likelihood ratio test (Chapter 12) is used to compare the 
chosen distribution with a more general one. The method for doing this is 
described by Prentice (1974) and by Nelson and others (1978). The mini- 
mum ch-square test of fit  also applies (Cramer, 1945). 

Other Analyses 

Almost any analysis of complete data extends to interval data. For example, 
two samples can be compared with a hypothesis test (Chapter 1’) to assess 
whether they differ significantly. Nelson and Hendrickson ( 1972) and 
Chapter 12 describe this. 
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Computer Programs 

The STATPAC program of Nelson and others (1978) fits by M L  the 
normal, lognormal, Weibull, extreme value, and exponential distributions to 
interval data; i t  provides approximate confidence limits for parameters and 
functions of them. The CENSOR program of Meeker and Duke (1979) and  
SURVREG of Preston and Clarkson (1980) do the same for the logistic and 
log-logistic distributions and for the STATPAC distributions except the 
exponential. The routine MLP FIT  FREQUENCY of Ross and others 
(1976) fits by ML the STATPAC distributions plus a mixture of two normal 
distributions and the gamma, beta, and three-parameter lognormal distribu- 
tions. Peto’s (1973) computer program does ML fitting without assuming a 
form for the distribution (nonparametric fitting). 

5. ML THEORY FOR INTERVAL AND QUANTAL-RESPONSE 
DATA 

This advanced section presents maximum likelihood (ML)  methods for 
fitting distributions to interval and quantal-response data. The section 
merely explains the computations. For detailed general theory and deriva- 
tions of the ML method, refer to Rao (1973), Wilks (1962), and Hoadley 
(1971). The contents of the section are 

1. Basic distributions. 
2. Sample likelihood. 
3. Maximum likelihood estimates. 
4. Fisher information matrix. 
5. 
6. 
7. Literature on theory. 

Covariance matrix of ML estimates. 
ML estimate and confidence limits for any quantity. 

This section is for those who wish to understand the theory, apply i t  to other 
distributions, or write computer programs. Chapter 8 is needed background. 

Basic Distributions 

The ML method is given for distributions having a location parameter p and 
a scale parameter o.  That is. the cumulative distribution function (cdf) for 
the population fraction below y has the form 
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and the probability density function (pdf) has the form 

where @( ) and (p( ) are the standard cdf and pdf of the distribution 
( p  =0, u = 1). These include the normal, lognormal, smallest extreme value, 
Weibull, and exponential distributions. These distributions are given below 
in the general form. Of course, ML theory applies to other types of 
distributions. 

Sample Likelihood 

Suppose a sample contains I units with statistically independent (log) 
lifetimes yl ( i  = 1,2,. . . , I ) from a cdf F( y )= @[( - po)/u0]. Here po and u0 
are the true values of the location and scale parameters. The end points of 
the J ,  inspection intervals for unit i are qlo,  ql l .  qI2,; . . ,q l J8 ,  which are 
independent of yl and are assumed to be known. The unit is found failed in 
interval j if q l , , -  , < yl < ql,, and the unit is unfailed i f  ,vl > qlJ, ~ I .  qlo is the 
lower limit of the distribution, namely. -a for the normal and extreme 
value distributions and 0 for the exponential distribution. qlJ, = rx) for the 
distributions here; that is, units that fail in interval J ,  are ones surviving the 
last inspection at ql,J,- I .  For the lognormal and Weibull distributions, yl 
and ql, are the log times. For quantal-response data, unit i is inspected once 
at time q,,; many of the formulas below simplify for this special case. 

The sample likelihood is the probability model for the sample data. 
Suppose that y, falls into period;,. Then unit i contributes the probability 
m,J- ml,,,- I ) to the sample likelihood for independent yl’s; namely. 

where p and u denote arbitrary values of the parameters. 
The sample log likelihood is the base e log of the likelihood. namely, 

(5 .2 )  

The sample (log) likelihood takes into account the interval form of the 
data. The rest of the ML method is the same as in Chapter 8, but explicit 
variance formulas can be obtained here. 

Maximum Likelihood Estimates 

The ML estimates of the parameters po and q, are the values ji and 6 that 
maximize the likelihood L or, equivalently, L‘. For most life distributions 
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and choices of inspection times, the asymptotic (large-sample) sampling 
distribution of f i  and 6 is approximately joint normal with means equal to 
the true po and uo and a covariance matrix (5.10). Usually n o  other 
asymptotically normally distributed estimators for po and uo have smaller 
asymptotic variances. 

The fi and 6 can be obtained by numerically optimizing L'. The 
STATPAC program of Nelson and others (1978) does this. Alternatively, 
one can use the usual calculus method of setting the partial derivatives of f 
with respect to p and u equal to zero. This yields the likelihood equations 

where ill, ~ ( - q , / ~  - p)/u is the standardized deviate. The values f i  and 6 that 
satisfy these equations are the M L  estimates. 

Fisher Information Matrix 

The Fisher information matrix is used to calculate the covariance matrix of 
f i  and 6 and confidence limits. Its derivation follows. 

I t  is convenient to work with the sample log likelihood in the form 

L '=X X ~ l / ~ n [ ~ ( ~ l / ) - ~ ( - q l , / ~  I ) ]?  (5.4) 
I /  

where 

( 5 . 5 )  
1 i f  q,,, I < .vl G 9,) (unit i fails in intervalj), 

otherwise, 

is an indicator function and a random variable. 

with respect to p and u. Let @ l j = @ ( { l / )  and 
partial derivatives are 

The Fisher information matrix requires the second partial derivatives of L' 
Then the first 

a t / a p =  2 2(-v~)4/(+l/-+l, /  l ) / (@l / -@l . / - l ) .  

a t  / a0  = I: ( - I /a v ~ / ( L , + ~ /  - L ,  , ~ A .  I - I / ( %  - @,. / - 1 .  
( 5 . 6 )  I /  

I /  
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The terms of the Fisher information matrix are the expectations of (5.7), 
evaluated at p = po and u = a,, namely, 

Each right-hand side is evaluated at 11, = all - 
u = u,, since E, I J i  = @,, - 

,, where p = po and 
I .  The true Fisher information matrix is 

Covariance Matrix of ML Estimates 

The true asymptotic covariance matrix of fi  and 6 is 

1 Cov( f i , 6 )  

Var( 6 ) Cov( f i ,  6 ) 
,%=IF - I  = (5.10) 
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An estimate of %is needed for the confidence limits for parameters and 
other quantities. 

substitute the M L  estimates fi  and 6 in 
place of pLo and uo in (5.9) to get Fo. Then by (5.10), the M L  estimate is 

To obtain the ML estimate of 

(5.11) 

To obtain the local estimate of x, substitute p =I; and o = 6 in (5.7). 
Then use the observed negative second partial derivatives of C in place of 
the expected values in (5.9). The inverse (5.10) is the local estimate of % 
The STATPAC program of Nelson and others (1978) calculates it. 

The local and ML estimates usually differ. For interval data. the ML 
estimate is harder to calculate, but it should be more precise than the local 
one. However, the ML estimate requires the values of all inspection times, 
even those that are planned but not observed when a unit fails earlier. In 
practice, inspection times in the field may be haphazard and not known in 
advance. The local estimate requires only the inspection times for the 
interval when a unit fails and the running time of an unfailed unit; these are 
always known. 

ML Estimate and Confidence Limits for Any Quantity 

Section 5.3 of Chapter 8 presents the ML estimate of any function of the 
distribution parameters, the variance of that ML estimate. and approximate 
confidence limits for the true function value eg.. percentiles and reliabilities. 

Literature on Theory for Quantal-Response Data 

The following briefly surveys theory on analysis of quantal-response data. 
Much work has been done on analysis of such bioassay data; such data are 
often taken at a small number of carefully prechosen dosage levels. How- 
ever, such life data usually invo1ve.a large number of haphazardly chosen 
inspection times. So the bioassay work has limited application to life data. 
The survey covers the major life distributions-exponential, Weibull, ex- 
treme value, normal, lognormal, logistic, and nonparametric. 

Normal and lognormal. These distributions have been studied for analy- 
sis of quantal-response data by Easterling (1975), Finney (1968), Golub and 
Grubbs (1956), and Dixon and Massey (1969). In some experiments. the test 
units are run one after another. If the stress level can be adjusted for each 
test unit, the staircase method provides accurate estimates. Dixon and 
Massey (1969) describe this method for the normal and lognormal distribu- 
tions. Methods for the normal distribution apply to the lognormal distribu- 
tion. but one then works with the logs of lognormal data. 
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Weibull, extreme value, and exponential. Dubey (1965) briefly indicates 
the use of the Weibull distribution for ML analysis of quantal-response 
data. Methods for the extreme value distribution apply to the Weibull 
distribution, but one then works with the (base e )  logs of the Weibull data. 
The exponential distribution is a special case of the Weibull distribution. 

Berkson (1953) describes ML and minimum chi-square meth- 
ods for fitting a logistic distribution to such data. He also gives charts that 
simplify M L  estimation for bioassay applications with equally spaced stress 
levels. The methods of Cox ( 1970) also apply. Meeker and Hahn ( 1977) give 
two optimum inspection times for estimating a low percentile. 

Peto (1973) and Turnbull (1976) give the ML method 
for a nonparametric estimate of a distribution from quantal-response data. 

Papers on  analysis of quantal-response data with 
the preceding and other distributions are referenced in the bibliographies of 
Buckland (1964), Mendenhall (1958), and Govindarajulu (1964). 

Literature on Theory for Interval Data 

The following briefly surveys theory on analysis of interval data. There has 
been much work, particularly for equal length intervals. However, interval 
life data often involve a large number of haphazardly chosen inspection 
times. So previous work has limited application to life data. The survey 
covers the major life distributions-exponential, Weibull, extreme value, 
normal, lognormal, and nonparametric. The ML method is most widely 
used for analysis of such data. Also, the minimum chi-square method 
applies (Rao, 1973). 

These distributions are well studied for analysis 
of interval data particularly by Kulldorff (1961). Kulldorff gives optimum 
inspection times for a fixed number of equally spaced and of optimally 
spaced inspections. Methods for the normal distribution apply t o  the 
lognormal distribution, but one then works with the logs of lognormal data. 

Suppose all units have the same inspection times and all intervals have 
width h.  Suppose one assigns each observation the midvalue of its interval. 
and one calculates the mean m and variance 1; of the midvalues. ~7 is an 
estimate of the normal mean p .  Also, u*’= v - ( h 2 / 1 2 )  is Sheppard’s 
corrected estimate of the normal variance u 2 .  This correction for the normal 
distribution applies to the lognormal distribution i f  the intervals between 
the log inspection times all have width h. 

Weibull, extreme value, and exponential. Dubey (1965) briefly indicates 
the use of the Weibull distribution for ML analysis of interval data. 

Logistic. 

Nonparametric. 

Other distributions. 

Normal and lognormal. 
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Methods for the extreme value distribution apply to the Weibull distribu- 
tion, but one then works with the (base e )  logs of the Weibull data. Meeker 
(1980) gives optimum test plans with equally spaced inspection times for 
ML estimates of selected percentiles of a Weibull distribution. The exponen- 
tial distribution is a special case of the Weibull distribution, and Kulldorff 
(1961) and Ehrenfeld (1962) give ML estimates and optimum inspection 
times. Nelson (1977) gives optimum demonstration test plans for the 
exponential distribution. 

Nonparametric. Pet0 (1973) and Turnbull (1976) give the ML nonpara- 
metric estimate of a distribution from interval data. Kalbfleisch and 
Prentice (1980) present a variety of methods for interval data. 

Other distributions. Papers on analysis of interval data with the preced- 
ing and other distributions are referenced in the bibliographies of Buckland 
(1964), Mendenhall (1958), and Govindarajulu (1965). 

PROBLEMS 

9.1. Exponential quantal-response. Suppose a type of unit has an ex- 
ponential life distribution with mean 8,. Suppose that unit i is inspected 
once at time 9, to determine whether it has failed or not, i = 1,. . . , I .  

(a) Write the sample log likelihood C, distinguishing between failed 

(b) Derive ac/a8, and give the likelihood equation. 
(c) Use the wheel data of Section 1, and iteratively calculate the ML 

estimate 6 accurate to two figures. Treat each unit as if it were inspected 
at the middle of its time interval, and treat the last interval as if all 
inspections were at 4600 hours. 

(d) Derive the formula for d 2 C / d d 2 ,  and evaluate i t  for the wheel 
data. 

(e) Give the formula for the local estimate of Var(8). 
(f) Evaluate the local estimate of Var( d)  for the wheel data, using (d) 

and (e). 

(8) Calculate positive approximate 95% confidence limits for e,,, 
using (f). 

(h) Express the sample log likelihood in terms of indicator functions, 
and derive the formula for the true asymptotic variance of 8 .  

(i) Evaluate the ML estimate of Var(d) for the wheel data, using (c) 
and (h). 

and unfailed units. 
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(j) Calculate positive approximate 95% confidence limits for B,, 
using (i). 

(k) On Weibull paper, plot the data, the fitted exponential distribu- 
tion, and approximate 95% confidence limits for percentiles. 

9.2.* Optimum exponential quanta1 response. For Problem 9.1, sup- 
pose that all I units have a common inspection time q, = q, I = I , .  . . ,I. 
Suppose Y of the I units are failed on inspection. 

(a) Derive an explicit formula for the ML estimate 4; use part (b) of 
Problem 9.1. 

(b) Derive the formula for the true asymptotic variance of 6; use part 
(h) of Problem 9.1. 

(c) Derive the optimum inspection time q* that minimizes the true 
asymptotic variance. It is a multiple c of the true unknown do, q* = c0,. 
Numerically find c. 

(d) Evaluate the minimum variance for q = q*, and compare i t  with 
the variance of 8 for a complete observed sample. 

(e) In practice, one must guess a value 8’ for 0, and use q’=c8’. 
Calculate and plot (I/O;)Var,,(6) versus 8’ /8 ,  from & to 10 on log-log 
paper. 

( f )  Explain how to use “exact” confidence limits for a binomial 
proportion to get exact limits for 6,. 

9.3. Suppose a type of unit has an exponential 
life distribution with mean 8,. Suppose that each unit has the same 
inspection times q,, q 2 , .  . . , qJ = a, and qo =0. For a sample of I units, 
suppose that rJ fail in period j :  (q, ,, q,), j = 1,2,3,. . . . 

Grouped exponential. 

(a) Write the sample log likelihood I? in terms of the x. 
(b) Derive af /a6 ,  and solve the likelihood equation for 8. 
(c) Use the group 10 data in Table 3.1 of Chapter 10; calculate the 

(d) Derive a*  f /a8*, and evaluate i t  for the data. 
(e) Give the formula for the local estimate of Var(8). 
(f) Evalute the local estimate of Var(8) for the data in (c). 
(8) Calculate two-sided positive approximate 95% confidence limits 

(h) Derive the formula for the true asymptotic variance of 8. 

M L  estimate 8 accurate to two figures. 

for 6,, using (f). 

*Asterisk denotes laborious or difficult 
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(i) Evalute the ML estimate of Var(d) for the data, using (c) and (h). 
(j) Calculate positive approximate 95% confidence limits for O,, 

using (i). 
(k) On Weibull paper, plot the data, the fitted exponential distribu- 

tion, and approximate 95% confidence limits for percentiles. 

9.4.* Optimum grouped exponential. For Problem 9.3, suppose that all 
I units have a common time T~ between inspections; that is, 0, = j ~ ~ (  j = 
1, ..., J -1)  and qJ=Oo. 

(a) Derive an explicit formula for the ML estimate 6; use part (b) of 
Problem 9.3. 

(b) Derive the formula for the true asymptotic variance of 6; use part 
(h) of Problem 9.3. 

(c) Derive the optimum time T? that minimizes the true asymptotic 
variance. It is a multiple cJ of the true unknown do, T: = CJ80. Numeri- 
cally find c, for J = 2,3. 

(d) Evaluate the minimum variance for T, = T: and compare it with 
the variance of 4 for a complete observed sample. 

(e) In practice, one must guess a value 8’ for 8,, and use T; = cJB‘. 
Calculate and plot ( n  /8:)Var,( 6 )  versus d ’ /e0  from 0.1 to 10 on log-log 
paper for J = 2. 

(f) Explain how to use “exact” confidence limits for the parameter p 
of a geometric distribution (Chapter 2) to get exact limits for 8, when 
J = w .  

9.5.* Exponential fit to grouped data with progressive censoring. For 
motivation, first see the distribution transformer data in Table 3.1 of 
Chapter 10. Each group there is assumed here to have the same exponential 
life distribution with common mean 8,. Suppose group k with n k  units was 
observed through year k ,  and the yearly numbers of failures are 
y,,,  y k Z , .  . . , y k k ,  and the number of survivors is Yk.k+,  = n k  - ( y k ,  

(a) Calculate an actuarial estimate (Chapter 4) of the common distri- 

(b) Write the sample log likelihood e k ( 8 )  for group k in terms of 8. 
(c) Write the sample log likelihood f ( 8 )  for the K independent 

groups. 
(d) Derive af?/a19, and solve the likelihood equation for 4. 
(e) Calculate 6 for the transformer data. 

+ .. .  -k ykk), k = l ,  ’ ‘  ’ , K .  

bution and plot it on Weibull probability paper. 
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(f) Derive 8’ C / M 2  and its expectation when the true mean is 8,. 
(8) Calculate the local estimate of the asymptotic variance of 8. 
(h) Calculate the ML estimate of the asymptotic variance of 4. 
(i) Calculate two-sided positive approximate 95% confidence limits 

(j) Do (i), using (h). 

(k) Plot the fitted exponential distribution and 95% confidence limits 

for 8 from (8). 

for percentiles (parallel straight lines) on the Weibull plot from (a). 

9.6.* Nonparametric fit to grouped data with progressive censoring. For 
motivation, first see the distribution transformer data in Table 3.1 of 
Chapter 10. Suppose each of the K groups there is assumed here to have the 
same proportion T] failing in year 1, the same proportion 7r2 failing in year 
2, etc. The following method yields ML estimates of the proportions 
T ~ ,  T’, . . . from the data on all groups. 

(a) Write the separate multinomial log likelihoods for groups K 
through 1, denoting the number from group k failing in year m by yknl 
and the number surviving the last year by y I , L + I .  

(b) From the total log likelihood calculate the likelihood equations. 
(c) Solve the equations to obtain the ML estimates of T,, ..., n K ,  ,. 
(d) Derive formulas for all second partial derivatives of the total log 

(e) Derive the expectations of minus one times those derivatives. 
(f) Give the asymptotic covariance matrix. 
(8) Calculate the “local” estimate of the covariance matrix. 
(h) Calculate approximate 90% confidence limits for v1,. . . , T ~ ,  and 

T K  t I .  

likelihood with respect to T ,,..., nK. 

9.7. Circuit breaker. Use the circuit breaker data from Problem 3.4. 
Use a computer program if available. 

(a) Assume that cycles to failure has an exponential distribution. 
Write the sample log likelihood C ( 8 )  for the first sample of 18 specimens 
in terms of the observed numbers of failures in each interval. 

(b) Derive aP/i38, and iteratively solve the likelihood equation for 4. 
(c) Derive a2 f/M2, and evaluate it for the data. 
(d) Calculate the local estimate of Var( e) .  
(e) Calculate two-sided positive approximate 95% confidence limits 

for the true mean. 
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(0 Plot the fitted exponential distribution and parallel 95% confi- 
dence limits on the Weibull plot from Problem 3.4. 

(g) Assuming that cycles to failure has a Weibull distribution, write 
the sample log likelihood e(a ,  /3) for the first sample of 18 specimens in 
terms of the observed numbers of failures in each interval. 

(h*) Iteratively calculate the ML estimates ci and 
(i*) Calculate the local estimate of the covariance matrix of the ML 

estimators. 
(j*) Calculate the ML estimate of the covariance matrix of the ML 

estimators. 
(k*) Calculate two-sided positive approximate 95% confidence limits 

for the Weibull shape parameter using (i) or (j). Is the shape parameter 
statistically significantly different from unity? 

(1*) Calculate the ML estimate of the fraction failing by 10,000 cycles. 
Calculate the binomial estimate of this fraction. 

(m*) Calculate two-sided approximate 95% confidence limits for the 
fraction failing by 10,OOO cycles. Obtain two-sided binomial 95% confi- 
dence limits for this fraction. 

(n*) Plot the fitted Weibull distribution on the Weibull plot from 
Problem 3.4. 

(o*) Repeat (a) through (n), using the pooled data on both samples of 
18 circuit breakers. 

9.8. Vehicle motor. A sample of 43 large electric motors on vehicles 
were inspected to determine if a particular defect had occurred. Hours on 
each motor at inspection appear below where + indicates the defect had 
not occurred and - indicates it had. 

7072+ 1503- 2630- 1000+ 4677+ 5517+ 
3300 - 800+ 5700- 4000+ 4786+ 5948+ 
3329- 1100+ 3300+ 1400+ 3038+ 6563+ 
3200+ 600+ 3750- 1400+ l000+ 913+ 
1228+ 3397- 5200- 2000- 7199- 1914+ 
2328+ 2981+ 3108- 1203+ 6000+ 683 + 
2333+ 3000- 4000+ 2400- 6000-t 7000+ 

1171+ 

by any means. 

The results of ML fitting a Weibull distribution appear in the accompanying 
output. 

(a) Does the shape parameter estimate suggest that such motors get 
more or less prone to the defect as they age? 
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II MAXIMUM LIKELIHOOD ESTIMATES FOR DIST. PARAMETERS 
WITH APPROXIMATE 95% CONFIDENCE L I M I T S  

PARAMETERS ESTIMATE LOWER L I M I T  UPPER L I M I T  

CENTER 55628.70 88.97046 0.3478180E 0 8  
SPREAD0 0.3735526 0.4301541E-01 3.243990 

COVARIANCE M A T R I X  

PARAMETERS CENTER SP$EAD 

SPREAD8 -73141.19 0.1697079 

6 0 
CENTER 2 0.3338934~ 11 

II MAXIMUM LIKELIHOOD ESTIMATES FOR DIST. PCTILES 
WITH APPROXIMATE 9 5 1  CONFIDENCE LIMITS 

PCT. 

0.1 
0.5 
1 
5 
10 
20 
50 
80 
9 0  
95  
99  

ESTIMATE 

0.5186608E-03 
003875757E-01 
0.2495389 

19.59442 
134.5887 
1003.367 
20853.98 
198868.3 
5 18740.3 
1049293. 
3317470. 

LOWER L I M I T  

0.1144192E-17 
0.94578686-12 
0.3378272E-09 
0.3152064E-03 
0.1308441 

57.30000 

21.42655 
254.7561 

7.204 192 
3.2 18400 

0.8580644 

UPPER L I M I T  

0.2351083E 12 
0.1588254E 10 
0.1843240E 09  

1218063. 

17569.73 
1707077. 

138440.5 

0.1845776E 10 
0.3735207E 11 
0.3421006E 12 
0.1282608E 14 

(b) Do the confidence limits for the shape parameter indicate that the 
information from (a) is conclusive or inconclusive? 

(c) Plot the fitted distribution and the confidence limits for the 
percentiles on Weibull paper. Does this small sample of quantal-response 
data yield accurate information for practical purposes? 

(d) Use the covariance matrix to calculate the positive 95% confidence 
limits for ( 1 )  a, (2) /?, and (3) the 10th percentile. Do you think these 
limits are relatively crude or accurate for practical purposes? 

(e) Calculate a graphical estimate of the sample cumulative distribu- 
tion function and plot it on the same Weibull paper. 

( f )  I t  is possible that a fraction of motors have the defect when they 
start into service. Is the plot from (e) consistent with this possibility? 

(8) Assuming such defects are already present when some motors 
start service, estimate the fraction of motors with the defect. 

(h*) Write the likelihood, assuming a fraction T of the motors start 
with the defect and the remaining (1 - T )  have a Weibull distribution for 
time to occurrence of the defect. 



10 
Comparisons ( Hypothesis 
Tests) for Complete Data 

INTRODUCTION 

This chapter presents methods for comparing parameters of distributions 
with each other or with specified values, using complete samples. The 
methods include hypothesis tests and confidence intervals for one sample, 
two samples, and K samples. Useful background for this chapter is the 
corresponding material on estimation in Chapter 6. T h s  introduction over- 
views the chapter and presents basic background on comparisons. Most 
statistical computer programs calculate the results described in this chapter. 

Overview 

For each of the following distributions, the corresponding section gives 
methods for complete data for hypothesis tests, confidence intervals, and 
pooled estimates: Poisson (Section l), binomial (Section 2), multinomial 
(Section 3), exponential (Section 4 covers multiply censored data, too), 
normal and lognormal (Section 5), and Weibull, nonparametric, and others 
(Section 6). Sections 1 through 6 are simple (particularly the graphcal 
comparisons), require a modest background, and depend on just Chapter 6 .  
Section 7 is a general abstract presentation of hypothesis testing, including 
definitions, and may interest advanced readers. Chapter 11 presents com- 
parisons for singly censored data and employs linear estimates; that chapter 
is more advanced and depends on Chapter 7. Chapter 12 presents compari- 
sons for multiply censored and other data; it employs maximum likelihood 
estimates. Chapter 12 is still more advanced and depends on Chapter 8. 

433 
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Comparisons with Hypothesis Tests and Confidence Intervals 

The following paragraphs briefly review basic ideas of hypothesis testing, 
including the use of confidence intervals. A more formal presentation 
appears in Section 7. The ideas here include reasons for comparisons, 
parametric distributions, hypotheses, actions, tests, confidence limits, sig- 
nificance (statistical and practical), and performance and sample size. 
Standard statistical texts discuss hypothesis testing in more detail; without 
such previous background, readers may find this and the next two chapters 
difficult. 

Reasons for comparisons. The following are some reas< .lJ 13r comparing 
life distributions. In reliability demonstration testing, a product must dem- 
onstrate that its reliability, mean life, failure rate, or whatever is better than 
a specified value. In verifying engineering theory, one may check that 
parameters of life distributions have specified theoretical values, for exam- 
ple, that a Weibull shape parameter is unity. In development work, one may 
compare two or more designs to select one. In .analyzing sets of data 
collected over time, one may want to confirm that the life distribution is not 
changing; this is often done before pooling data to get a more precise 
pooled estimate of a common distribution parameter. There are two basic 
objectives in such comparisons. One is to demonstrate that a product 
surpasses a requirement or that a product surpasses others. The other is to 
assess whether a product parameter is consistent with a specified value or 
whether corresponding parameters of a number of products are comparable 
(equal). Here “parameter” means any distribution value, including per- 
centiles and reliabilities. Chapters 10, 11, and 12 give examples of these 
reasons. 

Parametric distributions. In what follows, the data are assumed to be 
independent random samples from parametric distributions, which are 
assumed to be correct models. In practice, one does not usually know 
whether a Weibull or some other distribution is correct; such assumptions 
must be assessed through plots or formal tests of fit (Section 7). In what 
follows, the assumed distribution is assumed to be adequate for the intended 
purposes. Section 7 briefly references nonparametric hypothesis tests. In 
most engineering work, parametric distributions are used for a number of 
reasons. If correct, they make the most efficient and informative use of the 
data; this is especially important for small samples. Engineering experience 
and theory indicate that certain distributions describe the life of certain 
products. Also, there is a well-developed exact statistical theory for the most 
commonly used parametric distributions and complete data. 
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Hypotheses. A hypothesis is a proposed statement about the value(s) of 
one or more distribution parameters. Some examples are 

1. The mean of an exponential distribution exceeds a specified value (this 
is common in reliability demonstration tests of hardware). 
2. Product reliability at a specified age exceeds a given value. 
3. A Weibull shape parameter equals 1; that is, product life has an 
exponential distribution. 
4. The mean of normal distribution 1 exceeds the mean of normal distribu- 
tion 2 (common in comparing alternative designs, materials, methods of 
manufacture, manufacturing periods, etc.). 
5. The means of a number of normal distributions are equal (a common 
hypothesis in analysis of variance to compare a number of designs, materi- 
als, vendors, production periods, etc.). 
6. The means of a number of exponential distributions are equal. 
7. The shape parameters of a number of Weibull distributions are equal. 
8. The 10th percentiles of a number of Weibull distributions are equal (a 
common hypothesis in ball bearing life tests). 

The alternative to a hypothesis is the statement that the hypothesis is not 
true. In contrast, the “hypothesis” above is also called the null hypothesis. 
Some examples of alternatives for some preceding examples are 

1. The mean of an exponential distribution is below the specified value. 
3. The Weibull shape parameter differs from 1 (greater or smaller). 
4. The mean of normal distribution 1 does not exceed the mean of normal 
distribution 2.  
5. Two or more of a number of normal means differ. 
7. Two or more of the shape parameters of a number of Weibull distribu- 
tions differ. 

Such a hypothesis (or alternative) about a parameter may be one sided. That 
is, the parameter is above (below) a specified value. (1)  and ( 2 )  are examples 
of this. (4) is a one-sided example concerning two parameters. Also, a 
hypothesis may be two sided. That is, a parameter has a specified value, or 
parameters of different populations are equal. (3) and (5) through (8) are 
examples of two-sided (or equality) hypotheses (and alternatives). In prac- 
tice, one must decide whether a one- or two-sided hypothesis is appropriate. 
The choice is determined by the practical consequences of the true parame- 
ter value(s). 
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Actions. In engineering and other applied fields, if the hypothesis is 
true, the practitioner wants to take one course of action. If the alternative is 
true, the practitioner wants to take another, which may depend on the 
parameter values. Some examples from above are 

In reliability demonstration, hardware with an exponential mean that 
“exceeds a specified value” (the hypothesis) is accepted by the customer. 
Otherwise, it is rejected by the customer (the alternative), and then the 
product must be redesigned or the contract renegotiated. 

If the mean of the normal distribution of performance -.: new 
product 1 exceeds that of the standard product 2, then product 1 )laces 
product 2 (the hypothesis); otherwise, the standard product 2 is retained 
(the alternative). 

If the means of a number of normal life distributions of groups of 
specimens are equal (the hypothesis), data from the groups may be pooled 
to estimate the common mean; otherwise, the means must be estimated 
separately (the alternative). In another situation, one may have field data on 
units made in different production periods. If the means are all equal, the 
cause of failure is not related to production period (the hypothesis); 
otherwise, product life is related to production period (the alternative), and 
periods with high and low means should be compared to determine causes. 
Also, then preventive replacement policies can be determined to minimize 
costly field failure (the most prone to failure are replaced first). 

If  the shape parameters of a number of Weibull distributions are 
equal (the hypothesis), then data from the populations can be pooled io 
estimate the common shape parameter. Otherwise, a separate estimate for 
each population is appropriate (the alternative). Such pooling is often 
considered for life test data collected on the same product under different 
conditions or in different time periods. 

1. 

4. 

5. 

7. 

Hypothesis test. In real life, distribution parameters are not known, and 
one must take actions on the basis of sample data. One then wants 
convincing evidence in the data that a particular action is appropriate. For 
example. observed differences between a sample estimate for a parameter 
and a specified value or between sample estimates should be greater than 
normal random variations in such estimates; then it is convincing that the 
observed differences are due to real differences in the true parameter values. 
A statistical test involves a test statistic, which is some function of the 
sample data. Examples of such statistics are sample means, medians, and t 
statistics. For true parameter values under the hypothesis, the statistic has a 
known “null” distribution; for true parameter values under the alternative, 
the statistic tends to have larger (smaller) values. If the observed value of 
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the statistic is unusual (in an extreme tail of its null distribution), this is 
evidence that the hypothesis is not true, and an alternative action is 
appropriate. If the observed statistic is beyond the upper (or lower) 5% 
point, it is said to be statistically significant. If beyond the (0.1%) 1% point, 
it is said to be (very) highly statistically significant. The exact percentage of 
the null distribution beyond the observed statistic is called the significance 
level. 

Confidence intervals. Many comparisons can also be made as follows 
with confidence intervals. Such intervals are usually equivalent to but more 
informative than a corresponding hypothesis test. Thus intervals are often 
preferable. Such intervals can (1) indicate that the data are consistent with 
specified parameter values or (2) demonstrate that the data surpass specified 
parameter values. 

1. A 10Oy48 confidence interval for a parameter is consistent with a 
specified value of the parameter if the interval encloses the specified value. 
A l00yS confidence interval that does not enclose the specified value 
indicates that a corresponding test statistic is statistically significant at the 
[ 100( 1 - y ) ] %  level. For example, if  the confidence interval for a Weibull 
shape parameter encloses the value I ,  the data are consistent with an 
assumed exponential life distribution (for this way of assessing adequacy of 
the exponential distribution). 

2. A confidence interval for a parameter demonstrates a specified 
parameter value (or better) i f  the interval encloses only “better” parameter 
values. For example, a specified mean 8, of an exponential life distribution 
is demonstrated with lOOy% confidence i f  the 100y% lower confidence limit 
for the true 0 is above 8, .  

3. A confidence interval for the difference (ratio) of corresponding 
parameters of two distributions is consistent with equality of the parameters 
if  i t  encloses zero (one). Similarly, such an interval that does not enclose 
zero (one) “demonstrates” that one parameter exceeds the other. For exam- 
ple, one may wish that the mean life of a new design prove superior to that 
of the standard design before adopting the new one. 

Simultaneous confidence intervals for corresponding parameters of K 
distributions are consistent with equality of those parameters i f  all such 
intervals enclose zero (one). 

I t  is important to distinguish between practical and statis- 
tical significance in comparisons for equality. An observed difference is 
statistically significant if the data are convincing evidence that the observed 
differences are greater than would be observed by chance and are hence 
real; then observed differences are large compared to the uncertainty in the 

4. 

Significance. 
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data. Observed differences are practically significant if they are large enough 
to be important in real life. Observed differences can be statistically 
significant but not practically significant (that is, convincing but so small 
that they have no practical value). Tlus can happen particularly for large 
samples that reveal even small differences. Then the corresponding popula- 
tion parameters, although different, are equal for practical purposes. Ob- 
served differences can be practically significant but not statistically signifi- 
cant; this can happen when sample sizes are small. Then a larger sample is 
needed to resolve whether the observed important differences are real. In 
practice, one needs observed differences that are both statistically (convinc- 
ing) and practically (important) significant. Confidence intervals are very 
informative in judging both practical and statistical significance, whereas 
hypothesis tests merely indicate statistical significance. A confidence inter- 
val fur a difference should ideally be smaller than an important practical 
difference. If it is not, then one needs more data to discriminate adequately. 
Mace (1964) provides guidance on how to choose sample size in terms of the 
desired length of confidence intervals. 

Performance and sample size. The performance of a confidence interval 
is usually judged in terms of its “typical” length. That of a hypothesis test is 
judged in terms of its operating characteristic (OC) function, defined in 
Section 7. Such performance, of course, depends on the assumed life 
distribution(s), the parameter(s) compared, the sample statistic(s) used, and 
the sample size(s). Mace (1974) gives methods for choosing sample sizes for 
confidence intervals. Cohen (1977) gives methods for choosing sample sizes 
for hypothesis tests. In this book, it is assumed that the sample size has been 
determined. In practice, it is usually determined by nonstatistical considera- 
tions, such as limited budget or time, and by the number of units in service 
or available for a test. Sequential sampling plans have been developed to 
reduce sample size; they are presented in various military standards refer- 
enced below and are surveyed by Aroian (1976). 

1. COMPARISON OF POISSON SAMPLES 

This section presents methods for comparing Poisson samples, namely, 

1. 
testing). 
2. 
3. 

Also. this section shows how to pool samples to estimate a common 
occurrence rate. 

A sample with a given occurrence rate (demonstration and acceptance 

Two samples for equal occurrence rates. 
K samples for equal occurrence rates. 
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Comparison of a Poisson Sample with a Specified A,  

Below are two ways of comparing a sample occurrence rate f i  with a given 
A,. Suppose Y occurrences are observed in a ‘‘length’’ 1. 

Confidence interval. Suppose a 1OOy% confidence interval for the true A 
encloses A,. Then the observed f i  is consistent with A, at the 1OOy% 
confidence level. If the interval does not enclose A,, then differs from A, 
at the [ 100( 1 - y)]% significance level. The interval may be one or two sided. 

Demonstration test. A reliability demonstration test for equipment 
failure rate is usually stated by the consumer as follows: a failure rate better 
than specified A, is to be demonstrated with 1OOy% confidence. This means 
that the equipment passes the test if the observed upper lOOy% confidence 
limit for the true A is below A,; otherwise, the equipment fails. Equiva- 
lently, the equipment passes the test if the observed number Y of failures in 
a total running time t is less than a specified acceptance number yo. 

One chooses yo and t so that the probability of passing the test is 

when A,t is the true Poisson mean. In other words, when the true failure 
rate A equals A,, the probability of the equipment passing the test is a low 
value 1 - y. This means that the true failure rate X must be below A, if the 
equipment is to have a high probability of passing the test. The Poisson 
probability 

of passing the test as a function of A is called the operating characteristic 
(OC) curve. The OC curve is easy to obtain from a table of the Poisson 
distribution. Such a test for the number of defects in manufactured products 
is called an “acceptance sampling test for defects” (Grant and Leavenworth, 
1980). 

Capacitor demonstration example. A contract for a high-reliability 
capacitor specified that a rate of A,=0.01 failures per million hours be 
demonstrated with 60% confidence. (Many demonstration tests require 
higher confidence, say, 90 or 95%. The minimum confidence used in 
practice is 50%). The minimum total test time t results if y,, =O,  no failures. 
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Then the required test time is the solution of (1. l), that is, 

1 -0.60= P,0-8,{  YGO} =exp(- lO-'t), 

namely, 

t = - 1081n(0.40)=9.163X lo7 hours. 

This time was accumulated by running 9163 capacitors each for 10,000 
hours. The capacitors are assumed to have an exponential life distribution. 
So a different number of capacitors could equivalently be run a different 
duration to accumulate this time. The relationshp between the Poisson and 
exponential distributions is described in Chapter 2. 

The corresponding OC function (1.2) is 

P(X)=exp(-h9.l63X1O7), 

Figure 1.1 shows this function. To have a 90% probability of passing the 
test, such capacitors need a true h such that the probability of no failure 
satisfies 

0.90=exp( - X9.163X lo7), 

1 .o 

.5 

.01 

Figure 1.1. OC curve of the demonstration plan 
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namely, a design failure rate of 

X = -ln(0.90)/9.163X 107=0.11 X lo-’. 

So h must be one-ninth of the specified A, = lo-’. 
The probability of passing a test when X < A, can be increased if one uses 

a test that allows more failures yC; in a greater total test time 1‘. Then y; and 
t’ are still chosen to meet the demonstration requirement PA,,,{ Y 4 y;} = 1 - 
y. Of course, such a test requires more test time and cost. For example, the 
capacitor test with y; = 1 requires t;l = 20.2 X lo7 hours; this is more than 
twice the time for yo = O .  

Poisson demonstration. Standard plans and their OC curves are given by 
Schilling ( 198 1) and the references below. The references include two-stage, 
multistage, sequential, and other sampling plans; such plans result in a 
smaller average ‘‘length’’ of observation than the above single-stage plans 
with comparable OC functions. The following references may be bought 
from the US. Government Printing Office, Washington, D.C. 20402. 

1. MIL-STD- 105D, “Sampling Procedures and Tables for Inspection by 
Attributes,” 29 April 1963. To use for Poisson data, treat the binomial 
probability as the number of occurrences per 100 sample units. Undergoing 
revision. 
2. MIL-STD-690B, “Failure Rate Sampling Plans and Procedures,” 17 
April 1968. 
3. MIL-STD-78 IC, “Failure Tests: Exponential Distribution,” 2 1 August 
1977. Consult material on sequential and fixed-length tests. 
4. MIL-HDBK- 108, “Sampling Procedures and Tables for Life and Relia- 
bility Testing,” 29 April 1960. Consult material on testing with replacement. 

Comparison of Two Poisson Occurrence Rates 

This section gives methods for comparing two Poisson occurrence rates for 
consistency. Suppose Y is a Poisson count in a “length” r where the 
Occurrence rate is A ,  andX is an independent Poisson count in a length s where the 
occurrence rate is v. 

Suppose a 100~5% confidence interval for the relative failure rate 

p = x / v  (1 .3)  

does not enclose the value 1. Then f i  = Y / t  and i = X / s  differ at the 
[ 100( 1 - y)]% significance level. That is, there is convincing evidence that X 
and v differ when 1 - y is small, say, below 0.10 or 0.05. Otherwise, if the 
interval encloses 1, the data are consistent with the hypothesis X = v. 
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Confidence limits. Limits of a two-sided lOOy% confidence interval for 
p are 

P = { (Y/f)/[( X +  l>/s]}/F[(1+ Y ) / 2  2 x + 2 , 2 y ]  3 

i j  = { [ ( Y + 1 ) / t ]  / ( x/s ) } ’ F[  ( 1 + Y )/2 ; 2 Y + 2 9 2 X ]  3 

( 1.4) 

where F( 6; a, b )  is the 1006 th percentile of the F distribution with a degrees 
of freedom in the numerator and b in the denominator. Nelson (1970) gives 
simple charts for these limits. 

If Y and X are large, approximate lOOy% limits are 

p = $ / +  and i j = $ . + ,  (1 3)  

where ,3 = f i  / i  = ( Y / t ) / (  X / s )  estimates p, 

and K ,  is the [ 100(1+ y)/2]th standard normal percentile. These limits are 
usually accurate enough in practice if X and Y are above 10 

A one-sided lOOy % confidence limit comes from the corresponding 
two-sided limit above. Then y replaces (1 + y)/2. 

Tree and bare wire example. The failure rates of two types of power line 
wire in a region were to be compared. The wires were subjected to the same 
weather and operation. It was assumed that the number of line failures for a 
given exposure has a Poisson distribution. The standard bare wire had 
X=69 failures in s = 1079.6 1000-ft.years of exposure, and a polyethylene- 
covered tree wire had Y =  12 failures in t =467.9 1000-ft.years. Then 
f i  =69/1079.6=0.0639 per 1000 ft per year for the bare wire, and i = 
12/467.9 =0.0256 for the tree wire. Figure 1.2 shows these estimates; each 
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with its 95% confidence interval. The intervals do not overlap. This implies 
that the two rates differ significantly at least at the 5% significant level. Also 
Z, =0.0256/0.0639=0.401; that is, the observed failure rate for tree wire is 
40% of that for bare wire. 

Two-sided 95% confidence limits for p are 

p = { (12/467.9)/[(69 + 1)/ 1079.61 } / F [  (1  + 0.95)/2; 2.12 + 2 ,2491  

=0.20, 

p =  {[(12+1)/467.9]/(69/1079.6)} .F[(1+0.95)/2;2.69+2,2.12] 

=0.75. 

Calculate approximate 95% limits as follows: 

C#B = exp[ 1.960( 12- I + 69 = 1.846, 

p -0.401/1.846=0.22, p -0.401.1.846=0.74. 

The limits do not enclose 1. So the failure rate of tree wire is statistically 
significantly below that of bare wire. Convinced of a real difference, 
engineering could use the confidence interval to help decide if tree wire is 
economically enough better than bare wire. 

Comparison of K Poisson Occurrence Rates 

The following explains how to compare K Poisson occurrence rates for 
equality. 

For k = I ,  ..., K ,  suppose that Y, is a Poisson count in an observed 
''length'' t k  where the occurrence rate is A,. Also, suppose Y , ,  . . . , YK are 
statistically independent. 

Test. The following tests the equality hypothesis A ,  = A ,  = . . . = A, 
against the alternative A, # A h ,  for some k and k' .  First calculate Y = Y ,  
+ . . . + Y,, t = t ,  + . . ' + t,, and f i  = Y / t .  The test statistic is 

K 

Q =  2 ( Y , - i t , ) 2 / ( f i t h ) .  
k = l  

Here E,  = f i t ,  estimates the expected number of occurrences. If the equality 
hypothesis is true, the distribution of Q is approximately chl square with 
K - 1 degrees of freedom. If the alternative is true, Q tends to have larger 



444 COMPARISONS (HYPOTHESIS TESTS) FOR COMPLETE DATA 

values. So the test is 

1. If Q G x2(  1 - a ;  K - 1), accept equality. 
2. I f  Q > x2( 1 - a; K - l),  reject equality at the 100a'% significance level. 

Here x 2 (  1 - a;  K - 1 )  is the 100( 1 - a)th chi-square percentile with K - 1 
degrees of freedom. Q is called the chi-square statistic. The chi-square 
approximation is more precise the larger the Y, are. It is usually satisfactory 
if  all Y, 2 5 .  

If there is a statistically significant difference, examine the i, = 1, / f h  to 
see how they differ. A figure like Figure 1.3 can reveal the differences. Also, 
the A, that give the largest terms (Y ,  - f i t , )2 / ( f i r , )  of Q are ones that differ 
most from the pooled A .  

Power lines example. Table 1.1 shows outage dat" seven power 
transmission lines from Albrecht, Nelson, and hnglee (1968). Figure 1.3 
depicts the estimate and confidence limits for the outage rate of each line. 
For line k ,  Y, is its total number of outages, L ,  is its length in miles, Nh is 
the number of years of observation. and t ,  = N,  L,  is the total exposure. 
Power line engineers wanted an estimate of the outage rate of such lines to 
aid maintenance planning. The pooled estimate (1.8) of the common outage 
rate is A =0.414. Q =34.30 is calculated in Table 1.1. Since Q =34.30>22.5 
= x2(0.999,7- l), the seven outage rates differ very highly significantly 
(0.1% level). Figure 1.3 reveals that the outage rates of the three shortest 
lines differ most from the pooled rate. Also, the three shortest lines make 
the greatest contributions to Q. 

Table 1.1. Power Line Outage Data and Calculations 
Line Length Years Exposure Outages Expected Q T e r m  Outage 
k L k mi. 

Nk t k=NkLk  'k Ek = itk (Yk-Ek) /Ek Rate ?k 
2 

- - -___ 
1 10 x 5 = 50 10 

2 1 3  1 1 3  1 3  

3 17 5 85 17 

4 24 9 2 16 102 

5 42 6 252 12 4 

6 6 1  2 12 2 5 3  

4 4  7 69 2 

t = 876 363 

~ 

138 
_. 

20.72 

5.39 

35.22 

8 9 . 5 1  

104.42 

50.56 

57.18 

Y 

5.54 0.20 

10.76 1.00 

9 . 4 3  0.20 

1.74 0 .47  

3.67 0 . 4 9  

0 . 1 2  0 . 4 3  

3.04 0 .  32 __ 
34.30 = Q 

h  ̂ = 3631876 = 0.414 
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Figure 1.3. Line outage rates and 90% confidence limits 

Because the data contain many outages, the test detects small differences 
in the true outage rates. Such differences may be unimportant from an 
engineering point of view. An engineer can judge this from Figure 1.3. The 
high significance of Q indicates that confidence and prediction intervals 
calculated from the pooled A (described below) are too narrow. Also, there 
may be variables in addition to line length that significantly affect outage 
rate, for example, the yearly number of thunderstorms at each line. 

Chapter 12 gives a likelihood ratio test for equality of Poisson occurrence 
rates. General theory for that test appears in Cox and Lewis (1966). The 
statistical performance (OC curve) of that test is similar to that of the test 
above. Also, quality control charts (Grant and Leavenworth, 1980) are a 
means of comparing K Poisson samples. 

The test is often used on counts from a Poisson 
process for a number of time periods. The test checks for a constant 
occurrence rate over time. For example, suppose that monthly failure data 
are collected on a stabile population of equipment. The test would be used 
to reveal seasonal and other effects on the failure rate. Also, the effect of 
seasonal variations can be eliminated i f  one can use an entire year as an 
observation period. 

Nonconstant failure rate can also be assessed from a plot of the cumula- 
tive number of occurrences versus time. Departures from a straight plot may 
indicate a nonconstant failure rate. 

Other uses of the test. 
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The above ch-square test is also used to test the assumption of a Poisson 
distribution when there are K observed counts from the distribution. 

Pooled Estimate of a Poisson Occurrence Rate 

Often one wishes to combine Poisson data to get more informative analyses‘. 
The following describes a pooled estimate of a common Poisson occurrence 
rate, its variance, and confidence and prediction limits. 

For k = 1,. . . , K ,  suppose that Yk is a Poisson count in an 
observed “length’ t k  where the occurrence rate is A.  The pooled estimate of 
the common h is 

Estimate. 

A = ( Y , +  . . .  + Y K ) / ( f I +  . . .  $ 2 , ) .  (1.8) 

This is the total number of occurrences Y = Y ,  + . . . + YK divided by the 
total length of observation t = t i  + . . . + t K .  Ths estimate is unbiased, and 
its variance is 

Limits. Section 2 of Chapter 6 gives confidence limits for the common h 
and prediction limits from Y occurrences in a length of observation t .  Before 
using a pooled estimate, one should check that the failure rates do not differ 
significantly. The previous section presents such a check. 

Power lines example. Table 1 . 1  shows data on outages of seven power 
transmission lines. For the seven lines, the total number of outages is 
Y=363, and the total exposure is t =876 mile.year-s. The estimate of a 
(wrongly assumed) common Poisson outage rate is A =363/87f* 3.414 
outages per mile per year. Two-sided 90% confidence limits for [rue 
common failure rate are h =0.378 and x=0.450 from Section 2 of Chapter 
6. Predictions and predcction limits for the numbers of outages can be 
calculated for future years, assuming a common outage rate, which is not a 
valid assumption for the power lines. 

Other Methods for Poisson Data 

For other methods for Poisson data, consult Haight (1967) and Cox and 
Lewis (1966). Such methods include, for example, the following. 

1. 
of numerical variables. 

Fitting regression equations that express the Poisson mean db a function 
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2. Doing analyses of variance where the Poisson mean is a function of 
qualitative variables. 
3. Fitting a Poisson distribution to censored and interval data. 
4. Predicting reliability growth with a Duane plot (see Section 7 of 
Chapter 13). 

2. COMPARISON OF BINOMIAL SAMPLES 

T h s  section presents methods for comparing binomial samples, namely, 

1. A sample with a specified binomial proportion (acceptance sampling). 
2. Two samples for equal binomial proportions. 
3. K samples for equal binomial proportions. 

Also, ttus section presents methods for 

4. 

Comparison of a Binomial Sample with a Given po 

The following describes three equivalent ways to compare a sample bi- 
nomial proportion j3 with a given po to assess whether they are consistent 
with each other. Suppose there are Y category units in a sample of n units. 

Confidence interval comparison. Suppose that a lOOy % confidence inter- 
val for the true p encloses p o .  Then $ = Y / n  is consistent with po at the 
lOOy% confidence level. If the interval does not enclose p o ,  then differs 
significantly from p o  at the [ 100( 1 - y )I% significance level. Such an interval 
may be one or two sided, as described in Section 3 of Chapter 6. 

Rat survival. An experiment employed 17 pairs of rats that were poi- 
soned (Sampford and Taylor, 1959). One rat of each pair was randomly 
chosen and treated to prolong life, and’ the other rat served as a control. In 
seven pairs the treated rat survived the control rat. If the treatment has no 
effect, the true proportion of pairs where the treated rat outlives the control 
rat is po = 4. Two-sided 90% confidence limits based on 7 out of 17 are 
p =0.21 and p =0.64, as described in Chapter 6. These enclose po = 4. So 
ihe treatment and control do not differ significantly at even the 10% level. 
Of course, 17 is a small sample, as the wide confidence interval shows. 

A hypothesis test can be used to check if  a bi,iomial 
sample is consistent with a specified population proportion po in a category. 
Suppose a sample of n units contains Y category units. For a two-sided test, 

Pooling samples to estimate a common binomial proportion. 

Hypothesis test. 
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the significance level is the probability of the observed number of category 
units being 1 Y - np, I or more away from np,, namely, 

where L is np, -- 1 Y - np,l rounded down to the nearest 
np, i- IY- np,I rounded up to the nearest integer. If P 
significant evidence that the true proportion differs from 

integer, and U is 
is small, there is 
the specified one. 

Binomial tables (referenced in Chapter 2) readily provide the above sums. 
When p o  = 4, the test is called a “sign test.’’ This is a two-sided test. 

Rat survival. The test can be used on the above data on rat survival. 
Then 17(+\7-- 17( f )J=7  is L.  and 17(9+17- 17(4)J= 10 is U. The 
two-sided significance level is 

This probability is large; so there is no convincing evidence that the 
treatment has an effect. 

Acceptance sampling. An acceptance sampling plan is used to decide 
whether a population, such as a manufactured lot or shipment, is accept- 
able. When units are categorized as good or bad, the plan usually states that 
the lot must have an acceptable quality level (AQL) of p , .  the fraction 
defective. Binomial data are usually called attribute data in acceptance 
sampling. 

An acceptance sampling plan specifies the number n of sample units and 
the acceptance number yo. If a consumer finds more than yo defectives in a 
sample, the shipment fails. 

The n and yo are chosen so the plan accepts most “good” shipments and 
rejects most “poor” ones. A plan had n =20 and .yo = 1. If a shipment has a 
proportion defective of p-0.01, the chance of i t  passing inspection is 
F( 1) = 0.983, from a binomial table. If a shipment has a propor [ion defective 
of p =O. 10, the chance of it  passing inspection is F( 1)=0.392. When the true 
proportion defective is p ,  the probability of a lot passing the test with n and 
y,  1s 

I 

(2.2) 

This function of p is called the operating characteristic (OC) curve. The OC 
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0 0.10 0.20 0.30 p 
Figure 2.1. OC curve of acceptance 
pling plan. 

sam- 

curve for the sampling plan above appears in Figure 2.1. This is a one-sided 
test. 

In practice, n and yo are chosen so that the plan accepts lots with a low 
proportion defective p o  with high probability 1 - a and accepts lots with a 
high proportion defective p ,  with a low probability p. p o  is called the 
acceptable quality level (AQL). The probability of such an acceptable lot 
failing is a and is called the producer’s risk. The high proportion p ,  is called 
the lot tolerance percent defective (LTPD); it is an unacceptable quality 
level. The probability of such an unsatisfactory lot passing is p and is called 
the consumer’s risk. For the plan above, if the AQL is 1% defective, the 
producer’s risk is 1-0.980=0.020, or 2%. Also, if the LTPD is lo%, the 
consumer’s risk is 0.392, or 39%. Acceptance sampling plans are treated in 
detail in most books on statistical quality control; see, for example, Grant 
and Leavenworth (1980) and Schilling (1981). 

Binomial plans. Standard binomial plans and their OC curves appear in 
the references below. The references include two-stage, multistage, and other 
sampling plans. Such plans result in a smaller average sample size than the 
above single-stage plans with comparable OC functions. 

1. MIL-STD-IOSD, “Sampling Procedures and Tables for Inspection by 
Attributes,” 29 April 1963, U.S. Government Printing Office, Washington, 
D.C. 20402. 
2. Dodge, H. F., and Romig, H. G .  (1959), “Single Sampling and Double 
Sampling Inspection Tables,” 2nd ed., Wiley, New York. 

Comparison of Two Binomial Proportions 

This section gives the Fisher exact test for equality of two binomial 
proportions. An approximate K-sample test is given later; it also applies to 
the two-sample problem. Suppose Y is the number of category units in a 
sample of n units where the population proportion is p v ,  and X is the 
number in another sample of m units where the population proportion is p x .  
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Test. Fisher's one-sided test assesses whether p is significantly larger 
than px. Calculate the hypergeometric tail probability 

where M = min( X + Y,  n ) .  Lieberman and Owen (196 1) tabulate such prob- 
abilities. Then P is the significance level of the test. If P is small (say, less 
than 0.05), then jj = Y / n  is statistically significantly larger than j j x  = X / m .  
That is, there is evidence that p > p x .  Otherwise, Y / n  is not significantly 
greater than X / m .  This is a one-sided hypothesis test. A two-sided test 
employs the hypergeometric probabilities in both tails [see (2. I)]. 

Printed circuit example. A printed circuit had been manufactured in two 
lots. The newer lot had some design improvements, and the engineers 
wanted to know if the newer lot was really better. The older lot had Y=4 
failed circuits among n = 119, and the newer lot had X = O  failed among 
m =254 circuits. If the probability of a failure is the same for all circuits, the 
probability of all four failures falling into the older lot is 

0 + 4  254+- 119-0-4 254+ 119 '=( 4 ) (  119-4 )I( 119 

This small probability indicates that the observed results are highly unlikely 
if circuits from both lots have the same probability of failing. This is 
convincing evidence that the newer design is better. 

Sample size. Cohen (1977) explains how to choose the two sample sizes 
to compare two binomial proportions. 

Comparison of K Binomial Proportions 

Test. The following hypothesis test compares K binomial proportions 
for equality. For k = I ,  ..., K ,  suppose there are Yk category units in a 
sample of n k  units where the population proportion is pk.  

The following is an approximate test of the hypothesis of equality (or 
homogeneity) p ,  = . . . = p K  against the alternativep, # P k '  for some k and 
k'. First calculate Y = Y,  + . . . + YK,  n = n ,  + . . . + n K ,  and j? = Y / n .  The 
test statistic is 

K 

Q =  2 ( y k - n , p ) 2 / [ ' , j ? ( 1 - j ? ) ] ,  (2.4) 
k = l  

where n k d  estimates the expected number of category units. If the equality 



2. COMPARISON OF BINOMIAL SAMPLES 451 

hypothesis is true, the distribution of Q is approximately chi square with 
K-1 degrees of freedom. If the alternative is true, the distribution of Q 
shifts toward larger values. So the test is 

1. If Q G x 2 (  I - a; K - l), accept the equality hypothesis. 
2. If Q > x 2 ( l - a ;  K - l), reject the equality hypothesis at the 100a% 
significance level. 

Here x 2 (  1 - a; K - 1) is the [loo( 1 - a)]th chi-square percentile with K - 1 
degrees of freedom. Q is called the chi-square statistic. The chi-square 
approximation is more precise the larger Y and n - Y are. It is usually 
satisfactory if all Y, 2 5  and n k  - Y, 3 5 .  There are many computer pro- 
grams for contingency table analysis that do the calculations above. 

If Q is statistically significant, examine the jj, = YJn, to see how they 
differ. A figure like Figure 2.2 can reveal the nature of the differences. Also, 
the f i k  that give the largest terms of ( Y ,  - nkjj)*/[n,jj(l - f i ) ]  of Q are the 
ones that differ most from the pooled jj. 

Capacitor failure example. Table 2.1 shows the numbers of capacitor of 
the same type and how many of them failed on nine different circuit boards. 
Engineering wanted to know if there were real differences among such 
boards. Figure 2.2 shows the 8 ,  with 90% confidence limits. The pooled 
estimate of the common binomial proportion is jj =0.03936. Q =56.8 is 
calculated in Table 2.1 ; it has 9 - 1 = 8 degrees of freedom. Since Q = 56.8 > 
26.1 = ~ ~ ( 0 . 9 9 9 ;  8), the nine circuit boards differ very highly significantly 
(0.1 % level). Figure 2.2 reveals that board 4 has an unusually high propor- 
tion of capacitors failing, and board 7 has an unusually low proportion. 
Also, those boards make the greatest contribution to Q. This indicates that 
these two boards should be physically contrasted to determine and eliminate 
causes of failure. 

Chapter 12 gives a likelihood ratio test for equality of binomial propor- 
tions. General theory for that appears in Cox (1970). The statistical perfor- 
mance of that test is similar to that of the test above. Also, binomial plotting 

Table 2.1. Capacitor Failure Data and Calculations 
Board k: -. 1 2 -  3 -  4 . -  5 - 6 -  7 9 P o o l e d  - 8 - -  

Sampled %: 84 + 72 + 72 + 119 + 538 + 51 + 517 + 462 + 143  = 2058  = n 

F a i l e d  Yk: 2 + 3 +  5 +  19 + 2 1  + 2 + 9 + 1 8 +  2 = 8 1 = Y  

Ek = nkp: 3.309 2.837 2.837 4 .688  21.196 2.009 20 .368  18 .123  5 . 6 3 4  .03936 = p  ̂

(Yk-Ek) / [ E k ( l - p ) ] :  0.54 + 0.01 + 1 . 7 2 C 4 5 . 4 8  + 0.00 + 0.00 + 6 . 6 1  + 0.00 + 2 . 4 4  = 5 6 . 8  = Q 

Pk : .0238 .0417 , 0694  . I 5 9 7  .0390 .0392 .0174 .0390 . a140  

2 
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paper (King, 1971) and quality control charts (Grant and Leavenworth, 
1980) are means of comparing binomial proportions. 

Pooled Estimate of a Binomial Proportion 

The following describes a pooled estimate of a common binomial propor- 
tion. its variance, and confidence and prediction limits. 

For k = 1,. . . , K ,  suppose that there are Yk category units in a Estimate. 
sample of n ,  units. The pooled estimate of the common proportion p is 

b = ( Y , +  . . .  + Y K ) / ( 1 7 , +  . . *  fn,). ( 2 . 5 )  

This is the total number of category units Y =  Y ,  + . . . + YK divided by the 
total number 17 = n ,  + . . . + n K  of sample units. So is the pooled sample 
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proportion. I t  is unbiased, and its variance is 

Var( $ ) = p ( l - p ) / n .  (2.6) 

Use the Y category units in n sample units to calculate confidence limits 
and prediction limits as described in Section 3 of Chapter 6. 

Before using the pooled estimate, one should check that the sample 
proportions do not differ significantly. The previous subsection presents 
such a check. 

Capacitor example. Table 2.1 shows data on identical capacitors used in 
K = 9  circuit boards. For the nine circuit boards, there are Y = 8 1  failures 
among n ~ 2 0 5 8  capacitors. The estimate of a common proportion failing is 
$ = 3% =0.039. Two-sided 90% confidence limits for the common p are 
p=O.032 and j7=0.046. Figure 2.2 depicts the pooled and individual 
estimates and their 90% confidence limits. Of course, the previous subsec- 
tion indicated that pooling the data is not appropriate. 

Other Methods for Binomial Data 

For other methods for binomial data, consult Cox (1970), Finney (1968), 
Fleiss (1973), Maxwell (1961), Plackett (1974), Patil and Joshi (1968), and 
Johnson and Kotz (1969). These references include, for example, 

1. Fitting regression equations that express a binomial proportion as a 
function of numerical variables. 
2. Doing analyses of variance where the binomial proportion is a function 
of qualitative variables. 
3. Fitting a binomial distribution to censored and interval data. 

3. COMPARISON OF MULTINOMIAL SAMPLES 

This section presents statistical hypothesis tests for comparing 

1. 
2. 
portions. 

Also, this section presents methods for 

3. Pooling samples to estimate common multinomial proportions. To 
compare samples with respect to the proportion in one particular category, 
use the binomial methods of Section 2 .  

A multinomial sample with specified multinomial proportions. 
K multinomial samples for equality of corresponding multinomial pro- 
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Comparison of a Multinomial Sample with Given Proportions 

Test. The following hypothesis test compares the observed sample num- 
bers Y, ,  . . . , Y,  in M multinomial categories with specified proportions 
r ,,..., r,. The test statistic is 

M 

Q = 2 ( Ym - n r m  >’ /( n r,,, (3.1) 
m = l  

where n = Y,  + . . . + Y,. Here Em = n?r, is the expected number of ob- 
servations in category m, and Y, is the observed number. If the r,,,’s are the 
true proportions, the distribution of Q is approximately c h  square with 
M - 1 degrees of freedom. The approximation is more exact the larger the 
E, are, and it is usually satisfactory if they all exceed 5. If the rm’s are not 
the true proportions, the distribution of Q shifts toward larger 
test is 

1. If  Q =s x2( 1 -- a;  M - l), accept the specified proportions. 
2. If Q > x2( 1 - a ;  M - l), reject the specified proportions 

at the 100a% significance level; here x2(1 - a;  M -  I )  is the 
percentile of the chi-square distribution with M - 1 degrees of 

alues. So the 

100( 1 - a)] th  
reedom. This 

is the chi-square test of fit for the specified (multinomial) distribution. 
If  Q is statistically significant, locate the largest chi-square contributions 

( Y ,  - n r m ) ’ / ( n r m ) ;  these correspond to the hypothetical r,,, that differ 
most from the corresponding observed proportions Y,, / n .  

Transformer example. Table 3.1 shows data on distribution trans- 
formers. Each of the K =10 lines of data corresponds to a group of 
transformers installed in a particular year. A simple model for such trans- 
former life has the geometric probability rVJ =0.01166(0.98834)”J-1 for 
failure in year m = 1,2,. . . , M - 1 and survival probability r, =0.98834M- ’ 
for survival beyond year M - 1. The following tests whether this model fits 
the data on the n =652 units of group 8. Table 3.2 shows the calculation of 
Q =25.83>20.09= x2(0.99;9- 1). So the simple model is rejected at the 1% 
significance level (hghly statistically significant rejection). The chi-square 
contributions show that years 2 and 6 have unusually high numbers of 
failures. The data are from Albrecht and Campbell (1972). 

Comparison of K Multinomial Samples 

The following hypothesis test compares K multinomial samples for 
equality of corresponding category proportions. Suppose population k has 
A4 true category proportions rh,,. . ., rhM, where k = 1,. . ., K .  The equality 

Test. 
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Table 3.1. Yearly Numbers of Failed Distribution Transformers 
Installed Year in Service 

Group Number 2 _2. 2 2 _I 3 _I_ 3 2 1_(1 
10 422 9 5 4 6 2 3 5 7 5 3  

9 5 4 1  10  16 24 2 1  1 9  5 2 1  17 17 

8 652 6 1 7  10 5 8 16 8 8 

7 1139 1 18 1 6  9 1 6  11 5 

6 1608 0 15  1 2  1 5  19 1 2  

5 1680 9 3 1  1 9  1 5  12 

4 1404 5 8 1  33 22 

3 2427 65 63 4 1  

2 3341 3 24 

1 2265 22 

hypothesis is T , ~  = . . . = nKm for all m = 1 , .  . . , M .  The alternative is some 
n,, # T T ~ , , , .  Also, suppose the sample from population k contains 
Y k , , . . . ,  Y,, units in the M categories and n k  = Y,, + . .  . + Y , ,  units. 
Calculate the total number of observations n = n ,  + . . . + n K  and the 
observed pooled proportions pm =( Ylnl + . . . + Y K , ) / n .  The test statistic is 

where n,pnl estimates the expectation of Y,,,,,. If  the equality hypothesis is 

Table 3.2. Test Statistic Calculation 
m 2 

Year vm E =nn ym (Ym-Em) /Em 

1 0.01166 7.60 6 0.34 

2 0.01152 7 . 5 1  1 7  1 1 . 9 9  

3 0.01139 7.43 10 0 . 8 9  

4 0.01126 7 .34  5 0.75 

5 0.01113 7.25 8 0.08 

6 0.01100 7 . 1 7  1 6  10 .87  

7 0.01087 7.09 8 0 .12  

8 0.01074 7 .00  8 0.14 

>8 0.91044 593.61 574 0.65 

m m  - ~ - -  

n = 652 25.83 = Q 
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true, the distribution of Q is approximately chi square with v =( M - 1)(K 
- 1) degrees of freedom. The approximation is more exact the larger the 
n k  p,, are, and it is usually satisfactory if they all exceed 5. If the alternative 
is true, Q tends to have larger values. So the test is 

1. 
2. 

at the 100aS significance level; here x2(1 - a ;  v )  is the [loo( 1 - a)]th 
percentile of the chi-square distribution with v =( M - 1)( K - 1)  degrees of 
freedom. Q is called the chi-square statistic for a two-way contingency table 
analysis. There are many computer programs for the contingency table 
calculations above. 

If Q is statistically significant, locate the largest chi-square contributions 
(Y,,, - nkp, , )2 / (nkpm) ;  each corresponds to a pknl  that differs much from 
its corresponding proportions in the other populations. Plots of the p k m  and 
corresponding confidence limits can help one spot differences. 

This test can also be used to compare K distributions for equality. One 
divides the range of the data into M intervals. Then Y,,, is the number of 
observations of sample k falling into interval m,  and T , ~ ,  is the proportion 
of distribution k in interval m. This test makes no assumption about the 
form of the distributions. The following example can be regarded as such a 
test. 

For the top K = 5 groups of Table 3.1, Table 3.3 
shows the numbers of failures in the first M -  1 = 6  years in service and the 
numbers of survivors. Figure 3.1 shows computer output for a contingency 
table test for equality of the life distributions of the five groups. The test 
statistic is Q = 174.247>51.18= x2[0.999;(5- 1)(7- 1)) This indicates that 
the five life distributions differ very highly significantly. Examination of the 
(large) chi-square contributions indicates that group 2 has higher propor- 
tions failing than the other groups, attributed to poorer quality that year. In 
a preventive replacement program, group 2 would be replaced first. 

If Q < x'( 1 - a ;  v), accept the equality hypothesis. 
I f  Q > x2( 1 - a;  v), reject the equality hypothesis 

Transformer example. 

Table 3.3. Contingency Table Data on Distribution Transformers 
I n s t a l l e d  Year i n  S e r v i c e  

Group Number 2 2 2 3 2 2 
10 422 9 5 4 6 2 3 393 

9 541  1 0  1 6  24 21  1 9  5 446 

a 652 6 1 7  1 0  5 8 16  590 

7 1139 1 18 1 6  9 1 6  11 1068 

6 1608 0 1 5  1 2  1 5  1 9  1 2  1535 



* CONTINGENCY TABLE 

GROUP YEAR 

GROUPX YEARl 
GROUPX YEAR2 
GROUPX YEAR3 
GROUPX YEAR4 
GROUPX YEAR5 
GROUPX YEAR6 
GROUPX YEAR7 

GROUP9 YEARl 
GROUP9 YEAR2 
GROUP9 YEAR3 
GROUP9 YEAR4 
GROUP9 YEAR5 
GROUP9 YEAR6 
GROUP9 YEAH7 

GROUP8 YEARl 
GROUP8 YEAR2 
GROUP6 YEAR3 
GROUP8 YEAR4 
GROUP8 YEARS 
GROUP8 YEAR6 
GROUP8 YEAR7 

GROUP7 YEARl 
GROUP7 YEAR2 
GROUP7 YEAR3 
GROUP7 YEAR4 
GROUP7 YEAR5 
GROUP7 YEAR6 
GROUP7 YtAR7 

GROUP6 YEARl 
GROUP6 YEAR2 
GROUP6 YEAR3 
GROUP6 YEAR4 
GROUP6 YEAR5 
GROUP6 YEAR6 
GROUP6 YEAR7 

T,OTAL 

9 
5 
4 
6 
2 
3 

393 

1 0  
16 
2 4  
2 1  
1 9  

5 
4 4 6  

6 
1 7  
10 

5 
8 

16 
5 9 0  

1 
1 8  
1 6  

9 
16 
11 

l o 6 8  

0 
15 
12 
15 
1 9  
12 

1535 

4362 

2.515 
6.869 
6.385 
5.418 
6.192 
4.547 

390.074 

3.225 
8.806 
8.186 
6.945 
7.938 
5.829 

500.072 

3.886 
10.613 

9.865 
8 . 3 7 0  

7.025 
602 - 6 7 4  

6.789 

17.234 
14.623 
16.712 

1052.831 

9.585 
26.173 
24.330 

23.593 
17.326 

1486.349 

9.566 

18.539 

12.273 

20.644 

4362.000 

CHI -50  
CONTRIB 

16.718 
0.508 
0.891 
0.063 
2.838 
0.526 
0.022 

14.236 
5.877 

30  552 
28.440 
15.417 

0.118 
5.847 

1.150 
3 . 844 
0.002 
1.357 
0.256 

11 0465 
0 267 

4.936 
0.016 
0.088 
2.162 
0.030 
0.132 
0.219 

9.585 
4.770 
6.249 
1.543 
0.894 
1.637 
1.592 

174.247 

* THE CHI-SQUARE > T A T I S T I C  T O  TEST THAT EACH GROUP 
HAS THE SAME PROPORTION I N  €ACH YEAR CATEGORY 
HAS THE VALUE 174.2473 THIS STATISTIC HAS 2 4  
DEGREES OF FREEDOM. 

THE PROBABILITY OF EXCEEDIYG THIS CHI-SQUARE 
VALUE HY CHANCE ALONE I F  THERE ARE NO 
TRUE LFFECTS IS 0. PER CENT 

Figure 3 1. Conlingench table calculation, for trdn\former dald 

451 



458 COMPARISONS (HYPOTHESIS TESTS) FOR COMPLETE DATA 

Sample size. Cohen (1977) explains how to choose sample sizes when 
comparing multinomial samples. 

Pooled Estimate of Multinomial Proportions 

The following describes a pooled estimate of a common multinomial pro- 
portion, its variance, and confidence limits. 

For k = 1 , .  . . , K ,  suppose there are Ykm observations in cate- 
gory m in a sample of nk units. The pooled estimate of the common 
proportion n, in category m is 

Estimate. 

PO, = Yni / n  3 (3 .3)  

where Y, = Y,, ,  -t . . . + YKm is the total number of units in the category, 
and n = 1 1 ,  + . . . + n K  is the total number of sample units. So p ,  is the 
pooled sample proportion. I t  is an unbiased estimator for nnl, and 

Var( pni 1 = nm( 1 - n m  ) / n .  (3.4) 

One uses the observed total number Y, of category UP;?? in n sample 
units to calculate (1) binomial confidence limits for 7rm f '  section 3 of 
Chapter 6 and ( 2 )  binomial prediction limits (3.16) of Chp te r  6 for the 
number of category units in a future sample. 

Before using pnl ,  one should check that the sample proportions Y x n l / n x  
do not differ significantly. 

Transformer example. For the data in Table 3.1, the pooled estimate of 
the proportion failing in year 7 is p ,  =(5+21+8+5)/(422+541+652+ 
1 139) = 0.0 14. The four proportions should first be checked for equality. 

Other Methods for Multinomial Data 

For other methods for multinomial data, consult Finney (1968), Fleiss 
( 1973), Maxwell (1961), Plackett (1974). Patil and Joshi (1968), and Johnson 
and Kotz (1969). Such methods 

1. Fit equations that express a multinomial proportion as a function of 
numerical or qualitative variables. 
2. Analyze three- and higher-way contingency tables. 
3. Analyze contingency tables with missing data. 

Bishop, Feinberg, and Holland (1975) give theory and analyses for such 
contingency table data by means of log-linear models. Olivier and Neff 
(1976) document the LOGLIN program for such analyses. 
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4. COMPARISON OF EXPONENTIAL SAMPLES 

This section presents methods for comparing samples from exponential 
distributions. The methods include graphical and analytic comparison of 

1. A sample with a specified mean (demonstration testing). 
2. Two samples. 
3. K samples. 

The section also explains how to pool samples to estimate a common 
exponential mean. These methods are not robust; that is, they are valid only 
if the distributions are exponential, which needs checking with data plots. 

For the exponential distribution, one compares only the means. If the 
means of exponential distributions are equal, then percentiles, reliabilities, 
failure rates, and other quantities are equal. 

The analytic methods below are exact for Type I1 censored data, that is, 
failure censored data and therefore complete and singly censored data. The 
examples involve complete data. The methods are approximate for Type I 
censored data, that is, time censored data; Chapter 12 gives other methods 
for such data. The methods for exponential data are closely related to those 
for Poisson data; many formulas are similar, differing only in the degrees of 
freedom of chi-square statistics. 

The analytic methods below are valid only for samples from an exponen- 
tial distribution. So this should be checked, say, with probability or hazard 
plots. The exponential distribution is often wrongly assumed to apply to 
products. 

Comparison of an Exponential Mean with a Specified Value 

The following describes three ways to compare a sample mean with a 
specified value &: ( 1 )  plots, (2) confidence intervals, and (3) demonstration 
tests. 

Plots. A sample from an exponential distribution can be graphically 
compared with a specified mean. Plot a complete or singly censored sample 
on exponential or Weibull probability paper; plot a multiply censored 
sample on exponential or Weibull hazard paper. Weibull paper displays the 
lower tail of the sample better. Fit a straight line for an exponential 
distribution to the data, and compare the graphical estimate of the mean 
with the specified mean. This method can be used to compare reliabilities or 
percentiles. This method is subjective, but i t  reveals peculiarities in the data. 
and i t  allows one to assess whether the exponential distribution adequately 
fits the data. 
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Confidence interval. From the sample, calculate a lOOyS confidence 
interval for the true mean 6' from (1.8) of Chapter 8. If the interval encloses 
the specified do, then the sample is consistent with 0, at the 1OOy% 
confidence level. If the interval does not enclose O,, then the sample differs 
from S, at the 100( 1 - y ) %  significance level. Such an interval may be one or 
two sided. The interval length also indicates how accurate the estimate of 6' 

A reliability demonstration test for equipment usu- 
ally requires that a specified mean 0, (or failure rate A , )  be demonstrated 
with 100y% confidence. This means that the equipment passes the test if the 
observed lower 1OOy% confidence limit for the true 6' is above 0,. 
Otherwise, the equipment fails. Equivalently, this means that the total 
running time T summed over all tests units before the ruth failure occurs 
(Type I1 censoring) must exceed To. The values of r, and To are chosen so 
that the probability of passing the test when 6' = 6, is 

IS. 

Demonstration test. 

Po,( T 2 To} = 1 - y . (4.1) 

This low probability I - y is called the consumer's risk. So the true mean 6' 
must be above 6,) i f  the equipment is to have a high probability of passing 
the test. 100yS is the confidence level of the demonstration test. 

The probability 

of passing the test as a function of 6' is called the operating characteristic 
(OC) function of the test with r, and To. The distribution of 2778 is chi 
square with 2r, degrees of freedom. So 

P ( B ) =  1 - (4.3) 

in terms of the chi-square cumulative distribution function. The true value 6' 
must be above 0, i f  the equipment is to pass with high probability. If  B = 0' 
is the producer's true mean, 1 - P( O ' ) =  f2,,(27;,/6") is called the producer's 
risk and is the probability the equipment fails the test. 

Any number n of units may be run in such a test. Of course, the larger n 
is, the sooner the r, failures and total time T, are accumulated. 

Capacitor demonstration example. A demonstration test of a high- 
reliability capacitor specified that a mean life of 0, = 10' hours be dem- 
onstrated with 60% confidence. The minimum test time T results if  r, = 1.  
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Then the required test time is the solution of (4.l), that is, of 

l-0.60= P , , R { T > T , )  =exp(-T,/IO*). 

Here To =9.163X lo7 hours. Tlus time was accumulated by running 9163 
capacitors each for 10,000 hours. (Another number of capacitors could be 
run a different duration to accumulate the same time.) The corresponding 
OC function is 

To pass the test with 90% probability, such capacitors need a true mean 8’ 
that satisfies 

0.90=exp( -9.163 X lO’/e’). 

That is, 8’=8.70X 10’ hours, which is 8.70 times 4. The probability of 
passing a demonstration requirement when 0 > 6, increases if one uses a test 
that allows more failures rd in a greater accumulated time Ti. Then rd and Td 
are still chosen to meet the demonstration requirement Peo(T> Ti}  = 1 - y. 
Of course, such a test requires more test time and expense. For example. the 
capacitor test with rc; = 2  requires Ti = 20.2 X lo7 hours; this is over twice the 
time for r,) = 1. This example is another way of viewing the Poisson 
demonstration test in Section 1. 

Standard exponential demonstration plans. Such plans and their OC 
curves are given by Schilling ( 198 1) and the following references, which may 
be bought from the U.S. Government Printing Office, Washington, DC 
20402. 

MIL-HDBK-IOR. “Sampling Procedures and Tables for Life and Reliability Testing,” 29 April 
I Y6O. 

MIL-STD-690B, “Failure Rate Sampling Plans and Procedures.” I7 April 1 96X. 

MIL-STD-78 IC. “Reliability Teats: Exponential Distribution.” I 2  August 1979. 

Comparison of Two Exponential Means 

The following describes two ways to compare the means of two exponential 
samples: ( I )  plots and ( 2 )  confidence intervals. 

Samples from two exponential distributions can be compared 
graphically. Plot complete or singly censored data on exponential or Weibull 
probability paper; plot multiply censored data on exponential or Weibull 
hazard paper. Plot both samples on the same sheet of paper for easy 

Plots. 
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comparison. Subjectively compare the plotted samples to assess whether the 
two distributions are equal. This comparison may be aided by fitting a 
straight line for each exponential distribution. Also, plotted confidence 
limits for the percentiles of each distribution help. The plots also help one to 
assess how well the exponential distribution fits the data, and they reveal 
peculiar observations. 

Insulating fluid example. Table 4.1 shows 60 times to breakdown in 
minutes of an insulating fluid subjected to high voltage stress. The times in 
their observed order are divided into six groups. (The use of six groups is 
arbitrary.) If the experiment was under control, the mean time should be the 
same for each group. For comparison, the first two groups are plotted on 
Weibull probability paper in Figure 4.1. The figure also shows the fitted 
exponential distributions and their 90% confidence limits. The two groups 
appear to be similar. 

Confidence interval. For k = 1.2,  suppose that sample k has Type I1 
(failure) censoring, rk failures, and a total running time T, summed over all 
n k  sample units. Then the estimate of the exponential mean 6,  of population 
k is dk = T, / r , .  A two-sided 1OOy% confidence interval for the ratio 

P = 8 ,  /6*  
has limits 

Table 4.1. Times to Insulating Fluid Breakdown 
Group - 

1 

1.89 
4.03 
1.54 

.31 

.66 
1 .70  
2 . 1 7  
1 .82 
9.99 
2.24 

- 2 

1.30 
2.75 
. 00 

2 . 1 7  
.66 
.55 
.18 

10.60 
1.63 

. 7 1  

- 4 - 3 

1.99 1 . 1 7  
.64 3.87 

2.15 , 2.80 
1.08 .70 
2.57 3.82 

.93 .02 
4.75 .50 

.82 3.72 
2.06 .06 

.49 3.57 

- 5 

8.11 
3.17 
5.55 

.80 

.20 
1.13 
6.63 
1.08 
2.44 

.78 

- 6 

2.12 
3.97 
1.56 

- 

1 

1. 
8.71 
2.10 
7.21 
3.83 
5.13 

- - - I_ - - 
Tk: 26.35 20.55 17.48 20.23 29.89 37.46 

(4.4) 

(4.5) 

6k: 2.635 2.055 1.748 2.023 2.989 3.746 
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SHAPE PARAMETER 
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Figure 4.1. Wetbull plot of insulating fluid groups 1 and 2 

where F [ (  1 + y)/2; a, b]  is the [loo( 1 + y)/2]th percentile of the F -  
distribution with a degrees of freedom in the numerator and b in the 
denominator. If these limits do  not enclose 1. 8, and d2 differ statistically 
significantly at the [loo( 1 - y ) ] %  significance level. That is, there is convinc- 
ing evidence that and 8, differ. The limits are approximate for time 
censored data. 

A one-sided IOOy% confidence limit comes from the corresponding 
two-sided limit above. Then y replaces ( 1  + y)/2. 

For the data in Table 4.1, the mean time 
should be the same for each group. Each pair of group means can be 
compared with the confidence interval (4.5). For example, two-sided 95% 
confidence limits for 8 , / 6 ,  ( r ,  = rz = 10) are 

Insulating fluid example. 

pI,=(2.635/2.055)/F[( 1 +0.95)/2;2.10,2.10] 

=(2.635/2.055)/2.46=0.52 1 ,  

Z , , 2  = (2.635/2.055). 2.46= 3.15. 
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These limits enclose 1. So the two groups do not diifer significantly at the 
5% level. This is consistent with the hypothesis that the two means are 
equal. To be statistically significant at the 5% level, the ratio of two such 
sample means would have to fall outside the range F(0.975; 20,20) = 2.46 to 
1 /F(0.975; 20,20) = 0.407. 

Comparison of K Exponential Means 

The following describes three methods for comparing the means of K 
exponential samples: (1)  plots, (2) test of homogeneity, and (3) simultaneous 
comparison of all pairs of means. 

Plots. Samples from K exponential distributions can be compared 
graphically. If the data are complete or singly censored, plot each sample on 
a separate exponential or Weibull probability paper. If the data are multiply 
censored, plot each sample on a separate exponential or Weibull hazard 
paper. Subjectively compare the plots to assess whether the distributions 
differ. This comparison may be aided by fitting a straight line to each 
sample. Also, plotted confidence limits for the percentiles of each distribu- 
tion help. Stack the plots and hold them up to the light to compare them. 
The plots also provide a check on the validity of the data and exponential 
distribution. 

Another plot is useful for comparing complete and singly censored 
samples. Tabulate samples side by side, as shown in Figure 4.2. Plot the 

Figure 4.2. Insulating fluid data by group: estimates and 90% confidence limits. 
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estimates and confidence limits for each mean to aid the comparison. For 
multiply censored samples, plot and compare just the estimates and confi- 
dence limits for the means. 

Suppose each sample estimate of the mean is based on the same number r 
of failures. Then the estimates should plot as a straight line on probability 
paper for a chi-square distribution with 2 r  degrees of freedom. Departures 
from a straight line indicate unequal population means. The numbers of 
failures need to be equal, not the sample sizes. 

Insulating fluid example. Table 4.1 shows 60 times to breakdown of an 
insulating fluid in their observed order. The following checks whether the 
mean time to breakdown remained stabile over the experiment. The times 
are divided into six groups for comparison. The six groups are plotted side 
by side in Figure 4.2. The figure also shows the estimates and 90% 
confidence limits for the means. The means of the six groups appear to be 
comparable. The data were also divided into 12 groups of five times to 
breakdown. The 12 means are plotted on chi-square probability paper for 
10 degrees of freedom in Figure 4.3. The slight curvature of the plot may 
indicate that the means differ significantly. A formal test of equality is 
needed. 

60 70 80 90 95 97 

CUMULATIVE PERCENTAGE 
Chi-square plot of 12 means. Figure 4.3. 
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Test of homogeneity. For k = 1 , .  . . , K ,  suppose that sample k has Type 
I1 (failure) censoring, rk failures, and a total running time Tk summed over 
all n k  sample units. Then the estimate of the mean of exponential popula- 
tion k is gk = T k / r k .  

The following tests the homogeneity (equality) hypothesis 8 ,  = 6, = . . - = 
8, against the alternative that some 8, # ek,. First calculate r = r ,  + . . . + r K ,  
T = T,  + . . + TK* and 4 = T/r. The test statistic is 

Q =2[ rln( 8 )- r,ln( 8,) - . . . - r K h (  6 , ) ] / C ,  (4.6) 

where 
K 

C = l  + [6( K - 1)I-I (4.7) 

If  the equality hypothesis is true, the distribution of Q is approximately chi 
square with K - 1 degrees of freedom. If the alternative is true, Q tends to 
have larger values. So the test is 

1. If Q G x2( 1 -- a; K - l), accept the equality hypothesis. 
2. If Q > x2( 1 - a;  K - l), reject the equality hypothesis at the 100a% 
significance level. 

Here x2( 1 - a; K - 1) is the [ 100( 1 - a)]th percentile of the chi-square 
distribution with K - 1 degrees of freedom. The chi-square approximation is 
more precise the larger the rk are. It is usually satisfactory if all rk a5. This 
test is Bartlett's test, and it is also used for time censored data. 

If Q is statistically significant, examine the dk and their confidence limits 
to see how they differ with a figure like Figure 4.2. Note that Bartlett's test 
is sensitive to departures from an exponential distribution and can then give 
misleading results. 

Insulating fluid example. Table 4.1 shows 60 times to breakdown of an 
insulating fluid. The test above checks whether the mean time to breakdown 
remained constant over the experiment. For this purpose, the 60 times were 
divided into K = 6  groups with rk = n, = 10 observations in the order that 
they were observed. Table 4.1 shows the six sample 6 k .  The calculation of Q 
is 

r = l O +  . . .  +10=60, T=26.35+ . . .  $37.46~151.96, 

d =  151.96/60=2.5326 

C =  1 + [6(6- 1)]- ' ($  + * .  . +h-&)= 1.017, 

Q=2[60ln(2.5326)- lOln(2.635)- . . .  - 101n(3.746)]/1.017=4.10. 



4. COMPARISON OF EXPONENTIAL SAMPLES 467 

Since Q =4.10<9.24=x2(0.90;6- l),  the six groups do not differ signifi- 
cantly at the 10% level. This is consistent with a constant true mean over 
time. Here all r, = n k  = 10; in general, the rk and t i k  may all differ. 

When there are K means, there are K (  K - 1)/2 
pairs of means to compare. Simultaneous lOOy% confidence intervals 
enclose all ratios ek/tIk,, with probability y. Then each interval encloses its 
true ratio with a probability higher than y. If all intervals enclose 1, there 
are no significant differences among the means at the overall [loo( 1 - y )]% 
significance level. Approximate and exact simultaneous confidence limits 
follow. 

Figure 4.4 displays all pairs of the six sample means of the insulating 
fluid on log-log paper. The means are marked on both scales. Perpendicular 
lines through the means intersect at the dots. The vertical distance of a dot 
from the 45" line is the log of the ratio of the corresponding two means. So 
the dots furthest from the 45" line correspond to the largest ratios. 

Simultaneous two-sided approximate 
lOOy W confidence limits for all ratios of pairs of means ( k ,  k '=  1,. . . , K )  
are 

( e k / e k , ) / F ( y ~ ; 2 r ~ , 2 r ~ , ) ~ e ~ / e ~ . ~ ( e ~ / e ~ . ) ~ ( y ~ ; 2 r ~ , , 2 ~ k ) ,  (4.8) 

where y'= 1 - (  1 - y ) K  -'( K - I ) - '  and F( y ' ;  a,  h )  is the 100y'th F per- 
centile with a degrees of freedom in the numerator and h in the denomina- 
tor. These are the limits (4.5) for a single ratio, but y' is higher. One-sided 

All pairwise comparisons. 

Approximate simultaneous limits. 

Figure 4.4. Differences of all pairs of sample mean5 
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simultaneous limits are given by (4.8); then y ’= 1 -2(1- y ) K  -‘(l-  K ) - ’ .  
These intervals can be discouragingly wide. These limits enclose all the true 
ratios with probability y or higher. The excess probability is small when K is 
small and y is large. 

Insulating fluid example. For the K =6 groups of data in Table 4.1, the 
simultaneous approximate 95% confidence limits are calculated as follows. 
All rk = 10, y’ = 1 - (1 - 0.95)6 -‘(6 - 1)-’ = 0.99833 (two-sided), and 
F(0.99833; 20,20) = 3.97. For example, the limits for 8, /S, are (2.635 
/2.055)/3.97=0.32 and (2.635/2.055)3.97=5.1. All 6(6- 1)/2= 15 inter- 
vals enclose 1. So the six means do not differ significantly at the 5% 
significance level. Figure 4.4 shows a common line for the simultaneous 95% 
limit, F(0.99833;20,20)=3.97, for all such ratios; all ratios are below i t  and 
are therefore not significant. 

Exact simultaneous limits. If all ‘I,  = r, then simultaneous two-sided 
exact lOOy% confidence limits for all ratios of pairs of means ( k , k ’ =  
1, ..., K )  are 

where Fma( y ;  2r, K )  is the lOOy th percentile of the maximum F statistic 
among K chi-square statistics, each with 2 r  degrees of freedom. It is 
tabulated by Pearson and Hartley (1954) and by Owen (1962). If all 
K (  K - 1)/2 intervals enclose 1,  then there are no significant differences 
among the K means at the [ 100( 1 - y ) ] %  significance level. Equivalently, 
calculate just the largest ratio. If it is less than Fm,(y;2r, K ) ,  then the K 
means do not differ significantly at the [ 100( 1 - y ) ] %  level. This check for 
equality performs much like the above test of homogeneity. If the r, differ 
slightly, use some average r to get approximate limits. Such intervals can be 
quite wide. 

Insulating fluid example. For the K =6 groups of data in Table 4.1, the 
siniultaneous exact 95% confidence limits are calculated as follows. All 
rh = 10, and Fm,(0.95; 20,6) = 3.76. Then, for example, the limits for 8’ /6 ,  
are (2.635/2.055)/3.76 =0.341 and (2.635/2.055)3.76 =4.82. All 15 such 
intervals enclose 1, since the greatest ratio 3.746/1.748=2.14 is less than 
3.76. Figure 4.4 shows lines for ratios of 3.76 and 3.97. They are the exact 
and approximate simultaneous upper 95% limits for all ratios. The other line 
(ratio of 2.46) is the upper 95% limit for a single ratio. So there are no 
significant differences among the six means at the 5% significance level, and 
the experiment appears stabile over time. 
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Pooled Estimate of an Exponential Mean 

The following describes a pooled estimate of a common exponential mean 
from K samples, its variance, and confidence limits. For k = 1,. .., K ,  
suppose that sample k has Type I1 (failure) censoring, rk failures, and a total 
running time T, summed over all n k  sample units. 

Estimate. The pooled estimate of the common mean 8 is 

8= T/r,  (4.10) 

where T = T,  + . . . + TK and r = r ,  + . . . + r,. This is the total running 
time divided by the total number of failures, the usual estimate for an 
exponential mean. Then 2r8/8 has a ch-square distribution with 2r  degrees 
of freedom. 8 is the maximum likelihood estimator and also the best linear 
unbiased estimator for 8. The variance of this unbiased estimator is 

Var( 8 ) = 0 2 / r .  (4.1 1) 

Calculate confidence limits for 0 from (1.10) of Chapter 7 and prediction 
limits from Section 4 of Chapter 6 from a total running time T with r 
failures. Before using 8, check that the K means do not differ significantly. 
The previous subsection presents such checks. Also, combine the samples 
and plot the pooled sample on probability or hazard paper. The estimate is 
also used with time censored data. 

For the data in Table 4.2, the total running 
time for the six groups is T ~ 2 6 . 3 5  + . . . + 37.46 = 15 1.96 minutes, and the 
total number of failures is r = 10 + . . . + 10 = 60. The pooled estimate of the 
common exponential mean is 8= 151.96/60=2.533 minutes. The 95% con- 
fidence limits for 8 Are 8 =2.60-2.533/x2(0.975,2.60)=2-60.2.533/152.2 
= 2.00 and 6=2.60~2.<33/x2(0.025,2~60)= 2.60.2.533/91.57= 3.32. The 
six means passed the previous tests for equality. So the pooled estimate and 
confidence limits appear satisfactory. 

Insulating fluid example. 

5. COMPARISON OF NORMAL AND LOGNORMAL SAMPLES 

This section presents methods for comparing independent samples from 
(log) normal distributions. The methods include graphical and analytic 
comparison of 

1. 
2. Two samples. 
3. K samples. 

A sample with a specified distribution (demonstration testing). 
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The methods compare means, standard deviations (or, equivalently, vari- 
ances), percentiles, reliabilities, and other quantities. This section also 
explains how to pool samples to estimate a common mean or standard 
deviation. Methods for comparing means are robust to nonnormal distribu- 
tions. Methods for comparing other quantities are sensitive to nonnormal 
distributions. 

Needed background for tlus section includes ( 1) the basic properties of 
the normal and lognormal distributions (Chapter 2) and (2) the basic 
statistical methods for a single (log) normal distribution (Chapter 6). 

The analytic methods below apply only to complete data, which consist 
entirely of failure times. Chapters 11 and 12 give analytic methods for singly 
and multiply censored data, which contain running times on unfailed units. 
(The graphical methods apply to complete and singly and multiply censored 
data.) The methods in this section assume that each sample is from a (log) 
normal distribution. So this should first be checked with, say, probability 
(Chapter 3) or hazard (Chapter 4) plots. In practice, combined graphical 
and analytic comparisons are most useful. 

The analytic methods apply to both normal and lognormal data. How- 
ever, one works with the logs of lognormal data. These methods appear in 
books on analysis of variance and experimental design; for example, Bartree 
(1968), Mendenhall (1968), Scheffe (1959), and Box, Hunter, and Hunter 
(1978). 

Motor insulations example. The following example illustrates many of 
the methods. Table 5.1 shows life test data on specimens of three types of 
motor insulation tested at three temperatures (200, 225, 25OOC). The test 
purpose was to find the longest-lived insulation at 200°C. Also, in use. the 
motors sometimes run up to 25OOC; so the chosen insulation must compare 
well at 225 and 250°C. Engineering theory for such electrical insulation says 
that life has a lognormal distribution, and the log standard deviation of an 
insulation is the same at all temperatures. Periodic inspection of specimens 
revealed failures; Table 5.1 shows the days between inspections at each 
temperature. A tabulated failure time is the midpoint of the inspection 
period when the failure occurred. Such rounding slightly affects the results 
of the analyses below. 

5.1. Comparison of a (Log) Normal Sample with a Specified Distribution 

Often one wants to compare a sample standard deviation, mean, percentile, 
reliability, etc., with a specified value to assess whether a product is 
satisfactory. This section describes three ways to compare a complete 
sample with a specified (log) normal distribution: ( 1 )  plots, ( 2 )  confidence 
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Table 5.1. 
Specimens of Three Motor Insulations 

Failure Times (Hours) of 

t n s y l a ; i o n  

T e m p . L - -  2 3 

200’ 1176 2520 3528 
1 4  days 1512 2856 3528 

1512 3192 3528 
1512 3192 
3528 3528 

225” 624 816 720 
4 days 624 912 1296 

624 1296 1488 
816 1392 

1296 1488 

250” 204 300 252 
1 day 228 324 300 

252 372 324 
300 372 
324 444 

intervals, and (3) demonstration (hypothesis) tests. In practical data analy- 
sis, a combination of plots and confidence limits is often most useful. 
Hypothesis tests are primarily useful for demonstration tests and are often 
specified in contracts. 

Plots. Plot the sample on (log) normal probability or hazard paper, and 
draw a straight line through the data. Use the line to estimate the quantity 
of interest, and compare the estimate with the specified value. If a line fitted 
to the specified value passes “reasonably” through the data, then the data 
are consistent with that value. This method applies to standard deviations, 
means, reliabilities, percentiles, and other quantities. Chapter 3 describes 
such plots, and Figure 5.1 shows such plots. 

From the sample, calculate a lOOy % confidence 
interval for the quantity of interest 8, as described in Chapters 6, 7, and 8. If 
the interval encloses the specified value O,, then the sample is consistent 
with 8, at the lOOy% confidence level. Otherwise, the sample differs 
significantly from 8, at the [loo( 1 - y )]% significance level. Such an interval 
may be one or two sided. The interval length indicates how accurate the 
estimate of 0 is. Chapter 6 gives confidence intervals for a mean (5.1 I ) ,  
standard deviation(5.6), percentile (5.16), and reliability (5.13). 

A reliability demonstration test of equipment usu- 
ally requires that the producer demonstrate better than a specified value 8, 

Confidence intervals. 

Demonstration tests. 



Figure 5.1. Lognormal plots of three insulation systems. 
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of a distribution parameter with IOOy% confidence. This means that the 
equipment passes the test if the observed lower IOOy% confidence limit 12 
for the true 8 is above 8,. Otherwise, the equipment fails the test. For a (log) 
normal life distribution, the parameter 8 is usually the mean, a percentile, or 
reliability. An upper limit would be used for a fraction failing. 

If the true 8 = O,, then the probability of passing the test is 

Pe,(e 2 O0} = 1 - y. (5.1) 

This low,probability 1 - y is called the consumer’s risk. So the true value 8 
must be ,above 8, if the equipment is to pass with high probability. The 
probability 

of passing the test as a function of 8 is the test’s operating characteristic 
(OC) curve. P(8) depends on the sample size n, 8,, and y. If 8 = 8’ is the 
actual producer’s value, then 1 - P(8’)= Pe.(fj < 8,) is called the producer’s 
risk; it is the probability of the equipment failing the test. 

Such plans and their OC 
curves are presented by Schilling (1981) and the references below. Dem- 
onstration tests for a reliability are related to those for a distribution 
percentile. So one need only consider tests for reliability. In particular, a test 
that the reliability R(y,) at a given age yo exceeds R,,  is equivalent to the 
test that the percentile y ,  - R ,  exceeds yo. References for such reliability tests 
are 

Standard (log) normal demonstration plans. 

Bowker, A. H.. and Goode, H. P. (1962). Sumpling Inspecrron Vuriuhky. McGraw-Hill, New 
Y ork. 

Duncan, A. 1. (1965). Quulit~v Controland Indurtriul Srurisrits. Chapters 12 and 13, Richard D.  
Irwin. Inc.. Homewood, IL. 
MIL-STD-4 14, “Sampling Procedures and Tables for Inspection by Variables for Percent 
Defective,” 1 I June 1957. U.S. Government Printing Office, Washngton. DC 20402. 

MIL-STD-47IA. “Maintainability Demonstration.” 27 March 1973, U. S. Government 
Printing Office, Washington, DC 20402. 

For tests for the mean and standard deviation, see 

Duncan, A. J. (1965), Quulity Control and Indmtriol Srurrsrits, Chapter IS. &chard D. Irwin. 
Inc.. Homewood, IL. 
Natrella (1963). Cohen (1977). and Owen (1962). 

5.2. Pooled Estimates 

This section shows how to combine data from a number of complete 
samples to estimate a common true standard deviation or mean. Such a 
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pooled estimate is more precise than the individual sample estimates. Also, 
later analyses require a pooled estimate of the common true standard 
deviation. Before using a pooled estimate, first check that the samples do 
not differ significantly as described in Sections 5.3 and 5.4. 

Pooled estimate of a common variance (standard deviation). Many 
analyses involve a pooled estimate of a common variance o 2  from K 
independent samples. The following describes such an estimate, its variance, 
and confidence limits. For k = 1, ..., K ,  suppose that sample k has a 
variance S i  from (2.3) of Chapter 6 ,  with v k  degrees of freedom. 

The pooled estimate of a common variance u 2  is 

S 2  = ( Y I S ?  + . . . + Y , s ; ) / Y ,  (5.3) 

where vS2/02 has a chi-square distribution with 

Y = Y l +  . . ’  +v, (5.4) 

degrees of freedom. S 2  is an unbiased estimator for 0 2 ,  and its variance is 

Var( S2)  =204/v .  ( 5 . 5 )  

The pooled estimate of a common standard deviation u is 

( 5 . 6 )  

S is a biased estimator for u, and its variance for large Y is approximately 

Var(S)- 0 2 / ( 2 v ) .  

When the distribution means p I , . .  ., p, differ, it is wrong to pool all 
samples and treat the pooled sample as a single sample to estimate u2. Such 
a wrongly pooled estimator tends to overestimate u2. Use (5.3). To calculate 
confidence limits for o 2  or o ,  use S 2  and its degrees of freedom Y in (5.6) of 
Chapter 6. 

Motor insulations example. Table 5.2 shows log failure times of speci- 
mens of the three motor insulations at three temperatures. Theory for such 
an insulation says that life has a log normal distribution with the same 
standard deviation of log life at any temperature. For insulation 1, the 
sample standard deviations for the three temperatures are S,, = 0.1832, 
S,,, = 0.1384, and S,,, = 0.0829; these each have four degrees of freedom. 
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Table 5.2. 

Temp,. 

200" 

225" 

250" 

- 
'k 

200 
225' 
250" 

S 

200 
225" 
250" 

- 'k 
Degrees of 
freedom 

- 

Log Lives of Specimens of Three Insulations 

I n s u l a t i o n  

1 

3.0704 
3.1796 
3.1796 
3.1796 
3.5475 

2.7952 
2.7952 
2.7952 
2.9117 
3.1126 

2.3096 
2.3579 
2.4014 
2.4771 
2.5105 

3.23134 
2 .88198 
2.41130 

0.1832 
0.1384 
0.0829 

0.1408 

1 2  

2 

3.4014 
3.4558 
3.5041 
3 .5041 
3.5475 

2.9117 
2,9600 
3.1126 
3.1436 
3.1726 

2 .4771 
2.5105 
2.5705 
2.5705 
2.6474 

3.48258 
3.06010 
2.55520 

3 

3.5475 
3.5475 
3.5475 

2.8573 
3.1126 
3.1726 

2.4014 
2 .4771 
2.5105 

- 
Y 

Pooled  

3.54750 3.40093 
3.04750 2.98868 
2.46300 2.95606 

0 .0558 0 
0.1166 0 .1674 
0.0653 0 .0559 

0 .0836 0.1019 0.1132 

1 2  6 30 

So v=4+4+4=  12. The pooled estimate is S: =[4(0.1832)2 +4(0.1384)2 + 
4(0.0829)2]/12=(0.1408)2, it has Y = 12 degrees of freedom. The 95% confi- 
dence limits for u2 are (0.101)2 and (0.232)*. The three variances pass the 
later tests for equality. So the pooled estimate and confidence limits appear 
satisfactory. 

Pooled estimate of a common mean. Many analyses involve a pooled 
estimate of a common mean from K independent samples. The following 
describes such an estimate, its variance, and confidence limits. For k = 
I , . . . ,  K ,  suppose that sample k has a mean rk of n k  observations from a 
distribution with variance cri. That is, the populations may have different 
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variances. The pooled estimate of the common mean p is 

is the variance of $. fi  is an unbiased estimator for p.  To use $, one must 
know the u i  or use estimates of them, preferably from large samples. When 
the u i  differ, it is less accurate to pool all samples and to use the average of 
the pooled sample to estimate p. 

When the u i  have the same value u 2 ,  the pooled estimate is 

- 
F = ( n 1 K +  * * .  +n,F,)/(n,+ . * *  f n , ) ;  (5.9) 

- - 
does not involve u2, whch isjsually unknown. r is the average of all 

n = n ,  + . . . + n ,  observations. Yis an unbiased estimator for p ,  and 
- 

Var(Y)=u2/n.  (5.10) 

Confidence limits for a common mean. Suppose that S 2  (5.3) is a pooled 
estimate of the common u 2  and has v degrees of freedom (5.4). Then 
two-sided lOOy% confidence limits for p are 

where t [ (  1 + y)/2; v ]  is the [ 100( 1 + y)/2]th t percentile with v degrees of 
freedom. - 

Before using y or the confidence limits, check that the yk do not differ 
significantly. Sections 5.3 and 5.4 present such checks. 

Motor insulations example. A 'main analysis of the data in Table 5.2 is 
to compare the mean log life of the three insulations at 200". The three 
sample log means at 200" are TI =3.23134, 6 ~3.48258,  and < =3.54750. 
Suppose that the true log standard deviations of the three insulations are 
equal. Then, by (5.9), the pooled estimate of the common I v ~  mean is 

?= [ 5(3.23 134) + 5(3.48258) + 3(3.54750)] / 13 = 3.40093. 

The pooled estimate of the common log standard deviation is S =0.1132, 
which has 30 degrees of freedom. Two-sided 95% confidence limits for p are 

3.40093 t 2.042(0.1132/J 13) = 3.40 1 "0.064. 
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The three means do not pass the test for equality. So the pooled estimate 
and confidence limits are not appropriate. 

5.3. Comparison of Two (Log) Normal Samples 

T h s  section treats the comparison of two complete (log) normal samples by 
means of plots and confidence intervals. Such samples are compared with 
respect to standard deviations (variances) and means, and the methods 
extend to percentiles, reliabilities, and other quantities. 

GRAPHICAL COMPARISONS 

Plots. Samples from two (log) normal distributions can be compared 
graphically. Estimates of (log) standard deviations, percentiles, reliabilities, 
etc., are obtained graphcally as described in Chapter 3 and compared 
visually. Section 5.4, on the comparison of K samples, presents such plots. 
The following example illustrates a comparison of two samples. 

Motor insulations example. Table 5.1 shows times to failure of speci- 
mens of three types of insulations at three temperatures. The data are 
plotted on lognormal probability paper in Figure 5.1. A key question is 
“How do the insulations compare with respect to median life at 2OO0C?” 
The graphical estimate of this is 1700 hours for insulation 1 and 3000 hours 
for insulation 2. These medians differ appreciably compared to the scatter 
in the data. So the difference appears to be convincing. The medians of 
insulations 2 and 3 and of 3 and 1 can similarly be compared pairwise. Also, 
log standard deviations, percentiles, etc., can similarly be compared. 

COMPARISON OF TWO (LOG) NORMAL VARIANCES 

Confidence interval. ‘For k = 1,2, suppose that the variance S: of sample 
k has v A  degrees of freedom. A two-sided 1OOy% confidence interval for the 
ratio p = u:/u,‘ has limits 

(5.12) 

where F [ (  1 + y)/2; a,  b ]  is the [ 100( 1 + y)/2]th F percentile with a degrees 
of freedom in the numerator and b in the denominator. If these limits do 
not enclose 1, S: and S: differ statistically significantly at the 100( 1 - y ) W  
significance level, convincing evidence that u1 and u2 differ. v I  and v 2  are 
reversed in p and ji 

A one-siied lOOy% confidence limit comes from the corresponding 
two-sided limit above. Then y replaces ( 1  + y)/2. 



478 COMPARISONS (HYPOTHESIS TESTS) FOR COMPLETE DATA 

This confidence interval applies only to variances of (log) normal distri- 
butions. It may be quite inaccurate for variances of other distributions. 
Robust methods for comparing variances of nonnormal distributions appear 
in the literature, for example, in Scheffe (1959). 

Motor insulations example. Table 5.2 shows log failure times of speci- 
mens of three motor insulations at three temperatures. Later analyses 
assume that the insulations have the same true standard deviation of log life. 
The following compares (I, and (1,. S ,  =O. 1408 and S, =0.1019 respectively 
have 12 and 6 degrees of freedom. Two-sided 954% confidence limits for 
u:/u,’ are 

p = [ (0.1408)’ / ( O .  101 9)’] / F (  0.975 ; 12,6) = O  .36, 

f~ = [ (0.1408)’ / ( O .  10 19)’] - F(0.975 ; 6,12) = 7.1. 

These limits enclose 1; so the standard deviations do not differ statistically 
significantly. 

COMPARISON OF TWO (LOG) NORMAL MEANS 

The following confidence interval compares two (log) means p ,  and p2. I t  is 
exact when the population (log) standard deviations are equal, this assump- 
tion can be checked with the confidence interval (5.12). For k=1,2,  
suppose that sample k has n k  observations, a mean yk, and a variance S i  
with vk degrees of freedom. 

Copfidence interval. A two-sided IOOyS confidence interval for A =  
PI - 112 is 

4 = ( y ,  - 5) -  2 [ ( 1 +  y)/2; v]S[(l/n,)+(l/n,)]”’, 

A =( - y , ) +  t [ ( l +  y)/2; v]S[(l/n,)+(l/n,)]”’, 

(5.13) 

where t [ (  1 + y)/2; v ]  is the [ 100( 1 + y)/2]th t percentile with v = v I  + v2 
degrees of freedom, and S 2 = ( v I S ~ + v 2 S ~ ) / v  is the pooled variance. If 
these limits do not enclose 0, the means differ statistically significantly at 
the [ 100( 1 - y ) ] S  level. 

A one-sided l0OyS confidence limit comes from the corresponding 
two-sided limit above. Then y replaces (1 + y)/2. 

(5.13) is often a good approximate interval for a difference of means even 
if the parent distributions are not (log) normal. The approximation is better 
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i f  the distributions are “close” to normal, if the sample sizes are large, if 
n I = n 2 ,  and if y is not close to 1. 

Sometimes two distributions are normal, but their variances differ. In t h s  
case the comparison of two means is called the Behrens-Fisher problem. 
(5.13) is a good approximation if the population variances are close to 
equal, if the sample sizes are large, if n I = n2, and if y is not close to 1. 
Natrella (1963, Sec. 3-3.1.2) gives an improved approximate interval when 
variances are unequal. 

Motor insulations example. For the data in Table 5.2, a key question is, 
“How do the log means of the three insulations compare at 2OO0C?’ The 
following compares p ,  and p2. The comparison employs the two variance 
estimates based on data from all three temperatures. The pooled number of 
degrees of freedom is Y = 12+ 12= 24, and the pooled variance is S2 = 
[12(0.1408)2 + 12(0.0836)2]/24=(0.1 158)2. Two-sided 95% confidence limits 
for p1 - p 2  are 

A=(3.23134-3.48258)-t(0.975;24)0.1158(f+~)”2 = -0.408, 

A = - 0.25 124 + (2.042)O. 1 1 58(0.4)1’2 = -0.102 

These limits do not enclose 0; so the two log means differ significantly at 
the 51 level. Separate two-sided 95% limits for p 2  - p 3  are -0.205 and 
0.075; such limits for p 3  - p1 are 0.1 18 and 0.514. The intervals for the three 
differences indicate that pI is significantly below p 2  and p3,  which are 
comparable. Section 5.4 describes simultaneous confidence limits for all 
three differences, in contrast to the separate limits given here. 

Sample size. Cohen (1977) and Mace (1964) explain how to choose the 
sizes of the two samples when comparing two means. 

COMPARISON OF PERCENTILES, RELIABILIIIES, AND OTHER QUANTITIES 

I f  (log) normal distributions have the same true (log) standard deviation, 
then percentiles, reliabilities, and other quantities are equal when the (log) 
means are equal. Then one need only compare means with the exact 
methods above. 

If the true (log) standard deviations differ, then such quantities cannot be 
compared with exact methods. Maximum likelihood methods provide ap- 
proximate comparisons and also apply to censored data; Chapter 12 de- 
scribes such methods. 
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5.4. 

This section describes how to compare means and standard deviations of K 
complete (log) normal samples. Methods include plots, hypothesis tests, and 
simultaneous confidence intervals. The methods extend to percentiles, reli- 
abilities, and other quantities. 

Samples from K (log) normal distributions can be compared 
graphically. If the samples are complete or singly censored, plot each on a 
separate (log) normal probability paper (Chapter 3). Stack the plots and 
hold them up to the light to compare them and to assess whether the 
distributions differ. A straight line fitted to each plot aids the. comparison. 
Also, plotted confidence limits for the parameters and percentiles of each 
distribution help. The plots also provide a check on the validity of (1) the 
data and ( 2 )  the assumed (log) normal distribution. If a sample tail contains 
data points that do not fall in line with the straight line determined by the 
bulk of the sample, then these outlier points are suspect and should be 
considered for removal from the data. Of course, reasons for such data 
should be sought. Sometimes the plotted points do not roughly follow a 
straight line but clearly follow a curve. Then the (log) normal distribution 
does not fi t  the data well, and the confidence intervals and hypothesis tests 
are inaccurate. Another distribution or nonparametric methods should be 
used. 

Motor insulations example. Figure 5.1 shows lognormal probability plots 
of the life data on the three insulations. The key question is, “How do they 
compare with respect to median life at 200”C?” The graphical median 
estimates are 1700 hours for insulation 1, 3000 hours for insulation 2, and 
3500 hours for insulation 3 .  Compared to the data scatter, the median 1 is 
appreciably lower than medians 2 and 3,  which are comparable. 

Figure 5.2 shows the data (sample medians circled) and estimates of the 
log means at 200°C. The 95% confidence intervals employ three estimates of 
the log standard deviation at 200°C: (1)  just the 200°C data on an 
insulation, ( 2 )  all data on an insulation, and (3) all data on all insulations. 
The intervals using (1) are usually widest and involve the fewest assunip- 
tions; the intervals using ( 3 )  are usually narrowest and involve the most 
assumptions. The assumptions of the intervals using (2) seem most ap- 
propriate, since the data and experience with insulation data suggest ( 2 ) .  
Figure 5.2 yields the same conclusions as Figure 5.1. For insulation 3 the 
interval based on ( 1 )  has zero length and is not valid; the three specimen 
lives are equal owing to the periodic inspection scheme. 

A common assumption for an insulation is that the log standard deviation 
is the same at all test temperatures. Experience with many insulations 

Comparison of K (Log) Normal Samples 

Plots. 
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I N S U LATlON 

Figure 5.2. Data, estimates, and confidence limits for medians. 

indicates that this is usually so. This means that probability plots for the 
three temperatures should be parallel. The samples are small; so only 
extremely different slopes would convince one that the true standard 
deviations differ. For each insulation, the slopes at the three temperatures 
are similar. So the data appear consistent with the assumption. The fitted 
lines are parallel to reflect this. 

Figure 5.3 depicts estimates and 95% confidence limits for the pooled log 
standard deviations of the three insulations. For each pair, the 95% confi- 
dence limits for one standard deviation encloses the estimate for the other. 
This indicates that the standard deviations do not differ significantly. 

COMPAREON OF K (LOG) NORMAL VARIANCES 

The following describes two methods for comparing (log) variances of K 
independent (log) normal samples: (1)  test of homogeneity and (2) simulta- 
neous comparison of all pairs of variances. Both methods test for equality of 
all variances. However, they differ in their sensitivity to different departures 
from equality. For k = 1,. . . , K ,  suppose that the variance Sz of sample k 
has v k  degrees of freedom. 
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Figure 5.3. Display of estimates and 95% confidence limits for the log standard deviations. 

Test of homogeneity. The following tests the homogeneity (equality) 
hypothesis ul = u2 = . . . = uK against the alternative that some uk # ukf.  The 
test statistic is 

Q = C-'[vln(S2)-  v,ln( S : ) -  . . . - vKln(S;)], (5.14) 

where Y = v ,  + . . ' + V K )  s 2 = ( v l S ;  + . * .  + Y & ) / Y ,  

C =  1 +[3( K - l ) ] - l [ ( l /v , )+ . * .  + ( l / ~ ~ ) - ( l / ~ ) ] .  (5.15) 

If the equality hypothesis is true, the distribution of Q is approximately c h  
square with K - 1 degrees of freedom. If the alternative is true, Q tends to 
have larger values. So the test is 

1. If Q G x z (  1 - a, K - l) ,  accept the equality hypothesis. 
2. If Q>XZ( l - a ,  K -  I), reject the equality hypothesis at the 1OOaW 
significance level. 

Here x2(  1 - a, K - 1) is the 100( 1 - a)th percentile of the chi-square distri- 
bution with K - 1 degrees of freedom. The chi-square approximation is 
more precise the larger the vk  are; it usually suffices if all v k  2 10. This test is 
Bartlett's test. 

I f  Q is statistically .significant, examine the s k  to see how they differ; a 
figure like Figure 5.3 helps. 

Bartlett's test applies only to variances of (log) normal distributions. It 
should not be used to compare variances of other distributions, since it can 
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then be quite misleading. Before using the test, it is important to confirm 
normality with a probability plot of the data. Robust methods for compar- 
ing K variances of nonnormal distributions appear in the literature, for 
example, in Scheffe (1959). 

Motor insulations example. Table 5.2 shows log times to failure of 
insulation specimens. The pooled sample standard deviations of the three 
insulations are S, ~0 .1408 ,  S, =0.0836, and S, =O. 1019, which respectively 
have v 1  = v2 = 12 and v3 = 6  degrees of freedom. The calculation of Q is 

v = 12+ 12+6=30, C =  1 + [3(3- I ) ] - ' ( & +  A+&-&)= 1.05, 

S 2  = [12(0.1408)2 +12(0.0836)2 +6(0.1019)2]/30=(0.1132)2, 

Q=(l.05)-'[301n(0.11322)- 121n(0.14082) 

- 12 h1(0.0836~) - 6 In(O.10 1 92)] = 3.13. 

Since Q =3.13<4.60= x2(0.90,2), the three uk do not differ significantly at 
the 10% level. The data are consistent with the hypothesis that the three 
insulations have equal true (log) standard deviations. 

All pairwise comparisons. When there are K variances S i ,  there are 
K (  K - 1)/2 pairs of variances to compare. The previous separate intervals 
(5.12) for each pair of variances each separately enclose the corresponding 
true ratio of two variances with probability y. The probability that all such 
intervals enclose their true ratios is less then y. Simultaneous lOOyS 
confidence intervals enclose all ratios u,'/u,". with probability y. If such 
limits for a ratio do not enclose 1, there is a "wholly significant" difference 
between the two variances. The simultaneous limits are wider than (5.12) for 
a single ratio. So a significant simultaneous interval is more convincing than 
a significant interval for a single ratia If all intervals enclose I ,  then there 
are no wholly significant differences among the variances at the lOO(1- y)% 
significance level. Approximate and exact simultaneous confidence limits 
are presented below. These limits apply only to (log) normal variances. 
Miller (1966) discusses such intervals in detail. 

Figure 5.4 displays all pairs of the three variances of motor insulation 1 
on log-log paper. The variances are marked on both scales as X ' s .  Per- 
pendicular lines through the X ' s  intersect at the dots. The distance of a dot 
from the 45" line is the log of the ratio of the corresponding two variances. 
So the dot farthest from the 45" line corresponds to the largest ratio. 
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Figure 5.4. Simultaneous comparison of three variances for insulation 1 

Approximate simultaneous limits. Simultaneous two-sided approximate 
100~5% confidence limits for all ratios of pairs of variances ( k ,  k ‘ =  1 , .  .., K )  
are 

(S ; /S ,” . ) /F(  y ’; v k  , vk,) d U,’/U,’. d (S; /S , ’ , )F(  y r  ; vk,, v x  ), (5.16) 

where y ’ =  1 - (1-  y ) K  - ’ (K  - I ) - ’  and F(y’;  a, b )  is the 100y’th percentile 
of the F-distribution with a degrees of freedom in the numerator and b in 
the denominator. These limits are the same as (5.12), but y’ in (5.16) is 
higher. One-sided simultaneous limits are given by (5.16); then y ’=  1 - 
2( 1 - y ) K  - I (  K - l)-’ .  These limits all enclose the true ratios with a 
probability of at least y. The exact probability is close to y when K is small 
and y is large. 

Motor insulations example. The following compares the variances of 
insulation 1 at the K = 3 temperatures in Table 5.2. The approximate 95% 
confidence limits (3.16) are calculated as follows. All vk  =4, y ’=  1 -(1- 
0.95)3-’(3- I ) - ’  =0.99167 (two-sided), and F(0.99167;4,4)= 17.6. Then, 
for example, the limits for u&,/u& are (0.18322/0.13842)/17.6=0. 10 and 
(0.18322/0.13842)17.6=31. All 3(3- 1)/2=3 intervals enclose 1. So the 
three variances do not differ significantly at the 5% level. Figure 5.4 shows 
this too. 



5. COMPARISON OF NORMAL AND LOGNORMAL SAMPLES 485 

Exact simultaneous limits. If all vk  = v ,  then simultaneous two-sided 
exact 100~5% confidence limits for all ratios of pairs of variances ( k ,  k '=  
I ,  ..., K )  are 

where F,,(y; Y, K )  is the IOOyth percentile of the maximum F statistic 
among K chi-square statistics, each with Y degrees of freedom. Pearson and 
Hartley (1954) and Owen (1962) tabulate these percentiles. If all K (  K - 1)/2 
intervals enclose 1, there are no wholly significant differences among the K 
variances at the [ 100( 1 - y ) ] W  significance level. Equivalently, calculate just 
the largest ratio. If i t  is less then F,,(y; v, K),  then the K variances do  not 
differ significantly at the 100( 1 - y )% significance level. This test of equality 
is about as sensitive in detecting inequality as is Bartlett's test of homogene- 
ity.  Moreover, the simultaneous limits (5.17) identify which variances differ 
significantly and are quicker to use. If the vk  differ slightly, one can use 
some average v to get approximate limits. 

Motor insulations example. The following compares the variances of 
insulation 1 at the K = 3  temperatures in Table 5.2. The 95% confidence 
limits (5.17) are calculated as follows. All v k  =4, and F,,(0.95;4,3)= 15.5. 
Then, for example, the limits for U&,/U;~~ are (0.18322/0.13842)/15.5 =0.11 
and (0.18322/0.13842)15.5 =27. All three such intervals enclose 1; equiva- 
lently, the greatest ratio 0.18322/0.08292 =4.88 is less than 15.5. So there 
are no wholly significant differences among the three variances at the 5% 
significance level. Figure 5.4 shows lines for ratios of 15.5 and 17.6; these 
are the exact and approximate simultaneous 95% limits for all ratios. The 
other line (a ratio of 9.60) is the upper 95% limit for a single ratio. 

COMPARISON OF K (LOG) NORMAL MEANS 

The following describes two methods for comparing the means of K (log) 
normal samples: (1) an analysis of variance test of homogeneity and (2) 
simultaneous comparison of all pairs of means. Both methods test for 
equality of all means. However, they differ in their sensitivity to detecting 
different departures from equality (ScheffC, 1959; and Miller, 1966). The 
tests assume that the K population variances are equal; this assumption can 
be assessed with Bartlett's test above. For k = 1,. . . , K ,  suppose that sample 
k has a mean rk of n k  observations and a variance estimate S i  with v k  
degrees of freedom. 

The following tests the homogeneity (equality) 
hypothesis p ,  = p2  = . . . = p K  against the alternative some p k  # p k , .  First 

Test of homogeneity. 
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calculate the total number of observations n = n ,  + . . . + n K ,  the total 
number of degrees of freedom v = v ,  + . . . + v K ,  the pooled estimate of the 
common variance S 2  =( v , S :  + . . . + v K S i ) / v ,  and the pooled mean r= 
( n , y ,  + . . . + n K r K ) / n .  The test statistic is 

K K 

(5.18) 

The two formulas are equivalent. If the equality hypothesis is true, F has an 
F-distribution with K - 1 degrees of freedom in the numerator and Y in the 
denominator. If the alternative is true, F tends to have larger values. So the 
test is 

1. 
2. 
significance level. 

If F < F( 1 - a ;  A' - I ,  v), accept the equality hypothesis. 
If F> F(l - a ;  K - I ,  v), reject the equality hypothesis at the lOOa% 

Here F( 1 - a ;  K - I ,  v )  is the [loo( 1 - a)]th percentile of the F-distribution 
with K - 1 degrees of freedom in the numerator and v in the denominator. 
This is the F-test for a one-way analysis of variance to compare K means. 
The F-test is usually a good approximate test for comparing means even 
when the distributions are not normal and the true variances differ, particu- 
larly when the n ,  are large and (nearly) equal (Scheffe, 1959). 

to see how they differ. A 
display of the sample means and confidence limits as in Figure 5.2 helps. 
Also, confidence intervals (5.13) or (5.19) for the differences of pairs oi 
means help one to see how the means differ. 

Standard computer routines for one-way analysis of variance calculate the 
F statistic (5.18) and the pooled variance (5.3) and mean (5.9). Many 
calculate the sample means and corresponding confidence limits and the 
pairwise comparisons (5.19) below. 

If  F is statistically significant, examine the 

Sample size. Cohen (1 977) and Mace (1964) explain how to choose the 
sample size to compare a number of means. 

Motor insulations example. The main information sought from the data 
in Table 5.2 is a comparison of the log means of the K = 3  insulations at 
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200°C. The calculations are 

n=5+5+3=13,  v=12+12+6=30,  

S 2  = [ 12(0.1408)2 + 12(0.0836)2 +6(0.1019)2]/30=(0.1132)2, 

?= (5.3.23134+ 5.3.48258+ 3.3.54750)/ 13 = 3.40093, 

F = [ 5(3.23 134)2 + 5(3.4825q2 + 3(3.54750)2 

- 13( 3 .40093)2] / [ (3 - I )(O. 1 1 3q2]  ~ 9 . 4 3 .  

This F statistic has K - 1 = 2  degrees of freedom in the numerator and 
v = 30 in the denominator. Since F = 9.43> 8.77 = F(0.999; 2,30), the three 
means differ very highly significantly (0.1 S level). The sample means, their 
confidence limits, and the confidence limits for their differences show that 
insulation 1 has a significantly lower mean than do insulations 2 and 3, and 
insulations 2 and 3 have comparable means. Thus insulation 1 is statistically 
significantly poorer than the others. 

All pairwise comparisons. When there are K means Fk, there are K (  K - 
1)/2 pairs of means to compare. Simultaneous lOOy% confidence intervals 
enclose all differences pk  - p k ,  with probability y. If such limits for a 
difference do not enclose 0, there is a wholly significant difference between 
the two means. The simultaneous limits are wider than (5.13) for a single 
difference. So a significant simultaneous interval is more convincing than 
one for a single difference. If all intervals enclose 0, then there are no wholly 
significant differences among the means at the 100( 1 - y)W significance 
level. Approximate and exact simultaneous confidence intervals are pre- 
sented below. Miller (1966) discusses such intervals in detail. These limits 
are usually good approximations for comparing (log) means of distributions 
that are not (log) normal. The approximations are better under the same 
conditions as the above analysis of variance test. 

Figure 5.5 displays all pairs of the three motor insulation log means at 
200°C. The log means are marked on both scales as X ' s .  Perpendicular lines 
through the means intersect at the dots. The vertical distance of a dot from 
the 45" line is the difference between the corresponding two means. So the 
dot farthest from the 45" line corresponds to the largest difference. 

Approximate simultaneous confidence limits. Simultaneous two-sided 
approximate 1OOy% confidence limits for all differences of pairs of means 
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3.200 
Figure 5.5. Simultaneoua compariwn of 

three log means. 

( k , k ’ = l ,  . . . ,  K )  are 

where y ’ =  1 - ( I  - y )K  - I (  K - I ) - ’ ,  S 2  is the pooled estimate (5.3) of the 
common u 2 ,  and v from (5.4) is its number of degrees of freedom. These are 
the same as the limits (5.13) for a single difference, but y’ is higher. The 
pooled estimate S 2  could also come from two samples k and k ’  or from all 
K samples. The latter requires the stronger assumption that all K true 
variances are equal. One-sided simultaneous limits are given by (5.19); then 
y ’ =  1 - 2 (  1 - y ) K  - ‘ (  K - 1)- I. If all such simultaneous limits enclose 0, 
then the means d o  not differ wholly statistically significantly. 

The limits (5.19) enclose true differences with probability y or higher. The 
excess probability is small when K is small and y is large. The 100y’th 
percentile may be unusual and difficult to interpolate in a standard table of 
t percentiles. 

The means of the K = 3  insulations at 200°C 
are simultaneously compared in pairs as follows. Calculations of simulta- 
neous two-sided approximate 95% confidence limits involve 

Motor insulations example. 

1 
y ’ = 1 - ( 1 - 0 . 9 5 ) 3 ~ 1 ( 3 - l )  ~ 0 . 9 9 1 6 7 ,  

S2=(0.1 132)’ with v =30 degrees of freedom, 

t(0.99167; 30) 22 .545  by interpolation. 
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Then, for example, the limits for p l  - p 2  are 

(3.23134-3.48258)-2.545(0.1132)(+ = -0.4334, 

(3.23134-3.48258)+2.545(0.1 132)( f+$)”2  = -0.0690. 

These limits do not enclose 0; so the difference is wholly significant. The 
limits for p 2 - p 3  are -0.2753 and 0.1455, and the limits for p 3  - p l  are 
0.1058 and 0.5266. The three intervals indicate that p ,  is significantly below 
p 2  and p 3 ,  which are comparable. This is stronger evidence than the 
individual‘(nonsimu1taneous) limits for the three differences. 

If all n k  = n,,, Tukey’s exact simultaneous 
two-sided lOOy% confidence limits for all differences of pairs of means 
( k , k ’ = l ,  ..., K )  are 

Exact simultaneous limits. 

( Fk - Fh ’ ) - q( Y ; 7 ) ( S / d n  0 p/ ,  - p h 

~ ( r , - r , , ) - t 4 ( Y ; V , K ) ( S / J n o ) ,  (5.20) 

where S 2  is a pooled variance estimate with v degrees of freedom and 
q ( y ;  v, K )  is the IOOyth percentile of the Studentized range for K normal 
deviates and v degrees of freedom. Pearson and Hartley (1954) and Owen 
(1962) tabulate q ( y ;  v, K ) .  If all K (  K - 1)/2 intervals enclose 0, then there 
are no (wholly) significant differences among the K means at the 100( 1 - y)% 
significance level. Equivalently, calculate the largest difference. If i t  is less 
than q ( y ;  v, K ) S / , / n , ,  then the K means do not differ wholly significantly at 
the 100( 1 - y)W level. 

This test is about as sensitive to departures from equality as is the above 
analysis of variance test. Moreover, the simultaneous limits identify which 
means differ, and they are quicker to use. If the n k  differ slightly, one can 
use some average n o  to get approximate limits. Feder (1972) gives a plot on 
special paper like Figure 5.5; it lets one graphically determine the wholly 
significant differences. 

The limits (5.20) are used to compare the 
200°C log means of the three insulations in Table 5.2. Such “exact” 95% 
limits are calculated as follows, with the average sample size no = ( 5 + 5 +  
3)/3=4.33. T h s  is crude but serves to illustrate the limits. Use the pooled 
estimate S 2  =(0.1 132)2, which has v = 30 degrees of freedom. Then 
q(0.95; 30,4.33)=3.93 by linear interpolation in no. Then, for example, the 
limits for p l  - p 2  are (3.23134-3.48258)*3.93(0.1132/m)= -0.251 i 
0.214, which do not enclose 0. The limits for p 2 - p J  are 0.065’0.214. 

Motor insulations example. 
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which enclose 0. The limits for p 3 - p ,  are 0.316k0.214, which do not 
enclose 0. These intervals, too, indicate that p ,  is significantly below pz and 
p 3 ,  which are comparable. Figure 5.5 depicts the simultaneous limit for a 
wholly significant difference. 

COMPARISON OF PERCENTILES, RELIABILITIES, AND OTHER QUANTITIES 

If distributions have the same true (log) standard deviation, then percentiles, 
reliabilities, and other such quantities are equal when the (log) means are 
equal. In that case, one need only compare means with the exact methods 
above. 

If the true (log) standard deviations differ, then such quantities cannot be 
compared with exact methods, but separate estimates and confidence limits 
can be compared. Maximum likelihood methods provide approximate com- 
parisons and apply to complete and censored data; Chapter 12 describes 
such methods. 

6. 

This section briefly surveys and references hypothesis tests for nonparamet- 
ric, Weibull, and other distributions. Graphical comparisons (probability 
and hazard plots) apply in the obvious way to complete, singly censored, 
and multiply censored data from such distributions. 

Nonparametric 

To use nonparametric methods, one does not assume a parametric form for 
a distribution. So they also apply to data from parametric distributions. 
This is useful, because parametric methods have not been developed for 
some parametric distributions. Nonparametric comparisons are less sensi- 
tive than parametric ones. They are commonly used in biomedical appli- 
cations where, in general, one cannot assume a simple parametric form for a 
life distribution. Parametric distributions are usually used in engineering 
applications, because they are often adequate and yield more information 
from small samples. 

Most books on nonparametric methods present methods for complete 
data only. For example, see Gibbons (1976), Hollander and Wolfe (1973). 
and Lehmann (1975). Methods include the sign test for paired comparisons, 
the Wilcoxon test for completely randomized comparisons, and other 2- and 
K-sample comparisons. Some of these methods extend to singly censored 
samples, provided that the needed order statistics are observed. 

Nonparametric methods for singly and multiply censored data are not as 
well developed as those for complete data. Gross and Clark (1975). Lawless 

NONPARAMETRIC, WEJBULL, AND OTHER DISTRIBUTJONS 
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(1982), and Kalbfleisch and Prentice (1980) present and reference methods 
for such data. Recent literature contains such methods; consult the journals 
and indices listed in Chapter 13. 

Weibull and Extreme Value 

Comparisons of Weibull and the related extreme value distributions gener- 
ally employ linear or maximum likelihood estimates. Such comparisons are 
presented in Chapters 11  and 12. 

Government standards based on a Weibull life distribution for reliability 
demonstration are described by Schilling ( 198 1) and include the following. 

TR-3. “Sampling Procedures and Tables for Life and Reliability Testing Based on the Weibull 
Distribution (Mean Life Criterion).” A D  613 1x3. 

TR-4. “Sampling Procedures and Tables for Life and Reliability Testing Based on the Weibull 
Distribution (Hazard Rate Criterion).” AD 401 437. 

TR-6. “Sampling Procedures and Tables for Life and Reliability Testing Based on the Weibull 
Distribution (Reliable Life Criterion).” A D  61 3- I X4 

These are distributed by National Technical Information Service, 5285 Port 
Royal Road, Springfield, Va. 22 15 1. 

Other Distributions 

Much work has been done on methods for comparing complete samples 
from other distributions. Many references may be found in the journals, 
books, and indices listed in Chapter 13. 

There are few methods for comparing singly and multiply censored 
samples from other distributions. Methods of Chapters 1 1  and 12 can be 
extended to many other distributions. Some references may be found in the 
journals, books, and indices listed in Chapter 13. 

7. THEORETICAL CONCEPTS FOR HYPOTHESIS TESTS 

The following paragraphs briefly present general concepts needed for com- 
parisons with hypothesis tests. These concepts include a probability model 
(or distribution), sample and parameter spaces, the null hypothesis and its 
alternative, a ’  test and test statistic, and the operating characteristic (or 
power) function and size of a test. Many statistics texts provide further 
explanation. This advanced introduction is brief and abstract; some readers 
may wish to come back to this after or while reading the chapter. Lehmann 
(1959) presents advanced theory of hypothesis testing in detail. The Intro- 
duction of this chapter is necessary background for this section. This section 
is helpful background for Chapter 12. 
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Model. We assume that a sample of n observations Y =( Y,, . . . , T I )  
comes from a parametric cumulative distribution F( y , ,  . . . ~ y,,; 8 )  where 
8 = ( e l , .  . . , O r )  consists of r parameters. The set of possible Y values is called 
the sample space and is denoted by 9; i t  is a subset of n-dimensional 
Euclidean space. The set of possible 8 values is called the parameter space 
and is denoted by 52; it is a subset of r-dimensional Euclidean space. All of 
the preceding specifies a general model for a problem. 

For example, suppose that Y,, . . . , Y,, are independent observations from a 
normal distribution with mean p and standard deviation 0 .  The sample 
space is n-dimensional Euclidean space. The parameter space 0 consists of 
the values ( p ,  a) that satisfy - 00 < p < so and u > O ;  that is, 8 is the upper 
half-plane of two-dimensional space. 

A hypothesis is a statement that the true model is a special 
hypothetical case of the general model. The special case corresponds to 
certain parameter values 8 that are a subset w of 0. w is called the subspace 
of the null hypothesis. The rest of the sample space - w is called the 
subspace of the alternative. The problem is to decide whether 8 is in w 
(accept the hypothesis) or in 61 - w (reject the hypothesis and accept the 
a1 terna tive). 

For the preceding example, suppose that the hypothesis is that p = p,), a 
specified value. The corresponding subspace w consists of the values ( p0. u) ,  
where u >O. w is a line in the half-plane 52. The alternative is p # po,  the rest 
of the half-plane. 

Test. To decide whether the null hypothetical model holds, we use a 
statistical test. A test is specified by a critical (rejection) region, which is a 
subset C' of the sample space 9. Then, i f  the observed sample j j  =( y , ,  . . . ,y,,) 
is in c'. we reject the hypothesis; otherwise, if y is in the acceptance region 
L?! -- c', we accept the hypothesis. The critical region is usually specified by 
means of a test statistic T =  r( Y, ,  ..., Y,,), which is a numerical function of 
the observations. Then, for T values in a critical set 5, we reject the null 
hypothesis. This is equivalent to specifying a critical region 6 of J' values in .;: . j .  

For the preceding example, suppose that the test statistic is the absolute t 
statistic JTI = In'/ '( r- p o ) / S J ,  where r is the sample average and S is the 
sample standard deviation. The critical set tT usually consists of all T values 
such that I TI > t ' ,  where t' is a specified value. 

Operating characteristic (OC) function. The OC function of a test is the 
probability P ( 8 ) =  P,{accept hypothesis} = Po{ Y is in 9 - t'}. which is a 
function of 8. A good test is one that accepts the hypothesis with high 
probability when 8 is in w and accepts the hypothesis with low probability 

Hypotheses. 
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when 8 is in Q - w ,  the alternative. If ,  for 8 in w .  min P( 8)=  1 - a. then a is 
called the size or level of the test, and the test is called a “level-a test”; a is 
the (maximum) probability of rejecting the null hypothesis when it  is true. 
P,(reject hypothesis} = 1 - P( 0)  as a function of 8 is called the power 
function of the test. The OC or power functions of tests with different 
sample sizes can be examined to help one decide on a suitable sample size. 

For the example, use t ’ =  t( 1 -O.Sa, n - l),  the loo( 1 -0Sa)th percentile 
of the t-distribution with n - 1 degrees of freedom. Then the OC function is 
P ( p ,  a ) =  P,,,(lTI> f’). It has the value 1 - a at p = po and decreases as 
Ip - pol/a increases. This and other OC curves are displayed by Natrella 
(1963), Cohen (1977), Grant and Leavenworth (1980), Owen (1962), and 
many statistics texts. 

Statistical significance. Usually the test statistic T is chosen so that large 
values indicate that the hypothesis is false. I f  t“  is an observed value of T ,  
then the value p = P ( T >  I ” } ,  assuming that the hypothesis is true, is called 
the significance level of the test statistic. If p is small, say, 0.05 or less, then 
there is convincing evidence that the hypothesis is false, and the T value is 
called statistically significant. The smaller p is. the more convincing the 
evidence. In practice, one needs to first determine i f  there is a real (that is, 
statistically significant) difference from the hypothesis and then determine 
whether the difference is large enough to have practical importance. An 
observed important difference that is not statistically significant should not 
be regarded as real; more data are needed to determine i f  the difference is 
real and not just the result of random sampling variation. 

Confidence limits. This chapter also presents individual and simulta- 
neous confidence limits. which are defined in Chapter 6. Such intervals are 
often more informative than hypothesis tests, since the widths of such 
intervals indicate the precision of the sample estimates. Thus confidence 
intervals are generally preferred in place of hypothesis tests. 

Tests of fit. Often one must decide if  a distribution adequately fits a set 
of data. Probability and hazard plots are most versatile. Also, formal tests of 
fit may be useful. Mann. Schafer, and Singpurwalla (1974, Sec. 7.1) survey 
such tests for the exponential. Weibull (extreme value), and normal 
(lognormal) distributions and complete or censored data. Hahn and Shapiro 
(1967, Chap. 8) do so for complete data. Most such tests merely indicate 
whether or not a proposed distribution adequately fits a set of data; such 
tests do not suggest alternative distributions. I n  contrast. Bartholomew 
(1957) tests for an exponential distribution with a Weibull alternative. 
Similarly. Farewell and Prentice ( 1979) propose fitting a three-parameter 
log-gamma distribution that includes the normal (lognormal) and extreme 
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value (Weibull) distributions as special cases; their method lets one assess, 
for example, whether a Weibull or lognormal distribution fits a set of data 
better. Michael and Schucany (1979), Lawless (1982), and Shapiro (1980) 
survey recent tests. 

Of course, for all such tests, the sensitivity of a test to lack of fit depends 
on the sample size. Small samples seldom indicate lack of fi t  to most 
distributions. Thus large sample sizes are generally needed. 

Choice of a distribution depends on many factors, and a test of fit is 
merely a possible aid in making a choice. Theory or experience may indicate 
a distribution. In some applications, if such a distribution does not ade- 
quately fit the data, the data are suspect first, rather than the distribution. 
Then the data may have outliers (which a plot would show) or other 
difficulties. Hawkins (1980) describes tests for outliers. 

PROBLEMS 

10.1. Poisson demonstration test. For the capacitor example of Section 

(a) Find the required total test time to demonstrate a failure rate of 

(b) How many capacitors must run 10,000 hours each in such a test? 
(c) Calculate and plot the OC function for this test. 
(d) What failure rate must the capacitors have to pass the test with 

YO% probability? 

(e) Compare the tests fory, =0, I ,  and 2 with respect to test costs and 
reliability that must be designed into the capacitor to pass the tc 

10.2. Binomial acceptance sampling. For binomial acceptance sam- 

I ,  consider a demonstration test with acceptance number yo = 2 .  

10 per hour with 60% confidence. 

pling, calculate (using binomial tables) and plot the OC curve for 

(a) ti = 20, ~ ' 0  = 0. 
(b) I? =20, = 1. 

(c) n = 20, y, = 2. 
(d) As a customer, which of these three plans would you prefer to use? 

Why? 
(e) For plan (a), if the first sample unit is defective, is there a need to 

examine the remaining 19 units to arrive at a decision on the lot? 
Comment on the cost savings in practice. 
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10.3. Power line outages. Use the data on the four longest power lines 

(a) Calculate a pooled estimate of their assumed common true 
failure rate. 

(b) Calculate the test statistic (1.7). How many degrees of freedom 
does it have? Look up the 95 and 99% points of the corresponding 
chi-square distribution. 

(c) Is the test statistic statistically significant? Which lines contribute 
significantly to the test statistic? 

(d) Is the chi-square approximation adequate? Why? 

in Table 1.1 

10.4. Circuit board capacitors. Use the data of Table 2.1, but omit the 

(a) Calculate the pooled estimate d of the assumed common value of 
the binomial proportion. 

(b) Calculate two-sided approximate 90% confidence limits for the 
common proportion. 

(c) Calculate the test statistic (2.4). How many degrees of freedom 
does i t  have? Look up the 99 and 99.9% points of the corresponding 
chi-square distribution. 

Is the test statistic statistically significant? Which boards contrib- 
ute significantly to the test statistic? 

Is the chi-square approximation adequate? Why? 

data on board 4. 

(d) 

(e) 

10.5. Appliance component (renewal data). The data in the accompany- 
ing table show the number of appliances that entered each month of service 
and the number of failures of a particular component. On failing, a 
component was replaced (renewed) with a new one, and an appliance can 
have any number of such failures over the months it  is in service. Regard 
each month of service of an appliance as a binomial trial in which the 
component either fails or survives with the probability for that month. 

(a) For each month, calculate the estimate of the binomial proportion 
failing (expressed as a percentage). Month 1 has a high percentage. 
typical of many appliance components. 

(b) Test for equality of the binomial proportions of all months. 
Calculate the pooled estimate of the proportion. 

(c) Repeat (b) for months 2 through 12. 
(d) Repeat (b) for months 13 through 24. 
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(e) 
(f) 

Repeat (b) for months 25 through 29. 
Cumulate the percentage failing for each month to estimate the 

cumulative percentage failing through each month. Such cumulative per- 
centages could exceed loo%, as an appliance can have more than one 
failure. Plot the sample cumulative percentage failing (called the “renewal 
function”) on log-log paper. 

Estimate the cumulative percentage failing on the 12-month war- 
ranty and during the 15-year life of the appliance. 

(g) 

Month Failed 

1 83 
2 35 
3 23 
4 15 
5 22 
6 16 
7 13 
8 12 
9 15 

10 15 
11 24 
12 12 
13 7 
14 11 
15 15 
16 6 
17 8 
18 9 
19 9 
20 3 
21 6 
22 6 
23 6 
24 5 
25 1 
26 5 
21 5 
28 6 
29 3 

Number 
Entering 

22914 
22914 
229 14 
229 14 
229 14 
22914 
2291 1 
22875 
2285 1 
22822 
22785 
22745 

2704 
2690 
2673 
2660 
2632 
2610 
2583 
2519 
2425 
2306 
2188 
2050 

862 
845 
817 
718 
5 90 
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(h) Criticize the preceding analyses. 

(i) Comment on the accuracy of the 15-year estimate in view of the 
fact that data from months 1 through 12 come from 65% of the popula- 
tion, data from months 13 through 24 come from about 8% of the 
population that is on service contract (unlimited repair service, owner 
choses to pay a single premium for), and data from months 25 through 29 
come from 2% of the population, whose owners elect a second year of 
service contract. 

(j) Devise a better 15-year estimate of the cumulative percentage 
failing. 

10.6. Insulating fluid breakdown. Use the data in  Table 4.1. Combine 
groups 1 and 2, 3 and 4, and 5 and 6 to get three new groups, each with 20 
times to breakdown. Assume that such times have an exponential distribu- 
tion, and check for stability of the data over time as follows. 

(a) Calculate the estimate of the mean for each of the three groups. 
How many degrees of freedom does each estimate have? 

(b) Calculate the pooled estimate of the assumed common mean. 
(c) Calculate Bartlett’s test statistic (4.6) for the three groups. How 

many degrees of freedom does it have? 

(d) Look up 90 and 95% points of the corresponding chi-square 
distribution. Do the three sample means differ statistically significantly? 
I f  so, why? 

(e) Calculate simultaneous approximate 90% confidence limits for all 
ratios of pairs of the three means. Are any ratios wholly statistically 
significant? 

10.7. Motor insulation 2. Use the log data and summary statistics on 
motor insulation 2 in Table 5.2. The model for such data assumes that time 
to breakdown has a lognormal distribution at each temperature, that the 
(log) standard deviation is the same at each temperature, and that the (log) 
mean decreases with temperature. The following analyses assess whether the 
data are consistent with these assumptions. 

(a) Plot the data (Table 5.1) from the three temperatures on the same 

(b) Calculate a pooled standard deviation from those from the three 

lognormal paper, and compare the distributions. 

test temperatures. How many degrees of freedom does it have? 
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(c) Calculate a separate two-sided 90% confidence interval for each 
ratio of pairs of (log) standard deviations for the three temperatures. Do 
any pairs differ statistically significantly? 

(d) Calculate Bartlett’s test statistic (5.14) for the (log) standard 
deviations of the three temperatures. How many degrees of freedom does 
the statistic have? Look up the 90 and 95% points of the corresponding 
chi-square distribution. Do the (log) standard deviations differ statisti- 
cally significantly? If so, how? 

(e) 
(0 

How good is the chi-square approximation for (d)? 
Calculate simultaneous two-sided approximate 90% confidence 

limits for all ratios of pairs of the three standard deviations. Do any pairs 
differ wholly statistically significantly? 

(8) Would you expect the conclusions from (d) and (f) to usually be 
the same? Why? 

(h) Calculate two-sided 95% confidence limits for the (log) mean at 
200°C. using the pooled standard deviation. Calculate the corresponding 
estimate and confidence limits for the lognormal median at 200°C. 

Calculate a separate two-sided 90% confidence interval for the 
difference of each pair of (log) means for the three temperatures, using 
the pooled (log) standard deviation. Do any pairs differ statistically 
significantly? 

Calculate the F statistic (5.18) for a one-way analysis of variance. 
How many degrees of freedom does i t  have in the numerator and in the 
denominator? Look up the 90 and 95% points of the corresponding 
F-distribution. Do the (log) means differ statistically significantly? If so, 
how? 

(k)  Calculate simultaneous two-sided approximate 90% confidence 
limits for all differences of pairs of the three (log) means. Do any pairs 
differ wholly statistically significantly? 

(1) Would you expect the conclusions from (i) and (j)  to usually be 
the same? Why? 

(m) In view of the plots from (a), do you think that the analytic 
comparisons (b) through (k) are necessary? Helpful? What further infor- 
mation do the plots yield that the analytic methods do not? 

10.8. Circuit breaker. 

(i) 

(j) 

Use the circuit breaker data from Problem 3.4. 

(a) The old design has a known proportion po ~ 0 . 5 0  failing by 10,000 
cycles. What is the binomial estimate of the proportion of the new design 
failing by 10,000 cycles, based on the first sample of 18 circuit breakers? 
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(b) For a two-sided test for equality of these two proportions, calcu- 
late the significance level. Does this proportion for the new design differ 
statistically significantly from that for the old one? 

(c) Use Fisher’s test to compare the two samples of the new breaker 
with respect to the proportion failed by 15,000 cycles. 

(d) For the sample sizes in (c), how big ;I difference in the proportions 
do you think the test will detect? A formal answer would involve 
calculating the OC curve of the test. 

10.9. Fatigue specimens. Three labs tested fatigue specimens at two 
strain ranges. The failure of a specimen occurs either within or outside the 
length of the strain gage. According to specimen geometry and engineering 
theory, the expected fraction of failures within the gage length is po  =4/9 
for any strain range and lab. The fractions y / n  of specimens failing within 
the gage are tabulated below. 

Strain Lab 1 Lab 2 Lab 3 

1 218/352 16/ I73 74/132 
2 200/336 40/76 69/107 

(a) Which of the six observed fractions differ significantly from the 

(b) For Lab 1, do the observed fractions at Strains 1 and 2 differ 

(c) For Strain I ,  do the fractions for the three labs differ significantly? 

(d) Do (c) for Strain 2.  
(e) Pool data from each lab and compare the three labs as in (c). 
( f )  State your overall conclusions. 

(8) Comment on the adequacy for practical purposes of any ap- 

theoretical p o  =4/9? 

significantly? For Lab 2? For Lab 3? 

Simultaneously compare ( I )  all three labs and ( 2 )  each pair of labs. 

proximate tests or confidence intervals you used. 

10.10. Metal fatigue. The following plot shows fatigue life data (log 
base 10 cycles to failure) on specimens from 27 blends of a metal alloy, 
tested at the same stress, temperature, etc. The basic question is: are the 
blends consistent? The following analyses assess this. Visually examine the 
plot. 



LCYCLJ CELL LOWER Eki3PT 
NO. 
I N  3.55 4.05 4.55 
ROW BLEND# 3.80 4.30 4.80 

<.*....*....*....+....*....+> 
6 13+ 2 1 1  1 1 

6 15* 1 1 2  1 1  

4 59+ 2 1 1  

14 07+ 12211 1 1  2 1 1 1  

22 lo+ 12253212 2 2 

22 1 1 +  1 251131 113 21 

8 12* 11311 1 

34 16*  1 1335253 1 1 1  21112 1 

20 17* 223342 1 1  1 1 

46 20* 2 328484211 2 231111 

14 23* 1124 1 3 1 1 

16 24* 13122 2 21 2 

12 25* 1 A22A 1 12 1 

10 27* 111132 1 

12 28* 2122 1 12 1 

13 30* 13 41 1 1  1 1 

10 32* 1 11122 2 

10 33* 1 1511 1 

24 34* 1 332151 121 121 

10 35* 12 2121 1 

24 36* 313422 11112 1 1 1  

+ 

* 
9 37+ 1 1 1  2 1 1  1 1  

10 38* 2232 1 

10 39* 2 134 
* 

8 40* 1 1 1  2 2 1 

8 47* 1 1 1 1 1 1  1 1 

9 50* 112111 2 
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(a) Assess whether the blends are similar or different with respect t o  

(b) Identify any blends with significantly longer or shorter life. 
(c) How do  the blends compare with respect to scatter in (log) fatigue 

life? Take into account the differing sample sizes. 

(d) How d o  the blends compare in the lower tail, say. at roughly the 
10 or 1 %  point. Early failures are important in fatigue work, and  
components are retired before they fail. Design life is cycles to usually 
0.1% failure divided by 3. Estimate it. 

(e) The blends are plotted in order of manufacture. Are there any 
time trends in fatigue life? 

The following computer output shows a chi-square contingency table analy- 
sis to compare the 27 blends with respect to the (binomial) proportion 
failing by 7000 cycles, denoted by LE7K. Those surviving 7000 cycles are 
denoted by GT7K. 

typical life. Mark the sample median of each blend as an aid. 

( f )  Are there convincing differences among the blends? 
(8) Which blends have a large chi-square contribution and differ from 

the others? Add the two chi-square contributions (LE7K and GT7K)  to 
get the total chi-square contribution of a blend. How d o  those blends 
differ (better or worse)? 

(h) I f  the blends that clearly differ are removed from the data, how d o  
the remaining blends compare (subjective evaluation based on the con- 
tingency table analysis)? 

The following computer output shows a one-way analysis of variance to 
compare the mean log life of the blends. 

( i )  Are there convincing differences among the blends? Are the 
sample sizes large enough so the F test is accurate enough? Explain. 

(j) Examine the blend means. Which blends differ significantly from 
the others (better or worse)? 

( k )  Use the analysis of variance table to get an estimate of the 
standard deviation of the pooled data, ignoring blends. Compare this with 
the pooled estimate of the standard deviation within blends. Are the two 
estimates the same for practical purposes? I f  so, the alloy can be treated 
as a single homogeneous population. and blends can be ignored. 

( I )  Explain why Bartlett’s test to compare (log) standard deviations of 
the blends is not suitable. 

(m) In nonstatistical terms, write up all your conclusions in a form 
suitable for a department general manager. 



----NUMBER---- 
BLEND OBSERVED EXPECTED. 

LE7K 
L E ~ K  
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 
LE7K 

GT7K 
GT7K 
GT7K 
GT7K 
GT7K 
GT7K 
GT7K 
GT7K 
GT7K 
GT7K 
GT7K 
GT7K 
GT7K 
GT7K 
GT7K 
GT7K 
GT7K 
GT7K 
GT 7K 
GT7K 
GT7K 
GT7K 
CT7K 
GT 7K 
GT7K 
GT7K 
GT7K 

TOTAL 

13 
15 
59 
3 0  
10 
16 
0 7  
25 
11 
17 
2 0  
23 
12 
36  
34  
28  
24  
32 
33  
35 
38 
2 7  
3 1  
39 
40 
47 
50 

13 
15 
59 
30 
10 
1 6  
07  
25 
I 1  
17 
2 0  
23 
12 
36 
34  
28  
24  
3 2  
3 3  
3 5  
38 
27 
37 
39 
4 0  
4 7  
50 

3 
I 
2 
8 

10 
1 5  

6 
3 
9 

13 
2 6  

7 
5 

12  
9 
5 
9 
6 
9 
4 
6 
7 
2 

10 
3 
6 
5 

3 
5 
2 
5 

12 
19 

8 
9 

13 
7 

2 0  
7 
3 

12 
15 
7 
7 
4 
1 
6 
4 
3 
7 
0 
5 
2 
4 

39 I 

3.084 
3.084 
2.056 
6.683 

11.309 
17.478 

7.197 
6.169 

11.309 
10.281 
23.647 

7.197 
4.113 

12.338 
12.338 
6.169 
8.225 
5.141 
5.141 
5.141 
5.141 
5.141 
4.627 
5.141 
4.113 
4.113 
4.627 

2.916 
2.916 
I .  944 
6.317 

10.691 
16.522 

6.803 
5.831 

10.691 
9.719 

22.353 
6.803 
3.887 

11.662 
11.662 

5.831 
7.775 
4.859 
4.859 
4.859 
4.859 
4.859 
4.373 
4.859 
3.887 
3.887 
4.373 

391.000 

CHI -50  
CONTR I B 

0.002 
1.409 
0.002 
0.260 
0.152 
0.351 
0.199 
1.628 
0.472 
0.719 
0.234 
0.005 
0.192 
0 0 0 9  
0.903 
0.221 
0.073 
0.144 
2.897 
0.253 
0.144 
0.673 
1.491 
4.593 
0.301 
0.866 
0.030 

0.002 
1.490 
0.002 
0.275 
0.160 
0 . 3 7 2  
0.211 
1.722 
0.499 
0.761 
0.248 
0.006 
0.203 
0.010 
0.955 
0.234 
0.077 
0.152 
3.065 
0.268 
0.152 
0.711 
1.577 

0.318 
0.916 
0.032 

37.499 

4.859 

THE CHI-SQUARE STATISTIC T O  TEST THAT EACH BFLOW 
HAS THE SAME PROPORTION I N  EACH BLEND CATEGORY 
HAS THE VALUE 37.499; T H I S  STATISTIC HAS 26 
DEGREES OF FREEDOM. 

THE PROBABILITY OF EXCEEDING THIS CHI-SOUARE 

TRUE EFFECTS I S  6.7 PER CENT 
VALUE O Y  CHANCE ALONE IF THERE ARE NO 
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* AOV SUMMARY OF GROUPS. 9596 CONFIDENCE L I M I T S  
FOR THE TRUE AVERAGE 

BLEND 

1 3  
15  
5 9  
30 
1 0  
1 6  
07 
25  
1 1  
17 
2 0  
2 3  
1 2  
3 6  
34 
2 8  
2 4  
32 
3 3  
35 
3 8  
27 
37 
3 9  
40 
4 7  
5 0  

POOLED 

NO. 

5 
6 
4 

1 3  
22  
3 4  
1 4  
1 2  
22  
20 
46 
14  

8 
2 4  
2 4  
12 
16 
1 0  
1 0  
1 0  
1 0  
1 0  

9 
1 0  

8 
8 
9 

390 

AVERAGE 

3.820568 
4.128080 
3.909339 
3 .El97007 
3 .934206 
3 .962591 
4 , 0 0 5 1 2 0  
4 .039750 
4 .026089 
3 .833650 
3.909810 
3.969889 
3 .868562 
3 .907170 

3.9891 1 7  
3.847650 
3.829747 
3.787374 
3 .a648 1 6  
3.840997 
3 .804573 
4.171735 
3.708343 
3.893563 
3 .823750 
3 .080643 

3 .977536 

3.920969 

LOWER 

3 6 0 7 5 7 5  
3 1 9 3 3 6 4 5  
3.751205 
3 el649 1 4  
3 .832665 
3 .080912 
3.877832 
3.902263 
3.924548 
3 .727153 
3 .839596 
3 .842602 
3 .700176 
3 .809952 
3 .880319 
3.851630 
3 .728583 
3.679138 
3 636765  
3 .714207 
3.690380 
3 .653964 
4 . 0 1 2 9 8 0  
3 .557734 
3.725177 
3 .655364 
3.721887 

3.896852 

ONE-WAY ANALYSIS OF VARIANCE 

SOURCE OF DEG. OF SUM OF 
VARIATION FREEDOM SQUARES 

UPPER 

4 . 0 3 3 5 6 2  
4 .322515 

4 . 0 2 9 1 0 0  
4 . 0 3 5 7 4 6  
4 .044270 
4.132407 
4 , 1 7 7 2 3 6  
4 .127629 
3.940 1 4 7  
3.980040 
4.097 177 
4.036948 
4 .004387 
4 . 0 7 4 7 5 4  
4 . 1 2 6 6 0 3  
3 .966717 
3.980356 
3 .937983 
4.0 1 5 4 2 5  
3 . 9 9 1 6 0 6  
3.955 1 8 2  
4 . 3 3 0 4 9 1  
3 .858952 
4.06 1 9 4 8  
3 .992135 
4 . 0 3 9 3 9 9  

4 .227473 

3 .945085 

MEAN 
SQUARE 

STD. DEV. 

0 . 1 5 7 0 2 7 2  
0 .2391 5 4 9  
0 . 1 9 5 3 3 0 5  
0.2 1 6 5 4 0 5  
0 . 2 0 6 9 6 4 9  
0 . 3 0 1 6 5 4 0  
0 . 2 7 4 5 2 2 9  
0 . 2 8 7 2 9 5 2  
0 .30296 1 6  
0 . 1 8 2 7 0 2 6  
0 .2625667 
0 . 2 5 7 7 8 1 5  
0 . 1 6 0 5 4 3 4  
0 . 2 4 3 9 6 1 0  
0 .2407067 
0.267 1 2 2 4  
0 .2357546 

0 .2203455 
0 . 1 7 9 2 9 2 9  
OeA554691E-01 
0 .1035423 
0 . 3 7 2 0 5 1 7  
0 . 6 9 3 3 1 8 7 E - 0 1  
0 . 2 3 2 4 8 7 1  
0 . 2 6 4 5 4 1 1  
0 .1921313 

0 . 1 5 2 2 7 2 4  

0 . 2 4 2 1 8 7 8  

F-TEST 
STAT I S T I C  

BETWEEN 
BLENDS 2 6  2 .9520013 0 . 1 1 3 5 3 8 5 1  1 .9357036 

ERROR 363 21.291731 0 . 5 8 6 5 4 9 0 7 E - 0 1  

TOTAL 3 8 9  24 .243733 
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11 
Comparisons With Linear 
Estimators ( Singly Censored 
and Complete Data) 

This chapter presents linear methods for comparing samples by hypothesis 
tests. The topics include comparison of ( I )  a sample with a specified 
parameter of a distribution, (2) two samples, and (3) K samples. Another 
topic is pooled estimates for a parameter from a number of samples. The 
methods employ linear estimators of distribution parameters. So the meth- 
ods apply only to one- or two-parameter distributions with location and 
scale parameters. Such distributions include the basic ones- the exponen- 
tial, normal, lognormal, extreme value, and Weibull distributions. The 
necessary background for this chapter is in Chapter 7 on linear estimation 
and Chapter 10 for basic concepts on hypothesis testing. 

An advantage of linear methods is that the calculations are easy. A 
disadvantage is that needed tables for computing linear estimates and 
confidence limits for most distributions are mostly limited to sample sizes of 
20 or less. Also, most such tables are limited to complete and singly failure 
censored samples, but there are some tables for doubly and multiply failure 
censored samples. Moreover, many tables needed for exact linear confidence 
limits and hypothesis tests have not been developed. Therefore, approximate 
limits and tests are given below. In contrast, maximum likelihood methods 
of Chapter 12 require special computer programs, but more tables for singly 
failure censored samples are available. 
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Linear methods are exact for failure (Type 11) censored data. Such data 
are less common than time (Type I )  censored data. In  practice, exact linear 
methods for failure censored data often provide adequate approximate 
analyses for time censored data. Maximum likelihood methods of Chapter 
12 apply to failure and time censored data. 

I n  this section, p denotes a location parameter and u a scale parameter. 
Suppose that the sample data consist of the first r order statistics r ( , ,  
< . . .  =G y r )  in a sample of size 1 1 .  and suppose that the linear estimates are 
p* and u*, calculated as described in Chapter 7. These can be any linear 
estimators, but they will usually be taken to be the best linear unbiased 
estimators (BLUE). Then their variances and covariance have the form 

Var(p*)=Au2,  Var(u*)= Ba’, Cov(p*, u * ) = C u 2 ,  

where A ,  B ,  and C depend on r and n and are tabulated as described in 
Chapter 7. 

This chapter explains linear methods for comparing exponential, normal. 
and extreme value distributions. Methods for normal data apply to the logs 
of lognormal data. Methods for extreme value data apply to the (base e )  
logs of Weibull data. The relationships between these pairs of distributions 
are explained in Chapter 2 .  

Singly censored samples can be subjectively compared with probability 
plots, described in Sections 4, 5, and 6 of Chapter 10 and in Chapter 3. 
Nonparametric comparisons of Chapter 10 can also be used for singly 
censored data, provided that the needed order statistics are observed. A 
combination of graphical and analytic methods is usually most effective. 

Tests of f i t  based on singly censored samples are surveyed by Mann, 
Schafer, and Singpurwalla (l974), Lawless (1982. Chap. 9). and Bain (1978). 
Hawkins (1980) presents tests for outliers. 

1.  ONE-SAMPLE COMPARISONS 

One often wants to assess whether a sample from an assumed distribution is 
consistent with (or else exceeds) a specified value of a parameter, percentile. 
reliability. or other quantity. For example, a reliability demonstration test 
for an exponential distribution assesses whether the mean life of a product 
exceeds a specified value. This section first describes appropriate hypothesis 
tests in general terms and then applies them to the basic distributions. 
Except for the exponential distribution, the operating characteristic curves 
(power functions) of most tests have not been derived for censored samples. 
This section summarizes material in Chapter 7. 
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Scale Parameter 

Scale parameter test. Suppose that a linear estimate u* of a scale 
parameter u is to be compared with a specified value 0,. u* may be from a 
single sample or it may be a pooled estimate from a number of samples. For 
example, one might wish to test that a Weibull shape parameter equals 1. If 
a one- or two-sided 100~56 confidence interval for the true u encloses uo, 
then the sample is consistent with uo at the 1OOy% confidence level. Also, 
for a demonstration test, if such a one-sided limit exceeds uo, then the value 
uo (or better) has been demonstrated with lOOy% confidence. Such exact 
and approximate limits based on (I* appear in Chapter 7. 

The variance of a BLUE u* is Var(u*)= Bu2. Linear two-sided ap- 
proximate lOOy% confidence limits are 

1/2  3 

] , 
1 / 2  3 

] ; 

9 = IT*/[ 1 - (  B/9)+ K,(B/9)  

6 = ~ * / [ l - (  B/9)- K,(B/9)  
(1 .1 )  

these employ the Wilson-Hilferty chi-square approximation, where K ,  is 
the [ 100( 1 + y)/2]th standard normal percentile. To obtain a one-sided 
limit, replace K ,  by zy ,  the lOOyth standard normal percentile, in the 
corresponding formula. These approximate limits apply to any scale param- 
eter. Mann, Schafer, and Singpurwalla (1974, Ch. 5) justify these limits. 

Exponential mean 8. The scale parameter of the exponential distribution 
is the mean 8. For a failure censored sample, the BLUE for 8 is 8 * = [ 5 , )  
+ . . . + q r b  + ( n  - r )yr ) ] / r .  28*/8 has a chi-square distribution with 2r 
degrees of freedom. Two-sided linear exact 1OOy% confidence limits for 8 
are 

where x2(8;2r)  is the 1008th chi-square percentile with 2r degrees of 
freedom. Section 2 of Chapter 7 gives examples of such limits for an 
exponential mean. Mann, Schafer, and Singpurwalla (1974, Sec. 6.3) extend 
such limits to the two-parameter exponential distribution. See Chapter 10. 

Normal standard deviation u and lognormal u. The scale parameter of 
the (log) normal distribution is the (log) standard deviation u. Chapter 7 
presents exact and approximate confidence limits for a. Also, (1.1) may be 
used for approximate confidence limits. Chapter 8 presents such confidence 
limits based on maximum likelihood estimates. 
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Extreme value scale parameter 6 and Weibull shape parameter p. Chapter 
7 presents exact confidence limits for the extreme value scale parameter 6. 
In addition, (1.1) can be used for approximate confidence limits. Limits for 
a Weibull shape parameter /3 come from ( I )  calculating confidence limits S 
and ŝ  for the corresponding extreme value scale parameter 6 from the base e 
logs of the Weibull data and then (2) calculating j? = 1/8 and 

Insulating fluid example. Section 4 of Chapter 7 presents an example of 
time to breakdown data of an insulating fluid. Theory for such fluid says 
time to breakdown has an exponential distribution. The breakdown data at 
34 kV yield a transformed BLUE and linear 90% confidence limits for the 
Weibull shape parameter of /3* =0.739, /3 =0.527, and f i  =0.980. The 
interval (barely) does not enclose j? = I ,  -the value for an exponential 
distribution. This suggests that the exponential distribution is suspect. A /3 
below 1 may indicate that the data come from a number of exponential 
distributions, owing to uncontrolled test conditions; Proschan (1963) de- 
scribes such situations. 

For linear confidence limits for the 
scale parameters of other distributions, consult the recent indices by Ross 
and Tukey (1975) and by Joiner and others (1970, 1975). 

Location Parameter 

= 1,’s. 

Other distribution scale parameters. 

Location parameter test. Suppose that a linear estimate p* of a location 
parameter p is to be compared with a specified value po. p* may be from a 
single sample or it may be a pooled estimate from a number of samples, and 
Var(p*)= Au2, where u is the scale parameter. For example, one might wish 
to test that a normal mean has a specified value. I f  a one- or two-sided 
1OOy% confidence interval for the true p encloses po,  then the sample is 
consistent with po at the 100y% confidence level; otherwise, there is a 
statistically significant difference. Also, for a demonstration test, if such a 
one-sided limit is “better” than po,  then po has been demonstrated with 
lOOy% confidence. Such exact and approximate intervals based on p* from 
singly censored samples appear in.Chapter 7. Chapter 8 presents such limits 
based on maximum likelihood estimates. 

If the number r of observed order statistics is large, the t-like statistic 
t = ( p * -  p ) / (  o * A ’ / * )  approximately has a standard normal distribution. So 
linear two-sided approximate IOOy% confidence limits for p are 

where K ,  is the [ 100( 1 + y)/2]th standard normal percentile. To obtain a 
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one-sided limit, replace K ,  by z y ,  the l00yth standard normal percentile, in 
the corresponding formula. These approximate intervals tend to be too 
narrow. Exact limits employ exact values in place of the ( K , A 1 / 2 ) .  

Chapter 7 presents exact and ap- 
proximate confidence limits for p from p* and u*. Also, (1.3) provides 
approximate limits for p.  Confidence limits for the corresponding normal 
mean are calculated from the base 10 logs of the lognormal data as 
described in Chapter 7. No OC curves for corresponding hypothesis tests 
have been developed. 

Extreme value location parameter X and Weibull scale parameter a. 
Chapter 7 presents exact and approximate confidence limits for h and a 
from A* and 6*. Also, (1.3) provides approximate limits for h (and a ) .  
Confidence limits for a Weibull scale parameter a come from (1) calculating 
confidence limits h and r; for the corresponding extreme value location 
parameter h from- the base e logs of the Weibull data and then (2) 
calculating ‘y =exp( & )  and a? =exp( i ) ,  as described.in Chapter 7. 

Other distribution location parameters. For confidence limits for the 
location parameters of other distributions, consult the recent indices by 
Ross and Tukey ( 1975) and by Joiner and others (1970, 1975). 

Percentiles 

Linear confidence limits for a percentile are described in Chapter 7. Such 
limits have the same form as the limits for the location parameter, which is 
also a percentile (50% for the normal and 63.2% for the extreme value). 
However, such limits require a special table for each percentile. Limits 
based on maximum likelihood estimates are referenced in Chapter 8. 

Reliabilities 

Exact linear confidence limits for reliability have been tabulated for the 
(log) normal distribution by Nelson and Schmee (1979) for n =2( 1 ) l O .  
r = 2 (  I)n. Fertig and Mann (1980) tabulate critical values for hypothesis 
tests for Weibull reliability for n =3( 1)18, r =3( I ) n ,  1 - R = 1 X 1 0 - p  and 
5 X 10 - - i ’ ,  p = I (  1)5. They also approximate the OC curve. There are confi- 
dence limits for these and other distributions in Chapter 7. Confidence 
limits and hypothesis tests based on maximum likelihood estimates are 
referenced in Chapters 8 and 12. 

Sample Size 

Sample size n and the observed number r of failures can be chosen 
follows to achieve a desired width for a confidence interval for a population 

Normal mean p and lognormal p.  
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value. Consult a table of factors for the confidence limits, and, for selected n 
and r ,  calculate the (two-sided) interval length, whtch is a multiple of the 
scale parameter u. For a one-sided interval, calculate the half-length, that is, 
the difference between the limit and the true value. Choose n and r that 
yield the desired length. 

2. POOLED ESTIMATE OF A COMMON PARAMETER VALUE 

Often one wishes to use a number of samples to estimate a parameter. In 
particular, the hypothesis tests in following sections employ such pooled 
estimates. This section describes how to calculate pooled estimates and 
confidence limits for such a parameter. This briefly repeats material from 
Chapter 7. 

Pooled estimate. Suppose that Or,. . . , 6 ;  are statistically independent 
BLUEs of 6 .  Also, suppose that their variances can be expressed in terms of 
a common (unknown) scale parameter u as Var(B;)= D,u *,..., Var(e;)= 
D K u 2 ,  where the factors D, are known. Then the pooled BLUE for 6 is 

e* = D [  ( e : p ,  ) + . . . + ( 6; ID, )] , (2.1) 

where 

D = I / [ ( l / D , ) +  . . -  + ( I / D K ) ]  and Var(B*)=Du’. (2.2) 

Before using such a pooled estimate or confidence limits, one should 
check that the samples are consistent with the assumption of a common 6 
value. The hypothesis tests in the following sections provide such checks. 

Confidence limits. Confidence limits for such a parameter are calculated 
from ( I .  1) and (1.3). Such limits use the D value from (2.2). 

Appliance cord example. Table 2.1 shows life data and BLUEs of 
normal parameters from three flex tests, each with 12 appliance cords. Each 
test ended before all cords failed. In the first test, one cord ran to failure at 
176.8 hours; this cord will be treated as censored when the other two cords 
were stopped. So all samples are singly censored, with n = 12 and r = 9. The 
purpose of the analyses is to compare the three tests and two types of cord. 
Probability plots suggest that the normal distribution adequately fits the 
data. Tests 1 and 2 involve the same type of cord and should have the same 
true standard deviation (and mean). The calculation of their pooled estimate 
o.f a normal standard deviation u12 of life is B , ,  = 1/[(1/0.0723)+ 
(1/0.0723)]= 0.03615 and uT2 =0.03615[(35.9/0.0723) + (43.6/0.0723)] = 
39.8 hours. The calculation of their pooled estimate of a normal mean life 
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Table 2.1. 
Test k: 1 2 3 

B7 Cord: - 
Hours: 96.9 57.5 72.4 

Appliance Cord Life and Linear Estimates 

- B6 - B6 

100.3 77.8 78.6 

100.8 88.0 81.2 

103.3 98.4 94.0 

103.4 102. 1 120.1 

105.4 105.3 126.3 

122.6 139.3 1 2 7 . 2  

151.3 143.9 128.7 

162.4 148.0 141.9 

162.7+ 161.1+ 164.1-t 

163.1+ 161.2+ 164.1+ 

176.8 161.2+ 164.1+ 

uc :  132.9 124.0 122.0 

u t  : 35.9 43.6 35.7 

BLUE Coeff's 

-2- U* 

.0360 -.2545 

.0581 -.1487 

.0682 -.lo07 

.0759 -. 0633 

.082 7 -. 0308 

.0888 -. 0007 

.0948 .0286 

. lo06 ,0582 

.3950 .5119 

2 
0 .0926 0 = Var(l.r*) 

2 
0.0723 u = Var(0") 

2 
0 .0152 u = Cov (p:~") 

+ denotes a running time. 

p I 2  is A , ,  = 1/[(1/0.0926)+(1/0.0926)]=0.0463 and pY2 =0.0463[(132.9/ 
0.0926) + ( 124.0/0.0926)] = 128.5 hours. Two-sided approximate 90% confi- 
dence limits for uI2  from (1.1) are 

1/2 3 a,,  -39.8/[ 1 -(0.03615/9)+ 1.645(0.03615/9) ] ~ 2 9 . 2 ,  

d,, -39.8/[ 1 -(0.03615/9)- 1.645(0.03615/9) I / 2  ] 3 =56.1 hours. 

Two-sided approximate 90% confidence limits for p I2  from (1.3) are p l z  = 
128.5-- 1.645(0.0463)'/2 = 114.4 and f i I 2  = 128.5+ 14.1 = 142.6 hours. -Cord 
type B6 was the standard production cord; B7 was proposed as a cost 
improvement. Their comparison appears later. 

3. TWO-SAMPLE COMPARISONS 

This section explains how to use linear methods to compare independent 
samples from two populations. Samples may be compared for equality of 
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location and scale parameters, percentiles, reliabilities, and other quantities. 
This section first presents general methods and then specific results for the 
basic distributions-exponential, normal, lognormal, extreme value, and 
Weibull distributions. Except for the exponential distribution, the OC 
curves (power functions) of most hypothesis tests with singly censored 
samples have not been derived. 

Comparison of Scale Parameters 

Confidence limits for their ratio. For k = I ,  2 ,  suppose that u: is the 
BLUE of the scale parameter uk.  Two-sided 1OOy% confidence limits for the 
ratio p 3 u, /a, are 

P=(a;/oz*)/o*[(l+ Y ) / 2 ] ,  6 =(.:/.:)/u*[(I - Y ) / 2 ] i  (3.1) 

0*(6) is the 1006th percentile of the standardized ratio 

If the confidence interval does not enclose I ,  then u, and u2 differ signifi- 
cantly at the lOO(1- y)W level. (3.1) yields a one sided 100~5% confidence 
limit when y replaces ( 1  + y ) / 2  or 1 - y replaces (1 - y ) / 2 .  The distribution 
of u* depends on the life distribution, the sample sizes, and censoring 
pattern-but not on the parameter values. 

For samples with many failures, an approximation is 

p +:/a; ) / F [ (  1 + Y ) / 2 ;  2 / 4 . 2 / 4 ]  7 

P +:/u: 1. F[(I + Y ) / 2 ;  2 / B ,  2/41 3 

(3.3) 

where Var(u:)= B,uZ and F(6;  a; b )  is the 1006th F percentile with a 
degrees of freedom above and b below. 2 / B ,  and 2 / B 2  are usually not 
integers; note that they are reversed in the lower and upper limits. 

Exponential means. Suppose that 6: and 0; are BLUES for 6 ,  and O2 
and are based on the first r ,  and r2 order statistics. Two-sided exact 100~5% 
confidence limits for p = 6 ,  / O ,  are 

(3.4) 

where F(S;  a, b )  is the 1006 th F percentile with a degrees of freedom above 
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and h below. Note that the degrees of freedom are reversed in the two limits. 
To get a one-sided lOOy% limit, replace (1 + y)/2 by y. See Chapter 10. 

Normal standard deviations a,, and lognormal a,. The scale parameter of 
the normal distribution is the standard deviation u. There are no exact 
tables of L'*. (3.3) may be used for approximate confidence limits. For 
lognormal u l ,  work with the log data, and use the methods for the normal 
distribution. 

Appliance cord example. Table 2.1 shows life data from three tests of 
appliance cords. The first and second tests involve the same type of cord. 
The test is used to check whether the two samples are consistent with the 
assumption of a common normal standard deviation. Linear approximate 
90% confidence limits (3.4) for p = u ,  /u2 are 

p =( 35.9/43.6)/F[ ( 1 + 0.90)/2; 2/0.0723,2/0.0723] =0.436, 

6 435 .9 /43 .6) .F[ (  1 +0.90)/2;2/0.0723,2/0.0723] = 1.56. 

This interval encloses 1; so the two standard deviations do not differ 
significantly. From Section 2, the pooled estimate is ar2 =39.8 hours and 
B , 2  =0.03615. 

The same method is used to check whether the two types of cords have 
the same standard deviation. Approximate 90% confidence limits for p = 

fJ I 2  /a3 are 

p -(39.8/43.6).F[( 1 +0.90)/2;2/0.03615,2/0.0723] = 1.63 

This interval encloses 1; so the standard deviations of the two types of cords 
do not differ significantly. 

Extreme value scale parameter and Weibull shape parameter. There are 
n o  tables of the distribution of the ratio S;C/ST of BLUES of extreme value 
scale parameters. So (3.3) must be used for approximate confidence limits. 
For Weibull shape parameters P A ,  use the base e logs c f  the data, and use 
the confidence limits (3.3) for the ratio of extreme value scale parameters. 
Then p = 6 ,  /S, = /Iz //I,, where the subscripts are reversed. Chapter 12 
describes exact tables for the ratio 8, /& of maximum likelihood estimators. 

Section 4 of Chapter 7 presents an example of 
time to breakdown data of an insulating fluid. Theory for such fluid says 

Insulating fluid example. 
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that the Weibull shape parameter has the same value at all test voltages. For 
34 kV, the BLUE for the corresponding extreme value scale parameter is 
S:, = 1.353 calculated from the log data. For 36 kV, S:, = 1.154. Also, 
Var( S:,)= 0.03502 S:, and Var( 6:6)=0.04534 Si6. Linear approximate two- 
sided 90% confidence limits for p = 6,, /aj6 are 

p =( l.353/1.154)/F[( 1 +0.90)/2;2/0.04534,2/0.03502] ~ 0 . 7 3 3 ,  

~~(1.353/1.154)~F[(l+0.90)/2;2/0.03502,2/0.04534]= 1.91 

These are the limits for the inverted ratio &6/&4 of Weibull shape 
parameters. These limits enclose I ,  so &, and &6 do not differ significantly, 
consistent with theory. 

Comparison of Location Parameters and Percentiles 

For k = 1, 2,  suppose that the 
BLUE of a percentiley, isy,*, and the BLUE of the scale parameter uk is a,*. 
The location parameter is a particular percentile of a distribution. Suppose 
that u* is the pooled BLUE (Section 2 ) .  Assuming that u, = u2, two-sided 
1OOy% confidence limits for A = y ,  - y,  are 

Confidence limits for their difference. 

d * ( ~ )  is the I O O E t h  percentile of the standardized difference 

d * = ( y : - J J : ) / U * .  (3.6) 

See (5.13) of Chapter 10. I f  the confidence interval does not enclose 0, then 
y ,  and yz  differ significantly at the loo( 1 - y ) %  level. (3.5) yields a one-sided 
100~5% confidence limit when y replaces (1 + y ) / 2  or 1 - y replaces ( 1  - 
y)/2. Generally, d*( E ) #  - d*( 1 - E ) .  

If there are no tables of d*,  then, for samples with many failures, 

d * ( ~ ) = z , ( D , +  Dz)”2 ,  (3.7) 

where Var(ji,*)= D,uz and z ,  is the lOOeth standard normal percentile. D, 
depends on the sample size, censoring, and the percentile. These approxi- 
mate d* percentiles tend to yield confidence intervals that are too short. 

There are no exact tables of the 
statistic d* =(p; - pS)/u* of BLUES of normal parameters. (3.5) and (3.7) 

Normal means p k  and lognormal p k .  
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may be used for approximate confidence limits for p ,  - p , .  A ur lognormal 
data, work with the base (10) logs of the data. 

Appliance cord example. Table 2.1 shows life data from three tests of 
appliance cords. The preceding test is used to compare samples 1 and 2 
(cord B6) with respect to means, which should be equal. Calculated above, 
the pooled estimate is a:, ~ 3 9 . 8  hours. Approximate 90% confidence limits 
are A,, =(132.9- 124.0)- 1.645(0.0463+0.0463)'/*39.8= - 11.0 and A, ,  = 
8.9- ( -  1.645)0.3043(39.8)=28.8 hours. These limits enclose zero; so the 
two means do not differ significantly. 

The same method is used to check whether cords B6 and B7 have the 
same mean. The calculation of the pooled estimate of the standard deviation 
is B = 1/[(1/0.03615)+(1/0.0723)]=0.0482 and 0*=0.0482[(39.8/0.03615) 
+(35.7/0.0723)]= 38.4 hours. Approximate 90% confidence limits are A = 
( 128.5 - 122.0) - 1.64540.0463 +0.0926)'1238.4 = - 15.0 and A = 6.5 + 2 1 .j = 
28.0 hours. These limits enclose zero; so the means of the two cords do not 
differ significantly. 

Extreme value location parameters A, and Weibull scale parameters a,. 
There are no tables of the t-like statistic d* =( A: - hr)/6* of BLUEs of 
extreme value parameters. So (3.5) and (3.7) must be used for approximate 
limits. Work with the (base e )  logs of Weibull data; then A, ~In(cx,). 
Chapter 12 describes exact tables for the t-like statistic d =( A ,  - X,)/6 of 
maximum likelihood estimators. 

Insulating fluid example. Section 4 of Chapter 7 presents an example of 
time to breakdown data of an insulating fluid. Theory for such fluid says 
that the Weibull scale parameter decreases with increasing test voltage. The 
preceding test is used to compare the samples at 34 and 36 kV with respect 
to Weibull scale parameters. The BLUEs are A f 4  =2.531 and hf6 = 1.473, 
where Var( hS,)=0.0589062 and Var( h~,)=0.074816*, and the pooled scale 
parameter estimate for all voltages is 6* = 1.348. Approximate 90% confi- 
dence limits are A =(2.531- 1.473): 1.645(0.05890+0.07481)'~21.348= 
0.247 and A = 1.058+0.811 = 1.869. These limits do not enclose 0. So the 
two Weibull scale parameters differ significantly at the 10% level, consistent 
with theory. 

Comparison of Reliabilities 

Under the assumption of unequal scale parameters. there are no tables for 
linear comparisons of two samples for equality of reliabilities. The usual 
procedure is to assume equality of the scale parameters and to test for 
equality of the location parameters. If they do not differ significantly, the 
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reliabilities are regarded equal. This method is not the same as a direct 
comparison of reliabilities. Chapter 12 references some tables for such direct 
comparisons based on maximum likelihood estimates. 

Sample Size 

The sizes n k  and the numbers rk of failures of the two samples can be chosen 
to achieve a desired width for a confidence interval for the difference (or 
ratio) of two population values. Consult a table of factors for the confidence 
limits, and, for selected n k  and r k ,  calculate the (two-sided) interval length, 
which may be a multiple of the scale parameter. For a one-sided interval, 
calculate the half-length, that is, the difference between the limit and the 
true difference. Choose n, and rk that yield the desired length. Approximate 
formulas for confidence limits may be used. 

4. K -SAMPLE COMPARISONS 

This section shows how to compare K samples with respect to population 
location and scale parameters. The linear methods include ( I )  tests for 
equality of parameters by “analysis of variance” and (2) simultaneous 
confidence limits to compare all pairs of parameters. Suppose that 8; ,  . . . , O i  
are statistically independent BLUES for O , ,  . . ., 8,. which may be percentiles, 
location parameters, or scale parameters. Var( 8 ; )  = Dkuz for k = I , .  . . , K ,  
where the D, are known and u is the unknown common scale parameter. 

Test of Homogeneity 

Hypothesis test. The following tests the homogeneity (equality) hypothesis 
that 8, = . . . = 8, against the alternative that some 8, # ah.. As in analysis 
of variance, the quadratic test statistic is 

(4.1) 

where 8* and u* are the pooled estimates (2.1) for the common O and u. I f  
the equality hypothesis is true, the distribution of Q is approximately chi 
square with K - 1 degrees of freedom. If the alternative is true, Q tends to 
have larger values. So the test is 

1. 
2. 

at the lOOa% significance level. Here x2(1 - a;  K - 1) is the 100( I - a)th 

If Q G x2( 1 - a;  K - I ) ,  accept the equality hypothesis. 
If Q > x2( 1 - a ;  K - 1). reject the equality hypothesis 
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chi-square percentile with K - 1 degrees of freedom. The chi-square ap- 
proximation is more precise the larger the observed number of failures in 
each sample. 

If Q is statistically significant, examine the individual 13; to see how they 
differ. Individual confidence limits for the 8, aid the examination. particu- 
larly if plotted side by side. 

The above test applies to location and scale parameters and to percentiles. 
But to compare scale parameters, i t  is better to use B,*=ln(a:) in (4.1). 
Then eliminate a*2 from Q. The resulting Q is used the same way. 

Exponential means. There are no tables of the Q statistic (4.1) based on 
BLUEs of exponential means. So the above approximate test must be used, 
and one can work with In(O,*), since the exponential mean is a scale 
parameter. Also, Bartlett’s test (4.6) in Chapter 10 can be used; then one 
uses the number rk of failures in place of the sample size n k .  

Normal and lognormal parameters. There are no tables of the Q statistic 
(4.1) based on BLUEs of normal means or standard deviations. So the 
chi-square approximation must be used. For lognormal data, work with the 
(base 10) logs of data. 

Appliance cord example. Table 2.1 shows life data from three tests of 
appliance cords. The preceding test is used to compare the standard 
deviations of the three tests. The log estimates are B r  =In(35.9)=3.581, 
8: =ln(43.6)= 3.775, and 8: =In(35.7)=3.575, and their variance factors 
are B ,  = B, = B, =0.0723. The calculation of the pooled estimate (2.1) is 
B = 1 /[( 1 /0.0723) + (1 /0.0723) + ( 1  /0.0723)] = 0.0241 and 8* = 
0.0241[(3.581/0.0723)+ (3.775/0.0723) +(3.575/0.0723)] = 3.6437. Then Q 

/0.0723] = 0.358. This is less than the corresponding 90th chi-square per- 
centile ~ ~ ( 0 . 9 0 ;  3- 1)=4.605. So the three standard deviations do not differ 
significaritly, and i t  is reasonable to pool the three estimates. 

The preceding test is also used to compare the means of the three tests. 
The BLUEs are p: = 132.9, p: = 124.0, and p: = 122.0 and their variance 
factors are A ,  = A ,  = A ,  =0.0926. The calculation of the pooled estimate is 
A = 1 /[( 1 /0.0926 j + ( 1  /0.0926) + (1/0.0926)] = 0.03087 and p* = 0.03087 
[( 132.9/0.0926) + ( l24.0/0.0926) + (122.0/0.0926)] = 126.3 hours. Also, u* 
= 38.4 hours. Then Q = {[( 132.9 - 126.3)*/0.0926] + [(124.0 - 
126.3)2/0.0926] + [( 122.0 - 126.3)2/0.0926])/(38.4)2 10.493. This is less 
than the corresponding 90th chi-square percentile ~ ~ ( 0 . 9 0 ;  3 - l)=4.605. So 
the three means do not differ significantly, and the proposed cord appears 
comparable to the standard one. 

=[(3.58 1 - 3.6437)2/0.0723] + [(3.775 - 3.6437)2/0.0723] +[(3.575 - 3.6437)’ 
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Overall, the three tests are comparable. A more correct combined test for 
equality of the three distributions would simultaneously test for equality of 
the means and of the standard deviations. Such a Q statistic would take into 
account the correlation between p ;  and a:. Chapter 12 gives such a test 
based on maximum likelihood. 

Weibull and extreme value parameters. There are no tables of the Q 
statistic (4.1) based on BLUEs of extreme value location or scale parame- 
ters. So the above approximate test must be used. For Weibull data. work 
with the (base e )  logs of the data and the corresponding extreme value 
distributions. 

Insulating fluid example. Section 4 of Chapter 7 presents time to break- 
down data on an insulating fluid at different voltages. Theory for such fluid 
says that the Weibull shape parameter of the distribution of time to 
breakdown has the same value for the K =7 voltages. For the log shape 
parameter estimates, (4.1) yields Q =KO2 with 7- 1 = 6  degrees of freedom. 
Q is less than x2(0.95;6)= 12.6. So the shape parameters do not differ 
significantly, consistent with theory. 

Simultaneous Pairwise Comparisons 

All pairwise limits. For K parameters O , ,  . . . , O K ,  there are K(  K - 1)/2 
pairs of differences OL - 0,. or ratios O , / O , . .  Simultaneous IOOy% confi- 
dence limits enclose all true differences (or ratios) with probability y. I f  such 
limits for a difference (ratio) do not enclose zero (one), there is a wholly 
significant difference between those two parameters. For a given y, the 
simultaneous limits are wider than the limits for a single difference or ratio. 
The following gives approximate simultaneous limits based on BLUEs and 
singly censored samples. 

Tables for exact simultaneous confidence limits from BLUEs exist only 
for exponential means. Section 4 of Chapter 10 describes these tables; they 
apply only to samples with the same number r of observed order statistics. 

Suppose that a;, . . . , u i  are 
independent BLUEs for scale parameters u , .  . . . , u K .  and Var( a;) = 
B,a:,  . . . ,Var( a:)= B,ai. Simultaneous linear two-sided approximate 
IOOy% confidence limits for all ratios of pairs of scale parameters ( k .  
h ' = l ,  ..., K )  are 

Simultaneous limits for scale parameters. 
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where y’= 1 -( 1 - y ) K  -~ ’( K - 1)- ’ and F( y’; a ,  6) is the 100y’th F per- 
centile with a degrees of freedom above and b below. Note that f?, and B, 
are reversed in the lower and upper limits. These limits are the individual 
limits (3.1) evaluated for y’. (4.2) gives one-sided simultaneous limits if 
y ’= 1 -2(1- y ) K  I (  K - l)-’ .  If the limits (3.1) are exact, rather than 
approximate, the simultaneous limits enclose all true ratios with a probabil- 
ity of at least y .  The probability is close to y when K is small and y is near 1. 
If such an interval does not enclose 1, those two scale parameters have a 
wholly significant difference. 

Section 4 of Chapter 10 references tables of exact factors for such 
exponential means when all samples have the same number r of failures. 
Then r replaces the sample size n in (4.8) of Chapter 10. McCool (1975b) 
tabulates exact factors for such limits for Weibull shape parameters; they 
apply to ML estimates from samples with the same size and the same single 
censoring as described in Chapter 12. 

Appliance cord example. Table 2.1 shows life data from three tests of 
appliance cords. The simultaneous intervals above are used to compare the 
three tests for equality of the normal standard deviations of life. For 
example, for linear two-sided approximate 90% simultaneous limits the 
calculation of the lower limit for uI/u2 is y’= 1 -(1-0.90)3-’(3- l ) - ’  = 
0.9833 and (35.9/43.6)/F(0.9833; 2/0.0723,2/0.0723) = 1.93. The limits are 
in Table 4.1. All intervals enclose 1. So the three standard deviations do not 
differ wholly significantly. 

Simultaneous limits for location parameters and percentiles. Suppose 
that y: is the BLUE for a percentile y ,  for k = 1, ..., K .  Also, suppose u* is 
the pooled BLUE for a common scale parameter and is based on samples k 
and k ’  or on all K independent samples. Simultaneous linear two-sided 
lOOy% confidence limits for all differences A k k r  = y ,  - y,, are 

Table 4.1. Ratios of Standard Deviations and Simultaneous 
Limits for Appliance Cords 

Ratio Estimate ___ Lower Upper 

90% Limits 

0.913 0.390 1.93 

1.22 0.523 2.86 

0.994 0.425 2.33 

‘ P 2  

‘2“3 

‘3’“l 
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Table 4.2. 
Appliance Cords 

Differences of Means and Simultaneous Limits for 

90% L i m i t s  

D i f f e r e n c e  E s t i m a t e  Lower Upper 

8.9 - 2 6 . 4  4 4 . 2  

2 . 0  - 3 3 . 3  3 7 . 3  

-10.9 - 4 6 . 2  2 4 . 4  

%-P2 

'2-'3 

'3-'1 

q*(y) is the lOOyth percentile of the maximum absolute standardized 
difference 

If such an interval does not enclose 0. those two percentiles have a wholly 
significant difference. 

There are no tables of 4*. Simultaneous two-sided approximate limits are 
given by (3.5), but ( l + y ) / 2  is replaced by y ' = l - ( l - y ) K  - ' ( K - l ) - ' .  
Such limits with exact d*( y') enclose all true differences with a probability 
of at  least y. The probability is close to y when K is small and y is near 1. 
Chapter 12 references such exact tables for simultaneous limits based on 
maximum likelihood estimates. 

Appliance cord example. Table 2.1 shows life data from three tests of 
appliance cords. The simultaneous intervals above are used to compare the 
three tests for equality of normal mean life. (J* = 38.4 hours is the overall 
pooled estimate. (4.3) provides simultaneous linear two-sided approximate 
90% confidence limits. For example, for p l  - p 2 ,  y ' = l  - ( I  -0.90)3-' 
(3- 1 ) - '  =0.9833, and A 1 2  =(132.9- 124.0)- ~,,,,(0.0926+0.0926)'/~38.4 
= -26.4 hours. Table 412 shows all limits. All intervals enclose 0. So the 
three means d o  not differ wholly significantly. Exact intervals would be 
wider than these approximate ones. Thus the data are consistent with the 
assumptions that the tests and the cords are comparable. 

PROBLEMS 

11.1. Insulating fluid. The table below shows estimates of the parame- 
ters of the extreme value distributions of In time to breakdown of an  
insulating fluid at seven voltage stresses. The following analyses assess the 
equality of the seven extreme value scale parameters (Weibull shape), which 
are equal according to engineering theory. 
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(a) Calculate the pooled estimate of the extreme value scale parameter. 
(b) Calculate the quadratic test statistic (4.1), using the scale parameter 

estimates. How many degrees of freedom does i t  have? Look up the 90 
and 95% points of the corresponding chi-square distribution. Do the 
seven estimates differ statistically significantly? I f  so, how? 

(c) How good is the chi-square approximation? 
(d)  Calculate the quadratic test statistic (4.1), using the In estimates of 

the scale parameters and omitting the pooled scale parameter estimate 
from the denominator of (4.1). How many degrees of freedom does this 
statistic have? Look up the 90 and 95% points of the corresponding 
chi-square distribution. Do the seven estimates differ statistically signifi- 
cantly? If  so, how? 

(e) How good is this chi-square approximation? 
( f )  Would you expect the two test statistics to be roughly equal or not? 

Why? 

k 1 2 3 4 5 6 7 

A: 7.125 5.957 4.373 3.310 2.531 1.473 0.0542 
ST 2.345 1.224 0.987 1.898 1.353 1.154 0.836 
A ,  0.4029 0.2314 0.1025 0.0748 0.0589 0.0748 0.1420 
B ,  0.3447 0.1667 0.0642 0.0453 0.0350 0.0453 0.0929 

t l ,  3 5 1 1  15 19 15 8 

C, -0.0248 -0.0340 -0.0203 -0.0156 -0.0126 -0.0156 -0.0261 

11.2. Appliance cord. Use the Weibull distribution for the following 

Make separate Weibull plots of the data from the three tests and 
compare them visually for equality of the distributions. Are the distribu- 
tions the same? Does the Weibull distribution f i t  adequately? 

Pool the data from the two tests on cord type B6 and make a 
Weibull plot. How does this plot compare with that for B7 cord? 

For each test, calculate the BLUES for the corresponding extreme 
value parameters and give the variance and covariance factors. 

Calculate two-sided approximate 95% confidence limits for the 
ratio of the Weibull shape parameters for tests 1 and 2. Are the data 
consistent with the assumption that the two true shape parameters are 
equal? 

(e) Calculate a pooled estimate of the common extreme value scale 
parameter for cord type B6, and calculate its variance factor. 

analyses of the appliance cord data in Table 2. I .  

( a )  

(b)  

(c) 

(d) 
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(f) Calculate two-sided approximate 95% confidence limits for the 
ratio of the shape parameters for cords B6 and B7. Are the data 
consistent with the assumption that the true shape parameters of the two 
types of cords are equal? 

(8) Calculate two-sided approximate 95% confidence limits for the 
difference between the extreme value location parameters for tests 1 and 
2, using the pooled estimate of the extreme value scale parameter from 
(e). Give the interval for the corresponding Weibull scale parameters. Are 
the data consistent with the assumption that tests 1 and 2 have equal 
Weibull scale parameters? 

(h) Repeat (8) for cords B6 and B7, using the pooled estimate of the 
common extreme value scale parameter for all three tests. 

(i) Perform the test of homogeneity for the three extreme value scale 
parameters and state conclusions. 

0') Do (i) for the three extreme value location parameters. 
(k) Calculate simultaneous (approximate) 90% confidence limits for 

all ratios of pairs of the three Weibull shape parameters, and state 
conclusions. 

Do ( k )  for all ratios of pairs of the three Weibull scale parameters. 
Explain why the analyses using the normal and Weibull distribu- 

( I )  
(m) 

tions yield the same conclusions. 



12 
Maximum Likelihood 
Comparisons (Multiply 
Censored and Other Data) 

This advanced chapter presents maximum likelihood (ML) methods for 
comparing samples. The topics include comparison of ( I )  a sample with a 
given distribution, (2) two samples, and (3)  K samples. Other topics are 
pooled estimates for a parameter from a number of samples and advanced 
methods and theory for likelihood ratio tests. Needed background is in 
Chapter 10 on comparisons and in Chapter 8 on ML estimation. One can 
use the methods in this section without fully understanding their theoretical 
basis i f  one has a special computer program for the laborious calculations. 
Such programs include CENSOR of Meeker and Duke (1979), STATPAC 
of Nelson and Hendrickson (1972) and Nelson and others (1978). MLP of 
Ross and others (1976), CENS of Hahn and Miller (1968), and SL'RVREG 
of Preston and Clarkson (1980). Readers may wish to develop their own 
programs. 

ML methods are versatile; they apply to most distributions and statistical 
models and to most types of data, including multiply censored, interval, and 
quantal-response data. In particular, available comparisons for multiply 
censored data employ ML methods. A disadvantage is that most M L  
methods require special computer programs. Also, many tables needed for 
exact ML confidence limits and hypothesis tests have not been developed. 
So approximate limits and tests are given below. 

522 
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The ML methods for comparing distributions are applied to the exponen- 
tial, normal, and extreme value distributions. The methods for normal data 
apply to the logs of lognormal data, and the methods for extreme value data 
apply to the (base e )  logs of Weibull data. The relationships between these 
pairs of distributions are explained in Chapter 2. 

Tables for exact ML confidence limits and hypothesis tests are strictly 
correct only for failure (Type 11) censored samples. In practice, the tables 
often provide adequate approximations for time (Type I )  censored data. 

General methods and theory in this section are explained in terms of 
distributions with two parameters a and p. However, they extend to 
distributions with any number of parameters and to regression models 
where the distribution parameters are functions of independent variables 
and coefficients to be estimated from the data. For sample k ,  the ML 
estimates are bk and bk ,  and the maximum value of the sample log 
likelihood is p,. Also, an estimate of the Fisher information matrix is Fk, 
and an estimate of the covariance matrix of ai, and B, is e,. Chapter 8 
describes the calculation of these estimates. 

Multiply censored samples can be subjectively compared with hazard 
plots (Chapter 4). Singly censored and complete samples can be compared 
with probability plots (Chapter 3). A combination of such graphical meth- 
ods and the ML methods presented here is usually most effective. 

Nonparametric comparisons of multiply censored data are presented by 
Lawless (1982, Chap. S), Kalbfleisch and Prentice (1980), Gross and Clark 
( 1975), Elandt-Johnson and Johnson ( 1980), and Miller ( 198 1 ), with bio- 
medical applications. 

1. ONE-SAMPLE COMPARISONS 

One often wants to assess whether a sample surpasses (demonstration test) 
or is consistent with (hypothesis test) a specified value of a distribution 
parameter, percentile, reliability, or other quantity. For example, a reliabil- 
ity demonstration test for an exponential distribution may assess whether a 
product failure rate is below a specified value. This section describes 
hypothesis tests, confidence limits, and likelihood ratio tests for such 
comparisons. Essential background for this section is corresponding material 
in Chapter 8. 

Comparisons can employ M L  confidence limits de- 
scribed in Chapter 8. In particular, i f  a 10Oy% confidence interval encloses 
the specified parameter value, the sample is consistent with that value. Also, 

Confidence limits. 
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i f  a one-sided confidence limit surpasses a specified value, the specified value 
is demonstrated. Chapter 8 gives examples of such comparisons. Also, 
Chapter 8 references exact tables for such intervals from singly censored 
and complete samples. Sample size can be chosen as described in Chapter 8 
to achieve a confidence interval of desired length. 

Hypothesis tests emploj ing ML estimates. Various authors have pre- 
sented one-sample hypothesis tests based on ML estimates from censored 
data. For example, Spurrier and Wei (1980) give necessary tables for singly 
censored tests for an  exponential mean and corresponding OC curves. 
Consult the references of Chapter 8 for such tests for particular distribu- 
tions. 

Suppose that the specified value of the parameter 8 
is O0. Suppose that the equality hypothesis is B = 8, and the alternative 
hypothesis is 8 f 0 , .  Let f (8,) denote the maximum value of the sample log 
likelihood when 8 equals the specified value 8,. Also, let E(8) denote the 
maximum value of the sample log likelihood where 8 is the ML estimate of 
8. Both likelihoods may depend on other parameters and are maximized 
with respect to them. The log likelihood ratio test statistic is 

Likelihood ratio test. 

T = 2 [ ? ( 8  ) - f ( O 0 ) ] .  (1.1) 

I f  the alternative is true, T tends to have larger values. So the test is 

1. I f  T G  I ,  u ,  accept the equality hypothesis. 
2. I f  T >  t ,  a ,  reject the equality hypothesis 

at the 100a% significance level. Here t ,  ~u is the lOO(1-  a ) th  percentile of 
the distribution of T when 6 = Bo. Often f ,  - - a  is not known, but a chi-square 
approximation applies to large samples with many observed failures. Then 
I ,  ~ =x'( 1 - a,  I ) ,  the 100( 1 - a ) t h  chi-square percentile with one degree of 
freedom. Note that this is a two-sided test. Often the test can be made one 
sided by using 2a in place of a and rejecting only if  d is above (below) 8,. 
The two B,, values for which T =  x2( 1 - a, 1 )  are two sided (approximate) 
100( 1 ~- a ) %  confidence limits for the true 8. 

Section 5 of Chapter 7 presents an example of 
time to breakdown data on an insulating field. Theory for such fluid says 
that time to breakdown has an exponential distribution, that is, a Weibull 
distribution with a shape parameter of I .  Seven Weibull distributions with a 
common p were M L  fitted to the data from the seven test voltages. The M L  
method of estimating a common parameter is explained in the next section. 

Insulating fluid example. 
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The ML estimate of the common shape parameter is 8=0.799, and the 
corresponding maximum log likelihood for that model is l?( f i ) =  - 299.65. 
For the model with seven exponential distributions (Po = l ) ,  the maximum 
log likelihoodis P ( l ) =  -303.10. Since T =2[-299.65-(-303.10)]=6.90 ex- 
ceeds x2(0.99,1)=6.635, /3 =0.779 is significantly below 1. So the distribu- 
tions are not exponential, or the low shape parameter may come from 
experimental conditions that are not constant. 

2. POOLED ESTIMATE OF A COMMON PARAMETER VALUE 

Often one wishes to use a number of samples to estimate a parameter. In 
particular, the hypothesis tests in the following sections employ such pooled 
estimates. This section describes two pooled estimates and confidence limits 
for such a parameter: ( 1 )  the linearly pooled estimate and (2) the ML 
pooled estimate. A linearly pooled estimate is easier to calculate; a ML 
pooled estimate generally requires a special computer program. 

Linearly pooled estimates. Suppose that 8 , .  . . . , lK are statistically inde- 
pendent ML estimates of 8. Also, suppose that their (asymptotic) variances 
are Vl...., VK.  Then the linearly pooled estimate for 8 is 

where 

V = l / [ ( l / V , ) +  . . .  +( l /V, ) ] .  

The V, are often unknown and must be estimated from the data as 
described in Chapter 8. Most ML estimators are biased; so 8* is usually a 
biased estimator. However, when each 8, comes from a large number of 
observed failure times, the cumulative distribution of 8* is close to a normal 
one with a mean of 8 and a variance V.  Then d* is approximately unbiased. 
Sometimes dk is a transformed ML estimate, for example, the (base e )  log of 
a scale parameter or a ML estimate multiplied by an unbirlsing factor. 

Usually each ek comes from a separate sample. Then a computer program 
for ML fitting can fit the distribution separately to each sample to get each 
d k .  This is an advantage, since i t  is difficult to find computer programs that 
directly calculate a pooled ML estimate as described below. 

Before using such a pooled estimate or confidence limits, one should 
check that the sampled populations do  not have significantly different 0 
values. The hypothesis tests in following sections provide such checks. 
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Confidence limits. Two-sided approximate lOOy % confidence limits for 
0 are 

where K ,  is the [ 100( 1 + y)/2]th standard normal percentile. The limits are 
more accurate the larger the number of observed failure times. Except for 
the exponential distribution (Chapter 8), there are no tables for exact 
confidence limits from pooled censored samples. 

Section 5 of Chapter 7 presents time to break- 
down data on an insulating fluid. Table 2.1 shows the logs of the ML 
estimates p, of the shape parameters of the seven samples and the sample 
sizes n,. For large samples, the log estimates dA =In(b,) from complete 
samples have Vk =00.6079/n,. So, for e*=ln(b*), V-0.6079/n, where n = 
n I + . . . + n K ,  In( B*) = &[3( -0.606621) + . . . + 8(0.309688)] = 
-0.199447. The pooled estimate of the shape parameter is s*= 
exp( - 0.199447) = 0.8 19. Two-sided approximate 95% confidence limits for 
In( 8) are In(P)- -0.199447- 1.960(0.6079/76)'/'= -0.374740 and ln(B) 
= -0.024154: Such limits for P are p =exp( -0.374740)=0.687 and = 
0.976, and the parameter differs significantly from 1. The large-sample 
theory may be crude, since the smallest sample size is 3; so the conclusion 
should be tentative, since B is close to I .  

ML pooled estimate. Suppose that l? , (aI ,PI) , . . . ,  C K ( a K . P K )  are the log 
likelihoods of K statistically independent samples. Then the log likelihood 
of the combined samples is 

Insulating fluid example. 

and 

Table 2.1. 
Parameters of Insulating Fluid 

ML Estimates of Shape 

nk ln(^Bk) - Voltage 

26 3 -0.606621 

28 5 -0.215485 

30 11 0.057146 

32 15 -0.57 7 306 

34 1 9  -0.260297 

36 15 -0.117436 

38 8 0.309688 
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Chapters 8 and 9 give formulas for such log likelihoods for various distribu- 
tions and types of data. If some parameters have the same value, then they 
are set equal in the log likelihood. For example, if all of the P k  are equal to a 
common value f i ,  the log likelihood is 

fB(  a , ,  . . . , a K ,  P ) = f , ( a,, P ) + . . . + f K  ( aK , P 1. (2.5) 

The ML estimates of the parameters in such a model are the values that 
maximize the corresponding log likelihood. For example, for the model with 
all P,, equal, the ML estimates of aI , .  . . , aK, P are the parameter values that 
maximize (2.5). For a set of data, the ML estimates of ak under a general 
model like (2.4) generally differ from those under a model with equal Pk 
parameters like (2.5). Also, the calculation of the ML estimates for (2.5) 
usually requires a special computer program such as those of Nelson and 
others (l978), Hahn and Miller (1968), and Meeker and Duke (1979). Such 
programs differ from the more available ones that ML fit a single distribu- 
tion to a set of data. 

Confidence limits. The general ML methods and theory from Chapter 8 
apply to the model with equal parameter values. The theory gives the Fisher 
information matrix, the covariance matrix of the ML estimators, and 
approximate confidence limits. 

Insulating fluid example. For the previous example, the pooled ML 
estimate of the common Weibull shape parameter is B =0.7994; this differs 
slightly from the linearly pooled estimate B* =0.8 19. The corresponding 
scale parameter estimates are GZ6 = 1174, tiZ8 =349.9, G,, = 104.7, = 
68.8 1, GL,4 = 38.88, G,, = 12.41, &38 = 1.85 1 ; these differ slightly from the scale 
parameter estimates from fitting a separate Weibull distribution (and shape 
parameter value) to the data from each test voltage. The maximum log 
likelihood is pp = - 299.65. The local estimate of the large-sample variance 
of B is var( p )  = 0.005 18 1. Ths yields positive two-sided approximate 95% 
confidence limits P =0.7994/exp[ 1.960(0.005 18 1)'/*/0.7994]=0.670 and B 
=0.954. These l i h t s  do not enclose 1. So as before, P is significantly 
different from 1, and the distribution is not exponential. Section 4 gives a 
test that the seven test voltages have a common P. 

3. TWO-SAMPLE COMPARISONS 

This section explains how to use ML methods to compare independent 
samples from two populations. Samples may be compared for equality of 
distribution parameters, percentiles, reliabilities, and other quantities. This 
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section first presents general methods and then specific results for the basic 
distributions-exponential, normal, lognormal, extreme value, and Weibull 
distributions. Except for the exponential distribution, the OC curves (power 
functions) of most hypothesis tests for singly and multiply censored samples 
have not been derived. Sections 4 and 5 on K-sample comparisons give 
added methods that also apply to two-sample comparisons. 

Comparison of Scale Parameters 

For k = 1,2, suppose that Gk is the ML estimator of 
the scale parameter uk .  Two-sided lOOy% confidence limits for the ratio 
p = u1/u2 are 

Confidence limits. 

where O ( E )  is the lOOEth percentile of the standardized ratio 

6( E )  depends on sample sizes and censorings. I f  the confidence interval does 
not enclose 1,  then uI and uz differ significantly at the 100( 1 - y ) %  level. 
(3.1) yields a one-sided lOOy% confidence limit when y replaces (1 + y ) / 2  
or ( 1  - y )  replaces (1 - y)/2.  

There are tables of a (&)  for certain distributions and failure censored 
samples; they are described below. For samples with many failures, 

a(e)=exp[r , (B,  + B,)’”], (3.3) 

where Var(8,)= B,a; and z ,  is the IOOEth standard normal percentile. B ,  
depends on the sample size and censoring. If the B, are not known, use 
B, =var(8,)/8?, where var(8,) is an estimate of Var(6,) as described in 
Chapter 8. Var( 6,) here may be either the true or asymptotic variance. 

One may wish to prechoose sample sizes and observed 
numbers of failures so a (two-sided) interval has a desired length. Equation 
(3.3) or tables of exact factors for confidence limits can be used to calculate 
interval lengths for trial sample sizes and numbers of failures. 

The ML estimate 4, of an exponential mean is 
identical to the BLUE 6; for multiply failure censored samples. So the exact 
confidence limits in Section 3 of Chapter 1 1  apply. 

Normal standard deviations uk and lognormal uk. Exact confidence limits 
for the ratio u l  /a2 have not been derived for censored data. So (3.3) must be 

Sample size. 

Exponential means. 
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used for approximate confidence limits. For lognormal uk ,  work with the 
base 10 logs of the data, and use the methods for normal ok.  

Snubber example. Table 3.1 shows multiply censored life test data on 
two snubber designs, a toaster component. The data are the number of 
toaster cycles (operations) to snubber failure (the toaster pops and throws 
the toast out). The basic question is, “How do the two normal life distribu- 
tions compare?” The limits (3.1) compare the standard deviations. The ML 
estimates for the old and new designs are 6, = 546.0 and 6, = 362.5 cycles. 
The local estimates of their variances are var( 8,) = 9905 and var( 8,) = 4023; 
so B, ~9905/(546.0)~ =0.0332 and B ,  =4023/(362.5)* =0.0306. Two-sided 
approximate 95% confidence limits for p = uo/a, are p -(546.0/362.5) 
/exp[ 1.960(0.0332 +O.O306p”] =0.92 and f i  = 2.48. The limits enclose 1 ; so 
the standard deviations do not differ significantly. See Figure 3.4 of Chapter 
5 for hazard plots of these data. 

Extreme value scale parameters 6, and Weibull shape parameters p,. 
There are exact tables of percentiles C ( E )  of the distribution of d = 
(6, / p , ) / ( & / & )  for two Weibull shape parameters. The tables apply to 
pairs of complete or singly failure censored samples with the same size n 
and number r of failures; then C( 1 - E ) =  l / d ( ~ ) .  McCool’s (1970a) table 
covers n = 10[r = 2(1)5, 7, lo], n = 20[r  = 3(1)7, 10, 15, 201. ti = 30[r = 
3( 1)10, 15,301 and e = .90. .95. Tables for tz = 5( r = 2,3,5), tz = 10( r = 
2,3.5, lo), n = 15( r = 2,5(5)15), n = 20[r = 2,5(5)20], n = 30[ r = 2,5(5)20,30] 

Table 3.1. Cycles to Snubber Failure 
O l d  Design 

90 410+ 731 . 790+ 

90 485 7 39 790+ 

90+ 508 739+ 790+ 

190+ 600+ 7 39+ 790+ 

218+ 600+ 739+ 790+ 

218+ 600+ 739+ 855 

241+ 600+ 790 9 80 

268 631 790+ 980 

349+ 631 790+ 980+ 

378+ 631 790+ 980+ 

378+ 635 790+ 980+ 

410 658 790+ 98O+ 

410 658+ 790+ 980+ 

New D e s i g n  

4 5+ 485+ 608+ 964 

47 485+ 608+ 1164+ 

73 490 608+ 1164+ 

136+ 569+ 608+ 1164+ 

136+ 571 608+ 1164+ 

115+ 571+ h08+ 1164+ 

136+ 575 608+ 1164+ 

136+ 608 6 30 1164+ 

145 608 670 1198 

190+ 608+ 670 1198+ 

1 Y O +  608+ 731+ 1300+ 

281+ 608+ 838 1300+ 

311 608+ 964 1300+ 

417+ 6OR+ 

+ d e n o t e s  r u n n i n g  time wi thout  snubber f a i l u r e .  
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are given by McCool (1975b) for ~ = . 9 0 ,  by McCool (1978a) for six values 
of E ,  and by McCool (1974) for 21 values of E .  Thoman and Bain’s (1969) 
table for complete samples covers n =5(1)20(2)80,90,100,120 and E =  

.60,.70(.05).95,.98; they also plot the OC functions of level 0.05 and 0.10 
tests for selected n’s. These tables apply to extreme value scale parameters‘; 
then one uses the relationshp between the Weibull and extreme value 
distributions. Use (3.3) outside the range of these tables. 

Comparison of Location Parameters and Percentiles 

For k = 1.2, suppose that the ML estimator of a 
percentile y ,  is y k ,  and the ML estimator of the scale parameter 0, is 6,. The 
location parameter is a particular percentile of a distribution. Suppose that 
6 is a (ML or linearly) pooled estimate (Section 2 ) ,  assuming that u I  = u2. 
Two-sided lOOy% confidence limits for A = yl  - y2 are 

Confidence limits. 

A = ( .C, - 3 2  ) - J [  ( I + y ) /2] 6 3 A = ( 91 - Pr ) - 8[ ( 1 - Y )/2] 6 3 ( 3.4) 

where & E )  is the 1OOEth percentile of the standardized difference 

a “t-like” statistic. I f  the confidence interval does not enclose 0, then y,  and 
y2 differ significantly at the [100(1 - y ) ] %  level. (3.4) yields a one-sided 
100~5% confidence limit when y replaces (1 + y)/2 or 1 - y replaces ( I  - 

There are tables of 8( E )  for certain distributions and failure censored 
samples; they are described below. The 2 distributions depend on the sizes 
and censorings of both samples. Also, the distributions are not symmetric; 
that is, d(1- E ) #  - J ( E ) .  If both samples have many failures, 

Y )/2. 

(3.6) 
1/2 

d^(E)sZ,(D~ -t D2) , 

where Var( C k ) =  D,af and i, is the lOOEth standard normal percentile. I f  
the D, are not known, they can be approximated from D, =var( 3 , ) / 6 f ,  
where var(9,) is an estimate of Var(9,) and is obtained as described in 
Chapter 8. 

Sample size. One may wish to prechoose sample sizes and observed 
numbers of failures so a (two-sided) interval has a desired length. Equation 
(3.6) or tables of exact factors for confidence limits can be used to calculate 
interval lengths for trial sample sizes and numbers of failures. 
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Normal means pk and percentiles y ,  and lognormal pk.  There are no 
tables of percentiles of the statistic 2 = ( j ,  - .fi2 - y ,  + y2)/S of ML estima- 
tors of normal parameters from censored samples. So (3.6) must be used for 
approximate confidence limits for p ,  - p 2  and y ,  - y2. For lognormal data, 
work with the (base 10) logs of the data. 

Table 3.1 shows life test data on old and new snubber 
designs. (3.4) is used to compare the means of their normal life distribu- 
tions. The ML estimates of the means are f i 0  = 1128 and f i ,  =908 cycles, 
and the linearly pooled estimate is 8* =450.4 cycles. The calculations 
for two-sided approximate 95% confidence limits for pLo - p N  employ 
var(fi,)= 15,191,var(fiN)=5814, So =546.0, and 6,w =362.5. Then A,  = 
15,191/(546.0)2 =0.05096, A ,  -5814/(362.5)* =0.04424, and i ( 0 . 9 7 5 ) ~  
- d(0.025) = 1.960(0.05096 + 0.04424)’/2 = 0.6047. Finally, A =( 1 128 - 908) 
- 0.6047(450.4) = - 52 and A = 492 cycles. These limits enclbse zero; so the 
means do not differ significantly. See Figure 3.4 of Chapter 5 for hazard 
plots of the two samples. 

Extreme value location parameters A, and percentiles y,; Weibull scale 
parameters ak and percentiles t,. There are exact tables of IOOEth per- 
centiles C(E)  of C=exp(8)=( i , / f2) (b ,  + & ) / 2  for Weibull percentiles f ,  

and 1 ,  when p,  = pz. The tables apply to pairs of complete or singly failure 
censored samples with the same size n and number r of failures; then 
C( E ) =  l / C (  1 - E). McCool’s (19704 table covers f ,,) and ti and r values in 
the above paragraph on Weibull shape parameters. McCool’s ( 1974) table 
covers f , ( ) , ,  r ,,,, and i,50 and n and r values in that same paragraph. Excerpts 
from this table appear in McCool (1975b. 1978b). Thoman and Bain’s (1969) 
table for the scale parameter t h 3 2  covers complete samples with the n values 
in that same paragraph. These tables apply to extreme value location 
parameters; then one uses the relationship between the Weibull and extreme 
value distributions. Schafer and Sheffield (1976) give exact tables of lO0yth  
percentiles of ~ [ l n ( & , ) - l n ( 6 ~ ) ] ,  where the ML estimate of the common p is 
b and that of the scale parameter ah is & A .  Their tables cover complete 
samples of size n =5( 1)20(4)40( 10) lOO and E and 1 - ~=.50..60,.70(.05).95, 
.Y75. Use (3.6) outside the range of the tables. 

Snubber example. 

4. K-SAMPLE COMPARISONS 

This section explains ML methods for comparing K samples with respect to 
pppulation parameters. The methods include ( 1 ) quadratic test statistics for 
equality of K parameters, (2) simultaneous confidence intervals for all pairs 
of K parameters, and (3) likelihood ratio ( L R )  tests for equality of K 
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parameters. LR tests appear in Section 5; they are versatile and apply to 
most statistical distributions and models and to most types of data; how- 
ever, they are advanced. 

Suppose that d, ,  . . . , d, are statistically independent ML estimators for 
8 , , .  . . , O K  and var( d A )  is an estimate of the (asymptotic) Var(8,) for k = 
1 ,  ..., K .  

Quadratic Test of Homogeneity 

Test. The following tests the homogeneity (equality) hypothesis that 
8 I = . . . = 8, against the alternative that some 8, # 8, . The quadratic test 
statistic is 

(4.1) 

where d is a pooled estimate for a common 8 (Section 8.2). Also, where 
appropriate, Q can be calculated by (4.1) of Chapter 1 1 ,  but with ML 
estimates. If  the hypothesis is true, the distribution of Q is approximately 
chi square with K - 1 degrees of freedom. I f  the alternative is true. Q tends 
to have larger values. So the approximate test is 

1. 
2. 

at the 1OOa% significance level; here x2( 1 - a ,  K - 1 )  is the 100( 1 - a)th 
chi-square percentile with K - 1 degrees of freedom. The chi-square ap- 
proximation is more precise the larger the number of failures in each 
sample. There are no tables of the exact distribution of Q for censored 
samples. McCool (1977,1978b) investigates the performance of this test for 
comparing Weibull shape and scale parameters. 

I f  Q is statistically significant. examine the individual d, to see how they 
differ. Individual confidence limits for the dh help one to see the significant 
differences, particularly, i f  limits are plotted side by side. 

Table 3.1 shows data on cycles to failure of two 
snubber designs. The test above is used to compare the normal means of the 
old and new designs. The estimates are / . lo = 1128. F N  =908,var(fi,)= 
15,191, and var(/.lN)=5814. The linearly pooled estimate (2.1) is fi*=969. 
The test statistic is Q = [ ( I  128-969)*/15,191]+[(908-969)’/5814]=2.28. 
Since Q =2.28<3.841= ~ ~ ( 0 . 9 5 ,  l),  the two means do not differ signifi- 
cantly. 

I f  Q G x2( 1 - a,  K - I ) ,  accept the equality hypothesis. 
I f  Q > x2(  1 - a, K - I ) ,  reject the equality hypothesis 

Snubber example. 
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All Painvise Comparisons 

For K parameters 8, ...., 8,, there are K( K - 1)/2 pairs of differences 
8, - 8,. or ratios 8, / O h , .  Simultaneous lOOy% confidence limits enclose all 
true differences (or ratios) with probability y. Such limits are wider than a 
IOOy% interval for a single difference (or ratio). I f  such limits for a 
difference (ratio) d o  not enclose zero (one), there is a wholly significant 
difference between those two parameters. The following gives approximate 
simultaneous limits based on independent M L  estimators and references 
tables for exact limits. 

Suppose that 6, is the ML 
estimator for the scale parameter uh for k = I . .  . . , K .  Simultaneous two-sided 
IOOy% confidence limits for all ratios p h h .  = a h / u h .  are 

Simultaneous limits for scale parameters. 

where k ( y )  is the l0Oyth percentile of the maximum standardized ratio 

(4.3) 

If such an interval does not enclose I .  those two scale parameters have a 
wholly significant difference. 

Section 4 of Chapter 10 references tables of k( y )  for exponential means 
when all samples have the same number I’ o f  failures. Then r replaces the 
sample size n in (4.9) of Chapter 10. McCool (1974) tabulates <I( y )  for 
Weibull shape parameters for 2 1 values of y ,  K = 2( 1 ) 10, and n and r have 
selected values, which are given in Section 3. Excerpts from this table 
appear in McCool (1975b. 197%). His tables also apply to extreme value 
scale parameters. There are no such tables for (log) normal standard 
deviations and censored samples. 

Simultaneous two-sided approximate lOOy% confidence limits are given 
by (3.1) for a single ratio. but replace ( 1  t y ) / 2  by y ’=  l - ( l - y ) K  ~ 

( K  - 1 ) -  I .  Such limits with exact C ( y ’ )  enclose all true ratios with a 
probability of at least y. The probability is close to y when K is small and y 
is near 1. 

Sixty times to breakdown of an insulating oil 
were measured at each of six test conditions. Engineering theory says that 
time to oil breakdown has a Weibull distribution with the same shape 
parameter value at each test condition. The above simultaneous intervals are 

Insulating oil example. 
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used to test for equality of the shape parameters. The ML estimates of the 
six shape parameters are 10.84,12.22,12.53,13.32,14.68, and 16.45. The 
maximum ratio of shape parameter estimates is G = 16.45/10.84= 1.518. 
For simultaneous approximate 95% confidence limits, y' = 1 - ( 1  - 
0.95)6- ' 5 -  ' =0.9983, and G ( 0 . 9 5 ) ~  8(0.9966)=eexp(z0,,,j((0.6079/60)+ 
(0.6079/60)]'/*} = 1.518. Since G = B(0.95), the shape parameters just differ 
wholly significantly at the 5% level. One can examine a plot of the estimates 
to see how they differ. 

Simultaneous limits for location parameters and percentiles. Suppose 
that Yh is the ML estimator for ykr the location parameter or a percentile for 
k = 1,. . . , K .  Also, suppose that 6 is a pooled estimate of a common scale 
parameter (Section 2) and is based on samples k and k' or on all K samples. 
Simultaneous two-sided IOOyW confidence limits for all differences A k k ,  = 
Yh - Yh ' are 

where G( y )  is the lOOy th percentile of the maximum absolute standardized 
difference 

4 = ma: ( 1  j A  - .?A I - y ,  + y k ,  1/6 ). (4.5) 
h . k  

I f  such an interval does not enclose 0, those two percentiles have a wholly 
significant difference. 

and 
t S 0  and singly censored samples for 21 values of y ,  K =2(1)10 and n and r 
with the selected values given in Section 3. McCool (1975) gives the same 
table for just y 10.90. These tables also apply to corresponding extreme 
value percentiles. There are no such tables for (log) normal percentiles and 
censored samples. 

Simultaneous two-sided approximate lOOy % confidence limits are given 
by (3.4) for a single difference, but ( 1  + y ) / 2  is replaced by y ' = l -  
( 1  - y ) K  ~ '( K - l ) - ' .  These limits employ the Bonferroni inequality (Miller, 
1966); such limits with exact & y ' )  enclose all true differences with a 
probability of at least y. The probability is close to y when K is small and y 
is near 1. 

McCool (1974) tabulates exp[Q(y)] for Weibull percentiles t o , ,  t 

5. LIKELIHOOD RATIO TESTS 

The following likelihood ratio tests apply to most statistical distributions 
and models and t o  most types of data. The presentation covers ( I )  K-sample 
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tests that a particular parameter has the same value in all K distributions 
and (2) K-sample tests that the K distributions are identical (that is, 
corresponding parameters all have the same value). This advanced material 
depends on Chapter 8. 

Equality of K Parameters 

For k = 1,. . . , K, suppose that sample k comes from a 
distribution with parameters a, and pk. Two parameters are used here, but 
the test below applies to distributions and models with any number of 
parameters. We test the equality (homogeneity) hypothesis that PI = . . . = 
p K  against the alternative that some /Ik Zp,,. Suppose that the log likeli- 
hood of sample k is ek(ak, p,) and has a maximum E ,  at the ML estimates 
ai, and $,. The combined log likelihood when all Pk = (a common value) 
is $(a l  ,..., aK,P)=k ' , (a , ,p )+  . .  . + C,(a,,p), since the samples are 
assumed to be independent. Calculation of its maximum I$ and the ML 
estimates 6; .  . . . ,aii, a generally requires a special computer program such 
as those of Nelson and others (1978), Hahn and Miller (1968), Schafer and 
Sheffield (1976), and Meeker and Duke ( 1  979). 

The problem. 

The test. The (log) likelihood ratio test statistic is 

+ E , -  E,). 

Under the equality hypothesis. T has a distribution that is approximately 
chi square with K - 1 degrees of freedom. Under the alternative, T tends to 
have larger values. So the approximate test is 

1. 
2. 

at the lOOa% significance level; here x'( 1 - a, K - 1) is the 100( I - a ) t h  
chi-square percentile with K - 1 degrees of freedom. The approximation is 
more precise the larger the number of failures in each sample. For large 
samples (asymptotically), the T statistic equals the Q statistic (4.1). 

If T is significant, examine the estimates and confidence limits for the /3, 
to see how they differ. 

if T <  x2( 1 - a, K - 1). accept the equality hypothesis. 
I f  T >  x2( 1 - a, K - I ) .  reject the equality hypothesis 

Equality of Poisson occurrence rates. This example applies the likeli- 
hood ratio test to Poisson data. Suppose that Y , , . .  .. Y, are independent 
Poisson counts, where YA has an occurrence rate A, and length of observa- 
tion I,. We derive the likelihood ratio test of the equality hypothesis 
A ,  = . . . = A, against the alternative some A,  f A, . The log likelihood for 
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the Y, under the alternative is 

il' and the Ir' are maximized by the separate ML estimates A ,  = Y, / r  ,, . . . , 
= Y K / t K ,  and 

,, 

k - 1  !,=I 

The log likelihood for the Y, under the equality hypothesis 15 

h K 
f h ( X ) =  2 f , ( ~ ) =  2 [ - x ~ , + Y , I ~ ( x ~ , ) - I ~ ( Y , ! ) ]  

k -  I k = l  

Let Y = ( Y , +  . . .  + Y K )  and r = ( r , +  . . .  + r K ) .  Then i = Y / r  maximizes 
fA ,  and 

K 

? , = - Y +  2 [ ~ , ~ n ( i r , ) - ~ n ( ~ , ! ) ] .  
=I 

The log likelihood ratio test statistic is 

Under the equality hypothesis, the distribution of T is approximately chi 
square with K - 1 degrees of freedom. 

Tree and bare wire example. This example uses the preceding Poisson test of 
homogeneity. Power line failure data are Y ,  = 12 tree-wire failures in f, = 467.9 
1000 ft-years of exposure and Y ,  = 69 bare wire failures in t ,  = 1079.6 
1000 ft.years. Here A ,  = 12/467.9=0.0256, A,  =69/1079.6=0.0639, = 
(12+69)/(467.9+ 1079.6)=0.0523 failures per 1000 ft.years. Then T = Z [ l 2  
~ln(0.0256/0.0523)+69~1n(0.0639/0.0523)]= 10.42; this has K - 1 = 2  - 1 = 
1 degree of freedom. x2(0.99,1)=6.64 and ~ ~ ( 0 . 9 9 9 ,  I ) =  10.83. So the 
observed failure rates differ very significantly at almost the 0.1%' level. 

Chapter 1 1  presents an example of time to 
breakdown data on an insulating fluid. The data provide a numerical 

Insulating fluid example. 
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example of the likelihood ratio test. Theory says that time to breakdown has 
a Weibull distribution with a common shape parameter p at all test voltages. 
To test this, we use the maximum log likelihoods of the seven samples, each 
fitted with a separate Weibull distribution, namely, E,, = -23.72, cZR = 
-34.38, l$,, = -58.59, E , ,  = -65.74, L",, = -68.39, E,, = -37.69, e,, = 
- 6.76. We also use the maximum log likelihood when Weibull distributions 
with a common shape parameter are fitted to the data, namely, e, = - 299.65. 
The test statistic is T=2[ -23.72-34.38-58.59-65.74-68.39- 37.69- 
6.76 - ( -299.691 = 8.76. Since T < 12.59 = x 2 (  1 - 0.05.7 - I ) ,  the seven 
Weibull shape parameters do not differ significantly. So the pooled j3 
estimate appears satisfactory. The maximum log likelihoods were calculated 
with the STATPAC program of Nelson and others (1978). Bilikam, Moore, 
and Petrick (1979) give tables of exact percentage points y = .8(.05).95 of T 
for K = 2  complete samples with sizes n , ,  n ,  = 10(10)40. 

Equality of K Parameters Assuming That Other Parameters Are Equal 

The likelihood ratio test for equality of parameters can be 
used when some other parameters are assumed to be equal. For example, 
one can test the equality hypothesis aI = . . . = aK under the assumption 
that all p, = p .  For example, the likelihood ratio test for equality of K 
normal means assuming that the standard deviations are equal is the usual 
one-way analysis of variance test for complete data in Chapter 6. 

For K distributions with parameters a, ,  p k 3  suppose that L",(a,, p,,) are 
the log likelihoods of K statistically independent samples. Under the as- 
sumption that all p,, =/3, the combined sample log likelihood under the 
equality hypothesis all l y k  a is FaD(a, p)=  I? I(a3 p ) +  . . . + f K ( a ,  p) .  Sup- 
pose that the maximum is Pa, at the ML estimates 6 and f i ;  these are easy to 
obtain by fitting a single distribution to the pooled data treated as a single 
sample. Under the assumption that all p,, = p ,  the combined sam- 
ple log likelihood under the alternative is L"p(a,..... a , ,p )=  e I(aI, p )  
+ . . . + PKjaK,  p) .  Calculation of its maximum I?, and the ML estimates 

. . , hK, 0' generally requires a special computer program such as those of 
Nelson and others (1978), Hahn and Miller (1968). Schafer and Sheffield 
(1976), and Meeker and Duke (1979). 

The problem. 

The test. The test statistic is 

Under the equality hypothesis, T has a distribution that is approximately 
chi square with K - 1 degrees of freedom. Under the alternative, T tends to 
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have larger values. So the approximate test is 

1. 
2. 

at the 100( 1 - a)% significance level; here x2( 1 - a,  K - 1) is the loo( 1 - a)th 
chi-square percentile with K - 1 degrees of freedom. The approximation is 
more exact the larger the number of failures in each sample. McCool(l979) 
tabulates the distribution of T for singly censored samples with all n h  = n 
and all rk = r .  He also gives an improvement for the chi-square approxima- 
tion. 

If  T is significant, examine the estimates and confidence limits for the ah 
to see how they differ. 

The equality hypothesis a ,  = . . . = a K  can be tested either with or without 
the assumption that some other parameters are equal. The assumption 
should be used only if physical theory and a hypothesis test indicate it is 
appropriate. Use of the assumption, if valid, usually yields a more sensitive 
test of the equality hypothesis. 

If T G  x 2 (  1 - a ,  K - l ) ,  accept the equality hypothesis. 
If T > x2(  1 - a, K - l) ,  reject the equality hypothesis 

Snubber example. Table 3.1 shows life test data on old and new snubber 
designs. The means of normal life distributions are comparcd with the 
above test under the assumption that the standard deviations-art: ~qua l .  The 
maximum log likelihood under the equality hypothesis is C,, = - 286.95; 
this value and fi = 1020 and 6 =462 come from pooling the two samples and 
fitting a single normal distribution to that pooled sample. Under the 
alternative, I?, = -286.66, P o  =974, f i N  = 1061, and 8’=458. The test statis- 
tic is T=2[-286.66-(-286.95)]=0.58. This is less than x2(l-0.05,2-l) 
=3.84. So the two means do not differ significantly. Calculation of 

I?,, P o ,  P N ,  and 6’ was performed with STATPAC of Nelson and others 
( 1978). 

K Distributions Are Identical 

The problem. For k = 1,. . ., K ,  suppose that sample k comes from a 
distribution with parameters ah and Ph.  Two parameters are used here, but 
the test below applies to distributions and models with any number of 
parameters. We test the hypothesis of identical distributions, that is, a1 

- aK and P = . . . = pK.  The alternative is some ah f akI  and/or 
some P h  # Pk, .  Suppose that the log likelihood of sample k is f,(a,, PA) and 
has a maximum I?, at the ML estimates cih and fib. The combined log 
likelihood when all ak = a and all P k  = PA is f a & a ,  P )  = f , ( a ,  p )  
+ . . at the ML estimates ci 
and B; these are easy to obtain by fitting a single distribution to the pooled 
data treated as a single big sample. 

- - - . . .  
1 

+ t K (  a,  p ) .  Suppose that its maximum is C 
l? 
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The test. The test statistic is 

+ E , -  t 5 -4) 

Under the equality hypothesis, T has a distribution that is approximately 
chi square with 2K -2 degrees of freedom. Under the alternative, T tends 
to have larger values. So the approximate test is 

1. 
2. 

at the 100~1% significance level; here x 2 (  1 - a , 2  K - 2) is the loo( 1 - a)th 
chi-square percentile with 2 K - 2 degrees of freedom. The approximation is 
more precise the larger the number of failures in  each sample. 

An alternative analysis could consist of a likelihood ratio test of the 
equality hypothesis a ,  = . . . = irK and a separate test of the equality hy- 
pothesis PI = . . . = P K .  The combination of these two tests is not quite the 
same as the above test for identical distributions. In practice, one may wish 
to use all three tests, pairwise comparisons, and separate confidence inter- 
vals. 

Snubber example. Table 3.1 shows life test data on old and new snubber 
designs. The test above is used to assess whether the two normal life 
distributions are identical. Under the hypothesis of identical distributions, 

= -286.95, and the common parameter estimates are @ = 1020 and 
d =462; these come from fitting a single normal distribution to the pooled 
samples. Separate normal fits to the two samples yield C, = - 138.60. @, = 
1128, do =546, k ,  = - 146.75, phi  =908, and bN =362. The test statistic is 
T=2[- 138.60- 146.75L(-286.95)]=3.20. This is less than x2(1 -0.05, 
2.2-2)=5.99. So the two distributions (means and standard deviations 
together) do not differ significantly. The estimates were calculated with the 
STATPAC program of Nelson and others (1978). 

I f  T<X2( l -  a , 2 K  -2), accept the equality hypothesis. 
If  T >  x2(  1 - a , 2  K - 2), reject the equality hypothesis 

6. GENERAL THEORY FOR LIKELIHOOD RATIO AND RELATED 
TESTS 

This technical section informally presents advanced theory for likelihood 
ratio tests. Rao (1973) and Wilks (1962) rigorously present the theory. The 
tests have certain asymptotic optimum properties (e.g., locally most power- 
ful), and they generally have good properties for small sample sizes. The 
tests are described below in terms of a complete sample, but they apply to 
censored and other types of samples with the appropriate sample likelihood. 

This section presents ( I )  the general model, (2) the null hypothesis model, 
(3) sample likelihoods, (4) likelihood ratio, (5) likelihood ratio test, (6) 
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approximate test, (7) the OC function and consistency, (8) test that K 
parameters are equal, (9) test that K distributions are identical, (10) Rao’s 
equivalent test, and (11) Wald’s equivalent test. Chapter 8 is needed 
background. 

Problem Statement 

The general model. Suppose that a sample has n observations Y , ,  . . . , Y,, 
with a joint parametric density fe( y , ,  . . . ,J,#),  continuous or discrete; the 
parameter 8 has r components ( e l , .  . . ,d,) in some r-dimensional parameter 
space D, an open subset of Euclidean r-space. The distribution fe and the 
parameter space D are assumed given; they are the general model for the 
problem. 

Y, ,  . . . , y, are independent observations from a normal 
distribution with mean p and variance u2.  D consists of all points (pL,uz)  
where - 30 < p < m and a’ >O; D is the upper half-plane in Figure 6. la .  

Y , ,  . . . , Y,, are independent Bernoulli trials with probability p 
that 1; = 1 and probability 1 - p that =O. D consists of the p values 
satisfying O <  p < I .  S2 is the open unit interval in Figure 6.lb. 

Y, ands Yz are independent binomial observations, where 
Y, is the number of successes in n ,  trials, each with success probability 

p x ,  k = 1,2. D consists of all points ( p i ,  p z )  where O <  p ,  < 1 and O <  p r  < I ;  
D is the open unit square in Figure 6.112. 

We test a hypothesis that the true 0 is in 
some subspace w of D. The alternative is that the true 8 is in the subset 
D - w.  w is the subspace of the null hypothesis, and its dimension r ’  must be 
less than r .  The null hypothesis specifies a constrained model for the 
problem. 

For the null hypothesis p = p o  where p,, is given, w consists 
of all points ( pO, a’) where u 2  > O ;  w is the half-line in Figure 6.2a. Here w 
has r ’=  1 dimension. 

Example A. 

Example B. 

Example C. 

The null hypothesis model. 

Example A. 

CI Ib. 
---- 0 /’ 

A ’  y&g * *’ 
///o ‘ PI 0 P O  I P  0 

Figure 6.1. Parameter spaces 
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Figure 6.2. Hypothesis spaces w .  

Example B. For the null hypothesis p = po, where po is given, w consists 
of the single point po on the unit interval as shown in Figure 6.2b. Here w 
has r ’ = 0 dimensions. 

Example C. For the null hypothesis p I  = p2 ,  w consists of all points 
( p I .  p 2 )  wherep, = pz; w is the line segment from (0,O) to (1.1) as shown in 
Figure 6 .2~ .  Here w has r’= 1 dimension. 

The subspace w of the null hypothesis is usually a (hyper) plane, line, or 
point in 52. Common forms of w are the following. 

1. 6 ,  = 8,,,, . . . ,6‘ = O,,, are given constants, and 6, + ,,. . . .6, may have any 
allowed values. Examples A and B are of this type. Here w is an ( r  - c ) -  
dimensional subspace (a  hyperplane) in 52. The dimension of w is the 
number of free parameters 6, + I,. . . ,Or under the null hypothesis. 

2. 6 ,  = 0, = . . + = S,, the equality hypothesis, and t?,, ,,. . . ,Or may have 
any values. Example C is of this type. Here w is an ( r  - d + 1)-dimensional 
subspace (a hyperplane) of 52. The dimensions of w is the number of free 
parameters under the null hypothesis, namely, @,+ ,,. . . ,@,? and the common 
value for 8,  = . . . = 0,. 

Many null hypotheses can be expressed in either common form by 
reparametrizing the model. For example, suppose that Y k l , .  . . , Yh,,l are 
independent observations from a normal distribution with mean pI, and 
standard deviation u k ,  k = 1,2. D is the four-dimensional space of points 
(p , ,u , .p , .u , )where -oo<ph<cc a n d u k > 0 . k = 1 , 2 .  Thenull hypothesis 
that the IOOPth percentiles are equal is p ,  + zpul  = p z  + zpuz,  a three- 
dimensional hyperplane. Suppose that the distributions are parametrized 
and written in terms of the percentiles y p n  = p k  + zpo!, and standard devia- 
tions u x ,  k = 1,2. Then 52 is the equivalent four-dimensional space of points 
(ypl,ul, .vp2,u,) where -a< k ’ f 9 x  <cc and o,>O,k=l ,2.  Also, then the 
null hypothesis is y p  I = y p z ,  which is common form ( 2 ) .  Further reparame- 
trization by replacing v p 2  by A = y p ,  - .vpz yields a null hypothesis A =0, 
which is common form (1). In general, forms ( 1 )  and (2) are equivalent 
through such a reparametrization. 
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Later results generally hold for a subspace o of the null hypothesis that is 

A null hypothesis subspace w can also be specified in terms of c equality 
expressible in common form (1) or (2). 

constraints: 

h , ( o ,  ,..., e,)=o ,..., h,(e, ,..., e,)=o; (6.1) 

these must have continuous first partial derivatives. For Example C ,  another 
possible null hypothesis is p ,  = p i  or p I  - p i  =O. For models with such 
constraints, the method of Lagrange multipliers may be useful for finding 
ML estimates. 

Note that the null hypothesis model must be a special case of the general 
model. The likelihood ratio test does not apply to a test between, say, a 
normal distribution and an exponential distribution. I t  does apply to a test 
between a Weibull distribution and an exponential distribution, since the 
exponential distribution is a Weibull distribution with a shape parameter 
of 1. 

We use the sample likelihood (probability model) Sample likelihoods. 
for Y , ,  . . . , y, (assumed only for simplicity here to be observed values): 

J!4Y13. . .?  ,Y,;@)= f&: , . . .?  Y,) ,  (6.2) 

where 0 is in the parameter space 52 or in the subspace o of the null 
hypothesis. 

Example A. Under 52, L ( y  ,,.. ., y,; p, a 2 ) = ( 2 n a  ) exp[-(y, - 
~ ) ~ / ( 2 a ~ ) ]  . . . ( 2 ~ a ~ ) - ’ / ~ e x p [ - ( y , ,  - p)2/(2u2)]. Under w ,  L ( y , ,  . . . , 
y,,; pO,  u ) = ( 2  7iu2 ~~ exp[ - ( y ,  - p0 12/(2u2 )I , . . (2.ira ) exp[ - ( Y,, 
- P(&(2(J2N. 

Example B. 

2 - 1 / 2  

2 - 1 / 2  

Under 52, L ( y , , .  . . , y .  ,1, p)’ pyl  - p ) l - ”  . * .  p ” ” ( ]  - 
v,,. Under w ,  f . (yI ,  ..., y,; p o ) =  p l l ( I  - p 0 ) l -  y~ . . . p i , f ( l -  p 0 ) I -  ’ P I .  

( 1  - p2)“2 ~ ”. Under w ,  p ,  = p z  = p and 
( 1 - )“I + 112 I 1 - 1 2  

i n  

Likelihood Ratio Test 

Likelihood ratio. For observations y , , .  . . , y,,, the likelihood ratio (LR) for 
testing the null hypothesis o is 
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h is a function of y I ,  . . . , y n .  It is a statistic, since i t  does not depend on the 
unknown true 8 value. The 8 value that maximizes the numerator (de- 
nominator) likelihood is the ML estimate 6( yI , .  . . , y n )  with respect to w ( 5 2 ) .  
Denote the numerator maximum value by i, and the denominator maxi- 
mum value by i,; they are usually found by the calculus method of 
equating to zero the derivative of the likelihood with respect to each 
parameter and solving the resulting equations as described in Chapter 8 to 
get the parameter estimates. 

Example A. Under 52, the ML estimates are fi = j and 8' = Zr= ,( y, - 
j ) 2 / n .  SO 

t, = max L(  y , ,  . . ., y,; p ,  u 2 )  
a 

so 

and the likelihood ratio is 

Example B. Under Q ,  a = y / n .  where y = v l  + . . . + .v,, IS the number 
of successes. Under w, p = p,,. since po IS the only allowed value. Then 
L,  =( y / n ) ' [  1 -( y / n ) ] "  ' and i, = pd(  1 - p o ) " -  '. The likelihood ratio is 

A = p d ( ~ - p , ) n - '  / { (  v/n)L[l-( , 3 / n ) l P 1  ' 1 .  ( 6 . 5 )  
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Example C. Under a, the ML estimatesarea,=), , /n,  andp2=y2 /n2 .  
Then 

Under w ,  = ( y l  + y , ) / ( n ,  + n , )  and 

The likelihood ratio is 

Likelihood ratio test. For different samples, the likelihood ratio h would 
take on different values between 0 and 1. That is, i t  is a function of random 
variables Y , ,  . . . Y,, and i t  is a random variable. An observed h value near 1 
indicates that the corresponding values of Y , ,  . . . , Y, are likely under w ,  and 
a h value near 0 indicates that the Y,, . . . , Y, are not likely under w compared 
to under 

1. 
2. 

This is called the likelihood ratio test. The C, is chosen so 

- o. This suggests the test 

I f  X < C,, reject o (null hypothesis). 
I f  h > C,, accept w .  

maxPe(rejectw)= m a x P e ( h < c a ) = a ;  
€3 in w €3 in w 

that is, the test has level a.  
To find such, a C,, one must know the sampling distribution of A. Two 

methods can be used to obtain C,: 

1. Show that h is a function of a statistic U with a known distribution and 
that the likelihood ratio test defines the same critical (rejection) region as a 
test based on U. 
2. Use an asymptotic (large-sample) approximation to the distribution of A 
under the null hypothesis to get an approximate critical region. 
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Example A. Method ( I )  can be used to rewrite the likelihood ratio as 

It / 2 

= ( i ( I’, - .? l2 / i [( Y ,  - .F l + ( .i; - Po )I 2 )  
1 - 1  1 - 1  

= { 1 + [ t */( n - 1 )] } ~~ n ’ 2 ,  (6.7) 

where 

is the t statistic. Since X is a monotone function of I t [ ,  the critical region for 
the likelihood ratio test 

- n / 2  A = (  I+-”)  1 cc, 
n - I  

is equivalent to the critical region / t i >  t( 1 -0.5a, n - I ) = (  n - l)(Ca- 2 / ”  - 

l) ,  where t ( l -OSa,  n- 1)  is the lOO(1 -0Sa ) th  t percentile with n - 1 
degrees of freedom. Thus the likelihood ratio test is equivalent to the usual 
two-sided t-test for testing p = po versus p # po when o 2  is unknown. 
Rather than work with X and C,, i t  is more convenient to work with the 
equivalent r statistic. They both provide the same test, that is, the same 
critical region and hence the same OC function. 

Often i t  is more convenient to work with the maximum log likelihoods 
P,=In(i ,)  and E w  =In( i,) and the equivalent statistic T =  -2In(X)= 

Figure 6.3 adds insight to the likelihood ratio test. There a sample log 
likelihood f ( a , p )  is  a function of all points ( a ,  p )  in L?, which is the 
horizontal plane; r = 2  for the general model. The subspace w for the nu11 
hypothesis p =Po is the labeled line in Figure 6.3; r ’ =  1 for the null 
hypothesis subspace. Figure 6.3 shows ML estimates CC., p under L? and the 
maximum log likelihood I?,. Figure 6.3 also shows the ML estimate .^.’./lo 
under w and the maximum log likelihood P w .  If ?, is much above P w ,  the 
general model fits the data much better than the null hypothesis model; this 
corresponds to a large value of T =  -2.In(X)=2(?, - For different 

2( P a  - 2J. 
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\ a  Figure 6.3. Likelihood function and optima 

samples, the log likelihood e(a, /3) differs, and thus so do 6, /?, 2, f,. fa, 
and T. 

Method ( I )  does not work on Examples B and C. The 
asymptotic method does; it is presented next. First let r denote the number 
of dimensions of the parameter space D and let r ’  denote the number of 
dimensions of the null hypothesis space w.  It is useful to note that r is the 
number of parameters that must be estimated in the general model, and r ‘  is 
the number that must be estimated in the null hypothesis model. 

As Figure 6.la shows, D is a half-plane and has r = 2 
dimensions. As Figure 6.2a shows, w is a semi-infinite line and has r ’ = I  
dimension. 

Example B. As Figure 6.lb shows, D is a line segment and has r = 1 

Example C. As Figure 6.lc shows, D is a square and has r = 2 dimen- 
sions. As Figure 6 . 2 ~  shows, o is a line segment and has r ‘ =  1 dimension. 

The large-sample distribution of In( A )  is given by the following “theorem”. 

Theorem. Under certain mild regularity conditions on f e ,w ,  and 3,  
when ( r  - r’)>O, the asymptotic distribution (large sample size) of twice the 
log likelihood ratio statistic 

Approximate test. 

Example A. 

dimension. As Figure 6.2b shows, w is a point and has r‘=O dimensions. 

is chi square with ( r  - r ’ )  degrees of freedom under the null hypothesis w .  
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Here i?, =In( i,) and f, =In( i,) are the maximum log likelihoods. Rao 
(1973) and Wilks (1962) state such regularity conditions, which are satisfied 
in most applications. 

Under the conditions of the theorem, an approximate level a test of the 
null hypothesis o is 

1. I f  T = ~ ( C ,  - 
2. 

Here xz(l  - a,  r - r ’ )  is the 100( 1 - a) th  chi-square percentile with r - r’ 
degrees of freedom. 

There is no simple rule of thumb that indicates when the chi-square 
approximation is satisfactory. This means that the true level of the test 
differs from a.  As a practical matter, one often has only the approximation 
and must use it,  since it is better than no test. Then marginally significant 
results are not convincing. 

The approximation can sometimes be improved by transforming parame- 
ters to reparametrize the model. For example, 0; = gk(O1,.. ., 0 , )  for k = 
I , .  . . K .  The functions gk( ) are chosen to make the distribution of 4; closer 
to normal. Typical transformations are a’=ln( a) for u > O  and p’=ln[ p / (  1 
- p ) ]  for O < p < l .  Such transformations do not affect the value of the 
likelihood ratio test statistic. 

L . .  

x2(1 - a, r - r‘), accept a. 
I f  ~ = 2 ( i ,  - E w ) >  x 2 ( 1 -  a,  r - r t ) ,  reject a. 

Example B. Let Y = Y, + . . . + Y,,. Then 

For large n ,  T is approximately chi-square distributed with r - r ‘ =  1 - 0 =  1 
degree of freedom under w .  For large samples, this is equivalent to the usual 
chi-square statistic for testing p = po against p # po, namely, Q = [( Y - 
np,)2/(np,,)]+ ( [ ( n  - Y ) - n ( l -  , ~ , , ) ] ~ / [ n ( l -  p , ) ] ) ,  which also has one de- 
gree of freedom. 

Example C. Let Y =  Y ,  + Y2 and n = n ,  + n,. Then 



548 MAXIMUM LIKELIHOOD COMPARISONS 

For n ,  and n ,  large, T is approximately ch-square distributed with (2- 1 )=  1 
degree of freedom under the null hypothesis w ( p ,  = p 2 ) .  

Example A. Here 

T = - 2  

(6.1 1) 

For large n ,  T is approximately chi-square distributed with r - r’=2- 1 = 1 
degree of freedom under the null hypothesis. Since the exact distribution of 
the equivalent f statistic is known, this approximation is unnecessary. 

The OC function P,{A G C,} gives the 
performance of a likelihood ratio test as a function of 8 in Q. Sometimes the 
distribution of X is known or the test is equivalent to a known one, as in 
Example A; then one can get the OC function. If, as in Examples B and C ,  
the sampling distribution of T is not known, one cannot find the exact OC 
function. The following theorem assures that the test is good for a large 
sample. 

First we need a definition. A test of level (Y of the null hypothesis w 
against the alternative 52 - w is called a consistent test if Pe{ reject w }  -f 1 as 
the sample size n -+ cc for any 6 in 52 - w. T h s  just says that the test is 
almost sure to reject the null hypothesis when it is false (i.e., 8 is in 52 - w )  
i f  the sample size is large enough. 

For one example, consider Yl, ..., Y, from a normal distribution with 
unknown mean p and known standard deviation uo. Consider testing w :  
p = p o  aga-st p # po.  The level (Y test is: if IF- pol“ K ,  -,uo/n’/’, - accept 
w ,  and if I Y - po 1 > K ,  a u o / n ’ / 2 ,  reject o. Then P,{reject w )  = P,( I Y - po I 
5 K , ~ , u , , / ~ ” * }  = @ { [ p o  - K ,  _ , ( ~ ~ / n ” ~ )  - p ] ( t ~ ’ / ~ / ~ ~ ) }  + 1 - @ ( [ p o  + 
K , + a  ( ~ ~ / n ’ / ~ ) - p ] ( n ’ / ~ / u ~ ) } .  For p#po,Pp{reject w } - l  as n-cc .  So 
the test is consistent. 

The following theorem states a general result on the consistency of LR 
tests. 

Theorem. The likelihood ratio test is consistent under some mild condi- 
tions on f e , Q ,  and w.  That is, if is the log likelihood ratio based on 
sample size n, then Pe(T,>x2(1-(Y,r-r’)}’1 as n-cc for any 8 in 
$2 - w.  Moreover, no other test achieves this limit faster. 

Consequently, the likelihood ratio test is said to be “asymptotically” uni- 
formly most powerful. (This last sentence is not intended to be precise.) Rao 
(1973) and Wilks (1962) state such conditions and prove the theorem. 

OC function and consistency. 
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Test that K parameters are equal. The following applies the above 
general theory to get the methods in Section 5 for testing for equality of K 
parameter values. Suppose that there are K independent samples, and 
sample k comes from a distribution with parameters ak,  p,,. The parameter 
space 0 consists of all allowed points (al, PI,. . ., a,, P,); 0 has r = 2 K  
dimensions. The subspace w for the null (equality) hypothesis that P I  
- . . . = p K  = p  consists of all allowed points (al, p,.. . ,  a K ,  6); w has 
r '=  K + 1 dimensions. 

Suppose that sample k has log likelihood Eh(ak,p,) .  Then the log 
likelihood for the general model is f,(al, PI,. . . , a K ,  P K ) =  ? , ( a I ,  P I )  
+ . . . + ?, (aK,  p K ) .  Also, the log likelihood for the null hypothesis model 
is f,(a, ,..., aK,p)=  C , ( a l , P ) +  . . . + E,(a,,p). Under 0, the ML esti- 
mates a,, Pk maximize t k ( a k ,  p k l ;  that is, the distribution is separately 
fitted to sample k to obtain h h ,  p,. Then the maximum log likelihood is 
?,= C l ( h l , b l ) +  . . .  + E K ( h K , b K ) .  Underw, theMLestimatesh;, ....h;,,S 
maximize E,(a,,. . ., aK, p).  and its maximum value is fa. The test statistic is 
T = 2 ( f ,  - E,) and has r - r '=2K -( K + 1)= K - 1 degrees of freedom, 
as stated in Section 5. 

Under 0, the Fisher and covariance matrices for the hh,/?k are block 
diagonal, where Cov(h,, ai,.)=Cov(p,, b,.)=Cov(ci,,, p , . ) = O  for k # k ' .  

McCool ( 1977,1978a, b, 1979) investigates this test for comparing Weibull 
scale parameters. He gives percentiles of T for K = 2( 1)5,10, n = 5 ( r  = 
3,5), n = 10(r = 5,lO).  He also gives the OC curves for K = 2,lO and the 
same n and r .  

The following applies the above 
general theory to get the methods in Section 5 for testing that K distribu- 
tions are identical. Suppose that there are K independent samples and 
sample k comes from a distribution with parameters a,, ph. The parameter 
space 0 consists of all allowed points (al,P I,...,aK,PK); D has r = 2 K  

p,. Its subspace w consists of all allowed points ( a ,  p,. . . , a, p) ,  where a and 
/3 are the common values; w has r ' = 2  dimensions. 

Suppose that sample k has log likelihood f,(a.,,p,). Then the log 
likelihood for the general model is f ~ ~ ( a l , ~ l , . . . , a ~ , ~ ~ ) = L ' l ( a , ~ ~ l )  
+ . . . + P K ( a K ,  p,). The log likelihood for the null hypothesis model is 
~ ? ~ ( a , p ) = f ~ ( a , j ? ) +  . . .  +f,(a,p).  Under 52, the ML estimates & , , P A  
maximize CA(ah: p,); that is, the distribution is separately fitted to sample k 
to obtain h k ,  /3,: Then the maximum log likelihood is ?Q = E , ( h l ,  P I )  
+ . . . + f K ( h K .  p K ) .  Under w ,  the M L  estimates h, B maximize C,( a,  p ) ,  
and its maximum value is "1,. where a single distribution is fitted to the 
pooled data from all K samples to get 6, B, since L'( a,  p )  is the likelihood 

- 

Test that K distributions are identical. 

dimensions. The null (equality) hypothesis is aI = = a K  and D l  = . . . = 
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for a single distribution and the pooled data. The test statistic is T=2(!?, - 
k u )  and has r - r ‘ = 2 K  - 2  degrees of freedom. 

Under Q ,  the Fisher and covariance matrices for the cik,fik are block 
diagonal. Under o, the Fisher and covariance matrices for Ci. and B are 2 X 2. 

Related Tests 

Rao’s equivalent test. Rao ( 1 9 7 3 , ~ .  418) gives the following test statistic; 
i t  is asymptotically equivalent to the likelihood ratio statistic. Suppose that 
the r X 1 column vector of scores is 

S( 8 ) = ( a t  / 36, , . . . , af / a 0, )’, (6.12) 

where f is the sample log likelihood and 8 =( f?,, . . . , f?,)in 52 is the vector of 
the r parameters under the general model. Denote the r X r Fisher matrix 
under z;2 by 

F ( Q ) =  [ -  + P / ~ O , ~ O , ] )  

=~-E[(ai3/af?,)(aa/af?,)]), i , j = l ,  ..., r .  (6.13) 

Also, suppose that 6 =(;,, ..., er)’ is the r X 1 column vector of ML 
estimates under the null hypothesis model w ;  for example, some 8, will be 
constants or equal to other 8, or functions of other 8,. Rao’s statistic for 
testing the null hypothesis that !J is in o is the quadratic form 

R =S‘( 6 ) [F(  6)] -IS( 6). (6.14) 

Under the null hypothesis, R is asymptotically equal to the log likelihood 
ratio statistic (6.8) and to Wald’s test statistic (6.19). That is. R then has a 
chi-square distribution with r - r ’  degrees of freedom. R is not convenient 
for multiply censored data, since the expectations (6.13) are difficult to 
calculate for such data. In practice one can use the local estimate of the 
Fisher information matrix as i t  does not use the expectations. This is done 
in the SURVREG program of Preston and Clarkson (1980). R employs only 
the MI, estimates under the null hypothesis; thus, use of R avoids the labor 
of calculating the ML estimates for the general model. 

Example on equality of Poisson A,. The following is an example of 
Rao’s test. Suppose that Y , ,  . . . , Y, are independent Poisson counts, where 
A, is the occurrence rate and t ,  the length of observation, k = I , .  . . . K .  The 
null (equality) hypothesis is A ,  = . . . = A,. The sample log likelihood under 
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SZ is 

K 

f ( A , ,  . . . , A,)= 2 [ - A,t ,  + Y, in( A, t ,  )-In( Y, !)] 
& = I  

The k t h  score is ae/aA,=-t ,+(Y,/A,) ,k=l ,  ..., K .  Under the null 
hypothesis, i,= . . .  = i K = A = ( Y l +  . . .  +YK)/(tl+ . . .  + r , ) ,  and the 
vector of scores is 

s( i ,  )...) i K ) = [ - l l + ( Y l / A )  ,..., - r ,+(Y, /A)] / .  

The terms in the Fisher matrix are 

This Fisher matrix is diagonal. Its estimate under the null hypothesis 
has i, = in place of A,. Then Rao’s test statistic is 

R = [ ( yI / A )  - r ,  , . . . , ( yK/ i )  - r K ]  

( YK / ) - t K J 
(6.15) 

This is the chi-square test statistic (quadratic form) for equality of Poisson 
occurrence rates (Chapter 10). Under the null hypothesis, R has an asymp- 
totic distribution that is chi square with K - 1 degrees of freedom. 

Rao (1973,~ .  419) gives Wald’s test statistic, 
which is asymptotically equivalent to the likelihood ratio statistic. Suppose 
that the subspace w of the null hypothesis is specified by c constraints 

Wald‘s equivalent test. 

h,(B,  ,..., B,)=O ...., h , (B ,  ,..., B,)=O.  (6.16) 

The test uses the r X c matrix of partial derivatives 

H ( e ) = { a h , / a $ } ,  i = l  ,..., c ,  j = l  ,..., r ,  (6.17) 
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which depends on 8. Suppose that 0 =(dl, ..., dr)’ are the ML estimates 
under $2, the general model, and their asymptotic covariance matrix is 
&( 8), which depends on 8. h = h ( 0 )  denotes the c X 1 vector of constraints 
evaluated at  6. The asymptotic covariance matrix of h ( 6 )  is the c X c 
matrix 

Wald’s statistic for testing the null hypothesis (6.16) is 

W =h’( 6)(%( 0 ) ) -  ’ h ( 6 ) .  (6.19) 

This is a quadratic form in the observed values of the constraints and is a 
measure of how close they are to zero. Under the null hypothesis (6.16), W 
is asymptotically equal to the log likelihood ratio statistic (6.8) and to Rao’s 
test statistic (6.14); that is, W has a chi square distribution with degrees of 
freedom. W is convenient to use with multiply censored data. Then one can 
use the local estimate of&,(@) in place of the ML estimate&(Q) in (6.18). 
W employs only the ML estimates under the general model. This is 
convenient, as it is often difficult to calculate estimates for the null 
hypothesis model without special computer programs. 

Table 3.1 shows life test data on old and new types of 
snubbers, which are assumed to have normal life distributions. One com- 
parison of the two types is a test of the hypothesis w :  po = p,&, assuming 
a. = = a against the alternative Q: pclo # p N ,  assuming uo = u,,. = a. Ex- 
pressed as a constraint, the null hypothesis is 

Snubber example. 

The partial derivatives are 

The matrix of partial derivatives is (the column vector) H = ( l  ~ 1 0)’. 
The ML estimates under 52 are P o  ~ 9 7 4 . 3 ,  P,,, = 1061.3. and 6 1458.4. The 
local estimate of the covariance matrix of the ML estimates under Q is 

Po i N (7 

1705.42 8515.93 2435.20 . 
7930.61 1705.42 2325.45 I 2325.45 2435.20 3320.58 1 
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The estimate of the 1 X 1 covariance matrix (6.18) of the constraint 
estimate is 3 { = ( 1  - 1 O)Ti(l - 1 O)’= 13035.7. The Wald statistic 
is W =(974.3 - 1061.3)’( 13035.7)- ‘(974.3 - 1061.3)=0.58. Under p o  = p N ,  
the distribution of W is approximately chi square with one degree of 
freedom. Since W c  x2(0.90,1)=2.706, the two means do  not differ signifi- 
cantly. The ML estimates and local estimate of their covariance matrix were 
obtained with STATPAC of Nelson and others (1978). 

PROBLEMS 

12.1. Power line outages. Use the data on the four longest power lines 
in Table 1.1 of Chapter 10. 

(a) Use the chi-square test to compare their outage rates. 
(b) Use the log likelihood ratio test to compare their outage rates. 
(c) Calculate the pooled ML estimate of the common outage rate. 
(d) Calculate two-sided (approximate) 95% confidence limits for the 

(e) Calculate (exact) two-sided (approximate) 90% prediction limits 

Suppose that Yk has a binomial 
distribution with sample size n, and proportion p k ,  k = I , .  . . , K .  All Y, are 
statistically independent of each other. 

(a) Derive the (log) likelihood ratio test statistic for equality p ,  

(b) How many degrees of freedom does the approximate chi-square 

(c) Apply the test to the capacitor data of Chapter 10. 
(d) Do you think that the asymptotic theory is adequate for the 

capacitor data? Explain why. 

(e) Apply the test to the appliance component data of Problem 10.5, 
doing parts (b) through (e) of the problem. 

( f )  Do you think that the asymptotic theory is adequate for  the 
appliance component data? Explain why. 

12.3 Exponential means-singly censored. Suppose that one observes 
the first rk order statistics of a sample of size n ,  from an exponential 
distribution with mean f?,, k = 1,. . . , K .  where the samples are statistically 
independent. 

common outage rate. 

for the total number of outages on the four lines in a coming year. 

12.2 LR test for K binomial samples. 

- - 
- P K .  

- . . .  

distribution for this statistic have? 
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(a) Derive the test statistic of the likelihood ratio test for equality 

(b)  Use this test on the data in Table 2.1 of Chapter 7. Determine a 
simple approximate and satisfactory way of handling left and multiply 
censored samples there. 

(c) Do you think that the asymptotic theory is adequate for this 
application? Explain why. 

(d)  Plot the samples on Weibull paper. Is a formal hypothesis test 
needed? 

12.4* Exponential means-multiply censored. Do problem 10.5 for 
samples that are multiply time censored on the right. 

Suppose that sample k is singly 
time censored at -v, and comes from a normal distribution with mean p r  and 
standard deviation uL, k = I ,  ..., K .  Suppose that sample k has ri. failures 
among its n ,  units. Derive the (log) likelihood test for equality of the 
distributions as follows. 

For the appliance data in Table 2.1 of Chapter 11, make normal 
probability plots of the three samples. Are the plots convincing enough 
that a formal test for equality is not needed? State what the plots show. 

(b) Write the combined log likelihood for the model with K different 
distributions. 

(c) Write the log likelihood for a single common normal distribution 
with mean 1-1 and standard deviation u. 

(d) Calculate the separate ML estimates for the three distributions. 
Use tables of Cohen (1961) or (easier) of Schmee and Nelson (1977). 
Evaluate the corresponding maximum log likelihood. 

(e) Calculate the ML estimates for a common distribution. Use the 
same table used in (d). Evaluate the corresponding maximum log likeli- 
hood. 

( f )  Calculate the (log) likelihood ratio test statistic. €1~; ;  many de- 
grees of freedom does its approximate chi-square distribution have? 

(g) Test for equality of the three distributions. 
( h )  Do you think that the asymptotic theory is adequate for the cord 

6 = . . .  = d  
I K '  

12.5 Singly censored normal samples. 

(a) 

data? Explain why. 

12.6 Multiply censored normal samples. The appliance cord data in 
Table 2.1 of Chapter 1 1  are analyzed as follows to compare the samples 

'Ahtcrisk dcnotcb laberiou\ o r  difficult 
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from the three tests. The following table summarizes the results of ML 
fitting a normal distribution to the separate and combined samples. 

Data E c 6 var( ji) var( 6 )  cov( ii, 15) 

Test 1 -51.73 132.26 34.7 105.182 65.077 8.302 
Test 2 -49.87 126.64 44.3 177.912 123.098 24.568 
Test 3 -49.40 127.60 41.5 155.712 110.140 29.491 
All, common - 15 1.37 128.75 40.3 48.324 32.452 5.6 19 
a and p 
All, common - 15 1.27 below 40.0 - 32.158 - 

a f i ,  = 132.94, f i ,  = 125.81, f i 3  = 127.32 

(a) Calculate the log likelihood ratio test statistic for equality of the 
three standard deviations, assuming the means differ. Compare it  with an 
appropriate chi-square percentile and state your conclusions. 

(b) Calculate the log likelihood ratio test statistic for equality of the 
three means, assuming the standard deviations are equal. Compare i t  with 
an appropriate chi-square percentile and state your conclusions. 

(c) Calculate the log likelihood ratio test statistic for equality of the 
three means and of the three standard deviations. Compare i t  with an 
appropriate chi-square percentile and state your conclusions. 

(d) Tests 1 and 2 employed one type of cord and Test 3 another type. 
Explain in detail the analyses (fittings and test statistics) you would use to 
compare the two cord types. 

(e*) Use Wald’s test to compare the 1 %  points of the three distribu- 
tions, assuming the means and standard deviations may differ. 

12.7 Insulating oil. An experiment on breakdown voltage of an insulat- 
ing oil used two electrode diameters and three rates of rise of voltage ( in  
V/second)-six test conditions in all. Theory assumes that each distribution 
of breakdown voltage is Weibull, the scale parameter ak depends on the test 
condition, but the shape is a constant 0. For each test condition, there were 
60 breakdown voltages. Separate Weibull fits to the six data sets yielded the 
following. 

Condition Diameter (in.) Rate & A  

1 1 10 44.567 
2 I 100 50.677 
3 I lo00 60.055 
4 3 10 39.695 
5 3 100 46.248 
6 3 1000 50.860 

b, 
10.839 - 174.70 
12.526 ~ 176.59 
13.316 - 181.65 
12.220 - 165.58 
16.453 ~ 155.44 
14.681 - 169.96 



556 MAXIMUM LIKELIHOOD COMPARISONS 

For the model with a common shape parameter, the results are 

Condition 1 2 3 4 5 6 
‘ h  44.928 50.741 60.010 39.772 45.992 50.71 1 

f i  = 12.997, pp = - 1029.04. 

(a) Calculate the log likelihood ratio test statistic for equality of the 

(b) How many degrees of freedom does this statistic have? 
(c) Do the shape parameters differ statistically significantly? In Sec- 

(d)  Make a normal probability plot of the f i k  and determine how the 

six shape parameters. 

tion 4, they have a wholly significant difference at the 5% level. 

shape parameters differ. 

12.8* Nonparametric comparison with grouped data and progressive 
censoring. For motivation, first see Problem 9.6, where interval data on K 
groups of transformers were pooled to fi t  a nonparametric multinomial 
model to the data. The following (log) likelihood ratio test compares the K 
groups for equality of corresponding proportions failing in each year. 
Suppose that the groups differ. Then, for group k ,  T k m  denotes the expected 
proportion failing in year 171 ( m  = I , .  . . , k ) ,  and T ~ ,  k +  denotes the expected 
proportion surviving the latest year ( k )  in service. Similarly, ykm denotes the 
observed number failing in year m, and yL. k +  I denotes the observed number 
surviving the latest year ( k )  in service. 

For each transformer group, plot the sample cumulative distribu- 
tion function on the same plotting paper. (Connect plotted points so that 
the plot is easier to see.) Do the distributions differ convincingly? How? 
Confidence limits for the cumulative distributions may help. 

(b) Write the general expression for the log likelihood for the multi- 
nomial model for group k ,  k = 1 , .  . :, K. 

(c) Write the general total log likelihood for all groups (assuming that 
they differ). 

(d) Derive the formulas for the ML estimates for the proportions 
T~ n , .  k = I , .  . . , K. m = 1,. . . , k + I .  

(e) Evaluate the estimates (c) for the transformer data of Problem 9.6. 
( f )  Give the general expression for the maximum log likelihood for 

differing groups, and evaluate it for the transformer data. 

(8) Use the results of Problem 9.6 to calculate the maximum log 
likelihood for the’transformer data under the model there, with a com- 
mon proportion failing in each year, all vhnl = T .  

(a)  
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(h) Calculate the log likelihood ratio statistic for testing for equality 

(i) Give a general formula for the number of degrees of freedom of 

(j) Test whether the groups differ significantly. How d o  they differ? 
(k) Do you t h n k  that the asymptotic theory is adequate for the 

Use the data from Problem 3.4 and the results 
from Problem 9.7. Compare the two samples of size 18 from the new design 
using the likelihood ratio test, as follows. Use a computer program, if  
available. 

(a) Assume that both samples come from the same exponential distri- 
bution with (unknown) true mean do. Write the sample log likelihood 
e(  8 )  for the combined samples. 

(b) Calculate the ML estimate d for the assumed common exponential 
distribution and the corresponding maximum log likelihood E'( d). 

(c) Assume that the sample with failures comes from an exponential 
distribution with unknown true mean lo. and the other sample ha5 a true 
other proportion 4, failed by 15,000 cycles. (There is no  need to assume 
that the distribution is exponential.) Write the sample log likelihood 
L'( TJ. x )  for the two samples. 

(d) Calculate the ML estimates + and 7i and the corresponding 
maximum log likelihood. 

(e) Calculate the log likelihood ratio test statistic. How many degrees 
of freedom does i t  have? Do the samples differ statistically significantly? 

( f )  In your opinion, is the asymptotic theory crude or adequate for 
these samples? Explain. 

- -  of group proportions within each year, x l m  = x2", - ... - T~,,~. 

the test statistic, and evaluate it for the transformer data. 

transformer data? Explain why. 

12.9 Circuit breaker. 



13 
Survey of Other Topics 

This chapter briefly surveys some topics not covered in this book. Each 
survey briefly states the aims of the topic and gives key references. The 
survey is limited to statistical and probabilistic methods for reliability and 
life data analysis. So the survey omits reliability management, reliability 
physics, handbook data on component failure rates and life, and similar 
topics. 

The survey includes the following. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 

System reliability models and their analyses. 
Maintainability models and data analyses. 
Availability models and data analyses. 
Estimation of system reliability from component data. 
Bayesian methods in reliability. 
Reliability demonstration and acceptance tests. 
Reliability growth (Duane plots). 
Renewal theory and data analysis. 
Life as a function of other variables. 
Accelerated life testing. 
Depreciation, replacement, and maintenance policies. 
Books with reliability and life data analysis. 
Abstracts, bibliographies, and indices on reliability and life data 

analysis. 
14. 
15. Computerized literature searches. 

558 

Journals with papers on reliability and life data analysis. 
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1. SYSTEM RELIABILITY MODELS AND THEIR ANALYSES 

Reliability books are concerned with methods for determining the reliability 
of a system of components from the component reliabilities. Such methods, 
which are described below, help designers to assess whether a design meets 
reliability requirements. Also, they show how design reliability can be 
improved through better components and other system designs, for exam- 
ple, including redundant components. Such reliability analyses can be 
repeated for different definitions of system failure and operating environ- 
ments. Also, failure can be catastrophc or result from performance drop- 
ping below a specified value. Major approaches to system reliability analyses 
described below are FMEA, fault tree and other analyses, coherent struc- 
tures, common mode failures, and simulation. These methods generally do 
not involve statistical data analysis, but some involve probability modeling. 

FMEA. Failure Mode and Effects Analysis is a simplified approach to 
system reliability analysis. It involves identifying (1 )  each failure mode of a 
component and its cause, (2) the effect of such a failure on the component, 
and (3) the effect on the system performance or safety. Ths method can 
include combinations of component failure modes that cause system failure. 
Also, it assumes that the failure modes are statistically independent. For 
these reasons, FMEA overestimates system reliability. Its main value is that 
i t  helps one identify components that contribute most to unreliability. 
Shooman (1968, Sec. 3.7) and the General Electric reliability manual (1975, 
Sec. 5 )  describe FMEA in more detail. 

Fault tree analysis has two goals: (1 )  to 
identify the minimal cuts (the distinct combinations of component failures 
that cause system failure) and (2) to calculate system reliability. The analysis 
involves developing a model for system reliability in terms of a fault tree 
that expresses which combinations of component failures produce system 
failure. Fault tree analysis provides systematic methods for determining 
fault trees, minimal cuts, and system reliabilities. These methods are de- 
scribed in the following references. 

Barlow, R. E.. Fussell, J. B., and Singpurwalla. N.  D.. Eds. (1975). Reliahihtv atid Fuult Tree 
A tiulvsis - Theorericul und Applied Aspects o/ S w c n i  Reliahili!~~ and Sa/eii. Assessment. Society 
for Industrial and Applied Mathematics. 33 S. 17th Street, Philadelplua. PA 19103. 
Fussell, J. B. (l973), “Fault Tree Analysis-Concepts and Techniques.” presented at the 
NATO Advanced Study Institute of Generic Techniques of System Reliability Assessment, 
Liverpool, England, July 1973. Aerojet Nuclear Co., National Reactor Testing Station, Idaho 
Falls, ID 83401. 
Fussel. J. B., Henry. E. B., and Marshall, N.  H. (1974), “MOCUS-A Computer Program to 
Obtain Minimal Cut Sets from Fault Trees.” Aerojet Nuclear Company Report ANCR-I 156, 
Idaho Falls. ID 83401. 

Fault tree and other analyses. 
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Fussell, J. B., and Burdick, G. R., Eds. (1977), Nuclear .!+stems Reliability Engineering und Risk 
Assessment, Proceedings of the 1977 International Conference on Nuclear Systems Reliability 
Engineering and Risk Assessment, Society for Industrial and Applied Math, 33 S. 17th St.. 
Phladelphia, PA 19103. 

General Electric Company Corporate Research and Development (1975). Rehnhihty Manual/or 
Liquid Metal Fust Breeder Reactors, Vols. 1 and 2, General Electric Company Corporate 
Research and Development Report SRD-75-064; see References for source. Section 6 has fault 
tree analysis. 

Pradip. P., and Spector, M. (1975).“Computerized Fault Tree Analysis: TREEL and MICSUP.” 
Operations Research Center Report ORC75-3, University of California, Berkeley, CA 94720. 

Vesley, W. E.. and Narum, R. E. (1970). “PREP and KITT: Computer Codes for the 
Automatic Evaluation of a Fault Tree,” Idaho Nuclear Corp. Report IN-1349, Idaho Falls, ID 
83401. 

Wheeler, D. B., Hsuan, J. S., Duersch, R. R., and Roe. G. M. (1977), “Fault Tree Analysis 
Using Bit Manipulation,” IEEE Trans. Reliah. R-26, 95-99. 

The KITT and PREP programs for fault tree analysis are best known and 
widely available; more recent programs can handle larger trees and are 
faster. Both analytic and Monte Carlo methods are used to analyze fault 
trees. Fault tree analysis is surveyed by General Electric (1975, Sec. 6). 

System reliability may also be analyzed by means of reliability block 
diagrams and Boolean algebra statements. Tillman and others (1977) review 
optimization techniques for system reliability. 

Coherent structure analysis. Coherent structure functions are another 
means of representing a model for system reliability. A coherent structure 
function is a binary function that takes on the value 1 (0) for system success 
(failure). It is a function of the component indicator variables. Such a 
variable is 1 (0) for component success (failure). The aim of such models 
and analyses is to determine minimal cut sets and to calculate system 
reliability from component reliabilities. Theory for coherent structures 
appears in Barlow and Proschan (1975). 

Common mode failure analysis. Most reliability analyses of large sys- 
tems involve dividing the system into subsystems that are physically sep- 
arate and analyzing the subsystems separately. Often such subsystems are 
not completely statistically independent, and common mode failure analysis 
attempts to take into account the common failure modes. For example, two 
separate safety shut-down systems for a nuclear reactor may fail together 
when an earthquake occurs. The General Electric reliability manual (1975, 
Sec. 7) describes common mode failure analysis. 

Simulation. Often the reliability model for a system is too complex to 
handle by analytic methods. Then one may use Monte Carlo simulation on 
a computer to “build and run” a system many times to obtain estimates of 
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system reliability and other measures of performance. For example, reliabil- 
i ty simulation of Apollo moon flights were run; 1000 simulated flights took 
10 hours on an IBM 7094. General methods for simulation appear in books, 
for example, 

Fishman. G.  S. (1978). Prrnc.rple.7 o/ Discrere E w n t  Srniulurion. Wiley. New York. 

Hammersley, J. M.. and Hanscomb. D. C. (l964), Morire Curlo Merhotfs. Methuen Monograph. 
Wiley. New York. 

Kleijnen, J. P. C. (1975). Sfurisricul Techniques S/niu/uriori. Vols. I and 2, Dekker. New York. 

Examples of applications to reliability analysis appear in General Electric 
(1975, Sec. 8). 

Component failure rates. There are many handbooks on component 
failure rates. Some of the best known are 

MILITARY HANDBOOK 217C. “Reliability Prediction of Electronic Equipment.” 9 April 
1979. Available from Naval Publications and Forms Center. 5801 Tabor Ave., Philadelphia, PA 
19120. 

Government-Industry Data Exchange Program (GIDEP) Reliability-Maintainability Data 
Summaries. Available from GIDEP Operations Center, Corona. CA 91 720. This includes 
electronic and mechanical components. 

INSPEC (1981) Elecrrotirc Relruhilrfv Dutu: A Guidc r n  Selec.tcd Conrponerrfs, ISBN 852962 40 I, 
225 pp. $300. from INSPEC, IEEE Service Center. 445 Hoes Lane. Piscatawav. NJ 08854. 

2. 

Repairable systems need to be designed for easy maintenance. that is, fast 
and cheap repair. Analytic methods for maintainability deal with models 
and distributions for the.time to repair. Maintainability demonstration deals 
with sampling plans and data analyses to estimate the distribution of time 
to repair. For example, demonstration plans compare the mean and per- 
centiles of the distribution of time to repair with specified values. The 
methods of this book apply to such data. The references below specifically 
treat maintainability. 

Bird. C i .  T (1969). “MIL-STD-471. Maintainability Demonstration.” J .  Quul. Techrid. 1, 
I 3 4  148. 

Blanchard. Jr.. R .  S.. and Lowery. E. E. ( 1969). b ~ u ~ r i ~ u / r ~ u h h ~ i ~  Prrriupltv urld Prumce,,. 
McGraw-Hill. New York .  

Department of Defense (1973). “MIL-STD-47IA. Maintainability Demonstration.” (March 
1973). Available from the Commanding Officer. Naval Publications and Forms Center, 5801 
Tabor Ave.. Attn. NPFC 105. Philadelphia. PA 19120. 

(iertsbakh, I. B (1977). Models o/ Preoerirrue Muitrreriutice, North Holland. New York. 

Goldman. A,. and Slattery. T. ( 1964). Muirrru/riuh/r[i~: A Mujor Elenienr 14 .‘Y\,.$/enr EJec ri[.twess. 
Wiley. New York. 

MAINTAINABILITY MODELS AND DATA ANALYSES 
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3. 

Availability is a commonly used measure of performance of repairable 
systems. Such systems are working (up) of failed and awaiting or undergo- 
ing repair (down). The long run fraction or the time that a system is up is 
called the steady state availability. Models and analyses for this availability 
are like those for reliability. Availability is determined by the system’s 
distributions of time to failure and time to repair. If p ( v )  is the mean time 
to failure (repair), the steady state availability is A = p / ( p  + v); Sandler 
(below) calls t h s  system reliability. This availability is used for engineering 
design. The probability of a system being up at a given instant in time is 
called the instantaneous availability. T h s  availability is determined from 
queuing theory for finite source models and Markov chains. There are some 
methods for analyzing failure and repair time data to get availability 
information; Nelson (below) references such work. A few references on 
availability follow. Also, many of the reliability books listed in Section 11 
contain some availability methods. 

Barlow, R. E., and Proschan, F. (1965), Mathematical Theoq of Reliability, Wiley, New York. 
Jaiswal, N. K. (1966), “Finite Source Queuing Models,” Case Institute of Technology Technical 
Memo No. 45. Cleveland, OH. 
Nelson, W. ( 1970), “A Statistical Prediction Interval for Availability,” IEEE Trans. Reliub. 

Sandler. G. H. ( 1963). System Reliahilify Engineering, Prentice-Hall, Englewood Cliffs, NJ. 

AVAILABILITY MODELS AND DATA ANALYSES 

R-19, 179-182. 

4. ESTIMATION OF SYSTEM RELIABILITY FROM 
COMPONENT DATA 

A common problem is to calculate an estimate and confidence limits for 
system reliability from component reliability data. Such an analysis employs 
a model for the system reliability and distributions for component life to 
analyze such data. Most theoretical work involves either binary (success- 
failure) data on reliability or exponential component life distributions. Such 
work is surveyed by Mann, Schafer, and Singpurwalla (1974, Chap. 10). 
This field continues to develop, and the bibliographies and journals listed 
later give the latest methods. 

5. BAYESIAN METHODS IN RELIABILITY 

Engineers who use Bayesian methods do so because these methods provide a 
formal means of including subjective information on product or component 
reliability in a reliability analysis of a system (or component). Such methods 
are used for probabilistic analysis of system reliability and for data analysis. 
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The analyst assigns (1) noninformative or (2) subjective distributions called 
“priors” to the parameters of the model for system reliability or perfor- 
mance. The priors express the uncertainties in the parameter values. The 
theory combines actual data with such priors to get new parameter distribu- 
tions called “posteriors.” The posteriors yield estimates and Bayesian confi- 
dence limits for the parameters. The prior distribution combines with the 
data and produces more precise estimates than would the data alone. Of 
course, the validity of the results of a Bayesian analysis strongly depends on 
the validity of the model and prior distributions. Bayesian methods are 
surveyed by Mann, Schafer, and Singpurwalla (1974, Chap. 8) and by 
General Electric (1975, Sec. 9). Locks (1973, Chap. 7) gives an introduction 
to Bayesian methods. This field continues to develop rapidly. Consult 
books, bibliographes, and journals listed in the following sections for the 
latest methods. Also see Tsokos and Shmi (1977). 

6. RELIABILITY DEMONSTRATION AND ACCEPTANCE TESTS 

Reliability demonstration and acceptance tests are used to assess whether 
product performance meets a specification. The specification usually re- 
quires that some parameter of the distribution of product performance 
surpass a specified value. For example, the mean life of an exponential 
distribution is to be above a specified value. Test plans specify the sample 
size, test time, test statistic, and criteria for the product to pass or fail the 
test. Many plans have been given in standards, books, and the literature 
dealing with reliability and quality control. Pabst (1975) reviews a number 
of standards for such tests. Such reviews, a regular feature in the Journal of 
Quality Technology, are generally more readable than the original standards. 
Mann, Schafer, and Singpurwalla (1974, Ch. 6) present the statistical theory 
of many such tests. Chapter 10 here briefly describes such demonstration 
tests and references standards containing such tests. 

Selected standards follow. 

MIL-STD-690B, “Failure Rate Sampling Plans and Procedures.” 
MIL-STD-78 IC. “Reliability Tests: Exponential Distribution.” 

MIL-HDBK- 108, “Sampling Procedures and Tables for Life and Reliability Testing (Based on 
Exponential Distribution).” 

TR-3. “Sampling Procedures and Tables for Life and Reliability Testing Based on the Weibull 
Distribution (Mean Life Criterion).” 

TR-4. “Sampling Procedures and Tables for Life and Reliability Testing Based on the Weibull 
Distribution (Hazard Rate Criterion).” 

TR-6. “Sampling Procedures and Tables for Life and Reliability Testing Based on the Weibull 
Distribution (Reliable Life Criterion).” 

MIL-S- 19500D. “General Specification for Semiconductor Devices.” 
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These are available from the U.S. Government Printing Office, Washington, 
DC 20402. 

7. RELIABILITY GROWTH (DUANE PLOTS) 

In many development programs, hardware reliability grows during design, 
development, testing, and actual use. Such growth results from continuing 
engineering effort to improve the design, manufacture, and operation of 
repairable hardware. Reliability managers often need predictions of hard- 
ware reliability that will result from continued engineering effort. Reliability 
growth models and data analysis methods provide such predictions, confi- 
dence limits for the true reliability (or Poisson failure rate). and prediction 
limits for future numbers of failures. Such an analysis usually involves 
fitting to failure data an equation for the failure rate as a function of time. 
The best known analysis is the Duane (1964) plot, whch is described by 
Codier (below). Gross and Clark (1975, Chap. 5 )  and Crow (below) present 
and reference some recent work. MIL-HDBK-189 (below) explains how to 
use the latest reliability growth methods. 

Codier. E. 0. (196X). “Reliability Growth in Real Life.” I’roceedirig of rhr 1968 Atrriuul 

SImposrwt or1 Relruhilrrr. pp. 4SX-469. 

Crow. L H. ( 1975). “Reliability Analysis for Complex. Repairable Systems.“ U.S. Arm) 
Material S ~ s t e m s  Analysis Activity. Technical Report No. 138. Aberdeen Proving Ground, MD 
2 I(X)S. ,4150 available as document AD020296 from the Defense Documentation Center. 
Defense Logistics Agency, Cameron Station. Alexandria. VA 223 14. 

Crnw. L. H. (1977), “Confidence Interval Procedures for Reliability Growth Analysis.“ U S. 
Arm) Material Systems Analysis Activity. Technical Report No. 197. Aberdeen Proving 
Ciround. MD 21005. Also available as document AD-AO44788 from Defense Documentation 
Center. Defense Logiatics Agency, Cameron Station, Alexandria, VA 223 14. 

Duane. J .  T. (1964). “Learning Curve Approach to Reliability Monitoring.” f C E E  Trum 
Arro\p 2, No. 2. 563-566. 

MIL-HDBK- I XY, “Reliability Growth Management,” Department of Defense. Wabhington. 
DC ( 19x1 ). Available from the Commanding Officer. Naval Publications and Forms Center. 
5x01 Tabor Ave.. Philadelphia. PA 19120. 

8. 

Many systems and products have components that are replaced (im- 
mediately) when they fail, and the replacement continues in service. For a 
fleet of such systems, one is often interested in the expected number of 
replacements as a function of calendar time; this function is called the 
“renewal function.” I t  is useful for forecasting and planning needed num- 
bers of replacements. Cox (1962), Parzen (1962, Chap. 5 ) .  and journals 
present probabilistic models and theory for renewal problems. The theory 

RENEWAL THEORY AND DATA ANALYSIS 
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gives, for example, the relationship between the component life distribution 
and the renewal function. 

One has renewal data if one knows only how long the system has been 
running when a component fails and one does not know if it  is an original 
or a replacement. That is, for a failed or a running component, one knows 
only the time since the system first went into service. Few methods for 
analysis of renewal data have been developed; for examples, see the 
parametric maximum likelihood approach of Bassin (1969) and the non- 
parametric approaches of Klega (1976) and of Trindade and Haugh (1978). 

9. 

Product life may depend on variables arising in design, manufacture, 
operation, etc. Such so-called independent variables may be qualitative 
(categories, for example, vendors A, B, and C), and they may be quantita- 
tive (for example, operating temperature). This section briefly reviews 
models and analyses for such data. 

A general model for such situations consists of a life distribu- 
tion whose parameters are functions of the variables. The unknown values 
of coefficients in the functions are estimated from data. Nelson and 
Hendrickson (1972) describe such models in general terms. Examples of 
such models are referenced in Section 10 on accelerated testing. References 
that follow generally present models entirely with qualitative or else quanti- 
tative variables, but both types of variables can be in a model. 

Qualitative variables. Analysis of variance relationships are commonly 
used to express a life distribution parameter in terms of qualitative vari- 
ables. Such relationships are described in general by Box, Hunter, and 
Hunter (1978), Mendenhall (1968), and Scheffe (1959). The data analysis 
methods of these books do not apply to censored data. Examples of the use 
of such relationships with censored life data are given by Sampford and 
Taylor (l959), Zahn (l975), and Zelen (1969). 

Linear regression relationships are commonly 
used to express a life distribution parameter in terms of quantitative 
variables. Such relationships are described in general by Draper and Smith 
(1981) and Neter and Wasserman (1974). Applications to censored life data 
are given by Cox (1972), Lieblein and Zelen (1956), and Nelson and Hahn 
(1972). Further applications are referenced in Section 10. Kalbfleisch and 
Prentice (1980) and Elandt-Johnson and Johnson (1980) present the Cox 
(1972) proportional hazards model and data analyses in detail for biomedi- 
cal applications. Lawless (1982) treats parametric models (his Chapter 6) 
and the nonparametric Cox model (his Chapter 7). 

LIFE A S  A FUNCTION OF OTHER VARIABLES 

Models. 

Quantitative variables. 
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10. ACCELERATED LIFE TESTING 

Accelerated life testing of products and materials is used to get information 
quickly on their life distributions. Such testing involves subjecting the test 
units to conditions that are more severe than normal. This results in shorter 
lives than would be observed under normal conditions. Accelerated test 
conditions are typically produced by testing units at high levels of tempera- 
ture, voltage, pressure, vibration, cycling rate, load, etc., or some combina- 
tion of these. The use of certain accelerating or stress variables is a 
well-established engineering practice for many products and materials. In  
other fields, similar problems involve estimating a relationship between life 
and variables that affect life. 

The data obtained at the more severe or accelerated conditions are 
extrapolated by means of an appropriate model to the normal conditions to 
obtain an estimate of the life distribution under normal conditions. Such 
testing provides a savings in time and cost compared with testing at normal 
conditions. Indeed, for many products and materials, life at normal condi- 
tions is so long that testing at those conditions is completely out of the 
question. 

Nelson (1974a), General Electric (1975, Sec. l l) ,  Little and Jebe (1975), 
and Yurkowsky and others (1967) survey statistical methods for planning 
and analyzing accelerated tests where units are subjected to high stresses. In 
particular, they give references on how to analyze such data before all test 
units fail. This important advance makes it possible (1) to terminate a test 
before all units fail, resulting in a savings of time and cost, and (2) to test at 
lower stresses so that extrapolation is reduced. Also, the references show 
how to properly analyze such data with different failure modes. Previously, 
it was not known how to use test data with a mix of failure modes to 
estimate the life distribution at design conditions. Meeazr (1979) gives a 
bibliography on accelerated testing, including statistical methods and appli- 
cations. 

Metal fatigue under high stress, temperature, and other variables is an 
important application of accelerated testing. References on statistical meth- 
ods include Little and Jebe (1975), Weibull (1961), and ASTM (1963). 

A variety of statistical methods and special problems are presented by 
Nelson (1971, 1973, 1974a,b, 1975), Nelson and Hahn (1972), and Hahn 
and Nelson (1971). 

11. DEPRECIATION, REPLACEMENT, AND 
MAINTENANCE POLICIES 

Some references on these topics follow 

Barlow, R E , and Proschan, F (1965). Marheniarrcal Theon, oj  Relruhrlit~, Wiieq. New York, 
Chapters 3 and 4 
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Glasser, G. J. (1969), “Planned Replacement: Some Theory and Its Application,” J. Qunl. 
Technol. 1, 110-1 19. 

Jorgenson, D. W., McCall, J. J., Radner, R. (1967), Optimal Replacement Policy, Rand 
McNally, Chicago, IL. 

12. BOOKS WITH RELIABILITY AND LIFE DATA ANALYSIS 

Below is a list of books on mathematical methods for reliability and for life 
data analysis. The list omits books on reliability management, physics of 
failure, and other nonmathematical methods. There are few books on life 
data analysis, and most reliability books present only a few simple data 
analyses. Reliability is a rapidly changing field, and many early books (say, 
before 1974) lack important new developments. Many of the following 
books have been reviewed in the journals listed in Section 14. 

Amstad ter, B. L. ( 197 I) ,  Reliability Mathematics- Fundamentals; Practices; Procedures, 
McGraw-Hill, New York. 

Bain, L. J .  (1978), Statistical Analysis of Reliability and Life-Testing Models, Dekker, New 
York. 

Barlow, R. E., and Proschan, F. (1965), Mathematical Theory of Reliability, Wiley, New York. 
Barlow, R. E., and Proschan, F. (1975), Statistical Theory of Reliabi1it.v and Life Testing, Holt, 
Rinehart, and Winston, New York. 
Bazovsky, I. (l96l), Reliability Theory & Practice, Prentice-Hall, Englewood Cliffs, NJ. 
Becker, P. W., and Jensen, F. (1977), Design of Systems and Circuits- for Maximum Reliahility 
or Maximum Production Yield, McGraw-Hill, New York. 

Billington, R. (1970), Power System Reliability Eualwtion. Gordon and Breach, New York. 
Bompas-Smith, J. H. (1973), Mechanical Survival: The Use of Reliahilitv Data, McGraw-Hill, 
Maidenhead, Berkshire, England. 
Bury, K. V. (1975). Statistical Models in Applied Science, Wiley, New York. 

Calabro, S. R. (1962). Reliability Principles and Practices, McGraw-Hill, New York. 
Chang, C. L. (1968), Introduction to Stochastic Processes in Biostatistics, Wiley, New York. 
David, H. A. (1981), Order Statistics, 2nd Ed., Wiley, New York. 
Dummer, G. W., and Winton, R. C. (1968), An Elemenray Guide to Reliahility, Pergamon, 
Elmsford, NY. 
Elandt-Johnson, R. C., and Johnson, N. L. (1980), Survival Models and Data Analysis, Wiley, 
New York. 
Enrick, N. L. (l967), Quality Control and Reliability, Industrial Press, New York. 
Gertsbakh, I. B., and Kordonskiy, Kh. B. (1969), Models of Failure, Springer-Verlag, New 
York. 
Green, A. E., and Bourne, A. J.  (1972), Reliability Technology. Wiley-Interscience, New York. 
Gross, A. J., and Clark, V. A. (1975), Survival Disrrihurions: Reliability Applications in the 
Medical Sciences, Wiley, New York. 

Gumbel, E. J. (1958). Statistics of Extremes, Columbia University Press, New York. 
Hahn, G. J., and Shapiro, S. S. (1967), Statistrcal Models in Engineering. Wiley, New York. 
Halpern, S. (l978), The Assurance Sciences: An Introduction to Qwlit.v Control and Reliahilit-v, 
Prentice-Hall, Englewood Cliffs, NJ. 
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Haviland, R P (1964), Engineering Reliability and Long Life Design, Van Nostrand. Princeton, 
NJ 

Henley, E. J., and Kumamoto, H. (1980). Reliabiliry Engineering and Risk Assessment, Prentice- 
Hall. New York. 

Ireson, W. G., Ed. (l966), Reliahili~y Handbook, McGraw-Hill, New York. 

Johnson, L. G. ( 1 9 6 4 ~  The Theory and Technique of Variation Research. Elsc .ew York. 

Kalbfleisch, J. D., and Prentice, R. L. (1980), The Statistical Analysis of Failure Time Data. 
Wiley, New York. 

Kapur, K. C., and Lamberson, L. R. (1977), Reliability in Engineering Design, Wiley, New 
York. 

Kaulman, A., Grouchko, D., and Cruon, R. (1977), Mathematical Models for the Study of 
Reliuhihty of Systems, Academic, New York. 

King, J .  R.  (1971). Prohahility Plots for Decision Making, Industrial Press, New York. 

ffivenson. <i. (1971). Durabilify and Reliahi1it.y in Engineering Design, Hayden, New York. 

Kulldorff. G. ( 1961), Estimation from Grouped and Parrially Grouped Saniples, Wiley, New 
York. 

Landers, R. R.  ( I963), Reliability and Product Assurance, Prentice-Hall, Englewood Cliffs, NJ. 

Lawless, J. F .  (1982). Statistical Models and Methods for Liferime Data, Wiley, New York. 

Lee, E. ( 1980), Statistical Methods for Suruioul Data Analysis. Lifetime L’eaming, Belmont, CA. 

Lipson. C.,  and Sheth, N.  C. (1973). Statistical Design and Analysis of Engineering Experiments, 
McGraw-Hill, New York. 

Little, R. E.. and Jebe, E. H. (1975), Statistical Design of Fatigue Experiments, Halstead, New 
York. 

Lloyd, D. K., and Lipow, M. (1977). ReliabiliIv: Management, Methods and Mathenratics. 2nd 
ed., McGraw-Hill, New York. 

Locks. M. 0. ( 1973). Reliabiht.y, Muintuinnhilit~y, and Availability Assessment, Hayden, Rochelle 
Park, NJ. 

Lowrance, W. W. (1976). Of Acceptuhle Risk: Science and the Determination of Safety. William 
Kaufrnan. Los Altos, CA. 

Mann, N. R., Schafer. R. E., and Singpurwalla. N. D. (1974), Methods for Statistical Ana/vs;s of 
Reliuhilir~ and Life Data, Wiley. New York. 

Miller. R. (1981). Suroioal Ana/ysis, Wiley, New York 

Picruschka, E. ( 1963). Principles of Reliability, Prentice-Hall. Englewood Cliffs, NJ. 

Polovko. A. M. (1968). Fundanientals of Reliabilit~v Theoty, Academic, New York. 

Proschan. F., and Serfling, R. J.. Eds. (1973), Relia6ilit.v and Biometty-S~tutisticol Analysis .f 
Lifelength, Society for Industrial and Applied Mathematics, 33 South 17th St., Philadelphia, 
PA 19103. 

Rau. J .  J (1970). Optimization uird Prohubi1it.v in Sys tem Engineering, Van Nostrand Reinhold. 
New York. 

Roberts. N. H.  ( 1964). Muthematicul Methods in Reliability Engineering, McGraw-Hill, New 
York. 

Rowe. W .  D. (1977). A n  Anatomy of Risk, Wiley, New York 

Sandler. C;. H. ( 1963). System Reliahility Engrneering. Prentice-Hall, Englewood Cliffs, NJ. 
Shooman. M. L. ( I968), Prohohilistic Reliability: A n  Engineering Approach, McGraw-Hill. New 
York. 
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Sinha, S. K., and Kale, B. K. (1980). Life Testing and Reliabili!v Estimurion, Halstead, New 
York. 

Smith. D. J .  (1972). Reliuhiliry Engineering, Barnes and Noble, New York. 

Tsokos. c. P., and Shimi, I. N., Eds. (1977), The Theoty and Applicution of Reliabilicp with 
Emphasis on Bayesian and Nonparametric Methods, Vol. I-Theoty, Vol. 11- Application, 
Academic, New York. 

Von Alven. W. H., Ed. (1964), Reliahiliry Engineering, ARINC Research Corporation. 
Prentice-Hall. Englewood Cliffs, NJ. 
Weibull. W. (1961), Fatigue Testing and the Analysis of Results, Pergamon. New York. 

Zelen, M., Ed. (1963). Srurisrical Theoty of Reliability. University of Wisconsin Press, Madison, 
WI. 

13. ABSTRACTS, BIBLIOGRAPHIES, AND INDICES ON 
RELIABILITY AND LIFE DATA ANALYSIS 

The following abstracts, bibliographies, and indices reference methods for 
reliability and life data analysis. Also, the yearly indices of journals list 
papers. Applications of such methods are not listed here. Reliability and life 
data analysis are rapidly developing fields; so many references over 10 years 
old may be out of date. There are bibliographies in many of the books listed 
in Section 12. 

Buckland. W. R. ( 1964). Srurisricul Assessment of Life Charucteristic: u Bihliogruphic Guide. 
Hafner. London. Papers grouped by topic with annotations. 

Dolby, J. L.. and Tukey, J. W. (1973). The Sruristics Cum Index, R&D Press, Los Altos. CA. 

The Engineering Index. 

Govindarajulu. 2. (1964). “A Supplement to Mendenhall’s Bibliography on Life Testing and 
Related Topics,” J .  Am.  Slur. Assoc. 59, 1231-1291. Papers listed by author and with subject 
labels. 

Gross, A. J.. and Clark, V. A. (1975). Siirvivul Distrihurions: Reliuhili!r> Applicurions in rhe 
Uioniedicul Sciences. Wiley, New York. The recent bibliography is annotated. 
Internurionul Journul of Absrracrs on Sruristicul Merhods in Industn,. 

Inrernurionul Journul of A bsrrucrs - Sturisricul Theon‘ & Merhok. 

Joiner. B. L. Ed. (1975). Currenr Index 10 Sturistics: Applicarions. Methods und Theoty. 
American Statistical Association and the Institute of Mathematical Statistics. By author and 
keywords in title: issued yearly since 1975. 
Joiner. B. L., Laubscher. N. F.. Brown, E. S.. and Levy, B (1970). An Author and Permuted 
Tirle Index ro Selecred Siurisrrcul Journu13. National Bureau o f  Standards Special Publication 
321. Available from the U. S. Government Printing Office, Washington. DC 20402. By author 
and by key words in title: covers selected journals starting different years through 1969. 

Kendall, M .  G.. and Doig, A. G. (1962). Uthliograph~i~ o/ Sruristic~ul Lirerurure IQSO-I9SH, 
Hafner, London. 
Kendall. M. G.. and Doig, A. G. (1965). Uihliogruphy of Sturisticd Literuture 1940- IY49. 
Hafner. London. 
Kendall. M. G.. and Doig, A. G ( 1968). Bihliogruphj, o/Sturisticul Lirerurure Pre-1940. Hafner, 
London. 
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Lancaster, H .  0. (1971), “A Bibliography of Statistical Bibliographes: A Fourth List,” R m .  
In t .  Stat. Inst. 39, No. 1. 

Mathematical Reviews. 

Mendenhall, W .  (1958). “A Bibliography of Life Testing and Related Topics,” Biometrika 45, 
521-543. Papers listed by author and with subject labels. 

Quality Control Abstracts. 

Reliabi1it.v Abstracts and Technical Reviews, National Aeronautics and Space Administration, 
Washngton, DC. 
Ross, I. C., and Tukey, J .  W., (1975). Index to Statistics and Probability. Vol. 2-Citation Inde-x, 
Vol. 3- Permuted Titles: A- K, Vol. 4- Permuted Titles L- 2, Vol. 5- Locutions and Authors, 
Vol. 6- Permuted Index to Minimum Abbreviation. 

Schaefer. B. K. (1979). Using the Mathematical Literature: A Practical Guide, Dekker, New 
York. 
Science Citation Index. Useful for locating more recent papers that reference known papers on 
a topic. 

Storistical Theor?, ti Merboh Abstracts, Oliver & Boyd, Tweeddale Court, 14 High St., 
Edinburgh I ,  Scotland. 

14. JOURNALS WITH PAPERS ON RELIABILITY 
AND LIFE DATA ANALYSIS 

The following journals contain papers on methods for reliability and life 
data analysis. Many engineering, biomedical, and other journals contain 
papers on applications of such methods. 

American Society Jor Qua1it.v Control Technical Conference Transactions 

American Statistician. 

Annals of Marhemutical Statistics-Author, subject, and citation indices vols. 1-3 1 (1960). 

Annuls of Prohabi1it.v. Successor to Annals of Mathemarical Statistics. 
Annuls OJ Reliahi1it.y and Muintuinabiliry 

Annuls of Sroristics. Successor to Annals of Muthematical Statistics. 

Applied Statistics. 

Berkeley Symposium. 

Bionieirics-Author and subject indices for vols. 1-20 (1965). 

Biometriko-Subject index for vols. 1-37 (1950), author indices for vols. 1-48 (IY61) and 49-56 
( 1969). 
Evaluurion Engineering. 

Industriul Quality Control-Subject index for vols I-X ( 1  954). 
IEEE Tranmctions on Power Apparatus and Systems. 

IEEE Transactions on Reliabihy. 

Journal of Qua1it.v Technology. Successor to Industrial Quality Control. 

Journul oJ the American Statistical Association-Author index for vols. 5 1-60 (1966). 
Journal oJ the Operations Research Society of America-Author, subject, and title indices for 
vols. I - I5 ( 1  967). 

Journul of Statistical Planning and Inference. 
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Jourtiol of the Royul Stutistrcul Societv, Series B- Methodological. 

Nucul Research Logistics Quurierlv. 

Operutions Reseurch Quurterlv. 

Proceedings of the Annuul Rehhiliry and Muiniurnuhrlrty Sympusrunl. 

The Q R Journul-Theov und Pructice, Methods und Management. 

Quulity Assurance. 

Quulitv Progress. 

Sunkhw, Series A and Series B. 
Skundinuvisk Akfuurietidskrifr (many papers in English)-Index for vols. 1-40, 
Technometrics-Author and subject indices for vols. 1-7 (1966). 8-20 (1978). 

Truhujos de Estudisticu e Invesriguciones Operutivus (some papers in English). 

THE RELIA-COM. 

15. COMPUTERlZED LlTERATURE SEARCHES 

Computerized literature searches of data bases are now available through 
many libraries. Searches may be made by key words in paper titles, author 
names, year of publication, journal, etc. Some data bases relevant to life 
data analysis follow. 

Biosis Previews of BioScience Information Service. This provides compre- 
hensive worldwide coverage of research in the life sciences, including 
anatomy, bacteriology, biochemistry, genetics, immunology, microbiology, 
physiology, toxicology, virology, and zoology. It includes all citations from 
Biological Abstracts and Bioresearch Index. 1969-present. 
CA Condensation/Casia of Chemical Abstracts Service (CAS). This is the 
merger of two CAS files, covering the world’s chemical literature, including 
biochemistry, analytical and physical chemistry, applied chemistry, and 
chemical engineering. 1970-present. 
Compendex of Engineering Index. This corresponds to Engineering Index 
Monthly. It  covers civil-environmental-geological engineering, mining- 
metals- petroleum - fuel engineering, mechanical - automotive - nuclear - 
aerospace engineering, electrical-electronics-control engineering, chemical- 
agricultural-food engineering, and industrial engineering, management, 
mathematics, physics, and instruments, including approximately 1500 serials 
and over 900 monographic publications. 
DOE Energy Data Base, U.S. Department of Energy. This covers all 
unclassified energy information processed at the DOE Technical Informa- 
tion Center. I t  includes all literature announced in DOE Energy Research 
Abstracts, Energy Abstracts for Policy Analysis, Power Reactor Docket Infor- 
mation, Atomindex, and the Solar, Geothermal, and Fossil Energy Updates. 
January 1974-present. 
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Inspec of Institution of Electrical Engineers. This provides worldwide 
coverage of the literature in physics and electrical and electronics en- 
gineering. Source documents are primarily journal articles; however, govern- 
ment reports, patents, and monographs are included. It corresponds in 
coverage to Physics Abstracts, Electrical and Electronics Abstracts, and 
Computer and Control Abstracts. January 1969-present. 
Scisearch of Institute for Scientific Information, Philadelphia, PA. This is 
a multidisciplinary index to the literature of science and technology. It 
contains all records published in Science Citation Index (SCI) and addi- 
tional records from the Current Contents series of publications that are not 
included in the printed version of SCI. Indexed journals are carefully 
selected on the basis of several criteria, including citation analysis, resulting 
in the inclusion of 90% of the world’s significant scientific and technical 
literature. Citation indexing allows retrieval of newly published articles 
through the subject relationships established by an author’s reference to 
prior articles. Scisearch covers every area of the pure and applied sciences. 
Scisearch indexes all significant items (articles, reports of meetings, letters, 
editorials, correction notices, etc.) from about 2600 major scientific and 
technical journals. In addition, the Scisearch file for 1974- 1975 includes 
approximately 38,000 items from Current Contents -Clinical Practice. Be- 
ginning January 1, 1976, all items from Current Contents - Engineering, 
Technology, and Applied Science and Current Contents -Agriculture, Biol- 
ogy, and Environmental Sciences that are not presently covered in the 
printed SCI will be included each month. T h s  expanded coverage will add 
approximately 58,000 items per year to the Scisearch file. 

PROBLEMS 

13.1. Compile a bibliography on one of the following topics. 

(a) Renewal data analysis. 
(b) Stress-strength interference. 
(c) Applications to a particular engineering problem, fatigue of metals, 

endurance of dielectrics, or whatever. 
(d) Interval data analysis. 

(e) Failure modes and effects analysis (FMEA). 
(f) Estimation of system reliability from component data. 
(g) Size effect on specimen life. 
(h) Accelerated testing. 

(i) Goodness of fit tests, particularly for censored data. 
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(j) The method of minimum chi-square fitting. 
(k)  Nonparametric methods for multiply censored data. 
( I )  Availability methods. 

(m) Maintainability methods. 

(n) Competing risks, including dependent failure modes. 
(0) A topic of your choice. 
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Appendix A 
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. Standard Normal Cumulative Distribution Function cP( u 

From A,. Nald, Sturr~ric~ul Tuhles utd  Fortmdus. Wiley. New York, 1952, Table 11. Reproduced 
by perriiission. 
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Appendix Al .  Standard Normal Cumulative Distribution Function @(u)  
(Continued) 
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Appendix A2 Standard Normal Percentiles z p  

loop% Z P  lWP% ZP 
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Appendix A3. Chi-square Percentiles x *( P; v) 

t\p 0.005 0.010 0.025 0.050 0.100 0.250 0.500 

1 0.00004 
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~ ~~ 

From N. L. Johnson and F. C. Leone. Srurrsrrts arid E.rpertnlentu/ Drvigti oi Gigiriec.rrii,q utld rhr 
Phj,.rrcu/ Screwes, 2nd ed.. Wiley. New York. 1977. Vol. I ,  pp. 51 1-512. Reproduced by 
permission of the publisher and the Biometrika Trustees. 
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Appendix A3. Chi-square Percentiles x2(  P; v) (Continued) 
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9.210 

11.34 
13.28 

15.09 
16.81 
18.48 
20.09 
21.67 

23.21 
24.72 
26.22 
27.69 
29.14 

30.58 
32.00 
33.41 
34.81 
36.19 

37.57 
38.93 
40.29 
41.64 
42.98 

44.31 
45.64 
46.96 
48.28 
49.59 

50.89 
63.69 
76.15 
88.38 

100.4 
112.3 
124.1 

7.879 
10.60 
12.84 
14.86 

16.75 
18.55 
20.28 
21.96 
23.59 

25.19 
26.76 
28.30 
29.82 
31.32 

32.80 
34.27 
35.72 
37.16 
38.58 

40.00 
41.40 
42.80 
44.18 
45.56 

46.93 
48.29 
49.64 
50.99 
52.34 

53.67 
66.77 
79.49 
91.95 

104.2 
116.3 
128.3 

10.83 
13.82 
16.27 
18.47 

20.52 
22.46 
24.32 
26.12 
27.88 

29.59 
3 1.26 
32.91 
34.53 
36.12 

37.70 
39.25 
40.79 
42.31 
43.82 

45.32 
46.80 
48.27 
49.73 
51.18 

52.62 
54.05 
55.48 
56.89 
58.30 

59.70 
73.40 
86.66 
99.61 

112.3 
124.8 
137.2 

135.8 140.2 149.4 



Appendix A4. ?-Distribution Percentiles t( P; v )  
\ 

v\ 0.750 0.900 0.950 0.975 0.990 0.995 0.999 0.9995 
\ 

1 1.000 3.078 6.314 12.706 31.821 63.657 318.31 636.62 
2 0.816 1.886 2.920 4.303 6.965 9.925 22.326 31.598 
3 0.765 1.638 2.353 3.182 4.541 5.841 10.213 12.924 
4 0.741 1.533 2.132 2.776 3.747 4.604 7.173 8.610 

5 0.727 1.476 2.015 2.571 3.365 4.032 5.893 6.869 
6 0.718 1.440 1.943 2.447 3.143 3.707 5.208 5.959 
7 0.711 1.415 1.895 2.365 2.998 3.499 4.785 5.408 
8 0.706 1.397 1.860 2.306 2.896 3.355 4.501 5.041 
9 0.703 1.383 1.833 2.262 2.821 3.250 4.297 4.781 

10 0.700 1.372 1.812 2.228 2.764 3.169 4.144 4.587 
11 0.697 1.363 1.796 2.201 2.718 3.106 4.025 4.437 
12 0.695 1.356 1.782 2.179 2.681 3.055 3.930 4.318 
13 0.694 1.350 1.771 2.160 2.650 3.012 3.852 4.221 
14 0.692 1.345 1.761 2.145 2.624 2.977 3.787 4.140 

15 0.691 1.341 1.753 2.131 2.602 2.947 3.733 4.073 
16 0.690 1.337 1.746 2.120 2.583 2.921 3.686 4.015 
17 0.689 1.333 1.740 2.110 2.567 2.898 3.646 3.965 
18 0.688 1.330 1.734 2.101 2.552 2.878 3.610 3.922 
19 0.688 1.328 1.729 2.093 2.539 2.861 3.579 3.883 

20 0.687 1.325 1.725 2.086 2.528 2.845 3.552 3.850 
21 0.686 1.323 1.721 2.080 2.518 2.831 3.527 3.819 
22 0.686 1.321 1.717 2.074 2.508 2.819 3.505 3.792 
23 0.685 1.319 1.714 2.069 2.500 2.807 3.485 3.767 
24 0.685 1.318 1.711 2.064 2.492 2.797 3.467 3.745 

25 0.684 1.316 1.708 2.060 2.485 2.787 3.450 3.725 
26 0.684 1.315 . 1.706 2.056 2.479 2.779 3.435 3.707 
27 0.684 1.314 1.703 2.052 2.473 2.771 3.421 3.690 
28 0.683 1.313 1.701 2.048 2.467 2.763 3.408 3.674 
29 0.683 1.31 1 1.699 2.045 2.462 2.756 3.396 3.659 

30 0.683 1.310 1.697 2.042 2.457 2.750 3.385 3.646 
40 0.681 1.303 1.684 2.021 2.423 2.704 3.307 3.551 
60 0.679 1.296 1.671 2.000 2.390 2.660 3.232 3.460 

120 0.677 1.289 1.658 1.980 2.358 2.617 3.160 3.373 
0.674 1.282 1.645 1.960 2.326 2.576 3.090 3.291 

From N.  L. Johnson and F. C. Leone, Sturistrcs ~ t i d  E.yperimetiiul Dr.si,gti ( t i  Etigitieerrtig utid 
rhr Plt,,.wu/ Scirritrs. 2nd ed.. Wilev. New York. 1977. Vol. I .  p. 466 Reproduced bv 
permission of the publisher and the Biometrika Trustees.Use I (  I - P :  v)- - t (  P :  v )  for small 
percentiles 
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Appendix A5a. F-Distribution 90 Percent Points F(O.90, v,, u2) 

i5.833 
9.2434 
5.3427 
4.1073 

3.5202 
3.1808 
2.9605 
2.8064 
2.6927 

2.6053 
2.5362 
2.4801 
2.4337 
2.3947 

- 

5 
1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 

I5 
16 
17 
I8 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
40 
60 
120 
al 

57.241 
9.2926 
5.3092 
4.0506 

3.4530 
3.1075 
2.8833 
2.7265 
2.6106 

2.5216 
2.4512 
2.3940 
2.3467 
2.3069 

1 

2.3614 
2.3327 
2.3077 
2.2858 

19.864 
8.5263 
5.5383 
4.5448 

4.0604 
3.7760 
3.5894 
3.4579 
3.3603 

3.2850 
3.2252 
3.1765 
3.1362 
3.1022 

3.0732 
3.0481 
3.0262 
3.0070 
2.9899 

2.9147 
2.9609 
2.9486 
2.9374 
2.9271 

2.9177 
2.9091 
2.9012 
2.8939 
2.8871 

2.8807 
2.8354 
2.1914 
2.7478 
2.7055 

2.2730 
2.2438 
2.2183 
2.1958 

2 

2.2333 
2.2193 
2.2065 
2.1949 

19.500 
9.oooo 
5.4624 
4.3246 

3.7797 
3.4633 
3.2574 
3.1131 
3.0065 

2.9245 
2.8595 
2.8068 
2.7632 
2.7265 

2.6952 
2.6682 
2.6446 
2.6239 
2.6056 

2.5893 
2.5746 
2.5613 
2.5493 
2.5383 

2.5283 
2.5191 
2.5106 
2.5028 
2.4955 

2.4887 
2.4404 
2.3932 
2.3473 
2.3026 

2.1423 
2.1279 
2.1 149 
2.1030 

3 

i3.593 
9.1618 
5.3908 
4.1908 

3.6195 
3.2888 
3.0741 
2.9238 
2.8129 

2.7277 
2.6602 
2.6055 
2.5603 
2.5222 

2.4898 
2.4618 
2.4374 
2.4160 
2.3970 

2.3801 
2.3649 
2.3512 
2.3387 
2.3274 

2.3170 
2.3075 
2.2987 
2.2906 
2.2831 

2.2761 
2.2261 
2.1774 
2.1300 
2.0838 

4 1 5  I 

2.2663 2.1760 

2.2489 2.1582 

2.1843 
2.1745 
2.1655 
2.1571 
2.1494 

2.1422 
2.0909 
2.0410 
1.9923 
1.9449 

2.0922 
2.0822 
2.0730 
2.0645 
2.0566 

2.0492 
1.9968 
1.9457 
1.8959 
1.8473 

6 

18.204 
9.3255 
5.2847 
4.0098 

3.4045 
3.0546 
2.8274 
2.6683 
2.5509 

2.4606 
2.3891 
2.3310 
2.2830 
2.2426 

2.2081 
2.1783 
2. I524 
2.1296 
2.1094 

2.0913 
2.0751 
2.06G5 
2.0472 
2.0351 

2.0241 
2.0139 
2.0045 
1.9959 
1.9878 

1.9803 
1.9269 
1.8747 
1.8238 
1.7741 

7 
- 
8.906 
9.3491 
5.2662 
3.9790 

3.3679 
3.0145 
2.7849 
2.6241 
2.5053 

2.4140 
2.3416 
2.2828 
2.2341 
2.1931 

2.1582 
2.1280 
2.1017 
2.0785 
2.0580 

2.0397 
2.0232 
2.0084 
1.9949 
1.9826 

1.9714 
1.9610 
1.9515 
1.9427 
1.9345 

1.9269 
1.8725 
1.8194 
1.7675 
1.7167 

8 
- 
9.439 
9.3668 
5.2517 
3.9549 

3.3393 
2.9830 
2.7516 
2.5893 
2.4694 

2.3772 
2.3040 
2.2446 
2.1953 
2.1539 

2.1185 
2.0880 
2.061 3 
2.0379 
2.0171 

1.9985 
1.9819 
1.9668 
1.953 I 
1.9407 

1.9292 
1.9188 
1.909 1 
1.9001 
1.8918 

1.8841 
1.8289 
1.7748 
1.7220 
1.6702 

- 
9 
- 
9.858 
9.3805 
5.2400 
3.9357 

3.3163 
2.9577 
2.7247 
2.5612 
2.4403 

2.3473 
2.2735 
2.2135 
2.1638 
2.1220 

2.0862 
2.0553 
2.0284 
2.0047 
1.9836 

1.9649 
1.9480 
1.9327 
1.9189 
1.9063 

1.8947 
1.8841 
1.8743 
1.8652 
1.8568 

1.8490 
1.7929 
1.7380 
1.6843 
1.6315 
- 

From C. A. Bennett and N.  L. Franklin, Srurrstrcal A m ~ / v s r s  I R  Cheniisrn und rhe Chenirc.u/ 
Industrk,. New York. 1954, pp. 702-705. Reproduced by permission of the publisher and the 
Biometrika Trustees. 

582 



Appendix A5a. F-Distribution 90 Percent Points F(O.90; v,, v 2 )  
(Continued 

0.705 
9.4081 
5.2156 
3.8955 

3.2682 
2.9047 
2.6681 
2.5020 
2.3789 

2.2841 
2.2087 
2.1474 
2.0966 
2.0537 

2.0171 
1.9854 
1.9577 
1.9333 
1.9117 

1.8924 
1.8750 
1.8593 
1.8450 
1.8319 

1.8200 
1.8090 
1.7989 
1.7895 
1.7808 

1.7727 
1.7146 
1.6574 

1.5458 
1.6012 

- x - 
1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

I5 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
40 
60 

I20 
cn 
- 

61.220 
9.4247 
5.2003 
3.8689 

3.2380 
2.8712 
2.6322 
2.4642 
2.3396 

2.2435 
2.1671 
2.1049 
2.0532 
2.0095 

1.9722 
1.9399 
1.9117 
1.8868 
1.8647 

1.8449 
1.8272 
1.8111 
1.7964 
1.7831 

1.7708 
1.7596 
1.7492 
1.7395 
1.7306 

1.7223 
1.6624 
I .6034 

1.4871 
1.5450 

10 

81.740 62.002 62.265 62.529 
9.441 3 9.4496 9.4579 9.4663 
5.1845 5.1764 5.1681 5.1597 
3.8443 3.8310 3.8174 3.8036 

3.2067 3.1905 3.1741 3.1573 
2.8363 2.8183 2.8000 2.7812 
2.5947 2.5753 2.5555 2.5351 
2.4246 2.4041 2.3830 2.3614 
2.2983 2.2768 2.2547 2.2320 

2.2007 2.1784 2.1554 2.1317 
2.1230 2.1000 2.0762 2.0516 

0.195 
9.3916 
5.2304 
3.9199 

3.2974 
2.9369 
2.7025 
2.5380 
2.4163 

2.3226 
2.2482 
2.1878 
2.1376 
2.0954 

2.0593 
2.0281 
2.0009 
1.9770 
1.9557 

1.9367 
1.9197 
1.9043 
1.8903 
1.8775 

1.8658 
1.8550 
1.8451 
1.8359 
1.8274 

1.8195 
1.7627 
1.7070 
1.6524 
1.5987 
- 

62.794 63.061 
9.4746 9.4829 
5.1512 5.1425 
3.7896 3.7753 

3.1402 3.1228 
2.7620 2.7423 
2.5142 2.4928 
2.3391 2.3162 
2.2085 2.1843 

2.1072 2.0818 
2.0261 1.9997 

1.9625 

1.9243 
1.8913 
1.8624 
1.8368 
1.8142 

1.7938 
1.7756 
1.7590 
1.7439 
1.7302 

1.7175 
1.7059 
1.6951 
1.6852 
1.6759 

1.6673 

20 1 24 1 30 I 40 I 60 1 120 

1.9377 1.9119 1.8852 1.8572 1.8280 

1.8990 1.8728 1.8454 1.8168 1.7867 
1.8656 1.8388 1.8108 1.7816 1.7507 
1.8362 1.8090 1.7805 1.7506 1.7191 
1.8103 1.7827 1.7537 1.7232 1.6910 
1.7873 1.7592 1.7298 1.6988 1.6659 

1.7667 1.7382 1.7083 1.6768 1.6433 
1.7481 1.7193 1.6890 1.6569 1.6228 
1.7312 1.7021 1.6714 1.6389 1.6042 
1.7159 1.6864 1.6554 1.6224 1.5871 
1.7019 1.6721 1.6407 1.6073 1.5715 

1.6890 1.6589 1.6272 1.5934 1.557C 
1.6771 1.6468 1.6147 1.5805 1.5437 
1.6662 1.6356 1.6032 1.5686 1.5313 
1.6560 1.6252 1.5925 1.5575 1.5198 
1.6465 1.6155 1.5825 1.5472 1.509C 

1.6377 1.6065 1.5732 1.5376 1.4989 
1.6052 1.5741 1.5411 1.5056 1.4672 1.4248 
1.5435 1.5107 1.4755 1.4373 1.3952 1.3471 
1.4821 / / / I /  1.4472 1.4094 1.3676 1.3203 3.2646 
1.42061 1.38321 1.34191 1.2951 I 1.24001 1.1686 

83.328 
9.4913 
5.1337 
3.7607 

3.1050 
2.7222 
2.4708 
2.2926 
2.1592 

2.0554 
1.9721 
1.9036 
1.8462 
1.7973 

1.755 1 
1.7182 
1.6856 
1.6567 
1.6308 

I .  6014 
1.5862 
1.5668 
1.5490 
1.5327 

1.5176 
1.5036 
1.4906 
1.4784 
1.4670 

1.4564 
1.3769 
1.2915 
1.1926 
1 .oooo 
- 

Interpolation should be carried out using the reciprocals of the degrees of freedom 
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Appendix A5b. F-Distribution 95 Percent Points F(0.95; u,, v2) 

- 
1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
40 
60 

120 
m 
- 

1 

61.45 
8.513 
0.128 
7.7086 

6.6079 
5.9874 
5.5914 
5.3177 
5.1 174 

4.9646 
4.8443 
4.7472 
4.6672 
4.6001 

4.5431 
4.4940 
4.4513 
4.4139 
4.3808 

4.3513 
4.3248 
4.3009 
4.2793 
4.2597 

4.2417 
4.2252 
4.2100 
4.1960 
4.1830 

4.1709 
4.0848 
4.0012 
3.9201 
3.8415 

2 

99.50 
9.000 
9.5521 
6.9443 

5.7861 
5.1433 
4.7374 
4.4590 
4.2565 

4.1028 
3.9823 
3.8853 
3.8056 
3.7389 

3.6823 
3.6337 
3.5915 
3.5546 
3.5219 

3.4928 
3.4668 
3.4434 
3.4221 
3.4028 

3.3852 
3.3690 
3.3541 
3.3404 
3.3277 

3.3158 
3.2317 
3.1 504 
3.0718 
2.9957 

3 

15.71 
9.164 
9.2766 
6.5914 

5.4095 
4.7571 
4.3468 
4.0662 
3.8626 

3.7083 
3.5874 
3.4903 
3.4105 
3.3439 

3.2874 
3.2389 
3.1968 
3.1599 
3.1274 

3.0984 
3.0725 
3.0491 
3.0280 
3.0088 

2.9912 
2.9751 
2.9604 
2.9467 
2.9340 

2.9223 
2.8387 
2.7581 
2.6802 
2.6049 
- 

4 

24.58 
9.247 
9.1172 
6.3883 

5.1922 
4.5337 
4.1203 
3.8378 
3.6331 

3.4780 
3.3567 
3.2592 
3.1791 
3.1122 

3.0556 
3.0069 
2.9647 
2.9277 
2.8951 

2.8661 
2.8401 
2.8167 
2.7955 
2.7763 

2.7587 
2.7426 

2.7141 
2.7014 

2.6896 
2.6060 
2.5252 
2.4472 
2.3719 

2.7278 

- 

5 

30.16 
9.296 
9.0135 
6.2560 

5.0503 
4.3874 
3.9715 
3.6875 
3.4817 

3.3258 
3.2039 
3.1059 
3.0254 
2.9582 

2.9013 
2.8524 
2.8100 
2.7729 
2.7401 

2.7109 
2.6848 
2.6613 
2.6400 
2.6207 

2.6030 
2.5868 
2.5719 
2.5581 
2.5454 

2.5336 
2.4495 
2.3683 
2.2900 
2.2141 

6 

33.99 
9.330 
8.9406 
6.1631 

4.9503 
4.2839 
3.8660 
3.5806 
3.3738 

3.2172 
3.0946 
2.9961 
2.91 53 
2.8477 

2.7905 
2.7413 
2.6987 
2.6613 
2.6283 

2.5990 
2.5727 
2.5491 
2.5277 
2.5082 

2.4904 
2.4741 
2.4591 
2.4453 
2.4324 

2.4205 
2.3359 
2.2540 
2.1750 
2.0986 
- 

7 

.36.77 
9.353 
8.8868 
6.0942 

4.8759 
4.2066 
3.7870 
3.5005 
3.2927 

3.1355 
3.0123 
2.9134 
2.8321 
2.7642 

2.7066 
2.6572 
2.6143 
2.5767 
2.5435 

2.5140 
2.4876 
2.4638 
2.4422 
2.4226 

2.4047 
2.3883 
2.3732 
2.3593 
2.3463 

2.3343 
2.2490 
2.1665 
2.0867 
2.0096 

8 

38.88 
9.371 
8.8452 
6.0410 

4.8183 
4.1468 
3.7257 
3.4381 
3.2296 

3.0717 
2.9480 
2.8486 
2.7669 
2.6987 

2.6408 
2.5911 
2.5480 
2.5102 
2.4768 

2.4471 
2.4205 
2.3965 
2.3748 
2.3551 

2.3371 
2.3205 
2.3053 
2.29 I 3  
2.2782 

2.2662 
2.1802 
2.0970 
2.0 I64 
1.9384 
- 

9 

40.54 
9.385 
8.8123 
5.9988 

4.7725 
4.0990 
3.6767 
3.3881 
3.1789 

3.0204 
2.8962 
2.7964 
2.7144 
2.6458 

2.5876 
2.5377 
2.4943 
2.4563 
2.4227 

2.3928 
2.3661 
2.3419 
2.3201 
2.3002 

2.2821 
2.2655 
2.2501 
2.2360 
2.2229 

2.2107 
2.1240 
2.0401 
1.9588 
1.8799 
- 

From C. A. Bennett and N. L. Franklin, SturisticuI Anulvsis in Chernistv und the Cheniicul 
Itidustry, New York, 1954. pp. 702-705. Reproduced by permission of the publisher and the 
Biometrika Trustees. 
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Appendix A5b. F-Distribution 95 Percent Points F(O.95; v,, vz) 
(Continued) 

!52.20 253.25 
9.479 19.487 
8.5720 8.5494 
5.6878 5.6S81 

4.4314 4.3984 
3.7398 I 3.7047 

- 

- x 
1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
I I  
12 
1 3  
14 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
40 
60 

120 
co 
- 

254.32 
19.496 
8.5265 
5.6281 

4.3650 
3.6688 
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Appendix A6. Poisson Cumulative Distribution Function F( y )  for Mean p 
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From Donald B. Owen, Hutidhook of Srutrsrrcul Tables. ‘c! 1962. U.S. Department of Energy. 
Published by Addison-Wesley Publishing Company. Inc., Reading Massachusetts Table 9.3. 
pp. 260-Z61, “Poisson Table.” Reprinted with permission of the publisher 
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Appendix A6. Poisson Cumulative Distribution Function F( y )  for Mean p 
(Continued ) 
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Appendix A7. Binomial Cumulative Distribution Function F( y ) 
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From Irwin Mdler and John E Freund. Prohahilrrv und Stutrsfrcs for Engitieers. 2nd 
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Englewood Cliffs. N J 



Appendix A7. Binomial Cumulative Distribution Function F( y)  
(Conrinued) - 
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The numbers printed along the curves indicate the sample size n .  For a given V / H ,  p a n d i  are 
read from (or interpolated between) the appropriate lower and upper curves. 

From G. E. P. Box, W.  G. Hunter, and J. S. Hunter. Srafrsrrtsjor E.xperimenrers. Wiley. New 
York. 1978. pp. 642-643. Reproduced by permission of the publisher and the Biometnka 
Trustee>. 
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Appendix Al la .  Coefficients of BLUES for Normal p and (I 
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0 --.4370 -.I943 

3 p --.0718 ,0677 
a -3848 -2428 

4 p --.3474 -.OI35 
a -XI682 -.3269 

5 p -1.2733 2. 733 
(I -1.6812 l h 1 2  

,1429 .I429 ,1429 ,1429 ,1429 
--.0625 .WOO ,0625 .I351 ,2778 

,1400 ,1487 .I571 ,3159 
-.0681 ,6114 ,0901 .4716 

,1375 .I626 .54S 
--.0718 .0321 ,6709 

,1375 ,8686 
--.07l7 ,8994 

1.3609 
1.1951 

From A. E. Sarhan and B. G. Greenberg. “Estimation of Location and Scale Parameters by 
Order Statistics from Singly and Doubly Censored Samples, Parts I and 11.” A n n .  Muth. 
Srurisr.. Vol. 27 (1956), pp. 427-451 and Vol. 29 (1958). pp. 79-105. with permission of 
Heebok Park. Treasurer of the Inst. of Math. Statist. Photocopied from E. Lee. Sratisticd 
Merhods for Suroioul Duru Anu/vsis, 1980, with permission of Lifetime Learning Publications. 
Belmont. CA. 
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Appendix Al la .  Coefficients of BLUES for Normal p and u (Continued) 

. I250 . I250 . I250 . I250 . I250 . I250 . I250 ,1250 
-2476 -.I294 --.0713 -.OZ30 ,0230 ,0711 ,1294 ,2476 

.0997 . I  I39 .I208 . I  ?hS ,1318 . I370 .2704 f -2978 -.I515 --.0796 -.0200 ,0364 ,0951 ,4175 

2 I' ,0569 ,0962 ,1153 .I309 ,1451 ,4555 
o --.3638 -.I788 -.0881 -.0132 .0570 ,5868 

3 ,L -.0167 ,0677 ,1084 ,1413 ,6993 
a --.4586 -2156 -3970 .ooO2 ,7709 

1 I' -.I549 ,0176 ,1001 1.0372 
o --.6110 --.2707 - . I 0 6 1  ,9878 

5 r - 4632 --.US55 1.5487 
e -9045 --.3690 1.2715 

6 p  -1.4915 2.4915 
a -1.7502 1.7502 

o l r  . I l l 1  . I l l 1  .1111 . I 1 1 1  . I 1 1 1  . I I I I  . I 1 1 1  . I 1 1 1  . I 1 1 1  
0 -2237 - .I233 -.0751 -.0360 .OOOO ,0360 ,0751 ,1233 ,2237 

,0915 ,1018 ,1067 ,1106 .I142 ,1177 ,1212 ,2365 
-.2633 --.I421 -.0841 --.0370 ,0062 .0492 ,0954 ,3757 

2 1 r  ,0602 ,0876 ,1006 . I  I10 ,1204 , I294 ,3909 
0 -3129 -.I647 -3938  --.0364 ,0160 ,0678 ,5239 

3 P  ,0104 ,0660 ,0923 ,1133 ,1320 ,5860 
o -.I797 --.I936 --.I048 -.0333 ,0317 ,6797 

4 p -.0731 ,0316 ,0809 ,1199 3408 
o --.4766 -2335 - - . I181  -.0256 ,8537 

5 II -2272 --.OX4 . O W  1.1912 
(I --.6330 -.2944 -.I348 1.0622 

6 p --.5664 -.I521 1.7185 
(I -.9355 --.4047 1.3402 

7 p -1,6868 2.6868 
(I -1.8092 1.8092 

r - 10 

,0843 .092l ,0957 3986 . l o l l  ,1036 ,1060 .I085 .21Ol 
--.2364 -.1334 --.085l --.0465 -.Ol19 .021S ,0559 ,0937 .3423 

.0605 ,0804 .0898 3972 .lo37 ,1099 .116l ,3424 * -2753 -.I523 -3947 -.0488 - W77 ,0319 ,0722 ,4746 

.0244 .0636 .08 I8 ,0962 ,1089 ,1207 ,5045 b' --.3252 -.1758 -.I058 --.0502 --.WO6 .M69 ,6107 

4 P --.0316 .OM3 .0707 3962 .I185 .7078 
a -3930 -2063 --.1192 -.OJOI ,0111 .7576 

5 P -.1240 -.0016 ,0549 ,0990 .9718 
0 -A919 -2491 -.I362 -.M72 ,9243 

6 LA -2923 --.0709 ,0305 1,3327 
a --.6520 - 3 1 5 0  --.1591 1.1263 

a -.96as -.4357 1.3981 
7 p -.6596 - 2 1 3 8  1.8734 

a p -1.8634 2.8634 
a -1.8608 1.8608 

5% 



Appendix A l l a .  Coefficients of BLUES for Normal p and u (Continued) 
n - I I  

,0909 ,0909 .0909 .0909 ,0909 ,0909 .0909 ,0909 ,0909 ,0909 .090) 
- .I883 - .111S -.0760 --.048l --.0234 ,0000 .0234 . a 8 1  ,0760 ,1115 .I983 

,0781 ,0841 
-2149 --.I256 

.OS92 ,0744 
-2463 --.I417 

,0320 ,0609 
-2852 -.I610 

--.0082 ,0413 
-.33S7 --.I854 

--.0698 ,0128 
-.4045 -2173 

--.1702 --.0321 
-.50J3 -2627 

--.3516 - . I 1 0 4  
-5687 --.3311 

-.7445 -2.712 
--.9862 -A30 

-2.0245 3.0245 
u -1.9065 I.p(MJ 

,0869 ,0891 
-.0843 --.0519 

,0814 ,0869 
-.0934 --.OS55 

,0741 .OR45 
-.I018 -.0589 

,0642 ,0820 
--.I163 -.0621 

.0504 .0797 
-.I317 -.0647 

,0303 .0786 
-.I519 -.0657 

--.0016 1.4636 
-.I807 1.1825 

2.0157 
1.44Ql 

.0910 ,0928 .094S ,0963 ,0982 
--.0233 .0038 .03W ,0593 . # I 1  

,0917 ,0962 ,1005 ,1049 ,3047 
-.0220 .0095 ,0409 .0736 ,4349 

,0935 ,1020 .I101 .4430 
--.0194 ,0178 ,0545 ,5562 

,0974 ,1116 ,6116 
-.0146 .0299 ,6842 

.I049 .a220 
-.0061 ,8246 

1.0937 
.9857 

.1891 
,3149 

* - ' (11 '(21 y,31 y(41 y151 y(h) y171 ' ( 8 )  y19, Y(lO1 y ( l l l  y ( L Z i  

.0811 ,0833 .0833 . O Y I J  .OK33 ,0831 , 0 8 3 3  ,0833 .0813 ,0833 , 0833  .083J 
-.I748 --.I061 -.0749 -.0506 --.0294 --.009? ,0097 ,0294 ,0506 ,0749 ,1061 ,1748 

,0726 ,0775 ,0796 
-.I972 -.118S --.08?? 

,0574 .06Y3 ,0747 
--.2232 - - .I324 -.0911 

,0360 ,0581 ,0682 
- . 2 m  -.IW - . io07 

.oov ,042~ ,0595 
-2937 -.I686 --.I119 

- - .OlS2 ,0210 ,0477 
-.3JIR --.I939 --.I255 

- . I048 --.0109 ,0313 
-.1116 -.2274 -.I418 

-.2125 - 0609 .00'0 
-.S171 -.2?49 -.I659 

--.4059 - 1472 - 0 3 2 1  
- . 6 m  -.MJ -.1996 

- - . a 2 2 5  --.3?49 2.14'4 
-1.007s - 48?4 I 4 Y 4 8  

-2 172H 3.172s 

.0813 ,0828 .0842 
- 0548 -.0305 -.0079 

0789 .OK25 ,0859 
--.0590 -.OSlO - OOSO 

,0759 .OR27 .OHSY 
-.ObJ3 --.0308 -.0007 

,0724 ,0836 ,0918 
-.0678 -.O2Y6 ,0058 

,0684 ,0861 ,1022 
-.0726 -.026? ,015s 

,0637 ,0915 .9292 
-.0774 -.O?lO ,8831 

,0589 1.2075 
-.on20 I.0399 

I.5852 
1.2324 

.0k55 
,0142 

.0x91 
,0203 

.094R 
0286 

. I016 

.0400 

.7 I28 
,7479 

,0868 ,0882 ,0896 .I719 
,0367 .ObOJ .08U1 ,2919 

,0923 .095h ,2745 
,0461 , 0 7 3 3  ,4020 

.I006 .3Y50 
,0582 5119 

,5386 
,6259 

a -1.9J7.1 1.9474 
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Appendix A12b. Variance and Covariance Factors for BLUES for Extreme 
Vaiue X and 6 

r n A(n,r)  C(n, r )  B(n, r )  
2 2 0.6595468 0.0643216 0.71185 
2 3 0.9160385 0.4682464 0.81836g 
3 3 0.4028637 -0.0247719 0.3447112 
2 4 1.3340190 0.7720299 0.8670220 
3 4 0.4331573 0.1180273 0.3922328 
4 4 0.2934587 -0.0346903 0.2252829 

f 0.::9::53 O . ~ ! ~ ~ ~ ~  :.::6::57 
4 5 0.2918142 0.0385701 0.2537910 
5 5 0.2313953 -0.0339905 0.1666472 > 6 2.2440054 1.2082247 0.9132926 

1. 9 18 1. . 5 6  

3 6 0.6529407 0.3332487 0.4321160 
4 6 0.3237185 0.1020225 0.2697164 
5 6 0.2236065 0.0105329 0.1861065 

6 0,1911138 -0.0313731 0.1319602 
2 7 2.6856914 1.3746095 0.9261257 
3 7 0.7879540 0.4167048 0.4426123 
4 7  
5 7  
6 7  
7 7  
2 8  
3 8  
4 8  
5 8  
6 8  
7 8  
8 8  
2 9  
3 9  
4 9  
5 9  
6 9  
7 9  
8 9  

- 

- 

0.3726466 0.1569581 
0.2352926 0.0504482 
0.1827014 -0.0014908 
0.1629283 -0.0286029 
3.1099904 1.5185785 
0.9270270 0.4892374 
0.4307225 0.2050898 
0.2580472 0.0859328 
0.1865817 0.0259555 
0.1550975 -0.0071836 
0.1419827 -0.0260831 
3.5159953 1.6453318 
1.0664362 0.5532675 
0.4937336 0.2417853 
0.2874813 0.1176612 
0.1980218 0.0508391 
0.1556163 0.0128437 
0.1350590 -0.0099918 

0.2 80 1583 
0.1975663 
0.1462713 
0.109096 
0.9 35646* 
0.4502769 
0.2875948 
0.2053689 
0.1550330 
0.1201520 
0.092916g 
0.9429907 
0.4561257 
0.2931801 
0.2110851 
0.1611722 
0.1271266 
0.1017627 

9 9 0.125J228 -0.0238813 0.0808757 
2 10 3.9041486 1.7584120 0.9488296 
3 10 1.2042414 0.6105167 0.4607383 

r n A h ,  r )  C(n, r)  B(n,r) 
5 LO 0.3210449 0.1462586 0.2154736 
6 10 0.2143651 0.0734417 0.1657706 
7 10 0.1615247 0.0312775 0.1321255 
8 10 0.1340605 0.0052601 0.1074787 
9 LO 0.1197760 -0.0113587 0.0881441 
10 10 0.1129729 -0.0219764 0.0715730 
2 1 1  4.2754239 1.8605901 0.9535829 
3 1 1  1.3394275 0.6622444 0.4644704 
4 1 1  
5 1 1  
6 1 1  
7 1 1  
8 1 1  
9 11 
10 I 1  
1 1  1 1  
2 12 
3 12 
4 12 
5 1 2  
6 12 
7 12 
8 12 
9 12 
10 12 
11  12 
12 12 

- 

_1 

~- 
6.6258965 0.3207513 
0.3571655 0.1722376 
0.2339774 0.0940754 
0.1711050 0.0482322 
0.1370347 0.0194672 
0.1180946 0.0006384 
0.1076972 -0.0119594 
0.1025087 -0.0203275 
4.6309696 1.9536097 
1.4714833 0.7093955 
0.6927236 0.3524030 
0.3948335 0.1960075 
0.2557970 0.1130176 
0.1832612 0.0638719 
0.1428230 0.0326676 
0.1194292 0.0119220 
0.1057367 -0.0022798 
0.0978899 -0.0121362 
0.0938212 -0.0168937 

0.3010332 
0.2189574 
0.1693639 
0.1359374 
0.1116516 
0.0929336 
0.0776696 
0.0641736 
L.9575278 
0.467552R 
0.3039034 
0.221 7941 
0.1722580 
0.1389599 
0.1148810 
0.09648 38 
0.0817536 
0.0693731 
0.0581499 

From John S .  White. I,iduyrrro/ Marheniurru, Vol. 14. Part 1. 1964, pp. 21-60. Reproduced 
bk permission of J.  S. White. who developed the table. and R. Schmidt, editor of /ndlcl.lrrul 
iMoihmru[m. where the table first appeared. 
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Bonferroni inequality. 534 
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exponential confidence interval, 460, 
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likelihood ratio test, 534-550 
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location parameters, 513 
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nonparametric, 490, 523 
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Computerized literature searches, 571 
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Conditional distribution, see Distribution, 

Conditional failure probability, 139 
Conditional reliability, 15 1 
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Confidence bounds, 197 
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one-sided, 197 
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conditional 

Confidence level, 460 
Confidence limits, 197 

approximate, 197 
Bayesian, 563 
binomial chart, 590-591 
binomial p, 204-206 
conditional, 338, 339 
exponential, 210, 320 
exponential simultaneous, 467 
extreme value, 282-291 
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for a function, 383 
interval data, 419 
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lognormal, see Confidence limits, nor- 

with M L  estimates. 362, 379, 523, 

nonparametric for cdf, 153, 410, 417 
nonparametric for mean, 236 
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normal common mean, 476 
normal mean, 220, 269, 327, 330 
normal means simultaneous, 487-490 
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normal reliability, 223 
normal standard deviation. 218, 267, 

mal 
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327, 330 
normal two means, 478, 531 
normal two variances, 477, 528 
normal variances simultaneous, 483 
percentile, 508 
Poisson function of A,  202 
Poisson A, 201 
Poisson ratio of two rates, 442 
positive, 362 
ratio of two scale parameters, 51 1, 528 
reliability, 508 
simultaneous for location parameters, 

518, 534 
simultaneous for percentiles, 518 
simultaneous for scale parameters, 

two location parameters, 530 
two percentiles, 530 
Weibull, 282-291, 337 
Weibull percentile, 233, 287-290, 337, 

Weibull percentiles simultaneous ML, 

Weibull reliability, 234, 290, 337, 338, 

Weibull scale, 231, 285, 340 
Weibull shape, 230, 283, 340 
Weibull shape simultaneous, 533 
Weibull two percentiles, 53 1 
Weibull two scale parameters, 531 
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see also dislribution name 
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534 
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Consistent, 437 
Consistent test, 548 
Constraints on parameters, 393, 542 
Consumer’s risk, 449, 460, 473 
Contingency table, 451, 456, 458 
Control charts, binomial, 452 

Convergence in distribution, 376 
Convergence in law, 376 
Convergence of ML iterations, 392 
Correlation coefficient, 73, 74 
Covariance matrix, 74 
Covariance matrix of ML estimators, 372, 

Poisson, 445 

379 
another estimate of, 394 
for competing failure modes, 382 
extreme value local estimate of, 343 
of extreme value parameters, 337, 

for interval data, 424 
338, 343 
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of normal parameters, 327, 330, 373 
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Covariances, 73, 77, 99 

BLUEs, 250 
estimates of two functions, 374 
exponential order statistics, 303 
extreme value BLUEs, 279 
extreme value order statistics, 304 
factors of BLUEs, 250 
local estimate, 344 
normal BLUEs, 263 
normal order statistics, 265 
order statistics, 303 

Cox model, 565 
Cramer-Rao lower bound, 250 
Critical region, 492 
Cumulative distribution function, bino- 
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conditional, 58 
continuous, 19 
definition, 19, 80 
discrete, 80 
exponential, 20 
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hypergeometric, 97 
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Weibull, 37 

Cumulative hazard function, 27, 154-157 
Cumulative hazard value, 134 

Data, all-or-nothing response, 9, 406 
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attribute, 448 
availability, 562 
binary, 406 
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complete, 7, 193-246, 433-503 
component, 562 
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doubly censored, 504 
exponential complete, 316 
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extreme value complete, 226-235, 337 
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on a failure mode, 351 
field, 7 
grouped, 9, 407 
hypercensored, 7, 313 
inspection, 405-432 
interval, 9, 151, 407, 453 
left censored, 7, 123, 159, 401 
logit, 406 
lognormal, see Data, normal 
maintainability, 561 
with a mix of failure modes, 7, 354 
multinomial, 454 
multiply censored, 7, 131-161, 313- 

normal complete, 216-226, 469-490 
normal multiply censored, 323-333 
normal singly censored, 261-276, 327 
paired, 159 
peculiar, 41 I 
probit, 9, 406 
progressively censored, 7, 313 
quantal-response, 9, 405-406 
renewal. 495, 564 
right and left censored, 7, 159 
sensitivity, 9, 406 
singly censored, 7, 120, 247-312, 504- 

time censored, 7, 248 
Type I and 11 censored, 7, 248 
Weibull complete, 226-235, 337 
Weibull multiply censored, 333-347 
Weibull singly censored, 276-294, 338 
see also name of distribution, e.g. .  Nor- 

Data analysis, basic ideas, 9-1 3, 194-200, 

323 

333-347 

294, 338 

404, 355-386 

521 

mal analysis 

434-438 
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binomial, 204-209, 447-453 
distribution-free, 235-243 
exponential, 209-216, 459-469 
graphical, 103-161, 173-187 
multinomial, 453-458 
normal, 216-226, 469-490 
Poisson, 200-204, 438-447 
see also name of distribution 

Degrees o f  freedom, 47, 48 
Demonstration plans, exponential, 461 

normal, 473 
Demonstration test, 437, 524, 563 

exponential, 427, 460 
for location parameter, 507 
for maintainability, 561 
normal, 471 
Poisson, 89, 439, 441, 494 
probability of passing, 441 
for scale parameter, 506 
Weibull, 491 

Dependent failure modes, 166, 172, 380 
Depreciation, 566 
Dichotomy, 91, 96 
Direct search, 388 
Discrete random variable, 79 ff 
Distribution, beta, 299 

binomial, 91-96 
binomial cdf table, 588 
bivariate, 73 
bivariate normal, 73 
chi-square, 44-47 
chi-square percentiles table, 579 
choice of, 119 
conditional, 56-71 
conditional exponential, 62-64 
conditional extreme value, 71 
conditional lognormal, 67-69 
conditional normal, 64-67 
conditional Weibull, 69-71 
continuous, 16-28 
degenerate at infinity, 52, 401 
discrete, 78-99 
with eternal survivors, 52, 401 
exponential, 18-27 
extreme value, 39-44, 50, 301 
F, 48 
F-percentiles table, 582 
with failure at zero, 52 
of a failure mode, 173 
gamma. 44-47 
generalized gamma, 54 
geometric, 79& 454 

Gompertz-Makeham, 40, 71 
hypergeometric, 96-98, 208 
IFR, 53 
IFRA, 53, 243 
of individual components, 184 
joint, 71-78 
joint exponential, 78 
joint lognormal, 78 
joint normal, 73 
joint order statistics, 301, 304 
joint Weibull, 78 
largest extreme value, 50 
of likelihood ratio, 544 
log gamma, 54, 315 
logistic, 49, 101, 161, 251 
lognormal, 32-36, 101 
log,,, normal, 101 
log, normal, 101 
marginal, 75 
mixtures, 53, 102, 348, 400, 421 
ML asymptotic normal, 384 
multinomial, 98-99 
multivariate, 71-78, 172 
noncentral I. 48 
normal, 28-32 
normal cdf table, 576 
normal percentiles table, 578 
null, 436 
order statistic, 249 
parametric, 434 
parent, 194, 249, 294 
Poisson, 84-91, 140 
Poisson cdf table, 586 
population, 249 
posterior, 563 
prior, 563 
sampling, 47, 194 
shifted, 54-55 
shifted exponential, 54, 3 1 1  
shifted lognormal, 55 
shifted Weibull, 55 
smallest extreme value, 39-44, 301 
standard exponential, 18 
standard uniform, 51 
standardized parent, 297 
Student’s, 47 
1, 47 
!-percentiles table, 581 
three-parameter log-gamma, 493 
three-parameter lognormal, 55, 328 
three-parameter Weibull, 55, 339 
truncated, 56-71 
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see also Distribution, conditional 
two-parameter exponential, 55, 3 I I ,  

323 
uniform, 51, 299 
Weibull, 36-39, 43 

Distribution function, 19 
Distribution-free data analysis, 235-243 

see also Nonparametric analysis 
Dosage-mortality data, 414 
Duane plot, 447, 564 

Effect of size, see Size effect 
Efficiency, 282 
Estimate, 11 

definition, 195 
interval, see Confidence limits 
linear pooled, 308 
Kaplan-Meier, 149 
ML, 358 
ML linearly pooled, 525 
ML pooled, 525, 526 
pooled, 509 
see also distribution name and Estimator 

Estimation of system reliability from com- 

Estimator, best linear invariant, 250 
ponent data, 562 

best linear unbiased, 249 
definition, 195 
invariant, 307 
feast squares, 307 
linear, 247-312 
other linear, 307 
with selected order statistics, 255 
unbiased, 195 
see also di.sfribution name. estimate 

Euler’s constant, 293 
Event, 18. 74, 80 
Example, alarm clock, 129 

Apollo flights, 561 
appliance, 173 
appliance component. 495, 553 
appliance cord, 121, 509-520, 554, 555 
battery, 160, 243 
bird impact, 406 
bond failures, 349 ff 
breakdown voltage, 245 
capacitor, 172, 451, 453, 495 
capacitor demonstration, 439, 460, 494 
circuit breaker, 129, 430, 498, 557 
class B insulation, 121, 26 lA ;  311, 395 
class H insulation, 113, 141, 185, 187. 

2 1 7 8  

connection strength, 11 1, 3 4 8 8  
cryogenic cable, 172 
cyclamate, 406 
cylinder life, 188 
distribution transformer, 428, 429, 

4 5 4 8  556 
engine fan, 1 9 8  62A; 317J 3 3 4 8  

343 ff 
fatigue specimens, 190, 499-503 
four-slice toaster, 184 
freight train, 95, 166 
fuse residual, 145 
generator fan, 132 
Halley mortality table, I 7  ff 
insulating fluid, 1058 115, 123, 129, 

159, 2 0 9 8  2 2 7 8  2 3 9 x  244-246, 
252A; 2 7 7 8  309, 310, 312, 395, 
396, 4 6 2 8  507, 512, 514, 519, 524, 
526, 527, 536, 554 

insulating fluid breakdown, 189, 497 
insulating oil, 533, 555 
lamp assembly, 163, 168 
locomotive control, 33, 67, 92, 2 0 4 8  

material strength, 41 
metal fatigue, 190, 499-503 
mice, 159, 447, 448 
mortality table, 100 
motor insulation, 171 
oil breakdown, 189. 497 
part cracking, 4 1 5 s  
power line, 85fl 200A; 244, 444, 446, 

printed circuit, 450 
rat survival, 159, 447, 448 
residuals, 116, 170 
retaining ring, 67 
shave die, 158, 187, 397 
three motor insulations, 128, 470, 497 
toaster, 169 
toaster snubber, 529-539, 552 
trading stamps, 400, 401 
transformer, 30, 6 4 x  81fl 137, 430 
tree and bare wire, 442, 536 
turbine disk, 150, 152, 158 
turbine wheel, 4 0 7 8  427 
turn failure, 141, 185 
vehicle motor. 431 
warranty cost, 236.f 
winding, 37, 6 9 6  143. 147 
wire failures, 3 4 9 8  

324A; 398 

495, 553 

Expectation, conditional, 59 
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of extreme value order statistics, 292 
of normal order statistics, 274 
standard normal order statistics, 265 
see also Mean and Expected value 

Expected life, 23 
see also Mean 

Expected rank, 148 
Expected value, 82 

see also Mean and Expectation 
Experimental design, 470 
Exponential analysis, BLUES, 251-255 

compare K means, 516 
compare two means, 461 
comparisons, 459-469 
competing modes, 348 
complete data, 209-216, 459-469 
confidence limits for failure rate, 212, 

confidence limits for mean, 210, 252, 

confidence limits for percentile, 21 3, 

confidence limits for ratio of two 

confidence limits for reliability, 213, 

distribution, see Distribution, expon- 

estimate for mean, 209, 251, 317 
estimate from one order statistic, 256 
estimate of failure rate, 212, 253, 321, 

estimate of percentile, 212, 254, 321 
estimate of reliability, 213, 255, 322 
interval data, 426, 428 
interval data with progressive censor- 

left censored, 401 
linear estimate from best K order 

linear prediction, 257-260 
ML estimates, 316-323 
multiply censored data, 316-323 
optimum inspection times, 429 
optimum quantal-response, 428 
other methods, 260 
pooled estimate for mean, 469 
prediction, 214-216, 322 
prediction limits for mean, 215, 259 
prediction limits for observation j of 

prediction limits for observation j o f  

254, 321 

320, 363, 506 

254, 321 

means, 462, 51 1 

255, 322 

ential 

362 

ing, 429 

statistics, 257 

future sample, 260 

same sample, 258 

tion, 215 
prediction limits for smallest observa- 

prediction limits for total, 215 
predictor for mean, 214, 258 
predictor for observation j o f  a future 

predictor for observation jof same 

predictor for smallest observation, 215 
predictor for total, 214 
quantal-response data, 426, 427 
sample size, 211, 214 
singly censored data, 251-260, 316, 

test of homogeneity, 466 
see also Data, Distribution, Compari- 

sample, 216, 259 

sample, 257 

459-469 

sons 
Exponential fit on Weibull paper, 144 
Exposure, 6, 84 
Extreme value analysis, 226-235, 276-294, 

333-347 
BLlE for parameters, 277-278 
BLUE coefficients table, 599 
BLUE variances and covariances table, 

602 
BLUES, 277-281 
comparisons, 490, 507-517, 523-537 
complete data, 226-235, 337 
confidence limits, 282-291 
confidence limits for difference of two 

confidence limits for location, 231, 285 
confidence limits for parameters, 337, 

confidence limits for percentiles, 232, 

confidence limits for ratio of two scale 

confidence limits for reliability, 233, 

confidence limits for scale, 230, 283 
distribution, see Distribution, extreme 

estimate for location, 229, 277, 341 
estimate for percentile, 232, 27' 15 
estimate for reliability, 233, 280, 546 
estimate for scale, 227, 278, 341 
estimators from selected order statis- 

interval data, 426 
ML estimate calculation, 341 

location parameters, 531 

338, 344 

287-290, 337, 339, 345 

parameters, 529 

290, 337, 338, 347 

value 

tics, 281 



INDEX 625 

multiply censored data, 333-347 
prediction, 291-294 
prediction limit for first order statistic, 

prediction limits for order statistic j .  

predictor for first order statistic, 293 
predictor for order statistic J, 292 
quantal-response data, 426 
singly censored, 276-284, 338 
see also Weibull analysis, Data, Distri- 

293 

292 

bution 

Fdistribution, see Distribution, F 
F test, 486 
Failure, 6 
Failure cause not identified, 356 
Failure censoring, 248 
Failure modes, 162 

combined, 182 
common, 560 
dependent, 356 
elimination, 167, 173, 176, 355 
maximum likelihood estimation, 351 

Failure modes and effects analysis, 559 
Failure rate, 18, 85 

addition law, 165 
behavior of, 153 
binomial, 92 
component data, 558, 561 
constant, 26 
definition, 25, 92 
design, 441 
distribution not exponential, 254 
handbook data. 561 
instantaneous, 25 
observed, 254 
polynomial, 51 
proportional to size, 170-173 
of sample, 321 
see also Hazard function 

Fatigue, 566 
Fault tree, 559 
Field data, 7 
Finite source models, 562 
Fisher exact test, 449 
Fisher information, complete data, 359 
' exponential, 360, 366 

local, 366 
multiply censored data, 365 

Fisher information matrix, see Informa- 
tion matrix 

Fletcher-Powell-Davidon method, 388 
FMEA, 559 
Force of mortality, 25 
Fractile, 22 
Future sample, 194, 199, 257, 275, 291 

Gamma distribution, 44-47 
censored data, 315 
interval data, 421 

Gamma function, 38, 44 
Gauss-Markov Theorem, 305, 306 
Gaussian distribution, see Distribution, 

normal 
General model, 492 
Geometric distribution, 79ff 
GIDEP,  561 
Gompertz-Makeham distribution, 40, 71 
Government-Industry Data Exchange 

Graphical methods, competing failure 
Program, 561 

modes, 173-187 
complete data, 103-120 
interval data, 414-418 
multiply censored data, 131-161 
quantal-response data, 407-41 1 
singly censored data, 120-125 
see also Probability plots, Hazard plots 

Guarantee time, 54 

Handbook of component failure rate data, 

Hazard function, 154 
bathtub, 400 
conditional, 60 
constant, 26 
cumulative, 27, 155-157 
definition, 25 
exponential, 26 
extreme value, 42 
linear, 50 
lognormal, 34 
normal, 31 
polynomial, 51 
standard normal, 328 
Weibull, 39 
see also Failure rate 

Hazard paper, 134-146, 154-158 
exponential, 135, 139, 155 
extreme value, 146, 157 
logistic, 161 
lognormal, 142, 156 
normal, 138, 156 

561 
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theory, 154-158 
Weibull, 145, 157 

Hazard plot, 131-146, 173-187 
basic assumption, 135 
for competing failure modes, 173-1 87 
of component life, 185 
exponential, 136 
extreme value, 145 
failure mode eliminated, 176 
hazard values table, 594 
how to make, 132-135 
how to use, 135 
lognormal, 141 
normal, 137 
plotting positions, 300 
of a single failure mode, 179 
for systems of identical components, 

for systems of various sizes, 187 
theory, 154-158 
Weibull, 143 

Hazard rate, 25 
Hazard value, 134, 594 
Herd-Johnson method, 147-149 
Hessian, 390 
Histogram, 106 
Homogeneity hypothesis, 482 
Hypergeometric probability, 450 
Hypothesis, 11, 435, 492 

alternative, 435, 492, 540 
equality, 435, 524 
homogeneity, 482 
null, 435, 492, 540 
one-sided, 435 
two-sided, 435 

Hypothesis test, 1 I ,  434-438 
complete data, 433-503 
for consistency, 434 
consistent, 548 
to demonstrate, 434 
likelihood ratio, 534-550, 544 
likelihood ratio theory, 539-550 
theory, 491-494 
see olso Comparisons 

184 

IMSL, see Computer program 
Incomplete gamma function ratio, 45 
Independent competing risks, 163 
Independent variables, 76, 565 
Indicator function, 365, 423 
Indicator variable, 378 
Indices, life data analysis, 569 

reliability, 569 
Infant mortality, 26 
Inference, see name of distribution. Esti- 

mate, Confidence limits, Predic- 
tion, Comparisons 

Information matrix, 370, 377 
for competing failure modes, 382 
extreme value, 342 
for interval data, 423 
local, 370, 377 
normal, 329, 372 
for quantal-response data, 423 
Weibull, 343 

Inspection intervals, 415 
Inspection schedule, 416 
Inspection times, 405 

optimum, 426, 427 
Interval data, graphical analysis, 414-41 8 

literature, 426 
ML analysis, 418-421 
ML confidence !;,nits, 419 
ML theory, 421-. '7 
nonparametric confidence limits, 417 
see also Data 

Interval estimate, seeconfidence limits 
Interval midpoint, 407 
Invariance property, 361, 374 
Invariant, 307 
Irrelevant causes of death, 162 
Iteration fails to converge, 413 
Iterative ML calculations, 388-395 

Journals, with life data analysis, 570 
with reliability methods, 570 

Kaplan-Meier estimate, 149 

Lack of fit, 41 1 
Lack of memory, 62 
Lagrange multipliers, 542 
Large-sample, see Asymptotic 
Left censored, see Data 
Level of a test, 493, 544 
Life as a function of variables, 565 
Life data analysis books, 567 
Life table, see Mortality table 
Likelihood, 387, 542 

approximate derivative, 393 
censored observation, 376 
competing failure modes, 380 
complete data, 357, 368 
exponential complete data, 357 
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exponential multiply censored, 31 7, 

extreme value multiply censored, 341 
independent samples, 526 
interval data, 422 
maximization, 388 
maximum, 387 
multiply censored data, 363, 376 
normal complete data, 368 
normal multiply censored, 328 
observed failure, 363. 376 
optimum. 387 
quantal-response data, 422 
right censored observation, 363 
sample, 357 
Weibull multiply censored, 340 

Likelihood equations, 358, 369, 377 
competing failure modes, 381 
exponential, 359, 365 
interval data, 423 
normal, 328, 370 
quantal-response data, 423 
Weibull, 340 

Likelihood ratio, 542 
Likelihood ratio test, 414, 524, 534-550 

theory, 539-550 
see also Comparisons, Likelihood ratio 

364 

Limits, see Confidence limits, Prediction 

Limit theorem for extreme values, 170 
Linear comparisons, 504-521 
Linear estimators, 247-312 
Linear methods, 247-312 

limits 

multiply censored data, 295 
see also distribution name 

Linear sum, 77 
Literature searches, computerized, 571 
Local estimate of asymptotic variance, 

318, 324, 330, 335, 373, 425 
Local Fisher information, 361, 370, 377 
Locally most powerful, 539 
Location parameter, 250 

extreme value, 40 
Log likelihood, 357, 368 
Log mean, 32 
Log standard deviation, 32 
Log-linear model. 458 
Log-logistic. multiply censored data, 315 
Logisti.. multiply censored data, 315 

quantal-response data, 426 
Lognormal analysis, see Normal analysis 
Lognormal distribution, 32-36, 101 

relation lo  normal distribution, 35 
Lot tolerance percent defective, 449 
LR test, see Hypothesis test, likelihood 

LTPD, 449 
ratio, andComparisons, LR 

Maintainability, data analysis, 561 
models, 561 

Maintenance, 561, 566 
Markov chains, 562 
Maximum absolute standardized 

difference, 519. 534 
Maximum Fstatistic, 468, 485 
Maximum likelihood analyses, 3 13-404, 

522-557 
comparisons, 522-557 
for competing failure modes, 347-356 
effective computations, 392 
estimates, 358, 364, 369, 376, 422 
general methods, 356-386 
for interval data, 418-421 
iteration, 413 
iteration starting values, 392 
iteration stopping criteria, 392 
motivation for theory, 384 
multiple estimates, 393 
numerical methods, 386-395 
theory, 356-386 
theory for competing failure modes, 

theory for complete data, 357-363, 

theory for multiparameter distribution, 

theory for multiply censored data, 

see also distribution name, estimate 

conditional, 59 
definition, 23, 76, 82 
discrete, 82 
exponential, 18, 23 
exponential order statistic, 298 
extreme value, 42 
hypergeometric, 98 
lognormal, 34 
order statistic, 297 
normal, 31 
Poisson, 86 
of sample, 209, 219 
time between failures, 24 
time to failure, 24 

380-384 

3 6 7 - 3 7 5 

367-379 

363-367. 375 

Mean, binomial. 93 
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Weibull, 38 
Mean square error (MSE), 195 
Median, 22 

lognormal, 261, 269 
sample, 239, 264 

Metal fatigue, 566 
Method of scoring, 390 
Method of steepest ascent, 388 
MIL-HDBK-108, 441, 461, 563 
MIL-HDBK-189, 564 
MIL-HDBK-Z17C, 561 
MIL-S-I9500D, 563 
MIL-STD-IOSD, 441, 449 
MIL-STD-414, 473 
MIL-STD-471A. 473, 561 
MIL-STD-690B, 441, 461, 563 
MIL-STD-78IC, 441, 461, 563 
Minimal cuts, 559 
Minimum chi-square fitting, 426 
Minimum chi-square test, 420 
Minimum life, 54 
Minimum variance, see Estimator, best 
Mixture of, distributions, 53, 348, 421 

exponential distributions, 102 
two Weibull distributions, 400 

ML estimate, 358, 364, 369, 376, 422 
for competing failure modes, 381, 354 
covariance matrix of, 330, 360, 373, 

for a failure mode,  351 
with failure modes eliminated, 354 
of a function, 361, 374, 383 

asymptotic theory, 314 
properties, 313 
theory. 314 

Mode, definition, 22 
exponential, 23 
e x t r m e  value, 42 
lognormal, 34 
normal, 31 
Weibull, 38 

Model, 10, 17, 78 
accelerated test, 566 
constrained, 540 
Cox, 565 
general, 492 
general for LR test, 540 
null hypothesis, 540 
proportional hazards, 565 

Moments, order statistic, 297 
Monte Carlo methods, 560 

425 

ML method, 313 

Mortality rate, 25 
MSE, 195 
MTBF, 24 
MTTF, 24 
Multinomial analysis, comparisons, 453- 

458 
contingency tables, 45 1 -45 8 
ML estimates, 430 
other methods, 458 
pooled estimate, 458 
regression, 458 
test of homogeneity, 454 
see also Distribution, multinomial 

Multiple decrement analyses, 162 
Multiply censored data, see Data, multiply 

censored 

Nature of the failure rate, 153 
Newton-Raphson method, 389-391, 402 

improvements, 391 
theory, 391 

comparisons, 490, 523 
complete data, 235-243 
confidence limits for mean, 236 
confidence limits for percentile, 239- 

confidence limits for reliability, 239 
estimate for mean, 236 
estimate for percentile, 239 
estimate for reliability, 149-153, 238 
estimate for standard deviation, 237 
estimate for variance, 237 
fitting, 119 
graphical, 119, 134 
interval data, 427, 430 
ML estimate, 315, 417 
multiply censored data, 149, 315, 348 
other methods, 243 
prediction, 240-243 
prediction limit for smallest (largest) 

observation, 242 
prediction limits for mean, 241 
prediction limits for total, 242 
predictor for mean, 241 
predictor for observation r,  242 
predictor for total, 241 
quantal-response data, 408, 426 
singly censored data, 248 

Nonparametric analysis, 235-243 

240, 299-300 

Normal analysis, 216-226, 261-276, 323- 
333 

approximate BLUES, 327 
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asymptotic BLUE. for p.  265 
asymptotic BLUE for U, 266 
BLUE for u from two order statistics. 

265 
BLUES, 261-266 
BLUEs coefficients table, 595 
BLUEs variances and covariances 

comparison of K means, 485 
comparison of K parameters, 516 
comparison of K standard deviations, 

comparison two-sample, 512 
comparisons, 469-490 
complete data, 216-226, 323, 326 
confidence limits, 216-223, 266-274 
confide'nce limits for mean, 220, 269, 

confidence limits for percentile, 221, 

confidence limits for reliability, 223, 

confidence limits for standard devia- 

confidence limits for two means, 478, 

confidence limits for two standard 

confidence limits for two variances, 

distribution, see Distribution, normal 
estimate for mean, 219, 261, 264, 326, 

estimate for percentile, 221, 262, 331, 

estimate for reliability, 222, 263, 332 
estimate for standard deviation, 217, 

estimate for variance, 217 
estimators from selected order statis- 

interval data, 426 
ML estimates, 326-331, 370, 375 
multiply censored data, 323-333 
other methods, 226 
pooled estimate of mean, 475 
pooled estimate of variance, 474 
prediction, 224-226, 274-276, 327 
prediction limit for first order statistic, 

prediction limits for mean. 224 
prediction limits for order statistic j ,  

table, 598 

482 

327, 330 

271, 327, 331 

273, 327, 332 

tion, 218, 267, 327, 330 

53 1 

deviations, 528 

477 

327 

375 

262, 326. 327 

tics, 264-266 

276 

275 
prediction limits for smallest or largest 

observation, 225 
predictor for mean, 224 
predictor for observation, 224 
predictor for order statistic j ,  274 
predictor for first order statistic, 275 
predictor for smallest or largest obser- 

predictor for total, 224 
quantal-response data, 425 
sample size for mean, 220 
sample size for u, 219 
singly censored data, 261-276, 323, 

see also Data, Comparisons 

vation, 225 

327 

Normal distribution, 28-32 
Notation, 13, 316 
Null distribution, 436 
Null hypothesis, 435, 492, 540 
Numerical analyses, 103 

OC curve, 95, 438, 492 
binomial, 448, 449 
compare two Weibull shape parame- 

ters, 530 
exponential, 460, 524 
normal, 473 
Poisson, 439, 441 
Weibull scale parameters, 549 

Occurrence rate, 85 
One-way analysis of variance, 486 
Operating characteristic curve. see OC 

Operating characteristic function, see OC 

Optimum inspection times, 427 
Order statistic, asymptotic distribution, 

curve 

curve 

300 
cumulative distribution, 295 
differences, 300, 301 
distribution, 295 
exponential, 296, 298 
extreme value, 297, 299 
mean, 291 
moments, 297 
of a multiply censored sample, 305 
normal, 297, 299 
prediction, 307 
probability density, 295 
random proportion below. 299 
slandardized, 305 



630 INDEX 

variance, 297 

joint asymptotic distribution, 304 
joint density, 302 
joint distribution, 302, 304 
joint moments, 303 

Order statistics, 249, 294-305 

Organization of book, 3 
Outcomes, 16 
Outlier Lest, 258, 275, 292 
Outliers, 200, 480, 494 
Overstress. 566 

Parallel redundancy, 167 
Parameter constraints, 393 
Parameter space, 492, 540 
Parameters, arbitrary value, 316 

ML estimate, 316 
true value, 316 
see also distribution name 

Past sample, 199 
Percent point, 22 
Percentile, chi-square table, 579 

definition, 22 
exponential, 22 
extreme value, 41 
Ftable, 582 
lognormal, 33 
normal, 30 
standard extreme value, 41 
standard normal, 31, 576 
(table, 581 
Weibull, 38 
see also distribution name 

Peto's method, 410, 414. 421 
Plotting position, 106, 118 

hazard, 134 
Herd-Johnson, I47 
mean, 118, 300 
median, 118, 148, 300 
midpoint, 108, 592 
modilied hazard, 135 
probability, 108, 118 
table, 592 

analysis of variance, 447 
censored data, 447 
choice of length I, 202 
compare K rates, 443, 535 
comparisons, 438-447 
confidence interval for A, 201 
distribution, see Distribution, Poisson 
estimate for occurrence rate A ,  200 

Poisson analysis, 200-204, 438-447 

interval data, 447 
M L  methods, 400 
nonconstant failure rate, 445 
other methods, 446 
plot, 445 
pooled estimate, 446 
prediction, 202-204 
prediction limits, 203 
predictor for occurrences, 203 
regression. 446 
see also Data and Distribution 

Poisson process, definition, 90 
nonhomogeneous, 91, 445 

Pooled estimate, 509 
binomial, 452 
linear, 509-510 

multinomial, 458 
normal, 473 
Poisson, 446 

Population, 5 
finite, 96 

Posteriors, 563 
Powell method without derivatives, 388 
Power function, 493 

see also OC curve 
Prediction, 12, 194 

binomial, 207-209 
exponential, 102, 214-216, 257-260, 

extreme value, 291 
general, 199-200 
nonparametric, 240-243 
normal, 224-226, 274-276, 321 
of number of failures, 66, 140 
one-sample, 257 

Weibull, 234, 291 
Prediction error, 199 
Prediction interval, 12 

approximate, 199 
definition, 199 
see also Prediction limits 

Prediction limits, binomial, 208 
definition, 199 
for exponential mean, 215 
Poisson, 203 
see also distribution name 

unbiased, 199 

M L ,  525-527 

322 

Poisson, 102, 202-204 

Predictor, definition, 199 

Preventive replacement, 143 
Priors. 563 
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Probability of, discrete outcome, 79 
event 18, 74, 80 
failure from a particular cause, 192 

Probability density, 16 
conditional, 57 
exponential, 18 
extreme value, 40 
joint, 72 
lognormal, 32 
normal, 28 
standard normal, 29 
Weibull, 36 

Probability function, 79 
binomial, 91 
hypergeometric, 96 
multinomial, 99 
Poisson, 84 

Probability model, 10, 17, 78 
Probability paper, 107 

binomial, 451 
chi-square, 465 
exponential, 125 
extreme value, 127 
logistic, 130 
lognormal, 126 
normal, 126 
theory, 125-128 
Weibull, 127 

advantages, 103 
aids, 117-120 
of complete sample, 108 
by computer, 118 
exponential, 110 
extreme value, 116 
interpretation, 109-1 10, 410 
of interval data, 415 
limitations, 104 
lognormal, 113 
of multiply censored data, 146-154 
normal, 111 
of quantal-response data, 408, 410 
of singly censored data, 120-125 
Weibull, 115 

Probable error, 197 
Producer’s risk, 90, 449, 460, 473 
Product rule for reliability, 163, 351 
Product-limit estimate, 149, 315 
Propagation of error, 374 
Proportion, binomial, 92 
Proportion below order statistic i 299 
Proportional hazards model, 565 

Probability plot, 103-129 

Quadratic form, Wald’s, 552 
Quadratic test statistic, 515 
Quantal-response data, binomial 

graphical analyses, 407-41 1 
literature, 425 
ML confidence limits, 413 
ML estimates, 413 
ML fitting, 41 1-414 
ML theory, 421-427 
nonparametric confidence limits, 410, 

Peto’s nonparametric method, 410 
see a h  Data, quantal-response 

confidence limits, 410 

413 

Quantile, see Fractile, Percentile 
Queuing theory, 562 

Random sample, 76 
Random sampling, 6, 194 
Random variable, 16, 79 
Range, 237 
Rank, 108 
Rao’s test, 550 
Rate, see Occurrence rate, Hazard rate, 

Failure rate, Mortality rate 
Redundancy, 96, 559 

parallel, 167 
References, 603-616 
Regression relationships, 565 
Regularity conditions, 356, 358, 360, 364, 

Rejection region, 492 
Relationship, analysis-of-variance, 565 

369, 376, 384 

life and other variables, 566 
regression, 565 

Reliability, 21, 96 
abstracts, 569 
Bayesian, 562 
bibliographies, 569 
block diagrams, 560 
books, 567 
of components, 559. 561 
conditional, 58 
definition, 92 
design, 559 
growth, 447, 564 
indices, 569 
management, 558 
physics, 558 
system models, 559 
see also distribution name 

Reliability demonstration, 435, 436, 439, 
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460. 563 
Weibull, 491 

exponential, 21 
extreme value, 41 
lognormal, 33 
normal. 30 
sample, 146-154, 238 
Weibull, 38 

Reliability growth, 447, 564 
Remaining life, 60.f 
Removal, 7 
Renewal, data, 495 

Reliability function, definition, 21  

data analysis, 564 
function, 496, 564 
theory, 564 

Repairable, 24 
Reparametrization. 541 
Replacement. 564. 566 
Reverse rank, 132 
Right censored, see Data 
Risk analysis, 560, 568 
Robust methods, 478 
Run-out, 7 

Safe warranty, 215, 260 
Safety, fi59, 568 
Sample, 6, 76 

future, 199, 257, 275, 291 
likelihood, 357, 542 
mean, 209, 219 
median, 239 
multiply censored, 295 
with no failures, 253, 320 
past, 199 
proportion, 204 
reliability function, 146-1 54, 238 
same, 257, 274 
score, 358, 369 
singly censored, 247 
statistic, 194 
total, 240 

binomial two-sample test, 450 
choice of, 198 
comparing K means, 486 
comparing two location parameters, 

comparing two percentiles. 530 
exponential, 211, 214, 253, 321 
hypothesis test, 438 
lineal- estimates, 508, 515 

Sample size, for average, 449 

530 

multinomial, 458 
normal mean, 220 
normal U, 219 
normal two means, 479 
Poisson A. 202 
two-sample M L ,  528 
Weibull shape, 231 

Sample space, 492 
Sampling distribution. 194, 199 

normal approximation, 196, 313 
Sampling plans, 563 

multistage, 441, 449 
sequential, 441 
two-stage, 441, 449 
see also Demonstration tests 

Scale parameter, 250 
extreme value, 40 
simultaneous confidence limits, 517 
Weibull, 36 

Scheme for numbering of book, 4 
Score, 358, 384 

for observation, 369 
for sample, 369 

Secant method, 389 
Sequential sampling, 438 
Series system. 162-192. 260. 349, 380 

definition, 163 
with dependence, 172 
of different components, 163-168 
exponential, 166, 169, 171 
of identical parts. 168-173 
Weibull, 167, 169, 171 

Shape parameter, Weibull, 36 
Sheppard's correction, 426 
Shift parameter, 54 
Sign test, 448 
Significance, practical. 12, 438 

statistical, 12, 437, 493 
Significance level, 437, 493 
Simple random sampling, 6 
Simulation, 560 
Singly censored, see Data and distribution 

name 
Size effect, 170-1 73 
Size of a test, 493 
Smallest extreme value distribution, 39- 

44 
see also Extreme value analysis 

Staircase method, 425 
Standard deviate, 40 
Standard deviation, binomial, 94 

conditional. 60 
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definition, 24, 77, 83 
exponential, 24 
extreme value, 42 
hypergeometric, 98 
lognormal, 34 
normal, 31 
Poisson, 88 
Weibull, 39 

Standard distribution, see Distribution 
Standard error, 195 

asymptotic, 319 
Standard prediction error, 199 
Standardized variable, 101 
Statistic, 194, 195 

maximum F, 468, 485 
order, 294-305 
systematic, 249 
r-like. 269. 507, 530 
test, 436, 492 
see also Distribution 

Statistically independent, 76 
Statistically significant, 12, 437, 493 
STATPAC, see Computer program 
Steepest ascent, 388 
Stress, 406 
Studentized range. 489 
Subspace of the null hypothesis. 492. 540 
Sudden death test, 168, 184 
Sum of Poisson counts, 88 
Survey of other topics, 558-573 
Survivor, 7 
Survivorship function, 21 
SURVREG, see Computer program 
Suspended unit, 7 
System reliability, 559 

estimation from component data, 562 
optimization, 560 

Systematic statistic, 249 
Systems, of different sizes, 184, 187 

of identical components, 184 

repairable, 561, 562 
series, 162-192 
with size effect. 184 

I-out-of-n, 167 

I distribution, see Distribution, I 

Table, binomial cdf, 588 
chi-square percentiles ,y*(P; v ) .  579 
extreme value BLUEs coefficients, 599 
extreme value BLUEs variances and 

F-distribution percentiles, 582 
covariances, 602 

hazard values, 594 
normal BLUEs coefficients, 595 
normal BLUEs variances and covari- 

normal percentiles zp, 578 
normal standard cdf @ ( u ) .  576 
Poisson cdf, 586 
[-distribution percentiles / ( P ;  v ) ,  581 

Taylor expansions, 374 
TEAM, 107 
Test, 492 

ances, 598 

see also Hypothesis test, Demonstra- 
tion test, and Comparisons 

Test of fit, 414, 417, 420, 493 
chi-square. 454 
for singly censored data, 505 

Test of homogeneity, with ML estimates, 
532 

of normal means, 485 
of normal variances, 482 
see also Comparisons 

Test statistic. 436, 492 
Test time, minimum, 439 
Testing with replacement, 90, 441 
Three-parameter lognormal distribution. 

55 
interval data, 421 

Threshold parameter, 54 
Time censoring, 7, 248 
Tolerance limit, 222 

Transformed parameter, 393 
Trial, 19 
Trial and error, 388 
Trial estimates, 387 
Type 1 and I 1  censoring, 248 

Unbiased, 195, 249 
Unbiasing factor, 525 
Unidentified competing causes, 401, 402 
Uniformly most powerful. 548 

Validity of data and distribution, 41 I .  417 
Variable, accelerating, 566 

TR-3, TR-4, TR-6, 491, 563 

independent. 565 
qualitative. 565 
quantitative, 565 
random, 16, 79 

Variance, binomial, 94 
BLUE, 250 
conditional, 60 
definition, 24. 77, 82 
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discrete, 82 
exponential, 24 
exponential ML estimate, 367 
extreme value, 42 
factor, 250 
hypergeometric, 98 
local estimate, 318, 344 
lognormal, 34 
order statistic, 265, 297 
normal, 31 
Poisson, 88 
prediction error, 199 
unequal, 479 
Weihull, 38 
Weibull ML estimates, 343 
see ulso Asymptotic variance and 

Covariance matrix 

Wald’s test, 551, 555 
Warranty period, 276, 294 
Weakest link, 36, 40 
Wear-out, 26 
WEIB, See Computer program 
Weibull analysis, approximate BLUES, 

339 
BLIEs, 339 

compare K parameters, 5 17 
comparisons, 490, 507-517 
competing modes, 348 
complete data, 226-235, 337, 491 
conditional confidence limits, 338, 

conditional prediction limits. 339 
confidence limits, 282-291 
confidence limits f o r  parameters, 230, 

confidence limits for percentiles, 233, 

confidence limits for percentiles simul- 

confidence limits for ratio of two per- 

BLUES, 277-279 

339 

231, 283, 285, 337, 338, 344 

287-290, 337, 339, 345 

taneous. 534 

centiles, 531 

confidence limits for ratio of two scale 

confidence limits for ratio of two 

confidence limits for reliability, 234, 

confidence limits for scale, 231, 285, 

confidence limits for shape, 230, 283, 

distribution, see Distribution, Weibull 
estimate for percentile, 232, 280, 345 
estimate for reliability, 233, 280, 346 
estimate for scale, 229. 277 
estimate for shape, 227, 279 
estimators from selected order statis- 

interval data, 418-420, 426 
known shape, 235, 294, 399 
M L  estimate calculation, 340 
ML estimates, 337, 340 
multiply censored data, 333-347 
other methods, 235, 339 
prediction, 291-294 
prediction limits for first order statis- 

tic, 235, 293 
prediction limits for order statistic j ,  

292 
predictor for first order statistic, 234, 

293 
predictor for order statistic J .  292 
quantal-response data, 41 1-413, 426 
sample size, 231 
shape parameter known. 235, 294, 399 
singly censored data, 276-294, 338 
see also Data, Extreme value aiialysis 

relation to extreme value distribution, 

parameters, 53 1 

shape parameters, 529 

290, 337, 338, 347 

340 

340 

tics, 281 

Weibull distribution, 36-39, 43 

43 
Wholly significant, 483, 487, 533, 534 
Wholly significant difference, 517 
Wilson-Hilferty approximation, 46, 267, 

285. 506 
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